new usr/src/ common/ zfs/ zfs_fletcher.c

R R R R

7219 Tue Apr 23 14:09: 34 2013
new usr/src/ common/ zfs/ zfs_fletcher.c
3741 zfs needs better comments
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by:
Submi tted by:
Revi ewed by:

Justin G bbs <justing@pectral ogi c.conp
Al an Sorers <al ans@pectral ogi c. com>
Mat t hew Ahrens <mahr ens@lel phi x. com>

R R R R R R R R

CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

CDDL HEADER END

Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to license terns.

Fl et cher Checksuns

ZFS's 2nd and 4th order Fletcher checksums are defined by the follow ng
recurrence rel ations:

a = a + f
i i-1 i-1

b =b + a
i i-1 i

c =¢ + b (fletcher-4 only)
i i-1 i

(fletcher-4 only)

Wher e
a0=b0=c0=d0=0
and
f_ 0.. f_(n-1) are the input data.

Usi ng standard techniques, these translate into the follow ng series:

new usr/src/ common/ zfs/ zfs_fletcher.c

B T I T N A

(i +1)* (i +2)

For fletcher-2, the f_is are 64-bit, and [ab] _i are 64-bit accunul ators.
Since the additions are done nod (2764), errors in the high bits may not
be noticed. For this reason, fletcher-2 is deprecated.

For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accunul ators.
A conservative estimate of how big the buffer can get before we overflow
can be estimated using f_i = Oxffffffff for all i:

% bc

£=2032-1;d=0; for (i = 1; d<2764; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4
2264

qui t
%

So bl ocks of up to 2k will not overflow Qur |argest block size is
128k, which has 32k 4-byte words, so we can conpute the |argest possible
accurul ators, then divide by 2"64 to figure the nmax anpbunt of overflow

% bc
a=b=c=d=0; f=27"32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c }
al 2764; b/ 2"64; c/ 2"64; d/ 2"64

0

0

1365

11186858
quit

%

So a and b cannot overflow. To neke sure each bit of input has sone
effect on the contents of ¢ and d, we can | ook at what the factors of

the coefficients in the equations for c_n and d_n are. The nunber of 2s
in the factors determines the |owest set bit in the nultiplier. Running
through the cases for n*(n+l)/2 reveals that the highest power of 2 is
2714, and for n*(n+l)*(n+2)/6 it is 2*15. So while sone data nay overflow
the 64-bit accumul ators, every bit of every f_i effects every accumul ator,
even for 128k bl ocks.

If we wanted to make a stronger version of fletcher4 (fletcher4c?),
we could do our calculations nmod (2732 - 1) by adding in the carries
periodically, and store the nunber of carries in the top 32-bits.

There are two interesting conponents to checksum performance: cached and
uncached performance. Wth cached data, fletcher-2 is about four tines
faster than fletcher-4. Wth uncached data, the performance difference is
negligible, since the cost of a cache fill dominates the processing tine.
Even though fletcher-4 is slower than fletcher-2, it is still a pretty
efficient pass over the data.

I'n normal operation, the data which is being checksummed is in a buffer
whi ch has been filled either by:

1. a conpression step, which will be nostly cached, or
2. a bcopy() or copyin(), which will be uncached (because the
copy Is cache-bypassing).

new usr/src/ common/ zfs/ zfs_fletcher.c

124 * For both cached and uncached data, both fletcher checksuns are nuch faster
125 * than sha-256, and slower than 'off’, which doesn’'t touch the data at all.
126 */

128 /*

129 * TODQ vectorize these functions

130 * Al of these functions are witten so that each iteration of the |oop
131 * depends on the value of the previous iteration. Also, in the fletcher_4
132 * functions, each statenent of the | oop body depends on the previous
133 * statement. These dependenci es prevent the conpiler fromvectorizing the
134 * code to take advantage of SIMD extensions (unless GCC is far smarter than |
135 * think). It would be easy to rewite the |oops to be anenable to

136 * autovectorization.

137 */

139 #endif /* ! codereview */

140 #include <sys/types. h>

141 #incl ude <sys/sysmacros. h>

142 #incl ude <sys/ byt eorder.h>

143 #incl ude <sys/zio. h>

144 #incl ude <sys/spa. h>

146 void

147 fletcher_2_native(const void *buf, uint64_t size, zio_cksumt *zcp)

148 {

149 const uint64_t *ip = buf;

150 const uint64_t *ipend = ip + (size / sizeof (uint64_t));

151 uint64_t a0, b0, al, bi;

153 for (a0 = b0 = al = bl =0; ip <ipend; ip +=2) {

154 a0 += ip[0];

155 al += ip[1];

156 b0 += a0;

157 bl += al;

158 }

160 ZI O_SET_CHECKSUM zcp, a0, al, b0, bl);

161 }

163 void

164 fletcher_2_byteswap(const void *buf, uint64_t size, zio_cksumt *zcp)
165 {

166 const uint64_t *ip = buf;

167 const uint64_t *ipend = ip + (size / sizeof (uint64_t));

168 uint64_t a0, b0, al, bi;

170 for (a0 = b0 = al = bl =0; ip <ipend; ip +=2) {

171 a0 += BSWAP 64(ip[0]);

172 al += BSWAP_64(ip[1]);

173 b0 += a0;

174 bl += al;

175 1

177 ZI O_SET_CHECKSUM zcp, a0, al, b0, bil);

178 }

180 void

181 fletcher_4_native(const void *buf, uint64_t size, zio_cksumt *zcp)

182 {

183 const uint32_t *ip = buf;

184 const uint32_t *ipend = ip + (size / sizeof (uint32_t));

185 uinté4_t a, b, c, d;

187 for (a=b=c=d=0; ip <ipend; ip+t+) {

188 a +=1ip[0];

189 b += a;

new usr/src/ common/ zfs/ zfs_fletcher.c

190 c += b;

191 d += c;

192 }

194 ZlI O_SET_CHECKSUM zcp, a, b, ¢, d);

195 }

197 void

198 fletcher_4_byteswap(const void *buf, uint64_t size, zio_cksumt *zcp)
199

200 const uint32_t *ip = buf;

201 const uint32_t *ipend = ip + (size / sizeof (uint32_t));
202 uinté4_t a, b, c, d;

204 for (a=b=c = =0; ip <ipend; ip++) {

205 a += BSWAP_32(ip[0]);

206 b += a;

207 c += b;

208 d += ¢c;

209 }

211 ZI O_SET_CHECKSUM zcp, a, b, c, d);

212 }

214 void

215 fletcher_4_increnmental _native(const void *buf, uint64_t size,

216 zi o_cksumt *zcp)

217 {

218 const uint32_t *ip = buf;

219 const uint32_t *ipend = ip + (size / sizeof (uint32_t));
220 uinté4_t a, b, c, d;

222 a = zcp->zc_word[0] ;

223 b = zcp->zc_word[1];

224 c = zcp->zc_word[2] ;

225 d = zcp->zc_word[3] ;

227 for (; ip < ipend; ip++) {

228 a += 1p[0];

229 b += a;

230 c += b;

231 d += c;

232 }

234 ZI O_SET_CHECKSUM zcp, a, b, c, d);
235 }

237 void

238

fletcher_4_incremental _byteswap(const void *buf, uint64_t size,

239 zi o_cksumt *zcp)

240 {

241 const uint32_t *ip = buf;
242 const uint32_t *ipend = ip + (size / sizeof (uint32_t));
243 uinté4_t a, b, c, d;

245 a = zcp->zc_word[0];

246 b = zcp->zc_word[1];

247 ¢ = zcp->zc_word[2] ;

248 d = zcp->zc_word[3];

250 for (; ip < ipend; ip++) {
251 a += BSWAP_32(ip[0]);
252 b += a;

253 c += b;

254 d += c;

255 }

new usr/src/ common/ zfs/ zfs_fletcher.c

257 ZI O_SET_CHECKSUM zcp, a, b, c, d);
258 }

new usr/src/lib/libzfs/comon/libzfs_dataset.c

R R R R

111007 Tue Apr 23 14:09: 34 2013
new usr/src/lib/libzfs/comon/libzfs_dataset.c
3741 zfs needs better comments
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Justin G bbs <justing@pectral ogi c.conp
Submi tted by: Al an Sorers <al ans@pectral ogi c. com>
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. com>

R R R R R R R R

____unchanged_portion_onitted_

4431 | *

4432 * Convert the zvol’'s volune size to an appropriate reservation.

4433 * Note: If this routine is updated, it is necessary to update the ZFS test
4434 * suite’s shell version in reservation. kshlib.

4435 */

4436 #endif /* | codereview */

4437 uint 64_t

4438 zvol _vol size_to_reservation(uint64_t volsize, nvlist_t *props)

4439 {

4440 ui nt 64_t nundb;

4441 ui nt 64_t nbl ocks, vol bl ocksi ze;

4442 int ncopies;

4443 char *strval;

4445 if (nvlist_lookup_string(props,

4446 zfs_prop_t o_nane(ZFS_PROP_COPI ES), &strval) == 0)
4447 ncopi es = atoi(strval);

4448 el se

4449 ncopi es = 1;

4450 if (nvlist_|lookup_uint64(props,

4451 zfs_prop_t o_nane(ZFS_PROP_VOLBLOCKSI ZE) ,
4452 &vol bl ocksi ze) !'= 0)

4453 vol bl ocksi ze = ZVOL_DEFAULT_BLOCKSI ZE;
4454 nbl ocks = vol si ze/ vol bl ocksi ze;

4455 /* start with netadnode LO-L6 */

4456 nundb = 7;

4457 /* cal cul ate number of indirects */

4458 while (nblocks > 1) {

4459 nbl ocks += DNODES_PER LEVEL - 1;

4460 nbl ocks /= DNODES_PER LEVEL;

4461 nundb += nbl ocks;

4462 }

4463 numdb *= M N(SPA DVAS PER BP, ncopies + 1);
4464 vol si ze *= ncopi es;

4465 /*

4466 * this is exactly DN_MAX_ | NDBLKSHI FT when netadata isn’t
4467 * conpressed, but in practice they conpress down to about
4468 * 1100 bytes

4469 */

4470 nundb *= 1ULL << DN_MAX_| NDBLKSHI FT;

4471 vol si ze += nundb;

4472 return (vol size);

4473 }

new usr/src/uts/comon/fs/zfs/arc.c

R R R R

135193 Tue Apr

23 14:09: 35 2013

new usr/src/uts/comon/fs/zfs/arc.c
zfs needs better comments
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

3741

Submi tted by:
Submi tted by:
Revi ewed by:

Justin G bbs <justing@pectral ogi c.conp
Al an Sorers <al ans@pectral ogi c. com>
Mat t hew Ahrens <mahr ens@lel phi x. com>

R R R R R R R R

__unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/arc.c

232 /* The 6 states: */

233 static arc_state_t ARC anon;

234 static arc_state_t ARC nru;

235 static arc_state_t ARC nru_ghost;

236 static arc_state_t ARC nfu;

237 static arc_state_t ARC nfu_ghost;

238 static arc_state_t ARC_|2c_only;

240 typedef struct arc_stats {

241 kstat_named_t arcstat_hits;

242 kstat _nanmed_t arcst at_m sses;

243 kstat _nanmed_t arcstat_demand_data_hits;

244 kstat _nanmed_t arcstat_demand_dat a_m sses;

245 kstat_naned_t arcstat_demand_netadata_hits;

246 kstat _named_t arcstat_denmand_net adat a_mi sses;
247 kstat _named_t arcstat_prefetch_data_hits;

248 kstat _named_t arcstat_prefetch_data_ni sses;

249 kstat _named_t arcstat_prefetch_netadata_| hlts
250 kstat_named_t arcstat_prefetch_netadata_m sses;
251 kstat_nanmed_t arcstat_nru_hits;

252 kstat _named_t arcstat_nru_ghost_hits;

253 kstat_nanmed_t arcstat_nfu_hits;

254 kstat _named_t arcstat_nfu ghost hits;

255 kstat _named_t arcstat_del et ed;

256 kstat _nanmed_t arcstat_recycl e_m SS;

257 /*

258 * Nunber of buffers that could not be evicted because the hash |ock
259 * was held by another thread. The |ock may not necessarily be held
260 * by sonething using the same buffer, since hash | ocks are shared
261 * by nultiple buffers.

262 */

263 #endif /* | codereview */

264 kstat _named_t arcstat_nutex_m ss;

265 /*

266 * Nunber of buffers skipped because they have I/Oin progress, are
267 * indrect prefetch buffers that have not |ived | ong enough, or are
268 * not fromthe spa we're trying to evict from
269 *

270 #endif /* | codereview */

271 kstat _named_t arcstat_evict_skip;

272 kstat _named_t arcstat_evict_| 2_cached;

273 kstat _named_t arcstat_evict_| 2 eli gi bi e;

274 kstat _named_t arcstat_evict_| 2_ineli gi bi e;

275 kstat _named_t arcstat_hash_el enents;

276 kstat _named_t arcstat_hash_el enent s_nax;

277 kstat _named_t arcstat_hash_col | i si ons;

278 kstat _naned_t arcstat_hash_chai ns;

279 kstat _named_t arcstat_hash_chai n_nax;

280 kstat _named_t arcstat_p;

281 kstat _nanmed_t arcstat_c;

282 kstat _naned_t arcstat_c_min;

283 kstat _naned_t arcstat_c_nax;

284 kstat _named_t arcstat_si ze;

285 kstat _nanmed_t arcstat_hdr_size;

286 kstat _nanmed_t arcstat_data_si ze;

287 kstat _nanmed_t arcstat_other_size;

288 kstat_nanmed_t arcstat_|2_hits;

289 kstat _nanmed_t arcstat_| 2_mi sses;

290 kstat_naned_t arcstat_| 2_feeds;

291 kstat _named_t arcstat_| 2_rw cl ash;

292 kstat _named_t arcstat_|2 _read_bytes;

293 kstat _named_t arcstat_| 2_wite_bytes;

294 kstat _nanmed_t arcstat_|2_wites_sent;

295 kstat _named_t arcstat_| 2_wites_done;

296 kstat _named_t arcstat_| 2 wites_error;

297 kstat _named_t arcstat_| 2 wites_hdr_niss;
298 kstat _named_t arcstat_| 2_evict_Tock_retry;
299 kstat _named_t arcstat_| 2_evi ct_readi ng;
300 kstat _named_t arcstat |2 free_on_wite;
301 kstat _nanmed_t arcstat_| 2_abort_| owrem

302 kstat _named_t arcstat_|2 cksum_bad,

303 kstat _named_t arcstat |2 io_error

304 kstat _named_t arcstat_| 2_si ze;

305 kstat _naned_t arcstat_| 2_hdr_si ze;

306 kstat _nanmed_t arcstat msmary “throttl e_count;
307 kstat_nanmed_t arcstat_duplicate_buffers;
308 kstat _named_t arcstat_duplicate_buffers_size;
309 kstat _named_t arcstat_duplicate_reads;

310 kstat _named_t arcstat_neta_used;

311 kstat_naned_t arcstat_neta_limt;

312 kst at _nanmed_t arcstat_neta_nax;

313 } arc_stats_t;

315 static arc_stats_t arc_stats = {
Thi t 5"

316 KSTAT_DATA_Ul NT64
317 "m sses", KSTAT_DATA Ul NT64
318 "demand_dat a_hi ts", KSTAT_DATA_Ul NT64
319 "denmand_dat a_m sses" KSTAT_DATA_UI NT64
320 "demand_net adat a_hi t s" KSTAT_DATA_UI NT64
321 " demand_net adat a_mi sses” KSTAT_DATA Ul NT64
322 "prefetch_data_hits" KSTAT_DATA_Ul NT64
323 "prefetch_data_m sses", KSTAT_DATA_UI NT64
324 "prefetch_netadata_hits", KSTAT_DATA_UI NT64
325 "prefetch_netadata_m sses", KSTAT_DATA Ul NT64
326 "mru_hits", KSTAT_DATA_Ul NT64
327 "nru_ghost _hits", KSTAT_DATA_Ul NT64
328 "nmfu_hits", KSTAT_DATA_UI NT64
329 “nfu_ghost _hits", KSTAT_DATA_Ul NT64
330 "del eted", KSTAT_DATA_Ul NT64
331 "recycl e_m ss", KSTAT_DATA_UI NT64
332 "mut ex_m ss", KSTAT_DATA_UI NT64
333 "evi ct _skip", KSTAT_DATA Ul NT64
334 "evict_| 2_cached" KSTAT_DATA_Ul NT64
335 "evict _|2 eli gl bl e KSTAT_DATA_UI NT64
336 "evict_| 2_inel | gi bl e KSTAT_DATA_UI NT64
337 "hash_el enent s" KSTAT_DATA_Ul NT64
338 "hash_el ement s_rmx", KSTAT_DATA Ul NT64
339 "hash_col | i si ons", KSTAT_DATA_UI NT64
340 "hash_chai ns", KSTAT_DATA_UI NT64
341 "hash_chai n_max", KSTAT_DATA_Ul NT64
342 "p", KSTAT_DATA_Ul NT64
343 CRr KSTAT_DATA Ul NT64
344 "c_mn", KSTAT_DATA Ul NT64
345 "c_max", KSTAT_DATA_Ul NT64
346 "size", KSTAT_DATA Ul NT64
347 "hdr _si ze", KSTAT_DATA Ul NT64
348 "dat a_si ze", KSTAT_DATA Ul NT64
349 "ot her _si ze", KSTAT_DATA_Ul NT64
350 "12_hits", KSTAT_DATA_Ul NT64
351 "l 2_m sses", KSTAT_DATA Ul NT64
352 "1 2 feeds", KSTAT_DATA_UI NT64

new usr/src/uts/comon/fs/zfs/arc.c 3
353 "12_rw_clash”, KSTAT_DATA Ul NT64 },
354 "1 2 read_byt es" KSTAT_DATA Ul NT64 },
355 "I 27write bytes" KSTAT_DATA_Ul NT64 },
356 "12_wites_sent" KSTAT_DATA_UI NT64 },
357 "I 2_writ es_done", KSTAT_DATA Ul NT64 },
358 12wt es_error", KSTAT_DATA Ul NT64 },
359 "I 2_writes_hdr_nmiss" KSTAT_DATA_UI NT64 },
360 "l 2_evict_Tock_ ret ry KSTAT_DATA_UI NT64 },
361 "I 2_evi ct _readi ng" KSTAT_DATA_UI NT64 1},
362 "I 2 free_on_wite" KSTAT_DATA Ul NT64 },
363 "| 2_abort_| owrent, KSTAT_DATA_UI NT64 },
364 " 2_cksum_ bad" KSTAT_DATA_UI NT64 },
365 "I 2 io_error" KSTAT_DATA_Ul NT64 },
366 " 2 Si ze", KSTAT_DATA Ul NT64 },
367 "I 2_hdr_si ze" KSTAT_DATA_UI NT64 },
368 “menory_t hrot t e_count", KSTAT_DATA_UI NT64 },
369 "duplicate_buffers", KSTAT_DATA_UI NT64 },
370 "dupl i cate_buffers_size", KSTAT_DATA Ul NT64 },
371 "dupl i cate_reads", KSTAT_DATA_UI NT64 },
372 "arc_neta_used", KSTAT_DATA_UI NT64 },
373 "arc_meta_limt" KSTAT_DATA_Ul NT64 },
374 "arc_meta_max", KSTAT_DATA_Ul NT64
375 };
377 #define ARCSTAT(stat) (arc_stats. stat.val ue. ui 64)
379 #define ARCSTAT_I NCR(stat, val) \
380 at omi c_add 64(&arc stats.stat.val ue.ui 64, (val));
382 #define ARCSTAT_BUMP(st at) ARCSTAT_| NCR(stat, 1)
383 #define ARCSTAT BUWMPDOM(stat) ARCSTAT | NCR(stat, -1)
385 #define ARCSTAT_MAX(stat, val) { \
386 uintéd_t m \
387 while ((val) > (m= arc_stats. stat.val ue. ui 64) && \
388 (m!= atom c_cas_64(&arc_stats.stat.value.ui64, m (val)))) \
389 conti nue;
390 }
392 #define ARCSTAT MAXSTAT(stat) \
393 ARCSTAT_MAX(st at ## _max, arc_stats. stat.val ue. ui 64)
395 /*
396 * W define a macro to allow ARC hits/ m sses to be easily broken down by
397 * two separate conditions, giving a total of four different subtypes for
398 */each of hits and mi sses (so eight statistics total).
399 *
400 #define ARCSTAT_CONDSTAT(condl, statl, notstatl, cond2, stat2, notstat2, stat) \
401 if (condl) {
402 if (cond2) {
403 ARCSTAT_BUMP(ar cst at _##st at 1##_##st at 2##_##stat); \
404 } else { \
405 ARCSTAT_BUMP(ar cst at _##st at 1##_##not st at 2##_##stat); \
406 \
407 } else { \
408 if (cond2) { \
409 ARCSTAT_BUVP(ar cst at _##not st at 1## _ ##st at 2##_##stat); \
410 } else { \
411 ARCSTAT_BUMP(ar cst at _##not st at 1##_##not st at 2##_##tstat) ; \
412 } \
413 1
415 kstat _t *arc_ksp;
416 static arc_state_t *arc_anon;
417 static arc_state_t *arc_nru;
418 static arc_state_t *arc_nr u_ghost ;

new usr/src/uts/comon/fs/zfs/arc.c

419
420
421

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

440
441
442

444
446

448
449
450
451
452
453
454

456

458
459
460
461
462
463

465
466
467
468
469

471
472
473

475
476
477
478

480
481

483
484

*arc_nf u;
*ar c_nfu_ghost ;
*arc_| 2c_only;

static arc_state_t
static arc_state_t
static arc_state_t

/
There are several ARC variables that are critical to export as kstats --
but we don’t want to have to grovel around in the kstat whenever we wish to
mani pul ate them For these variables, we therefore define themto be in
terns of the statistic variable. This assures that we are not introducing
the possibility of inconsistency by having shadow copi es of the variabl es,

* while still allowing the code to be readable.

*

/
#define arc_size
#define arc_p
#define arc_c
#define arc_c_mn
#defi ne arc_c_max
#define arc_neta_limt
#define arc_neta_used
#def i ne arc_neta_nmax

* ok kb F o

ARCSTAT(ar cst at _si ze) /* actual total arc size */
ARCSTAT(ar cst at _p) /* target size of MRU */
ARCSTAT(arcstat _c) /* target size of cache */
ARCSTAT(arcstat_c_nmin) /* mn target cache size */
ARCSTAT(arcstat_c_nmax) /* max target cache size */
ARCSTAT(arcstat_neta_limt) /* max size for nmetadata */
ARCSTAT(arcstat_neta_used) /* size of netadata */
ARCSTAT(arcstat_neta_max) /* max size of netadata */

static int
static uint64_t
static uint64_t

ar c_no_gr ow,
ar c_t enpreserve;
ar c_| oaned_byt es;

/* Don't try to grow cache size */

typedef struct |2arc_buf_hdr |2arc_buf_hdr_t;
typedef struct arc_callback arc_call back_t;

struct arc_cal | back {

voi d *acb_private;
arc_done_func_t *acb_done;
arc_buf _t *acb_buf;
zio_t *acb_zi o_dumy
arc_cal | back_t *ach_next;
be
typedef struct arc_wite_callback arc_wite_callback_t;

struct arc_wite_call back {

voi d *awch_pri vat e;
arc_done_func_t *awcb_r eady;
arc_done_func_t *awcb_done;
arc_buf _t *awch_buf;

e

struct arc_buf_hdr {

/* protected by hash |ock */

dva_t b_dva;

ui nt64_t b_birth;

ui nt 64_t b_cksunD;

kmut ex_t b_freeze_l ock;

zi o_cksum t *b_freeze_cksum
voi d *b_t hawed;
arc_buf _hdr _t *b_hash_next;
arc_buf _t *b_buf;

uint32_t b_fl ags;

ui nt 32_t b_dat acnt ;
arc_cal | back_t *b_ach;

kcondvar _t b_cv;

/* i mut able */

arc_buf _contents_t b_type;

new usr/src/uts/comon/fs/zfs/arc.c

485
486

488
489
490

492
493

495
496

498
499
500

502
503
504
505
506
507
508
509

511

513
514
515

517
518
519
520
521
522
523

525
526
527
528
529
530
531
532
533
534

536
537
538
539
540
541
542
543
544
545
546
547
548

550

ui nt 64_t

- b_si ze;
ui nt 64_t

b_spa;

/* protected by arc state nutex */
arc_state_t *b_state;

i st_node_t b_ar c_node;

/* updated atom cally */

clock_t b_arc_access;
/* self protecting */
refcount _t b_refcnt;
| 2ar c_buf _hdr _t *b_| 2hdr;
l'ist_node_t b_I 2node;
e
static arc_buf _t *arc_eviction_|list;
static knmutex_t arc_eviction_ntx;
static arc_buf_hdr_t arc_evi GCtion hdr ;
static void arc_get_data_buf (arc_buf t *buf);
static void arc access(arc buf _hdr _t *buf, kmutex_t *hash _| ock);
static int arc_evict_needed(arc_buf contents_t type)
static void arc_evict_ghost(arc_state t *state, uint 64_t spa, int64_t bytes);
static void arc_buf_watch(arc_buf_t *buf);
static boolean_t |2arc_wite_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
#def i ne GHOST_STATE(st at e) \
((state) == arc_nru_ghost || (state) == arc_nfu_ghost || \
(state) == arc_I2c_only)
/*
* Private ARC flags. These flags are private ARC only flags that will show up
* in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can
* be passed in as arc_flags in things |like arc_read. However, these flags
* shoul d never be passed and should only be set by ARC code. Wen addi ng new
* public flags, nake sure not to smash the private ones.
*
/
#define ARC_ | N HASH TABLE (1 << 9 /* this buffer is hashed */
#define ARC_| O | N PROGRESS (1 << 10) /* 1/Oin progress for buf */
#define ARC_| O ERROR (1 << 11) /* 1/0O failed for buf */
#def i ne ARC_FREED | N_READ (1 << 12) /* buf freed while in read */
#defi ne ARC_BUF_AVAI LABLE (1 << 13) /* block not in active use */
#defi ne ARC_|I NDI RECT (1 << 14) /* this is an indirect block */
#defi ne ARC_FREE_| N_PROGRESS (1 << 15) /* hdr about to be freed */
#define ARC_L2_WRI TI NG (1 << 16) /* L2ARC write in progress */
#defi ne ARC_L2_EVI CTED (1 << 17) /* evicted during 1/0 */
#defi ne ARC_L2_WRI TE_HEAD (1 << 18) /* head of wite list */
#define HDR I N HASH TABLE(hdr) ((hdr)->b _flags & ARC | N HASH TABLE)
#define HDR_I O | N PROGRESS(hdr) ((hdr)->b_flags & ARC_| O | N PROGRESS)
#defi ne HDR_I O_ERROR(hdr) ((hdr)->b_flags & ARC_| O ERROR)
#def i ne HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH)
#define HDR_FREED | N READ(hdr) ((hdr)->b_flags & ARC _FREED | N READ)
#defi ne HDR BUF_AVAI LABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAI LABLE)
#defi ne HDR_FREE_| N_PROGRESS(hdr) ((hdr)->b_flags & ARC FREE_| N_PROGRESS)
#def i ne HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC L2CACHE)
#def i ne HDR_L2_READI NG hdr) ((hdr)->b_flags & ARC_| O | N PROGRESS && \
(hdr)=>b_I"2hdr !="NULL)
#define HDR_L2_WRI TI N hdr) ((hdr)->b_flags & ARC_L2_WRI TI NG
#define HDR_L2_EVI CTED(hdr) ((hdr)->b_flags & ARC_L2_EVI CTED)
#define HDR_L2_WRI TE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRI TE_HEAD)
/*

new usr/src/uts/comon/fs/zfs/arc.c

551 * Qther sizes

552 */

554 #define HDR SIZE ((int64_t) si zeof (arc_buf_hdr_t))
555 #define L2HDR Sl ZE ((int64_t)sizeof (l2arc_buf_hdr_t))
557 | *

558 * Hash table routines

559 */

561 #define HT_LOCK_PAD 64

563 struct ht_lock {

564 kmut ex_t ht _| ock;

565 #ifdef _KERNEL

566 unsi gned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
567 #endi f

568 };

570 #define BUF_LOCKS 25

571 typedef struct buf hash _table {

572 uint64_t ht_nask;

573 arc_buf _hdr_t **ht_tabl e;

574 struct ht_lock ht_Tocks[BUF_LOCKS];

575 } buf_hash_table_t;

577

579
580
581
582
583
584

586

588
589
590

592
593
594
595

597
598

600
601
602
603
604
605
606
607
608
609
610

612
613
614
615
616

static buf_hash_table_t buf_hash_tabl e;

#defi ne BUF_HASH | NDEX(spa, dva, birth) \
(buf _hash(spa, dva, bi rth) & buf _hash_t abl e. ht _mask)
#def i ne BUF_HASH LOCK_NTRY(i dx) (buf_hash_table. ht | ocks[idx & (BUF_LOCKS-1)])
#defi ne BUF_HASH LOCK(i dx) (& BUF_HASH_LOCK_NTRY(i dx) . ht | ock))
#define HDR_LOCK(hdr) \
(BUF_HASH_LOCK(BUF_HASH_| NDEX(hdr - >b_spa, &hdr->b_dva, hdr->b_birth)))

uint64_t zfs_crc64_tabl e[256];

/*

* Level 2 ARC

*/

#define L2ARC_WRI TE_SI ZE (8 * 1024 * 1024) /* initial wite max */
#def i ne L2ARC_HEADROOM 2 /* numof wites */

#def i ne L2ARC_FEED SECS 1 /* caching interval secs */
#defi ne L2ARC_FEED M N_Ms 200 /* mn caching interval ns */

#define | 2arc_wites_sent
#define | 2arc_wites_done

ARCSTAT(ar cst at _|
ARCSTAT(ar cst at _

2_wites_sent)
2_writes_done)

/*
* L2ARC Perfornmance Tunabl es
*/
uint64_t |2arc_wite_nax = L2ARC WRI TE_SI ZE; /* default max wite size */
ui nt 64_t IZarc_\erte_boost = L2ARC WRITE_SIZE; /* extra wite during warnup */
ui nt 64_t | 2arc_headroom = L2ARC_HEADROOM_ /* nunber of dev wites */
uint64_t |2arc_feed_secs = L2ARC FEED SECS; /* interval seconds */
uint64_t |2arc_feed_ min_nms = L2ARC FEED MN MS; /* nmin interval mlliseconds */
bool ean_t | 2arc_noprefetch = B_TRUE, /* don’t cache prefetch bufs */
bool ean_t | 2arc_feed_again = B_TRUE; /* turbo warnup */
bool ean_t | 2arc_norw = B_TRUE; /* no reads during wites */
/*
* L2ARC Internals
*
typedef struct |2arc_dev {
vdev_t *| 2ad_vdev; /* vdev */

new usr/src/uts/comon/fs/zfs/arc.c

617 spa_t *| 2ad_spa;
618 ui nt 64_t | 2ad_hand;
619 ui nt 64_t | 2ad_write;
620 ui nt 64_t | 2ad_boost ;
621 ui nt 64_t | 2ad_start;
622 ui nt 64_t | 2ad_end;
623 ui nt 64_t | 2ad_evi ct;
624 bool ean_t | 2ad_first;
625 bool ean_t | 2ad_writing;
626 list_t *| 2ad_bufli st;
627 list_node_t | 2ad_node;
628 } | 2arc_dev_t;

630 static |list_t L2ARC dev_list;

631 static list_t *l2arc_dev_list;

632 static knmutex_t |2arc_dev_ntx;

633 static |2arc_dev_t *|2arc_dev_| ast;

634 static knutex_t T2arc_buflist_ntx;

635 static list_t L2ARC free_on_wite;

636 static list_t *l2arc_free_on_wite;

637 static kmutex_t |2arc_free_on_wite_ntx;
638 static uint64_t |2arc_ndev;

640 typedef struct |2arc_read_call back {

641 arc_buf _t *| 2rcb_buf;

642 spa_t *| 2rcb_spa;

643 bl kptr_t | 2rcb_bp;

644 zbookmar k_t | 2rcb_zb;

645 i | 2rcb_fl ags;

int
646 } |2arc_read_cal | back_t;
648 typedef struct

| 2arc_write_call back {
*|

649 | 2arc_dev_t 2wch_dev;

650 arc_buf _hdr _t *| 2wch_| head

651 } |2arc_wite_call back_t;

653 struct | 2arc_buf_hdr {

654 /* protected by arc_buf_hdr mutex */
655 | 2ar c_dev_t *b_dev;

656 ui nt 64_t b_daddr;

657 };

659 typedef struct |2arc_data_free {

spa */

next wite |location */
desired wite size, bytes */
warmup wite boost, bytes */
first addr on device */

| ast addr on device */

| ast addr eviction reached */
first sweep through */
currently witing */

buffer list */

device list node */

I N

—— e — —

device list */

device |ist pointer */
device list mutex */

| ast device used */

mutex for all buflists */
free after wite buf list */
free after wite list ptr */
mutex for list */

nunber of devices */

—~—— i — — —
® ok Ok Ok ok F k

read buffer */
spa */

origi nal
ori gi nal
ori gi nal

bl kptr */
bookmark */
flags */

—~————
* Ok ok Ok

/* device info */
/* head of wite buflist */

L2ARC devi ce */
di sk address, offset byte */

——
* ok

660 /* protected by |2arc_free_on_wite mtx */

661 voi d *| 2df _dat a;

662 size_t | 2df _si ze;

663 voi d (*I2df_func)(void *, size_t);
664 Iist_node_t | 2df _| i st _node;

665 } |2arc_data free_t;

667 static kmutex_t |2arc_feed_thr_| ock;

668 static kcondvar t |2arc_feed thr_cv;

669 static uint8_ t T2arc_thread_exit;

671 static void | 2arc_read_done(zio_t *zio);

672 static void | 2arc_hdr_stat_add(void);

673 static void | 2arc_hdr_stat_renove(void);

675 static uint64_t

676 buf _hash(uint64_t spa, const dva_t *dva, uint64_t birth)
677 {

678 uint8_t *vdva = (uint8_t *)dva;

679 uint64_t crc = -1ULL;

680 int i;

682 ASSERT(zfs_crc64_tabl e[128] == ZFS_CRC64_PQLY) ;

new usr/src/uts/comon/fs/zfs/arc.c

684
685

687

689
690

692
693
694
695

697
698
699
700

702
703

705
706
707
708
709

711
712

}

for (i = 0; i < sizeof (dva_t);

i ++)

crc = (crc >> 8) M zfs_crc64_table[(crc ~ vdva[i]) & OxFF];

crc A= (spa>>8) ” birth;

return (crc);

#def i ne BUF_EMPTY(buf)

#defi ne BUF_EQUAL(spa, dva, bi

((buf)->b_dva.dva_word[0] == 0 &&

(buf)->b_dva. dva_word[1]
(buf)->b_birth == 0)

== 0 &%

rth, buf)

((buf)->b_dva. dva Word[O =

((buf)->b_dva. dva_word[1
th

((buf)->b birth == birth) &&

static void
buf _di scard_i dentity(arc_buf_hdr_t *hdr)
704 {

}

0;

hdr - >b_dva. dva_wor d[0]
] 0;

hdr - >b_dva. dva_word[1
hdr->b_birth = 0;
hdr - >b_cksund = 0;

static arc_buf_hdr_t *

buf _hash_find(uint64_t spa,

713 {

714
715
716

718
719
720
721
722
723
724
725
726
727
728
729

731
732
733
734
735
736
737
738

* Ok ok * ok

const dva_t

ui nt 64_t

kmut ex_t

arc_buf_hdr_t ¥buf;

mut ex_ent er(hash I ock) ;

for (buf
buf = buf->b_hash_next)

if (BUF_EQUAL(spa, dva, birth,

h f

] == (dva)->dva_word[0]) &&

]) = Edva)—>dva_word[1]) && \
p

*dva,

= buf _hash_tabl e. ht _table[idx]; buf

(buf)->b_spa == spa)

uint64_t birth, kmutex_t **| ockp)

i dx = BUF_HASH | NDEX(spa, dva, birth);
*hash | ock = BUF_HASH_LOCK(i dx)

= NULL;
buf)) {

*| ockp = hash_I ock;

return (buf);

}

mut ex_exi t (hash_l ock) ;
*| ockp = NULL;
return (NULL);

Insert an entry into the hash table.
equal to elemin the hash table,
will
Gt herwi se returns NULL.

static arc_buf_hdr_t *

buf _hash_i nsert(arc_buf _hdr _t

739 {

740
741
742
743

745
746
747
748

*buf ,
ui nt 64_t

kmut ex_t

If there is already an el enent

then the already existing el enent
be returned and the new el ement will not

be inserted.

**| ockp)

i dx = BUF_HASH | NDEX(buf - >b_spa, &buf->b_dva, buf->b_birth);

kmut ex_t *hash_l ock = BUF_HASH_LOCK(i dx);

arc_buf _hdr _t
ui nt32t i;

ASSERT(I HDR_| N_HASH TABLE(buf));
*| ockp = hash_I ock;

mut ex_ent er(hash Iock)

for (fbuf

*f buf ;

= buf _hash_t abl e. ht _table[idx], i

= 0; fbuf !'= NULL;

new usr/src/uts/comon/fs/zfs/arc.c

749 fbuf = fbuf->b_hash_next, i++) {

750 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
751 return (fbuf);

752 }

754 buf - >b_hash_next = buf_hash tabl e. ht _table[idx];
755 buf _hash_t abl e. ht tabl e[idx] = buf;

756 buf->b_fTags | = ARC_I N_HASH TABLE;

758 /* collect some hash table performance data */
759 if (i >0) {

760 ARCSTAT_BUMP(ar cst at _hash_col | i si ons) ;

761 if (i ==1)

762 ARCSTAT_BUWP(ar cst at _hash_chai ns) ;
764 ARCSTAT_MAX(ar cst at _hash_chai n_nax, i);
765 }

767 ARCSTAT_BUMP(ar cst at _hash_el enent s) ;

768 ARCSTAT_MAXSTAT(ar cst at _hash_el enent s) ;

770 return (NULL);

771 }

773 static void
774 buf _hash_renove(arc_buf_hdr_t *buf)

775 {

776 arc_buf _hdr _t *fbuf, **bufp;

777 uint64_t idx = BUF_ HASH 1 | NDEX(buf - >b_spa, &buf->b_dva, buf->b_birth);
779 ASSERT(MUTEX_HELD(BUF_HASH LOCK(i dx)));

780 ASSERT(HDR | N_HASH TABLE(buf));

782 buf p = &buf _hash_tabl e. ht _tabl e[idx];

783 while ((fbuf = *bufp) != buf) {

784 ASSERT(f buf 1= NULL);

785 bufp = &f buf - >b_hash_next;

786 }

787 *puf p = buf->b_hash_next;

788 buf - >b_hash_next = NULL;

789 buf ->b_flags & ~ARC_| N _HASH TABLE;

791 /* collect some hash table performance data */

792 ARCSTAT_BUWMPDOWN(ar cst at _hash_el enent s) ;

794 if (buf_hash_table.ht_table[idx] &&

795 buf _hash_t abl e. ht _tabl e[i dx] ->b_hash_next == NULL)
796 ARCSTAT_BUMPDOWN(ar cst at _hash_chai ns) ;

797 }

799 [*

800 * G obal data structures and functions for the buf kmem cache.
801 */

802 static kmem cache_t *hdr_cache;

803 static kmem cache_t *buf_cache;

805 static void
806 buf _fini (void)

807 {

808 int i;

810 kmem f ree(buf _hash_t abl e. ht _tabl e,

811 (buf _hash_table. ht _mask + 1) * sizeof (void *));

812 for (i = 0; i < BUF_LOCKS; i++)

813 mut ex_dest roy(&uf _hash_tabl e. ht _| ocks[i]. ht _I ock);

814 kmem cache_destroy(hdr_cache);

new usr/src/uts/comon/fs/zfs/arc.c

815 kmem cache_destroy(buf _cache);
816 }

818 /*

819 * Constructor callback - called when the cache is enpty
820 * and a new buf is requested.

821 */

822 /* ARGSUSED */

823 static int

824 hdr_cons(void *vbuf, void *unused, int knfl ag)

825 {

826 arc_buf _hdr _t *buf = vbuf;

828 bzero(buf, sizeof (arc_buf_hdr_t));

829 refcount _create(&uf->b_refcnt);

830 cv_init(&uf->b_cv, NULL, CV_DEFAULT, NULL);

831 mut ex_i ni t (&uf->b_freeze_| ock, NULL, MJUTEX_DEFAULT, NULL);
832 ar c_space_consune(si zeof (arc_buf_hdr_t), ARC _SPACE HDRS);
834 return (0);

835 }

837 /* ARGSUSED */
838 static int
839 buf_cons(void *vbuf, void *unused, int knflag)

840 {

841 arc_buf _t *buf = vbuf;

843 bzero(buf, sizeof (arc_buf_t));

844 nmut ex |n|t(&buf >b_evict_| ock, NULL, MJUTEX_DEFAULT, NULL);
845 ar c_space_consune(si zeof (arc_buf_t), ARC SPACE HDRS);

847 return (0);

848 }

850 /*

851 * Destructor callback - called when a cached buf is
852 * no |onger required.

853 */

854 /* ARGSUSED */

855 static void

856 hdr_dest(void *vbuf, void *unused)

857 {

858 arc_buf _hdr_t *buf = vbuf;

860 ASSERT(BUF_EMPTY(buf)) ;

861 ref count _destroy(&buf->b_refcnt);

862 cv_destroy(&buf->b_cv);

863 mut ex_dest r oy(&uf - >b freeze | ock) ;

864) arc_space_return(sizeof (arc_buf hdr _t), ARC_SPACE_HDRS);
865

867 /* ARGSUSED */
868 static void
869 buf_dest(void *vbuf, void *unused)

870 {

871 arc_buf _t *buf = vbuf;

873 mut ex_dest r oy(&uf - >b_evi ct _| ock);

874 arc_space_return(sizeof (arc_buf_t), ARC SPACE_HDRS);
875 }

877 I *

878 * Reclaimcallback -- invoked when nenory is |ow

879 */

880 /* ARGSUSED */

10

new usr/src/uts/comon/fs/zfs/arc.c

881 static void

882 hdr_recl (void *unused)

883 {

884 dprintf("hdr_recl called\n");

885 I

886 * unemcalls the reclaimfunc when we destroy the buf cache,
887 * which is after we do arc_fini().
888 */

889 if (!arc_dead)

890 cv_signal (&rc_reclaimthr_cv);
891 }

893 static void
894 buf _init(void)

895 {

896 uint64_t *ct;

897 uint64_t hsize = 1ULL << 12;

898 int i, j;

900 /*

901 * The hash table is big enough to fill all of physical menory
902 * with an average 64K bl ock size. The table wll take up

903 * total nentsizeof (voi d*)/ 64K (eg. 128KB/GB with 8-byte pointers).
904 */

905 whil e (hsize * 65536 < physmem * PAGESI ZE)

906 hsi ze <<= 1;

907 retry:

908 buf _hash_t abl e. ht _mask = hsize - 1;

909 buf _hash_tabl e. ht _table =

910 “knmem zal | oc(hsize * sizeof (void*), KM NOSLEEP);

911 if (buf_hash_table.ht_table == NULL) {

912 ASSERT(hsi ze > (1ULL << 8)):

913 hsi ze >>= 1;

914 goto retry;

915 }

917 hdr _cache = knmem cache_create("arc_buf _hdr_t", S|zeof (arc_buf _hdr_t),
918 ~0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL 0

919 buf _cache = knem_cache_create("arc_buf_t si zeof (arc buf _t),
920 0, buf cons, buf_dest, NULL, NULL, NULL, 0):

922 for (i =0; i < 256; i++)

923 for (ct = zfs_crc64_table + i, *ct =i, j =8;] >0; j--)
924 *ct—(ct>>1)"((ct&l)&ZFSCRCG4P(1Y)
926 for (i = 0; i < BUF_LOCKS; i++)

927 mut ex_i ni t (&uf _hash_tabl e. ht _| ocks[i].ht_I ock,

928 NULL, MJUTEX_ DEFAULT, NULL);

929 }

930 }

932 #define ARC_M NTI ME (hz>>4) /* 62 ms */

934 static void
935 arc_cksumverify(arc_buf_t *buf)

936 {

937 zi o_cksumt zc;

939 if (!(zfs_flags & ZFS_DEBUG MODI FY))

940 return;

942 nmut ex_ent er (&buf - >b_hdr - >b_f reeze_l ock) ;

943 if (buf->b_hdr->b_freeze_cksum == NULL ||

944 (buf ->b_hdr->b_flags & ARC_| O ERROR)) {
945 nmut ex_exi t (&uf->b_hdr->b_freeze_ | ock);

946 return;

11

new usr/src/uts/comon/fs/zfs/arc.c

947 1

948 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
949 if (!2ZlI O CHECKSUM EQUAL(*buf - Sb_hdr->b_freeze cksum zc))
950 pani c("buffer nodified while frozen!");

951 mut ex_exi t (&uf->b_hdr->b_freeze_| ock);

952 }

954 static int
955 arc_cksum equal (arc_buf_t *buf)

956 {

957 zi o_cksumt zc;

958 int equal;

960 mut ex_ent er (&uf - >b_hdr->b_freeze_| ock);

961 fletcher 2 native(buf->b_data, buf->b hdr - >b size, &zc);

962 equal ZI O_CHECKSUM EQUAL (* buf - >b_hdr - >b _freeze cksum 2@)) 3
963 mut ex eX|t(&buf >b_hdr->b_freeze_| ock);

965 return (equal);

966 }

968 static void
969 arc_cksum conpute(arc_buf _t *buf, bool ean_t force)

970 {

971 if (!Iforce & !(zfs_flags & ZFS_DEBUG MODI FY))
972 return;

974 mut ex_ent er (&buf - >b_hdr->b_freeze_| ock);

975 if (buf->b_hdr->b_freeze_cksum!= NULL) {

976 mut ex_exi t (&uf->b_hdr->b_freeze_| ock);
977 return;

978 1

979 buf - >b_hdr->b_freeze_cksum = kmem al | oc(si zeof (zio_cksumt),
980 fletcher_2 native(buf->b_data, buf->b_hdr->b_size,
981 buf ->b_hdr->b_freeze_cksum;

982 mut ex_exi t (&uf ->b_hdr->b_ freeze _l ock);

983 arc_buf _wat ch(buf);

984 }

986 #ifndef _KERNEL
987 typedef struct procctl {

988 | ong cnd;

989 prwat ch_t prwatch;
990 } procctl _t;

991 #endi f

993 /* ARGSUSED */
994 static void
995 ar c_buf _unwat ch(arc_buf_t *buf)

996 {

997 #ifndef _KERNEL

998 if (arc_watch) {

999 int result;

1000 procctl _t ctl;

1001 ctl.cmd = PCWATCH,

1002 ctl.prwatch. pr_vaddr = (uintptr_t)buf->b_dat a;
1003 ctl.prwatch. pr_size = 0;

1004 ctl. prwatch pr_wilags = 0O;

1005 result = wite(arc_procfd, &ctl, sizeof (ctl));
1006 ASSERT3U(result, ==, sizeof (ctl));

1007

1008 #endi f

1009 }

1011 /* ARGSUSED */
1012 static void

12

KM _SLEEP) ;

new usr/src/uts/comon/fs/zfs/arc.c

1013 arc_buf
1014 {

1015 #i f ndef
1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026 #endi f
1027 }

1029 voi d
1030 arc_buf
1031 {

1032

1033

1034

1035

1036

1037

1038

1040
1041
1042
1043
1044

1046
1047
1048
1049
1050

1052

1054
1055 }

1057 void
1058 arc_buf
1059 {

1060

1062
1063

1065
1066

1068
1069
1070
1071

1073 }

_wat ch(arc_buf _t *buf)

_ KERNEL
if (arc_watch) {
int result;
procctl _t ctl;
ctl.cmd = PCWATCH;

ctl.prwatch. pr_vaddr = (uintptr_t)buf->b_data;
ctl.prwatch. pr_size = buf->b_hdr->b_size;

ctl. prwatch pr_wflags = WA WRI TE;

result = wite(arc_procfd, &ctl, sizeof (ctl));
ASSERT3U(resul t, ==, sizeof (ctl));

_thaw(arc_buf _t *buf)

if (zfs_flags & ZFS_DEBUG MODI FY)
if (buf->b_hdr->b_state != arc_anon)
pani c(" nodi fyi ng non-anon buffer!");
if (buf- >b hdr->b_flags & ARC IO IN PRCXBRESS)
pani c("nodi fying buffer whilTe i/o in progress!");
arc_cksumverify(buf);

}

nmut ex_ent er (&buf - >b_hdr->b_freeze_| ock);
if (buf->b_hdr->b_freeze_cksum!= NULL)

knmem free(buf->b_hdr->b_freeze_cksum sizeof (zio_cksumt));

buf ->b_hdr->b_freeze_cksum = NULL;
}

if (zfs_flags & ZFS _DEBUG MDD FY) {
if (buf->b_hdr->b_t hawed)
kmem free(buf->b_hdr->b_t hawed, 1);
buf->b_hdr->b_t hawed = kmem al | oc(1, KM SLEEP);
}

mut ex_exi t (&uf->b_hdr->b_freeze_| ock);

ar c_buf _unwat ch(buf);

_freeze(arc_buf _t *buf)

kmut ex_t *hash_| ock;

if (!(zfs_flags & ZFS_DEBUG MODI FY))
return;

hash_l ock = HDR_LOCK(buf - >b_hdr);
nmut ex_ent er (hash_| ock) ;

ASSERT(buf - >b_hdr->b_freeze_cksum ! = NULL ||
buf->b_hdr->b_state == arc_anon);

arc_cksum conput e(buf, B_FALSE);

mut ex_exi t (hash_I ock);

1075 static void

1076 add_reference(arc_buf_hdr_t *ab,

1077 {
1078

kmut ex_t *hash_| ock, void *tag)

ASSERT(MUTEX_HELD(hash_l ock)) ;

13

new usr/src/uts/comon/fs/zfs/arc.c

1080 if ((refcount_add(&ab->b_refcnt, tag) == 1) &&

1081 (ab->b_state !'= arc_anon)) {

1082 ui nt 64_t delta = ab->b_si ze * ab->b_datacnt;

1083 list_t *list = &b->b_state->arcs_|ist[ab- >btype]
1084 uint64_t *size = &ab->b_state->arcs_| si ze[ab->b type]
1086 ASSERT(! MUTEX_HELD(&b- >b_st at e->arcs_nt x)) ;

1087 mut ex_ent er (&ab- >b_st at e->arcs_nt x) ;

1088 ASSERT(|ist_link_active(&b->b_arc node))

1089 list_remove(list, ab);

1090 if (GHOST_STATE(ab->b_st ate)) {

1091 ASSERTO(ab- >b_dat acnt) ;

1092 ASSERT3P(ab->b_buf, ==, NULL)

1093 delta = ab->b_si ze;

1094 }

1095 ASSERT(delta > 0);

1096 ASSERT3U(*si ze, >=, delta);

1097 atom c_add_64(si ze, -delta);

1098 mut ex_exi t (&b->b_state->arcs_ntx);

1099 /* renpve the prefetch flag if we get a reference */
1100 if (ab->b_flags & ARC PREFETCH)

1101 ab->b flags & ~ARC PREFETCH:

1102 }

1103 }

1105 static int

1106 Eermve_reference(arc_buf_hdr_t *ab, knmutex_t *hash_| ock, void *tag)
1107

1108 int cnt;

1109 arc_state_t *state = ab->b_state;

1111 ASSERT(state == arc_anon || MJTEX_HELD(hash_| ock));

1112 ASSERT(! GHOST_STATE(state)) ;

1114 if (((cnt = refcount_renove(&ab->b_refcnt, tag)) == 0) &&
1115 (state !'= arc_anon))

1116 uint64_t *size = &state->arcs_|size[ab->b_type];
1118 ASSERT(! MUTEX_HELD(&st at e- >arcs_nt x))

1119 mut ex_ent er (&st ate->arcs_ntx) ;

1120 ASSERT(!list_link_active(&b->b_arc_node));

1121 list_insert_head(&state->arcs_|ist[ab->b_type], ab);
1122 ASSERT(ab->b_dat acnt > 0);

1123 at om c_add_64(si ze, ab->b_size * ab->b_datacnt);
1124 mut ex_exit (&state->arcs_ntx);

1125 }

1126 return (cnt);

1127 }

1129 /*

1130 * Move the supplied buffer to the indicated state. The nutex
1131 * for the buffer nust be held by the caller.

1132 */

1133 static void

1134 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, knutex_t
1135 {

1136 arc_state_t *old_state = ab->b_state;

1137 inté4_t refcnt = refcount_count(&b->b_refcnt);

1138 uint64_t fromdelta, to_delta;

1140 ASSERT(MUTEX_HELD(hash_I ock)) ;

1141 ASSERT(new state != ol d_state);

1142 ASSERT(refcnt == 0 || ab >b_datacnt > 0);

1143 ASSERT(ab- >b dat acnt == 0 || ! GHOST STATE(new state));
1144 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);

14

*hash_| ock)

new usr/src/uts/comon/fs/zfs/arc.c 15 new usr/src/uts/comon/fs/zfs/arc.c
1211 ab->b_state = new_ state;
1146 fromdelta = to_delta = ab->b_datacnt * ab->b_si ze;
1213 /* adjust |2arc hdr stats */
1148 /* 1214 if (new.state == arc_|2c_only)
1149 * |f this buffer is evictable, transfer it fromthe 1215 | 2arc_hdr _stat_add();
1150 * old state list to the new state |ist. 1216 else if (old_state == arc_I 2c_only)
1151 */ 1217 | 2arc_hdr _stat_renove();
1152 if (refcnt == 0) { 1218 }
1153 if (old_state != arc_anon) {
1154 int use_mutex = ! MUTEX HELD(&ol d_st at e->arcs_nt x) ; 1220 void
1155 uint64_t *size = &ol d_state->arcs_|size[ab->b_type]; 1221 arc_space_consune(ui nt64_t space, arc_space_type_t type)
1222 {
1157 i f (use_nutex) 1223 ASSERT(type >= 0 && type < ARC_SPACE_NUMIYPES) ;
1158 mut ex_ent er (&ol d_st ate->arcs_ntx) ;
1225 switch (type) {
1160 ASSERT(list_link_active(&b->b_arc_node)); 1226 case ARC_SPACE_DATA:
1161 l'ist_renpve(&ol d_state->arcs_|ist[ab->b_type], ab); 1227 ARCSTAT_I NCR(ar cst at _dat a_si ze, space);
1228 br eak;
1163 /* 1229 case ARC_SPACE_OTHER:
1164 * |f prefetching out of the ghost cache, 1230 ARCSTAT_I NCR(ar cst at _ot her _si ze, space);
1165 * we will have a non-zero datacnt. 1231 br eak;
1166 */ 1232 case ARC_SPACE_HDRS:
1167 i f (GHOST_STATE(ol d_state) && ab->b_datacnt == 0) { 1233 ARCSTAT_I NCR(ar cst at _hdr _si ze, space);
1168 /* ghost el enents have a ghost size */ 1234 br eak;
1169 ASSERT(ab->b_buf == NULL); 1235 case ARC_SPACE_L2HDRS:
1170 fromdelta = ab->b_size; 1236 ARCSTAT_I NCR(ar cstat _| 2_hdr _si ze, space);
1171 } 1237 br eak;
1172 ASSERT3U(*si ze, >=, fromdelta); 1238 }
1173 atomi c_add_64(size, -fromdelta);
1240 ARCSTAT_I NCR(ar cst at _neta_used, space);
1175 i f (use_mutex) 1241 at om c_add_64(&arc_si ze, space);
1176 mut ex_exit (&ol d_state->arcs_ntx); 1242 }
1177
1178 if (new.state != arc_anon) { 1244 void
1179 int use_mutex = ! MUTEX HELD(&new_st at e->arcs_nt x) ; 1245 arc_space_return(uint64_t space, arc_space_type_t type)
1180 uint64_t *size = &new state->arcs_|size[ab->b_type]; 1246 {
1247 ASSERT(type >= 0 & type < ARC_SPACE_NUMIYPES) ;
1182 i f (use_nutex)
1183 mut ex_ent er (&ew_st at e->arcs_nt x) ; 1249 switch (type) {
1250 case ARC_SPACE_DATA:
1185 list_insert_head(&new state->arcs_list[ab->b_type], ab); 1251 QRCSIAT_I NCR(ar cst at _data_si ze, -space);
1252 reak;
1187 /* ghost el enents have a ghost size */ 1253 case ARC_SPACE_OTHER:
1188 i f (GHOST_STATE(new state)) { 1254 ARCSTAT_I NCR(ar cst at _ot her _si ze, -space);
1189 ASSERT(ab- >b_dat acnt == 0); 1255 br eak;
1190 ASSERT(ab->b_buf == NULL); 1256 case ARC_SPACE_HDRS:
1191 to_delta = ab->b_si ze; 1257 ARCSTAT_I NCR(ar cst at _hdr _si ze, -space);
1192 } 1258 br eak;
1193 atom c_add_64(size, to_delta); 1259 case ARC_SPACE_L2HDRS:
1260 ARCSTAT_I NCR(ar cstat _| 2_hdr _si ze, -space);
1195 i f (use_nutex) 1261 br eak;
1196 mut ex_exi t (&ew_ st ate->arcs_ntx); 1262 }
1197 }
1198 } 1264 ASSERT(arc_neta_used >= space);
1265 if (arc_nmeta_max < arc_neta_used)
1200 ASSERT(! BUF_EMPTY(ab)) ; 1266 arc_nmeta_max = arc_neta_used;
1201 if (new state == arc_anon &% HDR | N _HASH TABLE(ab)) 1267 ARCSTAT_| NCR(ar cstat _neta_used, -space);
1202 buf _hash_renove(ab); 1268 ASSERT(ar c_si ze >= space);
1269 atonmi c_add_64(&arc_si ze, -space);
1204 /* adjust state sizes */ 1270 }
1205 if (to_delta)
1206 at om c_add_64(&ew_state->arcs_size, to_delta); 1272 void *
1207 if (fromdelta) { 1273 arc_data_buf _al l oc(uint64_t size)
1208 ASSERT3U(ol d_st at e->arcs_si ze, >=, fromdelta); 1274 {
1209 atom c_add_64(&ol d_state->arcs_size, -fromdelta); 1275 if (arc_evict_needed(ARC_BUFC _DATA))
1210 } 1276 cv_signal (&rc_reclaimthr_cv);

new usr/src/uts/comon/fs/zfs/arc.c 17

1277 atomi c_add_64(&arc_si ze, size);

1278 return (zio_data_buf_alloc(size));

1279 }

1281 void

1282 arc_data_buf_free(void *buf, uint64_t size)

1283 {

1284 zi o_dat a_buf _free(buf, size);

1285 ASSERT(arc size >= si ze)

1286 at om c_add_64(&arc_si ze, -size);

1287 }

1289 arc_buf _t *

1290 arc_buf_all oc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1291 {

1292 arc_buf _hdr _t *hdr;

1293 arc_buf _t *buf;

1295 ASSERT3U(si ze, >, 0);

1296 hdr = kmem cache_al | oc(hdr cache, KM PUSHPAGE) ;
1297 ASSERT(BUF_EMPTY(hdr)) ;

1298 hdr - >b_si ze = si ze;

1299 hdr->b_type = type;

1300 hdr->b_spa = spa_l oad_gui d(spa) ;

1301 hdr->b_state = arc _anon;

1302 hdr—>b arc_access = 0;

1303 buf kmem cache_al | oc(buf cache, KM PUSHPAGE) ;
1304 buf - >b_hdr hdr ;

1305 buf->b_data = NULL;

1306 buf - >b_efunc = NULL;

1307 buf->b_private = NULL;

1308 buf - >b_next = NULL;

1309 hdr - >b_buf = buf;

1310 arc_get _dat a_buf (buf);

1311 hdr - >b_dat acnt = 1;

1312 hdr->b_flags = 0;

1313 ASSERT(refcount _is_zero(&hdr->b_refcnt));

1314 (void) refcount_add(&hdr->b_refcnt, tag);

1316 return (buf);

1317 }

1319 static char *arc_onl oan_tag = "onl oan";

1321 /*

1322 * Loan out an anonynous arc buffer. Loaned buffers are not counted as in
1323 * flight data by arc_tenpreserve_space() until they are "returned". Loaned
1324 * buffers nust be returned to the arc before they can be used by the DMJ or
1325 * freed.

1326 */

1327 arc_buf_t *

1328 arc_l oan_buf (spa_t *spa, int size)

1329 {

1330 arc_buf _t *buf;

1332 buf = arc_buf_all oc(spa, size, arc_onloan_tag, ARC BUFC DATA);
1334 atomi c_add_64(&arc_| oaned_bytes, size);

1335 return (buf);

1336 }

1338 /*

1339 * Return a loaned arc buffer to the arc.

1340 */

1341 void

1342 arc_return_buf (arc_buf _t *buf, void *tag)

new usr/src/uts/comon/fs/zfs/arc.c

1343 {

1344 arc_buf _hdr _t *hdr = buf->b_hdr;

1346 ASSERT(buf ->b_data != NULL);

1347 (void) refcount_add(&hdr->b_refcnt, tag);

1348 (voi d) refcount_renove(&hdr->b_ref cnt, arc_onl oan_t ag) ;
1350 atomi c_add_64(&arc_| oaned_bytes, -hdr->b_size);

1351 }

1353 /* Detach an arc_buf froma dbuf (tag) */

1354 voi d

1355 arc_| oan_i nuse_buf (arc_buf _t *buf, void *tag)

1356 {

1357 arc_buf _hdr _t *hdr;

1359 ASSERT(buf - >b data 1= NULL);

1360 hdr = buf->b_hdr;

1361 (voi d) r ef count _add(&hdr >b_refcnt, arc_onl oan_tag);
1362 (void) refcount_renove(&hdr->b_refcnt, tag);

1363 buf - >b_efunc = NULL;

1364 buf->b_private = NULL;

1366 at om c_add_64(&rc_| oaned_byt es, hdr->b_si ze);

1367 }

1369 static arc_buf _t *

1370 arc_buf_cl one(arc_buf _t *from

1371 {

1372 arc_buf _t *buf;

1373 arc_buf _hdr _t *hdr = from >b_hdr;

1374 uint64_t size = hdr->b_si ze;

1376 ASSERT(hdr->b_state != arc_anon);

1378 buf = kmem cache_al | oc(buf _cache, KM PUSHPAGE);

1379 buf - >b hdr = hdr;

1380 buf - >b_data = NULL;

1381 buf - >b_efunc = NULL;

1382 buf->b_private = NULL;

1383 buf - >b_next = hdr->b_buf;

1384 hdr - >b_buf = buf;

1385 ar c_get _dat a_buf (buf);

1386 bcopy(from >b_data, buf->b_data, size);

1388 /*

1389 * This buffer already exists in the arc so create a duplicate
1390 * copy for the caller. |If the buffer is associated with user data
1391 * then track the size and nunber of duplicates. These stats will be
1392 * updated as duplicate buffers are created and destroyed.
1393 */

1394 f (hdr->b_type == ARC BUFC_DATA) {

1395 ARCSTAT_BUMP(ar cstat _dupl i cate_buffers);

1396 ARCSTAT_I NCR(ar cst at _dupl i cat e_buf fers_si ze, size);
1397 }

1398 hdr - >b_dat acnt += 1;

1399 return (buf);

1400 }

1402 void

1403 arc_buf_add_ref (arc_buf _t *buf, void* tag)

1404 {

1405 arc_buf _hdr_t *hdr;

1406 kmut ex_t *hash_| ock;

1408 /*

new usr/src/uts/comon/fs/zfs/arc.c 19 new usr/src/uts/comon/fs/zfs/arc.c
1409 * Check to see if this buffer is evicted. Callers 1475 arc_buf _data_free(buf, zio_buf_free);
1410 * nust verify b_data !'= NULL to know if the add_ref 1476 arc_space_return(size, ARC _SPACE_DATA);
1411 * was successful. 1477 } else {
1412 */ 1478 ASSERT(type == ARC_BUFC_DATA);
1413 nmut ex_ent er (&buf - >b_evi ct _| ock) ; 1479 arc_buf _data_free(buf, zio_i dat a_buf _free);
1414 if (buf->b_data == NULL) { 1480 ARCSTAT_| NCR(ar cst at _ data size, -size);
1415 mut ex_exi t (&uf->b_evi ct _| ock); 1481 atomi c_add_64(&ar c_si ze, - si ze)
1416 return; 1482 }
1417 } 1483 }
1418 hash_l ock = HDR_LOCK(buf - >b_hdr); 1484 1f (list_link_active(&buf->b_hdr->b_arc_node)) {
1419 mut ex_ent er (hash_l ock) ; 1485 uint64_t *cnt = &state->arcs_|size[type];
1420 hdr = buf->b_hdr;
1421 ASSERT3P(hash_| ock, ==, HDR_LOCK(hdr)); 1487 ASSERT(r ef count _i s_zer o(&uf - >b_hdr->b_refcnt));
1422 mut ex_exi t (&buf - >b_evi ct _| ock); 1488 ASSERT(state != arc_anon);
1424 ASSERT(hdr->b_state == arc_nru || hdr->b_state == arc_nfu); 1490 ASSERT3U(*cnt, >=, size);
1425 add_r ef erence(hdr, hash_l ock, tag); 1491 atomi c_add_64(cnt, -size);
1426 DTRACE_PROBE1(arc__hit, arc_ buf hdr_t *, hdr); 1492 }
1427 arc_access(hdr, hash_l| ock) 1493 ASSERT3U(st at e- >arcs_si ze, >=, size);
1428 mut ex_exit(hash_| ock); 1494 at om c_add_64(&st at e- >arcs_si ze, -size);
1429 ARCSTAT_BUMP(ar cst at _ hi ts); 1495 buf->b_data = NULL;
1430 ARCSTAT_CONDSTAT(! (hdr->b_f| ags & ARC _PREFETCH),
1431 demand, prefetch, hdr->b_type != ARC BUFC_ NETADATA 1497 /*
1432 dat a, et adat a, hlts) 1498 * |f we're destroying a duplicate buffer make sure
1433 } 1499 */that the appropriate statistics are updated.
1500 *
1435 / * 1501 f (buf->b_hdr->b_datacnt > 1 &&
1436 * Free the arc data buffer. If it is an l2arc wite in progress, 1502 buf ->b_hdr->b_type == ARC_BUFC_DATA) {
1437 * the buffer is placed on |2arc_free_on_wite to be freed later. 1503 ARCSTAT BUNPDO/\N(arcstat dupl icate_buffers);
1438 */ 1504 ARCSTAT_I NCR(ar cst at _dupli cate_buffers_si ze, -size);
1439 static void 1505 }
1440 arc_buf_data_free(arc_buf _t *buf, void (*free_func)(void *, size_t)) 1506 ASSERT(buf - >b_hdr - >b_dat acnt > 0);
1441 { 1507 buf->b_hdr->b_datacnt -= 1;
1442 arc_buf _hdr _t *hdr = buf->b_hdr; 1508 }
1444 if (HDR_L2_WRI TI NG hdr)) { 1510 /* only renpve the buf if requested */
1445 | 2arc_data_free_t *df; 1511 if (lall)
1446 df = kmem al | oc(sizeof (l2arc_data_free_t), KM SLEEP); 1512 return;
1447 df - >l 2df _data = buf->b_dat a;
1448 df - >l 2df _si ze = hdr->b_si ze; 1514 /* renove the buf fromthe hdr list */
1449 df - >l 2df _func = free_func; 1515 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = & *bufp)->b_next)
1450 mutex_enter (& 2arc_free_on_wite_ntx); 1516 conti nue;
1451 list_insert_head(l2arc_free_on_wite, df); 1517 *puf p = buf->b_next;
1452 nmutex_exit (& 2arc_free_on_ wite_ntx); 1518 buf - >b_next = NULL;
1453 ARCSTAT_BUMP(arcstat_|2 free_on_wi te);
1454 } else { 1520 ASSERT(buf - >b_efunc == NULL);
1455 free_func(buf->b_data, hdr->b_size);
1456 } 1522 /* clean up the buf */
1457 } 1523 buf ->b_hdr = NULL;
1524 kmem cache_f ree(buf _cache, buf);
1459 static void 1525 }
1460 arc_buf_destroy(arc_buf _t *buf, boolean_t recycle, boolean_t all)
1461 { 1527 static void
1462 arc_buf _t **buf p; 1528 ?r c_hdr _destroy(arc_buf_hdr_t *hdr)
1529
1464 /* free up data associated with the buf */ 1530 ASSERT(ref count _i s_zero(&hdr->b_refcnt));
1465 if (buf->b_data) { 1531 ASSERT3P(hdr->b_state, ==, arc_anon);
1466 arc_state_t *state = buf->b_hdr->b_state; 1532 ASSERT(! HDR 1O I'N PROGRESS(hdr));
1467 uint64_t size = buf->b_hdr->b_size; 1533 | 2arc_buf _hdr_t *T2hdr = hdr—>b7| 2hdr;
1468 arc_buf_contents_t type = buf->b_hdr->b_type;
1535 if (12hdr = NULL) {
1470 arc_cksum veri fy(buf); 1536 bool ean_t buflist_held = MJTEX_HELD(& 2arc_buflist_ntx);
1471 ar c_buf _unwat ch(buf); 1537 /*
1538 * To prevent arc_free() and | 2arc_evict() from
1473 if ('recycle) { 1539 * attenpting to free the same buffer at the same tinme,
1474 if (type == ARC BUFC _METADATA) { 1540 * a FREE_IN_PROGRESS flag is given to arc_free() to

new usr/src/uts/comon/fs/zfs/arc.c 21 new usr/src/uts/comon/fs/zfs/arc.c
1541 * give it priority. l2arc_evict() can't destroy this
1542 * header while we are waiting on |2arc_buflist_ntx. 1608 ASSERT(buf - >b_efunc == NULL);
1543 * 1609 ASSERT(buf ->b_data ! = NULL)
1544 * The hdr nay be renpved from | 2ad_buflist before we
1545 * grab | 2arc_buflist_ntx, so b_l2hdr is rechecked. 1611 if (hashed) {
1546 */ 1612 kmut ex_t *hash_| ock = HDR_LOCK(hdr) ;
1547 if ('buflist_held) {
1548 nut ex_enter (& 2arc_buflist_ntx); 1614 nmut ex _enter (hash_| ock);
1549 | 2hdr = hdr->b_I 2hdr; 1615 hdr ="buf->b_hdr;
1550 } 1616 ASSERT3P(hash_| ock, ==, HDR_LOCK(hdr));
1552 if (12hdr !'= NULL) { 1618 (void) renove_reference(hdr, hash_|lock, tag);
1553 I'i st _renove(l 2hdr->b_dev- >l 2ad_buflist, hdr); 1619 if (hdr->b_datacnt > 1)
1554 ARCSTAT_I NCR(arcstat _| 2_si ze, -hdr->b_size); 1620 ar c_buf _destroy(buf, FALSE, TRUE);
1555 kmem free(l 2hdr, sizeof (I 2ar c_buf _hdr_t)); 1621 } else {
1556 if (hdr->b_state == arc_|l 2c_only) 1622 ASSERT(buf == hdr->b buf)
1557 | 2arc_hdr _stat_renove(); 1623 ASSERT(buf - >b efunc == NULL)
1558 hdr->b_| 2hdr = NULL; 1624 hdr->b_flags [= ARC_BUF_AVAI LABLE;
1559 } 1625 }
1626 mut ex_exi t (hash_l ock)
1561 if (!buflist_held) 1627 } elseif (HDR.IOIN PRCXERESS(hdr)) {
1562 mut ex_exit (& 2arc_buflist_ntx); 1628 int destroy_hdr;
1563 } 1629 /*
1630 * W are in the niddle of an async wite. Don't destroy
1565 if (!BUF ENPTY(hdr)) { 1631 * this buffer unless the wite conpletes before we finish
1566 ASSERT(! HDR N SH { TABLE(hdr)); 1632 * decrenenting the reference count.
1567 buf _di scard_i dentity(hdr); 1633 */
1568 } 1634 mut ex_enter (&arc_eviction_ntx);
1569 whil e (hdr->b_buf) { 1635 (voi d) renove_reference(hdr, NULL tag);
1570 arc_buf _t *buf = hdr->b_buf; 1636 ASSERT(ref count _i s zero(&hdr—>b refcnt))
1637 destroy_hdr = ! HDR_| O | N_ PROGRESS(hdr);
1572 if (buf->b_efunc) { 1638 mut ex_exi t (&arc eviction_ntx);
1573 nut ex_ent er (&ar c_evi ction_ntx); 1639 if (destroy_hdr)
1574 mut ex_ent er (&buf ->b_evi ct _| ock) ; 1640 arc_hdr_destroy(hdr);
1575 ASSERT(buf ->b_hdr 1= NULL); 1641 } else {
1576 ar c_buf destroy(hdr >b_buf, FALSE, FALSE); 1642 if (remove_reference(hdr, NULL, tag) > 0)
1577 hdr->b_buf = buf->b_next; 1643 ar c_buf _destroy(buf, FALSE, TRUE);
1578 buf->b_hdr = &arc_evicti on_hdr; 1644 el se
1579 buf->b_next = arc_eviction_list; 1645 ar c_hdr_destroy(hdr);
1580 arc_eviction_list = buf; 1646 }
1581 mut ex_exi t (&buf - >b_evi ct _| ock) ; 1647 }
1582 nut ex_exi t (&arc_eviction_ntx);
1583 } else { 1649 bool ean_t
1584 ar c_buf _destroy(hdr->b_buf, FALSE, TRUE); 1650 arc_buf_renove_ref(arc_buf_t *buf, void* tag)
1585 } 1651 {
1586 } 1652 arc_buf _hdr _t *hdr = buf->b_hdr;
1587 if (hdr->b_freeze_cksum!= NULL) { 1653 knutex_t *hash_| ock = HDR L@K(hdr)
1588 kmem free(hdr->b_freeze_cksum sizeof (zio_cksumt)); 1654 bool ean_t no_cal | back = (buf->b_efunc == NULL);
1589 hdr->b_freeze_cksum = NULL;
1590 } 1656 if (hdr->b_state == arc_anon) {
1591 if (hdr->b_thawed) { 1657 ASSERT(hdr - >b_dat acnt == 1);
1592 kmem free(hdr->b_t hawed, 1); 1658 arc_buf _free(buf, tag);
1593 hdr->b_t hawed = NULL; 1659 return (no_call back);
1594 } 1660 }
1596 ASSERT(!list_link_active(&hdr->b_arc_node)); 1662 mut ex ent er(hash I ock) ;
1597 ASSERT3P(hdr->b_hash_next, ==, NULL); 1663 hdr = buf->b r;
1598 ASSERT3P(hdr - >b_acb, ==, NULL); 1664 ASSERT3P(hash_| ock, ==, HDR_LOCK(hdr));
1599 kmem cache_free(hdr _cache, hdr); 1665 ASSERT(hdr->b_state != arc_anon);
1600 } 1666 ASSERT(buf->b_data != NULL);
1602 void 1668 (void) renove_reference(hdr, hash_|l ock, tag);
1603 arc_buf_free(arc_buf_t *buf, void *tag) 1669 if (hdr->b_datacnt > 1)
1604 { 1670 if (no_call back)
1605 arc_buf _hdr_t *hdr = buf->b_hdr; 1671 arc_buf _destroy(buf, FALSE, TRUE);
1606 i nt hashed = hdr- >b state | = arc_anon; 1672 } else if (no_callback) {

new usr/src/uts/comon/fs/zfs/arc.c 23 new usr/src/uts/comon/fs/zfs/arc.c 24
1673 ASSERT(hdr - >b_buf == buf && buf->b_next == NULL); 1739 *
1674 ASSERT(buf ->b_ef unc == NULL); 1740 * This function makes a "best effort". It skips over any buffers
1675 hdr->b_flags [= ARC BUF_AVAI LABLE 1741 * it can’t get a hash_lock on, and so nay not catch all candi dates.
1676 } 1742 * 1t may also return without evicting as nuch space as requested.
1677 ASSERT(no_cal | back || hdr->b_datacnt > 1 || 1743 *
1678 refcount _is_zero(&hdr->b_refcnt)); 1744 static void *
1679 mut ex_exi t (hash_| ock) ; 1745 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1680 return (no_call back); 1746 arc_buf _contents_t type)
1681 } 1747 {
1748 arc_state_t *evicted_state;
1683 int 1749 uint64_t bytes_evicted = 0, skipped = 0, m ssed = O;
1684 arc_buf_size(arc_buf_t *buf) 1750 arc_buf _hdr_t *ab, *ab_prev = NULL;
1685 { 1751 list_t *list = &tate->arcs_list[type];
1686 return (buf->b_hdr->b_size); 1752 kmut ex_t *hash_| ock;
1687 } 1753 bool ean_t have_l ock;
1754 void *stolen = NULL;
1689 /*
1690 * Called fromthe DMJ to deternmine if the current buffer should be 1756 ASSERT(state == arc_nru || state == arc_nfu);
1691 * evicted. In order to ensure proper |ocking, the eviction nmust be initiated
1692 * fromthe DMJ. Return true if the buffer is associated with user data and 1758 evicted_state = (state == arc_nru) ? arc_nru_ghost : arc_nfu_ghost;
1693 * duplicate buffers still exist.
1694 */ 1760 mut ex_enter (&state->arcs_ntx);
1695 bool ean_t 1761 mut ex_ent er (&evi ct ed_state->arcs_ntx);
1696 arc_buf_evi cti on_needed(arc_buf _t *buf)
1697 { 1763 r (ab = list_tail(list); ab; ab = ab_prev) {
1698 arc_buf _hdr _t *hdr; 1764 ab_prev = list_pr ev(l i st, ab);
1699 bool ean_t evict_needed = B_FALSE; 1765 /* prefetch buffers have a m ni mum lifespan */
1766 if (HDR_IO_I N PROGRESS(ab) ||
1701 if (zfs_disable_dup_eviction) 1767 (spa &% ab->b_spa != spa) ||
1702 return (B_FALSE); 1768 (ab->b_flags & (ARC_PREFETCH ARC_| NDI RECT) &&
1769 ddi _get Ibolt() - ab->b_arc_access <
1704 mut ex_ent er (&buf - >b_evi ct _I| ock); 1770 arc_mn_prefetch_lifespan)) {
1705 hdr = buf->b_hdr; 1771 ski pped++;
1706 if (hdr == NULL) { 1772 conti nue;
1707 /* 1773 }
1708 * W are in arc_do_user_evicts(); let that function 1774 /* "l ookahead" for better eviction candidate */
1709 * performthe eviction. 1775 if (recycle & ab->b_size != bytes &&
1710 */ 1776 ab_prev && ab_prev->b_size == bytes)
1711 ASSERT(buf - >b_data == NULL); 1777 conti nue;
1712 mut ex_exi t (&uf - >b_evi ct _| ock); 1778 hash_| ock = HDR LOCK(ab) ;
1713 return (B_FALSE); 1779 have_| ock = MJUTEX_HELD(hash _l ock);
1714 } else |f (buf >p_data == NULL) { 1780 if (have_lock || nutex tryenter(hash lock)) {
1715 1781 ASSERTO(r ef count _count (&ab->b_refcnt));
1716 * W have already been added to the arc eviction list; 1782 ASSERT(ab->b_dat acnt > 0);
1717 * recomrend eviction. 1783 while (ab->b_buf) {
1718 */ 1784 arc_buf _t *buf = ab->b_buf;
1719 ASSERT3P(hdr, ==, &arc_eviction_hdr); 1785 if (!'nutex_tryenter (&buf- >b evict_lock)) {
1720 mut ex eX|t(&buf >b_evict _| ock); 1786 m ssed += 1;
1721 return (B_TRUE); 1787 br eak;
1722 } 1788 }
1789 if (buf->b_data) {
1724 if (hdr->b_datacnt > 1 & hdr->b_type == ARC_BUFC_DATA) 1790 byt es_evi cted += ab->b_si ze;
1725 evi ct _needed = B_TRUE; 1791 if (recycle &% ab->b_type == type &&
1792 ab->b_size == bytes &&
1727 mut ex_exi t (&uf->b_evict _| ock); 1793 I'HDR_L2_WRI TI N ab)) {
1728 return (evict_needed); 1794 stol en = buf->b_dat a;
1729 } 1795 recycl e = FALSE;
1796 }
1731 /* 1797 }
1732 * Evict buffers fromlist until we've renoved the specified nunber of 1798 i f (buf->b_efunc)
1733 * bytes. Move the renoved buffers to the approprl ate evict state. 1799 mut ex_ent er (&arc_evi ction_ntx);
1734 * |If the recycle flag is set, then attenpt to "recycle" a buffer: 1800 ar c_buf destroy(buf
1735 * - look for a buffer to evict that is ‘bytes’ |ong. 1801 “buf->b_data == stol en, FALSE);
1736 * - return the data block fromthis buffer rather than freeing it. 1802 ab->b_buf = buf->b_next;
1737 * This flag is used by callers that are trying to nake space for a 1803 buf ->b_hdr = &arc_evi ction hdr ;
1738 * new buffer in a full arc cache. 1804 buf->b_next = arc_eviction_ Ilst

new usr/src/uts/comon/fs/zfs/arc.c 25

1805
1806
1807
1808
1809
1810
1811
1812
1813

1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827

1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843

1845
1846

1848
1849
1850

1852
1853

1855
1856

1858
1859
1860
1861
1862
1863
1864
1865

1867
1868
1869
1870

arc_eviction_list = buf;
nut ex_exi t (&arc_evi ct| on _ntx);
mut ex_exi t (&uf->b_evi ct _| ock)
} else {
mut ex_exi t (&uf->b_evi ct _| ock);
ar c_buf _dest roy(buf,
buf ->b_data == stol en, TRUE);

}

if (ab->b_l 2hdr)
ARCSTAT_| NCR(arcstat _evi ct_| 2_cached,
ab->b_si ze);
} else {
if (l2arc_wite_eligible(ab->b_spa, ab)) {
ARCSTAT_|I NCR(arcstat _evict _|2_eligible,
ab->b_si ze);
} else {
ARCSTAT_| NCR(
arcstat_evict_l2_ineligible,
ab->b_si ze) ;

}

if (ab->b_datacnt == 0)
arc change state(evicted_state, ab, hash_|l ock);
ASSERT(HDR_| N_HASH TABLE(ab));
ab->b_flags |= ARC_| N HASH TABLE
ab->b_flags & ~ARC _BUF_AVAI LABLE;
DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);

}
if (!have_l ock)
mut ex_exi t (hash_| ock);
if (bytes >= 0 && bytes_evicted >= bytes)
br eak;
} else {
) m ssed += 1;

}

mut ex_exit (&evi cted_state->arcs_ntx);
mut ex_exi t (&st ate->arcs_nt x);

if (bytes_evicted < bytes)
dprintf("only evicted %1d bytes from %",
(longlong_t)bytes_evicted, state);

if (skipped)
ARCSTAT_I NCR(ar cst at _evi ct _ski p, skipped);

if (mssed)
ARCSTAT_I NCR(ar cst at _nut ex_m ss, mi ssed);

/*

* We have just evicted sone data into the ghost state, make
* sure we al so adjust the ghost state size if necessary.
*/
f

(arc_no_grow &&
arc_nr u_ghost - >arcs size + arc_nfu_ghost->arcs_size > arc_c) {
“int64_t nru_over = arc_anon->arcs_size + arc_nru->arcs_size +
arc_nr u_ghost - ~>arcs, _size - arc_c;

if (nmu_over > 0 && arc_nru_ghost->arcs_| size[type] > 0) {
int64_t todelete =
M N(ar c_nru_ghost->arcs_| si ze[type], nru_over);
arc_evi ct _ghost (arc_nru_ghost, NULL, todelete);

new usr/src/uts/comon/fs/zfs/arc.c 26

1871
1872
1873
1874
1875
1876
1877

1879
1880

1882
1883
1884
1885
1886
1887

1889
1890
1891
1892
1893
1894

1896
1897
1898
1899
1900
1901
1902

1904
1905
1906

1908
1909
1910
1911
1912
1913
1914
1915
1916

1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929

1931
1932
1933
1934
1935
1936

}
| *

*

} else if (arc_nfu_ghost->arcs_|size[type] > 0) {
int64_t todel ete = M N(arc_nfu_ghost->arcs_|size[type],
ar c_nr u_ghost - >arcs_si ze +
arc_nfu_ghost ->arcs_si ze - arc_c);
arc_evi ct_ghost (arc_nfu_ghost, NULL, todel ete);

}

return (stolen);

Rermove buffers fromlist until we’ve renpved the specified nunber of
* bytes.
*
/

Destroy the buffers that are renoved.

static void
arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1888 {

top:

arc_buf _hdr_t *ab, *ab_prey;

arc_buf _hdr_t marker ={ 0},

list_t *list = &state->arcs Ilst[ARC BUFC_DATA] ;
knutex_t *hash_| ock;

uint64_t bytes_del eted = 0;

uint64_t bufs_ski pped = 0;

ASSERT(GHOST_STATE(state));

mut ex enter(&state >arcs_ntx) ;

for (ab = list_tail(list); ab; ab = ab_prev) {
ab_prev = Iist prev(llst ab) ;
if (spa & ab->b_spa != spa)
cont i nue;

/* ignore markers */
if (ab->b_spa == 0)
cont i nue;

hash_| ock = HDR _LOCK(ab);
/* caller nmay be trying to nmodify this buffer, skip it */
if (MJUTEX_HELD(hash_l ock))
conti nue;
if (mutex_tryenter(hash_|l ock)) {
ASSERT(! HDR_I O I N PROGRESS(ab));
ASSERT(ab->b_buf == NULL);
ARCSTAT_BUMP(ar cst at _del et ed) ;
byt es_del eted += ab->b_si ze;

if (ab->b_I2hdr !'= NULL) {
/‘k

* This buffer is cached on the 2nd Level ARC
* don’'t destroy the header.
*
/
arc_change_state(arc_|l 2c_only, ab, hash_l ock);
mut ex_exi t (hash_| ock);
} else {
arc_change_st at e(arc_anon, ab, hash_| ock);
mut ex_exi t (hash_l ock);
) arc_hdr_destroy(ab);

DTRACE PROBEl(arc del ete, arc_buf_hdr_t *, ab);
if (bytes >= 0 &% bytes_| del eted >= byt es)
br eak;
} else if (bytes < 0) {
/*

* Insert a list marker and then wait for the

new usr/src/uts/comon/fs/zfs/arc.c 27

1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950

1952
1953
1954
1955
1956

1958
1959
1960
1961

1963
1964
1965
1966 }

* hash lock to become available. Once its
* available, restart fromwhere we left off.
*
/

list_insert_after(list, ab, &marker);

nut ex_exi t (&state->arcs_ntx);

mut ex_ent er (hash_| ock) ;

nut ex_exi t (hash_I ock) ;

nut ex_ent er (&state->arcs_ntx);

ab_prev = list_prev(list, &marker);

l'ist_remove(list, &marker);

} else
buf s_ski pped += 1;

}
mut ex_exi t (&state->arcs_ntx);

if (list == &state->arcs_|ist[ARC_ BUFC DATA] &&
(bytes < 0 || bytes_deleted < bytes)) {
ist = &state->arcs_|ist[ARC_BUFC_METADATA] ;
goto top,
}

if (bufs_skipped) {
ARCSTAT_| NCR(ar cst at _nut ex_m ss, bufs_ski pped);
ASSERT(bytes >= 0);

}

if (bytes_del eted < bytes)
dprintf("only deleted %1d bytes from %",
(longlong_t)bytes_del eted, state);

1968 static void
1969 arc_adj ust (void)

1970 {
1971

1973
1974
1975

1977
1978
1979

1981
1982
1983
1984
1985

1987
1988
1989
1990
1991

1993
1994
1995

1997

1999
2000
2001
2002

int64_t adjustment, delta;

*

* Adj ust MRU si ze
*
/

adj ustment = M N((int64_t)(arc_size - arc_c),
(int64_t)(arc_anon->arcs_size + arc_nru->arcs_size + arc_neta_used -
arc_p));

if (adjustment > 0 & arc_nru->arcs_| si ze[ARC_ BUFC_DATA] > 0) {
delta = M N(arc_nru->arcs _I'si ze[ARC_BUFC DATA], " adj ust nent) ;
(void) arc_evict(arc_nru, NULL, delta, FALSE, ARC_BUFC_DATA);
adj ustmrent -= del ta;

}

if (adjustment > 0 && arc_nru->arcs_| si ze[ARC_BUFC_METADATA] > 0)
delta = M N(arc_ nT u->arcs_| si ze[ARC_BUFC_METADATA], ~adj ust ment) ;
(void) arc_evict(arc_nru, NULL, delta, FALSE,
ARC_BUFC_METADATA)
}

/*
* Adj ust MFU size
*/

adj ustment = arc_size - arc_c;

if (adjustment > 0 && arc_nfu->arcs_| si ze[ARC_ BUFC_DATA] > 0) {
delta = M N(adj ustnment, arc_nfu->arcs_| si ze[ARC_BUFC DATA]) ;
(void) arc_evict(arc_nfu, NULL, delta, FALSE, ARC_BUFC_DATA)
adj ustment -= delta;

new usr/src/uts/comon/fs/zfs/arc.c

2003

2005
2006
2007
2008
2009
2010

2012
2013
2014

2016

2018
2019
2020
2021

2023
2024

2026
2027
2028
2029
2030

2032

}

if (adjustment > 0 && arc_nfu->arcs_| si ze[ARC_BUFC_METADATA] > 0) {
int64_t delta = M N(adj ustnment,
arc_nfu->arcs_| si ze[ARC | BUFC > METADATA]) ;
(voi d) arc_evict(arc_nfu, NULL, delta, FALSE
ARC_BUFC_NETADATA) ;

}
/*
* Adjust ghost lists
*/
adj ustment = arc_nru->arcs_size + arc_nru_ghost->arcs_size - arc_c;
if (adjustment > 0 & arc_nru_ghost->arcs_size > 0) {
delta = M N(arc_nru_ghost->arcs_si ze, adjustnent);
arc_evi ct _ghost (arc_nru_ghost, NULL, delta);

}

adj ustment =))
arc_nru_ghost->arcs_size + arc_nfu_ghost->arcs_size - arc_c;

if (adjustment > 0 && arc_nfu_ghost->arcs_size > 0)

{
delta = M N(arc_nfu_ghost->arcs_si ze, adj ustment) ;
arc_evi ct_ghost (arc_nfu_ghost, NULL, delta);

}

static void

2033 arc_do_user _evi ct s(void)

2034 {

2035 mut ex_ent er (&ar c_evi ction_nt x

2036 while (arc_eviction list T= NULL) {

2037 arc_buf _t *buf = arc_eviction_list;

2038 arc_eviction_li st = buf->b_next;

2039 nmut ex_ent er (&uf - >b_evi ct _I ock) ;

2040 buf ->b_hdr = NULL;

2041 mut ex_exi t (&buf - >b_evi ct _| ock);

2042 mut ex_exi t (&arc_eviction_ntx);

2044 if (buf->b_efunc !'= NULL)

2045 VERI FY(buf - >b_ef unc(buf) == 0);

2047 buf - >b_efunc = NULL;

2048 buf->b_private = NULL;

2049 kmem cache_f ree(buf _cache, buf);

2050 mut ex_enter (&arc_evi ction_ntx);

2051

2052 mut ex_exi t (&arc_evi ction_ntx);

2053 }

2055 /*

2056 * Flush all *evictable* data fromthe cache for the given spa.
2057 * NOTE: this will not touch "active" (i.e. referenced) data.
2058 */

2059 void

2060 arc_flush(spa_t *spa)

2061 {

2062 uint64_t guid = 0;

2064 if (spa)

2065 guid = spa_| oad_gui d(spa);

2067 while (list_head(&arc_nru->arcs_list[ARC BUFC _DATA])) {
2068 (void) arc_evict(arc_nru, guid, -1, FALSE, ARC BUFC_DATA);

new usr/src/uts/comon/fs/zfs/arc.c 29 new usr/src/uts/comon/fs/zfs/arc.c 30
2069 if (spa)
2070 br eak; 2136 #ifdef _KERNEL
2071 }
2072 while (list_head(&arc_nru->arcs_|ist[ARC_BUFC_METADATA])) { 2138 if (needfree)
2073 (void) arc_evict(arc_nru, guid, -1, FALSE, ARC BUFC METADATA); 2139 return (1);
2074 if (spa)
2075 br eak; 2141 I*
2076 } 2142 * take 'desfree’ extra pages, so we reclai msooner, rather than |ater
2077 while (list_head(&arc_nfu->arcs_|ist[ARC BUFC DATA])) { 2143 */
2078 (void) arc_evict(arc_nfu, guid, -1, FALSE, ARC BUFC DATA); 2144 extra = desfree;
2079 if (spa)
2080 br eak; 2146 /*
2081 } 2147 * check that we’'re out of range of the pageout scanner. It starts to
2082 while (list_head(&arc_nfu->arcs_|ist[ARC_BUFC_METADATA])) { 2148 * schedul e paging if freememis |ess than |otsfree and needfree.
2083 (void) arc_evict(arc_nfu, guid, -1, FALSE, ARC BUFC METADATA); 2149 * |otsfree is the high-water mark for pageout, and needfree is the
2084 if (spa) 2150 * nunber of needed free pages. W add extra pages here to make sure
2085 br eak; 2151 * the scanner doesn't start up while we're freeing nenory.
2086 } 2152 */
2153 if (freemem< |lotsfree + needfree + extra)
2088 arc_evi ct _ghost (arc_nru_ghost, guid, -1); 2154 return (1);
2089 arc_evi ct _ghost (arc_nfu_ghost, guid, -1);
2156 /*
2091 mut ex_enter (&arc_recl ai mthr_| ock); 2157 * check to nake sure that swapfs has enough space so that anon
2092 arc_do_user_evicts(); 2158 * reservations can still succeed. anon_resvnen() checks that the
2093 mut ex_exi t (&rc_recl ai m thr _lock); 2159 * availrmemis greater than swapfs_minfree, and the nunber of reserved
2094 ASSERT(spa || arc_eviction_Tist == NULL); 2160 * swap pages. W also add a bit of extra her e just to prevent
2095 } 2161 * circunstances fromgetting really dire.
2162 */
2097 void 2163 if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2098 arc_shrink(void) 2164 return (1);
2099 {
2100 if (arc_c > arc_c_mn) { 2166 #if defined(__i 386)
2101 uint64_t to_free; 2167 /*
2168 * |f we're on an i386 platform it’s possible that we'll exhaust the
2103 #ifdef _KERNEL 2169 * kernel heap space before we ever run out of avail abl e physical
2104 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 2170 * menory. Mst checks of the size of the heap_area conpare against
2105 #el se 2171 * tune.t_m narnem which is the mninmmavailable real nenory that we
2106 to_free = arc_c >> arc_shrink_shift; 2172 * can have in the system However, this is generally fixed at 25 pages
2107 #endif 2173 * which is so lowthat it’'s useless. |In this conparison, we seek to
2108 if (arc_c > arc_c_mn + to_free) 2174 * calculate the total heap-size, and reclaimif nore than 3/4ths of the
2109 atomi c_add_64(&arc_c, -to_free); 2175 * heap is allocated. (O, in the calculation, if less than 1/4th is
2110 el se 2176 * free)
2111 arc_c = arc_c_min; 2177 */
2178 if (vmemsize(heap_arena, VMEM FREE) <
2113 atom c_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 2179 (vmem si ze(heap_arena, VMEM FREE | VMEM ALLCC) >> 2))
2114 if (arc_c > arc_si ze) 2180 return (1);
2115 arc_c = MAX(arc_size, arc_c_mn); 2181 #endi f
2116 if (arc_| p>arc c)
2117 arc_p = (arc_c >> 1); 2183 /*
2118 ASSERT(arc_c >= arc_c_mnin); 2184 * |f zio data pages are being allocated out of a separate heap segnent,
2119 ASSERT((int64_t)arc_p >= 0); 2185 * then enforce that the size of available vmnemfor this arena renains
2120 } 2186 * above about 1/16th free.
2187 *
2122 if (arc_size > arc_c) 2188 * Note: The 1/16th arena free requirenent was put in place
2123 arc_adjust(); 2189 * to aggressively evict nenory fromthe arc in order to avoid
2124 } 2190 * nenory fragnentation issues.
2191 */
2126 /* 2192 if (zio_arena != NULL &&
2127 * Determine if the systemis under nenory pressure and is asking 2193 vem si ze(zi o_arena, VMEM FREE) <
2128 * to reclaimnenory. A return value of 1 indicates that the system 2194 (vem si ze(zi o_arena, VMEM ALLOC) >> 4))
2129 * is under nenory pressure and that the arc shoul d adjust accordingly. 2195 return (1);
2130 */ 2196 #el se
2131 static int 2197 if (spa_get_random(100) == 0)
2132 arc_recl ai m_needed(voi d) 2198 return (1);
2133 { 2199 #endi f
2134 uint64_t extra; 2200 return (0);

new usr/src/uts/comon/fs/zfs/arc.c

2201 }

2203 static void

2204 arc_knmemreap_now(arc_reclaimstrategy_t strat)

2205 {

2206 size_t i;

2207 kmem cache_t *prev_cache = NULL;

2208 kmem_cache_t *prev_data_cache = NULL;

2209 extern kmem cache_t *zi o_buf _cache[];

2210 extern kmem cache_t *zi 0_dat a_buf cache[]

2212 #ifdef _KERNEL

2213 if (arc_neta_used >= arc_neta_limt) {

2214 /*

2215 * W& are exceeding our neta-data cache limt.

2216 */Purge some DNLC entries to rel ease holds on neta-data.
2217 *

2218 dnl c_reduce_cache((void *)(uintptr_t)arc_reduce_dnl c_percent);
2219 1

2220 #if defined(__i 386)

2221 /*

2222 * Recl ai m unused nenory fromall kmem caches.

2223 */

2224 kmem reap();

2225 #endif

2226 #endif

2228 /*

2229 * An aggressive reclamation will shrink the cache size as well as
2230 * reap free buffers fromthe arc kmem caches.

2231 */

2232 f (strat == ARC_RECLAI M AGGR)

2233 arc_shrink();

2235 for (i = 0; i < SPA MAXBLOCKSI ZE >> SPA M NBLOCKSHI FT; i ++) {
2236 if (zio_buf cache[l] 1= prev_cache)

2237 prev_cache = zi o_buf_cache[i];

2238 kmem_cache_r eap_now(zi o_buf _cache[il);

2239 }

2240 1f (zio_data_buf_cache[i] != prev_data_cache) {
2241 prev_data_cache = zi o_data_buf_cache[i];
2242 kmem cache_reap_now zi o_dat a_buf _cache[i]);
2243 }

2244 1

2245 kmem cache_r eap_now buf _cache);

2246 kmem cache_r eap_now(hdr _cache);

2248 *

2249 * Ask the vnem areana to reclai munused nenory fromits
2250 * quantum caches.

2251 */

2252 if (zio_arena != NULL && strat == ARC_RECLAI M _AGCR)

2253 vem qcache_reap(zi o_arena);

2254 }

2256 static void

2257 arc_recl ai m thread(void)

2258 {

2259 clock_t growtinme = 0O;

2260 arc_reclaimstrategy_t last_reclaim= ARC RECLAI M CONS;
2261 cal I b_cpr_t cpr;

2263 CALLB_CPR I NI T(&cpr, &arc_reclaimthr_lock, callb_generic_cpr, FTAG;
2265 mut ex_enter (&arc_recl ai mthr_| ock);

2266 while (arc_thread_exit == 0) {

new usr/src/uts/comon/fs/zfs/arc.c

2267 if (arc_reclai mneeded()) {

2269 if (arc_no_grow) {

2270 if (last_reclaim== ARC_RECLAI M CONS) {
2271 Tast _recl ai m = ARC_RECLAI M AGGR,
2272 } else {

2273 I ast _recl ai m = ARC_RECLAI M_CONS;
2274

2275 } else {

2276 arc_no_grow = TRUE;

2277 I ast _recl ai m = ARC_RECLAI M _AGGR;

2278 menbar _producer () ;

2279 }

2281 /* reset the growth delay for every reclaim?*/
2282 growinme = ddi _get_lbolt() + (arc_growretry * hz);
2284 ar c_kmem reap_now(| ast _reclaim;

2285 arc_warm = B TRUE

2287 } else if (arc_no_grow && ddi_get_lbolt() >= growtine) {
2288 arc_no_grow = FALSE;

2289 }

2291 arc_adjust();

2293 if (arc_eviction_list !'= NULL)

2294 arc_do_user_evicts();

2296 /* block until needed, or one second, whichever is shorter */
2297 CALLB_CPR_SAFE BEG N(&cpr);

2298 (void) cv tlmedvxmt(&arc recla|mthr _cv,

2299 &arc_reclaimthr_lock, (ddi_get_Tbolt() + hz));

2300 CALLB_CPR_SAFE_END(&cpr , sar c_reclaimthr_|ock);

2301 }

2303 arc_thread_exit = 0;

2304 cv_broadcast (&arc_reclaimthr_cv);

2305 CALLB_CPR_EXI T(&cpr) ; /* drops arc_reclaimthr_|lock */
2306 thread_exit();

2307 }

2309 /*

2310 * Adapt arc info given the nunber of bytes we are trying to add and
2311 * the state that we are conming from This function is only called
2312 * when we are addi ng new content to the cache.

2313 */

2314 static void

2316
2317
2318

2315 arc_adapt (i nt bytes,
{

2320
2321

2323
2324
2325
2326
2327
2328
2329
2330
2331
2332

arc_state_t *state)

int nult;
uint64_t arc_p_mn = (arc_c >> arc_p_nmin_shift);
if (state == arc_| 2c_only)

return;

ASSERT(bytes > 0);
/ *

* Adapt the target size of the MRU |list:

* - if we just hit in the MRU ghost list, then increase
* the target size of the MRU |ist.

* - if we just hit in the MFU ghost list, then increase
*

the target size of the MFU |ist by decreasing the

* target size of the MRU |ist.
*/
if (state == arc_nru_ghost) {

new usr/src/uts/comon/fs/zfs/arc.c 33

2333 mult = ((arc_nru_ghost->arcs_size >= arc_nfu_ghost->arcs_size) ?
2334 1 : (arc_nfu_ghost->arcs_size/arc_nru_ghost->arcs_size));
2335 mult = MN(mult, 10); /* avoid wild arc_p adjustment */
2337 arc_p = MN(arc_c - arc_p_min, arc_p + bytes * nult);
2338 } else if (state == arc_nfu_ghost) {

2339 uint64_t delta;

2341 mult = ((arc_nfu_ghost->arcs_size >= arc_nrtu_ghost->arcs_si ze) ?
2342 1 . (arc_nru_ghost ->arcs_si ze/ arc_nf u_ghost - >arcs_si ze)) ;
2343 mult = MN(nult, 10);

2345 deIta-MN(bytes* mlt, arc_p);

2346 arc_p = MAX(arc_p_min, arc_p - delta);

2347 }

2348 ASSERT((int64_t)arc_p >= 0);

2350 if (arc_reclaimneeded())

2351 cv_signal (&rc_reclaimthr_cv);

2352 return;

2353 }

2355 if (arc_no_grow)

2356 return;

2358 if (arc_c >= arc_c_max)

2359 return;

2361 *

2362 * |f we're within (2 * maxbl ocksize) bytes of the target

2363 * cache size, increnment the target cache size

2364 */

2365 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHI FT)) {

2366 atom c_add_64(&arc_c, (int64_t)bytes);

2367 if (arc_c > arc_c_nax)

2368 arc_c = arc_c_max;

2369 else if (state == arc anon)

2370 atom c_add_64(&arc_p, (int64_t)bytes);

2371 if (arc_p > arc_c)

2372 arc_p = arc_c;

2373 }

2374 ASSERT((int64_t)arc_p >= 0);

2375 }

2377 | *

2378 * Check if the cache has reached its limts and eviction is required
2379 * prior to insert.

2380 */

2381 static int

2382 arc_evict_needed(arc_buf_contents_t type)

2383 {

2384 if (type == ARC BUFC_METADATA && arc_neta_used >= arc_neta_linit)
2385 return (1);

2387 if (arc_reclai mneeded())

2388 return (1);

2390 return (arc_size > arc_c);

2391 }

2393 /*

2394 * The buffer, supplied as the first argument, needs a data bl ock.

2395 * So, if we are at cache max, determ ne which cache should be victimnm zed.
2396 * W have the followi ng cases:

2397 *

2398 * 1. Insert for MRU, p > sizeof(arc_anon + arc_nru) ->

new usr/src/uts/comon/fs/zfs/arc.c 34
2399 * In this situation if we're out of space, but the resident size of the MFU is
2400 * under the limit, victimze the MFU cache to satisfy this insertion request.
2401 *

2402 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_nru) ->

2403 * Here, we've used up all of the available space for the MRU, so we need to
2404 * evict fromour own cache instead. Evict fromthe set of resident MRU

2405 * entries.

2406 *

2407 * 3. Insert for MFU (¢ - p) > sizeof(arc_nfu) ->

2408 * c nminus p represents the MFU space in the cache, since p is the size of the
2409 * cache that is dedicated to the MRU. In this situation there's still space on
2410 * the MFU side, so the MRU side needs to be victimzed.

2411 *

2412 * 4. Insert for MFU (c - p) < sizeof(arc_nfu) ->

2413 * MFU s resident set is consum ng nore space than it has been allotted. In
2414 */this situation, we must victimze our own cache, the MFU, for this insertion.
2415 *

2416 static void

2417 arc_get _data_buf (arc_buf _t *buf)

2418 {

2419 arc_state_t *state = buf->b_hdr->b_state;

2420 ui nt 64_t size = buf->b_hdr->b_size;

2421 arc_buf _contents_t type = buf->b_hdr->b_type;

2423 arc_adapt (si ze, state);

2425 /*

2426 * W have not yet reached cache maxi mum si ze,

2427 * just allocate a new buffer.

2428 */

2429 if (larc_evict_needed(type)) {

2430 if (type == ARC BUFC METADATA)

2431 buf ->b_data = zi o_buf_all oc(size);

2432 arc_space_consune(si ze, ARC_SPACE_DATA);

2433 } else {

2434 ASSERT(type == ARC BUFC_DATA) ;

2435 buf ->b_data = zi o_data_buf_al i oc(size);

2436 ARCSTAT_I NCR(ar cst at _dat a_si ze, size);

2437 atom c_add_64(&arc_si ze, size);

2438 }

2439 goto out;

2440 }

2442 /*

2443 * |If we are prefetching fromthe nfu ghost list, this buffer

2444 * will end up on the nru list; so steal space fromthere.

2445 */

2446 if (state == arc_nfu_ghost)

2447 state = buf->b_hdr->b_flags & ARC PREFETCH ? arc_nru : arc_nfu;
2448 else if (state == arc_nru_ghost)

2449 state = arc_nru;

2451 if (state == arc_nru || state == arc_anon) {

2452 uint64_t nru_used = arc_anon->arcs_size + arc_nru->arcs_si ze;
2453 state = (arc_nfu->arcs_| size[type] >= size &&

2454 arc_p > nru_used) ? arc_nfu : arc_nru;

2455 } else {

2456 /* MFU cases */

2457 uint64_t nfu_space = arc_c - arc_p

2458 state = (arc_nru->arcs_|size[type] >= size &&

2459 nfu _space > arc_nfu->arcs_size) ? arc_nru : arc_nfu;

2460

2461 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2462 if (type == ARC BUFC . METADATA)

2463 buf ->b_data = zi o_buf_al | oc(si ze);

2464 arc_space_consune(si ze, ARC_SPACE_DATA) ;

new usr/src/uts/comon/fs/zfs/arc.c 35 new usr/src/uts/comon/fs/zfs/arc.c
2465 } else { 2531 if ((buf->b_flags & ARC PREFETCH) != 0) {
2466 ASSERT(type == ARC_BUFC_DATA); 2532 if (refcount count(&buf >b_refcnt) == 0)
2467 buf->b_data = zi o_data_buf_all oc(size); 2533 ASSERT(list_Iink actlve(&buf >b_arc_node));
2468 ARCSTAT_I NCR(ar cst at _dat a_si ze, si ze); 2534 } else {
2469 atom c_add_64(&arc_si ze, size); 2535 buf->b_fl ags & ~ARC_PREFETCH;
2470 } 2536 ARCSTAT_BUMP(ar cstat_nru_hits);
2471 ARCSTAT_BUMP(ar cst at _recycl e_m ss); 2537
2472 } 2538 buf->b_arc_access = now,
2473 ASSERT(buf ->b_data != NULL); 2539 return;
2474 out: 2540 }
2475 I*
2476 * Update the state size. Note that ghost states have a 2542 =
2477 * "ghost size" and so don't need to be updated. 2543 * This buffer has been "accessed" only once so far,
2478 */ 2544 * put it is still in the cache. Mwve it to the MFU
2479 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2545 * state.
2480 arc_buf _hdr_t *hdr = buf->b_hdr; 2546)
2547 if (now > buf->b_arc_access + ARC_M NTI ME) {
2482 at om c_add_64(&dr->b_st ate->arcs_si ze, size); 2548 /*
2483 if (list_link_active(&hdr->b_arc_node)) { 2549 * More than 125ms have passed since we
2484 ASSERT(refcount is_zero(&dr->b_refcnt)); 2550 * instantiated this buffer. Mve it to the
2485 atom c_add_64(&dr->b_st at e->arcs_| si ze[type] si ze); 2551 * nmost frequently used state.
2486 } 2552 */
2487 /* 2553 buf ->b_arc_access = now,
2488 * |f we are growing the cache, and we are addi ng anonynous 2554 DTRACE_PROBE1(new state__nfu, arc_buf_hdr_t *, buf);
2489 * data, and we have outgrown arc_p, update arc_p 2555 arc_change_state(arc_nfu, buf hash_| ock);
2490 */ 2556 }
2491 if (arc_size < arc_c && hdr->b_state == arc_anon && 2557 ARCSTAT_BUMP(ar cstat _nru_hits);
2492 arc_anon->arcs_si ze + arc_nru->arcs_size > arc_p) 2558 } else if (buf->b_state == arc_nru_ghost) {
2493 arc_p = MN(arc_c, arc_p + size); 2559 arc_state_t *new_st at e;
2494 } 2560 /*
2495 } 2561 * This buffer has been "accessed" recently, but
2562 * was evicted fromthe cache. Mve it to the
2497 | * 2563 * MFU state.
2498 * This routine is called whenever a buffer is accessed. 2564 */
2499 * NOTE: the hash lock is dropped in this function.
2500 */ 2566 if (buf->b_flags & ARC PREFETCH) {
2501 static void 2567 new_state = arc_nru;
2502 arc_access(arc_buf_hdr_t *buf, knutex_t *hash_| ock) 2568 if (refcount count(&buf >b_refcnt) > 0)
2503 { 2569 buf ->b_fl ags & ~ARC_PREFETCH,
2504 clock_t now, 2570 DTRACE_PROBE1(new state_ _nru, arc_buf_hdr_t *, buf);
2571 } else {
2506 ASSERT(MUTEX_HELD(hash_l ock)) ; 2572 new_state = arc_nfu;
2573 DTRACE PRQ3E1(new state__nfu, arc_buf_hdr_t *, buf);
2508 if (buf->b_state == arc_anon) { 2574 }
2509 *
2510 * This buffer is not in the cache, and does not 2576 buf->b_arc_access = ddi _get_| bolt();
2511 * appear in our "ghost" list. Add the new buffer 2577 arc_change_state(new_state, buf, hash_| ock);
2512 * to the MRU state.
2513 */ 2579 ARCSTAT_BUMP(ar cst at mu _ghost _hits);
2580 } else if (buf->b_state == arc_nfu) {
2515 ASSERT(buf ->b_arc _access == 0); 2581 1=
2516 buf ->b_arc_access ddi get Ibolt() 2582 * This buffer has been accessed nore than once and is
2517 DTRACE_PROBEL(new st ate__nru, arc_buf_hdr_t *, buf); 2583 * still in the cache. Keep it in the MFU state.
2518 arc_change_state(arc_nru, buf, hash_l ock); 2584 *
2585 * NOTE: an add_reference() that occurred when we did
2520 } else if (buf->b_state == arc_nru) { 2586 * the arc_read() will have kicked this off the list.
2521 now = ddi _get I bolt(); 2587 *If it was a prefetch, we will explicitly nove it to
2588 * the head of the list now.
2523 /* 2589 */
2524 * If this buffer is here because of a prefetch then either: 2590 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2525 * - clear the flag if this is a "referencing" read 2591 ASSERT(ref count _count (&buf->b_refcnt) == 0);
2526 L (any subsequent access will bunp this into the MFU state). 2592 ASSERT(list_link_active(&buf- >b_arc_n0de))
2527 * or 2593 }
2528 * - nove the buffer to the head of the list if this is 2594 ARCSTAT BUNP(arcstat nfu_hits);
2529 * another prefetch (to nake it less likely to be evicted). 2595 buf ->b_arc_access = ddi _get Il bolt();
2530) 2596 } else if (buf->b_state == arc_nfu_ghost) {

new usr/src/uts/comon/fs/zfs/arc.c

2597 arc_state_t *new_state = arc_nfu;

2598 /*

2599 * This buffer has been accessed nore than once but has
2600 * been evicted fromthe cache. Myve it back to the
2601 * MFU state.

2602 */

2604 if (buf->b_flags & ARC PREFETCH) {

2605 /*

2606 * This is a prefetch access.

2607 * move this block back to the MRU state.
2608 */

2609 ASSERTO(r ef count _count (&buf->b_refcnt));
2610 new state = arc_nru;

2611 }

2613 buf->b_arc_access = ddi _get_| bolt();

2614 DTRACE_ PROBEl(neW state nfu, arc buf hdr_t *, buf);
2615 arc_change_st at e(new_st at e, buf hash_l ock) ;

2617 ARCSTAT_BUMP(ar cst at _nfu_ghost _hits);

2618 } else if (buf->b_state == arc_l2c_only) {

2619 /*

2620 * This buffer is on the 2nd Level ARC

2621 */

2623 buf->b_arc_access = ddi _get _| bolt();

2624 DTRACE_PROBE1(new_ state nfu, arc_buf_hdr_t *, buf);
2625 arc_change_state(arc_nfu, buf, hash_| ock);

2626 } else {

2627 ASSERT(!"invalid arc state");

2628 1

2629 }

2631 /* a generic arc_done_func_t which you can use */

2632 /* ARGSUSED */

2633 void

2634 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)

2635 {

2636 if (zio == NULL || zio->io_error == 0)

2637 bcopy(buf->b_data, arg, buf->b_hdr->b_size);

2638 VERI FY(ar c_buf _renove_r ef(buf, arg));

2639 }

2641 /* a generic arc_done_func_t */

2642 void

2643 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)

2644 {

2645 arc_buf _t **bufp = arg;

2646 if (zio & zio->io_error)

2647 VERI FY(ar c_buf _renove_ref (buf, arg));

2648 *buf p = NULL;

2649 } else {

2650 *bufp = buf;

2651 ASSERT(buf - >b_dat a) ;

2652 }

2653 }

2655 static void

2656 arc_read_done(zio_t *zio)

2657 {

2658 arc_buf _hdr _t *hdr, *found;

2659 arc_buf _t *buf ;

2660 arc_buf _t *abuf; /* buffer we're assigning to callback */
2661 kmut ex_t *hash_I ock;

2662 arc_cal | back_t *call back_list, *ach;

new usr/src/uts/comon/fs/zfs/arc.c

2663

2665
2666

2668
2669
2670
2671
2672
2673
2674
2675
2676
2677

2679
2680
2681

2683
2684
2685

2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697

2699
2700

2702
2703
2704
2705
2706
2707
2708
2709
2710

2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728

38
int freeabl e = FALSE;
buf = zio->io_private;
hdr = buf->b_hdr;
| *

* The hdr was inserted into hash-table and renoved fromlists

prior to starting I/O W should find this header, since

it’s in the hash table, and it should be legit since it’'s

not possible to evict it during the I/O The only possible

reason for it not to be found is if we were freed during the

* read.

*/

found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
&hash_I ock) ;

ASSERT((found == NULL && HDR FREED | N _READ(hdr) && hash_l ock == NULL) ||
(found == hdr &% DVA EQUAL(&hdr->b_dva, BP_I DENTI TY(zi o->io_bp))) ||
(found == hdr && HDR_L2_READI NG(hdr)));

* ok ok k

hdr->b_flags & ~ARC _L2_EVI CTED;
if (l2arc_noprefetch & (hdr->b_flags & ARC _PREFETCH))
hdr->b_fl ags & ~ARC_L2CACHE;

/* byteswap if _necessary */
cal | back_| i st = hdr->b_ach;
ASSERT(cal | back_list != NULL)
i f (BP_SHOULD BYTESWAP(zi o- >|o _bp) && zio->io_error == 0) {
dnu_obj ect _byt eswap_t bswap =
DMJU_OT_BYTESWAP(BP_CET TYPE(z| 0->i0_bp));
arc_byteswap_func_t *func = BP_GET_LEVEL(zio->o0_bp) > 0 ?
byt eswap_ui nt 64_array :
dmu_ot _byt eswap[bswap] . ob_f unc;
func(buf->b_data, hdr->b_size);

arc_cksum conput e(buf, B_FALSE);

ar c_buf _wat ch(buf);

if (hash_lock & zio->io_error == 0 & hdr->b_state == arc_anon) {
*
* Only call arc_access on anonynous buffers. This is because
* if we've issued an I1/0O for an evicted buffer, we’ ve already
* called arc_access (to prevent any sinultaneous readers from
* getting confused).
*/

arc_access(hdr, hash_| ock);

}
/* create copies of the data buffer for the callers */
abuf = buf;

for (acb = callback_list; ach; acb = acb->acb_next) {
if (acb- >acb done) {
f (abuf == NULL)
ARCSTAT_BUMP(ar cst at _dupl i cat e_r eads);
abuf = arc_buf _cl one(buf);

acb->acb_buf = abuf;
abuf = NULL;
}

hdr->b_acb = NULL;
hdr->b_flags & ~ARC_ | O | N_ PROGRESS;
ASSERT('HDR BUF_AVAI LABLE(hdr)) ;
if (abuf == buf)
ASSERT(buf - >b_ef unc == NULL);

new usr/src/uts/comon/fs/zfs/arc.c

2729
2730
2731

2733

2735
2736
2737
2738
2739
2740
2741
2742

2744
2745
2746
2747
2748
2749

2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762

2764
2765
2766
2767

2769
2770
2771
2772

2774
2775
2776

2778
2779
2780

2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794

* Ok kR ok Rk Ok % b X b %

ASSERT(hdr - >b_datacnt == 1);
hdr->b_flags [= ARC _BUF_ AVAILABLE
}

ASSERT(ref count _i s_zero(&hdr->b_refcnt) || callback_list !'= NULL);

if (zio->io_error = 0) {
hdr->b_flags | = ARC_| O ERROR;
if (hdr->b_state != arc_anon)
arc_change_state(arc_anon, hdr, hash_I ock);
if (HDR_IN HASH TABLE(hdr))
buf_hash_renove(hdr);
freeable = refcount_is_zero(&hdr->b_refcnt);

}
/*
* Broadcast before we drop the hash_lock to avoid the possibility
* that the hdr (and hence the cv) might be freed before we get to
* the cv_broadcast ().
*
/

cv_broadcast (&hdr->b_cv);

if (hash_l ock) {
mut ex_exi t (hash_l ock) ;
} else {
/

This block was freed while we waited for the read to
conplete. It has been renpved fromthe hash table and
noved to the anonynous state (so that it won’t show up
in the cache).

* ok kb ok

*/
ASSERTSP(hdr >b_state, ==, arc_anon);
freeabl e = refcount_is_zero(&hdr->b refcnt)

}

/* execute each callback and free its structure */
while ((acb = callback_list) !'= NULL)
if (acb->acb_done)

ach->acb_done(zi o, acb->acb_buf, acb->acb_private);

if (acb->acb_zio_dummy != NULL) {
acb->acb_zi o_dummy->io_error = zio->io_error;
zi o_nowai t (acb->acb_zi o_dumy) ;

}

cal | back_list = acbh->ach_next;
kmem free(ach, sizeof (arc_callback_t));

}

if (freeable)
arc_hdr_destroy(hdr);

"Read" the block at the specified DVA (in bp) via the

cache. |If the block is found in the cache, iInvoke the provided
call back imredi ately and return. Note that the ‘zio paraneter
in the callback will be NULL in this case, since no | O was
required. If the block is not in the cache pass the read request
on to the spa with a substitute callback function, so that the
requested block will be added to the cache.

If a read request arrives for a block that has a read in-progress,
either wait for the in-progress read to conpl ete (and return the
results); or, if thisis aread with a "done" func, add a record
to the read to i nvoke the "done" func when the read conpl et es,

new usr/src/uts/comon/fs/zfs/arc.c

2795
2796
2797
2798
2799
2800
2801
2802
2803

*
*
*
*

and return; or just return.

arc_read_done() will invoke all the requested

for readers of this block.
S

i nt

arc_

2804 {

2805
2806
2807
2808
2809

2811
2812
2813
2814

2816
2818

2820
2821
2822
2823
2824
2825

2827
2828

2830
2831
2832
2833
2834
2835
2836

2838
2839
2840
2841
2842
2843
2844
2845
2846
2847

2849

2851
2852
2853
2854
2855
2856
2857
2858
2859
2860

read(zio_t
voi d *privat

*pio, spa_t *spa, const blkptr_t *b

e, int priority, int zio_flags, u

const zbookmark_t *zb)

ar c_buf
ar c_buf
knmutex_t
zio t *r
ui nt 64_t

top:

_hdr_t *hdr;
_t *buf = NULL
*hash_| ock;
zi o;
gui d = spa_|l oad_gui d(spa);

hdr = buf_hash_find(gui d, BP_I DENTI TY(bp),
&hash_I ock) ;

if (hdr

&& hdr->b_datacnt > 0) {
*arc_flags | = ARC_CACHED;
if (HDR_I O I N PROGRESS(hdr)) {

if (*arc_flags & ARC WAIT)

cv_wai t (&hdr->b_cv,

mut ex_exi t (hash_l o
goto top;

"done" functions

p, arc_done_func_t *done,

nt32_t *arc_flags,

BP_PHYSI CAL_BI RTH(bp) ,

hash_| ock) ;
ck);

ASSERT(*arc_fl ags & ARC_NOWAI T) ;

if (done)

acb = knem zal | oc(
KM _SLEEP) ;
acb->acb_done = do
acb->acb_private =
if (pio !'= NULL)
acbh->acb_z

{
arc_cal | back_t *acb = NULL;

si zeof (arc_callback_t),

ne;
private,

io_dumy = zio_null(pio

spa, NULL, NULL, NULL, zio_fl

ASSERT(acbh- >acb_do
acb->acb_next = hd
hdr->b_acb = acb;
add_r ef erence(hdr,
mut ex_exi t (hash_l o
return (0);

nut ex_exi t (hash_| ock);
return (0);
}

ASSERT(hdr->b_state == arc_nru ||
if (done) {

add_ref erence(hdr, hash_|o
/*

ne != NULL);
r->b_ach;

hash_| ock, private);
ck);

ags);

hdr->b_state == arc_nfu);

ck, private);

* If this block is already in use, create a new
* copy of the data so that we will be guaranteed

* that arc_release() wll

*/
buf = hdr->b_buf;
ASSERT(buf) ;

ASSERT(buf - >b_dat a) ;

al ways succeed.

new usr/src/uts/comon/fs/zfs/arc.c 41
2861 if (HDR_BUF_AVAI LABLE(hdr)) {

2862 ASSERT(buf ->b_efunc == NULL);

2863 hdr->b_fl ags & ~ARC_BUF_ AVAI LABLE;
2864 } else {

2865 buf = arc_buf_cl one(buf);

2866

2868 } else if (*arc_flags & ARC_PREFETCH &&

2869 ref count _count (&dr->b_refcnt) == 0) {

2870 hdr->b_flags | = ARC_PREFETCH;

2871 }

2872 DTRACE_PROBEl1(arc__hit, arc_buf_hdr_t *, hdr);

2873 arc access(hdr hash_l ock) ;

2874 if (*arc_flags & ARC L2CACHE)

2875 hdr->b _flags | = ARC L2CACHE;

2876 nut ex_exi t (hash_| ock) ;

2877 ARCSTAT_BUMP(ar cst at hi ts);

2878 ARCSTAT_CONDSTAT(! (hdr->b_fl ags & ARC_PREFETCH),

2879 demand, prefetch, hdr->b_type != ARC BUFC M:_l'ADATA
2880 dat a, mstadata, hlts)

2882 if (done)

2883 done(NULL, buf, private);

2884

2885 uint64_t size = BP_GET_LSI ZE(bp);

2886 arc_cal | back_t *ach;

2887 vdev_t *vd = NULL;

2888 ui nt 64_t addr = 0;

2889 bool ean_t devw = B_FALSE;

2891 if (hdr == NULL) {

2892 /* this block is not in the cache */

2893 arc_buf _hdr _t *exi sts;

2894 arc_buf _contents_t type = BP_GET_BUFC TYPE(bp);
2895 buf = arc_buf_alloc(spa, size, private, type);
2896 hdr = buf->b_hdr;

2897 hdr->b_dva = *BP_I DENTI TY(bp)

2898 hdr->b_birth = BP_PHYSI CAL_BI RTH(bp) ;

2899 hdr - >b_cksunD = bp->bl k_cksum zc_wor d[0] ;

2900 exi sts = buf _hash_insert (hdr, &hash_| ock);

2901 if (exists)

2902 /* sonebody beat us to the hash insert */
2903 mut ex_exi t (hash_| ock) ;

2904 buf _di'scard_i denti ty(hdr)

2905 (void) arc_buf_renove ref(buf, private);
2906 goto top; 7* restart the IO request */
2907 }

2908 /* if this is a prefetch, we don’t have a reference */
2909 if (*arc_flags & ARC PREFETCH) {

2910 (void) renove_reference(hdr, hash_| ock,
2911 private);

2912 hdr->b_flags | = ARC_PREFETCH;

2913 }

2914 if (*arc_flags & ARC_L2CACHE)

2915 hdr->b_flags | = ARC_L2CACHE;

2916 if (BP_GET_LEVEL(bp) > 0)

2917 hdr->b_flags | = ARC | NDI RECT;

2918 } else {

2919 /* this block is in the ghost cache */

2920 ASSERT(GHOST_STATE(hdr - >b_state));

2921 ASSERT(! HDR TO | N_PROGRESS(hdr))

2922 ASSERTO(r ef count _count (&dr - >b refcnt));

2923 ASSERT(hdr - >b_buf == NULL);

2925 /* if this is a prefetch, we don’t have a reference */
2926 if (*arc_flags & ARC_PREFETCH)

new usr/src/uts/comon/fs/zfs/arc.c 42

2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943

2945

2947
2948
2949

2951
2952
2953

2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965

2967

2969
2970
2971
2972

2973 #endif /* !

2974
2975
2976
2977
2978
2979
2980

2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992

hdr->b_fl ags | = ARC_PREFETCH,
el se
add_ref erence(hdr, hash_l ock, private);
if (*arc_flags & ARC _L2CACHE)
hdr->b_flags | = ARC_L2CACHE;
buf = kmem cache_al | oc(buf _cache, KM PUSHPAGE);
buf ->b_hdr = hdr;
buf ->b_data = NULL;
buf - >b_efunc = NULL;
buf->b_private = NULL;
buf - >b_next = NULL;
hdr - >b_buf = buf;
ASSERT(hdr - >b_dat acnt == 0);
hdr->b_datacnt = 1;
ar c_get _dat a_buf (buf);
arc_access(hdr, hash_l ock);

}
ASSERT(! GHOST_STATE(hdr - >b_state));

acb = kmem zal | oc(si zeof (arc_callback_t), KM SLEEP);
ach- >acb_done = done;
ach->acb_private = private;

ASSERT(hdr->b_acb == NULL);
hdr->b_acb = ach;
hdr->b_flags | = ARC 1 O_I N_PROGRESS;

if (HDR_L2CACHE(hdr) && hdr->b_| 2hdr != NULL &&
(vd = hdr->b_| 2hdr->b_dev- >l 2ad_vdev) != NULL) {
devw = hdr->b_| 2hdr->b_dev->l 2ad_wri ti ng;
addr = hdr->b_| 2hdr - >b_daddr ;
*

* Lock out device renoval.
S

if (vdev_is_dead(vd) ||
I'spa_config_tryenter(spa, SCL_L2ARC, vd, RW READER))
vd = NULL;

}
mut ex_exi t (hash_l ock);

/*

* At this point, we have a level 1 cache miss. Try again in
* L2ARC if possible.

*/

coderevi ew */

ASSERT3U(hdr - >b_si ze, ==, size);

DTRACE_PROBE4(arc__miss, arc buf _hdr t *, hdr, blkptr_t *, bp,
uint64_t, size, zbookmark_t *, zb);

ARCSTAT. BUNP(arcstat_m sses);

ARCSTAT_CONDSTAT(! (hdr->b_flags & ARC_PREFETCH),
demand, prefetch, hdr->b_type != ARC BUFC | l\/ErADATA
data, netadata, msses)

if (vd !I'= NULL && | 2arc_ndev != 0 && ! (| 2arc_norw && devw)) {
/*

Read fromthe L2ARC if the followi ng are true:
The L2ARC vdev was previously cached.
This buffer still has L2ARC net adat a.
This buffer isn't currently witing to the L2ARC.
The L2ARC entry wasn’t evicted, which may
al so have invalidated the vdev.
* 5. This isn't prefetch and | 2arc_noprefetch is set.
*
/
if (hdr->b_l2hdr != NULL &&

SIWIVIER

* Ok Gk ok k%

new usr/src/uts/comon/fs/zfs/arc.c

2993
2994
2995

2997
2998

3000
3001
3002
3003
3004
3005
3006

3008
3009
3010

3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024

3026
3027
3028
3029

3031
3032
3033

3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052

3054
3055

3057
3058

I HDR_L2_WRI TI NG hdr) && ! HDR L2 EVI CTED(hdr) &&
I (1 2arc_noprefetch & HDR PREFETCH(hdr))) {
| 2arc_read_cal | back_t *cb;

DTRACE_PROBE1(| 2arc__hit,
ARCSTAT_BUMP(ar cstat _| 2_ hi ts);

43

arc_buf _hdr_t *, hdr);

cb = kmem zal | oc(si zeof (I|2arc_read_callback_t),

KM SLEEP) ;
cb->l 2rcb_buf = buf;
ch->| 2rcbh_spa = spa;

cb->| 2rcb_bp = *bp;
cb->l 2rcb_zb = *zb;
cb->l 2rcb_flags = zio_fl ags;

ASSERT(addr >= VDEV_LABEL_START_SI ZE &&
addr + size < vd->vdev_psi ze -
VDEV_LABEL_END_SI ZE) ;

/*

* | 2arc read. The SCL_L2ARC lock will be
* rel eased by |2arc_read_done().

*

/
rzio i o_read_phys(pio, vd, addr, size,
>b_data, ZI O CHECKSUM OFF,

|
Z FLAG_DONT_ CACHE | ZI O_FLAG CANFAIL |
ZI O_FLAG_DONT_PROPAGATE |
ZI O_FLAG DONT_RETRY, B_FALSE);
DTRACE_PROBE2(| 2arc__read, vdev_t *, vd,
zio_t *, rzio);
ARCSTAT_I NCR(arcstat _| 2_read_bytes, size);

if (*arc_flags & ARC_ NOMAIT) {
zi o_nowai t (rzio);
return (0);

}

ASSERT(*arc_flags & ARC WAIT);
if (zio_wait(rzio) == 0)
return (0);

/* | 2arc read error; goto zio_read() */

} else {

DTRACE_PROBEL(| 2arc__m ss,
arc_buf _hdr_t *, hdr);
ARCSTAT_BUMP(arcstat _| 2_m sses);
if (HDR_L2_WRI TI NG hdr))
ARCSTAT_BUMP(ar cstat _| 2_rw_cl ash);
spa_config_exit(spa, SCL_L2ARC, vd);

if (vd !'= NULL)

spa_config_exit(spa, SCL_L2ARC, vd);

if (l2arc_ndev !'=0

DTRACE_PROBEL(| 2arc__mi ss,
arc_buf _hdr_t *, hdr);
ARCSTAT_BUMP(ar cst at _| 2_mi sses) ;

zi o_read(pio, spa, bp, buf->b_data, size,
arc_read_done, buf,

priority, zio_flags, zb);

if (*arc_flags & ARC_ WAIT)
return (zio_wait(rzio));

s R
uf -

2arc_read_done, ch, priority, zio flags |
10 |

|

new usr/src/uts/comon/fs/zfs/arc.c

*func,

If this arc buf

process this buffer

<

void *private)

NULL) ;

now

hdr - >b_dat acnt);

3060 ASSERT(*arc_flags & ARC_NOWAI T) ;

3061 zi o_nowai t(r | 0);

3062 }

3063 return (0);

3064 }

3066 void

3067 arc_set_cal | back(arc_buf_t *buf, arc_evict_func_t

3068

3069 ASSERT(buf ->b_hdr != NULL);

3070 ASSERT(buf - >b_hdr->b_state != arc_anon);

3071 ASSERT(! ref count _i s_zero(&buf->b_hdr->b_refcnt) || func ==
3072 ASSERT(buf - >b_ef unc == NULL);

3073 ASSERT(! HDR_BUF_AVAI LABLE(buf - >b_hdr));

3075 buf - >b_efunc = func;

3076 buf->b_private = private;

3077 }

3079 /*

3080 * This is used by the DMJ to let the ARC know that a buffer is
3081 * being evicted, so the ARC should clean up.

3082 * is not yet in the evicted state, it will be put there.
3083 *

3084 int

3085 arc_buf _evict(arc_buf_t *buf)

3086 {

3087 arc_buf _hdr_t *hdr;

3088 kmut ex_t *hash_| ock;

3089 arc_buf _t **buf p;

3091 mut ex_ent er (&buf - >b_evi ct _| ock) ;

3092 hdr = buf->b_hdr;

3093 if (hdr == NULL) {

3094 /*

3095 * W are in arc_do_user_evicts().

3096 */

3097 ASSERT(buf - >b_data == NULL);

3098 mut ex_exi t (&uf - >b_evi ct _| ock);

3099 return (0);

3100 } else if (buf->b_data == NULL) {

3101 arc_buf _t copy = *buf; /* structure assignnent */
3102 /*

3103 * W are on the eviction |ist;

3104 * but |let arc_do_user_evicts() do the reaping.
3105 */

3106 buf->b_efunc = NULL

3107 mut ex_exi t (&uf - >b evi ct _lock);

3108 VERI FY(copy. b_ef unc(©) == 0);

3109 return (1);

3110 }

3111 hash_l ock = HDR_LOCK(hdr);

3112 nmut ex_ent er (hash_| ock) ;

3113 hdr = buf->b_hdr;

3114 ASSERT3P(hash_l ock, ==, HDR_LOCK(hdr));

3116 ASSERT3U(r ef count _count (&hdr->b_refcnt),

3117 ASSERT(hdr->b_state == arc_ntu || hdr->b_state == arc_nfu);
3119 /*

3120 * Pull this buffer off of the hdr

3121 */

3122 buf p = &hdr->b_buf;

3123 while (*bufp != buf)

3124 bufp = & *buf p)->b_next;

new usr/src/uts/comon/fs/zfs/arc.c

3125 *buf p = buf->b_next;

3127 ASSERT(buf->b_data != NULL);

3128 arc_buf _destroy(buf, FALSE, FALSE);

3130 if (hdr->b_datacnt == 0) {

3131 arc_state_t *old_state = hdr->b_state;

3132 arc_state_t *evicted_state;

3134 ASSERT(hdr - >b_buf == NULL);

3135 ASSERT(refcount _i s_zero(&hdr->b_refcnt));

3137 evicted_state =

3138 (old_state == arc_nru) ? arc_nru_ghost arc_nfu_gh
3140 nmut ex_ent er (&ol d_st at e->arcs_nt x) ;

3141 mut ex_ent er (&evi ct ed_st ate->arcs mx)

3143 arc_change_state(evicted_state, hdr, hash_|l ock);
3144 ASSERT(HDR_| N_HASH TABLE(hdr)) ;

3145 hdr->b_flags |= ARC_I N HASH TABLE;

3146 hdr->b_flags & ~ARC BUF_AVAI LABLE;

3148 mut ex_exi t (&evi cted_state->arcs_ntx);

3149 mut ex_exi t (&ol d_st at e->arcs_nt x) ;

3150

3151 mut ex_exi t (hash_l ock) ;

3152 mut ex_exi t (&buf->b_evict _| ock);

3154 VERI FY(buf - >b_ef unc(buf) == 0);

3155 buf - >b_efunc = NULL;

3156 buf->b_private = NULL;

3157 buf - >b_hdr = NULL

3158 buf - >b_next = NULL;

3159 kmem cache_free(buf _cache, buf);

3160 return (1);

3161 }

3163 /*

3164 * Release this buffer fromthe cache, making it an anonynous buffer.
3165 * nust be done after a read and prior to nodifying the buffer contents.
257 * Release this buffer fromthe cache. This nust be done

258 * after a read and prior to nodifying the buffer contents.
3166 * If the buffer has nore than one reference, we nust nmke

3167 * a new hdr for the buffer

3168 */

3169 void

3170 arc_rel ease(arc_buf _t *buf, void *tag)

3171 {

3172 arc_buf _hdr_t *hdr;

3173 knmut ex_t *hash_l ock = NULL;

3174 | 2arc_buf _hdr_t *I 2hdr;

3175 ui nt 64_t buf_si ze;

3177 /*

3178 It would be nice to assert that if it’s DMJ netadata (Ilevel
3179 * 0] it’s the dnode file), then it nust be syncing context.
3180 * But we don’t know that information at this level.
3181 */

3183 mut ex_ent er (&buf - >b_evi ct _I| ock);

3184 hdr = buf->b_hdr;

3186 /* this buffer is not on any list */

3187 ASSERT(r ef count _count (&hdr->b_refcnt) > 0);

ost;

Thi s

>

45

new usr/src/uts/comon/fs/zfs/arc.c

3189
3190
3191
3192
3193
3194
3195
3196
3197

3199
3200
3201
3202
3203
3204

3206
3207
3208
3209
3210
3211
3212
3213
3214
3215

3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227

3229
3230
3231
3232
3233
3234
3235

3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248

3250
3252

3253
3254

if (hdr->b_state == arc_anon)
/* this buffer is already rel eased */
ASSERT(buf - >b_ef unc == NULL);

} else {
hash_| ock = HDR _LOCK(hdr);
nmut ex _enter (hash_l ock) ;
hdr = buf->b_hdr;

ASSERT3P(hash_| ock, ==, HDR_LOCK(hdr));
}
| 2hdr = hdr->b_I 2hdr;
if (12hdr) {
mut ex_enter (& 2arc_buflist_ntx);
hdr->b_| 2hdr = NULL;
buf _si ze = hdr->b_si ze;
/*

* Do we have nore than one buf?

*

if (hdr->b_datacnt > 1) {
arc_buf _hdr _t *nhdr;
arc_buf _t **bufp;
uint64_t bl ksz = hdr->b_size;
uint64_t spa = hdr->b_spa;
arc_buf_contents_t type = hdr->b_type;
uint32_t flags = hdr->b_flags;

}ASSERT(hdr->b_buf !'= buf || buf->b_next != NULL);
*

* Pull the data off of this hdr and attach it to
* a new anonynous hdr.

*

/
(void) renove_reference(hdr,
bufp = &hdr->b_buf;
while (*bufp !'= buf)

bufp = &(*bufp)->b_next;

*pbufp = buf->b_next;
buf - >b_next = NULL;

hash_| ock, tag);

ASSERT3U(hdr - >b_st at e- >arcs_si ze, >=, hdr->b_size);
at om c_add_64(&hdr->b_st at e- >arcs_si ze, -hdr->b_size);
if (refcount is_zero(&hdr->b_refcnt)) {
uint64_t *size = &hdr->b_state->arcs_| si ze[hdr->b_type];
ASSERT3U(*si ze, >=, hdr->b_si ze);
atomi c_add_64(si ze, -hdr->b_size);
}
/*
* We're releasing a duplicate user data buffer,
* our statistics accordingly.
*

updat e

/
if (hdr->b_type == ARC_BUFC_DATA) {
ARCSTAT_BUWMPDOWN(ar cst at _dupl i cate_buffers);
ARCSTAT_I NCR(ar cst at _dupl i cat e_buf f ers_si ze,
-hdr->b_si ze);

}

hdr->b_datacnt -= 1;
arc_cksumverify(buf);
ar c_buf _unwat ch(buf);

mut ex_exi t (hash_l ock);
nhdr = kmem cache_al | oc(hdr _cache,

nhdr - >b_si ze = bl ksz;
nhdr->b_spa = spa;

KM_PUSHPAGE) ;

46

new usr/src/uts/comon/fs/zfs/arc.c

3255 nhdr->b_type = type;

3256 nhdr - >b_buf = buf;

3257 nhdr->b_state = arc_anon;

3258 nhdr->b_arc_access = 0;

3259 nhdr->b_flags = flags & ARC_L2_WRI TI NG
3260 nhdr->b_| 2hdr = NULL;

3261 nhdr->b_datacnt = 1;

3262 nhdr->b_freeze_ cksum = NULL

3263 (voi d) refcount_add(&nhdr- >b refcnt, tag);
3264 buf ->b_hdr = nhdr;

3265 mut ex_exi t (&uf - >b evi ct _| ock);

3266 at omi ¢_add_64(&ar c_anon- >arcs_si ze, bl ksz);
3267 } else {

3268 mut ex_exi t (&buf - >b_evi ct _| ock);

3269 ASSERT(r ef count count(&hdr >b refcnt) == 1);
3270 ASSERT(!list_link_active(&hdr->b_arc_node));
3271 ASSERT(! HDR_TO_| N_PROGRESS(hdr));

3272 if (hdr->b_state !'= arc_anon)

3273 arc change state(arc_anon, hdr, hash_|
3274 hdr->b_arc_access = 0;

3275 if (hash_l ock)

3276 nmut ex_exi t (hash_l ock) ;

3278 buf _di scard_i dentity(hdr);

3279 arc_buf _t haw(buf);

3280 }

3281 buf - >b_efunc = NULL;

3282 buf->b_private = NULL;

3284 if (12hdr) {

3285 l1st_renove(l 2hdr->b_dev->| 2ad_buflist, hdr);
3286 kmem free(l 2hdr, sizeof (I2arc buf _hdr_t));
3287 ARCSTAT INCR(arcstat | 2_size, -buf_size);
3288 mut ex_exi t (& 2arc_bufli st mx);

3289 }

3290 }

__unchanged_portion_onitted_

| ock);

47

new usr/src/uts/comon/fs/zfs/dbuf.c 1 new usr/src/uts/comon/fs/zfs/dbuf.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 641 /*

74441 Tue Apr 23 14:09: 35 2013 642 * Another reader cane in while the dbuf was in flight
new usr/src/uts/comon/fs/zfs/dbuf.c 643 * between UNCACHED and CACHED. Either a witer will finish
3741 zfs needs better comments 644 * writing the buffer (sending the dbuf to CACHED) or the
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con> 645 * first reader’s request will reach the read_done call back
Submi tted by: Justin G bbs <justing@pectral ogi c.conp 646 * and send the dbuf to CACHED. O herwi se, a failure
Subnitted by: Al an Soners <al ans@pectral ogi c. con> 647 * occurred and the dbuf went to UNCACHED.

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. com> 648 */
IR E SRS E RS RS EE SRR R R R R R R R R RS EEEEEEEREEEEEEEERERSE] 649 #endlf /* | COdeI’eVi ew */
__unchanged_portion_onitted_ 650 mut ex_exi t (&db->db_nt x) ;
651 if (prefetch)
586 int 652 dmu_zf et ch(&n->dn_zfetch, db->db.db_offset,
587 dbuf _read(dnu_buf _inpl_t *db, zio_t *zio, uint32_t flags) 653 db- >db. db_si ze, TRUE);
588 { 654 if ((flags & DB_RF_HAVESTRUCT) == 0)
589 int err = 0; 655 rw_exit(&dn->dn_struct_rw ock);
590 int havepzio = (zio !'= NULL); 656 DB_DNODE_EXI T(db) ;
591 int prefetch;
592 dnode_t *dn; 658 /* Skip the wait per the caller’s request. */
659 #endif /* | codereview */
594 I* 660 mut ex_ent er (&db- >db_nt x) ;
595 * We don’t have to hold the mutex to check db_state because it 661 if ((flags & DB_RF_| NEVERWAI T) == 0) {
596 * can't be freed while we have a hold on the buffer. 662 whi l e (db->db state==DBREAD||
597 */ 663 db->db_state == DB_FI LL) {
598 ASSERT(! ref count _i s_zer o(&db->db_hol ds)) ; 664 ASSERT(db->db_state == DB_READ | |
665 (flags & DB_RF_HAVESTRUCT) == 0);
600 if (db->db_state == DB_NOFI LL) 666 cv_wai t (&db- >db_changed, &db->db mx)
601 return (SET_ERROR(EIO)); 667 }
668 if (db->db_state == DB_UNCACHED)
603 DB_DNGCDE ENTER(db) 669 err = SET_ERROR(EIO);
604 dn = DB_DNODE(db) ; 670 }
605 if ((flags & DB_RF_HAVESTRUCT) == 0) 671 mut ex_exi t (&b->db_nt x) ;
606 rw_enter (&n->dn_struct _rw ock, RW READER); 672 }
608 prefetch = db->db_l evel == 0 && db->db_bl kid ! = DMJ_BONUS_BLKI D && 674 ASSERT(err || havepzio || db->db_state == DB_CACHED);
609 (flags & DB_RF_NOPREFETCH) == 0 &% dn != NULL && 675 return (err);
610 DBUF_| S_CACHEABLE(db) ; 676 }
612 mut ex_ent er (&db->db_nt x) ; 678 static void
613 if (db->db_state == DB_CACHED) ({ 679 dbuf _noread(dmu_buf _i npl _t *db)
614 mut ex_exi t (&b->db_nt x) ; 680 {
615 if (prefetch) 681 ASSERT(! ref count _i s_zer o(&db->db_hol ds)) ;
616 dmu_zf et ch(&n->dn_zfetch, db->db. db_offset, 682 ASSERT(db- >db_bl kid ! = DMJ_BONUS_BLKI D) ;
617 db->db. db_si ze, TRUE); 683 mut ex_ent er (&db- >db mx);
618 if ((flags & DB_RF_HAVESTRUCT) == 0) 684 whi | e (db->db_state == READ || db->db_state == DB FILL)
619 rw_exi t (&n->dn_struct _rw ock); 685 cv V\alt(&db >db_changed, &db->db_nt x) ;
620 DB_DNODE_EXI T(db) ; 686 if (db->db_state == DB_UNCACHED) ({
621 } else if (db->db_state == DB_UNCACHED) { 687 arc_buf_contents_t type = DBUF_GET_BUFC TYPE(db);
622 spa_t *spa = dn- >dn _obj set - >0s_spa, 688 spa_t *spa;
624 if (zio == NULL) 690 ASSERT(db- >db_buf == NULL);
625 zio = zio_root(spa, NULL, NULL, ZI O FLAG CANFAIL); 691 ASSERT(db- >db. db_data == NULL);
626 dbuf _read_i npl (db, zio, &flags); 692 DB_GET_SPA(&spa, db);
693 dbuf _set _dat a(db arc_buf _all oc(spa, db->db.db_size, db, type));
628 /* dbuf _read_i npl has dropped db_ntx for us */ 694 db->db_state = DB_FILL;
695 } else if (db->db state--DBNCFILL) {
630 if (prefetch) 696 dbuf _set_data(db, NULL);
631 dmu_zf et ch(&dn->dn_zfetch, db->db.db_offset, 697 } else {
632 db- >db. db_si ze, flags & DB_RF_CACHED); 698) ASSERT3U(db->db_state, ==, DB_CACHED);
699
634 if ((flags & DB_RF_HAVESTRUCT) == 0) 700 mut ex_exi t (&db->db_nt x) ;
635 rw_exit(&In->dn_struct_rw ock); 701 }
636 DB_DNODE_EXI T(db) ;
703 [*
638 if (!havepzio) 704 * This is our just-in-tine copy function. |t makes a copy of
639 err = zio_wait(zio); 705 * buffers, that have been nodified in a previous transaction
640 } else { 706 * group, before we nodify themin the current active group.

new usr/src/uts/comon/fs/zfs/dbuf.c

707
708
709
710
711
712
713
714
715
716
717
718
719

721
722
723
724

726
727
728
729

731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747

749
750
751
752
753
754
755

757
758

760
761
762

764
765
766

768
769
770

* Ok kR % ok k *

*/

This function is used in tw places: when we are dirtying a
buffer for the first tinme in a txg, and when we are freeing
a range in a dnode that includes this buffer.

Note that when we are called from dbuf_free_range() we do
not put a hold on the buffer, we just traverse the active
dbuf list for the dnode.

static void

dbuf fix ol d_data(dmu_buf inpl t *db,

uint64_t txg)

{
dbuf _dirty_record_t *dr = db->db_last_dirty;
ASSERT(MUTEX_HELD(&b- >db_nt x)) ;
ASSERT(db- >db. db_data != NULL);
ASSERT(db->db_| evel == 0);
ASSERT(db- >db. db_obj ect !'= DMJ_META_DNODE_OBJECT) ;
if (dr == NULL ||
(dr->dt.dl.dr_data !=
((db->db_bl kid == DMJ_BONUS_BLKI D) ? db->db. db_data :
return;
/*
* |f the last dirty record for this dbuf has not yet synced
* and its referencing the dbuf data, either:
* reset the reference to point to a new copy,
* or (if there a no active hol ders)
* just null out the current db_data pointer.
*
/
ASSERT(dr->dr _txg >= txg - 2);
i f (db->db_bl kid == DMJ_BONUS_BLKI D)
/* Note that the data bufs here are zio_bufs */
dr->dt.dl.dr_data = zio_buf_al | oc(DN_MAX_BONUSLEN) ;
arc_space_consume(DN_MAX_BONUSLEN, ARC SPACE OTHER)
bcopy(db->db. db_data, dr->dt.dl.dr_data, DN NAX BCNUSLEN)
} else if (refcount count(&db >db_hol ds) > db- >db dirtycnt) {
int size = db->db. db_si ze;
ar c_buf_cont ents_t type = DBUF_GET_BUFC TYPE(db);
spa_t *spa;
DB_CET_SPA(&spa, db);
dr->dt.dl.dr_data = arc_buf_all oc(spa, size, db, type);
bcopy(db->db. db_data, dr->dt.dl.dr_data->b_data, size);
} else {
dbuf _set _data(db, NULL);
}
}
voi d

dbuf _unoverri de(dbuf _dirty_record_t *dr)
{

dmu_buf _i npl _t *db = dr->dr_dbuf;
bl kptr_t *bp = &dr->dt.dl.dr_overridden_by;
uint64_t txg = dr->dr_txg;

ASSERT(MUTEX_HELD(&db- >db_nt x)) ;
ASSERT(dr->dt.dl.dr_override_state != DR IN DMJ SYNC);
ASSERT(db- >db_| evel == 0);
i f (db->db_bl kid == DMJ_BONUS_BLKI D | |
dr->dt.dl.dr_override_state == DR_NOT_OVERRI DDEN)
return;

ASSERT(db- >db_data_pending != dr);

db->db_buf)))

new usr/src/uts/comon/fs/zfs/dbuf.c

774
775
776

778
779
780
781
782

784
785
786
787
788
789
790
791
792
793

795
796
797
798
799
800
801
802
803

* Ok Ok ok F %

*/

voi d

dbuf _free_range(dnode_t *dn,

804 {

805
806
807
808
809

811
812
813
814
815
816
817
818
819

821
822
823
824
825
826
827
828
829
830
831
832
833

835
836
837
838

}
dr-
dr-

/

* ok K ok kb ko

free this block */
(!'BP_I'S HOLE(bp) && !dr->dt.dl.dr_nopwite) {

spa_t *spa;

DB_GET_SPA(&spa, db);

zio_free(spa, txg, bp);
>dt . dl . dr _overri de state = DR _NOT_OVERRI DDEN;
>dt.dl.dr_nopwite = B_ FALSE
Rel ease the already-witten buffer, so we leave it in
a consistent dirty state. Note that all callers are
nodi fying the buffer, so they will imediately do
anot her (redundant) arc_release(). Therefore, |eave
the buf thawed to save the effort of freezing &
imedi ately re-thawing it.

arc_rel ease(dr->dt.dl.dr_data, db);

dmu_buf _i npl _t *db,

Evict (if its unreferenced) or clear (if its referenced) any |evel-
data blocks in the free range,
enpty bl ocks.
range that have not already been nmarked dirty, mark themdirty so
they stay in menory.

so that any future readers wll fin

Al so, if we happen accross any level-1 dbufs in the

uint64_t start, uint64_t end, dnu_tx_t *

*db_next ;

uint64 t txg = tx->tx_txg;

int

epbs = dn->dn_i ndbl kshift - SPA BLKPTRSHI FT;

uint64_t first |11 = start >> epbs;
uint64_t last_I1 = end >> epbs;

if

}

dpr
nmut
for

(end > dn->dn_nmaxbl kid & (end != DMJ_SPILL_BLKID)) {
end = dn->dn_maxbl ki d;
last_|1 = end >> epbs;

intf_dnode(dn, "start=%1lu end=%|u\n", start, end);

ex_ent er (&n->dn_dbufs_nt x) ;

(db = list head(&dn >dn dbufs) db; db = db_next) {
db_next = |ist_next (&dn- >dn dbufs db) ;
ASSERT(db->db_bl kid ! = DMJ BONUS_BLKI D) ;

if (db->db_l evel == &&
db->db_blkid >= first_|1 & db->db_bl kid <= | ast
nut ex_ent er (&b- >db_nt x) ;
if (db->db_last_dirty &%
db->db_last _dirty->dr_txg < txg) {

dbuf _add_ref (db, FTAG;
mut ex_exi t (&db->db_nt x) ;
dbuf _wi Il _dirty(db, tx);
dbuf _rel e(db, FTAG;

} else {

}

mut ex_exi t (&db->db_nt x) ;

}

if (db->db_ IeveI
continu

dprintf dbuf(db "found buf %s\n", "");

if (db->db_blkid < start || db- >db bl kid > end)

1= 0)

0
d

t x)

1y

new usr/src/uts/comon/fs/zfs/dbuf.c

839

841
842
843
844
845
846

848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866

868
869

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897

899
900
901
902 }

904 static int

conti nue;

/* found a level O buffer in the range */

mut ex_ent er (&db->db_nt x) ;

if (dbuf_undirty(db, tx))
7* mutex has been dropped and dbuf destroyed */
conti nue;

}

if (db->db_state == DB_UNCACHED | |
db->db_state == DB_NOFILL ||
db->db_state == DB_ EVICTING) {
ASSERT(db >db db_data == NULL);
mut ex_exi t (&db->db_nt x) ;
cont i nue;

}

if (db->db_state == DB_READ || db->db_state == DB_FILL) {
/*"will be handled in dbuf r ead done or dbuf_rele */
db >db_freed_in_flight = TRUE
mut ex_exi t (&db->db_nt x) ;
conti nue;

}

1 f (refcount_count (&Ib->db_hol ds) == 0) {
ASSERT(db- >db_buf);
dbuf _cl ear (db);
conti nue;

}
/* The dbuf is referenced */

if (db->db_last_dirty !'= NULL) {
dbuf _dirty_record_t *dr = db->db_last_dirty;

if (dr->§ir_txg == txg) {
*

* This buffer is "in-use", re-adjust the file
* size to reflect that this buffer may

* contain new data when we sync.

*/

if (db->db_blkid != DMJ_SPILL_BLKI D &&
db->db_bl kid > dn- >dn maxbl ki d)
dn->dn_maxbl ki d =" db->db_bl ki d;
dbuf _unoverri de(dr);
} else {
/*
* This dbuf is not dirty in the open context.
* Either uncache it (if its not referenced in
* the open context) or reset its contents to
* enpty.
*/
) dbuf _fix_ol d_data(db, txg);

}

/* clear the contents if its cached */

if (db->db_state == DB_CACHED) {
ASSERT(db- >db. db_data != NULL);
arc_rel ease(db->db_buf, db);
bzer o(db- >db. db_dat a, db- >db. db_si ze);
arc_buf _freeze(db- >db _buf);

}
mut ex_exi t (&b->db_nt x) ;

}
mut ex_exi t (&dn->dn_dbuf s_nt x) ;

new usr/src/uts/comon/fs/zfs/dbuf.c

905 dbuf _bl ock_freeabl e(dmu_buf _i mpl _t *db)
906 {

907
908

910
911
912
913
914
915
916
917
918
919

921
922
923
924
925
926
927
928
929
930
931
932

934
935

937
938
939
940

942

944
945

947
948

950
951
952
953
954
955
956
957
958
959
960

962
963

965
966
967
968
969
970

}

voi d

dsl _dataset _t *ds = db->db_obj set->0s_dsl _dat aset ;
uint64_t birth_txg = 0;

/

it's syncing, then db_last_dirty will be set

We don’t need any |ocking to protect db_bl kptr:
I f
so we'll ignore db_blkptr.

*
*
*
*
*

ASSERT(MUTEX_HELD(&db- >db_nt x)) ;
if (db->db_| ast_di rty)

birth_txg = db->db_| ast_dirty->dr_txg;
else if (db->db_bl kptr)

birth_txg = db->db_bl kptr->bl k_birth;

/*
* |If we don’t exist or are in a snapshot, we can’t be freed.
* Don't pass the bp to dsl_dataset_bl ock_freeabl e() since we

* are holding the db_ntx | ock and m ght deadl ock if we are
* prefetching a dedup-ed bl ock.
=

if (birth_txg)
return (ds == NULL ||
ds| _dat aset _bl ock_freeabl e(ds, NULL, birth_txg));
el se
return (FALSE);

dbuf _new_si ze(dnmu_buf _inpl _t *db, int size, dmu_tx_t *tx)
936 {

arc_buf _t *buf, *obuf;

int osize = db->db. db_si ze;

arc_buf _contents_t type = DBUF_GET_BUFC TYPE(db);
dnode_t *dn;

ASSERT(db->db_bl ki d !'= DMJ_BONUS_BLKI D) ;

DB_DNCDE_ENTER(db) ;
dn"= DB_DNODE(db) ;

/* XXX does *this* func really need the | ock? */
ASSERT(RW WRI TE_HELD(&n- >dn_st ruct _rw ock)) ;

/
This call to dbuf_will_dirty() with the dn_struct_rw ock held
is OK because there can be no other references to the db
when we are changing its size, so no concurrent DB_FILL can

/be happeni ng.

EE S

/*

* XXX we shoul d be doing a dbuf_read, checking the return
* value and returning that up to our callers

*/

dbuf _wi Il _dirty(db, tx);

/* create the data buffer for the new bl ock */
buf = arc_buf_al | oc(dn->dn_obj set->o0s_spa, size, db, type);

/* copy old block data to the new bl ock */
obuf = db->db_buf;
bcopy(obuf->b_data, buf->b_data, M N(osize, size));
/* zero the remai nder */
if (size > osize)
bzero((uint8_t *)buf->b_data + osize, size - osize);

new usr/src/uts/comon/fs/zfs/dbuf.c

972
973
974
975

977
978
979
980
981

983
984
985

987
988

}

voi d
dbuf _rel

989 {

990

992
993
994
995
996

998
999

1001
1002

1004
1005
1006
1007
1008
1009

1011
1012
1013

1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

1035
1036

}

nmut ex_ent er (&db->db_nt x) ;

dbuf _set _dat a(db, buf);

VERI FY(arc_buf _renove ref(obuf, db));
db- >db. db_si ze = si ze;

if (db->db_level == 0) {
ASSERTBU(db >db_| ast _dirty->dr txg, ==, tx->tx_txg);
db->db_| ast _dirty->dt.dl.dr_data = buf;

}

mut ex_exi t (&db->db_nt x) ;

dnode_wi | | use_space(dn, size-osize, tx);
DB_DNODE_EXI T(db) ;

ease_bp(dmu_buf _i npl _t *db)
obj set _t *os;

DB_GET_OBJSET(&os, db);

ASSERT(dsl _pool _sync_cont ext (dmu_obj set _pool (0s)));

ASSERT(ar c_r el eased(0s- >0s_phys_buf)
list_link_active(&os->0s_dsl_dataset->ds_synced_| ink));

ASSERT(db- >db_parent == NULL || arc_rel eased(db->db_parent->db_buf));

(void) arc_rel ease(db->db_buf, db);

dbuf _dirty_record_t *
dbuf _di rty(dmu_buf _inpl _t *db, dmu_tx_t *tx)
1003 {

dnode_t *dn;

obj set _t *os;

dbuf _dirty_record_t **drp, *dr;

int drop_struct_l ock = FALSE;

bool ean_t do_free_accounting = B_FALSE;
int txgoff = tx->tx_txg & TXG MASK;

ASSERT(tx->tx_txg != 0);
ASSERT(!refcount_is zero(&db->db_hol ds)) ;
DMU_TX_DI RTY_BUF(t x, db);

DB_DNODE_ENTER(db) ;
dn = DB_DNODE(db) ;
/*
* Shouldn’t dirty a regular buffer in syncing context. Private
* objects may be dirtied in syncing context, but only if they
* were already pre-dirtied in open context.
*
/
ASSERT(!dmu_t x_i s_synci ng(tx) ||
BP_I S HOLE(dn->dn_obj set - >0s_r oot bp) |
DMU_OBJECT_I S_SPECI AL(dn- >dn_obj ect) |
dn->dn_obj set->o0s_dsl| _dat aset == NULL);
/*
* W neke this assert for private objects as well, but after we
* check if we're already dirty. They are allowed to re-dirty
* in syncing context.
*
/

ASSERT(dn- >dn_obj ect == DMJ_META DNODE_OBJECT | |
dn->dn_dirtyctx == DN_UNDIRTTED || dn->dn_dirtyctx ==
(dmu_tx_i s_syncing(tx) ? DN_DI RTY_SYNC : DN DI RTY_OPEN));

mut ex_ent er (&db->db_nt x) ;
/*

new usr/src/uts/comon/fs/zfs/dbuf.c

1037
1038
1039
1040
1041
1042
1043

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057

1059
1060

1062
1063
1064
1065
1066
1067
1068
1069
1070
1071

1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085

1087
1088
1089
1090
1091
1092

1094
1095
1096
1097
1098
1099

1101
1102

* XXX meke this true for indirects too? The problemis that
* transactions created with dmu_tx_create_assigned() from

* syncing context don’t bother hol di ng ahead.

*/

ASSERT(db- >db IeveI 1=0 ||
db->db_state == DB_CACHED || db->db_state == DB FILL ||
db->db_state == DB_NOFI LL);

mut ex_ent er (&dn->dn_nt x) ;
/*

* Don't set dirtyctx to SYNCif we're just nodifying this as we
* initialize the objset.
*

if (dn->dn_dirtyctx == DN_UNDI RTI ED &&
I BP_I S_HOLE(dn- >dn_obj set - >0s_r oot bp)) {
“dn->dn _dirtyctx =

dmu_t x_i s_syncing(tx) ? DN_DI RTY_SYNC : DN_DI RTY_OPEN);

ASSERT(dn->dn_dirtyctx_firstset == NULL);
dn->dn_dirtyctx_firstset = knem alloc(1, KM SLEEP);

}
mut ex_exi t (&dn->dn_nt x) ;

if (db->db_bl kid == DMJ_SPI LL_BLKI D)
dn->dn_have_spill = B_TRUE;

/*
* If this buffer is already dirty, we’'re done.
*

/
drp = &b->db_last_dirty;
ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
db- >db. db_obj ect == DMJ_META_DNCDE_OBJECT) ;
whi | e ((dr = *drp) != NULL & dr->dr_txg > tx- Stx _txg)
drp = &dr->dr next
if (dr & dr->dr_txg == tx—>tx_txg) {
DB_DNODE_EXI T(db) ;

if (db->?b_|eve| == 0 & db->db_bl kid != DMJ_BONUS_BLKI D) {
*

* If this buffer has already been witten out,
* we now need to reset its state.

*

/
dbuf _unoverride(dr);
if (db->db.db_object != DNU META_DNODE_OBJECT &&

db->db_state != DB_NOFI LL)
ar c_buf _t haw(db- >db_buf) ;

}
mut ex_exi t (&b->db_nt x) ;
return (dr);

}

/*

* Only valid if not already dirty.
*

/

ASSERT(dn- >dn_obj ect == |l
dn->dn_dirtyctx == DN_UNDI RTI ED || dn->dn_dirtyctx ==
(dmu_t x_i s_synci ng(tx) ? DN_DI RTY_SYNC : DN_DI RTY_OPEN));

ASSERT3U(dn- >dn_nl evel s, >, db->db_| evel);

ASSERT((dn->dn_phys->dn_nl evel s == 0 && db->db_| evel == 0) ||
dn->dn_phys->dn_nl evel s > db->db_| evel ||
dn->dn_next _nl evel s[txgoff] > db->db_l evel ||
dn->dn_next _nl evel s[(tx->tx_txg-1) & TXG MASK] > db->db_| evel

dn->dn_next _nl evel s[(tx->tx_txg-2) & TXG MASK] > db->db_| evel);

/*
* We should only be dirtying in syncing context if it's the

new usr/src/uts/comon/fs/zfs/dbuf.c

1103
1104
1105
1106
1107
1108
1109
1110
1111

1113

1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125

1127
1128
1129
1130
1131
1132
1133
1134

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

1168

* mps or we're initializing the os or it’'s a special object.

* However, we are allowed to dirty in syncing context provided
* we already dirtied it in open context. Hence we nust make
*/this assertion only if we're not already dirty.

*

os = dn->dn_obj set;

ASSERT(! drmu_t x_i s_synci ng(tx) || DMJ_OBJECT_I S_SPECI AL(dn->dn_obj ect) ||
0s->0s_dsl _dataset == NULL || BP_I S _HOLE(o0s->0s_r oot bp));

ASSERT(db->db. db_si ze != 0);

dprintf_dbuf (db, "size=%I|x\n", (u_longlong_t)db->db.db_size);
if (db->db_blkid != DMJ_BONUS_BLKI D) {
/*

* Update the accounting.

* Note: we delay "free accounting"” until after we drop
* the db_ntx. This keeps us from grabbi ng other |ocks
* (and possibly deadl ocking) in bp_get_dsize() while

* al so holding the db_ntx.

*

/
dnode_wi | | use_space(dn, db->db. db_size, tx);
do_free_accounting = dbuf_bl ock_freeabl e(d b),

-

* %k ok

If this buffer is dirty in an old transaction group we need
to nake a copy of it so that the changes we make in this
/transaction group won’t | eak out when we sync the ol der txg.
dr = kmem zal | oc(si zeof (dbuf_dirty_record_t), KM SLEEP);

if (db->db_l evel == 0)

void *data_old = db->db_buf;

if (db->db_state != DB _NOFILL)
i f(db->db_bl kid == DMJ_BONUS_BLKI D) {
dbuf _fix old _data(db, tx->tx_txg);
data_ol d = db->db. db_dat a;
} else |f (db->db. db_obj ect T= DMJ_META_DNODE_OBJECT) {

Rel ease the data buffer fromthe cache so
that we can nodify it wthout inpacting
possi bl e other users of this cached data

bl ock. Note that indirect blocks and
private objects are not rel eased until the
syncing state (since they are only nodified
then).

x»x-x-x-x»x—x—x—

*/
arc_rel ease(db->db_buf, db);
dbuf _fix_old_data(db, tx->tx_txg);
data_ol d = db->db_buf;

}
ASSERT(data_old != NULL);

}
dr->dt.dl.dr_data = data_ol d;
} else {
mutex_init(&dJr->dt.di.dr_mtx, NULL, MJUTEX_DEFAULT, NULL);
list_create(&dr->dt.di.dr_children,
si zeof (dbuf_dirty_record_t),
of fsetof (dbuf _dirty record_t, dr_dirty_node));

}

dr->dr _dbuf = db;
dr->dr_txg = tx->tx_txg;
dr->dr_next = *drp;
*drp = dr;

| *

new usr/src/uts/comon/fs/zfs/dbuf.c

1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179

1181
1182
1183
1184
1185
1186

1188

1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213

1215
1216
1217
1218

1220
1221
1222
1223

1225
1226
1227
1228

1230
1231

1233
1234

* We coul d have been freed_in_flight between the dbuf_noread
* and dbuf_dirty. W win, as though the dbuf_noread() had

* happened after the free.

*

if (db->db_l evel == 0 && db->db_bl kid != DMJ_BONUS_BLKI D &&
db->db_bl kid != DMJ_SPI LL_BLKI D) {
mut ex_ent er (&dn->dn_nt x) ;
dnode_cl ear _range(dn, db->db_blkid, 1, tx);
nmut ex e><|t(&dn >dn_nt x) ;
db->db_freed_in_flight = FALSE;
}

*
* This buffer is now part of this txg
*/

dbuf _add_ref (db, (void *)(uintptr_t)tx->tx_txg);
db->db_dirtycnt += 1;
ASSERT3U(db- >db_di rtycnt, <=, 3);

mut ex_exi t (&db->db_nt x) ;

if (db->db_bl kid == DMJ_BONUS_BLKI D | |
db->db_bl kid == DMJ SPI LL_BLKI D) {

mut ex_ent er (&dn->dn_nt x) ;

ASSERT(!list_li nk_act i ve(&dr— >dr _dirty_node));

list_insert_tail(&n->dn_dirty_records[txgoff], dr);

mut ex_exi t (&n->dn_nt x) ;

dnode_setdirty(dn, tx);

DB_DNODE_EXI T(db) ;

return (dr);
} else if (do_free_accounting) {

bl kptr_t *bp = db->db_bl kptr;

int64_t willfree = (bp & !BP_I S _HOLE(bp)) ?

bp_get _dsi ze(os->0s_spa, bp) : db- >db db_si ze;

/
This is only a guess -- if the dbuf is dirty
in a previous txg, we don’t know how nuch
space it will use on disk yet. W should
real ly have the struct_rw ock to access
db_bl kptr, but since this is just a guess,
*/it’s K if we get an odd answer.
*
ddt _prefetch(os->0s_spa, bp);
dnode_wi | | use_space(dn, -wl Ifree tx);

* ok kb F ok

}

if (! RWWRI TE_HELD(&n->dn_struct_rw ock)) {
rw_ent er (&n->dn_struct _rw ock, RW READER);
drop_struct _l ock = TRUE;

}

if (db->db_l evel == 0) {
dnode_new bl ki d(dn, db->db_blkid, tx, drop_struct_l ock);
ASSERT(dn->dn_maxbl ki d >= db->db_bl ki d);

}

if (db->db_l evel +1 < dn->dn_nl evels) {
dnu_buf _i npl _t *parent = db->db_parent;
dbuf _dirty_record_t *di;
int parent_hel d = FALSE;

if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
int epbs = dn->dn_i ndbl kshift - SPA BLKPTRSHI FT;

parent = dbuf_hol d_I evel (dn, db->db_I evel +1,
db->db_bl kid >> epbs, FTAG;

new usr/src/uts/comon/fs/zfs/dbuf.c 11 new usr/src/uts/comon/fs/zfs/dbuf.c
1235 ASSERT(parent != NULL);
1236 parent _held = TRUE; 1301 DB_DNODE_ENTER(db) ;
1237 } 1302 dn = DB_DNODE(db);
1238 if (drop_struct_I ock)
1239 rw_exi t (&n->dn_struct _rw ock); 1304 /*
1240 ASSERT3U(db- >db_| evel +1, ==, parent- >db _level); 1305 * Note: This code will probably work even if there are concurrent
1241 di = dbuf _dirty(parent, tx); 1306 * holders, but it is untested in that scenerio, as the ZPL and
1242 if (parent hel d) 1307 * ztest have additional |ocking (the range |ocks) that prevents
1243 dbuf _rel e(parent, FTAG; 1308 * that type of concurrent access.
1309 */
1245 mut ex_ent er (&db- >db_nt x) ; 1310 ASSERT3U(r ef count _count (&db- >db_hol ds), ==, db->db_dirtycnt);
1246 /* possible race with dbuf_undirty() */
1247 if (db->db_last_dirty == dr || 1312 dprintf_dbuf (db, "size=%Ix\n", (u_longlong_t)db->db.db_size);
1248 dn- >dn_obj ect == DMJ_META_DNODE_OBJECT) {
1249 mut ex_ent er (&di ->dt . di . dr _ntx); 1314 ASSERT(db- >db. db_si ze = 0);
1250 ASSERT3U(di - >dr _txg, ==, tx->tx_txg);
1251 ASSERT(!l'i st _|ink_active(&dr->dr dl rty_node)); 1316 /* XXX would be nice to fix up dn_towite_space[] */
1252 list_insert_tail (&di->dt.di.dr_children, dr);
1253 mut ex_exi t (&di ->dt. di.dr_ntx); 1318 *drp = dr->dr_next;
1254 dr->dr_parent = di;
1255 } 1320 I
1256 mut ex_exi t (&db->db_nt x) ; 1321 * Note that there are three places in dbuf_dirty()
1257 } else { 1322 * where this dirty record may be put on a list.
1258 ASSERT(db->db_I| evel +1 == dn->dn_nl evel s); 1323 * Make sure to do a list_remove corresponding to
1259 ASSERT(db- >db_bl ki d < dn->dn_nbl kptr); 1324 * every one of those list_insert calls.
1260 ASSERT(db- >db_parent == NULL || db->db_parent == dn->dn_dbuf); 1325 */
1261 mut ex_ent er (&dn- >dn_nt x) ; 1326 f (dr->dr_parent)
1262 ASSERT(!list_link_active(&r->dr_dirty_node)); 1327 mut ex_ent er (&dr - >dr _parent ->dt. di . dr_ntx);
1263 list_insert_tail(&n->dn_dirty_records[txgoff], dr); 1328 |'i st_remove(&dr->dr_parent ->dt.di.dr_chil dren dr);
1264 mut ex_exi t (&n->dn_nt x) ; 1329 mut ex_exi t (&dr - >dr _par ent - >dt . di . dr _mtx);
1265 if (drop_struct_l ock) 1330 } else if (db->db bI k| d == DMJ_SPI LL BLKI DTl
1266 rw_exit(&In->dn_struct _rw ock); 1331 db->db_l evel +1 == dn->dn_| nI evel s) {
1267 } 1332 ASSERT(db->db_bl kptr == NULL || db->db_parent == dn->dn_dbuf);
1333 mut ex_ent er (&dn->dn_nt x) ;
1269 dnode_setdirty(dn, tx); 1334 list_renmove(&dn->dn_dirty_records[txg & TXG MASK], dr);
1270 DB_DNODE_EXI T(db) ; 1335 mut ex_exi t (&n->dn_nt x) ;
1271 return (dr); 1336 }
1272 } 1337 DB_DNCDE_EXI T(db);
1274 | * 1339 if (db->db_state != DB_NOFILL) {
1275 * Undirty a buffer in the transaction group referenced by the given 1340 dbuf _unoverride(dr);
1276 * transaction. Return whether this evicted the dbuf.
641 * Return TRUE if this evicted the dbuf. 1342 ASSERT(db->db_buf != NULL);
1277 */ 1343 ASSERT(dr->dt.dl.dr_data = NULL) ;
1278 static bool ean_t 1344 if (dr->dt.dl.dr_data != db->db buf)
1279 dbuf _undirty(dmu_buf_inpl _t *db, dmu_tx_t *tx) 1345 VERI FY(arc_buf _renove_ref (dr->dt.dl.dr_data, db));
1280 { 1346 }
1281 dnode_t *dn; 1347 kmem free(dr, sizeof (dbuf_dirty_record_t));
1282 uint64_t txg = tx->tx_txg;
1283 dbuf _dirty_record_t *dr, **drp; 1349 ASSERT(db->db_dirtycnt > 0);
1350 db->db_dirtycnt -= 1;
1285 ASSERT(txg != 0);
1286 ASSERT(db- >db_bl kid!= DMJ_BONUS_BLKI D) ; 1352 if (refcount_renove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1287 ASSERTO(db- >db_| evel) ; 1353 arc_buf _t *buf = db->db_buf;
1288 ASSERT(MUTEX_HEL D &db- >db_ntx));
1355 ASSERT(db->db_state == DB_NOFILL || arc_rel eased(buf));
1290 I* 1356 dbuf _set _dat a(db, NULL)
1291 * |f this buffer is not dirty, we're done. 1357 VERI FY(arc buf _renove ref(buf db));
1292 */ 1358 dbuf _evi ct (db);
1293 for (drp = &b->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1359 return (B_TRUE);
1294 if (dr->dr_txg <= txg) 1360 }
1295 br eak;
1296 if (dr == NULL || dr- Sdr _txg < txg) 1362 return (B_FALSE);
1297 return (B_| FALSE) 1363 }
1298 ASSERT(dr->dr_txg == txg) __unchanged_portion_onitted_
1299 ASSERT(dr - >dr _dbuf == db);

new usr/src/uts/comon/fs/zfs/dbuf.c

2221 static void
2222 dbuf _sync_indirect (dbuf _dirty_record_t *dr, dmu_tx_t *tx)
2223 {

2224 dmu_buf _i npl _t *db = dr->dr_dbuf;

2225 dnode_t *dn;

2226 zio_t *zio;

2228 ASSERT(dmu_tx_i s_syncing(tx));

2230 dprintf_dbuf _bp(db, db->db_bl kptr, "blkptr=%", db->db_bl kptr);
2232 mut ex_ent er (&db- >db_nt x) ;

2234 ASSERT(db->db_| evel > 0);

2235 DBUF_VERI FY(db) ;

2237 /* Read the block if it hasn’t been read yet. */

2238 #endif /* | codereview */

2239 if (db->db_buf == NULL) {

2240 nmut ex eX|t(&db >db_nt x) ;

2241 (voi d) dbuf _read(db, NULL DB_RF_MJST_SUCCEED) ;
2242 mut ex_ent er (&db- >db_nt x) ;

2243 }

2244 ASSERT3U(db- >db_state, ==, DB_CACHED);

2245 ASSERT(db- >db_buf != NULL);

2247 DB_DNODE_ENTER(db) ;

2248 dn = DB_DNODE(db);

2249 /* Indirect block size nmust match what the dnode thinks it is.
2250 #endif /* ! codereview */

2251 ASSERT3U(db- >db. db_si ze, ==, 1<<dn->dn_phys->dn_i ndbl kshift);
2252 dbuf _check_bl kptr (dn, db);

2253 DB_DNODE_EXI T(db) ;

2255 /* Provide the pending dirty record to child dbufs */
2256 #endif /* | codereview */

2257 db- >db_dat a_pendi ng = dr;

2259 mut ex_exi t (&db->db_nt x) ;

2260 dbuf _write(dr, db->db_buf, tx);

2262 zio = dr->dr_zio;

2263 mut ex_enter (&dr->dt. di.dr_ntx);

2264 dbuf _sync_l i st (&dr->dt.di.dr chrldren tx);

2265 ASSERT(| i st _head(&dr - >dt . di . dr chrldren) == NULL);
2266 mut ex_exi t (&dr->dt. di.dr_ntx);

2267 zi 0o_nowai t (zi 0);

2268 }

2270 static void
2271 dbuf _sync_l eaf (dbuf _dirty_record_t *dr, dmu_tx_t *tx)

2272 {

2273 arc_buf _t **datap = &dr->dt.dl.dr_data;

2274 dmu_buf _i npl _t *db = dr->dr_dbuf;

2275 dnode_t *dn;

2276 obj set _t *os;

2277 uint64_t txg = tx->tx_txg;

2279 ASSERT(drmu_t x_i s_synci ng(tx));

2281 dprintf_dbuf _bp(db, db->db_bl kptr, "blkptr=%", db->db_bl kptr);
2283 mut ex_ent er (&db->db_nt x) ;

2284 /*

2285 * To be synced, we nust be dirtied. But we

2286 * mght have been freed after the dirty.

*/

13

new usr/src/uts/comon/fs/zfs/dbuf.c 14
2287 *

2288 if (db->db_state == DB_UNCACHED) {

2289 /* This buffer has been freed since it was dirtied */
2290 ASSERT(db- >db. db_data == NULL);

2291 } else if (db->db_state == DB_FILL) {

2292 /* This buffer was freed and is now being re-filled */
2293 ASSERT(db- >db. db_data != dr->dt.dl.dr_data);

2294 } else {

2295 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2296 }

2297 DBUF_VERI FY(db) ;

2299 DB_DNODE_ENTER(db) ;

2300 dn = DB_DNODE(db) ;

2302 if (db->db_blkid == DMJ_SPI LL_BLKI D) {

2303 mut ex enter(&dn ->dn_nt x) ;

2304 dn->dn_phys->dn_flags | = DNODE_FLAG SPI LL_BLKPTR;

2305 mut ex_exi t (&dn->dn_nt x) ;

2306 }

2308 /*

2309 * If this is a bonus buffer, sinply copy the bonus data into the
2310 * dnode. It will be witten out when the dnode is synced (and it
2311 * will be synced, since it nust have been dirty for dbuf_sync to
2312 * be called).

2313 */

2314 if (db->db_blkid == DMJ_BONUS_BLKI D) {

2315 dbuf _dirty_ record t **drp;

2317 ASSERT(*datap != NULL);

2318 ASSERTO(db- >db_| evel) ;

2319 ASSERT3U(dn- >dn_phys- >dn_bonusl en, <=, DN_MAX_BONUSLEN);
2320 bcopy(*dat ap, DN_BONUS(dn->dn phys) dn- >dn_phys- >dn_bonusl en) ;
2321 DB_DNODE_EXI T(db);

2323 if (*datap != db->db.db_data) {

2324 zi o_buf _free(*datap, DN_MAX_BONUSLEN);

2325 arc_space_r et ur n(DN_MAX_BONUSLEN, ARC SPACE_OTHER) ;
2326 }

2327 db- >db_dat a_pendi ng = NULL;

2328 drp = &b->db_l ast_dirty;

2329 while (*drp !=dr)

2330 drp &(*drp)->dr _next;

2331 ASSERT(dr - >dr next == NULL);

2332 ASSERT(dr - >dr _dbuf == db);

2333 *drp = dr->dr_next;

2334 kmem free(dr, si zeof (dbuf _dirty_record_t));

2335 ASSERT(db->db_dirtycnt > 0);

2336 db->db_dirtycnt -= 1;

2337 dbuf _rel e_and_unl ock(db, (void *)(uintptr_t)txg);

2338 return;

2339 }

2341 os = dn->dn_obj set;

2343 I*

2344 * This function may have dropped the db_ntx | ock allow ng a dmu_sync
2345 * operation to sneak in. As a result, we need to ensure that we
2346 * don’t check the dr_override_state until we have returned from
2347 * dbuf _check_bl kptr.

2348 */

2349 dbuf _check_bl kptr(dn, db);

2351 /*

2352 * |f this buffer is in the mddle of an imediate wite,

new usr/src/uts/comon/fs/zfs/dbuf.c 15 new usr/src/uts/comon/fs/zfs/dbuf.c
2353 * wait for the synchronous IO to conplete. 2419 ASSERT3U(dr - >dr _dbuf - >db. db_obj ect, ==,
2354 */ 2420 DMU_NMETA DNODE_OBJECT) ;
2355 while (dr->dt.dl.dr_override_state == DR IN DMJ SYNC) { 2421 br eak;
2356 ASSERT(dn- >dn_obj ect ! = DMJ_META_DNODE_OBJECT) ; 2422 }
2357 cv_wai t (&b- >db_changed, &db->db_nt x) ; 2423 list_remove(list, dr);
2358 ASSERT(dr->dt.dl.dr_override_state != DR _NOT_OVERRI DDEN) ; 2424 if (dr->dr_dbuf- Sdb_| evel > 0)
2359 } 2425 dbuf _sync_i ndirect (dr, tx);
2426 el se
2361 if (db->db_state != DB _NOFILL && 2427 dbuf _sync_| eaf (dr, tx);
2362 dn- >dn_obj ect != DMJ_META DNODE_OBJECT && 2428 }
2363 ref count _count (&b->db_hol ds) > 1 && 2429 }
2364 dr->dt.dl.dr_override_state | = DR _OVERRI DDEN &&
2365 *datap == db->db_buf) { 2431 /* ARGSUSED */
2366 /* 2432 static void
2367 * If this buffer is currently "in use" (i.e., there 2433 dbuf _wite_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2368 * are active holds and db_data still references it), 2434 {
2369 * then make a copy before we start the wite so that 2435 dmu_buf _i npl _t *db = vdb;
2370 * any nodifications fromthe open txg will not |eak 2436 dnode_t *dn;
2371 * into this wite. 2437 bl kptr_t *bp = zi o->i o_bp;
2372 * 2438 bl kptr_t *bp_orig = &zio->io_bp_orig;
2373 * NOTE: this copy does not need to be made for 2439 spa_t *spa = zio->i 0_spa;
2374 * objects only nodified in the syncing context (e.g. 2440 int64_t delta;
2375 * DNONE_DNODE bl ocks) . 2441 uintéd_t fill = 0;
2376 */ 2442 int i;
2377 int blksz = arc_buf_size(*datap);
2378 arc_buf _contents_t type = DBUF_ GET BUFC_TYPE(db) ; 2444 ASSERT(db- >db_bl kptr == bp);
2379 *datap = arc_buf _al | oc(os >0s_spa, blksz, db, type);
2380 bcopy(db->db. db_data, (*datap)->b_data, bl ksz); 2446 DB_DNODE_ENTER(db) ;
2381 } 2447 dn = DB_DNODE(db);
2382 db- >db_dat a_pendi ng = dr; 2448 delta = bp_get _dSI ze_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2449 dnode_di duse_space(dn, delta - zio->i o_prev_space_delta);
2384 mut ex_exi t (&db- >db_nt x) ; 2450 zi 0->i o_prev_space_delta = delta;
2386 dbuf _write(dr, *datap, tx); 2452 if (BP_I S_HCLE(bp)) {
2453 ASSERT(bp->bl k_fill == 0);
2388 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2454 DB_DNODE_EXI T(db) ;
2389 if (dn->dn Obj ect == DMJ_META DNODE_OBJECT) { 2455 return;
2390 list_insert_tail (&n->dn_dirty_records[txg&TXG MASK], dr); 2456 }
2391 DB_DNODE_EXI T(db) ;
2392 } else { 2458 ASSERT((db->db_bl ki d !'= DMJ_SPI LL_BLKI D &&
2393 /* 2459 BP_GET_TYPE(bp) == dn->dn_type) ||
2394 * Al though zio_nowait() does not "wait for an |10, it does 2460 (db->db_bl kid == DMJ_SPI LL_BLKI D &&
2395 * initiate the 10 If this is an enpty wite it seens plausible 2461 BP_GET_TYPE(bp) == dn >dn_bonustype));
2396 * that the 10 could actually be conpl eted before the nowait 2462 ASSERT(BP_GET_LEVEL(bp) == db->db_| evel);
2397 * returns. W need to DB _DNODE _EXI T() first in case
2398 */ zio_nowait() invalidates the dbuf. 2464 nmut ex_ent er (&db->db_nt x) ;
2399 *
2400 DB_DNCODE_EXI T(db) ; 2466 #ifdef ZFS DEBUG
2401 zi o_nowai t (dr->dr_zio); 2467 if (db->db_bl kid == DMJ_SPI LL_BLKI D) {
2402 } 2468 ASSERT(dn- >dn_phys->dn_f | ags & DNODE_FLAG_SPI LL_BLKPTR);
2403 } 2469 ASSERT(! (BP_I S_HOLE(db->db_bl kptr)) &&
2470 db->db_bl kptr == &dn->dn_phys->dn_spill);
2405 void 2471
2406 ?buf_sync_l ist(list_t *list, dmu_tx_t *tx) 2472 #endif
2407
2408 dbuf _dirty_record_t *dr; 2474 if (db->db_l evel == 0) {
2475 mut ex_ent er (&dn- >dn_nt x) ;
2410 while (dr = list_head(list)) { 2476 if (db->db_blkid > dn- >dn _phys->dn_naxbl ki d &&
2411 if (dr->dr_zio !'= NULL) { 2477 db->db_bl kid != DMJ_SPI LL_BLKI D)
2412 /* 2478 dn->dn_phys- >dn_naxbl ki d = db->db_bl ki d;
2413 * If we find an already initialized zio then we 2479 nmut ex_exi t (&n->dn_nt x) ;
2414 * are processing the neta-dnode, and we have finished.
2415 * The dbufs for all dnodes are put back on the |ist 2481 if (dn->dn_type == DMJU_OT. DNODE) {
2416 * during processing, so that we can zio_wait() 2482 dnode_phys t *dnp = db->db. db_dat a;
2417 * these |10Gs after initiating all child IGCs. 2483 for (i = db->db.db_size >> DNODE_SH FT; i > O;
2418] 2484 i--, dnp++) {

new usr/src/uts/comon/fs/zfs/dbuf.c 17

2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500

2502

2504
2505

2507
2508
2509

2511
2512
2513
2514
2515

2517
2518

2520
2521
2522
2523
2524
2525
2526
2527
2528
2529

2531
2532
2533

2535
2536
2537

2539
2541

2543
2544
2545
2546
2547
2548
2549
2550

if (dnp->dn_type != DMJ_OT_NONE)
fill++

} else {
fill =1;
} else {
bl kptr_t *ibp = db->db. db_dat a;
ASSERT3U(db >db. db_si ze, ==, 1<<dn->dn_phys->dn_i ndbl kshift);
for (i = db->db.db_size >> SPA BLKPTRSHIFT; i > 0; i--, |bp++) {
it (BP_I'S FOLE(i bp))
conti nue;

fill += ibp->blk_fill;
}
%B_DNCDE_EXIT(db);
bp->bl k_fill = fill;
mut ex_exi t (&db->db_nt x) ;

ARGSUSED */

static void

dbuf _write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2510 {

drmu_buf _i npl _t *db = vdb;

bl kptr_t *bp = zio->io_bp;

bl kptr_t *bp_orig = &zio->io_bp_orig;
uint64_t txg = zio->io_txg;

dbuf _dirty_record_t **drp, *dr;

ASSERTO(zi 0- >i o_error)
ASSERT(db- >db_bl kptr == bp);

/*

* For nopwites and rewites we ensure that the bp matches our
* original and bypass all the accounting.

S

if (zio-> o flags & (ZI O FLAG | O REWRITE | ZI O FLAG NOPWRI TE)) {
ASSERT(BP_EQUAL(bp, bp_orig));
} else {
obj set _t *os;
dsl _dataset _t *ds;
dmu_t x_t *tx;

DB_GET_OBJSET(&os, db);
ds = os->o0s_dsl _dat aset;
tx = 0s->0s_synctXx;

(void) dsl_dataset_block_kill(ds, bp_orig, tx, B TRUE);
dsl _dat aset _bl ock_born(ds, bp, tx);
}

mut ex_ent er (&db->db_nt x) ;
DBUF_VERI FY(db)

drp = &b->db_last _dirty;
whi | e ((dr = *dr p) != db->db_dat a_pendi ng)
= &dr->dr_next;
ASSERT(! I | st_l i nk_active(&dr->dr_dirty_node));
ASSERT(dr->dr _txg == txg);
ASSERT(dr - >dr _dbuf == db);
ASSERT(dr - >dr _next == NULL);
*drp = dr->dr_next;

new usr/src/uts/comon/fs/zfs/dbuf.c 18

2552 #ifdef ZFS_DEBUG

2553
2554

2556
2557
2558
2559
2560
2561
2562
2563 #endi f

2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576

2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595

2597
2598
2599
2600
2601
2602 }

i f(db->db_bl Ki = DMJ_SPI LL_BLKI D) {
dnode_t *dn;

DB_DNODE_ENTER(db) ;
dn = DB_DNCDE(db);
ASSERT(dn- >dn phys >dn_f| ags & DNODE_FLAG SPI LL_BLKPTR);
ASSERT(! (BP_I S_HOLE(db->db_bl kptr)) &&

db->db_bl kptr == &dn->dn_phys->dn_spill);
DB_DNODE_EXI T(db) ;

if (db->db_level == 0) {
ASSERT(db- >db_bl ki d ! = DMJ_BONUS_BLKI D) ;
ASSERT(dr->dt. dl .dr_override_state == DR_NOT_OVERRI DDEN) ;
if (db->db_state != DB_NOFILL) {
if (dr->dt.dl.dr_data != db->db_buf)
VERI EY(arc_buf _renove_ref (dr->dt.dl.dr_data,

else if (larc_| rel eased(db->db_buf))
arc_set _cal | back(db->db_buf, dbuf_do_evict, db);

} else {
dnode_t *dn;

DB_DNODE_ENTER(db) ;
dn = DB_DNODE(db) ;
ASSERT(Ti st head(&dr >dt . di.dr_children) == NULL);

ASSERT3U(db- >db. db_si ze, ==, 1<<dn->dn_phys->dn_| i ndbl kshi ft);
if (!BP_IS H(]_E(db >db_ bl kptr)) {
int epbs =

dn- >dn_phys->dn_i ndbl kshi ft - SPA_BLKPTRSHI FT;
ASSERT3U(BP_GET_LSI ZE(db->db_bl kptr), ==
db- >db. db_si ze) ;
ASSERTBU(dn->dn_phys->dn_naxb|kid
>> (db->db_| evel * epbs), >=db->db_bl kid);
arc_set _cal | back(db->db_buf, dbuf_do_evict, db);
}
DB_DNODE_EXI T(db) ;
mut ex_destroy(&dr->dt. di.dr_ntx);
list_destroy(&dr->dt.di.dr_children);

}
kmem free(dr, sizeof (dbuf_dirty_record_t));

cv_broadcast (&b- >db_changed) ;
ASSERT(db->db_dirtycnt > 0);

db->db_dirtycnt -= 1;

db- >db_dat a_pendi ng = NULL;

dbuf _rel e_and_unl ock(db, (void *)(uintptr_t)txg);

2604 static void
2605 dbuf _write_nofill_ready(zio_t *zio)

2606 {

2607 dbuf _write_ready(zio, NULL, zio->io_private)
2608 }

2610 static void

2611 dbuf _write_nofill_done(zio_t *zio)

2612 {

2613 dbuf _write_done(zio, NULL, zio->io_private)

2614 }

2616 static void

new usr/src/uts/comon/fs/zfs/dbuf.c

2617 dbuf _write_override_ready(zio_t *zio)

2618 {

2619 dbuf _dirty_record_t *dr = zio->io_private;

2620 dmu_buf _i npl _t *db = dr->dr_dbuf;

2622 dbuf _write_ready(zio, NULL, db);

2623 }

2625 static void

2626 dbuf _write_override_done(zio_t *zio)

2627 {

2628 dbuf _dirty_record_t *dr = zio->io_private;

2629 dmu_buf _inpl _t *db = dr->dr_dbuf;

2630 bl kptr_t *obp = &dr->dt.dl. dr_overri dden_by;

2632 mut ex_ent er (&db- >db_nt x) ;

2633 if (!BP_EQUAL(zio->io0 bp, obp)) {

2634 if (!BP_I'S_HOLE(obp))

2635 dsl _free(spa_get_dsl (zi o->i o_spa), zio->io_txg, obp);
2636 arc_rel ease(dr->dt.dl.dr_data, db);

2637 }

2638 mut ex_exi t (&db->db_nt x) ;

2640 dbuf _write_done(zio, NULL, db);

2641 }

2643 /* Issue I/Oto commit a dirty buffer to disk. */

2644 #endif /* | codereview */

2645 static void

2646 dbuf _write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)

2647 {

2648 dnu_buf _i npl _t *db = dr->dr_dbuf;

2649 dnode_t *dn;

2650 obj set _t *os;

2651 drmu_buf _i npl _t *parent = db->db_parent;

2652 uint64_t txg = tx->tx_txg;

2653 zbookmark_t zb;

2654 zio_prop_t zp;

2655 zio_t *zio;

2656 int wp_flag =

2658 DB_DNODE_ENTER(db) ;

2659 dn = DB_DNODE(db) ;

2660 0os = dn->dn_obj set;

2662 if (db->db_state != DB_NOFILL) {

2663 i f (db- >db level >0 || dn->dn_type == DMJ_OT_DNCDE) {
2664

2665 * Private object buffers are rel eased here rather
2666 * than in dbuf_dirty() since they are only nodified
2667 * in the syncing context and we don’t want the
2668 * overhead of neking nultiple copies of the data.
2669 *

2670 if (BP_IS_HOLE(db->db_bl kptr)) {

2671 ar c_buf _t haw(dat a) ;

2672 } else {

2673 dbuf _rel ease_bp(db);

2674 }

2675 }

2676 }

2678 if (parent != dn->dn_dbuf) {

2679 /* Qur parent is an indirect block. */

2680 /* We have a dirty parent that has been scheduled for wite.
2681 #endif /* | codereview */

2682 ASSERT(parent && parent ->db_dat a_pendi ng) ;

19

*/

new usr/src/uts/comon/fs/zfs/dbuf.c

2683
2684 #endi f
2685
2686
2687
2688
2689
2690 #endi f
2691
2692
2693
2694
2695 #endi f
2696
2697
2698
2699
2700
2701
2702
2703

2705
2706
2707

2709
2710
2711

2713
2714
2715

2717
2718

2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745 }

/* Qur parent’s buffer is one level closer to the dnode. */
coder evi ew */
;’ASSERT(db- >db_| evel == parent->db_| evel -1);
*
* We're about to nodify our parent’s db_data by nodifying
* our block pointer, so the parent nust be rel eased.
*
/
coder evi ew */
ASSERT(ar c_r el eased(par ent - >db_buf));
zi 0 = parent->db_dat a_pendi ng->dr _zi o;
} else {
/* Qur parent
coderevi ew */
ASSERT((db->db_I| evel == dn->dn_phys->dn_nl evel s-1 &&
db->db bl kid !'= DMJ SPILL _BLKID) ||
(db->db_bl kid == DMJ SPI LL_BLKI D &%
if (db->db_blkid != DMJ SPI LL_BLKI D)
ASSERT3P(db- >db_bl kptr, ==,
&dn- >dn_phys->dn_ bl kptr[db >db_bl ki d]);
zi o = dn->dn_zi o;

[* 1

[* 1

is the dnode itself. */
[* 1

db->db_l evel == 0));

}

ASSERT(db- >db_| evel == || data == db->db_buf);
ASSERT3U(db- >db_bl kptr->bl k_birth, <= txg);
ASSERT(zi 0) ;

SET_BOOKMARK(&b, os->o0s_dsl| _dat aset ?
0s->0s_dsl| _dat aset - >ds_obj ect : DMJ_META OBJSET,
db- >db. db_obj ect, db->db_I| evel, db->db_bl ki d);

if (db- >db bI kid == DMJ_SPI LL_BLKI D)
flag = W SPTLL;
wp_flag |— (db->db_state == DB_NOFILL) ? WP_NOFILL : O0;

dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
DB_DNODE_EXI T(db)
if (db->db_l evel == 0 && dr->dt.dl.dr_override_state == DR_OVERRI DDEN)

ASSERT(db- >db state ! = DB_NOFILL);

dr->dr_zio = zio_wite(zio, os->0s_spa, txg,
db->db_bl kptr, data->b_data, arc_buf_size(data), &zp,
dbuf _write overrlde _ready, dbuf _write_override done dr,
ZI O PRI ORI TY_ASYNC WRI TE, ZI O | FLAG MUSTSUCCEED, &zh) ;

mut ex_ent er (&b->db_nt X) ;

dr->dt.dl.dr_override_state = DR _NOT_OVERRI DDEN;
zio_wite_ overrlde(dr ->dr_zio, &r->dt.dl.dr overridden_by,
dr->dt.dl.dr_copies, dr->dt. dl. dr_nopwrite);

mut ex_exi t (&db- >db _mx);
} else if (db->db_state == DB NCFILL) {
ASSERT(zp. zp_checksum == ZI O_CHECKSUM OFF) ;
dr->dr_zio = zio_wrlte(2|o 0s->0s_spa, txg,
db->db_bl kptr, NULL, db->db.db_size, &zp,
dbuf _write_nofill ready dbuf _write_nofill
Z1 O PRI ORI TY_ASYNC WRI TE,
ZI O_FLAG _MUSTSUCCEED | ZI O FLAG NODATA, &zb);
} else {

ASSERT(arc g el eased(data));

dr->dr_zio = arc_wite(zio, o0s->0s_spa, txg,
db->db_bl kptr, data, DBUF_IS_L2CACHEABLE(db),
dbuf _write_ready, dbuf_wite_done, db,
ZI O PRI ORI TY_ASYNC WRI TE, ZI O | FLAG NUSTSUOCEED &zb);

_done, db,

&zp,

new usr/src/uts/comon/fs/zfs/dmu.c

R R R R

44142 Tue Apr 23 14:09:35 2013
new usr/src/uts/comon/fs/zfs/dm.c
3741 zfs needs better comments
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by:
Submi tted by:
Revi ewed by:

Justin G bbs <justing@pectral ogi c.conp
Al an Sorers <al ans@pectral ogi c. com>
Mat t hew Ahrens <mahr ens@lel phi x. com>

R R R R R R R R

__unchanged_portion_onitted_

1824 void

1825 dmu_fi ni (voi d)

1826 {

1827 arc_fini(); /* arc depends on |2arc, so arc must go first
1827 arc_fini();

1828 l2arc_fini();

1829 zfetch_fini();
1830 dbuf _fini();

1831 dnode_fini();

1832 dmu_obj set _fini();
1833 xuio_stat_fini();
1834 sa_cache_fini();
1835 zfs_dbgmsg_fini();
1836 }

__unchanged_portion_omtted_

*/

new usr/src/uts/comon/fs/zfs/dm_tx.c

R R R R

35492 Tue Apr 23 14:09: 36 2013
new usr/src/uts/comon/fs/zfs/dm_tx.c
3741 zfs needs better comments

Submi tted by:
Submi tted by:
Submi tted by:
Revi ewed by:

W1l Andrews <wi || a@pectral ogi c. con>
Justin G bbs <justing@pectral ogi c.conp
Al an Sorers <al ans@pectral ogi c. com>
Mat t hew Ahrens <mahr ens@lel phi x. com>

R R R R R R R R

__unchanged_portion_onitted_

1007 static void
1008 dmu_t x_unassi gn(dmu_tx_t *tx)

1009
1010

1012
1013

1015

1017
1018
1019
1020
1021
1022
1023
1024

1026
1027
1028
1029

1031
1032
1033
1034
1035
1036

1038

1040
1041
1042

1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057

1059
1061

{

dmu_t x_hol d_t *txh;

if (tx->tx_txg == 0)
return;

txg_rel e_to_qui esce(& x->tx_txgh);
/*

* Wal k the transaction’s hold Iist,
* associ ated dnode,
*

renmovi ng the hold on the

#endif /* ! codereview */

® ok kO R o Rk Ok 3k

S
i nt

Assign tx to a transaction group.

(1)

(2)

for (txh = 1ist_head(&t x->tx_holds);
txh = list_next (& x->tx_holds, txh)) {
dnode_t *dn = txh->txh_dnode;

if (dn == NULL)
conti nue;

nut ex_ent er (&dn- >dn _mtx);

ASSERT3U(dn- >dn_assi gned_t xg, ==, tx->tx_txg);

if (refcount_renove(&dn->dn_tx_holds, tx) == 0) {
dn->dn_assi gned_txg = O;
cv_broadcast (&n- >dn not xhol ds);

}
nmut ex_exi t (&dn->dn_nt x) ;

}
txg_rel e_to_sync(&t x->tx_txgh);

tx->tx_lasttried_txg
tx->tx_txg = 0O;

= tx->tx_txg;

t xg_how can be one of:

TXGWAIT. If the current open txg is full, waits until there’s
a new one. This should be used when you’ re not hol ding | ocks.

It will only fail if we're truly out of space (or over quota).
TXG NOMIT. If we can’'t assign into the current open txg w thout

bl ocking, returns imediately with ERESTART. This should be used
whenever you're holding locks. On an ERESTART error, the caller
shoul d drop | ocks, do a dmu_tx_wait(tx), and try again.

dmu_t x_assign(dnu_tx_t *tx, txg_how_ t txg_how)
1058 {

int err;

ASSERT(tx->tx_txg == 0);

and notifying waiters if the refcount drops to O.

txh I'= tx->tx_needassi gn_t xh;

new usr/src/uts/comon/fs/zfs/dm_tx.c

1062 ASSERT(txg_how == TXG WAIT || txg_how == TXG NOMAI T);

1063 ASSERT(! dsl _pool _sync_cont ext (tx- >t x pool));

1065 /* If we might wait, we nust not hold the config lock. */

1066 ASSERT(txg_how ! = TXGWAIT || !dsl_pool _config_hel d(tx->tx_pool));
1068 while ((err = dmu_tx_try_assign(tx, txg_how)) !'= 0) {

1069 dnu_t x_unassi gn(tx);

1071 if (err = ERESTART || txg_how != TXG WAIT)

1072 return (err);

1074 dnu_t x_wai t (tx);

1075 }

1077 txg_rel e_to_qui esce(& x->tx_txgh);

1079 return (0);

1080 }

1082 voi d

1083 dmu_tx_wait (dmu_tx_t *tx)

1084 {

1085 spa_t *spa = tx->tx_pool - >dp_spa;

1087 ASSERT(tx->tx_txg == 0);

1088 ASSERT(! dsl _pool _confi g_hel d(tx->tx_pool));

1090 /*

1091 * |t's possible that the pool has becone active after this thread
1092 * has tried to obtain a tx. If that’s the case then his

1093 * tx_lasttried_txg woul d not have been assigned.

1094 */

1095 if (spa_suspended(spa) || tx->tx_lasttried_txg == {

1096 txg_wai t _synced(tx->tx_pool, spa_last_synced_txg(spa) + 1);
1097 } else if (tx->tx_needassign_txh)

1098 dnode_t *dn = tx->tx_needassi gn_t xh->t xh_dnode;

1100 mut ex_ent er (&dn- >dn_nt x) ;

1101 whi | e (dn->dn_assi gned_txg == tx->tx_lasttried_txg - 1)
1102 cv_wai t (&dn->dn_| notxhol ds, &dn->dn_ntx);

1103 mut ex_exi t (&n->dn_nt x) ;

1104 t x- >t x_needassi gn_t xh = NULL;

1105 } else {

1106 txg_wai t _open(tx->tx_pool, tx->tx_|lasttried_txg + 1);
1107

1108 }

1110 void

1111 dmu_tx_wi | | use_space(dnu_tx_t *tx, int64_t delta)

1112 {
#i f def ZFS_DEBUG

1113
1114
1115

1117
1118
1119
1120
1121
1122
1123
1124
1125

1127

#endi f
}

voi d

if (tx->tx_dir == NULL || delta == 0)
return;

if (delta > 0)
ASSERT3U(r ef count _count (& x->t x_space_written) + delta, <=,
tx->tx_space_towite);
(void) refcount_add_many(& x->tx_space_written,
} else {
(void) refcount_add_many(&t x->t x_space_freed,

del ta,

-delta, NULL);

NULL) ;

new usr/src/uts/comon/fs/zfs/dm_tx.c

1128 dmu_t x_conmit (dnu_t x_t *tx)

1129
1130

1132

1134
1135
1136
1137
1138
1139
1140

1142
1143
1144
1145
1146
1147

1149
1150
1151
1152
1153
1154
1155

1157
1158

1160
1161

1163
1164

1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178

1180
1181

1183
1185

1187
1188

1190
1191
1192
1193

{

dmu_t x_hol d_t *txh;
ASSERT(tx->tx_txg != 0);
/*

* CGo through the transaction's hold Iist and renmove hol ds on
* associ ated dnodes, notifying waiters if no holds remain.
*/

#endi f /* | codereview */

while (txh = list_head(& x->tx_holds)) {
dnode_t *dn = txh->txh_dnode;

list_renmove(& x->tx_holds, txh);
kmem free(txh, sizeof (dmu_tx_hold_t));
if (dn == NULL)
cont i nue;
nmut ex_ent er (&dn->dn_nt x) ;

ASSERT3U(dn->dn_assi gned_t xg, ==, tx->tx_txg);

if (refcount_renove(&dn->dn_tx_holds, tx)
dn->dn_assi gned_txg = O;
cv_broadcast (&dn->dn_ not xhol ds);

mut ex_exi t (&dn->dn_nt x) ;
dnode_rel e(dn, tx);

}

if (tx->tx_tenpreserve_cookie)

dsl _dir_tenpreserve_cl ear(tx->tx_tenpreserve_cooki e,

if (!list_is_enpty(& x->tx_callbacks))

tx)

txg_regi ster_cal | backs(&t x->tx_t xgh, &t x->tx_callbacks);

if (tx->tx_anyobj == FALSE)
txg_rele_to_sync(& x->tx_txgh);

I'ist_destroy(& x->tx_cal |l backs);
l'ist_destroy(& x->tx_hol ds);

#i f def ZFS_DEBUG

#endi f

}

voi d

dprintf("towite=%lu witten=%|u tofree=%Ilu freed=%1Iu\n",

tx->tx_space_towite, refcount_count (& x->tx_space_! ertten)

tx->tx_space_tofree, refcount_count (& x->tx_space_freed));

ref count _destroy_many(& x- >t x_space_witten,
refcount _count (& x- >t x_space_witten));

ref count _destroy_many(&t x- >t x_space_freed,
ref count _count (& x- >t x_space_freed));

kmem free(tx, sizeof (dmu_tx_t));

dmu_t x_abort (dmu_tx_t *tx)
1182 {

drmu_t x_hol d_t *txh;
ASSERT(tx->tx_txg == 0);

while (txh = Iist head(&Ix >t x_hol ds)) {
dnode_t *dn = txh->txh_dnode;

list_remove(& x->tx_holds, txh);
kmem free(txh, sizeof (dmu_tx_hold_t));
if (dn !'= NULL)

dnode_rel e(dn, tx);

new usr/src/uts/comon/fs/zfs/dm_tx.c

1194 }

1196 /*

1197 * Call any registered callbacks with an error code.
1198 *

1199 if (!list_is_enmpty(& x->tx_call backs))

1200 dmu_t'x_do_cal | backs(&t x->t x_cal | backs, ECANCELED);
1202 l'i st _destroy(&tx->tx_call backs);

1203 I'ist_destroy(& x->tx_hol ds);

1204 #ifdef ZFS_DEBUG

1205 ref count _destroy_many(& x->tx_space_witten,

1206 refcount _count (& x- >t x_space_witten));

1207 ref count _destroy_many(& x- >t x_space_freed,

1208 ref count _count (& x- >t x_space_freed));

1209 #endi f

1210 kmem free(tx, sizeof (dmu_tx_t));

1211 }

1213 uint64_t

1214 dmu_t x_get _txg(dnu_t x_t *tx)

1215 {

1216 ASSERT(tx->tx_txg != 0);

1217 return (tx->tx_txg);

1218 }

1220 dsl _pool _t *

1221 dmu_t x_pool (drmu_tx_t *tx)

1222

1223 ASSERT(t x- >t x_pool != NULL);

1224 return (tx->tx_pool);

1225 }

1228 void

1229 dmu_t x_cal | back_regi ster(dmu_tx_t *tx, dnmu_tx_call back_func_t
1230 {

1231 dmu_t x_cal | back_t *dchb;

1233 dcb = knmem al | oc(si zeof (dmu_tx_callback_t), KM SLEEP);
1235 dcb->dcb_func = func;

1236 dcb->dcb_data = dat a;

1238 list_insert_tail (& x->tx_call backs, dcb);

1239 }

1241 /*

1242 * Call all the commt callbacks on a list, with a given error code.
1243 */

1244 void

1245 dmu_t x_do_cal | backs(list_t *cb_list, int error)

1246 {

1247 dmu_t x_cal | back_t *dcb;

1249 while (dcb = Iist_head(cb_list)) {

1250 list_remove(ch_list, dcb);

1251 dch->dch _func(dcb- >dcb data error);

1252 kmem free(dch, sizeof (dr’ruft x_cal | backft));
1253 }

1254 }

1256 /*

1257 * Interface to hold a bunch of attributes.

1258 * used for creating new files.

1259 * attrsize is the total size of all attributes

*func,

voi d *data)

new usr/src/uts/comon/fs/zfs/dm_tx.c 5

1260 * to be added during object creation
1261 *
1262 * For updating/adding a single attribute dnu_tx_hol d_sa() should be used.
1263 */

1265 /*
1266 * hol d necessary attribute nane for attribute registration.
1267 * should be a very rare case where this is needed. |If it does

1268 * happen it would only happen on the first wite to the file system
1269 */

1270 static void

1271 dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)

1272 {

1273 int i;

1275 if (!sa->sa_need_attr_registration)
1276 return;

1278 for (i =0; i !'=sa->sa_numattrs; i++) {

1279 if (sa->sa_attr_table[i].sa_registered) {

1280 if (sa->sa_reg_attr_obj)

1281 drmu_t x_hol d_zap(tx, sa->sa_reg_attr_obj,
1282 "B _TRUE, sa->sa_attr_table[i].sa_name);
1283 el se

1284 dmu_t x_hol d_zap(tx, DMJ_NEW OBJECT,

1285 B TRUE, sa->sa_attr_table[i].sa_nane);
1286 }

1287 }

1288 }

1291 void

1292 dmu_tx_hol d_spill (dmu_tx_t *tx, uint64_t object)
1293 {

1294 dnode_t *dn;

1295 drmu_t x_hol d_t *txh;

1297 txh = dnu_t x_hol d_obj ect _i npl (tx, tx->tx_objset, object,
1298 THT_SPILL, 0, 0);

1300 dn = txh->t xh_dnode;

1302 if (dn == NULL)
1303 return;

1305 /* |f blkptr doesn't exist then add space to towite */
1306 if (!(dn->dn_phys->dn_flags & DNODE_FLAG SPILL_BLKPTR)) {
1307 txh->t xh_space_towite += SPA MAXBLOCKSI ZE;

1308 } else {

1309 bl kptr_t *bp;

1311 bp = &dn->dn_phys->dn_spi |

1312 if (dsl_dataset_bl ock freeabl e(dn->dn_obj set - >os_dsl| _dat aset,
1313 bp, ~bp- >bl k_bi rt h))

1314 t xh- >t xh_space_t ooverwrite += SPA_MAXBLOCKSI ZE;

1315 el se

1316 txh->t xh_space_towite += SPA MAXBLOCKSI ZE;

1317 if (!BP_IS_HOLE(bp))

1318 t xh- >t xh_space_t ounref += SPA_MAXBLOCKSI ZE;

1319 }

1320 }

1322 void

1323 dmu_t x_hol d_sa_create(dmu_tx_t *tx, int attrsize)
1324 {

1325 sa_os_t *sa = tx->tx_obj set->0s_sa;

new usr/src/uts/comon/fs/zfs/dm_tx.c

1327 drmu_t x_hol d_bonus(tx, DMJ_NEW OBJECT);

1329 if (tx->tx_objset->0s_sa->sa_master_obj == 0)

1330 return;

1332 if (tx->tx_objset->0s_sa->sa_|l ayout_attr_obj)

1333 dnu_t x_hol d_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1334 el se {

1335 drmu_t x_hol d_zap(tx, sa->sa_naster_obj, B_TRUE, SA LAYOUTS);
1336 dmu_t x_hol d_zap(tx, sa->sa_master_obj, B TRUE, SA REG STRY)
1337 dmu_t x_hol d_zap(tx, DMJ_NEW OBJECT, B TRUE, NULL):

1338 dnu_t x_hol d_zap(tx, DMJ_NEW OBJECT, B_TRUE, NULL);

1339 }

1341 dmu_t x_sa_regi stration_hol d(sa, tx);

1343 if (attrsize <= DN_MAX_BONUSLEN && !sa->sa_force_spill)

1344 return;

1346 (voi d) dnu_t x_hol d_obj ect _i npl (tx, tx->tx_objset, DMJ_NEW OBJECT,
1347 THT_. SPILL, O, 0);

1348 }

1350 /*

1351 * Hold SA attribute

1352 *

1353 * dmu_tx_hol d_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)

1354 *

1355 * variable_size is the total size of all variable sized attributes

1356 * passed to this function. It is not the total size of all

1357 * variable size attributes that *may* exist on this object.

1358 */

1359 voi d

1360 dmu_t x_hol d_sa(dmu_tx_t *tx, sa_handle_t *hdl, bool ean_t nmay_grow)
1361 {

1362 ui nt64_t object;

1363 sa_o0s_t *sa = tx->tx_objset->0s_sa;

1365 ASSERT(hdl != NULL);

1367 obj ect = sa_handl e_obj ect (hdl);

1369 drmu_t x_hol d_bonus(tx, object);

1371 if (tx->tx_objset->0s_sa->sa_master_obj == 0)

1372 return;

1374 if (tx->tx_objset->0s_sa->sa_reg_attr_obj == 0 ||

1375 t x- >t x_obj set - >0s_sa- >sa_| ayout _attr ob] ==

1376 dmu_t x_hol d_zap(tx, sa->sa_naster_obj, B_TRUE, SA_LAYQUTS) ;
1377 drmu_t x_hol d_zap(tx, sa->sa_naster _obj, B _TRUE, SA REG STRY);
1378 dmu_t x_hol d_zap(tx, DMJ NEW OBJECT, B TRUE, NULL);

1379 dmu_t x_hol d_zap(tx, DMJU_NEW OBJECT, B_TRUE, NULL);

1380 }

1382 dmu_t x_sa_regi stration_hol d(sa, tx);

1384 if (may_grow && tx->tx_objset->0s_sa->sa_|l ayout_attr_obj)

1385 dmu_t x_hol d_zap(tx, sa->sa_layout_attr_obj, B TRUE, NULL);
1387 if (sa->sa_force_spill || may_grow || hdl->sa_spill) {

1388 ASSERT(t x->tx_txg == 0);

1389 drmu_t x_hol d_spi | | (tx, ob] ect);

1390 } else {

1391 drmu_buf _inmpl _t *db = (dnu_buf _i npl _t *)hdl - >sa_bonus;

new usr/src/uts/ comon/fs/zfs/dm_tx.c 7

1392 dnode_t *dn;

1394 DB_DNODE_ENTER(db) ;

1395 dn = DB_DNODE(db) ;

1396 if (dn->dn_have_spill) {

1397 ASSERT(tx->tx_txg == 0);

1398 dmu_t x_hol d_spi I I (tx, object);
1399 }

1400 DB_DNODE_EXI T(db) ;

1401 }

1402 }

new usr/src/uts/comon/fs/zfs/dmu_zfetch.c

R R R R

19144 Tue Apr 23 14:09: 36 2013
new usr/src/uts/comon/fs/zfs/dmu_zfetch.c
3741 zfs needs better comments
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Justin G bbs <justing@pectral ogi c.conp
Submi tted by: Al an Sorers <al ans@pectral ogi c. com>
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. com>

R R R R R R R R

1/*

2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww.opensol aris.org/os/licensing.
10 * See the License for the specific | anguage governing perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 =
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.
23 * Use is subject to license terns.
*

/

26 #include <sys/zfs_context.h>
27 #include <sys/dnode. h>

28 #include <sys/dnu_obj set. h>
29 #include <sys/dnu_zfetch. h>
30 #include <sys/dnu. h>

31 #include <sys/dbuf.h>

32 #include <sys/kstat.h>

34 /*

35 * |’m agai nst tune-ables, but these should probably exist as tweakable globals

36 * until we can get this worklng the way we want it to.
37 */

39 int zfs_prefetch_disable = 0;

41 /* max # of streams per zfetch */

42 uint32_t zfetch_max_streans = 8;

43 /* min time before streamreclaim*/

44 uint32_t zfetch_m n_sec_reap = 2;

45 /* max nunber of blocks to fetch at a tine */

46 uint32_t zf et ch_bl ock_cap = 256;

47 |* nunber of bytes in a array_read at which we stop prefetching (1M) */
48 uint64_t zfetch_array_rd_sz = 1024 * 1024;

50 /* forward decls for static routines */

51 static bool ean_t dmu_zfetch_colinear(zfetch_t *, zstreamt *);

51 static int drmu_zfetch_colinear(zfetch t *, zstreamt *);

52 static void dmu_zfetch_dofetch(zfetch_t *, zstreamt *);

53 static uint64_t dmu_zfetch_fetch(dnode_t *, uint64_t, uint 64 _t);
54 static uint64_t drmu_zfetch_fetchsz(dnode_t *, uint64_t, uint64 t)
55 static bool ean_t dmu_zfetch_find(zfetch_t *, zstreamt *, int);
55 static int dmu_zfetch_find(zfetch_t *, zstreamt *, int);

new usr/src/uts/comon/ fs/zfs/dmu_zfetch.c

56 static int dmu_zfetch_stream.insert(zfetch_t *, zstreamt *);
57 static zstreamt *dmu_zfetch_streamrecl ai n{zfetch_t *);

58 static void dmu_zfetch_streamrenove(zfetch_t *, zstreamt

59 static int dmu_zfetch_streans_equal (zstreamt *, zstreamt *);
61 typedef struct zfetch_stats {

62 kstat _naned_t zfetchstat_hits;

63 kstat _nanmed_t zfetchstat_m sses;

64 kstat_nanmed_t zfetchstat_colinear_hits;

65 kstat _named_t zfetchstat_colinear_m sses;

66 kstat _named_t zfetchstat_stride_hits;

67 kstat _nanmed_t zfetchstat_stride_m sses;

68 kstat _naned_t zfetchstat_recl ai msuccesses;

69 kstat _named_t zfetchstat_reclaimfailures;

70 kstat _nanmed_t zfetchstat_streamresets;

71 kstat _nanmed_t zfetchstat_streamnoresets;

72 kstat _nanmed_t zfetchstat_bogus_streans;

73 } zfetch_stats_t;
__unchanged_porti on _omtted_

89 #define ZFETCHSTAT_ | NCR(stat, val) \
90 atom c_add_64(&zfetch_stats.stat.val ue.ui 64, (val));

92 #define ZFETCHSTAT_BUMP(stat) ZFETCHSTAT_I NCR(stat, 1);

94 kstat_t *zfetch_ksp;

96 /*

97 * Gven a zfetch structure and a zstream structure, determ ne whether the
98 * blocks to be read are part of a co-linear pair of existing prefetch
99 * streans. |If a set is found, coal esce the streans, renoving one, and
100 * configure the prefetch so it ooks for a strided access pattern.

101 *

102 * In other words: if we find two sequential access streans that are
103 * the sanme length and distance N appart, and this read is N fromthe
104 * last stream then we are probably in a strided access pattern. So
105 * conbine the two sequential streams into a single strided stream

106 *

107 * Returns whether co-linear streanms were found.

107 * If no co-linear streans are found, return NULL.

108 */

109 static bool ean_t

109 static int

110 dmu_zfetch_colinear(zfetch_t *zf, zstreamt *zh)

111 {

112 zstream t *z_wal k;

113 zstream t *z_conp;

115 if (! rw_tryenter(&f->zf_rw ock, RWWRI TER))

116 return (0);

118 if (zh == NULL) {

119 rw_exit (&zf->zf _rw ock);

120 return (0);

121 }

123 for (z_walk = list_head(&zf->zf_stream; z_walk;

124 z_walk = Ii st_next(&zf—>zf_stream z_wal k)) {

125 for (z_conp = |ist_next(&f->zf_stream z_walk); z_conp;
126 z_comp = |ist_next(&f->zf_stream z_conp)) {
127 int64_t diff;

129 if (z_wal k->zst_len !'= z_wal k->zst_stride ||
130 z_conp->zst_len = z_conp->zst_stride) {
131 conti nue;

132 }

new usr/src/uts/comon/fs/zfs/dmu_zfetch.c 3

344

/

134 diff = z_conp->zst_offset - z_wal k->zst_of fset;
135 if (z_conp->zst_offset + diff == zh->zst_offset) {
136 z_wal k->zst _of fset = zh->zst_offset;
137 z_wal k->zst _direction = diff <0 ? -1: 1;
138 z_wal k->zst _stride =
139 diff * z_wal k->zst_direction;
140 z_wal k- >zst _ph_offset =
141 zh->zst _of fset + z_wal k->zst_stride;
142 drmu_zfetch_streamrenove(zf, z_conp);
143 mut ex_destroy(&_conp->zst _| ock);
144 kmem free(z_conp, sizeof (zstreamt));
146 drmu_zfetch_dof etch(zf, z_walk);
148 rw_exit(&zf->zf _rw ock);
149 return (1);
150 }
152 diff = z_wal k->zst_offset - z_conp->zst_of fset;
153 if (z_wal k->zst_offset + diff == zh->zst_offset) {
154 z_wal k->zst _of fset = zh->zst_offset;
155 z_wal k->zst _direction = diff <0 ? -1: 1;
156 z_wal k->zst _stride =
157 diff * z_wal k->zst _direction;
158 z_wal k- >zst _ph_of fset =
159 zh->zst _offset + z_wal k->zst_stride;
160 drmu_zfetch_streamrenove(zf, z_conp);
161 mut ex_destroy(&z_conp->zst _| ock) ;
162 kmem free(z_conp, sizeof (zstreamt));
164 drmu_zfetch_dofetch(zf, z_walk);
166 rw_exit (&f->zf _rw ock);
167 return (1);
168 }
169 }
170 }
172 rw_exit(&f->zf _rw ock);
173 return (0);
174 }
__unchanged_portion_onitted_
324 | *
325 * given a zfetch and a zstream structure, see if there is an associ ated zstream
326 * for this block read. |If so, it starts a prefetch for the streamit
327 * located and returns true, otherwise it returns fal se
328 *
329 static bool ean_t
329 static int
330 dmu_zfetch_find(zfetch_t *zf, zstreamt *zh, int prefetched)
331 {
332 zstream t *zs;
333 int64_t diff;
334 int reset = !prefetched;
335 int rc = 0;
337 if (zh == NULL)
338 return (0);
340 /*
341 * XXX: This locking strategy is a bit coarse; however, it’'s inpact has
342 * yet to be tested. |If this turns out to be an issue, it can be
343 * nodified in a nunber of different ways.
*

new usr/src/uts/comon/ fs/zfs/dmu_zfetch.c

346
347

349
350

352
353
354
355
356
357
358
359

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

377
378
379
380
381
382

384
386

388
389
390
391
392
393
394
395
396
397
398
399

401

403
404
405
406
407

409

rw_enter (&zf->zf _rw ock, RW READER);

for (zs = |ist_head(&zf->zf_stream; zs;

i st_next (&zf->zf_stream zs)) {

/*
* XXX - should this be an assert?
*
/
if (zs->zst_len == 0) {
/* bogus stream */
ZFETCHSTAT_BUMP(zf et chst at _bogus_st r eans) ;
conti nue;
}
/*

* W hit this case when we are in a strided prefetch stream
*we will read "len" blocks before "striding".
*
/
if (zh->zst_offset >= zs->zst_offset &&
zh->zst_offset < zs->zst_offset + zs->zst_len) {
if (prefetched) {
/* already fetched */
ZFETCHSTAT_BUMP(zf et chstat _stride_hits);
rc = 1;
goto out;
} else {
ZFETCHSTAT_BUMP(zf et chstat _stri de_nmi sses);

}

*

* This is the forward sequential read case: we increnent

* len by one each tine we hit here, so we will enter this

* case on every read.

*

if (zh->zst_offset == zs->zst_offset + zs->zst_len) {
reset = lprefetched & zs->zst_len > 1;

nut ex_ent er (&zs->zst _| ock);

if (zh->zst_offset != zs->zst_offset + zs->zst_len) {
mut ex_exi t (&zs->zst _| ock);
goto top;

zs->zst _len += zh->zst_len;
diff = zs->zst_len - zfetch_bl ock_cap;
if (diff >0) {
zs->zst _offset += diff;
zs->zst_len = zs->zst_len > diff ?
zs->zst _len - diff : O;

}
zs->zst_direction = ZFETCH_FORWARD;
break;

/*

* Same as above, but readi ng backwards through the file.

*

/

} else if (zh->zst_offset == zs->zst_offset - zh->zst_len) {

/* backwards sequential access */

reset = lprefetched & zs->zst_len > 1;

new usr/src/uts/comon/fs/zfs/dmu_zfetch.c

411

413
414
415
416

418
419
420
421
422

424
425
426
427
428
429
430
431

433

435
436
437

439

441
442
443
444
445

447
448

450

452
453
454

456

458
459
460
461
462

464
465
466
467
468
469

471
472
473

475
476

nut ex_ent er (&zs->zst _| ock);

if (zh->zst_offset != zs->zst_offset - zh->zst_len) {

mut ex_exi t (&zs->zst _| ock) ;
goto top;
}

zs->zst_offset = zs->zst_offset > zh->zst_len ?

zs->zst_offset - zh->zst_len : O;

zs->zst _ph_offset = zs—>zst_5h_offsef > zh->zst_len ?

zs->zst_ph_offset - zh->zst_len : 0;
zs->zst_len += zh->zst_len;

diff = zs->zst_len - zfetch_bl ock_cap;
if (diff > 0) {

zs->zst _ph_of fset = zs->zst_ph_offset > diff ?
270

zs->zst _ph_offset - diff : 0;
zs->zst_len = zs->zst_len > diff ?
zs->zst _len - diff zs->zst _l en;
}
zs->zst _direction = ZFETCH_BACKWARD,

break;

} else if ((zh->zst_offset - zs->zst_offset - zs->zst_stride <

zs->zst_len) && (zs->zst_len != zs->zst_stride))
/* strided forward access */

nut ex_ent er (&zs- >zst _| ock);

if ((zh->zst_offset - zs->zst_offset - zs->zst_stride >=

zs->zst_len) || (zs->zst_len == zs->zst_stride)) {
mut ex_exi t (&s->zst _| ock) ;
goto top;

}

zs->zst _of fset += zs->zst_stride;
zs->zst _direction = ZFETCH_FORWARD;

break;

} else if ((zh->zst_offset - zs->zst_offset + zs->zst_stride <

zs->zst_len) && (zs->zst_len != zs->zst_stride)) {
/* strided reverse access */

nut ex_ent er (&zs->zst _| ock);

if ((zh->zst_offset - zs->zst_offset + zs->zst_stride >=
zs->zst_len) || (zs->zst_len == zs->zst_stride)) {

mut ex_exi t (&zs->zst _| ock);
goto top;
}

zs->zst _offset = zs->zst_offset > zs->zst_stride ?

zs->zst_offset - zs->zst_stride : 0;
zs->zst _ph_of fset = (zs->zst_ph_offset >

(2 * zs->zst_stride)) ?

(zs->zst_ph_offset - (2 * zs->zst_stride))
zs->zst _direction = ZFETCH _BACKWARD,

break;

}

if (zs) {
if (reset) {

0;

new usr/src/uts/comon/fs/zfs/dmu_zfetch.c

477 zstreamt *renobve = zs;

479 ZFETCHSTAT_BUMP(zf et chst at _stream resets);

480 rc =0;

481 nut ex_exi t (&zs->zst _| ock);

482 rw_exit(&f->zf_rw ock);

483 rw_enter (&zf->zf_rw ock, RWWRI TER);

484 /*

485 * Relocate the stream in case soneone renoves
486 * it while we were acquiring the WRI TER | ock.
487 */

488 for (zs = list_head(&zf->zf_strean); zs;

489 zs = |ist_next(&zf->zf_stream zs)) {

490 if (zs == renove)

491 dmu_zf et ch_streamrenove(zf, zs);
492 mut ex_dest roy(&s->zst _| ock);
493 kmem free(zs, sizeof (zstreamt));
494 br eak;

495 }

496 }

497 } else {

498 ZFETCHSTAT_BUMP(zf et chst at _stream nor esets) ;
499 rc = 1;

500 dmu_zfetch_dof etch(zf, zs);

501 nut ex_exi t (&s->zst _| ock);

502 }

503 }

504 out:

505 rw_exit(&f->zf _rw ock);

506 return (rc);

507 }

__unchanged_portion_onitted_

633 /*
634 * This is the prefetch entry point.
635 * routines to create, delete, find,

It calls all

of the other dnu_zfetch

or operate upon prefetch streans.

636 */

637 void

638 dmu_zfetch(zfetch_t *zf, uint64_t offset, uint64_t size, int prefetched)
639 {

640 zstream t zst;

641 zstream t *newst ream

642 bool ean_t f et ched;

642 int f et ched;

643 int i nserted,;

644 unsi gned i nt bl kshft;

645 ui nt 64_t bl ksz;

647 if (zfs_prefetch_disable)

648 return;

650 /* files that aren’t I n2 blocksz are only one block -- nothing to do */
651 if (!zf->zf_dnode->dn_dat abl kshift)

652 return;

654 /* convert offset and size, into blockid and nbl ocks */
655 bl kshft = zf->zf_dnode->dn_dat abl kshi ft;

656 bl ksz = (1 << blkshft);

658 bzero(&zst, sizeof (zstreamt));

659 zst.zst_offset = of fset >> bl kshft;

660 zst.zst_len = (P2ROUNDUP(of f set + size, blksz) -

661 P2ALI GN\(of f set, bl ksz)) >> bl kshft;

663 fetched = dmu_zfetch_find(zf, &st, prefetched);

664 if (fetched) {

new usr/src/uts/comon/fs/zfs/dmu_zfetch.c

665 ZFETCHSTAT_BUMP(zf et chstat _hits);

666 } else {

667 ZFETCHSTAT_BUMP(zf et chst at _mi sses);

668 fetched = dnu_zfetch_colinear(zf, &zst);

669 if (fetched)

668 if (fetched = dnu_zfetch_colinear(zf, &st)) {

670 ZFETCHSTAT_BUMP(zf et chst at _col i near _hi ts);
671 } else {

672 ZFETCHSTAT_BUMP(zf et chst at _col i near _mi sses);
673

674 1

676 if (!fetched) {

677 newstream = dmu_zfetch_streamreclai n(zf);

679 /*

680 * we still couldn't find a stream drop the lock, and allocate
681 * one if possible. Oherw se, give up and go hone.
682 */

683 if (newstream {

684 ZFETCHSTAT_BUMP(zf et chst at _r ecl ai m successes);
685 } else {

686 ui nt 64_t maxbl ocks;

687 ui nt32_t mex_streans;

688 ui nt32_t cur_strearns;

690 ZFETCHSTAT_BUMP(zf et chst at _recl ai m fail ures);
691 cur_streams = zf->zf_streamcnt;

692 maxbl ocks = zf->zf_dnode- >dn_mexbl ki d;

694 max_streanms = M N(zfetch_max_streans,

695 (maxbl ocks / zfetch_bl ock_cap));

696 if (max_streans == 0) {

697 max_streans++;

698 }

700 if (cur_streans >= max_streans) {

701 return;

702

703 newst ream = knmem zal | oc(si zeof (zstreamt), KM SLEEP);
704 }

706 newstream >zst _of fset = zst.zst_offset;

707 newstream >zst_|l en = zst.zst_len;

708 newstream >zst_stride = zst.zst_len;

709 newstream >zst_ph_of fset = zst.zst_len + zst.zst_offset;
710 newstream >zst _cap = zst.zst_len;

711 newstream >zst _directi on = ZFETCH_FORWARD;

712 newstream >zst_| ast = ddi _get_lbolt();

714 mut ex_i ni t (&ewstream >zst_| ock, NULL, MJUTEX_DEFAULT, NULL);
716 rw_ent er (&f->zf _rw ock, RWWR TER);

717 inserted = dmu_zfetch_stream.insert(zf, newstream;
718 rw_exit (&zf->zf _rw ock);

720 if (linserted) {

721 nut ex_destr oy(&newst ream >zst _| ock);

722 kmem free(newstream sizeof (zstreamt));

723 }

724

725 }

__unchanged_portion_omtted_

new usr

*ok ok ok ok ok Kk

174736 Tue Apr

new usr/src/uts/comron/fs/zfs/spa.c
3741 zfs needs better comments
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Justin G bbs <justing@pectral ogi c.conp
Submi tted by: Al an Sorers <al ans@pectral ogi c. com>
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. com>
IR E SRS E RS RS EE SRR R R R R R R R R RS EEEEEEEREEEEEEEERERSE]
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License")
6 * You may not use this file except in conpliance with the License
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing
10 * See the License for the specific | anguage governing perm ssions
11 * and limtations under the License
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE
15 * |f applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 =
19 * CDDL HEADER END
20 */
22 | *
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved
24 * Copyright (c) 2013 by Del phix. Al rights reserved
25 * Copyright 2013 Nexenta Systens, Inc. Al rights reserved
26 */
28 [*
29 * SPA: Storage Pool Allocator
30 *
31 #endif /* | codereview */
32 * This file contains all the routines used when nodifying on-di sk SPA state
33 * This includes opening, inporting, destroying, exporting a pool, and syncing a
34 * pool
35 */
37 #include <sys/zfs_context.h>
38 #include <sys/fnlfs/zfs.h>
39 #include <sys/spa_inpl.h>

40 #i
41 #i
42 #i
43 #i
44 #i
45 #i
46 #i
47 #i
48 #i
49 #i
50 #i
51 #i
52 #i
53 #i
54 #i
55 #i
56 #i
57 #i

/'src/uts/ common/ fs/zfs/spa.c

R R R R

23 14:09: 36 2013

ncl ude <sys/zio. h>

ncl ude <sys/zi o_checksum h>
ncl ude <sys/dnu. h>

ncl ude <sys/dmu_t x. h>

ncl ude <sys/zap. h>

ncl ude <sys/zil.h>

ncl ude <sys/ddt. h>

ncl ude <sys/vdev_i npl.h>

ncl ude <sys/ netasl ab. h>

ncl ude <sys/netasl ab_i npl . h>
ncl ude <sys/ uberbl ock_i npl . h>
ncl ude <sys/txg. h>

ncl ude <sys/avl.h>

ncl ude <sys/dnmu_traverse. h>
ncl ude <sys/dnu_obj set. h>
ncl ude <sys/uni que. h>

ncl ude <sys/dsl _pool . h>

ncl ude <sys/dsl _dat aset. h>

new usr/src/uts/comron/fs/zfs/spa.c

123

#
#
#
#
#
#
#i
#i
#i
#i
#i
#i

#i f def

#
#
#
#
#
#

#endi f

#
#

typedef enum zti

ncl ude <sys/dsl _dir.h>

ncl ude <sys/dsl _prop. h>
ncl ude <sys/dsl _synctask. h>
ncl ude <sys/fs/zfs.h>

ncl ude <sys/arc. h>

ncl ude <sys/callb. h>

ncl ude <sys/system nfo. h>
ncl ude <sys/spa_boot . h>
ncl ude <sys/zfs_ioctl.h>
ncl ude <sys/dsl _scan. h>
ncl ude <sys/ zfeature. h>
ncl ude <sys/dsl _destroy. h>

_KERNEL
ncl ude <sys/ boot props. h>
ncl ude <sys/callb. h>

ncl ude <sys/cpupart.h>
ncl ude <sys/pool . h>

ncl ude <sys/sysdc. h>

ncl ude <sys/zone. h>

/* _KERNEL */

ncl ude "zfs_prop. h"
nclude "zfs_conutil.h"

nodes {

ZTI _MODE_FI XED, /* value is # of threads (mn 1) */
ZTI _MODE_ONLI NE_PERCENT, /* value is %of online CPUs */
ZT| _MODE_BATCH, /* cpu-intensive; value is ignored */
ZTl _MODE_NULL, /* don't create a taskq */
ZTI _NMODES

} zti_nodes_t;

#define ZTI _P(n, q) { ZTI _MODE_FI XED, (n), (q) }

#define ZTI _PCT(n) { ZTI_MODE_ONLI NE_PERCENT, (n), 1}

#defi ne ZTI _BATCH { ZTI_MODE_BATCH, 0, 1}

#define ZTI _NULL { ZTI _MODE_NULL, 0, 0}

#define ZTI _N(n) ZTlI _P(n, 1)

#define ZTI_ONE ZTI "N(1)

typedef

}
st
}s
/

B A

struct zio_taskg_info {
zti _nodes_t zti_node
uint_t zti_val ue;
uint_t zti_count;
zio_taskqg_info_t;

atic const char *const zio_taskqg_types[Zl O TASKQ TYPES] = {
"issue", "issue_high", "intr", "intr_high"

This table defines the taskq settings for each ZFS I/ O type. Wen
initializing a pool, we use this table to create an appropriately sized
taskq. Sonme operations are |ow volunme and therefore have a small, static
nunber of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
macros. OQther operations process a | arge anobunt of data; the ZTlI_BATCH
macro causes us to create a taskqg oriented for throughput. Sone operations
are so high frequency and short-lived that the taskq itself can becone a a
point of |ock contention. The ZTI _P(#, #) macro indicates that we need an
addi ti onal degree of parallelismspecified by the nunber of threads per-
taskq and the nunber of taskqgs; when dispatching an event in this case, the
particular taskq is chosen at random

The different taskq priorities are to handle the different contexts (issue
and interrupt) and then to reserve threads for ZIO PRIORI TY_NOWI/GCs that

new usr/src/uts/comon/fs/zfs/spa.c

124 * need to be handl ed with m ni mum del ay.

125 */

126 const zio_taskqg_info_t zio_taskqs[Zl O TYPES][ZlI O TASKQ TYPES] = {

127 /* | SSUE | SSUE_HI GH I NTR I NTR_HI GH */

128 { ZTI _ONE, ZTI _NULL, ZTI _ONE, ZTI _NULL }, /* NULL */
129 { ZTI_N(8), ZTI “NULL, ZTI _BATCH, ZTI_NULL }, /* READ */
130 { ZTI _BATCH, ZTI_N(5), ZTI _N(8), ZTI_N(5) }, /* WRITE */
131 { ZTI _P(12, 8), ZTI_NULL, ZT| _ONE, ZTI _NULL }, /* FREE */
132 { ZTI _ONE, ZTI _NULL, ZT| _ONE, ZTI _NULL }, /* CLAIM*/
133 { ZTI_ONE, ZTI NULL, ZTI _ONE, ZTI_NULL }, /* 1 OCTL */
134 };

136 static void spa_sync_version(void *arg, dnmu_tx_t *tx);

137 static void spa_sync_props(void *arg, dnu_tx_t *tx);

138 static bool ean_t spa_has_active_shared_spare(spa_t *spa);

139 static int spa_l oad_inpl (spa_t *spa, uint64_t, nvlist_t *config,

140 spa_l oad_state_t state, spa_inport_type_t type, bool ean_t nosconfig,

141 char **ereport);

142 static void spa_vdev_resilver_done(spa_t *spa);

144 uint _t zi o_t askqg_bat ch_pct = 100; /* 1 thread per cpu in pset */
145 id_t zi o_t askqg_psrset _bi nd = PS_NONE;

146 bool ean_t zi o_taskqg_sysdc = B_TRUE; /* use SDC scheduling class */
147 uint _t zi o_t askq_basedc = 80; /* base duty cycle */

149 bool ean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
150 extern int zfs_sync_pass_deferred_free;

152 /*

153 * This (illegal) pool name is used when tenporarily inporting a spa_t in order
154 * to get the vdev stats associated with the inported devices.

155 *

156 #define TRYI MPORT_NAME " $i nport”

158 /*

159 *

160 * SPA properties routines

161 *

162 */

164 /*

165 * Add a (source=src, propnane=propval) list to an nvlist.

166 */

167 static void

168 spa_prop_add_list(nvlist_t *nvl, zpool _prop_t prop, char *strval,

169 uint64_t intval, zprop_source_t src)

170 {

171 const char *propnane = zpool _prop_to_nane(prop);

172 nvlist_t *propval;

174 VERI FY(nvlist_alloc(&ropval, NV_UNI QUE_NAME, KM SLEEP) == 0);

175 VERI FY(nvlist_add_ui nt 64(propval, ZPROP_SOURCE, src) == 0);

177 if (strval !'= NULL)

178 VERI FY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
179 el se

180 VERI FY(nvl i st _add_ui nt 64(propval , ZPROP_VALUE, intval) == 0);
182 VERI FY(nvlist_add_nvlist(nvl, propnane, propval) == 0);

183 nvlist_free(propval);

184 }

186 /*

187 * Get property values fromthe spa configuration.

188 */

189

static void

new usr/src/uts/comron/fs/zfs/spa.c

1
192
193
194
195
196
197
198
199

201

203
204
205
206
207
208
209
210

212
213
214
215
216
217
218

220
221

223
224

226
227

229
230

232
233
234
235
236
237
238

240
241

243
244
245
246
247
248
249
250
251
252
253
254

190 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
91 {

vdev_t *rvd = spa->spa_root_vdev;

dsl _pool _t *pool = spa->spa_dsl| _pool;
uint64_t size;

uint64_t alloc;

ui nt64_t space;

uint64_t cap, version;

zprop_source_t src = ZPROP_SRC_NONE;
spa_config_dirent _t *dp;

ASSERT(MUTEX_HELD(&spa- >spa_props_| ock));

if (rvd !'= NULL) {
all oc = netasl ab_cl ass_get _al | oc(spa_nornal _cl ass(spa));
size = netasl ab_cl ass_get _space(spa_normal _cl ass(spa));
spa_prop_add_| i st(*nvp, ZPOOL_PROP_NAME, spa_nane(spa), 0, src);
spa_prop_add_|ist(*nvp, ZPOOL_PROP_SI ZE, NULL, size, src);
spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
spa_prop_add_|ist(*nvp, ZPOOL_PROP_FREE, NULL,

size - alloc, src);

space = O;
for (int ¢ = 0; c < rvd->vdev_children; c++) {
vdev_t *tvd = rvd->vdev_child[c];
space += tvd->vdev_nmax_asi ze - tvd->vdev_asi ze;

}
spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
src);

spa_prop_add_|ist(*nvp, ZPOOL_PROP_READONLY, NULL,
(spa_node(spa) == FREAD), src);

cap = (size == 0) 2 0 : (alloc * 100 / size);
spa_prop_add_li st (*nvp, ZPOOL_PROP_CAPACI TY, NULL, cap, src);

spa_prop_add_|ist(*nvp, ZPOOL_PROP_DEDUPRATI O, NULL,
ddt _get _pool _dedup_ratio(spa), src);

spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
rvd- >vdev_state, src);

version = spa_version(spa);

if (version == zpool _prop_defaul t _nuneri c(ZPOOL_PROP_VERSI ON))
src = ZPROP_SRC DEFAULT;

el se
src = ZPROP_SRC_LOCAL;

spa_prop_add_li st (*nvp, ZPOOL_PROP_VERS| ON, NULL, version, src);

}
if (pool !'= NULL) {
dsl _dir_t *freedir = pool->dp_free_dir;
/*
* The $FREE directory was introduced in SPA VERSI ON_DEADLI STS,
* when opening pools before this version freedir will be NULL.
*
/
if (freedir !'= NULL) {
spa_prop_add_list(*nvp, ZPOOL_PROP_FREEI NG, NULL,
freedir->dd_phys->dd_used_bytes, src);
} else {
spa_prop_add_list(*nvp, ZPOOL_PROP_FREEI NG
NULL, O, src);
}
}

new usr/src/uts/comon/fs/zfs/spa.c

256 spa_prop_add_|ist(*nvp, ZPOOL_PROP_GUI D, NULL, spa_guid(spa), src);
258 if (spa->spa_comment != NULL)

259 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
260 0, ZPROP_SRC _LOCAL);

261 }

263 if (spa->spa_root != NULL)

264 spa_ pr op_add Ilst(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
265 0, ZPROP_SRC_LOCAL);

267 if ((dp = list_head(&spa- >spa_confi g_list)) !'= NULL) {

268 if (dp->scd_path = ULL)

269 Sspa_prop_ add _list(*nvp, ZPOOL_PROP_CACHEFI LE,
270 "none", 0, ZPROP_SRC LOCAL);

271 } elseif (strcnp(dp >scd _path, spa_ confi g_path) '=0) {
272 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFI LE,
273 dp->scd_path, 0, ZPROP_SRC _LOCAL);

274 }

275 }

276 }

278 | *

279 * Get zpool property val ues.

280 */

281 int

282 spa_prop_get(spa_t *spa, nvlist_t **nvp)

283 {

284 obj set _t *nps = spa- >spa_net a_obj set;

285 zap_cursor_t zc;

286 zap_attribute_t za;

287 int err;

289 VERI FY(nvlist_alloc(nvp, NV_UNI QUE_NAME, KM SLEEP) == 0);

291 mut ex_ent er (&spa- >spa_props_| ock) ;

293 /*

294 * Cet properties fromthe spa config.

295 */

296 spa_prop_get _config(spa, nvp);

298 /* 1f no pool property object, no nore prop to get. */

299 if (ms == NULL || spa->spa_pool _props_object == 0) {

300 mut ex_exi t (&spa- >spa_props_| ock);

301 return (0);

302 }

304 /*

305 * Get properties fromthe MOS pool property object.

306 */

307 for (zap_cursor_init(&c, nps, spa->spa_| pool _props_object);
308 (err = zap_cursor retrleve(&zc &za)) == 0;

309 zap_cur sor_advance(&zc)) {

310 uinté4_t intval = 0;

311 char *strval = NULL;

312 zprop_source_t src = ZPROP_SRC DEFAULT;

313 zpool _prop_t prop;

315 if ((prop = zpool _name_to_prop(za.za_name)) == ZPROP_I NVAL)
316 conti nue;

318 switch (za.za_integer_length) {

319 case 8:

320 /* integer property */

321 if (za.za_first_integer !=

new usr/src/uts/comron/fs/zfs/spa.c

322 zpool _prop def aul t _nuneric(prop))

323 src ZPROP_SRC _LOCAL;

325 if (prop == ZPOOL_PROP_BQOOTFS) {

326 ds I _pool _t *dp;

327 dsl _dat aset _t *ds = NULL;

329 dp = spa_get_dsl (spa);

330 dsl _pool _config_ enter(dp, FTAG ;

331 if (err = dsl_dataset_hol d_obj (dp,

332 za.za_first_integer, FTAG &ds)) {
333 dsl _pool _config_exit(dp, FTAG;
334 br eak;

335 }

337 strval = knmem al | oc(

338 MAXNAMELEN + strlen(MOS_DI R_NAME) + 1,
339 KM SLEEP) ;

340 dsl _dat aset _nane(ds, strval);

341 dsl _dat aset _rel e(ds, FTAG;

342 dsl _pool _config_exit(dp, FTAG;

343 } else {

344 strval = NULL;

345 intval = za.za first_integer;

346 }

348 spa_prop_add_list(*nvp, prop, strval, intval, src);
350 if (strval !'= NULL)

351 kmem free(strval,

352 MAXNAMELEN + strlen(MOS_DI R_NAME) + 1);
354 br eak;

356 case 1:

357 /* string property */

358 strval = knem al |l oc(za.za_num.integers, KM SLEEP);
359 err = zap_| ookup(nos, spa->spa_pool _props_obj ect,
360 za.za_nanme, 1, za.za_num.integers, strval);
361 if (err) {

362 kmem free(strval, za.za_num.integers);
363 br eak;

364 }

365 spa_prop_add_list(*nvp, prop, strval, 0, src);
366 kmem free(strval, za.za_num.integer s)

367 br eak;

369 defaul t:

370 br eak;

371 }

372 }

373 zap_cursor _fini (&zc);

374 mut ex_exi t (&spa- >spa_props_| ock);

375 out:

376 if (err &% err !'= ENCENT) {

377 nvlist_free(*nvp);

378 *nvp = NULL;

379 return (err);

380 }

382 return (0);

383 }

385 /*

386 * Validate the given pool properties nvlist and nmodify the |ist
387 * for the property values to be set.

new usr/src/uts/comon/fs/zfs/spa.c 7 new usr/src/uts/comon/fs/zfs/spa.c
388 */ 454 br eak;
389 static int
390 {spa_pr op_val i date(spa_t *spa, nvlist_t *props) 456 case ZPO;J__PRCP_BOOTFS:
391 457 *
392 nvpair_t *elem 458 * |f the pool version is |ess than SPA_VERSI ON_BOOTFS,
393 int error = 0, reset_bootfs = 0; 459 * or the pool is still being created (version == 0),
394 ui nt64_t obj num = 0; 460 * the bootfs property cannot be set.
395 bool ean_t has_feature = B_FALSE; 461)
462 if (spa_versi on(spa) < SPA VERSI ON_BOOTFS) {
397 el em = NULL; 463 error = SET_ERROR(El UP) ;-
398 while ((elem= nvlist_next_nvpair(props, elem)) != NULL) { 464 br eak;
399 uint64_t intval; 465 }
400 char *strval, *slash, *check, *fnane;
401 const char *propname = nvpair_nane(elem; 467 /*
402 zpool _prop_t prop = zpool _nanme_t o_prop(propnane) ; 468 * Make sure the vdev config is bootable
469 */
404 switch (prop) { 470 if (!vdev_is_bootabl e(spa->spa_root_vdev)) {
405 case ZPROP_I| NVAL: 471 error = SET_ERROR(ENOTSUP) ;
406 if (!zpool _prop_feature(propnane)) { 472 br eak;
407 error = SET_ERROR(ElI NVAL) ; 473 }
408 br eak;
409 } 475 reset_bootfs = 1;
411 /* 477 error = nvpair_value_string(elem &strval);
412 * Sanitize the input.
413 */ 479 if (terror) {
414 if (nvpair_type(elem != DATA TYPE_ Ul NT64) { 480 obj set _t *os;
415 error = SET_ERROR(EI NVAL) ; 481 ui Nt 64_t conpress;
416 br eak;
417 } 483 if (strval == NULL || strval[0] == "\0") {
484 obj num = zpool _prop_defaul t _nuneri c(
419 if (nvpair_value_uint64(elem & ntval) != 0) { 485 ZPOOL_PROP_BOOTFS) ;
420 error = SET_ERROR(EI NVAL) ; 486 br eak;
421 br eak; 487 }
422 }
489 if (error = dmu_objset_hol d(strval, FTAG &os))
424 if (intval !'=0) { 490 br eak;
425 error = SET_ERROR(EI NVAL) ;
426 br eak; 492 /* Must be ZPL and not gzip conpressed. */
427 }
494 if (dmu_objset_type(os) != DMJ_OST_ZFS) {
429 fname = strchr(propname, ' @) + 1; 495 error = SET_ERROR(ENOTSUP);
430 if (zfeature_l ookup_nane(fname, NULL) != 0) { 496 } elseif ((error =
431 error = SET_ERROR(EI NVAL) ; 497 dsl _prop_get _i nt _ds(dnu_obj set _ds(os),
432 br eak; 498 zfs_prop_t o_nan‘e(ZFS_PROD_OCNPRESSI),
433 } 499 &conpress)) == 0 &&
500 ! BOOTFS_COWPRESS_VALI D(conpress)) {
435 has_feature = B_TRUE; 501 error = SET_ERROR(ENOTSUP) ;
436 br eak; 502 } else {
503 obj num = dnu_obj set _i d(os);
438 case ZPOOL_PROP_VERSI ON: 504 }
439 error = nvpair_val ue_uint64(elem & ntval); 505 dmu_obj set _rel e(os, FTAG;
440 if (lerror && 506
441 (intval < spa_version(spa) || 507 br eak;
442 intval > SPA_VERSI ON_BEFORE_FEATURES | |
443 has_feature)) 509 case ZPOOL_PROP_FAI LUREMODE:
444 error = SET_ERROR(EI NVAL) ; 510 error = nvpair_val ue_uint64(elem & ntval);
445 br eak; 511 if (lerror & (intval < ZI O FAILURE MODE WAIT ||
512 intval > ZI O_FAI LURE_MODE_PANI C))
447 case ZPOOL_PROP_DELEGATI ON: 513 error = SET_ERROR(EI NVAL) ;
448 case ZPOOL_PROP_AUTOREPLACE:
449 case ZPOOL_PROP_L| STSNAPS: 515 /*
450 case ZPOOL_PROP_AUTOEXPAND: 516 * This is a special case which only occurs when
451 error = nvpair_val ue_uint64(elem & ntval); 517 * the pool has conpletely failed. This allows
452 if (!error && intval > 1) 518 * the user to change the in-core failnode property
453 error = SET_ERROR(EI NVAL) ; 519 * wi thout syncing it out to disk (I/0s m ght

new usr/src/uts/comon/fs/zfs/spa.c

520
521
522
523
524
525
526
527
528
529

531
532
533

535
536

538
539

541
542
543
544

546
547

549
550
551
552

554
555
556
5517}
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572

574
575
576
577
578
579
580
581
582
583

585

* currently be blocked). W do this by returning

* EIOto the caller (spa_prop_set) to trick it

* into thinking we encountered a property validation
* error.

*

if (lerror & spa_suspended(spa)) {
spa->spa_fail node = intval;
error = SET_ERROR(EIO);

br eak;
case ZPOOL_PROP_CACHEFI LE:

if ((error = nvpair_value_string(elem &strval)) != 0)
br eak;

if (strval[0] =="'\0")
br eak;

if (strcnp(strval, "none") == 0)
br eak;

if (strval[0] !'="/") {
error = SET_ERROR(EI NVAL) ;
br eak;

}

slash = strrchr(strval, '/");
ASSERT(sl ash != NULL);

if (slash[1] == '\0" || strcnp(slash, "/.") == 0 ||
strcnp(slash, "/..") == 0

error = SET_ERROR(EI NVAL) ;

br eak;

case ZPOOL_PROP_COMMENT:

if ((error = nvpair_value_string(elem &strval)) != 0)
br eak;

for (check = strval; *check !'="\0"; check++) {
/*

* The kernel doesn’t have an easy isprint()
* check. For this kernel check, we nerely
* check ASCI| apart fromDEL. Fix this if
* there is an easy-to-use kernel isprint().
*
if

(*check >= Ox7f) {
error = SET_ERROR(ElI NVAL) ;
br eak;

}
check++;

}

if (strlen(strval) > ZPROP_MAX_COMMVENT)
error = E2BI G

br eak;

case ZPOOL_PROP_DEDUPDI TTCG
if (spa_version(spa) < SPA VERSI ON_DEDUP)
error = SET_ERROR(ENOTSUP) ;
el se
error = nvpair_value_uint64(elem & ntval);
if (error == 0 &&
intval '= 0 & intval < ZI O DEDUPDI TTO M N)
error = SET_ERROR(EI NVAL) ;
br eak;

}

if (error)

new usr/src/uts/comron/fs/zfs/spa.c

586
587

589
590
591

593
594
595
596
597

599
600

602
603

605
606

608
609
610

612
613

615
616
617
618
619
620

622
623
624
625

627
628
629
630
631
632

634
635

637
638

640
641
642
643

645
646

648
649
650
651

}

voi d

br eak;

}
if (lerror &k reset_bootfs) {

error = nvlist_renove(props,

zpool _prop_t o_nanme(ZPOOL_PROP_BOOTFS), DATA TYPE_STRI NG) ;
if (terror) {
error = nvlist_add_uint 64(props,
zpool _prop_t o_nanme(ZPOOL_PROP_BOOTFS), objnun;

}

return (error);

spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
604 {

}

int

char *cachefil e;
spa_config_dirent_t *dp;

10

if (nvlist_lookup_string(nvp, zpool _prop_to_nane(ZPOOL_PROP_CACHEFI LE),

&cachefile) 1= 0)
return;

dp = kmem al | oc(si zeof (spa_config dirent_t),
KM_SLEEP) ;

if (cachefile[0] == "'\0")
dp- >scd_path = spa_strdup(spa_config_path);
else if (strcnp(cachefile, "none") == 0)
dp->scd_path = NULL;
el se
dp- >scd_path = spa_strdup(cachefile);

list_insert_head(&spa->spa_config_list, dp);
if (need_sync)
spa_async_request (spa, SPA ASYNC_CONFl G_UPDATE) ;

spa_prop_set(spa_t *spa, nvlist_t *nvp)
{

int error;
nvpair_t *el em = NULL;
bool ean_t need_sync = B_FALSE;

if ((error = spa_prop_validate(spa, nvp)) != 0)
return (error);

while ((elem= nvlist_next_nvpair(nvp, elem)) !'= NULL) {
zpool _prop_t prop = zpool _nane_t o_prop(nvpair_nane(elen));

if (prop == ZPOOL_PROP_CACHEFI LE | |
prop == ZPOOL_PROP_ALTROOT | |
prop == ZPOOL_PROP_READONLY)
conti nue;

if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_I NVAL) {
uint64_t ver;

if (prop == ZPOOL_PROP_VERSI ON) {

VERI FY(nvpai r _val ue_ui nt 64(el em &ver) == 0);
} else {

ASSERT(zpool _prop_feature(nvpair_nanme(elem));

new usr/src/uts/comon/fs/zfs/spa.c

652
653
654

656
657
658

660
661
662
663
664
665
666
667
668
669
670
671

673
674
675

677
678
679
680

682
683

685
686
687
688
689
690
691
692
693
694
695
696
697

699
700
701

ver = SPA_VERSI| ON_FEATURES;
need_sync = B_TRUE;
}

/* Save
if (ver

time if the version is already set. */
== spa_version(spa))
conti nue;

/*
* In addition to the pool directory object,
* create the pool properties object,
* read object, the features for wite object,
* feature descriptions object.
*
/
r

ror = dsl
spa_sync_versi on,
if (error)
return (error);
cont i nue;

e _sync_t ask(spa->spa_name, NULL,

&ver, 6);

}

need_sync =
br eak;

B_TRUE;

}

if (need_sync) {

return (dsl_sync_task(spa->spa_nane, NULL,

nvp, 6));

}

return (0);
}
/*
* |f the bootfs property value is dsobj, clear it.
*
/
voi d

spa_prop_cl ear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
if (spa->spa_bootfs == dsobj && spa->spa_pool
VERI FY(zap_ reerve(spa- >spa_net a_obj set

spa- >spa_pool _props_obj ect,

props_obj ect 1= 0)

zpool _prop_t o_name(ZPCD__PROD_BOOTFS) , tx) == 0);
spa- >spa_bootfs = 0;
}
}
/ * ARGSUSED* /
static int

spa_change_gui d_check(void *arg, dmu_tx_t *tx)
ui nt 64_t *ne\/\guld = arg;

spa_t *spa = drmu_t x_pool (tx)->dp_spa;
vdev_t *rvd = spa->spa_root_vdev;
uint64_t vdev_state;

spa_config_enter(spa, SCL_STATE, FTAG RW READER);
vdev_state = rvd->vdev_state;
spa_config_exit(spa, SCL_STATE, FTAG;

if (vdev_state != VDEV_STATE_HEALTHY)
return (SET_ERROR(ENXI O));
ASSERT3U(spa_gui d(spa), !=, *newguid);

return (0);

we m ght
the features for
or the

spa_sync_props,

{

11 new usr/src/uts/comon/fs/zfs/spa.c

718

}

720 static void
721 spa_change_gui d_sync(void *arg,

dmu_tx_t *tx)

722 {

723 ui nt 64_t *ne\/\gm d = arg;

724 spa_t *spa = dmu_tx_pool (tx)->dp_spa;

725 uint64_t ol dguid;

726 vdev_t *rvd = spa->spa_root_vdev;

728 ol dgui d = spa_gui d(spa);

730 spa_config_enter(spa, SCL_STATE, FTAG RW READER);

731 rvd- >vdev_guid = *newgw d;

732 rvd- >vdev_gui d_sum += (* newgui d - oldguid);

733 vdev_config_dirty(rvd);

734 spa_config_exit(spa, SCL_STATE, FTAG;

736 spa_history_log_internal (spa, "guid change", tx, "old=%1u new=%1u",
737 ol dgui d, *newgui d);

738 }

740 | *

741 * Change the GUD for the pool. This is done so that we can |ater
742 * re-inport a pool built froma clone of our own vdevs. W will nodify
743 * the root vdev's guid, our own pool guid, and then mark all of our
744 * vdevs dirty. Note that we nust make sure that all our vdevs are
745 * online when we do this, or else any vdevs that weren't present
746 * woul d be orphaned fromour pool. W are also going to issue a
747 * sysevent to update any watchers.

748 */

749 int

750 spa_change_gui d(spa_t *spa)

751 {

752 int error;

753 uint64_t guid;

755 nmut ex_ent er (&spa_nanespace_| ock) ;

756 gui d = spa_generat e_gui d(NULL) ;

758 error = dsl_sync_task(spa->spa_| nane, spa_change_gui d_check,
759 spa_change_gui d_sync, &guid,

761 if (error == 0) {

762 spa_ conf|g sync(spa, B_FALSE, B _TRUE);

763 spa_event _notify(spa, NULL, ESC_ZFS_ PCXJ_ RECUI D) ;
764 }

766 mut ex_exi t (&spa_nanmespace_| ock);

768 return (error);

769 }

771 | *

772 *

773 * SPA state manipul ati on (open/create/destroy/inport/export)

774 *

775 */

777 static int

;;g {spa_error_entry_corrpar e(const void *a, const void *b)

780 spa_error_entry_t *sa = (spa_error_entry_t *)a;

781 spa_error_entry_t *sb = (spa_error_entry_t *)b;

782 int ret;

12

new usr/src/uts/comon/fs/zfs/spa.c

784 ret = bcnp(&sa->se_bookmark, &sb->se_bookmark,

785 si zeof (zbookmark_t));

787 if (ret <0)

788 return (-1);

789 else if (ret > 0)

790 return (1);

791 el se

792 return (0);

793 }

795 [*

796 Utility function which retrieves copies of the current |ogs and
797 * re-initializes themin the process.

798 /

799 void

800 spa_get_errlists(spa_t *spa, avl _tree_t *last, avl_tree_t *scrub)
801

802 ASSERT(MUTEX_HELD(&spa- >spa_errlist_l ock));

804 bcopy(&spa->spa_errlist_|last, |ast, sizeof (avl_tree_t));
805 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
807 avl _create(&spa->spa_errlist_scrub,

808 spa_error_entry_conpare, “si zeof (spa_error_entry_t),
809 of fsetof (spa_error_entry_t, se_avl));

810 avl _create(&spa->spa_errlist_| ast

811 spa_error_entry_conpare, Tsi zeof (spa_error_entry_t),
812 of fsetof (spa_error_entry_t, se_avl));

813 }

815 static void

816 spa_taskqgs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t Q)
817 {

818 const zio_taskq_info_t *ztip = &zio_taskqgs[t][q];

819 enum zti_nodes node = ztip->zti_node;

820 uint_t value = ztip->zti_val ue;

821 uint_t count = ztip->zti_count;

822 spa_taskqgs_t *tqs = &spa->spa_zio_taskq[t][q];

823 char nane[32];

824 uint_t fIags—O

825 bool ean_t batch = B_FALSE;

827 if (nmpde == ZTI MODE NULL) {

828 tgs->stqgs_count = 0;

829 tgs->stqgs_taskg = NULL;

830 return;

831 1

833 ASSERT3U(count, >, 0);

835 tgs->stqgs_count = count;

836 tgs->stqs_taskq = knem al l oc(count * sizeof (taskg_t *), KM SLEEP);
838 for (uint_t i =0; i < count; i++) {

839 taskq_t *tq;

841 switch (node)

842 case ZTI _MODE_FI XED:

843 ASSERT3U(val ue, >=, 1);

844 val ue = MAX(val ue, 1);

845 br eak;

847 case ZTI _MODE_ BATCH

848 batch = B_TRUE;

849 flags | = TASKQ THREADS CPU_PCT;

13

new usr/src/uts/comron/fs/zfs/spa.c 14
850 val ue = zi o_taskqg_batch_pct;
851 break;
853 case ZTl _MODE_ONLI NE_PERCENT:
854 flags | = TASKQ THREADS_CPU_PCT;
855 br eak;
857 defaul t:
858 pani c("unrecogni zed node for %_% taskq (%u: %) in "
859 "spa_activate()",
860 zio_type_nane[t], zio_taskq_types[q], node, value);
861 br eak;
862 }
864 if (count > 1)
865 (void) snprintf(nane, sizeof (name), "%_%_%",
866 zio_type_nanme[t], zio_taskq_types[q], i);
867 } else {
868 (void) snprintf(nanme, sizeof (nanme), "%_%",
869 zio_type_nane[t], zio_taskq_ types[q]);
870 }
872 if (zio_taskg_sysdc && spa->spa_proc != &0) {
873 if (batch)
874 flags | = TASKQ DC_BATCH;
876 tq = taskqg_create_sysdc(nane, value, 50, |NT_MAX,
877 spa- >spa_proc, zio_taskq_basedc, flags);
878 } else {
879 tq = taskg_create_proc(nanme, value, maxclsyspri, 50,
880 I NT_MAX, spa->spa_proc, flags);
881 }
883 tgs->stqgs_taskqg[i] = tq;
884 }
885 }

887 static void

888 spa_taskqgs_fini(spa_t *spa, zio_type_t t, zio_taskqg_type_t Q)

889 {

890 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
892 if (tgs->stgs_taskq == NULL) {

893 ASSERTO(t gs->st qs_count) ;

894 return;

895 }

897 for (uint_t i =0; i < tgs->stgs_count; i++)
898 ASSERT3P(t gs->stqs_taskq[i], !'=, NULL);
899 taskq_destroy(tgs->stgs_taskq[i]);

900 }

902 kmem free(tqgs- >stqs _taskqg, tgs->stgs_count * sizeof
903 tgs->stqgs_taskg = NULL;

904 }

906 /

907

(taskqg_t *));

*

* Dispatch a task to the appropriate taskg for the ZFS 1/0O type and priority.
908 * Note that a type may have multiple discrete taskgs to avoid | ock contention

*

*ent)

909 on the taskq itself. In that case we choose which taskq at random by using
910 * the low bits of gethrtine().

911 */

912 void

913 spa_t askq_di spatch_ent (spa_t *spa, zio_type_t t, zio_taskg_type_t q,

914 task_func_t *func, void *arg, uint_t flags, taskq_ent_t

915 {

15

new usr/src/uts/comon/fs/zfs/spa.c

916 spa_taskgs_t *tgs = &spa->spa_zio_taskq[t][q];

917 taskq_t *tq;

919 ASSERT3P(tgs->stgs_taskqg, !=, NULL);

920 ASSERT3U(t gs->stgs_count, !=, 0);

922 if (tgs->stgs_count == 1) {

923 = tgs->stqgs_taskq[O];

924 } else {

925 tg = tgs->stqgs_taskq[gethrtime() %tqgs->stqs_count];
926

928 taskqg_di spatch_ent(tq, func, arg, flags, ent);

929 }

931 static void

932 spa_create_zio_taskgs(spa_t *spa)

933 {

934 for (int t =0; t < ZI O TYPES; t++)

935 for (int g = 0; g < ZI O TASKQ TYPES; q++) {

936 spa_ taskqs init(spa, t, q);

937 }

938 1

939 }

941 #ifdef _KERNEL

942 static void

943 spa_thread(void *arg)

944 {

945 callb_cpr_t cprinfo;

947 spa_t *spa = arg;

948 user _t *pu = PTOU(curproc);

950 CALLB_CPR_I NI T(&cpri nfo, &spa->spa_proc_| ock, callb_generic_cpr,
951 spa- >spa_nane) ;

953 ASSERT(cur proc ! = &p0);

954 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),

955 "zpool - %", spa->spa_nane);

956 (void) strlcpy(pu->u_comm pu->u_psargs, sizeof (pu->u_com));
958 /* bind this thread to the requested psrset */

959 if (zio_f taskq psrset_bind ! = PS_NONE) {

960 pool _I ock();

961 mut ex. enter(&cpu | ock);

962 mut ex_ent er (&pi dl ock) ;

963 nmut ex_ent er (&eur proc->p_l ock) ;

965 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
966 0, NULL, NULL) == 0) {

967 curthread->t _bi nd_pset = zio_taskq_psrset_bind;
968 } else {

969 cmm_er r (CE_WARN,

970 "Coul dn’t bind process for zfs pool \"%\" to "
971 "pset %\ n", spa->spa_nane, zio_taskqg_psrset_bind);
972 }

974 mut ex_exi t (&cur proc->p_| ock);

975 mut ex_exi t (&pi dl ock) ;

976 mut ex_exi t (& pu_l ock) ;

977 pool _unl ock();

978 }

980 if (zio_taskg_sysdc) {

981 sysdc_t hread_enter (curthread, 100, 0);

new usr/src/uts/comron/fs/zfs/spa.c 16
982 }

984 spa- >spa_proc = curproc;

985 spa->spa_did = curthread->t_did;

987 spa_create_zi o_taskqs(spa);

989 nmut ex_ent er (&spa- >spa_proc_| ock) ;

990 ASSERT(spa- >spa_proc_state == SPA_PROC_CREATED) ;

992 spa- >spa_proc_state = SPA_PROC_ACTI VE;

993 cv_broadcast (&pa- >spa_proc_cv);

995 CALLB_CPR_SAFE_BEQ N(&cpri nf o) ;

996 whi | e (spa->spa_proc_state == SPA \ PROC_ACTI VE)

997 cv_wai t (&pa- >spa_proc_cv, &spa->spa_proc_| ock);

998 CALLB_CPR_SAFE_END(&cpri nfo, &spa->spa_proc_| ock);

1000 ASSERT(spa- >spa_proc_state == SPA PROC_DEACTI VATE) ;

1001 spa- >spa_proc_! state = SPA_PROC_GONE;

1002 spa- >spa_proc = &poO;

1003 cv_br oadcast (&pa- >spa_proc_cv);

1004 CALLB_CPR _EXI T(&cprinfo); /* drops spa_proc_|l ock */

1006 mut ex_ent er (&cur proc->p_| ock) ;

1007 Iwp_exit();

1008 }

1009 #endi f

1011 /*

1012 * Activate an uninitialized pool.

1013 */

1014 static void

1015 spa_activate(spa_t *spa, int node)

1016 {

1017 ASSERT(spa- >spa_state == POOL_STATE_UNI NI Tl ALI ZED) ;

1019 spa- >spa_state = POOL_STATE_ACTI VE;

1020 spa- >spa_node = node;

1022 spa->spa_nornal _cl ass = netasl ab_cl ass_creat e(spa, zfs_netaslab_ops);
1023 spa->spa_l og_cl ass = nmetasl ab_cl ass_create(spa, zfs_netaslab_ops);
1025 /* Try to create a covering process */

1026 mut ex_ent er (&spa- >spa_proc_| ock);

1027 ASSERT(spa- >spa_proc_state == SPA_PROC_NONE) ;

1028 ASSERT(spa- >spa_proc == &p0);

1029 spa->spa_did = O;

1031 /* Only create a process if we're going to be around a while. */
1032 if (spa_create_process && strcnp(spa->spa_nanme, TRYI MPORT_NAME) != 0) {
1033 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1034 NULL, 0) == 0) {

1035 spa- >spa_proc_state = SPA_PROC_CREATED;

1036 whi |l e (spa->spa_proc_state == SPA_PROC_CREATED) {
1037 cv_wal t (&spa- >spa_proc_cv,

1038 &spa- >spa_proc_| ock) ;

1039 }

1040 ASSERT(spa- >spa_proc_state == SPA_PROC_ACTI VE) ;
1041 ASSERT(spa- >spa_proc != &p0);

1042 ASSERT(spa->spa_did != 0);

1043 } else {

1044 #ifdef _KERNEL

1045 cm err(CE WARN,

1046 "Coul dn’t create process for zfs pool \"%\"\n",
1047 spa- >spa_nane) ;

new usr/src/uts/comon/fs/zfs/spa.c

1048 #endi f
1049
1050
1051

1053
1054
1055
1056

1058
1059
1060
1061

1063
1064

1066
1067
1068
1069
1070
1071
1072 }

1074 /*
1075
1076

}
}
mut ex_exi t (&spa->spa_proc_| ock);

/* 1If we didn't create a process,
if (spa->spa_proc == &p0)

spa_create_zio_taskqgs(spa);
}

list_create(&pa->spa_config_dirty_list, sizeof (vdev_t),
of f set of (vdev_t, vdev_config_dirty_node));

list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
of f setof (vdev_t, vdev_state_dirty_node));

we need to create our taskqgs. */

txg_list_create(&spa->spa_vdev_txg_list,
of fsetof (struct vdev, vdev_txg_node));

avl _create(&spa->spa_errlist_scrub,
spa_error_entry_conpare, “si zeof (spa_error_entry_t),
of fsetof (spa_error_entry_t, se_avl));

avl _create(&spa->spa_errlist_| ast
spa_error_entry_conpare, Si zeof (spa_error_entry_t),
of fsetof (spa_error_entry_t, se_avl));

* (Qpposite of spa_activate().
*/

1077 static void

1078 spa_deactivate(spa_t

1079 {
1080
1081
1082
1083
1084

1086

1088
1089

1091
1092
1093
1094
1095

1097
1098

1100
1101

1103
1104
1105
1106
1107

1109
1110

1112

*spa)

ASSERT(spa- >spa_sync_on == B_FALSE);

ASSERT(spa- >spa_dsl| _pooI == NULL) ;

ASSERT(spa- >spa_r oot _vdev == NULL)

ASSERT(spa- >spa_async_zi o root == NULL)
ASSERT(spa- >spa_state ! = POOL_STATE_UNI NI TI AL ZED) ;

txg_list_destroy(&spa->spa_vdev_txg_list);

list_destroy(&spa->spa_config_ dirty list);
i st _destroy(&spa->spa_state_dirty_list);

for (int t =0; t < ZIOTYPES;, t++)
for (int g = 0; g < ZI O TASKQ TYPES; q++) {
spa_t askgs_fini(spa, t, q);
}
}

net asl ab_cl ass_dest r oy(spa- >spa_nor nal
spa->spa_normal _cl ass = NULL;

_class);

nmet asl ab_cl ass destroy(spa- >spa_l og_cl ass) ;
spa->spa_l og_class = NULL

/*

* If this was part of an inport or the open otherw se failed, we may
* still have errors left in the queues. Enpty themjust in case.

*/

spa_errl og_drain(spa);

avl _destroy(&spa->spa_errlist_scrub);
avl _destroy(&spa->spa_errlist_last);

spa->spa_state = POOL_STATE_UNI NI Tl ALI ZED;

17

new usr/src/uts/comon/fs/zfs/spa.c

18

This
vdev

1114 nmut ex_ent er (&spa- >spa_proc_| ock) ;

1115 if (spa->spa_proc_state != SPA_PROC_NONE)

1116 ASSERT(spa- >spa_| proc_ state == SPA_PROC_ACTI VE) ;

1117 spa->spa_proc_state = SPA_ PRCD DEACTI VATE;

1118 cv_broadcast (&spa- >spa_proc_ cv)

1119 whil e (spa->spa_proc_state == SPA PROC_DEACTI VATE) {
1120 ASSERT(spa- >spa_proc != &p0) ;

1121) cv_wai t (&spa- >spa_proc_cv, &spa- >spa_proc_| ock);
1122

1123 ASSERT(spa- >spa_proc_state == SPA PROC _GONE) ;

1124 spa- >spa_proc_state = SPA PROC NONE

1125 }

1126 ASSERT(spa- >spa_proc == &p0);

1127 mut ex_exli t (&spa- >spa_proc Iock)

1129 /*

1130 * W& want to nmake sure spa_thread() has actually exited the ZFS
1131 * nodul e, so that the nodule can't be unl oaded out from underneath
1132 *it.

1133 */

1134 if (spa->spa_did !=0) {

1135 thread_j oi n(spa >spa_did);

1136 spa->spa_did = O;

1137 }

1138 }

1140 /*

1141 * Verify a pool configuration, and construct the vdev tree appropriately.
1142 * will create all the necessary vdevs in the appropriate |ayout, with each
1143 * in the CLOSED state. This will prep the pool before open/creation/inport.
1144 * Al vdev validation is done by the vdev_alloc() routine.

1145 */

1146 static int

1147 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1148 uint_t 1d, int atype)

1149 {

1150 nvlist_t **child;

1151 uint_t children;

1152 int error;

1154 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1155 return (error);

1157 if ((*vdp)->vdev_ops->vdev_op_| eaf)

1158 return (0);

1160 error = nvlist_|lookup_nvlist_array(nv, ZPOOL_CONFI G _CH LDREN,
1161 &child, &children);

1163 if (error == ENCENT)

1164 return (0);

1166 if (error) {

1167 vdev_free(*vdp);

1168 *vdp = NULL;

1169 return (SET_ERROR(EI NVAL));

1170 1

1172 for (int ¢ =0; ¢ < children; c++) {

1173 vdev_t *vd;

1174 if ((error = spa_config_parse(spa, &d, child[c], *vdp, c,
1175 atype)) != 0)

1176 vdev_free(*vdp);

1177 *vdp = NULL;

1178 return (error);

1179 }

new usr/src/uts/comon/fs/zfs/spa.c

1180 }

1182 ASSERT(*vdp != NULL)

1184 return (0);

1185 }

1187 /*

1188 * Opposite of spa_l oad().

1189 */

1190 static void

1191 spa_unl oad(spa_t *spa)

1192 {

1193 int i;

1195 ASSERT(MUTEX_HELD(&spa_nanespace_| ock));
1197 /*

1198 * Stop async tasks.

1199 */

1200 spa_async_suspend(spa);

1202 I*

1203 * Stop syncing.

1204 *

1205 if (spa->spa_sync_on) {

1206 t xg_sync_st op(spa->spa_dsl| _pool);
1207 spa->spa_sync_on = B_FALSE;

1208 }

1210 /*

1211 * Wit for any outstanding async 1/O to conplete.
1212 *

1213 if (spa->spa_async_zio_root != NULL) {
1214 (void) zio_wait(spa->spa_async_zio_root);
1215 spa- >spa_async_zi o_root = NULL;
1216 }

1218 bpobj _cl ose(&spa- >spa_def erred_bpobj);
1220 *

1221 * Close the dsl pool.

1222 */

1223 if (spa- >spa dsl _pool)

1224 dsl _pool _cl ose(spa->spa_dsl _pool);
1225 spa- >spa_dsl _pool = NULL;

1226 spa- >spa_net a_obj set = NULL;

1227 1

1229 ddt _unl oad(spa);

1231 spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER);
1233 /*

1234 * Drop and purge |evel 2 cache

1235 *

1236 spa_l 2cache_drop(spa);

1238 /*

1239 * Close all vdevs.

1240 */

1241 if (spa->spa_root_vdev)

1242 vdev_free(spa->spa_root_vdev);
1243 ASSERT(spa- >spa_r oot _vdev == NULL);

1245 for (i = 0; i < spa->spa_spares.sav_count; i++)

19

new usr/src/uts/comon/fs/zfs/spa.c

1246 vdev_free(spa->spa_spares. sav_vdevs[i]);

1247 if (spa->spa_spares.sav_vdevs)

1248 kmem f ree(spa- >spa_spar es. sav_vdevs,

1249 spa- >spa_spar es. sav_count * sizeof (void *));
1250 spa- >spa_spar es. sav_vdevs = NULL;

1251

1252 if (spa->spa_spares.sav_config) {

1253 nvlist_free(spa->spa_spares.sav_config);

1254 spa- >spa_spares. sav_config = NULL;

1255

1256 spa- >spa_spar es. sav_count = O;

1258 for (i = 0; i < spa->spa_|l 2cache.sav_count; i++) {

1259 vdev_cl ear st at s(spa->spa_l 2cache. sav_vdevs[i]);
1260 vdev_free(spa->spa_| 2cache. sav_vdevs[i]);

1261 1

1262 if (spa->spa_| 2cache. sav_vdevs)

1263 kmem f ree(spa- >spa_| 2cache. sav_vdevs,

1264 spa->spa_| 2cache. sav_count * SI zeof (void *));
1265 spa- >spa_| 2cache. sav_vdevs = NULL

1266

1267 i f (spa->spa_l 2cache. sav_config) {

1268 nvlist_free(spa->spa_|l 2cache. sav_config);

1269 spa- >spa_| 2cache. sav_config = NULL;

1270

1271 spa- >spa_| 2cache. sav_count = 0;

1273 spa- >spa_async_suspended = O;

1275 if (spa->spa_comment != NULL) {

1276 spa_strfree(spa->spa_coment);

1277 spa- >spa_coment = NULL;

1278 }

1280 spa_config_exit(spa, SCL_ALL, FTAG;

1281 }

1283 /*

1284 * Load (or re-load) the current list of vdevs describing the active spares for
1285 * this pool. Wen this |s call ed, we have sone form of basic information in
1286 * ’spa_spares.sav_config’ We parse this into vdevs, try to open them and
1287 * then re-generate a more conplete list including status information.
1288 */

1289 static void

1290 spa_l oad_spares(spa_t *spa)

1291 {

1292 nvlist_t **spares;

1293 uint _t nspares;

1294 int i;

1295 vdevt *vd, *tvd;

1297 ASSERT(spa_config_hel d(spa, SCL_ALL, RWWRI TER) == SCL_ALL);
1299 /*

1300 * First, close and free any existing spare vdevs.

1301 */

1302 for (i = 0; i < spa->spa_spares.sav_count; i++) {

1303 vd = spa- >spa_spares. sav_vdevs[i];

1305 /* Undo the call to spa_activate() below */

1306 if ((tvd = spa_l ookup_by_gui d(spa, vd->vdev_guid,
1307 B FALSE)) !'= NULL && tvd->vdev_i sspare)

1308 spa_spare_renove(tvd);

1309 vdev_cl ose(vd);

1310 vdev_free(vd);

1311 }

20

new usr/src/uts/comon/fs/zfs/spa.c 21

1313
1314
1315

1317
1318
1319
1320
1321

1323
1324

1326
1327

1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343

1345

1347
1348
1349
1350

1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367

1369
1370

1372
1373

1375
1376
1377

if (spa->spa_spares.sav_vdevs)
kmem f ree(spa- >spa_spar es. sav_vdevs,
spa- >spa_spar es. sav_count * sizeof (void *));

if (spa->spa_spares.sav_config == NULL)
nspares = 0;
el se
VERI FY(nvlist_| ookup_nvlist_array(spa->spa_spares.sav_config,
ZPOOL_CONFI G_SPARES, &spares, &nspares) == 0);

spa- >spa_spar es. sav_count = (i nt)nspares;
spa- >spa_spar es. sav_vdevs = ;

if (nspares == 0)
return;

/*
* Construct the array of vdevs, opening themto get status in the
* process. For each spare, there is potentially two different vdev_t
* structures associated with it: one in the list of spares (used only
* for basic validation purposes) and one in the active vdev
* configuration (if it's spared in). During this phase we open and
* validate each vdev on the spare list. |If the vdev also exists in the
*/active configuration, then we also nark this vdev as an active spare.
*
spa- >spa_spar es. sav_vdevs = knem al | oc(nspares * sizeof (void *),

KM SLEEP) ;
for (i = 0; I < spa->spa_spares.sav_count; i++

) o
VERI FY(spa_confi g_parse(spa, &d, spares[i], NULL, O,
VDEV_ALLOC _SPARE) == 0);
ASSERT(vd != NULL);

spa- >spa_spares. sav_vdevs[i] = vd;

if ((tvd = spa_l ookup_by_gui d(spa, vd->vdev_guid,
B_FALSE)) !'= NULL) {
if (!tvd->vdev_isspare)
spa_spare_add(tvd);

*

* We only mark the spare active if we were successfully
* able to load the vdev. O herw se, inporting a pool

* with a bad active spare would result In strange

* behavi or, because nmultiple pool would think the spare
* is actively in use.
*
*
*
*
*
*

There is a vulnerability here to an equally bizarre
circunmstance, where a dead active spare is |ater
brought back to life (onlined or otherwise). G ven
the rarity of this scenario, and the extra conplexity
it adds, we ignore the possibility.

*

if (!vdev_is_dead(tvd))
spa_spare_activate(tvd);

}

vd- >vdev_top = vd;
vd- >vdev_aux = &spa- >spa_spar es;

if (vdev_open(vd) != 0)
conti nue;

if (vdev_validate_aux(vd) == 0)
spa_spare_add(vd);

new usr/src/uts/comon/fs/zfs/spa.c 22
1379 /*

1380 * Reconpute the stashed list of spares, with status infornation
1381 * this tine.

1382 */

1383 VERI FY(nvl i st_renove(spa->spa_spares. sav_confi g, ZPOOL_CONFI G_SPARES,
1384 DATA_TYPE_NVLI ST_ARRAY) == 0);

1386 spares = knmem al | oc(spa->spa_spares. sav_count * sizeof (void *),

1387 KM SLEEP) ;

1388 for (i = 0; I < spa->spa_spares.sav_count; i++)

1389 spares[i] = vdev_config_generate(spa,

1390 spa- >spa_spar es. sav_vdevs[i], B_TRUE, VDEV_CONFI G_SPARE);
1391 VERI FY(nvl i st_add_nvli st _array(spa->spa_spares. sav_config,

1392 ZPOO_ CONFI G_SPARES, “spares, spa->spa_spares.sav_count) == 0);
1393 for (i =0; i < spa- >spa_spares.sav_count; 1 ++)

1394 nvi i st_free(spares[i]);

1395 kmem f ree(spares, spa->spa_spares.sav_count * sizeof (void *));

1396 }

1398 /*

1399 * Load (or re-load) the current list of vdevs describing the active |2cache for
1400 * this pool. Wen this is called, we have sone form of basic information in
1401 * ’spa_l 2cache.sav_config’. W parse this into vdevs, try to open them and
1402 * then re-generate a nore conplete list including status infornation.

1403 * Devices which are already active have their details naintained, and are
1404 * not re-opened.

1405 *

1406 static void

1407 spa_l oad_| 2cache(spa_t *spa)

1408 {

1409 nvlist_t **|2cache;

1410 uint _t nl 2cache;

1411 int i, j, oldnvdevs;

1412 uint64_t guid;

1413 vdev_t *vd, **ol dvdevs, **newdevs;

1414 spa_aux_vdev_t *sav = &spa->spa_| 2cache;

1416 ASSERT(spa_config_hel d(spa, SCL_ALL, RWWRI TER) == SCL_ALL);

1418 if (sav->sav_config !'= NULL) {

1419 VERI FY(nvlist_| ookup_nvlist_array(sav->sav_config,

1420 ZPOOL_CONFI G_L2CACHE, & 2cache, &nl 2cache) == 0);

1421 newdevs = krmem al | oc(nl 2cache * sizeof (void *), KM A SLEEP) ;
1422 } else {

1423 nl 2cache = 0;

1424 newdevs = NULL;

1425 1

1427 ol dvdevs = sav->sav_vdevs;

1428 ol dnvdevs = sav->sav_count;

1429 sav->sav_vdevs = NULL;

1430 sav->sav_count = O;

1432 /*

1433 * Process new nvlist of vdevs.

1434 */

1435 (i =0; i < nl2cache; i++) {

1436 VERI FY(nvli st _| ookup_ui nt 64(1 2cache[i], ZPOOL_CONFI G _GU D,
1437 &gui d) == 0);

1439 newvdevs[l] = NULL;

1440 for (j 0; j < oldnvdevs; j++) {

1441 vd = ol dvdevs[j];

1442 if (vd !'= NULL && guid == vd->vdev_guid) {

1443 /*

new usr/src/uts/comon/fs/zfs/spa.c 23

1444
1445
1446
1447
1448
1449
1450

1452
1453
1454
1455
1456
1457
1458
1459

1461
1462
1463
1464
1465

1467
1468

1470

1472
1473

1475

1477
1478
1479
1480

1482
1483
1484
1485
1486

1488
1489
1490

1492
1493
1494
1495
1496
1497
1498

1500
1501

1503
1504

1506
1507

1509

* Retain previous vdev for add/renpbve ops.
&/

newdevs[i] = vd;
ol dvdevs[j] = NULL;
br eak;

}
if (nevw;ievs[i] == NULL) {

* Create new vdev
*/
VER!I FY(spa_config_ parse(spa &vd, |2cache[i], NULL, O,
VDEV_ALLOC L2CACHE) == 0);
ASSERT(vd != NULL);
newdevs[i] = vd;

/*

* Commit this vdev as an | 2cache devi ce,
* even if it fails to open.

*

spa_l 2cache_add(vd);

vd- >vdev_t op
vd- >vdev_aux

vd;
sav;

spa_l 2cache_acti vate(vd);

if (vdev_open(vd) != 0)
conti nue;

(voi d) vdev_validate_aux(vd);

if (!vdev_is_dead(vd))
| 2ar c_add_vdev(spa, vd);

}

/*
* Purge vdevs that were dropped
*

(i =0; i < oldnvdevs; i++) {
uint64_t pool ;

vd = ol dvdevs[i];
if (vd !'= NULL)
ASSERT(vd- >vdev_i sl 2cache) ;

if (spa_l 2cache_exi sts(vd->vdev_gui d, &pool) &&
pool != OULL && | 2arc_vdev_present(vd))
| 2arc_renpve_vdev(vd);
vdev_cl ear _stats(vd);
vdev_free(vd);

}

if (ol dvdevs)
kmem free(ol dvdevs, ol dnvdevs * sizeof (void *));

if (sav->sav_config == NULL)
goto out;

ewdevs;

sav- >sav_vdevs ne
(int)nl 2cache;

sav->sav_count

| *

new usr/src/uts/comon/fs/zfs/spa.c

1510 * Reconpute the stashed list of |2cache devices, with status
1511 * information this tine.

1512 */

1513 VERI FY(nvl i st _renpve(sav->sav_ confl g, ZPOOL_CONFI G_L2CACHE,
1514 DATA_TYPE_NVLI ST_ARRAY) == 0);

1516 | 2cache = krmem al | oc(sav->sav_count * sizeof (void *), KM SLEEP);
1517 for (i = 0; i < sav->sav_count; i++)

1518 | 2cache[i] = vdev_config_generate(spa,

1519 sav->sav_vdevs[i], B TRUE, VDEV_CONFI G _L2CACHE);
1520 VERI FY(nvl i st_add_nvlist_array(sav->sav_config,

1521 ZPOOL_CONFI G L2CACHE, | 2cache, sav->sav_count) == 0);

1522 out:

1523 for (i = 0; i < sav->sav_count; i++)

1524 nvlist_free(l2cache[i]);

1525 if (sav->sav_count)

1526 kmem free(l 2cache, sav->sav_count * sizeof (void *));
1527 }

1529 static int

1530 | oad_nvlist(spa_t *spa, uint64_t obj, nvlist_t **val ue)

1531 {

1532 drmu_buf _t *db;

1533 char *packed = NULL;

1534 size_t nvsize = 0;

1535 int error;

1536 *val ue = NULL;

1538 VERI FY(O == dnu_bonus_hol d(spa- >spa_net a_obj set, obj, FTAG &db));
1539 nvsize = *(uint64_t *)db->db_data;

1540 drmu_buf rel e(db, FTAG;

1542 packed = kmem al | oc(nvsi ze, KM SLEEP)

1543 error = dnu_read(spa->spa_neta_objset, obj, 0, nvsize, packed,
1544 DVU READ) PREFETCH) ;

1545 if (error ==

1546 error = nvlist_unpack(packed, nvsize, value, 0);

1547 kmem f ree(packed, nvsize);

1549 return (error);

1550 }

1552 /*

1553 * Checks to see if the given vdev could not be opened, in which case we post
1554 */sysevent to notify the autoreplace code that the device has been renoved.
IS5 5

1556 static void

1557 spa_check_renoved(vdev_t *vd)

1558 {

1559 (int ¢ = 0; ¢ < vd->vdev_children; c++)

1560 spa_check_renoved(vd->vdev_child[c]);

1562 if (vd->vdev_ops->vdev_op_| eaf && vdev_is_dead(vd) &&

1563 lvd- >vdev_i shol e) {

1564 zfs_post _aut or epl ace(vd- >vdev_spa, vd);

1565 spa_event _noti fy(vd->vdev_spa, vd, ESC ZFS VDEV_CHECK);
1566 1

1567 }

1569 /*

1570 * Validate the current config against the MOS config

1571 */

1572 static bool ean_t

1573 spa_config valid(spa_t *spa, nvlist_t *config)
1574 {
1575 vdev_t *nrvd, *rvd = spa->spa_root_vdev;

new usr/src/uts/comon/fs/zfs/spa.c

1576
1578

1580
1581

1583

1585
1586
1587
1588
1589
1590
1591
1592

1594
1595
1596

1598
1599
1600

1602
1603
1604
1605
1606
1607

1609
1610
1611
1612
1613

1615
1616
1617
1618
1619
1620

1622
1623
1624
1625
1626
1627
1628
1629

1631
1632
1633
1634
1635
1636
1637

1639
1640

nvlist_t *nv;
VERI FY(nvlist_l ookup_nvlist(config, ZPOOL_CONFI G VDEV_TREE, &nv) == 0);
spa_config_enter(spa, SCL_ALL, FTAG RWMWRITER);

VERI FY(spa_confi g_parse(spa, &mvd, nv, NULL, O, VDEV_ALLOCC LOAD) == 0);

ASSERT3U(r vd- >vdev_chil dren, ==, nrvd->vdev_chil dren)

/
If we're doing a normal inport, then build up any additional
di agnostic infornmation about missing devices in this config.
We' Il pass this up to the user for further processing.

R

if (!(spa->spa_inport_flags & ZFS_| MPORT_M SSING LOG)) {
nvlist_t **child, *nv
uint64_t idx = 0;

child = knmem al | oc(rvd->vdev_children * sizeof (nvlist_t **),
KM _SLEEP) ;
VERI FY(nvlist_alloc(&v, NV_UNI QUE_NAME, KM SLEEP) == 0);

for (int ¢ = 0; c < rvd->vdev_children; c++) {
vdev_t *tvd = rvd->vdev_child[c];

vdev_t *mtvd = nrvd->vdev_child[c];
if (tvd->vdev_ops == &dev_m ssing_ops &&
nt vd- >vdev_ops ! = &dev_m ssi ng_ops &&

nt vd- >vdev_i sl og)
child[idx++] = vdev_config_generate(spa, ntvd,
B FALSE, 0);
}

if (idx) {

VERI FY(nvlist_add_nvlist_array(nv,
ZPOOL_CONFI G CHI LDREN, child, idx) == 0);

VERI FY(nvlist_add_nvli st (spa->spa_| oad_i nf o,
ZPOOL_CONFI G_ M SSI NG _DEVI CES, nv) == 0);

for (int i =0; i <.idx; i++
nvlist free(ch||d[|])

nvlist_free(nv);
kmem free(child, rvd->vdev_children * sizeof (char **));

}

/*

* Conpare the root vdev tree with the informati on we have
* fromthe MOS config (nmrvd). Check each top-level vdev

* with the corresponding MOS config top-Ilevel (ntvd).

*

/
for (int ¢ = 0; ¢ < rvd->vdev_children; c++) {

vdev_t *tvd = rvd->vdev_child[c];

vdev_t *mtvd = nrvd->vdev_child[c];
/*
* Resol ve any "mi ssing" vdevs in the current configuration.
* |f we find that the MOS config has nore accurate infornation
* about the top-level vdev then use that vdev instead.
*
if (tvd->vdev_ops == &vdev_mi ssing_ops &&
nt vd- >vdev_ops ! = &dev_ni ssi ng_ops) {

if (!(spa->spa_inmport_flags & ZFS_| MPORT_M SSI NG _LOG))
cont i nue;

25

new usr/src/uts/comon/fs/zfs/spa.c 26

1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655

1657
1658
1659
1660
1661
1662

1664
1665

1667
1668
1669

1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683

1685
1686
1687
1688
1689 }

1691 /*

/*
* Device specific actions.
*/

if (mtvd->vdev_islog) {
spa_set _| og_state(spa, SPA_LOG CLEAR);

} else {
/*
* XXX - once we have 'readonly’ pool
* support we should be able to handle
* mssing data devices by transitioning
* the pool to readonly.
*
continue;
}
/*

* Swap the missing vdev with the data we were
* able to obtain fromthe MOS config.
*/
vdev_renove_chil d(rvd, tvd);
vdev_renove_child(nrvd, ntvd);

vdev_add_chi I d(rvd, ntvd);
vdev_add_chi Il d(nrvd, tvd);

spa_config_exit(spa, SCL_ALL, FTAG;
vdev_| oad(nt vd) ;
spa_config_enter(spa, SCL_ALL, FTAG RWMWRI TER);

vdev_reopen(rvd);
} else if (ntvd->vdev_islog) {
/*

* Load the slog device's state fromthe MOS config
* since it's possible that the | abel does not

* contain the nbst up-to-date information.

*

vdev_| oad_|l og_state(tvd, ntvd);
vdev_reopen(tvd);

}

vdev_free(nrvd);
spa_config_exit(spa, SCL_ALL, FTAG;

/*
* Ensure we were able to validate the config.
S

return (rvd->vdev_gui d_sum == spa- >spa_uber bl ock. ub_gui d_sun);

1692 * Check for missing |og devices
*

1693

1694 static bool ean_t
1695 spa_check_l ogs(spa_t *spa)

1696 {
1697

1699
1700
1701
1702
1703
1704
1705
1706
1707

bool ean_t rv = B_FALSE;

switch (spa->spa_log_state) {
case SPA_LOG M SSI NG

7* need to recheck in case slog has been restored */
case SPA LOG UNKNOWA:

rv = (dmu_obj set _fi nd(spa->spa_nane, zil_check_I og_chai n,

NULL, DS_FI ND_CHILDREN) != 0);
if (rv)
spa_set _| og_state(spa, SPA LOG M SSI NG ;
br eak;

new usr/src/uts/comon/fs/zfs/spa.c 27 new usr/src/uts/comon/fs/zfs/spa.c
1708 } 1774 spa_check_renoved(sav- >sav_vdevs[i]);
1709 return (rv); 1775 }
1710 }
1777 void
1712 static bool ean_t 1778 spa_claimnotify(zio_t *zio)
1713 spa_passi vate_| og(spa_t *spa) 1779 {
1714 { 1780 spa_t *spa = zi0->i o_spa;
1715 vdev_t *rvd = spa- >spa_ root _vdev;
1716 bool ean_t sl og_found = B_FALSE; 1782 if (zio->io_error)
1783 return;
1718 ASSERT(spa_config_hel d(spa, SCL_ALLOC, RWWRI TER));
1785 mut ex_ent er (&spa- >spa_props_|I ock) ; /* any nmutex will do */
1720 if (!spa_has_slogs(spa)) 1786 if (spa->spa_claimmax_txg < zio->i o_bp->blk_birth)
1721 return (B_FALSE); 1787 spa->spa_cl ai m max_txg = zi o->1 o_bp->bl k_birth;
1788 mut ex_exi t (&spa->spa_props_| ock);
1723 for (int ¢ = 0; ¢ < rvd->vdev_children; c++) { 1789 }
1724 vdev_t *tvd = rvd->vdev_child[c];
1725 met asl ab_group_t *ng = tvd->vdev_ny; 1791 typedef struct spa_l oad_error {
1792 ui nt 64_t sl e_meta_count;
1727 if (tvd->vdev_islog) { 1793 ui nt 64_t sl e_data_count;
1728 met asT ab_gr oup passi vat e(ng) ; 1794 } spa_load_error_t;
1729 sl og_found = B_TRUE;
1730 } 1796 static void
1731 } 1797 spa_l oad_verify_done(zio_t *zio)
1798 {
1733 return (slog_found); 1799 bl kptr_t *bp = zio->io_bp;
1734 } 1800 spa_l oad_error_t *sle = zio->io_private;
1801 drmu_obj ect _type_t type = BP_GET_TYPE(bp);
1736 static void 1802 int error = zio->o_error;
1737 spa_activate_|l og(spa_t *spa)
1738 { 1804 if (error) {
1739 vdev_t *rvd = spa->spa_root_vdev; 1805 if ((BP_GET_LEVEL(bp) !=0 || DMJ_OT_| S_METADATA(type)) &&
1806 type !'= DMJ_OT_| NTENT_L
1741 ASSERT(spa_confi g_hel d(spa, SCL_ALLOC, RWWRI TER)); 1807 atom c_add_64(&sl e->sl e_neta_count, 1);
1808 el se
1743 for (int ¢ = 0; c¢ < rvd->vdev_children; c++) { 1809 at om c_add_64(&sl e->sl e_data_count, 1);
1744 vdev_t *tvd = rvd->vdev_child[c]; 1810
1745 nmet asl ab_group_t *ng = tvd->vdev_ny; 1811 zi o_data_buf _free(zio->i o_data, zio->io_size);
1812 }
1747 if (tvd->vdev_islog)
1748 net asl ab_group_acti vat e(ng); 1814 /* ARGSUSED*/
1749 } 1815 static int
1750 } 1816 spa_l oad_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1817 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1752 int 1818 {
1753 spa_of fline_|l og(spa_t *spa) 1819 if (bp !'= NULL) {
1754 { 1820 zio_t *rio = arg;
1755 int error; 1821 size_t size = BP_GET_PSI ZE(bp) ;
1822 void *data = zi o_data_buf_all oc(si ze);
1757 error = dnu_obj set _find(spa_nane(spa), zil_vdev_offline,
1758 NULL, DS_FI ND_CHI LDREN) ; 1824 zio_nowai t(zio_read(rio, spa, bp, data, size,
1759 if (error == 0) { 1825 spa_l oad_verify_ done rio->o_private, ZI O PR ORI TY_SCRUB,
1760 /* 1826 ZI O_FLAG SPECULATI VE | ZI O FLAG_ CANFAI L |
1761 * We successfully offlined the | og device, sync out the 1827 ZI O_FLAG SCRUB | ZI O FLAG RAW zb));
1762 * current txg so that the "stubby” bl ock can be renpved 1828 }
1763 * by zil_sync(). 1829 return (0);
1764 */ 1830 }
1765 t xg_wai t _synced(spa- >spa_dsl _pool, 0);
1766 } 1832 static int
1767 return (error); 1833 spa_l oad_verify(spa_t *spa)
1768 } 1834 {
1835 zio_t *rio;
1770 static void 1836 spa_load_error_t sle = { 0 };
1771 spa_aux_check_renoved(spa_aux_vdev_t *sav) 1837 zpool _rew nd_policy_t poI cy;
1772 { 1838 bool ean_t verify_ok = B_FALSE;
1773 for (int i =0; i < sav->sav_count; i++) 1839 int error;

new usr/src/uts/comon/fs/zfs/spa.c

1841 zpool _get _rew nd_pol i cy(spa->spa_config, &policy);

1843 if (policy.zrp_request & ZPOOL_NEVER REW ND)

1844 return (0);

1846 rio = zio_root(spa, NULL, &sle,

1847 ZI O FLAG CANFAIL | ZI O FLAG_SPECULATI VE) ;

1849 error = traverse_pool (spa, spa->spa_verify_m n_txg,

1850 TRAVERSE_PRE | TRAVERSE PREFETCH, spa load verify cb, rio)
1852 (void) zio_wait(rio);

1854 spa->spa_|l oad_neta_errors = sle.sle_neta_count;

1855 spa->spa_|l oad_data_errors = sle.sle_data_count;

1857 if (lerror & sle.sle_nmeta_count <= policy.zrp_maxneta &&

1858 sle.sle_data_count <= policy.zrp_maxdata) {

1859 int64_t loss = 0;

1861 verify_ok = B_TRUE;

1862 spa->spa_|l oad_t xg = spa->spa_uber bl ock. ub_t xg;

1863 spa->spa_l oad_t xg_ts = spa->spa_uber bl ock. ub_ti mest anp;
1865 I oss = spa->spa_l ast _ubsync_txg_ts - spa->spa_|l oad_txg_ts;
1866 VERI FY(nvl i st _add_ui nt 64(spa->spa_| oad_i nf o,

1867 ZPOOL_CONFI G LOAD TI ME, spa->spa_l oad_txg ts) == 0);
1868 VERI FY(nvli st _add_i nt 64(spa- >spa_| oad_| | nfo,

1869 ZPOOL_CONFI G REW ND_TI ME, |o0ss) == 0);

1870 VERI FY(nvli st _add_ui nt 64(spa- >spa_| oad_i nfo

1871 ZPOOL_CONFI G LOAD DATA ERRORS, sle.sle_data_count) == 0)
1872 } else {

1873 spa- >spa_| oad_max_t xg = spa- >spa_uber bl ock. ub_t xg;

1874 }

1876 if (error) {

1877 if (error '= ENXIO & error != EIO

1878 error = SET_ERROR(EIO;

1879 return (error);

1880 }

1882 return (verify ok ? 0 : EIO;

1883 }

1885 /*

1886 * Find a value in the pool props object.

1887 */

1888 static void

%ggg {spa_prop_fi nd(spa_t *spa, zpool _prop_t prop, uint64_t *val)

1891 (voi d) zap_l ookup(spa->spa_neta_obj set, spa->spa_pool _props_object,
1892 zpool _prop_to_nane(prop), sizeof (uint64_t), 1, val);

1893 }

1895 /*

1896 * Find a value in the pool directory object.

1897 */

1898 static int

1899 spa_dir_prop(spa_t *spa, const char *nane, uint64_t *val)

1900 {

1901 return (zap_l ookup(spa->spa_neta_objset, DMJ POOL_DI RECTORY_OBJECT,
1902 nane, sizeof (uint64_t), 1, val));

1903 }

1905 static int

29

new usr/src/uts/comron/fs/zfs/spa.c 30
1906 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)

1907 {

1908 vdev_set _state(vdev, B_TRUE, VDEV_STATE CANT_OPEN, aux)

1909 return (err);

1910 }

1912 /*

1913 * Fix up config after a partly-conpleted split. This is done with the
1914 * ZPOOL_CONFI G SPLIT nvlist. Both the splitting pool and the split-off
1915 * pool have that entry in their config, but only the splitting one contains
1916 * a list of all the guids of the vdevs that are being split off.

1917 *

1918 * This function deternmines what to do with that list: either rejoin
1919 * all the disks to the pool, or conplete the splitting process. To attenpt
1920 * the rejoin, each disk that is offlined is nmarked online again, and
1921 * we do a reopen() call. |If the vdev label for every disk that was
1922 * marked online indicates it was successfully split off (VDEV_AUX SPLI T_POOL)
1923 * then we call vdev_split() on each disk, and conplete the split.

1924 *

1925 * Otherwise we |eave the config alone, with all the vdevs in place in
1926 * the original pool.

1927 */

1928 static void

1929 spa_try_repair(spa_t *spa, nvlist_t *config)

1930 {

1931 uint_t extracted;

1932 uint64_t *glist;

1933 uint_t i, gcount;

1934 nvlist_t *nvl;

1935 vdev_t **vd;

1936 bool ean_t attenpt_reopen;

1938 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG SPLIT, &nvl) != 0)
1939 return;

1941 /* check that the config is conplete */

1942 if (nvlist_lookup_uinté4_array(nvl, ZPOOL_CONFI G SPLIT_LI ST,
1943 &glist, &gcount) != 0)

1944 return;

1946 vd = knem zal | oc(gcount * sizeof (vdev_t *), KM SLEEP);

1948 /* attenpt to online all the vdevs & validate */

1949 attenpt _reopen = B TRUE

1950 for (i =0; i < gcount; i++) {

1951 if (glist[i] == 0) /* vdev is hole */

1952 conti nue;

1954 vd[i] = spa_l ookup_by_guid(spa, glist[i], B _FALSE);

1955 if (vd[l] == NULL) {

1956

1957 * Don’ t bot her attenptl ng to reopen the disks;
1958 * just do the split

1959 */

1960 attenpt _reopen = B_FALSE;

1961 } else {

1962 /* attenpt to re-online it */

1963 vd[i]->vdev_offline = B_FALSE;

1964 }

1965 }

1967 if (attenpt_reopen) {

1968 vdev_r eopen(spa- >spa_r oot _vdev);

1970 /* check each device to see what state it’s in */

1971 for (extracted = 0, i =0; i < gcount; i++) {

new usr/src/uts/comon/fs/zfs/spa.c

1972 if (vd[i] !'= NULL &&

1973 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLI T_POCL)
1974 br eak;

1975 ++extract ed;

1976 }

1977 1

1979 /*

1980 * |f every disk has been noved to the new pool, or if we never
1981 * even attenpted to | ook at them then we split themoff for
1982 * good.

1983 *

1984 if (lattenpt_reopen || gcount == extracted) {

1985 for (i = 0; I < gcount; i++)

1986 if (vd[i] !'= NULL)

1987 vdev_split(vd[i]);

1988 vdev_r eopen(spa- >spa_r oot _vdev);

1989 }

1991 kmem free(vd, gcount * sizeof (vdev_t *));

1992 }

1994 static int

1995 spa_l oad(spa_t *spa, spa_load_state_t state, spa_inport_type_t type,

1996 bool ean_t nosconfi g)

1997 {

1998 nvlist_t *config = spa->spa_config;

1999 char *ereport = FM EREPORT_ZFS POOL;

2000 char *conment;

2001 int error;

2002 uint64_t pool _guid;

2003 nvlist_t *nvl;

2005 if (nvlist_lookup_uint64(config, ZPOOL_CONFI G POOL_GUI D, &pool _guid))
2006 return (SET_ERROR(EI NVAL));

2008 ASSERT(spa->spa_comment == NULL);

2009 if (nvlist_lookup_string(config, ZPOOL_CONFI G COMMENT, &comment) == 0)
2010 spa- >spa_comment = spa_strdup(comment);

2012 /*

2013 * Versioning wasn't explicitly added to the | abel until later, so if
2014 * it's not present treat it as the initial version.

2015 */

2016 if (nvlist_lookup_uint64(config, ZPOOL_CONFI G VERSI ON,

2017 &spa- >spa_ubsync. ub_version) !'= 0

2018 spa- >spa_ubsync. ub_version = SPA VERSI ON_| NI TI AL;

2020 (void) nvlist_|ookup_uint64(config, ZPOOL_CONFI G POOL_TXG

2021 &spa->spa_config_txg);

2023 if ((state == SPA LOAD | MPORT || state == SPA LOAD TRYl MPORT) &&
2024 spa_gui d_exi st s(pool _guid, 0))

2025 error = SET_ERROR(EEXI ST) ;

2026 } else {

2027 spa- >spa_config_guid = pool _gui d;

2029 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG SPLIT,

2030 &nvl) ==

2031 VERI FY(nvlist_dup(nvl, &spa->spa_config_splitting,
2032 KM SLEEP) == 0);

2033 }

2035 nvlist_free(spa->spa_|l oad_i nfo);

2036 spa->spa_load_info = fnvlist_alloc();

31

new usr/src/uts/comon/fs/zfs/spa.c

2038 get hresti me(&spa->spa_| oaded_ts);

2039 error = spa_|l oad_i npl (spa, pool _guid, config, state, type,
2040 nosconfig, &ereport);

2041 }

2043 spa->spa_mi nref = refcount_count (&spa->spa_refcount);

2044 if (error) {

2045 if (error != EEXIST)

2046 spa->spa_| oaded_ts.tv_sec = 0;

2047 spa- >spa_| oaded_ts.tv_nsec = O;

2048 }

2049 if (error != EBADF) {

2050 zfs_ereport_post(ereport, spa, NULL, NULL, O, 0);
2051 }

2052 1

2053 spa->spa_l oad_state = error ? SPA LOAD ERROR : SPA LOAD NONE;
2054 spa->spa_ena = O;

2056 return (error);

2057 }

2059 /*

2060 * Load an existing storage pool, using the pool’s builtin spa_config as a
2061 * source of configuration infornation.

2062 */

2063 static int

2064 spa_l oad_i npl (spa_t *spa, uint64_t pool_guid, nvlist_t *config,

2065 spa_l oad_state_t state, spa_inport_type_t type, boolean_t nosconfig,
2066 char **ereport)

2067 {

2068 int error = 0;

2069 nvlist_t *nvroot = NULL;

2070 nvlist_t *|abel;

2071 vdev_t *rvd;

2072 uber bl ock_t *ub = &spa->spa_uber bl ock;

2073 uint64_t children, config_cache_txg = spa->spa_config_txg;

2074 int orig_node = spa->spa_node;

2075 int parse;

2076 uint64_t obj;

2077 bool ean_t m ssing_feat_wite = B_FALSE;

2079 /*

2080 * If this is an untrusted config, access the pool in read-only node.
2081 * This prevents things like resilvering recently renoved devi ces.
2082 *

2083 if (!nmosconfig)

2084 spa- >spa_npde = FREAD;

2086 ASSERT(MUTEX_HELD(&spa_nanespace_| ock));

2088 spa->spa_| oad_state = state;

2090 if (nvlist_lookup_nvlist(config, ZPOOL_CONFI G VDEV_TREE, &nvroot))
2091 return (SET_ERROR(EINVAL));

2093 parse = (type == SPA | MPORT_EXI STI NG ?

2094 VDEV_ALLOC LOAD : VDEV_ALLOC SPLIT);

2096 /*

2097 * Create "The CGodfather" zio to hold all async |Gs

2098 */

2099 spa- >spa_async_zi o_root = zio_root(spa, NULL, NULL,

2100 ZI O_FLAG CANFAI L | ZI O FLAG SPECULATI VE | ZI O FLAG GODFATHER) ;
2102 /*

2103 * Parse the configuration into a vdev tree. W explicitly set the

new usr/src/uts/comon/fs/zfs/spa.c

2104
2105
2106
2107
2108
2109

2111
2112

2114

2116
2117
2118

2120
2121
2122
2123
2124
2125
2126
2127

2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145

2147
2148

2150
2151
2152

2154
2155
2156
2157

2159
2160
2161
2162
2163
2164
2165

2167
2168
2169

* value that will be returned by spa_version() since parsing the
* configuration requires know ng the version nunber
*/

spa_config_enter(spa, SCL_ALL, FTAG RWMWRI TER);
error = spa_config_parse(spa, &vd, nvroot, NULL, O, parse);
spa_config_exit(spa, SCL_ALL, FTAG;

if (error '=0)
return (error);

ASSERT(spa- >spa_r oot _vdev == rvd);

if (type !'= SPA | MPORT_ASSEMBLE) {
ASSERT(spa_gui d(spa) == pool _gui d);
}

/*
* Try to open all vdevs, |oading each |abel in the process.
*/

spa_| confl g_enter(spa, SCL_ALL, FTAG RWWRI TER);
error = vdev_open(rvd);
spa_config_exit(spa, scL _ALL, FTAG;
if (error 1= 0)
return (error);

/*

* W need to validate the vdev |abels against the configuration that

* we have in hand, which is dependent on the setting of npbsconfig. If

* mosconfig is true then we’'re validating the vdev | abels based on

* that config. GQOherwi se, we're validating against the cached config

* (zpool . cache) that was read when we | oaded the zfs nodul e, and then

* later we will recursively call spa_load() and validate agai nst

* the vdev config.

*

* |f we’'re assenbling a new pool that’s been split off froman

* existing pool, the |abels haven't yet been updated so we skip

* validation for now.

*/

if (type !'= SPA_| MPORT_ASSEMBLE) {
spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER);
error = vdev_validate(rvd, nposconfig);
spa_config_exit(spa, SCL_ALL, FTAG;

if (error 1= 0)
return (error);

if (rvd->vdev_state <= VDEV_STATE CANT_OPEN)
return (SET_ERROR(ENXI O));
}

/*
* Find the best uberbl ock.
*

vdev_uber bl ock_| oad(rvd, ub, & abel);
/*

33

* |f we weren't able to find a single valid uberblock, return failure.

*/
if (ub->ub_txg == 0) {
nvlist_free(label);
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXI O));
}

*

* |f the pool has an unsupported version we can’t open it.
*/

new usr/src/uts/comon/fs/zfs/spa.c

2170
2171
2172
2173

2175
2176

2178
2179
2180
2181
2182
2183
2184
2185
2186
2187

2189
2190
2191
2192
2193
2194
2195

2197

2199
2200
2201
2202
2203
2204
2205

2207
2208

2210
2211
2212
2213
2214
2215
2216
2217

2219
2220
2221
2222
2223
2224
2225

2227
2228

2230
2231
2232
2233
2234
2235

34

if (!SPA_VERSI ON_I S SUPPORTED(ub->ub_version)) {

nvlist_free(label);

return (spa_vdev_err(rvd, VDEV_AUX VERSI ON_NEVER, ENOTSUP));
}

if (ub->ub_version >= SPA VERSI ON_FEATURES) ({
nvlist_t *features;

/*

* |If we weren't able to find what’'s necessary for reading the
* MOS in the label, return failure.

*

/

if (label == NULL || nvlist_|ookup_nvlist(label,

ZPOOL_CONFI G_FEATURES _FOR READ, &features) != 0) {
nvlist_free(label);
return (spa_vdev err(rvd VDEV_AUX_CORRUPT_DATA,
ENXIO));
}
/ *

* Update our in-core representation with the definitive val ues
* fromthe |abel.
*/
nvlist_free(spa->spa_| abel _features);
VERI FY(nvlist_dup(features, &spa- >spa_| abel _features, 0) == 0);
}

nvlist_free(label);

/*

* Look through entries in the |label nvlist’'s features_for_read. If
* there is a feature |listed there which we don’'t understand then we
* cannot open a pool .

*/

if (ub->ub_version >= SPA VERSI ON_FEATURES) ({
nvlist_t *unsup_feat;

VERI FY(nvlist_alloc(&nsup_feat, NV_UNI QUE_NAME, KM SLEEP) ==

for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_| abel _features,
NULL); nvp !'= NULL;
nvp = nvlist_next_nvpair(spa->spa_| abel _features, nvp)) {
if (!zfeature_is_supported(nvpair_nane(nvp))) {
VERI FY(nvl i st _add_string(unsup_feat,
nvpai r_name(nvp), "") == 0);

}

if (!nvlist_enpty(unsup_feat)) {
VERI FY(nvlist_add_nvli st (spa->spa_| oad_i nfo,
ZPOOL_CONFI G UNSUP_FEAT, unsup_feat) == 0);
nvlist_free(unsup_feat);
return (spa_vdev_err(r vd VDEV_AUX_UNSUP_FEAT,

ENOTSUP)) ;

}

nvlist_free(unsup_feat);
}
/*
* |f the vdev guid sumdoesn’t natch the uberbl ock, we have an
* inconplete configuration. W first check to see if the pool
* is aware of the conplete config (i.e ZPOOL_CONFI G VDEV_CHI LDREN).
* |f it is, defer the vdev_guid_sumcheck till later so we
*

can handi e missi ng vdevs.

new usr/src/uts/comon/fs/zfs/spa.c 35

2236
2237
2238
2239
2240

2242
2243
2244
2245
2246
2247
2248

2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260

2262
2263
2264
2265

2267
2268

2270
2271
2272

2274
2275
2276
2277

2279
2280
2281
2282

2284
2285
2286
2287

2289
2290

2292
2293
2294
2295

2297
2298
2299
2300
2301

*
/
if (nvlist_lookup_uint64(config, ZPOOL_CONFI G VDEV_CHI LDREN,
&children) !'="0 &% nosconfig & type != SPA_| MPORT_ASSEMBLE &&
rvd- >vdev_gui d_sum ! = ub- >ub_gui d_sum
return (spa_vdev_err(rvd, VDEV_AUX BAD GUID SUM ENXI O);

if (type != SPA_| MPORT_ASSEMBLE && spa->spa_config_splitting) {
spa_config_enter(spa, SCL_ALL, FTAG RWMWRI TER);
spa_try_repair(spa, config);
spa_config_exit(spa, SCL_ALL, FTAG);
nvl ist_free(spa->spa_confi g_spl itti ng);

) spa->spa_config_splitting = NULL;

/*
* Initialize internal SPA structures.
*/

spa- >spa_state = POOL_STATE_ACTI VE;
spa- >spa_ubsync = spa->spa_uber bl ock;
spa->spa_verify_mn_txg = spa->spa_extrenme_rew nd ?

TXG INITIAL - 1 : spa_last_synced_txg(spa) - TXG DEFER SIZE - 1;
spa->spa_first_txg = spa->spa_|l ast_ubsync_txg ?

spa- >spa_l ast _ubsync_txg : spa_l ast_synced_t xg(spa) + 1;
spa->spa_cl ai m max_t xg = spa->spa_first_txg;
spa- >spa_prev_software_versi on = ub->ub_software_version;

error = dsl_pool _init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
if (error)

return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);
spa- >spa_net a_obj set = spa->spa_dsl _pool - >dp_net a_obj set ;

if (spa_dir_prop(spa, DMJ_POOL_CONFI G &spa->spa_config_object) != 0)
return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);

if (spa_version(spa) >= SPA VERSI ON_FEATURES) ({
bool ean_t m ssing_feat_read = B_FALSE;
nvlist_t *unsup_feat, *enabled_feat;

if (spa_dir_prop(spa, DMJ_POOL_FEATURES_FOR READ,
&spa->spa_feat _for_read_obj) != 0)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO);

}
if (spa_dir_prop(spa, DMJ POOL_FEATURES FOR WRI TE,
&spa- >spa_feat_for_wite obj) != 0
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO);
}

if (spa_dir_prop(spa, DMJ_POOL_FEATURE_DESCRI PTI ONS,
&spa- >spa_feat_desc_obj) != 0)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO);
}

enabl ed_feat = fnvlist_alloc();
unsup_feat = fnvlist_alloc();

if (!feature_is_supported(spa->spa_neta_objset,
spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
unsup_f eat, enabled_feat))
m ssing_feat_read = B_TRUE;

if (spa_writeable(spa) || state == SPA_LOAD_TRYI MPORT) {
if (!feature_is_supported(spa->spa_neta_objset,
spa->spa_feat_for_wite_obj, spa->spa_feat_desc_obj,
unsup_feat, enabled feat)) {
m ssi ng_f eat_wite = B_TRUE;

new usr/src/uts/comron/fs/zfs/spa.c

2302
2303

2305
2306

2308
2309
2310
2311

2313
2314

2316
2317
2318
2319

2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345

2347
2348
2349
2350
2351

2353
2354
2355

2357
2358

2360
2361
2362
2363

2365
2366

36

}
}

fnvlist_add_nvlist(spa->spa_|l oad_info,
ZPOOL_CONFI G_ENABLED FEAT, enabl ed _feat);

if (!nvlist_enpty(unsup_feat)) {
fnvlist_add_nvlist(spa->spa_| oad_i nfo,
ZPOOL_CONFI G_UNSUP_FEAT, unsup_| feat)
}

fnvlist_free(enabl ed_feat);
fnvlist_free(unsup_feat);

if (!'mssing_feat_read) {
fnviist_add_bool ean(spa->spa_l oad_i nf o,
ZPOOL_CONFI G_CAN_RDONLY) ;

If the state is SPA_LOAD TRYI MPORT, our objective is
twofold: to determ ne whether the pool is available for
import in read-wite nmode and (if It is not) whether the
pool is available for inport in read-only node. If the pool
I's available for inport in read-wite nmode, it is displayed
as available in userland; if it is not avallable for inport
in read-only node, it is displayed as unavailable in
userland. If the pool is available for inport in read-only
node but not read-wite node, it is displayed as unavail abl e
in userland with a special note that the pool is actually
avail abl e for open in read-only node.

As a result, if the state is SPA LOAD TRYI MPORT and we are
mssing a feature for wite, we nust first determ ne whether
the pool can be opened read-only before returning to
userland in order to know whether to display the

abovenenti oned note.

T T R
-

if (mssing _feat_read || (mssing_feat_wite &&
spa_writeabl e(spa))) {
return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,

ENOTSUP)) ;

}

spa- >spa_i s_initializing = B_TRUE
error = dsl_pool _open(spa->spa_ds| _pool);
spa->spa_is_initializing = B_FALSE;
if (error 1= 0)
return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);

if (!mosconfig)
uint 64_t hostid;
nvlist_t *policy = NULL, *nvconfig

if (load_nvlist(spa, spa->spa_config_object, &vconfig) != 0)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIOQ);

if (!spa_is_root(spa) &% nvlist_|ookup_uint64(nvconfig,
ZPOOL_CONFI G_HOSTI D, &hostid) == 0)
char *host nane;
unsi gned | ong rTyhost id=0;

VERI FY(nvli st _| ookup_string(nvconfig,
ZPOOL_CONFI G_HOSTNAME, &host nane) == 0);

new usr/src/uts/comon/fs/zfs/spa.c

2368 #i f def

2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392

2394
2395
2396
2397

2399
2400

2402
2403
2404
2405
2406

2408
2409
2410
2411
2412
2413
2414
2415

2417
2418
2419
2420

2422
2423
2424
2425
2426
2427
2428

2430
2431
2432
2433

_KERNEL
nyhostid = zone_get_hosti d(NULL);
/* _KERNEL */
/*
* W're emulating the system s hostid in userland, so
* we can’t use zone_get_hostid().
*
/
(void) ddi_strtoul (hw_serial, NULL, 10, &nyhostid);
/* _KERNEL */
if (hostid !'= 0 & nyhostid != 0 &&
hostid != nyhostid) {
nvlist_free(nvconfig)
cmm_err (CE_WARN, "pool "%’ could not be "
"l oaded as it was | ast accessed by "
"anot her system (host: % hostid: O0x% Xx).
"See: http://illunos. org/ nsg/ ZFS- 8000- EY"
spa_nane(spa), hostnane,
(unsi gned | ong) hosti d);
return (SET_ERROR(EBADF));
}

1f (nvlist_|ookup_nvlist(spa->spa_config,
ZPOOL_REW ND_POLI CY, &policy) == 0)
VERI FY(nvlist_add_nvlist(nvconfig,
ZPOOL_REW ND_POLI CY, policy) == 0);

spa_config_set(spa, nvconfig);
spa_unl oad(spa) ;

spa_deacti vat e(spa);
spa_activate(spa, orig_node);

return (spa_l oad(spa, state, SPA | MPORT_EXI STING B _TRUE));
}

if (spa_dir_prop(spa, DMJ_POOL_SYNC BPOBJ, &obj) != 0)
return (spa_vdev_err(rvd, VDEV AUX CORRUPT_DATA, EI

9);
error = bpobj _open(&spa->spa_def erred_bpobj, spa->spa_neta_objset, obj);
)

if (error '=0
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIOQ);

/*

* Load the bit that tells us to use the new accounting function
* (raid-z deflation). |f we have an ol der pool, this will not
* be present.

*

/

error = spa_dir_prop(spa, DMJ POO._DEFLATE, &spa->spa_deflate);
if (error =0 &% error != ENCENT)

return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIQ);

error = spa_dir_prop(spa, DMJ POOL_CREATI ON_VERSI ON,
&spa->spa_creation_version);
if (error =0 & error != ENCENT)
return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);

/*

* Load the persistent error log. |f we have an ol der pool, this wll
* not be present.

*/

error = spa_dir_prop(spa, DMJ POO._ERRLOG LAST, &spa->spa_errlog_|ast);
if (error =0 &% error != ENCENT)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIOQ);

error = spa_dir_prop(spa, DMJ POO._ERRLOG SCRUB,
&spa- >spa_errl og_scrub);
if (error =0 & error != ENCENT)
return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);

37

new usr/src/uts/comron/fs/zfs/spa.c

2435
2436
2437
2438
2439
2440
2441

2443
2444
2445
2446
2447

2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459

2461
2462
2463
2464
2465
2466

2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479

2481
2482
2483
2484
2485
2486

2488

2490
2491
2492

2494
2495

2497
2498
2499

/*

* Load the history object. |f we have an ol der pool, this

* will not be present.

*/

error = spa_dir_prop(spa, DMJ POOL_HI STORY, &spa->spa_history);
if (error =0 &% error != ENCENT)

return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);

/*

* If we're assenbling the pool fromthe split-off vdevs of

* an existing pool, we don’t want to attach the spares & cache
* devi ces.

*/

/*

* Load any hot spares for this pool.
&/

error = spa_dir_prop(spa, DMJ POOL_SPARES, &spa->spa_spares.sav_object);
if (error =0 &% error != ENCENT)
return (spa vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO);
if (error == 0 & type != SPA_| MPORT_ASSEMBLE)
ASSERT(spa_versi on(spa) >= SPA VERS|I ON_SPARES) ;
if (load_nvlist(spa, spa->spa_spares.sav_object,
&spa- >spa_spares.sav_config) != 0
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO);

spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER);
spa_| oad_spar es(spa);
spa_config_exit(spa, SCL_ALL, FTAG;
} else if (error ==
spa- >spa_spar es. sav_sync = B_TRUE;
}

/*
* Load any |level 2 ARC devices for this pool.
*/

error = spa_dir_prop(spa, DMJ_POOL_L2CACHE,
&spa- >spa_| 2cache. sav_obj ect) ;

if (error 1= 0 &% error != ENCENT)

return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO);
if (error == 0 & type != SPA_| MPORT_ASSEMBLE) {

ASSERT(spa_versi on(spa) >= SPA VERSI ON_L2CACHE) ;

if (load_nvlist(spa, spa->spa_|l 2cache. sav_obj ect,

&spa- >spa_| 2cache. sav_config) !'= 0
return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);

spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER);
spa_|l oad_I| 2cache(spa);
spa_config_exit(spa, SCL_ALL, FTAG;
} else if (error == 0)
spa- >spa_| 2cache. sav_sync = B_TRUE;
}

spa- >spa_del egati on = zpool _prop_def aul t _nuneri c(ZPOOL_PROP_DELEGATI ON) ;

error = spa_dir_prop(spa, DMJ POOL_PROPS, &spa->spa_pool _props_object);
if (error &% error != ENCENT,
return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);

if (error == 0) {
ui nt 64_t autorepl ace;

spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
spa_prop_find(spa, ZPOO._PROP_AUTOREPLACE, &aut orepl ace)
spa_prop_find(spa, ZPOO._PROP_DELEGATI ON, &spa->spa_del egati on);

38

new usr/src/uts/comon/fs/zfs/spa.c 39

2500
2501
2502
2503

2505
2506

2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526

2528
2529
2530
2531

2533
2534
2535
2536
2537
2538

2540
2541
2542
2543
2544
2545

2547

2549
2550
2551
2552
2553
2554
2555
2556
2557

2559
2560

2562
2563
2564
2565

spa_prop_find(spa, ZPOOL_PROP_FAI LUREMODE, &spa- >spa_fail node);
spa_prop_find(spa, ZPOOL_PROP_AUTCEXPAND, &spa->spa_aut oexpand)
spa_prop_find(spa, ZPOO._PROP_DEDUPDI TTO,

&spa- >spa_dedup_ditto);

spa- >spa_aut orepl ace = (autoreplace != 0);

If the "autoreplace’ property is set, then post a resource notifying
the ZFS DE that it should not issue any faults for unopenabl e
devices. W also iterate over the vdevs, and post a sysevent for any
unopenabl e vdevs so that the normal autorepl ace handl er can take

*

*/over.

if (spa->spa_autoreplace & state != SPA LOAD TRYI MPORT) {

spa_check_r enoved(spa- >spa_r oot _vdev);

/*

EE

* For the inport case, this is done in spa_inport(), because
* at this point we're using the spare definitions from
* the MOS config, not necessarily fromthe userland config.
*/
if (state !'= SPA LOAD | MPORT)
spa_aux_check_r enoved(&pa- >spa_spar es) ;
spa_aux_check_r enpved(&pa- >spa_| 2cache);

}

*

: Load the vdev state for all toplevel vdevs.

vdév_l oad(rvd);

/*

:/Propagate the | eaf DTILs we just |oaded all the way up the tree.
spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER);

vdev_dt| _reassess(rvd, 0, 0, B_FALSE);
spa_config_exit(spa, SCL_ALL, FTAG;

*

* Load the DDTs (dedup tables).

*

/

error = ddt_| oad(spa);
if (error 1= 0)

return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);
spa_updat e_dspace(spa) ;

/
Val i date the config, using the MOS config to fill in any
i nformati on which mght be mssing. If we fail to validate
the config then declare the pool unfit for use. If we're
assenbling a pool froma split, the log is not transferred
* over.
*/
if (type !'= SPA | MPORT_ASSEMBLE) {

nvlist_t *nvconfig;

* ok ok ok

if (load_nvlist(spa, spa->spa_config_object, &vconfig) != 0)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIOQ);

if (!spa_config_valid(spa, nvconfig)) {
nvlist_free(nvconfig);
return (spa_vdev err(rvd VDEV_AUX_BAD _GUI D_SUM
ENXI O));

new usr/src/uts/comron/fs/zfs/spa.c 40
2566 }

2567 nvlist_free(nvconfig);

2569 /*

2570 * Now that we’ve validated the config, check the state of the
2571 * root vdev. |If it can't be opened, it indicates one or
2572 * nore toplevel vdevs are faulted.

2573

2574 |f (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)

2575 return (SET_ERROR(ENXI O));

2577 if (spa_check_l ogs(spa)) {

2578 *ereport = FM EREPORT_ZFS_LOG REPLAY;

2579 return (spa_vdev_err(rvd, VDEV_AUX BAD LOG ENXI O));
2580 }

2581 }

2583 if (mssing_feat_wite) {

2584 ASSERT(state == SPA LOAD TRYI MPORT) ;

2586 /*

2587 * At this point, we know that we can open the pool in
2588 * read-only node but not read-wite node. W& now have enough
2589 * information and can return to userland.

2590 */

2591 return (spa_vdev_err(rvd, VDEV_AUX UNSUP_FEAT, ENOTSUP));
2592 }

2594 /*

2595 * W' ve successfully opened the pool, verify that we're ready
2596 * to start pushing transactions.

2597 *

2598 if (state !'= SPA LQAD TRYI MPORT)

2599 if (error = spa_|load_verify(spa))

2600 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2601 error));

2602 }

2604 if (spa_witeabl e(spa) && (state == SPA LOAD RECOVER | |

2605 spa- >spa_|l oad_nmax_txg == Ul NT64 _MAX)) {

2606 dmu_t x_t *tx;

2607 int need_update = B_FALSE;

2609 ASSERT(state ! = SPA LOAD TRYI MPORT) ;

2611 /*

2612 * Caimlog blocks that haven't been committed yet.

2613 * This nust all happen in a single txg.

2614 * Note: spa_claimmax_txg is updated by spa_claimnotify(),
2615 * invoked fromzil _claimlog_block()'s i/o done call back.
2616 * Price of rollback is that we abandon the | og.

2617 */

2618 spa->spa_cl ai m ng = B_TRUE;

2620 tx = dmu_t x_create_assi gned(spa_get_dsl (spa),

2621 spa_first_txg(spa));

2622 (void) dnu_objset_fi nd(spa nanme(spa),

2623 zil _claim tx, DS_FIND_CH LDREN);

2624 dnu_t x_commi t (tx);

2626 spa- >spa_cl ai m ng = B_FALSE;

2628 spa_set _| og_state(spa, SPA LOG GOOD);

2629 spa- >spa_sync_on = B_TRUE;

2630 t xg_sync_st art(spa >spa_| dsl _pool);

new usr/src/uts/comon/fs/zfs/spa.c

2632 /*

2633 * Wait for all clains to sync. W sync up to the highest
2634 * claimed log block birth time so that clained |og bl ocks
2635 * don’t appear to be fromthe future. spa_clai mnax_txg
2636 * will have been set for us by either zil_check Tog_ chal n()
2637 * (invoked from spa_check_logs()) or zil_claim) above.
2638 *

2639 t xg_wai t _synced(spa- >spa_dsl _pool, spa->spa_clai m nmax_t xg);
2641 /*

2642 * If the config cache is stale, or we have uninitialized
2643 * metasl abs (see spa_vdev_add()), then update the config.
2644 *

2645 * If this is a verbatiminport, trust the current

2646 * in-core spa_config and update the disk |abels.

2647 *

2648 f (config_cache_txg != spa->spa_config_txg ||

2649 state == SPA_LQOAD | MPORT | |

2650 state == SPA_LOAD RECOVER | |

2651 (spa->spa_i nport _flags & ZFS_| MPORT_VERBATI M)

2652 need_update = B_TRUE;

2654 for (int ¢ = 0; ¢ < rvd->vdev_children; c++)

2655 if (rvd->vdev_child[c]->vdev_ns_array == 0)

2656 need_update = B_TRUE;

2658 /*

2659 * Update the config cache asychronously in case we're the
2660 * root pool, in which case the config cache isn't witable yet.
2661 */

2662 if (need_update)

2663 spa_async_request (spa, SPA_ASYNC CONFI G_UPDATE) ;
2665 /*

2666 * Check all DTLs to see if anything needs resilvering.
2667 *

2668 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&

2669 vdev_resilver_needed(rvd, NULL, NULL))

2670 spa_async_request (spa, SPA_ASYNC_RESI LVER);

2672 *

2673 * Log the fact that we booted up (so that we can detect if
2674 * we rebooted in the nmiddle of an operation).

2675 */

2676 spa_hi story_l og_version(spa, "open");

2678 /*

2679 * Del ete any inconsistent datasets.

2680 *

2681 (voi d) dnu_objset _find(spa_nane(spa),

2682 dsl _destroy_i nconsi stent, NULL, DS_FI ND_CHI LDREN);
2684 /*

2685 * Clean up any stale tenporary dataset userrefs.

2686 */

2687 dsl _pool _cl ean_t np_userr ef s(spa- >spa_dsl _pool) ;

2688 1

2690 return (0);

2691

2693 static int

2694 spa_load_retry(spa_t *spa, spa_load_state_t state, int nobsconfig)

2695 {

2696 int node = spa->spa_node;

41

new usr/src/uts/comon/fs/zfs/spa.c 42
2698 spa_unl oad(spa);

2699 spa_deacti vat e(spa);

2701 spa- >spa_| oad_max_t xg- - ;

2703 spa_activat e(spa, node);

2704 spa_async_suspend(spa);

2706 return (spa_|l oad(spa, state, SPA | MPORT_EXI STI NG nosconfig));
2707 }

2709 /*

2710 * If spa_load() fails this function will try loading prior txg's. If
2711 * 'state’ is SPA _LOAD RECOVER and one of these | oads succeeds the pool
2712 * wi be rewound to that txg. If 'state’ is not SPA LOAD RECOVER this
2713 * function will not rewind the pool and will return the same error as
2714 * spa_l oad().

2715 */

2716 static int

2717 spa_l oad_best (spa_t *spa, spa_load_state t state, int nosconfig,

2718 uint64_t max_request, int rew nd_flags)

2719 {

2720 nvlist_t *loadinfo = NULL;

2721 nvlist_t *config = NULL;

2722 int |oad_error, rew nd_error;

2723 uint64_t safe_rew nd_tXxg;

2724 uint64_t mn_txg;

2726 if (spa->spa_load_txg && state == SPA_LOAD RECOVER) {

2727 spa- >spa_l oad_max_txg = spa->spa_| oad_t xg;

2728 spa_set _log_state(spa, SPA LOG CLEAR);

2729 } else {

2730 spa- >spa_| oad_max_t xg = nmax_request;

2731 }

2733 load_error = rewind_error = spa_|l oad(spa, state, SPA | MPORT_EXI STI NG,
2734 nosconfig);

2735 if (load_error == 0)

2736 return (0);

2738 if (spa->spa_root_vdev != NULL)

2739 config = spa_config_generate(spa, NULL, -1ULL, B TRUE);
2741 spa- >spa_l ast _ubsync_txg = spa- >spa_uber bl ock. ub_t xg;

2742 spa- >spa_l ast _ubsync_txg_ts = spa->spa_uber bl ock. ub_ti nmest anp;
2744 if (rewind_flags & ZPOOL_NEVER REW ND) {

2745 nvlist_free(config);

2746 return (load_error);

2747 }

2749 if (state == SPA LOAD RECOVER)

2750 /* Price of rolling back is discarding txgs, including |log */
2751 spa_set _|l og_state(spa, SPA_LOG CLEAR);

2752 } else {

2753 /*

2754 * If we aren’t rolling back save the load info fromour first
2755 * import attenpt so that we can restore it after attenpting
2756 * to rew nd.

2757 */

2758 | oadi nfo = spa->spa_| oad_i nfo;

2759 spa->spa_load_info = fnvlist_alloc();

2760 }

2762 spa- >spa_| oad_max_t xg = spa->spa_| ast_ubsync_t xg;

2763 safe_rew nd_txg = spa->spa_l ast_ubsync_txg - TXG DEFER Sl ZE;

new usr/src/uts/comon/fs/zfs/spa.c

2764
2765

2767
2768
2769
2770
2771
2772
2773
2774
2775
2776

2778
2779

2781
2782

2784
2785
2786
2787
2788
2789
2790

2792
2793
2794

2796
2797
2798

2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819

2821

2823
2824
2825
2826
2827
2828
2829

mn_txg = (rewind_flags & ZPOOL_EXTREME_REW ND) ?
TXG INITIAL : safe_rew nd_txg;

/*

* Continue as long as we're finding errors, we're still within

* the acceptable rewi nd range, and we're still finding uberbl ocks
*/

while (rew nd_error && spa->spa_uberblock.ub_txg >= min_txg &&
spa- >spa_uber bl ock. ub_t xg <= spa->spa_l oad_max_t xg) {
if (spa->spa_l oad_max_t xg < safe_rew nd_t xg)
spa- >spa_extreme_rewi nd = B_TRUE;
rewind_error = spa_load_retry(spa, state, nosconfig);

}

spa- >spa_extrene_rewi nd = B_FALSE;
spa- >spa_|l oad_max_t xg = Ul NT64_MNAX;

if (config & (rewind_error || state != SPA LOAD RECOVER))
spa_config_set(spa, config);

if (state == SPA_LOAD _RECOVER) {
ASSERT3P(I oadi nfo, ==, NULL);
return (rew nd_error);
} else {
/* Store the rewind info as part of the initial load info */
fnvlist_add_nvlist(loadinfo, ZPOOL_CONFI G REW ND_| NFO,
spa- >spa_| oad_i nfo);

/* Restore the initial load info */
fnvlist_free(spa->spa_|l oad_i nfo);

spa->spa_l oad_i nfo = | oadi nf o;
return (load_error);
}
}
/*
* Pool Open/ | nport
*
* The inport case is identical to an open except that the configuration is sent
* down fromuserland, instead of grabbed fromthe configuration cache. For the
* case of an open, the pool configuration will exist in the
* POOL_STATE_UNI NI Tl ALI ZED st at e
*
* The stats information (gen/count/ustats) is used to gather vdev statistics at
* the same tinme open the pool, without having to keep around the spa_t in sone
* anbi guous state.
*/
static int

spa_open_conmon(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
nvlist_t **config)
{

spa_t *spa;

spa_l oad_state_t state = SPA_LOAD_OPEN,
int error;

int |ocked = B_FALSE;

*spapp = NULL;

/*

* As disgusting as this is, we need to support recursive calls to this
* function because dsl _dir_open() is called during spa_load(), and ends

* up calling spa_open() again. The real fix is to figure out how to
* avoid dsl _dir_open() calling this in the first place.
*

/

if (mutex_owner(&spa_nanmespace_|l ock) != curthread) {

43

new usr/src/uts/comon/fs/zfs/spa.c 44

2830
2831
2832

2834
2835
2836
2837
2838

2840
2841

2843
2844
2845
2846

2848

2850
2851

2853
2854

2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871

2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894

mt ex enter(&spa namespace_| ock) ;
| ocked = B_TRUE;

}
if ((spa = spa_l ookup(pool)) == NULL) {
if (locked)

nut ex_exi t (&spa_nanmespace_| ock) ;
return (SET_ERROR(ENCENT));
}

if (spa->spa_state == POOL_STATE_UNI NI Tl ALI ZED) {
zpool _rewi nd_policy_t policy;

zpool _get _rew nd_policy(nvpolicy ? nvpolicy : spa->spa_config,
&pol i cy);
if (policy.zrp_request & ZPOOL_DO REW ND)
state = SPA_LOAD_RECOVER

spa_activat e(spa, spa_node_gl obal);

if (state != SPA_LOAD RECOVER)
spa- >spa_| ast _ubsync_t xg = spa->spa_|l oad_txg =

error = spa_|l oad_best(spa, state, B_FALSE, policy.zrp_txg,
policy.zrp_request);

if (error == EBADF) {
/

*
* |f vdev_validate() returns failure (indicated by

* EBADF), it indicates that one of the vdevs indicates
* that the pool has been exported or destroyed. |If

* this is the case, the config cache is out of sync and
*/we shoul d renmove the pool fromthe namespace.

*

spa_unl oad(spa) ;
spa_deacti vat e(spa);
spa_confi g_sync(spa, B_TRUE, B_TRUE);
spa_renove(spa);
if (1ocked)

mut ex_exi t (&pa_nanmespace_| ock) ;
return (SET_ERROR(ENCENT));

}
if (error) {
/*
* W& can’t open the pool, but we still have useful
* information: the state of each vdev after the
* attenpted vdev_open(). Return this to the user.
*
if (config !'= NULL && spa->spa_config) {
VERI FY(nvl i st _dup(spa->spa_config, config,
KM SLEEP) == 0);
VERI FY(nvl i st _add nvl i st (*confi g,
ZPOOL_CONFI G_LOAD | NFQ,
spa->spa_|l oad_i nfo) == 0);
}
spa_unl oad(spa);
spa_deact i vat e(spa) ;
spa->spa_| ast_open_failed = error;
if (1ocked)
mut ex_exi t (&pa_nanmespace_| ock);
*spapp = NULL;
return (error);
}

new usr/src/uts/comon/fs/zfs/spa.c 45 new usr/src/uts/comon/fs/zfs/spa.c 46
2896 spa_open_ref(spa, tag);
2963 /*
2898 if (config !'= NULL) 2964 * Add spares device information to the nvlist.
2899 *config = spa_config_generate(spa, NULL, -1ULL, B TRUE); 2965 */
2966 static void
2901 /* 2967 spa_add_spares(spa_t *spa, nvlist_t *config)
2902 * |f we’ve recovered the pool, pass back any infornmation we 2968 {
2903 * gathered while doing the |oad. 2969 nvlist_t **spares;
2904 */ 2970 uint_t i, nspares;
2905 if (state == SPA LOAD RECOVER) { 2971 nvlist_t *nvroot;
2906 VERI FY(nvl i st _add_nvl i st(*config, ZPOOL_CONFI G_LOAD_| NFO, 2972 ui nt64_t guid;
2907 spa->spa_l oad_i nfo) == 0); 2973 vdev_stat _t *vs;
2908 } 2974 uint _t vsc;
2975 uint64_t pool;
2910 if (locked) {
2911 spa- >spa_| ast _open_failed = 0; 2977 ASSERT(spa_config_hel d(spa, SCL_CONFI G RW READER));
2912 spa- >spa_| ast _ubsync_txg = O;
2913 spa->spa_|l oad_txg = O; 2979 if (spa->spa_spares.sav_count == 0)
2914 mut ex_exi t (&pa_nanmespace_| ock) ; 2980 return;
2915 }
2982 VERI FY(nvlist_| ookup_nvlist(config,
2917 *spapp = spa; 2983 ZPOOL_CONFI G VDEV_TREE, &nvroot) == 0);
2984 VERI FY(nvTi st _| ookup_nvlist_array(spa->spa_spares. sav_config,
2919 return (0); 2985 ZPOOL_CONFI G_SPARES, &spares, &nspares) == 0);
2920 } 2986 if (nspares != 0) {
2987 VERI FY(nvlist_add_nvlist_array(nvroot,
2922 int 2988 ZPOOL_CONFI G_SPARES, ~spar es, nspar es) == 0);
2923 spa_open_rewi nd(const char *nane, spa_t **spapp, void *tag, nvlist_t *policy, 2989 VERI FY(nvli st _| ookup_nvl i st_array(nvroot,
2924 (nvlist_t **config) 2990 ZPOOL_CONFI G_SPARES, &spares, &nspares) == 0);
2925
2926 return (spa_open_common(nanme, spapp, tag, policy, config)); 2992 /*
2927 } 2993 * Go through and find any spares which have since been
2994 * repurposed as an active spare. |f this is the case, update
2929 int 2995 * their status appropriately.
2930 spa_open(const char *nane, spa_t **spapp, void *tag) 2996 */
2931 { 2997 for (i =0; i < nspares; i++)
2932 return (spa_open_common(nane, spapp, tag, NULL, NULL)); 2998 VERI FY(nvlist_| ookup ui nt 64(spares[i 1.
2933 } 2999 ZPOOL_CONFI G GUI D, &guid) =
3000 if (spa_spare_exists(guid, &pool NULL) &&
2935 /* 3001 pool != QULL)
2936 * Lookup the given spa_t, increnenting the inject count in the process, 3002 VERI FY(nvlist_| ookup_ui nt64_array(
2937 * preventing it from being exported or destroyed. 3003 spares[i], ZPOOL_CONFI G VDEV_STATS,
2938 */ 3004 (uint64_t **)&s, &sc) == 0);
2939 spa_ t * 3005 vs->vs_state = VDEV_STATE CANT_OPEN;
2940 spa_i nj ect _addref (char *nane) 3006 vs->vs_aux = VDEV_AUX_SPARED;
2941 { 3007 }
2942 spa_t *spa; 3008 }
3009 1
2944 mut ex_ent er (&spa_nanespace_| ock) ; 3010 }
2945 if ((spa = spa_l ookup(nanme)) == NULL) {
2946 mut ex_exi t (&spa_nanmespace_| ock) ; 3012 /*
2947 return (NULL); 3013 * Add | 2cache device information to the nvlist, including vdev stats.
2948 } 3014 */
2949 spa- >spa_i nj ect _ref ++; 3015 static void
2950 mut ex_exi t (&spa_nanmespace_| ock) ; 3016 spa_add_| 2cache(spa_t *spa, nvlist_t *config)
3017 {
2952 return (spa); 3018 nvlist_t **|2cache;
2953 } 3019 uint_t i, j, nl2cache;
3020 nvlist_t *nvroot;
2955 void 3021 uint64_t guid;
2956 spa_inject_delref(spa_t *spa) 3022 vdev_t *vd;
2957 { 3023 vdev_stat _t *vs;
2958 mut ex_ent er (&spa_namespace_| ock) ; 3024 ui nt _t vsc;
2959 spa->spa_inj ect_ref--;
2960 mut ex_exi t (&spa_| nanespace 1 ock) ; 3026 ASSERT(spa_config_hel d(spa, SCL_CONFI G RW READER));
2961 }

new usr/src/uts/comon/fs/zfs/spa.c 47

3028
3029

3031
3032
3033
3034
3035
3036
3037
3038
3039

3041
3042
3043

3045
3046
3047

3049
3050
3051
3052
3053
3054
3055
3056
3057

3059
3060
3061
3062
3063
3064
3065

3067
3068

3070
3071
3072

3074
3075

3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088

3090
3091
3092
3093

}

if (spa->spa_| 2cache. sav_count == 0)
return;

VERI FY(nvlist_| ookup_nvlist(config,
ZPOOL_CONFI G_VDEV_TREE, &nvroot) == 0);
VERI FY(nvTi st _| ookup_nvlist_array(spa->spa_| 2cache. sav_confi g,
ZPOOL_CONFI G L2CACHE, &l 2cache, &nl 2cache) == 0);
if (nl2cache != 0)
VERI FY(nvlist_add_nvlist_array(nvroot,
ZPOOL_CONFI G L2CACHE, | 2cache, nl anche) == 0);
VERI FY(nvTi st_| ookup_nvl i st array(nvroot
ZPOOL_CONFI G _L2CACHE, &l 2cache, &nl 2cache) == 0);

/*
* Update |l evel 2 cache device stats.
*/

for (i = 0; i < nl2cache; i++)
VERI FY(nvlist_| ookup ui nt 64(1 2cache[i],
ZPOOL_CONFI G GUI D, &guid) == 0);

vd = NULL;
for (j =0; j < spa—>spa_| 2cache. sav_count; j++) {
if (guid ==
spa- >spa_| 2cache. sav_vdevs[j]->vdev_guid) {
vd = spa->spa_| 2cache. sav_vdevs[]];
br eak;
}

}
ASSERT(vd !'= NULL);

VERI FY(nvli st _| ookup_ui nt64_array(l 2cache[i],
ZPOOL_CONFI G_VDEV_STATS, (uint64_t **)&s, &vsc)

)
vdev_get _stats(vd, vs);

static void
spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3069 {

nvlist_t *features;
zap_cursor_t zc;
zap_attribute_t za;

ASSERT(spa_confi g_hel d(spa, SCL_ CO\JFI G RWREADER));
VERI FY(nvlist_alloc(&f eatures, NV_UN QUE_NAME, KM SLEEP) == 0);

if (spa->spa_feat_for_read_obj != 0) {
for (zap_cursor_init(&c, spa->spa_neta_objset,
spa- >spa_feat _for_read_obj);
zap_cursor_retrieve(&c, &a) == 0;
zap_cur sor _advance(&zc)) {
ASSERT(za. za_i nteger _|l ength == sizeof (uint64_t) &&
za.za_num.integers == 1);
VERI FY3U(0, ==, nviist_add_uint64(features, za.za_nane,
za.za_first_integer));

zap_cursor_fini (&c);

}

if (spa->spa_feat_for_wite_obj !=0)
for (zap_cursor_init(&c, spa->spa_neta_objset,
spa->spa_feat_for_wite_obj);
zap_cursor_retri eve(&zc, &za) == 0;

new usr/src/uts/comron/fs/zfs/spa.c 48
3094 zap_cur sor _advance(&zc))

3095 ASSERT(za. za_i nt eger Iength == sizeof (uint64_t) &&
3096 za.za_num.integers == 1);

3097 VERI FY3U(0, ==, nviist_add_uint64(features, za.za_nane,
3098 za.za_first_integer));

3099

3100 zap_cursor _fini (&zc);

3101 }

3103 VERI FY(nvlist_add_nvlist(config, ZPOOL_CONFI G FEATURE_STATS,

3104 features) == 0);

3105 nvlist_free(featur es)

3106

3108 i

3109 spa_get _stats(const char *nane, nvlist_t **config,

3110 char *altroot, size_t buflen)

3111 {

3112 int error;

3113 spa_t *spa;

3115 *config = NULL;

3116 error = spa_open_comon(nane, &spa, FTAG NULL, config);

3118 if (spa != NULL) {

3119 /*

3120 * This still |eaves a wi ndow of inconsistency where the spares
3121 * or |2cache devices could change and the config woul d be
3122 * sel f-inconsistent.

3123 */

3124 spa_config_enter(spa, SCL_CONFIG FTAG RW READER);

3126 if (*config !'= NULL) {

3127 uint64_t | oadtines[2];

3129 | oadti mes[0] = spa->spa_l oaded_ts.tv_sec;

3130 | oadti mes[1] = spa->spa_l oaded_ts.tv_nsec;

3131 VERI FY(nvlist_add_uint64_array(*config,

3132 ZPOOL_CONFI G LOADED_TI ME, | oadtimes, 2) == 0);
3134 VERI FY(nvlist_add_ui nt 64(*confi g,

3135 ZPOOL_CONFI G_ERRCOUNT,

3136 spa_get_errlog_si ze(spa)) == 0);

3138 if (spa_suspended(spa))

3139 VERI FY(nvlist_add_ui nt64(*config,

3140 ZPOOL_CONFI G_SUSPENDED,

3141 spa- >spa_f ai |l node) == 0);

3143 spa_add_spares(spa, *config);

3144 spa_add_| 2cache(spa, *config);

3145 spa_add_f eature_stats(spa, *config);

3146 }

3147 }

3149 /*

3150 * W want to get the alternate root even for faulted pools, so we cheat
3151 * and call spa_l ookup() directly.

3152 */

3153 if (altroot) {

3154 if (spa == NULL) {

3155 nmut ex_ent er (&spa_nanespace_| ock) ;

3156 spa = spa_| ookup(nane);

3157 if (spa)

3158 spa_al troot (spa, altroot, buflen);

3159 el se

new usr/src/uts/comon/fs/zfs/spa.c

3160
3161
3162
3163
3164
3165
3166

3168
3169
3170
3171

3173
3174

3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190

3192

3194
3195
3196
3197
3198

3200
3201

3203
3204
3205
3206
3207
3208

3210
3211
3212
3213
3214
3215

3217
3218
3219
3220

3222
3223
3224
3225

altroot[0] = "'\0;
spa = NULL
mut ex_exi t (&pa_nanespace_| ock);
} else {
spa_al troot (spa, altroot, buflen);
}

}

if (spa != NULL) {
spa_config_exit(spa, SCL_CONFIG FTAG;
spa_cl ose(spa, FTAQ;

}
return (error);
}
/*
* Validate that the auxiliary device array is well formed. W nust have an
* array of nvlists, each which describes a valid leaf vdev. |If this is an
* inport (npde is VDEV_ALLOC SPARE), then we allow corrupted spares to be
* specified, as long as they are well-forned.
*/
static int

spa_val i dat e_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int node,

spa_aux_vdev_t *sav, const char *config, uint64_t version,
vdev_| abel type_t | abel)

nvlist_t **dev;
uint_t i, ndev;
vdev_t *vd;
int error;

ASSERT(spa_config_hel d(spa, SCL_ALL, RWWRI TER) == SCL_ALL);

/*
* It’'s acceptable to have no devs specified.
*
if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
return (0);
if (ndev == 0)

return (SET_ERROR(EI NVAL));

/*

* Make sure the pool is formatted with a version that supports this
* device type.

*/

if (spa_version(spa) < version)
return (SET_ERROR(ENOTSUP));

/*

* Set the pending device list so we correctly handl e device in-use
* checki ng.

*/

sav->sav_pendi ng = dev;
sav- >sav_npendi ng = ndev;

for (i =0; i < ndev; i++) {
if ((error = spa_config_parse(spa, &d, dev[i], NULL, O,
node)) != 0)
goto out;

if (!vd->vdev_ops->vdev_op_leaf) {
vdev_free(vd);
error = SET_ERROR(EI NVAL) ;
goto out;

new usr/src/uts/comron/fs/zfs/spa.c 50
3226 }

3228 /*

3229 * The L2ARC currently only supports disk devices in
3230 * kernel context. For user-level testing, we allowit.
3231 */

3232 #ifdef _KERNEL

3233 if ((strcnp(config, ZPOOL_CONFI G L2CACHE) == 0) &&

3234 strcnp(vd- >vdev_ops->vdev_op_type, VDEV_TYPE DI SK) != 0) {
3235 error = SET_ERROR(ENOTBLK) ;

3236 vdev_free(vd);

3237 goto out;

3238 }

3239 #endi f

3240 vd->vdev_top = vd;

3242 if ((error = vdev_open(vd)) == 0 &&

3243 (error = vdev_| abel _init(vd, crtxg, |abel)) == 0) {
3244 VERI FY(nvlist_add ui nt64(dev[i], ZPOOL CONFI G GUI D
3245 vd->vdev_gui d) == 0);

3246 }

3248 vdev_free(vd);

3250 if (error &&

3251 (nmode ! = VDEV_ALLOC SPARE && node ! = VDEV_ALLOC L2CACHE))
3252 goto out;

3253 el se

3254 error = 0;

3255 }

3257 out:

3258 sav->sav_pendi ng = NULL;

3259 sav->sav_npending = 0;

3260 return (error);

3261 }

3263 static int

3264 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int node)
3265 {

3266 int error;

3268 ASSERT(spa_config_hel d(spa, SCL_ALL, RWWRI TER) == SCL_ALL);

3270 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, node,
3271 &spa- >spa_spares, ZPOOL_CONFI G_SPARES, SPA_VERSI ON_SPARES,
3272 VDEV_LABEL_SPARE)) != 0) {

3273 return (error);

3274 1

3276 return (spa_validate_aux_devs(spa, nvroot, crtxg, node,

3277 &spa- >spa_| 2cache, ZPOOL_CONFI G_L2CACHE, SPA_VERSI ON_L2CACHE,
3278 VDEV_LABEL_L2CACHE)) ;

3279 }

3281 static void

3282
3283

spa_set _aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
const char *config)

3284 {

3285

3287
3288
3289
3290

int i;

if (sav->sav_config !'= NULL) {
nvlist_t **ol ddevs;
uint_t ol dndevs;
nvlist_t **newdevs;

new usr/src/uts/comon/fs/zfs/spa.c 51

3292
3293
3294
3295
3296
3297

3299
3300
3301
3302
3303
3304
3305
3306

3308
3309

3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325

3327
3328
3329
3330
3331

3333
3334
3335

3337
3338

3340
3341

3343
3344
3345
3346
3347

3349
3350
3351

3352 i
spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
nvlist_t *zpl props)

3353
3354

3355 {

3356
3357

/*
* Cenerate new dev list by concatentating with the
* current dev list.
*/
VERI FY(nvlist_| ookup_nvlist_array(sav->sav_config, config,
&ol ddevs, ~&ol dndevs) == 0);

newdevs = kmem al | oc(sizeof (void *) *
(ndevs + ol dndevs), KM SLEEP);

for (i =0; i <ol dndevs 1 ++)
VERI FY(nvli st dup(ol ddevs[i], &newdevs[i],
KM _SLEEP) == 0);
for (i = 0; i < ndevs; i++)

VERI FY(nvlist_dup(devs[i], &newdevs[i + ol dndevs],
KM _SLEEP) == 0);

VERI FY(nvli st _renpve(sav->sav_config, config,
DATA_TYPE_NVLI ST_ARRAY) == 0);

VERI FY(nvlist_add_nvlist_array(sav->sav confl g,
config, newdevs, ndevs + ol dndevs) == 0);
for (i =0; i <ol dndevs + ndevs; i ++)
nvlist_free(newdevs[i]);
kmem free(newdevs, (ol dndevs + ndevs) * sizeof (void *));
} else {/
*

* CGenerate a new dev list.
*
/
VERI FY(nvI i st_aI | oc(&sav- >sav_config, NV_UN QUE_NAME,
KM _SLEEP) == 0);

VERI FY(nvI i st add nvI i st_array(sav->sav_config, config,
devs, ndevs) == 0);

* Stop and drop | evel 2 ARC devices
S

spa_l 2cache_drop(spa_t *spa)
3332 {

vdev_t *vd;

int i;

spa_aux_vdev_t *sav = &spa->spa_| 2cache;

for (i =0; i < sav->sav_count; i++) {
ui nt64_t pool ;

vd = sav->sav_vdevs[i];
ASSERT(vd != NULL)

if (spa_l 2cache_exi sts(vd->vdev_gui d, &pool) &&

pool !'= OULL && | 2arc_vdev_present(vd))
| 2arc_renove_vdev(vd);

Creation

spa_t *spa;
char *altroot = NULL;

new usr/src/uts/comon/fs/zfs/spa.c

3358
3359
3360
3361
3362
3363
3364
3365
3366

3368
3369
3370
3371
3372
3373
3374
3375

3377
3378
3379
3380
3381
3382
3383

3385
3386
3387
3388
3389
3390

3392
3393
3394
3395
3396
3397

3399
3400
3401
3402
3403

3405
3406
3407
3408

3410
3411
3412
3413
3414

3416
3417
3418
3419
3421

3423

vdev_t *rvd;

dsl _pool _t *dp

drmu_t x_t *tx

int error = O

uint64_t txg = TXG. I NITIAL;
nvlist_t **spares, **|2cache;
uint_t nspares, nl2cache;
uint64_t version, obj;

bool ean_t has_features;

/*
* |f this pool already exists, return failure.
*/
mut ex_ent er (&spa_nanespace_| ock) ;
if (spa_l ookup(pool) !'= NULL) {
mut ex_exi t (&pa_nanespace_| ock) ;
return (SET_ERROR(EEXI ST));
}

/*
* Allocate a new spa_t structure.
*/

(void) nvlist_lookup_string(props,

zpool _prop_t o_name(ZPOOL_PROP_ALTROOT), &altroot);
spa = spa_add(pool, NULL, altroot);
spa_acti vat e(spa, spa_nDde_gI obal);

if (props &% (error = spa_prop_validate(spa, props))) {
spa_deacti vat e(spa);
spa_renove(spa);
mut ex_exi t (&pa_nanmespace_| ock) ;
return (error);

}

has_features = B_FALSE;
for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
elem!= NULL; elem = nvlist_next_nvpair(props, elem) {
if (zpool _prop_featur e(nvpai r_nanme(el em))
has_features = B _TRUE;

}

if (has_features || nvlist_|ookup_uint64(props,
zpool _prop_t o_nane(ZPOOL_PROP_VERS| ON), &version) != 0) {
version = SPA VERSI ON,

}
ASSERT(SPA_VERS| ON_| S_SUPPCRTED(ver si on)) ;

spa->spa_first_txg = txg;
spa- >spa_uber bl ock. ub _txg = txg - 1;
spa- >spa_uber bl ock. ub_versi on = version;
spa- >spa_ubsync = spa- >spa_uber bl ock;
/*
* Create "The CGodfather" zio to hold all async |1Cs
*/
spa->spa_async_zi o_root = zio_root(spa, NULL, NULL,
ZI O FLAG CANFATL | ZI O FLAG SPECULATI VE | ZI O_FLAG GODFATHER) ;

/*
* Create the root vdev.
*/

spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER);
error = spa_config_parse(spa, & vd, nvroot, NULL, 0, VDEV_ALLOC ADD);
ASSERT(error =0 || rvd !'= NULL)

new usr/src/uts/comon/fs/zfs/spa.c 53

3424

3426
3427

3429
3430
3431
3432
3433
3434
3435
3436
3437

3439

3441
3442
3443
3444
3445
3446
3447

3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462

3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477

3479
3480
3481
3482

3484
3485
3486
3487

3489

ASSERT(error !'= 0 || spa->spa_root_vdev == rvd);

if (error == 0 & !zfs_all ocatabl e_devs(nvroot))
error = SET_ERROR(ElI NVAL) ;

if (error == 0 &&
(error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
(error = spa_validate_aux(spa, nvroot, txg,
VDEV_ALLOC_ADD)) == 0
for (int ¢ = 0; ¢ < rvd->vdev_children; c++) {
vdev_net asl ab_set _si ze(rvd->vdev_child[c]);
vdev_expand(rvd->vdev_child[c], txg);

}
spa_config_exit(spa, SCL_ALL, FTAG;

if (error '=0) {
spa_unl oad(spa) ;
spa_deacti vat e(spa);
spa_r emove(spa) ;
mut ex_exi t (&pa_nanmespace_| ock) ;
return (error);

}

/*
* CGet the list of spares, if specified.
*

if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFI G SPARES,
&spares, &nspares) == 0) {

VERI FY(nvlist_all oc(&spa >spa_spares. sav_config, NV_UN QUE_NAME,
KM SLEEP) ==

VERI FY(nvl i st _add nvl i st _array(spa->spa_spares. sav_confi g,
ZPOOL_CONFI G SPARES, “spares, nspares) == 0);

spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER);

spa_l oad_spares(spa);

spa_config_exit(spa, SCL_ALL, FTAG)

spa- >spa_spar es. sav_sync = B _TRUE;

}

*

* Get the list of level 2 cache devices, if specified.
*
/
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFI G L2CACHE,
& 2cache, &nl 2cache) == 0) {
VERI FY(nvlist_all oc(&spa->spa_| 2cache. sav_confi g,
NV_UNI QUE_NAME, KM SLEEP) == 0);
VERI FY(nvl i st _add nvl i st array(spa >spa_| 2cache. sav_confi g,
ZPOOL_CONFI G L2CACHE, | 2cache, nl 2cache) == 0);
spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER);
spa_| oad_| 2cache(spa);
spa_config_exit(spa, SCL_ALL, FTAG;
spa- >spa_|l 2cache. sav_sync = B_TRUE;

}
spa->spa_i s |n|t|a||2| ng = B_TRUE;
spa- >spa_dsl _pool = dp = dsl _pool _create(spa, zplprops, txg);

spa- >spa_net a_obj set = dp->dp_net a_obj set ;
spa->spa_is_initializing = B_FALSE;

/*

* Create DDTs (dedup tables).

*/

ddt _create(spa);

spa_updat e_dspace(spa) ;

new usr/src/uts/comon/fs/zfs/spa.c

3491

3493
3494
3495
3496
3497
3498

3500
3501
3502
3503
3504

3506
3507

3509
3510
3511
3512
3513

3515
3516
3517
3518
3519
3520
3521
3522
3523

3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539

3541
3542
3543
3544
3545

3547
3548
3549
3550
3551
3552
3553

3555

tx = dmu_t x_create_assi gned(dp, txg);

/*
* Create the pool config object.
&/

spa- >spa_confi g_object = dnu_object _al | oc(spa->spa_neta_obj set,
DMJ_OT_PACKED _| NVLIST SPA_CONFI G_BLOCKSI ZE,
DMJ_OT_PACKED_NVLI ST_SI ZE, sizeof (uint64_t), tx);

if (zap_add(spa->spa_neta_obj set,
DMJU_POOL_DI RECTORY_OBJECT, DNU POOL_CONFI G
sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
cmm_er r (CE_PANI C, "failed to add pool config");

if (spa_version(spa) >= SPA VERS|I ON_FEATURES)
spa_f eature_create_zap_objects(spa, tx);

if (zap_add(spa->spa_neta_obj set,
DMJ_POOL_DI RECTORY_OBJECT, DMJ_POOL_CREATI ON_VERSI ON,
sizeof (uint64_t), 1, &ersion, tx) !=0) {
crm_err (CE_PANIC, "failed to add pool version");

/* Newly created pools with the right version are always deflated. */
if (version >= SPA VERS|I ON_RAlI DZ_DEFLATE) {
spa- >spa_defl ate = TRUE;
if (zap_add(spa->spa_neta_obj set,
DMJ_POOL_DI RECTORY_OBJECT, DNU POOL_DEFLATE,
sizeof (uint64_t), 1, &spa >spa_defTate, tx) != 0) {
crm_err(CE_PANI C "failed to add deflat e");

}

/*

* Create the deferred-free bpobj. Turn off conpression

* because sync-to-convergence takes longer if the bl ocksize
* keeps changi ng.

*

obj = bpobj _al |l oc(spa->spa_neta_objset, 1 << 14, tx);
dmu_obj ect _set _conpr ess(spa- >spa_net a_obj set, obj,
ZI O_COWPRESS_OFF, tx);
if (zap_add(spa->spa_neta_obj set,
DMJ_POOL_DI RECTORY_OBJECT, DNU POOL_SYNC_BPOBJ,
sizeof (uint64_t), 41, &Obj tx) I'=0) {
cnm_err (CE_ PANIC "failed to add bpobj ") ;

}
VERI FY3U(0, ==, bpobj_open(&spa->spa_def erred_bpobj,
spa- >spa_net a_obj set, obj));

/*

* Create the pool’s history object.

*

/
if (version >= SPA_VERSI ON_ZPOOL_HI STORY)

spa_hi story_create_obj (spa, tx);

/*

* Set pool properties.

*

/
spa- >spa_bootfs = zpool _prop_defaul t _nuneri c(ZPOOL_PROP_BOOTFS) ;
spa- >spa_del egati on = zpool _prop_defaul t_nuneri c(ZPOO._PROP._| DELEGATI N) ;

spa->spa_f ai | node = zpool _prop_defaul t _numeri c(ZPOOL_PROP_| FAI LUREMODE) ;
spa- >spa_aut oexpand = zpool _prop_default _nuneri c(ZPOOL_PROP AUTOEXPAND)

if (props !'= NULL) {

54

new usr/src/uts/comon/fs/zfs/spa.c 55 new usr/src/uts/comon/fs/zfs/spa.c
3556 spa_configfile_set(spa, props, B_FALSE); 3622 */
3557 spa_sync_props(props, tx); 3623 VERI FY(nvlist_add_nvlist(config, ZPOOL_CONFI G VDEV_TREE, nvroot) == 0);
3558 } 3624 nvlist_free(nvroot);
3625 return (config);
3560 dmu_t x_commi t (tx); 3626 }
3562 spa- >spa_sync_on = B_TRUE; 3628 /*
3563 txg_sync_start (spa->spa_dsl _pool); 3629 * Walk the vdev tree and see if we can find a device with "better”
3630 * configuration. A configuration is "better" if the |abel on that
3565 I* 3631 * device has a nore recent txg.
3566 * W explicitly wait for the first transaction to conplete so that our 3632 */
3567 * bean counters are appropriately updated. 3633 static void
3568 @] 3634 spa_al t _rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3569 t Xxg_wai t _synced(spa->spa_dsl _pool, txg); 3635 {
3636 for (int ¢ = 0; ¢ < vd->vdev_children; c++)
3571 spa_config_sync(spa, B_FALSE, B TRUE); 3637 spa_al t _rootvdev(vd->vdev_child[c], avd, txg);
3573 spa_history_|l og_version(spa, "create"); 3639 if (vd->vdev_ops->vdev_op_| eaf) {
3640 nvlist_t *|abel;
3575 spa->spa_m nref = refcount_count (&spa->spa_refcount); 3641 uint64_t | abel _txg;
3577 mut ex_exi t (&spa_namespace_| ock) ; 3643 if (vdev_di sk_read_rootl abel (vd->vdev_physpat h, vd->vdev_devid,
3644 & abel) 1= 0)
3579 return (0); 3645 return;
3580 }
3647 VERI FY(nvl i st_| ookup_ui nt 64(1 abel , ZPOOL_CONFI G_POOL_TXG,
3582 #ifdef _KERNEL 3648 &l abel _txg) == 0);
3583 /*
3584 * Get the root pool information fromthe root disk, then inport the root pool 3650 /*
3585 * during the system boot up tine. 3651 * Do we have a better boot device?
3586 */ 3652 */
3587 extern int vdev_di sk_read_rootl abel (char *, char *, nvlist_t **); 3653 if (I abel txg > *txg) {
3654 xg = | abel _txg;
3589 static nvlist_t * 3655 *avd = vd;
3590 spa_generat e_root conf (char *devpath, char *devid, uint64_t *guid) 3656 }
3591 { 3657 nvlist_free(label);
3592 nvlist_t *config; 3658 }
3593 nvlist_t *nvtop, *nvroot; 3659 }
3594 uint64_t pgid;
3661 /*
3596 if (vdev_disk_read_rootl abel (devpath, devid, &config) != 0) 3662 * Inport a root pool.
3597 return (NULL); 3663 *
3664 * For x86. devpath_list will consist of deV| d and/ or physpath nane
3599 [3665 * the vdev (e.g. "idl, sd@SEAGATE..." or "/pci @f, 0/ide@/ di sk@, 0: a).
3600 */Add this top-level vdev to the child array. 3666 * The GRUB "findroot” command will return the vdev we should boot .
3601 * 3667 *
3602 VERI FY(nvl i st I ookup_nvlist(config, ZPOOL_CONFI G VDEV_TREE, 3668 * For Sparc, devpath_list consists the physpath nane of the booting device
3603 &nvtop) == 0); 3669 * no natter the rootpool is a single device pool or a mrrored pool.
3604 VERI FY(nvlist_| ookup_m nt 64(config, ZPOOL_CONFI G_POOL_GU D, 3670 * e.
3605 &pgi d) == 0); 3671 * "/ pci @f,0/ide@/ di sk@, 0: a"
3606 VERI FY(nvl i st _| ookup_ui nt 64(config, ZPOOL_CONFI G GUI D, guid) == 0); 3672 */
3673 int
3608 l* 3674 spa_i nport _root pool (char *devpath, char *devid)
3609 * Put this pool’s top-level vdevs into a root vdev. 3675 {
3610 */ 3676 spa_t *spa;
3611 VERI FY(nvlist_alloc(&wvroot, NV_UN QUE_ NAME, KM SLEEP) == 0); 3677 vdev_t *rvd, *bvd, *avd = NULL;
3612 VERI FY(nvlist_add_stri ng(nvroot ZPOOL_CONFI G _TYPE, 3678 nvlist_t *conf i g, *nvtop;
3613 VDEV_TYPE_ROOT) == 0); 3679 uint64_t guid, txg;
3614 VERI FY(nvl i st _add_ui nt 64(nvroot, ZPOOL_CONFIG ID, OULL) == 0); 3680 char *pnane;
3615 VERI FY(nvl i st _add_ui nt 64(nvroot, ZPOOL_CONFI G_GUI D, pgi d) == 0); 3681 int error;
3616 VERI FY(nvl i st_add_nvlist_array(nvroot, ZPOOL_CONFI G_CHI LDREN
3617 &wtop, 1) == 0); 3683 /*
3684 * Read the | abel fromthe boot device and generate a configuration.
3619 /* 3685 */
3620 * Repl ace the existing vdev_tree with the new root vdev in 3686 config = spa_generat e_root conf (devpath, devid, &guid);
3621 * this pool’s configuration (renpve the old, add the new). 3687 #if defined(_OBP) && defi ned(_KERNEL)

new usr/src/uts/comon/fs/zfs/spa.c 57

3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700

3702
3703
3704

3706
3707
3708
3709
3710
3711
3712
3713

3715
3716
3717

3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734

3736
3737
3738
3739
3740
3741
3742
3743
3744

3746
3747
3748
3749
3750
3751
3752
3753

#endi f

if (conflg == NULL) {
(strstr(devpath, "/iscsi/ssd")
/* iscsi boot */
get _i scsi _boot pat h_phy(devpat h);
config = spa_generate_rootconf(devpath, devid, &guid);

1= NULL) {

if (config == NULL)
cmm_er r (CE_NOTE,

devpat h) ;
return (SET_ERRCR(EI 0);

"Cannot read the pool |abel from’'%'",

}

VERI FY(nvlist_| ookup_string(config, ZPOOL_CONFI G POOL_NAME,

&pnane) == 0);
VERI FY(nvl i st I ookup_w nt 64(confi g, ZPOOL_CONFI G POOL_TXG &t xg) == 0);

mut ex_ent er (&spa_nanespace_| ock) ;

if ((spa = spa_l ookup(pnane)) != NULL) {
/*
* Renmove the existi

ng root pool fromthe namespace so that we

* can replace it th the correct config we just read in.
*
spa_renove(spa);
}
spa = spa_ add(pnarre config, NULL);
spa->spa_i s_root = B_TRUE;
spa- >spa_i mport _flags = ZFS_| MPORT_VERBATI M
*
config.

* Build up a vdev tree based on the boot device's |abel
*/

VERI FY(nvl i st
&nvtop) == 0);
spa_| confl g_ent er(spa SCL_ALL, FTAG RWMWRITER);
error = spa_config_parse(spa, &vd, nvtop, NULL, O,
VDEV_ALLOC_ROOTPOQL) ;
spa_config_exit(spa, SCL_ALL, FTAG;
if (error) {
mut ex_exi t (&spa_nanmespace_| ock) ;
nvlist_free(config);
cmm_err (CE_NOTE, "Can not
pnarme) ;
return (error);

I ookup_nvlist(config, ZPOOL_CONFI G VDEV_TREE,

parse the config for pool '%’'",

}

*

*/Get the boot vdev.
if ((bvd = vdev_| ookup_by_guid(rvd, guid)) == NULL) {
cmm_err (CE_NOTE, "Can not find the boot vdev for guid %1u",
(u_l ongl ong_t)guid);
error = SET_ERROR(ENCENT) ;
goto out;

}

/*
* Determine if there is a better boot device.
*
/
avd = bvd;
spa_al t _rootvdev(rvd, &avd, &txg);
if (avd !'= bvd) {
cmm_err (CE_NOTE, "The boot device is
"try booting from’'%’'",

" degraded’ . Pl ease "

avd- >vdev_pat h) ;

new usr/src/uts/comron/fs/zfs/spa.c 58
3754 error = SET_ERROR(ElI NVAL) ;

3755 goto out;

3756 }

3758 *

3759 * |f the boot device is part of a spare vdev then ensure that
3760 * we're booting off the active spare.

3761 ki

3762 f (bvd->vdev_parent->vdev_ops == &dev_spare_ops &&
3763 ! bvd- >vdev_i sspar e)

3764 cmm_err (CE_NOTE, "The boot device is currently spared. Please "
3765 "try booting from’'%’",

3766 bvd- >vdev_parent - >

3767 vdev_chi | d[bvd- >vdev_par ent - >vdev_chil dren - 1] ->vdev_path);
3768 error = SET_ERROR(EI NVAL);

3769 goto out;

3770 }

3772 error = 0;

3773 out:

3774 spa_config_enter(spa, SCL_ALL, FTAG RWMWRITER);

3775 vdev_free(rvd);

3776 spa_config_exit(spa, SCL_ALL, FTAG;

3777 mut ex_exi t (&spa_nanmespace_| ock);

3779 nvlist_free(config);

3780 return (error);

3781 }

3783 #endi f

3785 [*

3786 * Inport a non-root pool into the system

3787 */

3788 int

3789 spa_inport(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3790 {

3791 spa_t *spa;

3792 char *altroot = NULL;

3793 spa_l oad_state_t state = SPA LOAD_ | MPORT,;

3794 zpool _rewi nd_policy_t policy;

3795 uint64_t node = spa_node_gl obal ;

3796 uint64_t readonly = B_FALSE;

3797 int error;

3798 nvlist_t *nvroot;

3799 nvlist_t **spares, **|2cache;

3800 ui nt _t nspares, nl2cache;

3802 *

3803 * |f a pool with this nane exists, return failure.
3804 */

3805 mut ex_ent er (&spa_nanespace_| ock) ;

3806 if (spa_l ookup(pool) != NULL) {

3807 mut ex_exi t (& pa_nanmespace_| ock) ;

3808 return (SET_ERROR(EEXI ST));

3809 }

3811 /*

3812 * Create and initialize the spa structure.

3813 */

3814 (void) nvlist_l ookup_string(props,

3815 zpool _prop_t o_nane(ZPOOL_PROP_ALTROOT), &altroot);
3816 (void) nvlist_Iookup_uint64(props,

3817 zpool _prop_t o_nane(ZPOOL_PROP_READONLY), &readonly);
3818 if (readonly)

3819 node = FREAD;

new usr/src/uts/comon/fs/zfs/spa.c

3820
3821

3823
3824
3825
3826
3827
3828
3829

3831

3833
3834

3836
3837

3839

3841
3842
3843
3844

3846
3847
3848

3850
3851
3852
3853
3854
3855
3856

3858
3859

3861
3862
3863
3864
3865
3866

3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882

3884
3885

spa = spa_add(pool, config, altroot);
spa->spa_i nport _flags = fl ags;

/*

* Verbatiminport - Take a pool and insert it into the nanespace
* as if it had been | oaded at boot.

*

/
if (spa->spa_inport_flags & ZFS_| MPORT_VERBATI M {

if (props != NULL)
spa_configfil e_set(spa, props, B_FALSE);

spa_config_sync(spa, B FALSE, B TRUE);

mut ex_exi t (&pa_nanmespace_| ock) ;
spa_hi story_l og_version(spa, "inport");

return (0);

}
spa_activat e(spa, node);

/*

* Don't start async tasks until we know everything is healthy.
*/

spa_async_suspend(spa);

zpool _get _rew nd_pol icy(config, &policy);
if (policy.zrp_request & ZPOOL DOREWND
state = SPA_LOAD_RECOVER;

/*

* Pass off the heavy lifting to spa_load(). Pass TRUE for nosconfig
* because the user-supplied config is actually the one to trust when
* doing an inport.

*/

if (state != SPA_LOAD RECOVER)
spa- >spa_| ast _ubsync_t xg = spa->spa_l oad_txg = O;

error = spa_| oad_best (spa, state, B _TRUE, policy.zrp_txg,
policy. zrp_request);

/*
* Propagate anything | earned while |oading the pool and pass it
* back to caller (i.e. rewind info, mssing devices, etc).

VERI FY(nvlist_add_nvlist(config, ZPOOL_CONFI G LOAD | NFO,
spa- >spa_l oad_i nfo) == 0);

spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER);
/*

* Toss any existing sparelist, as it doesn’t have any validity
* anynore, and conflicts with spa_has_spare().
*

if (spa->spa_spares.sav_config) {
nvlist_free(spa->spa_spares.sav_config);
spa- >spa_spar es. sav_config = NULL;
spa_| oad_spar es(spa);

if (spa->spa_| 2cache. sav_config) {
nvlist_free(spa->spa_|l 2cache. sav_config);
spa->spa_| 2cache. sav_config = NULL;
spa_| oad_| 2cache(spa);

}

VERI FY(nvlist_| ookup_nvlist(config, ZPOOL_CONFI G VDEV_TREE,
&nvroot) == 0);

new usr/src/uts/comon/fs/zfs/spa.c

3886
3887
3888
3889
3890
3891
3892

3894
3895

3897
3898
3899
3900
3901
3902
3903
3904

3906

3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941

3943
3944
3945
3946
3947
3948
3949

3951

if (error == O)
error = spa_validate_aux(spa, nvroot, -1ULL,
VDEV ALLOC_SPARE) ;
if (error == 0)
error = spa_validate_aux(spa, nvroot, -1ULL,
VDEV_ALLOC L2CACHE) ;
spa_config_exit(spa, SCL_ALL, FTAG)

if (props != NULL)
spa_configfile_set(spa, props, B FALSE);

if (error =0 || (props &k spa_writeabl e(spa) &
(error = spa_prop_set(spa, props)))) {
spa_unl oad(spa) ;
spa_deactivate(spa);
spa_renove(spa);
mut ex_exi t (&spa_nanmespace_| ock) ;
return (error);

}
spa_async_resune(spa);

/*
* Override any spares and | evel 2 cache devices as specified by
* the user, as these may have correct device names/devids, etc.
*/

if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFI G_SPARES,
&spares, &nspares) == 0)
if (spa- >spa spares. sav_confi g)
VERI FY(nvl i st _renmpve(spa->spa_spares. sav_config,
ZPOOL_CONFI G_SPARES, DATA TYPE_NVLI ST_ARRAY) == 0);
el se
VERI FY(nvlist_all oc(&spa->spa_spares. sav_config,
NV, UNICUE NAME, KM SLEEP) == 0);
VERI FY(nvl i st_add_nvlist_array(spa->spa_ spar es. sav _config,
ZPOOL_CONFI G _SPARES, “spares, nspares) == 0);
spa_config_enter(spa, SCL_ALL, FTAG RWWR TER);
spa_| oad_spar es(spa);
spa_config_exit(spa, SCL_ALL, FTAG;
spa- >spa_spares. sav_sync = B_TRUE;

}
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFI G L2CACHE,
& 2cache, &nl 2cache) == 0) {
if (spa->spa_l 2cache. sav_confi g)
VERI FY(nvl i st _renove(spa- >spa_| 2cache. sav_confi g,
| ZPOOL_CONFI G_L2CACHE, DATA_TYPE_NVLI ST_ARRAY) == 0);
el se
VERI FY(nvlist_all oc(&spa->spa_ I 2cache sav_confi g,
NV_UNI QUE_NANE, KM SLEEP) == 0);
VERI FY(nvl i st_add_nvlist_array(spa->spa_| 2cache sav_config,
ZPOOL_CONFI G L2CACHE, | 2cache, nl 2cache) == 0);
spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER);
spa_|l oad_I| 2cache(spa);
spa_config_exit(spa, SCL_ALL, FTAG;
spa- >spa_| 2cache. sav_sync = B_TRUE;

}

/*
* Check for any renpved devi ces.
*
/
if (spa->spa_autoreplace) {
spa_aux_check_r enpved(&spa- >spa_spar es) ;
spa_aux_check_r enbved(&spa- >spa_| 2cache);

}
if (spa_witeable(spa)) {

60

new usr/src/uts/comon/fs/zfs/spa.c 61

3952
3953
3954
3955
3956

3958
3959
3960
3961
3962

3964
3965

3967
3968

3970
3971

3973
3974
3975
3976
3977

3979
3980

3982
3983

3985
3986
3987
3988
3989
3990

3992
3993
3994
3995
3996
3997

3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011

4013
4014
4015
4016
4017

}

nvlist_t

/*
* Update the config cache to include the new y-inported pool.
*
/
spa_config_updat e(spa, SPA_CONFI G_UPDATE_POOQL) ;
}
/*
* |t's possible that the pool was expanded while it was exported.
* We kick off an async task to handle this for us.
*
/
spa_async_request (spa, SPA ASYNC AUTOEXPAND) ;

nmut ex_exi t (&spa_nanmespace_| ock) ;
spa_history_| og_version(spa, "inport");

return (0);

*

spa_tryinport(nvlist_t *tryconfig)
3972 {

nvli st_t *config = NULL;
char *pool naneg;

spa_t *spa;

uint64_t state;

int error;

if (nvlist_lookup_string(tryconfig, ZPOOL_CONFI G POOL_NAME, &pool nane))
return (NULL);

if (nvlist_|lookup_uint64(tryconfig, ZPOOL_CONFI G POOL_STATE, &state))
return (NULL);

/*
* Create and initialize the spa structure.
*
/
mut ex_ent er (&spa_nanespace_| ock);
spa = spa_add(TRYI MPORT_NAME, tryconfig, NULL);
spa_acti vate(spa, FREAD);

/*

* Pass off the heavy lifting to spa_load().

* Pass TRUE for nposconfig because the user-supplied config
* is actually the one to trust when doing an iInport.

error = spa_| oad(spa, SPA_LOAD TRYlI MPORT, SPA_| MPORT_EXI STI NG, B_TRUE);

/*

* |f "tryconfig’ was at |east parsable, return the current config.
*/

if (spa->spa_root_vdev != NULL)

config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
VERI FY(nvl i st add string(config, POO__CCNFI G_POOL_NAME,

pool nanme) == 0);

VERI FY(nvl i st add_ui nt 64(config, ZPOOL_CONFI G_POOL_STATE,
state) == 0);

VERI FY(nvli st _ add _ui nt64(config, ZPOOL_CONFI G TI MESTAMP,
spa- >spa_ uber bl ock. ub_ti nmestanp) == 0);

VERI FY(nvl i st_add_nvlist(config, ZPOOL_ CONFI G_LOAD_| NFO,
spa- >spa_| oad_i nfo) == 0);

/*

* |f the bootfs property exists on this pool then we

* copy it out so that external consumers can tell which
* pools are bootabl e.

*/

4018
4019

4021
4022
4023
4024
4025
4026
4027
4028

4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043

4045
4046
4047
4048
4049
4050
4051
4052

4054
4055
4056
4057

4059
4060

4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072

new usr/src/uts/comron/fs/zfs/spa.c 62
if ((terror || error == EEXI ST) && spa->spa_bootfs)
char *t npnama kmam al | oc(MAXPATHLEN, KM SLEEP);
/*
* W& have to play games with the name since the
* pool was opened as TRYI MPORT_NAME.
*
/
if (dsl_dsobj_to_dsnane(spa_nanme(spa),
spa- >spa_bootfs, tnpnane) == 0) {
char *cp;
char *dsnane = knem al | oc(MAXPATHLEN, KM SLEEP);
cp = strchr(tnmpnane, '/');
if (cp == NULL) {
(void) strlcpy(dsnanme, tnpnane,
MAXPATHLEN) ;
} else {
(void) snprintf(dsname, MAXPATHLEN,
"%/ %", pool nane, ++cp);
}
VERI FY(nvlist_add_string(config,
ZPOOL_CONFI G BOOTFS, dsname) == 0);
kmem f r ee(dsnane, NAXPATHLEN)
}
kmem f ree(t mpnane, MAXPATHLEN) ;
}
*
* Add the list of hot spares and |evel 2 cache devices.
*/
spa_config_enter(spa, SCL_CONFIG FTAG RW READER);
spa_add_spares(spa, config);
spa_add_| 2cache(spa, confi g)
spa_config_exit(spa, SCL w\lFIG. FTAG ;
}
spa_unl oad(spa);
spa_deacti vat e(spa);
spa_renove(spa);
mut ex_exi t (&spa_nanmespace_| ock) ;
return (config);
}
/*
* Pool export/destroy
*
* The act of destroying or exporting a pool is very sinple. W nmake sure there
* is no nore pending 1/0 and any references to the pool are gone. Then, we
* update the pool state and sync all the labels to disk, renmoving the
* configuration fromthe cache afterwards. |If the 'hardforce’ flag is set, then
* we don't sync the | abels or renpve the configuration cache.
*
static int
spa_export_comon(char *pool, int new state, nvlist_t **ol dconfig,

4073 bool ean_t force, bool ean_t hardforce)
4074 {

4075 spa_t *spa;

4077 if (oldconfig)

4078 *ol dconfig = NULL;

4080 if (!(spa_node_global & FWRITE))
4081 return (SET_ERROR(ERCFS));
4083 mut ex_ent er (&spa_nanespace_| ock) ;

new usr/src/uts/comon/fs/zfs/spa.c 63 new usr/src/uts/comon/fs/zfs/spa.c 64
4084 if ((spa = spa_|l ookup(pool)) == NULL) {
4085 mut ex_exi t (&spa_| namespace | ock) ; 4151 spa_event _notify(spa, NULL, ESC ZFS POOL_DESTROY);
4086 return (SET_ERROR(ENCENT));
4087 } 4153 if (spa->spa_state != POOL_STATE_UNI NI TI ALI ZED) {
4154 spa_unl oad(spa);
4089 /* 4155 spa_deacti vat e(spa);
4090 * Put a hold on the pool, drop the nanespace |ock, stop async tasks, 4156 }
4091 * reacquire the nanespace | ock, and see if we can export.
4092 */ 4158 if (oldconfig & spa->spa_config)
4093 spa_open_ref (spa, FTAG); 4159 VERI FY(nvl I st _dup(spa->spa_config, oldconfig, 0) == 0);
4094 mut ex_exi t (&pa_nanmespace_| ock) ;
4095 spa_async_suspend(spa) ; 4161 if (new state != POOL_STATE_UNI NI Tl ALI ZED) {
4096 nmut ex_ent er (&spa_nanespace_| ock) ; 4162 if (!hardforce)
4097 spa_cl ose(spa, FTAQ; 4163 spa_confi g_sync(spa, B_TRUE, B_TRUE);
4164 spa_renove(spa);
4099 /* 4165 }
4100 * The pool will be in core if it's openable, 4166 mut ex_exi t (&spa_nanmespace_| ock) ;
4101 * in which case we can nodify its state.
4102 */ 4168 return (0);
4103 if (spa- />spa_st ate !'= POOL_STATE_UNI NI TI ALI ZED && spa- >spa_sync_on) { 4169 }
4104 *
4105 * (bj sets may be open only because they' re dirty, so we 4171 | *
4106 * have to force it to sync before checking spa_refcnt. 4172 * Destroy a storage pool .
4107 */ 4173 */
4108 t xg_wai t _synced(spa- >spa_dsl _pool, 0); 4174 int
4175 spa_destroy(char *pool)
4110 /* 4176 {
4111 * A pool cannot be exported or destroyed if there are active 4177 return (spa_export_comon(pool, POOL_STATE DESTROYED, NULL,
4112 * references. |If we are resetting a pool, allow references by 4178 B_FALSE, B _FALSE));
4113 * fault injection handlers. 4179 }
4114 */
4115 f (!spa_refcount_zero(spa) || 4181 /*
4116 (spa->spa_inject_ref =0 && 4182 * Export a storage pool.
4117 new state != POOL_STATE UNI NI TI ALI ZED)) { 4183 */
4118 spa_async_resume(spa); 4184 int
4119 mut ex_exi t (&pa_nanmespace_| ock); 4185 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4120 return (SET_ERROR(EBUSY)); 4186 bool ean_t hardforce)
4121 } 4187 {
4188 return (spa_export_comon(pool, POOL_STATE EXPORTED, ol dconfi g,
4123 /* 4189 force, hardforce));
4124 * A pool cannot be exported if it has an active shared spare. 4190 }
4125 * This is to prevent other pools stealing the active spare
4126 * froman exported pool. At user’s own will, such pool can 4192 [*
4127 * be forcedly exported. 4193 * Similar to spa_export(), this unloads the spa_t w thout actually renoving it
4128) 4194 * fromthe nanespace in any way.
4129 if (!force & new_state == POOL_STATE_EXPORTED && 4195 */
4130 spa_has_active_shared_spare(spa)) { 4196 int
4131 spa_async_resune(spa) ; 4197 spa_reset(char *pool)
4132 mut ex_exi t (&pa_nanespace_| ock); 4198 {
4133 return (SET_ERROR(EXDEV)); 4199 return (spa_export_conmon(pool, POOL_STATE_UNI NI TI ALI ZED, NULL,
4134 } 4200 B _FALSE, B FALSE));
4201 }
4136 /*
4137 * W want this to be reflected on every |abel, 4203 /*
4138 * so mark themall dirty. spa_unload() will do the 4204 *
4139 * final sync that pushes these changes out. 4205 * Device nani pul ation
4140 */ 4206 *
4141 if (new state != POOL_STATE UN NI Tl ALI ZED && ! hardforce) { 4207 */
4142 spa_config_ent er(spa| SCL_ALL, FTAG RWWRI TER);
4143 spa- >spa_state = new_state; 4209 /*
4144 spa- >spa_fi nal txg = spa_| I ast _synced_t xg(spa) + 4210 * Add a device to a storage pool .
4145 TXG_DEFER_SI ZE + 1; 4211 */
4146 vdev_config_dirty(spa->spa_root_vdev); 4212 int
4147 spa_config_exit(spa, SCL_ALL, FTAG; 4213 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4148 } 4214 {
4149 } 4215 uint64_t txg, id;

new usr/src/uts/comon/fs/zfs/spa.c 65

4216
4217
4218
4219
4220

4222
4224

4226
4227
4228

4230

4232
4233
4234

4236
4237
4238

4240
4241

4243
4244
4245

4247
4248
4249
4250
4251
4252

4254
4255
4256
4257

4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273

4275
4276
4277
4278
4279
4280

int error;

vdev_t *rvd = spa->spa_root_vdev;
vdev_t *vd, *tvd;

nvlist_t **spares, **|2cache;

ui nt _t nspares, nl2cache;

ASSERT(spa_writeabl e(spa));
txg = spa_vdev_enter(spa);

if ((error = spa_config_parse(spa, &d, nvroot, NULL, O,
VDEV_ALLOC ADD)) != 0)
return (spa_vdev_exit(spa, NULL, txg, error));
spa- >spa_pendi ng_vdev = vd; /* spa_vdev_exit() will clear this */
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFI G SPARES, &spares,
&nspares) != 0)
nspares = 0;

if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFI G L2CACHE, &l 2cache,
&nl 2cache) !'= 0)
nl 2cache = 0;

if (vd->vdev_children == 0 & nspares == 0 && nl 2cache == 0)
return (spa_vdev_exit(spa, vd, txg, EINVAL));

if (vd->vdev_children !'= 0 &&
(error = vdev_create(vd, txg, B_FALSE)) != 0)
return (spa_vdev_exit(spa, vd, txg, error));

/*
* We nust validate the spares and | 2cache devices after checking the
* children. Oherwi se, vdev_inuse() will blindly overwite the spare.

*/

if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC ADD)) != 0)
return (spa_vdev_exit(spa, vd, txg, error));

/*

* Transfer each new top-level vdev fromvd to rvd.
*

for (int ¢ = 0; ¢ < vd->vdev_children; c++) {
/*

* Set the vdev id to the first hole, if one exists.
*/

for (id = 0; id < rvd->vdev_children; id++) {
if (rvd->vdev_child[id]->vdev_ishole) {
vdev_free(rvd->vdev_child[id]);

br eak;

}

}

tvd = vd->vdev_child[c];
vdev_renove_child(vd, tvd);
tvd->vdev_id = id;
vdev_add_chi l d(rvd, tvd);
vdev_config_dirty(tvd);

}
if (nspares != 0)
spa_set _aux_vdevs(&spa- >spa_spares, spares, nspares,
ZPOOL_CONFI G_SPARES) ;
spa_| oad_spar es(spa);
spa- >spa_spares. sav_sync = B_TRUE;
}

new usr/src/uts/comon/fs/zfs/spa.c 66
4282 if (nl2cache !'= 0)

4283 spa_set _aux_vdevs(&spa->spa_| 2cache, |2cache, nl 2cache,
4284 ZPOOL_CONFI G_L2CACHE) ;

4285 spa_| oad_| 2cache(spa);

4286 spa- >spa_| 2cache. sav_sync = B_TRUE;

4287 }

4289 /*

4290 * We have to be careful when adding new vdevs to an existing pool.
4291 * |f other threads start allocating fromthese vdevs before we
4292 * sync the config cache, and we | ose power, then upon reboot we nay
4293 * fail to open the pool because there are DVAs that the config cache
4294 * can't translate. Therefore, we first add the vdevs without
4295 * initializing netaslabs; sync the config cache (via spa_vdev_exit());
4296 * and then let spa_config_update() initialize the new netasl abs.
4297 *

4298 * spa_l oad() checks for added-but-not-initialized vdevs, so that
4299 * if we |ose power at any point in this sequence, the renaining
4300 * steps will be conpleted the next time we |oad the pool.

4301 *

4302 (void) spa_vdev_exit(spa, vd, txg, 0);

4304 mut ex_ent er (&spa_nanespace_| ock) ;

4305 spa_confi g_updat e(spa, SPA CONFI G_UPDATE_POQL) ;

4306 mut ex_exi t (&spa_nanmespace_| ock) ;

4308 return (0);

4309 }

4311 /*

4312 * Attach a device to a mirror. The argunments are the path to any device
4313 * in the mirror, and the nvroot for the new device. |If the path specifies
4314 * a device that is not mirrored, we automatically insert the mrror vdev.
4315 *

4316 * If 'replacing’ is specified, the new device is intended to replace the
4317 * existing device; in this case the two devices are made into their own
4318 * mrror using the 'replacing vdev, which is functionally identical to
4319 * the mrror vdev (it actually reuses all the same ops) but has a few
4320 * extra rules: you can't attach to it after it’s been created, and upon
4321 * conpletion of resilvering, the first disk (the one being repl aced)

4322 * is autonmtically detached.

4323 *

4324 int

4325 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4326 {

4327 uint64_t txg, dtl_max_txg;

4328 vdev_t *rvd = spa->spa_root_vdev;

4329 vdev_t *ol dvd, *newd, *new ootvd, *pvd, *tvd;

4330 vdev_ops_t *pvops;

4331 char *ol dvdpath, *newdpat h;

4332 int newd_isspare;

4333 int error;

4335 ASSERT(spa_writeabl e(spa));

4337 txg = spa_vdev_enter(spa);

4339 ol dvd = spa_| ookup_by_gui d(spa, guid, B_FALSE);

4341 if (oldvd == NULL)

4342 return (spa_vdev_exit(spa, NULL, txg, ENODEV));

4344 if (!oldvd->vdev_ops->vdev_op_| eaf)

4345 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));

4347 pvd = ol dvd- >vdev_parent;

new usr/src/uts/comon/fs/zfs/spa.c 67

4349
4350
4351

4353
4354

4356

4358
4359

4361
4362

4364
4365
4366
4367
4368

4370
4371
4372
4373
4374
4375
4376
4377

4379
4380
4381
4382
4383
4384
4385
4386
4387
4388

4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404

4406
4407
4408
4409
4410

4412
4413

if ((error = spa_config_parse(spa, &ew ootvd, nvroot, NULL, O,
VDEV_ALLOC ATTACH)) != 0)
return (spa_vdev_exit(spa, NULL, txg, EINVAL));

if (new ootvd->vdev_children != 1)
return (spa_vdev_exit(spa, newootvd, txg, EINVAL));

newd = new oot vd->vdev_child[0];

if (!newd->vdev_ops->vdev_op_| eaf)
return (spa_vdev_exit(spa, newootvd, txg, EINVAL));

if ((error = vdev_create(newootvd, txg, replacing)) != 0)
return (spa_vdev_exit(spa, newootvd, txg, error));

/*
* Spares can’'t replace |ogs
*/

if (ol dvd->vdev_top->vdev_i sl og & & newd- >vdev_i sspare)
return (spa_vdev_exit(spa, new ootvd, txg, ENOTSUP));

if (!replacing) {
/*

* For attach, the only allowable parent is a mrror or the root

* vdev.

)

if (pvd->vdev_ops != &dev_mrror_ops &%
pvd->vdev_ops ! = &vdev_root_ops)

return (spa_vdev_exit(spa, new ootvd, txg, ENOTSUP));

pvops = &vdev_m rror_ops;
} else {
/*

* Active hot spares can only be replaced by inactive hot
* spares.
*

if (pvd->vdev_ops == &dev_spare_ops &&
ol dvd- >vdev_i sspare &&
I spa_has_spare(spa, newd->vdev_guid))
return (spa_vdev_exit(spa, newootvd, txg, ENOTSUP));

/*
* |f the source is a hot spare, and the parent isn't already a
* spare, then we want to create a new hot spare. O herw se, we
* want to create a replacing vdev. The user is not allowed to
* attach to a spared vdev child unless the 'isspare’ state is
* the sane (spare replaces spare, non-spare replaces
* non-spare).
*/

f

(pvd- >vdev_ops == &vdev_repl aci ng_ops &&
spa_version(spa) < SPA_VERSI ON_MILTI _REPLA {
return (spa_vdev_exn(spa “newr ootvd, txg, ENOTSUP));
} else if (pvd->vdev_ops == &dev_spare_ops &&
newd- >vdev_i sspare != ol dvd->vdev_i sspare) {
return (spa_vdev_exit(spa, new ootvd, txg, ENOTSUP));
}

if (newd->vdev_isspare)
pvops = &vdev_spare_ops;
el se
pvops = &vdev_repl aci ng_ops;

}

/*
* Make sure the new device is big enough.

new usr/src/uts/comon/fs/zfs/spa.c

4414
4415
4416

4418
4419
4420
4421
4422
4423

4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439

4441
4442

4444
4445
4446
4447
4448
4449

4451
4452
4453

4455
4456
4457
4458
4459
4460
4461

4463
4464
4465

4467

4469
4470
4471
4472
4473
4474

4476
4477

4479

68

*
/
if (newd->vdev_asi ze < vdev_get _ni n_asi ze(ol dvd))
return (spa_vdev_exit(spa, newootvd, txg, EOVERFLOW);

/*

* The new devi ce cannot have a hi gher alignment requirenent

* than the top-1level vdev.

*/

if (newd->vdev_ashift > ol dvd->vdev_t op->vdev_ashift)
return (spa_vdev_exit(spa, newootvd, txg, EDOV);

*

* |f this is an in-place replacenent, update ol dvd' s path and devid
* to make it distinguishable fromnewd, and unopenable from now on.
*
/
if (strcnp(ol dvd->vdev_path, newd->vdev_path) == 0) {
spa_strfree(ol dvd->vdev_path);
ol dvd- >vdev_path = kmem al | oc(strl en(newd- >vdev_path) + 5,
KM SLEER
(void) spri ntf(ol dvd->vdev_path, "%/ %",
newd- >vdev_path, "ol d");
if (ol dvd->vdev_devi d 1= NULL)
spa_strfree(ol dvd->vdev_devi d);
ol dvd- >vdev_devi d = NULL;

}

/* mark the device being resilvered */
newd- >vdev_resilvering = B_TRUE;

/*

* |If the parent is not a mirror, or if we're replacing, insert the new
* mrror/replacing/spare vdev above ol dvd.

*/

if (pvd->vdev_ops != pvops)
pvd = vdev_add_parent (ol dvd, pvops);

ASSERT(pvd- >vdev_t op- >vdev_parent == rvd);
ASSERT(pvd- >vdev_ops == pvops)
ASSERT(ol dvd- >vdev_parent == pvd);

/*
* Extract the new device fromits root and add it to pvd.
*
/
vdev_renove_chi | d(new oot vd, newd);
newd- >vdev_i d = pvd->vdev_chil dren;
newd- >vdev_crtxg = ol dvd- >vdev_crtxg;
vdev_add_chi | d(pvd, newd);

tvd = newd- >vdev_t op;
ASSERT(pvd- >vdev_top == tvd);
ASSERT(t vd- >vdev_parent == rvd);

vdev_config_dirty(tvd);

/*

* Set newd’'s DTL to [TXG IN TIAL, dtl_max_txg) so that we account
* for any dnu_sync-ed blocks. It wll propagate upward when

* spa_vdev_exit() calls vdev_dtl _reassess().

*/

dtl_max_txg = txg + TXG CONCURRENT_STATES

vdev_dt!| _dirty(newd, DTL_M SSING TXG_ I NI TIAL,
dtl _max_txg - TXG_IN TIAL);

if (newd->vdev_isspare) {

new usr/src/uts/comon/fs/zfs/spa.c

uint64_t pguid, int replace_done)

NULL, txg, ENODEV));

4480 spa_spare_activat e(newd);

4481 spa_event _notify(spa, newd, ESC ZFS VDEV_SPARE);
4482 1

4484 ol dvdpath = spa_strdup(ol dvd- >vdev_pat h);

4485 newdpat h = spa_strdup(newd->vdev_path);

4486 newd_i sspare = newd->vdev_i sspare;

4488 /*

4489 * Mark newd’'s DTL dirty in this txg.

4490 */

4491 vdev_dirty(tvd, VDD DTL, newd, txg)

4493 /*

4494 * Restart the resilver

4495 */

4496 dsl _resilver_restart(spa->spa_dsl _pool, dtl_nmax_txg);
4498 /*

4499 * Commit the config

4500 *

4501 (void) spa_vdev_exit(spa, newootvd, dtl_nax_txg, 0);
4503 spa_history_log_internal (spa, "vdev attach", NULL,
4504 "% vdev=% % vdev=9%",

4505 replacing & newd_i sspare ? "spare in" :

4506 replacing ? "repl ace" "attach", newdpat h,
4507 replacing ? "for" : "to", oldvdpath);

4509 spa_strfree(ol dvdpath);

4510 spa_strfree(newdpath);

4512 if (spa->spa_bootfs)

4513 spa_event _notify(spa, newd, ESC ZFS BOOTFS_VDEV_ATTACH);
4515 return (0);

4516 }

4518 [*

4519 * Detach a device froma mrror or replacing vdev.

4520 * If 'replace_done’ is specified, only detach if the parent
4521 * is a replacing vdev.

4522 *

4523 int

4524 spa_vdev_detach(spa_t *spa, uint64_t guid,

4525 {

4526 uint64_t txg;

4527 int error;

4528 vdev_t *rvd = spa->spa_root_vdev;

4529 vdev_t *vd, *pvd, *cvd, *tvd;

4530 bool ean_t unspare = B_FALSE;

4531 uint64_t unspare_guid = O;

4532 char *vdpat h;

4534 ASSERT(spa_writeabl e(spa));

4536 txg = spa_vdev_enter(spa);

4538 vd = spa_| ookup_by_gui d(spa, guid, B_FALSE);

4540 if (vd == NULL)

4541 return (spa_vdev_exit(spa,

4543 if (!vd->vdev_ops->vdev_op_| eaf)

4544 return (spa_vdev_exit(spa,

NULL, txg, ENOTSUP));

new usr/src/uts/comon/fs/zfs/spa.c

4546

4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562

4564
4565
4566
4567
4568
4569

4571
4572

4574
4575
4576
4577
4578
4579
4580

4582
4583
4584
4585
4586
4587

4589

4591
4592
4593
4594
4595
4596
4597
4598

4600
4601

4603
4604

4606
4607
4608
4609
4610
4611

pvd = vd->vdev_parent;

/*
* |f the parent/child relationship is not as expected, don't do it.
* Consider MA R(B,C) -- that is, a mrror of Awith a replacing
* vdev that’'s replacing Bwith C. The user’s intent in replacing
*is togo fromMAB) to MA C. |If the user decides to cancel
* the replace by detaching C, the expected behavior is to end up
* MA B). But suppose that right after deciding to detach C,
* the repl acenent of B conpletes. W would have M A C, and then
* ask to detach C, which would leave us with just A -- not what
* the user wanted. To prevent this, we nake sure that the
* parent/child relationship hasn't changed -- in this exanple,
* that Cs parent is still the replacing vdev R
*
if (pvd->vdev_guid != pguid & pguid ! = 0)
return (spa_vdev_exit(spa, NULL, txg, EBUSY));

/*
* Only 'replacing’ or 'spare’ vdevs can be replaced.
*
if (replace_done && pvd->vdev_ops != &dev_repl aci ng_ops &&

pvd- >vdev_ops ! = &dev_spare_ops)

return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));

ASSERT(pvd- >vdev_ops ! = &vdev_spare_ops ||
spa_versi on(spa) >= SPA _VERSI ON_SPARES) ;
*
* Only mrror, replacing, and spare vdevs support detach.
*
/
if (pvd->vdev_ops != &dev_repl aci ng_ops &&
pvd->vdev_ops != &vdev_nirror_ops &&
pvd- >vdev_ops ! = &vdev_spare_ops)
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));

*

* |f this device has the only valid copy of sone data,
* we cannot safely detach it.
*

if (vdev_dtl _required(vd))
return (spa_vdev_exit(spa, NULL, txg, EBUSY));

ASSERT(pvd- >vdev_chi l dren >= 2);

/
If we are detaching the second disk froma replacing vdev, then
check to see if we changed the original vdev's path to have "/ol d"
at the end in spa_vdev_attach(). If so, undo that change now.

R

*/
if (pvd->vdev_ops == &dev_repl aci ng_ops && vd->vdev_id > 0 &&
vd->vdev_path != NULL)
size_t len = strlen(vd->vdev_path);

for (int ¢ = 0; ¢ < pvd->vdev_children; c++) {
cvd = pvd->vdev_child[c];

if (cvd == vd || cvd->vdev_path == NULL)
conti nue;

if (strncnp(cvd->vdev_path, vd->vdev_path, len) == 0 &&

strcenp(cvd->vdev_path + len, "/old") == 0) {
spa_strfree(cvd->vdev_path);
cvd->vdev_path = spa_strdup(vd->vdev_pat h);
br eak;

new usr/src/uts/comon/fs/zfs/spa.c 71

4612
4613

4615
4616
4617
4618
4619
4620
4621
4622
4623

4625
4626
4627
4628
4629
4630
4631
4632
4633

4635
4636
4637
4638
4639

4641
4642
4643
4644

4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661

4663
4664
4665
4666
4667
4668
4669
4670
4671
4672

4675
4676
4677

}
}

/*

* |f we are detaching the original disk froma spare, then it rrpl es
* that the spare should becone a real disk, and be renoved from

* active spare list for the pool.

*

if (pvd->vdev_ops == &dev_spare_ops &&
vd->vdev_id == 0 &&
pvd- >vdev_chi | d[pvd- >vdev_children - 1]->vdev_i sspare)
unspare = B_TRUE;

/*
* Erase the disk | abels so the disk can be used for other things.
* This nust be done after all other error cases are handl ed,
* but before we di sembowel vd (so we can still do 1/Otoit).
* But if we can’t do it, don’t treat the error as fatal --
* it may be that the unwitability of the disk is the reason
* it’'s being detached!
*/
error = vdev_| abel _init(vd, 0, VDEV_LABEL_REMOVE);

/*
* Renpve vd fromits parent and conpact the parent’s children.
*/

vdev_renove_chi |l d(pvd, vd);

vdev_conpact _chi | dren(pvd);

/*
* Renenber one of the remaining children so we can get tvd bel ow.
*
/
cvd = pvd->vdev_chil d[pvd->vdev_children - 1];

/*
* |f we need to renpve the remaining child fromthe list of hot spares,
* do it now, marking the vdev as no |longer a spare in the process.

* We nust do this before vdev_renpve_parent(), because that can
* change the GUDif it creates a new topl evel GUD. For a simlar

* reason, we nust renpve the spare now, In the same txg as the detach;

* otherw se someone could attach a new sibling, change the GU D, and

* the subsequent attenpt to spa_vdev_renove(unspare_guid) would fail.

*

/

f

(unspare) {
ASSERT(cvd- >vdev_i sspare) ;
spa_spare_renove(cvd);
unspar e_gui d = cvd->vdev_gui d;
(voi d) spa_vdev rermve(spa unspare_gui d, B_TRUE);
cvd->vdev_unspare = B_TRUE;

}

/*

* |f the parent mirror/replacing vdev only has one child,

* the parent is no |onger needed. Renpve it fromthe tree.
*/

if (pvd->vdev_children == {
if (pvd->vdev_ops == &vdev_spare_ops)
cvd- >vdev_unspare = B_FALSE;

vdev_r enove_parent (cvd);
cvd- >vdev_resilvering = B_FALSE;

/*
* W don't set tvd until now because the parent we just renoved
* may have been the previous top-level vdev.

4678
4679
4680

4682
4683
4684
4685

4687
4688
4689
4690
4691
4692

new usr/src/uts/comon/fs/zfs/spa.c
*/
tvd = cvd->vdev_top;
ASSERT(t vd- >vdev_parent == rvd);
/*
* Reeval uate the parent vdev state.
*/
vdev_propagat e_state(cvd);
/*
* |f the ’autoexpand property is set on the pool then automatically
* try to expand the size of the pool. For exanple if the device we
* just detached was smaller than the others, it may be possible to
* add netaslabs (i.e. grow the pool). W need to reopen the vdev
* first so that we can obtain the updated sizes of the |eaf vdevs.
*/

4693
4694
4695
4696
4697

4699

4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711

4713

4715
4716

4718

4720
4721
4722

4724
4725
4726
4727
4728
4729
4730

4732
4733
4734
4735
4736

4738
4739
4740
4741
4742
4743

if (spa->spa_autoexpand) {
vdev_reopen(tvd);
vdev_expand(tvd, txg);
}

vdev_config_dirty(tvd);

/
Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
vd- >vdev_detached is set and free vd's DTL object in syncing context.
But first make sure we’'re not on any *other* txg's DIL list, to
prevent vd from being accessed after it's freed.

* ok ok ok ¥

*
vdpat h = spa_strdup(vd->vdev_path);
for (int t =0; t < TXG SIZE, t++)
(void) txg_list_renove_this(& vd->vdev_dtl _list, vd, t);
vd- >vdev_det ached = B_TRUE;
vdev_dirty(tvd, VDD DTL, vd, txg);

spa_event _notify(spa, vd, ESC ZFS VDEV_REMOVE);

/* hang on to the spa before we rel ease the |ock */
spa_open_ref (spa, FTAG;

error = spa_vdev_exit(spa, vd, txg, 0);

spa_history_l og_internal (spa, "detach", NULL,
"vdev=%", vdpath);
spa_strfree(vdpath);

/*
* If this was the renpval of the original device in a hot spare vdev,
* then we want to go through and renpve the device fromthe hot spare
* |list of every other pool.
*/
if (unspare) {

spa_t *altspa = NULL;

mut ex_ent er (&spa_nanespace_| ock) ;

while ((altspa = spa_next(altspa)) != NULL) {
if (altspa->spa state ! = POOL_STATE_ACTI VE ||
al tspa == spa)
conti nue;

spa_open_ref (al tspa, FTAQ;

mut ex_exi t (&pa_nanespace_| ock);

(voi d) spa_vdev_renpve(al tspa, unspare_guid, B TRUE);
nmut ex_ent er (&spa_nanespace_| ock) ;

spa_cl ose(al tspa, FTAQ;

72

new usr/src/uts/comon/fs/zfs/spa.c 73 new usr/src/uts/comon/fs/zfs/spa.c
4744 mut ex_exi t (&spa_nanmespace_| ock) ; 4810 if (vd- >vdev islog | | vd >vdev_i shol e) {
4811 if (Tastlog == 0)
4746 /* search the rest of the vdevs for spares to renmpve */ 4812 lastlog = c;
4747 spa_vdev_resil ver_done(spa); 4813 conti nue;
4748 } 4814 }
4750 /* all done with the spa; OK to release */ 4816 lastlog =
4751 nmut ex_ent er (&spa_nanespace_| ock) ; 4817 }
4752 spa_cl ose(spa, FTAQ; 4818 if (children !'= (lastlog != 0 ? lastlog : rvd->vdev_children))
4753 mut ex_exi t (&spa_nanmespace_| ock) ; 4819 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4755 return (error); 4821 /* next, ensure no spare or cache devices are part of the spllt =Y
4756 } 4822 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFI G SPARES, &t np) == 0 | |
4823 nvlist_| ookup_nvlist(nvl, ZPOOL_CONFI G L2CACHE, &t np) ==
4758 | * 4824 return (spa_vdev_exit(spa, NULL, txg, El NVAL))
4759 * Split a set of devices fromtheir mirrors, and create a new pool fromthem
4760 */ 4826 vm = knmem zal | oc(children * sizeof (vdev_t *), KM SLEEP);
4761 int 4827 glist = knem zal | oc(children * sizeof (uint64_t), KM SLEEP);
4762 spa_vdev_split_mirror(spa_t *spa, char *newnane, nvlist_t *config,
4763 nvlist_t *props, boolean_t exp) 4829 /* then, |oop over each vdev and validate it */
4764 { 4830 for (c = 0; c < children; c++)
4765 int error = 0; 4831 uint64_t is_hole = 0;
4766 uint64_t txg, *glist;
4767 spa_t *newspa; 4833 (void) nvlist_| ookup_uint64(child[c], ZPOOL_CONFIG_|S HOLE,
4768 uint_t c, children, |astlog; 4834 & s_hol e);
4769 nvlist_t **child, *nvl, *tnp;
4770 dmu_t x_t *tx; 4836 if (is_hole I'=0)
4771 char *altroot = NULL; 4837 i f (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4772 vdev_t *rvd, **vm = NULL; /* vdev nmodify list */ 4838 spa- >spa_r oot _vdev->vdev_chil d[c] - >vdev_i sl og) {
4773 bool ean_t activate_sl og; 4839 conti nue;
4840 } else {
4775 ASSERT(spa_writeabl e(spa)); 4841 error = SET_ERROR(EI NVAL) ;
4842 br eak;
4777 txg = spa_vdev_enter(spa); 4843 }
4844 }
4779 /* clear the log and flush everything up to now */
4780 activate_sl og = spa_passivate_| og(spa); 4846 /* which disk is going to be split? */
4781 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG; 4847 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFI G GU D,
4782 error = spa_offline_l og(spa); 4848 &glist[c]) !'=0)
4783 txg = spa_vdev_config_enter(spa); 4849 error = SET_ERROR(EI NVAL) ;
4850 br eak;
4785 if (activate_slog) 4851 }
4786 spa_acti vat e_| og(spa);
4853 /* look it up in the spa */
4788 if (error 1= 0) 4854 vim [c] = spa_l ookup_by_gui d(spa, glist[c], B _FALSE);
4789 return (spa_vdev_exit(spa, NULL, txg, error)); 4855 if (vm[c] == NULL)
4856 error = SET_ERROR(ENODEV) ;
4791 /* check new spa nanme before going any further */ 4857 br eak;
4792 if (spa_l ookup(newnane) != NULL) 4858 }
4793 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4860 /* make sure there’s nothing stopping the split */
4795 /* 4861 if (vm[c]->vdev_parent->vdev_ops != &dev_m rror_ops ||
4796 * scan through all the children to ensure they're all mrrors 4862 vm [c]->vdev_islog ||
4797 */ 4863 vm [c]->vdev_i shole ||
4798 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG VDEV_TREE, &nvl) !=0 || 4864 vm [c]->vdev_i sspare ||
4799 nvlist_l ookup_nvlist_array(nvl, ZPOOL_CONFI G CHI LDREN, &child, 4865 v [c] ->vdev_i sl 2cache ||
4800 &children) = 0) 4866 lvdev_writeable(vm[c]) ||
4801 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4867 vm [c] ->vdev_children 1= 0 ||
4868 v [c]->vdev_state ! = VDEV_STATE HEALTHY | |
4803 /* first, check to ensure we’ve got the right child count */ 4869 c ! = spa- >spa root _vdev->vdev_child[c]->vdev_id) {
4804 rvd = spa->spa_root_vdev; 4870 error = SET_ERROR(EI NVAL);
4805 lastlog = 0; 4871 br eak;
4806 for (c = 0; ¢ < rvd->vdev_children; c++) { 4872 }
4807 vdev_t *vd = rvd->vdev_child[c];
4874 if (vdev_dtl _required(vmi[c]l)) {
4809 /* don’t count the holes & logs as children */ 4875 error = SET_ERROR(EBUSY) ;

new usr/src/uts/comon/fs/zfs/spa.c 75 new usr/src/uts/comon/fs/zfs/spa.c
4876 br eak;
4877 } 4943 spa_activat e(newspa, spa_node_gl obal);
4944 spa_async_suspend(newspa) ;
4879 /* we need certain info fromthe top | evel */
4880 VERI FY(nvlist_add_ui nt64(child[c], ZPOOL_CONFI G METASLAB_ARRAY, 4946 /* create the new pool fromthe disks of the original pool */
4881 vm [c] - >vdev top >vdev_ns array) == 0); 4947 error = spa_| oad(newspa, SPA LOAD_| MPORT, SPA | MPORT_ASSEMBLE, B_TRUE);
4882 VERI FY(nvl i st _add_ui nt 64(child[c], ZPO0L CONFI G METASLAB_SHI FT, 4948 if (error)
4883 v [c]->vdev top >vdev_ns_shi ft) == 0); 4949 goto out;
4884 VERI FY(nvl i st _add_ui nt 64(chi | d[c], ZPw__CO\lFI G_ASI ZE,
4885 vm [c] - >vdev_t op- >vdev_asi ze) == 0); 4951 /* if that worked, generate a real config for the new pool */
4886 VERI FY(nvlist_add_ui nt 64(child[c], ZPOOL_CONFI G ASHI FT, 4952 if (newspa->spa_root_vdev != NULL) {
4887 v [c] ->vdev_t op->vdev_ashift) == 0); 4953 VERI FY(nvl i st_al | oc(&newspa- >spa config_splitting,
4888 } 4954 NV_UNI QUE_NAMVE, KM SLEEP) == 0);
4955 VERI FY(nvl i st _add_ui nt 64(newspa >spa_config_spli ttl ng,
4890 if (error 1'=0) { 4956 ZPOOL_CONFI G SPLI T_GUI D, spa_gui d(spa)) ==
4891 kmem free(vm, children * sizeof (vdev_t *)); 4957 spa_config_set (newspa, spa_config_generat e(newspa NULL, -1ULL,
4892 kmem free(glist, children * sizeof (uint64_t)); 4958 B _TRUE)) ;
4893 return (spa_vdev exit(spa, NULL, txg, error)); 4959 }
4894 1
4961 /* set the props */
4896 /* stop witers fromusing the disks */ 4962 if (props !'= NULL) {
4897 for (c = 0; ¢ < children; c++) { 4963 spa_configfile_set(newspa, props, B FALSE);
4898 if (vm[c] !'= NULL) 4964 error = spa_prop_set(newspa, props);
4899 vm [c]->vdev_of fline = B_TRUE; 4965 if (error)
4900 } 4966 goto out;
4901 vdev_r eopen(spa- >spa_r oot _vdev); 4967 }
4903 /* 4969 /* flush everything */
4904 * Tenporarily record the splitting vdevs in the spa config. This 4970 txg = spa_vdev_config_enter(newspa);
4905 * will disappear once the config is regenerated. 4971 vdev_config_dirty(newspa->spa_r oot vdev)
4906 */ 4972 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAQ;
4907 VERI FY(nvlist_alloc(&vl, NV_UNI QUE_NAME, KM SLEEP) == 0);
4908 VERI FY(nvl i st _add_ui nt64_array(nvl, ZPOOL_CONFI G . SPLI T_LI ST 4974 if (zio_injection_enabled)
4909 glist, children) == 0); 4975 zi o_handl e_pani c_i nj ection(spa, FTAG 2);
4910 knemfree(gllst children * sizeof (uint64_t));
4977 spa_async_resune(newspa) ;
4912 mut ex_ent er (&spa- >spa_props_|I ock) ;
4913 VERI FY(nvlist_add_nvlist(spa->spa_config, ZPOO._CONFIG SPLIT, 4979 /* finally, update the original pool’s config */
4914 nvl) == 0); 4980 txg = spa_vdev_config_enter(spa);
4915 mut ex exn(&spa >spa_props_| ock); 4981 tx = dnu_tx_create_dd(spa_get _ dsi (spa)->dp_nos_dir);
4916 spa->spa_config_splitting = nvl; 4982 error = dmu_tx_assign(tx, TXGWAIT);
4917 vdev_confi g_dirty(spa->spa_root_vdev); 4983 if (error = 0)
4984 dnu _tx_abort (tx);
4919 /* configure and create the new pool */ 4985 for (c = ¢ < children; c++) {
4920 VERI FY(nvlist_add_string(config, ZPOOL_CONFI G POOL_NAME, newnane) == 0); 4986 |f (vm[c] !'= NULL)
4921 VERI FY(nvl i st_add_ui nt 64(confi g, ZPOOL_CONFI G_POOL_ STATE 4987 vdev_split(vm[c]);
4922 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTI VE) == 0); 4988 if (error == 0)
4923 VERI FY(nvl i st _add_ui nt 64(confi g, ZPOOL_CONFI G_VERSI O\I 4989 spa_history_l og_internal (spa, "detach", tx,
4924 spa_ver si on(spa)) == 0); 4990 "vdev=%", vnl[c]->vdev_path);
4925 VERI FY(nvl i st_add_ul nt 64(confi g, ZPOOL_CONFI G_POOL_TXG 4991 vdev_free(vni[c]);
4926 spa- >spa_config_txg) == 0); 4992 }
4927 VERI FY(nvl i st_add_ui nt 64(config, ZPOOL_CONFI G POOL_GCUl D, 4993 }
4928 spa_generate_gui d(NULL)) == 0); 4994 vdev_config_dirty(spa->spa_root_vdev);
4929 (void) nvlist_|ookup_string(props, 4995 spa->spa_config_splitting = NULL;
4930 zpool _prop_t o_nane(ZPOOL_PROP_ALTROOT), &altroot); 4996 nvlist_f ree(nvl);
4997 if (error == 0)
4932 /* add the new pool to the namespace */ 4998 drmu_t x_commi t (tx);
4933 newspa = spa_add(newnane, config, altroot); 4999 (void) spa_vdev_exit(spa, NULL, txg, 0);
4934 newspa- >spa_confi g_txg = spa->spa_config_txg;
4935 spa_set _| og_st at e(newspa, SPA LOG CLEAR); 5001 if (zio_injection_enabled)
5002 zi o_handl e_pani c_i nj ection(spa, FTAG 3);
4937 /* rel ease the spa config |ock, retaining the nanespace | ock */
4938 spa_vdev_config_exit(spa, NULL, txg, O, FTAQ; 5004 /* split is conplete; log a history record */
5005 spa_history_l og_i nternal (newspa, "split", NULL,
4940 if (zio_injection_enabled) 5006 "from pool %", spa_nane(spa));
4941 zi o_handl e_pani c_i nj ecti on(spa, FTAG 1);

new usr/src/uts/comon/fs/zfs/spa.c

5008

5010
5011
5012
5013

5015

5017
5018
5019
5020

5022

5024
5025
5026
5027
5028
5029

5031
5032
5033

5035
5036
5037

5039
5040

out :

}

kmem free(vm , children * sizeof (vdev_t *));
/* if we're not going to nount the filesystens in userland, export */
if (exp)
error = spa_export_conmon(newnanme, POOL_STATE_EXPORTED, NULL,
B_FALSE, B _FALSE);

return (error);

spa_unl oad(newspa) ;
spa_deacti vat e(newspa) ;
spa_r enove(newspa) ;

txg = spa_vdev_config_enter(spa);

/* re-online all offlined disks */
for (c = 0; ¢ < children; c++) {
if (vm[c] !'= NULL)
vm [c]->vdev_of fline = B_FALSE;

vdev_r eopen(spa- >spa_r oot _vdev) ;
nvlist_free(spa->spa_confi g_ spl i tt| ng);
spa->spa_config_splitting =

(voi d) spa_vdev_exit(spa, NULL txg, error);

kmem free(vm, children * sizeof (vdev_t *));
return (error);

static nvlist_t *

spa_nvlist_| ookup_by_guid(nvlist_t **nvpp, int count,

5041 {

5042
5043

5045
5046

5048
5049
5050

5052
5053

5055
5056
5057
5058
5059

5061
5062

5064
5065
5066
5067
5068

5070
5071

5073

}

uint64_t target_guid)

for (int i =0; i < count;
uint64_t guid;

i++) {
VERI FY(nvl i st_| ookup_ui nt 64(nvpp[i], ZPOOL_CONFI G GUI D,
&guid) == 0);
if (guid == target_guid)
return (nvpp[il]);
}

return (NULL);

static void
spa_vdev_renove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,

{

nvlist_t *dev_to_renove)
nvlist_t **newdev = NULL;

if (count > 1)

newdev = kmem al | oc((count - 1) * sizeof (void *), KM SLEEP);
for (int i =0, j =0; i <count; i++) {
if (dev[|] == dev_to_renove)

conti nue;
VERI FY(nvlist_dup(dev[i], &newdev[j++], KM SLEEP) == 0);

}
VERI FY(nvlist_renove(config, name, DATA_TYPE_NVLI ST_ARRAY) ==

VERI FY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);

for (int i =0; i <count - 1; i++)

new usr/src/uts/comon/fs/zfs/spa.c

5074 nvlist_free(newdev[i]);

5076 if (count > 1)

5077 kmem free(newdev, (count - 1) * sizeof (void *));
5078 }

5080 /*

5081 Evacuat e the devi ce.

5082

5083 static int

5084 spa_vdev_renove_evacuat e(spa_t *spa, vdev_t *vd)

5085 {

5086 uint64_t txg;

5087 int error = 0;

5089 ASSERT(MUTEX_HELD(&spa_nanespace_| ock));

5090 ASSERT(spa_confi g_hel d(spa, SCL_ALL, R\NV\RI TER) == 0);
5091 ASSERT(vd == vd->vdev_top);

5093 /*

5094 * Evacuate the device. W don't hold the config lock as witer
5095 * since we need to do I/0O but we do keep the

5096 * spa_nanespace_|l ock held. Once this conpletes the device
5097 * shoul d no I onger have any bl ocks allocated on it.
5098

5099 i f (vd->vdev_i sl og) {

5100 if (vd->vdev_stat.vs_alloc != 0)

5101 error = spa_offline_l og(spa);

5102 } else {

5103 error = SET_ERROR(ENOTSUP) ;

5104 }

5106 if (error)

5107 return (error);

5109 /*

5110 * The evacuation succeeded. Renpbve any renai ni ng MOS net adat a
5111 * associated with this vdev, and wait for these changes to sync.
5112 */

5113 ASSERTO(vd >vdev_stat.vs_alloc);

5114 txg = spa_vdev_confi g ent er(spa)

5115 vd- >vdev_renovi ng = B_TRUE;

5116 vdev_dirty(vd, 0, NULL, txg);

5117 vdev_config_di rty(vd)

5118 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG;

5120 return (0);

5121 }

5123 /*

5124 * Conpl ete the renpval by cleaning up the nanespace.

5125 */

5126 static void

5127 spa_vdev_renpve_from nanespace(spa_t *spa, vdev_t *vd)

5128 {

5129 vdev_t *rvd = spa->spa_root_vdev;

5130 uint64_t id = vd->vdev_id;

5131 bool ean_t last_vdev = (id == (rvd->vdev_children - 1));
5133 ASSERT(MUTEX_HELD(& pa_nanespace_| ock));

5134 ASSERT(spa_config_hel d(spa, SCL_ALL, RWV\RI TER) == SCL_ALL);
5135 ASSERT(vd == vd->vdev_top);

5137 /*

5138 * Only renpve any devices which are enpty.

5139 */

78

new usr/src/uts/comon/fs/zfs/spa.c

5140 if (vd->vdev_stat.vs_alloc != 0)

5141 return;

5143 (void) vdev_l abel _init(vd, 0, VDEV_LABEL_REMOVE);

5145 if (list_link_active(&d->vdev_state_dirty_node))

5146 vdev_state_cl ean(vd);

5147 if (list_link_active(&d->vdev_config_dirty_node))

5148 vdev_config_cl ean(vd);

5150 vdev_free(vd);

5152 if (last_vdev) {

5153 vdev_conpact _chi I dren(rvd);

5154 } else {

5155 vd = vdev_al | oc_common(spa, id, 0, &dev_hol e_ops);
5156 vdev_add_chi I d(rvd, vd);

5157 }

5158 vdev_config_dirty(rvd);

5160 /*

5161 * Reassess the health of our root vdev.

5162 */

5163 vdev_r eopen(rvd);

5164 }

5166 /*

5167 * Renpve a device fromthe pool -

5168 *

5169 * Renpving a device fromthe vdev nanespace requires several steps
5170 * and can take a significant anpbunt of time. As a result we use
5171 * the spa_vdev_config_[enter/exit] functions which allow us to
5172 * grab and rel ease the spa_config_lock while still holding the namespace
5173 * lock. During each step the configuration is synced out.

5174 */

5176 /*

5177 * Renpve a device fromthe pool. Currently, this supports renmoving only hot
5178 * spares, slogs, and | evel 2 ARC devices.

5179 */

5180 int

g%g% {spa_vdev_rer’mve(spa_t *spa, uint64_t guid, boolean_t unspare)

5183 vdev_t *vd;

5184 met asl ab_group_t *ny;

5185 nvlist_t **spares, **|2cache, *nv;

5186 uint64_t txg = 0O;

5187 uint_t nspares, nl2cache;

5188 int error = 0;

5189 bool ean_t | ocked = MJUTEX_HELD(&pa_nanespace_| ock) ;

5191 ASSERT(spa_writeabl e(spa));

5193 if (!locked)

5194 txg = spa_vdev_enter(spa);

5196 vd = spa_|l ookup_by_gui d(spa, guid, B _FALSE);

5198 if (spa->spa_spares.sav_vdevs != NULL &&

5199 nvlist_| ookup_nvlist_array(spa->spa_spares. sav_config,
5200 ZPOOL_CONFI G SPARES, &spares, &nspares) == 0 &&

5201 (nv = spa_nvlist_| ookup_by_guid(spares, nspares, guid)) != NULL) {
5202 /*

5203 * Only renove the hot spare if it’s not currently in use
5204

5205

* in this pool.
*/

new usr/src/uts/comron/fs/zfs/spa.c

5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227

5229
5230
5231
5232

5234

5236
5237
5238
5239

5241
5242
5243
5244
5245
5246

5248
5249
5250
5251

5253

5255
5256
5257
5258
5259
5260
5261

5263
5264
5265
5266

5268
5269
5270
5271

if (vd == NULL || unspare) {
spa_vdev_renove_aux(spa- >spa_spares. sav_confi g,
ZPOOL_CONFI G_SPARES, spares, nspares, nv);
spa_| oad_spares(spa);
spa- >spa_spares. sav_sync = B_TRUE;
} else {
error = SET_ERROR(EBUSY);

}
} else if (spa->spa_l 2cache. sav_vdevs != NULL &&
nvlist_| ookup_nvlist_array(spa->spa_| 2cache. sav_confi g,
ZPOOL_CONFI G_L2CACHE, &l 2cache, &nl 2cache) == 0 &&
(nv /= spa_nvlist_| ookup_by_gui d(| 2cache, nl2cache, guid)) != NULL)
*

* Cache devices can al ways be renpved.
*
/
spa_vdev_renpve_aux(spa->spa_| 2cache. sav_confi g,
ZPOOL_CONFI G_L2CACHE, | 2cache, nl 2cache, nv);
spa_| oad_I| 2cache(spa);
spa- >spa_l 2cache. sav_sync = B_TRUE;
} else if (vd = NULL && vd->vdev_islog) {

ASSERT(!l ocked) ;
ASSERT(vd == vd->vdev_t op);

/*

* XXX - Once we have bp-rewite this should
* beconme the commpn case.

)

nmg = vd->vdev_ny;

/*
* Stop allocating fromthis vdev.
*/

nmet asl ab_gr oup_passi vat e(ng) ;

/*
* Wait for the youngest allocations and frees to sync,
* and then wait for the deferral of those frees to finish.
*/
spa_vdev_config_exit(spa, NULL,
txg * TXG CONCURRENT_STATES + TXG DEFER S| ZE, 0, FTAG;

/*
* Attenpt to evacuate the vdev.
*/

error = spa_vdev_renpve_evacuate(spa, vd);
txg = spa_vdev_config_enter(spa);

/*
* |f we couldn't evacuate the vdev, unw nd.
*
/
if (error) {
net asl ab_group_acti vat e(ng);
return (spa_vdev_exit(spa, NULL, txg, error));

}

/*

* Clean up the vdev nanespace.
*

/

spa_vdev_renove_from nanespace(spa, vd);
} else if (vd !'= NULL) {
/*

* Normal vdevs cannot be renpved (yet).
*/

new usr/src/uts/comon/fs/zfs/spa.c 81

5272
5273
5274
5275
5276
5277
5278

5280
5281

5283
5284

5286
5287
5288
5289
5290
5291

5293

5295
5296
5297
5298
5299

5301
5302
5303
5304
5305
5306
5307
5308
5309
5310

5312
5313

5315
5316
5317
5318
5319

5321
5322
5323
5324
5325
5326

5328
5329
5330
5331
5332
5333
5334
5335
5336

}

/*

* Find any device that’s done replacing, or a vdev marked 'unspare’ that's
* current spared, so we can detach it.

S

error = SET_ERROR(ENOTSUP) ;
} else {
/*
* There is no vdev of any kind with the specified guid.
*
error = SET_ERROR(ENCENT) ;
}

if (!locked)
return (spa_vdev_exit(spa, NULL, txg, error));

return (error);

static vdev_t *
spa_vdev_resil ver _done_hunt (vdev_t *vd)
5292 {

vdev_t *newd, *ol dvd;

for (int ¢ = 0; ¢ < vd->vdev_children; c++) {
ol dvd = spa_vdev_resilver_done_hunt (vd->vdev_child[c]);
if (oldvd !'= NULL)
return (ol dvd);

}
/*
* Check for a conpleted replacenment. W always consider the first
* vdev in the list to be the ol dest vdev, and the | ast one to be
* the newest (see spa_vdev_attach() for how that works). In
* the case where the newest vdev is faulted, we will not automatically
* renove it after a resilver conpletes. This is OKas it will require
* user intervention to determ ne which disk the adm n wi shes to keep.
*
if (vd->vdev_ops == &vdev_repl aci ng_ops) {
ASSERT(vd->vdev_children > 1);
newd = vd->vdev_child[vd->vdev_children - 1];
ol dvd = vd->vdev_child[O0];
if (vdev_dtl_enpty(newd, DTIL_M SSING &&
vdev_dt| _enpty(newd, DTL_OUTAGE) &&
Ivdev_dt| _required(ol dvd))
return (ol dvd);
}
/*

* Check for a conpleted resilver with the "unspare’ flag set.
S
if (vd->vdev_ops == &dev_spare_ops) {

vdev_t *first = vd->vdev_child[0];

vdev_t *last = vd->vdev_chil d[vd->vdev_children - 1];

if (last->vdev_unspare) {
oldvd = first;

newd = |ast;
} else if (first->vdev_unspare) {
ol dvd = | ast;
newd = first;
} else {
ol dvd = NULL;

}

new usr/src/uts/comon/fs/zfs/spa.c 82
5338 if (oldvd !'= NULL &&

5339 vdev_dt| _enpty(newd, DTL_M SSING &&

5340 vdev_dt| _enpty(newd, DTL_OUTAGE) &&

5341 Ivdev_dtl _required(ol dvd))

5342 return (ol dvd);

5344 /*

5345 * |f there are nore than two spares attached to a disk,
5346 * and those spares are not required, then we want to
5347 * attenpt to free themup now so that they can be used
5348 * by other pools. Once we're back down to a single
5349 * di sk+spare, we stop renoving them

5350 *

5351 if (vd->vdev_children > 2) {

5352 newd = vd->vdev_child[1];

5354 if (newd->vdev_isspare && | ast->vdev_isspare &&
5355 vdev_dt| _enpty(l ast, DTL_M SSI NG &&

5356 vdev_dt| _enpty(last, DIL_OUTAGE) &&

5357 Ivdev_dtl _requi red(newd))

5358 return (newd);

5359 }

5360 1

5362 return (NULL);

5363 }

5365 static void
5366 spa_vdev_resilver_done(spa_t *spa)

5367 {
5368
5369

5371

5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396

5398
5399 }

5401 /*

vdev_t *vd, *pvd, *ppvd;
uint64_t guid, sguid, pguid, ppguid;

spa_config_enter(spa, SCL_ALL, FTAG RWMWRI TER);

while ((vd = spa_vdev_resilver_done_hunt (spa->spa_root_vdev)) != NULL) {
pvd = vd->vdev_parent;
ppvd = pvd->vdev_parent;
guid = vd->vdev_gui d;
pgui d = pvd- >vdev_gui d;
ppgui d = ppvd- >vdev_gui d;
sguid = 0;
/*
* |f we have just finished replacing a hot spared device, then
* we need to detach the parent’s first child (the original hot
*/spare) as well.
*

if (ppvd->vdev_ops == &dev_spare_ops & pvd->vdev_id == 0 &&
ppvd- >vdev_children == 2) {
ASSERT(pvd- >vdev_ops == &vdev_repl aci ng_ops);
sgui d = ppvd->vdev_chi | d[1] - >vdev_gui d;

}

spa_config_exit(spa, SCL_ALL, FTAG;

if (spa_vdev_detach(spa, guid, pguid, B TRUE) != 0)
return;

if (sguid & spa_vdev_detach(spa, sguid, ppguid, B TRUE) != 0)
return;

spa_config_enter(spa, SCL_ALL, FTAG RWMWRI TER);

}

spa_config_exit(spa, SCL_ALL, FTAG;

5402 * Update the stored path or FRU for this vdev.

5403 */

new usr/src/uts/comon/fs/zfs/spa.c

5404 int
5405 spa_vdev_set _common(spa_t *spa, uint64_t guid, const char *val ue
5406 bool ean_t ispath)

5407 {

5408 vdev_t *vd;

5409 bool ean_t sync = B_FALSE

5411 ASSERT(spa_writeabl e(spa));

5413 spa_vdev_state_enter(spa, SCL_ALL)

5415 if ((vd = spa_l ookup_by_guid(spa, guid, B TRUE)) == NULL)
5416 return (spa_vdev_state_exit(spa, NULL, ENCENU)
5418 if (!vd->vdev_ops->vdev_op_| eaf)

5419 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5421 if (ispath) {

5422 if (strcnp(val ue, vd->vdev_path) != 0) {

5423 spa_strfree(vd->vdev_pat h)

5424 vd- >vdev_pat h = spa_strdup(val ue)

5425 sync = B_TRUE;

5426

5427 } else {

5428 if (vd->vdev_fru == NULL) {

5429 vd->vdev_fru = spa_strdup(val ue);

5430 sync = B_TRUE;

5431 } else if (strcnp(value, vd->vdev_fru) != 0) {
5432 spa_strfree(vd->vdev_fru);

5433 vd- >vdev_fru = spa_ strdup(value)

5434 sync = B_TRUE;

5435 }

5436 }

5438 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0))
5439 }

5441 int

5442 spa_vdev_setpat h(spa_t *spa, uint64_t guid, const char *newpath)
5443 {

5444 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE))
5445 }

5447 int

5448 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5449 {

5450 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE))
5451 }

5453 [*

5454 *

5455 * SPA Scanni ng

5456 *

5457 */

5459 int

5460 spa_scan_stop(spa_t *spa)

5461 {

5462 ASSERT(spa_config_hel d(spa, SCL_ALL, RWWRI TER) == 0)
5463 if (dsl_scan_resilvering(spa->spa_dsl| _pool))

5464 return (SET_ERROR(EBUSY));

5465 return (dsl_scan_cancel(spa->spa_ds|_poo|))

5466 }

5468 int

5469 spa_scan(spa_t *spa, pool _scan_func_t func)

83

new usr/src/uts/comron/fs/zfs/spa.c

5470 {

5471 ASSERT(spa_config_hel d(spa, SCL_ALL, RWWRI TER) == 0)

5473 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)

5474 return (SET_ERROR(ENOTSUP));

5476 /*

5477 * |f aresilver was requested, but there is no DTIL on a
5478 * writeable | eaf device, we have nothing to do.

5479 */

5480 f (func == POOL_SCAN RESI LVER &&

5481 Ivdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5482 spa_async_request (spa, SPA_ASYNC_ RES| LVER DJVE
5483 return (0);

5484 }

5486 return (dsl_scan(spa->spa_dsl _pool, func))

5487 }

5489 /*

5490 *

5491 * SPA async task processing

5492 *

5493 */

5495 static void

5496 spa_async_renove(spa_t *spa, vdev_t *vd)

5497 {

5498 if (vd->vdev_renpve_wanted) {

5499 vd- >vdev_r enpve_want ed = B_FALSE;

5500 vd->vdev_del ayed_cl ose = B_FALSE;

5501 vdev_set _state(vd, B_FALSE, VDEV_STATE _REMOVED, VDEV_AUX_NONE);
5503 /*

5504 * W want to clear the stats, but we don’'t want to do a ful
5505 * vdev_clear() as that will cause us to throw away
5506 * degraded/faulted state as well as attenpt to reopen the
5507 * device, all of which is a waste

5508 */

5509 vd->vdev_stat.vs_read_errors = 0

5510 vd->vdev_stat.vs_wite_errors = 0

5511 vd->vdev_stat.vs_checksumerrors = 0

5513 vdev_state_dirty(vd->vdev_top)

5514 }

5516 for (int ¢ = 0; ¢ < vd->vdev_children; c++)

5517 spa_async_renove(spa, vd->vdev_child[c])

5518 }

5520 static void

5521 spa_async_probe(spa_t *spa, vdev_t *vd)

5522 {

5523 if (vd->vdev_probe_wanted) {

5524 vd- >vdev_probe_want ed = B_FALSE;

5525 vdev_reopen(vd); /* vdev_open() does the actual probe */
5526 1

5528 for (int ¢ = 0; ¢ < vd->vdev_children; c++)

5529 spa_async_probe(spa, vd->vdev_child[c])

5530 }

5532 static void

5533 spa_async_aut oexpand(spa_t *spa, vdev_t *vd)
5534 {
5535 sysevent _id_t eid;

84

new usr/src/uts/comon/fs/zfs/spa.c

5536 nvlist_t *attr;

5537 char *physpat h;

5539 if (!spa->spa_autoexpand)

5540 return;

5542 for (int ¢ = 0; ¢ < vd->vdev_children; c++) {

5543 vdev_t *cvd = vd->vdev_chil d[c]

5544 spa_async_aut oexpand(spa, cvd);

5545 }

5547 if (!vd->vdev_ops->vdev_op_|l eaf || vd->vdev_physpath == NULL)
5548 return;

5550 physpath = knmem zal | oc(MAXPATHLEN, KM SLEEP);

5551 (void) snprintf(physpath, MAXPATHLEN, "/devices%", vd->vdev_physpath);
5553 VERI FY(nvlist_alloc(&ttr, NV_UNI QUE_NAME, KM SLEEP) == 0);
5554 VERI FY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5556 (voi d) ddl Iog sysevent (zfs_di p, SUNW VENDOR, EC_DEV_STATUS,
5557 DEV_DLE, attr, &eid, DDI_SLEEP);

5559 nvlist_free(attr);

5560 kmem f ree(physpath, MAXPATHLEN);

5561 }

5563 static void

5564 spa_async_t hread(spa_t *spa)

5565 {

5566 int tasks;

5568 ASSERT(spa- >spa_sync_on);

5570 mut ex_ent er (&spa- >spa_async_| ock) ;

5571 tasks = spa->spa_async_t asks;

5572 spa- >spa_async_t asks = 0;

5573 nmut ex_exi t (&spa->spa_async_| ock);

5575 /*

5576 * See if the config needs to be updated.

5577 */

5578 if (tasks & SPA ASYNC CONFI G UPDATE) {

5579 uint64_t ol d_space, new_space;

5581 nmut ex_ent er (&spa_nanmespace_| ock) ;

5582 ol d_space = netasl ab_cl ass_get _space(spa_normal _cl ass(spa));
5583 spa_confi g_updat e(spa, SPA_CONFI G_UPDATE_POQOL) ;

5584 new_space = netasl ab_cl ass get _space(spa_| nor ral _class(spa));
5585 mut ex_exi t (&pa_nanespace_| ock) ;

5587 /*

5588 * |f the pool grew as a result of the config update,
5589 * then log an internal history event.

5590 */

5591 if (new_space != ol d_space)

5592 spa_history_l og_i nternal (spa, "vdev online", NULL,
5593 "pool %’ size: Wlu(+%lu)",

5594 spa_nane(spa), new _space, new space - ol d_space);
5595 }

5596 1

5598 /*

5599 * See if any devices need to be marked REMOVED.

5600 */

5601 if (tasks & SPA_ASYNC_REMOVE) {

new usr/src/uts/comon/fs/zfs/spa.c

5602 spa_vdev_state_enter(spa, SCL_NONE);

5603 spa_async_renove(spa, Sspa->spa_root_vdev);

5604 for (int i = 0; i < spa->spa_l 2cache. sav_count; i++)
5605 spa_async_renove(spa, spa->spa_| 2cache.sav_vdevs[i]);
5606 for (int 1 = 0; i < spa->spa_spares.sav_count; i++)
5607 spa_async_renove(spa, spa->spa_spares.sav_vdevs[i]);
5608 (void) spa_vdev_state_exit(spa, NULL, 0);

5609 }

5611 if ((tasks & SPA_ASYNC AUTCEXPAND) && !spa_suspended(spa)) {
5612 spa_config_enter(spa, SCL_CONFIG FTAG RW READER);
5613 spa_async_aut oexpand(spa, spa->spa_root_vdev);

5614 spa_config_exit(spa, SCL_CONFIG FTAG;

5615 }

5617 /*

5618 * See if any devices need to be probed.

5619 */

5620 if (tasks & SPA ASYNC PROBE) {

5621 spa_vdev_state_enter(spa, SCL_NONE);

5622 spa_async_probe(spa, spa->spa_root vdev)

5623 (voi d) spa_vdev_state_exit(spa, NULL, 0);

5624 1

5626 *

5627 * |f any devices are done replacing, detach them

5628 */

5629 if (tasks & SPA_ASYNC RESI LVER_DONE)

5630 spa_vdev_resil ver_done(spa);

5632 /*

5633 * Kick off a resilver.

5634 ki

5635 if (tasks & SPA_ASYNC_RESI LVER)

5636 dsl _resilver_restart(spa->spa_dsl _pool, 0);

5638 *

5639 * Let the world know that we're done.

5640 */

5641 mut ex_ent er (&spa- >spa_async_| ock) ;

5642 spa- >spa_async_t hread = NULL;

5643 cv_broadcast (&spa- >spa_async_cv);

5644 mut ex_exi t (&spa- >spa_async_| ock) ;

5645 thread_exit();

5646 }

5648 void

5649 spa_async_suspend(spa_t *spa)

5650 {

5651 nmut ex_ent er (&spa- >spa_async_| ock) ;

5652 spa- >spa_async_suspended++;

5653 whi | e (spa->spa_async_thread != NULL)

5654 cv_wal t (&pa- >spa_async_cv, &spa->spa_async_| ock);
5655 mut ex_exi t (&spa- >spa_async_| ock) ;

5656 }

5658 void

5659 spa_async_resunme(spa_t *spa)

5660 {

5661 mut ex_ent er (&spa- >spa_async_| ock) ;

5662 ASSERT(spa- >spa_async_suspended != 0);

5663 spa- >spa_async_suspended- - ;

5664 nmut ex_exi t (&spa->spa_async_| ock) ;

5665 }

5667 static void

86

new usr/src/uts/comon/fs/zfs/spa.c

5668 spa_async_di spatch(spa_t *spa)

5669 {

5670 nmut ex_ent er (&spa- >spa_async_| ock) ;

5671 if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5672 spa- >spa_async_t hread == NULL &&

5673 rootdir !'= NULL && !vn_is_readonly(rootdir))

5674 spa- >spa_async_t hread = thread_create(NULL, O,

5675 spa_async_t hread, spa, 0, &0, TS RUN, maxclsyspri);
5676 mut ex_exi t (&spa- >spa_async_| ock) ;

5677 }

5679 void

5680 spa_async_request (spa_t *spa, int task)

5681 {

5682 zfs_dbgmsg("spa=% async request task=%", spa->spa_nane, task);
5683 mut ex_ent er (&spa- >spa_async_| ock) ;

5684 spa- >spa_async_t asks | = task;

5685 mut ex_exi t (&spa- >spa_async_| ock);

5686 }

5688 /*

5689 *

5690 * SPA syncing routines

5691 *

5692 */

5694 static int

5695 bpobj _enqueue_cb(void *arg, const bl kptr_t *bp, dmu_tx_t *tx)

5696 {

5697 bpobj _t *bpo = arg;

5698 bpobj _enqueue(bpo, bp, tx);

5699 return (0);

5700 }

5702 static int

5703 spa_free_sync_cb(void *arg, const bl kptr_t *bp, dmu_tx_t *tx)

5704 {

5705 zio_t *zio = arg;

5707 zi o_nowai t (zi o_free_sync(zio, zio-> o_spa, dmu_tx_get_txg(tx), bp,
5708 zio->io_flags));

5709 return (0);

5710 }

5712 static void

5713 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dnu_tx_t *tx)
5714 {

5715 char *packed = NULL;

5716 si ze_t bufsize;

5717 size_t nvsize = 0;

5718 dmu_buf _t *db;

5720 VERI FY(nvlist_size(nv, &nvsize, NV_ENCODE _XDR) == 0)

5722 /*

5723 * Wite full (SPA_CONFI G BLOCKSI ZE) bl ocks of configuration
5724 * information. This avoids the dbuf_wll_dirty() path and
5725 * saves us a pre-read to get data we don’'t actually care about.
5726 */

5727 buf si ze = P2ROUNDUP((ui nt 64_t) nvsi ze, SPA CONFI G_BLOCKSI ZE) ;
5728 packed = knmem al | oc(bufsi ze, KM SLEEP);

5730 VERI FY(nvl i st_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,

5731 KM SLEEP) == 0);

5732 bzero(packed + nvsize, bufsize - nvsize);

87

new usr/src/uts/comon/fs/zfs/spa.c 88
5734 dmu_wri t e(spa- >spa_neta_obj set, obj, 0, bufsize, packed, tx);

5736 kmem f ree(packed, bufsize);

5738 VERI FY(0 == dmu_bonus_hol d(spa- >spa_net a_obj set, obj, FTAG &db));
5739 drmu_buf \M|| _dirty(db, tx);

5740 *(uint64_t *)db->db_data = nvsize;

5741 dmu_buf _rel e(db, FTAG;

5742 }

5744 static void

5745 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,

5746 const char *config, const char *entry)

5747 {

5748 nvlist_t *nvroot;

5749 nvlist_t **|ist;

5750 int i;

5752 if (!sav->sav_sync)

5753 return;

5755 l*

5756 * Update the MOS nvlist describing the |ist of avail abl e devices.
5757 * spa_validate_aux() will have already nmade sure this nvlist is
5758 * valid and the vdevs are | abel ed appropriately.

5759 */

5760 if (sav->sav_object == O)

5761 sav->sav_obj ect = dnu_obj ect _al | oc(spa- >spa_net a_obj set,
5762 DMJ_OT_PACKED _NVLI ST, 1 << 14, DMJ_OT_PACKED NVLI ST Sl ZE,
5763 sizeof (uint64_t), tx);

5764 VERI FY(zap_updat e(spa- >spa_net a_obj set,

5765 DMU_POOL_DI RECTORY_OBJECT, entry, sizeof (uint64 t), 1,
5766 &sav->sav_obj ect, tx) == O),

5767 }

5769 VERI FY(nvlist_all oc(&wvroot, NV_UNI QUE NAVE, KM SLEEP) == 0);

5770 if (sav->sav_count == 0)

5771 VERI FY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5772 } else {

5773 list krrem al | oc(sav->sav_count * sizeof (void *), KM SLEEP);
5774 for (| =0; i < sav->sav count; i ++)

5775 list[i] = vdev_config_ generat e(spa, sav->sav_vdevs[i],
5776 B_FALSE, VDEV_CONFI G 5 L2CACHE) ;

5777 VERI FY(nvlist_add_nvlist_array(nvroot, confi g, list,

5778 sav- >sav _count) == 0);

5779 for (i = 0; i < sav->sav_count; i++)

5780 ninst_free(Iist[i]);

5781 kmem free(list, sav->sav_count * sizeof (void *));

5782 }

5784 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);

5785 nvlist_free(nvroot);

5787 sav->sav_sync = B_FALSE;

5788 }

5790 static void

5791 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)

5792 {

5793 nvlist_t *config;

5795 if (list_is_enpty(&spa->spa_config_ dirty_list))

5796 return;

5798 spa_config_enter(spa, SCL_STATE, FTAG RW READER);

new usr/src/uts/comon/fs/zfs/spa.c 89 new usr/src/uts/comron/fs/zfs/spa.c 90
5800 config = spa_config_generate(spa, spa->spa_root_vdev, 5866 ASSERT(zpool _prop_feature(nvpair_nanme(elem));
5801 drmu_t x_get _txg(tx), B_FALSE);
5868 fnanme = strchr(nvpair_nane(elen), '@) + 1;
5803 /* 5869 VERI FY3U(0, ==, zfeature_| ookup_ nama(fnarre &f eature));
5804 * |f we're upgrading the spa version then make sure that
5805 * the config object gets updated with the correct version. 5871 spa_f eature_enabl e(spa, feature, tx);
5806 */ 5872 spa_history_l og_internal (spa, "set", tx,
5807 f (spa->spa_ubsync. ub_version < spa->spa_uber bl ock. ub_versi on) 5873 "Ys=enabl ed", nvpair_nane(elem);
5808 fnvlist_add_uint64(config, ZPOOL_CONFI G VERSI CN, 5874 br eak;
5809 spa- >spa_uber bl ock. ub_ver si on) ;
5876 case ZPOOL_PROP_VERSI ON:
5811 spa_config_exit(spa, SCL_STATE, FTAG; 5877 >/ERI FY(nvpair_val ue_ui nt64(elem & ntval) == 0);
5878 *
5813 if (spa->spa_config_syncing) 5879 * The version is synced seperatly before other
5814 nvlist_free(spa->spa_config_syncing); 5880 * properties and should be correct by now.
5815 spa- >spa_config_syncing = config; 5881 */
5882 ASSERT3U(spa_version(spa), >=, intval);
5817 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5883 br eak;
5818 }
5885 case ZPOOL_PROP_ALTROOT:
5820 static void 5886 /*
5821 spa_sync_version(void *arg, dnmu_tx_t *tx) 5887 * "altroot’ is a non-persistent property. It should
5822 { 5888 * have been set tenporarily at creation or inport tine.
5823 uint64_t *versionp = arg; 5889 */
5824 uint64_t version = *versionp; 5890 ASSERT(spa- >spa_root != NULL);
5825 spa_t *spa = dmu_t x_pool (tx)->dp_spa; 5891 br eak;
5827 /* 5893 case ZPOOL_PROP_READONLY:
5828 * Setting the version is special cased when first creating the pool. 5894 case ZPOOL_PROP_CACHEFI LE:
5829 */ 5895 /*
5830 ASSERT(tx->tx_txg != TXG_ I N TIAL); 5896 * ’readonly’ and ’'cachefile’ are al so non-persisitent
5897 * properties.
5832 ASSERT(SPA_VERSI ON_| S_SUPPORTED(ver si on)) ; 5898 *f
5833 ASSERT(versi on >= spa_version(spa)); 5899 br eak;
5900 case ZPOOL PROD COVMVENT:
5835 spa- >spa_uber bl ock. ub_versi on = version; 5901 VERI FY(nvpai r_val ue_string(el em &strval) == 0);
5836 vdev_config_dirty(spa->spa_root_vdev); 5902 if (spa->spa_comment != NULL)
5837 spa_history_log_internal (spa, "set", tx, "version=%I|d", version); 5903 spa_strfree(spa->spa_conment);
5838 } 5904 spa- >spa_coment = spa_strdup(strval);
5905 /*
5840 /* 5906 * W need to dirty the configuration on all the vdevs
5841 * Set zpool properties. 5907 * so that their |abels get updated. |It’s unnecessary
5842 */ 5908 * to do this for pool creation since the vdev's
5843 static void 5909 * configuratoin has already been dirtied.
5844 spa_sync_props(void *arg, dmu_tx_t *tx) 5910 *
5845 { 5911 if (tx->tx_txg !'= TXG_ I N TIAL)
5846 nvlist_t *nvp arg; 5912 vdev_config_dirty(spa- >spa_r oot _vdev);
5847 spa_t *spa = dmu_t x_pool (tx)->dp_spa; 5913 spa_history_log_internal (spa, "set", tx,
5848 objset _t *npbs = spa->spa_neta_obj set; 5914 "Us=%", nvpair_nane(elem, strval)
5849 nvpair_t *el em = NULL; 5915 br eak;
5916 defaul t:
5851 mut ex_ent er (&spa- >spa_props_| ock) ; 5917 /*
5918 * Set pool property values in the pool props nbs object.
5853 while ((elem= nvlist_next_nvpair(nvp, elem)) { 5919 */
5854 uint64_t intval; 5920 i f (spa->spa_pool _props_object == 0) {
5855 char *strval, *fnane; 5921 spa- >spa_pool _props_object =
5856 zpool _prop_t prop; 5922 zap_create_l i nk(npos, DMJ_OT_POOL_PROPS,
5857 const char *propnane; 5923 DMJ_POOL_DI RECTORY_OBJECT, DMJ_POOL_PROPS,
5858 zprop_type_t proptype; 5924 tx);
5859 zfeature_info_t *feature; 5925 }
5861 switch (prop = zpool _nane_to_prop(nvpair_nane(elen))) { 5927 /* nornaelize the property name */
5862 case ZPROP_I| NVAL: 5928 propnane = zpool _prop_to_nane(prop);
5863 /* 5929 proptype = zpool _prop_get_type(prop);
5864 * W checked this earlier in spa_prop_validate().
5865 */ 5931 if (nvpair_type(elen) == DATA_TYPE_STRING {

new usr/src/uts/comon/fs/zfs/spa.c 91

5932

ASSERT(pr opt ype == PROP_TYPE_STRI NG ;

5933 VERI FY(nvpai r_val ue_string(elem &strval) == 0);
5934 VERI FY(zap_updat e(nos,

5935 spa- >spa_pool _props_obj ect, propnane,
5936 1, strlen(strval) + 1, strval, tx) == 0);
5937 spa_history_l og_internal (spa, "set", tx,
5938 "U%s=%", nvpair_nane(elenm), strval);
5939 } else if (nvpair_type(elem) == DATA TYPE U NT64) {
5940 VERI FY(nvpair_val ue_ui nt64(elem & ntval) == 0);
5942 if (proptype == PROP_TYPE_I NDEX) ({

5943 const char *unused;

5944 VERI FY(zpool _prop_ i ndex _to_string(
5945 prop, intval, &unused) == 0);
5946 }

5947 VERI FY(zap_updat e(nos,

5948 spa- >spa_pool _props_. Obj ect, propnane,
5949 8, 1, & ntval, tx) == 0

5950 spa_history_| og_| i nter nal (spa "set", tx,
5951 "%=%1d", nvpair_nane(elen), intval);
5952 } else {

5953 ASSERT(0); /* not allowed */

5954 }

5956 switch (prop) {

5957 case ZPOOL_PROP_DELEGATI ON:

5958 spa- >spa_del egation = intval;

5959 br eak;

5960 case ZPOOL_PROP_BOOTFS

5961 spa- >spa_bootfs = intval;

5962 br eak;

5963 case ZPOOL_PROP_FAI LUREMODE:

5964 spa->spa_failmode = intval;

5965 br eak;

5966 case ZPOOL_PROP_AUTCEXPAND:

5967 spa- >spa_aut oexpand = intval;

5968 if (tx->tx_txg !'= TXG IN TIAL)

5969 spa_async_request (spa,

5970 SPA_ASYNC_AUTOEXPAND) ;

5971 br eak;

5972 case ZPOOL_PROP_DEDUPDI TTCO

5973 spa- >spa_dedup_ditto = intval;

5974 br eak;

5975 defaul t:

5976 br eak;

5977 }

5978 }

5980 }

5982 mut ex_exi t (&spa- >spa_props_| ock);

5983 }

5985 /*

5986 * Performone-tine upgrade on-di sk changes. spa_version() does not

5987 * reflect the new version this txg, so there nust be no changes this
5988 * txg to anything that the upgrade code depends on after it executes.
5989 * Therefore this nust be called after dsl_pool _sync() does the sync

5990 * tasks.

5991 */

5992 static void

5993 spa_sync_upgrades(spa_t *spa, dnmu_tx_t *tx)

5994 {

5995 dsl _pool _t *dp = spa->spa_dsl _pool ;

5997 ASSERT(spa- >spa_sync_pass == 1);

new usr/src/uts/comon/fs/zfs/spa.c 92

5999

6001
6002
6003

6005
6006
6007

6009
6010
6011
6012

6014
6015
6016

6018
6019
6020

6022
6023
6024
6025
6026
6027

6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043

6045

6047
6048
6049
6050

6052
6053

6055
6056
6057
6058
6059
6060
6061
6062
6063

rrw_enter (&p->dp_config_rw ock, RWWR TER, FTAG;
if (spa->spa_ubsync.ub_version < SPA VERSION ORI G N &&
spa- >spa_uber bl ock. ub_versi on >= SPA VERSION.ORIG N) {
dsl _pool _create_origin(dp, tx);
/* Keeping the origin open increases spa_mnref */
spa->spa_m nref += 3;
}
if (spa->spa_ubsync.ub_version < SPA_VERSI ON_NEXT_CLONES &&
spa- >spa_uber bl ock. ub_versi on >= SPA VERSI ON_NEXT_CLONES) {
dsl _pool _upgrade_cl ones(dp, tx);
}
if (spa->spa_ubsync.ub_version < SPA VERSI ON DI R CLONES &&
spa- >spa_uber bl ock. ub_versi on >= SPA VERS| ON_DI R_CLONES) {
dsl _pool _upgrade_dir_cl ones(dp, tx);
/* Keeping the freedir open increases spa_mnref */
spa->spa_minref += 3;
}
if (spa->spa_ubsync.ub_version < SPA_VERSI ON_FEATURES &&
spa- >spa_uber bl ock. ub_versi on >= SPA VERS|I ON_FEATURES) {
spa_feature_create_zap_objects(spa, tx);
}
rrw_exit(&dp->dp_config_rw ock, FTAQ;
}
/*
* Sync the specified transaction group. New blocks may be dirtied as
* part of the process, so we iterate until it converges.
*
/
voi d

spa_sync(spa_t *spa, uint64_t txg)
{

dsl _pool _t *dp = spa->spa_dsl _pool ;

obj set _t *npbs = spa->spa_net a_obj set;

bpobj _t *defer_bpo = &spa->spa_def erred _bpobj

bplist_t *free_bpl = &spa->spa_free_bpli st[txg & TXG_MASK] ;
vdev_t *rvd = spa- >spa_root_vdev

vdev_t *vd;

dmu_t x_t *tx;

int error;

VERI FY(spa_writeabl e(spa));

/*
* Lock out configuration changes.
&/

spa_config_enter(spa, SCL_CONFIG FTAG RW READER);

spa- >spa_synci ng_txg = txg;
spa- >spa_sync_pass = 0;

*

* |f there are any pending vdev state changes, convert them

* into config changes that go out with this transaction group.
*

/
spa_config_enter(spa, SCL_STATE, FTAG RW READER);
while (list_head(&spa->spa_state_dirty_list) != NULL) {

/*

* W need the wite | ock here because, for aux vdevs,
* calling vdev_config_dirty() nodifies sav_config.

new usr/src/uts/comon/fs/zfs/spa.c

6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077

6079

6081
6082
6083

6085
6086
6087
6088
6089
6090
6091

6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104

6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122

6124
6125
6126
6127
6128

* This is ugly and will beconme unnecessary when we
* elimnate the aux vdev wart by integrating all vdevs
* into the root vdev tree.
*
/
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG;

spa_config_enter(spa, SCL_CONFI G | SCL_STATE, FTAG RW VRI TER) ;

while ((vd =
vdev_state_cl ean(vd);
vdev_config_dirt y(vd) ;

}
spa_config_exit(spa, SCL_CONFI G| SCL_STATE, FTAG;

spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG RW READER);

}
spa_config_exit(spa, SCL_STATE, FTAG;
tx = dmu_t x_create_assi gned(dp, txg);

spa->spa_sync_starttine = gethrtinme();
VERI FY(cyclic_reprogranspa->spa_deadman_cyci d,
spa- >spa_sync_starttine + spa->spa_deadman_synctine));
/*
* |f we are upgrading to SPA VERS|I ON _RAlI DZ_DEFLATE this txg,
* set spa_deflate if we have no raid-z vdevs.

|f (spa- >spa_ubsync. ub_versi on < SPA_VERSI ON_RAI DZ_DEFLATE &&
spa- >spa_uber bl ock. ub_versi on >= SPA_VERSI ON_RAl DZ_DEFLATE) {

int i;
for (i =0; i < rvd->vdev_children; i++) {
vd = rvd->vdev_child[i];
if (vd->vdev_deflate_ratio != SPA_M NBLOCKSI ZE)
br eak;
1f (i == rvd->vdev_children) {

spa- >spa_defl ate = TRUE;

VERI FY(0 == zap_add(spa->spa_neta_obj set,
DMJ_POOL_DI RECTORY_OBJECT, DMJ_POOL_DEFLATE,
sizeof (uint64_t), 1, &spa->spa_deflate, tx));

}

* |f anything has changed in this txg, or if someone is waiting
* for this txg to sync (eg, spa_vdev_renove()), push the
* deferred frees fromthe previous txg. |f not, |leave them
* alone so that we don’t generate work on an otherwise idle
* system
if (!txg_list_enpty(&dp->dp_dirty_datasets, txg) ||
ltxg_list_enpty(&p->dp_dirty_dirs, txg) ||
Itxg_list_enpty(&dp->dp_sync_tasks, txg) ||
((dsl _scan_active(dp->dp_scan) ||
txg_sync_wai ting(dp)) && !spa_shutting_ down(spa))) {
zio_t *zio = zio_root(spa, NULL, NULL, 0);
VERI FY3U(bpob] i terate(defer_bpo,
spa_free _sync_ cb, zio, tx), == 0);
VERI FYO(zi o_wai t (zi o))
}

/*
* |terate to convergence.
*/
do {
int pass = ++spa->spa_sync_pass;

|i st_head(&spa->spa_state_dirty_list)) !'= NULL)

{

new usr/src/uts/comon/fs/zfs/spa.c

6130
6131
6132
6133
6134
6135
6136

6138
6139
6140
6141
6142
6143
6144
6145
6146

6148
6149

6151
6152

6154
6155

6157

6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173

6175
6176
6177
6178
6179

6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195

spa_sync_confi g_obj ect (spa, tx);
spa_sync_aux_dev(spa, &spa->spa_spares, tx,
ZPOOL_CONFI G_SPARES, DMJ_POOL_SPARES) ;
spa_sync_aux_dev(spa, &spa->spa_|l 2cache, tx,
ZPOOL_CONFI G_L2CACHE, DMJ_POO__LZCACHE) :
spa_errlog_sync(spa, txg);
dsl _pool _sync(dp, txg);

if (pass < zfs_sync_pass_deferred_free) {
zio_t *zio = zio_root(spa, NULL, NULL, 0);
bpl T st_iterat e(free_bpl, spa_free_sync_cb

zio, tx);
VERI FY(zi o_wai t (zi o) == 0);
} else {
bplist_iterate(free_bpl, bpobj_enqueue_cb,
) def er_bpo, tx);

ddt _sync(spa, txg);
dsl _scan_sync(dp, tx);

while (vd = txg_list_renove(&spa->spa_vdev_txg_list, txg))
vdev_sync(vd, txg);

if (pass == 1)
spa_sync_upgr ades(spa, tx);

} while (dnu_objset_is_dirty(nos, txg));

/*

* ok ok ok k% ok F

for

Rewrite the vdev configuration (which includes the uberbl ock)
to commit the transaction group.

If there are no dirty vdevs, we sync the uberblock to a few
random top- 1| evel vdevs that are known to be visible in the

config cache (see spa_vdev_add() for a conplete description).
If there *are* dirty vdevs, sync the uberblock to all vdevs.

i) o
/*

* We hold SCL_STATE to prevent vdev open/close/etc.
* while we're attenpting to wite the vdev | abels.
*/

spa_config_enter(spa, SCL_STATE, FTAG RW READER);

if (list_is_enpty(&spa->spa_config dirty_ list)) {
vdev_t *svd[SPA_DVAS_PER BP];
int svdcount = O;
int children = rvd->vdev_children;
int cO = spa_get_randon(children);
for (int 0; ¢ < children; c++
rvd->vdev_child[(cO + c) %children];
vd->vdev_ms_array == 0 || vd->vdev_i sl og)
conti nue;
svd[svdcount ++] = vd;
if (svdcount == SPA | D\/AS PER _BP)
br eak;

c
vd
if

A

error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
)

if (error 1=0
error = vdev_config_sync(svd, svdcount, txg,
B_TRUE) ;
} else {
error = vdev_config_sync(rvd->vdev_child,
rvd->vdev_children, txg, B_FALSE);

94

new usr/src/uts/comon/fs/zfs/spa.c

6196
6197
6198
6199

6201
6202

6204

6206
6207
6208
6209
6210
6211

6213

6215
6216
6217
6218
6219

6221
6222
6223
6224
6225
6226
6227
6228
6229

6231
6233

6235
6236
6237
6238
6239

6241

6243
6244
6245
6246
6247
6248
6249

6251
6253
6255
6257
6258
6259

6260
6261 }

if (error !'=0)
error = vdev_config_sync(rvd->vdev_child,
rvd->vdev_children, txg, B _TRUE);
}

if (error == 0)
spa->spa_| ast _synced_gui d = rvd->vdev_gui d;

spa_config_exit(spa, SCL_STATE, FTAG;
if (error == 0)
br eak;
zi o_suspend(spa, NULL);
zi o_resunme_wal t (spa);
dmu_t x_commi t (tx);

VERI FY(cycl i c_reprogran(spa->spa_deadman_cycid, CY_INFINTY));

/*
* Clear the dirty config list.
*
/
while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
vdev_config_cl ean(vd);
/*
* Now that the new config has synced transactionally,
* let it becone visible to the config cache.
*
if (spa->spa_config_syncing != NULL) {

spa_config_set(spa, spa->spa_config_syncing);
spa- >spa_config_txg = txg;
spa- >spa_confi g_synci ng = NULL;

}
spa- >spa_ubsync = spa->spa_uber bl ock;
dsl _pool _sync_done(dp, txg);
/*
* Updat e usabl e space statistics.
*/
while (vd = txg_list_renove(&spa->spa_vdev_txg_list, TXG CLEAN(txQ)))
vdev_sync_done(vd, txg);
spa_updat e_dspace(spa);
*

* |t had better be the case that we didn’t dirty anything

* since vdev_config_sync().

*/
ASSERT(txg_list_enmpty(&dp->dp_dirty_datasets, txg));
ASSERT(txg_list_enpty(&p->dp_dirty_dirs, txg));
ASSERT(txg_l i st_enpty(&spa->spa_vdev_txg_list, txg));

spa- >spa_sync_pass = 0;
spa_config_exit(spa, SCL_CONFIG FTAG;
spa_handl e_i gnored_wr it es(spa);

/*
* |f any async tasks have been requested, kick themoff.
&/

spa_async_di spat ch(spa) ;

95

new usr/src/uts/comron/fs/zfs/spa.c 96

6263 /*
6264 * Sync all pools. W don't want to hold the namespace | ock across these
6265 * operations, so we take a reference on the spa_t and drop the | ock during the

6266 * sync.

6267 */

6268 void

6269 spa_sync_al | pool s(voi d)

6270 {

6271 spa_t *spa = NULL;

6272 mut ex_ent er (&spa_nanespace_| ock) ;

6273 while ((spa = spa_next(spa)) != NULL) {

6274 if (spa_state(spa) != POOL_STATE_ACTI VE ||

6275 Ispa_writeabl e(spa) || spa_suspended(spa))
6276 cont i nue;

6277 spa_open_ref (spa, FTAG;

6278 mut ex_exi t (&spa_nanmespace_| ock) ;

6279 txg_wai t _synced(spa_get _dsl (spa), 0);

6280 mut ex_ent er (&spa_nanespace_| ock) ;

6281 spa_cl ose(spa, FTAG;

6282

6283 mut ex_exi t (&spa_nanmespace_| ock) ;

6284 }

6286 /*

6287 *

6288 * M scel | aneous routines

6289 *

6290 */

6292 /*

6293 * Renove all pools in the system

6294 */

6295 void

6296 spa_evict_all (void)

6297 {

6298 spa_t *spa;

6300 /*

6301 * Renpove all cached state. All pools should be closed now,
6302 * so every spa in the AVL tree should be unreferenced.
6303 */

6304 mut ex_ent er (&spa_nanespace_| ock) ;

6305 while ((spa = spa_next(NULL)) != NULL) {

6306 /*

6307 * Stop async tasks. The async thread may need to detach
6308 * a device that's been replaced, which requires grabbing
6309 * spa_nanespace_| ock, so we nust drop it here.
6310 */

6311 spa_open_ref(spa, FTAG;

6312 mut ex_exi t (&spa_nanmespace_| ock) ;

6313 spa_async_suspend(spa) ;

6314 mut ex_ent er (&spa_nanmespace_| ock) ;

6315 spa_cl ose(spa, FTAQ;

6317 if (spa->spa_state != POOL_STATE_UNI NI Tl ALI ZED) {
6318 spa_unl oad(spa) ;

6319 spa_deacti vat e(spa);

6320

6321 spa_renove(spa);

6322

6323 mut ex_exi t (&spa_nanmespace_| ock);

6324 }

6326 vdev_t *
6327 spa_l ookup_by_gui d(spa_t *spa, uint64_t guid, bool ean_t aux)

new usr/src/uts/comon/fs/zfs/spa.c 97

6328 {

6329 vdev_t *vd;

6330 int i

6332 if ((vd = vdev_| ookup_by_gui d(spa- >spa_root _vdev, guid)) != NULL)
6333 return (vd);

6335 if (aux) {

6336 for (i =0; i < spa->spa_|l2cache. sav_count; i++) {
6337 vd = spa->spa_| 2cache. sav_vdevs[i];

6338 if (vd->vdev_guid == guid)

6339 return (vd);

6340 }

6342 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6343 vd = spa->spa_spares. sav_vdevs[i];

6344 if (vd->vdev_guid == guid)

6345 return (vd);

6346 }

6347 }

6349 return (NULL);

6350 }

6352 void

6353 spa_upgrade(spa_t *spa, uint64_t version)

6354 {

6355 ASSERT(spa_writeabl e(spa));

6357 spa_config_enter(spa, SCL_ALL, FTAG RWMWRITER);

6359 I*

6360 * This should only be called for a non-faulted pool, and since a
6361 * future version would result in an unopenabl e pool, this shouldn't be
6362 * possi bl e.

6363 */

6364 ASSERT(SPA_VERS| ON_| S_SUPPORTED(spa- >spa_uber bl ock. ub_ver si on))
6365 ASSERT(ver si on >= spa- >spa_uber bl ock. ub_versi on);

6367 spa- >spa_uber bl ock. ub_versi on = version;

6368 vdev_config_dirty(spa->spa_root_vdev);

6370 spa_config_exit(spa, SCL_ALL, FTAG;

6372 txg_wai t _synced(spa_get _dsl (spa), 0);

6373 }

6375 bool ean_t

6376 spa_has_spare(spa_t *spa, uint64_t guid)

6377 {

6378 int i;

6379 uint 64_t spareguid;

6380 spa_aux_vdev_t *sav = &spa->spa_spares;

6382 for (i = 0; i < sav->sav_count; i++)

6383 if (sav->sav_vdevs[i]->vdev_guid == guid)

6384 return (B_TRUE);

6386 for (i = 0; i < sav->sav_npending; i++)

6387 if (nvlist_| ookup_uint64(sav->sav_pending[i], ZPOOL_CONFI G GU D,
6388 &sparegui d) == 0 && spareguid == gui d)

6389 return (B_TRUE);

6390 }

6392 return (B_FALSE);

6393 }

6395
6396
6397
6398

new usr/src/uts/comron/fs/zfs/spa.c
/*
* Check if a pool has an active shared spare device.
* Note: reference count of an active spare is 2, as a spare and as a repl ace
*/
static bool ean_t

6399
6400
6401
6402
6403
6404

6406
6407
6408
6409
6410
6411

6413
6414

6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430

6432
6433

6435
6436
6437
6438

6440
6441
6442
6443

6445
6446
6447
6448
6449
6450

6452
6453
6454
6455
6456
6457
6458
6459

spa_has_active_shared_spare(spa_t *spa)
{

int i, refcnt;

uint64_t pool;

spa_aux_vdev_t *sav = &spa- >spa_spares;

for (i =0; i < sav->sav_count; i++) {

if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
& efcnt) &% pool != OULL && pool == spa_gui d(spa) &&
refcnt > 2)
return (B_TRUE);

}

return (B_FALSE);
}
/*
* Post a sysevent corresponding to the given event. The 'nanme’ nust be one of
* the event definitions in sys/sysevent/eventdefs.h. The payload wll be
* filled in fromthe spa and (optionally) the vdev. This doesn't do anything
* in the userland |ibzpool, as we don’'t want consunmers to msinterpret ztest
* or zdb as real changes.
*/
voi d
spa_event _notify(spa_t *spa, vdev_t *vd, const char *nane)

{

#i f def _KERNEL
sysevent _t *ev;
sysevent _attr_list_t *attr = NULL;
sysevent _val ue_t val ue;
sysevent _i d_t ei d;

ev = sysevent_al |l oc(EC_ZFS, (char *)name, SUNWKERN PUB "zfs",
SE_SLEEP) ;

val ue. val ue_type = SE_DATA TYPE_STRI NG

val ue. val ue. sv_string = spa_nane(spa);

if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &val ue, SE SLEEP) != 0)
got o done;

val ue. val ue_type = SE_DATA TYPE_ Ul NT64;

val ue. val ue. sv_ui nt 64 = spa_gui d(spa);

if (sysevent_add_attr(&attr, ZFS EV_POOL_GUI D, &value, SE_SLEEP) != 0)
goto done;

if (vd) {
val ue. val ue_t ype = SE_DATA_TYPE_Ul NT64
val ue. val ue. sv_ui nt 64 = vd- >vdev_gui d;
if (sysevent_add_attr(&attr, ZFS EV_VDEV_GU D, &val ue,
SE_SLEEP) !=0)
got o done;

if (vd->vdev_path) {
val ue. val ue_type = SE_DATA TYPE_STRI NG
val ue. val ue. sv_string = vd->vdev_pat h;
if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
&val ue, SE_SLEEP) != 0)
got o done;

98

new usr/src/uts/comon/fs/zfs/spa.c

6461
6462
6463

6465

6467 done:
6468

6469

6470

6471 #endif
6472 }

if (sysevent_attach_attributes(ev, attr)
got o done;
attr = NULL;

(void) |og_sysevent(ev, SE_SLEEP, &eid);
if (attr)

sysevent _free_attr(attr);
sysevent _free(ev);

1= 0)

99

new usr/src/uts/comon/fs/zfs/sys/dnu. h

R R R R

28892 Tue Apr 23 14:09: 37 2013
new usr/src/uts/comon/ fs/zfs/sys/dnu. h
3741 zfs needs better comments
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Justin G bbs <justing@pectral ogi c.conp
Submi tted by: Al an Sorers <al ans@pectral ogi c. com>
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. com>

R R R R R R R R

__unchanged_portion_onitted_
284 typedef void dmu_buf _evict_func_t(struct dmu_buf *db, void *user_ptr);

286 /*

287 * The names of zap entries in the D RECTORY_OBJECT of the MOS.
288 */

289 #define DMJ_POOL_DI RECTORY_OBJECT 1

290 #define DMJ_POOL_CONFI G "config"

291 #define DMJ_POOL_FEATURES FOR WRI TE "features_for_wite"
292 #define DMJ_POOL_FEATURES FOR_READ "features_for_read"
293 #defi ne DMJ_POOL_FEATURE_DESCRI PTIONS "feature_descriptions”
294 #define DMJ_POOL_ROOT_DATASET "root _dat aset”

295 #define DMJ_POOL_SYNC BPOBJ "sync_bplist"

296 #define DMJ_POOL_ERRLOG SCRUB "errl og_scrub”

297 #define DMJ_POOL_ERRLOG LAST "errlog_|ast"

298 #defi ne DMJ_POOL_SPARES "spares"

299 #define DMJ_POOL_DEFLATE "defl ate"
300 #define DMJ_POOL_H STORY "hi story"
301 #defi ne DMJ_POOL_PROPS "pool _props"
302 #define DMJ_POOL_L2CACHE "| 2cache”

303 #define DMJ_POOL_TMP_USERREFS

304 #define DMJ_POOL_DDT

305 #define DMJ_POOL_DDT_STATS

306 #define DMJ_POOL_CREATI ON_VERSI ON

"tnp_userrefs”

" DDT- %- %s- %"
"DDT-statistics"
"creation_version"

*tx);

307 #define DMJ_POOL_SCAN "scan"

308 #defi ne DMJ_POOL_FREE_BPOBJ "free_bpobj"

309 #define DMJ_POOL_BPTREE_OBJ "bptree_obj"

310 #defi ne DMJ_POOL_EMPTY_BPOBJ "enpty_bpobj "

312 /*

313 * Allocate an object fromthis objset. The range of object nunbers

314 * available is (0, DN_MAX_OBJECT). Object 0 is the neta-dnode.

315 *

316 * The transaction nust be assigned to a txg. The newy allocated

317 * object will be "held" in the transaction (ie. you can nodify the

318 * newly allocated object in this transaction).

319 *

320 * dmu_object_alloc() chooses an object and returns it in *objectp.

321 *

322 * dnu_object_clain() allocates a specific object nunber. If that

323 * nunber is already allocated, it fails and returns EEXI ST.

324 *

325 * Return 0 on success, or ENOSPC or EEXI ST as specified above.

326 */

327 uint64_t dmu_object_all oc(objset_t *os, dmu_object_type_t ot,

328 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t
329 int dmu_object_clain(objset_t *os, uint64_t object, dmu_object_type_t ot,
330 int bl ocksi ze, drmu_object_type_t bonus_type, int bonus_len, dnu_tx_t *tx);
331 int dnu_object_reclaimobjset_t *os, uint64_t object, dmu_object_type_t ot,
332 int blocksize, dmu_object_type_t bonustype, int bonuslen);

334 /*

335 * Free an object fromthis objset.

336 *

337 * The object’s data will be freed as well (ie. you don't need to call
338 * dmu_free(object, 0, -1, tx)).

new usr/src/uts/comon/fs/zfs/sys/dnu. h

339 *

340 * The object need not be held in the transaction.

341 *

342 * |f there are any holds on this object’s buffers (via dnu_buf_hold()),
343 * or tx holds on the object (via dmu_tx_hold_object()), you can not

344 * free it; it fails and returns EBUSY.

345 *

346 * |f the object is not allocated, it fails and returns ENCENT.

347 *

348 * Return 0 on success, or EBUSY or ENCENT as specified above.

349 *

350 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);

352 /*

353 * Find the next allocated or free object.

354 *

355 * The objectp paraneter is in-out. It will be updated to be the next

356 * object which is allocated. |Ignore objects which have not been

357 * nodified since txg.

358 *

359 * XXX Can only be called on a objset with no dirty data.

360 *

361 * Returns O on success, or ENCENT if there are no nore objects.

362 *

363 int dnu_object_next(objset_t *os, uint64_t *objectp,

364 bool ean_t hole, uint64_t txg);

366 /*

367 * Set the data bl ocksize for an object.

368 *

369 * The object cannot have any bl ocks allcated beyond the first. |If

370 * the first block is allocated already, the new size nust be greater

371 * than the current block size. |If these conditions are not net,

372 * ENOTSUP will be returned.

373 *

374 * Returns 0 on success, or EBUSY if there are any holds on the object

375 * contents, or ENOTSUP as described above.

376 */

377 int dmu_obj ect _set _bl ocksi ze(objset _t *os, uint64_t object, uint64_t size,
378 int ibs, dmu_tx_t *tx);

380 /*

381 * Set the checksum property on a dnode. The new checksum algorithmw ||
382 * apply to all newly witten blocks; existing blocks will not be affected.
383 *

384 voi d dnu_obj ect _set _checksun(objset_t *os, uint64_t object, uint8_t checksum
385 dmu_tx_t *tx);

387 /*

388 * Set the conpress property on a dnode. The new conpression algorithmwill
389 * apply to all newly witten bl ocks; existing blocks will not be affected.
390 *

391 voi d dmu_obj ect _set _conpress(objset_t *os, uint64_t object, uint8_t conpress,
392 dmu_tx_t *tx);

394 /*

395 * Decide howto wite a block: checksum conpression, nunber of copies, etc.
396 */

397 #define WP_NOFILL 0x1

398 #define WP_DMJ_SYNC 0x2

399 #define WP_SPILL 0x4

401 void dnmu_write_policy(objset_t *os, struct dnode *dn, int level, int wp,
402 struct zio_prop *zp);

403 /*

404 * The bonus data is accessed nore or less |like a regular buffer.

new usr/src/uts/comon/fs/zfs/sys/dnu. h

405 * You nust dnu_bonus_hold() to get the buffer, which will give you a
406 * dnu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
407 * data. As with any normal buffer, you nmust call dmu_buf_read() to
408 * read db_data, dmu_buf_will_dirty() before nodifying it, and the
409 * object nmust be held in an assigned transaction before calling
410 * dnu_buf_will _dirty. You may use dnmu_buf_set_user() on the bonus
411 * buffer as well. You nust release your hold with dnu_buf_rele().

*

412

413 * Returns ENCENT, EIO, or O.

414 #endif /* | codereview */

415 */

416 int dnmu_bonus_hol d(obj set _t *os, uint64_t object, void *tag, dmu_buf_t **);
417 int dmu_bonus_nmax(void);

418 int dnu_set _bonus(dmu_buf_t *, int, dmu_tx_t *);

419 int dnu_set _bonustype(dmu_buf _t *, dmu_object_type_t, dmu_tx_t *);

420 dmu_obj ect _type_t dnu_get _bonustype(dnmu_buf _t *);

421 int dmu_rmspill(objset_t *, uint64_t, dnu_tx_t *);

423 | *
424 * Special spill buffer support used by "SA" framework
425 */

427 int dnmu_spill _hol d_by_bonus(dmu_buf_t *bonus, void *tag, dnu_buf_t **dbp);
428 int dmu_spill_hol d_by_dnode(struct dnode *dn, uint32_t flags,

429 void *tag, dnu_buf_t **dbp);

430 int dmu_spill_hol d_exi sting(dmu_buf _t *bonus, void *tag, dmu_buf_t **dbp);

432 | *

433 * (otain the DMJ buffer fromthe specified object which contains the
434 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so
435 * that it will remain in menory. You nust release the hold with

436 * dnu_buf _rele(). You nmusn’'t access the dmu_buf_t after rel easing your
437 * hold. You nust have a hold on any dnu_buf_t* you pass to the DMJ.
438 *

439 * You nust call dmu_buf_read, dmu_buf_wll _dirty, or dmu_buf_will_fill
440 * on the returned buffer before reading or witing the buffer’s

441 * db_data. The comments for those routines describe what particul ar
442 * operations are valid after calling them

443 *

444 * The object nunber nust be a valid, allocated object nunber.

445 *

446 int dmu_buf_hol d(objset _t *os, uint64_t object, uint64_t offset,

447 void *tag, dmu_buf_t **, int flags);

448 void dmu_buf _add_ref (dmu_buf _t *db, vold* tag);
449 void dmu_buf _rel e(dmu_buf _t *db, void *tag);
450 uint64_t dmu_buf _refcount (dnu_buf _t *db);

452 | *

453 * dnu_buf _hol d_array holds the DMJ buffers which contain all bytes in a
454 * range of an object. A pointer to an array of dmu_buf_t*'s is

455 * returned (in *dbpp).

456 *

457 * dnu_buf rele_array rel eases the hold on an array of dmu_buf_t*’'s, and
458 * frees the array. The hold on the array of buffers MJIST be rel eased

459 * with dmu_buf _rele_array. You can NOT rel ease the hold on each buffer
460 * individually with dmu_buf_rele.

461 */

462 int dmu_buf_hol d_array_by_bonus(dnu_buf_t *db, uint64_t offset,

463 uint64_t length, int read, void *tag, int *nunbufsp, dnu_buf_t ***dbpp);
464 void dnu_buf _rele_array(dmu_buf_t ** int numbufs, void *tag);

466 /[*

467 * Returns NULL on success, or the existing user ptr if it’s already

468 * been set.

469 *

470 * user_ptr is for use by the user and can be obtained via dnu_buf_get_user().

new usr/src/uts/comon/fs/zfs/sys/dnu. h

471 *

472 * user_data_ptr_ptr should be NULL, or a pointer to a pointer which
473 * will be set to db->db_data when you are allowed to access it. Note
474 * that db->db_data (the pointer) can change when you do dmu_buf_read(),
475 * dmu_buf _tryupgrade(), dnu_buf_will_dirty(), or dmu_buf_will_fill().
476 * *user_data_ptr_ptr will be set to the new val ue when it changes.

477 %

478 * If non-NULL, pageout func will be called when this buffer is being
479 * excised fromthe cache, so that you can clean up the data structure
480 * pointed to by user_ptr.

481 *

482 * dnu_evict_user() will call the pageout func for all buffers in a

483 * objset with a given pageout func.

484 */

485 void *dnmu_buf _set _user (dnmu_buf_t *db, void *user_ptr, void *user_data_ptr_ptr,
486 , dmu_buf _evi ct _func_t *pageout _func);

487 [*

488 * set_user_ie is the sanme as set_user, but request inmediate eviction
489 * when hol d count goes to zero.
*

490

491 voi d *dnu_buf _set _user_i e(dnu_buf _t *db, void *user_ptr,

492 voi d *user_data_ptr_ptr, dmu_buf_evict_func_t *pageout_func);
493 void *dnu_buf _updat e_user (dmu_buf _t *db_fake, void *ol d_user_ptr,
494 void *user_ptr, void *user_data_ptr_ptr,

495 dmu_buf _evict _func_t *pageout _func);

496 void dnu_evict_user (objset_t *os, dmu_buf_evict_func_t *func);

498 [*

499 * Returns the user_ptr set with dnu_buf_set_user(), or NULL if not set.
500 */

501 voi d *dmu_buf _get _user (dnu_buf _t *db);

503 /*

504 * Returns the bl kptr associated with this dbuf, or NULL if not set.
505 */

506 struct bl kptr *dmu_buf _get _bl kptr(dnu_buf _t *db);

508 /*

509 * Indicate that you are going to nodify the buffer’s data (db_data).
510 *

511 * The transaction (tx) nust be assigned to a txg (ie. you ve called
512 * dnu_tx_assign()). The buffer’s object nmust be held in the tx

513 * (ie. you've called dnu_tx_hol d_object (tx, db->db_object)).

514 */

515 void dmu_buf _will _dirty(dmu_buf _t *db, dmu_tx_t *tx);

517 /*

518 * Tells if the given dbuf is freeable.

519 *

520 bool ean_t dnu_buf_freeabl e(dmu_buf _t *);

522 | *

523 * You nust create a transaction, then hold the objects which you wll
524 * (or mght) nodify as part of this transaction. Then you nust assign
525 * the transaction to a transaction group. Once the transaction has
526 * been assigned, you can nodify buffers which belong to held objects as
527 * part of this transaction. You can't nodify buffers before the

528 * transaction has been assigned; you can’t nodify buffers which don’'t
529 * belong to objects which this transaction holds; you can't hold

530 * objects once the transaction has been assigned. You may hol d an
531 * object which you are going to free (with dmu_object_free()), but you
532 * don’t have to.

533 *

534 * You can abort the transaction before it has been assigned.

535 *

536 * Note that you nmay hold buffers (with dnmu_buf_hold) at any tine,

new usr/src/uts/comon/fs/zfs/sys/dnu. h

537 * regardless of transaction state.
538 */

540 #define DMJ_NEW OBJECT (- 1ULL)
541 #define DMJ OBJECT END (- 1ULL)

543 drmu_tx_t *dnu_t x_creat e(objset_t *os);

544 void dnu_tx_hol d_wite(dmu_tx_t *tx, uint64_t object, uint64_t off, int |len);

545 void dnmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
546 uint64_t len);

547 void dmu_t x_hol d zap(drm tx _t *tx, uint64_t object, int add, const char *nane);

548 void dnu_tx_hol d_bonus(dnu_tx_t *tx, uint64_t object);
549 void dnmu_tx_hol d_spi || (dmu_tx_t *tx, uint64_t object);

550 void drmu_tx_hol d_sa(dnmu_tx_t *tx, struct sa_handle *hdl bool ean_t may_grow);

551 void dmu_tx_hol d_sa_creat e(dnmu_ tx _t *tx, int totaI_S|ze)
552 voi d dmu_t x abort(dnu tx_t *tx);

553 int dmu_tx_assign(dmu_tx_t *tx, enumtxg_how txg_how);
554 void drru_tx_walt(dnu tx_t *tx);

555 void dmu_tx_commit(dmu_tx_t *tx);

557 [*
558 * To register a commit call back, dnu_tx_call back_register() nust be called.
559 *
560 * dcb_data is a pointer to caller private data that is passed on as a
561 * callback parameter. The caller is responsible for properly allocating and
562 * freeing it.
563 *
564 * When registering a callback, the transaction nust be already created, but
565 * it cannot be conmitted or aborted. It can be assigned to a txg or not.
566 *
567 * The callback will be called after the transaction has been safely witten
568 * to stable storage and will also be called if the dnmu_tx is aborted.

*

569
570 * disk, the callback will be called with a value of error != 0.
571 */

572 typedef void dmu_tx_cal | back_func_t(void *dcb_data, int error);

574 void dnu_tx_cal | back_register(dnu_tx_t *tx, dnu_tx_callback_func_t *dcb_func,

575 voi d *dcb_dat a) ;

577 |*

578 * Free up the data blocks for a defined range of a file. |If sizeis
579 * -1, the range fromoffset to end-of-file is freed.

580 */

581 int dnu_free_range(objset_t *os, uint64_t object, uint64_t offset,
582 uint64_t size, dmu_tx_t *tx);

583 int dnu_free_| ong_range(objset _t *os, uint64_t object, uint64_t offset,
584 uint64_t size);

585 int dmu_free_object(objset_t *os, uint64_t object);

587 /*

588 * Conveni ence functions.

589 *

590 * Canfail routines will return O on success, or an errno if there is a
591 * nonrecoverable I/Oerror.

592 */

593 #defi ne DMJ_READ PREFETCH 0 /* prefetch */

594 #defi ne DMJ_READ NO PREFETCH 1/* don't prefetch */

595 int dnu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
596 void *buf, uint32_t flags);

597 void dmu_wri te(obj set _t *0s, uint64_t object, uint64_t offset, uint64_t size,

598 const void *buf, dnu_tx_t *tx);

599 voi d dnu_preal | oc(obj set _t *os, uint 64_t object, uint64_t offset, uint64_t size,

600 dmu_tx_t *tx);

601 int drmu_read_uio(objset t *os, uint64_t object, struct uio *uio, uint64_t size);
602 int dmu_wite_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,

If there is any error which prevents the transaction from being committed to

new usr/src/uts/comon/fs/zfs/sys/dnu. h

603 dmu_tx_t *tx);

604 int dmu_wite_uio_dbuf(dmu_buf t *zdb, struct uio *uio, uint64_t size,
605 dmu_tx_t *tx);

606 int dnu_wite pages(obj set_t *os, uint64_t object, uint64_t offset,
607 uinté4_t size, struct page *pp, dmu_tx_t *tx);

608 struct arc_buf *dmu _request _ar cbuf (dmu_buf _t *handle int size);

609 void dnu_return_arcbuf (struct arc_buf *buf);

610 voi d dnu_assi gn_ar cbuf (dmu_buf _t *handl e, uint64_t offset, struct arc_buf *buf,

611 dmu_tx_t *tx);

612 int dmu_xuio_init(struct xuio *uio, int niov);

613 voi d drmu_xui o_fini(struct xuio *uio);

614 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
615 size_t n);

616 int dmu_xuio_cnt(struct xuio *uio);

617 struct arc_buf *dnmu_xui o_arcbuf (struct xuio *uio, int i);

618 voi d dmu_xui o_clear(struct xuio *uio, int i);

619 voi d xui o_stat_wbuf _copied();

620 voi d xui o_stat_wbuf _nocopy();

622 extern int zfs_prefetch_disable;

624 [*
625 * Asynchronously try to read in the data.
626 */

627 void dnu_prefetch(objset_t *os, uint64_t object, uint64_t offset,
628 uint64_t len);

630 typedef struct dmu_object_info {

631 /* Al sizes are in bytes unless otherw se indicated. */

632 ui nt32_t doi _data_bl ock_si ze;

633 uint32_t doi _net adat a_bl ock_si ze;

634 drmu_obj ect _type_t doi _type;

635 dmu_obj ect _type_t doi _bonus_type;

636 ui nt64_t doi _bonus_si ze;

637 uint8_t doi _indirection; /* 2 = dnode->i ndirect->data */
638 uint8_t doi _checksum

639 uint8_t doi _conpress;

640 uint8_t doi _pad[5];

641 ui nt 64_t doi _physi cal _bl ocks_512; /* data + netadata, 512b bl ks */
642 uint64_t doi _max_of f set;

643 uint64_t doi _filT_count; /* nunber of non-enpty bl ocks */

644 } dmu_object _info_t;
646 typedef void arc_byteswap_func_t(void *buf, size_t size);

648 typedef struct dmu_object_type_info {

649 dmu_obj ect _byt eswap_t ot _byt eswap;
650 bool ean_t ot _net adat a;
651 char *ot _nane;

652 } dnmu_obj ect _type_info_t;

654 typedef struct dmu_object_byt eswap info {
655 arc_byt eswap_func_t ob_func;
656 char *ob_nane;
657 } dmu_obj ect _byteswap_info_t;

659 extern const dnmu_object_type_info_t dnu_ot[DMJ_OT_NUMIYPES] ;
660 extern const dmu_obj ect _byteswap_i nfo_t dmu_ot _byt eSV\ap[DNU BSWAP_NUMFUNCS] ;

662 /
663
664
665
666
667
668

Get information on a DMJ obj ect.

Return O on success or ENCENT if object is not allocated.

* Ok kR % ok F

If doi is NULL, just indicates whether the object exists.
/

new usr/src/uts/comon/fs/zfs/sys/dnu. h

669 int dnu_object_info(objset_t *os, uint64_t object, dnu_object_info_t *doi);
670 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
671 #endif /* ! codereview */

672 void dnu_obj ect _i nfo_from dnode(struct dnode *dn, dnu_object_info_t *doi);
673 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
674 #endif /* | codereview */

675 voi d dmu_obj ect _i nfo_from db(dnmu_buf _t *db, dmu_object_info_t *doi);

676 /*

677 * Like dmu_object_info_fromdb, but faster still when you only care about
678 * the size. This is specifically optinized for zfs_getattr().

679 */

680 #endif /* ! codereview */

681 voi d dnu_obj ect_size_fromdb(dnmu_buf_t *db, uint32_t *blksize,

682 u_l onglong_t *nbl k512);

684 typedef struct dmu_objset_stats {

685 uint64_t dds_numclones; /* nunber of clones of this */

686 ui nt 64_ _t dds_ _creation_txg;

687 uint64_t dds_gui d;

688 drmu_obj set _type_t dds_type;

689 uint8_t dds_i s_snapshot;

690 uint8_t dds_inconsistent;

691 char dds_ori gi n[MAXNAMELEN ;

692 } dmu_obj set_stats_t;

694 /*

695 * Get stats on a dataset.

696 *

697 void dnu_obj set _fast_stat(objset_t *os, dmu_objset_stats_t *stat);

699 /*

700 * Add entries to the nvlist for all the objset’s properties. See

701 * zfs_prop_table[] and zfs(1m) for details on the properties.

702 */

703 voi d drmu_obj set _stats(objset_t *os, struct nvlist *nv);

705 [*

706 * Get the space usage statistics for statvfs().

707 *

708 * refdbytes is the anount of space "referenced" by this objset.

709 * availbytes is the ambunt of space available to this objset, taking
710 * into account quotas & reservations, assum ng that no other objsets
711 * use the space first. These values correspond to the 'referenced and
712 * ’'available’ properties, described in the zfs(1lnm manpage.

713 *

714 * usedobjs and availobjs are the nunber of objects currently allocated,
715 * and avail abl e.

716 *

717 voi d dmu_obj set _space(objset _t *os, uint64_t *refdbytesp, uint64_t *avail bytesp,
718 ui nt64_t *usedobjsp, uint64_t *avail objsp);

720 /[*

721 * The fsid_guid is a 56-bit ID that can change to avoid collisions.

722 * (Contrast with the ds_guid which is a 64-bit IDthat will never

723 * change, so there is a small probability that it will collide.)

724 */

725 uint64_t dmu_obj set _fsid_guid(objset_t *os);

727 |*

728 * Get the [cnmitine for an objset’s snapshot dir

729 */

730 timestruc_t dnmu_obj set_snap_cnti ne(objset_t *os);

732 int dmu_obj set_i s_snapshot (obj set _t *os);

734 extern struct spa *dnu_obj set _spa(objset_t *os);

new usr/src/uts/comon/fs/zfs/sys/dnu. h

735
736
737
738
739
740
741
742
743
744
745
746
747
748

750
751
752
753
754
755

757
758
759
760

762
763
764
765
766
767
768
769
770
771

773
774
775
776
777
778
779
780
781
782

784

extern struct zilog *dnu_objset_zil (objset_t *os);

extern struct dsl_pool *dnu_objset_pool (objset_t *os);

extern struct dsl_dataset *dnu_obj set _ds(objset_t *os);

extern void dmu_obj set _nanme(objset_t *os, char *buf);

extern dnmu_obj set _type_t dmu_obj set_type(objset_t *os);

extern uint64_t dnu_objset_id(objset_t *os);

extern uint64_t dnu_obj set_syncprop(objset_t *os);

extern uint64_t dnu_objset_| ogbi as(objset_t *os);

extern int dnmu_snapshot _list_next(objset_t *os, int nanelen,
uint64_t *id, uint64_t *offp, boolean_t *case conflict);

extern int dnu snapshot real nane(obj set _t *os, char *nane,
int maxl en, boolean_t *conflict);

extern int drru_di r_list_next(objset_t *os, int nanelen,
uint64_t *idp, uint64_t *offp);

char *nane,
char *real,

char *nane,

typedef int objset_used_cb_t(dnu_obj ect type t bonust ype,
voi d *bonus, uint64_t *userp, uint64_t *groupp);

extern void dmu_obj set _register_type(dnu_objset_type_ t ost,
obj set _used_cb_t *ch);

extern void dnu_obj set _set _user(objset_t *os,

extern voi d *dmu_obj set _get _user (obj set _t *os)

void *user_ptr);

/*
* Return the txg nunber for the given assigned transaction.
*

uint64_t dmu_tx_get_txg(dmu_tx_t *tx);

/*

* Synchronous wite.

* |f a parent zio is provided this function initiates a wite on the
* provided buffer as a child of the parent zio.

* In the absence of a parent zio, the wite is conpleted synchronously.
* At wite conpletion, blk is filled with the bp of the witten bl ock.
* Note that while the data covered by this function will be on stable
* storage when the wite conpletes this new data does not becone a

* permanent part of the file until the associated transaction commts.
*/

/*

* {zfs,zvol,ztest}_get_done() args

*

typedef struct zgd {

struct zilog *zgd_zil og;
struct bl kptr *zgd_bp;
drmu_buf _t *zgd_db;
struct rl *zgd_rl;
voi d *zgd_private;
} zgd_t;
typedef void dmu_sync_cb_t(zgd_t *arg, int error);

785 int dnu_sync(struct zio *zio, uint64_t txg, dnmu_sync_cb_t *done, zgd_t *zgd);
787 | *

788 * Find the next hole or data block in file starting at *off

789 * Return found offset in *off. Return ESRCH for end of file.

790 */

791 int dmu_of fset _next(objset_t *os, uint64_t object, boolean_t hole,
792 uint64_t *off);

794 | *

795 * Initial setup and final teardown.

796 */

797 extern void drmu_init(void);

798
800

extern void dmu_fini(void);

typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,

new usr/src/uts/comon/fs/zfs/sys/dnu. h

801 uint64_t object, uint64_t offset, int len);
802 voi d drmu_traverse_obj set (objset _t *os, uint64_t txg_start,
803 dmu_traverse_cb_t cb, void *arg);

805 int dnu_diff(const char *tosnap_name, const char *fronmsnap_nane,
806 struct vnode *vp, offset_t *offp);

808 /* CRC64 table */
809 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form*/
810 extern uint64_t zfs_crc64_tabl e[256];

812 #ifdef _ cplusplus
813 }
814 #endi f

816 #endif /* _SYS DMJ H */

new usr/src/uts/comon/fs/zfs/txg.c

R R R R

21958 Tue Apr 23 14:09: 37 2013
new usr/src/uts/comon/fs/zfs/txg.c
3741 zfs needs better comments
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Justin G bbs <justing@pectral ogi c.conp
Submi tted by: Al an Sorers <al ans@pectral ogi c. com>
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. com>

R R R R R R R R

____unchanged_portion_onitted_

340 /*

341 * Quiesce, v.: to render tenporarily inactive or disabled
342 *

343 * Blocks until all transactions in the group are commtted.
344 *
345 *
346 *
347
348 #endif /* | codereview */

349 static void

350 txg_qui esce(dsl _pool _t *dp, uint64_t txg)

On return, the transaction group has reached a stable state in which it can
then be passed off to the syncing context.
*/

351 {

352 tx_state_t *tx = &dp->dp_tx;

353 int g = txg & TXG MASK;

354 int c;

356 /*

357 * Grab all tx_cpu | ocks so nobody el se can get into this txg.
358 */

359 for (c = 0; ¢ < max_ncpus; c++)

360 mut ex_ent er (& x->tx_cpu[c].tc_Il ock);

362 ASSERT(txg == tx->tx_open_txg);

363 t X- >t x_open_t xg++;

365 DTRACE_PROBE2(t xg__qui escing, dsl_pool _t *, dp, uint64_t, txg);
366 DTRACE_PROBE2(t xg__opened, dsl_pool _t *, dp, uint64_t, tx->tx_open_txg);
368 /*

369 * Now that we’ve increnented tx_open_txg, we can |let threads
370 * enter the next transaction group.

371 */

372 for (c = 0; ¢ < max_ncpus; c++)

373 mut ex_exi t (& x->tx_cpu[c].tc_I ock);

375 /*

376 * Quiesce the transaction group by waiting for everyone to txg_exit().
377 *

378 for (c = 0; ¢ < max_ncpus; c++) {

379 tx_cpu_t *tc = & x->tx_cpu[c];

380 mut ex_enter (& c->tc_| ock);

381 while (tc->tc_count[g] != 0)

382 cv_wait(&c->tc_cv[g], &c->tc_|ock);

383 mut ex_exit (& c->tc_| ock);

384 }

385 }

387 static void
388 txg_do_cal | backs(list_t *cb_list)

389 {
390 dmu_t x_do_cal | backs(cb_list, 0);
392 list_destroy(cb_list);

394 kmem free(cb_list, sizeof (list_t));

if needed.

since this can

tx->tx_conmmt_cb_taskq = taskg_create("tx_conmt_ch",
max_ncpus * 2,

KM _SLEEP) ;

(task_func_t

new usr/src/uts/comon/fs/zfs/txg.c

395 }

397 [*

398 * Dispatch the commit callbacks registered on this txg to worker threads.
399 *

400 * If no callbacks are registered for a given TXG nothing happens.
401 * This function creates a taskq for the associated pool,

402 #endif /* | codereview */

403 */

404 static void

405 t xg_di spatch_cal | backs(dsl _pool _t *dp, uint64_t txg)

406 {

407 int c;

408 tx_state_t *tx = &dp->dp_tx;

409 list_t *cb_list;

411 for (c = 0; ¢ < max_ncpus; c++) {

412 tx_cpu_t *tc = & x->tx_cpu[c];

413 /*

414 * No need to lock tx_cpu_t at this point,
415 * only be called once a txg has been synced.
416 */

340 /* No need to lock tx_cpu_t at this point */
418 int g = txg & TXG MASK;

420 if (list_is_enpty(&c->tc_callbacks[g]))

421 conti nue;

423 if (tx->tx_commt_cb_taskg == NULL) {

424 | *

425 * Commit call back taskq hasn't been created yet.
426 */

427

428 max_ncpus, m ncl syspri, max_ncpus,
429 TASKQ_PREPOPULATE) ;

430 }

432 cb_list = kmem al | oc(sizeof (list_t),

433 list_create(cb_list, sizeof (dnmu_tx_callback_t),
434 of f set of (dmu_t x_cal | back_t, dcb_node));
436 list_nove_tail (& c->tc_call backs[g], cb_list);
438 (voi d) taskqg_di spatch(tx->tx_commt_cb_taskq,
439 txg_do_cal | backs, cb_list, TQ SLEEP);

440 }

441 }

____unchanged_portion_onitted_

*)

new usr/src/uts/comon/ fs/zfs/vdev_| abel .c 1 new usr/src/uts/comon/ fs/zfs/vdev_| abel .c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 1086 }
37985 Tue Apr 23 14:09: 38 2013
new usr/src/uts/comon/fs/zfs/vdev_| abel . c 1088 /*
3741 zfs needs better comments 1089 * We ignore errors for log and cache devices, sinply free the private data.
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con> 1090 */
Submi tted by: Justin G bbs <justing@pectral ogi c.conp 1091 static void
Submi tted by: Al an Sorers <al ans@pectral ogi c. com> 1092 vdev_| abel _sync_i gnore_done(zio_t *zio)
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. con» 1093 {
IR E SRS E RS RS EE SRR R R R R R R R R RS EEEEEEEREEEEEEEERERSE] 1094 kn«em_free(zio_>i o_private‘ SiZEOf (UI nt64_t))'
____unchanged_portion_onitted_ 1095 }
1031 /* Sync the uberblocks to all vdevs in svd[] */ 1097 /*
1032 #endif /* ! codereview */ 1098 * Wite all even or odd |abels to all |eaves of the specified vdev.
1033 int 1099 */
1034 vdev_uberbl ock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1100 static void
1035 { 1101 vdev_l abel _sync(zio_t *zio, vdev_t *vd, int |, uint64_t txg, int flags)
1036 spa_t *spa = svd[O0]->vdev_spa; 1102 {
1037 zio_t *zio; 1103 nvlist_t *|abel;
1038 uint64_t good_wites = 0; 1104 vdev_phys_t *vp;
1105 char *buf;
1040 zio = zio_root(spa, NULL, &good_wites, flags); 1106 size_t buflen;
1042 for (int v = 0; v < svdcount; v++) 1108 for (int ¢ = 0; ¢ < vd->vdev_children; c++)
1043 vdev_uber bl ock_sync(zi o, ub, svd[v], flags); 1109 vdev_| abel _sync(zi o, vd->vdev_child[c], I, txg, flags);
1045 (void) zio_wait(zio); 1111 if (!vd->vdev_ops->vdev_op_| eaf)
1112 return;
1047 *
1048 * Flush the uberblocks to disk. This ensures that the odd | abels 1114 if (!vdev_writeabl e(vd))
1049 * are no |onger needed (because the new uberbl ocks and the even 1115 return;
1050 * | abels are safely on disk), so it is safe to overwite them
1051 */ 1117 I*
1052 zio = zio_root(spa, NULL, NULL, flags); 1118 */Generate a | abel describing the top-level config to which we bel ong.
1119 *
1054 for (int v = 0; v < svdcount; v++) 1120 | abel = spa_config_generate(vd->vdev_spa, vd, txg, B _FALSE);
1055 zio_flush(zio, svd[v]);
1122 vp = zio_buf_alloc(sizeof (vdev_phys t));
1057 (void) zio_wait(zio); 1123 bzero(vp, sizeof (vdev_phys_t));
1059 return (good_wites >>1? 0 : EO; 1125 buf = vp->vp_nvlist;
1060 } 1126 bufl en = sizeof (vp->vp_nvlist);
1062 /* 1128 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM SLEEP) == 0) {
1063 * On success, increment the count of good wites for our top-level vdev. 1129 for (; | < VDEV_LABELS; | += 2) {
1064 */ 1130 vdev_| abel _write(zio, vd, |, vp,
1065 static void 1131 of f set of (vdev_| abel _t, vl _vdev_phys),
1066 vdev_| abel _sync_done(zio_t *zio) 1132 si zeof (vdev_phys_t),
1067 { 1133 vdev_| abel _sync_done, zio->io_private,
1068 uint64_t *good_wites = zio->io_private; 1134 flags | ZI O FLAG DONT_PROPAGATE);
1135 }
1070 if (zio->io_error == 0) 1136 }
1071 atom c_add_64(good_wites, 1);
1072 } 1138 zi o_buf _free(vp, sizeof (vdev_phys_t));
1139 nvlist_free(label);
1074 /* 1140 }
1075 * |If there weren’t enough good wites, indicate failure to the parent.
1076 */ 1142 int
1077 static void 1143 vdev_| abel _sync_list(spa_t *spa, int |, uint64_t txg, int flags)
1078 vdev_| abel _sync_t op_done(zi o_t *zi o) 1144 {
1079 { 1145 list_t *dl = &spa->spa_config_dirty_list;
1080 uint64_t *good_wites = zio->io_private; 1146 vdev_t *vd;
1147 zio_t *zio;
1082 if (*good wites == 0) 1148 int error;
1083 zio->o_error = SET_ERROR(EIO;
1150 /*
1085 kmem free(good_wites, sizeof (uint64_t)); 1151 * Wite the new | abel s to di sk.

new usr/src/uts/comon/ fs/zfs/vdev_| abel .c

1152 */

1153 zio = zio_root(spa, NULL, NULL, flags);

1155 for (vd = list_head(dl); vd !'= NULL; vd = list_next(dl, vd)) {
1156 uint64_t *good_writes = knmem zal | oc(sizeof (uint64_t),
1157 KM_SLEEP) ;

1159 ASSERT(! vd- >vdev_i shol e)

1161 zio_t *vio = zio_null(zio, spa, NULL,

1162 (vd->vdev_islog || vd->vdev_aux != NULL) ?

1163 vdev_| abel _sync_i gnore_done : vdev_| abel _sync_t op_done,
1164 good_wites, flags);

1165 vdev_| abel _sync(vio, vd, |, txg, flags);

1166 zi o_nowai t (vi 0);

1167 }

1169 error = zio_wait(zio);

1171 *

1172 * Flush the new | abel s to disk.

1173 */

1174 zio = zio_root(spa, NULL, NULL, flags);

1176 for (vd = list_head(dl); vd !'= NULL; vd = list_next(dl, vd))

1177 zio_flush(zio, vd);

1179 (void) zio_wait(zio);

1181 return (error);

1182 }

1184 /*

1185 * Sync the uberbl ock and any changes to the vdev configuration.

1186 *

1187 * The order of operations is carefully crafted to ensure that

1188 * if the systempanics or |oses power at any tine, the state on disk
1189 * is still transactionally consistent. The in-line conments bel ow

1190 * describe the failure semantics at each stage.

1191 *

1192 * Moreover, vdev_config_sync() is designed to be idenpotent: if it fails
1193 * at any tinme, you can just call it again, and it will resume its work.
1194 */

1195 int

1196 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
1197 {

1198 spa_t *spa = svd[O0]->vdev_spa;

1199 uber bl ock_t *ub = &spa->spa_uber bl ock;

1200 vdev_t *vd;

1201 zio_t *zio;

1202 int error;

1203 int flags = ZI O FLAG CONFI G WRI TER | ZI O FLAG CANFAI L;

1205 /*

1206 * Normally, we don’t want to try too hard to wite every |abel and
1207 * uberblock. |If there is a flaky disk, we don’t want the rest of the
1208 * sync process to block while we retry. But if we can't wite a
1209 * single |abel out, we should retry with ZI O FLAG TRYHARD bef ore
1210 * bailing out and declaring the pool faulted.

1211 *

1212 if (tryhard)

1213 flags | = ZI O FLAG TRYHARD;

1215 ASSERT(ub->ub_t xg <= txg);

1217 /*

new usr/src/uts/comon/ fs/zfs/vdev_| abel .c

1218
1219
1220
1221
1222
1223
1224
1225
1226

1228
1229

1231

1233
1234
1235
1236
1237
1238
1239

1241
1242
1243

1245

1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257

1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

1277
1278
1279
1280
1281
1282
1283

* |f this isn't a resync due to I/Oerrors,

* and not hing changed in this transaction group,
* and the vdev configuration hasn’t changed,

* then there’s nothing to do.

*

if (ub->ub_txg < txg &&

uber bl ock_updat e(ub, spa->spa_root_vdev, txg) == B FALSE &&
list_is_enpty(&spa->spa_config_dirty_list))
return (0);

if (txg > spa_freeze_txg(spa))
return (0);

ASSERT(txg <= spa->spa_final _txg);

/*
* Flush the wite cache of every disk that’s been witten to
* in this transaction group. This ensures that all bl ocks

* witten in this txg will be commtted to stable storage

* before any uberbl ock that references them

*

i

/
zio = zio_root(spa, NULL, NULL, flags);

for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG CLEAN(txg)));/
txg

vd = txg_|ist_next(&pa->spa_vdev_txg_list, vd, TXG CLEAN(
zi o_flush(zio, vd);

d;
)

(void) zio_wait(zio);

/*

* Sync out the even |abels (LO, L2) for every dirty vdev. |If the

* systemdies in the mddle of this process, that’'s OK all of the

* even |abels that nade it to disk wll be newer than any uberbl ock,
* and will therefore be considered invalid. The odd |abels (L1, L3),
* which have not yet been touched, will still be valid. W flush

* the new | abels to disk to ensure that all even-label updates

*/are committed to stable storage before the uberbl ock update.

*

if

((error = vdev_| abel _sync_list(spa, 0, txg, flags)) != 0)
return (error);

Sync the uberblocks to all vdevs in svd[].
If the systemdies in the mddle of this step, there are two cases
to consider, and the on-disk state is consistent either way:

(1) If none of the new uberblocks nade it to disk, then the
previ ous uberblock will be the newest, and the odd | abels
(which had not yet been touched) will be valid with respect
to that uberbl ock.

(2) If one or nore new uberbl ocks made it to disk, then they
will be the newest, and the even | abels (which had all
been successfully commtted) will be valid with respect
to the new uber bl ocks.

—h ok ok ok ok ok ko ok ok ok K ok K ok K
-~

if ((error = vdev_uberbl ock_sync_list(svd, svdcount, ub, flags)) != 0)
return (error);
/*
* Sync out odd |abels for every dirty vdev. |[If the systemdies
* in the mddle of this process, the even |abels and the new
* uberbl ocks will suffice to open the pool. The next tine
* the pool is opened, the first thing we'll do -- before any
* user data is nodified -- is mark every vdev dirty so that
*

all labels will be brought up to date. W flush the new | abel s

new usr/src/uts/comon/ fs/zfs/vdev_| abel .c

1284 * to disk to ensure that all odd-|abel updates are commtted to
1285 * stable storage before the next transaction group begins.

1286 */

1287 return (vdev_| abel _sync_list(spa, 1, txg, flags));

1288 }

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

R R R R

64446 Tue Apr 23 14:09: 38 2013
new usr/src/uts/comon/fs/zfs/vdev_raidz.c
3741 zfs needs better comments
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Justin G bbs <justing@pectral ogi c.conp
Submi tted by: Al an Sorers <al ans@pectral ogi c. com>
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. com>

R R R R R R R R

__unchanged_portion_onitted_

434 | *

435 * Divides the 10 evenly across all child vdevs; usually, dcols is
436 * the nunber of children in the target vdev.

437 */

438 #endif /* | codereview */

439 static raidz_map_t *

440 vdev_raidz_map_alloc(zio_t *zio, uint64_t unit_shift, uint64_t dcols,

441 uint64_t nparity)

442 {

443 raidz_map_t *rm

444 /* The starting RAIDZ (parent) vdev sector of the block. */

445 #endif /* | codereview */

446 uint64_t b = zio->o_offset >> unit_shift;

447 /* The zio's size in units of the vdev's mninum sector size */
448 #endif /* | codereview */

449 uint64_t s = zio->o_size >> unit_shift;

450 /* The first colum for this stripe. */

451 #endif /* | codereview */

452 uintéd_t f = b %dcols;

453 /* The starting byte offset on each child vdev. */

454 #endif /* | codereview */

455 uint64_t o = (b / dcols) << unit_shift;

456 uinté4_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot;
458 I*

459 * "Quotient": The nunmber of data sectors for this stripe on all but
460 * the "big colum" child vdevs that also contain "renai nder" data.
461 */

462 #endif /* | codereview */

463 q=s/ (dcols - nparity);

465 /*

466 * "Renmi nder": The nunber of partial stripe data sectors in this I/Q
467 */This will add a sector to some, but not all, child vdevs.

468 *

469 #endif /* ! codereview */

470 r =s - gq* (dcols - nparity);

472 /* The nunber of "big colums" - those which contain remainder data. */

473 #endif /* | codereview */

474 bc = (r == 0?2 0 : r + nparity);

476 /*

477 * The total number of data and parity sectors associated with
478 * this I/O

479 *

480 #endif /* | codereview */

481 tot = s + nparity * (q+(r == 0?0 : 1));

483 /* acols: The colums that will be accessed. */

484 /* scols: The colums that will be accessed or skipped. */
485 #endif /* | codereview */

486 if (q ==0) {

487 /* Qur 1/0O request doesn't span all child vdevs. */

488 #endif /* | codereview */

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

489 acols = bc;

490 scols = M N(dcol s, roundup(bc, nparity + 1));

491 } else {

492 acol s = dcols;

493 scol s = dcol s;

494 }

496 ASSERT3U(acol s, <=, scols);

498 rm = kmem al | oc(of fsetof (rai dz_map_t, rmcol[scols]), KM SLEEP);
500 rm>rmcols = acol s;

501 rm>rmscols = scols;

502 rm>rmbigcols = bc

503 rm >rm ski pst art bc,

504 rm>rmm ssingdata = O;

505 rm>rmmssingparity = 0;

506 rm>mfirstdatacol = nparity;

507 rm >rm dat acopy = NULL;

508 rm>rmreports —O

509 rm>rmfreed =

510 rm>rm ecksum nj ect ed = 0;

512 asize = 0;

514 for (c = 0; c < scols; c++) {

515 col =f + c;

516 coff = o;

517 if (col >= dcols) {

518 col -= dcols;

519 cof f += 1ULL << unit_shift;

520

521 rm>rmcol [c].rc_devidx = col;

522 rm>rmcol [c].rc_offset = coff;

523 rm>rmcol[c].rc_data = NULL;

524 rm>rmcol[c].rc_gdata = NULL;

525 rm>mcol[c].rc_error = 0;

526 rm>mcol[c].rc_tried = 0;

527 rm>rmcol [c].rc_skipped = O;

529 if (c >= acols)

530 rm>rmcol[c].rc_size = 0;

531 else if (c < bc)

532 rm>mcol[c].rc_size = (q + 1) << unit_shift;
533 el se

534 rm>mcol[c].rc_size = g << unit_shift;
536 asize += rm>rmcol [c].rc_size;

537 }

539 ASSERT3U(asi ze, ==, tot << unit_shift);

540 rm>rmasize = roundup(asize, (nparity + 1) << unit_shift);
541 rm>rmnsk|p—roundup(tot nparity + 1) - tot;

542 ASSERT3U(rm >rm asi ze - asize, ==, rm>mnskip << unit_shift);
543 ASSERT3U(r m >r m_nski p, <=, npari ty);

545 for (c =0; ¢ <rm>mfirstdatacol; c++)

546 rm>rmcol[c].rc_data = zio_buf_alloc(rm>rmcol[c].rc_size);
548 rm>rmcol[c].rc_data = zi o->i o_dat a;

550 for (c =c + 1; ¢ < acols; c++)

551 rm>mcol[c].rc_data = (char *)rm>mcol[c - 1].rc_data +
552 rm>mcol[c - 1].rc_size;

554 /*

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

555 * |f all data stored spans all columms, there's a danger that
556 * will always be on the sane device and, since parity isn't read
557 * during nornmal operation, that that device's |/O bandwi dth won’t
558 * used effectively. We therefore switch the parity every 1MB.
559 *

560 * at |l east that was, ostensibly, the theory. As a practi cal
561 * matter unless we juggle the parity between all devices evenly,
562 * won't see any benefit. Further, occasional wites that aren't a
563 * multiple of the LCM of the nunber of children and the m ni mum
564 * stripe width are sufficient to avoid pessimal behavior.

565 * Unfortunately, this decision created an inplicit on-disk fornat
566 * requirement that we need to support for all eternity, but only
567 * for single-parity RAIDZ

568 *

569 * If we intend to skip a sector in the zeroth colum for padding
570 * we nust nake sure to note this swap. We will never intend to
571 * skip the first colum since at |east one data and one parity
572 * colum nust appear in each row.

573 */

574 ASSERT(rm >rmcols >= 2);

575 ASSERT(rm >rmcol [0].rc_size == rm>rmcol [1] .rc_si ze);

577 if (rm>mfirstdatacol == 1 && (zio->io_offset & (1ULL << 20))) {
578 devidx = rm>rmcol [0].rc_devidx;

579 o =rm>mcol[0].rc_offset;

580 rm>rmcol [0].rc_devidx = rm>rmcol [1].rc_devidx;

581 rm>mcol[0].rc_offset = rm>rmcol[1].rc_offset;

582 rm>rmcol [1].rc_devidx = devi dx;

583 rm>mcol[1].rc_offset = o;

585 if (rm>rmskipstart == 0)

586 rm>rmskipstart = 1;

587 }

589 zio->io_vsd = rm

590 zi 0->i 0_vsd_ops = &vdev_rai dz_vsd_ops;

591 return (rm;

592 }

594 static void

595 }/dev_r ai dz_generate_parity_p(raidz_map_t *rm

596

597 uint64_t *p, *src, pcount, ccount, i;

598 int c;

600 pcount = rm>rmcol [VDEV_RAIDZ_P].rc_size / sizeof (src[0]);

602 for (¢ = rm>mfirstdatacol; ¢ < rm>mcols; c++) {

603 src = rm>mcol[c].rc_data;

604 p = rm>rmcol [VDEV_RAIDZ_P] .rc_dat a;

605 ccount = rm>rmcol[c].rc_size / sizeof (src[0]);

607 if (c ==rm>mfirstdatacol) {

608 ASSERT(ccount == pcount);

609 for (i =0; i < ccount; i++, src++, p++) {

610 *p = *src;

611

612 } else {

613 ASSERT(ccount <= pcount);

614 for (i = 0; i < ccount; i++, src++, p++) {

615 *p A= *src;

616 }

617 }

618 }

619 }

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

621 static void
622 vdev_rai dz_generate_parity_pq(raidz_map_t *rm

623
624
625

627
628
629

631
632
633
634

636

638
639
640
641
642
643
644
645
646
647
648
649

651
652
653
654
655
656

658
659
660

662
663
664
665
666
667
668
669
670
671

673
674

676
677

679
680
681
682
683

685
686

{

}

uint64_t *p, *q, *src, pcnt, ccnt, nmask, i;
int c;

pcnt = rm>rmcol [VDEV_RAIDZ_P].rc_size / sizeof (src[0]);
ASSERT(rm >rm col [VDEV_RAIDZ_P] .rc_si ze ==
rm>rmcol [VDEV_RAIDZ_Q .rc_size);

for (c = rm>mfirstdatacol; ¢ < rm>mcols; c++) {
src = rm>mcol[c].rc_data;
p = rm>rmcol [VDEV_RAIDZ_P] . rc_dat a;
g = rm>mcol [VDEV_RAIDZ_Q .rc_data;

cecnt = rm>mcol[c].rc_size / sizeof (src[0]);

if (c =rm>mfirstdatacol) {
ASSERT(ccnt == pcnt || ccnt == 0);
for (i =0; i <ccnt; i++ src++, p++, g++) {
*p = *STC
*q = *src;
}
for (; i < pent; i++, src++, p++, g++) {
*p = 0;
*q = 0;
}
} else {
ASSERT(ccnt <= pcnt);
/*
* Apply the al gorithm described above by multiplying
* the previous result and adding in the new val ue.
*/
for (i = 0; i <cecnt; i++ src++, p++, g++) {
*p A= *src;
VDEV_RAI DZ_64MJL_2(*q, nask);
*q A= *grc;
}
/*

* Treat short columms as though they are full of Os.
* Note that there’s therefore nothing needed for P.
*
for (; i < pent; i++, g++) {
VDEV_RAI DZ_64MJL_2(*q, nask);
}

static void
vdev_rai dz_generate_parity_pqgr(raidz_map_t *rm
675 {

uint64_t *p, *qg, *r, *src, pcnt, ccnt, nask, i;
int c;

pcnt = rm>rmcol [VDEV_RAIDZ_P].rc_size / sizeof (src[0]);
ASSERT(rm >rm col [VDEV_RAI DZ_P] . rc_si ze ==

rm>rmcol [VDEV_RAIDZ_Q .rc_size);
ASSERT(rm >rm col [VDEV_RAIDZ_P] .rc_si ze ==

rm>rmcol [VDEV_RAIDZ_R] . rc_si ze);

for (c = rm>mfirstdatacol; ¢ < rm>mcols; c++) {
src = rm>mcol[c].rc_data;

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

687
688
689

691

693
694
695
696
697
698
699
700
701
702
703
704
705
706

708
709
710
711
712
713

715
716

718
719
720

722
723
724
725
726
727
728
729
730
731
732 }

734 | *

rm >rmcol [VDEV_RAI DZ_P] . rc_dat a;
rm>rm col [VDEV_RAIDZ_Q . rc_dat a;
rm>rm col [VDEV_RAIDZ_R] . rc_dat a;

p
q
r

ccnt = rm>rmcol [c].rc_size / sizeof (src[0]);

if (c ==rm>mfirstdatacol) {

ASSERT(ccnt == pcnt || ccnt == 0);

for (i =0; i < ccnt; i++, src++, p++, q++, r++) {
*p = *src;
*q = *src;
*r = *src;

}

for (; i < pent; i++, src++, p++, g+, r++) {
*p = 0;
*q = 0;
*r = 0;

} else {
ASSERT(ccnt <= pcnt);
/*
* Apply the al gorithm described above by multiplying
* the previous result and adding in the new val ue.
*
for (i = 0; i < cecnt; i++, src++, p++, g++, r++) {
*p A= *src;
VDEV_RAI DZ_64MJL_2(*q, nask);
*q N= *SI’C;
VDEV_RAI DZ_64MJUL_4(*r, mask);
*r A= *srg;
}
/*

* Treat short columms as though they are full of Os.
* Note that there's therefore nothing needed for P.
*
/
for (; i < pent; i++, qg++, r++) {
VDEV_RAI DZ_64MJL_2(*q, mask);
VDEV_RAI DZ_64MJL_4(*r, nask);

735 * Generate RAID parity in the first virtual columms according to the nunber of

737

736 * parity columms avail able.
*
/

738 static void
739 vdev_raidz_generate_parity(raidz_map_t *rm

740 {
741
742
743
744
745
746
747
748
749
750
751
752

switch (rm>rmfirstdatacol) {

case 1:
vdev_rai dz_generate_parity_p(rm;
br eak;

case 2:
vdev_rai dz_generate_parity_pq(rmn;
br eak;

case 3:
vdev_rai dz_generate_parity_pqgr(rm;
br eak;

defaul t:

crm_err (CE_PANIC, "invalid RAID-Z configuration");

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

753 }
754 }

756 static int
757 vdev_rai dz_reconstruct_p(raidz_map_t *rm int *tgts, int ntgts)

758 {

759 uint64_t *dst, *src, xcount, ccount, count, i;

760 int x = tgts[0];

761 int c;

763 ASSERT(ntgts == 1);

764 ASSERT(x >= rm>rmfirstdatacol);

765 ASSERT(Xx < rm>rmcols);

767 xcount = rm>rmcol [x].rc_size / sizeof (src[0]);

768 ASSERT(xcount <= rm>rmcol [VDEV_RAIDZ P].rc_size / sizeof (src[0]));
769 ASSERT(xcount > 0);

771 src = rm>rmcol [VDEV_RAI DZ_P] . rc_dat a;

772 dst = rm>rmcol [x].rc_data;

773 for (i = 0; i < xcount; i++, dst++, src++) {

774 *dst = *src;

775 }

777 for (c = rm>mfirstdatacol; ¢ < rm>rmcols; c++) {
778 src = rm>rmcol[c].rc_data;

779 dst = rm>rmcol [x].rc_data;

781 if (c ==x)

782 conti nue;

784 ccount = rm>mcol[c].rc_size / sizeof (src[0]);
785 count = M N(ccount, xcount);

787 for (i =0; i < count; i++, dst++ src++) {
788 *dst A= *src;

789 }

790 }

792 return (1 << VDEV_RAIDZ_P);

793 }

795 static int

796 vdev_rai dz_reconstruct_q(raidz_nmap_t *rm int *tgts, int ntgts)
797 {

798 uint64_t *dst, *src, xcount, ccount, count, nmask, i;
799 uint8_t *b;

800 int x = tgts[0];

801 int c, j, exp;

803 ASSERT(ntgts == 1);

805 xcount = rm>rmcol [x].rc_size / sizeof (src[0]);

806 ASSERT(xcount <= rm>rmcol [VDEV_RAIDZ_Q .rc_size / sizeof (src[0]));
808 for (¢ = rm>mfirstdatacol; ¢ < rm>mcols; c++) {
809 src = rm>mcol[c].rc_data;

810 dst = rm>rmcol [x].rc_data;

812 if (c ==x)

813 ccount = 0;

814 el se

815 ccount = rm>rmcol[c].rc_size / sizeof (src[0]);
817 count = M N(ccount, xcount);

new usr/src/uts/comon/fs/zfs/vdev_raidz.c 7 new usr/src/uts/comon/fs/zfs/vdev_raidz.c
819 if (c --rm>rmf|rstdatacol) { 885 rm>rmcol [x].rc_size = 0;
820 for (i =0; i < count; i++, dst++ src++) { 886 rm>rmcol [y].rc_size = 0;
821 *dst = *src;
822 } 888 vdev_rai dz_generate_parity_pq(rm;
823 for (; i < xcount; i++ dst++) {
824 *dst = 0; 890 rm>rmcol [x].rc_size = xsize;
825 } 891 rm>rmcol [y].rc_size = ysize;
827 } else { 893 p = pdata;
828 for (i =0; i < count; i++, dst++ src++) { 894 q = qdata;
829 VDEV_RAI DZ_64MJL_2(*dst, mask); 895 pxy = rm>rmcol [VDEV_RAI DZ_P].rc_dat a;
830 *dst "= *src; 896 gxy = rm>rmcol [VDEV_RAIDZ {.rc_dat a;
831 } 897 xd = rm>rmcol [x].rc_data;
898 yd = rm>rmcol [y].rc_data;
833 for (; i < xcount; i++, dst++)
834 VDEV_RAI DZ_64MJL_2(*dst, nask); 900 /*
835 } 901 * We now have:
836 } 902 * Pxy = P+ Dx + Dy
837 1 903 * Xy = Q+ 25(ndevs - 1 - x) * Dx + 2*(ndevs - 1 - y) * Dy
904 kd
839 src = rm>rmcol [VDEV_RAIDZ_Q .rc_dat a; 905 * W can then solve for D x:
840 dst = rm>rmcol [x].rc_data; 906 * Dx =A* (P+ Pxy) + B* (Q+ Qxy)
841 exp = 255 - (rm>mcols - 1 - Xx); 907 * where
908 * A= 2Mx - y) * (2M(x - y) + 1)"-1
843 for (i = 0; i < xcount; i++, dst++, src++) { 909 * B = 2"(ndevs -1 - x) *(2Mx - y) + 1)nr-1
844 *dst "= *src; 910 &
845 for (j =0, b= (uint8_t *)dst; j < 8; j++, b++) { 911 * Wth D x in hand, we can easily solve for D_y:
846 *b = vdev_rai dz_exp2(*b, exp); 912 9 Dy = P+ Pxy + Dx
847 } 913 */
848 }
915 a = vdev_rai dz_pow2[255 + x - y];
850 return (1 << VDEV_RAIDZ _Q; 916 b = vdev_rai dz_pow?2[255 - (rm>r cols - 1 - x)];
851 } 917 tmp = 255 - vdev_raidz_log2[a ~ 1];
853 static int 919 aexp = vdev_raidz_| og2[vdev_rai dz_exp2(a, tm)];
854 vdev_rai dz_reconstruct _pq(raidz_map_t *rm int *tgts, int ntgts) 920 bexp = vdev_rai dz_| og2[vdev_rai dz_exp2(b, tnp)];
855 {
856 uint8_t *p, *qg, *pxy, *gxy, *xd, *yd, tnp, a, b, aexp, bexp; 922 for (i = 0; i < xsize; i++, p++ g++, pxXy++, gxy++, xd++, yd++) {
857 voi d *pdata, *qdata; 923 *xd = vdev_rai dz exp2(N *pxy, aexp) ”
858 uint64_t xsize, ysize, i; 924 vdev_r ai dz_exp2(*q ~ *qgxy, bexp);
859 int x = tgts[0];
860 int y =tgts[1]; 926 if (i <yS|ze)
927 *yd = *p N *pxy N *xd;
862 ASSERT(ntgts == 2); 928 1
863 ASSERT(x < vy);
864 ASSERT(x >= rm>rmfirstdatacol); 930 zi o_buf _free(rm>rmcol [VDEV_RAI DZ_P].rc_data,
865 ASSERT(y < rm>rmcols); 931 rm>rmcol [VDEV_RAI DZ_P] . rc_size);
932 zi o_buf _free(rm>rmcol [VDEV_RAIDZ Q. rc_data,
867 ASSERT(rm >rmcol [x].rc_size >= rm>rmcol[y].rc_size); 933 rm>rmcol [VDEV_RAIDZ_Q . rc_si ze);
869 /* 935 /*
870 * Move the parity data aside -- we're going to conpute parity as 936 * Restore the saved parity data.
871 * though colums x and y were full of zeros -- Pxy and xy. W want to 937 */
872 * reuse the parity generation nechanismw thout trashing the actual 938 rm>rmcol [VDEV_RAIDZ_P].rc_data = pdat a;
873 * parity so we make those colums appear to be full of zeros by 939 rm>rmcol [VDEV_RAIDZ_Q .rc_data = qdat a;
874 * setting their lengths to zero.
875 *f 941 return ((1 << VDEV_RAIDZ_P) | (1 << VDEV_RAIDZ_Q);
876 pdata = rm >rmcol [VDEV_RAI DZ_P] . rc_dat a; 942 }
877 gdata = rm>rmcol [VDEV_RAIDZ_Q . rc_dat a;
878 xsize = rm>mcol [x].rc_size; 944 /* BEG N CSTYLED */
879 ysize = rm>rmcol [y].rc_size; 945 [*
946 * In the general case of reconstruction, we nust solve the systemof |inear
881 rm>rmcol [VDEV_RAIDZ_P].rc_data = 947 * equations defined by the coeffecients used to generate parity as well as
882 zi o_buf _all oc(rm >rmcol [VDEV_RAI DZ_P] . rc_si ze); 948 * the contents of the data and parity disks. This can be expressed with
883 rm>rmcol [VDEV_RAIDZ_(QJ.rc_data = 949 * vectors for the original data (D) and the actual data (d) and parity (p)
884 zi o_buf _alloc(rm >rmcol [VDEV_RAIDZ Q. rc_size); 950 * and a matrix conposed of the identity matrix (1) and a dispersal matrix (V):

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016

B I I T T T 2

\%
|

| | —
| | |

| | X |

| | |

| | ~

| is sinply a square identity matrix of size n, and V is a vander nonde
matri x defined by the coeffecients we chose for the various parity col ums
(1, 2, 4). Note that these values were chosen both for sinplicity, speedy
conputation as well as linear separability.

1 .. 1117 [p_0]
| 2~n-1 . 421 | _] : |
| 4rn-1 .. 16 4 1 | [DO | | p_m1 |
[1 . 000 | | D1 | | d_0 |
0 000	x	D2	=] d1	
: oo	:		d_2	
0 100		D.n-1		:
0 010	= =	:		
0 001		d_n-1		

Note that |, V, and p are known. To conpute D, we nust invert the
matrix and use the known data and parity values to reconstruct the unknown
data values. W begin by renpving the rows in V||l and d|p that correspond
to failed or mssing colums; we then meke V|| square (n x n) and d|p
sized n by renovi ng rows correspondi ng to unused parity fromthe bottom up
to generate (V|1)’ and (d|p)'. W can then generate the inverse of (V[I)’
usi ng Gauss-Jordan elim nation. In the exanpl e bel ow we use n¥3 parity
colums, n=8 data columms, with errors in d_1, d_2, and p_1:

1 1 1 1 1 1 1 1
128 64 32 16 8 4 2 1 <----- +-+-- mssing disks
19 205 116 29 64 16 4 1 I
1 0 0 0 O 0O 0 O /1
0 1 0 0 0 0 0 0 <--'
M1) = 0 0 1 0 0O O 0 O <---’

0 0 0O 1 0 0 0 O

0 0 O O 1 0 0 O

0 0 0 0 0 1 0 0

0 0 O O O O 1 o

0 0 O O O O 0 1

1 1 1 1 1 1 1 1
128 64 32 16 8 4 2 1

19 205 116 29 64 16 4 1

1 0 0 0 O 0O 0 O

0 1 o0 0O O O 0 O

M) = 0 0 1 0 0 0O 0 O

0 0 0O 1 0 0O 0 O

0 0 O O 1 0 0 O

0 0 0 0 0 1 0 0

0 0 O O O O 1 o

0 0 O O O O 0 1

Here we enpl oy Gauss-Jordan elimnation to find the inverse of (V|1)’'. W
have carefully chosen the seed values 1, 2, and 4 to ensure that this
matrix is not singular.

I 1 1 1 1 1 1 1 1 1 0o o0 o o o o0 o

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

B I i T S R

[elelolololoXa) [efelololelo)a) g OCOO0O0OO0OO0OO0Or OOO0O0OORrREkRF [elelolela)

OCOO0O0OO0O0OO0Or

19 205 116 29 6
0O 0 O O
0 O 1 0
0o 0 O 1
0O 0 O O
0O 0 0 O
0O 0 0 O
0O 0 O O
1 1 1 1

205 116 29 6
0 0 1 0
o 0 O 1
0O 0 0 O
0O 0 0 O
0O 0 O O
0O 0 0 O
1 1 0 O

205 116 0 O
0 0 1 0
o 0 O 1
0O 0 0 O
0O 0 0 O
0O 0 O O
0O 0 0 O
1 1 0 O
0 185 0 O
0 O 1 0
0o 0 O 1
0O 0 O O
0O 0 0 O
0O 0 0 O
0O 0 0 O
1 1 0 0
0 1 0 O
0 0 1 0
o 0 O 1
0O 0 0 O
0O 0 0 O
0O 0 0 O
0O 0 0 O
1 0 0 O
0 1 0 O
0 O 1 0
0o 0 O 1
0O 0 O O
0O 0 0 O
0O 0 0 O

|
I
(M1)"~-1=|
|
|
|

4

1
1

0

67 100
66 100

0

ooo

16

OOrOO0OO0OO0OO [efol Jeololole)o) OOrOO0OO0O0OO OORrROORrRFRO oOOoOrooo

[efel Jeolololofo)

0

oooo

el leolololoXolo) (e} Jelolololele) ORrPOO0OO0O0O0OO OrRrOO0OOMRO OrOO0COOM

ORPOO0OO0O0OO0O

oooOoOA~UIR

POOOOOOO POOOOOOO POOOOOOO POOOOREFRO RPOOOOORr

POOOOOOO

[eYeololololo)l o) [efelolofolola]

OO0 O0O0OO0OrO

OOOOOLOHF—‘O

[N

[eYelolola¥o) o)
(&)

167
166

ooooo

41 159
40 158

OO0 OoOr
oor o

1 0 O
0 1 0
0 O 1
0 0 O
0 0 O
0 0 O
0O 0 O
0 1 0
0 0 ©0
1 0 O
0 O 1
0 0 O
0 0 ©0
0O 0 O
0 0 O
0 1 0
0 1 1
1 19 29
0 O 1
0 0 O
0 0 O
0 0 O
0O 0 0
0 1 0
0 1 1
1 222 208
0 O 1
0 0 O
0 0 O
0 0 ©0
0 0 O
0 1 0
0 1 1
100 4 40
0 O 1
0 0 ©0
0o 0 O
0 0 O
0 0 O
0 1 0
100 5 41
100 4 40
0 O 1
0 0 O
0 0 O
0 0 O
0O 0 ©
0 0 O
169 217 208
168 216 209
0 0 O
0 0 O
1 0 O
0 1 0

[
OCOoOOoORrOURrO

L
l,

[efeleol Holola]

[e¥eolol Jololola)

OOORrROMRO OCOORrO®OF O

[e)
[N

OOrROOOFO

59
58

oo

(oYl Helololole) ooroooo

OOrROOREFRO
o

OcoOrOONRO
[

[e)

169
168

oo

oOoOr

0 O
0 O
0 O
0 O
0 O
1 0
0 1
0 O
0 O
0 O
0 O
0 O
0 o0
1 0
0 1
0 O
1 1
4 1
0 O
0 O
0 O
1 0
0 1
0 O
1 1
201 204
0 O
0 O
0 O
1 0
0 1
0 O
1 1
216 20
0 O
0 O
0 O
1 0
0 1
0 O
217 208
216 209
0 O
0 O
0 O
1 0
0 1

new usr/src/uts/comon/fs/zfs/vdev_raidz.c 11 new usr/src/uts/comon/fs/zfs/vdev_raidz.c 12
1083 * | o o o O O O o0 1 | 1149 */
1084 * = = 1150 for (i =0; i <nmssing;, i++) {
1085 * 1151 for (j =0; j <n; j++) {
1086 * We can then sinply conpute D = (V|1)’~-1 x (d|p)’ to discover the val ues 1152 invrows[i][J] = (i ==j) 2 1: 0;
1087 * of the missing data. 1153 }
1088 * 1154 1
1089 * As is apparent fromthe exanpl e above, the only non-trivial rows in the
1090 * inverse matrix correspond to the data disks that we're trying to 1156 /*
1091 * reconstruct. Indeed, those are the only rows we need as the others would 1157 * Subtract all trivial rows fromthe rows of consequence.
1092 * only be useful for reconstructing data known or assuned to be valid. For 1158 */
1093 * that reason, we only build the coefficients in the rows that correspond to 1159 for (i =0; i < nm ssing; i++) {
1094 * targeted col umms. 1160 for (j = nmissing; j < n; j++)
1095 */ 1161 ASSERT3U(used[j], >=, rm>mfirstdatacol);
1096 /* END CSTYLED */ 1162 jj = used[j] - rm>mfirstdatacol;
1163 ASSERT3S([j, <, n);
1098 static void 1164 invrows[i][j] = rows[i]l[jj];
1099 vdev_raidz_matrix_init(raidz_map_t *rm int n, int nmap, int *nap, 1165 rows[i][jj] = O;
1100 uint8_t **rows) 1166 }
1101 { 1167 1
1102 int i, j;
1103 int pow, 1169 /*
1170 * For each of the rows of interest, we nust normalize it and subtract
1105 ASSERT(n == rm>rmcols - rm>mfirstdatacol); 1171 * arrultlple of it fromthe other rows.
1172 */
1107 /* 1173 for (i =0; i <nmssing;, i++) {
1108 * Fill in the mssing rows of interest. 1174 for (j =0; j <missing[i]; j++) {
1109 */ 1175 ASSERTO(rows[i][j]);
1110 for (i =0; i < nmap; i++) { 1176 }
1111 ASSERT3S(0, <=, map[i]); 1177 ASSERT3U(rows[i][m ssing[i]], !'= 0);
1112 ASSERT3S(map[i], <= 2);
1179 /*
1114 pow = map[i] * n; 1180 * Conpute the inverse of the first elenent and nmultiply each
1115 i1 f (pow > 255) 1181 * elenment in the row by that val ue.
1116 pow - = 255; 1182 */
1117 ASSERT(pow <= 255); 1183 log = 255 - vdev_raidz_log2[rows[i][missing[i]]];
1119 for (j =0; j <n; j++) { 1185 for (j =0; j <n; j++)
1120 pow -= map[i]; 1186 rows[i][j] = vdev_raidz_exp2(rows[i][j], l0g);
1121 i1 f (pow < 0) 1187 invrows[i][j] = vdev_raidz_exp2(invrows[i][j], |o0g);
1122 pow += 255; 1188 }
1123 rows[i][]] = vdev_raidz_pow2[pow] ;
1124 } 1190 for (ii =0; ii < nmssing; ii++) {
1125 } 1191 if (i ==1ii)
1126 } 1192 cont i nue;
1128 static void 1194 ASSERT3U(rows[ii][m ssing[i]], !'= 0);
1129 vdev_raidz_matrix_invert(raidz_map_t *rm int n, int nmssing, int *mssing,
1130 uint8 t **rows, uint8_t **invrows, const uint8_t *used) 1196 log = vdev_raidz_log2[rows[ii][mssing[i]]];
1131 {
1132 int i, j, ii, jj; 1198 for (j =0; j <n; j++) {
1133 uint8_t |og; 1199 rows[ii][j] "=
1200 vdev_rai dz epo(rows[l][j], 1 0g);
1135 /* 1201 i nvrows[T| i1[i]
1136 * Assert that the first nmissing entries fromthe array of used 1202 vdev_ral dz_exp2(| nvrows[i][j], log);
1137 * colums correspond to parity colums and that subsequent entries 1203 }
1138 * correspond to data col umms. 1204 }
1139 */ 1205 }
1140 for (i =0; i < nmssing; i++) {
1141 ASSERT3S(used[i], <, rm>mfirstdatacol); 1207 /*
1142 } 1208 * Verify that the data that is left in the rows are properly part of
1143 for (; i <n; i++) { 1209 * an identity matrix.
1144 ASSERTSS(used[i], >=, rm>mfirstdatacol); 1210 =Y
1145 } 1211 for (i =0; i < nmssing;, i++) {
1212 for (j =0; j <n; j++) {
1147 /* 1213 if (] == mssing[i]) {
1148 * First initialize the storage where we’'ll conpute the inverse rows. 1214 ASSERT3U(rows[i][j], == 1);

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1215
1216
1217
1218
1219
1220

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236

1238
1239

1241
1242
1243
1244

1246
1247
1248
1249
1250
1251

1253
1254
1255

1257
1258
1259
1260
1261
1262
1263

1265
1266
1267

1269

1271
1272
1273

1275
1276
1277

1279
1280

} else {
: ASSERTO(rows[i]1[j1)

}

static void

vdev_rai dz_matrix_reconstruct (raidz_map_t *rm int n, int nnssing,
int *mssing, uint8_ t **invrows, const uint8 t *used)

{

int i, j, x, cc, c;

uint8_t *src;

ui nt 64_t ccount ;

uint8_t *dst[VDEV_RAI DZ_MAXPARI TY] ;

ui nt64_t dcount [VDEV_RAI DZ_MAXPARI TY] ;
uint8_t log =

uint8_t val;

int Il;

uint8_t *invl og[VDEV_RAI DZ_MAXPARI TY] ;
uint8_t *p, *pp;

si ze t psi ze;

psize = sizeof (invliog[O][0]) * n * nm ssing;

p = kmem al | oc(psi ze, KM SLEEP);
for (pp = i =0; i <nmissing i++) {
Invlog[I] = pp;
pp +=
}
for (i =0; i < nmssmg, i++) {
for (j =0; j <n; j++
ASSERT3U(|nvr0ws[|][J] 1=, 0);
inviog[i][j] = vdev_| rai dz _log2[invrows[i][j]];
}
}
for (i =0; i <n; i++) {

c = used[i];
ASSERT3U(c, <, rm>rmcols)

src = rm>mcol[c].rc_data;

ccount = rm>rmcol[c].rc_size;

for (j =0; j <nmissing, j++) {
cc = mssing[j] + rm>mfirstdatacol;
ASSERT3U(cc, >=, rm>rmfirstdatacol);
ASSERT3U(cc, <, rm>rmcols);
ASSERT3U(cc, !'=, c);

dst[j] = rm>rmcol[cc].rc_data;
dcount[j] = rm>rmcol [cc].rc_size;

}
ASSERT(ccount >= rm>rmcol [mssing[0]].rc_size || i
for (x = 0; x < ccount; Xx++,

if (*src !'=0)
log = vdev_raidz_| og2[*src];

src+t) {

for (cc = 0; cc < nmissing; cc++) {
if (x >= dcount[cc])
conti nue;

if (*src == 0) {
val = 0;

> 0)

13

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1281
1282
1283
1284
1285

1287
1288
1289
1290
1291
1292
1293

1295
1296

1298
1299

} else {
if ((Il

=log + invliog[cc][i]) >= 255)
I -= 255
val = vdev_raidz_pow2[l1];

}

if (i ==0)

dst[cc][x] = val;
el se

dst[cc][x] ~= val;

}

kmem free(p, psize);

}

static int
vdev_rai dz_reconstruct_general (raidz_map_t *rm int *tgts, int ntgts)

1300 {

1301
1302
1303
1304

1306
1307

1309
1310
1311

1313

1316

1318
1319
1320
1321
1322
1323
1324
1325
1326
1327

1329
1330
1331
1332
1333
1334
1335

1337
1338
1339
1340
1341
1342
1343

1345

int n, i, c, t, tt;

int nnissing_rows;

int mssing_| rows[VDEV RAI DZ_MAXPARI TY] ;
int parity_map[VDEV_RAI DZ_NAXPARI TY] ;

uint8_t *p, *pp;
size_t psize;

uint8_t *rows[VDEV_RAI DZ_MAXPARI TY] ;
uint8_t *invrows[VDEV_RAI DZ_MAXPARI TY]
uint8_t *used;

int code = 0;

n=rm>mcols - rm>mfirstdatacol;

/*
* Figure out which data colums are m ssing.
*/

nni ssing_rows = 0;
for (t =0; t < ntgts t++)
if (tgts[t] >= rm>mfirstdatacol) {
m ssi ng_rows[nmi ssi ng_rows++] =
tgts[t] - rm>mfirstdatacol;

}

/*

* Figure out which parity colums to use to help generate the m ssing

* data col unms.

&/

for (tt =0, =0, i =0; i
ASSERT(tt < nt gts)
ASSERT(c < rm>rm_f| rstdatacol);

< nm ssing_rows; c++) {

/*

* Skip any targeted parity colums.
*

/

if (c ==tgts[tt]) {
tt++;

conti nue;

}

code |= 1 << ¢c;

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1347
1348
1349

1351
1352

1354
1355
1356

1358
1359
1360
1361
1362
1363
1364

1366
1367
1368

1370
1371
1372
1373
1374
1375

1377
1378
1379
1380

1382
1383
1384
1385

1387
1388
1389
1390
1391

1393
1394
1395
1396
1397

1399

1401
1402 }

1404 static i
1405 vdev_rai
1406 {

1407

1408

1409

1410

1411

1412

parity_map[i] = c;
i ++;

}

ASSERT(code != 0);
ASSERT3U(code, <, 1 << VDEV_RAI DZ_MAXPARI TY) ;

psize = (sizeof (rows[0][0]) + sizeof (i nvrows[O] [0]))
nmssmgrows* n + sizeof (used[0]) * n;
p = kmem al | oc(psi ze, KM SLEEP);

for (pp =p, i =0; i <nmissing_rows; i++) {
rows[i] = pp
pp +=n;
invrows[i] = pp;
pp +=n;
}
used = pp;
for (i =0; i < nmssing_rows; i++) {
used[i] = parity_map[i];
}
for (tt =0, ¢ = rm>mfirstdatacol; ¢ < rm>mcols; c++) {
if (tt < nmissing_rows &&
c == mssing_rows[tt] + rm>mfirstdatacol) {
tt++;
conti nue;
}

ASSERT3S(i, <, n);
used[i] = c;
i ++;

}

/*
* Initialize the interesting rows of the matrix
*/

vdev_raidz_matrix_init(rm n, nmssing_rows, parity_map, rows);
*

* Invert the matrix.
S

vdev_raidz_matrix_invert(rm n, nm ssing_rows, m SSing_rows, rows,
invrows, used);

/*
* Reconstruct the mssing data using the generated matrix.
*

vdev_rai dz_matrix_reconstruct (rm n, nmissing_rows, nssing_rows,
invrows, used);

kmem free(p, psize);

return (code);

nt
dz_reconstruct(raidz_map_t *rm int *t, int nt)

int tgts[VDEV_RAI DZ_MAXPARI TY], *dt;
int ntgts;

int i, c;

int code;

int nbadparity, nbaddata;

int parity_valid[VDEV_RAI DZ_NMAXPARI TY] ;

15

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1414
1415
1416
1417
1418
1419

1421
1422
1423
1424
1425
1426

1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439

1441
1442
1443

1445

1447
1448
1449
1450
1451
1452
1453
1454

1456

1458
1459

1461
1462

1464
1465

1467
1468
1469

1471
1473
1474
1475

1477
1478

/*
* The tgts list nust already be sorted.
*

(i =1; i <nt; i++) {
: ASSERT(t[i] > t[i - 1]);

nbadparity = rm>rmfirstdatacol;
nbaddata = rm>rmcols - nbadparity;
ntgts = 0;
for (i =0, ¢ =0; ¢ <rm>mcols; c++) {
if (c <rm>mfirstdatacol)
parity_valid[c] = B_FALSE;

if (i <nt & c == t[i]) {
tgts[ntgts++] = c;
i ++;

} elseif (rm>mcol[c].rc_error !'=0) {
tgts[ntgts++] = c;

} elseif (c > rm>mfirstdatacol) {

nbaddat a- - ;
} else {

parity_valid[c] = B_TRUE;
) nbadparity--;

}

ASSERT(ntgts >= nt);

ASSERT(nbaddata >= 0);

ASSERT(nbaddat a + nbadparity == ntgts);
dt = & gts[nbadparity];

/*

* See if we can use any of our optinized reconstruction routines.

*

if (!vdev_raidz_default_to_general) {
switch (nbaddata) {
case 1:
if (parity_valid[VDEV_RAI DZ_P])
return (vdev_raidz_reconstruct_p(rm dt,

ASSERT(rm >rm firstdatacol > 1);

if (parity_valid[VDEV_RAIDZ_Q)
return (vdev_raidz_reconstruct_qg(rm dt,

ASSERT(rm >rm firstdatacol > 2);
br eak;

case 2:
ASSERT(rm >rm firstdatacol > 1);

if (parity_valid[VDEV_RAIDZ_P] &&
parity_valid[VDEV_RAIDZ ()
return (vdev_raidz_reconstruct_pq(rm dt,
ASSERT(rm >rm firstdatacol > 2);
break;

}

code = vdev_raidz_reconstruct_general (rm tgts, ntgts);
ASSERT(code < (1 << VDEV_RAI DZ_MAXPARI TY));

1));

1));

2));

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1479 ASSERT(code > 0);
1480 return (code);
1481 }

1483 static int

1484 vdev_rai dz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,

1485 uint64_t *ashift)

1486 {

1487 vdev_t *cvd;

1488 uint64_t nparity = vd->vdev_nparity;

1489 int c;

1490 int lasterror = O;

1491 int nunerrors = 0;

1493 ASSERT(nparity > 0);

1495 if (nparity > VDEV_RAI DZ_MAXPARI TY ||

1496 vd->vdev_children < nparity + 1)

1497 vd->vdev_stat.vs_aux = VDEV_AUX BAD LABEL;
1498 return (SET_ERROR(EINVAL));

1499 }

1501 vdev_open_chi | dren(vd);

1503 for (c = 0; ¢ < vd->vdev_children; c++) {

1504 cvd = vd->vdev_child[c];

1506 if (cvd->vdev_open_error != 0)

1507 | asterror = cvd->vdev_open_error;
1508 NUIMEr I O S++;

1509 cont i nue;

1510 }

1512 *asize = MN(*asize - 1, cvd->vdev_asize - 1) + 1;
1513 *max_asi ze = M N(*max_asi ze - 1, cvd->vdev_max_asi ze -
1514 *ashift = MAX(*ashift, cvd->vdev_ashift);
1515 }

1517 *asi ze *= vd->vdev_chil dren;

1518 *max_asi ze *= vd->vdev_chil dren;

1520 if (numerrors > nparity) {

1521 vd->vdev_stat.vs_aux = VDEV_AUX_NO REPL| CAS;
1522 return (lasterror);

1523 }

1525 return (0);

1526 }

1528 static void
1529 vdev_rai dz_cl ose(vdev_t *vd)

1530 {

1531 int c;

1533 for (c = 0; c < vd->vdev_children; c++)
1534 vdev_cl ose(vd->vdev_child[c]);
1535 }

1537 static uint64_t
1538 vdev_rai dz_asi ze(vdev_t *vd, uint64_t psize)

1539 {

1540 uint64_t asi ze;

1541 uint64_t ashift = vd->vdev_top->vdev_ashift;
1542 uint64_t cols = vd->vdev_children;

1543 uint64_t nparity = vd->vdev_nparity;

1) + 1;

17

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1545 asize = ((psize - 1) >> ashift) + 1;

1546 asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity));
1547 asi ze = roundup(asize, nparity + 1) << ashift;

1549 return (asize);

1550 }

1552 static void

1553 vdev_raidz_child_done(zio_t *zio)

1554 {

1555 raidz_col _t *rc = zio->io_private;

1557 rc->rc_error = zio->o_error;

1558 rc->rc_tried = 1;

1559 rc->rc_ski pped = 0;

1560 }

1562 /*

1563 * Start an |1 O operation on a RAI DZ VDev

1564 *

1565 * Qutline:

1566 * - For wite operations:

1567 * 1. Generate the parity data

1568 * 2. Create child zio wite operations to each colum’s vdev, for both
1569 * data and parity.

1570 * 3. If the colum skips any sectors for padding, create optional dummy
1571 * wite zio children for those areas to inprove aggregati on continuity.
1572 * - For read operations:

1573 * 1. Create child zio read operations to each data colum’s vdev to read
1574 * the range of data required for zio.

1575 * 2. If this is a scrub or resilver operation, or if any of the data
1576 * vdevs have had errors, then create zio read operations to the parity
1577 * colums’ VDevs as wel | .

1578 */

1579 #endif /* ! codereview */

1580 static int

1581 vdev_raidz_io_start(zio_t *zio)

1582 {

1583 vdev_t *vd = zio->io_vd;

1584 vdev_t *tvd = vd->vdev_top;

1585 vdev_t *cvd;

1586 raidz_map_t *rm

1587 raidz_col _t *rc;

1588 int c, i;

1590 rm = vdev_raidz_map_al | oc(zi o, tvd->vdev_ashift, vd->vdev_children,
1591 vd- >vdev_nparity);

1593 ASSERT3U(rm >rm asi ze, ==, vdev_psize_to_asize(vd, zio->io_size));
1595 if (zio->io_type == ZIO TYPE_WRI TE) {

1596 vdev_rai dz_generate_parity(rm;

1598 for (c =0; ¢c <rm>mcols; c++) {

1599 rc = &m>mcol[c];

1600 cvd = vd->vdev_child[rc->rc_devidx];

1601 zi o_nowai t (zi o_vdev_child_io(zio, NULL, cvd,

1602 rc->rc_offset, rc->rc_data, rc->rc_size,

1603 zio->io_type, zio->io_priority, O,

1604 vdev_rai dz_chil d_done, rc));

1605 }

1607 /*

1608 * Cenerate optional 1/0s for any skipped sectors to inprove
1609 i

1610

* aggregation contiguity.
*
/

18

new usr/src/uts/comon/fs/zfs/vdev_raidz.c 19 new usr/src/uts/comon/fs/zfs/vdev_raidz.c
1611 for (c = rm>mskipstart, i = 0; i <rm>mnskip; c++, i++) { 1677 zi o_bad_cksumt zbc;
1612 ASSERT(c <= rm>rmscol s); 1678 raidz_map_t *rm = zio->io_vsd,
1613 if (c ::rm>rmscols)
1614 c 0; 1680 mut ex_ent er (&vd->vdev_stat _| ock);
1615 rc &r m >r m col [c]; 1681 vd- >vdev_st at.vs_checksum errors++;
1616 cvd = vd->vdev_chil d[rc->rc_devi dx] ; 1682 mut ex_exi t (&d->vdev_stat _| ock);
1617 zi o_nowai t (zi o_vdev_child_io(zio, NULL, cvd,
1618 rc->rc_offset + rc->rc_size, NULL, 1684 zbc. zbc_has_cksum = 0;
1619 1 << tvd->vdev_ashift, 1685 zbc. zbc_i njected = rm >rm ecksum nj ect ed;
1620 zio->io_type, zio->io_priority,
1621 ZI O_FLAG NODATA | ZI O FLAG OPTI ONAL, NULL, NULL)); 1687 zfs_ereport_post _checksun(zi o->i o_spa, vd, zio,
1622 } 1688 rc->rc_offset, rc->rc_size, rc->rc_data, bad_data,
1689 &zbc);
1624 return (Zl O_PI PELI NE_CONTI NUE) ; 1690 }
1625 } 1691 }
1627 ASSERT(zi 0->i o_type == ZI O_TYPE_READ); 1693 /*
1694 * We keep track of whether or not there were any injected errors, so that
1629 /* 1695 * any ereports we generate can note it.
1630 * lterate over the colums in reverse order so that we hit the parity 1696 */
1631 * last -- any errors along the way will force us to read the parity. 1697 static int
1632 */ 1698 rai dz_checksumverify(zio_t *zio)
1633 for (c:rm>rmcols— 1, ¢ >=0; c--) { 1699 {
1634 rc & m>rmcol[c]; 1700 zi o_bad_cksumt zbc;
1635 cvd = vd->vdev_chil d[rc >rc_devi dx]; 1701 raidz_map_t *rm = zio->i o_vsd;
1636 if (!vdev_readabl e(cvd))
1637 if (¢ >> rm>rmfirstdatacol) 1703 int ret = zio_checksumerror(zio, &zbc);
1638 rm>rm.m ssi ngdat a++; 1704 if (ret '= 0 & zbc.zbc_injected != 0)
1639 el se 1705 rm >rm ecksum njected = 1;
1640 rm>rm.m ssingparity++;
1641 rc->rc_error = SET_ERROR(ENXI O ; 1707 return (ret);
1642 rc->rc_tried = 1; /* don’t even try */ 1708 }
1643 rc->rc_ski pped = 1;
1644 conti nue; 1710 /*
1645 1 1711 * Cenerate the parity fromthe data colums. If we tried and were able to
1646 1f (vdev_dtl _contains(cvd, DIL_M SSING zio->o_txg, 1)) { 1712 * read the parity without error, verify that the generated parity matches the
1647 if (¢ > rm>mfirstdatacol) 1713 * data we read. If it doesn't, we fire off a checksumerror. Return the
1648 rm>rm.m ssi ngdat a++; 1714 * nunber such failures.
1649 el se 1715 */
1650 rm>rmm ssingparity++; 1716 static int
1651 rc->rc_error = SET_ERROR(ESTALE); 1717 raidz_parity_verify(zio_t *zio, raidz_map_t *rm
1652 rc->rc_ski pped = 1; 1718 {
1653 conti nue; 1719 voi d *orig[VDEV_RAI DZ_MAXPARI TY] ;
1654 1720 int c, ret =0;
1655 i1f (c >rm>mfirstdatacol || rm>mnmnissingdata > 0 || 1721 raidz_col _t *rc;
1656 (zio->o_flags & (ZI O FLAG SCRUB | ZI O FLAG RESILVER))) {
1657 zio_nowai t (zi o_vdev_child_io(zio, NULL, cvd, 1723 for (c =0; ¢ <rm>mfirstdatacol; c++) {
1658 rc->rc_offset, rc->rc_data, rc->r c_si ze, 1724 rc = &m>mcol[c];
1659 zio->io_type, zio->io_priority, O, 1725 if (Irc->rc_tried || rc->rc_error !'= 0)
1660 vdev_rai dz_chil d_done, rc)); 1726 conti nue;
1661 } 1727 orig[c] = zio_buf_alloc(rc->rc_size);
1662 } 1728 bcopy(rc->rc_data, orig[c], rc->rc_size);
1729 }
1664 return (ZI O_Pl PELI NE_CONTI NUE) ;
1665 } 1731 vdev_rai dz_generate_parity(rm;
1733 for (c =0; ¢ <rm>mfirstdatacol; c++) {
1668 /* 1734 rc = &m>mcol[c];
1669 * Report a checksumerror for a child of a RAID-Z device. 1735 if (!rc->rc_tried || rc->rc_error !'=0)
1670 */ 1736 conti nue;
1671 static void 1737 if (bcnp(orig[c], rc->rc_data, rc->rc_size) !'=0) {
1672 rai dz_checksumerror(zio_t *zio, raidz_col _t *rc, void *bad_data) 1738 rai dz_checksumerror(zio, rc, orig[c]);
1673 { 1739 rc->rc_error = SET_ERROR(ECKSUM ;
1674 vdev_t *vd = zio->i o_vd->vdev_child[rc->rc_devidx]; 1740 ret++;
1741 }
1676 if (!(zio->o_flags & ZI O FLAG SPECULATI VE)) { 1742 zi o_buf _free(orig[c], rc->rc_size);

new usr/src/uts/comon/fs/zfs/vdev_raidz.c 21 new usr/src/uts/comon/fs/zfs/vdev_raidz.c
1743 } 1809 }
1745 return (ret); 1811 tgts[i] = c++;
1746 } 1812 }
1748 /| * 1814 /*
1749 * Keep statistics on all the ways that we used parity to correct data. 1815 * Setting tgts[n] sinplifies the other edge condition.
1750 */ 1816 */
1751 static uint64_t raidz_corrected[1 << VDEV_RAI DZ_MAXPARI TY]; 1817 tgts[n] = rm>rmcols;
1753 static int 1819 /*
1754 vdev_raidz_worst_error(raidz_nmap_t *rm 1820 * These buffers were allocated in previous iterations.
1755 { 1821 *
1756 int error = 0; 1822 for (i =0; i <n- 1; i++) {
1823 ASSERT(orig[i] !'= NULL);
1758 for (int ¢ =0; ¢ <rm>rmcols; c++) 1824 }
1759 error = zio_worst_error(error, rm>rmcol[c].rc_error);
1826 orig[n - 1] = zio_buf_alloc(rm>rmcol [0].rc_size);
1761 return (error);
1762 } 1828 current = 0;
1829 next = tgts[current];
1764 | *
1765 * lterate over all conbinations of bad data and attenpt a reconstruction. 1831 while (current != n)
1766 * Note that the algorithmbelow is non-optinal because it doesn’t take into 1832 tgts[current] = next;
1767 * account how reconstruction is actually perforned. For exanple, with 1833 current = 0;
1768 * triple-parity RAID-Z the reconstruction procedure is the sane if colum 4
1769 * is targeted as invalid as if colums 1 and 4 are targeted since in both 1835 /*
1770 * cases we’d only use parity information in colum 0. 1836 * Save off the original data that we're going to
1771 */ 1837 * attenpt to reconstruct.
1772 static int 1838 */
1773 vdev_rai dz_conbrec(zio_t *zio, int total _errors, int data_errors) 1839 for (i =0; i <n; i++) {
1774 { 1840 ASSERT(orig[i] !'= NULL);
1775 raidz_map_t *rm = zio->i o_vsd,; 1841 c =tgts[i];
1776 raidz_col _t *rc; 1842 ASSERT3S(c, >=, 0);
1777 voi d *orig[VDEV_RAI DZ_MAXPARI TY] ; 1843 ASSERT3S(c, <, rm>rmcols);
1778 int tstore[VDEV_RAI DZ_NMAXPARI TY + 2]; 1844 rc = &m>mcol[c];
1779 int *tgts = & store[1]; 1845 bcopy(rc->rc_data, orig[i], rc->rc_size);
1780 int current, next, I, c, n; 1846 }
1781 int code, ret = 0;
1848 /*
1783 ASSERT(total _errors < rm>mfirstdatacol); 1849 * Attenpt a reconstruction and exit the outer |oop on
1850 * success.
1785 /* 1851 */
1786 * This sinplifies one edge condition. 1852 code = vdev_raidz_reconstruct(rm tgts, n);
1787 * 1853 if (raidz_checksumuverify(zio) == 0) {
1788 tgts[-1] = -1; 1854 atomi c_i nc_64(& ai dz_corrected[code]);
1790 for (n =1, n<=rm>mfirstdatacol - total _errors; n++) { 1856 for (i =0; i <n; i++) {
1791 < 1857 c =tgts[i];
1792 * |Initialize the targets array by finding the first n colums 1858 rc = &m>mcol[c];
1793 * that contain no error. 1859 ASSERT(rc->rc_error == 0);
1794 * 1860 if (rc->rc_tried)
1795 * |f there were no data errors, we need to ensure that we're 1861 rai dz_checksumerror(zio, rc,
1796 * always explicitly attenpting to reconstruct at |east one 1862 orig[i]);
1797 * data colum. To do this, we sinply push the highest target 1863 rc->rc_error = SET_ERROR(ECKSUM ;
1798 * up into the data col ums. 1864 }
1799 */
1800 for (c =0, i =0; i <n; i++) { 1866 ret = code;
1801 if (i ==n- 1 && data_errors == 0 && 1867 goto done;
1802 c <rm>mfirstdatacol) { 1868 }
1803 c = rm>mfirstdatacol;
1804 } 1870 /*
1871 * Restore the original data.
1806 while (rm>rmcol[c].rc_error !=0) { 1872 */
1807 C++; 1873 for (i =0; i <n; i++) {
1808 ASSERT3S(c, <, rm>rmcols); 1874 c =tgts[i];

new usr/src/uts/ comon/fs/zfs/vdev_raidz.c 23

1875
1876
1877

1879
1880
1881
1882
1883
1884
1885
1886
1887

1889

1891
1892
1893
1894
1895

1897
1898
1899
1900
1901
1902
1903

1905
1906

1908
1909
1910
1911
1912
1913
1914
1915

1917
1918

1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940

done:

® Ok R R F Rk OF Sk Ok % bk Ok Ok Ok k% ok

rc = &m>rmcol [

cl;
bcopy(orlg[l] rc->rc_data, rc->rc_size);

do {
/~k
* Find the next valid colum after the current
*/position..
*

for (next = tgts[current] + 1;
next < rm>rmcols &
rm>rmcol [next].rc_error !=0

conti nue;

next ++)

ASSERT(next <= tgts[current + 1]);

/*

* |If that spot is available,

*/

if (next !=tgts[current + 1])
br eak;

we're done here.

/*

* Otherwise, find the next valid colum after
* the previous position.

&/

for (c = tgts[current - 1] + 1;
rm>mcol[c].rc_error !=
conti nue;

b, Cc++)

tgts[current] = c;
current ++;

} while (current !'=n);
==
for (i =0; i <n; i++) {

zio_buf_free(orig[i], rm>mcol[0].rc_size);
}

return (ret);

Conpl ete an | O operation on a RAI DZ VDev

CQutline:
- For write operations:

1.
2

Check for errors on the child IGs.

Return, setting an error code if too few child VDevs were witten
to reconstruct the data later. Note that partial wites are
consi dered successful if they can be reconstructed at all.

- For read operations:
1

2

Check for errors on the child IGCs.

If data errors occurred:

a. Try to reassenble the data fromthe parity avail able.

b. If we haven't yet read the parity drives, read them now.

c. If all parity drives have been read but the data still doesn't
reassenble wth a correct checksum then try conbinatori al
reconstruction.

d. If that doesn't work, return an error.

If there were unexpected errors or this is a resilver operation,

rewite the vdevs that had errors.

new usr/src/uts/ comon/fs/zfs/vdev_raidz.c 24

1941 #endif /* ! codereview */
1942 static void
1943 vdev_rai dz_i o_done(zio_t *zio)

1944 {
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956

1958

1960
1961

1963
1964

1966
1967

1969
1970
1971
1972

1974
1975

1977
1978
1979
1980
1981

1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996

1998
1999

2001
2002
2003
2004
2005
2006

vdev_t *vd = zio->io_vd;
vdev_t *cvd;

raidz_map_t *rm = zio->i o_vsd;
raidz_col _t *rc;

int unexpected_errors = 0;

int parity errors = 0;

int parity_untried = 0;

int data_errors = 0;

int totaI _errors = 0;

int

int tgts[VDEV RAI DZ_MAXPARI TY] ;
int code;

ASSERT(zi 0->i 0_bp !'= NULL); /* XXX need to add code to enforce this */

ASSERT(rm >rmmi ssingparity <= rm>rmfirstdatacol);
ASSERT(rm >rm m ssingdata <= rm>rmcols - rm>rmf|rstdatacol)

for (c = 0; ¢ < rm>mcols;
rc = &m>mcol[c];

c++) {

if (rc->rc_error) {
ASSERT(rc->rc_error != ECKSUM; /* child has no bp */
if (c <rm>mfirstdatacol)
parity_errors++;
el se
dat a_errors++;

if (!rc->rc_skipped)
unexpect ed_error s++;

total _errors++;

} elseif (c <rm>mfirstdatacol && !'rc->rc_tried) {
parity_untried++;

}

if (zio->o_type == ZIO TYPE_WRI TE) {
/ *

* XXX -- for now, treat partial wites as a success.
* (If we couldn’t wite enough colums to reconstruct
the data, the I/Ofailed. Oherw se, good enough.)

to treat partial failure as real failure unless there are
no non-degraded top-level vdevs left,

*

*

* Now that we support wite reallocation, it would be better
*

*

* if we intend to reallocate.

*

and not update DTLs

[* XXPOLICY */
if (total _errors > rm>rmfirstdatacol)
zio->o_error = vdev_raidz_worst_error(rm;

return;

}
ASSERT(zi 0->i 0_type == ZI O TYPE_READ);
/*

* There are three potential phases for a read:

* 1. produce valid data fromthe col ums read
* 2. read all disks and try again

* 3. perform conbinatorial reconstruction

new usr/src/uts/ comon/fs/zfs/vdev_raidz.c 25

2007
2008
2009
2010
2011

2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049

2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061

2063
2065

2067
2068

2070
2071
2072

*
* Each phase is progressively both nore expensive and less likely to
* occur. If we encounter nore errors than we can repair or all phases
*/fail, we have no choice but to return an error.
*
/*
* |f the nunber of errors we saw was correctable -- less than or equal
* to the nunber of parity disks read -- attenpt to produce data that
* has a valid checksum Naturally, this case applies in the absence of
* any errors.
*
if (total _errors <= rm>mfirstdatacol - parity_untried) {
if (data_errors == 0)
if (raidz_checksumuverify(zio) == 0) {
/*
* If we read parity information (unnecessarily
* as it happens since no reconstruction was
* needed) regenerate and verify the parity.
* W al so regenerate parity when resilvering
* so we can wite it out to the failed device
* later.
*

if (parity_errors + parity_untried <
rm>rmfirstdatacol |
(zio->o_flags & ZI O FLAG RESILVER)) {
n = raidz_parity_verify(zio, rm;
unexpected_errors += n;
ASSERT(parity_errors + n <=
rm>rmfirstdatacol);

}
got o done;

} else {

-

*
* W either attenpt to read all the parity colums or
* none of them If we didn't try to read parity, we

* woul dn’t be here in the correctable case. There nust
* al so have been fewer parity errors than parity

* colums or, again, we wouldn't be in this code path.
*

/

ASSERT(parity_untried =

ASSERT(parity_errors < rm>rmf|rstdataco|)

*

* |dentify the data columms that reported an error.
*/

n = 0;
for (c =rm>mfirstdatacol; ¢ < rm>mcols; c++) {
rc = &m>rmcol[c];
if (rc->rc_error '=0
ASSERT(n < VDEV_RAI DZ_NMAXPARI TY) ;
tgts[n++] = c;

}
ASSERT(rm >rm firstdatacol >= n);
code = vdev_raidz_reconstruct(rm tgts, n);

if (raidz_checksumyverify(zio) == 0)
atomi c_i nc_64(& aidz_corrected[code]);

/*
* If we read nore parity di sks than were used
* for reconstruction, confirmthat the other

new usr/src/uts/ comon/fs/zfs/vdev_raidz.c 26
2073 * parity di sks produced correct data. This
2074 * routine is suboptimal in that it regenerates
2075 * the parity that we already used in addition
2076 * to the parity that we're attenpting to
2077 * verify, but this should be a relatively
2078 * uncommon case, and can be optimzed if it
2079 * becones a problem Note that we regenerate
2080 * parity when resilvering so we can wite it
2081 * out to failed devices later.

2082 */

2083 f (parity_errors < rm>mfirstdatacol - n ||
2084 (zio->o_flags & ZI O FLAG RESI LVER)) {
2085 n = raidz_parity_verify(zio, rm;

2086 unexpected_errors += n;

2087 ASSERT(parity_errors + n <=

2088 rm>rmfirstdatacol);

2089 }

2091 got o done;

2092 }

2093 }

2094 }

2096 /*

2097 * This isn't a typical situation -- either we got a read error or
2098 * a child silently returned bad data. Read every block so we can
2099 * try again with as nmuch data and parity as we can track down. If
2100 * we’ve already been through once before, all children will be narked
2101 */as tried so we' Il proceed to conbinatorial reconstruction.

2102 *

2103 unexpected_errors = 1;

2104 rm>rmmn ssingdata = 0;

2105 rm>rmnmssingparity = 0;

2107 for (c = 0; ¢ <rm>mcols; c++) {

2108 if (rm>rmcol[c].rc_tried)

2109 conti nue;

2111 zi o_vdev_i o_redone(zi0);

2112 do {

2113 rc = &m>rmcol[c];

2114 if (rc->rc_tried)

2115 conti nue;

2116 zio_nowait(zio vdev_chi | d_i o(zi o, NULL,

2117 vd->vdev_chi |l d[rc->rc_devi dx]

2118 rc->rc_offset, rc->rc_data, rc->rc_size,

2119 zi o- >|otype zio->io_priority, O,

2120 vdev_rai dz_child_done, rc));

2121 } while (++c < rm>rmcols);

2123 return;

2124 }

2126 /*

2127 * At this point we’'ve attenpted to reconstruct the data given the
2128 * errors we detected, and we've attenpted to read all colums. There
2129 * nust, therefore, be one or nobre additional problems -- silent errors
2130 * resulting in invalid data rather than explicit I/Oerrors resulting
2131 * in absent data. We check if there is enough additional data to
2132 * possibly reconstruct the data and then perform conbi natori al

2133 * reconstruction over all possible conbinations. If that fails,

2134 * we're cooked.

2135 */

2136 if (total _errors > rm>mfirstdatacol)

2137 zio->o_error = vdev_raidz_worst_error(rm;

new usr/src/uts/ comon/fs/zfs/vdev_raidz.c 27

2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161

2163
2164
2165
2166
2167
2168
2169
2170

2172
2173
2174
2175
2176
2177
2178
2179
2180

2182 done:
2183

2185
2186
2187
2188
2189
2190
2191
2192

2194
2195

2197
2198
2199
2200
2201
2202
2203
2204 }

} else if (total_errors < rm>rmfirstdatacol &&
(code = vdev_rai dz_conbrec(zio, total _errors, data_errors)) !=0) {
/

*

* |f we didn't use all the available parity for the

* conbinatorial reconstruction, verify that the renaining
* parity is correct.
*/
if

(code !'= (1 << rm>mfirstdatacol) - 1)

(void) raidz_parity_verify(zio, rm;

} else {
/

W' re here because either:

total _errors == rmfirst_datacol, or
vdev_rai dz_conbrec() failed

In either case, there is enough bad data to prevent
reconstruction.

Start checksum ereports for all children which haven't
failed, and the 1O wasn't specul ative.

I N
-

zi 0->i o_error = SET_ERROR(ECKSWM ;

if (!(zio->io_flags & ZI O FLAG SPECULATI VE)) {
for (c =0; ¢c <rm>mcols; c++) {
c = &m>mcol[c];
f (rc->rc_error == 0) {
zi 0_bad_cksumt zbc;
zbc. zbc_has_cksum = 0;
zbc. zbc_inj ected =
rm >rm ecksum nj ect ed;

zfs_ereport_start_checksum(
zi 0->i 0_spa,
vd- >vdev_chi I d[rc->rc_devi dx],
zio, rc->rc_offset, rc->rc_size,
(void *)(uintptr_t)c, &zbc);

zi o_checksum veri fied(zio);

if (zio->io_error == 0 & spa_writeabl e(zio->i o_spa) &&
(unexpected_errors || (zio->io_flags & ZI O FLAG RESILVER))) {
*

* Use the good data we have in hand to repair damaged children.
*/

for (c =0; ¢ <rm>mcols; c++) {
rc = &m>rmcol[c];
cvd = vd->vdev_child[rc->rc_devidx];

if (rc->rc_error == 0)
conti nue;

zi o_nowai t (zi o_vdev_child_io(zio, NULL, cvd,
rc->rc_offset, rc->rc_data, rc->rc_size,
ZIO TYPE_WRITE, zio->io_priority,
ZI O FLAG | O REPAIR | (unexpected_errors ?
ZI O FLAG SELF_HEAL : 0), NULL, NULL));

new usr/src/uts/ comon/fs/zfs/vdev_raidz.c 28

2206 static void
2207 vdev_rai dz_state_change(vdev_t *vd, int faulted, int degraded)

2208 {
2209
2210
2211
2212
2213
2214
2215
2216 }

if (faulted > vd->vdev_nparity)
vdev_set _state(vd, B_FALSE, VDEV_STATE_ CANT_OPEN,
VDEV_AUX_NO_REPLT CAS) ;
else if (degraded + faulted != 0)
vdev_set _state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
el se
vdev_set _state(vd, B FALSE, VDEV_STATE HEALTHY, VDEV_AUX_NONE)

2218 vdev_ops_t vdev_raidz_ops = {

2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229 };

vdev_r ai dz_open,

vdev_rai dz_cl ose,

vdev_r ai dz_asi ze,

vdev_raidz_io_start,

vdev_rai dz_i o_done,

vdev_r ai dz_st at e_change,

NULL,

NULL,

VDEV_TYPE_RAI DZ, /* nane of this vdev type */
B _FALSE /* not a |leaf vdev */

new usr/src/uts/comon/fs/zfs/zfs_ctldir.c 1 new usr/src/uts/comon/fs/zfs/zfs_ctldir.c
hhkhkhkhhhkhhhhhhhhhkhhhhhhhhhhhhhhkhhhhhdhh kb rhh bk hhhk ko kkx 563 Zfsctl_renar’re_snap(zfsctl_snapdir_t *Sdp, zfs_snapentry_t *sep, const char
34536 Tue Apr 23 14:09:38 2013 564 {
new usr/src/uts/comon/fs/zfs/zfs_ctldir.c 565 avl _i ndex_t where;
3741 zfs needs better comments 566 vis_t *vfsp;
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con> 567 refstr_t *pathref;
Submi tted by: Justin G bbs <justing@pectral ogi c.conp 568 char newpat h[MAXNAMELEN ;
Submi tted by: Al an Sorers <al ans@pectral ogi c. com> 569 char *tail;
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. com>
IR E SRS E RS RS EE SRR R R R R R R R R RS EEEEEEEREEEEEEEERERSE] 571 ASSERT(MJTEX HELI:X&Sdp >Sd |OCk))
__unchanged_portion_onitted_ 572 ASSERT(sep != NULL);
508 /* 574 vfsp = vn_nount edvf s(sep->se_root);
509 * Gets the full dataset name that corresponds to the given snapshot nane 575 ASSERT(vfsp !'= NULL);
510 * Exanple:
511 * zf sctl _snapshot _znane("snapl") -> "nypool / nyf s@napl” 577 vfs_l ock_wait (vfsp);
512 */
513 #endif /* | codereview */ 579 /*
514 static int 580 * Change the nane in the AVL tree.
515 zfsctl _snapshot _znane(vnode_t *vp, const char *name, int |len, char *znane) 581 */
516 { 582 avl _renove(&sdp->sd_snaps, sep);
517 objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os; 583 kmem free(sep->se_nane, strl en(sep >se_nanme) + 1);
584 sep->se_name = knem al i oc(strlen(nm + 1, KM SLEEP);
519 i f (snapshot_nanmecheck(name, NULL, NULL) != 0) 585 (voi d) strcpy(sep->se_nanme, nm;
520 return (SET_ERROR(EILSEQ)); 586 VERI FY(avl _find(&sdp->sd_snaps, sep, &where) == NULL);
521 dmu_obj set _nanme(os, znane); 587 avl _i nsert (&sdp- >sd_snaps, sep, where);
522 if (strlen(zname) + 1 + strlen(nane) >= | en)
523 return (SET_ERROR(ENAMETOOLONG)) ; 589 /*
524 (void) strcat(zname, "@); 590 * Change the current nountpoint info:
525 (void) strcat(znane, nanE); 591 * - update the tail of the mmtpoint path
526 return (0); 592 * - update the tail of the resource path
527 } 593 */
594 pat href = vfs_get mt poi nt (vfsp);
529 static int 595 (voi d) strncpy(newpat h, refstr val ue(pathref), sizeof (newpath));
530 zfsctl _unmount _snap(zfs_snapentry_t *sep, int fflags, cred_t *cr) 596 VERI FY((tail = strrchr(newpath /7)) !'= NULL)
531 { 597 *(tail+1) = '\0’
532 vnode_t *svp = sep->se_root; 598 ASSERT3U(str | en(newpat h) + strlen(nn), <, sizeof (newath));
533 int error; 599 (void) strcat(newpath, nm;
600 refstr_rele(pathref);
535 ASSERT(vn_i smmt pt (svp)); 601 vfs_set mtpoi nt (vfsp, newpath, 0);
537 /* this will be dropped by dounmount() */ 603 pat href = vfs_getresource(vfsp);
538 if ((error = vn_vfsw ock(svp)) != 0) 604 (void) strncpy(newpath, refstr val ue(pathref), sizeof (newpath));
539 return (error); 605 VERI FY((tail -strrchr(newpath '@)) !'= NULL);
606 *(tail+1) = '\0
541 VN_HOLD(svp) ; 607 ASSERT3U(strl en(newpat h) + strlen(nm, <, sizeof (newpath));
542 error = dounnount (vn_nount edvfs(svp), fflags, cr); 608 (void) strcat(newpath, nm;
543 if (error) { 609 refstr_rele(pathref);
544 VN_RELE(svp); 610 vfs_setresour ce(vfsp, newpat h, 0);
545 return (error)
546 } 612 vfs_unl ock(vfsp);
613 }
548 /*
549 * W can't use VN _RELE(), as that will try to invoke 615 /* ARGSUSED*/
550 * zfsctl_snapdir_inactive(), which would cause us to destroy 616 static int
551 * the sd_lock mutex held by our caller. 617 zfsctl _snapdir_renane(vnode_t *sdvp, char *snm vnode_t *tdvp, char *tnm
552 */ 618 cred_t *cr, caller_context_t *ct, int flags)
553 ASSERT(svp->v_count == 1); 619 {
554 gf s_vop_i nactive(svp, cr, NULL); 620 zfsctl _snapdir_t *sdp = sdvp->v_data;
621 zfs_snapentry_t search, *sep;
556 kmem free(sep->se_nane, strlen(sep->se_nane) + 1); 622 zfsvfs_t *zfsvfs;
557 kmem free(sep, sizeof (zfs_snapentry_t)); 623 avl _i ndex_t where;
624 char fronf MAXNAMELEN], t o[MAXNAMELEN ;
559 return (0); 625 char real [MAXNAMELEN], fsnanme[MAXNAMELEN] ;
560 } 626 int err;
562 static void 628 zfsvfs = sdvp->v_vfsp->vfs_dat a;

new usr/src/uts/comon/fs/zfs/zfs_ctldir.c

629

631
632
633
634
635
636
637
638
639
640

642
644

646
647
648
649
650
651
652

654
655
656
657
658

660
661

663

665
666
667
668
669

671
672
673

675

677
678

680
681
682
683
684
685
686
687
688
689
690
691

693
694

ZFS_ENTER(zf svfs);

if ((flags & FI GNORECASE) || zfsvfs->z_case == ZFS CASE_| NSENSI TI VE) {

err = dmu_snapshot _real nane(zfsvfs->z_os snm real,
MAXNAMELEN, NULL) ;
if (err == 0) {
snm = real ;
} else if (err != ENOTSUP) {
ZFS_EXI T(zfsvfs);
return (err);

}
ZFS_EXI T(zf svfs);
dmu_obj set _nane(zfsvfs->z_os, fsnane);

err = zfsctl_snapshot _znane(sdvp, snm MAXNAMELEN, fromn);

if (err == 0)

err = zfsctl_snapshot_zname(tdvp, tnm MAXNAMELEN, to);
if (err == 0

err = zfs_secpolicy_rename_perns(from to, cr);
if (err 1= 0)

return (err);

/*
* Cannot nove snapshots out of the snapdir.
*/
if (sdvp != tdvp)
return (SET ERROR(EI NVAL)) ;

if (strcnmp(snm tnm == 0)
return (0);

mut ex_ent er (&sdp- >sd_| ock) ;

search. se_name = (char *)snm

if ((sep = avl_find(&sdp->sd_snaps,
mut ex_exi t (&sdp->sd_| ock) ;
return (SET_ERROR(ENCENT));

&search, &where)) == NULL) {

}

err = dsl _dataset _renane_snapshot (fsnane,
if (err ==
zfsctl _rename_snap(sdp, sep, tnm;

snm tnm B_FALSE);

mut ex_exi t (&sdp->sd_| ock) ;

return (err);

}

/* ARGSUSED */

static int

zfsctl _snapdir_renove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
cal ler_context_t *ct, int flags)

{

zfsctl _snapdir_t *sdp
zfs_snapentry_t *sep;
zfs_snapentry_t search;
zfsvfs_t *zfsvfs;

char snapnane[MVAXNAMVELEN ;
char real [MAXNAMELEN ;

int err;

= dvp->v_dat a;

zfsvfs = dvp->v_vfsp->vfs_data;
ZFS_ENTER(zf svfs);

new usr/src/uts/comon/fs/zfs/zfs_ctldir.c

**vpp,

696 if ((flags & FI GNORECASE) || zfsvfs->z_case == ZFS_CASE_| NSENSI Tl VE) {
698 err = dmu_snapshot _r eal name(zfsvfs->z_os, nane, real,
699 MAXNAMVELEN, NULL) ;

700 if (err == 0) {

701 name = real;

702 } else if (err != ENOTSUP) {

703 ZFS_EXI T(zfsvfs);

704 return (err);

705 }

706 }

708 ZFS_EXI T(zf svfs);

710 err = zfsctl_snapshot _znane(dvp, nane, MAXNAMELEN, snapnane);
711 if (err == 0)

712 err = zfs_secpolicy_destroy_perns(snapnane, cr);
713 if (err 1= 0)

714 return (err);

716 mut ex_ent er (&sdp- >sd_| ock) ;

718 search. se_name = name

719 sep = avl _fi nd(&sdp >sd _snaps, &search, NULL);

720 if (sep) [

721 avl _renove(&sdp- >sd_snaps, sep);

722 err = zfsctl _unnount_snap(sep, M5_FORCE, cr);

723 if (err 1=0)

724 avl _add(&sdp- >sd_snaps, sep);

725 el se

726 err = dsl _destroy_snapshot (snapnane, B_FALSE);
727 } else {

728 err = SET_ERROR(ENCENT) ;

729 }

731 nmut ex_exi t (&sdp->sd_| ock) ;

733 return (err);

734 }

736 [*

737 * This creates a snapshot under ' .zfs/snapshot’

738 */

739 /* ARGSUSED */

740 static int

741 zfsctl _snapdir_nkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t
742 cred_t *cr, caller_context_t *cc, int flags, vsecattr_t *vsecp)
743 {

744 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;

745 char name[MAXNAMVELEN] ;

746 int err;

747 static enum synfol |l ow fol l ow = NO FOLLOW

748 static enum uio_seg seg = U O SYSSPACE,

750 i f (snapshot_nanmecheck(di rname, NULL, NULL) != 0)

751 return (SET_ERROR(EILSEQ);

753 dmu_obj set _nane(zfsvfs->z_os, nane);

755 *vpp = NULL;

757 err = zfs_secpolicy_snapshot_perns(nane, cr);

758 if (err 1= 0)

759 return (err);

new usr/src/uts/comon/fs/zfs/zfs_ctldir.c

761 if (err == 0)

762 err = dmu_obj set _snapshot _one(nane, dirnane);

763 if (err 1=0)

764 return (err)

765 err = | ookupnaneat (di rname, seg, follow, NULL, vpp, dvp);
766 }

768 return (err);

769 }

771 | *

772 * Lookup entry point for the 'snapshot’ directory. Try to open the
773 * snapshot if it exist, creating the pseudo fil esystem vnode as necessary.
774 * Performa nount of the associated dataset on top of the vnode.
775 */

776 /* ARGSUSED */

777 static int

778 zfsctl _snapdir_| ookup(vnode_t *dvp, char *nm vnode_t **vpp, pathname_t *pnp,
779 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,

780 int *direntflags, pathname_t *real pnp)

781 {

782 zfsctl _snapdir_t *sdp = dvp->v_data;

783 obj set _t *snap;

784 char snapnanme|[MAXNAMELEN ;

785 char real [MAXNAMVELEN] ;

786 char *nount poi nt;

787 zfs_snapentry_t *sep, search;

788 struct nmounta margs;

789 vis_t *vfsp;

790 size_t nountpoint_|en;

791 avl _i ndex_t where;

792 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_dat a;

793 int err;

795 /*

796 * No extended attributes allowed under .zfs

797 *

798 if (flags & LOOKUP_XATTR)

799 return (SET_ERROR(EI NVAL));

801 ASSERT(dvp->v_type == VDI R);

803 /*

804 * If we get a recursive call, that means we got called

805 * fromthe donpunt() code while it was trying to | ook up the
806 * spec (which |ooks like a |ocal path for zfs). W need to
807 * add sonme flag to donmount() to tell it not to do this |ookup.
808 */

809 if (MJTEX_HELD(&sdp- >sd_l ock))

810 return (SET_ERROR(ENCENT));

812 ZFS_ENTER(zf svfs) ;

814 if (gfs_l ookup_dot(vpp, dvp, zfsvfs->z_ctldir, nnm == 0) {
815 ZFS_EXI T(zfsvfs);

816 return (0);

817 1

819 if (flags & FlI GNORECASE) {

820 bool ean_t conflict = B_FALSE;

822 err = dmu_snapshot _real nane(zfsvfs->z_os, nm real,
823 MAXNAMELEN, &conflict);

824 if (err == 0)

825 nm = real;

826 } elseif (err I—ENC)TSUP) {

new usr/src/uts/comon/fs/zfs/zfs_ctldir.c

827
828
829
830
831
832
833
834
835

837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883

885
886
887
888
889

891

892 donount:

ZFS_EXI T(zfsvfs);
return (err);

}
i1f (real pnp)
(void) strlcpy(real pnp->pn_buf, nm
r eal pnp- >pn_buf si ze) ;
if (conflict & direntflags)
*direntflags = ED_CASE_CONFLI CT;
}

mut ex_ent er (&sdp- >sd_| ock) ;

search. se_name = (char *)nm

if ((sep = avl _find(&sdp->sd_snaps, &search, &where)) != NULL) {
*vVpp = sep->se_root;
VN_HOLD(*vpp) ;
err = traverse(vpp);

if (err 1= 0)
VN_RELE(*vpp) ;
*vpp = NULL;
} else if (*vpp == sep->se_root) {

* The snapshot was unnounted behi nd our backs,
* try to renount it.
*/
goto donount;
} else {
/*

* VROOT was set dur|ng the traverse call.
* to clear it since we're pretending to be part
* of our parent’s vfs.

*/

(*vpp)->v_flag & ~VROOT;

mut ex_exi t (&sdp->sd_| ock);
ZFS_EXI T(zf svfs);
return (err);

}

/*
* The requested snapshot is not currently mounted, |ook it up.
*/

err = zfsctl _snapshot_zname(dvp, nm MAXNAMELEN, snapnane);
if (err 1= 0)

mut ex_exi t (&sdp->sd_| ock) ;

ZFS_EXI T(zfsvfs);

/*

* handle "I's *" or "?" in a graceful manner,

* forcing EILSEQ to ENCENT.

* Since shell ultimately passes "*" or "?" as nanme to | ookup
*/

return (err == EILSEQ ? ENCENT : err);

}

if (dmu_objset_hol d(snapnane, FTAG &snap) !'= 0) {
nmut ex_exi t (&sdp->sd_| ock) ;
ZFS_EXI T(zfsvfs);
return (SET_ERROR(ENCENT));

}

sep = kmem al | oc(sizeof (zfs_snapentry_t), KM SLEEP);
sep->se_nane = knem. alloc(strlen(nn) + 1, KM SLEEP);
(voi d) strcpy(sep >se nane, nn;

*Vpp = sep->se_root = zfsctl_snapshot_r'rknode(dvp, dmu_obj set _i d(snap));

avl _i nsert (&sdp- >sd_snaps, sep, where);

drmu_obj set _rel e(snap, FTAG;

W& need

new usr/src/uts/comon/fs/zfs/zfs_ctldir.c

893 nmount poi nt _l en = strlen(refstr_val ue(dvp->v_vfsp->vfs_mtpt)) +
894 strlen("/.zfs/snapshot/") + strlen(nm) + 1;

895 nmount poi nt = knem al | oc(mount poi nt _I en, KM SLEEP);

896 (void) snprintf(nmountpoint, nountpoint_len, "%/.zfs/snapshot/ %",
897 refstr_val ue(dvp->v_vfsp->vfs_mtpt), nm

899 Mar gs. spec = snapnane;

900 margs. dir = nmount poi nt;

901 margs. fl ags = MS_SYSSPACE | MS_NOWNTTAB;

902 mar gs. fstype = "zfs";

903 mar gs. dataptr = NULL;

904 mar gs. datal en = 0;

905 mar gs. opt ptr = NULL;

906 margs. optlen = 0;

908 err = donmount ("zfs", &margs, *vpp, kcred, &vfsp);

909 kmem f r ee(mount poi nt, nount poi nt_| en);

911 if (err == 0) {

912 /*

913 * Return the nounted root rather than the covered nount point.
914 * Takes the GFS vnode at .zfs/snapshot/<snapname> and returns
915 * the ZFS vnode nounted on top of the GFS node. This ZFS
916 */vnode is the root of the newy created vfsp.

917 *

918 VFS_RELE(vfsp);

919 err = traverse(vpp);

920 }

922 if (err == 0) {

923 /*

924 * Fix up the root vnode nounted on .zfs/snapshot/<snapnanme>.
925 *

926 * This is where we |ie about our v_vfsp in order to

927 * make . zfs/snapshot/<snapnane> accessi bl e over NFS

928 * without requiring manual munts of <snapnanme>.

929 */

930 ASSERT(VTQZ(*vpp) - >z_zfsvfs ! = zfsvfs);

931 VTQZ(*vpp) - >z_zfsvfs->z_parent = zfsvfs;

932 (*vpp)->v_vfsp = zfsvfs->z_vfs;

933 (*vpp)->v_flag & ~VROOT;

934 }

935 mut ex_exi t (&sdp->sd_| ock);

936 ZFS_EXI T(zfsvfs);

938 /*

939 * |f we had an error, drop our hold on the vnode and

940 * zfsctl _snapshot _i nactive() will clean up.

941 *

942 if (err 1=0) {

943 VN_RELE(*vpp) ;

944 *vpp = NULL;

945 }

946 return (err);

947 }

949 /* ARGSUSED */
950 static int

951 zfsctl _shares_| ookup(vnode_t *dvp, char *nm vnode_t **vpp, pathname_t *pnp,

952 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
953 int *direntflags, pathname_t *real pnp)

954 {

955 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;

956 znode_t *dzp;

957 int error;

new usr/src/uts/comon/fs/zfs/zfs_ctldir.c

959 ZFS_ENTER(zf svfs);

961 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nn) == 0) {
962 ZFS_EXI T(zfsvfs);

963 return (0);

964 }

966 if (zfsvfs->z_shares_dir == 0) {

967 ZFS_EXI T(zfsvfs);

968 return (SET_ERROR(ENOTSUP)) ;

969 1

970 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0)
971 error = VOP_LOOKUP(ZTOV(dzp), nm vpp, pnp,

972 flags, rdir, cr, ct, direntflags, realpnp);
974 VN_RELE(ZTOV(dzp)) ;

975 ZFS_EXI T(zfsvfs);

977 return (error);

978 }

980 /* ARGSUSED */

981 static int

982 zfsctl _snapdir_readdir_cb(vnode_t *vp, void *dp, int *eofp,

983 offset_t *offp, offset_t *nextp, void *data, int flags)

984 {

985 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;

986 char snapnane[MAXNAMELEN ;

987 uint64_t id, cookie;

988 bool ean_t case_conflict;

989 int error;

991 ZFS_ENTER(zf svfs);

993 cookie = *of f p;

994 dsl _pool _confi g_enter(dnmu_obj set _pool (zfsvfs->z_os), FTAG;
995 error = dnu_snapshot _|i st_next (zfsvfs->z_os, MAXNAMELEN, snapnane,
996 &cooki e, &case_conflict);

997 dsl _pool _config_exit(dnu_obj set _pool (zfsvfs->z_os), FTAQ;
998 if (error) {

999 ZFS_EXI T(zfsvfs);

1000 if (error == ENCENT) {

1001 *eofp = 1,

1002 return (0);

1003

1004 return (error);

1005 }

1007 if (flags & V_RDDI R_ENTFLAGS) {

1008 edirent_t *eodp = dp;

1010 (voi d) strcpy(eodp->ed_nane, snapnane);

1011 eodp->ed_i no = ZFSCTL_I NO_SNAP(i d);

1012 eodp- >ed_efl ags = case_conflict ? ED CASE_CONFLICT : O0;
1013 } else {

1014 struct dirent64 *odp = dp;

1016 (voi d) strcpy(odp->d_nane, snapnane);

1017 odp->d_i no = ZFSCTL_I NO_SNAP(i d) ;

1018

1019 *nextp = cooki e;

1021 ZFS_EXI T(zfsvfs);

1023
1024 }

return (0);

& d,

new usr/src/uts/comon/fs/zfs/zfs_ctldir.c 9 new usr/src/uts/comon/fs/zfs/zfs_ctldir.c
1091 }
1026 /* ARGSUSED */
1027 static int 1093 /* ARGSUSED */
1028 zfsctl _shares_readdir(vnode_t *vp, uio_t *uiop, cred_t *cr, int *eofp, 1094 static int
1029 call er_context _t *ct, int flags) 1095 zfsctl_shares_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
1030 { 1096 cal | er_context_t *ct)
1031 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 1097 {
1032 znode_t *dzp; 1098 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1033 int error; 1099 znode_t *dzp;
1100 int error;
1035 ZFS_ENTER(zf svfs);
1102 ZFS_ENTER(zf svfs);
1037 if (zfsvfs->z_shares_dir == 0) { 1103 if (zfsvfs->z_shares_dir == 0) {
1038 ZFS_EXI T(zf svfs); 1104 ZFS_EXI T(zf svfs);
1039 return (SET_ERROR(ENOTSUP)); 1105 return (SET_ERROR(ENOTSUP));
1040 } 1106 }
1041 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &Jzp)) == 0) { 1107 if ((error = zfs _zget (zfsvfs, zfsvfs->z_shares_dir, &Jzp)) == 0) {
1042 error = VOP_READDI R(ZTOV(dzp), uiop, cr, eofp, ct, flags); 1108 error = VOP_CETATTR(ZTOV(dzp), vap, flags, cr, ct);
1043 VN RELE(ZTOV(dzp)) ; 1109 VN_RELE(ZTOV(dzp));
1044 } else { 1110 }
1045 *eofp = 1; 1111 ZFS_EXI T(zfsvfs);
1046 error = SET_ERROR(ENCENT) ; 1112 return (error);
1047 1
1049 ZFS_EXI T(zf svfs); 1115 }
1050 return (error);
1051 } 1117 /* ARGSUSED */
1118 static int
1053 /* 1119 zfsctl _snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
1054 * pvp is the '.zfs’ directory (zfsctl_node_t). 1120 cal l er_context_t *ct)
1055 * Creates vp, which is '.zfs/snapshot’ (zfsctl_snapdir_t). 1121 {
1056 * 1122 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1057 * This function is the callback to create a GFS vnode for ’'.zfs/snapshot’ 1123 zfsctl _snapdir_t *sdp = vp->v_data;
1058 * when a lookup is perfornmed on .zfs for "snapshot”
1059 */ 1125 ZFS_ENTER(zf svfs);
1060 vnode_t * 1126 zf sctl _comon get attr(vp, vap) ;
1061 zfsctl _nmknode_snapdir(vnode_t *pvp) 1127 vap->va_nodeid = gfs_file |node(vp)
1062 { 1128 vap->va_nlink = vap->va_size = avl nurmodes(&sdp— >sd_snaps) + 2;
1063 vnode_t *vp; 1129 vap->va_ctime = vap->va_ntime = dmu_objset_snap_cnti me(zfsvfs->z_os);
1064 zfsctl _snapdir_t *sdp; 1130 ZFS_EXI T(zf svfs);
1066 vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp, 1132 return (0);
1067 zfsctl _ops_snapdir, NULL, NULL, MAXNAMELEN, 1133 }
1068 zfsctl _snapdir_readdir_cb, NULL);
1069 sdp = vp->v_data; 1135 /* ARGSUSED */
1070 sdp->sd_node. zc_id = ZFSCTL_| NO_SNAPDI R; 1136 static void
1071 sdp- >sd_node. zc_cntinme = ((zfsctl_node_t *)pvp->v_data)->zc_cntine; 1137 zfsctl _snapdir_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1072 mut ex_i ni t (&sdp- >sd Iock NULL, MJITEX DEFAULT, NULL); 1138 {
1073 avl _creat e(&sdp- >sd_snaps snapent ry_conpare, 1139 zfsctl _snapdir_t *sdp = vp->v_dat a;
1074 si zeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node)); 1140 voi d *private;
1075 return (vp);
1076 } 1142 private = gfs_dir_inactive(vp);
1143 If (private !'= NULL) {
1078 vnode_t * 1144 ASSERT(avl _numodes(&dp->sd_snaps) == 0);
1079 zfsctl _nmknode_shares(vnode_t *pvp) 1145 mut ex_dest r oy(&sdp- >sd_| ock);
1080 { 1146 avl _destroy(&sdp->sd_snaps);
1081 vnode_t *vp; 1147 kmem free(private, sizeof (zfsctl_snapdir_t));
1082 zfsctl _node_t *sdp; 1148 }
1149 }
1084 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp,
1085 zfsctl _ops_shares, NULL, NULL, NAXNANELE 1151 static const fs_operation_def_t zfsctl_tops_snapdir[] = {
1086 NULL, NULL); 1152 { VOPNAME_GCPEN, { .vop_open = zfsctl_conmmon_open } 1,
1087 sdp = vp- >v_data 1153 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_cl ose } 1,
1088 sdp->zc_cntinme = ((zfsctl_node_t *)pvp->v_data)->zc_cntine; 1154 { VOPNAME_| OCTL, { .error = fs_inval } },
1089 return (vp); 1155 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_snapdir_getattr } },
1156 { VOPNAME_ACCESS, { .vop_access = zfsct|l_common_access } },

new usr/src/uts/comon/fs/zfs/zfs_ctldir.c

1157 VOPNAME_RENAME, .vop_renanme = zfsctl _snapdir_renanme } },
1158 VOPNAME_RMDI R, .vop_rndir = zfsctl_snapdir_renove } 1},
1159 VOPNAME_MKDI R, .vop_nkdir = zfsctl_snapdir_nkdir } 1.
1160 VOPNAME_READDI R, .vop_readdir = gfs_vop_readdir } 1,
1161 VOPNAME_L OOKUP, .vop_| ookup = zfsctl _snapdir_l ookup } },
1162 VOPNAME_SEEK, .vop_seek = fs_seek } },
1163 VOPNAME_| NACTI VE, .vop_i nactive = zfsctl_snapdir_inactive } },
1164 VOPNAME_FI D, .vop_fid = zfsctl_common_fid } 1,
1165 NULL }

1166 };

1168 static const fs_operation_def _t zfsctl_tops_shares[] = {

1169 VOPNAME_ OPEN, .vop_open = zfsctl_conmmon_open } 1,
1170 VOPNAME_CLOSE, .vop_close = zfsctl_common_cl ose } },
1171 VOPNAME_| OCTL, .error = fs_inval } },
1172 VOPNAME_GETATTR, .vop_getattr = zfsctl_shares_getattr } },
1173 VOPNAME_ACCESS, .vop_access = zfsctl_common_access } 1},
1174 VOPNAME_READDI R, .vop_readdir = zfsctl_shares_readdir } },
1175 VOPNAME_L OOKUP, .vop_|l ookup = zfsctl_shares_l ookup } 1},
1176 VOPNAME_SEEK, .vop_seek = fs_seek } 1.
1177 VOPNAME_| NACTI VE, .vop_i nactive = gfs_vop_inactive } },
1178 VOPNAME_FI D, .vop_fid = zfsctl_shares_fid } },

1179 NULL }

1180 };

1182 /*

1183 * pvp is the GFS vnode ’'.zfs/snapshot’.

1184 *

1185 * This creates a GFS node under '.zfs/snapshot’ representing each

1186 * snapshot. This newy created GFS node Is what we nount snapshot

1187 * vfs_t’s ontop of.

1188 */

1189 static vnode_t *

1190 zfsctl _snapshot_nknode(vnode_t *pvp, uint64_t objset)

1191 {

1192 vnode_t *vp;

1193 zfsctl _node_t *zcp;

1195 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp,

1196 zfsctl _ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL);

1197 zcp = vp->v_data;

1198 zcp->zc_id = objset;

1200 return (vp);

1201 }

1203 static void

1204 zfsctl_snapshot_i nactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1205 {

1206 zfsctl _snapdir_t *sdp;

1207 zfs_snapentry_t *sep, *next;

1208 vnode_t *dvp;

1210 VERI FY(gf s_dir_|l ookup(vp, "..", &vp, cr, 0, NULL, NULL) == 0);
1211 sdp = dvp->v_dat a;

1213 mut ex_ent er (&sdp- >sd_| ock) ;

1215 if (vp->v_count > 1) {

1216 mut ex_exi t (&sdp->sd_| ock) ;

1217 return;

1218 }

1219 ASSERT(! vn_i smt pt (vp));

1221 sep = avl _first(&sdp->sd_snaps);

1222 while (sep !'= NULL) {

11

new usr/src/uts/comon/fs/zfs/zfs_ctldir.c

1223 next = AVL_NEXT(&sdp->sd_snaps, sep);

1225 if (sep->se_root == vp)

1226 avl _renove(&sdp->sd_snaps, sep);

1227 kmem free(sep->se_nane, strlen(sep->se_nane) + 1);
1228 kmem free(sep, sizeof (zfs_snapentry_t));

1229 br eak;

1230

1231 sep = next;

1232

1233 ASSERT(sep != NULL)

1235 mut ex_exi t (&sdp->sd_| ock) ;

1236 VN_RELE(dvp) ;

1238 /*

1239 * Di spose of the vnode for the snapshot nount point.

1240 * This is safe to do because once this entry has been renoved
1241 * fromthe AVL tree, it can't be found again, so cannot becone
1242 * "active". |f we |ookup the same nane again we will end up
1243 * creating a new vnode.

1244 */

1245 gf s_vop_i nactive(vp, cr, ct);

1246 }

1249 /*

1250 * These VP's shoul d never see the light of day. They should al ways
1251 * be covered.

1252 */

1253 static const fs_operation_def_t zfsctl_tops_snapshot[] = {

1254 VOPNAME_| NACTI VE, { .vop_inactive = zfsctl_snapshot_inactive },
1255 NULL, NULL

1256 };

1258 int

1259 {zfsctl_l ookup_obj set (vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp)
1260

1261 zfsvfs_t *zfsvfs = vfsp->vfs_data;

1262 vnode_t *dvp, *vp;

1263 zfsctl _snapdir_t *sdp;

1264 zfsctl _node_t *zcp;

1265 zfs_snapentry_t *sep;

1266 int error;

1268 ASSERT(zfsvfs->z_ctldir !'= NULL);

1269 error = zfsctl_root_| ookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1270 NULL, O, NULL, kcred, NULL, NULL, NULL);

1271 if (error 1= 0)

1272 return (error);

1273 sdp = dvp->v_dat a;

1275 mut ex_ent er (&sdp- >sd_| ock) ;

1276 sep = avl _first(&sdp->sd_snaps);

1277 while (sep !'= NULL) {

1278 Vp = sep->se_root;

1279 zcp = vp->v_data;

1280 if (zcp->zc_id == objsetid)

1281 br eak;

1283 sep = AVL_NEXT(&sdp->sd_snaps, sep);

1284 }

1286 if (sep !'= NULL) {

1287 VN_HOLD(vp) ;

1288 /*

new usr/src/uts/comon/fs/zfs/zfs_ctldir.c 13 new usr/src/uts/comon/fs/zfs/zfs_ctldir.c
1289 * Return the nounted root rather than the covered nount point.
1290 * Takes the GFS vnode at .zfs/snapshot/<snapshot objsetid> 1356 mut ex_exi t (&sdp->sd_| ock) ;
1291 * and returns the ZFS vnode nounted on top of the GFS node. 1357 VN_RELE(dvp);
1292 * This ZFS vnode is the root of the vfs for objset 'objsetid .
1293 */ 1359 return (error);
1294 error = traverse(&vp); 1360 }
1295 if (error == 0) {

1296 if (vp == sep->se_root)

1297 error = SET_ERROR(EI NVAL) ;

1298 el se

1299 *zfsvfsp = VIQZ(vp)->z_zfsvfs;

1300 }

1301 mut ex_exi t (&sdp->sd_| ock);

1302 VN_RELE(vp) ;

1303 } else {

1304 error = SET_ERROR(ElI NVAL) ;

1305 mut ex_exi t (&sdp->sd_| ock) ;

1306 }

1308 VN_RELE(dvp);

1310 return (error);

1311 }

1313 /*

1314 * Unnount any snapshots for the given filesystem This is called from

1315 * zfs_umount() - If we have a ctldir, then go through and unmount all the
1316 * snapshots.

1317 *

1318 int

1319 zfsctl _unount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr)

1320 {

1321 zfsvfs_t *zfsvfs = vfsp->vfs_data;

1322 vnode_t *dvp;

1323 zfsctl _snapdir_t *sdp;

1324 zfs_snapentry_t *sep, *next;

1325 int error;

1327 ASSERT(zfsvfs->z_ctldir != NULL);

1328 error = zfsctl_root_| ookup(zfsvfs->z_ctldir, "snapshot", &dvp,

1329 NULL, O, NULL, cr, NULL, NULL, NULL);

1330 if (error = 0)

1331 return (error);

1332 sdp = dvp->v_dat a;

1334 nmut ex_ent er (&sdp- >sd_| ock) ;

1336 sep = avl _first(&sdp->sd_snaps);

1337 while (sep !'= NULL)

1338 next = AVL_NEXT(&sdp->sd_snaps, sep);

1340 *

1341 * |f this snapshot is not mounted, then it nust

1342 * have just been unnounted by sonebody el se, and

1343 * will be cleaned up by zfsctl_snapdir_inactive().

1344 */

1345 if (vn_ismtpt(sep->se_root)) {

1346 avl _renove(&sdp->sd_snaps, sep);

1347 error = zfsctl_unnount_snap(sep, fflags, cr);

1348 if (error) {

1349 avl _add(&dp- >sd_snaps, sep);

1350 br eak;

1351 }

1352 }

1353 sep = next;

1354 }

