1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
26 */
27
28 /*
29 * This file contains all the routines used when modifying on-disk SPA state.
30 * This includes opening, importing, destroying, exporting a pool, and syncing a
31 * pool.
32 */
33
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/ddt.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/arc.h>
60 #include <sys/callb.h>
61 #include <sys/systeminfo.h>
62 #include <sys/spa_boot.h>
63 #include <sys/zfs_ioctl.h>
64 #include <sys/dsl_scan.h>
65 #include <sys/zfeature.h>
66 #include <sys/dsl_destroy.h>
67
68 #ifdef _KERNEL
69 #include <sys/bootprops.h>
70 #include <sys/callb.h>
71 #include <sys/cpupart.h>
72 #include <sys/pool.h>
73 #include <sys/sysdc.h>
74 #include <sys/zone.h>
75 #endif /* _KERNEL */
76
77 #include "zfs_prop.h"
78 #include "zfs_comutil.h"
79
80 typedef enum zti_modes {
81 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
82 ZTI_MODE_ONLINE_PERCENT, /* value is % of online CPUs */
83 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
84 ZTI_MODE_NULL, /* don't create a taskq */
85 ZTI_NMODES
86 } zti_modes_t;
87
88 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
89 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
90 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
91 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
92
93 #define ZTI_N(n) ZTI_P(n, 1)
94 #define ZTI_ONE ZTI_N(1)
95
96 typedef struct zio_taskq_info {
97 zti_modes_t zti_mode;
98 uint_t zti_value;
99 uint_t zti_count;
100 } zio_taskq_info_t;
101
102 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
103 "issue", "issue_high", "intr", "intr_high"
104 };
105
106 /*
107 * This table defines the taskq settings for each ZFS I/O type. When
108 * initializing a pool, we use this table to create an appropriately sized
109 * taskq. Some operations are low volume and therefore have a small, static
110 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
111 * macros. Other operations process a large amount of data; the ZTI_BATCH
112 * macro causes us to create a taskq oriented for throughput. Some operations
113 * are so high frequency and short-lived that the taskq itself can become a a
114 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
115 * additional degree of parallelism specified by the number of threads per-
116 * taskq and the number of taskqs; when dispatching an event in this case, the
117 * particular taskq is chosen at random.
118 *
119 * The different taskq priorities are to handle the different contexts (issue
120 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
121 * need to be handled with minimum delay.
122 */
123 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
124 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
125 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
126 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */
127 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
128 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
129 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
130 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
131 };
132
133 static void spa_sync_version(void *arg, dmu_tx_t *tx);
134 static void spa_sync_props(void *arg, dmu_tx_t *tx);
135 static boolean_t spa_has_active_shared_spare(spa_t *spa);
136 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
137 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
138 char **ereport);
139 static void spa_vdev_resilver_done(spa_t *spa);
140
141 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */
142 id_t zio_taskq_psrset_bind = PS_NONE;
143 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
144 uint_t zio_taskq_basedc = 80; /* base duty cycle */
145
146 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
147 extern int zfs_sync_pass_deferred_free;
148
149 /*
150 * This (illegal) pool name is used when temporarily importing a spa_t in order
151 * to get the vdev stats associated with the imported devices.
152 */
153 #define TRYIMPORT_NAME "$import"
154
155 /*
156 * ==========================================================================
157 * SPA properties routines
158 * ==========================================================================
159 */
160
161 /*
162 * Add a (source=src, propname=propval) list to an nvlist.
163 */
164 static void
165 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
166 uint64_t intval, zprop_source_t src)
167 {
168 const char *propname = zpool_prop_to_name(prop);
169 nvlist_t *propval;
170
171 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
172 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
173
174 if (strval != NULL)
175 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
176 else
177 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
178
179 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
180 nvlist_free(propval);
181 }
182
183 /*
184 * Get property values from the spa configuration.
185 */
186 static void
187 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
188 {
189 vdev_t *rvd = spa->spa_root_vdev;
190 dsl_pool_t *pool = spa->spa_dsl_pool;
191 uint64_t size;
192 uint64_t alloc;
193 uint64_t space;
194 uint64_t cap, version;
195 zprop_source_t src = ZPROP_SRC_NONE;
196 spa_config_dirent_t *dp;
197
198 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
199
200 if (rvd != NULL) {
201 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
202 size = metaslab_class_get_space(spa_normal_class(spa));
203 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
204 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
205 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
206 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
207 size - alloc, src);
208
209 space = 0;
210 for (int c = 0; c < rvd->vdev_children; c++) {
211 vdev_t *tvd = rvd->vdev_child[c];
212 space += tvd->vdev_max_asize - tvd->vdev_asize;
213 }
214 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
215 src);
216
217 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
218 (spa_mode(spa) == FREAD), src);
219
220 cap = (size == 0) ? 0 : (alloc * 100 / size);
221 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
222
223 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
224 ddt_get_pool_dedup_ratio(spa), src);
225
226 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
227 rvd->vdev_state, src);
228
229 version = spa_version(spa);
230 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
231 src = ZPROP_SRC_DEFAULT;
232 else
233 src = ZPROP_SRC_LOCAL;
234 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
235 }
236
237 if (pool != NULL) {
238 dsl_dir_t *freedir = pool->dp_free_dir;
239
240 /*
241 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
242 * when opening pools before this version freedir will be NULL.
243 */
244 if (freedir != NULL) {
245 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
246 freedir->dd_phys->dd_used_bytes, src);
247 } else {
248 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
249 NULL, 0, src);
250 }
251 }
252
253 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
254
255 if (spa->spa_comment != NULL) {
256 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
257 0, ZPROP_SRC_LOCAL);
258 }
259
260 if (spa->spa_root != NULL)
261 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
262 0, ZPROP_SRC_LOCAL);
263
264 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
265 if (dp->scd_path == NULL) {
266 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
267 "none", 0, ZPROP_SRC_LOCAL);
268 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
269 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
270 dp->scd_path, 0, ZPROP_SRC_LOCAL);
271 }
272 }
273 }
274
275 /*
276 * Get zpool property values.
277 */
278 int
279 spa_prop_get(spa_t *spa, nvlist_t **nvp)
280 {
281 objset_t *mos = spa->spa_meta_objset;
282 zap_cursor_t zc;
283 zap_attribute_t za;
284 int err;
285
286 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
287
288 mutex_enter(&spa->spa_props_lock);
289
290 /*
291 * Get properties from the spa config.
292 */
293 spa_prop_get_config(spa, nvp);
294
295 /* If no pool property object, no more prop to get. */
296 if (mos == NULL || spa->spa_pool_props_object == 0) {
297 mutex_exit(&spa->spa_props_lock);
298 return (0);
299 }
300
301 /*
302 * Get properties from the MOS pool property object.
303 */
304 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
305 (err = zap_cursor_retrieve(&zc, &za)) == 0;
306 zap_cursor_advance(&zc)) {
307 uint64_t intval = 0;
308 char *strval = NULL;
309 zprop_source_t src = ZPROP_SRC_DEFAULT;
310 zpool_prop_t prop;
311
312 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
313 continue;
314
315 switch (za.za_integer_length) {
316 case 8:
317 /* integer property */
318 if (za.za_first_integer !=
319 zpool_prop_default_numeric(prop))
320 src = ZPROP_SRC_LOCAL;
321
322 if (prop == ZPOOL_PROP_BOOTFS) {
323 dsl_pool_t *dp;
324 dsl_dataset_t *ds = NULL;
325
326 dp = spa_get_dsl(spa);
327 dsl_pool_config_enter(dp, FTAG);
328 if (err = dsl_dataset_hold_obj(dp,
329 za.za_first_integer, FTAG, &ds)) {
330 dsl_pool_config_exit(dp, FTAG);
331 break;
332 }
333
334 strval = kmem_alloc(
335 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
336 KM_SLEEP);
337 dsl_dataset_name(ds, strval);
338 dsl_dataset_rele(ds, FTAG);
339 dsl_pool_config_exit(dp, FTAG);
340 } else {
341 strval = NULL;
342 intval = za.za_first_integer;
343 }
344
345 spa_prop_add_list(*nvp, prop, strval, intval, src);
346
347 if (strval != NULL)
348 kmem_free(strval,
349 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
350
351 break;
352
353 case 1:
354 /* string property */
355 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
356 err = zap_lookup(mos, spa->spa_pool_props_object,
357 za.za_name, 1, za.za_num_integers, strval);
358 if (err) {
359 kmem_free(strval, za.za_num_integers);
360 break;
361 }
362 spa_prop_add_list(*nvp, prop, strval, 0, src);
363 kmem_free(strval, za.za_num_integers);
364 break;
365
366 default:
367 break;
368 }
369 }
370 zap_cursor_fini(&zc);
371 mutex_exit(&spa->spa_props_lock);
372 out:
373 if (err && err != ENOENT) {
374 nvlist_free(*nvp);
375 *nvp = NULL;
376 return (err);
377 }
378
379 return (0);
380 }
381
382 /*
383 * Validate the given pool properties nvlist and modify the list
384 * for the property values to be set.
385 */
386 static int
387 spa_prop_validate(spa_t *spa, nvlist_t *props)
388 {
389 nvpair_t *elem;
390 int error = 0, reset_bootfs = 0;
391 uint64_t objnum = 0;
392 boolean_t has_feature = B_FALSE;
393
394 elem = NULL;
395 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
396 uint64_t intval;
397 char *strval, *slash, *check, *fname;
398 const char *propname = nvpair_name(elem);
399 zpool_prop_t prop = zpool_name_to_prop(propname);
400
401 switch (prop) {
402 case ZPROP_INVAL:
403 if (!zpool_prop_feature(propname)) {
404 error = SET_ERROR(EINVAL);
405 break;
406 }
407
408 /*
409 * Sanitize the input.
410 */
411 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
412 error = SET_ERROR(EINVAL);
413 break;
414 }
415
416 if (nvpair_value_uint64(elem, &intval) != 0) {
417 error = SET_ERROR(EINVAL);
418 break;
419 }
420
421 if (intval != 0) {
422 error = SET_ERROR(EINVAL);
423 break;
424 }
425
426 fname = strchr(propname, '@') + 1;
427 if (zfeature_lookup_name(fname, NULL) != 0) {
428 error = SET_ERROR(EINVAL);
429 break;
430 }
431
432 has_feature = B_TRUE;
433 break;
434
435 case ZPOOL_PROP_VERSION:
436 error = nvpair_value_uint64(elem, &intval);
437 if (!error &&
438 (intval < spa_version(spa) ||
439 intval > SPA_VERSION_BEFORE_FEATURES ||
440 has_feature))
441 error = SET_ERROR(EINVAL);
442 break;
443
444 case ZPOOL_PROP_DELEGATION:
445 case ZPOOL_PROP_AUTOREPLACE:
446 case ZPOOL_PROP_LISTSNAPS:
447 case ZPOOL_PROP_AUTOEXPAND:
448 error = nvpair_value_uint64(elem, &intval);
449 if (!error && intval > 1)
450 error = SET_ERROR(EINVAL);
451 break;
452
453 case ZPOOL_PROP_BOOTFS:
454 /*
455 * If the pool version is less than SPA_VERSION_BOOTFS,
456 * or the pool is still being created (version == 0),
457 * the bootfs property cannot be set.
458 */
459 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
460 error = SET_ERROR(ENOTSUP);
461 break;
462 }
463
464 /*
465 * Make sure the vdev config is bootable
466 */
467 if (!vdev_is_bootable(spa->spa_root_vdev)) {
468 error = SET_ERROR(ENOTSUP);
469 break;
470 }
471
472 reset_bootfs = 1;
473
474 error = nvpair_value_string(elem, &strval);
475
476 if (!error) {
477 objset_t *os;
478 uint64_t compress;
479
480 if (strval == NULL || strval[0] == '\0') {
481 objnum = zpool_prop_default_numeric(
482 ZPOOL_PROP_BOOTFS);
483 break;
484 }
485
486 if (error = dmu_objset_hold(strval, FTAG, &os))
487 break;
488
489 /* Must be ZPL and not gzip compressed. */
490
491 if (dmu_objset_type(os) != DMU_OST_ZFS) {
492 error = SET_ERROR(ENOTSUP);
493 } else if ((error =
494 dsl_prop_get_int_ds(dmu_objset_ds(os),
495 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
496 &compress)) == 0 &&
497 !BOOTFS_COMPRESS_VALID(compress)) {
498 error = SET_ERROR(ENOTSUP);
499 } else {
500 objnum = dmu_objset_id(os);
501 }
502 dmu_objset_rele(os, FTAG);
503 }
504 break;
505
506 case ZPOOL_PROP_FAILUREMODE:
507 error = nvpair_value_uint64(elem, &intval);
508 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
509 intval > ZIO_FAILURE_MODE_PANIC))
510 error = SET_ERROR(EINVAL);
511
512 /*
513 * This is a special case which only occurs when
514 * the pool has completely failed. This allows
515 * the user to change the in-core failmode property
516 * without syncing it out to disk (I/Os might
517 * currently be blocked). We do this by returning
518 * EIO to the caller (spa_prop_set) to trick it
519 * into thinking we encountered a property validation
520 * error.
521 */
522 if (!error && spa_suspended(spa)) {
523 spa->spa_failmode = intval;
524 error = SET_ERROR(EIO);
525 }
526 break;
527
528 case ZPOOL_PROP_CACHEFILE:
529 if ((error = nvpair_value_string(elem, &strval)) != 0)
530 break;
531
532 if (strval[0] == '\0')
533 break;
534
535 if (strcmp(strval, "none") == 0)
536 break;
537
538 if (strval[0] != '/') {
539 error = SET_ERROR(EINVAL);
540 break;
541 }
542
543 slash = strrchr(strval, '/');
544 ASSERT(slash != NULL);
545
546 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
547 strcmp(slash, "/..") == 0)
548 error = SET_ERROR(EINVAL);
549 break;
550
551 case ZPOOL_PROP_COMMENT:
552 if ((error = nvpair_value_string(elem, &strval)) != 0)
553 break;
554 for (check = strval; *check != '\0'; check++) {
555 /*
556 * The kernel doesn't have an easy isprint()
557 * check. For this kernel check, we merely
558 * check ASCII apart from DEL. Fix this if
559 * there is an easy-to-use kernel isprint().
560 */
561 if (*check >= 0x7f) {
562 error = SET_ERROR(EINVAL);
563 break;
564 }
565 check++;
566 }
567 if (strlen(strval) > ZPROP_MAX_COMMENT)
568 error = E2BIG;
569 break;
570
571 case ZPOOL_PROP_DEDUPDITTO:
572 if (spa_version(spa) < SPA_VERSION_DEDUP)
573 error = SET_ERROR(ENOTSUP);
574 else
575 error = nvpair_value_uint64(elem, &intval);
576 if (error == 0 &&
577 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
578 error = SET_ERROR(EINVAL);
579 break;
580 }
581
582 if (error)
583 break;
584 }
585
586 if (!error && reset_bootfs) {
587 error = nvlist_remove(props,
588 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
589
590 if (!error) {
591 error = nvlist_add_uint64(props,
592 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
593 }
594 }
595
596 return (error);
597 }
598
599 void
600 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
601 {
602 char *cachefile;
603 spa_config_dirent_t *dp;
604
605 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
606 &cachefile) != 0)
607 return;
608
609 dp = kmem_alloc(sizeof (spa_config_dirent_t),
610 KM_SLEEP);
611
612 if (cachefile[0] == '\0')
613 dp->scd_path = spa_strdup(spa_config_path);
614 else if (strcmp(cachefile, "none") == 0)
615 dp->scd_path = NULL;
616 else
617 dp->scd_path = spa_strdup(cachefile);
618
619 list_insert_head(&spa->spa_config_list, dp);
620 if (need_sync)
621 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
622 }
623
624 int
625 spa_prop_set(spa_t *spa, nvlist_t *nvp)
626 {
627 int error;
628 nvpair_t *elem = NULL;
629 boolean_t need_sync = B_FALSE;
630
631 if ((error = spa_prop_validate(spa, nvp)) != 0)
632 return (error);
633
634 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
635 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
636
637 if (prop == ZPOOL_PROP_CACHEFILE ||
638 prop == ZPOOL_PROP_ALTROOT ||
639 prop == ZPOOL_PROP_READONLY)
640 continue;
641
642 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
643 uint64_t ver;
644
645 if (prop == ZPOOL_PROP_VERSION) {
646 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
647 } else {
648 ASSERT(zpool_prop_feature(nvpair_name(elem)));
649 ver = SPA_VERSION_FEATURES;
650 need_sync = B_TRUE;
651 }
652
653 /* Save time if the version is already set. */
654 if (ver == spa_version(spa))
655 continue;
656
657 /*
658 * In addition to the pool directory object, we might
659 * create the pool properties object, the features for
660 * read object, the features for write object, or the
661 * feature descriptions object.
662 */
663 error = dsl_sync_task(spa->spa_name, NULL,
664 spa_sync_version, &ver, 6);
665 if (error)
666 return (error);
667 continue;
668 }
669
670 need_sync = B_TRUE;
671 break;
672 }
673
674 if (need_sync) {
675 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
676 nvp, 6));
677 }
678
679 return (0);
680 }
681
682 /*
683 * If the bootfs property value is dsobj, clear it.
684 */
685 void
686 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
687 {
688 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
689 VERIFY(zap_remove(spa->spa_meta_objset,
690 spa->spa_pool_props_object,
691 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
692 spa->spa_bootfs = 0;
693 }
694 }
695
696 /*ARGSUSED*/
697 static int
698 spa_change_guid_check(void *arg, dmu_tx_t *tx)
699 {
700 uint64_t *newguid = arg;
701 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
702 vdev_t *rvd = spa->spa_root_vdev;
703 uint64_t vdev_state;
704
705 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
706 vdev_state = rvd->vdev_state;
707 spa_config_exit(spa, SCL_STATE, FTAG);
708
709 if (vdev_state != VDEV_STATE_HEALTHY)
710 return (SET_ERROR(ENXIO));
711
712 ASSERT3U(spa_guid(spa), !=, *newguid);
713
714 return (0);
715 }
716
717 static void
718 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
719 {
720 uint64_t *newguid = arg;
721 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
722 uint64_t oldguid;
723 vdev_t *rvd = spa->spa_root_vdev;
724
725 oldguid = spa_guid(spa);
726
727 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
728 rvd->vdev_guid = *newguid;
729 rvd->vdev_guid_sum += (*newguid - oldguid);
730 vdev_config_dirty(rvd);
731 spa_config_exit(spa, SCL_STATE, FTAG);
732
733 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
734 oldguid, *newguid);
735 }
736
737 /*
738 * Change the GUID for the pool. This is done so that we can later
739 * re-import a pool built from a clone of our own vdevs. We will modify
740 * the root vdev's guid, our own pool guid, and then mark all of our
741 * vdevs dirty. Note that we must make sure that all our vdevs are
742 * online when we do this, or else any vdevs that weren't present
743 * would be orphaned from our pool. We are also going to issue a
744 * sysevent to update any watchers.
745 */
746 int
747 spa_change_guid(spa_t *spa)
748 {
749 int error;
750 uint64_t guid;
751
752 mutex_enter(&spa_namespace_lock);
753 guid = spa_generate_guid(NULL);
754
755 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
756 spa_change_guid_sync, &guid, 5);
757
758 if (error == 0) {
759 spa_config_sync(spa, B_FALSE, B_TRUE);
760 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
761 }
762
763 mutex_exit(&spa_namespace_lock);
764
765 return (error);
766 }
767
768 /*
769 * ==========================================================================
770 * SPA state manipulation (open/create/destroy/import/export)
771 * ==========================================================================
772 */
773
774 static int
775 spa_error_entry_compare(const void *a, const void *b)
776 {
777 spa_error_entry_t *sa = (spa_error_entry_t *)a;
778 spa_error_entry_t *sb = (spa_error_entry_t *)b;
779 int ret;
780
781 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
782 sizeof (zbookmark_t));
783
784 if (ret < 0)
785 return (-1);
786 else if (ret > 0)
787 return (1);
788 else
789 return (0);
790 }
791
792 /*
793 * Utility function which retrieves copies of the current logs and
794 * re-initializes them in the process.
795 */
796 void
797 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
798 {
799 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
800
801 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
802 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
803
804 avl_create(&spa->spa_errlist_scrub,
805 spa_error_entry_compare, sizeof (spa_error_entry_t),
806 offsetof(spa_error_entry_t, se_avl));
807 avl_create(&spa->spa_errlist_last,
808 spa_error_entry_compare, sizeof (spa_error_entry_t),
809 offsetof(spa_error_entry_t, se_avl));
810 }
811
812 static void
813 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
814 {
815 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
816 enum zti_modes mode = ztip->zti_mode;
817 uint_t value = ztip->zti_value;
818 uint_t count = ztip->zti_count;
819 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
820 char name[32];
821 uint_t flags = 0;
822 boolean_t batch = B_FALSE;
823
824 if (mode == ZTI_MODE_NULL) {
825 tqs->stqs_count = 0;
826 tqs->stqs_taskq = NULL;
827 return;
828 }
829
830 ASSERT3U(count, >, 0);
831
832 tqs->stqs_count = count;
833 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
834
835 for (uint_t i = 0; i < count; i++) {
836 taskq_t *tq;
837
838 switch (mode) {
839 case ZTI_MODE_FIXED:
840 ASSERT3U(value, >=, 1);
841 value = MAX(value, 1);
842 break;
843
844 case ZTI_MODE_BATCH:
845 batch = B_TRUE;
846 flags |= TASKQ_THREADS_CPU_PCT;
847 value = zio_taskq_batch_pct;
848 break;
849
850 case ZTI_MODE_ONLINE_PERCENT:
851 flags |= TASKQ_THREADS_CPU_PCT;
852 break;
853
854 default:
855 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
856 "spa_activate()",
857 zio_type_name[t], zio_taskq_types[q], mode, value);
858 break;
859 }
860
861 if (count > 1) {
862 (void) snprintf(name, sizeof (name), "%s_%s_%u",
863 zio_type_name[t], zio_taskq_types[q], i);
864 } else {
865 (void) snprintf(name, sizeof (name), "%s_%s",
866 zio_type_name[t], zio_taskq_types[q]);
867 }
868
869 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
870 if (batch)
871 flags |= TASKQ_DC_BATCH;
872
873 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
874 spa->spa_proc, zio_taskq_basedc, flags);
875 } else {
876 tq = taskq_create_proc(name, value, maxclsyspri, 50,
877 INT_MAX, spa->spa_proc, flags);
878 }
879
880 tqs->stqs_taskq[i] = tq;
881 }
882 }
883
884 static void
885 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
886 {
887 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
888
889 if (tqs->stqs_taskq == NULL) {
890 ASSERT0(tqs->stqs_count);
891 return;
892 }
893
894 for (uint_t i = 0; i < tqs->stqs_count; i++) {
895 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
896 taskq_destroy(tqs->stqs_taskq[i]);
897 }
898
899 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
900 tqs->stqs_taskq = NULL;
901 }
902
903 /*
904 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
905 * Note that a type may have multiple discrete taskqs to avoid lock contention
906 * on the taskq itself. In that case we choose which taskq at random by using
907 * the low bits of gethrtime().
908 */
909 void
910 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
911 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
912 {
913 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
914 taskq_t *tq;
915
916 ASSERT3P(tqs->stqs_taskq, !=, NULL);
917 ASSERT3U(tqs->stqs_count, !=, 0);
918
919 if (tqs->stqs_count == 1) {
920 tq = tqs->stqs_taskq[0];
921 } else {
922 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
923 }
924
925 taskq_dispatch_ent(tq, func, arg, flags, ent);
926 }
927
928 static void
929 spa_create_zio_taskqs(spa_t *spa)
930 {
931 for (int t = 0; t < ZIO_TYPES; t++) {
932 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
933 spa_taskqs_init(spa, t, q);
934 }
935 }
936 }
937
938 #ifdef _KERNEL
939 static void
940 spa_thread(void *arg)
941 {
942 callb_cpr_t cprinfo;
943
944 spa_t *spa = arg;
945 user_t *pu = PTOU(curproc);
946
947 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
948 spa->spa_name);
949
950 ASSERT(curproc != &p0);
951 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
952 "zpool-%s", spa->spa_name);
953 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
954
955 /* bind this thread to the requested psrset */
956 if (zio_taskq_psrset_bind != PS_NONE) {
957 pool_lock();
958 mutex_enter(&cpu_lock);
959 mutex_enter(&pidlock);
960 mutex_enter(&curproc->p_lock);
961
962 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
963 0, NULL, NULL) == 0) {
964 curthread->t_bind_pset = zio_taskq_psrset_bind;
965 } else {
966 cmn_err(CE_WARN,
967 "Couldn't bind process for zfs pool \"%s\" to "
968 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
969 }
970
971 mutex_exit(&curproc->p_lock);
972 mutex_exit(&pidlock);
973 mutex_exit(&cpu_lock);
974 pool_unlock();
975 }
976
977 if (zio_taskq_sysdc) {
978 sysdc_thread_enter(curthread, 100, 0);
979 }
980
981 spa->spa_proc = curproc;
982 spa->spa_did = curthread->t_did;
983
984 spa_create_zio_taskqs(spa);
985
986 mutex_enter(&spa->spa_proc_lock);
987 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
988
989 spa->spa_proc_state = SPA_PROC_ACTIVE;
990 cv_broadcast(&spa->spa_proc_cv);
991
992 CALLB_CPR_SAFE_BEGIN(&cprinfo);
993 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
994 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
995 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
996
997 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
998 spa->spa_proc_state = SPA_PROC_GONE;
999 spa->spa_proc = &p0;
1000 cv_broadcast(&spa->spa_proc_cv);
1001 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1002
1003 mutex_enter(&curproc->p_lock);
1004 lwp_exit();
1005 }
1006 #endif
1007
1008 /*
1009 * Activate an uninitialized pool.
1010 */
1011 static void
1012 spa_activate(spa_t *spa, int mode)
1013 {
1014 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1015
1016 spa->spa_state = POOL_STATE_ACTIVE;
1017 spa->spa_mode = mode;
1018
1019 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1020 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1021
1022 /* Try to create a covering process */
1023 mutex_enter(&spa->spa_proc_lock);
1024 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1025 ASSERT(spa->spa_proc == &p0);
1026 spa->spa_did = 0;
1027
1028 /* Only create a process if we're going to be around a while. */
1029 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1030 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1031 NULL, 0) == 0) {
1032 spa->spa_proc_state = SPA_PROC_CREATED;
1033 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1034 cv_wait(&spa->spa_proc_cv,
1035 &spa->spa_proc_lock);
1036 }
1037 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1038 ASSERT(spa->spa_proc != &p0);
1039 ASSERT(spa->spa_did != 0);
1040 } else {
1041 #ifdef _KERNEL
1042 cmn_err(CE_WARN,
1043 "Couldn't create process for zfs pool \"%s\"\n",
1044 spa->spa_name);
1045 #endif
1046 }
1047 }
1048 mutex_exit(&spa->spa_proc_lock);
1049
1050 /* If we didn't create a process, we need to create our taskqs. */
1051 if (spa->spa_proc == &p0) {
1052 spa_create_zio_taskqs(spa);
1053 }
1054
1055 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1056 offsetof(vdev_t, vdev_config_dirty_node));
1057 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1058 offsetof(vdev_t, vdev_state_dirty_node));
1059
1060 txg_list_create(&spa->spa_vdev_txg_list,
1061 offsetof(struct vdev, vdev_txg_node));
1062
1063 avl_create(&spa->spa_errlist_scrub,
1064 spa_error_entry_compare, sizeof (spa_error_entry_t),
1065 offsetof(spa_error_entry_t, se_avl));
1066 avl_create(&spa->spa_errlist_last,
1067 spa_error_entry_compare, sizeof (spa_error_entry_t),
1068 offsetof(spa_error_entry_t, se_avl));
1069 }
1070
1071 /*
1072 * Opposite of spa_activate().
1073 */
1074 static void
1075 spa_deactivate(spa_t *spa)
1076 {
1077 ASSERT(spa->spa_sync_on == B_FALSE);
1078 ASSERT(spa->spa_dsl_pool == NULL);
1079 ASSERT(spa->spa_root_vdev == NULL);
1080 ASSERT(spa->spa_async_zio_root == NULL);
1081 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1082
1083 txg_list_destroy(&spa->spa_vdev_txg_list);
1084
1085 list_destroy(&spa->spa_config_dirty_list);
1086 list_destroy(&spa->spa_state_dirty_list);
1087
1088 for (int t = 0; t < ZIO_TYPES; t++) {
1089 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1090 spa_taskqs_fini(spa, t, q);
1091 }
1092 }
1093
1094 metaslab_class_destroy(spa->spa_normal_class);
1095 spa->spa_normal_class = NULL;
1096
1097 metaslab_class_destroy(spa->spa_log_class);
1098 spa->spa_log_class = NULL;
1099
1100 /*
1101 * If this was part of an import or the open otherwise failed, we may
1102 * still have errors left in the queues. Empty them just in case.
1103 */
1104 spa_errlog_drain(spa);
1105
1106 avl_destroy(&spa->spa_errlist_scrub);
1107 avl_destroy(&spa->spa_errlist_last);
1108
1109 spa->spa_state = POOL_STATE_UNINITIALIZED;
1110
1111 mutex_enter(&spa->spa_proc_lock);
1112 if (spa->spa_proc_state != SPA_PROC_NONE) {
1113 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1114 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1115 cv_broadcast(&spa->spa_proc_cv);
1116 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1117 ASSERT(spa->spa_proc != &p0);
1118 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1119 }
1120 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1121 spa->spa_proc_state = SPA_PROC_NONE;
1122 }
1123 ASSERT(spa->spa_proc == &p0);
1124 mutex_exit(&spa->spa_proc_lock);
1125
1126 /*
1127 * We want to make sure spa_thread() has actually exited the ZFS
1128 * module, so that the module can't be unloaded out from underneath
1129 * it.
1130 */
1131 if (spa->spa_did != 0) {
1132 thread_join(spa->spa_did);
1133 spa->spa_did = 0;
1134 }
1135 }
1136
1137 /*
1138 * Verify a pool configuration, and construct the vdev tree appropriately. This
1139 * will create all the necessary vdevs in the appropriate layout, with each vdev
1140 * in the CLOSED state. This will prep the pool before open/creation/import.
1141 * All vdev validation is done by the vdev_alloc() routine.
1142 */
1143 static int
1144 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1145 uint_t id, int atype)
1146 {
1147 nvlist_t **child;
1148 uint_t children;
1149 int error;
1150
1151 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1152 return (error);
1153
1154 if ((*vdp)->vdev_ops->vdev_op_leaf)
1155 return (0);
1156
1157 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1158 &child, &children);
1159
1160 if (error == ENOENT)
1161 return (0);
1162
1163 if (error) {
1164 vdev_free(*vdp);
1165 *vdp = NULL;
1166 return (SET_ERROR(EINVAL));
1167 }
1168
1169 for (int c = 0; c < children; c++) {
1170 vdev_t *vd;
1171 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1172 atype)) != 0) {
1173 vdev_free(*vdp);
1174 *vdp = NULL;
1175 return (error);
1176 }
1177 }
1178
1179 ASSERT(*vdp != NULL);
1180
1181 return (0);
1182 }
1183
1184 /*
1185 * Opposite of spa_load().
1186 */
1187 static void
1188 spa_unload(spa_t *spa)
1189 {
1190 int i;
1191
1192 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1193
1194 /*
1195 * Stop async tasks.
1196 */
1197 spa_async_suspend(spa);
1198
1199 /*
1200 * Stop syncing.
1201 */
1202 if (spa->spa_sync_on) {
1203 txg_sync_stop(spa->spa_dsl_pool);
1204 spa->spa_sync_on = B_FALSE;
1205 }
1206
1207 /*
1208 * Wait for any outstanding async I/O to complete.
1209 */
1210 if (spa->spa_async_zio_root != NULL) {
1211 (void) zio_wait(spa->spa_async_zio_root);
1212 spa->spa_async_zio_root = NULL;
1213 }
1214
1215 bpobj_close(&spa->spa_deferred_bpobj);
1216
1217 /*
1218 * Close the dsl pool.
1219 */
1220 if (spa->spa_dsl_pool) {
1221 dsl_pool_close(spa->spa_dsl_pool);
1222 spa->spa_dsl_pool = NULL;
1223 spa->spa_meta_objset = NULL;
1224 }
1225
1226 ddt_unload(spa);
1227
1228 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1229
1230 /*
1231 * Drop and purge level 2 cache
1232 */
1233 spa_l2cache_drop(spa);
1234
1235 /*
1236 * Close all vdevs.
1237 */
1238 if (spa->spa_root_vdev)
1239 vdev_free(spa->spa_root_vdev);
1240 ASSERT(spa->spa_root_vdev == NULL);
1241
1242 for (i = 0; i < spa->spa_spares.sav_count; i++)
1243 vdev_free(spa->spa_spares.sav_vdevs[i]);
1244 if (spa->spa_spares.sav_vdevs) {
1245 kmem_free(spa->spa_spares.sav_vdevs,
1246 spa->spa_spares.sav_count * sizeof (void *));
1247 spa->spa_spares.sav_vdevs = NULL;
1248 }
1249 if (spa->spa_spares.sav_config) {
1250 nvlist_free(spa->spa_spares.sav_config);
1251 spa->spa_spares.sav_config = NULL;
1252 }
1253 spa->spa_spares.sav_count = 0;
1254
1255 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1256 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1257 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1258 }
1259 if (spa->spa_l2cache.sav_vdevs) {
1260 kmem_free(spa->spa_l2cache.sav_vdevs,
1261 spa->spa_l2cache.sav_count * sizeof (void *));
1262 spa->spa_l2cache.sav_vdevs = NULL;
1263 }
1264 if (spa->spa_l2cache.sav_config) {
1265 nvlist_free(spa->spa_l2cache.sav_config);
1266 spa->spa_l2cache.sav_config = NULL;
1267 }
1268 spa->spa_l2cache.sav_count = 0;
1269
1270 spa->spa_async_suspended = 0;
1271
1272 if (spa->spa_comment != NULL) {
1273 spa_strfree(spa->spa_comment);
1274 spa->spa_comment = NULL;
1275 }
1276
1277 spa_config_exit(spa, SCL_ALL, FTAG);
1278 }
1279
1280 /*
1281 * Load (or re-load) the current list of vdevs describing the active spares for
1282 * this pool. When this is called, we have some form of basic information in
1283 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1284 * then re-generate a more complete list including status information.
1285 */
1286 static void
1287 spa_load_spares(spa_t *spa)
1288 {
1289 nvlist_t **spares;
1290 uint_t nspares;
1291 int i;
1292 vdev_t *vd, *tvd;
1293
1294 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1295
1296 /*
1297 * First, close and free any existing spare vdevs.
1298 */
1299 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1300 vd = spa->spa_spares.sav_vdevs[i];
1301
1302 /* Undo the call to spa_activate() below */
1303 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1304 B_FALSE)) != NULL && tvd->vdev_isspare)
1305 spa_spare_remove(tvd);
1306 vdev_close(vd);
1307 vdev_free(vd);
1308 }
1309
1310 if (spa->spa_spares.sav_vdevs)
1311 kmem_free(spa->spa_spares.sav_vdevs,
1312 spa->spa_spares.sav_count * sizeof (void *));
1313
1314 if (spa->spa_spares.sav_config == NULL)
1315 nspares = 0;
1316 else
1317 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1318 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1319
1320 spa->spa_spares.sav_count = (int)nspares;
1321 spa->spa_spares.sav_vdevs = NULL;
1322
1323 if (nspares == 0)
1324 return;
1325
1326 /*
1327 * Construct the array of vdevs, opening them to get status in the
1328 * process. For each spare, there is potentially two different vdev_t
1329 * structures associated with it: one in the list of spares (used only
1330 * for basic validation purposes) and one in the active vdev
1331 * configuration (if it's spared in). During this phase we open and
1332 * validate each vdev on the spare list. If the vdev also exists in the
1333 * active configuration, then we also mark this vdev as an active spare.
1334 */
1335 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1336 KM_SLEEP);
1337 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1338 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1339 VDEV_ALLOC_SPARE) == 0);
1340 ASSERT(vd != NULL);
1341
1342 spa->spa_spares.sav_vdevs[i] = vd;
1343
1344 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1345 B_FALSE)) != NULL) {
1346 if (!tvd->vdev_isspare)
1347 spa_spare_add(tvd);
1348
1349 /*
1350 * We only mark the spare active if we were successfully
1351 * able to load the vdev. Otherwise, importing a pool
1352 * with a bad active spare would result in strange
1353 * behavior, because multiple pool would think the spare
1354 * is actively in use.
1355 *
1356 * There is a vulnerability here to an equally bizarre
1357 * circumstance, where a dead active spare is later
1358 * brought back to life (onlined or otherwise). Given
1359 * the rarity of this scenario, and the extra complexity
1360 * it adds, we ignore the possibility.
1361 */
1362 if (!vdev_is_dead(tvd))
1363 spa_spare_activate(tvd);
1364 }
1365
1366 vd->vdev_top = vd;
1367 vd->vdev_aux = &spa->spa_spares;
1368
1369 if (vdev_open(vd) != 0)
1370 continue;
1371
1372 if (vdev_validate_aux(vd) == 0)
1373 spa_spare_add(vd);
1374 }
1375
1376 /*
1377 * Recompute the stashed list of spares, with status information
1378 * this time.
1379 */
1380 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1381 DATA_TYPE_NVLIST_ARRAY) == 0);
1382
1383 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1384 KM_SLEEP);
1385 for (i = 0; i < spa->spa_spares.sav_count; i++)
1386 spares[i] = vdev_config_generate(spa,
1387 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1388 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1389 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1390 for (i = 0; i < spa->spa_spares.sav_count; i++)
1391 nvlist_free(spares[i]);
1392 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1393 }
1394
1395 /*
1396 * Load (or re-load) the current list of vdevs describing the active l2cache for
1397 * this pool. When this is called, we have some form of basic information in
1398 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1399 * then re-generate a more complete list including status information.
1400 * Devices which are already active have their details maintained, and are
1401 * not re-opened.
1402 */
1403 static void
1404 spa_load_l2cache(spa_t *spa)
1405 {
1406 nvlist_t **l2cache;
1407 uint_t nl2cache;
1408 int i, j, oldnvdevs;
1409 uint64_t guid;
1410 vdev_t *vd, **oldvdevs, **newvdevs;
1411 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1412
1413 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1414
1415 if (sav->sav_config != NULL) {
1416 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1417 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1418 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1419 } else {
1420 nl2cache = 0;
1421 newvdevs = NULL;
1422 }
1423
1424 oldvdevs = sav->sav_vdevs;
1425 oldnvdevs = sav->sav_count;
1426 sav->sav_vdevs = NULL;
1427 sav->sav_count = 0;
1428
1429 /*
1430 * Process new nvlist of vdevs.
1431 */
1432 for (i = 0; i < nl2cache; i++) {
1433 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1434 &guid) == 0);
1435
1436 newvdevs[i] = NULL;
1437 for (j = 0; j < oldnvdevs; j++) {
1438 vd = oldvdevs[j];
1439 if (vd != NULL && guid == vd->vdev_guid) {
1440 /*
1441 * Retain previous vdev for add/remove ops.
1442 */
1443 newvdevs[i] = vd;
1444 oldvdevs[j] = NULL;
1445 break;
1446 }
1447 }
1448
1449 if (newvdevs[i] == NULL) {
1450 /*
1451 * Create new vdev
1452 */
1453 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1454 VDEV_ALLOC_L2CACHE) == 0);
1455 ASSERT(vd != NULL);
1456 newvdevs[i] = vd;
1457
1458 /*
1459 * Commit this vdev as an l2cache device,
1460 * even if it fails to open.
1461 */
1462 spa_l2cache_add(vd);
1463
1464 vd->vdev_top = vd;
1465 vd->vdev_aux = sav;
1466
1467 spa_l2cache_activate(vd);
1468
1469 if (vdev_open(vd) != 0)
1470 continue;
1471
1472 (void) vdev_validate_aux(vd);
1473
1474 if (!vdev_is_dead(vd))
1475 l2arc_add_vdev(spa, vd);
1476 }
1477 }
1478
1479 /*
1480 * Purge vdevs that were dropped
1481 */
1482 for (i = 0; i < oldnvdevs; i++) {
1483 uint64_t pool;
1484
1485 vd = oldvdevs[i];
1486 if (vd != NULL) {
1487 ASSERT(vd->vdev_isl2cache);
1488
1489 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1490 pool != 0ULL && l2arc_vdev_present(vd))
1491 l2arc_remove_vdev(vd);
1492 vdev_clear_stats(vd);
1493 vdev_free(vd);
1494 }
1495 }
1496
1497 if (oldvdevs)
1498 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1499
1500 if (sav->sav_config == NULL)
1501 goto out;
1502
1503 sav->sav_vdevs = newvdevs;
1504 sav->sav_count = (int)nl2cache;
1505
1506 /*
1507 * Recompute the stashed list of l2cache devices, with status
1508 * information this time.
1509 */
1510 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1511 DATA_TYPE_NVLIST_ARRAY) == 0);
1512
1513 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1514 for (i = 0; i < sav->sav_count; i++)
1515 l2cache[i] = vdev_config_generate(spa,
1516 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1517 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1518 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1519 out:
1520 for (i = 0; i < sav->sav_count; i++)
1521 nvlist_free(l2cache[i]);
1522 if (sav->sav_count)
1523 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1524 }
1525
1526 static int
1527 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1528 {
1529 dmu_buf_t *db;
1530 char *packed = NULL;
1531 size_t nvsize = 0;
1532 int error;
1533 *value = NULL;
1534
1535 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1536 nvsize = *(uint64_t *)db->db_data;
1537 dmu_buf_rele(db, FTAG);
1538
1539 packed = kmem_alloc(nvsize, KM_SLEEP);
1540 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1541 DMU_READ_PREFETCH);
1542 if (error == 0)
1543 error = nvlist_unpack(packed, nvsize, value, 0);
1544 kmem_free(packed, nvsize);
1545
1546 return (error);
1547 }
1548
1549 /*
1550 * Checks to see if the given vdev could not be opened, in which case we post a
1551 * sysevent to notify the autoreplace code that the device has been removed.
1552 */
1553 static void
1554 spa_check_removed(vdev_t *vd)
1555 {
1556 for (int c = 0; c < vd->vdev_children; c++)
1557 spa_check_removed(vd->vdev_child[c]);
1558
1559 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1560 !vd->vdev_ishole) {
1561 zfs_post_autoreplace(vd->vdev_spa, vd);
1562 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1563 }
1564 }
1565
1566 /*
1567 * Validate the current config against the MOS config
1568 */
1569 static boolean_t
1570 spa_config_valid(spa_t *spa, nvlist_t *config)
1571 {
1572 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1573 nvlist_t *nv;
1574
1575 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1576
1577 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1578 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1579
1580 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1581
1582 /*
1583 * If we're doing a normal import, then build up any additional
1584 * diagnostic information about missing devices in this config.
1585 * We'll pass this up to the user for further processing.
1586 */
1587 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1588 nvlist_t **child, *nv;
1589 uint64_t idx = 0;
1590
1591 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1592 KM_SLEEP);
1593 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1594
1595 for (int c = 0; c < rvd->vdev_children; c++) {
1596 vdev_t *tvd = rvd->vdev_child[c];
1597 vdev_t *mtvd = mrvd->vdev_child[c];
1598
1599 if (tvd->vdev_ops == &vdev_missing_ops &&
1600 mtvd->vdev_ops != &vdev_missing_ops &&
1601 mtvd->vdev_islog)
1602 child[idx++] = vdev_config_generate(spa, mtvd,
1603 B_FALSE, 0);
1604 }
1605
1606 if (idx) {
1607 VERIFY(nvlist_add_nvlist_array(nv,
1608 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1609 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1610 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1611
1612 for (int i = 0; i < idx; i++)
1613 nvlist_free(child[i]);
1614 }
1615 nvlist_free(nv);
1616 kmem_free(child, rvd->vdev_children * sizeof (char **));
1617 }
1618
1619 /*
1620 * Compare the root vdev tree with the information we have
1621 * from the MOS config (mrvd). Check each top-level vdev
1622 * with the corresponding MOS config top-level (mtvd).
1623 */
1624 for (int c = 0; c < rvd->vdev_children; c++) {
1625 vdev_t *tvd = rvd->vdev_child[c];
1626 vdev_t *mtvd = mrvd->vdev_child[c];
1627
1628 /*
1629 * Resolve any "missing" vdevs in the current configuration.
1630 * If we find that the MOS config has more accurate information
1631 * about the top-level vdev then use that vdev instead.
1632 */
1633 if (tvd->vdev_ops == &vdev_missing_ops &&
1634 mtvd->vdev_ops != &vdev_missing_ops) {
1635
1636 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1637 continue;
1638
1639 /*
1640 * Device specific actions.
1641 */
1642 if (mtvd->vdev_islog) {
1643 spa_set_log_state(spa, SPA_LOG_CLEAR);
1644 } else {
1645 /*
1646 * XXX - once we have 'readonly' pool
1647 * support we should be able to handle
1648 * missing data devices by transitioning
1649 * the pool to readonly.
1650 */
1651 continue;
1652 }
1653
1654 /*
1655 * Swap the missing vdev with the data we were
1656 * able to obtain from the MOS config.
1657 */
1658 vdev_remove_child(rvd, tvd);
1659 vdev_remove_child(mrvd, mtvd);
1660
1661 vdev_add_child(rvd, mtvd);
1662 vdev_add_child(mrvd, tvd);
1663
1664 spa_config_exit(spa, SCL_ALL, FTAG);
1665 vdev_load(mtvd);
1666 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1667
1668 vdev_reopen(rvd);
1669 } else if (mtvd->vdev_islog) {
1670 /*
1671 * Load the slog device's state from the MOS config
1672 * since it's possible that the label does not
1673 * contain the most up-to-date information.
1674 */
1675 vdev_load_log_state(tvd, mtvd);
1676 vdev_reopen(tvd);
1677 }
1678 }
1679 vdev_free(mrvd);
1680 spa_config_exit(spa, SCL_ALL, FTAG);
1681
1682 /*
1683 * Ensure we were able to validate the config.
1684 */
1685 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1686 }
1687
1688 /*
1689 * Check for missing log devices
1690 */
1691 static boolean_t
1692 spa_check_logs(spa_t *spa)
1693 {
1694 boolean_t rv = B_FALSE;
1695
1696 switch (spa->spa_log_state) {
1697 case SPA_LOG_MISSING:
1698 /* need to recheck in case slog has been restored */
1699 case SPA_LOG_UNKNOWN:
1700 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1701 NULL, DS_FIND_CHILDREN) != 0);
1702 if (rv)
1703 spa_set_log_state(spa, SPA_LOG_MISSING);
1704 break;
1705 }
1706 return (rv);
1707 }
1708
1709 static boolean_t
1710 spa_passivate_log(spa_t *spa)
1711 {
1712 vdev_t *rvd = spa->spa_root_vdev;
1713 boolean_t slog_found = B_FALSE;
1714
1715 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1716
1717 if (!spa_has_slogs(spa))
1718 return (B_FALSE);
1719
1720 for (int c = 0; c < rvd->vdev_children; c++) {
1721 vdev_t *tvd = rvd->vdev_child[c];
1722 metaslab_group_t *mg = tvd->vdev_mg;
1723
1724 if (tvd->vdev_islog) {
1725 metaslab_group_passivate(mg);
1726 slog_found = B_TRUE;
1727 }
1728 }
1729
1730 return (slog_found);
1731 }
1732
1733 static void
1734 spa_activate_log(spa_t *spa)
1735 {
1736 vdev_t *rvd = spa->spa_root_vdev;
1737
1738 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1739
1740 for (int c = 0; c < rvd->vdev_children; c++) {
1741 vdev_t *tvd = rvd->vdev_child[c];
1742 metaslab_group_t *mg = tvd->vdev_mg;
1743
1744 if (tvd->vdev_islog)
1745 metaslab_group_activate(mg);
1746 }
1747 }
1748
1749 int
1750 spa_offline_log(spa_t *spa)
1751 {
1752 int error;
1753
1754 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1755 NULL, DS_FIND_CHILDREN);
1756 if (error == 0) {
1757 /*
1758 * We successfully offlined the log device, sync out the
1759 * current txg so that the "stubby" block can be removed
1760 * by zil_sync().
1761 */
1762 txg_wait_synced(spa->spa_dsl_pool, 0);
1763 }
1764 return (error);
1765 }
1766
1767 static void
1768 spa_aux_check_removed(spa_aux_vdev_t *sav)
1769 {
1770 for (int i = 0; i < sav->sav_count; i++)
1771 spa_check_removed(sav->sav_vdevs[i]);
1772 }
1773
1774 void
1775 spa_claim_notify(zio_t *zio)
1776 {
1777 spa_t *spa = zio->io_spa;
1778
1779 if (zio->io_error)
1780 return;
1781
1782 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1783 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1784 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1785 mutex_exit(&spa->spa_props_lock);
1786 }
1787
1788 typedef struct spa_load_error {
1789 uint64_t sle_meta_count;
1790 uint64_t sle_data_count;
1791 } spa_load_error_t;
1792
1793 static void
1794 spa_load_verify_done(zio_t *zio)
1795 {
1796 blkptr_t *bp = zio->io_bp;
1797 spa_load_error_t *sle = zio->io_private;
1798 dmu_object_type_t type = BP_GET_TYPE(bp);
1799 int error = zio->io_error;
1800
1801 if (error) {
1802 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1803 type != DMU_OT_INTENT_LOG)
1804 atomic_add_64(&sle->sle_meta_count, 1);
1805 else
1806 atomic_add_64(&sle->sle_data_count, 1);
1807 }
1808 zio_data_buf_free(zio->io_data, zio->io_size);
1809 }
1810
1811 /*ARGSUSED*/
1812 static int
1813 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1814 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1815 {
1816 if (bp != NULL) {
1817 zio_t *rio = arg;
1818 size_t size = BP_GET_PSIZE(bp);
1819 void *data = zio_data_buf_alloc(size);
1820
1821 zio_nowait(zio_read(rio, spa, bp, data, size,
1822 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1823 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1824 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1825 }
1826 return (0);
1827 }
1828
1829 static int
1830 spa_load_verify(spa_t *spa)
1831 {
1832 zio_t *rio;
1833 spa_load_error_t sle = { 0 };
1834 zpool_rewind_policy_t policy;
1835 boolean_t verify_ok = B_FALSE;
1836 int error;
1837
1838 zpool_get_rewind_policy(spa->spa_config, &policy);
1839
1840 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1841 return (0);
1842
1843 rio = zio_root(spa, NULL, &sle,
1844 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1845
1846 error = traverse_pool(spa, spa->spa_verify_min_txg,
1847 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1848
1849 (void) zio_wait(rio);
1850
1851 spa->spa_load_meta_errors = sle.sle_meta_count;
1852 spa->spa_load_data_errors = sle.sle_data_count;
1853
1854 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1855 sle.sle_data_count <= policy.zrp_maxdata) {
1856 int64_t loss = 0;
1857
1858 verify_ok = B_TRUE;
1859 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1860 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1861
1862 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1863 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1864 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1865 VERIFY(nvlist_add_int64(spa->spa_load_info,
1866 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1867 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1868 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1869 } else {
1870 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1871 }
1872
1873 if (error) {
1874 if (error != ENXIO && error != EIO)
1875 error = SET_ERROR(EIO);
1876 return (error);
1877 }
1878
1879 return (verify_ok ? 0 : EIO);
1880 }
1881
1882 /*
1883 * Find a value in the pool props object.
1884 */
1885 static void
1886 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1887 {
1888 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1889 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1890 }
1891
1892 /*
1893 * Find a value in the pool directory object.
1894 */
1895 static int
1896 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1897 {
1898 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1899 name, sizeof (uint64_t), 1, val));
1900 }
1901
1902 static int
1903 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1904 {
1905 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1906 return (err);
1907 }
1908
1909 /*
1910 * Fix up config after a partly-completed split. This is done with the
1911 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1912 * pool have that entry in their config, but only the splitting one contains
1913 * a list of all the guids of the vdevs that are being split off.
1914 *
1915 * This function determines what to do with that list: either rejoin
1916 * all the disks to the pool, or complete the splitting process. To attempt
1917 * the rejoin, each disk that is offlined is marked online again, and
1918 * we do a reopen() call. If the vdev label for every disk that was
1919 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1920 * then we call vdev_split() on each disk, and complete the split.
1921 *
1922 * Otherwise we leave the config alone, with all the vdevs in place in
1923 * the original pool.
1924 */
1925 static void
1926 spa_try_repair(spa_t *spa, nvlist_t *config)
1927 {
1928 uint_t extracted;
1929 uint64_t *glist;
1930 uint_t i, gcount;
1931 nvlist_t *nvl;
1932 vdev_t **vd;
1933 boolean_t attempt_reopen;
1934
1935 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1936 return;
1937
1938 /* check that the config is complete */
1939 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1940 &glist, &gcount) != 0)
1941 return;
1942
1943 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1944
1945 /* attempt to online all the vdevs & validate */
1946 attempt_reopen = B_TRUE;
1947 for (i = 0; i < gcount; i++) {
1948 if (glist[i] == 0) /* vdev is hole */
1949 continue;
1950
1951 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1952 if (vd[i] == NULL) {
1953 /*
1954 * Don't bother attempting to reopen the disks;
1955 * just do the split.
1956 */
1957 attempt_reopen = B_FALSE;
1958 } else {
1959 /* attempt to re-online it */
1960 vd[i]->vdev_offline = B_FALSE;
1961 }
1962 }
1963
1964 if (attempt_reopen) {
1965 vdev_reopen(spa->spa_root_vdev);
1966
1967 /* check each device to see what state it's in */
1968 for (extracted = 0, i = 0; i < gcount; i++) {
1969 if (vd[i] != NULL &&
1970 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1971 break;
1972 ++extracted;
1973 }
1974 }
1975
1976 /*
1977 * If every disk has been moved to the new pool, or if we never
1978 * even attempted to look at them, then we split them off for
1979 * good.
1980 */
1981 if (!attempt_reopen || gcount == extracted) {
1982 for (i = 0; i < gcount; i++)
1983 if (vd[i] != NULL)
1984 vdev_split(vd[i]);
1985 vdev_reopen(spa->spa_root_vdev);
1986 }
1987
1988 kmem_free(vd, gcount * sizeof (vdev_t *));
1989 }
1990
1991 static int
1992 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1993 boolean_t mosconfig)
1994 {
1995 nvlist_t *config = spa->spa_config;
1996 char *ereport = FM_EREPORT_ZFS_POOL;
1997 char *comment;
1998 int error;
1999 uint64_t pool_guid;
2000 nvlist_t *nvl;
2001
2002 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2003 return (SET_ERROR(EINVAL));
2004
2005 ASSERT(spa->spa_comment == NULL);
2006 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2007 spa->spa_comment = spa_strdup(comment);
2008
2009 /*
2010 * Versioning wasn't explicitly added to the label until later, so if
2011 * it's not present treat it as the initial version.
2012 */
2013 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2014 &spa->spa_ubsync.ub_version) != 0)
2015 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2016
2017 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2018 &spa->spa_config_txg);
2019
2020 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2021 spa_guid_exists(pool_guid, 0)) {
2022 error = SET_ERROR(EEXIST);
2023 } else {
2024 spa->spa_config_guid = pool_guid;
2025
2026 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2027 &nvl) == 0) {
2028 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2029 KM_SLEEP) == 0);
2030 }
2031
2032 nvlist_free(spa->spa_load_info);
2033 spa->spa_load_info = fnvlist_alloc();
2034
2035 gethrestime(&spa->spa_loaded_ts);
2036 error = spa_load_impl(spa, pool_guid, config, state, type,
2037 mosconfig, &ereport);
2038 }
2039
2040 spa->spa_minref = refcount_count(&spa->spa_refcount);
2041 if (error) {
2042 if (error != EEXIST) {
2043 spa->spa_loaded_ts.tv_sec = 0;
2044 spa->spa_loaded_ts.tv_nsec = 0;
2045 }
2046 if (error != EBADF) {
2047 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2048 }
2049 }
2050 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2051 spa->spa_ena = 0;
2052
2053 return (error);
2054 }
2055
2056 /*
2057 * Load an existing storage pool, using the pool's builtin spa_config as a
2058 * source of configuration information.
2059 */
2060 static int
2061 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2062 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2063 char **ereport)
2064 {
2065 int error = 0;
2066 nvlist_t *nvroot = NULL;
2067 nvlist_t *label;
2068 vdev_t *rvd;
2069 uberblock_t *ub = &spa->spa_uberblock;
2070 uint64_t children, config_cache_txg = spa->spa_config_txg;
2071 int orig_mode = spa->spa_mode;
2072 int parse;
2073 uint64_t obj;
2074 boolean_t missing_feat_write = B_FALSE;
2075
2076 /*
2077 * If this is an untrusted config, access the pool in read-only mode.
2078 * This prevents things like resilvering recently removed devices.
2079 */
2080 if (!mosconfig)
2081 spa->spa_mode = FREAD;
2082
2083 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2084
2085 spa->spa_load_state = state;
2086
2087 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2088 return (SET_ERROR(EINVAL));
2089
2090 parse = (type == SPA_IMPORT_EXISTING ?
2091 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2092
2093 /*
2094 * Create "The Godfather" zio to hold all async IOs
2095 */
2096 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2097 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2098
2099 /*
2100 * Parse the configuration into a vdev tree. We explicitly set the
2101 * value that will be returned by spa_version() since parsing the
2102 * configuration requires knowing the version number.
2103 */
2104 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2105 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2106 spa_config_exit(spa, SCL_ALL, FTAG);
2107
2108 if (error != 0)
2109 return (error);
2110
2111 ASSERT(spa->spa_root_vdev == rvd);
2112
2113 if (type != SPA_IMPORT_ASSEMBLE) {
2114 ASSERT(spa_guid(spa) == pool_guid);
2115 }
2116
2117 /*
2118 * Try to open all vdevs, loading each label in the process.
2119 */
2120 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2121 error = vdev_open(rvd);
2122 spa_config_exit(spa, SCL_ALL, FTAG);
2123 if (error != 0)
2124 return (error);
2125
2126 /*
2127 * We need to validate the vdev labels against the configuration that
2128 * we have in hand, which is dependent on the setting of mosconfig. If
2129 * mosconfig is true then we're validating the vdev labels based on
2130 * that config. Otherwise, we're validating against the cached config
2131 * (zpool.cache) that was read when we loaded the zfs module, and then
2132 * later we will recursively call spa_load() and validate against
2133 * the vdev config.
2134 *
2135 * If we're assembling a new pool that's been split off from an
2136 * existing pool, the labels haven't yet been updated so we skip
2137 * validation for now.
2138 */
2139 if (type != SPA_IMPORT_ASSEMBLE) {
2140 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2141 error = vdev_validate(rvd, mosconfig);
2142 spa_config_exit(spa, SCL_ALL, FTAG);
2143
2144 if (error != 0)
2145 return (error);
2146
2147 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2148 return (SET_ERROR(ENXIO));
2149 }
2150
2151 /*
2152 * Find the best uberblock.
2153 */
2154 vdev_uberblock_load(rvd, ub, &label);
2155
2156 /*
2157 * If we weren't able to find a single valid uberblock, return failure.
2158 */
2159 if (ub->ub_txg == 0) {
2160 nvlist_free(label);
2161 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2162 }
2163
2164 /*
2165 * If the pool has an unsupported version we can't open it.
2166 */
2167 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2168 nvlist_free(label);
2169 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2170 }
2171
2172 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2173 nvlist_t *features;
2174
2175 /*
2176 * If we weren't able to find what's necessary for reading the
2177 * MOS in the label, return failure.
2178 */
2179 if (label == NULL || nvlist_lookup_nvlist(label,
2180 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2181 nvlist_free(label);
2182 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2183 ENXIO));
2184 }
2185
2186 /*
2187 * Update our in-core representation with the definitive values
2188 * from the label.
2189 */
2190 nvlist_free(spa->spa_label_features);
2191 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2192 }
2193
2194 nvlist_free(label);
2195
2196 /*
2197 * Look through entries in the label nvlist's features_for_read. If
2198 * there is a feature listed there which we don't understand then we
2199 * cannot open a pool.
2200 */
2201 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2202 nvlist_t *unsup_feat;
2203
2204 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2205 0);
2206
2207 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2208 NULL); nvp != NULL;
2209 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2210 if (!zfeature_is_supported(nvpair_name(nvp))) {
2211 VERIFY(nvlist_add_string(unsup_feat,
2212 nvpair_name(nvp), "") == 0);
2213 }
2214 }
2215
2216 if (!nvlist_empty(unsup_feat)) {
2217 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2218 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2219 nvlist_free(unsup_feat);
2220 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2221 ENOTSUP));
2222 }
2223
2224 nvlist_free(unsup_feat);
2225 }
2226
2227 /*
2228 * If the vdev guid sum doesn't match the uberblock, we have an
2229 * incomplete configuration. We first check to see if the pool
2230 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2231 * If it is, defer the vdev_guid_sum check till later so we
2232 * can handle missing vdevs.
2233 */
2234 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2235 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2236 rvd->vdev_guid_sum != ub->ub_guid_sum)
2237 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2238
2239 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2240 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2241 spa_try_repair(spa, config);
2242 spa_config_exit(spa, SCL_ALL, FTAG);
2243 nvlist_free(spa->spa_config_splitting);
2244 spa->spa_config_splitting = NULL;
2245 }
2246
2247 /*
2248 * Initialize internal SPA structures.
2249 */
2250 spa->spa_state = POOL_STATE_ACTIVE;
2251 spa->spa_ubsync = spa->spa_uberblock;
2252 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2253 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2254 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2255 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2256 spa->spa_claim_max_txg = spa->spa_first_txg;
2257 spa->spa_prev_software_version = ub->ub_software_version;
2258
2259 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2260 if (error)
2261 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2262 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2263
2264 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2265 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2266
2267 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2268 boolean_t missing_feat_read = B_FALSE;
2269 nvlist_t *unsup_feat, *enabled_feat;
2270
2271 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2272 &spa->spa_feat_for_read_obj) != 0) {
2273 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2274 }
2275
2276 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2277 &spa->spa_feat_for_write_obj) != 0) {
2278 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2279 }
2280
2281 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2282 &spa->spa_feat_desc_obj) != 0) {
2283 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2284 }
2285
2286 enabled_feat = fnvlist_alloc();
2287 unsup_feat = fnvlist_alloc();
2288
2289 if (!feature_is_supported(spa->spa_meta_objset,
2290 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2291 unsup_feat, enabled_feat))
2292 missing_feat_read = B_TRUE;
2293
2294 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2295 if (!feature_is_supported(spa->spa_meta_objset,
2296 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2297 unsup_feat, enabled_feat)) {
2298 missing_feat_write = B_TRUE;
2299 }
2300 }
2301
2302 fnvlist_add_nvlist(spa->spa_load_info,
2303 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2304
2305 if (!nvlist_empty(unsup_feat)) {
2306 fnvlist_add_nvlist(spa->spa_load_info,
2307 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2308 }
2309
2310 fnvlist_free(enabled_feat);
2311 fnvlist_free(unsup_feat);
2312
2313 if (!missing_feat_read) {
2314 fnvlist_add_boolean(spa->spa_load_info,
2315 ZPOOL_CONFIG_CAN_RDONLY);
2316 }
2317
2318 /*
2319 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2320 * twofold: to determine whether the pool is available for
2321 * import in read-write mode and (if it is not) whether the
2322 * pool is available for import in read-only mode. If the pool
2323 * is available for import in read-write mode, it is displayed
2324 * as available in userland; if it is not available for import
2325 * in read-only mode, it is displayed as unavailable in
2326 * userland. If the pool is available for import in read-only
2327 * mode but not read-write mode, it is displayed as unavailable
2328 * in userland with a special note that the pool is actually
2329 * available for open in read-only mode.
2330 *
2331 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2332 * missing a feature for write, we must first determine whether
2333 * the pool can be opened read-only before returning to
2334 * userland in order to know whether to display the
2335 * abovementioned note.
2336 */
2337 if (missing_feat_read || (missing_feat_write &&
2338 spa_writeable(spa))) {
2339 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2340 ENOTSUP));
2341 }
2342 }
2343
2344 spa->spa_is_initializing = B_TRUE;
2345 error = dsl_pool_open(spa->spa_dsl_pool);
2346 spa->spa_is_initializing = B_FALSE;
2347 if (error != 0)
2348 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2349
2350 if (!mosconfig) {
2351 uint64_t hostid;
2352 nvlist_t *policy = NULL, *nvconfig;
2353
2354 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2355 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2356
2357 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2358 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2359 char *hostname;
2360 unsigned long myhostid = 0;
2361
2362 VERIFY(nvlist_lookup_string(nvconfig,
2363 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2364
2365 #ifdef _KERNEL
2366 myhostid = zone_get_hostid(NULL);
2367 #else /* _KERNEL */
2368 /*
2369 * We're emulating the system's hostid in userland, so
2370 * we can't use zone_get_hostid().
2371 */
2372 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2373 #endif /* _KERNEL */
2374 if (hostid != 0 && myhostid != 0 &&
2375 hostid != myhostid) {
2376 nvlist_free(nvconfig);
2377 cmn_err(CE_WARN, "pool '%s' could not be "
2378 "loaded as it was last accessed by "
2379 "another system (host: %s hostid: 0x%lx). "
2380 "See: http://illumos.org/msg/ZFS-8000-EY",
2381 spa_name(spa), hostname,
2382 (unsigned long)hostid);
2383 return (SET_ERROR(EBADF));
2384 }
2385 }
2386 if (nvlist_lookup_nvlist(spa->spa_config,
2387 ZPOOL_REWIND_POLICY, &policy) == 0)
2388 VERIFY(nvlist_add_nvlist(nvconfig,
2389 ZPOOL_REWIND_POLICY, policy) == 0);
2390
2391 spa_config_set(spa, nvconfig);
2392 spa_unload(spa);
2393 spa_deactivate(spa);
2394 spa_activate(spa, orig_mode);
2395
2396 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2397 }
2398
2399 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2400 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2401 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2402 if (error != 0)
2403 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2404
2405 /*
2406 * Load the bit that tells us to use the new accounting function
2407 * (raid-z deflation). If we have an older pool, this will not
2408 * be present.
2409 */
2410 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2411 if (error != 0 && error != ENOENT)
2412 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2413
2414 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2415 &spa->spa_creation_version);
2416 if (error != 0 && error != ENOENT)
2417 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2418
2419 /*
2420 * Load the persistent error log. If we have an older pool, this will
2421 * not be present.
2422 */
2423 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2424 if (error != 0 && error != ENOENT)
2425 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2426
2427 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2428 &spa->spa_errlog_scrub);
2429 if (error != 0 && error != ENOENT)
2430 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2431
2432 /*
2433 * Load the history object. If we have an older pool, this
2434 * will not be present.
2435 */
2436 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2437 if (error != 0 && error != ENOENT)
2438 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2439
2440 /*
2441 * If we're assembling the pool from the split-off vdevs of
2442 * an existing pool, we don't want to attach the spares & cache
2443 * devices.
2444 */
2445
2446 /*
2447 * Load any hot spares for this pool.
2448 */
2449 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2450 if (error != 0 && error != ENOENT)
2451 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2452 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2453 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2454 if (load_nvlist(spa, spa->spa_spares.sav_object,
2455 &spa->spa_spares.sav_config) != 0)
2456 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2457
2458 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2459 spa_load_spares(spa);
2460 spa_config_exit(spa, SCL_ALL, FTAG);
2461 } else if (error == 0) {
2462 spa->spa_spares.sav_sync = B_TRUE;
2463 }
2464
2465 /*
2466 * Load any level 2 ARC devices for this pool.
2467 */
2468 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2469 &spa->spa_l2cache.sav_object);
2470 if (error != 0 && error != ENOENT)
2471 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2472 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2473 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2474 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2475 &spa->spa_l2cache.sav_config) != 0)
2476 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2477
2478 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2479 spa_load_l2cache(spa);
2480 spa_config_exit(spa, SCL_ALL, FTAG);
2481 } else if (error == 0) {
2482 spa->spa_l2cache.sav_sync = B_TRUE;
2483 }
2484
2485 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2486
2487 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2488 if (error && error != ENOENT)
2489 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2490
2491 if (error == 0) {
2492 uint64_t autoreplace;
2493
2494 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2495 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2496 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2497 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2498 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2499 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2500 &spa->spa_dedup_ditto);
2501
2502 spa->spa_autoreplace = (autoreplace != 0);
2503 }
2504
2505 /*
2506 * If the 'autoreplace' property is set, then post a resource notifying
2507 * the ZFS DE that it should not issue any faults for unopenable
2508 * devices. We also iterate over the vdevs, and post a sysevent for any
2509 * unopenable vdevs so that the normal autoreplace handler can take
2510 * over.
2511 */
2512 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2513 spa_check_removed(spa->spa_root_vdev);
2514 /*
2515 * For the import case, this is done in spa_import(), because
2516 * at this point we're using the spare definitions from
2517 * the MOS config, not necessarily from the userland config.
2518 */
2519 if (state != SPA_LOAD_IMPORT) {
2520 spa_aux_check_removed(&spa->spa_spares);
2521 spa_aux_check_removed(&spa->spa_l2cache);
2522 }
2523 }
2524
2525 /*
2526 * Load the vdev state for all toplevel vdevs.
2527 */
2528 vdev_load(rvd);
2529
2530 /*
2531 * Propagate the leaf DTLs we just loaded all the way up the tree.
2532 */
2533 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2534 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2535 spa_config_exit(spa, SCL_ALL, FTAG);
2536
2537 /*
2538 * Load the DDTs (dedup tables).
2539 */
2540 error = ddt_load(spa);
2541 if (error != 0)
2542 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2543
2544 spa_update_dspace(spa);
2545
2546 /*
2547 * Validate the config, using the MOS config to fill in any
2548 * information which might be missing. If we fail to validate
2549 * the config then declare the pool unfit for use. If we're
2550 * assembling a pool from a split, the log is not transferred
2551 * over.
2552 */
2553 if (type != SPA_IMPORT_ASSEMBLE) {
2554 nvlist_t *nvconfig;
2555
2556 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2557 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2558
2559 if (!spa_config_valid(spa, nvconfig)) {
2560 nvlist_free(nvconfig);
2561 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2562 ENXIO));
2563 }
2564 nvlist_free(nvconfig);
2565
2566 /*
2567 * Now that we've validated the config, check the state of the
2568 * root vdev. If it can't be opened, it indicates one or
2569 * more toplevel vdevs are faulted.
2570 */
2571 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2572 return (SET_ERROR(ENXIO));
2573
2574 if (spa_check_logs(spa)) {
2575 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2576 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2577 }
2578 }
2579
2580 if (missing_feat_write) {
2581 ASSERT(state == SPA_LOAD_TRYIMPORT);
2582
2583 /*
2584 * At this point, we know that we can open the pool in
2585 * read-only mode but not read-write mode. We now have enough
2586 * information and can return to userland.
2587 */
2588 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2589 }
2590
2591 /*
2592 * We've successfully opened the pool, verify that we're ready
2593 * to start pushing transactions.
2594 */
2595 if (state != SPA_LOAD_TRYIMPORT) {
2596 if (error = spa_load_verify(spa))
2597 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2598 error));
2599 }
2600
2601 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2602 spa->spa_load_max_txg == UINT64_MAX)) {
2603 dmu_tx_t *tx;
2604 int need_update = B_FALSE;
2605
2606 ASSERT(state != SPA_LOAD_TRYIMPORT);
2607
2608 /*
2609 * Claim log blocks that haven't been committed yet.
2610 * This must all happen in a single txg.
2611 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2612 * invoked from zil_claim_log_block()'s i/o done callback.
2613 * Price of rollback is that we abandon the log.
2614 */
2615 spa->spa_claiming = B_TRUE;
2616
2617 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2618 spa_first_txg(spa));
2619 (void) dmu_objset_find(spa_name(spa),
2620 zil_claim, tx, DS_FIND_CHILDREN);
2621 dmu_tx_commit(tx);
2622
2623 spa->spa_claiming = B_FALSE;
2624
2625 spa_set_log_state(spa, SPA_LOG_GOOD);
2626 spa->spa_sync_on = B_TRUE;
2627 txg_sync_start(spa->spa_dsl_pool);
2628
2629 /*
2630 * Wait for all claims to sync. We sync up to the highest
2631 * claimed log block birth time so that claimed log blocks
2632 * don't appear to be from the future. spa_claim_max_txg
2633 * will have been set for us by either zil_check_log_chain()
2634 * (invoked from spa_check_logs()) or zil_claim() above.
2635 */
2636 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2637
2638 /*
2639 * If the config cache is stale, or we have uninitialized
2640 * metaslabs (see spa_vdev_add()), then update the config.
2641 *
2642 * If this is a verbatim import, trust the current
2643 * in-core spa_config and update the disk labels.
2644 */
2645 if (config_cache_txg != spa->spa_config_txg ||
2646 state == SPA_LOAD_IMPORT ||
2647 state == SPA_LOAD_RECOVER ||
2648 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2649 need_update = B_TRUE;
2650
2651 for (int c = 0; c < rvd->vdev_children; c++)
2652 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2653 need_update = B_TRUE;
2654
2655 /*
2656 * Update the config cache asychronously in case we're the
2657 * root pool, in which case the config cache isn't writable yet.
2658 */
2659 if (need_update)
2660 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2661
2662 /*
2663 * Check all DTLs to see if anything needs resilvering.
2664 */
2665 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2666 vdev_resilver_needed(rvd, NULL, NULL))
2667 spa_async_request(spa, SPA_ASYNC_RESILVER);
2668
2669 /*
2670 * Log the fact that we booted up (so that we can detect if
2671 * we rebooted in the middle of an operation).
2672 */
2673 spa_history_log_version(spa, "open");
2674
2675 /*
2676 * Delete any inconsistent datasets.
2677 */
2678 (void) dmu_objset_find(spa_name(spa),
2679 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2680
2681 /*
2682 * Clean up any stale temporary dataset userrefs.
2683 */
2684 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2685 }
2686
2687 return (0);
2688 }
2689
2690 static int
2691 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2692 {
2693 int mode = spa->spa_mode;
2694
2695 spa_unload(spa);
2696 spa_deactivate(spa);
2697
2698 spa->spa_load_max_txg--;
2699
2700 spa_activate(spa, mode);
2701 spa_async_suspend(spa);
2702
2703 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2704 }
2705
2706 /*
2707 * If spa_load() fails this function will try loading prior txg's. If
2708 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2709 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2710 * function will not rewind the pool and will return the same error as
2711 * spa_load().
2712 */
2713 static int
2714 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2715 uint64_t max_request, int rewind_flags)
2716 {
2717 nvlist_t *loadinfo = NULL;
2718 nvlist_t *config = NULL;
2719 int load_error, rewind_error;
2720 uint64_t safe_rewind_txg;
2721 uint64_t min_txg;
2722
2723 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2724 spa->spa_load_max_txg = spa->spa_load_txg;
2725 spa_set_log_state(spa, SPA_LOG_CLEAR);
2726 } else {
2727 spa->spa_load_max_txg = max_request;
2728 }
2729
2730 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2731 mosconfig);
2732 if (load_error == 0)
2733 return (0);
2734
2735 if (spa->spa_root_vdev != NULL)
2736 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2737
2738 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2739 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2740
2741 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2742 nvlist_free(config);
2743 return (load_error);
2744 }
2745
2746 if (state == SPA_LOAD_RECOVER) {
2747 /* Price of rolling back is discarding txgs, including log */
2748 spa_set_log_state(spa, SPA_LOG_CLEAR);
2749 } else {
2750 /*
2751 * If we aren't rolling back save the load info from our first
2752 * import attempt so that we can restore it after attempting
2753 * to rewind.
2754 */
2755 loadinfo = spa->spa_load_info;
2756 spa->spa_load_info = fnvlist_alloc();
2757 }
2758
2759 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2760 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2761 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2762 TXG_INITIAL : safe_rewind_txg;
2763
2764 /*
2765 * Continue as long as we're finding errors, we're still within
2766 * the acceptable rewind range, and we're still finding uberblocks
2767 */
2768 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2769 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2770 if (spa->spa_load_max_txg < safe_rewind_txg)
2771 spa->spa_extreme_rewind = B_TRUE;
2772 rewind_error = spa_load_retry(spa, state, mosconfig);
2773 }
2774
2775 spa->spa_extreme_rewind = B_FALSE;
2776 spa->spa_load_max_txg = UINT64_MAX;
2777
2778 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2779 spa_config_set(spa, config);
2780
2781 if (state == SPA_LOAD_RECOVER) {
2782 ASSERT3P(loadinfo, ==, NULL);
2783 return (rewind_error);
2784 } else {
2785 /* Store the rewind info as part of the initial load info */
2786 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2787 spa->spa_load_info);
2788
2789 /* Restore the initial load info */
2790 fnvlist_free(spa->spa_load_info);
2791 spa->spa_load_info = loadinfo;
2792
2793 return (load_error);
2794 }
2795 }
2796
2797 /*
2798 * Pool Open/Import
2799 *
2800 * The import case is identical to an open except that the configuration is sent
2801 * down from userland, instead of grabbed from the configuration cache. For the
2802 * case of an open, the pool configuration will exist in the
2803 * POOL_STATE_UNINITIALIZED state.
2804 *
2805 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2806 * the same time open the pool, without having to keep around the spa_t in some
2807 * ambiguous state.
2808 */
2809 static int
2810 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2811 nvlist_t **config)
2812 {
2813 spa_t *spa;
2814 spa_load_state_t state = SPA_LOAD_OPEN;
2815 int error;
2816 int locked = B_FALSE;
2817
2818 *spapp = NULL;
2819
2820 /*
2821 * As disgusting as this is, we need to support recursive calls to this
2822 * function because dsl_dir_open() is called during spa_load(), and ends
2823 * up calling spa_open() again. The real fix is to figure out how to
2824 * avoid dsl_dir_open() calling this in the first place.
2825 */
2826 if (mutex_owner(&spa_namespace_lock) != curthread) {
2827 mutex_enter(&spa_namespace_lock);
2828 locked = B_TRUE;
2829 }
2830
2831 if ((spa = spa_lookup(pool)) == NULL) {
2832 if (locked)
2833 mutex_exit(&spa_namespace_lock);
2834 return (SET_ERROR(ENOENT));
2835 }
2836
2837 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2838 zpool_rewind_policy_t policy;
2839
2840 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2841 &policy);
2842 if (policy.zrp_request & ZPOOL_DO_REWIND)
2843 state = SPA_LOAD_RECOVER;
2844
2845 spa_activate(spa, spa_mode_global);
2846
2847 if (state != SPA_LOAD_RECOVER)
2848 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2849
2850 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2851 policy.zrp_request);
2852
2853 if (error == EBADF) {
2854 /*
2855 * If vdev_validate() returns failure (indicated by
2856 * EBADF), it indicates that one of the vdevs indicates
2857 * that the pool has been exported or destroyed. If
2858 * this is the case, the config cache is out of sync and
2859 * we should remove the pool from the namespace.
2860 */
2861 spa_unload(spa);
2862 spa_deactivate(spa);
2863 spa_config_sync(spa, B_TRUE, B_TRUE);
2864 spa_remove(spa);
2865 if (locked)
2866 mutex_exit(&spa_namespace_lock);
2867 return (SET_ERROR(ENOENT));
2868 }
2869
2870 if (error) {
2871 /*
2872 * We can't open the pool, but we still have useful
2873 * information: the state of each vdev after the
2874 * attempted vdev_open(). Return this to the user.
2875 */
2876 if (config != NULL && spa->spa_config) {
2877 VERIFY(nvlist_dup(spa->spa_config, config,
2878 KM_SLEEP) == 0);
2879 VERIFY(nvlist_add_nvlist(*config,
2880 ZPOOL_CONFIG_LOAD_INFO,
2881 spa->spa_load_info) == 0);
2882 }
2883 spa_unload(spa);
2884 spa_deactivate(spa);
2885 spa->spa_last_open_failed = error;
2886 if (locked)
2887 mutex_exit(&spa_namespace_lock);
2888 *spapp = NULL;
2889 return (error);
2890 }
2891 }
2892
2893 spa_open_ref(spa, tag);
2894
2895 if (config != NULL)
2896 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2897
2898 /*
2899 * If we've recovered the pool, pass back any information we
2900 * gathered while doing the load.
2901 */
2902 if (state == SPA_LOAD_RECOVER) {
2903 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2904 spa->spa_load_info) == 0);
2905 }
2906
2907 if (locked) {
2908 spa->spa_last_open_failed = 0;
2909 spa->spa_last_ubsync_txg = 0;
2910 spa->spa_load_txg = 0;
2911 mutex_exit(&spa_namespace_lock);
2912 }
2913
2914 *spapp = spa;
2915
2916 return (0);
2917 }
2918
2919 int
2920 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2921 nvlist_t **config)
2922 {
2923 return (spa_open_common(name, spapp, tag, policy, config));
2924 }
2925
2926 int
2927 spa_open(const char *name, spa_t **spapp, void *tag)
2928 {
2929 return (spa_open_common(name, spapp, tag, NULL, NULL));
2930 }
2931
2932 /*
2933 * Lookup the given spa_t, incrementing the inject count in the process,
2934 * preventing it from being exported or destroyed.
2935 */
2936 spa_t *
2937 spa_inject_addref(char *name)
2938 {
2939 spa_t *spa;
2940
2941 mutex_enter(&spa_namespace_lock);
2942 if ((spa = spa_lookup(name)) == NULL) {
2943 mutex_exit(&spa_namespace_lock);
2944 return (NULL);
2945 }
2946 spa->spa_inject_ref++;
2947 mutex_exit(&spa_namespace_lock);
2948
2949 return (spa);
2950 }
2951
2952 void
2953 spa_inject_delref(spa_t *spa)
2954 {
2955 mutex_enter(&spa_namespace_lock);
2956 spa->spa_inject_ref--;
2957 mutex_exit(&spa_namespace_lock);
2958 }
2959
2960 /*
2961 * Add spares device information to the nvlist.
2962 */
2963 static void
2964 spa_add_spares(spa_t *spa, nvlist_t *config)
2965 {
2966 nvlist_t **spares;
2967 uint_t i, nspares;
2968 nvlist_t *nvroot;
2969 uint64_t guid;
2970 vdev_stat_t *vs;
2971 uint_t vsc;
2972 uint64_t pool;
2973
2974 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2975
2976 if (spa->spa_spares.sav_count == 0)
2977 return;
2978
2979 VERIFY(nvlist_lookup_nvlist(config,
2980 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2981 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2982 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2983 if (nspares != 0) {
2984 VERIFY(nvlist_add_nvlist_array(nvroot,
2985 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2986 VERIFY(nvlist_lookup_nvlist_array(nvroot,
2987 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2988
2989 /*
2990 * Go through and find any spares which have since been
2991 * repurposed as an active spare. If this is the case, update
2992 * their status appropriately.
2993 */
2994 for (i = 0; i < nspares; i++) {
2995 VERIFY(nvlist_lookup_uint64(spares[i],
2996 ZPOOL_CONFIG_GUID, &guid) == 0);
2997 if (spa_spare_exists(guid, &pool, NULL) &&
2998 pool != 0ULL) {
2999 VERIFY(nvlist_lookup_uint64_array(
3000 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3001 (uint64_t **)&vs, &vsc) == 0);
3002 vs->vs_state = VDEV_STATE_CANT_OPEN;
3003 vs->vs_aux = VDEV_AUX_SPARED;
3004 }
3005 }
3006 }
3007 }
3008
3009 /*
3010 * Add l2cache device information to the nvlist, including vdev stats.
3011 */
3012 static void
3013 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3014 {
3015 nvlist_t **l2cache;
3016 uint_t i, j, nl2cache;
3017 nvlist_t *nvroot;
3018 uint64_t guid;
3019 vdev_t *vd;
3020 vdev_stat_t *vs;
3021 uint_t vsc;
3022
3023 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3024
3025 if (spa->spa_l2cache.sav_count == 0)
3026 return;
3027
3028 VERIFY(nvlist_lookup_nvlist(config,
3029 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3030 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3031 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3032 if (nl2cache != 0) {
3033 VERIFY(nvlist_add_nvlist_array(nvroot,
3034 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3035 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3036 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3037
3038 /*
3039 * Update level 2 cache device stats.
3040 */
3041
3042 for (i = 0; i < nl2cache; i++) {
3043 VERIFY(nvlist_lookup_uint64(l2cache[i],
3044 ZPOOL_CONFIG_GUID, &guid) == 0);
3045
3046 vd = NULL;
3047 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3048 if (guid ==
3049 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3050 vd = spa->spa_l2cache.sav_vdevs[j];
3051 break;
3052 }
3053 }
3054 ASSERT(vd != NULL);
3055
3056 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3057 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3058 == 0);
3059 vdev_get_stats(vd, vs);
3060 }
3061 }
3062 }
3063
3064 static void
3065 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3066 {
3067 nvlist_t *features;
3068 zap_cursor_t zc;
3069 zap_attribute_t za;
3070
3071 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3072 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3073
3074 if (spa->spa_feat_for_read_obj != 0) {
3075 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3076 spa->spa_feat_for_read_obj);
3077 zap_cursor_retrieve(&zc, &za) == 0;
3078 zap_cursor_advance(&zc)) {
3079 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3080 za.za_num_integers == 1);
3081 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3082 za.za_first_integer));
3083 }
3084 zap_cursor_fini(&zc);
3085 }
3086
3087 if (spa->spa_feat_for_write_obj != 0) {
3088 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3089 spa->spa_feat_for_write_obj);
3090 zap_cursor_retrieve(&zc, &za) == 0;
3091 zap_cursor_advance(&zc)) {
3092 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3093 za.za_num_integers == 1);
3094 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3095 za.za_first_integer));
3096 }
3097 zap_cursor_fini(&zc);
3098 }
3099
3100 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3101 features) == 0);
3102 nvlist_free(features);
3103 }
3104
3105 int
3106 spa_get_stats(const char *name, nvlist_t **config,
3107 char *altroot, size_t buflen)
3108 {
3109 int error;
3110 spa_t *spa;
3111
3112 *config = NULL;
3113 error = spa_open_common(name, &spa, FTAG, NULL, config);
3114
3115 if (spa != NULL) {
3116 /*
3117 * This still leaves a window of inconsistency where the spares
3118 * or l2cache devices could change and the config would be
3119 * self-inconsistent.
3120 */
3121 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3122
3123 if (*config != NULL) {
3124 uint64_t loadtimes[2];
3125
3126 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3127 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3128 VERIFY(nvlist_add_uint64_array(*config,
3129 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3130
3131 VERIFY(nvlist_add_uint64(*config,
3132 ZPOOL_CONFIG_ERRCOUNT,
3133 spa_get_errlog_size(spa)) == 0);
3134
3135 if (spa_suspended(spa))
3136 VERIFY(nvlist_add_uint64(*config,
3137 ZPOOL_CONFIG_SUSPENDED,
3138 spa->spa_failmode) == 0);
3139
3140 spa_add_spares(spa, *config);
3141 spa_add_l2cache(spa, *config);
3142 spa_add_feature_stats(spa, *config);
3143 }
3144 }
3145
3146 /*
3147 * We want to get the alternate root even for faulted pools, so we cheat
3148 * and call spa_lookup() directly.
3149 */
3150 if (altroot) {
3151 if (spa == NULL) {
3152 mutex_enter(&spa_namespace_lock);
3153 spa = spa_lookup(name);
3154 if (spa)
3155 spa_altroot(spa, altroot, buflen);
3156 else
3157 altroot[0] = '\0';
3158 spa = NULL;
3159 mutex_exit(&spa_namespace_lock);
3160 } else {
3161 spa_altroot(spa, altroot, buflen);
3162 }
3163 }
3164
3165 if (spa != NULL) {
3166 spa_config_exit(spa, SCL_CONFIG, FTAG);
3167 spa_close(spa, FTAG);
3168 }
3169
3170 return (error);
3171 }
3172
3173 /*
3174 * Validate that the auxiliary device array is well formed. We must have an
3175 * array of nvlists, each which describes a valid leaf vdev. If this is an
3176 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3177 * specified, as long as they are well-formed.
3178 */
3179 static int
3180 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3181 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3182 vdev_labeltype_t label)
3183 {
3184 nvlist_t **dev;
3185 uint_t i, ndev;
3186 vdev_t *vd;
3187 int error;
3188
3189 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3190
3191 /*
3192 * It's acceptable to have no devs specified.
3193 */
3194 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3195 return (0);
3196
3197 if (ndev == 0)
3198 return (SET_ERROR(EINVAL));
3199
3200 /*
3201 * Make sure the pool is formatted with a version that supports this
3202 * device type.
3203 */
3204 if (spa_version(spa) < version)
3205 return (SET_ERROR(ENOTSUP));
3206
3207 /*
3208 * Set the pending device list so we correctly handle device in-use
3209 * checking.
3210 */
3211 sav->sav_pending = dev;
3212 sav->sav_npending = ndev;
3213
3214 for (i = 0; i < ndev; i++) {
3215 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3216 mode)) != 0)
3217 goto out;
3218
3219 if (!vd->vdev_ops->vdev_op_leaf) {
3220 vdev_free(vd);
3221 error = SET_ERROR(EINVAL);
3222 goto out;
3223 }
3224
3225 /*
3226 * The L2ARC currently only supports disk devices in
3227 * kernel context. For user-level testing, we allow it.
3228 */
3229 #ifdef _KERNEL
3230 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3231 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3232 error = SET_ERROR(ENOTBLK);
3233 vdev_free(vd);
3234 goto out;
3235 }
3236 #endif
3237 vd->vdev_top = vd;
3238
3239 if ((error = vdev_open(vd)) == 0 &&
3240 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3241 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3242 vd->vdev_guid) == 0);
3243 }
3244
3245 vdev_free(vd);
3246
3247 if (error &&
3248 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3249 goto out;
3250 else
3251 error = 0;
3252 }
3253
3254 out:
3255 sav->sav_pending = NULL;
3256 sav->sav_npending = 0;
3257 return (error);
3258 }
3259
3260 static int
3261 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3262 {
3263 int error;
3264
3265 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3266
3267 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3268 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3269 VDEV_LABEL_SPARE)) != 0) {
3270 return (error);
3271 }
3272
3273 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3274 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3275 VDEV_LABEL_L2CACHE));
3276 }
3277
3278 static void
3279 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3280 const char *config)
3281 {
3282 int i;
3283
3284 if (sav->sav_config != NULL) {
3285 nvlist_t **olddevs;
3286 uint_t oldndevs;
3287 nvlist_t **newdevs;
3288
3289 /*
3290 * Generate new dev list by concatentating with the
3291 * current dev list.
3292 */
3293 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3294 &olddevs, &oldndevs) == 0);
3295
3296 newdevs = kmem_alloc(sizeof (void *) *
3297 (ndevs + oldndevs), KM_SLEEP);
3298 for (i = 0; i < oldndevs; i++)
3299 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3300 KM_SLEEP) == 0);
3301 for (i = 0; i < ndevs; i++)
3302 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3303 KM_SLEEP) == 0);
3304
3305 VERIFY(nvlist_remove(sav->sav_config, config,
3306 DATA_TYPE_NVLIST_ARRAY) == 0);
3307
3308 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3309 config, newdevs, ndevs + oldndevs) == 0);
3310 for (i = 0; i < oldndevs + ndevs; i++)
3311 nvlist_free(newdevs[i]);
3312 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3313 } else {
3314 /*
3315 * Generate a new dev list.
3316 */
3317 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3318 KM_SLEEP) == 0);
3319 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3320 devs, ndevs) == 0);
3321 }
3322 }
3323
3324 /*
3325 * Stop and drop level 2 ARC devices
3326 */
3327 void
3328 spa_l2cache_drop(spa_t *spa)
3329 {
3330 vdev_t *vd;
3331 int i;
3332 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3333
3334 for (i = 0; i < sav->sav_count; i++) {
3335 uint64_t pool;
3336
3337 vd = sav->sav_vdevs[i];
3338 ASSERT(vd != NULL);
3339
3340 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3341 pool != 0ULL && l2arc_vdev_present(vd))
3342 l2arc_remove_vdev(vd);
3343 }
3344 }
3345
3346 /*
3347 * Pool Creation
3348 */
3349 int
3350 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3351 nvlist_t *zplprops)
3352 {
3353 spa_t *spa;
3354 char *altroot = NULL;
3355 vdev_t *rvd;
3356 dsl_pool_t *dp;
3357 dmu_tx_t *tx;
3358 int error = 0;
3359 uint64_t txg = TXG_INITIAL;
3360 nvlist_t **spares, **l2cache;
3361 uint_t nspares, nl2cache;
3362 uint64_t version, obj;
3363 boolean_t has_features;
3364
3365 /*
3366 * If this pool already exists, return failure.
3367 */
3368 mutex_enter(&spa_namespace_lock);
3369 if (spa_lookup(pool) != NULL) {
3370 mutex_exit(&spa_namespace_lock);
3371 return (SET_ERROR(EEXIST));
3372 }
3373
3374 /*
3375 * Allocate a new spa_t structure.
3376 */
3377 (void) nvlist_lookup_string(props,
3378 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3379 spa = spa_add(pool, NULL, altroot);
3380 spa_activate(spa, spa_mode_global);
3381
3382 if (props && (error = spa_prop_validate(spa, props))) {
3383 spa_deactivate(spa);
3384 spa_remove(spa);
3385 mutex_exit(&spa_namespace_lock);
3386 return (error);
3387 }
3388
3389 has_features = B_FALSE;
3390 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3391 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3392 if (zpool_prop_feature(nvpair_name(elem)))
3393 has_features = B_TRUE;
3394 }
3395
3396 if (has_features || nvlist_lookup_uint64(props,
3397 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3398 version = SPA_VERSION;
3399 }
3400 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3401
3402 spa->spa_first_txg = txg;
3403 spa->spa_uberblock.ub_txg = txg - 1;
3404 spa->spa_uberblock.ub_version = version;
3405 spa->spa_ubsync = spa->spa_uberblock;
3406
3407 /*
3408 * Create "The Godfather" zio to hold all async IOs
3409 */
3410 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3411 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3412
3413 /*
3414 * Create the root vdev.
3415 */
3416 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3417
3418 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3419
3420 ASSERT(error != 0 || rvd != NULL);
3421 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3422
3423 if (error == 0 && !zfs_allocatable_devs(nvroot))
3424 error = SET_ERROR(EINVAL);
3425
3426 if (error == 0 &&
3427 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3428 (error = spa_validate_aux(spa, nvroot, txg,
3429 VDEV_ALLOC_ADD)) == 0) {
3430 for (int c = 0; c < rvd->vdev_children; c++) {
3431 vdev_metaslab_set_size(rvd->vdev_child[c]);
3432 vdev_expand(rvd->vdev_child[c], txg);
3433 }
3434 }
3435
3436 spa_config_exit(spa, SCL_ALL, FTAG);
3437
3438 if (error != 0) {
3439 spa_unload(spa);
3440 spa_deactivate(spa);
3441 spa_remove(spa);
3442 mutex_exit(&spa_namespace_lock);
3443 return (error);
3444 }
3445
3446 /*
3447 * Get the list of spares, if specified.
3448 */
3449 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3450 &spares, &nspares) == 0) {
3451 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3452 KM_SLEEP) == 0);
3453 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3454 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3455 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3456 spa_load_spares(spa);
3457 spa_config_exit(spa, SCL_ALL, FTAG);
3458 spa->spa_spares.sav_sync = B_TRUE;
3459 }
3460
3461 /*
3462 * Get the list of level 2 cache devices, if specified.
3463 */
3464 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3465 &l2cache, &nl2cache) == 0) {
3466 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3467 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3468 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3469 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3470 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3471 spa_load_l2cache(spa);
3472 spa_config_exit(spa, SCL_ALL, FTAG);
3473 spa->spa_l2cache.sav_sync = B_TRUE;
3474 }
3475
3476 spa->spa_is_initializing = B_TRUE;
3477 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3478 spa->spa_meta_objset = dp->dp_meta_objset;
3479 spa->spa_is_initializing = B_FALSE;
3480
3481 /*
3482 * Create DDTs (dedup tables).
3483 */
3484 ddt_create(spa);
3485
3486 spa_update_dspace(spa);
3487
3488 tx = dmu_tx_create_assigned(dp, txg);
3489
3490 /*
3491 * Create the pool config object.
3492 */
3493 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3494 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3495 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3496
3497 if (zap_add(spa->spa_meta_objset,
3498 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3499 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3500 cmn_err(CE_PANIC, "failed to add pool config");
3501 }
3502
3503 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3504 spa_feature_create_zap_objects(spa, tx);
3505
3506 if (zap_add(spa->spa_meta_objset,
3507 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3508 sizeof (uint64_t), 1, &version, tx) != 0) {
3509 cmn_err(CE_PANIC, "failed to add pool version");
3510 }
3511
3512 /* Newly created pools with the right version are always deflated. */
3513 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3514 spa->spa_deflate = TRUE;
3515 if (zap_add(spa->spa_meta_objset,
3516 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3517 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3518 cmn_err(CE_PANIC, "failed to add deflate");
3519 }
3520 }
3521
3522 /*
3523 * Create the deferred-free bpobj. Turn off compression
3524 * because sync-to-convergence takes longer if the blocksize
3525 * keeps changing.
3526 */
3527 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3528 dmu_object_set_compress(spa->spa_meta_objset, obj,
3529 ZIO_COMPRESS_OFF, tx);
3530 if (zap_add(spa->spa_meta_objset,
3531 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3532 sizeof (uint64_t), 1, &obj, tx) != 0) {
3533 cmn_err(CE_PANIC, "failed to add bpobj");
3534 }
3535 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3536 spa->spa_meta_objset, obj));
3537
3538 /*
3539 * Create the pool's history object.
3540 */
3541 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3542 spa_history_create_obj(spa, tx);
3543
3544 /*
3545 * Set pool properties.
3546 */
3547 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3548 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3549 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3550 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3551
3552 if (props != NULL) {
3553 spa_configfile_set(spa, props, B_FALSE);
3554 spa_sync_props(props, tx);
3555 }
3556
3557 dmu_tx_commit(tx);
3558
3559 spa->spa_sync_on = B_TRUE;
3560 txg_sync_start(spa->spa_dsl_pool);
3561
3562 /*
3563 * We explicitly wait for the first transaction to complete so that our
3564 * bean counters are appropriately updated.
3565 */
3566 txg_wait_synced(spa->spa_dsl_pool, txg);
3567
3568 spa_config_sync(spa, B_FALSE, B_TRUE);
3569
3570 spa_history_log_version(spa, "create");
3571
3572 spa->spa_minref = refcount_count(&spa->spa_refcount);
3573
3574 mutex_exit(&spa_namespace_lock);
3575
3576 return (0);
3577 }
3578
3579 #ifdef _KERNEL
3580 /*
3581 * Get the root pool information from the root disk, then import the root pool
3582 * during the system boot up time.
3583 */
3584 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3585
3586 static nvlist_t *
3587 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3588 {
3589 nvlist_t *config;
3590 nvlist_t *nvtop, *nvroot;
3591 uint64_t pgid;
3592
3593 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3594 return (NULL);
3595
3596 /*
3597 * Add this top-level vdev to the child array.
3598 */
3599 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3600 &nvtop) == 0);
3601 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3602 &pgid) == 0);
3603 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3604
3605 /*
3606 * Put this pool's top-level vdevs into a root vdev.
3607 */
3608 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3609 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3610 VDEV_TYPE_ROOT) == 0);
3611 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3612 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3613 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3614 &nvtop, 1) == 0);
3615
3616 /*
3617 * Replace the existing vdev_tree with the new root vdev in
3618 * this pool's configuration (remove the old, add the new).
3619 */
3620 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3621 nvlist_free(nvroot);
3622 return (config);
3623 }
3624
3625 /*
3626 * Walk the vdev tree and see if we can find a device with "better"
3627 * configuration. A configuration is "better" if the label on that
3628 * device has a more recent txg.
3629 */
3630 static void
3631 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3632 {
3633 for (int c = 0; c < vd->vdev_children; c++)
3634 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3635
3636 if (vd->vdev_ops->vdev_op_leaf) {
3637 nvlist_t *label;
3638 uint64_t label_txg;
3639
3640 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3641 &label) != 0)
3642 return;
3643
3644 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3645 &label_txg) == 0);
3646
3647 /*
3648 * Do we have a better boot device?
3649 */
3650 if (label_txg > *txg) {
3651 *txg = label_txg;
3652 *avd = vd;
3653 }
3654 nvlist_free(label);
3655 }
3656 }
3657
3658 /*
3659 * Import a root pool.
3660 *
3661 * For x86. devpath_list will consist of devid and/or physpath name of
3662 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3663 * The GRUB "findroot" command will return the vdev we should boot.
3664 *
3665 * For Sparc, devpath_list consists the physpath name of the booting device
3666 * no matter the rootpool is a single device pool or a mirrored pool.
3667 * e.g.
3668 * "/pci@1f,0/ide@d/disk@0,0:a"
3669 */
3670 int
3671 spa_import_rootpool(char *devpath, char *devid)
3672 {
3673 spa_t *spa;
3674 vdev_t *rvd, *bvd, *avd = NULL;
3675 nvlist_t *config, *nvtop;
3676 uint64_t guid, txg;
3677 char *pname;
3678 int error;
3679
3680 /*
3681 * Read the label from the boot device and generate a configuration.
3682 */
3683 config = spa_generate_rootconf(devpath, devid, &guid);
3684 #if defined(_OBP) && defined(_KERNEL)
3685 if (config == NULL) {
3686 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3687 /* iscsi boot */
3688 get_iscsi_bootpath_phy(devpath);
3689 config = spa_generate_rootconf(devpath, devid, &guid);
3690 }
3691 }
3692 #endif
3693 if (config == NULL) {
3694 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3695 devpath);
3696 return (SET_ERROR(EIO));
3697 }
3698
3699 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3700 &pname) == 0);
3701 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3702
3703 mutex_enter(&spa_namespace_lock);
3704 if ((spa = spa_lookup(pname)) != NULL) {
3705 /*
3706 * Remove the existing root pool from the namespace so that we
3707 * can replace it with the correct config we just read in.
3708 */
3709 spa_remove(spa);
3710 }
3711
3712 spa = spa_add(pname, config, NULL);
3713 spa->spa_is_root = B_TRUE;
3714 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3715
3716 /*
3717 * Build up a vdev tree based on the boot device's label config.
3718 */
3719 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3720 &nvtop) == 0);
3721 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3722 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3723 VDEV_ALLOC_ROOTPOOL);
3724 spa_config_exit(spa, SCL_ALL, FTAG);
3725 if (error) {
3726 mutex_exit(&spa_namespace_lock);
3727 nvlist_free(config);
3728 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3729 pname);
3730 return (error);
3731 }
3732
3733 /*
3734 * Get the boot vdev.
3735 */
3736 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3737 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3738 (u_longlong_t)guid);
3739 error = SET_ERROR(ENOENT);
3740 goto out;
3741 }
3742
3743 /*
3744 * Determine if there is a better boot device.
3745 */
3746 avd = bvd;
3747 spa_alt_rootvdev(rvd, &avd, &txg);
3748 if (avd != bvd) {
3749 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3750 "try booting from '%s'", avd->vdev_path);
3751 error = SET_ERROR(EINVAL);
3752 goto out;
3753 }
3754
3755 /*
3756 * If the boot device is part of a spare vdev then ensure that
3757 * we're booting off the active spare.
3758 */
3759 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3760 !bvd->vdev_isspare) {
3761 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3762 "try booting from '%s'",
3763 bvd->vdev_parent->
3764 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3765 error = SET_ERROR(EINVAL);
3766 goto out;
3767 }
3768
3769 error = 0;
3770 out:
3771 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3772 vdev_free(rvd);
3773 spa_config_exit(spa, SCL_ALL, FTAG);
3774 mutex_exit(&spa_namespace_lock);
3775
3776 nvlist_free(config);
3777 return (error);
3778 }
3779
3780 #endif
3781
3782 /*
3783 * Import a non-root pool into the system.
3784 */
3785 int
3786 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3787 {
3788 spa_t *spa;
3789 char *altroot = NULL;
3790 spa_load_state_t state = SPA_LOAD_IMPORT;
3791 zpool_rewind_policy_t policy;
3792 uint64_t mode = spa_mode_global;
3793 uint64_t readonly = B_FALSE;
3794 int error;
3795 nvlist_t *nvroot;
3796 nvlist_t **spares, **l2cache;
3797 uint_t nspares, nl2cache;
3798
3799 /*
3800 * If a pool with this name exists, return failure.
3801 */
3802 mutex_enter(&spa_namespace_lock);
3803 if (spa_lookup(pool) != NULL) {
3804 mutex_exit(&spa_namespace_lock);
3805 return (SET_ERROR(EEXIST));
3806 }
3807
3808 /*
3809 * Create and initialize the spa structure.
3810 */
3811 (void) nvlist_lookup_string(props,
3812 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3813 (void) nvlist_lookup_uint64(props,
3814 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3815 if (readonly)
3816 mode = FREAD;
3817 spa = spa_add(pool, config, altroot);
3818 spa->spa_import_flags = flags;
3819
3820 /*
3821 * Verbatim import - Take a pool and insert it into the namespace
3822 * as if it had been loaded at boot.
3823 */
3824 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3825 if (props != NULL)
3826 spa_configfile_set(spa, props, B_FALSE);
3827
3828 spa_config_sync(spa, B_FALSE, B_TRUE);
3829
3830 mutex_exit(&spa_namespace_lock);
3831 spa_history_log_version(spa, "import");
3832
3833 return (0);
3834 }
3835
3836 spa_activate(spa, mode);
3837
3838 /*
3839 * Don't start async tasks until we know everything is healthy.
3840 */
3841 spa_async_suspend(spa);
3842
3843 zpool_get_rewind_policy(config, &policy);
3844 if (policy.zrp_request & ZPOOL_DO_REWIND)
3845 state = SPA_LOAD_RECOVER;
3846
3847 /*
3848 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3849 * because the user-supplied config is actually the one to trust when
3850 * doing an import.
3851 */
3852 if (state != SPA_LOAD_RECOVER)
3853 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3854
3855 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3856 policy.zrp_request);
3857
3858 /*
3859 * Propagate anything learned while loading the pool and pass it
3860 * back to caller (i.e. rewind info, missing devices, etc).
3861 */
3862 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3863 spa->spa_load_info) == 0);
3864
3865 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3866 /*
3867 * Toss any existing sparelist, as it doesn't have any validity
3868 * anymore, and conflicts with spa_has_spare().
3869 */
3870 if (spa->spa_spares.sav_config) {
3871 nvlist_free(spa->spa_spares.sav_config);
3872 spa->spa_spares.sav_config = NULL;
3873 spa_load_spares(spa);
3874 }
3875 if (spa->spa_l2cache.sav_config) {
3876 nvlist_free(spa->spa_l2cache.sav_config);
3877 spa->spa_l2cache.sav_config = NULL;
3878 spa_load_l2cache(spa);
3879 }
3880
3881 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3882 &nvroot) == 0);
3883 if (error == 0)
3884 error = spa_validate_aux(spa, nvroot, -1ULL,
3885 VDEV_ALLOC_SPARE);
3886 if (error == 0)
3887 error = spa_validate_aux(spa, nvroot, -1ULL,
3888 VDEV_ALLOC_L2CACHE);
3889 spa_config_exit(spa, SCL_ALL, FTAG);
3890
3891 if (props != NULL)
3892 spa_configfile_set(spa, props, B_FALSE);
3893
3894 if (error != 0 || (props && spa_writeable(spa) &&
3895 (error = spa_prop_set(spa, props)))) {
3896 spa_unload(spa);
3897 spa_deactivate(spa);
3898 spa_remove(spa);
3899 mutex_exit(&spa_namespace_lock);
3900 return (error);
3901 }
3902
3903 spa_async_resume(spa);
3904
3905 /*
3906 * Override any spares and level 2 cache devices as specified by
3907 * the user, as these may have correct device names/devids, etc.
3908 */
3909 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3910 &spares, &nspares) == 0) {
3911 if (spa->spa_spares.sav_config)
3912 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3913 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3914 else
3915 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3916 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3917 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3918 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3919 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3920 spa_load_spares(spa);
3921 spa_config_exit(spa, SCL_ALL, FTAG);
3922 spa->spa_spares.sav_sync = B_TRUE;
3923 }
3924 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3925 &l2cache, &nl2cache) == 0) {
3926 if (spa->spa_l2cache.sav_config)
3927 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3928 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3929 else
3930 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3931 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3932 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3933 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3934 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3935 spa_load_l2cache(spa);
3936 spa_config_exit(spa, SCL_ALL, FTAG);
3937 spa->spa_l2cache.sav_sync = B_TRUE;
3938 }
3939
3940 /*
3941 * Check for any removed devices.
3942 */
3943 if (spa->spa_autoreplace) {
3944 spa_aux_check_removed(&spa->spa_spares);
3945 spa_aux_check_removed(&spa->spa_l2cache);
3946 }
3947
3948 if (spa_writeable(spa)) {
3949 /*
3950 * Update the config cache to include the newly-imported pool.
3951 */
3952 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3953 }
3954
3955 /*
3956 * It's possible that the pool was expanded while it was exported.
3957 * We kick off an async task to handle this for us.
3958 */
3959 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3960
3961 mutex_exit(&spa_namespace_lock);
3962 spa_history_log_version(spa, "import");
3963
3964 return (0);
3965 }
3966
3967 nvlist_t *
3968 spa_tryimport(nvlist_t *tryconfig)
3969 {
3970 nvlist_t *config = NULL;
3971 char *poolname;
3972 spa_t *spa;
3973 uint64_t state;
3974 int error;
3975
3976 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3977 return (NULL);
3978
3979 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3980 return (NULL);
3981
3982 /*
3983 * Create and initialize the spa structure.
3984 */
3985 mutex_enter(&spa_namespace_lock);
3986 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3987 spa_activate(spa, FREAD);
3988
3989 /*
3990 * Pass off the heavy lifting to spa_load().
3991 * Pass TRUE for mosconfig because the user-supplied config
3992 * is actually the one to trust when doing an import.
3993 */
3994 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3995
3996 /*
3997 * If 'tryconfig' was at least parsable, return the current config.
3998 */
3999 if (spa->spa_root_vdev != NULL) {
4000 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4001 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4002 poolname) == 0);
4003 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4004 state) == 0);
4005 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4006 spa->spa_uberblock.ub_timestamp) == 0);
4007 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4008 spa->spa_load_info) == 0);
4009
4010 /*
4011 * If the bootfs property exists on this pool then we
4012 * copy it out so that external consumers can tell which
4013 * pools are bootable.
4014 */
4015 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4016 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4017
4018 /*
4019 * We have to play games with the name since the
4020 * pool was opened as TRYIMPORT_NAME.
4021 */
4022 if (dsl_dsobj_to_dsname(spa_name(spa),
4023 spa->spa_bootfs, tmpname) == 0) {
4024 char *cp;
4025 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4026
4027 cp = strchr(tmpname, '/');
4028 if (cp == NULL) {
4029 (void) strlcpy(dsname, tmpname,
4030 MAXPATHLEN);
4031 } else {
4032 (void) snprintf(dsname, MAXPATHLEN,
4033 "%s/%s", poolname, ++cp);
4034 }
4035 VERIFY(nvlist_add_string(config,
4036 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4037 kmem_free(dsname, MAXPATHLEN);
4038 }
4039 kmem_free(tmpname, MAXPATHLEN);
4040 }
4041
4042 /*
4043 * Add the list of hot spares and level 2 cache devices.
4044 */
4045 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4046 spa_add_spares(spa, config);
4047 spa_add_l2cache(spa, config);
4048 spa_config_exit(spa, SCL_CONFIG, FTAG);
4049 }
4050
4051 spa_unload(spa);
4052 spa_deactivate(spa);
4053 spa_remove(spa);
4054 mutex_exit(&spa_namespace_lock);
4055
4056 return (config);
4057 }
4058
4059 /*
4060 * Pool export/destroy
4061 *
4062 * The act of destroying or exporting a pool is very simple. We make sure there
4063 * is no more pending I/O and any references to the pool are gone. Then, we
4064 * update the pool state and sync all the labels to disk, removing the
4065 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4066 * we don't sync the labels or remove the configuration cache.
4067 */
4068 static int
4069 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4070 boolean_t force, boolean_t hardforce)
4071 {
4072 spa_t *spa;
4073
4074 if (oldconfig)
4075 *oldconfig = NULL;
4076
4077 if (!(spa_mode_global & FWRITE))
4078 return (SET_ERROR(EROFS));
4079
4080 mutex_enter(&spa_namespace_lock);
4081 if ((spa = spa_lookup(pool)) == NULL) {
4082 mutex_exit(&spa_namespace_lock);
4083 return (SET_ERROR(ENOENT));
4084 }
4085
4086 /*
4087 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4088 * reacquire the namespace lock, and see if we can export.
4089 */
4090 spa_open_ref(spa, FTAG);
4091 mutex_exit(&spa_namespace_lock);
4092 spa_async_suspend(spa);
4093 mutex_enter(&spa_namespace_lock);
4094 spa_close(spa, FTAG);
4095
4096 /*
4097 * The pool will be in core if it's openable,
4098 * in which case we can modify its state.
4099 */
4100 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4101 /*
4102 * Objsets may be open only because they're dirty, so we
4103 * have to force it to sync before checking spa_refcnt.
4104 */
4105 txg_wait_synced(spa->spa_dsl_pool, 0);
4106
4107 /*
4108 * A pool cannot be exported or destroyed if there are active
4109 * references. If we are resetting a pool, allow references by
4110 * fault injection handlers.
4111 */
4112 if (!spa_refcount_zero(spa) ||
4113 (spa->spa_inject_ref != 0 &&
4114 new_state != POOL_STATE_UNINITIALIZED)) {
4115 spa_async_resume(spa);
4116 mutex_exit(&spa_namespace_lock);
4117 return (SET_ERROR(EBUSY));
4118 }
4119
4120 /*
4121 * A pool cannot be exported if it has an active shared spare.
4122 * This is to prevent other pools stealing the active spare
4123 * from an exported pool. At user's own will, such pool can
4124 * be forcedly exported.
4125 */
4126 if (!force && new_state == POOL_STATE_EXPORTED &&
4127 spa_has_active_shared_spare(spa)) {
4128 spa_async_resume(spa);
4129 mutex_exit(&spa_namespace_lock);
4130 return (SET_ERROR(EXDEV));
4131 }
4132
4133 /*
4134 * We want this to be reflected on every label,
4135 * so mark them all dirty. spa_unload() will do the
4136 * final sync that pushes these changes out.
4137 */
4138 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4139 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4140 spa->spa_state = new_state;
4141 spa->spa_final_txg = spa_last_synced_txg(spa) +
4142 TXG_DEFER_SIZE + 1;
4143 vdev_config_dirty(spa->spa_root_vdev);
4144 spa_config_exit(spa, SCL_ALL, FTAG);
4145 }
4146 }
4147
4148 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4149
4150 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4151 spa_unload(spa);
4152 spa_deactivate(spa);
4153 }
4154
4155 if (oldconfig && spa->spa_config)
4156 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4157
4158 if (new_state != POOL_STATE_UNINITIALIZED) {
4159 if (!hardforce)
4160 spa_config_sync(spa, B_TRUE, B_TRUE);
4161 spa_remove(spa);
4162 }
4163 mutex_exit(&spa_namespace_lock);
4164
4165 return (0);
4166 }
4167
4168 /*
4169 * Destroy a storage pool.
4170 */
4171 int
4172 spa_destroy(char *pool)
4173 {
4174 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4175 B_FALSE, B_FALSE));
4176 }
4177
4178 /*
4179 * Export a storage pool.
4180 */
4181 int
4182 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4183 boolean_t hardforce)
4184 {
4185 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4186 force, hardforce));
4187 }
4188
4189 /*
4190 * Similar to spa_export(), this unloads the spa_t without actually removing it
4191 * from the namespace in any way.
4192 */
4193 int
4194 spa_reset(char *pool)
4195 {
4196 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4197 B_FALSE, B_FALSE));
4198 }
4199
4200 /*
4201 * ==========================================================================
4202 * Device manipulation
4203 * ==========================================================================
4204 */
4205
4206 /*
4207 * Add a device to a storage pool.
4208 */
4209 int
4210 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4211 {
4212 uint64_t txg, id;
4213 int error;
4214 vdev_t *rvd = spa->spa_root_vdev;
4215 vdev_t *vd, *tvd;
4216 nvlist_t **spares, **l2cache;
4217 uint_t nspares, nl2cache;
4218
4219 ASSERT(spa_writeable(spa));
4220
4221 txg = spa_vdev_enter(spa);
4222
4223 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4224 VDEV_ALLOC_ADD)) != 0)
4225 return (spa_vdev_exit(spa, NULL, txg, error));
4226
4227 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4228
4229 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4230 &nspares) != 0)
4231 nspares = 0;
4232
4233 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4234 &nl2cache) != 0)
4235 nl2cache = 0;
4236
4237 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4238 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4239
4240 if (vd->vdev_children != 0 &&
4241 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4242 return (spa_vdev_exit(spa, vd, txg, error));
4243
4244 /*
4245 * We must validate the spares and l2cache devices after checking the
4246 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4247 */
4248 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4249 return (spa_vdev_exit(spa, vd, txg, error));
4250
4251 /*
4252 * Transfer each new top-level vdev from vd to rvd.
4253 */
4254 for (int c = 0; c < vd->vdev_children; c++) {
4255
4256 /*
4257 * Set the vdev id to the first hole, if one exists.
4258 */
4259 for (id = 0; id < rvd->vdev_children; id++) {
4260 if (rvd->vdev_child[id]->vdev_ishole) {
4261 vdev_free(rvd->vdev_child[id]);
4262 break;
4263 }
4264 }
4265 tvd = vd->vdev_child[c];
4266 vdev_remove_child(vd, tvd);
4267 tvd->vdev_id = id;
4268 vdev_add_child(rvd, tvd);
4269 vdev_config_dirty(tvd);
4270 }
4271
4272 if (nspares != 0) {
4273 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4274 ZPOOL_CONFIG_SPARES);
4275 spa_load_spares(spa);
4276 spa->spa_spares.sav_sync = B_TRUE;
4277 }
4278
4279 if (nl2cache != 0) {
4280 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4281 ZPOOL_CONFIG_L2CACHE);
4282 spa_load_l2cache(spa);
4283 spa->spa_l2cache.sav_sync = B_TRUE;
4284 }
4285
4286 /*
4287 * We have to be careful when adding new vdevs to an existing pool.
4288 * If other threads start allocating from these vdevs before we
4289 * sync the config cache, and we lose power, then upon reboot we may
4290 * fail to open the pool because there are DVAs that the config cache
4291 * can't translate. Therefore, we first add the vdevs without
4292 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4293 * and then let spa_config_update() initialize the new metaslabs.
4294 *
4295 * spa_load() checks for added-but-not-initialized vdevs, so that
4296 * if we lose power at any point in this sequence, the remaining
4297 * steps will be completed the next time we load the pool.
4298 */
4299 (void) spa_vdev_exit(spa, vd, txg, 0);
4300
4301 mutex_enter(&spa_namespace_lock);
4302 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4303 mutex_exit(&spa_namespace_lock);
4304
4305 return (0);
4306 }
4307
4308 /*
4309 * Attach a device to a mirror. The arguments are the path to any device
4310 * in the mirror, and the nvroot for the new device. If the path specifies
4311 * a device that is not mirrored, we automatically insert the mirror vdev.
4312 *
4313 * If 'replacing' is specified, the new device is intended to replace the
4314 * existing device; in this case the two devices are made into their own
4315 * mirror using the 'replacing' vdev, which is functionally identical to
4316 * the mirror vdev (it actually reuses all the same ops) but has a few
4317 * extra rules: you can't attach to it after it's been created, and upon
4318 * completion of resilvering, the first disk (the one being replaced)
4319 * is automatically detached.
4320 */
4321 int
4322 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4323 {
4324 uint64_t txg, dtl_max_txg;
4325 vdev_t *rvd = spa->spa_root_vdev;
4326 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4327 vdev_ops_t *pvops;
4328 char *oldvdpath, *newvdpath;
4329 int newvd_isspare;
4330 int error;
4331
4332 ASSERT(spa_writeable(spa));
4333
4334 txg = spa_vdev_enter(spa);
4335
4336 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4337
4338 if (oldvd == NULL)
4339 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4340
4341 if (!oldvd->vdev_ops->vdev_op_leaf)
4342 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4343
4344 pvd = oldvd->vdev_parent;
4345
4346 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4347 VDEV_ALLOC_ATTACH)) != 0)
4348 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4349
4350 if (newrootvd->vdev_children != 1)
4351 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4352
4353 newvd = newrootvd->vdev_child[0];
4354
4355 if (!newvd->vdev_ops->vdev_op_leaf)
4356 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4357
4358 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4359 return (spa_vdev_exit(spa, newrootvd, txg, error));
4360
4361 /*
4362 * Spares can't replace logs
4363 */
4364 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4365 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4366
4367 if (!replacing) {
4368 /*
4369 * For attach, the only allowable parent is a mirror or the root
4370 * vdev.
4371 */
4372 if (pvd->vdev_ops != &vdev_mirror_ops &&
4373 pvd->vdev_ops != &vdev_root_ops)
4374 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4375
4376 pvops = &vdev_mirror_ops;
4377 } else {
4378 /*
4379 * Active hot spares can only be replaced by inactive hot
4380 * spares.
4381 */
4382 if (pvd->vdev_ops == &vdev_spare_ops &&
4383 oldvd->vdev_isspare &&
4384 !spa_has_spare(spa, newvd->vdev_guid))
4385 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4386
4387 /*
4388 * If the source is a hot spare, and the parent isn't already a
4389 * spare, then we want to create a new hot spare. Otherwise, we
4390 * want to create a replacing vdev. The user is not allowed to
4391 * attach to a spared vdev child unless the 'isspare' state is
4392 * the same (spare replaces spare, non-spare replaces
4393 * non-spare).
4394 */
4395 if (pvd->vdev_ops == &vdev_replacing_ops &&
4396 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4397 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4398 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4399 newvd->vdev_isspare != oldvd->vdev_isspare) {
4400 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4401 }
4402
4403 if (newvd->vdev_isspare)
4404 pvops = &vdev_spare_ops;
4405 else
4406 pvops = &vdev_replacing_ops;
4407 }
4408
4409 /*
4410 * Make sure the new device is big enough.
4411 */
4412 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4413 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4414
4415 /*
4416 * The new device cannot have a higher alignment requirement
4417 * than the top-level vdev.
4418 */
4419 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4420 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4421
4422 /*
4423 * If this is an in-place replacement, update oldvd's path and devid
4424 * to make it distinguishable from newvd, and unopenable from now on.
4425 */
4426 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4427 spa_strfree(oldvd->vdev_path);
4428 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4429 KM_SLEEP);
4430 (void) sprintf(oldvd->vdev_path, "%s/%s",
4431 newvd->vdev_path, "old");
4432 if (oldvd->vdev_devid != NULL) {
4433 spa_strfree(oldvd->vdev_devid);
4434 oldvd->vdev_devid = NULL;
4435 }
4436 }
4437
4438 /* mark the device being resilvered */
4439 newvd->vdev_resilvering = B_TRUE;
4440
4441 /*
4442 * If the parent is not a mirror, or if we're replacing, insert the new
4443 * mirror/replacing/spare vdev above oldvd.
4444 */
4445 if (pvd->vdev_ops != pvops)
4446 pvd = vdev_add_parent(oldvd, pvops);
4447
4448 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4449 ASSERT(pvd->vdev_ops == pvops);
4450 ASSERT(oldvd->vdev_parent == pvd);
4451
4452 /*
4453 * Extract the new device from its root and add it to pvd.
4454 */
4455 vdev_remove_child(newrootvd, newvd);
4456 newvd->vdev_id = pvd->vdev_children;
4457 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4458 vdev_add_child(pvd, newvd);
4459
4460 tvd = newvd->vdev_top;
4461 ASSERT(pvd->vdev_top == tvd);
4462 ASSERT(tvd->vdev_parent == rvd);
4463
4464 vdev_config_dirty(tvd);
4465
4466 /*
4467 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4468 * for any dmu_sync-ed blocks. It will propagate upward when
4469 * spa_vdev_exit() calls vdev_dtl_reassess().
4470 */
4471 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4472
4473 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4474 dtl_max_txg - TXG_INITIAL);
4475
4476 if (newvd->vdev_isspare) {
4477 spa_spare_activate(newvd);
4478 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4479 }
4480
4481 oldvdpath = spa_strdup(oldvd->vdev_path);
4482 newvdpath = spa_strdup(newvd->vdev_path);
4483 newvd_isspare = newvd->vdev_isspare;
4484
4485 /*
4486 * Mark newvd's DTL dirty in this txg.
4487 */
4488 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4489
4490 /*
4491 * Restart the resilver
4492 */
4493 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4494
4495 /*
4496 * Commit the config
4497 */
4498 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4499
4500 spa_history_log_internal(spa, "vdev attach", NULL,
4501 "%s vdev=%s %s vdev=%s",
4502 replacing && newvd_isspare ? "spare in" :
4503 replacing ? "replace" : "attach", newvdpath,
4504 replacing ? "for" : "to", oldvdpath);
4505
4506 spa_strfree(oldvdpath);
4507 spa_strfree(newvdpath);
4508
4509 if (spa->spa_bootfs)
4510 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4511
4512 return (0);
4513 }
4514
4515 /*
4516 * Detach a device from a mirror or replacing vdev.
4517 * If 'replace_done' is specified, only detach if the parent
4518 * is a replacing vdev.
4519 */
4520 int
4521 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4522 {
4523 uint64_t txg;
4524 int error;
4525 vdev_t *rvd = spa->spa_root_vdev;
4526 vdev_t *vd, *pvd, *cvd, *tvd;
4527 boolean_t unspare = B_FALSE;
4528 uint64_t unspare_guid = 0;
4529 char *vdpath;
4530
4531 ASSERT(spa_writeable(spa));
4532
4533 txg = spa_vdev_enter(spa);
4534
4535 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4536
4537 if (vd == NULL)
4538 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4539
4540 if (!vd->vdev_ops->vdev_op_leaf)
4541 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4542
4543 pvd = vd->vdev_parent;
4544
4545 /*
4546 * If the parent/child relationship is not as expected, don't do it.
4547 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4548 * vdev that's replacing B with C. The user's intent in replacing
4549 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4550 * the replace by detaching C, the expected behavior is to end up
4551 * M(A,B). But suppose that right after deciding to detach C,
4552 * the replacement of B completes. We would have M(A,C), and then
4553 * ask to detach C, which would leave us with just A -- not what
4554 * the user wanted. To prevent this, we make sure that the
4555 * parent/child relationship hasn't changed -- in this example,
4556 * that C's parent is still the replacing vdev R.
4557 */
4558 if (pvd->vdev_guid != pguid && pguid != 0)
4559 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4560
4561 /*
4562 * Only 'replacing' or 'spare' vdevs can be replaced.
4563 */
4564 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4565 pvd->vdev_ops != &vdev_spare_ops)
4566 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4567
4568 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4569 spa_version(spa) >= SPA_VERSION_SPARES);
4570
4571 /*
4572 * Only mirror, replacing, and spare vdevs support detach.
4573 */
4574 if (pvd->vdev_ops != &vdev_replacing_ops &&
4575 pvd->vdev_ops != &vdev_mirror_ops &&
4576 pvd->vdev_ops != &vdev_spare_ops)
4577 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4578
4579 /*
4580 * If this device has the only valid copy of some data,
4581 * we cannot safely detach it.
4582 */
4583 if (vdev_dtl_required(vd))
4584 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4585
4586 ASSERT(pvd->vdev_children >= 2);
4587
4588 /*
4589 * If we are detaching the second disk from a replacing vdev, then
4590 * check to see if we changed the original vdev's path to have "/old"
4591 * at the end in spa_vdev_attach(). If so, undo that change now.
4592 */
4593 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4594 vd->vdev_path != NULL) {
4595 size_t len = strlen(vd->vdev_path);
4596
4597 for (int c = 0; c < pvd->vdev_children; c++) {
4598 cvd = pvd->vdev_child[c];
4599
4600 if (cvd == vd || cvd->vdev_path == NULL)
4601 continue;
4602
4603 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4604 strcmp(cvd->vdev_path + len, "/old") == 0) {
4605 spa_strfree(cvd->vdev_path);
4606 cvd->vdev_path = spa_strdup(vd->vdev_path);
4607 break;
4608 }
4609 }
4610 }
4611
4612 /*
4613 * If we are detaching the original disk from a spare, then it implies
4614 * that the spare should become a real disk, and be removed from the
4615 * active spare list for the pool.
4616 */
4617 if (pvd->vdev_ops == &vdev_spare_ops &&
4618 vd->vdev_id == 0 &&
4619 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4620 unspare = B_TRUE;
4621
4622 /*
4623 * Erase the disk labels so the disk can be used for other things.
4624 * This must be done after all other error cases are handled,
4625 * but before we disembowel vd (so we can still do I/O to it).
4626 * But if we can't do it, don't treat the error as fatal --
4627 * it may be that the unwritability of the disk is the reason
4628 * it's being detached!
4629 */
4630 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4631
4632 /*
4633 * Remove vd from its parent and compact the parent's children.
4634 */
4635 vdev_remove_child(pvd, vd);
4636 vdev_compact_children(pvd);
4637
4638 /*
4639 * Remember one of the remaining children so we can get tvd below.
4640 */
4641 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4642
4643 /*
4644 * If we need to remove the remaining child from the list of hot spares,
4645 * do it now, marking the vdev as no longer a spare in the process.
4646 * We must do this before vdev_remove_parent(), because that can
4647 * change the GUID if it creates a new toplevel GUID. For a similar
4648 * reason, we must remove the spare now, in the same txg as the detach;
4649 * otherwise someone could attach a new sibling, change the GUID, and
4650 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4651 */
4652 if (unspare) {
4653 ASSERT(cvd->vdev_isspare);
4654 spa_spare_remove(cvd);
4655 unspare_guid = cvd->vdev_guid;
4656 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4657 cvd->vdev_unspare = B_TRUE;
4658 }
4659
4660 /*
4661 * If the parent mirror/replacing vdev only has one child,
4662 * the parent is no longer needed. Remove it from the tree.
4663 */
4664 if (pvd->vdev_children == 1) {
4665 if (pvd->vdev_ops == &vdev_spare_ops)
4666 cvd->vdev_unspare = B_FALSE;
4667 vdev_remove_parent(cvd);
4668 cvd->vdev_resilvering = B_FALSE;
4669 }
4670
4671
4672 /*
4673 * We don't set tvd until now because the parent we just removed
4674 * may have been the previous top-level vdev.
4675 */
4676 tvd = cvd->vdev_top;
4677 ASSERT(tvd->vdev_parent == rvd);
4678
4679 /*
4680 * Reevaluate the parent vdev state.
4681 */
4682 vdev_propagate_state(cvd);
4683
4684 /*
4685 * If the 'autoexpand' property is set on the pool then automatically
4686 * try to expand the size of the pool. For example if the device we
4687 * just detached was smaller than the others, it may be possible to
4688 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4689 * first so that we can obtain the updated sizes of the leaf vdevs.
4690 */
4691 if (spa->spa_autoexpand) {
4692 vdev_reopen(tvd);
4693 vdev_expand(tvd, txg);
4694 }
4695
4696 vdev_config_dirty(tvd);
4697
4698 /*
4699 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4700 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4701 * But first make sure we're not on any *other* txg's DTL list, to
4702 * prevent vd from being accessed after it's freed.
4703 */
4704 vdpath = spa_strdup(vd->vdev_path);
4705 for (int t = 0; t < TXG_SIZE; t++)
4706 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4707 vd->vdev_detached = B_TRUE;
4708 vdev_dirty(tvd, VDD_DTL, vd, txg);
4709
4710 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4711
4712 /* hang on to the spa before we release the lock */
4713 spa_open_ref(spa, FTAG);
4714
4715 error = spa_vdev_exit(spa, vd, txg, 0);
4716
4717 spa_history_log_internal(spa, "detach", NULL,
4718 "vdev=%s", vdpath);
4719 spa_strfree(vdpath);
4720
4721 /*
4722 * If this was the removal of the original device in a hot spare vdev,
4723 * then we want to go through and remove the device from the hot spare
4724 * list of every other pool.
4725 */
4726 if (unspare) {
4727 spa_t *altspa = NULL;
4728
4729 mutex_enter(&spa_namespace_lock);
4730 while ((altspa = spa_next(altspa)) != NULL) {
4731 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4732 altspa == spa)
4733 continue;
4734
4735 spa_open_ref(altspa, FTAG);
4736 mutex_exit(&spa_namespace_lock);
4737 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4738 mutex_enter(&spa_namespace_lock);
4739 spa_close(altspa, FTAG);
4740 }
4741 mutex_exit(&spa_namespace_lock);
4742
4743 /* search the rest of the vdevs for spares to remove */
4744 spa_vdev_resilver_done(spa);
4745 }
4746
4747 /* all done with the spa; OK to release */
4748 mutex_enter(&spa_namespace_lock);
4749 spa_close(spa, FTAG);
4750 mutex_exit(&spa_namespace_lock);
4751
4752 return (error);
4753 }
4754
4755 /*
4756 * Split a set of devices from their mirrors, and create a new pool from them.
4757 */
4758 int
4759 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4760 nvlist_t *props, boolean_t exp)
4761 {
4762 int error = 0;
4763 uint64_t txg, *glist;
4764 spa_t *newspa;
4765 uint_t c, children, lastlog;
4766 nvlist_t **child, *nvl, *tmp;
4767 dmu_tx_t *tx;
4768 char *altroot = NULL;
4769 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4770 boolean_t activate_slog;
4771
4772 ASSERT(spa_writeable(spa));
4773
4774 txg = spa_vdev_enter(spa);
4775
4776 /* clear the log and flush everything up to now */
4777 activate_slog = spa_passivate_log(spa);
4778 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4779 error = spa_offline_log(spa);
4780 txg = spa_vdev_config_enter(spa);
4781
4782 if (activate_slog)
4783 spa_activate_log(spa);
4784
4785 if (error != 0)
4786 return (spa_vdev_exit(spa, NULL, txg, error));
4787
4788 /* check new spa name before going any further */
4789 if (spa_lookup(newname) != NULL)
4790 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4791
4792 /*
4793 * scan through all the children to ensure they're all mirrors
4794 */
4795 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4796 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4797 &children) != 0)
4798 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4799
4800 /* first, check to ensure we've got the right child count */
4801 rvd = spa->spa_root_vdev;
4802 lastlog = 0;
4803 for (c = 0; c < rvd->vdev_children; c++) {
4804 vdev_t *vd = rvd->vdev_child[c];
4805
4806 /* don't count the holes & logs as children */
4807 if (vd->vdev_islog || vd->vdev_ishole) {
4808 if (lastlog == 0)
4809 lastlog = c;
4810 continue;
4811 }
4812
4813 lastlog = 0;
4814 }
4815 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4816 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4817
4818 /* next, ensure no spare or cache devices are part of the split */
4819 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4820 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4821 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4822
4823 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4824 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4825
4826 /* then, loop over each vdev and validate it */
4827 for (c = 0; c < children; c++) {
4828 uint64_t is_hole = 0;
4829
4830 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4831 &is_hole);
4832
4833 if (is_hole != 0) {
4834 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4835 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4836 continue;
4837 } else {
4838 error = SET_ERROR(EINVAL);
4839 break;
4840 }
4841 }
4842
4843 /* which disk is going to be split? */
4844 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4845 &glist[c]) != 0) {
4846 error = SET_ERROR(EINVAL);
4847 break;
4848 }
4849
4850 /* look it up in the spa */
4851 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4852 if (vml[c] == NULL) {
4853 error = SET_ERROR(ENODEV);
4854 break;
4855 }
4856
4857 /* make sure there's nothing stopping the split */
4858 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4859 vml[c]->vdev_islog ||
4860 vml[c]->vdev_ishole ||
4861 vml[c]->vdev_isspare ||
4862 vml[c]->vdev_isl2cache ||
4863 !vdev_writeable(vml[c]) ||
4864 vml[c]->vdev_children != 0 ||
4865 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4866 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4867 error = SET_ERROR(EINVAL);
4868 break;
4869 }
4870
4871 if (vdev_dtl_required(vml[c])) {
4872 error = SET_ERROR(EBUSY);
4873 break;
4874 }
4875
4876 /* we need certain info from the top level */
4877 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4878 vml[c]->vdev_top->vdev_ms_array) == 0);
4879 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4880 vml[c]->vdev_top->vdev_ms_shift) == 0);
4881 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4882 vml[c]->vdev_top->vdev_asize) == 0);
4883 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4884 vml[c]->vdev_top->vdev_ashift) == 0);
4885 }
4886
4887 if (error != 0) {
4888 kmem_free(vml, children * sizeof (vdev_t *));
4889 kmem_free(glist, children * sizeof (uint64_t));
4890 return (spa_vdev_exit(spa, NULL, txg, error));
4891 }
4892
4893 /* stop writers from using the disks */
4894 for (c = 0; c < children; c++) {
4895 if (vml[c] != NULL)
4896 vml[c]->vdev_offline = B_TRUE;
4897 }
4898 vdev_reopen(spa->spa_root_vdev);
4899
4900 /*
4901 * Temporarily record the splitting vdevs in the spa config. This
4902 * will disappear once the config is regenerated.
4903 */
4904 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4905 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4906 glist, children) == 0);
4907 kmem_free(glist, children * sizeof (uint64_t));
4908
4909 mutex_enter(&spa->spa_props_lock);
4910 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4911 nvl) == 0);
4912 mutex_exit(&spa->spa_props_lock);
4913 spa->spa_config_splitting = nvl;
4914 vdev_config_dirty(spa->spa_root_vdev);
4915
4916 /* configure and create the new pool */
4917 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4918 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4919 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4920 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4921 spa_version(spa)) == 0);
4922 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4923 spa->spa_config_txg) == 0);
4924 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4925 spa_generate_guid(NULL)) == 0);
4926 (void) nvlist_lookup_string(props,
4927 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4928
4929 /* add the new pool to the namespace */
4930 newspa = spa_add(newname, config, altroot);
4931 newspa->spa_config_txg = spa->spa_config_txg;
4932 spa_set_log_state(newspa, SPA_LOG_CLEAR);
4933
4934 /* release the spa config lock, retaining the namespace lock */
4935 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4936
4937 if (zio_injection_enabled)
4938 zio_handle_panic_injection(spa, FTAG, 1);
4939
4940 spa_activate(newspa, spa_mode_global);
4941 spa_async_suspend(newspa);
4942
4943 /* create the new pool from the disks of the original pool */
4944 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4945 if (error)
4946 goto out;
4947
4948 /* if that worked, generate a real config for the new pool */
4949 if (newspa->spa_root_vdev != NULL) {
4950 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4951 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4952 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4953 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4954 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4955 B_TRUE));
4956 }
4957
4958 /* set the props */
4959 if (props != NULL) {
4960 spa_configfile_set(newspa, props, B_FALSE);
4961 error = spa_prop_set(newspa, props);
4962 if (error)
4963 goto out;
4964 }
4965
4966 /* flush everything */
4967 txg = spa_vdev_config_enter(newspa);
4968 vdev_config_dirty(newspa->spa_root_vdev);
4969 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4970
4971 if (zio_injection_enabled)
4972 zio_handle_panic_injection(spa, FTAG, 2);
4973
4974 spa_async_resume(newspa);
4975
4976 /* finally, update the original pool's config */
4977 txg = spa_vdev_config_enter(spa);
4978 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4979 error = dmu_tx_assign(tx, TXG_WAIT);
4980 if (error != 0)
4981 dmu_tx_abort(tx);
4982 for (c = 0; c < children; c++) {
4983 if (vml[c] != NULL) {
4984 vdev_split(vml[c]);
4985 if (error == 0)
4986 spa_history_log_internal(spa, "detach", tx,
4987 "vdev=%s", vml[c]->vdev_path);
4988 vdev_free(vml[c]);
4989 }
4990 }
4991 vdev_config_dirty(spa->spa_root_vdev);
4992 spa->spa_config_splitting = NULL;
4993 nvlist_free(nvl);
4994 if (error == 0)
4995 dmu_tx_commit(tx);
4996 (void) spa_vdev_exit(spa, NULL, txg, 0);
4997
4998 if (zio_injection_enabled)
4999 zio_handle_panic_injection(spa, FTAG, 3);
5000
5001 /* split is complete; log a history record */
5002 spa_history_log_internal(newspa, "split", NULL,
5003 "from pool %s", spa_name(spa));
5004
5005 kmem_free(vml, children * sizeof (vdev_t *));
5006
5007 /* if we're not going to mount the filesystems in userland, export */
5008 if (exp)
5009 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5010 B_FALSE, B_FALSE);
5011
5012 return (error);
5013
5014 out:
5015 spa_unload(newspa);
5016 spa_deactivate(newspa);
5017 spa_remove(newspa);
5018
5019 txg = spa_vdev_config_enter(spa);
5020
5021 /* re-online all offlined disks */
5022 for (c = 0; c < children; c++) {
5023 if (vml[c] != NULL)
5024 vml[c]->vdev_offline = B_FALSE;
5025 }
5026 vdev_reopen(spa->spa_root_vdev);
5027
5028 nvlist_free(spa->spa_config_splitting);
5029 spa->spa_config_splitting = NULL;
5030 (void) spa_vdev_exit(spa, NULL, txg, error);
5031
5032 kmem_free(vml, children * sizeof (vdev_t *));
5033 return (error);
5034 }
5035
5036 static nvlist_t *
5037 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5038 {
5039 for (int i = 0; i < count; i++) {
5040 uint64_t guid;
5041
5042 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5043 &guid) == 0);
5044
5045 if (guid == target_guid)
5046 return (nvpp[i]);
5047 }
5048
5049 return (NULL);
5050 }
5051
5052 static void
5053 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5054 nvlist_t *dev_to_remove)
5055 {
5056 nvlist_t **newdev = NULL;
5057
5058 if (count > 1)
5059 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5060
5061 for (int i = 0, j = 0; i < count; i++) {
5062 if (dev[i] == dev_to_remove)
5063 continue;
5064 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5065 }
5066
5067 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5068 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5069
5070 for (int i = 0; i < count - 1; i++)
5071 nvlist_free(newdev[i]);
5072
5073 if (count > 1)
5074 kmem_free(newdev, (count - 1) * sizeof (void *));
5075 }
5076
5077 /*
5078 * Evacuate the device.
5079 */
5080 static int
5081 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5082 {
5083 uint64_t txg;
5084 int error = 0;
5085
5086 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5087 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5088 ASSERT(vd == vd->vdev_top);
5089
5090 /*
5091 * Evacuate the device. We don't hold the config lock as writer
5092 * since we need to do I/O but we do keep the
5093 * spa_namespace_lock held. Once this completes the device
5094 * should no longer have any blocks allocated on it.
5095 */
5096 if (vd->vdev_islog) {
5097 if (vd->vdev_stat.vs_alloc != 0)
5098 error = spa_offline_log(spa);
5099 } else {
5100 error = SET_ERROR(ENOTSUP);
5101 }
5102
5103 if (error)
5104 return (error);
5105
5106 /*
5107 * The evacuation succeeded. Remove any remaining MOS metadata
5108 * associated with this vdev, and wait for these changes to sync.
5109 */
5110 ASSERT0(vd->vdev_stat.vs_alloc);
5111 txg = spa_vdev_config_enter(spa);
5112 vd->vdev_removing = B_TRUE;
5113 vdev_dirty(vd, 0, NULL, txg);
5114 vdev_config_dirty(vd);
5115 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5116
5117 return (0);
5118 }
5119
5120 /*
5121 * Complete the removal by cleaning up the namespace.
5122 */
5123 static void
5124 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5125 {
5126 vdev_t *rvd = spa->spa_root_vdev;
5127 uint64_t id = vd->vdev_id;
5128 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5129
5130 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5131 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5132 ASSERT(vd == vd->vdev_top);
5133
5134 /*
5135 * Only remove any devices which are empty.
5136 */
5137 if (vd->vdev_stat.vs_alloc != 0)
5138 return;
5139
5140 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5141
5142 if (list_link_active(&vd->vdev_state_dirty_node))
5143 vdev_state_clean(vd);
5144 if (list_link_active(&vd->vdev_config_dirty_node))
5145 vdev_config_clean(vd);
5146
5147 vdev_free(vd);
5148
5149 if (last_vdev) {
5150 vdev_compact_children(rvd);
5151 } else {
5152 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5153 vdev_add_child(rvd, vd);
5154 }
5155 vdev_config_dirty(rvd);
5156
5157 /*
5158 * Reassess the health of our root vdev.
5159 */
5160 vdev_reopen(rvd);
5161 }
5162
5163 /*
5164 * Remove a device from the pool -
5165 *
5166 * Removing a device from the vdev namespace requires several steps
5167 * and can take a significant amount of time. As a result we use
5168 * the spa_vdev_config_[enter/exit] functions which allow us to
5169 * grab and release the spa_config_lock while still holding the namespace
5170 * lock. During each step the configuration is synced out.
5171 */
5172
5173 /*
5174 * Remove a device from the pool. Currently, this supports removing only hot
5175 * spares, slogs, and level 2 ARC devices.
5176 */
5177 int
5178 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5179 {
5180 vdev_t *vd;
5181 metaslab_group_t *mg;
5182 nvlist_t **spares, **l2cache, *nv;
5183 uint64_t txg = 0;
5184 uint_t nspares, nl2cache;
5185 int error = 0;
5186 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5187
5188 ASSERT(spa_writeable(spa));
5189
5190 if (!locked)
5191 txg = spa_vdev_enter(spa);
5192
5193 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5194
5195 if (spa->spa_spares.sav_vdevs != NULL &&
5196 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5197 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5198 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5199 /*
5200 * Only remove the hot spare if it's not currently in use
5201 * in this pool.
5202 */
5203 if (vd == NULL || unspare) {
5204 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5205 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5206 spa_load_spares(spa);
5207 spa->spa_spares.sav_sync = B_TRUE;
5208 } else {
5209 error = SET_ERROR(EBUSY);
5210 }
5211 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5212 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5213 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5214 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5215 /*
5216 * Cache devices can always be removed.
5217 */
5218 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5219 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5220 spa_load_l2cache(spa);
5221 spa->spa_l2cache.sav_sync = B_TRUE;
5222 } else if (vd != NULL && vd->vdev_islog) {
5223 ASSERT(!locked);
5224 ASSERT(vd == vd->vdev_top);
5225
5226 /*
5227 * XXX - Once we have bp-rewrite this should
5228 * become the common case.
5229 */
5230
5231 mg = vd->vdev_mg;
5232
5233 /*
5234 * Stop allocating from this vdev.
5235 */
5236 metaslab_group_passivate(mg);
5237
5238 /*
5239 * Wait for the youngest allocations and frees to sync,
5240 * and then wait for the deferral of those frees to finish.
5241 */
5242 spa_vdev_config_exit(spa, NULL,
5243 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5244
5245 /*
5246 * Attempt to evacuate the vdev.
5247 */
5248 error = spa_vdev_remove_evacuate(spa, vd);
5249
5250 txg = spa_vdev_config_enter(spa);
5251
5252 /*
5253 * If we couldn't evacuate the vdev, unwind.
5254 */
5255 if (error) {
5256 metaslab_group_activate(mg);
5257 return (spa_vdev_exit(spa, NULL, txg, error));
5258 }
5259
5260 /*
5261 * Clean up the vdev namespace.
5262 */
5263 spa_vdev_remove_from_namespace(spa, vd);
5264
5265 } else if (vd != NULL) {
5266 /*
5267 * Normal vdevs cannot be removed (yet).
5268 */
5269 error = SET_ERROR(ENOTSUP);
5270 } else {
5271 /*
5272 * There is no vdev of any kind with the specified guid.
5273 */
5274 error = SET_ERROR(ENOENT);
5275 }
5276
5277 if (!locked)
5278 return (spa_vdev_exit(spa, NULL, txg, error));
5279
5280 return (error);
5281 }
5282
5283 /*
5284 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5285 * current spared, so we can detach it.
5286 */
5287 static vdev_t *
5288 spa_vdev_resilver_done_hunt(vdev_t *vd)
5289 {
5290 vdev_t *newvd, *oldvd;
5291
5292 for (int c = 0; c < vd->vdev_children; c++) {
5293 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5294 if (oldvd != NULL)
5295 return (oldvd);
5296 }
5297
5298 /*
5299 * Check for a completed replacement. We always consider the first
5300 * vdev in the list to be the oldest vdev, and the last one to be
5301 * the newest (see spa_vdev_attach() for how that works). In
5302 * the case where the newest vdev is faulted, we will not automatically
5303 * remove it after a resilver completes. This is OK as it will require
5304 * user intervention to determine which disk the admin wishes to keep.
5305 */
5306 if (vd->vdev_ops == &vdev_replacing_ops) {
5307 ASSERT(vd->vdev_children > 1);
5308
5309 newvd = vd->vdev_child[vd->vdev_children - 1];
5310 oldvd = vd->vdev_child[0];
5311
5312 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5313 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5314 !vdev_dtl_required(oldvd))
5315 return (oldvd);
5316 }
5317
5318 /*
5319 * Check for a completed resilver with the 'unspare' flag set.
5320 */
5321 if (vd->vdev_ops == &vdev_spare_ops) {
5322 vdev_t *first = vd->vdev_child[0];
5323 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5324
5325 if (last->vdev_unspare) {
5326 oldvd = first;
5327 newvd = last;
5328 } else if (first->vdev_unspare) {
5329 oldvd = last;
5330 newvd = first;
5331 } else {
5332 oldvd = NULL;
5333 }
5334
5335 if (oldvd != NULL &&
5336 vdev_dtl_empty(newvd, DTL_MISSING) &&
5337 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5338 !vdev_dtl_required(oldvd))
5339 return (oldvd);
5340
5341 /*
5342 * If there are more than two spares attached to a disk,
5343 * and those spares are not required, then we want to
5344 * attempt to free them up now so that they can be used
5345 * by other pools. Once we're back down to a single
5346 * disk+spare, we stop removing them.
5347 */
5348 if (vd->vdev_children > 2) {
5349 newvd = vd->vdev_child[1];
5350
5351 if (newvd->vdev_isspare && last->vdev_isspare &&
5352 vdev_dtl_empty(last, DTL_MISSING) &&
5353 vdev_dtl_empty(last, DTL_OUTAGE) &&
5354 !vdev_dtl_required(newvd))
5355 return (newvd);
5356 }
5357 }
5358
5359 return (NULL);
5360 }
5361
5362 static void
5363 spa_vdev_resilver_done(spa_t *spa)
5364 {
5365 vdev_t *vd, *pvd, *ppvd;
5366 uint64_t guid, sguid, pguid, ppguid;
5367
5368 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5369
5370 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5371 pvd = vd->vdev_parent;
5372 ppvd = pvd->vdev_parent;
5373 guid = vd->vdev_guid;
5374 pguid = pvd->vdev_guid;
5375 ppguid = ppvd->vdev_guid;
5376 sguid = 0;
5377 /*
5378 * If we have just finished replacing a hot spared device, then
5379 * we need to detach the parent's first child (the original hot
5380 * spare) as well.
5381 */
5382 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5383 ppvd->vdev_children == 2) {
5384 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5385 sguid = ppvd->vdev_child[1]->vdev_guid;
5386 }
5387 spa_config_exit(spa, SCL_ALL, FTAG);
5388 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5389 return;
5390 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5391 return;
5392 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5393 }
5394
5395 spa_config_exit(spa, SCL_ALL, FTAG);
5396 }
5397
5398 /*
5399 * Update the stored path or FRU for this vdev.
5400 */
5401 int
5402 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5403 boolean_t ispath)
5404 {
5405 vdev_t *vd;
5406 boolean_t sync = B_FALSE;
5407
5408 ASSERT(spa_writeable(spa));
5409
5410 spa_vdev_state_enter(spa, SCL_ALL);
5411
5412 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5413 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5414
5415 if (!vd->vdev_ops->vdev_op_leaf)
5416 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5417
5418 if (ispath) {
5419 if (strcmp(value, vd->vdev_path) != 0) {
5420 spa_strfree(vd->vdev_path);
5421 vd->vdev_path = spa_strdup(value);
5422 sync = B_TRUE;
5423 }
5424 } else {
5425 if (vd->vdev_fru == NULL) {
5426 vd->vdev_fru = spa_strdup(value);
5427 sync = B_TRUE;
5428 } else if (strcmp(value, vd->vdev_fru) != 0) {
5429 spa_strfree(vd->vdev_fru);
5430 vd->vdev_fru = spa_strdup(value);
5431 sync = B_TRUE;
5432 }
5433 }
5434
5435 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5436 }
5437
5438 int
5439 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5440 {
5441 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5442 }
5443
5444 int
5445 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5446 {
5447 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5448 }
5449
5450 /*
5451 * ==========================================================================
5452 * SPA Scanning
5453 * ==========================================================================
5454 */
5455
5456 int
5457 spa_scan_stop(spa_t *spa)
5458 {
5459 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5460 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5461 return (SET_ERROR(EBUSY));
5462 return (dsl_scan_cancel(spa->spa_dsl_pool));
5463 }
5464
5465 int
5466 spa_scan(spa_t *spa, pool_scan_func_t func)
5467 {
5468 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5469
5470 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5471 return (SET_ERROR(ENOTSUP));
5472
5473 /*
5474 * If a resilver was requested, but there is no DTL on a
5475 * writeable leaf device, we have nothing to do.
5476 */
5477 if (func == POOL_SCAN_RESILVER &&
5478 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5479 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5480 return (0);
5481 }
5482
5483 return (dsl_scan(spa->spa_dsl_pool, func));
5484 }
5485
5486 /*
5487 * ==========================================================================
5488 * SPA async task processing
5489 * ==========================================================================
5490 */
5491
5492 static void
5493 spa_async_remove(spa_t *spa, vdev_t *vd)
5494 {
5495 if (vd->vdev_remove_wanted) {
5496 vd->vdev_remove_wanted = B_FALSE;
5497 vd->vdev_delayed_close = B_FALSE;
5498 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5499
5500 /*
5501 * We want to clear the stats, but we don't want to do a full
5502 * vdev_clear() as that will cause us to throw away
5503 * degraded/faulted state as well as attempt to reopen the
5504 * device, all of which is a waste.
5505 */
5506 vd->vdev_stat.vs_read_errors = 0;
5507 vd->vdev_stat.vs_write_errors = 0;
5508 vd->vdev_stat.vs_checksum_errors = 0;
5509
5510 vdev_state_dirty(vd->vdev_top);
5511 }
5512
5513 for (int c = 0; c < vd->vdev_children; c++)
5514 spa_async_remove(spa, vd->vdev_child[c]);
5515 }
5516
5517 static void
5518 spa_async_probe(spa_t *spa, vdev_t *vd)
5519 {
5520 if (vd->vdev_probe_wanted) {
5521 vd->vdev_probe_wanted = B_FALSE;
5522 vdev_reopen(vd); /* vdev_open() does the actual probe */
5523 }
5524
5525 for (int c = 0; c < vd->vdev_children; c++)
5526 spa_async_probe(spa, vd->vdev_child[c]);
5527 }
5528
5529 static void
5530 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5531 {
5532 sysevent_id_t eid;
5533 nvlist_t *attr;
5534 char *physpath;
5535
5536 if (!spa->spa_autoexpand)
5537 return;
5538
5539 for (int c = 0; c < vd->vdev_children; c++) {
5540 vdev_t *cvd = vd->vdev_child[c];
5541 spa_async_autoexpand(spa, cvd);
5542 }
5543
5544 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5545 return;
5546
5547 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5548 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5549
5550 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5551 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5552
5553 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5554 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5555
5556 nvlist_free(attr);
5557 kmem_free(physpath, MAXPATHLEN);
5558 }
5559
5560 static void
5561 spa_async_thread(spa_t *spa)
5562 {
5563 int tasks;
5564
5565 ASSERT(spa->spa_sync_on);
5566
5567 mutex_enter(&spa->spa_async_lock);
5568 tasks = spa->spa_async_tasks;
5569 spa->spa_async_tasks = 0;
5570 mutex_exit(&spa->spa_async_lock);
5571
5572 /*
5573 * See if the config needs to be updated.
5574 */
5575 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5576 uint64_t old_space, new_space;
5577
5578 mutex_enter(&spa_namespace_lock);
5579 old_space = metaslab_class_get_space(spa_normal_class(spa));
5580 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5581 new_space = metaslab_class_get_space(spa_normal_class(spa));
5582 mutex_exit(&spa_namespace_lock);
5583
5584 /*
5585 * If the pool grew as a result of the config update,
5586 * then log an internal history event.
5587 */
5588 if (new_space != old_space) {
5589 spa_history_log_internal(spa, "vdev online", NULL,
5590 "pool '%s' size: %llu(+%llu)",
5591 spa_name(spa), new_space, new_space - old_space);
5592 }
5593 }
5594
5595 /*
5596 * See if any devices need to be marked REMOVED.
5597 */
5598 if (tasks & SPA_ASYNC_REMOVE) {
5599 spa_vdev_state_enter(spa, SCL_NONE);
5600 spa_async_remove(spa, spa->spa_root_vdev);
5601 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5602 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5603 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5604 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5605 (void) spa_vdev_state_exit(spa, NULL, 0);
5606 }
5607
5608 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5609 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5610 spa_async_autoexpand(spa, spa->spa_root_vdev);
5611 spa_config_exit(spa, SCL_CONFIG, FTAG);
5612 }
5613
5614 /*
5615 * See if any devices need to be probed.
5616 */
5617 if (tasks & SPA_ASYNC_PROBE) {
5618 spa_vdev_state_enter(spa, SCL_NONE);
5619 spa_async_probe(spa, spa->spa_root_vdev);
5620 (void) spa_vdev_state_exit(spa, NULL, 0);
5621 }
5622
5623 /*
5624 * If any devices are done replacing, detach them.
5625 */
5626 if (tasks & SPA_ASYNC_RESILVER_DONE)
5627 spa_vdev_resilver_done(spa);
5628
5629 /*
5630 * Kick off a resilver.
5631 */
5632 if (tasks & SPA_ASYNC_RESILVER)
5633 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5634
5635 /*
5636 * Let the world know that we're done.
5637 */
5638 mutex_enter(&spa->spa_async_lock);
5639 spa->spa_async_thread = NULL;
5640 cv_broadcast(&spa->spa_async_cv);
5641 mutex_exit(&spa->spa_async_lock);
5642 thread_exit();
5643 }
5644
5645 void
5646 spa_async_suspend(spa_t *spa)
5647 {
5648 mutex_enter(&spa->spa_async_lock);
5649 spa->spa_async_suspended++;
5650 while (spa->spa_async_thread != NULL)
5651 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5652 mutex_exit(&spa->spa_async_lock);
5653 }
5654
5655 void
5656 spa_async_resume(spa_t *spa)
5657 {
5658 mutex_enter(&spa->spa_async_lock);
5659 ASSERT(spa->spa_async_suspended != 0);
5660 spa->spa_async_suspended--;
5661 mutex_exit(&spa->spa_async_lock);
5662 }
5663
5664 static void
5665 spa_async_dispatch(spa_t *spa)
5666 {
5667 mutex_enter(&spa->spa_async_lock);
5668 if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5669 spa->spa_async_thread == NULL &&
5670 rootdir != NULL && !vn_is_readonly(rootdir))
5671 spa->spa_async_thread = thread_create(NULL, 0,
5672 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5673 mutex_exit(&spa->spa_async_lock);
5674 }
5675
5676 void
5677 spa_async_request(spa_t *spa, int task)
5678 {
5679 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5680 mutex_enter(&spa->spa_async_lock);
5681 spa->spa_async_tasks |= task;
5682 mutex_exit(&spa->spa_async_lock);
5683 }
5684
5685 /*
5686 * ==========================================================================
5687 * SPA syncing routines
5688 * ==========================================================================
5689 */
5690
5691 static int
5692 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5693 {
5694 bpobj_t *bpo = arg;
5695 bpobj_enqueue(bpo, bp, tx);
5696 return (0);
5697 }
5698
5699 static int
5700 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5701 {
5702 zio_t *zio = arg;
5703
5704 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5705 zio->io_flags));
5706 return (0);
5707 }
5708
5709 static void
5710 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5711 {
5712 char *packed = NULL;
5713 size_t bufsize;
5714 size_t nvsize = 0;
5715 dmu_buf_t *db;
5716
5717 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5718
5719 /*
5720 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5721 * information. This avoids the dbuf_will_dirty() path and
5722 * saves us a pre-read to get data we don't actually care about.
5723 */
5724 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5725 packed = kmem_alloc(bufsize, KM_SLEEP);
5726
5727 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5728 KM_SLEEP) == 0);
5729 bzero(packed + nvsize, bufsize - nvsize);
5730
5731 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5732
5733 kmem_free(packed, bufsize);
5734
5735 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5736 dmu_buf_will_dirty(db, tx);
5737 *(uint64_t *)db->db_data = nvsize;
5738 dmu_buf_rele(db, FTAG);
5739 }
5740
5741 static void
5742 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5743 const char *config, const char *entry)
5744 {
5745 nvlist_t *nvroot;
5746 nvlist_t **list;
5747 int i;
5748
5749 if (!sav->sav_sync)
5750 return;
5751
5752 /*
5753 * Update the MOS nvlist describing the list of available devices.
5754 * spa_validate_aux() will have already made sure this nvlist is
5755 * valid and the vdevs are labeled appropriately.
5756 */
5757 if (sav->sav_object == 0) {
5758 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5759 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5760 sizeof (uint64_t), tx);
5761 VERIFY(zap_update(spa->spa_meta_objset,
5762 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5763 &sav->sav_object, tx) == 0);
5764 }
5765
5766 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5767 if (sav->sav_count == 0) {
5768 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5769 } else {
5770 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5771 for (i = 0; i < sav->sav_count; i++)
5772 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5773 B_FALSE, VDEV_CONFIG_L2CACHE);
5774 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5775 sav->sav_count) == 0);
5776 for (i = 0; i < sav->sav_count; i++)
5777 nvlist_free(list[i]);
5778 kmem_free(list, sav->sav_count * sizeof (void *));
5779 }
5780
5781 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5782 nvlist_free(nvroot);
5783
5784 sav->sav_sync = B_FALSE;
5785 }
5786
5787 static void
5788 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5789 {
5790 nvlist_t *config;
5791
5792 if (list_is_empty(&spa->spa_config_dirty_list))
5793 return;
5794
5795 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5796
5797 config = spa_config_generate(spa, spa->spa_root_vdev,
5798 dmu_tx_get_txg(tx), B_FALSE);
5799
5800 /*
5801 * If we're upgrading the spa version then make sure that
5802 * the config object gets updated with the correct version.
5803 */
5804 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5805 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5806 spa->spa_uberblock.ub_version);
5807
5808 spa_config_exit(spa, SCL_STATE, FTAG);
5809
5810 if (spa->spa_config_syncing)
5811 nvlist_free(spa->spa_config_syncing);
5812 spa->spa_config_syncing = config;
5813
5814 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5815 }
5816
5817 static void
5818 spa_sync_version(void *arg, dmu_tx_t *tx)
5819 {
5820 uint64_t *versionp = arg;
5821 uint64_t version = *versionp;
5822 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5823
5824 /*
5825 * Setting the version is special cased when first creating the pool.
5826 */
5827 ASSERT(tx->tx_txg != TXG_INITIAL);
5828
5829 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5830 ASSERT(version >= spa_version(spa));
5831
5832 spa->spa_uberblock.ub_version = version;
5833 vdev_config_dirty(spa->spa_root_vdev);
5834 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5835 }
5836
5837 /*
5838 * Set zpool properties.
5839 */
5840 static void
5841 spa_sync_props(void *arg, dmu_tx_t *tx)
5842 {
5843 nvlist_t *nvp = arg;
5844 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5845 objset_t *mos = spa->spa_meta_objset;
5846 nvpair_t *elem = NULL;
5847
5848 mutex_enter(&spa->spa_props_lock);
5849
5850 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5851 uint64_t intval;
5852 char *strval, *fname;
5853 zpool_prop_t prop;
5854 const char *propname;
5855 zprop_type_t proptype;
5856 zfeature_info_t *feature;
5857
5858 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5859 case ZPROP_INVAL:
5860 /*
5861 * We checked this earlier in spa_prop_validate().
5862 */
5863 ASSERT(zpool_prop_feature(nvpair_name(elem)));
5864
5865 fname = strchr(nvpair_name(elem), '@') + 1;
5866 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
5867
5868 spa_feature_enable(spa, feature, tx);
5869 spa_history_log_internal(spa, "set", tx,
5870 "%s=enabled", nvpair_name(elem));
5871 break;
5872
5873 case ZPOOL_PROP_VERSION:
5874 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5875 /*
5876 * The version is synced seperatly before other
5877 * properties and should be correct by now.
5878 */
5879 ASSERT3U(spa_version(spa), >=, intval);
5880 break;
5881
5882 case ZPOOL_PROP_ALTROOT:
5883 /*
5884 * 'altroot' is a non-persistent property. It should
5885 * have been set temporarily at creation or import time.
5886 */
5887 ASSERT(spa->spa_root != NULL);
5888 break;
5889
5890 case ZPOOL_PROP_READONLY:
5891 case ZPOOL_PROP_CACHEFILE:
5892 /*
5893 * 'readonly' and 'cachefile' are also non-persisitent
5894 * properties.
5895 */
5896 break;
5897 case ZPOOL_PROP_COMMENT:
5898 VERIFY(nvpair_value_string(elem, &strval) == 0);
5899 if (spa->spa_comment != NULL)
5900 spa_strfree(spa->spa_comment);
5901 spa->spa_comment = spa_strdup(strval);
5902 /*
5903 * We need to dirty the configuration on all the vdevs
5904 * so that their labels get updated. It's unnecessary
5905 * to do this for pool creation since the vdev's
5906 * configuratoin has already been dirtied.
5907 */
5908 if (tx->tx_txg != TXG_INITIAL)
5909 vdev_config_dirty(spa->spa_root_vdev);
5910 spa_history_log_internal(spa, "set", tx,
5911 "%s=%s", nvpair_name(elem), strval);
5912 break;
5913 default:
5914 /*
5915 * Set pool property values in the poolprops mos object.
5916 */
5917 if (spa->spa_pool_props_object == 0) {
5918 spa->spa_pool_props_object =
5919 zap_create_link(mos, DMU_OT_POOL_PROPS,
5920 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5921 tx);
5922 }
5923
5924 /* normalize the property name */
5925 propname = zpool_prop_to_name(prop);
5926 proptype = zpool_prop_get_type(prop);
5927
5928 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5929 ASSERT(proptype == PROP_TYPE_STRING);
5930 VERIFY(nvpair_value_string(elem, &strval) == 0);
5931 VERIFY(zap_update(mos,
5932 spa->spa_pool_props_object, propname,
5933 1, strlen(strval) + 1, strval, tx) == 0);
5934 spa_history_log_internal(spa, "set", tx,
5935 "%s=%s", nvpair_name(elem), strval);
5936 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5937 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5938
5939 if (proptype == PROP_TYPE_INDEX) {
5940 const char *unused;
5941 VERIFY(zpool_prop_index_to_string(
5942 prop, intval, &unused) == 0);
5943 }
5944 VERIFY(zap_update(mos,
5945 spa->spa_pool_props_object, propname,
5946 8, 1, &intval, tx) == 0);
5947 spa_history_log_internal(spa, "set", tx,
5948 "%s=%lld", nvpair_name(elem), intval);
5949 } else {
5950 ASSERT(0); /* not allowed */
5951 }
5952
5953 switch (prop) {
5954 case ZPOOL_PROP_DELEGATION:
5955 spa->spa_delegation = intval;
5956 break;
5957 case ZPOOL_PROP_BOOTFS:
5958 spa->spa_bootfs = intval;
5959 break;
5960 case ZPOOL_PROP_FAILUREMODE:
5961 spa->spa_failmode = intval;
5962 break;
5963 case ZPOOL_PROP_AUTOEXPAND:
5964 spa->spa_autoexpand = intval;
5965 if (tx->tx_txg != TXG_INITIAL)
5966 spa_async_request(spa,
5967 SPA_ASYNC_AUTOEXPAND);
5968 break;
5969 case ZPOOL_PROP_DEDUPDITTO:
5970 spa->spa_dedup_ditto = intval;
5971 break;
5972 default:
5973 break;
5974 }
5975 }
5976
5977 }
5978
5979 mutex_exit(&spa->spa_props_lock);
5980 }
5981
5982 /*
5983 * Perform one-time upgrade on-disk changes. spa_version() does not
5984 * reflect the new version this txg, so there must be no changes this
5985 * txg to anything that the upgrade code depends on after it executes.
5986 * Therefore this must be called after dsl_pool_sync() does the sync
5987 * tasks.
5988 */
5989 static void
5990 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5991 {
5992 dsl_pool_t *dp = spa->spa_dsl_pool;
5993
5994 ASSERT(spa->spa_sync_pass == 1);
5995
5996 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
5997
5998 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5999 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6000 dsl_pool_create_origin(dp, tx);
6001
6002 /* Keeping the origin open increases spa_minref */
6003 spa->spa_minref += 3;
6004 }
6005
6006 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6007 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6008 dsl_pool_upgrade_clones(dp, tx);
6009 }
6010
6011 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6012 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6013 dsl_pool_upgrade_dir_clones(dp, tx);
6014
6015 /* Keeping the freedir open increases spa_minref */
6016 spa->spa_minref += 3;
6017 }
6018
6019 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6020 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6021 spa_feature_create_zap_objects(spa, tx);
6022 }
6023 rrw_exit(&dp->dp_config_rwlock, FTAG);
6024 }
6025
6026 /*
6027 * Sync the specified transaction group. New blocks may be dirtied as
6028 * part of the process, so we iterate until it converges.
6029 */
6030 void
6031 spa_sync(spa_t *spa, uint64_t txg)
6032 {
6033 dsl_pool_t *dp = spa->spa_dsl_pool;
6034 objset_t *mos = spa->spa_meta_objset;
6035 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
6036 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6037 vdev_t *rvd = spa->spa_root_vdev;
6038 vdev_t *vd;
6039 dmu_tx_t *tx;
6040 int error;
6041
6042 VERIFY(spa_writeable(spa));
6043
6044 /*
6045 * Lock out configuration changes.
6046 */
6047 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6048
6049 spa->spa_syncing_txg = txg;
6050 spa->spa_sync_pass = 0;
6051
6052 /*
6053 * If there are any pending vdev state changes, convert them
6054 * into config changes that go out with this transaction group.
6055 */
6056 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6057 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6058 /*
6059 * We need the write lock here because, for aux vdevs,
6060 * calling vdev_config_dirty() modifies sav_config.
6061 * This is ugly and will become unnecessary when we
6062 * eliminate the aux vdev wart by integrating all vdevs
6063 * into the root vdev tree.
6064 */
6065 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6066 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6067 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6068 vdev_state_clean(vd);
6069 vdev_config_dirty(vd);
6070 }
6071 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6072 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6073 }
6074 spa_config_exit(spa, SCL_STATE, FTAG);
6075
6076 tx = dmu_tx_create_assigned(dp, txg);
6077
6078 spa->spa_sync_starttime = gethrtime();
6079 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6080 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6081
6082 /*
6083 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6084 * set spa_deflate if we have no raid-z vdevs.
6085 */
6086 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6087 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6088 int i;
6089
6090 for (i = 0; i < rvd->vdev_children; i++) {
6091 vd = rvd->vdev_child[i];
6092 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6093 break;
6094 }
6095 if (i == rvd->vdev_children) {
6096 spa->spa_deflate = TRUE;
6097 VERIFY(0 == zap_add(spa->spa_meta_objset,
6098 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6099 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6100 }
6101 }
6102
6103 /*
6104 * If anything has changed in this txg, or if someone is waiting
6105 * for this txg to sync (eg, spa_vdev_remove()), push the
6106 * deferred frees from the previous txg. If not, leave them
6107 * alone so that we don't generate work on an otherwise idle
6108 * system.
6109 */
6110 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6111 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6112 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6113 ((dsl_scan_active(dp->dp_scan) ||
6114 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6115 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6116 VERIFY3U(bpobj_iterate(defer_bpo,
6117 spa_free_sync_cb, zio, tx), ==, 0);
6118 VERIFY0(zio_wait(zio));
6119 }
6120
6121 /*
6122 * Iterate to convergence.
6123 */
6124 do {
6125 int pass = ++spa->spa_sync_pass;
6126
6127 spa_sync_config_object(spa, tx);
6128 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6129 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6130 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6131 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6132 spa_errlog_sync(spa, txg);
6133 dsl_pool_sync(dp, txg);
6134
6135 if (pass < zfs_sync_pass_deferred_free) {
6136 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6137 bplist_iterate(free_bpl, spa_free_sync_cb,
6138 zio, tx);
6139 VERIFY(zio_wait(zio) == 0);
6140 } else {
6141 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6142 defer_bpo, tx);
6143 }
6144
6145 ddt_sync(spa, txg);
6146 dsl_scan_sync(dp, tx);
6147
6148 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6149 vdev_sync(vd, txg);
6150
6151 if (pass == 1)
6152 spa_sync_upgrades(spa, tx);
6153
6154 } while (dmu_objset_is_dirty(mos, txg));
6155
6156 /*
6157 * Rewrite the vdev configuration (which includes the uberblock)
6158 * to commit the transaction group.
6159 *
6160 * If there are no dirty vdevs, we sync the uberblock to a few
6161 * random top-level vdevs that are known to be visible in the
6162 * config cache (see spa_vdev_add() for a complete description).
6163 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6164 */
6165 for (;;) {
6166 /*
6167 * We hold SCL_STATE to prevent vdev open/close/etc.
6168 * while we're attempting to write the vdev labels.
6169 */
6170 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6171
6172 if (list_is_empty(&spa->spa_config_dirty_list)) {
6173 vdev_t *svd[SPA_DVAS_PER_BP];
6174 int svdcount = 0;
6175 int children = rvd->vdev_children;
6176 int c0 = spa_get_random(children);
6177
6178 for (int c = 0; c < children; c++) {
6179 vd = rvd->vdev_child[(c0 + c) % children];
6180 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6181 continue;
6182 svd[svdcount++] = vd;
6183 if (svdcount == SPA_DVAS_PER_BP)
6184 break;
6185 }
6186 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6187 if (error != 0)
6188 error = vdev_config_sync(svd, svdcount, txg,
6189 B_TRUE);
6190 } else {
6191 error = vdev_config_sync(rvd->vdev_child,
6192 rvd->vdev_children, txg, B_FALSE);
6193 if (error != 0)
6194 error = vdev_config_sync(rvd->vdev_child,
6195 rvd->vdev_children, txg, B_TRUE);
6196 }
6197
6198 if (error == 0)
6199 spa->spa_last_synced_guid = rvd->vdev_guid;
6200
6201 spa_config_exit(spa, SCL_STATE, FTAG);
6202
6203 if (error == 0)
6204 break;
6205 zio_suspend(spa, NULL);
6206 zio_resume_wait(spa);
6207 }
6208 dmu_tx_commit(tx);
6209
6210 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6211
6212 /*
6213 * Clear the dirty config list.
6214 */
6215 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6216 vdev_config_clean(vd);
6217
6218 /*
6219 * Now that the new config has synced transactionally,
6220 * let it become visible to the config cache.
6221 */
6222 if (spa->spa_config_syncing != NULL) {
6223 spa_config_set(spa, spa->spa_config_syncing);
6224 spa->spa_config_txg = txg;
6225 spa->spa_config_syncing = NULL;
6226 }
6227
6228 spa->spa_ubsync = spa->spa_uberblock;
6229
6230 dsl_pool_sync_done(dp, txg);
6231
6232 /*
6233 * Update usable space statistics.
6234 */
6235 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6236 vdev_sync_done(vd, txg);
6237
6238 spa_update_dspace(spa);
6239
6240 /*
6241 * It had better be the case that we didn't dirty anything
6242 * since vdev_config_sync().
6243 */
6244 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6245 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6246 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6247
6248 spa->spa_sync_pass = 0;
6249
6250 spa_config_exit(spa, SCL_CONFIG, FTAG);
6251
6252 spa_handle_ignored_writes(spa);
6253
6254 /*
6255 * If any async tasks have been requested, kick them off.
6256 */
6257 spa_async_dispatch(spa);
6258 }
6259
6260 /*
6261 * Sync all pools. We don't want to hold the namespace lock across these
6262 * operations, so we take a reference on the spa_t and drop the lock during the
6263 * sync.
6264 */
6265 void
6266 spa_sync_allpools(void)
6267 {
6268 spa_t *spa = NULL;
6269 mutex_enter(&spa_namespace_lock);
6270 while ((spa = spa_next(spa)) != NULL) {
6271 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6272 !spa_writeable(spa) || spa_suspended(spa))
6273 continue;
6274 spa_open_ref(spa, FTAG);
6275 mutex_exit(&spa_namespace_lock);
6276 txg_wait_synced(spa_get_dsl(spa), 0);
6277 mutex_enter(&spa_namespace_lock);
6278 spa_close(spa, FTAG);
6279 }
6280 mutex_exit(&spa_namespace_lock);
6281 }
6282
6283 /*
6284 * ==========================================================================
6285 * Miscellaneous routines
6286 * ==========================================================================
6287 */
6288
6289 /*
6290 * Remove all pools in the system.
6291 */
6292 void
6293 spa_evict_all(void)
6294 {
6295 spa_t *spa;
6296
6297 /*
6298 * Remove all cached state. All pools should be closed now,
6299 * so every spa in the AVL tree should be unreferenced.
6300 */
6301 mutex_enter(&spa_namespace_lock);
6302 while ((spa = spa_next(NULL)) != NULL) {
6303 /*
6304 * Stop async tasks. The async thread may need to detach
6305 * a device that's been replaced, which requires grabbing
6306 * spa_namespace_lock, so we must drop it here.
6307 */
6308 spa_open_ref(spa, FTAG);
6309 mutex_exit(&spa_namespace_lock);
6310 spa_async_suspend(spa);
6311 mutex_enter(&spa_namespace_lock);
6312 spa_close(spa, FTAG);
6313
6314 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6315 spa_unload(spa);
6316 spa_deactivate(spa);
6317 }
6318 spa_remove(spa);
6319 }
6320 mutex_exit(&spa_namespace_lock);
6321 }
6322
6323 vdev_t *
6324 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6325 {
6326 vdev_t *vd;
6327 int i;
6328
6329 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6330 return (vd);
6331
6332 if (aux) {
6333 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6334 vd = spa->spa_l2cache.sav_vdevs[i];
6335 if (vd->vdev_guid == guid)
6336 return (vd);
6337 }
6338
6339 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6340 vd = spa->spa_spares.sav_vdevs[i];
6341 if (vd->vdev_guid == guid)
6342 return (vd);
6343 }
6344 }
6345
6346 return (NULL);
6347 }
6348
6349 void
6350 spa_upgrade(spa_t *spa, uint64_t version)
6351 {
6352 ASSERT(spa_writeable(spa));
6353
6354 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6355
6356 /*
6357 * This should only be called for a non-faulted pool, and since a
6358 * future version would result in an unopenable pool, this shouldn't be
6359 * possible.
6360 */
6361 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6362 ASSERT(version >= spa->spa_uberblock.ub_version);
6363
6364 spa->spa_uberblock.ub_version = version;
6365 vdev_config_dirty(spa->spa_root_vdev);
6366
6367 spa_config_exit(spa, SCL_ALL, FTAG);
6368
6369 txg_wait_synced(spa_get_dsl(spa), 0);
6370 }
6371
6372 boolean_t
6373 spa_has_spare(spa_t *spa, uint64_t guid)
6374 {
6375 int i;
6376 uint64_t spareguid;
6377 spa_aux_vdev_t *sav = &spa->spa_spares;
6378
6379 for (i = 0; i < sav->sav_count; i++)
6380 if (sav->sav_vdevs[i]->vdev_guid == guid)
6381 return (B_TRUE);
6382
6383 for (i = 0; i < sav->sav_npending; i++) {
6384 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6385 &spareguid) == 0 && spareguid == guid)
6386 return (B_TRUE);
6387 }
6388
6389 return (B_FALSE);
6390 }
6391
6392 /*
6393 * Check if a pool has an active shared spare device.
6394 * Note: reference count of an active spare is 2, as a spare and as a replace
6395 */
6396 static boolean_t
6397 spa_has_active_shared_spare(spa_t *spa)
6398 {
6399 int i, refcnt;
6400 uint64_t pool;
6401 spa_aux_vdev_t *sav = &spa->spa_spares;
6402
6403 for (i = 0; i < sav->sav_count; i++) {
6404 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6405 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6406 refcnt > 2)
6407 return (B_TRUE);
6408 }
6409
6410 return (B_FALSE);
6411 }
6412
6413 /*
6414 * Post a sysevent corresponding to the given event. The 'name' must be one of
6415 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6416 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6417 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6418 * or zdb as real changes.
6419 */
6420 void
6421 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6422 {
6423 #ifdef _KERNEL
6424 sysevent_t *ev;
6425 sysevent_attr_list_t *attr = NULL;
6426 sysevent_value_t value;
6427 sysevent_id_t eid;
6428
6429 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6430 SE_SLEEP);
6431
6432 value.value_type = SE_DATA_TYPE_STRING;
6433 value.value.sv_string = spa_name(spa);
6434 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6435 goto done;
6436
6437 value.value_type = SE_DATA_TYPE_UINT64;
6438 value.value.sv_uint64 = spa_guid(spa);
6439 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6440 goto done;
6441
6442 if (vd) {
6443 value.value_type = SE_DATA_TYPE_UINT64;
6444 value.value.sv_uint64 = vd->vdev_guid;
6445 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6446 SE_SLEEP) != 0)
6447 goto done;
6448
6449 if (vd->vdev_path) {
6450 value.value_type = SE_DATA_TYPE_STRING;
6451 value.value.sv_string = vd->vdev_path;
6452 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6453 &value, SE_SLEEP) != 0)
6454 goto done;
6455 }
6456 }
6457
6458 if (sysevent_attach_attributes(ev, attr) != 0)
6459 goto done;
6460 attr = NULL;
6461
6462 (void) log_sysevent(ev, SE_SLEEP, &eid);
6463
6464 done:
6465 if (attr)
6466 sysevent_free_attr(attr);
6467 sysevent_free(ev);
6468 #endif
6469 }