1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/dmu.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/dbuf.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dsl_dataset.h> 33 #include <sys/dsl_dir.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/spa.h> 36 #include <sys/zio.h> 37 #include <sys/dmu_zfetch.h> 38 #include <sys/sa.h> 39 #include <sys/sa_impl.h> 40 41 static void dbuf_destroy(dmu_buf_impl_t *db); 42 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 43 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 44 45 /* 46 * Global data structures and functions for the dbuf cache. 47 */ 48 static kmem_cache_t *dbuf_cache; 49 50 /* ARGSUSED */ 51 static int 52 dbuf_cons(void *vdb, void *unused, int kmflag) 53 { 54 dmu_buf_impl_t *db = vdb; 55 bzero(db, sizeof (dmu_buf_impl_t)); 56 57 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 58 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 59 refcount_create(&db->db_holds); 60 return (0); 61 } 62 63 /* ARGSUSED */ 64 static void 65 dbuf_dest(void *vdb, void *unused) 66 { 67 dmu_buf_impl_t *db = vdb; 68 mutex_destroy(&db->db_mtx); 69 cv_destroy(&db->db_changed); 70 refcount_destroy(&db->db_holds); 71 } 72 73 /* 74 * dbuf hash table routines 75 */ 76 static dbuf_hash_table_t dbuf_hash_table; 77 78 static uint64_t dbuf_hash_count; 79 80 static uint64_t 81 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 82 { 83 uintptr_t osv = (uintptr_t)os; 84 uint64_t crc = -1ULL; 85 86 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 87 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 88 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 89 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 90 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 91 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 92 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 93 94 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 95 96 return (crc); 97 } 98 99 #define DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid); 100 101 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 102 ((dbuf)->db.db_object == (obj) && \ 103 (dbuf)->db_objset == (os) && \ 104 (dbuf)->db_level == (level) && \ 105 (dbuf)->db_blkid == (blkid)) 106 107 dmu_buf_impl_t * 108 dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid) 109 { 110 dbuf_hash_table_t *h = &dbuf_hash_table; 111 objset_t *os = dn->dn_objset; 112 uint64_t obj = dn->dn_object; 113 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 114 uint64_t idx = hv & h->hash_table_mask; 115 dmu_buf_impl_t *db; 116 117 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 118 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 119 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 120 mutex_enter(&db->db_mtx); 121 if (db->db_state != DB_EVICTING) { 122 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 123 return (db); 124 } 125 mutex_exit(&db->db_mtx); 126 } 127 } 128 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 129 return (NULL); 130 } 131 132 /* 133 * Insert an entry into the hash table. If there is already an element 134 * equal to elem in the hash table, then the already existing element 135 * will be returned and the new element will not be inserted. 136 * Otherwise returns NULL. 137 */ 138 static dmu_buf_impl_t * 139 dbuf_hash_insert(dmu_buf_impl_t *db) 140 { 141 dbuf_hash_table_t *h = &dbuf_hash_table; 142 objset_t *os = db->db_objset; 143 uint64_t obj = db->db.db_object; 144 int level = db->db_level; 145 uint64_t blkid = db->db_blkid; 146 uint64_t hv = DBUF_HASH(os, obj, level, blkid); 147 uint64_t idx = hv & h->hash_table_mask; 148 dmu_buf_impl_t *dbf; 149 150 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 151 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 152 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 153 mutex_enter(&dbf->db_mtx); 154 if (dbf->db_state != DB_EVICTING) { 155 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 156 return (dbf); 157 } 158 mutex_exit(&dbf->db_mtx); 159 } 160 } 161 162 mutex_enter(&db->db_mtx); 163 db->db_hash_next = h->hash_table[idx]; 164 h->hash_table[idx] = db; 165 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 166 atomic_add_64(&dbuf_hash_count, 1); 167 168 return (NULL); 169 } 170 171 /* 172 * Remove an entry from the hash table. This operation will 173 * fail if there are any existing holds on the db. 174 */ 175 static void 176 dbuf_hash_remove(dmu_buf_impl_t *db) 177 { 178 dbuf_hash_table_t *h = &dbuf_hash_table; 179 uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object, 180 db->db_level, db->db_blkid); 181 uint64_t idx = hv & h->hash_table_mask; 182 dmu_buf_impl_t *dbf, **dbp; 183 184 /* 185 * We musn't hold db_mtx to maintin lock ordering: 186 * DBUF_HASH_MUTEX > db_mtx. 187 */ 188 ASSERT(refcount_is_zero(&db->db_holds)); 189 ASSERT(db->db_state == DB_EVICTING); 190 ASSERT(!MUTEX_HELD(&db->db_mtx)); 191 192 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 193 dbp = &h->hash_table[idx]; 194 while ((dbf = *dbp) != db) { 195 dbp = &dbf->db_hash_next; 196 ASSERT(dbf != NULL); 197 } 198 *dbp = db->db_hash_next; 199 db->db_hash_next = NULL; 200 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 201 atomic_add_64(&dbuf_hash_count, -1); 202 } 203 204 static arc_evict_func_t dbuf_do_evict; 205 206 static void 207 dbuf_evict_user(dmu_buf_impl_t *db) 208 { 209 ASSERT(MUTEX_HELD(&db->db_mtx)); 210 211 if (db->db_level != 0 || db->db_evict_func == NULL) 212 return; 213 214 if (db->db_user_data_ptr_ptr) 215 *db->db_user_data_ptr_ptr = db->db.db_data; 216 db->db_evict_func(&db->db, db->db_user_ptr); 217 db->db_user_ptr = NULL; 218 db->db_user_data_ptr_ptr = NULL; 219 db->db_evict_func = NULL; 220 } 221 222 boolean_t 223 dbuf_is_metadata(dmu_buf_impl_t *db) 224 { 225 if (db->db_level > 0) { 226 return (B_TRUE); 227 } else { 228 boolean_t is_metadata; 229 230 DB_DNODE_ENTER(db); 231 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 232 DB_DNODE_EXIT(db); 233 234 return (is_metadata); 235 } 236 } 237 238 void 239 dbuf_evict(dmu_buf_impl_t *db) 240 { 241 ASSERT(MUTEX_HELD(&db->db_mtx)); 242 ASSERT(db->db_buf == NULL); 243 ASSERT(db->db_data_pending == NULL); 244 245 dbuf_clear(db); 246 dbuf_destroy(db); 247 } 248 249 void 250 dbuf_init(void) 251 { 252 uint64_t hsize = 1ULL << 16; 253 dbuf_hash_table_t *h = &dbuf_hash_table; 254 int i; 255 256 /* 257 * The hash table is big enough to fill all of physical memory 258 * with an average 4K block size. The table will take up 259 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 260 */ 261 while (hsize * 4096 < physmem * PAGESIZE) 262 hsize <<= 1; 263 264 retry: 265 h->hash_table_mask = hsize - 1; 266 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 267 if (h->hash_table == NULL) { 268 /* XXX - we should really return an error instead of assert */ 269 ASSERT(hsize > (1ULL << 10)); 270 hsize >>= 1; 271 goto retry; 272 } 273 274 dbuf_cache = kmem_cache_create("dmu_buf_impl_t", 275 sizeof (dmu_buf_impl_t), 276 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 277 278 for (i = 0; i < DBUF_MUTEXES; i++) 279 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 280 } 281 282 void 283 dbuf_fini(void) 284 { 285 dbuf_hash_table_t *h = &dbuf_hash_table; 286 int i; 287 288 for (i = 0; i < DBUF_MUTEXES; i++) 289 mutex_destroy(&h->hash_mutexes[i]); 290 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 291 kmem_cache_destroy(dbuf_cache); 292 } 293 294 /* 295 * Other stuff. 296 */ 297 298 #ifdef ZFS_DEBUG 299 static void 300 dbuf_verify(dmu_buf_impl_t *db) 301 { 302 dnode_t *dn; 303 dbuf_dirty_record_t *dr; 304 305 ASSERT(MUTEX_HELD(&db->db_mtx)); 306 307 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 308 return; 309 310 ASSERT(db->db_objset != NULL); 311 DB_DNODE_ENTER(db); 312 dn = DB_DNODE(db); 313 if (dn == NULL) { 314 ASSERT(db->db_parent == NULL); 315 ASSERT(db->db_blkptr == NULL); 316 } else { 317 ASSERT3U(db->db.db_object, ==, dn->dn_object); 318 ASSERT3P(db->db_objset, ==, dn->dn_objset); 319 ASSERT3U(db->db_level, <, dn->dn_nlevels); 320 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 321 db->db_blkid == DMU_SPILL_BLKID || 322 !list_is_empty(&dn->dn_dbufs)); 323 } 324 if (db->db_blkid == DMU_BONUS_BLKID) { 325 ASSERT(dn != NULL); 326 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 327 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 328 } else if (db->db_blkid == DMU_SPILL_BLKID) { 329 ASSERT(dn != NULL); 330 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 331 ASSERT0(db->db.db_offset); 332 } else { 333 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 334 } 335 336 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 337 ASSERT(dr->dr_dbuf == db); 338 339 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 340 ASSERT(dr->dr_dbuf == db); 341 342 /* 343 * We can't assert that db_size matches dn_datablksz because it 344 * can be momentarily different when another thread is doing 345 * dnode_set_blksz(). 346 */ 347 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 348 dr = db->db_data_pending; 349 /* 350 * It should only be modified in syncing context, so 351 * make sure we only have one copy of the data. 352 */ 353 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 354 } 355 356 /* verify db->db_blkptr */ 357 if (db->db_blkptr) { 358 if (db->db_parent == dn->dn_dbuf) { 359 /* db is pointed to by the dnode */ 360 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 361 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 362 ASSERT(db->db_parent == NULL); 363 else 364 ASSERT(db->db_parent != NULL); 365 if (db->db_blkid != DMU_SPILL_BLKID) 366 ASSERT3P(db->db_blkptr, ==, 367 &dn->dn_phys->dn_blkptr[db->db_blkid]); 368 } else { 369 /* db is pointed to by an indirect block */ 370 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 371 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 372 ASSERT3U(db->db_parent->db.db_object, ==, 373 db->db.db_object); 374 /* 375 * dnode_grow_indblksz() can make this fail if we don't 376 * have the struct_rwlock. XXX indblksz no longer 377 * grows. safe to do this now? 378 */ 379 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 380 ASSERT3P(db->db_blkptr, ==, 381 ((blkptr_t *)db->db_parent->db.db_data + 382 db->db_blkid % epb)); 383 } 384 } 385 } 386 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 387 (db->db_buf == NULL || db->db_buf->b_data) && 388 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 389 db->db_state != DB_FILL && !dn->dn_free_txg) { 390 /* 391 * If the blkptr isn't set but they have nonzero data, 392 * it had better be dirty, otherwise we'll lose that 393 * data when we evict this buffer. 394 */ 395 if (db->db_dirtycnt == 0) { 396 uint64_t *buf = db->db.db_data; 397 int i; 398 399 for (i = 0; i < db->db.db_size >> 3; i++) { 400 ASSERT(buf[i] == 0); 401 } 402 } 403 } 404 DB_DNODE_EXIT(db); 405 } 406 #endif 407 408 static void 409 dbuf_update_data(dmu_buf_impl_t *db) 410 { 411 ASSERT(MUTEX_HELD(&db->db_mtx)); 412 if (db->db_level == 0 && db->db_user_data_ptr_ptr) { 413 ASSERT(!refcount_is_zero(&db->db_holds)); 414 *db->db_user_data_ptr_ptr = db->db.db_data; 415 } 416 } 417 418 static void 419 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 420 { 421 ASSERT(MUTEX_HELD(&db->db_mtx)); 422 ASSERT(db->db_buf == NULL || !arc_has_callback(db->db_buf)); 423 db->db_buf = buf; 424 if (buf != NULL) { 425 ASSERT(buf->b_data != NULL); 426 db->db.db_data = buf->b_data; 427 if (!arc_released(buf)) 428 arc_set_callback(buf, dbuf_do_evict, db); 429 dbuf_update_data(db); 430 } else { 431 dbuf_evict_user(db); 432 db->db.db_data = NULL; 433 if (db->db_state != DB_NOFILL) 434 db->db_state = DB_UNCACHED; 435 } 436 } 437 438 /* 439 * Loan out an arc_buf for read. Return the loaned arc_buf. 440 */ 441 arc_buf_t * 442 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 443 { 444 arc_buf_t *abuf; 445 446 mutex_enter(&db->db_mtx); 447 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) { 448 int blksz = db->db.db_size; 449 spa_t *spa; 450 451 mutex_exit(&db->db_mtx); 452 DB_GET_SPA(&spa, db); 453 abuf = arc_loan_buf(spa, blksz); 454 bcopy(db->db.db_data, abuf->b_data, blksz); 455 } else { 456 abuf = db->db_buf; 457 arc_loan_inuse_buf(abuf, db); 458 dbuf_set_data(db, NULL); 459 mutex_exit(&db->db_mtx); 460 } 461 return (abuf); 462 } 463 464 uint64_t 465 dbuf_whichblock(dnode_t *dn, uint64_t offset) 466 { 467 if (dn->dn_datablkshift) { 468 return (offset >> dn->dn_datablkshift); 469 } else { 470 ASSERT3U(offset, <, dn->dn_datablksz); 471 return (0); 472 } 473 } 474 475 static void 476 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 477 { 478 dmu_buf_impl_t *db = vdb; 479 480 mutex_enter(&db->db_mtx); 481 ASSERT3U(db->db_state, ==, DB_READ); 482 /* 483 * All reads are synchronous, so we must have a hold on the dbuf 484 */ 485 ASSERT(refcount_count(&db->db_holds) > 0); 486 ASSERT(db->db_buf == NULL); 487 ASSERT(db->db.db_data == NULL); 488 if (db->db_level == 0 && db->db_freed_in_flight) { 489 /* we were freed in flight; disregard any error */ 490 arc_release(buf, db); 491 bzero(buf->b_data, db->db.db_size); 492 arc_buf_freeze(buf); 493 db->db_freed_in_flight = FALSE; 494 dbuf_set_data(db, buf); 495 db->db_state = DB_CACHED; 496 } else if (zio == NULL || zio->io_error == 0) { 497 dbuf_set_data(db, buf); 498 db->db_state = DB_CACHED; 499 } else { 500 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 501 ASSERT3P(db->db_buf, ==, NULL); 502 VERIFY(arc_buf_remove_ref(buf, db)); 503 db->db_state = DB_UNCACHED; 504 } 505 cv_broadcast(&db->db_changed); 506 dbuf_rele_and_unlock(db, NULL); 507 } 508 509 static void 510 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags) 511 { 512 dnode_t *dn; 513 spa_t *spa; 514 zbookmark_t zb; 515 uint32_t aflags = ARC_NOWAIT; 516 517 DB_DNODE_ENTER(db); 518 dn = DB_DNODE(db); 519 ASSERT(!refcount_is_zero(&db->db_holds)); 520 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 521 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 522 ASSERT(MUTEX_HELD(&db->db_mtx)); 523 ASSERT(db->db_state == DB_UNCACHED); 524 ASSERT(db->db_buf == NULL); 525 526 if (db->db_blkid == DMU_BONUS_BLKID) { 527 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 528 529 ASSERT3U(bonuslen, <=, db->db.db_size); 530 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 531 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 532 if (bonuslen < DN_MAX_BONUSLEN) 533 bzero(db->db.db_data, DN_MAX_BONUSLEN); 534 if (bonuslen) 535 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 536 DB_DNODE_EXIT(db); 537 dbuf_update_data(db); 538 db->db_state = DB_CACHED; 539 mutex_exit(&db->db_mtx); 540 return; 541 } 542 543 /* 544 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 545 * processes the delete record and clears the bp while we are waiting 546 * for the dn_mtx (resulting in a "no" from block_freed). 547 */ 548 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 549 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 550 BP_IS_HOLE(db->db_blkptr)))) { 551 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 552 553 dbuf_set_data(db, arc_buf_alloc(dn->dn_objset->os_spa, 554 db->db.db_size, db, type)); 555 DB_DNODE_EXIT(db); 556 bzero(db->db.db_data, db->db.db_size); 557 db->db_state = DB_CACHED; 558 *flags |= DB_RF_CACHED; 559 mutex_exit(&db->db_mtx); 560 return; 561 } 562 563 spa = dn->dn_objset->os_spa; 564 DB_DNODE_EXIT(db); 565 566 db->db_state = DB_READ; 567 mutex_exit(&db->db_mtx); 568 569 if (DBUF_IS_L2CACHEABLE(db)) 570 aflags |= ARC_L2CACHE; 571 572 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? 573 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, 574 db->db.db_object, db->db_level, db->db_blkid); 575 576 dbuf_add_ref(db, NULL); 577 578 (void) arc_read(zio, spa, db->db_blkptr, 579 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 580 (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 581 &aflags, &zb); 582 if (aflags & ARC_CACHED) 583 *flags |= DB_RF_CACHED; 584 } 585 586 int 587 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 588 { 589 int err = 0; 590 int havepzio = (zio != NULL); 591 int prefetch; 592 dnode_t *dn; 593 594 /* 595 * We don't have to hold the mutex to check db_state because it 596 * can't be freed while we have a hold on the buffer. 597 */ 598 ASSERT(!refcount_is_zero(&db->db_holds)); 599 600 if (db->db_state == DB_NOFILL) 601 return (SET_ERROR(EIO)); 602 603 DB_DNODE_ENTER(db); 604 dn = DB_DNODE(db); 605 if ((flags & DB_RF_HAVESTRUCT) == 0) 606 rw_enter(&dn->dn_struct_rwlock, RW_READER); 607 608 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 609 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 610 DBUF_IS_CACHEABLE(db); 611 612 mutex_enter(&db->db_mtx); 613 if (db->db_state == DB_CACHED) { 614 mutex_exit(&db->db_mtx); 615 if (prefetch) 616 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 617 db->db.db_size, TRUE); 618 if ((flags & DB_RF_HAVESTRUCT) == 0) 619 rw_exit(&dn->dn_struct_rwlock); 620 DB_DNODE_EXIT(db); 621 } else if (db->db_state == DB_UNCACHED) { 622 spa_t *spa = dn->dn_objset->os_spa; 623 624 if (zio == NULL) 625 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 626 dbuf_read_impl(db, zio, &flags); 627 628 /* dbuf_read_impl has dropped db_mtx for us */ 629 630 if (prefetch) 631 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 632 db->db.db_size, flags & DB_RF_CACHED); 633 634 if ((flags & DB_RF_HAVESTRUCT) == 0) 635 rw_exit(&dn->dn_struct_rwlock); 636 DB_DNODE_EXIT(db); 637 638 if (!havepzio) 639 err = zio_wait(zio); 640 } else { 641 /* 642 * Another reader came in while the dbuf was in flight 643 * between UNCACHED and CACHED. Either a writer will finish 644 * writing the buffer (sending the dbuf to CACHED) or the 645 * first reader's request will reach the read_done callback 646 * and send the dbuf to CACHED. Otherwise, a failure 647 * occurred and the dbuf went to UNCACHED. 648 */ 649 mutex_exit(&db->db_mtx); 650 if (prefetch) 651 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, 652 db->db.db_size, TRUE); 653 if ((flags & DB_RF_HAVESTRUCT) == 0) 654 rw_exit(&dn->dn_struct_rwlock); 655 DB_DNODE_EXIT(db); 656 657 /* Skip the wait per the caller's request. */ 658 mutex_enter(&db->db_mtx); 659 if ((flags & DB_RF_NEVERWAIT) == 0) { 660 while (db->db_state == DB_READ || 661 db->db_state == DB_FILL) { 662 ASSERT(db->db_state == DB_READ || 663 (flags & DB_RF_HAVESTRUCT) == 0); 664 cv_wait(&db->db_changed, &db->db_mtx); 665 } 666 if (db->db_state == DB_UNCACHED) 667 err = SET_ERROR(EIO); 668 } 669 mutex_exit(&db->db_mtx); 670 } 671 672 ASSERT(err || havepzio || db->db_state == DB_CACHED); 673 return (err); 674 } 675 676 static void 677 dbuf_noread(dmu_buf_impl_t *db) 678 { 679 ASSERT(!refcount_is_zero(&db->db_holds)); 680 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 681 mutex_enter(&db->db_mtx); 682 while (db->db_state == DB_READ || db->db_state == DB_FILL) 683 cv_wait(&db->db_changed, &db->db_mtx); 684 if (db->db_state == DB_UNCACHED) { 685 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 686 spa_t *spa; 687 688 ASSERT(db->db_buf == NULL); 689 ASSERT(db->db.db_data == NULL); 690 DB_GET_SPA(&spa, db); 691 dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type)); 692 db->db_state = DB_FILL; 693 } else if (db->db_state == DB_NOFILL) { 694 dbuf_set_data(db, NULL); 695 } else { 696 ASSERT3U(db->db_state, ==, DB_CACHED); 697 } 698 mutex_exit(&db->db_mtx); 699 } 700 701 /* 702 * This is our just-in-time copy function. It makes a copy of 703 * buffers, that have been modified in a previous transaction 704 * group, before we modify them in the current active group. 705 * 706 * This function is used in two places: when we are dirtying a 707 * buffer for the first time in a txg, and when we are freeing 708 * a range in a dnode that includes this buffer. 709 * 710 * Note that when we are called from dbuf_free_range() we do 711 * not put a hold on the buffer, we just traverse the active 712 * dbuf list for the dnode. 713 */ 714 static void 715 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 716 { 717 dbuf_dirty_record_t *dr = db->db_last_dirty; 718 719 ASSERT(MUTEX_HELD(&db->db_mtx)); 720 ASSERT(db->db.db_data != NULL); 721 ASSERT(db->db_level == 0); 722 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 723 724 if (dr == NULL || 725 (dr->dt.dl.dr_data != 726 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 727 return; 728 729 /* 730 * If the last dirty record for this dbuf has not yet synced 731 * and its referencing the dbuf data, either: 732 * reset the reference to point to a new copy, 733 * or (if there a no active holders) 734 * just null out the current db_data pointer. 735 */ 736 ASSERT(dr->dr_txg >= txg - 2); 737 if (db->db_blkid == DMU_BONUS_BLKID) { 738 /* Note that the data bufs here are zio_bufs */ 739 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN); 740 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 741 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN); 742 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 743 int size = db->db.db_size; 744 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 745 spa_t *spa; 746 747 DB_GET_SPA(&spa, db); 748 dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type); 749 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 750 } else { 751 dbuf_set_data(db, NULL); 752 } 753 } 754 755 void 756 dbuf_unoverride(dbuf_dirty_record_t *dr) 757 { 758 dmu_buf_impl_t *db = dr->dr_dbuf; 759 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 760 uint64_t txg = dr->dr_txg; 761 762 ASSERT(MUTEX_HELD(&db->db_mtx)); 763 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 764 ASSERT(db->db_level == 0); 765 766 if (db->db_blkid == DMU_BONUS_BLKID || 767 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 768 return; 769 770 ASSERT(db->db_data_pending != dr); 771 772 /* free this block */ 773 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) { 774 spa_t *spa; 775 776 DB_GET_SPA(&spa, db); 777 zio_free(spa, txg, bp); 778 } 779 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 780 dr->dt.dl.dr_nopwrite = B_FALSE; 781 782 /* 783 * Release the already-written buffer, so we leave it in 784 * a consistent dirty state. Note that all callers are 785 * modifying the buffer, so they will immediately do 786 * another (redundant) arc_release(). Therefore, leave 787 * the buf thawed to save the effort of freezing & 788 * immediately re-thawing it. 789 */ 790 arc_release(dr->dt.dl.dr_data, db); 791 } 792 793 /* 794 * Evict (if its unreferenced) or clear (if its referenced) any level-0 795 * data blocks in the free range, so that any future readers will find 796 * empty blocks. Also, if we happen accross any level-1 dbufs in the 797 * range that have not already been marked dirty, mark them dirty so 798 * they stay in memory. 799 */ 800 void 801 dbuf_free_range(dnode_t *dn, uint64_t start, uint64_t end, dmu_tx_t *tx) 802 { 803 dmu_buf_impl_t *db, *db_next; 804 uint64_t txg = tx->tx_txg; 805 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 806 uint64_t first_l1 = start >> epbs; 807 uint64_t last_l1 = end >> epbs; 808 809 if (end > dn->dn_maxblkid && (end != DMU_SPILL_BLKID)) { 810 end = dn->dn_maxblkid; 811 last_l1 = end >> epbs; 812 } 813 dprintf_dnode(dn, "start=%llu end=%llu\n", start, end); 814 mutex_enter(&dn->dn_dbufs_mtx); 815 for (db = list_head(&dn->dn_dbufs); db; db = db_next) { 816 db_next = list_next(&dn->dn_dbufs, db); 817 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 818 819 if (db->db_level == 1 && 820 db->db_blkid >= first_l1 && db->db_blkid <= last_l1) { 821 mutex_enter(&db->db_mtx); 822 if (db->db_last_dirty && 823 db->db_last_dirty->dr_txg < txg) { 824 dbuf_add_ref(db, FTAG); 825 mutex_exit(&db->db_mtx); 826 dbuf_will_dirty(db, tx); 827 dbuf_rele(db, FTAG); 828 } else { 829 mutex_exit(&db->db_mtx); 830 } 831 } 832 833 if (db->db_level != 0) 834 continue; 835 dprintf_dbuf(db, "found buf %s\n", ""); 836 if (db->db_blkid < start || db->db_blkid > end) 837 continue; 838 839 /* found a level 0 buffer in the range */ 840 mutex_enter(&db->db_mtx); 841 if (dbuf_undirty(db, tx)) { 842 /* mutex has been dropped and dbuf destroyed */ 843 continue; 844 } 845 846 if (db->db_state == DB_UNCACHED || 847 db->db_state == DB_NOFILL || 848 db->db_state == DB_EVICTING) { 849 ASSERT(db->db.db_data == NULL); 850 mutex_exit(&db->db_mtx); 851 continue; 852 } 853 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 854 /* will be handled in dbuf_read_done or dbuf_rele */ 855 db->db_freed_in_flight = TRUE; 856 mutex_exit(&db->db_mtx); 857 continue; 858 } 859 if (refcount_count(&db->db_holds) == 0) { 860 ASSERT(db->db_buf); 861 dbuf_clear(db); 862 continue; 863 } 864 /* The dbuf is referenced */ 865 866 if (db->db_last_dirty != NULL) { 867 dbuf_dirty_record_t *dr = db->db_last_dirty; 868 869 if (dr->dr_txg == txg) { 870 /* 871 * This buffer is "in-use", re-adjust the file 872 * size to reflect that this buffer may 873 * contain new data when we sync. 874 */ 875 if (db->db_blkid != DMU_SPILL_BLKID && 876 db->db_blkid > dn->dn_maxblkid) 877 dn->dn_maxblkid = db->db_blkid; 878 dbuf_unoverride(dr); 879 } else { 880 /* 881 * This dbuf is not dirty in the open context. 882 * Either uncache it (if its not referenced in 883 * the open context) or reset its contents to 884 * empty. 885 */ 886 dbuf_fix_old_data(db, txg); 887 } 888 } 889 /* clear the contents if its cached */ 890 if (db->db_state == DB_CACHED) { 891 ASSERT(db->db.db_data != NULL); 892 arc_release(db->db_buf, db); 893 bzero(db->db.db_data, db->db.db_size); 894 arc_buf_freeze(db->db_buf); 895 } 896 897 mutex_exit(&db->db_mtx); 898 } 899 mutex_exit(&dn->dn_dbufs_mtx); 900 } 901 902 static int 903 dbuf_block_freeable(dmu_buf_impl_t *db) 904 { 905 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset; 906 uint64_t birth_txg = 0; 907 908 /* 909 * We don't need any locking to protect db_blkptr: 910 * If it's syncing, then db_last_dirty will be set 911 * so we'll ignore db_blkptr. 912 */ 913 ASSERT(MUTEX_HELD(&db->db_mtx)); 914 if (db->db_last_dirty) 915 birth_txg = db->db_last_dirty->dr_txg; 916 else if (db->db_blkptr) 917 birth_txg = db->db_blkptr->blk_birth; 918 919 /* 920 * If we don't exist or are in a snapshot, we can't be freed. 921 * Don't pass the bp to dsl_dataset_block_freeable() since we 922 * are holding the db_mtx lock and might deadlock if we are 923 * prefetching a dedup-ed block. 924 */ 925 if (birth_txg) 926 return (ds == NULL || 927 dsl_dataset_block_freeable(ds, NULL, birth_txg)); 928 else 929 return (FALSE); 930 } 931 932 void 933 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 934 { 935 arc_buf_t *buf, *obuf; 936 int osize = db->db.db_size; 937 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 938 dnode_t *dn; 939 940 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 941 942 DB_DNODE_ENTER(db); 943 dn = DB_DNODE(db); 944 945 /* XXX does *this* func really need the lock? */ 946 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 947 948 /* 949 * This call to dbuf_will_dirty() with the dn_struct_rwlock held 950 * is OK, because there can be no other references to the db 951 * when we are changing its size, so no concurrent DB_FILL can 952 * be happening. 953 */ 954 /* 955 * XXX we should be doing a dbuf_read, checking the return 956 * value and returning that up to our callers 957 */ 958 dbuf_will_dirty(db, tx); 959 960 /* create the data buffer for the new block */ 961 buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type); 962 963 /* copy old block data to the new block */ 964 obuf = db->db_buf; 965 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 966 /* zero the remainder */ 967 if (size > osize) 968 bzero((uint8_t *)buf->b_data + osize, size - osize); 969 970 mutex_enter(&db->db_mtx); 971 dbuf_set_data(db, buf); 972 VERIFY(arc_buf_remove_ref(obuf, db)); 973 db->db.db_size = size; 974 975 if (db->db_level == 0) { 976 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 977 db->db_last_dirty->dt.dl.dr_data = buf; 978 } 979 mutex_exit(&db->db_mtx); 980 981 dnode_willuse_space(dn, size-osize, tx); 982 DB_DNODE_EXIT(db); 983 } 984 985 void 986 dbuf_release_bp(dmu_buf_impl_t *db) 987 { 988 objset_t *os; 989 990 DB_GET_OBJSET(&os, db); 991 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 992 ASSERT(arc_released(os->os_phys_buf) || 993 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 994 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 995 996 (void) arc_release(db->db_buf, db); 997 } 998 999 dbuf_dirty_record_t * 1000 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1001 { 1002 dnode_t *dn; 1003 objset_t *os; 1004 dbuf_dirty_record_t **drp, *dr; 1005 int drop_struct_lock = FALSE; 1006 boolean_t do_free_accounting = B_FALSE; 1007 int txgoff = tx->tx_txg & TXG_MASK; 1008 1009 ASSERT(tx->tx_txg != 0); 1010 ASSERT(!refcount_is_zero(&db->db_holds)); 1011 DMU_TX_DIRTY_BUF(tx, db); 1012 1013 DB_DNODE_ENTER(db); 1014 dn = DB_DNODE(db); 1015 /* 1016 * Shouldn't dirty a regular buffer in syncing context. Private 1017 * objects may be dirtied in syncing context, but only if they 1018 * were already pre-dirtied in open context. 1019 */ 1020 ASSERT(!dmu_tx_is_syncing(tx) || 1021 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1022 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1023 dn->dn_objset->os_dsl_dataset == NULL); 1024 /* 1025 * We make this assert for private objects as well, but after we 1026 * check if we're already dirty. They are allowed to re-dirty 1027 * in syncing context. 1028 */ 1029 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1030 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1031 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1032 1033 mutex_enter(&db->db_mtx); 1034 /* 1035 * XXX make this true for indirects too? The problem is that 1036 * transactions created with dmu_tx_create_assigned() from 1037 * syncing context don't bother holding ahead. 1038 */ 1039 ASSERT(db->db_level != 0 || 1040 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1041 db->db_state == DB_NOFILL); 1042 1043 mutex_enter(&dn->dn_mtx); 1044 /* 1045 * Don't set dirtyctx to SYNC if we're just modifying this as we 1046 * initialize the objset. 1047 */ 1048 if (dn->dn_dirtyctx == DN_UNDIRTIED && 1049 !BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1050 dn->dn_dirtyctx = 1051 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1052 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1053 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1054 } 1055 mutex_exit(&dn->dn_mtx); 1056 1057 if (db->db_blkid == DMU_SPILL_BLKID) 1058 dn->dn_have_spill = B_TRUE; 1059 1060 /* 1061 * If this buffer is already dirty, we're done. 1062 */ 1063 drp = &db->db_last_dirty; 1064 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1065 db->db.db_object == DMU_META_DNODE_OBJECT); 1066 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1067 drp = &dr->dr_next; 1068 if (dr && dr->dr_txg == tx->tx_txg) { 1069 DB_DNODE_EXIT(db); 1070 1071 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1072 /* 1073 * If this buffer has already been written out, 1074 * we now need to reset its state. 1075 */ 1076 dbuf_unoverride(dr); 1077 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1078 db->db_state != DB_NOFILL) 1079 arc_buf_thaw(db->db_buf); 1080 } 1081 mutex_exit(&db->db_mtx); 1082 return (dr); 1083 } 1084 1085 /* 1086 * Only valid if not already dirty. 1087 */ 1088 ASSERT(dn->dn_object == 0 || 1089 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1090 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1091 1092 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1093 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1094 dn->dn_phys->dn_nlevels > db->db_level || 1095 dn->dn_next_nlevels[txgoff] > db->db_level || 1096 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1097 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1098 1099 /* 1100 * We should only be dirtying in syncing context if it's the 1101 * mos or we're initializing the os or it's a special object. 1102 * However, we are allowed to dirty in syncing context provided 1103 * we already dirtied it in open context. Hence we must make 1104 * this assertion only if we're not already dirty. 1105 */ 1106 os = dn->dn_objset; 1107 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1108 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1109 ASSERT(db->db.db_size != 0); 1110 1111 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1112 1113 if (db->db_blkid != DMU_BONUS_BLKID) { 1114 /* 1115 * Update the accounting. 1116 * Note: we delay "free accounting" until after we drop 1117 * the db_mtx. This keeps us from grabbing other locks 1118 * (and possibly deadlocking) in bp_get_dsize() while 1119 * also holding the db_mtx. 1120 */ 1121 dnode_willuse_space(dn, db->db.db_size, tx); 1122 do_free_accounting = dbuf_block_freeable(db); 1123 } 1124 1125 /* 1126 * If this buffer is dirty in an old transaction group we need 1127 * to make a copy of it so that the changes we make in this 1128 * transaction group won't leak out when we sync the older txg. 1129 */ 1130 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1131 if (db->db_level == 0) { 1132 void *data_old = db->db_buf; 1133 1134 if (db->db_state != DB_NOFILL) { 1135 if (db->db_blkid == DMU_BONUS_BLKID) { 1136 dbuf_fix_old_data(db, tx->tx_txg); 1137 data_old = db->db.db_data; 1138 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1139 /* 1140 * Release the data buffer from the cache so 1141 * that we can modify it without impacting 1142 * possible other users of this cached data 1143 * block. Note that indirect blocks and 1144 * private objects are not released until the 1145 * syncing state (since they are only modified 1146 * then). 1147 */ 1148 arc_release(db->db_buf, db); 1149 dbuf_fix_old_data(db, tx->tx_txg); 1150 data_old = db->db_buf; 1151 } 1152 ASSERT(data_old != NULL); 1153 } 1154 dr->dt.dl.dr_data = data_old; 1155 } else { 1156 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1157 list_create(&dr->dt.di.dr_children, 1158 sizeof (dbuf_dirty_record_t), 1159 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1160 } 1161 dr->dr_dbuf = db; 1162 dr->dr_txg = tx->tx_txg; 1163 dr->dr_next = *drp; 1164 *drp = dr; 1165 1166 /* 1167 * We could have been freed_in_flight between the dbuf_noread 1168 * and dbuf_dirty. We win, as though the dbuf_noread() had 1169 * happened after the free. 1170 */ 1171 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1172 db->db_blkid != DMU_SPILL_BLKID) { 1173 mutex_enter(&dn->dn_mtx); 1174 dnode_clear_range(dn, db->db_blkid, 1, tx); 1175 mutex_exit(&dn->dn_mtx); 1176 db->db_freed_in_flight = FALSE; 1177 } 1178 1179 /* 1180 * This buffer is now part of this txg 1181 */ 1182 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1183 db->db_dirtycnt += 1; 1184 ASSERT3U(db->db_dirtycnt, <=, 3); 1185 1186 mutex_exit(&db->db_mtx); 1187 1188 if (db->db_blkid == DMU_BONUS_BLKID || 1189 db->db_blkid == DMU_SPILL_BLKID) { 1190 mutex_enter(&dn->dn_mtx); 1191 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1192 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1193 mutex_exit(&dn->dn_mtx); 1194 dnode_setdirty(dn, tx); 1195 DB_DNODE_EXIT(db); 1196 return (dr); 1197 } else if (do_free_accounting) { 1198 blkptr_t *bp = db->db_blkptr; 1199 int64_t willfree = (bp && !BP_IS_HOLE(bp)) ? 1200 bp_get_dsize(os->os_spa, bp) : db->db.db_size; 1201 /* 1202 * This is only a guess -- if the dbuf is dirty 1203 * in a previous txg, we don't know how much 1204 * space it will use on disk yet. We should 1205 * really have the struct_rwlock to access 1206 * db_blkptr, but since this is just a guess, 1207 * it's OK if we get an odd answer. 1208 */ 1209 ddt_prefetch(os->os_spa, bp); 1210 dnode_willuse_space(dn, -willfree, tx); 1211 } 1212 1213 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1214 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1215 drop_struct_lock = TRUE; 1216 } 1217 1218 if (db->db_level == 0) { 1219 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); 1220 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1221 } 1222 1223 if (db->db_level+1 < dn->dn_nlevels) { 1224 dmu_buf_impl_t *parent = db->db_parent; 1225 dbuf_dirty_record_t *di; 1226 int parent_held = FALSE; 1227 1228 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1229 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1230 1231 parent = dbuf_hold_level(dn, db->db_level+1, 1232 db->db_blkid >> epbs, FTAG); 1233 ASSERT(parent != NULL); 1234 parent_held = TRUE; 1235 } 1236 if (drop_struct_lock) 1237 rw_exit(&dn->dn_struct_rwlock); 1238 ASSERT3U(db->db_level+1, ==, parent->db_level); 1239 di = dbuf_dirty(parent, tx); 1240 if (parent_held) 1241 dbuf_rele(parent, FTAG); 1242 1243 mutex_enter(&db->db_mtx); 1244 /* possible race with dbuf_undirty() */ 1245 if (db->db_last_dirty == dr || 1246 dn->dn_object == DMU_META_DNODE_OBJECT) { 1247 mutex_enter(&di->dt.di.dr_mtx); 1248 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1249 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1250 list_insert_tail(&di->dt.di.dr_children, dr); 1251 mutex_exit(&di->dt.di.dr_mtx); 1252 dr->dr_parent = di; 1253 } 1254 mutex_exit(&db->db_mtx); 1255 } else { 1256 ASSERT(db->db_level+1 == dn->dn_nlevels); 1257 ASSERT(db->db_blkid < dn->dn_nblkptr); 1258 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1259 mutex_enter(&dn->dn_mtx); 1260 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1261 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1262 mutex_exit(&dn->dn_mtx); 1263 if (drop_struct_lock) 1264 rw_exit(&dn->dn_struct_rwlock); 1265 } 1266 1267 dnode_setdirty(dn, tx); 1268 DB_DNODE_EXIT(db); 1269 return (dr); 1270 } 1271 1272 /* 1273 * Undirty a buffer in the transaction group referenced by the given 1274 * transaction. Return whether this evicted the dbuf. 1275 */ 1276 static boolean_t 1277 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1278 { 1279 dnode_t *dn; 1280 uint64_t txg = tx->tx_txg; 1281 dbuf_dirty_record_t *dr, **drp; 1282 1283 ASSERT(txg != 0); 1284 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1285 ASSERT0(db->db_level); 1286 ASSERT(MUTEX_HELD(&db->db_mtx)); 1287 1288 /* 1289 * If this buffer is not dirty, we're done. 1290 */ 1291 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1292 if (dr->dr_txg <= txg) 1293 break; 1294 if (dr == NULL || dr->dr_txg < txg) 1295 return (B_FALSE); 1296 ASSERT(dr->dr_txg == txg); 1297 ASSERT(dr->dr_dbuf == db); 1298 1299 DB_DNODE_ENTER(db); 1300 dn = DB_DNODE(db); 1301 1302 /* 1303 * Note: This code will probably work even if there are concurrent 1304 * holders, but it is untested in that scenerio, as the ZPL and 1305 * ztest have additional locking (the range locks) that prevents 1306 * that type of concurrent access. 1307 */ 1308 ASSERT3U(refcount_count(&db->db_holds), ==, db->db_dirtycnt); 1309 1310 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1311 1312 ASSERT(db->db.db_size != 0); 1313 1314 /* XXX would be nice to fix up dn_towrite_space[] */ 1315 1316 *drp = dr->dr_next; 1317 1318 /* 1319 * Note that there are three places in dbuf_dirty() 1320 * where this dirty record may be put on a list. 1321 * Make sure to do a list_remove corresponding to 1322 * every one of those list_insert calls. 1323 */ 1324 if (dr->dr_parent) { 1325 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 1326 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 1327 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 1328 } else if (db->db_blkid == DMU_SPILL_BLKID || 1329 db->db_level+1 == dn->dn_nlevels) { 1330 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 1331 mutex_enter(&dn->dn_mtx); 1332 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 1333 mutex_exit(&dn->dn_mtx); 1334 } 1335 DB_DNODE_EXIT(db); 1336 1337 if (db->db_state != DB_NOFILL) { 1338 dbuf_unoverride(dr); 1339 1340 ASSERT(db->db_buf != NULL); 1341 ASSERT(dr->dt.dl.dr_data != NULL); 1342 if (dr->dt.dl.dr_data != db->db_buf) 1343 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db)); 1344 } 1345 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 1346 1347 ASSERT(db->db_dirtycnt > 0); 1348 db->db_dirtycnt -= 1; 1349 1350 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 1351 arc_buf_t *buf = db->db_buf; 1352 1353 ASSERT(db->db_state == DB_NOFILL || arc_released(buf)); 1354 dbuf_set_data(db, NULL); 1355 VERIFY(arc_buf_remove_ref(buf, db)); 1356 dbuf_evict(db); 1357 return (B_TRUE); 1358 } 1359 1360 return (B_FALSE); 1361 } 1362 1363 #pragma weak dmu_buf_will_dirty = dbuf_will_dirty 1364 void 1365 dbuf_will_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1366 { 1367 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; 1368 1369 ASSERT(tx->tx_txg != 0); 1370 ASSERT(!refcount_is_zero(&db->db_holds)); 1371 1372 DB_DNODE_ENTER(db); 1373 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 1374 rf |= DB_RF_HAVESTRUCT; 1375 DB_DNODE_EXIT(db); 1376 (void) dbuf_read(db, NULL, rf); 1377 (void) dbuf_dirty(db, tx); 1378 } 1379 1380 void 1381 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1382 { 1383 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1384 1385 db->db_state = DB_NOFILL; 1386 1387 dmu_buf_will_fill(db_fake, tx); 1388 } 1389 1390 void 1391 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1392 { 1393 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1394 1395 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1396 ASSERT(tx->tx_txg != 0); 1397 ASSERT(db->db_level == 0); 1398 ASSERT(!refcount_is_zero(&db->db_holds)); 1399 1400 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1401 dmu_tx_private_ok(tx)); 1402 1403 dbuf_noread(db); 1404 (void) dbuf_dirty(db, tx); 1405 } 1406 1407 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1408 /* ARGSUSED */ 1409 void 1410 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1411 { 1412 mutex_enter(&db->db_mtx); 1413 DBUF_VERIFY(db); 1414 1415 if (db->db_state == DB_FILL) { 1416 if (db->db_level == 0 && db->db_freed_in_flight) { 1417 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1418 /* we were freed while filling */ 1419 /* XXX dbuf_undirty? */ 1420 bzero(db->db.db_data, db->db.db_size); 1421 db->db_freed_in_flight = FALSE; 1422 } 1423 db->db_state = DB_CACHED; 1424 cv_broadcast(&db->db_changed); 1425 } 1426 mutex_exit(&db->db_mtx); 1427 } 1428 1429 /* 1430 * Directly assign a provided arc buf to a given dbuf if it's not referenced 1431 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 1432 */ 1433 void 1434 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 1435 { 1436 ASSERT(!refcount_is_zero(&db->db_holds)); 1437 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1438 ASSERT(db->db_level == 0); 1439 ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA); 1440 ASSERT(buf != NULL); 1441 ASSERT(arc_buf_size(buf) == db->db.db_size); 1442 ASSERT(tx->tx_txg != 0); 1443 1444 arc_return_buf(buf, db); 1445 ASSERT(arc_released(buf)); 1446 1447 mutex_enter(&db->db_mtx); 1448 1449 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1450 cv_wait(&db->db_changed, &db->db_mtx); 1451 1452 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 1453 1454 if (db->db_state == DB_CACHED && 1455 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 1456 mutex_exit(&db->db_mtx); 1457 (void) dbuf_dirty(db, tx); 1458 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 1459 VERIFY(arc_buf_remove_ref(buf, db)); 1460 xuio_stat_wbuf_copied(); 1461 return; 1462 } 1463 1464 xuio_stat_wbuf_nocopy(); 1465 if (db->db_state == DB_CACHED) { 1466 dbuf_dirty_record_t *dr = db->db_last_dirty; 1467 1468 ASSERT(db->db_buf != NULL); 1469 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 1470 ASSERT(dr->dt.dl.dr_data == db->db_buf); 1471 if (!arc_released(db->db_buf)) { 1472 ASSERT(dr->dt.dl.dr_override_state == 1473 DR_OVERRIDDEN); 1474 arc_release(db->db_buf, db); 1475 } 1476 dr->dt.dl.dr_data = buf; 1477 VERIFY(arc_buf_remove_ref(db->db_buf, db)); 1478 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 1479 arc_release(db->db_buf, db); 1480 VERIFY(arc_buf_remove_ref(db->db_buf, db)); 1481 } 1482 db->db_buf = NULL; 1483 } 1484 ASSERT(db->db_buf == NULL); 1485 dbuf_set_data(db, buf); 1486 db->db_state = DB_FILL; 1487 mutex_exit(&db->db_mtx); 1488 (void) dbuf_dirty(db, tx); 1489 dbuf_fill_done(db, tx); 1490 } 1491 1492 /* 1493 * "Clear" the contents of this dbuf. This will mark the dbuf 1494 * EVICTING and clear *most* of its references. Unfortunetely, 1495 * when we are not holding the dn_dbufs_mtx, we can't clear the 1496 * entry in the dn_dbufs list. We have to wait until dbuf_destroy() 1497 * in this case. For callers from the DMU we will usually see: 1498 * dbuf_clear()->arc_buf_evict()->dbuf_do_evict()->dbuf_destroy() 1499 * For the arc callback, we will usually see: 1500 * dbuf_do_evict()->dbuf_clear();dbuf_destroy() 1501 * Sometimes, though, we will get a mix of these two: 1502 * DMU: dbuf_clear()->arc_buf_evict() 1503 * ARC: dbuf_do_evict()->dbuf_destroy() 1504 */ 1505 void 1506 dbuf_clear(dmu_buf_impl_t *db) 1507 { 1508 dnode_t *dn; 1509 dmu_buf_impl_t *parent = db->db_parent; 1510 dmu_buf_impl_t *dndb; 1511 int dbuf_gone = FALSE; 1512 1513 ASSERT(MUTEX_HELD(&db->db_mtx)); 1514 ASSERT(refcount_is_zero(&db->db_holds)); 1515 1516 dbuf_evict_user(db); 1517 1518 if (db->db_state == DB_CACHED) { 1519 ASSERT(db->db.db_data != NULL); 1520 if (db->db_blkid == DMU_BONUS_BLKID) { 1521 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 1522 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 1523 } 1524 db->db.db_data = NULL; 1525 db->db_state = DB_UNCACHED; 1526 } 1527 1528 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1529 ASSERT(db->db_data_pending == NULL); 1530 1531 db->db_state = DB_EVICTING; 1532 db->db_blkptr = NULL; 1533 1534 DB_DNODE_ENTER(db); 1535 dn = DB_DNODE(db); 1536 dndb = dn->dn_dbuf; 1537 if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) { 1538 list_remove(&dn->dn_dbufs, db); 1539 (void) atomic_dec_32_nv(&dn->dn_dbufs_count); 1540 membar_producer(); 1541 DB_DNODE_EXIT(db); 1542 /* 1543 * Decrementing the dbuf count means that the hold corresponding 1544 * to the removed dbuf is no longer discounted in dnode_move(), 1545 * so the dnode cannot be moved until after we release the hold. 1546 * The membar_producer() ensures visibility of the decremented 1547 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 1548 * release any lock. 1549 */ 1550 dnode_rele(dn, db); 1551 db->db_dnode_handle = NULL; 1552 } else { 1553 DB_DNODE_EXIT(db); 1554 } 1555 1556 if (db->db_buf) 1557 dbuf_gone = arc_buf_evict(db->db_buf); 1558 1559 if (!dbuf_gone) 1560 mutex_exit(&db->db_mtx); 1561 1562 /* 1563 * If this dbuf is referenced from an indirect dbuf, 1564 * decrement the ref count on the indirect dbuf. 1565 */ 1566 if (parent && parent != dndb) 1567 dbuf_rele(parent, db); 1568 } 1569 1570 static int 1571 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 1572 dmu_buf_impl_t **parentp, blkptr_t **bpp) 1573 { 1574 int nlevels, epbs; 1575 1576 *parentp = NULL; 1577 *bpp = NULL; 1578 1579 ASSERT(blkid != DMU_BONUS_BLKID); 1580 1581 if (blkid == DMU_SPILL_BLKID) { 1582 mutex_enter(&dn->dn_mtx); 1583 if (dn->dn_have_spill && 1584 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1585 *bpp = &dn->dn_phys->dn_spill; 1586 else 1587 *bpp = NULL; 1588 dbuf_add_ref(dn->dn_dbuf, NULL); 1589 *parentp = dn->dn_dbuf; 1590 mutex_exit(&dn->dn_mtx); 1591 return (0); 1592 } 1593 1594 if (dn->dn_phys->dn_nlevels == 0) 1595 nlevels = 1; 1596 else 1597 nlevels = dn->dn_phys->dn_nlevels; 1598 1599 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1600 1601 ASSERT3U(level * epbs, <, 64); 1602 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1603 if (level >= nlevels || 1604 (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 1605 /* the buffer has no parent yet */ 1606 return (SET_ERROR(ENOENT)); 1607 } else if (level < nlevels-1) { 1608 /* this block is referenced from an indirect block */ 1609 int err = dbuf_hold_impl(dn, level+1, 1610 blkid >> epbs, fail_sparse, NULL, parentp); 1611 if (err) 1612 return (err); 1613 err = dbuf_read(*parentp, NULL, 1614 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 1615 if (err) { 1616 dbuf_rele(*parentp, NULL); 1617 *parentp = NULL; 1618 return (err); 1619 } 1620 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 1621 (blkid & ((1ULL << epbs) - 1)); 1622 return (0); 1623 } else { 1624 /* the block is referenced from the dnode */ 1625 ASSERT3U(level, ==, nlevels-1); 1626 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 1627 blkid < dn->dn_phys->dn_nblkptr); 1628 if (dn->dn_dbuf) { 1629 dbuf_add_ref(dn->dn_dbuf, NULL); 1630 *parentp = dn->dn_dbuf; 1631 } 1632 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 1633 return (0); 1634 } 1635 } 1636 1637 static dmu_buf_impl_t * 1638 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 1639 dmu_buf_impl_t *parent, blkptr_t *blkptr) 1640 { 1641 objset_t *os = dn->dn_objset; 1642 dmu_buf_impl_t *db, *odb; 1643 1644 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1645 ASSERT(dn->dn_type != DMU_OT_NONE); 1646 1647 db = kmem_cache_alloc(dbuf_cache, KM_SLEEP); 1648 1649 db->db_objset = os; 1650 db->db.db_object = dn->dn_object; 1651 db->db_level = level; 1652 db->db_blkid = blkid; 1653 db->db_last_dirty = NULL; 1654 db->db_dirtycnt = 0; 1655 db->db_dnode_handle = dn->dn_handle; 1656 db->db_parent = parent; 1657 db->db_blkptr = blkptr; 1658 1659 db->db_user_ptr = NULL; 1660 db->db_user_data_ptr_ptr = NULL; 1661 db->db_evict_func = NULL; 1662 db->db_immediate_evict = 0; 1663 db->db_freed_in_flight = 0; 1664 1665 if (blkid == DMU_BONUS_BLKID) { 1666 ASSERT3P(parent, ==, dn->dn_dbuf); 1667 db->db.db_size = DN_MAX_BONUSLEN - 1668 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 1669 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1670 db->db.db_offset = DMU_BONUS_BLKID; 1671 db->db_state = DB_UNCACHED; 1672 /* the bonus dbuf is not placed in the hash table */ 1673 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1674 return (db); 1675 } else if (blkid == DMU_SPILL_BLKID) { 1676 db->db.db_size = (blkptr != NULL) ? 1677 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 1678 db->db.db_offset = 0; 1679 } else { 1680 int blocksize = 1681 db->db_level ? 1<<dn->dn_indblkshift : dn->dn_datablksz; 1682 db->db.db_size = blocksize; 1683 db->db.db_offset = db->db_blkid * blocksize; 1684 } 1685 1686 /* 1687 * Hold the dn_dbufs_mtx while we get the new dbuf 1688 * in the hash table *and* added to the dbufs list. 1689 * This prevents a possible deadlock with someone 1690 * trying to look up this dbuf before its added to the 1691 * dn_dbufs list. 1692 */ 1693 mutex_enter(&dn->dn_dbufs_mtx); 1694 db->db_state = DB_EVICTING; 1695 if ((odb = dbuf_hash_insert(db)) != NULL) { 1696 /* someone else inserted it first */ 1697 kmem_cache_free(dbuf_cache, db); 1698 mutex_exit(&dn->dn_dbufs_mtx); 1699 return (odb); 1700 } 1701 list_insert_head(&dn->dn_dbufs, db); 1702 db->db_state = DB_UNCACHED; 1703 mutex_exit(&dn->dn_dbufs_mtx); 1704 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1705 1706 if (parent && parent != dn->dn_dbuf) 1707 dbuf_add_ref(parent, db); 1708 1709 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1710 refcount_count(&dn->dn_holds) > 0); 1711 (void) refcount_add(&dn->dn_holds, db); 1712 (void) atomic_inc_32_nv(&dn->dn_dbufs_count); 1713 1714 dprintf_dbuf(db, "db=%p\n", db); 1715 1716 return (db); 1717 } 1718 1719 static int 1720 dbuf_do_evict(void *private) 1721 { 1722 arc_buf_t *buf = private; 1723 dmu_buf_impl_t *db = buf->b_private; 1724 1725 if (!MUTEX_HELD(&db->db_mtx)) 1726 mutex_enter(&db->db_mtx); 1727 1728 ASSERT(refcount_is_zero(&db->db_holds)); 1729 1730 if (db->db_state != DB_EVICTING) { 1731 ASSERT(db->db_state == DB_CACHED); 1732 DBUF_VERIFY(db); 1733 db->db_buf = NULL; 1734 dbuf_evict(db); 1735 } else { 1736 mutex_exit(&db->db_mtx); 1737 dbuf_destroy(db); 1738 } 1739 return (0); 1740 } 1741 1742 static void 1743 dbuf_destroy(dmu_buf_impl_t *db) 1744 { 1745 ASSERT(refcount_is_zero(&db->db_holds)); 1746 1747 if (db->db_blkid != DMU_BONUS_BLKID) { 1748 /* 1749 * If this dbuf is still on the dn_dbufs list, 1750 * remove it from that list. 1751 */ 1752 if (db->db_dnode_handle != NULL) { 1753 dnode_t *dn; 1754 1755 DB_DNODE_ENTER(db); 1756 dn = DB_DNODE(db); 1757 mutex_enter(&dn->dn_dbufs_mtx); 1758 list_remove(&dn->dn_dbufs, db); 1759 (void) atomic_dec_32_nv(&dn->dn_dbufs_count); 1760 mutex_exit(&dn->dn_dbufs_mtx); 1761 DB_DNODE_EXIT(db); 1762 /* 1763 * Decrementing the dbuf count means that the hold 1764 * corresponding to the removed dbuf is no longer 1765 * discounted in dnode_move(), so the dnode cannot be 1766 * moved until after we release the hold. 1767 */ 1768 dnode_rele(dn, db); 1769 db->db_dnode_handle = NULL; 1770 } 1771 dbuf_hash_remove(db); 1772 } 1773 db->db_parent = NULL; 1774 db->db_buf = NULL; 1775 1776 ASSERT(!list_link_active(&db->db_link)); 1777 ASSERT(db->db.db_data == NULL); 1778 ASSERT(db->db_hash_next == NULL); 1779 ASSERT(db->db_blkptr == NULL); 1780 ASSERT(db->db_data_pending == NULL); 1781 1782 kmem_cache_free(dbuf_cache, db); 1783 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 1784 } 1785 1786 void 1787 dbuf_prefetch(dnode_t *dn, uint64_t blkid) 1788 { 1789 dmu_buf_impl_t *db = NULL; 1790 blkptr_t *bp = NULL; 1791 1792 ASSERT(blkid != DMU_BONUS_BLKID); 1793 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1794 1795 if (dnode_block_freed(dn, blkid)) 1796 return; 1797 1798 /* dbuf_find() returns with db_mtx held */ 1799 if (db = dbuf_find(dn, 0, blkid)) { 1800 /* 1801 * This dbuf is already in the cache. We assume that 1802 * it is already CACHED, or else about to be either 1803 * read or filled. 1804 */ 1805 mutex_exit(&db->db_mtx); 1806 return; 1807 } 1808 1809 if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) { 1810 if (bp && !BP_IS_HOLE(bp)) { 1811 int priority = dn->dn_type == DMU_OT_DDT_ZAP ? 1812 ZIO_PRIORITY_DDT_PREFETCH : ZIO_PRIORITY_ASYNC_READ; 1813 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 1814 uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH; 1815 zbookmark_t zb; 1816 1817 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 1818 dn->dn_object, 0, blkid); 1819 1820 (void) arc_read(NULL, dn->dn_objset->os_spa, 1821 bp, NULL, NULL, priority, 1822 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 1823 &aflags, &zb); 1824 } 1825 if (db) 1826 dbuf_rele(db, NULL); 1827 } 1828 } 1829 1830 /* 1831 * Returns with db_holds incremented, and db_mtx not held. 1832 * Note: dn_struct_rwlock must be held. 1833 */ 1834 int 1835 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse, 1836 void *tag, dmu_buf_impl_t **dbp) 1837 { 1838 dmu_buf_impl_t *db, *parent = NULL; 1839 1840 ASSERT(blkid != DMU_BONUS_BLKID); 1841 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1842 ASSERT3U(dn->dn_nlevels, >, level); 1843 1844 *dbp = NULL; 1845 top: 1846 /* dbuf_find() returns with db_mtx held */ 1847 db = dbuf_find(dn, level, blkid); 1848 1849 if (db == NULL) { 1850 blkptr_t *bp = NULL; 1851 int err; 1852 1853 ASSERT3P(parent, ==, NULL); 1854 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 1855 if (fail_sparse) { 1856 if (err == 0 && bp && BP_IS_HOLE(bp)) 1857 err = SET_ERROR(ENOENT); 1858 if (err) { 1859 if (parent) 1860 dbuf_rele(parent, NULL); 1861 return (err); 1862 } 1863 } 1864 if (err && err != ENOENT) 1865 return (err); 1866 db = dbuf_create(dn, level, blkid, parent, bp); 1867 } 1868 1869 if (db->db_buf && refcount_is_zero(&db->db_holds)) { 1870 arc_buf_add_ref(db->db_buf, db); 1871 if (db->db_buf->b_data == NULL) { 1872 dbuf_clear(db); 1873 if (parent) { 1874 dbuf_rele(parent, NULL); 1875 parent = NULL; 1876 } 1877 goto top; 1878 } 1879 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 1880 } 1881 1882 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 1883 1884 /* 1885 * If this buffer is currently syncing out, and we are are 1886 * still referencing it from db_data, we need to make a copy 1887 * of it in case we decide we want to dirty it again in this txg. 1888 */ 1889 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1890 dn->dn_object != DMU_META_DNODE_OBJECT && 1891 db->db_state == DB_CACHED && db->db_data_pending) { 1892 dbuf_dirty_record_t *dr = db->db_data_pending; 1893 1894 if (dr->dt.dl.dr_data == db->db_buf) { 1895 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1896 1897 dbuf_set_data(db, 1898 arc_buf_alloc(dn->dn_objset->os_spa, 1899 db->db.db_size, db, type)); 1900 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, 1901 db->db.db_size); 1902 } 1903 } 1904 1905 (void) refcount_add(&db->db_holds, tag); 1906 dbuf_update_data(db); 1907 DBUF_VERIFY(db); 1908 mutex_exit(&db->db_mtx); 1909 1910 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 1911 if (parent) 1912 dbuf_rele(parent, NULL); 1913 1914 ASSERT3P(DB_DNODE(db), ==, dn); 1915 ASSERT3U(db->db_blkid, ==, blkid); 1916 ASSERT3U(db->db_level, ==, level); 1917 *dbp = db; 1918 1919 return (0); 1920 } 1921 1922 dmu_buf_impl_t * 1923 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 1924 { 1925 dmu_buf_impl_t *db; 1926 int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db); 1927 return (err ? NULL : db); 1928 } 1929 1930 dmu_buf_impl_t * 1931 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 1932 { 1933 dmu_buf_impl_t *db; 1934 int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db); 1935 return (err ? NULL : db); 1936 } 1937 1938 void 1939 dbuf_create_bonus(dnode_t *dn) 1940 { 1941 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1942 1943 ASSERT(dn->dn_bonus == NULL); 1944 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 1945 } 1946 1947 int 1948 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 1949 { 1950 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1951 dnode_t *dn; 1952 1953 if (db->db_blkid != DMU_SPILL_BLKID) 1954 return (SET_ERROR(ENOTSUP)); 1955 if (blksz == 0) 1956 blksz = SPA_MINBLOCKSIZE; 1957 if (blksz > SPA_MAXBLOCKSIZE) 1958 blksz = SPA_MAXBLOCKSIZE; 1959 else 1960 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 1961 1962 DB_DNODE_ENTER(db); 1963 dn = DB_DNODE(db); 1964 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1965 dbuf_new_size(db, blksz, tx); 1966 rw_exit(&dn->dn_struct_rwlock); 1967 DB_DNODE_EXIT(db); 1968 1969 return (0); 1970 } 1971 1972 void 1973 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 1974 { 1975 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 1976 } 1977 1978 #pragma weak dmu_buf_add_ref = dbuf_add_ref 1979 void 1980 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 1981 { 1982 int64_t holds = refcount_add(&db->db_holds, tag); 1983 ASSERT(holds > 1); 1984 } 1985 1986 /* 1987 * If you call dbuf_rele() you had better not be referencing the dnode handle 1988 * unless you have some other direct or indirect hold on the dnode. (An indirect 1989 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 1990 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 1991 * dnode's parent dbuf evicting its dnode handles. 1992 */ 1993 #pragma weak dmu_buf_rele = dbuf_rele 1994 void 1995 dbuf_rele(dmu_buf_impl_t *db, void *tag) 1996 { 1997 mutex_enter(&db->db_mtx); 1998 dbuf_rele_and_unlock(db, tag); 1999 } 2000 2001 /* 2002 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 2003 * db_dirtycnt and db_holds to be updated atomically. 2004 */ 2005 void 2006 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag) 2007 { 2008 int64_t holds; 2009 2010 ASSERT(MUTEX_HELD(&db->db_mtx)); 2011 DBUF_VERIFY(db); 2012 2013 /* 2014 * Remove the reference to the dbuf before removing its hold on the 2015 * dnode so we can guarantee in dnode_move() that a referenced bonus 2016 * buffer has a corresponding dnode hold. 2017 */ 2018 holds = refcount_remove(&db->db_holds, tag); 2019 ASSERT(holds >= 0); 2020 2021 /* 2022 * We can't freeze indirects if there is a possibility that they 2023 * may be modified in the current syncing context. 2024 */ 2025 if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) 2026 arc_buf_freeze(db->db_buf); 2027 2028 if (holds == db->db_dirtycnt && 2029 db->db_level == 0 && db->db_immediate_evict) 2030 dbuf_evict_user(db); 2031 2032 if (holds == 0) { 2033 if (db->db_blkid == DMU_BONUS_BLKID) { 2034 mutex_exit(&db->db_mtx); 2035 2036 /* 2037 * If the dnode moves here, we cannot cross this barrier 2038 * until the move completes. 2039 */ 2040 DB_DNODE_ENTER(db); 2041 (void) atomic_dec_32_nv(&DB_DNODE(db)->dn_dbufs_count); 2042 DB_DNODE_EXIT(db); 2043 /* 2044 * The bonus buffer's dnode hold is no longer discounted 2045 * in dnode_move(). The dnode cannot move until after 2046 * the dnode_rele(). 2047 */ 2048 dnode_rele(DB_DNODE(db), db); 2049 } else if (db->db_buf == NULL) { 2050 /* 2051 * This is a special case: we never associated this 2052 * dbuf with any data allocated from the ARC. 2053 */ 2054 ASSERT(db->db_state == DB_UNCACHED || 2055 db->db_state == DB_NOFILL); 2056 dbuf_evict(db); 2057 } else if (arc_released(db->db_buf)) { 2058 arc_buf_t *buf = db->db_buf; 2059 /* 2060 * This dbuf has anonymous data associated with it. 2061 */ 2062 dbuf_set_data(db, NULL); 2063 VERIFY(arc_buf_remove_ref(buf, db)); 2064 dbuf_evict(db); 2065 } else { 2066 VERIFY(!arc_buf_remove_ref(db->db_buf, db)); 2067 2068 /* 2069 * A dbuf will be eligible for eviction if either the 2070 * 'primarycache' property is set or a duplicate 2071 * copy of this buffer is already cached in the arc. 2072 * 2073 * In the case of the 'primarycache' a buffer 2074 * is considered for eviction if it matches the 2075 * criteria set in the property. 2076 * 2077 * To decide if our buffer is considered a 2078 * duplicate, we must call into the arc to determine 2079 * if multiple buffers are referencing the same 2080 * block on-disk. If so, then we simply evict 2081 * ourselves. 2082 */ 2083 if (!DBUF_IS_CACHEABLE(db) || 2084 arc_buf_eviction_needed(db->db_buf)) 2085 dbuf_clear(db); 2086 else 2087 mutex_exit(&db->db_mtx); 2088 } 2089 } else { 2090 mutex_exit(&db->db_mtx); 2091 } 2092 } 2093 2094 #pragma weak dmu_buf_refcount = dbuf_refcount 2095 uint64_t 2096 dbuf_refcount(dmu_buf_impl_t *db) 2097 { 2098 return (refcount_count(&db->db_holds)); 2099 } 2100 2101 void * 2102 dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, 2103 dmu_buf_evict_func_t *evict_func) 2104 { 2105 return (dmu_buf_update_user(db_fake, NULL, user_ptr, 2106 user_data_ptr_ptr, evict_func)); 2107 } 2108 2109 void * 2110 dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, 2111 dmu_buf_evict_func_t *evict_func) 2112 { 2113 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2114 2115 db->db_immediate_evict = TRUE; 2116 return (dmu_buf_update_user(db_fake, NULL, user_ptr, 2117 user_data_ptr_ptr, evict_func)); 2118 } 2119 2120 void * 2121 dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr, 2122 void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func) 2123 { 2124 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2125 ASSERT(db->db_level == 0); 2126 2127 ASSERT((user_ptr == NULL) == (evict_func == NULL)); 2128 2129 mutex_enter(&db->db_mtx); 2130 2131 if (db->db_user_ptr == old_user_ptr) { 2132 db->db_user_ptr = user_ptr; 2133 db->db_user_data_ptr_ptr = user_data_ptr_ptr; 2134 db->db_evict_func = evict_func; 2135 2136 dbuf_update_data(db); 2137 } else { 2138 old_user_ptr = db->db_user_ptr; 2139 } 2140 2141 mutex_exit(&db->db_mtx); 2142 return (old_user_ptr); 2143 } 2144 2145 void * 2146 dmu_buf_get_user(dmu_buf_t *db_fake) 2147 { 2148 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2149 ASSERT(!refcount_is_zero(&db->db_holds)); 2150 2151 return (db->db_user_ptr); 2152 } 2153 2154 boolean_t 2155 dmu_buf_freeable(dmu_buf_t *dbuf) 2156 { 2157 boolean_t res = B_FALSE; 2158 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2159 2160 if (db->db_blkptr) 2161 res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset, 2162 db->db_blkptr, db->db_blkptr->blk_birth); 2163 2164 return (res); 2165 } 2166 2167 blkptr_t * 2168 dmu_buf_get_blkptr(dmu_buf_t *db) 2169 { 2170 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2171 return (dbi->db_blkptr); 2172 } 2173 2174 static void 2175 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 2176 { 2177 /* ASSERT(dmu_tx_is_syncing(tx) */ 2178 ASSERT(MUTEX_HELD(&db->db_mtx)); 2179 2180 if (db->db_blkptr != NULL) 2181 return; 2182 2183 if (db->db_blkid == DMU_SPILL_BLKID) { 2184 db->db_blkptr = &dn->dn_phys->dn_spill; 2185 BP_ZERO(db->db_blkptr); 2186 return; 2187 } 2188 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 2189 /* 2190 * This buffer was allocated at a time when there was 2191 * no available blkptrs from the dnode, or it was 2192 * inappropriate to hook it in (i.e., nlevels mis-match). 2193 */ 2194 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 2195 ASSERT(db->db_parent == NULL); 2196 db->db_parent = dn->dn_dbuf; 2197 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 2198 DBUF_VERIFY(db); 2199 } else { 2200 dmu_buf_impl_t *parent = db->db_parent; 2201 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2202 2203 ASSERT(dn->dn_phys->dn_nlevels > 1); 2204 if (parent == NULL) { 2205 mutex_exit(&db->db_mtx); 2206 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2207 (void) dbuf_hold_impl(dn, db->db_level+1, 2208 db->db_blkid >> epbs, FALSE, db, &parent); 2209 rw_exit(&dn->dn_struct_rwlock); 2210 mutex_enter(&db->db_mtx); 2211 db->db_parent = parent; 2212 } 2213 db->db_blkptr = (blkptr_t *)parent->db.db_data + 2214 (db->db_blkid & ((1ULL << epbs) - 1)); 2215 DBUF_VERIFY(db); 2216 } 2217 } 2218 2219 static void 2220 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2221 { 2222 dmu_buf_impl_t *db = dr->dr_dbuf; 2223 dnode_t *dn; 2224 zio_t *zio; 2225 2226 ASSERT(dmu_tx_is_syncing(tx)); 2227 2228 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2229 2230 mutex_enter(&db->db_mtx); 2231 2232 ASSERT(db->db_level > 0); 2233 DBUF_VERIFY(db); 2234 2235 /* Read the block if it hasn't been read yet. */ 2236 if (db->db_buf == NULL) { 2237 mutex_exit(&db->db_mtx); 2238 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 2239 mutex_enter(&db->db_mtx); 2240 } 2241 ASSERT3U(db->db_state, ==, DB_CACHED); 2242 ASSERT(db->db_buf != NULL); 2243 2244 DB_DNODE_ENTER(db); 2245 dn = DB_DNODE(db); 2246 /* Indirect block size must match what the dnode thinks it is. */ 2247 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2248 dbuf_check_blkptr(dn, db); 2249 DB_DNODE_EXIT(db); 2250 2251 /* Provide the pending dirty record to child dbufs */ 2252 db->db_data_pending = dr; 2253 2254 mutex_exit(&db->db_mtx); 2255 dbuf_write(dr, db->db_buf, tx); 2256 2257 zio = dr->dr_zio; 2258 mutex_enter(&dr->dt.di.dr_mtx); 2259 dbuf_sync_list(&dr->dt.di.dr_children, tx); 2260 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 2261 mutex_exit(&dr->dt.di.dr_mtx); 2262 zio_nowait(zio); 2263 } 2264 2265 static void 2266 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2267 { 2268 arc_buf_t **datap = &dr->dt.dl.dr_data; 2269 dmu_buf_impl_t *db = dr->dr_dbuf; 2270 dnode_t *dn; 2271 objset_t *os; 2272 uint64_t txg = tx->tx_txg; 2273 2274 ASSERT(dmu_tx_is_syncing(tx)); 2275 2276 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2277 2278 mutex_enter(&db->db_mtx); 2279 /* 2280 * To be synced, we must be dirtied. But we 2281 * might have been freed after the dirty. 2282 */ 2283 if (db->db_state == DB_UNCACHED) { 2284 /* This buffer has been freed since it was dirtied */ 2285 ASSERT(db->db.db_data == NULL); 2286 } else if (db->db_state == DB_FILL) { 2287 /* This buffer was freed and is now being re-filled */ 2288 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 2289 } else { 2290 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 2291 } 2292 DBUF_VERIFY(db); 2293 2294 DB_DNODE_ENTER(db); 2295 dn = DB_DNODE(db); 2296 2297 if (db->db_blkid == DMU_SPILL_BLKID) { 2298 mutex_enter(&dn->dn_mtx); 2299 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 2300 mutex_exit(&dn->dn_mtx); 2301 } 2302 2303 /* 2304 * If this is a bonus buffer, simply copy the bonus data into the 2305 * dnode. It will be written out when the dnode is synced (and it 2306 * will be synced, since it must have been dirty for dbuf_sync to 2307 * be called). 2308 */ 2309 if (db->db_blkid == DMU_BONUS_BLKID) { 2310 dbuf_dirty_record_t **drp; 2311 2312 ASSERT(*datap != NULL); 2313 ASSERT0(db->db_level); 2314 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 2315 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 2316 DB_DNODE_EXIT(db); 2317 2318 if (*datap != db->db.db_data) { 2319 zio_buf_free(*datap, DN_MAX_BONUSLEN); 2320 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 2321 } 2322 db->db_data_pending = NULL; 2323 drp = &db->db_last_dirty; 2324 while (*drp != dr) 2325 drp = &(*drp)->dr_next; 2326 ASSERT(dr->dr_next == NULL); 2327 ASSERT(dr->dr_dbuf == db); 2328 *drp = dr->dr_next; 2329 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2330 ASSERT(db->db_dirtycnt > 0); 2331 db->db_dirtycnt -= 1; 2332 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 2333 return; 2334 } 2335 2336 os = dn->dn_objset; 2337 2338 /* 2339 * This function may have dropped the db_mtx lock allowing a dmu_sync 2340 * operation to sneak in. As a result, we need to ensure that we 2341 * don't check the dr_override_state until we have returned from 2342 * dbuf_check_blkptr. 2343 */ 2344 dbuf_check_blkptr(dn, db); 2345 2346 /* 2347 * If this buffer is in the middle of an immediate write, 2348 * wait for the synchronous IO to complete. 2349 */ 2350 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 2351 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 2352 cv_wait(&db->db_changed, &db->db_mtx); 2353 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 2354 } 2355 2356 if (db->db_state != DB_NOFILL && 2357 dn->dn_object != DMU_META_DNODE_OBJECT && 2358 refcount_count(&db->db_holds) > 1 && 2359 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 2360 *datap == db->db_buf) { 2361 /* 2362 * If this buffer is currently "in use" (i.e., there 2363 * are active holds and db_data still references it), 2364 * then make a copy before we start the write so that 2365 * any modifications from the open txg will not leak 2366 * into this write. 2367 * 2368 * NOTE: this copy does not need to be made for 2369 * objects only modified in the syncing context (e.g. 2370 * DNONE_DNODE blocks). 2371 */ 2372 int blksz = arc_buf_size(*datap); 2373 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2374 *datap = arc_buf_alloc(os->os_spa, blksz, db, type); 2375 bcopy(db->db.db_data, (*datap)->b_data, blksz); 2376 } 2377 db->db_data_pending = dr; 2378 2379 mutex_exit(&db->db_mtx); 2380 2381 dbuf_write(dr, *datap, tx); 2382 2383 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2384 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 2385 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); 2386 DB_DNODE_EXIT(db); 2387 } else { 2388 /* 2389 * Although zio_nowait() does not "wait for an IO", it does 2390 * initiate the IO. If this is an empty write it seems plausible 2391 * that the IO could actually be completed before the nowait 2392 * returns. We need to DB_DNODE_EXIT() first in case 2393 * zio_nowait() invalidates the dbuf. 2394 */ 2395 DB_DNODE_EXIT(db); 2396 zio_nowait(dr->dr_zio); 2397 } 2398 } 2399 2400 void 2401 dbuf_sync_list(list_t *list, dmu_tx_t *tx) 2402 { 2403 dbuf_dirty_record_t *dr; 2404 2405 while (dr = list_head(list)) { 2406 if (dr->dr_zio != NULL) { 2407 /* 2408 * If we find an already initialized zio then we 2409 * are processing the meta-dnode, and we have finished. 2410 * The dbufs for all dnodes are put back on the list 2411 * during processing, so that we can zio_wait() 2412 * these IOs after initiating all child IOs. 2413 */ 2414 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 2415 DMU_META_DNODE_OBJECT); 2416 break; 2417 } 2418 list_remove(list, dr); 2419 if (dr->dr_dbuf->db_level > 0) 2420 dbuf_sync_indirect(dr, tx); 2421 else 2422 dbuf_sync_leaf(dr, tx); 2423 } 2424 } 2425 2426 /* ARGSUSED */ 2427 static void 2428 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 2429 { 2430 dmu_buf_impl_t *db = vdb; 2431 dnode_t *dn; 2432 blkptr_t *bp = zio->io_bp; 2433 blkptr_t *bp_orig = &zio->io_bp_orig; 2434 spa_t *spa = zio->io_spa; 2435 int64_t delta; 2436 uint64_t fill = 0; 2437 int i; 2438 2439 ASSERT(db->db_blkptr == bp); 2440 2441 DB_DNODE_ENTER(db); 2442 dn = DB_DNODE(db); 2443 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 2444 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 2445 zio->io_prev_space_delta = delta; 2446 2447 if (BP_IS_HOLE(bp)) { 2448 ASSERT(bp->blk_fill == 0); 2449 DB_DNODE_EXIT(db); 2450 return; 2451 } 2452 2453 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 2454 BP_GET_TYPE(bp) == dn->dn_type) || 2455 (db->db_blkid == DMU_SPILL_BLKID && 2456 BP_GET_TYPE(bp) == dn->dn_bonustype)); 2457 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 2458 2459 mutex_enter(&db->db_mtx); 2460 2461 #ifdef ZFS_DEBUG 2462 if (db->db_blkid == DMU_SPILL_BLKID) { 2463 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 2464 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 2465 db->db_blkptr == &dn->dn_phys->dn_spill); 2466 } 2467 #endif 2468 2469 if (db->db_level == 0) { 2470 mutex_enter(&dn->dn_mtx); 2471 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 2472 db->db_blkid != DMU_SPILL_BLKID) 2473 dn->dn_phys->dn_maxblkid = db->db_blkid; 2474 mutex_exit(&dn->dn_mtx); 2475 2476 if (dn->dn_type == DMU_OT_DNODE) { 2477 dnode_phys_t *dnp = db->db.db_data; 2478 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 2479 i--, dnp++) { 2480 if (dnp->dn_type != DMU_OT_NONE) 2481 fill++; 2482 } 2483 } else { 2484 fill = 1; 2485 } 2486 } else { 2487 blkptr_t *ibp = db->db.db_data; 2488 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2489 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 2490 if (BP_IS_HOLE(ibp)) 2491 continue; 2492 fill += ibp->blk_fill; 2493 } 2494 } 2495 DB_DNODE_EXIT(db); 2496 2497 bp->blk_fill = fill; 2498 2499 mutex_exit(&db->db_mtx); 2500 } 2501 2502 /* ARGSUSED */ 2503 static void 2504 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 2505 { 2506 dmu_buf_impl_t *db = vdb; 2507 blkptr_t *bp = zio->io_bp; 2508 blkptr_t *bp_orig = &zio->io_bp_orig; 2509 uint64_t txg = zio->io_txg; 2510 dbuf_dirty_record_t **drp, *dr; 2511 2512 ASSERT0(zio->io_error); 2513 ASSERT(db->db_blkptr == bp); 2514 2515 /* 2516 * For nopwrites and rewrites we ensure that the bp matches our 2517 * original and bypass all the accounting. 2518 */ 2519 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 2520 ASSERT(BP_EQUAL(bp, bp_orig)); 2521 } else { 2522 objset_t *os; 2523 dsl_dataset_t *ds; 2524 dmu_tx_t *tx; 2525 2526 DB_GET_OBJSET(&os, db); 2527 ds = os->os_dsl_dataset; 2528 tx = os->os_synctx; 2529 2530 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 2531 dsl_dataset_block_born(ds, bp, tx); 2532 } 2533 2534 mutex_enter(&db->db_mtx); 2535 2536 DBUF_VERIFY(db); 2537 2538 drp = &db->db_last_dirty; 2539 while ((dr = *drp) != db->db_data_pending) 2540 drp = &dr->dr_next; 2541 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2542 ASSERT(dr->dr_txg == txg); 2543 ASSERT(dr->dr_dbuf == db); 2544 ASSERT(dr->dr_next == NULL); 2545 *drp = dr->dr_next; 2546 2547 #ifdef ZFS_DEBUG 2548 if (db->db_blkid == DMU_SPILL_BLKID) { 2549 dnode_t *dn; 2550 2551 DB_DNODE_ENTER(db); 2552 dn = DB_DNODE(db); 2553 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 2554 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 2555 db->db_blkptr == &dn->dn_phys->dn_spill); 2556 DB_DNODE_EXIT(db); 2557 } 2558 #endif 2559 2560 if (db->db_level == 0) { 2561 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2562 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 2563 if (db->db_state != DB_NOFILL) { 2564 if (dr->dt.dl.dr_data != db->db_buf) 2565 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, 2566 db)); 2567 else if (!arc_released(db->db_buf)) 2568 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2569 } 2570 } else { 2571 dnode_t *dn; 2572 2573 DB_DNODE_ENTER(db); 2574 dn = DB_DNODE(db); 2575 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 2576 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2577 if (!BP_IS_HOLE(db->db_blkptr)) { 2578 int epbs = 2579 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2580 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 2581 db->db.db_size); 2582 ASSERT3U(dn->dn_phys->dn_maxblkid 2583 >> (db->db_level * epbs), >=, db->db_blkid); 2584 arc_set_callback(db->db_buf, dbuf_do_evict, db); 2585 } 2586 DB_DNODE_EXIT(db); 2587 mutex_destroy(&dr->dt.di.dr_mtx); 2588 list_destroy(&dr->dt.di.dr_children); 2589 } 2590 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2591 2592 cv_broadcast(&db->db_changed); 2593 ASSERT(db->db_dirtycnt > 0); 2594 db->db_dirtycnt -= 1; 2595 db->db_data_pending = NULL; 2596 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 2597 } 2598 2599 static void 2600 dbuf_write_nofill_ready(zio_t *zio) 2601 { 2602 dbuf_write_ready(zio, NULL, zio->io_private); 2603 } 2604 2605 static void 2606 dbuf_write_nofill_done(zio_t *zio) 2607 { 2608 dbuf_write_done(zio, NULL, zio->io_private); 2609 } 2610 2611 static void 2612 dbuf_write_override_ready(zio_t *zio) 2613 { 2614 dbuf_dirty_record_t *dr = zio->io_private; 2615 dmu_buf_impl_t *db = dr->dr_dbuf; 2616 2617 dbuf_write_ready(zio, NULL, db); 2618 } 2619 2620 static void 2621 dbuf_write_override_done(zio_t *zio) 2622 { 2623 dbuf_dirty_record_t *dr = zio->io_private; 2624 dmu_buf_impl_t *db = dr->dr_dbuf; 2625 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 2626 2627 mutex_enter(&db->db_mtx); 2628 if (!BP_EQUAL(zio->io_bp, obp)) { 2629 if (!BP_IS_HOLE(obp)) 2630 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 2631 arc_release(dr->dt.dl.dr_data, db); 2632 } 2633 mutex_exit(&db->db_mtx); 2634 2635 dbuf_write_done(zio, NULL, db); 2636 } 2637 2638 /* Issue I/O to commit a dirty buffer to disk. */ 2639 static void 2640 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 2641 { 2642 dmu_buf_impl_t *db = dr->dr_dbuf; 2643 dnode_t *dn; 2644 objset_t *os; 2645 dmu_buf_impl_t *parent = db->db_parent; 2646 uint64_t txg = tx->tx_txg; 2647 zbookmark_t zb; 2648 zio_prop_t zp; 2649 zio_t *zio; 2650 int wp_flag = 0; 2651 2652 DB_DNODE_ENTER(db); 2653 dn = DB_DNODE(db); 2654 os = dn->dn_objset; 2655 2656 if (db->db_state != DB_NOFILL) { 2657 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 2658 /* 2659 * Private object buffers are released here rather 2660 * than in dbuf_dirty() since they are only modified 2661 * in the syncing context and we don't want the 2662 * overhead of making multiple copies of the data. 2663 */ 2664 if (BP_IS_HOLE(db->db_blkptr)) { 2665 arc_buf_thaw(data); 2666 } else { 2667 dbuf_release_bp(db); 2668 } 2669 } 2670 } 2671 2672 if (parent != dn->dn_dbuf) { 2673 /* Our parent is an indirect block. */ 2674 /* We have a dirty parent that has been scheduled for write. */ 2675 ASSERT(parent && parent->db_data_pending); 2676 /* Our parent's buffer is one level closer to the dnode. */ 2677 ASSERT(db->db_level == parent->db_level-1); 2678 /* 2679 * We're about to modify our parent's db_data by modifying 2680 * our block pointer, so the parent must be released. 2681 */ 2682 ASSERT(arc_released(parent->db_buf)); 2683 zio = parent->db_data_pending->dr_zio; 2684 } else { 2685 /* Our parent is the dnode itself. */ 2686 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 2687 db->db_blkid != DMU_SPILL_BLKID) || 2688 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 2689 if (db->db_blkid != DMU_SPILL_BLKID) 2690 ASSERT3P(db->db_blkptr, ==, 2691 &dn->dn_phys->dn_blkptr[db->db_blkid]); 2692 zio = dn->dn_zio; 2693 } 2694 2695 ASSERT(db->db_level == 0 || data == db->db_buf); 2696 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 2697 ASSERT(zio); 2698 2699 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 2700 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 2701 db->db.db_object, db->db_level, db->db_blkid); 2702 2703 if (db->db_blkid == DMU_SPILL_BLKID) 2704 wp_flag = WP_SPILL; 2705 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 2706 2707 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 2708 DB_DNODE_EXIT(db); 2709 2710 if (db->db_level == 0 && dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 2711 ASSERT(db->db_state != DB_NOFILL); 2712 dr->dr_zio = zio_write(zio, os->os_spa, txg, 2713 db->db_blkptr, data->b_data, arc_buf_size(data), &zp, 2714 dbuf_write_override_ready, dbuf_write_override_done, dr, 2715 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 2716 mutex_enter(&db->db_mtx); 2717 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 2718 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 2719 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 2720 mutex_exit(&db->db_mtx); 2721 } else if (db->db_state == DB_NOFILL) { 2722 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF); 2723 dr->dr_zio = zio_write(zio, os->os_spa, txg, 2724 db->db_blkptr, NULL, db->db.db_size, &zp, 2725 dbuf_write_nofill_ready, dbuf_write_nofill_done, db, 2726 ZIO_PRIORITY_ASYNC_WRITE, 2727 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 2728 } else { 2729 ASSERT(arc_released(data)); 2730 dr->dr_zio = arc_write(zio, os->os_spa, txg, 2731 db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db), &zp, 2732 dbuf_write_ready, dbuf_write_done, db, 2733 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 2734 } 2735 }