1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Bayard G. Bell. All rights reserved.
24 */
25
26 /*
27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
28 * All rights reserved.
29 * Use is subject to license terms.
30 */
31
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/systm.h>
35 #include <sys/cred.h>
36 #include <sys/proc.h>
37 #include <sys/user.h>
38 #include <sys/buf.h>
39 #include <sys/vfs.h>
40 #include <sys/vnode.h>
41 #include <sys/pathname.h>
42 #include <sys/uio.h>
43 #include <sys/file.h>
44 #include <sys/stat.h>
45 #include <sys/errno.h>
46 #include <sys/socket.h>
47 #include <sys/sysmacros.h>
48 #include <sys/siginfo.h>
49 #include <sys/tiuser.h>
50 #include <sys/statvfs.h>
51 #include <sys/stream.h>
52 #include <sys/strsubr.h>
53 #include <sys/stropts.h>
54 #include <sys/timod.h>
55 #include <sys/t_kuser.h>
56 #include <sys/kmem.h>
57 #include <sys/kstat.h>
58 #include <sys/dirent.h>
59 #include <sys/cmn_err.h>
60 #include <sys/debug.h>
61 #include <sys/unistd.h>
62 #include <sys/vtrace.h>
63 #include <sys/mode.h>
64 #include <sys/acl.h>
65 #include <sys/sdt.h>
66
67 #include <rpc/types.h>
68 #include <rpc/auth.h>
69 #include <rpc/auth_unix.h>
70 #include <rpc/auth_des.h>
71 #include <rpc/svc.h>
72 #include <rpc/xdr.h>
73 #include <rpc/rpc_rdma.h>
74
75 #include <nfs/nfs.h>
76 #include <nfs/export.h>
77 #include <nfs/nfssys.h>
78 #include <nfs/nfs_clnt.h>
79 #include <nfs/nfs_acl.h>
80 #include <nfs/nfs_log.h>
81 #include <nfs/nfs_cmd.h>
82 #include <nfs/lm.h>
83 #include <nfs/nfs_dispatch.h>
84 #include <nfs/nfs4_drc.h>
85
86 #include <sys/modctl.h>
87 #include <sys/cladm.h>
88 #include <sys/clconf.h>
89
90 #include <sys/tsol/label.h>
91
92 #define MAXHOST 32
93 const char *kinet_ntop6(uchar_t *, char *, size_t);
94
95 /*
96 * Module linkage information.
97 */
98
99 static struct modlmisc modlmisc = {
100 &mod_miscops, "NFS server module"
101 };
102
103 static struct modlinkage modlinkage = {
104 MODREV_1, (void *)&modlmisc, NULL
105 };
106
107 kmem_cache_t *nfs_xuio_cache;
108 int nfs_loaned_buffers = 0;
109
110 int
111 _init(void)
112 {
113 int status;
114
115 if ((status = nfs_srvinit()) != 0) {
116 cmn_err(CE_WARN, "_init: nfs_srvinit failed");
117 return (status);
118 }
119
120 status = mod_install((struct modlinkage *)&modlinkage);
121 if (status != 0) {
122 /*
123 * Could not load module, cleanup previous
124 * initialization work.
125 */
126 nfs_srvfini();
127 }
128
129 /*
130 * Initialise some placeholders for nfssys() calls. These have
131 * to be declared by the nfs module, since that handles nfssys()
132 * calls - also used by NFS clients - but are provided by this
133 * nfssrv module. These also then serve as confirmation to the
134 * relevant code in nfs that nfssrv has been loaded, as they're
135 * initially NULL.
136 */
137 nfs_srv_quiesce_func = nfs_srv_quiesce_all;
138 nfs_srv_dss_func = rfs4_dss_setpaths;
139
140 /* setup DSS paths here; must be done before initial server startup */
141 rfs4_dss_paths = rfs4_dss_oldpaths = NULL;
142
143 /* initialize the copy reduction caches */
144
145 nfs_xuio_cache = kmem_cache_create("nfs_xuio_cache",
146 sizeof (nfs_xuio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
147
148 return (status);
149 }
150
151 int
152 _fini()
153 {
154 return (EBUSY);
155 }
156
157 int
158 _info(struct modinfo *modinfop)
159 {
160 return (mod_info(&modlinkage, modinfop));
161 }
162
163 /*
164 * PUBLICFH_CHECK() checks if the dispatch routine supports
165 * RPC_PUBLICFH_OK, if the filesystem is exported public, and if the
166 * incoming request is using the public filehandle. The check duplicates
167 * the exportmatch() call done in checkexport(), and we should consider
168 * modifying those routines to avoid the duplication. For now, we optimize
169 * by calling exportmatch() only after checking that the dispatch routine
170 * supports RPC_PUBLICFH_OK, and if the filesystem is explicitly exported
171 * public (i.e., not the placeholder).
172 */
173 #define PUBLICFH_CHECK(disp, exi, fsid, xfid) \
174 ((disp->dis_flags & RPC_PUBLICFH_OK) && \
175 ((exi->exi_export.ex_flags & EX_PUBLIC) || \
176 (exi == exi_public && exportmatch(exi_root, \
177 fsid, xfid))))
178
179 static void nfs_srv_shutdown_all(int);
180 static void rfs4_server_start(int);
181 static void nullfree(void);
182 static void rfs_dispatch(struct svc_req *, SVCXPRT *);
183 static void acl_dispatch(struct svc_req *, SVCXPRT *);
184 static void common_dispatch(struct svc_req *, SVCXPRT *,
185 rpcvers_t, rpcvers_t, char *,
186 struct rpc_disptable *);
187 static void hanfsv4_failover(void);
188 static int checkauth(struct exportinfo *, struct svc_req *, cred_t *, int,
189 bool_t);
190 static char *client_name(struct svc_req *req);
191 static char *client_addr(struct svc_req *req, char *buf);
192 extern int sec_svc_getcred(struct svc_req *, cred_t *cr, char **, int *);
193 extern bool_t sec_svc_inrootlist(int, caddr_t, int, caddr_t *);
194
195 #define NFSLOG_COPY_NETBUF(exi, xprt, nb) { \
196 (nb)->maxlen = (xprt)->xp_rtaddr.maxlen; \
197 (nb)->len = (xprt)->xp_rtaddr.len; \
198 (nb)->buf = kmem_alloc((nb)->len, KM_SLEEP); \
199 bcopy((xprt)->xp_rtaddr.buf, (nb)->buf, (nb)->len); \
200 }
201
202 /*
203 * Public Filehandle common nfs routines
204 */
205 static int MCLpath(char **);
206 static void URLparse(char *);
207
208 /*
209 * NFS callout table.
210 * This table is used by svc_getreq() to dispatch a request with
211 * a given prog/vers pair to an appropriate service provider
212 * dispatch routine.
213 *
214 * NOTE: ordering is relied upon below when resetting the version min/max
215 * for NFS_PROGRAM. Careful, if this is ever changed.
216 */
217 static SVC_CALLOUT __nfs_sc_clts[] = {
218 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch },
219 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch }
220 };
221
222 static SVC_CALLOUT_TABLE nfs_sct_clts = {
223 sizeof (__nfs_sc_clts) / sizeof (__nfs_sc_clts[0]), FALSE,
224 __nfs_sc_clts
225 };
226
227 static SVC_CALLOUT __nfs_sc_cots[] = {
228 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch },
229 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch }
230 };
231
232 static SVC_CALLOUT_TABLE nfs_sct_cots = {
233 sizeof (__nfs_sc_cots) / sizeof (__nfs_sc_cots[0]), FALSE, __nfs_sc_cots
234 };
235
236 static SVC_CALLOUT __nfs_sc_rdma[] = {
237 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch },
238 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch }
239 };
240
241 static SVC_CALLOUT_TABLE nfs_sct_rdma = {
242 sizeof (__nfs_sc_rdma) / sizeof (__nfs_sc_rdma[0]), FALSE, __nfs_sc_rdma
243 };
244 rpcvers_t nfs_versmin = NFS_VERSMIN_DEFAULT;
245 rpcvers_t nfs_versmax = NFS_VERSMAX_DEFAULT;
246
247 /*
248 * Used to track the state of the server so that initialization
249 * can be done properly.
250 */
251 typedef enum {
252 NFS_SERVER_STOPPED, /* server state destroyed */
253 NFS_SERVER_STOPPING, /* server state being destroyed */
254 NFS_SERVER_RUNNING,
255 NFS_SERVER_QUIESCED, /* server state preserved */
256 NFS_SERVER_OFFLINE /* server pool offline */
257 } nfs_server_running_t;
258
259 static nfs_server_running_t nfs_server_upordown;
260 static kmutex_t nfs_server_upordown_lock;
261 static kcondvar_t nfs_server_upordown_cv;
262
263 /*
264 * DSS: distributed stable storage
265 * lists of all DSS paths: current, and before last warmstart
266 */
267 nvlist_t *rfs4_dss_paths, *rfs4_dss_oldpaths;
268
269 int rfs4_dispatch(struct rpcdisp *, struct svc_req *, SVCXPRT *, char *);
270 bool_t rfs4_minorvers_mismatch(struct svc_req *, SVCXPRT *, void *);
271
272 /*
273 * RDMA wait variables.
274 */
275 static kcondvar_t rdma_wait_cv;
276 static kmutex_t rdma_wait_mutex;
277
278 /*
279 * Will be called at the point the server pool is being unregistered
280 * from the pool list. From that point onwards, the pool is waiting
281 * to be drained and as such the server state is stale and pertains
282 * to the old instantiation of the NFS server pool.
283 */
284 void
285 nfs_srv_offline(void)
286 {
287 mutex_enter(&nfs_server_upordown_lock);
288 if (nfs_server_upordown == NFS_SERVER_RUNNING) {
289 nfs_server_upordown = NFS_SERVER_OFFLINE;
290 }
291 mutex_exit(&nfs_server_upordown_lock);
292 }
293
294 /*
295 * Will be called at the point the server pool is being destroyed so
296 * all transports have been closed and no service threads are in
297 * existence.
298 *
299 * If we quiesce the server, we're shutting it down without destroying the
300 * server state. This allows it to warm start subsequently.
301 */
302 void
303 nfs_srv_stop_all(void)
304 {
305 int quiesce = 0;
306 nfs_srv_shutdown_all(quiesce);
307 }
308
309 /*
310 * This alternative shutdown routine can be requested via nfssys()
311 */
312 void
313 nfs_srv_quiesce_all(void)
314 {
315 int quiesce = 1;
316 nfs_srv_shutdown_all(quiesce);
317 }
318
319 static void
320 nfs_srv_shutdown_all(int quiesce) {
321 mutex_enter(&nfs_server_upordown_lock);
322 if (quiesce) {
323 if (nfs_server_upordown == NFS_SERVER_RUNNING ||
324 nfs_server_upordown == NFS_SERVER_OFFLINE) {
325 nfs_server_upordown = NFS_SERVER_QUIESCED;
326 cv_signal(&nfs_server_upordown_cv);
327
328 /* reset DSS state, for subsequent warm restart */
329 rfs4_dss_numnewpaths = 0;
330 rfs4_dss_newpaths = NULL;
331
332 cmn_err(CE_NOTE, "nfs_server: server is now quiesced; "
333 "NFSv4 state has been preserved");
334 }
335 } else {
336 if (nfs_server_upordown == NFS_SERVER_OFFLINE) {
337 nfs_server_upordown = NFS_SERVER_STOPPING;
338 mutex_exit(&nfs_server_upordown_lock);
339 rfs4_state_fini();
340 rfs4_fini_drc(nfs4_drc);
341 mutex_enter(&nfs_server_upordown_lock);
342 nfs_server_upordown = NFS_SERVER_STOPPED;
343 cv_signal(&nfs_server_upordown_cv);
344 }
345 }
346 mutex_exit(&nfs_server_upordown_lock);
347 }
348
349 static int
350 nfs_srv_set_sc_versions(struct file *fp, SVC_CALLOUT_TABLE **sctpp,
351 rpcvers_t versmin, rpcvers_t versmax)
352 {
353 struct strioctl strioc;
354 struct T_info_ack tinfo;
355 int error, retval;
356
357 /*
358 * Find out what type of transport this is.
359 */
360 strioc.ic_cmd = TI_GETINFO;
361 strioc.ic_timout = -1;
362 strioc.ic_len = sizeof (tinfo);
363 strioc.ic_dp = (char *)&tinfo;
364 tinfo.PRIM_type = T_INFO_REQ;
365
366 error = strioctl(fp->f_vnode, I_STR, (intptr_t)&strioc, 0, K_TO_K,
367 CRED(), &retval);
368 if (error || retval)
369 return (error);
370
371 /*
372 * Based on our query of the transport type...
373 *
374 * Reset the min/max versions based on the caller's request
375 * NOTE: This assumes that NFS_PROGRAM is first in the array!!
376 * And the second entry is the NFS_ACL_PROGRAM.
377 */
378 switch (tinfo.SERV_type) {
379 case T_CLTS:
380 if (versmax == NFS_V4)
381 return (EINVAL);
382 __nfs_sc_clts[0].sc_versmin = versmin;
383 __nfs_sc_clts[0].sc_versmax = versmax;
384 __nfs_sc_clts[1].sc_versmin = versmin;
385 __nfs_sc_clts[1].sc_versmax = versmax;
386 *sctpp = &nfs_sct_clts;
387 break;
388 case T_COTS:
389 case T_COTS_ORD:
390 __nfs_sc_cots[0].sc_versmin = versmin;
391 __nfs_sc_cots[0].sc_versmax = versmax;
392 /* For the NFS_ACL program, check the max version */
393 if (versmax > NFS_ACL_VERSMAX)
394 versmax = NFS_ACL_VERSMAX;
395 __nfs_sc_cots[1].sc_versmin = versmin;
396 __nfs_sc_cots[1].sc_versmax = versmax;
397 *sctpp = &nfs_sct_cots;
398 break;
399 default:
400 error = EINVAL;
401 }
402
403 return (error);
404 }
405
406 /*
407 * NFS Server system call.
408 * Does all of the work of running a NFS server.
409 * uap->fd is the fd of an open transport provider
410 */
411 int
412 nfs_svc(struct nfs_svc_args *arg, model_t model)
413 {
414 file_t *fp;
415 SVCMASTERXPRT *xprt;
416 int error;
417 int readsize;
418 char buf[KNC_STRSIZE];
419 size_t len;
420 STRUCT_HANDLE(nfs_svc_args, uap);
421 struct netbuf addrmask;
422 SVC_CALLOUT_TABLE *sctp = NULL;
423
424 #ifdef lint
425 model = model; /* STRUCT macros don't always refer to it */
426 #endif
427
428 STRUCT_SET_HANDLE(uap, model, arg);
429
430 /* Check privileges in nfssys() */
431
432 if ((fp = getf(STRUCT_FGET(uap, fd))) == NULL)
433 return (EBADF);
434
435 /*
436 * Set read buffer size to rsize
437 * and add room for RPC headers.
438 */
439 readsize = nfs3tsize() + (RPC_MAXDATASIZE - NFS_MAXDATA);
440 if (readsize < RPC_MAXDATASIZE)
441 readsize = RPC_MAXDATASIZE;
442
443 error = copyinstr((const char *)STRUCT_FGETP(uap, netid), buf,
444 KNC_STRSIZE, &len);
445 if (error) {
446 releasef(STRUCT_FGET(uap, fd));
447 return (error);
448 }
449
450 addrmask.len = STRUCT_FGET(uap, addrmask.len);
451 addrmask.maxlen = STRUCT_FGET(uap, addrmask.maxlen);
452 addrmask.buf = kmem_alloc(addrmask.maxlen, KM_SLEEP);
453 error = copyin(STRUCT_FGETP(uap, addrmask.buf), addrmask.buf,
454 addrmask.len);
455 if (error) {
456 releasef(STRUCT_FGET(uap, fd));
457 kmem_free(addrmask.buf, addrmask.maxlen);
458 return (error);
459 }
460
461 nfs_versmin = STRUCT_FGET(uap, versmin);
462 nfs_versmax = STRUCT_FGET(uap, versmax);
463
464 /* Double check the vers min/max ranges */
465 if ((nfs_versmin > nfs_versmax) ||
466 (nfs_versmin < NFS_VERSMIN) ||
467 (nfs_versmax > NFS_VERSMAX)) {
468 nfs_versmin = NFS_VERSMIN_DEFAULT;
469 nfs_versmax = NFS_VERSMAX_DEFAULT;
470 }
471
472 if (error =
473 nfs_srv_set_sc_versions(fp, &sctp, nfs_versmin, nfs_versmax)) {
474 releasef(STRUCT_FGET(uap, fd));
475 kmem_free(addrmask.buf, addrmask.maxlen);
476 return (error);
477 }
478
479 /* Initialize nfsv4 server */
480 if (nfs_versmax == (rpcvers_t)NFS_V4)
481 rfs4_server_start(STRUCT_FGET(uap, delegation));
482
483 /* Create a transport handle. */
484 error = svc_tli_kcreate(fp, readsize, buf, &addrmask, &xprt,
485 sctp, NULL, NFS_SVCPOOL_ID, TRUE);
486
487 if (error)
488 kmem_free(addrmask.buf, addrmask.maxlen);
489
490 releasef(STRUCT_FGET(uap, fd));
491
492 /* HA-NFSv4: save the cluster nodeid */
493 if (cluster_bootflags & CLUSTER_BOOTED)
494 lm_global_nlmid = clconf_get_nodeid();
495
496 return (error);
497 }
498
499 static void
500 rfs4_server_start(int nfs4_srv_delegation)
501 {
502 /*
503 * Determine if the server has previously been "started" and
504 * if not, do the per instance initialization
505 */
506 mutex_enter(&nfs_server_upordown_lock);
507
508 if (nfs_server_upordown != NFS_SERVER_RUNNING) {
509 /* Do we need to stop and wait on the previous server? */
510 while (nfs_server_upordown == NFS_SERVER_STOPPING ||
511 nfs_server_upordown == NFS_SERVER_OFFLINE)
512 cv_wait(&nfs_server_upordown_cv,
513 &nfs_server_upordown_lock);
514
515 if (nfs_server_upordown != NFS_SERVER_RUNNING) {
516 (void) svc_pool_control(NFS_SVCPOOL_ID,
517 SVCPSET_UNREGISTER_PROC, (void *)&nfs_srv_offline);
518 (void) svc_pool_control(NFS_SVCPOOL_ID,
519 SVCPSET_SHUTDOWN_PROC, (void *)&nfs_srv_stop_all);
520
521 /* is this an nfsd warm start? */
522 if (nfs_server_upordown == NFS_SERVER_QUIESCED) {
523 cmn_err(CE_NOTE, "nfs_server: "
524 "server was previously quiesced; "
525 "existing NFSv4 state will be re-used");
526
527 /*
528 * HA-NFSv4: this is also the signal
529 * that a Resource Group failover has
530 * occurred.
531 */
532 if (cluster_bootflags & CLUSTER_BOOTED)
533 hanfsv4_failover();
534 } else {
535 /* cold start */
536 rfs4_state_init();
537 nfs4_drc = rfs4_init_drc(nfs4_drc_max,
538 nfs4_drc_hash);
539 }
540
541 /*
542 * Check to see if delegation is to be
543 * enabled at the server
544 */
545 if (nfs4_srv_delegation != FALSE)
546 rfs4_set_deleg_policy(SRV_NORMAL_DELEGATE);
547
548 nfs_server_upordown = NFS_SERVER_RUNNING;
549 }
550 cv_signal(&nfs_server_upordown_cv);
551 }
552 mutex_exit(&nfs_server_upordown_lock);
553 }
554
555 /*
556 * If RDMA device available,
557 * start RDMA listener.
558 */
559 int
560 rdma_start(struct rdma_svc_args *rsa)
561 {
562 int error;
563 rdma_xprt_group_t started_rdma_xprts;
564 rdma_stat stat;
565 int svc_state = 0;
566
567 /* Double check the vers min/max ranges */
568 if ((rsa->nfs_versmin > rsa->nfs_versmax) ||
569 (rsa->nfs_versmin < NFS_VERSMIN) ||
570 (rsa->nfs_versmax > NFS_VERSMAX)) {
571 rsa->nfs_versmin = NFS_VERSMIN_DEFAULT;
572 rsa->nfs_versmax = NFS_VERSMAX_DEFAULT;
573 }
574 nfs_versmin = rsa->nfs_versmin;
575 nfs_versmax = rsa->nfs_versmax;
576
577 /* Set the versions in the callout table */
578 __nfs_sc_rdma[0].sc_versmin = rsa->nfs_versmin;
579 __nfs_sc_rdma[0].sc_versmax = rsa->nfs_versmax;
580 /* For the NFS_ACL program, check the max version */
581 __nfs_sc_rdma[1].sc_versmin = rsa->nfs_versmin;
582 if (rsa->nfs_versmax > NFS_ACL_VERSMAX)
583 __nfs_sc_rdma[1].sc_versmax = NFS_ACL_VERSMAX;
584 else
585 __nfs_sc_rdma[1].sc_versmax = rsa->nfs_versmax;
586
587 /* Initialize nfsv4 server */
588 if (rsa->nfs_versmax == (rpcvers_t)NFS_V4)
589 rfs4_server_start(rsa->delegation);
590
591 started_rdma_xprts.rtg_count = 0;
592 started_rdma_xprts.rtg_listhead = NULL;
593 started_rdma_xprts.rtg_poolid = rsa->poolid;
594
595 restart:
596 error = svc_rdma_kcreate(rsa->netid, &nfs_sct_rdma, rsa->poolid,
597 &started_rdma_xprts);
598
599 svc_state = !error;
600
601 while (!error) {
602
603 /*
604 * wait till either interrupted by a signal on
605 * nfs service stop/restart or signalled by a
606 * rdma plugin attach/detatch.
607 */
608
609 stat = rdma_kwait();
610
611 /*
612 * stop services if running -- either on a HCA detach event
613 * or if the nfs service is stopped/restarted.
614 */
615
616 if ((stat == RDMA_HCA_DETACH || stat == RDMA_INTR) &&
617 svc_state) {
618 rdma_stop(&started_rdma_xprts);
619 svc_state = 0;
620 }
621
622 /*
623 * nfs service stop/restart, break out of the
624 * wait loop and return;
625 */
626 if (stat == RDMA_INTR)
627 return (0);
628
629 /*
630 * restart stopped services on a HCA attach event
631 * (if not already running)
632 */
633
634 if ((stat == RDMA_HCA_ATTACH) && (svc_state == 0))
635 goto restart;
636
637 /*
638 * loop until a nfs service stop/restart
639 */
640 }
641
642 return (error);
643 }
644
645 /* ARGSUSED */
646 void
647 rpc_null(caddr_t *argp, caddr_t *resp)
648 {
649 }
650
651 /* ARGSUSED */
652 void
653 rpc_null_v3(caddr_t *argp, caddr_t *resp, struct exportinfo *exi,
654 struct svc_req *req, cred_t *cr)
655 {
656 DTRACE_NFSV3_3(op__null__start, struct svc_req *, req,
657 cred_t *, cr, vnode_t *, NULL);
658 DTRACE_NFSV3_3(op__null__done, struct svc_req *, req,
659 cred_t *, cr, vnode_t *, NULL);
660 }
661
662 /* ARGSUSED */
663 static void
664 rfs_error(caddr_t *argp, caddr_t *resp)
665 {
666 /* return (EOPNOTSUPP); */
667 }
668
669 static void
670 nullfree(void)
671 {
672 }
673
674 static char *rfscallnames_v2[] = {
675 "RFS2_NULL",
676 "RFS2_GETATTR",
677 "RFS2_SETATTR",
678 "RFS2_ROOT",
679 "RFS2_LOOKUP",
680 "RFS2_READLINK",
681 "RFS2_READ",
682 "RFS2_WRITECACHE",
683 "RFS2_WRITE",
684 "RFS2_CREATE",
685 "RFS2_REMOVE",
686 "RFS2_RENAME",
687 "RFS2_LINK",
688 "RFS2_SYMLINK",
689 "RFS2_MKDIR",
690 "RFS2_RMDIR",
691 "RFS2_READDIR",
692 "RFS2_STATFS"
693 };
694
695 static struct rpcdisp rfsdisptab_v2[] = {
696 /*
697 * NFS VERSION 2
698 */
699
700 /* RFS_NULL = 0 */
701 {rpc_null,
702 xdr_void, NULL_xdrproc_t, 0,
703 xdr_void, NULL_xdrproc_t, 0,
704 nullfree, RPC_IDEMPOTENT,
705 0},
706
707 /* RFS_GETATTR = 1 */
708 {rfs_getattr,
709 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t),
710 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat),
711 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP,
712 rfs_getattr_getfh},
713
714 /* RFS_SETATTR = 2 */
715 {rfs_setattr,
716 xdr_saargs, NULL_xdrproc_t, sizeof (struct nfssaargs),
717 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat),
718 nullfree, RPC_MAPRESP,
719 rfs_setattr_getfh},
720
721 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */
722 {rfs_error,
723 xdr_void, NULL_xdrproc_t, 0,
724 xdr_void, NULL_xdrproc_t, 0,
725 nullfree, RPC_IDEMPOTENT,
726 0},
727
728 /* RFS_LOOKUP = 4 */
729 {rfs_lookup,
730 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs),
731 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres),
732 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP|RPC_PUBLICFH_OK,
733 rfs_lookup_getfh},
734
735 /* RFS_READLINK = 5 */
736 {rfs_readlink,
737 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t),
738 xdr_rdlnres, NULL_xdrproc_t, sizeof (struct nfsrdlnres),
739 rfs_rlfree, RPC_IDEMPOTENT,
740 rfs_readlink_getfh},
741
742 /* RFS_READ = 6 */
743 {rfs_read,
744 xdr_readargs, NULL_xdrproc_t, sizeof (struct nfsreadargs),
745 xdr_rdresult, NULL_xdrproc_t, sizeof (struct nfsrdresult),
746 rfs_rdfree, RPC_IDEMPOTENT,
747 rfs_read_getfh},
748
749 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */
750 {rfs_error,
751 xdr_void, NULL_xdrproc_t, 0,
752 xdr_void, NULL_xdrproc_t, 0,
753 nullfree, RPC_IDEMPOTENT,
754 0},
755
756 /* RFS_WRITE = 8 */
757 {rfs_write,
758 xdr_writeargs, NULL_xdrproc_t, sizeof (struct nfswriteargs),
759 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat),
760 nullfree, RPC_MAPRESP,
761 rfs_write_getfh},
762
763 /* RFS_CREATE = 9 */
764 {rfs_create,
765 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs),
766 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres),
767 nullfree, RPC_MAPRESP,
768 rfs_create_getfh},
769
770 /* RFS_REMOVE = 10 */
771 {rfs_remove,
772 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs),
773 #ifdef _LITTLE_ENDIAN
774 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
775 #else
776 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
777 #endif
778 nullfree, RPC_MAPRESP,
779 rfs_remove_getfh},
780
781 /* RFS_RENAME = 11 */
782 {rfs_rename,
783 xdr_rnmargs, NULL_xdrproc_t, sizeof (struct nfsrnmargs),
784 #ifdef _LITTLE_ENDIAN
785 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
786 #else
787 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
788 #endif
789 nullfree, RPC_MAPRESP,
790 rfs_rename_getfh},
791
792 /* RFS_LINK = 12 */
793 {rfs_link,
794 xdr_linkargs, NULL_xdrproc_t, sizeof (struct nfslinkargs),
795 #ifdef _LITTLE_ENDIAN
796 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
797 #else
798 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
799 #endif
800 nullfree, RPC_MAPRESP,
801 rfs_link_getfh},
802
803 /* RFS_SYMLINK = 13 */
804 {rfs_symlink,
805 xdr_slargs, NULL_xdrproc_t, sizeof (struct nfsslargs),
806 #ifdef _LITTLE_ENDIAN
807 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
808 #else
809 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
810 #endif
811 nullfree, RPC_MAPRESP,
812 rfs_symlink_getfh},
813
814 /* RFS_MKDIR = 14 */
815 {rfs_mkdir,
816 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs),
817 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres),
818 nullfree, RPC_MAPRESP,
819 rfs_mkdir_getfh},
820
821 /* RFS_RMDIR = 15 */
822 {rfs_rmdir,
823 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs),
824 #ifdef _LITTLE_ENDIAN
825 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
826 #else
827 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
828 #endif
829 nullfree, RPC_MAPRESP,
830 rfs_rmdir_getfh},
831
832 /* RFS_READDIR = 16 */
833 {rfs_readdir,
834 xdr_rddirargs, NULL_xdrproc_t, sizeof (struct nfsrddirargs),
835 xdr_putrddirres, NULL_xdrproc_t, sizeof (struct nfsrddirres),
836 rfs_rddirfree, RPC_IDEMPOTENT,
837 rfs_readdir_getfh},
838
839 /* RFS_STATFS = 17 */
840 {rfs_statfs,
841 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t),
842 xdr_statfs, xdr_faststatfs, sizeof (struct nfsstatfs),
843 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP,
844 rfs_statfs_getfh},
845 };
846
847 static char *rfscallnames_v3[] = {
848 "RFS3_NULL",
849 "RFS3_GETATTR",
850 "RFS3_SETATTR",
851 "RFS3_LOOKUP",
852 "RFS3_ACCESS",
853 "RFS3_READLINK",
854 "RFS3_READ",
855 "RFS3_WRITE",
856 "RFS3_CREATE",
857 "RFS3_MKDIR",
858 "RFS3_SYMLINK",
859 "RFS3_MKNOD",
860 "RFS3_REMOVE",
861 "RFS3_RMDIR",
862 "RFS3_RENAME",
863 "RFS3_LINK",
864 "RFS3_READDIR",
865 "RFS3_READDIRPLUS",
866 "RFS3_FSSTAT",
867 "RFS3_FSINFO",
868 "RFS3_PATHCONF",
869 "RFS3_COMMIT"
870 };
871
872 static struct rpcdisp rfsdisptab_v3[] = {
873 /*
874 * NFS VERSION 3
875 */
876
877 /* RFS_NULL = 0 */
878 {rpc_null_v3,
879 xdr_void, NULL_xdrproc_t, 0,
880 xdr_void, NULL_xdrproc_t, 0,
881 nullfree, RPC_IDEMPOTENT,
882 0},
883
884 /* RFS3_GETATTR = 1 */
885 {rfs3_getattr,
886 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (GETATTR3args),
887 xdr_GETATTR3res, NULL_xdrproc_t, sizeof (GETATTR3res),
888 nullfree, (RPC_IDEMPOTENT | RPC_ALLOWANON),
889 rfs3_getattr_getfh},
890
891 /* RFS3_SETATTR = 2 */
892 {rfs3_setattr,
893 xdr_SETATTR3args, NULL_xdrproc_t, sizeof (SETATTR3args),
894 xdr_SETATTR3res, NULL_xdrproc_t, sizeof (SETATTR3res),
895 nullfree, 0,
896 rfs3_setattr_getfh},
897
898 /* RFS3_LOOKUP = 3 */
899 {rfs3_lookup,
900 xdr_diropargs3, NULL_xdrproc_t, sizeof (LOOKUP3args),
901 xdr_LOOKUP3res, NULL_xdrproc_t, sizeof (LOOKUP3res),
902 nullfree, (RPC_IDEMPOTENT | RPC_PUBLICFH_OK),
903 rfs3_lookup_getfh},
904
905 /* RFS3_ACCESS = 4 */
906 {rfs3_access,
907 xdr_ACCESS3args, NULL_xdrproc_t, sizeof (ACCESS3args),
908 xdr_ACCESS3res, NULL_xdrproc_t, sizeof (ACCESS3res),
909 nullfree, RPC_IDEMPOTENT,
910 rfs3_access_getfh},
911
912 /* RFS3_READLINK = 5 */
913 {rfs3_readlink,
914 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (READLINK3args),
915 xdr_READLINK3res, NULL_xdrproc_t, sizeof (READLINK3res),
916 rfs3_readlink_free, RPC_IDEMPOTENT,
917 rfs3_readlink_getfh},
918
919 /* RFS3_READ = 6 */
920 {rfs3_read,
921 xdr_READ3args, NULL_xdrproc_t, sizeof (READ3args),
922 xdr_READ3res, NULL_xdrproc_t, sizeof (READ3res),
923 rfs3_read_free, RPC_IDEMPOTENT,
924 rfs3_read_getfh},
925
926 /* RFS3_WRITE = 7 */
927 {rfs3_write,
928 xdr_WRITE3args, NULL_xdrproc_t, sizeof (WRITE3args),
929 xdr_WRITE3res, NULL_xdrproc_t, sizeof (WRITE3res),
930 nullfree, 0,
931 rfs3_write_getfh},
932
933 /* RFS3_CREATE = 8 */
934 {rfs3_create,
935 xdr_CREATE3args, NULL_xdrproc_t, sizeof (CREATE3args),
936 xdr_CREATE3res, NULL_xdrproc_t, sizeof (CREATE3res),
937 nullfree, 0,
938 rfs3_create_getfh},
939
940 /* RFS3_MKDIR = 9 */
941 {rfs3_mkdir,
942 xdr_MKDIR3args, NULL_xdrproc_t, sizeof (MKDIR3args),
943 xdr_MKDIR3res, NULL_xdrproc_t, sizeof (MKDIR3res),
944 nullfree, 0,
945 rfs3_mkdir_getfh},
946
947 /* RFS3_SYMLINK = 10 */
948 {rfs3_symlink,
949 xdr_SYMLINK3args, NULL_xdrproc_t, sizeof (SYMLINK3args),
950 xdr_SYMLINK3res, NULL_xdrproc_t, sizeof (SYMLINK3res),
951 nullfree, 0,
952 rfs3_symlink_getfh},
953
954 /* RFS3_MKNOD = 11 */
955 {rfs3_mknod,
956 xdr_MKNOD3args, NULL_xdrproc_t, sizeof (MKNOD3args),
957 xdr_MKNOD3res, NULL_xdrproc_t, sizeof (MKNOD3res),
958 nullfree, 0,
959 rfs3_mknod_getfh},
960
961 /* RFS3_REMOVE = 12 */
962 {rfs3_remove,
963 xdr_diropargs3, NULL_xdrproc_t, sizeof (REMOVE3args),
964 xdr_REMOVE3res, NULL_xdrproc_t, sizeof (REMOVE3res),
965 nullfree, 0,
966 rfs3_remove_getfh},
967
968 /* RFS3_RMDIR = 13 */
969 {rfs3_rmdir,
970 xdr_diropargs3, NULL_xdrproc_t, sizeof (RMDIR3args),
971 xdr_RMDIR3res, NULL_xdrproc_t, sizeof (RMDIR3res),
972 nullfree, 0,
973 rfs3_rmdir_getfh},
974
975 /* RFS3_RENAME = 14 */
976 {rfs3_rename,
977 xdr_RENAME3args, NULL_xdrproc_t, sizeof (RENAME3args),
978 xdr_RENAME3res, NULL_xdrproc_t, sizeof (RENAME3res),
979 nullfree, 0,
980 rfs3_rename_getfh},
981
982 /* RFS3_LINK = 15 */
983 {rfs3_link,
984 xdr_LINK3args, NULL_xdrproc_t, sizeof (LINK3args),
985 xdr_LINK3res, NULL_xdrproc_t, sizeof (LINK3res),
986 nullfree, 0,
987 rfs3_link_getfh},
988
989 /* RFS3_READDIR = 16 */
990 {rfs3_readdir,
991 xdr_READDIR3args, NULL_xdrproc_t, sizeof (READDIR3args),
992 xdr_READDIR3res, NULL_xdrproc_t, sizeof (READDIR3res),
993 rfs3_readdir_free, RPC_IDEMPOTENT,
994 rfs3_readdir_getfh},
995
996 /* RFS3_READDIRPLUS = 17 */
997 {rfs3_readdirplus,
998 xdr_READDIRPLUS3args, NULL_xdrproc_t, sizeof (READDIRPLUS3args),
999 xdr_READDIRPLUS3res, NULL_xdrproc_t, sizeof (READDIRPLUS3res),
1000 rfs3_readdirplus_free, RPC_AVOIDWORK,
1001 rfs3_readdirplus_getfh},
1002
1003 /* RFS3_FSSTAT = 18 */
1004 {rfs3_fsstat,
1005 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSSTAT3args),
1006 xdr_FSSTAT3res, NULL_xdrproc_t, sizeof (FSSTAT3res),
1007 nullfree, RPC_IDEMPOTENT,
1008 rfs3_fsstat_getfh},
1009
1010 /* RFS3_FSINFO = 19 */
1011 {rfs3_fsinfo,
1012 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSINFO3args),
1013 xdr_FSINFO3res, NULL_xdrproc_t, sizeof (FSINFO3res),
1014 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON,
1015 rfs3_fsinfo_getfh},
1016
1017 /* RFS3_PATHCONF = 20 */
1018 {rfs3_pathconf,
1019 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (PATHCONF3args),
1020 xdr_PATHCONF3res, NULL_xdrproc_t, sizeof (PATHCONF3res),
1021 nullfree, RPC_IDEMPOTENT,
1022 rfs3_pathconf_getfh},
1023
1024 /* RFS3_COMMIT = 21 */
1025 {rfs3_commit,
1026 xdr_COMMIT3args, NULL_xdrproc_t, sizeof (COMMIT3args),
1027 xdr_COMMIT3res, NULL_xdrproc_t, sizeof (COMMIT3res),
1028 nullfree, RPC_IDEMPOTENT,
1029 rfs3_commit_getfh},
1030 };
1031
1032 static char *rfscallnames_v4[] = {
1033 "RFS4_NULL",
1034 "RFS4_COMPOUND",
1035 "RFS4_NULL",
1036 "RFS4_NULL",
1037 "RFS4_NULL",
1038 "RFS4_NULL",
1039 "RFS4_NULL",
1040 "RFS4_NULL",
1041 "RFS4_CREATE"
1042 };
1043
1044 static struct rpcdisp rfsdisptab_v4[] = {
1045 /*
1046 * NFS VERSION 4
1047 */
1048
1049 /* RFS_NULL = 0 */
1050 {rpc_null,
1051 xdr_void, NULL_xdrproc_t, 0,
1052 xdr_void, NULL_xdrproc_t, 0,
1053 nullfree, RPC_IDEMPOTENT, 0},
1054
1055 /* RFS4_compound = 1 */
1056 {rfs4_compound,
1057 xdr_COMPOUND4args_srv, NULL_xdrproc_t, sizeof (COMPOUND4args),
1058 xdr_COMPOUND4res_srv, NULL_xdrproc_t, sizeof (COMPOUND4res),
1059 rfs4_compound_free, 0, 0},
1060 };
1061
1062 union rfs_args {
1063 /*
1064 * NFS VERSION 2
1065 */
1066
1067 /* RFS_NULL = 0 */
1068
1069 /* RFS_GETATTR = 1 */
1070 fhandle_t nfs2_getattr_args;
1071
1072 /* RFS_SETATTR = 2 */
1073 struct nfssaargs nfs2_setattr_args;
1074
1075 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */
1076
1077 /* RFS_LOOKUP = 4 */
1078 struct nfsdiropargs nfs2_lookup_args;
1079
1080 /* RFS_READLINK = 5 */
1081 fhandle_t nfs2_readlink_args;
1082
1083 /* RFS_READ = 6 */
1084 struct nfsreadargs nfs2_read_args;
1085
1086 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */
1087
1088 /* RFS_WRITE = 8 */
1089 struct nfswriteargs nfs2_write_args;
1090
1091 /* RFS_CREATE = 9 */
1092 struct nfscreatargs nfs2_create_args;
1093
1094 /* RFS_REMOVE = 10 */
1095 struct nfsdiropargs nfs2_remove_args;
1096
1097 /* RFS_RENAME = 11 */
1098 struct nfsrnmargs nfs2_rename_args;
1099
1100 /* RFS_LINK = 12 */
1101 struct nfslinkargs nfs2_link_args;
1102
1103 /* RFS_SYMLINK = 13 */
1104 struct nfsslargs nfs2_symlink_args;
1105
1106 /* RFS_MKDIR = 14 */
1107 struct nfscreatargs nfs2_mkdir_args;
1108
1109 /* RFS_RMDIR = 15 */
1110 struct nfsdiropargs nfs2_rmdir_args;
1111
1112 /* RFS_READDIR = 16 */
1113 struct nfsrddirargs nfs2_readdir_args;
1114
1115 /* RFS_STATFS = 17 */
1116 fhandle_t nfs2_statfs_args;
1117
1118 /*
1119 * NFS VERSION 3
1120 */
1121
1122 /* RFS_NULL = 0 */
1123
1124 /* RFS3_GETATTR = 1 */
1125 GETATTR3args nfs3_getattr_args;
1126
1127 /* RFS3_SETATTR = 2 */
1128 SETATTR3args nfs3_setattr_args;
1129
1130 /* RFS3_LOOKUP = 3 */
1131 LOOKUP3args nfs3_lookup_args;
1132
1133 /* RFS3_ACCESS = 4 */
1134 ACCESS3args nfs3_access_args;
1135
1136 /* RFS3_READLINK = 5 */
1137 READLINK3args nfs3_readlink_args;
1138
1139 /* RFS3_READ = 6 */
1140 READ3args nfs3_read_args;
1141
1142 /* RFS3_WRITE = 7 */
1143 WRITE3args nfs3_write_args;
1144
1145 /* RFS3_CREATE = 8 */
1146 CREATE3args nfs3_create_args;
1147
1148 /* RFS3_MKDIR = 9 */
1149 MKDIR3args nfs3_mkdir_args;
1150
1151 /* RFS3_SYMLINK = 10 */
1152 SYMLINK3args nfs3_symlink_args;
1153
1154 /* RFS3_MKNOD = 11 */
1155 MKNOD3args nfs3_mknod_args;
1156
1157 /* RFS3_REMOVE = 12 */
1158 REMOVE3args nfs3_remove_args;
1159
1160 /* RFS3_RMDIR = 13 */
1161 RMDIR3args nfs3_rmdir_args;
1162
1163 /* RFS3_RENAME = 14 */
1164 RENAME3args nfs3_rename_args;
1165
1166 /* RFS3_LINK = 15 */
1167 LINK3args nfs3_link_args;
1168
1169 /* RFS3_READDIR = 16 */
1170 READDIR3args nfs3_readdir_args;
1171
1172 /* RFS3_READDIRPLUS = 17 */
1173 READDIRPLUS3args nfs3_readdirplus_args;
1174
1175 /* RFS3_FSSTAT = 18 */
1176 FSSTAT3args nfs3_fsstat_args;
1177
1178 /* RFS3_FSINFO = 19 */
1179 FSINFO3args nfs3_fsinfo_args;
1180
1181 /* RFS3_PATHCONF = 20 */
1182 PATHCONF3args nfs3_pathconf_args;
1183
1184 /* RFS3_COMMIT = 21 */
1185 COMMIT3args nfs3_commit_args;
1186
1187 /*
1188 * NFS VERSION 4
1189 */
1190
1191 /* RFS_NULL = 0 */
1192
1193 /* COMPUND = 1 */
1194 COMPOUND4args nfs4_compound_args;
1195 };
1196
1197 union rfs_res {
1198 /*
1199 * NFS VERSION 2
1200 */
1201
1202 /* RFS_NULL = 0 */
1203
1204 /* RFS_GETATTR = 1 */
1205 struct nfsattrstat nfs2_getattr_res;
1206
1207 /* RFS_SETATTR = 2 */
1208 struct nfsattrstat nfs2_setattr_res;
1209
1210 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */
1211
1212 /* RFS_LOOKUP = 4 */
1213 struct nfsdiropres nfs2_lookup_res;
1214
1215 /* RFS_READLINK = 5 */
1216 struct nfsrdlnres nfs2_readlink_res;
1217
1218 /* RFS_READ = 6 */
1219 struct nfsrdresult nfs2_read_res;
1220
1221 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */
1222
1223 /* RFS_WRITE = 8 */
1224 struct nfsattrstat nfs2_write_res;
1225
1226 /* RFS_CREATE = 9 */
1227 struct nfsdiropres nfs2_create_res;
1228
1229 /* RFS_REMOVE = 10 */
1230 enum nfsstat nfs2_remove_res;
1231
1232 /* RFS_RENAME = 11 */
1233 enum nfsstat nfs2_rename_res;
1234
1235 /* RFS_LINK = 12 */
1236 enum nfsstat nfs2_link_res;
1237
1238 /* RFS_SYMLINK = 13 */
1239 enum nfsstat nfs2_symlink_res;
1240
1241 /* RFS_MKDIR = 14 */
1242 struct nfsdiropres nfs2_mkdir_res;
1243
1244 /* RFS_RMDIR = 15 */
1245 enum nfsstat nfs2_rmdir_res;
1246
1247 /* RFS_READDIR = 16 */
1248 struct nfsrddirres nfs2_readdir_res;
1249
1250 /* RFS_STATFS = 17 */
1251 struct nfsstatfs nfs2_statfs_res;
1252
1253 /*
1254 * NFS VERSION 3
1255 */
1256
1257 /* RFS_NULL = 0 */
1258
1259 /* RFS3_GETATTR = 1 */
1260 GETATTR3res nfs3_getattr_res;
1261
1262 /* RFS3_SETATTR = 2 */
1263 SETATTR3res nfs3_setattr_res;
1264
1265 /* RFS3_LOOKUP = 3 */
1266 LOOKUP3res nfs3_lookup_res;
1267
1268 /* RFS3_ACCESS = 4 */
1269 ACCESS3res nfs3_access_res;
1270
1271 /* RFS3_READLINK = 5 */
1272 READLINK3res nfs3_readlink_res;
1273
1274 /* RFS3_READ = 6 */
1275 READ3res nfs3_read_res;
1276
1277 /* RFS3_WRITE = 7 */
1278 WRITE3res nfs3_write_res;
1279
1280 /* RFS3_CREATE = 8 */
1281 CREATE3res nfs3_create_res;
1282
1283 /* RFS3_MKDIR = 9 */
1284 MKDIR3res nfs3_mkdir_res;
1285
1286 /* RFS3_SYMLINK = 10 */
1287 SYMLINK3res nfs3_symlink_res;
1288
1289 /* RFS3_MKNOD = 11 */
1290 MKNOD3res nfs3_mknod_res;
1291
1292 /* RFS3_REMOVE = 12 */
1293 REMOVE3res nfs3_remove_res;
1294
1295 /* RFS3_RMDIR = 13 */
1296 RMDIR3res nfs3_rmdir_res;
1297
1298 /* RFS3_RENAME = 14 */
1299 RENAME3res nfs3_rename_res;
1300
1301 /* RFS3_LINK = 15 */
1302 LINK3res nfs3_link_res;
1303
1304 /* RFS3_READDIR = 16 */
1305 READDIR3res nfs3_readdir_res;
1306
1307 /* RFS3_READDIRPLUS = 17 */
1308 READDIRPLUS3res nfs3_readdirplus_res;
1309
1310 /* RFS3_FSSTAT = 18 */
1311 FSSTAT3res nfs3_fsstat_res;
1312
1313 /* RFS3_FSINFO = 19 */
1314 FSINFO3res nfs3_fsinfo_res;
1315
1316 /* RFS3_PATHCONF = 20 */
1317 PATHCONF3res nfs3_pathconf_res;
1318
1319 /* RFS3_COMMIT = 21 */
1320 COMMIT3res nfs3_commit_res;
1321
1322 /*
1323 * NFS VERSION 4
1324 */
1325
1326 /* RFS_NULL = 0 */
1327
1328 /* RFS4_COMPOUND = 1 */
1329 COMPOUND4res nfs4_compound_res;
1330
1331 };
1332
1333 static struct rpc_disptable rfs_disptable[] = {
1334 {sizeof (rfsdisptab_v2) / sizeof (rfsdisptab_v2[0]),
1335 rfscallnames_v2,
1336 &rfsproccnt_v2_ptr, rfsdisptab_v2},
1337 {sizeof (rfsdisptab_v3) / sizeof (rfsdisptab_v3[0]),
1338 rfscallnames_v3,
1339 &rfsproccnt_v3_ptr, rfsdisptab_v3},
1340 {sizeof (rfsdisptab_v4) / sizeof (rfsdisptab_v4[0]),
1341 rfscallnames_v4,
1342 &rfsproccnt_v4_ptr, rfsdisptab_v4},
1343 };
1344
1345 /*
1346 * If nfs_portmon is set, then clients are required to use privileged
1347 * ports (ports < IPPORT_RESERVED) in order to get NFS services.
1348 *
1349 * N.B.: this attempt to carry forward the already ill-conceived notion
1350 * of privileged ports for TCP/UDP is really quite ineffectual. Not only
1351 * is it transport-dependent, it's laughably easy to spoof. If you're
1352 * really interested in security, you must start with secure RPC instead.
1353 */
1354 static int nfs_portmon = 0;
1355
1356 #ifdef DEBUG
1357 static int cred_hits = 0;
1358 static int cred_misses = 0;
1359 #endif
1360
1361
1362 #ifdef DEBUG
1363 /*
1364 * Debug code to allow disabling of rfs_dispatch() use of
1365 * fastxdrargs() and fastxdrres() calls for testing purposes.
1366 */
1367 static int rfs_no_fast_xdrargs = 0;
1368 static int rfs_no_fast_xdrres = 0;
1369 #endif
1370
1371 union acl_args {
1372 /*
1373 * ACL VERSION 2
1374 */
1375
1376 /* ACL2_NULL = 0 */
1377
1378 /* ACL2_GETACL = 1 */
1379 GETACL2args acl2_getacl_args;
1380
1381 /* ACL2_SETACL = 2 */
1382 SETACL2args acl2_setacl_args;
1383
1384 /* ACL2_GETATTR = 3 */
1385 GETATTR2args acl2_getattr_args;
1386
1387 /* ACL2_ACCESS = 4 */
1388 ACCESS2args acl2_access_args;
1389
1390 /* ACL2_GETXATTRDIR = 5 */
1391 GETXATTRDIR2args acl2_getxattrdir_args;
1392
1393 /*
1394 * ACL VERSION 3
1395 */
1396
1397 /* ACL3_NULL = 0 */
1398
1399 /* ACL3_GETACL = 1 */
1400 GETACL3args acl3_getacl_args;
1401
1402 /* ACL3_SETACL = 2 */
1403 SETACL3args acl3_setacl;
1404
1405 /* ACL3_GETXATTRDIR = 3 */
1406 GETXATTRDIR3args acl3_getxattrdir_args;
1407
1408 };
1409
1410 union acl_res {
1411 /*
1412 * ACL VERSION 2
1413 */
1414
1415 /* ACL2_NULL = 0 */
1416
1417 /* ACL2_GETACL = 1 */
1418 GETACL2res acl2_getacl_res;
1419
1420 /* ACL2_SETACL = 2 */
1421 SETACL2res acl2_setacl_res;
1422
1423 /* ACL2_GETATTR = 3 */
1424 GETATTR2res acl2_getattr_res;
1425
1426 /* ACL2_ACCESS = 4 */
1427 ACCESS2res acl2_access_res;
1428
1429 /* ACL2_GETXATTRDIR = 5 */
1430 GETXATTRDIR2args acl2_getxattrdir_res;
1431
1432 /*
1433 * ACL VERSION 3
1434 */
1435
1436 /* ACL3_NULL = 0 */
1437
1438 /* ACL3_GETACL = 1 */
1439 GETACL3res acl3_getacl_res;
1440
1441 /* ACL3_SETACL = 2 */
1442 SETACL3res acl3_setacl_res;
1443
1444 /* ACL3_GETXATTRDIR = 3 */
1445 GETXATTRDIR3res acl3_getxattrdir_res;
1446
1447 };
1448
1449 static bool_t
1450 auth_tooweak(struct svc_req *req, char *res)
1451 {
1452
1453 if (req->rq_vers == NFS_VERSION && req->rq_proc == RFS_LOOKUP) {
1454 struct nfsdiropres *dr = (struct nfsdiropres *)res;
1455 if (dr->dr_status == WNFSERR_CLNT_FLAVOR)
1456 return (TRUE);
1457 } else if (req->rq_vers == NFS_V3 && req->rq_proc == NFSPROC3_LOOKUP) {
1458 LOOKUP3res *resp = (LOOKUP3res *)res;
1459 if (resp->status == WNFSERR_CLNT_FLAVOR)
1460 return (TRUE);
1461 }
1462 return (FALSE);
1463 }
1464
1465
1466 static void
1467 common_dispatch(struct svc_req *req, SVCXPRT *xprt, rpcvers_t min_vers,
1468 rpcvers_t max_vers, char *pgmname,
1469 struct rpc_disptable *disptable)
1470 {
1471 int which;
1472 rpcvers_t vers;
1473 char *args;
1474 union {
1475 union rfs_args ra;
1476 union acl_args aa;
1477 } args_buf;
1478 char *res;
1479 union {
1480 union rfs_res rr;
1481 union acl_res ar;
1482 } res_buf;
1483 struct rpcdisp *disp = NULL;
1484 int dis_flags = 0;
1485 cred_t *cr;
1486 int error = 0;
1487 int anon_ok;
1488 struct exportinfo *exi = NULL;
1489 unsigned int nfslog_rec_id;
1490 int dupstat;
1491 struct dupreq *dr;
1492 int authres;
1493 bool_t publicfh_ok = FALSE;
1494 enum_t auth_flavor;
1495 bool_t dupcached = FALSE;
1496 struct netbuf nb;
1497 bool_t logging_enabled = FALSE;
1498 struct exportinfo *nfslog_exi = NULL;
1499 char **procnames;
1500 char cbuf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */
1501
1502 vers = req->rq_vers;
1503
1504 if (vers < min_vers || vers > max_vers) {
1505 svcerr_progvers(req->rq_xprt, min_vers, max_vers);
1506 error++;
1507 cmn_err(CE_NOTE, "%s: bad version number %u", pgmname, vers);
1508 goto done;
1509 }
1510 vers -= min_vers;
1511
1512 which = req->rq_proc;
1513 if (which < 0 || which >= disptable[(int)vers].dis_nprocs) {
1514 svcerr_noproc(req->rq_xprt);
1515 error++;
1516 goto done;
1517 }
1518
1519 (*(disptable[(int)vers].dis_proccntp))[which].value.ui64++;
1520
1521 disp = &disptable[(int)vers].dis_table[which];
1522 procnames = disptable[(int)vers].dis_procnames;
1523
1524 auth_flavor = req->rq_cred.oa_flavor;
1525
1526 /*
1527 * Deserialize into the args struct.
1528 */
1529 args = (char *)&args_buf;
1530
1531 #ifdef DEBUG
1532 if (rfs_no_fast_xdrargs || (auth_flavor == RPCSEC_GSS) ||
1533 disp->dis_fastxdrargs == NULL_xdrproc_t ||
1534 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args))
1535 #else
1536 if ((auth_flavor == RPCSEC_GSS) ||
1537 disp->dis_fastxdrargs == NULL_xdrproc_t ||
1538 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args))
1539 #endif
1540 {
1541 bzero(args, disp->dis_argsz);
1542 if (!SVC_GETARGS(xprt, disp->dis_xdrargs, args)) {
1543 error++;
1544 /*
1545 * Check if we are outside our capabilities.
1546 */
1547 if (rfs4_minorvers_mismatch(req, xprt, (void *)args))
1548 goto done;
1549
1550 svcerr_decode(xprt);
1551 cmn_err(CE_NOTE,
1552 "Failed to decode arguments for %s version %u "
1553 "procedure %s client %s%s",
1554 pgmname, vers + min_vers, procnames[which],
1555 client_name(req), client_addr(req, cbuf));
1556 goto done;
1557 }
1558 }
1559
1560 /*
1561 * If Version 4 use that specific dispatch function.
1562 */
1563 if (req->rq_vers == 4) {
1564 error += rfs4_dispatch(disp, req, xprt, args);
1565 goto done;
1566 }
1567
1568 dis_flags = disp->dis_flags;
1569
1570 /*
1571 * Find export information and check authentication,
1572 * setting the credential if everything is ok.
1573 */
1574 if (disp->dis_getfh != NULL) {
1575 void *fh;
1576 fsid_t *fsid;
1577 fid_t *fid, *xfid;
1578 fhandle_t *fh2;
1579 nfs_fh3 *fh3;
1580
1581 fh = (*disp->dis_getfh)(args);
1582 switch (req->rq_vers) {
1583 case NFS_VERSION:
1584 fh2 = (fhandle_t *)fh;
1585 fsid = &fh2->fh_fsid;
1586 fid = (fid_t *)&fh2->fh_len;
1587 xfid = (fid_t *)&fh2->fh_xlen;
1588 break;
1589 case NFS_V3:
1590 fh3 = (nfs_fh3 *)fh;
1591 fsid = &fh3->fh3_fsid;
1592 fid = FH3TOFIDP(fh3);
1593 xfid = FH3TOXFIDP(fh3);
1594 break;
1595 }
1596
1597 /*
1598 * Fix for bug 1038302 - corbin
1599 * There is a problem here if anonymous access is
1600 * disallowed. If the current request is part of the
1601 * client's mount process for the requested filesystem,
1602 * then it will carry root (uid 0) credentials on it, and
1603 * will be denied by checkauth if that client does not
1604 * have explicit root=0 permission. This will cause the
1605 * client's mount operation to fail. As a work-around,
1606 * we check here to see if the request is a getattr or
1607 * statfs operation on the exported vnode itself, and
1608 * pass a flag to checkauth with the result of this test.
1609 *
1610 * The filehandle refers to the mountpoint itself if
1611 * the fh_data and fh_xdata portions of the filehandle
1612 * are equal.
1613 *
1614 * Added anon_ok argument to checkauth().
1615 */
1616
1617 if ((dis_flags & RPC_ALLOWANON) && EQFID(fid, xfid))
1618 anon_ok = 1;
1619 else
1620 anon_ok = 0;
1621
1622 cr = xprt->xp_cred;
1623 ASSERT(cr != NULL);
1624 #ifdef DEBUG
1625 if (crgetref(cr) != 1) {
1626 crfree(cr);
1627 cr = crget();
1628 xprt->xp_cred = cr;
1629 cred_misses++;
1630 } else
1631 cred_hits++;
1632 #else
1633 if (crgetref(cr) != 1) {
1634 crfree(cr);
1635 cr = crget();
1636 xprt->xp_cred = cr;
1637 }
1638 #endif
1639
1640 exi = checkexport(fsid, xfid);
1641
1642 if (exi != NULL) {
1643 publicfh_ok = PUBLICFH_CHECK(disp, exi, fsid, xfid);
1644
1645 /*
1646 * Don't allow non-V4 clients access
1647 * to pseudo exports
1648 */
1649 if (PSEUDO(exi)) {
1650 svcerr_weakauth(xprt);
1651 error++;
1652 goto done;
1653 }
1654
1655 authres = checkauth(exi, req, cr, anon_ok, publicfh_ok);
1656 /*
1657 * authres > 0: authentication OK - proceed
1658 * authres == 0: authentication weak - return error
1659 * authres < 0: authentication timeout - drop
1660 */
1661 if (authres <= 0) {
1662 if (authres == 0) {
1663 svcerr_weakauth(xprt);
1664 error++;
1665 }
1666 goto done;
1667 }
1668 }
1669 } else
1670 cr = NULL;
1671
1672 if ((dis_flags & RPC_MAPRESP) && (auth_flavor != RPCSEC_GSS)) {
1673 res = (char *)SVC_GETRES(xprt, disp->dis_ressz);
1674 if (res == NULL)
1675 res = (char *)&res_buf;
1676 } else
1677 res = (char *)&res_buf;
1678
1679 if (!(dis_flags & RPC_IDEMPOTENT)) {
1680 dupstat = SVC_DUP_EXT(xprt, req, res, disp->dis_ressz, &dr,
1681 &dupcached);
1682
1683 switch (dupstat) {
1684 case DUP_ERROR:
1685 svcerr_systemerr(xprt);
1686 error++;
1687 goto done;
1688 /* NOTREACHED */
1689 case DUP_INPROGRESS:
1690 if (res != (char *)&res_buf)
1691 SVC_FREERES(xprt);
1692 error++;
1693 goto done;
1694 /* NOTREACHED */
1695 case DUP_NEW:
1696 case DUP_DROP:
1697 curthread->t_flag |= T_DONTPEND;
1698
1699 (*disp->dis_proc)(args, res, exi, req, cr);
1700
1701 curthread->t_flag &= ~T_DONTPEND;
1702 if (curthread->t_flag & T_WOULDBLOCK) {
1703 curthread->t_flag &= ~T_WOULDBLOCK;
1704 SVC_DUPDONE_EXT(xprt, dr, res, NULL,
1705 disp->dis_ressz, DUP_DROP);
1706 if (res != (char *)&res_buf)
1707 SVC_FREERES(xprt);
1708 error++;
1709 goto done;
1710 }
1711 if (dis_flags & RPC_AVOIDWORK) {
1712 SVC_DUPDONE_EXT(xprt, dr, res, NULL,
1713 disp->dis_ressz, DUP_DROP);
1714 } else {
1715 SVC_DUPDONE_EXT(xprt, dr, res,
1716 disp->dis_resfree == nullfree ? NULL :
1717 disp->dis_resfree,
1718 disp->dis_ressz, DUP_DONE);
1719 dupcached = TRUE;
1720 }
1721 break;
1722 case DUP_DONE:
1723 break;
1724 }
1725
1726 } else {
1727 curthread->t_flag |= T_DONTPEND;
1728
1729 (*disp->dis_proc)(args, res, exi, req, cr);
1730
1731 curthread->t_flag &= ~T_DONTPEND;
1732 if (curthread->t_flag & T_WOULDBLOCK) {
1733 curthread->t_flag &= ~T_WOULDBLOCK;
1734 if (res != (char *)&res_buf)
1735 SVC_FREERES(xprt);
1736 error++;
1737 goto done;
1738 }
1739 }
1740
1741 if (auth_tooweak(req, res)) {
1742 svcerr_weakauth(xprt);
1743 error++;
1744 goto done;
1745 }
1746
1747 /*
1748 * Check to see if logging has been enabled on the server.
1749 * If so, then obtain the export info struct to be used for
1750 * the later writing of the log record. This is done for
1751 * the case that a lookup is done across a non-logged public
1752 * file system.
1753 */
1754 if (nfslog_buffer_list != NULL) {
1755 nfslog_exi = nfslog_get_exi(exi, req, res, &nfslog_rec_id);
1756 /*
1757 * Is logging enabled?
1758 */
1759 logging_enabled = (nfslog_exi != NULL);
1760
1761 /*
1762 * Copy the netbuf for logging purposes, before it is
1763 * freed by svc_sendreply().
1764 */
1765 if (logging_enabled) {
1766 NFSLOG_COPY_NETBUF(nfslog_exi, xprt, &nb);
1767 /*
1768 * If RPC_MAPRESP flag set (i.e. in V2 ops) the
1769 * res gets copied directly into the mbuf and
1770 * may be freed soon after the sendreply. So we
1771 * must copy it here to a safe place...
1772 */
1773 if (res != (char *)&res_buf) {
1774 bcopy(res, (char *)&res_buf, disp->dis_ressz);
1775 }
1776 }
1777 }
1778
1779 /*
1780 * Serialize and send results struct
1781 */
1782 #ifdef DEBUG
1783 if (rfs_no_fast_xdrres == 0 && res != (char *)&res_buf)
1784 #else
1785 if (res != (char *)&res_buf)
1786 #endif
1787 {
1788 if (!svc_sendreply(xprt, disp->dis_fastxdrres, res)) {
1789 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname);
1790 svcerr_systemerr(xprt);
1791 error++;
1792 }
1793 } else {
1794 if (!svc_sendreply(xprt, disp->dis_xdrres, res)) {
1795 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname);
1796 svcerr_systemerr(xprt);
1797 error++;
1798 }
1799 }
1800
1801 /*
1802 * Log if needed
1803 */
1804 if (logging_enabled) {
1805 nfslog_write_record(nfslog_exi, req, args, (char *)&res_buf,
1806 cr, &nb, nfslog_rec_id, NFSLOG_ONE_BUFFER);
1807 exi_rele(nfslog_exi);
1808 kmem_free((&nb)->buf, (&nb)->len);
1809 }
1810
1811 /*
1812 * Free results struct. With the addition of NFS V4 we can
1813 * have non-idempotent procedures with functions.
1814 */
1815 if (disp->dis_resfree != nullfree && dupcached == FALSE) {
1816 (*disp->dis_resfree)(res);
1817 }
1818
1819 done:
1820 /*
1821 * Free arguments struct
1822 */
1823 if (disp) {
1824 if (!SVC_FREEARGS(xprt, disp->dis_xdrargs, args)) {
1825 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname);
1826 error++;
1827 }
1828 } else {
1829 if (!SVC_FREEARGS(xprt, (xdrproc_t)0, (caddr_t)0)) {
1830 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname);
1831 error++;
1832 }
1833 }
1834
1835 if (exi != NULL)
1836 exi_rele(exi);
1837
1838 global_svstat_ptr[req->rq_vers][NFS_BADCALLS].value.ui64 += error;
1839
1840 global_svstat_ptr[req->rq_vers][NFS_CALLS].value.ui64++;
1841 }
1842
1843 static void
1844 rfs_dispatch(struct svc_req *req, SVCXPRT *xprt)
1845 {
1846 common_dispatch(req, xprt, NFS_VERSMIN, NFS_VERSMAX,
1847 "NFS", rfs_disptable);
1848 }
1849
1850 static char *aclcallnames_v2[] = {
1851 "ACL2_NULL",
1852 "ACL2_GETACL",
1853 "ACL2_SETACL",
1854 "ACL2_GETATTR",
1855 "ACL2_ACCESS",
1856 "ACL2_GETXATTRDIR"
1857 };
1858
1859 static struct rpcdisp acldisptab_v2[] = {
1860 /*
1861 * ACL VERSION 2
1862 */
1863
1864 /* ACL2_NULL = 0 */
1865 {rpc_null,
1866 xdr_void, NULL_xdrproc_t, 0,
1867 xdr_void, NULL_xdrproc_t, 0,
1868 nullfree, RPC_IDEMPOTENT,
1869 0},
1870
1871 /* ACL2_GETACL = 1 */
1872 {acl2_getacl,
1873 xdr_GETACL2args, xdr_fastGETACL2args, sizeof (GETACL2args),
1874 xdr_GETACL2res, NULL_xdrproc_t, sizeof (GETACL2res),
1875 acl2_getacl_free, RPC_IDEMPOTENT,
1876 acl2_getacl_getfh},
1877
1878 /* ACL2_SETACL = 2 */
1879 {acl2_setacl,
1880 xdr_SETACL2args, NULL_xdrproc_t, sizeof (SETACL2args),
1881 #ifdef _LITTLE_ENDIAN
1882 xdr_SETACL2res, xdr_fastSETACL2res, sizeof (SETACL2res),
1883 #else
1884 xdr_SETACL2res, NULL_xdrproc_t, sizeof (SETACL2res),
1885 #endif
1886 nullfree, RPC_MAPRESP,
1887 acl2_setacl_getfh},
1888
1889 /* ACL2_GETATTR = 3 */
1890 {acl2_getattr,
1891 xdr_GETATTR2args, xdr_fastGETATTR2args, sizeof (GETATTR2args),
1892 #ifdef _LITTLE_ENDIAN
1893 xdr_GETATTR2res, xdr_fastGETATTR2res, sizeof (GETATTR2res),
1894 #else
1895 xdr_GETATTR2res, NULL_xdrproc_t, sizeof (GETATTR2res),
1896 #endif
1897 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP,
1898 acl2_getattr_getfh},
1899
1900 /* ACL2_ACCESS = 4 */
1901 {acl2_access,
1902 xdr_ACCESS2args, xdr_fastACCESS2args, sizeof (ACCESS2args),
1903 #ifdef _LITTLE_ENDIAN
1904 xdr_ACCESS2res, xdr_fastACCESS2res, sizeof (ACCESS2res),
1905 #else
1906 xdr_ACCESS2res, NULL_xdrproc_t, sizeof (ACCESS2res),
1907 #endif
1908 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP,
1909 acl2_access_getfh},
1910
1911 /* ACL2_GETXATTRDIR = 5 */
1912 {acl2_getxattrdir,
1913 xdr_GETXATTRDIR2args, NULL_xdrproc_t, sizeof (GETXATTRDIR2args),
1914 xdr_GETXATTRDIR2res, NULL_xdrproc_t, sizeof (GETXATTRDIR2res),
1915 nullfree, RPC_IDEMPOTENT,
1916 acl2_getxattrdir_getfh},
1917 };
1918
1919 static char *aclcallnames_v3[] = {
1920 "ACL3_NULL",
1921 "ACL3_GETACL",
1922 "ACL3_SETACL",
1923 "ACL3_GETXATTRDIR"
1924 };
1925
1926 static struct rpcdisp acldisptab_v3[] = {
1927 /*
1928 * ACL VERSION 3
1929 */
1930
1931 /* ACL3_NULL = 0 */
1932 {rpc_null,
1933 xdr_void, NULL_xdrproc_t, 0,
1934 xdr_void, NULL_xdrproc_t, 0,
1935 nullfree, RPC_IDEMPOTENT,
1936 0},
1937
1938 /* ACL3_GETACL = 1 */
1939 {acl3_getacl,
1940 xdr_GETACL3args, NULL_xdrproc_t, sizeof (GETACL3args),
1941 xdr_GETACL3res, NULL_xdrproc_t, sizeof (GETACL3res),
1942 acl3_getacl_free, RPC_IDEMPOTENT,
1943 acl3_getacl_getfh},
1944
1945 /* ACL3_SETACL = 2 */
1946 {acl3_setacl,
1947 xdr_SETACL3args, NULL_xdrproc_t, sizeof (SETACL3args),
1948 xdr_SETACL3res, NULL_xdrproc_t, sizeof (SETACL3res),
1949 nullfree, 0,
1950 acl3_setacl_getfh},
1951
1952 /* ACL3_GETXATTRDIR = 3 */
1953 {acl3_getxattrdir,
1954 xdr_GETXATTRDIR3args, NULL_xdrproc_t, sizeof (GETXATTRDIR3args),
1955 xdr_GETXATTRDIR3res, NULL_xdrproc_t, sizeof (GETXATTRDIR3res),
1956 nullfree, RPC_IDEMPOTENT,
1957 acl3_getxattrdir_getfh},
1958 };
1959
1960 static struct rpc_disptable acl_disptable[] = {
1961 {sizeof (acldisptab_v2) / sizeof (acldisptab_v2[0]),
1962 aclcallnames_v2,
1963 &aclproccnt_v2_ptr, acldisptab_v2},
1964 {sizeof (acldisptab_v3) / sizeof (acldisptab_v3[0]),
1965 aclcallnames_v3,
1966 &aclproccnt_v3_ptr, acldisptab_v3},
1967 };
1968
1969 static void
1970 acl_dispatch(struct svc_req *req, SVCXPRT *xprt)
1971 {
1972 common_dispatch(req, xprt, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX,
1973 "ACL", acl_disptable);
1974 }
1975
1976 int
1977 checkwin(int flavor, int window, struct svc_req *req)
1978 {
1979 struct authdes_cred *adc;
1980
1981 switch (flavor) {
1982 case AUTH_DES:
1983 adc = (struct authdes_cred *)req->rq_clntcred;
1984 if (adc->adc_fullname.window > window)
1985 return (0);
1986 break;
1987
1988 default:
1989 break;
1990 }
1991 return (1);
1992 }
1993
1994
1995 /*
1996 * checkauth() will check the access permission against the export
1997 * information. Then map root uid/gid to appropriate uid/gid.
1998 *
1999 * This routine is used by NFS V3 and V2 code.
2000 */
2001 static int
2002 checkauth(struct exportinfo *exi, struct svc_req *req, cred_t *cr, int anon_ok,
2003 bool_t publicfh_ok)
2004 {
2005 int i, nfsflavor, rpcflavor, stat, access;
2006 struct secinfo *secp;
2007 caddr_t principal;
2008 char buf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */
2009 int anon_res = 0;
2010
2011 /*
2012 * Check for privileged port number
2013 * N.B.: this assumes that we know the format of a netbuf.
2014 */
2015 if (nfs_portmon) {
2016 struct sockaddr *ca;
2017 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf;
2018
2019 if (ca == NULL)
2020 return (0);
2021
2022 if ((ca->sa_family == AF_INET &&
2023 ntohs(((struct sockaddr_in *)ca)->sin_port) >=
2024 IPPORT_RESERVED) ||
2025 (ca->sa_family == AF_INET6 &&
2026 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >=
2027 IPPORT_RESERVED)) {
2028 cmn_err(CE_NOTE,
2029 "nfs_server: client %s%ssent NFS request from "
2030 "unprivileged port",
2031 client_name(req), client_addr(req, buf));
2032 return (0);
2033 }
2034 }
2035
2036 /*
2037 * return 1 on success or 0 on failure
2038 */
2039 stat = sec_svc_getcred(req, cr, &principal, &nfsflavor);
2040
2041 /*
2042 * A failed AUTH_UNIX svc_get_cred() implies we couldn't set
2043 * the credentials; below we map that to anonymous.
2044 */
2045 if (!stat && nfsflavor != AUTH_UNIX) {
2046 cmn_err(CE_NOTE,
2047 "nfs_server: couldn't get unix cred for %s",
2048 client_name(req));
2049 return (0);
2050 }
2051
2052 /*
2053 * Short circuit checkauth() on operations that support the
2054 * public filehandle, and if the request for that operation
2055 * is using the public filehandle. Note that we must call
2056 * sec_svc_getcred() first so that xp_cookie is set to the
2057 * right value. Normally xp_cookie is just the RPC flavor
2058 * of the the request, but in the case of RPCSEC_GSS it
2059 * could be a pseudo flavor.
2060 */
2061 if (publicfh_ok)
2062 return (1);
2063
2064 rpcflavor = req->rq_cred.oa_flavor;
2065 /*
2066 * Check if the auth flavor is valid for this export
2067 */
2068 access = nfsauth_access(exi, req);
2069 if (access & NFSAUTH_DROP)
2070 return (-1); /* drop the request */
2071
2072 if (access & NFSAUTH_DENIED) {
2073 /*
2074 * If anon_ok == 1 and we got NFSAUTH_DENIED, it was
2075 * probably due to the flavor not matching during the
2076 * the mount attempt. So map the flavor to AUTH_NONE
2077 * so that the credentials get mapped to the anonymous
2078 * user.
2079 */
2080 if (anon_ok == 1)
2081 rpcflavor = AUTH_NONE;
2082 else
2083 return (0); /* deny access */
2084
2085 } else if (access & NFSAUTH_MAPNONE) {
2086 /*
2087 * Access was granted even though the flavor mismatched
2088 * because AUTH_NONE was one of the exported flavors.
2089 */
2090 rpcflavor = AUTH_NONE;
2091
2092 } else if (access & NFSAUTH_WRONGSEC) {
2093 /*
2094 * NFSAUTH_WRONGSEC is used for NFSv4. If we get here,
2095 * it means a client ignored the list of allowed flavors
2096 * returned via the MOUNT protocol. So we just disallow it!
2097 */
2098 return (0);
2099 }
2100
2101 switch (rpcflavor) {
2102 case AUTH_NONE:
2103 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2104 exi->exi_export.ex_anon);
2105 (void) crsetgroups(cr, 0, NULL);
2106 break;
2107
2108 case AUTH_UNIX:
2109 if (!stat || crgetuid(cr) == 0 && !(access & NFSAUTH_ROOT)) {
2110 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2111 exi->exi_export.ex_anon);
2112 (void) crsetgroups(cr, 0, NULL);
2113 } else if (!stat || crgetuid(cr) == 0 &&
2114 access & NFSAUTH_ROOT) {
2115 /*
2116 * It is root, so apply rootid to get real UID
2117 * Find the secinfo structure. We should be able
2118 * to find it by the time we reach here.
2119 * nfsauth_access() has done the checking.
2120 */
2121 secp = NULL;
2122 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2123 struct secinfo *sptr;
2124 sptr = &exi->exi_export.ex_secinfo[i];
2125 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) {
2126 secp = sptr;
2127 break;
2128 }
2129 }
2130 if (secp != NULL) {
2131 (void) crsetugid(cr, secp->s_rootid,
2132 secp->s_rootid);
2133 (void) crsetgroups(cr, 0, NULL);
2134 }
2135 }
2136 break;
2137
2138 case AUTH_DES:
2139 case RPCSEC_GSS:
2140 /*
2141 * Find the secinfo structure. We should be able
2142 * to find it by the time we reach here.
2143 * nfsauth_access() has done the checking.
2144 */
2145 secp = NULL;
2146 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2147 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum ==
2148 nfsflavor) {
2149 secp = &exi->exi_export.ex_secinfo[i];
2150 break;
2151 }
2152 }
2153
2154 if (!secp) {
2155 cmn_err(CE_NOTE, "nfs_server: client %s%shad "
2156 "no secinfo data for flavor %d",
2157 client_name(req), client_addr(req, buf),
2158 nfsflavor);
2159 return (0);
2160 }
2161
2162 if (!checkwin(rpcflavor, secp->s_window, req)) {
2163 cmn_err(CE_NOTE,
2164 "nfs_server: client %s%sused invalid "
2165 "auth window value",
2166 client_name(req), client_addr(req, buf));
2167 return (0);
2168 }
2169
2170 /*
2171 * Map root principals listed in the share's root= list to root,
2172 * and map any others principals that were mapped to root by RPC
2173 * to anon.
2174 */
2175 if (principal && sec_svc_inrootlist(rpcflavor, principal,
2176 secp->s_rootcnt, secp->s_rootnames)) {
2177 if (crgetuid(cr) == 0 && secp->s_rootid == 0)
2178 return (1);
2179
2180
2181 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid);
2182
2183 /*
2184 * NOTE: If and when kernel-land privilege tracing is
2185 * added this may have to be replaced with code that
2186 * retrieves root's supplementary groups (e.g., using
2187 * kgss_get_group_info(). In the meantime principals
2188 * mapped to uid 0 get all privileges, so setting cr's
2189 * supplementary groups for them does nothing.
2190 */
2191 (void) crsetgroups(cr, 0, NULL);
2192
2193 return (1);
2194 }
2195
2196 /*
2197 * Not a root princ, or not in root list, map UID 0/nobody to
2198 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to
2199 * UID_NOBODY and GID_NOBODY, respectively.)
2200 */
2201 if (crgetuid(cr) != 0 &&
2202 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY))
2203 return (1);
2204
2205 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2206 exi->exi_export.ex_anon);
2207 (void) crsetgroups(cr, 0, NULL);
2208 break;
2209 default:
2210 return (0);
2211 } /* switch on rpcflavor */
2212
2213 /*
2214 * Even if anon access is disallowed via ex_anon == -1, we allow
2215 * this access if anon_ok is set. So set creds to the default
2216 * "nobody" id.
2217 */
2218 if (anon_res != 0) {
2219 if (anon_ok == 0) {
2220 cmn_err(CE_NOTE,
2221 "nfs_server: client %s%ssent wrong "
2222 "authentication for %s",
2223 client_name(req), client_addr(req, buf),
2224 exi->exi_export.ex_path ?
2225 exi->exi_export.ex_path : "?");
2226 return (0);
2227 }
2228
2229 if (crsetugid(cr, UID_NOBODY, GID_NOBODY) != 0)
2230 return (0);
2231 }
2232
2233 return (1);
2234 }
2235
2236 /*
2237 * returns 0 on failure, -1 on a drop, -2 on wrong security flavor,
2238 * and 1 on success
2239 */
2240 int
2241 checkauth4(struct compound_state *cs, struct svc_req *req)
2242 {
2243 int i, rpcflavor, access;
2244 struct secinfo *secp;
2245 char buf[MAXHOST + 1];
2246 int anon_res = 0, nfsflavor;
2247 struct exportinfo *exi;
2248 cred_t *cr;
2249 caddr_t principal;
2250
2251 exi = cs->exi;
2252 cr = cs->cr;
2253 principal = cs->principal;
2254 nfsflavor = cs->nfsflavor;
2255
2256 ASSERT(cr != NULL);
2257
2258 rpcflavor = req->rq_cred.oa_flavor;
2259 cs->access &= ~CS_ACCESS_LIMITED;
2260
2261 /*
2262 * Check for privileged port number
2263 * N.B.: this assumes that we know the format of a netbuf.
2264 */
2265 if (nfs_portmon) {
2266 struct sockaddr *ca;
2267 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf;
2268
2269 if (ca == NULL)
2270 return (0);
2271
2272 if ((ca->sa_family == AF_INET &&
2273 ntohs(((struct sockaddr_in *)ca)->sin_port) >=
2274 IPPORT_RESERVED) ||
2275 (ca->sa_family == AF_INET6 &&
2276 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >=
2277 IPPORT_RESERVED)) {
2278 cmn_err(CE_NOTE,
2279 "nfs_server: client %s%ssent NFSv4 request from "
2280 "unprivileged port",
2281 client_name(req), client_addr(req, buf));
2282 return (0);
2283 }
2284 }
2285
2286 /*
2287 * Check the access right per auth flavor on the vnode of
2288 * this export for the given request.
2289 */
2290 access = nfsauth4_access(cs->exi, cs->vp, req);
2291
2292 if (access & NFSAUTH_WRONGSEC)
2293 return (-2); /* no access for this security flavor */
2294
2295 if (access & NFSAUTH_DROP)
2296 return (-1); /* drop the request */
2297
2298 if (access & NFSAUTH_DENIED) {
2299
2300 if (exi->exi_export.ex_seccnt > 0)
2301 return (0); /* deny access */
2302
2303 } else if (access & NFSAUTH_LIMITED) {
2304
2305 cs->access |= CS_ACCESS_LIMITED;
2306
2307 } else if (access & NFSAUTH_MAPNONE) {
2308 /*
2309 * Access was granted even though the flavor mismatched
2310 * because AUTH_NONE was one of the exported flavors.
2311 */
2312 rpcflavor = AUTH_NONE;
2313 }
2314
2315 /*
2316 * XXX probably need to redo some of it for nfsv4?
2317 * return 1 on success or 0 on failure
2318 */
2319
2320 switch (rpcflavor) {
2321 case AUTH_NONE:
2322 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2323 exi->exi_export.ex_anon);
2324 (void) crsetgroups(cr, 0, NULL);
2325 break;
2326
2327 case AUTH_UNIX:
2328 if (crgetuid(cr) == 0 && !(access & NFSAUTH_ROOT)) {
2329 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2330 exi->exi_export.ex_anon);
2331 (void) crsetgroups(cr, 0, NULL);
2332 } else if (crgetuid(cr) == 0 && access & NFSAUTH_ROOT) {
2333 /*
2334 * It is root, so apply rootid to get real UID
2335 * Find the secinfo structure. We should be able
2336 * to find it by the time we reach here.
2337 * nfsauth_access() has done the checking.
2338 */
2339 secp = NULL;
2340 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2341 struct secinfo *sptr;
2342 sptr = &exi->exi_export.ex_secinfo[i];
2343 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) {
2344 secp = &exi->exi_export.ex_secinfo[i];
2345 break;
2346 }
2347 }
2348 if (secp != NULL) {
2349 (void) crsetugid(cr, secp->s_rootid,
2350 secp->s_rootid);
2351 (void) crsetgroups(cr, 0, NULL);
2352 }
2353 }
2354 break;
2355
2356 default:
2357 /*
2358 * Find the secinfo structure. We should be able
2359 * to find it by the time we reach here.
2360 * nfsauth_access() has done the checking.
2361 */
2362 secp = NULL;
2363 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2364 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum ==
2365 nfsflavor) {
2366 secp = &exi->exi_export.ex_secinfo[i];
2367 break;
2368 }
2369 }
2370
2371 if (!secp) {
2372 cmn_err(CE_NOTE, "nfs_server: client %s%shad "
2373 "no secinfo data for flavor %d",
2374 client_name(req), client_addr(req, buf),
2375 nfsflavor);
2376 return (0);
2377 }
2378
2379 if (!checkwin(rpcflavor, secp->s_window, req)) {
2380 cmn_err(CE_NOTE,
2381 "nfs_server: client %s%sused invalid "
2382 "auth window value",
2383 client_name(req), client_addr(req, buf));
2384 return (0);
2385 }
2386
2387 /*
2388 * Map root principals listed in the share's root= list to root,
2389 * and map any others principals that were mapped to root by RPC
2390 * to anon. If not going to anon, set to rootid (root_mapping).
2391 */
2392 if (principal && sec_svc_inrootlist(rpcflavor, principal,
2393 secp->s_rootcnt, secp->s_rootnames)) {
2394 if (crgetuid(cr) == 0 && secp->s_rootid == 0)
2395 return (1);
2396
2397 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid);
2398
2399 /*
2400 * NOTE: If and when kernel-land privilege tracing is
2401 * added this may have to be replaced with code that
2402 * retrieves root's supplementary groups (e.g., using
2403 * kgss_get_group_info(). In the meantime principals
2404 * mapped to uid 0 get all privileges, so setting cr's
2405 * supplementary groups for them does nothing.
2406 */
2407 (void) crsetgroups(cr, 0, NULL);
2408
2409 return (1);
2410 }
2411
2412 /*
2413 * Not a root princ, or not in root list, map UID 0/nobody to
2414 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to
2415 * UID_NOBODY and GID_NOBODY, respectively.)
2416 */
2417 if (crgetuid(cr) != 0 &&
2418 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY))
2419 return (1);
2420
2421 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2422 exi->exi_export.ex_anon);
2423 (void) crsetgroups(cr, 0, NULL);
2424 break;
2425 } /* switch on rpcflavor */
2426
2427 /*
2428 * Even if anon access is disallowed via ex_anon == -1, we allow
2429 * this access if anon_ok is set. So set creds to the default
2430 * "nobody" id.
2431 */
2432
2433 if (anon_res != 0) {
2434 cmn_err(CE_NOTE,
2435 "nfs_server: client %s%ssent wrong "
2436 "authentication for %s",
2437 client_name(req), client_addr(req, buf),
2438 exi->exi_export.ex_path ?
2439 exi->exi_export.ex_path : "?");
2440 return (0);
2441 }
2442
2443 return (1);
2444 }
2445
2446
2447 static char *
2448 client_name(struct svc_req *req)
2449 {
2450 char *hostname = NULL;
2451
2452 /*
2453 * If it's a Unix cred then use the
2454 * hostname from the credential.
2455 */
2456 if (req->rq_cred.oa_flavor == AUTH_UNIX) {
2457 hostname = ((struct authunix_parms *)
2458 req->rq_clntcred)->aup_machname;
2459 }
2460 if (hostname == NULL)
2461 hostname = "";
2462
2463 return (hostname);
2464 }
2465
2466 static char *
2467 client_addr(struct svc_req *req, char *buf)
2468 {
2469 struct sockaddr *ca;
2470 uchar_t *b;
2471 char *frontspace = "";
2472
2473 /*
2474 * We assume we are called in tandem with client_name and the
2475 * format string looks like "...client %s%sblah blah..."
2476 *
2477 * If it's a Unix cred then client_name returned
2478 * a host name, so we need insert a space between host name
2479 * and IP address.
2480 */
2481 if (req->rq_cred.oa_flavor == AUTH_UNIX)
2482 frontspace = " ";
2483
2484 /*
2485 * Convert the caller's IP address to a dotted string
2486 */
2487 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf;
2488
2489 if (ca->sa_family == AF_INET) {
2490 b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr;
2491 (void) sprintf(buf, "%s(%d.%d.%d.%d) ", frontspace,
2492 b[0] & 0xFF, b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF);
2493 } else if (ca->sa_family == AF_INET6) {
2494 struct sockaddr_in6 *sin6;
2495 sin6 = (struct sockaddr_in6 *)ca;
2496 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr,
2497 buf, INET6_ADDRSTRLEN);
2498
2499 } else {
2500
2501 /*
2502 * No IP address to print. If there was a host name
2503 * printed, then we print a space.
2504 */
2505 (void) sprintf(buf, frontspace);
2506 }
2507
2508 return (buf);
2509 }
2510
2511 /*
2512 * NFS Server initialization routine. This routine should only be called
2513 * once. It performs the following tasks:
2514 * - Call sub-initialization routines (localize access to variables)
2515 * - Initialize all locks
2516 * - initialize the version 3 write verifier
2517 */
2518 int
2519 nfs_srvinit(void)
2520 {
2521 int error;
2522
2523 error = nfs_exportinit();
2524 if (error != 0)
2525 return (error);
2526 error = rfs4_srvrinit();
2527 if (error != 0) {
2528 nfs_exportfini();
2529 return (error);
2530 }
2531 rfs_srvrinit();
2532 rfs3_srvrinit();
2533 nfsauth_init();
2534
2535 /* Init the stuff to control start/stop */
2536 nfs_server_upordown = NFS_SERVER_STOPPED;
2537 mutex_init(&nfs_server_upordown_lock, NULL, MUTEX_DEFAULT, NULL);
2538 cv_init(&nfs_server_upordown_cv, NULL, CV_DEFAULT, NULL);
2539 mutex_init(&rdma_wait_mutex, NULL, MUTEX_DEFAULT, NULL);
2540 cv_init(&rdma_wait_cv, NULL, CV_DEFAULT, NULL);
2541
2542 return (0);
2543 }
2544
2545 /*
2546 * NFS Server finalization routine. This routine is called to cleanup the
2547 * initialization work previously performed if the NFS server module could
2548 * not be loaded correctly.
2549 */
2550 void
2551 nfs_srvfini(void)
2552 {
2553 nfsauth_fini();
2554 rfs3_srvrfini();
2555 rfs_srvrfini();
2556 nfs_exportfini();
2557
2558 mutex_destroy(&nfs_server_upordown_lock);
2559 cv_destroy(&nfs_server_upordown_cv);
2560 mutex_destroy(&rdma_wait_mutex);
2561 cv_destroy(&rdma_wait_cv);
2562 }
2563
2564 /*
2565 * Set up an iovec array of up to cnt pointers.
2566 */
2567
2568 void
2569 mblk_to_iov(mblk_t *m, int cnt, struct iovec *iovp)
2570 {
2571 while (m != NULL && cnt-- > 0) {
2572 iovp->iov_base = (caddr_t)m->b_rptr;
2573 iovp->iov_len = (m->b_wptr - m->b_rptr);
2574 iovp++;
2575 m = m->b_cont;
2576 }
2577 }
2578
2579 /*
2580 * Common code between NFS Version 2 and NFS Version 3 for the public
2581 * filehandle multicomponent lookups.
2582 */
2583
2584 /*
2585 * Public filehandle evaluation of a multi-component lookup, following
2586 * symbolic links, if necessary. This may result in a vnode in another
2587 * filesystem, which is OK as long as the other filesystem is exported.
2588 *
2589 * Note that the exi will be set either to NULL or a new reference to the
2590 * exportinfo struct that corresponds to the vnode of the multi-component path.
2591 * It is the callers responsibility to release this reference.
2592 */
2593 int
2594 rfs_publicfh_mclookup(char *p, vnode_t *dvp, cred_t *cr, vnode_t **vpp,
2595 struct exportinfo **exi, struct sec_ol *sec)
2596 {
2597 int pathflag;
2598 vnode_t *mc_dvp = NULL;
2599 vnode_t *realvp;
2600 int error;
2601
2602 *exi = NULL;
2603
2604 /*
2605 * check if the given path is a url or native path. Since p is
2606 * modified by MCLpath(), it may be empty after returning from
2607 * there, and should be checked.
2608 */
2609 if ((pathflag = MCLpath(&p)) == -1)
2610 return (EIO);
2611
2612 /*
2613 * If pathflag is SECURITY_QUERY, turn the SEC_QUERY bit
2614 * on in sec->sec_flags. This bit will later serve as an
2615 * indication in makefh_ol() or makefh3_ol() to overload the
2616 * filehandle to contain the sec modes used by the server for
2617 * the path.
2618 */
2619 if (pathflag == SECURITY_QUERY) {
2620 if ((sec->sec_index = (uint_t)(*p)) > 0) {
2621 sec->sec_flags |= SEC_QUERY;
2622 p++;
2623 if ((pathflag = MCLpath(&p)) == -1)
2624 return (EIO);
2625 } else {
2626 cmn_err(CE_NOTE,
2627 "nfs_server: invalid security index %d, "
2628 "violating WebNFS SNEGO protocol.", sec->sec_index);
2629 return (EIO);
2630 }
2631 }
2632
2633 if (p[0] == '\0') {
2634 error = ENOENT;
2635 goto publicfh_done;
2636 }
2637
2638 error = rfs_pathname(p, &mc_dvp, vpp, dvp, cr, pathflag);
2639
2640 /*
2641 * If name resolves to "/" we get EINVAL since we asked for
2642 * the vnode of the directory that the file is in. Try again
2643 * with NULL directory vnode.
2644 */
2645 if (error == EINVAL) {
2646 error = rfs_pathname(p, NULL, vpp, dvp, cr, pathflag);
2647 if (!error) {
2648 ASSERT(*vpp != NULL);
2649 if ((*vpp)->v_type == VDIR) {
2650 VN_HOLD(*vpp);
2651 mc_dvp = *vpp;
2652 } else {
2653 /*
2654 * This should not happen, the filesystem is
2655 * in an inconsistent state. Fail the lookup
2656 * at this point.
2657 */
2658 VN_RELE(*vpp);
2659 error = EINVAL;
2660 }
2661 }
2662 }
2663
2664 if (error)
2665 goto publicfh_done;
2666
2667 if (*vpp == NULL) {
2668 error = ENOENT;
2669 goto publicfh_done;
2670 }
2671
2672 ASSERT(mc_dvp != NULL);
2673 ASSERT(*vpp != NULL);
2674
2675 if ((*vpp)->v_type == VDIR) {
2676 do {
2677 /*
2678 * *vpp may be an AutoFS node, so we perform
2679 * a VOP_ACCESS() to trigger the mount of the intended
2680 * filesystem, so we can perform the lookup in the
2681 * intended filesystem.
2682 */
2683 (void) VOP_ACCESS(*vpp, 0, 0, cr, NULL);
2684
2685 /*
2686 * If vnode is covered, get the
2687 * the topmost vnode.
2688 */
2689 if (vn_mountedvfs(*vpp) != NULL) {
2690 error = traverse(vpp);
2691 if (error) {
2692 VN_RELE(*vpp);
2693 goto publicfh_done;
2694 }
2695 }
2696
2697 if (VOP_REALVP(*vpp, &realvp, NULL) == 0 &&
2698 realvp != *vpp) {
2699 /*
2700 * If realvp is different from *vpp
2701 * then release our reference on *vpp, so that
2702 * the export access check be performed on the
2703 * real filesystem instead.
2704 */
2705 VN_HOLD(realvp);
2706 VN_RELE(*vpp);
2707 *vpp = realvp;
2708 } else {
2709 break;
2710 }
2711 /* LINTED */
2712 } while (TRUE);
2713
2714 /*
2715 * Let nfs_vptexi() figure what the real parent is.
2716 */
2717 VN_RELE(mc_dvp);
2718 mc_dvp = NULL;
2719
2720 } else {
2721 /*
2722 * If vnode is covered, get the
2723 * the topmost vnode.
2724 */
2725 if (vn_mountedvfs(mc_dvp) != NULL) {
2726 error = traverse(&mc_dvp);
2727 if (error) {
2728 VN_RELE(*vpp);
2729 goto publicfh_done;
2730 }
2731 }
2732
2733 if (VOP_REALVP(mc_dvp, &realvp, NULL) == 0 &&
2734 realvp != mc_dvp) {
2735 /*
2736 * *vpp is a file, obtain realvp of the parent
2737 * directory vnode.
2738 */
2739 VN_HOLD(realvp);
2740 VN_RELE(mc_dvp);
2741 mc_dvp = realvp;
2742 }
2743 }
2744
2745 /*
2746 * The pathname may take us from the public filesystem to another.
2747 * If that's the case then just set the exportinfo to the new export
2748 * and build filehandle for it. Thanks to per-access checking there's
2749 * no security issues with doing this. If the client is not allowed
2750 * access to this new export then it will get an access error when it
2751 * tries to use the filehandle
2752 */
2753 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) {
2754 VN_RELE(*vpp);
2755 goto publicfh_done;
2756 }
2757
2758 /*
2759 * Not allowed access to pseudo exports.
2760 */
2761 if (PSEUDO(*exi)) {
2762 error = ENOENT;
2763 VN_RELE(*vpp);
2764 goto publicfh_done;
2765 }
2766
2767 /*
2768 * Do a lookup for the index file. We know the index option doesn't
2769 * allow paths through handling in the share command, so mc_dvp will
2770 * be the parent for the index file vnode, if its present. Use
2771 * temporary pointers to preserve and reuse the vnode pointers of the
2772 * original directory in case there's no index file. Note that the
2773 * index file is a native path, and should not be interpreted by
2774 * the URL parser in rfs_pathname()
2775 */
2776 if (((*exi)->exi_export.ex_flags & EX_INDEX) &&
2777 ((*vpp)->v_type == VDIR) && (pathflag == URLPATH)) {
2778 vnode_t *tvp, *tmc_dvp; /* temporary vnode pointers */
2779
2780 tmc_dvp = mc_dvp;
2781 mc_dvp = tvp = *vpp;
2782
2783 error = rfs_pathname((*exi)->exi_export.ex_index, NULL, vpp,
2784 mc_dvp, cr, NATIVEPATH);
2785
2786 if (error == ENOENT) {
2787 *vpp = tvp;
2788 mc_dvp = tmc_dvp;
2789 error = 0;
2790 } else { /* ok or error other than ENOENT */
2791 if (tmc_dvp)
2792 VN_RELE(tmc_dvp);
2793 if (error)
2794 goto publicfh_done;
2795
2796 /*
2797 * Found a valid vp for index "filename". Sanity check
2798 * for odd case where a directory is provided as index
2799 * option argument and leads us to another filesystem
2800 */
2801
2802 /* Release the reference on the old exi value */
2803 ASSERT(*exi != NULL);
2804 exi_rele(*exi);
2805
2806 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) {
2807 VN_RELE(*vpp);
2808 goto publicfh_done;
2809 }
2810 }
2811 }
2812
2813 publicfh_done:
2814 if (mc_dvp)
2815 VN_RELE(mc_dvp);
2816
2817 return (error);
2818 }
2819
2820 /*
2821 * Evaluate a multi-component path
2822 */
2823 int
2824 rfs_pathname(
2825 char *path, /* pathname to evaluate */
2826 vnode_t **dirvpp, /* ret for ptr to parent dir vnode */
2827 vnode_t **compvpp, /* ret for ptr to component vnode */
2828 vnode_t *startdvp, /* starting vnode */
2829 cred_t *cr, /* user's credential */
2830 int pathflag) /* flag to identify path, e.g. URL */
2831 {
2832 char namebuf[TYPICALMAXPATHLEN];
2833 struct pathname pn;
2834 int error;
2835
2836 /*
2837 * If pathname starts with '/', then set startdvp to root.
2838 */
2839 if (*path == '/') {
2840 while (*path == '/')
2841 path++;
2842
2843 startdvp = rootdir;
2844 }
2845
2846 error = pn_get_buf(path, UIO_SYSSPACE, &pn, namebuf, sizeof (namebuf));
2847 if (error == 0) {
2848 /*
2849 * Call the URL parser for URL paths to modify the original
2850 * string to handle any '%' encoded characters that exist.
2851 * Done here to avoid an extra bcopy in the lookup.
2852 * We need to be careful about pathlen's. We know that
2853 * rfs_pathname() is called with a non-empty path. However,
2854 * it could be emptied due to the path simply being all /'s,
2855 * which is valid to proceed with the lookup, or due to the
2856 * URL parser finding an encoded null character at the
2857 * beginning of path which should not proceed with the lookup.
2858 */
2859 if (pn.pn_pathlen != 0 && pathflag == URLPATH) {
2860 URLparse(pn.pn_path);
2861 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0)
2862 return (ENOENT);
2863 }
2864 VN_HOLD(startdvp);
2865 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp,
2866 rootdir, startdvp, cr);
2867 }
2868 if (error == ENAMETOOLONG) {
2869 /*
2870 * This thread used a pathname > TYPICALMAXPATHLEN bytes long.
2871 */
2872 if (error = pn_get(path, UIO_SYSSPACE, &pn))
2873 return (error);
2874 if (pn.pn_pathlen != 0 && pathflag == URLPATH) {
2875 URLparse(pn.pn_path);
2876 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) {
2877 pn_free(&pn);
2878 return (ENOENT);
2879 }
2880 }
2881 VN_HOLD(startdvp);
2882 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp,
2883 rootdir, startdvp, cr);
2884 pn_free(&pn);
2885 }
2886
2887 return (error);
2888 }
2889
2890 /*
2891 * Adapt the multicomponent lookup path depending on the pathtype
2892 */
2893 static int
2894 MCLpath(char **path)
2895 {
2896 unsigned char c = (unsigned char)**path;
2897
2898 /*
2899 * If the MCL path is between 0x20 and 0x7E (graphic printable
2900 * character of the US-ASCII coded character set), its a URL path,
2901 * per RFC 1738.
2902 */
2903 if (c >= 0x20 && c <= 0x7E)
2904 return (URLPATH);
2905
2906 /*
2907 * If the first octet of the MCL path is not an ASCII character
2908 * then it must be interpreted as a tag value that describes the
2909 * format of the remaining octets of the MCL path.
2910 *
2911 * If the first octet of the MCL path is 0x81 it is a query
2912 * for the security info.
2913 */
2914 switch (c) {
2915 case 0x80: /* native path, i.e. MCL via mount protocol */
2916 (*path)++;
2917 return (NATIVEPATH);
2918 case 0x81: /* security query */
2919 (*path)++;
2920 return (SECURITY_QUERY);
2921 default:
2922 return (-1);
2923 }
2924 }
2925
2926 #define fromhex(c) ((c >= '0' && c <= '9') ? (c - '0') : \
2927 ((c >= 'A' && c <= 'F') ? (c - 'A' + 10) :\
2928 ((c >= 'a' && c <= 'f') ? (c - 'a' + 10) : 0)))
2929
2930 /*
2931 * The implementation of URLparse guarantees that the final string will
2932 * fit in the original one. Replaces '%' occurrences followed by 2 characters
2933 * with its corresponding hexadecimal character.
2934 */
2935 static void
2936 URLparse(char *str)
2937 {
2938 char *p, *q;
2939
2940 p = q = str;
2941 while (*p) {
2942 *q = *p;
2943 if (*p++ == '%') {
2944 if (*p) {
2945 *q = fromhex(*p) * 16;
2946 p++;
2947 if (*p) {
2948 *q += fromhex(*p);
2949 p++;
2950 }
2951 }
2952 }
2953 q++;
2954 }
2955 *q = '\0';
2956 }
2957
2958
2959 /*
2960 * Get the export information for the lookup vnode, and verify its
2961 * useable.
2962 */
2963 int
2964 nfs_check_vpexi(vnode_t *mc_dvp, vnode_t *vp, cred_t *cr,
2965 struct exportinfo **exi)
2966 {
2967 int walk;
2968 int error = 0;
2969
2970 *exi = nfs_vptoexi(mc_dvp, vp, cr, &walk, NULL, FALSE);
2971 if (*exi == NULL)
2972 error = EACCES;
2973 else {
2974 /*
2975 * If nosub is set for this export then
2976 * a lookup relative to the public fh
2977 * must not terminate below the
2978 * exported directory.
2979 */
2980 if ((*exi)->exi_export.ex_flags & EX_NOSUB && walk > 0)
2981 error = EACCES;
2982 }
2983
2984 return (error);
2985 }
2986
2987 /*
2988 * Do the main work of handling HA-NFSv4 Resource Group failover on
2989 * Sun Cluster.
2990 * We need to detect whether any RG admin paths have been added or removed,
2991 * and adjust resources accordingly.
2992 * Currently we're using a very inefficient algorithm, ~ 2 * O(n**2). In
2993 * order to scale, the list and array of paths need to be held in more
2994 * suitable data structures.
2995 */
2996 static void
2997 hanfsv4_failover(void)
2998 {
2999 int i, start_grace, numadded_paths = 0;
3000 char **added_paths = NULL;
3001 rfs4_dss_path_t *dss_path;
3002
3003 /*
3004 * Note: currently, rfs4_dss_pathlist cannot be NULL, since
3005 * it will always include an entry for NFS4_DSS_VAR_DIR. If we
3006 * make the latter dynamically specified too, the following will
3007 * need to be adjusted.
3008 */
3009
3010 /*
3011 * First, look for removed paths: RGs that have been failed-over
3012 * away from this node.
3013 * Walk the "currently-serving" rfs4_dss_pathlist and, for each
3014 * path, check if it is on the "passed-in" rfs4_dss_newpaths array
3015 * from nfsd. If not, that RG path has been removed.
3016 *
3017 * Note that nfsd has sorted rfs4_dss_newpaths for us, and removed
3018 * any duplicates.
3019 */
3020 dss_path = rfs4_dss_pathlist;
3021 do {
3022 int found = 0;
3023 char *path = dss_path->path;
3024
3025 /* used only for non-HA so may not be removed */
3026 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) {
3027 dss_path = dss_path->next;
3028 continue;
3029 }
3030
3031 for (i = 0; i < rfs4_dss_numnewpaths; i++) {
3032 int cmpret;
3033 char *newpath = rfs4_dss_newpaths[i];
3034
3035 /*
3036 * Since nfsd has sorted rfs4_dss_newpaths for us,
3037 * once the return from strcmp is negative we know
3038 * we've passed the point where "path" should be,
3039 * and can stop searching: "path" has been removed.
3040 */
3041 cmpret = strcmp(path, newpath);
3042 if (cmpret < 0)
3043 break;
3044 if (cmpret == 0) {
3045 found = 1;
3046 break;
3047 }
3048 }
3049
3050 if (found == 0) {
3051 unsigned index = dss_path->index;
3052 rfs4_servinst_t *sip = dss_path->sip;
3053 rfs4_dss_path_t *path_next = dss_path->next;
3054
3055 /*
3056 * This path has been removed.
3057 * We must clear out the servinst reference to
3058 * it, since it's now owned by another
3059 * node: we should not attempt to touch it.
3060 */
3061 ASSERT(dss_path == sip->dss_paths[index]);
3062 sip->dss_paths[index] = NULL;
3063
3064 /* remove from "currently-serving" list, and destroy */
3065 remque(dss_path);
3066 /* allow for NUL */
3067 kmem_free(dss_path->path, strlen(dss_path->path) + 1);
3068 kmem_free(dss_path, sizeof (rfs4_dss_path_t));
3069
3070 dss_path = path_next;
3071 } else {
3072 /* path was found; not removed */
3073 dss_path = dss_path->next;
3074 }
3075 } while (dss_path != rfs4_dss_pathlist);
3076
3077 /*
3078 * Now, look for added paths: RGs that have been failed-over
3079 * to this node.
3080 * Walk the "passed-in" rfs4_dss_newpaths array from nfsd and,
3081 * for each path, check if it is on the "currently-serving"
3082 * rfs4_dss_pathlist. If not, that RG path has been added.
3083 *
3084 * Note: we don't do duplicate detection here; nfsd does that for us.
3085 *
3086 * Note: numadded_paths <= rfs4_dss_numnewpaths, which gives us
3087 * an upper bound for the size needed for added_paths[numadded_paths].
3088 */
3089
3090 /* probably more space than we need, but guaranteed to be enough */
3091 if (rfs4_dss_numnewpaths > 0) {
3092 size_t sz = rfs4_dss_numnewpaths * sizeof (char *);
3093 added_paths = kmem_zalloc(sz, KM_SLEEP);
3094 }
3095
3096 /* walk the "passed-in" rfs4_dss_newpaths array from nfsd */
3097 for (i = 0; i < rfs4_dss_numnewpaths; i++) {
3098 int found = 0;
3099 char *newpath = rfs4_dss_newpaths[i];
3100
3101 dss_path = rfs4_dss_pathlist;
3102 do {
3103 char *path = dss_path->path;
3104
3105 /* used only for non-HA */
3106 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) {
3107 dss_path = dss_path->next;
3108 continue;
3109 }
3110
3111 if (strncmp(path, newpath, strlen(path)) == 0) {
3112 found = 1;
3113 break;
3114 }
3115
3116 dss_path = dss_path->next;
3117 } while (dss_path != rfs4_dss_pathlist);
3118
3119 if (found == 0) {
3120 added_paths[numadded_paths] = newpath;
3121 numadded_paths++;
3122 }
3123 }
3124
3125 /* did we find any added paths? */
3126 if (numadded_paths > 0) {
3127 /* create a new server instance, and start its grace period */
3128 start_grace = 1;
3129 rfs4_servinst_create(start_grace, numadded_paths, added_paths);
3130
3131 /* read in the stable storage state from these paths */
3132 rfs4_dss_readstate(numadded_paths, added_paths);
3133
3134 /*
3135 * Multiple failovers during a grace period will cause
3136 * clients of the same resource group to be partitioned
3137 * into different server instances, with different
3138 * grace periods. Since clients of the same resource
3139 * group must be subject to the same grace period,
3140 * we need to reset all currently active grace periods.
3141 */
3142 rfs4_grace_reset_all();
3143 }
3144
3145 if (rfs4_dss_numnewpaths > 0)
3146 kmem_free(added_paths, rfs4_dss_numnewpaths * sizeof (char *));
3147 }
3148
3149 /*
3150 * Used by NFSv3 and NFSv4 server to query label of
3151 * a pathname component during lookup/access ops.
3152 */
3153 ts_label_t *
3154 nfs_getflabel(vnode_t *vp, struct exportinfo *exi)
3155 {
3156 zone_t *zone;
3157 ts_label_t *zone_label;
3158 char *path;
3159
3160 mutex_enter(&vp->v_lock);
3161 if (vp->v_path != NULL) {
3162 zone = zone_find_by_any_path(vp->v_path, B_FALSE);
3163 mutex_exit(&vp->v_lock);
3164 } else {
3165 /*
3166 * v_path not cached. Fall back on pathname of exported
3167 * file system as we rely on pathname from which we can
3168 * derive a label. The exported file system portion of
3169 * path is sufficient to obtain a label.
3170 */
3171 path = exi->exi_export.ex_path;
3172 if (path == NULL) {
3173 mutex_exit(&vp->v_lock);
3174 return (NULL);
3175 }
3176 zone = zone_find_by_any_path(path, B_FALSE);
3177 mutex_exit(&vp->v_lock);
3178 }
3179 /*
3180 * Caller has verified that the file is either
3181 * exported or visible. So if the path falls in
3182 * global zone, admin_low is returned; otherwise
3183 * the zone's label is returned.
3184 */
3185 zone_label = zone->zone_slabel;
3186 label_hold(zone_label);
3187 zone_rele(zone);
3188 return (zone_label);
3189 }
3190
3191 /*
3192 * TX NFS routine used by NFSv3 and NFSv4 to do label check
3193 * on client label and server's file object lable.
3194 */
3195 boolean_t
3196 do_rfs_label_check(bslabel_t *clabel, vnode_t *vp, int flag,
3197 struct exportinfo *exi)
3198 {
3199 bslabel_t *slabel;
3200 ts_label_t *tslabel;
3201 boolean_t result;
3202
3203 if ((tslabel = nfs_getflabel(vp, exi)) == NULL) {
3204 return (B_FALSE);
3205 }
3206 slabel = label2bslabel(tslabel);
3207 DTRACE_PROBE4(tx__rfs__log__info__labelcheck, char *,
3208 "comparing server's file label(1) with client label(2) (vp(3))",
3209 bslabel_t *, slabel, bslabel_t *, clabel, vnode_t *, vp);
3210
3211 if (flag == EQUALITY_CHECK)
3212 result = blequal(clabel, slabel);
3213 else
3214 result = bldominates(clabel, slabel);
3215 label_rele(tslabel);
3216 return (result);
3217 }
3218
3219 /*
3220 * Callback function to return the loaned buffers.
3221 * Calls VOP_RETZCBUF() only after all uio_iov[]
3222 * buffers are returned. nu_ref maintains the count.
3223 */
3224 void
3225 rfs_free_xuio(void *free_arg)
3226 {
3227 uint_t ref;
3228 nfs_xuio_t *nfsuiop = (nfs_xuio_t *)free_arg;
3229
3230 ref = atomic_dec_uint_nv(&nfsuiop->nu_ref);
3231
3232 /*
3233 * Call VOP_RETZCBUF() only when all the iov buffers
3234 * are sent OTW.
3235 */
3236 if (ref != 0)
3237 return;
3238
3239 if (((uio_t *)nfsuiop)->uio_extflg & UIO_XUIO) {
3240 (void) VOP_RETZCBUF(nfsuiop->nu_vp, (xuio_t *)free_arg, NULL,
3241 NULL);
3242 VN_RELE(nfsuiop->nu_vp);
3243 }
3244
3245 kmem_cache_free(nfs_xuio_cache, free_arg);
3246 }
3247
3248 xuio_t *
3249 rfs_setup_xuio(vnode_t *vp)
3250 {
3251 nfs_xuio_t *nfsuiop;
3252
3253 nfsuiop = kmem_cache_alloc(nfs_xuio_cache, KM_SLEEP);
3254
3255 bzero(nfsuiop, sizeof (nfs_xuio_t));
3256 nfsuiop->nu_vp = vp;
3257
3258 /*
3259 * ref count set to 1. more may be added
3260 * if multiple mblks refer to multiple iov's.
3261 * This is done in uio_to_mblk().
3262 */
3263
3264 nfsuiop->nu_ref = 1;
3265
3266 nfsuiop->nu_frtn.free_func = rfs_free_xuio;
3267 nfsuiop->nu_frtn.free_arg = (char *)nfsuiop;
3268
3269 nfsuiop->nu_uio.xu_type = UIOTYPE_ZEROCOPY;
3270
3271 return (&nfsuiop->nu_uio);
3272 }
3273
3274 mblk_t *
3275 uio_to_mblk(uio_t *uiop)
3276 {
3277 struct iovec *iovp;
3278 int i;
3279 mblk_t *mp, *mp1;
3280 nfs_xuio_t *nfsuiop = (nfs_xuio_t *)uiop;
3281
3282 if (uiop->uio_iovcnt == 0)
3283 return (NULL);
3284
3285 iovp = uiop->uio_iov;
3286 mp = mp1 = esballoca((uchar_t *)iovp->iov_base, iovp->iov_len,
3287 BPRI_MED, &nfsuiop->nu_frtn);
3288 ASSERT(mp != NULL);
3289
3290 mp->b_wptr += iovp->iov_len;
3291 mp->b_datap->db_type = M_DATA;
3292
3293 for (i = 1; i < uiop->uio_iovcnt; i++) {
3294 iovp = (uiop->uio_iov + i);
3295
3296 mp1->b_cont = esballoca(
3297 (uchar_t *)iovp->iov_base, iovp->iov_len, BPRI_MED,
3298 &nfsuiop->nu_frtn);
3299
3300 mp1 = mp1->b_cont;
3301 ASSERT(mp1 != NULL);
3302 mp1->b_wptr += iovp->iov_len;
3303 mp1->b_datap->db_type = M_DATA;
3304 }
3305
3306 nfsuiop->nu_ref = uiop->uio_iovcnt;
3307
3308 return (mp);
3309 }
3310
3311 void
3312 rfs_rndup_mblks(mblk_t *mp, uint_t len, int buf_loaned)
3313 {
3314 int i, rndup;
3315 int alloc_err = 0;
3316 mblk_t *rmp;
3317
3318 rndup = BYTES_PER_XDR_UNIT - (len % BYTES_PER_XDR_UNIT);
3319
3320 /* single mblk_t non copy-reduction case */
3321 if (!buf_loaned) {
3322 mp->b_wptr += len;
3323 if (rndup != BYTES_PER_XDR_UNIT) {
3324 for (i = 0; i < rndup; i++)
3325 *mp->b_wptr++ = '\0';
3326 }
3327 return;
3328 }
3329
3330 /* no need for extra rndup */
3331 if (rndup == BYTES_PER_XDR_UNIT)
3332 return;
3333
3334 while (mp->b_cont)
3335 mp = mp->b_cont;
3336
3337 /*
3338 * In case of copy-reduction mblks, the size of the mblks
3339 * are fixed and are of the size of the loaned buffers.
3340 * Allocate a roundup mblk and chain it to the data
3341 * buffers. This is sub-optimal, but not expected to
3342 * happen in regular common workloads.
3343 */
3344
3345 rmp = allocb_wait(rndup, BPRI_MED, STR_NOSIG, &alloc_err);
3346 ASSERT(rmp != NULL);
3347 ASSERT(alloc_err == 0);
3348
3349 for (i = 0; i < rndup; i++)
3350 *rmp->b_wptr++ = '\0';
3351
3352 rmp->b_datap->db_type = M_DATA;
3353 mp->b_cont = rmp;
3354 }