1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 */
25
26 #include <assert.h>
27 #include <fcntl.h>
28 #include <poll.h>
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <string.h>
32 #include <zlib.h>
33 #include <sys/spa.h>
34 #include <sys/stat.h>
35 #include <sys/processor.h>
36 #include <sys/zfs_context.h>
37 #include <sys/zmod.h>
38 #include <sys/utsname.h>
39 #include <sys/systeminfo.h>
40
41 /*
42 * Emulation of kernel services in userland.
43 */
44
45 int aok;
46 uint64_t physmem;
47 vnode_t *rootdir = (vnode_t *)0xabcd1234;
48 char hw_serial[HW_HOSTID_LEN];
49 vmem_t *zio_arena = NULL;
50
51 struct utsname utsname = {
52 "userland", "libzpool", "1", "1", "na"
53 };
54
55 /* this only exists to have its address taken */
56 struct proc p0;
57
58 /*
59 * =========================================================================
60 * threads
61 * =========================================================================
62 */
63 /*ARGSUSED*/
64 kthread_t *
65 zk_thread_create(void (*func)(), void *arg)
66 {
67 thread_t tid;
68
69 VERIFY(thr_create(0, 0, (void *(*)(void *))func, arg, THR_DETACHED,
70 &tid) == 0);
71
72 return ((void *)(uintptr_t)tid);
73 }
74
75 /*
76 * =========================================================================
77 * kstats
78 * =========================================================================
79 */
80 /*ARGSUSED*/
81 kstat_t *
82 kstat_create(char *module, int instance, char *name, char *class,
83 uchar_t type, ulong_t ndata, uchar_t ks_flag)
84 {
85 return (NULL);
86 }
87
88 /*ARGSUSED*/
89 void
90 kstat_install(kstat_t *ksp)
91 {}
92
93 /*ARGSUSED*/
94 void
95 kstat_delete(kstat_t *ksp)
96 {}
97
98 /*
99 * =========================================================================
100 * mutexes
101 * =========================================================================
102 */
103 void
104 zmutex_init(kmutex_t *mp)
105 {
106 mp->m_owner = NULL;
107 mp->initialized = B_TRUE;
108 (void) _mutex_init(&mp->m_lock, USYNC_THREAD, NULL);
109 }
110
111 void
112 zmutex_destroy(kmutex_t *mp)
113 {
114 ASSERT(mp->initialized == B_TRUE);
115 ASSERT(mp->m_owner == NULL);
116 (void) _mutex_destroy(&(mp)->m_lock);
117 mp->m_owner = (void *)-1UL;
118 mp->initialized = B_FALSE;
119 }
120
121 void
122 mutex_enter(kmutex_t *mp)
123 {
124 ASSERT(mp->initialized == B_TRUE);
125 ASSERT(mp->m_owner != (void *)-1UL);
126 ASSERT(mp->m_owner != curthread);
127 VERIFY(mutex_lock(&mp->m_lock) == 0);
128 ASSERT(mp->m_owner == NULL);
129 mp->m_owner = curthread;
130 }
131
132 int
133 mutex_tryenter(kmutex_t *mp)
134 {
135 ASSERT(mp->initialized == B_TRUE);
136 ASSERT(mp->m_owner != (void *)-1UL);
137 if (0 == mutex_trylock(&mp->m_lock)) {
138 ASSERT(mp->m_owner == NULL);
139 mp->m_owner = curthread;
140 return (1);
141 } else {
142 return (0);
143 }
144 }
145
146 void
147 mutex_exit(kmutex_t *mp)
148 {
149 ASSERT(mp->initialized == B_TRUE);
150 ASSERT(mutex_owner(mp) == curthread);
151 mp->m_owner = NULL;
152 VERIFY(mutex_unlock(&mp->m_lock) == 0);
153 }
154
155 void *
156 mutex_owner(kmutex_t *mp)
157 {
158 ASSERT(mp->initialized == B_TRUE);
159 return (mp->m_owner);
160 }
161
162 /*
163 * =========================================================================
164 * rwlocks
165 * =========================================================================
166 */
167 /*ARGSUSED*/
168 void
169 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
170 {
171 rwlock_init(&rwlp->rw_lock, USYNC_THREAD, NULL);
172 rwlp->rw_owner = NULL;
173 rwlp->initialized = B_TRUE;
174 }
175
176 void
177 rw_destroy(krwlock_t *rwlp)
178 {
179 rwlock_destroy(&rwlp->rw_lock);
180 rwlp->rw_owner = (void *)-1UL;
181 rwlp->initialized = B_FALSE;
182 }
183
184 void
185 rw_enter(krwlock_t *rwlp, krw_t rw)
186 {
187 ASSERT(!RW_LOCK_HELD(rwlp));
188 ASSERT(rwlp->initialized == B_TRUE);
189 ASSERT(rwlp->rw_owner != (void *)-1UL);
190 ASSERT(rwlp->rw_owner != curthread);
191
192 if (rw == RW_READER)
193 VERIFY(rw_rdlock(&rwlp->rw_lock) == 0);
194 else
195 VERIFY(rw_wrlock(&rwlp->rw_lock) == 0);
196
197 rwlp->rw_owner = curthread;
198 }
199
200 void
201 rw_exit(krwlock_t *rwlp)
202 {
203 ASSERT(rwlp->initialized == B_TRUE);
204 ASSERT(rwlp->rw_owner != (void *)-1UL);
205
206 rwlp->rw_owner = NULL;
207 VERIFY(rw_unlock(&rwlp->rw_lock) == 0);
208 }
209
210 int
211 rw_tryenter(krwlock_t *rwlp, krw_t rw)
212 {
213 int rv;
214
215 ASSERT(rwlp->initialized == B_TRUE);
216 ASSERT(rwlp->rw_owner != (void *)-1UL);
217
218 if (rw == RW_READER)
219 rv = rw_tryrdlock(&rwlp->rw_lock);
220 else
221 rv = rw_trywrlock(&rwlp->rw_lock);
222
223 if (rv == 0) {
224 rwlp->rw_owner = curthread;
225 return (1);
226 }
227
228 return (0);
229 }
230
231 /*ARGSUSED*/
232 int
233 rw_tryupgrade(krwlock_t *rwlp)
234 {
235 ASSERT(rwlp->initialized == B_TRUE);
236 ASSERT(rwlp->rw_owner != (void *)-1UL);
237
238 return (0);
239 }
240
241 /*
242 * =========================================================================
243 * condition variables
244 * =========================================================================
245 */
246 /*ARGSUSED*/
247 void
248 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
249 {
250 VERIFY(cond_init(cv, type, NULL) == 0);
251 }
252
253 void
254 cv_destroy(kcondvar_t *cv)
255 {
256 VERIFY(cond_destroy(cv) == 0);
257 }
258
259 int
260 cv_wait_sig(kcondvar_t *cv, kmutex_t *mp)
261 {
262 ASSERT(mutex_owner(mp) == curthread);
263 mp->m_owner = NULL;
264 int ret = cond_wait(cv, &mp->m_lock);
265 VERIFY(ret == 0 || ret == EINTR);
266 mp->m_owner = curthread;
267 return (ret == EINTR ? 0 : 1);
268 }
269
270 void
271 cv_wait(kcondvar_t *cv, kmutex_t *mp)
272 {
273 (void) cv_wait_sig(cv, mp);
274 }
275
276 clock_t
277 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
278 {
279 int error;
280 timestruc_t ts;
281 clock_t delta;
282
283 top:
284 delta = abstime - ddi_get_lbolt();
285 if (delta <= 0)
286 return (-1);
287
288 ts.tv_sec = delta / hz;
289 ts.tv_nsec = (delta % hz) * (NANOSEC / hz);
290
291 ASSERT(mutex_owner(mp) == curthread);
292 mp->m_owner = NULL;
293 error = cond_reltimedwait(cv, &mp->m_lock, &ts);
294 mp->m_owner = curthread;
295
296 if (error == ETIME)
297 return (-1);
298
299 if (error == EINTR)
300 goto top;
301
302 ASSERT(error == 0);
303
304 return (1);
305 }
306
307 void
308 cv_signal(kcondvar_t *cv)
309 {
310 VERIFY(cond_signal(cv) == 0);
311 }
312
313 void
314 cv_broadcast(kcondvar_t *cv)
315 {
316 VERIFY(cond_broadcast(cv) == 0);
317 }
318
319 /*
320 * =========================================================================
321 * vnode operations
322 * =========================================================================
323 */
324 /*
325 * Note: for the xxxat() versions of these functions, we assume that the
326 * starting vp is always rootdir (which is true for spa_directory.c, the only
327 * ZFS consumer of these interfaces). We assert this is true, and then emulate
328 * them by adding '/' in front of the path.
329 */
330
331 /*ARGSUSED*/
332 int
333 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3)
334 {
335 int fd;
336 vnode_t *vp;
337 int old_umask;
338 char realpath[MAXPATHLEN];
339 struct stat64 st;
340
341 /*
342 * If we're accessing a real disk from userland, we need to use
343 * the character interface to avoid caching. This is particularly
344 * important if we're trying to look at a real in-kernel storage
345 * pool from userland, e.g. via zdb, because otherwise we won't
346 * see the changes occurring under the segmap cache.
347 * On the other hand, the stupid character device returns zero
348 * for its size. So -- gag -- we open the block device to get
349 * its size, and remember it for subsequent VOP_GETATTR().
350 */
351 if (strncmp(path, "/dev/", 5) == 0) {
352 char *dsk;
353 fd = open64(path, O_RDONLY);
354 if (fd == -1)
355 return (errno);
356 if (fstat64(fd, &st) == -1) {
357 close(fd);
358 return (errno);
359 }
360 close(fd);
361 (void) sprintf(realpath, "%s", path);
362 dsk = strstr(path, "/dsk/");
363 if (dsk != NULL)
364 (void) sprintf(realpath + (dsk - path) + 1, "r%s",
365 dsk + 1);
366 } else {
367 (void) sprintf(realpath, "%s", path);
368 if (!(flags & FCREAT) && stat64(realpath, &st) == -1)
369 return (errno);
370 }
371
372 if (flags & FCREAT)
373 old_umask = umask(0);
374
375 /*
376 * The construct 'flags - FREAD' conveniently maps combinations of
377 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR.
378 */
379 fd = open64(realpath, flags - FREAD, mode);
380
381 if (flags & FCREAT)
382 (void) umask(old_umask);
383
384 if (fd == -1)
385 return (errno);
386
387 if (fstat64(fd, &st) == -1) {
388 close(fd);
389 return (errno);
390 }
391
392 (void) fcntl(fd, F_SETFD, FD_CLOEXEC);
393
394 *vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL);
395
396 vp->v_fd = fd;
397 vp->v_size = st.st_size;
398 vp->v_path = spa_strdup(path);
399
400 return (0);
401 }
402
403 /*ARGSUSED*/
404 int
405 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2,
406 int x3, vnode_t *startvp, int fd)
407 {
408 char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL);
409 int ret;
410
411 ASSERT(startvp == rootdir);
412 (void) sprintf(realpath, "/%s", path);
413
414 /* fd ignored for now, need if want to simulate nbmand support */
415 ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3);
416
417 umem_free(realpath, strlen(path) + 2);
418
419 return (ret);
420 }
421
422 /*ARGSUSED*/
423 int
424 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset,
425 int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp)
426 {
427 ssize_t iolen, split;
428
429 if (uio == UIO_READ) {
430 iolen = pread64(vp->v_fd, addr, len, offset);
431 } else {
432 /*
433 * To simulate partial disk writes, we split writes into two
434 * system calls so that the process can be killed in between.
435 */
436 int sectors = len >> SPA_MINBLOCKSHIFT;
437 split = (sectors > 0 ? rand() % sectors : 0) <<
438 SPA_MINBLOCKSHIFT;
439 iolen = pwrite64(vp->v_fd, addr, split, offset);
440 iolen += pwrite64(vp->v_fd, (char *)addr + split,
441 len - split, offset + split);
442 }
443
444 if (iolen == -1)
445 return (errno);
446 if (residp)
447 *residp = len - iolen;
448 else if (iolen != len)
449 return (EIO);
450 return (0);
451 }
452
453 void
454 vn_close(vnode_t *vp)
455 {
456 close(vp->v_fd);
457 spa_strfree(vp->v_path);
458 umem_free(vp, sizeof (vnode_t));
459 }
460
461 /*
462 * At a minimum we need to update the size since vdev_reopen()
463 * will no longer call vn_openat().
464 */
465 int
466 fop_getattr(vnode_t *vp, vattr_t *vap)
467 {
468 struct stat64 st;
469
470 if (fstat64(vp->v_fd, &st) == -1) {
471 close(vp->v_fd);
472 return (errno);
473 }
474
475 vap->va_size = st.st_size;
476 return (0);
477 }
478
479 #ifdef ZFS_DEBUG
480
481 /*
482 * =========================================================================
483 * Figure out which debugging statements to print
484 * =========================================================================
485 */
486
487 static char *dprintf_string;
488 static int dprintf_print_all;
489
490 int
491 dprintf_find_string(const char *string)
492 {
493 char *tmp_str = dprintf_string;
494 int len = strlen(string);
495
496 /*
497 * Find out if this is a string we want to print.
498 * String format: file1.c,function_name1,file2.c,file3.c
499 */
500
501 while (tmp_str != NULL) {
502 if (strncmp(tmp_str, string, len) == 0 &&
503 (tmp_str[len] == ',' || tmp_str[len] == '\0'))
504 return (1);
505 tmp_str = strchr(tmp_str, ',');
506 if (tmp_str != NULL)
507 tmp_str++; /* Get rid of , */
508 }
509 return (0);
510 }
511
512 void
513 dprintf_setup(int *argc, char **argv)
514 {
515 int i, j;
516
517 /*
518 * Debugging can be specified two ways: by setting the
519 * environment variable ZFS_DEBUG, or by including a
520 * "debug=..." argument on the command line. The command
521 * line setting overrides the environment variable.
522 */
523
524 for (i = 1; i < *argc; i++) {
525 int len = strlen("debug=");
526 /* First look for a command line argument */
527 if (strncmp("debug=", argv[i], len) == 0) {
528 dprintf_string = argv[i] + len;
529 /* Remove from args */
530 for (j = i; j < *argc; j++)
531 argv[j] = argv[j+1];
532 argv[j] = NULL;
533 (*argc)--;
534 }
535 }
536
537 if (dprintf_string == NULL) {
538 /* Look for ZFS_DEBUG environment variable */
539 dprintf_string = getenv("ZFS_DEBUG");
540 }
541
542 /*
543 * Are we just turning on all debugging?
544 */
545 if (dprintf_find_string("on"))
546 dprintf_print_all = 1;
547 }
548
549 /*
550 * =========================================================================
551 * debug printfs
552 * =========================================================================
553 */
554 void
555 __dprintf(const char *file, const char *func, int line, const char *fmt, ...)
556 {
557 const char *newfile;
558 va_list adx;
559
560 /*
561 * Get rid of annoying "../common/" prefix to filename.
562 */
563 newfile = strrchr(file, '/');
564 if (newfile != NULL) {
565 newfile = newfile + 1; /* Get rid of leading / */
566 } else {
567 newfile = file;
568 }
569
570 if (dprintf_print_all ||
571 dprintf_find_string(newfile) ||
572 dprintf_find_string(func)) {
573 /* Print out just the function name if requested */
574 flockfile(stdout);
575 if (dprintf_find_string("pid"))
576 (void) printf("%d ", getpid());
577 if (dprintf_find_string("tid"))
578 (void) printf("%u ", thr_self());
579 if (dprintf_find_string("cpu"))
580 (void) printf("%u ", getcpuid());
581 if (dprintf_find_string("time"))
582 (void) printf("%llu ", gethrtime());
583 if (dprintf_find_string("long"))
584 (void) printf("%s, line %d: ", newfile, line);
585 (void) printf("%s: ", func);
586 va_start(adx, fmt);
587 (void) vprintf(fmt, adx);
588 va_end(adx);
589 funlockfile(stdout);
590 }
591 }
592
593 #endif /* ZFS_DEBUG */
594
595 /*
596 * =========================================================================
597 * cmn_err() and panic()
598 * =========================================================================
599 */
600 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
601 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
602
603 void
604 vpanic(const char *fmt, va_list adx)
605 {
606 (void) fprintf(stderr, "error: ");
607 (void) vfprintf(stderr, fmt, adx);
608 (void) fprintf(stderr, "\n");
609
610 abort(); /* think of it as a "user-level crash dump" */
611 }
612
613 void
614 panic(const char *fmt, ...)
615 {
616 va_list adx;
617
618 va_start(adx, fmt);
619 vpanic(fmt, adx);
620 va_end(adx);
621 }
622
623 void
624 vcmn_err(int ce, const char *fmt, va_list adx)
625 {
626 if (ce == CE_PANIC)
627 vpanic(fmt, adx);
628 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */
629 (void) fprintf(stderr, "%s", ce_prefix[ce]);
630 (void) vfprintf(stderr, fmt, adx);
631 (void) fprintf(stderr, "%s", ce_suffix[ce]);
632 }
633 }
634
635 /*PRINTFLIKE2*/
636 void
637 cmn_err(int ce, const char *fmt, ...)
638 {
639 va_list adx;
640
641 va_start(adx, fmt);
642 vcmn_err(ce, fmt, adx);
643 va_end(adx);
644 }
645
646 /*
647 * =========================================================================
648 * kobj interfaces
649 * =========================================================================
650 */
651 struct _buf *
652 kobj_open_file(char *name)
653 {
654 struct _buf *file;
655 vnode_t *vp;
656
657 /* set vp as the _fd field of the file */
658 if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir,
659 -1) != 0)
660 return ((void *)-1UL);
661
662 file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL);
663 file->_fd = (intptr_t)vp;
664 return (file);
665 }
666
667 int
668 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
669 {
670 ssize_t resid;
671
672 vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off,
673 UIO_SYSSPACE, 0, 0, 0, &resid);
674
675 return (size - resid);
676 }
677
678 void
679 kobj_close_file(struct _buf *file)
680 {
681 vn_close((vnode_t *)file->_fd);
682 umem_free(file, sizeof (struct _buf));
683 }
684
685 int
686 kobj_get_filesize(struct _buf *file, uint64_t *size)
687 {
688 struct stat64 st;
689 vnode_t *vp = (vnode_t *)file->_fd;
690
691 if (fstat64(vp->v_fd, &st) == -1) {
692 vn_close(vp);
693 return (errno);
694 }
695 *size = st.st_size;
696 return (0);
697 }
698
699 /*
700 * =========================================================================
701 * misc routines
702 * =========================================================================
703 */
704
705 void
706 delay(clock_t ticks)
707 {
708 poll(0, 0, ticks * (1000 / hz));
709 }
710
711 /*
712 * Find highest one bit set.
713 * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
714 * High order bit is 31 (or 63 in _LP64 kernel).
715 */
716 int
717 highbit(ulong_t i)
718 {
719 register int h = 1;
720
721 if (i == 0)
722 return (0);
723 #ifdef _LP64
724 if (i & 0xffffffff00000000ul) {
725 h += 32; i >>= 32;
726 }
727 #endif
728 if (i & 0xffff0000) {
729 h += 16; i >>= 16;
730 }
731 if (i & 0xff00) {
732 h += 8; i >>= 8;
733 }
734 if (i & 0xf0) {
735 h += 4; i >>= 4;
736 }
737 if (i & 0xc) {
738 h += 2; i >>= 2;
739 }
740 if (i & 0x2) {
741 h += 1;
742 }
743 return (h);
744 }
745
746 static int random_fd = -1, urandom_fd = -1;
747
748 static int
749 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
750 {
751 size_t resid = len;
752 ssize_t bytes;
753
754 ASSERT(fd != -1);
755
756 while (resid != 0) {
757 bytes = read(fd, ptr, resid);
758 ASSERT3S(bytes, >=, 0);
759 ptr += bytes;
760 resid -= bytes;
761 }
762
763 return (0);
764 }
765
766 int
767 random_get_bytes(uint8_t *ptr, size_t len)
768 {
769 return (random_get_bytes_common(ptr, len, random_fd));
770 }
771
772 int
773 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
774 {
775 return (random_get_bytes_common(ptr, len, urandom_fd));
776 }
777
778 int
779 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
780 {
781 char *end;
782
783 *result = strtoul(hw_serial, &end, base);
784 if (*result == 0)
785 return (errno);
786 return (0);
787 }
788
789 int
790 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
791 {
792 char *end;
793
794 *result = strtoull(str, &end, base);
795 if (*result == 0)
796 return (errno);
797 return (0);
798 }
799
800 /*
801 * =========================================================================
802 * kernel emulation setup & teardown
803 * =========================================================================
804 */
805 static int
806 umem_out_of_memory(void)
807 {
808 char errmsg[] = "out of memory -- generating core dump\n";
809
810 write(fileno(stderr), errmsg, sizeof (errmsg));
811 abort();
812 return (0);
813 }
814
815 void
816 kernel_init(int mode)
817 {
818 umem_nofail_callback(umem_out_of_memory);
819
820 physmem = sysconf(_SC_PHYS_PAGES);
821
822 dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
823 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
824
825 (void) snprintf(hw_serial, sizeof (hw_serial), "%ld",
826 (mode & FWRITE) ? gethostid() : 0);
827
828 VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1);
829 VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1);
830
831 system_taskq_init();
832
833 spa_init(mode);
834 }
835
836 void
837 kernel_fini(void)
838 {
839 spa_fini();
840
841 system_taskq_fini();
842
843 close(random_fd);
844 close(urandom_fd);
845
846 random_fd = -1;
847 urandom_fd = -1;
848 }
849
850 int
851 z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen)
852 {
853 int ret;
854 uLongf len = *dstlen;
855
856 if ((ret = uncompress(dst, &len, src, srclen)) == Z_OK)
857 *dstlen = (size_t)len;
858
859 return (ret);
860 }
861
862 int
863 z_compress_level(void *dst, size_t *dstlen, const void *src, size_t srclen,
864 int level)
865 {
866 int ret;
867 uLongf len = *dstlen;
868
869 if ((ret = compress2(dst, &len, src, srclen, level)) == Z_OK)
870 *dstlen = (size_t)len;
871
872 return (ret);
873 }
874
875 uid_t
876 crgetuid(cred_t *cr)
877 {
878 return (0);
879 }
880
881 gid_t
882 crgetgid(cred_t *cr)
883 {
884 return (0);
885 }
886
887 int
888 crgetngroups(cred_t *cr)
889 {
890 return (0);
891 }
892
893 gid_t *
894 crgetgroups(cred_t *cr)
895 {
896 return (NULL);
897 }
898
899 int
900 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
901 {
902 return (0);
903 }
904
905 int
906 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
907 {
908 return (0);
909 }
910
911 int
912 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
913 {
914 return (0);
915 }
916
917 ksiddomain_t *
918 ksid_lookupdomain(const char *dom)
919 {
920 ksiddomain_t *kd;
921
922 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
923 kd->kd_name = spa_strdup(dom);
924 return (kd);
925 }
926
927 void
928 ksiddomain_rele(ksiddomain_t *ksid)
929 {
930 spa_strfree(ksid->kd_name);
931 umem_free(ksid, sizeof (ksiddomain_t));
932 }
933
934 /*
935 * Do not change the length of the returned string; it must be freed
936 * with strfree().
937 */
938 char *
939 kmem_asprintf(const char *fmt, ...)
940 {
941 int size;
942 va_list adx;
943 char *buf;
944
945 va_start(adx, fmt);
946 size = vsnprintf(NULL, 0, fmt, adx) + 1;
947 va_end(adx);
948
949 buf = kmem_alloc(size, KM_SLEEP);
950
951 va_start(adx, fmt);
952 size = vsnprintf(buf, size, fmt, adx);
953 va_end(adx);
954
955 return (buf);
956 }
957
958 /* ARGSUSED */
959 int
960 zfs_onexit_fd_hold(int fd, minor_t *minorp)
961 {
962 *minorp = 0;
963 return (0);
964 }
965
966 /* ARGSUSED */
967 void
968 zfs_onexit_fd_rele(int fd)
969 {
970 }
971
972 /* ARGSUSED */
973 int
974 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
975 uint64_t *action_handle)
976 {
977 return (0);
978 }
979
980 /* ARGSUSED */
981 int
982 zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire)
983 {
984 return (0);
985 }
986
987 /* ARGSUSED */
988 int
989 zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data)
990 {
991 return (0);
992 }