1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 26 /* All Rights Reserved */ 27 28 /* 29 * Copyright 2012 Nexenta Systems, Inc. All rights reserved. 30 */ 31 32 /* 33 * Portions of this source code were derived from Berkeley 4.3 BSD 34 * under license from the Regents of the University of California. 35 */ 36 37 /* 38 * svc_clts.c 39 * Server side for RPC in the kernel. 40 * 41 */ 42 43 #include <sys/param.h> 44 #include <sys/types.h> 45 #include <sys/sysmacros.h> 46 #include <sys/file.h> 47 #include <sys/stream.h> 48 #include <sys/strsun.h> 49 #include <sys/strsubr.h> 50 #include <sys/tihdr.h> 51 #include <sys/tiuser.h> 52 #include <sys/t_kuser.h> 53 #include <sys/fcntl.h> 54 #include <sys/errno.h> 55 #include <sys/kmem.h> 56 #include <sys/systm.h> 57 #include <sys/cmn_err.h> 58 #include <sys/kstat.h> 59 #include <sys/vtrace.h> 60 #include <sys/debug.h> 61 62 #include <rpc/types.h> 63 #include <rpc/xdr.h> 64 #include <rpc/auth.h> 65 #include <rpc/clnt.h> 66 #include <rpc/rpc_msg.h> 67 #include <rpc/svc.h> 68 #include <inet/ip.h> 69 70 /* 71 * Routines exported through ops vector. 72 */ 73 static bool_t svc_clts_krecv(SVCXPRT *, mblk_t *, struct rpc_msg *); 74 static bool_t svc_clts_ksend(SVCXPRT *, struct rpc_msg *); 75 static bool_t svc_clts_kgetargs(SVCXPRT *, xdrproc_t, caddr_t); 76 static bool_t svc_clts_kfreeargs(SVCXPRT *, xdrproc_t, caddr_t); 77 static void svc_clts_kdestroy(SVCMASTERXPRT *); 78 static int svc_clts_kdup(struct svc_req *, caddr_t, int, 79 struct dupreq **, bool_t *); 80 static void svc_clts_kdupdone(struct dupreq *, caddr_t, 81 void (*)(), int, int); 82 static int32_t *svc_clts_kgetres(SVCXPRT *, int); 83 static void svc_clts_kclone_destroy(SVCXPRT *); 84 static void svc_clts_kfreeres(SVCXPRT *); 85 static void svc_clts_kstart(SVCMASTERXPRT *); 86 static void svc_clts_kclone_xprt(SVCXPRT *, SVCXPRT *); 87 static void svc_clts_ktattrs(SVCXPRT *, int, void **); 88 89 /* 90 * Server transport operations vector. 91 */ 92 struct svc_ops svc_clts_op = { 93 svc_clts_krecv, /* Get requests */ 94 svc_clts_kgetargs, /* Deserialize arguments */ 95 svc_clts_ksend, /* Send reply */ 96 svc_clts_kfreeargs, /* Free argument data space */ 97 svc_clts_kdestroy, /* Destroy transport handle */ 98 svc_clts_kdup, /* Check entry in dup req cache */ 99 svc_clts_kdupdone, /* Mark entry in dup req cache as done */ 100 svc_clts_kgetres, /* Get pointer to response buffer */ 101 svc_clts_kfreeres, /* Destroy pre-serialized response header */ 102 svc_clts_kclone_destroy, /* Destroy a clone xprt */ 103 svc_clts_kstart, /* Tell `ready-to-receive' to rpcmod */ 104 svc_clts_kclone_xprt, /* transport specific clone xprt function */ 105 svc_clts_ktattrs /* Transport specific attributes. */ 106 }; 107 108 /* 109 * Transport private data. 110 * Kept in xprt->xp_p2buf. 111 */ 112 struct udp_data { 113 mblk_t *ud_resp; /* buffer for response */ 114 mblk_t *ud_inmp; /* mblk chain of request */ 115 sin6_t ud_local; /* local address */ 116 }; 117 118 #define UD_MAXSIZE 8800 119 #define UD_INITSIZE 2048 120 121 /* 122 * Connectionless server statistics 123 */ 124 static const struct rpc_clts_server { 125 kstat_named_t rscalls; 126 kstat_named_t rsbadcalls; 127 kstat_named_t rsnullrecv; 128 kstat_named_t rsbadlen; 129 kstat_named_t rsxdrcall; 130 kstat_named_t rsdupchecks; 131 kstat_named_t rsdupreqs; 132 } clts_rsstat_tmpl = { 133 { "calls", KSTAT_DATA_UINT64 }, 134 { "badcalls", KSTAT_DATA_UINT64 }, 135 { "nullrecv", KSTAT_DATA_UINT64 }, 136 { "badlen", KSTAT_DATA_UINT64 }, 137 { "xdrcall", KSTAT_DATA_UINT64 }, 138 { "dupchecks", KSTAT_DATA_UINT64 }, 139 { "dupreqs", KSTAT_DATA_UINT64 } 140 }; 141 142 static uint_t clts_rsstat_ndata = 143 sizeof (clts_rsstat_tmpl) / sizeof (kstat_named_t); 144 145 #define CLONE2STATS(clone_xprt) \ 146 (struct rpc_clts_server *)(clone_xprt)->xp_master->xp_p2 147 148 #define RSSTAT_INCR(stats, x) \ 149 atomic_add_64(&(stats)->x.value.ui64, 1) 150 151 /* 152 * Create a transport record. 153 * The transport record, output buffer, and private data structure 154 * are allocated. The output buffer is serialized into using xdrmem. 155 * There is one transport record per user process which implements a 156 * set of services. 157 */ 158 /* ARGSUSED */ 159 int 160 svc_clts_kcreate(file_t *fp, uint_t sendsz, struct T_info_ack *tinfo, 161 SVCMASTERXPRT **nxprt) 162 { 163 SVCMASTERXPRT *xprt; 164 struct rpcstat *rpcstat; 165 166 if (nxprt == NULL) 167 return (EINVAL); 168 169 rpcstat = zone_getspecific(rpcstat_zone_key, curproc->p_zone); 170 ASSERT(rpcstat != NULL); 171 172 xprt = kmem_zalloc(sizeof (*xprt), KM_SLEEP); 173 xprt->xp_lcladdr.buf = kmem_zalloc(sizeof (sin6_t), KM_SLEEP); 174 xprt->xp_p2 = (caddr_t)rpcstat->rpc_clts_server; 175 xprt->xp_ops = &svc_clts_op; 176 xprt->xp_msg_size = tinfo->TSDU_size; 177 178 xprt->xp_rtaddr.buf = NULL; 179 xprt->xp_rtaddr.maxlen = tinfo->ADDR_size; 180 xprt->xp_rtaddr.len = 0; 181 182 *nxprt = xprt; 183 184 return (0); 185 } 186 187 /* 188 * Destroy a transport record. 189 * Frees the space allocated for a transport record. 190 */ 191 static void 192 svc_clts_kdestroy(SVCMASTERXPRT *xprt) 193 { 194 if (xprt->xp_netid) 195 kmem_free(xprt->xp_netid, strlen(xprt->xp_netid) + 1); 196 if (xprt->xp_addrmask.maxlen) 197 kmem_free(xprt->xp_addrmask.buf, xprt->xp_addrmask.maxlen); 198 199 mutex_destroy(&xprt->xp_req_lock); 200 mutex_destroy(&xprt->xp_thread_lock); 201 202 kmem_free(xprt->xp_lcladdr.buf, sizeof (sin6_t)); 203 kmem_free(xprt, sizeof (SVCMASTERXPRT)); 204 } 205 206 /* 207 * Transport-type specific part of svc_xprt_cleanup(). 208 * Frees the message buffer space allocated for a clone of a transport record 209 */ 210 static void 211 svc_clts_kclone_destroy(SVCXPRT *clone_xprt) 212 { 213 /* LINTED pointer alignment */ 214 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; 215 216 if (ud->ud_resp) { 217 /* 218 * There should not be any left over results buffer. 219 */ 220 ASSERT(ud->ud_resp->b_cont == NULL); 221 222 /* 223 * Free the T_UNITDATA_{REQ/IND} that svc_clts_krecv 224 * saved. 225 */ 226 freeb(ud->ud_resp); 227 } 228 if (ud->ud_inmp) 229 freemsg(ud->ud_inmp); 230 } 231 232 /* 233 * svc_tli_kcreate() calls this function at the end to tell 234 * rpcmod that the transport is ready to receive requests. 235 */ 236 /* ARGSUSED */ 237 static void 238 svc_clts_kstart(SVCMASTERXPRT *xprt) 239 { 240 } 241 242 static void 243 svc_clts_kclone_xprt(SVCXPRT *src_xprt, SVCXPRT *dst_xprt) 244 { 245 struct udp_data *ud_src = 246 (struct udp_data *)src_xprt->xp_p2buf; 247 struct udp_data *ud_dst = 248 (struct udp_data *)dst_xprt->xp_p2buf; 249 250 if (ud_src->ud_resp) 251 ud_dst->ud_resp = dupb(ud_src->ud_resp); 252 253 } 254 255 static void 256 svc_clts_ktattrs(SVCXPRT *clone_xprt, int attrflag, void **tattr) 257 { 258 *tattr = NULL; 259 260 switch (attrflag) { 261 case SVC_TATTR_ADDRMASK: 262 *tattr = (void *)&clone_xprt->xp_master->xp_addrmask; 263 } 264 } 265 266 /* 267 * Receive rpc requests. 268 * Pulls a request in off the socket, checks if the packet is intact, 269 * and deserializes the call packet. 270 */ 271 static bool_t 272 svc_clts_krecv(SVCXPRT *clone_xprt, mblk_t *mp, struct rpc_msg *msg) 273 { 274 /* LINTED pointer alignment */ 275 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; 276 XDR *xdrs = &clone_xprt->xp_xdrin; 277 struct rpc_clts_server *stats = CLONE2STATS(clone_xprt); 278 union T_primitives *pptr; 279 int hdrsz; 280 cred_t *cr; 281 282 TRACE_0(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_START, 283 "svc_clts_krecv_start:"); 284 285 RSSTAT_INCR(stats, rscalls); 286 287 /* 288 * The incoming request should start with an M_PROTO message. 289 */ 290 if (mp->b_datap->db_type != M_PROTO) { 291 goto bad; 292 } 293 294 /* 295 * The incoming request should be an T_UNITDTA_IND. There 296 * might be other messages coming up the stream, but we can 297 * ignore them. 298 */ 299 pptr = (union T_primitives *)mp->b_rptr; 300 if (pptr->type != T_UNITDATA_IND) { 301 goto bad; 302 } 303 /* 304 * Do some checking to make sure that the header at least looks okay. 305 */ 306 hdrsz = (int)(mp->b_wptr - mp->b_rptr); 307 if (hdrsz < TUNITDATAINDSZ || 308 hdrsz < (pptr->unitdata_ind.OPT_offset + 309 pptr->unitdata_ind.OPT_length) || 310 hdrsz < (pptr->unitdata_ind.SRC_offset + 311 pptr->unitdata_ind.SRC_length)) { 312 goto bad; 313 } 314 315 /* 316 * Make sure that the transport provided a usable address. 317 */ 318 if (pptr->unitdata_ind.SRC_length <= 0) { 319 goto bad; 320 } 321 /* 322 * Point the remote transport address in the service_transport 323 * handle at the address in the request. 324 */ 325 clone_xprt->xp_rtaddr.buf = (char *)mp->b_rptr + 326 pptr->unitdata_ind.SRC_offset; 327 clone_xprt->xp_rtaddr.len = pptr->unitdata_ind.SRC_length; 328 329 clone_xprt->xp_lcladdr.buf = (char *)&ud->ud_local; 330 331 /* 332 * Copy the local transport address in the service_transport 333 * handle at the address in the request. We will have only 334 * the local IP address in options. 335 */ 336 ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family = AF_UNSPEC; 337 if (pptr->unitdata_ind.OPT_length && pptr->unitdata_ind.OPT_offset) { 338 char *dstopt = (char *)mp->b_rptr + 339 pptr->unitdata_ind.OPT_offset; 340 struct T_opthdr *toh = (struct T_opthdr *)dstopt; 341 342 if (toh->level == IPPROTO_IPV6 && toh->status == 0 && 343 toh->name == IPV6_PKTINFO) { 344 struct in6_pktinfo *pkti; 345 346 dstopt += sizeof (struct T_opthdr); 347 pkti = (struct in6_pktinfo *)dstopt; 348 ((sin6_t *)(clone_xprt->xp_lcladdr.buf))->sin6_addr 349 = pkti->ipi6_addr; 350 ((sin6_t *)(clone_xprt->xp_lcladdr.buf))->sin6_family 351 = AF_INET6; 352 } else if (toh->level == IPPROTO_IP && toh->status == 0 && 353 toh->name == IP_RECVDSTADDR) { 354 dstopt += sizeof (struct T_opthdr); 355 ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_addr 356 = *(struct in_addr *)dstopt; 357 ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family 358 = AF_INET; 359 } 360 } 361 362 /* 363 * Save the first mblk which contains the T_unidata_ind in 364 * ud_resp. It will be used to generate the T_unitdata_req 365 * during the reply. 366 * We reuse any options in the T_unitdata_ind for the T_unitdata_req 367 * since we must pass any SCM_UCRED across in order for TX to 368 * work. We also make sure any cred_t is carried across. 369 */ 370 if (ud->ud_resp) { 371 if (ud->ud_resp->b_cont != NULL) { 372 cmn_err(CE_WARN, "svc_clts_krecv: ud_resp %p, " 373 "b_cont %p", (void *)ud->ud_resp, 374 (void *)ud->ud_resp->b_cont); 375 } 376 freeb(ud->ud_resp); 377 } 378 /* Move any cred_t to the first mblk in the message */ 379 cr = msg_getcred(mp, NULL); 380 if (cr != NULL) 381 mblk_setcred(mp, cr, NOPID); 382 383 ud->ud_resp = mp; 384 mp = mp->b_cont; 385 ud->ud_resp->b_cont = NULL; 386 387 xdrmblk_init(xdrs, mp, XDR_DECODE, 0); 388 389 TRACE_0(TR_FAC_KRPC, TR_XDR_CALLMSG_START, 390 "xdr_callmsg_start:"); 391 if (! xdr_callmsg(xdrs, msg)) { 392 TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END, 393 "xdr_callmsg_end:(%S)", "bad"); 394 RSSTAT_INCR(stats, rsxdrcall); 395 goto bad; 396 } 397 TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END, 398 "xdr_callmsg_end:(%S)", "good"); 399 400 clone_xprt->xp_xid = msg->rm_xid; 401 ud->ud_inmp = mp; 402 403 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_END, 404 "svc_clts_krecv_end:(%S)", "good"); 405 return (TRUE); 406 407 bad: 408 freemsg(mp); 409 if (ud->ud_resp) { 410 /* 411 * There should not be any left over results buffer. 412 */ 413 ASSERT(ud->ud_resp->b_cont == NULL); 414 freeb(ud->ud_resp); 415 ud->ud_resp = NULL; 416 } 417 418 RSSTAT_INCR(stats, rsbadcalls); 419 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_END, 420 "svc_clts_krecv_end:(%S)", "bad"); 421 return (FALSE); 422 } 423 424 /* 425 * Send rpc reply. 426 * Serialize the reply packet into the output buffer then 427 * call t_ksndudata to send it. 428 */ 429 static bool_t 430 svc_clts_ksend(SVCXPRT *clone_xprt, struct rpc_msg *msg) 431 { 432 /* LINTED pointer alignment */ 433 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; 434 XDR *xdrs = &clone_xprt->xp_xdrout; 435 int stat = FALSE; 436 mblk_t *mp; 437 int msgsz; 438 struct T_unitdata_req *udreq; 439 xdrproc_t xdr_results; 440 caddr_t xdr_location; 441 bool_t has_args; 442 443 TRACE_0(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_START, 444 "svc_clts_ksend_start:"); 445 446 ASSERT(ud->ud_resp != NULL); 447 448 /* 449 * If there is a result procedure specified in the reply message, 450 * it will be processed in the xdr_replymsg and SVCAUTH_WRAP. 451 * We need to make sure it won't be processed twice, so we null 452 * it for xdr_replymsg here. 453 */ 454 has_args = FALSE; 455 if (msg->rm_reply.rp_stat == MSG_ACCEPTED && 456 msg->rm_reply.rp_acpt.ar_stat == SUCCESS) { 457 if ((xdr_results = msg->acpted_rply.ar_results.proc) != NULL) { 458 has_args = TRUE; 459 xdr_location = msg->acpted_rply.ar_results.where; 460 msg->acpted_rply.ar_results.proc = xdr_void; 461 msg->acpted_rply.ar_results.where = NULL; 462 } 463 } 464 465 if (ud->ud_resp->b_cont == NULL) { 466 /* 467 * Allocate an initial mblk for the response data. 468 */ 469 while ((mp = allocb(UD_INITSIZE, BPRI_LO)) == NULL) { 470 if (strwaitbuf(UD_INITSIZE, BPRI_LO)) { 471 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_END, 472 "svc_clts_ksend_end:(%S)", "strwaitbuf"); 473 return (FALSE); 474 } 475 } 476 477 /* 478 * Initialize the XDR decode stream. Additional mblks 479 * will be allocated if necessary. They will be UD_MAXSIZE 480 * sized. 481 */ 482 xdrmblk_init(xdrs, mp, XDR_ENCODE, UD_MAXSIZE); 483 484 /* 485 * Leave some space for protocol headers. 486 */ 487 (void) XDR_SETPOS(xdrs, 512); 488 mp->b_rptr += 512; 489 490 msg->rm_xid = clone_xprt->xp_xid; 491 492 ud->ud_resp->b_cont = mp; 493 494 TRACE_0(TR_FAC_KRPC, TR_XDR_REPLYMSG_START, 495 "xdr_replymsg_start:"); 496 if (!(xdr_replymsg(xdrs, msg) && 497 (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs, 498 xdr_results, xdr_location)))) { 499 TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END, 500 "xdr_replymsg_end:(%S)", "bad"); 501 RPCLOG0(1, "xdr_replymsg/SVCAUTH_WRAP failed\n"); 502 goto out; 503 } 504 TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END, 505 "xdr_replymsg_end:(%S)", "good"); 506 507 } else if (!(xdr_replymsg_body(xdrs, msg) && 508 (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs, 509 xdr_results, xdr_location)))) { 510 RPCLOG0(1, "xdr_replymsg_body/SVCAUTH_WRAP failed\n"); 511 goto out; 512 } 513 514 msgsz = (int)xmsgsize(ud->ud_resp->b_cont); 515 516 if (msgsz <= 0 || (clone_xprt->xp_msg_size != -1 && 517 msgsz > clone_xprt->xp_msg_size)) { 518 #ifdef DEBUG 519 cmn_err(CE_NOTE, 520 "KRPC: server response message of %d bytes; transport limits are [0, %d]", 521 msgsz, clone_xprt->xp_msg_size); 522 #endif 523 goto out; 524 } 525 526 /* 527 * Construct the T_unitdata_req. We take advantage of the fact that 528 * T_unitdata_ind looks just like T_unitdata_req, except for the 529 * primitive type. Reusing it means we preserve the SCM_UCRED, and 530 * we must preserve it for TX to work. 531 * 532 * This has the side effect that we can also pass certain receive-side 533 * options like IPV6_PKTINFO back down the send side. This implies 534 * that we can not ASSERT on a non-NULL db_credp when we have send-side 535 * options in UDP. 536 */ 537 ASSERT(MBLKL(ud->ud_resp) >= TUNITDATAREQSZ); 538 udreq = (struct T_unitdata_req *)ud->ud_resp->b_rptr; 539 ASSERT(udreq->PRIM_type == T_UNITDATA_IND); 540 udreq->PRIM_type = T_UNITDATA_REQ; 541 542 /* 543 * If the local IPv4 transport address is known use it as a source 544 * address for the outgoing UDP packet. 545 */ 546 if (((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family == AF_INET) { 547 struct T_opthdr *opthdr; 548 in_pktinfo_t *pktinfo; 549 size_t size; 550 551 if (udreq->DEST_length == 0) 552 udreq->OPT_offset = _TPI_ALIGN_TOPT(TUNITDATAREQSZ); 553 else 554 udreq->OPT_offset = _TPI_ALIGN_TOPT(udreq->DEST_offset + 555 udreq->DEST_length); 556 557 udreq->OPT_length = sizeof (struct T_opthdr) + 558 sizeof (in_pktinfo_t); 559 560 size = udreq->OPT_length + udreq->OPT_offset; 561 562 /* make sure we have enough space for the option data */ 563 mp = reallocb(ud->ud_resp, size, 1); 564 if (mp == NULL) 565 goto out; 566 ud->ud_resp = mp; 567 udreq = (struct T_unitdata_req *)mp->b_rptr; 568 569 /* set desired option header */ 570 opthdr = (struct T_opthdr *)(mp->b_rptr + udreq->OPT_offset); 571 opthdr->len = udreq->OPT_length; 572 opthdr->level = IPPROTO_IP; 573 opthdr->name = IP_PKTINFO; 574 575 /* 576 * 1. set source IP of outbound packet 577 * 2. value '0' for index means IP layer uses this as source 578 * address 579 */ 580 pktinfo = (in_pktinfo_t *)(opthdr + 1); 581 (void) memset(pktinfo, 0, sizeof (in_pktinfo_t)); 582 pktinfo->ipi_spec_dst.s_addr = 583 ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_addr.s_addr; 584 pktinfo->ipi_ifindex = 0; 585 586 /* adjust the end of active data */ 587 mp->b_wptr = mp->b_rptr + size; 588 } 589 590 put(clone_xprt->xp_wq, ud->ud_resp); 591 stat = TRUE; 592 ud->ud_resp = NULL; 593 594 out: 595 if (stat == FALSE) { 596 freemsg(ud->ud_resp); 597 ud->ud_resp = NULL; 598 } 599 600 /* 601 * This is completely disgusting. If public is set it is 602 * a pointer to a structure whose first field is the address 603 * of the function to free that structure and any related 604 * stuff. (see rrokfree in nfs_xdr.c). 605 */ 606 if (xdrs->x_public) { 607 /* LINTED pointer alignment */ 608 (**((int (**)())xdrs->x_public))(xdrs->x_public); 609 } 610 611 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_END, 612 "svc_clts_ksend_end:(%S)", "done"); 613 return (stat); 614 } 615 616 /* 617 * Deserialize arguments. 618 */ 619 static bool_t 620 svc_clts_kgetargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args, 621 caddr_t args_ptr) 622 { 623 624 /* LINTED pointer alignment */ 625 return (SVCAUTH_UNWRAP(&clone_xprt->xp_auth, &clone_xprt->xp_xdrin, 626 xdr_args, args_ptr)); 627 628 } 629 630 static bool_t 631 svc_clts_kfreeargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args, 632 caddr_t args_ptr) 633 { 634 /* LINTED pointer alignment */ 635 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; 636 XDR *xdrs = &clone_xprt->xp_xdrin; 637 bool_t retval; 638 639 if (args_ptr) { 640 xdrs->x_op = XDR_FREE; 641 retval = (*xdr_args)(xdrs, args_ptr); 642 } else 643 retval = TRUE; 644 645 if (ud->ud_inmp) { 646 freemsg(ud->ud_inmp); 647 ud->ud_inmp = NULL; 648 } 649 650 return (retval); 651 } 652 653 static int32_t * 654 svc_clts_kgetres(SVCXPRT *clone_xprt, int size) 655 { 656 /* LINTED pointer alignment */ 657 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; 658 XDR *xdrs = &clone_xprt->xp_xdrout; 659 mblk_t *mp; 660 int32_t *buf; 661 struct rpc_msg rply; 662 663 /* 664 * Allocate an initial mblk for the response data. 665 */ 666 while ((mp = allocb(UD_INITSIZE, BPRI_LO)) == NULL) { 667 if (strwaitbuf(UD_INITSIZE, BPRI_LO)) { 668 return (FALSE); 669 } 670 } 671 672 mp->b_cont = NULL; 673 674 /* 675 * Initialize the XDR decode stream. Additional mblks 676 * will be allocated if necessary. They will be UD_MAXSIZE 677 * sized. 678 */ 679 xdrmblk_init(xdrs, mp, XDR_ENCODE, UD_MAXSIZE); 680 681 /* 682 * Leave some space for protocol headers. 683 */ 684 (void) XDR_SETPOS(xdrs, 512); 685 mp->b_rptr += 512; 686 687 /* 688 * Assume a successful RPC since most of them are. 689 */ 690 rply.rm_xid = clone_xprt->xp_xid; 691 rply.rm_direction = REPLY; 692 rply.rm_reply.rp_stat = MSG_ACCEPTED; 693 rply.acpted_rply.ar_verf = clone_xprt->xp_verf; 694 rply.acpted_rply.ar_stat = SUCCESS; 695 696 if (!xdr_replymsg_hdr(xdrs, &rply)) { 697 freeb(mp); 698 return (NULL); 699 } 700 701 buf = XDR_INLINE(xdrs, size); 702 703 if (buf == NULL) 704 freeb(mp); 705 else 706 ud->ud_resp->b_cont = mp; 707 708 return (buf); 709 } 710 711 static void 712 svc_clts_kfreeres(SVCXPRT *clone_xprt) 713 { 714 /* LINTED pointer alignment */ 715 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; 716 717 if (ud->ud_resp == NULL || ud->ud_resp->b_cont == NULL) 718 return; 719 720 /* 721 * SVC_FREERES() is called whenever the server decides not to 722 * send normal reply. Thus, we expect only one mblk to be allocated, 723 * because we have not attempted any XDR encoding. 724 * If we do any XDR encoding and we get an error, then SVC_REPLY() 725 * will freemsg(ud->ud_resp); 726 */ 727 ASSERT(ud->ud_resp->b_cont->b_cont == NULL); 728 freeb(ud->ud_resp->b_cont); 729 ud->ud_resp->b_cont = NULL; 730 } 731 732 /* 733 * the dup cacheing routines below provide a cache of non-failure 734 * transaction id's. rpc service routines can use this to detect 735 * retransmissions and re-send a non-failure response. 736 */ 737 738 /* 739 * MAXDUPREQS is the number of cached items. It should be adjusted 740 * to the service load so that there is likely to be a response entry 741 * when the first retransmission comes in. 742 */ 743 #define MAXDUPREQS 1024 744 745 /* 746 * This should be appropriately scaled to MAXDUPREQS. 747 */ 748 #define DRHASHSZ 257 749 750 #if ((DRHASHSZ & (DRHASHSZ - 1)) == 0) 751 #define XIDHASH(xid) ((xid) & (DRHASHSZ - 1)) 752 #else 753 #define XIDHASH(xid) ((xid) % DRHASHSZ) 754 #endif 755 #define DRHASH(dr) XIDHASH((dr)->dr_xid) 756 #define REQTOXID(req) ((req)->rq_xprt->xp_xid) 757 758 static int ndupreqs = 0; 759 int maxdupreqs = MAXDUPREQS; 760 static kmutex_t dupreq_lock; 761 static struct dupreq *drhashtbl[DRHASHSZ]; 762 static int drhashstat[DRHASHSZ]; 763 764 static void unhash(struct dupreq *); 765 766 /* 767 * drmru points to the head of a circular linked list in lru order. 768 * drmru->dr_next == drlru 769 */ 770 struct dupreq *drmru; 771 772 /* 773 * PSARC 2003/523 Contract Private Interface 774 * svc_clts_kdup 775 * Changes must be reviewed by Solaris File Sharing 776 * Changes must be communicated to contract-2003-523@sun.com 777 * 778 * svc_clts_kdup searches the request cache and returns 0 if the 779 * request is not found in the cache. If it is found, then it 780 * returns the state of the request (in progress or done) and 781 * the status or attributes that were part of the original reply. 782 * 783 * If DUP_DONE (there is a duplicate) svc_clts_kdup copies over the 784 * value of the response. In that case, also return in *dupcachedp 785 * whether the response free routine is cached in the dupreq - in which case 786 * the caller should not be freeing it, because it will be done later 787 * in the svc_clts_kdup code when the dupreq is reused. 788 */ 789 static int 790 svc_clts_kdup(struct svc_req *req, caddr_t res, int size, struct dupreq **drpp, 791 bool_t *dupcachedp) 792 { 793 struct rpc_clts_server *stats = CLONE2STATS(req->rq_xprt); 794 struct dupreq *dr; 795 uint32_t xid; 796 uint32_t drhash; 797 int status; 798 799 xid = REQTOXID(req); 800 mutex_enter(&dupreq_lock); 801 RSSTAT_INCR(stats, rsdupchecks); 802 /* 803 * Check to see whether an entry already exists in the cache. 804 */ 805 dr = drhashtbl[XIDHASH(xid)]; 806 while (dr != NULL) { 807 if (dr->dr_xid == xid && 808 dr->dr_proc == req->rq_proc && 809 dr->dr_prog == req->rq_prog && 810 dr->dr_vers == req->rq_vers && 811 dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len && 812 bcmp(dr->dr_addr.buf, req->rq_xprt->xp_rtaddr.buf, 813 dr->dr_addr.len) == 0) { 814 status = dr->dr_status; 815 if (status == DUP_DONE) { 816 bcopy(dr->dr_resp.buf, res, size); 817 if (dupcachedp != NULL) 818 *dupcachedp = (dr->dr_resfree != NULL); 819 } else { 820 dr->dr_status = DUP_INPROGRESS; 821 *drpp = dr; 822 } 823 RSSTAT_INCR(stats, rsdupreqs); 824 mutex_exit(&dupreq_lock); 825 return (status); 826 } 827 dr = dr->dr_chain; 828 } 829 830 /* 831 * There wasn't an entry, either allocate a new one or recycle 832 * an old one. 833 */ 834 if (ndupreqs < maxdupreqs) { 835 dr = kmem_alloc(sizeof (*dr), KM_NOSLEEP); 836 if (dr == NULL) { 837 mutex_exit(&dupreq_lock); 838 return (DUP_ERROR); 839 } 840 dr->dr_resp.buf = NULL; 841 dr->dr_resp.maxlen = 0; 842 dr->dr_addr.buf = NULL; 843 dr->dr_addr.maxlen = 0; 844 if (drmru) { 845 dr->dr_next = drmru->dr_next; 846 drmru->dr_next = dr; 847 } else { 848 dr->dr_next = dr; 849 } 850 ndupreqs++; 851 } else { 852 dr = drmru->dr_next; 853 while (dr->dr_status == DUP_INPROGRESS) { 854 dr = dr->dr_next; 855 if (dr == drmru->dr_next) { 856 cmn_err(CE_WARN, "svc_clts_kdup no slots free"); 857 mutex_exit(&dupreq_lock); 858 return (DUP_ERROR); 859 } 860 } 861 unhash(dr); 862 if (dr->dr_resfree) { 863 (*dr->dr_resfree)(dr->dr_resp.buf); 864 } 865 } 866 dr->dr_resfree = NULL; 867 drmru = dr; 868 869 dr->dr_xid = REQTOXID(req); 870 dr->dr_prog = req->rq_prog; 871 dr->dr_vers = req->rq_vers; 872 dr->dr_proc = req->rq_proc; 873 if (dr->dr_addr.maxlen < req->rq_xprt->xp_rtaddr.len) { 874 if (dr->dr_addr.buf != NULL) 875 kmem_free(dr->dr_addr.buf, dr->dr_addr.maxlen); 876 dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len; 877 dr->dr_addr.buf = kmem_alloc(dr->dr_addr.maxlen, 878 KM_NOSLEEP); 879 if (dr->dr_addr.buf == NULL) { 880 dr->dr_addr.maxlen = 0; 881 dr->dr_status = DUP_DROP; 882 mutex_exit(&dupreq_lock); 883 return (DUP_ERROR); 884 } 885 } 886 dr->dr_addr.len = req->rq_xprt->xp_rtaddr.len; 887 bcopy(req->rq_xprt->xp_rtaddr.buf, dr->dr_addr.buf, dr->dr_addr.len); 888 if (dr->dr_resp.maxlen < size) { 889 if (dr->dr_resp.buf != NULL) 890 kmem_free(dr->dr_resp.buf, dr->dr_resp.maxlen); 891 dr->dr_resp.maxlen = (unsigned int)size; 892 dr->dr_resp.buf = kmem_alloc(size, KM_NOSLEEP); 893 if (dr->dr_resp.buf == NULL) { 894 dr->dr_resp.maxlen = 0; 895 dr->dr_status = DUP_DROP; 896 mutex_exit(&dupreq_lock); 897 return (DUP_ERROR); 898 } 899 } 900 dr->dr_status = DUP_INPROGRESS; 901 902 drhash = (uint32_t)DRHASH(dr); 903 dr->dr_chain = drhashtbl[drhash]; 904 drhashtbl[drhash] = dr; 905 drhashstat[drhash]++; 906 mutex_exit(&dupreq_lock); 907 *drpp = dr; 908 return (DUP_NEW); 909 } 910 911 /* 912 * PSARC 2003/523 Contract Private Interface 913 * svc_clts_kdupdone 914 * Changes must be reviewed by Solaris File Sharing 915 * Changes must be communicated to contract-2003-523@sun.com 916 * 917 * svc_clts_kdupdone marks the request done (DUP_DONE or DUP_DROP) 918 * and stores the response. 919 */ 920 static void 921 svc_clts_kdupdone(struct dupreq *dr, caddr_t res, void (*dis_resfree)(), 922 int size, int status) 923 { 924 925 ASSERT(dr->dr_resfree == NULL); 926 if (status == DUP_DONE) { 927 bcopy(res, dr->dr_resp.buf, size); 928 dr->dr_resfree = dis_resfree; 929 } 930 dr->dr_status = status; 931 } 932 933 /* 934 * This routine expects that the mutex, dupreq_lock, is already held. 935 */ 936 static void 937 unhash(struct dupreq *dr) 938 { 939 struct dupreq *drt; 940 struct dupreq *drtprev = NULL; 941 uint32_t drhash; 942 943 ASSERT(MUTEX_HELD(&dupreq_lock)); 944 945 drhash = (uint32_t)DRHASH(dr); 946 drt = drhashtbl[drhash]; 947 while (drt != NULL) { 948 if (drt == dr) { 949 drhashstat[drhash]--; 950 if (drtprev == NULL) { 951 drhashtbl[drhash] = drt->dr_chain; 952 } else { 953 drtprev->dr_chain = drt->dr_chain; 954 } 955 return; 956 } 957 drtprev = drt; 958 drt = drt->dr_chain; 959 } 960 } 961 962 void 963 svc_clts_stats_init(zoneid_t zoneid, struct rpc_clts_server **statsp) 964 { 965 kstat_t *ksp; 966 kstat_named_t *knp; 967 968 knp = rpcstat_zone_init_common(zoneid, "unix", "rpc_clts_server", 969 (const kstat_named_t *)&clts_rsstat_tmpl, 970 sizeof (clts_rsstat_tmpl)); 971 /* 972 * Backwards compatibility for old kstat clients 973 */ 974 ksp = kstat_create_zone("unix", 0, "rpc_server", "rpc", 975 KSTAT_TYPE_NAMED, clts_rsstat_ndata, 976 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid); 977 if (ksp) { 978 ksp->ks_data = knp; 979 kstat_install(ksp); 980 } 981 *statsp = (struct rpc_clts_server *)knp; 982 } 983 984 void 985 svc_clts_stats_fini(zoneid_t zoneid, struct rpc_clts_server **statsp) 986 { 987 rpcstat_zone_fini_common(zoneid, "unix", "rpc_clts_server"); 988 kstat_delete_byname_zone("unix", 0, "rpc_server", zoneid); 989 kmem_free(*statsp, sizeof (clts_rsstat_tmpl)); 990 } 991 992 void 993 svc_clts_init() 994 { 995 /* 996 * Check to make sure that the clts private data will fit into 997 * the stack buffer allocated by svc_run. The compiler should 998 * remove this check, but it's a safety net if the udp_data 999 * structure ever changes. 1000 */ 1001 /*CONSTANTCONDITION*/ 1002 ASSERT(sizeof (struct udp_data) <= SVC_P2LEN); 1003 1004 mutex_init(&dupreq_lock, NULL, MUTEX_DEFAULT, NULL); 1005 }