Print this page
*** NO COMMENTS ***
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/nfs/nfs_server.c
+++ new/usr/src/uts/common/fs/nfs/nfs_server.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
23 23 * Copyright (c) 2011 Bayard G. Bell. All rights reserved.
24 24 */
25 25
26 26 /*
27 27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
28 28 * All rights reserved.
29 29 * Use is subject to license terms.
30 30 */
31 31
32 32 #include <sys/param.h>
33 33 #include <sys/types.h>
34 34 #include <sys/systm.h>
35 35 #include <sys/cred.h>
36 36 #include <sys/proc.h>
37 37 #include <sys/user.h>
38 38 #include <sys/buf.h>
39 39 #include <sys/vfs.h>
40 40 #include <sys/vnode.h>
41 41 #include <sys/pathname.h>
42 42 #include <sys/uio.h>
43 43 #include <sys/file.h>
44 44 #include <sys/stat.h>
45 45 #include <sys/errno.h>
46 46 #include <sys/socket.h>
47 47 #include <sys/sysmacros.h>
48 48 #include <sys/siginfo.h>
49 49 #include <sys/tiuser.h>
50 50 #include <sys/statvfs.h>
51 51 #include <sys/stream.h>
52 52 #include <sys/strsubr.h>
53 53 #include <sys/stropts.h>
54 54 #include <sys/timod.h>
55 55 #include <sys/t_kuser.h>
56 56 #include <sys/kmem.h>
57 57 #include <sys/kstat.h>
58 58 #include <sys/dirent.h>
59 59 #include <sys/cmn_err.h>
60 60 #include <sys/debug.h>
61 61 #include <sys/unistd.h>
62 62 #include <sys/vtrace.h>
63 63 #include <sys/mode.h>
64 64 #include <sys/acl.h>
65 65 #include <sys/sdt.h>
66 66
67 67 #include <rpc/types.h>
68 68 #include <rpc/auth.h>
69 69 #include <rpc/auth_unix.h>
70 70 #include <rpc/auth_des.h>
71 71 #include <rpc/svc.h>
72 72 #include <rpc/xdr.h>
73 73 #include <rpc/rpc_rdma.h>
74 74
75 75 #include <nfs/nfs.h>
76 76 #include <nfs/export.h>
77 77 #include <nfs/nfssys.h>
78 78 #include <nfs/nfs_clnt.h>
79 79 #include <nfs/nfs_acl.h>
80 80 #include <nfs/nfs_log.h>
81 81 #include <nfs/nfs_cmd.h>
82 82 #include <nfs/lm.h>
83 83 #include <nfs/nfs_dispatch.h>
84 84 #include <nfs/nfs4_drc.h>
85 85
86 86 #include <sys/modctl.h>
87 87 #include <sys/cladm.h>
88 88 #include <sys/clconf.h>
89 89
90 90 #include <sys/tsol/label.h>
91 91
92 92 #define MAXHOST 32
93 93 const char *kinet_ntop6(uchar_t *, char *, size_t);
94 94
95 95 /*
96 96 * Module linkage information.
97 97 */
98 98
99 99 static struct modlmisc modlmisc = {
100 100 &mod_miscops, "NFS server module"
101 101 };
102 102
103 103 static struct modlinkage modlinkage = {
104 104 MODREV_1, (void *)&modlmisc, NULL
105 105 };
106 106
107 107 kmem_cache_t *nfs_xuio_cache;
108 108 int nfs_loaned_buffers = 0;
109 109
110 110 int
111 111 _init(void)
112 112 {
113 113 int status;
114 114
115 115 if ((status = nfs_srvinit()) != 0) {
116 116 cmn_err(CE_WARN, "_init: nfs_srvinit failed");
117 117 return (status);
118 118 }
119 119
120 120 status = mod_install((struct modlinkage *)&modlinkage);
121 121 if (status != 0) {
122 122 /*
123 123 * Could not load module, cleanup previous
124 124 * initialization work.
125 125 */
126 126 nfs_srvfini();
127 127 }
128 128
129 129 /*
130 130 * Initialise some placeholders for nfssys() calls. These have
131 131 * to be declared by the nfs module, since that handles nfssys()
132 132 * calls - also used by NFS clients - but are provided by this
133 133 * nfssrv module. These also then serve as confirmation to the
134 134 * relevant code in nfs that nfssrv has been loaded, as they're
135 135 * initially NULL.
136 136 */
137 137 nfs_srv_quiesce_func = nfs_srv_quiesce_all;
138 138 nfs_srv_dss_func = rfs4_dss_setpaths;
139 139
140 140 /* setup DSS paths here; must be done before initial server startup */
141 141 rfs4_dss_paths = rfs4_dss_oldpaths = NULL;
142 142
143 143 /* initialize the copy reduction caches */
144 144
145 145 nfs_xuio_cache = kmem_cache_create("nfs_xuio_cache",
146 146 sizeof (nfs_xuio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
147 147
148 148 return (status);
149 149 }
150 150
151 151 int
152 152 _fini()
153 153 {
154 154 return (EBUSY);
155 155 }
156 156
157 157 int
158 158 _info(struct modinfo *modinfop)
159 159 {
160 160 return (mod_info(&modlinkage, modinfop));
161 161 }
162 162
163 163 /*
164 164 * PUBLICFH_CHECK() checks if the dispatch routine supports
165 165 * RPC_PUBLICFH_OK, if the filesystem is exported public, and if the
166 166 * incoming request is using the public filehandle. The check duplicates
167 167 * the exportmatch() call done in checkexport(), and we should consider
168 168 * modifying those routines to avoid the duplication. For now, we optimize
169 169 * by calling exportmatch() only after checking that the dispatch routine
170 170 * supports RPC_PUBLICFH_OK, and if the filesystem is explicitly exported
171 171 * public (i.e., not the placeholder).
172 172 */
173 173 #define PUBLICFH_CHECK(disp, exi, fsid, xfid) \
174 174 ((disp->dis_flags & RPC_PUBLICFH_OK) && \
175 175 ((exi->exi_export.ex_flags & EX_PUBLIC) || \
176 176 (exi == exi_public && exportmatch(exi_root, \
177 177 fsid, xfid))))
178 178
179 179 static void nfs_srv_shutdown_all(int);
180 180 static void rfs4_server_start(int);
181 181 static void nullfree(void);
182 182 static void rfs_dispatch(struct svc_req *, SVCXPRT *);
183 183 static void acl_dispatch(struct svc_req *, SVCXPRT *);
184 184 static void common_dispatch(struct svc_req *, SVCXPRT *,
185 185 rpcvers_t, rpcvers_t, char *,
186 186 struct rpc_disptable *);
187 187 static void hanfsv4_failover(void);
188 188 static int checkauth(struct exportinfo *, struct svc_req *, cred_t *, int,
189 189 bool_t);
190 190 static char *client_name(struct svc_req *req);
191 191 static char *client_addr(struct svc_req *req, char *buf);
192 192 extern int sec_svc_getcred(struct svc_req *, cred_t *cr, char **, int *);
193 193 extern bool_t sec_svc_inrootlist(int, caddr_t, int, caddr_t *);
194 194
195 195 #define NFSLOG_COPY_NETBUF(exi, xprt, nb) { \
196 196 (nb)->maxlen = (xprt)->xp_rtaddr.maxlen; \
197 197 (nb)->len = (xprt)->xp_rtaddr.len; \
198 198 (nb)->buf = kmem_alloc((nb)->len, KM_SLEEP); \
199 199 bcopy((xprt)->xp_rtaddr.buf, (nb)->buf, (nb)->len); \
200 200 }
201 201
202 202 /*
203 203 * Public Filehandle common nfs routines
204 204 */
205 205 static int MCLpath(char **);
206 206 static void URLparse(char *);
207 207
208 208 /*
209 209 * NFS callout table.
210 210 * This table is used by svc_getreq() to dispatch a request with
211 211 * a given prog/vers pair to an appropriate service provider
212 212 * dispatch routine.
213 213 *
214 214 * NOTE: ordering is relied upon below when resetting the version min/max
215 215 * for NFS_PROGRAM. Careful, if this is ever changed.
216 216 */
217 217 static SVC_CALLOUT __nfs_sc_clts[] = {
218 218 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch },
219 219 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch }
220 220 };
221 221
222 222 static SVC_CALLOUT_TABLE nfs_sct_clts = {
223 223 sizeof (__nfs_sc_clts) / sizeof (__nfs_sc_clts[0]), FALSE,
224 224 __nfs_sc_clts
225 225 };
226 226
227 227 static SVC_CALLOUT __nfs_sc_cots[] = {
228 228 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch },
229 229 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch }
230 230 };
231 231
232 232 static SVC_CALLOUT_TABLE nfs_sct_cots = {
233 233 sizeof (__nfs_sc_cots) / sizeof (__nfs_sc_cots[0]), FALSE, __nfs_sc_cots
234 234 };
235 235
236 236 static SVC_CALLOUT __nfs_sc_rdma[] = {
237 237 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch },
238 238 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch }
239 239 };
240 240
241 241 static SVC_CALLOUT_TABLE nfs_sct_rdma = {
242 242 sizeof (__nfs_sc_rdma) / sizeof (__nfs_sc_rdma[0]), FALSE, __nfs_sc_rdma
243 243 };
244 244 rpcvers_t nfs_versmin = NFS_VERSMIN_DEFAULT;
245 245 rpcvers_t nfs_versmax = NFS_VERSMAX_DEFAULT;
246 246
247 247 /*
248 248 * Used to track the state of the server so that initialization
249 249 * can be done properly.
250 250 */
251 251 typedef enum {
252 252 NFS_SERVER_STOPPED, /* server state destroyed */
253 253 NFS_SERVER_STOPPING, /* server state being destroyed */
254 254 NFS_SERVER_RUNNING,
255 255 NFS_SERVER_QUIESCED, /* server state preserved */
256 256 NFS_SERVER_OFFLINE /* server pool offline */
257 257 } nfs_server_running_t;
258 258
259 259 static nfs_server_running_t nfs_server_upordown;
260 260 static kmutex_t nfs_server_upordown_lock;
261 261 static kcondvar_t nfs_server_upordown_cv;
262 262
263 263 /*
264 264 * DSS: distributed stable storage
265 265 * lists of all DSS paths: current, and before last warmstart
266 266 */
267 267 nvlist_t *rfs4_dss_paths, *rfs4_dss_oldpaths;
268 268
269 269 int rfs4_dispatch(struct rpcdisp *, struct svc_req *, SVCXPRT *, char *);
270 270 bool_t rfs4_minorvers_mismatch(struct svc_req *, SVCXPRT *, void *);
271 271
272 272 /*
273 273 * RDMA wait variables.
274 274 */
275 275 static kcondvar_t rdma_wait_cv;
276 276 static kmutex_t rdma_wait_mutex;
277 277
278 278 /*
279 279 * Will be called at the point the server pool is being unregistered
280 280 * from the pool list. From that point onwards, the pool is waiting
281 281 * to be drained and as such the server state is stale and pertains
282 282 * to the old instantiation of the NFS server pool.
283 283 */
284 284 void
285 285 nfs_srv_offline(void)
286 286 {
287 287 mutex_enter(&nfs_server_upordown_lock);
288 288 if (nfs_server_upordown == NFS_SERVER_RUNNING) {
289 289 nfs_server_upordown = NFS_SERVER_OFFLINE;
290 290 }
291 291 mutex_exit(&nfs_server_upordown_lock);
292 292 }
293 293
294 294 /*
295 295 * Will be called at the point the server pool is being destroyed so
296 296 * all transports have been closed and no service threads are in
297 297 * existence.
298 298 *
299 299 * If we quiesce the server, we're shutting it down without destroying the
300 300 * server state. This allows it to warm start subsequently.
301 301 */
302 302 void
303 303 nfs_srv_stop_all(void)
304 304 {
305 305 int quiesce = 0;
306 306 nfs_srv_shutdown_all(quiesce);
307 307 }
308 308
309 309 /*
310 310 * This alternative shutdown routine can be requested via nfssys()
311 311 */
312 312 void
313 313 nfs_srv_quiesce_all(void)
314 314 {
315 315 int quiesce = 1;
316 316 nfs_srv_shutdown_all(quiesce);
317 317 }
318 318
319 319 static void
320 320 nfs_srv_shutdown_all(int quiesce) {
321 321 mutex_enter(&nfs_server_upordown_lock);
322 322 if (quiesce) {
323 323 if (nfs_server_upordown == NFS_SERVER_RUNNING ||
324 324 nfs_server_upordown == NFS_SERVER_OFFLINE) {
325 325 nfs_server_upordown = NFS_SERVER_QUIESCED;
326 326 cv_signal(&nfs_server_upordown_cv);
327 327
328 328 /* reset DSS state, for subsequent warm restart */
329 329 rfs4_dss_numnewpaths = 0;
330 330 rfs4_dss_newpaths = NULL;
331 331
332 332 cmn_err(CE_NOTE, "nfs_server: server is now quiesced; "
333 333 "NFSv4 state has been preserved");
334 334 }
335 335 } else {
336 336 if (nfs_server_upordown == NFS_SERVER_OFFLINE) {
337 337 nfs_server_upordown = NFS_SERVER_STOPPING;
338 338 mutex_exit(&nfs_server_upordown_lock);
339 339 rfs4_state_fini();
340 340 rfs4_fini_drc(nfs4_drc);
341 341 mutex_enter(&nfs_server_upordown_lock);
342 342 nfs_server_upordown = NFS_SERVER_STOPPED;
343 343 cv_signal(&nfs_server_upordown_cv);
344 344 }
345 345 }
346 346 mutex_exit(&nfs_server_upordown_lock);
347 347 }
348 348
349 349 static int
350 350 nfs_srv_set_sc_versions(struct file *fp, SVC_CALLOUT_TABLE **sctpp,
351 351 rpcvers_t versmin, rpcvers_t versmax)
352 352 {
353 353 struct strioctl strioc;
354 354 struct T_info_ack tinfo;
355 355 int error, retval;
356 356
357 357 /*
358 358 * Find out what type of transport this is.
359 359 */
360 360 strioc.ic_cmd = TI_GETINFO;
361 361 strioc.ic_timout = -1;
362 362 strioc.ic_len = sizeof (tinfo);
363 363 strioc.ic_dp = (char *)&tinfo;
364 364 tinfo.PRIM_type = T_INFO_REQ;
365 365
366 366 error = strioctl(fp->f_vnode, I_STR, (intptr_t)&strioc, 0, K_TO_K,
367 367 CRED(), &retval);
368 368 if (error || retval)
369 369 return (error);
370 370
371 371 /*
372 372 * Based on our query of the transport type...
373 373 *
374 374 * Reset the min/max versions based on the caller's request
375 375 * NOTE: This assumes that NFS_PROGRAM is first in the array!!
376 376 * And the second entry is the NFS_ACL_PROGRAM.
377 377 */
378 378 switch (tinfo.SERV_type) {
379 379 case T_CLTS:
380 380 if (versmax == NFS_V4)
381 381 return (EINVAL);
382 382 __nfs_sc_clts[0].sc_versmin = versmin;
383 383 __nfs_sc_clts[0].sc_versmax = versmax;
384 384 __nfs_sc_clts[1].sc_versmin = versmin;
385 385 __nfs_sc_clts[1].sc_versmax = versmax;
386 386 *sctpp = &nfs_sct_clts;
387 387 break;
388 388 case T_COTS:
389 389 case T_COTS_ORD:
390 390 __nfs_sc_cots[0].sc_versmin = versmin;
391 391 __nfs_sc_cots[0].sc_versmax = versmax;
392 392 /* For the NFS_ACL program, check the max version */
393 393 if (versmax > NFS_ACL_VERSMAX)
394 394 versmax = NFS_ACL_VERSMAX;
395 395 __nfs_sc_cots[1].sc_versmin = versmin;
396 396 __nfs_sc_cots[1].sc_versmax = versmax;
397 397 *sctpp = &nfs_sct_cots;
398 398 break;
399 399 default:
400 400 error = EINVAL;
401 401 }
402 402
403 403 return (error);
404 404 }
405 405
406 406 /*
407 407 * NFS Server system call.
408 408 * Does all of the work of running a NFS server.
409 409 * uap->fd is the fd of an open transport provider
410 410 */
411 411 int
412 412 nfs_svc(struct nfs_svc_args *arg, model_t model)
413 413 {
414 414 file_t *fp;
415 415 SVCMASTERXPRT *xprt;
416 416 int error;
417 417 int readsize;
418 418 char buf[KNC_STRSIZE];
419 419 size_t len;
420 420 STRUCT_HANDLE(nfs_svc_args, uap);
421 421 struct netbuf addrmask;
422 422 SVC_CALLOUT_TABLE *sctp = NULL;
423 423
424 424 #ifdef lint
425 425 model = model; /* STRUCT macros don't always refer to it */
426 426 #endif
427 427
428 428 STRUCT_SET_HANDLE(uap, model, arg);
429 429
430 430 /* Check privileges in nfssys() */
431 431
432 432 if ((fp = getf(STRUCT_FGET(uap, fd))) == NULL)
433 433 return (EBADF);
434 434
435 435 /*
436 436 * Set read buffer size to rsize
437 437 * and add room for RPC headers.
438 438 */
439 439 readsize = nfs3tsize() + (RPC_MAXDATASIZE - NFS_MAXDATA);
440 440 if (readsize < RPC_MAXDATASIZE)
441 441 readsize = RPC_MAXDATASIZE;
442 442
443 443 error = copyinstr((const char *)STRUCT_FGETP(uap, netid), buf,
444 444 KNC_STRSIZE, &len);
445 445 if (error) {
446 446 releasef(STRUCT_FGET(uap, fd));
447 447 return (error);
448 448 }
449 449
450 450 addrmask.len = STRUCT_FGET(uap, addrmask.len);
451 451 addrmask.maxlen = STRUCT_FGET(uap, addrmask.maxlen);
452 452 addrmask.buf = kmem_alloc(addrmask.maxlen, KM_SLEEP);
453 453 error = copyin(STRUCT_FGETP(uap, addrmask.buf), addrmask.buf,
454 454 addrmask.len);
455 455 if (error) {
456 456 releasef(STRUCT_FGET(uap, fd));
457 457 kmem_free(addrmask.buf, addrmask.maxlen);
458 458 return (error);
459 459 }
460 460
461 461 nfs_versmin = STRUCT_FGET(uap, versmin);
462 462 nfs_versmax = STRUCT_FGET(uap, versmax);
463 463
464 464 /* Double check the vers min/max ranges */
465 465 if ((nfs_versmin > nfs_versmax) ||
466 466 (nfs_versmin < NFS_VERSMIN) ||
467 467 (nfs_versmax > NFS_VERSMAX)) {
468 468 nfs_versmin = NFS_VERSMIN_DEFAULT;
469 469 nfs_versmax = NFS_VERSMAX_DEFAULT;
470 470 }
471 471
472 472 if (error =
473 473 nfs_srv_set_sc_versions(fp, &sctp, nfs_versmin, nfs_versmax)) {
474 474 releasef(STRUCT_FGET(uap, fd));
475 475 kmem_free(addrmask.buf, addrmask.maxlen);
476 476 return (error);
477 477 }
478 478
479 479 /* Initialize nfsv4 server */
480 480 if (nfs_versmax == (rpcvers_t)NFS_V4)
481 481 rfs4_server_start(STRUCT_FGET(uap, delegation));
482 482
483 483 /* Create a transport handle. */
484 484 error = svc_tli_kcreate(fp, readsize, buf, &addrmask, &xprt,
485 485 sctp, NULL, NFS_SVCPOOL_ID, TRUE);
486 486
487 487 if (error)
488 488 kmem_free(addrmask.buf, addrmask.maxlen);
489 489
490 490 releasef(STRUCT_FGET(uap, fd));
491 491
492 492 /* HA-NFSv4: save the cluster nodeid */
493 493 if (cluster_bootflags & CLUSTER_BOOTED)
494 494 lm_global_nlmid = clconf_get_nodeid();
495 495
496 496 return (error);
497 497 }
498 498
499 499 static void
500 500 rfs4_server_start(int nfs4_srv_delegation)
501 501 {
502 502 /*
503 503 * Determine if the server has previously been "started" and
504 504 * if not, do the per instance initialization
505 505 */
506 506 mutex_enter(&nfs_server_upordown_lock);
507 507
508 508 if (nfs_server_upordown != NFS_SERVER_RUNNING) {
509 509 /* Do we need to stop and wait on the previous server? */
510 510 while (nfs_server_upordown == NFS_SERVER_STOPPING ||
511 511 nfs_server_upordown == NFS_SERVER_OFFLINE)
512 512 cv_wait(&nfs_server_upordown_cv,
513 513 &nfs_server_upordown_lock);
514 514
515 515 if (nfs_server_upordown != NFS_SERVER_RUNNING) {
516 516 (void) svc_pool_control(NFS_SVCPOOL_ID,
517 517 SVCPSET_UNREGISTER_PROC, (void *)&nfs_srv_offline);
518 518 (void) svc_pool_control(NFS_SVCPOOL_ID,
519 519 SVCPSET_SHUTDOWN_PROC, (void *)&nfs_srv_stop_all);
520 520
521 521 /* is this an nfsd warm start? */
522 522 if (nfs_server_upordown == NFS_SERVER_QUIESCED) {
523 523 cmn_err(CE_NOTE, "nfs_server: "
524 524 "server was previously quiesced; "
525 525 "existing NFSv4 state will be re-used");
526 526
527 527 /*
528 528 * HA-NFSv4: this is also the signal
529 529 * that a Resource Group failover has
530 530 * occurred.
531 531 */
532 532 if (cluster_bootflags & CLUSTER_BOOTED)
533 533 hanfsv4_failover();
534 534 } else {
535 535 /* cold start */
536 536 rfs4_state_init();
537 537 nfs4_drc = rfs4_init_drc(nfs4_drc_max,
538 538 nfs4_drc_hash);
539 539 }
540 540
541 541 /*
542 542 * Check to see if delegation is to be
543 543 * enabled at the server
544 544 */
545 545 if (nfs4_srv_delegation != FALSE)
546 546 rfs4_set_deleg_policy(SRV_NORMAL_DELEGATE);
547 547
548 548 nfs_server_upordown = NFS_SERVER_RUNNING;
549 549 }
550 550 cv_signal(&nfs_server_upordown_cv);
551 551 }
552 552 mutex_exit(&nfs_server_upordown_lock);
553 553 }
554 554
555 555 /*
556 556 * If RDMA device available,
557 557 * start RDMA listener.
558 558 */
559 559 int
560 560 rdma_start(struct rdma_svc_args *rsa)
561 561 {
562 562 int error;
563 563 rdma_xprt_group_t started_rdma_xprts;
564 564 rdma_stat stat;
565 565 int svc_state = 0;
566 566
567 567 /* Double check the vers min/max ranges */
568 568 if ((rsa->nfs_versmin > rsa->nfs_versmax) ||
569 569 (rsa->nfs_versmin < NFS_VERSMIN) ||
570 570 (rsa->nfs_versmax > NFS_VERSMAX)) {
571 571 rsa->nfs_versmin = NFS_VERSMIN_DEFAULT;
572 572 rsa->nfs_versmax = NFS_VERSMAX_DEFAULT;
573 573 }
574 574 nfs_versmin = rsa->nfs_versmin;
575 575 nfs_versmax = rsa->nfs_versmax;
576 576
577 577 /* Set the versions in the callout table */
578 578 __nfs_sc_rdma[0].sc_versmin = rsa->nfs_versmin;
579 579 __nfs_sc_rdma[0].sc_versmax = rsa->nfs_versmax;
580 580 /* For the NFS_ACL program, check the max version */
581 581 __nfs_sc_rdma[1].sc_versmin = rsa->nfs_versmin;
582 582 if (rsa->nfs_versmax > NFS_ACL_VERSMAX)
583 583 __nfs_sc_rdma[1].sc_versmax = NFS_ACL_VERSMAX;
584 584 else
585 585 __nfs_sc_rdma[1].sc_versmax = rsa->nfs_versmax;
586 586
587 587 /* Initialize nfsv4 server */
588 588 if (rsa->nfs_versmax == (rpcvers_t)NFS_V4)
589 589 rfs4_server_start(rsa->delegation);
590 590
591 591 started_rdma_xprts.rtg_count = 0;
592 592 started_rdma_xprts.rtg_listhead = NULL;
593 593 started_rdma_xprts.rtg_poolid = rsa->poolid;
594 594
595 595 restart:
596 596 error = svc_rdma_kcreate(rsa->netid, &nfs_sct_rdma, rsa->poolid,
597 597 &started_rdma_xprts);
598 598
599 599 svc_state = !error;
600 600
601 601 while (!error) {
602 602
603 603 /*
604 604 * wait till either interrupted by a signal on
605 605 * nfs service stop/restart or signalled by a
606 606 * rdma plugin attach/detatch.
607 607 */
608 608
609 609 stat = rdma_kwait();
610 610
611 611 /*
612 612 * stop services if running -- either on a HCA detach event
613 613 * or if the nfs service is stopped/restarted.
614 614 */
615 615
616 616 if ((stat == RDMA_HCA_DETACH || stat == RDMA_INTR) &&
617 617 svc_state) {
618 618 rdma_stop(&started_rdma_xprts);
619 619 svc_state = 0;
620 620 }
621 621
622 622 /*
623 623 * nfs service stop/restart, break out of the
624 624 * wait loop and return;
625 625 */
626 626 if (stat == RDMA_INTR)
627 627 return (0);
628 628
629 629 /*
630 630 * restart stopped services on a HCA attach event
631 631 * (if not already running)
632 632 */
633 633
634 634 if ((stat == RDMA_HCA_ATTACH) && (svc_state == 0))
635 635 goto restart;
636 636
637 637 /*
638 638 * loop until a nfs service stop/restart
639 639 */
640 640 }
641 641
642 642 return (error);
643 643 }
644 644
645 645 /* ARGSUSED */
646 646 void
647 647 rpc_null(caddr_t *argp, caddr_t *resp)
648 648 {
649 649 }
650 650
651 651 /* ARGSUSED */
652 652 void
653 653 rpc_null_v3(caddr_t *argp, caddr_t *resp, struct exportinfo *exi,
654 654 struct svc_req *req, cred_t *cr)
655 655 {
656 656 DTRACE_NFSV3_3(op__null__start, struct svc_req *, req,
657 657 cred_t *, cr, vnode_t *, NULL);
658 658 DTRACE_NFSV3_3(op__null__done, struct svc_req *, req,
659 659 cred_t *, cr, vnode_t *, NULL);
660 660 }
661 661
662 662 /* ARGSUSED */
663 663 static void
664 664 rfs_error(caddr_t *argp, caddr_t *resp)
665 665 {
666 666 /* return (EOPNOTSUPP); */
667 667 }
668 668
669 669 static void
670 670 nullfree(void)
671 671 {
672 672 }
673 673
674 674 static char *rfscallnames_v2[] = {
675 675 "RFS2_NULL",
676 676 "RFS2_GETATTR",
677 677 "RFS2_SETATTR",
678 678 "RFS2_ROOT",
679 679 "RFS2_LOOKUP",
680 680 "RFS2_READLINK",
681 681 "RFS2_READ",
682 682 "RFS2_WRITECACHE",
683 683 "RFS2_WRITE",
684 684 "RFS2_CREATE",
685 685 "RFS2_REMOVE",
686 686 "RFS2_RENAME",
687 687 "RFS2_LINK",
688 688 "RFS2_SYMLINK",
689 689 "RFS2_MKDIR",
690 690 "RFS2_RMDIR",
691 691 "RFS2_READDIR",
692 692 "RFS2_STATFS"
693 693 };
694 694
695 695 static struct rpcdisp rfsdisptab_v2[] = {
696 696 /*
697 697 * NFS VERSION 2
698 698 */
699 699
700 700 /* RFS_NULL = 0 */
701 701 {rpc_null,
702 702 xdr_void, NULL_xdrproc_t, 0,
703 703 xdr_void, NULL_xdrproc_t, 0,
704 704 nullfree, RPC_IDEMPOTENT,
705 705 0},
706 706
707 707 /* RFS_GETATTR = 1 */
708 708 {rfs_getattr,
709 709 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t),
710 710 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat),
711 711 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP,
712 712 rfs_getattr_getfh},
713 713
714 714 /* RFS_SETATTR = 2 */
715 715 {rfs_setattr,
716 716 xdr_saargs, NULL_xdrproc_t, sizeof (struct nfssaargs),
717 717 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat),
718 718 nullfree, RPC_MAPRESP,
719 719 rfs_setattr_getfh},
720 720
721 721 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */
722 722 {rfs_error,
723 723 xdr_void, NULL_xdrproc_t, 0,
724 724 xdr_void, NULL_xdrproc_t, 0,
725 725 nullfree, RPC_IDEMPOTENT,
726 726 0},
727 727
728 728 /* RFS_LOOKUP = 4 */
729 729 {rfs_lookup,
730 730 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs),
731 731 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres),
732 732 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP|RPC_PUBLICFH_OK,
733 733 rfs_lookup_getfh},
734 734
735 735 /* RFS_READLINK = 5 */
736 736 {rfs_readlink,
737 737 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t),
738 738 xdr_rdlnres, NULL_xdrproc_t, sizeof (struct nfsrdlnres),
739 739 rfs_rlfree, RPC_IDEMPOTENT,
740 740 rfs_readlink_getfh},
741 741
742 742 /* RFS_READ = 6 */
743 743 {rfs_read,
744 744 xdr_readargs, NULL_xdrproc_t, sizeof (struct nfsreadargs),
745 745 xdr_rdresult, NULL_xdrproc_t, sizeof (struct nfsrdresult),
746 746 rfs_rdfree, RPC_IDEMPOTENT,
747 747 rfs_read_getfh},
748 748
749 749 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */
750 750 {rfs_error,
751 751 xdr_void, NULL_xdrproc_t, 0,
752 752 xdr_void, NULL_xdrproc_t, 0,
753 753 nullfree, RPC_IDEMPOTENT,
754 754 0},
755 755
756 756 /* RFS_WRITE = 8 */
757 757 {rfs_write,
758 758 xdr_writeargs, NULL_xdrproc_t, sizeof (struct nfswriteargs),
759 759 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat),
760 760 nullfree, RPC_MAPRESP,
761 761 rfs_write_getfh},
762 762
763 763 /* RFS_CREATE = 9 */
764 764 {rfs_create,
765 765 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs),
766 766 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres),
767 767 nullfree, RPC_MAPRESP,
768 768 rfs_create_getfh},
769 769
770 770 /* RFS_REMOVE = 10 */
771 771 {rfs_remove,
772 772 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs),
773 773 #ifdef _LITTLE_ENDIAN
774 774 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
775 775 #else
776 776 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
777 777 #endif
778 778 nullfree, RPC_MAPRESP,
779 779 rfs_remove_getfh},
780 780
781 781 /* RFS_RENAME = 11 */
782 782 {rfs_rename,
783 783 xdr_rnmargs, NULL_xdrproc_t, sizeof (struct nfsrnmargs),
784 784 #ifdef _LITTLE_ENDIAN
785 785 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
786 786 #else
787 787 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
788 788 #endif
789 789 nullfree, RPC_MAPRESP,
790 790 rfs_rename_getfh},
791 791
792 792 /* RFS_LINK = 12 */
793 793 {rfs_link,
794 794 xdr_linkargs, NULL_xdrproc_t, sizeof (struct nfslinkargs),
795 795 #ifdef _LITTLE_ENDIAN
796 796 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
797 797 #else
798 798 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
799 799 #endif
800 800 nullfree, RPC_MAPRESP,
801 801 rfs_link_getfh},
802 802
803 803 /* RFS_SYMLINK = 13 */
804 804 {rfs_symlink,
805 805 xdr_slargs, NULL_xdrproc_t, sizeof (struct nfsslargs),
806 806 #ifdef _LITTLE_ENDIAN
807 807 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
808 808 #else
809 809 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
810 810 #endif
811 811 nullfree, RPC_MAPRESP,
812 812 rfs_symlink_getfh},
813 813
814 814 /* RFS_MKDIR = 14 */
815 815 {rfs_mkdir,
816 816 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs),
817 817 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres),
818 818 nullfree, RPC_MAPRESP,
819 819 rfs_mkdir_getfh},
820 820
821 821 /* RFS_RMDIR = 15 */
822 822 {rfs_rmdir,
823 823 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs),
824 824 #ifdef _LITTLE_ENDIAN
825 825 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
826 826 #else
827 827 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
828 828 #endif
829 829 nullfree, RPC_MAPRESP,
830 830 rfs_rmdir_getfh},
831 831
832 832 /* RFS_READDIR = 16 */
833 833 {rfs_readdir,
834 834 xdr_rddirargs, NULL_xdrproc_t, sizeof (struct nfsrddirargs),
835 835 xdr_putrddirres, NULL_xdrproc_t, sizeof (struct nfsrddirres),
836 836 rfs_rddirfree, RPC_IDEMPOTENT,
837 837 rfs_readdir_getfh},
838 838
839 839 /* RFS_STATFS = 17 */
840 840 {rfs_statfs,
841 841 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t),
842 842 xdr_statfs, xdr_faststatfs, sizeof (struct nfsstatfs),
843 843 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP,
844 844 rfs_statfs_getfh},
845 845 };
846 846
847 847 static char *rfscallnames_v3[] = {
848 848 "RFS3_NULL",
849 849 "RFS3_GETATTR",
850 850 "RFS3_SETATTR",
851 851 "RFS3_LOOKUP",
852 852 "RFS3_ACCESS",
853 853 "RFS3_READLINK",
854 854 "RFS3_READ",
855 855 "RFS3_WRITE",
856 856 "RFS3_CREATE",
857 857 "RFS3_MKDIR",
858 858 "RFS3_SYMLINK",
859 859 "RFS3_MKNOD",
860 860 "RFS3_REMOVE",
861 861 "RFS3_RMDIR",
862 862 "RFS3_RENAME",
863 863 "RFS3_LINK",
864 864 "RFS3_READDIR",
865 865 "RFS3_READDIRPLUS",
866 866 "RFS3_FSSTAT",
867 867 "RFS3_FSINFO",
868 868 "RFS3_PATHCONF",
869 869 "RFS3_COMMIT"
870 870 };
871 871
872 872 static struct rpcdisp rfsdisptab_v3[] = {
873 873 /*
874 874 * NFS VERSION 3
875 875 */
876 876
877 877 /* RFS_NULL = 0 */
878 878 {rpc_null_v3,
879 879 xdr_void, NULL_xdrproc_t, 0,
880 880 xdr_void, NULL_xdrproc_t, 0,
881 881 nullfree, RPC_IDEMPOTENT,
882 882 0},
883 883
884 884 /* RFS3_GETATTR = 1 */
885 885 {rfs3_getattr,
886 886 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (GETATTR3args),
887 887 xdr_GETATTR3res, NULL_xdrproc_t, sizeof (GETATTR3res),
888 888 nullfree, (RPC_IDEMPOTENT | RPC_ALLOWANON),
889 889 rfs3_getattr_getfh},
890 890
891 891 /* RFS3_SETATTR = 2 */
892 892 {rfs3_setattr,
893 893 xdr_SETATTR3args, NULL_xdrproc_t, sizeof (SETATTR3args),
894 894 xdr_SETATTR3res, NULL_xdrproc_t, sizeof (SETATTR3res),
895 895 nullfree, 0,
896 896 rfs3_setattr_getfh},
897 897
898 898 /* RFS3_LOOKUP = 3 */
899 899 {rfs3_lookup,
900 900 xdr_diropargs3, NULL_xdrproc_t, sizeof (LOOKUP3args),
901 901 xdr_LOOKUP3res, NULL_xdrproc_t, sizeof (LOOKUP3res),
902 902 nullfree, (RPC_IDEMPOTENT | RPC_PUBLICFH_OK),
903 903 rfs3_lookup_getfh},
904 904
905 905 /* RFS3_ACCESS = 4 */
906 906 {rfs3_access,
907 907 xdr_ACCESS3args, NULL_xdrproc_t, sizeof (ACCESS3args),
908 908 xdr_ACCESS3res, NULL_xdrproc_t, sizeof (ACCESS3res),
909 909 nullfree, RPC_IDEMPOTENT,
910 910 rfs3_access_getfh},
911 911
912 912 /* RFS3_READLINK = 5 */
913 913 {rfs3_readlink,
914 914 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (READLINK3args),
915 915 xdr_READLINK3res, NULL_xdrproc_t, sizeof (READLINK3res),
916 916 rfs3_readlink_free, RPC_IDEMPOTENT,
917 917 rfs3_readlink_getfh},
918 918
919 919 /* RFS3_READ = 6 */
920 920 {rfs3_read,
921 921 xdr_READ3args, NULL_xdrproc_t, sizeof (READ3args),
922 922 xdr_READ3res, NULL_xdrproc_t, sizeof (READ3res),
923 923 rfs3_read_free, RPC_IDEMPOTENT,
924 924 rfs3_read_getfh},
925 925
926 926 /* RFS3_WRITE = 7 */
927 927 {rfs3_write,
928 928 xdr_WRITE3args, NULL_xdrproc_t, sizeof (WRITE3args),
929 929 xdr_WRITE3res, NULL_xdrproc_t, sizeof (WRITE3res),
930 930 nullfree, 0,
931 931 rfs3_write_getfh},
932 932
933 933 /* RFS3_CREATE = 8 */
934 934 {rfs3_create,
935 935 xdr_CREATE3args, NULL_xdrproc_t, sizeof (CREATE3args),
936 936 xdr_CREATE3res, NULL_xdrproc_t, sizeof (CREATE3res),
937 937 nullfree, 0,
938 938 rfs3_create_getfh},
939 939
940 940 /* RFS3_MKDIR = 9 */
941 941 {rfs3_mkdir,
942 942 xdr_MKDIR3args, NULL_xdrproc_t, sizeof (MKDIR3args),
943 943 xdr_MKDIR3res, NULL_xdrproc_t, sizeof (MKDIR3res),
944 944 nullfree, 0,
945 945 rfs3_mkdir_getfh},
946 946
947 947 /* RFS3_SYMLINK = 10 */
948 948 {rfs3_symlink,
949 949 xdr_SYMLINK3args, NULL_xdrproc_t, sizeof (SYMLINK3args),
950 950 xdr_SYMLINK3res, NULL_xdrproc_t, sizeof (SYMLINK3res),
951 951 nullfree, 0,
952 952 rfs3_symlink_getfh},
953 953
954 954 /* RFS3_MKNOD = 11 */
955 955 {rfs3_mknod,
956 956 xdr_MKNOD3args, NULL_xdrproc_t, sizeof (MKNOD3args),
957 957 xdr_MKNOD3res, NULL_xdrproc_t, sizeof (MKNOD3res),
958 958 nullfree, 0,
959 959 rfs3_mknod_getfh},
960 960
961 961 /* RFS3_REMOVE = 12 */
962 962 {rfs3_remove,
963 963 xdr_diropargs3, NULL_xdrproc_t, sizeof (REMOVE3args),
964 964 xdr_REMOVE3res, NULL_xdrproc_t, sizeof (REMOVE3res),
965 965 nullfree, 0,
966 966 rfs3_remove_getfh},
967 967
968 968 /* RFS3_RMDIR = 13 */
969 969 {rfs3_rmdir,
970 970 xdr_diropargs3, NULL_xdrproc_t, sizeof (RMDIR3args),
971 971 xdr_RMDIR3res, NULL_xdrproc_t, sizeof (RMDIR3res),
972 972 nullfree, 0,
973 973 rfs3_rmdir_getfh},
974 974
975 975 /* RFS3_RENAME = 14 */
976 976 {rfs3_rename,
977 977 xdr_RENAME3args, NULL_xdrproc_t, sizeof (RENAME3args),
978 978 xdr_RENAME3res, NULL_xdrproc_t, sizeof (RENAME3res),
979 979 nullfree, 0,
980 980 rfs3_rename_getfh},
981 981
982 982 /* RFS3_LINK = 15 */
983 983 {rfs3_link,
984 984 xdr_LINK3args, NULL_xdrproc_t, sizeof (LINK3args),
985 985 xdr_LINK3res, NULL_xdrproc_t, sizeof (LINK3res),
986 986 nullfree, 0,
987 987 rfs3_link_getfh},
988 988
989 989 /* RFS3_READDIR = 16 */
990 990 {rfs3_readdir,
991 991 xdr_READDIR3args, NULL_xdrproc_t, sizeof (READDIR3args),
992 992 xdr_READDIR3res, NULL_xdrproc_t, sizeof (READDIR3res),
993 993 rfs3_readdir_free, RPC_IDEMPOTENT,
994 994 rfs3_readdir_getfh},
995 995
996 996 /* RFS3_READDIRPLUS = 17 */
997 997 {rfs3_readdirplus,
998 998 xdr_READDIRPLUS3args, NULL_xdrproc_t, sizeof (READDIRPLUS3args),
999 999 xdr_READDIRPLUS3res, NULL_xdrproc_t, sizeof (READDIRPLUS3res),
1000 1000 rfs3_readdirplus_free, RPC_AVOIDWORK,
1001 1001 rfs3_readdirplus_getfh},
1002 1002
1003 1003 /* RFS3_FSSTAT = 18 */
1004 1004 {rfs3_fsstat,
1005 1005 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSSTAT3args),
1006 1006 xdr_FSSTAT3res, NULL_xdrproc_t, sizeof (FSSTAT3res),
1007 1007 nullfree, RPC_IDEMPOTENT,
1008 1008 rfs3_fsstat_getfh},
1009 1009
1010 1010 /* RFS3_FSINFO = 19 */
1011 1011 {rfs3_fsinfo,
1012 1012 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSINFO3args),
1013 1013 xdr_FSINFO3res, NULL_xdrproc_t, sizeof (FSINFO3res),
1014 1014 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON,
1015 1015 rfs3_fsinfo_getfh},
1016 1016
1017 1017 /* RFS3_PATHCONF = 20 */
1018 1018 {rfs3_pathconf,
1019 1019 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (PATHCONF3args),
1020 1020 xdr_PATHCONF3res, NULL_xdrproc_t, sizeof (PATHCONF3res),
1021 1021 nullfree, RPC_IDEMPOTENT,
1022 1022 rfs3_pathconf_getfh},
1023 1023
1024 1024 /* RFS3_COMMIT = 21 */
1025 1025 {rfs3_commit,
1026 1026 xdr_COMMIT3args, NULL_xdrproc_t, sizeof (COMMIT3args),
1027 1027 xdr_COMMIT3res, NULL_xdrproc_t, sizeof (COMMIT3res),
1028 1028 nullfree, RPC_IDEMPOTENT,
1029 1029 rfs3_commit_getfh},
1030 1030 };
1031 1031
1032 1032 static char *rfscallnames_v4[] = {
1033 1033 "RFS4_NULL",
1034 1034 "RFS4_COMPOUND",
1035 1035 "RFS4_NULL",
1036 1036 "RFS4_NULL",
1037 1037 "RFS4_NULL",
1038 1038 "RFS4_NULL",
1039 1039 "RFS4_NULL",
1040 1040 "RFS4_NULL",
1041 1041 "RFS4_CREATE"
1042 1042 };
1043 1043
1044 1044 static struct rpcdisp rfsdisptab_v4[] = {
1045 1045 /*
1046 1046 * NFS VERSION 4
1047 1047 */
1048 1048
1049 1049 /* RFS_NULL = 0 */
1050 1050 {rpc_null,
1051 1051 xdr_void, NULL_xdrproc_t, 0,
1052 1052 xdr_void, NULL_xdrproc_t, 0,
1053 1053 nullfree, RPC_IDEMPOTENT, 0},
1054 1054
1055 1055 /* RFS4_compound = 1 */
1056 1056 {rfs4_compound,
1057 1057 xdr_COMPOUND4args_srv, NULL_xdrproc_t, sizeof (COMPOUND4args),
1058 1058 xdr_COMPOUND4res_srv, NULL_xdrproc_t, sizeof (COMPOUND4res),
1059 1059 rfs4_compound_free, 0, 0},
1060 1060 };
1061 1061
1062 1062 union rfs_args {
1063 1063 /*
1064 1064 * NFS VERSION 2
1065 1065 */
1066 1066
1067 1067 /* RFS_NULL = 0 */
1068 1068
1069 1069 /* RFS_GETATTR = 1 */
1070 1070 fhandle_t nfs2_getattr_args;
1071 1071
1072 1072 /* RFS_SETATTR = 2 */
1073 1073 struct nfssaargs nfs2_setattr_args;
1074 1074
1075 1075 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */
1076 1076
1077 1077 /* RFS_LOOKUP = 4 */
1078 1078 struct nfsdiropargs nfs2_lookup_args;
1079 1079
1080 1080 /* RFS_READLINK = 5 */
1081 1081 fhandle_t nfs2_readlink_args;
1082 1082
1083 1083 /* RFS_READ = 6 */
1084 1084 struct nfsreadargs nfs2_read_args;
1085 1085
1086 1086 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */
1087 1087
1088 1088 /* RFS_WRITE = 8 */
1089 1089 struct nfswriteargs nfs2_write_args;
1090 1090
1091 1091 /* RFS_CREATE = 9 */
1092 1092 struct nfscreatargs nfs2_create_args;
1093 1093
1094 1094 /* RFS_REMOVE = 10 */
1095 1095 struct nfsdiropargs nfs2_remove_args;
1096 1096
1097 1097 /* RFS_RENAME = 11 */
1098 1098 struct nfsrnmargs nfs2_rename_args;
1099 1099
1100 1100 /* RFS_LINK = 12 */
1101 1101 struct nfslinkargs nfs2_link_args;
1102 1102
1103 1103 /* RFS_SYMLINK = 13 */
1104 1104 struct nfsslargs nfs2_symlink_args;
1105 1105
1106 1106 /* RFS_MKDIR = 14 */
1107 1107 struct nfscreatargs nfs2_mkdir_args;
1108 1108
1109 1109 /* RFS_RMDIR = 15 */
1110 1110 struct nfsdiropargs nfs2_rmdir_args;
1111 1111
1112 1112 /* RFS_READDIR = 16 */
1113 1113 struct nfsrddirargs nfs2_readdir_args;
1114 1114
1115 1115 /* RFS_STATFS = 17 */
1116 1116 fhandle_t nfs2_statfs_args;
1117 1117
1118 1118 /*
1119 1119 * NFS VERSION 3
1120 1120 */
1121 1121
1122 1122 /* RFS_NULL = 0 */
1123 1123
1124 1124 /* RFS3_GETATTR = 1 */
1125 1125 GETATTR3args nfs3_getattr_args;
1126 1126
1127 1127 /* RFS3_SETATTR = 2 */
1128 1128 SETATTR3args nfs3_setattr_args;
1129 1129
1130 1130 /* RFS3_LOOKUP = 3 */
1131 1131 LOOKUP3args nfs3_lookup_args;
1132 1132
1133 1133 /* RFS3_ACCESS = 4 */
1134 1134 ACCESS3args nfs3_access_args;
1135 1135
1136 1136 /* RFS3_READLINK = 5 */
1137 1137 READLINK3args nfs3_readlink_args;
1138 1138
1139 1139 /* RFS3_READ = 6 */
1140 1140 READ3args nfs3_read_args;
1141 1141
1142 1142 /* RFS3_WRITE = 7 */
1143 1143 WRITE3args nfs3_write_args;
1144 1144
1145 1145 /* RFS3_CREATE = 8 */
1146 1146 CREATE3args nfs3_create_args;
1147 1147
1148 1148 /* RFS3_MKDIR = 9 */
1149 1149 MKDIR3args nfs3_mkdir_args;
1150 1150
1151 1151 /* RFS3_SYMLINK = 10 */
1152 1152 SYMLINK3args nfs3_symlink_args;
1153 1153
1154 1154 /* RFS3_MKNOD = 11 */
1155 1155 MKNOD3args nfs3_mknod_args;
1156 1156
1157 1157 /* RFS3_REMOVE = 12 */
1158 1158 REMOVE3args nfs3_remove_args;
1159 1159
1160 1160 /* RFS3_RMDIR = 13 */
1161 1161 RMDIR3args nfs3_rmdir_args;
1162 1162
1163 1163 /* RFS3_RENAME = 14 */
1164 1164 RENAME3args nfs3_rename_args;
1165 1165
1166 1166 /* RFS3_LINK = 15 */
1167 1167 LINK3args nfs3_link_args;
1168 1168
1169 1169 /* RFS3_READDIR = 16 */
1170 1170 READDIR3args nfs3_readdir_args;
1171 1171
1172 1172 /* RFS3_READDIRPLUS = 17 */
1173 1173 READDIRPLUS3args nfs3_readdirplus_args;
1174 1174
1175 1175 /* RFS3_FSSTAT = 18 */
1176 1176 FSSTAT3args nfs3_fsstat_args;
1177 1177
1178 1178 /* RFS3_FSINFO = 19 */
1179 1179 FSINFO3args nfs3_fsinfo_args;
1180 1180
1181 1181 /* RFS3_PATHCONF = 20 */
1182 1182 PATHCONF3args nfs3_pathconf_args;
1183 1183
1184 1184 /* RFS3_COMMIT = 21 */
1185 1185 COMMIT3args nfs3_commit_args;
1186 1186
1187 1187 /*
1188 1188 * NFS VERSION 4
1189 1189 */
1190 1190
1191 1191 /* RFS_NULL = 0 */
1192 1192
1193 1193 /* COMPUND = 1 */
1194 1194 COMPOUND4args nfs4_compound_args;
1195 1195 };
1196 1196
1197 1197 union rfs_res {
1198 1198 /*
1199 1199 * NFS VERSION 2
1200 1200 */
1201 1201
1202 1202 /* RFS_NULL = 0 */
1203 1203
1204 1204 /* RFS_GETATTR = 1 */
1205 1205 struct nfsattrstat nfs2_getattr_res;
1206 1206
1207 1207 /* RFS_SETATTR = 2 */
1208 1208 struct nfsattrstat nfs2_setattr_res;
1209 1209
1210 1210 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */
1211 1211
1212 1212 /* RFS_LOOKUP = 4 */
1213 1213 struct nfsdiropres nfs2_lookup_res;
1214 1214
1215 1215 /* RFS_READLINK = 5 */
1216 1216 struct nfsrdlnres nfs2_readlink_res;
1217 1217
1218 1218 /* RFS_READ = 6 */
1219 1219 struct nfsrdresult nfs2_read_res;
1220 1220
1221 1221 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */
1222 1222
1223 1223 /* RFS_WRITE = 8 */
1224 1224 struct nfsattrstat nfs2_write_res;
1225 1225
1226 1226 /* RFS_CREATE = 9 */
1227 1227 struct nfsdiropres nfs2_create_res;
1228 1228
1229 1229 /* RFS_REMOVE = 10 */
1230 1230 enum nfsstat nfs2_remove_res;
1231 1231
1232 1232 /* RFS_RENAME = 11 */
1233 1233 enum nfsstat nfs2_rename_res;
1234 1234
1235 1235 /* RFS_LINK = 12 */
1236 1236 enum nfsstat nfs2_link_res;
1237 1237
1238 1238 /* RFS_SYMLINK = 13 */
1239 1239 enum nfsstat nfs2_symlink_res;
1240 1240
1241 1241 /* RFS_MKDIR = 14 */
1242 1242 struct nfsdiropres nfs2_mkdir_res;
1243 1243
1244 1244 /* RFS_RMDIR = 15 */
1245 1245 enum nfsstat nfs2_rmdir_res;
1246 1246
1247 1247 /* RFS_READDIR = 16 */
1248 1248 struct nfsrddirres nfs2_readdir_res;
1249 1249
1250 1250 /* RFS_STATFS = 17 */
1251 1251 struct nfsstatfs nfs2_statfs_res;
1252 1252
1253 1253 /*
1254 1254 * NFS VERSION 3
1255 1255 */
1256 1256
1257 1257 /* RFS_NULL = 0 */
1258 1258
1259 1259 /* RFS3_GETATTR = 1 */
1260 1260 GETATTR3res nfs3_getattr_res;
1261 1261
1262 1262 /* RFS3_SETATTR = 2 */
1263 1263 SETATTR3res nfs3_setattr_res;
1264 1264
1265 1265 /* RFS3_LOOKUP = 3 */
1266 1266 LOOKUP3res nfs3_lookup_res;
1267 1267
1268 1268 /* RFS3_ACCESS = 4 */
1269 1269 ACCESS3res nfs3_access_res;
1270 1270
1271 1271 /* RFS3_READLINK = 5 */
1272 1272 READLINK3res nfs3_readlink_res;
1273 1273
1274 1274 /* RFS3_READ = 6 */
1275 1275 READ3res nfs3_read_res;
1276 1276
1277 1277 /* RFS3_WRITE = 7 */
1278 1278 WRITE3res nfs3_write_res;
1279 1279
1280 1280 /* RFS3_CREATE = 8 */
1281 1281 CREATE3res nfs3_create_res;
1282 1282
1283 1283 /* RFS3_MKDIR = 9 */
1284 1284 MKDIR3res nfs3_mkdir_res;
1285 1285
1286 1286 /* RFS3_SYMLINK = 10 */
1287 1287 SYMLINK3res nfs3_symlink_res;
1288 1288
1289 1289 /* RFS3_MKNOD = 11 */
1290 1290 MKNOD3res nfs3_mknod_res;
1291 1291
1292 1292 /* RFS3_REMOVE = 12 */
1293 1293 REMOVE3res nfs3_remove_res;
1294 1294
1295 1295 /* RFS3_RMDIR = 13 */
1296 1296 RMDIR3res nfs3_rmdir_res;
1297 1297
1298 1298 /* RFS3_RENAME = 14 */
1299 1299 RENAME3res nfs3_rename_res;
1300 1300
1301 1301 /* RFS3_LINK = 15 */
1302 1302 LINK3res nfs3_link_res;
1303 1303
1304 1304 /* RFS3_READDIR = 16 */
1305 1305 READDIR3res nfs3_readdir_res;
1306 1306
1307 1307 /* RFS3_READDIRPLUS = 17 */
1308 1308 READDIRPLUS3res nfs3_readdirplus_res;
1309 1309
1310 1310 /* RFS3_FSSTAT = 18 */
1311 1311 FSSTAT3res nfs3_fsstat_res;
1312 1312
1313 1313 /* RFS3_FSINFO = 19 */
1314 1314 FSINFO3res nfs3_fsinfo_res;
1315 1315
1316 1316 /* RFS3_PATHCONF = 20 */
1317 1317 PATHCONF3res nfs3_pathconf_res;
1318 1318
1319 1319 /* RFS3_COMMIT = 21 */
1320 1320 COMMIT3res nfs3_commit_res;
1321 1321
1322 1322 /*
1323 1323 * NFS VERSION 4
1324 1324 */
1325 1325
1326 1326 /* RFS_NULL = 0 */
1327 1327
1328 1328 /* RFS4_COMPOUND = 1 */
1329 1329 COMPOUND4res nfs4_compound_res;
1330 1330
1331 1331 };
1332 1332
1333 1333 static struct rpc_disptable rfs_disptable[] = {
1334 1334 {sizeof (rfsdisptab_v2) / sizeof (rfsdisptab_v2[0]),
1335 1335 rfscallnames_v2,
1336 1336 &rfsproccnt_v2_ptr, rfsdisptab_v2},
1337 1337 {sizeof (rfsdisptab_v3) / sizeof (rfsdisptab_v3[0]),
1338 1338 rfscallnames_v3,
1339 1339 &rfsproccnt_v3_ptr, rfsdisptab_v3},
1340 1340 {sizeof (rfsdisptab_v4) / sizeof (rfsdisptab_v4[0]),
1341 1341 rfscallnames_v4,
1342 1342 &rfsproccnt_v4_ptr, rfsdisptab_v4},
1343 1343 };
1344 1344
1345 1345 /*
1346 1346 * If nfs_portmon is set, then clients are required to use privileged
1347 1347 * ports (ports < IPPORT_RESERVED) in order to get NFS services.
1348 1348 *
1349 1349 * N.B.: this attempt to carry forward the already ill-conceived notion
1350 1350 * of privileged ports for TCP/UDP is really quite ineffectual. Not only
1351 1351 * is it transport-dependent, it's laughably easy to spoof. If you're
1352 1352 * really interested in security, you must start with secure RPC instead.
1353 1353 */
1354 1354 static int nfs_portmon = 0;
1355 1355
1356 1356 #ifdef DEBUG
1357 1357 static int cred_hits = 0;
1358 1358 static int cred_misses = 0;
1359 1359 #endif
1360 1360
1361 1361
1362 1362 #ifdef DEBUG
1363 1363 /*
1364 1364 * Debug code to allow disabling of rfs_dispatch() use of
1365 1365 * fastxdrargs() and fastxdrres() calls for testing purposes.
1366 1366 */
1367 1367 static int rfs_no_fast_xdrargs = 0;
1368 1368 static int rfs_no_fast_xdrres = 0;
1369 1369 #endif
1370 1370
1371 1371 union acl_args {
1372 1372 /*
1373 1373 * ACL VERSION 2
1374 1374 */
1375 1375
1376 1376 /* ACL2_NULL = 0 */
1377 1377
1378 1378 /* ACL2_GETACL = 1 */
1379 1379 GETACL2args acl2_getacl_args;
1380 1380
1381 1381 /* ACL2_SETACL = 2 */
1382 1382 SETACL2args acl2_setacl_args;
1383 1383
1384 1384 /* ACL2_GETATTR = 3 */
1385 1385 GETATTR2args acl2_getattr_args;
1386 1386
1387 1387 /* ACL2_ACCESS = 4 */
1388 1388 ACCESS2args acl2_access_args;
1389 1389
1390 1390 /* ACL2_GETXATTRDIR = 5 */
1391 1391 GETXATTRDIR2args acl2_getxattrdir_args;
1392 1392
1393 1393 /*
1394 1394 * ACL VERSION 3
1395 1395 */
1396 1396
1397 1397 /* ACL3_NULL = 0 */
1398 1398
1399 1399 /* ACL3_GETACL = 1 */
1400 1400 GETACL3args acl3_getacl_args;
1401 1401
1402 1402 /* ACL3_SETACL = 2 */
1403 1403 SETACL3args acl3_setacl;
1404 1404
1405 1405 /* ACL3_GETXATTRDIR = 3 */
1406 1406 GETXATTRDIR3args acl3_getxattrdir_args;
1407 1407
1408 1408 };
1409 1409
1410 1410 union acl_res {
1411 1411 /*
1412 1412 * ACL VERSION 2
1413 1413 */
1414 1414
1415 1415 /* ACL2_NULL = 0 */
1416 1416
1417 1417 /* ACL2_GETACL = 1 */
1418 1418 GETACL2res acl2_getacl_res;
1419 1419
1420 1420 /* ACL2_SETACL = 2 */
1421 1421 SETACL2res acl2_setacl_res;
1422 1422
1423 1423 /* ACL2_GETATTR = 3 */
1424 1424 GETATTR2res acl2_getattr_res;
1425 1425
1426 1426 /* ACL2_ACCESS = 4 */
1427 1427 ACCESS2res acl2_access_res;
1428 1428
1429 1429 /* ACL2_GETXATTRDIR = 5 */
1430 1430 GETXATTRDIR2args acl2_getxattrdir_res;
1431 1431
1432 1432 /*
1433 1433 * ACL VERSION 3
1434 1434 */
1435 1435
1436 1436 /* ACL3_NULL = 0 */
1437 1437
1438 1438 /* ACL3_GETACL = 1 */
1439 1439 GETACL3res acl3_getacl_res;
1440 1440
1441 1441 /* ACL3_SETACL = 2 */
1442 1442 SETACL3res acl3_setacl_res;
1443 1443
1444 1444 /* ACL3_GETXATTRDIR = 3 */
1445 1445 GETXATTRDIR3res acl3_getxattrdir_res;
1446 1446
1447 1447 };
1448 1448
1449 1449 static bool_t
1450 1450 auth_tooweak(struct svc_req *req, char *res)
1451 1451 {
1452 1452
1453 1453 if (req->rq_vers == NFS_VERSION && req->rq_proc == RFS_LOOKUP) {
1454 1454 struct nfsdiropres *dr = (struct nfsdiropres *)res;
1455 1455 if (dr->dr_status == WNFSERR_CLNT_FLAVOR)
1456 1456 return (TRUE);
1457 1457 } else if (req->rq_vers == NFS_V3 && req->rq_proc == NFSPROC3_LOOKUP) {
1458 1458 LOOKUP3res *resp = (LOOKUP3res *)res;
1459 1459 if (resp->status == WNFSERR_CLNT_FLAVOR)
1460 1460 return (TRUE);
1461 1461 }
1462 1462 return (FALSE);
1463 1463 }
1464 1464
1465 1465
1466 1466 static void
1467 1467 common_dispatch(struct svc_req *req, SVCXPRT *xprt, rpcvers_t min_vers,
1468 1468 rpcvers_t max_vers, char *pgmname,
1469 1469 struct rpc_disptable *disptable)
1470 1470 {
1471 1471 int which;
1472 1472 rpcvers_t vers;
1473 1473 char *args;
1474 1474 union {
1475 1475 union rfs_args ra;
1476 1476 union acl_args aa;
1477 1477 } args_buf;
1478 1478 char *res;
1479 1479 union {
1480 1480 union rfs_res rr;
1481 1481 union acl_res ar;
1482 1482 } res_buf;
1483 1483 struct rpcdisp *disp = NULL;
1484 1484 int dis_flags = 0;
1485 1485 cred_t *cr;
1486 1486 int error = 0;
1487 1487 int anon_ok;
1488 1488 struct exportinfo *exi = NULL;
1489 1489 unsigned int nfslog_rec_id;
1490 1490 int dupstat;
1491 1491 struct dupreq *dr;
1492 1492 int authres;
1493 1493 bool_t publicfh_ok = FALSE;
1494 1494 enum_t auth_flavor;
1495 1495 bool_t dupcached = FALSE;
1496 1496 struct netbuf nb;
1497 1497 bool_t logging_enabled = FALSE;
1498 1498 struct exportinfo *nfslog_exi = NULL;
1499 1499 char **procnames;
1500 1500 char cbuf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */
1501 1501
1502 1502 vers = req->rq_vers;
1503 1503
1504 1504 if (vers < min_vers || vers > max_vers) {
1505 1505 svcerr_progvers(req->rq_xprt, min_vers, max_vers);
1506 1506 error++;
1507 1507 cmn_err(CE_NOTE, "%s: bad version number %u", pgmname, vers);
1508 1508 goto done;
1509 1509 }
1510 1510 vers -= min_vers;
1511 1511
1512 1512 which = req->rq_proc;
1513 1513 if (which < 0 || which >= disptable[(int)vers].dis_nprocs) {
1514 1514 svcerr_noproc(req->rq_xprt);
1515 1515 error++;
1516 1516 goto done;
1517 1517 }
1518 1518
1519 1519 (*(disptable[(int)vers].dis_proccntp))[which].value.ui64++;
1520 1520
1521 1521 disp = &disptable[(int)vers].dis_table[which];
1522 1522 procnames = disptable[(int)vers].dis_procnames;
1523 1523
1524 1524 auth_flavor = req->rq_cred.oa_flavor;
1525 1525
1526 1526 /*
1527 1527 * Deserialize into the args struct.
1528 1528 */
1529 1529 args = (char *)&args_buf;
1530 1530
1531 1531 #ifdef DEBUG
1532 1532 if (rfs_no_fast_xdrargs || (auth_flavor == RPCSEC_GSS) ||
1533 1533 disp->dis_fastxdrargs == NULL_xdrproc_t ||
1534 1534 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args))
1535 1535 #else
1536 1536 if ((auth_flavor == RPCSEC_GSS) ||
1537 1537 disp->dis_fastxdrargs == NULL_xdrproc_t ||
1538 1538 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args))
1539 1539 #endif
1540 1540 {
1541 1541 bzero(args, disp->dis_argsz);
1542 1542 if (!SVC_GETARGS(xprt, disp->dis_xdrargs, args)) {
1543 1543 error++;
1544 1544 /*
1545 1545 * Check if we are outside our capabilities.
1546 1546 */
1547 1547 if (rfs4_minorvers_mismatch(req, xprt, (void *)args))
1548 1548 goto done;
1549 1549
1550 1550 svcerr_decode(xprt);
1551 1551 cmn_err(CE_NOTE,
1552 1552 "Failed to decode arguments for %s version %u "
1553 1553 "procedure %s client %s%s",
1554 1554 pgmname, vers + min_vers, procnames[which],
1555 1555 client_name(req), client_addr(req, cbuf));
1556 1556 goto done;
1557 1557 }
1558 1558 }
1559 1559
1560 1560 /*
1561 1561 * If Version 4 use that specific dispatch function.
1562 1562 */
1563 1563 if (req->rq_vers == 4) {
1564 1564 error += rfs4_dispatch(disp, req, xprt, args);
1565 1565 goto done;
1566 1566 }
1567 1567
1568 1568 dis_flags = disp->dis_flags;
1569 1569
1570 1570 /*
1571 1571 * Find export information and check authentication,
1572 1572 * setting the credential if everything is ok.
1573 1573 */
1574 1574 if (disp->dis_getfh != NULL) {
1575 1575 void *fh;
1576 1576 fsid_t *fsid;
1577 1577 fid_t *fid, *xfid;
1578 1578 fhandle_t *fh2;
1579 1579 nfs_fh3 *fh3;
1580 1580
1581 1581 fh = (*disp->dis_getfh)(args);
1582 1582 switch (req->rq_vers) {
1583 1583 case NFS_VERSION:
1584 1584 fh2 = (fhandle_t *)fh;
1585 1585 fsid = &fh2->fh_fsid;
1586 1586 fid = (fid_t *)&fh2->fh_len;
1587 1587 xfid = (fid_t *)&fh2->fh_xlen;
1588 1588 break;
1589 1589 case NFS_V3:
1590 1590 fh3 = (nfs_fh3 *)fh;
1591 1591 fsid = &fh3->fh3_fsid;
1592 1592 fid = FH3TOFIDP(fh3);
1593 1593 xfid = FH3TOXFIDP(fh3);
1594 1594 break;
1595 1595 }
1596 1596
1597 1597 /*
1598 1598 * Fix for bug 1038302 - corbin
1599 1599 * There is a problem here if anonymous access is
1600 1600 * disallowed. If the current request is part of the
1601 1601 * client's mount process for the requested filesystem,
1602 1602 * then it will carry root (uid 0) credentials on it, and
1603 1603 * will be denied by checkauth if that client does not
1604 1604 * have explicit root=0 permission. This will cause the
1605 1605 * client's mount operation to fail. As a work-around,
1606 1606 * we check here to see if the request is a getattr or
1607 1607 * statfs operation on the exported vnode itself, and
1608 1608 * pass a flag to checkauth with the result of this test.
1609 1609 *
1610 1610 * The filehandle refers to the mountpoint itself if
1611 1611 * the fh_data and fh_xdata portions of the filehandle
1612 1612 * are equal.
1613 1613 *
1614 1614 * Added anon_ok argument to checkauth().
1615 1615 */
1616 1616
1617 1617 if ((dis_flags & RPC_ALLOWANON) && EQFID(fid, xfid))
1618 1618 anon_ok = 1;
1619 1619 else
1620 1620 anon_ok = 0;
1621 1621
1622 1622 cr = xprt->xp_cred;
1623 1623 ASSERT(cr != NULL);
1624 1624 #ifdef DEBUG
1625 1625 if (crgetref(cr) != 1) {
1626 1626 crfree(cr);
1627 1627 cr = crget();
1628 1628 xprt->xp_cred = cr;
1629 1629 cred_misses++;
1630 1630 } else
1631 1631 cred_hits++;
1632 1632 #else
1633 1633 if (crgetref(cr) != 1) {
1634 1634 crfree(cr);
1635 1635 cr = crget();
1636 1636 xprt->xp_cred = cr;
1637 1637 }
1638 1638 #endif
1639 1639
1640 1640 exi = checkexport(fsid, xfid);
1641 1641
1642 1642 if (exi != NULL) {
1643 1643 publicfh_ok = PUBLICFH_CHECK(disp, exi, fsid, xfid);
1644 1644
1645 1645 /*
1646 1646 * Don't allow non-V4 clients access
1647 1647 * to pseudo exports
1648 1648 */
1649 1649 if (PSEUDO(exi)) {
1650 1650 svcerr_weakauth(xprt);
1651 1651 error++;
1652 1652 goto done;
1653 1653 }
1654 1654
1655 1655 authres = checkauth(exi, req, cr, anon_ok, publicfh_ok);
1656 1656 /*
1657 1657 * authres > 0: authentication OK - proceed
1658 1658 * authres == 0: authentication weak - return error
1659 1659 * authres < 0: authentication timeout - drop
1660 1660 */
1661 1661 if (authres <= 0) {
1662 1662 if (authres == 0) {
1663 1663 svcerr_weakauth(xprt);
1664 1664 error++;
1665 1665 }
1666 1666 goto done;
1667 1667 }
1668 1668 }
1669 1669 } else
1670 1670 cr = NULL;
1671 1671
1672 1672 if ((dis_flags & RPC_MAPRESP) && (auth_flavor != RPCSEC_GSS)) {
1673 1673 res = (char *)SVC_GETRES(xprt, disp->dis_ressz);
1674 1674 if (res == NULL)
1675 1675 res = (char *)&res_buf;
1676 1676 } else
1677 1677 res = (char *)&res_buf;
1678 1678
1679 1679 if (!(dis_flags & RPC_IDEMPOTENT)) {
1680 1680 dupstat = SVC_DUP_EXT(xprt, req, res, disp->dis_ressz, &dr,
1681 1681 &dupcached);
1682 1682
1683 1683 switch (dupstat) {
1684 1684 case DUP_ERROR:
1685 1685 svcerr_systemerr(xprt);
1686 1686 error++;
1687 1687 goto done;
1688 1688 /* NOTREACHED */
1689 1689 case DUP_INPROGRESS:
1690 1690 if (res != (char *)&res_buf)
1691 1691 SVC_FREERES(xprt);
1692 1692 error++;
1693 1693 goto done;
1694 1694 /* NOTREACHED */
1695 1695 case DUP_NEW:
1696 1696 case DUP_DROP:
1697 1697 curthread->t_flag |= T_DONTPEND;
1698 1698
1699 1699 (*disp->dis_proc)(args, res, exi, req, cr);
1700 1700
1701 1701 curthread->t_flag &= ~T_DONTPEND;
1702 1702 if (curthread->t_flag & T_WOULDBLOCK) {
1703 1703 curthread->t_flag &= ~T_WOULDBLOCK;
1704 1704 SVC_DUPDONE_EXT(xprt, dr, res, NULL,
1705 1705 disp->dis_ressz, DUP_DROP);
1706 1706 if (res != (char *)&res_buf)
1707 1707 SVC_FREERES(xprt);
1708 1708 error++;
1709 1709 goto done;
1710 1710 }
1711 1711 if (dis_flags & RPC_AVOIDWORK) {
1712 1712 SVC_DUPDONE_EXT(xprt, dr, res, NULL,
1713 1713 disp->dis_ressz, DUP_DROP);
1714 1714 } else {
1715 1715 SVC_DUPDONE_EXT(xprt, dr, res,
1716 1716 disp->dis_resfree == nullfree ? NULL :
1717 1717 disp->dis_resfree,
1718 1718 disp->dis_ressz, DUP_DONE);
1719 1719 dupcached = TRUE;
1720 1720 }
1721 1721 break;
1722 1722 case DUP_DONE:
1723 1723 break;
1724 1724 }
1725 1725
1726 1726 } else {
1727 1727 curthread->t_flag |= T_DONTPEND;
1728 1728
1729 1729 (*disp->dis_proc)(args, res, exi, req, cr);
1730 1730
1731 1731 curthread->t_flag &= ~T_DONTPEND;
1732 1732 if (curthread->t_flag & T_WOULDBLOCK) {
1733 1733 curthread->t_flag &= ~T_WOULDBLOCK;
1734 1734 if (res != (char *)&res_buf)
1735 1735 SVC_FREERES(xprt);
1736 1736 error++;
1737 1737 goto done;
1738 1738 }
1739 1739 }
1740 1740
1741 1741 if (auth_tooweak(req, res)) {
1742 1742 svcerr_weakauth(xprt);
1743 1743 error++;
1744 1744 goto done;
1745 1745 }
1746 1746
1747 1747 /*
1748 1748 * Check to see if logging has been enabled on the server.
1749 1749 * If so, then obtain the export info struct to be used for
1750 1750 * the later writing of the log record. This is done for
1751 1751 * the case that a lookup is done across a non-logged public
1752 1752 * file system.
1753 1753 */
1754 1754 if (nfslog_buffer_list != NULL) {
1755 1755 nfslog_exi = nfslog_get_exi(exi, req, res, &nfslog_rec_id);
1756 1756 /*
1757 1757 * Is logging enabled?
1758 1758 */
1759 1759 logging_enabled = (nfslog_exi != NULL);
1760 1760
1761 1761 /*
1762 1762 * Copy the netbuf for logging purposes, before it is
1763 1763 * freed by svc_sendreply().
1764 1764 */
1765 1765 if (logging_enabled) {
1766 1766 NFSLOG_COPY_NETBUF(nfslog_exi, xprt, &nb);
1767 1767 /*
1768 1768 * If RPC_MAPRESP flag set (i.e. in V2 ops) the
1769 1769 * res gets copied directly into the mbuf and
1770 1770 * may be freed soon after the sendreply. So we
1771 1771 * must copy it here to a safe place...
1772 1772 */
1773 1773 if (res != (char *)&res_buf) {
1774 1774 bcopy(res, (char *)&res_buf, disp->dis_ressz);
1775 1775 }
1776 1776 }
1777 1777 }
1778 1778
1779 1779 /*
1780 1780 * Serialize and send results struct
1781 1781 */
1782 1782 #ifdef DEBUG
1783 1783 if (rfs_no_fast_xdrres == 0 && res != (char *)&res_buf)
1784 1784 #else
1785 1785 if (res != (char *)&res_buf)
1786 1786 #endif
1787 1787 {
1788 1788 if (!svc_sendreply(xprt, disp->dis_fastxdrres, res)) {
1789 1789 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname);
1790 1790 svcerr_systemerr(xprt);
1791 1791 error++;
1792 1792 }
1793 1793 } else {
1794 1794 if (!svc_sendreply(xprt, disp->dis_xdrres, res)) {
1795 1795 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname);
1796 1796 svcerr_systemerr(xprt);
1797 1797 error++;
1798 1798 }
1799 1799 }
1800 1800
1801 1801 /*
1802 1802 * Log if needed
1803 1803 */
1804 1804 if (logging_enabled) {
1805 1805 nfslog_write_record(nfslog_exi, req, args, (char *)&res_buf,
1806 1806 cr, &nb, nfslog_rec_id, NFSLOG_ONE_BUFFER);
1807 1807 exi_rele(nfslog_exi);
1808 1808 kmem_free((&nb)->buf, (&nb)->len);
1809 1809 }
1810 1810
1811 1811 /*
1812 1812 * Free results struct. With the addition of NFS V4 we can
1813 1813 * have non-idempotent procedures with functions.
1814 1814 */
1815 1815 if (disp->dis_resfree != nullfree && dupcached == FALSE) {
1816 1816 (*disp->dis_resfree)(res);
1817 1817 }
1818 1818
1819 1819 done:
1820 1820 /*
1821 1821 * Free arguments struct
1822 1822 */
1823 1823 if (disp) {
1824 1824 if (!SVC_FREEARGS(xprt, disp->dis_xdrargs, args)) {
1825 1825 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname);
1826 1826 error++;
1827 1827 }
1828 1828 } else {
1829 1829 if (!SVC_FREEARGS(xprt, (xdrproc_t)0, (caddr_t)0)) {
1830 1830 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname);
1831 1831 error++;
1832 1832 }
1833 1833 }
1834 1834
1835 1835 if (exi != NULL)
1836 1836 exi_rele(exi);
1837 1837
1838 1838 global_svstat_ptr[req->rq_vers][NFS_BADCALLS].value.ui64 += error;
1839 1839
1840 1840 global_svstat_ptr[req->rq_vers][NFS_CALLS].value.ui64++;
1841 1841 }
1842 1842
1843 1843 static void
1844 1844 rfs_dispatch(struct svc_req *req, SVCXPRT *xprt)
1845 1845 {
1846 1846 common_dispatch(req, xprt, NFS_VERSMIN, NFS_VERSMAX,
1847 1847 "NFS", rfs_disptable);
1848 1848 }
1849 1849
1850 1850 static char *aclcallnames_v2[] = {
1851 1851 "ACL2_NULL",
1852 1852 "ACL2_GETACL",
1853 1853 "ACL2_SETACL",
1854 1854 "ACL2_GETATTR",
1855 1855 "ACL2_ACCESS",
1856 1856 "ACL2_GETXATTRDIR"
1857 1857 };
1858 1858
1859 1859 static struct rpcdisp acldisptab_v2[] = {
1860 1860 /*
1861 1861 * ACL VERSION 2
1862 1862 */
1863 1863
1864 1864 /* ACL2_NULL = 0 */
1865 1865 {rpc_null,
1866 1866 xdr_void, NULL_xdrproc_t, 0,
1867 1867 xdr_void, NULL_xdrproc_t, 0,
1868 1868 nullfree, RPC_IDEMPOTENT,
1869 1869 0},
1870 1870
1871 1871 /* ACL2_GETACL = 1 */
1872 1872 {acl2_getacl,
1873 1873 xdr_GETACL2args, xdr_fastGETACL2args, sizeof (GETACL2args),
1874 1874 xdr_GETACL2res, NULL_xdrproc_t, sizeof (GETACL2res),
1875 1875 acl2_getacl_free, RPC_IDEMPOTENT,
1876 1876 acl2_getacl_getfh},
1877 1877
1878 1878 /* ACL2_SETACL = 2 */
1879 1879 {acl2_setacl,
1880 1880 xdr_SETACL2args, NULL_xdrproc_t, sizeof (SETACL2args),
1881 1881 #ifdef _LITTLE_ENDIAN
1882 1882 xdr_SETACL2res, xdr_fastSETACL2res, sizeof (SETACL2res),
1883 1883 #else
1884 1884 xdr_SETACL2res, NULL_xdrproc_t, sizeof (SETACL2res),
1885 1885 #endif
1886 1886 nullfree, RPC_MAPRESP,
1887 1887 acl2_setacl_getfh},
1888 1888
1889 1889 /* ACL2_GETATTR = 3 */
1890 1890 {acl2_getattr,
1891 1891 xdr_GETATTR2args, xdr_fastGETATTR2args, sizeof (GETATTR2args),
1892 1892 #ifdef _LITTLE_ENDIAN
1893 1893 xdr_GETATTR2res, xdr_fastGETATTR2res, sizeof (GETATTR2res),
1894 1894 #else
1895 1895 xdr_GETATTR2res, NULL_xdrproc_t, sizeof (GETATTR2res),
1896 1896 #endif
1897 1897 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP,
1898 1898 acl2_getattr_getfh},
1899 1899
1900 1900 /* ACL2_ACCESS = 4 */
1901 1901 {acl2_access,
1902 1902 xdr_ACCESS2args, xdr_fastACCESS2args, sizeof (ACCESS2args),
1903 1903 #ifdef _LITTLE_ENDIAN
1904 1904 xdr_ACCESS2res, xdr_fastACCESS2res, sizeof (ACCESS2res),
1905 1905 #else
1906 1906 xdr_ACCESS2res, NULL_xdrproc_t, sizeof (ACCESS2res),
1907 1907 #endif
1908 1908 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP,
1909 1909 acl2_access_getfh},
1910 1910
1911 1911 /* ACL2_GETXATTRDIR = 5 */
1912 1912 {acl2_getxattrdir,
1913 1913 xdr_GETXATTRDIR2args, NULL_xdrproc_t, sizeof (GETXATTRDIR2args),
1914 1914 xdr_GETXATTRDIR2res, NULL_xdrproc_t, sizeof (GETXATTRDIR2res),
1915 1915 nullfree, RPC_IDEMPOTENT,
1916 1916 acl2_getxattrdir_getfh},
1917 1917 };
1918 1918
1919 1919 static char *aclcallnames_v3[] = {
1920 1920 "ACL3_NULL",
1921 1921 "ACL3_GETACL",
1922 1922 "ACL3_SETACL",
1923 1923 "ACL3_GETXATTRDIR"
1924 1924 };
1925 1925
1926 1926 static struct rpcdisp acldisptab_v3[] = {
1927 1927 /*
1928 1928 * ACL VERSION 3
1929 1929 */
1930 1930
1931 1931 /* ACL3_NULL = 0 */
1932 1932 {rpc_null,
1933 1933 xdr_void, NULL_xdrproc_t, 0,
1934 1934 xdr_void, NULL_xdrproc_t, 0,
1935 1935 nullfree, RPC_IDEMPOTENT,
1936 1936 0},
1937 1937
1938 1938 /* ACL3_GETACL = 1 */
1939 1939 {acl3_getacl,
1940 1940 xdr_GETACL3args, NULL_xdrproc_t, sizeof (GETACL3args),
1941 1941 xdr_GETACL3res, NULL_xdrproc_t, sizeof (GETACL3res),
1942 1942 acl3_getacl_free, RPC_IDEMPOTENT,
1943 1943 acl3_getacl_getfh},
1944 1944
1945 1945 /* ACL3_SETACL = 2 */
1946 1946 {acl3_setacl,
1947 1947 xdr_SETACL3args, NULL_xdrproc_t, sizeof (SETACL3args),
1948 1948 xdr_SETACL3res, NULL_xdrproc_t, sizeof (SETACL3res),
1949 1949 nullfree, 0,
1950 1950 acl3_setacl_getfh},
1951 1951
1952 1952 /* ACL3_GETXATTRDIR = 3 */
1953 1953 {acl3_getxattrdir,
1954 1954 xdr_GETXATTRDIR3args, NULL_xdrproc_t, sizeof (GETXATTRDIR3args),
1955 1955 xdr_GETXATTRDIR3res, NULL_xdrproc_t, sizeof (GETXATTRDIR3res),
1956 1956 nullfree, RPC_IDEMPOTENT,
1957 1957 acl3_getxattrdir_getfh},
1958 1958 };
1959 1959
1960 1960 static struct rpc_disptable acl_disptable[] = {
1961 1961 {sizeof (acldisptab_v2) / sizeof (acldisptab_v2[0]),
1962 1962 aclcallnames_v2,
1963 1963 &aclproccnt_v2_ptr, acldisptab_v2},
1964 1964 {sizeof (acldisptab_v3) / sizeof (acldisptab_v3[0]),
1965 1965 aclcallnames_v3,
1966 1966 &aclproccnt_v3_ptr, acldisptab_v3},
1967 1967 };
1968 1968
1969 1969 static void
1970 1970 acl_dispatch(struct svc_req *req, SVCXPRT *xprt)
1971 1971 {
1972 1972 common_dispatch(req, xprt, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX,
1973 1973 "ACL", acl_disptable);
1974 1974 }
1975 1975
1976 1976 int
1977 1977 checkwin(int flavor, int window, struct svc_req *req)
1978 1978 {
1979 1979 struct authdes_cred *adc;
1980 1980
1981 1981 switch (flavor) {
1982 1982 case AUTH_DES:
1983 1983 adc = (struct authdes_cred *)req->rq_clntcred;
1984 1984 if (adc->adc_fullname.window > window)
1985 1985 return (0);
1986 1986 break;
1987 1987
1988 1988 default:
1989 1989 break;
1990 1990 }
1991 1991 return (1);
1992 1992 }
1993 1993
1994 1994
1995 1995 /*
1996 1996 * checkauth() will check the access permission against the export
1997 1997 * information. Then map root uid/gid to appropriate uid/gid.
1998 1998 *
1999 1999 * This routine is used by NFS V3 and V2 code.
2000 2000 */
2001 2001 static int
2002 2002 checkauth(struct exportinfo *exi, struct svc_req *req, cred_t *cr, int anon_ok,
2003 2003 bool_t publicfh_ok)
2004 2004 {
2005 2005 int i, nfsflavor, rpcflavor, stat, access;
2006 2006 struct secinfo *secp;
2007 2007 caddr_t principal;
2008 2008 char buf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */
2009 2009 int anon_res = 0;
2010 2010
2011 2011 /*
2012 2012 * Check for privileged port number
2013 2013 * N.B.: this assumes that we know the format of a netbuf.
2014 2014 */
2015 2015 if (nfs_portmon) {
2016 2016 struct sockaddr *ca;
2017 2017 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf;
2018 2018
2019 2019 if (ca == NULL)
2020 2020 return (0);
2021 2021
2022 2022 if ((ca->sa_family == AF_INET &&
2023 2023 ntohs(((struct sockaddr_in *)ca)->sin_port) >=
2024 2024 IPPORT_RESERVED) ||
2025 2025 (ca->sa_family == AF_INET6 &&
2026 2026 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >=
2027 2027 IPPORT_RESERVED)) {
2028 2028 cmn_err(CE_NOTE,
2029 2029 "nfs_server: client %s%ssent NFS request from "
2030 2030 "unprivileged port",
2031 2031 client_name(req), client_addr(req, buf));
2032 2032 return (0);
2033 2033 }
2034 2034 }
2035 2035
2036 2036 /*
2037 2037 * return 1 on success or 0 on failure
2038 2038 */
2039 2039 stat = sec_svc_getcred(req, cr, &principal, &nfsflavor);
2040 2040
2041 2041 /*
2042 2042 * A failed AUTH_UNIX svc_get_cred() implies we couldn't set
2043 2043 * the credentials; below we map that to anonymous.
2044 2044 */
2045 2045 if (!stat && nfsflavor != AUTH_UNIX) {
2046 2046 cmn_err(CE_NOTE,
2047 2047 "nfs_server: couldn't get unix cred for %s",
2048 2048 client_name(req));
2049 2049 return (0);
2050 2050 }
2051 2051
2052 2052 /*
2053 2053 * Short circuit checkauth() on operations that support the
2054 2054 * public filehandle, and if the request for that operation
2055 2055 * is using the public filehandle. Note that we must call
2056 2056 * sec_svc_getcred() first so that xp_cookie is set to the
2057 2057 * right value. Normally xp_cookie is just the RPC flavor
2058 2058 * of the the request, but in the case of RPCSEC_GSS it
2059 2059 * could be a pseudo flavor.
2060 2060 */
2061 2061 if (publicfh_ok)
2062 2062 return (1);
2063 2063
2064 2064 rpcflavor = req->rq_cred.oa_flavor;
2065 2065 /*
2066 2066 * Check if the auth flavor is valid for this export
2067 2067 */
2068 2068 access = nfsauth_access(exi, req);
2069 2069 if (access & NFSAUTH_DROP)
2070 2070 return (-1); /* drop the request */
2071 2071
2072 2072 if (access & NFSAUTH_DENIED) {
2073 2073 /*
2074 2074 * If anon_ok == 1 and we got NFSAUTH_DENIED, it was
2075 2075 * probably due to the flavor not matching during the
2076 2076 * the mount attempt. So map the flavor to AUTH_NONE
2077 2077 * so that the credentials get mapped to the anonymous
2078 2078 * user.
2079 2079 */
2080 2080 if (anon_ok == 1)
2081 2081 rpcflavor = AUTH_NONE;
2082 2082 else
2083 2083 return (0); /* deny access */
2084 2084
2085 2085 } else if (access & NFSAUTH_MAPNONE) {
2086 2086 /*
2087 2087 * Access was granted even though the flavor mismatched
2088 2088 * because AUTH_NONE was one of the exported flavors.
2089 2089 */
2090 2090 rpcflavor = AUTH_NONE;
2091 2091
2092 2092 } else if (access & NFSAUTH_WRONGSEC) {
2093 2093 /*
2094 2094 * NFSAUTH_WRONGSEC is used for NFSv4. If we get here,
2095 2095 * it means a client ignored the list of allowed flavors
2096 2096 * returned via the MOUNT protocol. So we just disallow it!
2097 2097 */
2098 2098 return (0);
2099 2099 }
2100 2100
2101 2101 switch (rpcflavor) {
2102 2102 case AUTH_NONE:
2103 2103 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2104 2104 exi->exi_export.ex_anon);
2105 2105 (void) crsetgroups(cr, 0, NULL);
2106 2106 break;
2107 2107
2108 2108 case AUTH_UNIX:
2109 2109 if (!stat || crgetuid(cr) == 0 && !(access & NFSAUTH_ROOT)) {
2110 2110 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2111 2111 exi->exi_export.ex_anon);
2112 2112 (void) crsetgroups(cr, 0, NULL);
2113 2113 } else if (!stat || crgetuid(cr) == 0 &&
2114 2114 access & NFSAUTH_ROOT) {
2115 2115 /*
2116 2116 * It is root, so apply rootid to get real UID
2117 2117 * Find the secinfo structure. We should be able
2118 2118 * to find it by the time we reach here.
2119 2119 * nfsauth_access() has done the checking.
2120 2120 */
2121 2121 secp = NULL;
2122 2122 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2123 2123 struct secinfo *sptr;
2124 2124 sptr = &exi->exi_export.ex_secinfo[i];
2125 2125 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) {
2126 2126 secp = sptr;
2127 2127 break;
2128 2128 }
2129 2129 }
2130 2130 if (secp != NULL) {
2131 2131 (void) crsetugid(cr, secp->s_rootid,
2132 2132 secp->s_rootid);
2133 2133 (void) crsetgroups(cr, 0, NULL);
2134 2134 }
2135 2135 }
2136 2136 break;
2137 2137
2138 2138 case AUTH_DES:
2139 2139 case RPCSEC_GSS:
2140 2140 /*
2141 2141 * Find the secinfo structure. We should be able
2142 2142 * to find it by the time we reach here.
2143 2143 * nfsauth_access() has done the checking.
2144 2144 */
2145 2145 secp = NULL;
2146 2146 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2147 2147 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum ==
2148 2148 nfsflavor) {
2149 2149 secp = &exi->exi_export.ex_secinfo[i];
2150 2150 break;
2151 2151 }
2152 2152 }
2153 2153
2154 2154 if (!secp) {
2155 2155 cmn_err(CE_NOTE, "nfs_server: client %s%shad "
2156 2156 "no secinfo data for flavor %d",
2157 2157 client_name(req), client_addr(req, buf),
2158 2158 nfsflavor);
2159 2159 return (0);
2160 2160 }
2161 2161
2162 2162 if (!checkwin(rpcflavor, secp->s_window, req)) {
2163 2163 cmn_err(CE_NOTE,
2164 2164 "nfs_server: client %s%sused invalid "
2165 2165 "auth window value",
2166 2166 client_name(req), client_addr(req, buf));
2167 2167 return (0);
2168 2168 }
2169 2169
2170 2170 /*
2171 2171 * Map root principals listed in the share's root= list to root,
2172 2172 * and map any others principals that were mapped to root by RPC
2173 2173 * to anon.
2174 2174 */
2175 2175 if (principal && sec_svc_inrootlist(rpcflavor, principal,
2176 2176 secp->s_rootcnt, secp->s_rootnames)) {
2177 2177 if (crgetuid(cr) == 0 && secp->s_rootid == 0)
2178 2178 return (1);
2179 2179
2180 2180
2181 2181 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid);
2182 2182
2183 2183 /*
2184 2184 * NOTE: If and when kernel-land privilege tracing is
2185 2185 * added this may have to be replaced with code that
2186 2186 * retrieves root's supplementary groups (e.g., using
2187 2187 * kgss_get_group_info(). In the meantime principals
2188 2188 * mapped to uid 0 get all privileges, so setting cr's
2189 2189 * supplementary groups for them does nothing.
2190 2190 */
2191 2191 (void) crsetgroups(cr, 0, NULL);
2192 2192
2193 2193 return (1);
2194 2194 }
2195 2195
2196 2196 /*
2197 2197 * Not a root princ, or not in root list, map UID 0/nobody to
2198 2198 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to
2199 2199 * UID_NOBODY and GID_NOBODY, respectively.)
2200 2200 */
2201 2201 if (crgetuid(cr) != 0 &&
2202 2202 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY))
2203 2203 return (1);
2204 2204
2205 2205 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2206 2206 exi->exi_export.ex_anon);
2207 2207 (void) crsetgroups(cr, 0, NULL);
2208 2208 break;
2209 2209 default:
2210 2210 return (0);
2211 2211 } /* switch on rpcflavor */
2212 2212
2213 2213 /*
2214 2214 * Even if anon access is disallowed via ex_anon == -1, we allow
2215 2215 * this access if anon_ok is set. So set creds to the default
2216 2216 * "nobody" id.
2217 2217 */
2218 2218 if (anon_res != 0) {
2219 2219 if (anon_ok == 0) {
2220 2220 cmn_err(CE_NOTE,
2221 2221 "nfs_server: client %s%ssent wrong "
2222 2222 "authentication for %s",
2223 2223 client_name(req), client_addr(req, buf),
2224 2224 exi->exi_export.ex_path ?
2225 2225 exi->exi_export.ex_path : "?");
2226 2226 return (0);
2227 2227 }
2228 2228
2229 2229 if (crsetugid(cr, UID_NOBODY, GID_NOBODY) != 0)
2230 2230 return (0);
2231 2231 }
2232 2232
2233 2233 return (1);
2234 2234 }
2235 2235
2236 2236 /*
2237 2237 * returns 0 on failure, -1 on a drop, -2 on wrong security flavor,
2238 2238 * and 1 on success
2239 2239 */
2240 2240 int
2241 2241 checkauth4(struct compound_state *cs, struct svc_req *req)
2242 2242 {
2243 2243 int i, rpcflavor, access;
2244 2244 struct secinfo *secp;
2245 2245 char buf[MAXHOST + 1];
2246 2246 int anon_res = 0, nfsflavor;
2247 2247 struct exportinfo *exi;
2248 2248 cred_t *cr;
2249 2249 caddr_t principal;
2250 2250
2251 2251 exi = cs->exi;
2252 2252 cr = cs->cr;
2253 2253 principal = cs->principal;
2254 2254 nfsflavor = cs->nfsflavor;
2255 2255
2256 2256 ASSERT(cr != NULL);
2257 2257
2258 2258 rpcflavor = req->rq_cred.oa_flavor;
2259 2259 cs->access &= ~CS_ACCESS_LIMITED;
2260 2260
2261 2261 /*
2262 2262 * Check for privileged port number
2263 2263 * N.B.: this assumes that we know the format of a netbuf.
2264 2264 */
2265 2265 if (nfs_portmon) {
2266 2266 struct sockaddr *ca;
2267 2267 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf;
2268 2268
2269 2269 if (ca == NULL)
2270 2270 return (0);
2271 2271
2272 2272 if ((ca->sa_family == AF_INET &&
2273 2273 ntohs(((struct sockaddr_in *)ca)->sin_port) >=
2274 2274 IPPORT_RESERVED) ||
2275 2275 (ca->sa_family == AF_INET6 &&
2276 2276 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >=
2277 2277 IPPORT_RESERVED)) {
2278 2278 cmn_err(CE_NOTE,
2279 2279 "nfs_server: client %s%ssent NFSv4 request from "
2280 2280 "unprivileged port",
2281 2281 client_name(req), client_addr(req, buf));
2282 2282 return (0);
2283 2283 }
2284 2284 }
2285 2285
2286 2286 /*
2287 2287 * Check the access right per auth flavor on the vnode of
2288 2288 * this export for the given request.
2289 2289 */
2290 2290 access = nfsauth4_access(cs->exi, cs->vp, req);
2291 2291
2292 2292 if (access & NFSAUTH_WRONGSEC)
2293 2293 return (-2); /* no access for this security flavor */
2294 2294
2295 2295 if (access & NFSAUTH_DROP)
2296 2296 return (-1); /* drop the request */
2297 2297
2298 2298 if (access & NFSAUTH_DENIED) {
2299 2299
2300 2300 if (exi->exi_export.ex_seccnt > 0)
2301 2301 return (0); /* deny access */
2302 2302
2303 2303 } else if (access & NFSAUTH_LIMITED) {
2304 2304
2305 2305 cs->access |= CS_ACCESS_LIMITED;
2306 2306
2307 2307 } else if (access & NFSAUTH_MAPNONE) {
2308 2308 /*
2309 2309 * Access was granted even though the flavor mismatched
2310 2310 * because AUTH_NONE was one of the exported flavors.
2311 2311 */
2312 2312 rpcflavor = AUTH_NONE;
2313 2313 }
2314 2314
2315 2315 /*
2316 2316 * XXX probably need to redo some of it for nfsv4?
2317 2317 * return 1 on success or 0 on failure
2318 2318 */
2319 2319
2320 2320 switch (rpcflavor) {
2321 2321 case AUTH_NONE:
2322 2322 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2323 2323 exi->exi_export.ex_anon);
2324 2324 (void) crsetgroups(cr, 0, NULL);
2325 2325 break;
2326 2326
2327 2327 case AUTH_UNIX:
2328 2328 if (crgetuid(cr) == 0 && !(access & NFSAUTH_ROOT)) {
2329 2329 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2330 2330 exi->exi_export.ex_anon);
2331 2331 (void) crsetgroups(cr, 0, NULL);
2332 2332 } else if (crgetuid(cr) == 0 && access & NFSAUTH_ROOT) {
2333 2333 /*
2334 2334 * It is root, so apply rootid to get real UID
2335 2335 * Find the secinfo structure. We should be able
2336 2336 * to find it by the time we reach here.
2337 2337 * nfsauth_access() has done the checking.
2338 2338 */
2339 2339 secp = NULL;
2340 2340 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2341 2341 struct secinfo *sptr;
2342 2342 sptr = &exi->exi_export.ex_secinfo[i];
2343 2343 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) {
2344 2344 secp = &exi->exi_export.ex_secinfo[i];
2345 2345 break;
2346 2346 }
2347 2347 }
2348 2348 if (secp != NULL) {
2349 2349 (void) crsetugid(cr, secp->s_rootid,
2350 2350 secp->s_rootid);
2351 2351 (void) crsetgroups(cr, 0, NULL);
2352 2352 }
2353 2353 }
2354 2354 break;
2355 2355
2356 2356 default:
2357 2357 /*
2358 2358 * Find the secinfo structure. We should be able
2359 2359 * to find it by the time we reach here.
2360 2360 * nfsauth_access() has done the checking.
2361 2361 */
2362 2362 secp = NULL;
2363 2363 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2364 2364 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum ==
2365 2365 nfsflavor) {
2366 2366 secp = &exi->exi_export.ex_secinfo[i];
2367 2367 break;
2368 2368 }
2369 2369 }
2370 2370
2371 2371 if (!secp) {
2372 2372 cmn_err(CE_NOTE, "nfs_server: client %s%shad "
2373 2373 "no secinfo data for flavor %d",
2374 2374 client_name(req), client_addr(req, buf),
2375 2375 nfsflavor);
2376 2376 return (0);
2377 2377 }
2378 2378
2379 2379 if (!checkwin(rpcflavor, secp->s_window, req)) {
2380 2380 cmn_err(CE_NOTE,
2381 2381 "nfs_server: client %s%sused invalid "
2382 2382 "auth window value",
2383 2383 client_name(req), client_addr(req, buf));
2384 2384 return (0);
2385 2385 }
2386 2386
2387 2387 /*
2388 2388 * Map root principals listed in the share's root= list to root,
2389 2389 * and map any others principals that were mapped to root by RPC
2390 2390 * to anon. If not going to anon, set to rootid (root_mapping).
2391 2391 */
2392 2392 if (principal && sec_svc_inrootlist(rpcflavor, principal,
2393 2393 secp->s_rootcnt, secp->s_rootnames)) {
2394 2394 if (crgetuid(cr) == 0 && secp->s_rootid == 0)
2395 2395 return (1);
2396 2396
2397 2397 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid);
2398 2398
2399 2399 /*
2400 2400 * NOTE: If and when kernel-land privilege tracing is
2401 2401 * added this may have to be replaced with code that
2402 2402 * retrieves root's supplementary groups (e.g., using
2403 2403 * kgss_get_group_info(). In the meantime principals
2404 2404 * mapped to uid 0 get all privileges, so setting cr's
2405 2405 * supplementary groups for them does nothing.
2406 2406 */
2407 2407 (void) crsetgroups(cr, 0, NULL);
2408 2408
2409 2409 return (1);
2410 2410 }
2411 2411
2412 2412 /*
2413 2413 * Not a root princ, or not in root list, map UID 0/nobody to
2414 2414 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to
2415 2415 * UID_NOBODY and GID_NOBODY, respectively.)
2416 2416 */
2417 2417 if (crgetuid(cr) != 0 &&
2418 2418 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY))
2419 2419 return (1);
2420 2420
2421 2421 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2422 2422 exi->exi_export.ex_anon);
2423 2423 (void) crsetgroups(cr, 0, NULL);
2424 2424 break;
2425 2425 } /* switch on rpcflavor */
2426 2426
2427 2427 /*
2428 2428 * Even if anon access is disallowed via ex_anon == -1, we allow
2429 2429 * this access if anon_ok is set. So set creds to the default
2430 2430 * "nobody" id.
2431 2431 */
2432 2432
2433 2433 if (anon_res != 0) {
2434 2434 cmn_err(CE_NOTE,
2435 2435 "nfs_server: client %s%ssent wrong "
2436 2436 "authentication for %s",
2437 2437 client_name(req), client_addr(req, buf),
2438 2438 exi->exi_export.ex_path ?
2439 2439 exi->exi_export.ex_path : "?");
2440 2440 return (0);
2441 2441 }
2442 2442
2443 2443 return (1);
2444 2444 }
2445 2445
2446 2446
2447 2447 static char *
2448 2448 client_name(struct svc_req *req)
2449 2449 {
2450 2450 char *hostname = NULL;
2451 2451
2452 2452 /*
2453 2453 * If it's a Unix cred then use the
2454 2454 * hostname from the credential.
2455 2455 */
2456 2456 if (req->rq_cred.oa_flavor == AUTH_UNIX) {
2457 2457 hostname = ((struct authunix_parms *)
2458 2458 req->rq_clntcred)->aup_machname;
2459 2459 }
2460 2460 if (hostname == NULL)
2461 2461 hostname = "";
2462 2462
2463 2463 return (hostname);
2464 2464 }
2465 2465
2466 2466 static char *
2467 2467 client_addr(struct svc_req *req, char *buf)
2468 2468 {
2469 2469 struct sockaddr *ca;
2470 2470 uchar_t *b;
2471 2471 char *frontspace = "";
2472 2472
2473 2473 /*
2474 2474 * We assume we are called in tandem with client_name and the
2475 2475 * format string looks like "...client %s%sblah blah..."
2476 2476 *
2477 2477 * If it's a Unix cred then client_name returned
2478 2478 * a host name, so we need insert a space between host name
2479 2479 * and IP address.
2480 2480 */
2481 2481 if (req->rq_cred.oa_flavor == AUTH_UNIX)
2482 2482 frontspace = " ";
2483 2483
2484 2484 /*
2485 2485 * Convert the caller's IP address to a dotted string
2486 2486 */
2487 2487 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf;
2488 2488
2489 2489 if (ca->sa_family == AF_INET) {
2490 2490 b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr;
2491 2491 (void) sprintf(buf, "%s(%d.%d.%d.%d) ", frontspace,
2492 2492 b[0] & 0xFF, b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF);
2493 2493 } else if (ca->sa_family == AF_INET6) {
2494 2494 struct sockaddr_in6 *sin6;
2495 2495 sin6 = (struct sockaddr_in6 *)ca;
2496 2496 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr,
2497 2497 buf, INET6_ADDRSTRLEN);
2498 2498
2499 2499 } else {
2500 2500
2501 2501 /*
2502 2502 * No IP address to print. If there was a host name
2503 2503 * printed, then we print a space.
2504 2504 */
2505 2505 (void) sprintf(buf, frontspace);
2506 2506 }
2507 2507
2508 2508 return (buf);
2509 2509 }
2510 2510
2511 2511 /*
2512 2512 * NFS Server initialization routine. This routine should only be called
2513 2513 * once. It performs the following tasks:
2514 2514 * - Call sub-initialization routines (localize access to variables)
2515 2515 * - Initialize all locks
2516 2516 * - initialize the version 3 write verifier
2517 2517 */
2518 2518 int
2519 2519 nfs_srvinit(void)
2520 2520 {
2521 2521 int error;
2522 2522
2523 2523 error = nfs_exportinit();
2524 2524 if (error != 0)
2525 2525 return (error);
2526 2526 error = rfs4_srvrinit();
2527 2527 if (error != 0) {
2528 2528 nfs_exportfini();
2529 2529 return (error);
2530 2530 }
2531 2531 rfs_srvrinit();
2532 2532 rfs3_srvrinit();
2533 2533 nfsauth_init();
2534 2534
2535 2535 /* Init the stuff to control start/stop */
2536 2536 nfs_server_upordown = NFS_SERVER_STOPPED;
2537 2537 mutex_init(&nfs_server_upordown_lock, NULL, MUTEX_DEFAULT, NULL);
2538 2538 cv_init(&nfs_server_upordown_cv, NULL, CV_DEFAULT, NULL);
2539 2539 mutex_init(&rdma_wait_mutex, NULL, MUTEX_DEFAULT, NULL);
2540 2540 cv_init(&rdma_wait_cv, NULL, CV_DEFAULT, NULL);
2541 2541
2542 2542 return (0);
2543 2543 }
2544 2544
2545 2545 /*
2546 2546 * NFS Server finalization routine. This routine is called to cleanup the
2547 2547 * initialization work previously performed if the NFS server module could
2548 2548 * not be loaded correctly.
2549 2549 */
2550 2550 void
2551 2551 nfs_srvfini(void)
2552 2552 {
2553 2553 nfsauth_fini();
2554 2554 rfs3_srvrfini();
2555 2555 rfs_srvrfini();
2556 2556 nfs_exportfini();
2557 2557
2558 2558 mutex_destroy(&nfs_server_upordown_lock);
2559 2559 cv_destroy(&nfs_server_upordown_cv);
2560 2560 mutex_destroy(&rdma_wait_mutex);
2561 2561 cv_destroy(&rdma_wait_cv);
2562 2562 }
2563 2563
2564 2564 /*
2565 2565 * Set up an iovec array of up to cnt pointers.
2566 2566 */
2567 2567
2568 2568 void
2569 2569 mblk_to_iov(mblk_t *m, int cnt, struct iovec *iovp)
2570 2570 {
2571 2571 while (m != NULL && cnt-- > 0) {
2572 2572 iovp->iov_base = (caddr_t)m->b_rptr;
2573 2573 iovp->iov_len = (m->b_wptr - m->b_rptr);
2574 2574 iovp++;
2575 2575 m = m->b_cont;
2576 2576 }
2577 2577 }
2578 2578
2579 2579 /*
2580 2580 * Common code between NFS Version 2 and NFS Version 3 for the public
2581 2581 * filehandle multicomponent lookups.
2582 2582 */
2583 2583
2584 2584 /*
2585 2585 * Public filehandle evaluation of a multi-component lookup, following
2586 2586 * symbolic links, if necessary. This may result in a vnode in another
2587 2587 * filesystem, which is OK as long as the other filesystem is exported.
2588 2588 *
2589 2589 * Note that the exi will be set either to NULL or a new reference to the
2590 2590 * exportinfo struct that corresponds to the vnode of the multi-component path.
2591 2591 * It is the callers responsibility to release this reference.
↓ open down ↓ |
2591 lines elided |
↑ open up ↑ |
2592 2592 */
2593 2593 int
2594 2594 rfs_publicfh_mclookup(char *p, vnode_t *dvp, cred_t *cr, vnode_t **vpp,
2595 2595 struct exportinfo **exi, struct sec_ol *sec)
2596 2596 {
2597 2597 int pathflag;
2598 2598 vnode_t *mc_dvp = NULL;
2599 2599 vnode_t *realvp;
2600 2600 int error;
2601 2601
2602 - *exi = NULL;
2603 -
2604 2602 /*
2605 2603 * check if the given path is a url or native path. Since p is
2606 2604 * modified by MCLpath(), it may be empty after returning from
2607 2605 * there, and should be checked.
2608 2606 */
2609 2607 if ((pathflag = MCLpath(&p)) == -1)
2610 2608 return (EIO);
2611 2609
2612 2610 /*
2613 2611 * If pathflag is SECURITY_QUERY, turn the SEC_QUERY bit
2614 2612 * on in sec->sec_flags. This bit will later serve as an
2615 2613 * indication in makefh_ol() or makefh3_ol() to overload the
2616 2614 * filehandle to contain the sec modes used by the server for
2617 2615 * the path.
2618 2616 */
2619 2617 if (pathflag == SECURITY_QUERY) {
2620 2618 if ((sec->sec_index = (uint_t)(*p)) > 0) {
2621 2619 sec->sec_flags |= SEC_QUERY;
2622 2620 p++;
2623 2621 if ((pathflag = MCLpath(&p)) == -1)
2624 2622 return (EIO);
2625 2623 } else {
2626 2624 cmn_err(CE_NOTE,
2627 2625 "nfs_server: invalid security index %d, "
2628 2626 "violating WebNFS SNEGO protocol.", sec->sec_index);
2629 2627 return (EIO);
2630 2628 }
2631 2629 }
2632 2630
2633 2631 if (p[0] == '\0') {
2634 2632 error = ENOENT;
2635 2633 goto publicfh_done;
2636 2634 }
2637 2635
2638 2636 error = rfs_pathname(p, &mc_dvp, vpp, dvp, cr, pathflag);
2639 2637
2640 2638 /*
2641 2639 * If name resolves to "/" we get EINVAL since we asked for
2642 2640 * the vnode of the directory that the file is in. Try again
2643 2641 * with NULL directory vnode.
2644 2642 */
2645 2643 if (error == EINVAL) {
2646 2644 error = rfs_pathname(p, NULL, vpp, dvp, cr, pathflag);
2647 2645 if (!error) {
2648 2646 ASSERT(*vpp != NULL);
2649 2647 if ((*vpp)->v_type == VDIR) {
2650 2648 VN_HOLD(*vpp);
2651 2649 mc_dvp = *vpp;
2652 2650 } else {
2653 2651 /*
2654 2652 * This should not happen, the filesystem is
2655 2653 * in an inconsistent state. Fail the lookup
2656 2654 * at this point.
2657 2655 */
2658 2656 VN_RELE(*vpp);
2659 2657 error = EINVAL;
2660 2658 }
2661 2659 }
2662 2660 }
2663 2661
2664 2662 if (error)
2665 2663 goto publicfh_done;
2666 2664
2667 2665 if (*vpp == NULL) {
2668 2666 error = ENOENT;
2669 2667 goto publicfh_done;
2670 2668 }
2671 2669
2672 2670 ASSERT(mc_dvp != NULL);
2673 2671 ASSERT(*vpp != NULL);
2674 2672
2675 2673 if ((*vpp)->v_type == VDIR) {
2676 2674 do {
2677 2675 /*
2678 2676 * *vpp may be an AutoFS node, so we perform
2679 2677 * a VOP_ACCESS() to trigger the mount of the intended
2680 2678 * filesystem, so we can perform the lookup in the
2681 2679 * intended filesystem.
2682 2680 */
2683 2681 (void) VOP_ACCESS(*vpp, 0, 0, cr, NULL);
2684 2682
2685 2683 /*
2686 2684 * If vnode is covered, get the
2687 2685 * the topmost vnode.
2688 2686 */
2689 2687 if (vn_mountedvfs(*vpp) != NULL) {
2690 2688 error = traverse(vpp);
2691 2689 if (error) {
2692 2690 VN_RELE(*vpp);
2693 2691 goto publicfh_done;
2694 2692 }
2695 2693 }
2696 2694
2697 2695 if (VOP_REALVP(*vpp, &realvp, NULL) == 0 &&
2698 2696 realvp != *vpp) {
2699 2697 /*
2700 2698 * If realvp is different from *vpp
2701 2699 * then release our reference on *vpp, so that
2702 2700 * the export access check be performed on the
2703 2701 * real filesystem instead.
2704 2702 */
2705 2703 VN_HOLD(realvp);
2706 2704 VN_RELE(*vpp);
2707 2705 *vpp = realvp;
2708 2706 } else {
2709 2707 break;
2710 2708 }
2711 2709 /* LINTED */
2712 2710 } while (TRUE);
2713 2711
2714 2712 /*
2715 2713 * Let nfs_vptexi() figure what the real parent is.
2716 2714 */
2717 2715 VN_RELE(mc_dvp);
2718 2716 mc_dvp = NULL;
2719 2717
2720 2718 } else {
2721 2719 /*
2722 2720 * If vnode is covered, get the
2723 2721 * the topmost vnode.
2724 2722 */
2725 2723 if (vn_mountedvfs(mc_dvp) != NULL) {
2726 2724 error = traverse(&mc_dvp);
2727 2725 if (error) {
2728 2726 VN_RELE(*vpp);
2729 2727 goto publicfh_done;
2730 2728 }
2731 2729 }
2732 2730
2733 2731 if (VOP_REALVP(mc_dvp, &realvp, NULL) == 0 &&
2734 2732 realvp != mc_dvp) {
2735 2733 /*
2736 2734 * *vpp is a file, obtain realvp of the parent
2737 2735 * directory vnode.
2738 2736 */
2739 2737 VN_HOLD(realvp);
2740 2738 VN_RELE(mc_dvp);
2741 2739 mc_dvp = realvp;
2742 2740 }
2743 2741 }
2744 2742
2745 2743 /*
2746 2744 * The pathname may take us from the public filesystem to another.
2747 2745 * If that's the case then just set the exportinfo to the new export
2748 2746 * and build filehandle for it. Thanks to per-access checking there's
2749 2747 * no security issues with doing this. If the client is not allowed
2750 2748 * access to this new export then it will get an access error when it
2751 2749 * tries to use the filehandle
2752 2750 */
2753 2751 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) {
2754 2752 VN_RELE(*vpp);
2755 2753 goto publicfh_done;
2756 2754 }
2757 2755
2758 2756 /*
2759 2757 * Not allowed access to pseudo exports.
2760 2758 */
2761 2759 if (PSEUDO(*exi)) {
2762 2760 error = ENOENT;
2763 2761 VN_RELE(*vpp);
2764 2762 goto publicfh_done;
2765 2763 }
2766 2764
2767 2765 /*
2768 2766 * Do a lookup for the index file. We know the index option doesn't
2769 2767 * allow paths through handling in the share command, so mc_dvp will
2770 2768 * be the parent for the index file vnode, if its present. Use
2771 2769 * temporary pointers to preserve and reuse the vnode pointers of the
2772 2770 * original directory in case there's no index file. Note that the
2773 2771 * index file is a native path, and should not be interpreted by
2774 2772 * the URL parser in rfs_pathname()
2775 2773 */
2776 2774 if (((*exi)->exi_export.ex_flags & EX_INDEX) &&
2777 2775 ((*vpp)->v_type == VDIR) && (pathflag == URLPATH)) {
2778 2776 vnode_t *tvp, *tmc_dvp; /* temporary vnode pointers */
2779 2777
2780 2778 tmc_dvp = mc_dvp;
2781 2779 mc_dvp = tvp = *vpp;
2782 2780
2783 2781 error = rfs_pathname((*exi)->exi_export.ex_index, NULL, vpp,
2784 2782 mc_dvp, cr, NATIVEPATH);
2785 2783
2786 2784 if (error == ENOENT) {
2787 2785 *vpp = tvp;
2788 2786 mc_dvp = tmc_dvp;
2789 2787 error = 0;
2790 2788 } else { /* ok or error other than ENOENT */
2791 2789 if (tmc_dvp)
2792 2790 VN_RELE(tmc_dvp);
↓ open down ↓ |
179 lines elided |
↑ open up ↑ |
2793 2791 if (error)
2794 2792 goto publicfh_done;
2795 2793
2796 2794 /*
2797 2795 * Found a valid vp for index "filename". Sanity check
2798 2796 * for odd case where a directory is provided as index
2799 2797 * option argument and leads us to another filesystem
2800 2798 */
2801 2799
2802 2800 /* Release the reference on the old exi value */
2803 - ASSERT(*exi != NULL);
2804 2801 exi_rele(*exi);
2802 + *exi = NULL;
2805 2803
2806 2804 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) {
2807 2805 VN_RELE(*vpp);
2808 2806 goto publicfh_done;
2809 2807 }
2810 2808 }
2811 2809 }
2812 2810
2813 2811 publicfh_done:
2814 2812 if (mc_dvp)
2815 2813 VN_RELE(mc_dvp);
2816 2814
2815 + if (error && *exi != NULL)
2816 + exi_rele(*exi);
2817 +
2817 2818 return (error);
2818 2819 }
2819 2820
2820 2821 /*
2821 2822 * Evaluate a multi-component path
2822 2823 */
2823 2824 int
2824 2825 rfs_pathname(
2825 2826 char *path, /* pathname to evaluate */
2826 2827 vnode_t **dirvpp, /* ret for ptr to parent dir vnode */
2827 2828 vnode_t **compvpp, /* ret for ptr to component vnode */
2828 2829 vnode_t *startdvp, /* starting vnode */
2829 2830 cred_t *cr, /* user's credential */
2830 2831 int pathflag) /* flag to identify path, e.g. URL */
2831 2832 {
2832 2833 char namebuf[TYPICALMAXPATHLEN];
2833 2834 struct pathname pn;
2834 2835 int error;
2835 2836
2836 2837 /*
2837 2838 * If pathname starts with '/', then set startdvp to root.
2838 2839 */
2839 2840 if (*path == '/') {
2840 2841 while (*path == '/')
2841 2842 path++;
2842 2843
2843 2844 startdvp = rootdir;
2844 2845 }
2845 2846
2846 2847 error = pn_get_buf(path, UIO_SYSSPACE, &pn, namebuf, sizeof (namebuf));
2847 2848 if (error == 0) {
2848 2849 /*
2849 2850 * Call the URL parser for URL paths to modify the original
2850 2851 * string to handle any '%' encoded characters that exist.
2851 2852 * Done here to avoid an extra bcopy in the lookup.
2852 2853 * We need to be careful about pathlen's. We know that
2853 2854 * rfs_pathname() is called with a non-empty path. However,
2854 2855 * it could be emptied due to the path simply being all /'s,
2855 2856 * which is valid to proceed with the lookup, or due to the
2856 2857 * URL parser finding an encoded null character at the
2857 2858 * beginning of path which should not proceed with the lookup.
2858 2859 */
2859 2860 if (pn.pn_pathlen != 0 && pathflag == URLPATH) {
2860 2861 URLparse(pn.pn_path);
2861 2862 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0)
2862 2863 return (ENOENT);
2863 2864 }
2864 2865 VN_HOLD(startdvp);
2865 2866 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp,
2866 2867 rootdir, startdvp, cr);
2867 2868 }
2868 2869 if (error == ENAMETOOLONG) {
2869 2870 /*
2870 2871 * This thread used a pathname > TYPICALMAXPATHLEN bytes long.
2871 2872 */
2872 2873 if (error = pn_get(path, UIO_SYSSPACE, &pn))
2873 2874 return (error);
2874 2875 if (pn.pn_pathlen != 0 && pathflag == URLPATH) {
2875 2876 URLparse(pn.pn_path);
2876 2877 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) {
2877 2878 pn_free(&pn);
2878 2879 return (ENOENT);
2879 2880 }
2880 2881 }
2881 2882 VN_HOLD(startdvp);
2882 2883 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp,
2883 2884 rootdir, startdvp, cr);
2884 2885 pn_free(&pn);
2885 2886 }
2886 2887
2887 2888 return (error);
2888 2889 }
2889 2890
2890 2891 /*
2891 2892 * Adapt the multicomponent lookup path depending on the pathtype
2892 2893 */
2893 2894 static int
2894 2895 MCLpath(char **path)
2895 2896 {
2896 2897 unsigned char c = (unsigned char)**path;
2897 2898
2898 2899 /*
2899 2900 * If the MCL path is between 0x20 and 0x7E (graphic printable
2900 2901 * character of the US-ASCII coded character set), its a URL path,
2901 2902 * per RFC 1738.
2902 2903 */
2903 2904 if (c >= 0x20 && c <= 0x7E)
2904 2905 return (URLPATH);
2905 2906
2906 2907 /*
2907 2908 * If the first octet of the MCL path is not an ASCII character
2908 2909 * then it must be interpreted as a tag value that describes the
2909 2910 * format of the remaining octets of the MCL path.
2910 2911 *
2911 2912 * If the first octet of the MCL path is 0x81 it is a query
2912 2913 * for the security info.
2913 2914 */
2914 2915 switch (c) {
2915 2916 case 0x80: /* native path, i.e. MCL via mount protocol */
2916 2917 (*path)++;
2917 2918 return (NATIVEPATH);
2918 2919 case 0x81: /* security query */
2919 2920 (*path)++;
2920 2921 return (SECURITY_QUERY);
2921 2922 default:
2922 2923 return (-1);
2923 2924 }
2924 2925 }
2925 2926
2926 2927 #define fromhex(c) ((c >= '0' && c <= '9') ? (c - '0') : \
2927 2928 ((c >= 'A' && c <= 'F') ? (c - 'A' + 10) :\
2928 2929 ((c >= 'a' && c <= 'f') ? (c - 'a' + 10) : 0)))
2929 2930
2930 2931 /*
2931 2932 * The implementation of URLparse guarantees that the final string will
2932 2933 * fit in the original one. Replaces '%' occurrences followed by 2 characters
2933 2934 * with its corresponding hexadecimal character.
2934 2935 */
2935 2936 static void
2936 2937 URLparse(char *str)
2937 2938 {
2938 2939 char *p, *q;
2939 2940
2940 2941 p = q = str;
2941 2942 while (*p) {
2942 2943 *q = *p;
2943 2944 if (*p++ == '%') {
2944 2945 if (*p) {
2945 2946 *q = fromhex(*p) * 16;
2946 2947 p++;
2947 2948 if (*p) {
2948 2949 *q += fromhex(*p);
2949 2950 p++;
2950 2951 }
2951 2952 }
↓ open down ↓ |
125 lines elided |
↑ open up ↑ |
2952 2953 }
2953 2954 q++;
2954 2955 }
2955 2956 *q = '\0';
2956 2957 }
2957 2958
2958 2959
2959 2960 /*
2960 2961 * Get the export information for the lookup vnode, and verify its
2961 2962 * useable.
2963 + *
2964 + * Set @exip only in success
2962 2965 */
2963 2966 int
2964 2967 nfs_check_vpexi(vnode_t *mc_dvp, vnode_t *vp, cred_t *cr,
2965 - struct exportinfo **exi)
2968 + struct exportinfo **exip)
2966 2969 {
2967 2970 int walk;
2968 2971 int error = 0;
2972 + struct exportinfo *exi;
2969 2973
2970 - *exi = nfs_vptoexi(mc_dvp, vp, cr, &walk, NULL, FALSE);
2971 - if (*exi == NULL)
2974 + exi = nfs_vptoexi(mc_dvp, vp, cr, &walk, NULL, FALSE);
2975 + if (exi == NULL)
2972 2976 error = EACCES;
2973 2977 else {
2974 2978 /*
2975 2979 * If nosub is set for this export then
2976 2980 * a lookup relative to the public fh
2977 2981 * must not terminate below the
2978 2982 * exported directory.
2979 2983 */
2980 - if ((*exi)->exi_export.ex_flags & EX_NOSUB && walk > 0)
2984 + if (exi->exi_export.ex_flags & EX_NOSUB && walk > 0) {
2981 2985 error = EACCES;
2986 + exi_rele(exi);
2987 + }
2982 2988 }
2983 -
2989 + if (error == 0)
2990 + *exip = exi;
2984 2991 return (error);
2985 2992 }
2986 2993
2987 2994 /*
2988 2995 * Do the main work of handling HA-NFSv4 Resource Group failover on
2989 2996 * Sun Cluster.
2990 2997 * We need to detect whether any RG admin paths have been added or removed,
2991 2998 * and adjust resources accordingly.
2992 2999 * Currently we're using a very inefficient algorithm, ~ 2 * O(n**2). In
2993 3000 * order to scale, the list and array of paths need to be held in more
2994 3001 * suitable data structures.
2995 3002 */
2996 3003 static void
2997 3004 hanfsv4_failover(void)
2998 3005 {
2999 3006 int i, start_grace, numadded_paths = 0;
3000 3007 char **added_paths = NULL;
3001 3008 rfs4_dss_path_t *dss_path;
3002 3009
3003 3010 /*
3004 3011 * Note: currently, rfs4_dss_pathlist cannot be NULL, since
3005 3012 * it will always include an entry for NFS4_DSS_VAR_DIR. If we
3006 3013 * make the latter dynamically specified too, the following will
3007 3014 * need to be adjusted.
3008 3015 */
3009 3016
3010 3017 /*
3011 3018 * First, look for removed paths: RGs that have been failed-over
3012 3019 * away from this node.
3013 3020 * Walk the "currently-serving" rfs4_dss_pathlist and, for each
3014 3021 * path, check if it is on the "passed-in" rfs4_dss_newpaths array
3015 3022 * from nfsd. If not, that RG path has been removed.
3016 3023 *
3017 3024 * Note that nfsd has sorted rfs4_dss_newpaths for us, and removed
3018 3025 * any duplicates.
3019 3026 */
3020 3027 dss_path = rfs4_dss_pathlist;
3021 3028 do {
3022 3029 int found = 0;
3023 3030 char *path = dss_path->path;
3024 3031
3025 3032 /* used only for non-HA so may not be removed */
3026 3033 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) {
3027 3034 dss_path = dss_path->next;
3028 3035 continue;
3029 3036 }
3030 3037
3031 3038 for (i = 0; i < rfs4_dss_numnewpaths; i++) {
3032 3039 int cmpret;
3033 3040 char *newpath = rfs4_dss_newpaths[i];
3034 3041
3035 3042 /*
3036 3043 * Since nfsd has sorted rfs4_dss_newpaths for us,
3037 3044 * once the return from strcmp is negative we know
3038 3045 * we've passed the point where "path" should be,
3039 3046 * and can stop searching: "path" has been removed.
3040 3047 */
3041 3048 cmpret = strcmp(path, newpath);
3042 3049 if (cmpret < 0)
3043 3050 break;
3044 3051 if (cmpret == 0) {
3045 3052 found = 1;
3046 3053 break;
3047 3054 }
3048 3055 }
3049 3056
3050 3057 if (found == 0) {
3051 3058 unsigned index = dss_path->index;
3052 3059 rfs4_servinst_t *sip = dss_path->sip;
3053 3060 rfs4_dss_path_t *path_next = dss_path->next;
3054 3061
3055 3062 /*
3056 3063 * This path has been removed.
3057 3064 * We must clear out the servinst reference to
3058 3065 * it, since it's now owned by another
3059 3066 * node: we should not attempt to touch it.
3060 3067 */
3061 3068 ASSERT(dss_path == sip->dss_paths[index]);
3062 3069 sip->dss_paths[index] = NULL;
3063 3070
3064 3071 /* remove from "currently-serving" list, and destroy */
3065 3072 remque(dss_path);
3066 3073 /* allow for NUL */
3067 3074 kmem_free(dss_path->path, strlen(dss_path->path) + 1);
3068 3075 kmem_free(dss_path, sizeof (rfs4_dss_path_t));
3069 3076
3070 3077 dss_path = path_next;
3071 3078 } else {
3072 3079 /* path was found; not removed */
3073 3080 dss_path = dss_path->next;
3074 3081 }
3075 3082 } while (dss_path != rfs4_dss_pathlist);
3076 3083
3077 3084 /*
3078 3085 * Now, look for added paths: RGs that have been failed-over
3079 3086 * to this node.
3080 3087 * Walk the "passed-in" rfs4_dss_newpaths array from nfsd and,
3081 3088 * for each path, check if it is on the "currently-serving"
3082 3089 * rfs4_dss_pathlist. If not, that RG path has been added.
3083 3090 *
3084 3091 * Note: we don't do duplicate detection here; nfsd does that for us.
3085 3092 *
3086 3093 * Note: numadded_paths <= rfs4_dss_numnewpaths, which gives us
3087 3094 * an upper bound for the size needed for added_paths[numadded_paths].
3088 3095 */
3089 3096
3090 3097 /* probably more space than we need, but guaranteed to be enough */
3091 3098 if (rfs4_dss_numnewpaths > 0) {
3092 3099 size_t sz = rfs4_dss_numnewpaths * sizeof (char *);
3093 3100 added_paths = kmem_zalloc(sz, KM_SLEEP);
3094 3101 }
3095 3102
3096 3103 /* walk the "passed-in" rfs4_dss_newpaths array from nfsd */
3097 3104 for (i = 0; i < rfs4_dss_numnewpaths; i++) {
3098 3105 int found = 0;
3099 3106 char *newpath = rfs4_dss_newpaths[i];
3100 3107
3101 3108 dss_path = rfs4_dss_pathlist;
3102 3109 do {
3103 3110 char *path = dss_path->path;
3104 3111
3105 3112 /* used only for non-HA */
3106 3113 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) {
3107 3114 dss_path = dss_path->next;
3108 3115 continue;
3109 3116 }
3110 3117
3111 3118 if (strncmp(path, newpath, strlen(path)) == 0) {
3112 3119 found = 1;
3113 3120 break;
3114 3121 }
3115 3122
3116 3123 dss_path = dss_path->next;
3117 3124 } while (dss_path != rfs4_dss_pathlist);
3118 3125
3119 3126 if (found == 0) {
3120 3127 added_paths[numadded_paths] = newpath;
3121 3128 numadded_paths++;
3122 3129 }
3123 3130 }
3124 3131
3125 3132 /* did we find any added paths? */
3126 3133 if (numadded_paths > 0) {
3127 3134 /* create a new server instance, and start its grace period */
3128 3135 start_grace = 1;
3129 3136 rfs4_servinst_create(start_grace, numadded_paths, added_paths);
3130 3137
3131 3138 /* read in the stable storage state from these paths */
3132 3139 rfs4_dss_readstate(numadded_paths, added_paths);
3133 3140
3134 3141 /*
3135 3142 * Multiple failovers during a grace period will cause
3136 3143 * clients of the same resource group to be partitioned
3137 3144 * into different server instances, with different
3138 3145 * grace periods. Since clients of the same resource
3139 3146 * group must be subject to the same grace period,
3140 3147 * we need to reset all currently active grace periods.
3141 3148 */
3142 3149 rfs4_grace_reset_all();
3143 3150 }
3144 3151
3145 3152 if (rfs4_dss_numnewpaths > 0)
3146 3153 kmem_free(added_paths, rfs4_dss_numnewpaths * sizeof (char *));
3147 3154 }
3148 3155
3149 3156 /*
3150 3157 * Used by NFSv3 and NFSv4 server to query label of
3151 3158 * a pathname component during lookup/access ops.
3152 3159 */
3153 3160 ts_label_t *
3154 3161 nfs_getflabel(vnode_t *vp, struct exportinfo *exi)
3155 3162 {
3156 3163 zone_t *zone;
3157 3164 ts_label_t *zone_label;
3158 3165 char *path;
3159 3166
3160 3167 mutex_enter(&vp->v_lock);
3161 3168 if (vp->v_path != NULL) {
3162 3169 zone = zone_find_by_any_path(vp->v_path, B_FALSE);
3163 3170 mutex_exit(&vp->v_lock);
3164 3171 } else {
3165 3172 /*
3166 3173 * v_path not cached. Fall back on pathname of exported
3167 3174 * file system as we rely on pathname from which we can
3168 3175 * derive a label. The exported file system portion of
3169 3176 * path is sufficient to obtain a label.
3170 3177 */
3171 3178 path = exi->exi_export.ex_path;
3172 3179 if (path == NULL) {
3173 3180 mutex_exit(&vp->v_lock);
3174 3181 return (NULL);
3175 3182 }
3176 3183 zone = zone_find_by_any_path(path, B_FALSE);
3177 3184 mutex_exit(&vp->v_lock);
3178 3185 }
3179 3186 /*
3180 3187 * Caller has verified that the file is either
3181 3188 * exported or visible. So if the path falls in
3182 3189 * global zone, admin_low is returned; otherwise
3183 3190 * the zone's label is returned.
3184 3191 */
3185 3192 zone_label = zone->zone_slabel;
3186 3193 label_hold(zone_label);
3187 3194 zone_rele(zone);
3188 3195 return (zone_label);
3189 3196 }
3190 3197
3191 3198 /*
3192 3199 * TX NFS routine used by NFSv3 and NFSv4 to do label check
3193 3200 * on client label and server's file object lable.
3194 3201 */
3195 3202 boolean_t
3196 3203 do_rfs_label_check(bslabel_t *clabel, vnode_t *vp, int flag,
3197 3204 struct exportinfo *exi)
3198 3205 {
3199 3206 bslabel_t *slabel;
3200 3207 ts_label_t *tslabel;
3201 3208 boolean_t result;
3202 3209
3203 3210 if ((tslabel = nfs_getflabel(vp, exi)) == NULL) {
3204 3211 return (B_FALSE);
3205 3212 }
3206 3213 slabel = label2bslabel(tslabel);
3207 3214 DTRACE_PROBE4(tx__rfs__log__info__labelcheck, char *,
3208 3215 "comparing server's file label(1) with client label(2) (vp(3))",
3209 3216 bslabel_t *, slabel, bslabel_t *, clabel, vnode_t *, vp);
3210 3217
3211 3218 if (flag == EQUALITY_CHECK)
3212 3219 result = blequal(clabel, slabel);
3213 3220 else
3214 3221 result = bldominates(clabel, slabel);
3215 3222 label_rele(tslabel);
3216 3223 return (result);
3217 3224 }
3218 3225
3219 3226 /*
3220 3227 * Callback function to return the loaned buffers.
3221 3228 * Calls VOP_RETZCBUF() only after all uio_iov[]
3222 3229 * buffers are returned. nu_ref maintains the count.
3223 3230 */
3224 3231 void
3225 3232 rfs_free_xuio(void *free_arg)
3226 3233 {
3227 3234 uint_t ref;
3228 3235 nfs_xuio_t *nfsuiop = (nfs_xuio_t *)free_arg;
3229 3236
3230 3237 ref = atomic_dec_uint_nv(&nfsuiop->nu_ref);
3231 3238
3232 3239 /*
3233 3240 * Call VOP_RETZCBUF() only when all the iov buffers
3234 3241 * are sent OTW.
3235 3242 */
3236 3243 if (ref != 0)
3237 3244 return;
3238 3245
3239 3246 if (((uio_t *)nfsuiop)->uio_extflg & UIO_XUIO) {
3240 3247 (void) VOP_RETZCBUF(nfsuiop->nu_vp, (xuio_t *)free_arg, NULL,
3241 3248 NULL);
3242 3249 VN_RELE(nfsuiop->nu_vp);
3243 3250 }
3244 3251
3245 3252 kmem_cache_free(nfs_xuio_cache, free_arg);
3246 3253 }
3247 3254
3248 3255 xuio_t *
3249 3256 rfs_setup_xuio(vnode_t *vp)
3250 3257 {
3251 3258 nfs_xuio_t *nfsuiop;
3252 3259
3253 3260 nfsuiop = kmem_cache_alloc(nfs_xuio_cache, KM_SLEEP);
3254 3261
3255 3262 bzero(nfsuiop, sizeof (nfs_xuio_t));
3256 3263 nfsuiop->nu_vp = vp;
3257 3264
3258 3265 /*
3259 3266 * ref count set to 1. more may be added
3260 3267 * if multiple mblks refer to multiple iov's.
3261 3268 * This is done in uio_to_mblk().
3262 3269 */
3263 3270
3264 3271 nfsuiop->nu_ref = 1;
3265 3272
3266 3273 nfsuiop->nu_frtn.free_func = rfs_free_xuio;
3267 3274 nfsuiop->nu_frtn.free_arg = (char *)nfsuiop;
3268 3275
3269 3276 nfsuiop->nu_uio.xu_type = UIOTYPE_ZEROCOPY;
3270 3277
3271 3278 return (&nfsuiop->nu_uio);
3272 3279 }
3273 3280
3274 3281 mblk_t *
3275 3282 uio_to_mblk(uio_t *uiop)
3276 3283 {
3277 3284 struct iovec *iovp;
3278 3285 int i;
3279 3286 mblk_t *mp, *mp1;
3280 3287 nfs_xuio_t *nfsuiop = (nfs_xuio_t *)uiop;
3281 3288
3282 3289 if (uiop->uio_iovcnt == 0)
3283 3290 return (NULL);
3284 3291
3285 3292 iovp = uiop->uio_iov;
3286 3293 mp = mp1 = esballoca((uchar_t *)iovp->iov_base, iovp->iov_len,
3287 3294 BPRI_MED, &nfsuiop->nu_frtn);
3288 3295 ASSERT(mp != NULL);
3289 3296
3290 3297 mp->b_wptr += iovp->iov_len;
3291 3298 mp->b_datap->db_type = M_DATA;
3292 3299
3293 3300 for (i = 1; i < uiop->uio_iovcnt; i++) {
3294 3301 iovp = (uiop->uio_iov + i);
3295 3302
3296 3303 mp1->b_cont = esballoca(
3297 3304 (uchar_t *)iovp->iov_base, iovp->iov_len, BPRI_MED,
3298 3305 &nfsuiop->nu_frtn);
3299 3306
3300 3307 mp1 = mp1->b_cont;
3301 3308 ASSERT(mp1 != NULL);
3302 3309 mp1->b_wptr += iovp->iov_len;
3303 3310 mp1->b_datap->db_type = M_DATA;
3304 3311 }
3305 3312
3306 3313 nfsuiop->nu_ref = uiop->uio_iovcnt;
3307 3314
3308 3315 return (mp);
3309 3316 }
3310 3317
3311 3318 void
3312 3319 rfs_rndup_mblks(mblk_t *mp, uint_t len, int buf_loaned)
3313 3320 {
3314 3321 int i, rndup;
3315 3322 int alloc_err = 0;
3316 3323 mblk_t *rmp;
3317 3324
3318 3325 rndup = BYTES_PER_XDR_UNIT - (len % BYTES_PER_XDR_UNIT);
3319 3326
3320 3327 /* single mblk_t non copy-reduction case */
3321 3328 if (!buf_loaned) {
3322 3329 mp->b_wptr += len;
3323 3330 if (rndup != BYTES_PER_XDR_UNIT) {
3324 3331 for (i = 0; i < rndup; i++)
3325 3332 *mp->b_wptr++ = '\0';
3326 3333 }
3327 3334 return;
3328 3335 }
3329 3336
3330 3337 /* no need for extra rndup */
3331 3338 if (rndup == BYTES_PER_XDR_UNIT)
3332 3339 return;
3333 3340
3334 3341 while (mp->b_cont)
3335 3342 mp = mp->b_cont;
3336 3343
3337 3344 /*
3338 3345 * In case of copy-reduction mblks, the size of the mblks
3339 3346 * are fixed and are of the size of the loaned buffers.
3340 3347 * Allocate a roundup mblk and chain it to the data
3341 3348 * buffers. This is sub-optimal, but not expected to
3342 3349 * happen in regular common workloads.
3343 3350 */
3344 3351
3345 3352 rmp = allocb_wait(rndup, BPRI_MED, STR_NOSIG, &alloc_err);
3346 3353 ASSERT(rmp != NULL);
3347 3354 ASSERT(alloc_err == 0);
3348 3355
3349 3356 for (i = 0; i < rndup; i++)
3350 3357 *rmp->b_wptr++ = '\0';
3351 3358
3352 3359 rmp->b_datap->db_type = M_DATA;
3353 3360 mp->b_cont = rmp;
3354 3361 }
↓ open down ↓ |
361 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX