
new/usr/src/lib/libzfs/common/libzfs_dataset.c 1

**
 111007 Thu May 16 17:33:46 2013
new/usr/src/lib/libzfs/common/libzfs_dataset.c
3741 zfs needs better comments
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

4431 /*
4432 * Convert the zvol’s volume size to an appropriate reservation.
4433 * Note: If this routine is updated, it is necessary to update the ZFS test
4434 * suite’s shell version in reservation.kshlib.
4435 */
4436 #endif /* ! codereview */
4437 uint64_t
4438 zvol_volsize_to_reservation(uint64_t volsize, nvlist_t *props)
4439 {
4440 uint64_t numdb;
4441 uint64_t nblocks, volblocksize;
4442 int ncopies;
4443 char *strval;

4445 if (nvlist_lookup_string(props,
4446 zfs_prop_to_name(ZFS_PROP_COPIES), &strval) == 0)
4447 ncopies = atoi(strval);
4448 else
4449 ncopies = 1;
4450 if (nvlist_lookup_uint64(props,
4451 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
4452 &volblocksize) != 0)
4453 volblocksize = ZVOL_DEFAULT_BLOCKSIZE;
4454 nblocks = volsize/volblocksize;
4455 /* start with metadnode L0-L6 */
4456 numdb = 7;
4457 /* calculate number of indirects */
4458 while (nblocks > 1) {
4459 nblocks += DNODES_PER_LEVEL - 1;
4460 nblocks /= DNODES_PER_LEVEL;
4461 numdb += nblocks;
4462 }
4463 numdb *= MIN(SPA_DVAS_PER_BP, ncopies + 1);
4464 volsize *= ncopies;
4465 /*
4466 * this is exactly DN_MAX_INDBLKSHIFT when metadata isn’t
4467 * compressed, but in practice they compress down to about
4468 * 1100 bytes
4469 */
4470 numdb *= 1ULL << DN_MAX_INDBLKSHIFT;
4471 volsize += numdb;
4472 return (volsize);
4473 }

new/usr/src/uts/common/fs/zfs/arc.c 1

**
 135193 Thu May 16 17:33:46 2013
new/usr/src/uts/common/fs/zfs/arc.c
3741 zfs needs better comments
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

232 /* The 6 states: */
233 static arc_state_t ARC_anon;
234 static arc_state_t ARC_mru;
235 static arc_state_t ARC_mru_ghost;
236 static arc_state_t ARC_mfu;
237 static arc_state_t ARC_mfu_ghost;
238 static arc_state_t ARC_l2c_only;

240 typedef struct arc_stats {
241 kstat_named_t arcstat_hits;
242 kstat_named_t arcstat_misses;
243 kstat_named_t arcstat_demand_data_hits;
244 kstat_named_t arcstat_demand_data_misses;
245 kstat_named_t arcstat_demand_metadata_hits;
246 kstat_named_t arcstat_demand_metadata_misses;
247 kstat_named_t arcstat_prefetch_data_hits;
248 kstat_named_t arcstat_prefetch_data_misses;
249 kstat_named_t arcstat_prefetch_metadata_hits;
250 kstat_named_t arcstat_prefetch_metadata_misses;
251 kstat_named_t arcstat_mru_hits;
252 kstat_named_t arcstat_mru_ghost_hits;
253 kstat_named_t arcstat_mfu_hits;
254 kstat_named_t arcstat_mfu_ghost_hits;
255 kstat_named_t arcstat_deleted;
256 kstat_named_t arcstat_recycle_miss;
257 /*
258 * Number of buffers that could not be evicted because the hash lock
259 * was held by another thread. The lock may not necessarily be held
260 * by something using the same buffer, since hash locks are shared
261 * by multiple buffers.
262 */
263 #endif /* ! codereview */
264 kstat_named_t arcstat_mutex_miss;
265 /*
266 * Number of buffers skipped because they have I/O in progress, are
267 * indrect prefetch buffers that have not lived long enough, or are
268 * not from the spa we’re trying to evict from.
269 */
270 #endif /* ! codereview */
271 kstat_named_t arcstat_evict_skip;
272 kstat_named_t arcstat_evict_l2_cached;
273 kstat_named_t arcstat_evict_l2_eligible;
274 kstat_named_t arcstat_evict_l2_ineligible;
275 kstat_named_t arcstat_hash_elements;
276 kstat_named_t arcstat_hash_elements_max;
277 kstat_named_t arcstat_hash_collisions;
278 kstat_named_t arcstat_hash_chains;
279 kstat_named_t arcstat_hash_chain_max;
280 kstat_named_t arcstat_p;
281 kstat_named_t arcstat_c;
282 kstat_named_t arcstat_c_min;
283 kstat_named_t arcstat_c_max;
284 kstat_named_t arcstat_size;
285 kstat_named_t arcstat_hdr_size;

new/usr/src/uts/common/fs/zfs/arc.c 2

286 kstat_named_t arcstat_data_size;
287 kstat_named_t arcstat_other_size;
288 kstat_named_t arcstat_l2_hits;
289 kstat_named_t arcstat_l2_misses;
290 kstat_named_t arcstat_l2_feeds;
291 kstat_named_t arcstat_l2_rw_clash;
292 kstat_named_t arcstat_l2_read_bytes;
293 kstat_named_t arcstat_l2_write_bytes;
294 kstat_named_t arcstat_l2_writes_sent;
295 kstat_named_t arcstat_l2_writes_done;
296 kstat_named_t arcstat_l2_writes_error;
297 kstat_named_t arcstat_l2_writes_hdr_miss;
298 kstat_named_t arcstat_l2_evict_lock_retry;
299 kstat_named_t arcstat_l2_evict_reading;
300 kstat_named_t arcstat_l2_free_on_write;
301 kstat_named_t arcstat_l2_abort_lowmem;
302 kstat_named_t arcstat_l2_cksum_bad;
303 kstat_named_t arcstat_l2_io_error;
304 kstat_named_t arcstat_l2_size;
305 kstat_named_t arcstat_l2_hdr_size;
306 kstat_named_t arcstat_memory_throttle_count;
307 kstat_named_t arcstat_duplicate_buffers;
308 kstat_named_t arcstat_duplicate_buffers_size;
309 kstat_named_t arcstat_duplicate_reads;
310 kstat_named_t arcstat_meta_used;
311 kstat_named_t arcstat_meta_limit;
312 kstat_named_t arcstat_meta_max;
313 } arc_stats_t;

315 static arc_stats_t arc_stats = {
316 { "hits", KSTAT_DATA_UINT64 },
317 { "misses", KSTAT_DATA_UINT64 },
318 { "demand_data_hits", KSTAT_DATA_UINT64 },
319 { "demand_data_misses", KSTAT_DATA_UINT64 },
320 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
321 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
322 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
323 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
324 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
325 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
326 { "mru_hits", KSTAT_DATA_UINT64 },
327 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
328 { "mfu_hits", KSTAT_DATA_UINT64 },
329 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
330 { "deleted", KSTAT_DATA_UINT64 },
331 { "recycle_miss", KSTAT_DATA_UINT64 },
332 { "mutex_miss", KSTAT_DATA_UINT64 },
333 { "evict_skip", KSTAT_DATA_UINT64 },
334 { "evict_l2_cached", KSTAT_DATA_UINT64 },
335 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
336 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
337 { "hash_elements", KSTAT_DATA_UINT64 },
338 { "hash_elements_max", KSTAT_DATA_UINT64 },
339 { "hash_collisions", KSTAT_DATA_UINT64 },
340 { "hash_chains", KSTAT_DATA_UINT64 },
341 { "hash_chain_max", KSTAT_DATA_UINT64 },
342 { "p", KSTAT_DATA_UINT64 },
343 { "c", KSTAT_DATA_UINT64 },
344 { "c_min", KSTAT_DATA_UINT64 },
345 { "c_max", KSTAT_DATA_UINT64 },
346 { "size", KSTAT_DATA_UINT64 },
347 { "hdr_size", KSTAT_DATA_UINT64 },
348 { "data_size", KSTAT_DATA_UINT64 },
349 { "other_size", KSTAT_DATA_UINT64 },
350 { "l2_hits", KSTAT_DATA_UINT64 },
351 { "l2_misses", KSTAT_DATA_UINT64 },

new/usr/src/uts/common/fs/zfs/arc.c 3

352 { "l2_feeds", KSTAT_DATA_UINT64 },
353 { "l2_rw_clash", KSTAT_DATA_UINT64 },
354 { "l2_read_bytes", KSTAT_DATA_UINT64 },
355 { "l2_write_bytes", KSTAT_DATA_UINT64 },
356 { "l2_writes_sent", KSTAT_DATA_UINT64 },
357 { "l2_writes_done", KSTAT_DATA_UINT64 },
358 { "l2_writes_error", KSTAT_DATA_UINT64 },
359 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 },
360 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
361 { "l2_evict_reading", KSTAT_DATA_UINT64 },
362 { "l2_free_on_write", KSTAT_DATA_UINT64 },
363 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
364 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
365 { "l2_io_error", KSTAT_DATA_UINT64 },
366 { "l2_size", KSTAT_DATA_UINT64 },
367 { "l2_hdr_size", KSTAT_DATA_UINT64 },
368 { "memory_throttle_count", KSTAT_DATA_UINT64 },
369 { "duplicate_buffers", KSTAT_DATA_UINT64 },
370 { "duplicate_buffers_size", KSTAT_DATA_UINT64 },
371 { "duplicate_reads", KSTAT_DATA_UINT64 },
372 { "arc_meta_used", KSTAT_DATA_UINT64 },
373 { "arc_meta_limit", KSTAT_DATA_UINT64 },
374 { "arc_meta_max", KSTAT_DATA_UINT64 }
375 };

377 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)

379 #define ARCSTAT_INCR(stat, val) \
380 atomic_add_64(&arc_stats.stat.value.ui64, (val));

382 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
383 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)

385 #define ARCSTAT_MAX(stat, val) { \
386 uint64_t m; \
387 while ((val) > (m = arc_stats.stat.value.ui64) && \
388 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
389 continue; \
390 }

392 #define ARCSTAT_MAXSTAT(stat) \
393 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)

395 /*
396 * We define a macro to allow ARC hits/misses to be easily broken down by
397 * two separate conditions, giving a total of four different subtypes for
398 * each of hits and misses (so eight statistics total).
399 */
400 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
401 if (cond1) { \
402 if (cond2) { \
403 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
404 } else { \
405 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
406 } \
407 } else { \
408 if (cond2) { \
409 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
410 } else { \
411 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
412 } \
413 }

415 kstat_t *arc_ksp;
416 static arc_state_t *arc_anon;
417 static arc_state_t *arc_mru;

new/usr/src/uts/common/fs/zfs/arc.c 4

418 static arc_state_t *arc_mru_ghost;
419 static arc_state_t *arc_mfu;
420 static arc_state_t *arc_mfu_ghost;
421 static arc_state_t *arc_l2c_only;

423 /*
424 * There are several ARC variables that are critical to export as kstats --
425 * but we don’t want to have to grovel around in the kstat whenever we wish to
426 * manipulate them. For these variables, we therefore define them to be in
427 * terms of the statistic variable. This assures that we are not introducing
428 * the possibility of inconsistency by having shadow copies of the variables,
429 * while still allowing the code to be readable.
430 */
431 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
432 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
433 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
434 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
435 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
436 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
437 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
438 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */

440 static int arc_no_grow; /* Don’t try to grow cache size */
441 static uint64_t arc_tempreserve;
442 static uint64_t arc_loaned_bytes;

444 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;

446 typedef struct arc_callback arc_callback_t;

448 struct arc_callback {
449 void *acb_private;
450 arc_done_func_t *acb_done;
451 arc_buf_t *acb_buf;
452 zio_t *acb_zio_dummy;
453 arc_callback_t *acb_next;
454 };

456 typedef struct arc_write_callback arc_write_callback_t;

458 struct arc_write_callback {
459 void *awcb_private;
460 arc_done_func_t *awcb_ready;
461 arc_done_func_t *awcb_done;
462 arc_buf_t *awcb_buf;
463 };

465 struct arc_buf_hdr {
466 /* protected by hash lock */
467 dva_t b_dva;
468 uint64_t b_birth;
469 uint64_t b_cksum0;

471 kmutex_t b_freeze_lock;
472 zio_cksum_t *b_freeze_cksum;
473 void *b_thawed;

475 arc_buf_hdr_t *b_hash_next;
476 arc_buf_t *b_buf;
477 uint32_t b_flags;
478 uint32_t b_datacnt;

480 arc_callback_t *b_acb;
481 kcondvar_t b_cv;

483 /* immutable */

new/usr/src/uts/common/fs/zfs/arc.c 5

484 arc_buf_contents_t b_type;
485 uint64_t b_size;
486 uint64_t b_spa;

488 /* protected by arc state mutex */
489 arc_state_t *b_state;
490 list_node_t b_arc_node;

492 /* updated atomically */
493 clock_t b_arc_access;

495 /* self protecting */
496 refcount_t b_refcnt;

498 l2arc_buf_hdr_t *b_l2hdr;
499 list_node_t b_l2node;
500 };

502 static arc_buf_t *arc_eviction_list;
503 static kmutex_t arc_eviction_mtx;
504 static arc_buf_hdr_t arc_eviction_hdr;
505 static void arc_get_data_buf(arc_buf_t *buf);
506 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
507 static int arc_evict_needed(arc_buf_contents_t type);
508 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
509 static void arc_buf_watch(arc_buf_t *buf);

511 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);

513 #define GHOST_STATE(state) \
514 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
515 (state) == arc_l2c_only)

517 /*
518 * Private ARC flags. These flags are private ARC only flags that will show up
519 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can
520 * be passed in as arc_flags in things like arc_read. However, these flags
521 * should never be passed and should only be set by ARC code. When adding new
522 * public flags, make sure not to smash the private ones.
523 */

525 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */
526 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */
527 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */
528 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */
529 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */
530 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */
531 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */
532 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */
533 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */
534 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */

536 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE)
537 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS)
538 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR)
539 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH)
540 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ)
541 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE)
542 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
543 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE)
544 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \
545 (hdr)->b_l2hdr != NULL)
546 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING)
547 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED)
548 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD)

new/usr/src/uts/common/fs/zfs/arc.c 6

550 /*
551 * Other sizes
552 */

554 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
555 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))

557 /*
558 * Hash table routines
559 */

561 #define HT_LOCK_PAD 64

563 struct ht_lock {
564 kmutex_t ht_lock;
565 #ifdef _KERNEL
566 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
567 #endif
568 };

570 #define BUF_LOCKS 256
571 typedef struct buf_hash_table {
572 uint64_t ht_mask;
573 arc_buf_hdr_t **ht_table;
574 struct ht_lock ht_locks[BUF_LOCKS];
575 } buf_hash_table_t;

577 static buf_hash_table_t buf_hash_table;

579 #define BUF_HASH_INDEX(spa, dva, birth) \
580 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
581 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
582 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
583 #define HDR_LOCK(hdr) \
584 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))

586 uint64_t zfs_crc64_table[256];

588 /*
589 * Level 2 ARC
590 */

592 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
593 #define L2ARC_HEADROOM 2 /* num of writes */
594 #define L2ARC_FEED_SECS 1 /* caching interval secs */
595 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */

597 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
598 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)

600 /*
601 * L2ARC Performance Tunables
602 */
603 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */
604 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */
605 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */
606 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
607 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
608 boolean_t l2arc_noprefetch = B_TRUE; /* don’t cache prefetch bufs */
609 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */
610 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */

612 /*
613 * L2ARC Internals
614 */
615 typedef struct l2arc_dev {

new/usr/src/uts/common/fs/zfs/arc.c 7

616 vdev_t *l2ad_vdev; /* vdev */
617 spa_t *l2ad_spa; /* spa */
618 uint64_t l2ad_hand; /* next write location */
619 uint64_t l2ad_write; /* desired write size, bytes */
620 uint64_t l2ad_boost; /* warmup write boost, bytes */
621 uint64_t l2ad_start; /* first addr on device */
622 uint64_t l2ad_end; /* last addr on device */
623 uint64_t l2ad_evict; /* last addr eviction reached */
624 boolean_t l2ad_first; /* first sweep through */
625 boolean_t l2ad_writing; /* currently writing */
626 list_t *l2ad_buflist; /* buffer list */
627 list_node_t l2ad_node; /* device list node */
628 } l2arc_dev_t;

630 static list_t L2ARC_dev_list; /* device list */
631 static list_t *l2arc_dev_list; /* device list pointer */
632 static kmutex_t l2arc_dev_mtx; /* device list mutex */
633 static l2arc_dev_t *l2arc_dev_last; /* last device used */
634 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */
635 static list_t L2ARC_free_on_write; /* free after write buf list */
636 static list_t *l2arc_free_on_write; /* free after write list ptr */
637 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
638 static uint64_t l2arc_ndev; /* number of devices */

640 typedef struct l2arc_read_callback {
641 arc_buf_t *l2rcb_buf; /* read buffer */
642 spa_t *l2rcb_spa; /* spa */
643 blkptr_t l2rcb_bp; /* original blkptr */
644 zbookmark_t l2rcb_zb; /* original bookmark */
645 int l2rcb_flags; /* original flags */
646 } l2arc_read_callback_t;

648 typedef struct l2arc_write_callback {
649 l2arc_dev_t *l2wcb_dev; /* device info */
650 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
651 } l2arc_write_callback_t;

653 struct l2arc_buf_hdr {
654 /* protected by arc_buf_hdr mutex */
655 l2arc_dev_t *b_dev; /* L2ARC device */
656 uint64_t b_daddr; /* disk address, offset byte */
657 };

659 typedef struct l2arc_data_free {
660 /* protected by l2arc_free_on_write_mtx */
661 void *l2df_data;
662 size_t l2df_size;
663 void (*l2df_func)(void *, size_t);
664 list_node_t l2df_list_node;
665 } l2arc_data_free_t;

667 static kmutex_t l2arc_feed_thr_lock;
668 static kcondvar_t l2arc_feed_thr_cv;
669 static uint8_t l2arc_thread_exit;

671 static void l2arc_read_done(zio_t *zio);
672 static void l2arc_hdr_stat_add(void);
673 static void l2arc_hdr_stat_remove(void);

675 static uint64_t
676 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
677 {
678 uint8_t *vdva = (uint8_t *)dva;
679 uint64_t crc = -1ULL;
680 int i;

new/usr/src/uts/common/fs/zfs/arc.c 8

682 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);

684 for (i = 0; i < sizeof (dva_t); i++)
685 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];

687 crc ^= (spa>>8) ^ birth;

689 return (crc);
690 }

692 #define BUF_EMPTY(buf) \
693 ((buf)->b_dva.dva_word[0] == 0 && \
694 (buf)->b_dva.dva_word[1] == 0 && \
695 (buf)->b_birth == 0)

697 #define BUF_EQUAL(spa, dva, birth, buf) \
698 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
699 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
700 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)

702 static void
703 buf_discard_identity(arc_buf_hdr_t *hdr)
704 {
705 hdr->b_dva.dva_word[0] = 0;
706 hdr->b_dva.dva_word[1] = 0;
707 hdr->b_birth = 0;
708 hdr->b_cksum0 = 0;
709 }

711 static arc_buf_hdr_t *
712 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
713 {
714 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
715 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
716 arc_buf_hdr_t *buf;

718 mutex_enter(hash_lock);
719 for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
720 buf = buf->b_hash_next) {
721 if (BUF_EQUAL(spa, dva, birth, buf)) {
722 *lockp = hash_lock;
723 return (buf);
724 }
725 }
726 mutex_exit(hash_lock);
727 *lockp = NULL;
728 return (NULL);
729 }

731 /*
732 * Insert an entry into the hash table. If there is already an element
733 * equal to elem in the hash table, then the already existing element
734 * will be returned and the new element will not be inserted.
735 * Otherwise returns NULL.
736 */
737 static arc_buf_hdr_t *
738 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
739 {
740 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
741 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
742 arc_buf_hdr_t *fbuf;
743 uint32_t i;

745 ASSERT(!HDR_IN_HASH_TABLE(buf));
746 *lockp = hash_lock;
747 mutex_enter(hash_lock);

new/usr/src/uts/common/fs/zfs/arc.c 9

748 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
749 fbuf = fbuf->b_hash_next, i++) {
750 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
751 return (fbuf);
752 }

754 buf->b_hash_next = buf_hash_table.ht_table[idx];
755 buf_hash_table.ht_table[idx] = buf;
756 buf->b_flags |= ARC_IN_HASH_TABLE;

758 /* collect some hash table performance data */
759 if (i > 0) {
760 ARCSTAT_BUMP(arcstat_hash_collisions);
761 if (i == 1)
762 ARCSTAT_BUMP(arcstat_hash_chains);

764 ARCSTAT_MAX(arcstat_hash_chain_max, i);
765 }

767 ARCSTAT_BUMP(arcstat_hash_elements);
768 ARCSTAT_MAXSTAT(arcstat_hash_elements);

770 return (NULL);
771 }

773 static void
774 buf_hash_remove(arc_buf_hdr_t *buf)
775 {
776 arc_buf_hdr_t *fbuf, **bufp;
777 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);

779 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
780 ASSERT(HDR_IN_HASH_TABLE(buf));

782 bufp = &buf_hash_table.ht_table[idx];
783 while ((fbuf = *bufp) != buf) {
784 ASSERT(fbuf != NULL);
785 bufp = &fbuf->b_hash_next;
786 }
787 *bufp = buf->b_hash_next;
788 buf->b_hash_next = NULL;
789 buf->b_flags &= ~ARC_IN_HASH_TABLE;

791 /* collect some hash table performance data */
792 ARCSTAT_BUMPDOWN(arcstat_hash_elements);

794 if (buf_hash_table.ht_table[idx] &&
795 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
796 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
797 }

799 /*
800 * Global data structures and functions for the buf kmem cache.
801 */
802 static kmem_cache_t *hdr_cache;
803 static kmem_cache_t *buf_cache;

805 static void
806 buf_fini(void)
807 {
808 int i;

810 kmem_free(buf_hash_table.ht_table,
811 (buf_hash_table.ht_mask + 1) * sizeof (void *));
812 for (i = 0; i < BUF_LOCKS; i++)
813 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);

new/usr/src/uts/common/fs/zfs/arc.c 10

814 kmem_cache_destroy(hdr_cache);
815 kmem_cache_destroy(buf_cache);
816 }

818 /*
819 * Constructor callback - called when the cache is empty
820 * and a new buf is requested.
821 */
822 /* ARGSUSED */
823 static int
824 hdr_cons(void *vbuf, void *unused, int kmflag)
825 {
826 arc_buf_hdr_t *buf = vbuf;

828 bzero(buf, sizeof (arc_buf_hdr_t));
829 refcount_create(&buf->b_refcnt);
830 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
831 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
832 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);

834 return (0);
835 }

837 /* ARGSUSED */
838 static int
839 buf_cons(void *vbuf, void *unused, int kmflag)
840 {
841 arc_buf_t *buf = vbuf;

843 bzero(buf, sizeof (arc_buf_t));
844 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
845 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);

847 return (0);
848 }

850 /*
851 * Destructor callback - called when a cached buf is
852 * no longer required.
853 */
854 /* ARGSUSED */
855 static void
856 hdr_dest(void *vbuf, void *unused)
857 {
858 arc_buf_hdr_t *buf = vbuf;

860 ASSERT(BUF_EMPTY(buf));
861 refcount_destroy(&buf->b_refcnt);
862 cv_destroy(&buf->b_cv);
863 mutex_destroy(&buf->b_freeze_lock);
864 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
865 }

867 /* ARGSUSED */
868 static void
869 buf_dest(void *vbuf, void *unused)
870 {
871 arc_buf_t *buf = vbuf;

873 mutex_destroy(&buf->b_evict_lock);
874 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
875 }

877 /*
878 * Reclaim callback -- invoked when memory is low.
879 */

new/usr/src/uts/common/fs/zfs/arc.c 11

880 /* ARGSUSED */
881 static void
882 hdr_recl(void *unused)
883 {
884 dprintf("hdr_recl called\n");
885 /*
886 * umem calls the reclaim func when we destroy the buf cache,
887 * which is after we do arc_fini().
888 */
889 if (!arc_dead)
890 cv_signal(&arc_reclaim_thr_cv);
891 }

893 static void
894 buf_init(void)
895 {
896 uint64_t *ct;
897 uint64_t hsize = 1ULL << 12;
898 int i, j;

900 /*
901 * The hash table is big enough to fill all of physical memory
902 * with an average 64K block size. The table will take up
903 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
904 */
905 while (hsize * 65536 < physmem * PAGESIZE)
906 hsize <<= 1;
907 retry:
908 buf_hash_table.ht_mask = hsize - 1;
909 buf_hash_table.ht_table =
910 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
911 if (buf_hash_table.ht_table == NULL) {
912 ASSERT(hsize > (1ULL << 8));
913 hsize >>= 1;
914 goto retry;
915 }

917 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
918 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
919 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
920 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);

922 for (i = 0; i < 256; i++)
923 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
924 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);

926 for (i = 0; i < BUF_LOCKS; i++) {
927 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
928 NULL, MUTEX_DEFAULT, NULL);
929 }
930 }

932 #define ARC_MINTIME (hz>>4) /* 62 ms */

934 static void
935 arc_cksum_verify(arc_buf_t *buf)
936 {
937 zio_cksum_t zc;

939 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
940 return;

942 mutex_enter(&buf->b_hdr->b_freeze_lock);
943 if (buf->b_hdr->b_freeze_cksum == NULL ||
944 (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
945 mutex_exit(&buf->b_hdr->b_freeze_lock);

new/usr/src/uts/common/fs/zfs/arc.c 12

946 return;
947 }
948 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
949 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
950 panic("buffer modified while frozen!");
951 mutex_exit(&buf->b_hdr->b_freeze_lock);
952 }

954 static int
955 arc_cksum_equal(arc_buf_t *buf)
956 {
957 zio_cksum_t zc;
958 int equal;

960 mutex_enter(&buf->b_hdr->b_freeze_lock);
961 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
962 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
963 mutex_exit(&buf->b_hdr->b_freeze_lock);

965 return (equal);
966 }

968 static void
969 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
970 {
971 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
972 return;

974 mutex_enter(&buf->b_hdr->b_freeze_lock);
975 if (buf->b_hdr->b_freeze_cksum != NULL) {
976 mutex_exit(&buf->b_hdr->b_freeze_lock);
977 return;
978 }
979 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
980 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
981 buf->b_hdr->b_freeze_cksum);
982 mutex_exit(&buf->b_hdr->b_freeze_lock);
983 arc_buf_watch(buf);
984 }

986 #ifndef _KERNEL
987 typedef struct procctl {
988 long cmd;
989 prwatch_t prwatch;
990 } procctl_t;
991 #endif

993 /* ARGSUSED */
994 static void
995 arc_buf_unwatch(arc_buf_t *buf)
996 {
997 #ifndef _KERNEL
998 if (arc_watch) {
999 int result;

1000 procctl_t ctl;
1001 ctl.cmd = PCWATCH;
1002 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1003 ctl.prwatch.pr_size = 0;
1004 ctl.prwatch.pr_wflags = 0;
1005 result = write(arc_procfd, &ctl, sizeof (ctl));
1006 ASSERT3U(result, ==, sizeof (ctl));
1007 }
1008 #endif
1009 }

1011 /* ARGSUSED */

new/usr/src/uts/common/fs/zfs/arc.c 13

1012 static void
1013 arc_buf_watch(arc_buf_t *buf)
1014 {
1015 #ifndef _KERNEL
1016 if (arc_watch) {
1017 int result;
1018 procctl_t ctl;
1019 ctl.cmd = PCWATCH;
1020 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1021 ctl.prwatch.pr_size = buf->b_hdr->b_size;
1022 ctl.prwatch.pr_wflags = WA_WRITE;
1023 result = write(arc_procfd, &ctl, sizeof (ctl));
1024 ASSERT3U(result, ==, sizeof (ctl));
1025 }
1026 #endif
1027 }

1029 void
1030 arc_buf_thaw(arc_buf_t *buf)
1031 {
1032 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1033 if (buf->b_hdr->b_state != arc_anon)
1034 panic("modifying non-anon buffer!");
1035 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1036 panic("modifying buffer while i/o in progress!");
1037 arc_cksum_verify(buf);
1038 }

1040 mutex_enter(&buf->b_hdr->b_freeze_lock);
1041 if (buf->b_hdr->b_freeze_cksum != NULL) {
1042 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1043 buf->b_hdr->b_freeze_cksum = NULL;
1044 }

1046 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1047 if (buf->b_hdr->b_thawed)
1048 kmem_free(buf->b_hdr->b_thawed, 1);
1049 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1050 }

1052 mutex_exit(&buf->b_hdr->b_freeze_lock);

1054 arc_buf_unwatch(buf);
1055 }

1057 void
1058 arc_buf_freeze(arc_buf_t *buf)
1059 {
1060 kmutex_t *hash_lock;

1062 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1063 return;

1065 hash_lock = HDR_LOCK(buf->b_hdr);
1066 mutex_enter(hash_lock);

1068 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1069 buf->b_hdr->b_state == arc_anon);
1070 arc_cksum_compute(buf, B_FALSE);
1071 mutex_exit(hash_lock);

1073 }

1075 static void
1076 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1077 {

new/usr/src/uts/common/fs/zfs/arc.c 14

1078 ASSERT(MUTEX_HELD(hash_lock));

1080 if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1081 (ab->b_state != arc_anon)) {
1082 uint64_t delta = ab->b_size * ab->b_datacnt;
1083 list_t *list = &ab->b_state->arcs_list[ab->b_type];
1084 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];

1086 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1087 mutex_enter(&ab->b_state->arcs_mtx);
1088 ASSERT(list_link_active(&ab->b_arc_node));
1089 list_remove(list, ab);
1090 if (GHOST_STATE(ab->b_state)) {
1091 ASSERT0(ab->b_datacnt);
1092 ASSERT3P(ab->b_buf, ==, NULL);
1093 delta = ab->b_size;
1094 }
1095 ASSERT(delta > 0);
1096 ASSERT3U(*size, >=, delta);
1097 atomic_add_64(size, -delta);
1098 mutex_exit(&ab->b_state->arcs_mtx);
1099 /* remove the prefetch flag if we get a reference */
1100 if (ab->b_flags & ARC_PREFETCH)
1101 ab->b_flags &= ~ARC_PREFETCH;
1102 }
1103 }

1105 static int
1106 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1107 {
1108 int cnt;
1109 arc_state_t *state = ab->b_state;

1111 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1112 ASSERT(!GHOST_STATE(state));

1114 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1115 (state != arc_anon)) {
1116 uint64_t *size = &state->arcs_lsize[ab->b_type];

1118 ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1119 mutex_enter(&state->arcs_mtx);
1120 ASSERT(!list_link_active(&ab->b_arc_node));
1121 list_insert_head(&state->arcs_list[ab->b_type], ab);
1122 ASSERT(ab->b_datacnt > 0);
1123 atomic_add_64(size, ab->b_size * ab->b_datacnt);
1124 mutex_exit(&state->arcs_mtx);
1125 }
1126 return (cnt);
1127 }

1129 /*
1130 * Move the supplied buffer to the indicated state. The mutex
1131 * for the buffer must be held by the caller.
1132 */
1133 static void
1134 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1135 {
1136 arc_state_t *old_state = ab->b_state;
1137 int64_t refcnt = refcount_count(&ab->b_refcnt);
1138 uint64_t from_delta, to_delta;

1140 ASSERT(MUTEX_HELD(hash_lock));
1141 ASSERT(new_state != old_state);
1142 ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1143 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));

new/usr/src/uts/common/fs/zfs/arc.c 15

1144 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);

1146 from_delta = to_delta = ab->b_datacnt * ab->b_size;

1148 /*
1149 * If this buffer is evictable, transfer it from the
1150 * old state list to the new state list.
1151 */
1152 if (refcnt == 0) {
1153 if (old_state != arc_anon) {
1154 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1155 uint64_t *size = &old_state->arcs_lsize[ab->b_type];

1157 if (use_mutex)
1158 mutex_enter(&old_state->arcs_mtx);

1160 ASSERT(list_link_active(&ab->b_arc_node));
1161 list_remove(&old_state->arcs_list[ab->b_type], ab);

1163 /*
1164 * If prefetching out of the ghost cache,
1165 * we will have a non-zero datacnt.
1166 */
1167 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1168 /* ghost elements have a ghost size */
1169 ASSERT(ab->b_buf == NULL);
1170 from_delta = ab->b_size;
1171 }
1172 ASSERT3U(*size, >=, from_delta);
1173 atomic_add_64(size, -from_delta);

1175 if (use_mutex)
1176 mutex_exit(&old_state->arcs_mtx);
1177 }
1178 if (new_state != arc_anon) {
1179 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1180 uint64_t *size = &new_state->arcs_lsize[ab->b_type];

1182 if (use_mutex)
1183 mutex_enter(&new_state->arcs_mtx);

1185 list_insert_head(&new_state->arcs_list[ab->b_type], ab);

1187 /* ghost elements have a ghost size */
1188 if (GHOST_STATE(new_state)) {
1189 ASSERT(ab->b_datacnt == 0);
1190 ASSERT(ab->b_buf == NULL);
1191 to_delta = ab->b_size;
1192 }
1193 atomic_add_64(size, to_delta);

1195 if (use_mutex)
1196 mutex_exit(&new_state->arcs_mtx);
1197 }
1198 }

1200 ASSERT(!BUF_EMPTY(ab));
1201 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1202 buf_hash_remove(ab);

1204 /* adjust state sizes */
1205 if (to_delta)
1206 atomic_add_64(&new_state->arcs_size, to_delta);
1207 if (from_delta) {
1208 ASSERT3U(old_state->arcs_size, >=, from_delta);
1209 atomic_add_64(&old_state->arcs_size, -from_delta);

new/usr/src/uts/common/fs/zfs/arc.c 16

1210 }
1211 ab->b_state = new_state;

1213 /* adjust l2arc hdr stats */
1214 if (new_state == arc_l2c_only)
1215 l2arc_hdr_stat_add();
1216 else if (old_state == arc_l2c_only)
1217 l2arc_hdr_stat_remove();
1218 }

1220 void
1221 arc_space_consume(uint64_t space, arc_space_type_t type)
1222 {
1223 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);

1225 switch (type) {
1226 case ARC_SPACE_DATA:
1227 ARCSTAT_INCR(arcstat_data_size, space);
1228 break;
1229 case ARC_SPACE_OTHER:
1230 ARCSTAT_INCR(arcstat_other_size, space);
1231 break;
1232 case ARC_SPACE_HDRS:
1233 ARCSTAT_INCR(arcstat_hdr_size, space);
1234 break;
1235 case ARC_SPACE_L2HDRS:
1236 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1237 break;
1238 }

1240 ARCSTAT_INCR(arcstat_meta_used, space);
1241 atomic_add_64(&arc_size, space);
1242 }

1244 void
1245 arc_space_return(uint64_t space, arc_space_type_t type)
1246 {
1247 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);

1249 switch (type) {
1250 case ARC_SPACE_DATA:
1251 ARCSTAT_INCR(arcstat_data_size, -space);
1252 break;
1253 case ARC_SPACE_OTHER:
1254 ARCSTAT_INCR(arcstat_other_size, -space);
1255 break;
1256 case ARC_SPACE_HDRS:
1257 ARCSTAT_INCR(arcstat_hdr_size, -space);
1258 break;
1259 case ARC_SPACE_L2HDRS:
1260 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1261 break;
1262 }

1264 ASSERT(arc_meta_used >= space);
1265 if (arc_meta_max < arc_meta_used)
1266 arc_meta_max = arc_meta_used;
1267 ARCSTAT_INCR(arcstat_meta_used, -space);
1268 ASSERT(arc_size >= space);
1269 atomic_add_64(&arc_size, -space);
1270 }

1272 void *
1273 arc_data_buf_alloc(uint64_t size)
1274 {
1275 if (arc_evict_needed(ARC_BUFC_DATA))

new/usr/src/uts/common/fs/zfs/arc.c 17

1276 cv_signal(&arc_reclaim_thr_cv);
1277 atomic_add_64(&arc_size, size);
1278 return (zio_data_buf_alloc(size));
1279 }

1281 void
1282 arc_data_buf_free(void *buf, uint64_t size)
1283 {
1284 zio_data_buf_free(buf, size);
1285 ASSERT(arc_size >= size);
1286 atomic_add_64(&arc_size, -size);
1287 }

1289 arc_buf_t *
1290 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1291 {
1292 arc_buf_hdr_t *hdr;
1293 arc_buf_t *buf;

1295 ASSERT3U(size, >, 0);
1296 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1297 ASSERT(BUF_EMPTY(hdr));
1298 hdr->b_size = size;
1299 hdr->b_type = type;
1300 hdr->b_spa = spa_load_guid(spa);
1301 hdr->b_state = arc_anon;
1302 hdr->b_arc_access = 0;
1303 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1304 buf->b_hdr = hdr;
1305 buf->b_data = NULL;
1306 buf->b_efunc = NULL;
1307 buf->b_private = NULL;
1308 buf->b_next = NULL;
1309 hdr->b_buf = buf;
1310 arc_get_data_buf(buf);
1311 hdr->b_datacnt = 1;
1312 hdr->b_flags = 0;
1313 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1314 (void) refcount_add(&hdr->b_refcnt, tag);

1316 return (buf);
1317 }

1319 static char *arc_onloan_tag = "onloan";

1321 /*
1322 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1323 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1324 * buffers must be returned to the arc before they can be used by the DMU or
1325 * freed.
1326 */
1327 arc_buf_t *
1328 arc_loan_buf(spa_t *spa, int size)
1329 {
1330 arc_buf_t *buf;

1332 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);

1334 atomic_add_64(&arc_loaned_bytes, size);
1335 return (buf);
1336 }

1338 /*
1339 * Return a loaned arc buffer to the arc.
1340 */
1341 void

new/usr/src/uts/common/fs/zfs/arc.c 18

1342 arc_return_buf(arc_buf_t *buf, void *tag)
1343 {
1344 arc_buf_hdr_t *hdr = buf->b_hdr;

1346 ASSERT(buf->b_data != NULL);
1347 (void) refcount_add(&hdr->b_refcnt, tag);
1348 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);

1350 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1351 }

1353 /* Detach an arc_buf from a dbuf (tag) */
1354 void
1355 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1356 {
1357 arc_buf_hdr_t *hdr;

1359 ASSERT(buf->b_data != NULL);
1360 hdr = buf->b_hdr;
1361 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1362 (void) refcount_remove(&hdr->b_refcnt, tag);
1363 buf->b_efunc = NULL;
1364 buf->b_private = NULL;

1366 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1367 }

1369 static arc_buf_t *
1370 arc_buf_clone(arc_buf_t *from)
1371 {
1372 arc_buf_t *buf;
1373 arc_buf_hdr_t *hdr = from->b_hdr;
1374 uint64_t size = hdr->b_size;

1376 ASSERT(hdr->b_state != arc_anon);

1378 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1379 buf->b_hdr = hdr;
1380 buf->b_data = NULL;
1381 buf->b_efunc = NULL;
1382 buf->b_private = NULL;
1383 buf->b_next = hdr->b_buf;
1384 hdr->b_buf = buf;
1385 arc_get_data_buf(buf);
1386 bcopy(from->b_data, buf->b_data, size);

1388 /*
1389 * This buffer already exists in the arc so create a duplicate
1390 * copy for the caller. If the buffer is associated with user data
1391 * then track the size and number of duplicates. These stats will be
1392 * updated as duplicate buffers are created and destroyed.
1393 */
1394 if (hdr->b_type == ARC_BUFC_DATA) {
1395 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1396 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1397 }
1398 hdr->b_datacnt += 1;
1399 return (buf);
1400 }

1402 void
1403 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1404 {
1405 arc_buf_hdr_t *hdr;
1406 kmutex_t *hash_lock;

new/usr/src/uts/common/fs/zfs/arc.c 19

1408 /*
1409 * Check to see if this buffer is evicted. Callers
1410 * must verify b_data != NULL to know if the add_ref
1411 * was successful.
1412 */
1413 mutex_enter(&buf->b_evict_lock);
1414 if (buf->b_data == NULL) {
1415 mutex_exit(&buf->b_evict_lock);
1416 return;
1417 }
1418 hash_lock = HDR_LOCK(buf->b_hdr);
1419 mutex_enter(hash_lock);
1420 hdr = buf->b_hdr;
1421 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1422 mutex_exit(&buf->b_evict_lock);

1424 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1425 add_reference(hdr, hash_lock, tag);
1426 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1427 arc_access(hdr, hash_lock);
1428 mutex_exit(hash_lock);
1429 ARCSTAT_BUMP(arcstat_hits);
1430 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1431 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1432 data, metadata, hits);
1433 }

1435 /*
1436 * Free the arc data buffer. If it is an l2arc write in progress,
1437 * the buffer is placed on l2arc_free_on_write to be freed later.
1438 */
1439 static void
1440 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1441 {
1442 arc_buf_hdr_t *hdr = buf->b_hdr;

1444 if (HDR_L2_WRITING(hdr)) {
1445 l2arc_data_free_t *df;
1446 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1447 df->l2df_data = buf->b_data;
1448 df->l2df_size = hdr->b_size;
1449 df->l2df_func = free_func;
1450 mutex_enter(&l2arc_free_on_write_mtx);
1451 list_insert_head(l2arc_free_on_write, df);
1452 mutex_exit(&l2arc_free_on_write_mtx);
1453 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1454 } else {
1455 free_func(buf->b_data, hdr->b_size);
1456 }
1457 }

1459 static void
1460 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1461 {
1462 arc_buf_t **bufp;

1464 /* free up data associated with the buf */
1465 if (buf->b_data) {
1466 arc_state_t *state = buf->b_hdr->b_state;
1467 uint64_t size = buf->b_hdr->b_size;
1468 arc_buf_contents_t type = buf->b_hdr->b_type;

1470 arc_cksum_verify(buf);
1471 arc_buf_unwatch(buf);

1473 if (!recycle) {

new/usr/src/uts/common/fs/zfs/arc.c 20

1474 if (type == ARC_BUFC_METADATA) {
1475 arc_buf_data_free(buf, zio_buf_free);
1476 arc_space_return(size, ARC_SPACE_DATA);
1477 } else {
1478 ASSERT(type == ARC_BUFC_DATA);
1479 arc_buf_data_free(buf, zio_data_buf_free);
1480 ARCSTAT_INCR(arcstat_data_size, -size);
1481 atomic_add_64(&arc_size, -size);
1482 }
1483 }
1484 if (list_link_active(&buf->b_hdr->b_arc_node)) {
1485 uint64_t *cnt = &state->arcs_lsize[type];

1487 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1488 ASSERT(state != arc_anon);

1490 ASSERT3U(*cnt, >=, size);
1491 atomic_add_64(cnt, -size);
1492 }
1493 ASSERT3U(state->arcs_size, >=, size);
1494 atomic_add_64(&state->arcs_size, -size);
1495 buf->b_data = NULL;

1497 /*
1498 * If we’re destroying a duplicate buffer make sure
1499 * that the appropriate statistics are updated.
1500 */
1501 if (buf->b_hdr->b_datacnt > 1 &&
1502 buf->b_hdr->b_type == ARC_BUFC_DATA) {
1503 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1504 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1505 }
1506 ASSERT(buf->b_hdr->b_datacnt > 0);
1507 buf->b_hdr->b_datacnt -= 1;
1508 }

1510 /* only remove the buf if requested */
1511 if (!all)
1512 return;

1514 /* remove the buf from the hdr list */
1515 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1516 continue;
1517 *bufp = buf->b_next;
1518 buf->b_next = NULL;

1520 ASSERT(buf->b_efunc == NULL);

1522 /* clean up the buf */
1523 buf->b_hdr = NULL;
1524 kmem_cache_free(buf_cache, buf);
1525 }

1527 static void
1528 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1529 {
1530 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1531 ASSERT3P(hdr->b_state, ==, arc_anon);
1532 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1533 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;

1535 if (l2hdr != NULL) {
1536 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1537 /*
1538 * To prevent arc_free() and l2arc_evict() from
1539 * attempting to free the same buffer at the same time,

new/usr/src/uts/common/fs/zfs/arc.c 21

1540 * a FREE_IN_PROGRESS flag is given to arc_free() to
1541 * give it priority. l2arc_evict() can’t destroy this
1542 * header while we are waiting on l2arc_buflist_mtx.
1543 *
1544 * The hdr may be removed from l2ad_buflist before we
1545 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1546 */
1547 if (!buflist_held) {
1548 mutex_enter(&l2arc_buflist_mtx);
1549 l2hdr = hdr->b_l2hdr;
1550 }

1552 if (l2hdr != NULL) {
1553 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1554 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1555 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1556 if (hdr->b_state == arc_l2c_only)
1557 l2arc_hdr_stat_remove();
1558 hdr->b_l2hdr = NULL;
1559 }

1561 if (!buflist_held)
1562 mutex_exit(&l2arc_buflist_mtx);
1563 }

1565 if (!BUF_EMPTY(hdr)) {
1566 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1567 buf_discard_identity(hdr);
1568 }
1569 while (hdr->b_buf) {
1570 arc_buf_t *buf = hdr->b_buf;

1572 if (buf->b_efunc) {
1573 mutex_enter(&arc_eviction_mtx);
1574 mutex_enter(&buf->b_evict_lock);
1575 ASSERT(buf->b_hdr != NULL);
1576 arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1577 hdr->b_buf = buf->b_next;
1578 buf->b_hdr = &arc_eviction_hdr;
1579 buf->b_next = arc_eviction_list;
1580 arc_eviction_list = buf;
1581 mutex_exit(&buf->b_evict_lock);
1582 mutex_exit(&arc_eviction_mtx);
1583 } else {
1584 arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1585 }
1586 }
1587 if (hdr->b_freeze_cksum != NULL) {
1588 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1589 hdr->b_freeze_cksum = NULL;
1590 }
1591 if (hdr->b_thawed) {
1592 kmem_free(hdr->b_thawed, 1);
1593 hdr->b_thawed = NULL;
1594 }

1596 ASSERT(!list_link_active(&hdr->b_arc_node));
1597 ASSERT3P(hdr->b_hash_next, ==, NULL);
1598 ASSERT3P(hdr->b_acb, ==, NULL);
1599 kmem_cache_free(hdr_cache, hdr);
1600 }

1602 void
1603 arc_buf_free(arc_buf_t *buf, void *tag)
1604 {
1605 arc_buf_hdr_t *hdr = buf->b_hdr;

new/usr/src/uts/common/fs/zfs/arc.c 22

1606 int hashed = hdr->b_state != arc_anon;

1608 ASSERT(buf->b_efunc == NULL);
1609 ASSERT(buf->b_data != NULL);

1611 if (hashed) {
1612 kmutex_t *hash_lock = HDR_LOCK(hdr);

1614 mutex_enter(hash_lock);
1615 hdr = buf->b_hdr;
1616 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));

1618 (void) remove_reference(hdr, hash_lock, tag);
1619 if (hdr->b_datacnt > 1) {
1620 arc_buf_destroy(buf, FALSE, TRUE);
1621 } else {
1622 ASSERT(buf == hdr->b_buf);
1623 ASSERT(buf->b_efunc == NULL);
1624 hdr->b_flags |= ARC_BUF_AVAILABLE;
1625 }
1626 mutex_exit(hash_lock);
1627 } else if (HDR_IO_IN_PROGRESS(hdr)) {
1628 int destroy_hdr;
1629 /*
1630 * We are in the middle of an async write. Don’t destroy
1631 * this buffer unless the write completes before we finish
1632 * decrementing the reference count.
1633 */
1634 mutex_enter(&arc_eviction_mtx);
1635 (void) remove_reference(hdr, NULL, tag);
1636 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1637 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1638 mutex_exit(&arc_eviction_mtx);
1639 if (destroy_hdr)
1640 arc_hdr_destroy(hdr);
1641 } else {
1642 if (remove_reference(hdr, NULL, tag) > 0)
1643 arc_buf_destroy(buf, FALSE, TRUE);
1644 else
1645 arc_hdr_destroy(hdr);
1646 }
1647 }

1649 boolean_t
1650 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1651 {
1652 arc_buf_hdr_t *hdr = buf->b_hdr;
1653 kmutex_t *hash_lock = HDR_LOCK(hdr);
1654 boolean_t no_callback = (buf->b_efunc == NULL);

1656 if (hdr->b_state == arc_anon) {
1657 ASSERT(hdr->b_datacnt == 1);
1658 arc_buf_free(buf, tag);
1659 return (no_callback);
1660 }

1662 mutex_enter(hash_lock);
1663 hdr = buf->b_hdr;
1664 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1665 ASSERT(hdr->b_state != arc_anon);
1666 ASSERT(buf->b_data != NULL);

1668 (void) remove_reference(hdr, hash_lock, tag);
1669 if (hdr->b_datacnt > 1) {
1670 if (no_callback)
1671 arc_buf_destroy(buf, FALSE, TRUE);

new/usr/src/uts/common/fs/zfs/arc.c 23

1672 } else if (no_callback) {
1673 ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1674 ASSERT(buf->b_efunc == NULL);
1675 hdr->b_flags |= ARC_BUF_AVAILABLE;
1676 }
1677 ASSERT(no_callback || hdr->b_datacnt > 1 ||
1678 refcount_is_zero(&hdr->b_refcnt));
1679 mutex_exit(hash_lock);
1680 return (no_callback);
1681 }

1683 int
1684 arc_buf_size(arc_buf_t *buf)
1685 {
1686 return (buf->b_hdr->b_size);
1687 }

1689 /*
1690 * Called from the DMU to determine if the current buffer should be
1691 * evicted. In order to ensure proper locking, the eviction must be initiated
1692 * from the DMU. Return true if the buffer is associated with user data and
1693 * duplicate buffers still exist.
1694 */
1695 boolean_t
1696 arc_buf_eviction_needed(arc_buf_t *buf)
1697 {
1698 arc_buf_hdr_t *hdr;
1699 boolean_t evict_needed = B_FALSE;

1701 if (zfs_disable_dup_eviction)
1702 return (B_FALSE);

1704 mutex_enter(&buf->b_evict_lock);
1705 hdr = buf->b_hdr;
1706 if (hdr == NULL) {
1707 /*
1708 * We are in arc_do_user_evicts(); let that function
1709 * perform the eviction.
1710 */
1711 ASSERT(buf->b_data == NULL);
1712 mutex_exit(&buf->b_evict_lock);
1713 return (B_FALSE);
1714 } else if (buf->b_data == NULL) {
1715 /*
1716 * We have already been added to the arc eviction list;
1717 * recommend eviction.
1718 */
1719 ASSERT3P(hdr, ==, &arc_eviction_hdr);
1720 mutex_exit(&buf->b_evict_lock);
1721 return (B_TRUE);
1722 }

1724 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1725 evict_needed = B_TRUE;

1727 mutex_exit(&buf->b_evict_lock);
1728 return (evict_needed);
1729 }

1731 /*
1732 * Evict buffers from list until we’ve removed the specified number of
1733 * bytes. Move the removed buffers to the appropriate evict state.
1734 * If the recycle flag is set, then attempt to "recycle" a buffer:
1735 * - look for a buffer to evict that is ‘bytes’ long.
1736 * - return the data block from this buffer rather than freeing it.
1737 * This flag is used by callers that are trying to make space for a

new/usr/src/uts/common/fs/zfs/arc.c 24

1738 * new buffer in a full arc cache.
1739 *
1740 * This function makes a "best effort". It skips over any buffers
1741 * it can’t get a hash_lock on, and so may not catch all candidates.
1742 * It may also return without evicting as much space as requested.
1743 */
1744 static void *
1745 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1746 arc_buf_contents_t type)
1747 {
1748 arc_state_t *evicted_state;
1749 uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1750 arc_buf_hdr_t *ab, *ab_prev = NULL;
1751 list_t *list = &state->arcs_list[type];
1752 kmutex_t *hash_lock;
1753 boolean_t have_lock;
1754 void *stolen = NULL;

1756 ASSERT(state == arc_mru || state == arc_mfu);

1758 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;

1760 mutex_enter(&state->arcs_mtx);
1761 mutex_enter(&evicted_state->arcs_mtx);

1763 for (ab = list_tail(list); ab; ab = ab_prev) {
1764 ab_prev = list_prev(list, ab);
1765 /* prefetch buffers have a minimum lifespan */
1766 if (HDR_IO_IN_PROGRESS(ab) ||
1767 (spa && ab->b_spa != spa) ||
1768 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1769 ddi_get_lbolt() - ab->b_arc_access <
1770 arc_min_prefetch_lifespan)) {
1771 skipped++;
1772 continue;
1773 }
1774 /* "lookahead" for better eviction candidate */
1775 if (recycle && ab->b_size != bytes &&
1776 ab_prev && ab_prev->b_size == bytes)
1777 continue;
1778 hash_lock = HDR_LOCK(ab);
1779 have_lock = MUTEX_HELD(hash_lock);
1780 if (have_lock || mutex_tryenter(hash_lock)) {
1781 ASSERT0(refcount_count(&ab->b_refcnt));
1782 ASSERT(ab->b_datacnt > 0);
1783 while (ab->b_buf) {
1784 arc_buf_t *buf = ab->b_buf;
1785 if (!mutex_tryenter(&buf->b_evict_lock)) {
1786 missed += 1;
1787 break;
1788 }
1789 if (buf->b_data) {
1790 bytes_evicted += ab->b_size;
1791 if (recycle && ab->b_type == type &&
1792 ab->b_size == bytes &&
1793 !HDR_L2_WRITING(ab)) {
1794 stolen = buf->b_data;
1795 recycle = FALSE;
1796 }
1797 }
1798 if (buf->b_efunc) {
1799 mutex_enter(&arc_eviction_mtx);
1800 arc_buf_destroy(buf,
1801 buf->b_data == stolen, FALSE);
1802 ab->b_buf = buf->b_next;
1803 buf->b_hdr = &arc_eviction_hdr;

new/usr/src/uts/common/fs/zfs/arc.c 25

1804 buf->b_next = arc_eviction_list;
1805 arc_eviction_list = buf;
1806 mutex_exit(&arc_eviction_mtx);
1807 mutex_exit(&buf->b_evict_lock);
1808 } else {
1809 mutex_exit(&buf->b_evict_lock);
1810 arc_buf_destroy(buf,
1811 buf->b_data == stolen, TRUE);
1812 }
1813 }

1815 if (ab->b_l2hdr) {
1816 ARCSTAT_INCR(arcstat_evict_l2_cached,
1817 ab->b_size);
1818 } else {
1819 if (l2arc_write_eligible(ab->b_spa, ab)) {
1820 ARCSTAT_INCR(arcstat_evict_l2_eligible,
1821 ab->b_size);
1822 } else {
1823 ARCSTAT_INCR(
1824 arcstat_evict_l2_ineligible,
1825 ab->b_size);
1826 }
1827 }

1829 if (ab->b_datacnt == 0) {
1830 arc_change_state(evicted_state, ab, hash_lock);
1831 ASSERT(HDR_IN_HASH_TABLE(ab));
1832 ab->b_flags |= ARC_IN_HASH_TABLE;
1833 ab->b_flags &= ~ARC_BUF_AVAILABLE;
1834 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1835 }
1836 if (!have_lock)
1837 mutex_exit(hash_lock);
1838 if (bytes >= 0 && bytes_evicted >= bytes)
1839 break;
1840 } else {
1841 missed += 1;
1842 }
1843 }

1845 mutex_exit(&evicted_state->arcs_mtx);
1846 mutex_exit(&state->arcs_mtx);

1848 if (bytes_evicted < bytes)
1849 dprintf("only evicted %lld bytes from %x",
1850 (longlong_t)bytes_evicted, state);

1852 if (skipped)
1853 ARCSTAT_INCR(arcstat_evict_skip, skipped);

1855 if (missed)
1856 ARCSTAT_INCR(arcstat_mutex_miss, missed);

1858 /*
1859 * We have just evicted some data into the ghost state, make
1860 * sure we also adjust the ghost state size if necessary.
1861 */
1862 if (arc_no_grow &&
1863 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1864 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1865 arc_mru_ghost->arcs_size - arc_c;

1867 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1868 int64_t todelete =
1869 MIN(arc_mru_ghost->arcs_lsize[type], mru_over);

new/usr/src/uts/common/fs/zfs/arc.c 26

1870 arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1871 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1872 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1873 arc_mru_ghost->arcs_size +
1874 arc_mfu_ghost->arcs_size - arc_c);
1875 arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1876 }
1877 }

1879 return (stolen);
1880 }

1882 /*
1883 * Remove buffers from list until we’ve removed the specified number of
1884 * bytes. Destroy the buffers that are removed.
1885 */
1886 static void
1887 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1888 {
1889 arc_buf_hdr_t *ab, *ab_prev;
1890 arc_buf_hdr_t marker = { 0 };
1891 list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1892 kmutex_t *hash_lock;
1893 uint64_t bytes_deleted = 0;
1894 uint64_t bufs_skipped = 0;

1896 ASSERT(GHOST_STATE(state));
1897 top:
1898 mutex_enter(&state->arcs_mtx);
1899 for (ab = list_tail(list); ab; ab = ab_prev) {
1900 ab_prev = list_prev(list, ab);
1901 if (spa && ab->b_spa != spa)
1902 continue;

1904 /* ignore markers */
1905 if (ab->b_spa == 0)
1906 continue;

1908 hash_lock = HDR_LOCK(ab);
1909 /* caller may be trying to modify this buffer, skip it */
1910 if (MUTEX_HELD(hash_lock))
1911 continue;
1912 if (mutex_tryenter(hash_lock)) {
1913 ASSERT(!HDR_IO_IN_PROGRESS(ab));
1914 ASSERT(ab->b_buf == NULL);
1915 ARCSTAT_BUMP(arcstat_deleted);
1916 bytes_deleted += ab->b_size;

1918 if (ab->b_l2hdr != NULL) {
1919 /*
1920 * This buffer is cached on the 2nd Level ARC;
1921 * don’t destroy the header.
1922 */
1923 arc_change_state(arc_l2c_only, ab, hash_lock);
1924 mutex_exit(hash_lock);
1925 } else {
1926 arc_change_state(arc_anon, ab, hash_lock);
1927 mutex_exit(hash_lock);
1928 arc_hdr_destroy(ab);
1929 }

1931 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1932 if (bytes >= 0 && bytes_deleted >= bytes)
1933 break;
1934 } else if (bytes < 0) {
1935 /*

new/usr/src/uts/common/fs/zfs/arc.c 27

1936 * Insert a list marker and then wait for the
1937 * hash lock to become available. Once its
1938 * available, restart from where we left off.
1939 */
1940 list_insert_after(list, ab, &marker);
1941 mutex_exit(&state->arcs_mtx);
1942 mutex_enter(hash_lock);
1943 mutex_exit(hash_lock);
1944 mutex_enter(&state->arcs_mtx);
1945 ab_prev = list_prev(list, &marker);
1946 list_remove(list, &marker);
1947 } else
1948 bufs_skipped += 1;
1949 }
1950 mutex_exit(&state->arcs_mtx);

1952 if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1953 (bytes < 0 || bytes_deleted < bytes)) {
1954 list = &state->arcs_list[ARC_BUFC_METADATA];
1955 goto top;
1956 }

1958 if (bufs_skipped) {
1959 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1960 ASSERT(bytes >= 0);
1961 }

1963 if (bytes_deleted < bytes)
1964 dprintf("only deleted %lld bytes from %p",
1965 (longlong_t)bytes_deleted, state);
1966 }

1968 static void
1969 arc_adjust(void)
1970 {
1971 int64_t adjustment, delta;

1973 /*
1974 * Adjust MRU size
1975 */

1977 adjustment = MIN((int64_t)(arc_size - arc_c),
1978 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
1979 arc_p));

1981 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1982 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
1983 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA);
1984 adjustment -= delta;
1985 }

1987 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1988 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
1989 (void) arc_evict(arc_mru, NULL, delta, FALSE,
1990 ARC_BUFC_METADATA);
1991 }

1993 /*
1994 * Adjust MFU size
1995 */

1997 adjustment = arc_size - arc_c;

1999 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2000 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
2001 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA);

new/usr/src/uts/common/fs/zfs/arc.c 28

2002 adjustment -= delta;
2003 }

2005 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2006 int64_t delta = MIN(adjustment,
2007 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2008 (void) arc_evict(arc_mfu, NULL, delta, FALSE,
2009 ARC_BUFC_METADATA);
2010 }

2012 /*
2013 * Adjust ghost lists
2014 */

2016 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;

2018 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2019 delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2020 arc_evict_ghost(arc_mru_ghost, NULL, delta);
2021 }

2023 adjustment =
2024 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;

2026 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2027 delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2028 arc_evict_ghost(arc_mfu_ghost, NULL, delta);
2029 }
2030 }

2032 static void
2033 arc_do_user_evicts(void)
2034 {
2035 mutex_enter(&arc_eviction_mtx);
2036 while (arc_eviction_list != NULL) {
2037 arc_buf_t *buf = arc_eviction_list;
2038 arc_eviction_list = buf->b_next;
2039 mutex_enter(&buf->b_evict_lock);
2040 buf->b_hdr = NULL;
2041 mutex_exit(&buf->b_evict_lock);
2042 mutex_exit(&arc_eviction_mtx);

2044 if (buf->b_efunc != NULL)
2045 VERIFY(buf->b_efunc(buf) == 0);

2047 buf->b_efunc = NULL;
2048 buf->b_private = NULL;
2049 kmem_cache_free(buf_cache, buf);
2050 mutex_enter(&arc_eviction_mtx);
2051 }
2052 mutex_exit(&arc_eviction_mtx);
2053 }

2055 /*
2056 * Flush all *evictable* data from the cache for the given spa.
2057 * NOTE: this will not touch "active" (i.e. referenced) data.
2058 */
2059 void
2060 arc_flush(spa_t *spa)
2061 {
2062 uint64_t guid = 0;

2064 if (spa)
2065 guid = spa_load_guid(spa);

2067 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {

new/usr/src/uts/common/fs/zfs/arc.c 29

2068 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2069 if (spa)
2070 break;
2071 }
2072 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
2073 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2074 if (spa)
2075 break;
2076 }
2077 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
2078 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2079 if (spa)
2080 break;
2081 }
2082 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
2083 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2084 if (spa)
2085 break;
2086 }

2088 arc_evict_ghost(arc_mru_ghost, guid, -1);
2089 arc_evict_ghost(arc_mfu_ghost, guid, -1);

2091 mutex_enter(&arc_reclaim_thr_lock);
2092 arc_do_user_evicts();
2093 mutex_exit(&arc_reclaim_thr_lock);
2094 ASSERT(spa || arc_eviction_list == NULL);
2095 }

2097 void
2098 arc_shrink(void)
2099 {
2100 if (arc_c > arc_c_min) {
2101 uint64_t to_free;

2103 #ifdef _KERNEL
2104 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
2105 #else
2106 to_free = arc_c >> arc_shrink_shift;
2107 #endif
2108 if (arc_c > arc_c_min + to_free)
2109 atomic_add_64(&arc_c, -to_free);
2110 else
2111 arc_c = arc_c_min;

2113 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2114 if (arc_c > arc_size)
2115 arc_c = MAX(arc_size, arc_c_min);
2116 if (arc_p > arc_c)
2117 arc_p = (arc_c >> 1);
2118 ASSERT(arc_c >= arc_c_min);
2119 ASSERT((int64_t)arc_p >= 0);
2120 }

2122 if (arc_size > arc_c)
2123 arc_adjust();
2124 }

2126 /*
2127 * Determine if the system is under memory pressure and is asking
2128 * to reclaim memory. A return value of 1 indicates that the system
2129 * is under memory pressure and that the arc should adjust accordingly.
2130 */
2131 static int
2132 arc_reclaim_needed(void)
2133 {

new/usr/src/uts/common/fs/zfs/arc.c 30

2134 uint64_t extra;

2136 #ifdef _KERNEL

2138 if (needfree)
2139 return (1);

2141 /*
2142 * take ’desfree’ extra pages, so we reclaim sooner, rather than later
2143 */
2144 extra = desfree;

2146 /*
2147 * check that we’re out of range of the pageout scanner. It starts to
2148 * schedule paging if freemem is less than lotsfree and needfree.
2149 * lotsfree is the high-water mark for pageout, and needfree is the
2150 * number of needed free pages. We add extra pages here to make sure
2151 * the scanner doesn’t start up while we’re freeing memory.
2152 */
2153 if (freemem < lotsfree + needfree + extra)
2154 return (1);

2156 /*
2157 * check to make sure that swapfs has enough space so that anon
2158 * reservations can still succeed. anon_resvmem() checks that the
2159 * availrmem is greater than swapfs_minfree, and the number of reserved
2160 * swap pages. We also add a bit of extra here just to prevent
2161 * circumstances from getting really dire.
2162 */
2163 if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2164 return (1);

2166 #if defined(__i386)
2167 /*
2168 * If we’re on an i386 platform, it’s possible that we’ll exhaust the
2169 * kernel heap space before we ever run out of available physical
2170 * memory. Most checks of the size of the heap_area compare against
2171 * tune.t_minarmem, which is the minimum available real memory that we
2172 * can have in the system. However, this is generally fixed at 25 pages
2173 * which is so low that it’s useless. In this comparison, we seek to
2174 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2175 * heap is allocated. (Or, in the calculation, if less than 1/4th is
2176 * free)
2177 */
2178 if (vmem_size(heap_arena, VMEM_FREE) <
2179 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2))
2180 return (1);
2181 #endif

2183 /*
2184 * If zio data pages are being allocated out of a separate heap segment,
2185 * then enforce that the size of available vmem for this arena remains
2186 * above about 1/16th free.
2187 *
2188 * Note: The 1/16th arena free requirement was put in place
2189 * to aggressively evict memory from the arc in order to avoid
2190 * memory fragmentation issues.
2191 */
2192 if (zio_arena != NULL &&
2193 vmem_size(zio_arena, VMEM_FREE) <
2194 (vmem_size(zio_arena, VMEM_ALLOC) >> 4))
2195 return (1);
2196 #else
2197 if (spa_get_random(100) == 0)
2198 return (1);
2199 #endif

new/usr/src/uts/common/fs/zfs/arc.c 31

2200 return (0);
2201 }

2203 static void
2204 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2205 {
2206 size_t i;
2207 kmem_cache_t *prev_cache = NULL;
2208 kmem_cache_t *prev_data_cache = NULL;
2209 extern kmem_cache_t *zio_buf_cache[];
2210 extern kmem_cache_t *zio_data_buf_cache[];

2212 #ifdef _KERNEL
2213 if (arc_meta_used >= arc_meta_limit) {
2214 /*
2215 * We are exceeding our meta-data cache limit.
2216 * Purge some DNLC entries to release holds on meta-data.
2217 */
2218 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2219 }
2220 #if defined(__i386)
2221 /*
2222 * Reclaim unused memory from all kmem caches.
2223 */
2224 kmem_reap();
2225 #endif
2226 #endif

2228 /*
2229 * An aggressive reclamation will shrink the cache size as well as
2230 * reap free buffers from the arc kmem caches.
2231 */
2232 if (strat == ARC_RECLAIM_AGGR)
2233 arc_shrink();

2235 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2236 if (zio_buf_cache[i] != prev_cache) {
2237 prev_cache = zio_buf_cache[i];
2238 kmem_cache_reap_now(zio_buf_cache[i]);
2239 }
2240 if (zio_data_buf_cache[i] != prev_data_cache) {
2241 prev_data_cache = zio_data_buf_cache[i];
2242 kmem_cache_reap_now(zio_data_buf_cache[i]);
2243 }
2244 }
2245 kmem_cache_reap_now(buf_cache);
2246 kmem_cache_reap_now(hdr_cache);

2248 /*
2249 * Ask the vmem areana to reclaim unused memory from its
2250 * quantum caches.
2251 */
2252 if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR)
2253 vmem_qcache_reap(zio_arena);
2254 }

2256 static void
2257 arc_reclaim_thread(void)
2258 {
2259 clock_t growtime = 0;
2260 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS;
2261 callb_cpr_t cpr;

2263 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);

2265 mutex_enter(&arc_reclaim_thr_lock);

new/usr/src/uts/common/fs/zfs/arc.c 32

2266 while (arc_thread_exit == 0) {
2267 if (arc_reclaim_needed()) {

2269 if (arc_no_grow) {
2270 if (last_reclaim == ARC_RECLAIM_CONS) {
2271 last_reclaim = ARC_RECLAIM_AGGR;
2272 } else {
2273 last_reclaim = ARC_RECLAIM_CONS;
2274 }
2275 } else {
2276 arc_no_grow = TRUE;
2277 last_reclaim = ARC_RECLAIM_AGGR;
2278 membar_producer();
2279 }

2281 /* reset the growth delay for every reclaim */
2282 growtime = ddi_get_lbolt() + (arc_grow_retry * hz);

2284 arc_kmem_reap_now(last_reclaim);
2285 arc_warm = B_TRUE;

2287 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2288 arc_no_grow = FALSE;
2289 }

2291 arc_adjust();

2293 if (arc_eviction_list != NULL)
2294 arc_do_user_evicts();

2296 /* block until needed, or one second, whichever is shorter */
2297 CALLB_CPR_SAFE_BEGIN(&cpr);
2298 (void) cv_timedwait(&arc_reclaim_thr_cv,
2299 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
2300 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2301 }

2303 arc_thread_exit = 0;
2304 cv_broadcast(&arc_reclaim_thr_cv);
2305 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */
2306 thread_exit();
2307 }

2309 /*
2310 * Adapt arc info given the number of bytes we are trying to add and
2311 * the state that we are comming from. This function is only called
2312 * when we are adding new content to the cache.
2313 */
2314 static void
2315 arc_adapt(int bytes, arc_state_t *state)
2316 {
2317 int mult;
2318 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);

2320 if (state == arc_l2c_only)
2321 return;

2323 ASSERT(bytes > 0);
2324 /*
2325 * Adapt the target size of the MRU list:
2326 * - if we just hit in the MRU ghost list, then increase
2327 * the target size of the MRU list.
2328 * - if we just hit in the MFU ghost list, then increase
2329 * the target size of the MFU list by decreasing the
2330 * target size of the MRU list.
2331 */

new/usr/src/uts/common/fs/zfs/arc.c 33

2332 if (state == arc_mru_ghost) {
2333 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2334 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2335 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */

2337 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2338 } else if (state == arc_mfu_ghost) {
2339 uint64_t delta;

2341 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2342 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2343 mult = MIN(mult, 10);

2345 delta = MIN(bytes * mult, arc_p);
2346 arc_p = MAX(arc_p_min, arc_p - delta);
2347 }
2348 ASSERT((int64_t)arc_p >= 0);

2350 if (arc_reclaim_needed()) {
2351 cv_signal(&arc_reclaim_thr_cv);
2352 return;
2353 }

2355 if (arc_no_grow)
2356 return;

2358 if (arc_c >= arc_c_max)
2359 return;

2361 /*
2362 * If we’re within (2 * maxblocksize) bytes of the target
2363 * cache size, increment the target cache size
2364 */
2365 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2366 atomic_add_64(&arc_c, (int64_t)bytes);
2367 if (arc_c > arc_c_max)
2368 arc_c = arc_c_max;
2369 else if (state == arc_anon)
2370 atomic_add_64(&arc_p, (int64_t)bytes);
2371 if (arc_p > arc_c)
2372 arc_p = arc_c;
2373 }
2374 ASSERT((int64_t)arc_p >= 0);
2375 }

2377 /*
2378 * Check if the cache has reached its limits and eviction is required
2379 * prior to insert.
2380 */
2381 static int
2382 arc_evict_needed(arc_buf_contents_t type)
2383 {
2384 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2385 return (1);

2387 if (arc_reclaim_needed())
2388 return (1);

2390 return (arc_size > arc_c);
2391 }

2393 /*
2394 * The buffer, supplied as the first argument, needs a data block.
2395 * So, if we are at cache max, determine which cache should be victimized.
2396 * We have the following cases:
2397 *

new/usr/src/uts/common/fs/zfs/arc.c 34

2398 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2399 * In this situation if we’re out of space, but the resident size of the MFU is
2400 * under the limit, victimize the MFU cache to satisfy this insertion request.
2401 *
2402 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2403 * Here, we’ve used up all of the available space for the MRU, so we need to
2404 * evict from our own cache instead. Evict from the set of resident MRU
2405 * entries.
2406 *
2407 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2408 * c minus p represents the MFU space in the cache, since p is the size of the
2409 * cache that is dedicated to the MRU. In this situation there’s still space on
2410 * the MFU side, so the MRU side needs to be victimized.
2411 *
2412 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2413 * MFU’s resident set is consuming more space than it has been allotted. In
2414 * this situation, we must victimize our own cache, the MFU, for this insertion.
2415 */
2416 static void
2417 arc_get_data_buf(arc_buf_t *buf)
2418 {
2419 arc_state_t *state = buf->b_hdr->b_state;
2420 uint64_t size = buf->b_hdr->b_size;
2421 arc_buf_contents_t type = buf->b_hdr->b_type;

2423 arc_adapt(size, state);

2425 /*
2426 * We have not yet reached cache maximum size,
2427 * just allocate a new buffer.
2428 */
2429 if (!arc_evict_needed(type)) {
2430 if (type == ARC_BUFC_METADATA) {
2431 buf->b_data = zio_buf_alloc(size);
2432 arc_space_consume(size, ARC_SPACE_DATA);
2433 } else {
2434 ASSERT(type == ARC_BUFC_DATA);
2435 buf->b_data = zio_data_buf_alloc(size);
2436 ARCSTAT_INCR(arcstat_data_size, size);
2437 atomic_add_64(&arc_size, size);
2438 }
2439 goto out;
2440 }

2442 /*
2443 * If we are prefetching from the mfu ghost list, this buffer
2444 * will end up on the mru list; so steal space from there.
2445 */
2446 if (state == arc_mfu_ghost)
2447 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2448 else if (state == arc_mru_ghost)
2449 state = arc_mru;

2451 if (state == arc_mru || state == arc_anon) {
2452 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2453 state = (arc_mfu->arcs_lsize[type] >= size &&
2454 arc_p > mru_used) ? arc_mfu : arc_mru;
2455 } else {
2456 /* MFU cases */
2457 uint64_t mfu_space = arc_c - arc_p;
2458 state = (arc_mru->arcs_lsize[type] >= size &&
2459 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2460 }
2461 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2462 if (type == ARC_BUFC_METADATA) {
2463 buf->b_data = zio_buf_alloc(size);

new/usr/src/uts/common/fs/zfs/arc.c 35

2464 arc_space_consume(size, ARC_SPACE_DATA);
2465 } else {
2466 ASSERT(type == ARC_BUFC_DATA);
2467 buf->b_data = zio_data_buf_alloc(size);
2468 ARCSTAT_INCR(arcstat_data_size, size);
2469 atomic_add_64(&arc_size, size);
2470 }
2471 ARCSTAT_BUMP(arcstat_recycle_miss);
2472 }
2473 ASSERT(buf->b_data != NULL);
2474 out:
2475 /*
2476 * Update the state size. Note that ghost states have a
2477 * "ghost size" and so don’t need to be updated.
2478 */
2479 if (!GHOST_STATE(buf->b_hdr->b_state)) {
2480 arc_buf_hdr_t *hdr = buf->b_hdr;

2482 atomic_add_64(&hdr->b_state->arcs_size, size);
2483 if (list_link_active(&hdr->b_arc_node)) {
2484 ASSERT(refcount_is_zero(&hdr->b_refcnt));
2485 atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2486 }
2487 /*
2488 * If we are growing the cache, and we are adding anonymous
2489 * data, and we have outgrown arc_p, update arc_p
2490 */
2491 if (arc_size < arc_c && hdr->b_state == arc_anon &&
2492 arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2493 arc_p = MIN(arc_c, arc_p + size);
2494 }
2495 }

2497 /*
2498 * This routine is called whenever a buffer is accessed.
2499 * NOTE: the hash lock is dropped in this function.
2500 */
2501 static void
2502 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2503 {
2504 clock_t now;

2506 ASSERT(MUTEX_HELD(hash_lock));

2508 if (buf->b_state == arc_anon) {
2509 /*
2510 * This buffer is not in the cache, and does not
2511 * appear in our "ghost" list. Add the new buffer
2512 * to the MRU state.
2513 */

2515 ASSERT(buf->b_arc_access == 0);
2516 buf->b_arc_access = ddi_get_lbolt();
2517 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2518 arc_change_state(arc_mru, buf, hash_lock);

2520 } else if (buf->b_state == arc_mru) {
2521 now = ddi_get_lbolt();

2523 /*
2524 * If this buffer is here because of a prefetch, then either:
2525 * - clear the flag if this is a "referencing" read
2526 * (any subsequent access will bump this into the MFU state).
2527 * or
2528 * - move the buffer to the head of the list if this is
2529 * another prefetch (to make it less likely to be evicted).

new/usr/src/uts/common/fs/zfs/arc.c 36

2530 */
2531 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2532 if (refcount_count(&buf->b_refcnt) == 0) {
2533 ASSERT(list_link_active(&buf->b_arc_node));
2534 } else {
2535 buf->b_flags &= ~ARC_PREFETCH;
2536 ARCSTAT_BUMP(arcstat_mru_hits);
2537 }
2538 buf->b_arc_access = now;
2539 return;
2540 }

2542 /*
2543 * This buffer has been "accessed" only once so far,
2544 * but it is still in the cache. Move it to the MFU
2545 * state.
2546 */
2547 if (now > buf->b_arc_access + ARC_MINTIME) {
2548 /*
2549 * More than 125ms have passed since we
2550 * instantiated this buffer. Move it to the
2551 * most frequently used state.
2552 */
2553 buf->b_arc_access = now;
2554 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2555 arc_change_state(arc_mfu, buf, hash_lock);
2556 }
2557 ARCSTAT_BUMP(arcstat_mru_hits);
2558 } else if (buf->b_state == arc_mru_ghost) {
2559 arc_state_t *new_state;
2560 /*
2561 * This buffer has been "accessed" recently, but
2562 * was evicted from the cache. Move it to the
2563 * MFU state.
2564 */

2566 if (buf->b_flags & ARC_PREFETCH) {
2567 new_state = arc_mru;
2568 if (refcount_count(&buf->b_refcnt) > 0)
2569 buf->b_flags &= ~ARC_PREFETCH;
2570 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2571 } else {
2572 new_state = arc_mfu;
2573 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2574 }

2576 buf->b_arc_access = ddi_get_lbolt();
2577 arc_change_state(new_state, buf, hash_lock);

2579 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2580 } else if (buf->b_state == arc_mfu) {
2581 /*
2582 * This buffer has been accessed more than once and is
2583 * still in the cache. Keep it in the MFU state.
2584 *
2585 * NOTE: an add_reference() that occurred when we did
2586 * the arc_read() will have kicked this off the list.
2587 * If it was a prefetch, we will explicitly move it to
2588 * the head of the list now.
2589 */
2590 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2591 ASSERT(refcount_count(&buf->b_refcnt) == 0);
2592 ASSERT(list_link_active(&buf->b_arc_node));
2593 }
2594 ARCSTAT_BUMP(arcstat_mfu_hits);
2595 buf->b_arc_access = ddi_get_lbolt();

new/usr/src/uts/common/fs/zfs/arc.c 37

2596 } else if (buf->b_state == arc_mfu_ghost) {
2597 arc_state_t *new_state = arc_mfu;
2598 /*
2599 * This buffer has been accessed more than once but has
2600 * been evicted from the cache. Move it back to the
2601 * MFU state.
2602 */

2604 if (buf->b_flags & ARC_PREFETCH) {
2605 /*
2606 * This is a prefetch access...
2607 * move this block back to the MRU state.
2608 */
2609 ASSERT0(refcount_count(&buf->b_refcnt));
2610 new_state = arc_mru;
2611 }

2613 buf->b_arc_access = ddi_get_lbolt();
2614 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2615 arc_change_state(new_state, buf, hash_lock);

2617 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2618 } else if (buf->b_state == arc_l2c_only) {
2619 /*
2620 * This buffer is on the 2nd Level ARC.
2621 */

2623 buf->b_arc_access = ddi_get_lbolt();
2624 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2625 arc_change_state(arc_mfu, buf, hash_lock);
2626 } else {
2627 ASSERT(!"invalid arc state");
2628 }
2629 }

2631 /* a generic arc_done_func_t which you can use */
2632 /* ARGSUSED */
2633 void
2634 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2635 {
2636 if (zio == NULL || zio->io_error == 0)
2637 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2638 VERIFY(arc_buf_remove_ref(buf, arg));
2639 }

2641 /* a generic arc_done_func_t */
2642 void
2643 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2644 {
2645 arc_buf_t **bufp = arg;
2646 if (zio && zio->io_error) {
2647 VERIFY(arc_buf_remove_ref(buf, arg));
2648 *bufp = NULL;
2649 } else {
2650 *bufp = buf;
2651 ASSERT(buf->b_data);
2652 }
2653 }

2655 static void
2656 arc_read_done(zio_t *zio)
2657 {
2658 arc_buf_hdr_t *hdr, *found;
2659 arc_buf_t *buf;
2660 arc_buf_t *abuf; /* buffer we’re assigning to callback */
2661 kmutex_t *hash_lock;

new/usr/src/uts/common/fs/zfs/arc.c 38

2662 arc_callback_t *callback_list, *acb;
2663 int freeable = FALSE;

2665 buf = zio->io_private;
2666 hdr = buf->b_hdr;

2668 /*
2669 * The hdr was inserted into hash-table and removed from lists
2670 * prior to starting I/O. We should find this header, since
2671 * it’s in the hash table, and it should be legit since it’s
2672 * not possible to evict it during the I/O. The only possible
2673 * reason for it not to be found is if we were freed during the
2674 * read.
2675 */
2676 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2677 &hash_lock);

2679 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2680 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2681 (found == hdr && HDR_L2_READING(hdr)));

2683 hdr->b_flags &= ~ARC_L2_EVICTED;
2684 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2685 hdr->b_flags &= ~ARC_L2CACHE;

2687 /* byteswap if necessary */
2688 callback_list = hdr->b_acb;
2689 ASSERT(callback_list != NULL);
2690 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2691 dmu_object_byteswap_t bswap =
2692 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
2693 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2694 byteswap_uint64_array :
2695 dmu_ot_byteswap[bswap].ob_func;
2696 func(buf->b_data, hdr->b_size);
2697 }

2699 arc_cksum_compute(buf, B_FALSE);
2700 arc_buf_watch(buf);

2702 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2703 /*
2704 * Only call arc_access on anonymous buffers. This is because
2705 * if we’ve issued an I/O for an evicted buffer, we’ve already
2706 * called arc_access (to prevent any simultaneous readers from
2707 * getting confused).
2708 */
2709 arc_access(hdr, hash_lock);
2710 }

2712 /* create copies of the data buffer for the callers */
2713 abuf = buf;
2714 for (acb = callback_list; acb; acb = acb->acb_next) {
2715 if (acb->acb_done) {
2716 if (abuf == NULL) {
2717 ARCSTAT_BUMP(arcstat_duplicate_reads);
2718 abuf = arc_buf_clone(buf);
2719 }
2720 acb->acb_buf = abuf;
2721 abuf = NULL;
2722 }
2723 }
2724 hdr->b_acb = NULL;
2725 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2726 ASSERT(!HDR_BUF_AVAILABLE(hdr));
2727 if (abuf == buf) {

new/usr/src/uts/common/fs/zfs/arc.c 39

2728 ASSERT(buf->b_efunc == NULL);
2729 ASSERT(hdr->b_datacnt == 1);
2730 hdr->b_flags |= ARC_BUF_AVAILABLE;
2731 }

2733 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);

2735 if (zio->io_error != 0) {
2736 hdr->b_flags |= ARC_IO_ERROR;
2737 if (hdr->b_state != arc_anon)
2738 arc_change_state(arc_anon, hdr, hash_lock);
2739 if (HDR_IN_HASH_TABLE(hdr))
2740 buf_hash_remove(hdr);
2741 freeable = refcount_is_zero(&hdr->b_refcnt);
2742 }

2744 /*
2745 * Broadcast before we drop the hash_lock to avoid the possibility
2746 * that the hdr (and hence the cv) might be freed before we get to
2747 * the cv_broadcast().
2748 */
2749 cv_broadcast(&hdr->b_cv);

2751 if (hash_lock) {
2752 mutex_exit(hash_lock);
2753 } else {
2754 /*
2755 * This block was freed while we waited for the read to
2756 * complete. It has been removed from the hash table and
2757 * moved to the anonymous state (so that it won’t show up
2758 * in the cache).
2759 */
2760 ASSERT3P(hdr->b_state, ==, arc_anon);
2761 freeable = refcount_is_zero(&hdr->b_refcnt);
2762 }

2764 /* execute each callback and free its structure */
2765 while ((acb = callback_list) != NULL) {
2766 if (acb->acb_done)
2767 acb->acb_done(zio, acb->acb_buf, acb->acb_private);

2769 if (acb->acb_zio_dummy != NULL) {
2770 acb->acb_zio_dummy->io_error = zio->io_error;
2771 zio_nowait(acb->acb_zio_dummy);
2772 }

2774 callback_list = acb->acb_next;
2775 kmem_free(acb, sizeof (arc_callback_t));
2776 }

2778 if (freeable)
2779 arc_hdr_destroy(hdr);
2780 }

2782 /*
2783 * "Read" the block at the specified DVA (in bp) via the
2784 * cache. If the block is found in the cache, invoke the provided
2785 * callback immediately and return. Note that the ‘zio’ parameter
2786 * in the callback will be NULL in this case, since no IO was
2787 * required. If the block is not in the cache pass the read request
2788 * on to the spa with a substitute callback function, so that the
2789 * requested block will be added to the cache.
2790 *
2791 * If a read request arrives for a block that has a read in-progress,
2792 * either wait for the in-progress read to complete (and return the
2793 * results); or, if this is a read with a "done" func, add a record

new/usr/src/uts/common/fs/zfs/arc.c 40

2794 * to the read to invoke the "done" func when the read completes,
2795 * and return; or just return.
2796 *
2797 * arc_read_done() will invoke all the requested "done" functions
2798 * for readers of this block.
2799 */
2800 int
2801 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
2802 void *private, int priority, int zio_flags, uint32_t *arc_flags,
2803 const zbookmark_t *zb)
2804 {
2805 arc_buf_hdr_t *hdr;
2806 arc_buf_t *buf = NULL;
2807 kmutex_t *hash_lock;
2808 zio_t *rzio;
2809 uint64_t guid = spa_load_guid(spa);

2811 top:
2812 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2813 &hash_lock);
2814 if (hdr && hdr->b_datacnt > 0) {

2816 *arc_flags |= ARC_CACHED;

2818 if (HDR_IO_IN_PROGRESS(hdr)) {

2820 if (*arc_flags & ARC_WAIT) {
2821 cv_wait(&hdr->b_cv, hash_lock);
2822 mutex_exit(hash_lock);
2823 goto top;
2824 }
2825 ASSERT(*arc_flags & ARC_NOWAIT);

2827 if (done) {
2828 arc_callback_t *acb = NULL;

2830 acb = kmem_zalloc(sizeof (arc_callback_t),
2831 KM_SLEEP);
2832 acb->acb_done = done;
2833 acb->acb_private = private;
2834 if (pio != NULL)
2835 acb->acb_zio_dummy = zio_null(pio,
2836 spa, NULL, NULL, NULL, zio_flags);

2838 ASSERT(acb->acb_done != NULL);
2839 acb->acb_next = hdr->b_acb;
2840 hdr->b_acb = acb;
2841 add_reference(hdr, hash_lock, private);
2842 mutex_exit(hash_lock);
2843 return (0);
2844 }
2845 mutex_exit(hash_lock);
2846 return (0);
2847 }

2849 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);

2851 if (done) {
2852 add_reference(hdr, hash_lock, private);
2853 /*
2854 * If this block is already in use, create a new
2855 * copy of the data so that we will be guaranteed
2856 * that arc_release() will always succeed.
2857 */
2858 buf = hdr->b_buf;
2859 ASSERT(buf);

new/usr/src/uts/common/fs/zfs/arc.c 41

2860 ASSERT(buf->b_data);
2861 if (HDR_BUF_AVAILABLE(hdr)) {
2862 ASSERT(buf->b_efunc == NULL);
2863 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2864 } else {
2865 buf = arc_buf_clone(buf);
2866 }

2868 } else if (*arc_flags & ARC_PREFETCH &&
2869 refcount_count(&hdr->b_refcnt) == 0) {
2870 hdr->b_flags |= ARC_PREFETCH;
2871 }
2872 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2873 arc_access(hdr, hash_lock);
2874 if (*arc_flags & ARC_L2CACHE)
2875 hdr->b_flags |= ARC_L2CACHE;
2876 mutex_exit(hash_lock);
2877 ARCSTAT_BUMP(arcstat_hits);
2878 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2879 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2880 data, metadata, hits);

2882 if (done)
2883 done(NULL, buf, private);
2884 } else {
2885 uint64_t size = BP_GET_LSIZE(bp);
2886 arc_callback_t *acb;
2887 vdev_t *vd = NULL;
2888 uint64_t addr = 0;
2889 boolean_t devw = B_FALSE;

2891 if (hdr == NULL) {
2892 /* this block is not in the cache */
2893 arc_buf_hdr_t *exists;
2894 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2895 buf = arc_buf_alloc(spa, size, private, type);
2896 hdr = buf->b_hdr;
2897 hdr->b_dva = *BP_IDENTITY(bp);
2898 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
2899 hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2900 exists = buf_hash_insert(hdr, &hash_lock);
2901 if (exists) {
2902 /* somebody beat us to the hash insert */
2903 mutex_exit(hash_lock);
2904 buf_discard_identity(hdr);
2905 (void) arc_buf_remove_ref(buf, private);
2906 goto top; /* restart the IO request */
2907 }
2908 /* if this is a prefetch, we don’t have a reference */
2909 if (*arc_flags & ARC_PREFETCH) {
2910 (void) remove_reference(hdr, hash_lock,
2911 private);
2912 hdr->b_flags |= ARC_PREFETCH;
2913 }
2914 if (*arc_flags & ARC_L2CACHE)
2915 hdr->b_flags |= ARC_L2CACHE;
2916 if (BP_GET_LEVEL(bp) > 0)
2917 hdr->b_flags |= ARC_INDIRECT;
2918 } else {
2919 /* this block is in the ghost cache */
2920 ASSERT(GHOST_STATE(hdr->b_state));
2921 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2922 ASSERT0(refcount_count(&hdr->b_refcnt));
2923 ASSERT(hdr->b_buf == NULL);

2925 /* if this is a prefetch, we don’t have a reference */

new/usr/src/uts/common/fs/zfs/arc.c 42

2926 if (*arc_flags & ARC_PREFETCH)
2927 hdr->b_flags |= ARC_PREFETCH;
2928 else
2929 add_reference(hdr, hash_lock, private);
2930 if (*arc_flags & ARC_L2CACHE)
2931 hdr->b_flags |= ARC_L2CACHE;
2932 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2933 buf->b_hdr = hdr;
2934 buf->b_data = NULL;
2935 buf->b_efunc = NULL;
2936 buf->b_private = NULL;
2937 buf->b_next = NULL;
2938 hdr->b_buf = buf;
2939 ASSERT(hdr->b_datacnt == 0);
2940 hdr->b_datacnt = 1;
2941 arc_get_data_buf(buf);
2942 arc_access(hdr, hash_lock);
2943 }

2945 ASSERT(!GHOST_STATE(hdr->b_state));

2947 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2948 acb->acb_done = done;
2949 acb->acb_private = private;

2951 ASSERT(hdr->b_acb == NULL);
2952 hdr->b_acb = acb;
2953 hdr->b_flags |= ARC_IO_IN_PROGRESS;

2955 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2956 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
2957 devw = hdr->b_l2hdr->b_dev->l2ad_writing;
2958 addr = hdr->b_l2hdr->b_daddr;
2959 /*
2960 * Lock out device removal.
2961 */
2962 if (vdev_is_dead(vd) ||
2963 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2964 vd = NULL;
2965 }

2967 mutex_exit(hash_lock);

2969 /*
2970 * At this point, we have a level 1 cache miss. Try again in
2971 * L2ARC if possible.
2972 */
2973 #endif /* ! codereview */
2974 ASSERT3U(hdr->b_size, ==, size);
2975 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
2976 uint64_t, size, zbookmark_t *, zb);
2977 ARCSTAT_BUMP(arcstat_misses);
2978 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2979 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2980 data, metadata, misses);

2982 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
2983 /*
2984 * Read from the L2ARC if the following are true:
2985 * 1. The L2ARC vdev was previously cached.
2986 * 2. This buffer still has L2ARC metadata.
2987 * 3. This buffer isn’t currently writing to the L2ARC.
2988 * 4. The L2ARC entry wasn’t evicted, which may
2989 * also have invalidated the vdev.
2990 * 5. This isn’t prefetch and l2arc_noprefetch is set.
2991 */

new/usr/src/uts/common/fs/zfs/arc.c 43

2992 if (hdr->b_l2hdr != NULL &&
2993 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
2994 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
2995 l2arc_read_callback_t *cb;

2997 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2998 ARCSTAT_BUMP(arcstat_l2_hits);

3000 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3001 KM_SLEEP);
3002 cb->l2rcb_buf = buf;
3003 cb->l2rcb_spa = spa;
3004 cb->l2rcb_bp = *bp;
3005 cb->l2rcb_zb = *zb;
3006 cb->l2rcb_flags = zio_flags;

3008 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
3009 addr + size < vd->vdev_psize -
3010 VDEV_LABEL_END_SIZE);

3012 /*
3013 * l2arc read. The SCL_L2ARC lock will be
3014 * released by l2arc_read_done().
3015 */
3016 rzio = zio_read_phys(pio, vd, addr, size,
3017 buf->b_data, ZIO_CHECKSUM_OFF,
3018 l2arc_read_done, cb, priority, zio_flags |
3019 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
3020 ZIO_FLAG_DONT_PROPAGATE |
3021 ZIO_FLAG_DONT_RETRY, B_FALSE);
3022 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3023 zio_t *, rzio);
3024 ARCSTAT_INCR(arcstat_l2_read_bytes, size);

3026 if (*arc_flags & ARC_NOWAIT) {
3027 zio_nowait(rzio);
3028 return (0);
3029 }

3031 ASSERT(*arc_flags & ARC_WAIT);
3032 if (zio_wait(rzio) == 0)
3033 return (0);

3035 /* l2arc read error; goto zio_read() */
3036 } else {
3037 DTRACE_PROBE1(l2arc__miss,
3038 arc_buf_hdr_t *, hdr);
3039 ARCSTAT_BUMP(arcstat_l2_misses);
3040 if (HDR_L2_WRITING(hdr))
3041 ARCSTAT_BUMP(arcstat_l2_rw_clash);
3042 spa_config_exit(spa, SCL_L2ARC, vd);
3043 }
3044 } else {
3045 if (vd != NULL)
3046 spa_config_exit(spa, SCL_L2ARC, vd);
3047 if (l2arc_ndev != 0) {
3048 DTRACE_PROBE1(l2arc__miss,
3049 arc_buf_hdr_t *, hdr);
3050 ARCSTAT_BUMP(arcstat_l2_misses);
3051 }
3052 }

3054 rzio = zio_read(pio, spa, bp, buf->b_data, size,
3055 arc_read_done, buf, priority, zio_flags, zb);

3057 if (*arc_flags & ARC_WAIT)

new/usr/src/uts/common/fs/zfs/arc.c 44

3058 return (zio_wait(rzio));

3060 ASSERT(*arc_flags & ARC_NOWAIT);
3061 zio_nowait(rzio);
3062 }
3063 return (0);
3064 }

3066 void
3067 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3068 {
3069 ASSERT(buf->b_hdr != NULL);
3070 ASSERT(buf->b_hdr->b_state != arc_anon);
3071 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3072 ASSERT(buf->b_efunc == NULL);
3073 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));

3075 buf->b_efunc = func;
3076 buf->b_private = private;
3077 }

3079 /*
3080 * This is used by the DMU to let the ARC know that a buffer is
3081 * being evicted, so the ARC should clean up. If this arc buf
3082 * is not yet in the evicted state, it will be put there.
3083 */
3084 int
3085 arc_buf_evict(arc_buf_t *buf)
3086 {
3087 arc_buf_hdr_t *hdr;
3088 kmutex_t *hash_lock;
3089 arc_buf_t **bufp;

3091 mutex_enter(&buf->b_evict_lock);
3092 hdr = buf->b_hdr;
3093 if (hdr == NULL) {
3094 /*
3095 * We are in arc_do_user_evicts().
3096 */
3097 ASSERT(buf->b_data == NULL);
3098 mutex_exit(&buf->b_evict_lock);
3099 return (0);
3100 } else if (buf->b_data == NULL) {
3101 arc_buf_t copy = *buf; /* structure assignment */
3102 /*
3103 * We are on the eviction list; process this buffer now
3104 * but let arc_do_user_evicts() do the reaping.
3105 */
3106 buf->b_efunc = NULL;
3107 mutex_exit(&buf->b_evict_lock);
3108 VERIFY(copy.b_efunc(©) == 0);
3109 return (1);
3110 }
3111 hash_lock = HDR_LOCK(hdr);
3112 mutex_enter(hash_lock);
3113 hdr = buf->b_hdr;
3114 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));

3116 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3117 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);

3119 /*
3120 * Pull this buffer off of the hdr
3121 */
3122 bufp = &hdr->b_buf;
3123 while (*bufp != buf)

new/usr/src/uts/common/fs/zfs/arc.c 45

3124 bufp = &(*bufp)->b_next;
3125 *bufp = buf->b_next;

3127 ASSERT(buf->b_data != NULL);
3128 arc_buf_destroy(buf, FALSE, FALSE);

3130 if (hdr->b_datacnt == 0) {
3131 arc_state_t *old_state = hdr->b_state;
3132 arc_state_t *evicted_state;

3134 ASSERT(hdr->b_buf == NULL);
3135 ASSERT(refcount_is_zero(&hdr->b_refcnt));

3137 evicted_state =
3138 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;

3140 mutex_enter(&old_state->arcs_mtx);
3141 mutex_enter(&evicted_state->arcs_mtx);

3143 arc_change_state(evicted_state, hdr, hash_lock);
3144 ASSERT(HDR_IN_HASH_TABLE(hdr));
3145 hdr->b_flags |= ARC_IN_HASH_TABLE;
3146 hdr->b_flags &= ~ARC_BUF_AVAILABLE;

3148 mutex_exit(&evicted_state->arcs_mtx);
3149 mutex_exit(&old_state->arcs_mtx);
3150 }
3151 mutex_exit(hash_lock);
3152 mutex_exit(&buf->b_evict_lock);

3154 VERIFY(buf->b_efunc(buf) == 0);
3155 buf->b_efunc = NULL;
3156 buf->b_private = NULL;
3157 buf->b_hdr = NULL;
3158 buf->b_next = NULL;
3159 kmem_cache_free(buf_cache, buf);
3160 return (1);
3161 }

3163 /*
3164 * Release this buffer from the cache, making it an anonymous buffer. This
3165 * must be done after a read and prior to modifying the buffer contents.
257 * Release this buffer from the cache. This must be done
258 * after a read and prior to modifying the buffer contents.
3166 * If the buffer has more than one reference, we must make
3167 * a new hdr for the buffer.
3168 */
3169 void
3170 arc_release(arc_buf_t *buf, void *tag)
3171 {
3172 arc_buf_hdr_t *hdr;
3173 kmutex_t *hash_lock = NULL;
3174 l2arc_buf_hdr_t *l2hdr;
3175 uint64_t buf_size;

3177 /*
3178 * It would be nice to assert that if it’s DMU metadata (level >
3179 * 0 || it’s the dnode file), then it must be syncing context.
3180 * But we don’t know that information at this level.
3181 */

3183 mutex_enter(&buf->b_evict_lock);
3184 hdr = buf->b_hdr;

3186 /* this buffer is not on any list */
3187 ASSERT(refcount_count(&hdr->b_refcnt) > 0);

new/usr/src/uts/common/fs/zfs/arc.c 46

3189 if (hdr->b_state == arc_anon) {
3190 /* this buffer is already released */
3191 ASSERT(buf->b_efunc == NULL);
3192 } else {
3193 hash_lock = HDR_LOCK(hdr);
3194 mutex_enter(hash_lock);
3195 hdr = buf->b_hdr;
3196 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3197 }

3199 l2hdr = hdr->b_l2hdr;
3200 if (l2hdr) {
3201 mutex_enter(&l2arc_buflist_mtx);
3202 hdr->b_l2hdr = NULL;
3203 }
3204 buf_size = hdr->b_size;

3206 /*
3207 * Do we have more than one buf?
3208 */
3209 if (hdr->b_datacnt > 1) {
3210 arc_buf_hdr_t *nhdr;
3211 arc_buf_t **bufp;
3212 uint64_t blksz = hdr->b_size;
3213 uint64_t spa = hdr->b_spa;
3214 arc_buf_contents_t type = hdr->b_type;
3215 uint32_t flags = hdr->b_flags;

3217 ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3218 /*
3219 * Pull the data off of this hdr and attach it to
3220 * a new anonymous hdr.
3221 */
3222 (void) remove_reference(hdr, hash_lock, tag);
3223 bufp = &hdr->b_buf;
3224 while (*bufp != buf)
3225 bufp = &(*bufp)->b_next;
3226 *bufp = buf->b_next;
3227 buf->b_next = NULL;

3229 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3230 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3231 if (refcount_is_zero(&hdr->b_refcnt)) {
3232 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3233 ASSERT3U(*size, >=, hdr->b_size);
3234 atomic_add_64(size, -hdr->b_size);
3235 }

3237 /*
3238 * We’re releasing a duplicate user data buffer, update
3239 * our statistics accordingly.
3240 */
3241 if (hdr->b_type == ARC_BUFC_DATA) {
3242 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3243 ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3244 -hdr->b_size);
3245 }
3246 hdr->b_datacnt -= 1;
3247 arc_cksum_verify(buf);
3248 arc_buf_unwatch(buf);

3250 mutex_exit(hash_lock);

3252 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3253 nhdr->b_size = blksz;

new/usr/src/uts/common/fs/zfs/arc.c 47

3254 nhdr->b_spa = spa;
3255 nhdr->b_type = type;
3256 nhdr->b_buf = buf;
3257 nhdr->b_state = arc_anon;
3258 nhdr->b_arc_access = 0;
3259 nhdr->b_flags = flags & ARC_L2_WRITING;
3260 nhdr->b_l2hdr = NULL;
3261 nhdr->b_datacnt = 1;
3262 nhdr->b_freeze_cksum = NULL;
3263 (void) refcount_add(&nhdr->b_refcnt, tag);
3264 buf->b_hdr = nhdr;
3265 mutex_exit(&buf->b_evict_lock);
3266 atomic_add_64(&arc_anon->arcs_size, blksz);
3267 } else {
3268 mutex_exit(&buf->b_evict_lock);
3269 ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3270 ASSERT(!list_link_active(&hdr->b_arc_node));
3271 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3272 if (hdr->b_state != arc_anon)
3273 arc_change_state(arc_anon, hdr, hash_lock);
3274 hdr->b_arc_access = 0;
3275 if (hash_lock)
3276 mutex_exit(hash_lock);

3278 buf_discard_identity(hdr);
3279 arc_buf_thaw(buf);
3280 }
3281 buf->b_efunc = NULL;
3282 buf->b_private = NULL;

3284 if (l2hdr) {
3285 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3286 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3287 ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3288 mutex_exit(&l2arc_buflist_mtx);
3289 }
3290 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/dbuf.c 1

**
 74441 Thu May 16 17:33:47 2013
new/usr/src/uts/common/fs/zfs/dbuf.c
3741 zfs needs better comments
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

586 int
587 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
588 {
589 int err = 0;
590 int havepzio = (zio != NULL);
591 int prefetch;
592 dnode_t *dn;

594 /*
595 * We don’t have to hold the mutex to check db_state because it
596 * can’t be freed while we have a hold on the buffer.
597 */
598 ASSERT(!refcount_is_zero(&db->db_holds));

600 if (db->db_state == DB_NOFILL)
601 return (SET_ERROR(EIO));

603 DB_DNODE_ENTER(db);
604 dn = DB_DNODE(db);
605 if ((flags & DB_RF_HAVESTRUCT) == 0)
606 rw_enter(&dn->dn_struct_rwlock, RW_READER);

608 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
609 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
610 DBUF_IS_CACHEABLE(db);

612 mutex_enter(&db->db_mtx);
613 if (db->db_state == DB_CACHED) {
614 mutex_exit(&db->db_mtx);
615 if (prefetch)
616 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
617 db->db.db_size, TRUE);
618 if ((flags & DB_RF_HAVESTRUCT) == 0)
619 rw_exit(&dn->dn_struct_rwlock);
620 DB_DNODE_EXIT(db);
621 } else if (db->db_state == DB_UNCACHED) {
622 spa_t *spa = dn->dn_objset->os_spa;

624 if (zio == NULL)
625 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
626 dbuf_read_impl(db, zio, &flags);

628 /* dbuf_read_impl has dropped db_mtx for us */

630 if (prefetch)
631 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
632 db->db.db_size, flags & DB_RF_CACHED);

634 if ((flags & DB_RF_HAVESTRUCT) == 0)
635 rw_exit(&dn->dn_struct_rwlock);
636 DB_DNODE_EXIT(db);

638 if (!havepzio)
639 err = zio_wait(zio);

new/usr/src/uts/common/fs/zfs/dbuf.c 2

640 } else {
641 /*
642 * Another reader came in while the dbuf was in flight
643 * between UNCACHED and CACHED. Either a writer will finish
644 * writing the buffer (sending the dbuf to CACHED) or the
645 * first reader’s request will reach the read_done callback
646 * and send the dbuf to CACHED. Otherwise, a failure
647 * occurred and the dbuf went to UNCACHED.
648 */
649 #endif /* ! codereview */
650 mutex_exit(&db->db_mtx);
651 if (prefetch)
652 dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
653 db->db.db_size, TRUE);
654 if ((flags & DB_RF_HAVESTRUCT) == 0)
655 rw_exit(&dn->dn_struct_rwlock);
656 DB_DNODE_EXIT(db);

658 /* Skip the wait per the caller’s request. */
659 #endif /* ! codereview */
660 mutex_enter(&db->db_mtx);
661 if ((flags & DB_RF_NEVERWAIT) == 0) {
662 while (db->db_state == DB_READ ||
663 db->db_state == DB_FILL) {
664 ASSERT(db->db_state == DB_READ ||
665 (flags & DB_RF_HAVESTRUCT) == 0);
666 cv_wait(&db->db_changed, &db->db_mtx);
667 }
668 if (db->db_state == DB_UNCACHED)
669 err = SET_ERROR(EIO);
670 }
671 mutex_exit(&db->db_mtx);
672 }

674 ASSERT(err || havepzio || db->db_state == DB_CACHED);
675 return (err);
676 }

678 static void
679 dbuf_noread(dmu_buf_impl_t *db)
680 {
681 ASSERT(!refcount_is_zero(&db->db_holds));
682 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
683 mutex_enter(&db->db_mtx);
684 while (db->db_state == DB_READ || db->db_state == DB_FILL)
685 cv_wait(&db->db_changed, &db->db_mtx);
686 if (db->db_state == DB_UNCACHED) {
687 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
688 spa_t *spa;

690 ASSERT(db->db_buf == NULL);
691 ASSERT(db->db.db_data == NULL);
692 DB_GET_SPA(&spa, db);
693 dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type));
694 db->db_state = DB_FILL;
695 } else if (db->db_state == DB_NOFILL) {
696 dbuf_set_data(db, NULL);
697 } else {
698 ASSERT3U(db->db_state, ==, DB_CACHED);
699 }
700 mutex_exit(&db->db_mtx);
701 }

703 /*
704 * This is our just-in-time copy function. It makes a copy of
705 * buffers, that have been modified in a previous transaction

new/usr/src/uts/common/fs/zfs/dbuf.c 3

706 * group, before we modify them in the current active group.
707 *
708 * This function is used in two places: when we are dirtying a
709 * buffer for the first time in a txg, and when we are freeing
710 * a range in a dnode that includes this buffer.
711 *
712 * Note that when we are called from dbuf_free_range() we do
713 * not put a hold on the buffer, we just traverse the active
714 * dbuf list for the dnode.
715 */
716 static void
717 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
718 {
719 dbuf_dirty_record_t *dr = db->db_last_dirty;

721 ASSERT(MUTEX_HELD(&db->db_mtx));
722 ASSERT(db->db.db_data != NULL);
723 ASSERT(db->db_level == 0);
724 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);

726 if (dr == NULL ||
727 (dr->dt.dl.dr_data !=
728 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
729 return;

731 /*
732 * If the last dirty record for this dbuf has not yet synced
733 * and its referencing the dbuf data, either:
734 * reset the reference to point to a new copy,
735 * or (if there a no active holders)
736 * just null out the current db_data pointer.
737 */
738 ASSERT(dr->dr_txg >= txg - 2);
739 if (db->db_blkid == DMU_BONUS_BLKID) {
740 /* Note that the data bufs here are zio_bufs */
741 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
742 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
743 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
744 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
745 int size = db->db.db_size;
746 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
747 spa_t *spa;

749 DB_GET_SPA(&spa, db);
750 dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type);
751 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
752 } else {
753 dbuf_set_data(db, NULL);
754 }
755 }

757 void
758 dbuf_unoverride(dbuf_dirty_record_t *dr)
759 {
760 dmu_buf_impl_t *db = dr->dr_dbuf;
761 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
762 uint64_t txg = dr->dr_txg;

764 ASSERT(MUTEX_HELD(&db->db_mtx));
765 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
766 ASSERT(db->db_level == 0);

768 if (db->db_blkid == DMU_BONUS_BLKID ||
769 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
770 return;

new/usr/src/uts/common/fs/zfs/dbuf.c 4

772 ASSERT(db->db_data_pending != dr);

774 /* free this block */
775 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) {
776 spa_t *spa;

778 DB_GET_SPA(&spa, db);
779 zio_free(spa, txg, bp);
780 }
781 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
782 dr->dt.dl.dr_nopwrite = B_FALSE;

784 /*
785 * Release the already-written buffer, so we leave it in
786 * a consistent dirty state. Note that all callers are
787 * modifying the buffer, so they will immediately do
788 * another (redundant) arc_release(). Therefore, leave
789 * the buf thawed to save the effort of freezing &
790 * immediately re-thawing it.
791 */
792 arc_release(dr->dt.dl.dr_data, db);
793 }

795 /*
796 * Evict (if its unreferenced) or clear (if its referenced) any level-0
797 * data blocks in the free range, so that any future readers will find
798 * empty blocks. Also, if we happen accross any level-1 dbufs in the
799 * range that have not already been marked dirty, mark them dirty so
800 * they stay in memory.
801 */
802 void
803 dbuf_free_range(dnode_t *dn, uint64_t start, uint64_t end, dmu_tx_t *tx)
804 {
805 dmu_buf_impl_t *db, *db_next;
806 uint64_t txg = tx->tx_txg;
807 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
808 uint64_t first_l1 = start >> epbs;
809 uint64_t last_l1 = end >> epbs;

811 if (end > dn->dn_maxblkid && (end != DMU_SPILL_BLKID)) {
812 end = dn->dn_maxblkid;
813 last_l1 = end >> epbs;
814 }
815 dprintf_dnode(dn, "start=%llu end=%llu\n", start, end);
816 mutex_enter(&dn->dn_dbufs_mtx);
817 for (db = list_head(&dn->dn_dbufs); db; db = db_next) {
818 db_next = list_next(&dn->dn_dbufs, db);
819 ASSERT(db->db_blkid != DMU_BONUS_BLKID);

821 if (db->db_level == 1 &&
822 db->db_blkid >= first_l1 && db->db_blkid <= last_l1) {
823 mutex_enter(&db->db_mtx);
824 if (db->db_last_dirty &&
825 db->db_last_dirty->dr_txg < txg) {
826 dbuf_add_ref(db, FTAG);
827 mutex_exit(&db->db_mtx);
828 dbuf_will_dirty(db, tx);
829 dbuf_rele(db, FTAG);
830 } else {
831 mutex_exit(&db->db_mtx);
832 }
833 }

835 if (db->db_level != 0)
836 continue;
837 dprintf_dbuf(db, "found buf %s\n", "");

new/usr/src/uts/common/fs/zfs/dbuf.c 5

838 if (db->db_blkid < start || db->db_blkid > end)
839 continue;

841 /* found a level 0 buffer in the range */
842 mutex_enter(&db->db_mtx);
843 if (dbuf_undirty(db, tx)) {
844 /* mutex has been dropped and dbuf destroyed */
845 continue;
846 }

848 if (db->db_state == DB_UNCACHED ||
849 db->db_state == DB_NOFILL ||
850 db->db_state == DB_EVICTING) {
851 ASSERT(db->db.db_data == NULL);
852 mutex_exit(&db->db_mtx);
853 continue;
854 }
855 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
856 /* will be handled in dbuf_read_done or dbuf_rele */
857 db->db_freed_in_flight = TRUE;
858 mutex_exit(&db->db_mtx);
859 continue;
860 }
861 if (refcount_count(&db->db_holds) == 0) {
862 ASSERT(db->db_buf);
863 dbuf_clear(db);
864 continue;
865 }
866 /* The dbuf is referenced */

868 if (db->db_last_dirty != NULL) {
869 dbuf_dirty_record_t *dr = db->db_last_dirty;

871 if (dr->dr_txg == txg) {
872 /*
873 * This buffer is "in-use", re-adjust the file
874 * size to reflect that this buffer may
875 * contain new data when we sync.
876 */
877 if (db->db_blkid != DMU_SPILL_BLKID &&
878 db->db_blkid > dn->dn_maxblkid)
879 dn->dn_maxblkid = db->db_blkid;
880 dbuf_unoverride(dr);
881 } else {
882 /*
883 * This dbuf is not dirty in the open context.
884 * Either uncache it (if its not referenced in
885 * the open context) or reset its contents to
886 * empty.
887 */
888 dbuf_fix_old_data(db, txg);
889 }
890 }
891 /* clear the contents if its cached */
892 if (db->db_state == DB_CACHED) {
893 ASSERT(db->db.db_data != NULL);
894 arc_release(db->db_buf, db);
895 bzero(db->db.db_data, db->db.db_size);
896 arc_buf_freeze(db->db_buf);
897 }

899 mutex_exit(&db->db_mtx);
900 }
901 mutex_exit(&dn->dn_dbufs_mtx);
902 }

new/usr/src/uts/common/fs/zfs/dbuf.c 6

904 static int
905 dbuf_block_freeable(dmu_buf_impl_t *db)
906 {
907 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
908 uint64_t birth_txg = 0;

910 /*
911 * We don’t need any locking to protect db_blkptr:
912 * If it’s syncing, then db_last_dirty will be set
913 * so we’ll ignore db_blkptr.
914 */
915 ASSERT(MUTEX_HELD(&db->db_mtx));
916 if (db->db_last_dirty)
917 birth_txg = db->db_last_dirty->dr_txg;
918 else if (db->db_blkptr)
919 birth_txg = db->db_blkptr->blk_birth;

921 /*
922 * If we don’t exist or are in a snapshot, we can’t be freed.
923 * Don’t pass the bp to dsl_dataset_block_freeable() since we
924 * are holding the db_mtx lock and might deadlock if we are
925 * prefetching a dedup-ed block.
926 */
927 if (birth_txg)
928 return (ds == NULL ||
929 dsl_dataset_block_freeable(ds, NULL, birth_txg));
930 else
931 return (FALSE);
932 }

934 void
935 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
936 {
937 arc_buf_t *buf, *obuf;
938 int osize = db->db.db_size;
939 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
940 dnode_t *dn;

942 ASSERT(db->db_blkid != DMU_BONUS_BLKID);

944 DB_DNODE_ENTER(db);
945 dn = DB_DNODE(db);

947 /* XXX does *this* func really need the lock? */
948 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));

950 /*
951 * This call to dbuf_will_dirty() with the dn_struct_rwlock held
952 * is OK, because there can be no other references to the db
953 * when we are changing its size, so no concurrent DB_FILL can
954 * be happening.
955 */
956 /*
957 * XXX we should be doing a dbuf_read, checking the return
958 * value and returning that up to our callers
959 */
960 dbuf_will_dirty(db, tx);

962 /* create the data buffer for the new block */
963 buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type);

965 /* copy old block data to the new block */
966 obuf = db->db_buf;
967 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
968 /* zero the remainder */
969 if (size > osize)

new/usr/src/uts/common/fs/zfs/dbuf.c 7

970 bzero((uint8_t *)buf->b_data + osize, size - osize);

972 mutex_enter(&db->db_mtx);
973 dbuf_set_data(db, buf);
974 VERIFY(arc_buf_remove_ref(obuf, db));
975 db->db.db_size = size;

977 if (db->db_level == 0) {
978 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
979 db->db_last_dirty->dt.dl.dr_data = buf;
980 }
981 mutex_exit(&db->db_mtx);

983 dnode_willuse_space(dn, size-osize, tx);
984 DB_DNODE_EXIT(db);
985 }

987 void
988 dbuf_release_bp(dmu_buf_impl_t *db)
989 {
990 objset_t *os;

992 DB_GET_OBJSET(&os, db);
993 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
994 ASSERT(arc_released(os->os_phys_buf) ||
995 list_link_active(&os->os_dsl_dataset->ds_synced_link));
996 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));

998 (void) arc_release(db->db_buf, db);
999 }

1001 dbuf_dirty_record_t *
1002 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1003 {
1004 dnode_t *dn;
1005 objset_t *os;
1006 dbuf_dirty_record_t **drp, *dr;
1007 int drop_struct_lock = FALSE;
1008 boolean_t do_free_accounting = B_FALSE;
1009 int txgoff = tx->tx_txg & TXG_MASK;

1011 ASSERT(tx->tx_txg != 0);
1012 ASSERT(!refcount_is_zero(&db->db_holds));
1013 DMU_TX_DIRTY_BUF(tx, db);

1015 DB_DNODE_ENTER(db);
1016 dn = DB_DNODE(db);
1017 /*
1018 * Shouldn’t dirty a regular buffer in syncing context. Private
1019 * objects may be dirtied in syncing context, but only if they
1020 * were already pre-dirtied in open context.
1021 */
1022 ASSERT(!dmu_tx_is_syncing(tx) ||
1023 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1024 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1025 dn->dn_objset->os_dsl_dataset == NULL);
1026 /*
1027 * We make this assert for private objects as well, but after we
1028 * check if we’re already dirty. They are allowed to re-dirty
1029 * in syncing context.
1030 */
1031 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1032 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1033 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));

1035 mutex_enter(&db->db_mtx);

new/usr/src/uts/common/fs/zfs/dbuf.c 8

1036 /*
1037 * XXX make this true for indirects too? The problem is that
1038 * transactions created with dmu_tx_create_assigned() from
1039 * syncing context don’t bother holding ahead.
1040 */
1041 ASSERT(db->db_level != 0 ||
1042 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1043 db->db_state == DB_NOFILL);

1045 mutex_enter(&dn->dn_mtx);
1046 /*
1047 * Don’t set dirtyctx to SYNC if we’re just modifying this as we
1048 * initialize the objset.
1049 */
1050 if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1051 !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1052 dn->dn_dirtyctx =
1053 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1054 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1055 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1056 }
1057 mutex_exit(&dn->dn_mtx);

1059 if (db->db_blkid == DMU_SPILL_BLKID)
1060 dn->dn_have_spill = B_TRUE;

1062 /*
1063 * If this buffer is already dirty, we’re done.
1064 */
1065 drp = &db->db_last_dirty;
1066 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1067 db->db.db_object == DMU_META_DNODE_OBJECT);
1068 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1069 drp = &dr->dr_next;
1070 if (dr && dr->dr_txg == tx->tx_txg) {
1071 DB_DNODE_EXIT(db);

1073 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1074 /*
1075 * If this buffer has already been written out,
1076 * we now need to reset its state.
1077 */
1078 dbuf_unoverride(dr);
1079 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1080 db->db_state != DB_NOFILL)
1081 arc_buf_thaw(db->db_buf);
1082 }
1083 mutex_exit(&db->db_mtx);
1084 return (dr);
1085 }

1087 /*
1088 * Only valid if not already dirty.
1089 */
1090 ASSERT(dn->dn_object == 0 ||
1091 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1092 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));

1094 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1095 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1096 dn->dn_phys->dn_nlevels > db->db_level ||
1097 dn->dn_next_nlevels[txgoff] > db->db_level ||
1098 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1099 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);

1101 /*

new/usr/src/uts/common/fs/zfs/dbuf.c 9

1102 * We should only be dirtying in syncing context if it’s the
1103 * mos or we’re initializing the os or it’s a special object.
1104 * However, we are allowed to dirty in syncing context provided
1105 * we already dirtied it in open context. Hence we must make
1106 * this assertion only if we’re not already dirty.
1107 */
1108 os = dn->dn_objset;
1109 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1110 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1111 ASSERT(db->db.db_size != 0);

1113 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);

1115 if (db->db_blkid != DMU_BONUS_BLKID) {
1116 /*
1117 * Update the accounting.
1118 * Note: we delay "free accounting" until after we drop
1119 * the db_mtx. This keeps us from grabbing other locks
1120 * (and possibly deadlocking) in bp_get_dsize() while
1121 * also holding the db_mtx.
1122 */
1123 dnode_willuse_space(dn, db->db.db_size, tx);
1124 do_free_accounting = dbuf_block_freeable(db);
1125 }

1127 /*
1128 * If this buffer is dirty in an old transaction group we need
1129 * to make a copy of it so that the changes we make in this
1130 * transaction group won’t leak out when we sync the older txg.
1131 */
1132 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1133 if (db->db_level == 0) {
1134 void *data_old = db->db_buf;

1136 if (db->db_state != DB_NOFILL) {
1137 if (db->db_blkid == DMU_BONUS_BLKID) {
1138 dbuf_fix_old_data(db, tx->tx_txg);
1139 data_old = db->db.db_data;
1140 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1141 /*
1142 * Release the data buffer from the cache so
1143 * that we can modify it without impacting
1144 * possible other users of this cached data
1145 * block. Note that indirect blocks and
1146 * private objects are not released until the
1147 * syncing state (since they are only modified
1148 * then).
1149 */
1150 arc_release(db->db_buf, db);
1151 dbuf_fix_old_data(db, tx->tx_txg);
1152 data_old = db->db_buf;
1153 }
1154 ASSERT(data_old != NULL);
1155 }
1156 dr->dt.dl.dr_data = data_old;
1157 } else {
1158 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1159 list_create(&dr->dt.di.dr_children,
1160 sizeof (dbuf_dirty_record_t),
1161 offsetof(dbuf_dirty_record_t, dr_dirty_node));
1162 }
1163 dr->dr_dbuf = db;
1164 dr->dr_txg = tx->tx_txg;
1165 dr->dr_next = *drp;
1166 *drp = dr;

new/usr/src/uts/common/fs/zfs/dbuf.c 10

1168 /*
1169 * We could have been freed_in_flight between the dbuf_noread
1170 * and dbuf_dirty. We win, as though the dbuf_noread() had
1171 * happened after the free.
1172 */
1173 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1174 db->db_blkid != DMU_SPILL_BLKID) {
1175 mutex_enter(&dn->dn_mtx);
1176 dnode_clear_range(dn, db->db_blkid, 1, tx);
1177 mutex_exit(&dn->dn_mtx);
1178 db->db_freed_in_flight = FALSE;
1179 }

1181 /*
1182 * This buffer is now part of this txg
1183 */
1184 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1185 db->db_dirtycnt += 1;
1186 ASSERT3U(db->db_dirtycnt, <=, 3);

1188 mutex_exit(&db->db_mtx);

1190 if (db->db_blkid == DMU_BONUS_BLKID ||
1191 db->db_blkid == DMU_SPILL_BLKID) {
1192 mutex_enter(&dn->dn_mtx);
1193 ASSERT(!list_link_active(&dr->dr_dirty_node));
1194 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1195 mutex_exit(&dn->dn_mtx);
1196 dnode_setdirty(dn, tx);
1197 DB_DNODE_EXIT(db);
1198 return (dr);
1199 } else if (do_free_accounting) {
1200 blkptr_t *bp = db->db_blkptr;
1201 int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1202 bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1203 /*
1204 * This is only a guess -- if the dbuf is dirty
1205 * in a previous txg, we don’t know how much
1206 * space it will use on disk yet. We should
1207 * really have the struct_rwlock to access
1208 * db_blkptr, but since this is just a guess,
1209 * it’s OK if we get an odd answer.
1210 */
1211 ddt_prefetch(os->os_spa, bp);
1212 dnode_willuse_space(dn, -willfree, tx);
1213 }

1215 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1216 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1217 drop_struct_lock = TRUE;
1218 }

1220 if (db->db_level == 0) {
1221 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1222 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1223 }

1225 if (db->db_level+1 < dn->dn_nlevels) {
1226 dmu_buf_impl_t *parent = db->db_parent;
1227 dbuf_dirty_record_t *di;
1228 int parent_held = FALSE;

1230 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1231 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;

1233 parent = dbuf_hold_level(dn, db->db_level+1,

new/usr/src/uts/common/fs/zfs/dbuf.c 11

1234 db->db_blkid >> epbs, FTAG);
1235 ASSERT(parent != NULL);
1236 parent_held = TRUE;
1237 }
1238 if (drop_struct_lock)
1239 rw_exit(&dn->dn_struct_rwlock);
1240 ASSERT3U(db->db_level+1, ==, parent->db_level);
1241 di = dbuf_dirty(parent, tx);
1242 if (parent_held)
1243 dbuf_rele(parent, FTAG);

1245 mutex_enter(&db->db_mtx);
1246 /* possible race with dbuf_undirty() */
1247 if (db->db_last_dirty == dr ||
1248 dn->dn_object == DMU_META_DNODE_OBJECT) {
1249 mutex_enter(&di->dt.di.dr_mtx);
1250 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1251 ASSERT(!list_link_active(&dr->dr_dirty_node));
1252 list_insert_tail(&di->dt.di.dr_children, dr);
1253 mutex_exit(&di->dt.di.dr_mtx);
1254 dr->dr_parent = di;
1255 }
1256 mutex_exit(&db->db_mtx);
1257 } else {
1258 ASSERT(db->db_level+1 == dn->dn_nlevels);
1259 ASSERT(db->db_blkid < dn->dn_nblkptr);
1260 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1261 mutex_enter(&dn->dn_mtx);
1262 ASSERT(!list_link_active(&dr->dr_dirty_node));
1263 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1264 mutex_exit(&dn->dn_mtx);
1265 if (drop_struct_lock)
1266 rw_exit(&dn->dn_struct_rwlock);
1267 }

1269 dnode_setdirty(dn, tx);
1270 DB_DNODE_EXIT(db);
1271 return (dr);
1272 }

1274 /*
1275 * Undirty a buffer in the transaction group referenced by the given
1276 * transaction. Return whether this evicted the dbuf.
641 * Return TRUE if this evicted the dbuf.
1277 */
1278 static boolean_t
1279 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1280 {
1281 dnode_t *dn;
1282 uint64_t txg = tx->tx_txg;
1283 dbuf_dirty_record_t *dr, **drp;

1285 ASSERT(txg != 0);
1286 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1287 ASSERT0(db->db_level);
1288 ASSERT(MUTEX_HELD(&db->db_mtx));

1290 /*
1291 * If this buffer is not dirty, we’re done.
1292 */
1293 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1294 if (dr->dr_txg <= txg)
1295 break;
1296 if (dr == NULL || dr->dr_txg < txg)
1297 return (B_FALSE);
1298 ASSERT(dr->dr_txg == txg);

new/usr/src/uts/common/fs/zfs/dbuf.c 12

1299 ASSERT(dr->dr_dbuf == db);

1301 DB_DNODE_ENTER(db);
1302 dn = DB_DNODE(db);

1304 /*
1305 * Note: This code will probably work even if there are concurrent
1306 * holders, but it is untested in that scenerio, as the ZPL and
1307 * ztest have additional locking (the range locks) that prevents
1308 * that type of concurrent access.
1309 */
1310 ASSERT3U(refcount_count(&db->db_holds), ==, db->db_dirtycnt);

1312 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);

1314 ASSERT(db->db.db_size != 0);

1316 /* XXX would be nice to fix up dn_towrite_space[] */

1318 *drp = dr->dr_next;

1320 /*
1321 * Note that there are three places in dbuf_dirty()
1322 * where this dirty record may be put on a list.
1323 * Make sure to do a list_remove corresponding to
1324 * every one of those list_insert calls.
1325 */
1326 if (dr->dr_parent) {
1327 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1328 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1329 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1330 } else if (db->db_blkid == DMU_SPILL_BLKID ||
1331 db->db_level+1 == dn->dn_nlevels) {
1332 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1333 mutex_enter(&dn->dn_mtx);
1334 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1335 mutex_exit(&dn->dn_mtx);
1336 }
1337 DB_DNODE_EXIT(db);

1339 if (db->db_state != DB_NOFILL) {
1340 dbuf_unoverride(dr);

1342 ASSERT(db->db_buf != NULL);
1343 ASSERT(dr->dt.dl.dr_data != NULL);
1344 if (dr->dt.dl.dr_data != db->db_buf)
1345 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db));
1346 }
1347 kmem_free(dr, sizeof (dbuf_dirty_record_t));

1349 ASSERT(db->db_dirtycnt > 0);
1350 db->db_dirtycnt -= 1;

1352 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1353 arc_buf_t *buf = db->db_buf;

1355 ASSERT(db->db_state == DB_NOFILL || arc_released(buf));
1356 dbuf_set_data(db, NULL);
1357 VERIFY(arc_buf_remove_ref(buf, db));
1358 dbuf_evict(db);
1359 return (B_TRUE);
1360 }

1362 return (B_FALSE);
1363 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/dbuf.c 13

2221 static void
2222 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2223 {
2224 dmu_buf_impl_t *db = dr->dr_dbuf;
2225 dnode_t *dn;
2226 zio_t *zio;

2228 ASSERT(dmu_tx_is_syncing(tx));

2230 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);

2232 mutex_enter(&db->db_mtx);

2234 ASSERT(db->db_level > 0);
2235 DBUF_VERIFY(db);

2237 /* Read the block if it hasn’t been read yet. */
2238 #endif /* ! codereview */
2239 if (db->db_buf == NULL) {
2240 mutex_exit(&db->db_mtx);
2241 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2242 mutex_enter(&db->db_mtx);
2243 }
2244 ASSERT3U(db->db_state, ==, DB_CACHED);
2245 ASSERT(db->db_buf != NULL);

2247 DB_DNODE_ENTER(db);
2248 dn = DB_DNODE(db);
2249 /* Indirect block size must match what the dnode thinks it is. */
2250 #endif /* ! codereview */
2251 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2252 dbuf_check_blkptr(dn, db);
2253 DB_DNODE_EXIT(db);

2255 /* Provide the pending dirty record to child dbufs */
2256 #endif /* ! codereview */
2257 db->db_data_pending = dr;

2259 mutex_exit(&db->db_mtx);
2260 dbuf_write(dr, db->db_buf, tx);

2262 zio = dr->dr_zio;
2263 mutex_enter(&dr->dt.di.dr_mtx);
2264 dbuf_sync_list(&dr->dt.di.dr_children, tx);
2265 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2266 mutex_exit(&dr->dt.di.dr_mtx);
2267 zio_nowait(zio);
2268 }

2270 static void
2271 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2272 {
2273 arc_buf_t **datap = &dr->dt.dl.dr_data;
2274 dmu_buf_impl_t *db = dr->dr_dbuf;
2275 dnode_t *dn;
2276 objset_t *os;
2277 uint64_t txg = tx->tx_txg;

2279 ASSERT(dmu_tx_is_syncing(tx));

2281 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);

2283 mutex_enter(&db->db_mtx);
2284 /*
2285 * To be synced, we must be dirtied. But we

new/usr/src/uts/common/fs/zfs/dbuf.c 14

2286 * might have been freed after the dirty.
2287 */
2288 if (db->db_state == DB_UNCACHED) {
2289 /* This buffer has been freed since it was dirtied */
2290 ASSERT(db->db.db_data == NULL);
2291 } else if (db->db_state == DB_FILL) {
2292 /* This buffer was freed and is now being re-filled */
2293 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2294 } else {
2295 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2296 }
2297 DBUF_VERIFY(db);

2299 DB_DNODE_ENTER(db);
2300 dn = DB_DNODE(db);

2302 if (db->db_blkid == DMU_SPILL_BLKID) {
2303 mutex_enter(&dn->dn_mtx);
2304 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2305 mutex_exit(&dn->dn_mtx);
2306 }

2308 /*
2309 * If this is a bonus buffer, simply copy the bonus data into the
2310 * dnode. It will be written out when the dnode is synced (and it
2311 * will be synced, since it must have been dirty for dbuf_sync to
2312 * be called).
2313 */
2314 if (db->db_blkid == DMU_BONUS_BLKID) {
2315 dbuf_dirty_record_t **drp;

2317 ASSERT(*datap != NULL);
2318 ASSERT0(db->db_level);
2319 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2320 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2321 DB_DNODE_EXIT(db);

2323 if (*datap != db->db.db_data) {
2324 zio_buf_free(*datap, DN_MAX_BONUSLEN);
2325 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2326 }
2327 db->db_data_pending = NULL;
2328 drp = &db->db_last_dirty;
2329 while (*drp != dr)
2330 drp = &(*drp)->dr_next;
2331 ASSERT(dr->dr_next == NULL);
2332 ASSERT(dr->dr_dbuf == db);
2333 *drp = dr->dr_next;
2334 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2335 ASSERT(db->db_dirtycnt > 0);
2336 db->db_dirtycnt -= 1;
2337 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2338 return;
2339 }

2341 os = dn->dn_objset;

2343 /*
2344 * This function may have dropped the db_mtx lock allowing a dmu_sync
2345 * operation to sneak in. As a result, we need to ensure that we
2346 * don’t check the dr_override_state until we have returned from
2347 * dbuf_check_blkptr.
2348 */
2349 dbuf_check_blkptr(dn, db);

2351 /*

new/usr/src/uts/common/fs/zfs/dbuf.c 15

2352 * If this buffer is in the middle of an immediate write,
2353 * wait for the synchronous IO to complete.
2354 */
2355 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2356 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2357 cv_wait(&db->db_changed, &db->db_mtx);
2358 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2359 }

2361 if (db->db_state != DB_NOFILL &&
2362 dn->dn_object != DMU_META_DNODE_OBJECT &&
2363 refcount_count(&db->db_holds) > 1 &&
2364 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2365 *datap == db->db_buf) {
2366 /*
2367 * If this buffer is currently "in use" (i.e., there
2368 * are active holds and db_data still references it),
2369 * then make a copy before we start the write so that
2370 * any modifications from the open txg will not leak
2371 * into this write.
2372 *
2373 * NOTE: this copy does not need to be made for
2374 * objects only modified in the syncing context (e.g.
2375 * DNONE_DNODE blocks).
2376 */
2377 int blksz = arc_buf_size(*datap);
2378 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2379 *datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2380 bcopy(db->db.db_data, (*datap)->b_data, blksz);
2381 }
2382 db->db_data_pending = dr;

2384 mutex_exit(&db->db_mtx);

2386 dbuf_write(dr, *datap, tx);

2388 ASSERT(!list_link_active(&dr->dr_dirty_node));
2389 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2390 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2391 DB_DNODE_EXIT(db);
2392 } else {
2393 /*
2394 * Although zio_nowait() does not "wait for an IO", it does
2395 * initiate the IO. If this is an empty write it seems plausible
2396 * that the IO could actually be completed before the nowait
2397 * returns. We need to DB_DNODE_EXIT() first in case
2398 * zio_nowait() invalidates the dbuf.
2399 */
2400 DB_DNODE_EXIT(db);
2401 zio_nowait(dr->dr_zio);
2402 }
2403 }

2405 void
2406 dbuf_sync_list(list_t *list, dmu_tx_t *tx)
2407 {
2408 dbuf_dirty_record_t *dr;

2410 while (dr = list_head(list)) {
2411 if (dr->dr_zio != NULL) {
2412 /*
2413 * If we find an already initialized zio then we
2414 * are processing the meta-dnode, and we have finished.
2415 * The dbufs for all dnodes are put back on the list
2416 * during processing, so that we can zio_wait()
2417 * these IOs after initiating all child IOs.

new/usr/src/uts/common/fs/zfs/dbuf.c 16

2418 */
2419 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2420 DMU_META_DNODE_OBJECT);
2421 break;
2422 }
2423 list_remove(list, dr);
2424 if (dr->dr_dbuf->db_level > 0)
2425 dbuf_sync_indirect(dr, tx);
2426 else
2427 dbuf_sync_leaf(dr, tx);
2428 }
2429 }

2431 /* ARGSUSED */
2432 static void
2433 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2434 {
2435 dmu_buf_impl_t *db = vdb;
2436 dnode_t *dn;
2437 blkptr_t *bp = zio->io_bp;
2438 blkptr_t *bp_orig = &zio->io_bp_orig;
2439 spa_t *spa = zio->io_spa;
2440 int64_t delta;
2441 uint64_t fill = 0;
2442 int i;

2444 ASSERT(db->db_blkptr == bp);

2446 DB_DNODE_ENTER(db);
2447 dn = DB_DNODE(db);
2448 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2449 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
2450 zio->io_prev_space_delta = delta;

2452 if (BP_IS_HOLE(bp)) {
2453 ASSERT(bp->blk_fill == 0);
2454 DB_DNODE_EXIT(db);
2455 return;
2456 }

2458 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
2459 BP_GET_TYPE(bp) == dn->dn_type) ||
2460 (db->db_blkid == DMU_SPILL_BLKID &&
2461 BP_GET_TYPE(bp) == dn->dn_bonustype));
2462 ASSERT(BP_GET_LEVEL(bp) == db->db_level);

2464 mutex_enter(&db->db_mtx);

2466 #ifdef ZFS_DEBUG
2467 if (db->db_blkid == DMU_SPILL_BLKID) {
2468 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2469 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2470 db->db_blkptr == &dn->dn_phys->dn_spill);
2471 }
2472 #endif

2474 if (db->db_level == 0) {
2475 mutex_enter(&dn->dn_mtx);
2476 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
2477 db->db_blkid != DMU_SPILL_BLKID)
2478 dn->dn_phys->dn_maxblkid = db->db_blkid;
2479 mutex_exit(&dn->dn_mtx);

2481 if (dn->dn_type == DMU_OT_DNODE) {
2482 dnode_phys_t *dnp = db->db.db_data;
2483 for (i = db->db.db_size >> DNODE_SHIFT; i > 0;

new/usr/src/uts/common/fs/zfs/dbuf.c 17

2484 i--, dnp++) {
2485 if (dnp->dn_type != DMU_OT_NONE)
2486 fill++;
2487 }
2488 } else {
2489 fill = 1;
2490 }
2491 } else {
2492 blkptr_t *ibp = db->db.db_data;
2493 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2494 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
2495 if (BP_IS_HOLE(ibp))
2496 continue;
2497 fill += ibp->blk_fill;
2498 }
2499 }
2500 DB_DNODE_EXIT(db);

2502 bp->blk_fill = fill;

2504 mutex_exit(&db->db_mtx);
2505 }

2507 /* ARGSUSED */
2508 static void
2509 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2510 {
2511 dmu_buf_impl_t *db = vdb;
2512 blkptr_t *bp = zio->io_bp;
2513 blkptr_t *bp_orig = &zio->io_bp_orig;
2514 uint64_t txg = zio->io_txg;
2515 dbuf_dirty_record_t **drp, *dr;

2517 ASSERT0(zio->io_error);
2518 ASSERT(db->db_blkptr == bp);

2520 /*
2521 * For nopwrites and rewrites we ensure that the bp matches our
2522 * original and bypass all the accounting.
2523 */
2524 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
2525 ASSERT(BP_EQUAL(bp, bp_orig));
2526 } else {
2527 objset_t *os;
2528 dsl_dataset_t *ds;
2529 dmu_tx_t *tx;

2531 DB_GET_OBJSET(&os, db);
2532 ds = os->os_dsl_dataset;
2533 tx = os->os_synctx;

2535 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
2536 dsl_dataset_block_born(ds, bp, tx);
2537 }

2539 mutex_enter(&db->db_mtx);

2541 DBUF_VERIFY(db);

2543 drp = &db->db_last_dirty;
2544 while ((dr = *drp) != db->db_data_pending)
2545 drp = &dr->dr_next;
2546 ASSERT(!list_link_active(&dr->dr_dirty_node));
2547 ASSERT(dr->dr_txg == txg);
2548 ASSERT(dr->dr_dbuf == db);
2549 ASSERT(dr->dr_next == NULL);

new/usr/src/uts/common/fs/zfs/dbuf.c 18

2550 *drp = dr->dr_next;

2552 #ifdef ZFS_DEBUG
2553 if (db->db_blkid == DMU_SPILL_BLKID) {
2554 dnode_t *dn;

2556 DB_DNODE_ENTER(db);
2557 dn = DB_DNODE(db);
2558 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2559 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2560 db->db_blkptr == &dn->dn_phys->dn_spill);
2561 DB_DNODE_EXIT(db);
2562 }
2563 #endif

2565 if (db->db_level == 0) {
2566 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2567 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2568 if (db->db_state != DB_NOFILL) {
2569 if (dr->dt.dl.dr_data != db->db_buf)
2570 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
2571 db));
2572 else if (!arc_released(db->db_buf))
2573 arc_set_callback(db->db_buf, dbuf_do_evict, db);
2574 }
2575 } else {
2576 dnode_t *dn;

2578 DB_DNODE_ENTER(db);
2579 dn = DB_DNODE(db);
2580 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2581 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2582 if (!BP_IS_HOLE(db->db_blkptr)) {
2583 int epbs =
2584 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2585 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
2586 db->db.db_size);
2587 ASSERT3U(dn->dn_phys->dn_maxblkid
2588 >> (db->db_level * epbs), >=, db->db_blkid);
2589 arc_set_callback(db->db_buf, dbuf_do_evict, db);
2590 }
2591 DB_DNODE_EXIT(db);
2592 mutex_destroy(&dr->dt.di.dr_mtx);
2593 list_destroy(&dr->dt.di.dr_children);
2594 }
2595 kmem_free(dr, sizeof (dbuf_dirty_record_t));

2597 cv_broadcast(&db->db_changed);
2598 ASSERT(db->db_dirtycnt > 0);
2599 db->db_dirtycnt -= 1;
2600 db->db_data_pending = NULL;
2601 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2602 }

2604 static void
2605 dbuf_write_nofill_ready(zio_t *zio)
2606 {
2607 dbuf_write_ready(zio, NULL, zio->io_private);
2608 }

2610 static void
2611 dbuf_write_nofill_done(zio_t *zio)
2612 {
2613 dbuf_write_done(zio, NULL, zio->io_private);
2614 }

new/usr/src/uts/common/fs/zfs/dbuf.c 19

2616 static void
2617 dbuf_write_override_ready(zio_t *zio)
2618 {
2619 dbuf_dirty_record_t *dr = zio->io_private;
2620 dmu_buf_impl_t *db = dr->dr_dbuf;

2622 dbuf_write_ready(zio, NULL, db);
2623 }

2625 static void
2626 dbuf_write_override_done(zio_t *zio)
2627 {
2628 dbuf_dirty_record_t *dr = zio->io_private;
2629 dmu_buf_impl_t *db = dr->dr_dbuf;
2630 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;

2632 mutex_enter(&db->db_mtx);
2633 if (!BP_EQUAL(zio->io_bp, obp)) {
2634 if (!BP_IS_HOLE(obp))
2635 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
2636 arc_release(dr->dt.dl.dr_data, db);
2637 }
2638 mutex_exit(&db->db_mtx);

2640 dbuf_write_done(zio, NULL, db);
2641 }

2643 /* Issue I/O to commit a dirty buffer to disk. */
2644 #endif /* ! codereview */
2645 static void
2646 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
2647 {
2648 dmu_buf_impl_t *db = dr->dr_dbuf;
2649 dnode_t *dn;
2650 objset_t *os;
2651 dmu_buf_impl_t *parent = db->db_parent;
2652 uint64_t txg = tx->tx_txg;
2653 zbookmark_t zb;
2654 zio_prop_t zp;
2655 zio_t *zio;
2656 int wp_flag = 0;

2658 DB_DNODE_ENTER(db);
2659 dn = DB_DNODE(db);
2660 os = dn->dn_objset;

2662 if (db->db_state != DB_NOFILL) {
2663 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
2664 /*
2665 * Private object buffers are released here rather
2666 * than in dbuf_dirty() since they are only modified
2667 * in the syncing context and we don’t want the
2668 * overhead of making multiple copies of the data.
2669 */
2670 if (BP_IS_HOLE(db->db_blkptr)) {
2671 arc_buf_thaw(data);
2672 } else {
2673 dbuf_release_bp(db);
2674 }
2675 }
2676 }

2678 if (parent != dn->dn_dbuf) {
2679 /* Our parent is an indirect block. */
2680 /* We have a dirty parent that has been scheduled for write. */
2681 #endif /* ! codereview */

new/usr/src/uts/common/fs/zfs/dbuf.c 20

2682 ASSERT(parent && parent->db_data_pending);
2683 /* Our parent’s buffer is one level closer to the dnode. */
2684 #endif /* ! codereview */
2685 ASSERT(db->db_level == parent->db_level-1);
2686 /*
2687 * We’re about to modify our parent’s db_data by modifying
2688 * our block pointer, so the parent must be released.
2689 */
2690 #endif /* ! codereview */
2691 ASSERT(arc_released(parent->db_buf));
2692 zio = parent->db_data_pending->dr_zio;
2693 } else {
2694 /* Our parent is the dnode itself. */
2695 #endif /* ! codereview */
2696 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
2697 db->db_blkid != DMU_SPILL_BLKID) ||
2698 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
2699 if (db->db_blkid != DMU_SPILL_BLKID)
2700 ASSERT3P(db->db_blkptr, ==,
2701 &dn->dn_phys->dn_blkptr[db->db_blkid]);
2702 zio = dn->dn_zio;
2703 }

2705 ASSERT(db->db_level == 0 || data == db->db_buf);
2706 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
2707 ASSERT(zio);

2709 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
2710 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
2711 db->db.db_object, db->db_level, db->db_blkid);

2713 if (db->db_blkid == DMU_SPILL_BLKID)
2714 wp_flag = WP_SPILL;
2715 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;

2717 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
2718 DB_DNODE_EXIT(db);

2720 if (db->db_level == 0 && dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2721 ASSERT(db->db_state != DB_NOFILL);
2722 dr->dr_zio = zio_write(zio, os->os_spa, txg,
2723 db->db_blkptr, data->b_data, arc_buf_size(data), &zp,
2724 dbuf_write_override_ready, dbuf_write_override_done, dr,
2725 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2726 mutex_enter(&db->db_mtx);
2727 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
2728 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
2729 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
2730 mutex_exit(&db->db_mtx);
2731 } else if (db->db_state == DB_NOFILL) {
2732 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF);
2733 dr->dr_zio = zio_write(zio, os->os_spa, txg,
2734 db->db_blkptr, NULL, db->db.db_size, &zp,
2735 dbuf_write_nofill_ready, dbuf_write_nofill_done, db,
2736 ZIO_PRIORITY_ASYNC_WRITE,
2737 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
2738 } else {
2739 ASSERT(arc_released(data));
2740 dr->dr_zio = arc_write(zio, os->os_spa, txg,
2741 db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db), &zp,
2742 dbuf_write_ready, dbuf_write_done, db,
2743 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2744 }
2745 }

new/usr/src/uts/common/fs/zfs/dmu.c 1

**
 44142 Thu May 16 17:33:47 2013
new/usr/src/uts/common/fs/zfs/dmu.c
3741 zfs needs better comments
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

1824 void
1825 dmu_fini(void)
1826 {
1827 arc_fini(); /* arc depends on l2arc, so arc must go first */
1827 arc_fini();
1828 l2arc_fini();
1829 zfetch_fini();
1830 dbuf_fini();
1831 dnode_fini();
1832 dmu_objset_fini();
1833 xuio_stat_fini();
1834 sa_cache_fini();
1835 zfs_dbgmsg_fini();
1836 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/dmu_tx.c 1

**
 35492 Thu May 16 17:33:47 2013
new/usr/src/uts/common/fs/zfs/dmu_tx.c
3741 zfs needs better comments
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

1007 static void
1008 dmu_tx_unassign(dmu_tx_t *tx)
1009 {
1010 dmu_tx_hold_t *txh;

1012 if (tx->tx_txg == 0)
1013 return;

1015 txg_rele_to_quiesce(&tx->tx_txgh);

1017 /*
1018 * Walk the transaction’s hold list, removing the hold on the
1019 * associated dnode, and notifying waiters if the refcount drops to 0.
1020 */
1021 #endif /* ! codereview */
1022 for (txh = list_head(&tx->tx_holds); txh != tx->tx_needassign_txh;
1023 txh = list_next(&tx->tx_holds, txh)) {
1024 dnode_t *dn = txh->txh_dnode;

1026 if (dn == NULL)
1027 continue;
1028 mutex_enter(&dn->dn_mtx);
1029 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);

1031 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1032 dn->dn_assigned_txg = 0;
1033 cv_broadcast(&dn->dn_notxholds);
1034 }
1035 mutex_exit(&dn->dn_mtx);
1036 }

1038 txg_rele_to_sync(&tx->tx_txgh);

1040 tx->tx_lasttried_txg = tx->tx_txg;
1041 tx->tx_txg = 0;
1042 }

1044 /*
1045 * Assign tx to a transaction group. txg_how can be one of:
1046 *
1047 * (1) TXG_WAIT. If the current open txg is full, waits until there’s
1048 * a new one. This should be used when you’re not holding locks.
1049 * It will only fail if we’re truly out of space (or over quota).
1050 *
1051 * (2) TXG_NOWAIT. If we can’t assign into the current open txg without
1052 * blocking, returns immediately with ERESTART. This should be used
1053 * whenever you’re holding locks. On an ERESTART error, the caller
1054 * should drop locks, do a dmu_tx_wait(tx), and try again.
1055 */
1056 int
1057 dmu_tx_assign(dmu_tx_t *tx, txg_how_t txg_how)
1058 {
1059 int err;

new/usr/src/uts/common/fs/zfs/dmu_tx.c 2

1061 ASSERT(tx->tx_txg == 0);
1062 ASSERT(txg_how == TXG_WAIT || txg_how == TXG_NOWAIT);
1063 ASSERT(!dsl_pool_sync_context(tx->tx_pool));

1065 /* If we might wait, we must not hold the config lock. */
1066 ASSERT(txg_how != TXG_WAIT || !dsl_pool_config_held(tx->tx_pool));

1068 while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
1069 dmu_tx_unassign(tx);

1071 if (err != ERESTART || txg_how != TXG_WAIT)
1072 return (err);

1074 dmu_tx_wait(tx);
1075 }

1077 txg_rele_to_quiesce(&tx->tx_txgh);

1079 return (0);
1080 }

1082 void
1083 dmu_tx_wait(dmu_tx_t *tx)
1084 {
1085 spa_t *spa = tx->tx_pool->dp_spa;

1087 ASSERT(tx->tx_txg == 0);
1088 ASSERT(!dsl_pool_config_held(tx->tx_pool));

1090 /*
1091 * It’s possible that the pool has become active after this thread
1092 * has tried to obtain a tx. If that’s the case then his
1093 * tx_lasttried_txg would not have been assigned.
1094 */
1095 if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
1096 txg_wait_synced(tx->tx_pool, spa_last_synced_txg(spa) + 1);
1097 } else if (tx->tx_needassign_txh) {
1098 dnode_t *dn = tx->tx_needassign_txh->txh_dnode;

1100 mutex_enter(&dn->dn_mtx);
1101 while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
1102 cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
1103 mutex_exit(&dn->dn_mtx);
1104 tx->tx_needassign_txh = NULL;
1105 } else {
1106 txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1);
1107 }
1108 }

1110 void
1111 dmu_tx_willuse_space(dmu_tx_t *tx, int64_t delta)
1112 {
1113 #ifdef ZFS_DEBUG
1114 if (tx->tx_dir == NULL || delta == 0)
1115 return;

1117 if (delta > 0) {
1118 ASSERT3U(refcount_count(&tx->tx_space_written) + delta, <=,
1119 tx->tx_space_towrite);
1120 (void) refcount_add_many(&tx->tx_space_written, delta, NULL);
1121 } else {
1122 (void) refcount_add_many(&tx->tx_space_freed, -delta, NULL);
1123 }
1124 #endif
1125 }

new/usr/src/uts/common/fs/zfs/dmu_tx.c 3

1127 void
1128 dmu_tx_commit(dmu_tx_t *tx)
1129 {
1130 dmu_tx_hold_t *txh;

1132 ASSERT(tx->tx_txg != 0);

1134 /*
1135 * Go through the transaction’s hold list and remove holds on
1136 * associated dnodes, notifying waiters if no holds remain.
1137 */
1138 #endif /* ! codereview */
1139 while (txh = list_head(&tx->tx_holds)) {
1140 dnode_t *dn = txh->txh_dnode;

1142 list_remove(&tx->tx_holds, txh);
1143 kmem_free(txh, sizeof (dmu_tx_hold_t));
1144 if (dn == NULL)
1145 continue;
1146 mutex_enter(&dn->dn_mtx);
1147 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);

1149 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1150 dn->dn_assigned_txg = 0;
1151 cv_broadcast(&dn->dn_notxholds);
1152 }
1153 mutex_exit(&dn->dn_mtx);
1154 dnode_rele(dn, tx);
1155 }

1157 if (tx->tx_tempreserve_cookie)
1158 dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);

1160 if (!list_is_empty(&tx->tx_callbacks))
1161 txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);

1163 if (tx->tx_anyobj == FALSE)
1164 txg_rele_to_sync(&tx->tx_txgh);

1166 list_destroy(&tx->tx_callbacks);
1167 list_destroy(&tx->tx_holds);
1168 #ifdef ZFS_DEBUG
1169 dprintf("towrite=%llu written=%llu tofree=%llu freed=%llu\n",
1170 tx->tx_space_towrite, refcount_count(&tx->tx_space_written),
1171 tx->tx_space_tofree, refcount_count(&tx->tx_space_freed));
1172 refcount_destroy_many(&tx->tx_space_written,
1173 refcount_count(&tx->tx_space_written));
1174 refcount_destroy_many(&tx->tx_space_freed,
1175 refcount_count(&tx->tx_space_freed));
1176 #endif
1177 kmem_free(tx, sizeof (dmu_tx_t));
1178 }

1180 void
1181 dmu_tx_abort(dmu_tx_t *tx)
1182 {
1183 dmu_tx_hold_t *txh;

1185 ASSERT(tx->tx_txg == 0);

1187 while (txh = list_head(&tx->tx_holds)) {
1188 dnode_t *dn = txh->txh_dnode;

1190 list_remove(&tx->tx_holds, txh);
1191 kmem_free(txh, sizeof (dmu_tx_hold_t));
1192 if (dn != NULL)

new/usr/src/uts/common/fs/zfs/dmu_tx.c 4

1193 dnode_rele(dn, tx);
1194 }

1196 /*
1197 * Call any registered callbacks with an error code.
1198 */
1199 if (!list_is_empty(&tx->tx_callbacks))
1200 dmu_tx_do_callbacks(&tx->tx_callbacks, ECANCELED);

1202 list_destroy(&tx->tx_callbacks);
1203 list_destroy(&tx->tx_holds);
1204 #ifdef ZFS_DEBUG
1205 refcount_destroy_many(&tx->tx_space_written,
1206 refcount_count(&tx->tx_space_written));
1207 refcount_destroy_many(&tx->tx_space_freed,
1208 refcount_count(&tx->tx_space_freed));
1209 #endif
1210 kmem_free(tx, sizeof (dmu_tx_t));
1211 }

1213 uint64_t
1214 dmu_tx_get_txg(dmu_tx_t *tx)
1215 {
1216 ASSERT(tx->tx_txg != 0);
1217 return (tx->tx_txg);
1218 }

1220 dsl_pool_t *
1221 dmu_tx_pool(dmu_tx_t *tx)
1222 {
1223 ASSERT(tx->tx_pool != NULL);
1224 return (tx->tx_pool);
1225 }

1228 void
1229 dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1230 {
1231 dmu_tx_callback_t *dcb;

1233 dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);

1235 dcb->dcb_func = func;
1236 dcb->dcb_data = data;

1238 list_insert_tail(&tx->tx_callbacks, dcb);
1239 }

1241 /*
1242 * Call all the commit callbacks on a list, with a given error code.
1243 */
1244 void
1245 dmu_tx_do_callbacks(list_t *cb_list, int error)
1246 {
1247 dmu_tx_callback_t *dcb;

1249 while (dcb = list_head(cb_list)) {
1250 list_remove(cb_list, dcb);
1251 dcb->dcb_func(dcb->dcb_data, error);
1252 kmem_free(dcb, sizeof (dmu_tx_callback_t));
1253 }
1254 }

1256 /*
1257 * Interface to hold a bunch of attributes.
1258 * used for creating new files.

new/usr/src/uts/common/fs/zfs/dmu_tx.c 5

1259 * attrsize is the total size of all attributes
1260 * to be added during object creation
1261 *
1262 * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1263 */

1265 /*
1266 * hold necessary attribute name for attribute registration.
1267 * should be a very rare case where this is needed. If it does
1268 * happen it would only happen on the first write to the file system.
1269 */
1270 static void
1271 dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
1272 {
1273 int i;

1275 if (!sa->sa_need_attr_registration)
1276 return;

1278 for (i = 0; i != sa->sa_num_attrs; i++) {
1279 if (!sa->sa_attr_table[i].sa_registered) {
1280 if (sa->sa_reg_attr_obj)
1281 dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
1282 B_TRUE, sa->sa_attr_table[i].sa_name);
1283 else
1284 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
1285 B_TRUE, sa->sa_attr_table[i].sa_name);
1286 }
1287 }
1288 }

1291 void
1292 dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
1293 {
1294 dnode_t *dn;
1295 dmu_tx_hold_t *txh;

1297 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object,
1298 THT_SPILL, 0, 0);

1300 dn = txh->txh_dnode;

1302 if (dn == NULL)
1303 return;

1305 /* If blkptr doesn’t exist then add space to towrite */
1306 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
1307 txh->txh_space_towrite += SPA_MAXBLOCKSIZE;
1308 } else {
1309 blkptr_t *bp;

1311 bp = &dn->dn_phys->dn_spill;
1312 if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
1313 bp, bp->blk_birth))
1314 txh->txh_space_tooverwrite += SPA_MAXBLOCKSIZE;
1315 else
1316 txh->txh_space_towrite += SPA_MAXBLOCKSIZE;
1317 if (!BP_IS_HOLE(bp))
1318 txh->txh_space_tounref += SPA_MAXBLOCKSIZE;
1319 }
1320 }

1322 void
1323 dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
1324 {

new/usr/src/uts/common/fs/zfs/dmu_tx.c 6

1325 sa_os_t *sa = tx->tx_objset->os_sa;

1327 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);

1329 if (tx->tx_objset->os_sa->sa_master_obj == 0)
1330 return;

1332 if (tx->tx_objset->os_sa->sa_layout_attr_obj)
1333 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1334 else {
1335 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1336 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1337 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1338 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1339 }

1341 dmu_tx_sa_registration_hold(sa, tx);

1343 if (attrsize <= DN_MAX_BONUSLEN && !sa->sa_force_spill)
1344 return;

1346 (void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
1347 THT_SPILL, 0, 0);
1348 }

1350 /*
1351 * Hold SA attribute
1352 *
1353 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1354 *
1355 * variable_size is the total size of all variable sized attributes
1356 * passed to this function. It is not the total size of all
1357 * variable size attributes that *may* exist on this object.
1358 */
1359 void
1360 dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
1361 {
1362 uint64_t object;
1363 sa_os_t *sa = tx->tx_objset->os_sa;

1365 ASSERT(hdl != NULL);

1367 object = sa_handle_object(hdl);

1369 dmu_tx_hold_bonus(tx, object);

1371 if (tx->tx_objset->os_sa->sa_master_obj == 0)
1372 return;

1374 if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
1375 tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
1376 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1377 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1378 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1379 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1380 }

1382 dmu_tx_sa_registration_hold(sa, tx);

1384 if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
1385 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);

1387 if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
1388 ASSERT(tx->tx_txg == 0);
1389 dmu_tx_hold_spill(tx, object);
1390 } else {

new/usr/src/uts/common/fs/zfs/dmu_tx.c 7

1391 dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
1392 dnode_t *dn;

1394 DB_DNODE_ENTER(db);
1395 dn = DB_DNODE(db);
1396 if (dn->dn_have_spill) {
1397 ASSERT(tx->tx_txg == 0);
1398 dmu_tx_hold_spill(tx, object);
1399 }
1400 DB_DNODE_EXIT(db);
1401 }
1402 }

new/usr/src/uts/common/fs/zfs/dmu_zfetch.c 1

**
 19144 Thu May 16 17:33:48 2013
new/usr/src/uts/common/fs/zfs/dmu_zfetch.c
3741 zfs needs better comments
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #include <sys/zfs_context.h>
27 #include <sys/dnode.h>
28 #include <sys/dmu_objset.h>
29 #include <sys/dmu_zfetch.h>
30 #include <sys/dmu.h>
31 #include <sys/dbuf.h>
32 #include <sys/kstat.h>

34 /*
35 * I’m against tune-ables, but these should probably exist as tweakable globals
36 * until we can get this working the way we want it to.
37 */

39 int zfs_prefetch_disable = 0;

41 /* max # of streams per zfetch */
42 uint32_t zfetch_max_streams = 8;
43 /* min time before stream reclaim */
44 uint32_t zfetch_min_sec_reap = 2;
45 /* max number of blocks to fetch at a time */
46 uint32_t zfetch_block_cap = 256;
47 /* number of bytes in a array_read at which we stop prefetching (1Mb) */
48 uint64_t zfetch_array_rd_sz = 1024 * 1024;

50 /* forward decls for static routines */
51 static boolean_t dmu_zfetch_colinear(zfetch_t *, zstream_t *);
51 static int dmu_zfetch_colinear(zfetch_t *, zstream_t *);
52 static void dmu_zfetch_dofetch(zfetch_t *, zstream_t *);
53 static uint64_t dmu_zfetch_fetch(dnode_t *, uint64_t, uint64_t);
54 static uint64_t dmu_zfetch_fetchsz(dnode_t *, uint64_t, uint64_t);
55 static boolean_t dmu_zfetch_find(zfetch_t *, zstream_t *, int);

new/usr/src/uts/common/fs/zfs/dmu_zfetch.c 2

55 static int dmu_zfetch_find(zfetch_t *, zstream_t *, int);
56 static int dmu_zfetch_stream_insert(zfetch_t *, zstream_t *);
57 static zstream_t *dmu_zfetch_stream_reclaim(zfetch_t *);
58 static void dmu_zfetch_stream_remove(zfetch_t *, zstream_t *);
59 static int dmu_zfetch_streams_equal(zstream_t *, zstream_t *);

61 typedef struct zfetch_stats {
62 kstat_named_t zfetchstat_hits;
63 kstat_named_t zfetchstat_misses;
64 kstat_named_t zfetchstat_colinear_hits;
65 kstat_named_t zfetchstat_colinear_misses;
66 kstat_named_t zfetchstat_stride_hits;
67 kstat_named_t zfetchstat_stride_misses;
68 kstat_named_t zfetchstat_reclaim_successes;
69 kstat_named_t zfetchstat_reclaim_failures;
70 kstat_named_t zfetchstat_stream_resets;
71 kstat_named_t zfetchstat_stream_noresets;
72 kstat_named_t zfetchstat_bogus_streams;
73 } zfetch_stats_t;

______unchanged_portion_omitted_

89 #define ZFETCHSTAT_INCR(stat, val) \
90 atomic_add_64(&zfetch_stats.stat.value.ui64, (val));

92 #define ZFETCHSTAT_BUMP(stat) ZFETCHSTAT_INCR(stat, 1);

94 kstat_t *zfetch_ksp;

96 /*
97 * Given a zfetch structure and a zstream structure, determine whether the
98 * blocks to be read are part of a co-linear pair of existing prefetch
99 * streams. If a set is found, coalesce the streams, removing one, and
100 * configure the prefetch so it looks for a strided access pattern.
101 *
102 * In other words: if we find two sequential access streams that are
103 * the same length and distance N appart, and this read is N from the
104 * last stream, then we are probably in a strided access pattern. So
105 * combine the two sequential streams into a single strided stream.
106 *
107 * Returns whether co-linear streams were found.
107 * If no co-linear streams are found, return NULL.
108 */
109 static boolean_t
109 static int
110 dmu_zfetch_colinear(zfetch_t *zf, zstream_t *zh)
111 {
112 zstream_t *z_walk;
113 zstream_t *z_comp;

115 if (! rw_tryenter(&zf->zf_rwlock, RW_WRITER))
116 return (0);

118 if (zh == NULL) {
119 rw_exit(&zf->zf_rwlock);
120 return (0);
121 }

123 for (z_walk = list_head(&zf->zf_stream); z_walk;
124 z_walk = list_next(&zf->zf_stream, z_walk)) {
125 for (z_comp = list_next(&zf->zf_stream, z_walk); z_comp;
126 z_comp = list_next(&zf->zf_stream, z_comp)) {
127 int64_t diff;

129 if (z_walk->zst_len != z_walk->zst_stride ||
130 z_comp->zst_len != z_comp->zst_stride) {
131 continue;

new/usr/src/uts/common/fs/zfs/dmu_zfetch.c 3

132 }

134 diff = z_comp->zst_offset - z_walk->zst_offset;
135 if (z_comp->zst_offset + diff == zh->zst_offset) {
136 z_walk->zst_offset = zh->zst_offset;
137 z_walk->zst_direction = diff < 0 ? -1 : 1;
138 z_walk->zst_stride =
139 diff * z_walk->zst_direction;
140 z_walk->zst_ph_offset =
141 zh->zst_offset + z_walk->zst_stride;
142 dmu_zfetch_stream_remove(zf, z_comp);
143 mutex_destroy(&z_comp->zst_lock);
144 kmem_free(z_comp, sizeof (zstream_t));

146 dmu_zfetch_dofetch(zf, z_walk);

148 rw_exit(&zf->zf_rwlock);
149 return (1);
150 }

152 diff = z_walk->zst_offset - z_comp->zst_offset;
153 if (z_walk->zst_offset + diff == zh->zst_offset) {
154 z_walk->zst_offset = zh->zst_offset;
155 z_walk->zst_direction = diff < 0 ? -1 : 1;
156 z_walk->zst_stride =
157 diff * z_walk->zst_direction;
158 z_walk->zst_ph_offset =
159 zh->zst_offset + z_walk->zst_stride;
160 dmu_zfetch_stream_remove(zf, z_comp);
161 mutex_destroy(&z_comp->zst_lock);
162 kmem_free(z_comp, sizeof (zstream_t));

164 dmu_zfetch_dofetch(zf, z_walk);

166 rw_exit(&zf->zf_rwlock);
167 return (1);
168 }
169 }
170 }

172 rw_exit(&zf->zf_rwlock);
173 return (0);
174 }

______unchanged_portion_omitted_

324 /*
325 * given a zfetch and a zstream structure, see if there is an associated zstream
326 * for this block read. If so, it starts a prefetch for the stream it
327 * located and returns true, otherwise it returns false
328 */
329 static boolean_t
329 static int
330 dmu_zfetch_find(zfetch_t *zf, zstream_t *zh, int prefetched)
331 {
332 zstream_t *zs;
333 int64_t diff;
334 int reset = !prefetched;
335 int rc = 0;

337 if (zh == NULL)
338 return (0);

340 /*
341 * XXX: This locking strategy is a bit coarse; however, it’s impact has
342 * yet to be tested. If this turns out to be an issue, it can be
343 * modified in a number of different ways.

new/usr/src/uts/common/fs/zfs/dmu_zfetch.c 4

344 */

346 rw_enter(&zf->zf_rwlock, RW_READER);
347 top:

349 for (zs = list_head(&zf->zf_stream); zs;
350 zs = list_next(&zf->zf_stream, zs)) {

352 /*
353 * XXX - should this be an assert?
354 */
355 if (zs->zst_len == 0) {
356 /* bogus stream */
357 ZFETCHSTAT_BUMP(zfetchstat_bogus_streams);
358 continue;
359 }

361 /*
362 * We hit this case when we are in a strided prefetch stream:
363 * we will read "len" blocks before "striding".
364 */
365 if (zh->zst_offset >= zs->zst_offset &&
366 zh->zst_offset < zs->zst_offset + zs->zst_len) {
367 if (prefetched) {
368 /* already fetched */
369 ZFETCHSTAT_BUMP(zfetchstat_stride_hits);
370 rc = 1;
371 goto out;
372 } else {
373 ZFETCHSTAT_BUMP(zfetchstat_stride_misses);
374 }
375 }

377 /*
378 * This is the forward sequential read case: we increment
379 * len by one each time we hit here, so we will enter this
380 * case on every read.
381 */
382 if (zh->zst_offset == zs->zst_offset + zs->zst_len) {

384 reset = !prefetched && zs->zst_len > 1;

386 mutex_enter(&zs->zst_lock);

388 if (zh->zst_offset != zs->zst_offset + zs->zst_len) {
389 mutex_exit(&zs->zst_lock);
390 goto top;
391 }
392 zs->zst_len += zh->zst_len;
393 diff = zs->zst_len - zfetch_block_cap;
394 if (diff > 0) {
395 zs->zst_offset += diff;
396 zs->zst_len = zs->zst_len > diff ?
397 zs->zst_len - diff : 0;
398 }
399 zs->zst_direction = ZFETCH_FORWARD;

401 break;

403 /*
404 * Same as above, but reading backwards through the file.
405 */
406 } else if (zh->zst_offset == zs->zst_offset - zh->zst_len) {
407 /* backwards sequential access */

409 reset = !prefetched && zs->zst_len > 1;

new/usr/src/uts/common/fs/zfs/dmu_zfetch.c 5

411 mutex_enter(&zs->zst_lock);

413 if (zh->zst_offset != zs->zst_offset - zh->zst_len) {
414 mutex_exit(&zs->zst_lock);
415 goto top;
416 }

418 zs->zst_offset = zs->zst_offset > zh->zst_len ?
419 zs->zst_offset - zh->zst_len : 0;
420 zs->zst_ph_offset = zs->zst_ph_offset > zh->zst_len ?
421 zs->zst_ph_offset - zh->zst_len : 0;
422 zs->zst_len += zh->zst_len;

424 diff = zs->zst_len - zfetch_block_cap;
425 if (diff > 0) {
426 zs->zst_ph_offset = zs->zst_ph_offset > diff ?
427 zs->zst_ph_offset - diff : 0;
428 zs->zst_len = zs->zst_len > diff ?
429 zs->zst_len - diff : zs->zst_len;
430 }
431 zs->zst_direction = ZFETCH_BACKWARD;

433 break;

435 } else if ((zh->zst_offset - zs->zst_offset - zs->zst_stride <
436 zs->zst_len) && (zs->zst_len != zs->zst_stride)) {
437 /* strided forward access */

439 mutex_enter(&zs->zst_lock);

441 if ((zh->zst_offset - zs->zst_offset - zs->zst_stride >=
442 zs->zst_len) || (zs->zst_len == zs->zst_stride)) {
443 mutex_exit(&zs->zst_lock);
444 goto top;
445 }

447 zs->zst_offset += zs->zst_stride;
448 zs->zst_direction = ZFETCH_FORWARD;

450 break;

452 } else if ((zh->zst_offset - zs->zst_offset + zs->zst_stride <
453 zs->zst_len) && (zs->zst_len != zs->zst_stride)) {
454 /* strided reverse access */

456 mutex_enter(&zs->zst_lock);

458 if ((zh->zst_offset - zs->zst_offset + zs->zst_stride >=
459 zs->zst_len) || (zs->zst_len == zs->zst_stride)) {
460 mutex_exit(&zs->zst_lock);
461 goto top;
462 }

464 zs->zst_offset = zs->zst_offset > zs->zst_stride ?
465 zs->zst_offset - zs->zst_stride : 0;
466 zs->zst_ph_offset = (zs->zst_ph_offset >
467 (2 * zs->zst_stride)) ?
468 (zs->zst_ph_offset - (2 * zs->zst_stride)) : 0;
469 zs->zst_direction = ZFETCH_BACKWARD;

471 break;
472 }
473 }

475 if (zs) {

new/usr/src/uts/common/fs/zfs/dmu_zfetch.c 6

476 if (reset) {
477 zstream_t *remove = zs;

479 ZFETCHSTAT_BUMP(zfetchstat_stream_resets);
480 rc = 0;
481 mutex_exit(&zs->zst_lock);
482 rw_exit(&zf->zf_rwlock);
483 rw_enter(&zf->zf_rwlock, RW_WRITER);
484 /*
485 * Relocate the stream, in case someone removes
486 * it while we were acquiring the WRITER lock.
487 */
488 for (zs = list_head(&zf->zf_stream); zs;
489 zs = list_next(&zf->zf_stream, zs)) {
490 if (zs == remove) {
491 dmu_zfetch_stream_remove(zf, zs);
492 mutex_destroy(&zs->zst_lock);
493 kmem_free(zs, sizeof (zstream_t));
494 break;
495 }
496 }
497 } else {
498 ZFETCHSTAT_BUMP(zfetchstat_stream_noresets);
499 rc = 1;
500 dmu_zfetch_dofetch(zf, zs);
501 mutex_exit(&zs->zst_lock);
502 }
503 }
504 out:
505 rw_exit(&zf->zf_rwlock);
506 return (rc);
507 }

______unchanged_portion_omitted_

633 /*
634 * This is the prefetch entry point. It calls all of the other dmu_zfetch
635 * routines to create, delete, find, or operate upon prefetch streams.
636 */
637 void
638 dmu_zfetch(zfetch_t *zf, uint64_t offset, uint64_t size, int prefetched)
639 {
640 zstream_t zst;
641 zstream_t *newstream;
642 boolean_t fetched;
642 int fetched;
643 int inserted;
644 unsigned int blkshft;
645 uint64_t blksz;

647 if (zfs_prefetch_disable)
648 return;

650 /* files that aren’t ln2 blocksz are only one block -- nothing to do */
651 if (!zf->zf_dnode->dn_datablkshift)
652 return;

654 /* convert offset and size, into blockid and nblocks */
655 blkshft = zf->zf_dnode->dn_datablkshift;
656 blksz = (1 << blkshft);

658 bzero(&zst, sizeof (zstream_t));
659 zst.zst_offset = offset >> blkshft;
660 zst.zst_len = (P2ROUNDUP(offset + size, blksz) -
661 P2ALIGN(offset, blksz)) >> blkshft;

663 fetched = dmu_zfetch_find(zf, &zst, prefetched);

new/usr/src/uts/common/fs/zfs/dmu_zfetch.c 7

664 if (fetched) {
665 ZFETCHSTAT_BUMP(zfetchstat_hits);
666 } else {
667 ZFETCHSTAT_BUMP(zfetchstat_misses);
668 fetched = dmu_zfetch_colinear(zf, &zst);
669 if (fetched) {
668 if (fetched = dmu_zfetch_colinear(zf, &zst)) {
670 ZFETCHSTAT_BUMP(zfetchstat_colinear_hits);
671 } else {
672 ZFETCHSTAT_BUMP(zfetchstat_colinear_misses);
673 }
674 }

676 if (!fetched) {
677 newstream = dmu_zfetch_stream_reclaim(zf);

679 /*
680 * we still couldn’t find a stream, drop the lock, and allocate
681 * one if possible. Otherwise, give up and go home.
682 */
683 if (newstream) {
684 ZFETCHSTAT_BUMP(zfetchstat_reclaim_successes);
685 } else {
686 uint64_t maxblocks;
687 uint32_t max_streams;
688 uint32_t cur_streams;

690 ZFETCHSTAT_BUMP(zfetchstat_reclaim_failures);
691 cur_streams = zf->zf_stream_cnt;
692 maxblocks = zf->zf_dnode->dn_maxblkid;

694 max_streams = MIN(zfetch_max_streams,
695 (maxblocks / zfetch_block_cap));
696 if (max_streams == 0) {
697 max_streams++;
698 }

700 if (cur_streams >= max_streams) {
701 return;
702 }
703 newstream = kmem_zalloc(sizeof (zstream_t), KM_SLEEP);
704 }

706 newstream->zst_offset = zst.zst_offset;
707 newstream->zst_len = zst.zst_len;
708 newstream->zst_stride = zst.zst_len;
709 newstream->zst_ph_offset = zst.zst_len + zst.zst_offset;
710 newstream->zst_cap = zst.zst_len;
711 newstream->zst_direction = ZFETCH_FORWARD;
712 newstream->zst_last = ddi_get_lbolt();

714 mutex_init(&newstream->zst_lock, NULL, MUTEX_DEFAULT, NULL);

716 rw_enter(&zf->zf_rwlock, RW_WRITER);
717 inserted = dmu_zfetch_stream_insert(zf, newstream);
718 rw_exit(&zf->zf_rwlock);

720 if (!inserted) {
721 mutex_destroy(&newstream->zst_lock);
722 kmem_free(newstream, sizeof (zstream_t));
723 }
724 }
725 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/spa.c 1

**
 174736 Thu May 16 17:33:48 2013
new/usr/src/uts/common/fs/zfs/spa.c
3741 zfs needs better comments
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
26 */

28 /*
29 * SPA: Storage Pool Allocator
30 *
31 #endif /* ! codereview */
32 * This file contains all the routines used when modifying on-disk SPA state.
33 * This includes opening, importing, destroying, exporting a pool, and syncing a
34 * pool.
35 */

37 #include <sys/zfs_context.h>
38 #include <sys/fm/fs/zfs.h>
39 #include <sys/spa_impl.h>
40 #include <sys/zio.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu.h>
43 #include <sys/dmu_tx.h>
44 #include <sys/zap.h>
45 #include <sys/zil.h>
46 #include <sys/ddt.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/metaslab.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/uberblock_impl.h>
51 #include <sys/txg.h>
52 #include <sys/avl.h>
53 #include <sys/dmu_traverse.h>
54 #include <sys/dmu_objset.h>
55 #include <sys/unique.h>
56 #include <sys/dsl_pool.h>

new/usr/src/uts/common/fs/zfs/spa.c 2

57 #include <sys/dsl_dataset.h>
58 #include <sys/dsl_dir.h>
59 #include <sys/dsl_prop.h>
60 #include <sys/dsl_synctask.h>
61 #include <sys/fs/zfs.h>
62 #include <sys/arc.h>
63 #include <sys/callb.h>
64 #include <sys/systeminfo.h>
65 #include <sys/spa_boot.h>
66 #include <sys/zfs_ioctl.h>
67 #include <sys/dsl_scan.h>
68 #include <sys/zfeature.h>
69 #include <sys/dsl_destroy.h>

71 #ifdef _KERNEL
72 #include <sys/bootprops.h>
73 #include <sys/callb.h>
74 #include <sys/cpupart.h>
75 #include <sys/pool.h>
76 #include <sys/sysdc.h>
77 #include <sys/zone.h>
78 #endif /* _KERNEL */

80 #include "zfs_prop.h"
81 #include "zfs_comutil.h"

83 typedef enum zti_modes {
84 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
85 ZTI_MODE_ONLINE_PERCENT, /* value is % of online CPUs */
86 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
87 ZTI_MODE_NULL, /* don’t create a taskq */
88 ZTI_NMODES
89 } zti_modes_t;

91 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
92 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
93 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
94 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }

96 #define ZTI_N(n) ZTI_P(n, 1)
97 #define ZTI_ONE ZTI_N(1)

99 typedef struct zio_taskq_info {
100 zti_modes_t zti_mode;
101 uint_t zti_value;
102 uint_t zti_count;
103 } zio_taskq_info_t;

105 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
106 "issue", "issue_high", "intr", "intr_high"
107 };

109 /*
110 * This table defines the taskq settings for each ZFS I/O type. When
111 * initializing a pool, we use this table to create an appropriately sized
112 * taskq. Some operations are low volume and therefore have a small, static
113 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
114 * macros. Other operations process a large amount of data; the ZTI_BATCH
115 * macro causes us to create a taskq oriented for throughput. Some operations
116 * are so high frequency and short-lived that the taskq itself can become a a
117 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
118 * additional degree of parallelism specified by the number of threads per-
119 * taskq and the number of taskqs; when dispatching an event in this case, the
120 * particular taskq is chosen at random.
121 *
122 * The different taskq priorities are to handle the different contexts (issue

new/usr/src/uts/common/fs/zfs/spa.c 3

123 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
124 * need to be handled with minimum delay.
125 */
126 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
127 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
128 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
129 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */
130 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
131 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
132 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
133 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
134 };

136 static void spa_sync_version(void *arg, dmu_tx_t *tx);
137 static void spa_sync_props(void *arg, dmu_tx_t *tx);
138 static boolean_t spa_has_active_shared_spare(spa_t *spa);
139 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
140 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
141 char **ereport);
142 static void spa_vdev_resilver_done(spa_t *spa);

144 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */
145 id_t zio_taskq_psrset_bind = PS_NONE;
146 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
147 uint_t zio_taskq_basedc = 80; /* base duty cycle */

149 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
150 extern int zfs_sync_pass_deferred_free;

152 /*
153 * This (illegal) pool name is used when temporarily importing a spa_t in order
154 * to get the vdev stats associated with the imported devices.
155 */
156 #define TRYIMPORT_NAME "$import"

158 /*
159 * ==
160 * SPA properties routines
161 * ==
162 */

164 /*
165 * Add a (source=src, propname=propval) list to an nvlist.
166 */
167 static void
168 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
169 uint64_t intval, zprop_source_t src)
170 {
171 const char *propname = zpool_prop_to_name(prop);
172 nvlist_t *propval;

174 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
175 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);

177 if (strval != NULL)
178 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
179 else
180 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);

182 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
183 nvlist_free(propval);
184 }

186 /*
187 * Get property values from the spa configuration.
188 */

new/usr/src/uts/common/fs/zfs/spa.c 4

189 static void
190 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
191 {
192 vdev_t *rvd = spa->spa_root_vdev;
193 dsl_pool_t *pool = spa->spa_dsl_pool;
194 uint64_t size;
195 uint64_t alloc;
196 uint64_t space;
197 uint64_t cap, version;
198 zprop_source_t src = ZPROP_SRC_NONE;
199 spa_config_dirent_t *dp;

201 ASSERT(MUTEX_HELD(&spa->spa_props_lock));

203 if (rvd != NULL) {
204 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
205 size = metaslab_class_get_space(spa_normal_class(spa));
206 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
207 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
208 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
209 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
210 size - alloc, src);

212 space = 0;
213 for (int c = 0; c < rvd->vdev_children; c++) {
214 vdev_t *tvd = rvd->vdev_child[c];
215 space += tvd->vdev_max_asize - tvd->vdev_asize;
216 }
217 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
218 src);

220 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
221 (spa_mode(spa) == FREAD), src);

223 cap = (size == 0) ? 0 : (alloc * 100 / size);
224 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);

226 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
227 ddt_get_pool_dedup_ratio(spa), src);

229 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
230 rvd->vdev_state, src);

232 version = spa_version(spa);
233 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
234 src = ZPROP_SRC_DEFAULT;
235 else
236 src = ZPROP_SRC_LOCAL;
237 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
238 }

240 if (pool != NULL) {
241 dsl_dir_t *freedir = pool->dp_free_dir;

243 /*
244 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
245 * when opening pools before this version freedir will be NULL.
246 */
247 if (freedir != NULL) {
248 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
249 freedir->dd_phys->dd_used_bytes, src);
250 } else {
251 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
252 NULL, 0, src);
253 }
254 }

new/usr/src/uts/common/fs/zfs/spa.c 5

256 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);

258 if (spa->spa_comment != NULL) {
259 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
260 0, ZPROP_SRC_LOCAL);
261 }

263 if (spa->spa_root != NULL)
264 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
265 0, ZPROP_SRC_LOCAL);

267 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
268 if (dp->scd_path == NULL) {
269 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
270 "none", 0, ZPROP_SRC_LOCAL);
271 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
272 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
273 dp->scd_path, 0, ZPROP_SRC_LOCAL);
274 }
275 }
276 }

278 /*
279 * Get zpool property values.
280 */
281 int
282 spa_prop_get(spa_t *spa, nvlist_t **nvp)
283 {
284 objset_t *mos = spa->spa_meta_objset;
285 zap_cursor_t zc;
286 zap_attribute_t za;
287 int err;

289 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);

291 mutex_enter(&spa->spa_props_lock);

293 /*
294 * Get properties from the spa config.
295 */
296 spa_prop_get_config(spa, nvp);

298 /* If no pool property object, no more prop to get. */
299 if (mos == NULL || spa->spa_pool_props_object == 0) {
300 mutex_exit(&spa->spa_props_lock);
301 return (0);
302 }

304 /*
305 * Get properties from the MOS pool property object.
306 */
307 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
308 (err = zap_cursor_retrieve(&zc, &za)) == 0;
309 zap_cursor_advance(&zc)) {
310 uint64_t intval = 0;
311 char *strval = NULL;
312 zprop_source_t src = ZPROP_SRC_DEFAULT;
313 zpool_prop_t prop;

315 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
316 continue;

318 switch (za.za_integer_length) {
319 case 8:
320 /* integer property */

new/usr/src/uts/common/fs/zfs/spa.c 6

321 if (za.za_first_integer !=
322 zpool_prop_default_numeric(prop))
323 src = ZPROP_SRC_LOCAL;

325 if (prop == ZPOOL_PROP_BOOTFS) {
326 dsl_pool_t *dp;
327 dsl_dataset_t *ds = NULL;

329 dp = spa_get_dsl(spa);
330 dsl_pool_config_enter(dp, FTAG);
331 if (err = dsl_dataset_hold_obj(dp,
332 za.za_first_integer, FTAG, &ds)) {
333 dsl_pool_config_exit(dp, FTAG);
334 break;
335 }

337 strval = kmem_alloc(
338 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
339 KM_SLEEP);
340 dsl_dataset_name(ds, strval);
341 dsl_dataset_rele(ds, FTAG);
342 dsl_pool_config_exit(dp, FTAG);
343 } else {
344 strval = NULL;
345 intval = za.za_first_integer;
346 }

348 spa_prop_add_list(*nvp, prop, strval, intval, src);

350 if (strval != NULL)
351 kmem_free(strval,
352 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);

354 break;

356 case 1:
357 /* string property */
358 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
359 err = zap_lookup(mos, spa->spa_pool_props_object,
360 za.za_name, 1, za.za_num_integers, strval);
361 if (err) {
362 kmem_free(strval, za.za_num_integers);
363 break;
364 }
365 spa_prop_add_list(*nvp, prop, strval, 0, src);
366 kmem_free(strval, za.za_num_integers);
367 break;

369 default:
370 break;
371 }
372 }
373 zap_cursor_fini(&zc);
374 mutex_exit(&spa->spa_props_lock);
375 out:
376 if (err && err != ENOENT) {
377 nvlist_free(*nvp);
378 *nvp = NULL;
379 return (err);
380 }

382 return (0);
383 }

385 /*
386 * Validate the given pool properties nvlist and modify the list

new/usr/src/uts/common/fs/zfs/spa.c 7

387 * for the property values to be set.
388 */
389 static int
390 spa_prop_validate(spa_t *spa, nvlist_t *props)
391 {
392 nvpair_t *elem;
393 int error = 0, reset_bootfs = 0;
394 uint64_t objnum = 0;
395 boolean_t has_feature = B_FALSE;

397 elem = NULL;
398 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
399 uint64_t intval;
400 char *strval, *slash, *check, *fname;
401 const char *propname = nvpair_name(elem);
402 zpool_prop_t prop = zpool_name_to_prop(propname);

404 switch (prop) {
405 case ZPROP_INVAL:
406 if (!zpool_prop_feature(propname)) {
407 error = SET_ERROR(EINVAL);
408 break;
409 }

411 /*
412 * Sanitize the input.
413 */
414 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
415 error = SET_ERROR(EINVAL);
416 break;
417 }

419 if (nvpair_value_uint64(elem, &intval) != 0) {
420 error = SET_ERROR(EINVAL);
421 break;
422 }

424 if (intval != 0) {
425 error = SET_ERROR(EINVAL);
426 break;
427 }

429 fname = strchr(propname, ’@’) + 1;
430 if (zfeature_lookup_name(fname, NULL) != 0) {
431 error = SET_ERROR(EINVAL);
432 break;
433 }

435 has_feature = B_TRUE;
436 break;

438 case ZPOOL_PROP_VERSION:
439 error = nvpair_value_uint64(elem, &intval);
440 if (!error &&
441 (intval < spa_version(spa) ||
442 intval > SPA_VERSION_BEFORE_FEATURES ||
443 has_feature))
444 error = SET_ERROR(EINVAL);
445 break;

447 case ZPOOL_PROP_DELEGATION:
448 case ZPOOL_PROP_AUTOREPLACE:
449 case ZPOOL_PROP_LISTSNAPS:
450 case ZPOOL_PROP_AUTOEXPAND:
451 error = nvpair_value_uint64(elem, &intval);
452 if (!error && intval > 1)

new/usr/src/uts/common/fs/zfs/spa.c 8

453 error = SET_ERROR(EINVAL);
454 break;

456 case ZPOOL_PROP_BOOTFS:
457 /*
458 * If the pool version is less than SPA_VERSION_BOOTFS,
459 * or the pool is still being created (version == 0),
460 * the bootfs property cannot be set.
461 */
462 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
463 error = SET_ERROR(ENOTSUP);
464 break;
465 }

467 /*
468 * Make sure the vdev config is bootable
469 */
470 if (!vdev_is_bootable(spa->spa_root_vdev)) {
471 error = SET_ERROR(ENOTSUP);
472 break;
473 }

475 reset_bootfs = 1;

477 error = nvpair_value_string(elem, &strval);

479 if (!error) {
480 objset_t *os;
481 uint64_t compress;

483 if (strval == NULL || strval[0] == ’\0’) {
484 objnum = zpool_prop_default_numeric(
485 ZPOOL_PROP_BOOTFS);
486 break;
487 }

489 if (error = dmu_objset_hold(strval, FTAG, &os))
490 break;

492 /* Must be ZPL and not gzip compressed. */

494 if (dmu_objset_type(os) != DMU_OST_ZFS) {
495 error = SET_ERROR(ENOTSUP);
496 } else if ((error =
497 dsl_prop_get_int_ds(dmu_objset_ds(os),
498 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
499 &compress)) == 0 &&
500 !BOOTFS_COMPRESS_VALID(compress)) {
501 error = SET_ERROR(ENOTSUP);
502 } else {
503 objnum = dmu_objset_id(os);
504 }
505 dmu_objset_rele(os, FTAG);
506 }
507 break;

509 case ZPOOL_PROP_FAILUREMODE:
510 error = nvpair_value_uint64(elem, &intval);
511 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
512 intval > ZIO_FAILURE_MODE_PANIC))
513 error = SET_ERROR(EINVAL);

515 /*
516 * This is a special case which only occurs when
517 * the pool has completely failed. This allows
518 * the user to change the in-core failmode property

new/usr/src/uts/common/fs/zfs/spa.c 9

519 * without syncing it out to disk (I/Os might
520 * currently be blocked). We do this by returning
521 * EIO to the caller (spa_prop_set) to trick it
522 * into thinking we encountered a property validation
523 * error.
524 */
525 if (!error && spa_suspended(spa)) {
526 spa->spa_failmode = intval;
527 error = SET_ERROR(EIO);
528 }
529 break;

531 case ZPOOL_PROP_CACHEFILE:
532 if ((error = nvpair_value_string(elem, &strval)) != 0)
533 break;

535 if (strval[0] == ’\0’)
536 break;

538 if (strcmp(strval, "none") == 0)
539 break;

541 if (strval[0] != ’/’) {
542 error = SET_ERROR(EINVAL);
543 break;
544 }

546 slash = strrchr(strval, ’/’);
547 ASSERT(slash != NULL);

549 if (slash[1] == ’\0’ || strcmp(slash, "/.") == 0 ||
550 strcmp(slash, "/..") == 0)
551 error = SET_ERROR(EINVAL);
552 break;

554 case ZPOOL_PROP_COMMENT:
555 if ((error = nvpair_value_string(elem, &strval)) != 0)
556 break;
557 for (check = strval; *check != ’\0’; check++) {
558 /*
559 * The kernel doesn’t have an easy isprint()
560 * check. For this kernel check, we merely
561 * check ASCII apart from DEL. Fix this if
562 * there is an easy-to-use kernel isprint().
563 */
564 if (*check >= 0x7f) {
565 error = SET_ERROR(EINVAL);
566 break;
567 }
568 check++;
569 }
570 if (strlen(strval) > ZPROP_MAX_COMMENT)
571 error = E2BIG;
572 break;

574 case ZPOOL_PROP_DEDUPDITTO:
575 if (spa_version(spa) < SPA_VERSION_DEDUP)
576 error = SET_ERROR(ENOTSUP);
577 else
578 error = nvpair_value_uint64(elem, &intval);
579 if (error == 0 &&
580 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
581 error = SET_ERROR(EINVAL);
582 break;
583 }

new/usr/src/uts/common/fs/zfs/spa.c 10

585 if (error)
586 break;
587 }

589 if (!error && reset_bootfs) {
590 error = nvlist_remove(props,
591 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);

593 if (!error) {
594 error = nvlist_add_uint64(props,
595 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
596 }
597 }

599 return (error);
600 }

602 void
603 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
604 {
605 char *cachefile;
606 spa_config_dirent_t *dp;

608 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
609 &cachefile) != 0)
610 return;

612 dp = kmem_alloc(sizeof (spa_config_dirent_t),
613 KM_SLEEP);

615 if (cachefile[0] == ’\0’)
616 dp->scd_path = spa_strdup(spa_config_path);
617 else if (strcmp(cachefile, "none") == 0)
618 dp->scd_path = NULL;
619 else
620 dp->scd_path = spa_strdup(cachefile);

622 list_insert_head(&spa->spa_config_list, dp);
623 if (need_sync)
624 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
625 }

627 int
628 spa_prop_set(spa_t *spa, nvlist_t *nvp)
629 {
630 int error;
631 nvpair_t *elem = NULL;
632 boolean_t need_sync = B_FALSE;

634 if ((error = spa_prop_validate(spa, nvp)) != 0)
635 return (error);

637 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
638 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));

640 if (prop == ZPOOL_PROP_CACHEFILE ||
641 prop == ZPOOL_PROP_ALTROOT ||
642 prop == ZPOOL_PROP_READONLY)
643 continue;

645 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
646 uint64_t ver;

648 if (prop == ZPOOL_PROP_VERSION) {
649 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
650 } else {

new/usr/src/uts/common/fs/zfs/spa.c 11

651 ASSERT(zpool_prop_feature(nvpair_name(elem)));
652 ver = SPA_VERSION_FEATURES;
653 need_sync = B_TRUE;
654 }

656 /* Save time if the version is already set. */
657 if (ver == spa_version(spa))
658 continue;

660 /*
661 * In addition to the pool directory object, we might
662 * create the pool properties object, the features for
663 * read object, the features for write object, or the
664 * feature descriptions object.
665 */
666 error = dsl_sync_task(spa->spa_name, NULL,
667 spa_sync_version, &ver, 6);
668 if (error)
669 return (error);
670 continue;
671 }

673 need_sync = B_TRUE;
674 break;
675 }

677 if (need_sync) {
678 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
679 nvp, 6));
680 }

682 return (0);
683 }

685 /*
686 * If the bootfs property value is dsobj, clear it.
687 */
688 void
689 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
690 {
691 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
692 VERIFY(zap_remove(spa->spa_meta_objset,
693 spa->spa_pool_props_object,
694 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
695 spa->spa_bootfs = 0;
696 }
697 }

699 /*ARGSUSED*/
700 static int
701 spa_change_guid_check(void *arg, dmu_tx_t *tx)
702 {
703 uint64_t *newguid = arg;
704 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
705 vdev_t *rvd = spa->spa_root_vdev;
706 uint64_t vdev_state;

708 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
709 vdev_state = rvd->vdev_state;
710 spa_config_exit(spa, SCL_STATE, FTAG);

712 if (vdev_state != VDEV_STATE_HEALTHY)
713 return (SET_ERROR(ENXIO));

715 ASSERT3U(spa_guid(spa), !=, *newguid);

new/usr/src/uts/common/fs/zfs/spa.c 12

717 return (0);
718 }

720 static void
721 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
722 {
723 uint64_t *newguid = arg;
724 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
725 uint64_t oldguid;
726 vdev_t *rvd = spa->spa_root_vdev;

728 oldguid = spa_guid(spa);

730 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
731 rvd->vdev_guid = *newguid;
732 rvd->vdev_guid_sum += (*newguid - oldguid);
733 vdev_config_dirty(rvd);
734 spa_config_exit(spa, SCL_STATE, FTAG);

736 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
737 oldguid, *newguid);
738 }

740 /*
741 * Change the GUID for the pool. This is done so that we can later
742 * re-import a pool built from a clone of our own vdevs. We will modify
743 * the root vdev’s guid, our own pool guid, and then mark all of our
744 * vdevs dirty. Note that we must make sure that all our vdevs are
745 * online when we do this, or else any vdevs that weren’t present
746 * would be orphaned from our pool. We are also going to issue a
747 * sysevent to update any watchers.
748 */
749 int
750 spa_change_guid(spa_t *spa)
751 {
752 int error;
753 uint64_t guid;

755 mutex_enter(&spa_namespace_lock);
756 guid = spa_generate_guid(NULL);

758 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
759 spa_change_guid_sync, &guid, 5);

761 if (error == 0) {
762 spa_config_sync(spa, B_FALSE, B_TRUE);
763 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
764 }

766 mutex_exit(&spa_namespace_lock);

768 return (error);
769 }

771 /*
772 * ==
773 * SPA state manipulation (open/create/destroy/import/export)
774 * ==
775 */

777 static int
778 spa_error_entry_compare(const void *a, const void *b)
779 {
780 spa_error_entry_t *sa = (spa_error_entry_t *)a;
781 spa_error_entry_t *sb = (spa_error_entry_t *)b;
782 int ret;

new/usr/src/uts/common/fs/zfs/spa.c 13

784 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
785 sizeof (zbookmark_t));

787 if (ret < 0)
788 return (-1);
789 else if (ret > 0)
790 return (1);
791 else
792 return (0);
793 }

795 /*
796 * Utility function which retrieves copies of the current logs and
797 * re-initializes them in the process.
798 */
799 void
800 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
801 {
802 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));

804 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
805 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));

807 avl_create(&spa->spa_errlist_scrub,
808 spa_error_entry_compare, sizeof (spa_error_entry_t),
809 offsetof(spa_error_entry_t, se_avl));
810 avl_create(&spa->spa_errlist_last,
811 spa_error_entry_compare, sizeof (spa_error_entry_t),
812 offsetof(spa_error_entry_t, se_avl));
813 }

815 static void
816 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
817 {
818 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
819 enum zti_modes mode = ztip->zti_mode;
820 uint_t value = ztip->zti_value;
821 uint_t count = ztip->zti_count;
822 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
823 char name[32];
824 uint_t flags = 0;
825 boolean_t batch = B_FALSE;

827 if (mode == ZTI_MODE_NULL) {
828 tqs->stqs_count = 0;
829 tqs->stqs_taskq = NULL;
830 return;
831 }

833 ASSERT3U(count, >, 0);

835 tqs->stqs_count = count;
836 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);

838 for (uint_t i = 0; i < count; i++) {
839 taskq_t *tq;

841 switch (mode) {
842 case ZTI_MODE_FIXED:
843 ASSERT3U(value, >=, 1);
844 value = MAX(value, 1);
845 break;

847 case ZTI_MODE_BATCH:
848 batch = B_TRUE;

new/usr/src/uts/common/fs/zfs/spa.c 14

849 flags |= TASKQ_THREADS_CPU_PCT;
850 value = zio_taskq_batch_pct;
851 break;

853 case ZTI_MODE_ONLINE_PERCENT:
854 flags |= TASKQ_THREADS_CPU_PCT;
855 break;

857 default:
858 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
859 "spa_activate()",
860 zio_type_name[t], zio_taskq_types[q], mode, value);
861 break;
862 }

864 if (count > 1) {
865 (void) snprintf(name, sizeof (name), "%s_%s_%u",
866 zio_type_name[t], zio_taskq_types[q], i);
867 } else {
868 (void) snprintf(name, sizeof (name), "%s_%s",
869 zio_type_name[t], zio_taskq_types[q]);
870 }

872 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
873 if (batch)
874 flags |= TASKQ_DC_BATCH;

876 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
877 spa->spa_proc, zio_taskq_basedc, flags);
878 } else {
879 tq = taskq_create_proc(name, value, maxclsyspri, 50,
880 INT_MAX, spa->spa_proc, flags);
881 }

883 tqs->stqs_taskq[i] = tq;
884 }
885 }

887 static void
888 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
889 {
890 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];

892 if (tqs->stqs_taskq == NULL) {
893 ASSERT0(tqs->stqs_count);
894 return;
895 }

897 for (uint_t i = 0; i < tqs->stqs_count; i++) {
898 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
899 taskq_destroy(tqs->stqs_taskq[i]);
900 }

902 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
903 tqs->stqs_taskq = NULL;
904 }

906 /*
907 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
908 * Note that a type may have multiple discrete taskqs to avoid lock contention
909 * on the taskq itself. In that case we choose which taskq at random by using
910 * the low bits of gethrtime().
911 */
912 void
913 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
914 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)

new/usr/src/uts/common/fs/zfs/spa.c 15

915 {
916 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
917 taskq_t *tq;

919 ASSERT3P(tqs->stqs_taskq, !=, NULL);
920 ASSERT3U(tqs->stqs_count, !=, 0);

922 if (tqs->stqs_count == 1) {
923 tq = tqs->stqs_taskq[0];
924 } else {
925 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
926 }

928 taskq_dispatch_ent(tq, func, arg, flags, ent);
929 }

931 static void
932 spa_create_zio_taskqs(spa_t *spa)
933 {
934 for (int t = 0; t < ZIO_TYPES; t++) {
935 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
936 spa_taskqs_init(spa, t, q);
937 }
938 }
939 }

941 #ifdef _KERNEL
942 static void
943 spa_thread(void *arg)
944 {
945 callb_cpr_t cprinfo;

947 spa_t *spa = arg;
948 user_t *pu = PTOU(curproc);

950 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
951 spa->spa_name);

953 ASSERT(curproc != &p0);
954 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
955 "zpool-%s", spa->spa_name);
956 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));

958 /* bind this thread to the requested psrset */
959 if (zio_taskq_psrset_bind != PS_NONE) {
960 pool_lock();
961 mutex_enter(&cpu_lock);
962 mutex_enter(&pidlock);
963 mutex_enter(&curproc->p_lock);

965 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
966 0, NULL, NULL) == 0) {
967 curthread->t_bind_pset = zio_taskq_psrset_bind;
968 } else {
969 cmn_err(CE_WARN,
970 "Couldn’t bind process for zfs pool \"%s\" to "
971 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
972 }

974 mutex_exit(&curproc->p_lock);
975 mutex_exit(&pidlock);
976 mutex_exit(&cpu_lock);
977 pool_unlock();
978 }

980 if (zio_taskq_sysdc) {

new/usr/src/uts/common/fs/zfs/spa.c 16

981 sysdc_thread_enter(curthread, 100, 0);
982 }

984 spa->spa_proc = curproc;
985 spa->spa_did = curthread->t_did;

987 spa_create_zio_taskqs(spa);

989 mutex_enter(&spa->spa_proc_lock);
990 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);

992 spa->spa_proc_state = SPA_PROC_ACTIVE;
993 cv_broadcast(&spa->spa_proc_cv);

995 CALLB_CPR_SAFE_BEGIN(&cprinfo);
996 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
997 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
998 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);

1000 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1001 spa->spa_proc_state = SPA_PROC_GONE;
1002 spa->spa_proc = &p0;
1003 cv_broadcast(&spa->spa_proc_cv);
1004 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */

1006 mutex_enter(&curproc->p_lock);
1007 lwp_exit();
1008 }
1009 #endif

1011 /*
1012 * Activate an uninitialized pool.
1013 */
1014 static void
1015 spa_activate(spa_t *spa, int mode)
1016 {
1017 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);

1019 spa->spa_state = POOL_STATE_ACTIVE;
1020 spa->spa_mode = mode;

1022 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1023 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);

1025 /* Try to create a covering process */
1026 mutex_enter(&spa->spa_proc_lock);
1027 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1028 ASSERT(spa->spa_proc == &p0);
1029 spa->spa_did = 0;

1031 /* Only create a process if we’re going to be around a while. */
1032 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1033 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1034 NULL, 0) == 0) {
1035 spa->spa_proc_state = SPA_PROC_CREATED;
1036 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1037 cv_wait(&spa->spa_proc_cv,
1038 &spa->spa_proc_lock);
1039 }
1040 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1041 ASSERT(spa->spa_proc != &p0);
1042 ASSERT(spa->spa_did != 0);
1043 } else {
1044 #ifdef _KERNEL
1045 cmn_err(CE_WARN,
1046 "Couldn’t create process for zfs pool \"%s\"\n",

new/usr/src/uts/common/fs/zfs/spa.c 17

1047 spa->spa_name);
1048 #endif
1049 }
1050 }
1051 mutex_exit(&spa->spa_proc_lock);

1053 /* If we didn’t create a process, we need to create our taskqs. */
1054 if (spa->spa_proc == &p0) {
1055 spa_create_zio_taskqs(spa);
1056 }

1058 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1059 offsetof(vdev_t, vdev_config_dirty_node));
1060 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1061 offsetof(vdev_t, vdev_state_dirty_node));

1063 txg_list_create(&spa->spa_vdev_txg_list,
1064 offsetof(struct vdev, vdev_txg_node));

1066 avl_create(&spa->spa_errlist_scrub,
1067 spa_error_entry_compare, sizeof (spa_error_entry_t),
1068 offsetof(spa_error_entry_t, se_avl));
1069 avl_create(&spa->spa_errlist_last,
1070 spa_error_entry_compare, sizeof (spa_error_entry_t),
1071 offsetof(spa_error_entry_t, se_avl));
1072 }

1074 /*
1075 * Opposite of spa_activate().
1076 */
1077 static void
1078 spa_deactivate(spa_t *spa)
1079 {
1080 ASSERT(spa->spa_sync_on == B_FALSE);
1081 ASSERT(spa->spa_dsl_pool == NULL);
1082 ASSERT(spa->spa_root_vdev == NULL);
1083 ASSERT(spa->spa_async_zio_root == NULL);
1084 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);

1086 txg_list_destroy(&spa->spa_vdev_txg_list);

1088 list_destroy(&spa->spa_config_dirty_list);
1089 list_destroy(&spa->spa_state_dirty_list);

1091 for (int t = 0; t < ZIO_TYPES; t++) {
1092 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1093 spa_taskqs_fini(spa, t, q);
1094 }
1095 }

1097 metaslab_class_destroy(spa->spa_normal_class);
1098 spa->spa_normal_class = NULL;

1100 metaslab_class_destroy(spa->spa_log_class);
1101 spa->spa_log_class = NULL;

1103 /*
1104 * If this was part of an import or the open otherwise failed, we may
1105 * still have errors left in the queues. Empty them just in case.
1106 */
1107 spa_errlog_drain(spa);

1109 avl_destroy(&spa->spa_errlist_scrub);
1110 avl_destroy(&spa->spa_errlist_last);

1112 spa->spa_state = POOL_STATE_UNINITIALIZED;

new/usr/src/uts/common/fs/zfs/spa.c 18

1114 mutex_enter(&spa->spa_proc_lock);
1115 if (spa->spa_proc_state != SPA_PROC_NONE) {
1116 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1117 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1118 cv_broadcast(&spa->spa_proc_cv);
1119 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1120 ASSERT(spa->spa_proc != &p0);
1121 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1122 }
1123 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1124 spa->spa_proc_state = SPA_PROC_NONE;
1125 }
1126 ASSERT(spa->spa_proc == &p0);
1127 mutex_exit(&spa->spa_proc_lock);

1129 /*
1130 * We want to make sure spa_thread() has actually exited the ZFS
1131 * module, so that the module can’t be unloaded out from underneath
1132 * it.
1133 */
1134 if (spa->spa_did != 0) {
1135 thread_join(spa->spa_did);
1136 spa->spa_did = 0;
1137 }
1138 }

1140 /*
1141 * Verify a pool configuration, and construct the vdev tree appropriately. This
1142 * will create all the necessary vdevs in the appropriate layout, with each vdev
1143 * in the CLOSED state. This will prep the pool before open/creation/import.
1144 * All vdev validation is done by the vdev_alloc() routine.
1145 */
1146 static int
1147 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1148 uint_t id, int atype)
1149 {
1150 nvlist_t **child;
1151 uint_t children;
1152 int error;

1154 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1155 return (error);

1157 if ((*vdp)->vdev_ops->vdev_op_leaf)
1158 return (0);

1160 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1161 &child, &children);

1163 if (error == ENOENT)
1164 return (0);

1166 if (error) {
1167 vdev_free(*vdp);
1168 *vdp = NULL;
1169 return (SET_ERROR(EINVAL));
1170 }

1172 for (int c = 0; c < children; c++) {
1173 vdev_t *vd;
1174 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1175 atype)) != 0) {
1176 vdev_free(*vdp);
1177 *vdp = NULL;
1178 return (error);

new/usr/src/uts/common/fs/zfs/spa.c 19

1179 }
1180 }

1182 ASSERT(*vdp != NULL);

1184 return (0);
1185 }

1187 /*
1188 * Opposite of spa_load().
1189 */
1190 static void
1191 spa_unload(spa_t *spa)
1192 {
1193 int i;

1195 ASSERT(MUTEX_HELD(&spa_namespace_lock));

1197 /*
1198 * Stop async tasks.
1199 */
1200 spa_async_suspend(spa);

1202 /*
1203 * Stop syncing.
1204 */
1205 if (spa->spa_sync_on) {
1206 txg_sync_stop(spa->spa_dsl_pool);
1207 spa->spa_sync_on = B_FALSE;
1208 }

1210 /*
1211 * Wait for any outstanding async I/O to complete.
1212 */
1213 if (spa->spa_async_zio_root != NULL) {
1214 (void) zio_wait(spa->spa_async_zio_root);
1215 spa->spa_async_zio_root = NULL;
1216 }

1218 bpobj_close(&spa->spa_deferred_bpobj);

1220 /*
1221 * Close the dsl pool.
1222 */
1223 if (spa->spa_dsl_pool) {
1224 dsl_pool_close(spa->spa_dsl_pool);
1225 spa->spa_dsl_pool = NULL;
1226 spa->spa_meta_objset = NULL;
1227 }

1229 ddt_unload(spa);

1231 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);

1233 /*
1234 * Drop and purge level 2 cache
1235 */
1236 spa_l2cache_drop(spa);

1238 /*
1239 * Close all vdevs.
1240 */
1241 if (spa->spa_root_vdev)
1242 vdev_free(spa->spa_root_vdev);
1243 ASSERT(spa->spa_root_vdev == NULL);

new/usr/src/uts/common/fs/zfs/spa.c 20

1245 for (i = 0; i < spa->spa_spares.sav_count; i++)
1246 vdev_free(spa->spa_spares.sav_vdevs[i]);
1247 if (spa->spa_spares.sav_vdevs) {
1248 kmem_free(spa->spa_spares.sav_vdevs,
1249 spa->spa_spares.sav_count * sizeof (void *));
1250 spa->spa_spares.sav_vdevs = NULL;
1251 }
1252 if (spa->spa_spares.sav_config) {
1253 nvlist_free(spa->spa_spares.sav_config);
1254 spa->spa_spares.sav_config = NULL;
1255 }
1256 spa->spa_spares.sav_count = 0;

1258 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1259 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1260 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1261 }
1262 if (spa->spa_l2cache.sav_vdevs) {
1263 kmem_free(spa->spa_l2cache.sav_vdevs,
1264 spa->spa_l2cache.sav_count * sizeof (void *));
1265 spa->spa_l2cache.sav_vdevs = NULL;
1266 }
1267 if (spa->spa_l2cache.sav_config) {
1268 nvlist_free(spa->spa_l2cache.sav_config);
1269 spa->spa_l2cache.sav_config = NULL;
1270 }
1271 spa->spa_l2cache.sav_count = 0;

1273 spa->spa_async_suspended = 0;

1275 if (spa->spa_comment != NULL) {
1276 spa_strfree(spa->spa_comment);
1277 spa->spa_comment = NULL;
1278 }

1280 spa_config_exit(spa, SCL_ALL, FTAG);
1281 }

1283 /*
1284 * Load (or re-load) the current list of vdevs describing the active spares for
1285 * this pool. When this is called, we have some form of basic information in
1286 * ’spa_spares.sav_config’. We parse this into vdevs, try to open them, and
1287 * then re-generate a more complete list including status information.
1288 */
1289 static void
1290 spa_load_spares(spa_t *spa)
1291 {
1292 nvlist_t **spares;
1293 uint_t nspares;
1294 int i;
1295 vdev_t *vd, *tvd;

1297 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);

1299 /*
1300 * First, close and free any existing spare vdevs.
1301 */
1302 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1303 vd = spa->spa_spares.sav_vdevs[i];

1305 /* Undo the call to spa_activate() below */
1306 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1307 B_FALSE)) != NULL && tvd->vdev_isspare)
1308 spa_spare_remove(tvd);
1309 vdev_close(vd);
1310 vdev_free(vd);

new/usr/src/uts/common/fs/zfs/spa.c 21

1311 }

1313 if (spa->spa_spares.sav_vdevs)
1314 kmem_free(spa->spa_spares.sav_vdevs,
1315 spa->spa_spares.sav_count * sizeof (void *));

1317 if (spa->spa_spares.sav_config == NULL)
1318 nspares = 0;
1319 else
1320 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1321 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);

1323 spa->spa_spares.sav_count = (int)nspares;
1324 spa->spa_spares.sav_vdevs = NULL;

1326 if (nspares == 0)
1327 return;

1329 /*
1330 * Construct the array of vdevs, opening them to get status in the
1331 * process. For each spare, there is potentially two different vdev_t
1332 * structures associated with it: one in the list of spares (used only
1333 * for basic validation purposes) and one in the active vdev
1334 * configuration (if it’s spared in). During this phase we open and
1335 * validate each vdev on the spare list. If the vdev also exists in the
1336 * active configuration, then we also mark this vdev as an active spare.
1337 */
1338 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1339 KM_SLEEP);
1340 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1341 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1342 VDEV_ALLOC_SPARE) == 0);
1343 ASSERT(vd != NULL);

1345 spa->spa_spares.sav_vdevs[i] = vd;

1347 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1348 B_FALSE)) != NULL) {
1349 if (!tvd->vdev_isspare)
1350 spa_spare_add(tvd);

1352 /*
1353 * We only mark the spare active if we were successfully
1354 * able to load the vdev. Otherwise, importing a pool
1355 * with a bad active spare would result in strange
1356 * behavior, because multiple pool would think the spare
1357 * is actively in use.
1358 *
1359 * There is a vulnerability here to an equally bizarre
1360 * circumstance, where a dead active spare is later
1361 * brought back to life (onlined or otherwise). Given
1362 * the rarity of this scenario, and the extra complexity
1363 * it adds, we ignore the possibility.
1364 */
1365 if (!vdev_is_dead(tvd))
1366 spa_spare_activate(tvd);
1367 }

1369 vd->vdev_top = vd;
1370 vd->vdev_aux = &spa->spa_spares;

1372 if (vdev_open(vd) != 0)
1373 continue;

1375 if (vdev_validate_aux(vd) == 0)
1376 spa_spare_add(vd);

new/usr/src/uts/common/fs/zfs/spa.c 22

1377 }

1379 /*
1380 * Recompute the stashed list of spares, with status information
1381 * this time.
1382 */
1383 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1384 DATA_TYPE_NVLIST_ARRAY) == 0);

1386 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1387 KM_SLEEP);
1388 for (i = 0; i < spa->spa_spares.sav_count; i++)
1389 spares[i] = vdev_config_generate(spa,
1390 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1391 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1392 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1393 for (i = 0; i < spa->spa_spares.sav_count; i++)
1394 nvlist_free(spares[i]);
1395 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1396 }

1398 /*
1399 * Load (or re-load) the current list of vdevs describing the active l2cache for
1400 * this pool. When this is called, we have some form of basic information in
1401 * ’spa_l2cache.sav_config’. We parse this into vdevs, try to open them, and
1402 * then re-generate a more complete list including status information.
1403 * Devices which are already active have their details maintained, and are
1404 * not re-opened.
1405 */
1406 static void
1407 spa_load_l2cache(spa_t *spa)
1408 {
1409 nvlist_t **l2cache;
1410 uint_t nl2cache;
1411 int i, j, oldnvdevs;
1412 uint64_t guid;
1413 vdev_t *vd, **oldvdevs, **newvdevs;
1414 spa_aux_vdev_t *sav = &spa->spa_l2cache;

1416 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);

1418 if (sav->sav_config != NULL) {
1419 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1420 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1421 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1422 } else {
1423 nl2cache = 0;
1424 newvdevs = NULL;
1425 }

1427 oldvdevs = sav->sav_vdevs;
1428 oldnvdevs = sav->sav_count;
1429 sav->sav_vdevs = NULL;
1430 sav->sav_count = 0;

1432 /*
1433 * Process new nvlist of vdevs.
1434 */
1435 for (i = 0; i < nl2cache; i++) {
1436 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1437 &guid) == 0);

1439 newvdevs[i] = NULL;
1440 for (j = 0; j < oldnvdevs; j++) {
1441 vd = oldvdevs[j];
1442 if (vd != NULL && guid == vd->vdev_guid) {

new/usr/src/uts/common/fs/zfs/spa.c 23

1443 /*
1444 * Retain previous vdev for add/remove ops.
1445 */
1446 newvdevs[i] = vd;
1447 oldvdevs[j] = NULL;
1448 break;
1449 }
1450 }

1452 if (newvdevs[i] == NULL) {
1453 /*
1454 * Create new vdev
1455 */
1456 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1457 VDEV_ALLOC_L2CACHE) == 0);
1458 ASSERT(vd != NULL);
1459 newvdevs[i] = vd;

1461 /*
1462 * Commit this vdev as an l2cache device,
1463 * even if it fails to open.
1464 */
1465 spa_l2cache_add(vd);

1467 vd->vdev_top = vd;
1468 vd->vdev_aux = sav;

1470 spa_l2cache_activate(vd);

1472 if (vdev_open(vd) != 0)
1473 continue;

1475 (void) vdev_validate_aux(vd);

1477 if (!vdev_is_dead(vd))
1478 l2arc_add_vdev(spa, vd);
1479 }
1480 }

1482 /*
1483 * Purge vdevs that were dropped
1484 */
1485 for (i = 0; i < oldnvdevs; i++) {
1486 uint64_t pool;

1488 vd = oldvdevs[i];
1489 if (vd != NULL) {
1490 ASSERT(vd->vdev_isl2cache);

1492 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1493 pool != 0ULL && l2arc_vdev_present(vd))
1494 l2arc_remove_vdev(vd);
1495 vdev_clear_stats(vd);
1496 vdev_free(vd);
1497 }
1498 }

1500 if (oldvdevs)
1501 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));

1503 if (sav->sav_config == NULL)
1504 goto out;

1506 sav->sav_vdevs = newvdevs;
1507 sav->sav_count = (int)nl2cache;

new/usr/src/uts/common/fs/zfs/spa.c 24

1509 /*
1510 * Recompute the stashed list of l2cache devices, with status
1511 * information this time.
1512 */
1513 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1514 DATA_TYPE_NVLIST_ARRAY) == 0);

1516 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1517 for (i = 0; i < sav->sav_count; i++)
1518 l2cache[i] = vdev_config_generate(spa,
1519 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1520 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1521 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1522 out:
1523 for (i = 0; i < sav->sav_count; i++)
1524 nvlist_free(l2cache[i]);
1525 if (sav->sav_count)
1526 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1527 }

1529 static int
1530 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1531 {
1532 dmu_buf_t *db;
1533 char *packed = NULL;
1534 size_t nvsize = 0;
1535 int error;
1536 *value = NULL;

1538 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1539 nvsize = *(uint64_t *)db->db_data;
1540 dmu_buf_rele(db, FTAG);

1542 packed = kmem_alloc(nvsize, KM_SLEEP);
1543 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1544 DMU_READ_PREFETCH);
1545 if (error == 0)
1546 error = nvlist_unpack(packed, nvsize, value, 0);
1547 kmem_free(packed, nvsize);

1549 return (error);
1550 }

1552 /*
1553 * Checks to see if the given vdev could not be opened, in which case we post a
1554 * sysevent to notify the autoreplace code that the device has been removed.
1555 */
1556 static void
1557 spa_check_removed(vdev_t *vd)
1558 {
1559 for (int c = 0; c < vd->vdev_children; c++)
1560 spa_check_removed(vd->vdev_child[c]);

1562 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1563 !vd->vdev_ishole) {
1564 zfs_post_autoreplace(vd->vdev_spa, vd);
1565 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1566 }
1567 }

1569 /*
1570 * Validate the current config against the MOS config
1571 */
1572 static boolean_t
1573 spa_config_valid(spa_t *spa, nvlist_t *config)
1574 {

new/usr/src/uts/common/fs/zfs/spa.c 25

1575 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1576 nvlist_t *nv;

1578 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);

1580 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1581 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);

1583 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);

1585 /*
1586 * If we’re doing a normal import, then build up any additional
1587 * diagnostic information about missing devices in this config.
1588 * We’ll pass this up to the user for further processing.
1589 */
1590 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1591 nvlist_t **child, *nv;
1592 uint64_t idx = 0;

1594 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1595 KM_SLEEP);
1596 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);

1598 for (int c = 0; c < rvd->vdev_children; c++) {
1599 vdev_t *tvd = rvd->vdev_child[c];
1600 vdev_t *mtvd = mrvd->vdev_child[c];

1602 if (tvd->vdev_ops == &vdev_missing_ops &&
1603 mtvd->vdev_ops != &vdev_missing_ops &&
1604 mtvd->vdev_islog)
1605 child[idx++] = vdev_config_generate(spa, mtvd,
1606 B_FALSE, 0);
1607 }

1609 if (idx) {
1610 VERIFY(nvlist_add_nvlist_array(nv,
1611 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1612 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1613 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);

1615 for (int i = 0; i < idx; i++)
1616 nvlist_free(child[i]);
1617 }
1618 nvlist_free(nv);
1619 kmem_free(child, rvd->vdev_children * sizeof (char **));
1620 }

1622 /*
1623 * Compare the root vdev tree with the information we have
1624 * from the MOS config (mrvd). Check each top-level vdev
1625 * with the corresponding MOS config top-level (mtvd).
1626 */
1627 for (int c = 0; c < rvd->vdev_children; c++) {
1628 vdev_t *tvd = rvd->vdev_child[c];
1629 vdev_t *mtvd = mrvd->vdev_child[c];

1631 /*
1632 * Resolve any "missing" vdevs in the current configuration.
1633 * If we find that the MOS config has more accurate information
1634 * about the top-level vdev then use that vdev instead.
1635 */
1636 if (tvd->vdev_ops == &vdev_missing_ops &&
1637 mtvd->vdev_ops != &vdev_missing_ops) {

1639 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1640 continue;

new/usr/src/uts/common/fs/zfs/spa.c 26

1642 /*
1643 * Device specific actions.
1644 */
1645 if (mtvd->vdev_islog) {
1646 spa_set_log_state(spa, SPA_LOG_CLEAR);
1647 } else {
1648 /*
1649 * XXX - once we have ’readonly’ pool
1650 * support we should be able to handle
1651 * missing data devices by transitioning
1652 * the pool to readonly.
1653 */
1654 continue;
1655 }

1657 /*
1658 * Swap the missing vdev with the data we were
1659 * able to obtain from the MOS config.
1660 */
1661 vdev_remove_child(rvd, tvd);
1662 vdev_remove_child(mrvd, mtvd);

1664 vdev_add_child(rvd, mtvd);
1665 vdev_add_child(mrvd, tvd);

1667 spa_config_exit(spa, SCL_ALL, FTAG);
1668 vdev_load(mtvd);
1669 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);

1671 vdev_reopen(rvd);
1672 } else if (mtvd->vdev_islog) {
1673 /*
1674 * Load the slog device’s state from the MOS config
1675 * since it’s possible that the label does not
1676 * contain the most up-to-date information.
1677 */
1678 vdev_load_log_state(tvd, mtvd);
1679 vdev_reopen(tvd);
1680 }
1681 }
1682 vdev_free(mrvd);
1683 spa_config_exit(spa, SCL_ALL, FTAG);

1685 /*
1686 * Ensure we were able to validate the config.
1687 */
1688 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1689 }

1691 /*
1692 * Check for missing log devices
1693 */
1694 static boolean_t
1695 spa_check_logs(spa_t *spa)
1696 {
1697 boolean_t rv = B_FALSE;

1699 switch (spa->spa_log_state) {
1700 case SPA_LOG_MISSING:
1701 /* need to recheck in case slog has been restored */
1702 case SPA_LOG_UNKNOWN:
1703 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1704 NULL, DS_FIND_CHILDREN) != 0);
1705 if (rv)
1706 spa_set_log_state(spa, SPA_LOG_MISSING);

new/usr/src/uts/common/fs/zfs/spa.c 27

1707 break;
1708 }
1709 return (rv);
1710 }

1712 static boolean_t
1713 spa_passivate_log(spa_t *spa)
1714 {
1715 vdev_t *rvd = spa->spa_root_vdev;
1716 boolean_t slog_found = B_FALSE;

1718 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));

1720 if (!spa_has_slogs(spa))
1721 return (B_FALSE);

1723 for (int c = 0; c < rvd->vdev_children; c++) {
1724 vdev_t *tvd = rvd->vdev_child[c];
1725 metaslab_group_t *mg = tvd->vdev_mg;

1727 if (tvd->vdev_islog) {
1728 metaslab_group_passivate(mg);
1729 slog_found = B_TRUE;
1730 }
1731 }

1733 return (slog_found);
1734 }

1736 static void
1737 spa_activate_log(spa_t *spa)
1738 {
1739 vdev_t *rvd = spa->spa_root_vdev;

1741 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));

1743 for (int c = 0; c < rvd->vdev_children; c++) {
1744 vdev_t *tvd = rvd->vdev_child[c];
1745 metaslab_group_t *mg = tvd->vdev_mg;

1747 if (tvd->vdev_islog)
1748 metaslab_group_activate(mg);
1749 }
1750 }

1752 int
1753 spa_offline_log(spa_t *spa)
1754 {
1755 int error;

1757 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1758 NULL, DS_FIND_CHILDREN);
1759 if (error == 0) {
1760 /*
1761 * We successfully offlined the log device, sync out the
1762 * current txg so that the "stubby" block can be removed
1763 * by zil_sync().
1764 */
1765 txg_wait_synced(spa->spa_dsl_pool, 0);
1766 }
1767 return (error);
1768 }

1770 static void
1771 spa_aux_check_removed(spa_aux_vdev_t *sav)
1772 {

new/usr/src/uts/common/fs/zfs/spa.c 28

1773 for (int i = 0; i < sav->sav_count; i++)
1774 spa_check_removed(sav->sav_vdevs[i]);
1775 }

1777 void
1778 spa_claim_notify(zio_t *zio)
1779 {
1780 spa_t *spa = zio->io_spa;

1782 if (zio->io_error)
1783 return;

1785 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1786 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1787 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1788 mutex_exit(&spa->spa_props_lock);
1789 }

1791 typedef struct spa_load_error {
1792 uint64_t sle_meta_count;
1793 uint64_t sle_data_count;
1794 } spa_load_error_t;

1796 static void
1797 spa_load_verify_done(zio_t *zio)
1798 {
1799 blkptr_t *bp = zio->io_bp;
1800 spa_load_error_t *sle = zio->io_private;
1801 dmu_object_type_t type = BP_GET_TYPE(bp);
1802 int error = zio->io_error;

1804 if (error) {
1805 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1806 type != DMU_OT_INTENT_LOG)
1807 atomic_add_64(&sle->sle_meta_count, 1);
1808 else
1809 atomic_add_64(&sle->sle_data_count, 1);
1810 }
1811 zio_data_buf_free(zio->io_data, zio->io_size);
1812 }

1814 /*ARGSUSED*/
1815 static int
1816 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1817 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1818 {
1819 if (bp != NULL) {
1820 zio_t *rio = arg;
1821 size_t size = BP_GET_PSIZE(bp);
1822 void *data = zio_data_buf_alloc(size);

1824 zio_nowait(zio_read(rio, spa, bp, data, size,
1825 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1826 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1827 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1828 }
1829 return (0);
1830 }

1832 static int
1833 spa_load_verify(spa_t *spa)
1834 {
1835 zio_t *rio;
1836 spa_load_error_t sle = { 0 };
1837 zpool_rewind_policy_t policy;
1838 boolean_t verify_ok = B_FALSE;

new/usr/src/uts/common/fs/zfs/spa.c 29

1839 int error;

1841 zpool_get_rewind_policy(spa->spa_config, &policy);

1843 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1844 return (0);

1846 rio = zio_root(spa, NULL, &sle,
1847 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);

1849 error = traverse_pool(spa, spa->spa_verify_min_txg,
1850 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);

1852 (void) zio_wait(rio);

1854 spa->spa_load_meta_errors = sle.sle_meta_count;
1855 spa->spa_load_data_errors = sle.sle_data_count;

1857 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1858 sle.sle_data_count <= policy.zrp_maxdata) {
1859 int64_t loss = 0;

1861 verify_ok = B_TRUE;
1862 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1863 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;

1865 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1866 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1867 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1868 VERIFY(nvlist_add_int64(spa->spa_load_info,
1869 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1870 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1871 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1872 } else {
1873 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1874 }

1876 if (error) {
1877 if (error != ENXIO && error != EIO)
1878 error = SET_ERROR(EIO);
1879 return (error);
1880 }

1882 return (verify_ok ? 0 : EIO);
1883 }

1885 /*
1886 * Find a value in the pool props object.
1887 */
1888 static void
1889 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1890 {
1891 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1892 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1893 }

1895 /*
1896 * Find a value in the pool directory object.
1897 */
1898 static int
1899 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1900 {
1901 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1902 name, sizeof (uint64_t), 1, val));
1903 }

new/usr/src/uts/common/fs/zfs/spa.c 30

1905 static int
1906 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1907 {
1908 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1909 return (err);
1910 }

1912 /*
1913 * Fix up config after a partly-completed split. This is done with the
1914 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1915 * pool have that entry in their config, but only the splitting one contains
1916 * a list of all the guids of the vdevs that are being split off.
1917 *
1918 * This function determines what to do with that list: either rejoin
1919 * all the disks to the pool, or complete the splitting process. To attempt
1920 * the rejoin, each disk that is offlined is marked online again, and
1921 * we do a reopen() call. If the vdev label for every disk that was
1922 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1923 * then we call vdev_split() on each disk, and complete the split.
1924 *
1925 * Otherwise we leave the config alone, with all the vdevs in place in
1926 * the original pool.
1927 */
1928 static void
1929 spa_try_repair(spa_t *spa, nvlist_t *config)
1930 {
1931 uint_t extracted;
1932 uint64_t *glist;
1933 uint_t i, gcount;
1934 nvlist_t *nvl;
1935 vdev_t **vd;
1936 boolean_t attempt_reopen;

1938 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1939 return;

1941 /* check that the config is complete */
1942 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1943 &glist, &gcount) != 0)
1944 return;

1946 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);

1948 /* attempt to online all the vdevs & validate */
1949 attempt_reopen = B_TRUE;
1950 for (i = 0; i < gcount; i++) {
1951 if (glist[i] == 0) /* vdev is hole */
1952 continue;

1954 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1955 if (vd[i] == NULL) {
1956 /*
1957 * Don’t bother attempting to reopen the disks;
1958 * just do the split.
1959 */
1960 attempt_reopen = B_FALSE;
1961 } else {
1962 /* attempt to re-online it */
1963 vd[i]->vdev_offline = B_FALSE;
1964 }
1965 }

1967 if (attempt_reopen) {
1968 vdev_reopen(spa->spa_root_vdev);

1970 /* check each device to see what state it’s in */

new/usr/src/uts/common/fs/zfs/spa.c 31

1971 for (extracted = 0, i = 0; i < gcount; i++) {
1972 if (vd[i] != NULL &&
1973 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1974 break;
1975 ++extracted;
1976 }
1977 }

1979 /*
1980 * If every disk has been moved to the new pool, or if we never
1981 * even attempted to look at them, then we split them off for
1982 * good.
1983 */
1984 if (!attempt_reopen || gcount == extracted) {
1985 for (i = 0; i < gcount; i++)
1986 if (vd[i] != NULL)
1987 vdev_split(vd[i]);
1988 vdev_reopen(spa->spa_root_vdev);
1989 }

1991 kmem_free(vd, gcount * sizeof (vdev_t *));
1992 }

1994 static int
1995 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1996 boolean_t mosconfig)
1997 {
1998 nvlist_t *config = spa->spa_config;
1999 char *ereport = FM_EREPORT_ZFS_POOL;
2000 char *comment;
2001 int error;
2002 uint64_t pool_guid;
2003 nvlist_t *nvl;

2005 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2006 return (SET_ERROR(EINVAL));

2008 ASSERT(spa->spa_comment == NULL);
2009 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2010 spa->spa_comment = spa_strdup(comment);

2012 /*
2013 * Versioning wasn’t explicitly added to the label until later, so if
2014 * it’s not present treat it as the initial version.
2015 */
2016 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2017 &spa->spa_ubsync.ub_version) != 0)
2018 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;

2020 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2021 &spa->spa_config_txg);

2023 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2024 spa_guid_exists(pool_guid, 0)) {
2025 error = SET_ERROR(EEXIST);
2026 } else {
2027 spa->spa_config_guid = pool_guid;

2029 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2030 &nvl) == 0) {
2031 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2032 KM_SLEEP) == 0);
2033 }

2035 nvlist_free(spa->spa_load_info);
2036 spa->spa_load_info = fnvlist_alloc();

new/usr/src/uts/common/fs/zfs/spa.c 32

2038 gethrestime(&spa->spa_loaded_ts);
2039 error = spa_load_impl(spa, pool_guid, config, state, type,
2040 mosconfig, &ereport);
2041 }

2043 spa->spa_minref = refcount_count(&spa->spa_refcount);
2044 if (error) {
2045 if (error != EEXIST) {
2046 spa->spa_loaded_ts.tv_sec = 0;
2047 spa->spa_loaded_ts.tv_nsec = 0;
2048 }
2049 if (error != EBADF) {
2050 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2051 }
2052 }
2053 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2054 spa->spa_ena = 0;

2056 return (error);
2057 }

2059 /*
2060 * Load an existing storage pool, using the pool’s builtin spa_config as a
2061 * source of configuration information.
2062 */
2063 static int
2064 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2065 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2066 char **ereport)
2067 {
2068 int error = 0;
2069 nvlist_t *nvroot = NULL;
2070 nvlist_t *label;
2071 vdev_t *rvd;
2072 uberblock_t *ub = &spa->spa_uberblock;
2073 uint64_t children, config_cache_txg = spa->spa_config_txg;
2074 int orig_mode = spa->spa_mode;
2075 int parse;
2076 uint64_t obj;
2077 boolean_t missing_feat_write = B_FALSE;

2079 /*
2080 * If this is an untrusted config, access the pool in read-only mode.
2081 * This prevents things like resilvering recently removed devices.
2082 */
2083 if (!mosconfig)
2084 spa->spa_mode = FREAD;

2086 ASSERT(MUTEX_HELD(&spa_namespace_lock));

2088 spa->spa_load_state = state;

2090 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2091 return (SET_ERROR(EINVAL));

2093 parse = (type == SPA_IMPORT_EXISTING ?
2094 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);

2096 /*
2097 * Create "The Godfather" zio to hold all async IOs
2098 */
2099 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2100 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);

2102 /*

new/usr/src/uts/common/fs/zfs/spa.c 33

2103 * Parse the configuration into a vdev tree. We explicitly set the
2104 * value that will be returned by spa_version() since parsing the
2105 * configuration requires knowing the version number.
2106 */
2107 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2108 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2109 spa_config_exit(spa, SCL_ALL, FTAG);

2111 if (error != 0)
2112 return (error);

2114 ASSERT(spa->spa_root_vdev == rvd);

2116 if (type != SPA_IMPORT_ASSEMBLE) {
2117 ASSERT(spa_guid(spa) == pool_guid);
2118 }

2120 /*
2121 * Try to open all vdevs, loading each label in the process.
2122 */
2123 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2124 error = vdev_open(rvd);
2125 spa_config_exit(spa, SCL_ALL, FTAG);
2126 if (error != 0)
2127 return (error);

2129 /*
2130 * We need to validate the vdev labels against the configuration that
2131 * we have in hand, which is dependent on the setting of mosconfig. If
2132 * mosconfig is true then we’re validating the vdev labels based on
2133 * that config. Otherwise, we’re validating against the cached config
2134 * (zpool.cache) that was read when we loaded the zfs module, and then
2135 * later we will recursively call spa_load() and validate against
2136 * the vdev config.
2137 *
2138 * If we’re assembling a new pool that’s been split off from an
2139 * existing pool, the labels haven’t yet been updated so we skip
2140 * validation for now.
2141 */
2142 if (type != SPA_IMPORT_ASSEMBLE) {
2143 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2144 error = vdev_validate(rvd, mosconfig);
2145 spa_config_exit(spa, SCL_ALL, FTAG);

2147 if (error != 0)
2148 return (error);

2150 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2151 return (SET_ERROR(ENXIO));
2152 }

2154 /*
2155 * Find the best uberblock.
2156 */
2157 vdev_uberblock_load(rvd, ub, &label);

2159 /*
2160 * If we weren’t able to find a single valid uberblock, return failure.
2161 */
2162 if (ub->ub_txg == 0) {
2163 nvlist_free(label);
2164 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2165 }

2167 /*
2168 * If the pool has an unsupported version we can’t open it.

new/usr/src/uts/common/fs/zfs/spa.c 34

2169 */
2170 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2171 nvlist_free(label);
2172 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2173 }

2175 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2176 nvlist_t *features;

2178 /*
2179 * If we weren’t able to find what’s necessary for reading the
2180 * MOS in the label, return failure.
2181 */
2182 if (label == NULL || nvlist_lookup_nvlist(label,
2183 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2184 nvlist_free(label);
2185 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2186 ENXIO));
2187 }

2189 /*
2190 * Update our in-core representation with the definitive values
2191 * from the label.
2192 */
2193 nvlist_free(spa->spa_label_features);
2194 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2195 }

2197 nvlist_free(label);

2199 /*
2200 * Look through entries in the label nvlist’s features_for_read. If
2201 * there is a feature listed there which we don’t understand then we
2202 * cannot open a pool.
2203 */
2204 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2205 nvlist_t *unsup_feat;

2207 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2208 0);

2210 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2211 NULL); nvp != NULL;
2212 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2213 if (!zfeature_is_supported(nvpair_name(nvp))) {
2214 VERIFY(nvlist_add_string(unsup_feat,
2215 nvpair_name(nvp), "") == 0);
2216 }
2217 }

2219 if (!nvlist_empty(unsup_feat)) {
2220 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2221 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2222 nvlist_free(unsup_feat);
2223 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2224 ENOTSUP));
2225 }

2227 nvlist_free(unsup_feat);
2228 }

2230 /*
2231 * If the vdev guid sum doesn’t match the uberblock, we have an
2232 * incomplete configuration. We first check to see if the pool
2233 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2234 * If it is, defer the vdev_guid_sum check till later so we

new/usr/src/uts/common/fs/zfs/spa.c 35

2235 * can handle missing vdevs.
2236 */
2237 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2238 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2239 rvd->vdev_guid_sum != ub->ub_guid_sum)
2240 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));

2242 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2243 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2244 spa_try_repair(spa, config);
2245 spa_config_exit(spa, SCL_ALL, FTAG);
2246 nvlist_free(spa->spa_config_splitting);
2247 spa->spa_config_splitting = NULL;
2248 }

2250 /*
2251 * Initialize internal SPA structures.
2252 */
2253 spa->spa_state = POOL_STATE_ACTIVE;
2254 spa->spa_ubsync = spa->spa_uberblock;
2255 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2256 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2257 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2258 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2259 spa->spa_claim_max_txg = spa->spa_first_txg;
2260 spa->spa_prev_software_version = ub->ub_software_version;

2262 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2263 if (error)
2264 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2265 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;

2267 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2268 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2270 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2271 boolean_t missing_feat_read = B_FALSE;
2272 nvlist_t *unsup_feat, *enabled_feat;

2274 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2275 &spa->spa_feat_for_read_obj) != 0) {
2276 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2277 }

2279 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2280 &spa->spa_feat_for_write_obj) != 0) {
2281 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2282 }

2284 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2285 &spa->spa_feat_desc_obj) != 0) {
2286 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2287 }

2289 enabled_feat = fnvlist_alloc();
2290 unsup_feat = fnvlist_alloc();

2292 if (!feature_is_supported(spa->spa_meta_objset,
2293 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2294 unsup_feat, enabled_feat))
2295 missing_feat_read = B_TRUE;

2297 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2298 if (!feature_is_supported(spa->spa_meta_objset,
2299 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2300 unsup_feat, enabled_feat)) {

new/usr/src/uts/common/fs/zfs/spa.c 36

2301 missing_feat_write = B_TRUE;
2302 }
2303 }

2305 fnvlist_add_nvlist(spa->spa_load_info,
2306 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);

2308 if (!nvlist_empty(unsup_feat)) {
2309 fnvlist_add_nvlist(spa->spa_load_info,
2310 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2311 }

2313 fnvlist_free(enabled_feat);
2314 fnvlist_free(unsup_feat);

2316 if (!missing_feat_read) {
2317 fnvlist_add_boolean(spa->spa_load_info,
2318 ZPOOL_CONFIG_CAN_RDONLY);
2319 }

2321 /*
2322 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2323 * twofold: to determine whether the pool is available for
2324 * import in read-write mode and (if it is not) whether the
2325 * pool is available for import in read-only mode. If the pool
2326 * is available for import in read-write mode, it is displayed
2327 * as available in userland; if it is not available for import
2328 * in read-only mode, it is displayed as unavailable in
2329 * userland. If the pool is available for import in read-only
2330 * mode but not read-write mode, it is displayed as unavailable
2331 * in userland with a special note that the pool is actually
2332 * available for open in read-only mode.
2333 *
2334 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2335 * missing a feature for write, we must first determine whether
2336 * the pool can be opened read-only before returning to
2337 * userland in order to know whether to display the
2338 * abovementioned note.
2339 */
2340 if (missing_feat_read || (missing_feat_write &&
2341 spa_writeable(spa))) {
2342 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2343 ENOTSUP));
2344 }
2345 }

2347 spa->spa_is_initializing = B_TRUE;
2348 error = dsl_pool_open(spa->spa_dsl_pool);
2349 spa->spa_is_initializing = B_FALSE;
2350 if (error != 0)
2351 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2353 if (!mosconfig) {
2354 uint64_t hostid;
2355 nvlist_t *policy = NULL, *nvconfig;

2357 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2358 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2360 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2361 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2362 char *hostname;
2363 unsigned long myhostid = 0;

2365 VERIFY(nvlist_lookup_string(nvconfig,
2366 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);

new/usr/src/uts/common/fs/zfs/spa.c 37

2368 #ifdef _KERNEL
2369 myhostid = zone_get_hostid(NULL);
2370 #else /* _KERNEL */
2371 /*
2372 * We’re emulating the system’s hostid in userland, so
2373 * we can’t use zone_get_hostid().
2374 */
2375 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2376 #endif /* _KERNEL */
2377 if (hostid != 0 && myhostid != 0 &&
2378 hostid != myhostid) {
2379 nvlist_free(nvconfig);
2380 cmn_err(CE_WARN, "pool ’%s’ could not be "
2381 "loaded as it was last accessed by "
2382 "another system (host: %s hostid: 0x%lx). "
2383 "See: http://illumos.org/msg/ZFS-8000-EY",
2384 spa_name(spa), hostname,
2385 (unsigned long)hostid);
2386 return (SET_ERROR(EBADF));
2387 }
2388 }
2389 if (nvlist_lookup_nvlist(spa->spa_config,
2390 ZPOOL_REWIND_POLICY, &policy) == 0)
2391 VERIFY(nvlist_add_nvlist(nvconfig,
2392 ZPOOL_REWIND_POLICY, policy) == 0);

2394 spa_config_set(spa, nvconfig);
2395 spa_unload(spa);
2396 spa_deactivate(spa);
2397 spa_activate(spa, orig_mode);

2399 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2400 }

2402 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2403 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2404 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2405 if (error != 0)
2406 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2408 /*
2409 * Load the bit that tells us to use the new accounting function
2410 * (raid-z deflation). If we have an older pool, this will not
2411 * be present.
2412 */
2413 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2414 if (error != 0 && error != ENOENT)
2415 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2417 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2418 &spa->spa_creation_version);
2419 if (error != 0 && error != ENOENT)
2420 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2422 /*
2423 * Load the persistent error log. If we have an older pool, this will
2424 * not be present.
2425 */
2426 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2427 if (error != 0 && error != ENOENT)
2428 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2430 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2431 &spa->spa_errlog_scrub);
2432 if (error != 0 && error != ENOENT)

new/usr/src/uts/common/fs/zfs/spa.c 38

2433 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2435 /*
2436 * Load the history object. If we have an older pool, this
2437 * will not be present.
2438 */
2439 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2440 if (error != 0 && error != ENOENT)
2441 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2443 /*
2444 * If we’re assembling the pool from the split-off vdevs of
2445 * an existing pool, we don’t want to attach the spares & cache
2446 * devices.
2447 */

2449 /*
2450 * Load any hot spares for this pool.
2451 */
2452 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2453 if (error != 0 && error != ENOENT)
2454 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2455 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2456 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2457 if (load_nvlist(spa, spa->spa_spares.sav_object,
2458 &spa->spa_spares.sav_config) != 0)
2459 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2461 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2462 spa_load_spares(spa);
2463 spa_config_exit(spa, SCL_ALL, FTAG);
2464 } else if (error == 0) {
2465 spa->spa_spares.sav_sync = B_TRUE;
2466 }

2468 /*
2469 * Load any level 2 ARC devices for this pool.
2470 */
2471 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2472 &spa->spa_l2cache.sav_object);
2473 if (error != 0 && error != ENOENT)
2474 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2475 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2476 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2477 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2478 &spa->spa_l2cache.sav_config) != 0)
2479 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2481 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2482 spa_load_l2cache(spa);
2483 spa_config_exit(spa, SCL_ALL, FTAG);
2484 } else if (error == 0) {
2485 spa->spa_l2cache.sav_sync = B_TRUE;
2486 }

2488 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);

2490 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2491 if (error && error != ENOENT)
2492 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2494 if (error == 0) {
2495 uint64_t autoreplace;

2497 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2498 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);

new/usr/src/uts/common/fs/zfs/spa.c 39

2499 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2500 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2501 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2502 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2503 &spa->spa_dedup_ditto);

2505 spa->spa_autoreplace = (autoreplace != 0);
2506 }

2508 /*
2509 * If the ’autoreplace’ property is set, then post a resource notifying
2510 * the ZFS DE that it should not issue any faults for unopenable
2511 * devices. We also iterate over the vdevs, and post a sysevent for any
2512 * unopenable vdevs so that the normal autoreplace handler can take
2513 * over.
2514 */
2515 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2516 spa_check_removed(spa->spa_root_vdev);
2517 /*
2518 * For the import case, this is done in spa_import(), because
2519 * at this point we’re using the spare definitions from
2520 * the MOS config, not necessarily from the userland config.
2521 */
2522 if (state != SPA_LOAD_IMPORT) {
2523 spa_aux_check_removed(&spa->spa_spares);
2524 spa_aux_check_removed(&spa->spa_l2cache);
2525 }
2526 }

2528 /*
2529 * Load the vdev state for all toplevel vdevs.
2530 */
2531 vdev_load(rvd);

2533 /*
2534 * Propagate the leaf DTLs we just loaded all the way up the tree.
2535 */
2536 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2537 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2538 spa_config_exit(spa, SCL_ALL, FTAG);

2540 /*
2541 * Load the DDTs (dedup tables).
2542 */
2543 error = ddt_load(spa);
2544 if (error != 0)
2545 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2547 spa_update_dspace(spa);

2549 /*
2550 * Validate the config, using the MOS config to fill in any
2551 * information which might be missing. If we fail to validate
2552 * the config then declare the pool unfit for use. If we’re
2553 * assembling a pool from a split, the log is not transferred
2554 * over.
2555 */
2556 if (type != SPA_IMPORT_ASSEMBLE) {
2557 nvlist_t *nvconfig;

2559 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2560 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2562 if (!spa_config_valid(spa, nvconfig)) {
2563 nvlist_free(nvconfig);
2564 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,

new/usr/src/uts/common/fs/zfs/spa.c 40

2565 ENXIO));
2566 }
2567 nvlist_free(nvconfig);

2569 /*
2570 * Now that we’ve validated the config, check the state of the
2571 * root vdev. If it can’t be opened, it indicates one or
2572 * more toplevel vdevs are faulted.
2573 */
2574 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2575 return (SET_ERROR(ENXIO));

2577 if (spa_check_logs(spa)) {
2578 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2579 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2580 }
2581 }

2583 if (missing_feat_write) {
2584 ASSERT(state == SPA_LOAD_TRYIMPORT);

2586 /*
2587 * At this point, we know that we can open the pool in
2588 * read-only mode but not read-write mode. We now have enough
2589 * information and can return to userland.
2590 */
2591 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2592 }

2594 /*
2595 * We’ve successfully opened the pool, verify that we’re ready
2596 * to start pushing transactions.
2597 */
2598 if (state != SPA_LOAD_TRYIMPORT) {
2599 if (error = spa_load_verify(spa))
2600 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2601 error));
2602 }

2604 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2605 spa->spa_load_max_txg == UINT64_MAX)) {
2606 dmu_tx_t *tx;
2607 int need_update = B_FALSE;

2609 ASSERT(state != SPA_LOAD_TRYIMPORT);

2611 /*
2612 * Claim log blocks that haven’t been committed yet.
2613 * This must all happen in a single txg.
2614 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2615 * invoked from zil_claim_log_block()’s i/o done callback.
2616 * Price of rollback is that we abandon the log.
2617 */
2618 spa->spa_claiming = B_TRUE;

2620 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2621 spa_first_txg(spa));
2622 (void) dmu_objset_find(spa_name(spa),
2623 zil_claim, tx, DS_FIND_CHILDREN);
2624 dmu_tx_commit(tx);

2626 spa->spa_claiming = B_FALSE;

2628 spa_set_log_state(spa, SPA_LOG_GOOD);
2629 spa->spa_sync_on = B_TRUE;
2630 txg_sync_start(spa->spa_dsl_pool);

new/usr/src/uts/common/fs/zfs/spa.c 41

2632 /*
2633 * Wait for all claims to sync. We sync up to the highest
2634 * claimed log block birth time so that claimed log blocks
2635 * don’t appear to be from the future. spa_claim_max_txg
2636 * will have been set for us by either zil_check_log_chain()
2637 * (invoked from spa_check_logs()) or zil_claim() above.
2638 */
2639 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);

2641 /*
2642 * If the config cache is stale, or we have uninitialized
2643 * metaslabs (see spa_vdev_add()), then update the config.
2644 *
2645 * If this is a verbatim import, trust the current
2646 * in-core spa_config and update the disk labels.
2647 */
2648 if (config_cache_txg != spa->spa_config_txg ||
2649 state == SPA_LOAD_IMPORT ||
2650 state == SPA_LOAD_RECOVER ||
2651 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2652 need_update = B_TRUE;

2654 for (int c = 0; c < rvd->vdev_children; c++)
2655 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2656 need_update = B_TRUE;

2658 /*
2659 * Update the config cache asychronously in case we’re the
2660 * root pool, in which case the config cache isn’t writable yet.
2661 */
2662 if (need_update)
2663 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);

2665 /*
2666 * Check all DTLs to see if anything needs resilvering.
2667 */
2668 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2669 vdev_resilver_needed(rvd, NULL, NULL))
2670 spa_async_request(spa, SPA_ASYNC_RESILVER);

2672 /*
2673 * Log the fact that we booted up (so that we can detect if
2674 * we rebooted in the middle of an operation).
2675 */
2676 spa_history_log_version(spa, "open");

2678 /*
2679 * Delete any inconsistent datasets.
2680 */
2681 (void) dmu_objset_find(spa_name(spa),
2682 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);

2684 /*
2685 * Clean up any stale temporary dataset userrefs.
2686 */
2687 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2688 }

2690 return (0);
2691 }

2693 static int
2694 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2695 {
2696 int mode = spa->spa_mode;

new/usr/src/uts/common/fs/zfs/spa.c 42

2698 spa_unload(spa);
2699 spa_deactivate(spa);

2701 spa->spa_load_max_txg--;

2703 spa_activate(spa, mode);
2704 spa_async_suspend(spa);

2706 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2707 }

2709 /*
2710 * If spa_load() fails this function will try loading prior txg’s. If
2711 * ’state’ is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2712 * will be rewound to that txg. If ’state’ is not SPA_LOAD_RECOVER this
2713 * function will not rewind the pool and will return the same error as
2714 * spa_load().
2715 */
2716 static int
2717 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2718 uint64_t max_request, int rewind_flags)
2719 {
2720 nvlist_t *loadinfo = NULL;
2721 nvlist_t *config = NULL;
2722 int load_error, rewind_error;
2723 uint64_t safe_rewind_txg;
2724 uint64_t min_txg;

2726 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2727 spa->spa_load_max_txg = spa->spa_load_txg;
2728 spa_set_log_state(spa, SPA_LOG_CLEAR);
2729 } else {
2730 spa->spa_load_max_txg = max_request;
2731 }

2733 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2734 mosconfig);
2735 if (load_error == 0)
2736 return (0);

2738 if (spa->spa_root_vdev != NULL)
2739 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);

2741 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2742 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;

2744 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2745 nvlist_free(config);
2746 return (load_error);
2747 }

2749 if (state == SPA_LOAD_RECOVER) {
2750 /* Price of rolling back is discarding txgs, including log */
2751 spa_set_log_state(spa, SPA_LOG_CLEAR);
2752 } else {
2753 /*
2754 * If we aren’t rolling back save the load info from our first
2755 * import attempt so that we can restore it after attempting
2756 * to rewind.
2757 */
2758 loadinfo = spa->spa_load_info;
2759 spa->spa_load_info = fnvlist_alloc();
2760 }

2762 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;

new/usr/src/uts/common/fs/zfs/spa.c 43

2763 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2764 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2765 TXG_INITIAL : safe_rewind_txg;

2767 /*
2768 * Continue as long as we’re finding errors, we’re still within
2769 * the acceptable rewind range, and we’re still finding uberblocks
2770 */
2771 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2772 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2773 if (spa->spa_load_max_txg < safe_rewind_txg)
2774 spa->spa_extreme_rewind = B_TRUE;
2775 rewind_error = spa_load_retry(spa, state, mosconfig);
2776 }

2778 spa->spa_extreme_rewind = B_FALSE;
2779 spa->spa_load_max_txg = UINT64_MAX;

2781 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2782 spa_config_set(spa, config);

2784 if (state == SPA_LOAD_RECOVER) {
2785 ASSERT3P(loadinfo, ==, NULL);
2786 return (rewind_error);
2787 } else {
2788 /* Store the rewind info as part of the initial load info */
2789 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2790 spa->spa_load_info);

2792 /* Restore the initial load info */
2793 fnvlist_free(spa->spa_load_info);
2794 spa->spa_load_info = loadinfo;

2796 return (load_error);
2797 }
2798 }

2800 /*
2801 * Pool Open/Import
2802 *
2803 * The import case is identical to an open except that the configuration is sent
2804 * down from userland, instead of grabbed from the configuration cache. For the
2805 * case of an open, the pool configuration will exist in the
2806 * POOL_STATE_UNINITIALIZED state.
2807 *
2808 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2809 * the same time open the pool, without having to keep around the spa_t in some
2810 * ambiguous state.
2811 */
2812 static int
2813 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2814 nvlist_t **config)
2815 {
2816 spa_t *spa;
2817 spa_load_state_t state = SPA_LOAD_OPEN;
2818 int error;
2819 int locked = B_FALSE;

2821 *spapp = NULL;

2823 /*
2824 * As disgusting as this is, we need to support recursive calls to this
2825 * function because dsl_dir_open() is called during spa_load(), and ends
2826 * up calling spa_open() again. The real fix is to figure out how to
2827 * avoid dsl_dir_open() calling this in the first place.
2828 */

new/usr/src/uts/common/fs/zfs/spa.c 44

2829 if (mutex_owner(&spa_namespace_lock) != curthread) {
2830 mutex_enter(&spa_namespace_lock);
2831 locked = B_TRUE;
2832 }

2834 if ((spa = spa_lookup(pool)) == NULL) {
2835 if (locked)
2836 mutex_exit(&spa_namespace_lock);
2837 return (SET_ERROR(ENOENT));
2838 }

2840 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2841 zpool_rewind_policy_t policy;

2843 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2844 &policy);
2845 if (policy.zrp_request & ZPOOL_DO_REWIND)
2846 state = SPA_LOAD_RECOVER;

2848 spa_activate(spa, spa_mode_global);

2850 if (state != SPA_LOAD_RECOVER)
2851 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;

2853 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2854 policy.zrp_request);

2856 if (error == EBADF) {
2857 /*
2858 * If vdev_validate() returns failure (indicated by
2859 * EBADF), it indicates that one of the vdevs indicates
2860 * that the pool has been exported or destroyed. If
2861 * this is the case, the config cache is out of sync and
2862 * we should remove the pool from the namespace.
2863 */
2864 spa_unload(spa);
2865 spa_deactivate(spa);
2866 spa_config_sync(spa, B_TRUE, B_TRUE);
2867 spa_remove(spa);
2868 if (locked)
2869 mutex_exit(&spa_namespace_lock);
2870 return (SET_ERROR(ENOENT));
2871 }

2873 if (error) {
2874 /*
2875 * We can’t open the pool, but we still have useful
2876 * information: the state of each vdev after the
2877 * attempted vdev_open(). Return this to the user.
2878 */
2879 if (config != NULL && spa->spa_config) {
2880 VERIFY(nvlist_dup(spa->spa_config, config,
2881 KM_SLEEP) == 0);
2882 VERIFY(nvlist_add_nvlist(*config,
2883 ZPOOL_CONFIG_LOAD_INFO,
2884 spa->spa_load_info) == 0);
2885 }
2886 spa_unload(spa);
2887 spa_deactivate(spa);
2888 spa->spa_last_open_failed = error;
2889 if (locked)
2890 mutex_exit(&spa_namespace_lock);
2891 *spapp = NULL;
2892 return (error);
2893 }
2894 }

new/usr/src/uts/common/fs/zfs/spa.c 45

2896 spa_open_ref(spa, tag);

2898 if (config != NULL)
2899 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);

2901 /*
2902 * If we’ve recovered the pool, pass back any information we
2903 * gathered while doing the load.
2904 */
2905 if (state == SPA_LOAD_RECOVER) {
2906 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2907 spa->spa_load_info) == 0);
2908 }

2910 if (locked) {
2911 spa->spa_last_open_failed = 0;
2912 spa->spa_last_ubsync_txg = 0;
2913 spa->spa_load_txg = 0;
2914 mutex_exit(&spa_namespace_lock);
2915 }

2917 *spapp = spa;

2919 return (0);
2920 }

2922 int
2923 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2924 nvlist_t **config)
2925 {
2926 return (spa_open_common(name, spapp, tag, policy, config));
2927 }

2929 int
2930 spa_open(const char *name, spa_t **spapp, void *tag)
2931 {
2932 return (spa_open_common(name, spapp, tag, NULL, NULL));
2933 }

2935 /*
2936 * Lookup the given spa_t, incrementing the inject count in the process,
2937 * preventing it from being exported or destroyed.
2938 */
2939 spa_t *
2940 spa_inject_addref(char *name)
2941 {
2942 spa_t *spa;

2944 mutex_enter(&spa_namespace_lock);
2945 if ((spa = spa_lookup(name)) == NULL) {
2946 mutex_exit(&spa_namespace_lock);
2947 return (NULL);
2948 }
2949 spa->spa_inject_ref++;
2950 mutex_exit(&spa_namespace_lock);

2952 return (spa);
2953 }

2955 void
2956 spa_inject_delref(spa_t *spa)
2957 {
2958 mutex_enter(&spa_namespace_lock);
2959 spa->spa_inject_ref--;
2960 mutex_exit(&spa_namespace_lock);

new/usr/src/uts/common/fs/zfs/spa.c 46

2961 }

2963 /*
2964 * Add spares device information to the nvlist.
2965 */
2966 static void
2967 spa_add_spares(spa_t *spa, nvlist_t *config)
2968 {
2969 nvlist_t **spares;
2970 uint_t i, nspares;
2971 nvlist_t *nvroot;
2972 uint64_t guid;
2973 vdev_stat_t *vs;
2974 uint_t vsc;
2975 uint64_t pool;

2977 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));

2979 if (spa->spa_spares.sav_count == 0)
2980 return;

2982 VERIFY(nvlist_lookup_nvlist(config,
2983 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2984 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2985 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2986 if (nspares != 0) {
2987 VERIFY(nvlist_add_nvlist_array(nvroot,
2988 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2989 VERIFY(nvlist_lookup_nvlist_array(nvroot,
2990 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);

2992 /*
2993 * Go through and find any spares which have since been
2994 * repurposed as an active spare. If this is the case, update
2995 * their status appropriately.
2996 */
2997 for (i = 0; i < nspares; i++) {
2998 VERIFY(nvlist_lookup_uint64(spares[i],
2999 ZPOOL_CONFIG_GUID, &guid) == 0);
3000 if (spa_spare_exists(guid, &pool, NULL) &&
3001 pool != 0ULL) {
3002 VERIFY(nvlist_lookup_uint64_array(
3003 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3004 (uint64_t **)&vs, &vsc) == 0);
3005 vs->vs_state = VDEV_STATE_CANT_OPEN;
3006 vs->vs_aux = VDEV_AUX_SPARED;
3007 }
3008 }
3009 }
3010 }

3012 /*
3013 * Add l2cache device information to the nvlist, including vdev stats.
3014 */
3015 static void
3016 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3017 {
3018 nvlist_t **l2cache;
3019 uint_t i, j, nl2cache;
3020 nvlist_t *nvroot;
3021 uint64_t guid;
3022 vdev_t *vd;
3023 vdev_stat_t *vs;
3024 uint_t vsc;

3026 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));

new/usr/src/uts/common/fs/zfs/spa.c 47

3028 if (spa->spa_l2cache.sav_count == 0)
3029 return;

3031 VERIFY(nvlist_lookup_nvlist(config,
3032 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3033 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3034 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3035 if (nl2cache != 0) {
3036 VERIFY(nvlist_add_nvlist_array(nvroot,
3037 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3038 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3039 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);

3041 /*
3042 * Update level 2 cache device stats.
3043 */

3045 for (i = 0; i < nl2cache; i++) {
3046 VERIFY(nvlist_lookup_uint64(l2cache[i],
3047 ZPOOL_CONFIG_GUID, &guid) == 0);

3049 vd = NULL;
3050 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3051 if (guid ==
3052 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3053 vd = spa->spa_l2cache.sav_vdevs[j];
3054 break;
3055 }
3056 }
3057 ASSERT(vd != NULL);

3059 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3060 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3061 == 0);
3062 vdev_get_stats(vd, vs);
3063 }
3064 }
3065 }

3067 static void
3068 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3069 {
3070 nvlist_t *features;
3071 zap_cursor_t zc;
3072 zap_attribute_t za;

3074 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3075 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);

3077 if (spa->spa_feat_for_read_obj != 0) {
3078 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3079 spa->spa_feat_for_read_obj);
3080 zap_cursor_retrieve(&zc, &za) == 0;
3081 zap_cursor_advance(&zc)) {
3082 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3083 za.za_num_integers == 1);
3084 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3085 za.za_first_integer));
3086 }
3087 zap_cursor_fini(&zc);
3088 }

3090 if (spa->spa_feat_for_write_obj != 0) {
3091 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3092 spa->spa_feat_for_write_obj);

new/usr/src/uts/common/fs/zfs/spa.c 48

3093 zap_cursor_retrieve(&zc, &za) == 0;
3094 zap_cursor_advance(&zc)) {
3095 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3096 za.za_num_integers == 1);
3097 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3098 za.za_first_integer));
3099 }
3100 zap_cursor_fini(&zc);
3101 }

3103 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3104 features) == 0);
3105 nvlist_free(features);
3106 }

3108 int
3109 spa_get_stats(const char *name, nvlist_t **config,
3110 char *altroot, size_t buflen)
3111 {
3112 int error;
3113 spa_t *spa;

3115 *config = NULL;
3116 error = spa_open_common(name, &spa, FTAG, NULL, config);

3118 if (spa != NULL) {
3119 /*
3120 * This still leaves a window of inconsistency where the spares
3121 * or l2cache devices could change and the config would be
3122 * self-inconsistent.
3123 */
3124 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);

3126 if (*config != NULL) {
3127 uint64_t loadtimes[2];

3129 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3130 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3131 VERIFY(nvlist_add_uint64_array(*config,
3132 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);

3134 VERIFY(nvlist_add_uint64(*config,
3135 ZPOOL_CONFIG_ERRCOUNT,
3136 spa_get_errlog_size(spa)) == 0);

3138 if (spa_suspended(spa))
3139 VERIFY(nvlist_add_uint64(*config,
3140 ZPOOL_CONFIG_SUSPENDED,
3141 spa->spa_failmode) == 0);

3143 spa_add_spares(spa, *config);
3144 spa_add_l2cache(spa, *config);
3145 spa_add_feature_stats(spa, *config);
3146 }
3147 }

3149 /*
3150 * We want to get the alternate root even for faulted pools, so we cheat
3151 * and call spa_lookup() directly.
3152 */
3153 if (altroot) {
3154 if (spa == NULL) {
3155 mutex_enter(&spa_namespace_lock);
3156 spa = spa_lookup(name);
3157 if (spa)
3158 spa_altroot(spa, altroot, buflen);

new/usr/src/uts/common/fs/zfs/spa.c 49

3159 else
3160 altroot[0] = ’\0’;
3161 spa = NULL;
3162 mutex_exit(&spa_namespace_lock);
3163 } else {
3164 spa_altroot(spa, altroot, buflen);
3165 }
3166 }

3168 if (spa != NULL) {
3169 spa_config_exit(spa, SCL_CONFIG, FTAG);
3170 spa_close(spa, FTAG);
3171 }

3173 return (error);
3174 }

3176 /*
3177 * Validate that the auxiliary device array is well formed. We must have an
3178 * array of nvlists, each which describes a valid leaf vdev. If this is an
3179 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3180 * specified, as long as they are well-formed.
3181 */
3182 static int
3183 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3184 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3185 vdev_labeltype_t label)
3186 {
3187 nvlist_t **dev;
3188 uint_t i, ndev;
3189 vdev_t *vd;
3190 int error;

3192 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);

3194 /*
3195 * It’s acceptable to have no devs specified.
3196 */
3197 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3198 return (0);

3200 if (ndev == 0)
3201 return (SET_ERROR(EINVAL));

3203 /*
3204 * Make sure the pool is formatted with a version that supports this
3205 * device type.
3206 */
3207 if (spa_version(spa) < version)
3208 return (SET_ERROR(ENOTSUP));

3210 /*
3211 * Set the pending device list so we correctly handle device in-use
3212 * checking.
3213 */
3214 sav->sav_pending = dev;
3215 sav->sav_npending = ndev;

3217 for (i = 0; i < ndev; i++) {
3218 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3219 mode)) != 0)
3220 goto out;

3222 if (!vd->vdev_ops->vdev_op_leaf) {
3223 vdev_free(vd);
3224 error = SET_ERROR(EINVAL);

new/usr/src/uts/common/fs/zfs/spa.c 50

3225 goto out;
3226 }

3228 /*
3229 * The L2ARC currently only supports disk devices in
3230 * kernel context. For user-level testing, we allow it.
3231 */
3232 #ifdef _KERNEL
3233 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3234 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3235 error = SET_ERROR(ENOTBLK);
3236 vdev_free(vd);
3237 goto out;
3238 }
3239 #endif
3240 vd->vdev_top = vd;

3242 if ((error = vdev_open(vd)) == 0 &&
3243 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3244 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3245 vd->vdev_guid) == 0);
3246 }

3248 vdev_free(vd);

3250 if (error &&
3251 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3252 goto out;
3253 else
3254 error = 0;
3255 }

3257 out:
3258 sav->sav_pending = NULL;
3259 sav->sav_npending = 0;
3260 return (error);
3261 }

3263 static int
3264 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3265 {
3266 int error;

3268 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);

3270 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3271 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3272 VDEV_LABEL_SPARE)) != 0) {
3273 return (error);
3274 }

3276 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3277 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3278 VDEV_LABEL_L2CACHE));
3279 }

3281 static void
3282 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3283 const char *config)
3284 {
3285 int i;

3287 if (sav->sav_config != NULL) {
3288 nvlist_t **olddevs;
3289 uint_t oldndevs;
3290 nvlist_t **newdevs;

new/usr/src/uts/common/fs/zfs/spa.c 51

3292 /*
3293 * Generate new dev list by concatentating with the
3294 * current dev list.
3295 */
3296 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3297 &olddevs, &oldndevs) == 0);

3299 newdevs = kmem_alloc(sizeof (void *) *
3300 (ndevs + oldndevs), KM_SLEEP);
3301 for (i = 0; i < oldndevs; i++)
3302 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3303 KM_SLEEP) == 0);
3304 for (i = 0; i < ndevs; i++)
3305 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3306 KM_SLEEP) == 0);

3308 VERIFY(nvlist_remove(sav->sav_config, config,
3309 DATA_TYPE_NVLIST_ARRAY) == 0);

3311 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3312 config, newdevs, ndevs + oldndevs) == 0);
3313 for (i = 0; i < oldndevs + ndevs; i++)
3314 nvlist_free(newdevs[i]);
3315 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3316 } else {
3317 /*
3318 * Generate a new dev list.
3319 */
3320 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3321 KM_SLEEP) == 0);
3322 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3323 devs, ndevs) == 0);
3324 }
3325 }

3327 /*
3328 * Stop and drop level 2 ARC devices
3329 */
3330 void
3331 spa_l2cache_drop(spa_t *spa)
3332 {
3333 vdev_t *vd;
3334 int i;
3335 spa_aux_vdev_t *sav = &spa->spa_l2cache;

3337 for (i = 0; i < sav->sav_count; i++) {
3338 uint64_t pool;

3340 vd = sav->sav_vdevs[i];
3341 ASSERT(vd != NULL);

3343 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3344 pool != 0ULL && l2arc_vdev_present(vd))
3345 l2arc_remove_vdev(vd);
3346 }
3347 }

3349 /*
3350 * Pool Creation
3351 */
3352 int
3353 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3354 nvlist_t *zplprops)
3355 {
3356 spa_t *spa;

new/usr/src/uts/common/fs/zfs/spa.c 52

3357 char *altroot = NULL;
3358 vdev_t *rvd;
3359 dsl_pool_t *dp;
3360 dmu_tx_t *tx;
3361 int error = 0;
3362 uint64_t txg = TXG_INITIAL;
3363 nvlist_t **spares, **l2cache;
3364 uint_t nspares, nl2cache;
3365 uint64_t version, obj;
3366 boolean_t has_features;

3368 /*
3369 * If this pool already exists, return failure.
3370 */
3371 mutex_enter(&spa_namespace_lock);
3372 if (spa_lookup(pool) != NULL) {
3373 mutex_exit(&spa_namespace_lock);
3374 return (SET_ERROR(EEXIST));
3375 }

3377 /*
3378 * Allocate a new spa_t structure.
3379 */
3380 (void) nvlist_lookup_string(props,
3381 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3382 spa = spa_add(pool, NULL, altroot);
3383 spa_activate(spa, spa_mode_global);

3385 if (props && (error = spa_prop_validate(spa, props))) {
3386 spa_deactivate(spa);
3387 spa_remove(spa);
3388 mutex_exit(&spa_namespace_lock);
3389 return (error);
3390 }

3392 has_features = B_FALSE;
3393 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3394 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3395 if (zpool_prop_feature(nvpair_name(elem)))
3396 has_features = B_TRUE;
3397 }

3399 if (has_features || nvlist_lookup_uint64(props,
3400 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3401 version = SPA_VERSION;
3402 }
3403 ASSERT(SPA_VERSION_IS_SUPPORTED(version));

3405 spa->spa_first_txg = txg;
3406 spa->spa_uberblock.ub_txg = txg - 1;
3407 spa->spa_uberblock.ub_version = version;
3408 spa->spa_ubsync = spa->spa_uberblock;

3410 /*
3411 * Create "The Godfather" zio to hold all async IOs
3412 */
3413 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3414 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);

3416 /*
3417 * Create the root vdev.
3418 */
3419 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);

3421 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);

new/usr/src/uts/common/fs/zfs/spa.c 53

3423 ASSERT(error != 0 || rvd != NULL);
3424 ASSERT(error != 0 || spa->spa_root_vdev == rvd);

3426 if (error == 0 && !zfs_allocatable_devs(nvroot))
3427 error = SET_ERROR(EINVAL);

3429 if (error == 0 &&
3430 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3431 (error = spa_validate_aux(spa, nvroot, txg,
3432 VDEV_ALLOC_ADD)) == 0) {
3433 for (int c = 0; c < rvd->vdev_children; c++) {
3434 vdev_metaslab_set_size(rvd->vdev_child[c]);
3435 vdev_expand(rvd->vdev_child[c], txg);
3436 }
3437 }

3439 spa_config_exit(spa, SCL_ALL, FTAG);

3441 if (error != 0) {
3442 spa_unload(spa);
3443 spa_deactivate(spa);
3444 spa_remove(spa);
3445 mutex_exit(&spa_namespace_lock);
3446 return (error);
3447 }

3449 /*
3450 * Get the list of spares, if specified.
3451 */
3452 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3453 &spares, &nspares) == 0) {
3454 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3455 KM_SLEEP) == 0);
3456 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3457 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3458 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3459 spa_load_spares(spa);
3460 spa_config_exit(spa, SCL_ALL, FTAG);
3461 spa->spa_spares.sav_sync = B_TRUE;
3462 }

3464 /*
3465 * Get the list of level 2 cache devices, if specified.
3466 */
3467 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3468 &l2cache, &nl2cache) == 0) {
3469 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3470 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3471 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3472 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3473 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3474 spa_load_l2cache(spa);
3475 spa_config_exit(spa, SCL_ALL, FTAG);
3476 spa->spa_l2cache.sav_sync = B_TRUE;
3477 }

3479 spa->spa_is_initializing = B_TRUE;
3480 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3481 spa->spa_meta_objset = dp->dp_meta_objset;
3482 spa->spa_is_initializing = B_FALSE;

3484 /*
3485 * Create DDTs (dedup tables).
3486 */
3487 ddt_create(spa);

new/usr/src/uts/common/fs/zfs/spa.c 54

3489 spa_update_dspace(spa);

3491 tx = dmu_tx_create_assigned(dp, txg);

3493 /*
3494 * Create the pool config object.
3495 */
3496 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3497 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3498 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);

3500 if (zap_add(spa->spa_meta_objset,
3501 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3502 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3503 cmn_err(CE_PANIC, "failed to add pool config");
3504 }

3506 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3507 spa_feature_create_zap_objects(spa, tx);

3509 if (zap_add(spa->spa_meta_objset,
3510 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3511 sizeof (uint64_t), 1, &version, tx) != 0) {
3512 cmn_err(CE_PANIC, "failed to add pool version");
3513 }

3515 /* Newly created pools with the right version are always deflated. */
3516 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3517 spa->spa_deflate = TRUE;
3518 if (zap_add(spa->spa_meta_objset,
3519 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3520 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3521 cmn_err(CE_PANIC, "failed to add deflate");
3522 }
3523 }

3525 /*
3526 * Create the deferred-free bpobj. Turn off compression
3527 * because sync-to-convergence takes longer if the blocksize
3528 * keeps changing.
3529 */
3530 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3531 dmu_object_set_compress(spa->spa_meta_objset, obj,
3532 ZIO_COMPRESS_OFF, tx);
3533 if (zap_add(spa->spa_meta_objset,
3534 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3535 sizeof (uint64_t), 1, &obj, tx) != 0) {
3536 cmn_err(CE_PANIC, "failed to add bpobj");
3537 }
3538 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3539 spa->spa_meta_objset, obj));

3541 /*
3542 * Create the pool’s history object.
3543 */
3544 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3545 spa_history_create_obj(spa, tx);

3547 /*
3548 * Set pool properties.
3549 */
3550 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3551 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3552 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3553 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);

new/usr/src/uts/common/fs/zfs/spa.c 55

3555 if (props != NULL) {
3556 spa_configfile_set(spa, props, B_FALSE);
3557 spa_sync_props(props, tx);
3558 }

3560 dmu_tx_commit(tx);

3562 spa->spa_sync_on = B_TRUE;
3563 txg_sync_start(spa->spa_dsl_pool);

3565 /*
3566 * We explicitly wait for the first transaction to complete so that our
3567 * bean counters are appropriately updated.
3568 */
3569 txg_wait_synced(spa->spa_dsl_pool, txg);

3571 spa_config_sync(spa, B_FALSE, B_TRUE);

3573 spa_history_log_version(spa, "create");

3575 spa->spa_minref = refcount_count(&spa->spa_refcount);

3577 mutex_exit(&spa_namespace_lock);

3579 return (0);
3580 }

3582 #ifdef _KERNEL
3583 /*
3584 * Get the root pool information from the root disk, then import the root pool
3585 * during the system boot up time.
3586 */
3587 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);

3589 static nvlist_t *
3590 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3591 {
3592 nvlist_t *config;
3593 nvlist_t *nvtop, *nvroot;
3594 uint64_t pgid;

3596 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3597 return (NULL);

3599 /*
3600 * Add this top-level vdev to the child array.
3601 */
3602 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3603 &nvtop) == 0);
3604 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3605 &pgid) == 0);
3606 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);

3608 /*
3609 * Put this pool’s top-level vdevs into a root vdev.
3610 */
3611 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3612 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3613 VDEV_TYPE_ROOT) == 0);
3614 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3615 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3616 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3617 &nvtop, 1) == 0);

3619 /*
3620 * Replace the existing vdev_tree with the new root vdev in

new/usr/src/uts/common/fs/zfs/spa.c 56

3621 * this pool’s configuration (remove the old, add the new).
3622 */
3623 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3624 nvlist_free(nvroot);
3625 return (config);
3626 }

3628 /*
3629 * Walk the vdev tree and see if we can find a device with "better"
3630 * configuration. A configuration is "better" if the label on that
3631 * device has a more recent txg.
3632 */
3633 static void
3634 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3635 {
3636 for (int c = 0; c < vd->vdev_children; c++)
3637 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);

3639 if (vd->vdev_ops->vdev_op_leaf) {
3640 nvlist_t *label;
3641 uint64_t label_txg;

3643 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3644 &label) != 0)
3645 return;

3647 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3648 &label_txg) == 0);

3650 /*
3651 * Do we have a better boot device?
3652 */
3653 if (label_txg > *txg) {
3654 *txg = label_txg;
3655 *avd = vd;
3656 }
3657 nvlist_free(label);
3658 }
3659 }

3661 /*
3662 * Import a root pool.
3663 *
3664 * For x86. devpath_list will consist of devid and/or physpath name of
3665 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3666 * The GRUB "findroot" command will return the vdev we should boot.
3667 *
3668 * For Sparc, devpath_list consists the physpath name of the booting device
3669 * no matter the rootpool is a single device pool or a mirrored pool.
3670 * e.g.
3671 * "/pci@1f,0/ide@d/disk@0,0:a"
3672 */
3673 int
3674 spa_import_rootpool(char *devpath, char *devid)
3675 {
3676 spa_t *spa;
3677 vdev_t *rvd, *bvd, *avd = NULL;
3678 nvlist_t *config, *nvtop;
3679 uint64_t guid, txg;
3680 char *pname;
3681 int error;

3683 /*
3684 * Read the label from the boot device and generate a configuration.
3685 */
3686 config = spa_generate_rootconf(devpath, devid, &guid);

new/usr/src/uts/common/fs/zfs/spa.c 57

3687 #if defined(_OBP) && defined(_KERNEL)
3688 if (config == NULL) {
3689 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3690 /* iscsi boot */
3691 get_iscsi_bootpath_phy(devpath);
3692 config = spa_generate_rootconf(devpath, devid, &guid);
3693 }
3694 }
3695 #endif
3696 if (config == NULL) {
3697 cmn_err(CE_NOTE, "Cannot read the pool label from ’%s’",
3698 devpath);
3699 return (SET_ERROR(EIO));
3700 }

3702 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3703 &pname) == 0);
3704 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);

3706 mutex_enter(&spa_namespace_lock);
3707 if ((spa = spa_lookup(pname)) != NULL) {
3708 /*
3709 * Remove the existing root pool from the namespace so that we
3710 * can replace it with the correct config we just read in.
3711 */
3712 spa_remove(spa);
3713 }

3715 spa = spa_add(pname, config, NULL);
3716 spa->spa_is_root = B_TRUE;
3717 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;

3719 /*
3720 * Build up a vdev tree based on the boot device’s label config.
3721 */
3722 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3723 &nvtop) == 0);
3724 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3725 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3726 VDEV_ALLOC_ROOTPOOL);
3727 spa_config_exit(spa, SCL_ALL, FTAG);
3728 if (error) {
3729 mutex_exit(&spa_namespace_lock);
3730 nvlist_free(config);
3731 cmn_err(CE_NOTE, "Can not parse the config for pool ’%s’",
3732 pname);
3733 return (error);
3734 }

3736 /*
3737 * Get the boot vdev.
3738 */
3739 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3740 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3741 (u_longlong_t)guid);
3742 error = SET_ERROR(ENOENT);
3743 goto out;
3744 }

3746 /*
3747 * Determine if there is a better boot device.
3748 */
3749 avd = bvd;
3750 spa_alt_rootvdev(rvd, &avd, &txg);
3751 if (avd != bvd) {
3752 cmn_err(CE_NOTE, "The boot device is ’degraded’. Please "

new/usr/src/uts/common/fs/zfs/spa.c 58

3753 "try booting from ’%s’", avd->vdev_path);
3754 error = SET_ERROR(EINVAL);
3755 goto out;
3756 }

3758 /*
3759 * If the boot device is part of a spare vdev then ensure that
3760 * we’re booting off the active spare.
3761 */
3762 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3763 !bvd->vdev_isspare) {
3764 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3765 "try booting from ’%s’",
3766 bvd->vdev_parent->
3767 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3768 error = SET_ERROR(EINVAL);
3769 goto out;
3770 }

3772 error = 0;
3773 out:
3774 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3775 vdev_free(rvd);
3776 spa_config_exit(spa, SCL_ALL, FTAG);
3777 mutex_exit(&spa_namespace_lock);

3779 nvlist_free(config);
3780 return (error);
3781 }

3783 #endif

3785 /*
3786 * Import a non-root pool into the system.
3787 */
3788 int
3789 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3790 {
3791 spa_t *spa;
3792 char *altroot = NULL;
3793 spa_load_state_t state = SPA_LOAD_IMPORT;
3794 zpool_rewind_policy_t policy;
3795 uint64_t mode = spa_mode_global;
3796 uint64_t readonly = B_FALSE;
3797 int error;
3798 nvlist_t *nvroot;
3799 nvlist_t **spares, **l2cache;
3800 uint_t nspares, nl2cache;

3802 /*
3803 * If a pool with this name exists, return failure.
3804 */
3805 mutex_enter(&spa_namespace_lock);
3806 if (spa_lookup(pool) != NULL) {
3807 mutex_exit(&spa_namespace_lock);
3808 return (SET_ERROR(EEXIST));
3809 }

3811 /*
3812 * Create and initialize the spa structure.
3813 */
3814 (void) nvlist_lookup_string(props,
3815 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3816 (void) nvlist_lookup_uint64(props,
3817 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3818 if (readonly)

new/usr/src/uts/common/fs/zfs/spa.c 59

3819 mode = FREAD;
3820 spa = spa_add(pool, config, altroot);
3821 spa->spa_import_flags = flags;

3823 /*
3824 * Verbatim import - Take a pool and insert it into the namespace
3825 * as if it had been loaded at boot.
3826 */
3827 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3828 if (props != NULL)
3829 spa_configfile_set(spa, props, B_FALSE);

3831 spa_config_sync(spa, B_FALSE, B_TRUE);

3833 mutex_exit(&spa_namespace_lock);
3834 spa_history_log_version(spa, "import");

3836 return (0);
3837 }

3839 spa_activate(spa, mode);

3841 /*
3842 * Don’t start async tasks until we know everything is healthy.
3843 */
3844 spa_async_suspend(spa);

3846 zpool_get_rewind_policy(config, &policy);
3847 if (policy.zrp_request & ZPOOL_DO_REWIND)
3848 state = SPA_LOAD_RECOVER;

3850 /*
3851 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3852 * because the user-supplied config is actually the one to trust when
3853 * doing an import.
3854 */
3855 if (state != SPA_LOAD_RECOVER)
3856 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;

3858 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3859 policy.zrp_request);

3861 /*
3862 * Propagate anything learned while loading the pool and pass it
3863 * back to caller (i.e. rewind info, missing devices, etc).
3864 */
3865 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3866 spa->spa_load_info) == 0);

3868 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3869 /*
3870 * Toss any existing sparelist, as it doesn’t have any validity
3871 * anymore, and conflicts with spa_has_spare().
3872 */
3873 if (spa->spa_spares.sav_config) {
3874 nvlist_free(spa->spa_spares.sav_config);
3875 spa->spa_spares.sav_config = NULL;
3876 spa_load_spares(spa);
3877 }
3878 if (spa->spa_l2cache.sav_config) {
3879 nvlist_free(spa->spa_l2cache.sav_config);
3880 spa->spa_l2cache.sav_config = NULL;
3881 spa_load_l2cache(spa);
3882 }

3884 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,

new/usr/src/uts/common/fs/zfs/spa.c 60

3885 &nvroot) == 0);
3886 if (error == 0)
3887 error = spa_validate_aux(spa, nvroot, -1ULL,
3888 VDEV_ALLOC_SPARE);
3889 if (error == 0)
3890 error = spa_validate_aux(spa, nvroot, -1ULL,
3891 VDEV_ALLOC_L2CACHE);
3892 spa_config_exit(spa, SCL_ALL, FTAG);

3894 if (props != NULL)
3895 spa_configfile_set(spa, props, B_FALSE);

3897 if (error != 0 || (props && spa_writeable(spa) &&
3898 (error = spa_prop_set(spa, props)))) {
3899 spa_unload(spa);
3900 spa_deactivate(spa);
3901 spa_remove(spa);
3902 mutex_exit(&spa_namespace_lock);
3903 return (error);
3904 }

3906 spa_async_resume(spa);

3908 /*
3909 * Override any spares and level 2 cache devices as specified by
3910 * the user, as these may have correct device names/devids, etc.
3911 */
3912 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3913 &spares, &nspares) == 0) {
3914 if (spa->spa_spares.sav_config)
3915 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3916 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3917 else
3918 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3919 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3920 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3921 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3922 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3923 spa_load_spares(spa);
3924 spa_config_exit(spa, SCL_ALL, FTAG);
3925 spa->spa_spares.sav_sync = B_TRUE;
3926 }
3927 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3928 &l2cache, &nl2cache) == 0) {
3929 if (spa->spa_l2cache.sav_config)
3930 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3931 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3932 else
3933 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3934 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3935 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3936 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3937 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3938 spa_load_l2cache(spa);
3939 spa_config_exit(spa, SCL_ALL, FTAG);
3940 spa->spa_l2cache.sav_sync = B_TRUE;
3941 }

3943 /*
3944 * Check for any removed devices.
3945 */
3946 if (spa->spa_autoreplace) {
3947 spa_aux_check_removed(&spa->spa_spares);
3948 spa_aux_check_removed(&spa->spa_l2cache);
3949 }

new/usr/src/uts/common/fs/zfs/spa.c 61

3951 if (spa_writeable(spa)) {
3952 /*
3953 * Update the config cache to include the newly-imported pool.
3954 */
3955 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3956 }

3958 /*
3959 * It’s possible that the pool was expanded while it was exported.
3960 * We kick off an async task to handle this for us.
3961 */
3962 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);

3964 mutex_exit(&spa_namespace_lock);
3965 spa_history_log_version(spa, "import");

3967 return (0);
3968 }

3970 nvlist_t *
3971 spa_tryimport(nvlist_t *tryconfig)
3972 {
3973 nvlist_t *config = NULL;
3974 char *poolname;
3975 spa_t *spa;
3976 uint64_t state;
3977 int error;

3979 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3980 return (NULL);

3982 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3983 return (NULL);

3985 /*
3986 * Create and initialize the spa structure.
3987 */
3988 mutex_enter(&spa_namespace_lock);
3989 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3990 spa_activate(spa, FREAD);

3992 /*
3993 * Pass off the heavy lifting to spa_load().
3994 * Pass TRUE for mosconfig because the user-supplied config
3995 * is actually the one to trust when doing an import.
3996 */
3997 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);

3999 /*
4000 * If ’tryconfig’ was at least parsable, return the current config.
4001 */
4002 if (spa->spa_root_vdev != NULL) {
4003 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4004 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4005 poolname) == 0);
4006 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4007 state) == 0);
4008 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4009 spa->spa_uberblock.ub_timestamp) == 0);
4010 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4011 spa->spa_load_info) == 0);

4013 /*
4014 * If the bootfs property exists on this pool then we
4015 * copy it out so that external consumers can tell which
4016 * pools are bootable.

new/usr/src/uts/common/fs/zfs/spa.c 62

4017 */
4018 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4019 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);

4021 /*
4022 * We have to play games with the name since the
4023 * pool was opened as TRYIMPORT_NAME.
4024 */
4025 if (dsl_dsobj_to_dsname(spa_name(spa),
4026 spa->spa_bootfs, tmpname) == 0) {
4027 char *cp;
4028 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);

4030 cp = strchr(tmpname, ’/’);
4031 if (cp == NULL) {
4032 (void) strlcpy(dsname, tmpname,
4033 MAXPATHLEN);
4034 } else {
4035 (void) snprintf(dsname, MAXPATHLEN,
4036 "%s/%s", poolname, ++cp);
4037 }
4038 VERIFY(nvlist_add_string(config,
4039 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4040 kmem_free(dsname, MAXPATHLEN);
4041 }
4042 kmem_free(tmpname, MAXPATHLEN);
4043 }

4045 /*
4046 * Add the list of hot spares and level 2 cache devices.
4047 */
4048 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4049 spa_add_spares(spa, config);
4050 spa_add_l2cache(spa, config);
4051 spa_config_exit(spa, SCL_CONFIG, FTAG);
4052 }

4054 spa_unload(spa);
4055 spa_deactivate(spa);
4056 spa_remove(spa);
4057 mutex_exit(&spa_namespace_lock);

4059 return (config);
4060 }

4062 /*
4063 * Pool export/destroy
4064 *
4065 * The act of destroying or exporting a pool is very simple. We make sure there
4066 * is no more pending I/O and any references to the pool are gone. Then, we
4067 * update the pool state and sync all the labels to disk, removing the
4068 * configuration from the cache afterwards. If the ’hardforce’ flag is set, then
4069 * we don’t sync the labels or remove the configuration cache.
4070 */
4071 static int
4072 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4073 boolean_t force, boolean_t hardforce)
4074 {
4075 spa_t *spa;

4077 if (oldconfig)
4078 *oldconfig = NULL;

4080 if (!(spa_mode_global & FWRITE))
4081 return (SET_ERROR(EROFS));

new/usr/src/uts/common/fs/zfs/spa.c 63

4083 mutex_enter(&spa_namespace_lock);
4084 if ((spa = spa_lookup(pool)) == NULL) {
4085 mutex_exit(&spa_namespace_lock);
4086 return (SET_ERROR(ENOENT));
4087 }

4089 /*
4090 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4091 * reacquire the namespace lock, and see if we can export.
4092 */
4093 spa_open_ref(spa, FTAG);
4094 mutex_exit(&spa_namespace_lock);
4095 spa_async_suspend(spa);
4096 mutex_enter(&spa_namespace_lock);
4097 spa_close(spa, FTAG);

4099 /*
4100 * The pool will be in core if it’s openable,
4101 * in which case we can modify its state.
4102 */
4103 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4104 /*
4105 * Objsets may be open only because they’re dirty, so we
4106 * have to force it to sync before checking spa_refcnt.
4107 */
4108 txg_wait_synced(spa->spa_dsl_pool, 0);

4110 /*
4111 * A pool cannot be exported or destroyed if there are active
4112 * references. If we are resetting a pool, allow references by
4113 * fault injection handlers.
4114 */
4115 if (!spa_refcount_zero(spa) ||
4116 (spa->spa_inject_ref != 0 &&
4117 new_state != POOL_STATE_UNINITIALIZED)) {
4118 spa_async_resume(spa);
4119 mutex_exit(&spa_namespace_lock);
4120 return (SET_ERROR(EBUSY));
4121 }

4123 /*
4124 * A pool cannot be exported if it has an active shared spare.
4125 * This is to prevent other pools stealing the active spare
4126 * from an exported pool. At user’s own will, such pool can
4127 * be forcedly exported.
4128 */
4129 if (!force && new_state == POOL_STATE_EXPORTED &&
4130 spa_has_active_shared_spare(spa)) {
4131 spa_async_resume(spa);
4132 mutex_exit(&spa_namespace_lock);
4133 return (SET_ERROR(EXDEV));
4134 }

4136 /*
4137 * We want this to be reflected on every label,
4138 * so mark them all dirty. spa_unload() will do the
4139 * final sync that pushes these changes out.
4140 */
4141 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4142 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4143 spa->spa_state = new_state;
4144 spa->spa_final_txg = spa_last_synced_txg(spa) +
4145 TXG_DEFER_SIZE + 1;
4146 vdev_config_dirty(spa->spa_root_vdev);
4147 spa_config_exit(spa, SCL_ALL, FTAG);
4148 }

new/usr/src/uts/common/fs/zfs/spa.c 64

4149 }

4151 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);

4153 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4154 spa_unload(spa);
4155 spa_deactivate(spa);
4156 }

4158 if (oldconfig && spa->spa_config)
4159 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);

4161 if (new_state != POOL_STATE_UNINITIALIZED) {
4162 if (!hardforce)
4163 spa_config_sync(spa, B_TRUE, B_TRUE);
4164 spa_remove(spa);
4165 }
4166 mutex_exit(&spa_namespace_lock);

4168 return (0);
4169 }

4171 /*
4172 * Destroy a storage pool.
4173 */
4174 int
4175 spa_destroy(char *pool)
4176 {
4177 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4178 B_FALSE, B_FALSE));
4179 }

4181 /*
4182 * Export a storage pool.
4183 */
4184 int
4185 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4186 boolean_t hardforce)
4187 {
4188 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4189 force, hardforce));
4190 }

4192 /*
4193 * Similar to spa_export(), this unloads the spa_t without actually removing it
4194 * from the namespace in any way.
4195 */
4196 int
4197 spa_reset(char *pool)
4198 {
4199 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4200 B_FALSE, B_FALSE));
4201 }

4203 /*
4204 * ==
4205 * Device manipulation
4206 * ==
4207 */

4209 /*
4210 * Add a device to a storage pool.
4211 */
4212 int
4213 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4214 {

new/usr/src/uts/common/fs/zfs/spa.c 65

4215 uint64_t txg, id;
4216 int error;
4217 vdev_t *rvd = spa->spa_root_vdev;
4218 vdev_t *vd, *tvd;
4219 nvlist_t **spares, **l2cache;
4220 uint_t nspares, nl2cache;

4222 ASSERT(spa_writeable(spa));

4224 txg = spa_vdev_enter(spa);

4226 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4227 VDEV_ALLOC_ADD)) != 0)
4228 return (spa_vdev_exit(spa, NULL, txg, error));

4230 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */

4232 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4233 &nspares) != 0)
4234 nspares = 0;

4236 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4237 &nl2cache) != 0)
4238 nl2cache = 0;

4240 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4241 return (spa_vdev_exit(spa, vd, txg, EINVAL));

4243 if (vd->vdev_children != 0 &&
4244 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4245 return (spa_vdev_exit(spa, vd, txg, error));

4247 /*
4248 * We must validate the spares and l2cache devices after checking the
4249 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4250 */
4251 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4252 return (spa_vdev_exit(spa, vd, txg, error));

4254 /*
4255 * Transfer each new top-level vdev from vd to rvd.
4256 */
4257 for (int c = 0; c < vd->vdev_children; c++) {

4259 /*
4260 * Set the vdev id to the first hole, if one exists.
4261 */
4262 for (id = 0; id < rvd->vdev_children; id++) {
4263 if (rvd->vdev_child[id]->vdev_ishole) {
4264 vdev_free(rvd->vdev_child[id]);
4265 break;
4266 }
4267 }
4268 tvd = vd->vdev_child[c];
4269 vdev_remove_child(vd, tvd);
4270 tvd->vdev_id = id;
4271 vdev_add_child(rvd, tvd);
4272 vdev_config_dirty(tvd);
4273 }

4275 if (nspares != 0) {
4276 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4277 ZPOOL_CONFIG_SPARES);
4278 spa_load_spares(spa);
4279 spa->spa_spares.sav_sync = B_TRUE;
4280 }

new/usr/src/uts/common/fs/zfs/spa.c 66

4282 if (nl2cache != 0) {
4283 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4284 ZPOOL_CONFIG_L2CACHE);
4285 spa_load_l2cache(spa);
4286 spa->spa_l2cache.sav_sync = B_TRUE;
4287 }

4289 /*
4290 * We have to be careful when adding new vdevs to an existing pool.
4291 * If other threads start allocating from these vdevs before we
4292 * sync the config cache, and we lose power, then upon reboot we may
4293 * fail to open the pool because there are DVAs that the config cache
4294 * can’t translate. Therefore, we first add the vdevs without
4295 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4296 * and then let spa_config_update() initialize the new metaslabs.
4297 *
4298 * spa_load() checks for added-but-not-initialized vdevs, so that
4299 * if we lose power at any point in this sequence, the remaining
4300 * steps will be completed the next time we load the pool.
4301 */
4302 (void) spa_vdev_exit(spa, vd, txg, 0);

4304 mutex_enter(&spa_namespace_lock);
4305 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4306 mutex_exit(&spa_namespace_lock);

4308 return (0);
4309 }

4311 /*
4312 * Attach a device to a mirror. The arguments are the path to any device
4313 * in the mirror, and the nvroot for the new device. If the path specifies
4314 * a device that is not mirrored, we automatically insert the mirror vdev.
4315 *
4316 * If ’replacing’ is specified, the new device is intended to replace the
4317 * existing device; in this case the two devices are made into their own
4318 * mirror using the ’replacing’ vdev, which is functionally identical to
4319 * the mirror vdev (it actually reuses all the same ops) but has a few
4320 * extra rules: you can’t attach to it after it’s been created, and upon
4321 * completion of resilvering, the first disk (the one being replaced)
4322 * is automatically detached.
4323 */
4324 int
4325 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4326 {
4327 uint64_t txg, dtl_max_txg;
4328 vdev_t *rvd = spa->spa_root_vdev;
4329 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4330 vdev_ops_t *pvops;
4331 char *oldvdpath, *newvdpath;
4332 int newvd_isspare;
4333 int error;

4335 ASSERT(spa_writeable(spa));

4337 txg = spa_vdev_enter(spa);

4339 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);

4341 if (oldvd == NULL)
4342 return (spa_vdev_exit(spa, NULL, txg, ENODEV));

4344 if (!oldvd->vdev_ops->vdev_op_leaf)
4345 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));

new/usr/src/uts/common/fs/zfs/spa.c 67

4347 pvd = oldvd->vdev_parent;

4349 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4350 VDEV_ALLOC_ATTACH)) != 0)
4351 return (spa_vdev_exit(spa, NULL, txg, EINVAL));

4353 if (newrootvd->vdev_children != 1)
4354 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));

4356 newvd = newrootvd->vdev_child[0];

4358 if (!newvd->vdev_ops->vdev_op_leaf)
4359 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));

4361 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4362 return (spa_vdev_exit(spa, newrootvd, txg, error));

4364 /*
4365 * Spares can’t replace logs
4366 */
4367 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4368 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));

4370 if (!replacing) {
4371 /*
4372 * For attach, the only allowable parent is a mirror or the root
4373 * vdev.
4374 */
4375 if (pvd->vdev_ops != &vdev_mirror_ops &&
4376 pvd->vdev_ops != &vdev_root_ops)
4377 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));

4379 pvops = &vdev_mirror_ops;
4380 } else {
4381 /*
4382 * Active hot spares can only be replaced by inactive hot
4383 * spares.
4384 */
4385 if (pvd->vdev_ops == &vdev_spare_ops &&
4386 oldvd->vdev_isspare &&
4387 !spa_has_spare(spa, newvd->vdev_guid))
4388 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));

4390 /*
4391 * If the source is a hot spare, and the parent isn’t already a
4392 * spare, then we want to create a new hot spare. Otherwise, we
4393 * want to create a replacing vdev. The user is not allowed to
4394 * attach to a spared vdev child unless the ’isspare’ state is
4395 * the same (spare replaces spare, non-spare replaces
4396 * non-spare).
4397 */
4398 if (pvd->vdev_ops == &vdev_replacing_ops &&
4399 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4400 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4401 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4402 newvd->vdev_isspare != oldvd->vdev_isspare) {
4403 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4404 }

4406 if (newvd->vdev_isspare)
4407 pvops = &vdev_spare_ops;
4408 else
4409 pvops = &vdev_replacing_ops;
4410 }

4412 /*

new/usr/src/uts/common/fs/zfs/spa.c 68

4413 * Make sure the new device is big enough.
4414 */
4415 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4416 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));

4418 /*
4419 * The new device cannot have a higher alignment requirement
4420 * than the top-level vdev.
4421 */
4422 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4423 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));

4425 /*
4426 * If this is an in-place replacement, update oldvd’s path and devid
4427 * to make it distinguishable from newvd, and unopenable from now on.
4428 */
4429 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4430 spa_strfree(oldvd->vdev_path);
4431 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4432 KM_SLEEP);
4433 (void) sprintf(oldvd->vdev_path, "%s/%s",
4434 newvd->vdev_path, "old");
4435 if (oldvd->vdev_devid != NULL) {
4436 spa_strfree(oldvd->vdev_devid);
4437 oldvd->vdev_devid = NULL;
4438 }
4439 }

4441 /* mark the device being resilvered */
4442 newvd->vdev_resilvering = B_TRUE;

4444 /*
4445 * If the parent is not a mirror, or if we’re replacing, insert the new
4446 * mirror/replacing/spare vdev above oldvd.
4447 */
4448 if (pvd->vdev_ops != pvops)
4449 pvd = vdev_add_parent(oldvd, pvops);

4451 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4452 ASSERT(pvd->vdev_ops == pvops);
4453 ASSERT(oldvd->vdev_parent == pvd);

4455 /*
4456 * Extract the new device from its root and add it to pvd.
4457 */
4458 vdev_remove_child(newrootvd, newvd);
4459 newvd->vdev_id = pvd->vdev_children;
4460 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4461 vdev_add_child(pvd, newvd);

4463 tvd = newvd->vdev_top;
4464 ASSERT(pvd->vdev_top == tvd);
4465 ASSERT(tvd->vdev_parent == rvd);

4467 vdev_config_dirty(tvd);

4469 /*
4470 * Set newvd’s DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4471 * for any dmu_sync-ed blocks. It will propagate upward when
4472 * spa_vdev_exit() calls vdev_dtl_reassess().
4473 */
4474 dtl_max_txg = txg + TXG_CONCURRENT_STATES;

4476 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4477 dtl_max_txg - TXG_INITIAL);

new/usr/src/uts/common/fs/zfs/spa.c 69

4479 if (newvd->vdev_isspare) {
4480 spa_spare_activate(newvd);
4481 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4482 }

4484 oldvdpath = spa_strdup(oldvd->vdev_path);
4485 newvdpath = spa_strdup(newvd->vdev_path);
4486 newvd_isspare = newvd->vdev_isspare;

4488 /*
4489 * Mark newvd’s DTL dirty in this txg.
4490 */
4491 vdev_dirty(tvd, VDD_DTL, newvd, txg);

4493 /*
4494 * Restart the resilver
4495 */
4496 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);

4498 /*
4499 * Commit the config
4500 */
4501 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);

4503 spa_history_log_internal(spa, "vdev attach", NULL,
4504 "%s vdev=%s %s vdev=%s",
4505 replacing && newvd_isspare ? "spare in" :
4506 replacing ? "replace" : "attach", newvdpath,
4507 replacing ? "for" : "to", oldvdpath);

4509 spa_strfree(oldvdpath);
4510 spa_strfree(newvdpath);

4512 if (spa->spa_bootfs)
4513 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);

4515 return (0);
4516 }

4518 /*
4519 * Detach a device from a mirror or replacing vdev.
4520 * If ’replace_done’ is specified, only detach if the parent
4521 * is a replacing vdev.
4522 */
4523 int
4524 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4525 {
4526 uint64_t txg;
4527 int error;
4528 vdev_t *rvd = spa->spa_root_vdev;
4529 vdev_t *vd, *pvd, *cvd, *tvd;
4530 boolean_t unspare = B_FALSE;
4531 uint64_t unspare_guid = 0;
4532 char *vdpath;

4534 ASSERT(spa_writeable(spa));

4536 txg = spa_vdev_enter(spa);

4538 vd = spa_lookup_by_guid(spa, guid, B_FALSE);

4540 if (vd == NULL)
4541 return (spa_vdev_exit(spa, NULL, txg, ENODEV));

4543 if (!vd->vdev_ops->vdev_op_leaf)
4544 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));

new/usr/src/uts/common/fs/zfs/spa.c 70

4546 pvd = vd->vdev_parent;

4548 /*
4549 * If the parent/child relationship is not as expected, don’t do it.
4550 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4551 * vdev that’s replacing B with C. The user’s intent in replacing
4552 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4553 * the replace by detaching C, the expected behavior is to end up
4554 * M(A,B). But suppose that right after deciding to detach C,
4555 * the replacement of B completes. We would have M(A,C), and then
4556 * ask to detach C, which would leave us with just A -- not what
4557 * the user wanted. To prevent this, we make sure that the
4558 * parent/child relationship hasn’t changed -- in this example,
4559 * that C’s parent is still the replacing vdev R.
4560 */
4561 if (pvd->vdev_guid != pguid && pguid != 0)
4562 return (spa_vdev_exit(spa, NULL, txg, EBUSY));

4564 /*
4565 * Only ’replacing’ or ’spare’ vdevs can be replaced.
4566 */
4567 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4568 pvd->vdev_ops != &vdev_spare_ops)
4569 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));

4571 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4572 spa_version(spa) >= SPA_VERSION_SPARES);

4574 /*
4575 * Only mirror, replacing, and spare vdevs support detach.
4576 */
4577 if (pvd->vdev_ops != &vdev_replacing_ops &&
4578 pvd->vdev_ops != &vdev_mirror_ops &&
4579 pvd->vdev_ops != &vdev_spare_ops)
4580 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));

4582 /*
4583 * If this device has the only valid copy of some data,
4584 * we cannot safely detach it.
4585 */
4586 if (vdev_dtl_required(vd))
4587 return (spa_vdev_exit(spa, NULL, txg, EBUSY));

4589 ASSERT(pvd->vdev_children >= 2);

4591 /*
4592 * If we are detaching the second disk from a replacing vdev, then
4593 * check to see if we changed the original vdev’s path to have "/old"
4594 * at the end in spa_vdev_attach(). If so, undo that change now.
4595 */
4596 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4597 vd->vdev_path != NULL) {
4598 size_t len = strlen(vd->vdev_path);

4600 for (int c = 0; c < pvd->vdev_children; c++) {
4601 cvd = pvd->vdev_child[c];

4603 if (cvd == vd || cvd->vdev_path == NULL)
4604 continue;

4606 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4607 strcmp(cvd->vdev_path + len, "/old") == 0) {
4608 spa_strfree(cvd->vdev_path);
4609 cvd->vdev_path = spa_strdup(vd->vdev_path);
4610 break;

new/usr/src/uts/common/fs/zfs/spa.c 71

4611 }
4612 }
4613 }

4615 /*
4616 * If we are detaching the original disk from a spare, then it implies
4617 * that the spare should become a real disk, and be removed from the
4618 * active spare list for the pool.
4619 */
4620 if (pvd->vdev_ops == &vdev_spare_ops &&
4621 vd->vdev_id == 0 &&
4622 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4623 unspare = B_TRUE;

4625 /*
4626 * Erase the disk labels so the disk can be used for other things.
4627 * This must be done after all other error cases are handled,
4628 * but before we disembowel vd (so we can still do I/O to it).
4629 * But if we can’t do it, don’t treat the error as fatal --
4630 * it may be that the unwritability of the disk is the reason
4631 * it’s being detached!
4632 */
4633 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);

4635 /*
4636 * Remove vd from its parent and compact the parent’s children.
4637 */
4638 vdev_remove_child(pvd, vd);
4639 vdev_compact_children(pvd);

4641 /*
4642 * Remember one of the remaining children so we can get tvd below.
4643 */
4644 cvd = pvd->vdev_child[pvd->vdev_children - 1];

4646 /*
4647 * If we need to remove the remaining child from the list of hot spares,
4648 * do it now, marking the vdev as no longer a spare in the process.
4649 * We must do this before vdev_remove_parent(), because that can
4650 * change the GUID if it creates a new toplevel GUID. For a similar
4651 * reason, we must remove the spare now, in the same txg as the detach;
4652 * otherwise someone could attach a new sibling, change the GUID, and
4653 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4654 */
4655 if (unspare) {
4656 ASSERT(cvd->vdev_isspare);
4657 spa_spare_remove(cvd);
4658 unspare_guid = cvd->vdev_guid;
4659 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4660 cvd->vdev_unspare = B_TRUE;
4661 }

4663 /*
4664 * If the parent mirror/replacing vdev only has one child,
4665 * the parent is no longer needed. Remove it from the tree.
4666 */
4667 if (pvd->vdev_children == 1) {
4668 if (pvd->vdev_ops == &vdev_spare_ops)
4669 cvd->vdev_unspare = B_FALSE;
4670 vdev_remove_parent(cvd);
4671 cvd->vdev_resilvering = B_FALSE;
4672 }

4675 /*
4676 * We don’t set tvd until now because the parent we just removed

new/usr/src/uts/common/fs/zfs/spa.c 72

4677 * may have been the previous top-level vdev.
4678 */
4679 tvd = cvd->vdev_top;
4680 ASSERT(tvd->vdev_parent == rvd);

4682 /*
4683 * Reevaluate the parent vdev state.
4684 */
4685 vdev_propagate_state(cvd);

4687 /*
4688 * If the ’autoexpand’ property is set on the pool then automatically
4689 * try to expand the size of the pool. For example if the device we
4690 * just detached was smaller than the others, it may be possible to
4691 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4692 * first so that we can obtain the updated sizes of the leaf vdevs.
4693 */
4694 if (spa->spa_autoexpand) {
4695 vdev_reopen(tvd);
4696 vdev_expand(tvd, txg);
4697 }

4699 vdev_config_dirty(tvd);

4701 /*
4702 * Mark vd’s DTL as dirty in this txg. vdev_dtl_sync() will see that
4703 * vd->vdev_detached is set and free vd’s DTL object in syncing context.
4704 * But first make sure we’re not on any *other* txg’s DTL list, to
4705 * prevent vd from being accessed after it’s freed.
4706 */
4707 vdpath = spa_strdup(vd->vdev_path);
4708 for (int t = 0; t < TXG_SIZE; t++)
4709 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4710 vd->vdev_detached = B_TRUE;
4711 vdev_dirty(tvd, VDD_DTL, vd, txg);

4713 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);

4715 /* hang on to the spa before we release the lock */
4716 spa_open_ref(spa, FTAG);

4718 error = spa_vdev_exit(spa, vd, txg, 0);

4720 spa_history_log_internal(spa, "detach", NULL,
4721 "vdev=%s", vdpath);
4722 spa_strfree(vdpath);

4724 /*
4725 * If this was the removal of the original device in a hot spare vdev,
4726 * then we want to go through and remove the device from the hot spare
4727 * list of every other pool.
4728 */
4729 if (unspare) {
4730 spa_t *altspa = NULL;

4732 mutex_enter(&spa_namespace_lock);
4733 while ((altspa = spa_next(altspa)) != NULL) {
4734 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4735 altspa == spa)
4736 continue;

4738 spa_open_ref(altspa, FTAG);
4739 mutex_exit(&spa_namespace_lock);
4740 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4741 mutex_enter(&spa_namespace_lock);
4742 spa_close(altspa, FTAG);

new/usr/src/uts/common/fs/zfs/spa.c 73

4743 }
4744 mutex_exit(&spa_namespace_lock);

4746 /* search the rest of the vdevs for spares to remove */
4747 spa_vdev_resilver_done(spa);
4748 }

4750 /* all done with the spa; OK to release */
4751 mutex_enter(&spa_namespace_lock);
4752 spa_close(spa, FTAG);
4753 mutex_exit(&spa_namespace_lock);

4755 return (error);
4756 }

4758 /*
4759 * Split a set of devices from their mirrors, and create a new pool from them.
4760 */
4761 int
4762 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4763 nvlist_t *props, boolean_t exp)
4764 {
4765 int error = 0;
4766 uint64_t txg, *glist;
4767 spa_t *newspa;
4768 uint_t c, children, lastlog;
4769 nvlist_t **child, *nvl, *tmp;
4770 dmu_tx_t *tx;
4771 char *altroot = NULL;
4772 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4773 boolean_t activate_slog;

4775 ASSERT(spa_writeable(spa));

4777 txg = spa_vdev_enter(spa);

4779 /* clear the log and flush everything up to now */
4780 activate_slog = spa_passivate_log(spa);
4781 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4782 error = spa_offline_log(spa);
4783 txg = spa_vdev_config_enter(spa);

4785 if (activate_slog)
4786 spa_activate_log(spa);

4788 if (error != 0)
4789 return (spa_vdev_exit(spa, NULL, txg, error));

4791 /* check new spa name before going any further */
4792 if (spa_lookup(newname) != NULL)
4793 return (spa_vdev_exit(spa, NULL, txg, EEXIST));

4795 /*
4796 * scan through all the children to ensure they’re all mirrors
4797 */
4798 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4799 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4800 &children) != 0)
4801 return (spa_vdev_exit(spa, NULL, txg, EINVAL));

4803 /* first, check to ensure we’ve got the right child count */
4804 rvd = spa->spa_root_vdev;
4805 lastlog = 0;
4806 for (c = 0; c < rvd->vdev_children; c++) {
4807 vdev_t *vd = rvd->vdev_child[c];

new/usr/src/uts/common/fs/zfs/spa.c 74

4809 /* don’t count the holes & logs as children */
4810 if (vd->vdev_islog || vd->vdev_ishole) {
4811 if (lastlog == 0)
4812 lastlog = c;
4813 continue;
4814 }

4816 lastlog = 0;
4817 }
4818 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4819 return (spa_vdev_exit(spa, NULL, txg, EINVAL));

4821 /* next, ensure no spare or cache devices are part of the split */
4822 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4823 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4824 return (spa_vdev_exit(spa, NULL, txg, EINVAL));

4826 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4827 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);

4829 /* then, loop over each vdev and validate it */
4830 for (c = 0; c < children; c++) {
4831 uint64_t is_hole = 0;

4833 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4834 &is_hole);

4836 if (is_hole != 0) {
4837 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4838 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4839 continue;
4840 } else {
4841 error = SET_ERROR(EINVAL);
4842 break;
4843 }
4844 }

4846 /* which disk is going to be split? */
4847 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4848 &glist[c]) != 0) {
4849 error = SET_ERROR(EINVAL);
4850 break;
4851 }

4853 /* look it up in the spa */
4854 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4855 if (vml[c] == NULL) {
4856 error = SET_ERROR(ENODEV);
4857 break;
4858 }

4860 /* make sure there’s nothing stopping the split */
4861 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4862 vml[c]->vdev_islog ||
4863 vml[c]->vdev_ishole ||
4864 vml[c]->vdev_isspare ||
4865 vml[c]->vdev_isl2cache ||
4866 !vdev_writeable(vml[c]) ||
4867 vml[c]->vdev_children != 0 ||
4868 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4869 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4870 error = SET_ERROR(EINVAL);
4871 break;
4872 }

4874 if (vdev_dtl_required(vml[c])) {

new/usr/src/uts/common/fs/zfs/spa.c 75

4875 error = SET_ERROR(EBUSY);
4876 break;
4877 }

4879 /* we need certain info from the top level */
4880 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4881 vml[c]->vdev_top->vdev_ms_array) == 0);
4882 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4883 vml[c]->vdev_top->vdev_ms_shift) == 0);
4884 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4885 vml[c]->vdev_top->vdev_asize) == 0);
4886 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4887 vml[c]->vdev_top->vdev_ashift) == 0);
4888 }

4890 if (error != 0) {
4891 kmem_free(vml, children * sizeof (vdev_t *));
4892 kmem_free(glist, children * sizeof (uint64_t));
4893 return (spa_vdev_exit(spa, NULL, txg, error));
4894 }

4896 /* stop writers from using the disks */
4897 for (c = 0; c < children; c++) {
4898 if (vml[c] != NULL)
4899 vml[c]->vdev_offline = B_TRUE;
4900 }
4901 vdev_reopen(spa->spa_root_vdev);

4903 /*
4904 * Temporarily record the splitting vdevs in the spa config. This
4905 * will disappear once the config is regenerated.
4906 */
4907 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4908 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4909 glist, children) == 0);
4910 kmem_free(glist, children * sizeof (uint64_t));

4912 mutex_enter(&spa->spa_props_lock);
4913 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4914 nvl) == 0);
4915 mutex_exit(&spa->spa_props_lock);
4916 spa->spa_config_splitting = nvl;
4917 vdev_config_dirty(spa->spa_root_vdev);

4919 /* configure and create the new pool */
4920 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4921 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4922 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4923 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4924 spa_version(spa)) == 0);
4925 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4926 spa->spa_config_txg) == 0);
4927 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4928 spa_generate_guid(NULL)) == 0);
4929 (void) nvlist_lookup_string(props,
4930 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);

4932 /* add the new pool to the namespace */
4933 newspa = spa_add(newname, config, altroot);
4934 newspa->spa_config_txg = spa->spa_config_txg;
4935 spa_set_log_state(newspa, SPA_LOG_CLEAR);

4937 /* release the spa config lock, retaining the namespace lock */
4938 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);

4940 if (zio_injection_enabled)

new/usr/src/uts/common/fs/zfs/spa.c 76

4941 zio_handle_panic_injection(spa, FTAG, 1);

4943 spa_activate(newspa, spa_mode_global);
4944 spa_async_suspend(newspa);

4946 /* create the new pool from the disks of the original pool */
4947 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4948 if (error)
4949 goto out;

4951 /* if that worked, generate a real config for the new pool */
4952 if (newspa->spa_root_vdev != NULL) {
4953 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4954 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4955 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4956 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4957 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4958 B_TRUE));
4959 }

4961 /* set the props */
4962 if (props != NULL) {
4963 spa_configfile_set(newspa, props, B_FALSE);
4964 error = spa_prop_set(newspa, props);
4965 if (error)
4966 goto out;
4967 }

4969 /* flush everything */
4970 txg = spa_vdev_config_enter(newspa);
4971 vdev_config_dirty(newspa->spa_root_vdev);
4972 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);

4974 if (zio_injection_enabled)
4975 zio_handle_panic_injection(spa, FTAG, 2);

4977 spa_async_resume(newspa);

4979 /* finally, update the original pool’s config */
4980 txg = spa_vdev_config_enter(spa);
4981 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4982 error = dmu_tx_assign(tx, TXG_WAIT);
4983 if (error != 0)
4984 dmu_tx_abort(tx);
4985 for (c = 0; c < children; c++) {
4986 if (vml[c] != NULL) {
4987 vdev_split(vml[c]);
4988 if (error == 0)
4989 spa_history_log_internal(spa, "detach", tx,
4990 "vdev=%s", vml[c]->vdev_path);
4991 vdev_free(vml[c]);
4992 }
4993 }
4994 vdev_config_dirty(spa->spa_root_vdev);
4995 spa->spa_config_splitting = NULL;
4996 nvlist_free(nvl);
4997 if (error == 0)
4998 dmu_tx_commit(tx);
4999 (void) spa_vdev_exit(spa, NULL, txg, 0);

5001 if (zio_injection_enabled)
5002 zio_handle_panic_injection(spa, FTAG, 3);

5004 /* split is complete; log a history record */
5005 spa_history_log_internal(newspa, "split", NULL,
5006 "from pool %s", spa_name(spa));

new/usr/src/uts/common/fs/zfs/spa.c 77

5008 kmem_free(vml, children * sizeof (vdev_t *));

5010 /* if we’re not going to mount the filesystems in userland, export */
5011 if (exp)
5012 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5013 B_FALSE, B_FALSE);

5015 return (error);

5017 out:
5018 spa_unload(newspa);
5019 spa_deactivate(newspa);
5020 spa_remove(newspa);

5022 txg = spa_vdev_config_enter(spa);

5024 /* re-online all offlined disks */
5025 for (c = 0; c < children; c++) {
5026 if (vml[c] != NULL)
5027 vml[c]->vdev_offline = B_FALSE;
5028 }
5029 vdev_reopen(spa->spa_root_vdev);

5031 nvlist_free(spa->spa_config_splitting);
5032 spa->spa_config_splitting = NULL;
5033 (void) spa_vdev_exit(spa, NULL, txg, error);

5035 kmem_free(vml, children * sizeof (vdev_t *));
5036 return (error);
5037 }

5039 static nvlist_t *
5040 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5041 {
5042 for (int i = 0; i < count; i++) {
5043 uint64_t guid;

5045 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5046 &guid) == 0);

5048 if (guid == target_guid)
5049 return (nvpp[i]);
5050 }

5052 return (NULL);
5053 }

5055 static void
5056 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5057 nvlist_t *dev_to_remove)
5058 {
5059 nvlist_t **newdev = NULL;

5061 if (count > 1)
5062 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);

5064 for (int i = 0, j = 0; i < count; i++) {
5065 if (dev[i] == dev_to_remove)
5066 continue;
5067 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5068 }

5070 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5071 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);

new/usr/src/uts/common/fs/zfs/spa.c 78

5073 for (int i = 0; i < count - 1; i++)
5074 nvlist_free(newdev[i]);

5076 if (count > 1)
5077 kmem_free(newdev, (count - 1) * sizeof (void *));
5078 }

5080 /*
5081 * Evacuate the device.
5082 */
5083 static int
5084 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5085 {
5086 uint64_t txg;
5087 int error = 0;

5089 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5090 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5091 ASSERT(vd == vd->vdev_top);

5093 /*
5094 * Evacuate the device. We don’t hold the config lock as writer
5095 * since we need to do I/O but we do keep the
5096 * spa_namespace_lock held. Once this completes the device
5097 * should no longer have any blocks allocated on it.
5098 */
5099 if (vd->vdev_islog) {
5100 if (vd->vdev_stat.vs_alloc != 0)
5101 error = spa_offline_log(spa);
5102 } else {
5103 error = SET_ERROR(ENOTSUP);
5104 }

5106 if (error)
5107 return (error);

5109 /*
5110 * The evacuation succeeded. Remove any remaining MOS metadata
5111 * associated with this vdev, and wait for these changes to sync.
5112 */
5113 ASSERT0(vd->vdev_stat.vs_alloc);
5114 txg = spa_vdev_config_enter(spa);
5115 vd->vdev_removing = B_TRUE;
5116 vdev_dirty(vd, 0, NULL, txg);
5117 vdev_config_dirty(vd);
5118 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);

5120 return (0);
5121 }

5123 /*
5124 * Complete the removal by cleaning up the namespace.
5125 */
5126 static void
5127 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5128 {
5129 vdev_t *rvd = spa->spa_root_vdev;
5130 uint64_t id = vd->vdev_id;
5131 boolean_t last_vdev = (id == (rvd->vdev_children - 1));

5133 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5134 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5135 ASSERT(vd == vd->vdev_top);

5137 /*
5138 * Only remove any devices which are empty.

new/usr/src/uts/common/fs/zfs/spa.c 79

5139 */
5140 if (vd->vdev_stat.vs_alloc != 0)
5141 return;

5143 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);

5145 if (list_link_active(&vd->vdev_state_dirty_node))
5146 vdev_state_clean(vd);
5147 if (list_link_active(&vd->vdev_config_dirty_node))
5148 vdev_config_clean(vd);

5150 vdev_free(vd);

5152 if (last_vdev) {
5153 vdev_compact_children(rvd);
5154 } else {
5155 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5156 vdev_add_child(rvd, vd);
5157 }
5158 vdev_config_dirty(rvd);

5160 /*
5161 * Reassess the health of our root vdev.
5162 */
5163 vdev_reopen(rvd);
5164 }

5166 /*
5167 * Remove a device from the pool -
5168 *
5169 * Removing a device from the vdev namespace requires several steps
5170 * and can take a significant amount of time. As a result we use
5171 * the spa_vdev_config_[enter/exit] functions which allow us to
5172 * grab and release the spa_config_lock while still holding the namespace
5173 * lock. During each step the configuration is synced out.
5174 */

5176 /*
5177 * Remove a device from the pool. Currently, this supports removing only hot
5178 * spares, slogs, and level 2 ARC devices.
5179 */
5180 int
5181 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5182 {
5183 vdev_t *vd;
5184 metaslab_group_t *mg;
5185 nvlist_t **spares, **l2cache, *nv;
5186 uint64_t txg = 0;
5187 uint_t nspares, nl2cache;
5188 int error = 0;
5189 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);

5191 ASSERT(spa_writeable(spa));

5193 if (!locked)
5194 txg = spa_vdev_enter(spa);

5196 vd = spa_lookup_by_guid(spa, guid, B_FALSE);

5198 if (spa->spa_spares.sav_vdevs != NULL &&
5199 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5200 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5201 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5202 /*
5203 * Only remove the hot spare if it’s not currently in use
5204 * in this pool.

new/usr/src/uts/common/fs/zfs/spa.c 80

5205 */
5206 if (vd == NULL || unspare) {
5207 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5208 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5209 spa_load_spares(spa);
5210 spa->spa_spares.sav_sync = B_TRUE;
5211 } else {
5212 error = SET_ERROR(EBUSY);
5213 }
5214 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5215 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5216 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5217 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5218 /*
5219 * Cache devices can always be removed.
5220 */
5221 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5222 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5223 spa_load_l2cache(spa);
5224 spa->spa_l2cache.sav_sync = B_TRUE;
5225 } else if (vd != NULL && vd->vdev_islog) {
5226 ASSERT(!locked);
5227 ASSERT(vd == vd->vdev_top);

5229 /*
5230 * XXX - Once we have bp-rewrite this should
5231 * become the common case.
5232 */

5234 mg = vd->vdev_mg;

5236 /*
5237 * Stop allocating from this vdev.
5238 */
5239 metaslab_group_passivate(mg);

5241 /*
5242 * Wait for the youngest allocations and frees to sync,
5243 * and then wait for the deferral of those frees to finish.
5244 */
5245 spa_vdev_config_exit(spa, NULL,
5246 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);

5248 /*
5249 * Attempt to evacuate the vdev.
5250 */
5251 error = spa_vdev_remove_evacuate(spa, vd);

5253 txg = spa_vdev_config_enter(spa);

5255 /*
5256 * If we couldn’t evacuate the vdev, unwind.
5257 */
5258 if (error) {
5259 metaslab_group_activate(mg);
5260 return (spa_vdev_exit(spa, NULL, txg, error));
5261 }

5263 /*
5264 * Clean up the vdev namespace.
5265 */
5266 spa_vdev_remove_from_namespace(spa, vd);

5268 } else if (vd != NULL) {
5269 /*
5270 * Normal vdevs cannot be removed (yet).

new/usr/src/uts/common/fs/zfs/spa.c 81

5271 */
5272 error = SET_ERROR(ENOTSUP);
5273 } else {
5274 /*
5275 * There is no vdev of any kind with the specified guid.
5276 */
5277 error = SET_ERROR(ENOENT);
5278 }

5280 if (!locked)
5281 return (spa_vdev_exit(spa, NULL, txg, error));

5283 return (error);
5284 }

5286 /*
5287 * Find any device that’s done replacing, or a vdev marked ’unspare’ that’s
5288 * current spared, so we can detach it.
5289 */
5290 static vdev_t *
5291 spa_vdev_resilver_done_hunt(vdev_t *vd)
5292 {
5293 vdev_t *newvd, *oldvd;

5295 for (int c = 0; c < vd->vdev_children; c++) {
5296 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5297 if (oldvd != NULL)
5298 return (oldvd);
5299 }

5301 /*
5302 * Check for a completed replacement. We always consider the first
5303 * vdev in the list to be the oldest vdev, and the last one to be
5304 * the newest (see spa_vdev_attach() for how that works). In
5305 * the case where the newest vdev is faulted, we will not automatically
5306 * remove it after a resilver completes. This is OK as it will require
5307 * user intervention to determine which disk the admin wishes to keep.
5308 */
5309 if (vd->vdev_ops == &vdev_replacing_ops) {
5310 ASSERT(vd->vdev_children > 1);

5312 newvd = vd->vdev_child[vd->vdev_children - 1];
5313 oldvd = vd->vdev_child[0];

5315 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5316 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5317 !vdev_dtl_required(oldvd))
5318 return (oldvd);
5319 }

5321 /*
5322 * Check for a completed resilver with the ’unspare’ flag set.
5323 */
5324 if (vd->vdev_ops == &vdev_spare_ops) {
5325 vdev_t *first = vd->vdev_child[0];
5326 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];

5328 if (last->vdev_unspare) {
5329 oldvd = first;
5330 newvd = last;
5331 } else if (first->vdev_unspare) {
5332 oldvd = last;
5333 newvd = first;
5334 } else {
5335 oldvd = NULL;
5336 }

new/usr/src/uts/common/fs/zfs/spa.c 82

5338 if (oldvd != NULL &&
5339 vdev_dtl_empty(newvd, DTL_MISSING) &&
5340 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5341 !vdev_dtl_required(oldvd))
5342 return (oldvd);

5344 /*
5345 * If there are more than two spares attached to a disk,
5346 * and those spares are not required, then we want to
5347 * attempt to free them up now so that they can be used
5348 * by other pools. Once we’re back down to a single
5349 * disk+spare, we stop removing them.
5350 */
5351 if (vd->vdev_children > 2) {
5352 newvd = vd->vdev_child[1];

5354 if (newvd->vdev_isspare && last->vdev_isspare &&
5355 vdev_dtl_empty(last, DTL_MISSING) &&
5356 vdev_dtl_empty(last, DTL_OUTAGE) &&
5357 !vdev_dtl_required(newvd))
5358 return (newvd);
5359 }
5360 }

5362 return (NULL);
5363 }

5365 static void
5366 spa_vdev_resilver_done(spa_t *spa)
5367 {
5368 vdev_t *vd, *pvd, *ppvd;
5369 uint64_t guid, sguid, pguid, ppguid;

5371 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);

5373 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5374 pvd = vd->vdev_parent;
5375 ppvd = pvd->vdev_parent;
5376 guid = vd->vdev_guid;
5377 pguid = pvd->vdev_guid;
5378 ppguid = ppvd->vdev_guid;
5379 sguid = 0;
5380 /*
5381 * If we have just finished replacing a hot spared device, then
5382 * we need to detach the parent’s first child (the original hot
5383 * spare) as well.
5384 */
5385 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5386 ppvd->vdev_children == 2) {
5387 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5388 sguid = ppvd->vdev_child[1]->vdev_guid;
5389 }
5390 spa_config_exit(spa, SCL_ALL, FTAG);
5391 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5392 return;
5393 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5394 return;
5395 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5396 }

5398 spa_config_exit(spa, SCL_ALL, FTAG);
5399 }

5401 /*
5402 * Update the stored path or FRU for this vdev.

new/usr/src/uts/common/fs/zfs/spa.c 83

5403 */
5404 int
5405 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5406 boolean_t ispath)
5407 {
5408 vdev_t *vd;
5409 boolean_t sync = B_FALSE;

5411 ASSERT(spa_writeable(spa));

5413 spa_vdev_state_enter(spa, SCL_ALL);

5415 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5416 return (spa_vdev_state_exit(spa, NULL, ENOENT));

5418 if (!vd->vdev_ops->vdev_op_leaf)
5419 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));

5421 if (ispath) {
5422 if (strcmp(value, vd->vdev_path) != 0) {
5423 spa_strfree(vd->vdev_path);
5424 vd->vdev_path = spa_strdup(value);
5425 sync = B_TRUE;
5426 }
5427 } else {
5428 if (vd->vdev_fru == NULL) {
5429 vd->vdev_fru = spa_strdup(value);
5430 sync = B_TRUE;
5431 } else if (strcmp(value, vd->vdev_fru) != 0) {
5432 spa_strfree(vd->vdev_fru);
5433 vd->vdev_fru = spa_strdup(value);
5434 sync = B_TRUE;
5435 }
5436 }

5438 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5439 }

5441 int
5442 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5443 {
5444 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5445 }

5447 int
5448 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5449 {
5450 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5451 }

5453 /*
5454 * ==
5455 * SPA Scanning
5456 * ==
5457 */

5459 int
5460 spa_scan_stop(spa_t *spa)
5461 {
5462 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5463 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5464 return (SET_ERROR(EBUSY));
5465 return (dsl_scan_cancel(spa->spa_dsl_pool));
5466 }

5468 int

new/usr/src/uts/common/fs/zfs/spa.c 84

5469 spa_scan(spa_t *spa, pool_scan_func_t func)
5470 {
5471 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);

5473 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5474 return (SET_ERROR(ENOTSUP));

5476 /*
5477 * If a resilver was requested, but there is no DTL on a
5478 * writeable leaf device, we have nothing to do.
5479 */
5480 if (func == POOL_SCAN_RESILVER &&
5481 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5482 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5483 return (0);
5484 }

5486 return (dsl_scan(spa->spa_dsl_pool, func));
5487 }

5489 /*
5490 * ==
5491 * SPA async task processing
5492 * ==
5493 */

5495 static void
5496 spa_async_remove(spa_t *spa, vdev_t *vd)
5497 {
5498 if (vd->vdev_remove_wanted) {
5499 vd->vdev_remove_wanted = B_FALSE;
5500 vd->vdev_delayed_close = B_FALSE;
5501 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);

5503 /*
5504 * We want to clear the stats, but we don’t want to do a full
5505 * vdev_clear() as that will cause us to throw away
5506 * degraded/faulted state as well as attempt to reopen the
5507 * device, all of which is a waste.
5508 */
5509 vd->vdev_stat.vs_read_errors = 0;
5510 vd->vdev_stat.vs_write_errors = 0;
5511 vd->vdev_stat.vs_checksum_errors = 0;

5513 vdev_state_dirty(vd->vdev_top);
5514 }

5516 for (int c = 0; c < vd->vdev_children; c++)
5517 spa_async_remove(spa, vd->vdev_child[c]);
5518 }

5520 static void
5521 spa_async_probe(spa_t *spa, vdev_t *vd)
5522 {
5523 if (vd->vdev_probe_wanted) {
5524 vd->vdev_probe_wanted = B_FALSE;
5525 vdev_reopen(vd); /* vdev_open() does the actual probe */
5526 }

5528 for (int c = 0; c < vd->vdev_children; c++)
5529 spa_async_probe(spa, vd->vdev_child[c]);
5530 }

5532 static void
5533 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5534 {

new/usr/src/uts/common/fs/zfs/spa.c 85

5535 sysevent_id_t eid;
5536 nvlist_t *attr;
5537 char *physpath;

5539 if (!spa->spa_autoexpand)
5540 return;

5542 for (int c = 0; c < vd->vdev_children; c++) {
5543 vdev_t *cvd = vd->vdev_child[c];
5544 spa_async_autoexpand(spa, cvd);
5545 }

5547 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5548 return;

5550 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5551 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);

5553 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5554 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);

5556 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5557 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);

5559 nvlist_free(attr);
5560 kmem_free(physpath, MAXPATHLEN);
5561 }

5563 static void
5564 spa_async_thread(spa_t *spa)
5565 {
5566 int tasks;

5568 ASSERT(spa->spa_sync_on);

5570 mutex_enter(&spa->spa_async_lock);
5571 tasks = spa->spa_async_tasks;
5572 spa->spa_async_tasks = 0;
5573 mutex_exit(&spa->spa_async_lock);

5575 /*
5576 * See if the config needs to be updated.
5577 */
5578 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5579 uint64_t old_space, new_space;

5581 mutex_enter(&spa_namespace_lock);
5582 old_space = metaslab_class_get_space(spa_normal_class(spa));
5583 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5584 new_space = metaslab_class_get_space(spa_normal_class(spa));
5585 mutex_exit(&spa_namespace_lock);

5587 /*
5588 * If the pool grew as a result of the config update,
5589 * then log an internal history event.
5590 */
5591 if (new_space != old_space) {
5592 spa_history_log_internal(spa, "vdev online", NULL,
5593 "pool ’%s’ size: %llu(+%llu)",
5594 spa_name(spa), new_space, new_space - old_space);
5595 }
5596 }

5598 /*
5599 * See if any devices need to be marked REMOVED.
5600 */

new/usr/src/uts/common/fs/zfs/spa.c 86

5601 if (tasks & SPA_ASYNC_REMOVE) {
5602 spa_vdev_state_enter(spa, SCL_NONE);
5603 spa_async_remove(spa, spa->spa_root_vdev);
5604 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5605 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5606 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5607 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5608 (void) spa_vdev_state_exit(spa, NULL, 0);
5609 }

5611 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5612 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5613 spa_async_autoexpand(spa, spa->spa_root_vdev);
5614 spa_config_exit(spa, SCL_CONFIG, FTAG);
5615 }

5617 /*
5618 * See if any devices need to be probed.
5619 */
5620 if (tasks & SPA_ASYNC_PROBE) {
5621 spa_vdev_state_enter(spa, SCL_NONE);
5622 spa_async_probe(spa, spa->spa_root_vdev);
5623 (void) spa_vdev_state_exit(spa, NULL, 0);
5624 }

5626 /*
5627 * If any devices are done replacing, detach them.
5628 */
5629 if (tasks & SPA_ASYNC_RESILVER_DONE)
5630 spa_vdev_resilver_done(spa);

5632 /*
5633 * Kick off a resilver.
5634 */
5635 if (tasks & SPA_ASYNC_RESILVER)
5636 dsl_resilver_restart(spa->spa_dsl_pool, 0);

5638 /*
5639 * Let the world know that we’re done.
5640 */
5641 mutex_enter(&spa->spa_async_lock);
5642 spa->spa_async_thread = NULL;
5643 cv_broadcast(&spa->spa_async_cv);
5644 mutex_exit(&spa->spa_async_lock);
5645 thread_exit();
5646 }

5648 void
5649 spa_async_suspend(spa_t *spa)
5650 {
5651 mutex_enter(&spa->spa_async_lock);
5652 spa->spa_async_suspended++;
5653 while (spa->spa_async_thread != NULL)
5654 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5655 mutex_exit(&spa->spa_async_lock);
5656 }

5658 void
5659 spa_async_resume(spa_t *spa)
5660 {
5661 mutex_enter(&spa->spa_async_lock);
5662 ASSERT(spa->spa_async_suspended != 0);
5663 spa->spa_async_suspended--;
5664 mutex_exit(&spa->spa_async_lock);
5665 }

new/usr/src/uts/common/fs/zfs/spa.c 87

5667 static void
5668 spa_async_dispatch(spa_t *spa)
5669 {
5670 mutex_enter(&spa->spa_async_lock);
5671 if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5672 spa->spa_async_thread == NULL &&
5673 rootdir != NULL && !vn_is_readonly(rootdir))
5674 spa->spa_async_thread = thread_create(NULL, 0,
5675 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5676 mutex_exit(&spa->spa_async_lock);
5677 }

5679 void
5680 spa_async_request(spa_t *spa, int task)
5681 {
5682 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5683 mutex_enter(&spa->spa_async_lock);
5684 spa->spa_async_tasks |= task;
5685 mutex_exit(&spa->spa_async_lock);
5686 }

5688 /*
5689 * ==
5690 * SPA syncing routines
5691 * ==
5692 */

5694 static int
5695 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5696 {
5697 bpobj_t *bpo = arg;
5698 bpobj_enqueue(bpo, bp, tx);
5699 return (0);
5700 }

5702 static int
5703 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5704 {
5705 zio_t *zio = arg;

5707 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5708 zio->io_flags));
5709 return (0);
5710 }

5712 static void
5713 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5714 {
5715 char *packed = NULL;
5716 size_t bufsize;
5717 size_t nvsize = 0;
5718 dmu_buf_t *db;

5720 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);

5722 /*
5723 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5724 * information. This avoids the dbuf_will_dirty() path and
5725 * saves us a pre-read to get data we don’t actually care about.
5726 */
5727 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5728 packed = kmem_alloc(bufsize, KM_SLEEP);

5730 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5731 KM_SLEEP) == 0);
5732 bzero(packed + nvsize, bufsize - nvsize);

new/usr/src/uts/common/fs/zfs/spa.c 88

5734 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);

5736 kmem_free(packed, bufsize);

5738 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5739 dmu_buf_will_dirty(db, tx);
5740 *(uint64_t *)db->db_data = nvsize;
5741 dmu_buf_rele(db, FTAG);
5742 }

5744 static void
5745 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5746 const char *config, const char *entry)
5747 {
5748 nvlist_t *nvroot;
5749 nvlist_t **list;
5750 int i;

5752 if (!sav->sav_sync)
5753 return;

5755 /*
5756 * Update the MOS nvlist describing the list of available devices.
5757 * spa_validate_aux() will have already made sure this nvlist is
5758 * valid and the vdevs are labeled appropriately.
5759 */
5760 if (sav->sav_object == 0) {
5761 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5762 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5763 sizeof (uint64_t), tx);
5764 VERIFY(zap_update(spa->spa_meta_objset,
5765 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5766 &sav->sav_object, tx) == 0);
5767 }

5769 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5770 if (sav->sav_count == 0) {
5771 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5772 } else {
5773 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5774 for (i = 0; i < sav->sav_count; i++)
5775 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5776 B_FALSE, VDEV_CONFIG_L2CACHE);
5777 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5778 sav->sav_count) == 0);
5779 for (i = 0; i < sav->sav_count; i++)
5780 nvlist_free(list[i]);
5781 kmem_free(list, sav->sav_count * sizeof (void *));
5782 }

5784 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5785 nvlist_free(nvroot);

5787 sav->sav_sync = B_FALSE;
5788 }

5790 static void
5791 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5792 {
5793 nvlist_t *config;

5795 if (list_is_empty(&spa->spa_config_dirty_list))
5796 return;

5798 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);

new/usr/src/uts/common/fs/zfs/spa.c 89

5800 config = spa_config_generate(spa, spa->spa_root_vdev,
5801 dmu_tx_get_txg(tx), B_FALSE);

5803 /*
5804 * If we’re upgrading the spa version then make sure that
5805 * the config object gets updated with the correct version.
5806 */
5807 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5808 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5809 spa->spa_uberblock.ub_version);

5811 spa_config_exit(spa, SCL_STATE, FTAG);

5813 if (spa->spa_config_syncing)
5814 nvlist_free(spa->spa_config_syncing);
5815 spa->spa_config_syncing = config;

5817 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5818 }

5820 static void
5821 spa_sync_version(void *arg, dmu_tx_t *tx)
5822 {
5823 uint64_t *versionp = arg;
5824 uint64_t version = *versionp;
5825 spa_t *spa = dmu_tx_pool(tx)->dp_spa;

5827 /*
5828 * Setting the version is special cased when first creating the pool.
5829 */
5830 ASSERT(tx->tx_txg != TXG_INITIAL);

5832 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5833 ASSERT(version >= spa_version(spa));

5835 spa->spa_uberblock.ub_version = version;
5836 vdev_config_dirty(spa->spa_root_vdev);
5837 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5838 }

5840 /*
5841 * Set zpool properties.
5842 */
5843 static void
5844 spa_sync_props(void *arg, dmu_tx_t *tx)
5845 {
5846 nvlist_t *nvp = arg;
5847 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5848 objset_t *mos = spa->spa_meta_objset;
5849 nvpair_t *elem = NULL;

5851 mutex_enter(&spa->spa_props_lock);

5853 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5854 uint64_t intval;
5855 char *strval, *fname;
5856 zpool_prop_t prop;
5857 const char *propname;
5858 zprop_type_t proptype;
5859 zfeature_info_t *feature;

5861 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5862 case ZPROP_INVAL:
5863 /*
5864 * We checked this earlier in spa_prop_validate().

new/usr/src/uts/common/fs/zfs/spa.c 90

5865 */
5866 ASSERT(zpool_prop_feature(nvpair_name(elem)));

5868 fname = strchr(nvpair_name(elem), ’@’) + 1;
5869 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));

5871 spa_feature_enable(spa, feature, tx);
5872 spa_history_log_internal(spa, "set", tx,
5873 "%s=enabled", nvpair_name(elem));
5874 break;

5876 case ZPOOL_PROP_VERSION:
5877 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5878 /*
5879 * The version is synced seperatly before other
5880 * properties and should be correct by now.
5881 */
5882 ASSERT3U(spa_version(spa), >=, intval);
5883 break;

5885 case ZPOOL_PROP_ALTROOT:
5886 /*
5887 * ’altroot’ is a non-persistent property. It should
5888 * have been set temporarily at creation or import time.
5889 */
5890 ASSERT(spa->spa_root != NULL);
5891 break;

5893 case ZPOOL_PROP_READONLY:
5894 case ZPOOL_PROP_CACHEFILE:
5895 /*
5896 * ’readonly’ and ’cachefile’ are also non-persisitent
5897 * properties.
5898 */
5899 break;
5900 case ZPOOL_PROP_COMMENT:
5901 VERIFY(nvpair_value_string(elem, &strval) == 0);
5902 if (spa->spa_comment != NULL)
5903 spa_strfree(spa->spa_comment);
5904 spa->spa_comment = spa_strdup(strval);
5905 /*
5906 * We need to dirty the configuration on all the vdevs
5907 * so that their labels get updated. It’s unnecessary
5908 * to do this for pool creation since the vdev’s
5909 * configuratoin has already been dirtied.
5910 */
5911 if (tx->tx_txg != TXG_INITIAL)
5912 vdev_config_dirty(spa->spa_root_vdev);
5913 spa_history_log_internal(spa, "set", tx,
5914 "%s=%s", nvpair_name(elem), strval);
5915 break;
5916 default:
5917 /*
5918 * Set pool property values in the poolprops mos object.
5919 */
5920 if (spa->spa_pool_props_object == 0) {
5921 spa->spa_pool_props_object =
5922 zap_create_link(mos, DMU_OT_POOL_PROPS,
5923 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5924 tx);
5925 }

5927 /* normalize the property name */
5928 propname = zpool_prop_to_name(prop);
5929 proptype = zpool_prop_get_type(prop);

new/usr/src/uts/common/fs/zfs/spa.c 91

5931 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5932 ASSERT(proptype == PROP_TYPE_STRING);
5933 VERIFY(nvpair_value_string(elem, &strval) == 0);
5934 VERIFY(zap_update(mos,
5935 spa->spa_pool_props_object, propname,
5936 1, strlen(strval) + 1, strval, tx) == 0);
5937 spa_history_log_internal(spa, "set", tx,
5938 "%s=%s", nvpair_name(elem), strval);
5939 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5940 VERIFY(nvpair_value_uint64(elem, &intval) == 0);

5942 if (proptype == PROP_TYPE_INDEX) {
5943 const char *unused;
5944 VERIFY(zpool_prop_index_to_string(
5945 prop, intval, &unused) == 0);
5946 }
5947 VERIFY(zap_update(mos,
5948 spa->spa_pool_props_object, propname,
5949 8, 1, &intval, tx) == 0);
5950 spa_history_log_internal(spa, "set", tx,
5951 "%s=%lld", nvpair_name(elem), intval);
5952 } else {
5953 ASSERT(0); /* not allowed */
5954 }

5956 switch (prop) {
5957 case ZPOOL_PROP_DELEGATION:
5958 spa->spa_delegation = intval;
5959 break;
5960 case ZPOOL_PROP_BOOTFS:
5961 spa->spa_bootfs = intval;
5962 break;
5963 case ZPOOL_PROP_FAILUREMODE:
5964 spa->spa_failmode = intval;
5965 break;
5966 case ZPOOL_PROP_AUTOEXPAND:
5967 spa->spa_autoexpand = intval;
5968 if (tx->tx_txg != TXG_INITIAL)
5969 spa_async_request(spa,
5970 SPA_ASYNC_AUTOEXPAND);
5971 break;
5972 case ZPOOL_PROP_DEDUPDITTO:
5973 spa->spa_dedup_ditto = intval;
5974 break;
5975 default:
5976 break;
5977 }
5978 }

5980 }

5982 mutex_exit(&spa->spa_props_lock);
5983 }

5985 /*
5986 * Perform one-time upgrade on-disk changes. spa_version() does not
5987 * reflect the new version this txg, so there must be no changes this
5988 * txg to anything that the upgrade code depends on after it executes.
5989 * Therefore this must be called after dsl_pool_sync() does the sync
5990 * tasks.
5991 */
5992 static void
5993 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5994 {
5995 dsl_pool_t *dp = spa->spa_dsl_pool;

new/usr/src/uts/common/fs/zfs/spa.c 92

5997 ASSERT(spa->spa_sync_pass == 1);

5999 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);

6001 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6002 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6003 dsl_pool_create_origin(dp, tx);

6005 /* Keeping the origin open increases spa_minref */
6006 spa->spa_minref += 3;
6007 }

6009 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6010 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6011 dsl_pool_upgrade_clones(dp, tx);
6012 }

6014 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6015 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6016 dsl_pool_upgrade_dir_clones(dp, tx);

6018 /* Keeping the freedir open increases spa_minref */
6019 spa->spa_minref += 3;
6020 }

6022 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6023 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6024 spa_feature_create_zap_objects(spa, tx);
6025 }
6026 rrw_exit(&dp->dp_config_rwlock, FTAG);
6027 }

6029 /*
6030 * Sync the specified transaction group. New blocks may be dirtied as
6031 * part of the process, so we iterate until it converges.
6032 */
6033 void
6034 spa_sync(spa_t *spa, uint64_t txg)
6035 {
6036 dsl_pool_t *dp = spa->spa_dsl_pool;
6037 objset_t *mos = spa->spa_meta_objset;
6038 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
6039 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6040 vdev_t *rvd = spa->spa_root_vdev;
6041 vdev_t *vd;
6042 dmu_tx_t *tx;
6043 int error;

6045 VERIFY(spa_writeable(spa));

6047 /*
6048 * Lock out configuration changes.
6049 */
6050 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);

6052 spa->spa_syncing_txg = txg;
6053 spa->spa_sync_pass = 0;

6055 /*
6056 * If there are any pending vdev state changes, convert them
6057 * into config changes that go out with this transaction group.
6058 */
6059 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6060 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6061 /*
6062 * We need the write lock here because, for aux vdevs,

new/usr/src/uts/common/fs/zfs/spa.c 93

6063 * calling vdev_config_dirty() modifies sav_config.
6064 * This is ugly and will become unnecessary when we
6065 * eliminate the aux vdev wart by integrating all vdevs
6066 * into the root vdev tree.
6067 */
6068 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6069 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6070 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6071 vdev_state_clean(vd);
6072 vdev_config_dirty(vd);
6073 }
6074 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6075 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6076 }
6077 spa_config_exit(spa, SCL_STATE, FTAG);

6079 tx = dmu_tx_create_assigned(dp, txg);

6081 spa->spa_sync_starttime = gethrtime();
6082 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6083 spa->spa_sync_starttime + spa->spa_deadman_synctime));

6085 /*
6086 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6087 * set spa_deflate if we have no raid-z vdevs.
6088 */
6089 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6090 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6091 int i;

6093 for (i = 0; i < rvd->vdev_children; i++) {
6094 vd = rvd->vdev_child[i];
6095 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6096 break;
6097 }
6098 if (i == rvd->vdev_children) {
6099 spa->spa_deflate = TRUE;
6100 VERIFY(0 == zap_add(spa->spa_meta_objset,
6101 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6102 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6103 }
6104 }

6106 /*
6107 * If anything has changed in this txg, or if someone is waiting
6108 * for this txg to sync (eg, spa_vdev_remove()), push the
6109 * deferred frees from the previous txg. If not, leave them
6110 * alone so that we don’t generate work on an otherwise idle
6111 * system.
6112 */
6113 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6114 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6115 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6116 ((dsl_scan_active(dp->dp_scan) ||
6117 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6118 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6119 VERIFY3U(bpobj_iterate(defer_bpo,
6120 spa_free_sync_cb, zio, tx), ==, 0);
6121 VERIFY0(zio_wait(zio));
6122 }

6124 /*
6125 * Iterate to convergence.
6126 */
6127 do {
6128 int pass = ++spa->spa_sync_pass;

new/usr/src/uts/common/fs/zfs/spa.c 94

6130 spa_sync_config_object(spa, tx);
6131 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6132 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6133 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6134 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6135 spa_errlog_sync(spa, txg);
6136 dsl_pool_sync(dp, txg);

6138 if (pass < zfs_sync_pass_deferred_free) {
6139 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6140 bplist_iterate(free_bpl, spa_free_sync_cb,
6141 zio, tx);
6142 VERIFY(zio_wait(zio) == 0);
6143 } else {
6144 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6145 defer_bpo, tx);
6146 }

6148 ddt_sync(spa, txg);
6149 dsl_scan_sync(dp, tx);

6151 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6152 vdev_sync(vd, txg);

6154 if (pass == 1)
6155 spa_sync_upgrades(spa, tx);

6157 } while (dmu_objset_is_dirty(mos, txg));

6159 /*
6160 * Rewrite the vdev configuration (which includes the uberblock)
6161 * to commit the transaction group.
6162 *
6163 * If there are no dirty vdevs, we sync the uberblock to a few
6164 * random top-level vdevs that are known to be visible in the
6165 * config cache (see spa_vdev_add() for a complete description).
6166 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6167 */
6168 for (;;) {
6169 /*
6170 * We hold SCL_STATE to prevent vdev open/close/etc.
6171 * while we’re attempting to write the vdev labels.
6172 */
6173 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);

6175 if (list_is_empty(&spa->spa_config_dirty_list)) {
6176 vdev_t *svd[SPA_DVAS_PER_BP];
6177 int svdcount = 0;
6178 int children = rvd->vdev_children;
6179 int c0 = spa_get_random(children);

6181 for (int c = 0; c < children; c++) {
6182 vd = rvd->vdev_child[(c0 + c) % children];
6183 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6184 continue;
6185 svd[svdcount++] = vd;
6186 if (svdcount == SPA_DVAS_PER_BP)
6187 break;
6188 }
6189 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6190 if (error != 0)
6191 error = vdev_config_sync(svd, svdcount, txg,
6192 B_TRUE);
6193 } else {
6194 error = vdev_config_sync(rvd->vdev_child,

new/usr/src/uts/common/fs/zfs/spa.c 95

6195 rvd->vdev_children, txg, B_FALSE);
6196 if (error != 0)
6197 error = vdev_config_sync(rvd->vdev_child,
6198 rvd->vdev_children, txg, B_TRUE);
6199 }

6201 if (error == 0)
6202 spa->spa_last_synced_guid = rvd->vdev_guid;

6204 spa_config_exit(spa, SCL_STATE, FTAG);

6206 if (error == 0)
6207 break;
6208 zio_suspend(spa, NULL);
6209 zio_resume_wait(spa);
6210 }
6211 dmu_tx_commit(tx);

6213 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));

6215 /*
6216 * Clear the dirty config list.
6217 */
6218 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6219 vdev_config_clean(vd);

6221 /*
6222 * Now that the new config has synced transactionally,
6223 * let it become visible to the config cache.
6224 */
6225 if (spa->spa_config_syncing != NULL) {
6226 spa_config_set(spa, spa->spa_config_syncing);
6227 spa->spa_config_txg = txg;
6228 spa->spa_config_syncing = NULL;
6229 }

6231 spa->spa_ubsync = spa->spa_uberblock;

6233 dsl_pool_sync_done(dp, txg);

6235 /*
6236 * Update usable space statistics.
6237 */
6238 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6239 vdev_sync_done(vd, txg);

6241 spa_update_dspace(spa);

6243 /*
6244 * It had better be the case that we didn’t dirty anything
6245 * since vdev_config_sync().
6246 */
6247 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6248 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6249 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));

6251 spa->spa_sync_pass = 0;

6253 spa_config_exit(spa, SCL_CONFIG, FTAG);

6255 spa_handle_ignored_writes(spa);

6257 /*
6258 * If any async tasks have been requested, kick them off.
6259 */
6260 spa_async_dispatch(spa);

new/usr/src/uts/common/fs/zfs/spa.c 96

6261 }

6263 /*
6264 * Sync all pools. We don’t want to hold the namespace lock across these
6265 * operations, so we take a reference on the spa_t and drop the lock during the
6266 * sync.
6267 */
6268 void
6269 spa_sync_allpools(void)
6270 {
6271 spa_t *spa = NULL;
6272 mutex_enter(&spa_namespace_lock);
6273 while ((spa = spa_next(spa)) != NULL) {
6274 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6275 !spa_writeable(spa) || spa_suspended(spa))
6276 continue;
6277 spa_open_ref(spa, FTAG);
6278 mutex_exit(&spa_namespace_lock);
6279 txg_wait_synced(spa_get_dsl(spa), 0);
6280 mutex_enter(&spa_namespace_lock);
6281 spa_close(spa, FTAG);
6282 }
6283 mutex_exit(&spa_namespace_lock);
6284 }

6286 /*
6287 * ==
6288 * Miscellaneous routines
6289 * ==
6290 */

6292 /*
6293 * Remove all pools in the system.
6294 */
6295 void
6296 spa_evict_all(void)
6297 {
6298 spa_t *spa;

6300 /*
6301 * Remove all cached state. All pools should be closed now,
6302 * so every spa in the AVL tree should be unreferenced.
6303 */
6304 mutex_enter(&spa_namespace_lock);
6305 while ((spa = spa_next(NULL)) != NULL) {
6306 /*
6307 * Stop async tasks. The async thread may need to detach
6308 * a device that’s been replaced, which requires grabbing
6309 * spa_namespace_lock, so we must drop it here.
6310 */
6311 spa_open_ref(spa, FTAG);
6312 mutex_exit(&spa_namespace_lock);
6313 spa_async_suspend(spa);
6314 mutex_enter(&spa_namespace_lock);
6315 spa_close(spa, FTAG);

6317 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6318 spa_unload(spa);
6319 spa_deactivate(spa);
6320 }
6321 spa_remove(spa);
6322 }
6323 mutex_exit(&spa_namespace_lock);
6324 }

6326 vdev_t *

new/usr/src/uts/common/fs/zfs/spa.c 97

6327 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6328 {
6329 vdev_t *vd;
6330 int i;

6332 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6333 return (vd);

6335 if (aux) {
6336 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6337 vd = spa->spa_l2cache.sav_vdevs[i];
6338 if (vd->vdev_guid == guid)
6339 return (vd);
6340 }

6342 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6343 vd = spa->spa_spares.sav_vdevs[i];
6344 if (vd->vdev_guid == guid)
6345 return (vd);
6346 }
6347 }

6349 return (NULL);
6350 }

6352 void
6353 spa_upgrade(spa_t *spa, uint64_t version)
6354 {
6355 ASSERT(spa_writeable(spa));

6357 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);

6359 /*
6360 * This should only be called for a non-faulted pool, and since a
6361 * future version would result in an unopenable pool, this shouldn’t be
6362 * possible.
6363 */
6364 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6365 ASSERT(version >= spa->spa_uberblock.ub_version);

6367 spa->spa_uberblock.ub_version = version;
6368 vdev_config_dirty(spa->spa_root_vdev);

6370 spa_config_exit(spa, SCL_ALL, FTAG);

6372 txg_wait_synced(spa_get_dsl(spa), 0);
6373 }

6375 boolean_t
6376 spa_has_spare(spa_t *spa, uint64_t guid)
6377 {
6378 int i;
6379 uint64_t spareguid;
6380 spa_aux_vdev_t *sav = &spa->spa_spares;

6382 for (i = 0; i < sav->sav_count; i++)
6383 if (sav->sav_vdevs[i]->vdev_guid == guid)
6384 return (B_TRUE);

6386 for (i = 0; i < sav->sav_npending; i++) {
6387 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6388 &spareguid) == 0 && spareguid == guid)
6389 return (B_TRUE);
6390 }

6392 return (B_FALSE);

new/usr/src/uts/common/fs/zfs/spa.c 98

6393 }

6395 /*
6396 * Check if a pool has an active shared spare device.
6397 * Note: reference count of an active spare is 2, as a spare and as a replace
6398 */
6399 static boolean_t
6400 spa_has_active_shared_spare(spa_t *spa)
6401 {
6402 int i, refcnt;
6403 uint64_t pool;
6404 spa_aux_vdev_t *sav = &spa->spa_spares;

6406 for (i = 0; i < sav->sav_count; i++) {
6407 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6408 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6409 refcnt > 2)
6410 return (B_TRUE);
6411 }

6413 return (B_FALSE);
6414 }

6416 /*
6417 * Post a sysevent corresponding to the given event. The ’name’ must be one of
6418 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6419 * filled in from the spa and (optionally) the vdev. This doesn’t do anything
6420 * in the userland libzpool, as we don’t want consumers to misinterpret ztest
6421 * or zdb as real changes.
6422 */
6423 void
6424 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6425 {
6426 #ifdef _KERNEL
6427 sysevent_t *ev;
6428 sysevent_attr_list_t *attr = NULL;
6429 sysevent_value_t value;
6430 sysevent_id_t eid;

6432 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6433 SE_SLEEP);

6435 value.value_type = SE_DATA_TYPE_STRING;
6436 value.value.sv_string = spa_name(spa);
6437 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6438 goto done;

6440 value.value_type = SE_DATA_TYPE_UINT64;
6441 value.value.sv_uint64 = spa_guid(spa);
6442 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6443 goto done;

6445 if (vd) {
6446 value.value_type = SE_DATA_TYPE_UINT64;
6447 value.value.sv_uint64 = vd->vdev_guid;
6448 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6449 SE_SLEEP) != 0)
6450 goto done;

6452 if (vd->vdev_path) {
6453 value.value_type = SE_DATA_TYPE_STRING;
6454 value.value.sv_string = vd->vdev_path;
6455 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6456 &value, SE_SLEEP) != 0)
6457 goto done;
6458 }

new/usr/src/uts/common/fs/zfs/spa.c 99

6459 }

6461 if (sysevent_attach_attributes(ev, attr) != 0)
6462 goto done;
6463 attr = NULL;

6465 (void) log_sysevent(ev, SE_SLEEP, &eid);

6467 done:
6468 if (attr)
6469 sysevent_free_attr(attr);
6470 sysevent_free(ev);
6471 #endif
6472 }

new/usr/src/uts/common/fs/zfs/sys/dmu.h 1

**
 28892 Thu May 16 17:33:49 2013
new/usr/src/uts/common/fs/zfs/sys/dmu.h
3741 zfs needs better comments
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

284 typedef void dmu_buf_evict_func_t(struct dmu_buf *db, void *user_ptr);

286 /*
287 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
288 */
289 #define DMU_POOL_DIRECTORY_OBJECT 1
290 #define DMU_POOL_CONFIG "config"
291 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write"
292 #define DMU_POOL_FEATURES_FOR_READ "features_for_read"
293 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions"
294 #define DMU_POOL_ROOT_DATASET "root_dataset"
295 #define DMU_POOL_SYNC_BPOBJ "sync_bplist"
296 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub"
297 #define DMU_POOL_ERRLOG_LAST "errlog_last"
298 #define DMU_POOL_SPARES "spares"
299 #define DMU_POOL_DEFLATE "deflate"
300 #define DMU_POOL_HISTORY "history"
301 #define DMU_POOL_PROPS "pool_props"
302 #define DMU_POOL_L2CACHE "l2cache"
303 #define DMU_POOL_TMP_USERREFS "tmp_userrefs"
304 #define DMU_POOL_DDT "DDT-%s-%s-%s"
305 #define DMU_POOL_DDT_STATS "DDT-statistics"
306 #define DMU_POOL_CREATION_VERSION "creation_version"
307 #define DMU_POOL_SCAN "scan"
308 #define DMU_POOL_FREE_BPOBJ "free_bpobj"
309 #define DMU_POOL_BPTREE_OBJ "bptree_obj"
310 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj"

312 /*
313 * Allocate an object from this objset. The range of object numbers
314 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode.
315 *
316 * The transaction must be assigned to a txg. The newly allocated
317 * object will be "held" in the transaction (ie. you can modify the
318 * newly allocated object in this transaction).
319 *
320 * dmu_object_alloc() chooses an object and returns it in *objectp.
321 *
322 * dmu_object_claim() allocates a specific object number. If that
323 * number is already allocated, it fails and returns EEXIST.
324 *
325 * Return 0 on success, or ENOSPC or EEXIST as specified above.
326 */
327 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
328 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
329 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
330 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
331 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
332 int blocksize, dmu_object_type_t bonustype, int bonuslen);

334 /*
335 * Free an object from this objset.
336 *
337 * The object’s data will be freed as well (ie. you don’t need to call

new/usr/src/uts/common/fs/zfs/sys/dmu.h 2

338 * dmu_free(object, 0, -1, tx)).
339 *
340 * The object need not be held in the transaction.
341 *
342 * If there are any holds on this object’s buffers (via dmu_buf_hold()),
343 * or tx holds on the object (via dmu_tx_hold_object()), you can not
344 * free it; it fails and returns EBUSY.
345 *
346 * If the object is not allocated, it fails and returns ENOENT.
347 *
348 * Return 0 on success, or EBUSY or ENOENT as specified above.
349 */
350 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);

352 /*
353 * Find the next allocated or free object.
354 *
355 * The objectp parameter is in-out. It will be updated to be the next
356 * object which is allocated. Ignore objects which have not been
357 * modified since txg.
358 *
359 * XXX Can only be called on a objset with no dirty data.
360 *
361 * Returns 0 on success, or ENOENT if there are no more objects.
362 */
363 int dmu_object_next(objset_t *os, uint64_t *objectp,
364 boolean_t hole, uint64_t txg);

366 /*
367 * Set the data blocksize for an object.
368 *
369 * The object cannot have any blocks allcated beyond the first. If
370 * the first block is allocated already, the new size must be greater
371 * than the current block size. If these conditions are not met,
372 * ENOTSUP will be returned.
373 *
374 * Returns 0 on success, or EBUSY if there are any holds on the object
375 * contents, or ENOTSUP as described above.
376 */
377 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
378 int ibs, dmu_tx_t *tx);

380 /*
381 * Set the checksum property on a dnode. The new checksum algorithm will
382 * apply to all newly written blocks; existing blocks will not be affected.
383 */
384 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
385 dmu_tx_t *tx);

387 /*
388 * Set the compress property on a dnode. The new compression algorithm will
389 * apply to all newly written blocks; existing blocks will not be affected.
390 */
391 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
392 dmu_tx_t *tx);

394 /*
395 * Decide how to write a block: checksum, compression, number of copies, etc.
396 */
397 #define WP_NOFILL 0x1
398 #define WP_DMU_SYNC 0x2
399 #define WP_SPILL 0x4

401 void dmu_write_policy(objset_t *os, struct dnode *dn, int level, int wp,
402 struct zio_prop *zp);
403 /*

new/usr/src/uts/common/fs/zfs/sys/dmu.h 3

404 * The bonus data is accessed more or less like a regular buffer.
405 * You must dmu_bonus_hold() to get the buffer, which will give you a
406 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
407 * data. As with any normal buffer, you must call dmu_buf_read() to
408 * read db_data, dmu_buf_will_dirty() before modifying it, and the
409 * object must be held in an assigned transaction before calling
410 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus
411 * buffer as well. You must release your hold with dmu_buf_rele().
412 *
413 * Returns ENOENT, EIO, or 0.
414 #endif /* ! codereview */
415 */
416 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
417 int dmu_bonus_max(void);
418 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
419 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
420 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
421 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);

423 /*
424 * Special spill buffer support used by "SA" framework
425 */

427 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
428 int dmu_spill_hold_by_dnode(struct dnode *dn, uint32_t flags,
429 void *tag, dmu_buf_t **dbp);
430 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);

432 /*
433 * Obtain the DMU buffer from the specified object which contains the
434 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so
435 * that it will remain in memory. You must release the hold with
436 * dmu_buf_rele(). You musn’t access the dmu_buf_t after releasing your
437 * hold. You must have a hold on any dmu_buf_t* you pass to the DMU.
438 *
439 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
440 * on the returned buffer before reading or writing the buffer’s
441 * db_data. The comments for those routines describe what particular
442 * operations are valid after calling them.
443 *
444 * The object number must be a valid, allocated object number.
445 */
446 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
447 void *tag, dmu_buf_t **, int flags);
448 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
449 void dmu_buf_rele(dmu_buf_t *db, void *tag);
450 uint64_t dmu_buf_refcount(dmu_buf_t *db);

452 /*
453 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
454 * range of an object. A pointer to an array of dmu_buf_t*’s is
455 * returned (in *dbpp).
456 *
457 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*’s, and
458 * frees the array. The hold on the array of buffers MUST be released
459 * with dmu_buf_rele_array. You can NOT release the hold on each buffer
460 * individually with dmu_buf_rele.
461 */
462 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
463 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp);
464 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);

466 /*
467 * Returns NULL on success, or the existing user ptr if it’s already
468 * been set.
469 *

new/usr/src/uts/common/fs/zfs/sys/dmu.h 4

470 * user_ptr is for use by the user and can be obtained via dmu_buf_get_user().
471 *
472 * user_data_ptr_ptr should be NULL, or a pointer to a pointer which
473 * will be set to db->db_data when you are allowed to access it. Note
474 * that db->db_data (the pointer) can change when you do dmu_buf_read(),
475 * dmu_buf_tryupgrade(), dmu_buf_will_dirty(), or dmu_buf_will_fill().
476 * *user_data_ptr_ptr will be set to the new value when it changes.
477 *
478 * If non-NULL, pageout func will be called when this buffer is being
479 * excised from the cache, so that you can clean up the data structure
480 * pointed to by user_ptr.
481 *
482 * dmu_evict_user() will call the pageout func for all buffers in a
483 * objset with a given pageout func.
484 */
485 void *dmu_buf_set_user(dmu_buf_t *db, void *user_ptr, void *user_data_ptr_ptr,
486 dmu_buf_evict_func_t *pageout_func);
487 /*
488 * set_user_ie is the same as set_user, but request immediate eviction
489 * when hold count goes to zero.
490 */
491 void *dmu_buf_set_user_ie(dmu_buf_t *db, void *user_ptr,
492 void *user_data_ptr_ptr, dmu_buf_evict_func_t *pageout_func);
493 void *dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr,
494 void *user_ptr, void *user_data_ptr_ptr,
495 dmu_buf_evict_func_t *pageout_func);
496 void dmu_evict_user(objset_t *os, dmu_buf_evict_func_t *func);

498 /*
499 * Returns the user_ptr set with dmu_buf_set_user(), or NULL if not set.
500 */
501 void *dmu_buf_get_user(dmu_buf_t *db);

503 /*
504 * Returns the blkptr associated with this dbuf, or NULL if not set.
505 */
506 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);

508 /*
509 * Indicate that you are going to modify the buffer’s data (db_data).
510 *
511 * The transaction (tx) must be assigned to a txg (ie. you’ve called
512 * dmu_tx_assign()). The buffer’s object must be held in the tx
513 * (ie. you’ve called dmu_tx_hold_object(tx, db->db_object)).
514 */
515 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);

517 /*
518 * Tells if the given dbuf is freeable.
519 */
520 boolean_t dmu_buf_freeable(dmu_buf_t *);

522 /*
523 * You must create a transaction, then hold the objects which you will
524 * (or might) modify as part of this transaction. Then you must assign
525 * the transaction to a transaction group. Once the transaction has
526 * been assigned, you can modify buffers which belong to held objects as
527 * part of this transaction. You can’t modify buffers before the
528 * transaction has been assigned; you can’t modify buffers which don’t
529 * belong to objects which this transaction holds; you can’t hold
530 * objects once the transaction has been assigned. You may hold an
531 * object which you are going to free (with dmu_object_free()), but you
532 * don’t have to.
533 *
534 * You can abort the transaction before it has been assigned.
535 *

new/usr/src/uts/common/fs/zfs/sys/dmu.h 5

536 * Note that you may hold buffers (with dmu_buf_hold) at any time,
537 * regardless of transaction state.
538 */

540 #define DMU_NEW_OBJECT (-1ULL)
541 #define DMU_OBJECT_END (-1ULL)

543 dmu_tx_t *dmu_tx_create(objset_t *os);
544 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
545 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
546 uint64_t len);
547 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
548 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
549 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
550 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
551 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
552 void dmu_tx_abort(dmu_tx_t *tx);
553 int dmu_tx_assign(dmu_tx_t *tx, enum txg_how txg_how);
554 void dmu_tx_wait(dmu_tx_t *tx);
555 void dmu_tx_commit(dmu_tx_t *tx);

557 /*
558 * To register a commit callback, dmu_tx_callback_register() must be called.
559 *
560 * dcb_data is a pointer to caller private data that is passed on as a
561 * callback parameter. The caller is responsible for properly allocating and
562 * freeing it.
563 *
564 * When registering a callback, the transaction must be already created, but
565 * it cannot be committed or aborted. It can be assigned to a txg or not.
566 *
567 * The callback will be called after the transaction has been safely written
568 * to stable storage and will also be called if the dmu_tx is aborted.
569 * If there is any error which prevents the transaction from being committed to
570 * disk, the callback will be called with a value of error != 0.
571 */
572 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);

574 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
575 void *dcb_data);

577 /*
578 * Free up the data blocks for a defined range of a file. If size is
579 * -1, the range from offset to end-of-file is freed.
580 */
581 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
582 uint64_t size, dmu_tx_t *tx);
583 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
584 uint64_t size);
585 int dmu_free_object(objset_t *os, uint64_t object);

587 /*
588 * Convenience functions.
589 *
590 * Canfail routines will return 0 on success, or an errno if there is a
591 * nonrecoverable I/O error.
592 */
593 #define DMU_READ_PREFETCH 0 /* prefetch */
594 #define DMU_READ_NO_PREFETCH 1 /* don’t prefetch */
595 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
596 void *buf, uint32_t flags);
597 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
598 const void *buf, dmu_tx_t *tx);
599 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
600 dmu_tx_t *tx);
601 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);

new/usr/src/uts/common/fs/zfs/sys/dmu.h 6

602 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
603 dmu_tx_t *tx);
604 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
605 dmu_tx_t *tx);
606 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
607 uint64_t size, struct page *pp, dmu_tx_t *tx);
608 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
609 void dmu_return_arcbuf(struct arc_buf *buf);
610 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
611 dmu_tx_t *tx);
612 int dmu_xuio_init(struct xuio *uio, int niov);
613 void dmu_xuio_fini(struct xuio *uio);
614 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
615 size_t n);
616 int dmu_xuio_cnt(struct xuio *uio);
617 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
618 void dmu_xuio_clear(struct xuio *uio, int i);
619 void xuio_stat_wbuf_copied();
620 void xuio_stat_wbuf_nocopy();

622 extern int zfs_prefetch_disable;

624 /*
625 * Asynchronously try to read in the data.
626 */
627 void dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset,
628 uint64_t len);

630 typedef struct dmu_object_info {
631 /* All sizes are in bytes unless otherwise indicated. */
632 uint32_t doi_data_block_size;
633 uint32_t doi_metadata_block_size;
634 dmu_object_type_t doi_type;
635 dmu_object_type_t doi_bonus_type;
636 uint64_t doi_bonus_size;
637 uint8_t doi_indirection; /* 2 = dnode->indirect->data */
638 uint8_t doi_checksum;
639 uint8_t doi_compress;
640 uint8_t doi_pad[5];
641 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */
642 uint64_t doi_max_offset;
643 uint64_t doi_fill_count; /* number of non-empty blocks */
644 } dmu_object_info_t;

646 typedef void arc_byteswap_func_t(void *buf, size_t size);

648 typedef struct dmu_object_type_info {
649 dmu_object_byteswap_t ot_byteswap;
650 boolean_t ot_metadata;
651 char *ot_name;
652 } dmu_object_type_info_t;

654 typedef struct dmu_object_byteswap_info {
655 arc_byteswap_func_t *ob_func;
656 char *ob_name;
657 } dmu_object_byteswap_info_t;

659 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
660 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];

662 /*
663 * Get information on a DMU object.
664 *
665 * Return 0 on success or ENOENT if object is not allocated.
666 *
667 * If doi is NULL, just indicates whether the object exists.

new/usr/src/uts/common/fs/zfs/sys/dmu.h 7

668 */
669 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
670 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
671 #endif /* ! codereview */
672 void dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
673 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
674 #endif /* ! codereview */
675 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
676 /*
677 * Like dmu_object_info_from_db, but faster still when you only care about
678 * the size. This is specifically optimized for zfs_getattr().
679 */
680 #endif /* ! codereview */
681 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
682 u_longlong_t *nblk512);

684 typedef struct dmu_objset_stats {
685 uint64_t dds_num_clones; /* number of clones of this */
686 uint64_t dds_creation_txg;
687 uint64_t dds_guid;
688 dmu_objset_type_t dds_type;
689 uint8_t dds_is_snapshot;
690 uint8_t dds_inconsistent;
691 char dds_origin[MAXNAMELEN];
692 } dmu_objset_stats_t;

694 /*
695 * Get stats on a dataset.
696 */
697 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);

699 /*
700 * Add entries to the nvlist for all the objset’s properties. See
701 * zfs_prop_table[] and zfs(1m) for details on the properties.
702 */
703 void dmu_objset_stats(objset_t *os, struct nvlist *nv);

705 /*
706 * Get the space usage statistics for statvfs().
707 *
708 * refdbytes is the amount of space "referenced" by this objset.
709 * availbytes is the amount of space available to this objset, taking
710 * into account quotas & reservations, assuming that no other objsets
711 * use the space first. These values correspond to the ’referenced’ and
712 * ’available’ properties, described in the zfs(1m) manpage.
713 *
714 * usedobjs and availobjs are the number of objects currently allocated,
715 * and available.
716 */
717 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
718 uint64_t *usedobjsp, uint64_t *availobjsp);

720 /*
721 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
722 * (Contrast with the ds_guid which is a 64-bit ID that will never
723 * change, so there is a small probability that it will collide.)
724 */
725 uint64_t dmu_objset_fsid_guid(objset_t *os);

727 /*
728 * Get the [cm]time for an objset’s snapshot dir
729 */
730 timestruc_t dmu_objset_snap_cmtime(objset_t *os);

732 int dmu_objset_is_snapshot(objset_t *os);

new/usr/src/uts/common/fs/zfs/sys/dmu.h 8

734 extern struct spa *dmu_objset_spa(objset_t *os);
735 extern struct zilog *dmu_objset_zil(objset_t *os);
736 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
737 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
738 extern void dmu_objset_name(objset_t *os, char *buf);
739 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
740 extern uint64_t dmu_objset_id(objset_t *os);
741 extern uint64_t dmu_objset_syncprop(objset_t *os);
742 extern uint64_t dmu_objset_logbias(objset_t *os);
743 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
744 uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
745 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
746 int maxlen, boolean_t *conflict);
747 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
748 uint64_t *idp, uint64_t *offp);

750 typedef int objset_used_cb_t(dmu_object_type_t bonustype,
751 void *bonus, uint64_t *userp, uint64_t *groupp);
752 extern void dmu_objset_register_type(dmu_objset_type_t ost,
753 objset_used_cb_t *cb);
754 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
755 extern void *dmu_objset_get_user(objset_t *os);

757 /*
758 * Return the txg number for the given assigned transaction.
759 */
760 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);

762 /*
763 * Synchronous write.
764 * If a parent zio is provided this function initiates a write on the
765 * provided buffer as a child of the parent zio.
766 * In the absence of a parent zio, the write is completed synchronously.
767 * At write completion, blk is filled with the bp of the written block.
768 * Note that while the data covered by this function will be on stable
769 * storage when the write completes this new data does not become a
770 * permanent part of the file until the associated transaction commits.
771 */

773 /*
774 * {zfs,zvol,ztest}_get_done() args
775 */
776 typedef struct zgd {
777 struct zilog *zgd_zilog;
778 struct blkptr *zgd_bp;
779 dmu_buf_t *zgd_db;
780 struct rl *zgd_rl;
781 void *zgd_private;
782 } zgd_t;

784 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
785 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);

787 /*
788 * Find the next hole or data block in file starting at *off
789 * Return found offset in *off. Return ESRCH for end of file.
790 */
791 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
792 uint64_t *off);

794 /*
795 * Initial setup and final teardown.
796 */
797 extern void dmu_init(void);
798 extern void dmu_fini(void);

new/usr/src/uts/common/fs/zfs/sys/dmu.h 9

800 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
801 uint64_t object, uint64_t offset, int len);
802 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
803 dmu_traverse_cb_t cb, void *arg);

805 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
806 struct vnode *vp, offset_t *offp);

808 /* CRC64 table */
809 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
810 extern uint64_t zfs_crc64_table[256];

812 #ifdef __cplusplus
813 }
814 #endif

816 #endif /* _SYS_DMU_H */

new/usr/src/uts/common/fs/zfs/txg.c 1

**
 21896 Thu May 16 17:33:49 2013
new/usr/src/uts/common/fs/zfs/txg.c
3741 zfs needs better comments
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

340 /*
341 * Blocks until all transactions in the group are committed.
342 *
343 * On return, the transaction group has reached a stable state in which it can
344 * then be passed off to the syncing context.
345 */
346 #endif /* ! codereview */
347 static void
348 txg_quiesce(dsl_pool_t *dp, uint64_t txg)
349 {
350 tx_state_t *tx = &dp->dp_tx;
351 int g = txg & TXG_MASK;
352 int c;

354 /*
355 * Grab all tx_cpu locks so nobody else can get into this txg.
356 */
357 for (c = 0; c < max_ncpus; c++)
358 mutex_enter(&tx->tx_cpu[c].tc_lock);

360 ASSERT(txg == tx->tx_open_txg);
361 tx->tx_open_txg++;

363 DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg);
364 DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg);

366 /*
367 * Now that we’ve incremented tx_open_txg, we can let threads
368 * enter the next transaction group.
369 */
370 for (c = 0; c < max_ncpus; c++)
371 mutex_exit(&tx->tx_cpu[c].tc_lock);

373 /*
374 * Quiesce the transaction group by waiting for everyone to txg_exit().
375 */
376 for (c = 0; c < max_ncpus; c++) {
377 tx_cpu_t *tc = &tx->tx_cpu[c];
378 mutex_enter(&tc->tc_lock);
379 while (tc->tc_count[g] != 0)
380 cv_wait(&tc->tc_cv[g], &tc->tc_lock);
381 mutex_exit(&tc->tc_lock);
382 }
383 }

385 static void
386 txg_do_callbacks(list_t *cb_list)
387 {
388 dmu_tx_do_callbacks(cb_list, 0);

390 list_destroy(cb_list);

392 kmem_free(cb_list, sizeof (list_t));
393 }

new/usr/src/uts/common/fs/zfs/txg.c 2

395 /*
396 * Dispatch the commit callbacks registered on this txg to worker threads.
397 *
398 * If no callbacks are registered for a given TXG, nothing happens.
399 * This function creates a taskq for the associated pool, if needed.
400 #endif /* ! codereview */
401 */
402 static void
403 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
404 {
405 int c;
406 tx_state_t *tx = &dp->dp_tx;
407 list_t *cb_list;

409 for (c = 0; c < max_ncpus; c++) {
410 tx_cpu_t *tc = &tx->tx_cpu[c];
411 /*
412 * No need to lock tx_cpu_t at this point, since this can
413 * only be called once a txg has been synced.
414 */
340 /* No need to lock tx_cpu_t at this point */

416 int g = txg & TXG_MASK;

418 if (list_is_empty(&tc->tc_callbacks[g]))
419 continue;

421 if (tx->tx_commit_cb_taskq == NULL) {
422 /*
423 * Commit callback taskq hasn’t been created yet.
424 */
425 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
426 max_ncpus, minclsyspri, max_ncpus, max_ncpus * 2,
427 TASKQ_PREPOPULATE);
428 }

430 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
431 list_create(cb_list, sizeof (dmu_tx_callback_t),
432 offsetof(dmu_tx_callback_t, dcb_node));

434 list_move_tail(&tc->tc_callbacks[g], cb_list);

436 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
437 txg_do_callbacks, cb_list, TQ_SLEEP);
438 }
439 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/vdev_label.c 1

**
 37985 Thu May 16 17:33:49 2013
new/usr/src/uts/common/fs/zfs/vdev_label.c
3741 zfs needs better comments
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

1031 /* Sync the uberblocks to all vdevs in svd[] */
1032 #endif /* ! codereview */
1033 int
1034 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1035 {
1036 spa_t *spa = svd[0]->vdev_spa;
1037 zio_t *zio;
1038 uint64_t good_writes = 0;

1040 zio = zio_root(spa, NULL, &good_writes, flags);

1042 for (int v = 0; v < svdcount; v++)
1043 vdev_uberblock_sync(zio, ub, svd[v], flags);

1045 (void) zio_wait(zio);

1047 /*
1048 * Flush the uberblocks to disk. This ensures that the odd labels
1049 * are no longer needed (because the new uberblocks and the even
1050 * labels are safely on disk), so it is safe to overwrite them.
1051 */
1052 zio = zio_root(spa, NULL, NULL, flags);

1054 for (int v = 0; v < svdcount; v++)
1055 zio_flush(zio, svd[v]);

1057 (void) zio_wait(zio);

1059 return (good_writes >= 1 ? 0 : EIO);
1060 }

1062 /*
1063 * On success, increment the count of good writes for our top-level vdev.
1064 */
1065 static void
1066 vdev_label_sync_done(zio_t *zio)
1067 {
1068 uint64_t *good_writes = zio->io_private;

1070 if (zio->io_error == 0)
1071 atomic_add_64(good_writes, 1);
1072 }

1074 /*
1075 * If there weren’t enough good writes, indicate failure to the parent.
1076 */
1077 static void
1078 vdev_label_sync_top_done(zio_t *zio)
1079 {
1080 uint64_t *good_writes = zio->io_private;

1082 if (*good_writes == 0)
1083 zio->io_error = SET_ERROR(EIO);

new/usr/src/uts/common/fs/zfs/vdev_label.c 2

1085 kmem_free(good_writes, sizeof (uint64_t));
1086 }

1088 /*
1089 * We ignore errors for log and cache devices, simply free the private data.
1090 */
1091 static void
1092 vdev_label_sync_ignore_done(zio_t *zio)
1093 {
1094 kmem_free(zio->io_private, sizeof (uint64_t));
1095 }

1097 /*
1098 * Write all even or odd labels to all leaves of the specified vdev.
1099 */
1100 static void
1101 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
1102 {
1103 nvlist_t *label;
1104 vdev_phys_t *vp;
1105 char *buf;
1106 size_t buflen;

1108 for (int c = 0; c < vd->vdev_children; c++)
1109 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);

1111 if (!vd->vdev_ops->vdev_op_leaf)
1112 return;

1114 if (!vdev_writeable(vd))
1115 return;

1117 /*
1118 * Generate a label describing the top-level config to which we belong.
1119 */
1120 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);

1122 vp = zio_buf_alloc(sizeof (vdev_phys_t));
1123 bzero(vp, sizeof (vdev_phys_t));

1125 buf = vp->vp_nvlist;
1126 buflen = sizeof (vp->vp_nvlist);

1128 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1129 for (; l < VDEV_LABELS; l += 2) {
1130 vdev_label_write(zio, vd, l, vp,
1131 offsetof(vdev_label_t, vl_vdev_phys),
1132 sizeof (vdev_phys_t),
1133 vdev_label_sync_done, zio->io_private,
1134 flags | ZIO_FLAG_DONT_PROPAGATE);
1135 }
1136 }

1138 zio_buf_free(vp, sizeof (vdev_phys_t));
1139 nvlist_free(label);
1140 }

1142 int
1143 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1144 {
1145 list_t *dl = &spa->spa_config_dirty_list;
1146 vdev_t *vd;
1147 zio_t *zio;
1148 int error;

1150 /*

new/usr/src/uts/common/fs/zfs/vdev_label.c 3

1151 * Write the new labels to disk.
1152 */
1153 zio = zio_root(spa, NULL, NULL, flags);

1155 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1156 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1157 KM_SLEEP);

1159 ASSERT(!vd->vdev_ishole);

1161 zio_t *vio = zio_null(zio, spa, NULL,
1162 (vd->vdev_islog || vd->vdev_aux != NULL) ?
1163 vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1164 good_writes, flags);
1165 vdev_label_sync(vio, vd, l, txg, flags);
1166 zio_nowait(vio);
1167 }

1169 error = zio_wait(zio);

1171 /*
1172 * Flush the new labels to disk.
1173 */
1174 zio = zio_root(spa, NULL, NULL, flags);

1176 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1177 zio_flush(zio, vd);

1179 (void) zio_wait(zio);

1181 return (error);
1182 }

1184 /*
1185 * Sync the uberblock and any changes to the vdev configuration.
1186 *
1187 * The order of operations is carefully crafted to ensure that
1188 * if the system panics or loses power at any time, the state on disk
1189 * is still transactionally consistent. The in-line comments below
1190 * describe the failure semantics at each stage.
1191 *
1192 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1193 * at any time, you can just call it again, and it will resume its work.
1194 */
1195 int
1196 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
1197 {
1198 spa_t *spa = svd[0]->vdev_spa;
1199 uberblock_t *ub = &spa->spa_uberblock;
1200 vdev_t *vd;
1201 zio_t *zio;
1202 int error;
1203 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;

1205 /*
1206 * Normally, we don’t want to try too hard to write every label and
1207 * uberblock. If there is a flaky disk, we don’t want the rest of the
1208 * sync process to block while we retry. But if we can’t write a
1209 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1210 * bailing out and declaring the pool faulted.
1211 */
1212 if (tryhard)
1213 flags |= ZIO_FLAG_TRYHARD;

1215 ASSERT(ub->ub_txg <= txg);

new/usr/src/uts/common/fs/zfs/vdev_label.c 4

1217 /*
1218 * If this isn’t a resync due to I/O errors,
1219 * and nothing changed in this transaction group,
1220 * and the vdev configuration hasn’t changed,
1221 * then there’s nothing to do.
1222 */
1223 if (ub->ub_txg < txg &&
1224 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1225 list_is_empty(&spa->spa_config_dirty_list))
1226 return (0);

1228 if (txg > spa_freeze_txg(spa))
1229 return (0);

1231 ASSERT(txg <= spa->spa_final_txg);

1233 /*
1234 * Flush the write cache of every disk that’s been written to
1235 * in this transaction group. This ensures that all blocks
1236 * written in this txg will be committed to stable storage
1237 * before any uberblock that references them.
1238 */
1239 zio = zio_root(spa, NULL, NULL, flags);

1241 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1242 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1243 zio_flush(zio, vd);

1245 (void) zio_wait(zio);

1247 /*
1248 * Sync out the even labels (L0, L2) for every dirty vdev. If the
1249 * system dies in the middle of this process, that’s OK: all of the
1250 * even labels that made it to disk will be newer than any uberblock,
1251 * and will therefore be considered invalid. The odd labels (L1, L3),
1252 * which have not yet been touched, will still be valid. We flush
1253 * the new labels to disk to ensure that all even-label updates
1254 * are committed to stable storage before the uberblock update.
1255 */
1256 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1257 return (error);

1259 /*
1260 * Sync the uberblocks to all vdevs in svd[].
1261 * If the system dies in the middle of this step, there are two cases
1262 * to consider, and the on-disk state is consistent either way:
1263 *
1264 * (1) If none of the new uberblocks made it to disk, then the
1265 * previous uberblock will be the newest, and the odd labels
1266 * (which had not yet been touched) will be valid with respect
1267 * to that uberblock.
1268 *
1269 * (2) If one or more new uberblocks made it to disk, then they
1270 * will be the newest, and the even labels (which had all
1271 * been successfully committed) will be valid with respect
1272 * to the new uberblocks.
1273 */
1274 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1275 return (error);

1277 /*
1278 * Sync out odd labels for every dirty vdev. If the system dies
1279 * in the middle of this process, the even labels and the new
1280 * uberblocks will suffice to open the pool. The next time
1281 * the pool is opened, the first thing we’ll do -- before any
1282 * user data is modified -- is mark every vdev dirty so that

new/usr/src/uts/common/fs/zfs/vdev_label.c 5

1283 * all labels will be brought up to date. We flush the new labels
1284 * to disk to ensure that all odd-label updates are committed to
1285 * stable storage before the next transaction group begins.
1286 */
1287 return (vdev_label_sync_list(spa, 1, txg, flags));
1288 }

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 1

**
 64447 Thu May 16 17:33:50 2013
new/usr/src/uts/common/fs/zfs/vdev_raidz.c
3741 zfs needs better comments
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

434 /*
435 * Divides the IO evenly across all child vdevs; usually, dcols is
436 * the number of children in the target vdev.
437 */
438 #endif /* ! codereview */
439 static raidz_map_t *
440 vdev_raidz_map_alloc(zio_t *zio, uint64_t unit_shift, uint64_t dcols,
441 uint64_t nparity)
442 {
443 raidz_map_t *rm;
444 /* The starting RAIDZ (parent) vdev sector of the block. */
445 #endif /* ! codereview */
446 uint64_t b = zio->io_offset >> unit_shift;
447 /* The zio’s size in units of the vdev’s minimum sector size. */
448 #endif /* ! codereview */
449 uint64_t s = zio->io_size >> unit_shift;
450 /* The first column for this stripe. */
451 #endif /* ! codereview */
452 uint64_t f = b % dcols;
453 /* The starting byte offset on each child vdev. */
454 #endif /* ! codereview */
455 uint64_t o = (b / dcols) << unit_shift;
456 uint64_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot;

458 /*
459 * "Quotient": The number of data sectors for this stripe on all but
460 * the "big column" child vdevs that also contain "remainder" data.
461 */
462 #endif /* ! codereview */
463 q = s / (dcols - nparity);

465 /*
466 * "Remainder": The number of partial stripe data sectors in this I/O.
467 * This will add a sector to some, but not all, child vdevs.
468 */
469 #endif /* ! codereview */
470 r = s - q * (dcols - nparity);

472 /* The number of "big columns" - those which contain remainder data. */
473 #endif /* ! codereview */
474 bc = (r == 0 ? 0 : r + nparity);

476 /*
477 * The total number of data and parity sectors associated with
478 * this I/O.
479 */
480 #endif /* ! codereview */
481 tot = s + nparity * (q + (r == 0 ? 0 : 1));

483 /* acols: The columns that will be accessed. */
484 /* scols: The columns that will be accessed or skipped. */
485 #endif /* ! codereview */
486 if (q == 0) {
487 /* Our I/O request doesn’t span all child vdevs. */

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 2

488 #endif /* ! codereview */
489 acols = bc;
490 scols = MIN(dcols, roundup(bc, nparity + 1));
491 } else {
492 acols = dcols;
493 scols = dcols;
494 }

496 ASSERT3U(acols, <=, scols);

498 rm = kmem_alloc(offsetof(raidz_map_t, rm_col[scols]), KM_SLEEP);

500 rm->rm_cols = acols;
501 rm->rm_scols = scols;
502 rm->rm_bigcols = bc;
503 rm->rm_skipstart = bc;
504 rm->rm_missingdata = 0;
505 rm->rm_missingparity = 0;
506 rm->rm_firstdatacol = nparity;
507 rm->rm_datacopy = NULL;
508 rm->rm_reports = 0;
509 rm->rm_freed = 0;
510 rm->rm_ecksuminjected = 0;

512 asize = 0;

514 for (c = 0; c < scols; c++) {
515 col = f + c;
516 coff = o;
517 if (col >= dcols) {
518 col -= dcols;
519 coff += 1ULL << unit_shift;
520 }
521 rm->rm_col[c].rc_devidx = col;
522 rm->rm_col[c].rc_offset = coff;
523 rm->rm_col[c].rc_data = NULL;
524 rm->rm_col[c].rc_gdata = NULL;
525 rm->rm_col[c].rc_error = 0;
526 rm->rm_col[c].rc_tried = 0;
527 rm->rm_col[c].rc_skipped = 0;

529 if (c >= acols)
530 rm->rm_col[c].rc_size = 0;
531 else if (c < bc)
532 rm->rm_col[c].rc_size = (q + 1) << unit_shift;
533 else
534 rm->rm_col[c].rc_size = q << unit_shift;

536 asize += rm->rm_col[c].rc_size;
537 }

539 ASSERT3U(asize, ==, tot << unit_shift);
540 rm->rm_asize = roundup(asize, (nparity + 1) << unit_shift);
541 rm->rm_nskip = roundup(tot, nparity + 1) - tot;
542 ASSERT3U(rm->rm_asize - asize, ==, rm->rm_nskip << unit_shift);
543 ASSERT3U(rm->rm_nskip, <=, nparity);

545 for (c = 0; c < rm->rm_firstdatacol; c++)
546 rm->rm_col[c].rc_data = zio_buf_alloc(rm->rm_col[c].rc_size);

548 rm->rm_col[c].rc_data = zio->io_data;

550 for (c = c + 1; c < acols; c++)
551 rm->rm_col[c].rc_data = (char *)rm->rm_col[c - 1].rc_data +
552 rm->rm_col[c - 1].rc_size;

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 3

554 /*
555 * If all data stored spans all columns, there’s a danger that parity
556 * will always be on the same device and, since parity isn’t read
557 * during normal operation, that that device’s I/O bandwidth won’t be
558 * used effectively. We therefore switch the parity every 1MB.
559 *
560 * ... at least that was, ostensibly, the theory. As a practical
561 * matter unless we juggle the parity between all devices evenly, we
562 * won’t see any benefit. Further, occasional writes that aren’t a
563 * multiple of the LCM of the number of children and the minimum
564 * stripe width are sufficient to avoid pessimal behavior.
565 * Unfortunately, this decision created an implicit on-disk format
566 * requirement that we need to support for all eternity, but only
567 * for single-parity RAID-Z.
568 *
569 * If we intend to skip a sector in the zeroth column for padding
570 * we must make sure to note this swap. We will never intend to
571 * skip the first column since at least one data and one parity
572 * column must appear in each row.
573 */
574 ASSERT(rm->rm_cols >= 2);
575 ASSERT(rm->rm_col[0].rc_size == rm->rm_col[1].rc_size);

577 if (rm->rm_firstdatacol == 1 && (zio->io_offset & (1ULL << 20))) {
578 devidx = rm->rm_col[0].rc_devidx;
579 o = rm->rm_col[0].rc_offset;
580 rm->rm_col[0].rc_devidx = rm->rm_col[1].rc_devidx;
581 rm->rm_col[0].rc_offset = rm->rm_col[1].rc_offset;
582 rm->rm_col[1].rc_devidx = devidx;
583 rm->rm_col[1].rc_offset = o;

585 if (rm->rm_skipstart == 0)
586 rm->rm_skipstart = 1;
587 }

589 zio->io_vsd = rm;
590 zio->io_vsd_ops = &vdev_raidz_vsd_ops;
591 return (rm);
592 }

594 static void
595 vdev_raidz_generate_parity_p(raidz_map_t *rm)
596 {
597 uint64_t *p, *src, pcount, ccount, i;
598 int c;

600 pcount = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]);

602 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
603 src = rm->rm_col[c].rc_data;
604 p = rm->rm_col[VDEV_RAIDZ_P].rc_data;
605 ccount = rm->rm_col[c].rc_size / sizeof (src[0]);

607 if (c == rm->rm_firstdatacol) {
608 ASSERT(ccount == pcount);
609 for (i = 0; i < ccount; i++, src++, p++) {
610 *p = *src;
611 }
612 } else {
613 ASSERT(ccount <= pcount);
614 for (i = 0; i < ccount; i++, src++, p++) {
615 *p ^= *src;
616 }
617 }
618 }
619 }

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 4

621 static void
622 vdev_raidz_generate_parity_pq(raidz_map_t *rm)
623 {
624 uint64_t *p, *q, *src, pcnt, ccnt, mask, i;
625 int c;

627 pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]);
628 ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
629 rm->rm_col[VDEV_RAIDZ_Q].rc_size);

631 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
632 src = rm->rm_col[c].rc_data;
633 p = rm->rm_col[VDEV_RAIDZ_P].rc_data;
634 q = rm->rm_col[VDEV_RAIDZ_Q].rc_data;

636 ccnt = rm->rm_col[c].rc_size / sizeof (src[0]);

638 if (c == rm->rm_firstdatacol) {
639 ASSERT(ccnt == pcnt || ccnt == 0);
640 for (i = 0; i < ccnt; i++, src++, p++, q++) {
641 *p = *src;
642 *q = *src;
643 }
644 for (; i < pcnt; i++, src++, p++, q++) {
645 *p = 0;
646 *q = 0;
647 }
648 } else {
649 ASSERT(ccnt <= pcnt);

651 /*
652 * Apply the algorithm described above by multiplying
653 * the previous result and adding in the new value.
654 */
655 for (i = 0; i < ccnt; i++, src++, p++, q++) {
656 *p ^= *src;

658 VDEV_RAIDZ_64MUL_2(*q, mask);
659 *q ^= *src;
660 }

662 /*
663 * Treat short columns as though they are full of 0s.
664 * Note that there’s therefore nothing needed for P.
665 */
666 for (; i < pcnt; i++, q++) {
667 VDEV_RAIDZ_64MUL_2(*q, mask);
668 }
669 }
670 }
671 }

673 static void
674 vdev_raidz_generate_parity_pqr(raidz_map_t *rm)
675 {
676 uint64_t *p, *q, *r, *src, pcnt, ccnt, mask, i;
677 int c;

679 pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]);
680 ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
681 rm->rm_col[VDEV_RAIDZ_Q].rc_size);
682 ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
683 rm->rm_col[VDEV_RAIDZ_R].rc_size);

685 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 5

686 src = rm->rm_col[c].rc_data;
687 p = rm->rm_col[VDEV_RAIDZ_P].rc_data;
688 q = rm->rm_col[VDEV_RAIDZ_Q].rc_data;
689 r = rm->rm_col[VDEV_RAIDZ_R].rc_data;

691 ccnt = rm->rm_col[c].rc_size / sizeof (src[0]);

693 if (c == rm->rm_firstdatacol) {
694 ASSERT(ccnt == pcnt || ccnt == 0);
695 for (i = 0; i < ccnt; i++, src++, p++, q++, r++) {
696 *p = *src;
697 *q = *src;
698 *r = *src;
699 }
700 for (; i < pcnt; i++, src++, p++, q++, r++) {
701 *p = 0;
702 *q = 0;
703 *r = 0;
704 }
705 } else {
706 ASSERT(ccnt <= pcnt);

708 /*
709 * Apply the algorithm described above by multiplying
710 * the previous result and adding in the new value.
711 */
712 for (i = 0; i < ccnt; i++, src++, p++, q++, r++) {
713 *p ^= *src;

715 VDEV_RAIDZ_64MUL_2(*q, mask);
716 *q ^= *src;

718 VDEV_RAIDZ_64MUL_4(*r, mask);
719 *r ^= *src;
720 }

722 /*
723 * Treat short columns as though they are full of 0s.
724 * Note that there’s therefore nothing needed for P.
725 */
726 for (; i < pcnt; i++, q++, r++) {
727 VDEV_RAIDZ_64MUL_2(*q, mask);
728 VDEV_RAIDZ_64MUL_4(*r, mask);
729 }
730 }
731 }
732 }

734 /*
735 * Generate RAID parity in the first virtual columns according to the number of
736 * parity columns available.
737 */
738 static void
739 vdev_raidz_generate_parity(raidz_map_t *rm)
740 {
741 switch (rm->rm_firstdatacol) {
742 case 1:
743 vdev_raidz_generate_parity_p(rm);
744 break;
745 case 2:
746 vdev_raidz_generate_parity_pq(rm);
747 break;
748 case 3:
749 vdev_raidz_generate_parity_pqr(rm);
750 break;
751 default:

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 6

752 cmn_err(CE_PANIC, "invalid RAID-Z configuration");
753 }
754 }

756 static int
757 vdev_raidz_reconstruct_p(raidz_map_t *rm, int *tgts, int ntgts)
758 {
759 uint64_t *dst, *src, xcount, ccount, count, i;
760 int x = tgts[0];
761 int c;

763 ASSERT(ntgts == 1);
764 ASSERT(x >= rm->rm_firstdatacol);
765 ASSERT(x < rm->rm_cols);

767 xcount = rm->rm_col[x].rc_size / sizeof (src[0]);
768 ASSERT(xcount <= rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]));
769 ASSERT(xcount > 0);

771 src = rm->rm_col[VDEV_RAIDZ_P].rc_data;
772 dst = rm->rm_col[x].rc_data;
773 for (i = 0; i < xcount; i++, dst++, src++) {
774 *dst = *src;
775 }

777 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
778 src = rm->rm_col[c].rc_data;
779 dst = rm->rm_col[x].rc_data;

781 if (c == x)
782 continue;

784 ccount = rm->rm_col[c].rc_size / sizeof (src[0]);
785 count = MIN(ccount, xcount);

787 for (i = 0; i < count; i++, dst++, src++) {
788 *dst ^= *src;
789 }
790 }

792 return (1 << VDEV_RAIDZ_P);
793 }

795 static int
796 vdev_raidz_reconstruct_q(raidz_map_t *rm, int *tgts, int ntgts)
797 {
798 uint64_t *dst, *src, xcount, ccount, count, mask, i;
799 uint8_t *b;
800 int x = tgts[0];
801 int c, j, exp;

803 ASSERT(ntgts == 1);

805 xcount = rm->rm_col[x].rc_size / sizeof (src[0]);
806 ASSERT(xcount <= rm->rm_col[VDEV_RAIDZ_Q].rc_size / sizeof (src[0]));

808 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
809 src = rm->rm_col[c].rc_data;
810 dst = rm->rm_col[x].rc_data;

812 if (c == x)
813 ccount = 0;
814 else
815 ccount = rm->rm_col[c].rc_size / sizeof (src[0]);

817 count = MIN(ccount, xcount);

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 7

819 if (c == rm->rm_firstdatacol) {
820 for (i = 0; i < count; i++, dst++, src++) {
821 *dst = *src;
822 }
823 for (; i < xcount; i++, dst++) {
824 *dst = 0;
825 }

827 } else {
828 for (i = 0; i < count; i++, dst++, src++) {
829 VDEV_RAIDZ_64MUL_2(*dst, mask);
830 *dst ^= *src;
831 }

833 for (; i < xcount; i++, dst++) {
834 VDEV_RAIDZ_64MUL_2(*dst, mask);
835 }
836 }
837 }

839 src = rm->rm_col[VDEV_RAIDZ_Q].rc_data;
840 dst = rm->rm_col[x].rc_data;
841 exp = 255 - (rm->rm_cols - 1 - x);

843 for (i = 0; i < xcount; i++, dst++, src++) {
844 *dst ^= *src;
845 for (j = 0, b = (uint8_t *)dst; j < 8; j++, b++) {
846 *b = vdev_raidz_exp2(*b, exp);
847 }
848 }

850 return (1 << VDEV_RAIDZ_Q);
851 }

853 static int
854 vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts)
855 {
856 uint8_t *p, *q, *pxy, *qxy, *xd, *yd, tmp, a, b, aexp, bexp;
857 void *pdata, *qdata;
858 uint64_t xsize, ysize, i;
859 int x = tgts[0];
860 int y = tgts[1];

862 ASSERT(ntgts == 2);
863 ASSERT(x < y);
864 ASSERT(x >= rm->rm_firstdatacol);
865 ASSERT(y < rm->rm_cols);

867 ASSERT(rm->rm_col[x].rc_size >= rm->rm_col[y].rc_size);

869 /*
870 * Move the parity data aside -- we’re going to compute parity as
871 * though columns x and y were full of zeros -- Pxy and Qxy. We want to
872 * reuse the parity generation mechanism without trashing the actual
873 * parity so we make those columns appear to be full of zeros by
874 * setting their lengths to zero.
875 */
876 pdata = rm->rm_col[VDEV_RAIDZ_P].rc_data;
877 qdata = rm->rm_col[VDEV_RAIDZ_Q].rc_data;
878 xsize = rm->rm_col[x].rc_size;
879 ysize = rm->rm_col[y].rc_size;

881 rm->rm_col[VDEV_RAIDZ_P].rc_data =
882 zio_buf_alloc(rm->rm_col[VDEV_RAIDZ_P].rc_size);
883 rm->rm_col[VDEV_RAIDZ_Q].rc_data =

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 8

884 zio_buf_alloc(rm->rm_col[VDEV_RAIDZ_Q].rc_size);
885 rm->rm_col[x].rc_size = 0;
886 rm->rm_col[y].rc_size = 0;

888 vdev_raidz_generate_parity_pq(rm);

890 rm->rm_col[x].rc_size = xsize;
891 rm->rm_col[y].rc_size = ysize;

893 p = pdata;
894 q = qdata;
895 pxy = rm->rm_col[VDEV_RAIDZ_P].rc_data;
896 qxy = rm->rm_col[VDEV_RAIDZ_Q].rc_data;
897 xd = rm->rm_col[x].rc_data;
898 yd = rm->rm_col[y].rc_data;

900 /*
901 * We now have:
902 * Pxy = P + D_x + D_y
903 * Qxy = Q + 2^(ndevs - 1 - x) * D_x + 2^(ndevs - 1 - y) * D_y
904 *
905 * We can then solve for D_x:
906 * D_x = A * (P + Pxy) + B * (Q + Qxy)
907 * where
908 * A = 2^(x - y) * (2^(x - y) + 1)^-1
909 * B = 2^(ndevs - 1 - x) * (2^(x - y) + 1)^-1
910 *
911 * With D_x in hand, we can easily solve for D_y:
912 * D_y = P + Pxy + D_x
913 */

915 a = vdev_raidz_pow2[255 + x - y];
916 b = vdev_raidz_pow2[255 - (rm->rm_cols - 1 - x)];
917 tmp = 255 - vdev_raidz_log2[a ^ 1];

919 aexp = vdev_raidz_log2[vdev_raidz_exp2(a, tmp)];
920 bexp = vdev_raidz_log2[vdev_raidz_exp2(b, tmp)];

922 for (i = 0; i < xsize; i++, p++, q++, pxy++, qxy++, xd++, yd++) {
923 *xd = vdev_raidz_exp2(*p ^ *pxy, aexp) ^
924 vdev_raidz_exp2(*q ^ *qxy, bexp);

926 if (i < ysize)
927 *yd = *p ^ *pxy ^ *xd;
928 }

930 zio_buf_free(rm->rm_col[VDEV_RAIDZ_P].rc_data,
931 rm->rm_col[VDEV_RAIDZ_P].rc_size);
932 zio_buf_free(rm->rm_col[VDEV_RAIDZ_Q].rc_data,
933 rm->rm_col[VDEV_RAIDZ_Q].rc_size);

935 /*
936 * Restore the saved parity data.
937 */
938 rm->rm_col[VDEV_RAIDZ_P].rc_data = pdata;
939 rm->rm_col[VDEV_RAIDZ_Q].rc_data = qdata;

941 return ((1 << VDEV_RAIDZ_P) | (1 << VDEV_RAIDZ_Q));
942 }

944 /* BEGIN CSTYLED */
945 /*
946 * In the general case of reconstruction, we must solve the system of linear
947 * equations defined by the coeffecients used to generate parity as well as
948 * the contents of the data and parity disks. This can be expressed with
949 * vectors for the original data (D) and the actual data (d) and parity (p)

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 9

950 * and a matrix composed of the identity matrix (I) and a dispersal matrix (V):
951 *
952 * __ __ __ __
953 * | | __ __ | p_0 |
954 * | V | | D_0 | | p_m-1 |
955 * | | x | : | = | d_0 |
956 * | I | | D_n-1 | | : |
957 * | | ~~ ~~ | d_n-1 |
958 * ~~ ~~ ~~ ~~
959 *
960 * I is simply a square identity matrix of size n, and V is a vandermonde
961 * matrix defined by the coeffecients we chose for the various parity columns
962 * (1, 2, 4). Note that these values were chosen both for simplicity, speedy
963 * computation as well as linear separability.
964 *
965 * __ __ __ __
966 * | 1 .. 1 1 1 | | p_0 |
967 * | 2^n-1 .. 4 2 1 | __ __ | : |
968 * | 4^n-1 .. 16 4 1 | | D_0 | | p_m-1 |
969 * | 1 .. 0 0 0 | | D_1 | | d_0 |
970 * | 0 .. 0 0 0 | x | D_2 | = | d_1 |
971 * | : : : : | | : | | d_2 |
972 * | 0 .. 1 0 0 | | D_n-1 | | : |
973 * | 0 .. 0 1 0 | ~~ ~~ | : |
974 * | 0 .. 0 0 1 | | d_n-1 |
975 * ~~ ~~ ~~ ~~
976 *
977 * Note that I, V, d, and p are known. To compute D, we must invert the
978 * matrix and use the known data and parity values to reconstruct the unknown
979 * data values. We begin by removing the rows in V|I and d|p that correspond
980 * to failed or missing columns; we then make V|I square (n x n) and d|p
981 * sized n by removing rows corresponding to unused parity from the bottom up
982 * to generate (V|I)’ and (d|p)’. We can then generate the inverse of (V|I)’
983 * using Gauss-Jordan elimination. In the example below we use m=3 parity
984 * columns, n=8 data columns, with errors in d_1, d_2, and p_1:
985 * __ __
986 * | 1 1 1 1 1 1 1 1 |
987 * | 128 64 32 16 8 4 2 1 | <-----+-+-- missing disks
988 * | 19 205 116 29 64 16 4 1 | / /
989 * | 1 0 0 0 0 0 0 0 | / /
990 * | 0 1 0 0 0 0 0 0 | <--’ /
991 * (V|I) = | 0 0 1 0 0 0 0 0 | <---’
992 * | 0 0 0 1 0 0 0 0 |
993 * | 0 0 0 0 1 0 0 0 |
994 * | 0 0 0 0 0 1 0 0 |
995 * | 0 0 0 0 0 0 1 0 |
996 * | 0 0 0 0 0 0 0 1 |
997 * ~~ ~~
998 * __ __
999 * | 1 1 1 1 1 1 1 1 |
1000 * | 128 64 32 16 8 4 2 1 |
1001 * | 19 205 116 29 64 16 4 1 |
1002 * | 1 0 0 0 0 0 0 0 |
1003 * | 0 1 0 0 0 0 0 0 |
1004 * (V|I)’ = | 0 0 1 0 0 0 0 0 |
1005 * | 0 0 0 1 0 0 0 0 |
1006 * | 0 0 0 0 1 0 0 0 |
1007 * | 0 0 0 0 0 1 0 0 |
1008 * | 0 0 0 0 0 0 1 0 |
1009 * | 0 0 0 0 0 0 0 1 |
1010 * ~~ ~~
1011 *
1012 * Here we employ Gauss-Jordan elimination to find the inverse of (V|I)’. We
1013 * have carefully chosen the seed values 1, 2, and 4 to ensure that this
1014 * matrix is not singular.
1015 * __ __

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 10

1016 * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 |
1017 * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 |
1018 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1019 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1020 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1021 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1022 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1023 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1024 * ~~ ~~
1025 * __ __
1026 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1027 * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 |
1028 * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 |
1029 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1030 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1031 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1032 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1033 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1034 * ~~ ~~
1035 * __ __
1036 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1037 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
1038 * | 0 205 116 0 0 0 0 0 0 1 19 29 64 16 4 1 |
1039 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1040 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1041 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1042 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1043 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1044 * ~~ ~~
1045 * __ __
1046 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1047 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
1048 * | 0 0 185 0 0 0 0 0 205 1 222 208 141 221 201 204 |
1049 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1050 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1051 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1052 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1053 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1054 * ~~ ~~
1055 * __ __
1056 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1057 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
1058 * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 |
1059 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1060 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1061 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1062 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1063 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1064 * ~~ ~~
1065 * __ __
1066 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1067 * | 0 1 0 0 0 0 0 0 167 100 5 41 159 169 217 208 |
1068 * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 |
1069 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1070 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1071 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1072 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1073 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1074 * ~~ ~~
1075 * __ __
1076 * | 0 0 1 0 0 0 0 0 |
1077 * | 167 100 5 41 159 169 217 208 |
1078 * | 166 100 4 40 158 168 216 209 |
1079 * (V|I)’^-1 = | 0 0 0 1 0 0 0 0 |
1080 * | 0 0 0 0 1 0 0 0 |
1081 * | 0 0 0 0 0 1 0 0 |

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 11

1082 * | 0 0 0 0 0 0 1 0 |
1083 * | 0 0 0 0 0 0 0 1 |
1084 * ~~ ~~
1085 *
1086 * We can then simply compute D = (V|I)’^-1 x (d|p)’ to discover the values
1087 * of the missing data.
1088 *
1089 * As is apparent from the example above, the only non-trivial rows in the
1090 * inverse matrix correspond to the data disks that we’re trying to
1091 * reconstruct. Indeed, those are the only rows we need as the others would
1092 * only be useful for reconstructing data known or assumed to be valid. For
1093 * that reason, we only build the coefficients in the rows that correspond to
1094 * targeted columns.
1095 */
1096 /* END CSTYLED */

1098 static void
1099 vdev_raidz_matrix_init(raidz_map_t *rm, int n, int nmap, int *map,
1100 uint8_t **rows)
1101 {
1102 int i, j;
1103 int pow;

1105 ASSERT(n == rm->rm_cols - rm->rm_firstdatacol);

1107 /*
1108 * Fill in the missing rows of interest.
1109 */
1110 for (i = 0; i < nmap; i++) {
1111 ASSERT3S(0, <=, map[i]);
1112 ASSERT3S(map[i], <=, 2);

1114 pow = map[i] * n;
1115 if (pow > 255)
1116 pow -= 255;
1117 ASSERT(pow <= 255);

1119 for (j = 0; j < n; j++) {
1120 pow -= map[i];
1121 if (pow < 0)
1122 pow += 255;
1123 rows[i][j] = vdev_raidz_pow2[pow];
1124 }
1125 }
1126 }

1128 static void
1129 vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing,
1130 uint8_t **rows, uint8_t **invrows, const uint8_t *used)
1131 {
1132 int i, j, ii, jj;
1133 uint8_t log;

1135 /*
1136 * Assert that the first nmissing entries from the array of used
1137 * columns correspond to parity columns and that subsequent entries
1138 * correspond to data columns.
1139 */
1140 for (i = 0; i < nmissing; i++) {
1141 ASSERT3S(used[i], <, rm->rm_firstdatacol);
1142 }
1143 for (; i < n; i++) {
1144 ASSERT3S(used[i], >=, rm->rm_firstdatacol);
1145 }

1147 /*

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 12

1148 * First initialize the storage where we’ll compute the inverse rows.
1149 */
1150 for (i = 0; i < nmissing; i++) {
1151 for (j = 0; j < n; j++) {
1152 invrows[i][j] = (i == j) ? 1 : 0;
1153 }
1154 }

1156 /*
1157 * Subtract all trivial rows from the rows of consequence.
1158 */
1159 for (i = 0; i < nmissing; i++) {
1160 for (j = nmissing; j < n; j++) {
1161 ASSERT3U(used[j], >=, rm->rm_firstdatacol);
1162 jj = used[j] - rm->rm_firstdatacol;
1163 ASSERT3S(jj, <, n);
1164 invrows[i][j] = rows[i][jj];
1165 rows[i][jj] = 0;
1166 }
1167 }

1169 /*
1170 * For each of the rows of interest, we must normalize it and subtract
1171 * a multiple of it from the other rows.
1172 */
1173 for (i = 0; i < nmissing; i++) {
1174 for (j = 0; j < missing[i]; j++) {
1175 ASSERT0(rows[i][j]);
1176 }
1177 ASSERT3U(rows[i][missing[i]], !=, 0);

1179 /*
1180 * Compute the inverse of the first element and multiply each
1181 * element in the row by that value.
1182 */
1183 log = 255 - vdev_raidz_log2[rows[i][missing[i]]];

1185 for (j = 0; j < n; j++) {
1186 rows[i][j] = vdev_raidz_exp2(rows[i][j], log);
1187 invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log);
1188 }

1190 for (ii = 0; ii < nmissing; ii++) {
1191 if (i == ii)
1192 continue;

1194 ASSERT3U(rows[ii][missing[i]], !=, 0);

1196 log = vdev_raidz_log2[rows[ii][missing[i]]];

1198 for (j = 0; j < n; j++) {
1199 rows[ii][j] ^=
1200 vdev_raidz_exp2(rows[i][j], log);
1201 invrows[ii][j] ^=
1202 vdev_raidz_exp2(invrows[i][j], log);
1203 }
1204 }
1205 }

1207 /*
1208 * Verify that the data that is left in the rows are properly part of
1209 * an identity matrix.
1210 */
1211 for (i = 0; i < nmissing; i++) {
1212 for (j = 0; j < n; j++) {
1213 if (j == missing[i]) {

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 13

1214 ASSERT3U(rows[i][j], ==, 1);
1215 } else {
1216 ASSERT0(rows[i][j]);
1217 }
1218 }
1219 }
1220 }

1222 static void
1223 vdev_raidz_matrix_reconstruct(raidz_map_t *rm, int n, int nmissing,
1224 int *missing, uint8_t **invrows, const uint8_t *used)
1225 {
1226 int i, j, x, cc, c;
1227 uint8_t *src;
1228 uint64_t ccount;
1229 uint8_t *dst[VDEV_RAIDZ_MAXPARITY];
1230 uint64_t dcount[VDEV_RAIDZ_MAXPARITY];
1231 uint8_t log = 0;
1232 uint8_t val;
1233 int ll;
1234 uint8_t *invlog[VDEV_RAIDZ_MAXPARITY];
1235 uint8_t *p, *pp;
1236 size_t psize;

1238 psize = sizeof (invlog[0][0]) * n * nmissing;
1239 p = kmem_alloc(psize, KM_SLEEP);

1241 for (pp = p, i = 0; i < nmissing; i++) {
1242 invlog[i] = pp;
1243 pp += n;
1244 }

1246 for (i = 0; i < nmissing; i++) {
1247 for (j = 0; j < n; j++) {
1248 ASSERT3U(invrows[i][j], !=, 0);
1249 invlog[i][j] = vdev_raidz_log2[invrows[i][j]];
1250 }
1251 }

1253 for (i = 0; i < n; i++) {
1254 c = used[i];
1255 ASSERT3U(c, <, rm->rm_cols);

1257 src = rm->rm_col[c].rc_data;
1258 ccount = rm->rm_col[c].rc_size;
1259 for (j = 0; j < nmissing; j++) {
1260 cc = missing[j] + rm->rm_firstdatacol;
1261 ASSERT3U(cc, >=, rm->rm_firstdatacol);
1262 ASSERT3U(cc, <, rm->rm_cols);
1263 ASSERT3U(cc, !=, c);

1265 dst[j] = rm->rm_col[cc].rc_data;
1266 dcount[j] = rm->rm_col[cc].rc_size;
1267 }

1269 ASSERT(ccount >= rm->rm_col[missing[0]].rc_size || i > 0);

1271 for (x = 0; x < ccount; x++, src++) {
1272 if (*src != 0)
1273 log = vdev_raidz_log2[*src];

1275 for (cc = 0; cc < nmissing; cc++) {
1276 if (x >= dcount[cc])
1277 continue;

1279 if (*src == 0) {

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 14

1280 val = 0;
1281 } else {
1282 if ((ll = log + invlog[cc][i]) >= 255)
1283 ll -= 255;
1284 val = vdev_raidz_pow2[ll];
1285 }

1287 if (i == 0)
1288 dst[cc][x] = val;
1289 else
1290 dst[cc][x] ^= val;
1291 }
1292 }
1293 }

1295 kmem_free(p, psize);
1296 }

1298 static int
1299 vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
1300 {
1301 int n, i, c, t, tt;
1302 int nmissing_rows;
1303 int missing_rows[VDEV_RAIDZ_MAXPARITY];
1304 int parity_map[VDEV_RAIDZ_MAXPARITY];

1306 uint8_t *p, *pp;
1307 size_t psize;

1309 uint8_t *rows[VDEV_RAIDZ_MAXPARITY];
1310 uint8_t *invrows[VDEV_RAIDZ_MAXPARITY];
1311 uint8_t *used;

1313 int code = 0;

1316 n = rm->rm_cols - rm->rm_firstdatacol;

1318 /*
1319 * Figure out which data columns are missing.
1320 */
1321 nmissing_rows = 0;
1322 for (t = 0; t < ntgts; t++) {
1323 if (tgts[t] >= rm->rm_firstdatacol) {
1324 missing_rows[nmissing_rows++] =
1325 tgts[t] - rm->rm_firstdatacol;
1326 }
1327 }

1329 /*
1330 * Figure out which parity columns to use to help generate the missing
1331 * data columns.
1332 */
1333 for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) {
1334 ASSERT(tt < ntgts);
1335 ASSERT(c < rm->rm_firstdatacol);

1337 /*
1338 * Skip any targeted parity columns.
1339 */
1340 if (c == tgts[tt]) {
1341 tt++;
1342 continue;
1343 }

1345 code |= 1 << c;

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 15

1347 parity_map[i] = c;
1348 i++;
1349 }

1351 ASSERT(code != 0);
1352 ASSERT3U(code, <, 1 << VDEV_RAIDZ_MAXPARITY);

1354 psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) *
1355 nmissing_rows * n + sizeof (used[0]) * n;
1356 p = kmem_alloc(psize, KM_SLEEP);

1358 for (pp = p, i = 0; i < nmissing_rows; i++) {
1359 rows[i] = pp;
1360 pp += n;
1361 invrows[i] = pp;
1362 pp += n;
1363 }
1364 used = pp;

1366 for (i = 0; i < nmissing_rows; i++) {
1367 used[i] = parity_map[i];
1368 }

1370 for (tt = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
1371 if (tt < nmissing_rows &&
1372 c == missing_rows[tt] + rm->rm_firstdatacol) {
1373 tt++;
1374 continue;
1375 }

1377 ASSERT3S(i, <, n);
1378 used[i] = c;
1379 i++;
1380 }

1382 /*
1383 * Initialize the interesting rows of the matrix.
1384 */
1385 vdev_raidz_matrix_init(rm, n, nmissing_rows, parity_map, rows);

1387 /*
1388 * Invert the matrix.
1389 */
1390 vdev_raidz_matrix_invert(rm, n, nmissing_rows, missing_rows, rows,
1391 invrows, used);

1393 /*
1394 * Reconstruct the missing data using the generated matrix.
1395 */
1396 vdev_raidz_matrix_reconstruct(rm, n, nmissing_rows, missing_rows,
1397 invrows, used);

1399 kmem_free(p, psize);

1401 return (code);
1402 }

1404 static int
1405 vdev_raidz_reconstruct(raidz_map_t *rm, int *t, int nt)
1406 {
1407 int tgts[VDEV_RAIDZ_MAXPARITY], *dt;
1408 int ntgts;
1409 int i, c;
1410 int code;
1411 int nbadparity, nbaddata;

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 16

1412 int parity_valid[VDEV_RAIDZ_MAXPARITY];

1414 /*
1415 * The tgts list must already be sorted.
1416 */
1417 for (i = 1; i < nt; i++) {
1418 ASSERT(t[i] > t[i - 1]);
1419 }

1421 nbadparity = rm->rm_firstdatacol;
1422 nbaddata = rm->rm_cols - nbadparity;
1423 ntgts = 0;
1424 for (i = 0, c = 0; c < rm->rm_cols; c++) {
1425 if (c < rm->rm_firstdatacol)
1426 parity_valid[c] = B_FALSE;

1428 if (i < nt && c == t[i]) {
1429 tgts[ntgts++] = c;
1430 i++;
1431 } else if (rm->rm_col[c].rc_error != 0) {
1432 tgts[ntgts++] = c;
1433 } else if (c >= rm->rm_firstdatacol) {
1434 nbaddata--;
1435 } else {
1436 parity_valid[c] = B_TRUE;
1437 nbadparity--;
1438 }
1439 }

1441 ASSERT(ntgts >= nt);
1442 ASSERT(nbaddata >= 0);
1443 ASSERT(nbaddata + nbadparity == ntgts);

1445 dt = &tgts[nbadparity];

1447 /*
1448 * See if we can use any of our optimized reconstruction routines.
1449 */
1450 if (!vdev_raidz_default_to_general) {
1451 switch (nbaddata) {
1452 case 1:
1453 if (parity_valid[VDEV_RAIDZ_P])
1454 return (vdev_raidz_reconstruct_p(rm, dt, 1));

1456 ASSERT(rm->rm_firstdatacol > 1);

1458 if (parity_valid[VDEV_RAIDZ_Q])
1459 return (vdev_raidz_reconstruct_q(rm, dt, 1));

1461 ASSERT(rm->rm_firstdatacol > 2);
1462 break;

1464 case 2:
1465 ASSERT(rm->rm_firstdatacol > 1);

1467 if (parity_valid[VDEV_RAIDZ_P] &&
1468 parity_valid[VDEV_RAIDZ_Q])
1469 return (vdev_raidz_reconstruct_pq(rm, dt, 2));

1471 ASSERT(rm->rm_firstdatacol > 2);

1473 break;
1474 }
1475 }

1477 code = vdev_raidz_reconstruct_general(rm, tgts, ntgts);

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 17

1478 ASSERT(code < (1 << VDEV_RAIDZ_MAXPARITY));
1479 ASSERT(code > 0);
1480 return (code);
1481 }

1483 static int
1484 vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
1485 uint64_t *ashift)
1486 {
1487 vdev_t *cvd;
1488 uint64_t nparity = vd->vdev_nparity;
1489 int c;
1490 int lasterror = 0;
1491 int numerrors = 0;

1493 ASSERT(nparity > 0);

1495 if (nparity > VDEV_RAIDZ_MAXPARITY ||
1496 vd->vdev_children < nparity + 1) {
1497 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
1498 return (SET_ERROR(EINVAL));
1499 }

1501 vdev_open_children(vd);

1503 for (c = 0; c < vd->vdev_children; c++) {
1504 cvd = vd->vdev_child[c];

1506 if (cvd->vdev_open_error != 0) {
1507 lasterror = cvd->vdev_open_error;
1508 numerrors++;
1509 continue;
1510 }

1512 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
1513 *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
1514 *ashift = MAX(*ashift, cvd->vdev_ashift);
1515 }

1517 *asize *= vd->vdev_children;
1518 *max_asize *= vd->vdev_children;

1520 if (numerrors > nparity) {
1521 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
1522 return (lasterror);
1523 }

1525 return (0);
1526 }

1528 static void
1529 vdev_raidz_close(vdev_t *vd)
1530 {
1531 int c;

1533 for (c = 0; c < vd->vdev_children; c++)
1534 vdev_close(vd->vdev_child[c]);
1535 }

1537 static uint64_t
1538 vdev_raidz_asize(vdev_t *vd, uint64_t psize)
1539 {
1540 uint64_t asize;
1541 uint64_t ashift = vd->vdev_top->vdev_ashift;
1542 uint64_t cols = vd->vdev_children;
1543 uint64_t nparity = vd->vdev_nparity;

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 18

1545 asize = ((psize - 1) >> ashift) + 1;
1546 asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity));
1547 asize = roundup(asize, nparity + 1) << ashift;

1549 return (asize);
1550 }

1552 static void
1553 vdev_raidz_child_done(zio_t *zio)
1554 {
1555 raidz_col_t *rc = zio->io_private;

1557 rc->rc_error = zio->io_error;
1558 rc->rc_tried = 1;
1559 rc->rc_skipped = 0;
1560 }

1562 /*
1563 * Start an IO operation on a RAIDZ VDev
1564 *
1565 * Outline:
1566 * - For write operations:
1567 * 1. Generate the parity data
1568 * 2. Create child zio write operations to each column’s vdev, for both
1569 * data and parity.
1570 * 3. If the column skips any sectors for padding, create optional dummy
1571 * write zio children for those areas to improve aggregation continuity.
1572 * - For read operations:
1573 * 1. Create child zio read operations to each data column’s vdev to read
1574 * the range of data required for zio.
1575 * 2. If this is a scrub or resilver operation, or if any of the data
1576 * vdevs have had errors, then create zio read operations to the parity
1577 * columns’ VDevs as well.
1578 */
1579 #endif /* ! codereview */
1580 static int
1581 vdev_raidz_io_start(zio_t *zio)
1582 {
1583 vdev_t *vd = zio->io_vd;
1584 vdev_t *tvd = vd->vdev_top;
1585 vdev_t *cvd;
1586 raidz_map_t *rm;
1587 raidz_col_t *rc;
1588 int c, i;

1590 rm = vdev_raidz_map_alloc(zio, tvd->vdev_ashift, vd->vdev_children,
1591 vd->vdev_nparity);

1593 ASSERT3U(rm->rm_asize, ==, vdev_psize_to_asize(vd, zio->io_size));

1595 if (zio->io_type == ZIO_TYPE_WRITE) {
1596 vdev_raidz_generate_parity(rm);

1598 for (c = 0; c < rm->rm_cols; c++) {
1599 rc = &rm->rm_col[c];
1600 cvd = vd->vdev_child[rc->rc_devidx];
1601 zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1602 rc->rc_offset, rc->rc_data, rc->rc_size,
1603 zio->io_type, zio->io_priority, 0,
1604 vdev_raidz_child_done, rc));
1605 }

1607 /*
1608 * Generate optional I/Os for any skipped sectors to improve
1609 * aggregation contiguity.

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 19

1610 */
1611 for (c = rm->rm_skipstart, i = 0; i < rm->rm_nskip; c++, i++) {
1612 ASSERT(c <= rm->rm_scols);
1613 if (c == rm->rm_scols)
1614 c = 0;
1615 rc = &rm->rm_col[c];
1616 cvd = vd->vdev_child[rc->rc_devidx];
1617 zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1618 rc->rc_offset + rc->rc_size, NULL,
1619 1 << tvd->vdev_ashift,
1620 zio->io_type, zio->io_priority,
1621 ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL, NULL));
1622 }

1624 return (ZIO_PIPELINE_CONTINUE);
1625 }

1627 ASSERT(zio->io_type == ZIO_TYPE_READ);

1629 /*
1630 * Iterate over the columns in reverse order so that we hit the parity
1631 * last -- any errors along the way will force us to read the parity.
1632 */
1633 for (c = rm->rm_cols - 1; c >= 0; c--) {
1634 rc = &rm->rm_col[c];
1635 cvd = vd->vdev_child[rc->rc_devidx];
1636 if (!vdev_readable(cvd)) {
1637 if (c >= rm->rm_firstdatacol)
1638 rm->rm_missingdata++;
1639 else
1640 rm->rm_missingparity++;
1641 rc->rc_error = SET_ERROR(ENXIO);
1642 rc->rc_tried = 1; /* don’t even try */
1643 rc->rc_skipped = 1;
1644 continue;
1645 }
1646 if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) {
1647 if (c >= rm->rm_firstdatacol)
1648 rm->rm_missingdata++;
1649 else
1650 rm->rm_missingparity++;
1651 rc->rc_error = SET_ERROR(ESTALE);
1652 rc->rc_skipped = 1;
1653 continue;
1654 }
1655 if (c >= rm->rm_firstdatacol || rm->rm_missingdata > 0 ||
1656 (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
1657 zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1658 rc->rc_offset, rc->rc_data, rc->rc_size,
1659 zio->io_type, zio->io_priority, 0,
1660 vdev_raidz_child_done, rc));
1661 }
1662 }

1664 return (ZIO_PIPELINE_CONTINUE);
1665 }

1668 /*
1669 * Report a checksum error for a child of a RAID-Z device.
1670 */
1671 static void
1672 raidz_checksum_error(zio_t *zio, raidz_col_t *rc, void *bad_data)
1673 {
1674 vdev_t *vd = zio->io_vd->vdev_child[rc->rc_devidx];

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 20

1676 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
1677 zio_bad_cksum_t zbc;
1678 raidz_map_t *rm = zio->io_vsd;

1680 mutex_enter(&vd->vdev_stat_lock);
1681 vd->vdev_stat.vs_checksum_errors++;
1682 mutex_exit(&vd->vdev_stat_lock);

1684 zbc.zbc_has_cksum = 0;
1685 zbc.zbc_injected = rm->rm_ecksuminjected;

1687 zfs_ereport_post_checksum(zio->io_spa, vd, zio,
1688 rc->rc_offset, rc->rc_size, rc->rc_data, bad_data,
1689 &zbc);
1690 }
1691 }

1693 /*
1694 * We keep track of whether or not there were any injected errors, so that
1695 * any ereports we generate can note it.
1696 */
1697 static int
1698 raidz_checksum_verify(zio_t *zio)
1699 {
1700 zio_bad_cksum_t zbc;
1701 raidz_map_t *rm = zio->io_vsd;

1703 int ret = zio_checksum_error(zio, &zbc);
1704 if (ret != 0 && zbc.zbc_injected != 0)
1705 rm->rm_ecksuminjected = 1;

1707 return (ret);
1708 }

1710 /*
1711 * Generate the parity from the data columns. If we tried and were able to
1712 * read the parity without error, verify that the generated parity matches the
1713 * data we read. If it doesn’t, we fire off a checksum error. Return the
1714 * number such failures.
1715 */
1716 static int
1717 raidz_parity_verify(zio_t *zio, raidz_map_t *rm)
1718 {
1719 void *orig[VDEV_RAIDZ_MAXPARITY];
1720 int c, ret = 0;
1721 raidz_col_t *rc;

1723 for (c = 0; c < rm->rm_firstdatacol; c++) {
1724 rc = &rm->rm_col[c];
1725 if (!rc->rc_tried || rc->rc_error != 0)
1726 continue;
1727 orig[c] = zio_buf_alloc(rc->rc_size);
1728 bcopy(rc->rc_data, orig[c], rc->rc_size);
1729 }

1731 vdev_raidz_generate_parity(rm);

1733 for (c = 0; c < rm->rm_firstdatacol; c++) {
1734 rc = &rm->rm_col[c];
1735 if (!rc->rc_tried || rc->rc_error != 0)
1736 continue;
1737 if (bcmp(orig[c], rc->rc_data, rc->rc_size) != 0) {
1738 raidz_checksum_error(zio, rc, orig[c]);
1739 rc->rc_error = SET_ERROR(ECKSUM);
1740 ret++;
1741 }

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 21

1742 zio_buf_free(orig[c], rc->rc_size);
1743 }

1745 return (ret);
1746 }

1748 /*
1749 * Keep statistics on all the ways that we used parity to correct data.
1750 */
1751 static uint64_t raidz_corrected[1 << VDEV_RAIDZ_MAXPARITY];

1753 static int
1754 vdev_raidz_worst_error(raidz_map_t *rm)
1755 {
1756 int error = 0;

1758 for (int c = 0; c < rm->rm_cols; c++)
1759 error = zio_worst_error(error, rm->rm_col[c].rc_error);

1761 return (error);
1762 }

1764 /*
1765 * Iterate over all combinations of bad data and attempt a reconstruction.
1766 * Note that the algorithm below is non-optimal because it doesn’t take into
1767 * account how reconstruction is actually performed. For example, with
1768 * triple-parity RAID-Z the reconstruction procedure is the same if column 4
1769 * is targeted as invalid as if columns 1 and 4 are targeted since in both
1770 * cases we’d only use parity information in column 0.
1771 */
1772 static int
1773 vdev_raidz_combrec(zio_t *zio, int total_errors, int data_errors)
1774 {
1775 raidz_map_t *rm = zio->io_vsd;
1776 raidz_col_t *rc;
1777 void *orig[VDEV_RAIDZ_MAXPARITY];
1778 int tstore[VDEV_RAIDZ_MAXPARITY + 2];
1779 int *tgts = &tstore[1];
1780 int current, next, i, c, n;
1781 int code, ret = 0;

1783 ASSERT(total_errors < rm->rm_firstdatacol);

1785 /*
1786 * This simplifies one edge condition.
1787 */
1788 tgts[-1] = -1;

1790 for (n = 1; n <= rm->rm_firstdatacol - total_errors; n++) {
1791 /*
1792 * Initialize the targets array by finding the first n columns
1793 * that contain no error.
1794 *
1795 * If there were no data errors, we need to ensure that we’re
1796 * always explicitly attempting to reconstruct at least one
1797 * data column. To do this, we simply push the highest target
1798 * up into the data columns.
1799 */
1800 for (c = 0, i = 0; i < n; i++) {
1801 if (i == n - 1 && data_errors == 0 &&
1802 c < rm->rm_firstdatacol) {
1803 c = rm->rm_firstdatacol;
1804 }

1806 while (rm->rm_col[c].rc_error != 0) {
1807 c++;

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 22

1808 ASSERT3S(c, <, rm->rm_cols);
1809 }

1811 tgts[i] = c++;
1812 }

1814 /*
1815 * Setting tgts[n] simplifies the other edge condition.
1816 */
1817 tgts[n] = rm->rm_cols;

1819 /*
1820 * These buffers were allocated in previous iterations.
1821 */
1822 for (i = 0; i < n - 1; i++) {
1823 ASSERT(orig[i] != NULL);
1824 }

1826 orig[n - 1] = zio_buf_alloc(rm->rm_col[0].rc_size);

1828 current = 0;
1829 next = tgts[current];

1831 while (current != n) {
1832 tgts[current] = next;
1833 current = 0;

1835 /*
1836 * Save off the original data that we’re going to
1837 * attempt to reconstruct.
1838 */
1839 for (i = 0; i < n; i++) {
1840 ASSERT(orig[i] != NULL);
1841 c = tgts[i];
1842 ASSERT3S(c, >=, 0);
1843 ASSERT3S(c, <, rm->rm_cols);
1844 rc = &rm->rm_col[c];
1845 bcopy(rc->rc_data, orig[i], rc->rc_size);
1846 }

1848 /*
1849 * Attempt a reconstruction and exit the outer loop on
1850 * success.
1851 */
1852 code = vdev_raidz_reconstruct(rm, tgts, n);
1853 if (raidz_checksum_verify(zio) == 0) {
1854 atomic_inc_64(&raidz_corrected[code]);

1856 for (i = 0; i < n; i++) {
1857 c = tgts[i];
1858 rc = &rm->rm_col[c];
1859 ASSERT(rc->rc_error == 0);
1860 if (rc->rc_tried)
1861 raidz_checksum_error(zio, rc,
1862 orig[i]);
1863 rc->rc_error = SET_ERROR(ECKSUM);
1864 }

1866 ret = code;
1867 goto done;
1868 }

1870 /*
1871 * Restore the original data.
1872 */
1873 for (i = 0; i < n; i++) {

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 23

1874 c = tgts[i];
1875 rc = &rm->rm_col[c];
1876 bcopy(orig[i], rc->rc_data, rc->rc_size);
1877 }

1879 do {
1880 /*
1881 * Find the next valid column after the current
1882 * position..
1883 */
1884 for (next = tgts[current] + 1;
1885 next < rm->rm_cols &&
1886 rm->rm_col[next].rc_error != 0; next++)
1887 continue;

1889 ASSERT(next <= tgts[current + 1]);

1891 /*
1892 * If that spot is available, we’re done here.
1893 */
1894 if (next != tgts[current + 1])
1895 break;

1897 /*
1898 * Otherwise, find the next valid column after
1899 * the previous position.
1900 */
1901 for (c = tgts[current - 1] + 1;
1902 rm->rm_col[c].rc_error != 0; c++)
1903 continue;

1905 tgts[current] = c;
1906 current++;

1908 } while (current != n);
1909 }
1910 }
1911 n--;
1912 done:
1913 for (i = 0; i < n; i++) {
1914 zio_buf_free(orig[i], rm->rm_col[0].rc_size);
1915 }

1917 return (ret);
1918 }

1920 /*
1921 * Complete an IO operation on a RAIDZ VDev
1922 *
1923 * Outline:
1924 * - For write operations:
1925 * 1. Check for errors on the child IOs.
1926 * 2. Return, setting an error code if too few child VDevs were written
1927 * to reconstruct the data later. Note that partial writes are
1928 * considered successful if they can be reconstructed at all.
1929 * - For read operations:
1930 * 1. Check for errors on the child IOs.
1931 * 2. If data errors occurred:
1932 * a. Try to reassemble the data from the parity available.
1933 * b. If we haven’t yet read the parity drives, read them now.
1934 * c. If all parity drives have been read but the data still doesn’t
1935 * reassemble with a correct checksum, then try combinatorial
1936 * reconstruction.
1937 * d. If that doesn’t work, return an error.
1938 * 3. If there were unexpected errors or this is a resilver operation,
1939 * rewrite the vdevs that had errors.

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 24

1940 */
1941 #endif /* ! codereview */
1942 static void
1943 vdev_raidz_io_done(zio_t *zio)
1944 {
1945 vdev_t *vd = zio->io_vd;
1946 vdev_t *cvd;
1947 raidz_map_t *rm = zio->io_vsd;
1948 raidz_col_t *rc;
1949 int unexpected_errors = 0;
1950 int parity_errors = 0;
1951 int parity_untried = 0;
1952 int data_errors = 0;
1953 int total_errors = 0;
1954 int n, c;
1955 int tgts[VDEV_RAIDZ_MAXPARITY];
1956 int code;

1958 ASSERT(zio->io_bp != NULL); /* XXX need to add code to enforce this */

1960 ASSERT(rm->rm_missingparity <= rm->rm_firstdatacol);
1961 ASSERT(rm->rm_missingdata <= rm->rm_cols - rm->rm_firstdatacol);

1963 for (c = 0; c < rm->rm_cols; c++) {
1964 rc = &rm->rm_col[c];

1966 if (rc->rc_error) {
1967 ASSERT(rc->rc_error != ECKSUM); /* child has no bp */

1969 if (c < rm->rm_firstdatacol)
1970 parity_errors++;
1971 else
1972 data_errors++;

1974 if (!rc->rc_skipped)
1975 unexpected_errors++;

1977 total_errors++;
1978 } else if (c < rm->rm_firstdatacol && !rc->rc_tried) {
1979 parity_untried++;
1980 }
1981 }

1983 if (zio->io_type == ZIO_TYPE_WRITE) {
1984 /*
1985 * XXX -- for now, treat partial writes as a success.
1986 * (If we couldn’t write enough columns to reconstruct
1987 * the data, the I/O failed. Otherwise, good enough.)
1988 *
1989 * Now that we support write reallocation, it would be better
1990 * to treat partial failure as real failure unless there are
1991 * no non-degraded top-level vdevs left, and not update DTLs
1992 * if we intend to reallocate.
1993 */
1994 /* XXPOLICY */
1995 if (total_errors > rm->rm_firstdatacol)
1996 zio->io_error = vdev_raidz_worst_error(rm);

1998 return;
1999 }

2001 ASSERT(zio->io_type == ZIO_TYPE_READ);
2002 /*
2003 * There are three potential phases for a read:
2004 * 1. produce valid data from the columns read
2005 * 2. read all disks and try again

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 25

2006 * 3. perform combinatorial reconstruction
2007 *
2008 * Each phase is progressively both more expensive and less likely to
2009 * occur. If we encounter more errors than we can repair or all phases
2010 * fail, we have no choice but to return an error.
2011 */

2013 /*
2014 * If the number of errors we saw was correctable -- less than or equal
2015 * to the number of parity disks read -- attempt to produce data that
2016 * has a valid checksum. Naturally, this case applies in the absence of
2017 * any errors.
2018 */
2019 if (total_errors <= rm->rm_firstdatacol - parity_untried) {
2020 if (data_errors == 0) {
2021 if (raidz_checksum_verify(zio) == 0) {
2022 /*
2023 * If we read parity information (unnecessarily
2024 * as it happens since no reconstruction was
2025 * needed) regenerate and verify the parity.
2026 * We also regenerate parity when resilvering
2027 * so we can write it out to the failed device
2028 * later.
2029 */
2030 if (parity_errors + parity_untried <
2031 rm->rm_firstdatacol ||
2032 (zio->io_flags & ZIO_FLAG_RESILVER)) {
2033 n = raidz_parity_verify(zio, rm);
2034 unexpected_errors += n;
2035 ASSERT(parity_errors + n <=
2036 rm->rm_firstdatacol);
2037 }
2038 goto done;
2039 }
2040 } else {
2041 /*
2042 * We either attempt to read all the parity columns or
2043 * none of them. If we didn’t try to read parity, we
2044 * wouldn’t be here in the correctable case. There must
2045 * also have been fewer parity errors than parity
2046 * columns or, again, we wouldn’t be in this code path.
2047 */
2048 ASSERT(parity_untried == 0);
2049 ASSERT(parity_errors < rm->rm_firstdatacol);

2051 /*
2052 * Identify the data columns that reported an error.
2053 */
2054 n = 0;
2055 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
2056 rc = &rm->rm_col[c];
2057 if (rc->rc_error != 0) {
2058 ASSERT(n < VDEV_RAIDZ_MAXPARITY);
2059 tgts[n++] = c;
2060 }
2061 }

2063 ASSERT(rm->rm_firstdatacol >= n);

2065 code = vdev_raidz_reconstruct(rm, tgts, n);

2067 if (raidz_checksum_verify(zio) == 0) {
2068 atomic_inc_64(&raidz_corrected[code]);

2070 /*
2071 * If we read more parity disks than were used

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 26

2072 * for reconstruction, confirm that the other
2073 * parity disks produced correct data. This
2074 * routine is suboptimal in that it regenerates
2075 * the parity that we already used in addition
2076 * to the parity that we’re attempting to
2077 * verify, but this should be a relatively
2078 * uncommon case, and can be optimized if it
2079 * becomes a problem. Note that we regenerate
2080 * parity when resilvering so we can write it
2081 * out to failed devices later.
2082 */
2083 if (parity_errors < rm->rm_firstdatacol - n ||
2084 (zio->io_flags & ZIO_FLAG_RESILVER)) {
2085 n = raidz_parity_verify(zio, rm);
2086 unexpected_errors += n;
2087 ASSERT(parity_errors + n <=
2088 rm->rm_firstdatacol);
2089 }

2091 goto done;
2092 }
2093 }
2094 }

2096 /*
2097 * This isn’t a typical situation -- either we got a read error or
2098 * a child silently returned bad data. Read every block so we can
2099 * try again with as much data and parity as we can track down. If
2100 * we’ve already been through once before, all children will be marked
2101 * as tried so we’ll proceed to combinatorial reconstruction.
2102 */
2103 unexpected_errors = 1;
2104 rm->rm_missingdata = 0;
2105 rm->rm_missingparity = 0;

2107 for (c = 0; c < rm->rm_cols; c++) {
2108 if (rm->rm_col[c].rc_tried)
2109 continue;

2111 zio_vdev_io_redone(zio);
2112 do {
2113 rc = &rm->rm_col[c];
2114 if (rc->rc_tried)
2115 continue;
2116 zio_nowait(zio_vdev_child_io(zio, NULL,
2117 vd->vdev_child[rc->rc_devidx],
2118 rc->rc_offset, rc->rc_data, rc->rc_size,
2119 zio->io_type, zio->io_priority, 0,
2120 vdev_raidz_child_done, rc));
2121 } while (++c < rm->rm_cols);

2123 return;
2124 }

2126 /*
2127 * At this point we’ve attempted to reconstruct the data given the
2128 * errors we detected, and we’ve attempted to read all columns. There
2129 * must, therefore, be one or more additional problems -- silent errors
2130 * resulting in invalid data rather than explicit I/O errors resulting
2131 * in absent data. We check if there is enough additional data to
2132 * possibly reconstruct the data and then perform combinatorial
2133 * reconstruction over all possible combinations. If that fails,
2134 * we’re cooked.
2135 */
2136 if (total_errors > rm->rm_firstdatacol) {
2137 zio->io_error = vdev_raidz_worst_error(rm);

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 27

2139 } else if (total_errors < rm->rm_firstdatacol &&
2140 (code = vdev_raidz_combrec(zio, total_errors, data_errors)) != 0) {
2141 /*
2142 * If we didn’t use all the available parity for the
2143 * combinatorial reconstruction, verify that the remaining
2144 * parity is correct.
2145 */
2146 if (code != (1 << rm->rm_firstdatacol) - 1)
2147 (void) raidz_parity_verify(zio, rm);
2148 } else {
2149 /*
2150 * We’re here because either:
2151 *
2152 * total_errors == rm_first_datacol, or
2153 * vdev_raidz_combrec() failed
2154 *
2155 * In either case, there is enough bad data to prevent
2156 * reconstruction.
2157 *
2158 * Start checksum ereports for all children which haven’t
2159 * failed, and the IO wasn’t speculative.
2160 */
2161 zio->io_error = SET_ERROR(ECKSUM);

2163 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2164 for (c = 0; c < rm->rm_cols; c++) {
2165 rc = &rm->rm_col[c];
2166 if (rc->rc_error == 0) {
2167 zio_bad_cksum_t zbc;
2168 zbc.zbc_has_cksum = 0;
2169 zbc.zbc_injected =
2170 rm->rm_ecksuminjected;

2172 zfs_ereport_start_checksum(
2173 zio->io_spa,
2174 vd->vdev_child[rc->rc_devidx],
2175 zio, rc->rc_offset, rc->rc_size,
2176 (void *)(uintptr_t)c, &zbc);
2177 }
2178 }
2179 }
2180 }

2182 done:
2183 zio_checksum_verified(zio);

2185 if (zio->io_error == 0 && spa_writeable(zio->io_spa) &&
2186 (unexpected_errors || (zio->io_flags & ZIO_FLAG_RESILVER))) {
2187 /*
2188 * Use the good data we have in hand to repair damaged children.
2189 */
2190 for (c = 0; c < rm->rm_cols; c++) {
2191 rc = &rm->rm_col[c];
2192 cvd = vd->vdev_child[rc->rc_devidx];

2194 if (rc->rc_error == 0)
2195 continue;

2197 zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2198 rc->rc_offset, rc->rc_data, rc->rc_size,
2199 ZIO_TYPE_WRITE, zio->io_priority,
2200 ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
2201 ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
2202 }
2203 }

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 28

2204 }

2206 static void
2207 vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded)
2208 {
2209 if (faulted > vd->vdev_nparity)
2210 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2211 VDEV_AUX_NO_REPLICAS);
2212 else if (degraded + faulted != 0)
2213 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
2214 else
2215 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
2216 }

2218 vdev_ops_t vdev_raidz_ops = {
2219 vdev_raidz_open,
2220 vdev_raidz_close,
2221 vdev_raidz_asize,
2222 vdev_raidz_io_start,
2223 vdev_raidz_io_done,
2224 vdev_raidz_state_change,
2225 NULL,
2226 NULL,
2227 VDEV_TYPE_RAIDZ, /* name of this vdev type */
2228 B_FALSE /* not a leaf vdev */
2229 };

new/usr/src/uts/common/fs/zfs/zfs_ctldir.c 1

**
 34536 Thu May 16 17:33:50 2013
new/usr/src/uts/common/fs/zfs/zfs_ctldir.c
3741 zfs needs better comments
Submitted by: Will Andrews <willa@spectralogic.com>
Submitted by: Justin Gibbs <justing@spectralogic.com>
Submitted by: Alan Somers <alans@spectralogic.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
**
______unchanged_portion_omitted_

508 /*
509 * Gets the full dataset name that corresponds to the given snapshot name
510 * Example:
511 * zfsctl_snapshot_zname("snap1") -> "mypool/myfs@snap1"
512 */
513 #endif /* ! codereview */
514 static int
515 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname)
516 {
517 objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os;

519 if (snapshot_namecheck(name, NULL, NULL) != 0)
520 return (SET_ERROR(EILSEQ));
521 dmu_objset_name(os, zname);
522 if (strlen(zname) + 1 + strlen(name) >= len)
523 return (SET_ERROR(ENAMETOOLONG));
524 (void) strcat(zname, "@");
525 (void) strcat(zname, name);
526 return (0);
527 }

529 static int
530 zfsctl_unmount_snap(zfs_snapentry_t *sep, int fflags, cred_t *cr)
531 {
532 vnode_t *svp = sep->se_root;
533 int error;

535 ASSERT(vn_ismntpt(svp));

537 /* this will be dropped by dounmount() */
538 if ((error = vn_vfswlock(svp)) != 0)
539 return (error);

541 VN_HOLD(svp);
542 error = dounmount(vn_mountedvfs(svp), fflags, cr);
543 if (error) {
544 VN_RELE(svp);
545 return (error);
546 }

548 /*
549 * We can’t use VN_RELE(), as that will try to invoke
550 * zfsctl_snapdir_inactive(), which would cause us to destroy
551 * the sd_lock mutex held by our caller.
552 */
553 ASSERT(svp->v_count == 1);
554 gfs_vop_inactive(svp, cr, NULL);

556 kmem_free(sep->se_name, strlen(sep->se_name) + 1);
557 kmem_free(sep, sizeof (zfs_snapentry_t));

559 return (0);
560 }

new/usr/src/uts/common/fs/zfs/zfs_ctldir.c 2

562 static void
563 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm)
564 {
565 avl_index_t where;
566 vfs_t *vfsp;
567 refstr_t *pathref;
568 char newpath[MAXNAMELEN];
569 char *tail;

571 ASSERT(MUTEX_HELD(&sdp->sd_lock));
572 ASSERT(sep != NULL);

574 vfsp = vn_mountedvfs(sep->se_root);
575 ASSERT(vfsp != NULL);

577 vfs_lock_wait(vfsp);

579 /*
580 * Change the name in the AVL tree.
581 */
582 avl_remove(&sdp->sd_snaps, sep);
583 kmem_free(sep->se_name, strlen(sep->se_name) + 1);
584 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP);
585 (void) strcpy(sep->se_name, nm);
586 VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL);
587 avl_insert(&sdp->sd_snaps, sep, where);

589 /*
590 * Change the current mountpoint info:
591 * - update the tail of the mntpoint path
592 * - update the tail of the resource path
593 */
594 pathref = vfs_getmntpoint(vfsp);
595 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath));
596 VERIFY((tail = strrchr(newpath, ’/’)) != NULL);
597 *(tail+1) = ’\0’;
598 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath));
599 (void) strcat(newpath, nm);
600 refstr_rele(pathref);
601 vfs_setmntpoint(vfsp, newpath, 0);

603 pathref = vfs_getresource(vfsp);
604 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath));
605 VERIFY((tail = strrchr(newpath, ’@’)) != NULL);
606 *(tail+1) = ’\0’;
607 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath));
608 (void) strcat(newpath, nm);
609 refstr_rele(pathref);
610 vfs_setresource(vfsp, newpath, 0);

612 vfs_unlock(vfsp);
613 }

615 /*ARGSUSED*/
616 static int
617 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm,
618 cred_t *cr, caller_context_t *ct, int flags)
619 {
620 zfsctl_snapdir_t *sdp = sdvp->v_data;
621 zfs_snapentry_t search, *sep;
622 zfsvfs_t *zfsvfs;
623 avl_index_t where;
624 char from[MAXNAMELEN], to[MAXNAMELEN];
625 char real[MAXNAMELEN], fsname[MAXNAMELEN];
626 int err;

new/usr/src/uts/common/fs/zfs/zfs_ctldir.c 3

628 zfsvfs = sdvp->v_vfsp->vfs_data;
629 ZFS_ENTER(zfsvfs);

631 if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
632 err = dmu_snapshot_realname(zfsvfs->z_os, snm, real,
633 MAXNAMELEN, NULL);
634 if (err == 0) {
635 snm = real;
636 } else if (err != ENOTSUP) {
637 ZFS_EXIT(zfsvfs);
638 return (err);
639 }
640 }

642 ZFS_EXIT(zfsvfs);

644 dmu_objset_name(zfsvfs->z_os, fsname);

646 err = zfsctl_snapshot_zname(sdvp, snm, MAXNAMELEN, from);
647 if (err == 0)
648 err = zfsctl_snapshot_zname(tdvp, tnm, MAXNAMELEN, to);
649 if (err == 0)
650 err = zfs_secpolicy_rename_perms(from, to, cr);
651 if (err != 0)
652 return (err);

654 /*
655 * Cannot move snapshots out of the snapdir.
656 */
657 if (sdvp != tdvp)
658 return (SET_ERROR(EINVAL));

660 if (strcmp(snm, tnm) == 0)
661 return (0);

663 mutex_enter(&sdp->sd_lock);

665 search.se_name = (char *)snm;
666 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) {
667 mutex_exit(&sdp->sd_lock);
668 return (SET_ERROR(ENOENT));
669 }

671 err = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
672 if (err == 0)
673 zfsctl_rename_snap(sdp, sep, tnm);

675 mutex_exit(&sdp->sd_lock);

677 return (err);
678 }

680 /* ARGSUSED */
681 static int
682 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
683 caller_context_t *ct, int flags)
684 {
685 zfsctl_snapdir_t *sdp = dvp->v_data;
686 zfs_snapentry_t *sep;
687 zfs_snapentry_t search;
688 zfsvfs_t *zfsvfs;
689 char snapname[MAXNAMELEN];
690 char real[MAXNAMELEN];
691 int err;

693 zfsvfs = dvp->v_vfsp->vfs_data;

new/usr/src/uts/common/fs/zfs/zfs_ctldir.c 4

694 ZFS_ENTER(zfsvfs);

696 if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {

698 err = dmu_snapshot_realname(zfsvfs->z_os, name, real,
699 MAXNAMELEN, NULL);
700 if (err == 0) {
701 name = real;
702 } else if (err != ENOTSUP) {
703 ZFS_EXIT(zfsvfs);
704 return (err);
705 }
706 }

708 ZFS_EXIT(zfsvfs);

710 err = zfsctl_snapshot_zname(dvp, name, MAXNAMELEN, snapname);
711 if (err == 0)
712 err = zfs_secpolicy_destroy_perms(snapname, cr);
713 if (err != 0)
714 return (err);

716 mutex_enter(&sdp->sd_lock);

718 search.se_name = name;
719 sep = avl_find(&sdp->sd_snaps, &search, NULL);
720 if (sep) {
721 avl_remove(&sdp->sd_snaps, sep);
722 err = zfsctl_unmount_snap(sep, MS_FORCE, cr);
723 if (err != 0)
724 avl_add(&sdp->sd_snaps, sep);
725 else
726 err = dsl_destroy_snapshot(snapname, B_FALSE);
727 } else {
728 err = SET_ERROR(ENOENT);
729 }

731 mutex_exit(&sdp->sd_lock);

733 return (err);
734 }

736 /*
737 * This creates a snapshot under ’.zfs/snapshot’.
738 */
739 /* ARGSUSED */
740 static int
741 zfsctl_snapdir_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp,
742 cred_t *cr, caller_context_t *cc, int flags, vsecattr_t *vsecp)
743 {
744 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
745 char name[MAXNAMELEN];
746 int err;
747 static enum symfollow follow = NO_FOLLOW;
748 static enum uio_seg seg = UIO_SYSSPACE;

750 if (snapshot_namecheck(dirname, NULL, NULL) != 0)
751 return (SET_ERROR(EILSEQ));

753 dmu_objset_name(zfsvfs->z_os, name);

755 *vpp = NULL;

757 err = zfs_secpolicy_snapshot_perms(name, cr);
758 if (err != 0)
759 return (err);

new/usr/src/uts/common/fs/zfs/zfs_ctldir.c 5

761 if (err == 0) {
762 err = dmu_objset_snapshot_one(name, dirname);
763 if (err != 0)
764 return (err);
765 err = lookupnameat(dirname, seg, follow, NULL, vpp, dvp);
766 }

768 return (err);
769 }

771 /*
772 * Lookup entry point for the ’snapshot’ directory. Try to open the
773 * snapshot if it exist, creating the pseudo filesystem vnode as necessary.
774 * Perform a mount of the associated dataset on top of the vnode.
775 */
776 /* ARGSUSED */
777 static int
778 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
779 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
780 int *direntflags, pathname_t *realpnp)
781 {
782 zfsctl_snapdir_t *sdp = dvp->v_data;
783 objset_t *snap;
784 char snapname[MAXNAMELEN];
785 char real[MAXNAMELEN];
786 char *mountpoint;
787 zfs_snapentry_t *sep, search;
788 struct mounta margs;
789 vfs_t *vfsp;
790 size_t mountpoint_len;
791 avl_index_t where;
792 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
793 int err;

795 /*
796 * No extended attributes allowed under .zfs
797 */
798 if (flags & LOOKUP_XATTR)
799 return (SET_ERROR(EINVAL));

801 ASSERT(dvp->v_type == VDIR);

803 /*
804 * If we get a recursive call, that means we got called
805 * from the domount() code while it was trying to look up the
806 * spec (which looks like a local path for zfs). We need to
807 * add some flag to domount() to tell it not to do this lookup.
808 */
809 if (MUTEX_HELD(&sdp->sd_lock))
810 return (SET_ERROR(ENOENT));

812 ZFS_ENTER(zfsvfs);

814 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) {
815 ZFS_EXIT(zfsvfs);
816 return (0);
817 }

819 if (flags & FIGNORECASE) {
820 boolean_t conflict = B_FALSE;

822 err = dmu_snapshot_realname(zfsvfs->z_os, nm, real,
823 MAXNAMELEN, &conflict);
824 if (err == 0) {
825 nm = real;

new/usr/src/uts/common/fs/zfs/zfs_ctldir.c 6

826 } else if (err != ENOTSUP) {
827 ZFS_EXIT(zfsvfs);
828 return (err);
829 }
830 if (realpnp)
831 (void) strlcpy(realpnp->pn_buf, nm,
832 realpnp->pn_bufsize);
833 if (conflict && direntflags)
834 *direntflags = ED_CASE_CONFLICT;
835 }

837 mutex_enter(&sdp->sd_lock);
838 search.se_name = (char *)nm;
839 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) {
840 *vpp = sep->se_root;
841 VN_HOLD(*vpp);
842 err = traverse(vpp);
843 if (err != 0) {
844 VN_RELE(*vpp);
845 *vpp = NULL;
846 } else if (*vpp == sep->se_root) {
847 /*
848 * The snapshot was unmounted behind our backs,
849 * try to remount it.
850 */
851 goto domount;
852 } else {
853 /*
854 * VROOT was set during the traverse call. We need
855 * to clear it since we’re pretending to be part
856 * of our parent’s vfs.
857 */
858 (*vpp)->v_flag &= ~VROOT;
859 }
860 mutex_exit(&sdp->sd_lock);
861 ZFS_EXIT(zfsvfs);
862 return (err);
863 }

865 /*
866 * The requested snapshot is not currently mounted, look it up.
867 */
868 err = zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname);
869 if (err != 0) {
870 mutex_exit(&sdp->sd_lock);
871 ZFS_EXIT(zfsvfs);
872 /*
873 * handle "ls *" or "?" in a graceful manner,
874 * forcing EILSEQ to ENOENT.
875 * Since shell ultimately passes "*" or "?" as name to lookup
876 */
877 return (err == EILSEQ ? ENOENT : err);
878 }
879 if (dmu_objset_hold(snapname, FTAG, &snap) != 0) {
880 mutex_exit(&sdp->sd_lock);
881 ZFS_EXIT(zfsvfs);
882 return (SET_ERROR(ENOENT));
883 }

885 sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP);
886 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP);
887 (void) strcpy(sep->se_name, nm);
888 *vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap));
889 avl_insert(&sdp->sd_snaps, sep, where);

891 dmu_objset_rele(snap, FTAG);

new/usr/src/uts/common/fs/zfs/zfs_ctldir.c 7

892 domount:
893 mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) +
894 strlen("/.zfs/snapshot/") + strlen(nm) + 1;
895 mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP);
896 (void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s",
897 refstr_value(dvp->v_vfsp->vfs_mntpt), nm);

899 margs.spec = snapname;
900 margs.dir = mountpoint;
901 margs.flags = MS_SYSSPACE | MS_NOMNTTAB;
902 margs.fstype = "zfs";
903 margs.dataptr = NULL;
904 margs.datalen = 0;
905 margs.optptr = NULL;
906 margs.optlen = 0;

908 err = domount("zfs", &margs, *vpp, kcred, &vfsp);
909 kmem_free(mountpoint, mountpoint_len);

911 if (err == 0) {
912 /*
913 * Return the mounted root rather than the covered mount point.
914 * Takes the GFS vnode at .zfs/snapshot/<snapname> and returns
915 * the ZFS vnode mounted on top of the GFS node. This ZFS
916 * vnode is the root of the newly created vfsp.
917 */
918 VFS_RELE(vfsp);
919 err = traverse(vpp);
920 }

922 if (err == 0) {
923 /*
924 * Fix up the root vnode mounted on .zfs/snapshot/<snapname>.
925 *
926 * This is where we lie about our v_vfsp in order to
927 * make .zfs/snapshot/<snapname> accessible over NFS
928 * without requiring manual mounts of <snapname>.
929 */
930 ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs);
931 VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs;
932 (*vpp)->v_vfsp = zfsvfs->z_vfs;
933 (*vpp)->v_flag &= ~VROOT;
934 }
935 mutex_exit(&sdp->sd_lock);
936 ZFS_EXIT(zfsvfs);

938 /*
939 * If we had an error, drop our hold on the vnode and
940 * zfsctl_snapshot_inactive() will clean up.
941 */
942 if (err != 0) {
943 VN_RELE(*vpp);
944 *vpp = NULL;
945 }
946 return (err);
947 }

949 /* ARGSUSED */
950 static int
951 zfsctl_shares_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
952 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
953 int *direntflags, pathname_t *realpnp)
954 {
955 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
956 znode_t *dzp;
957 int error;

new/usr/src/uts/common/fs/zfs/zfs_ctldir.c 8

959 ZFS_ENTER(zfsvfs);

961 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) {
962 ZFS_EXIT(zfsvfs);
963 return (0);
964 }

966 if (zfsvfs->z_shares_dir == 0) {
967 ZFS_EXIT(zfsvfs);
968 return (SET_ERROR(ENOTSUP));
969 }
970 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0)
971 error = VOP_LOOKUP(ZTOV(dzp), nm, vpp, pnp,
972 flags, rdir, cr, ct, direntflags, realpnp);

974 VN_RELE(ZTOV(dzp));
975 ZFS_EXIT(zfsvfs);

977 return (error);
978 }

980 /* ARGSUSED */
981 static int
982 zfsctl_snapdir_readdir_cb(vnode_t *vp, void *dp, int *eofp,
983 offset_t *offp, offset_t *nextp, void *data, int flags)
984 {
985 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
986 char snapname[MAXNAMELEN];
987 uint64_t id, cookie;
988 boolean_t case_conflict;
989 int error;

991 ZFS_ENTER(zfsvfs);

993 cookie = *offp;
994 dsl_pool_config_enter(dmu_objset_pool(zfsvfs->z_os), FTAG);
995 error = dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN, snapname, &id,
996 &cookie, &case_conflict);
997 dsl_pool_config_exit(dmu_objset_pool(zfsvfs->z_os), FTAG);
998 if (error) {
999 ZFS_EXIT(zfsvfs);

1000 if (error == ENOENT) {
1001 *eofp = 1;
1002 return (0);
1003 }
1004 return (error);
1005 }

1007 if (flags & V_RDDIR_ENTFLAGS) {
1008 edirent_t *eodp = dp;

1010 (void) strcpy(eodp->ed_name, snapname);
1011 eodp->ed_ino = ZFSCTL_INO_SNAP(id);
1012 eodp->ed_eflags = case_conflict ? ED_CASE_CONFLICT : 0;
1013 } else {
1014 struct dirent64 *odp = dp;

1016 (void) strcpy(odp->d_name, snapname);
1017 odp->d_ino = ZFSCTL_INO_SNAP(id);
1018 }
1019 *nextp = cookie;

1021 ZFS_EXIT(zfsvfs);

1023 return (0);

new/usr/src/uts/common/fs/zfs/zfs_ctldir.c 9

1024 }

1026 /* ARGSUSED */
1027 static int
1028 zfsctl_shares_readdir(vnode_t *vp, uio_t *uiop, cred_t *cr, int *eofp,
1029 caller_context_t *ct, int flags)
1030 {
1031 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1032 znode_t *dzp;
1033 int error;

1035 ZFS_ENTER(zfsvfs);

1037 if (zfsvfs->z_shares_dir == 0) {
1038 ZFS_EXIT(zfsvfs);
1039 return (SET_ERROR(ENOTSUP));
1040 }
1041 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
1042 error = VOP_READDIR(ZTOV(dzp), uiop, cr, eofp, ct, flags);
1043 VN_RELE(ZTOV(dzp));
1044 } else {
1045 *eofp = 1;
1046 error = SET_ERROR(ENOENT);
1047 }

1049 ZFS_EXIT(zfsvfs);
1050 return (error);
1051 }

1053 /*
1054 * pvp is the ’.zfs’ directory (zfsctl_node_t).
1055 * Creates vp, which is ’.zfs/snapshot’ (zfsctl_snapdir_t).
1056 *
1057 * This function is the callback to create a GFS vnode for ’.zfs/snapshot’
1058 * when a lookup is performed on .zfs for "snapshot".
1059 */
1060 vnode_t *
1061 zfsctl_mknode_snapdir(vnode_t *pvp)
1062 {
1063 vnode_t *vp;
1064 zfsctl_snapdir_t *sdp;

1066 vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp,
1067 zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN,
1068 zfsctl_snapdir_readdir_cb, NULL);
1069 sdp = vp->v_data;
1070 sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR;
1071 sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime;
1072 mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
1073 avl_create(&sdp->sd_snaps, snapentry_compare,
1074 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node));
1075 return (vp);
1076 }

1078 vnode_t *
1079 zfsctl_mknode_shares(vnode_t *pvp)
1080 {
1081 vnode_t *vp;
1082 zfsctl_node_t *sdp;

1084 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp,
1085 zfsctl_ops_shares, NULL, NULL, MAXNAMELEN,
1086 NULL, NULL);
1087 sdp = vp->v_data;
1088 sdp->zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime;
1089 return (vp);

new/usr/src/uts/common/fs/zfs/zfs_ctldir.c 10

1091 }

1093 /* ARGSUSED */
1094 static int
1095 zfsctl_shares_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
1096 caller_context_t *ct)
1097 {
1098 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1099 znode_t *dzp;
1100 int error;

1102 ZFS_ENTER(zfsvfs);
1103 if (zfsvfs->z_shares_dir == 0) {
1104 ZFS_EXIT(zfsvfs);
1105 return (SET_ERROR(ENOTSUP));
1106 }
1107 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
1108 error = VOP_GETATTR(ZTOV(dzp), vap, flags, cr, ct);
1109 VN_RELE(ZTOV(dzp));
1110 }
1111 ZFS_EXIT(zfsvfs);
1112 return (error);

1115 }

1117 /* ARGSUSED */
1118 static int
1119 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
1120 caller_context_t *ct)
1121 {
1122 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1123 zfsctl_snapdir_t *sdp = vp->v_data;

1125 ZFS_ENTER(zfsvfs);
1126 zfsctl_common_getattr(vp, vap);
1127 vap->va_nodeid = gfs_file_inode(vp);
1128 vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2;
1129 vap->va_ctime = vap->va_mtime = dmu_objset_snap_cmtime(zfsvfs->z_os);
1130 ZFS_EXIT(zfsvfs);

1132 return (0);
1133 }

1135 /* ARGSUSED */
1136 static void
1137 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1138 {
1139 zfsctl_snapdir_t *sdp = vp->v_data;
1140 void *private;

1142 private = gfs_dir_inactive(vp);
1143 if (private != NULL) {
1144 ASSERT(avl_numnodes(&sdp->sd_snaps) == 0);
1145 mutex_destroy(&sdp->sd_lock);
1146 avl_destroy(&sdp->sd_snaps);
1147 kmem_free(private, sizeof (zfsctl_snapdir_t));
1148 }
1149 }

1151 static const fs_operation_def_t zfsctl_tops_snapdir[] = {
1152 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } },
1153 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } },
1154 { VOPNAME_IOCTL, { .error = fs_inval } },
1155 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_snapdir_getattr } },

new/usr/src/uts/common/fs/zfs/zfs_ctldir.c 11

1156 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } },
1157 { VOPNAME_RENAME, { .vop_rename = zfsctl_snapdir_rename } },
1158 { VOPNAME_RMDIR, { .vop_rmdir = zfsctl_snapdir_remove } },
1159 { VOPNAME_MKDIR, { .vop_mkdir = zfsctl_snapdir_mkdir } },
1160 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } },
1161 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_snapdir_lookup } },
1162 { VOPNAME_SEEK, { .vop_seek = fs_seek } },
1163 { VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapdir_inactive } },
1164 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } },
1165 { NULL }
1166 };

1168 static const fs_operation_def_t zfsctl_tops_shares[] = {
1169 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } },
1170 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } },
1171 { VOPNAME_IOCTL, { .error = fs_inval } },
1172 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_shares_getattr } },
1173 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } },
1174 { VOPNAME_READDIR, { .vop_readdir = zfsctl_shares_readdir } },
1175 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_shares_lookup } },
1176 { VOPNAME_SEEK, { .vop_seek = fs_seek } },
1177 { VOPNAME_INACTIVE, { .vop_inactive = gfs_vop_inactive } },
1178 { VOPNAME_FID, { .vop_fid = zfsctl_shares_fid } },
1179 { NULL }
1180 };

1182 /*
1183 * pvp is the GFS vnode ’.zfs/snapshot’.
1184 *
1185 * This creates a GFS node under ’.zfs/snapshot’ representing each
1186 * snapshot. This newly created GFS node is what we mount snapshot
1187 * vfs_t’s ontop of.
1188 */
1189 static vnode_t *
1190 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset)
1191 {
1192 vnode_t *vp;
1193 zfsctl_node_t *zcp;

1195 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp,
1196 zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL);
1197 zcp = vp->v_data;
1198 zcp->zc_id = objset;

1200 return (vp);
1201 }

1203 static void
1204 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1205 {
1206 zfsctl_snapdir_t *sdp;
1207 zfs_snapentry_t *sep, *next;
1208 vnode_t *dvp;

1210 VERIFY(gfs_dir_lookup(vp, "..", &dvp, cr, 0, NULL, NULL) == 0);
1211 sdp = dvp->v_data;

1213 mutex_enter(&sdp->sd_lock);

1215 if (vp->v_count > 1) {
1216 mutex_exit(&sdp->sd_lock);
1217 return;
1218 }
1219 ASSERT(!vn_ismntpt(vp));

1221 sep = avl_first(&sdp->sd_snaps);

new/usr/src/uts/common/fs/zfs/zfs_ctldir.c 12

1222 while (sep != NULL) {
1223 next = AVL_NEXT(&sdp->sd_snaps, sep);

1225 if (sep->se_root == vp) {
1226 avl_remove(&sdp->sd_snaps, sep);
1227 kmem_free(sep->se_name, strlen(sep->se_name) + 1);
1228 kmem_free(sep, sizeof (zfs_snapentry_t));
1229 break;
1230 }
1231 sep = next;
1232 }
1233 ASSERT(sep != NULL);

1235 mutex_exit(&sdp->sd_lock);
1236 VN_RELE(dvp);

1238 /*
1239 * Dispose of the vnode for the snapshot mount point.
1240 * This is safe to do because once this entry has been removed
1241 * from the AVL tree, it can’t be found again, so cannot become
1242 * "active". If we lookup the same name again we will end up
1243 * creating a new vnode.
1244 */
1245 gfs_vop_inactive(vp, cr, ct);
1246 }

1249 /*
1250 * These VP’s should never see the light of day. They should always
1251 * be covered.
1252 */
1253 static const fs_operation_def_t zfsctl_tops_snapshot[] = {
1254 VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapshot_inactive },
1255 NULL, NULL
1256 };

1258 int
1259 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp)
1260 {
1261 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1262 vnode_t *dvp, *vp;
1263 zfsctl_snapdir_t *sdp;
1264 zfsctl_node_t *zcp;
1265 zfs_snapentry_t *sep;
1266 int error;

1268 ASSERT(zfsvfs->z_ctldir != NULL);
1269 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1270 NULL, 0, NULL, kcred, NULL, NULL, NULL);
1271 if (error != 0)
1272 return (error);
1273 sdp = dvp->v_data;

1275 mutex_enter(&sdp->sd_lock);
1276 sep = avl_first(&sdp->sd_snaps);
1277 while (sep != NULL) {
1278 vp = sep->se_root;
1279 zcp = vp->v_data;
1280 if (zcp->zc_id == objsetid)
1281 break;

1283 sep = AVL_NEXT(&sdp->sd_snaps, sep);
1284 }

1286 if (sep != NULL) {
1287 VN_HOLD(vp);

new/usr/src/uts/common/fs/zfs/zfs_ctldir.c 13

1288 /*
1289 * Return the mounted root rather than the covered mount point.
1290 * Takes the GFS vnode at .zfs/snapshot/<snapshot objsetid>
1291 * and returns the ZFS vnode mounted on top of the GFS node.
1292 * This ZFS vnode is the root of the vfs for objset ’objsetid’.
1293 */
1294 error = traverse(&vp);
1295 if (error == 0) {
1296 if (vp == sep->se_root)
1297 error = SET_ERROR(EINVAL);
1298 else
1299 *zfsvfsp = VTOZ(vp)->z_zfsvfs;
1300 }
1301 mutex_exit(&sdp->sd_lock);
1302 VN_RELE(vp);
1303 } else {
1304 error = SET_ERROR(EINVAL);
1305 mutex_exit(&sdp->sd_lock);
1306 }

1308 VN_RELE(dvp);

1310 return (error);
1311 }

1313 /*
1314 * Unmount any snapshots for the given filesystem. This is called from
1315 * zfs_umount() - if we have a ctldir, then go through and unmount all the
1316 * snapshots.
1317 */
1318 int
1319 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr)
1320 {
1321 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1322 vnode_t *dvp;
1323 zfsctl_snapdir_t *sdp;
1324 zfs_snapentry_t *sep, *next;
1325 int error;

1327 ASSERT(zfsvfs->z_ctldir != NULL);
1328 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1329 NULL, 0, NULL, cr, NULL, NULL, NULL);
1330 if (error != 0)
1331 return (error);
1332 sdp = dvp->v_data;

1334 mutex_enter(&sdp->sd_lock);

1336 sep = avl_first(&sdp->sd_snaps);
1337 while (sep != NULL) {
1338 next = AVL_NEXT(&sdp->sd_snaps, sep);

1340 /*
1341 * If this snapshot is not mounted, then it must
1342 * have just been unmounted by somebody else, and
1343 * will be cleaned up by zfsctl_snapdir_inactive().
1344 */
1345 if (vn_ismntpt(sep->se_root)) {
1346 avl_remove(&sdp->sd_snaps, sep);
1347 error = zfsctl_unmount_snap(sep, fflags, cr);
1348 if (error) {
1349 avl_add(&sdp->sd_snaps, sep);
1350 break;
1351 }
1352 }
1353 sep = next;

new/usr/src/uts/common/fs/zfs/zfs_ctldir.c 14

1354 }

1356 mutex_exit(&sdp->sd_lock);
1357 VN_RELE(dvp);

1359 return (error);
1360 }

