new usr/src/lib/libzfs/comon/libzfs_dataset.c

R R R R

111007 Thu May 16 17:33:46 2013
new usr/src/lib/libzfs/common/libzfs_dataset.c
3741 zfs needs better comments
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Justin G bbs <justing@pectral ogi c.conp

Submi tted by: Al an Sorers <al ans@pectral ogi c. com>
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. com>
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. com>

LR

____unchanged_portion_onitted_

4431 [*

4432 * Convert the zvol’'s volune size to an appropriate reservation.

4433 * Note: If this routine is updated, it is necessary to update the ZFS test
4434 * suite’s shell version in reservation. kshlib.

4435 */

4436 #endif /* | codereview */

4437 uint64_t

4438 zvol _vol size_to_reservation(uint64_t volsize, nvlist_t *props)

4439 {

4440 uint64_t nundb;

4441 ui nt 64_t nbl ocks, vol bl ocksi ze;

4442 int ncopies;

4443 char *strval;

4445 if (nvlist_lookup_string(props,

4446 zfs_prop_t o_nane(ZFS_PROP_COPI ES), &strval) == 0)
4447 ncopi es = atoi(strval);

4448 el se

4449 ncopi es = 1;

4450 if (nvlist_lookup_uint64(props,

4451 zfs_prop_t o_name(ZFS_PROP_VOLBLOCKSI ZE) ,
4452 &vol bl ocksi ze) !'= 0)

4453 vol bl ocksi ze = ZVOL_DEFAULT_BLOCKSI ZE;
4454 nbl ocks = vol si ze/ vol bl ocksi ze;

4455 /* start with nmetadnode LO-L6 */

4456 nundb = 7;

4457 /* cal cul ate nunmber of indirects */

4458 while (nblocks > 1) {

4459 nbl ocks += DNODES_PER LEVEL - 1;

4460 nbl ocks /= DNODES_PER LEVEL;

4461 nundb += nbl ocks;

4462 1

4463 numdb *= M N(SPA_DVAS_PER BP, ncopies + 1);
4464 vol si ze *= ncopi es;

4465 /*

4466 * this is exactly DN _MAX_ | NDBLKSH FT when netadata isn’t
4467 * conpressed, but in practice they conpress down to about
4468 * 1100 bytes

4469 */

4470 numdb *= 1ULL << DN_MAX_I| NDBLKSHI FT;

4471 vol si ze += nundb;

4472 return (vol size);

4473 }

new usr/src/uts/comon/fs/zfs/arc.c

R R R R

new usr/src/uts/comon/fs/zfs/arc.c

135193 Thu May 16 17:33:46 2013
new usr/src/uts/comon/fs/zfs/arc.c
3741 zfs needs better comments
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Justin G bbs <justing@pectral ogi c.conp
Submi tted by: Al an Sorers <al ans@pectral ogi c. com>
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. com>
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. com>

LR

__unchanged_portion_onitted_

232 /* The 6 states: */

233 static arc_state_t ARC anon;

234 static arc_state_t ARC nru;

235 static arc_state_t ARC_ nru_ _ghost ;
236 static arc_state_t ARC nfu

237 static arc_state_t ARC_ nfu _ghost;
238 static arc_state_t ARC|2c_only;

240 typedef struct arc_stats {

286 kstat_named_t arcstat_data_size;

287 kstat _named_t arcstat_ot her_si ze;

288 kstat _named_t arcstat_|2_hits;

289 kstat _naned_t arcstat_| 2_mi sses;

290 kstat _named_t arcstat_| 2_f eeds;

291 kstat _naned_t arcstat_| 2_rw cl ash;

292 kstat _nanmed_t arcstat_|2_ _read_bytes;

293 kstat _nanmed_t arcstat_|2_wite bytes

294 kstat _named_t arcstat_|2_wites_sent

295 kstat _nanmed_t arcstat_| 2_wites_done;

296 kstat _named_t arcstat |2 wites_error;

297 kstat _named_t arcstat_| 2_writes_hdr_niss;
298 kstat _named_t arcstat_| 2_evict_Tock_retry;
299 kstat _named_t arcstat_| 2_evi ct_readi ng;
300 kstat _nanmed_t arcstat |2 free_on_wite;
301 kstat _named_t arcstat_| 2_abort_| owrem
302 kstat _named_t arcstat_| 2_cksum bad;

303 kstat _named_t arcstat |2 io_error;

304 kstat _named_t arcstat_| 2_si ze;

305 kstat _named_t arcstat_| 2_hdr_5| ze;

306 kstat _named_t arcstat_menory_throttle_count;
307 kstat _named_t arcstat_duplicate_buffers;
308 kstat _named_t arcstat_duplicate_buffers_size;
309 kstat _nanmed_t arcstat_duplicate_reads;

310 kstat _naned_t arcstat_neta_used;

311 kstat_nanmed_t arcstat_neta_limt;

312 kstat _named_t arcstat_neta_max;

241 kstat_named_t arcstat_hits;

242 kstat _nanmed_t arcstat_m sses;

243 kstat _named_t arcstat_demand_data_hits;

244 kstat _naned_t arcstat_denmand_dat a_mi sses;

245 kstat _named_t arcstat_denmand_net adat a hl'[S

246 kst at _nanmed_t arcstat_demand_net adat a_ni sses;

247 kstat _named_t arcstat_prefetch_data_hits;

248 kstat _named_t arcstat_prefetch_data_ni sses;

249 kstat _named_t arcstat_prefetch_netadata hlts

250 kst at _named_t arcstat_prefetch_netadata_ni sses;

251 kstat_named_t arcstat_nru_hits;

252 kstat_nanmed_t arcstat_nru ghost hits;

253 kstat _named_t arcstat_nfu_hits;

254 kstat _named_t arcstat_nfu ghost hits;

255 kstat _nanmed_t arcstat_del et ed;

256 kstat _nanmed_t arcstat_recycl e_rri SS;

257 /*

258 * Nunber of buffers that could not be evicted because the hash | ock
259 * was held by another thread. The |ock may not necessarily be held
260 * by something using the same buffer, since hash |ocks are shared
261 * by nultiple buffers.

262 */

263 #endif /* | codereview */

264 kstat _nanmed_t arcstat_nutex_m ss;

265 /*

266 * Nunber of buffers skipped because they have I/Oin progress, are
267 * indrect prefetch buffers that have not |ived |ong enough, or are
268 * not fromthe spa we’re trying to evict from

269 */

270 #endif /* | codereview */

271 kstat _named_t arcstat_evi ct_skip;

272 kstat _named_t arcstat_evict_| 2_cached;

273 kstat _nanmed_t arcstat_evict |2 eli gi b e;

274 kstat _named_t arcstat_evict_| 2_ineli gi bi e;

275 kstat _named_t arcstat_hash_el enents;

276 kstat _named_t arcstat_hash_el ements_nax;

277 kstat _named_t arcstat_hash_col | i si ons;

278 kstat _nanmed_t arcstat_hash_chai ns;

279 kstat _named_t arcstat_hash_chai n_max;

280 kstat _nanmed_t arcstat_p;

281 kstat _naned_t arcstat_c;

282 kstat _naned_t arcstat_c_min;

283 kstat _named_t arcstat_c_nax;

284 kstat _nanmed_t arcstat_si ze;

285 kstat _nanmed_t arcstat_hdr_si ze;

313 } arc_stats_t;

315 static arc_stats_t arc_stats = {

316 "hits",

317 "m sses",

318 "demand_data_hits"

319 " demand_dat a_mi sses"
320 " demand_net adat a_| hits"
321 " demand_net adat a_ni sses” ,
322 "prefetch_data_hits",
323 "prefetch_data_m sses"”,
324 "prefetch_netadata_hits",
325 "prefetch_netadata_m sses",
326 "mru_hits",

327 "nru_ghost _hits",

328 “nfu_hits",

329 "nfu_ghost _hits",

330 "del eted",

331 "recycle_m ss",

332 "mut ex_m ss”

333 "evi ct _ski p",

334 "evict_| 2_cached"

335 "evict_| 2 eligibl e ,
336 "evict_|2_ineligible",
337 "hash_el enent s",

338 "hash_el enent s_nmax",
339 "hash_col | i si ons",

340 "hash_chai ns",

341 " hash_chai n_max",

342

343 "c",

344 "c_mn"

345 "c nax)

346 "size"

347 " hdr_si ze",

348 "dat a_si ze",

349 "ot her_si ze",

350 "l 2_hits",

351 "l 2_m sses",

KSTAT_DATA_UI NT64
KSTAT_DATA_Ul NT64
KSTAT_DATA_Ul NT64
KSTAT_DATA_UI NT64
KSTAT_DATA_Ul NT64
KSTAT_DATA_UI NT64
KSTAT_DATA_Ul NT64
KSTAT_DATA_UI NT64
KSTAT_DATA_UI NT64
KSTAT_DATA_UI NT64
KSTAT_DATA_Ul NT64
KSTAT_DATA_UI NT64
KSTAT_DATA_Ul NT64
KSTAT_DATA_UI NT64
KSTAT_DATA_Ul NT64
KSTAT_DATA_UI NT64
KSTAT_DATA_UI NT64
KSTAT_DATA_UI NT64
KSTAT_DATA_UI NT64
KSTAT_DATA_UI NT64
KSTAT_DATA_UI NT64
KSTAT_DATA_UI NT64
KSTAT_DATA_UI NT64
KSTAT_DATA_Ul NT64
KSTAT_DATA_UI NT64
KSTAT_DATA_UI NT64
KSTAT_DATA_Ul NT64
KSTAT_DATA_UI NT64
KSTAT_DATA_Ul NT64
KSTAT_DATA_UI NT64
KSTAT_DATA_Ul NT64
KSTAT_DATA_Ul NT64
KSTAT_DATA_UI NT64
KSTAT_DATA_UI NT64
KSTAT_DATA_UI NT64
KSTAT_DATA_Ul NT64

new usr/src/uts/comon/fs/zfs/arc.c

352 "1 2_feeds", KSTAT_DATA Ul NT64 },
353 "12°rw cl ash", KSTAT_DATA_Ul NT64 },
354 "1 2_read_bytes", KSTAT_DATA Ul NT64 1},
355 "12_wite_bytes", KSTAT_DATA_UI NT64 },
356 "l2_wites_sent", KSTAT_DATA Ul NT64 },
357 "1 2_writes_done", KSTAT_DATA Ul NT64 },
358 "12_wites_error”, KSTAT_DATA_UI NT64 },
359 "1 2_writes_hdr_niss", KSTAT_DATA Ul NT64 1},
360 "1 2_evict_lock_retry", KSTAT_DATA_UI NT64 },
361 "l 2_evict_readi ng", KSTAT_DATA Ul NT64 },
362 "12 free on wite", KSTAT_DATA Ul NT64 },
363 "| 2_abort_| owrent', KSTAT_DATA Ul NT64 1},
364 "1 2_cksum bad", KSTAT_DATA Ul NT64 },
365 “12 io_error", KSTAT_DATA Ul NT64 },
366 "l 2_size", KSTAT_DATA Ul NT64 },
367 "1 2_hdr _si ze", KSTAT_DATA_Ul NT64 },
368 "menory_throttle_count", KSTAT_DATA Ul NT64 },
369 "dupl i cate_buffers", KSTAT_DATA Ul NT64 },
370 "duplicate_buffers_size", KSTAT_DATA Ul NT64 },
371 "duplicate_reads", KSTAT_DATA_UI NT64 },
372 "arc_neta_used", KSTAT_DATA Ul NT64 },
373 "arc_meta limt", KSTAT_DATA Ul NT64 },
374 "arc_meta_nax", KSTAT_DATA_Ul NT64
375 };

377 #define ARCSTAT(stat) (arc_stats. stat.val ue. ui 64)
379 #define ARCSTAT_I NCR(stat, val) \

380 atomi c_add_64(&arc_stats.stat.val ue.ui 64, (val));
ARCSTAT | NCR(stat, 1)
ARCSTAT_I NCR(stat, -1)

382 #define ARCSTAT_BUMP(stat)
383 #defi ne ARCSTAT_BUMPDOW\(st at)

385 #define ARCSTAT_MAX(stat, val) { \
386 uint64_t m \
387 while ((val) > (m= arc_stats. stat.val ue. ui 64) && \
388 (m!= atom c_cas_64(&arc_stats.stat.value.ui64, m (val)))) \
389 conti nue;

390 }

392 #define ARCSTAT_MAXSTAT(stat) \

393 ARCSTAT_MAX(st at ##_max, arc_stats. stat.val ue. ui 64)

395 /*

396 * We define a macro to allow ARC hits/misses to be easily broken down by
397 * two separate conditions, giving a total of four different subtypes for
398 * each of hits and misses (so eight statistics total).

*

399

400 #define ARCSTAT_CONDSTAT(condl, statl, notstatl, cond2, stat2, notstat2, stat) \
401 if (condl) { \

402 if (cond2) { \

403 ARCSTAT_BUVP(ar cst at _##st at 1##_##st at 2##_##stat); \

404 } else {

405) ARCSTAT_BUMP(ar cst at _##st at 1##_##not st at 2##_##st et)\
406

407 } else { \

408 if (cond2) { \

409 ARCSTAT_BUMP(ar cst at _##not st at 1##_##st at 2##_##stat); \
410 } else { \

411 ARCSTAT_BUVP(ar cst at _##not st at 1##_##not st at 2##_##stat) ;\
412 \

413 }

415 kstat _t *arc_ksp;

416 static arc_state_t *ar c_anon;

417 static arc_state_t *arc_nru;

new usr/src/uts/comon/fs/zfs/arc.c

418
419
420
421

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

440
441
442

444
446

448
449
450
451
452
453
454

456

458
459
460
461
462
463

465
466
467
468
469

471
472
473

475
476
477
478

480
481

483

static arc_state_t
static arc_state_t
static arc_state_t
static arc_state_t

There are several

terns of the statistic variable.
the possibility of

while still

#define arc_size

*
*
*
* mani pul ate them
*
*
*

*ar c_nr u_ghost ;
*arc_nfu;

*ar c_nf u_ghost ;
*arc_| 2c_only;

ARC variables that are critical to export as kstats --
but we don’t want to have to grovel
For these variables, we therefore define themto be in

around in the kstat whenever we wish to

This assures that we are not introducing

i nconsi stency by havi ng shadow copi es of the variabl es,
al lowing the code to be readable.

ARCSTAT(ar cst at _si ze) actual total arc size */

#define arc_p

#define arc_c

#define arc_c_mn
#define arc_c_max
#define arc_neta_limt
#define arc_neta_used
#defi ne arc_net a_nmax

ARCSTAT(ar cst at _p)
ARCSTAT(arcstat _c)

*
* target size of MRU */

* target size of cache */
ARCSTAT(arcstat _c_mi n) * mn target cache size */
ARCSTAT(ar cst at _c_nmax) * max target cache size */
ARCSTAT(arcstat_neta_limt) /* max size for netadata */
ARCSTAT(arcstat_neta_used) /* size of nmetadata */
ARCSTAT(arcstat _meta_max) /* max size of netadata */

—~——— —

static int
static uint64_t
static uint64_t

arc_no_gr ow,
ar c_t enpreserve;
ar c_| oaned_byt es;

/* Don't try to grow cache size */

typedef struct |2arc_buf_hdr |2arc_buf_hdr_t;
typedef struct arc_callback arc_cal |l back_t;

struct arc_cal | back {

voi d *acb_private;
arc_done_func_t *ach_done;
arc_buf _t *acb_buf;
zio_t *acb_zi o_dumy;
arc_cal | back_t *acb_next;
b
typedef struct arc_write_callback arc_wite_callback_t;

struct arc_wite_callback {
voi d *awch_pri vat e;

arc_done_func_t *awcb_ready;
arc_done_func_t *awcbh_done;
arc_buf _t *awch_buf;
b5
struct arc_buf _hdr {

/* protected by hash |ock */

dva_t b_dva;

ui nt 64_t b_birth;

ui nt 64_t b_cksunD;

kmut ex_t b_freeze_l| ock;
zi o_cksum t *b_freeze_cksum
voi d *b_t hawed;
arc_buf _hdr _t *b_hash_next;
arc_buf _t *b_buf;

ui nt 32_t b_fl ags;

ui nt 32_t b_dat acnt ;
arc_cal | back_t *b_ach;
kcondvar _t b_cv;

/* imutable */

new usr/src/uts/comon/fs/zfs/arc.c

484
485
486

488
489
490

492
493

495
496

498
499
500

502
503
504
505
506
507
508
509

511

513
514
515

517
518
519
520
521
522
523

525
526
527
528
529
530
531
532
533
534

536
537
538
539
540
541
542
543
544
545
546
547
548

arc_buf _contents_t b _type;
ui nt 64_t sl ze;
ui nt 64_t b_spa

/* protected by arc state nutex */
arc_state_t *b_state;
list_node_t b_ar c_node;

/* updated atomically */

cl ock_t b_arc_access;

/* self protecting */

ref count _| b_refcnt;
| 2ar c_buf _hdr _t *b_| 2hdr;
i st _node_t b_I 2node;
B
static arc_buf _t *arc_eviction_list;
static kmutex_t arc_eviction_ntx;
static arc_buf_hdr_t arc_eviction_hdr;
static void arc_get_data_buf (arc_buf t *buf) ;
static void arc access(arc buf _hdr _t *buf, krmtex_t *hash_l ock) ;
static int arc_evict_needed(arc_buf_cont ent s_t type);
static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
static void arc_buf_watch(arc_buf_t *buf);
static boolean_t |2arc_wite_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
#def i ne GHOST_STATE(st at e) \
((state) == arc_nru_ghost || (state) == arc_nfu_ghost || \
(state) == arc_I2c_only)
/*
* Private ARC flags. These flags are private ARC only flags that will show up
* in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can
* be passed in as arc_flags in things |ike arc_read. However, these flags
* shoul d never be passed and should only be set by ARC code. When addi ng new
* public flags, nake sure not to smash the private ones.
*
/
#define ARC_ | N HASH TABLE (1 <<9) /* this buffer is hashed */
#define ARC_| O | N PROGRESS (1 << 10) /* 1/0Oin progress for buf */
#defi ne ARC_| O ERROR (1 << 11) /* 1/0O failed for buf */
#defi ne ARC_FREED | N_READ (1 << 12) /* buf freed while in read */
#def i ne ARC_BUF_AVAI LABLE (1 << 13) /* block not in active use */
#def i ne ARC_| NDI RECT (1 << 14) /* this is an indirect block */
#defi ne ARC_FREE_ | N_PROGRESS (1 << 15) /* hdr about to be freed */
#define ARC_L2_WRI TI NG (1 << 16) /* L2ARC write in progress */
#define ARC_L2_EVI CTED (1 << 17) /* evicted during 1/0 */
#defi ne ARC_L2_WRI TE_HEAD (1 << 18) /* head of wite list */
#define HDR I N_HASH TABLE(hdr) ((hdr)->b_flags & ARC | N HASH TABLE)
#define HDR_I O | N PROGRESS(hdr) ((hdr)->b_flags & ARC_| O_| N PROGRESS)
#def i ne HDR_| O_ERROR(hdr) ((hdr)->b_flags & ARC_| O ERROR)
#defi ne HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH)
#define HDR_FREED | N READ(hdr) ((hdr)->b_flags & ARC_FREED | N READ)
#defi ne HDR_BUF_AVAI LABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAI LABLE)
#def i ne HDR_FREE_| N_PROGRESS(hdr) ((hdr)->b_flags & ARC FREE | N_PROGRESS)
#defi ne HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE)
#defi ne HDR L2 READI NG hdr) ((hdr)->b_flags & ARC | O | N PROGRESS && \
(hdr)->b_I 2hdr != NULL)
#define HDR_L2_WRI TI N hdr) ((hdr)->b_flags & ARC_L2_WVRI TI NG
#define HDR _L2_EVI CTED(hdr) ((hdr)->b_flags & ARC_L2_EVI CTED)
#define HDR L2 WRI TE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRI TE_HEAD)

new usr/src/uts/comon/fs/zfs/arc.c

550 /*

551 * Qther sizes

552 */

554 #define HDR SIZE ((int64_t)sizeof (arc_buf_hdr_t))
555 #define L2HDR SI ZE ((int64_t)sizeof (l2arc_buf_hdr_t))
557 [*

558 * Hash table routines

559 */

561 #define HT_LOCK_PAD 64

563 struct ht_l ock {

564 kmut ex_t ht _| ock;

565 #ifdef _KERNEL

566 unsi gned char pad[(HT_LOCK_PAD - sizeof (knutex_t))];
567 #endi f

568 };

570 #define BUF_LOCKS 256

571 typedef struct buf_hash_table {

572 uint64_t ht_mask;

573 arc_buf _hdr_t **ht_table;

574 struct ht_lock ht_Tocks[BUF_LOCKS];

575 } buf_hash_table_t;

577

579
580
581
582
583
584

586

588
589
590

592
593
594
595

597
598

600
601
602
603
604
605
606
607
608
609
610

612
613
614
615

static buf_hash_table_t buf_hash_table;

#defi ne BUF_HASH | NDEX(spa, dva, birth) \
(buf _hash(spa, dva, birth) & buf_hash_tabl e. ht _nask)
#def i ne BUF_HASH LOCK_NTRY(i dx) (buf_hash_table.ht_|l ocks[idx & (BUF_LOCKS-1)])
#defi ne BUF_HASH_ LCX:K(| dx) (&(BUF_HASH_LOCK_NTRY(i dx) . ht _| ock))
#defi ne HDR_LOCK(hdr) \

(BUF_HASH_LOCK(BUF_HASH | NDEX(hdr - >b_spa, &hdr->b_dva, hdr->b_birth)))
uint64_t zfs_crc64_tabl e[256];
/*
* Level 2 ARC
*/
#defi ne L2ARC_WRI TE_SI ZE (8 * 1024 * 1024) /* initial wite max */
#def i ne L2ARC_HEADROOM 2 /* numof wites */
#def i ne L2ARC_FEED SECS 1 /* caching interval secs */
#defi ne L2ARC_FEED M N_NMS 200 /* mn caching interval ns */

#define | 2arc_wites_sent ARCSTAT(ar cst at

2_wites_sent)
2

#define | 2arc_wites_done ARCSTAT(arcstat _| 2_writes_done)

/*

* L2ARC Perfornance Tunabl es

*/

uint64_t |2arc_wite_nmax = L2ARC WRI TE_SI ZE; /* default max wite size */
uint64_t l2arc_wite boost = L2ARC WRITE_SIZE; /* extra wite during warnup */
uint64_t |2arc headroom— L2ARC_HEADROOM /* nunber of dev wites */
uint64_t |2arc_feed_secs = L2ARC FEED SECS; /* interval seconds */

uint64_t l2arc_feed_min_ms = L2ARC FEED MN_MS; /* nin interval milliseconds */
bool ean_t | 2arc_noprefetch = B_TRUE; /* don’t cache prefetch bufs */
bool ean_t | 2arc_feed_again = B_TRUE; /* turbo warnmup */

bool ean_t | 2arc_norw = B_TRUE; /* no reads during wites */

/*

* L2ARC Internal s

*/

typedef struct |2arc_dev {

new usr/src/uts/comon/fs/zfs/arc.c

vdev */

spa */

next wite |ocation */
desired wite size, bytes */
warmup write boost, bytes */
first addr on device */

| ast addr on device */

| ast addr eviction reached */
first sweep through */
currently witing */

buffer list */

device |list node */

device list */

device list pointer */
device list mutex */

| ast device used */

mutex for all buflists */

free after wite buf list */
free after wite list ptr */
mutex for list */

nunber of devices */

read buffer */
spa */

ori gi nal
ori gi nal
ori gi nal

bl kptr */
bookmark */
flags */

device info */
head of wite buflist */

L2ARC devi ce */

di sk address, offset byte */

uint64_t birth)

616 vdev_t *| 2ad_vdev; /*
617 spa_t *| 2ad_spa; /*
618 ui nt 64_t | 2ad_hand; /*
619 ui nt 64_t | 2ad_write;]
620 ui nt 64_t | 2ad_boost ; /*
621 ui nt 64_t | 2ad_start; I *
622 ui nt 64_t | 2ad_end; /*
623 ui nt 64_t | 2ad_evi ct; 7=
624 bool ean_t | 2ad_first; /*
625 bool ean_t | 2ad_writing; /*
626 list_t *| 2ad_buflist; /*
627 list_node_t | 2ad_node; 7
628 } | 2arc_dev_t;

630 static list_t L2ARC dev_list; I *
631 static list_t *l2arc_dev_list; | *
632 static kmutex_t |2arc_dev_ntx; /*
633 static |2arc_dev_t *l2arc_dev_| ast; [*
634 static kmutex_t T2arc_buflist_ntx; I *
635 static list_t L2ARC free_on_write; /*
636 static |ist_t *I2arc_free_on_write;]
637 static knmutex_t |2arc_free_on_wite_ntx; /*
638 static uint64_t |2arc_ndev; /*
640 typedef struct |2arc_read_callback {

641 arc_buf _t *| 2rcb_buf; /*
642 spa_t *| 2rcb_spa; I *
643 bl kptr_t | 2rcb_bp; /*
644 zbooknmar k_t | 2rch_zb;]
645 int | 2rcb_fl ags; /*
646 } |2arc_read_call back_t;

648 typedef struct |2arc_wite_callback {

649 | 2arc_dev_t *| 2weh_dev; /*
650 arc_buf _hdr _t *| 2weh_| head /*
651 } |2arc_wite_call back_t;

653 struct | 2arc_buf_hdr {

654 /* protected by arc_buf_hdr nmutex */

655 | 2ar c_dev_t *b_dev; I *
656 ui nt 64_t b_daddr; | *
657 };

659 typedef struct |2arc_data_free {

660 /* protected by |2arc_free_on_wite_ntx */
661 voi d *| 2df _dat a;

662 size_t | 2df _si ze;

663 voi d (*12df _func)(void *, size_ t);
664 i st _node_t I 2df _I i st _node;

665 } |2arc_data_free_t;

667 static knmutex_t |2arc_feed_thr_| ock;

668 static kcondvar_t |2arc_feed_thr_cv;

669 static uint8_t |2arc_thread_exit;

671 static void |2arc_read_done(zio_t *zio);

672 static void | 2arc_hdr_stat_add(void);

673 static void |2arc_hdr_stat_renove(void);

675 static uint64_t

676 buf _hash(uint64_t spa, const dva_t *dva,

677 {

678 uint8_t *vdva = (uint8_t *)dva;

679 uint64_t crc = -1ULL;

680 int i;

new usr/src/uts/comon/fs/zfs/arc.c

**| ockp)

682 ASSERT(zfs_crc64_tabl e[128] == ZFS_CRC64_POLY) ;

684 for (i =0; i < sizeof (dva_t); i++)

685 crc = (crc >> 8) M zfs_crc64_table[(crc ~ vdva[i]) & OxFF];
687 crc A= (spa>>8) " birth;

689 return (crc);

690 }

692 #define BUF_EMPTY(buf) \
693 ((buf)->b_dva.dva_word[0] == 0 && \
694 (buf)->b_dva.dva_word[1] == 0 && \
695 (buf)->b_birth == 0)

697 #define BUF_EQUAL(spa, dva, birth, buf) \
698 ((buf)->b_dva. dva word[O] == (dva)->dva_word[0]) && \
699 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
700 ((buf)->b_birth == birth) & ((buf)->b_spa == spa)

702 static void

703 buf _discard_identity(arc_buf_hdr_t *hdr)

704 {

705 hdr - >b_dva. dva_word[0] = O;

706 hdr->b_dva. dva_word[1] = 0;

707 hdr->b_birth = 0;

708 hdr - >b_cksunD = 0;

709 }

711 static arc_buf_hdr_t *

712 buf _hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t
713 {

714 uint64_t idx = BUF_HASH | NDEX(spa, dva, birth);

715 kmut ex_t *hash_l ock = BUF_HASH_LOCK(i dx);

716 arc_buf _hdr _t *buf;

718 mut ex_ent er(hash_l ock) ;

719 for (buf = buf _hash_tabl e. ht _tabl e[idx]; buf != NULL;

720 buf = buf->b_hash_next) {

721 |f (BUF_| EQJAL(spa dva, birth, buf)) {

722 *| ockp = hash_| Iock

723 return (buf);

724 }

725 1

726 mut ex emt(hash | ock);

727 *| ockp = NULL;

728 return (NULL);

729 }

731 [*

732 * Insert an entry into the hash table. |If there is already an el ement
733 * equal to elemin the hash table, then the already existing el enent
734 * will be returned and the new el ement will not be inserted.

735 * Otherw se returns NULL.

736 */

737 static arc_buf_hdr_t *

738 buf _hash_i nsert(arc_buf _hdr_t *buf, knutex_t **I ockp)

739 {

740 uint64_t idx = BUF_HASH | NDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
741 kmut ex_t *hash_l ock = BUF_HASH_LOCK(i dx) ;

742 arc_buf _hdr _t *fbuf;

743 uint32_t i;

745 ASSERT(! HDR_| N_HASH_TABLE(buf));

746 *| ockp = hash_T ock;

747 nmut ex_ent er (hash_| Iock)

new usr/src/uts/comon/fs/zfs/arc.c

748 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf !'= NULL;
749 fbuf = fbuf->b_hash_next, i ++)

750 i f (BUF_EQUAL(buf - >b’ _spa, &buf->b_dva, buf->b_birth, fbuf))
751 return (fbuf);

752 }

754 buf - >b_hash_next = buf _hash table ht _tabl e[idx];
755 buf _hash_t abl e. ht tabl e[idx] = buf;

756 buf -=>b_fTags | = ARC_I N_HASH TABLE;

758 /* collect some hash table performance data */
759 if (i >0) {

760 ARCSTAT_BUMP(ar cst at _hash_col | i si ons);

761 if (i ==1)

762 ARCSTAT_BUWP(ar cst at _hash_chai ns) ;
764 ARCSTAT_MAX(ar cst at _hash_chai n_nmax, i);
765 }

767 ARCSTAT_BUMP(ar cst at _hash_el enent s) ;

768 ARCSTAT_MAXSTAT(ar cst at _hash_el emants)

770 return (NULL);

771 }

773 static void

774 buf _hash_renove(arc_buf _hdr_t *buf)

775 {

776 arc_buf _hdr _t *fbuf, **bufp;

777 uint64_t idx = BUF_ HASH 1 | NDEX(buf - >b_spa, &buf->b_dva, buf->b_birth);
779 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(i dx)));

780 ASSERT(HDR_| N_HASH TABLE(buf));

782 buf p = &buf_hash_tabl e. ht _tabl e[i dx];

783 while ((fbuf = *bufp) != buf) {

784 ASSERT(f buf != NULL);

785 bufp = &f buf - >b_hash_next;

786 }

787 *puf p = buf->b_hash next

788 buf - >b_hash_next = NULL

789 buf->b_flags & ~ARC_ IN HASH_TABLE;

791 /* collect some hash table performance data */
792 ARCSTAT_BUMPDOWN(ar cst at _hash_el enent s) ;

794 if (buf_hash_table.ht_table[idx] &&

795 buf _hash_t abl e. ht _tabl e[i dx] ->b_hash_next == NULL)
796 ARCSTAT_BUMPDOWN(ar cst at _hash_chai ns) ;

797 }

799 /*

800 * dobal data structures and functions for the buf kmem cache.
801 */

802 static kmem cache_t *hdr_cache;

803 static kmem cache_t *buf_cache;

805 static void
806 buf _fini (void)

807 {

808 int i;

810 kmem f ree(buf _hash_tabl e. ht _table,

811 (buf _hash_tabl e. ht _mask + 1) * sizeof (void *));
812 for (i = 0; i < BUF_LOCKS; i++)

813 nmut ex_dest roy(&uf _hash_tabl e. ht _| ocks[i].ht_I ock);

new usr/src/uts/comon/fs/zfs/arc.c

814 kmem cache_destroy(hdr_cache);
815 kmem cache_dest roy(buf _cache);
816 }

818 /*

819 * Constructor callback - called when the cache is enpty
820 * and a new buf is requested.

821 */

822 /* ARGSUSED */

823 static int

824 hdr_cons(void *vbuf, void *unused, int knfl ag)

825 {

826 arc_buf _hdr _t *buf = vbuf;

828 bzero(buf, sizeof (arc_buf_hdr_t));

829 ref count _create(&uf->b_refcnt);

830 cv_init(&uf->b_cv, NULL, CV_DEFAULT, NULL);

831 mut ex_i ni t (&vuf->b_freeze_| ock, NULL, MJTEX_DEFAULT, NULL);
832 ar c_space_consune(si zeof (arc_buf_hdr_t), ARC SPACE HDRS);
834 return (0);

835 }

837 /* ARGSUSED */
838 static int
839 buf_cons(void *vbuf, void *unused, int knflag)

840 {

841 arc_buf _t *buf = vbuf;

843 bzero(buf, sizeof (arc_buf_t));

844 mut ex |n|t(&buf >b_evict _| ock, NULL, MJTEX_DEFAULT, NULL);
845 ar c_space_consune(si zeof (arc_buf t) ARC_SPACE HDRS)
847 return (0);

848 }

850 /*

851 * Destructor callback - called when a cached buf is
852 * no | onger required.

853 */

854 /* ARGSUSED */

855 static void

856 hdr_dest (void *vbuf, void *unused)

857 {

858 arc_buf _hdr_t *buf = vbuf;

860 ASSERT(BUF_EMPTY(buf));

861 ref count _destroy(&buf->b_refcnt);

862 cv_destroy(&buf->b_cv);

863 nmut ex_destroy(&buf ->b_freeze_| ock);

864 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
865 }

867 /* ARGSUSED */
868 static void
869 buf _dest(void *vbuf, void *unused)

870 {

871 arc_buf _t *buf = vbuf;

873 mut ex_dest roy(&uf - >b_evi ct _| ock);

874 arc_space_ret urn(sizeof (arc_buf t) ARC_SPACE_HDRS) ;
875 }

877 | *

878 * Reclaimcallback -- invoked when nenory is |ow

879 */

10

new usr/src/uts/comon/fs/zfs/arc.c

880
881
882
883
884
885
886
887
888
889
890
891

893
894
895
896
897
898

900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915

917
918
919
920

922
923
924

926
927
928
929
930

932

934
935

/* ARGSUSED */
static void
hdr _recl (void *unused)

{

}

dprintf("hdr_recl called\n");
/*
* unemcalls the reclai mfunc when we destroy the buf cache,
* which is after we do arc_fini().
*
if (!larc_dead)
cv_signal (&rc_reclaimthr_cv);

static void
buf _init (void)

{

retry:

}

#defi ne ARC_M NTI ME

uint64_t *ct;
uint64_t hsize = 1ULL << 12;

int i, j;

*

* The hash table is big enough to fill all of physical nenory
* with an average 64K bl ock size. The table wll take up

* total nentsizeof (voi d*)/ 64K (eg. 128KB/GB with 8-byte pointers).

V\/{‘II le (hsize * 65536 < physnmem * PAGESI ZE)
hsi ze <<= 1;

buf _hash_t abl e. ht _mask =
buf _hash_tabl e. ht _table =
“knmem zal | oc(hsi ze * si zeof (voi d*),
if (buf_hash_table.ht_table == NULL) {
TASSERT(hsize > (1ULL << 8));
hsi ze >>= 1;
goto retry;

hsize - 1;

KM _NOSLEEP) ;

}

hdr _cache = knmem cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);

buf _cache = kmem cache create(arc_buf _t" si zeof (arc buf _t),

0, buf_cons, buf_dest, NULL, NULL, NULL 0);
for (i =0; i < 256;

for (ct = zfs _crc64_table + i, *ct =i, j j >0; j--)
*ct = (*ct >> 1) A (-(*ct & 1) &ZFSCROG4PO_Y)

i ++)

(i =0; i < BUF_LOCKS; i++)
mut ex_i ni t (&buf _| hash_t abl e. ht _| ocks[i].ht_|
NULL, MJUTEX_DEFAULT, NULL);

| ock,

(hz>>4) /* 62 ms */

static void

arc_cksum verify(arc_buf _t

936 {

937

939
940

942
943
944
945

*puf)
zi o_cksumt zc;

if (!(zfs_flags & ZFS_DEBUG MODI FY))
return;

nmut ex_ent er (&buf - >b_hdr->b_freeze_| ock);
if (buf->b_hdr->b_freeze_cksum == NULL ||
(buf->b_hdr->b_flags & ARC | O ERROR)) {
mut ex_exi t (&uf ->b_hdr->b_freeze_| ock);

11

new usr/src/uts/comon/fs/zfs/arc.c

946 return;

947 1

948 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
949 if (!Zl O CHECKSUM EQUAL(*buf->b_hdr->b_freeze _cksum zc))
950 pani c("buffer nodified while frozen!");

951 mut ex_exli t (&uf ->b_hdr->b_freeze_| ock);

952 }

954 static int

955 arc_cksum equal (arc_buf _t *buf)

956 {

957 zi o_cksumt zc;

958 int equal;

960 mut ex_ent er (&uf ->b_hdr->b_freeze_| ock);

961 fletcher 2 native(buf->b_data, buf->b hdr - >b si ze, &zc);
962 equal = ZI O CHECKSUM EQUAL(*buf->b_hdr->b_freeze cksum zc);
963 mut ex_exi t (&uf - >b_hdr->b_freeze_| ock);

965 return (equal);

966 }

968 static void

969 {arc_cksum_comoute(arc_buf_t *pbuf, boolean_t force)

970

971 if (!force & !(zfs_flags & ZFS_DEBUG MODI FY))

972 return;

974 nmut ex_ent er (&buf - >b_hdr->b_freeze_| ock);

975 if (buf->b_hdr->b_freeze_cksum!= NULL) {

976 mut ex_exi t (&uf ->b_hdr->b_freeze_| ock);

977 return;

978 }

979 buf - >b_hdr->b_freeze_cksum = kmem al | oc(si zeof (zio_cksumt),
980 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,

981 buf ->b_hdr->b_freeze_| cksunj

982 mut ex_exi t (&uf - >b_hdr->b_ freeze _l ock);

983 arc_buf _wat ch(buf);

984 }

986 #ifndef _KERNEL

987 typedef struct procctl {

988 long cnd;

989 prwat ch_t prwatch;

990 } procctl _t;

991 #endi f

993 /* ARGSUSED */

994 static void

995 arc_buf _unwat ch(arc_buf_t *buf)

996 {

997 #ifndef _KERNEL

998 if (arc_watch) {

999 int result;

1000 procctl _t ctl;

1001 ctl.cmd = POWATCH,

1002 ctl.prwatch. pr_vaddr = (uintptr_t)buf->b_data;
1003 ctl.prwatch. pr_size = 0;

1004 ctl.prwatch. pr_wflags = 0;

1005 result = wite(arc_procfd, &ctl, sizeof (ctl));
1006 ASSERT3U(result, ==, sizeof (ctl));

1007

1008 #endi f

1009 }

1011 /* ARGSUSED */

12

KM_SLEEP) ;

new usr/src/uts/comon/fs/zfs/arc.c

1012 static void

1013 arc_buf_wat ch(arc_buf _t *buf)

1014 {

1015 #i f ndef KERNEL

1016 f (arc_watch) {

1017 int result;

1018 procctl _t ctl;

1019 ctl.cmd = PCWATCH,

1020 ctl.prwatch. pr_vaddr = (uintptr_t)buf->b_data;
1021 ctl.prwatch. pr_size = buf->b_hdr->b_size;

1022 ctl.prwatch. pr_wflags = WA_WRI TE;

1023 result = wite(arc_procfd, &ctl, sizeof (ctl));
1024 ASSERT3U(resul t, ==, sizeof (ct i));

1025

1026 #endi f

1027 }

1029 voi d

1030 arc_buf_thaw arc_buf _t *buf)

1031 {

1032 if (zfs_flags & ZFS _DEBUG MODI FY)

1033 if (buf->b_hdr->b_state != arc_anon)

1034 pani ¢(" rodi fyi ng non-anon buffer!");
1035 if (buf- >b hdr->b_f I ags &ARCIOINPROGRESS)
1036 pani c("modi fying buffer while i/o in progress!");
1037 arc_cksumverify(buf);

1038 }

1040 nmut ex_ent er (&buf - >b_hdr->b_freeze_| ock);

1041 if (buf->b_hdr->b_freeze_cksum!="NULL) {

1042 kmem free(buf ->b_hdr->b_freeze cksum sizeof (zio_cksumt));
1043 buf ->b_hdr->b_freeze_cksum = NULL;

1044 }

1046 if (zfs_flags & ZFS_DEBUG MODI FY) {

1047 i f (buf->b_hdr->b_t hawed)

1048 kmem free(buf->b_hdr->b_t hawed, 1);
1049 buf - >b_hdr->b_t hawed = kmem al | oc(1, KM_SLEEP);
1050 }

1052 mut ex_exi t (&uf ->b_hdr->b_freeze_| ock);

1054 ar c_buf _unwat ch(buf);

1055 }

1057 void

1058 arc_buf_freeze(arc_buf_t *buf)

1059 {

1060 kmut ex_t *hash_| ock;

1062 if (!(zfs_flags & ZFS_DEBUG MODI FY))

1063 return;

1065 hash_l ock = HDR_LOCK(buf - >b_hdr);

1066 mut ex_ent er (hash_| ock) ;

1068 ASSERT(buf - >b_hdr->b_freeze_cksum ! = NULL ||

1069 buf->b_hdr->b_state == arc_anon);

1070 arc_cksum conput e(buf, B_FALSE);

1071 mut ex_exi t (hash_l ock) ;

1073 }

1075 static void

1076 add_reference(arc_buf_hdr_t *ab, knutex_t *hash_I ock, void *tag)
1077 {

13

new usr/src/uts/comon/fs/zfs/arc.c

1078 ASSERT(MUTEX_HELD(hash_| ock)) ;

1080 if ((refcount_add(&b->b_refcnt, tag) == 1) &&

1081 (ab->b_state != arc_anon)) {

1082 uint64_t delta = ab->b_size * ab->b_datacnt;

1083 list_t *list = &b->b_state->arcs_|ist[ab- >b _type];
1084 uint64_t *size = &b->b_state->arcs_| si ze[ab->b type]
1086 ASSERT(! MUTEX_HELD(&b- >b_st at e->arcs_ntx));

1087 mut ex enter(&ab >h_state->arcs_ntx);

1088 ASSERT(li st _Iink _active(&b->b_arc node))

1089 list_remove(list, ab);

1090 if (GHOST_ STATE(ab >p_state)) {

1091 ASSERTO(ab- >b_dat acnt) ;

1092 ASSERT3P(ab- >b_buf, ==, NULL)

1093 delta = ab->b_si ze;

1094 }

1095 ASSERT(deIta > 0);

1096 ASSERT3U(*si ze, >=, delta);

1097 at om c_add 64(SI ze, -delta);

1098 mut ex_exi t (&b->b_st at e- >arcs_nt x) ;

1099 /* remove the prefetch flag if we get a reference */
1100 if (ab->b_flags & ARC PREFETCH)

1101 ab->b_fl ags & ~ARC_PREFETCH;

1102 }

1103 }

1105 static int

1106 Eermve_reference(arc_buf_hdr_t *ab, knutex_t *hash_l ock, void *tag)
1107

1108 int cnt;

1109 arc_state_t *state = ab->b_state;

1111 ASSERT(state == arc_anon || MJTEX_HELD(hash_| ock));

1112 ASSERT(! GHOST_STATE(st ate)) ;

1114 if (((cnt = refcount_renove(&b->b_refcnt, tag)) == 0) &&
1115 (state !'= arc_anon))

1116 uint64_t *size = &state->arcs_| size[ab->b_type];
1118 ASSERT(! MUTEX_HELD(&st at e- >arcs_nt x)) ;

1119 mut ex_ent er (&st ate->arcs_nt x);

1120 ASSERT(!list_link_active(&b->b_arc_node));

1121 list_insert_head(&state->arcs_list[ab->b_type], ab);
1122 ASSERT(ab->b_datacnt > 0);

1123 atom c_add_64(size, ab->b_size * ab->b_datacnt);
1124 mut ex_exit (&stat e->arcs_nt x);

1125 1

1126 return (cnt);

1127 }

1129 /*

1130 * Move the supplied buffer to the indicated state. The nutex
1131 * for the buffer nust be held by the caller.

1132 */

1133 static void

1134 arc_change_state(arc_state_t *new state, arc_buf_hdr_t *ab, knutex_t
1135 {

1136 arc_state_t *old_state = ab->b_state;

1137 int64_t refcnt = refcount_count (&b->b_refcnt);

1138 ui nt 64_t from_del ta, to_delta;

1140 ASSERT(MUTEX_HELD(hash_| ock)) ;

1141 ASSERT(new_state != ol d_state);

1142 ASSERT(refcnt == 0 || ab->b_datacnt > 0);

1143 ASSERT(ab- >b_datacnt == 0 |[! GHOST STATE(new state));

14

*hash_| ock)

new usr/src/uts/comon/fs/zfs/arc.c 15

1144
1146

1148
1149
1150
1151
1152
1153
1154
1155

1157
1158

1160
1161

1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173

1175
1176
1177
1178
1179
1180

1182
1183

1185

1187
1188
1189
1190
1191
1192
1193

1195
1196
1197
1198

1200
1201
1202

1204
1205
1206
1207
1208
1209

ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);

fromdelta

/*

= to_

delta = ab->b_datacnt * ab->b_si ze;

* |f this buffer is evictable, transfer it fromthe
* old state list to the new state |ist.

*/

if (refcnt
if
}
1 f
}

}

= 0

)
(ol d_

{
state !'= arc_anon)
int use_mutex = ! MUTEX HELD(&ol d_st at e->arcs_nt x) ;
uint64_t *size = &ol d_state->arcs_|size[ab->b_type];

i f (use_mutex)
mut ex_ent er (&ol d_state->arcs_ntx);

ASSERT(|i st_|ink_active(&b->b_arc_node));
l'ist_renmove(&ol d_state->arcs_list[ab->b_type], ab);

/*

* |f prefetching out of the ghost cache,

* we will have a non-zero datacnt.

*

/

if (GHOST_STATE(ol d_state) && ab->b_datacnt == 0) {
/* ghost el enments have a ghost size */
ASSERT(ab->b_buf == NULL);
fromdelta = ab->b_size;

}
ASSERT3U(*si ze, >=, fromdelta);
atom c_add_64(size, -fromdelta);

if (use_mutex)
mut ex_exi t (&ol d_state->arcs_ntx);

(new_state != arc_anon)

{
int use_mutex = INUTEX (HELD(&new_st at e- >ar cs_nt x) ;
uint64_t *size = &new state->arcs_| size[ab->b type]

i f (use_mutex)
nmut ex_ent er (&new_st at e->arcs_nt x) ;

l'ist_insert_head(&new state->arcs_|ist[ab->b_type], ab);

/* ghost el enents have a ghost size */
i f (GHOST_STATE(new state))
ASSERT(ab- >b_dat acnt == 0);
ASSERT(ab- >b_buf == NULL);
to_delta = ab->b_size;

}
atomi c_add_64(si ze, to_delta);

i f (use_mutex)
mut ex_exi t (&ew_st at e- >arcs_nt x) ;

ASSERT(! BUF_EMPTY(ab))
if (new state == arc_anon && HDR_| N_HASH TABLE(ab))
buf _hash_renove(ab);

/* adj ust

if (to_delta)
atom c_add_64(&new_st at e- >arcs_si ze, to_delta);
if (fromdelta)

state sizes */

ASSERT3U(ol d_st ate->arcs_si ze, >=, fromdelta);

at omi ¢_add_64(&ol d_st at e- >ar cs_si ze, -from_delta);

new usr/src/uts/comon/fs/zfs/arc.c

1210
1211

1213
1214
1215
1216
1217
1218

1220
1221

1223

1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238

1240
1241
1242

1244
1245

1247

1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262

1264
1265
1266
1267
1268
1269
1270

1272
1273

1275

}

voi d

}
ab->b_state = new_state;

/* adjust |2arc hdr stats */

if (new.state == arc_|2c_only)
| 2arc_hdr _stat _add();
else if (old_state == arc_| ZC_onI y)

| 2arc_hdr _stat_renove();

ar c_space_consune(ui nt64_t space, arc_space_type_t type)
1222 {

}

voi d

ASSERT(type >= 0 && type < ARC_SPACE_NUMIYPES) ;

switch (type) {

case ARC_SPACE_DATA:
ARCSTAT_| NCR(ar cst at _dat a_si ze, space);
br eak;

case ARC_SPACE_OTHER:
ARCSTAT_| NCR(ar cst at _ot her _si ze, space);
br eak;

case ARC_SPACE HDRS
ARCSTAT_I NCR(ar cst at _hdr _si ze, space);
br eak;

case ARC_SPACE_L2HDRS:
ARCSTAT_I NCR(arcstat _| 2_hdr _si ze, space);
br eak;

}

ARCSTAT_| NCR(ar cstat _neta_used, space);
at omi ¢_add_64(&r c_si ze, space)

arc_space_return(uint64_t space, arc_space_type_t type)
1246 {

}

void *

ASSERT(type >= 0 & type < ARC_SPACE_NUMIYPES);

switch (type) {

case ARC_SPACE_DATA:
ARCSTAT_| NCR(ar cst at _dat a_si ze, -space);
br eak;

case ARC SPACE OTHER:
ARCSTAT_| NCR(ar cst at _ot her _si ze, -space);
br eak;

case ARC_SPACE_HDRS:
ARCSTAT I NCR(ar cstat _hdr_si ze, -space);
bre

case ARC._ SPACE L2HDRS:

ARCSTAT | NCR(arcstat _| 2_hdr_si ze, -space);

br eak;

}

ASSERT(arc_neta_used >= space);

if (arc_meta_max < arc _net a_used)
arc_meta_max = arc_neta_used;

ARCSTAT INCR(arcstat met a_used, -space);

ASSERT(arc_si ze >= space);

atomi c_add_64(&arc_si ze, -space);

arc_dat a_buf _al | oc(uint64_t size)
1274 {

if (arc_evict_needed(ARC_BUFC_DATA))

16

new usr/src/uts/comon/fs/zfs/arc.c

1276 cv_signal (&rc_reclaimthr_cv);

1277 at omi c_add_64(&ar c_si ze, size);

1278 return (zio_data_buf_al i oc(si ze))

1279 }

1281 void

1282 arc_data_buf _free(void *buf, uint64_t size)

1283 {

1284 zi o_dat a_buf _free(buf, size);

1285 ASSERT(arc_si ze >= si ze)

1286 atom c_add_64(&arc_si ze, -size);

1287 }

1289 arc_buf_t *

1290 arc_buf_all oc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1291 {

1292 arc_buf _hdr _t *hdr;

1293 arc_buf _t *buf;

1295 ASSERT3U(size, >, 0);

1296 hdr = knem cache al | oc(hdr cache, KM PUSHPAGE);
1297 ASSERT(BUF_EMPTY(hdr)) ;

1298 hdr - >b_si ze = si ze;

1299 hdr->b_type = type;

1300 hdr->b_spa = spa | oad _gui d(spa);

1301 hdr->b_state = arc _anon;

1302 hdr—>b arc_access = 0;

1303 buf kmem cache_al | oc(buf cache, KM PUSHPAGE) ;
1304 buf - >b hdr = hdr;

1305 buf ->b_data = NULL,

1306 buf - >b_efunc = NULL;

1307 buf->b_private = NULL;

1308 buf - >b_next = NULL;

1309 hdr - >b_buf = buf;

1310 ar c_get _dat a_buf (buf);

1311 hdr - >b_dat acnt = 1;

1312 hdr->b_flags = 0;

1313 ASSERT(ref count _i s_zero(&hdr->b_refcnt));

1314 (void) refcount_add(&hdr->b_refcnt, tag);

1316 return (buf);

1317 }

1319 static char *arc_onl oan_tag = "onl oan";

1321 /*

1322 * Loan out an anonynous arc buffer. Loaned buffers are not counted as in
1323 * flight data by arc_tenpreserve_space() until they are "returned". Loaned
1324 * buffers nust be returned to the arc before they can be used by the DVMJ or

1325 * freed.
1326 */
1327 arc_buf_t *

1328 arc_| oan_buf (spa_t *spa, int size)

1329 {

1330 arc_buf _t *buf;

1332 buf = arc_buf_all oc(spa, size, arc_onloan_tag, ARC BUFC DATA);
1334 atonmi c_add_64(&arc_| oaned_bytes, size);

1335 return (buf);

1336 }

1338 /*

1339 * Return a |l oaned arc buffer to the arc.

1340 */

1341 void

17

new usr/src/uts/comon/fs/zfs/arc.c

1342 arc_return_buf (arc_buf_t *buf, void *tag)

1343 {

1344 arc_buf _hdr_t *hdr = buf->b_hdr;

1346 ASSERT(buf->b_data != NULL);

1347 (voi d) refcount_add(&hdr->b_refcnt, tag);

1348 (voi d) refcount_renove(&hdr->b_ref cnt, arc_onl oan_t ag) ;
1350 atomi c_add_64(&arc_| oaned_bytes, -hdr->b_size);

1351 }

1353 /* Detach an arc_buf froma dbuf (tag)

1354 voi d

1355 arc_l oan_i nuse_buf (arc_buf _t *buf, void *tag)

1356 {

1357 arc_buf _hdr_t *hdr;

1359 ASSERT(buf ->b_data != NULL)

1360 hdr = buf->b_hdr;

1361 (voi d) refcount_add(&hdr->b_refcnt, arc_onl oan_tag);
1362 (void) refcount_renove(&hdr->b_refcnt, tag);

1363 buf - >b_efunc = NULL;

1364 buf->b_private = NULL;

1366 atomi c_add_64(&arc_| oaned_bytes, hdr->b_size);

1367 }

1369 static arc_buf_t *

1370 arc_buf_clone(arc_buf _t *from

1371 {

1372 arc_buf _t *buf;

1373 arc_buf _hdr _t *hdr = from >b_hdr;

1374 uint64_t size = hdr->b si ze;

1376 ASSERT(hdr->b_state != arc_anon);

1378 buf = kmem cache_al | oc(buf _cache, KM PUSHPAGE);

1379 buf - >b_hdr = hdr;

1380 buf - >b_data = NULL;

1381 buf - >b_efunc = NULL;

1382 buf->b_private = NULL;

1383 buf—>b_next = hdr->b_buf;

1384 hdr - >b_buf = buf;

1385 arc_get _ data buf(buf)

1386 bcopy(from >b_dat a, buf - >b_data, size);

1388 /*

1389 * This buffer already exists in the arc so create a duplicate
1390 * copy for the caller. |If the buffer is associated with user data
1391 * then track the size and nunmber of duplicates. These stats wll
1392 * updated as duplicate buffers are created and destroyed.
1393 *

1394 f (hdr->b_type == ARC_BUFC DATA)

1395 ARCSTAT_BUMP(ar cst at _dupl i cat e_buffers);

1396 ARCSTAT_I NCR(ar cst at _dupl i cat e_buf fers_si ze, size);
1397 }

1398 hdr - >b_dat acnt += 1;

1399 return (buf);

1400 }

1402 void

1403 arc_buf_add_ref (arc_buf _t *buf, void* tag)

1404 {

1405 arc_buf _hdr _t *hdr;

1406 kmut ex_t *hash_| ock;

be

new usr/src/uts/comon/fs/zfs/arc.c 19 new usr/src/uts/comon/fs/zfs/arc.c 20
1408 [* 1474 if (type == ARC _BUFC_METADATA)
1409 * Check to see if this buffer is evicted. Callers 1475 arc_buf _data_free(buf, zio_buf_free);
1410 * nust verify b_data !'= NULL to know if the add_ref 1476 arc_space_return(si ze, ARC_SPACE DATA)
1411 * was successful. 1477 } else {
1412 */ 1478 ASSERT(type == ARC_BUFC_DATA);
1413 mut ex_ent er (&buf - >b_evi ct _I| ock) ; 1479 arc_buf _data_free(buf, zio_ data buf _free);
1414 if (buf->b_data == NULL) { 1480 ARCSTAT_I NCR(ar cst at _ dat a_size, -size);
1415 mut ex_exi t (&uf - >b_evi ct _| ock) ; 1481 atom c_add_64(&ar c_si ze, - si Ze) ;
1416 return; 1482 }
1417 1 1483 }
1418 hash_l ock = HDR_LOCK(buf - >b_hdr); 1484 i1f (list_link_active(&buf->b_hdr->b_arc_node)) {
1419 mut ex ent er (hash_l ock) ; 1485 uint64_t *cnt = &state->arcs_|size[type];
1420 hdr = buf->b_hdr;
1421 ASSERT3P(hash_| ock ==, HDR_LOCK(hdr)); 1487 ASSERT(ref count _i s_zero(&buf->b_hdr->b_refcnt));
1422 mut ex_exi t (&buf ->b_evi ct _| ock) ; 1488 ASSERT(state != arc_anon);
1424 ASSERT(hdr->b_state == arc_ntu || hdr->b_state == arc_nfu); 1490 ASSERT3U(*cnt, >=, size);
1425 add_ref erence(hdr, hash_l ock, tag); 1491 at om c_add_64(cnt, -size);
1426 DTRACE_PROBE1(arc__hit, arc_buf_hdr _t *, hdr); 1492 }
1427 arc_access(hdr, hash_Il ock); 1493 ASSERT3U(st at e- >arcs_si ze, >=, size);
1428 nmut ex_exi t (hash_| ock); 1494 atom c_add_64(&st at e->arcs_si ze, -size);
1429 ARCSTAT_BUMP(ar cst at _ hi ts); 1495 buf->b_data = NULL;
1430 ARCSTAT_CONDSTAT(! (hdr->b_f|ags & ARC_PREFETCH),
1431 demand, prefetch, hdr->b_type != ARC BUFC_ NETADATA 1497 /*
1432 data, netadata, hlts) 1498 * |f we’'re destroying a duplicate buffer make sure
1433 } 1499 * that the appropriate statistics are updated.
1500 */
1435 /| * 1501 if (buf->b_hdr->b_dat acnt > 1 &&
1436 * Free the arc data buffer. If it is an |2arc wite in progress, 1502 buf ->b_hdr->b_type == ARC_BUFC_DATA) {
1437 * the buffer is placed on |2arc_free_on_wite to be freed later. 1503 ARCSTAT_BUMPDOWN(ar cst at dupl icate_buffers);
1438 */ 1504 ARCSTAT_|I NCR(ar cstat _dupli cate_buffers_size, -size);
1439 static void 1505 }
1440 arc_buf_data_free(arc_buf _t *buf, void (*free_func)(void *, size_t)) 1506 ASSERT(buf - >b_hdr - >b_dat acnt > 0);
1441 { 1507 buf - >b_hdr->b_datacnt -= 1;
1442 arc_buf _hdr_t *hdr = buf->b_hdr; 1508 }
1444 if (HDR_L2_WRI TING hdr)) { 1510 /* only remove the buf if requested */
1445 | 2arc_data_free_t *df; 1511 if (lall)
1446 df = kmem al | oc(si zeof (l2arc_data_free_t), KM SLEEP); 1512 return;
1447 df - >| 2df _data = buf->b_data;
1448 df - >| 2df _si ze = hdr->b_si ze; 1514 /* renpve the buf fromthe hdr list */
1449 df - >l 2df _func = free_func; 1515 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = & *bufp)->b_next)
1450 mut ex_enter (& 2arc_free_on_wite_ntx); 1516 continue;
1451 list_insert_head(l2arc_free_on_wite, df); 1517 *puf p = buf->b_next;
1452 mutex_exit(& 2arc_free_on_wite_ntx); 1518 buf - >b_next = NULL;
1453 ARCSTAT_BUMP(arcstat _| 2_free_on_wite);
1454 } else { 1520 ASSERT(buf - >b_ef unc == NULL);
1455 free_func(buf->b_data, hdr->b_size);
1456 } 1522 /* clean up the buf */
1457 } 1523 buf ->b_hdr = NULL;
1524 kmem cache_f ree(buf _cache, buf);
1459 static void 1525 }
1460 arc_buf_destroy(arc_buf _t *buf, boolean_t recycle, boolean_t all)
1461 { 1527 static void
1462 arc_buf _t **buf p; 1528 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1529 {
1464 /* free up data associated with the buf */ 1530 ASSERT(refcount _is_zero(&hdr->b_refcnt));
1465 if (buf->b_data) { 1531 ASSERT3P(hdr->b_state, ==, arc_anon);
1466 arc_state_t *state = buf->b_hdr->b_state; 1532 ASSERT(! HDR_ 1 O I N PRCG?ESS(hdr));
1467 uint64_t size = buf- >b hdr->b_si ze; 1533 | 2arc_buf _hdr_t *T2hdr = hdr—>b_l 2hdr;
1468 arc_buf _cont ent s_t type = buf->b_ hdr - >b _type;
1535 if (I12hdr !'= NULL) {
1470 arc_cksumverify(buf); 1536 bool ean_t buflist_held = MJTEX_HELD(& 2arc_buflist_ntx);
1471 ar c_buf _unwat ch(buf); 1537 /*
1538 * To prevent arc_free() and | 2arc_evict() from
1473 if (!recycle) { 1539 * attenpting to free the same buffer at the same tine,

new usr/src/uts/comon/fs/zfs/arc.c

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

1552
1553
1554
1555
1556
1557
1558
1559

1561
1562
1563

1565
1566
1567
1568
1569
1570

1572
1573
1574
(1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594

1596
1597
1598
1599
1600

1602
1603

1605

}

voi d

a FREE_I N _PROGRESS flag is given to arc_free() to
header while we are waiting on | 2arc_buflist_ntx.

*
*
*
*
* The hdr may be renoved from | 2ad_buflist before we
* grab | 2arc_buflist_ntx, so b_|l2hdr is rechecked.
*
/
if ('buflist_held) {
nut ex_ent er (& 2arc_buflist_ntx);
I 2hdr = hdr->b_| 2hdr;
}

if (12hdr = NULL) {
i st_remove(l 2hdr->b_dev->| 2ad_buflist, hdr);
ARCSTAT_I NCR(arcstat _| 2_si ze, -hdr->b si ze);
kmem free(l 2hdr, sizeof (I 2ar c_buf _hdr_t));
if (hdr->b_state == arc_| 2c_only)

| 2arc_hdr_stat _renove();

hdr->b_| 2hdr = NULL;

}

if (!buflist_held)
mut ex_exit (& 2arc_buflist_ntx);

}

if (!'BUF_EMPTY(hdr)) {
ASSERT(! HDR_| N_HASH TABLE(hdr));
buf _di scard_i dentity(hdr);

}
while (hdr->b_buf) {
arc_buf _t *buf = hdr->b_buf;

if (buf->b_efunc)
nut ex_ent er (&arc_evi ction_ntXx);
mut ex_ent er (&buf - >b_evi ct _| ock);
ASSERT(buf - >b_hdr 1= NULL);
ar c_buf _dest roy(hdr->b_buf, FALSE, FALSE);
hdr->b_buf = buf->b_next;
buf->b_hdr = &arc_evicti on_hdr;
buf->b_next = arc_eviction_list;
arc_eviction_list = buf;
nut ex_exi t (&buf->b_evi ct _| ock);
mut ex_exit (&arc_evi ction_ntx);

} else {

) arc_buf _destroy(hdr->b_buf, FALSE, TRUE);

}

if (hdr->b_freeze_cksum!= NULL) {
kmem free(hdr->b_freeze_cksum sizeof (zio_cksumt));
hdr->b_freeze_cksum = NULL;

}

if (hdr->b_thawed) {
kmem free(hdr->b thawed 1);
hdr->b_t hawed = NULL

}
ASSERT(!list_link_active(&hdr->b_arc_node));
ASSERTSP(hdr->b hash_next, ==, NULL),
ASSERT3P(hdr - >b_ach, ==, NULL),

kmem cache_free(hdr_cache, hdr);

arc_buf _free(arc_buf _t *buf, void *tag)
1604 {

arc_buf _hdr_t *hdr = buf->b_hdr;

give it priority. l2arc_evict() can't destroy this

21

new usr/src/uts/comon/fs/zfs/arc.c

1606 int hashed = hdr->b_state != arc_anon;

1608 ASSERT(buf - >b_efunc == NULL);

1609 ASSERT(buf->b_data != NULL);

1611 if (hashed) {

1612 kmut ex_t *hash_l ock = HDR_LOCK(hdr);

1614 mut ex_ent er (hash_| ock);

1615 hdr = buf->b_hdr;

1616 ASSERTSP(hash_| ock, ==, HDR_LOCK(hdr)):
1618 (void) renove_reference(hdr, hash_|lock, tag);
1619 if (hdr->b_datacnt > 1)

1620 ar c_buf _destroy(buf, FALSE, TRUE);
1621 } else {

1622 ASSERT(buf == hdr->b_buf);

1623 ASSERT(buf - >b efunc == NULL)

1624 hdr->b_flags [= ARC_BUF__ AVAILABLE
1625 }

1626 mut ex_exi t (hash_I ock) ;

1627 } else if (HDR.IO INPROGRESS(hdr)) {

1628 int destroy_hdr;

1629 /*

1630 * We are in the middle of an async wite.
1631 * this buffer unless the wite conpletes before we finish
1632 * decrenenting the reference count.

1633 */

1634 mut ex_enter(&arc_eviction_ntx);

1635 (voi d) renove_reference(hdr, NULL tag);
1636 ASSERT(refcount is_zero(&hdr->b_refcnt));
1637 destroy_hdr = ! HDR_I O | N PROGRESS(hdr) ;
1638 mut ex_exi t (&arc_evi ction_ntx);

1639 if (destroy_hdr)

1640 ar c_hdr_destroy(hdr);

1641 } else {

1642 if (renmove_reference(hdr, NULL, tag) > 0)
1643 ar c_buf destroy(buf, FALSE, TRUE);
1644 el se

1645 arc_hdr_destroy(hdr);

1646 }

1647 }

1649 bool ean_t

1650 arc_buf_renove_ref (arc_buf _t *buf, void* tag)

1651 {

1652 arc_buf _hdr_t *hdr buf >b_hdr;

1653 knutex_t *hash Iock = HDR LOCK(hdr)

1654 bool ean_t no_cal | back = (buf->b_i efunc == = NULL);
1656 if (hdr->b_state == arc_anon) {

1657 ASSERT(hdr - >b_dat acnt == 1);

1658 arc_buf _free(buf, tag);

1659 return (no_call back);

1660 }

1662 mut ex_ent er (hash_l ock) ;

1663 hdr = buf ->b_hdr;

1664 ASSERT3P(hash_| ock, ==, HDR_LOCK(hdr));

1665 ASSERT(hdr->b_state != arc_anon);

1666 ASSERT(buf->b_data != NULL);

1668 (void) renove_reference(hdr, hash_|lock, tag);

1669 if (hdr->b_datacnt > 1)

1670 if (no_call back)

1671 ar c_buf _destroy(buf, FALSE, TRUE);

22

new usr/src/uts/comon/fs/zfs/arc.c

1672 } else if (no_callback) {

1673 ASSERT(hdr - >b_buf == buf && buf->b_next == NULL);
1674 ASSERT(buf - >b_ef unc == NULL);

1675 hdr->b_flags | = ARC_BUF_AVAI LABLE;

1676 }

1677 ASSERT(no_cal | back || hdr->b_datacnt > 1 ||

1678 refcount _is_zero(&hdr->b_refcnt));

1679 mut ex_exi t (hash_I ock);

1680 return (no_call back);

1681 }

1683 int

1684 arc_buf_size(arc_buf_t *buf)

1685 {

1686 return (buf->b_hdr->b_size);

1687 }

1689 /*

1690 * Called fromthe DMJ to determine if the current buffer should be
1691 * evicted. In order to ensure proper |ocking, the eviction nmust be initiated
1692 * fromthe DMJ. Return true if the buffer is associated with user data and
1693 * duplicate buffers still exist.

1694 */

1695 bool ean_t
1696 arc_buf _evicti on_needed(arc_buf _t *buf)

1697 {

1698 arc_buf _hdr_t *hdr;

1699 bool ean_t evict_needed = B_FALSE;

1701 if (zfs_disable_dup_eviction)

1702 return (B_FALSE);

1704 mut ex_ent er (&buf - >b_evi ct _| ock) ;

1705 hdr = buf->b_hdr;

1706 if (hdr == NULL) {

1707 /*

1708 * We are in arc_do_user_evicts(); let that function
1709 * performthe eviction.

1710 */

1711 ASSERT(buf - >b_data == NULL)

1712 nmut ex_exi t (&uf->b_evi ct _| ock);

1713 return (B_FALSE);

1714 } else if (buf->b_data == NULL) {

1715 /*

1716 * We have already been added to the arc eviction list;
1717 * recommend eviction.

1718 */

1719 ASSERT3P(hdr, ==, &arc_eviction_hdr);

1720 mut ex_exi t (&uf->b_evi ct _| ock);

1721 return (B_TRUE);

1722 }

1724 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1725 evi ct _needed = B_TRUE;

1727 mut ex_exi t (&buf - >b_evi ct _| ock);

1728 return (evict_needed);

1729 }

1731 /*

1732 * Evict buffers fromlist until we’ve renoved the specified nunber of
1733 * bytes. Move the renoved buffers to the appropriate evict state.
1734 * If the recycle flag is set, then attenpt to "recycle" a buffer:
1735 * - look for a buffer to evict that is ‘bytes’ |ong.

1736 * - return the data block fromthis buffer rather than freeing it.
1737 * This flag is used by callers that are trying to nake space for a

23

new usr/src/uts/comon/fs/zfs/arc.c

1738 * new buffer in a full arc cache.

1739 *

1740 * This function makes a "best effort". It skips over any buffers
1741 * it can't get a hash_lock on, and so may not catch all candidates.
1742 * It may also return without evicting as nuch space as requested.
1743 */

1744 static void *
1745 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,

1746 arc_buf _contents_t type)

1747 {

1748 arc_state_t *evicted_state;

1749 uint64_t bytes_evicted = 0, skipped = 0, m ssed = 0;

1750 arc_buf _hdr_t *ab, *ab_prev = NULL;

1751 list_t *list = &tate->arcs_list[type];

1752 kmut ex_t *hash_| ock;

1753 bool ean_t have_l ock;

1754 void *stol en = NULL;

1756 ASSERT(state == arc_nru || state == arc_nfu);

1758 evicted_state = (state == arc_nru) ? arc_nru_ghost : arc_nfu_ghost;
1760 mut ex_ent er (&state->arcs_ntx);

1761 mut ex_ent er (&evi ct ed_state->arcs_ntx);

1763 for (ab = list_tail(list); ab; ab = ab_prev) {

1764 ab_prev = list_prev(list, ab);

1765 /* prefetch buffers have a mninumlifespan */

1766 if (HDR_I O I N PROGRESS(ab) ||

1767 (spa & ab->b_spa != spa) ||

1768 (ab->b_flags & (ARC_PREFETCH| ARC | NDI RECT) &&

1769 ddi _get _Ibolt() - ab->b_arc_access <

1770 arc_min_prefetch_lifespan)) {

1771 ski pped++;

1772 cont i nue;

1773 }

1774 /* "l ookahead" for better eviction candidate */

1775 if (recycle & ab->b_size != bytes &&

1776 ab_prev && ab_prev->b_size == bytes)

1777 cont i nue;

1778 hash_| ock = HDR _LOCK(ab);

1779 have_| ock = MJTEX_HELD(hash_| ock);

1780 if (have_lock || nutex_tryenter(hash_|lock)) {

1781 ASSERTO(r ef count _count (&ab->b_refcnt));

1782 ASSERT(ab->b_datacnt > 0);

1783 whi | e (ab->b_buf) {

1784 arc_buf _t *buf = ab->b_buf;

1785 if (!'mutex_tryenter(&uf->b_evict_lock)) {
1786 m ssed += 1;

1787 br eak;

1788 }

1789 if (buf->b_data) {

1790 byt es_evi cted += ab->b_si ze;
1791 if (recycle & ab->b_type == type &&
1792 ab->b_size == bytes &&
1793 IHDR _L2_WRI TI N ab)) {

1794 stol en = buf->b_dat a;
1795 recycl e = FALSE;

1796 }

1797 }

1798 if (buf->b_efunc) {

1799 mut ex_ent er (&arc_evi ction_ntx);
1800 ar c_buf _destroy(buf,

1801 buf->b_data == stol en, FALSE);
1802 ab->b_buf = buf->b_next;

1803 buf->b_hdr = &arc_eviction_hdr;

24

new usr/src/uts/comon/fs/zfs/arc.c 25 new usr/src/uts/comon/fs/zfs/arc.c 26
1804 buf->b_next = arc_eviction_list; 1870 arc_evi ct _ghost (arc_nru_ghost, NULL, todelete);
1805 arc_eviction_list = buf; 1871 } else if (arc_nfu_ghost->arcs_Isize[type] > 0) {
1806 nmut ex_exit (&arc_eviction_ntx); 1872 int64_t todel ete = M N(arc_nfu_ghost->arcs_| size[type],
1807 mut ex_exi t (&uf->b_evi ct _| ock); 1873 arc_nru_ghost - >arcs_si ze +
1808 } else { 1874 arc_nfu_ghost->arcs_si ze - arc_c);
1809 mut ex_exi t (&buf - >b_evi ct _I| ock); 1875 arc_evi ct _ghost (arc_nfu_ghost, NULL, todelete);
1810 ar c_buf _dest roy(buf, 1876 }
1811 buf->b_data == stol en, TRUE); 1877 }
1812 }
1813 } 1879 return (stolen);
1880 }
1815 if (ab->b_| 2hdr)
1816 ARCSTAT_I NCR(ar cstat _evi ct _| 2_cached, 1882 /*
1817 ab->b_si ze); 1883 * Renove buffers fromlist until we’ve renpved the specified nunber of
1818 } else { 1884 * bytes. Destroy the buffers that are renoved.
1819 if (l2arc_wite_eligible(ab->b_spa, ab)) { 1885 */
1820 ARCSTAT_I NCR(arcstat _evict_| 2_eligible, 1886 static void
1821 ab- >b_si ze); 1887 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1822 } else { 1888 {
1823 ARCSTAT_I NCR(1889 arc_buf _hdr_t *ab, *ab_prev;
1824 arcstat_evict_|2_ineligible, 1890 arc_buf _hdr _t marker ={ 0
1825 ab- >b_si ze); 1891 list_t *list = &tate->arcs_ I i st[ARC_BUFC_DATA] ;
1826 } 1892 kmut ex_t *hash_| ock;
1827 } 1893 uint64_t bytes_del eted = 0
1894 uint64_t bufs_skipped =
1829 if (ab->b_datacnt == 0) {
1830 arc_change_state(evicted_state, ab, hash_| ock); 1896 ASSERT(GHOST_STATE(state)) ;
1831 ASSERT(HDR_| N_HASH TABLE(ab)) ; 1897 top:
1832 ab->b_flags |= ARC_| N HASH TABLE 1898 mut ex_ent er (&state->arcs_ntx);
1833 ab->b_flags & ~ARC_BUF_AVAI LABLE; 1899 for (ab = list_tail(list); ab; ab = ab_prev) {
1834 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1900 ab_prev = list_pr ev(l ist, ab);
1835 } 1901 if (spa & ab->b_spa != spa)
1836 if (!have_l ock) 1902 conti nue;
1837 mut ex_exi t (hash_I ock);
1838 if (bytes >= 0 & bytes_evi cted >= bytes) 1904 /* ignore mar kers */
1839 br eak; 1905 if (ab->b_spa == 0)
1840 } else { 1906 conti nue;
1841 m ssed += 1;
1842 } 1908 hash_l ock = HDR_LOCK(ab) ;
1843 } 1909 /* caller nmay be trying to nmodify this buffer, skip it */
1910 if (MJUTEX_HELD(hash_l ock))
1845 mut ex_exi t (&evi cted_state->arcs_ntx); 1911 conti nue;
1846 mut ex_exit (&st ate->arcs_ntx); 1912 if (mutex_tryenter(hash_l ock)) {
1913 ASSERT(! HDR | O TN_PROGRESS(ab)) ;
1848 if (bytes_evicted < bytes) 1914 ASSERT(ab->b_buf == NULL);
1849 dprintf("only evicted %|d bytes from %", 1915 ARCSTAT_BUMWP(ar cst at _del et ed) ;
1850 (longlong_t)bytes_evicted, state); 1916 byt es_del eted += ab->b_si ze;
1852 if (skipped) 1918 if (ab->b_l2hdr !'= NULL) {
1853 ARCSTAT_I NCR(ar cst at _evi ct _ski p, ski pped); 1919 /*
1920 * This buffer is cached on the 2nd Level ARC
1855 if (m ssed) 1921 * don’t destroy the header.
1856 ARCSTAT_| NCR(ar cst at _nutex_m ss, mi ssed); 1922 */
1923 arc_change_state(arc_|l 2c_only, ab, hash_l ock);
1858 /* 1924 mut ex_exi t (hash_| ock);
1859 * W have just evicted some data into the ghost state, nake 1925 } else {
1860 * sure we al so adjust the ghost state size if necessary. 1926 arc_change_st at e(arc_anon, ab, hash_I| ock);
1861 */ 1927 mut ex_exi t (hash_| ock);
1862 if (arc_no_grow && 1928 arc_hdr_destroy(ab);
1863 arc_nru_ghost - >arcs SI ze + arc_nfu_ghost->arcs_size > arc_c) { 1929 }
1864 “int64_t nru_over = arc_anon->arcs_size + arc_nru->arcs_size +
1865 arc_nru_ghost->arcs_size - arc_c; 1931 DTRACE_PRGBEl(ar c__delete, arc_buf_hdr_t *, ab);
1932 if (bytes >— 0 && bytes_del eted >= bytes)
1867 if (nmru_over > 0 && arc_nru_ghost->arcs_| size[type] > 0) { 1933 bre
1868 int64_t todelete = 1934 } else if (bytes < 0) {
1869 M N(ar c_nru_ghost ->arcs_| si ze[type], nru_over); 1935 /*

new usr/src/uts/comon/fs/zfs/arc.c 27

1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950

1952
1953
1954
1955
1956

1958
1959
1960
1961

1963
1964
1965
1966

1968
1969

1971

1973
1974
1975

1977
1978
1979

1981
1982
1983
1984
1985

1987
1988
1989
1990
1991

1993
1994
1995

1997
1999

2000
2001

* Insert a list marker and then wait for the
* hash |l ock to becorme available. Once its

* available, restart fromwhere we left off.
*

/
list_insert_after(list, ab, &marker);
mut ex_exit (&state->arcs_ntx);
nut ex_ent er (hash_l ock) ;
nut ex_exi t (hash_I ock) ;
mut ex_ent er (&st at e->arcs_nt x) ;
ab_prev = |list_prev(list, &marker);
l'ist_remove(list, &rmrker)

} else
buf s_ski pped += 1

mut ex_exit (&state->arcs_ntx);

if (list == &state->arcs_|ist[ARC BUFC DATA] &&
(bytes < 0 || bytes_del eted < bytes))
list = &tate->arcs_list[ARC_BUFC_ METADATA] ;
) goto top;

i f (bufs_skipped)
ARCSTAT_| NCR(ar cst at _nutex_m ss,
ASSERT(byt es >= 0);

buf s_ski pped) ;

}

if (bytes_del eted < bytes)
dprintf("only deleted %1d bytes from %",
(longl ong_t)bytes_del eted, state);

static void
ar c_adj ust (voi d)
1970 {

int64_t adjustnent, delta;
/*

* Adjust MRU size

*/

adj ustment = MN((int64_t)(arc_size - arc_c),
(int64_t)(arc_anon->arcs_size + arc_nru->arcs_size + arc_meta_used -
arc_p));

if (adjustment > 0 && arc_nru->arcs_| si ze[ARC_ BUFC_DATA] > 0) {
delta = M N(arc_nru->arcs _|'si ze[ARC_BUFC DATA], " adj ust nent) ;
(void) arc_evict(arc_nru, NULL, delta, FALSE, ARC BUFC DATA)
adj ustment -= delta;

}

if (adjustment > 0 & arc_nru->arcs_| si ze[ARC_BUFC_METADATA] > 0)
delta = M N(arc_ nTu->arcs_| si ze[ARC_BUFC_METADATA], ~ adj ust ment) ;
(void) arc_evict(arc_nru, NULL, delta, FALSE,
ARC_BUFC_METADATA) ;

}
/*
* Adj ust MU size
*/
adj ustment = arc_size - arc_c;
if (adjustment > 0 &% arc_nfu->arcs_| si ze[ARC_BUFC _DATA] > 0)
d

elta = M N(adj ustnment, arc_nfu->arcs_| si ze[ARC_BUFC DATA]) ;
(void) arc_evict(arc_nfu, NULL, delta, FALSE, ARC BUFC DATA)

new usr/src/uts/comon/fs/zfs/arc.c

2002
2003

2005
2006
2007
2008
2009
2010

2012
2013
2014

2016

2018
2019
2020
2021

2023
2024

2026
2027
2028
2029
2030

2032
2033

2035
2036
2037
2038
2039
2040
2041
2042

2044
2045

2047
2048
2049
2050
2051
2052
2053

2055
2056
2057
2058
2059
2060

2062

2064
2065

2067

}

adj ustment -= delta;

}

if (adjustment > 0 && arc_nfu->arcs_| si ze[ARC_BUFC_METADATA] > 0) {

int64_t delta = M N(adj ustnment,
arc_nf u- >arcs I si ze[ARC | BUFC > METADATA]) ;
(void) arc_evict(arc_nfu, NULL, delta, FALSE
ARC_BUFC_METADATA)
}

/*
* Adjust ghost lists
*/

adj ustment = arc_nru->arcs_size + arc_nru_ghost->arcs_size - arc_c;

if (adjustment > 0 & arc_nru_ghost->arcs_size > 0)
delta = M N(arc_nru_ghost->arcs_si ze,
arc_evi ct _ghost (arc_nru_ghost, NULL, delta);

}

adj ustment =))
arc_nru_ghost ->arcs_si ze + arc_nfu_ghost->arcs_si ze -

if (adjustment > 0 & arc_nfu_ghost->arcs_size > 0)
delta = M N(arc_nfu_ghost->arcs_si ze,
arc_evi ct _ghost (arc_nfu_ghost, NULL, delta);

static void
arc_do_user _evi ct s(voi d)
2034 {

}
/ *

mut ex_enter(&arc_eviction_ntx);

while (arc_eviction_|list !'= NULL)
arc_buf _t *buf = arc_eviction_list;
arc_eviction_list = buf->b_next;
mut ex_ent er (&buf->b_evi ct _| ock);
buf->b_hdr = NULL;
mut ex eX|t(&buf >b evi ct _| ock);
mut ex_exi t (&rc_evi ction_ntx);

if (buf->b_efunc !'= NULL)
VERI FY(buf - >b_efunc(buf) == 0);

buf - >b_efunc = NULL;
buf->b_private = NULL;

kmem cache_free(buf _cache, buf);
nmut ex_enter (&arc_evi ction_ntx);

mut ex_exi t (&arc_eviction_ntx);

* Flush all *evictabl e* data fromthe cache for the given spa.

* NOTE:

e/
voi d

this will not touch "active" (i. referenced) data.

arc_flush(spa_t *spa)
2061 {

uint64_t guid = 0;

if (spa)
guid = spa_| oad_gui d(spa);

while (list_head(&arc_nru->arcs_|ist[ARC_BUFC DATA])) {

{
adj ust nent) ;

{
adj ustment) ;

arc_c;

new usr/src/uts/comon/fs/zfs/arc.c

2068 (void) arc_evict(arc_nru, guid, -1, FALSE, ARC BUFC_DATA);
2069 if (spa)

2070 br eak;

2071 }

2072 while (list_head(&arc_nru->arcs_|ist[ARC_BUFC METADATA])) {
2073 (void) arc_evict(arc_nru, guid, -1, FALSE, ARC BUFC METADATA);
2074 if (spa)

2075 br eak;

2076 }

2077 while (list_head(&arc_nfu->arcs_|ist[ARC_BUFC_DATA])) {

2078 (void) arc_evict(arc_nfu, guid, -1, FALSE, ARC BUFC DATA);
2079 if (spa)

2080 br eak;

2081 }

2082 while (list_head(&arc_nfu->arcs_list[ARC BUFC_METADATA])) {
2083 (void) arc_evict(arc_nfu, guid, -1, FALSE, ARC BUFC METADATA);
2084 if (spa)

2085 break;

2086 1

2088 arc_evi ct _ghost (arc_nru_ghost, guid, -1);

2089 arc_evi ct _ghost (arc_nfu_ghost, guid, -1);

2091 mut ex_ent er (&arc_recl ai m_t hr _| ock) ;

2092 arc_do_user_evicts();

2093 mut ex_exi t (&arc_reclaimthr_| ock)

2094 ASSERT(spa || arc_eviction_Tist == NULL);

2095 }

2097 void

2098 arc_shrink(void)

2099 {

2100 if (arc_c > arc_c) {

2101 ui nt 64_t free;

2103 #ifdef _KERNEL

2104 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
2105 #el se

2106 to_free = arc_c >> arc_shrink_shift;

2107 #endi f

2108 if (arc_c > arc_c_mn + to_free)

2109 atomi c_add_64(&arc_c, -to_free);

2110 el se

2111 arc_c = arc_c_mn;

2113 atom c_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2114 if (arc_c > arc_size)

2115 arc_c = MAX(arc_size, arc_c_nin);

2116 if (arc_| p>arc c)

2117 arc_p = (arc_c >> 1);

2118 ASSERT(arc_c >= arc_c_mnin);

2119 ASSERT((int64_t)arc_p >= 0)

2120 }

2122 if (arc_size > arc_c)

2123 arc_adj ust();

2124 }

2126 [*

2127 * Deternine if the systemis under menory pressure and is asking

2128 * to reclaimnenory. A return value of 1 indicates that the system
2129 */i s under nenory pressure and that the arc shoul d adjust accordingly.
2130 *

2131 static int

2132 arc_recl ai m needed(voi d)

2133 {

29

new usr/src/uts/comon/fs/zfs/arc.c 30
2134 uint64_t extra;

2136 #ifdef _KERNEL

2138 if (needfree)

2139 return (1);

2141 *

2142 * take 'desfree’ extra pages, so we reclai msooner, rather than |ater
2143 */

2144 extra = desfree;

2146 /*

2147 * check that we’'re out of range of the pageout scanner. It starts to
2148 * schedul e paging if freememis |less than |otsfree and needfree.

2149 * |otsfree is the high-water mark for pageout, and needfree is the
2150 * nunber of needed free pages. W add extra pages here to nmmke sure
2151 * the scanner doesn’'t start up while we're freeing nmenory.

2152 *

2153 f (freemem< |otsfree + needfree + extra)

2154 return (1);

2156 I*

2157 * check to nake sure that swapfs has enough space so that anon

2158 * reservations can still succeed. anon_resvnen() checks that the
2159 * availrmemis greater than swapfs_minfree, and the nunber of reserved
2160 * swap pages. W also add a bit of extra here just to prevent

2161 * circunstances fromgetting really dire.

2162 *

2163 if (availrmem < swapfs_minfree + swapfs_reserve + extra)

2164 return (1);

2166 #if defined(__i386)

2167 /*

2168 * If we're on an 1386 platform it’'s possible that we'll exhaust the
2169 * kernel heap space before we ever run out of avail abl e physical

2170 * menory. Mdst checks of the size of the heap_area conpare agai nst
2171 * tune.t_minarmem which is the mininmmavailable real menory that we
2172 * can have in the system However, this is generally fixed at 25 pages
2173 * which is so lowthat it’'s useless. |In this conparison, we seek to
2174 * calculate the total heap-size, and reclaimif nore than 3/4ths of the
2175 * heap is allocated. (O, in the calculation, if less than 1/4th is
2176 * free)

2177 */

2178 if (vmem.size(heap_arena, VMEM FREE) <

2179 (vmem si ze(heap_arena, VMEM FREE | VMEM ALLCC) >> 2))

2180 return (1);

2181 #endi f

2183 /*

2184 * |f zio data pages are being allocated out of a separate heap segment,
2185 * then enforce that the size of available vmemfor this arena renains
2186 * above about 1/16th free.

2187 *

2188 * Note: The 1/16th arena free requirenent was put in place

2189 * to aggressively evict menory fromthe arc in order to avoid

2190 * menory fragnentation issues.

2191 */

2192 if (zio_arena !'= NULL &&

2193 viem si ze(zi o_arena, VMEM FREE) <

2194 (vmem si ze(zi o_arena, VMEM ALLCC) >> 4))

2195 return (1);

2196 #el se

2197 if (spa_get_randon(100) == 0)

2198 return (1);

2199 #endi f

new usr/src/uts/comon/fs/zfs/arc.c

2200 return (0);

2201 }

2203 static void

2204 arc_kmem reap_now(arc_reclaimstrategy_t strat)

2205 {

2206 size_t i;

2207 kmem cache_t *prev_cache = NULL;

2208 kmem cache_t *prev_data_cache = NULL;

2209 extern kmem cache_t *zi o_buf _cache[];

2210 extern kmem cache_t *zi o_dat a_buf _cache[];

2212 #ifdef _KERNEL

2213 if (arc_meta_used >= arc_neta_limt) {

2214 /*

2215 * We are exceeding our neta-data cache limt.

2216 * Purge sonme DNLC entries to rel ease hol ds on neta-data.
2217 */

2218 dnl c_reduce_cache((void *)(uintptr_t)arc_reduce_dnl c_percent);
2219 }

2220 #if defined(__i386)

2221 /*

2222 * Recl ai m unused nenory fromall kmem caches.

2223 */

2224 kmem reap();

2225 #endif

2226 #endif

2228 /*

2229 * An aggressive reclamation will shrink the cache size as well as
2230 * reap free buffers fromthe arc kmem caches.

2231 *

2232 if (strat == ARC_RECLAI M AGGR)

2233 arc_shrink();

2235 for (i = 0; i < SPA MAXBLOCKSI ZE >> SPA_M NBLOCKSHI FT; i ++) {
2236 if (zio_buf_cache[i] != prev_cache)

2237 prev_cache = zi o_buf_cache[i];

2238 kmem cache_r eap_now zi o_buf _cache[i]);

2239 }

2240 if (zio_data_buf_cache[i] != prev_data_cache) {
2241 prev_data_cache = zi o_data_buf_cache[i];
2242 kmem cache_r eap_now zi o_dat a_buf _cache[i]);
2243 }

2244

2245 kmem cache_r eap_now(buf _cache);

2246 kmem cache_r eap_now(hdr _cache);

2248 *

2249 * Ask the vnmem areana to reclai munused menory fromits
2250 * quantum caches.

2251 *

2252 if (zio_arena != NULL && strat == ARC_RECLAI M _AGGR)

2253 virem qcache_r eap(zi o_arena);

2254 }

2256 static void

2257 arc_reclai mthread(void)

2258 {

2259 cl ock_t growinme = O;

2260 arc_reclaimstrategy_t Iast_reclai m= ARC RECLAI M CONS;
2261 cal I b_cpr_t cpr;

2263 CALLB_CPR_INI T(&cpr, &arc_reclaimthr_|ock, callb_generic_cpr, FTAG;
2265 mut ex_enter (&arc_recl aimthr_| ock);

31

new usr/src/uts/comon/fs/zfs/arc.c

2266 while (arc_thread_exit == 0) {

2267 if (arc_reclaimneeded()) {

2269 if (arc_no_grow) {

2270 if (last_reclaim== ARC_RECLAI M CONS) {
2271 I ast _recl ai m = ARC_RECLAI M_AGGR;
2272 } else {

2273 | ast _recl ai m = ARC_RECLAI M_CONS;
2274

2275 } else {

2276 arc_no_grow = TRUE;

2277 I ast _recl ai m = ARC_RECLAI M _AGGR;

2278 nmenbar _producer () ;

2279 }

2281 /* reset the growth delay for every reclaim?*/
2282 growtinme = ddi_get_lbolt() + (arc_grow.retry * hz);
2284 arc_kmem reap_now(| ast _recl aim;

2285 arc_warm = B_TRUE;

2287 } else if (arc_no_grow && ddi _get_Ibolt() >= growtine) {
2288 arc_no_grow = FALSE;

2289 }

2291 arc_adjust();

2293 if (arc_eviction_list != NULL)

2294 arc_do_user_evicts();

2296 /* block until needed, or one second, whichever is shorter
2297 CALLB_CPR_SAFE BEG N(&cpr);

2298 (void) cv_tinmedwait(&rc_reclaimthr_cv,

2299 &arc_reclaimthr_lock, (ddi_get_lbolt() + hz));

2300 CALLB_CPR_SAFE_END(&cpr, &arc_reclai mthr_Iock);

2301 1

2303 arc_thread_exit = 0;

2304 cv_broadcast (&arc_reclaimthr_cv);

2305 CALLB_CPR_EXI T(&cpr) ; /* drops arc_reclaimthr_lock */
2306 thread_exit();

2307 }

2309 /*

2310 * Adapt arc info given the nunber of bytes we are trying to add and
2311 * the state that we are comming from This function is only called
2312 * when we are addi ng new content to the cache.

2313 */

2314 static void

2315 arc_adapt (i nt bytes, arc_state_t *state)

2316 {

2317 int mult;

2318 uint64_t arc_p_min = (arc_c >> arc_p_mn_shift);

2320 if (state == arc_| 2c_only)

2321 return;

2323 ASSERT(bytes > 0);

2324 /*

2325 * Adapt the target size of the MRU |list:

2326 * - if we just hit in the MRU ghost list, then increase
2327 kd the target size of the MRU |ist.

2328 * - if we just hit in the MFU ghost |ist, then increase
2329 * the target size of the MFU |ist by decreasing the
2330 * target size of the MRU |ist.

2331 */

*/

new usr/src/uts/comon/fs/zfs/arc.c 33

2332
2333
2334
2335

2337
2338
2339

2341
2342
2343

2345
2346
2347
2348

2350
2351
2352
2353

2355
2356

2358
2359

2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

2377
2378
2379
2380
2381
2382
2383

}

/*

* Check if the cache has reached its limts and eviction is required
prior to insert.

*/

if (state == arc_nru_ghost)
mult = ((arc_nru_ghost->arcs_size >= arc_nfu_ghost->arcs_si ze) ?
1 : (arc_nfu_ghost->arcs_size/arc_nru_ghost->arcs_size));
mult = MN(rmult, 10); /* avoid wild arc_p adjustnent */

arc_p = MN(arc_c - arc_p_min,
} else if (state == arc_nfu_ghost) {
uint64_t delta;

arc_p + bytes * nult);

mult = ((arc_nfu_ghost->arcs_size >= arc_nru_ghost->arcs_si ze) ?
1 : (arc_nru_ghost->arcs_size/arc_nfu_ghost->arcs_size));
milt = MN(mult, 10);

delta = MN(bytes * mult, arc_p);
arc_p = MAX(arc_p_min, arc_p - delta);

}
ASSERT((int64_t)arc_p >= 0);

if (arc_reclaimneeded())
cv_signal (&rc_reclaimthr_cv);
return;

}

if (arc_no_grow)
return;

if (arc_c >= arc_c_nax)
return;

/*
*If we're within (2 * maxbl ocksi ze) bytes of the target
* cache size, increnent the target cache size
*
if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHI FT)) {
atoni c_add_64(&arc_c, (int64_t)bytes);
if (arc_c > arc_c_rrax)
arc_c = arc_c_mx;
else if (state == arc anon)
at om c_add_64(&arc_p,
if (arc_p > arc_c)
arc_p = arc_c;

(int64_t)bytes);

}
ASSERT((i nt64_t)arc_p >= 0);

static int
arc_evi ct _needed(arc_buf _contents_t type)

{
2384

2385

2387
2388

2390
2391

2393
2394
2395
2396
2397

* Ok Ok ok %

= ARC _BUFC_METADATA && arc_neta_used >= arc_neta_limt)
return (1);

if (typ
if (arc_reclaimneeded())
return (1);

return (arc_size > arc_c);

The buffer, supplied as the first argunent, needs a data bl ock.
So, if we are at cache max, determ ne which cache should be victim zed.
We have the follow ng cases:

new usr/src/uts/comon/fs/zfs/arc.c 34
2398 * 1. Insert for MRU, p > S|zeof(arc anon + arc_nru) ->

2399 * In this situation if we're out of space, but the resident size of the MFUis
2400 * under the limt, victimze the MFU cache to satisfy this insertion request.
2401 *

2402 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_nru) ->

2403 * Here, we've used up all of the available space for the MRU, so we need to
2404 * evict fromour own cache instead. Evict fromthe set of resident MRU

2405 * entries.

2406 *

2407 * 3. Insert for MFU (c - p) > sizeof(arc_nfu) ->

2408 * c minus p represents the MFU space in the cache, since p is the size of the
2409 * cache that is dedicated to the MRU. In this situation there’s still space on
2410 * the MFU side, so the MRU side needs to be victimzed.

2411 *

2412 * 4. Insert for MFU (¢ - p) < sizeof(arc_nfu) ->

2413 * MFU s resident set is consuming nore space than it has been allotted. In
2414 * this situation, we nmust victimze our own cache, the MFU, for this insertion.
2415 */

2416 static void

2417 arc_get _data_buf (arc_buf _t *buf)

2418 {

2419 arc_state_t *state = buf->b_hdr->b_state;

2420 ui nt 64_t size = buf->b_hdr->b_size;

2421 arc_buf _contents_t type = buf->b_hdr->b_type;

2423 arc_adapt (size, state);

2425 /*

2426 * We have not yet reached cache maxi mum si ze,

2427 * just allocate a new buffer.

2428 */

2429 if (larc_evict_needed(type)) {

2430 if (type == ARC BUFC_METADATA)

2431 buf->b_data = zio_buf_all oc(size);

2432 ar c_space_consune(si ze, ARC_SPACE_DATA);

2433 } else {

2434 ASSERT(type == ARC_BUFC DATA);

2435 buf ->b_data = zio_data_buf_all oc(size);

2436 ARCSTAT | NCR(ar cstat _dat a_si ze, size);

2437 at omi ¢_add_64(&arc_si ze, size);

2438

2439 goto out;

2440 }

2442 *

2443 * |f we are prefetching fromthe nfu ghost list, this buffer

2444 * will end up on the nru list; so steal space fromthere.

2445 */

2446 if (state == arc_nfu_ghost)

2447 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_nru : arc_nfu;
2448 else if (state == arc_nru_ghost)

2449 state = arc_nru;

2451 if (state == arc_nru || state == arc_anon) {

2452 uint64_t nru_used = arc_anon->arcs_si ze + arc_nru->arcs_si ze;
2453 state = (arc_nfu- >arcs _Tsize[type] >= size &&

2454 arc_p > nru_used) ? arc_nfu : arc_nru;

2455 } else {

2456 /* MFU cases */

2457 uint64_t nfu_space = arc_c - arc_p;

2458 state = (arc_nru->arcs IS|ze[type] >= size &&

2459) nfu_space > arc_nfu->arcs_size) ? arc_nru : arc_nfu;

2460

2461 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2462 if (type == ARC_BUFC_METADATA) {

2463 buf ->b_data = zi o_buf_al | oc(si ze);

new usr/src/uts/comon/fs/zfs/arc.c

2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480

2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495

2497
2498
2499
2500
2501
2502

2504
2506

2508
2509
2510
2511
2512
2513

2515
2516
2517
2518

2520
2521

2523
2524
2525
2526
2527
2528
2529

out :

}
/*

arc_space_consune(si ze, ARC_SPACE_DATA);
} else {

ASSERT(type == ARC BUFC_DATA) ;

buf->b_data = zi o_data_buf _al i oc(size);

ARCSTAT_| NCR(ar cst at _dat a_si ze, size);

at omi c_add_64(&ar c_si ze, size);

}

ARCSTAT_BUMP(ar cst at _recycl e_m ss);
}
ASSERT(buf ->b_data ! = NULL);

/*
Update the state size. Note that ghost states have a
* "ghost size" and so don't need to be updated.
*
/
if (! GHOST_STATE(buf->b_hdr->b_state)) {
arc_buf _hdr_t *hdr = buf->b_hdr;

at om c_add_64(&dr->b_st ate->arcs_si ze, size);
if (list_link_active(&hdr->b_arc_node)) {
ASSERT(refcount is_zero(&dr->b_refcnt));
atom c_add_64(&dr->b_st at e->arcs IS|ze[type] si ze);
;*
* |f we are growi ng the cache, and we are addi ng anonynous
* data, and we have outgrown arc_p, update arc_p
*/
if (arc_size < arc_c && hdr->b_state == arc_anon &&
arc_anon->arcs_si ze + arc_nrtu->arcs_size > arc_p)
arc_p = MN(arc_c, arc_p + size);

* This routine is called whenever a buffer is accessed.

*

*/

the hash lock is dropped in this function.

static void
arc_access(arc_buf _hdr_t *buf, knutex_t *hash_| ock)
2503 {

clock_t now,

ASSERT(MUTEX_HELD(hash_| ock)) ;

if (buf->b_state == arc_anon) {
/ *

* This buffer is not in the cache, and does not

* appear in our "ghost" list. Add the new buffer
* to the MRU state.

*/

ASSERT(buf ->b_arc_access == 0);

buf->b_arc_access = ddi _get_| bolt();
DTRACE_PROBE1(new state__nru, arc_buf_hdr_t *, buf);
arc_change_state(arc_nru, buf, hash_I ock);

} else if (buf->b_state == arc_nru) {
now = ddi _get_I bolt();

/
If this buffer is here because of a prefetch, then either:
- clear the flag if this is a "referencing" read

or
- nove the buffer to the head of the list if this is
another prefetch (to make it less likely to be evicted).

* ok ok ok F ok F

(any subsequent access will bump this into the MFU state).

new usr/src/uts/comon/fs/zfs/arc.c

2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540

2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564

2566
2567
2568
2569
2570
2571
2572
2573
2574

2576
2577

2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595

} else i

} else i

*

if ((buf->b_flags & ARC_PREFETCH) != 0)
if (refcount_count (&buf->b_refcnt) ==

ASSERT(| i st
} else {

buf->b_fl ags & ~ARC_PREFETCH;
ARCSTAT_BUWP(arcstat_nru_hits);

buf - >b_arc_access =
return;

}
| *

* This buffer has been "accessed"
* but it is still in the cache.

* state.
*

if (now > buf->b_arc_access
/*

now,

+ ARC_M NTI ME) {

* More than 125ns have passed since we

* instantiated this buffer.

* nmost frequently used state.

S
buf->b_arc_access =

now,

only once so far,
Move it to the MFU

Mve it to the

DTRACE_PROBE1(new_state__nfu, arc_buf_hdr_t
arc_change_state(arc_nfu, buf, hash_| ock);

}
ARCSTAT_BUMP(arcstat _nru_hits);

f (buf->b_state == arc_nru_ghost) {
arc_state_t *new_st at e;
/*
* This buffer has been "accessed" recently, b
* was evicted fromthe cache. Mve it to the
* MFU state.
*

/

if (buf->b_flags & ARC PREFETCH) {

new state = arc_nru;

ut

if (refcount_count(&buf->b_refcnt) > 0)
buf->b_fl ags & ~ARC_PREFETCH;
DTRACE_PROBE1(new state__nru, arc_buf_hdr_t

} else {

new state = arc_nfu;

DTRACE_PROBE1(new state__nfu, arc_buf_hdr_t

}

buf->b_arc_access = ddi _get_
arc_change_st at e(new_st at e,

I bolt();
buf, hash_l ock);

ARCSTAT_BUMP(ar cst at _nru_ghost _hits);

f (buf->b_state == arc_nfu)
/*

* This buffer has been accessed nbre than once and is
te

{

* still in the cache. Keep it in the MFU sta

NOTE: an add_ref erence()

that occurred when we did

*
’

*
,

*
,

the arc_read() will have kicked this off the list.

the head of the list now

*
*
*
* |f it was a prefetch, we
*
*
f

will explicitly move it to

((buf->b_flags & ARC PREFETCH) != 0) {
ASSERT(r ef count _count (&uf ->b_refcnt)
ASSERT(| i st _|ink_active(&buf->b_arc_node));

}
ARCSTAT_BUMP(arcstat _nfu_hits);

buf->b_arc_access = ddi _get

_Ibolt();

0);

_link_active(&buf->b_arc_node));

buf);

buf);

buf);

new usr/src/uts/comon/fs/zfs/arc.c

2596 } else if (buf->b_state == arc_nfu_ghost) {

2597 arc_state_t *new_state = arc_nfu;

2598 /*

2599 * This buffer has been accessed nore than once but has
2600 * been evicted fromthe cache. Myve it back to the
2601 * MFU state.

2602 */

2604 if (buf->b_flags & ARC_PREFETCH) {

2605 /*

2606 * This is a prefetch access...

2607 * move this block back to the MRU state.
2608 */

2609 ASSERTO(r ef count _count (&buf->b_refcnt));
2610 new state = arc_nru;

2611 }

2613 buf->b_arc_access = ddi _get _| bolt();

2614 DTRACE_PROBE1(new._ state — nfu, arc_buf_hdr_t *, buf);
2615 arc_change_st at e(new state, buf, hash_l ock);

2617 ARCSTAT_BUMP(ar cst at _nf u_ghost _hits);

2618 } elseif (buf >pb_state == arc_|l 2c_only) {

2619

2620 * This buffer is on the 2nd Level ARC

2621 */

2623 buf->b_arc_access = ddi _get_| bolt();

2624 DTRACE_PROBEL(new state __nfu, arc_buf_hdr_t *, buf);
2625 arc_change_state(arc_nfu, buf, hash_|l ock);

2626 } else {

2627 ASSERT(!"invalid arc state");

2628

2629 }

2631 /* a generic arc_done_func_t which you can use */

2632 /* ARGSUSED */

2633 void

2634 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)

2635

2636 if (zio == NULL || zio->io_error == 0)

2637 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2638 VERI FY(ar c_buf _renove_ref (buf, arg));

2639 }

2641 /* a generic arc_done_func_t */

2642 void

2643 arc_getbuf _func(zio_t *zio, arc_buf_t *buf, void *arg)

2644 {

2645 arc_buf _t **bufp = arg;

2646 if (zio & zio->io_error)

2647 VERI FY(ar c_buf _renove_ref (buf, arg));

2648 *bufp = NULL;

2649 } else {

2650 *bufp = buf;

2651 ASSERT(buf - >b_dat a) ;

2652 1

2653 }

2655 static void

2656 arc_read_done(zio_t *zio)

2657 {

2658 arc_buf _hdr _t *hdr, *found;

2659 arc_buf _t *buf ;

2660 arc_buf _t *abuf /* buffer we're assigning to callback */
2661 kmut ex_t *hash_l ock;

new usr/src/uts/comon/fs/zfs/arc.c 38
2662 arc_cal | back_t *cal | back_list, *ach;

2663 int freeabl e = FALSE;

2665 buf = zio->io_private;

2666 hdr = buf->b_hdr;

2668 /*

2669 * The hdr was inserted into hash-table and renpved fromlists

2670 * prior to starting I/O W should find this header, since

2671 * It'’s in the hash table, and it should be legit since it's

2672 * not possible to evict it during the I/O The only possible

2673 * reason for it not to be found is if we were freed during the

2674 * read.

2675 */

2676 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,

2677 &hash_| ock) ;

2679 ASSERT((found == NULL && HDR FREED | N READ(hdr) && hash_| ock == NULL) |
2680 (found == hdr &% DVA EQUAL(&hdr->b_dva, BP_I DENTI TY(zi o->i 0_bp))) ||
2681 (found == hdr && HDR_L2_READI NG(hdr)));

2683 hdr->b_flags & ~ARC _L2_EVI CTED;

2684 if (l2arc_noprefetch & (hdr->b_flags & ARC PREFETCH))

2685 hdr->b_flags & ~ARC_L2CACHE;

2687 /* byteswap if necessary */

2688 cal | back_l I st = hdr->b_ach;

2689 ASSERT(cal | back_list !'= NULL);

2690 if (BP_SHOULD BYTESWAP(zi 0->i 0_bp) && zio->io_error == 0) {

2691 dnu_obj ect _byteswap_t bswap =

2692 DMJU_OT_BYTESWAP(BP_GET_TYPE(zi 0- >i 0_bp)) ;

2693 ar c_byt eswap_func_t *func = BP_GET_LEVEL(zio->i0_bp) > 0 ?
2694 byt eswap_ui nt 64_array :

2695 dmu_ot _byt eswap[bswap] . ob_f unc;

2696 func(buf->b_data, hdr->b_size);

2697

2699 arc_cksum conput e(buf, B_FALSE);

2700 ar c_buf _wat ch(buf);

2702 if (hash/_l ock &% zio->io_error == 0 & hdr->b_state == arc_anon) {
2703 *

2704 * Only call arc_access on anonynous buffers. This is because
2705 * if we've issued an 1/0O for an evicted buffer, we' ve already
2706 * called arc_access (to prevent any sinultaneous readers from
2707 * getting confused).

2708 */

2709 arc_access(hdr, hash_l ock);

2710 }

2712 /* create copies of the data buffer for the callers */

2713 abuf = buf;

2714 for (acb = callback_list; acb; acb = acb->acb_next) {

2715 if (acb->ach done)

2716 if (abuf == NULL)

2717 ARCSTAT_BUMP(ar cst at _dupl i cat e_r eads) ;

2718 abuf = arc_buf _cl one(buf);

2719

2720 acb->acb_buf = abuf;

2721 abuf = NULL;

2722 }

2723 1

2724 hdr->b_acb = NULL;

2725 hdr->b_flags & ~ARC | O | N PROGRESS;

2726 ASSERT(! HDR_BUF_AVAI LABLE(hdr)) ;

2727 if (abuf == buf) {

new usr/src/uts/comon/fs/zfs/arc.c

2728
2729
2730
2731

2733

2735
2736
2737
2738
2739
2740
2741
2742

2744
2745
2746
2747
2748
2749

2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762

2764
2765
2766
2767

2769
2770
2771
2772

2774
2775
2776

2778
2779
2780

2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793

B I

ASSERT(buf - >b_ef unc == NULL);
ASSERT(hdr - >b_dat acnt == 1);
hdr->b_flags [= ARC_BUF_ AVAILABLE

}
ASSERT(refcount _is_zero(&hdr->b_refcnt) || callback_list != NULL);
if (zio->io_error I=0) {
hdr=>b_flags | = ARC_| O ERROR;
if (hdr->b_state != arc_anon)
arc_change_state(arc_anon, hdr, hash_I ock);
if (HDR_IN_HASH TABLE(hdr))
buf _hash_renmove(hdr);
freeable = refcount _is_zero(&hdr->b_refcnt);
}
/*

* Broadcast before we drop the hash_l ock to avoid the possibility
* that the hdr (and hence the cv) mght be freed before we get to
* the cv_broadcast ().

*

cv_broadcast (&hdr->b_cv);

if (hash_lock) {
nmut ex_exi t (hash_I ock);

} else {
/*
* This block was freed while we waited for the read to
* conplete. It has been renpved fromthe hash table and

* noved to the anonynous state (so that it won’t show up
* in the cache).

*/

ASSERTBP(hdr >b_state, ==, arc_anon);

freeabl e = refcount_is_zero(&hdr->b refcnt)

}

/* execute each callback and free its structure */
while ((acb = callback_list) !'= NULL) {
if (acb->acb_done)

ach- >acb_done(zi o, acb->acb_buf, acb->acb_private);

if (acb->acb_zio_dummy != NULL) {
ach->acb_zi o_dummy->i o_error = zio->io_error;
zi o_nowai t (acb->acb_zi o_dumy);

}

cal I back_l i st = acbh->acb_next;
kmem free(acb, sizeof (arc_callback_t));

}

if (freeable)
ar c_hdr_destroy(hdr);

the block at the specified DVA (in bp) via the
If the block is found in the cache, invoke the provided

cal I back inmrediately and return. Note that the ‘zio paraneter
in the callback will be NULL in this case, since no | O was
required. |If the block is not in the cache pass the read request
on to the spa with a substitute callback function, so that the
requested block will be added to the cache.

If a read request arrives for a block that has a read in-progress,
either wait for the in-progress read to conplete (and return the
results); or, if thisis aread with a "done" func, add a record

new usr/src/uts/comon/fs/zfs/arc.c

2794
2795
2796
2797
2798
2799
2800
2801
2802
2803

* ok Gk ok k

S
int
arc

2804 {

2805
2806
2807
2808
2809

2811
2812
2813
2814

2816
2818

2820
2821
2822
2823
2824
2825

2827
2828

2830
2831
2832
2833
2834
2835
2836

2838
2839
2840
2841
2842
2843
2844
2845
2846
2847

2849

2851
2852
2853
2854
2855
2856
2857
2858
2859

to the read to invoke the "done" func when the
and return; or just return.

arc_read_done() will invoke all the requested
for readers of this block.

_read(zio_t *pio, spa_t *spa, const blkptr_t *b
void *private, int priority, int zio_flags, ui
const zbookmark_t *zb)

arc_buf _hdr_t *hdr;

arc_buf _t *buf = NULL;

kmut ex_t *hash_| ock;

zio_t *rzio;

uint64_t guid = spa_l oad_gui d(spa);

top:

hdr = buf_hash_find(gui d, BP_I DENTI TY(bp),
&hash_I ock) ;
if (hdr & hdr->b_datacnt > 0) {
*arc_flags | = ARC_CACHED;
if (HDR_I O_I N PROGRESS(hdr)) {

if (*arc_flags & ARC WAIT)

cv_wai t (&hdr->b_cv,

mut ex_exi t (hash_l o
goto top;

read conpl et es,

"done" functions

p, arc_done_func_t *done,

nt32_t *arc_fl ags,

BP_PHYSI CAL_BI RTH(bp) ,

hash_| ock) ;
ck);

}
ASSERT(*arc_fl ags & ARC_NOWAI T) ;

if (done) {

arc_cal | back_t *acb = NULL;

acb = knem zal | oc(
KM _SLEEP) ;
acb->acb_done = do
acb->acb_private
if (pio !'= NULL)
ach->acb_z

si zeof (arc_callback_t),

ne;

= private;

io_dummy = zio_null(pio

spa, NULL, NULL, NULL, zio fl

ASSERT(ach- >acb_do
acb->acb_next = hd
hdr->b_acbh = acb;
add_r ef erence(hdr,
mut ex_exi t (hash_l o
return (0);

mut ex_exi t (hash_l ock) ;
return (0);

}
ASSERT(hdr->b_state == arc_nru ||

if (done) {
add_ref erence(hdr, hash_lo
/*

ne != NULL)
r->b_ach;

hash_l ock, private);
ck);

ags) ;

hdr->b_state == arc_nfu);

ck, private);

* If this block is already in use, create a new
* copy of the data so that we will be guaranteed

* that arc_release() wll

*

/

buf = hdr->b_buf;
ASSERT(buf) ;

al ways succeed.

new usr/src/uts/comon/fs/zfs/arc.c 41 new usr/src/uts/comron/fs/zfs/arc.c 42

2860 ASSERT(buf - >b_dat a) ; 2926 if (*arc fI ags & ARC_PREFETCH)
2861 i f (HDR _BUF_AVAI LABLE(hdr)) { 2927 dr->b flags | = ARC_PREFETCH,
2862 ASSERT(buf - >b_ef unc == NULL); 2928 el se
2863 hdr->b_fl ags & ~ARC_BUF_AVAI LABLE; 2929 add_ref erence(hdr, hash_lock, private);
2864 } else { 2930 if (*arc_flags & ARC L2CACHE)
2865 buf = arc_buf_cl one(buf); 2931 hdr->b_flags | = ARC_L2CACHE;
2866 } 2932 buf = kmem cache_al | oc(buf_cache, KM PUSHPAGE);
2933 buf - >b hdr = hdr;
2868 } else if (*arc_flags & ARC_PREFETCH && 2934 buf->b_data = NULL;
2869 ref count _count (&dr->b_refcnt) == 0) { 2935 buf ->b_efunc = NULL;
2870 hdr->b_flags | = ARC_PREFETCH; 2936 buf->b_private = NULL;
2871 } 2937 buf - >b_next = NULL;
2872 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2938 hdr->b_buf = buf;
2873 arc access(hdr hash Iock) 2939 ASSERT(hdr - >b dat acnt == 0);
2874 if (*arc_flags & ARC L2CACHB 2940 hdr->b_datacnt = 1;
2875 hdr->b_flags | = ARC_L2CACHE; 2941 arc_get data buf(buf)
2876 mut ex_exi t (hash_l ock) ; 2942 arc_access(hdr, hash Iock)
2877 ARCSTAT_BUMP(ar cst at hi ts); 2943 }
2878 ARCSTAT_CONDSTAT(! (hdr->b_f| ags & ARC_PREFETCH),
2879 demand, prefetch, hdr->b_type != ARC BUFC_METADATA, 2945 ASSERT(! GHOST_STATE(hdr - >b_state));
2880 data, netadata, hi ts);
2947 acb = kmem zal | oc(si zeof (arc_callback_t), KM SLEEP);
2882 if (done) 2948 ach- >acb_done = done;
2883 done(NULL, buf, private); 2949 acbh->acb_private = private;
2884 } else {
2885 uint64_t size = BP_GET_LSI ZE(bp); 2951 ASSERT(hdr->b_acb == NULL);
2886 arc_cal | back_t *ach; 2952 hdr->b_acbh = acb;
2887 vdev_t *vd = NULL; 2953 hdr->b_flags | = ARC_| O | N_PROGRESS;
2888 uint64_t addr = 0;
2889 bool ean_t devw = B_FALSE; 2955 if (HDR_L2CACHE(hdr) && hdr->b_| 2hdr != NULL &&
2956 (vd = hdr->b_| 2hdr->b_dev- >l 2ad_vdev) != NULL) {
2891 if (hdr == NULL) { 2957 devw = hdr->b_| 2hdr->b_dev- >l 2ad_wri ting;
2892 /* this block is not in the cache */ 2958 addr = hdr->b_| 2hdr - >b_daddr ;
2893 ar c_buf _hdr _t *exi sts; 2959 /*
2894 arc_buf _contents_t type = BP_GET_BUFC TYPE(bp); 2960 * Lock out device renoval .
2895 buf "= arc_buf _al I oc(spa, size, private, type); 2961 *
2896 hdr = buf->b_hdr 2962 if (vdev_is_dead(vd) ||
2897 hdr->b_dva = *BP | DENTI TY(bp) ; 2963 I'spa_config_tryenter(spa, SCL_L2ARC, vd, RW READER))
2898 hdr->b_birth = BP_PHYSI CAL_BI RTH(bp) 2964 vd = NULL;
2899 hdr - >b_cksunD = bp->bl k_cksum zc word[O] 2965 }
2900 exi sts = buf _hash_insert(hdr, &hash Iock)
2901 if (exists) { 2967 mut ex_exi t (hash_I ock);
2902 /* sonebody beat us to the hash insert */
2903 mut ex_exi t (hash_l ock) ; 2969 /*
2904 buf _di scard |dent|ty(hdr) 2970 * At this point, we have a level 1 cache miss. Try again in
2905 (void) arc_buf_renove ref(buf, private); 2971 * L2ARC i f possible.
2906 goto top; 7* restart the IO request */ 2972 */
2907 } 2973 #endif /* 1 codereview */
2908 /* if this is a prefetch, we don't have a reference */ 2974 ASSERT3U(hdr - >b_si ze, ==, size);
2909 if (*arc_flags & ARC PREFETCH) { 2975 DTRACE_PROBE4(arc__mi ss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
2910 (void) renove_reference(hdr, hash_| ock, 2976 uint64_t, size, zbookmark_t *, zb);
2911 private); 2977 ARCSTAT BUNP(arcstat _m sses);
2912 hdr->b_flags | = ARC_PREFETCH, 2978 ARCSTAT_CONDSTAT(! (hdr->b_fl ags & ARC_PREFETCH),
2913 } 2979 dermand, prefetch, hdr->b_type != ARC BUFC | NETADATA
2914 if (*arc_flags & ARC_L2CACHE) 2980 data, netadata, m sses);
2915 hdr->b_fl ags | = ARC_L2CACHE;
2916 if (BP_GET_LEVEL(bp) > 0) 2982 if (vd !'= NULL && | 2arc_ndev != 0 && ! (l2arc_norw && devw)) {
2917 hdr->b_flags | = ARC_| NDI RECT; 2983 /*
2918 } else { 2984 * Read fromthe L2ARC if the followi ng are true:
2919 /* this block is in the ghost cache */ 2985 * 1. The L2ARC vdev was previously cached.
2920 ASSERT(GHOST_STATE(hdr - >b_st ate)) ; 2986 * 2. This buffer still has L2ARC net adat a.
2921 ASSERT(! HDR_TO_| N_PROGRESS(hdr)) ; 2987 * 3. This buffer isn't currently witing to the L2ARC.
2922 ASSERTO(r ef count _count (&hdr->b refcnt)); 2988 * 4. The L2ARC entry wasn’'t evicted, which nay
2923 ASSERT(hdr - >b_buf == NULL); 2989 * al so have invalidated the vdev.
2990 * 5. This isn't prefetch and | 2arc_noprefetch is set.
*

2925 /* if this is a prefetch, we don’t have a reference */ 2991

new usr/src/uts/comon/fs/zfs/arc.c

2992
2993
2994
2995

2997
2998

3000
3001
3002
3003
3004
3005
3006

3008
3009
3010

3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024

3026
3027
3028
3029

3031
3032
3033

3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052

3054
3055

3057

if (hdr->b_I 2hdr !'= NULL &&
I'HDR_ L2 _WRI TI NG hdr) && ! HDR L2 _EVI CTED(hdr) &&
I (1 2arc_noprefetch & HDR PREFETCH(hdr))) {
| 2arc_read_cal | back_t *cb;

DTRACE_PROBEL(| 2arc__hit, arc_buf_hdr_t *, hdr);

ARCSTAT_BUMP(arcstat _| 2_ hi ts);

cb = kmem zal | oc(sizeof (I|Z2arc_read_callback_t),

KM SLEEP) ;
cb->l 2rcb_buf =
cb->l 2rcb_spa =
cb->l 2rch_bp = *bp

cb->| 2rcb_zb = *zb;
cb->l 2rch_flags = zi o_flags;

buf

ASSERT(addr >= VDEV_LABEL_START_SI ZE &&
addr + size < vd->vdev_psi ze -
VDEV_LABEL_END Sl ZE) ;

/*

* | 2arc read. The SCL_L2ARC |lock will be

* rel eased by |2arc_read_done().

*

/

rzio = zio_read_phys(pio, vd, addr, size,
buf ->b_data, ZI O CHECKSUM OFF,
| 2arc_read done “cb, prlorlty zio_flags |
ZI O FLAG_DONT_ CACHE | ZI O_FLAG CANFAI L |
ZI O_FLAG_DONT_PROPAGATE |
ZI O_FLAG_DONT_RETRY, B _FALSE);

DTRACE PRCBEZ(I 2arc __read, vdev_t *, vd,
zio t *, 0);

ARCSTAT_| NCR(arcst at_| 2_read_bytes, size);

if (*arc_flags & ARC_NOMIT) {
zi o_nowai t (rzio);
return (0);

}

ASSERT(*arc_flags & ARC WAIT);
if (zio_wait(rzio) == 0)
return (0);

/* 1 2arc read error; goto zio_read() */
} else {

DTRACE_PROBE1(| 2arc__miss,

arc_buf _hdr_t *, hdr);
ARCSTAT_BUMP(ar cstat _| 2_mi sses);
if (HDR_L2_WRI TING hdr))

ARCSTAT_BUMP(ar cstat _| 2_rw_cl ash);

spa_config_exit(spa, SCL_L2ARC, vd);

if (vd !'= NULL)
spa_config_exit(spa, SCL_L2ARC, vd);
if (l2arc_ndev =0
DTRACE_PROBEL(| 2arc__m ss,
arc_buf _hdr_t *, hdr);
ARCSTAT_BUMP(ar cst at _| 2_mi sses) ;

zi o_read(pio, spa, bp, buf->b_data, size,
arc_read_done, buf, priority, zio_flags, zb);

if (*arc_flags & ARC_ WAIT)

43

new usr/src/uts/comon/fs/zfs/arc.c

_func_t *func, void *private)

non
dr—>b _refent) || func == NULL);

know that a buffer is
up. If this arc buf
| be put there.

structure assi gnment */

list; process this buffer now
cts() do the reaping.

hdr->b_state == arc_nfu);

3058 return (zio_wait(rzio));
3060 ASSERT(*ar c_f ags & ARC_NOWAIT) ;
3061 zi o_nowai t (rzio);

3062 }

3063 return (0);

3064 }

3066 void

3067 arc_set_cal | back(arc_buf _t *buf, arc_evict
3068 {

3069 ASSERT(buf - >b_hdr != NULL);

3070 ASSERT(buf ->b_hdr->b_state != arc

3071 ASSERT(! ref count _i s zero(&huf >b_h
3072 ASSERT(buf ->b_efunc == NULL);

3073 ASSERT(! HDR_BUF_AVAI LABLE(buf - >b_hdr));
3075 buf - >b_efunc = func;

3076 buf->b_private = private;

3077 }

3079 /*

3080 * This is used by the DMJto let the ARC
3081 * being evicted, so the ARC shoul d cl ean

3082 * is not yet in the evicted state, it wl
3083 */

3084 int

3085 arc_buf _evict(arc_buf_t *buf)

3086 {

3087 arc_buf _hdr _t *hdr;

3088 kmut ex_t *hash_| ock;

3089 arc_buf _t **buf p;

3091 mut ex_ent er (&buf - >b_evi ct _| ock) ;

3092 hdr = buf - >b hdr ;

3093 if (hdr == NULL) {

3094 /*

3095 * We are in arc_do_user_evicts().
3096 */

3097 ASSERT(buf - >b_data == NULL);
3098 nmut ex_exi t (&uf ->b_evi ct _| ock);
3099 return (0);

3100 } else if (buf->b_data == NULL)

3101 arc_buf _t copy = *buf; /*

3102 /*

3103 * W are on the eviction

3104 * but |let arc_do_user_evi
3105 */

3106 buf - >b_ef unc = NULL;

3107 nmut ex_exi t (&uf->b_evi ct _| ock);
3108 VERI FY(copy. b_ef unc(©) == 0);
3109 return (1);

3110 }

3111 hash_l ock = HDR_LOCK(hdr);

3112 mut ex_ent er (hash_| ock) ;

3113 hdr = buf->b_hdr;

3114 ASSERT3P(hash_| ock, ==, HDR _LOCK(hdr));
3116 ASSERT3U(r ef count _count (&hdr->b_refcnt), <, hdr->b_datacnt);
3117 ASSERT(hdr->b_state == arc_nru ||

3119 /*

3120 * Pull this buffer off of the hdr
3121 */

3122 buf p = &hdr->b_buf;

3123 while (*bufp != buf)

new usr/src/uts/comon/fs/zfs/arc.c 45

3124 bufp = &(*bufp)->b_next;

3125 *puf p = buf->b_next;

3127 ASSERT(buf ->b_data != NULL);

3128 arc_buf _destroy(buf, FALSE, FALSE);

3130 if (hdr->b_datacnt == {

3131 arc_state_t *old_state = hdr->b_state;

3132 arc_state_t *evicted_state;

3134 ASSERT(hdr->b_buf == NULL);

3135 ASSERT(ref count _i s_zero(&hdr->b_refcnt));

3137 evicted_state =

3138 (old_state == arc_nru) ? arc_nru_ghost arc_nfu_ghost;
3140 mut ex_ent er (&ol d_state->arcs_ntx);

3141 mut ex_ent er (&evi ct ed_st ate->arcs_nt x) ;

3143 arc_change_state(evicted_state, hdr, hash_I ock);
3144 ASSERT(HDR_| N_HASH_TABLE(hdr));

3145 hdr->b_flags [= ARC | N HASH TABLE;

3146 hdr->b_flags & ~ARC BUF_AVAI LABLE;

3148 nmut ex_exit (&evi cted_state->arcs_ntx);

3149 mut ex_exit (&ol d_state->arcs_ntx);

3150 }

3151 mut ex_exi t (hash_I ock);

3152 mut ex_exi t (&buf->b_evict _| ock);

3154 VERI FY(buf - >b_efunc(buf) == 0);

3155 buf - >b_efunc = NULL;

3156 buf->b_private = NULL;

3157 buf ->b_hdr = NULL;

3158 buf - >b_next = NULL;

3159 kmem cache_free(buf _cache, buf);

3160 return (1);

3161 }

3163 /*

3164 * Release this buffer fromthe cache, neking it an anonynous buffer. This
3165 * nust be done after a read and prior to nodifying the buffer contents.
257 * Release this buffer fromthe cache. This nmust be done

258 * after a read and prior to nodifying the buffer contents.
3166 * |f the buffer has nore than one reference, we nust make

3167 * a new hdr for the buffer.

3168 *

3169 void

3170 arc_rel ease(arc_buf _t *buf, void *tag)

3171 {

3172 arc_buf _hdr _t *hdr;

3173 kmut ex_t *hash_l ock = NULL;

3174 | 2arc_buf _hdr_t *I 2hdr;

3175 uint64_t buf_size;

3177 I*

3178 * It would be nice to assert that if it’s DMJ netadata (level >
3179 * 0 || it’s the dnode file), then it nust be syncing context.
3180 * But we don’t know that information at this |evel.
3181 */

3183 mut ex_ent er (&uf - >b_evi ct _I ock);

3184 hdr = buf->b_hdr;

3186 /* this buffer is not on any list */

3187 ASSERT(r ef count _count (&hdr->b_refcnt) > 0);

new usr/src/uts/comon/fs/zfs/arc.c

3189
3190
3191
3192
3193
3194
3195
3196
3197

3199
3200
3201
3202
3203
3204

3206
3207
3208
3209
3210
3211
3212
3213
3214
3215

3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227

3229
3230
3231
3232
3233
3234
3235

3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248

3250

3252
3253

46

if (hdr->b_state == arc_anon) {
/* this buffer is already rel eased */
ASSERT(buf - >b_ef unc == NULL);
} else {
hash_l ock = HDR_LOCK(hdr);
mut ex_ent er (hash_I ock) ;
hdr = buf->b_hdr;

ASSERT3P(hash_| ock, ==, HDR_LOCK(hdr));
}
| 2hdr = hdr->b_| 2hdr;
if (I2hdr) {

mut ex_enter (& 2arc_buflist_ntx);
hdr->b_| 2hdr = NULL;

}
buf _si ze = hdr->b_si ze;

/*
* Do we have nore than one buf?
*
if (hdr->b_datacnt > 1) {
arc_buf _hdr _t *nhdr;
arc_buf _t **bufp;
uint64_t blksz = hdr->b_size;
uint64_t spa = hdr->b_spa;
arc_buf _contents_t type = hdr->b_type;
uint32_t flags = hdr->b_fl ags;

ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
/ *

* Pull the data off of this hdr and attach it to
*/a new anonynous hdr.
*
(void) renove_reference(hdr, hash_lock, tag);
buf p = &hdr->b_buf;
while (*bufp != buf)
buf p = & *buf p)->b_next;
*puf p = buf->b_next;
buf - >b_next = NULL;

ASSERT3U(hdr - >b_st at e- >arcs_si ze, >=, hdr->b_si ze);

at om c_add_64(&hdr->b_state->arcs_size, -hdr->b_size);

if (refcount_is_zero(&hdr->b_refcnt))
uint64_t *size = &hdr->b_state->arcs_|size[hdr->b_type];
ASSERT3U(*si ze, >=, hdr->b_size);
at om c_add_64(size, -hdr->b_size);

}

/*
* We're releasing a duplicate user data buffer, update
* our statistics accordingly.
*

if (hdr->b_type == ARC BUFC DATA) {
ARCSTAT_BUMPDOAN(ar cst at _dupl i cate_buffers);
ARCSTAT_| NCR(ar cst at _dupl i cate_buffers_si ze,
-hdr->b_si ze);

}

hdr->b_datacnt -= 1;
arc_cksum verify(buf);
ar c_buf _unwat ch(buf);
mut ex_exi t (hash_I ock);

nhdr = knmem cache_al | oc(hdr _cache, KM PUSHPAGE);
nhdr - >b_si ze = bl ksz;

new usr/src/uts/comon/fs/zfs/arc.c

3254 nhdr->b_spa = spa;

3255 nhdr->b_type = type;

3256 nhdr - >b_buf = buf;

3257 nhdr->b_state = arc_anon;

3258 nhdr->b_arc_access = 0;

3259 nhdr->bf|ags-f|ags&ARCL2 VRl TI NG
3260 nhdr->b_| 2hdr = NULL

3261 nhdr - >b_dat acnt =1

3262 nhdr - >b_freeze_cksum = NULL;

3263 (voi d) refcount _add(&nhdr->b_refcnt, tag);
3264 buf ->b_hdr = nhdr;

3265 mut ex_exi t (&uf - >b_evi ct _l ock);

3266 at om c_add_64(&r c_anon- >arcs_si ze, bl ksz);
3267 } else {

3268 mut ex_exi t (&uf ->b_evi ct _| ock);

3269 ASSERT(refcount count(&hdr >b refcnt) == 1);
3270 ASSERT(!list_link_active(&dr->b_arc node))
3271 ASSERT(! HDR_TO_| N_PROGRESS(hdr));

3272 if (hdr->b_state T= arc_anon)

3273 arc_change_state(arc_anon, hdr, hash_I ock);
3274 hdr->b_arc_access = 0;

3275 if (hash_l ock)

3276 mut ex_exi t (hash_l ock) ;

3278 buf _di scard_i dentity(hdr);

3279 arc_buf _thaw(buf);

3280 }

3281 buf - >b_efunc = NULL;

3282 buf->b_private = NULL;

3284 if (12hdr) {

3285 I'1st_renmove(l 2hdr->b_dev->l 2ad_buflist, hdr);
3286 kmem free(| 2hdr, si zeof (l2arc “buf _hdr_t));
3287 ARCSTAT_| NCR(arcstat_| 2_si ze, -buf_size);
3288 mut ex_exit (& 2arc_buflist_ntx);

3289 1

3290 }

__unchanged_portion_omtted_

47

new usr/src/uts/comon/fs/zfs/dbuf.c 1

R R R R

74441 Thu May 16 17:33:47 2013
new usr/src/uts/comon/fs/zfs/dbuf.c
3741 zfs needs better comments
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Justin G bbs <justing@pectral ogi c.conp

Submi tted by: Al an Sorers <al ans@pectral ogi c. com>
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. com>
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. com>

LR

__unchanged_portion_onitted_

586 int

587 dbuf _read(dmu_buf _inpl _t *db, zio_t *zio, uint32_t flags)

588 {

589 int err = 0;

590 int havepzio = (zio !'= NULL);

591 int prefetch;

592 dnode_t *dn;

594 /*

595 * W don't have to hold the nmutex to check db_state because it
596 * can't be freed while we have a hold on the buffer.

597 */

598 ASSERT(! r ef count _i s_zer o(&b- >db_hol ds));

600 if (db->db_state == DB_NOFILL)

601 return (SET_ERROR(EIQ));

603 DB_DNODE_ENTER(db) ;

604 dn = DB_DNODE(db) ;

605 if ((flags & DB_RF_HAVESTRUCT) == 0)

606 rw_ent er (&dn- >dn_st r uct rV\A ock, RW READER);

608 prefetch = db->db_l evel == 0 && db->db_bl kid != DMJ BONUS_BLKI D &&
609 (fl ags & DB_RF_NOPREFETCH) == 0 & dn != NULL &&

610 DBUF_| S_CACHEABLE(db) ;

612 mut ex_ent er (&db- >db_nt x) ;

613 if (db->db_state == DB C‘ACHED) {

614 mut ex eX|t(&db >db_nt x) ;

615 if (prefetch)

616 drmu_zf et ch(&dn->dn_zfetch, db->db.db_offset,
617 db- >db. db_si ze, TRUE);

618 if ((flags & DB_RF_HAVESTRUCT) == 0)

619 rw_exit(&n->dn_struct _rw ock);

620 DB_DNODE_EXI T(db)

621 } else if (db->db_state == DB_UNCACHED) {

622 spa_t *spa = dn- >dn _obj set - >0s_spa;

624 if (zio == NULL)

625 = zio_root(spa, NULL, NULL, ZI O FLAG CANFAIL);
626 dbuf read |n'pl (db, zio, &flags);

628 /* dbuf _read_i npl has dropped db_ntx for us */

630 if (prefetch)

631 dmu_zf et ch(&n->dn_zfetch, db->db.db_offset,
632 db- >db. db_si ze, flags & DB_RF_CACHED);
634 if ((flags & DB_RF_HAVESTRUCT) == 0)

635 rw_exit(&dn->dn_struct_rw ock);

636 DB_DNODE_EXI T(db) ;

638 if (!havepzio)

639 err = zio_wait(zio);

new usr/src/uts/comon/fs/zfs/dbuf.c

640 } else {

641 /*

642 * Anot her reader came in while the dbuf was in flight
643 * between UNCACHED and CACHED. Either a witer will fin
644 * writing the buffer (sending the dbuf to CACHED) or the
645 * first reader’s request will reach the read_done call ba
646 * and send the dbuf to CACHED. Qherwise, a failure
647 */occurred and the dbuf went to UNCACHED.

648 *

649 #endif /* | codereview */

650 mut ex_exi t (&b->db_nt x) ;

651 if (prefetch)

652 dmu_zf et ch(&n->dn_zfetch, db->db. db_offset,
653 db->db. db_si ze, TRUE);

654 if ((flags & DB_RF_HAVESTRUCT) == 0)

655 rw_exit(&In->dn_struct _rw ock);

656 DB_DNODE_EXI T(db) ;

658 /* Skip the wait per the caller’s request. */

659 #endif /* | codereview */

660 mut ex_ent er (&db->db_nt x) ;

661 if ((flags & DB_RF NEVERV\AIT) == 0) {

662 whi | e (db->db state::DBREAD||

663 db->db_state == DB_FI LL)

664 ASSERT(db- >db_state == DB_READ | |

665 (flags & DB_RF HAVESTRUCT) == 0);
666 cv_wai t (&db->db_changed, &db->db mx)
667 }

668 if (db->db_state == DB_UNCACHED)

669 err = SET_ERROR(EIO);

670 }

671 mut ex_exi t (&b->db_nt x) ;

672 }

674 ASSERT(err || havepzio || db->db_state == DB_CACHED);

675 return (err);

676 }

678 static void
679 dbuf _noread(dmu_buf _i npl _t *db)

680 {

681 ASSERT(! ref count _i s_zer o(&b- >db_hol ds));

682 ASSERT(db->db_bl kid ! = DMJ_BONUS_BLKI D) ;

683 mut ex_ent er (&b->db_nt x) ;

684 whi | e (db->db state——DBREAD|| db->db_state == DB_FILL)
685 cv_wai t (&db- >db_changed, &db->db_ntx);

686 if (db->db_state == DB_UNCACHED) {

687 arc_buf _contents_t type = DBUF_GET_BUFC TYPE(db);
688 spa_t *spa;

690 ASSERT(db- >db_buf == NULL);

691 ASSERT(db- >db. db_data == NULL);

692 DB_GET_SPA(&spa, db);

693 dbuf _set _data(db, arc buf _alloc(spa, db->db.db_size, db,
694 db->db_state = DB_FILL

695 } else if (db->db state——DBNCFILL) {

696 dbuf _set _data(db, NULL);

697 } else {

698 ASSERT3U(db- >db_state, ==, DB_CACHED);

699 }

700 mut ex_exi t (&db->db_nt x) ;

701 }

703 [*

704 * This is our just-in-tine copy function. |t makes a copy of

705 * buffers, that have been nodified in a previous transaction

ish
ck

type));

new usr/src/uts/comon/fs/zfs/dbuf.c

706 * group, before we nodify themin the current active group.
707 *

708 * This function is used in tw places: when we are dirtying a
709 * buffer for the first tine in a txg, and when we are freeing
710 * a range in a dnode that includes this buffer.

711 *

712 * Note that when we are called from dbuf_free_range() we do
713 * not put a hold on the buffer, we just traverse the active
714 * dbuf list for the dnode.

715 */

716 static void
717 dbuf _fix_ol d_data(dnmu_buf _inpl _t *db, uint64_t txg)

718 {

719 dbuf _dirty_record_t *dr = db->db_last_dirty;

721 ASSERT(MUTEX_HELD(&db- >db_nrt x)) ;

722 ASSERT(db- >db. db_data != NULL);

723 ASSERT(db- >db_| evel == 0);

724 ASSERT(db- >db. db_obj ect !|= DVU_META_DNODE_OBJECT) ;

726 if (dr == NULL ||

727 dr - >dt dl.dr_data !=

728 ((db >db_bl kid == DMJ BONUS BLKI D) ? db->db.db_data : db->db_buf)))
729 return;

731 /*

732 * If the last dirty record for this dbuf has not yet synced
733 * and its referencing the dbuf data, either:

734 * reset the reference to point to a new copy,

735 * or (if there a no active hol ders)

736 * just null out the current db_data pointer.

737 */

738 ASSERT(dr->dr _txg >= txg - 2);

739 if (db->db_bl kid == DMJ_BONUS_BLKI D) {

740 /* Notethat the data bufs here are zio_bufs */

741 dr->dt.dl.dr_data = zio_buf_all oc(DN_MAX_BONUSLEN);
742 arc_space_consume(DN_MAX_BONUSLEN, ARC SPACE OTHER)
743 bcopy(db->db. db_data, dr->dt.dl.dr_data, DN MAX BO\IUSLEN);
744 } else if (refcount_count (&b->db_hol ds) > db->db_dirtycnt) {
745 int size = db->db. db_si ze;

746 arc_buf_contents_t type = DBUF_CGET_BUFC TYPE(db);

747 spa_t *spa;

749 DB_GET_SPA(&spa, db);

750 dr->dt.dl.dr_data = arc_buf_al |l oc(spa, size, db, type);
751 bcopy(db->db. db_data, dr->dt.dl.dr_data->b_data, size);
752 } else {

753 dbuf _set_data(db, NULL);

754

755 }

757 void

758 ?buf_unoverri de(dbuf _dirty_record_t *dr)

759

760 dmu_buf _i npl _t *db = dr->dr_dbuf;

761 bl kptr_t *bp = &dr->dt.dl.dr_overridden_by;

762 uint64_t txg = dr->dr_txg;

764 ASSERT(MUTEX_HELD(&db- >db_nt x)) ;

765 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMJ_SYNC);

766 ASSERT(db- >db_| evel "== 0);

768 if (db->db_bl ki = DMJU_BONUS_BLKI D | |

769 dr->dt . dl.dr_override_state == DR_NOT_OVERRI DDEN)

770 return;

new usr/src/uts/comon/fs/zfs/dbuf.c

772 ASSERT(db- >db_dat a_pending != dr);

774 /* free this block */

775 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwite) {

776 spa_t *spa;

778 DB_GET_SPA(&spa, db);

779 zio_free(spa, txg, bp);

780 }

781 dr->dt.dl.dr_override_state = DR _NOT_OVERRI DDEN;

782 dr->dt.dl.dr_nopwite = B_FALSE;

784 /*

785 * Rel ease the already-witten buffer, so we leave it in
786 * a consistent dirty state. Note that all callers are

787 * modifying the buffer, so they will inmmediately do

788 * anot her (redundant) arc_release(). Theref ore | eave

789 * the buf thawed to save the effort of freezing &

790 * imediately re-thawing it.

791 */

792 arc_rel ease(dr->dt.dl.dr_data, db);

793 }

795 [*

796 * Evict (if its unreferenced) or clear (if its referenced) any |evel-
797 * data blocks in the free range, so that any future readers wll fin
798 * enpty blocks. Also, if we happen accross any level-1 dbufs in the
799 * range that have not already been marked dirty, mark themdirty so
800 * they stay in menory.

801 */

802 void

803 dbuf _free_range(dnode_t *dn, uint64_t start, uint64_t end, dmu_tx_t *
804 {

805 dmu_buf _i npl _t *db, *db_next;

806 ui nt 64_t txg-tx >t X_t Xg;

807 int epbs = dn->dn_i ndbl kshift - SPA BLKPTRSHI FT;

808 uint64_t first |1 = start >> epbs;

809 uint64_t last_T1 = end >> epbs;

811 if (end > dn->dn_maxbl ki d && (end !'= DMJ_SPILL_BLKID)) {
812 end = dn->dn_naxbl k

813 last_|11 = end >> epbs

814 }

815 dprintf_dnode(dn, "start=%Ilu end=%I|u\n", start, end);

816 mut ex_ent er (&dn- >dn_dbuf s_nt x) ;

817 for (db = list_head(&ln->dn dbufs) db; db = db_next) {

818 db_next = list_next (&dn- >dn dbufs db) ;

819 ASSERT(db >db_bl kid ! = DMJ_BONUS BLKI D)

821 if (db->db_level == 1 &&

822 db->db_bl kid >= first_|1 & db->db_bl kid <= | ast
823 mut ex_ent er (&db- >db_nt x) ;

824 if (db->db_last_dirty &%

825 db->db_last _dirty->dr_txg < txg) {

826 dbuf _add_ref (db, FTAQ;

827 mut ex_exi t (&db->db_nt x) ;

828 dbuf _will _dirty(db, tx);

829 dbuf _rel e(db, FTAG;

830 } else {

831 mut ex_exi t (&db->db_nt x) ;

832 }

833 }

835 if (db->db_level != 0)

836 cont i nue;

837 dprintf_dbuf (db, "found buf %\n", "");

d

t x)

A

new usr/src/uts/comon/fs/zfs/dbuf.c

838
839

841
842
843
844
845
846

848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866

868
869

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897

899
900
901
902 }

if (db->db_blkid < start || db->db_blkid > end)
cont i nue;

/* found a level O buffer in the range */

mut ex_ent er (&db->db_nt x) ;

if (dbuf_undirty(db, tx)) {
7* mutex has been dropped and dbuf destroyed */
conti nue;

}

if (db->db_state == DB_UNCACHED |
db->db_state == DB_NOFILL ||
db->db_state == DB_EVI CTING {
ASSERT(db >db db_data == NULL);
mut ex_exi t (&db->db_nt x) ;
conti nue;

}

i1 f (db->db_state == DB _READ || db->db_state == DB _FILL) {
/*"will be handled in dbuf read_done or dbuf rele */
db->db_freed_in_flight = TRUE
mut ex_exi t (&db->db_nt x) ;
conti nue;

}

if (refcount_count(&db->db_holds) == 0) {
ASSERT(db- >db_buf);
dbuf _cl ear (db);
conti nue;

}
/* The dbuf is referenced */

if (db->db_last_dirty != NULL) {
dbuf _dirty_record_t *dr = db->db_last_dirty;

if (dr->dr_txg == txg) {
/*

* This buffer is "in-use", re-adjust the file
* size to reflect that this buffer may

* contain new data when we sync.

*/

if (db->db_blkid !'= DMJ_SPILL_BLKID &&
db->db_bl kid > dn- >dn maxbl ki d)
dn->dn_maxbl ki d = db->db_bl ki d;
dbuf _unoverride(dr);
} else {
/*
* This dbuf is not dirty in the open context.
* Either uncache it (if its not referenced in
* the open context) or reset its contents to
*/en‘pty.
dbuf _fix_ol d_data(db, txg);
}

/* clear the contents if its cached */

if (db->db_state == DB_CACHED)
ASSERT(db->db. db_data != NULL);
arc_rel ease(db->db_buf, db);
bzero(db->db. db_dat a, db- >db. db_si ze);
arc_buf _freeze(db->db_buf);

}

mut ex_exi t (&b->db_nt x) ;

}
mut ex_exi t (&dn->dn_dbuf s_nt x) ;

new usr/src/uts/comon/fs/zfs/dbuf.c

904 static int
905 dbuf _bl ock_freeabl e(dnmu_buf _i npl _t *db)

906
907
908

910
911
912
913
914
915
916
917
918
919

921
922
923
924
925
926
927
928
929
930
931
932

934
935

937
938
939
940

942

944
945

947
948

950
951
952
953
954
955
956
957
958
959
960

962
963

965
966
967
968
969

{

}

voi d

dsl _dataset _t *ds = db >db_obj set - >0s_dsl _dat aset ;
uint64_t birth txg

/

it's syncing, then db_|last_dirty wilT be set
we’ || ignore db_bl kptr.

* We don’t need any |ocking to protect db_blkptr:
* 1 f
* so
*/
ASSERT(MUTEX_HELD(&db- >db_nt x)) ;
if (db->db_|last_dirty)
birth_txg = db->db_| ast_dirty->dr_txg;
else if (db->db_bl kptr)

birth_txg = db->db_bl kptr->bl k_birth;
/*
* If we don't exist or are in a snapshot, we can’t be freed.
* Don't pass the bp to dsl_dataset_bl ock_freeabl e() since we

* are holding the db_ntx |ock and m ght deadlock if we are
* prefetching a dedup-ed bl ock.
*/

if (birth_txg)
return (ds == NULL ||
ds| _dat aset _bl ock_freeabl e(ds, NULL, birth_txg));
el se
return (FALSE);

dbuf _new_si ze(dnmu_buf _i npl _t *db, int size, dmu_tx_t *tx)

arc_buf _t *buf, *obuf;

int osize = db->db. db_si ze;

arc_buf _contents_t type = DBUF_GET_BUFC TYPE(db);
dnode_t *dn;

ASSERT(db- >db_bl kid ! = DMJ_BONUS_BLKI D) ;

DB_DNODE_ENTER(db) ;
dn"= DB_DNODE(db) ;

/* XXX does *this* func really need the | ock? */
ASSERT(RW WRI TE_HELD(&dn- >dn_st ruct _rw ock));

/
This call to dbuf_will _dirty() with the dn_struct_rw ock held
is OK because there can be no other references to the db
when we are changing its size, so no concurrent DB _FILL can
be happeni ng.

* % ok k% ok ok
-~

XXX we shoul d be doing a dbuf_read, checking the return
* value and returning that up to our callers
*

/
dbuf will dirty(db, tx);

/* create the data buffer for the new bl ock */
buf = arc_buf_all oc(dn->dn_obj set->0s_spa, size, db, type);

/* copy old block data to the new bl ock */

obuf = db->db_buf;

bcopy(obuf ->b_data, buf->b_data, M N(osize, size));
/* zero the remai nder */

if (size > osize)

new usr/src/uts/comon/fs/zfs/dbuf.c

970

972
973
974
975

977
978
979
980
981

983
984
985

987
988

}

voi d
dbuf _rel

989 {

990

992
993
994
995
996

998
999

1001
1002

1004
1005
1006
1007
1008
1009

1011
1012
1013

1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

1035

}

bzero((uint8_t *)buf->b_data + osize, size - osize);

mut ex_ent er (&db->db_nt x) ;

dbuf _set _dat a(db, buf);

VERI FY(ar c_buf _renove ref(obuf db));
db->db. db_si ze = si ze;

if (db->db_level == 0) {
ASSERT3U(db->db_l ast _dirty->dr_txg, ==, tx->tx_txg);
db->db_l ast _dirty->dt.dl.dr_data = buf;

}

mut ex_exi t (&db->db_nt x) ;

dnode_wi | | use_space(dn, size-osize, tx);
DB_DNODE_EXI T(db) ;

ease_bp(dmu_buf _i npl _t *db)
obj set _t *os;

DB _GET_OBJSET(&os, db);
ASSERT(ds| _pool sync_cont ext (dmu_obj set _pool (0s)));
ASSERT(ar c_r el eased(0os- >0s_phys_buf) |
list_link actlve(&os >0s_dsl _dat aset - >ds_synced_l i nk));
ASSERT(db->db_parent == NULL || arc_rel eased(db->db_parent->db_buf));

(void) arc_rel ease(db->db_buf, db);

dbuf _dirty_record_t *
dbuf _di rty(dmu_buf _i npl _t *db, dmu_tx_t *tx)
1003 {

dnode t *dn;

obj set _t *os;

dbuf _dirty_ recordt **drp, *dr;

int drop_struct_lock = FALSE;

bool ean_t do_free_accounting = B_FALSE;
int txgoff = tx->tx_txg & TXG MASK;

ASSERT(tx->tx_txg != 0);
ASSERT(! ref count _i s_zer o(&db->db_hol ds)) ;
DMJ_TX_ DI RTY_BUF(t x, db);

DB_DNODE_ENTER(db) ;
dn = DB_DNODE(db);
/*
* Shouldn’t dirty a regular buffer in syncing context. Private
* objects may be dirtied in syncing context, but only if they
* were already pre-dirtied in open context.
*
/
ASSERT(! dmu_t x_i s_synci ng(tx) ||
BP_I S_HOLE(dn->dn_obj set - >0s_r oot bp) |
DMJ_CBJECT_| S_SPEC! AL(dn- >dn_obj ect) |
dn->dn_obj set - >0s_ds| _dat aset == NULL);
/*
* We neke this assert for private objects as well, but after we
* check if we're already dirty. They are allowed to re-dirty
* in syncing context.
*
/

ASSERT(dn->dn_obj ect == DMJ_META DNODE_OBJECT | |
dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
(dmu_tx_is_syncing(tx) ? DN DI RTY_SYNC : DN DI RTY_OPEN));

mut ex_ent er (&db- >db_nt x) ;

new usr/src/uts/comon/fs/zfs/dbuf.c

1036
1037
1038
1039
1040
1041
1042
1043

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057

1059
1060

1062
1063
1064
1065
1066
1067
1068
1069
1070
1071

1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085

1087
1088
1089
1090
1091
1092

1094
1095
1096
1097
1098
1099

1101

/*

* XXX nmeke this true for indirects too? The problemis that
* transactions created with dmu_tx_create_assigned() from

* syncing context don’t bother hol ding ahead.

*

ASSERT(db->db_l evel =0 ||
db->db_state == DB_CACHED || db->db_state == DB FILL ||
db->db_state == DB_NOFI LL);

mut ex_ent er (&dn- >dn_nt x) ;
/*

* Don't set dirtyctx to SYNCif we're just nodifying this as we
* initialize the objset.
=]

if (dn->dn_dirtyctx == DN_UNDI RTI ED &&
I BP_I S _HOLE(dn- >dn_0bj set->0s_rootbp)) {
dn->dn_dirtyctx =

dmu_tx_is_syncing(tx) ? DN DI RTY_SYNC : DN DI RTY_OPEN);

ASSERT(dn->dn_dirtyctx_fi rstset == NULL);
dn->dn_dirtyctx_firstset = knmem. aI loc(1, KM SLEEP);

mut ex_exi t (&dn->dn_nt x) ;

i f (db->db_bl kid == DMJ_SPI LL_BLKI D)
dn->dn_| have _spill = B_TRUE;

/*
* If this buffer is already dirty, we’'re done.
*

drp = &b->db_last _dirty;
ASSERT(*drp == NULL || (*drp) >dr_txg <= tx- >tx _txg ||
db- >db. db _obj ect == VETA_DNODE_OBJECT,
whi | e ((dr = *drp) != NULL && dr->dr_txg > tx- Stx _txg)
drp = &dr->dr next
if (dr &% dr->dr_txg == tx->tx_txg) {
DB_DNCODE_EXI T(db) :

if (db->db_level == 0 && db->db_bl kid != DMJ_BONUS_BLKI D) {
/*

* If this buffer has already been witten out,
*/we now need to reset its state.
*
dbuf _unoverride(dr);
i f (db->db.db_object !'= DMJ META DNODE OBJECT &&
db->db_state != DB_NOFILL)
arc_buf _t haw(db- >db_buf) ;

}
mut ex_exi t (&b->db_nt x) ;
return (dr);

}

/*

* Only valid if not already dirty.
*

/

ASSERT(dn->dn_obj ect == 0 ||
dn->dn_dirtyctx == DN_UNDI RTIED || dn->dn_dirtyctx ==
(dmu_t x_i s_syncing(tx) ? DN _DI RTY_SYNC : DN _DI RTY_OPEN));

ASSERT3U(dn- >dn_nl evel s, >, db->db_| evel);
ASSERT((dn->dn_phys->dn_nl evel s == 0 & db->db_l| evel == 0) ||
dn- >dn_phys->dn_nl evel s > db->db_l evel ||
dn->dn_next _nl evel s[txgoff] > db->db_| evel ||
dn->dn_next _nl evel s[(tx->tx_txg-1) & TXG MASK] > db->db_| evel
dn->dn_next _nl evel s[(tx->tx_txg-2) & TXG MASK] > db->db_| evel);

| *

new usr/src/uts/comon/fs/zfs/dbuf.c

1102
1103
1104
1105
1106
1107
1108
1109
1110
1111

1113

1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125

1127
1128
1129
1130
1131
1132
1133
1134

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

* We should only be dirtying in syncing context if it's the
* nos or we're initializing the os or it’s a special object.
* However, we are allowed to dirty in syncing context provided
* we al ready dirtied it in open context. Hence we nust neke
* this assertion only if we're not already dirty.
*
/

os = dn->dn_obj set;

ASSERT(! dmu_t x_i s_syncing(tx) || DMJ OBJECT_| S_SPECI AL(dn->dn_object) ||
0s->0s_dsl _dataset == NULL || BP_IS _HOLE(o0s->0s_rootbp));

ASSERT(db- >db. db_si ze ! = 0);

dprintf_dbuf (db, "size=%I|x\n", (u_longlong_t)db->db.db_size);
if (db->db_blkid != DMJ_BONUS_BLKI D) {
/*

* Update the accounting.

* Note: we delay "free accounting” until after we drop
* the db_mtx. This keeps us from grabbi ng other |ocks
* (and possibly deadl ocking) in bp_get_dsize() while
*/al so hol ding the db_ntx.

*

dnode_wi | | use_space(dn, db->db.db_size, tx);
do_free_accounting = dbuf_bl ock_freeabl e(db);

-

R

If this buffer is dirty in an old transaction group we need
to make a copy of it so that the changes we nmake in this
/transaction group won't | eak out when we sync the ol der txg.
dr = knmem zal | oc(si zeof (dbuf_dirty_record_t), KM SLEEP);

if (db->db_l evel == 0) {

void *data_old = db->db_buf;

if (db->db_state != DB NO:ILL)
i f(db->db_bl kid == DMJ_BONUS_BLKI D) {
dbuf _fix_ol d_data(db, tx->tx_txg);
data_ol d = db->db. db_dat a;
} else if (db->db.db_object T= DMJ META DNODE_OBJECT) {

Rel ease the data buffer fromthe cache so
that we can nodify it w thout inpacting
possi bl e other users of this cached data

bl ock. Note that indirect blocks and
private objects are not released until the
syncing state (since they are only nodified
then).

-~
* ok kb * ok F

*

arc_rel ease(db->db_buf, db);
dbuf _fix_old_data(db, tx->tx_txg);
data_ol d = db->db_buf;

}
ASSERT(data_old != NULL);

}
dr->dt.dl.dr_data = data_ol d;
} else {
mut ex_init(&r->dt.di.dr_ntx, NULL, MUTEX DEFAULT, NULL);
|ist_create(&dr->dt.di.dr. ch| I dren,
si zeof (dbuf_dirty_record_t),
of f set of (dbuf _dirty_r ecord_t, dr_dirty_node));

}

dr->dr _dbuf = db;
dr->dr_txg = tx->tx_txg;
dr->dr next = *drp;
*drp =

new usr/src/uts/comon/fs/zfs/dbuf.c

1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179

1181
1182
1183
1184
1185
1186

1188

1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213

1215
1216
1217
1218

1220
1221
1222
1223

1225
1226
1227
1228

1230
1231

1233

/
We coul d have been freed_in_flight between the dbuf_noread
and dbuf _dirty. We win, as though the dbuf_noread() had
happened after the free.

R

if (db->db_level == 0 && db->db_bl kid ! = DMJ_BONUS_BLKI D &&
db- >db_ blkld 1= DMJ SPILL_BLKID) {
mut ex_ent er (&dn->dn_nt x) ;
dnode_cl ear _range(dn, db->db_blkid, 1, tx);
mut ex_exi t (&n->dn_nt x) ;
db->db_freed_in_flight = FALSE;
}

/*
* This buffer is now part of this txg
*

dbuf _add_ref (db, (void *)(uintptr_t)tx->tx_txg);
db->db_dirtycnt += 1;
ASSERT3U(db->db_di rtycnt, <=, 3);

mut ex_exi t (&db->db_nt x) ;

if (db->db_blkid == DMJ BONUS_BLKI D | |
db->db_bl ki d == DMJ_SPI LL_BLKI D) {
mut ex enter(&dn ->dn mx)
ASSERT(!list_link_acti ve(&dr— >dr _dirty_node));
list_insert_tail (&n->dn_dirty_ records[txgoff] dr);
mut ex_exi t (&n- >dn_nt x) ;
dnode_setdi rty(dn, tx);
DB_DNODE_EXI T(db) ;

(dr)

free accountlng) {

_t *bp db- >db_bl kptr;
| IIfree—(bp&&lBPIS HOLE(bp)) ?
p_get _dsi ze(os->0s_spa, bp) : db->db. db_si ze;

retu
} elseif (d
b kptr
nt 6
is only a guess -- if the dbuf is dirty
revious txg, we don’t know how much
it will use on disk yet. W should
have the struct_rw ock to access
t

r, but since this is just a guess,
Kif we get an odd answer.

* ok Ok kX ok

*
*/
ddt _prefetch(os->0s_spa, bp);
dnode_wi | | use_space(dn, -wllfree, tx);

co
0_
tr
4 1
b
Thi s

inap
space
real ly
db_bl kp
it's

}

if (! RWWRI TE_HELD(&n->dn_struct _rw ock)) {
rw_ent er (&n->dn_struct _rw ock, RW READER);
drop_struct _l ock = TRUE;

}

if (db->db_l evel == 0)
dnode_new_bl ki d(dn db->db_bl kid, tx, drop_struct_|ock);
ASSERT(dn->dn_maxbl ki d >= db->db_bl ki d);

}

if (db->db_l evel +1 < dn->dn_nl evels) {
dnu_buf _i npl _t *parent = db->db_parent;
dbuf _dirty_record_t *di;
int parent_held = FALSE;

if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
int epbs = dn->dn_i ndbl kshi ft - SPA BLKPTRSHI FT;

parent = dbuf_hol d_I evel (dn, db->db_I evel +1,

new usr/src/uts/comon/fs/zfs/dbuf.c 11
1234 db->db_bl kid >> epbs, FTAG;

1235 ASSERT(parent 1= NULL);

1236 parent _hel d = TRUE;

1237 }

1238 if (drop_struct_I ock)

1239 rw_exit(&In->dn_struct_rw ock);

1240 ASSERTSU(db->db_l evel +1, ==, parent->db_| evel);

1241 di = dbuf dlrty(parent tx);

1242 if (parent_held

1243 dbuf _rel e(parent, FTAG;

1245 mut ex_ent er (&db- >db_nt x) ;

1246 /* possible race with dbuf _undirty() *

1247 if (db->db_last_dirty == dr |

1248 dn->dn_obj ect == DMU_META_DNODE = OBJECT) {

1249 r'rutex_enter(&dl >dt. di.dr_ntx);

1250 ASSERT3U(di - >dr _txg, ==, tx->tx_txg);

1251 ASSERT(!l'ist_link_active(&dr->dr_dirty_node));
1252 list_insert_tail (&di->dt.di.dr_children, dr);
1253 mut ex_exi t (&di ->dt. di.dr_ntx);

1254 dr->dr_parent = di;

1255 }

1256 mut ex_exi t (&b->db_nt x) ;

1257 } else {

1258 ASSERT(db- >db_| evel +1 == dn->dn_nl evel s);

1259 ASSERT(db->db_bl ki d < dn->dn_nbl kptr);

1260 ASSERT(db- >db_par ent == NULL || db- >db _parent == dn->dn_dbuf);
1261 nmut ex enter(&dn >dn_| mx

1262 ASSERT(!list_link_acti ve(&dr- >dr _dirty_node));

1263 list_insert_tail (&n->dn_dirty_ records[txgoff] dr);
1264 mut ex_exi t (&n->dn_nt x) ;

1265 if (drop_struct_l ock)

1266 rw_exi t (&n->dn_struct _rw ock);

1267 }

1269 dnode_setdirty(dn, tx);

1270 DB_DNODE_EXI T{ db)

1271 return (dr);

1272 }

1274 | *

1275 * Undirty a buffer in the transaction group referenced by the given
1276 * transaction. Return whether this evicted the dbuf.

641 * Return TRUE if this evicted the dbuf.

1277 */

1278 static bool ean_t

1279 dbuf _undi rty(dmu_buf _inmpl _t *db, dru_tx_t *tx)

1280 {

1281 dnode_t *dn;

1282 uint64_t txg = tx->tx_txg;

1283 dbuf _dirty_record_t *dr, **drp;

1285 ASSERT(txg !'= 0);

1286 ASSERT(db- >db bikid != DMJ_BONUS_BLKI D) ;

1287 ASSERTO(db- >db_| evel) ;

1288 ASSERT(MUTEX_HELD(&db- >db_mt x)) ;

1290 /*

1291 * |f this buffer is not dirty, we're done.

1292 */

1293 for (drp = &b->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1294 if (dr->dr_txg <= txg)

1295 br eak;

1296 if (dr == NULL || dr- Sdr _txg < txg)

1297 return (B_| FALSE

1298 ASSERT(dr->dr_txg == txg)

new usr/src/uts/comon/fs/zfs/dbuf.c 12

1299

1301
1302

1304
1305
1306
1307
1308
1309
1310

1312
1314
1316
1318

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337

1339
1340

1342
1343
1344
1345
1346
1347

1349
1350

1352
1353

1355
1356
1357
1358
1359
1360

1362
1363 }

ASSERT(dr - >dr _dbuf == db);

DB_DNODE_ENTER(db) ;
dn"= DB_DNODE(db) ;

/
Note: This code will probably work even if there are concurrent
hol ders, but it is untested in that scenerio, as the ZPL and
ztest have additional |ocking (the range |ocks) that prevents
that type of concurrent access.

EE

*/
ASSERT3U(r ef count _count (&db- >db_hol ds), ==, db->db_dirtycnt);
dprintf_dbuf (db,

"size=%1x\n", (u_longlong_t)db->db.db_size);

ASSERT(db- >db. db_si ze ! = 0);
/* XXX woul d be nice to fix up dn_towite_space[] */
*drp = dr->dr_next;

/*
* Note that there are three places in dbuf_dirty()
* where this dirty record may be put on a list.
* Make sure to do a |ist_renove corresponding to
* every one of those list_insert calls.
*

/

if (dr->dr_parent)
mut ex_ent er (&dr - >dr _parent - >dt. di . dr_ntx);
list_renmove(&dr->dr_parent->dt.di.dr_children, dr);
mut ex_exi t (&dr->dr _parent->dt.di.dr_ntx);

} else if (db->db blk|d == DMJ_SPILL_BLKID [|

db->db_| evel +1 == dn->dn_nlevel s) {

ASSERT(db->db_bl kptr == NULL || db->db_parent == dn->dn_dbuf);
mut ex_ent er (&dn->dn_nt x) ;
list_renmove(&n->dn_dirty_records[txg & TXG MASK], dr);

) nmut ex_exi t (&n->dn_nt x) ;

DB_DNODE_EXI T(db) ;

if (db->db_state !'= DB_NOFILL) {
dbuf _unoverride(dr);

ASSERT(db- >db_buf != NULL);
ASSERT(dr->dt.dl.dr_data != NULL);
if (dr->dt.dl.dr_data != db->db buf)
VERI FY(arc_buf _renove_ref (dr->dt.dl.dr_data, db));

}
kmem free(dr, sizeof (dbuf_dirty_record_t));

ASSERT(db->db_dirtycnt > 0);
db->db_dirtycnt -="1;

if (refcount_renove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
arc_buf _t *buf = db->db_buf;

ASSERT(db->db_state == DB_NOFILL || arc_rel eased(buf));
dbuf _set _dat a(db, NULL)
VERI FY(arc_buf _renove ref(buf, db));
dbuf _evi ct (db) ;
return (B_TRUE);
}

return (B_FALSE);

__unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/dbuf.c

db->db_bl kptr);

1<<dn- >dn_phys->dn_i ndbl kshi ft);

db->db_bl kptr);

2221 static void

2222 dbuf _sync_indirect (dbuf _dirty_record_t *dr, dnu_tx_t *tx)
2223 {

2224 dmu_buf _i npl _t *db = dr->dr_dbuf;

2225 dnode_t *dn;

2226 zio_t *zio;

2228 ASSERT(dmu_t x_i s_synci ng(tx));

2230 dprintf_dbuf _bp(db, db->db_bl kptr, "bl kptr=%",
2232 mut ex_ent er (&db->db_nt x) ;

2234 ASSERT(db->db_| evel > 0);

2235 DBUF_VERI FY(db) ;

2237 /* Read the block if it hasn’t been read yet. */
2238 #endif /* | codereview */

2239 if (db->db_buf == NULL)

2240 mut ex_exi t (&b- >db_nt x) ;

2241 (void) dbuf_read(db, NULL, DB_RF_MJST_SUCCEED);
2242 nut ex_ent er (&lb->db_nt x) ;

2243 }

2244 ASSERT3U(db- >db_state, ==, DB_CACHED);

2245 ASSERT(db->db_buf != NULL);

2247 DB_DNODE_ENTER(db) ;

2248 dn = DB_DNODE(db);

2249 /* Indirect block size nust nmatch what the dnode thinks it is.
2250 #endif /* | codereview */

2251 ASSERT3U(db- >db. db_si ze, ==

2252 dbuf _check_bl kptr (dn, db);

2253 DB_DNODE_EXI T(db) ;

2255 /* Provide the pending dirty record to child dbufs */
2256 #endif /* | codereview */

2257 db- >db_dat a_pendi ng = dr;

2259 mut ex_exi t (&db->db_nt x) ;

2260 dbuf _write(dr, db->db_ buf tx);

2262 zio = dr->dr_zio;

2263 mut ex_enter (&dr->dt. di.dr_ntx);

2264 dbuf _sync_li st (&dr->dt.di.dr chi I dr en, tx);

2265 ASSERT(| i st _head(&dr - >dt . di . dr _chi | dren) == NULL);
2266 mut ex_exi t (&dr->dt. di.dr_ntx);

2267 zi o_nowai t (zi 0);

2268 }

2270 static void

2271 dbuf _sync_Il eaf (dbuf _dirty_record_t *dr, dmu_tx_t *tx)
2272 {

2273 arc_buf _t **datap = &dr->dt.dl.dr_data;

2274 dmu_buf _i npl _t *db = dr->dr_dbuf;

2275 dnode t *dn;

2276 obj set _t *os;

2277 uintB4_t txg = tx->tx_txg

2279 ASSERT(dnmu_t x_i s_synci ng(tx));

2281 dprintf_dbuf _bp(db, db->db_bl kptr, "bl kptr=%",
2283 mut ex_ent er (&db- >db_nt x) ;

2284 /*

2285 * To be synced, we nust be dirtied. But we

*/

13

new usr/src/uts/comon/fs/zfs/dbuf.c

2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297

2299
2300

2302
2303
2304
2305
2306

2308
2309
2310
2311
2312
2313
2314
2315

2317
2318
2319
2320
2321

2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339

2341

2343
2344
2345
2346
2347
2348
2349

2351

* mght have been freed after the dirty.
S

if (db->db_state == DB_UNCACHED) {
/* This buffer has been freed since it was dirtied */
ASSERT(db- >db. db data == NULL);

} else if (db->db_state == DB_FILL) {
/* This buffer was freed and is now being re-filled */
ASSERT(db->db. db_data != dr->dt.dl.dr_data);

} else {
ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFI LL);

}
DBUF_VER! FY(db) ;

DB_DNODE_ENTER(db) ;
dn = DB_DNODE(db) ;

if (db->db_blkid == DMJ_SPI LL_BLKI D) {
mut ex enter(&dn >dn_ntx) ;
dn->dn_phys->dn_fl ags | = DNODE_FLAG SPI LL_BLKPTR,
mut ex_exi t (&n->dn_nt x) ;

*

* If this is a bonus buffer, sinply copy the bonus data into the
* dnode. It will be witten out when the dnode is synced (and it
* will be synced, since it nmust have been dirty for dbuf_sync to
* be called).

*

/
if (db->db_bl kid == DMJ_BONUS_BLKI D) {
dbuf _dirty_record_t **drp;

ASSERT(*datap != NULL);

ASSERTO(db- >db_| evel) ;

ASSERT3U(dn- >dn_phys- >dn_bonus! en, <=, DN_MAX_BONUSLEN);
bcopy(*dat ap, DN_BONUS(dn->dn phys) dn->dn_phys->dn_| bonus| en);
DB_DNCDE_EXI T(db);

if (*datap != db->db.db_data) {
zi o_buf _free(*datap, DN_MAX_BONUSLEN) ;
arc_space_r et ur n(DN_MAX_BONUSLEN, ARC SPACE_OTHER);

}
db- >db_dat a_pendi ng = NULL;
drp = &b->db_l ast_dirty;
while (*drp != dr)
drp = &(* drp) >dr _next;
ASSERT(dr - >dr _next == NULL);
ASSERT(dr >dr _dbuf == db);
*drp = dr->dr_next;
kmem free(dr, si zeof (dbuf _dirty_record_t));
ASSERT(db->db_dirtycnt > 0);
db->db_dirtycnt -= 1;
dbuf _rel e_and_unl ock(db,
return;

(void *)(uintptr_t)txg);

os = dn->dn_obj set;

This function may have dropped the db_ntx |ock allowi ng a dnmu_sync
operation to sneak in. As a result, we need to ensure that we
don’t check the dr_override_state until we have returned from

* dbuf _check_bl kptr.

*/

dbuf _check_bl kptr (dn, db);

* ok ok ok

| *

new usr/src/uts/comon/fs/zfs/dbuf.c 15 new usr/src/uts/comon/fs/zfs/dbuf.c
2352 * |f this buffer is in the mddle of an i mediate wite, 2418 =
2353 * wait for the synchronous 10 to conplete. 2419 ASSERT3U(dr - >dr _dbuf - >db. db_obj ect, ==,
2354 */ 2420 DMU_META_DNODE_OBJECT) ;
2355 while (dr->dt.dl.dr_override_state == DR IN DMJ SYNC) { 2421 br eak;
2356 ASSERT(dn- >dn_obj ect ! = DMJ NEl'A DNODE_OBJECT) ; 2422 }
2357 cv_wai t (&db->db_changed, &db->db_ntx); 2423 list_renmove(list, dr);
2358 ASSERT(dr->dt.dl.dr_override_state ! = DR_NOT_OVERRI DDEN) ; 2424 if (dr->dr_dbuf->db_|level > 0)
2359 } 2425 dbuf _sync_indirect(dr, tx);
2426 el se
2361 if (db->db_state != DB_NOFILL && 2427 dbuf _sync_l eaf (dr, tx);
2362 dn->dn_obj ect ! = DMJ_META DNODE_OBJECT && 2428 }
2363 ref count _count (&b->db_hol ds) > 1 && 2429 }
2364 dr->dt.dl.dr_override_state != DR OVERRI DDEN &&
2365 *dat ap == db->db_buf) { 2431 /* ARGSUSED */
2366 /* 2432 static void
2367 * If this buffer is currently "in use" (i.e., there 2433 dbuf _wite_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2368 * are active holds and db_data still references it), 2434 {
2369 * then make a copy before we start the wite so that 2435 drmu_buf _i npl _t *db = vdb;
2370 * any nodifications fromthe open txg will not |eak 2436 dnode_t *dn;
2371 * into this wite. 2437 bl kptr_t *bp = zi o->i o_bp;
2372 * 2438 bl kptr_t *bp_orig = &zio->io_bp_orig;
2373 * NOTE: this copy does not need to be nmade for 2439 spa_t *spa = zio->i 0_spa;
2374 * objects only nodified in the syncing context (e.g. 2440 int64_t delta;
2375 * DNONE_DNODE bl ocks) . 2441 uinted_t fill = 0;
2376 */ 2442 int i;
2377 int blksz = arc_buf_size(*datap);
2378 arc_buf _contents_t type = DBUF_CET_BUFC TYPE(db); 2444 ASSERT(db- >db_bl kptr == bp);
2379 *datap = arc_buf alloc(os >0s_spa, blksz, db, type);
2380 bcopy(db->db. db_data, (*datap)->b_dat a, bl ksz); 2446 DB_DNODE ENTER(db)
2381 } 2447 dn = DB_DNODE(db);
2382 db- >db_dat a_pendi ng = dr; 2448 delta = bp_get _ dsi ze _sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2449 dnode_di duse_space(dn, delta - zi o->io_prev_space_delta);
2384 mut ex_exi t (&db->db_nt x) ; 2450 zi 0o->i o_prev_space_delta = delta;
2386 dbuf _write(dr, *datap, tx); 2452 if (BP_IS HOLE(bp)) {
2453 ASSERT(bp->bl k_fill == 0);
2388 ASSERT(!1ist_link act ive(&Jr->dr_dirty_node)); 2454 DB_DNODE_EXI T(db) ;
2389 if (dn->dn Obj ect == DMJ_META DNODE_OBJECT) { 2455 return;
2390 list_insert_tail (&n->dn_dirty records[txg&TXG MASK], dr); 2456 }
2391 DB_DNODE_EXI T(db) ;
2392 } else { 2458 ASSERT((db->db_bl kid ! = DMJ_SPI LL_BLKI D &&
2393 /* 2459 BP_CET_TYPE(bp) == dn->dn_type) ||
2394 * Al though zio_nowait() does not "wait for an 10", it does 2460 (db->db_bl ki d == DMJ_SPI LL_BLKI D &&
2395 * initiate the 10 If this is an enpty wite it seens plausible 2461 BP_GET_TYPE(bp) == dn->dn_bonustype));
2396 * that the 10 could actually be conpl eted before the nowait 2462 ASSERT(BP_GET_LEVEL(bp) == db->db_| evel);
2397 * returns. W need to DB _DNODE_EXIT() first in case
2398 * zio_nowait() invalidates the dbuf. 2464 mut ex_ent er (&db->db_nt x) ;
2399 */
2400 DB_DNODE_EXI T(db) ; 2466 #ifdef ZFS_DEBUG
2401 zi 0_nowai t (dr->dr_zio); 2467 if (db->db_bl kid == DMJ_SPI LL_BLKI D) {
2402 } 2468 ASSERT(dn- >dn _phys->dn_flags & DNODE_FLAG SPI LL_BLKPTR);
2403 } 2469 ASSERT(! (BP_I S HG_E(db >db_bl kptr)) &&
2470 db->db_bl kptr == &dn->dn_phys->dn_spill);
2405 void 2471
2406 dbuf_sync_list(list_t *list, dmu_tx_t *tx) 2472 #endi f
2407 {
2408 dbuf _dirty_record_t *dr; 2474 if (db->db_l evel ==
2475 nut ex_ent er (&dn- >dn_nt x) ;
2410 while (dr = list_head(list)) { 2476 if (db->db_bl kid > dn->dn_phys->dn_nmaxbl kid &&
2411 if (dr->dr_zio !=NULL) { 2477 db->db bl kid ! = DMJ _SPI LL_BLKI D)
2412 /* 2478 dn- >dn_phys->dn_naxbl ki d = db->db_bl ki d;
2413 * |f we find an already initialized zio then we 2479 mut ex_exi t (&dn->dn_nt x) ;
2414 * are processing the neta-dnode, and we have finished.
2415 * The dbufs for all dnodes are put back on the I|ist 2481 if (dn->dn_type == DMJ_OT DNQDE) {
2416 * during processing, so that we can zio_wait() 2482 dnode phys t *dnp = db->db. db_dat a;
2417 * these |1 Cs after initiating all child IGCs. 2483 for (i = db->db.db_size >>DN(DESHIFT i >0;

new usr/src/uts/comon/fs/zfs/dbuf.c 17

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500

2502

2504
2505

2507
2508
2509
2510
2511
2512
2513
2514
2515

2517
2518

2520
2521
2522
2523
2524
2525
2526
2527
2528
2529

2531
2532
2533

2535
2536
2537

2539
2541

2543
2544
2545
2546
2547
2548
2549

}

| *

i--, dnp++) {
if (dnp->dn_type != DMJ_OT_NONE)
fill++;

}
} else {
fi
} else {

bl kptr_t *ibp = db->db. db_dat a;
ASSERT3U(db >db. db_si ze, ==, 1<<dn->dn_phys->dn_i ndbl kshi ft);

for (i db->db. db_si ze >> SPA BLKPTRSHI FT; i > 0; i--, |bp++) {
"if (BP.iS FOLE(i bp))
conti nue;
fill += ibp->blk_fill;
) }
DB_DNGCDE_EXI T(db) ;
bp->bl k_fill = fill;

mut ex_exi t (&db->db_nt x) ;

ARGSUSED */

static void

dbuf _write_done(zio_t *zio,

{

arc_buf _t *buf, void *vdb)
dmu_buf _i npl _t *db = vdb;

bl kptr_t *bp = zio->io_bp;

bl kptr_t *bp_orig = &zio->io_bp_orig;

uint64_t txg = zio->io_txg;

dbuf _dirty_record_t **drp, *dr;

ASSERTO(zi 0->i 0_error);
ASSERT(db- >db_bl kptr == bp);

/*

* For nopwites and rewites we ensure that the bp natches our
* original and bypass all the accounting.

*

if (zio->o_flags & (ZI O FLAG | O REWRITE | ZI O FLAG NOPWRI TE)) {
ASSERT(BP_EQUAL(bp, bp_orig))
} else {
obj set _t *os;
dsl _dat aset _t *ds;
dmu_tx_t *tx;

DB_GET_OBJSET(&os, db)
ds = os->o0s_dsl| _dat aset ;
tx = 0s->0s_synctx;

(voi d) dsl_dataset_bl ock_kill(ds, bp_orig, tx, B _TRUE);
dsl _dat aset _bl ock_born(ds, bp, tx);

}
mut ex_ent er (&db->db_nt x) ;
DBUF_VERI FY(db) ;

drp = &b->db_l ast _dirty;

while ((dr = *drp) != db->db_dat a_pendi ng)
drp = &dr->dr_next;

ASSERT(!list_link_active(&r->dr_dirty_node));

ASSERT(dr->dr_txg == txg);

ASSERT(dr - >dr _dbuf == db);

ASSERT(dr->dr _next == NULL);

new usr/src/uts/comon/fs/zfs/dbuf.c

2550 *drp = dr->dr_next;

2552 #ifdef ZFS_DEBUG

2553 if (db->db_bl kid == DMJ_SPI LL_BLKI D) {

2554 dnode_t *dn;

2556 DB_DNODE_ENTER(db) ;

2557 dn = DB_DNODE(db);

2558 ASSERT(dn- >dn phys >dn_f | ags & DNODE_FLAG SPI LL_BLKPTR) ;
2559 ASSERT(! (BP_I S HG_E(db >db_bl kptr)) &&

2560 db->db_bl kptr == &dn->dn_phys->dn_spill);

2561 DB_DNODE_EXI T(db) ;

2562

2563 #endi f

2565 if (db->db_level == 0) {

2566 ASSERT(db- >db bl kid ! = DMJ_BONUS_BLKI D) ;

2567 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRI DDEN) ;
2568 if (db->db_state !'= DB NOFILL) {

2569 if (dr->dt.dl.dr_data != db->db_buf)

2570 VERI FY(arc_buf _renove_ref (dr->dt.dl.dr_data,
2571 db));

2572 else if (larc_rel eased(db->db_buf))

2573 arc_set _cal | back(db->db_buf, dbuf_do_evict,
2574

2575 } else {

2576 dnode_t *dn;

2578 DB_DNODE_ENTER(db)

2579 dn = DB_DNODE(db);

2580 ASSERT(Ti st head(&dr >dt. di.dr_children) == NULL);

2581 ASSERT3U(db- >db. db_si ze, ==, 1<<dn->dn_phys->dn_| i ndbl kshi ft);
2582 if (!BP_IS_| HG_E(db >db bIkptr)) {

2583 int epbs =

2584 dn- >dn_phys->dn_i ndbl kshi ft - SPA BLKPTRSHI FT;
2585 ASSERT3U(BP_GET_LSI ZE(db->db_bl kptr), ==

2586 db- >db. db_si ze);

2587 ASSERTSU(dn- >dn_phys- >dn_naxbl ki d

2588 > (db->db_Tevel * epbs), >=, db->db_blkid);
2589 arc set _cal | back(db->db_buf, dbuf_do_evict, db);
2590 }

2591 DB_DNODE_EXI T(db) ;

2592 mut ex_destroy(&dr->dt. di.dr_ntx);

2593 list_destroy(&dr->dt.di.dr_chil dren)

2594 }

2595 kmem free(dr, sizeof (dbuf_dirty_record_t));

2597 cv_broadcast (&db- >db_changed) ;

2598 ASSERT(db->db_dirtycnt > 0);

2599 db->db_dirtycnt -= 1;

2600 db- >db_dat a_pendi ng = NULL;

2601 dbuf _rel e_and_unl ock(db, (void *)(uintptr_t)txg);

2602 }

2604 static void

2605 dbuf _write_nofill _ready(zio_t *zio)

2606 {

2607 dbuf _write_ready(zio, NULL, zio->io_private);

2608 }

2610 static void

2611 dbuf _write_nofill_done(zio_t *zio)

2612 {

2613 dbuf _write_done(zio, NULL, zio->io_private);

2614 }

18

db);

new usr/src/uts/comon/fs/zfs/dbuf.c

2616 static void
2617 dbuf _write_override_ready(zio_t *zio)

2618
2619
2620

2622
2623

2625
2626
2627
2628
2629
2630

2632
2633
2634
2635
2636
2637
2638

2640
2641

2643
2644
2645
2646

{

}

dbuf _dirty_record_t *dr = zio->io_private;
dmu_buf _inpl _t *db = dr->dr_dbuf;

dbuf _write_ready(zio, NULL, db);

static void
dbuf _write_override_done(zio_t *zio)

{

}

dbuf _dirty_record_t *dr = zio->io_private;
dmu_buf _inpl _t *db = dr- >dr dbuf ;
bl kptr_t *obp = &dr->dt.dl.dr overrldden_by;

mut ex_ent er (&db->db_nt x) ;
if (!BP_EQUAL(zio->io_bp, obp)) {
if (IBP_IS HOLE(obp))
dsT _free(spa_get _dsl (zi o->i 0_spa),
arc_rel ease(dr->dt.dl.dr_data,);

}
mut ex_exi t (&db->db_nt x) ;

dbuf _write_done(zio, NULL, db);

/* Issue /O to commit a dirty buffer to disk. */

#endi f

/* 1 codereview */

static void

dbuf _write(dbuf_dirty_record_t *dr,

2647 {

2648
2649
2650
2651
2652
2653
2654
2655
2656

2658
2659
2660

2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676

2678
2679
2680

2681 #endi f

arc_buf _t *data, dnmu_tx_t *tx)

dmu_buf _i npl _t *db = dr->dr_dbuf;
dnode_t *dn;

obj set _t *os;

drmu_buf _i npl _t *parent = db->db_parent;

uint64_t txg = tx->tx_txg;
zbookmar k_t zb;

zio_prop_t zp;

zio_t *zio;

int wp_ flag = 0;

DB_DNODE_ENTER(db) ;
dn = DB_DNODE(db) ;
os = dn->dn_obj set;
if (db->db_state != DB _NOFILL) {
if (db->db_level > 0 || dn->dn_type == DMJ_OT_DNODE) {
/*
* Private object buffers are rel eased here rather
* than in dbuf_dirty() since they are only nodified
* in the syncing context and we don't want the
* overhead of neking nmultiple copies of the data.
*
/

if (BP_I'S _HOLE(db->db_bl kptr)) {
ar c_buf _t haw(dat a) ;

} else {

) dbuf _rel ease_bp(db);

}

if (parent != dn->dn_dbuf) {

/* Qur parent is an indirect block. */

/* W have a dirty parent that has been scheduled for wite.
/* 1 codereview */

zi 0->i o_t xg, obp);

19

*/

new usr/src/uts/comon/fs/zfs/dbuf.c

2682
2683
2684 #endi f
2685
2686
2687
2688
2689
2690 #endi f
2691
2692
2693
2694
2695 #endi f
2696
2697
2698
2699
2700
2701
2702
2703

2705
2706
2707

2709
2710
2711

2713
2714
2715

2717
2718

2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745 }

ASSERT(parent && parent - >db_dat a_pendi ng) ;
/* Qur parent’s buffer is one level closer to the dnode. */

/* 1 codereview */

ASSERT(db- >db_| evel == parent->db_| evel -1);

/*

* We're about to nodify our parent’s db_data by nodifying
* our block pointer, so the parent nust be rel eased.

*

/

/* ! codereview */

} else {

ASSERT(ar c_r el eased(par ent - >db_buf));
zi 0 = parent->db_dat a_pendi ng->dr _zi o;

/* Qur parent is the dnode itself. */

/* 1 codereview */

ASSERT((db->db_| evel == dn->dn_phys->dn_nl evel s-1 &&
db->db_bl kid != DMJ SPILL_BLKID) ||
(db->db_bl ki d == DMJ_SPI LL_BLKI D && db->db_| evel == 0));
if (db->db_blkid != DMJ_SPI LL_BLKI D)
ASSERT3P(db- >db_bl kptr, ==,
&dn- >dn_phys->dn_| bi kptr[db >db_bl ki d]);
zi o = dn->dn_zi o;

}
ASSERT(db->db_l evel == 0 || data == db->db_buf);
ASSERT3U(db- >db_bl kptr->bl k_birth, <=, txg);
ASSERT(zi 0) ;
SET_BOOKVARK(&b, o0s->o0s_dsl _dataset ?
os- >0s_dsl _dat aset - >ds_obj ect : DMJ_META_ OBJSET,
db- >db. db_obj ect, db->db_| evel, db->db_blkid);

if (db->db_blkid == DMJ SPI LL_BLKI D)

wp_f 1l ag

dmu_writ

wp_flag = WP_SPILL;
| = (db->db_state == DB_NOFILL) ? WP_NOFILL : O;
e_policy(os, dn,

db->db_l evel , wp_flag, &zp);

DB_DNODE_EXI T(db)

if (db->db_| eve

} else i

} else {

== 0 &% dr->dt.dl.dr_override_state == DR_OVERRI DDEN)

ASSERT(db->db_state != DB_NOFTLL);

dr->dr_zio = zio_wite(zio, os->0s_spa, txg,
db->db_bl kptr, data->b_data, arc_buf_size(data), &zp,
dbuf _write override ready dbuf _write override done dr,
ZI O PRI ORI TY_ASYNC WRI TE, ZI O FLAG_MJSTSUCCEED, &zb)

mut ex_ent er (&db->db_nt X) ;

dr->dt.dl.dr_override_state = DR NOT_OVERRI DDEN,

zio_wi te_overri de(dr— >dr _zi o, &dr->dt.dl.dr_overridden_by,
dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwite);

mut ex_exi t (&db- >db _mx);

f (db->db_state == DB NCFILL) {

ASSERT(zp Zp_| checksum == ZI O_CHECKSUM OFF) ;

dr->dr_zio = zio wrlte(2|0 0s->0s_spa, txg,
db->db_bl kptr, NULL, db->db.db_size, &zp,
dbuf _write nof il | ready dbuf _write_nofill
ZI O_PRI ORI TY_ASYNC_WRI TE,
ZI O_FLAG MUSTSUCCEED | ZI O FLAG NODATA, &zb);

_done, db,

ASSERT(ar c_ i el eased(data));

dr->dr_zio = arc_wite(zio, os->0s_spa, txg,
db->db_bl kptr, data, DBUF_|S_L2CACHEABLE(db), &zp,
dbuf _write ready dbuf_write done, db,
ZI O_PRI ORI TY_ASYNC WRI TE, ZI O | FLAG NUSTSUCCEED &zb) ;

new usr/src/uts/comon/fs/zfs/dmu.c

R R R R

44142 Thu May 16 17:33:47 2013
new usr/src/uts/comon/fs/zfs/dm.c
3741 zfs needs better comments
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Justin G bbs <justing@pectral ogi c.conp

Submi tted by: Al an Sorers <al ans@pectral ogi c. com>
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. com>
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. com>

LR

____unchanged_portion_onitted_

1824 void

1825 dmu_fini (voi d)

1826 {

1827 arc_fini(); /* arc depends on |2arc, so arc nust go first
1827 arc_fini();

1828 I 2arc_fini();

1829 zfetch_fini();
1830 dbuf _fini();

1831 dnode_fini();

1832 drmu_obj set _fini();
1833 xuio_stat_fini();
1834 sa_cache_fini();
1835 zfs_dbgmsg_fini();
1836 }

__unchanged_portion_onitted_

*/

new usr/src/uts/comon/fs/zfs/dm_tx.c

R R R R

35492 Thu May 16 17:33:47 2013
new usr/src/uts/comon/fs/zfs/dm_tx.c
3741 zfs needs better comments
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Justin G bbs <justing@pectral ogi c.conp

Submi tted by: Al an Soners <al ans@pectral ogi c. con>
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. com>
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. com>

LR

__unchanged_portion_onitted_

1007 static void
1008 dmu_t x_unassi gn(dmu_tx_t *tx)

1009 {

1010 dmu_t x_hol d_t *txh;

1012 if (tx->tx_txg == 0)

1013 return;

1015 txg_rel e_to_qui esce(& x->tx_txgh);

1017 I*

1018 * Walk the transaction’s hold list, renoving the hold on the
1019 * associ ated dnode, and notifying waiters if the refcount drops to O.
1020 */

1021 #endif /* ! codereview */

1022 for (txh = list_head(& x->tx_holds); txh I= tx->tx_needassign_txh;
1023 txh = |ist_next (& x->tx_hol ds, txh)) {

1024 dnode_t *dn = txh- >txh_dnode;

1026 if (dn == NULL)

1027 conti nue;

1028 nmut ex_ent er (&dn- >dn _ntx);

1029 ASSERT3U(dn->dn_assi gned_t xg, ==, tx->tx_txg);

1031 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {

1032 dn->dn_assi gned_txg = 0;

1033 cv_broadcast (&Jn- >dn_not xhol ds) ;

1034 }

1035 mut ex_exi t (&dn->dn_nt x) ;

1036 }

1038 txg_rele_to_sync(&t x->tx_txgh);

1040 tx->tx_lasttried_txg = tx->tx_txg;

1041 tx->tx_txg = O;

1042 }

1044 /*

1045 * Assign tx to a transaction group. txg_how can be one of:

1046 *

1047 * (1) TXGWAIT. |If the current open txg is full, waits until there’'s
1048 * a new one. This should be used when you' re not hol ding | ocks.
1049 * It will only fail if we're truly out of space (or over quota).
1050 *

1051 * (2) TXG NOMIT. |If we can't assign into the current open txg w thout
1052 * bl ocking, returns immediately with ERESTART. This should be used
1053 * whenever you're holding |locks. On an ERESTART error, the caller
1054 * shoul d drop | ocks, do a dnu_tx_wait(tx), and try again.

1055 */

1056 i nt

1057 dmu_t x_assign(dnu_tx_t *tx, txg_how_ t txg_how)

1058 {

1059 int err;

new usr/src/uts/comon/fs/zfs/dm_tx.c

1061
1062
1063

1065
1066

1068
1069

1071
1072

1074
1075

1077

1079
1080 }

1082 void

ASSERT(t x- >t x txg == 0);
ASSERT(t xg_how == TXG WAL T || txg_how == TXG NOMAIT);
ASSERT(! dsT_pool _sync_cont ext (t x- >t x_pool));

/* If we mght wait, we nust not hold the config lock. */
ASSERT(txg_how ! = TXG WAIT || !dsl_pool _config_hel d(tx->tx_pool));

while ((err = dnu_tx_try_assign(tx, txg_how)) != 0) {
dmu_t x_unassi gn(tx);

if (err !'= ERESTART || txg_how != TXG WAIT)
return (err);

drmu_t x_wai t (tx);

}
txg_rel e_to_qui esce(& x->tx_txgh);

return (0);

1083 dmu_tx_wait(dmu_tx_t *tx)

1084 {
1085

1087
1088

1090
1091
1092
1093
1094
1095
1096
1097
1098

1100
1101
1102
1103
1104
1105
1106
1107
1108 }

1110 void

spa_t *spa = tx->tx_pool ->dp_spa;

ASSERT(tx->tx_txg == 0);
ASSERT(! dsl _pool _confi g_hel d(tx->tx_pool));

/*

* It’'s possible that the pool has becone active after this thread
* has tried to obtain a tx. If that's the case then his

* tx_lasttried_txg would not have been assigned.

*/

if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
txg_wait_synced(tx->tx_pool, spa_l ast_synced_txg(spa) + 1);
} else if (tx->tx needaSS|gn txh) {
dnode_t *dn = tx->tx_needassi gn_t xh->t xh_dnode;

mut ex_ent er (&dn->dn_nt x) ;
whil e (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
cv_wai t (&dn->dn_not xhol ds, &dn->dn_nt x);
mut ex_exi t (&n->dn_nt x) ;
t x->t x_needassi gn_txh = NULL;
} else {
t xg_wai t _open(tx->tx_pool, tx->tx_lasttried_txg + 1);

1111 dmu_tx_wi | l use_space(dnu_tx_t *tx, int64_t delta)

1112

{
1113 #ifdef ZFS DEBUG

1114
1115

1117

1118

1119

1120

1121

1122

1123

1124 #endi f
1125 }

if (tx->tx_dir == NULL || delta == 0)
return;

if (delta > 0)
ASSERT3U(r ef count _count (& x- >t x_space_witten) + delta, <=,
tx->tx_space_towite);
(voi d) refcount_add nany(&tx >t x_space_witten, delta, NULL);
} else {
(void) refcount_add_many(&t x->tx_space_freed, -delta, NULL);

new usr/src/uts/comon/fs/zfs/dm_tx.c 3 new usr/src/uts/comon/fs/zfs/dm_tx.c 4
1127 void 1193 dnode_rel e(dn, tx);
1128 dmu_tx_comm t (dmu_t x_t *tx) 1194 }
1129 {
1130 dmu_t x_hol d_t *txh; 1196 e
1197 * Call any registered callbacks with an error code.
1132 ASSERT(tx->tx_txg != 0); 1198 */
1199 if (!list_is_enpty(&tx->tx_callbacks))
1134 g% 1200 dnu_t x_do_cal | backs(&t x- >t x_cal | backs, ECANCELED);
1135 * Go through the transaction's hold Iist and renmove hol ds on
1136 * associ ated dnodes, notifying waiters if no holds remain. 1202 Iist_destroy(& x->tx_call backs);
1137 */ 1203 |i st_destroy(& x->tx_hol ds);
1138 #endif /* | codereview */ 1204 #ifdef ZFS_DEBUG
1139 while (txh = list_head(& x->tx_holds)) { 1205 ref count _destroy_many(&t x->tx_space_witten,
1140 dnode_t *dn = txh->txh_dnode; 1206 ref count _count (& x- >t x_space_witten));
1207 ref count _destroy_many(& x- >t x_space_freed,
1142 list_renmove(& x->tx_holds, txh); 1208 ref count _count (& x- >t x_space_freed));
1143 kmem free(txh, sizeof (drm tx hoI d_t)); 1209 #endi f
1144 if (dn == NULL) 1210 kmem free(tx, sizeof (dmu_tx_t));
1145 conti nue; 1211 }
1146 nmut ex_ent er (&dn- >dn _ntx);
1147 ASSERT3U(dn- >dn_assi gned_t xg, ==, tx->tx_txg); 1213 uint64_t
1214 dmu_t x_get _txg(dmu_tx_t *tx)
1149 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { 1215 {
1150 dn->dn_assi gned_txg = 0; 1216 ASSERT(tx->tx_txg !'= 0);
1151 cv_broadcast (&Jn- >dn_not xhol ds) ; 1217 return (tx->tx_txg);
1152 } 1218 }
1153 mut ex_exi t (&dn->dn_nt x) ;
1154 dnode_rel e(dn, tx); 1220 dsl _pool _t *
1155 } 1221 dmu_t x_pool (dmu_tx_t *tx)
1222 {
1157 if (tx->tx_tenpreserve_cookie) 1223 ASSERT(t x- >t x_pool != NULL);
1158 dsl _dir_tenpreserve_cl ear(tx->tx_tenpreserve_cookie, tx); 1224 return (tx->tx_pool);
1225 }
1160 if (!'list_is_enpty(& x->tx_call backs))
1161 txg_regi ster_cal | backs(&t x->tx_txgh, &tx->tx_callbacks);
1228 void
1163 if (tx->tx_anyobj == FALSE) 1229 dmu_t x_cal | back_regi ster(dnmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1164 txg_rele_to_sync(& x->tx_txgh); 1230 {
1231 drmu_t x_cal | back_t *dcb;
1166 list_destroy(& x->tx_call backs);
1167 |i st_destroy(& x->tx_hol ds); 1233 dcb = knem al | oc(si zeof (dmu_tx_callback_t), KM SLEEP);
1168 #i fdef ZFS_DEBUG
1169 dprintf("towite=%lu witten=%I|u tofree=%I|u freed=% I u\n" 1235 dcb->dcb_func = func;
1170 tx->tx_space_towite, refcount_count (& x->tx_space_ vvrltten) 1236 dcb->dcb_data = dat a;
1171 tx->tx_space_tofree, refcount_count (& x->tx_space_freed));
1172 ref count _destroy_many(&t x->tx_space_witten, 1238 list_insert_tail (& x->tx_cal | backs, dcb);
1173 ref count _count (& x- >t x_space_witten)); 1239 }
1174 ref count _destroy_many(& x- >t x_space_freed,
1175 ref count _count (& x- >t x_space_freed)); 1241 /| *
1176 #endi f 1242 * Call all the commt callbacks on a list, with a given error code.
1177 kmem free(tx, sizeof (dmu_tx_t)); 1243 */
1178 } 1244 voi d
1245 dmu_t x_do_cal | backs(list_t *cb_list, int error)
1180 voi d 1246 {
1181 dmu_t x_abort (dmu_tx_t *tx) 1247 dmu_t x_cal | back_t *dcb;
1182 {
1183 dmu_t x_hol d_t *txh; 1249 while (dcb = list_head(cb_list)) {
1250 list_remove(cb_list, dcb);
1185 ASSERT(tx->tx_txg == 0); 1251 dcb->dcb_func(dcb->dcb_data, error);
1252 kmem free(dch, sizeof (dmu_tx_callback_t));
1187 while (txh = list_head(& x->tx_holds)) { 1253 }
1188 dnode_t *dn = txh->txh_dnode; 1254 }
1190 list_renmove(& x->tx_hol ds, txh); 1256 /*
1191 kmem free(txh, sizeof (drm tx_ hol d | t)); 1257 * Interface to hold a bunch of attributes.
1192 if (dn !'= NULL) 1258 * used for creating new files.

new usr/src/uts/comon/fs/zfs/dm_tx.c

1259
1260
1261
1262
1263

1265
1266
1267
1268
1269
1270
1271

* attrsize is the total size of all attributes
* to be added during object creation

*

*

*/

/*

* hol d necessary attribute name for attribute registration.

* should be a very rare case where this is needed. |If it does

* happen it would only happen on the first wite to the file system
*/

static void
dmu_t x_sa_regi stration_hol d(sa_os_t *sa, dnu_tx_t *tx)

1272 {

1273

1275
1276

1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288

1291
1292

int i;

if (!sa->sa_need_attr_registration)
return;

for (i =0; i !'=sa->sa_numattrs; i++) {
if (!sa->sa_attr_table[i].sa_registered) {
if (sa->sa_reg_attr_obj)
dmu_t x_hol d_zap(tx, sa->sa reg_attr_obj,
| "B_TRUE, sa->sa_attr_table[i].sa_name);
el se
dmu_t x_hol d_zap(tx, DMJ_NEW OBJECT,
"B _TRUE, sa->sa_attr_table[i].sa_name);

voi d
dmu_t x_hol d_spi |l (dmu_tx_t *tx, uint64_t object)

1293 {

1294
1295

1297
1298

1300

1302
1303

1305
1306
1307
1308
1309

1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

1322
1323
1324

dnode_t *dn
drmu_tx_ hold _t *txh;

txh = dnu_t x_hol d_obj ect _i npl (tx, tx->tx_objset,
THT SPILL, 0, 0);

obj ect,

dn = txh->t xh_dnode;

if (dn == NULL)
return;

/* |f blkptr doesn't exist then add space to towite */
if (!(dn->dn_phys->dn_flags & DNODE_FLAG SPI LL_BLKPTR)) {
t xh->t xh_space_towite += SPA MAXBLOCKSI ZE;

} else {
bl kptr_t *bp;

bp = &dn->dn_phys->dn_spill;

if (dsl_dataset_bl ock_freeabl e(dn->dn_obj set->o0s_dsl _dat aset,

bp, bp->bl k_birth))
t xh->t xh_space_t ooverwrite += SPA MAXBLOCKSI ZE;
el se
txh->txh_space_towite += SPA MAXBLOCKSI ZE;
if (!BP_I'S_HOLE(bp))
t xh->t xh_space_t ounref += SPA MAXBLOCKSI ZE;

}

voi d
dmu_t x_hol d_sa_create(dnu_tx_t *tx, int attrsize)

{

For updating/adding a single attribute dnu_tx_hol d_sa() shoul d be used.

new usr/src/uts/comon/fs/zfs/dm_tx.c

1325 sa_o0s_t *sa = tx->tx_objset->0s_sa;

1327 drmu_t x_hol d_bonus(tx, DMJ_NEW OBJECT);

1329 if (tx->tx_objset->0s_sa->sa_master_obj == 0)

1330 return;

1332 if (tx->tx_objset->0s_sa->sa_|layout_attr_obj)

1333 dmu_t x_hol d_zap(tx, sa->sa_layout_attr_obj, B TRUE, NULL);
1334 el se {

1335 dmu_t x_hol d_zap(tx, sa->sa_naster_obj, B _TRUE, SA LAYOUTS);
1336 dmu_t x_hol d_zap(tx, sa->sa_master_obj, B TRUE, SA REG STRY);
1337 dnu_t x_hol d_zap(tx, DMJ_NEW OBJECT, B_TRUE, NULL);

1338 drmu_t x_hol d_zap(tx, DMJ_NEW OBJECT, B_TRUE, NULL);

1339 }

1341 dmu_t x_sa_regi stration_hol d(sa, tx);

1343 if (attrsize <= DN_MAX_BONUSLEN && !sa->sa_force_spill)

1344 return;

1346 (void) dmu_tx_hol d_obj ect _i npl (tx, tx->tx_objset, DMJ NEW OBJECT,
1347 THT_SPILL, 0, 0);

1348 }

1350 /*

1351 * Hold SA attribute

1352 *

1353 * dnu_tx_hol d_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)

1354 *

1355 * variable_size is the total size of all variable sized attributes

1356 * passed to this function. It is not the total size of all

1357 * variable size attributes that *may* exist on this object.

1358 */

1359 voi d

1360 dmu_t x_hol d_sa(dmu_tx_t *tx, sa_handle_t *hdl, bool ean_t nay_grow)

1361 {

1362 ui nt64_t object;

1363 sa_os_t *sa = tx->tx_objset->0s_sa;

1365 ASSERT(hdl !'= NULL)

1367 obj ect = sa_handl e_obj ect (hdl);

1369 dmu_t x_hol d_bonus(tx, object);

1371 if (tx->tx_objset->0s_sa->sa_master_obj == 0)

1372 return;

1374 if (tx->tx_objset->0s_sa->sa_reg_attr_obj == 0 ||

1375 t x- >t x_obj set - >0s_sa- >sa_| ayout _attr_obj == 0)

1376 dmu_t x_hol d_zap(tx, sa->sa_naster_obj, B_TRUE, SA LAYOUTS);
1377 dmu_t x_hol d_zap(tx, sa->sa_naster Obj, B_TRUE, SA REG STRY)
1378 dmu_t x_hol d_zap(tx, DMJ_NEW OBJECT, B TRUE, NULL);

1379 dmu_t x_hol d_zap(tx, DMJ_NEW OBJECT, B TRUE, NULL);

1380 }

1382 dmu_t x_sa_regi stration_hol d(sa, tx);

1384 if (may_f grow && t x->t x_obj set->0s_sa->sa_| ayout _attr_obj)

1385 dmu_t x_hol d_zap(tx, sa->sa_layout_attr_obj, B TRUE, NULL);
1387 if (sa->sa_force_spill || may_grow || hdl->sa_spill) {

1388 ASSERT(tx->tx_txg == 0);

1389 dmu_t x_hol d_spi | | (tx, ob] ect);

1390 } else {

new usr/src/uts/comon/fs/zfs/dm_tx.c

1391 dnu_buf _inpl _t *db = (dnu_buf _inpl _t *)hdl - >sa_bonus;
1392 dnode_t *dn;

1394 DB_DNODE_ENTER(db) ;

1395 dn = DB_DNODE(db);

1396 if (dn->dn_have_spill) {

1397 ASSERT(t x->tx_txg == 0);

1398 dmu_t x_hol d_spi | I (tx, object);

1399 }

1400 DB_DNODE_EXI T(db) ;

1401 1

1402 }

new usr/src/uts/comon/fs/zfs/dmu_zfetch.c

R R R R

19144 Thu May 16 17:33:48 2013
new usr/src/uts/comon/fs/zfs/dmu_zfetch.c

3741

zfs needs better comments

Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by:
Submi tted by:

Justin G bbs <justing@pectral ogi c.conp
Al an Sorers <al ans@pectral ogi c. com>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. cone

Revi ewed by: Eric Schrock <eric.schrock@lel phi x. com>

EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEEEREEEERERERERESRESRESRESESESESE]
1/

NRERRRRRRRRE
COONOUITAWNROW©O~NOUTSWN

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the |icense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing pernissions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

-~

Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to license terms.
/

ok Gk OE R ok Rk R F R bk Ok % o ok b % ok ok

#i ncl ude <sys/zfs_context.h>
#i ncl ude <sys/ dnode. h>

#i ncl ude <sys/dmu_obj set. h>
#i ncl ude <sys/dnmu_zfetch. h>
#i ncl ude <sys/dnu. h>

#i ncl ude <sys/dbuf. h>

#i ncl ude <sys/kstat.h>

/*

* |’ m agai nst tune-ables, but these should probably exist as tweakable globals
* until we can get this working the way we want it to.

*/

int zfs_prefetch_disable = 0;

/* max # of streans per zfetch */

ui nt 32_t zfetch_max_streams = 8;

/* mintime before streamreclaim?*/

ui nt 32_t zfetch_mn_sec_reap = 2;

/* max nunmber of blocks to fetch at a time */

ui nt 32_t zfetch_bl ock_cap = 256;

/* nunber of bytes in a array_read at which we stop prefetching (1MW) */
ui nt 64_t zfetch_array_rd_sz = 1024 * 1024;

/* forward decls for static routines */

static bool ean_t dmu_zfetch_colinear(zfetch_t *, zstreamt *);
static int dmu_zfetch_colinear(zfetch_t *, zstreamt *);
static void dmu_zfetch_dofetch(zfetch_t *, zstreamt *);
static uint64_t drmu_zfetch_fetch(dnode_t *, uint64_t, uint64_t);
static uint64_t dmu_zfetch_fetchsz(dnode_t *, uint64_t, uint64_t);
static bool ean_t dmu_zfetch_find(zfetch_t *, zstreamt *, int);

new usr/src/uts/comon/ fs/zfs/dmu_zfetch.c

55 static int dmu_zfetch_find(zfetch_t *, zstreamt *, int);

56 static int dmu_zfetch_stream.insert(zfetch_t *, zstreamt *);
57 static zstreamt *dmu_zfetch_streamreclai n{zfetch_t *);

58 static void dmu_zfetch_streamrenove(zfetch_t *, zstreamt *);
59 static int dmu_zfetch_streans_equal (zstreamt *, zstreamt *);
61 typedef struct zfetch_stats {

62 kstat _naned_t zfetchstat_hits;

63 kstat _nanmed_t zfetchstat_m sses;

64 kstat _named_t zfetchstat_colinear_hits;

65 kstat _named_t zfetchstat_colinear_m sses;

66 kstat_nanmed_t zfetchstat_stride_hits;

67 kstat _naned_t zfetchstat_stride_m sses;

68 kstat _named_t zfetchstat_recl ai msuccesses;

69 kstat _named_t zfetchstat_reclaimfailures;

70 kstat _nanmed_t zfetchstat_streamresets;

71 kstat _naned_t zfetchstat_stream noresets;

72 kstat _named_t zfetchstat_bogus_streans;

73 } zfetch_stats_t;

__unchanged_portion_onitted_

89 #define ZFETCHSTAT_I NCR(stat, val) \
90 atom c_add_64(&zfetch_stats.stat.val ue.ui 64, (val));

92 #define ZFETCHSTAT_BUMP(st at) ZFETCHSTAT_I NCR(stat, 1);

94 kstat _t *zfetch_ksp;

96 /*

97 * Gven a zfetch structure and a zstream structure, determ ne whether the
98 * blocks to be read are part of a co-linear pair of existing prefetch
99 * streans. |If a set is found, coal esce the streans, renoving one, and
100 * configure the prefetch so it |ooks for a strided access pattern.

101 *

102 * In other words: if we find two sequential access streans that are
103 * the sanme length and distance N appart, and this read is N fromthe
104 * last stream then we are probably in a strided access pattern. So
105 * conbine the two sequential streans into a single strided stream

106 *

107 * Returns whether co-linear streans were found.

107 * If no co-linear streanms are found, return NULL.
108 */

109 static bool ean_t

109 static int

110 dmu_zfetch_colinear(zfetch_t *zf, zstreamt *zh)

111 {

112 zstream t *z_wal k;

113 zstreamt *z_conp;

115 if (! rw.tryenter(&f->zf_rw ock, RWWR TER))

116 return (0);

118 if (zh == NULL) {

119 rw_exit (&f->zf _rw ock);

120 return (0);

121 }

123 for (z_walk = |ist_head(&zf->zf_strean); z_walk;

124 z_wal k = i st_next(&zf->zf _stream z_walk))

125 for (z_conp = list_next(&f->zf_stream z_walk); z_conp;
126 z_conp = |ist_next(&zf->zf_stream z_conp)) {
127 int64_t diff;

129 if (z_wal k->zst_len !'= z_wal k->zst_stride ||
130 z_conp->zst_len !'= z_conp->zst_stride) {
131 conti nue;

new usr/src/uts/comon/fs/zfs/dmu_zfetch.c 3

132

134
135
136
137
138
139
140
141
142
143
144

146

148
149
150

152
153
154
155
156
157
158
159
160
161
162

164

166
167
168
169
170

172
173
174 }

}
diff = z_conp->zst_offset - z_wal k->zst_of fset;
if (z_conp->zst_offset + diff == zh->zst_offset) {
z_wal k- >zst _of fset = zh->zst_offset;
z_wal k->zst _direction = diff <0 ? -1: 1;
z_wal k->zst _stride =
diff * z_wal k->zst_direction;
z_wal k- >zst _ph_of fset =
zh->zst _offset + z_wal k->zst_stride;
drmu_zfetch_streamrenove(zf, z_conp);
mut ex_destroy(&_conp->zst _| ock);
kmem free(z_conp, sizeof (zstreamt));
drmu_zfetch_dofetch(zf, z_walk);
rw_exit (&f->zf _rw ock);
return (1);
}
diff = z_wal k->zst_offset - z_conp->zst_offset;
if (z_wal k->zst_offset + diff == zh->zst_offset) {
z_wal k->zst _of fset = zh->zst_offset;
z_wal k->zst _direction = diff <0 ? -1: 1;
z_wal k->zst _stride =
diff * z_wal k->zst_direction;
z_wal k->zst _ph_of fset =
zh->zst _of fset + z_wal k->zst_stride;
dmu_zfetch_streamrenove(zf, z_conp);
mut ex_destroy(&z_conp->zst _| ock);
kmem free(z_conp, sizeof (zstreamt));
dmu_zf et ch_dof etch(zf, z_wal k);
rw_exit(&f->zf _rw ock);
return (1);
}
}
}
rw_exit (&f->zf _rw ock);
return (0);

__unchanged_portion_onitted_

324 |*

325 * given a zfetch and a zstream structure, see if there is an associated zstream

326 * for this block read.
327 * located and returns true, otherwise it returns false
*/

328

If so, it starts a prefetch for the streamit

329 static bool ean_t
329 static int
330 drmu_zfetch_find(zfetch_t *zf, zstreamt *zh, int prefetched)

331 {
332
333
334
335

337
338

340
341
342
343

zstream t *zs;

int64_t diff;

int reset = !prefetched;
int rc = 0;

if (zh == NULL)
return (0);

/*

* XXX: This locking strategy is a bit coarse; however, it’s inpact has
* yet to be tested. |If this turns out to be an issue, it can be

* nmodified in a nunber of different ways.

new usr/src/uts/comon/fs/zfs/dmu_zfetch.c

344

346
347

349
350

352
353
354
355
356
357
358
359

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

377
378
379
380
381
382

384
386

388
389
390
391
392
393
394
395
396
397
398
399

401

403
404
405
406
407

409

top:

*/

rw_enter (&f->zf _rw ock, RW READER);

for

(zs = list_head(&f->zf_stream; zs;
zs = list_next(&zf->zf_stream zs)) {
/*
* XXX - should this be an assert?
*/

if (zs->zst_len == {
/* bogus stream */
ZFETCHSTAT_BUMP(zf et chst at _bogus_streans) ;
cont i nue;

}

/'k
* W hit this case when we are in a strided prefetch stream
*/V\B will read "l en" blocks before "striding".
*
if (zh->zst_offset >= zs->zst_offset &&
zh->zst _of fset < zs->zst_offset + zs->zst_len) {
if (prefetched)
/* already fetched */
ZFETCHSTAT_BUMP(zf et chstat _stride_hits);

rc =1;
goto out;
} else {
ZFETCHSTAT_BUMP(zf et chstat _stri de_nmi sses);
}
}
/*

* This is the forward sequential read case: we increnent

* len by one each tine we hit here, so we will enter this

* case on every read.

*

if (zh->zst_offset == zs->zst_offset + zs->zst_len) {
reset = !prefetched & zs->zst_len > 1;

nmut ex_ent er (&zs- >zst _| ock) ;

if (zh->zst_offset != zs->zst_offset + zs->zst_len) {
mut ex_exi t (&zs->zst _| ock);
goto top;

}
zs->zst_len += zh->zst_len;
diff = zs->zst_len - zfetch_bl ock_cap;
if (diff > 0)
zs->zst _offset += diff;
zs->zst_len = zs->zst_len > diff ?
zs->zst _len - diff : O;

}
zs->zst _direction = ZFETCH_FORWARD;
br eak;
/*
* Same as above, but reading backwards through the file.
*/
} else if (zh->zst_offset == zs->zst_offset - zh->zst_len) {
/* backwards sequential access */

reset = !prefetched & zs->zst_len > 1;

new usr/src/uts/comon/fs/zfs/dmu_zfetch.c 5
411 mut ex_ent er (&zs- >zst _| ock) ;

413 if (zh->zst_offset != zs->zst_offset - zh->zst_len) {
414 mut ex_exi t (&s->zst _| ock);

415 goto top;

416 }

418 zs->zst_offset = zs->zst_offset > zh->zst_len ?

419 zs->zst _offset - zh->zst_len : O;

420 zs->zst _ph_offset = zs->zst_ph_offset > zh->zst_len ?
421 zs->zst_ph_offset - zh->zst_len : 0;

422 zs->zst _|len += zh->zst_len;

424 diff = zs->zst_len - zfetch_bl ock_cap;

425 if (diff > 0) {

426 zs->zst _ph_of fset = zs->zst_ph_offset > diff ?
427 zs->zst_ph_offset - diff : O;

428 zs->zst _len = zs->zst_len > diff ?

429 zs->zst_len - diff zs->zst_len;

430

431 zs->zst _direction = ZFETCH_BACKWARD;

433 br eak;

435 } else if ((zh->zst_offset - zs->zst_offset - zs->zst_stride <
436 zs->zst_len) && (zs->zst_len !'= zs->zst_stride)) {

437 /* strided forward access */

439 nut ex_ent er (&zs- >zst _| ock);

441 if ((zh->zst_offset - zs->zst_offset - zs->zst_stride >=
442 zs->zst_len) || (zs->zst_len == zs->zst_stride)) {
443 mut ex_exi t (&zs->zst _| ock);

444 goto top;

445 }

447 zs->zst _of fset += zs->zst_stride;

448 zs->zst _direction = ZFETCH_FORWARD;

450 br eak;

452 } else if ((zh->zst_offset - zs->zst_offset + zs->zst_stride <
453 zs->zst_len) && (zs->zst_len != zs->zst_stride)) {

454 /* strided reverse access */

456 nmut ex_ent er (&zs- >zst _| ock) ;

458 if ((zh->zst_offset - zs->zst_offset + zs->zst_stride >=
459 zs->zst_len) || (zs->zst_len == zs->zst_stride)) {
460 mut ex_exi t (&zs->zst _| ock);

461 goto top;

462 }

464 zs->zst_offset = zs->zst_offset > zs->zst_stride ?
465 zs->zst _offset - zs->zst_stride : O;

466 zs->zst _ph_offset = (zs->zst_ph_offset >

467 (2 * zs->zst_stride)) ?

468 (zs->zst_ph_offset - (2 * zs->zst_stride)) : 0;
469 zs->zst _direction = ZFETCH_BACKWARD;

471 br eak;

472 }

473 }

475 if (zs) {

new usr/src/uts/comon/ fs/zfs/dmu_zfetch.c

zs);

nothing to do */

476 if (reset) {
477 zstreamt *renobve = zs;
479 ZFETCHSTAT_BUMP(zf et chst at _stream resets);
480 rc = 0;
481 mut ex_exi t (&s->zst _| ock);
482 rw_exit(&zf->zf _rw ock);
483 rw_enter (&f->zf _rw ock, RWWRI TER);
484 /*
485 * Relocate the stream in case someone renopves
486 * it while we were acquiring the WRI TER | ock.
487 */
488 for (zs = list_head(&zf->zf_stream; zs;
489 zs = |ist_next(&f->zf_stream zs)) {
490 if (zs == renove) {
491 drmu_zf et ch_streamrenove(zf,
492 mut ex_destroy(&zs->zst _| ock);
493 kmem free(zs, sizeof (zstreamt));
494 br eak;
495 }
496
497 } else {
498 ZFETCHSTAT_BUMP(zf et chst at _st r eam nor esets) ;
499 rc = 1;
500 dmu_zf etch_dof etch(zf, zs);
501 nut ex_exi t (&s->zst _| ock);
502 }
503
504 out:
505 rw_exit (&f->zf _rw ock);
506 return (rc);
507 }
__unchanged_portion_omtted_
633 /*
634 * This is the prefetch entry point. It calls all of the other dmu_zfetch
635 */routi nes to create, delete, find, or operate upon prefetch streans.
636 *
637 void
638 dmu_zfetch(zfetch_t *zf, uint64_t offset, uint64_t size, int prefetched)
639 {
640 zstream t zst;
641 zstreamt *newst r eam
642 bool ean_t f et ched;
642 int f et ched;
643 int i nserted;
644 unsi gned i nt bl kshft;
645 uint64_t bl ksz;
647 if (zfs_prefetch_disable)
648 return;
650 /* files that aren’t I n2 blocksz are only one block --
651 if (!zf->zf_dnode->dn_dat abl kshift)
652 return;
654 /* convert offset and size, into bl ockid and nbl ocks */
655 bl kshft = zf->zf_dnode->dn_dat abl kshi ft;
656 bl ksz = (1 << bl kshft);
658 bzero(&zst, sizeof (zstreamt));
659 zst.zst_offset = of fset >> bl kshft;
660 zst.zst_len = (P2ROUNDUP(of f set + size, blksz) -
661 P2ALI GN(of f set, bl ksz)) >> bl kshft;
663 fetched = dmu_zfetch_find(zf, &st, prefetched);

new usr/src/uts/comon/fs/zfs/dmu_zfetch.c

if (fetched)

664
665
666
667
668
669
668
670
671
672
673
674

676
677

679
680
681
682
683
684
685
686
687
688

690
691
692

694
695
696
697
698

700
701
702
703
704

706
707
708
709
710
711
712

714

716
717
718

720
721
722
723
724

725 }

} else {

}

ZFETCHSTAT_BUMWP(zf et chstat _hits);

ZFETCHSTAT_BUMP(zf et chst at _mi sses) ;
fetched = dnu_zfetch_colinear(zf, &zst);
if (fetched) {
if (fetched = dnu_zfetch_colinear(zf, &st)) {
el {ZFETCHSTAT_BUNP(zfetchstat_colinear_hits);

el se

ZFETCHSTAT_BUMP(zf et chst at _col i near _mi sses);

}

if (!fetched) {

newstream = dmu_zfetch_streamrecl ai n{zf);

/*
* we still couldn’t find a stream drop the |ock, and allocate
* one if possible. Oherw se, give up and go hone.
*

if (newstrean {
ZFETCHSTAT_BUMP(zf et chst at _r ecl ai m successes);

} else {
ui nt 64_t maxbl ocks;
ui nt32_t max_st rearns;
ui nt 32_t cur _streans;

ZFETCHSTAT_BUWP(zf et chst at _recl ai m fail ures);
cur_streams = zf->zf_streamcnt;
maxbl ocks = zf->zf_dnode- >dn_maxbl ki d;

max_streans = M N(zf et ch_max_streans,
(maxbl ocks / zfetch_bl ock_cap));
if (max_streans == 0) {
max_streanms++;
}

if (cur_streans >= max_streans) {
return;

newst ream = knem zal | oc(si zeof (zstreamt), KM SLEEP);

}

newstream >zst _of fset = zst.zst_offset;

newstream >zst_|len = zst.zst_|len;

newstream >zst_stride = zst.zst_len;

newstream >zst _ph_offset = zst.zst_len + zst.zst_offset;
newstream >zst_cap = zst.zst_len;

newstream >zst _direction = ZFETCH_FORWARD,

newstream >zst_| ast = ddi _get_|bolt();

mut ex_i ni t (&ewstream >zst _| ock, NULL, MJTEX_DEFAULT, NULL);

rw_enter (&f->zf _rw ock, RWWRI TER);
inserted = dmu_zfetch_stream.insert(zf, newstream;

rw_exit(&f->zf_rw ock);

if (linserted) {
nut ex_destr oy(&newst r eam >zst _| ock);
kmem free(newstream sizeof (zstreamt));

__unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/spa.c

R R R R

174736 Thu May 16 17:33:48 2013
new usr/src/uts/comron/fs/zfs/spa.c
3741 zfs needs better comments
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Justin G bbs <justing@pectral ogi c.conp
Submi tted by: Al an Sorers <al ans@pectral ogi c. com>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. com>
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. com>
EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEEEREEEERERERERESRESRESRESESESESE]
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License")
6 * You may not use this file except in conpliance with the License
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing
10 * See the License for the specific |anguage governing pernissions
11 * and limtations under the License
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets “[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 =
19 * CDDL HEADER END
20 */
22 |*

23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved

24 * Copyright (c) 2013 by Del phix. Al rights reserved

25 * Copyright 2013 Nexenta Systens, Inc. Al rights reserved
*
/

28 [*
29 * SPA: Storage Pool Allocator
30 *

31 #endif /* | codereview */

32 * This file contains all the routines used when nodifying on-di sk SPA state
33 * This includes opening, inporting, destroying, exporting a pool, and syncing a

34 * pool
35 */

37 #include <sys/zfs_context.h>
38 #include <sys/fmfs/zfs.h>

39 #include <sys/spa_inpl.h>

40 #include <sys/zio.h>

41 #incl ude <sys/zio_checksum h>
42 #include <sys/dnu. h>

43 #incl ude <sys/dnu_tx. h>

44 #include <sys/zap. h>

45 #include <sys/zil.h>

46 #i ncl ude <sys/ddt. h>

47 #include <sys/vdev_i npl . h>

48 #incl ude <sys/netasl ab. h>

49 #incl ude <sys/netasl ab_i npl . h>
50 #i ncl ude <sys/ uberbl ock_i npl . h>
51 #include <sys/txg.h>

52 #include <sys/avl.h>

53 #include <sys/dnu_traverse. h>
54 #incl ude <sys/dnu_obj set. h>

55 #i ncl ude <sys/uni que. h>

56 #i ncl ude <sys/dsl _pool . h>

new usr/src/uts/comron/fs/zfs/spa.c

122

#
#
#
#
#
#
#i
#i
#i
#i
#i
#i
#i

#
#
#
#
#
#
#i

ncl ude <sys/dsl _dataset.h>
ncl ude <sys/dsl _dir.h>

ncl ude <sys/dsl _prop. h>
ncl ude <sys/dsl _synctask. h>
ncl ude <sys/fs/zfs.h>

ncl ude <sys/arc. h>

ncl ude <sys/callb. h>

ncl ude <sys/system nfo. h>
ncl ude <sys/spa_boot . h>
ncl ude <sys/zfs_ioctl.h>
ncl ude <sys/dsl _scan. h>
ncl ude <sys/ zfeature. h>
ncl ude <sys/dsl _destroy. h>

fdef _ KERNEL

ncl ude <sys/ boot props. h>
ncl ude <sys/callb. h>

ncl ude <sys/cpupart.h>
ncl ude <sys/pool . h>

ncl ude <sys/sysdc. h>

ncl ude <sys/zone. h>

#endi f /* _KERNEL */

#
#

ncl ude "zfs_prop. h"
ncl ude "zfs_conutil.h"

typedef enum zti _nodes {

}

#define ZTI _P(n, q)

ZTI _NMODE_FI XED,
ZT| _MODE_ONLI NE_PERCENT
ZT| _MODE_BATCH,
ZTI _MODE_NULL,
ZT! _NMODES
zti _nodes_t;

value is # of threads (mn 1) */
value is %of online CPUs */
cpu-intensive; value is ignored */
don’t create a taskq */

—~———

* ok * ok

ZTl _MODE_FI XED, (n), (q) }

{ L
#def i ne ZTI _PCT(n) { ZTI _"MODE_ONLI NE_PERCENT, (n), 1 }
{

#define ZTI _BATCH

ZTI_MODE_BATCH, 0, 1 }

#define ZTI _NULL { ZTI_MODE_NULL, 0, 0}

#define ZTI _N(n)
#define ZTI _ONE

ZTlI_P(n, 1)
ZTI _N(1)

typedef struct zio_taskqg_info {

}

st
}s
/

* Ok ok ok kR % Ok O % % F %

zti _nodes_t zti_node

uint_t zti_val ue;

uint_t zti_count;
zio_taskqg_info_t;

atic const char *const zio_taskq_types[Zl O TASKQ TYPES] = {
"issue", "issue_high", "intr", "intr_high"

This table defines the taskgq settings for each ZFS 1/ 0O type. Wen
initializing a pool, we use this table to create an appropriately sized
taskq. Sone operations are |ow volume and therefore have a small, static
nunber of threads assigned to their taskqgs using the ZTI _N(#) or ZTI_ONE
macros. Ot her operations process a |arge anount of data; the ZTI_BATCH
macro causes us to create a taskqg oriented for throughput. Sone operations
are so high frequency and short-lived that the taskq itself can becone a a
point of |lock contention. The ZTI _P(#, #) macro indicates that we need an
addi ti onal degree of parallelismspecified by the nunber of threads per-
taskq and the nunber of taskgs; when dispatching an event in this case, the
particul ar taskq is chosen at random

The different taskq priorities are to handle the different contexts (issue

new usr/src/uts/comon/fs/zfs/spa.c

123
124
125
126
127
128
129
130
131
132
133
134

136
137
138
139
140
141
142

144
145
146
147

149
150

152
153
154
155
156

158
159
160
161
162

164
165
166
167
168
169
170
171
172

174
175

177
178
179
180

182
183
184

186
187
188

* and interrupt) and then to reserve threads for ZIO PRIORI TY_NOWI/GCs that
* need to be handled with m ni num del ay.
*/

const zio_taskqg_info_t zio_taskqs[Zl O TYPES][ZlI O TASKQ TYPES] = {
I NTR |

/* | SSUE | SSUE_HI GH NTR_HI GH */

{ ZTI _ONE, ZTI _NULL, ZTI _ONE, ZTI_NULL }, /* NULL */
{ ZTI_N(8), ZTI NULL, ZTI “BATCH, ZTINULL }, /* READ */
{ ZTI BATCH, ZTI _N(5), ZTI TN(8), ZTIN(5) }, /* WRITE */
{ zZTI_P(12, 8), ZTI_NULL, ZTI _ONE, ZTI_NULL }, /* FREE */
{ ZTI_O\E, ZTI _NULL, ZTI _ONE, ZTIZNULL }, /* CLAIM*/
{ ZTI_O\E, ZTI NULL, ZTI “ONE, ZTINULL }, /* 1OCTL */

%

static void spa_sync_version(void *arg, dmu_tx_t *tx);

static void spa_sync_props(void *arg, dnmu_tx_t *tx);

static bool ean_t spa_has_active_shared_spare(spa_t *spa);

static int spa_|load_inpl(spa_t *spa, uint64_t, nvlist_t *config,
spa_l oad_state_t state, spa_inport_type_t type, boolean_t nosconfig,
char **ereport);

static void spa_vdev_resilver_done(spa_t *spa);

uint _t zi o_t askq_bat ch_pct = 100; /* 1 thread per cpu in pset */
id_t zi o_t askqg_psrset _bi nd = PS_NONE;

bool ean_t zi o_t askg_sysdc = B_TRUE; /* use SDC scheduling class */
ui nt _t zi o_t askq_basedc = 80; /* base duty cycle */

bool ean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
extern int zfs_sync_pass_deferred_free;

/*

* This (illegal) pool nane is used when tenporarily inporting a spa_t in order
* to get the vdev stats associated with the inported devices.
*

#defi ne TRYI MPORT_NAME " $i nport"
/*
*

* SPA properties routines
*

*/
/*
* Add a (source=src, propnane=propval) list to an nvlist.
*/

static void
spa_prop_add_list(nvlist_t *nvl, zpool _prop_t prop, char *strval,
uint64_t intval, zprop_source_t src)

{
const char *propnane = zpool _prop_to_nane(prop);
nvlist_t *propval;
VERI FY(nvlist_al | oc(&propval, NV_UNI QUE NAME, KM SLEEP) == 0);
VERI FY(nvl i st _add_ui nt 64(pr opval ZPROP_SOURCE, src) == 0);
if (strval !'= NULL)
VERI FY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
el se
VERI FY(nvli st _add_ui nt 64(propval, ZPROP_VALUE, intval) == 0);
VERI FY(nvlist_add_nvlist(nvl, propnanme, propval) == 0);
nvlist_free(propval);
}
/*

* CGet property values fromthe spa configuration.
*/

new usr/src/uts/comron/fs/zfs/spa.c

189 static void

191
192
193
194
195
196
197
198
199

201

203
204
205
206
207
208
209
210

212
213
214
215
216
217
218

220
221

223
224

226
227

229
230

232
233
234
235
236
237
238

240
241

243
244
245
246
247
248
249
250
251
252
253
254

190 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
{

vdev_t *rvd = spa->spa_root_vdev;

dsl _pool _t *pool = spa->spa_dsl| _pool;
uint64_t size;

uint64_t alloc;

ui nt64_t space;

uint64_t cap, version;

zprop_source_t src = ZPROP_SRC_NONE;
spa_config_dirent _t *dp;

ASSERT(MUTEX_HELD(&spa- >spa_props_| ock));

if (rvd !'= NULL) {
al | oc = net asl ab_cl ass_get _al | oc(spa_nornmal _cl ass(spa));
size = nmetasl ab_cl ass_get _space(spa_normal _cl ass(spa));
spa_prop_add_| i st(*nvp, ZPOOL_PROP_NAME, spa_ name(spa), 0, src);
spa_prop_add_l i st(*nvp, ZPOOL_PROP_SI ZE, NULL, size, src);
spa_prop_add_| i st(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
spa_prop_add_| i st (*nvp, ZPOOL_PROP_FREE, NULL,

size - alloc, src);

space = 0;
for (int ¢ = 0; ¢ < rvd->vdev_children; c++) {
vdev_t *tvd = rvd->vdev_child[c];
space += tvd->vdev_nax_asi ze - tvd->vdev_asi ze;

}
spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
src);

spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
(spa_node(spa) == FREAD), src);

cap = (size == 0) 2 0: (alloc * 100 / size);
spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);

spa_prop_add_|ist(*nvp, ZPOOL_PROP_DEDUPRATI O, NULL,
ddt _get _pool _dedup_ratio(spa), src);

spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
rvd- >vdev_state, src);

version = spa_version(spa);
if (version == zpool _prop_defaul t_nuneri c(ZPOO._PROP_VERSI ON))
src = ZPROP_SRC_DEFAULT;
el se
src = ZPROP_SRC _LOCAL;
) spa_prop_add_|li st (*nvp, ZPOOL_PROP_VERS| ON, NULL, version, src);

if (pool != NULL) {
dsl _dir_t *freedir = pool->dp_free_dir;

/*
* The $FREE directory was introduced in SPA VERSI ON_DEADLI STS,
* when opening pool s before this version freedir will be NULL.
*/
if (freedir !'= NULL)
spa_| prop add_l i st (*nvp, ZPOOL_PROP_FREEI NG NULL,
freedir->dd_phys->dd_used_bytes, src);
} else {
spa_prop_add_list(*nvp, ZPOOL_PROP_FREEI NG,
NULL, O, src);

new usr/src/uts/comon/fs/zfs/spa.c

256 spa_prop_add_l i st(*nvp, ZPOOL_PROP_GUI D, NULL, spa_guid(spa),
258 if (spa->spa_conmment != NULL) {

259 spa_ pr op_add Ilst(*nvp, ZPOOL_PROP_COMMENT, spa- >spa_conment ,
260 0, ZPROP_SRC_LOCAL);

261 }

263 if (spa->spa_root != NULL)

264 spa_| pr op_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
265 0, ZPROP_SRC _LOCAL);

267 if ((dp = Ilst _head(&spa->spa_config_list)) !'= NULL) {

268 (dp->scd_| path--NL){

269 spa_prop_add_l i st(*nvp, ZPOOL_PROP_CACHEFI LE,
270 "none", 0, ZPROP_SRC_LOCAL);

271 } else if (strcnp(dp->scd path spa_config_path) !'= 0) {
272 spa_prop_add_| i st(*nvp, ZPOOL_PROP_CACHEFI LE,
273 dp->scd_path, 0, ZPROP_SRC LOCAL);

274 }

275 }

276 }

278 | *

279 * Get zpool property val ues.

280 */

281 int

282 spa_prop_get(spa_t *spa, nvlist_t **nvp)

283 {

284 obj set _t *npbs = spa- >spa_net a_obj set;

285 zap_cursor_t zc;

286 zap_attribute_t za;

287 int err;

289 VERI FY(nvlist_alloc(nvp, NV_UNl QUE_NAME, KM SLEEP) == 0);

291 nmut ex_ent er (&spa- >spa_props_| ock) ;

293 /*

294 * Cet properties fromthe spa config.

295 */

296 spa_prop_get _config(spa, nvp);

298 /* 1f no pool property object, no nore prop to get. */

299 if (mps == NULL || spa->spa_pool _props_object == 0) {

300 nmut ex_exi t (&spa- >spa_props_| ock) ;

301 return (0);

302 1

304 /*

305 * Get properties fromthe MOS pool property object.

306 */

307 for (zap_cursor_init(&c, nos, spa->spa_pool _props_object);
308 (err = zap_cursor_retrieve(&c, &za)) == 0;

309 zap_cursor _advance(&zc)) {

310 uint64_t intval = O;

311 char *strval = NULL;

312 zprop_source_t src = ZPROP_SRC_DEFAULT;

313 zpool _prop_t prop;

315 if ((prop = zpool _nanme_to_prop(za.za_nane)) == ZPROP_I NVAL)
316 conti nue;

318 switch (za.za_integer_length) {

319 case 8:

320 /* integer property */

new usr/src/uts/comron/fs/zfs/spa.c

321
322
323

325
326
327

329
330
331
332
333
334
335

337
338
339
340
341
342
343
344
345
346

348

350
351
352

354

356
357
358
359
360
361
362
363
364
365
366
367

369
370
371
372
373
374

375 out:

376
377
378
379
380

382
383 }

385 /*

if (za.za_first_integer !=
zpool _prop def aul t _nuneric(prop))
src = ZPROP_SRC_LOCAL;

if (prop == ZPOOL_PROP_BOOTFS) {
dsl _pool _t *dp;
dsl “dataset _t *ds = NULL;

dp = spa_get_dsl (spa);
dsl _pool conflg enter(dp FTAG) ;
if (err = dsl_dataset_hol d_obj (dp,
za.za_first_integer, FTAG &ds)) {
dsl _pool _config_exit(dp, FTAG;

br eak;
}
strval = knmem al | oc(
MAXNAMELEN + strlen(MOS_DI R NAMVE) + 1,
KM SLEEP) ;

dsl _dat aset _nane(ds, strval);
dsl _dataset _rel e(ds, FTAQ;
dsl _pool _config_exit (dp, FTAG)

} else {
strval = NULL;
intval = za.za_first_integer;
}
spa_prop_add_list(*nvp, prop, strval, intval, src);
if (strval !'= NULL)
kmem free(strval,
MAXNAMVELEN + strlen(MOS_DIR NAME) + 1);
br eak;
case 1:
/* string property */
strval = knem al |l oc(za.za_num.integers, KM SLEEP);
err = zap_| ookup(nos, spa->spa_pool _props_object,
za.za_nane, 1, za.za_num.integers, strval);
if (err) {
kmem free(strval, za.za_num.integers);
br eak;
}
spa_prop_add_list(*nvp, prop, strval, 0, src);
kmem free(strval, za.za_num.ntegers);
br eak;
defaul t:
br eak;
}

}
zap_cursor _fini (&zc);
nmut ex_exi t (&spa- >spa_props_| ock);

if (err & err !'= ENCENT) {
nvlist_free(*nvp);
*nvp = NULL;
return (err);

}
return (0);

386 * Validate the given pool properties nvlist and nmodify the |ist

new usr/src/uts/comon/fs/zfs/spa.c 7 new usr/src/uts/comon/fs/zfs/spa.c
387 * for the property values to be set. 453 error = SET_ERROR(EI NVAL) ;
388 */ 454 break;
389 static int
390 {spa_pr op_validate(spa_t *spa, nvlist_t *props) 456 case ZPO;J__PRCP_BCXJTFS:
391 457 *
392 nvpair_t *elem 458 * |f the pool version is |ess than SPA VERS|I ON_BOOTFS,
393 int error = 0, reset_bootfs = 0; 459 * or the pool is still being created (version == 0),
394 ui nt 64_t obj num = 0; 460 * the bootfs property cannot be set.
395 bool ean_t has_feature = B_FALSE; 461 */
462 if (spa_version(spa) < SPA_VERSI ON_BOOTFS) ({
397 el em = NULL; 463 error = SET_ERROR(ENOTSUP) ;
398 while ((el em = nvlist_next_nvpair(props, elem) != NULL) { 464 br eak;
399 uint64_t intval; 465 }
400 char *strval, *slash, *check, *fnane;
401 const char *pr opname = nvpair_nane(el em; 467 /*
402 zpool _prop_t prop = zpool _nane_t o_prop(propnane); 468 */Nake sure the vdev config is bootable
469 *
404 switch (prop) { 470 if (!vdev_is_bootabl e(spa->spa_root_vdev)) {
405 case ZPROP_I| NVAL: 471 error = SET_ERROR(ENOTSUP) ;
406 if (!zpool _prop_feature(propnanme)) { 472 br eak;
407 error = SET_ERROR(EI NVAL) ; 473 }
408 br eak;
409 } 475 reset_bootfs = 1;
411 /* 477 error = nvpair_value_string(elem &strval);
412 * Sanitize the input.
413 */ 479 if (terror) {
414 if (nvpair type(el en) != DATA TYPE_UI NT64) { 480 obj set _t *os;
415 error SET_ERROR(El NVAL) ; 481 uint64_t conpress;
416 br eak;
417 } 483 if (strval == NULL || strval[0] == "\0") {
484 obj num = zpool _prop_defaul t _nuneri c(
419 if (nvpair_value_uint64(elem & ntval) !'= 0) { 485 ZPOOL_PROP_BOOTFS) ;
420 error = SET_ERROR(EI NVAL) ; 486 br eak;
421 br eak; 487 }
422 }
489 if (error = dmu_objset_hol d(strval, FTAG &os))
424 if (intval !'=0) { 490 br eak;
425 error = SET_ERROR(EI NVAL) ;
426 br eak; 492 /* Must be ZPL and not gzip conpressed. */
427 }
494 if (dmu_objset_type(os) !'= DMJ OST_ZFS) {
429 fnanme = strchr(propname, ' @) + 1; 495 error = SET_ERROR(ENOTSUP) ;
430 if (zfeature_l ookup_nane(fname, NULL) != 0) { 496 } elseif ((error =
431 error = SET_ERROR(EI NVAL) ; 497 dsl _prop_get _i nt _ds(dnu_obj set _ds(os),
432 br eak; 498 zfs_prop_to narre(ZFS PROP_COWPRESSI O\l),
433 } 499 &conpress)) == 0 &&
500 I'BOOTFS_COMPRESS_VALI D(conpress)) {
435 has_feature = B_TRUE; 501 error = SET_ERROR(ENOTSUP) ;
436 br eak; 502 } else {
503 obj num = dnu_obj set _i d(os);
438 case ZPOOL_PROP_VERSI ON: 504 }
439 error = nvpair_value_uint64(elem & ntval); 505 dmu_obj set _rel e(os, FTAQ;
440 if (lerror && 506
441 (intval < spa_version(spa) || 507 br eak;
442 intval > SPA VERSI ON BEFORE_FEATURES | |
443 has_feature)) 509 case ZPOOL_PROP_FAI LUREMODE:
444 error = SET_ERROR(EI NVAL) ; 510 error = nvpair_value_uint64(elem & ntval);
445 br eak; 511 if (error & (intval < ZI O FAILURE_MODE_ WAIT ||
512 intval > ZI O FAI LURE_ MODE_PANI C))
447 case ZPOOL_PROP_DELEGATI ON: 513 error = SET_ERROR(EI NVAL) ;
448 case ZPOOL_PROP_AUTCOREPLACE:
449 case ZPOOL_PROP_L| STSNAPS: 515 /*
450 case ZPOOL_PROP_AUTCOEXPAND: 516 * This is a special case which only occurs when
451 error = nvpair_val ue_uint64(elem & ntval); 517 * the pool has conpletely failed. This allows
452 if (lerror & intval > 1) 518 * the user to change the in-core fail nbde property

new usr/src/uts/comon/fs/zfs/spa.c

519
520
521
522
523
524
525
526
527
528
529

531
532
533

535
536

538
539

541
542
543
544

546
547

549
550
551
552

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572

574
575
576
577
578
579
580
581
582
583

* wi thout syncing it out to disk (I/0Os m ght
* currently be blocked). We do this by returning
* ElIOto the caller (spa_prop_set) to trick it
* into thinking we encountered a property validation
* error.
*
/

if (lerror &% spa_suspended(spa)) {
spa->spa_failnode = intval;
error = SET_ERROR(EIO);

break;
case ZPOOL_PROP_CACHEFI LE:

if ((error = nvpair_value_string(elem &strval)) != 0)
br eak;

if (strval[0] =="'\0")
br eak;

if (strcnp(strval, "none") == 0)
br eak;

if (strval[0] !'="/") {
error = SET_ERROR(EI NVAL) ;
br eak;

}

slash = strrchr(strval, '/");
ASSERT(sl ash ! = NULL);

if (slash[1] == "\0" || strcnp(slash “1.") =0 ||
strcrrp(slash "/..") == 0)
error = SET ERRCR(El NVAL) ;

br eak;
case ZPOOL_PROP_COMVENT:
if ((error = nvpair_value_string(elem &strval)) != 0)
br eak;
for (check = strval; *check !'="\0"; check++) {
/*

* The kernel doesn’'t have an easy isprint()
* check. For this kernel check, we nerely
* check ASClI| apart fromDEL. Fix this if

* there is an easy-to-use kernel isprint().
*

if (*check >= 0x7f) {
error = SET_ERROR(ElI NVAL) ;
br eak;

check++;

}

if (strlen(strval) > ZPROP_VAX_COMMVENT)
error = E2BI G

br eak;

case ZPOOL_PROP_DEDUPDI TTQ
i f (spa_versi on(spa) < SPA_VERSI ON_DEDUP)
error SET_ERROR(ENOTSUP) ;

el se
error = nvpair_val ue_uint64(elem & ntval);
if (error == &&
intval !'= 0 & intval < ZI O DEDUPDI TTO M N
error = SET_ERROR(EI NVAL) ;
break;

10

new usr/src/uts/comon/fs/zfs/spa.c
585 if (error)
586 br eak;
587 }
589 if (lerror & reset_bootfs) {
590 error = nvlist_renove(props,
591 zpool _prop_t o_nane(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRI NG ;
593 if (lerror) {
594 error = nvlist_add_ui nt 64(props,
595 zpool _prop_t o_nanme(ZPOOL_PROP_BOOTFS), obj nunj;
596 }
597 }
599 return (error);
600 }
602 void
603 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
604 {
605 char *cachefil e;
606 spa_config_dirent _t *dp;
608 if (nvlist_lookup_string(nvp, zpool _prop_to_nane(ZPOOL_PROP_CACHEFI LE),
609 &cachefile) 1= 0)
610 return;
612 dp = kmem al | oc(si zeof (spa_config_dirent_t),
613 KM _SLEEP) ;
615 if (cachefile[0] == "'\0")
616 dp->scd_path = spa_ strdup(spa config_path);
617 else if (strcrrp(cachefl le, "none") == 0)
618 dp->scd_path = NULL;
619 el se
620 dp- >scd_path = spa_strdup(cachefile);
622 i st_insert_head(&spa->spa_config_list, dp);
623 if (need_sync)
624 spa_async_request (spa, SPA ASYNC CONFl G_UPDATE) ;
625 }
627 int
628 spa_prop_set(spa_t *spa, nvlist_t *nvp)
629 {
630 int error;
631 nvpair_t *el em = NULL;
632 bool ean_t need_sync = B_FALSE;
634 if ((error = spa_prop_validate(spa, nvp)) != 0)
635 return (error);
637 while ((elem= nvlist_next_nvpair(nvp, elem) != NULL) {
638 zpool _prop_t prop = zpool _nane_t o_prop(nvpair_nane(el em);
640 if (prop == ZPOOL_PROP_CACHEFI LE ||
641 prop == ZPOOL_PROP_ALTROOT | |
642 prop == ZPOOL_PROP_READONLY)
643 conti nue;
645 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_| NVAL) {
646 uint64_t ver;
648 if (prop == ZPOOL_PROP_VERSION) {
649 VERI FY(nvpai r_val ue_ui nt 64(el em &ver) == 0);
650 } else {

new usr/src/uts/comon/fs/zfs/spa.c

651 ASSERT(zpool _prop_feature(nvpair_nanme(elem));
652 ver = SPA VERSI ON_FEATURES;

653 need_sync = B_TRUE;

654 }

656 /* Save tine if the version is already set. */
657 if (ver == spa_version(spa))

658 conti nue;

660 /*

661 * In addition to the pool directory object, we m ght
662 * create the pool properties object, the features for
663 * read object, the features for wite object, or the
664 * feature descriptions object.

665 */

666 error = dsl_sync_task(spa- >spa_nane, NULL,

667 spa sync_version, &ver, ;

668 if (error)

669 return (error);

670 conti nue;

671 }

673 need_sync = B_TRUE;

674 br eak;

675 }

677 if (need_sync)

678 return (dsl_sync_task(spa->spa_nane, NULL, spa_sync_props,
679 nvp, 6));

680 }

682 return (0);

683

685

686 * If the bootfs property value is dsobj, clear it.

687 */

688

689 spa_prop_cl ear _bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)

690

691 if (spa->spa_bootfs == dsobj && spa->spa_pool _props_object != 0) {
692 VERI FY(zap_r enove(spa- >spa_net a_obj set,

693 spa- >spa_pool _props_obj ect,

694 zpool _prop_t o_nanme(ZPOOL_PROP_BOOTFS), tx) == 0);

695 spa- >spa_bootfs = 0;

696 }

697

699 /* ARGSUSED*/

700 static int

701 spa_change_gui d_check(void *arg, dmu_tx_t *tx)

702 {

703 ui nt 64_t *nev\gul d = arg

704 spa_t *spa = dmu_tx pooI (tx)->dp_spa;

705 vdev_t *rvd = spa->spa_root_vdev;

706 uint64_t vdev_state;

708 spa_config_ ent er (spa, SCL_STATE, FTAG RW READER);

709 vdev_state = rvd->vdev_state;

710 spa_config_exit(spa, SCL_STATE, FTAG;

712 if (vdev_state != VDEV_STATE_HEALTHY)

713 return (SET_ERROR(ENXI O));

715 ASSERT3U(spa_gui d(spa), !=, *newguid);

11 new usr/src/uts/comon/fs/zfs/spa.c
717 return (0);
718 }

782

720 static void
721 spa_change_gui d_sync(void *arg, dmu_tx_t *tx)

722 {

723 ui nt 64_t *nev\gul d = arg;

724 spa_t *spa = dmu_t x_pool (tx)->dp_spa;

725 uint64_t ol dgm d;

726 vdev_t *rvd = spa->spa_root_vdev;

728 ol dgui d = spa_gui d(spa);

730 spa_config_enter(spa, SCL_STATE, FTAG RW READER);

731 rvd->vdev_gui d = *newgui d;

732 rvd- >vdev_gui d_sum += (*newgui d - ol dguid);

733 vdev_config_dirty(rvd);

734 spa_config_exit(spa, SCL STATE, FTAQ);

736 spa_history_log_internal (spa, "guid change", tx, "old=%1u new=%1u",
737 ol dgui d, *newguid);

738 }

740 /*

741 * Change the GUID for the pool. This is done so that we can |ater
742 * re-inport a pool built froma clone of our own vdevs. W will nodify
743 * the root vdev's guid, our own pool guid, and then mark all of our
744 * vdevs dirty. Note that we nust make sure that all our vdevs are
745 * online when we do this, or else any vdevs that weren't present
746 * woul d be orphaned fromour pool. W are also going to issue a
747 * sysevent to update any watchers.

748 */

749 int

750 spa_change_gui d(spa_t *spa)

751 {

752 int error;

753 uint64_t guid;

755 mut ex_ent er (&spa_nanespace_| ock) ;

756 gui d = spa_generat e_gui d(NULL) ;

758 error = dsl_sync_task(spa->spa_nane, spa_change_gui d_check,
759 spa_change_gui d_sync, &guid, 5);

761 if (error == 0) {

762 spa_config_sync(spa, B_FALSE, B TRUE);

763 spa_event _notify(spa, NULL, ESC ZFS POOL_REGUI D);
764 }

766 nmut ex_exi t (&spa_nanmespace_| ock) ;

768 return (error);

769 }

771 [*

772 *

773 * SPA state manipul ati on (open/create/destroy/inport/export)

774 *

775 */

777 static int

;;g {spa_error_entry_conpar e(const void *a, const void *b)

780 spa_error_entry_t *sa = (spa_error_entry_t *)a;

781 spa_error_entry_t *sb = (spa_error_entry_t *)b;

int ret;

12

new usr/src/uts/comon/fs/zfs/spa.c

784 ret = bcnp(&sa->se_bookmark, &sb->se_booknark,

785 si zeof (zbookmark_t));

787 if (ret <0)

788 return (-1);

789 else if (ret > 0)

790 return (1);

791 el se

792 return (0);

793 }

795 [*

796 * Wility function which retrieves copies of the current |ogs and
797 * re-initializes themin the process.

798 */

799 void

800 spa_get_errlists(spa_t *spa, avl _tree_t *last, avl_tree_t *scrub)
801 {

802 ASSERT(MUTEX_HELD(&spa- >spa_errlist_l ock));

804 bcopy(&spa->spa_errlist_|last, |ast, sizeof (avl_tree_t));
805 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
807 avl _create(&spa->spa_errlist_scrub,

808 spa_error_entry_conpare, sizeof (spa_error_entry_t),
809 of fsetof (spa_error_entry_t, se_avl));

810 avl _create(&spa->spa_errlist_|ast,

811 spa_error_entry_conpare, “si zeof (spa_error_entry_t),
812 of fsetof (spa_error_entry_t, se_avl));

813 }

815 static void

816 spa_taskqgs_init(spa_t *spa, zio_type_t t, zio_taskqg_type_t Q)
817 {

818 const zio_taskq_info_t *ztip = &zio_taskgs[t][q];

819 enum zti m)des node = ztip->zti_node;

820 uint_t value = ztip->zti_val ue;

821 uint_t count = ztip->zti_count;

822 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];

823 char nange[32];

824 uint_t flags = 0;

825 bool ean_t batch = B_FALSE;

827 if (mode == ZTI _MODE_NULL) {

828 tgs->stqgs_count = O;

829 tgs->stqgs_taskg = NULL;

830 return;

831 }

833 ASSERT3U(count, >, 0);

835 tgs->stqgs_count = count;

836 tgs->stqs_taskq = knem al |l oc(count * sizeof (taskg_t *), KM SLEEP);
838 for (uint_t i =0; i < count; i++) {

839 taskq_t *tq;

841 switch (node)

842 case ZTI _MODE_FI XED:

843 ASSERTSU(vaI ue, >=, 1);

844 val ue = IVAX(vaI ue, 1);

845 br eak;

847 case ZTI _MODE_BATCH:

848 batch = B_TRUE;

13

new usr/src/uts/comron/fs/zfs/spa.c

849
850
851

853
854
855

857
858
859
860
861
862

864
865
866
867
868
869
870

872
873
874

876
877
878
879
880
881

883
884
885

887
888

890

892
893
894
895

897
898
899
900

902
903
904

906
907
908
909
910
911
912
913
914

}

flags | = TASKQ THREADS_CPU_PCT;
val ue = zi o_taskqg_batch_pct;
br eak;

case ZTI _MODE_ONLI NE_PERCENT:
flags | = TASKQ THREADS_CPU_PCT;

14

br eak;
defaul t:
pani c("unrecogni zed node for %_% taskq (%: %) in "
"spa_activate()",
zio_type_nane[t], zio_taskq_types[q], node, value);
br eak;
}

if (count > 1)
(void) snprintf(nanme, sizeof (name), "%_%_%",
zio_type_nanme[t], zio_taskq_types[q], i);
} else {
(void) snprintf(nane, sizeof (nane), "%_%",
zio_type_nane[t], zio_taskq_ types[q])

}
if (zio_taskg_sysdc && spa->spa_proc != &p0) {
if (batch)
flags | = TASKQ DC BATCH;
tq = taskg_create_sysdc(nane, value, 50, |NT_MAX,
spa->spa_proc, zio_taskq_basedc, flags);
} else {
tq = taskqg_create_proc(nanme, value, maxclsyspri, 50,
I NT_MAX, spa->spa_proc, flags);
}

tgs->stqgs_taskq[i] = tq;

static void

spa_t askqs_fini (spa_t *spa, zio_type_t t,
{

zi o_taskqg_type_t q)
spa_taskgs_t *tgs = &spa->spa_zio_taskq[t][q];

if (tgs->stqgs_taskg == NULL) {
ASSERTO(t gs->st qs_count) ;

return;

}

for (uint_t i =0; i < tgs->stgs_count; i++) {
ASSERT3P(tqgs->stqgs_taskq[i], !=, NULL);
taskqg_destroy(tgs->stgs_taskqg[i]);

}

kmem free(tqgs->stqgs_taskq, tqgs->stqgs_count * sizeof (taskq_t *));
tgs->stqgs_taskq = NULL;

Di spatch a task to the appropriate taskq for the ZFS I/ O type and priority.

on the taskq itself.

In that case we choose which taskq at random by using

*
*
* Note that a type may have nmultiple discrete taskgs to avoid | ock contention
*
*

the low bits of gethrtine().

voi d

spa_t askq_di spatch_ent (spa_t *spa, zio_type_ t t,
task_func_t *func, void *arg, uint_t flags, taskg_ent_t *ent)

zio_taskq_type_t q,

new usr/src/uts/comon/fs/zfs/spa.c

915 {

916 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];

917 taskq_t *tq;

919 ASSERT3P(t gs->stgs_taskqg, !'=, NULL);

920 ASSERT3U(t gs->stqgs_count, !=, 0);

922 if (tgs->stgs_count == 1) {

923 tg = tqgs->stqs_taskq[0];

924 } else {

925 tg = tgs->stqgs_taskq[gethrtime() %tqgs->stqgs_count];
926

928 taskq_di spatch_ent (tqg, func, arg, flags, ent);

929 }

931 static void

932 spa_create_zi o_taskgs(spa_t *spa)

933 {

934 for (int t =0; t < ZIOTYPES;, t++)

935 for (int g = 0; g < ZI O TASKQ TYPES; q++) {

936 spa_taskqgs_init(spa, t, Q);

937 }

938 }

939 }

941 #ifdef _KERNEL

942 static void

943 spa_t hread(void *arg)

944 {

945 cal Il b_cpr_t cprinfo;

947 spa_t *spa = arg;

948 user _t *pu = PTOU(curproc);

950 CALLB_CPR_I NI T(&cpri nfo, &spa->spa_proc_| ock, callb_generic_cpr,
951 spa- >spa_nane) ;

953 ASSERT(curproc != &p0);

954 (voi d) snprintf(pu->u_psargs, sizeof (pu->u_psargs),

955 "zpool - %", spa->spa_nane);

956 (void) strl cpy(pu—>u_comn pu- >u_psargs, sizeof (pu->u_com));
958 /* bind this thread to the requested psrset */

959 if (zio_taskg_psrset_bind != PS_NONE) ({

960 pool _l ock();

961 mut ex_ent er (&cpu_| ock);

962 mut ex_ent er (&pi dl ock) ;

963 mut ex_ent er (&cur proc->p_I ock) ;

965 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
966 0, NULL, NULL) == {

967 curthread->t _bi nd_pset = zi o_taskg_psrset_bind;
968 } else {

969 cmm_er r (CE_WARN,

970 "Coul dn’t bind process for zfs pool \"%\" to "
971 "pset %\ n", spa->spa_nane, zio_taskqg_psrset
972 }

974 mut ex_exi t (&cur proc->p_| ock) ;

975 mut ex_exi t (&pi dl ock) ;

976 mut ex_exi t (&cpu_l ock)

977 pool _unl ock();

978 }

980 if (zio_taskg_sysdc) {

15

“bind);

new usr/src/uts/comon/fs/zfs/spa.c 16
981 sysdc_t hread_enter(curthread, 100, 0);
982 1
984 spa- >spa_proc = curproc;
985 spa->spa_did = curthread->t_did;
987 spa_create_zi o_taskqs(spa);
989 nmut ex_ent er (&spa- >spa_proc_| ock) ;
990 ASSERT(spa- >spa_proc_state == SPA_PROC_CREATED) ;
992 spa- >spa_proc_state = SPA_PROC_ACTI VE;
993 cv_broadcast (&spa->spa_proc_cv);
995 CALLB_CPR_SAFE BEG N(&cpri nf o) 2
996 whi | e (spa->spa_proc_state == SPA_PROC_ACTI VE)
997 cv_wal t (&spa- >spa_| proc cv, &spa->spa_proc_| ock);
998 CALLB_CPR_SAFE_END(&cpri nfo, &spa->spa_proc_| ock);
1000 ASSERT(spa- >spa_proc_state == SPA PROC_DEACTI VATE) ;
1001 spa- >spa_proc_state = SPA PROC_GONE;
1002 spa- >spa_proc = &po;
1003 cv_br oadcast (&pa- >spa_proc_cv);
1004 CALLB_CPR_EXI T(&cprinfo); /* drops spa_proc_|l ock */
1006 mut ex_ent er (&cur proc->p_| ock) ;
1007 Iwp_exit();
1008 }
1009 #endi f
1011 /*
1012 * Activate an uninitialized pool.
1013 */
1014 static void
1015 spa_activate(spa_t *spa, int node)
1016 {
1017 ASSERT(spa- >spa_state == POOL_STATE_UNI NI TI ALI ZED) ;
1019 spa- >spa_state = POOL_STATE_ACTI VE;
1020 spa- >spa_node = node;
1022 spa->spa_normal _cl ass = netasl ab_cl ass_create(spa, zfs_netaslab_ops);
1023 spa->spa_|l og_cl ass = netasl ab_cl ass_create(spa, zfs_netasl ab_ops);
1025 /* Try to create a covering process */
1026 nmut ex_ent er (&spa- >spa_proc_| ock) ;
1027 ASSERT(spa- >spa_pr oc st ate == SPA PROC _NONE);
1028 ASSERT(spa- >spa pr oc == &p0);
1029 spa->spa_did =
1031 /* Only create a process if we're going to be around a while. */
1032 if (spa_create_process && strcnp(spa->spa_nane, TRYlI MPORT_NAME) != 0) {
1033 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1034 NULL, 0) == 0) {
1035 spa- >spa_proc_state = SPA_PROC_CREATED;
1036 whil e (spa->spa_proc_state == SPA PROC_CREATED) ({
1037 cv_wai t (&spa- >spa_proc_cv,
1038 &spa- >spa_proc_| ock);
1039 }
1040 ASSERT(spa- >spa_proc_state == SPA PROC_ACTI VE) ;
1041 ASSERT(spa- >spa_proc != &p0);
1042 ASSERT(spa->spa_did != 0);
1043 } else {
1044 #ifdef _KERNEL
1045 cmm_er r (CE_WARN,
1046 "Coul dn’t create process for zfs pool \"%\"\n",

new usr/src/uts/comon/fs/zfs/spa.c

1047
1048
1049
1050
1051

1053
1054
1055
1056

1058
1059
1060
1061

1063
1064

1066
1067
1068
1069
1070
1071
1072

1074
1075
1076
1077
1078

#endi f

}
| *

spa- >spa_nane) ;
}
Emt ex_exi t (&spa- >spa_proc_| ock);
/* If we didn't create a process,

if (spa->spa_proc == &p0) {
spa_create_zio_taskqgs(spa);

we need to create our taskgs. */

}

list_create(&spa->spa_config_ dirty_list, sizeof (vdev_t),
of fsetof (vdev_t, vdev_config_dirty_ node e));

|ist_create(&spa->spa_state dirty |ist, si zeof (vdev_t),
of f set of (vdev_t, vdev_state_dirty_node));

txg_list_create(&spa->spa_vdev_txg_list,
of f set of (struct vdev, vdev_txg_node));

avl _create(&spa->spa_errlist_scrub,
spa_error_entry_conpare, “si zeof (spa_error_entry_t),
of fsetof (spa_error_entry_t, se_avl));

avl _create(&spa->spa_errlist_| ast
spa_error_entry_conpare, “si zeof (spa_error_entry_t),
of fsetof (spa_error_entry_t, se_avl));

* Opposite of spa_activate().
*/

static void

spa_deacti vat e(spa_t

1079 {

1080
1081
1082
1083
1084

1086

1088
1089

1091
1092
1093
1094
1095

1097
1098

1100
1101

1103
1104
1105
1106
1107

1109
1110

1112

*spa)

ASSERT(spa- >spa_sync_on == B_FALSE);

ASSERT(spa- >spa_dsl| _pool == NULL)

ASSERT(spa- >spa_r oot _vdev == NULL)

ASSERT(spa- >spa_async_zi o_r oot == NUL L);
ASSERT(spa- >spa_state ! = POOL_STATE_UNI NI TI AL ZED) ;

txg_list_destroy(&spa->spa_vdev_txg_list);

i st_destroy(&spa->spa_config_dirty list);
I'ist_destroy(&spa->spa_state_dirty_list);

for (int t =0; t < ZIOTYPES;, t++) {
for (int g = 0; g < ZI O TASKQ TYPES; q++) {
spa_taskgs_fini(spa, t, q);
}
}

net asl ab_cl ass_dest r oy(spa- >spa_nor nal
spa- >spa_normal _cl ass = NULL;

_class);

net asl ab_cl ass destroy(spa- >spa_| og_cl ass);
spa->spa_l og_class = NULL

/*

* |f this was part of an inport or the open otherw se failed, we nay
* still have errors left in the queues. Enpty themjust in case.

*/

spa_errl og_drain(spa);

avl _destroy(&spa->spa_errlist_scrub);
avl _destroy(&spa->spa_errlist_|ast);

spa- >spa_state = POOL_STATE_UNI NI Tl ALI ZED;

new usr/src/uts/comon/fs/zfs/spa.c

18

Thi s
vdev

1114 mut ex_ent er (&spa- >spa_proc_| ock);

1115 if (spa->spa_proc_state != SPA | PROC NCNE) {

1116 ASSERT(spa- >spa_proc_state == SPA PROC_ACTI VE) ;

1117 spa- >spa_proc_state = SPA_PROC_DEACTI VATE;

1118 cv_broadcast (&pa- >spa_proc cv)

1119 while (spa->spa_proc_state == SPA PROC_DEACTI VATE) {
1120 ASSERT(spa- >spa_proc != &p0);

1121 cv_wai t (&spa- >spa_proc_cv, &spa— >spa_proc_| ock);
1122 }

1123 ASSERT(spa- >spa_proc_state == SPA PROC _GONE) ;

1124) spa- >spa_proc_state = SPA_PROC_NONE;

1125

1126 ASSERT(spa- >spa_proc == &p0);

1127 mut ex_exi t (&spa- >spa_proc_| ock);

1129 /*

1130 * W want to nake sure spa_thread() has actually exited the ZFS
1131 * nodul e, so that the nodule can't be unl oaded out from underneath
1132 *it.

1133 */

1134 if (spa->spa_did != 0)

1135 t hread_j oi n(spa->spa_di d) ;

1136 spa->spa_did = O;

1137 }

1138 }

1140 /*

1141 * Verify a pool configuration, and construct the vdev tree appropriately.
1142 * will create all the necessary vdevs in the appropriate |ayout, with each
1143 * in the CLOSED state. This will prep the pool before open/creation/inport.
1144 * Al vdev validation is done by the vdev_alloc() routine.

1145 */

1146 static int

1147 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1148 uint_t 1d, int atype)

1149 {

1150 nvlist_t **child;

1151 uint_t children;

1152 int error;

1154 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1155 return (error);

1157 if ((*vdp)->vdev_ops->vdev_op_| eaf)

1158 return (0);

1160 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFI G CH LDREN,
1161 &child, &children);

1163 if (error == ENCENT)

1164 return (0);

1166 if (error) {

1167 vdev_free(*vdp);

1168 *vdp = NULL;

1169 return (SET_ERROR(El NVAL))

1170 }

1172 for (int ¢ =0; ¢ < children; c++) {

1173 vdev_t *vd;

1174 if ((error = spa_config_parse(spa, &d, child[c], *vdp, c,
1175 atype)) != 0)

1176 vdev_free(*vdp);

1177 *vdp = NULL;

1178 return (error);

new usr/src/uts/comon/fs/zfs/spa.c

1179 }

1180 1

1182 ASSERT(*vdp != NULL);

1184 return (0);

1185 }

1187 /*

1188 * Opposite of spa_l oad().

1189 */

1190 static void

1191 spa_unl oad(spa_t *spa)

1192 {

1193 int i

1195 ASSERT(MUTEX_HELD(&spa_nanespace_| ock));
1197 /*

1198 * Stop async tasks.

1199 */

1200 spa_async_suspend(spa) ;

1202 /*

1203 * Stop syncing.

1204 */

1205 if (spa->spa_sync_on)

1206 t xg_sync_st op(spa->spa_dsl| _pool);
1207 spa->spa_sync_on = B_FALSE;
1208 }

1210 I*

1211 * Wait for any outstanding async I/Oto conplete.
1212 */

1213 if (spa->spa_async_zio_root != NULL)
1214 (void) zio walt(spa- >spa_async_zi o_root);
1215 spa- >spa_async_zi o_root = NULL;
1216 }

1218 bpobj _cl ose(&spa- >spa_def erred_bpobj);
1220 /*

1221 * Close the dsl pool.

1222 */

1223 if (spa->spa_dsl_pool) {

1224 dsl _pool _cl ose(spa- >spa_dsl _pool);
1225 spa- >spa_dsl| _pool = NULL;

1226 spa- >spa_net a_obj set = NULL;
1227 1

1229 ddt _unl oad(spa);

1231 spa_config_enter(spa, SCL_ALL, FTAG RWMWRI TER);
1233 /*

1234 * Drop and purge |evel 2 cache

1235 */

1236 spa_| 2cache_drop(spa);

1238 /*

1239 * Close all vdevs.

1240 */

1241 if (spa->spa_root_vdev)

1242 vdev_free(spa->spa_root_vdev);
1243 ASSERT(spa- >spa_r oot _vdev == NULL);

19

new usr/src/uts/comon/fs/zfs/spa.c

1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256

1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271

1273

1275
1276
1277
1278

1280
1281

1283
1284
1285
1286
1287
1288
1289
1290

1292
1293
1294
1295

1297

1299
1300
1301
1302
1303

1305
1306
1307
1308
1309
1310

* Ok Ok ok % %
-~

for (i = 0; i < spa->spa_spares.sav_count; i++)
vdev_free(spa->spa_spares. sav vdevs[l])
if (spa->spa_spares.sav_vdevs) {
kmem free(spa- >spa_spar es. sav_vdevs,
sSpa- >spa_spar es. sav_count * si zeof (void *));
spa- >spa_spar es. sav_vdevs = NULL;

if (spa->spa_spares.sav_config) {
nvlist_free(spa->spa_spares.sav_config);
spa- >spa_spar es. sav_config = NULL;

spa- >spa_spar es. sav_count = 0;

for (i = 0; i < spa->spa_l 2cache. sav_count; i++) {
vdev_cl ear _st at s(spa->spa_| 2cache. sav_vdevs[i]);
vdev_free(spa->spa_| 2cache. sav_vdevs[i]);

i f (spa->spa_l 2cache. sav_vdevs) {
kmem f ree(spa- >spa_l 2cache. sav_vdevs,
spa- >spa_|l 2cache. sav_count * sizeof (void *));
spa- >spa_| 2cache. sav_vdevs = NULL;

if (spa->spa_| 2cache. sav_config) {
nvlist_free(spa->spa_|l 2cache. sav_config);
spa- >spa_| 2cache. sav_config = NULL;

spa- >spa_|l 2cache. sav_count = O;

spa- >spa_async_suspended =

if (spa->spa_coment != NULL)
spa_strfree(spa->spa_coment);
spa- >spa_conment = NULL;

}
spa_config_exit(spa, SCL_ALL, FTAG;

Load (or re-load) the current list of vdevs describing the active spares for
this pool

’ spa_spares. sav_confi g’
then re-generate a more complete list including status infornation.

When this |s called, we have sonme formof basic information in
We parse this into vdevs, try to open them and

static void
spa_| oad_spares(spa_t *spa)
1291 {

nvlist_t **spares;
ui nt _t nspares;
int i;

vdev_t *vd, *tvd;

ASSERT(spa_confi g_hel d(spa, SCL_ALL, RWWRI TER) == SCL_ALL);

/*
* First, close and free any existing spare vdevs.
*/
for (i = 0; i < spa->spa_spares.sav_count; i++) {

vd = spa- >spa_spares. sav_vdevs[i];

/* Undo the call to spa_activate() bel ow */
if ((tvd = spa_l ookup_by_gui d(spa, vd->vdev_guid,
B FALSE)) !'= NULL && tvd->vdev_i sspare)
spa_spare_renove(tvd);
vdev_cl ose(vd);
vdev_free(vd);

20

new usr/src/uts/comon/fs/zfs/spa.c 21

1311

1313
1314
1315

1317
1318
1319
1320
1321

1323
1324

1326
1327

1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343

1345

1347
1348
1349
1350

1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367

1369
1370

1372
1373

1375
1376

}

if (spa->spa_spares.sav_vdevs)
kmem free(spa- >spa_spar es. sav_vdevs,
spa- >spa_spares. sav_count * sizeof (void *));

if (spa->spa_spares.sav_config == NULL)
nspares = O;
el se
VERI FY(nvli st _| ookup_nvlist_array(spa->spa_spares. sav_config,
ZPOOL_CONFI G_SPARES, &spares, &nspares) == 0);

spa- >spa_spares. sav_count = (int)nspares;
spa- >spa_spar es. sav_vdevs = NULL;

if (nspares == 0)
return;

Construct the array of vdevs, opening themto get status in the

process. For each spare, there is potentially tw different vdev_t

structures associated with it: one in the |ist of spares (used only

for basic validation purposes) and one in the active vdev

configuration (if it’'s spared in). During this phase we open and

val i date each vdev on the spare list. If the vdev also exists in the

* active configuration, then we also mark this vdev as an active spare.

*

/

spa- >spa_spar es. sav_vdevs
KM_SLEEP);

for (i = 0; I < spa->spa_spares.sav_count; i++)

VERI FY(spa_config_ parse(spa &vd, spares[i], NULL, O,
VDEV_ALLOC SPARE) == 0);

ASSERT(vd != NOLL);

* % ok k% *

= kmem al | oc(nspares * sizeof (void *),

spa- >spa_spares. sav_vdevs[i] = vd;

if ((tvd = spa_l ookup_by_gui d(spa, vd->vdev_guid,
_FALSE)) !'= NULL) {
if (!tvd->vdev_isspare)
spa_spare_add(tvd);

W only nark the spare active if we were successfully
able to load the vdev. Oherw se, inporting a pool
with a bad active spare would result in strange
behavi or, because multiple pool would think the spare
is actively in use.

There is a vulnerability here to an equally bizarre
circunstance, where a dead active spare is |ater
brought back to life (onlined or otherwise). G ven
the rarity of this scenario, and the extra conplexity
it adds, we ignore the possibility.

B 2

if (!vdev_is_dead(tvd))
spa_spare_activate(tvd);

}

vd- >vdev_t op
vd- >vdev_aux

vd;
&spa- >spa_spar es;

if (vdev_open(vd) != 0)
conti nue;

if (vdev_validate_aux(vd) == 0)
spa_spare_add(vd);

new usr/src/uts/comron/fs/zfs/spa.c 22
1377 }

1379 /*

1380 * Rec rrpute the stashed |ist of spares, with status information
1381 * this ti

1382 */

1383 VERI FY(nvlist_renmove(spa- >spa spares. sav_config, ZPOOL_CONFI G _SPARES,
1384 DATA_TYPE_NVLI ST_ARRAY) == 0);

1386 spares = knem al | oc(spa->spa_spares. sav_count * sizeof (void *),

1387 KM SLEEP)

1388 for (i = 0; I < spa->spa_spares.sav_count; i++)

1389 spares[i] = vdev_config_generate(spa,

1390 spa- >spa_spares. sav_vdevs[i], B_TRUE, VDEV_CONFI G SPARE);
1391 VERI FY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,

1392 ZPOOL_CONFI G_SPARES, spares, spa->spa_spares.sav_count) == 0);
1393 (i =0; i < spa->spa_spares.sav_count; 1| ++)

1394 nvlist_free(spares[i]);

1395 kmem f ree(spares, spa->spa_spares.sav_count * sizeof (void *));

1396 }

1398 /*

1399 * Load (or re-load) the current list of vdevs describing the active |2cache for
1400 * this pool. Wen this is called, we have sone formof basic information in
1401 * ’spa_l 2cache.sav_config’. W parse this into vdevs, try to open them and
1402 * then re-generate a nore conplete list including status information.

1403 * Devices which are already active have their details maintained, and are
1404 * re- opened.

1405 *

1406 static void

1407 spa_l oad_| 2cache(spa_t *spa)

1408 {

1409 nvlist_t **|2cache;

1410 ui nt _t nl 2cache;

1411 int i, j, oldnvdevs;

1412 uint64_t guid;

1413 vdev_t *vd, **ol dvdevs, **newdevs;

1414 spa_aux_vdev_t *sav = &spa- >spa_| 2cache;

1416 ASSERT(spa_config_hel d(spa, SCL_ALL, RWWRI TER) == SCL_ALL);

1418 if (sav->sav_config !'= NULL) {

1419 VERI FY(nvl i st _I ookup_nvlist_array(sav->sav_config,

1420 ZPOOL_CONFI G L2CACHE, &l 2cache, &nl 2cache) == 0);

1421 newdevs = kmem al | oc(nl 2cache * sizeof (void *), KM SLEEP);
1422 } else {

1423 nl 2cache = 0;

1424 newdevs = NULL;

1425 }

1427 ol dvdevs = sav- >sav_vdevs;

1428 ol dnvdevs = sav->sav_count;

1429 sav->sav_vdevs = NULL;

1430 sav->sav_count = O;

1432 /*

1433 * Process new nvlist of vdevs.

1434 */

1435 (i =0; i < nl2cache; i++) {

1436 VERI FY(nvli st _I| ookup_ui nt 64(1 2cache[i], ZPOOL_CONFI G _GUI D,
1437 &gui d) ==0);

1439 newvdevs[il = NULL;

1440 for (j = 0; j < ol dnvdevs; | ++) {

1441 vd = ol dvdevs[j];

1442 if (vd !'= NULL && guid == vd->vdev_guid) {

new usr/src/uts/comon/fs/zfs/spa.c 23 new usr/src/uts/comon/fs/zfs/spa.c
1443 /* 1509 /*
1444 * Retain previous vdev for add/renove ops. 1510 * Reconpute the stashed |ist of |2cache devices, with status
1445 */ 1511 * information this tinme.
1446 newdevs[i] = vd; 1512 */
1447 oI dvdevs[J] = NULL; 1513 VERI FY(nvl i st _renpve(sav->sav_config, ZPOOL_CONFI G L2CACHE,
1448 br eak 1514 DATA_TYPE_NVLI ST_ARRAY) == 0);
1449 }
1450 } 1516 I2cache kmem al | oc(sav->sav_count * sizeof (void *), KM SLEEP);
1517 for (i = 0; i < sav->sav_count; i++)
1452 if (newdevs[i] == NULL) { 1518 | 2cache[i] = vdev_confi g_gener at e(spa,
1453 /* 1519 sav->sav_vdevs[i], B_TRUE, VDEV_CONFI G L2CACHE)
1454 * Create new vdev 1520 VERI FY(nvl i st_add_nvli st _array(sav->sav_config,
1455 */ 1521 ZPOOL_CONFI G L2CACHE, | 2cache, sav->sav_count) == 0);
1456 VERI FY(spa_confi g_parse(spa, &vd, |2cache[i], NULL, O, 1522 out:
1457 VDEV_ALLOC L2CACHE) == 0); 1523 for (i = 0; i < sav->sav_count; i++)
1458 ASSERT(vd != NULL); 1524 nvlist_free(l 2cache[i]);
1459 newdevs[i] = vd; 1525 if (sav->sav_count)
1526 kmem free(l 2cache, sav->sav_count * sizeof (void *));
1461 /* 1527 }
1462 * Commit this vdev as an |2cache device,
1463 * even if it fails to open. 1529 static int
1464 */ 1530 | oad_nvlist(spa_t *spa, uint64_t obj, nvlist_t **val ue)
1465 spa_l 2cache_add(vd); 1531 {
1532 drmu_buf _t *db;
1467 vd- >vdev_top = vd; 1533 char *packed = NULL;
1468 vd- >vdev_aux = sav; 1534 size_t nvsize = 0;
1535 int error;
1470 spa_l 2cache_acti vate(vd); 1536 *val ue = NULL;
1472 if (vdev_open(vd) != 0) 1538 VERI FY(0 == dmu_bonus_hol d(spa- >spa_net a_obj set, obj, FTAG &db));
1473 conti nue; 1539 nvsi ze = *(UI nt64_t *)db->db_data;
1540 drm_buf_r el e(db, FTAG;
1475 (voi d) vdev_validate_aux(vd);
1542 packed = knmem al | oc(nvsi ze, KM SLEEP);
1477 if (!vdev_is_dead(vd)) 1543 error dmu_r ead(spa- >spa_net a_obj set, obj, 0, nvsize, packed,
1478 | 2ar c_add_vdev(spa, vd); 1544 DNU READ) PREFETCH) ;
1479 } 1545 if (error == 0)
1480 } 1546 error = nvlist_unpack(packed, nvsize, value, 0);
1547 kmem f ree(packed, nvsize);
1482 /*
1483 * Purge vdevs that were dropped 1549 return (error);
1484 */ 1550 }
1485 for (i = 0; i < oldnvdevs; i++) {
1486 uint64_t pool ; 1552 /*
1553 * Checks to see if the given vdev could not be opened, in which case we post
1488 vd = ol dvdevs[i]; 1554 * sysevent to notify the autoreplace code that the device has been renoved.
1489 if (vd !'= NULL) { 1555 */
1490 ASSERT(vd- >vdev_i sl 2cache) ; 1556 static void
1557 spa_check_renoved(vdev_t *vd)
1492 if (spa_l 2cache_exi sts(vd->vdev_guid, &pool) && 1558 {
1493 pool != OULL && | 2arc_vdev_present(vd)) 1559 for (int ¢ = 0; ¢ < vd->vdev_children; c++)
1494 | 2arc_renove_vdev(vd); 1560 spa_check_renoved(vd->vdev_child[c]);
1495 vdev_cl ear _st at s(vd);
1496 vdev_free(vd); 1562 if (vd->vdev_ops->vdev_op_| eaf && vdev_is_dead(vd) &&
1497 } 1563 ! vd- >vdev_i shol e)
1498 } 1564 zf s_post _aut or epl ace(vd->vdev_spa, vd);
1565 spa_event _notify(vd->vdev_spa, vd, ESC ZFS VDEV_CHECK);
1500 if (ol dvdevs) 1566 }
1501 kmem free(ol dvdevs, ol dnvdevs * sizeof (void *)); 1567 }
1503 if (sav->sav_config == NULL) 1569 /*
1504 goto out; 1570 */Val idate the current config against the MOS config
1571 *
1506 sav- >sav_vdevs = newdevs; 1572 static bool ean_t
1507 sav->sav_count = (int)nl2cache; 1573 spa_config_valid(spa_t *spa, nvlist_t *config)
1574 {

new usr/src/uts/comon/fs/zfs/spa.c 25

1575
1576

1578

1580
1581

1583

1585
1586
1587
1588
1589
1590
1591
1592

1594
1595]
1596

1598
1599
1600

1602
1603
1604
1605
1606
1607

1609
1610
1611
1612
1613

1615
1616
1617
1618
1619
1620

1622
1623
1624
1625
1626
1627
1628
1629

1631
1632
1633
1634
1635
1636
1637

1639
1640

vdev_t *nrvd, *rvd = spa->spa_root_vdev;
nvlist_t *nv;

VERI FY(nvlist_l ookup_nvlist(config, ZPOO._CONFI G VDEV_TREE, &nv) == 0);

spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER);
VERI FY(spa_confi g_parse(spa, &mwvd, nv, NULL, O, VDEV_ALLOC LOAD) == 0);

ASSERT3U(r vd- >vdev_chil dren, ==, nrvd->vdev_children);

/*

* |f we're doing a normal inport, then build up any additional

* di agnostic information about missing devices in this config.

* W'l pass this up to the user for further processing.

*

/

if (!(spa->spa_inport_flags & ZFS_ | MPORT_M SSING LOG)) {
nvlist_t **child, *nv;
uint64_t idx = 0;

child = knem al | oc(rvd->vdev_children * sizeof (nvlist_t **),
KM _SLEEP) ;
VERI FY(nvlist_alloc(&v, NV_UNI QUE_NAMVE, KM SLEEP) == 0);

for (int ¢ = 0; ¢ < rvd->vdev_children; c++) {
vdev_t *tvd = rvd->vdev_child[c];

vdev_t *mtvd = nrvd->vdev_child[c];
if (tvd->vdev_ops == &dev_m ssing_ops &&
nt vd- >vdev_ops ! = &dev_mi ssing_ops &&

nt vd- >vdev_i sl og)
child[idx++] = vdev_config_generate(spa, ntvd,
B_FALSE, 0);
}

if (idx) {

VERI FY(nvlist_add_nvlist_array(nv,
ZPOOL_CONFI G CHI LDREN, child, idx) == 0);

VERI FY(nvlist_add_nvlist(spa->spa_| oad_i nf o,
ZPOOL_CONFI G_M SSI NG DEVI CES, nv) == 0);

for (int i =0; i <idx; i++)
nvlist_free(child[i]);

}
nvlist_free(nv);
kmem free(child, rvd->vdev_children * sizeof (char **));

}

/*

* Conpare the root vdev tree with the information we have
* fromthe MOS config (nrvd). Check each top-Ilevel vdev

* with the corresponding MOS config top-Ilevel (ntvd).

*

/
for (int ¢ = 0; ¢ < rvd->vdev_children; c++) {

vdev_t *tvd = rvd->vdev_child[c];

vdev_t *nmtvd = nrvd->vdev_child[c];
/*
* Resolve any "m ssing" vdevs in the current configuration.
* |f we find that the MOS config has nore accurate information
* about the top-level vdev then use that vdev instead.
*/
if (tvd->vdev_ops == &vdev_m ssing_ops &&
nt vd- >vdev_ops ! = &vdev_ni ssing_ops) {

if (!(spa->spa_inport_flags & ZFS_| MPORT_M SSI NG _LOG))
conti nue;

new usr/src/uts/comron/fs/zfs/spa.c 26
1642 /*

1643 * Device specific actions.

1644 *

1645 if (mtvd->vdev_islog) {

1646 spa_set _| og_state(spa, SPA LOG CLEAR);
1647 } else {

1648 /*

1649 * XXX - once we have ’'readonly’ pool
1650 * support we should be able to handle
1651 * mssing data devices by transitioning
1652 * the pool to readonly.

1653 *

1654 conti nue;

1655 }

1657 /*

1658 * Swap the missing vdev with the data we were
1659 * able to obtain fromthe MOS config.

1660 */

1661 vdev_renove_child(rvd, tvd);

1662 vdev_renove_chil d(nrvd, ntvd);

1664 vdev_add_chi I d(rvd, ntvd);

1665 vdev_add_chi I d(nrvd, tvd);

1667 spa_config_exit(spa, SCL_ALL, FTAG;

1668 vdev_| oad(nt vd) ;

1669 spa_config_enter(spa, SCL_ALL, FTAG RWMWRITER);
1671 vdev_r eopen(rvd);

1672 } else if (ntvd->vdev_islog) {

1673 /*

1674 * Load the slog device's state fromthe MOS config
1675 * since it’'s possible that the | abel does not
1676 * contain the nbst up-to-date information.
1677 *

1678 vdev_| oad_l og_state(tvd, ntvd);

1679 vdev_r eopen(tvd);

1680 }

1681

1682 vdev_free(nrvd);

1683 spa_config_exit(spa, SCL_ALL, FTAG;

1685 /*

1686 * Ensure we were able to validate the config.

1687 */

1688 return (rvd->vdev_gui d_sum == spa- >spa_uber bl ock. ub_gui d_sun);
1689 }

1691 /*

1692 * Check for missing | og devices

1693 */

1694 static bool ean_t

1695 spa_check_| ogs(spa_t *spa)

1696 {

1697 bool ean_t rv = B_FALSE;

1699 switch (spa->spa_log_state) {

1700 case SPA_LOG M SSI NG

1701 /* need to recheck in case slog has been restored */
1702 case SPA LOG_UNKNOMN:

1703 rv = (dmu_obj set _fi nd(spa->spa_nane, zil_check_| og_chain,
1704 NULL, “DS_FI ND_CHI LDREN) !=0)

1705 if (rv)

1706 spa_set _| og_state(spa, SPA LOG M SSING) ;

new usr/src/uts/comon/fs/zfs/spa.c 27 new usr/src/uts/comon/fs/zfs/spa.c
1707 br eak; 1773 for (int i = 0; i < sav->sav_count; i++)
1708 } 1774 spa_check_renoved(sav->sav_vdevs[i]);
1709 return (rv); 1775 }
1710 }
1777 void
1712 static bool ean_t 1778 spa_claimnotify(zio_t *zio)
1713 spa_passi vate_|l og(spa_t *spa) 1779 {
1714 { 1780 spa_t *spa = zio0->i0_spa;
1715 vdev_t *rvd = spa- >spa root _vdev;
1716 bool ean_t sl og_found = B FALSE; 1782 if (zio->o_error)
1783 return;
1718 ASSERT(spa_confi g_hel d(spa, SCL_ALLOC, RWWRI TER));
1785 mut ex_ent er (&spa- >spa_props_| ock) ; /* any mutex will do */
1720 if (!spa_has_slogs(spa)) 1786 if (spa->spa_claimmax_txg < zio->io _bp->bl k_bi rth)
1721 return (B_FALSE); 1787 spa- >spa_ clai mmax_txg = zi 0->i o_bp->bl k_birth;
1788 nmut ex_exi t (&pa- >spa_props_| ock) ;
1723 for (int ¢ = 0; ¢ < rvd->vdev_children; c++) { 1789 }
1724 vdev_t *tvd = rvd->vdev_child[c];
1725 nmet asl ab_group_t *ng = tvd->vdev_ny; 1791 typedef struct spa_l oad_error {
1792 ui nt 64_t sl e_meta_count;
1727 if (tvd->vdev_islog) { 1793 ui nt 64_t sl e_data_count;
1728 met asT ab_group_passi vat e(ng) ; 1794 } spa_l oad_error_t;
1729 sl og_found = B_TRUE;
1730 } 1796 static void
1731 } 1797 spa_l oad_verify_done(zio_t *zio)
1798 {
1733 return (slog_found); 1799 bl kptr_t *bp = zi o->i o_bp;
1734 } 1800 spa_l oad_error_t *sle = zio->io_private;
1801 dnu_obj ect _type_t type = BP_GET_TYPE(bp);
1736 static void 1802 int error = zio->o_error;
1737 spa_activate_|l og(spa_t *spa)
1738 { 1804 if (error) {
1739 vdev_t *rvd = spa->spa_root_vdev; 1805 if ((BP_GET LEVEL(bp) 1= 0 || DMJ_OT_| S_METADATA(type)) &&
1806 type !'= DMJ_OT_| NTENT_L
1741 ASSERT(spa_config_hel d(spa, SCL_ALLOC, RWWRI TER)); 1807 at omi ¢_add 64(&sl e->s|l e_neta_count, 1);
1808 el se
1743 for (int ¢ = 0; ¢ < rvd->vdev_children; c++) { 1809 at om c_add_64(&sl e->sl e_data_count, 1);
1744 vdev_t *tvd = rvd->vdev_chil d[c] 1810
1745 metasl ab_group_t *nmg = tvd- >vdev_r’rg; 1811 zi o_dat a_buf _free(zio->i o_data, zio->io_size);
1812 }
1747 if (tvd->vdev_islog)
1748 net asl ab_group_acti vate(ng); 1814 /* ARGSUSED*/
1749 } 1815 static int
1750 } 1816 spa_l oad_verify_cb(spa_t *spa, zilog_t *zilog, const bl kptr t *bp,
1817 const zbookmark_t *zb, const dnode_phys t *dnp, void *arg)
1752 int 1818 {
1753 spa_of fline_l og(spa_t *spa) 1819 if (bp !'= NULL) {
1754 { 1820 zio_t *rlo:arg
1755 int error; 1821 size_t size = BP_GET_PSI ZE(bp);
1822 void *data = zi o_data_buf_all oc(si ze);
1757 error = dnu_obj set _find(spa_nane(spa), zil_vdev_offline,
1758 NULL DS FI ND_CHI LDREN) ; 1824 zio_nowai t (zio_read(rio, spa, bp, data, size,
1759 if (error ==0) { 1825 spa_|l oad_verify_ done rio->o_private, ZIO PRI ORI TY_SCRUB,
1760 /* 1826 ZI O_FLAG_SPECULATI VE | ZI O FLAG CANFAIL |
1761 * We successfully offlined the | og device, sync out the 1827 ZI O_FLAG SCRUB | ZI O FLAG RAW zb));
1762 * current txg so that the "stubby" block can be renoved 1828 }
1763 * by zil_sync(). 1829 return (0);
1764 */ 1830 }
1765 t xg_wai t _synced(spa- >spa_dsl _pool, 0);
1766 } 1832 static int
1767 return (error); 1833 spa_l oad_verify(spa_t *spa)
1768 } 1834 {
1835 zio_t *rio;
1770 static void 1836 spa_|l oad_error_t sle = { 0 };
1771 spa_aux_check_renoved(spa_aux_vdev_t *sav) 1837 zpool _rewi nd_policy_t policy;
1772 { 1838 bool ean_t verify_ok = B_FALSE;

new usr/src/uts/comon/fs/zfs/spa.c

1839
1841

1843
1844

1846
1847

1849
1850

1852

1854
1855

1857
1858
1859

1861
1862
1863

1865
1866
1867
1868
1869
1870
1871
1872
1873
1874

1876
1877
1878
1879
1880

1882
1883 }

1885 /
1886
1887

int error;

zpool _get _rew nd_pol i cy(spa->spa_config, &policy);

if (policy.zrp_request & ZPOOL_NEVER_REW ND)
return (0);

rio = zio_root(spa, NULL, &sle,
ZIO FLAG _CANFAI L | ZICLFLAGLSPECULATIVE;

error = traverse_pool (spa, spa->spa_verify_m n_txg,
TRAVERSE_PRE | TRAVERSE PREFETCH, spa_load_verify_cb, rio);
(void) zio_wait(rio);

spa->spa_|l oad_neta_errors = sle.sle_neta_count;
spa->spa_| oad_data_errors = sle.sle_data_count;

if (lerror & sle.sle_nmeta_count <= policy.zrp_maxneta &&
sle.sle_data_count <= policy.zrp_maxdata) {
int64_t Toss = 0;

verify_ok = B_TRUE;
spa->spa_|l oad_t xg = spa- >spa_uber bl ock. ub_t xg;
spa- >spa_l oad_t xg_ts = spa- >spa_uber bl ock. ub_ti mest anp;

| 0ss = spa->spa_| ast_ubsync_txg_ts - spa->spa_|l oad_txg_ts;
VERI FY(nvl i st _add_ui nt 64(spa- >spa_| oad_i nf o,
ZPOOL_CONFI G_LOAD TI ME, spa->spa_| oad_txg_ts) == 0);
VERI FY(nvl i st_add_i nt 64(spa- >spa_| oad_i nf o,
ZPOOL_CONFI G REW ND_TI ME, |o0ss) ==
VERI FY(nvli st _add_ui nt 64(spa- >spa_| oad_i nfo

ZPOOL_CONFI G_LOAD DATA ERRCRS, sle.sle_ dat a _count) ==

} else {

spa->spa_| oad_nmax_t xg = spa- >spa_uber bl ock. ub_t xg;
}
if (error) {

if (error = ENXIO && error != EIO

error = SET_ERROR(EI O ;

return (error);

}

return (verify ok 2 0 : EIO;
*

* Find a value in the pool

*/

props object.

1888 static void

1889 spa_prop_find(spa_t *spa,

zpool _prop_t prop, uint64_t *val)

29

0);

1890 {

1891 (voi d) zap_l ookup(spa->spa_neta_obj set, spa->spa_pool _props_obj ect
1892 zpool _prop_to_nane(prop), sizeof (uinté64_t), 1, val)

1893 }

1895 /*

1896 * Find a value in the pool directory object

1897 */

1898 static int

1899 spa_dir_prop(spa_t *spa, const char *nane, uint64_t *val)

1900 {

1901 return (zap_l ookup(spa->spa_neta_objset, DMJ_POOL_DI RECTORY_OBJECT.
1902 nanme, sizeof (uint64_t), 1, val));

1903 }

new usr/src/uts/comon/fs/zfs/spa.c 30

1905 static int

1906 spa_vdev_err(vdev_t

1907
1908
1909
1910

1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936

1938
1939

1941
1942
1943
1944

1946

1948
1949
1950
1951
1952

1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965

1967
1968

1970

{

I T

*/

*vdev, vdev_aux_t aux, int err)

vdev_set _stat e(vdev,
return (err);

B_TRUE, VDEV_STATE CANT CPEN, aux);

Fix up config after a partly-conpleted split. This is done with the
ZPOOL_CONFI G SPLIT nvlist. Both the splitting pool and the split-off
pool have that entry in their config, but only the splitting one contains
a list of all the guids of the vdevs that are being split off.

This function determnes what to do with that
all the disks to the pool, or conplete the splitting process. To attenpt
the rejoin, each disk that is offlined is marked online again, and

we do a reopen() call. If the vdev |abel for every disk that was

marked online indicates it was successfully split off (VDEV_AUX SPLIT_POOL)
then we call vdev_split() on each disk, and conplete the split.

list: either rejoin

QG herwi se we | eave the config alone, with all

the original pool.

the vdevs in place in

static void

spa_try_repair(spa_t *spa,
{

nvlist_t *config)

uint_t extracted;
uint64_t *glist;
uint_t i, gcount;
nvlist_t *nvl;
vdev_t **vd;
bool ean_t attenpt_reopen;
if (nvlist_lookup_nvlist(config,
return;

ZPOOL_CONFI G SPLIT, &nvl) != 0)

/* check that the config is conplete */

if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFI G SPLIT_LI ST,
&glist, &gcount) != 0)
return;

vd = knmem zal | oc(gcount * sizeof (vdev_t *), KM SLEEP);

/* attenpt to online all the vdevs & validate */

attenpt _reopen = B _TRUE
for (1 =0; i < gcount; i++) {
if (glist[i] == 0) /* vdev is hole */
cont i nue;
vd[i] = spa_l ookup_by_guid(spa, glist[i], B _FALSE);
if (vd[i] == NULL) {
/*
* Don’'t bother attenpting to reopen the disks;
* just do the split.
*/
attenpt _reopen = B_FALSE;
} else {
/* attenpt to re-online it */
vd[i]->vdev_offline = B_FALSE;
}
}
if (attenpt_reopen)

vdev_r eopen(spa- >spa_r oot _vdev);

/* check each device to see what state it’s in */

new usr/src/uts/comon/fs/zfs/spa.c

1971
1972
1973
1974
1975
1976
1977

1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989

1991
1992

1994
1995
1996
1997
1998
1999
2000
2001
2002
2003

2005
2006

2008
2009
2010

2012
2013
2014
2015
2016
2017
2018

2020
2021

2023
2024
2025
2026
2027

2029
2030
2031
2032
2033

2035
2036

for (extracted = 0, i = 0; i < gcount; i++) {
if (vd[i] !'= NULL &&

vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLI T_POOL)

br eak;
++extract ed;

}

/*
* |f every disk has been noved to the new pool, or if we never
* even attenpted to | ook at them then we split themoff for

* good.
*
if (lattenpt_reopen || gcount == extracted) {
for (i = 0; I < gcount; i++)
if (vd[i] !'= NULL)
vdev_split(vd[i]);
vdev_r eopen(spa- >spa_r oot _vdev);
}
kmem free(vd, gcount * sizeof (vdev_t *));
}
static int

spa_|l oad(spa_t *spa, spa_load_state_t state, spa_inport_type_t type,
bool ean_t nosconfi g)
{

nvlist_t *config = spa->spa_config;
char *ereport = FM EREPORT_ZFS_POQL;
char *comment;

int error;

uint64_t pool _guid;

nvlist_t *nvl;

if (nvlist_|ookup_uint64(config, ZPOOL_CONFI G POOL_GUI D, &pool _guid))

return (SET_ERROR(EI NVAL));
ASSERT(spa- >spa_conment == NULL);

if (nvlist_|lookup_string(config, ZPOOL_CONFI G COMMENT, &conment) == 0)

spa- >spa_coment = spa_strdup(conment);

/*

* Versioning wasn't explicitly added to the |abel until later, so if

* it’s not present treat it as the initial version.
*
if (nvlist_|lookup_uint64(config, ZPOOL_CONFI G VERSI ON,
&spa- >spa_ubsync. ub_version) !'= 0
spa- >spa_ubsync. ub_versi on = SPA VERSI ON_| NI Tl AL;

(void) nvlist_|ookup_uint64(config, ZPOOL_CONFI G POOL_TXG
&spa->spa_config_txg);

if ((state == SPA_LOAD | MPORT || state == SPA LOAD TRYI MPORT) &&
spa_gui d_exi st s(pool _guid, 0))
error = SET_ERROR(EEXI ST) ;
} else {
spa- >spa_confi g_gui d = pool _guid;

if (nvlist_lookup_nvlist(config, ZPOOL_CONFI G SPLIT,
&nvl) == 0)
VERI FY(nvlist_dup(nvl, &spa->spa_config_splitting,
KM SLEEP) == 0);
}

nvlist_free(spa->spa_|l oad_i nfo);
spa->spa_load_info = fnvlist_alloc();

31

new usr/src/uts/comron/fs/zfs/spa.c 32
2038 get hresti me(&spa- >spa_| oaded_ts);

2039 error = spa_|l oad_i npl (spa, pool _guid, config, state, type,
2040 nosconfig, &ereport);

2041 }

2043 spa->spa_m nref = refcount_count (&spa->spa_refcount);

2044 if (error) {

2045 if (error !'= EEXI ST)

2046 spa- >spa_| oaded_ts.tv_sec = O;

2047 spa- >spa_| oaded_ts.tv_nsec = O;

2048 }

2049 if (error !'= EBADF) {

2050 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2051 }

2052 }

2053 spa->spa_|l oad_state = error ? SPA_LOAD ERROR : SPA LOAD NONE;
2054 spa- >spa_ena = O;

2056 return (error);

2057 }

2059 /*

2060 * Load an existing storage pool, using the pool’s builtin spa_config as a
2061 */source of configuration information.

2062 *

2063 static int
2064 spa_|l oad_i npl (spa_t *spa, uint64_t pool _guid, nvlist_t *config,

2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077

2079
2080
2081
2082
2083
2084

2086
2088

2090
2091

2093
2094

2096
2097
2098
2099
2100

2102

{

spa_load_state t state, spa_inport_type_t type, boolean_t nosconfig,
char **ereport)

int error = 0;

nvlist_t *nvroot = NULL;

nvlist_t *label;

vdev_t *rvd;

uber bl ock_t *ub = &spa->spa_uber bl ock;

uint64_t children, config_cache_txg = spa->spa_config_txg;

int orig_nopde = spa->spa_node;

int parse;

uint64_t obj;

bool ean_t m ssing_feat_wite = B_FALSE;

/*

* If this is an untrusted config, access the pool in read-only node.
*/Thi s prevents things like resilvering recently renoved devices.
*

if (!nmosconfig)
spa- >spa_node = FREAD,

ASSERT(MUTEX_HELD(&spa_nanespace_| ock));
spa->spa_|l oad_state = state;

if (nvlist_lookup_nvlist(config, ZPOOL_CONFI G VDEV_TREE, &nvroot))
return (SET_ERROR(EINVAL));

parse = (type == SPA_| MPORT_EXI STI NG ?
VDEV_ALLOC LOAD : VDEV_ALLOC SPLIT);

/*
* Create "The Godfather" zio to hold all async |Gs
*/
spa- >spa_async_zi o_root = zio_root(spa, NULL, NULL,
ZI O FLAG CANFATL | ZI O FLAG SPECULATI VE | ZI O FLAG GODFATHER) ;

| *

new usr/src/uts/comon/fs/zfs/spa.c

2103
2104
2105
2106
2107
2108
2109

2111
2112

2114

2116
2117
2118

2120
2121
2122
2123
2124
2125
2126
2127

2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145

2147
2148

2150
2151
2152

2154
2155
2156
2157

2159
2160
2161
2162
2163
2164
2165

2167
2168

* Parse the configuration into a vdev tree. W explicitly set the
* value that will be returned by spa_version() since parsing the

* configuration requires knowi ng the version nunber.

*/

spa_config_enter(spa, SCL_ALL, FTAG RWMWRI TER);
error = spa_config_parse(spa, &vd, nvroot, NULL, 0, parse);
spa_config_exit(spa, SCL_ALL, FTAG;

if (error 1= 0)
return (error);

ASSERT(spa- >spa_r oot _vdev == rvd);

if (type !'= SPA | MPORT_ASSEMBLE) {
ASSERT('spa_gui d(spa) == pool _guid);
}

/*
* Try to open all vdevs, |oading each |label in the process.
*/

spa_config_enter(spa, SCL_ALL, FTAG RWMWRI TER);
error = vdev_open(rvd);
spa_config_exit(spa, SCL_ALL, FTAG;
if (error 1=0)
return (error);

We need to validate the vdev | abels against the configuration that
we have in hand, which is dependent on the setting of nosconfig. If
nosconfig is true then we're validating the vdev | abel s based on
that config. GOherwi se, we're validating against the cached config
(zpool . cache) that was read when we | oaded the zfs nodule, and then
later we will recursively call spa_load() and validate agai nst

the vdev config.

* Ok k k kb kb F ok F

If we're assenbling a new pool that’s been split off from an
exi sting pool, the |abels haven't yet been updated so we skip
* validation for now.

*/

if (type !'= SPA | MPORT ASSEMBLE) {

spa_ conflg enter(spa, SCL_ALL, FTAG RWWRI TER);

error = vdev_validate(rvd, mosconf i 9);
spa_config_exit(spa, SCL_ALL, FTAG;

if (error 1= 0)
return (error);

if (rvd->vdev_state <= VDEV_STATE CANT_OPEN)
return (SET_ERROR(ENXI O));

}

*

* Find the best uberbl ock.

*/
vdev_uber bl ock_| oad(rvd, ub, & abel);
/*

33

* |f we weren’t able to find a single valid uberblock, return failure.

*/
if (ub->ub_txg == 0) {

nvli st free(l abel) ;

return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
}

/*
* |f the pool has an unsupported version we can’t open it.

new usr/src/uts/comon/fs/zfs/spa.c

2169
2170
2171
2172
2173

2175
2176

2178
2179
2180
2181
2182
2183
2184
2185
2186
2187

2189
2190
2191
2192
2193
2194
2195

2197

2199
2200
2201
2202
2203
2204
2205

2207
2208

2210
2211
2212
2213
2214
2215
2216
2217

2219
2220
2221
2222
2223
2224
2225

2227
2228

2230
2231
2232
2233
2234

34

*
if (!SPA VERSION | S SUPPORTED(ub->ub_version)) {
nvlist_free(label);
return (spa_vdev_err(rvd, VDEV_AUX VERSI ON_NEWER, ENOTSUP));
}

if (ub->ub_version >= SPA VERSI ON _FEATURES) {
nvlist_t *features;

/*
* If we weren't able to find what's necessary for reading the
* MOS in the label, return failure.

*

/

if (label == NULL || nvlist_Iookup_nvlist(label,

ZPOOL_CONFI G_FEATURES FOR_READ, &f eat ures) I= 0) {
nvlist_free(label);
return (spa_vdev err(rvd VDEV_AUX_CORRUPT_DATA,
ENXI O));
}
/*

* Update our in-core representation with the definitive val ues
* fromthe | abel.

*

/

nvlist_free(spa->spa_| abel _features);

VERI FY(nvlist_dup(features, &spa->spa_|l abel _features, 0) == 0);

}
nvlist_free(label);

/
Look through entries in the label nvlist's features_for_read. If
there is a feature listed there which we don’t understand then we
cannot open a pool .

R

if (ub->ub_version >= SPA VERSI ON_FEATURES) ({
nvlist_t *unsup_feat;

VERI FY(nvlist_all oc(&unsup_feat, NV_UNI QUE_NAME, KM SLEEP) ==

for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_| abel _features,
NULL); nvp != NULL;
nvp = nvlist_next_nvpair(spa->spa_| abel _features, nvp)) {
if (!zfeature_is_supported(nvpair_nanme(nvp))) {
VERI FY(nvl i st _add_stri ng(unsup feat,
nvpai r_name(nvp), "") 0);

}

if (!nvlist_enpty(unsup_feat))
VERI FY(nvlist_add_nvli st (spa->spa_| oad_i nfo,
ZPOOL_CONFI G_UNSUP_FEAT, unsup_feat) == 0);
nvlist_free(unsup_feat);
return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
ENOTSUP)) ;
}

nvlist_free(unsup_feat);

If the vdev guid sumdoesn't match the uberbl ock, we have an
inconplete configuration. W first check to see if the pool

is aware of the conplete config (i.e ZPOOL_CONFI G VDEV_CHI LDREN) .
If it is, defer the vdev_guid_sumcheck till later so we

* Ok k ok ¥

new usr/src/uts/comon/fs/zfs/spa.c 35

2235
2236
2237
2238
2239
2240

2242
2243
2244
2245
2246
2247
2248

2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260

2262
2263
2264
2265

2267
2268

2270
2271
2272

2274
2275
2276
2277

2279
2280
2281
2282

2284
2285
2286
2287

2289
2290

2292
2293
2294
2295

2297
2298
2299
2300

* can handl e m ssing vdevs.
S

if (nvlist_lookup_uint64(config, ZPOOL_CONFI G VDEV_CHI LDREN,
&children) != 0 & nosconfig && type != SPA | MPORT_ASSEMBLE &&
rvd- >vdev_gui d_sum ! = ub- >ub_gui d_sum
return (spa_vdev_err(rvd, VDEV_AUX BAD GUI D SUM ENXIO));

if (type !'= SPA_| MPORT_ASSEMBLE && spa->spa_config_splitting) {
spa_config_enter(spa, SCL_ALL, FTAG RWWR TER);
spa_try_repair(spa, config);
spa_config_exit(spa, SCL_ALL, FTAG) ;
nvlist_free(spa->spa_config_splitting);
spa- >spa_config_splitting = NULL;

}

/*
* Initialize internal SPA structures.
S

spa- >spa_state = POOL_STATE ACTI VE;
spa- >spa_ubsync = spa- >spa_uber bl ock;
spa->spa_verify_mn_txg = spa->spa_extrenme_rew nd ?

TXGINTIAL - 1 : spa_last_synced_txg(spa) - TXG DEFER S| ZE - 1;
spa->spa_first_txg = spa->spa_|l ast_ubsync_txg ?

spa->spa_l ast _ubsync_txg : spa_l ast_synced_t xg(spa) + 1;
spa->spa_cl ai m max_t xg = spa->spa_first_txg;
spa- >spa_prev_software_versi on = ub->ub_software_version;

error = dsl_pool _init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
if (error)

return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);
spa- >spa_met a_obj set = spa- >spa_dsl| _pool - >dp_net a_obj set ;

if (spa_dir_prop(spa, DMJ_POOL_CONFI G &spa->spa_config_object) != 0)
return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);

if (spa_version(spa) >= SPA VERSI ON_FEATURES) ({
bool ean_t m ssing_feat_read = B_FALSE;
nvlist_t *unsup_feat, *enabl ed_feat;

if (spa_dir_prop(spa, DMJ POOL_FEATURES FOR READ,
&spa->spa_feat _for_read_obj) !'= 0)
return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);

}
if (spa_dir_prop(spa, DMJ POOL_FEATURES FOR WRI TE,
&spa->spa_feat_for_wite_obj) != 0)
return (spa_vdev_err(rvd, VDEV_AUX_ CORRUPT_DATA, EIO);
}

if (spa_dir_prop(spa, DMJ_POOL_FEATURE_DESCRI PTI ONS,
&spa- >spa_f eat_desc_obj) != 0)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO);
}

enabl ed feat

= fnvlist_alloc();
unsup_feat = fnvl

ist_alloc();

if (!feature_is_supported(spa->spa_neta_objset,
spa- >spa_feat _for_read_obj, spa->spa_feat_desc_obj,
unsup_feat, enabled_feat))
m ssi ng feat _read = B_TRUE;

if (spa_writeable(spa) || state == SPA_LOAD_TRYI MPORT) {
if (!feature_is supported(spa >spa_net a_obj set,
spa->spa_feat_for_wite_obj, spa->spa_feat_desc_obj,
unsup_feat, enabled feat)) {

new usr/src/uts/comron/fs/zfs/spa.c 36
2301 m ssing_feat_wite = B_TRUE

2302 }

2303 }

2305 fnvlist_add_nvlist(spa->spa_|l oad_info,

2306 ZPOOL_CONFI G_ENABLED_FEAT, enabl ed_feat);

2308 if (!nvlist_enpty(unsup_feat)) {

2309 fnvlist_add_nvlist(spa->spa_| oad_i nfo,

2310 ZPOOL_CONFI G_UNSUP_FEAT, unsup_ feat)

2311 }

2313 fnvlist_free(enabl ed_feat);

2314 fnvlist_free(unsup_feat);

2316 if (!'mssing_feat_read)

2317 fnviist_add_bool ean(spa->spa_| oad_i nf o,

2318 ZPOOL_CONFI G_CAN_RDONLY) ;

2319 }

2321 /*

2322 * If the state is SPA LOAD TRYI MPORT, our objective is

2323 * twofold: to deternmine whether the pool is available for
2324 * inmport in read-wite node and (if it is not) whether the
2325 * pool is available for import in read-only mode. If the pool
2326 * |s available for inport in read-wite node, it is displayed
2327 * as available in userland; if it is not available for Inport
2328 *in read-only node, it is displayed as unavailable in

2329 * userland. If the pool is available for inport in read-only
2330 * node but not read-write node, it is displayed as unavail abl e
2331 * in userland with a special note that the pool is actually
2332 * available for open in read-only node.

2333 *

2334 * As a result, if the state is SPA_LOAD_TRYI MPORT and we are
2335 * mssing a feature for wite, we nust first determ ne whether
2336 * the pool can be opened read-only before returning to

2337 * userland in order to know whether to display the

2338 * abovenentioned note.

2339 */

2340 if (mssing_feat_read || (mssing_feat_wite &&

2341 spa_writeabl e(spa)))

2342 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,

2343 ENOTSUP)) ;

2344 }

2345 }

2347 spa- >spa_i s_initializing = B_TRUE

2348 error dsl _pool _open(spa->spa_ dsl _pool);

2349 spa- >spa is_initializing = B_FALSE;

2350 if (error = 0)

2351 return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);

2353 if (!'mosconfig) {

2354 uint 64_t hostid;

2355 nvlist_t *policy = NULL, *nvconfig;

2357 if (load_nvlist(spa, spa->spa_config_object, &vconfig) != 0)
2358 return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);
2360 if (!spa_is_root(spa) && nvlist_| ookup_uint64(nvconfi g,

2361 ZPOOL_CONFI G HOSTI D, &hostid) == 0) {

2362 char *host nane;

2363 unsi gned | ong nyhost id=

2365 VERI FY(nvli st _| ookup_string(nvconfig,

2366 ZPOOL_CONFI G_HOSTNAME, &host nane) == 0);

new usr/src/uts/comon/fs/zfs/spa.c 37 new usr/src/uts/comon/fs/zfs/spa.c 38
2433 return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);
2368 #ifdef _KERNEL
2369 nyhostid = zone_get_hosti d(NULL); 2435 I*
2370 #else /* _KERNEL */ 2436 * Load the history object. If we have an ol der pool, this
2371 /* 2437 * will not be present.
2372 * W're enulating the system s hostid in userland, so 2438 */
2373 * we can’t use zone_get_hostid(). 2439 error = spa_dir_prop(spa, DMJ POOL_HI STORY, &spa->spa_history);
2374 */ 2440 if (error '=0 &% error != ENCENT)
2375 (void) ddi_strtoul (hw_serial, NULL, 10, &nyhostid); 2441 return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);
2376 #endif [/* _KERNEL */
2377 if (hostid !'= 0 & nyhostid != 0 && 2443 I*
2378 hostid != nmyhostid) { 2444 * |f we're assenbling the pool fromthe split-off vdevs of
2379 nvlist_free(nvconfig); 2445 * an existing pool, we don't want to attach the spares & cache
2380 cmm_err (CE_WARN, "pool ’'9%’ could not be " 2446 * devi ces.
2381 "loaded as it was | ast accessed by " 2447 */
2382 "anot her system (host: % hostid: Ox%x). "
2383 "See: http://illunos.org/ msg/ ZFS- 8000- EY", 2449 /*
2384 spa_nane(spa), hostnane, 2450 * Load any hot spares for this pool.
2385 (unsi gned | ong) hostid); 2451 */
2386 return (SET_ERROR(EBADF)); 2452 error = spa_dir_prop(spa, DMJ POOL_SPARES, &spa->spa_spares.sav_object);
2387 } 2453 if (error =0 &% error != ENCENT
2388 } 2454 return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIOQ);
2389 1f (nvlist_|lookup_nvlist(spa->spa_config, 2455 if (error == 0 && type != SPA | MPORT_ASSEMBLE)
2390 ZPOOL_REW ND_PQLI CY, &policy) == 0) 2456 ASSERT(spa_version(spa) >= SPA_VERS|I ON_SPARES) ;
2391 VERI FY(nvlist_add_nvlist(nvconfig, 2457 if (load_nvlist(spa, spa->spa_spares.sav_object,
2392 ZPOOL_REW ND_POLI CY, policy) == 0); 2458 &spa- >spa_spares.sav_config) !'= 0
2459 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO);
2394 spa_config_set(spa, nvconfig);
2395 spa_unl oad(spa) ; 2461 spa_config_enter(spa, SCL_ALL, FTAG RWMWR TER);
2396 spa_deacti vat e(spa); 2462 spa_| oad_spar es(spa);
2397 spa_activate(spa, orig_node); 2463 spa_config_exit(spa, SCL_ALL, FTAG;
2464 } else if (error ==
2399 return (spa_l oad(spa, state, SPA_| MPORT_EXI STING B_TRUE)); 2465 spa- >spa_spares. sav_sync = B_TRUE;
2400 } 2466 }
2402 if (spa_dir_prop(spa, DMJ_POOL_SYNC BPOBJ, &obj) !'= 0) 2468 /*
2403 return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO); 2469 * Load any |level 2 ARC devices for this pool.
2404 error = bpobj _open(&spa->spa_deferred_bpobj, spa->spa_neta_objset, obj); 2470 */
2405 if (error 1= 0) 2471 error = spa_dir_prop(spa, DMJ POOL_L2CACHE,
2406 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIOQ); 2472 &spa- >spa_| 2cache. sav_obj ect) ;
2473 if (error =0 &% error != ENCENT)
2408 /* 2474 return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);
2409 * Load the bit that tells us to use the new accounting function 2475 if (error == 0 && type ! = SPA_| MPORT_ASSEMBLE)
2410 * (raid-z deflation). |f we have an older pool, this will not 2476 ASSERT(spa_ver si on(spa) >= SPA VERS| ON_L2CACHE) ;
2411 * be present. 2477 if (load_nvlist(spa, spa->spa_|l 2cache. sav_obj ect,
2412 */ 2478 &spa- >spa_| 2cache. sav_config) != 0)
2413 error = spa_dir_prop(spa, DMJ POO._DEFLATE, &spa->spa_deflate); 2479 return (spa_vdev_err(rvd, VDEV_AUX_ CORRUPT_DATA, EIO);
2414 if (error 1= 0 & error != ENCENT)
2415 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO); 2481 spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER);
2482 spa_| oad_| 2cache(spa);
2417 error = spa_dir_prop(spa, DMJ_POOL_CREATI ON_VERSI ON, 2483 spa_config_exit(spa, SCL_ALL, FTAG;
2418 &spa- >spa_creation_version); 2484 } else if (error == 0) {
2419 if (error =0 &% error != ENCENT) 2485 spa- >spa_| 2cache. sav_sync = B_TRUE;
2420 return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO); 2486 }
2422 /* 2488 spa- >spa_del egati on = zpool _prop_defaul t _numeri c(ZPOOL_PROP_DELEGATI ON) ;
2423 * Load the persistent error log. |f we have an ol der pool, this wll
2424 * not be present. 2490 error = spa_dir_prop(spa, DMJ POOL_PROPS, &spa->spa_pool _props_object);
2425 */ 2491 if (error & error != ENCENT)
2426 error = spa_dir_prop(spa, DMJ POOL_ERRLOG LAST, &spa->spa_errlog_last); 2492 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIQ);
2427 if (error 1= 0 & error != ENCENT)
2428 return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO); 2494 if (error == 0) {
2495 ui nt64_t autorepl ace;
2430 error = spa_dir_prop(spa, DMJ POOL_ERRLOG SCRUB,
2431 &spa- >spa_errl og_scrub); 2497 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2432 if (error =0 &% error != ENCENT) 2498 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autorepl ace);

new usr/src/uts/comon/fs/zfs/spa.c 39

2499
2500
2501
2502
2503

2505
2506

2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526

2528
2529
2530
2531

2533
2534
2535
2536
2537
2538

2540
2541
2542
2543
2544
2545

2547

2549
2550
2551
2552
2553
2554
2555
2556
2557

2559
2560

2562
2563
2564

spa_prop_find(spa, ZPOOL_PROP_DELEGATI ON, &spa->spa_del egati on);
spa_prop_find(spa, ZPOOL_PROP_FAI LUREMODE, &spa->spa_fai | node);
spa_prop_find(spa, ZPOO._PROP_AUTCEXPAND, &spa->spa_aut oexpand)
spa_prop_find(spa, ZPOOL_PROP_DEDUPDI TTO,

&spa- >spa_ dedup ditto);

spa- >spa_aut orepl ace = (autoreplace != 0);
}
/*
* |f the 'autoreplace’ property is set, then post a resource notifying
* the ZFS DE that it should not issue any faults for unopenabl e
*

devices. W also iterate over the vdevs, and post a sysevent for any
* unopenabl e vdevs so that the normal autoreplace handl er can take
*
*/over.
if (spa->spa_autoreplace & state != SPA LOAD TRYI MPORT) {
spa_check_r enoved(spa- >spa_r oot _vdev) ;
/*
* For the inport case, this is done in spa_inport(), because
* at this point we're using the spare definitions from
* the MOS config, not necessarily fromthe userland config.
*/
if (state != SPA_LOAD | MPORT)
spa_aux_check_r enoved(&pa- >spa_spar es) ;
spa_aux_check_r enoved(&pa- >spa_| anche)

}

/*
* Load the vdev state for all toplevel vdevs.

*

vdev_| oad(rvd);

/*
* Propagate the | eaf DILs we just |oaded all the way up the tree.
*/

spa_config_enter(spa, SCL_ALL, FTAG RWMWRI TER);
vdev_dtl reassess(rvd, 0, 0, B FALSE);
spa_config_exit(spa, SCL ALL FTAG) ;

/*
* Load the DDTs (dedup tables).
*
/
error = ddt_| oad(spa);
if (error = 0)
return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);

spa_updat e_dspace(spa) ;

/*
* Validate the config, using the MOS config to fill in any
* information which mght be missing. If we fail to validate
* the config then declare the pool unfit for use. If we're
* assenbling a pool froma split, the log is not transferred
* over.
*
/

if (type !'= SPA | MPORT_ASSEMBLE) {
nvlist_t *nvconfig;

if (load_nvlist(spa, spa->spa_config_object, &vconfig) != 0)
return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);

if (!spa_config_valid(spa, nvconfig)) {
nvlist_free(nvconfig);
return (spa_vdev_err(rvd, VDEV_AUX_BAD GUI D_SUM

new usr/src/uts/comron/fs/zfs/spa.c 40
2565 ENXI O) ;

2566 }

2567 nvlist_free(nvconfig);

2569 /*

2570 * Now that we’ve validated the config, check the state of the
2571 * root vdev. |If it can't be opened, it indicates one or
2572 * nore toplevel vdevs are faulted.

2573 *

2574 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)

2575 return (SET_ERROR(ENXI O));

2577 if (spa_ check Iogs(spa)) {

2578 *ereport = FM EREPORT_ZFS LOG REPLAY;

2579 return (spa vdev_err(rvd, VDEV_AUX BAD LOG ENXIO));
2580 }

2581 }

2583 if (mssing_feat_wite) {

2584 ASSERT(state == SPA_LOAD_TRYI MPORT) ;

2586 /*

2587 * At this point, we know that we can open the pool in
2588 * read-only node but not read-wite node. W& now have enough
2589 * information and can return to userland.

2590 */

2591 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2592 }

2594 /*

2595 * W' ve successfully opened the pool, verify that we’re ready
2596 * to start pushing transactions.

2597 *

2598 if (state != SPA_LOAD_TRYI MPORT) ({

2599 if (error = spa_|l oad_verify(spa))

2600 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2601 error));

2602 }

2604 if (spa_witeabl e(spa) & (state == SPA LOAD RECOVER | |

2605 spa- >spa_| oad_max_t xg == Ul NT64_MAX)) {

2606 dmu_tx_t *tx;

2607 int need_update = B_FALSE;

2609 ASSERT(state ! = SPA LOAD TRYI MPORT) ;

2611 /*

2612 * Claimlog blocks that haven’'t been committed yet.

2613 * This must all happen in a single txg.

2614 * Note: spa_claimmax_txg is updated by spa_claimnotify(),
2615 * invoked fromzil _claimlog_block()'s i/o done call back.
2616 * Price of rollback is that we abandon the | og.

2617 */

2618 spa- >spa_cl ai m ng = B_TRUE;

2620 tx = dnu_t x_creat e_assi gned(spa_get _dsl (spa),

2621 spa_first_txg(spa));

2622 (voi d) dnu_objset _find(spa_nane(spa),

2623 zil _claim tx, DS_FIND_CHI LDREN);

2624 drmu_t x_commi t (tx);

2626 spa->spa_cl ai m ng = B_FALSE;

2628 spa_set _| og_st at e(spa SPA_LOG_GOOD) ;

2629 spa- >spa_sync_on = B_TRUE;

2630 txg_sync_start (spa- >spa_ds| _pool);

new usr/src/uts/comon/fs/zfs/spa.c

2632 /*

2633 * Wait for all claims to sync. W sync up to the highest
2634 * claimed log block birth time so that clained |og bl ocks
2635 * don’'t appear to be fromthe future. spa_claimnmax_txg
2636 * will have been set for us by either zil_check_|og_chain()
2637 * (invoked from spa_check_l ogs()) or zil_clain() above.
2638 *

2639 t xg_wai t _synced(spa- >spa_dsl _pool, spa->spa_clai m max_t xg);
2641 /*

2642 * |f the config cache is stale, or we have uninitialized
2643 * netasl abs (see spa_vdev_add()), then update the config.
2644 *

2645 * If this is a verbatiminport, trust the current

2646 * in-core spa_config and update the di sk |abels.

2647 *

2648 if (config_cache_txg != spa->spa_config_txg ||

2649 state == SPA_LOAD | MPORT |

2650 state == SPA_LOAD RECOVER | |

2651 (spa->spa_inport_flags & ZFS_| MPORT_VERBATI M)

2652 need_update = B_TRUE;

2654 for (int ¢ = 0; c < rvd->vdev_children; c++)

2655 if (rvd->vdev_child[c]->vdev_ns_array == 0)

2656 need_update = B_TRUE;

2658 /*

2659 * Update the config cache asychronously in case we're the
2660 * root pool, in which case the config cache isn't witable yet.
2661 */

2662 if (need_update)

2663 spa_async_request (spa, SPA_ASYNC_CONFI G_UPDATE) ;
2665 /*

2666 * Check all DTLs to see if anything needs resilvering.
2667 i

2668 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&

2669 vdev_resilver_needed(rvd, NULL, NULL))

2670 spa_async_request (spa, SPA_ASYNC RESI LVER);

2672 /*

2673 * Log the fact that we booted up (so that we can detect if
2674 * we rebooted in the middle of an operation).

2675 *

2676 spa_hi story_|l og_version(spa, "open");

2678 /*

2679 * Del ete any inconsistent datasets.

2680 */

2681 (voi d) dnu_objset_find(spa_nane(spa),

2682 dsl _destroy_i nconsi stent, NULL, DS_FI ND_CHI LDREN);
2684 /*

2685 * Clean up any stale tenporary dataset userrefs.

2686 *

2687 dsl _pool _cl ean_t np_userref s(spa- >spa_dsl _pool) ;

2688 }

2690 return (0);

2691

2693 static int

2694 spa_load_retry(spa_t *spa, spa_load_state_t state, int nosconfig)

2695 {

2696 int node = spa->spa_node;

new usr/src/uts/comon/fs/zfs/spa.c

2698 spa_unl oad(spa) ;

2699 spa_deacti vat e(spa);

2701 spa- >spa_| oad_max_t xg- -;

2703 spa_activat e(spa, node);

2704 spa_async_suspend(spa);

2706 return (spa_l oad(spa, state, SPA | MPORT_EXI STING nosconfig));
2707 }

2709 /*

2710 * If spa_load() fails this function will try loading prior txg's. If
2711 * 'state’ is SPA LOAD RECOVER and one of these |oads succeeds the pool
2712 * be rewound to that txg. If 'state’ is not SPA LOAD RECOVER this
2713 * function will not rewi nd the pool and will return the sane error as
2714 * spa_| oad().

2715 */

2716 static int

2717 spa_| oad_best(spa_t *spa, spa_load_state_t state, int nosconfig,

2718 uint64_t max_request, int rew nd_flags)

2719 {

2720 nvlist_t *loadinfo = NULL;

2721 nvlist_t *config = NULL;

2722 int load_error, rew nd_error;

2723 uint64_t safe_rew nd_txg;

2724 uint64_t mn_txg;

2726 if (spa->spa_load_txg && state == SPA_LOAD RECOVER) {

2727 spa- >spa_| oad_max_t xg = spa->spa_| oad_t xg;

2728 spa_set _| og_state(spa, SPA LOG CLEAR);

2729 } else {

2730 spa- >spa_| oad_max_t xg = max_request;

2731 }

2733 load_error = rewind_error = spa_|l oad(spa, state, SPA | MPORT_EXI STI NG,
2734 nosconfig);

2735 if (load_error == 0)

2736 return (0);

2738 if (spa->spa_root_vdev != NULL)

2739 config = spa_config_generate(spa, NULL, -1ULL, B _TRUE);
2741 spa- >spa_l ast _ubsync_t xg = spa->spa_uber bl ock. ub_t xg;

2742 spa- >spa_| ast _ubsync_txg_ts = spa->spa_uber bl ock. ub_ti mest anp;
2744 if (rewind flags & ZPOOL_NEVER REW ND) {

2745 nvlist_free(config);

2746 return (load_error);

2747 }

2749 if (state == SPA_LOAD RECOVER) {

2750 /* Price of rolling back is discarding txgs, including log */
2751 spa_set _| og_state(spa, SPA _LOG CLEAR);

2752 } else {

2753 /*

2754 * If we aren’t rolling back save the load info fromour first
2755 * inport attenpt so that we can restore it after attenpting
2756 * to rew nd.

2757 */

2758 | oadi nfo = spa->spa_| oad_i nfo;

2759 spa->spa_load_info = fnvlist_alloc();

2760 }

2762 spa- >spa_| oad_max_t xg = spa->spa_| ast _ubsync_t xg;

new usr/src/uts/comon/fs/zfs/spa.c 43

2763 safe_rew nd_t xg = spa->spa_| ast _ubsync_t xg - TXG DEFER S| ZE;

2764 mntxg—(rewndflags&ZPO(l EXTREVME_REW ND) ?

2765 TXG_INITIAL : safe_rew nd_t xg;

2767 /*

2768 * Continue as long as we're finding errors, we're still within

2769 * the acceptable rewind range, and we’'re still finding uberbl ocks
2770 *

2771 while (rewi nd_error && spa->spa_uberbl ock.ub_txg >= min_txg &&

2772 spa- >spa_uber bl ock. ub_t xg <= spa->spa_| oad_max_t xg) {

2773 if (spa->spa_l oad_max_t xg < safe_rew nd_t xg)

2774 spa- >spa_ extreme_rewind = B_TRUE;

2775 rewind_error = spa_l oad_retry(spa, state, nosconfig);

2776 }

2778 spa- >spa_extreme_rew nd = B_FALSE;

2779 spa->spa_| oad_max_t xg = Ul NT64_MAX;

2781 if (config & (rewind_error || state != SPA LOAD RECOVER))

2782 spa_config_set(spa, config);

2784 if (state == SPA LOAD RECOVER) ({

2785 ASSERT3P(| oadi nfo, ==, NULL);

2786 return (rew nd_error);

2787 } else {

2788 /* Store the rewind info as part of the initial load info */
2789 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFI G REW ND_I NFO,

2790 spa- >spa_|l oad_i nfo);

2792 /* Restore the initial load info */

2793 fnvlist_free(spa->spa_|l oad_i nfo);

2794 spa- >spa_l oad_i nfo = | oadi nfo;

2796 return (load_error);

2797 }

2798 }

2800 /*

2801 * Open/ | mpor t

2802 *

2803 * The inport case is identical to an open except that the configuration is sent
2804 * down fromuserland, instead of grabbed fromthe configuration cache. For the
2805 * case of an open, the pool configuration will exist in the

2806 * POOL_STATE_UNI NI TI ALI ZED st at e.

2807 *

2808 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2809 * the sane tinme open the pool, without having to keep around the spa_t in sone
2810 * anbiguous state.

2811 */

2812 static int

2813 spa_open_conmon(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2814 nvlist_t **config)

2815 {

2816 spa_t *spa;

2817 spa_l oad_state_t state = SPA_LOAD_OPEN;

2818 int error;

2819 int locked = B _FALSE;

2821 *spapp = NULL;

2823 I*

2824 * As disgusting as this is, we need to support recursive calls to this
2825 * function because dsl_dir_open() is called during spa_load(), and ends
2826 * up calling spa_open() again. The real fix is to figure out howto
2827 * avoid dsl _dir_open() calling this in the first place.

2828 */

new usr/src/uts/comon/fs/zfs/spa.c 44
2829 if (rmutex_owner(&spa_nanmespace_| ock) != curthread) {

2830 mut ex_ent er (&spa_nanmespace_| ock) ;

2831 | ocked = B_TRUE;

2832 }

2834 if ((spa = spa_l ookup(pool)) == NULL) {

2835 if (Iocked)

2836 nut ex_exi t (&pa_nanmespace_| ock) ;

2837 return (SET_ERROR(ENCENT));

2838 }

2840 if (spa->spa_state == POOL_STATE_UNI NI Tl ALI ZED) {

2841 zpool _rewi nd _policy_t policy;

2843 zpool _get _rew nd_policy(nvpolicy ? nvpolicy : spa->spa_config,
2844 &pol i cy);

2845 if (policy.zrp_request & ZPOOL_DO REW ND)

2846 state = SPA_LOAD RECOVER;

2848 spa_activat e(spa, spa_node_gl obal);

2850 if (state != SPA_LOAD RECOVER)

2851 spa->spa_| ast _ubsync_txg = spa->spa_|l oad_txg =
2853 error = spa_| oad_best (spa, state, B _FALSE, policy.zrp_txg,
2854 policy.zrp_request);

2856 if (error == EBADF) {

2857 /*

2858 * |f vdev_validate() returns failure (indicated by
2859 * EBADF), it indicates that one of the vdevs indicates
2860 * that the pool has been exported or destroyed. |If
2861 * this is the case, the config cache is out of sync and
2862 * we should renove the pool fromthe namespace.
2863 *

2864 spa_unl oad(spa) ;

2865 spa_deacti vat e(spa);

2866 spa_config_sync(spa, B _TRUE, B _TRUE);

2867 spa_r enove(spa);

2868 if (1ocked)

2869 mut ex_exi t (&pa_nanmespace_| ock);

2870 return (SET_ERROR(ENCENT));

2871 }

2873 if (error) {

2874 /*

2875 * W& can’t open the pool, but we still have useful
2876 * information: the state of each vdev after the
2877 * attenpted vdev_open(). Return this to the user.
2878 */

2879 if (config !'= NULL && spa->spa_config) {

2880 VERI FY(nvlist_dup(spa->spa_config, config,
2881 KM SLEEP) == 0);

2882 VERI FY(nvli st _add vl i st(*config,

2883 ZPOOL_CONFI G LOAD | NFQ

2884 spa->spa_|l oad_i nfo) == 0);

2885

2886 spa_unl oad(spa);

2887 spa_deacti vat e(spa);

2888 spa- >spa_| ast _open_failed = error;

2889 if (1ocked)

2890 mut ex_exi t (&pa_nanmespace_| ock);

2891 *spapp = NULL;

2892 return (error);

2893 }

2894 }

new usr/src/uts/comon/fs/zfs/spa.c 45 new usr/src/uts/comon/fs/zfs/spa.c 46
2961 }
2896 spa_open_ref (spa, tag);
2963 /*
2898 if (config !'= NULL) 2964 * Add spares device information to the nvlist.
2899 *config = spa_config_generate(spa, NULL, -1ULL, B TRUE); 2965 */
2966 static void
2901 /* 2967 spa_add_spares(spa_t *spa, nvlist_t *config)
2902 * |f we’ve recovered the pool, pass back any infornation we 2968 {
2903 * gat hered whil e doing the | oad. 2969 nvlist_t **spares;
2904 e 2970 uint_t i, nspares;
2905 if (state == SPA LOAD_RECOVER) { 2971 nvlist_t *nvroot;
2906 VERI FY(nvl i st _add_nvlist(*config, ZPOOL_CONFI G LOAD | NFO, 2972 uint64_t guid;
2907 spa- >spa_l oad_i nfo) == 0); 2973 vdev_stat _t *vs;
2908 } 2974 uint_t vsc;
2975 uint64_t pool;
2910 if (locked) {
2911 spa- >spa_| ast _open_failed = 0; 2977 ASSERT(spa_confi g_hel d(spa, SCL_CONFI G RW READER));
2912 spa- >spa_| ast _ubsync_txg = O;
2913 spa->spa_l oad_txg = O; 2979 if (spa->spa_spares.sav_count == 0)
2914) mut ex_exi t (&pa_nanespace_| ock) ; 2980 return;
2915
2982 VERI FY(nvlist_| ookup_nvlist(config,
2917 *spapp = spa; 2983 ZPOOL_CONFI G VDEV_TREE, &nvroot) ==
2984 VERI FY(nvTi st _| ookup_nvl i st _array(spa- >spa spares. sav_| config,
2919 return (0); 2985 ZPOOL_CONFI G_SPARES, &spares, &nspares) == 0);
2920 } 2986 if (nspares != 0)
2987 VERI FY(nvlist_add_nvlist_array(nvroot,
2922 int 2988 ZPOOL_CONFI G _SPARES, “spares, nspares) == 0);
2923 spa_open_rew nd(const char *nane, spa_t **spapp, void *tag, nvlist_t *policy, 2989 VERI FY(nvli st _| ookup_nvl i st_array(nvroot,
2924 nvlist_t **config) 2990 ZPOOL_CONFI G_SPARES, &spares, &nspares) == 0);
2925 {
2926 return (spa_open_comon(nanme, spapp, tag, policy, config)); 2992 /*
2927 } 2993 * Go through and find any spares which have since been
2994 * repurposed as an active spare. |If this is the case, update
2929 int 2995 * their status appropriately.
2930 spa_open(const char *nane, spa_t **spapp, void *tag) 2996 */
2931 { 2997 for (i =0; i < nspares; i++) {
2932 return (spa_open_common(nane, spapp, tag, NULL, NULL)); 2998 VERI FY(nvl i st_| ookup_ui nt 64(spares[i i 1,
2933 } 2999 ZPOOL_CONFI G GUI D, &guid) == 0
3000 if (spa_spare_exists(guid, &pool, NULL) &&
2935 /* 3001 pool != OULL)
2936 * Lookup the given spa_t, increnenting the inject count in the process, 3002 VERI FY(nvlist_| ookup_ui nt64_array(
2937 * preventing it from being exported or destroyed. 3003 spares[i], ZPOOL_CONFI G VDEV_STATS,
2938 */ 3004 (uint64 t **)&vs, &sc) == 0);
2939 spa_t * 3005 vs->vs_state = VDEV_STATE_CANT_OPEN;
2940 spa_i nj ect_addref (char *nane) 3006 vs->vs_aux = VDEV_AUX_SPARED;
2941 { 3007 }
2942 spa_t *spa; 3008 }
3009 }
2944 nmut ex_ent er (&spa_nanespace_| ock) ; 3010 }
2945 if ((spa = spa_l ookup(nanme)) == NULL) {
2946 mut ex_exi t (&pa_nanmespace_| ock) ; 3012 /*
2947 return (NULL); 3013 * Add | 2cache device information to the nvlist, including vdev stats.
2948 } 3014 */
2949 spa- >spa_i nj ect _ref ++; 3015 static void
2950 mut ex_exi t (&spa_nanmespace_| ock) ; 3016 spa_add_| 2cache(spa_t *spa, nvlist_t *config)
3017 {
2952 return (spa); 3018 nvlist_t **|2cache;
2953 } 3019 uint_t i, j, nl2cache;
3020 nvlist_t *nvroot;
2955 void 3021 uint64_t guid;
2956 spa_inject_delref(spa_t *spa) 3022 vdev_t *vd;
2957 { 3023 vdev_stat _t *vs;
2958 mut ex_ent er (&spa_nanmespace_| ock); 3024 uint_t vsc;
2959 spa- >spa inject_ref--;
2960 mut ex_exi t (&spa_namsspace_l ock) ; 3026 ASSERT(spa_confi g_hel d(spa, SCL_CONFI G RW READER));

new usr/src/uts/comon/fs/zfs/spa.c 47

3028
3029

3031
3032
3033
3034
3035
3036
3037
3038
3039

3041
3042
3043

3045
3046
3047

3049
3050
3051
3052
3053
3054
3055
3056
3057

3059
3060
3061
3062
3063
3064
3065 }

if (spa->spa_l 2cache. sav_count == 0)
return;

VERI FY(nvlist_| ookup_nvlist(config,
ZPOOL_CONFI G VDEV_TREE, &nvroot) == 0);
VERI FY(nvTi st _| ookup_nvl i st array(spa- >spa_| 2cache sav_confi g,
ZPOOL_CONFI G_L2CACHE, &l 2cache, &nl 2cache) == 0);
if (nl2cache != 0)
VERI FY(nvlist_add_nvlist_array(nvroot,
ZPOOL_CONFI G L2CACHE, | 2cache, nl 2cache) == 0);
VERI FY(nvTi st _| ookup_nvl i st_array(nvr oot ,
ZPOOL_CONFI G_L2CACHE, &l 2cache, &nl 2cache) == 0);

/*
* Update | evel 2 cache device stats.
*/

for (i =0; i < nl2cache; i++)
VERI FY(nvlist_| ookup ui nt 64(1 2cache[1,
ZPOOL_CONFI G GUI D, &guid) == 0);

vd = NULL
for (j = 0; j < spa->spa_l 2cache. sav_count; j++) {
if (guid ==
spa- >spa_| 2cache. sav_vdevs[j]->vdev_guid) {
vd = spa->spa_| 2cache. sav_vdevs[j];
) br eak

ASSERT(vd 1= NULL)

VERI FY(nvli st _| ookup_ui nt64_array(l 2cache[i],
ZPoOL_ CONFI G_VDEV_STATS, (ui nt64_t **)&ys &vsc)

=0);
vdev_get_stats(vd, vs);

3067 static void
3068 spa_add_feature_stats(spa_t *spa, nvlist_t *config)

3069 {
3070
3071
3072

3074
3075

3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088

3090
3091
3092

nvlist_t *features;
zap_cursor_t zc;
zap_attribute_t za;

ASSERT(spa_config_hel d(spa, SCL_ CO\JFI G RWREADER));
VERI FY(nvlist_alloc(& eatures, NV_UNI QUE_NAME, KM SLEEP) == 0);

if (spa->spa_feat_for_read_obj != 0)
for (zap_cursor_init(&c, spa->spa_neta_objset,
spa->spa_feat _for_read_obj);
zap_cursor _retrieve(&zc, &za) == 0;
zap_cur sor _advance(&zc))
ASSERT(za. za_i nt eger Iength == sizeof (uint64_t) &&
za.za_num.integers == 1);
VERI FY3W(0, ==, nviist_add_uint64(features, za.za_nane,
za.za_first_integer));

zap_cursor_fini (&zc);

}

if (spa- >spafeat for_wite_obj != 0)
for (zap_cursor_init(&c, spa->spa_neta_objset,
spa->spa_feat_for_wite_obj);

new usr/src/uts/comron/fs/zfs/spa.c

3093
3094
3095
3096
3097
3098
3099
3100
3101

3103
3104
3105
3106

3108
3109
3110
3111
3112
3113

3115
3116

3118
3119
3120
3121
3122
3123
3124

3126
3127

3129
3130
3131
3132

3134
3135
3136

3138
3139
3140
3141

3143
3144
3145
3146
3147

3149
3150
3151
3152
3153
3154
3155
3156
3157
3158

}

int

48

zap_cursor _retrieve(&c, &a) == 0
zap_cur sor _advance(&zc)) {
ASSERT(za. za_i nt eger Iength == sizeof (uint64_t) &&
za.za_num.integers == 1);
VERI FY3UY(0, ==, nviist_add_uint64(features, za.za_nane,
za.za_first_integer));

zap_cursor_fini (&zc);

}

VER FY(nvlist_add_nvlist(config, ZPOOL_CONFI G FEATURE STATS
features) == 0);
nvlist_free(featur es)

spa_get_stats(const char *nane, nvlist_t **config,

{

char *altroot, size_t buflen)

int error;
spa_t *spa;

*config = NULL;
error = spa_open_common(name, &spa, FTAG NULL, config);

if (spa != NULL) {
/*

* This still |eaves a wi ndow of inconsistency where the spares
* or |2cache devices could change and the config woul d be
* sel f-inconsistent.
*/
spa_config_enter(spa, SCL_CONFIG FTAG RW READER);

if (*config !'= NULL)
uint64_t |oadtines[2];

| oadti mes[0] spa- >spa_| oaded_ts.tv_sec;

| oadti mes[1] spa- >spa_| oaded_ts. tv_nsec;

VERI FY(nvlist_add_ui nt64_array(*config,
ZPOOL_CONFI G LOADED TI ME, |oadtines, 2) == 0);

VERI FY(nvlist_add_ui nt 64(*confi g,
ZPOOL_CONFI G_ERRCOUNT,
spa_get _errlog_size(spa)) == 0);

i f (spa_suspended(spa))
VERI FY(nvl i st_add_ui nt 64(*confi g,
ZPOOL_CONFI G_SUSPENDED,
spa- >spa_fai Tnmode) == 0);

spa_add_spares(spa, *config);
spa_add_| 2cache(spa, *config);
spa_add_feature_stats(spa, *config);

}

/*

* W want to get the alternate root even for faulted pools, so we cheat
* and cal | spa_l ookup() directly.

*

if (altroot) {
if (spa == NULL) {
nut ex_ent er (&spa_nanespace_| ock) ;
spa = spa_| ookup(nane);
if (spa)
spa_al troot (spa, altroot, buflen);

new usr/src/uts/comon/fs/zfs/spa.c

3159
3160
3161
3162
3163
3164
3165
3166

3168
3169
3170
3171

3173
3174

3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190

3192

3194
3195
3196
3197
3198

3200
3201

3203
3204
3205
3206
3207
3208

3210
3211
3212
3213
3214
3215

3217
3218
3219
3220

3222
3223
3224

el se
altroot[0] = '\0";
spa = NULL
nut ex_exi t (&spa_nanmespace_| ock) ;
} else {

spa_al troot(spa, altroot, buflen);
}
}

if (spa != NULL) {
spa_config_exit(spa, SCL_CONFIG FTAQ;
spa_cl ose(spa, FTAG;

}
return (error);
}
/*
* Validate that the auxiliary device array is well formed. W nust have an
* array of nvlists, each which describes a valid leaf vdev. |If this is an
* inport (nopde is VDEV_ALLOC SPARE), then we allow corrupted spares to be
* specified, as long as they are well-forned.
*
static int

spa_val i dat e_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int node,
spa_aux_vdev_t *sav, const char *config, ui nt64t versi on,
vdev_| abel type_t | abel)

nvlist_t **dev;
uint_t i, ndev;
vdev_t *vd;
int error;

ASSERT(spa_confi g_hel d(spa, SCL_ALL, RWWRI TER) == SCL_ALL);

/*
* |t's acceptable to have no devs specified.
*
if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
return (0);
if (ndev ==

ret uram (SET_ERROR(EI NVAL)) ;

/*

* Make sure the pool is formatted with a version that supports this
* device type.

*

if (spa_version(spa) < version)
return (SET_ERROR(ENOTSUP));
/*
* Set the pending device list so we correctly handl e device in-use
* checki ng.
*/

sav->sav_pendi ng = dev,
sav- >sav_npendi ng = ndev;

(i =0; i < ndev; i++)
if ((error = spa_config_parse(spa, &d, dev[i], NULL, O,
node)) != 0)
goto out;

if (!vd->vdev_ops->vdev_op_leaf) {
vdev free(v)5
error SET_ERRCR(El NVAL) ;

new usr/src/uts/comron/fs/zfs/spa.c 50
3225 goto out;

3226 }

3228 /*

3229 * The L2ARC currently only supports disk devices in
3230 * kernel context. For user-level testing, we allowit.
3231 */

3232 #ifdef _KERNEL

3233 if ((strcmp(config, ZPOOL_CONFI G L2CACHE) == 0) &&

3234 strcnp(vd- >vdev_ops->vdev_op_type, VDEV_TYPE DI SK) != 0) {
3235 error = SET_ERROR(ENOTBLK) ;

3236 vdev_free(vd);

3237 goto out;

3238 }

3239 #endi f

3240 vd->vdev_top = vd;

3242 if ((error = vdev_open(vd)) == 0 &&

3243 (error = vdev_|abel _init(vd, crtxg, label)) == {
3244 VERI FY(nvTi st_add_ui nt 64(dev[i], ZPOOL_CONFI G _GUI D,
3245 vd->vdev_gui d) == 0);

3246 }

3248 vdev_free(vd);

3250 if (error &&

3251 (mode !'= VDEV_ALLOC SPARE && node != VDEV_ALLOC L2CACHE))
3252 goto out;

3253 el se

3254 error = 0;

3255

3257 out:

3258 sav->sav_pendi ng = NULL;

3259 sav- >sav_npendi ng = O;

3260 return (error);

3261 }

3263 static int

3264 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int node)
3265 {

3266 int error;

3268 ASSERT(spa_config_hel d(spa, SCL_ALL, RWWRI TER) == SCL_ALL);
3270 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, node,
3271 &spa- >spa_spares, ZPOOL_CONFI G_SPARES, SPA VERSI ON_SPARES,
3272 VDEV_LABEL_SPARE)) != 0) {

3273 return (error);

3274

3276 return (spa_validate_aux_devs(spa, nvroot, crtxg, node,

3277 &spa- >spa_| 2cache, ZPOOL_CONFI G L2CACHE, SPA VERSI ON_L2CACHE,
3278 VDEV_LABEL_L2CACHE)) ;

3279 }

3281 static void

3282
3283

spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
const char *config)

3284 {

3285

3287
3288
3289
3290

if (sav->sav_config !=

i
NULL) {
nvlist_t **ol ddevs;

ui nt _t ol dndevs;
nvlist_t **ne\l\devs;

new usr/src/uts/comon/fs/zfs/spa.c

3292
3293
3294
3295
3296
3297

3299
3300
3301
3302
3303
3304
3305
3306

3308
3309

3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325

3327
3328
3329
3330
3331

3333
3334
3335

3337
3338

3340
3341

3343
3344
3345
3346
3347

3349
3350
3351
3352
3353
3354

}

/*

* Stop and drop |evel 2 ARC devices
*

/

voi d

/*

* CGenerate new dev |ist by concatentating with the
* current dev |ist.

*/

VERI FY(nvli st _I| ookup_nvlist_array(sav->sav_config, config,
&ol ddevs, ~&ol dndevs) == 0);

newdevs = krmem al | oc(sizeof (void *) *
(ndevs + ol dndevs), KM SLEEP);
for (i =0; i <ol dndevs i++)
VERI FY(nvli st dup(ol ddevs[i], &newdevs[i],
KM_SLEEP) == 0);
for (i = 0; i < ndevs; i++)
VERI FY(nvlist_dup(devs[i], &uewdevs[i + ol dndevs],
KM SLEEP) == 0);

VERI FY(nvli st _renove(sav->sav_config, config,
DATA_TYPE_NVLI ST_ARRAY) == 0);

VERI FY(nvlist_add_nvlist_array(sav->sav_config,
config, newdevs, ndevs + ol dndevs) == 0);
for (i =0; i <ol dndevs + ndevs; i ++)
nvlist_free(newdevs[i]);
kmem free(newdevs, (ol dndevs + ndevs) * sizeof (void *));
} else {
/*

* CGenerate a new dev |ist.
*

VERI FY(nvlist_all oc(&sav->sav_config, NV_UN QUE_NAME,
KM SLEEP) == 0);

VERI FY(nvl i st add nvI i st_array(sav->sav_config, config,
devs, ndevs) == 0);

spa_l 2cache_drop(spa_t *spa)
3332 {

}

/*

int

vdev_t *vd,
int i;
spa_aux_vdev_t *sav = &spa->spa_| 2cache;

for (i =0; i < sav->sav_count; i++) {
uint64_t pool;

vd = sav->sav_vdevs[i];
ASSERT(vd !'= NULL)

if (spa_l 2cache_exi st s(vd->vdev_gui d, &pool) &&

pool !'= OULL && | 2arc_vdev_present(vd))
| 2arc_renove_vdev(vd);

Creation

spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,

3355 {

3356

nvlist_t *zpl props)

spa_t *spa;

new usr/src/uts/comon/fs/zfs/spa.c

3357
3358
3359
3360
3361
3362
3363
3364
3365
3366

3368
3369
3370
3371
3372
3373
3374
3375

3377
3378
3379
3380
3381
3382
3383

3385
3386
3387
3388
3389
3390

3392
3393
3394
3395
3396
3397

3399
3400
3401
3402
3403

3405
3406
3407
3408

3410
3411
3412
3413
3414

3416
3417
3418
3419

3421

char *altroot = NULL;

vdev_t *rvd;

dsl _pool _t *dp;

dmu_t x_t *tx;

int error = 0;

uint64_t txg = TXG. I N TIAL;
nvlist_t **spares, **|2cache;
ui nt _t nspares, nl2cache;
uint64_t version, obj;

bool ean_t has_features;

*

* |f this pool already exists, return failure.
&/

mut ex_ent er (&spa_nanespace_| ock) ;

if (spa_l ookup(pool) !'= NULL)
mut ex_exi t (&spa_nanespace_| ock) ;
return (SET_ERROR(EEXI ST));

}

/*

* Allocate a new spa_t structure.

*

/
(void) nvlist_l ookup_string(props,
zpool _prop_to_nane(ZPOOL_PROP_ALTROOT), &altroot);

spa = spa_add(pool, NULL, altroot);
spa_activate(spa, spa_node_gl obal);

if (props & (error = spa_prop_validate(spa, props))) {
spa_deactivat e(spa);
spa_renmove(spa);
mut ex_exi t (&pa_nanespace_| ock) ;
return (error);

}

has_features = B_FALSE;
for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
elem!= NULL; elem = nvlist_next_nvpair(props, elem) {
if (zpool _prop_feature(nvpair_nane(elem))
has_f eat ures = B_TRUE,

}

if (has_features || nvlist_| ookup_uint64(props,
zpool _prop_t o_nane(ZPOOL_PROP_VERSI ON), &version) != 0) {
version = SPA VERSI ON,

}

ASSERT(SPA_VERSI ON_| S_SUPPORTED(ver si on)) ;
spa->spa_first_txg = txg;

spa- >spa_uberbl ock. ub_txg = txg - 1;

spa- >spa_uber bl ock. ub_versi on = version;
spa- >spa_ubsync = spa- >spa_uber bl ock;

/*
* Create "The Godfather" zio to hold all async ICs
&/

spa- >spa_async_zi o_root = zio_root(spa, NULL, NULL,
ZI O FLAG_CANFAI L | ZIO FLAG_SPECULATI VE | ZICLFLA(iﬂIIFATHEm;

/*
* Create the root vdev.
*/

spa_config_enter(spa, SCL_ALL, FTAG RWMWRI TER);

error = spa_config_parse(spa, &vd, nvroot, NULL, 0, VDEV_ALLOC ADD);

new usr/src/uts/comon/fs/zfs/spa.c 53 new usr/src/uts/comon/fs/zfs/spa.c 54
3423 ASSERT(error !'= 0 || rvd !'= NULL); 3489 spa_updat e_dspace(spa);
3424 ASSERT(error !'= 0 || spa->spa_root_vdev == rvd);
3491 tx = dmu_t x_create_assi gned(dp, txg);
3426 if (error == 0 && !zfs_all ocatabl e_devs(nvroot))
3427 error = SET_ERROR(EI NVAL); 3493 /*
3494 * Create the pool config object.
3429 if (error == 0 && 3495 */
3430 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3496 spa- >spa_confi g_obj ect = dnmu_obj ect_al | oc(spa- >spa_net a_obj set,
3431 (error = spa_validate_aux(spa, nvroot, txg, 3497 DMJ_OT_PACKED NVLI ST, SPA_CONFI G_BLOCKSI ZE,
3432 VDEV_ALLCC ADD)) == 0) { 3498 DMJ_OT_PACKED NVLI ST_SI ZE, si zeof (uint64_t), tx);
3433 for (int ¢ = 0; ¢ < rvd->vdev_children; c++) {
3434 vdev_net asl ab_set _si ze(rvd->vdev_child[c]); 3500 if (zap_add(spa->spa_neta_obj set,
3435 vdev_expand(rvd->vdev_child[c], txg); 3501 DMJ_POOL_DI RECTORY_OBJECT, DNU POCOL_CONFI G
3436 } 3502 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3437 } 3503 cmm_err (CE_ PANI C, "failed to add pool config");
3504 }
3439 spa_config_exit(spa, SCL_ALL, FTAG;
3506 if (spa_version(spa) >= SPA_VERSI ON_FEATURES)
3441 if (error 1=0) { 3507 spa_feature_create_zap_objects(spa, tx);
3442 spa_unl oad(spa) ;
3443 spa_deacti vat e(spa); 3509 if (zap_add(spa->spa_neta_obj set,
3444 spa_renove(spa); 3510 DMJ_POOL_DI RECTORY_OBJECT, DMJ POOL_CREATI ON_VERSI ON,
3445 mut ex_exi t (&pa_nanmespace_| ock) ; 3511 sizeof (uint64_t), 1, &ver3| on, tx) !'=0) {
3446 return (error); 3512 cmm_err (CE_ PANI C, "failed to add pool version");
3447 } 3513 }
3449 /* 3515 /* Newly created pools with the right version are always deflated. */
3450 * Get the list of spares, if specified. 3516 if (version >= SPA VERSICN RAI DZ_DEFLATE) {
3451 */ 3517 spa- >spa_ deflate = TRUE
3452 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFI G_SPARES, 3518 if (zap_add(spa->spa_neta_obj set,
3453 &spares, &nspares) == 0) { 3519 DMJ_POOL_DI RECTORY_OBJECT, DNU POOL_DEFLATE,
3454 VERI FY(nvlist_al | oc(&spa->spa_spares. sav_config, NV_UN QUE_NAME, 3520 sizeof (uint64_t), 1, &spa->spa_deflate, tx) '=0) {
3455 KM SLEEP) == 0); 3521 crm_err(E_PANl C, "failed to add deflat e");
3456 VERI FY(nvl i st _add nvl i st _array(spa- >spa_spares. sav_confi g, 3522 }
3457 ZPOOL_CONFI G_SPARES, “spares, nspares) == 0); 3523 }
3458 spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER);
3459 spa_| oad_spar es(spa); 3525 7%
3460 spa_config_exit(spa, SCL_ALL, FTAG; 3526 * Create the deferred-free bpobj. Turn off conpression
3461 spa- >spa_spar es. sav_sync = B_TRUE; 3527 * because sync-to-convergence takes |longer if the bl ocksize
3462 } 3528 * keeps changi ng.
3529 */
3464 /* 3530 obj = bpobj _all oc(spa->spa_neta_objset, 1 << 14, tx);
3465 * Cet the list of level 2 cache devices, if specified. 3531 drmu_obj ect _set _conpr ess(spa- >spa_net a_obj set, obj,
3466 */ 3532 ZI O_COWPRESS_OFF, tx);
3467 if (nvlist_lookup_nvli st_ar r ay(nvroot, ZPOOL_CONFI G _L2CACHE, 3533 i f (zap_add(spa->spa_neta_obj set,
3468 &l 2cache, é&nl2cache) == 0) { 3534 DMJU_POOL_DI RECTORY_OBJECT, DIVU POOL_SYNC_BPOBJ,
3469 VERI FY(nvlist_all oc(&spa >spa_| 2cache. sav_confi g, 3535 sizeof (uint64_t), 1, &bj, tx) !=0) {
3470 NV_UNI QUE_NANE, KM SLEEP) == 0); 3536 cm_err(CE_PANIC, "failed to add bpobj");
3471 VERI FY(nvl i st _add nvli st _array(spa->spa_| anche sav_confi g, 3537 }
3472 ZPOOL_CONFI G L2CACHE, | 2cache, nl 2cache) == 0); 3538 VERI FY3U(0, ==, bpobj_open(&spa->spa_def erred_bpobj,
3473 spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER); 3539 spa- >spa_net a_obj set, obj));
3474 spa_| oad_I| 2cache(spa);
3475 spa_config_exit(spa, SCL_ALL, FTAG; 3541 l*
3476 spa- >spa_| 2cache. sav_sync = B_TRUE; 3542 * Create the pool’s history object.
3477 } 3543 */
3544 if (version >= SPA VERS|I ON_ZPOOL_HI STCORY)
3479 spa->spa_is_initializing = B_TRUE; 3545 spa_hi story_create_obj (spa, tx);
3480 spa- >spa_dsl _pool = dp = dsl_pool _create(spa, zplprops, txg);
3481 spa- >spa_net a_obj set = dp->dp_neta_obj set; 3547 /*
3482 spa->spa_is_initializing = B_FALSE; 3548 * Set pool properties.
3549 */
3484 7% 3550 spa- >spa_bootfs = zpool _prop_defaul t _nuneri c(ZPOOL_PROP_BOOTFS) ;
3485 * Create DDTs (dedup tables). 3551 spa- >spa_del egati on = zpool _prop_defaul t _nuneri c(ZPOOL_PROP_ DELEGATI aN) ;
3486 */ 3552 spa->spa_f ail rode = zpool _prop_defaul t _nuneri c(ZPOOL_PROP_| FAI LUREMODE) ;
3487 ddt _create(spa); 3553 spa- >spa_aut oexpand = zpool _prop_default _numneri c(ZPOOL_PROP. AUTCEXPAND)

new usr/src/uts/comon/fs/zfs/spa.c

3555 if (props !'= NULL) {

3556 spa_configfile_set(spa, props, B FALSE);

3557 spa_sync_props(props, tx);

3558 }

3560 drmu_t x_commi t (tx);

3562 spa- >spa_sync_on = B_TRUE;

3563 txg_sync_st art(spa >spa_dsl _pool);

3565 I*

3566 * We explicitly wait for the first transaction to conplete so that our
3567 * bean counters are appropriately updated.

3568 */

3569 t xg_wai t _synced(spa->spa_dsl _pool, txg);

3571 spa_config_sync(spa, B_FALSE, B_TRUE);

3573 spa_history_|l og_version(spa, "create");

3575 spa->spa_m nref = refcount_count (&spa->spa_refcount);

3577 mut ex_exi t (&spa_nanmespace_| ock) ;

3579 return (0);

3580 }

3582 #ifdef _KERNEL

3583 /*

3584 * Get the root pool information fromthe root disk, then inport the root pool
3585 * during the system boot up tine.

3586 */

3587 extern int vdev_di sk_read_rootlabel (char *, char *, nvlist_t **);
3589 static nvlist_t *

3590 spa_generat e_root conf(char *devpath, char *devid, uint64_t *guid)
3591 {

3592 nvlist_t *config;

3593 nvlist_t *nvtop, *nvroot;

3594 uint64_t pgid;

3596 if (vdev_disk_read_rootlabel (devpath, devid, &config) != 0)
3597 return (NULL);

3599 *

3600 * Add this top-level vdev to the child array.

3601 */

3602 VERI FY(nvlist_| ookup_nvlist(config, ZPOOL_CONFI G VDEV_TREE,
3603 &nvtop) == 0);

3604 VERI FY(nvl i st _| ookup_ui nt 64(confi g, ZPOOL_CONFI G _POOL_GUI D,
3605 &pgi d) == 0);

3606 VERI FY(nvlist_| ookup ui nt 64(config, ZPOOL_CONFI G GUI D, guid) == 0);
3608 /*

3609 * Put this pool’s top-level vdevs into a root vdev.

3610 */

3611 VERI FY(nvl i st_al | oc(&wvroot, NV_UNI QUE NAME, KM SLEEP) == 0);
3612 VERI FY(nvlist_add_string(nvroot, ZPOOL_CONFI G TYPE,

3613 VDEV_TYPE_ROOT) == 0);

3614 VERI FY(nvl i st _add_ui nt 64(nvroot, ZPOOL_CONFI G I D, OULL) == 0)
3615 VERI FY(nvl i st _add_ui nt 64(nvroot, ZPOOL_CONFI G_GUI D, pgi d) == O)
3616 VERI FY(nvl i st add nvlist_array(nvroot, ZPOOL_CONFI G_CHI LDREN,
3617 &nvtop, 1) == 0);

3619 /*

3620 * Repl ace the existing vdev_tree with the new root vdev in

55

new usr/src/uts/comon/fs/zfs/spa.c

3621 * this pool’s configuration (renpve the old, add the new).

3622 */

3623 VERI FY(nvlist_add_nvlist(config, ZPOOL_CONFI G VDEV_TREE, nvroot) == 0);
3624 nvlist_free(nvroot);

3625 return (config);

3626 }

3628 /*

3629 * Walk the vdev tree and see if we can find a device with "better”
3630 * configuration. A configuration is "better" if the |abel on that

3631 * device has a nore recent txg.

3632 */

3633 static void

3634 spa_al t _rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)

3635 {

3636 for (int ¢ = 0; c¢ < vd->vdev_children; c++

3637 spa_al t _rootvdev(vd->vdev_child[c], avd, txg);

3639 if (vd->vdev_ops->vdev_op_l eaf) {

3640 nvlist_t *|abel;

3641 uint64_t | abel _txg;

3643 if (vdev_di sk_read_rootl abel (vd->vdev_physpat h, vd->vdev_devi d,
3644 & abel) !'= 0)

3645 return;

3647 VERI FY(nvlist_| ookup ui nt 64(1 abel , ZPOOL_CONFI G_POOL_TXG
3648 &l abel _txg) == 0);

3650 /*

3651 * Do we have a better boot device?

3652 *

3653 if (label _txg > *txg) {

3654 *txg = | abel _txg;

3655 *avd = vd;

3656 }

3657 nvlist_free(label);

3658 }

3659 }

3661 /*

3662 * |nport a root pool.

3663 *

3664 * For x86. devpath_list will consist of devid and/or physpath nane of
3665 * the vdev (e.g. "idl, sd@SEAGATE..." or "/pci @f,0/ide@/ di sk@, 0:a").
3666 * The GRUB "findroot" command will return the vdev we shoul d boot.

3667 *

3668 * For Sparc, devpath_list consists the physpath name of the booti ng devi ce
3669 * no natter the rootpool is a single device pool or a mrrored pool.
3670 * e.g

3671 * "/ pci @f,0/ide@/ di sk@, 0: a"

3672 */

3673 int

3674 spa_i nport_root pool (char *devpath, char *devid)

3675 {

3676 spa_t *spa;

3677 vdev_t *rvd, *bvd, *avd = NULL;

3678 nvlist_t *config, *nvtop;

3679 uint64_t guid, txg;

3680 char *pnaneg;

3681 int error;

3683 /*

3684 * Read the | abel fromthe boot device and generate a configuration.
3685 */

3686 config = spa_generate_root conf(devpath, devid, &guid);

new usr/src/uts/comon/fs/zfs/spa.c

3688

3687 #if defined(_OBP) && def i ned(_KERNEL)
{

3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700

3702
3703
3704

3706
3707
3708
3709
3710
3711
3712
3713

3715
3716
3717

3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734

3736
3737
3738
3739
3740
3741
3742
3743
3744

3746
3747
3748
3749
3750
3751
3752

#endi f

if (config == NULL)

if (strstr(devpath, "/iscsi/ssd") != NULL) {

/* iscsi boot */
get _i scsi _boot pat h_phy(devpath);
config = spa_generate_root conf(devpath, devid, &guid);
}
if (config == NULL) {
cm err(CE NOTE "Cannot read the pool |abel from’%'",
devpat h

) return(SET ERRO?(EIO))

VERIFY(nvIlst Iookup_string(config, ZPOOL_CONFI G_POCL_NAME

&pnane :
VERI FY(nvl i st I ookup_ui nt 64(confi g,

mut ex_ent er(&spa nanmespace_| ock);
if ((spa = spa_| ookup(pnane)) != NULL) {

* Renove the existing root pool fromthe namespace so that we

* can replace it with the correct config we just read in.
*
spa_renove(spa);
}
spa = spa_add(pnane, conflg, NULL) ;
spa->spa_i s_root = B_TRUE
spa->spa_i nport_flags = ZFS | MPORT_VERBATI M
*
config.

* Build up a vdev tree based on the boot device's |abel
*
/

VERI FY(nvlist_| ookup_nvlist(config,
&nnvtop) == 0);
spa_config_ent er(spa SCL_ALL, FTAG RWMWRITER);
error = spa_config_parse(spa, &vd, nvtop, NULL, O,
VDEV ALLOC_ROOTPOQL) ;
spa_config_exit(spa, SCL_ALL, FTAG;
if (error)
mut ex_exi t (&pa_nanmespace_| ock) ;
nvlist_free(config);

ZPOOL_CONFI G_VDEV_TREE

cmm_err (CE_NOTE, "Can not parse the config for pool "% ",
pnane) ;
return (error);
}
/*

* Get the boot vdev.
*

== NULL)

if ((bvd = vdev_l ookup_by_gui d(rvd, guid))
NOTE, boot vdev for guid %Iu",

cmm_err (CE_ "Can not find the
(u I ongl ong_t) gui d);

error SET_ERROR(ENCENT);

got o out;

}

/*
* Determine if there is a better boot device.
*

/
avd = bvd;
spa_al t rootvdev(rvd &avd, &txg);
if (avd !'= bvd) {

cmm_er r (CE_NOTE,

"The boot device is 'degraded’ . Please "

57

ZPOOL_CONFI G POOL_TXG, & xg) == 0)

new usr/src/uts/comron/fs/zfs/spa.c

3753
3754
3755
3756

3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770

3772
3773
3774
3775
3776
3777

3779
3780
3781

3783

3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800

3802
3803
3804
3805
3806
3807
3808
3809

3811
3812
3813
3814
3815
3816
3817
3818

58

1] - >vdev_pat h) ;

"try booting from’'%' ", avd->vdev_path);
error = SET_ERROR(EI NVAL) ;
goto out;
}
/*
* |f the boot device is part of a spare vdev then ensure that
* we're booting off the active spare.
*
if (bvd->vdev_parent->vdev_ops == &dev_spare_ops &&
! bvd- >vdev_i sspar e)
cmm_err (CE_NOTE, "The boot device is currently spared. Please
"try booting from’' % ",
bvd- >vdev_parent - >
vdev_chi | d[bvd- >vdev_par ent - >vdev_chi |l dren -
error = SET_ERROR(ElI NVAL) ;
goto out;
}
error = 0;
out :
spa_config_enter(spa, SCL_ALL, FTAG RWMWRI TER);
vdev_free(rvd);
spa_config_exit(spa, SCL_ALL, FTAG;
mut ex_exi t (&spa_nanmespace_| ock) ;
nvlist_free(config);
return (error);
}
#endi f
/*
* | nport a non-root pool into the system
*/
int
nvlist_t *config, nvlist_t *props,

spa_i nport (const char *pool,
{

spa_t *spa;

char *altroot = NULL;

spa_l oad_state_t state = SPA LOAD | MPORT,;
zpool _rew nd_policy_t policy;

uint64_t node = spa_node_gl obal ;

uint64_t readonly = B_FALSE;

int error;

nvlist_t *nvroot;

nvlist_t **spares **| 2cache;

uint_t nspares, nl2cache;

/*
* |f a pool
*/
mut ex_ent er (&spa_nanespace_| ock) ;
if (spa_l ookup(pool) !'= NULL) {
mut ex_exi t (& pa_nanmespace_| ock) ;
return (SET_ERROR(EEXI ST));

with this nane exists, return failure.

}

/*
* Create and initialize the spa structure.
*/

(void) nvlist_l ookup_string(props,

zpool _prop_to_nane(ZPOOL_PROP_ALTROOT), &altroot);
(void) nvlist_| ookup_ui nt 64(props,
zpool _prop_t o_nane(ZPOOL_PROP_READONLY), &readonly);

if (readonly)

uint64_t flags)

new usr/src/uts/comon/fs/zfs/spa.c

3819
3820
3821

3823
3824
3825
3826
3827
3828
3829

3831

3833
3834

3836
3837

3839

3841
3842
3843
3844

3846
3847
3848

3850
3851
3852
3853
3854
3855
3856

3858
3859

3861
3862
3863
3864
3865
3866

3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882

3884

nmode = FREAD;
spa = spa_add(pool, config, altroot);
spa->spa_i nport _flags = fl ags;

/*
* Verbatiminport - Take a pool and insert it into the namespace
* as if it had been | oaded at boot.
*/
if (spa->spa_inport_flags & ZFS_| MPORT_VERBATI M {
if (props !'= NULL)
spa_configfil e_set(spa, props, B_FALSE);

spa_config_sync(spa, B_FALSE, B _TRUE);

mut ex_exi t (&pa_nanespace_| ock) ;
spa_history_l og_version(spa, "inport");

return (0);

}
spa_activate(spa, node);

/*
* Don't start async tasks until we know everything is healthy.

*/

spa_async_suspend(spa);

zpool _get _rew nd_policy(config, &policy);
if (pollcy zrp_request & ZPOOL DOREWND
tate = SPA_LOAD_RECOVER;

Pass of f the heavy lifting to spa_load(). Pass TRUE for nosconfig
because the user-supplied config is actually the one to trust when
doi ng an inport.

* ok ok ok ¥

if (state != SPA _LOAD RECOVER)
spa- >spa_| ast _ubsync_t xg = spa->spa_| oad_txg =

error = spa_|l oad_best (spa, state, B _TRUE, policy.zrp_txg,
policy. zrp_request);

/*

* Propagate anything | earned while |oading the pool and pass it

* back to caller (i.e. rewind info, mssing devices, etc).

*

/

VERI FY(nvlist_add_nvli st (confl g, ZPOOL_CONFI G LQOAD | NFO
spa->spa_l oad_i nfo) == 0);

spa_config_enter(spa, SCL_ALL, FTAG RWMWRI TER);
/*

* Toss any existing sparelist, as it doesn’t have any validity
* anynore, and conflicts with spa_has_spare()
*/

if (spa->spa_spares.sav_config) {
nvlist_free(spa->spa_spares.sav_config);
spa- >spa_spar es. sav_config = NULL;
spa_|l oad_spar es(spa);

}

i f (spa->spa_l 2cache. sav_config) {
nvlist_free(spa->spa_|l 2cache. sav_config);
spa- >spa_| 2cache. sav_config = NULL;
spa_l oad_| 2cache(spa);

}
VERI FY(nvlist_l ookup_nvlist(config, ZPOOL_CONFI G VDEV_TREE

59

new usr/src/uts/comon/fs/zfs/spa.c

3885
3886
3887
3888
3889
3890
3891
3892

3894
3895

3897
3898
3899
3900
3901
3902
3903
3904

3906

3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941

3943
3944
3945
3946
3947
3948
3949

&nvroot) == 0);
if (error == 0)
error = spa_validate_aux(spa, nvroot, -1ULL,
VDEV_ALLOC_SPARE) ;
if (error == O)
error = spa_validate_aux(spa, nvroot, -1ULL,
VDEV_ALLOC_L2CACHE) ;
spa_config_exit(spa, SCL_ALL, FTAG);

if (props != NULL)
spa_configfil e_set(spa, props, B _FALSE);

if (error '=0 || (props & spa_writeabl e(spa) &&
(error = spa_prop_set(spa, props))))
spa_unl oad(spa);
spa_deacti vat e(spa);
spa_renove(spa);
nmut ex_exi t (&pa_nanmespace_| ock) ;
return (error);

}
spa_async_resune(spa);

/*
* Override any spares and | evel 2 cache devices as specified by
* the user, as these may have correct device names/devids, etc.
*
/
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFI G_SPARES,
&spares, &nspares) == 0)
if (spa->spa_spares.sav_config)
VERI FY(nvli st _renpve(spa->spa_spares. sav_confi g,
ZPOOL_CONFI G_SPARES, DATA TYPE NVLI ST _ARRAY) == 0);
el se
VERI FY(nvlist_alloc(&spa->spa_ spares sav_confi g,
NV_UNI QUE_NAME, KM SLEEP) == 0);
VERI FY(nvl i st_add_nvlist array(spa— >spa spar es. sav _config,
ZPOOL_CONFI G SPARES, “spares, nspares) == 0);
spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER);
spa_| oad_spar es(spa);
spa_config_exit(spa, SCL_ALL, FTAG;
spa- >spa_spar es. sav_sync = B_TRUE;

}
1f (nvlist_|lookup_nvlist_array(nvroot, ZPOOL_CONFI G L2CACHE,
& 2cache, &nl 2cache) == 0) {
if (spa->spa_l 2cache. sav_confi g)
VERI FY(nvl i st _renove(spa- >spa_| 2cache. sav_confi g,
ZPOOL_CONFI G L2CACHE, DATA TYPE_NVLI ST_ARRAY) == 0);
el se
VERI FY(nvlist_alloc(&spa->spa_| 2cache sav_confi g,
NV_UNI QUE_NAVE, KM SLEEP) == 0);
VERI FY(nvl i st_add_nvlist_array(spa->spa_| I2<:ache sav_config,
ZPOOL_CONFI G L2CACHE, | 2cache, nl2cache) == 0);
spa_config_enter(spa, SCL_ALL, FTAG RWWR TER) 2
spa_| oad_| 2cache(spa);
spa_config_exit(spa, SCL_ALL, FTAG;
spa- >spa_| 2cache. sav_sync = B_TRUE;
}
/*
* Check for any renpved devices.
*
/
if (spa->spa_autoreplace) {

spa_aux_check_r enbved(&spa- >spa_spares);
spa_aux_check_r enoved(&pa- >spa_| 2cache) ;

60

new usr/src/uts/comon/fs/zfs/spa.c

3951
3952
3953
3954
3955
3956

3958
3959
3960
3961
3962

3964
3965

3967
3968

3970
3971
3972
3973
3974
3975
3976
3977

3979
3980

3982
3983

3985
3986
3987
3988
3989
3990

3992
3993
3994
3995
3996
3997

3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011

4013
4014
4015
4016

if (spa_witeable(spa)) {
/*
* Update the config cache to include the newl y-inported pool.
*/

spa_config_updat e(spa, SPA_CONFI G_UPDATE_POQL) ;
}

/*

* |t's possible that the pool was expanded while it was exported.
* We kick off an async task to handle this for us.

*/

spa_async_request (spa, SPA_ASYNC AUTOEXPAND) ;

mut ex_exi t (&spa_nanmespace_| ock) ;
spa_history_|l og_version(spa, "inport");

return (0);

}

nvlist_t *
spa_tryinport(nvlist_t *tryconfig)
{

nvlist_t *config = NULL;

char *pool naneg;

spa_t *spa;

uint64_t state;

int error;

if (nvlist_lookup_string(tryconfig, ZPOOL_CONFI G POOL_NAME, &pool nane))
return (NULL);

if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFI G POOL_STATE, &state))
return (NULL);

/*

* Create and initialize the spa structure.
*/

nmut ex_ent er (&spa_nanespace_| ock) ;
spa = spa_add(TRYl MPORT_NAME, tryconfig,
spa_activate(spa, FREAD);

NULL) ;

/*

* Pass off the heavy lifting to spa_load().

* Pass TRUE for npsconfig because the user-supplied config
* is actually the one to trust when doing an inport.

*/

error = spa_| oad(spa, SPA_LOAD TRYlI MPORT, SPA_| MPORT_EXI STING, B_TRUE);
*
* |f "tryconfig’ was at |east parsable, return the current config.
*/
if (spa- >spa root _vdev != NULL) {

config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);

VERI FY(nvl i st_add_string(config, ZPOOL_CONFI G POOL_NAME,

pool nare) == 0);

VERI FY(nvli st _add_ui nt 64(confi g, ZPOOL_CONFlI G POOL_STATE,
state) == 0);

VERI FY(nvl i st add_ui nt 64(config, ZPOOL_CONFI G_TI MESTAWP,
spa- >spa_ uberbl ock. ub_tinestanp) == 0);

VERI FY(nvl i st_add_nvlist(config, ZPOOL_ CONFI G _LOAD_ | NFO,
spa->spa_l oad_i nfo) == 0);

/*

* |f the bootfs property exists on this pool
* copy it out so that external consuners can tell
* pools are bootable.

then we
whi ch

61

new usr/src/uts/comron/fs/zfs/spa.c 62
4017 *

4018 if ((lerror || error == EEXI ST) && spa->spa_bootfs)

4019 char *tnmpname = knem al | oc(MAXPATHLEN, KM SLEEP);
4021 /*

4022 * W have to play ganes with the name since the
4023 * pool was opened as TRYI MPORT_NAME.

4024 *

4025 if (dsl_dsobj_to_dsnanme(spa_ name(spa)

4026 spa- >spa_bootfs, tnpnanme) == 0)

4027 char *cp;

4028 char *dsnane = knem al | oc(MAXPATHLEN, KM SLEEP);
4030 cp = strchr(tnpnane, '/’);

4031 if (cp == NULL) {

4032 (void) strlcpy(dsnanme, tnpnane,
4033 MAXPATHLEN) ;

4034 } else {

4035 (void) snprintf(dsname, MAXPATHLEN,
4036 "8/ %", pool name, ++cp);

4037 }

4038 VERI FY(nvlist_add_string(config,

4039 ZPOOL_CONFI G BOOTFS, dsnane) == 0);
4040 kmem f ree(dsnane, NAXPATHLEN)

4041 }

4042 kmem f ree(t mpnanme, MAXPATHLEN);

4043 }

4045 *

4046 * Add the list of hot spares and |evel 2 cache devices.
4047 */

4048 spa_config_enter(spa, SCL_CONFIG FTAG RW READER);

4049 spa_add_spares(spa, config);

4050 spa_add_| 2cache(spa, config);

4051 spa_config_exit(spa, SCL_CONFIG FTAG;

4052 1

4054 spa_unl oad(spa);

4055 spa_deacti vat e(spa);

4056 spa_renove(spa);

4057 mut ex_exi t (&spa_nanmespace_| ock);

4059 return (config);

4060 }

4062 /*

4063 * Pool export/destroy

4064 *

4065 * The act of destroying or exporting a pool is very sinple. W nake sure there
4066 * is no nore pending |I/O and any references to the pool are gone. Then, we
4067 * update the pool state and sync all the labels to disk, removing the
4068 * configuration fromthe cache afterwards. If the 'hardforce’ flag is set, then
4069 * we don’t sync the |l abels or renopve the configuration cache.

4070 *

4071 static int

4072 spa_export_comon(char *pool, int new state, nvlist_t **ol dconfig,

4073 bool ean_t force, bool ean_t hardforce)

4074 {

4075 spa_t *spa;

4077 if (oldconfig)

4078 *ol dconfig = NULL;

4080 if (!(spa_npde_gl obal & FWRI TE))

4081 return (SET_ERROR(EROFS));

new usr/src/uts/comon/fs/zfs/spa.c 63 new usr/src/uts/comron/fs/zfs/spa.c 64
4083 nmut ex_ent er(&spa nanmespace_| oc k) 4149 }
4084 if ((spa = spa_ I ookup(pool)) == NULL) {
4085 nmut ex_exi t (&pa_nanespace_| ock) ; 4151 spa_event _notify(spa, NULL, ESC ZFS POOL_DESTROY);
4086 return (SET_ERROR(ENCENT));
4087 } 4153 if (spa->spa_state != POOL_STATE _UNI NI TI ALI ZED) {
4154 spa_unl oad(spa);
4089 /* 4155 spa_deacti vat e(spa)
4090 * Put a hold on the pool, drop the nanespace | ock, stop async tasks, 4156 }
4091 * reacquire the nanespace | ock, and see if we can export.
4092 */ 4158 if (oldconfig & spa->spa_config)
4093 spa_open_ref (spa, FTAG; 4159 VERI FY(nvl i st _dup(spa->spa_config, oldconfig, 0) == 0);
4094 mut ex_exi t (&spa_nanmespace_| ock);
4095 spa_async_suspend(spa); 4161 if (new state != POOL_STATE_UNI NI Tl ALI ZED) {
4096 mut ex_ent er (&spa_nanespace_| ock) ; 4162 if (!hardforce)
4097 spa_close(spa, FTAG; 4163 spa_confi g_sync(spa, B_TRUE, B_TRUE);
4164 spa_renove(spa);
4099 /* 4165
4100 * The pool will be in core if it’s openable, 4166 mut ex_exi t (&spa_nanmespace_| ock) ;
4101 * in which case we can nodify its state.
4102 */ 4168 return (0);
4103 if (spa->spa_state != POOL_STATE UNI NI Tl ALI ZED && spa- >spa_sync_on) { 4169 }
4104 l*
4105 * bj sets may be open only because they' re dirty, so we 4171 | *
4106 * have to force it to sync before checking spa_refcnt. 4172 * Destroy a storage pool .
4107 */ 4173 */
4108 t xg_wai t _synced(spa- >spa_dsl _pool, 0); 4174 int
4175 spa_destroy(char *pool)
4110 /* 4176 {
4111 * A pool cannot be exported or destroyed if there are active 4177 return (spa_export_conmmon(pool, POOL_STATE DESTROYED, NULL,
4112 * references. |If we are resetting a pool, allow references by 4178 B_FALSE, B _FALSE));
4113 * fault injection handlers. 4179 }
4114 */
4115 if (!spa_refcount_zero(spa) || 4181 /*
4116 (spa->spa_inject _ref '= 0 && 4182 * Export a storage pool.
4117 new state != POOL_STATE UNI NI TI ALI ZED)) { 4183 */
4118 spa_async_resune(spa); 4184 int
4119 nmut ex_exi t (&pa_nanespace_| ock); 4185 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4120 return (SET_ERROR(EBUSY)); 4186 bool ean_t hardforce)
4121 } 4187 {
4188 return (spa_export_comon(pool, POOL_STATE EXPORTED, ol dconfi g,
4123 = 4189 force, hardforce));
4124 * A pool cannot be exported if it has an active shared spare. 4190 }
4125 * This is to prevent other pools stealing the active spare
4126 * froman exported pool. At user’s own will, such pool can 4192 | *
4127 * be forcedly exported. 4193 * Similar to spa_export(), this unloads the spa_t w thout actually renoving it
4128 */ 4194 * fromthe namespace in any way.
4129 if (!force & new state == POOL_STATE_EXPORTED && 4195 */
4130 spa_has_active_shared_spare(spa)) { 4196 int
4131 spa_async_r esume(spa) ; 4197 spa_reset(char *pool)
4132 nmut ex_exi t (&spa_nan’espace_l ock); 4198 {
4133 return (SET_ERROR(EXDEV)); 4199 return (spa_export_common(pool, POOL_STATE_UNI NI TI ALI ZED, NULL,
4134 } 4200 B FALSE, B FALSE));
4201 }
4136 /*
4137 * W want this to be reflected on every |abel, 4203 /*
4138 * so mark themall dirty. spa_unload() will do the 4204 *
4139 * final sync that pushes these changes out. 4205 * Device nani pul ation
4140 =Y 4206 *
4141 if (new_state != POOL_STATE_UNI NI Tl ALI ZED && ! hardforce) { 4207 */
4142 spa_config_ent er(spa, SCL_ALL, FTAG RWWRI TER);
4143 spa- >spa_state = new_ st ate; 4209 /*
4144 spa->spa_final _txg = spa_ I ast _synced_t xg(spa) + 4210 * Add a device to a storage pool .
4145 TXG_DEFER _SI ZE + 1; 4211 */
4146 vdev_config_dirty(spa->spa_root_vdev); 4212 int
4147 spa_config_exit(spa, SCL_ALL, FTAG; 4213 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4148 } 4214 {

new usr/src/uts/comon/fs/zfs/spa.c 65 new usr/src/uts/comon/fs/zfs/spa.c 66
4215 uint64_t txg, id;
4216 int error; 4282 if (nl2cache = 0) {
4217 vdev_t *rvd = spa->spa_root_vdev; 4283 spa_set _aux_vdevs(&spa->spa_| 2cache, |2cache, nl 2cache,
4218 vdev_t *vd, *tvd; 4284 ZPOOL_CONFI G_L2CACHE) ;
4219 nvlist_t **spares, **|2cache; 4285 spa_| oad_| 2cache(spa);
4220 uint_t nspares, nl2cache; 4286 spa- >spa_| 2cache. sav_sync = B_TRUE;
4287 }
4222 ASSERT(spa_writeabl e(spa));
4289 /*
4224 txg = spa_vdev_enter(spa); 4290 * W have to be careful when addi ng new vdevs to an existing pool .
4291 * |f other threads start allocating fromthese vdevs before we
4226 if ((error = spa_config_parse(spa, &d, nvroot, NULL, O, 4292 * sync the config cache, and we | ose power, then upon reboot we nay
4227 VDEV_ALLOC ADD)) != 0) 4293 * fail to open the pool because there are DVAs that the config cache
4228 return (spa_vdev_exit(spa, NULL, txg, error)); 4294 * can’'t translate. Therefore, we first add the vdevs without
4295 * initializing netaslabs; sync the config cache (via spa_vdev_exit());
4230 spa- >spa_pendi ng_vdev = vd; /* spa_vdev_exit() will clear this */ 4296 * and then let spa_config_update() initialize the new netasl abs.
4297 *
4232 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFI G SPARES, &spares, 4298 * spa_l oad() checks for added-but-not-initialized vdevs, so that
4233 &nspares) != 0) 4299 * if we |lose power at any point in this sequence, the renaining
4234 nspares = 0; 4300 * steps will be conpleted the next time we |oad the pool.
4301 *
4236 if (nvlist_|lookup_nvlist_array(nvroot, ZPOOL_CONFI G L2CACHE, &l 2cache, 4302 (void) spa_vdev_exit(spa, vd, txg, 0);
4237 &nl 2cache) = 0)
4238 nl 2cache = 0; 4304 nmut ex_ent er (&spa_nanespace_| ock) ;
4305 spa_config_updat e(spa, SPA_CONFI G_UPDATE_POQL) ;
4240 if (vd->vdev_children == 0 & nspares == 0 && nl 2cache == 0) 4306 mut ex_exi t (&spa_nanespace_| ock) ;
4241 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4308 return (0);
4243 if (vd->vdev_children != 0 && 4309 }
4244 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4245 return (spa_vdev_exit(spa, vd, txg, error)); 4311 /*
4312 * Attach a device to a mirror. The argunments are the path to any device
4247 /* 4313 * in the mrror, and the nvroot for the new device. |If the path specifies
4248 * We nust validate the spares and | 2cache devices after checking the 4314 * a device that is not mirrored, we automatically insert the mrror vdev.
4249 * children. Oherw se, vdev_inuse() will blindly overwite the spare. 4315 *
4250 */ 4316 * If 'replacing’ is specified, the new device is intended to replace the
4251 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOCC ADD)) != 0) 4317 * existing device; in this case the two devices are made into their own
4252 return (spa_vdev_exit(spa, vd, txg, error)); 4318 * mirror using the 'replacing’ vdev, which is functionally identical to
4319 * the mirror vdev (it actually reuses all the same ops) but has a few
4254 /* 4320 * extra rules: you can't attach to it after it’s been created, and upon
4255 * Transfer each new top-level vdev fromvd to rvd. 4321 * conpletion of resilvering, the first disk (the one being repl aced)
4256 */ 4322 * is automatically detached.
4257 for (int ¢ = 0; ¢ < vd->vdev_children; c++) { 4323 */
4324 int
4259 /* 4325 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4260 * Set the vdev id to the first hole, if one exists. 4326 {
4261 */ 4327 uint64_t txg, dtl_max_txg;
4262 for (id = 0; id < rvd->vdev_children; id++) { 4328 vdev_t *rvd = spa->spa_root_vdev;
4263 if (rvd->vdev_child[id]->vdev_ishole) { 4329 vdev_t *ol dvd, *newd, *new ootvd, *pvd, *tvd;
4264 vdev_free(rvd->vdev_child[id]); 4330 vdev_ops_t *pvops;
4265 br eak; 4331 char *ol dvdpath, *newdpat h;
4266 } 4332 int newd_isspare;
4267 } 4333 int error;
4268 tvd = vd->vdev_child[c];
4269 vdev_renove_child(vd, tvd); 4335 ASSERT(spa_writeabl e(spa));
4270 tvd->vdev_id = id,;
4271 vdev_add_chi l d(rvd, tvd); 4337 txg = spa_vdev_enter(spa);
4272 vdev_config_dirty(tvd);
4273 } 4339 ol dvd = spa_| ookup_by_gui d(spa, guid, B_FALSE);
4275 if (nspares !=0) { 4341 if (oldvd == NULL)
4276 spa_set _aux_vdevs(&spa->spa_spares, spares, nspares, 4342 return (spa_vdev_exit(spa, NULL, txg, ENOCDEV));
4277 ZPOOL_CONFI G_SPARES) ;
4278 spa_| oad_spar es(spa); 4344 if (!oldvd->vdev_ops->vdev_op_| eaf)
4279 spa- >spa_spar es. sav_sync = B _TRUE; 4345 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4280 }

new usr/src/uts/comon/fs/zfs/spa.c 67 new usr/src/uts/comon/fs/zfs/spa.c 68
4347 pvd = ol dvd- >vdev_parent; 4413 * Make sure the new device is big enough.
4414 */
4349 if ((error = spa_config_parse(spa, & ew ootvd, nvroot, NULL, O, 4415 if (newd->vdev_asi ze < vdev_get _mi n_asi ze(ol dvd))
4350 VDEV_ALLOC _ATTACH)) = 0) 4416 return (spa_vdev_exit(spa, newootvd, txg, EOVERFLOW);
4351 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4418 /*
4353 if (newootvd->vdev_children != 1) 4419 * The new devi ce cannot have a higher alignnment requirenent
4354 return (spa_vdev_exit(spa, newootvd, txg, EINVAL)); 4420 */than the top-1evel vdev.
4421 *
4356 newd = new oot vd->vdev_chil d[0]; 4422 if (newd->vdev_ashift > ol dvd->vdev_t op->vdev_ashi ft)
4423 return (spa_vdev_exit(spa, newootvd, txg, EDOM);
4358 if (!newd->vdev_ops->vdev_op_| eaf)
4359 return (spa_vdev_exit(spa, newootvd, txg, EINVAL)); 4425 /*
4426 * If this is an in-place replacenment, update ol dvd’s path and devid
4361 if ((error = vdev_create(newootvd, txg, replacing)) != 0) 4427 * to nmake it distinguishable fromnewd, and unopenable from now on.
4362 return (spa_vdev_exit(spa, newootvd, txg, error)); 4428 */
4429 if (strcnp(ol dvd->vdev_path, newd->vdev_path) == 0) {
4364 /* 4430 spa_strfree(ol dvd- >vdev_pat h) ;
4365 * Spares can’'t replace |ogs 4431 ol dvd->vdev_path = kmem al | oc(strl en(newd->vdev_path) + 5,
4366 */ 4432 KM_SLEEP) ;
4367 if (ol dvd->vdev_top->vdev_islog &k newd->vdev_i sspare) 4433 (void) sprint f (ol dvd- >vdev _pat h, "%/ %",
4368 return (spa_vdev_exit(spa, newootvd, txg, ENOTSUP)); 4434 newd- >vdev_pat h, "ol d"
4435 if (ol dvd->vdev_devi d 1= NULL)
4370 if (!replacing) { 4436 spa_strfree(ol dvd->vdev_devi d) ;
4371 /* 4437 ol dvd- >vdev_devi d = NULL;
4372 * For attach, the only allowable parent is a mrror or the root 4438 }
4373 * vdev. 4439 }
4374 */
4375 if (pvd->vdev_ops != &dev_mrror_ops && 4441 /* mark the device being resilvered */
4376 pvd- >vdev_ops ! = &vdev_r oot _ops) 4442 newd- >vdev_resilvering = B_TRUE;
4377 return (spa_vdev_exit(spa, newootvd, txg, ENOTSUP));
4444 *
4379 pvops = &dev_mi rror_ops; 4445 * |f the parent is not a mrror, or if we're replacing, insert the new
4380 } else { 4446 * mrror/replacing/spare vdev above ol dvd.
4381 /* 4447 */
4382 * Active hot spares can only be replaced by inactive hot 4448 f (pvd->vdev_ops != pvops)
4383 */spares. 4449 pvd = vdev_add_parent (ol dvd, pvops);
4384 *
4385 if (pvd->vdev_ops == &vdev_spare_ops && 4451 ASSERT(pvd- >vdev_t op- >vdev_parent == rvd);
4386 ol dvd- >vdev_i sspare && 4452 ASSERT(pvd- >vdev_ops == vops)
4387 | spa_has_spare(spa, newd->vdev_guid)) 4453 ASSERT(ol dvd- >vdev_par ent == pvd),
4388 return (spa_vdev_exit(spa, new ootvd, txg, ENOTSUP));
4455 /*
4390 /* 4456 * Extract the new device fromits root and add it to pvd.
4391 * |f the source is a hot spare, and the parent isn't already a 4457 */
4392 * spare, then we want to create a new hot spare. O herwi se, we 4458 vdev_renove_chi | d(new ootvd, newd);
4393 * want to create a replacing vdev. The user is not allowed to 4459 newd- >vdev_i d = pvd->vdev_chil dren;
4394 * attach to a spared vdev child unless the 'isspare’ state is 4460 newd- >vdev_crtxg = ol dvd->vdev_crt xg;
4395 * the sane (spare replaces spare, non-spare replaces 4461 vdev_add_chi | d(pvd, newd);
4396 * non-spare).
4397 */ 4463 tvd = newd- >vdev_t op;
4398 f (pvd->vdev_ops == &vdev_repl aci ng_ops && 4464 ASSERT(pvd- >vdev_top == tvd);
4399 spa_versi on(spa) < SPA_VERSI ON_MULTI _REPLACE) { 4465 ASSERT(t vd- >vdev_par ent == rvd);
4400 return (spa_vdev_exit(spa, newootvd, txg, ENOTSUP));
4401 } else if (pvd->vdev_ops == &vdev_spare_ops 8& 4467 vdev_config_dirty(tvd);
4402 newd- >vdev_i sspare ! = ol dvd- >vdev_i sspare) {
4403 return (spa_vdev_exit(spa, new ootvd, txg, ENOTSUP)); 4469 I*
4404 } 4470 * Set newd' s DTL to [TXG INTIAL, dtl_max_txg) so that we account
4471 * for any dnu_sync-ed blocks. It wll propagate upward when
4406 if (newd->vdev_i sspare) 4472 * spa_vdev_exit() calls vdev_dtl_reassess().
4407 pvops = &vdev_spare_ops; 4473 */
4408 el se 4474 dtl _max_txg = txg + TXG_CONCURRENT_STATES;
4409 pvops = &vdev_repl aci ng_ops;
4410 } 4476 vdev_dt| _dirty(newd, DTL_M SSI NG TXG_ | N TIAL,
4477 dtl _max_txg - TXG INITIAL);
4412 /*

new usr/src/uts/comon/fs/zfs/spa.c

4479 if (newd->vdev_isspare) {

4480 spa_spare_acti vat e(newd) ;

4481 spa_event _notify(spa, newd, ESC ZFS VDEV_SPARE);
4482 }

4484 ol dvdpath = spa_strdup(ol dvd->vdev_pat h);

4485 newdpat h = spa_strdup(newd->vdev_path);

4486 newd_i sspare = newd->vdev_i sspare;

4488 /*

4489 * Mark newd’'s DTL dirty in this txg.

4490 */

4491 vdev_dirty(tvd, VDD DTL, newd, txg);

4493 I*

4494 * Restart the resilver

4495 */

4496 dsl _resilver_restart(spa->spa_dsl _pool, dtl_max_txg);
4498 /*

4499 * Conmit the config

4500 */

4501 (void) spa_vdev_exit(spa, newootvd, dtl_nax_txg, 0);
4503 spa_history_l og_internal (spa, "vdev attach", NULL,
4504 "o vdev=0% % vdev=9s",

4505 repl acing & newd_i sspare ? "spare in" :

4506 replacing ? "replace" : "attach", newdpath,

4507 replacing ? "for" : "to", oldvdpath);

4509 spa_strfree(ol dvdpat h);

4510 spa_strfree(newdpath);

4512 if (spa->spa_bootfs)

4513 spa_event _notify(spa, newd, ESC ZFS BOOTFS_VDEV_ATTACH);
4515 return (0);

4516 }

4518 [*

4519 * Detach a device froma mirror or replacing vdev.

4520 * |f 'replace_done’ is specified, only detach if the parent
4521 * is a replacing vdev.

4522 */

4523 int

4524 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4525 {

4526 uint64_t txg;

4527 int error;

4528 vdev_t *rvd = spa->spa_root_vdev;

4529 vdev_t *vd, *pvd, *cvd, *tvd;

4530 bool ean_t unspare = B_FALSE;

4531 uint64_t unspare_guid = O;

4532 char *vdpat h;

4534 ASSERT(spa_writeabl e(spa));

4536 txg = spa_vdev_enter(spa);

4538 vd = spa_| ookup_by_gui d(spa, guid, B _FALSE);

4540 if (vd == NULL)

4541 return (spa_vdev_exit(spa, NULL, txg, ENOCDEV));
4543 if (!vd->vdev_ops->vdev_op_| eaf)

4544 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));

69

new usr/src/uts/comron/fs/zfs/spa.c

4546

4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562

4564
4565
4566
4567
4568
4569

4571
4572

4574
4575
4576
4577
4578
4579
4580

4582
4583
4584
4585
4586
4587

4589

4591
4592
4593
4594
4595
4596
4597
4598

4600
4601

4603
4604

4606
4607
4608
4609
4610

70

pvd = vd->vdev_parent;

/*

* |f the parent/child relationship is not as expected, don't do it.
* Consider MA R(B,C)) -- that is, a mrror of Awith a replacing
* vdev that's replacing Bwith C. The user’s intent in replacing
* is togo fromMAB) to MA Q. |If the user decides to cancel
* the replace by detaching C, the expected behavior is to end up
* MA B). But suppose that right after deciding to detach C,

* the repl acenent of B conpletes. W would have M A C, and then
* ask to detach C, which would | eave us with just A -- not what

* the user wanted. To prevent this, we make sure that the

* parent/child relationship hasn’t changed -- in this exanple,

* that Cs parent is still the replacing vdev R

*

if (pvd->vdev_guid != pguid & pguid != 0)

return (spa_vdev_exit(spa, NULL, txg, EBUSY));

/*
* Only 'replacing’ or 'spare’ vdevs can be repl aced.
*
/
if (replace_done && pvd->vdev_ops != &dev_repl aci ng_ops &&
pvd- >vdev_ops ! = &dev_spare_ops)

return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));

ASSERT(pvd- >vdev_ops ! = &vdev_spare_ops ||
spa_versi on(spa) >= SPA VERSI ON_SPARES) ;

/*

* Only mrror, replacing, and spare vdevs support detach.
*

/
if (pvd->vdev_ops != &dev_repl aci ng_ops &&
pvd- >vdev_ops != &dev_mirror_ops &&
pvd- >vdev_ops ! = &dev_spare_ops)

return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));

/*
* If this device has the only valid copy of sonme data,
* we cannot safely detach it.
*
if (vdev_dtl _required(vd))
return (spa_vdev_exit(spa, NULL, txg, EBUSY));

ASSERT(pvd- >vdev_chi | dren >= 2);

/*

* |If we are detaching the second disk froma repl aci ng vdev, then

* check to see if we changed the original vdev's path to have "/old"
* at the end in spa_vdev_attach(). |If so, undo that change now.

*/

if (pvd->vdev_ops == &dev_repl aci ng_ops && vd->vdev_id > 0 &&
vd->vdev_path !'= NULL) {
size_t len = strlen(vd->vdev_path);

for (int ¢ = 0; c < pvd->vdev_children; c++) {
cvd = pvd->vdev_child[c];

if (cvd == vd || cvd->vdev_path == NULL)
conti nue;

if (strncnp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
strcnp(cvd->vdev_path + len, "/old") == 0) {
spa_strfree(cvd->vdev_pat h);
cvd->vdev_path = spa_strdup(vd->vdev_path);
br eak;

new usr/src/uts/comon/fs/zfs/spa.c 71

4611
4612
4613

4615
4616
4617
4618
4619
4620
4621
4622
4623

4625
4626
4627
4628
4629
4630
4631
4632
4633

4635
4636
4637
4638
4639

4641
4642
4643
4644

4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661

4663
4664
4665
4666
4667
4668
4669
4670
4671
4672

4675
4676

}

}

/*

* |f we are detaching the original disk froma spare, then it inplies
* that the spare should becone a real disk, and be renoved fromthe

* active spare list for the pool.

*

if (pvd->vdev_ops == &dev_spare_ops &&
vd->vdev_id == 0
pvd- >vdev_chi | d[pvd- >vdev_chi I dren - 1]->vdev_i sspare)
unspare = B_TRUE;

/*
* Erase the disk | abels so the disk can be used for other things.
* This nmust be done after all other error cases are handl ed,
* put before we di senbowel vd (so we can still do I/Otoit).
* But if we can’t do it, don’t treat the error as fatal --
* it may be that the unwitability of the disk is the reason
* it's being detached!
*/
error = vdev_| abel _init(vd, 0, VDEV_LABEL_REMOVE);

/*
* Renpve vd fromits parent and conpact the parent’s children.
*/

vdev_renove_chi |l d(pvd, vd);

vdev_conpact _chi |l dren(pvd);

/*
* Renenber one of the remaining children so we can get tvd bel ow.
*
/
cvd = pvd->vdev_chi | d[pvd- >vdev_children - 1];

/
If we need to renpbve the remaining child fromthe list of hot spares,
do it now, marking the vdev as no longer a spare in the process.

We nust do this before vdev_renove_parent(), because that can

change the GQUDif it creates a new toplevel GUD. For a simlar
reason, we nmust renove the spare now, In the sane txg as the detach;
ot herwi se sonmeone could attach a new sibling, change the GU D, and
the subsequent attenpt to spa_vdev_renove(unspare_guid) would fail.

R
-

(unspare)
ASSERT(cvd >vdev_i sspare);
spa_spare_renove(cvd);
unspare_guid = cvd- Svdev _guid;
(voi d) spa_vdev_renove(spa, unspare_guid, B TRUE);
cvd->vdev_unspare = B _TRUE;

}
/*
* |If the parent mirror/replacing vdev only has one child,
* the parent is no |onger needed. Renpve it fromthe tree.
*
/
if (pvd->vdev_children == 1) {
if (pvd->vdev_ops == &vdev_spare_ops)
cvd->vdev_unspare = B_FALSE;
vdev_r enpove_parent (cvd) ;
cvd- >vdev_resilvering = B_FALSE;
}
/*

* We don’t set tvd until now because the parent we just renpved

new usr/src/uts/comon/fs/zfs/spa.c 72
4677 * may have been the previous top-I|evel vdev.

4678 */

4679 tvd = cvd->vdev_top;

4680 ASSERT(t vd- >vdev_parent == rvd);

4682 /*

4683 * Reeval uate the parent vdev state.

4684 */

4685 dev_propagat e_state(cvd);

4687 I*

4688 * |f the ’autoexpand property is set on the pool then automatically
4689 * try to expand the size of the pool. For exanple if the device we
4690 * just detached was smaller than the others, it may be possible to
4691 * add netaslabs (i.e. grow the pool). W need to reopen the vdev
4692 * first so that we can obtain the updated sizes of the |eaf vdevs.
4693 *

4694 if (spa->spa_autoexpand) {

4695 vdev_r eopen(tvd);

4696 vdev_expand(tvd, txg);

4697 }

4699 vdev_config_dirty(tvd);

4701 I

4702 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4703 * vd->vdev_detached is set and free vd's DIL object in syncing context.
4704 * But first nake sure we're not on any *other* txg's DTL list, to
4705 * prevent vd from being accessed after it’s freed.

4706 */

4707 vdpat h = spa_strdup(vd->vdev_path);

4708 for (int t =0; t < TXG.SIZE, t++)

4709 (void) txg_li st_r enove_t hi s(& vd->vdev_dt!l _list, vd, t);

4710 vd- >vdev_det ached = B_TRUE;

4711 vdev_dirty(tvd, VDD DTL, vd, txg);

4713 spa_event _notify(spa, vd, ESC ZFS VDEV_REMOVE);

4715 /* hang on to the spa before we rel ease the |ock */

4716 spa_open_ref (spa, FTAG;

4718 error = spa_vdev_exit(spa, vd, txg, 0);

4720 spa_| h| story_l og_internal (spa, "detach", NULL,

4721 "vdev=%", vdpath);

4722 spa_strfree(vdpat h);

4724 I*

4725 * |f this was the renpval of the original device in a hot spare vdev,
4726 * then we want to go through and renove the device fromthe hot spare
4727 * |list of every other pool.

4728

4729 if (unspare)

4730 spa_t *altspa = NULL;

4732 mut ex_ent er (&spa_nanmespace_| ock) ;

4733 while ((altspa = spa_next(altspa)) != NULL) {

4734 if (altspa->spa_state != POOL_STATE_ACTI VE ||

4735 al tspa == spa)

4736 conti nue;

4738 spa_open_ref (al tspa, FTAQ;

4739 nut ex_exi t (&spa_nanmespace_| ock) ;

4740 (voi d) spa_vdev_renove(al tspa, unspare_guid, B_TRUE);
4741 mut ex_ent er (&spa_nanespace_| ock) ;

4742 spa_close(al tspa, FTAG;

new usr/src/uts/comon/fs/zfs/spa.c

4743

4744 mut ex_exi t (&pa_nanmespace_| ock) ;

4746 /* search the rest of the vdevs for spares to renove */
4747 spa_vdev_resil ver_done(spa);

4748 1

4750 /* all done with the spa; OK to rel ease */

4751 nmut ex_ent er (&spa_nanespace_| ock) ;

4752 spa_cl ose(spa, FTAQ;

4753 mut ex_exi t (&pa_nanmespace_| ock) ;

4755 return (error);

4756 }

4758 [*

4759 * Split a set of devices fromtheir nmirrors, and create a new pool fromthem
4760 */

4761 int

4762 spa_vdev spllt mrror(spa_t *spa, char *newnanme, nvlist_t *config,
4763 nvlist_t *props, boolean_t exp)

4764 {

4765 int error = 0;

4766 uint64_t txg, *glist;

4767 spa_t *newspa;

4768 uint_t c, children, |astlog;

4769 nvlist_t **child, *nvl, *tnp;

4770 dmu_tx_t *tx;

4771 char *altroot = NULL;

4772 vdev_t *rvd, **vm = NULL; /* vdev nmodify list */
4773 bool ean_t acti vate_sl og;

4775 ASSERT(spa_writeabl e(spa));

4777 txg = spa_vdev_enter(spa);

4779 /* clear the log and flush everything up to now */

4780 activate_slog = spa_passivate_| og(spa);

4781 (void) spa_vdev_config_exit(spa, NULL, txg, O, FTAG);

4782 error = spa_offline_l og(spa);

4783 txg = spa_vdev_config_ent er(spa)

4785 if (activate_slog)

4786 spa_activate_| og(spa);

4788 if (error = 0)

4789 return (spa_vdev_exit(spa, NULL, txg, error));

4791 /* check new spa nane before gm ng any further */

4792 if (spa_l ookup(newnane) != NULL

4793 return (spa_vdev_exit(spa, NULL, txg, EEXIST));

4795 /*

4796 * scan through all the children to ensure they're all mirrors
4797 */

4798 if (nvlist_|lookup_nvlist(config, ZPOOL_CONFIG VDEV_TREE, &nvl) != 0 ||
4799 nvlist_| ookup_nvlist_array(nvl, ZPOO._CONFI G CHI LDREN, &child,
4800 &children) !="0)

4801 return (spa_vdev_exit(spa, NULL, txg, EINVAL));

4803 /* first, check to ensure we’ve got the right child count */
4804 rvd = spa->spa_root_vdev;

4805 lastlog = O;

4806 for (c = 0; ¢ < rvd->vdev_children; c++)

4807 vdev_t *vd = rvd->vdev_child[c];

73

new usr/src/uts/comon/fs/zfs/spa.c

4809
4810
4811
4812
4813
4814

4816
4817
4818
4819

4821
4822
4823
4824

4826
4827

4829
4830
4831

4833
4834

4836
4837
4838
4839
4840
4841
4842
4843
4844

4846
4847
4848
4849
4850
4851

4853
4854
4855
4856
4857
4858

4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872

4874

/* don't count the holes & logs as children */
if (vd->vdev_islog || vd->vdev_ishol e)
if (lastlog == 0)
lastlog = c;
conti nue;

}
lastlog = O;

}
if (children !'= (lastlog != 0 ? lastlog : rvd->vdev_children))
return (spa_vdev_exit(spa, NULL, txg, EINVAL));

/* next, ensure no spare or cache devices are part of the split */
if (nvlist_|lookup_nvlist(nvl, ZPOOL_CONFI G SPARES, & np) == 0 ||
nvlist_| ookup_nvlist(nvl, ZPOOL_CONFI G L2CACHE, &tnp) == 0)
return (spa_vdev_eX|t(spa NULL, txg, El NVAL))

vm = knem zal | oc(children * sizeof (vdev_t *),
glist = knmem zal | oc(children * sizeof (uint64_t),

KM _SLEEP) ;
KM SLEEP) ;

/* then, |oop over each vdev and validate it */
for (c = 0; ¢ < children; c++)
uint64_t is_hole = 0;

(voi d) nvlist_| ookup_ui nt64(child[c],
& s_hol e);

ZPOOL_CONFI G | S_HOLE,

if (is_ hole 1= 0)
f (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
spa- >spa_r oot _vdev->vdev_chi | d[c] - >vdev_i sl og) {
cont i nue;
} else {
error = SET_ERROR(El NVAL) ;
br eak;

}

/* which disk is going to be split? */
if (nvlist_|ookup_uint64(child[c], ZPOOL_CONFI G GUI D,
&glist[c]) !'=0) {
error = SET_ERROR(ElI NVAL) ;
br eak;

}

/* | ook |t up in the spa */
v [c] = spa_|l ookup_by_gui d(spa, glist[c],
if (vm[c] == NULL)

error = SET_ERROR(ENODEV) ;

br eak;

B_FALSE);

}

/* make sure there’s nothing stopping the split */

if (vm[c]->vdev_parent->vdev_ops != &dev_nmirror_ops ||
]->vdev_islog ||

vm [c]->vdev_i shole ||
]->vdev_i sspare ||

v [c] ->vdev_i sl 2cache ||

lvdev_writeabl e(vm[c]) ||

v [c]->vdev_children 1= 0 |

vm [c]->vdev_state ! = VDEV_STATE HEALTHY ||

c ! = spa- >spa root _vdev->vdev_chil d[c]->vdev_id) {
error = SET_ERROR(El NVAL);
br eak;

}
if (vdev_dtl _required(vm[c])) {

new usr/src/uts/comon/fs/zfs/spa.c 75

4875
4876
4877

4879
4880
4881
4882
4883
4884
4885
4886
4887
4888

4890
4891
4892
4893
4894

4896
4897
4898
4899
4900
4901

4903
4904
4905
4906
4907
4908
4909
4910

4912
4913
4914
4915
4916
4917

4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930

4932
4933
4934
4935

4937
4938

4940

error = SET_ERROR(EBUSY);
break;

}

/* we need certain info fromthe top |level */
VERI FY(nvl i st _add_ui nt 64(child[c], ZPOOL_CONFI G METASLAB_ARRAY,

vm [¢] - >vdev_t op- >vdev_ns array) == 0);
VERI FY(nvl i st_add_ui nt 64(child[c], zZPOOL CCNFIG METASLAB_SHI FT,
vrﬂ[c]—>vdev t op->vdev_ns shlft) =0

VERI FY(nvl i st _add_ui nt 64(chi | dfc], ZPOO _ CONFI G_ASI ZE,
v [c¢] - >vdev_t op- >vdev_asi ze) == 0);

VERI FY(nvl i st_add_ui nt 64(chi | d[c], ZPCOL_CONFI G ASHI FT,
vm [c] - >vdev_t op- >vdev_ashift) == 0);

}

if (error 1= 0)
kmem free(vm, children * sizeof (vdev_t *));
kmem free(glist, children * sizeof (uint64 t))
return (spa_vdev exit(spa, NULL, txg, error));

}

/* stop witers fromusing the disks */
for (c = 0; ¢ < children; c++) {
if (vm[c] !'= NULL)
v [c]->vdev_of fline = B_TRUE;

vdev_r eopen(spa- >spa_r oot _vdev) ;

/*

* Tenporarily record the splitting vdevs in the spa config. This

* will disappear once the config Is regenerated.

*

/
VERI FY(nvlist_alloc(&vl, NV_UNI QUE_NAME, KM SLEEP) == 0);
VERI FY(nvl i st _add_ui nt 64_array(nvl, ZPOOL_CONFI G_ SPLI T_LI ST,
glist, children) == 0);
kmem free(glist, children * sizeof (uint64_t));

mut ex_ent er (&spa- >spa_props_| ock) ;

VERI FY(nvl i st add nvl i st (spa->spa_config, ZPOOL_CONFI G SPLIT,
nvl) ==

mut ex eX|t(&spa- >spa_props_ Iock)

spa->spa_config_splitting = nvl;

vdev_config_dirty(spa->spa_root_vdev);

/* configure and create the new pool */

VERI FY(nvlist_add_string(config, ZPOOL_CONFI G POOL_NAME, newnane) == 0);

VERI FY(nvl i st _add_ui nt 64(confi 9, ZPOOL_CONFI G_POOL_ STATE
exp ? POOL_STATE _EXPORTED : PQOOL_STATE_ACTI VE) == 0);

VERI FY(nvl i st _add_ui nt 64(conf| g, ZPOOL_CONFI G_VERSI ON,
spa_versi on(spa)) 0);

VERI FY(nvl i st_add_ui nt 64(conf| g, ZPOOL_CONFI G _POOL_TXG
spa- >spa_| config_txg) == 0);

VERI FY(nvl i st_add_ui nt 64(conf| g, ZPOOL_CONFI G_POOL_GUI D,
spa_generate_gui d(NULL)) == 0);

(void) nvlist_|ookup_stri ng(props,
zpool _prop_t o_nane(ZPOOL_PROP_ALTROOT), &altroot);

/* add the new pool to the namespace */
newspa = spa_add(newnane, config, altroot);
newspa- >spa_confi g_txg = spa->spa_config_txg;
spa_set _| og_st at e(newspa, SPA LOG CLEAR);

/* rel ease the spa config | ock, retaining the namespace |ock */
spa_vdev_config_exit(spa, NULL, txg, 0, FTAG;

if (zio_injection_enabled)

new usr/src/uts/comon/fs/zfs/spa.c

4941

4943
4944

4946
4947
4948
4949

4951
4952
4953
4954
4955
4956
4957
4958
4959

4961
4962
4963
4964
4965
4966
4967

4969
4970
4971
4972

4974
4975

4977

4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999

5001
5002

5004
5005
5006

zi o_handl e_pani c_i nj ection(spa, FTAG 1);

spa_activat e(newspa, spa_node_gl obal);
spa_async_suspend(newspa) ;

/* create the new pool fromthe disks of the original pool */

error = spa_|l oad(newspa, SPA LOAD | MPORT, SPA | MPORT_ASSEMBLE, B_TRUE);

if (error)
goto out;

/* if that worked, generate a real config for the new pool */
if (newspa->spa_| r oot _vdev != NULL)
VERI FY(nvl i st_al | oc(&newspa->spa_config_splitting,
NV UNICUE NAMVE, KM SLEEP) == 0);
VERI FY(nvl i st _add_ui nt 64(newspa- >spa_config_spli tt| ng,
ZPOOL_CONFI G SPLI T_GUI D, spa_gui d(spa)) ==
spa_confi g_set (newspa, spa_confi g_gener at e(ne\/\spa NULL,
B TRUE)) ;

}

/* set the props */
if (props != NULL) {
spa_configfile_set(newspa, props, B FALSE);
error = spa_prop_set(newspa, props);
if (error)
goto out;

}

/* flush everything */

txg = spa_vdev_config_enter(newspa);

vdev_config_di rty(newspa->spa_root_vdev);

(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG;

if (zio_injection_enabled)
zi o_handl e_pani c_I nj ecti on(spa, FTAG 2);

spa_async_resune(newspa) ;

/* finally, update the original pool’s config */
txg = spa_vdev_config_enter(spa);
tx leLI tx_create_dd(spa_get _ dsi (spa)->dp_nos_dir);
error dmu_tx_assign(tx, TXG WAIT);
if (error 1= 0)
dmu_t x_abort (tx);
for (c = 0; ¢ < children; c++) {
if (vm[c] I'= NULL) {
vdev_spl |t(vm [c]);
if (error ==
spa_h| story_l og_i nternal (spa, "detach",
"vdev=%", vml[c]->vdev_path);
vdev_free(vni[c]);
}

vdev_confi g_dirty(spa->spa_root_vdev);
spa->spa_config_splitting = NULL;
nvlist_free(nvl);
if (error == 0)

dnmu_t x_conmmi t (tx);
(void) spa_vdev_exit(spa, NULL, txg, 0);

if (zio_injection_enabled)
zi o_handl e_pani c_i nj ecti on(spa, FTAG 3);

/* split is conplete; log a history record */
spa_history_l og_i nternal (newspa, "split", NULL,
"from pool %", spa_nane(spa));

-1ULL,

t X

new usr/src/uts/comon/fs/zfs/spa.c

5008

5010
5011
5012
5013

5015

5017
5018
5019
5020

5022

5024
5025
5026
5027
5028
5029

5031
5032
5033

5035
5036
5037

5039
5040

5042
5043

5045
5046

5048
5049
5050

5052
5053

5055
5056
5057
5058
5059

5061
5062

5064
5065
5066
5067
5068

5070
5071

out :

}

kmem free(vm, children * sizeof (vdev_t *));

/* if we're not going to nount the filesystens in userland, export */
if (exp)
error = spa_export_comon(newnane, POOL_STATE EXPORTED, NULL,
B _FALSE, B FALSE);

return (error);

spa_unl oad(newspa) ;
spa_deacti vat e(newspa) ;
spa_r enove(newspa) ;

txg = spa_vdev_config_enter(spa);

/* re-online all offlined disks */
for (c = 0; ¢ < children; c++) {
if (vm[c] !'= NULL)
v [c]->vdev_of fline = B_FALSE;

vdev_r eopen(spa- >spa_r oot _vdev);
nvlist_free(spa->spa_config_ spl itting);

spa- >spa_config_splitting = L;

(voi d) spa_vdev_exit(spa, NULL txg, error);

kmem free(vm , children * sizeof (vdev_t *));
return (error);

static nvlist_t *
spa_nvlist_l ookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5041 {

}

for (int i =0; i < count; i++) {
uint64_t guid;

VERI FY(nvli st _I| ookup_ui nt 64(nvpp[i], ZPOOL_CONFI G GU D,
&guid) ==0);
if (guid == target_guid)
return (nvpp[i]);
}

return (NULL);

static void
spa_vdev_renove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,

{

nvlist_t *dev_to_renpve)
nvlist_t **newdev = NULL;

if (count > 1)

newdev = kmem al | oc((count - 1) * sizeof (void *), KM SLEEP);
(int i =0, j =0; i < count; i++) {
if (dev[i] dev_to_renpve)
t| nue;

VERI FY(nvI i st dup(dev[i], &ewdev[j++], KM SLEEP) == 0);
}
VERI FY(nvlist_renove(config, name, DATA TYPE_NVLI ST_ARRAY) == 0);
VERI FY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);

new usr/src/uts/comon/fs/zfs/spa.c 78
5073 (int i =0; i <count - 1; i++)
5074 nvlist_free(newdev[i]);

5076 if (count > 1)

5077 kmem free(newdev, (count 1) * sizeof (void *));
5078 }

5080 /*

5081 Evacuat e the device.

5082

5083 static int

5084 spa_vdev_renove_evacuat e(spa_t *spa, vdev_t *vd)

5085 {

5086 uint64_t txg;

5087 int error = 0;

5089 ASSERT(MUTEX_HELD(&spa_nanespace_| ock));

5090 ASSERT(spa_config_hel d(spa, SCL_ALL, RVVV\RI TER) == 0);
5091 ASSERT(vd == vd->vdev_top);

5093 I

5094 * Evacuate the device. W don’t hold the config |lock as witer
5095 * since we need to do 1/0O but we do keep the

5096 * spa_nanespace_|l ock held. Once this conpletes the device
5097 * shoul d no | onger have any bl ocks allocated on it.
5098 */

5099 if (vd->vdev_i sl og)

5100 if (vd->vdev_stat.vs_alloc != 0)

5101 error = spa_offline_log(spa);

5102 } else {

5103 error = SET_ERROR(ENOTSUP) ;

5104 1

5106 if (error)

5107 return (error);

5109 *

5110 * The evacuation succeeded. Renpve any remmi ning MOS net adat a
5111 * associated with this vdev, and wait for these changes to sync.
5112 */

5113 ASSERTO(vd >vdev_stat.vs_alloc);

5114 txg = spa_vdev_config_ent er(spa)

5115 vd->vdev_renovi ng = B_TRUE;

5116 vdev_dirty(vd, 0, NULL, txg);

5117 vdev_config_di rty(vd)

5118 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG;

5120 return (0);

5121 }

5123 /*

5124 * Conplete the renpval by cleaning up the nanespace.

5125 */

5126 static void

5127 spa_vdev_renpve_from nanespace(spa_t *spa, vdev_t *vd)

5128 {

5129 vdev_t *rvd = spa->spa_root_vdev;

5130 uint64_t id = vd->vdev_id;

5131 bool ean_t |ast_vdev = (id == (rvd->vdev_children - 1));
5133 ASSERT(MUTEX_HELD(& pa_nanespace_| ock));

5134 ASSERT(spa_ confl g_hel d(spa, SCL_ALL, R\NV\RI TER) == SCL_ALL);
5135 ASSERT(vd == vd- >vdev_t op);

5137 /*

5138 * Only renpbve any devi ces which are enpty.

new usr/src/uts/comon/fs/zfs/spa.c

5139 */

5140 if (vd->vdev_stat.vs_alloc != 0)

5141 return;

5143 (void) vdev_l abel _init(vd, 0, VDEV_LABEL_REMOVE);

5145 if (list_link_active(&d->vdev_state_dirty_node))

5146 vdev_state_cl ean(vd);

5147 if (list_link_active(&d->vdev_config_dirty_node))

5148 vdev_config_cl ean(vd);

5150 vdev_free(vd);

5152 if (last_vdev) {

5153 vdev_conpact _chi l dren(rvd);

5154 } else {

5155 vd = vdev_al | oc_common(spa, id, 0, &dev_hol e_ops);
5156 vdev_add_chi I d(rvd, vd);

5157 1

5158 vdev_config_dirty(rvd);

5160 /*

5161 * Reassess the health of our root vdev.

5162 */

5163 vdev_reopen(rvd);

5164 }

5166 /*

5167 * Renpve a device fromthe pool -

5168 *

5169 * Renoving a device fromthe vdev nanespace requires several steps
5170 * and can take a significant anpbunt of time. As a result we use
5171 * the spa_vdev_config_[enter/exit] functions which allow us to
5172 * grab and rel ease the spa_config_lock while still holding the namespace
5173 * lock. During each step the configuration is synced out.

5174 */

5176 /*

5177 * Renove a device fromthe pool. Currently, this supports renoving only hot
5178 * spares, slogs, and | evel 2 ARC devices.

5179 */

5180 int

g%g% {spa_vdev_rem)ve(spa_t *spa, uint64_t guid, boolean_t unspare)

5183 vdev_t *vd;

5184 net asl ab_group_t *nmg;

5185 nvlist_t **spares, **|2cache, *nv;

5186 uint64_t txg = 0;

5187 ui nt _t nspares, nl2cache;

5188 int error = 0;

5189 bool ean_t | ocked = MJUTEX_HELD(&pa_nanespace_| ock);

5191 ASSERT(spa_writeabl e(spa));

5193 if (!locked)

5194 txg = spa_vdev_enter(spa);

5196 vd = spa_| ookup_by_gui d(spa, guid, B_FALSE);

5198 if (spa->spa_spares.sav_vdevs ! = NULL &&

5199 nvlist_l ookup_nvlist_array(spa->spa_spares.sav_config,
5200 ZPOOL_CONFI G_SPARES, &spares, &nspares) == 0 &&

5201 (nv = spa_nvlist_| ookup_by_gui d(spares, nspares, guid)) != NULL) {
5202 /*

5203 * Only renove the hot spare if it’s not currently in use
5204 * in this pool

79

new usr/src/uts/comron/fs/zfs/spa.c

5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227

5229
5230
5231
5232

5234

5236
5237
5238
5239

5241
5242
5243
5244
5245
5246

5248
5249
5250
5251

5253

5255
5256
5257
5258
5259
5260
5261

5263
5264
5265
5266

5268
5269
5270

*

/

if (vd == NULL || unspare) {
spa_vdev_renove_aux(spa->spa_spares. sav_confi g,

ZPOOL_CONFI G_SPARES, spares, nspares, nv);

spa_| oad_spares(spa);
spa- >spa_spar es. sav_sync = B_TRUE;

} else {
error = SET_ERROR(EBUSY);

}
} else if (spa->spa_| 2cache. sav_vdevs != NULL &&
nvlist_| ookup_nvlist_array(spa->spa_|l 2cache. sav_confi g,
ZPOOL_CONFI G L2CACHE, &l 2cache, &nl 2cache) == 0 &&
(nv = spa_nvlist_| ookup_by_gui d(l 2cache, nl2cache, guid)) != NULL)
/*

* Cache devices can al ways be renpved.
*
/
spa_vdev_renpve_aux(spa- >spa_| 2cache. sav_confi g,
ZPOOL_CONFI G_L2CACHE, | 2cache, nl 2cache, nv);
spa_|l oad_I| 2cache(spa);
spa- >spa_l 2cache. sav_sync = B_TRUE;
} else if (vd !'= NULL && vd->vdev_islog) {

ASSERT(! | ocked) ;
ASSERT(vd == vd->vdev_t op);

/*

* XXX - Once we have bp-rewite this should
* beconme the common case.

*/

nmg = vd->vdev_ny;

/*
* Stop allocating fromthis vdev.
*/

et asl ab_gr oup_passi vat e(ng) ;

*

* Wait for the youngest allocations and frees to sync,
* and then wait for the deferral of those frees to finish.
*
/
spa_vdev_config_exit(spa, NULL,
txg + TXG_CONCURRENT_STATES + TXG DEFER S| ZE, 0, FTAQ;

/*
* Attenpt to evacuate the vdev.
*/

error = spa_vdev_renpve_evacuate(spa, vd);
txg = spa_vdev_config_enter(spa);
/*

* |f we couldn’t evacuate the vdev, unw nd.

*

if (error) {
net asl ab_group_acti vat e(ng);
return (spa_vdev_exit(spa, NULL, txg, error));

}

/*
* Clean up the vdev nanespace.
*/

spa_vdev_renove_from nanespace(spa, vd);
} else if (vd !'= NULL) {
/*

* Norrmal vdevs cannot be renpved (yet).

new usr/src/uts/comon/fs/zfs/spa.c 81

5271
5272
5273
5274
5275
5276
5277
5278

5280
5281

5283
5284

5286
5287
5288
5289
5290
5291
5292
5293

5295
5296
5297
5298
5299

5301
5302
5303
5304
5305
5306
5307
5308
5309
5310

5312
5313

5315
5316
5317
5318
5319

5321
5322
5323
5324
5325
5326

5328
5329
5330
5331
5332
5333
5334
5335
5336

}

/*

* Find any device that's done replacing, or a vdev nmarked 'unspare’ that's
* current spared, so we can detach it.

*/

*/
error = SET_ERROR(ENOTSUP) ;
} else {
/*
* There is no vdev of any kind with the specified guid.
*/

error = SET_ERROR(ENCENT) ;
}

if (!l ocked)
return (spa_vdev_exit(spa, NULL, txg, error));

return (error);

static vdev_t *
spa_vdev_resilver_done_hunt (vdev_t *vd)
{

vdev_t *newd, *ol dvd;

for (int ¢ = 0; ¢ < vd->vdev_children; c++) {
ol dvd = spa_vdev_resilver_done_hunt (vd->vdev_child[c]);
if (oldvd != NULL)
return (ol dvd);

Check for a conpleted replacenent. W always consider the first
vdev in the list to be the ol dest vdev, and the last one to be

the newest (see spa_vdev_attach() for how that works). In

the case where the newest vdev is faulted, we will not automatically
renove it after a resilver conpletes. This is OKas it will require
user intervention to deternmine which disk the adm n wishes to keep.

B
-~

(vd->vdev_ops == &vdev_repl aci ng_ops) {
ASSERT(vd->vdev_children > 1);

newd
ol dvd

= vd->vdev_chi | d[vd- >vdev_children - 1];

= vd->vdev_chi | d[0] ;

if (vdev_dtl _enpty(newd, DTL_M SSING &&
vdev_dt| _enpty(newd, DTL_QOUTAGE) &&
Ivdev_dt| _required(ol dvd))

return (ol dvd);

}

/*

* Check for a conpleted resilver with the "unspare’ flag set.
*

if (vd->vdev_ops == &vdev_spare_ops) {

vdev_t *first = vd->vdev_child[0];
vdev_t *last = vd->vdev_chil d[vd->vdev_children - 1];

if (last->vdev_unspare) {
oldvd = first;

newd = | ast;
} else if (first->vdev_unspare) {
oldvd = | ast;
newd = first;
} else {
ol dvd = NULL;

}

new usr/src/uts/comron/fs/zfs/spa.c 82
5338 if (oldvd !'= NULL &&

5339 vdev_dt| _enpty(newd, DTL_M SSING &&

5340 vdev_dt| _enpty(newd, DTL_QUTAGE) &&

5341 Ivdev_dt| _required(ol dvd))

5342 return (ol dvd);

5344 /*

5345 * |f there are nore than two spares attached to a disk,

5346 * and those spares are not required, then we want to

5347 * attenpt to free themup now so that they can be used

5348 * by other pools. Once we're back down to a single

5349 * di sk+spare, we stop renoving them

5350 */

5351 if (vd->vdev_children > 2) {

5352 newd = vd->vdev_child[1];

5354 i f (newd->vdev_isspare & | ast->vdev_i sspare &&

5355 vdev_dt| _enpty(last, DTL_M SSI NG &&

5356 vdev_dt| _enpty(last, DTL_OUTAGE) &&

5357 I'vdev_dtl _required(newd))

5358 return (newd);

5359 }

5360 }

5362 return (NULL);

5363 }

5365 static void

5366 spa_vdev_resilver_done(spa_t *spa)

5367 {

5368 vdev_t *vd, *pvd, *ppvd;

5369 uint64_t guid, sguid, pguid, ppguid;

5371 spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER);

5373 while ((vd = spa_vdev_resilver_done_hunt (spa->spa_root_vdev)) != NULL) {
5374 pvd = vd->vdev_parent;

5375 ppvd = pvd->vdev_parent;

5376 guid = vd->vdev_gui d;

5377 pgui d = pvd- >vdev_gui d;

5378 ppgui d = ppvd- >vdev_gui d;

5379 sguid = O;

5380 /*

5381 * | f we have just finished replacing a hot spared device, then
5382 * we need to detach the parent’s first child (the original hot
5383 * spare) as well.

5384 *

5385 if (ppvd->vdev_ops == &dev_spare_ops && pvd->vdev_id == 0 &&
5386 ppvd- >vdev_children == 2) {

5387 ASSERT(pvd- >vdev_ops == &vdev_repl aci ng_ops);

5388 sgui d = ppvd->vdev_chil d[1] - >vdev_gui d;

5389

5390 spa_config_exit(spa, SCL_ALL, FTAG;

5391 if (spa_vdev_detach(spa, guid, pguid, B TRUE) != 0)

5392 return;

5393 if (sguid & spa_vdev_detach(spa, sguid, ppguid, B TRUE) != 0)
5394 return;

5395 spa_config_enter(spa, SCL_ALL, FTAG RWMWR TER);

5396 }

5398 spa_config_exit(spa, SCL_ALL, FTAG;

5399 }

5401 /*

5402 * Update the stored path or FRU for this vdev.

new usr/src/uts/comon/fs/zfs/spa.c

5403
5404
5405
5406

*/
i nt
spa_vdev_set _common(spa_t *spa, uint64_t guid, const char *val ue,
bool ean_t i spath)

5407 {

5408
5409

5411
5413

5415
5416

5418
5419

5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436

5438
5439

5441
5442

vdev_t *vd,
bool ean_t sync = B_FALSE;

ASSERT(spa_writeabl e(spa));
spa_vdev_state_enter(spa, SCL_ALL);

if ((vd = spa_|l ookup_by_guid(spa, guid, B TRUE)) == NULL)
return (spa_vdev_state_exit(spa, NULL, ENCENT));

if (!vd->vdev_ops->vdev_op_| eaf)
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));

if (ispath) {
if (strcnp(value, vd->vdev_path) != 0) {
spa_strfree(vd->vdev_path);
vd->vdev_path = spa_ strdup(val ue);
sync = B_TRUE;

} else {
if (vd->vdev_fru == NULL) {
vd->vdev_fru = spa_strdup(val ue);
sync = B_TRUE;

} else if (strcnmp(value, vd->vdev_fru) != 0) {
spa_strfree(vd->vdev_fru);
vd->vdev_fru = spa_strdup(val ue);
sync = B_TRUE

}

return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));

}
int
spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)

5443 {

5444
5445

5447
5448

return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
}
int
spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)

5449 {

5450
5451

5453
5454
5455
5456
5457

5459
5460

return (spa_vdev_set_common(spa, guid, newfru, B _FALSE));

}
| *

*
* SPA Scanni ng
*

*/

int
spa_scan_stop(spa_t *spa)

5461 {

5462
5463
5464
5465
5466

5468

ASSERT(spa_config_hel d(spa, SCL_ALL, RWWRI TER) == 0);
if (dsl_scan_resilvering(spa->spa_ dsl _pool))

“return (SET_ERROR(EBUSY));
return (dsl_scan_cancel (spa- >spa_ds| _pool));

nt

83

new usr/src/uts/comron/fs/zfs/spa.c

5469 spa_scan(spa_t *spa, pool _scan_func_t func)

5470 {

5471 ASSERT(spa_config_hel d(spa, SCL_ALL, RWWRI TER) == 0);

5473 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)

5474 return (SET_ERROR(ENOTSUP));

5476 /*

5477 * |f aresilver was requested, but there is no DIL on a
5478 * witeable | eaf device, we have nothing to do.

5479 */

5480 if (func == POOL_SCAN RESI LVER &&

5481 lvdev_ reS|Iver _needed(spa->spa_root _vdev, NULL, NULL)) {
5482 spa_async_request (spa, SPA_ASYNC_ RESI LVER _DONE) ;
5483 return (0);

5484 }

5486 return (dsl_scan(spa->spa_dsl _pool, func));

5487 }

5489 /*

5490

5491 * SPA async task processing

5492 *

5493 */

5495 static void

5496 spa_async_renove(spa_t *spa, vdev_t *vd)

5497

5498 if (vd->vdev_renove_wanted) {

5499 vd- >vdev_r enpve_want ed = B_FALSE;

5500 vd->vdev_del ayed_cl ose = B_FALSE;

5501 vdev_set state(vd B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX __NONE) ;
5503 /*

5504 * W want to clear the stats, but we don’'t want to do a full
5505 * vdev_clear() as that will cause us to throw away
5506 * degraded/faulted state as well as attenpt to reopen the
5507 * device, all of which is a waste.

5508 */

5509 vd->vdev_stat.vs_read_errors = 0;

5510 vd->vdev_stat.vs_wite_errors = 0;

5511 vd->vdev_stat.vs_checksumerrors = 0;

5513 vdev_state_dirty(vd->vdev_top);

5514 }

5516 for (int ¢ = 0; ¢ < vd->vdev_children; c++)

5517 spa_async_renove(spa, vd->vdev_child[c]);

5518 }

5520 static void

5521 spa_async_probe(spa_t *spa, vdev_t *vd)

5522 {

5523 if (vd->vdev_probe_want ed)

5524 vd->vdev_probe_want ed = B_FALSE;

5525 vdev_r eopen(vd); /* vdev_open() does the actual probe */
5526 }

5528 for (int ¢ = 0; ¢ < vd->vdev_children; c++)

5529 spa_async_probe(spa, vd->vdev_child[c]);

5530 }

5532 static void

5533
5534

spa_async_aut oexpand(spa_t *spa, vdev_t *vd)

{

84

new usr/src/uts/comon/fs/zfs/spa.c 85 new usr/src/uts/comon/fs/zfs/spa.c 86
5535 sysevent_id_t eid; 5601 if (tasks & SPA_ASYNC REMOVE) {
5536 nvlist_t *attr; 5602 spa_vdev_state_enter(spa, SCL_NONE);
5537 char *physpat h; 5603 spa_async_rennve(spa, spa- >spa_r oot _vdev);
5604 for (int i = 0; i < spa->spa_| 2cache. sav_count; i++)
5539 if (!spa->spa_autoexpand) 5605 spa_async_ renove(spa, spa->spa_| 2cache.sav_vdevs[i]);
5540 return; 5606 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5607 spa_async_renove(spa, spa->spa_spares.sav_vdevs[i]);
5542 for (int ¢ = 0; ¢ < vd->vdev_children; c++) { 5608 (voi d) spa_vdev_state_exit(spa, NULL, 0);
5543 vdev_t *cvd = vd->vdev_child[c]; 5609 }
5544 spa_async_aut oexpand(spa, cvd);
5545 } 5611 if ((tasks & SPA_ASYNC AUTCEXPAND) && !spa_suspended(spa)) {
5612 spa_config_enter(spa, SCL_CONFIG FTAG RW READER);
5547 if (!vd->vdev_ops->vdev_op_| eaf || vd->vdev_physpath == NULL) 5613 spa_async_aut oexpand(spa, spa->spa_root_vdev);
5548 return; 5614 spa_config_exit(spa, SCL_CONFIG FTAG;
5615 }
5550 physpath = knmem zal | oc(MAXPATHLEN, KM SLEEP);
5551 (voi d) snprintf(physpath, MAXPATHLEN, "/ devi ces%", vd- >vdev_physpat h) ; 5617 /*
5618 * See if any devices need to be probed.
5553 VERI FY(nvlist_alloc(&ttr, NV_UN QUE NAME, KM SLEEP) == 0); 5619 */
5554 VERI FY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5620 if (tasks & SPA_ASYNC PROBE) {
5621 spa_vdev_state_enter(spa, SCL_NONE);
5556 (voi d) ddi _| og_sysevent (zfs_di p, SUNW VENDOR, EC DEV_STATUS, 5622 spa_async_probe(spa, spa->spa_r oot _vdev);
5557 ESC DEV_DLE, attr, &eid, DDI_SLEEP); 5623 (voi d) spa_vdev_state_exit(spa, NULL, 0);
5624 }
5559 nvlist_free(attr);
5560 kmem f ree(physpat h, MAXPATHLEN) ; 5626 /*
5561 } 5627 * | f any devices are done replacing, detach them
5628 */
5563 static void 5629 if (tasks & SPA_ASYNC RESI| LVER_DONE)
5564 spa_async_t hread(spa_t *spa) 5630 spa_vdev_resil ver_done(spa);
5565 {
5566 int tasks; 5632 s
5633 * Kick off a resilver.
5568 ASSERT(spa- >spa_sync_on); 5634 */
5635 if (tasks & SPA ASYNC RESI LVER)
5570 mut ex_ent er (&spa- >spa_async_| ock) ; 5636 dsl _resilver_restart(spa->spa_dsl_pool, 0);
5571 tasks = spa->spa_async_t asks;
5572 spa- >spa_async_t asks = 0; 5638 /*
5573 mut ex_exi t (&spa- >spa_async_| ock) ; 5639 * Let the world know that we're done.
5640 */
5575 7% 5641 mut ex_ent er (&spa- >spa_ async_| I ock) ;
5576 * See if the config needs to be updated. 5642 spa- >spa_async_t hread = NULL;
5577 */ 5643 cv_broadcast (&pa- >spa_async_cv);
5578 if (tasks & SPA_ASYNC CONFI G _UPDATE) { 5644 mut ex_exi t (&spa- >spa_async_| ock) ;
5579 uint64_t ol d_space, new_space; 5645) thread_exit();
5646
5581 mut ex_ent er (&spa_nanespace_| ock) ;
5582 ol d_space = netasl ab_cl ass_get space(spa nor mal _cl ass(spa)); 5648 void
5583 spa_config_updat e(spa, SPA_CONFI G_UPDATE_POQOL) ; 5649 spa_async_suspend(spa_t *spa)
5584 new_space = netasl ab_cl ass_get space(spa_nor mal _class(spa)); 5650 {
5585 mut ex_exi t (&spa_nanmespace_| ock) ; 5651 nmut ex_ent er (&spa- >spa_async_| ock) ;
5652 spa- >spa_async_suspended++;
5587 * 5653 whi | e (spa->spa_async_thread != NULL)
5588 * |f the pool grew as a result of the config update, 5654 cv_wal t (&pa- >spa_async_cv, &spa->spa_async_| ock);
5589 * then log an internal history event. 5655 nmut ex_exi t (&spa- >spa_async_| ock);
5590 */ 5656 }
5591 if (new_space != ol d_space) {
5592 spa_history_l og_internal (spa, "vdev online", NULL, 5658 void
5593 "pool %’ size: Wlu(+%lu)", 5659 spa_async_resunme(spa_t *spa)
5594 spa_nane(spa), new_space, new_space - ol d_space); 5660 {
5595 } 5661 mut ex_ent er (&spa- >spa_async_| ock) ;
5596 } 5662 ASSERT(spa- >spa_async_suspended = 0);
5663 spa- >spa_async_suspended- - ;
5598 /* 5664 mut ex_exi t (&spa- >spa_async_| ock) ;
5599 * See if any devices need to be marked REMOVED. 5665 }
5600 */

new usr/src/uts/comon/fs/zfs/spa.c

5667 static void

5668 spa_async_di spatch(spa_t *spa)

5669 {

5670 nmut ex_ent er (&spa- >spa_async_| ock) ;

5671 if (spa->spa_async_t asks && lspa >spa async_suspended &&
5672 spa- >spa_async_t hread == NULL

5673 rootdir '= NULL && !vn_is readonly(rootdlr))

5674 spa- >spa_async_t hread = thread_create(NULL, O,

5675 spa_async_thread, spa, 0, &0, TS_RUN, maxclsyspri);
5676 mut ex_exi t (&spa- >spa_async_| ock);

5677 }

5679 void

5680 spa_async_request(spa_t *spa, int task)

5681 {

5682 zfs_dbgnsg("spa=% async request task=%", spa->spa_nane, task);
5683 nmut ex_ent er (&spa- >spa_async_| ock) ;

5684 spa- >spa_async_t asks | = task;

5685 mut ex_exi t (&spa->spa_async_| ock) ;

5686 }

5688 /*

5689 *

5690 * SPA syncing routines

5691 *

5692 */

5694 static int

5695 bpobj _enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)

5696 {

5697 bpobj _t *bpo = arg;

5698 bpobj _enqueue(bpo, bp, tx);

5699 return (0);

5700 }

5702 static int

5703 spa_free_sync_cb(void *arg, const bl kptr_t *bp, dmu_tx_t *tx)

5704 {

5705 zio_t *zio = arg;

5707 zi o_nowai t (zi o_free_sync(zio, zio->i o_spa, dmu_tx_get_txg(tx), bp,
5708 zio->io_flags));

5709 return (0);

5710 }

5712 static void

5713 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dnu_tx_t *tx)
5714 {

5715 char *packed = NULL;

5716 si ze_t bufsize;

5717 size_t nvsize = 0;

5718 drmu_buf _t *db;

5720 VERI FY(nvlist_size(nv, &nvsize, NV_ENCODE XDR) == 0);

5722 /*

5723 * Wite full (SPA_CONFI G BLOCKSI ZE) bl ocks of configuration
5724 * information. This avoids the dbuf_will_dirty() path and
5725 * saves us a pre-read to get data we don't actually care about.
5726 */

5727 buf si ze = P2ROUNDUP((ui nt 64_t) nvsi ze, SPA CONFI G BLOCKSI ZE)
5728 packed = krmem al | oc(buf si ze, KM SLEEP);

5730 VERI FY(nvli st pack(nv &packed, &nvsize, NV_ENCODE_XDR,

5731 KM_SLEEP) == 0);

5732 bzero(packed + nvsize, bufsize - nvsize);

87

new usr/src/uts/comon/fs/zfs/spa.c 88
5734 dmu_wri t e(spa- >spa_net a_obj set, obj, 0, bufsize, packed, tx);

5736 kmem f ree(packed, bufsize);

5738 VERI FY(0 == dmu_bonus_hol d(spa- >spa_net a_obj set, obj, FTAG &db));
5739 drmu_buf _wi Il _dirty(db, tx);

5740 *(uint64_t *)db->db_data = nvsi ze;

5741 dmu_buf _rel e(db, FTAG;

5742 }

5744 static void

5745 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dnu_tx_t *tx,

5746 const char *config, const char *entry)

5747 {

5748 nvlist_t *nvroot;

5749 nvlist_t **list;

5750 int i;

5752 if (!sav->sav_sync)

5753 return;

5755 I*

5756 * Update the MOS nvlist describing the list of available devices.
5757 * spa_val idate_aux() will have already made sure this nvlist is
5758 * valid and the vdevs are | abel ed appropriately.

5759 */

5760 if (sav->sav_object == 0) {

5761 sav- >sav_obj ect = dnu_obj ect _al | oc(spa- >spa_net a_obj set,
5762 DMJ_OT_PACKED _NVLI ST, 1 << 14, DMJ_OT_PACKED NVLI ST Sl ZE,
5763 si zeof (uint64_t), tx);

5764 VERI FY(zap_updat e(spa- >spa_net a_obj set,

5765 DMJ_POOL_DI RECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5766 &sav- >sav_object, tx) == 0);

5767 }

5769 VERI FY(nvlist_alloc(&vroot, NV_UN QUE_NAME, KM SLEEP) == 0);

5770 if (sav->sav_count == 0)

5771 VERI FY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5772 } else {

5773 list = kr'rem al | oc(sav->sav_count * sizeof (void *), KM SLEEP);
5774 for (i = 0; i < sav->sav_count; i++)

5775 list[i] = vdev_config_ generat e(spa, sav->sav_vdevs[i],
5776 B | FALSE VDEV_CONFI G_L2CACHE) ;

5777 VERI FY(nvl i st _add_nvl i st _array(nvroot, confi g, list,

5778 sav- >sav _count) == 0);

5779 for (i = 0; i < sav->sav_count; i++)

5780 nvlist_free(list[i]);

5781 kmem free(list, sav->sav_count * sizeof (void *));

5782 }

5784 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);

5785 nvlist_free(nvroot);

5787 sav->sav_sync = B_FALSE;

5788 }

5790 static void

5791 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)

5792 {

5793 nvlist_t *config;

5795 if (list_is_enpty(&spa->spa_config_ dirty_list))

5796 return;

5798 spa_config_enter(spa, SCL_STATE, FTAG RW READER);

new usr/src/uts/comon/fs/zfs/spa.c 89 new usr/src/uts/comron/fs/zfs/spa.c 90
5865 */
5800 config = spa_config_generate(spa, spa->spa_root_vdev, 5866 ASSERT(zpool _prop_feature(nvpair_name(elem));
5801 dmu_t x_get _txg(tx), B_FALSE);
5868 fname = strchr(nvpair_nane(elem, '@) + 1;
5803 /* 5869 VERI FY3U(0, ==, zfeature_| ookup_ nama(fname &f eature));
5804 * |f we’'re upgrading the spa version then nmake sure that
5805 * the config object gets updated with the correct version. 5871 spa_feature_enabl e(spa, feature, tx);
5806 */ 5872 spa_history_| og_internal (spa, "set", tx,
5807 if (spa->spa_ubsync.ub_version < spa->spa_uberbl ock. ub_versi on) 5873 "Us=enabl ed", nvpair_nane(elem);
5808 fnvlist_add_ui nt 64(config, ZPOOL_CONFI G_VERSI ON, 5874 br eak;
5809 spa- >spa_uber bl ock. ub_versi on);
5876 case ZPOOL_PROP_VERSI ON:
5811 spa_config_exit(spa, SCL_STATE, FTAG; 5877 VERI FY(nvpai r _val ue_ui nt64(el em & ntval) == 0);
5878 /*
5813 if (spa->spa_config_syncing) 5879 * The version is synced seperatly before other
5814 nvlist_free(spa- >spa_ confi g_syncing); 5880 * properties and should be correct by now.
5815 spa- >spa_confi g_syncing = config; 5881 */
5882 ASSERT3U(spa_version(spa), >=, intval);
5817 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5883 br eak;
5818 }
5885 case ZPOOL_PROP_ALTROCT:
5820 static void 5886 /*
5821 spa_sync_version(void *arg, dnmu_tx_t *tx) 5887 * 'altroot’ is a non-persistent property. It should
5822 { 5888 * have been set tenporarily at creation or inport tine.
5823 uint64_t *versionp = arg; 5889 */
5824 uint64_t version = *versionp; 5890 ASSERT(spa- >spa_root != NULL);
5825 spa_t *spa = dmu_t x_pool (tx)->dp_spa; 5891 br eak;
5827 /* 5893 case ZPOOL_PROP_READONLY:
5828 * Setting the version is special cased when first creating the pool. 5894 case ZPOOL_PROP_CACHEFI LE:
5829 */ 5895 /*
5830 ASSERT(tx->tx_txg != TXG IN TIAL); 5896 * "readonly’ and 'cachefile’ are al so non-persisitent
5897 * properties.
5832 ASSERT(SPA_VERSI ON_| S_SUPPORTED(ver si on)) ; 5898 S
5833 ASSERT(versi on >= spa_version(spa)); 5899 br eak;
5900 case ZPOOL_PROP_COMVENT:
5835 spa- >spa_uber bl ock. ub_versi on = version; 5901 VERI FY(nvpair_val ue_string(el em &strval) == 0);
5836 vdev_confi g_dirty(spa->spa_root_vdev); 5902 if (spa->spa_coment != NULL)
5837 spa_history_log_internal (spa, "set", tx, "version=%1d", version); 5903 spa_strfree(spa->spa_comment);
5838 } 5904 spa- >spa_coment = spa_strdup(strval);
5905 /*
5840 /* 5906 * We need to dirty the configuration on all the vdevs
5841 * Set zpool properties. 5907 * so that their |abels get updated. |t’'s unnecessary
5842 */ 5908 * to do this for pool creation since the vdev's
5843 static void 5909 * configuratoin has already been dirtied.
5844 spa_sync_props(void *arg, dmu_tx_t *tx) 5910 */
5845 { 5911 if (tx->tx_txg !'= TXG I N TIAL)
5846 nvlist_t *nvp arg; 5912 vdev_config_dirty(spa->spa_root_vdev);
5847 spa_t *spa = dnu t x_pool (tx)->dp_spa; 5913 spa_history_log_internal (spa, "set", tx,
5848 obj set _t *npbs = spa- >spa_neta_obj set; 5914 "Us=%", nvpair_nanme(elen), strval);
5849 nvpair_t *el em = NULL; 5915 br eak;
5916 defaul t:
5851 mut ex_ent er (&spa- >spa_props_| ock) ; 5917 /*
5918 * Set pool property values in the pool props nps object.
5853 while ((el em = nvlist_next_nvpair(nvp, elem)) { 5919 */
5854 uint64_t intval; 5920 i f (spa->spa_pool _props_object == 0) {
5855 char *strval, *fnarre; 5921 spa- >spa_pool _props_obj ect =
5856 zpool _prop_t prop; 5922 zap_create_| i nk(nps, DMJ OT_POOL_PROPS,
5857 const char *propnane; 5923 DMJ_POOL_DI RECTORY_OBJECT, DMJ_POOL_PROPS,
5858 zprop_type_t proptype; 5924 tx);
5859 zfeature_info_t *feature; 5925 }
5861 switch (prop = zpool _nane_to_prop(nvpair_nane(elen)) { 5927 /* normaelize the property name */
5862 case ZPROP_| NVAL: 5928 propnanme = zpool _prop_to_name(prop);
5863 /* 5929 proptype = zpool _prop_get_type(prop);
5864 * We checked this earlier in spa_prop_validate().

new usr/src/uts/comon/fs/zfs/spa.c 91 new usr/src/uts/comon/fs/zfs/spa.c
5931 if (nvpair_type(el em) == DATA_TYPE_STRING { 5997 ASSERT(spa- >spa_sync_pass == 1);
5932 ASSERT(propt ype == PROP_TYPE_STRI NG) ;
5933 VERI FY(nvpai r_val ue_string(elem &strval) == 0); 5999 rrw_enter (&dp->dp_config_rw ock, RWWRI TER, FTAQG;
5934 VERI FY(zap_updat e(nos,
5935 spa- >spa_pool _props_obj ect, propnane, 6001 if (spa->spa_ubsync.ub_version < SPA VERSION ORI G N &&
5936 1, strlen(strval) + 1, strval, tx) == 0); 6002 spa- >spa_uber bl ock. ub_versi on >= SPA VERSION ORIG N) {
5937 spa_history_l og_internal (spa, "set", tx, 6003 dsl _pool _create_origin(dp, tx);
5938 "U%s=%", nvpair nams(elen), strval);
5939 } else if (nvpair type(el em) == DATA TYPE ul NT64) { 6005 /* Keeping the origin open increases spa_mnref */
5940 VERI FY(nvpai r_val ue_ui nt 64(elem & ntval) == 0); 6006 spa->spa_m nref += 3;
6007 1
5942 if (proptype == PROP_TYPE_| NDEX) {
5943 const char *unused; 6009 if (spa->spa_ubsync.ub_version < SPA_VERSI ON_NEXT_CLONES &&
5944 VERI FY(zpool _prop_i ndex_to_stri ng(6010 spa- >spa_uber bl ock. ub_versi on >= SPA_VERS|I ON_NEXT_CLONES) {
5945 prop, intval, &unused) == 0); 6011 dsl _pool _upgrade_cl ones(dp, tx);
5946 } 6012 }
5947 VERI FY(zap_updat e(nos,
5948 spa- >spa_pool _props_obj ect, propnane, 6014 if (spa->spa_ubsync.ub_version < SPA VERSI ON DI R CLONES &&
5949 8, 1, & ntval, tx) == 0); 6015 spa- >spa_uber bl ock. ub_versi on >= SPA VERSI ON_DI R_CLONES) {
5950 spa_ hi st ory_log_i nt er nal (spa, "set", tx 6016 dsl _pool _upgrade_dir_cl ones(dp, tx);
5951 "%=%1d", nvpair_nane(elen), i ntval);
5952 } else { 6018 /* Keeping the freedir open increases spa_minref */
5953 ASSERT(0); /* not allowed */ 6019 spa->spa_m nref += 3;
5954 } 6020 }
5956 switch (prop) { 6022 if (spa->spa_ubsync.ub_version < SPA VERSI ON_FEATURES &&
5957 case ZPOOL_PROP_DELEGATI ON: 6023 spa- >spa_uber bl ock. ub_versi on >= SPA_VERS| ON_FEATURES) {
5958 spa- >spa_del egation = intval; 6024 spa_feature_create_zap_objects(spa, tx);
5959 br eak; 6025 }
5960 case ZPOOL_| PROP_BOOTFS: 6026 rrw_exit(&p->dp_config_rw ock, FTAG;
5961 spa- >spa_bootfs = intval; 6027 }
5962 br eak;
5963 case ZPOOL_PROP_FAI LUREMCODE: 6029 /*
5964 spa->spa_fail mode = intval; 6030 * Sync the specified transaction group. New blocks may be dirtied as
5965 br eak; 6031 * part of the process, so we iterate until it converges.
5966 case ZPOOL_| PRO:' AUTOEXPAND: 6032 */
5967 spa- >spa_aut oexpand = intval; 6033 void
5968 if (tx->tx_txg !'= TXG_INTI AL) 6034 spa_sync(spa_t *spa, uint64_t txg)
5969 spa_async_r equest (spa, 6035 {
5970 SPA_ASYNC_AUTCEXPAND) ; 6036 dsl _pool _t *dp = spa->spa_dsl _pool ;
5971 br eak 6037 obj set _t *nbs = spa->spa_net a_obj set;
5972 case ZPOOL_| PRCP DEDUPDI TTO 6038 bpobj _t *def er_bpo = &spa- >spa_def erred_bpobj ;
5973 spa- >spa_dedup_ditto = intval; 6039 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG MASK];
5974 br eak; 6040 vdev_t *rvd = spa->spa_root_vdev;
5975 defaul t: 6041 vdev_t *vd;
5976 br eak; 6042 dmu_t x_t *tx;
5977 } 6043 int error;
5978 }
6045 VERI FY(spa_writeabl e(spa));
5980 }
6047 /*
5982 mut ex_exi t (&spa- >spa_props_| ock); 6048 * Lock out configuration changes.
5983 } 6049 */
i 6050 spa_config_enter(spa, SCL_CONFIG FTAG RW READER);
5985 /*
5986 * Perform one-tine upgrade on-di sk changes. spa_version() does not 6052 spa- >spa_synci ng_txg = txg;
5987 * reflect the new version this txg, so there nust be no changes this 6053 spa- >spa_sync_pass = 0;
5988 * txg to anything that the upgrade code depends on after it executes.
5989 * Therefore this nust be called after dsl_pool _sync() does the sync 6055 /*
5990 * tasks. 6056 * |If there are any pendi ng vdev state changes, convert them
5991 */ 6057 * into config changes that go out with this transaction group.
5992 static void 6058 */
5993 spa_sync_upgrades(spa_t *spa, dnu_tx_t *tx) 6059 spa onfl g_enter(spa, SCL_STATE, FTAG RW READER);
5994 { 6060 while (list_head(&spa->spa_state_dirty_list) !I= NULL) {
5995 dsl _pool _t *dp = spa->spa_dsl| _pool ; 6061 /*
6062 * W& need the wite |l ock here because, for aux vdevs,

new usr/src/uts/comon/fs/zfs/spa.c

6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077

6079

6081
6082
6083

6085
6086
6087
6088
6089
6090
6091

6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104

6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122

6124
6125
6126
6127
6128

* calling vdev_config_dirty() nodifies sav_config.

* This is ugly and will becone unnecessary when we

* elimnate the aux vdev wart by integrating all vdevs
*/into the root vdev tree.

*

spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);

spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG RWWRI TER);
while ((vd = list_head(&spa->spa_state_dirty_list)) !'= NULL) {

vdev_state_cl ean(vd);
vdev_config_dirty(vd);

}
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG;

spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG RW READER);

}
spa_config_exit(spa, SCL_STATE, FTAG;
tx = dnu_t x_create_assi gned(dp, txg);

spa- >spa_sync_starttime = gethrtime();
VERI FY(cycl i c_reprogran spa- >spa_| deadman _cycid,
spa- >spa_sync_starttime + spa->spa_deadman_synctine));

/*

* |f we are upgrading to SPA_VERSI ON_RAI DZ_DEFLATE this txg,
* set spa_deflate if we have no raid-z vdevs.

*/

if (spa->spa_ubsync.ub_version < SPA VERSI ON_RAI DZ_DEFLATE &&
spa- >spa_uber bl ock. ~ub_version >= SPA_VERSI ON_RAl DZ_DEFLATE) {

int i;
for (i = 0; i < rvd->vdev_children; i++) {
vd = rvd->vdev_child[i];
if (vd->vdev_deflate_| ratio != SPA_M NBLOCKSI ZE)
br eak;
i1f (i == rvd->vdev_children) {

spa- >spa_defl ate = TRUE;

VERI FY(0 == zap_add(spa- >spa_net a_obj set,
DMJ_POOL_DI RECTORY_OBJECT, DMJ_POOL DEFLATE
sizeof (uint64_t), 1, &spa->spa_deflate, tx));

If anything has changed in this txg, or if soneone is waiting
for this txg to sync (eg, spa_vdev_renove()), push the
deferred frees fromthe previous txg. |f not, |leave them

al one so that we don’t generate work on an otherw se idle
system

* Ok ok ok ko

*/
if (!txg_list_enpty(&dp->dp_dirty_datasets, txg) ||
ltxg_list_enpty(&dp->dp_dirty_dirs, txg) ||
Ttxg_list_enpty(&dp->dp_sync_tasks, txg) ||
((dsl _scan_active(dp->dp_scan) ||
txg_sync_wai ting(dp)) && !spa_shutting_ down(spa))) {
zio_t *zio = zio_root(spa, NULL, NULL,
VERI FY3U(bpobj _i terat e(defer bpo
spa_free_sync_ch, zio, tx), ==, 0);
VERI FYO(zi o_wai t (zi o));
}

/*
* |terate to convergence.
*

do {
int pass = ++spa->spa_sync_pass;

new usr/src/uts/comron/fs/zfs/spa.c

6130
6131
6132
6133
6134
6135
6136

6138
6139
6140
6141
6142
6143
6144
6145
6146

6148
6149

6151
6152

6154
6155

6157

6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173

6175
6176
6177
6178
6179

6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194

spa_sync_confi g_obj ect (spa, tx);

spa_sync_aux_dev(spa, &spa->spa_spares, tx,
ZPOOL_CONFI G_SPARES, DMJ_PCOOL_SPARES) ;

spa_sync_aux_dev(spa, &spa->spa_| 2cache, tx,
ZPOOL_CONFI G_L2CACHE, DMJ_POOL_L2CACHE) ;

spa_errl og_sync(spa, txg);

dsl _pool _sync(dp, txg);

if (pass < zfs_sync_pass_deferred_free) {
zio_t *zio = zio_root(spa, NULL, NULL, 0);
bplist_iterate(free_bpl, spa_free_sync_cbh,
zio, tx);
VERI FY(zi o_wai t (zio) == 0);
} else {
bplist_iterate(free_bpl, bpobj_enqueue_cb,
def er _bpo, tx);

}

ddt _sync(spa, txg);
dsl _scan_sync(dp, tx);

while (vd = txg_list_renove(&spa->spa_vdev_txg_list, txg))
vdev_sync(vd, txg);

if (pass == 1)
spa_sync_upgrades(spa, tx);

} while (dmu_objset_is_dirty(nmos, txg));
/*
* Rewite the vdev configuration (which includes the uberbl ock)
* to commt the transaction group.
*
* If there are no dirty vdevs, we sync the uberblock to a few
* random t op-| evel vdevs that are known to be visible in the
* config cache (see spa_vdev_add() for a conplete description).
* |f there *are* dirty vdevs, sync the uberblock to all vdevs.
*/
for (53) {

/*

* We hold SCL_STATE to prevent vdev open/close/etc.
* while we're attenpting to wite the vdev |abels.
*/

spa_config_enter(spa, SCL_STATE, FTAG RW READER);

if (list_is_enpty(&spa->spa_config dirty_list)) {
vdev_t *svd[SPA_DVAS_PER BP] ;
int svdcount = O;
int children = rvd->vdev_children;
int cO = spa_get_randon(children);

for (int ¢ =0; ¢ < children; c++) {
vd = rvd->vdev_child[(cO0 + c) %children];
if (vd->vdev_ns_array == 0 || vd->vdev_i sl og)
conti nue;

svd[svdcount ++] = vd;
if (svdcount == SPA DVAS_PER BP)
br eak;

error = vdev_config_sync(svd, svdcount, txg, B _FALSE);
if (error I'= 0)
error = vdev_config_sync(svd, svdcount, txg,
B_TRUE) ;
} else {
error = vdev_config_sync(rvd->vdev_child,

new usr/src/uts/comon/fs/zfs/spa.c 95 new usr/src/uts/comon/fs/zfs/spa.c 96
6195 rvd->vdev_children, txg, B_FALSE); 6261 }
6196 if (error = 0)
6197 error = vdev_config_sync(rvd->vdev_child, 6263 /*
6198 rvd->vdev_children, txg, B _TRUE); 6264 * Sync all pools. W don't want to hold the namespace | ock across these
6199 } 6265 * operations, so we take a reference on the spa_t and drop the | ock during the
6266 * sync.
6201 if (error == 0) 6267 */
6202 spa->spa_| ast _synced_gui d = rvd->vdev_gui d; 6268 void
6269 spa_sync_al | pool s(voi d)
6204 spa_config_exit(spa, SCL_STATE, FTAG); 6270 {
6271 spa_t *spa = NULL;
6206 if (error == 0) 6272 nmut ex_ent er(&spa nanespace_| ock) ;
6207 br eak; 6273 while ((spa = spa_next(spa)) != NULL)
6208 zio suspend(spa NULL) ; 6274 if (spa_state(spa) != POOL_STATE_ACTI VE | |
6209 zi o_resune_wal t (spa); 6275 Ispa_writeabl e(spa) || spa_suspended(spa))
6210 } 6276 conti nue;
6211 dmu_t x_commi t (tx); 6277 spa_open_ref(spa, FTAG;
6278 nmut ex_exi t (&pa_nanmespace_| ock) ;
6213 VERI FY(cycl i c_reprogran(spa->spa_deadrman_cycid, CY_INFINTY)); 6279 t xg_wai t _synced(spa_get _dsl (spa) 0);
6280 mut ex_ent er (&spa_nanmespace_| ock) ;
6215 /* 6281 spa_cl ose(spa, FTAQ;
6216 * Clear the dirty config list. 6282 }
6217 */ 6283 mut ex_exi t (&spa_nanmespace_| ock) ;
6218 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6284 }
6219 vdev_config_cl ean(vd);
6286 /*
6221 /* 6287 *
6222 * Now that the new config has synced transactionally, 6288 * M scel | aneous routines
6223 * let it becorme visible to the config cache. 6289 *
6224 */ 6290 */
6225 if (spa->spa_config_syncing != NULL)
6226 spa_config_set(spa, spa->spa_config_syncing); 6292 /*
6227 spa- >spa_config_txg = txg; 6293 * Renove all pools in the system
6228 spa- >spa_confi g_synci ng = NULL; 6294 */
6229 } 6295 void
6296 spa_evict_all (void)
6231 spa- >spa_ubsync = spa->spa_uber bl ock; 6297 {
6298 spa_t *spa;
6233 dsl _pool _sync_done(dp, txg);
6300 /*
6235 7% 6301 * Renove all cached state. All pools should be closed now,
6236 * Updat e usabl e space statistics. 6302 * so every spa in the AVL tree should be unreferenced.
6237 */ 6303 */
6238 while (vd = txg_list_renove(&spa->spa_vdev_txg_list, TXG CLEAN(txQ))) 6304 mut ex_ent er(&spa nanmespace_| ock) ;
6239 vdev_sync_done(vd, txg); 6305 whil e ((spa = spa_next (NULL)) !'= NULL) {
6306
6241 spa_updat e_dspace(spa); 6307 * Stop async tasks. The async thread may need to detach
6308 * a device that’'s been replaced, which requires grabbing
6243 /* 6309 * spa_nanespace_| ock, so we nust drop it here.
6244 * |t had better be the case that we didn't dirty anything 6310 */
6245 * since vdev_config_sync(). 6311 spa_open_ref(spa, FTAG;
6246 */ 6312 mut ex_exi t (&pa_nanmespace_| ock) ;
6247 ASSERT(txg_list_enpty(&dp->dp_dirty_datasets, txg)); 6313 spa_async_suspend(spa);
6248 ASSERT(txg_list_enpty(&p->dp_dirty_dirs, txg)) 6314 nmut ex_ent er (&spa_nanmespace_| ock) ;
6249 ASSERT(t xg_l i st _enpty(&spa->spa_vdev_txg_li st, txg)) 6315 spa_cl ose(spa, FTAQ;
6251 spa- >spa_sync_pass = O; 6317 if (spa->spa_state != POOL_STATE_UNI NI Tl ALI ZED) {
6318 spa_unl oad(spa);
6253 spa_config_exit(spa, SCL_CONFIG FTAG; 6319 spa_deacti vat e(spa);
6320 }
6255 spa_handl e_i gnored_wr it es(spa); 6321 spa_renove(spa);
6322 }
6257 /* 6323 mut ex_exi t (&spa_nanmespace_| ock) ;
6258 * |f any async tasks have been requested, kick them off. 6324 }
6259 */
6260 spa_async_di spat ch(spa) ; 6326 vdev_t *

new usr/src/uts/comon/fs/zfs/spa.c 97

6327 spa_| ookup_by_gui d(spa_t *spa,

uint64_t guid, bool ean_t aux)

6328 {

6329 vdev_t *vd;

6330 int i

6332 if ((vd = vdev_| ookup_by_gui d(spa->spa_root _vdev, guid)) != NULL)
6333 return (vd);

6335 if (aux) {

6336 for (i = 0; i < spa->spa_| 2cache. sav_count; i++) {
6337 vd = spa->spa_ I2cache sav_vdevs[i];

6338 if (vd->vdev_guid == guid)

6339 return (vd);

6340 }

6342 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6343 vd = spa->spa_spar es. sav _vdevs[i];

6344 if (vd->vdev_guid == guid)

6345 return (vd);

6346 }

6347 }

6349 return (NULL);

6350 }

6352 void

6353 spa_upgrade(spa_t *spa, uint64_t version)

6354 {

6355 ASSERT(spa_wri teabl e(spa));

6357 spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER);

6359 *

6360 * This should only be called for a non-faulted pool, and since a
6361 * future version would result in an unopenabl e pool, this shouldn’t be
6362 * possi bl e.

6363 *

6364 ASSERT(SPA_VERSI ON_| S_SUPPORTED(spa- >spa_uber bl ock. ub_version));
6365 ASSERT(ver si on >= spa- >spa_uber bl ock. ub_versi on);

6367 spa- >spa_uber bl ock. ub_versi on = version;

6368 vdev_confi g_dirty(spa->spa_root_vdev);

6370 spa_config_exit(spa, SCL_ALL, FTAG;

6372 txg_wai t _synced(spa_get_dsl (spa), 0);

6373 }

6375 bool ean_t

6376 spa_has_spare(spa_t *spa, uint64_t guid)

6377 {

6378 int i;

6379 ui nt 64_t sparegui d;

6380 spa_aux_vdev_t *sav = &spa- >spa_spares;

6382 for (i = 0; i < sav->sav_count; i++)

6383 if (sav->sav_vdevs[i]->vdev_guid == guid)

6384 return (B_TRUE);

6386 for (i = 0; i < sav->sav_npending; i++)

6387 if (nvlist_|lookup_uint64(sav->sav_pending[i], ZPOOL_CONFI G GU D,
6388 &spareguid) == 0 & sparegui d == gui d)

6389 return (B_TRUE);

6390 }

6392 return (B_FALSE);

new usr/src/uts/comon/fs/zfs/spa.c

6393

6395
6396
6397
6398

}
| *

* Check if a pool has an active shared spare device.

* Not
*/

e: reference count of an active spare is 2, as a spare and as a repl ace

6399 static bool ean_t
6400 spa_has_active_shared_spare(spa_t *spa)

6401
6402
6403
6404

6406
6407
6408
6409
6410
6411

6413
6414

6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430

6432
6433

6435
6436
6437
6438

6440
6441
6442
6443

6445
6446
6447
6448
6449
6450

6452
6453
6454
6455
6456
6457
6458

{

fil
in
or

* Ok kb F ok

voi d

spa_event _notify(spa_t *spa,

#i f def

Post a sysevent corresponding to the given event. The
the event definitions in sys/sysevent/eventdefs.h.

int i, refcnt;
uint64_t pool;

spa_aux_vdev_t *sav = &spa->spa_spares;

for (i = 0; i < sav->sav_count; i++)
if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
& efcnt) &% pool != OULL && pool == spa_guid(spa) &&

refcnt > 2)
return (B_TRUE);
}

return (B_FALSE);

'nane’ nust be one of
The payl oad will be
This doesn’t do anyt hing
as we don’t want consuners to misinterpret ztest

led in fromthe spa and (optionally) the vdev.
the userland |ibzpool,
zdb as real changes.

vdev_t *vd, const char *nane)
_KERNEL

“sysevent _t *ev;

sysevent _attr_list_t *attr = NULL;

sysevent _val ue_t val ue;

sysevent _id_t ei d;

ev = sysevent_al | oc(EC_ZFS,
SE_SLEEP) ;

(char *)name, SUNW KERN PUB "zfs",

val ue. val ue_type = SE _DATA TYPE_STRI NG

val ue. val ue. sv_string = spa_ name(spa)

if (sysevent_add_attr(&ttr, ZFS_EV POO_ NAME, &val ue,
goto done;

SE_SLEEP) != 0)

val ue. val ue_type = SE DATA TYPE Ul NT64;

val ue. val ue. sv_ui nt 64 = spa_gui d(spa);

if (sysevent_add_attr(&attr), ZFS_EV_POO__GUI D, &val ue,
goto done;

if (vd) {
val ue. val ue_type = SE_DATA_TYPE_UI NT64;
val ue. val ue. sv_ui nt 64 = vd- >vdev_gui d;
if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUI D, &val ue,
SE_SLEEP) != 0)
goto done;

SE_SLEEP) != 0)

if (vd->vdev_path) {
val ue. val ue_type = SE_DATA TYPE_STRI NG
val ue. val ue. sv_string = vd->vdev_pat h;
if (sysevent_add_attr(&attr, ZFS EV_VDEV_PATH,
&val ue, SE_SLEEP) != 0)
got o done;

98

new usr/src/uts/comon/fs/zfs/spa.c

6459 }

6461 if (sysevent_attach_attributes(ev, attr) != 0)
6462 goto done;

6463 attr = NULL;

6465 (void) |og_sysevent(ev, SE_SLEEP, &eid);

6467 done:

6468 if (attr)

6469 sysevent _free_attr(attr);

6470 sysevent _free(ev);

6471 #endi f

6472 }

99

new usr/src/uts/comon/fs/zfs/sys/dnu. h

R R R R

28892 Thu May 16 17:33:49 2013

new usr/src/uts/comon/ fs/zfs/sys/dnu. h
3741 zfs needs better comments

W1l Andrews <wi || a@pectral ogi c. con>
Justin G bbs <justing@pectral ogi c.conp
Al an Sorers <al ans@pectral ogi c. com>

Submi tted by:
Submi tted by:
Submi tted by:

Revi ewed by:
Revi ewed by:

Mat t hew Ahrens <mahr ens@lel phi x. com>
Eric Schrock <eric.schrock@lel phi x. com>

LR

__unchanged_portion_onitted_

284 typedef void dmu_buf _evict_func_t(struct dmu_buf *db, void *user_ptr);

286 /*

287 */The nanes of zap entries in the DI RECTORY_OBJECT of the MOS.

288 *

289 #define DMJ_POOL_DI RECTORY_OBJECT 1

290 #define DMJ_POOL_CONFI G "config"

291 #define DMJ_POOL_FEATURES FOR WRI TE "features_for_wite"

292 #define DMJ_POOL_FEATURES FOR_READ "features_for_read"

293 #define DMJ_POOL_FEATURE_DESCRI PTIONS “feature_descriptions"

294 #define DMJ_POOL_ROOT_DATASET "root _dataset”

295 #define DMJ_PQOOL_SYNC BPOBJ "sync_bplist"

296 #define DMJ_POOL_ERRLOG SCRUB "errlog_scrub"

297 #define DMJ_POOL_ERRLOG LAST “errlog_|ast"

298 #define DMJ _POOL_SPARES "spares”

299 #define DMJ_POOL_DEFLATE "defl ate"

300 #define DMJ_POOL_H STORY "hi story"

301 #defi ne DMJ_POOL_PROPS " pool _props"

302 #define DMJ_POOL_L2CACHE "] 2cache"

303 #define DMJ_POOL_TMP_USERREFS "tnp_userrefs”

304 #defi ne DMJ_POOL_DDT " DDT- %s- %s- %"

305 #define DMJ_POOL_DDT_STATS "DDT-statistics"

306 #define DMJ_POOL_CREATI ON_VERSI ON "creation_version"

307 #define DMJ_POOL_SCAN "scan"

308 #define DMJ_PQOOL_FREE BPOBJ "free_bpobj"

309 #define DMJ_POOL_BPTREE_OBJ "bptree_obj"

310 #define DMJ_POOL_EMPTY_BPOBJ "enpty_bpobj "

312 /*

313 * Allocate an object fromthis objset. The range of object nunbers
314 * available is (0, DN_.MAX_OBJECT). Object 0 is the neta-dnode.

315 *

316 * The transaction nust be assigned to a txg. The newy allocated
317 * object will be "held" in the transaction (ie. you can nodify the
318 * newy allocated object in this transaction).

319 *

320 * dmu_object_alloc() chooses an object and returns it in *objectp.
321 *

322 * dnu_object_clain() allocates a specific object nunber. If that

323 * nunber is already allocated, it fails and returns EEXI ST.

324 *

325 * Return 0 on success, or ENOSPC or EEXI ST as specified above.

326 *

327 uint64_t dmu_object_all oc(objset_t *os, dnu_object_type_t ot,

328 i nt bl ocksize, dmu_object_type_t bonus _type, int bonus Ien dmu_t x_t *tx);
329 int dmu_object _clai m(objset_t *os, uint64_t object, dmu_object_type_t ot,
330 int bl ocksi ze, dmu_object_type_t bonus_type, int bonus_len, dnu_tx_t *tx);
331 int dmu_object_reclain(objset_t *os, uint64_t object, dmu_object_type_t ot,
332 int blocksize, dmu_object_type_t bonustype, int bonuslen);

334 /| *

335 * Free an object fromthis objset.

336 *

337 * The object’s data will be freed as well (ie. you don't need to call

new usr/src/uts/comon/ fs/zfs/sys/dnu. h

338
339
340
341
342
343
344
345
346
347
348
349
350

352
353
354
355
356
357
358
359
360
361
362
363
364

366
367
368
369
370
371
372
373
374
375
376
377
378

380
381
382
383
384
385

387
388
389
390
391
392

394
395
396
397
398
399

401
402
403

* dnu_free(object, 0, -1, tx)).
*
* The object need not be held in the transaction.
*
* |f there are any holds on this object’s buffers (via dnu_buf_hold()),
* or tx holds on the object (via dmu_tx_hol d_object()), you can not
* freeit; it fails and returns EBUSY.
*
* |f the object is not allocated, it fails and returns ENCENT.
*
* Return O on success, or EBUSY or ENCENT as specified above.
*/
int dmu_obj ect_free(objset_t *os, uint64_t object, dnu_tx_t *tx);
/*
* Find the next allocated or free object.
*
* The objectp paraneter is in-out. It will be updated to be the next
* object which is allocated. 1gnore objects which have not been
* nodified since txg.
*
* XXX Can only be called on a objset with no dirty data.
*
* Returns O on success, or ENCENT if there are no nore objects.
*/
int dmu_obj ect _next (objset_t *os, uint64_t *objectp,
boolean_t hol e, uint64_t txg)
/*
* Set the data bl ocksize for an object.
*
* The object cannot have any bl ocks allcated beyond the first. If
* the first block is allocated already, the new size nust be greater
* than the current block size. |If these conditions are not net,
* ENOTSUP wi || be returned.
*
* Returns O on success, or EBUSY if there are any holds on the object
* contents, or ENOTSUP as described above.
*/
int dmu_obj ect _set_bl ocksi ze(obj set _t *os, uint64_t object, uint64_t size,
int ibs, dmu_tx_t *tx);
/*
* Set the checksum property on a dnode. The new checksum al gorithm will
* apply to all newly witten bl ocks; existing blocks will not be affected.
*/
voi d dnu_obj ect _set _checksun{objset_t *os, uint64_t object, uint8_t checksum

dmu_tx_t *tx);
/*
* Set the conpress property on a dnode. The new conpression algorithmwill
* apply to all newly witten bl ocks; existing blocks will not be affected.
*/
voi d dnu_obj ect _set _conpress(objset_t *os, uint64_t object, uint8_t conpress,

dmu_tx_t *tx);
/*
* Decide howto wite a block: checksum conpression, nunber of copies, etc.
*/
#define WP_NOFI LL Ox1
#define WP_DMU_SYNC 0x2
#define WP_SPI LL 0x4
void dnu_write_policy(objset_t *os, struct dnode *dn, int level, int wp,

struct zio_prop *zp);
/*

new usr/src/uts/comon/fs/zfs/sys/dnu. h

404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

423
424
425

427 i
428 i

429

430 i

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

452
453
454
455
456
457
458
459
460
461
462
463
464

466
467
468
469

The bonus data is accessed nore or less |like a regular buffer.

You nust dnu_bonus_hol d() to get the buffer, \Ahi ch will give you a
dmu_buf _t with db_of fset==-1ULL, and db_size = the size of the bonus
data. As with any normal buffer you nust call dmu_buf_read() to
read db_data, dnmu_buf_will _di rty() before nodifying it, and the

obj ect nmust be held in an assigned transaction before calling
dnu_buf _will_dirty. You may use dnu_buf_set _user() on the bonus
buffer as well. You nust release your hold wth drmu_buf_rele().

I

* Returns ENCENT, EIQ or O.
#endif /* | codereview */
*
/
i nt dmu_bonus_hol d(obj set _t *0s, uint64_t object, void *tag, dmu_buf_t **);
i nt dmu_bonus_max(void
int dmu_set_bonus(dmu_| buf _t *, int, dmu_tx_t *);
int dmu_set _bonustype(dmu_buf t *, dnu_object _type t, dmu_tx_t *);
dmu_obj ect _type_t dnmu_get bonustype(drru buf _t *);
int dnmu_rmspill(objset_t *, uint64_t, dmu_tx_t *);

/*
* Special spill buffer support used by "SA" framework
*/

ill_hol d_by_bonus(dmu_buf _t *bonus, void *tag, dmu_buf_t **dbp);

i1l —hol d_by_dnode(struct dnode *dn, uint32_t flags,
voi d tag, dmu_buf _t **dbp);

Il

int dmu_spill_hol d_existing(dmu_buf t *bonus, void *tag, dmu_buf_t **dbp);
/*

* Obtain the DMJ buffer fromthe specified object which contains the

* specified offset. dmu_buf_hold() puts a "hold" on the buffer, so

* that it will remain in nenory. You nust release the hold with

* dnu_buf _rele(). You nusn’t access the dnmu_buf_t after rel easing your
* hold. You nmust have a hold on any dnu_buf_t* you pass to the DMJ.

*

* You nust call dmu_buf_read, dmu_buf_wll _dirty, or dmu_buf_will_fill
* on the returned buffer before reading or witing the buffer’s

* db_data. The comments for those routines describe what particul ar

* operations are valid after calling them

*

* The object nunber nmust be a valid, allocated object nunber.

*/

int dmu_buf_hol d(obj set _t *os, uint64_t object, uint64_t offset,
void *tag, dmu_buf _t **, int flags);

voi d dmu_buf _add_ref (dnu_buf _t *db, void* tag);

voi d dmu_buf _rel e(dmu_buf_t *db, void *tag);

ui nt 64_t dnu_buf_refcount(drm_buf_t *db) ;

/
dnu_buf _hol d_array hol ds the DMJ buffers which contain all bytes in a
range of an object. A pointer to an array of dnu_buf_t*'s is
returned (in *dbpp).

dnu_buf _rele_array rel eases the hold on an array of dmu_buf_t*’'s, and
frees the array. The hold on the array of buffers MJIST be rel eased
with dnu_buf _rele_array. You can NOT rel ease the hold on each buffer
individually with dmu_buf_rele.

* Ok kR ok Rk Ok Ok 3k
-~

i nt dmu_buf _hol d_array_by_bonus(dnu_buf _t *db, uint64_t offset,

uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp);

voi d dnmu_buf _rel e_array(drm_buf_t ** int nunbufs, void *tag);

/*

* Returns NULL on success, or the existing user ptr if it’s already
* been set.

*

new usr/src/uts/comon/fs/zfs/sys/dnu. h

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

498
499
500
501

503
504
505
506

508
509
510
511
512
513
514
515

517
518
519
520

522
523
524
525
526
527
528
529
530
531
532
533
534
535

user_ptr is for use by the user and can be obtained via dmu_buf_get_user().

user _data_ptr_ptr should be NULL, or a pointer to a pointer which
will be set to db->db_data when you are allowed to access it. Note
that db->db_data (the pointer) can change when you do dmu_buf _read(),
dmu_buf _tryupgrade(), dnu_buf _will _dirty(), or dmu_buf _will _fill().
*user _data_ptr_ptr w il be sef to the new value when it changes.

I'f non-NULL, pageout func will be called when this buffer is being
exci sed fromthe cache, so that you can clean up the data structure
pointed to by user_ptr.

dnu_evict_user() will call the pageout func for all buffers in a
objset with a given pageout func.

I T T

*/

voi d *dru_buf _set user(dr'ru buf _t *db, void *user_ptr, void *user_data_ptr_ptr,

dmu_buf _evi ct _func_t *pageout func)
/*
* set_user_ie is the sane as set_user, but request inmediate eviction
* when hold count goes to zero.
*
voi d *dnu_buf _set _user_ie(dmu_buf_t *db, void *user_ptr,

voi d *user_data_ptr_ptr, dmu_buf_evict_func_t *pageout_func);
voi d *dnmu_buf _updat e_user (dmu_buf _t *db_fake, void *ol d_user_ptr,
void *user_ptr, void *user _data_ptr_ptr,
dmu_buf _evict_func_t *pageout _func);
voi d dmu_evict_user (objset _t *os, dmu_| buf _evict_func_t *func);

/*
* Returns the user_ptr set with dmu_buf_set_user(), or NULL if not set.
*
/
voi d *dmu_buf _get user (dnmu_buf _t *db);

/*

* Returns the bl kptr associated with this dbuf, or NULL if not set.
*

struct bl kptr *dnu_buf_get_bl kptr(dnu_buf_t *db);

/
Indicate that you are going to nodify the buffer’s data (db_data).

The transaction (tx) nmust be assigned to a txg (ie. you ve called
drmu_t x_assign()). The buffer’s object nust be held in the tx
(ie. you ve called dnmu_tx_hol d_obj ect (tx, db->db_object)).

* Ok ok ok %k F
-~

void dnu_buf _will _dirty(dnu_buf_t *db, dmu_tx_t *tx);

/*
* Tells if the given dbuf is freeable.
*/
bool ean_t dmu_buf _freeabl e(dnu_buf _t *);

/
You nust create a transaction, then hold the objects which you wll
(or mght) nodify as part of this transaction. Then you nust assign
the transaction to a transaction group. Once the transaction has
been assi gned, you can nodify buffers which belong to held objects as
part of this transaction. You can’t nodify buffers before the
transacti on has been assigned; you can't nodify buffers which don’t
bel ong to objects which this transaction holds; you can't hold

obj ects once the transaction has been assigned. You may hold an

obj ect which you are going to free (with dnu_object_free()), but you
don’t have to.

* Ok ok ok kR % Ok O % % F %

You can abort the transaction before it has been assigned.

new usr/src/uts/comon/fs/zfs/sys/dnu. h

536 * Note that you may hold buffers (wth dmu_buf_hold) at any tine,
537 * regardl ess of transaction state.

538 */

540 #define DMJ_NEW OBJECT (-1ULL)
541 #define DMJ_OBJECT_END (-1ULL)

543 drmu_tx_t *dnu_t x_creat e(objset_t *os);

544 void dnmu_tx_hold_wite(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);

545 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
546 uint64_t len);

547 void dnu_tx_hol d zap(dr'ru tx_t *tx, uint64_t object, int add, const char *nane);

548 voi d dnmu_t x_hol d_bonus(dmu_tx_t *tx, uint64_t object);
549 void dnmu_tx_hold_spill(dmi_tx_t *tx, uint64_t object);

550 void dmu_tx_hol d_sa(dmu_tx_t *tx, struct sa_handl e *hdl, bool ean_t may_grow);

551 voi d dnmu_t x_hol d_sa_creat e(dmu_| tx _t *tx, int total _size);
552 void dmu_tx abort(dnu tx_t *tx);

553 int dmu_tx_assign(dmu_tx_t *tx, enumtxg_how txg_how);
554 void dnu_tx_walt(drm tx_t *tx);

555 void dnmu_tx_conmit(dmu_tx_t *tx);

557 | *

558 * To register a commit call back, dnu_tx_call back_register() nust be called.
559 *

560 * dcb_data is a pointer to caller private data that is passed on as a

561 * callback paraneter. The caller is responsible for properly allocating and
562 * freeing it.

563 *

564 * \WWen registering a callback, the transaction nust be already created, but
565 * it cannot be conmitted or aborted. It can be assigned to a txg or not.
566 *

567 * The callback will be called after the transaction has been safely witten
568 * to stable storage and will also be called if the dnmu_tx is aborted.

569 * If there is any error which prevents the transaction from being committed to
570 * disk, the callback will be called with a value of error != 0.

571 */

572 typedef void dmu_tx_cal |l back_func_t(void *dcb_data, int error);

574 void dmu_t x_cal | back_register(dnu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,

575 voi d *dcb_dat a) ;

577 [*

578 * Free up the data blocks for a defined range of a file. |If sizeis
579 * -1, the range fromoffset to end-of-file is freed.

580 */

581 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
582 uint64_t size, dmu_tx_t *tx);

583 int drmu_free_|l ong_ range(objset _t *os, uint64_t object, uint64_t offset,
584 uint64_t size);
585 int dnu_free_obj ect(obj set_t *os, uint64_t object);

587 /| *
588 * Conveni ence functions.
589 *

590 * Canfail routines will return O on success, or an errno if there is a
591 * nonrecoverable I/O error.

592 */

593 #defi ne DMJ_READ PREFETCH 0 /* prefetch */

594 #defi ne DMJ_READ NO PREFETCH 1/* don't prefetch */

595 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
596 void *buf, uint32_t flags);

597 void dmu_wite(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,

598 const void *buf, dnu_tx_t *tx);

599 void dnu_preal | oc(objset _t *os, uint64_t object, uint64_t offset, uint64_t size,

600 dmu_tx_t *tx);

601 int drmu_read_ui o(objset _t *os, uint64_t object, struct uio *uio, uint64_t size);

new usr/src/uts/comon/fs/zfs/sys/dnu. h

6

602 int dnu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,

603 drmu_tx_t *tx)

604 int dmu_wite_ui o_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
605 dmu_tx_t *tx);

606 int dnu_wite pages(obj set_t *os, uint64_t object, uint64_t offset,
607 uint64_t size, struct page *pp, dmu_tx_t *tx);

608 struct arc_buf *drru _request _arcbuf (dmu_buf _t *handl e, int size);
609 void dmu_return_arcbuf (struct arc_buf *buf);

610 voi d dnu_assi gn_arcbuf (dmu_buf _t *handl e, uint64_t offset, struct arc_buf *buf,

611 dmu_tx_t *tx);

612 int dmu_xuio_init(struct xuio *uio, int niov);

613 void dnu_xuio_fini(struct xuio *uio);

614 int dnu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
615 size_t n);

616 int dnu_xuio_cnt(struct xuio *uio);

617 struct arc_buf *dnmu_xuio arcbuf(struct Xuio *uio, int i);

618 voi d dnu_xui o_cl ear(struct Xuio *uio, int i);

619 void xui o_stat_wbuf_copied();

620 voi d xuio_stat_wbuf _nocopy();

622 extern int zfs_prefetch_disable;

624 | *
625 * Asynchronously try to read in the data.
626 */

627 void dnu_prefetch(objset_t *os, uint64_t object, uint64_t offset,
628 uint64_t len);

630 typedef struct dmu_object_info {
/*

631 Al sizes are in bytes unless otherw se indicated. */

632 uint32_t doi _data_bl ock_si ze;

633 uint32_t doi _net adat a_bl ock_si ze;

634 dmu_obj ect _type_t doi _type;

635 dmu_obj ect _type_t doi _bonus_type;

636 uint64_t doi _bonus_si ze;

637 uint8_t doi _indirection; /* 2 = dnode->i ndirect->data */
638 uint8_t doi _checksum

639 ui nt8_t doi _conpress;

640 uint8_t doi_pad[5];

641 ui nt 64_t doi _physi cal _bl ocks_512; /* data + netadata, 512b bl ks */
642 uint64_t doi _nax_of f set;

643 uint64_t doi _filT_count; /* nunber of non-enpty bl ocks */

644 } dmu_object_info_t;
646 typedef void arc_byteswap_func_t(void *buf, size_t size);

648 typedef struct dmu_object_type_info {

649 drmu_obj ect _byt eswap_t ot _byt eswap;
650 bool ean_t ot _net adat a;
651 char *ot _narne;

652 } dmu_object _type_info_t;

654 typedef struct dnu_object_byteswap_info {
655 arc_byt eswap_func_t *ob_f unc;
656 char *ob_nane;
657 } dmu_obj ect _byteswap_info_t;

659 extern const dnmu_object_type_info_t dnu_ot[DMJ_OT_NUMIYPES] ;

660 extern const drmu_obj ect_byteswap_i nfo_t dmu_ot_byt eswap[DMJ_BSWAP_NUMFUNCS] ;

662 /*
663 * Get infornation on a DMJ object.
664 *
665 * Return O on success or ENCENT if object is not allocated.
666 *
*

667 If doi is NULL, just indicates whether the object exists.

new usr/src/uts/comon/fs/zfs/sys/dnu. h

668 */

669 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
670 /* Like dmu_object_info, but faster if you have a hel d dnode in hand. */
671 #endif /* | coderevi ew */

672 void dnu_obj ect _i nfo_from dnode(struct dnode *dn, dnu_object_info_t *doi);
673 /* Like drmu_object_info, but faster if you have a held dbuf in hand. */
674 #endif /* | codereview */

675 void dnu_object _info_fromdb(dnmu_buf_t *db, dnu_object_info_t *doi);

676 /*

677 * Like dmu_object_info_fromdb, but faster still when you only care about
678 * the size. This is specifically optimzed for zfs_getattr().

679 */

680 #endif /* | codereview */

681 voi d drmu_obj ect _si ze_from db(dnu_buf _t *db, uint32_t *blksi ze,

682 u_l ongl ong_t *nbl k512);

684 typedef struct dmu_objset_stats {

685 ui nt64_t dds_numclones; /* number of clones of this */

686 uint64_t dds_creation txg,

687 uint64_t dds_gui d;

688 dmu_obj set _type_t dds_type;

689 uint8_t dds_is_snapshot;

690 uint8_t dds_inconsistent;

691 char dds_ori gi n[MAXNAVELEN] ;

692 } dnu_obj set_stats_t;

694 /*

695 * Cet stats on a dataset.

696 *

697 voi d dnu_obj set _fast_stat(objset_t *os, dmu_objset_stats_t *stat);

699 /*

700 * Add entries to the nvlist for all the objset’s properties. See

701 * zfs_prop_table[] and zfs(1n) for details on the properties.

702 */

703 voi d drmu_obj set _stats(objset_t *os, struct nvlist *nv);

705 [*

706 * Get the space usage statistics for statvfs().

707 *

708 * refdbytes is the anount of space "referenced" by this objset.

709 * availbytes is the ambunt of space available to this objset, taking
710 * into account quotas & reservations, assumng that no other objsets
711 * use the space first. These values correspond to the 'referenced and
712 * 'available’ properties, described in the zfs(1n) manpage.

713 *

714 * usedobjs and availobjs are the nunber of objects currently allocated,
715 * and avail abl e.

716 *

717 voi d dnu_obj set _space(objset_t *os, uint64_t *refdbytesp, uint64_t *avail bytesp,
718 ui nt64_t *usedobjsp, uint64_t *avail objsp);

720 /*

721 * The fsid_guid is a 56-bit ID that can change to avoid collisions.

722 * (Contrast with the ds_guid which is a 64-bit IDthat will never

723 * change, so there is a snall probability that it will collide.)

724 *|

725 uint64_t dmu_obj set _fsid_guid(objset_t *os);

727 |*

728 * Get the [cnitine for an objset’s snapshot dir

729 */

730 timestruc_t dnmu_objset_snap_cntine(objset_t *os);

732 int dmu_obj set_i s_snapshot (obj set _t *os);

new usr/src/uts/comon/ fs/zfs/sys/dnu. h

734
735
736
737
738
739
740
741
742
743
744
745
746
747
748

750
751
752
753
754
755

757
758
759
760

762
763
764
765
766
767
768
769
770
771

773
774
775
776
777
778
779
780
781
782

784
785

787
788
789
790
791
792

794
795
796
797
798

extern struct spa *dnu_obj set _spa(objset_t *os);
extern struct zilog *dnu_obj set _zil (objset _t *os)
extern struct dsl_pool *dnmu_objset pool (objset _t *os);
extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
extern void dmu_obj set _name(objset_t *os, char *buf);
extern dmu_obj set _type_t dmu_obj set type(obj set_t *o0s);
extern uint64_t dnu_objset_id(objset_t *os);
extern uint64_t dmu_obj set_syncprop(objset_t *os);
extern uint64_t dnu_obj set_| ogbi as(obj set_t *os);
extern int dmu _snapshot _| i st_next (objset_t *os, int nanelen,
uint64_t *id, uint64_t *offp, bool ean_t *case _conflict);

extern int dnu snapshot real nane(obj set _t “*0s, char *nane, char *real,
int maxl en, boolean_t *conflict);

extern int dnu_dlr Iist_next(objset_t *os, int nanelen, char *nane,
uint64_t *idp, uint64_t *offp);

typedef int objset_used_cb_t(dnu_object_type_t bonustype,
voi d *bonus, uint64_t *userp, uint64_t *groupp);

extern void drru_obj set _regi ster_type(dnmu_obj set_type_t ost,

obj set _used_cb_t *cb);

extern void dmu_obj set_set_user(objset_t *os, void *user_ptr);

extern voi d *dnmu_obj set _get _user (obj set _t *os);

/*

* Return the txg nunber for the given assigned transaction.
*/

uint64_t dmu_tx_get_txg(dmu_tx_t *tx);

char *nane,

/*

* Synchronous write.

* If a parent zio is provided this function initiates a wite on the
* provided buffer as a child of the parent zio.

* In the absence of a parent zio, the wite is conpleted synchronously.
* At wite conpletion, blk is filled with the bp of the witten bl ock.
* Note that while the data covered by this function will be on stable
* storage when the wite conpletes this new data does not becone a

* permanent part of the file until the associated transacti on commts.
*/

/*

* {zfs, zvol,ztest}_get_done() args

*/

typedef struct zgd {

struct zilog *zgd_zil og;
struct bl kptr *zgd_bp;
dmu_buf _t *zgd_db;
struct rl *zgd_rl;
voi d *zgd_private;
} zgd_t;
typedef void dmu_sync_cb_t(zgd_t *arg, int error);

int dmu_sync(struct zio *zio, uint64_t txg, dnu_sync_cb_t *done, zgd_t

/*

* Find the next hole or data block in file starting at *off

* Return found offset in *off. Return ESRCH for end of file.

*

int dmu_of f set _next (obj set_t *os, uint64_t object, boolean_t hole,
uint64_t *off);

/*

* |Initial setup and final teardown.

*/

extern void dmu_init(void);

extern void dmu_fini(void);

*zgd);

new usr/src/uts/comon/fs/zfs/sys/dnu. h

800 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
801 uint64_t object, uint64_t offset, int len);

802 void dmu_traverse_obj set (objset_t *os, uint64_t txg_start,

803 dmu_traverse_cb_t cb, void *arg);

805 int dmu_diff(const char *tosnap_nane, const char *fronmsnap_nane,

806 struct vnode *vp, offset_t *offp);

808 /* CRC64 table */

809 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECVA-182, reflected form*/
810 extern uint64_t zfs_crc64_tabl e[256];

812 #ifdef __cplusplus

813 }

814 #endi f

816

#endif /* _SYS DMJ H */

new usr/src/uts/comron/fs/zfs/txg.c 1

R R R R

21896 Thu May 16 17:33:49 2013
new usr/src/uts/comon/fs/zfs/txg.c
3741 zfs needs better comments
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Justin G bbs <justing@pectral ogi c.conp
Submi tted by: Al an Sorers <al ans@pectral ogi c. com>
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. com>
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. com>

LR

____unchanged_portion_onitted_

340 /*
341 *
342 *
343 * On return, the transaction group has reached a stable state in which it can
344 * then be passed off to the syncing context.

345 */

346 #endif /* |
347 static void
348 txg_qui esce(dsl _pool _t *dp,

{

Bl ocks until all transactions in the group are conmitted.

coder evi ew */

uint64_t txg)

349

350 tx_state_t *tx = &dp->dp_tx;

351 int g = txg & TXG MASK;

352 int c;

354 /*

355 * Gab all tx_cpu | ocks so nobody el se can get into this txg.
356 *

357 for (c = 0; c < max_ncpus; c++)

358 mut ex_ent er (& x- >t x_cpu[c].tc_I| ock);

360 ASSERT(txg == tx->tx_open_txg);

361 t X- >t x_open_t xg++;

363 DTRACE_PROBE2(t xg__qui esci ng, dsl_pool _t *, dp, uint64_t, txg);
364 DTRACE_PROBE2(t xg__opened, dsl_pool _t *, dp, uint64_t, tx->tx_open_txg);
366 /*

367 * Now that we’ve increnented tx_open_txg, we can |let threads
368 * enter the next transaction group.

369 */

370 for (c = 0; ¢ < max_ncpus; c++)

371 mut ex_exit (& x->tx_cpu[c].tc_Il ock);

373 /*

374 * Qui esce the transaction group by waiting for everyone to txg_exit().
375 *

376 for (c = 0; ¢ < max_ncpus; c++) {

377 tx_cpu_t *tc = & x->tx_cpu[c];

378 mut ex_enter (& c->tc_| ock);

379 while (tc->tc_count[g] != 0)

380 cv_wait(&c->tc_cv[g], &c->tc_|ock);

381 mut ex_exi t (& c->tc_l ock);

382 }

383 }

385 static void

386 txg_do_cal |l backs(list_t *cb_list)

387 {

388 drmu_t x_do_cal | backs(cb_list, 0);

390 l'ist_destroy(cb_list);

392 kmem free(cb_list, sizeof (list_t));

393 }

*)

new usr/src/uts/comon/fs/zfs/txg.c

395 /*

396 * Dispatch the commit call backs registered on this txg to worker threads.
397 *

398 * |f no callbacks are registered for a given TXG nothing happens.

399 * This function creates a taskq for the associated pool, if needed.

400 #endif /* | codereview */

401 */

402 static void

403 t xg_di spat ch_cal | backs(dsl _pool _t *dp, uint64_t txg)

404 {

405 int c;

406 tx_state_t *tx = &p->dp_tx;

407 list_t *cb_list;

409 for (c = 0; ¢ < max_ncpus; c++) {

410 tx_cpu_t *tc = & x->tx_cpu[c];

411 /*

412 * No need to lock tx_cpu_t at this point, since this can
413 * only be called once a txg has been synced.

414 *

340 /* No need to lock tx_cpu_t at this point */

416 int g =txg & TXG MASK;

418 if (list_is_enmpty(& c->tc_callbacks[g]))

419 conti nue;

421 if (tx->tx_commt_cb_taskg == NULL) {

422 /*

423 * Commit call back taskq hasn't been created yet.
424 */

425 tx->tx_commt_cb_taskq = taskg_create("tx_conmt_ch",
426 max_ncpus, mnclsyspri, max_ncpus, mex_ncpus * 2,
427 TASKQ_PREPOPULATE) ;

428 }

430 cb_list = kmem al | oc(sizeof (list_t), KM SLEEP);

431 list_create(cb_list, sizeof (dnu_tx_callback_t),

432 of f set of (drmu_t x_cal | back_t, dcb_node));

434 list_nove_tail (& c->tc_callbacks[g], cb_list);

436 (void) taskq_dispatch(tx->tx_commit_cb_taskqg, (task_func_t
437 txg_do_cal | backs, cb_list, TQ SLEEP);

438

439 }

____unchanged_portion_onitted_

new usr/src/uts/ comon/fs/zfs/vdev_| abel . c 1

R R R R

37985 Thu May 16 17:33:49 2013
new usr/src/uts/comon/fs/zfs/vdev_| abel .c
3741 zfs needs better comments
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Justin G bbs <justing@pectral ogi c.conp
Submi tted by: Al an Sorers <al ans@pectral ogi c. com>
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. com>
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. com>

LR

____unchanged_portion_onitted_

1031 /* Sync the uberblocks to all vdevs in svd[] */
1032 #endif /* ! codereview */

1033 int

1034 vdev_uberbl ock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1035 {

1036 spa_t *spa = svd[O0]->vdev_spa;

1037 zio_t *zio;

1038 uint64_t good_wites = 0;

1040 zio = zio_root(spa, NULL, &good_writes, flags);

1042 for (int v = 0; v < svdcount; v++)

1043 vdev_uber bl ock_sync(zi o, ub, svd[v], flags);

1045 (void) zio_wait(zio);

1047 *

1048 * Flush the uberblocks to disk. This ensures that the odd | abels
1049 * are no | onger needed (because the new uberbl ocks and the even
1050 * | abels are safely on disk), so it is safe to overwite them
1051 *

1052 zio = zio_root(spa, NULL, NULL, flags);

1054 for (int v = 0; v < svdcount; v++)

1055 zio_flush(zio, svd[v]);

1057 (void) zio_wait(zio);

1059 return (good_wites >>1 7?0 : EO;

1060 }

1062 /*

1063 * On success, increment the count of good wites for our top-level vdev.
1064 */

1065 static void

1066 vdev_| abel _sync_done(zio_t *zio)

1067 {

1068 uint64_t *good_wites = zio->io_private;
1070 if (zio->o_error == 0)

1071 atom c_add_64(good_wites, 1);
1072 }

1074 | *

1075 * If there weren’t enough good wites, indicate failure to the parent.
1076 */

1077 static void

1078 vdev_| abel _sync_t op_done(zi o_t *zio)

1079 {

1080 uint64_t *good_wites = zio->io_private;
1082 if (*good_wites == 0)

1083 zio->o_error = SET_ERROR(EIO;

new usr/src/uts/comon/fs/zfs/vdev_| abel .c

1085 kmem free(good_wites, sizeof (uint64_t));
1086 }

1088 /*

1089 * We ignore errors for log and cache devices, sinply free the private data
1090 */

1091 static void

1092 vdev_| abel _sync_i gnore_done(zio_t *zio)

1093 {

1094 kmem free(zio-> o_private, sizeof (uint64_t))

1095 }

1097 /*

1098 * Wite all even or odd |abels to all |eaves of the specified vdev.
1099 */

1100 static void

1101 vdev_| abel _sync(zio_t *zio, vdev_t *vd, int |, uint64_t txg, int flags)
1102 {

1103 nvlist_t *label;

1104 vdev_phys_t *vp;

1105 char *buf;

1106 size_t buflen;

1108 for (int ¢ = 0; ¢ < vd->vdev_children; c++)
1109 vdev_| abel _sync(zi o, vd->vdev_child[c], |, txg, flags);

1111 if (!vd->vdev_ops->vdev_op_| eaf)
1112 return;

1114 if (!vdev_writeabl e(vd))
1115 return;

1117 /*

1118 * Generate a | abel describing the top-level config to which we bel ong.
1119 */

1120 | abel = spa_config_generate(vd->vdev_spa, vd, txg, B _FALSE);

1122 vp = zio_buf_alloc(sizeof (vdev_phys_t));
1123 bzero(vp, sizeof (vdev_phys_t));

1125 buf = vp->vp_nvlist;
1126 bufl en = sizeof (vp->vp_nvlist);

1128 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM SLEEP) == 0) {
1129 for (; | < VDEV_LABELS; | += 2) |

1130 vdev_| abel _write(zio, vd, |, vp,

1131 of f set of (vdev_| abel _t, vl _vdev_phys),

1132 si zeof (vdev_phys_t),

1133 vdev_| abel _sync_done, zio->io_private,

1134 flags | ZI O FLAG DONT_PROPAGATE) ;

1135 }

1136 }

1138 zi o_buf _free(vp, sizeof (vdev_phys_t));
1139 nvlist_free(label);
1140 }

1142 int

1143 vdev_| abel _sync_list(spa_t *spa, int |, uint64_t txg, int flags)
1144 {

1145 list_t *dl = &spa->spa_config_dirty_list;

1146 vdev_t *vd;

1147 zio_t *zio;

1148 int error;

1150 /*

new usr/src/uts/comon/ fs/zfs/vdev_| abel .c

vd = list_next(dl, vd)) {
zal | oc(si zeof (uint64_t),

vdev_| abel _sync_t op_done,

vd = list_next(dl, vd))

vdev configuration.

in-1ine coments bel ow

uint64_t txg, boolean_t tryhard)

ZI O_FLAG_CANFAI L,

Normal Iy, we don’t want to try too hard to wite every |abel and

sk, we don’t want the rest of the

wi th ZI O FLAG TRYHARD before
faul ted.

1151 * Wite the new | abels to disk.

1152 */

1153 zio = zio_root(spa, NULL, NULL, flags);

1155 for (vd = list_head(dl); vd !'= NULL;

1156 uint64_t *good_wites = knem.

1157 KM_SLEEP) ;

1159 ASSERT(! vd- >vdev_i shol e);

1161 zio_t *vio = zio_null(zio, spa, NULL,

1162 (vd->vdev_islog || vd->vdev_aux != NULL) ?
1163 vdev_| abel _sync_i gnore_done :

1164 good_wites, flags);

1165 vdev_| abel _sync(vio, vd, |, txg, flags);

1166 zi o_nowai t (Vvi 0)

1167 }

1169 error = zio_wait(zio);

1171 *

1172 * Flush the new | abels to disk.

1173 */

1174 zio = zio_root(spa, NULL, NULL, flags);

1176 for (vd = list_head(dl); vd !'= NULL;

1177 zio_flush(zio, vd);

1179 (void) zio_wait(zio);

1181 return (error);

1182 }

1184 /*

1185 * Sync the uberbl ock and any changes to the

1186 *

1187 * The order of operations is carefully crafted to ensure that
1188 * if the systempanics or |oses power at any tine, the state on disk
1189 * is still transactionally consistent. The

1190 * describe the failure semantics at each stage.

1191 *

1192 * Moreover, vdev_config_sync() is designed to be idenpotent: if it fails
1193 * at any tinme, you can just call it again, and it will resune its work.
1194 */

1195 int

1196 vdev_config_sync(vdev_t **svd, int svdcount,

1197 {

1198 spa_t *spa = svd[O0]->vdev_spa;

1199 uber bl ock_t *ub = &spa->spa_uber bl ock;

1200 vdev_t *vd;

1201 zio_t *zio;

1202 int error;

1203 int flags = ZI O FLAG CONFI G WRI TER

1205 /*

1206 *

1207 * uberblock. If there is a flaky di

1208 * sync process to block while we retry. But if we can't wite a
1209 * single |abel out, we should retry

1210 * bailing out and declaring the pool

1211 */

1212 if (tryhard)

1213 flags | = ZI O_FLAG TRYHARD

1215 ASSERT(ub->ub_t xg <= txg)

new usr/src/uts/comon/fs/zfs/vdev_| abel .c

1217
1218
1219
1220
1221
1222
1223
1224
1225
1226

1228
1229

1231

1233
1234
1235
1236
1237
1238
1239

1241
1242
1243

1245

1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257

1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

1277
1278
1279
1280
1281
1282

/*
* If this isn't a resync due to I/O errors,

* and nothing changed in this transaction group,
* and the vdev configuration hasn’t changed,

* then there's nothing to do.

*

/

if (ub->ub_txg < txg &&
uber bl ock_updat e(ub, spa->spa_root_vdev, txg) == B_FALSE &&
list_is_enpty(&spa->spa_config_dirty_list))
return (0);

if (txg > spa_freeze_txg(spa))
return (0);

ASSERT(txg <= spa->spa_final _txg);

/*

* Flush the wite cache of every disk that’s been witten to

* in this transaction group. This ensures that all bl ocks

* witten in this txg will be conmtted to stable storage

* before any uberbl ock that references them

*/

zio = zio_root(spa, NULL, NULL, flags);

for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG CLEAN(txg)); vd;
vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG CLEAN(txg)))
zio_flush(zio, vd);

(voi d) zio_wait(zio);

/*

Sync out the even labels (LO, L2) for every dirty vdev. |If the
systemdies in the mddle of this process, that's OK all of the
even | abels that nade it to disk wll be newer than any uberbl ock,
and will therefore be considered invalid. The odd |abels (L1, L3),
whi ch have not yet been touched, will still be valid. W flush
the new | abel s to disk to ensure that all even-|abel updates

are committed to stable storage before the uberbl ock update.

R EEEE R
—~

((error = vdev_l abel _sync_list(spa, 0, txg, flags)) != 0)
return (error);

/*

* Sync the uberblocks to all vdevs in svd[].

* |f the systemdies in the mddle of this step, there are two cases

* to consider, and the on-disk state is consistent either way:

*

* (1) If none of the new uberblocks made it to disk, then the

* previous uberblock will be the newest, and the odd | abels

* (which had not yet been touched) will be valid with respect

* to that uberbl ock.

*

* (2) If one or nore new uberblocks nade it to disk, then they

* will be the newest, and the even |abels (which had all

* been successfully committed) will be valid with respect

* to the new uberbl ocks.

*/

if ((error = vdev_uberbl ock_sync_list(svd, svdcount, ub, flags)) != 0)
return (error);

/*

* Sync out odd |abels for every dirty vdev. |If the systemdies

* in the mddle of this process, the even | abels and the new

* uberblocks will suffice to open the pool. The next tinme

* the pool is opened, the first thing we'll do -- before any

*

user data is nodified -- is mark every vdev dirty so that

new usr/src/uts/comon/ fs/zfs/vdev_| abel .c

1283 * all labels will be brought up to date. W flush the new | abels
1284 * to disk to ensure that all odd-1abel updates are committed to
1285 * stable storage before the next transaction group begins.

1286 */

1287 return (vdev_| abel _sync_list(spa, 1, txg, flags));

1288 }

new

* ok kK

6
new
3741

usr/src/uts/ common/ fs/zfs/vdev_raidz.c

B R

4447 Thu May 16 17:33:50 2013
usr/src/uts/comon/fs/zfs/vdev_raidz.c
zfs needs better comments

Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>

Submi tted by:
Submi tted by:

Justin G bbs <justing@pectral ogi c.conp
Al an Sorers <al ans@pectral ogi c. com>

Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. com>

Revi ewed by: Eric Schrock <eric.schrock@lel phi x. com>

EEEEEEEEEEEREEEEEEESEEEEEEEEEEREEEEEEREEEERERERERESRESRESRESESESESE]
____unchanged_portion_onitted_

434 [*

435 * Divides the 10 evenly across all child vdevs; usually, dcols is

436 * the nunber of children in the target vdev.

437 *

438 #endif /* | codereview */

439 static raidz_map_t *

440 vdev_raidz_map_alloc(zio_t *zio, uint64_t unit_shift, uint64_t dcols,
441 uint64_t nparity)

442 {

443 raidz_map_t *rm

444 /* The starting RAIDZ (parent) vdev sector of the block. */

445 #endif /* | codereview */

446 uint64_t b = zio->o_offset >> unit_shift;

447 /* The zio's size in units of the vdev's mninum sector size. */
448 #endif /* | codereview */

449 uint64_t s = zio->o_size >> unit_shift;

450 /* The first colum for this stripe. */

451 #endif /* | codereview */

452 uinté4d_t f = b %dcols;

453 /* The starting byte offset on each child vdev. */

454 #endif /* | codereview */

455 uinté4_t o = (b / dcols) << unit_shift;

456 uinté4_t g, r, ¢, bc, col, acols, scols, coff, devidx, asize, tot;
458 *

459 * "Quotient": The nunmber of data sectors for this stripe on all but
460 * the "big colum" child vdevs that al so contain "remal nder" data.
461 */

462 #endif /* | codereview */

463 g =s / (dcols - nparity);

465 /*

466 * "Remmi nder": The nunber of partial stripe data sectors in this I/Q
467 */This will add a sector to some, but not all, child vdevs.

468 *

469 #endif /* | codereview */

470 r =s - q* (dcols - nparity);

472 /* The nunber of "big colums” - those which contain remainder data. */
473 #endif /* | codereview */

474 bc = (r == 07?0 : r + nparity);

476 /*

477 * The total nunber of data and parity sectors associated with
478 * this I/0

479 */

480 #endif /* ! codereview */

481 tot = s + nparity * (g + (r == 0?0 : 1));

483 /* acols: The colums that will be accessed. */

484 /* scols: The columms that will be accessed or skipped. */

485 #endif /* | codereview */

486 if (q ==

487 /* Qur 1/0O request doesn't span all child vdevs. */

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

488 #endif /* | codereview */

489
490
491
492
493
494

496
498

500
501
502
503
504
505
506
507
508
509
510

512

514
515
516
517
518
519
520
521
522
523
524
525,
526
527

529
530
531
532
533
534

536
537

539
540
541
542
543

545
546

548
550

551
552

acol s = bc;

scols = M N(dcol s, roundup(bc, nparity + 1));
} else {

acol s = dcol s;

scol s = dcol s;

}
ASSERT3U(acol s, <=, scols);
rm = knmem al | oc(of fsetof (rai dz_map_t, rmcol[scols]), KMSLEEP);

rm>rmcols = acol s;
rm>rmscols = scols;

rm >rmbigcols = bc;
rm>rmskipstart = bc;
rm>rm.m ssingdata = O;
rm>rmmssingparity = 0;
rm>mfirstdatacol = nparity;
rm >rmdatacopy = NULL;
rm>mreports = 0;
rm>mfreed = 0;

rm >rm ecksum nj ected = O;

asize = 0;
for (c = 0; ¢ < scols; c++) {
col =f +¢;
coff = o;
if (col >= dcols) {
col -= dcols;
coff += 1ULL << unit_shift;
rm>rmcol [c].rc_devidx = col;
rm>mcol[c].rc_offset = coff;
rm>rmcol[c].rc_data = NULL;
rm>rmcol [c].rc_gdata = NULL;
rm>mcol[c].rc_error = 0;
rm>mcol[c].rc_tried = O;
rm>rmcol [c].rc_skipped = O;

if (c >= acols)

rm>rmcol[c].rc_size = 0;
else if (c < bc)

rm>mcol[c].rc_size = (g + 1) << unit_shift;
el se

rm>mcol[c].rc_size = g << unit_shift;

asize += rm>rmcol[c].rc_size;

}

ASSERT3U(asi ze, ==, tot << unit_shift);

rm>rmasize = roundup(asize, (nparity + 1) << unit_shift);
rm>rmnskip = roundup(tot, nparity + 1) - tot;

ASSERT3U(rm >rm asi ze - asize, ==, rm>mnskip << unit_shift);
ASSERT3U(rm >rm nski p, <=, nparity);

for (c =0; ¢c <rm>mfirstdatacol; c++)
rm>rmcol[c].rc_data = zio_buf_alloc(rm>rmcol[c].rc_size);

rm>rmcol[c].rc_data = zio->i o_data;
for (c = c + 1; ¢ < acols; c++)

rm>mcol[c].rc_data = (char *)rm>mcol[c - 1].rc_data +
rm>mcol[c - 1].rc_size;

new usr/src/uts/comon/fs/zfs/vdev_raidz.c 3 new usr/src/uts/comon/fs/zfs/vdev_raidz.c
554 /*
555 * |f all data stored spans all columms, there’'s a danger that parity 621 static void
556 * will always be on the same device and, since parity isn't read 622 vdev_rai dz_generate_parity_pqg(raidz_map_t *rm
557 * during nornal operation, that that device's I/O bandwi dth won't be 623 {
558 * used effectively. We therefore switch the parity every 1MB. 624 uint64_t *p, *qg, *src, pcnt, ccnt, nmask, i;
559 &3 625 int c;
560 * ... at least that was, ostensibly, the theory. As a practical
561 * matter unless we juggle the parity between all devices evenly, we 627 pcnt = rm>rmcol [VDEV_RAIDZ_P].rc_size / sizeof (src[0]);
562 * won't see any benefit. Further, occasional wites that aren't a 628 ASSERT(rm >rm col [VDEV_RAIDZ_P] .rc_si ze ==
563 * nultiple of the LCM of the nunber of children and the mini num 629 rm>rmcol [VDEV_RAIDZ_Q . rc_si ze);
564 * stripe width are sufficient to avoid pessi mal behavior.
565 * Unfortunately, this decision created an inplicit on-disk format 631 for (c = rm>mfirstdatacol; ¢ < rm>rmcols; c++) {
566 * requirement that we need to support for all eternity, but only 632 src = rm>rmcol[c].rc_data;
567 * for single-parity RAID Z 633 p = rm>rmcol [VDEV_RAIDZ_P].rc_data;
568 * 634 g = rm>mcol [VDEV_RAIDZ_Q .rc_data;
569 * |f we intend to skip a sector in the zeroth columm for padding
570 * we nust nmake sure to note this swap. W will never intend to 636 ccnt = rm>rmcol [c].rc_size / sizeof (src[0]);
571 * skip the first colum since at |east one data and one parity
572 * colum nust appear in each row. 638 if (c =rm>mfirstdatacol) {
573 */ 639 ASSERT(ccnt == pcnt || ccnt == 0);
574 ASSERT(rm >rm.cols >= 2); 640 for (i =0; i < ccnt; i++, src++, p++, q++) {
575 ASSERT(rm >rmcol [0].rc_size == rm>mcol [1].rc_size); 641 *p = *src;
642 *q = *src;
577 if (rm>mfirstdatacol == 1 && (zio->io_offset & (1ULL << 20))) { 643 }
578 devidx = rm>rmcol [0].rc_devidx; 644 for (; i < pcnt; i++, src++, p++, gq++) {
579 o =rm>mcol[0].rc_offset; 645 *p = 0;
580 rm>rmcol[0].rc_devidx = rm>rmcol [1].rc_devidx; 646 *q = 0;
581 rm>mcol [0].rc_offset = rm>rmcol[1].rc_offset; 647 }
582 rm>rmcol [1].rc_devidx = devi dx; 648 } else {
583 rm>mcol [1].rc_offset = o; 649 ASSERT(ccnt <= pcnt);
585 if (rm>rmskipstart == 0) 651 /*
586 rm>rmskipstart = 1; 652 * Apply the algorithm described above by multiplying
587 } 653 * the previous result and adding in the new val ue.
654 */
589 zio->io_vsd = rm 655 for (i =0; i < ccnt; i++ src++, p++, g++) {
590 zi 0->i 0_vsd_ops = &vdev_rai dz_vsd_ops; 656 *p A= *src;
591 return (rm;
592 } 658 VDEV_RAI DZ_64MJL_2(*q, mask);
659 *q "= *src;
594 static void 660 }
595 vdev_rai dz_generate_parity_p(raidz_map_t *rm
596 { 662 /*
597 uint64_t *p, *src, pcount, ccount, i; 663 * Treat short colums as though they are full of Os.
598 int c; 664 */Note that there's therefore nothing needed for P.
665 *
600 pcount = rm>rmcol [VDEV_RAIDZ_P].rc_size / sizeof (src[0]); 666 for (; i < pent; i++, g++) {
667 VDEV_RAI DZ_64MJL_2(*q, nask);
602 for (c = rm>mfirstdatacol; ¢ < rm>mcols; c++) { 668 }
603 src = rm>rmcol[c].rc_data; 669 }
604 p = rm>rmcol [VDEV_RAIDZ_P] .rc_dat a; 670 }
605 ccount = rm>rmcol[c].rc_size / sizeof (src[0]); 671 }
607 if (c ==rm>mfirstdatacol) { 673 static void
608 ASSERT(ccount == pcount); 674 vdev_rai dz_generate_parity_pgr(raidz_map_t *rm
609 for (i = 0; i < ccount; i++, src++, p++) { 675 {
610 *p = *src; 676 uint64_t *p, *q, *r, *src, pcnt, ccnt, nmask, i;
611 } 677 int c;
612 } else {
613 ASSERT(ccount <= pcount); 679 pcnt = rm>rmcol [VDEV_RAIDZ_P].rc_size / sizeof (src[0]);
614 for (i =0; i < ccount; i++, src++, p++) { 680 ASSERT(rm >rm col [VDEV_RAIDZ_P].rc_si ze ==
615 *p A= *src; 681 rm>rmcol [VDEV_RAIDZ_Q . rc_size);
616 } 682 ASSERT(rm >rm col [VDEV_RAIDZ_P] .rc_si ze ==
617 } 683 rm>rmcol [VDEV_RAIDZ_R] . rc_si ze);
618
619 } 685 for (c = rm>mfirstdatacol; ¢ < rm>rmcols; c++) {

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

686 src = rm>rmcol [c].rc_data;

687 p = rm>rmcol [VDEV_RAIDZ_P].rc_dat a;

688 g = rm>rmcol [VDEV_RAIDZ @ .rc_data;

689 r = rm>rmcol [VDEV_RAIDZ_R].rc_dat a;

691 cent = rm>mcol[c].rc_size / sizeof (src[0]);

693 if (c --rm>rmf|rstdatacol)

694 ASSERT(ccnt == pcnt || ccnt == 0);

695 for (i =0; i < ccnt; i++, src++, p++, g++, r++) {
696 *p = *src;

697 *q = *src;

698 *r = *src

699 }

700 for (; i < pent; i++, src++, p++, gq++, r++) {

701 *p = 0;

702 *q = 0;

703 *r = 0;

704 }

705 } else {

706 ASSERT(ccnt <= pcnt);

708 /*

709 * Apply the al gorithm described above by multiplying
710 */the previous result and adding in the new val ue.
711 *

712 for (i =0; i < ccnt; i++, src++, p++, g++, r++) {
713 *p "= *src;

715 VDEV_RAI DZ_64MJL_2(*q, nask);

716 *q A= *src;

718 VDEV_RAI DZ_64MJL_4(*r, mask);

719 *r A= *src;

720 }

722 /*

723 * Treat short colums as though they are full of Os.
724 * Note that there’s therefore nothing needed for P.
725 */

726 for (; i < pent; i++, g++, r++) {

727 VDEV_RAI DZ_64MJL_2(*q, nask);

728 VDEV_RAI DZ_64MUL_4(*r, mask);

729 }

730 }

731 }

732 }

734 | *

735 * Generate RAID parity in the first virtual colums according to the nunber of
736 * parity columms avail able.

737 */

738 static void

739 }/dev_r ai dz_generate_parity(raidz_map_t *rm

740

741 switch (rm>rmfirstdatacol) {

742 case 1:

743 vdev_rai dz_generate_parity_p(rm;

744 br eak;

745 case 2:

746 vdev_raidz_generate_parity_pq(rmn;

747 br eak;

748 case 3:

749 vdev_rai dz_generate_parity_pqr(rm;

750 br eak;

751 defaul t:

new usr/src/uts/comon/fs/zfs/vdev_raidz.c
752 cmm_err (CE_PANI C,
753 1
754 }

756 static int

"invalid RAIDZ configuration");

757 vdev_rai dz_reconstruct_p(raidz_nmap_t *rm int *tgts, int ntgts)
758 {

759 uint64_t *dst, *src, xcount, ccount, count, i;

760 int x = tgts[0];

761 int c;

763 ASSERT(ntgts == 1);

764 ASSERT(x >= rm>rmfirstdatacol);

765 ASSERT(x < rm>rmcols);

767 xcount = rm>rmcol [x].rc_size / sizeof (src[0]);

768 ASSERT(xcount <= rm>rmcol [VDEV_RAIDZ_P].rc_size / sizeof
769 ASSERT(xcount > 0);

771 src = rm>rmcol [VDEV_RAIDZ_P].rc_data;

772 dst = rm>rmcol [x].rc_dat a;

773 for (| = 0; I < xcount; i++, dst++, src++) {

774 *dst = *src;

775 }

777 for (c = rm>mfirstdatacol; ¢ < rm>rmcols; c++) {
778 src = rm>rmcol[c].rc_data;

779 dst = rm>rmcol [x].rc_data;

781 if (c ==x)

782 cont i nue;

784 ccount = rm>rmcol[c].rc_size / sizeof (src[0]);
785 count = M N(ccount, xcount);

787 for (i =0; i < count; i++, dst++ src++) {
788 *dst ~= *src;

789 }

790 }

792 return (1 << VDEV_RAIDZ_P);

793 }

795 static int

(srcf0]));

(src[0]));

796 vdev_rai dz_reconstruct_q(raidz_map_t *rm int *tgts, int ntgts)
797 {

798 uint64_t *dst, *src, xcount, ccount, count, mask, i;

799 uint8_t *b;

800 int x =tgts[0];

801 int c, j, exp;

803 ASSERT(ntgts == 1);

805 xcount = rm>rmcol [x].rc_size / sizeof (src[0]);

806 ASSERT(xcount <= rm>rmcol [VDEV_RAIDZ_Q .rc_size / sizeof
808 for (c = rm>mfirstdatacol; ¢ < rm>mcols; c++) {

809 src = rm>rmcol[c].rc_data;

810 dst = rm>rmcol [x].rc_data;

812 if (c ==x)

813 ccount = O;

814 el se

815 ccount = rm>rmcol[c].rc_size / sizeof (src[0]);
817 count = M N(ccount, xcount);

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

819
820
821
822
823
824
825

827
828
829
830
831

833
834
835
836
837

839
840
841

843
844
845
846
847
848

850
851

853
854

}

static i
vdev_r ai

855 {

856
857
858
859
860

862
863
864
865

867

869
870
871
872
873
874
875
876
877
878
879

881
882
883

if (c = rm>mfirstdatacol) {
for (i =0; i < count; i++, dst++ src++) {
*dst = *src;
for (; i < xcount; i++, dst++) {
*dst = 0;
}
} else {
for (i =0; i < count; i++, dst++ src++) {
VDEV_RAI DZ_64MJL_2(*dst, mask);
*dst "= *src;
}
for (; i < xcount; i++, dst++)
VDEV_RAI DZ_64MJL_2(*dst, mask);
}
}
src = rm>rmcol [VDEV_RAIDZ_Q . rc_dat a;
dst = rm>rmcol [x].rc_dat a;
exp = 255 - (rm>mcols - 1 - x);
(i =0; i < xcount; i++ dst++, src++) {
*dst A= *src;
for (j =0, b = (uint8_t *)dst; < 8; j++, b++) {
*b = vdev_raidz_exp2(*b, exp);
}
}
return (1 << VDEV_RAIDZ_Q);
nt
dz_reconstruct _pq(raidz_map_t *rm int *tgts, int ntgts)
uint8_t *p, *g, *pxy, *agxy, *xd, *yd, tnp, a, b, aexp, bexp;
voi d *pdata, *qdata;
uint64_t xsize, ysize, i;
int x = tgts[0]
int y =tgts[1];
ASSERT(ntgts == 2);
ASSERT(x < y);
ASSERT(x >= rm>rmfirstdatacol);
ASSERT(Yy < rm>rmcols);
ASSERT(rm >rmcol [x].rc_size >= rm>mcol[y].rc_size);
/
Move the parity data aside -- we're going to conpute parity as

though colums x and y were full of zeros -- Pxy and Qxy. W want to
reuse the parity generation nmechani smwi thout trashing the actual
parity so we nmake those colums appear to be full of zeros by

* setting their lengths to zero.

EE

*

/

pdata = rm >rmcol [VDEV_RAI DZ_P] . rc_dat a;
gqdata = rm>rmcol [VDEV_RAI DZ_Q . rc_dat a;
xsize = rm>rmcol [x].rc_size;

ysize = rm>rmcol [y].rc_size;

rm>rmcol [VDEV_RAIDZ_P].rc_data =
zi o_buf _all oc(rm >rm col [VDEV_RAI DZ_P] .

_buf _ rc_size);
rm>rmcol [VDEV_RAIDZ_Q .rc_data =

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

884
885
886

888

890
891

893
894
895
896
897
898

900
901
902
903
904
905
906
907
908
909
910
911
912
913

915
916
917

919
920

922
923
924

926
927
928

930
931
932
933

935
936
937
938
939

941
942

944
945
946
947
948
949

* Ok Ok ok k%

zi o_buf _all oc(rm >rm col [VDEV_RAIDZ_Q .
rm>rmcol [X].rc _size = 0;
rm>rmcol [y].rc_size = 0;

rc_size);

vdev_rai dz_generate_parity_pq(rm;

rm>rmcol [x].
rm>rmcol [y].

rc_size = xsize;
rc_size = ysize;

p = pdata;
q = qdata;
pxy = rm>rmcol [VDEV_RAIDZ P].rc_data;
gxy = rm>rmcol [VDEV_RAI DZ_Q . rc_dat a;
xd = rm>rmcol [x].rc_data;
yd = rm>rmcol [y].rc_data;
/*
* We now have:
* Pxy = P + D x + Dy
* Xy = Q + 2%(ndevs - 1 - x) D x + 2*(ndevs - 1 - y) * Dy
*
* W can then solve for D x:
; Dx = A* (P+Pxy) +B* (Q+ Q)
* where
: A= 20(X - y) * (28X 5 y) + 1)1
* B = 2°(ndevs - 1 - x) * (2"(x - y) +1)n-1
*
* Wth D _x in hand, we can easily solve for D.y:
* Dy =P+ Pxy + DX
*/
a = vdev_rai dz_pow2[255 + X -
b = vdev_rai dz_pow2[255 - (rm>rm cols - 1 - x)];
tnmp = 255 - vdev_raidz_log2[a * 1];
aexp = vdev_raidz_| og2[vdev_rai dz_exp2(a, tm)];
bexp = vdev_rai dz_| og2[vdev_rai dz_exp2(b, tnp)];
for (i = 0; i < xsize; i++, p++, qg++, pxy++, gxy++, xd++, yd++) {
*xd = vdev_raidz_exp2(*p ~ *pxy, aexp)
vdev_rai dz_exp2(*q ™ *qgxy, bexp);
if (i < ysize)
*yd = *p N *pxy N *Xd;
}
zi o_buf _free(rm>rmcol [VDEV_RAIDZ_P] .rc_data,
rm>rmcol [VDEV_RAIDZ_P].rc_size);
zi o_buf _free(rm>rmcol [VDEV_RAIDZ_Q .rc_data,

rm>rmcol [VDEV_RAI DZ_Q - rc_si ze);
/'k

* Restore the saved parity data.

*

/

rm >rm col [VDEV_RAI DZ_P] .

rc_data = pdata;
rm>rmcol [VDEV_RAIDZ () . =

rc_data qdat a;

return ((1 << VDEV_RAIDZ_P) | (1 << VDEV_RAIDZ_Q);

BEG N CSTYLED */

In the general case of reconstruction, we nmust solve the systemof |inear
equations defined by the coeffecients used to generate parity as well as
the contents of the data and parity disks. This can be expressed with

vectors for the original data (D) and the actual data (d) and parity (p)

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

and a matrix conposed of the identity matrix (1) and a dispersal matrix (V):

\%
|

| | —
| | |

| | X |

| | |

| | ~

| is sinply a square identity matrix of size n, and V is a vander nonde
matri x defined by the coeffecients we chose for the various parity col ums
(1, 2, 4). Note that these values were chosen both for sinplicity, speedy
conputation as well as linear separability.

[1 .. 111] | PO |
27n-1 . 421	_	:		
4*n-1 .. 16 4 1		DO		p_m1
1 . 000		D1		d_0
0 000	x	D2	=] d1	
: oo	:		d_2	
0 100		Dn-1		:
0 010	~~ ~~	:		
0 001		d_n-1		

Note that I, V, d, and p are known. To conpute D, we nust invert the
matrix and use the known data and parity values to reconstruct the unknown
data values. W begin by renpving the rows in V|| and d|p that correspond
to failed or mssing colums; we then make V|| square (n x n) and d|p
sized n by renpving rows corresponding to unused parity fromthe bottom up
to generate (V|1)' and (d|p)’. We can then generate the inverse of (V|I)’
usi ng Gauss-Jordan elimnation. In the exanple bel ow we use n¥3 parity
colums, n=8 data colums, with errors in d_1, d_2, and p_1:

1 1 1 1 1 1 1 1
128 64 32 16 8 4 2 1 <----- +-+-- mssing disks
19 205 116 29 64 16 4 1 I
1 0 0 0 0 0 0 0 I
0 1 0 0O O O 0 O <--'
M1y = 0 0 1 0O 0O O 0 O <---7

0 0 O 1 0 O 0 O

0 0 0 0 1 0 0 0

0 0 O O O 1 o0 O

0o 0 O O O O 1 o

0 0 O O O O 0 1

i1 1 1 1 1 1 1
128 64 32 16 8 4 2 1

19 205 116 29 64 16 4 1

1 0 0 0O O O 0 ©°

0 1 0 0O O O 0 O

M) = 0 0 1 0O O O 0 O

0 0 0O 1 0 O 0 O

0 0 0 0 1 0 0 0

0 0 O O O 1 0 O

0 0 O O O O 1 o

0O 0 O O O O 0 1

Here we enpl oy Gauss-Jordan elimnation to find the inverse of (V|I1)’'. W
have carefully chosen the seed values 1, 2, and 4 to ensure that this
matrix is not singular.

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081

B I i T S R

1 1 1 1
19 205 116 29
1 0 0 0
0 0 0 1
0 0 0 O
0 0 0 O
0 0 0 O©
0 0 0 O
1 0 0 0
1 1 1 1
19 205 116 29
0 0 0 1
0 0 0 O
0 0 0 O©
0 0 0 O
0 0 0 O
1 0 0 0
0 1 1 0
0 205 116 0
0 0 0 1
0 0 0 O©
0 0 0 O
0 0 0 O
0 0 0 O
1 0 0 0
0 1 1 0
0 0 185 O
0 0 0 1
0 0 0 O
0 0 0 O
0 0 0 O©
0 0 0 O
1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1
0 0 0 O©
0 0 0 O©
0 0 0 O
0 0 0 O
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O
(V1)'~-1 =

[elelol Jolo)
OOD—‘OOO;I—‘

[elelol Jolololo)] [elelol Jolololo) [elelol Jolololo) OCOOrOOF O
[eleol Jeololololo) [efeo) Jolololelo) OORrPOORrKFRO

OOrPOO0OO0O0OO

[efolol Jolololo)
[efeol Jeololofe)o)

-
| 1

| 166 100
|

|

|

OrRPO0OO0O0OO0O0O [} Jelolololole) (e} Jelololole)a) OrRrOO0OOMRO ORrRrOO0OOOAR

(e} Jelololofele)

ocoohUIR

RPOOOOOOO POOOOOOO POOOOOOO RPOOOORrEFRO POOOOOREK

POOOOOOO

[e)elolololo) o) [efelolololoXa) J

[efelolololol o)

N
OOOOO&!—‘O

[N

[eleloYolaio) o]
(o)

167
166

[efelolof]

41 159
40 158

0

0
1
0

[elelololo] Jolo) [elelololo] Jolo) OO0 O0O0OrOOo [elelolololo) o)

[
OOOOOSOO

100
100

[efelolof]

0

OCOO0OOhREF OOOOONRFPF OOO0OO0OORrRRFEF OCOOO0O0OO0OO0O0ORr [efelolola] Jolo)

oooOooOoOhMUIR

0

[efololao) Jololo)

[elelofo) Jololo)

©
OOO0OORrRNFO

N
N
[eleolola) Yol o)

cococorARrRO
o
[

l,
dl,

[efeolola) ¥ ¥ Yo
or

169 217 208

0
0
1

0
0
0

0
0
168 216 209
0
0
0

OOORrOO0OO0OO [e¥eolol Jololole)

OOORrOMRLO OO0OO0ORrROORFO

cocorouro
o
=
coroooro

59
58

OOoOOoOro

OOl—‘OOBl—‘O OORrROOREFRO OOFrPOO0OO0OO0OO (oYl Helololole)

[e9)

169
168

oOOoRr oo

0 O
0 O
0 O
0 O
0 O
0 O
1 0
0 1
0 O
0 O
0 O
0 O
0 O
0 O
1 0
0 1
0 O
1 1
4 1
0 O
0 O
0 O
1 0
0 1
0 O
1 1
201 204
0 O
0 O
0 O
1 0
0 1
0 O
1 1
216 20
0 O
0 O
0 O
1 0
0 1
0 O
217 208
216 209
0 O
0 O
0 O
1 0
0 1

new usr/src/uts/comon/fs/zfs/vdev_raidz.c 11 new usr/src/uts/comon/fs/zfs/vdev_raidz.c
1082 * | o 0 0 O 0 O 1 0 | 1148 * First initialize the storage where we'll conpute the inverse rows.
1083 * | O 0 0 0 0 0 0 1 1149 */
1084 * == = 1150 for (i =0; i <nmssing; i++) {
1085 * 1151 for (j =0; j <n; j++) {
1086 * We can then sinply conmpute D = (V|1)’'~-1 x (d|p)’ to discover the val ues 1152 invrows[i][J] = (i ==j) 2 1: 0;
1087 * of the m ssing data. 1153 }
1088 * 1154 }
1089 * As is apparent fromthe exanpl e above, the only non-trivial rows in the
1090 * inverse matrix correspond to the data disks that we're trying to 1156 /*
1091 * reconstruct. Indeed, those are the only rows we need as the others woul d 1157 * Subtract all trivial rows fromthe rows of consequence.
1092 * only be useful for reconstructing data known or assuned to be valid. For 1158 */
1093 * that reason, we only build the coefficients in the rows that correspond to 1159 for (i =0; i < nmssing;, i++) {
1094 * targeted col unms. 1160 for (j = nmissing; j < n; j++)
1095 */ 1161 ASSERT3U(used[j], >=, rm>rmfirstdatacol);
1096 /* END CSTYLED */ 1162 jj = used[j] - rm>mfirstdatacol;
1163 ASSERT3S(jj, <, n);
1098 static void 1164 invrows[i][j] = rows[il[jj];
1099 vdev_raidz_matrix_init(raidz_map_t *rm int n, int nmap, int *map, 1165 rows[i][jJ] = O;
1100 uint8_t **rows) 1166 }
1101 { 1167 }
1102 int i, j;
1103 int pow, 1169 s
1170 * For each of the rows of interest, we nust normalize it and subtract
1105 ASSERT(n == rm>rmcols - rm>mfirstdatacol); 1171 *anmultiple of it fromthe other rows.
1172 */
1107 /* 1173 for (i =0; i < nmssing;, i++) {
1108 * Fill in the mssing rows of interest. 1174 for (j =0; j <mssing[i]; j++) {
1109 */ 1175 ASSERTO(rows[i][j]);
1110 for (i =0; i < nmap; i++) { 1176 }
1111 ASSERT3S(0, <=, map[i]); 1177 ASSERT3U(rows[i][m ssing[i]], !'= 0);
1112 ASSERT3S(map[i], <=, 2);
1179 /*
1114 pow = map[i] * n; 1180 * Conpute the inverse of the first element and multiply each
1115 if (pow > 255) 1181 * element in the row by that val ue.
1116 pow - = 255; 1182 */
1117 ASSERT(pow <= 255); 1183 log = 255 - vdev_raidz_log2[rows[i][missing[i]]];
1119 for (j =0; j <n; j++) { 1185 for (j =0; j <n; j++)
1120 pow -= map[i]; 1186 rows[i][j] = vdev_raidz_exp2(rows[i][j], loQg);
1121 if (pow < 0) 1187 invrows[i][j] = vdev_raidz_exp2(invrows[i][]j], l0g);
1122 pow += 255; 1188 }
1123 rows[i][]] = vdev_raidz_pow2[pow ;
1124 } 1190 for (ii =0; ii <nmssing;, ii++) {
1125 } 1191 if (i ==1ii)
1126 } 1192 conti nue;
1128 static void 1194 ASSERT3U(rows[ii][m ssing[i]], !'= 0);
1129 vdev_raidz_matrix_invert(raidz_map_t *rm int n, int nmssing, int *mssing,
1130 (uint8_t **rows, uint8_t **invrows, const uint8_t *used) 1196 log = vdev_raidz_log2[rows[ii][mssing[i]]];
1131
1132 int i, j, ii, jj; 1198 for (j =0; j <n; j++)
1133 uint8_t |og; 1199 rows[ii][j] "=
1200 vdev_rai dz_exp2(rows[i][j], l0g);
1135 /* 1201 invrows[ii][j] "=
1136 * Assert that the first nmssing entries fromthe array of used 1202 vdev_rai dz_exp2(invrows[i][j], log);
1137 * colums correspond to parity columms and that subsequent entries 1203 }
1138 * correspond to data col ums. 1204 }
1139 */ 1205 }
1140 for (i =0; i < nmssing; i++) {
1141 ASSERT3S(used[i], <, rm>mfirstdatacol); 1207 /*
1142 } 1208 * Verify that the data that is left in the rows are properly part of
1143 for (; i <n; i++) { 1209 * an identity matrix.
1144 ASSERT3S(used[i], >=, rm>mfirstdatacol); 1210 */
1145 } 1211 for (i =0; i <nmssing;, i++) {
1212 for (j =0; j <n; j++)
1147 /* 1213 if () == mssing[i]) {

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1214
1215
1216
1217
1218
1219
1220

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236

1238
1239

1241
1242
1243
1244

1246
1247
1248
1249
1250
1251

1253
1254
1255

1257
1258
1259
1260
1261
1262
1263

1265
1266
1267

1269
1271
1272
1273
1275
1276
1277

1279

ASSERT3U(rows[i][j], ==, 1)
} else {
. ASSERTO(rows[i][j]);

}

static void

vdev_raidz_matrix_reconstruct(raidz_map_t *rm int n, int nmssing,
int *mssing, uint8_t **invrows, const uint8_t *used)

{

int i, j, x, cc, c;

uint8 t *src;

uint64_t ccount;

ui nt 8_t *dst[VDEV RAI DZ_MAXPARI TY] ;

ui nt 64_t dcount[VDEV RAI DZ, NAXPARITY
uint8_t log =

uint8_t val;

|nt||,
uint8_t *invl og[VDEV_RAI DZ_NMAXPARI TY] ;
uint8t *p, *pp;

size_t psize;

psize = sizeof (invliog[O][0]) * n * nm ssing;

p = knmem al | oc(psi ze, KM SLEEP);
for (pp = p , i =0; i <nmissing, i++) {
invl o [|] = pp;
pp +=n;
}
for (i =0; i < nmssing; i++) {
for (j =0; J <n; j++)
ASSERT3U(i nvrows[i][j], !'=, 0);
inviog[i][j] = vdev_| raidz I092[|nvrows[|][]]]
}
}
for (i =0; i <n; i++) {

c = used[i];
ASSERT3U(c, <, rm>rmcols);

src = rm>rmcol[c].rc_data;

ccount = rm>rmcol[c].rc_size;

for (j =0; j < nmissing; j++)
cc = mssing[j] + rm>mfirstdatacol;
ASSERT3U(cc, >=, rm>rmfirstdatacol);
ASSERT3U(cc, <, rm>rmcols);
ASSERT3U(cc, !=, c);

dst[j] = rm>rmcol[cc].rc_data;
dcount[j] = rm>rmcol[cc].rc_size;

}
ASSERT(ccount >= rm>rmcol [m ssing[0]].rc_size || i
for (x = 0; x < ccount; X++,

if (*src 1= 0)
log = vdev_raidz_| og2[*src];

src++) |

for (cc = 0; cc < nmssing; cc++) {
if (x >= dcount[cc])
conti nue;

if (*src == 0) {

> 0);

13

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1280
1281
1282
1283
1284
1285

1287
1288
1289
1290
1291
1292
1293

1295
1296

1298
1299

val = 0;
} else {

if (1

:llog + invliog[cc][i]) >= 255)
val = vdev_rai dz_bowz[l 11;

if (i ==0)
dst[cc][x] = val;
el se

dst[cc][x] ~= val;

}

kmem free(p, psize);

}

static int

vdev_rai dz_reconstruct_general (raidz_map_t *rm int *tgts, int ntgts)

1300 {

1301
1302
1303
1304

1306
1307

1309
1310
1311

1313

1316

1318
1319
1320
1321
1322
1323
1324
1325
1326
1327

1329
1330
1331
1332
1333
1334
1335

1337
1338
1339
1340
1341
1342
1343

1345

int n, i, c, t, tt;

int nni ssing_rows;

int mssing_| rows[VDEV RAI DZ_NAXPARI TVY] ;
int parity_map[VDEV_RAI DZ_NMAXPARI TY] ;

uint8_t *p, *pp;
size_t psize;

uint8_t *rows[VDEV_RAI DZ_MAXPARI TY] ;
ui nt8_t *invrows[VDEV_RAI DZ_MAXPARI TY]
uint8_t *used;

int code = 0;

n=rm>mcols - rm>mfirstdatacol;

/*
* Figure out which data colums are m ssing.
*/

nm ssing_rows = O;
for (t = 0; t < ntgts; t++)
if (tgts[t] >= rm>mfirstdatacol) {
m ssi ng_rows[nmi ssi ng_rows++] =
tgts[t] - rm>mfirstdatacol;

}

/*

* Figure out which parity colums to use to help generate the m ssing
* data col umms.

*

for (tt =0, ¢ =0, i =0; i
ASSERT(tt < ntgts);
ASSERT(c < rm>rm firstdatacol);

< nmissing_rows; c++) {

/*
* Skip any targeted parity colums.
if (c ==tgts[tt]) {

tt++;

conti nue;

}

code |= 1 << ¢;

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1347
1348
1349

1351
1352

1354
1355
1356

1358
1359
1360
1361
1362
1363
1364

1366
1367
1368

1370
1371
1372
1373
1374
1375

1377
1378
1379
1380

1382
1383
1384
1385

1387
1388
1389
1390
1391

1393
1394
1395
1396
1397

1399

1401
1402

1404
1405

}

static i
vdev_r ai

1406 {

1407
1408
1409
1410
1411

parity_map[i] = c;
i ++;

}

ASSERT(code != 0);
ASSERT3U(code, <, 1 << VDEV_RAI DZ_MAXPARI TY);

psize = (sizeof (rows[0][0]) + sizeof (| nvrows[O] [0]))
nmi ssing_rows * n + sizeof (used[O0]) n;
p = kmem al | oc(psi ze, KM SLEEP);

for (pp =p, i =0; i < nmssing_rows; i++) {
rows[i] = pp
pp +=n;
invrows[i] = pp;
pp +=n;
}
used = pp;
for (i =0; i < nmssing_rows; i++) {

} ed[i] = parity_map[i];

for (tt =0, ¢ = rm>mfirstdatacol;
if (tt < nmssing_rows

c <rm>mcols; c++) {

c == mssing_rows[tt] + rm>mfirstdatacol) {
tt++;
conti nue;

}
ASSERT3S(i, <, n);
used[i] = c;

i ++;

}

*

* Initialize the interesting rows of the matrix.
*/
vdev_raidz_matrix_init(rm n, nmssing_rows, parity_map, rows);

/*
* Invert the matrix.
*

vdev_raidz_matrix_invert(rm n, nnissing_rows, mssing_rows, rows,
invrows, used);

/*
* Reconstruct the missing data using the generated natrix.
*/

vdev_rai dz_matrix_reconstruct (rm n, nmissing_rows, m ssing_rows,
invrows, used);

kmem free(p, psize);
return (code);

nt
dz_reconstruct(raidz_map_t *rm int *t, int nt)

int tgts[VDEV_RAI DZ_MAXPARI TY], *dt;
int ntgts;

int i, c;

int code;

int nbadparity, nbaddata;

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1412

1414
1415
1416
1417
1418
1419

1421
1422
1423
1424
1425
1426

1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439

1441
1442
1443

1445

1447
1448
1449
1450
1451
1452
1453
1454

1456

1458
1459

1461
1462

1464
1465

1467
1468
1469
1471
1473
1474
1475

1477

int parity_valid[VDEV_RAI DZ_MAXPARI TY] ;

/*
* The tgts list nmust already be sorted.
*

for (i =1; i <nt; i++) {
ASSERT(t[i] > t[i - 1])
}
nbadparity = rm>rmfirstdatacol;
nbaddata = rm>rmcols - nbadparity;
ntgts = 0;
for (i =0, ¢ =0; ¢c <rm>mcols; c++) {

if (c <rm>mfirstdatacol)
parity_valid[c] = B_FALSE;

if (i <nt & c ==1t[i]) {
tgts[ntgts++] = c;
i ++;
} elseif (rm>rmco|[c] rc_error 1= 0) {

tgts[ntgts++] = c;
} elseif (c >= rm>rmf|rstdatacol) {

nbaddat a- - ;

} else {
parity_valid[c] = B_TRUE;
nbadparity--;

}

}

ASSERT(ntgts >= nt);

ASSERT(nbaddata >= 0);

ASSERT(nbaddat a + nbadparity == ntgts);
dt = & gts[nbadparity];

/*

* See if we can use any of our optinized reconstruction routines.

*/
if (!vdev_raidz_default_to_general) {
swi tch (nbaddat a)
case 1:
if (parity_valid[VDEV_RAI DZ_P])
return (vdev_rai dz_reconstruct_p(rm dt,

ASSERT(rm >rm firstdatacol > 1);

if (parity_valid[VDEV_RAI DZ_QJ
return (vdev_raidz_reconstruct_q(rm dt,

ASSERT(rm >rm firstdatacol > 2);
br eak;

case 2:
ASSERT(rm >rm firstdatacol > 1);

if (parity_valid[VDEV_RAIDZ_P] &&
parity_valid[VDEV_RAIDZ ()
return (vdev_raidz_reconstruct_pqg(rm dt,
ASSERT(rm >rm firstdatacol > 2);
br eak;

}

code = vdev_raidz_reconstruct_general (rm tgts, ntgts);

1));

1));

2));

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1478 ASSERT(code < (1 << VDEV_RAI DZ_MAXPARI TY))
1479 ASSERT(code > 0);

1480 return (code);

1481 }

1483 static int
1484 vdev_rai dz_open(vdev_t *vd, uint64_t *asize, uint64_t *nax_asize,

1485 uint64_t *ashift)

1486 {

1487 vdev_t *cvd;

1488 uint64_t nparity = vd->vdev_nparity;

1489 int c;

1490 int lasterror = 0;

1491 int nunerrors = O;

1493 ASSERT(nparity > 0);

1495 if (nparity > VDEV_RAI DZ_MAXPARI TY |

1496 vd->vdev_children < nparlty + 1)

1497 vd- >vdev_stat.vs_aux = VDEV_AUX_BAD LABEL;
1498 return (SET_ERROR(EINVAL));

1499 }

1501 vdev_open_chi | dren(vd);

1503 for (c = 0; ¢ < vd->vdev_children; c++) {

1504 cvd = vd->vdev_child[c];

1506 if (cvd->vdev_open_error != 0)

1507 | asterror = cvd->vdev_open_error;
1508 NUNEr r or S++;

1509 cont i nue;

1510 }

1512 *asize = M N(asize - 1, cvd->vdev_asize - 1) + 1;
1513 *max_asi ze = M N(*nmax_asi ze - 1, cvd->vdev_nmax_asi ze -
1514 *ashift = MAX(*ashift, cvd->vdev_ashift);
AI5I5] }

1517 *asi ze *= vd->vdev_children;

1518 *max_asi ze *= vd->vdev_chil dren;

1520 if (numerrors > nparity) {

1521 vd->vdev_stat.vs_aux = VDEV_AUX NO REPL| CAS;
1522 return (Tasterror);

1523 }

1525 return (0);

1526 }

1528 static void
1529 vdev_rai dz_cl ose(vdev_t *vd)

1530 {

1531 int c;

1533 for (c = 0; ¢ < vd->vdev_children; c++)
1534 vdev_cl ose(vd->vdev Chl|d[C])
1535 }

1537 static uint64_t
1538 vdev_rai dz_asi ze(vdev_t *vd, uint64_t psize)

1539 {
1540 uint64_t asize;
1541 ui nt 64 ashi ft = vd->vdev_t op->vdev_ashift;

t
1542 uint64_t cols = vd->vdev_children;
1543 uint64_t nparity = vd->vdev_npari ty;

1) + 1;

17

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1545 asize = ((psize - 1) >> ashift) + 1;

1546 asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity));
1547 asi ze = roundup(asize, nparity + 1) << ashift;

1549 return (asize);

1550 }

1552 static void
1553 vdev_rai dz_chil d_done(zio_t *zio)

1554 {

1555 raidz_col _t *rc = zio->io_private;

1557 rc->rc_error = zio->o_error;

1558 rc->rc_tried = 1;

1559 rc->rc_ski pped = 0;

1560 }

1562 /*

1563 * Start an | O operation on a RAIDZ VDev

1564 *

1565 * CQutline:

1566 * - For wite operations:

1567 * 1. Generate the parity data

1568 * 2. Create child zio wite operations to each colum’s vdev, for both
1569 * data and parity.

1570 * 3. If the colum skips any sectors for padding, create optional dummy
1571 * wite zio children for those areas to inprove aggregation continuity.
1572 * - For read operations:

1573 * 1. Create child zio read operations to each data colum’s vdev to read
1574 * the range of data required for zio.

1575 * 2. If this is a scrub or resilver operation, or if any of the data
1576 * vdevs have had errors, then create zio read operations to the parity

1577 * colums’ VDevs as wel | .
1578 */

1579 #endif /* | codereview */

1580 static int

1581 vdev_raidz_io_start(zio_t *zio)

1582 {

1583 vdev_t *vd = zio->i o_vd;

1584 vdev_t *tvd = vd->vdev top,

1585 vdev_t *cvd;

1586 raidz_map_t *rm

1587 raidz_col _t *rc;

1588 int c, i;

1590 rm = vdev_raidz_map_al | oc(zi o, tvd->vdev_ashift, vd->vdev_children,
1591 vd->vdev_nparity);

1593 ASSERT3U(rm >rm asi ze, ==, vdev_psize_to_asize(vd, zio->io_size));
1595 if (zio->io_type == ZI O TYPE_WRI TE) {

1596 vdev_r ai dz _generate_parity(rn;

1598 for (c = 0; c<rm>rmco|s c++) {

1599 rc &rm>rm col[c

1600 cvd = vd->vdev_chil d[rc->r c_devi dx] ;

1601 zi o_nowai t (zi o_vdev_child_io(zi o, NULL, cvd,

1602 rc->rc_offset, rc->rc_data, rc->rc_size,

1603 zio->io_type, zio->io_priority, O,

1604 vdev_rai dz_child_done, rc));

1605 }

1607 /*

1608 * Cenerate optional 1/0s for any skipped sectors to inprove
1609 * aggregation contiguity.

18

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1610 */

1611 for (c = rm>mskipstart, i =0; i <rm>mnskip; c++, i++) {
1612 ASSERT(c <= rm>rmscol s);

1613 if (c == rm>rmscols)

1614 = 0;

1615 rc = &m>rmcol[c];

1616 cvd = vd->vdev_child[rc->rc_devi dx];

1617 zi o_nowai t (zi o_vdev_child_io(zio, NULL, cvd,

1618 rc->rc_offset + rc->rc_size, NULL,

1619 1 << tvd->vdev_ashift,

1620 zio->io_type, zio->io_priority,

1621 ZI O_FLAG NODATA | ZI O FLAG OPTI ONAL, NULL, NULL))
1622 }

1624 return (Zl O Pl PELI NE_CONTI NUE) ;

1625 }

1627 ASSERT(zi 0->i o_type == ZI O TYPE_READ);

1629 /*

1630 * |terate over the colums in reverse order so that we hit the parity
1631 * last -- any errors along the way will force us to read the parity.
1632 */

1633 for (¢ =rm>mcols - 1; ¢ >= 0; c--) {

1634 rc = &m>mcol[c

1635 cvd = vd->vdev_chil d[rc >rc_devi dx];

1636 if (!vdev_readabl e(cvd))

1637 if (¢ >> rm>rmfirstdatacol)

1638 rm>rm.m ssi ngdat a++;

1639 el se

1640 rm>rmm ssingparity++;

1641 rc->rc_error = SET_ERROR(ENXI O);

1642 rc->rc_tried = 1; /* don’t even try */

1643 rc->rc_ski pped =

1644 conti nue;

1645 }

1646 1f (vdev_dtl_contains(cvd, DIL_M SSING zio->io_txg, 1)) {
1647 if (c >—rm>rmf|rstdataco|)

1648 rm>rmm ssi ngdat a++;

1649 el se

1650 rm>r m m ssi ngpari ty++;

1651 rc->rc_error = SET_ERROR(ESTALE);

1652 rc->rc_skipped = 1;

1653 cont i nue;

1654

1655 if (c > rm>mfirstdatacol || rm>rmnissingdata > 0 ||
1656 (zio->io0_flags & (ZI O FLAG SCRUB | ZI O FLAG RESILVER))) {
1657 zi o_nowai t (zi o_vdev_child_io(zio, NULL, cvd,

1658 rc->rc_offset, rc->rc_data, rc->r c_si ze,

1659 zio->io_type, zio->io_priority, O,

1660 vdev_rai dz_chil d_done, rc));

1661 }

1662 }

1664 return (ZI O_PlI PELI NE_CONTI NUE) ;

1665 }

1668 /*

1669 * Report a checksumerror for a child of a RAIDZ device.

1670 */

1671 static void

1672 rai dz_checksumerror(zio_t *zio, raidz_col _t *rc, void *bad_data)

1673 {

1674 vdev_t *vd = zio->i o_vd->vdev_child[rc->rc_devidx];

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1676 if (!(zio->o_flags & ZI O FLAG SPECULATI VE)) {

1677 zi o_bad_cksumt zbc;

1678 raidz_map_t *rm = zio->i o_vsd;

1680 mut ex_ent er (&vd- >vdev_st at _| ock) ;

1681 vd->vdev_stat.vs_checksum errors++;

1682 mut ex_exi t (&d- >vdev_st at _| ock);

1684 zbc. zbc_has_cksum = 0;

1685 zbc. zbc_inj ected = rm >rm ecksuni nj ect ed;

1687 zfs_ereport_post _checksun(zi o->i o_spa, vd, zio,
1688 rc->rc_offset, rc->rc_size, rc->rc data bad _data,
1689 &zbc) ;

1690 }

1691 }

1693 /*

1694 * We keep track of whether or not there were any injected errors, so that
1695 * any ereports we generate can note it.

1696 */

1697 static int

1698 rai dz_checksumverify(zio_t *zio)

1699 {

1700 zi o_bad_cksumt zbc;

1701 raidz_map_t *rm = zio->i o_vsd;

1703 int ret = zio_checksumerror(zio, &zbc);

1704 if (ret !'= 0 & zbc.zbc_injected != 0)

1705 rm >rm ecksum njected = 1;

1707 return (ret);

1708 }

1710 /*

1711 * Generate the parity fromthe data colums. If we tried and were able to
1712 * read the parity without error, verify that the generated parity matches the
1713 * data we read. If it doesn't, we fire off a checksumerror. Return the
1714 * nunber such failures.

1715 */

1716 static int

1717 raidz_parity_verify(zio_t *zio, raidz_map_t *rm

1718 {

1719 voi d *ori g[VDEV_RAI DZ_MAXPARI TY] ;

1720 int ¢, ret =0;

1721 raidz_col _t *rc;

1723 for (c =0; ¢ <rm>mfirstdatacol; c++) {

1724 rc = &m>mcol[c];

1725 if (!rc->rc_tried || rc->rc_error != 0)

1726 conti nue;

1727 orig[c] = zio_buf_alloc(rc->rc_size);

1728 bcopy(rc->rc_data, orig[c], rec- >rc_5|ze);

1729 }

1731 vdev_rai dz_generate_parity(rm;

1733 (c =0; c <rm>mfirstdatacol; c++) {

1734 rc = &m>mcol[c];

1735 if ('rc->rc_tried || rc->rc_error != 0)

1736 cont i nue;

1737 if (bcnp(orig[c], rc->rc_data, rc->rc_size) !'= 0) {
1738 rai dz_checksumerror(zio, rc, orig[c]);
1739 rc->rc_error = SET_ERROR(ECKSUM ;

1740 ret ++;

1741 }

new usr/src/uts/ comon/fs/zfs/vdev_raidz.c 21

1742 zi o_buf _free(orig[c], rc->rc_size);

1743 1

1745 return (ret);

1746 }

1748 | *

1749 * Keep statistics on all the ways that we used parity to correct data.
1750

1751 static uint64_t raidz_corrected[1 << VDEV_RAI DZ_MAXPARI TY] ;

1753 static int

1754 vdev_raidz_worst_error(raidz_map_t *rm

1755 {

1756 int error = 0;

1758 for (int ¢ =0; ¢ <rm>rmcols; c++)

1759 error = zio_worst_error(error, rm>mcol[c].rc_error);
1761 return (error);

1762 }

1764 /| *

1765 * lterate over all conbinations of bad data and attenpt a reconstruction.
1766 * Note that the al gorithm below is non-optimal because it doesn't take into
1767 * account how reconstruction is actually perforned. For exanple, with
1768 * triple-parity RAID-Z the reconstruction procedure is the same if colum 4
1769 * is targeted as invalid as if colums 1 and 4 are targeted since in both
1770 * cases we’'d only use parity information in colum 0.

1771 */

1772 static int

1773 vdev_rai dz_conbrec(zio_t *zio, int total _errors, int data_errors)

1774 {

1775 raidz_map_t *rm = zio->i o_vsd;

1776 raidz_col _t *rc;

1777 voi d *ori g[VDEV_RAI DZ_MAXPARI TY] ;

1778 int tstore[VDEV_RAI DZ MAXPARI TY + 2];

1779 int *tgts = & store[1];

1780 int current, next, i, c, n;

1781 int code, ret = 0;

1783 ASSERT(total _errors < rm>mfirstdatacol);

1785 /*

1786 * This sinplifies one edge condition.

1787 */

1788 tgts[-1] = -1;

1790 for (n =1, n<=rm>mfirstdatacol - total _errors; n++) {

1791 /*

1792 * |Initialize the targets array by finding the first n colums
1793 * that contain no error.

1794 *

1795 * |f there were no data errors, we need to ensure that we're
1796 * always explicitly attenpting to reconstruct at |east one
1797 * data colum. To do this, we sinply push the highest target
1798 * up into the data col ums.

1799 */

1800 for (c =0, i =0; i <n; i++)

1801 if (i ==n- 1 &% data_errors == 0 &&

1802 c <rm>mfirstdatacol) {

1803 c = rm>mfirstdatacol;

1804 }

1806 while (rm>rmcol[c].rc_error !=0) {

1807 C++,

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1808
1809

1811
1812

1814
1815
1816
1817

1819
1820
1821
1822
1823
1824

1826

1828
1829

1831
1832
1833

1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846

1848
1849
1850
1851
1852
1853
1854

1856
1857
1858
1859
1860
1861
1862
1863
1864

1866
1867
1868

1870
1871
1872
1873

ASSERT3S(c, <, rm>rmcols);

tgts[i] = c++
}
/*
* Setting tgts[n] sinplifies the other edge condition.
*/
tgts[n] = rm>rmcols;
*

* These buffers were allocated in previous iterations.
)

for (i =0; i <n - 1; i++) {
) ASSERT(orig[i] != NULL);

orig[n - 1] = zio_buf_alloc(rm>rmcol [0].rc_size);

current = 0;
next = tgts[current];

while (current !'=n)
tgts[current] = next;
current = 0;

/*
* Save off the original data that we're going to
* attenpt to reconstruct.

*
/
for (i =0; i <n; i++) {
ASSERT(orig[i] != NULL);
c =tgts[i];
ASSERT3S(c, >=, 0);
ASSERT3S(c, <, rm>rmcols);
rc = &m>mcol[c];
bcopy(rc->rc_data, orig[i], rc->rc_size);
}
/*
* Attenpt a reconstruction and exit the outer |oop on
* success.
*/
code = vdev_raidz_reconstruct(rm tgts, n);
if (raidz_checksumuverify(zio) == 0) {
atomi c_i nc_64(& ai dz_corrected|code]);
for (i =0; i <n; i++) {
c =tgts[il;
rc = &m>mcol[c];
ASSERT(rc->rc_error == 0);
if (rc->rc_tried)
rai dz_checksumerror(zio, rc,
orig[i]);
rc->rc_error = SET_ERROR(ECKSUM ;
}
ret = code;
got o done;
}
/*
* Restore the original data.
*
/

for (i =0; i <n; i++) {

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1874
1875
1876
1877

1879
1880
1881
1882
1883
1884
1885
1886
1887

1889

1891
1892
1893
1894
1895

1897
1898
1899
1900
1901
1902
1903

1905
1906

1908
1909
1910
1911
1912
1913
1914
1915

1917
1918

1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939

done:

B I I N SR

Conpl

CQutli

- For
i,
2

- For
1.

2

c =tgts[i];
rc = &m>mcol[c];
bcopy(orig[i], rc->rc_data, rc->rc_size);

do { .
* Find the next valid colum after the current
* position..
*/

for (next = tgts[current] + 1;
next < rm>mcols &&
rm>rmcol [next].rc_error != 0; next++)
conti nue;

ASSERT(next <= tgts[current + 1]);

/*
* |f that spot is available, we' re done here.
*
if (next !=tgts[current + 1])
br eak;

/*

* Otherwise, find the next valid columm after
* the previous position.

&/

for (c = tgts[current - 1] + 1;
rm>rmcol[c].rc_error != 0; c++)
conti nue;

tgts[current] = c;
current ++

} while (current !'= n);

<o i+
zio_buf _free(orig[i], rm>mcol[0].rc_size)

return (ret);

ete an 10 operation on a RAIDZ VDev

ne:

wite operations:

Check for errors on the child IGs.

Return, setting an error code if too few child VDevs were witten

to reconstruct the data later. Note that partial wites are

consi dered successful if they can be reconstructed at all.
read operations:

Check for errors on the child IGCs.

If data errors occurred:

a. Try to reassenble the data fromthe parity avail able.

b. If we haven't yet read the parity drives, read them now.

c. If all parity drives have been read but the data still doesn’t
reassenble with a correct checksum then try conbinatori al
reconstruction.

d. If that doesn’'t work, return an error.

If there were unexpected errors or this is a resilver operation,

rewite the vdevs that had errors.

23

new usr/src/uts/ comon/fs/zfs/vdev_raidz.c 24

1940

1941 #endif /* ! codereview */
1942 static void
1943 vdev_rai dz_i o_done(zio_t *zio)

1944 {

1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956

1958

1960
1961

1963
1964

1966
1967

1969
1970
1971
1972

1974
1975

1977
1978
1979
1980
1981

1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996

1998
1999

2001
2002
2003
2004
2005

vdev_t *vd = zio->i o_vd;
vdev_t *cvd;

raidz_map_t *rm = zio->i o_vsd;
raidz_col _t *rc;

int unexpected_errors = O;

int parity_errors = 0;

int parity_untried = 0;

int data_errors = 0;

int total _errors = 0;

int n, c;

i nt tgts[VDEV_RAI DZ_MAXPARI TY] ;
int code;

ASSERT(zi 0->i 0_bp !'= NULL); /* XXX need to add code to enforce this */

ASSERT(rm >rmm ssingparity <= rm>rmfirstdatacol);
ASSERT(rm >rm mi ssingdata <= rm>rmcols - rm>mfirstdatacol);

for (c =0; ¢ <rm>mcols; c++) {
rc = &m>mcol[c];

if (rc->rc_error)
ASSERT(rc->rc_error != ECKSUM; /* child has no bp */

if (c <rm>mfirstdatacol)
parity_errors++;

el se
dat a_errors++;

if (!rc->rc_skipped)
unexpect ed_errors++;

total _errors++;

} elseif (c <rm>mfirstdatacol &% !rc->rc_tried) {
parity_untried++;

}

}
if (zio->o_type == ZIO TYPE_WRI TE) {
/ *

XXX -- for now, treat partial wites as a success.
(If we couldn’t wite enough colums to reconstruct
the data, the I1/Ofailed. Oherw se, good enough.)

Now that we support wite reallocation, it would be better
to treat partial failure as real failure unless there are
no non-degraded top-level vdevs left, and not update DTLs
if we intend to reallocate.

* ok Ok ok % bk O

*/
[* XXPCLICY */
if (total _errors > rm>rmfirstdatacol)

zio->o_error = vdev_raidz_worst_error(rm;

return;

}
ASSERT(zi 0->i o_type == ZI O_TYPE_READ);
/*
* There are three potential phases for a read:

* 1. produce valid data fromthe col ums read
i 2. read all disks and try again

new usr/src/uts/comon/fs/zfs/vdev_raidz.c 25 new usr/src/uts/comon/fs/zfs/vdev_raidz.c 26

2006 W 3. perform conbinatorial reconstruction 2072 * for reconstruction, confirmthat the other

2007 * 2073 * parity disks produced correct data. This

2008 * Each phase is progressively both nore expensive and less likely to 2074 * routine is suboptimal in that it regenerates

2009 * occur. |f we encounter nore errors than we can repair or all phases 2075 * the parity that we already used in addition

2010 * fail, we have no choice but to return an error. 2076 * to the parity that we're attenpting to

2011 */ 2077 * verify, but this should be a relatively
2078 * unconmon case, and can be optimized if it

2013 /* 2079 * becones a probl em Note that we regenerate

2014 * |f the nunber of errors we saw was correctable -- | ess than or equal 2080 * parity when resilvering so we can wite it

2015 * to the nunber of parity disks read -- attenpt to produce data that 2081 * out to failed devices later.

2016 * has a valid checksum Naturally, this case applies in the absence of 2082 */

2017 * any errors. 2083 if (parity_errors < rm>mfirstdatacol - n ||

2018 */ 2084 (zio->o_flags & ZI O FLAG RESILVER)) {

2019 if (total _errors <= rm>mfirstdatacol - parity_untried) { 2085 n =raidz_parity verify(zio, rm;

2020 if (data_errors == 0) { 2086 unexpected_errors += n;

2021 if (raidz_checksumuverify(zio) == 0) { 2087 ASSERT(parity_errors + n <=

2022 /* 2088 rm>rmfirstdatacol);

2023 * If we read parity information (unnecessarily 2089 }

2024 * as it happens since no reconstruction was

2025 * needed) regenerate and verify the parity. 2091 got o done;

2026 * We al so regenerate parity when resilvering 2092 }

2027 * so we can wite it out to the failed device 2093 }

2028 * later. 2094 }

2029 *

2030 if (parity_errors + parity_untried < 2096 /*

2031 rm>mfirstdatacol || 2097 * This isn't a typical situation -- either we got a read error or

2032 (zio->o_flags & ZI O FLAG RESILVER)) { 2098 * a child silently returned bad data. Read every bl ock so we can

2033 n =raidz_parity_verify(zio, rm; 2099 * try again with as much data and parity as we can track down. If

2034 unexpected_errors += n; 2100 * we’' ve al ready been through once before, all children will be narked

2035 ASSERT(parity_errors + n <= 2101 * as tried so we' |l proceed to conbinatorial reconstruction.

2036 rm>rmfirstdatacol); 2102 */

2037 } 2103 unexpected_errors = 1;

2038 got o done; 2104 rm >rmnmnissi ngdata = (0

2039 } 2105 rm>rmmssingparity = 0;

2040 } else {

2041 /* 2107 for (¢ =0; ¢c <rm>mcols; c++) {

2042 * W either attenpt to read all the parity colums or 2108 if (rm>mcol[c].rc_tried)

2043 * none of them If we didn't try to read parity, we 2109 conti nue;

2044 * wouldn’t be here in the correctable case. There nust

2045 * also have been fewer parity errors than parity 2111 zi o_vdev_i o_redone(zio0);

2046 * colums or, again, we wouldn't be in this code path. 2112 do {

2047 */ 2113 rc = &m>rmcol[c];

2048 ASSERT(parity_untried == 0); 2114 if (rc->rc_tried)

2049 ASSERT(parity_errors < rm>mfirstdatacol); 2115 conti nue;
2116 zi o_nowai t (zi o_vdev_child_io(zio, NULL,

2051 /* 2117 vd- >vdev_chil d[rc->rc_devi dx],

2052 * |dentify the data columms that reported an error. 2118 rc->rc_offset, rc->rc_data, rc->rc_size,

2053 */ 2119 zio->i0_type, zio->io_priority, O,

2054 n =0; 2120 vdev_rai dz_child_done, rc));

2055 for (c = rm>mfirstdatacol; ¢ < rm>mcols; c++) { 2121 } while (++c < rm>rmcols);

2056 rc = &m>mcol[c];

2057 if (rc->rc_error = 10) { 2123 return;

2058 ASSERT(n < VDEV_RAI DZ_MAXPARI TY) ; 2124 1

2059 tgts[n++] = c;

2060 } 2126 /*

2061 } 2127 * At this point we've attenpted to reconstruct the data given the
2128 * errors we detected, and we've attenpted to read all colums. There

2063 ASSERT(rm >rm firstdatacol >= n); 2129 * nust, therefore, be one or nore additional problens -- silent errors
2130 * resulting in invalid data rather than explicit I/O errors resulting

2065 code = vdev_raidz_reconstruct(rm tgts, n); 2131 * in absent data. We check if there is enough additional data to
2132 * possibly reconstruct the data and then perform conbi natori al

2067 if (raidz_checksumuverify(zio) == 0) { 2133 * reconstruction over all possible conbinations. If that fails,

2068 atomi c_i nc_64(& ai dz_corrected[code]); 2134 * we're cooked.
2135 */

2070 /* 2136 if (total _errors > rm>mfirstdatacol) {

2071 * |If we read nore parity di sks than were used 2137 zio->o_error = vdev_raidz_worst_error(rm;

new usr/src/uts/ comon/fs/zfs/vdev_raidz.c 27

2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161

2163
2164
2165
2166
2167
2168
2169
2170

2172
2173
2174
2175
2176
2177
2178
2179
2180

2182
2183

2185
2186
2187
2188
2189
2190
2191
2192

2194
2195

2197
2198
2199
2200
2201
2202
2203

done:

} else if (total _errors < rm>mfirstdatacol &&
(code = vdev_raidz_conbrec(zio, total _errors, data_errors)) != 0) {
/*

* |f we didn't use all the available parity for the

* conbi natorial reconstruction, verify that the remaining
* parity is correct.

*

if (code '= (1 << rm>mfirstdatacol) - 1)
(void) raidz_parity_verify(zio, rm;
} else {
/*
* We're here because either:
*
* total _errors == rmfirst_datacol, or
* vdev_rai dz_conbrec() failed
*
* In either case, there is enough bad data to prevent
* reconstruction.
*
* Start checksumereports for all children which haven't
* failed, and the 10 wasn’t specul ati ve.
*/

zi o->i o_error = SET_ERROR(ECKSUM ;
if (!(zio->io_flags & ZI O FLAG SPECULATI VE)) {
for (c = 0; c <rm>mcols; c++) {
rc = &m>rmcol [c]
if (rc->rc_error == 0
zi o_bad_cksum t zbc;
zbc. zbc_has_cksum = 0;
zbc. zbc_injected =
rm >rm ecksum nj ect ed;

zfs_ereport _ start _checksum(
zio->i0_s
vd- >vdev chlld[rc >rc_devi dx],
zio, rc->rc_offset, rc->rc_size,
(void *)(ui ntptr_t)c, &zhc) ;

zi o_checksum verified(zio);

if (zio->o_error == 0 && spa_writeabl e(zi o->i o_spa
(unexpected_errors || (zio->o_flags & ZI O FLAG_ RESI LVER))) {
/*

* Use the good data we have in hand to repair damaged children.

for (c =0; ¢c <rm>mcols; c++) {
rc = &m>rmcol[c];
cvd = vd->vdev_chil d[rc->rc_devi dx];

if (rc->rc_error == 0)
continue;

zi o_nowai t (zi o_vdev_child_io(zio, NULL, cvd,
rc->rc_offset, rc->rc_data, rc->rc_size,
ZI O TYPE_ MRITE zio->o_priority
ZI O FLAG | O REPAIR | (unexpected_errors ?
ZI O_FLAG SELF_HEAL : 0), NULL, NULL))

new usr/src/uts/ comon/fs/zfs/vdev_raidz.c 28

2204 }

2206 static void
2207 vdev_rai dz_state_change(vdev_t *vd, int faulted, int degraded)

2208 {
2209
2210
2211
2212
2213
2214
2215
2216 }

if (faulted > vd->vdev_nparity)
vdev_set _state(vd, B FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_NO_REPLT CAS) ;
else if (degraded + faulted != 0)
vdev_set _state(vd, B_FALSE, VDEV_STATE DEGRADED, VDEV_AUX_NONE);
el se
vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_ NONE)

2218 vdev_ops_t vdev_raidz_ops = {

2219
2220
2221
2222
2223
2224
2225
2226
2227
2228

2229 };

vdev_r ai dz_open,
vdev_rai dz_cl ose,
vdev_rai dz_asi ze,
vdev_raidz_io_start,
vdev_rai dz_i o_done,
vdev_rai dz_state change

NULL,

NULL

VDEV_TYPE_RAI DZ, /* nane of this vdev type */
B _FALSE /* not a |eaf vdev */

new usr/src/uts/comon/fs/zfs/zfs_ctldir.c

R R R R

34536 Thu May 16 17:33:50 2013
new usr/src/uts/comon/fs/zfs/zfs_ctldir.c
3741 zfs needs better comments
Submi tted by: W1l Andrews <wi || a@pectral ogi c. con>
Submi tted by: Justin G bbs <justing@pectral ogi c.conp
Submi tted by: Al an Sorers <al ans@pectral ogi c. com>
Revi ewed by: Mat t hew Ahrens <mahr ens@lel phi x. com>
Revi ewed by: Eric Schrock <eric.schrock@lel phi x. com>

LR

__unchanged_portion_onitted_

508 /*

509 * Gets the full dataset nane that corresponds to the given snapshot nane
510 * Exanple:

511 * zf sct| _snapshot _znane("snapl") ->
512 */

513 #endif /* ! codereview */

514 static int

515 zfsctl _snapshot _znane(vnode_t *vp, const char *name, int len, char *znane)

"mypool / nyf s@napl"”

516 {

517 objset _t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os;
519 if (snapshot_nanmecheck(name, NULL, NULL) != 0)
520 return (SET_ERROR(EILSEQ));

521 dmu_obj set _nanme(os, znane);

522 if (strlen(zname) + 1 + strlen(nama) >= | en)
523 return (SET_ERROR(ENAVETOOLONG)) ;

524 (void) strcat(zname, "@);

525 (void) strcat(znane, nane);

526 return (0);

527 }

529 static int
530 zfsctl_unnmount _snap(zfs_snapentry_t *sep, int fflags, cred_t *cr)

531 {

532 vnode_t *svp = sep->se_root;

533 int error;

535 ASSERT(vn_i smt pt (svp));

537 /* this will be dropped by dounnount ()

538 if ((error = vn_vfsw ock(svp)) != 0)

539 return (error);

541 VN_HOLD(svp) ;

542 error = dounmount (vn_nmount edvfs(svp), fflags, cr);
543 if (error) {

544 VN_RELE(svp) ;

545 return (error);

546 }

548 /*

549 * W can't use VN _RELE(), as that will try to invoke
550 * zfsctl_snapdir_inactive(), which would cause us to destroy
551 * the sd_lock nutex held by our caller.

552 */

553 ASSERT(svp->v_count == 1);

554 of s_vop_i nactive(svp, cr, NULL);

556 kmem f ree(sep- >se_nane, strlen(sep->se_nane) + 1);
557 kmem free(sep, sizeof (zfs_snapentry_t));

559 return (0);

560 }

new usr/src/uts/comon/fs/zfs/zfs_ctldir.c

562 static void
563 zfsctl _rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char

564
565
566
567
568
569

571
572

574
575

577

579
580
581
582
583
584
585
586
587

589
590
591
592
593
594
595
596
597
598
599
600
601

603
604
605
606
607
608
609
610

612
613

615
616
617
618
619
620
621
622
623
624
625
626

{
avl _i ndex_t where;
vis_t *vfsp;
refstr_t *pathref;
char newpat h] MAXNAMELEN ;
char *tail;
ASSERT(MUTEX_HELD(&sdp- >sd_I ock)) ;
ASSERT(sep != NULL);
vfsp = vn_nount edvf s(sep->se_root);
ASSERT(vfsp != NULL);
vfs_lock_wait (vfsp);
/*
* Change the nane in the AVL tree.
*/
avl _renove(&sdp->sd_snaps, sep);
knemfree(sep >se_nane, strl en(sep >se_nane) + 1);
sep->se_nane = kmem al i oc(strlen(nm + 1, KM SLEEP)
(voi d) strcpy(sep->se_nanme, nn;
VERI FY(avl _find(&sdp- >sd_snaps, sep, &where) == NULL);
avl _i nsert (&sdp- >sd_snaps, sep, where);
/*
* Change the current nountpoint info:
* - update the tail of the mmtpoint path
* - update the tail of the resource path
*
/
pat href = vfs_get mt poi nt (vfsp);
(void) strncpy(newpath, refstr val ue(pathref), sizeof (newpath));
VERI FY((tail -strrchr(newpath 1)) |-NULL)
*(tail+1) = '\0
ASSERT3U(strl en(newpat h) + strlen(nm, <, sizeof (newpath));
(void) strcat(newpath, nm;
refstr_rel e(pathref);
vfs_set mt poi nt (vfsp, newpat h, 0);
pathref = vfs_getresource(vfsp);
(void) strncpy(newpath, refstr_value(pathref), sizeof (newpath));
VERIFY((tail = strrchr(newpath, *@)) != NULL);
*(tail+1) = '\0";
ASSERT3U(strl en(newpat h) + strlen(nm, <, sizeof (newath));
(void) strcat(newpath, nm;
refstr_rel e(pathref);
vfs_setresour ce(vfsp, newpat h, 0);
vfs_unl ock(vfsp);
}
[* ARGSUSED* /
static int
zfsctl _snapdir_renane(vnode_t *sdvp, char *snm vnode_t *tdvp, char *tnm
cred_t *cr, caller_context_t *ct, int flags)
{
zfsctl _snapdir_t *sdp = sdvp->v_data;
zfs_snapentry_t search, *sep;
zfsvfs_t *zfsvfs;
avl _i ndex_t where;
char fronf MAXNAMELEN], t o[MAXNAMELEN ;
char real [MAXNAMELEN], fsnane[MAXNAMVELEN] ;
int err;

*nm)

new usr/src/uts/comon/fs/zfs/zfs_ctldir.c

628 zfsvfs = sdvp->v_vfsp->vfs_data;

629 ZFS_ENTER(zf svfs);

631 if ((flags & FI GNORECASE) || zfsvfs->z_case == ZFS_CASE_I NSENSI Tl VE) {
632 err = dmu_snapshot _r eal name(zf svfs->z_os, snm real,
633 MAXNAMELEN, NULL) ;

634 if (err ==0) {

635 snm = real ;

636 } else if (err !'= ENOTSUP) {

637 ZFS_EXI T(zf svfs);

638 return (err);

639 }

640 }

642 ZFS_EXI T(zfsvfs);

644 dmu_obj set _nanme(zfsvfs->z_os, fsnane);

646 err = zfsctl_snapshot _znane(sdvp, snm MAXNAMELEN, fron);
647 if (err == 0)

648 err = zfsctl_snapshot_znanme(tdvp, tnm MAXNAMELEN, to);
649 if (err == 0)

650 err = zfs_secpolicy_renanme_perns(from to, cr);

651 if (err 1=0)

652 return (err);

654 /*

655 * Cannot nove snapshots out of the snapdir.

656 *

657 if (sdvp != tdvp)

658 return (SET_ERROR(EI NVAL));

660 if (strenp(snm tnm) == 0)

661 return (0);

663 mut ex_ent er (&sdp- >sd_| ock) ;

665 search. se_name = (char *)snm

666 if ((sep = avl _find(&sdp->sd_snaps, &search, &where)) == NULL) {
667 mut ex_exi t (&sdp->sd_I ock) ;

668 return (SET_ERROR(ENCENT));

669 }

671 err = dsl _dataset _renane_snapshot (fsnane, snm tnm B_FALSE);
672 if (err ==

673 zfsctl _rename_snap(sdp, sep, tnm;

675 mut ex_exi t (&sdp->sd_| ock);

677 return (err);

678 }

680 /* ARGSUSED */
681 static int
682 zfsctl _snapdir_renove(vnode_t *dvp, char *nane, vnode_t *cwd, cred_t *cr,

683 call er_context _t *ct, int flags)

684 {

685 zfsctl _snapdir_t *sdp = dvp->v_data;
686 zfs_snapentry_t *sep;

687 zfs_snapentry_t search;

688 zfsvfs_t *zfsvfs;

689 char snapnanme[MAXNAMELEN ;

690 char real [MAXNAMVELEN] ;

691 int err;

693 zfsvfs = dvp->v_vfsp->vfs_data;

new usr/src/uts/comon/fs/zfs/zfs_ctldir.c

694 ZFS_ENTER(zf svfs);

696 if ((flags & FI GNORECASE) || zfsvfs->z_case == ZFS_CASE_| NSENSI Tl VE) {
698 err = dmu_snapshot _r eal name(zf svfs->z_os, nane, real,
699 MAXNAMELEN, NULL) ;

700 if (err == 0) {

701 name = real;

702 } else if (err !'= ENOTSUP) {

703 ZFS_EXI T(zf svfs);

704 return (err);

705 }

706 }

708 ZFS_EXI T(zfsvfs);

710 err = zfsctl _snapshot_znanme(dvp, nane, MAXNAMELEN, snapnane);
711 if (err == 0)

712 err = zfs_secpolicy_destroy_perns(snapnane, cr);

713 if (err 1=0)

714 return (err);

716 mut ex_ent er (&sdp- >sd_| ock) ;

718 search. se_nane = naneg;

719 sep = avl _find(&sdp->sd_snaps, &search, NULL);

720 if (sep) {

721 avl _renove(&sdp- >sd_snaps, sep);

722 err = zfsctl_unnount_snap(sep, MS_FORCE, cr);

723 if (err 1= 0)

724 avl _add(&dp- >sd_snaps, sep);

725 el se

726 err = dsl _destroy_snapshot (snapnanme, B_FALSE);
727 } else {

728 err = SET_ERROR(ENCENT) ;

729 1

731 mut ex_exi t (&sdp->sd_| ock) ;

733 return (err);

734 }

736 [*

737 * This creates a snapshot under ’.zfs/snapshot’.

738 *

739 /* ARGSUSED */
740 static int
741 zfsctl _snapdir_nkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t

742 cred_t *cr, caller_context_t *cc, int flags, vsecattr_t *vsecp)
743

744 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;

745 char name[MVAXNAMELEN ;

746 int err;

747 static enum synfollow foll ow = NO FOLLON

748 static enumui o_seg seg = U O SYSSPACE;

750 i f (snapshot_nanmecheck(di rname, NULL, NULL) != 0)
751 return (SET_ERROR(EILSEQ));

753 drmu_obj set _nane(zf svfs->z_os, nane);

755 *vpp = NULL;

757 err = zfs_secpolicy_snapshot _perns(nane, cr);

758 if (err 1= 0)

759 return (err);

**vpp,

new usr/src/uts/comon/fs/zfs/zfs_ctldir.c

*pnp,

761 if (err == 0)

762 err = dmu_obj set _snapshot _one(nane, dirnane);

763 if (err 1=0)

764 return (err);

765 err = | ookupnaneat (di rname, seg, follow, NULL, vpp, dvp);
766 }

768 return (err);

769 }

771 | *

772 * Lookup entry point for the 'snapshot’ directory. Try to open the
773 * snapshot if it exist, creating the pseudo filesystem vnode as necessary.
774 * Performa nount of the associated dataset on top of the vnode.
775 */

776 [* ARGSUSED */

777 static int

778 zfsctl _snapdir_| ookup(vnode_t *dvp, char *nm vnode_t **vpp, pathnane_t
779 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,

780 int *direntflags, pathname_t *real pnp)

781 {

782 zfsctl _snapdir_t *sdp = dvp->v_data;

783 obj set _t *snap;

784 char snapname|[MAXNAMELEN ;

785 char real [MAXNAVELEN] ;

786 char *pmount poi nt;

787 zfs_snapentry_t *sep, search;

788 struct nounta nargs;

789 vis_t *vfsp;

790 si ze_t nount poi nt _| en;

791 avl _i ndex_t where;

792 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;

793 int err;

795 I*

796 * No extended attributes allowed under .zfs

797 */

798 if (flags & LOOKUP_XATTR)

799 return (SET_ERROR(EI NVAL));

801 ASSERT(dvp->v_type == VDI R);

803 /*

804 * |If we get a recursive call, that means we got called

805 * fromthe dormount() code while it was trying to | ook up the
806 * spec (which |ooks like a |local path for zfs). W need to
807 * add sone flag to domount() to tell it not to do this |ookup.
808 *

809 if (MJTEX_HELD(&sdp->sd_| ock))

810 return (SET_ERROR(ENCENT));

812 ZFS_ENTER(zf svfs);

814 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm == 0) {
815 ZFS_EXI T(zf svfs);

816 return (0);

817 }

819 if (flags & FlI GNORECASE) {

820 bool ean_t conflict = B_FALSE;

822 err = dmu_snapshot _r eal name(zfsvfs->z_os, nm real,
823 MAXNAMELEN, &conflict);

824 if (err == 0) {

825 nm = real;

new usr/src/uts/comon/fs/zfs/zfs_ctldir.c

826
827
828
829
830
831
832
833
834
835

837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883

885
886
887
888
889

891

} else if (err !'= ENOTSUP) {
ZFS_EXI T(zf svfs);
return (err);

}
if (real pnp)
(void) strlcpy(real pnp->pn_buf, nm
real pnp- >pn_buf si ze) ;
if (conflict &k direntflags)
*direntflags = ED_CASE_CONFLI CT;
}

mut ex_ent er (&sdp- >sd_| ock) ;

search. se_name = (char *)nm

if ((sep = avl _find(&sdp->sd_snaps, &search, &where)) != NULL) {
*Vpp = sep->se_root;
VN_HOLD(*vpp) ;
err = traverse(vpp);

if (err 1= 0)
VN_RELE(*vpp) ;
*vpp = NULL,;

} else if (*vpp == sep->se_root) {
/*

* The snapshot was unnounted behi nd our backs,
* try to renount it.
*/

goto donount;
} else {
/*

* VROOT was set during the traverse call. W need
* to clear it since we're pretending to be part

* of our parent’s vfs.

*

(*vpp)->v_flag & ~VROOT;

mut ex_exi t (&sdp->sd_| ock) ;
ZFS_EXI T(zf svfs);
return (err);

}

/*
* The requested snapshot is not currently nounted, |ook it up.
S

err = zfsctl_snapshot _znane(dvp, nm MAXNAMELEN, snapnane);
if (err 1= 0)
nmut ex_exi t (&dp->sd_| ock) ;
ZFS_EXI T(zfsvfs);
/*
* handle "lIs *" or "?" in a graceful manner,
* forcing EILSEQ to ENCENT.
* Since shell ultimately passes "*" or "?" as nane to | ookup
*/
return (err == EILSEQ ? ENCENT : err);

}

if (dmu_obj set _hol d(snapnane, FTAG &snap) != 0) {
mut ex_exi t (&sdp->sd_| ock) ;
ZFS_EXI T(zf svfs);
return (SET_ERROR(ENCENT));

}

sep = knmem al | oc(si zeof (zfs_snapentry_t), KM SLEEP);

sep->se_nane = knem.al loc(strlen(nm + 1, KM SLEEP);

(void) strcpy(sep->se_nane, nnm;

*vpp = sep->se_root = zfsctl_snapshot_nknode(dvp, dmu_objset_id(snap));
avl _i nsert (&sdp->sd_snaps, sep, where);

drmu_obj set _rel e(snap, FTAG;

new usr/src/uts/comon/fs/zfs/zfs_ctldir.c 7 new usr/src/uts/comon/fs/zfs/zfs_ctldir.c
892 donount:
893 mount poi nt _len = strlen(refstr_val ue(dvp->v_vfsp->vfs_mtpt)) + 959 ZFS_ENTER(zfsvfs);
894 strlen("/.zfs/snapshot/") + strlen(nm + 1;
895 nmount poi nt = knem al | oc(mount poi nt _| en, KM SLEEP); 961 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm == 0) {
896 (void) snprintf(nmountpoint, nountpoint_len, "%/.zfs/snapshot/ %", 962 ZFS_EXI T(zfsvfs);
897 refstr_val ue(dvp->v_vfsp->vfs_mtpt), nm; 963 return (0);
964 }
899 mar gs. spec = snapnane;
900 margs. dir = nmount poi nt; 966 if (zfsvfs->z_shares_dir == 0) {
901 margs. fl ags = MS_SYSSPACE | MS_NOWTTAB; 967 ZFS_EXI T(zf svfs);
902 mar gs. fstype = "zfs"; 968 return (SET_ERROR(ENOTSUP)) ;
903 mar gs. dataptr = NULL; 969 }
904 mar gs. datal en = O; 970 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &zp)) == 0)
905 mar gs. opt ptr = NULL; 971 error = VOP_LOOKUP(ZTOV(dzp), nm vpp, pnp,
906 margs. optlen = 0; 972 flags, rdir, cr, ct, direntflags, realpnp);
908 err = donmount ("zfs", &margs, *vpp, kcred, &vfsp); 974 VN_RELE(ZTOV(dzp));
909 kmem f r ee(mount poi nt, nount poi nt _I en); 975 ZFS_EXI T(zf svfs);
911 if (err == 0) { 977 return (error);
912 /* 978 }
913 * Return the nounted root rather than the covered nount point.
914 * Takes the GFS vnode at .zfs/snapshot/<snapname> and returns 980 /* ARGSUSED */
915 * the ZFS vnode nounted on top of the G-S node. This ZFS 981 static int
916 * vnode is the root of the newly created vfsp. 982 zfsctl _snapdir_readdir_cb(vnode_t *vp, void *dp, int *eofp,
917 */ 983 offset_t *offp, offset_t *nextp, void *data, int flags)
918 VFS_RELE(vfsp); 984 {
919 err = traverse(vpp); 985 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
920 } 986 char snapnanme[MAXNAMELEN ;
987 uint64_t id, cookie;
922 if (err == 0) { 988 bool ean_t case_conflict;
923 e 989 int error;
924 * Fix up the root vnode nounted on .zfs/snapshot/<snapnane>.
925 * 991 ZFS_ENTER(zf svfs);
926 * This is where we |lie about our v_vfsp in order to
927 * make . zfs/snapshot/<snapnane> accessi bl e over NFS 993 cookie = *of fp;
928 * without requiring manual nounts of <snapnanme>. 994 dsl _pool _config_enter(dmu_obj set _pool (zfsvfs->z_o0s), FTAG;
929 =[] 995 error = dnu_snapshot _| i st_next (zfsvfs->z_os, MAXNAMELEN, snapnane, &id,
930 ASSERT(VTOZ(*vpp) - >z_zfsvfs | = zfsvfs); 996 &cooki e, &case_conflict);
931 VTQZ(*vpp) - >z_zfsvfs->z_parent = zfsvfs; 997 dsl _pool _config_exit(dnmu_obj set _pool (zfsvfs->z_os), FTAG;
932 (*vpp)->v_vfsp = zfsvfs->z_vfs; 998 if (error) {
933 (*vpp)->v_flag & ~VROOT; 999 ZFS_EXI T(zfsvfs);
934 } 1000 if (error == ENCENT) ({
935 mut ex_exi t (&sdp->sd_| ock); 1001 *eofp = 1;
936 ZFS_EXI T(zfsvfs); 1002 return (0);
1003 }
938 /* 1004 return (error);
939 * |If we had an error, drop our hold on the vnode and 1005 }
940 * zfsctl _snapshot _i nactive() will clean up.
941 */ 1007 if (flags & V_RDDI R_ENTFLAGS) {
942 if (err '=0) { 1008 edirent_t *eodp = dp;
943 VN_RELE(*vpp) ;
944 *vpp = NULL; 1010 (voi d) strcpy(eodp->ed_nane, snapnane);
945 } 1011 eodp- >ed_i no = ZFSCTL_I NO_SNAP(i d);
946 return (err); 1012 eodp- >ed_efl ags = case_conflict ? ED CASE_CONFLICT : O0;
947 } 1013 } else {
1014 struct dirent64 *odp = dp;
949 /* ARGSUSED */
950 static int 1016 (voi d) strcpy(odp->d_nane, snapnane);
951 zfsctl _shares_| ookup(vnode_t *dvp, char *nm vnode_t **vpp, pathnanme_t *pnp, 1017 odp->d_i no = ZFSCTL_I NO_SNAP(i d) ;
952 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1018
953 (int *direntflags, pathnanme_t *real pnp) 1019 *nextp = cooki €;
954
955 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 1021 ZFS_EXI T(zf svfs);
956 znode_t *dzp;
957 int error; 1023 return (0);

new usr/src/uts/comon/fs/zfs/zfs_ctldir.c 9 new usr/src/uts/comon/fs/zfs/zfs_ctldir.c
1024 }
1091 }
1026 /* ARGSUSED */
1027 static int 1093 /* ARGSUSED */
1028 zfsctl _shares_readdir(vnode_t *vp, uio_t *uiop, cred_t *cr, int *eofp, 1094 static int
1029 call er_context _t *ct, int flags) 1095 zfsctl_shares_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
1030 { 1096 call er_context_t *ct)
1031 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 1097 {
1032 znode_t *dzp; 1098 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1033 int error; 1099 znode_t *dzp;
1100 int error;
1035 ZFS_ENTER(zf svfs);
1102 ZFS_ENTER(zf svfs);
1037 if (zfsvfs->z_shares_dir == 0) { 1103 if (zfsvfs->z_shares_dir == 0) {
1038 ZFS_EXI T(zfsvfs); 1104 ZFS EXI T(zfsvfs);
1039 return (SET_ERROR(ENOTSUP)) ; 1105 return (SET_ERROR(ENOTSUP));
1040 } 1106 }
1041 1f ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &Jzp)) == 0) { 1107 1f ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &Jzp)) == 0) {
1042 error = VOP_READDI R(ZTOV(dzp), uiop, cr, eofp, ct, flags); 1108 error = VOP_CGETATTR(ZTOV(dzp), vap, flags, cr, ct);
1043 VN_RELE(ZTOV(dzp)); 1109 VN_RELE(ZTOV(dzp));
1044 } else { 1110 }
1045 *eofp = 1, 1111 ZFS_EXI T(zf svfs);
1046 error = SET_ERROR(ENCENT) ; 1112 return (error);
1047 }
1049 ZFS_EXI T(zfsvfs); 1115 }
1050 return (error);
1051 } 1117 /* ARGSUSED */
1118 static int
1053 /* 1119 zfsctl _snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
1054 * pvp is the '.zfs’ directory (zfsctl_node_t). 1120 cal | er_context_t *ct)
1055 * Creates vp, which is '.zfs/snapshot’ (zfsctl_snapdir_t). 1121 {
1056 * 1122 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1057 * This function is the callback to create a GFS vnode for ’'.zfs/snapshot’ 1123 zfsctl _snapdir_t *sdp = vp->v_data;
1058 * when a |l ookup is performed on .zfs for "snapshot".
1059 */ 1125 ZFS_ENTER(zf svfs);
1060 vnode_t * 1126 zfsctl _common_getattr(vp, vap);
1061 zfsctl _nmknode_snapdir(vnode_t *pvp) 1127 vap->va_nodeid = gfs_file_inode(vp);
1062 { 1128 vap->va_nlink = vap->va_size = avl _numodes(&sdp->sd_snaps) + 2;
1063 vnode_t *vp; 1129 vap->va_ctinme = vap->va_ntime = dmu_objset_snap_cnti me(zfsvfs->z_os);
1064 zfsctl _snapdir_t *sdp; 1130 ZFS_EXI T(zfsvfs);
1066 vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp, 1132 return (0);
1067 zfsctl _ops_snapdir, NULL, NULL, MAXNAMELEN, 1133 }
1068 zfsctl _snapdir_readdir_cb, NULL);
1069 sdp = vp->v_dat a; 1135 /* ARGSUSED */
1070 sdp->sd_node. zc_id = ZFSCTL_| NO_SNAPDI R; 1136 static void
1071 sdp->sd_node. zc_cntine = ((zfsctl_node_t *)pvp->v_data)->zc_cntine; 1137 zfsctl _snapdir_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1072 mut ex_i ni t (&dp->sd_l ock, NULL, MJTEX_DEFAULT, NULL); 1138 {
1073 avl _creat e(&dp- >sd_snaps, snapentry_conpare, 1139 zfsctl _snapdir_t *sdp = vp->v_data;
1074 si zeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node)); 1140 void *private;
1075 return (vp);
1076 } 1142 private = gfs_dir_inactive(vp);
1143 if (private !'= NULL) {
1078 vnode_t * 1144 ASSERT(avl _numodes(&dp->sd_snaps) == 0);
1079 zfsctl_nknode_shares(vnode_t *pvp) 1145 mut ex_dest roy(&dp- >sd_| ock) ;
1080 { 1146 avl _destroy(&sdp->sd_snaps);
1081 vnode_t *vp; 1147 kmem free(private, sizeof (zfsctl_snapdir_t));
1082 zfsctl _node_t *sdp; 1148 }
1149 }
1084 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp,
1085 zfsctl _ops_shares, NULL, NULL, MAXNAMELEN, 1151 static const fs_operation_def_t zfsctl_tops_snapdir[] = {
1086 NULL, NULL); 1152 { VOPNAME_GCPEN, { .vop_open = zfsctl_conmon_open } 1,
1087 sdp = vp->v_data; 1153 { VOPNAME_CLOCSE, { .vop_close = zfsctl_common_cl ose } },
1088 sdp->zc_cntime = ((zfsctl_node_t *)pvp->v_data)->zc_cnting; 1154 { VOPNAME_| OCTL, { .error = fs_inval } N
1089 return (vp); 1155 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_snapdir_getattr } },

new usr/src/uts/comon/fs/zfs/zfs_ctldir.c 11 new usr/src/uts/comon/fs/zfs/zfs_ctldir.c 12
1156 VOPNAME_ACCESS, .vop_access = zfsctl _common_access } 1}, 1222 while (sep !'= NULL) {
1157 VOPNAME_ RENAME, .vop_renane = zfsctl_snapdir_renane } }, 1223 next = AVL_NEXT(&sdp->sd_snhaps, sep);
1158 VOPNAMVE_RMDI R, .vop_rndir = zfsctl_snapdir_renmove } 1},
1159 VOPNAME_MKDI R, .vop_nkdir = zfsctl_snapdir_nkdir } 1, 1225 if (sep->se_root == vp) {
1160 VOPNAME_READDI R, .vop_readdir = gfs_vop_readdir } 1, 1226 avl _renove(&sdp- >sd_snaps, sep);
1161 VOPNAME_ L OOKUP, .vop_| ookup = zfsctl_snapdir_| ookup } }, 1227 kmem free(sep->se_nane, strlen(sep->se_nane) + 1);
1162 VOPNAME_SEEK, .vop_seek = fs_seek } 1. 1228 kmem free(sep, sizeof (zfs_snapentry_t));
1163 VOPNAME_| NACTI VE, .vop_inactive = zfsctl_snapdir_inactive } }, 1229 br eak;
1164 VOPNAME_FI D, .vop_fid = zfsctl_common_fid } 1, 1230 }
1165 NULL } 1231 sep = next;
1166 }; 1232 1
1233 ASSERT(sep != NULL);
1168 static const fs_operation_def_t zfsctl_tops_shares[] = {
1169 VOPNAME_COPEN, .vop_open = zfsctl_common_open } }, 1235 mut ex_exi t (&sdp->sd_| ock);
1170 VOPNAME_CLCSE, .vop_cl ose = zfsctl_common_cl ose } }, 1236 VN_RELE(dvp) ;
1171 VOPNAME_| OCTL, .error = fs_inval } 1,
1172 VOPNAME_GETATTR, .vop_getattr = zfsctl_shares_getattr } }, 1238 /*
1173 VOPNAME_ACCESS, .vop_access = zfsctl_common_access } }, 1239 * Di spose of the vnode for the snapshot nount point.
1174 VOPNAME_READDI R, .vop_readdir = zfsctl_shares_readdir } }, 1240 * This is safe to do because once this entry has been renoved
1175 VOPNAME_ L OOKUP, .vop_|l ookup = zfsctl_shares_l ookup } 1}, 1241 * fromthe AVL tree, it can’t be found again, so cannot become
1176 VOPNAME_SEEK, .vop_seek = fs_seek 1, 1242 * "active". If we |ookup the sane nane again we will end up
1177 VOPNAME_| NACTI VE, .vop_i nactive = gfs_vop_inactive } }, 1243 * creating a new vnode.
1178 VOPNAME_FI D, .vop_fid = zfsctl_shares_fid } }, 1244 *
1179 NULL } 1245 gf s_vop_i nactive(vp, cr, ct);
1180 }; 1246 }
1182 /*
1183 * pvp is the GFS vnode ' . zfs/snapshot’. 1249 /*
1184 * 1250 * These VP's shoul d never see the light of day. They should al ways
1185 * This creates a GFS node under '.zfs/snapshot’ representing each 1251 * be covered.
1186 * snapshot. This newy created GFS node is what we nount snapshot 1252 */
1187 * vfs_t’s ontop of. 1253 static const fs_operation_def_t zfsctl_tops_snapshot[] = {
1188 */ 1254 VOPNAME_I NACTI VE, { .vop_inactive = zfsctl_snapshot_inactive },
1189 static vnode_t * 1255 NULL, NULL
1190 zfsctl_snapshot_nknode(vnode_t *pvp, uint64_t objset) 1256 };
1191 {
1192 vnode_t *vp; 1258 int
1193 zfsctl _node_t *zcp; 1259 zfsctl _| ookup_objset (vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp)
1260 {
1195 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 1261 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1196 zfsctl _ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL); 1262 vnode_t *dvp, *vp;
1197 zcp = vp->v_data; 1263 zfsctl _snapdir_t *sdp;
1198 zcp->zc_id = objset; 1264 zfsctl _node_t *zcp;
1265 zfs_snapentry_t *sep;
1200 return (vp); 1266 int error;
1201 }
1268 ASSERT(zfsvfs->z_ctldir !'= NULL);
1203 static void 1269 error = zfsctl_root | ookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1204 zfsctl _snapshot _i nactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1270 NULL, O, NULL, kcred, NULL, NULL, NULL);
1205 { 1271 if (error = 0)
1206 zfsctl _snapdir_t *sdp; 1272 return (error);
1207 zfs_snapentry_t *sep, *next; 1273 sdp = dvp->v_dat a;
1208 vnode_t *dvp;
1275 nmut ex_ent er (&sdp- >sd_| ock) ;
1210 VERI FY(gf s_dir_l ookup(vp, "..", &vp, cr, 0, NULL, NULL) == 0); 1276 sep = avl _first(&sdp->sd_snaps);
1211 sdp = dvp->v_dat a; 1277 while (sep !'= NULL) {
1278 Vp = sep->se_root;
1213 nmut ex_ent er (&sdp- >sd_| ock) ; 1279 zcp = vp->v_dat a;
1280 if (zcp->zc_id == objsetid)
1215 if (vp->v_count > 1) { 1281 br eak;
1216 mut ex_exi t (&sdp->sd_| ock) ;
1217 return; 1283 sep = AVL_NEXT(&sdp->sd_snaps, sep);
1218 } 1284 }
1219 ASSERT(! vn_i smt pt (vp));
1286 if (sep !'= NULL) {
1221 sep = avl _first(&sdp->sd_snaps); 1287 VN_HOLD(vp);

new usr/src/uts/comon/fs/zfs/zfs_ctldir.c 13 new usr/src/uts/comon/fs/zfs/zfs_ctldir.c
1288 /* 1354 }
1289 * Return the nounted root rather than the covered nount point.

1290 * Takes the GFS vnode at .zfs/snapshot/<snapshot objsetid> 1356 mut ex_exi t (&sdp->sd_| ock) ;
1291 * and returns the ZFS vnode nmounted on top of the GFS node. 1357 VN_RELE(dvp);
1292 * This ZFS vnode is the root of the vfs for objset 'objsetid .

1293 */ 1359 return (error);
1294 error = traverse(&vp); 1360 }
1295 if (error ==

1296 if (vp == sep->se_root)

1297 error = SET_ERROR(EI NVAL) ;

1298 el se

1299 *zfsvfsp = VIQZ(vp)->z_zfsvfs;

1300 }

1301 mut ex_exi t (&sdp->sd_| ock) ;

1302 VN_RELE(vp)

1303 } else {

1304 error = SET_ERROR(ElI NVAL) ;

1305 mut ex_exi t (&sdp->sd_| ock) ;

1306 1

1308 VN_RELE(dvp);

1310 return (error);

1311 }

1313 /*

1314 * Unnount any snapshots for the given filesystem This is called from

1315 * zfs_unmount() - if we have a ctldir, then go through and unnmount all the

1316 * snapshots.

1317 *

1318 int

1319 zfsctl _unmount _snapshots(vfs_t *vfsp, int fflags, cred_t *cr)

1320 {

1321 zfsvfs_t *zfsvfs = vfsp->vfs_data;

1322 vnode_t *dvp;

1323 zfsctl _snapdir_t *sdp;

1324 zfs_snapentry_t *sep, *next;

1325 int error;

1327 ASSERT(zfsvfs->z_ctldir !'= NULL);

1328 error = zfsctl_root _| ookup(zfsvfs->z_ctldir, "snapshot", &dvp,

1329 NULL, O, NULL, cr, NULL, NULL, NULL);

1330 if (error 1= 0)

1331 return (error);

1332 sdp = dvp->v_dat a;

1334 nmut ex_ent er (&sdp- >sd_| ock) ;

1336 sep = avl _first(&sdp->sd_snaps);

1337 while (sep !'= NULL) {

1338 next = AVL_NEXT(&sdp->sd_snaps, sep);

1340 *

1341 * |f this snapshot is not nounted, then it nust

1342 * have just been unmounted by sonebody el se, and

1343 * will be cleaned up by zfsctl_snapdir_inactive().

1344 */

1345 if (vn_ismtpt(sep->se_root)) {

1346 avl _renove(&sdp->sd_snaps, sep);

1347 error = zfsctl_unnount _snap(sep, fflags, cr);

1348 if (error) {

1349 avl _add(&dp- >sd_snaps, sep);

1350 br eak;

1351 }

1352

1353 sep = next;

