1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
26 */
27
28 /*
29 * SPA: Storage Pool Allocator
30 *
31 * This file contains all the routines used when modifying on-disk SPA state.
32 * This includes opening, importing, destroying, exporting a pool, and syncing a
33 * pool.
34 */
35
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa_impl.h>
39 #include <sys/zio.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/ddt.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/uberblock_impl.h>
50 #include <sys/txg.h>
51 #include <sys/avl.h>
52 #include <sys/dmu_traverse.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/unique.h>
55 #include <sys/dsl_pool.h>
56 #include <sys/dsl_dataset.h>
57 #include <sys/dsl_dir.h>
58 #include <sys/dsl_prop.h>
59 #include <sys/dsl_synctask.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/arc.h>
62 #include <sys/callb.h>
63 #include <sys/systeminfo.h>
64 #include <sys/spa_boot.h>
65 #include <sys/zfs_ioctl.h>
66 #include <sys/dsl_scan.h>
67 #include <sys/zfeature.h>
68 #include <sys/dsl_destroy.h>
69
70 #ifdef _KERNEL
71 #include <sys/bootprops.h>
72 #include <sys/callb.h>
73 #include <sys/cpupart.h>
74 #include <sys/pool.h>
75 #include <sys/sysdc.h>
76 #include <sys/zone.h>
77 #endif /* _KERNEL */
78
79 #include "zfs_prop.h"
80 #include "zfs_comutil.h"
81
82 typedef enum zti_modes {
83 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
84 ZTI_MODE_ONLINE_PERCENT, /* value is % of online CPUs */
85 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
86 ZTI_MODE_NULL, /* don't create a taskq */
87 ZTI_NMODES
88 } zti_modes_t;
89
90 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
91 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
92 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
93 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
94
95 #define ZTI_N(n) ZTI_P(n, 1)
96 #define ZTI_ONE ZTI_N(1)
97
98 typedef struct zio_taskq_info {
99 zti_modes_t zti_mode;
100 uint_t zti_value;
101 uint_t zti_count;
102 } zio_taskq_info_t;
103
104 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
105 "issue", "issue_high", "intr", "intr_high"
106 };
107
108 /*
109 * This table defines the taskq settings for each ZFS I/O type. When
110 * initializing a pool, we use this table to create an appropriately sized
111 * taskq. Some operations are low volume and therefore have a small, static
112 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
113 * macros. Other operations process a large amount of data; the ZTI_BATCH
114 * macro causes us to create a taskq oriented for throughput. Some operations
115 * are so high frequency and short-lived that the taskq itself can become a a
116 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
117 * additional degree of parallelism specified by the number of threads per-
118 * taskq and the number of taskqs; when dispatching an event in this case, the
119 * particular taskq is chosen at random.
120 *
121 * The different taskq priorities are to handle the different contexts (issue
122 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
123 * need to be handled with minimum delay.
124 */
125 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
126 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
127 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
128 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */
129 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
130 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
132 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
133 };
134
135 static void spa_sync_version(void *arg, dmu_tx_t *tx);
136 static void spa_sync_props(void *arg, dmu_tx_t *tx);
137 static boolean_t spa_has_active_shared_spare(spa_t *spa);
138 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
139 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
140 char **ereport);
141 static void spa_vdev_resilver_done(spa_t *spa);
142
143 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */
144 id_t zio_taskq_psrset_bind = PS_NONE;
145 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
146 uint_t zio_taskq_basedc = 80; /* base duty cycle */
147
148 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
149 extern int zfs_sync_pass_deferred_free;
150
151 /*
152 * This (illegal) pool name is used when temporarily importing a spa_t in order
153 * to get the vdev stats associated with the imported devices.
154 */
155 #define TRYIMPORT_NAME "$import"
156
157 /*
158 * ==========================================================================
159 * SPA properties routines
160 * ==========================================================================
161 */
162
163 /*
164 * Add a (source=src, propname=propval) list to an nvlist.
165 */
166 static void
167 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
168 uint64_t intval, zprop_source_t src)
169 {
170 const char *propname = zpool_prop_to_name(prop);
171 nvlist_t *propval;
172
173 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
174 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
175
176 if (strval != NULL)
177 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
178 else
179 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
180
181 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
182 nvlist_free(propval);
183 }
184
185 /*
186 * Get property values from the spa configuration.
187 */
188 static void
189 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
190 {
191 vdev_t *rvd = spa->spa_root_vdev;
192 dsl_pool_t *pool = spa->spa_dsl_pool;
193 uint64_t size;
194 uint64_t alloc;
195 uint64_t space;
196 uint64_t cap, version;
197 zprop_source_t src = ZPROP_SRC_NONE;
198 spa_config_dirent_t *dp;
199
200 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
201
202 if (rvd != NULL) {
203 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
204 size = metaslab_class_get_space(spa_normal_class(spa));
205 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
206 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
207 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
208 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
209 size - alloc, src);
210
211 space = 0;
212 for (int c = 0; c < rvd->vdev_children; c++) {
213 vdev_t *tvd = rvd->vdev_child[c];
214 space += tvd->vdev_max_asize - tvd->vdev_asize;
215 }
216 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
217 src);
218
219 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
220 (spa_mode(spa) == FREAD), src);
221
222 cap = (size == 0) ? 0 : (alloc * 100 / size);
223 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
224
225 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
226 ddt_get_pool_dedup_ratio(spa), src);
227
228 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
229 rvd->vdev_state, src);
230
231 version = spa_version(spa);
232 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
233 src = ZPROP_SRC_DEFAULT;
234 else
235 src = ZPROP_SRC_LOCAL;
236 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
237 }
238
239 if (pool != NULL) {
240 dsl_dir_t *freedir = pool->dp_free_dir;
241
242 /*
243 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
244 * when opening pools before this version freedir will be NULL.
245 */
246 if (freedir != NULL) {
247 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
248 freedir->dd_phys->dd_used_bytes, src);
249 } else {
250 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
251 NULL, 0, src);
252 }
253 }
254
255 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
256
257 if (spa->spa_comment != NULL) {
258 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
259 0, ZPROP_SRC_LOCAL);
260 }
261
262 if (spa->spa_root != NULL)
263 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
264 0, ZPROP_SRC_LOCAL);
265
266 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
267 if (dp->scd_path == NULL) {
268 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
269 "none", 0, ZPROP_SRC_LOCAL);
270 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
271 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
272 dp->scd_path, 0, ZPROP_SRC_LOCAL);
273 }
274 }
275 }
276
277 /*
278 * Get zpool property values.
279 */
280 int
281 spa_prop_get(spa_t *spa, nvlist_t **nvp)
282 {
283 objset_t *mos = spa->spa_meta_objset;
284 zap_cursor_t zc;
285 zap_attribute_t za;
286 int err;
287
288 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
289
290 mutex_enter(&spa->spa_props_lock);
291
292 /*
293 * Get properties from the spa config.
294 */
295 spa_prop_get_config(spa, nvp);
296
297 /* If no pool property object, no more prop to get. */
298 if (mos == NULL || spa->spa_pool_props_object == 0) {
299 mutex_exit(&spa->spa_props_lock);
300 return (0);
301 }
302
303 /*
304 * Get properties from the MOS pool property object.
305 */
306 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
307 (err = zap_cursor_retrieve(&zc, &za)) == 0;
308 zap_cursor_advance(&zc)) {
309 uint64_t intval = 0;
310 char *strval = NULL;
311 zprop_source_t src = ZPROP_SRC_DEFAULT;
312 zpool_prop_t prop;
313
314 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
315 continue;
316
317 switch (za.za_integer_length) {
318 case 8:
319 /* integer property */
320 if (za.za_first_integer !=
321 zpool_prop_default_numeric(prop))
322 src = ZPROP_SRC_LOCAL;
323
324 if (prop == ZPOOL_PROP_BOOTFS) {
325 dsl_pool_t *dp;
326 dsl_dataset_t *ds = NULL;
327
328 dp = spa_get_dsl(spa);
329 dsl_pool_config_enter(dp, FTAG);
330 if (err = dsl_dataset_hold_obj(dp,
331 za.za_first_integer, FTAG, &ds)) {
332 dsl_pool_config_exit(dp, FTAG);
333 break;
334 }
335
336 strval = kmem_alloc(
337 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
338 KM_SLEEP);
339 dsl_dataset_name(ds, strval);
340 dsl_dataset_rele(ds, FTAG);
341 dsl_pool_config_exit(dp, FTAG);
342 } else {
343 strval = NULL;
344 intval = za.za_first_integer;
345 }
346
347 spa_prop_add_list(*nvp, prop, strval, intval, src);
348
349 if (strval != NULL)
350 kmem_free(strval,
351 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
352
353 break;
354
355 case 1:
356 /* string property */
357 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
358 err = zap_lookup(mos, spa->spa_pool_props_object,
359 za.za_name, 1, za.za_num_integers, strval);
360 if (err) {
361 kmem_free(strval, za.za_num_integers);
362 break;
363 }
364 spa_prop_add_list(*nvp, prop, strval, 0, src);
365 kmem_free(strval, za.za_num_integers);
366 break;
367
368 default:
369 break;
370 }
371 }
372 zap_cursor_fini(&zc);
373 mutex_exit(&spa->spa_props_lock);
374 out:
375 if (err && err != ENOENT) {
376 nvlist_free(*nvp);
377 *nvp = NULL;
378 return (err);
379 }
380
381 return (0);
382 }
383
384 /*
385 * Validate the given pool properties nvlist and modify the list
386 * for the property values to be set.
387 */
388 static int
389 spa_prop_validate(spa_t *spa, nvlist_t *props)
390 {
391 nvpair_t *elem;
392 int error = 0, reset_bootfs = 0;
393 uint64_t objnum = 0;
394 boolean_t has_feature = B_FALSE;
395
396 elem = NULL;
397 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
398 uint64_t intval;
399 char *strval, *slash, *check, *fname;
400 const char *propname = nvpair_name(elem);
401 zpool_prop_t prop = zpool_name_to_prop(propname);
402
403 switch (prop) {
404 case ZPROP_INVAL:
405 if (!zpool_prop_feature(propname)) {
406 error = SET_ERROR(EINVAL);
407 break;
408 }
409
410 /*
411 * Sanitize the input.
412 */
413 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
414 error = SET_ERROR(EINVAL);
415 break;
416 }
417
418 if (nvpair_value_uint64(elem, &intval) != 0) {
419 error = SET_ERROR(EINVAL);
420 break;
421 }
422
423 if (intval != 0) {
424 error = SET_ERROR(EINVAL);
425 break;
426 }
427
428 fname = strchr(propname, '@') + 1;
429 if (zfeature_lookup_name(fname, NULL) != 0) {
430 error = SET_ERROR(EINVAL);
431 break;
432 }
433
434 has_feature = B_TRUE;
435 break;
436
437 case ZPOOL_PROP_VERSION:
438 error = nvpair_value_uint64(elem, &intval);
439 if (!error &&
440 (intval < spa_version(spa) ||
441 intval > SPA_VERSION_BEFORE_FEATURES ||
442 has_feature))
443 error = SET_ERROR(EINVAL);
444 break;
445
446 case ZPOOL_PROP_DELEGATION:
447 case ZPOOL_PROP_AUTOREPLACE:
448 case ZPOOL_PROP_LISTSNAPS:
449 case ZPOOL_PROP_AUTOEXPAND:
450 error = nvpair_value_uint64(elem, &intval);
451 if (!error && intval > 1)
452 error = SET_ERROR(EINVAL);
453 break;
454
455 case ZPOOL_PROP_BOOTFS:
456 /*
457 * If the pool version is less than SPA_VERSION_BOOTFS,
458 * or the pool is still being created (version == 0),
459 * the bootfs property cannot be set.
460 */
461 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
462 error = SET_ERROR(ENOTSUP);
463 break;
464 }
465
466 /*
467 * Make sure the vdev config is bootable
468 */
469 if (!vdev_is_bootable(spa->spa_root_vdev)) {
470 error = SET_ERROR(ENOTSUP);
471 break;
472 }
473
474 reset_bootfs = 1;
475
476 error = nvpair_value_string(elem, &strval);
477
478 if (!error) {
479 objset_t *os;
480 uint64_t compress;
481
482 if (strval == NULL || strval[0] == '\0') {
483 objnum = zpool_prop_default_numeric(
484 ZPOOL_PROP_BOOTFS);
485 break;
486 }
487
488 if (error = dmu_objset_hold(strval, FTAG, &os))
489 break;
490
491 /* Must be ZPL and not gzip compressed. */
492
493 if (dmu_objset_type(os) != DMU_OST_ZFS) {
494 error = SET_ERROR(ENOTSUP);
495 } else if ((error =
496 dsl_prop_get_int_ds(dmu_objset_ds(os),
497 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
498 &compress)) == 0 &&
499 !BOOTFS_COMPRESS_VALID(compress)) {
500 error = SET_ERROR(ENOTSUP);
501 } else {
502 objnum = dmu_objset_id(os);
503 }
504 dmu_objset_rele(os, FTAG);
505 }
506 break;
507
508 case ZPOOL_PROP_FAILUREMODE:
509 error = nvpair_value_uint64(elem, &intval);
510 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
511 intval > ZIO_FAILURE_MODE_PANIC))
512 error = SET_ERROR(EINVAL);
513
514 /*
515 * This is a special case which only occurs when
516 * the pool has completely failed. This allows
517 * the user to change the in-core failmode property
518 * without syncing it out to disk (I/Os might
519 * currently be blocked). We do this by returning
520 * EIO to the caller (spa_prop_set) to trick it
521 * into thinking we encountered a property validation
522 * error.
523 */
524 if (!error && spa_suspended(spa)) {
525 spa->spa_failmode = intval;
526 error = SET_ERROR(EIO);
527 }
528 break;
529
530 case ZPOOL_PROP_CACHEFILE:
531 if ((error = nvpair_value_string(elem, &strval)) != 0)
532 break;
533
534 if (strval[0] == '\0')
535 break;
536
537 if (strcmp(strval, "none") == 0)
538 break;
539
540 if (strval[0] != '/') {
541 error = SET_ERROR(EINVAL);
542 break;
543 }
544
545 slash = strrchr(strval, '/');
546 ASSERT(slash != NULL);
547
548 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
549 strcmp(slash, "/..") == 0)
550 error = SET_ERROR(EINVAL);
551 break;
552
553 case ZPOOL_PROP_COMMENT:
554 if ((error = nvpair_value_string(elem, &strval)) != 0)
555 break;
556 for (check = strval; *check != '\0'; check++) {
557 /*
558 * The kernel doesn't have an easy isprint()
559 * check. For this kernel check, we merely
560 * check ASCII apart from DEL. Fix this if
561 * there is an easy-to-use kernel isprint().
562 */
563 if (*check >= 0x7f) {
564 error = SET_ERROR(EINVAL);
565 break;
566 }
567 check++;
568 }
569 if (strlen(strval) > ZPROP_MAX_COMMENT)
570 error = E2BIG;
571 break;
572
573 case ZPOOL_PROP_DEDUPDITTO:
574 if (spa_version(spa) < SPA_VERSION_DEDUP)
575 error = SET_ERROR(ENOTSUP);
576 else
577 error = nvpair_value_uint64(elem, &intval);
578 if (error == 0 &&
579 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
580 error = SET_ERROR(EINVAL);
581 break;
582 }
583
584 if (error)
585 break;
586 }
587
588 if (!error && reset_bootfs) {
589 error = nvlist_remove(props,
590 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
591
592 if (!error) {
593 error = nvlist_add_uint64(props,
594 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
595 }
596 }
597
598 return (error);
599 }
600
601 void
602 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
603 {
604 char *cachefile;
605 spa_config_dirent_t *dp;
606
607 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
608 &cachefile) != 0)
609 return;
610
611 dp = kmem_alloc(sizeof (spa_config_dirent_t),
612 KM_SLEEP);
613
614 if (cachefile[0] == '\0')
615 dp->scd_path = spa_strdup(spa_config_path);
616 else if (strcmp(cachefile, "none") == 0)
617 dp->scd_path = NULL;
618 else
619 dp->scd_path = spa_strdup(cachefile);
620
621 list_insert_head(&spa->spa_config_list, dp);
622 if (need_sync)
623 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
624 }
625
626 int
627 spa_prop_set(spa_t *spa, nvlist_t *nvp)
628 {
629 int error;
630 nvpair_t *elem = NULL;
631 boolean_t need_sync = B_FALSE;
632
633 if ((error = spa_prop_validate(spa, nvp)) != 0)
634 return (error);
635
636 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
637 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
638
639 if (prop == ZPOOL_PROP_CACHEFILE ||
640 prop == ZPOOL_PROP_ALTROOT ||
641 prop == ZPOOL_PROP_READONLY)
642 continue;
643
644 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
645 uint64_t ver;
646
647 if (prop == ZPOOL_PROP_VERSION) {
648 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
649 } else {
650 ASSERT(zpool_prop_feature(nvpair_name(elem)));
651 ver = SPA_VERSION_FEATURES;
652 need_sync = B_TRUE;
653 }
654
655 /* Save time if the version is already set. */
656 if (ver == spa_version(spa))
657 continue;
658
659 /*
660 * In addition to the pool directory object, we might
661 * create the pool properties object, the features for
662 * read object, the features for write object, or the
663 * feature descriptions object.
664 */
665 error = dsl_sync_task(spa->spa_name, NULL,
666 spa_sync_version, &ver, 6);
667 if (error)
668 return (error);
669 continue;
670 }
671
672 need_sync = B_TRUE;
673 break;
674 }
675
676 if (need_sync) {
677 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
678 nvp, 6));
679 }
680
681 return (0);
682 }
683
684 /*
685 * If the bootfs property value is dsobj, clear it.
686 */
687 void
688 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
689 {
690 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
691 VERIFY(zap_remove(spa->spa_meta_objset,
692 spa->spa_pool_props_object,
693 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
694 spa->spa_bootfs = 0;
695 }
696 }
697
698 /*ARGSUSED*/
699 static int
700 spa_change_guid_check(void *arg, dmu_tx_t *tx)
701 {
702 uint64_t *newguid = arg;
703 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
704 vdev_t *rvd = spa->spa_root_vdev;
705 uint64_t vdev_state;
706
707 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
708 vdev_state = rvd->vdev_state;
709 spa_config_exit(spa, SCL_STATE, FTAG);
710
711 if (vdev_state != VDEV_STATE_HEALTHY)
712 return (SET_ERROR(ENXIO));
713
714 ASSERT3U(spa_guid(spa), !=, *newguid);
715
716 return (0);
717 }
718
719 static void
720 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
721 {
722 uint64_t *newguid = arg;
723 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
724 uint64_t oldguid;
725 vdev_t *rvd = spa->spa_root_vdev;
726
727 oldguid = spa_guid(spa);
728
729 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
730 rvd->vdev_guid = *newguid;
731 rvd->vdev_guid_sum += (*newguid - oldguid);
732 vdev_config_dirty(rvd);
733 spa_config_exit(spa, SCL_STATE, FTAG);
734
735 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
736 oldguid, *newguid);
737 }
738
739 /*
740 * Change the GUID for the pool. This is done so that we can later
741 * re-import a pool built from a clone of our own vdevs. We will modify
742 * the root vdev's guid, our own pool guid, and then mark all of our
743 * vdevs dirty. Note that we must make sure that all our vdevs are
744 * online when we do this, or else any vdevs that weren't present
745 * would be orphaned from our pool. We are also going to issue a
746 * sysevent to update any watchers.
747 */
748 int
749 spa_change_guid(spa_t *spa)
750 {
751 int error;
752 uint64_t guid;
753
754 mutex_enter(&spa_namespace_lock);
755 guid = spa_generate_guid(NULL);
756
757 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
758 spa_change_guid_sync, &guid, 5);
759
760 if (error == 0) {
761 spa_config_sync(spa, B_FALSE, B_TRUE);
762 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
763 }
764
765 mutex_exit(&spa_namespace_lock);
766
767 return (error);
768 }
769
770 /*
771 * ==========================================================================
772 * SPA state manipulation (open/create/destroy/import/export)
773 * ==========================================================================
774 */
775
776 static int
777 spa_error_entry_compare(const void *a, const void *b)
778 {
779 spa_error_entry_t *sa = (spa_error_entry_t *)a;
780 spa_error_entry_t *sb = (spa_error_entry_t *)b;
781 int ret;
782
783 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
784 sizeof (zbookmark_t));
785
786 if (ret < 0)
787 return (-1);
788 else if (ret > 0)
789 return (1);
790 else
791 return (0);
792 }
793
794 /*
795 * Utility function which retrieves copies of the current logs and
796 * re-initializes them in the process.
797 */
798 void
799 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
800 {
801 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
802
803 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
804 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
805
806 avl_create(&spa->spa_errlist_scrub,
807 spa_error_entry_compare, sizeof (spa_error_entry_t),
808 offsetof(spa_error_entry_t, se_avl));
809 avl_create(&spa->spa_errlist_last,
810 spa_error_entry_compare, sizeof (spa_error_entry_t),
811 offsetof(spa_error_entry_t, se_avl));
812 }
813
814 static void
815 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
816 {
817 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
818 enum zti_modes mode = ztip->zti_mode;
819 uint_t value = ztip->zti_value;
820 uint_t count = ztip->zti_count;
821 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
822 char name[32];
823 uint_t flags = 0;
824 boolean_t batch = B_FALSE;
825
826 if (mode == ZTI_MODE_NULL) {
827 tqs->stqs_count = 0;
828 tqs->stqs_taskq = NULL;
829 return;
830 }
831
832 ASSERT3U(count, >, 0);
833
834 tqs->stqs_count = count;
835 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
836
837 for (uint_t i = 0; i < count; i++) {
838 taskq_t *tq;
839
840 switch (mode) {
841 case ZTI_MODE_FIXED:
842 ASSERT3U(value, >=, 1);
843 value = MAX(value, 1);
844 break;
845
846 case ZTI_MODE_BATCH:
847 batch = B_TRUE;
848 flags |= TASKQ_THREADS_CPU_PCT;
849 value = zio_taskq_batch_pct;
850 break;
851
852 case ZTI_MODE_ONLINE_PERCENT:
853 flags |= TASKQ_THREADS_CPU_PCT;
854 break;
855
856 default:
857 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
858 "spa_activate()",
859 zio_type_name[t], zio_taskq_types[q], mode, value);
860 break;
861 }
862
863 if (count > 1) {
864 (void) snprintf(name, sizeof (name), "%s_%s_%u",
865 zio_type_name[t], zio_taskq_types[q], i);
866 } else {
867 (void) snprintf(name, sizeof (name), "%s_%s",
868 zio_type_name[t], zio_taskq_types[q]);
869 }
870
871 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
872 if (batch)
873 flags |= TASKQ_DC_BATCH;
874
875 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
876 spa->spa_proc, zio_taskq_basedc, flags);
877 } else {
878 tq = taskq_create_proc(name, value, maxclsyspri, 50,
879 INT_MAX, spa->spa_proc, flags);
880 }
881
882 tqs->stqs_taskq[i] = tq;
883 }
884 }
885
886 static void
887 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
888 {
889 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
890
891 if (tqs->stqs_taskq == NULL) {
892 ASSERT0(tqs->stqs_count);
893 return;
894 }
895
896 for (uint_t i = 0; i < tqs->stqs_count; i++) {
897 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
898 taskq_destroy(tqs->stqs_taskq[i]);
899 }
900
901 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
902 tqs->stqs_taskq = NULL;
903 }
904
905 /*
906 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
907 * Note that a type may have multiple discrete taskqs to avoid lock contention
908 * on the taskq itself. In that case we choose which taskq at random by using
909 * the low bits of gethrtime().
910 */
911 void
912 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
913 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
914 {
915 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
916 taskq_t *tq;
917
918 ASSERT3P(tqs->stqs_taskq, !=, NULL);
919 ASSERT3U(tqs->stqs_count, !=, 0);
920
921 if (tqs->stqs_count == 1) {
922 tq = tqs->stqs_taskq[0];
923 } else {
924 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
925 }
926
927 taskq_dispatch_ent(tq, func, arg, flags, ent);
928 }
929
930 static void
931 spa_create_zio_taskqs(spa_t *spa)
932 {
933 for (int t = 0; t < ZIO_TYPES; t++) {
934 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
935 spa_taskqs_init(spa, t, q);
936 }
937 }
938 }
939
940 #ifdef _KERNEL
941 static void
942 spa_thread(void *arg)
943 {
944 callb_cpr_t cprinfo;
945
946 spa_t *spa = arg;
947 user_t *pu = PTOU(curproc);
948
949 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
950 spa->spa_name);
951
952 ASSERT(curproc != &p0);
953 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
954 "zpool-%s", spa->spa_name);
955 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
956
957 /* bind this thread to the requested psrset */
958 if (zio_taskq_psrset_bind != PS_NONE) {
959 pool_lock();
960 mutex_enter(&cpu_lock);
961 mutex_enter(&pidlock);
962 mutex_enter(&curproc->p_lock);
963
964 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
965 0, NULL, NULL) == 0) {
966 curthread->t_bind_pset = zio_taskq_psrset_bind;
967 } else {
968 cmn_err(CE_WARN,
969 "Couldn't bind process for zfs pool \"%s\" to "
970 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
971 }
972
973 mutex_exit(&curproc->p_lock);
974 mutex_exit(&pidlock);
975 mutex_exit(&cpu_lock);
976 pool_unlock();
977 }
978
979 if (zio_taskq_sysdc) {
980 sysdc_thread_enter(curthread, 100, 0);
981 }
982
983 spa->spa_proc = curproc;
984 spa->spa_did = curthread->t_did;
985
986 spa_create_zio_taskqs(spa);
987
988 mutex_enter(&spa->spa_proc_lock);
989 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
990
991 spa->spa_proc_state = SPA_PROC_ACTIVE;
992 cv_broadcast(&spa->spa_proc_cv);
993
994 CALLB_CPR_SAFE_BEGIN(&cprinfo);
995 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
996 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
997 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
998
999 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1000 spa->spa_proc_state = SPA_PROC_GONE;
1001 spa->spa_proc = &p0;
1002 cv_broadcast(&spa->spa_proc_cv);
1003 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1004
1005 mutex_enter(&curproc->p_lock);
1006 lwp_exit();
1007 }
1008 #endif
1009
1010 /*
1011 * Activate an uninitialized pool.
1012 */
1013 static void
1014 spa_activate(spa_t *spa, int mode)
1015 {
1016 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1017
1018 spa->spa_state = POOL_STATE_ACTIVE;
1019 spa->spa_mode = mode;
1020
1021 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1022 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1023
1024 /* Try to create a covering process */
1025 mutex_enter(&spa->spa_proc_lock);
1026 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1027 ASSERT(spa->spa_proc == &p0);
1028 spa->spa_did = 0;
1029
1030 /* Only create a process if we're going to be around a while. */
1031 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1032 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1033 NULL, 0) == 0) {
1034 spa->spa_proc_state = SPA_PROC_CREATED;
1035 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1036 cv_wait(&spa->spa_proc_cv,
1037 &spa->spa_proc_lock);
1038 }
1039 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1040 ASSERT(spa->spa_proc != &p0);
1041 ASSERT(spa->spa_did != 0);
1042 } else {
1043 #ifdef _KERNEL
1044 cmn_err(CE_WARN,
1045 "Couldn't create process for zfs pool \"%s\"\n",
1046 spa->spa_name);
1047 #endif
1048 }
1049 }
1050 mutex_exit(&spa->spa_proc_lock);
1051
1052 /* If we didn't create a process, we need to create our taskqs. */
1053 if (spa->spa_proc == &p0) {
1054 spa_create_zio_taskqs(spa);
1055 }
1056
1057 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1058 offsetof(vdev_t, vdev_config_dirty_node));
1059 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1060 offsetof(vdev_t, vdev_state_dirty_node));
1061
1062 txg_list_create(&spa->spa_vdev_txg_list,
1063 offsetof(struct vdev, vdev_txg_node));
1064
1065 avl_create(&spa->spa_errlist_scrub,
1066 spa_error_entry_compare, sizeof (spa_error_entry_t),
1067 offsetof(spa_error_entry_t, se_avl));
1068 avl_create(&spa->spa_errlist_last,
1069 spa_error_entry_compare, sizeof (spa_error_entry_t),
1070 offsetof(spa_error_entry_t, se_avl));
1071 }
1072
1073 /*
1074 * Opposite of spa_activate().
1075 */
1076 static void
1077 spa_deactivate(spa_t *spa)
1078 {
1079 ASSERT(spa->spa_sync_on == B_FALSE);
1080 ASSERT(spa->spa_dsl_pool == NULL);
1081 ASSERT(spa->spa_root_vdev == NULL);
1082 ASSERT(spa->spa_async_zio_root == NULL);
1083 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1084
1085 txg_list_destroy(&spa->spa_vdev_txg_list);
1086
1087 list_destroy(&spa->spa_config_dirty_list);
1088 list_destroy(&spa->spa_state_dirty_list);
1089
1090 for (int t = 0; t < ZIO_TYPES; t++) {
1091 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1092 spa_taskqs_fini(spa, t, q);
1093 }
1094 }
1095
1096 metaslab_class_destroy(spa->spa_normal_class);
1097 spa->spa_normal_class = NULL;
1098
1099 metaslab_class_destroy(spa->spa_log_class);
1100 spa->spa_log_class = NULL;
1101
1102 /*
1103 * If this was part of an import or the open otherwise failed, we may
1104 * still have errors left in the queues. Empty them just in case.
1105 */
1106 spa_errlog_drain(spa);
1107
1108 avl_destroy(&spa->spa_errlist_scrub);
1109 avl_destroy(&spa->spa_errlist_last);
1110
1111 spa->spa_state = POOL_STATE_UNINITIALIZED;
1112
1113 mutex_enter(&spa->spa_proc_lock);
1114 if (spa->spa_proc_state != SPA_PROC_NONE) {
1115 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1116 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1117 cv_broadcast(&spa->spa_proc_cv);
1118 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1119 ASSERT(spa->spa_proc != &p0);
1120 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1121 }
1122 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1123 spa->spa_proc_state = SPA_PROC_NONE;
1124 }
1125 ASSERT(spa->spa_proc == &p0);
1126 mutex_exit(&spa->spa_proc_lock);
1127
1128 /*
1129 * We want to make sure spa_thread() has actually exited the ZFS
1130 * module, so that the module can't be unloaded out from underneath
1131 * it.
1132 */
1133 if (spa->spa_did != 0) {
1134 thread_join(spa->spa_did);
1135 spa->spa_did = 0;
1136 }
1137 }
1138
1139 /*
1140 * Verify a pool configuration, and construct the vdev tree appropriately. This
1141 * will create all the necessary vdevs in the appropriate layout, with each vdev
1142 * in the CLOSED state. This will prep the pool before open/creation/import.
1143 * All vdev validation is done by the vdev_alloc() routine.
1144 */
1145 static int
1146 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1147 uint_t id, int atype)
1148 {
1149 nvlist_t **child;
1150 uint_t children;
1151 int error;
1152
1153 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1154 return (error);
1155
1156 if ((*vdp)->vdev_ops->vdev_op_leaf)
1157 return (0);
1158
1159 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1160 &child, &children);
1161
1162 if (error == ENOENT)
1163 return (0);
1164
1165 if (error) {
1166 vdev_free(*vdp);
1167 *vdp = NULL;
1168 return (SET_ERROR(EINVAL));
1169 }
1170
1171 for (int c = 0; c < children; c++) {
1172 vdev_t *vd;
1173 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1174 atype)) != 0) {
1175 vdev_free(*vdp);
1176 *vdp = NULL;
1177 return (error);
1178 }
1179 }
1180
1181 ASSERT(*vdp != NULL);
1182
1183 return (0);
1184 }
1185
1186 /*
1187 * Opposite of spa_load().
1188 */
1189 static void
1190 spa_unload(spa_t *spa)
1191 {
1192 int i;
1193
1194 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1195
1196 /*
1197 * Stop async tasks.
1198 */
1199 spa_async_suspend(spa);
1200
1201 /*
1202 * Stop syncing.
1203 */
1204 if (spa->spa_sync_on) {
1205 txg_sync_stop(spa->spa_dsl_pool);
1206 spa->spa_sync_on = B_FALSE;
1207 }
1208
1209 /*
1210 * Wait for any outstanding async I/O to complete.
1211 */
1212 if (spa->spa_async_zio_root != NULL) {
1213 (void) zio_wait(spa->spa_async_zio_root);
1214 spa->spa_async_zio_root = NULL;
1215 }
1216
1217 bpobj_close(&spa->spa_deferred_bpobj);
1218
1219 /*
1220 * Close the dsl pool.
1221 */
1222 if (spa->spa_dsl_pool) {
1223 dsl_pool_close(spa->spa_dsl_pool);
1224 spa->spa_dsl_pool = NULL;
1225 spa->spa_meta_objset = NULL;
1226 }
1227
1228 ddt_unload(spa);
1229
1230 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1231
1232 /*
1233 * Drop and purge level 2 cache
1234 */
1235 spa_l2cache_drop(spa);
1236
1237 /*
1238 * Close all vdevs.
1239 */
1240 if (spa->spa_root_vdev)
1241 vdev_free(spa->spa_root_vdev);
1242 ASSERT(spa->spa_root_vdev == NULL);
1243
1244 for (i = 0; i < spa->spa_spares.sav_count; i++)
1245 vdev_free(spa->spa_spares.sav_vdevs[i]);
1246 if (spa->spa_spares.sav_vdevs) {
1247 kmem_free(spa->spa_spares.sav_vdevs,
1248 spa->spa_spares.sav_count * sizeof (void *));
1249 spa->spa_spares.sav_vdevs = NULL;
1250 }
1251 if (spa->spa_spares.sav_config) {
1252 nvlist_free(spa->spa_spares.sav_config);
1253 spa->spa_spares.sav_config = NULL;
1254 }
1255 spa->spa_spares.sav_count = 0;
1256
1257 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1258 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1259 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1260 }
1261 if (spa->spa_l2cache.sav_vdevs) {
1262 kmem_free(spa->spa_l2cache.sav_vdevs,
1263 spa->spa_l2cache.sav_count * sizeof (void *));
1264 spa->spa_l2cache.sav_vdevs = NULL;
1265 }
1266 if (spa->spa_l2cache.sav_config) {
1267 nvlist_free(spa->spa_l2cache.sav_config);
1268 spa->spa_l2cache.sav_config = NULL;
1269 }
1270 spa->spa_l2cache.sav_count = 0;
1271
1272 spa->spa_async_suspended = 0;
1273
1274 if (spa->spa_comment != NULL) {
1275 spa_strfree(spa->spa_comment);
1276 spa->spa_comment = NULL;
1277 }
1278
1279 spa_config_exit(spa, SCL_ALL, FTAG);
1280 }
1281
1282 /*
1283 * Load (or re-load) the current list of vdevs describing the active spares for
1284 * this pool. When this is called, we have some form of basic information in
1285 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1286 * then re-generate a more complete list including status information.
1287 */
1288 static void
1289 spa_load_spares(spa_t *spa)
1290 {
1291 nvlist_t **spares;
1292 uint_t nspares;
1293 int i;
1294 vdev_t *vd, *tvd;
1295
1296 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1297
1298 /*
1299 * First, close and free any existing spare vdevs.
1300 */
1301 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1302 vd = spa->spa_spares.sav_vdevs[i];
1303
1304 /* Undo the call to spa_activate() below */
1305 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1306 B_FALSE)) != NULL && tvd->vdev_isspare)
1307 spa_spare_remove(tvd);
1308 vdev_close(vd);
1309 vdev_free(vd);
1310 }
1311
1312 if (spa->spa_spares.sav_vdevs)
1313 kmem_free(spa->spa_spares.sav_vdevs,
1314 spa->spa_spares.sav_count * sizeof (void *));
1315
1316 if (spa->spa_spares.sav_config == NULL)
1317 nspares = 0;
1318 else
1319 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1320 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1321
1322 spa->spa_spares.sav_count = (int)nspares;
1323 spa->spa_spares.sav_vdevs = NULL;
1324
1325 if (nspares == 0)
1326 return;
1327
1328 /*
1329 * Construct the array of vdevs, opening them to get status in the
1330 * process. For each spare, there is potentially two different vdev_t
1331 * structures associated with it: one in the list of spares (used only
1332 * for basic validation purposes) and one in the active vdev
1333 * configuration (if it's spared in). During this phase we open and
1334 * validate each vdev on the spare list. If the vdev also exists in the
1335 * active configuration, then we also mark this vdev as an active spare.
1336 */
1337 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1338 KM_SLEEP);
1339 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1340 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1341 VDEV_ALLOC_SPARE) == 0);
1342 ASSERT(vd != NULL);
1343
1344 spa->spa_spares.sav_vdevs[i] = vd;
1345
1346 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1347 B_FALSE)) != NULL) {
1348 if (!tvd->vdev_isspare)
1349 spa_spare_add(tvd);
1350
1351 /*
1352 * We only mark the spare active if we were successfully
1353 * able to load the vdev. Otherwise, importing a pool
1354 * with a bad active spare would result in strange
1355 * behavior, because multiple pool would think the spare
1356 * is actively in use.
1357 *
1358 * There is a vulnerability here to an equally bizarre
1359 * circumstance, where a dead active spare is later
1360 * brought back to life (onlined or otherwise). Given
1361 * the rarity of this scenario, and the extra complexity
1362 * it adds, we ignore the possibility.
1363 */
1364 if (!vdev_is_dead(tvd))
1365 spa_spare_activate(tvd);
1366 }
1367
1368 vd->vdev_top = vd;
1369 vd->vdev_aux = &spa->spa_spares;
1370
1371 if (vdev_open(vd) != 0)
1372 continue;
1373
1374 if (vdev_validate_aux(vd) == 0)
1375 spa_spare_add(vd);
1376 }
1377
1378 /*
1379 * Recompute the stashed list of spares, with status information
1380 * this time.
1381 */
1382 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1383 DATA_TYPE_NVLIST_ARRAY) == 0);
1384
1385 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1386 KM_SLEEP);
1387 for (i = 0; i < spa->spa_spares.sav_count; i++)
1388 spares[i] = vdev_config_generate(spa,
1389 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1390 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1391 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1392 for (i = 0; i < spa->spa_spares.sav_count; i++)
1393 nvlist_free(spares[i]);
1394 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1395 }
1396
1397 /*
1398 * Load (or re-load) the current list of vdevs describing the active l2cache for
1399 * this pool. When this is called, we have some form of basic information in
1400 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1401 * then re-generate a more complete list including status information.
1402 * Devices which are already active have their details maintained, and are
1403 * not re-opened.
1404 */
1405 static void
1406 spa_load_l2cache(spa_t *spa)
1407 {
1408 nvlist_t **l2cache;
1409 uint_t nl2cache;
1410 int i, j, oldnvdevs;
1411 uint64_t guid;
1412 vdev_t *vd, **oldvdevs, **newvdevs;
1413 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1414
1415 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1416
1417 if (sav->sav_config != NULL) {
1418 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1419 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1420 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1421 } else {
1422 nl2cache = 0;
1423 newvdevs = NULL;
1424 }
1425
1426 oldvdevs = sav->sav_vdevs;
1427 oldnvdevs = sav->sav_count;
1428 sav->sav_vdevs = NULL;
1429 sav->sav_count = 0;
1430
1431 /*
1432 * Process new nvlist of vdevs.
1433 */
1434 for (i = 0; i < nl2cache; i++) {
1435 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1436 &guid) == 0);
1437
1438 newvdevs[i] = NULL;
1439 for (j = 0; j < oldnvdevs; j++) {
1440 vd = oldvdevs[j];
1441 if (vd != NULL && guid == vd->vdev_guid) {
1442 /*
1443 * Retain previous vdev for add/remove ops.
1444 */
1445 newvdevs[i] = vd;
1446 oldvdevs[j] = NULL;
1447 break;
1448 }
1449 }
1450
1451 if (newvdevs[i] == NULL) {
1452 /*
1453 * Create new vdev
1454 */
1455 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1456 VDEV_ALLOC_L2CACHE) == 0);
1457 ASSERT(vd != NULL);
1458 newvdevs[i] = vd;
1459
1460 /*
1461 * Commit this vdev as an l2cache device,
1462 * even if it fails to open.
1463 */
1464 spa_l2cache_add(vd);
1465
1466 vd->vdev_top = vd;
1467 vd->vdev_aux = sav;
1468
1469 spa_l2cache_activate(vd);
1470
1471 if (vdev_open(vd) != 0)
1472 continue;
1473
1474 (void) vdev_validate_aux(vd);
1475
1476 if (!vdev_is_dead(vd))
1477 l2arc_add_vdev(spa, vd);
1478 }
1479 }
1480
1481 /*
1482 * Purge vdevs that were dropped
1483 */
1484 for (i = 0; i < oldnvdevs; i++) {
1485 uint64_t pool;
1486
1487 vd = oldvdevs[i];
1488 if (vd != NULL) {
1489 ASSERT(vd->vdev_isl2cache);
1490
1491 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1492 pool != 0ULL && l2arc_vdev_present(vd))
1493 l2arc_remove_vdev(vd);
1494 vdev_clear_stats(vd);
1495 vdev_free(vd);
1496 }
1497 }
1498
1499 if (oldvdevs)
1500 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1501
1502 if (sav->sav_config == NULL)
1503 goto out;
1504
1505 sav->sav_vdevs = newvdevs;
1506 sav->sav_count = (int)nl2cache;
1507
1508 /*
1509 * Recompute the stashed list of l2cache devices, with status
1510 * information this time.
1511 */
1512 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1513 DATA_TYPE_NVLIST_ARRAY) == 0);
1514
1515 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1516 for (i = 0; i < sav->sav_count; i++)
1517 l2cache[i] = vdev_config_generate(spa,
1518 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1519 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1520 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1521 out:
1522 for (i = 0; i < sav->sav_count; i++)
1523 nvlist_free(l2cache[i]);
1524 if (sav->sav_count)
1525 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1526 }
1527
1528 static int
1529 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1530 {
1531 dmu_buf_t *db;
1532 char *packed = NULL;
1533 size_t nvsize = 0;
1534 int error;
1535 *value = NULL;
1536
1537 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1538 nvsize = *(uint64_t *)db->db_data;
1539 dmu_buf_rele(db, FTAG);
1540
1541 packed = kmem_alloc(nvsize, KM_SLEEP);
1542 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1543 DMU_READ_PREFETCH);
1544 if (error == 0)
1545 error = nvlist_unpack(packed, nvsize, value, 0);
1546 kmem_free(packed, nvsize);
1547
1548 return (error);
1549 }
1550
1551 /*
1552 * Checks to see if the given vdev could not be opened, in which case we post a
1553 * sysevent to notify the autoreplace code that the device has been removed.
1554 */
1555 static void
1556 spa_check_removed(vdev_t *vd)
1557 {
1558 for (int c = 0; c < vd->vdev_children; c++)
1559 spa_check_removed(vd->vdev_child[c]);
1560
1561 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1562 !vd->vdev_ishole) {
1563 zfs_post_autoreplace(vd->vdev_spa, vd);
1564 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1565 }
1566 }
1567
1568 /*
1569 * Validate the current config against the MOS config
1570 */
1571 static boolean_t
1572 spa_config_valid(spa_t *spa, nvlist_t *config)
1573 {
1574 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1575 nvlist_t *nv;
1576
1577 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1578
1579 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1580 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1581
1582 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1583
1584 /*
1585 * If we're doing a normal import, then build up any additional
1586 * diagnostic information about missing devices in this config.
1587 * We'll pass this up to the user for further processing.
1588 */
1589 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1590 nvlist_t **child, *nv;
1591 uint64_t idx = 0;
1592
1593 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1594 KM_SLEEP);
1595 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1596
1597 for (int c = 0; c < rvd->vdev_children; c++) {
1598 vdev_t *tvd = rvd->vdev_child[c];
1599 vdev_t *mtvd = mrvd->vdev_child[c];
1600
1601 if (tvd->vdev_ops == &vdev_missing_ops &&
1602 mtvd->vdev_ops != &vdev_missing_ops &&
1603 mtvd->vdev_islog)
1604 child[idx++] = vdev_config_generate(spa, mtvd,
1605 B_FALSE, 0);
1606 }
1607
1608 if (idx) {
1609 VERIFY(nvlist_add_nvlist_array(nv,
1610 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1611 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1612 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1613
1614 for (int i = 0; i < idx; i++)
1615 nvlist_free(child[i]);
1616 }
1617 nvlist_free(nv);
1618 kmem_free(child, rvd->vdev_children * sizeof (char **));
1619 }
1620
1621 /*
1622 * Compare the root vdev tree with the information we have
1623 * from the MOS config (mrvd). Check each top-level vdev
1624 * with the corresponding MOS config top-level (mtvd).
1625 */
1626 for (int c = 0; c < rvd->vdev_children; c++) {
1627 vdev_t *tvd = rvd->vdev_child[c];
1628 vdev_t *mtvd = mrvd->vdev_child[c];
1629
1630 /*
1631 * Resolve any "missing" vdevs in the current configuration.
1632 * If we find that the MOS config has more accurate information
1633 * about the top-level vdev then use that vdev instead.
1634 */
1635 if (tvd->vdev_ops == &vdev_missing_ops &&
1636 mtvd->vdev_ops != &vdev_missing_ops) {
1637
1638 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1639 continue;
1640
1641 /*
1642 * Device specific actions.
1643 */
1644 if (mtvd->vdev_islog) {
1645 spa_set_log_state(spa, SPA_LOG_CLEAR);
1646 } else {
1647 /*
1648 * XXX - once we have 'readonly' pool
1649 * support we should be able to handle
1650 * missing data devices by transitioning
1651 * the pool to readonly.
1652 */
1653 continue;
1654 }
1655
1656 /*
1657 * Swap the missing vdev with the data we were
1658 * able to obtain from the MOS config.
1659 */
1660 vdev_remove_child(rvd, tvd);
1661 vdev_remove_child(mrvd, mtvd);
1662
1663 vdev_add_child(rvd, mtvd);
1664 vdev_add_child(mrvd, tvd);
1665
1666 spa_config_exit(spa, SCL_ALL, FTAG);
1667 vdev_load(mtvd);
1668 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1669
1670 vdev_reopen(rvd);
1671 } else if (mtvd->vdev_islog) {
1672 /*
1673 * Load the slog device's state from the MOS config
1674 * since it's possible that the label does not
1675 * contain the most up-to-date information.
1676 */
1677 vdev_load_log_state(tvd, mtvd);
1678 vdev_reopen(tvd);
1679 }
1680 }
1681 vdev_free(mrvd);
1682 spa_config_exit(spa, SCL_ALL, FTAG);
1683
1684 /*
1685 * Ensure we were able to validate the config.
1686 */
1687 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1688 }
1689
1690 /*
1691 * Check for missing log devices
1692 */
1693 static boolean_t
1694 spa_check_logs(spa_t *spa)
1695 {
1696 boolean_t rv = B_FALSE;
1697
1698 switch (spa->spa_log_state) {
1699 case SPA_LOG_MISSING:
1700 /* need to recheck in case slog has been restored */
1701 case SPA_LOG_UNKNOWN:
1702 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1703 NULL, DS_FIND_CHILDREN) != 0);
1704 if (rv)
1705 spa_set_log_state(spa, SPA_LOG_MISSING);
1706 break;
1707 }
1708 return (rv);
1709 }
1710
1711 static boolean_t
1712 spa_passivate_log(spa_t *spa)
1713 {
1714 vdev_t *rvd = spa->spa_root_vdev;
1715 boolean_t slog_found = B_FALSE;
1716
1717 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1718
1719 if (!spa_has_slogs(spa))
1720 return (B_FALSE);
1721
1722 for (int c = 0; c < rvd->vdev_children; c++) {
1723 vdev_t *tvd = rvd->vdev_child[c];
1724 metaslab_group_t *mg = tvd->vdev_mg;
1725
1726 if (tvd->vdev_islog) {
1727 metaslab_group_passivate(mg);
1728 slog_found = B_TRUE;
1729 }
1730 }
1731
1732 return (slog_found);
1733 }
1734
1735 static void
1736 spa_activate_log(spa_t *spa)
1737 {
1738 vdev_t *rvd = spa->spa_root_vdev;
1739
1740 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1741
1742 for (int c = 0; c < rvd->vdev_children; c++) {
1743 vdev_t *tvd = rvd->vdev_child[c];
1744 metaslab_group_t *mg = tvd->vdev_mg;
1745
1746 if (tvd->vdev_islog)
1747 metaslab_group_activate(mg);
1748 }
1749 }
1750
1751 int
1752 spa_offline_log(spa_t *spa)
1753 {
1754 int error;
1755
1756 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1757 NULL, DS_FIND_CHILDREN);
1758 if (error == 0) {
1759 /*
1760 * We successfully offlined the log device, sync out the
1761 * current txg so that the "stubby" block can be removed
1762 * by zil_sync().
1763 */
1764 txg_wait_synced(spa->spa_dsl_pool, 0);
1765 }
1766 return (error);
1767 }
1768
1769 static void
1770 spa_aux_check_removed(spa_aux_vdev_t *sav)
1771 {
1772 for (int i = 0; i < sav->sav_count; i++)
1773 spa_check_removed(sav->sav_vdevs[i]);
1774 }
1775
1776 void
1777 spa_claim_notify(zio_t *zio)
1778 {
1779 spa_t *spa = zio->io_spa;
1780
1781 if (zio->io_error)
1782 return;
1783
1784 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1785 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1786 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1787 mutex_exit(&spa->spa_props_lock);
1788 }
1789
1790 typedef struct spa_load_error {
1791 uint64_t sle_meta_count;
1792 uint64_t sle_data_count;
1793 } spa_load_error_t;
1794
1795 static void
1796 spa_load_verify_done(zio_t *zio)
1797 {
1798 blkptr_t *bp = zio->io_bp;
1799 spa_load_error_t *sle = zio->io_private;
1800 dmu_object_type_t type = BP_GET_TYPE(bp);
1801 int error = zio->io_error;
1802
1803 if (error) {
1804 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1805 type != DMU_OT_INTENT_LOG)
1806 atomic_add_64(&sle->sle_meta_count, 1);
1807 else
1808 atomic_add_64(&sle->sle_data_count, 1);
1809 }
1810 zio_data_buf_free(zio->io_data, zio->io_size);
1811 }
1812
1813 /*ARGSUSED*/
1814 static int
1815 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1816 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1817 {
1818 if (bp != NULL) {
1819 zio_t *rio = arg;
1820 size_t size = BP_GET_PSIZE(bp);
1821 void *data = zio_data_buf_alloc(size);
1822
1823 zio_nowait(zio_read(rio, spa, bp, data, size,
1824 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1825 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1826 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1827 }
1828 return (0);
1829 }
1830
1831 static int
1832 spa_load_verify(spa_t *spa)
1833 {
1834 zio_t *rio;
1835 spa_load_error_t sle = { 0 };
1836 zpool_rewind_policy_t policy;
1837 boolean_t verify_ok = B_FALSE;
1838 int error;
1839
1840 zpool_get_rewind_policy(spa->spa_config, &policy);
1841
1842 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1843 return (0);
1844
1845 rio = zio_root(spa, NULL, &sle,
1846 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1847
1848 error = traverse_pool(spa, spa->spa_verify_min_txg,
1849 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1850
1851 (void) zio_wait(rio);
1852
1853 spa->spa_load_meta_errors = sle.sle_meta_count;
1854 spa->spa_load_data_errors = sle.sle_data_count;
1855
1856 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1857 sle.sle_data_count <= policy.zrp_maxdata) {
1858 int64_t loss = 0;
1859
1860 verify_ok = B_TRUE;
1861 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1862 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1863
1864 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1865 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1866 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1867 VERIFY(nvlist_add_int64(spa->spa_load_info,
1868 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1869 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1870 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1871 } else {
1872 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1873 }
1874
1875 if (error) {
1876 if (error != ENXIO && error != EIO)
1877 error = SET_ERROR(EIO);
1878 return (error);
1879 }
1880
1881 return (verify_ok ? 0 : EIO);
1882 }
1883
1884 /*
1885 * Find a value in the pool props object.
1886 */
1887 static void
1888 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1889 {
1890 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1891 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1892 }
1893
1894 /*
1895 * Find a value in the pool directory object.
1896 */
1897 static int
1898 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1899 {
1900 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1901 name, sizeof (uint64_t), 1, val));
1902 }
1903
1904 static int
1905 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1906 {
1907 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1908 return (err);
1909 }
1910
1911 /*
1912 * Fix up config after a partly-completed split. This is done with the
1913 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1914 * pool have that entry in their config, but only the splitting one contains
1915 * a list of all the guids of the vdevs that are being split off.
1916 *
1917 * This function determines what to do with that list: either rejoin
1918 * all the disks to the pool, or complete the splitting process. To attempt
1919 * the rejoin, each disk that is offlined is marked online again, and
1920 * we do a reopen() call. If the vdev label for every disk that was
1921 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1922 * then we call vdev_split() on each disk, and complete the split.
1923 *
1924 * Otherwise we leave the config alone, with all the vdevs in place in
1925 * the original pool.
1926 */
1927 static void
1928 spa_try_repair(spa_t *spa, nvlist_t *config)
1929 {
1930 uint_t extracted;
1931 uint64_t *glist;
1932 uint_t i, gcount;
1933 nvlist_t *nvl;
1934 vdev_t **vd;
1935 boolean_t attempt_reopen;
1936
1937 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1938 return;
1939
1940 /* check that the config is complete */
1941 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1942 &glist, &gcount) != 0)
1943 return;
1944
1945 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1946
1947 /* attempt to online all the vdevs & validate */
1948 attempt_reopen = B_TRUE;
1949 for (i = 0; i < gcount; i++) {
1950 if (glist[i] == 0) /* vdev is hole */
1951 continue;
1952
1953 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1954 if (vd[i] == NULL) {
1955 /*
1956 * Don't bother attempting to reopen the disks;
1957 * just do the split.
1958 */
1959 attempt_reopen = B_FALSE;
1960 } else {
1961 /* attempt to re-online it */
1962 vd[i]->vdev_offline = B_FALSE;
1963 }
1964 }
1965
1966 if (attempt_reopen) {
1967 vdev_reopen(spa->spa_root_vdev);
1968
1969 /* check each device to see what state it's in */
1970 for (extracted = 0, i = 0; i < gcount; i++) {
1971 if (vd[i] != NULL &&
1972 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1973 break;
1974 ++extracted;
1975 }
1976 }
1977
1978 /*
1979 * If every disk has been moved to the new pool, or if we never
1980 * even attempted to look at them, then we split them off for
1981 * good.
1982 */
1983 if (!attempt_reopen || gcount == extracted) {
1984 for (i = 0; i < gcount; i++)
1985 if (vd[i] != NULL)
1986 vdev_split(vd[i]);
1987 vdev_reopen(spa->spa_root_vdev);
1988 }
1989
1990 kmem_free(vd, gcount * sizeof (vdev_t *));
1991 }
1992
1993 static int
1994 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1995 boolean_t mosconfig)
1996 {
1997 nvlist_t *config = spa->spa_config;
1998 char *ereport = FM_EREPORT_ZFS_POOL;
1999 char *comment;
2000 int error;
2001 uint64_t pool_guid;
2002 nvlist_t *nvl;
2003
2004 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2005 return (SET_ERROR(EINVAL));
2006
2007 ASSERT(spa->spa_comment == NULL);
2008 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2009 spa->spa_comment = spa_strdup(comment);
2010
2011 /*
2012 * Versioning wasn't explicitly added to the label until later, so if
2013 * it's not present treat it as the initial version.
2014 */
2015 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2016 &spa->spa_ubsync.ub_version) != 0)
2017 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2018
2019 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2020 &spa->spa_config_txg);
2021
2022 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2023 spa_guid_exists(pool_guid, 0)) {
2024 error = SET_ERROR(EEXIST);
2025 } else {
2026 spa->spa_config_guid = pool_guid;
2027
2028 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2029 &nvl) == 0) {
2030 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2031 KM_SLEEP) == 0);
2032 }
2033
2034 nvlist_free(spa->spa_load_info);
2035 spa->spa_load_info = fnvlist_alloc();
2036
2037 gethrestime(&spa->spa_loaded_ts);
2038 error = spa_load_impl(spa, pool_guid, config, state, type,
2039 mosconfig, &ereport);
2040 }
2041
2042 spa->spa_minref = refcount_count(&spa->spa_refcount);
2043 if (error) {
2044 if (error != EEXIST) {
2045 spa->spa_loaded_ts.tv_sec = 0;
2046 spa->spa_loaded_ts.tv_nsec = 0;
2047 }
2048 if (error != EBADF) {
2049 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2050 }
2051 }
2052 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2053 spa->spa_ena = 0;
2054
2055 return (error);
2056 }
2057
2058 /*
2059 * Load an existing storage pool, using the pool's builtin spa_config as a
2060 * source of configuration information.
2061 */
2062 static int
2063 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2064 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2065 char **ereport)
2066 {
2067 int error = 0;
2068 nvlist_t *nvroot = NULL;
2069 nvlist_t *label;
2070 vdev_t *rvd;
2071 uberblock_t *ub = &spa->spa_uberblock;
2072 uint64_t children, config_cache_txg = spa->spa_config_txg;
2073 int orig_mode = spa->spa_mode;
2074 int parse;
2075 uint64_t obj;
2076 boolean_t missing_feat_write = B_FALSE;
2077
2078 /*
2079 * If this is an untrusted config, access the pool in read-only mode.
2080 * This prevents things like resilvering recently removed devices.
2081 */
2082 if (!mosconfig)
2083 spa->spa_mode = FREAD;
2084
2085 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2086
2087 spa->spa_load_state = state;
2088
2089 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2090 return (SET_ERROR(EINVAL));
2091
2092 parse = (type == SPA_IMPORT_EXISTING ?
2093 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2094
2095 /*
2096 * Create "The Godfather" zio to hold all async IOs
2097 */
2098 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2099 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2100
2101 /*
2102 * Parse the configuration into a vdev tree. We explicitly set the
2103 * value that will be returned by spa_version() since parsing the
2104 * configuration requires knowing the version number.
2105 */
2106 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2107 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2108 spa_config_exit(spa, SCL_ALL, FTAG);
2109
2110 if (error != 0)
2111 return (error);
2112
2113 ASSERT(spa->spa_root_vdev == rvd);
2114
2115 if (type != SPA_IMPORT_ASSEMBLE) {
2116 ASSERT(spa_guid(spa) == pool_guid);
2117 }
2118
2119 /*
2120 * Try to open all vdevs, loading each label in the process.
2121 */
2122 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2123 error = vdev_open(rvd);
2124 spa_config_exit(spa, SCL_ALL, FTAG);
2125 if (error != 0)
2126 return (error);
2127
2128 /*
2129 * We need to validate the vdev labels against the configuration that
2130 * we have in hand, which is dependent on the setting of mosconfig. If
2131 * mosconfig is true then we're validating the vdev labels based on
2132 * that config. Otherwise, we're validating against the cached config
2133 * (zpool.cache) that was read when we loaded the zfs module, and then
2134 * later we will recursively call spa_load() and validate against
2135 * the vdev config.
2136 *
2137 * If we're assembling a new pool that's been split off from an
2138 * existing pool, the labels haven't yet been updated so we skip
2139 * validation for now.
2140 */
2141 if (type != SPA_IMPORT_ASSEMBLE) {
2142 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2143 error = vdev_validate(rvd, mosconfig);
2144 spa_config_exit(spa, SCL_ALL, FTAG);
2145
2146 if (error != 0)
2147 return (error);
2148
2149 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2150 return (SET_ERROR(ENXIO));
2151 }
2152
2153 /*
2154 * Find the best uberblock.
2155 */
2156 vdev_uberblock_load(rvd, ub, &label);
2157
2158 /*
2159 * If we weren't able to find a single valid uberblock, return failure.
2160 */
2161 if (ub->ub_txg == 0) {
2162 nvlist_free(label);
2163 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2164 }
2165
2166 /*
2167 * If the pool has an unsupported version we can't open it.
2168 */
2169 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2170 nvlist_free(label);
2171 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2172 }
2173
2174 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2175 nvlist_t *features;
2176
2177 /*
2178 * If we weren't able to find what's necessary for reading the
2179 * MOS in the label, return failure.
2180 */
2181 if (label == NULL || nvlist_lookup_nvlist(label,
2182 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2183 nvlist_free(label);
2184 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2185 ENXIO));
2186 }
2187
2188 /*
2189 * Update our in-core representation with the definitive values
2190 * from the label.
2191 */
2192 nvlist_free(spa->spa_label_features);
2193 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2194 }
2195
2196 nvlist_free(label);
2197
2198 /*
2199 * Look through entries in the label nvlist's features_for_read. If
2200 * there is a feature listed there which we don't understand then we
2201 * cannot open a pool.
2202 */
2203 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2204 nvlist_t *unsup_feat;
2205
2206 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2207 0);
2208
2209 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2210 NULL); nvp != NULL;
2211 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2212 if (!zfeature_is_supported(nvpair_name(nvp))) {
2213 VERIFY(nvlist_add_string(unsup_feat,
2214 nvpair_name(nvp), "") == 0);
2215 }
2216 }
2217
2218 if (!nvlist_empty(unsup_feat)) {
2219 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2220 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2221 nvlist_free(unsup_feat);
2222 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2223 ENOTSUP));
2224 }
2225
2226 nvlist_free(unsup_feat);
2227 }
2228
2229 /*
2230 * If the vdev guid sum doesn't match the uberblock, we have an
2231 * incomplete configuration. We first check to see if the pool
2232 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2233 * If it is, defer the vdev_guid_sum check till later so we
2234 * can handle missing vdevs.
2235 */
2236 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2237 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2238 rvd->vdev_guid_sum != ub->ub_guid_sum)
2239 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2240
2241 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2242 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2243 spa_try_repair(spa, config);
2244 spa_config_exit(spa, SCL_ALL, FTAG);
2245 nvlist_free(spa->spa_config_splitting);
2246 spa->spa_config_splitting = NULL;
2247 }
2248
2249 /*
2250 * Initialize internal SPA structures.
2251 */
2252 spa->spa_state = POOL_STATE_ACTIVE;
2253 spa->spa_ubsync = spa->spa_uberblock;
2254 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2255 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2256 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2257 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2258 spa->spa_claim_max_txg = spa->spa_first_txg;
2259 spa->spa_prev_software_version = ub->ub_software_version;
2260
2261 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2262 if (error)
2263 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2264 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2265
2266 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2267 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2268
2269 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2270 boolean_t missing_feat_read = B_FALSE;
2271 nvlist_t *unsup_feat, *enabled_feat;
2272
2273 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2274 &spa->spa_feat_for_read_obj) != 0) {
2275 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2276 }
2277
2278 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2279 &spa->spa_feat_for_write_obj) != 0) {
2280 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2281 }
2282
2283 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2284 &spa->spa_feat_desc_obj) != 0) {
2285 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2286 }
2287
2288 enabled_feat = fnvlist_alloc();
2289 unsup_feat = fnvlist_alloc();
2290
2291 if (!feature_is_supported(spa->spa_meta_objset,
2292 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2293 unsup_feat, enabled_feat))
2294 missing_feat_read = B_TRUE;
2295
2296 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2297 if (!feature_is_supported(spa->spa_meta_objset,
2298 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2299 unsup_feat, enabled_feat)) {
2300 missing_feat_write = B_TRUE;
2301 }
2302 }
2303
2304 fnvlist_add_nvlist(spa->spa_load_info,
2305 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2306
2307 if (!nvlist_empty(unsup_feat)) {
2308 fnvlist_add_nvlist(spa->spa_load_info,
2309 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2310 }
2311
2312 fnvlist_free(enabled_feat);
2313 fnvlist_free(unsup_feat);
2314
2315 if (!missing_feat_read) {
2316 fnvlist_add_boolean(spa->spa_load_info,
2317 ZPOOL_CONFIG_CAN_RDONLY);
2318 }
2319
2320 /*
2321 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2322 * twofold: to determine whether the pool is available for
2323 * import in read-write mode and (if it is not) whether the
2324 * pool is available for import in read-only mode. If the pool
2325 * is available for import in read-write mode, it is displayed
2326 * as available in userland; if it is not available for import
2327 * in read-only mode, it is displayed as unavailable in
2328 * userland. If the pool is available for import in read-only
2329 * mode but not read-write mode, it is displayed as unavailable
2330 * in userland with a special note that the pool is actually
2331 * available for open in read-only mode.
2332 *
2333 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2334 * missing a feature for write, we must first determine whether
2335 * the pool can be opened read-only before returning to
2336 * userland in order to know whether to display the
2337 * abovementioned note.
2338 */
2339 if (missing_feat_read || (missing_feat_write &&
2340 spa_writeable(spa))) {
2341 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2342 ENOTSUP));
2343 }
2344 }
2345
2346 spa->spa_is_initializing = B_TRUE;
2347 error = dsl_pool_open(spa->spa_dsl_pool);
2348 spa->spa_is_initializing = B_FALSE;
2349 if (error != 0)
2350 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2351
2352 if (!mosconfig) {
2353 uint64_t hostid;
2354 nvlist_t *policy = NULL, *nvconfig;
2355
2356 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2357 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2358
2359 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2360 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2361 char *hostname;
2362 unsigned long myhostid = 0;
2363
2364 VERIFY(nvlist_lookup_string(nvconfig,
2365 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2366
2367 #ifdef _KERNEL
2368 myhostid = zone_get_hostid(NULL);
2369 #else /* _KERNEL */
2370 /*
2371 * We're emulating the system's hostid in userland, so
2372 * we can't use zone_get_hostid().
2373 */
2374 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2375 #endif /* _KERNEL */
2376 if (hostid != 0 && myhostid != 0 &&
2377 hostid != myhostid) {
2378 nvlist_free(nvconfig);
2379 cmn_err(CE_WARN, "pool '%s' could not be "
2380 "loaded as it was last accessed by "
2381 "another system (host: %s hostid: 0x%lx). "
2382 "See: http://illumos.org/msg/ZFS-8000-EY",
2383 spa_name(spa), hostname,
2384 (unsigned long)hostid);
2385 return (SET_ERROR(EBADF));
2386 }
2387 }
2388 if (nvlist_lookup_nvlist(spa->spa_config,
2389 ZPOOL_REWIND_POLICY, &policy) == 0)
2390 VERIFY(nvlist_add_nvlist(nvconfig,
2391 ZPOOL_REWIND_POLICY, policy) == 0);
2392
2393 spa_config_set(spa, nvconfig);
2394 spa_unload(spa);
2395 spa_deactivate(spa);
2396 spa_activate(spa, orig_mode);
2397
2398 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2399 }
2400
2401 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2402 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2403 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2404 if (error != 0)
2405 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2406
2407 /*
2408 * Load the bit that tells us to use the new accounting function
2409 * (raid-z deflation). If we have an older pool, this will not
2410 * be present.
2411 */
2412 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2413 if (error != 0 && error != ENOENT)
2414 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2415
2416 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2417 &spa->spa_creation_version);
2418 if (error != 0 && error != ENOENT)
2419 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2420
2421 /*
2422 * Load the persistent error log. If we have an older pool, this will
2423 * not be present.
2424 */
2425 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2426 if (error != 0 && error != ENOENT)
2427 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2428
2429 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2430 &spa->spa_errlog_scrub);
2431 if (error != 0 && error != ENOENT)
2432 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2433
2434 /*
2435 * Load the history object. If we have an older pool, this
2436 * will not be present.
2437 */
2438 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2439 if (error != 0 && error != ENOENT)
2440 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2441
2442 /*
2443 * If we're assembling the pool from the split-off vdevs of
2444 * an existing pool, we don't want to attach the spares & cache
2445 * devices.
2446 */
2447
2448 /*
2449 * Load any hot spares for this pool.
2450 */
2451 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2452 if (error != 0 && error != ENOENT)
2453 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2454 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2455 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2456 if (load_nvlist(spa, spa->spa_spares.sav_object,
2457 &spa->spa_spares.sav_config) != 0)
2458 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2459
2460 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2461 spa_load_spares(spa);
2462 spa_config_exit(spa, SCL_ALL, FTAG);
2463 } else if (error == 0) {
2464 spa->spa_spares.sav_sync = B_TRUE;
2465 }
2466
2467 /*
2468 * Load any level 2 ARC devices for this pool.
2469 */
2470 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2471 &spa->spa_l2cache.sav_object);
2472 if (error != 0 && error != ENOENT)
2473 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2474 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2475 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2476 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2477 &spa->spa_l2cache.sav_config) != 0)
2478 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2479
2480 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2481 spa_load_l2cache(spa);
2482 spa_config_exit(spa, SCL_ALL, FTAG);
2483 } else if (error == 0) {
2484 spa->spa_l2cache.sav_sync = B_TRUE;
2485 }
2486
2487 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2488
2489 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2490 if (error && error != ENOENT)
2491 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2492
2493 if (error == 0) {
2494 uint64_t autoreplace;
2495
2496 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2497 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2498 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2499 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2500 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2501 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2502 &spa->spa_dedup_ditto);
2503
2504 spa->spa_autoreplace = (autoreplace != 0);
2505 }
2506
2507 /*
2508 * If the 'autoreplace' property is set, then post a resource notifying
2509 * the ZFS DE that it should not issue any faults for unopenable
2510 * devices. We also iterate over the vdevs, and post a sysevent for any
2511 * unopenable vdevs so that the normal autoreplace handler can take
2512 * over.
2513 */
2514 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2515 spa_check_removed(spa->spa_root_vdev);
2516 /*
2517 * For the import case, this is done in spa_import(), because
2518 * at this point we're using the spare definitions from
2519 * the MOS config, not necessarily from the userland config.
2520 */
2521 if (state != SPA_LOAD_IMPORT) {
2522 spa_aux_check_removed(&spa->spa_spares);
2523 spa_aux_check_removed(&spa->spa_l2cache);
2524 }
2525 }
2526
2527 /*
2528 * Load the vdev state for all toplevel vdevs.
2529 */
2530 vdev_load(rvd);
2531
2532 /*
2533 * Propagate the leaf DTLs we just loaded all the way up the tree.
2534 */
2535 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2536 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2537 spa_config_exit(spa, SCL_ALL, FTAG);
2538
2539 /*
2540 * Load the DDTs (dedup tables).
2541 */
2542 error = ddt_load(spa);
2543 if (error != 0)
2544 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2545
2546 spa_update_dspace(spa);
2547
2548 /*
2549 * Validate the config, using the MOS config to fill in any
2550 * information which might be missing. If we fail to validate
2551 * the config then declare the pool unfit for use. If we're
2552 * assembling a pool from a split, the log is not transferred
2553 * over.
2554 */
2555 if (type != SPA_IMPORT_ASSEMBLE) {
2556 nvlist_t *nvconfig;
2557
2558 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2559 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2560
2561 if (!spa_config_valid(spa, nvconfig)) {
2562 nvlist_free(nvconfig);
2563 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2564 ENXIO));
2565 }
2566 nvlist_free(nvconfig);
2567
2568 /*
2569 * Now that we've validated the config, check the state of the
2570 * root vdev. If it can't be opened, it indicates one or
2571 * more toplevel vdevs are faulted.
2572 */
2573 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2574 return (SET_ERROR(ENXIO));
2575
2576 if (spa_check_logs(spa)) {
2577 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2578 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2579 }
2580 }
2581
2582 if (missing_feat_write) {
2583 ASSERT(state == SPA_LOAD_TRYIMPORT);
2584
2585 /*
2586 * At this point, we know that we can open the pool in
2587 * read-only mode but not read-write mode. We now have enough
2588 * information and can return to userland.
2589 */
2590 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2591 }
2592
2593 /*
2594 * We've successfully opened the pool, verify that we're ready
2595 * to start pushing transactions.
2596 */
2597 if (state != SPA_LOAD_TRYIMPORT) {
2598 if (error = spa_load_verify(spa))
2599 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2600 error));
2601 }
2602
2603 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2604 spa->spa_load_max_txg == UINT64_MAX)) {
2605 dmu_tx_t *tx;
2606 int need_update = B_FALSE;
2607
2608 ASSERT(state != SPA_LOAD_TRYIMPORT);
2609
2610 /*
2611 * Claim log blocks that haven't been committed yet.
2612 * This must all happen in a single txg.
2613 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2614 * invoked from zil_claim_log_block()'s i/o done callback.
2615 * Price of rollback is that we abandon the log.
2616 */
2617 spa->spa_claiming = B_TRUE;
2618
2619 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2620 spa_first_txg(spa));
2621 (void) dmu_objset_find(spa_name(spa),
2622 zil_claim, tx, DS_FIND_CHILDREN);
2623 dmu_tx_commit(tx);
2624
2625 spa->spa_claiming = B_FALSE;
2626
2627 spa_set_log_state(spa, SPA_LOG_GOOD);
2628 spa->spa_sync_on = B_TRUE;
2629 txg_sync_start(spa->spa_dsl_pool);
2630
2631 /*
2632 * Wait for all claims to sync. We sync up to the highest
2633 * claimed log block birth time so that claimed log blocks
2634 * don't appear to be from the future. spa_claim_max_txg
2635 * will have been set for us by either zil_check_log_chain()
2636 * (invoked from spa_check_logs()) or zil_claim() above.
2637 */
2638 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2639
2640 /*
2641 * If the config cache is stale, or we have uninitialized
2642 * metaslabs (see spa_vdev_add()), then update the config.
2643 *
2644 * If this is a verbatim import, trust the current
2645 * in-core spa_config and update the disk labels.
2646 */
2647 if (config_cache_txg != spa->spa_config_txg ||
2648 state == SPA_LOAD_IMPORT ||
2649 state == SPA_LOAD_RECOVER ||
2650 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2651 need_update = B_TRUE;
2652
2653 for (int c = 0; c < rvd->vdev_children; c++)
2654 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2655 need_update = B_TRUE;
2656
2657 /*
2658 * Update the config cache asychronously in case we're the
2659 * root pool, in which case the config cache isn't writable yet.
2660 */
2661 if (need_update)
2662 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2663
2664 /*
2665 * Check all DTLs to see if anything needs resilvering.
2666 */
2667 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2668 vdev_resilver_needed(rvd, NULL, NULL))
2669 spa_async_request(spa, SPA_ASYNC_RESILVER);
2670
2671 /*
2672 * Log the fact that we booted up (so that we can detect if
2673 * we rebooted in the middle of an operation).
2674 */
2675 spa_history_log_version(spa, "open");
2676
2677 /*
2678 * Delete any inconsistent datasets.
2679 */
2680 (void) dmu_objset_find(spa_name(spa),
2681 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2682
2683 /*
2684 * Clean up any stale temporary dataset userrefs.
2685 */
2686 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2687 }
2688
2689 return (0);
2690 }
2691
2692 static int
2693 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2694 {
2695 int mode = spa->spa_mode;
2696
2697 spa_unload(spa);
2698 spa_deactivate(spa);
2699
2700 spa->spa_load_max_txg--;
2701
2702 spa_activate(spa, mode);
2703 spa_async_suspend(spa);
2704
2705 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2706 }
2707
2708 /*
2709 * If spa_load() fails this function will try loading prior txg's. If
2710 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2711 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2712 * function will not rewind the pool and will return the same error as
2713 * spa_load().
2714 */
2715 static int
2716 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2717 uint64_t max_request, int rewind_flags)
2718 {
2719 nvlist_t *loadinfo = NULL;
2720 nvlist_t *config = NULL;
2721 int load_error, rewind_error;
2722 uint64_t safe_rewind_txg;
2723 uint64_t min_txg;
2724
2725 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2726 spa->spa_load_max_txg = spa->spa_load_txg;
2727 spa_set_log_state(spa, SPA_LOG_CLEAR);
2728 } else {
2729 spa->spa_load_max_txg = max_request;
2730 }
2731
2732 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2733 mosconfig);
2734 if (load_error == 0)
2735 return (0);
2736
2737 if (spa->spa_root_vdev != NULL)
2738 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2739
2740 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2741 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2742
2743 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2744 nvlist_free(config);
2745 return (load_error);
2746 }
2747
2748 if (state == SPA_LOAD_RECOVER) {
2749 /* Price of rolling back is discarding txgs, including log */
2750 spa_set_log_state(spa, SPA_LOG_CLEAR);
2751 } else {
2752 /*
2753 * If we aren't rolling back save the load info from our first
2754 * import attempt so that we can restore it after attempting
2755 * to rewind.
2756 */
2757 loadinfo = spa->spa_load_info;
2758 spa->spa_load_info = fnvlist_alloc();
2759 }
2760
2761 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2762 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2763 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2764 TXG_INITIAL : safe_rewind_txg;
2765
2766 /*
2767 * Continue as long as we're finding errors, we're still within
2768 * the acceptable rewind range, and we're still finding uberblocks
2769 */
2770 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2771 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2772 if (spa->spa_load_max_txg < safe_rewind_txg)
2773 spa->spa_extreme_rewind = B_TRUE;
2774 rewind_error = spa_load_retry(spa, state, mosconfig);
2775 }
2776
2777 spa->spa_extreme_rewind = B_FALSE;
2778 spa->spa_load_max_txg = UINT64_MAX;
2779
2780 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2781 spa_config_set(spa, config);
2782
2783 if (state == SPA_LOAD_RECOVER) {
2784 ASSERT3P(loadinfo, ==, NULL);
2785 return (rewind_error);
2786 } else {
2787 /* Store the rewind info as part of the initial load info */
2788 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2789 spa->spa_load_info);
2790
2791 /* Restore the initial load info */
2792 fnvlist_free(spa->spa_load_info);
2793 spa->spa_load_info = loadinfo;
2794
2795 return (load_error);
2796 }
2797 }
2798
2799 /*
2800 * Pool Open/Import
2801 *
2802 * The import case is identical to an open except that the configuration is sent
2803 * down from userland, instead of grabbed from the configuration cache. For the
2804 * case of an open, the pool configuration will exist in the
2805 * POOL_STATE_UNINITIALIZED state.
2806 *
2807 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2808 * the same time open the pool, without having to keep around the spa_t in some
2809 * ambiguous state.
2810 */
2811 static int
2812 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2813 nvlist_t **config)
2814 {
2815 spa_t *spa;
2816 spa_load_state_t state = SPA_LOAD_OPEN;
2817 int error;
2818 int locked = B_FALSE;
2819
2820 *spapp = NULL;
2821
2822 /*
2823 * As disgusting as this is, we need to support recursive calls to this
2824 * function because dsl_dir_open() is called during spa_load(), and ends
2825 * up calling spa_open() again. The real fix is to figure out how to
2826 * avoid dsl_dir_open() calling this in the first place.
2827 */
2828 if (mutex_owner(&spa_namespace_lock) != curthread) {
2829 mutex_enter(&spa_namespace_lock);
2830 locked = B_TRUE;
2831 }
2832
2833 if ((spa = spa_lookup(pool)) == NULL) {
2834 if (locked)
2835 mutex_exit(&spa_namespace_lock);
2836 return (SET_ERROR(ENOENT));
2837 }
2838
2839 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2840 zpool_rewind_policy_t policy;
2841
2842 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2843 &policy);
2844 if (policy.zrp_request & ZPOOL_DO_REWIND)
2845 state = SPA_LOAD_RECOVER;
2846
2847 spa_activate(spa, spa_mode_global);
2848
2849 if (state != SPA_LOAD_RECOVER)
2850 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2851
2852 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2853 policy.zrp_request);
2854
2855 if (error == EBADF) {
2856 /*
2857 * If vdev_validate() returns failure (indicated by
2858 * EBADF), it indicates that one of the vdevs indicates
2859 * that the pool has been exported or destroyed. If
2860 * this is the case, the config cache is out of sync and
2861 * we should remove the pool from the namespace.
2862 */
2863 spa_unload(spa);
2864 spa_deactivate(spa);
2865 spa_config_sync(spa, B_TRUE, B_TRUE);
2866 spa_remove(spa);
2867 if (locked)
2868 mutex_exit(&spa_namespace_lock);
2869 return (SET_ERROR(ENOENT));
2870 }
2871
2872 if (error) {
2873 /*
2874 * We can't open the pool, but we still have useful
2875 * information: the state of each vdev after the
2876 * attempted vdev_open(). Return this to the user.
2877 */
2878 if (config != NULL && spa->spa_config) {
2879 VERIFY(nvlist_dup(spa->spa_config, config,
2880 KM_SLEEP) == 0);
2881 VERIFY(nvlist_add_nvlist(*config,
2882 ZPOOL_CONFIG_LOAD_INFO,
2883 spa->spa_load_info) == 0);
2884 }
2885 spa_unload(spa);
2886 spa_deactivate(spa);
2887 spa->spa_last_open_failed = error;
2888 if (locked)
2889 mutex_exit(&spa_namespace_lock);
2890 *spapp = NULL;
2891 return (error);
2892 }
2893 }
2894
2895 spa_open_ref(spa, tag);
2896
2897 if (config != NULL)
2898 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2899
2900 /*
2901 * If we've recovered the pool, pass back any information we
2902 * gathered while doing the load.
2903 */
2904 if (state == SPA_LOAD_RECOVER) {
2905 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2906 spa->spa_load_info) == 0);
2907 }
2908
2909 if (locked) {
2910 spa->spa_last_open_failed = 0;
2911 spa->spa_last_ubsync_txg = 0;
2912 spa->spa_load_txg = 0;
2913 mutex_exit(&spa_namespace_lock);
2914 }
2915
2916 *spapp = spa;
2917
2918 return (0);
2919 }
2920
2921 int
2922 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2923 nvlist_t **config)
2924 {
2925 return (spa_open_common(name, spapp, tag, policy, config));
2926 }
2927
2928 int
2929 spa_open(const char *name, spa_t **spapp, void *tag)
2930 {
2931 return (spa_open_common(name, spapp, tag, NULL, NULL));
2932 }
2933
2934 /*
2935 * Lookup the given spa_t, incrementing the inject count in the process,
2936 * preventing it from being exported or destroyed.
2937 */
2938 spa_t *
2939 spa_inject_addref(char *name)
2940 {
2941 spa_t *spa;
2942
2943 mutex_enter(&spa_namespace_lock);
2944 if ((spa = spa_lookup(name)) == NULL) {
2945 mutex_exit(&spa_namespace_lock);
2946 return (NULL);
2947 }
2948 spa->spa_inject_ref++;
2949 mutex_exit(&spa_namespace_lock);
2950
2951 return (spa);
2952 }
2953
2954 void
2955 spa_inject_delref(spa_t *spa)
2956 {
2957 mutex_enter(&spa_namespace_lock);
2958 spa->spa_inject_ref--;
2959 mutex_exit(&spa_namespace_lock);
2960 }
2961
2962 /*
2963 * Add spares device information to the nvlist.
2964 */
2965 static void
2966 spa_add_spares(spa_t *spa, nvlist_t *config)
2967 {
2968 nvlist_t **spares;
2969 uint_t i, nspares;
2970 nvlist_t *nvroot;
2971 uint64_t guid;
2972 vdev_stat_t *vs;
2973 uint_t vsc;
2974 uint64_t pool;
2975
2976 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2977
2978 if (spa->spa_spares.sav_count == 0)
2979 return;
2980
2981 VERIFY(nvlist_lookup_nvlist(config,
2982 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2983 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2984 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2985 if (nspares != 0) {
2986 VERIFY(nvlist_add_nvlist_array(nvroot,
2987 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2988 VERIFY(nvlist_lookup_nvlist_array(nvroot,
2989 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2990
2991 /*
2992 * Go through and find any spares which have since been
2993 * repurposed as an active spare. If this is the case, update
2994 * their status appropriately.
2995 */
2996 for (i = 0; i < nspares; i++) {
2997 VERIFY(nvlist_lookup_uint64(spares[i],
2998 ZPOOL_CONFIG_GUID, &guid) == 0);
2999 if (spa_spare_exists(guid, &pool, NULL) &&
3000 pool != 0ULL) {
3001 VERIFY(nvlist_lookup_uint64_array(
3002 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3003 (uint64_t **)&vs, &vsc) == 0);
3004 vs->vs_state = VDEV_STATE_CANT_OPEN;
3005 vs->vs_aux = VDEV_AUX_SPARED;
3006 }
3007 }
3008 }
3009 }
3010
3011 /*
3012 * Add l2cache device information to the nvlist, including vdev stats.
3013 */
3014 static void
3015 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3016 {
3017 nvlist_t **l2cache;
3018 uint_t i, j, nl2cache;
3019 nvlist_t *nvroot;
3020 uint64_t guid;
3021 vdev_t *vd;
3022 vdev_stat_t *vs;
3023 uint_t vsc;
3024
3025 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3026
3027 if (spa->spa_l2cache.sav_count == 0)
3028 return;
3029
3030 VERIFY(nvlist_lookup_nvlist(config,
3031 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3032 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3033 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3034 if (nl2cache != 0) {
3035 VERIFY(nvlist_add_nvlist_array(nvroot,
3036 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3037 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3038 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3039
3040 /*
3041 * Update level 2 cache device stats.
3042 */
3043
3044 for (i = 0; i < nl2cache; i++) {
3045 VERIFY(nvlist_lookup_uint64(l2cache[i],
3046 ZPOOL_CONFIG_GUID, &guid) == 0);
3047
3048 vd = NULL;
3049 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3050 if (guid ==
3051 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3052 vd = spa->spa_l2cache.sav_vdevs[j];
3053 break;
3054 }
3055 }
3056 ASSERT(vd != NULL);
3057
3058 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3059 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3060 == 0);
3061 vdev_get_stats(vd, vs);
3062 }
3063 }
3064 }
3065
3066 static void
3067 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3068 {
3069 nvlist_t *features;
3070 zap_cursor_t zc;
3071 zap_attribute_t za;
3072
3073 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3074 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3075
3076 if (spa->spa_feat_for_read_obj != 0) {
3077 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3078 spa->spa_feat_for_read_obj);
3079 zap_cursor_retrieve(&zc, &za) == 0;
3080 zap_cursor_advance(&zc)) {
3081 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3082 za.za_num_integers == 1);
3083 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3084 za.za_first_integer));
3085 }
3086 zap_cursor_fini(&zc);
3087 }
3088
3089 if (spa->spa_feat_for_write_obj != 0) {
3090 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3091 spa->spa_feat_for_write_obj);
3092 zap_cursor_retrieve(&zc, &za) == 0;
3093 zap_cursor_advance(&zc)) {
3094 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3095 za.za_num_integers == 1);
3096 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3097 za.za_first_integer));
3098 }
3099 zap_cursor_fini(&zc);
3100 }
3101
3102 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3103 features) == 0);
3104 nvlist_free(features);
3105 }
3106
3107 int
3108 spa_get_stats(const char *name, nvlist_t **config,
3109 char *altroot, size_t buflen)
3110 {
3111 int error;
3112 spa_t *spa;
3113
3114 *config = NULL;
3115 error = spa_open_common(name, &spa, FTAG, NULL, config);
3116
3117 if (spa != NULL) {
3118 /*
3119 * This still leaves a window of inconsistency where the spares
3120 * or l2cache devices could change and the config would be
3121 * self-inconsistent.
3122 */
3123 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3124
3125 if (*config != NULL) {
3126 uint64_t loadtimes[2];
3127
3128 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3129 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3130 VERIFY(nvlist_add_uint64_array(*config,
3131 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3132
3133 VERIFY(nvlist_add_uint64(*config,
3134 ZPOOL_CONFIG_ERRCOUNT,
3135 spa_get_errlog_size(spa)) == 0);
3136
3137 if (spa_suspended(spa))
3138 VERIFY(nvlist_add_uint64(*config,
3139 ZPOOL_CONFIG_SUSPENDED,
3140 spa->spa_failmode) == 0);
3141
3142 spa_add_spares(spa, *config);
3143 spa_add_l2cache(spa, *config);
3144 spa_add_feature_stats(spa, *config);
3145 }
3146 }
3147
3148 /*
3149 * We want to get the alternate root even for faulted pools, so we cheat
3150 * and call spa_lookup() directly.
3151 */
3152 if (altroot) {
3153 if (spa == NULL) {
3154 mutex_enter(&spa_namespace_lock);
3155 spa = spa_lookup(name);
3156 if (spa)
3157 spa_altroot(spa, altroot, buflen);
3158 else
3159 altroot[0] = '\0';
3160 spa = NULL;
3161 mutex_exit(&spa_namespace_lock);
3162 } else {
3163 spa_altroot(spa, altroot, buflen);
3164 }
3165 }
3166
3167 if (spa != NULL) {
3168 spa_config_exit(spa, SCL_CONFIG, FTAG);
3169 spa_close(spa, FTAG);
3170 }
3171
3172 return (error);
3173 }
3174
3175 /*
3176 * Validate that the auxiliary device array is well formed. We must have an
3177 * array of nvlists, each which describes a valid leaf vdev. If this is an
3178 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3179 * specified, as long as they are well-formed.
3180 */
3181 static int
3182 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3183 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3184 vdev_labeltype_t label)
3185 {
3186 nvlist_t **dev;
3187 uint_t i, ndev;
3188 vdev_t *vd;
3189 int error;
3190
3191 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3192
3193 /*
3194 * It's acceptable to have no devs specified.
3195 */
3196 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3197 return (0);
3198
3199 if (ndev == 0)
3200 return (SET_ERROR(EINVAL));
3201
3202 /*
3203 * Make sure the pool is formatted with a version that supports this
3204 * device type.
3205 */
3206 if (spa_version(spa) < version)
3207 return (SET_ERROR(ENOTSUP));
3208
3209 /*
3210 * Set the pending device list so we correctly handle device in-use
3211 * checking.
3212 */
3213 sav->sav_pending = dev;
3214 sav->sav_npending = ndev;
3215
3216 for (i = 0; i < ndev; i++) {
3217 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3218 mode)) != 0)
3219 goto out;
3220
3221 if (!vd->vdev_ops->vdev_op_leaf) {
3222 vdev_free(vd);
3223 error = SET_ERROR(EINVAL);
3224 goto out;
3225 }
3226
3227 /*
3228 * The L2ARC currently only supports disk devices in
3229 * kernel context. For user-level testing, we allow it.
3230 */
3231 #ifdef _KERNEL
3232 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3233 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3234 error = SET_ERROR(ENOTBLK);
3235 vdev_free(vd);
3236 goto out;
3237 }
3238 #endif
3239 vd->vdev_top = vd;
3240
3241 if ((error = vdev_open(vd)) == 0 &&
3242 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3243 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3244 vd->vdev_guid) == 0);
3245 }
3246
3247 vdev_free(vd);
3248
3249 if (error &&
3250 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3251 goto out;
3252 else
3253 error = 0;
3254 }
3255
3256 out:
3257 sav->sav_pending = NULL;
3258 sav->sav_npending = 0;
3259 return (error);
3260 }
3261
3262 static int
3263 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3264 {
3265 int error;
3266
3267 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3268
3269 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3270 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3271 VDEV_LABEL_SPARE)) != 0) {
3272 return (error);
3273 }
3274
3275 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3276 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3277 VDEV_LABEL_L2CACHE));
3278 }
3279
3280 static void
3281 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3282 const char *config)
3283 {
3284 int i;
3285
3286 if (sav->sav_config != NULL) {
3287 nvlist_t **olddevs;
3288 uint_t oldndevs;
3289 nvlist_t **newdevs;
3290
3291 /*
3292 * Generate new dev list by concatentating with the
3293 * current dev list.
3294 */
3295 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3296 &olddevs, &oldndevs) == 0);
3297
3298 newdevs = kmem_alloc(sizeof (void *) *
3299 (ndevs + oldndevs), KM_SLEEP);
3300 for (i = 0; i < oldndevs; i++)
3301 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3302 KM_SLEEP) == 0);
3303 for (i = 0; i < ndevs; i++)
3304 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3305 KM_SLEEP) == 0);
3306
3307 VERIFY(nvlist_remove(sav->sav_config, config,
3308 DATA_TYPE_NVLIST_ARRAY) == 0);
3309
3310 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3311 config, newdevs, ndevs + oldndevs) == 0);
3312 for (i = 0; i < oldndevs + ndevs; i++)
3313 nvlist_free(newdevs[i]);
3314 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3315 } else {
3316 /*
3317 * Generate a new dev list.
3318 */
3319 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3320 KM_SLEEP) == 0);
3321 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3322 devs, ndevs) == 0);
3323 }
3324 }
3325
3326 /*
3327 * Stop and drop level 2 ARC devices
3328 */
3329 void
3330 spa_l2cache_drop(spa_t *spa)
3331 {
3332 vdev_t *vd;
3333 int i;
3334 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3335
3336 for (i = 0; i < sav->sav_count; i++) {
3337 uint64_t pool;
3338
3339 vd = sav->sav_vdevs[i];
3340 ASSERT(vd != NULL);
3341
3342 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3343 pool != 0ULL && l2arc_vdev_present(vd))
3344 l2arc_remove_vdev(vd);
3345 }
3346 }
3347
3348 /*
3349 * Pool Creation
3350 */
3351 int
3352 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3353 nvlist_t *zplprops)
3354 {
3355 spa_t *spa;
3356 char *altroot = NULL;
3357 vdev_t *rvd;
3358 dsl_pool_t *dp;
3359 dmu_tx_t *tx;
3360 int error = 0;
3361 uint64_t txg = TXG_INITIAL;
3362 nvlist_t **spares, **l2cache;
3363 uint_t nspares, nl2cache;
3364 uint64_t version, obj;
3365 boolean_t has_features;
3366
3367 /*
3368 * If this pool already exists, return failure.
3369 */
3370 mutex_enter(&spa_namespace_lock);
3371 if (spa_lookup(pool) != NULL) {
3372 mutex_exit(&spa_namespace_lock);
3373 return (SET_ERROR(EEXIST));
3374 }
3375
3376 /*
3377 * Allocate a new spa_t structure.
3378 */
3379 (void) nvlist_lookup_string(props,
3380 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3381 spa = spa_add(pool, NULL, altroot);
3382 spa_activate(spa, spa_mode_global);
3383
3384 if (props && (error = spa_prop_validate(spa, props))) {
3385 spa_deactivate(spa);
3386 spa_remove(spa);
3387 mutex_exit(&spa_namespace_lock);
3388 return (error);
3389 }
3390
3391 has_features = B_FALSE;
3392 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3393 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3394 if (zpool_prop_feature(nvpair_name(elem)))
3395 has_features = B_TRUE;
3396 }
3397
3398 if (has_features || nvlist_lookup_uint64(props,
3399 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3400 version = SPA_VERSION;
3401 }
3402 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3403
3404 spa->spa_first_txg = txg;
3405 spa->spa_uberblock.ub_txg = txg - 1;
3406 spa->spa_uberblock.ub_version = version;
3407 spa->spa_ubsync = spa->spa_uberblock;
3408
3409 /*
3410 * Create "The Godfather" zio to hold all async IOs
3411 */
3412 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3413 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3414
3415 /*
3416 * Create the root vdev.
3417 */
3418 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3419
3420 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3421
3422 ASSERT(error != 0 || rvd != NULL);
3423 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3424
3425 if (error == 0 && !zfs_allocatable_devs(nvroot))
3426 error = SET_ERROR(EINVAL);
3427
3428 if (error == 0 &&
3429 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3430 (error = spa_validate_aux(spa, nvroot, txg,
3431 VDEV_ALLOC_ADD)) == 0) {
3432 for (int c = 0; c < rvd->vdev_children; c++) {
3433 vdev_metaslab_set_size(rvd->vdev_child[c]);
3434 vdev_expand(rvd->vdev_child[c], txg);
3435 }
3436 }
3437
3438 spa_config_exit(spa, SCL_ALL, FTAG);
3439
3440 if (error != 0) {
3441 spa_unload(spa);
3442 spa_deactivate(spa);
3443 spa_remove(spa);
3444 mutex_exit(&spa_namespace_lock);
3445 return (error);
3446 }
3447
3448 /*
3449 * Get the list of spares, if specified.
3450 */
3451 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3452 &spares, &nspares) == 0) {
3453 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3454 KM_SLEEP) == 0);
3455 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3456 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3457 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3458 spa_load_spares(spa);
3459 spa_config_exit(spa, SCL_ALL, FTAG);
3460 spa->spa_spares.sav_sync = B_TRUE;
3461 }
3462
3463 /*
3464 * Get the list of level 2 cache devices, if specified.
3465 */
3466 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3467 &l2cache, &nl2cache) == 0) {
3468 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3469 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3470 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3471 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3472 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3473 spa_load_l2cache(spa);
3474 spa_config_exit(spa, SCL_ALL, FTAG);
3475 spa->spa_l2cache.sav_sync = B_TRUE;
3476 }
3477
3478 spa->spa_is_initializing = B_TRUE;
3479 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3480 spa->spa_meta_objset = dp->dp_meta_objset;
3481 spa->spa_is_initializing = B_FALSE;
3482
3483 /*
3484 * Create DDTs (dedup tables).
3485 */
3486 ddt_create(spa);
3487
3488 spa_update_dspace(spa);
3489
3490 tx = dmu_tx_create_assigned(dp, txg);
3491
3492 /*
3493 * Create the pool config object.
3494 */
3495 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3496 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3497 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3498
3499 if (zap_add(spa->spa_meta_objset,
3500 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3501 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3502 cmn_err(CE_PANIC, "failed to add pool config");
3503 }
3504
3505 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3506 spa_feature_create_zap_objects(spa, tx);
3507
3508 if (zap_add(spa->spa_meta_objset,
3509 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3510 sizeof (uint64_t), 1, &version, tx) != 0) {
3511 cmn_err(CE_PANIC, "failed to add pool version");
3512 }
3513
3514 /* Newly created pools with the right version are always deflated. */
3515 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3516 spa->spa_deflate = TRUE;
3517 if (zap_add(spa->spa_meta_objset,
3518 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3519 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3520 cmn_err(CE_PANIC, "failed to add deflate");
3521 }
3522 }
3523
3524 /*
3525 * Create the deferred-free bpobj. Turn off compression
3526 * because sync-to-convergence takes longer if the blocksize
3527 * keeps changing.
3528 */
3529 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3530 dmu_object_set_compress(spa->spa_meta_objset, obj,
3531 ZIO_COMPRESS_OFF, tx);
3532 if (zap_add(spa->spa_meta_objset,
3533 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3534 sizeof (uint64_t), 1, &obj, tx) != 0) {
3535 cmn_err(CE_PANIC, "failed to add bpobj");
3536 }
3537 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3538 spa->spa_meta_objset, obj));
3539
3540 /*
3541 * Create the pool's history object.
3542 */
3543 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3544 spa_history_create_obj(spa, tx);
3545
3546 /*
3547 * Set pool properties.
3548 */
3549 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3550 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3551 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3552 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3553
3554 if (props != NULL) {
3555 spa_configfile_set(spa, props, B_FALSE);
3556 spa_sync_props(props, tx);
3557 }
3558
3559 dmu_tx_commit(tx);
3560
3561 spa->spa_sync_on = B_TRUE;
3562 txg_sync_start(spa->spa_dsl_pool);
3563
3564 /*
3565 * We explicitly wait for the first transaction to complete so that our
3566 * bean counters are appropriately updated.
3567 */
3568 txg_wait_synced(spa->spa_dsl_pool, txg);
3569
3570 spa_config_sync(spa, B_FALSE, B_TRUE);
3571
3572 spa_history_log_version(spa, "create");
3573
3574 spa->spa_minref = refcount_count(&spa->spa_refcount);
3575
3576 mutex_exit(&spa_namespace_lock);
3577
3578 return (0);
3579 }
3580
3581 #ifdef _KERNEL
3582 /*
3583 * Get the root pool information from the root disk, then import the root pool
3584 * during the system boot up time.
3585 */
3586 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3587
3588 static nvlist_t *
3589 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3590 {
3591 nvlist_t *config;
3592 nvlist_t *nvtop, *nvroot;
3593 uint64_t pgid;
3594
3595 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3596 return (NULL);
3597
3598 /*
3599 * Add this top-level vdev to the child array.
3600 */
3601 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3602 &nvtop) == 0);
3603 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3604 &pgid) == 0);
3605 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3606
3607 /*
3608 * Put this pool's top-level vdevs into a root vdev.
3609 */
3610 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3611 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3612 VDEV_TYPE_ROOT) == 0);
3613 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3614 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3615 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3616 &nvtop, 1) == 0);
3617
3618 /*
3619 * Replace the existing vdev_tree with the new root vdev in
3620 * this pool's configuration (remove the old, add the new).
3621 */
3622 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3623 nvlist_free(nvroot);
3624 return (config);
3625 }
3626
3627 /*
3628 * Walk the vdev tree and see if we can find a device with "better"
3629 * configuration. A configuration is "better" if the label on that
3630 * device has a more recent txg.
3631 */
3632 static void
3633 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3634 {
3635 for (int c = 0; c < vd->vdev_children; c++)
3636 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3637
3638 if (vd->vdev_ops->vdev_op_leaf) {
3639 nvlist_t *label;
3640 uint64_t label_txg;
3641
3642 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3643 &label) != 0)
3644 return;
3645
3646 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3647 &label_txg) == 0);
3648
3649 /*
3650 * Do we have a better boot device?
3651 */
3652 if (label_txg > *txg) {
3653 *txg = label_txg;
3654 *avd = vd;
3655 }
3656 nvlist_free(label);
3657 }
3658 }
3659
3660 /*
3661 * Import a root pool.
3662 *
3663 * For x86. devpath_list will consist of devid and/or physpath name of
3664 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3665 * The GRUB "findroot" command will return the vdev we should boot.
3666 *
3667 * For Sparc, devpath_list consists the physpath name of the booting device
3668 * no matter the rootpool is a single device pool or a mirrored pool.
3669 * e.g.
3670 * "/pci@1f,0/ide@d/disk@0,0:a"
3671 */
3672 int
3673 spa_import_rootpool(char *devpath, char *devid)
3674 {
3675 spa_t *spa;
3676 vdev_t *rvd, *bvd, *avd = NULL;
3677 nvlist_t *config, *nvtop;
3678 uint64_t guid, txg;
3679 char *pname;
3680 int error;
3681
3682 /*
3683 * Read the label from the boot device and generate a configuration.
3684 */
3685 config = spa_generate_rootconf(devpath, devid, &guid);
3686 #if defined(_OBP) && defined(_KERNEL)
3687 if (config == NULL) {
3688 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3689 /* iscsi boot */
3690 get_iscsi_bootpath_phy(devpath);
3691 config = spa_generate_rootconf(devpath, devid, &guid);
3692 }
3693 }
3694 #endif
3695 if (config == NULL) {
3696 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3697 devpath);
3698 return (SET_ERROR(EIO));
3699 }
3700
3701 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3702 &pname) == 0);
3703 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3704
3705 mutex_enter(&spa_namespace_lock);
3706 if ((spa = spa_lookup(pname)) != NULL) {
3707 /*
3708 * Remove the existing root pool from the namespace so that we
3709 * can replace it with the correct config we just read in.
3710 */
3711 spa_remove(spa);
3712 }
3713
3714 spa = spa_add(pname, config, NULL);
3715 spa->spa_is_root = B_TRUE;
3716 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3717
3718 /*
3719 * Build up a vdev tree based on the boot device's label config.
3720 */
3721 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3722 &nvtop) == 0);
3723 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3724 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3725 VDEV_ALLOC_ROOTPOOL);
3726 spa_config_exit(spa, SCL_ALL, FTAG);
3727 if (error) {
3728 mutex_exit(&spa_namespace_lock);
3729 nvlist_free(config);
3730 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3731 pname);
3732 return (error);
3733 }
3734
3735 /*
3736 * Get the boot vdev.
3737 */
3738 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3739 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3740 (u_longlong_t)guid);
3741 error = SET_ERROR(ENOENT);
3742 goto out;
3743 }
3744
3745 /*
3746 * Determine if there is a better boot device.
3747 */
3748 avd = bvd;
3749 spa_alt_rootvdev(rvd, &avd, &txg);
3750 if (avd != bvd) {
3751 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3752 "try booting from '%s'", avd->vdev_path);
3753 error = SET_ERROR(EINVAL);
3754 goto out;
3755 }
3756
3757 /*
3758 * If the boot device is part of a spare vdev then ensure that
3759 * we're booting off the active spare.
3760 */
3761 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3762 !bvd->vdev_isspare) {
3763 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3764 "try booting from '%s'",
3765 bvd->vdev_parent->
3766 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3767 error = SET_ERROR(EINVAL);
3768 goto out;
3769 }
3770
3771 error = 0;
3772 out:
3773 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3774 vdev_free(rvd);
3775 spa_config_exit(spa, SCL_ALL, FTAG);
3776 mutex_exit(&spa_namespace_lock);
3777
3778 nvlist_free(config);
3779 return (error);
3780 }
3781
3782 #endif
3783
3784 /*
3785 * Import a non-root pool into the system.
3786 */
3787 int
3788 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3789 {
3790 spa_t *spa;
3791 char *altroot = NULL;
3792 spa_load_state_t state = SPA_LOAD_IMPORT;
3793 zpool_rewind_policy_t policy;
3794 uint64_t mode = spa_mode_global;
3795 uint64_t readonly = B_FALSE;
3796 int error;
3797 nvlist_t *nvroot;
3798 nvlist_t **spares, **l2cache;
3799 uint_t nspares, nl2cache;
3800
3801 /*
3802 * If a pool with this name exists, return failure.
3803 */
3804 mutex_enter(&spa_namespace_lock);
3805 if (spa_lookup(pool) != NULL) {
3806 mutex_exit(&spa_namespace_lock);
3807 return (SET_ERROR(EEXIST));
3808 }
3809
3810 /*
3811 * Create and initialize the spa structure.
3812 */
3813 (void) nvlist_lookup_string(props,
3814 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3815 (void) nvlist_lookup_uint64(props,
3816 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3817 if (readonly)
3818 mode = FREAD;
3819 spa = spa_add(pool, config, altroot);
3820 spa->spa_import_flags = flags;
3821
3822 /*
3823 * Verbatim import - Take a pool and insert it into the namespace
3824 * as if it had been loaded at boot.
3825 */
3826 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3827 if (props != NULL)
3828 spa_configfile_set(spa, props, B_FALSE);
3829
3830 spa_config_sync(spa, B_FALSE, B_TRUE);
3831
3832 mutex_exit(&spa_namespace_lock);
3833 spa_history_log_version(spa, "import");
3834
3835 return (0);
3836 }
3837
3838 spa_activate(spa, mode);
3839
3840 /*
3841 * Don't start async tasks until we know everything is healthy.
3842 */
3843 spa_async_suspend(spa);
3844
3845 zpool_get_rewind_policy(config, &policy);
3846 if (policy.zrp_request & ZPOOL_DO_REWIND)
3847 state = SPA_LOAD_RECOVER;
3848
3849 /*
3850 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3851 * because the user-supplied config is actually the one to trust when
3852 * doing an import.
3853 */
3854 if (state != SPA_LOAD_RECOVER)
3855 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3856
3857 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3858 policy.zrp_request);
3859
3860 /*
3861 * Propagate anything learned while loading the pool and pass it
3862 * back to caller (i.e. rewind info, missing devices, etc).
3863 */
3864 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3865 spa->spa_load_info) == 0);
3866
3867 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3868 /*
3869 * Toss any existing sparelist, as it doesn't have any validity
3870 * anymore, and conflicts with spa_has_spare().
3871 */
3872 if (spa->spa_spares.sav_config) {
3873 nvlist_free(spa->spa_spares.sav_config);
3874 spa->spa_spares.sav_config = NULL;
3875 spa_load_spares(spa);
3876 }
3877 if (spa->spa_l2cache.sav_config) {
3878 nvlist_free(spa->spa_l2cache.sav_config);
3879 spa->spa_l2cache.sav_config = NULL;
3880 spa_load_l2cache(spa);
3881 }
3882
3883 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3884 &nvroot) == 0);
3885 if (error == 0)
3886 error = spa_validate_aux(spa, nvroot, -1ULL,
3887 VDEV_ALLOC_SPARE);
3888 if (error == 0)
3889 error = spa_validate_aux(spa, nvroot, -1ULL,
3890 VDEV_ALLOC_L2CACHE);
3891 spa_config_exit(spa, SCL_ALL, FTAG);
3892
3893 if (props != NULL)
3894 spa_configfile_set(spa, props, B_FALSE);
3895
3896 if (error != 0 || (props && spa_writeable(spa) &&
3897 (error = spa_prop_set(spa, props)))) {
3898 spa_unload(spa);
3899 spa_deactivate(spa);
3900 spa_remove(spa);
3901 mutex_exit(&spa_namespace_lock);
3902 return (error);
3903 }
3904
3905 spa_async_resume(spa);
3906
3907 /*
3908 * Override any spares and level 2 cache devices as specified by
3909 * the user, as these may have correct device names/devids, etc.
3910 */
3911 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3912 &spares, &nspares) == 0) {
3913 if (spa->spa_spares.sav_config)
3914 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3915 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3916 else
3917 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3918 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3919 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3920 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3921 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3922 spa_load_spares(spa);
3923 spa_config_exit(spa, SCL_ALL, FTAG);
3924 spa->spa_spares.sav_sync = B_TRUE;
3925 }
3926 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3927 &l2cache, &nl2cache) == 0) {
3928 if (spa->spa_l2cache.sav_config)
3929 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3930 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3931 else
3932 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3933 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3934 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3935 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3936 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3937 spa_load_l2cache(spa);
3938 spa_config_exit(spa, SCL_ALL, FTAG);
3939 spa->spa_l2cache.sav_sync = B_TRUE;
3940 }
3941
3942 /*
3943 * Check for any removed devices.
3944 */
3945 if (spa->spa_autoreplace) {
3946 spa_aux_check_removed(&spa->spa_spares);
3947 spa_aux_check_removed(&spa->spa_l2cache);
3948 }
3949
3950 if (spa_writeable(spa)) {
3951 /*
3952 * Update the config cache to include the newly-imported pool.
3953 */
3954 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3955 }
3956
3957 /*
3958 * It's possible that the pool was expanded while it was exported.
3959 * We kick off an async task to handle this for us.
3960 */
3961 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3962
3963 mutex_exit(&spa_namespace_lock);
3964 spa_history_log_version(spa, "import");
3965
3966 return (0);
3967 }
3968
3969 nvlist_t *
3970 spa_tryimport(nvlist_t *tryconfig)
3971 {
3972 nvlist_t *config = NULL;
3973 char *poolname;
3974 spa_t *spa;
3975 uint64_t state;
3976 int error;
3977
3978 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3979 return (NULL);
3980
3981 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3982 return (NULL);
3983
3984 /*
3985 * Create and initialize the spa structure.
3986 */
3987 mutex_enter(&spa_namespace_lock);
3988 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3989 spa_activate(spa, FREAD);
3990
3991 /*
3992 * Pass off the heavy lifting to spa_load().
3993 * Pass TRUE for mosconfig because the user-supplied config
3994 * is actually the one to trust when doing an import.
3995 */
3996 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3997
3998 /*
3999 * If 'tryconfig' was at least parsable, return the current config.
4000 */
4001 if (spa->spa_root_vdev != NULL) {
4002 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4003 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4004 poolname) == 0);
4005 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4006 state) == 0);
4007 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4008 spa->spa_uberblock.ub_timestamp) == 0);
4009 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4010 spa->spa_load_info) == 0);
4011
4012 /*
4013 * If the bootfs property exists on this pool then we
4014 * copy it out so that external consumers can tell which
4015 * pools are bootable.
4016 */
4017 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4018 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4019
4020 /*
4021 * We have to play games with the name since the
4022 * pool was opened as TRYIMPORT_NAME.
4023 */
4024 if (dsl_dsobj_to_dsname(spa_name(spa),
4025 spa->spa_bootfs, tmpname) == 0) {
4026 char *cp;
4027 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4028
4029 cp = strchr(tmpname, '/');
4030 if (cp == NULL) {
4031 (void) strlcpy(dsname, tmpname,
4032 MAXPATHLEN);
4033 } else {
4034 (void) snprintf(dsname, MAXPATHLEN,
4035 "%s/%s", poolname, ++cp);
4036 }
4037 VERIFY(nvlist_add_string(config,
4038 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4039 kmem_free(dsname, MAXPATHLEN);
4040 }
4041 kmem_free(tmpname, MAXPATHLEN);
4042 }
4043
4044 /*
4045 * Add the list of hot spares and level 2 cache devices.
4046 */
4047 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4048 spa_add_spares(spa, config);
4049 spa_add_l2cache(spa, config);
4050 spa_config_exit(spa, SCL_CONFIG, FTAG);
4051 }
4052
4053 spa_unload(spa);
4054 spa_deactivate(spa);
4055 spa_remove(spa);
4056 mutex_exit(&spa_namespace_lock);
4057
4058 return (config);
4059 }
4060
4061 /*
4062 * Pool export/destroy
4063 *
4064 * The act of destroying or exporting a pool is very simple. We make sure there
4065 * is no more pending I/O and any references to the pool are gone. Then, we
4066 * update the pool state and sync all the labels to disk, removing the
4067 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4068 * we don't sync the labels or remove the configuration cache.
4069 */
4070 static int
4071 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4072 boolean_t force, boolean_t hardforce)
4073 {
4074 spa_t *spa;
4075
4076 if (oldconfig)
4077 *oldconfig = NULL;
4078
4079 if (!(spa_mode_global & FWRITE))
4080 return (SET_ERROR(EROFS));
4081
4082 mutex_enter(&spa_namespace_lock);
4083 if ((spa = spa_lookup(pool)) == NULL) {
4084 mutex_exit(&spa_namespace_lock);
4085 return (SET_ERROR(ENOENT));
4086 }
4087
4088 /*
4089 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4090 * reacquire the namespace lock, and see if we can export.
4091 */
4092 spa_open_ref(spa, FTAG);
4093 mutex_exit(&spa_namespace_lock);
4094 spa_async_suspend(spa);
4095 mutex_enter(&spa_namespace_lock);
4096 spa_close(spa, FTAG);
4097
4098 /*
4099 * The pool will be in core if it's openable,
4100 * in which case we can modify its state.
4101 */
4102 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4103 /*
4104 * Objsets may be open only because they're dirty, so we
4105 * have to force it to sync before checking spa_refcnt.
4106 */
4107 txg_wait_synced(spa->spa_dsl_pool, 0);
4108
4109 /*
4110 * A pool cannot be exported or destroyed if there are active
4111 * references. If we are resetting a pool, allow references by
4112 * fault injection handlers.
4113 */
4114 if (!spa_refcount_zero(spa) ||
4115 (spa->spa_inject_ref != 0 &&
4116 new_state != POOL_STATE_UNINITIALIZED)) {
4117 spa_async_resume(spa);
4118 mutex_exit(&spa_namespace_lock);
4119 return (SET_ERROR(EBUSY));
4120 }
4121
4122 /*
4123 * A pool cannot be exported if it has an active shared spare.
4124 * This is to prevent other pools stealing the active spare
4125 * from an exported pool. At user's own will, such pool can
4126 * be forcedly exported.
4127 */
4128 if (!force && new_state == POOL_STATE_EXPORTED &&
4129 spa_has_active_shared_spare(spa)) {
4130 spa_async_resume(spa);
4131 mutex_exit(&spa_namespace_lock);
4132 return (SET_ERROR(EXDEV));
4133 }
4134
4135 /*
4136 * We want this to be reflected on every label,
4137 * so mark them all dirty. spa_unload() will do the
4138 * final sync that pushes these changes out.
4139 */
4140 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4141 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4142 spa->spa_state = new_state;
4143 spa->spa_final_txg = spa_last_synced_txg(spa) +
4144 TXG_DEFER_SIZE + 1;
4145 vdev_config_dirty(spa->spa_root_vdev);
4146 spa_config_exit(spa, SCL_ALL, FTAG);
4147 }
4148 }
4149
4150 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4151
4152 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4153 spa_unload(spa);
4154 spa_deactivate(spa);
4155 }
4156
4157 if (oldconfig && spa->spa_config)
4158 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4159
4160 if (new_state != POOL_STATE_UNINITIALIZED) {
4161 if (!hardforce)
4162 spa_config_sync(spa, B_TRUE, B_TRUE);
4163 spa_remove(spa);
4164 }
4165 mutex_exit(&spa_namespace_lock);
4166
4167 return (0);
4168 }
4169
4170 /*
4171 * Destroy a storage pool.
4172 */
4173 int
4174 spa_destroy(char *pool)
4175 {
4176 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4177 B_FALSE, B_FALSE));
4178 }
4179
4180 /*
4181 * Export a storage pool.
4182 */
4183 int
4184 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4185 boolean_t hardforce)
4186 {
4187 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4188 force, hardforce));
4189 }
4190
4191 /*
4192 * Similar to spa_export(), this unloads the spa_t without actually removing it
4193 * from the namespace in any way.
4194 */
4195 int
4196 spa_reset(char *pool)
4197 {
4198 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4199 B_FALSE, B_FALSE));
4200 }
4201
4202 /*
4203 * ==========================================================================
4204 * Device manipulation
4205 * ==========================================================================
4206 */
4207
4208 /*
4209 * Add a device to a storage pool.
4210 */
4211 int
4212 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4213 {
4214 uint64_t txg, id;
4215 int error;
4216 vdev_t *rvd = spa->spa_root_vdev;
4217 vdev_t *vd, *tvd;
4218 nvlist_t **spares, **l2cache;
4219 uint_t nspares, nl2cache;
4220
4221 ASSERT(spa_writeable(spa));
4222
4223 txg = spa_vdev_enter(spa);
4224
4225 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4226 VDEV_ALLOC_ADD)) != 0)
4227 return (spa_vdev_exit(spa, NULL, txg, error));
4228
4229 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4230
4231 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4232 &nspares) != 0)
4233 nspares = 0;
4234
4235 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4236 &nl2cache) != 0)
4237 nl2cache = 0;
4238
4239 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4240 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4241
4242 if (vd->vdev_children != 0 &&
4243 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4244 return (spa_vdev_exit(spa, vd, txg, error));
4245
4246 /*
4247 * We must validate the spares and l2cache devices after checking the
4248 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4249 */
4250 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4251 return (spa_vdev_exit(spa, vd, txg, error));
4252
4253 /*
4254 * Transfer each new top-level vdev from vd to rvd.
4255 */
4256 for (int c = 0; c < vd->vdev_children; c++) {
4257
4258 /*
4259 * Set the vdev id to the first hole, if one exists.
4260 */
4261 for (id = 0; id < rvd->vdev_children; id++) {
4262 if (rvd->vdev_child[id]->vdev_ishole) {
4263 vdev_free(rvd->vdev_child[id]);
4264 break;
4265 }
4266 }
4267 tvd = vd->vdev_child[c];
4268 vdev_remove_child(vd, tvd);
4269 tvd->vdev_id = id;
4270 vdev_add_child(rvd, tvd);
4271 vdev_config_dirty(tvd);
4272 }
4273
4274 if (nspares != 0) {
4275 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4276 ZPOOL_CONFIG_SPARES);
4277 spa_load_spares(spa);
4278 spa->spa_spares.sav_sync = B_TRUE;
4279 }
4280
4281 if (nl2cache != 0) {
4282 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4283 ZPOOL_CONFIG_L2CACHE);
4284 spa_load_l2cache(spa);
4285 spa->spa_l2cache.sav_sync = B_TRUE;
4286 }
4287
4288 /*
4289 * We have to be careful when adding new vdevs to an existing pool.
4290 * If other threads start allocating from these vdevs before we
4291 * sync the config cache, and we lose power, then upon reboot we may
4292 * fail to open the pool because there are DVAs that the config cache
4293 * can't translate. Therefore, we first add the vdevs without
4294 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4295 * and then let spa_config_update() initialize the new metaslabs.
4296 *
4297 * spa_load() checks for added-but-not-initialized vdevs, so that
4298 * if we lose power at any point in this sequence, the remaining
4299 * steps will be completed the next time we load the pool.
4300 */
4301 (void) spa_vdev_exit(spa, vd, txg, 0);
4302
4303 mutex_enter(&spa_namespace_lock);
4304 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4305 mutex_exit(&spa_namespace_lock);
4306
4307 return (0);
4308 }
4309
4310 /*
4311 * Attach a device to a mirror. The arguments are the path to any device
4312 * in the mirror, and the nvroot for the new device. If the path specifies
4313 * a device that is not mirrored, we automatically insert the mirror vdev.
4314 *
4315 * If 'replacing' is specified, the new device is intended to replace the
4316 * existing device; in this case the two devices are made into their own
4317 * mirror using the 'replacing' vdev, which is functionally identical to
4318 * the mirror vdev (it actually reuses all the same ops) but has a few
4319 * extra rules: you can't attach to it after it's been created, and upon
4320 * completion of resilvering, the first disk (the one being replaced)
4321 * is automatically detached.
4322 */
4323 int
4324 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4325 {
4326 uint64_t txg, dtl_max_txg;
4327 vdev_t *rvd = spa->spa_root_vdev;
4328 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4329 vdev_ops_t *pvops;
4330 char *oldvdpath, *newvdpath;
4331 int newvd_isspare;
4332 int error;
4333
4334 ASSERT(spa_writeable(spa));
4335
4336 txg = spa_vdev_enter(spa);
4337
4338 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4339
4340 if (oldvd == NULL)
4341 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4342
4343 if (!oldvd->vdev_ops->vdev_op_leaf)
4344 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4345
4346 pvd = oldvd->vdev_parent;
4347
4348 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4349 VDEV_ALLOC_ATTACH)) != 0)
4350 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4351
4352 if (newrootvd->vdev_children != 1)
4353 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4354
4355 newvd = newrootvd->vdev_child[0];
4356
4357 if (!newvd->vdev_ops->vdev_op_leaf)
4358 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4359
4360 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4361 return (spa_vdev_exit(spa, newrootvd, txg, error));
4362
4363 /*
4364 * Spares can't replace logs
4365 */
4366 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4367 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4368
4369 if (!replacing) {
4370 /*
4371 * For attach, the only allowable parent is a mirror or the root
4372 * vdev.
4373 */
4374 if (pvd->vdev_ops != &vdev_mirror_ops &&
4375 pvd->vdev_ops != &vdev_root_ops)
4376 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4377
4378 pvops = &vdev_mirror_ops;
4379 } else {
4380 /*
4381 * Active hot spares can only be replaced by inactive hot
4382 * spares.
4383 */
4384 if (pvd->vdev_ops == &vdev_spare_ops &&
4385 oldvd->vdev_isspare &&
4386 !spa_has_spare(spa, newvd->vdev_guid))
4387 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4388
4389 /*
4390 * If the source is a hot spare, and the parent isn't already a
4391 * spare, then we want to create a new hot spare. Otherwise, we
4392 * want to create a replacing vdev. The user is not allowed to
4393 * attach to a spared vdev child unless the 'isspare' state is
4394 * the same (spare replaces spare, non-spare replaces
4395 * non-spare).
4396 */
4397 if (pvd->vdev_ops == &vdev_replacing_ops &&
4398 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4399 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4400 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4401 newvd->vdev_isspare != oldvd->vdev_isspare) {
4402 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4403 }
4404
4405 if (newvd->vdev_isspare)
4406 pvops = &vdev_spare_ops;
4407 else
4408 pvops = &vdev_replacing_ops;
4409 }
4410
4411 /*
4412 * Make sure the new device is big enough.
4413 */
4414 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4415 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4416
4417 /*
4418 * The new device cannot have a higher alignment requirement
4419 * than the top-level vdev.
4420 */
4421 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4422 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4423
4424 /*
4425 * If this is an in-place replacement, update oldvd's path and devid
4426 * to make it distinguishable from newvd, and unopenable from now on.
4427 */
4428 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4429 spa_strfree(oldvd->vdev_path);
4430 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4431 KM_SLEEP);
4432 (void) sprintf(oldvd->vdev_path, "%s/%s",
4433 newvd->vdev_path, "old");
4434 if (oldvd->vdev_devid != NULL) {
4435 spa_strfree(oldvd->vdev_devid);
4436 oldvd->vdev_devid = NULL;
4437 }
4438 }
4439
4440 /* mark the device being resilvered */
4441 newvd->vdev_resilvering = B_TRUE;
4442
4443 /*
4444 * If the parent is not a mirror, or if we're replacing, insert the new
4445 * mirror/replacing/spare vdev above oldvd.
4446 */
4447 if (pvd->vdev_ops != pvops)
4448 pvd = vdev_add_parent(oldvd, pvops);
4449
4450 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4451 ASSERT(pvd->vdev_ops == pvops);
4452 ASSERT(oldvd->vdev_parent == pvd);
4453
4454 /*
4455 * Extract the new device from its root and add it to pvd.
4456 */
4457 vdev_remove_child(newrootvd, newvd);
4458 newvd->vdev_id = pvd->vdev_children;
4459 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4460 vdev_add_child(pvd, newvd);
4461
4462 tvd = newvd->vdev_top;
4463 ASSERT(pvd->vdev_top == tvd);
4464 ASSERT(tvd->vdev_parent == rvd);
4465
4466 vdev_config_dirty(tvd);
4467
4468 /*
4469 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4470 * for any dmu_sync-ed blocks. It will propagate upward when
4471 * spa_vdev_exit() calls vdev_dtl_reassess().
4472 */
4473 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4474
4475 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4476 dtl_max_txg - TXG_INITIAL);
4477
4478 if (newvd->vdev_isspare) {
4479 spa_spare_activate(newvd);
4480 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4481 }
4482
4483 oldvdpath = spa_strdup(oldvd->vdev_path);
4484 newvdpath = spa_strdup(newvd->vdev_path);
4485 newvd_isspare = newvd->vdev_isspare;
4486
4487 /*
4488 * Mark newvd's DTL dirty in this txg.
4489 */
4490 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4491
4492 /*
4493 * Restart the resilver
4494 */
4495 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4496
4497 /*
4498 * Commit the config
4499 */
4500 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4501
4502 spa_history_log_internal(spa, "vdev attach", NULL,
4503 "%s vdev=%s %s vdev=%s",
4504 replacing && newvd_isspare ? "spare in" :
4505 replacing ? "replace" : "attach", newvdpath,
4506 replacing ? "for" : "to", oldvdpath);
4507
4508 spa_strfree(oldvdpath);
4509 spa_strfree(newvdpath);
4510
4511 if (spa->spa_bootfs)
4512 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4513
4514 return (0);
4515 }
4516
4517 /*
4518 * Detach a device from a mirror or replacing vdev.
4519 * If 'replace_done' is specified, only detach if the parent
4520 * is a replacing vdev.
4521 */
4522 int
4523 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4524 {
4525 uint64_t txg;
4526 int error;
4527 vdev_t *rvd = spa->spa_root_vdev;
4528 vdev_t *vd, *pvd, *cvd, *tvd;
4529 boolean_t unspare = B_FALSE;
4530 uint64_t unspare_guid = 0;
4531 char *vdpath;
4532
4533 ASSERT(spa_writeable(spa));
4534
4535 txg = spa_vdev_enter(spa);
4536
4537 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4538
4539 if (vd == NULL)
4540 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4541
4542 if (!vd->vdev_ops->vdev_op_leaf)
4543 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4544
4545 pvd = vd->vdev_parent;
4546
4547 /*
4548 * If the parent/child relationship is not as expected, don't do it.
4549 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4550 * vdev that's replacing B with C. The user's intent in replacing
4551 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4552 * the replace by detaching C, the expected behavior is to end up
4553 * M(A,B). But suppose that right after deciding to detach C,
4554 * the replacement of B completes. We would have M(A,C), and then
4555 * ask to detach C, which would leave us with just A -- not what
4556 * the user wanted. To prevent this, we make sure that the
4557 * parent/child relationship hasn't changed -- in this example,
4558 * that C's parent is still the replacing vdev R.
4559 */
4560 if (pvd->vdev_guid != pguid && pguid != 0)
4561 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4562
4563 /*
4564 * Only 'replacing' or 'spare' vdevs can be replaced.
4565 */
4566 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4567 pvd->vdev_ops != &vdev_spare_ops)
4568 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4569
4570 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4571 spa_version(spa) >= SPA_VERSION_SPARES);
4572
4573 /*
4574 * Only mirror, replacing, and spare vdevs support detach.
4575 */
4576 if (pvd->vdev_ops != &vdev_replacing_ops &&
4577 pvd->vdev_ops != &vdev_mirror_ops &&
4578 pvd->vdev_ops != &vdev_spare_ops)
4579 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4580
4581 /*
4582 * If this device has the only valid copy of some data,
4583 * we cannot safely detach it.
4584 */
4585 if (vdev_dtl_required(vd))
4586 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4587
4588 ASSERT(pvd->vdev_children >= 2);
4589
4590 /*
4591 * If we are detaching the second disk from a replacing vdev, then
4592 * check to see if we changed the original vdev's path to have "/old"
4593 * at the end in spa_vdev_attach(). If so, undo that change now.
4594 */
4595 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4596 vd->vdev_path != NULL) {
4597 size_t len = strlen(vd->vdev_path);
4598
4599 for (int c = 0; c < pvd->vdev_children; c++) {
4600 cvd = pvd->vdev_child[c];
4601
4602 if (cvd == vd || cvd->vdev_path == NULL)
4603 continue;
4604
4605 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4606 strcmp(cvd->vdev_path + len, "/old") == 0) {
4607 spa_strfree(cvd->vdev_path);
4608 cvd->vdev_path = spa_strdup(vd->vdev_path);
4609 break;
4610 }
4611 }
4612 }
4613
4614 /*
4615 * If we are detaching the original disk from a spare, then it implies
4616 * that the spare should become a real disk, and be removed from the
4617 * active spare list for the pool.
4618 */
4619 if (pvd->vdev_ops == &vdev_spare_ops &&
4620 vd->vdev_id == 0 &&
4621 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4622 unspare = B_TRUE;
4623
4624 /*
4625 * Erase the disk labels so the disk can be used for other things.
4626 * This must be done after all other error cases are handled,
4627 * but before we disembowel vd (so we can still do I/O to it).
4628 * But if we can't do it, don't treat the error as fatal --
4629 * it may be that the unwritability of the disk is the reason
4630 * it's being detached!
4631 */
4632 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4633
4634 /*
4635 * Remove vd from its parent and compact the parent's children.
4636 */
4637 vdev_remove_child(pvd, vd);
4638 vdev_compact_children(pvd);
4639
4640 /*
4641 * Remember one of the remaining children so we can get tvd below.
4642 */
4643 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4644
4645 /*
4646 * If we need to remove the remaining child from the list of hot spares,
4647 * do it now, marking the vdev as no longer a spare in the process.
4648 * We must do this before vdev_remove_parent(), because that can
4649 * change the GUID if it creates a new toplevel GUID. For a similar
4650 * reason, we must remove the spare now, in the same txg as the detach;
4651 * otherwise someone could attach a new sibling, change the GUID, and
4652 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4653 */
4654 if (unspare) {
4655 ASSERT(cvd->vdev_isspare);
4656 spa_spare_remove(cvd);
4657 unspare_guid = cvd->vdev_guid;
4658 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4659 cvd->vdev_unspare = B_TRUE;
4660 }
4661
4662 /*
4663 * If the parent mirror/replacing vdev only has one child,
4664 * the parent is no longer needed. Remove it from the tree.
4665 */
4666 if (pvd->vdev_children == 1) {
4667 if (pvd->vdev_ops == &vdev_spare_ops)
4668 cvd->vdev_unspare = B_FALSE;
4669 vdev_remove_parent(cvd);
4670 cvd->vdev_resilvering = B_FALSE;
4671 }
4672
4673
4674 /*
4675 * We don't set tvd until now because the parent we just removed
4676 * may have been the previous top-level vdev.
4677 */
4678 tvd = cvd->vdev_top;
4679 ASSERT(tvd->vdev_parent == rvd);
4680
4681 /*
4682 * Reevaluate the parent vdev state.
4683 */
4684 vdev_propagate_state(cvd);
4685
4686 /*
4687 * If the 'autoexpand' property is set on the pool then automatically
4688 * try to expand the size of the pool. For example if the device we
4689 * just detached was smaller than the others, it may be possible to
4690 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4691 * first so that we can obtain the updated sizes of the leaf vdevs.
4692 */
4693 if (spa->spa_autoexpand) {
4694 vdev_reopen(tvd);
4695 vdev_expand(tvd, txg);
4696 }
4697
4698 vdev_config_dirty(tvd);
4699
4700 /*
4701 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4702 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4703 * But first make sure we're not on any *other* txg's DTL list, to
4704 * prevent vd from being accessed after it's freed.
4705 */
4706 vdpath = spa_strdup(vd->vdev_path);
4707 for (int t = 0; t < TXG_SIZE; t++)
4708 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4709 vd->vdev_detached = B_TRUE;
4710 vdev_dirty(tvd, VDD_DTL, vd, txg);
4711
4712 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4713
4714 /* hang on to the spa before we release the lock */
4715 spa_open_ref(spa, FTAG);
4716
4717 error = spa_vdev_exit(spa, vd, txg, 0);
4718
4719 spa_history_log_internal(spa, "detach", NULL,
4720 "vdev=%s", vdpath);
4721 spa_strfree(vdpath);
4722
4723 /*
4724 * If this was the removal of the original device in a hot spare vdev,
4725 * then we want to go through and remove the device from the hot spare
4726 * list of every other pool.
4727 */
4728 if (unspare) {
4729 spa_t *altspa = NULL;
4730
4731 mutex_enter(&spa_namespace_lock);
4732 while ((altspa = spa_next(altspa)) != NULL) {
4733 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4734 altspa == spa)
4735 continue;
4736
4737 spa_open_ref(altspa, FTAG);
4738 mutex_exit(&spa_namespace_lock);
4739 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4740 mutex_enter(&spa_namespace_lock);
4741 spa_close(altspa, FTAG);
4742 }
4743 mutex_exit(&spa_namespace_lock);
4744
4745 /* search the rest of the vdevs for spares to remove */
4746 spa_vdev_resilver_done(spa);
4747 }
4748
4749 /* all done with the spa; OK to release */
4750 mutex_enter(&spa_namespace_lock);
4751 spa_close(spa, FTAG);
4752 mutex_exit(&spa_namespace_lock);
4753
4754 return (error);
4755 }
4756
4757 /*
4758 * Split a set of devices from their mirrors, and create a new pool from them.
4759 */
4760 int
4761 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4762 nvlist_t *props, boolean_t exp)
4763 {
4764 int error = 0;
4765 uint64_t txg, *glist;
4766 spa_t *newspa;
4767 uint_t c, children, lastlog;
4768 nvlist_t **child, *nvl, *tmp;
4769 dmu_tx_t *tx;
4770 char *altroot = NULL;
4771 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4772 boolean_t activate_slog;
4773
4774 ASSERT(spa_writeable(spa));
4775
4776 txg = spa_vdev_enter(spa);
4777
4778 /* clear the log and flush everything up to now */
4779 activate_slog = spa_passivate_log(spa);
4780 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4781 error = spa_offline_log(spa);
4782 txg = spa_vdev_config_enter(spa);
4783
4784 if (activate_slog)
4785 spa_activate_log(spa);
4786
4787 if (error != 0)
4788 return (spa_vdev_exit(spa, NULL, txg, error));
4789
4790 /* check new spa name before going any further */
4791 if (spa_lookup(newname) != NULL)
4792 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4793
4794 /*
4795 * scan through all the children to ensure they're all mirrors
4796 */
4797 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4798 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4799 &children) != 0)
4800 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4801
4802 /* first, check to ensure we've got the right child count */
4803 rvd = spa->spa_root_vdev;
4804 lastlog = 0;
4805 for (c = 0; c < rvd->vdev_children; c++) {
4806 vdev_t *vd = rvd->vdev_child[c];
4807
4808 /* don't count the holes & logs as children */
4809 if (vd->vdev_islog || vd->vdev_ishole) {
4810 if (lastlog == 0)
4811 lastlog = c;
4812 continue;
4813 }
4814
4815 lastlog = 0;
4816 }
4817 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4818 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4819
4820 /* next, ensure no spare or cache devices are part of the split */
4821 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4822 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4823 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4824
4825 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4826 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4827
4828 /* then, loop over each vdev and validate it */
4829 for (c = 0; c < children; c++) {
4830 uint64_t is_hole = 0;
4831
4832 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4833 &is_hole);
4834
4835 if (is_hole != 0) {
4836 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4837 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4838 continue;
4839 } else {
4840 error = SET_ERROR(EINVAL);
4841 break;
4842 }
4843 }
4844
4845 /* which disk is going to be split? */
4846 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4847 &glist[c]) != 0) {
4848 error = SET_ERROR(EINVAL);
4849 break;
4850 }
4851
4852 /* look it up in the spa */
4853 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4854 if (vml[c] == NULL) {
4855 error = SET_ERROR(ENODEV);
4856 break;
4857 }
4858
4859 /* make sure there's nothing stopping the split */
4860 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4861 vml[c]->vdev_islog ||
4862 vml[c]->vdev_ishole ||
4863 vml[c]->vdev_isspare ||
4864 vml[c]->vdev_isl2cache ||
4865 !vdev_writeable(vml[c]) ||
4866 vml[c]->vdev_children != 0 ||
4867 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4868 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4869 error = SET_ERROR(EINVAL);
4870 break;
4871 }
4872
4873 if (vdev_dtl_required(vml[c])) {
4874 error = SET_ERROR(EBUSY);
4875 break;
4876 }
4877
4878 /* we need certain info from the top level */
4879 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4880 vml[c]->vdev_top->vdev_ms_array) == 0);
4881 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4882 vml[c]->vdev_top->vdev_ms_shift) == 0);
4883 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4884 vml[c]->vdev_top->vdev_asize) == 0);
4885 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4886 vml[c]->vdev_top->vdev_ashift) == 0);
4887 }
4888
4889 if (error != 0) {
4890 kmem_free(vml, children * sizeof (vdev_t *));
4891 kmem_free(glist, children * sizeof (uint64_t));
4892 return (spa_vdev_exit(spa, NULL, txg, error));
4893 }
4894
4895 /* stop writers from using the disks */
4896 for (c = 0; c < children; c++) {
4897 if (vml[c] != NULL)
4898 vml[c]->vdev_offline = B_TRUE;
4899 }
4900 vdev_reopen(spa->spa_root_vdev);
4901
4902 /*
4903 * Temporarily record the splitting vdevs in the spa config. This
4904 * will disappear once the config is regenerated.
4905 */
4906 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4907 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4908 glist, children) == 0);
4909 kmem_free(glist, children * sizeof (uint64_t));
4910
4911 mutex_enter(&spa->spa_props_lock);
4912 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4913 nvl) == 0);
4914 mutex_exit(&spa->spa_props_lock);
4915 spa->spa_config_splitting = nvl;
4916 vdev_config_dirty(spa->spa_root_vdev);
4917
4918 /* configure and create the new pool */
4919 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4920 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4921 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4922 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4923 spa_version(spa)) == 0);
4924 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4925 spa->spa_config_txg) == 0);
4926 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4927 spa_generate_guid(NULL)) == 0);
4928 (void) nvlist_lookup_string(props,
4929 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4930
4931 /* add the new pool to the namespace */
4932 newspa = spa_add(newname, config, altroot);
4933 newspa->spa_config_txg = spa->spa_config_txg;
4934 spa_set_log_state(newspa, SPA_LOG_CLEAR);
4935
4936 /* release the spa config lock, retaining the namespace lock */
4937 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4938
4939 if (zio_injection_enabled)
4940 zio_handle_panic_injection(spa, FTAG, 1);
4941
4942 spa_activate(newspa, spa_mode_global);
4943 spa_async_suspend(newspa);
4944
4945 /* create the new pool from the disks of the original pool */
4946 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4947 if (error)
4948 goto out;
4949
4950 /* if that worked, generate a real config for the new pool */
4951 if (newspa->spa_root_vdev != NULL) {
4952 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4953 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4954 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4955 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4956 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4957 B_TRUE));
4958 }
4959
4960 /* set the props */
4961 if (props != NULL) {
4962 spa_configfile_set(newspa, props, B_FALSE);
4963 error = spa_prop_set(newspa, props);
4964 if (error)
4965 goto out;
4966 }
4967
4968 /* flush everything */
4969 txg = spa_vdev_config_enter(newspa);
4970 vdev_config_dirty(newspa->spa_root_vdev);
4971 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4972
4973 if (zio_injection_enabled)
4974 zio_handle_panic_injection(spa, FTAG, 2);
4975
4976 spa_async_resume(newspa);
4977
4978 /* finally, update the original pool's config */
4979 txg = spa_vdev_config_enter(spa);
4980 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4981 error = dmu_tx_assign(tx, TXG_WAIT);
4982 if (error != 0)
4983 dmu_tx_abort(tx);
4984 for (c = 0; c < children; c++) {
4985 if (vml[c] != NULL) {
4986 vdev_split(vml[c]);
4987 if (error == 0)
4988 spa_history_log_internal(spa, "detach", tx,
4989 "vdev=%s", vml[c]->vdev_path);
4990 vdev_free(vml[c]);
4991 }
4992 }
4993 vdev_config_dirty(spa->spa_root_vdev);
4994 spa->spa_config_splitting = NULL;
4995 nvlist_free(nvl);
4996 if (error == 0)
4997 dmu_tx_commit(tx);
4998 (void) spa_vdev_exit(spa, NULL, txg, 0);
4999
5000 if (zio_injection_enabled)
5001 zio_handle_panic_injection(spa, FTAG, 3);
5002
5003 /* split is complete; log a history record */
5004 spa_history_log_internal(newspa, "split", NULL,
5005 "from pool %s", spa_name(spa));
5006
5007 kmem_free(vml, children * sizeof (vdev_t *));
5008
5009 /* if we're not going to mount the filesystems in userland, export */
5010 if (exp)
5011 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5012 B_FALSE, B_FALSE);
5013
5014 return (error);
5015
5016 out:
5017 spa_unload(newspa);
5018 spa_deactivate(newspa);
5019 spa_remove(newspa);
5020
5021 txg = spa_vdev_config_enter(spa);
5022
5023 /* re-online all offlined disks */
5024 for (c = 0; c < children; c++) {
5025 if (vml[c] != NULL)
5026 vml[c]->vdev_offline = B_FALSE;
5027 }
5028 vdev_reopen(spa->spa_root_vdev);
5029
5030 nvlist_free(spa->spa_config_splitting);
5031 spa->spa_config_splitting = NULL;
5032 (void) spa_vdev_exit(spa, NULL, txg, error);
5033
5034 kmem_free(vml, children * sizeof (vdev_t *));
5035 return (error);
5036 }
5037
5038 static nvlist_t *
5039 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5040 {
5041 for (int i = 0; i < count; i++) {
5042 uint64_t guid;
5043
5044 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5045 &guid) == 0);
5046
5047 if (guid == target_guid)
5048 return (nvpp[i]);
5049 }
5050
5051 return (NULL);
5052 }
5053
5054 static void
5055 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5056 nvlist_t *dev_to_remove)
5057 {
5058 nvlist_t **newdev = NULL;
5059
5060 if (count > 1)
5061 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5062
5063 for (int i = 0, j = 0; i < count; i++) {
5064 if (dev[i] == dev_to_remove)
5065 continue;
5066 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5067 }
5068
5069 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5070 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5071
5072 for (int i = 0; i < count - 1; i++)
5073 nvlist_free(newdev[i]);
5074
5075 if (count > 1)
5076 kmem_free(newdev, (count - 1) * sizeof (void *));
5077 }
5078
5079 /*
5080 * Evacuate the device.
5081 */
5082 static int
5083 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5084 {
5085 uint64_t txg;
5086 int error = 0;
5087
5088 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5089 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5090 ASSERT(vd == vd->vdev_top);
5091
5092 /*
5093 * Evacuate the device. We don't hold the config lock as writer
5094 * since we need to do I/O but we do keep the
5095 * spa_namespace_lock held. Once this completes the device
5096 * should no longer have any blocks allocated on it.
5097 */
5098 if (vd->vdev_islog) {
5099 if (vd->vdev_stat.vs_alloc != 0)
5100 error = spa_offline_log(spa);
5101 } else {
5102 error = SET_ERROR(ENOTSUP);
5103 }
5104
5105 if (error)
5106 return (error);
5107
5108 /*
5109 * The evacuation succeeded. Remove any remaining MOS metadata
5110 * associated with this vdev, and wait for these changes to sync.
5111 */
5112 ASSERT0(vd->vdev_stat.vs_alloc);
5113 txg = spa_vdev_config_enter(spa);
5114 vd->vdev_removing = B_TRUE;
5115 vdev_dirty(vd, 0, NULL, txg);
5116 vdev_config_dirty(vd);
5117 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5118
5119 return (0);
5120 }
5121
5122 /*
5123 * Complete the removal by cleaning up the namespace.
5124 */
5125 static void
5126 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5127 {
5128 vdev_t *rvd = spa->spa_root_vdev;
5129 uint64_t id = vd->vdev_id;
5130 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5131
5132 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5133 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5134 ASSERT(vd == vd->vdev_top);
5135
5136 /*
5137 * Only remove any devices which are empty.
5138 */
5139 if (vd->vdev_stat.vs_alloc != 0)
5140 return;
5141
5142 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5143
5144 if (list_link_active(&vd->vdev_state_dirty_node))
5145 vdev_state_clean(vd);
5146 if (list_link_active(&vd->vdev_config_dirty_node))
5147 vdev_config_clean(vd);
5148
5149 vdev_free(vd);
5150
5151 if (last_vdev) {
5152 vdev_compact_children(rvd);
5153 } else {
5154 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5155 vdev_add_child(rvd, vd);
5156 }
5157 vdev_config_dirty(rvd);
5158
5159 /*
5160 * Reassess the health of our root vdev.
5161 */
5162 vdev_reopen(rvd);
5163 }
5164
5165 /*
5166 * Remove a device from the pool -
5167 *
5168 * Removing a device from the vdev namespace requires several steps
5169 * and can take a significant amount of time. As a result we use
5170 * the spa_vdev_config_[enter/exit] functions which allow us to
5171 * grab and release the spa_config_lock while still holding the namespace
5172 * lock. During each step the configuration is synced out.
5173 */
5174
5175 /*
5176 * Remove a device from the pool. Currently, this supports removing only hot
5177 * spares, slogs, and level 2 ARC devices.
5178 */
5179 int
5180 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5181 {
5182 vdev_t *vd;
5183 metaslab_group_t *mg;
5184 nvlist_t **spares, **l2cache, *nv;
5185 uint64_t txg = 0;
5186 uint_t nspares, nl2cache;
5187 int error = 0;
5188 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5189
5190 ASSERT(spa_writeable(spa));
5191
5192 if (!locked)
5193 txg = spa_vdev_enter(spa);
5194
5195 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5196
5197 if (spa->spa_spares.sav_vdevs != NULL &&
5198 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5199 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5200 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5201 /*
5202 * Only remove the hot spare if it's not currently in use
5203 * in this pool.
5204 */
5205 if (vd == NULL || unspare) {
5206 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5207 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5208 spa_load_spares(spa);
5209 spa->spa_spares.sav_sync = B_TRUE;
5210 } else {
5211 error = SET_ERROR(EBUSY);
5212 }
5213 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5214 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5215 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5216 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5217 /*
5218 * Cache devices can always be removed.
5219 */
5220 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5221 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5222 spa_load_l2cache(spa);
5223 spa->spa_l2cache.sav_sync = B_TRUE;
5224 } else if (vd != NULL && vd->vdev_islog) {
5225 ASSERT(!locked);
5226 ASSERT(vd == vd->vdev_top);
5227
5228 /*
5229 * XXX - Once we have bp-rewrite this should
5230 * become the common case.
5231 */
5232
5233 mg = vd->vdev_mg;
5234
5235 /*
5236 * Stop allocating from this vdev.
5237 */
5238 metaslab_group_passivate(mg);
5239
5240 /*
5241 * Wait for the youngest allocations and frees to sync,
5242 * and then wait for the deferral of those frees to finish.
5243 */
5244 spa_vdev_config_exit(spa, NULL,
5245 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5246
5247 /*
5248 * Attempt to evacuate the vdev.
5249 */
5250 error = spa_vdev_remove_evacuate(spa, vd);
5251
5252 txg = spa_vdev_config_enter(spa);
5253
5254 /*
5255 * If we couldn't evacuate the vdev, unwind.
5256 */
5257 if (error) {
5258 metaslab_group_activate(mg);
5259 return (spa_vdev_exit(spa, NULL, txg, error));
5260 }
5261
5262 /*
5263 * Clean up the vdev namespace.
5264 */
5265 spa_vdev_remove_from_namespace(spa, vd);
5266
5267 } else if (vd != NULL) {
5268 /*
5269 * Normal vdevs cannot be removed (yet).
5270 */
5271 error = SET_ERROR(ENOTSUP);
5272 } else {
5273 /*
5274 * There is no vdev of any kind with the specified guid.
5275 */
5276 error = SET_ERROR(ENOENT);
5277 }
5278
5279 if (!locked)
5280 return (spa_vdev_exit(spa, NULL, txg, error));
5281
5282 return (error);
5283 }
5284
5285 /*
5286 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5287 * current spared, so we can detach it.
5288 */
5289 static vdev_t *
5290 spa_vdev_resilver_done_hunt(vdev_t *vd)
5291 {
5292 vdev_t *newvd, *oldvd;
5293
5294 for (int c = 0; c < vd->vdev_children; c++) {
5295 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5296 if (oldvd != NULL)
5297 return (oldvd);
5298 }
5299
5300 /*
5301 * Check for a completed replacement. We always consider the first
5302 * vdev in the list to be the oldest vdev, and the last one to be
5303 * the newest (see spa_vdev_attach() for how that works). In
5304 * the case where the newest vdev is faulted, we will not automatically
5305 * remove it after a resilver completes. This is OK as it will require
5306 * user intervention to determine which disk the admin wishes to keep.
5307 */
5308 if (vd->vdev_ops == &vdev_replacing_ops) {
5309 ASSERT(vd->vdev_children > 1);
5310
5311 newvd = vd->vdev_child[vd->vdev_children - 1];
5312 oldvd = vd->vdev_child[0];
5313
5314 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5315 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5316 !vdev_dtl_required(oldvd))
5317 return (oldvd);
5318 }
5319
5320 /*
5321 * Check for a completed resilver with the 'unspare' flag set.
5322 */
5323 if (vd->vdev_ops == &vdev_spare_ops) {
5324 vdev_t *first = vd->vdev_child[0];
5325 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5326
5327 if (last->vdev_unspare) {
5328 oldvd = first;
5329 newvd = last;
5330 } else if (first->vdev_unspare) {
5331 oldvd = last;
5332 newvd = first;
5333 } else {
5334 oldvd = NULL;
5335 }
5336
5337 if (oldvd != NULL &&
5338 vdev_dtl_empty(newvd, DTL_MISSING) &&
5339 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5340 !vdev_dtl_required(oldvd))
5341 return (oldvd);
5342
5343 /*
5344 * If there are more than two spares attached to a disk,
5345 * and those spares are not required, then we want to
5346 * attempt to free them up now so that they can be used
5347 * by other pools. Once we're back down to a single
5348 * disk+spare, we stop removing them.
5349 */
5350 if (vd->vdev_children > 2) {
5351 newvd = vd->vdev_child[1];
5352
5353 if (newvd->vdev_isspare && last->vdev_isspare &&
5354 vdev_dtl_empty(last, DTL_MISSING) &&
5355 vdev_dtl_empty(last, DTL_OUTAGE) &&
5356 !vdev_dtl_required(newvd))
5357 return (newvd);
5358 }
5359 }
5360
5361 return (NULL);
5362 }
5363
5364 static void
5365 spa_vdev_resilver_done(spa_t *spa)
5366 {
5367 vdev_t *vd, *pvd, *ppvd;
5368 uint64_t guid, sguid, pguid, ppguid;
5369
5370 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5371
5372 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5373 pvd = vd->vdev_parent;
5374 ppvd = pvd->vdev_parent;
5375 guid = vd->vdev_guid;
5376 pguid = pvd->vdev_guid;
5377 ppguid = ppvd->vdev_guid;
5378 sguid = 0;
5379 /*
5380 * If we have just finished replacing a hot spared device, then
5381 * we need to detach the parent's first child (the original hot
5382 * spare) as well.
5383 */
5384 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5385 ppvd->vdev_children == 2) {
5386 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5387 sguid = ppvd->vdev_child[1]->vdev_guid;
5388 }
5389 spa_config_exit(spa, SCL_ALL, FTAG);
5390 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5391 return;
5392 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5393 return;
5394 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5395 }
5396
5397 spa_config_exit(spa, SCL_ALL, FTAG);
5398 }
5399
5400 /*
5401 * Update the stored path or FRU for this vdev.
5402 */
5403 int
5404 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5405 boolean_t ispath)
5406 {
5407 vdev_t *vd;
5408 boolean_t sync = B_FALSE;
5409
5410 ASSERT(spa_writeable(spa));
5411
5412 spa_vdev_state_enter(spa, SCL_ALL);
5413
5414 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5415 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5416
5417 if (!vd->vdev_ops->vdev_op_leaf)
5418 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5419
5420 if (ispath) {
5421 if (strcmp(value, vd->vdev_path) != 0) {
5422 spa_strfree(vd->vdev_path);
5423 vd->vdev_path = spa_strdup(value);
5424 sync = B_TRUE;
5425 }
5426 } else {
5427 if (vd->vdev_fru == NULL) {
5428 vd->vdev_fru = spa_strdup(value);
5429 sync = B_TRUE;
5430 } else if (strcmp(value, vd->vdev_fru) != 0) {
5431 spa_strfree(vd->vdev_fru);
5432 vd->vdev_fru = spa_strdup(value);
5433 sync = B_TRUE;
5434 }
5435 }
5436
5437 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5438 }
5439
5440 int
5441 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5442 {
5443 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5444 }
5445
5446 int
5447 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5448 {
5449 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5450 }
5451
5452 /*
5453 * ==========================================================================
5454 * SPA Scanning
5455 * ==========================================================================
5456 */
5457
5458 int
5459 spa_scan_stop(spa_t *spa)
5460 {
5461 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5462 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5463 return (SET_ERROR(EBUSY));
5464 return (dsl_scan_cancel(spa->spa_dsl_pool));
5465 }
5466
5467 int
5468 spa_scan(spa_t *spa, pool_scan_func_t func)
5469 {
5470 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5471
5472 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5473 return (SET_ERROR(ENOTSUP));
5474
5475 /*
5476 * If a resilver was requested, but there is no DTL on a
5477 * writeable leaf device, we have nothing to do.
5478 */
5479 if (func == POOL_SCAN_RESILVER &&
5480 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5481 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5482 return (0);
5483 }
5484
5485 return (dsl_scan(spa->spa_dsl_pool, func));
5486 }
5487
5488 /*
5489 * ==========================================================================
5490 * SPA async task processing
5491 * ==========================================================================
5492 */
5493
5494 static void
5495 spa_async_remove(spa_t *spa, vdev_t *vd)
5496 {
5497 if (vd->vdev_remove_wanted) {
5498 vd->vdev_remove_wanted = B_FALSE;
5499 vd->vdev_delayed_close = B_FALSE;
5500 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5501
5502 /*
5503 * We want to clear the stats, but we don't want to do a full
5504 * vdev_clear() as that will cause us to throw away
5505 * degraded/faulted state as well as attempt to reopen the
5506 * device, all of which is a waste.
5507 */
5508 vd->vdev_stat.vs_read_errors = 0;
5509 vd->vdev_stat.vs_write_errors = 0;
5510 vd->vdev_stat.vs_checksum_errors = 0;
5511
5512 vdev_state_dirty(vd->vdev_top);
5513 }
5514
5515 for (int c = 0; c < vd->vdev_children; c++)
5516 spa_async_remove(spa, vd->vdev_child[c]);
5517 }
5518
5519 static void
5520 spa_async_probe(spa_t *spa, vdev_t *vd)
5521 {
5522 if (vd->vdev_probe_wanted) {
5523 vd->vdev_probe_wanted = B_FALSE;
5524 vdev_reopen(vd); /* vdev_open() does the actual probe */
5525 }
5526
5527 for (int c = 0; c < vd->vdev_children; c++)
5528 spa_async_probe(spa, vd->vdev_child[c]);
5529 }
5530
5531 static void
5532 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5533 {
5534 sysevent_id_t eid;
5535 nvlist_t *attr;
5536 char *physpath;
5537
5538 if (!spa->spa_autoexpand)
5539 return;
5540
5541 for (int c = 0; c < vd->vdev_children; c++) {
5542 vdev_t *cvd = vd->vdev_child[c];
5543 spa_async_autoexpand(spa, cvd);
5544 }
5545
5546 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5547 return;
5548
5549 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5550 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5551
5552 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5553 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5554
5555 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5556 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5557
5558 nvlist_free(attr);
5559 kmem_free(physpath, MAXPATHLEN);
5560 }
5561
5562 static void
5563 spa_async_thread(spa_t *spa)
5564 {
5565 int tasks;
5566
5567 ASSERT(spa->spa_sync_on);
5568
5569 mutex_enter(&spa->spa_async_lock);
5570 tasks = spa->spa_async_tasks;
5571 spa->spa_async_tasks = 0;
5572 mutex_exit(&spa->spa_async_lock);
5573
5574 /*
5575 * See if the config needs to be updated.
5576 */
5577 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5578 uint64_t old_space, new_space;
5579
5580 mutex_enter(&spa_namespace_lock);
5581 old_space = metaslab_class_get_space(spa_normal_class(spa));
5582 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5583 new_space = metaslab_class_get_space(spa_normal_class(spa));
5584 mutex_exit(&spa_namespace_lock);
5585
5586 /*
5587 * If the pool grew as a result of the config update,
5588 * then log an internal history event.
5589 */
5590 if (new_space != old_space) {
5591 spa_history_log_internal(spa, "vdev online", NULL,
5592 "pool '%s' size: %llu(+%llu)",
5593 spa_name(spa), new_space, new_space - old_space);
5594 }
5595 }
5596
5597 /*
5598 * See if any devices need to be marked REMOVED.
5599 */
5600 if (tasks & SPA_ASYNC_REMOVE) {
5601 spa_vdev_state_enter(spa, SCL_NONE);
5602 spa_async_remove(spa, spa->spa_root_vdev);
5603 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5604 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5605 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5606 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5607 (void) spa_vdev_state_exit(spa, NULL, 0);
5608 }
5609
5610 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5611 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5612 spa_async_autoexpand(spa, spa->spa_root_vdev);
5613 spa_config_exit(spa, SCL_CONFIG, FTAG);
5614 }
5615
5616 /*
5617 * See if any devices need to be probed.
5618 */
5619 if (tasks & SPA_ASYNC_PROBE) {
5620 spa_vdev_state_enter(spa, SCL_NONE);
5621 spa_async_probe(spa, spa->spa_root_vdev);
5622 (void) spa_vdev_state_exit(spa, NULL, 0);
5623 }
5624
5625 /*
5626 * If any devices are done replacing, detach them.
5627 */
5628 if (tasks & SPA_ASYNC_RESILVER_DONE)
5629 spa_vdev_resilver_done(spa);
5630
5631 /*
5632 * Kick off a resilver.
5633 */
5634 if (tasks & SPA_ASYNC_RESILVER)
5635 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5636
5637 /*
5638 * Let the world know that we're done.
5639 */
5640 mutex_enter(&spa->spa_async_lock);
5641 spa->spa_async_thread = NULL;
5642 cv_broadcast(&spa->spa_async_cv);
5643 mutex_exit(&spa->spa_async_lock);
5644 thread_exit();
5645 }
5646
5647 void
5648 spa_async_suspend(spa_t *spa)
5649 {
5650 mutex_enter(&spa->spa_async_lock);
5651 spa->spa_async_suspended++;
5652 while (spa->spa_async_thread != NULL)
5653 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5654 mutex_exit(&spa->spa_async_lock);
5655 }
5656
5657 void
5658 spa_async_resume(spa_t *spa)
5659 {
5660 mutex_enter(&spa->spa_async_lock);
5661 ASSERT(spa->spa_async_suspended != 0);
5662 spa->spa_async_suspended--;
5663 mutex_exit(&spa->spa_async_lock);
5664 }
5665
5666 static void
5667 spa_async_dispatch(spa_t *spa)
5668 {
5669 mutex_enter(&spa->spa_async_lock);
5670 if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5671 spa->spa_async_thread == NULL &&
5672 rootdir != NULL && !vn_is_readonly(rootdir))
5673 spa->spa_async_thread = thread_create(NULL, 0,
5674 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5675 mutex_exit(&spa->spa_async_lock);
5676 }
5677
5678 void
5679 spa_async_request(spa_t *spa, int task)
5680 {
5681 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5682 mutex_enter(&spa->spa_async_lock);
5683 spa->spa_async_tasks |= task;
5684 mutex_exit(&spa->spa_async_lock);
5685 }
5686
5687 /*
5688 * ==========================================================================
5689 * SPA syncing routines
5690 * ==========================================================================
5691 */
5692
5693 static int
5694 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5695 {
5696 bpobj_t *bpo = arg;
5697 bpobj_enqueue(bpo, bp, tx);
5698 return (0);
5699 }
5700
5701 static int
5702 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5703 {
5704 zio_t *zio = arg;
5705
5706 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5707 zio->io_flags));
5708 return (0);
5709 }
5710
5711 static void
5712 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5713 {
5714 char *packed = NULL;
5715 size_t bufsize;
5716 size_t nvsize = 0;
5717 dmu_buf_t *db;
5718
5719 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5720
5721 /*
5722 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5723 * information. This avoids the dbuf_will_dirty() path and
5724 * saves us a pre-read to get data we don't actually care about.
5725 */
5726 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5727 packed = kmem_alloc(bufsize, KM_SLEEP);
5728
5729 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5730 KM_SLEEP) == 0);
5731 bzero(packed + nvsize, bufsize - nvsize);
5732
5733 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5734
5735 kmem_free(packed, bufsize);
5736
5737 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5738 dmu_buf_will_dirty(db, tx);
5739 *(uint64_t *)db->db_data = nvsize;
5740 dmu_buf_rele(db, FTAG);
5741 }
5742
5743 static void
5744 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5745 const char *config, const char *entry)
5746 {
5747 nvlist_t *nvroot;
5748 nvlist_t **list;
5749 int i;
5750
5751 if (!sav->sav_sync)
5752 return;
5753
5754 /*
5755 * Update the MOS nvlist describing the list of available devices.
5756 * spa_validate_aux() will have already made sure this nvlist is
5757 * valid and the vdevs are labeled appropriately.
5758 */
5759 if (sav->sav_object == 0) {
5760 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5761 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5762 sizeof (uint64_t), tx);
5763 VERIFY(zap_update(spa->spa_meta_objset,
5764 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5765 &sav->sav_object, tx) == 0);
5766 }
5767
5768 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5769 if (sav->sav_count == 0) {
5770 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5771 } else {
5772 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5773 for (i = 0; i < sav->sav_count; i++)
5774 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5775 B_FALSE, VDEV_CONFIG_L2CACHE);
5776 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5777 sav->sav_count) == 0);
5778 for (i = 0; i < sav->sav_count; i++)
5779 nvlist_free(list[i]);
5780 kmem_free(list, sav->sav_count * sizeof (void *));
5781 }
5782
5783 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5784 nvlist_free(nvroot);
5785
5786 sav->sav_sync = B_FALSE;
5787 }
5788
5789 static void
5790 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5791 {
5792 nvlist_t *config;
5793
5794 if (list_is_empty(&spa->spa_config_dirty_list))
5795 return;
5796
5797 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5798
5799 config = spa_config_generate(spa, spa->spa_root_vdev,
5800 dmu_tx_get_txg(tx), B_FALSE);
5801
5802 /*
5803 * If we're upgrading the spa version then make sure that
5804 * the config object gets updated with the correct version.
5805 */
5806 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5807 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5808 spa->spa_uberblock.ub_version);
5809
5810 spa_config_exit(spa, SCL_STATE, FTAG);
5811
5812 if (spa->spa_config_syncing)
5813 nvlist_free(spa->spa_config_syncing);
5814 spa->spa_config_syncing = config;
5815
5816 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5817 }
5818
5819 static void
5820 spa_sync_version(void *arg, dmu_tx_t *tx)
5821 {
5822 uint64_t *versionp = arg;
5823 uint64_t version = *versionp;
5824 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5825
5826 /*
5827 * Setting the version is special cased when first creating the pool.
5828 */
5829 ASSERT(tx->tx_txg != TXG_INITIAL);
5830
5831 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5832 ASSERT(version >= spa_version(spa));
5833
5834 spa->spa_uberblock.ub_version = version;
5835 vdev_config_dirty(spa->spa_root_vdev);
5836 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5837 }
5838
5839 /*
5840 * Set zpool properties.
5841 */
5842 static void
5843 spa_sync_props(void *arg, dmu_tx_t *tx)
5844 {
5845 nvlist_t *nvp = arg;
5846 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5847 objset_t *mos = spa->spa_meta_objset;
5848 nvpair_t *elem = NULL;
5849
5850 mutex_enter(&spa->spa_props_lock);
5851
5852 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5853 uint64_t intval;
5854 char *strval, *fname;
5855 zpool_prop_t prop;
5856 const char *propname;
5857 zprop_type_t proptype;
5858 zfeature_info_t *feature;
5859
5860 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5861 case ZPROP_INVAL:
5862 /*
5863 * We checked this earlier in spa_prop_validate().
5864 */
5865 ASSERT(zpool_prop_feature(nvpair_name(elem)));
5866
5867 fname = strchr(nvpair_name(elem), '@') + 1;
5868 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
5869
5870 spa_feature_enable(spa, feature, tx);
5871 spa_history_log_internal(spa, "set", tx,
5872 "%s=enabled", nvpair_name(elem));
5873 break;
5874
5875 case ZPOOL_PROP_VERSION:
5876 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5877 /*
5878 * The version is synced seperatly before other
5879 * properties and should be correct by now.
5880 */
5881 ASSERT3U(spa_version(spa), >=, intval);
5882 break;
5883
5884 case ZPOOL_PROP_ALTROOT:
5885 /*
5886 * 'altroot' is a non-persistent property. It should
5887 * have been set temporarily at creation or import time.
5888 */
5889 ASSERT(spa->spa_root != NULL);
5890 break;
5891
5892 case ZPOOL_PROP_READONLY:
5893 case ZPOOL_PROP_CACHEFILE:
5894 /*
5895 * 'readonly' and 'cachefile' are also non-persisitent
5896 * properties.
5897 */
5898 break;
5899 case ZPOOL_PROP_COMMENT:
5900 VERIFY(nvpair_value_string(elem, &strval) == 0);
5901 if (spa->spa_comment != NULL)
5902 spa_strfree(spa->spa_comment);
5903 spa->spa_comment = spa_strdup(strval);
5904 /*
5905 * We need to dirty the configuration on all the vdevs
5906 * so that their labels get updated. It's unnecessary
5907 * to do this for pool creation since the vdev's
5908 * configuratoin has already been dirtied.
5909 */
5910 if (tx->tx_txg != TXG_INITIAL)
5911 vdev_config_dirty(spa->spa_root_vdev);
5912 spa_history_log_internal(spa, "set", tx,
5913 "%s=%s", nvpair_name(elem), strval);
5914 break;
5915 default:
5916 /*
5917 * Set pool property values in the poolprops mos object.
5918 */
5919 if (spa->spa_pool_props_object == 0) {
5920 spa->spa_pool_props_object =
5921 zap_create_link(mos, DMU_OT_POOL_PROPS,
5922 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5923 tx);
5924 }
5925
5926 /* normalize the property name */
5927 propname = zpool_prop_to_name(prop);
5928 proptype = zpool_prop_get_type(prop);
5929
5930 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5931 ASSERT(proptype == PROP_TYPE_STRING);
5932 VERIFY(nvpair_value_string(elem, &strval) == 0);
5933 VERIFY(zap_update(mos,
5934 spa->spa_pool_props_object, propname,
5935 1, strlen(strval) + 1, strval, tx) == 0);
5936 spa_history_log_internal(spa, "set", tx,
5937 "%s=%s", nvpair_name(elem), strval);
5938 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5939 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5940
5941 if (proptype == PROP_TYPE_INDEX) {
5942 const char *unused;
5943 VERIFY(zpool_prop_index_to_string(
5944 prop, intval, &unused) == 0);
5945 }
5946 VERIFY(zap_update(mos,
5947 spa->spa_pool_props_object, propname,
5948 8, 1, &intval, tx) == 0);
5949 spa_history_log_internal(spa, "set", tx,
5950 "%s=%lld", nvpair_name(elem), intval);
5951 } else {
5952 ASSERT(0); /* not allowed */
5953 }
5954
5955 switch (prop) {
5956 case ZPOOL_PROP_DELEGATION:
5957 spa->spa_delegation = intval;
5958 break;
5959 case ZPOOL_PROP_BOOTFS:
5960 spa->spa_bootfs = intval;
5961 break;
5962 case ZPOOL_PROP_FAILUREMODE:
5963 spa->spa_failmode = intval;
5964 break;
5965 case ZPOOL_PROP_AUTOEXPAND:
5966 spa->spa_autoexpand = intval;
5967 if (tx->tx_txg != TXG_INITIAL)
5968 spa_async_request(spa,
5969 SPA_ASYNC_AUTOEXPAND);
5970 break;
5971 case ZPOOL_PROP_DEDUPDITTO:
5972 spa->spa_dedup_ditto = intval;
5973 break;
5974 default:
5975 break;
5976 }
5977 }
5978
5979 }
5980
5981 mutex_exit(&spa->spa_props_lock);
5982 }
5983
5984 /*
5985 * Perform one-time upgrade on-disk changes. spa_version() does not
5986 * reflect the new version this txg, so there must be no changes this
5987 * txg to anything that the upgrade code depends on after it executes.
5988 * Therefore this must be called after dsl_pool_sync() does the sync
5989 * tasks.
5990 */
5991 static void
5992 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5993 {
5994 dsl_pool_t *dp = spa->spa_dsl_pool;
5995
5996 ASSERT(spa->spa_sync_pass == 1);
5997
5998 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
5999
6000 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6001 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6002 dsl_pool_create_origin(dp, tx);
6003
6004 /* Keeping the origin open increases spa_minref */
6005 spa->spa_minref += 3;
6006 }
6007
6008 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6009 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6010 dsl_pool_upgrade_clones(dp, tx);
6011 }
6012
6013 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6014 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6015 dsl_pool_upgrade_dir_clones(dp, tx);
6016
6017 /* Keeping the freedir open increases spa_minref */
6018 spa->spa_minref += 3;
6019 }
6020
6021 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6022 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6023 spa_feature_create_zap_objects(spa, tx);
6024 }
6025 rrw_exit(&dp->dp_config_rwlock, FTAG);
6026 }
6027
6028 /*
6029 * Sync the specified transaction group. New blocks may be dirtied as
6030 * part of the process, so we iterate until it converges.
6031 */
6032 void
6033 spa_sync(spa_t *spa, uint64_t txg)
6034 {
6035 dsl_pool_t *dp = spa->spa_dsl_pool;
6036 objset_t *mos = spa->spa_meta_objset;
6037 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
6038 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6039 vdev_t *rvd = spa->spa_root_vdev;
6040 vdev_t *vd;
6041 dmu_tx_t *tx;
6042 int error;
6043
6044 VERIFY(spa_writeable(spa));
6045
6046 /*
6047 * Lock out configuration changes.
6048 */
6049 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6050
6051 spa->spa_syncing_txg = txg;
6052 spa->spa_sync_pass = 0;
6053
6054 /*
6055 * If there are any pending vdev state changes, convert them
6056 * into config changes that go out with this transaction group.
6057 */
6058 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6059 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6060 /*
6061 * We need the write lock here because, for aux vdevs,
6062 * calling vdev_config_dirty() modifies sav_config.
6063 * This is ugly and will become unnecessary when we
6064 * eliminate the aux vdev wart by integrating all vdevs
6065 * into the root vdev tree.
6066 */
6067 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6068 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6069 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6070 vdev_state_clean(vd);
6071 vdev_config_dirty(vd);
6072 }
6073 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6074 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6075 }
6076 spa_config_exit(spa, SCL_STATE, FTAG);
6077
6078 tx = dmu_tx_create_assigned(dp, txg);
6079
6080 spa->spa_sync_starttime = gethrtime();
6081 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6082 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6083
6084 /*
6085 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6086 * set spa_deflate if we have no raid-z vdevs.
6087 */
6088 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6089 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6090 int i;
6091
6092 for (i = 0; i < rvd->vdev_children; i++) {
6093 vd = rvd->vdev_child[i];
6094 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6095 break;
6096 }
6097 if (i == rvd->vdev_children) {
6098 spa->spa_deflate = TRUE;
6099 VERIFY(0 == zap_add(spa->spa_meta_objset,
6100 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6101 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6102 }
6103 }
6104
6105 /*
6106 * If anything has changed in this txg, or if someone is waiting
6107 * for this txg to sync (eg, spa_vdev_remove()), push the
6108 * deferred frees from the previous txg. If not, leave them
6109 * alone so that we don't generate work on an otherwise idle
6110 * system.
6111 */
6112 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6113 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6114 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6115 ((dsl_scan_active(dp->dp_scan) ||
6116 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6117 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6118 VERIFY3U(bpobj_iterate(defer_bpo,
6119 spa_free_sync_cb, zio, tx), ==, 0);
6120 VERIFY0(zio_wait(zio));
6121 }
6122
6123 /*
6124 * Iterate to convergence.
6125 */
6126 do {
6127 int pass = ++spa->spa_sync_pass;
6128
6129 spa_sync_config_object(spa, tx);
6130 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6131 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6132 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6133 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6134 spa_errlog_sync(spa, txg);
6135 dsl_pool_sync(dp, txg);
6136
6137 if (pass < zfs_sync_pass_deferred_free) {
6138 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6139 bplist_iterate(free_bpl, spa_free_sync_cb,
6140 zio, tx);
6141 VERIFY(zio_wait(zio) == 0);
6142 } else {
6143 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6144 defer_bpo, tx);
6145 }
6146
6147 ddt_sync(spa, txg);
6148 dsl_scan_sync(dp, tx);
6149
6150 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6151 vdev_sync(vd, txg);
6152
6153 if (pass == 1)
6154 spa_sync_upgrades(spa, tx);
6155
6156 } while (dmu_objset_is_dirty(mos, txg));
6157
6158 /*
6159 * Rewrite the vdev configuration (which includes the uberblock)
6160 * to commit the transaction group.
6161 *
6162 * If there are no dirty vdevs, we sync the uberblock to a few
6163 * random top-level vdevs that are known to be visible in the
6164 * config cache (see spa_vdev_add() for a complete description).
6165 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6166 */
6167 for (;;) {
6168 /*
6169 * We hold SCL_STATE to prevent vdev open/close/etc.
6170 * while we're attempting to write the vdev labels.
6171 */
6172 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6173
6174 if (list_is_empty(&spa->spa_config_dirty_list)) {
6175 vdev_t *svd[SPA_DVAS_PER_BP];
6176 int svdcount = 0;
6177 int children = rvd->vdev_children;
6178 int c0 = spa_get_random(children);
6179
6180 for (int c = 0; c < children; c++) {
6181 vd = rvd->vdev_child[(c0 + c) % children];
6182 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6183 continue;
6184 svd[svdcount++] = vd;
6185 if (svdcount == SPA_DVAS_PER_BP)
6186 break;
6187 }
6188 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6189 if (error != 0)
6190 error = vdev_config_sync(svd, svdcount, txg,
6191 B_TRUE);
6192 } else {
6193 error = vdev_config_sync(rvd->vdev_child,
6194 rvd->vdev_children, txg, B_FALSE);
6195 if (error != 0)
6196 error = vdev_config_sync(rvd->vdev_child,
6197 rvd->vdev_children, txg, B_TRUE);
6198 }
6199
6200 if (error == 0)
6201 spa->spa_last_synced_guid = rvd->vdev_guid;
6202
6203 spa_config_exit(spa, SCL_STATE, FTAG);
6204
6205 if (error == 0)
6206 break;
6207 zio_suspend(spa, NULL);
6208 zio_resume_wait(spa);
6209 }
6210 dmu_tx_commit(tx);
6211
6212 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6213
6214 /*
6215 * Clear the dirty config list.
6216 */
6217 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6218 vdev_config_clean(vd);
6219
6220 /*
6221 * Now that the new config has synced transactionally,
6222 * let it become visible to the config cache.
6223 */
6224 if (spa->spa_config_syncing != NULL) {
6225 spa_config_set(spa, spa->spa_config_syncing);
6226 spa->spa_config_txg = txg;
6227 spa->spa_config_syncing = NULL;
6228 }
6229
6230 spa->spa_ubsync = spa->spa_uberblock;
6231
6232 dsl_pool_sync_done(dp, txg);
6233
6234 /*
6235 * Update usable space statistics.
6236 */
6237 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6238 vdev_sync_done(vd, txg);
6239
6240 spa_update_dspace(spa);
6241
6242 /*
6243 * It had better be the case that we didn't dirty anything
6244 * since vdev_config_sync().
6245 */
6246 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6247 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6248 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6249
6250 spa->spa_sync_pass = 0;
6251
6252 spa_config_exit(spa, SCL_CONFIG, FTAG);
6253
6254 spa_handle_ignored_writes(spa);
6255
6256 /*
6257 * If any async tasks have been requested, kick them off.
6258 */
6259 spa_async_dispatch(spa);
6260 }
6261
6262 /*
6263 * Sync all pools. We don't want to hold the namespace lock across these
6264 * operations, so we take a reference on the spa_t and drop the lock during the
6265 * sync.
6266 */
6267 void
6268 spa_sync_allpools(void)
6269 {
6270 spa_t *spa = NULL;
6271 mutex_enter(&spa_namespace_lock);
6272 while ((spa = spa_next(spa)) != NULL) {
6273 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6274 !spa_writeable(spa) || spa_suspended(spa))
6275 continue;
6276 spa_open_ref(spa, FTAG);
6277 mutex_exit(&spa_namespace_lock);
6278 txg_wait_synced(spa_get_dsl(spa), 0);
6279 mutex_enter(&spa_namespace_lock);
6280 spa_close(spa, FTAG);
6281 }
6282 mutex_exit(&spa_namespace_lock);
6283 }
6284
6285 /*
6286 * ==========================================================================
6287 * Miscellaneous routines
6288 * ==========================================================================
6289 */
6290
6291 /*
6292 * Remove all pools in the system.
6293 */
6294 void
6295 spa_evict_all(void)
6296 {
6297 spa_t *spa;
6298
6299 /*
6300 * Remove all cached state. All pools should be closed now,
6301 * so every spa in the AVL tree should be unreferenced.
6302 */
6303 mutex_enter(&spa_namespace_lock);
6304 while ((spa = spa_next(NULL)) != NULL) {
6305 /*
6306 * Stop async tasks. The async thread may need to detach
6307 * a device that's been replaced, which requires grabbing
6308 * spa_namespace_lock, so we must drop it here.
6309 */
6310 spa_open_ref(spa, FTAG);
6311 mutex_exit(&spa_namespace_lock);
6312 spa_async_suspend(spa);
6313 mutex_enter(&spa_namespace_lock);
6314 spa_close(spa, FTAG);
6315
6316 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6317 spa_unload(spa);
6318 spa_deactivate(spa);
6319 }
6320 spa_remove(spa);
6321 }
6322 mutex_exit(&spa_namespace_lock);
6323 }
6324
6325 vdev_t *
6326 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6327 {
6328 vdev_t *vd;
6329 int i;
6330
6331 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6332 return (vd);
6333
6334 if (aux) {
6335 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6336 vd = spa->spa_l2cache.sav_vdevs[i];
6337 if (vd->vdev_guid == guid)
6338 return (vd);
6339 }
6340
6341 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6342 vd = spa->spa_spares.sav_vdevs[i];
6343 if (vd->vdev_guid == guid)
6344 return (vd);
6345 }
6346 }
6347
6348 return (NULL);
6349 }
6350
6351 void
6352 spa_upgrade(spa_t *spa, uint64_t version)
6353 {
6354 ASSERT(spa_writeable(spa));
6355
6356 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6357
6358 /*
6359 * This should only be called for a non-faulted pool, and since a
6360 * future version would result in an unopenable pool, this shouldn't be
6361 * possible.
6362 */
6363 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6364 ASSERT(version >= spa->spa_uberblock.ub_version);
6365
6366 spa->spa_uberblock.ub_version = version;
6367 vdev_config_dirty(spa->spa_root_vdev);
6368
6369 spa_config_exit(spa, SCL_ALL, FTAG);
6370
6371 txg_wait_synced(spa_get_dsl(spa), 0);
6372 }
6373
6374 boolean_t
6375 spa_has_spare(spa_t *spa, uint64_t guid)
6376 {
6377 int i;
6378 uint64_t spareguid;
6379 spa_aux_vdev_t *sav = &spa->spa_spares;
6380
6381 for (i = 0; i < sav->sav_count; i++)
6382 if (sav->sav_vdevs[i]->vdev_guid == guid)
6383 return (B_TRUE);
6384
6385 for (i = 0; i < sav->sav_npending; i++) {
6386 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6387 &spareguid) == 0 && spareguid == guid)
6388 return (B_TRUE);
6389 }
6390
6391 return (B_FALSE);
6392 }
6393
6394 /*
6395 * Check if a pool has an active shared spare device.
6396 * Note: reference count of an active spare is 2, as a spare and as a replace
6397 */
6398 static boolean_t
6399 spa_has_active_shared_spare(spa_t *spa)
6400 {
6401 int i, refcnt;
6402 uint64_t pool;
6403 spa_aux_vdev_t *sav = &spa->spa_spares;
6404
6405 for (i = 0; i < sav->sav_count; i++) {
6406 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6407 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6408 refcnt > 2)
6409 return (B_TRUE);
6410 }
6411
6412 return (B_FALSE);
6413 }
6414
6415 /*
6416 * Post a sysevent corresponding to the given event. The 'name' must be one of
6417 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6418 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6419 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6420 * or zdb as real changes.
6421 */
6422 void
6423 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6424 {
6425 #ifdef _KERNEL
6426 sysevent_t *ev;
6427 sysevent_attr_list_t *attr = NULL;
6428 sysevent_value_t value;
6429 sysevent_id_t eid;
6430
6431 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6432 SE_SLEEP);
6433
6434 value.value_type = SE_DATA_TYPE_STRING;
6435 value.value.sv_string = spa_name(spa);
6436 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6437 goto done;
6438
6439 value.value_type = SE_DATA_TYPE_UINT64;
6440 value.value.sv_uint64 = spa_guid(spa);
6441 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6442 goto done;
6443
6444 if (vd) {
6445 value.value_type = SE_DATA_TYPE_UINT64;
6446 value.value.sv_uint64 = vd->vdev_guid;
6447 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6448 SE_SLEEP) != 0)
6449 goto done;
6450
6451 if (vd->vdev_path) {
6452 value.value_type = SE_DATA_TYPE_STRING;
6453 value.value.sv_string = vd->vdev_path;
6454 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6455 &value, SE_SLEEP) != 0)
6456 goto done;
6457 }
6458 }
6459
6460 if (sysevent_attach_attributes(ev, attr) != 0)
6461 goto done;
6462 attr = NULL;
6463
6464 (void) log_sysevent(ev, SE_SLEEP, &eid);
6465
6466 done:
6467 if (attr)
6468 sysevent_free_attr(attr);
6469 sysevent_free(ev);
6470 #endif
6471 }