new usr/ src/ man/ man3c/ semaphore. 3c 1

R R R R

9400 Thu May 29 16:56: 01 2014
new usr/ src/ man/ man3c/ semaphore. 3c
4829 sema_init(3C) botches the argunents in an exanple

R R R R R

1'\" te

2 .\" Copyright (c) 2008 Sun Mcrosystenms, Inc. Al Rights Reserved.

3 .\" Portions Copyright (c) 2001, the Institute of Electrical and El ectronics Eng
4 .\" Portions Copyright (c) 1995 IEEE. All Rights Reserved

5 .\" Sun Mcrosystens, Inc. gratefully acknow edges The Open G oup for perm ssion
6 .\" http://ww. opengroup. or g/ bookst ore/ .

7 .\" The Institute of Electrical and El ectronics Engi neers and The Open Group, ha
8 .\" This notice shall appear on any product containing this material.

9 .\" The contents of this file are subject to the terms of the Common Devel opnent
10 You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE or http:

A\
11 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
12 . TH SEMAPHORE 3C "Feb 5, 2008"
13 . SH NAME
14 semaphore, sema_init, sema_destroy, senma_wait, sema_trywait, sema_post \-
15 semaphores
16 . SH SYNOPSI S
.LP

. nf
19 cc [\fIflag\fR ..] \flfile\fR .. -lIthread -lc [\fllibrary\fR ..]
20 #include <synch. h>

22 \fBint\fR \fBsena_init\fR(\fBsema_t *\fRflsp\fR \fBunsigned int\fR\flcount\fR

23 \fBvoid *\fR\flarg\fR);

24 . fi

26 .LP

27 .nf

28 \fBint\fR \fBsenma_destroy\fR(\fBsenma_t *\fRflsp\fR);
29 .fi

31 . LP

32 .nf

33 \fBint\fR \fBsema_wai t\fR(\fBsema_t *\fR fIsp\fR);
34 . fi

36 .LP

37 .nf

38 \fBint\fR \fBsena_trywai t\fR(\fBsema_t *\fRflsp\fR);
39 .fi

41 . LP

42 . nf

43 \fBint\fR \fBsena_post\fR(\fBsenma_t *\fR flsp\fR);
44 . fi

46 . SH DESCRI PTI ON

47 .sp

48 . LP

49 A semaphore is a non-negative integer count and is generally used to coordinate
50 access to resources. The initial semaphore count is set to the nunber of free
51 resources, then threads slowy increnent and decrenent the count as resources
52 are added and renopved. |If the semaphore count drops to O, which neans no

53 avail abl e resources, threads attenpting to decrement the semaphore wll bl ock
54 until the count is greater than 0.

55 .sp

56 .LP

57 Semaphores can synchronize threads in this process and other processes if they
58 are allocated in witable nenory and shared anpbng the cooperating processes
59 (see \fBmmap\fR(2)), and have been initialized for this purpose.

60 .sp

61 .LP

new usr/ src/ man/ man3c/ semaphore. 3c

121

123
124
125
126

Semaphores nust be initialized before use; semaphores pointed to by \fIsp\fR to
\flcount\fR are initialized by \fBsema_init()\fR The \fltype\fR argunent can
assign several different types of behavior to a semaphore. No current type uses
\flarg\fR, although it may be used in the future.

.sp

.LP

The \fltype\fR argunent nay be one of the follow ng:

.sp

.ne 2

.na
\ f B\ f BUSYNC_PROCESS\fR \fR

.ad

. RS 18n

The senmaphore can synchroni ze threads in this process and other processes.
Initializing the semaphore should be done by only one process. A semaphore
initialized with this type nust be allocated in nenory shared between
processes, either in Sys V shared nenory (see \fBshmop\fR(2)), or in menory
mapped to a file (see \fBmmap\fR(2)). It is illegal to initialize the object
this way and not allocate it in such shared nmenory. \flarg\fR is ignored.
.RE

.sp
.ne 2

.na

\ f g\ f BUSYNC_THREAD\fR \ f R

. al

. RS 18n

The senmaphore can synchronize threads only in this process. The \flarg\fR
argunent is ignored. \fBUSYNC THREAD\ fR does not support nultiple mappings to
the sanme | ogical synch object. If you need to \fBmap()\fR a synch object to
different locations within the sane address space, then the synch object should

be initialized as a shared object \fBUSYNC PROCESS\fR for Solaris threads and
\ f BPTHREAD_PROCESS_PRI VATE\ f R for PGCSI X t hr eads.

.RE

.sp

.LP

A senmaphore nust not be sinultaneously initialized by multiple threads, nor
re-initialized while in use by other threads.

.sp

.LP

Def ault semaphore initialization (intra-process):

.sp

Lin 42

. nf

sema_t sp;

int count = 1;

sema_i nit (&sp, bount , 0, NULL);
sema_i nit(&sp, count, NULL, NULL);
i

.in -2

.sp

.LP

or

.sp

Lin 42

. nf

senme_i nit(&sp, count, USYNC THREAD, NULL);
fi

.in -2

.sp
.LP
Cust om zed semaphore initialization (inter-process):

.sp

2

new usr/ src/ man/ man3c/ semaphore. 3c

127
128
129
130
131
132
133

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

179
180
181
182
183
184
185
186

188
189
190
191
192

Lin +2

. nf

\fBsenma_t sp;

int count = 1;

seme_i nit(&sp, count, USYNC PROCESS, NULL);\fR
Cfi

.in -2

.sp
.LP

The \fBsena_destroy()\fR function destroys any state related to the semaphore
pointed to by \flsp\fR The semaphore storage space is not rel eased.

.sp

.LP

The \fBsenma_wait()\fR function blocks the calling thread until the senaphore
count pointed to by \flsp\fRis greater than 0, and then it atomcally
decrements the count.

.sp

.LP

The \fBsema_trywait()\fR function atomically decrenents the semaphore count
pointed to by \fIsp\fR if the count is greater than O; otherwise, it returns
an error.

.sp

.LP

The \fBsema_post ()\
pointed to by \flsp
wi |l be unbl ocked.
.sp

.LP

The semaphore functionality described on this man page is for the Solaris
threads I nplenentation. For the PGSI X-conform ng semaphore interface
docunent ation, see \fBsemclose\fR(3C), \fBsemdestroy\fR(3C),

\fBsem getval ue\fR(3C), \fBsem.init\fR(3C), \fBsemopen\fR(3C),

\fBsem post\fR(3C), \fBsemunlink\fR(3C), and \fBsemwait\fR(3C).

. SH RETURN VALUES

.sp

.LP

Upon successful conpl etion,

i ndi cates an error.

. SH ERRCRS

.sp

.LP

These functions will fail if:
.sp

.ne 2

fR function atomcally increments the semaphore count
\fR |f there are any threads bl ocked on the semaphore, one

\fBO\fR is returned; otherw se, a non-zero val ue

.na
\fB\f BEINVAL\fR \ fR

.ad

.RS 11n

The \flsp\fR argunent does not refer to a valid senaphore.
. RE

.Sp
.ne 2

.na
\fB\f BEFAULT\fR \fR

.ad

.RS 11n

Either the \flsp\fR or \flarg\fR argunment points to an illegal address.
. RE

.sp
.LP

The \fBsema_wait()\fR function will fail if:
.sp

.ne 2

new usr/ src/ man/ man3c/ semaphore. 3c

193
194
195
196
197
198

200
201
202
203
204
205
206
207
208
209
210

212 .
213 .

214

215 .

216
217
218
219
220
221
222

224
225
226

.na
\fB\fBEINTRfR \fR

.ad

. RS 10n

The wait was interrupted by a signal or \fBfork()\fR
. RE

.sSp
.LP

The \fBsenma_trywait()\fR function will fail if:
.sp

.ne 2

.na
\fB\f BEBUSY\ fR \ fR

.ad

. RS 10n

The semaphore pointed to by \flsp\fR has a 0 count.
. RE

The \fBsenma_post ()\fR function will fail if:
.ne 2

.na
\ f B\ f BEOVERFLONf R \ f R

.ad

. RS 14n

The senmaphore value pointed to by \flsp\fR exceeds \fBSEM VALUE _MAX\f R
.RE

. SH EXAMPLES
.LP
\f BExanpl e 1 \f RThe custonmer waiting-line in a bank is anal ogous to the

227 synchronization schene of a semaphore using \fBsema_wait()\fR and
228 \fBsema_trywait()\fR

229 .sp

230 .in +2

231 .nf

232 /* cc [flag \|.\|.\].] file \[.\[.\|. -Ithread [library \[.\|[.\|[.] */
233 #include <errno. h>

234 #define TELLERS 10

235 sema_t tellers,; /* semaphore */

236 int banking_hours(), deposit_wi thdrawal;

237 voi d*customer (), do_business(), skip_banking_today();

238 V& \|.\].

240 semm_init(&ellers, TELLERS, USYNC THREAD, NULL);

241 /* 10 tellers available */

242 whi | e(banki ng_hours())

243 pt hread_creat e(NULL, NULL, custoner, deposit_withdrawal);
244 \ & \|.\]|.

246 void *

247 custoner (int deposit_w thdrawal)

248 {

249 int this_customer, in_a_hurry = 50;

250 this_custoner = rand() % 100;

252 if (this_customer == in_a_hurry) {

253 if (sema_trywait(&ellers) = 0)

254 if (errno == EBUSY){ /* no teller available */
255 ski p_banki ng_t oday(thi s_custoner);

256 return;

257 } /* else go imedi ately to available teller and
258 decrenent tellers */

new usr/ src/ man/ man3c/ semaphore. 3c

259 }

260 el se

261 sema_wait(&ellers); /* wait for next teller, then

262 proceed, and decrenent tellers */
264 do_busi ness(deposit_wit hdrawal);

265 sema_post (& ellers); /* increnent tellers; this_customer’s
266 teller is now available */

267 }

____unchanged_portion_onitted_

