1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011 Bayard G. Bell. All rights reserved. 24 */ 25 26 /* 27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All rights reserved. 29 * Use is subject to license terms. 30 */ 31 32 #include <sys/param.h> 33 #include <sys/types.h> 34 #include <sys/systm.h> 35 #include <sys/cred.h> 36 #include <sys/proc.h> 37 #include <sys/user.h> 38 #include <sys/buf.h> 39 #include <sys/vfs.h> 40 #include <sys/vnode.h> 41 #include <sys/pathname.h> 42 #include <sys/uio.h> 43 #include <sys/file.h> 44 #include <sys/stat.h> 45 #include <sys/errno.h> 46 #include <sys/socket.h> 47 #include <sys/sysmacros.h> 48 #include <sys/siginfo.h> 49 #include <sys/tiuser.h> 50 #include <sys/statvfs.h> 51 #include <sys/stream.h> 52 #include <sys/strsubr.h> 53 #include <sys/stropts.h> 54 #include <sys/timod.h> 55 #include <sys/t_kuser.h> 56 #include <sys/kmem.h> 57 #include <sys/kstat.h> 58 #include <sys/dirent.h> 59 #include <sys/cmn_err.h> 60 #include <sys/debug.h> 61 #include <sys/unistd.h> 62 #include <sys/vtrace.h> 63 #include <sys/mode.h> 64 #include <sys/acl.h> 65 #include <sys/sdt.h> 66 67 #include <rpc/types.h> 68 #include <rpc/auth.h> 69 #include <rpc/auth_unix.h> 70 #include <rpc/auth_des.h> 71 #include <rpc/svc.h> 72 #include <rpc/xdr.h> 73 #include <rpc/rpc_rdma.h> 74 75 #include <nfs/nfs.h> 76 #include <nfs/export.h> 77 #include <nfs/nfssys.h> 78 #include <nfs/nfs_clnt.h> 79 #include <nfs/nfs_acl.h> 80 #include <nfs/nfs_log.h> 81 #include <nfs/nfs_cmd.h> 82 #include <nfs/lm.h> 83 #include <nfs/nfs_dispatch.h> 84 #include <nfs/nfs4_drc.h> 85 86 #include <sys/modctl.h> 87 #include <sys/cladm.h> 88 #include <sys/clconf.h> 89 90 #include <sys/tsol/label.h> 91 92 #define MAXHOST 32 93 const char *kinet_ntop6(uchar_t *, char *, size_t); 94 95 /* 96 * Module linkage information. 97 */ 98 99 static struct modlmisc modlmisc = { 100 &mod_miscops, "NFS server module" 101 }; 102 103 static struct modlinkage modlinkage = { 104 MODREV_1, (void *)&modlmisc, NULL 105 }; 106 107 kmem_cache_t *nfs_xuio_cache; 108 int nfs_loaned_buffers = 0; 109 110 int 111 _init(void) 112 { 113 int status; 114 115 if ((status = nfs_srvinit()) != 0) { 116 cmn_err(CE_WARN, "_init: nfs_srvinit failed"); 117 return (status); 118 } 119 120 status = mod_install((struct modlinkage *)&modlinkage); 121 if (status != 0) { 122 /* 123 * Could not load module, cleanup previous 124 * initialization work. 125 */ 126 nfs_srvfini(); 127 } 128 129 /* 130 * Initialise some placeholders for nfssys() calls. These have 131 * to be declared by the nfs module, since that handles nfssys() 132 * calls - also used by NFS clients - but are provided by this 133 * nfssrv module. These also then serve as confirmation to the 134 * relevant code in nfs that nfssrv has been loaded, as they're 135 * initially NULL. 136 */ 137 nfs_srv_quiesce_func = nfs_srv_quiesce_all; 138 nfs_srv_dss_func = rfs4_dss_setpaths; 139 140 /* setup DSS paths here; must be done before initial server startup */ 141 rfs4_dss_paths = rfs4_dss_oldpaths = NULL; 142 143 /* initialize the copy reduction caches */ 144 145 nfs_xuio_cache = kmem_cache_create("nfs_xuio_cache", 146 sizeof (nfs_xuio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 147 148 return (status); 149 } 150 151 int 152 _fini() 153 { 154 return (EBUSY); 155 } 156 157 int 158 _info(struct modinfo *modinfop) 159 { 160 return (mod_info(&modlinkage, modinfop)); 161 } 162 163 /* 164 * PUBLICFH_CHECK() checks if the dispatch routine supports 165 * RPC_PUBLICFH_OK, if the filesystem is exported public, and if the 166 * incoming request is using the public filehandle. The check duplicates 167 * the exportmatch() call done in checkexport(), and we should consider 168 * modifying those routines to avoid the duplication. For now, we optimize 169 * by calling exportmatch() only after checking that the dispatch routine 170 * supports RPC_PUBLICFH_OK, and if the filesystem is explicitly exported 171 * public (i.e., not the placeholder). 172 */ 173 #define PUBLICFH_CHECK(disp, exi, fsid, xfid) \ 174 ((disp->dis_flags & RPC_PUBLICFH_OK) && \ 175 ((exi->exi_export.ex_flags & EX_PUBLIC) || \ 176 (exi == exi_public && exportmatch(exi_root, \ 177 fsid, xfid)))) 178 179 static void nfs_srv_shutdown_all(int); 180 static void rfs4_server_start(int); 181 static void nullfree(void); 182 static void rfs_dispatch(struct svc_req *, SVCXPRT *); 183 static void acl_dispatch(struct svc_req *, SVCXPRT *); 184 static void common_dispatch(struct svc_req *, SVCXPRT *, 185 rpcvers_t, rpcvers_t, char *, 186 struct rpc_disptable *); 187 static void hanfsv4_failover(void); 188 static int checkauth(struct exportinfo *, struct svc_req *, cred_t *, int, 189 bool_t); 190 static char *client_name(struct svc_req *req); 191 static char *client_addr(struct svc_req *req, char *buf); 192 extern int sec_svc_getcred(struct svc_req *, cred_t *cr, char **, int *); 193 extern bool_t sec_svc_inrootlist(int, caddr_t, int, caddr_t *); 194 195 #define NFSLOG_COPY_NETBUF(exi, xprt, nb) { \ 196 (nb)->maxlen = (xprt)->xp_rtaddr.maxlen; \ 197 (nb)->len = (xprt)->xp_rtaddr.len; \ 198 (nb)->buf = kmem_alloc((nb)->len, KM_SLEEP); \ 199 bcopy((xprt)->xp_rtaddr.buf, (nb)->buf, (nb)->len); \ 200 } 201 202 /* 203 * Public Filehandle common nfs routines 204 */ 205 static int MCLpath(char **); 206 static void URLparse(char *); 207 208 /* 209 * NFS callout table. 210 * This table is used by svc_getreq() to dispatch a request with 211 * a given prog/vers pair to an appropriate service provider 212 * dispatch routine. 213 * 214 * NOTE: ordering is relied upon below when resetting the version min/max 215 * for NFS_PROGRAM. Careful, if this is ever changed. 216 */ 217 static SVC_CALLOUT __nfs_sc_clts[] = { 218 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 219 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 220 }; 221 222 static SVC_CALLOUT_TABLE nfs_sct_clts = { 223 sizeof (__nfs_sc_clts) / sizeof (__nfs_sc_clts[0]), FALSE, 224 __nfs_sc_clts 225 }; 226 227 static SVC_CALLOUT __nfs_sc_cots[] = { 228 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 229 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 230 }; 231 232 static SVC_CALLOUT_TABLE nfs_sct_cots = { 233 sizeof (__nfs_sc_cots) / sizeof (__nfs_sc_cots[0]), FALSE, __nfs_sc_cots 234 }; 235 236 static SVC_CALLOUT __nfs_sc_rdma[] = { 237 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 238 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 239 }; 240 241 static SVC_CALLOUT_TABLE nfs_sct_rdma = { 242 sizeof (__nfs_sc_rdma) / sizeof (__nfs_sc_rdma[0]), FALSE, __nfs_sc_rdma 243 }; 244 rpcvers_t nfs_versmin = NFS_VERSMIN_DEFAULT; 245 rpcvers_t nfs_versmax = NFS_VERSMAX_DEFAULT; 246 247 /* 248 * Used to track the state of the server so that initialization 249 * can be done properly. 250 */ 251 typedef enum { 252 NFS_SERVER_STOPPED, /* server state destroyed */ 253 NFS_SERVER_STOPPING, /* server state being destroyed */ 254 NFS_SERVER_RUNNING, 255 NFS_SERVER_QUIESCED, /* server state preserved */ 256 NFS_SERVER_OFFLINE /* server pool offline */ 257 } nfs_server_running_t; 258 259 static nfs_server_running_t nfs_server_upordown; 260 static kmutex_t nfs_server_upordown_lock; 261 static kcondvar_t nfs_server_upordown_cv; 262 263 /* 264 * DSS: distributed stable storage 265 * lists of all DSS paths: current, and before last warmstart 266 */ 267 nvlist_t *rfs4_dss_paths, *rfs4_dss_oldpaths; 268 269 int rfs4_dispatch(struct rpcdisp *, struct svc_req *, SVCXPRT *, char *); 270 bool_t rfs4_minorvers_mismatch(struct svc_req *, SVCXPRT *, void *); 271 272 /* 273 * RDMA wait variables. 274 */ 275 static kcondvar_t rdma_wait_cv; 276 static kmutex_t rdma_wait_mutex; 277 278 /* 279 * Will be called at the point the server pool is being unregistered 280 * from the pool list. From that point onwards, the pool is waiting 281 * to be drained and as such the server state is stale and pertains 282 * to the old instantiation of the NFS server pool. 283 */ 284 void 285 nfs_srv_offline(void) 286 { 287 mutex_enter(&nfs_server_upordown_lock); 288 if (nfs_server_upordown == NFS_SERVER_RUNNING) { 289 nfs_server_upordown = NFS_SERVER_OFFLINE; 290 } 291 mutex_exit(&nfs_server_upordown_lock); 292 } 293 294 /* 295 * Will be called at the point the server pool is being destroyed so 296 * all transports have been closed and no service threads are in 297 * existence. 298 * 299 * If we quiesce the server, we're shutting it down without destroying the 300 * server state. This allows it to warm start subsequently. 301 */ 302 void 303 nfs_srv_stop_all(void) 304 { 305 int quiesce = 0; 306 nfs_srv_shutdown_all(quiesce); 307 } 308 309 /* 310 * This alternative shutdown routine can be requested via nfssys() 311 */ 312 void 313 nfs_srv_quiesce_all(void) 314 { 315 int quiesce = 1; 316 nfs_srv_shutdown_all(quiesce); 317 } 318 319 static void 320 nfs_srv_shutdown_all(int quiesce) { 321 mutex_enter(&nfs_server_upordown_lock); 322 if (quiesce) { 323 if (nfs_server_upordown == NFS_SERVER_RUNNING || 324 nfs_server_upordown == NFS_SERVER_OFFLINE) { 325 nfs_server_upordown = NFS_SERVER_QUIESCED; 326 cv_signal(&nfs_server_upordown_cv); 327 328 /* reset DSS state, for subsequent warm restart */ 329 rfs4_dss_numnewpaths = 0; 330 rfs4_dss_newpaths = NULL; 331 332 cmn_err(CE_NOTE, "nfs_server: server is now quiesced; " 333 "NFSv4 state has been preserved"); 334 } 335 } else { 336 if (nfs_server_upordown == NFS_SERVER_OFFLINE) { 337 nfs_server_upordown = NFS_SERVER_STOPPING; 338 mutex_exit(&nfs_server_upordown_lock); 339 rfs4_state_fini(); 340 rfs4_fini_drc(nfs4_drc); 341 mutex_enter(&nfs_server_upordown_lock); 342 nfs_server_upordown = NFS_SERVER_STOPPED; 343 cv_signal(&nfs_server_upordown_cv); 344 } 345 } 346 mutex_exit(&nfs_server_upordown_lock); 347 } 348 349 static int 350 nfs_srv_set_sc_versions(struct file *fp, SVC_CALLOUT_TABLE **sctpp, 351 rpcvers_t versmin, rpcvers_t versmax) 352 { 353 struct strioctl strioc; 354 struct T_info_ack tinfo; 355 int error, retval; 356 357 /* 358 * Find out what type of transport this is. 359 */ 360 strioc.ic_cmd = TI_GETINFO; 361 strioc.ic_timout = -1; 362 strioc.ic_len = sizeof (tinfo); 363 strioc.ic_dp = (char *)&tinfo; 364 tinfo.PRIM_type = T_INFO_REQ; 365 366 error = strioctl(fp->f_vnode, I_STR, (intptr_t)&strioc, 0, K_TO_K, 367 CRED(), &retval); 368 if (error || retval) 369 return (error); 370 371 /* 372 * Based on our query of the transport type... 373 * 374 * Reset the min/max versions based on the caller's request 375 * NOTE: This assumes that NFS_PROGRAM is first in the array!! 376 * And the second entry is the NFS_ACL_PROGRAM. 377 */ 378 switch (tinfo.SERV_type) { 379 case T_CLTS: 380 if (versmax == NFS_V4) 381 return (EINVAL); 382 __nfs_sc_clts[0].sc_versmin = versmin; 383 __nfs_sc_clts[0].sc_versmax = versmax; 384 __nfs_sc_clts[1].sc_versmin = versmin; 385 __nfs_sc_clts[1].sc_versmax = versmax; 386 *sctpp = &nfs_sct_clts; 387 break; 388 case T_COTS: 389 case T_COTS_ORD: 390 __nfs_sc_cots[0].sc_versmin = versmin; 391 __nfs_sc_cots[0].sc_versmax = versmax; 392 /* For the NFS_ACL program, check the max version */ 393 if (versmax > NFS_ACL_VERSMAX) 394 versmax = NFS_ACL_VERSMAX; 395 __nfs_sc_cots[1].sc_versmin = versmin; 396 __nfs_sc_cots[1].sc_versmax = versmax; 397 *sctpp = &nfs_sct_cots; 398 break; 399 default: 400 error = EINVAL; 401 } 402 403 return (error); 404 } 405 406 /* 407 * NFS Server system call. 408 * Does all of the work of running a NFS server. 409 * uap->fd is the fd of an open transport provider 410 */ 411 int 412 nfs_svc(struct nfs_svc_args *arg, model_t model) 413 { 414 file_t *fp; 415 SVCMASTERXPRT *xprt; 416 int error; 417 int readsize; 418 char buf[KNC_STRSIZE]; 419 size_t len; 420 STRUCT_HANDLE(nfs_svc_args, uap); 421 struct netbuf addrmask; 422 SVC_CALLOUT_TABLE *sctp = NULL; 423 424 #ifdef lint 425 model = model; /* STRUCT macros don't always refer to it */ 426 #endif 427 428 STRUCT_SET_HANDLE(uap, model, arg); 429 430 /* Check privileges in nfssys() */ 431 432 if ((fp = getf(STRUCT_FGET(uap, fd))) == NULL) 433 return (EBADF); 434 435 /* 436 * Set read buffer size to rsize 437 * and add room for RPC headers. 438 */ 439 readsize = nfs3tsize() + (RPC_MAXDATASIZE - NFS_MAXDATA); 440 if (readsize < RPC_MAXDATASIZE) 441 readsize = RPC_MAXDATASIZE; 442 443 error = copyinstr((const char *)STRUCT_FGETP(uap, netid), buf, 444 KNC_STRSIZE, &len); 445 if (error) { 446 releasef(STRUCT_FGET(uap, fd)); 447 return (error); 448 } 449 450 addrmask.len = STRUCT_FGET(uap, addrmask.len); 451 addrmask.maxlen = STRUCT_FGET(uap, addrmask.maxlen); 452 addrmask.buf = kmem_alloc(addrmask.maxlen, KM_SLEEP); 453 error = copyin(STRUCT_FGETP(uap, addrmask.buf), addrmask.buf, 454 addrmask.len); 455 if (error) { 456 releasef(STRUCT_FGET(uap, fd)); 457 kmem_free(addrmask.buf, addrmask.maxlen); 458 return (error); 459 } 460 461 nfs_versmin = STRUCT_FGET(uap, versmin); 462 nfs_versmax = STRUCT_FGET(uap, versmax); 463 464 /* Double check the vers min/max ranges */ 465 if ((nfs_versmin > nfs_versmax) || 466 (nfs_versmin < NFS_VERSMIN) || 467 (nfs_versmax > NFS_VERSMAX)) { 468 nfs_versmin = NFS_VERSMIN_DEFAULT; 469 nfs_versmax = NFS_VERSMAX_DEFAULT; 470 } 471 472 if (error = 473 nfs_srv_set_sc_versions(fp, &sctp, nfs_versmin, nfs_versmax)) { 474 releasef(STRUCT_FGET(uap, fd)); 475 kmem_free(addrmask.buf, addrmask.maxlen); 476 return (error); 477 } 478 479 /* Initialize nfsv4 server */ 480 if (nfs_versmax == (rpcvers_t)NFS_V4) 481 rfs4_server_start(STRUCT_FGET(uap, delegation)); 482 483 /* Create a transport handle. */ 484 error = svc_tli_kcreate(fp, readsize, buf, &addrmask, &xprt, 485 sctp, NULL, NFS_SVCPOOL_ID, TRUE); 486 487 if (error) 488 kmem_free(addrmask.buf, addrmask.maxlen); 489 490 releasef(STRUCT_FGET(uap, fd)); 491 492 /* HA-NFSv4: save the cluster nodeid */ 493 if (cluster_bootflags & CLUSTER_BOOTED) 494 lm_global_nlmid = clconf_get_nodeid(); 495 496 return (error); 497 } 498 499 static void 500 rfs4_server_start(int nfs4_srv_delegation) 501 { 502 /* 503 * Determine if the server has previously been "started" and 504 * if not, do the per instance initialization 505 */ 506 mutex_enter(&nfs_server_upordown_lock); 507 508 if (nfs_server_upordown != NFS_SERVER_RUNNING) { 509 /* Do we need to stop and wait on the previous server? */ 510 while (nfs_server_upordown == NFS_SERVER_STOPPING || 511 nfs_server_upordown == NFS_SERVER_OFFLINE) 512 cv_wait(&nfs_server_upordown_cv, 513 &nfs_server_upordown_lock); 514 515 if (nfs_server_upordown != NFS_SERVER_RUNNING) { 516 (void) svc_pool_control(NFS_SVCPOOL_ID, 517 SVCPSET_UNREGISTER_PROC, (void *)&nfs_srv_offline); 518 (void) svc_pool_control(NFS_SVCPOOL_ID, 519 SVCPSET_SHUTDOWN_PROC, (void *)&nfs_srv_stop_all); 520 521 /* is this an nfsd warm start? */ 522 if (nfs_server_upordown == NFS_SERVER_QUIESCED) { 523 cmn_err(CE_NOTE, "nfs_server: " 524 "server was previously quiesced; " 525 "existing NFSv4 state will be re-used"); 526 527 /* 528 * HA-NFSv4: this is also the signal 529 * that a Resource Group failover has 530 * occurred. 531 */ 532 if (cluster_bootflags & CLUSTER_BOOTED) 533 hanfsv4_failover(); 534 } else { 535 /* cold start */ 536 rfs4_state_init(); 537 nfs4_drc = rfs4_init_drc(nfs4_drc_max, 538 nfs4_drc_hash); 539 } 540 541 /* 542 * Check to see if delegation is to be 543 * enabled at the server 544 */ 545 if (nfs4_srv_delegation != FALSE) 546 rfs4_set_deleg_policy(SRV_NORMAL_DELEGATE); 547 548 nfs_server_upordown = NFS_SERVER_RUNNING; 549 } 550 cv_signal(&nfs_server_upordown_cv); 551 } 552 mutex_exit(&nfs_server_upordown_lock); 553 } 554 555 /* 556 * If RDMA device available, 557 * start RDMA listener. 558 */ 559 int 560 rdma_start(struct rdma_svc_args *rsa) 561 { 562 int error; 563 rdma_xprt_group_t started_rdma_xprts; 564 rdma_stat stat; 565 int svc_state = 0; 566 567 /* Double check the vers min/max ranges */ 568 if ((rsa->nfs_versmin > rsa->nfs_versmax) || 569 (rsa->nfs_versmin < NFS_VERSMIN) || 570 (rsa->nfs_versmax > NFS_VERSMAX)) { 571 rsa->nfs_versmin = NFS_VERSMIN_DEFAULT; 572 rsa->nfs_versmax = NFS_VERSMAX_DEFAULT; 573 } 574 nfs_versmin = rsa->nfs_versmin; 575 nfs_versmax = rsa->nfs_versmax; 576 577 /* Set the versions in the callout table */ 578 __nfs_sc_rdma[0].sc_versmin = rsa->nfs_versmin; 579 __nfs_sc_rdma[0].sc_versmax = rsa->nfs_versmax; 580 /* For the NFS_ACL program, check the max version */ 581 __nfs_sc_rdma[1].sc_versmin = rsa->nfs_versmin; 582 if (rsa->nfs_versmax > NFS_ACL_VERSMAX) 583 __nfs_sc_rdma[1].sc_versmax = NFS_ACL_VERSMAX; 584 else 585 __nfs_sc_rdma[1].sc_versmax = rsa->nfs_versmax; 586 587 /* Initialize nfsv4 server */ 588 if (rsa->nfs_versmax == (rpcvers_t)NFS_V4) 589 rfs4_server_start(rsa->delegation); 590 591 started_rdma_xprts.rtg_count = 0; 592 started_rdma_xprts.rtg_listhead = NULL; 593 started_rdma_xprts.rtg_poolid = rsa->poolid; 594 595 restart: 596 error = svc_rdma_kcreate(rsa->netid, &nfs_sct_rdma, rsa->poolid, 597 &started_rdma_xprts); 598 599 svc_state = !error; 600 601 while (!error) { 602 603 /* 604 * wait till either interrupted by a signal on 605 * nfs service stop/restart or signalled by a 606 * rdma plugin attach/detatch. 607 */ 608 609 stat = rdma_kwait(); 610 611 /* 612 * stop services if running -- either on a HCA detach event 613 * or if the nfs service is stopped/restarted. 614 */ 615 616 if ((stat == RDMA_HCA_DETACH || stat == RDMA_INTR) && 617 svc_state) { 618 rdma_stop(&started_rdma_xprts); 619 svc_state = 0; 620 } 621 622 /* 623 * nfs service stop/restart, break out of the 624 * wait loop and return; 625 */ 626 if (stat == RDMA_INTR) 627 return (0); 628 629 /* 630 * restart stopped services on a HCA attach event 631 * (if not already running) 632 */ 633 634 if ((stat == RDMA_HCA_ATTACH) && (svc_state == 0)) 635 goto restart; 636 637 /* 638 * loop until a nfs service stop/restart 639 */ 640 } 641 642 return (error); 643 } 644 645 /* ARGSUSED */ 646 void 647 rpc_null(caddr_t *argp, caddr_t *resp) 648 { 649 } 650 651 /* ARGSUSED */ 652 void 653 rpc_null_v3(caddr_t *argp, caddr_t *resp, struct exportinfo *exi, 654 struct svc_req *req, cred_t *cr) 655 { 656 DTRACE_NFSV3_3(op__null__start, struct svc_req *, req, 657 cred_t *, cr, vnode_t *, NULL); 658 DTRACE_NFSV3_3(op__null__done, struct svc_req *, req, 659 cred_t *, cr, vnode_t *, NULL); 660 } 661 662 /* ARGSUSED */ 663 static void 664 rfs_error(caddr_t *argp, caddr_t *resp) 665 { 666 /* return (EOPNOTSUPP); */ 667 } 668 669 static void 670 nullfree(void) 671 { 672 } 673 674 static char *rfscallnames_v2[] = { 675 "RFS2_NULL", 676 "RFS2_GETATTR", 677 "RFS2_SETATTR", 678 "RFS2_ROOT", 679 "RFS2_LOOKUP", 680 "RFS2_READLINK", 681 "RFS2_READ", 682 "RFS2_WRITECACHE", 683 "RFS2_WRITE", 684 "RFS2_CREATE", 685 "RFS2_REMOVE", 686 "RFS2_RENAME", 687 "RFS2_LINK", 688 "RFS2_SYMLINK", 689 "RFS2_MKDIR", 690 "RFS2_RMDIR", 691 "RFS2_READDIR", 692 "RFS2_STATFS" 693 }; 694 695 static struct rpcdisp rfsdisptab_v2[] = { 696 /* 697 * NFS VERSION 2 698 */ 699 700 /* RFS_NULL = 0 */ 701 {rpc_null, 702 xdr_void, NULL_xdrproc_t, 0, 703 xdr_void, NULL_xdrproc_t, 0, 704 nullfree, RPC_IDEMPOTENT, 705 0}, 706 707 /* RFS_GETATTR = 1 */ 708 {rfs_getattr, 709 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 710 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 711 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 712 rfs_getattr_getfh}, 713 714 /* RFS_SETATTR = 2 */ 715 {rfs_setattr, 716 xdr_saargs, NULL_xdrproc_t, sizeof (struct nfssaargs), 717 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 718 nullfree, RPC_MAPRESP, 719 rfs_setattr_getfh}, 720 721 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 722 {rfs_error, 723 xdr_void, NULL_xdrproc_t, 0, 724 xdr_void, NULL_xdrproc_t, 0, 725 nullfree, RPC_IDEMPOTENT, 726 0}, 727 728 /* RFS_LOOKUP = 4 */ 729 {rfs_lookup, 730 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 731 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 732 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP|RPC_PUBLICFH_OK, 733 rfs_lookup_getfh}, 734 735 /* RFS_READLINK = 5 */ 736 {rfs_readlink, 737 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 738 xdr_rdlnres, NULL_xdrproc_t, sizeof (struct nfsrdlnres), 739 rfs_rlfree, RPC_IDEMPOTENT, 740 rfs_readlink_getfh}, 741 742 /* RFS_READ = 6 */ 743 {rfs_read, 744 xdr_readargs, NULL_xdrproc_t, sizeof (struct nfsreadargs), 745 xdr_rdresult, NULL_xdrproc_t, sizeof (struct nfsrdresult), 746 rfs_rdfree, RPC_IDEMPOTENT, 747 rfs_read_getfh}, 748 749 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 750 {rfs_error, 751 xdr_void, NULL_xdrproc_t, 0, 752 xdr_void, NULL_xdrproc_t, 0, 753 nullfree, RPC_IDEMPOTENT, 754 0}, 755 756 /* RFS_WRITE = 8 */ 757 {rfs_write, 758 xdr_writeargs, NULL_xdrproc_t, sizeof (struct nfswriteargs), 759 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 760 nullfree, RPC_MAPRESP, 761 rfs_write_getfh}, 762 763 /* RFS_CREATE = 9 */ 764 {rfs_create, 765 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs), 766 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 767 nullfree, RPC_MAPRESP, 768 rfs_create_getfh}, 769 770 /* RFS_REMOVE = 10 */ 771 {rfs_remove, 772 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 773 #ifdef _LITTLE_ENDIAN 774 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 775 #else 776 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 777 #endif 778 nullfree, RPC_MAPRESP, 779 rfs_remove_getfh}, 780 781 /* RFS_RENAME = 11 */ 782 {rfs_rename, 783 xdr_rnmargs, NULL_xdrproc_t, sizeof (struct nfsrnmargs), 784 #ifdef _LITTLE_ENDIAN 785 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 786 #else 787 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 788 #endif 789 nullfree, RPC_MAPRESP, 790 rfs_rename_getfh}, 791 792 /* RFS_LINK = 12 */ 793 {rfs_link, 794 xdr_linkargs, NULL_xdrproc_t, sizeof (struct nfslinkargs), 795 #ifdef _LITTLE_ENDIAN 796 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 797 #else 798 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 799 #endif 800 nullfree, RPC_MAPRESP, 801 rfs_link_getfh}, 802 803 /* RFS_SYMLINK = 13 */ 804 {rfs_symlink, 805 xdr_slargs, NULL_xdrproc_t, sizeof (struct nfsslargs), 806 #ifdef _LITTLE_ENDIAN 807 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 808 #else 809 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 810 #endif 811 nullfree, RPC_MAPRESP, 812 rfs_symlink_getfh}, 813 814 /* RFS_MKDIR = 14 */ 815 {rfs_mkdir, 816 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs), 817 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 818 nullfree, RPC_MAPRESP, 819 rfs_mkdir_getfh}, 820 821 /* RFS_RMDIR = 15 */ 822 {rfs_rmdir, 823 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 824 #ifdef _LITTLE_ENDIAN 825 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 826 #else 827 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 828 #endif 829 nullfree, RPC_MAPRESP, 830 rfs_rmdir_getfh}, 831 832 /* RFS_READDIR = 16 */ 833 {rfs_readdir, 834 xdr_rddirargs, NULL_xdrproc_t, sizeof (struct nfsrddirargs), 835 xdr_putrddirres, NULL_xdrproc_t, sizeof (struct nfsrddirres), 836 rfs_rddirfree, RPC_IDEMPOTENT, 837 rfs_readdir_getfh}, 838 839 /* RFS_STATFS = 17 */ 840 {rfs_statfs, 841 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 842 xdr_statfs, xdr_faststatfs, sizeof (struct nfsstatfs), 843 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 844 rfs_statfs_getfh}, 845 }; 846 847 static char *rfscallnames_v3[] = { 848 "RFS3_NULL", 849 "RFS3_GETATTR", 850 "RFS3_SETATTR", 851 "RFS3_LOOKUP", 852 "RFS3_ACCESS", 853 "RFS3_READLINK", 854 "RFS3_READ", 855 "RFS3_WRITE", 856 "RFS3_CREATE", 857 "RFS3_MKDIR", 858 "RFS3_SYMLINK", 859 "RFS3_MKNOD", 860 "RFS3_REMOVE", 861 "RFS3_RMDIR", 862 "RFS3_RENAME", 863 "RFS3_LINK", 864 "RFS3_READDIR", 865 "RFS3_READDIRPLUS", 866 "RFS3_FSSTAT", 867 "RFS3_FSINFO", 868 "RFS3_PATHCONF", 869 "RFS3_COMMIT" 870 }; 871 872 static struct rpcdisp rfsdisptab_v3[] = { 873 /* 874 * NFS VERSION 3 875 */ 876 877 /* RFS_NULL = 0 */ 878 {rpc_null_v3, 879 xdr_void, NULL_xdrproc_t, 0, 880 xdr_void, NULL_xdrproc_t, 0, 881 nullfree, RPC_IDEMPOTENT, 882 0}, 883 884 /* RFS3_GETATTR = 1 */ 885 {rfs3_getattr, 886 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (GETATTR3args), 887 xdr_GETATTR3res, NULL_xdrproc_t, sizeof (GETATTR3res), 888 nullfree, (RPC_IDEMPOTENT | RPC_ALLOWANON), 889 rfs3_getattr_getfh}, 890 891 /* RFS3_SETATTR = 2 */ 892 {rfs3_setattr, 893 xdr_SETATTR3args, NULL_xdrproc_t, sizeof (SETATTR3args), 894 xdr_SETATTR3res, NULL_xdrproc_t, sizeof (SETATTR3res), 895 nullfree, 0, 896 rfs3_setattr_getfh}, 897 898 /* RFS3_LOOKUP = 3 */ 899 {rfs3_lookup, 900 xdr_diropargs3, NULL_xdrproc_t, sizeof (LOOKUP3args), 901 xdr_LOOKUP3res, NULL_xdrproc_t, sizeof (LOOKUP3res), 902 nullfree, (RPC_IDEMPOTENT | RPC_PUBLICFH_OK), 903 rfs3_lookup_getfh}, 904 905 /* RFS3_ACCESS = 4 */ 906 {rfs3_access, 907 xdr_ACCESS3args, NULL_xdrproc_t, sizeof (ACCESS3args), 908 xdr_ACCESS3res, NULL_xdrproc_t, sizeof (ACCESS3res), 909 nullfree, RPC_IDEMPOTENT, 910 rfs3_access_getfh}, 911 912 /* RFS3_READLINK = 5 */ 913 {rfs3_readlink, 914 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (READLINK3args), 915 xdr_READLINK3res, NULL_xdrproc_t, sizeof (READLINK3res), 916 rfs3_readlink_free, RPC_IDEMPOTENT, 917 rfs3_readlink_getfh}, 918 919 /* RFS3_READ = 6 */ 920 {rfs3_read, 921 xdr_READ3args, NULL_xdrproc_t, sizeof (READ3args), 922 xdr_READ3res, NULL_xdrproc_t, sizeof (READ3res), 923 rfs3_read_free, RPC_IDEMPOTENT, 924 rfs3_read_getfh}, 925 926 /* RFS3_WRITE = 7 */ 927 {rfs3_write, 928 xdr_WRITE3args, NULL_xdrproc_t, sizeof (WRITE3args), 929 xdr_WRITE3res, NULL_xdrproc_t, sizeof (WRITE3res), 930 nullfree, 0, 931 rfs3_write_getfh}, 932 933 /* RFS3_CREATE = 8 */ 934 {rfs3_create, 935 xdr_CREATE3args, NULL_xdrproc_t, sizeof (CREATE3args), 936 xdr_CREATE3res, NULL_xdrproc_t, sizeof (CREATE3res), 937 nullfree, 0, 938 rfs3_create_getfh}, 939 940 /* RFS3_MKDIR = 9 */ 941 {rfs3_mkdir, 942 xdr_MKDIR3args, NULL_xdrproc_t, sizeof (MKDIR3args), 943 xdr_MKDIR3res, NULL_xdrproc_t, sizeof (MKDIR3res), 944 nullfree, 0, 945 rfs3_mkdir_getfh}, 946 947 /* RFS3_SYMLINK = 10 */ 948 {rfs3_symlink, 949 xdr_SYMLINK3args, NULL_xdrproc_t, sizeof (SYMLINK3args), 950 xdr_SYMLINK3res, NULL_xdrproc_t, sizeof (SYMLINK3res), 951 nullfree, 0, 952 rfs3_symlink_getfh}, 953 954 /* RFS3_MKNOD = 11 */ 955 {rfs3_mknod, 956 xdr_MKNOD3args, NULL_xdrproc_t, sizeof (MKNOD3args), 957 xdr_MKNOD3res, NULL_xdrproc_t, sizeof (MKNOD3res), 958 nullfree, 0, 959 rfs3_mknod_getfh}, 960 961 /* RFS3_REMOVE = 12 */ 962 {rfs3_remove, 963 xdr_diropargs3, NULL_xdrproc_t, sizeof (REMOVE3args), 964 xdr_REMOVE3res, NULL_xdrproc_t, sizeof (REMOVE3res), 965 nullfree, 0, 966 rfs3_remove_getfh}, 967 968 /* RFS3_RMDIR = 13 */ 969 {rfs3_rmdir, 970 xdr_diropargs3, NULL_xdrproc_t, sizeof (RMDIR3args), 971 xdr_RMDIR3res, NULL_xdrproc_t, sizeof (RMDIR3res), 972 nullfree, 0, 973 rfs3_rmdir_getfh}, 974 975 /* RFS3_RENAME = 14 */ 976 {rfs3_rename, 977 xdr_RENAME3args, NULL_xdrproc_t, sizeof (RENAME3args), 978 xdr_RENAME3res, NULL_xdrproc_t, sizeof (RENAME3res), 979 nullfree, 0, 980 rfs3_rename_getfh}, 981 982 /* RFS3_LINK = 15 */ 983 {rfs3_link, 984 xdr_LINK3args, NULL_xdrproc_t, sizeof (LINK3args), 985 xdr_LINK3res, NULL_xdrproc_t, sizeof (LINK3res), 986 nullfree, 0, 987 rfs3_link_getfh}, 988 989 /* RFS3_READDIR = 16 */ 990 {rfs3_readdir, 991 xdr_READDIR3args, NULL_xdrproc_t, sizeof (READDIR3args), 992 xdr_READDIR3res, NULL_xdrproc_t, sizeof (READDIR3res), 993 rfs3_readdir_free, RPC_IDEMPOTENT, 994 rfs3_readdir_getfh}, 995 996 /* RFS3_READDIRPLUS = 17 */ 997 {rfs3_readdirplus, 998 xdr_READDIRPLUS3args, NULL_xdrproc_t, sizeof (READDIRPLUS3args), 999 xdr_READDIRPLUS3res, NULL_xdrproc_t, sizeof (READDIRPLUS3res), 1000 rfs3_readdirplus_free, RPC_AVOIDWORK, 1001 rfs3_readdirplus_getfh}, 1002 1003 /* RFS3_FSSTAT = 18 */ 1004 {rfs3_fsstat, 1005 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSSTAT3args), 1006 xdr_FSSTAT3res, NULL_xdrproc_t, sizeof (FSSTAT3res), 1007 nullfree, RPC_IDEMPOTENT, 1008 rfs3_fsstat_getfh}, 1009 1010 /* RFS3_FSINFO = 19 */ 1011 {rfs3_fsinfo, 1012 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSINFO3args), 1013 xdr_FSINFO3res, NULL_xdrproc_t, sizeof (FSINFO3res), 1014 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON, 1015 rfs3_fsinfo_getfh}, 1016 1017 /* RFS3_PATHCONF = 20 */ 1018 {rfs3_pathconf, 1019 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (PATHCONF3args), 1020 xdr_PATHCONF3res, NULL_xdrproc_t, sizeof (PATHCONF3res), 1021 nullfree, RPC_IDEMPOTENT, 1022 rfs3_pathconf_getfh}, 1023 1024 /* RFS3_COMMIT = 21 */ 1025 {rfs3_commit, 1026 xdr_COMMIT3args, NULL_xdrproc_t, sizeof (COMMIT3args), 1027 xdr_COMMIT3res, NULL_xdrproc_t, sizeof (COMMIT3res), 1028 nullfree, RPC_IDEMPOTENT, 1029 rfs3_commit_getfh}, 1030 }; 1031 1032 static char *rfscallnames_v4[] = { 1033 "RFS4_NULL", 1034 "RFS4_COMPOUND", 1035 "RFS4_NULL", 1036 "RFS4_NULL", 1037 "RFS4_NULL", 1038 "RFS4_NULL", 1039 "RFS4_NULL", 1040 "RFS4_NULL", 1041 "RFS4_CREATE" 1042 }; 1043 1044 static struct rpcdisp rfsdisptab_v4[] = { 1045 /* 1046 * NFS VERSION 4 1047 */ 1048 1049 /* RFS_NULL = 0 */ 1050 {rpc_null, 1051 xdr_void, NULL_xdrproc_t, 0, 1052 xdr_void, NULL_xdrproc_t, 0, 1053 nullfree, RPC_IDEMPOTENT, 0}, 1054 1055 /* RFS4_compound = 1 */ 1056 {rfs4_compound, 1057 xdr_COMPOUND4args_srv, NULL_xdrproc_t, sizeof (COMPOUND4args), 1058 xdr_COMPOUND4res_srv, NULL_xdrproc_t, sizeof (COMPOUND4res), 1059 rfs4_compound_free, 0, 0}, 1060 }; 1061 1062 union rfs_args { 1063 /* 1064 * NFS VERSION 2 1065 */ 1066 1067 /* RFS_NULL = 0 */ 1068 1069 /* RFS_GETATTR = 1 */ 1070 fhandle_t nfs2_getattr_args; 1071 1072 /* RFS_SETATTR = 2 */ 1073 struct nfssaargs nfs2_setattr_args; 1074 1075 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 1076 1077 /* RFS_LOOKUP = 4 */ 1078 struct nfsdiropargs nfs2_lookup_args; 1079 1080 /* RFS_READLINK = 5 */ 1081 fhandle_t nfs2_readlink_args; 1082 1083 /* RFS_READ = 6 */ 1084 struct nfsreadargs nfs2_read_args; 1085 1086 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 1087 1088 /* RFS_WRITE = 8 */ 1089 struct nfswriteargs nfs2_write_args; 1090 1091 /* RFS_CREATE = 9 */ 1092 struct nfscreatargs nfs2_create_args; 1093 1094 /* RFS_REMOVE = 10 */ 1095 struct nfsdiropargs nfs2_remove_args; 1096 1097 /* RFS_RENAME = 11 */ 1098 struct nfsrnmargs nfs2_rename_args; 1099 1100 /* RFS_LINK = 12 */ 1101 struct nfslinkargs nfs2_link_args; 1102 1103 /* RFS_SYMLINK = 13 */ 1104 struct nfsslargs nfs2_symlink_args; 1105 1106 /* RFS_MKDIR = 14 */ 1107 struct nfscreatargs nfs2_mkdir_args; 1108 1109 /* RFS_RMDIR = 15 */ 1110 struct nfsdiropargs nfs2_rmdir_args; 1111 1112 /* RFS_READDIR = 16 */ 1113 struct nfsrddirargs nfs2_readdir_args; 1114 1115 /* RFS_STATFS = 17 */ 1116 fhandle_t nfs2_statfs_args; 1117 1118 /* 1119 * NFS VERSION 3 1120 */ 1121 1122 /* RFS_NULL = 0 */ 1123 1124 /* RFS3_GETATTR = 1 */ 1125 GETATTR3args nfs3_getattr_args; 1126 1127 /* RFS3_SETATTR = 2 */ 1128 SETATTR3args nfs3_setattr_args; 1129 1130 /* RFS3_LOOKUP = 3 */ 1131 LOOKUP3args nfs3_lookup_args; 1132 1133 /* RFS3_ACCESS = 4 */ 1134 ACCESS3args nfs3_access_args; 1135 1136 /* RFS3_READLINK = 5 */ 1137 READLINK3args nfs3_readlink_args; 1138 1139 /* RFS3_READ = 6 */ 1140 READ3args nfs3_read_args; 1141 1142 /* RFS3_WRITE = 7 */ 1143 WRITE3args nfs3_write_args; 1144 1145 /* RFS3_CREATE = 8 */ 1146 CREATE3args nfs3_create_args; 1147 1148 /* RFS3_MKDIR = 9 */ 1149 MKDIR3args nfs3_mkdir_args; 1150 1151 /* RFS3_SYMLINK = 10 */ 1152 SYMLINK3args nfs3_symlink_args; 1153 1154 /* RFS3_MKNOD = 11 */ 1155 MKNOD3args nfs3_mknod_args; 1156 1157 /* RFS3_REMOVE = 12 */ 1158 REMOVE3args nfs3_remove_args; 1159 1160 /* RFS3_RMDIR = 13 */ 1161 RMDIR3args nfs3_rmdir_args; 1162 1163 /* RFS3_RENAME = 14 */ 1164 RENAME3args nfs3_rename_args; 1165 1166 /* RFS3_LINK = 15 */ 1167 LINK3args nfs3_link_args; 1168 1169 /* RFS3_READDIR = 16 */ 1170 READDIR3args nfs3_readdir_args; 1171 1172 /* RFS3_READDIRPLUS = 17 */ 1173 READDIRPLUS3args nfs3_readdirplus_args; 1174 1175 /* RFS3_FSSTAT = 18 */ 1176 FSSTAT3args nfs3_fsstat_args; 1177 1178 /* RFS3_FSINFO = 19 */ 1179 FSINFO3args nfs3_fsinfo_args; 1180 1181 /* RFS3_PATHCONF = 20 */ 1182 PATHCONF3args nfs3_pathconf_args; 1183 1184 /* RFS3_COMMIT = 21 */ 1185 COMMIT3args nfs3_commit_args; 1186 1187 /* 1188 * NFS VERSION 4 1189 */ 1190 1191 /* RFS_NULL = 0 */ 1192 1193 /* COMPUND = 1 */ 1194 COMPOUND4args nfs4_compound_args; 1195 }; 1196 1197 union rfs_res { 1198 /* 1199 * NFS VERSION 2 1200 */ 1201 1202 /* RFS_NULL = 0 */ 1203 1204 /* RFS_GETATTR = 1 */ 1205 struct nfsattrstat nfs2_getattr_res; 1206 1207 /* RFS_SETATTR = 2 */ 1208 struct nfsattrstat nfs2_setattr_res; 1209 1210 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 1211 1212 /* RFS_LOOKUP = 4 */ 1213 struct nfsdiropres nfs2_lookup_res; 1214 1215 /* RFS_READLINK = 5 */ 1216 struct nfsrdlnres nfs2_readlink_res; 1217 1218 /* RFS_READ = 6 */ 1219 struct nfsrdresult nfs2_read_res; 1220 1221 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 1222 1223 /* RFS_WRITE = 8 */ 1224 struct nfsattrstat nfs2_write_res; 1225 1226 /* RFS_CREATE = 9 */ 1227 struct nfsdiropres nfs2_create_res; 1228 1229 /* RFS_REMOVE = 10 */ 1230 enum nfsstat nfs2_remove_res; 1231 1232 /* RFS_RENAME = 11 */ 1233 enum nfsstat nfs2_rename_res; 1234 1235 /* RFS_LINK = 12 */ 1236 enum nfsstat nfs2_link_res; 1237 1238 /* RFS_SYMLINK = 13 */ 1239 enum nfsstat nfs2_symlink_res; 1240 1241 /* RFS_MKDIR = 14 */ 1242 struct nfsdiropres nfs2_mkdir_res; 1243 1244 /* RFS_RMDIR = 15 */ 1245 enum nfsstat nfs2_rmdir_res; 1246 1247 /* RFS_READDIR = 16 */ 1248 struct nfsrddirres nfs2_readdir_res; 1249 1250 /* RFS_STATFS = 17 */ 1251 struct nfsstatfs nfs2_statfs_res; 1252 1253 /* 1254 * NFS VERSION 3 1255 */ 1256 1257 /* RFS_NULL = 0 */ 1258 1259 /* RFS3_GETATTR = 1 */ 1260 GETATTR3res nfs3_getattr_res; 1261 1262 /* RFS3_SETATTR = 2 */ 1263 SETATTR3res nfs3_setattr_res; 1264 1265 /* RFS3_LOOKUP = 3 */ 1266 LOOKUP3res nfs3_lookup_res; 1267 1268 /* RFS3_ACCESS = 4 */ 1269 ACCESS3res nfs3_access_res; 1270 1271 /* RFS3_READLINK = 5 */ 1272 READLINK3res nfs3_readlink_res; 1273 1274 /* RFS3_READ = 6 */ 1275 READ3res nfs3_read_res; 1276 1277 /* RFS3_WRITE = 7 */ 1278 WRITE3res nfs3_write_res; 1279 1280 /* RFS3_CREATE = 8 */ 1281 CREATE3res nfs3_create_res; 1282 1283 /* RFS3_MKDIR = 9 */ 1284 MKDIR3res nfs3_mkdir_res; 1285 1286 /* RFS3_SYMLINK = 10 */ 1287 SYMLINK3res nfs3_symlink_res; 1288 1289 /* RFS3_MKNOD = 11 */ 1290 MKNOD3res nfs3_mknod_res; 1291 1292 /* RFS3_REMOVE = 12 */ 1293 REMOVE3res nfs3_remove_res; 1294 1295 /* RFS3_RMDIR = 13 */ 1296 RMDIR3res nfs3_rmdir_res; 1297 1298 /* RFS3_RENAME = 14 */ 1299 RENAME3res nfs3_rename_res; 1300 1301 /* RFS3_LINK = 15 */ 1302 LINK3res nfs3_link_res; 1303 1304 /* RFS3_READDIR = 16 */ 1305 READDIR3res nfs3_readdir_res; 1306 1307 /* RFS3_READDIRPLUS = 17 */ 1308 READDIRPLUS3res nfs3_readdirplus_res; 1309 1310 /* RFS3_FSSTAT = 18 */ 1311 FSSTAT3res nfs3_fsstat_res; 1312 1313 /* RFS3_FSINFO = 19 */ 1314 FSINFO3res nfs3_fsinfo_res; 1315 1316 /* RFS3_PATHCONF = 20 */ 1317 PATHCONF3res nfs3_pathconf_res; 1318 1319 /* RFS3_COMMIT = 21 */ 1320 COMMIT3res nfs3_commit_res; 1321 1322 /* 1323 * NFS VERSION 4 1324 */ 1325 1326 /* RFS_NULL = 0 */ 1327 1328 /* RFS4_COMPOUND = 1 */ 1329 COMPOUND4res nfs4_compound_res; 1330 1331 }; 1332 1333 static struct rpc_disptable rfs_disptable[] = { 1334 {sizeof (rfsdisptab_v2) / sizeof (rfsdisptab_v2[0]), 1335 rfscallnames_v2, 1336 &rfsproccnt_v2_ptr, rfsdisptab_v2}, 1337 {sizeof (rfsdisptab_v3) / sizeof (rfsdisptab_v3[0]), 1338 rfscallnames_v3, 1339 &rfsproccnt_v3_ptr, rfsdisptab_v3}, 1340 {sizeof (rfsdisptab_v4) / sizeof (rfsdisptab_v4[0]), 1341 rfscallnames_v4, 1342 &rfsproccnt_v4_ptr, rfsdisptab_v4}, 1343 }; 1344 1345 /* 1346 * If nfs_portmon is set, then clients are required to use privileged 1347 * ports (ports < IPPORT_RESERVED) in order to get NFS services. 1348 * 1349 * N.B.: this attempt to carry forward the already ill-conceived notion 1350 * of privileged ports for TCP/UDP is really quite ineffectual. Not only 1351 * is it transport-dependent, it's laughably easy to spoof. If you're 1352 * really interested in security, you must start with secure RPC instead. 1353 */ 1354 static int nfs_portmon = 0; 1355 1356 #ifdef DEBUG 1357 static int cred_hits = 0; 1358 static int cred_misses = 0; 1359 #endif 1360 1361 1362 #ifdef DEBUG 1363 /* 1364 * Debug code to allow disabling of rfs_dispatch() use of 1365 * fastxdrargs() and fastxdrres() calls for testing purposes. 1366 */ 1367 static int rfs_no_fast_xdrargs = 0; 1368 static int rfs_no_fast_xdrres = 0; 1369 #endif 1370 1371 union acl_args { 1372 /* 1373 * ACL VERSION 2 1374 */ 1375 1376 /* ACL2_NULL = 0 */ 1377 1378 /* ACL2_GETACL = 1 */ 1379 GETACL2args acl2_getacl_args; 1380 1381 /* ACL2_SETACL = 2 */ 1382 SETACL2args acl2_setacl_args; 1383 1384 /* ACL2_GETATTR = 3 */ 1385 GETATTR2args acl2_getattr_args; 1386 1387 /* ACL2_ACCESS = 4 */ 1388 ACCESS2args acl2_access_args; 1389 1390 /* ACL2_GETXATTRDIR = 5 */ 1391 GETXATTRDIR2args acl2_getxattrdir_args; 1392 1393 /* 1394 * ACL VERSION 3 1395 */ 1396 1397 /* ACL3_NULL = 0 */ 1398 1399 /* ACL3_GETACL = 1 */ 1400 GETACL3args acl3_getacl_args; 1401 1402 /* ACL3_SETACL = 2 */ 1403 SETACL3args acl3_setacl; 1404 1405 /* ACL3_GETXATTRDIR = 3 */ 1406 GETXATTRDIR3args acl3_getxattrdir_args; 1407 1408 }; 1409 1410 union acl_res { 1411 /* 1412 * ACL VERSION 2 1413 */ 1414 1415 /* ACL2_NULL = 0 */ 1416 1417 /* ACL2_GETACL = 1 */ 1418 GETACL2res acl2_getacl_res; 1419 1420 /* ACL2_SETACL = 2 */ 1421 SETACL2res acl2_setacl_res; 1422 1423 /* ACL2_GETATTR = 3 */ 1424 GETATTR2res acl2_getattr_res; 1425 1426 /* ACL2_ACCESS = 4 */ 1427 ACCESS2res acl2_access_res; 1428 1429 /* ACL2_GETXATTRDIR = 5 */ 1430 GETXATTRDIR2args acl2_getxattrdir_res; 1431 1432 /* 1433 * ACL VERSION 3 1434 */ 1435 1436 /* ACL3_NULL = 0 */ 1437 1438 /* ACL3_GETACL = 1 */ 1439 GETACL3res acl3_getacl_res; 1440 1441 /* ACL3_SETACL = 2 */ 1442 SETACL3res acl3_setacl_res; 1443 1444 /* ACL3_GETXATTRDIR = 3 */ 1445 GETXATTRDIR3res acl3_getxattrdir_res; 1446 1447 }; 1448 1449 static bool_t 1450 auth_tooweak(struct svc_req *req, char *res) 1451 { 1452 1453 if (req->rq_vers == NFS_VERSION && req->rq_proc == RFS_LOOKUP) { 1454 struct nfsdiropres *dr = (struct nfsdiropres *)res; 1455 if (dr->dr_status == WNFSERR_CLNT_FLAVOR) 1456 return (TRUE); 1457 } else if (req->rq_vers == NFS_V3 && req->rq_proc == NFSPROC3_LOOKUP) { 1458 LOOKUP3res *resp = (LOOKUP3res *)res; 1459 if (resp->status == WNFSERR_CLNT_FLAVOR) 1460 return (TRUE); 1461 } 1462 return (FALSE); 1463 } 1464 1465 1466 static void 1467 common_dispatch(struct svc_req *req, SVCXPRT *xprt, rpcvers_t min_vers, 1468 rpcvers_t max_vers, char *pgmname, 1469 struct rpc_disptable *disptable) 1470 { 1471 int which; 1472 rpcvers_t vers; 1473 char *args; 1474 union { 1475 union rfs_args ra; 1476 union acl_args aa; 1477 } args_buf; 1478 char *res; 1479 union { 1480 union rfs_res rr; 1481 union acl_res ar; 1482 } res_buf; 1483 struct rpcdisp *disp = NULL; 1484 int dis_flags = 0; 1485 cred_t *cr; 1486 int error = 0; 1487 int anon_ok; 1488 struct exportinfo *exi = NULL; 1489 unsigned int nfslog_rec_id; 1490 int dupstat; 1491 struct dupreq *dr; 1492 int authres; 1493 bool_t publicfh_ok = FALSE; 1494 enum_t auth_flavor; 1495 bool_t dupcached = FALSE; 1496 struct netbuf nb; 1497 bool_t logging_enabled = FALSE; 1498 struct exportinfo *nfslog_exi = NULL; 1499 char **procnames; 1500 char cbuf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */ 1501 1502 vers = req->rq_vers; 1503 1504 if (vers < min_vers || vers > max_vers) { 1505 svcerr_progvers(req->rq_xprt, min_vers, max_vers); 1506 error++; 1507 cmn_err(CE_NOTE, "%s: bad version number %u", pgmname, vers); 1508 goto done; 1509 } 1510 vers -= min_vers; 1511 1512 which = req->rq_proc; 1513 if (which < 0 || which >= disptable[(int)vers].dis_nprocs) { 1514 svcerr_noproc(req->rq_xprt); 1515 error++; 1516 goto done; 1517 } 1518 1519 (*(disptable[(int)vers].dis_proccntp))[which].value.ui64++; 1520 1521 disp = &disptable[(int)vers].dis_table[which]; 1522 procnames = disptable[(int)vers].dis_procnames; 1523 1524 auth_flavor = req->rq_cred.oa_flavor; 1525 1526 /* 1527 * Deserialize into the args struct. 1528 */ 1529 args = (char *)&args_buf; 1530 1531 #ifdef DEBUG 1532 if (rfs_no_fast_xdrargs || (auth_flavor == RPCSEC_GSS) || 1533 disp->dis_fastxdrargs == NULL_xdrproc_t || 1534 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args)) 1535 #else 1536 if ((auth_flavor == RPCSEC_GSS) || 1537 disp->dis_fastxdrargs == NULL_xdrproc_t || 1538 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args)) 1539 #endif 1540 { 1541 bzero(args, disp->dis_argsz); 1542 if (!SVC_GETARGS(xprt, disp->dis_xdrargs, args)) { 1543 error++; 1544 /* 1545 * Check if we are outside our capabilities. 1546 */ 1547 if (rfs4_minorvers_mismatch(req, xprt, (void *)args)) 1548 goto done; 1549 1550 svcerr_decode(xprt); 1551 cmn_err(CE_NOTE, 1552 "Failed to decode arguments for %s version %u " 1553 "procedure %s client %s%s", 1554 pgmname, vers + min_vers, procnames[which], 1555 client_name(req), client_addr(req, cbuf)); 1556 goto done; 1557 } 1558 } 1559 1560 /* 1561 * If Version 4 use that specific dispatch function. 1562 */ 1563 if (req->rq_vers == 4) { 1564 error += rfs4_dispatch(disp, req, xprt, args); 1565 goto done; 1566 } 1567 1568 dis_flags = disp->dis_flags; 1569 1570 /* 1571 * Find export information and check authentication, 1572 * setting the credential if everything is ok. 1573 */ 1574 if (disp->dis_getfh != NULL) { 1575 void *fh; 1576 fsid_t *fsid; 1577 fid_t *fid, *xfid; 1578 fhandle_t *fh2; 1579 nfs_fh3 *fh3; 1580 1581 fh = (*disp->dis_getfh)(args); 1582 switch (req->rq_vers) { 1583 case NFS_VERSION: 1584 fh2 = (fhandle_t *)fh; 1585 fsid = &fh2->fh_fsid; 1586 fid = (fid_t *)&fh2->fh_len; 1587 xfid = (fid_t *)&fh2->fh_xlen; 1588 break; 1589 case NFS_V3: 1590 fh3 = (nfs_fh3 *)fh; 1591 fsid = &fh3->fh3_fsid; 1592 fid = FH3TOFIDP(fh3); 1593 xfid = FH3TOXFIDP(fh3); 1594 break; 1595 } 1596 1597 /* 1598 * Fix for bug 1038302 - corbin 1599 * There is a problem here if anonymous access is 1600 * disallowed. If the current request is part of the 1601 * client's mount process for the requested filesystem, 1602 * then it will carry root (uid 0) credentials on it, and 1603 * will be denied by checkauth if that client does not 1604 * have explicit root=0 permission. This will cause the 1605 * client's mount operation to fail. As a work-around, 1606 * we check here to see if the request is a getattr or 1607 * statfs operation on the exported vnode itself, and 1608 * pass a flag to checkauth with the result of this test. 1609 * 1610 * The filehandle refers to the mountpoint itself if 1611 * the fh_data and fh_xdata portions of the filehandle 1612 * are equal. 1613 * 1614 * Added anon_ok argument to checkauth(). 1615 */ 1616 1617 if ((dis_flags & RPC_ALLOWANON) && EQFID(fid, xfid)) 1618 anon_ok = 1; 1619 else 1620 anon_ok = 0; 1621 1622 cr = xprt->xp_cred; 1623 ASSERT(cr != NULL); 1624 #ifdef DEBUG 1625 if (crgetref(cr) != 1) { 1626 crfree(cr); 1627 cr = crget(); 1628 xprt->xp_cred = cr; 1629 cred_misses++; 1630 } else 1631 cred_hits++; 1632 #else 1633 if (crgetref(cr) != 1) { 1634 crfree(cr); 1635 cr = crget(); 1636 xprt->xp_cred = cr; 1637 } 1638 #endif 1639 1640 exi = checkexport(fsid, xfid); 1641 1642 if (exi != NULL) { 1643 publicfh_ok = PUBLICFH_CHECK(disp, exi, fsid, xfid); 1644 1645 /* 1646 * Don't allow non-V4 clients access 1647 * to pseudo exports 1648 */ 1649 if (PSEUDO(exi)) { 1650 svcerr_weakauth(xprt); 1651 error++; 1652 goto done; 1653 } 1654 1655 authres = checkauth(exi, req, cr, anon_ok, publicfh_ok); 1656 /* 1657 * authres > 0: authentication OK - proceed 1658 * authres == 0: authentication weak - return error 1659 * authres < 0: authentication timeout - drop 1660 */ 1661 if (authres <= 0) { 1662 if (authres == 0) { 1663 svcerr_weakauth(xprt); 1664 error++; 1665 } 1666 goto done; 1667 } 1668 } 1669 } else 1670 cr = NULL; 1671 1672 if ((dis_flags & RPC_MAPRESP) && (auth_flavor != RPCSEC_GSS)) { 1673 res = (char *)SVC_GETRES(xprt, disp->dis_ressz); 1674 if (res == NULL) 1675 res = (char *)&res_buf; 1676 } else 1677 res = (char *)&res_buf; 1678 1679 if (!(dis_flags & RPC_IDEMPOTENT)) { 1680 dupstat = SVC_DUP_EXT(xprt, req, res, disp->dis_ressz, &dr, 1681 &dupcached); 1682 1683 switch (dupstat) { 1684 case DUP_ERROR: 1685 svcerr_systemerr(xprt); 1686 error++; 1687 goto done; 1688 /* NOTREACHED */ 1689 case DUP_INPROGRESS: 1690 if (res != (char *)&res_buf) 1691 SVC_FREERES(xprt); 1692 error++; 1693 goto done; 1694 /* NOTREACHED */ 1695 case DUP_NEW: 1696 case DUP_DROP: 1697 curthread->t_flag |= T_DONTPEND; 1698 1699 (*disp->dis_proc)(args, res, exi, req, cr); 1700 1701 curthread->t_flag &= ~T_DONTPEND; 1702 if (curthread->t_flag & T_WOULDBLOCK) { 1703 curthread->t_flag &= ~T_WOULDBLOCK; 1704 SVC_DUPDONE_EXT(xprt, dr, res, NULL, 1705 disp->dis_ressz, DUP_DROP); 1706 if (res != (char *)&res_buf) 1707 SVC_FREERES(xprt); 1708 error++; 1709 goto done; 1710 } 1711 if (dis_flags & RPC_AVOIDWORK) { 1712 SVC_DUPDONE_EXT(xprt, dr, res, NULL, 1713 disp->dis_ressz, DUP_DROP); 1714 } else { 1715 SVC_DUPDONE_EXT(xprt, dr, res, 1716 disp->dis_resfree == nullfree ? NULL : 1717 disp->dis_resfree, 1718 disp->dis_ressz, DUP_DONE); 1719 dupcached = TRUE; 1720 } 1721 break; 1722 case DUP_DONE: 1723 break; 1724 } 1725 1726 } else { 1727 curthread->t_flag |= T_DONTPEND; 1728 1729 (*disp->dis_proc)(args, res, exi, req, cr); 1730 1731 curthread->t_flag &= ~T_DONTPEND; 1732 if (curthread->t_flag & T_WOULDBLOCK) { 1733 curthread->t_flag &= ~T_WOULDBLOCK; 1734 if (res != (char *)&res_buf) 1735 SVC_FREERES(xprt); 1736 error++; 1737 goto done; 1738 } 1739 } 1740 1741 if (auth_tooweak(req, res)) { 1742 svcerr_weakauth(xprt); 1743 error++; 1744 goto done; 1745 } 1746 1747 /* 1748 * Check to see if logging has been enabled on the server. 1749 * If so, then obtain the export info struct to be used for 1750 * the later writing of the log record. This is done for 1751 * the case that a lookup is done across a non-logged public 1752 * file system. 1753 */ 1754 if (nfslog_buffer_list != NULL) { 1755 nfslog_exi = nfslog_get_exi(exi, req, res, &nfslog_rec_id); 1756 /* 1757 * Is logging enabled? 1758 */ 1759 logging_enabled = (nfslog_exi != NULL); 1760 1761 /* 1762 * Copy the netbuf for logging purposes, before it is 1763 * freed by svc_sendreply(). 1764 */ 1765 if (logging_enabled) { 1766 NFSLOG_COPY_NETBUF(nfslog_exi, xprt, &nb); 1767 /* 1768 * If RPC_MAPRESP flag set (i.e. in V2 ops) the 1769 * res gets copied directly into the mbuf and 1770 * may be freed soon after the sendreply. So we 1771 * must copy it here to a safe place... 1772 */ 1773 if (res != (char *)&res_buf) { 1774 bcopy(res, (char *)&res_buf, disp->dis_ressz); 1775 } 1776 } 1777 } 1778 1779 /* 1780 * Serialize and send results struct 1781 */ 1782 #ifdef DEBUG 1783 if (rfs_no_fast_xdrres == 0 && res != (char *)&res_buf) 1784 #else 1785 if (res != (char *)&res_buf) 1786 #endif 1787 { 1788 if (!svc_sendreply(xprt, disp->dis_fastxdrres, res)) { 1789 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname); 1790 svcerr_systemerr(xprt); 1791 error++; 1792 } 1793 } else { 1794 if (!svc_sendreply(xprt, disp->dis_xdrres, res)) { 1795 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname); 1796 svcerr_systemerr(xprt); 1797 error++; 1798 } 1799 } 1800 1801 /* 1802 * Log if needed 1803 */ 1804 if (logging_enabled) { 1805 nfslog_write_record(nfslog_exi, req, args, (char *)&res_buf, 1806 cr, &nb, nfslog_rec_id, NFSLOG_ONE_BUFFER); 1807 exi_rele(nfslog_exi); 1808 kmem_free((&nb)->buf, (&nb)->len); 1809 } 1810 1811 /* 1812 * Free results struct. With the addition of NFS V4 we can 1813 * have non-idempotent procedures with functions. 1814 */ 1815 if (disp->dis_resfree != nullfree && dupcached == FALSE) { 1816 (*disp->dis_resfree)(res); 1817 } 1818 1819 done: 1820 /* 1821 * Free arguments struct 1822 */ 1823 if (disp) { 1824 if (!SVC_FREEARGS(xprt, disp->dis_xdrargs, args)) { 1825 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname); 1826 error++; 1827 } 1828 } else { 1829 if (!SVC_FREEARGS(xprt, (xdrproc_t)0, (caddr_t)0)) { 1830 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname); 1831 error++; 1832 } 1833 } 1834 1835 if (exi != NULL) 1836 exi_rele(exi); 1837 1838 global_svstat_ptr[req->rq_vers][NFS_BADCALLS].value.ui64 += error; 1839 1840 global_svstat_ptr[req->rq_vers][NFS_CALLS].value.ui64++; 1841 } 1842 1843 static void 1844 rfs_dispatch(struct svc_req *req, SVCXPRT *xprt) 1845 { 1846 common_dispatch(req, xprt, NFS_VERSMIN, NFS_VERSMAX, 1847 "NFS", rfs_disptable); 1848 } 1849 1850 static char *aclcallnames_v2[] = { 1851 "ACL2_NULL", 1852 "ACL2_GETACL", 1853 "ACL2_SETACL", 1854 "ACL2_GETATTR", 1855 "ACL2_ACCESS", 1856 "ACL2_GETXATTRDIR" 1857 }; 1858 1859 static struct rpcdisp acldisptab_v2[] = { 1860 /* 1861 * ACL VERSION 2 1862 */ 1863 1864 /* ACL2_NULL = 0 */ 1865 {rpc_null, 1866 xdr_void, NULL_xdrproc_t, 0, 1867 xdr_void, NULL_xdrproc_t, 0, 1868 nullfree, RPC_IDEMPOTENT, 1869 0}, 1870 1871 /* ACL2_GETACL = 1 */ 1872 {acl2_getacl, 1873 xdr_GETACL2args, xdr_fastGETACL2args, sizeof (GETACL2args), 1874 xdr_GETACL2res, NULL_xdrproc_t, sizeof (GETACL2res), 1875 acl2_getacl_free, RPC_IDEMPOTENT, 1876 acl2_getacl_getfh}, 1877 1878 /* ACL2_SETACL = 2 */ 1879 {acl2_setacl, 1880 xdr_SETACL2args, NULL_xdrproc_t, sizeof (SETACL2args), 1881 #ifdef _LITTLE_ENDIAN 1882 xdr_SETACL2res, xdr_fastSETACL2res, sizeof (SETACL2res), 1883 #else 1884 xdr_SETACL2res, NULL_xdrproc_t, sizeof (SETACL2res), 1885 #endif 1886 nullfree, RPC_MAPRESP, 1887 acl2_setacl_getfh}, 1888 1889 /* ACL2_GETATTR = 3 */ 1890 {acl2_getattr, 1891 xdr_GETATTR2args, xdr_fastGETATTR2args, sizeof (GETATTR2args), 1892 #ifdef _LITTLE_ENDIAN 1893 xdr_GETATTR2res, xdr_fastGETATTR2res, sizeof (GETATTR2res), 1894 #else 1895 xdr_GETATTR2res, NULL_xdrproc_t, sizeof (GETATTR2res), 1896 #endif 1897 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 1898 acl2_getattr_getfh}, 1899 1900 /* ACL2_ACCESS = 4 */ 1901 {acl2_access, 1902 xdr_ACCESS2args, xdr_fastACCESS2args, sizeof (ACCESS2args), 1903 #ifdef _LITTLE_ENDIAN 1904 xdr_ACCESS2res, xdr_fastACCESS2res, sizeof (ACCESS2res), 1905 #else 1906 xdr_ACCESS2res, NULL_xdrproc_t, sizeof (ACCESS2res), 1907 #endif 1908 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP, 1909 acl2_access_getfh}, 1910 1911 /* ACL2_GETXATTRDIR = 5 */ 1912 {acl2_getxattrdir, 1913 xdr_GETXATTRDIR2args, NULL_xdrproc_t, sizeof (GETXATTRDIR2args), 1914 xdr_GETXATTRDIR2res, NULL_xdrproc_t, sizeof (GETXATTRDIR2res), 1915 nullfree, RPC_IDEMPOTENT, 1916 acl2_getxattrdir_getfh}, 1917 }; 1918 1919 static char *aclcallnames_v3[] = { 1920 "ACL3_NULL", 1921 "ACL3_GETACL", 1922 "ACL3_SETACL", 1923 "ACL3_GETXATTRDIR" 1924 }; 1925 1926 static struct rpcdisp acldisptab_v3[] = { 1927 /* 1928 * ACL VERSION 3 1929 */ 1930 1931 /* ACL3_NULL = 0 */ 1932 {rpc_null, 1933 xdr_void, NULL_xdrproc_t, 0, 1934 xdr_void, NULL_xdrproc_t, 0, 1935 nullfree, RPC_IDEMPOTENT, 1936 0}, 1937 1938 /* ACL3_GETACL = 1 */ 1939 {acl3_getacl, 1940 xdr_GETACL3args, NULL_xdrproc_t, sizeof (GETACL3args), 1941 xdr_GETACL3res, NULL_xdrproc_t, sizeof (GETACL3res), 1942 acl3_getacl_free, RPC_IDEMPOTENT, 1943 acl3_getacl_getfh}, 1944 1945 /* ACL3_SETACL = 2 */ 1946 {acl3_setacl, 1947 xdr_SETACL3args, NULL_xdrproc_t, sizeof (SETACL3args), 1948 xdr_SETACL3res, NULL_xdrproc_t, sizeof (SETACL3res), 1949 nullfree, 0, 1950 acl3_setacl_getfh}, 1951 1952 /* ACL3_GETXATTRDIR = 3 */ 1953 {acl3_getxattrdir, 1954 xdr_GETXATTRDIR3args, NULL_xdrproc_t, sizeof (GETXATTRDIR3args), 1955 xdr_GETXATTRDIR3res, NULL_xdrproc_t, sizeof (GETXATTRDIR3res), 1956 nullfree, RPC_IDEMPOTENT, 1957 acl3_getxattrdir_getfh}, 1958 }; 1959 1960 static struct rpc_disptable acl_disptable[] = { 1961 {sizeof (acldisptab_v2) / sizeof (acldisptab_v2[0]), 1962 aclcallnames_v2, 1963 &aclproccnt_v2_ptr, acldisptab_v2}, 1964 {sizeof (acldisptab_v3) / sizeof (acldisptab_v3[0]), 1965 aclcallnames_v3, 1966 &aclproccnt_v3_ptr, acldisptab_v3}, 1967 }; 1968 1969 static void 1970 acl_dispatch(struct svc_req *req, SVCXPRT *xprt) 1971 { 1972 common_dispatch(req, xprt, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, 1973 "ACL", acl_disptable); 1974 } 1975 1976 int 1977 checkwin(int flavor, int window, struct svc_req *req) 1978 { 1979 struct authdes_cred *adc; 1980 1981 switch (flavor) { 1982 case AUTH_DES: 1983 adc = (struct authdes_cred *)req->rq_clntcred; 1984 if (adc->adc_fullname.window > window) 1985 return (0); 1986 break; 1987 1988 default: 1989 break; 1990 } 1991 return (1); 1992 } 1993 1994 1995 /* 1996 * checkauth() will check the access permission against the export 1997 * information. Then map root uid/gid to appropriate uid/gid. 1998 * 1999 * This routine is used by NFS V3 and V2 code. 2000 */ 2001 static int 2002 checkauth(struct exportinfo *exi, struct svc_req *req, cred_t *cr, int anon_ok, 2003 bool_t publicfh_ok) 2004 { 2005 int i, nfsflavor, rpcflavor, stat, access; 2006 struct secinfo *secp; 2007 caddr_t principal; 2008 char buf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */ 2009 int anon_res = 0; 2010 2011 /* 2012 * Check for privileged port number 2013 * N.B.: this assumes that we know the format of a netbuf. 2014 */ 2015 if (nfs_portmon) { 2016 struct sockaddr *ca; 2017 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 2018 2019 if (ca == NULL) 2020 return (0); 2021 2022 if ((ca->sa_family == AF_INET && 2023 ntohs(((struct sockaddr_in *)ca)->sin_port) >= 2024 IPPORT_RESERVED) || 2025 (ca->sa_family == AF_INET6 && 2026 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >= 2027 IPPORT_RESERVED)) { 2028 cmn_err(CE_NOTE, 2029 "nfs_server: client %s%ssent NFS request from " 2030 "unprivileged port", 2031 client_name(req), client_addr(req, buf)); 2032 return (0); 2033 } 2034 } 2035 2036 /* 2037 * return 1 on success or 0 on failure 2038 */ 2039 stat = sec_svc_getcred(req, cr, &principal, &nfsflavor); 2040 2041 /* 2042 * A failed AUTH_UNIX svc_get_cred() implies we couldn't set 2043 * the credentials; below we map that to anonymous. 2044 */ 2045 if (!stat && nfsflavor != AUTH_UNIX) { 2046 cmn_err(CE_NOTE, 2047 "nfs_server: couldn't get unix cred for %s", 2048 client_name(req)); 2049 return (0); 2050 } 2051 2052 /* 2053 * Short circuit checkauth() on operations that support the 2054 * public filehandle, and if the request for that operation 2055 * is using the public filehandle. Note that we must call 2056 * sec_svc_getcred() first so that xp_cookie is set to the 2057 * right value. Normally xp_cookie is just the RPC flavor 2058 * of the the request, but in the case of RPCSEC_GSS it 2059 * could be a pseudo flavor. 2060 */ 2061 if (publicfh_ok) 2062 return (1); 2063 2064 rpcflavor = req->rq_cred.oa_flavor; 2065 /* 2066 * Check if the auth flavor is valid for this export 2067 */ 2068 access = nfsauth_access(exi, req); 2069 if (access & NFSAUTH_DROP) 2070 return (-1); /* drop the request */ 2071 2072 if (access & NFSAUTH_DENIED) { 2073 /* 2074 * If anon_ok == 1 and we got NFSAUTH_DENIED, it was 2075 * probably due to the flavor not matching during the 2076 * the mount attempt. So map the flavor to AUTH_NONE 2077 * so that the credentials get mapped to the anonymous 2078 * user. 2079 */ 2080 if (anon_ok == 1) 2081 rpcflavor = AUTH_NONE; 2082 else 2083 return (0); /* deny access */ 2084 2085 } else if (access & NFSAUTH_MAPNONE) { 2086 /* 2087 * Access was granted even though the flavor mismatched 2088 * because AUTH_NONE was one of the exported flavors. 2089 */ 2090 rpcflavor = AUTH_NONE; 2091 2092 } else if (access & NFSAUTH_WRONGSEC) { 2093 /* 2094 * NFSAUTH_WRONGSEC is used for NFSv4. If we get here, 2095 * it means a client ignored the list of allowed flavors 2096 * returned via the MOUNT protocol. So we just disallow it! 2097 */ 2098 return (0); 2099 } 2100 2101 switch (rpcflavor) { 2102 case AUTH_NONE: 2103 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2104 exi->exi_export.ex_anon); 2105 (void) crsetgroups(cr, 0, NULL); 2106 break; 2107 2108 case AUTH_UNIX: 2109 if (!stat || crgetuid(cr) == 0 && !(access & NFSAUTH_ROOT)) { 2110 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2111 exi->exi_export.ex_anon); 2112 (void) crsetgroups(cr, 0, NULL); 2113 } else if (!stat || crgetuid(cr) == 0 && 2114 access & NFSAUTH_ROOT) { 2115 /* 2116 * It is root, so apply rootid to get real UID 2117 * Find the secinfo structure. We should be able 2118 * to find it by the time we reach here. 2119 * nfsauth_access() has done the checking. 2120 */ 2121 secp = NULL; 2122 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2123 struct secinfo *sptr; 2124 sptr = &exi->exi_export.ex_secinfo[i]; 2125 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) { 2126 secp = sptr; 2127 break; 2128 } 2129 } 2130 if (secp != NULL) { 2131 (void) crsetugid(cr, secp->s_rootid, 2132 secp->s_rootid); 2133 (void) crsetgroups(cr, 0, NULL); 2134 } 2135 } 2136 break; 2137 2138 case AUTH_DES: 2139 case RPCSEC_GSS: 2140 /* 2141 * Find the secinfo structure. We should be able 2142 * to find it by the time we reach here. 2143 * nfsauth_access() has done the checking. 2144 */ 2145 secp = NULL; 2146 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2147 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum == 2148 nfsflavor) { 2149 secp = &exi->exi_export.ex_secinfo[i]; 2150 break; 2151 } 2152 } 2153 2154 if (!secp) { 2155 cmn_err(CE_NOTE, "nfs_server: client %s%shad " 2156 "no secinfo data for flavor %d", 2157 client_name(req), client_addr(req, buf), 2158 nfsflavor); 2159 return (0); 2160 } 2161 2162 if (!checkwin(rpcflavor, secp->s_window, req)) { 2163 cmn_err(CE_NOTE, 2164 "nfs_server: client %s%sused invalid " 2165 "auth window value", 2166 client_name(req), client_addr(req, buf)); 2167 return (0); 2168 } 2169 2170 /* 2171 * Map root principals listed in the share's root= list to root, 2172 * and map any others principals that were mapped to root by RPC 2173 * to anon. 2174 */ 2175 if (principal && sec_svc_inrootlist(rpcflavor, principal, 2176 secp->s_rootcnt, secp->s_rootnames)) { 2177 if (crgetuid(cr) == 0 && secp->s_rootid == 0) 2178 return (1); 2179 2180 2181 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid); 2182 2183 /* 2184 * NOTE: If and when kernel-land privilege tracing is 2185 * added this may have to be replaced with code that 2186 * retrieves root's supplementary groups (e.g., using 2187 * kgss_get_group_info(). In the meantime principals 2188 * mapped to uid 0 get all privileges, so setting cr's 2189 * supplementary groups for them does nothing. 2190 */ 2191 (void) crsetgroups(cr, 0, NULL); 2192 2193 return (1); 2194 } 2195 2196 /* 2197 * Not a root princ, or not in root list, map UID 0/nobody to 2198 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to 2199 * UID_NOBODY and GID_NOBODY, respectively.) 2200 */ 2201 if (crgetuid(cr) != 0 && 2202 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY)) 2203 return (1); 2204 2205 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2206 exi->exi_export.ex_anon); 2207 (void) crsetgroups(cr, 0, NULL); 2208 break; 2209 default: 2210 return (0); 2211 } /* switch on rpcflavor */ 2212 2213 /* 2214 * Even if anon access is disallowed via ex_anon == -1, we allow 2215 * this access if anon_ok is set. So set creds to the default 2216 * "nobody" id. 2217 */ 2218 if (anon_res != 0) { 2219 if (anon_ok == 0) { 2220 cmn_err(CE_NOTE, 2221 "nfs_server: client %s%ssent wrong " 2222 "authentication for %s", 2223 client_name(req), client_addr(req, buf), 2224 exi->exi_export.ex_path ? 2225 exi->exi_export.ex_path : "?"); 2226 return (0); 2227 } 2228 2229 if (crsetugid(cr, UID_NOBODY, GID_NOBODY) != 0) 2230 return (0); 2231 } 2232 2233 return (1); 2234 } 2235 2236 /* 2237 * returns 0 on failure, -1 on a drop, -2 on wrong security flavor, 2238 * and 1 on success 2239 */ 2240 int 2241 checkauth4(struct compound_state *cs, struct svc_req *req) 2242 { 2243 int i, rpcflavor, access; 2244 struct secinfo *secp; 2245 char buf[MAXHOST + 1]; 2246 int anon_res = 0, nfsflavor; 2247 struct exportinfo *exi; 2248 cred_t *cr; 2249 caddr_t principal; 2250 2251 exi = cs->exi; 2252 cr = cs->cr; 2253 principal = cs->principal; 2254 nfsflavor = cs->nfsflavor; 2255 2256 ASSERT(cr != NULL); 2257 2258 rpcflavor = req->rq_cred.oa_flavor; 2259 cs->access &= ~CS_ACCESS_LIMITED; 2260 2261 /* 2262 * Check for privileged port number 2263 * N.B.: this assumes that we know the format of a netbuf. 2264 */ 2265 if (nfs_portmon) { 2266 struct sockaddr *ca; 2267 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 2268 2269 if (ca == NULL) 2270 return (0); 2271 2272 if ((ca->sa_family == AF_INET && 2273 ntohs(((struct sockaddr_in *)ca)->sin_port) >= 2274 IPPORT_RESERVED) || 2275 (ca->sa_family == AF_INET6 && 2276 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >= 2277 IPPORT_RESERVED)) { 2278 cmn_err(CE_NOTE, 2279 "nfs_server: client %s%ssent NFSv4 request from " 2280 "unprivileged port", 2281 client_name(req), client_addr(req, buf)); 2282 return (0); 2283 } 2284 } 2285 2286 /* 2287 * Check the access right per auth flavor on the vnode of 2288 * this export for the given request. 2289 */ 2290 access = nfsauth4_access(cs->exi, cs->vp, req); 2291 2292 if (access & NFSAUTH_WRONGSEC) 2293 return (-2); /* no access for this security flavor */ 2294 2295 if (access & NFSAUTH_DROP) 2296 return (-1); /* drop the request */ 2297 2298 if (access & NFSAUTH_DENIED) { 2299 2300 if (exi->exi_export.ex_seccnt > 0) 2301 return (0); /* deny access */ 2302 2303 } else if (access & NFSAUTH_LIMITED) { 2304 2305 cs->access |= CS_ACCESS_LIMITED; 2306 2307 } else if (access & NFSAUTH_MAPNONE) { 2308 /* 2309 * Access was granted even though the flavor mismatched 2310 * because AUTH_NONE was one of the exported flavors. 2311 */ 2312 rpcflavor = AUTH_NONE; 2313 } 2314 2315 /* 2316 * XXX probably need to redo some of it for nfsv4? 2317 * return 1 on success or 0 on failure 2318 */ 2319 2320 switch (rpcflavor) { 2321 case AUTH_NONE: 2322 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2323 exi->exi_export.ex_anon); 2324 (void) crsetgroups(cr, 0, NULL); 2325 break; 2326 2327 case AUTH_UNIX: 2328 if (crgetuid(cr) == 0 && !(access & NFSAUTH_ROOT)) { 2329 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2330 exi->exi_export.ex_anon); 2331 (void) crsetgroups(cr, 0, NULL); 2332 } else if (crgetuid(cr) == 0 && access & NFSAUTH_ROOT) { 2333 /* 2334 * It is root, so apply rootid to get real UID 2335 * Find the secinfo structure. We should be able 2336 * to find it by the time we reach here. 2337 * nfsauth_access() has done the checking. 2338 */ 2339 secp = NULL; 2340 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2341 struct secinfo *sptr; 2342 sptr = &exi->exi_export.ex_secinfo[i]; 2343 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) { 2344 secp = &exi->exi_export.ex_secinfo[i]; 2345 break; 2346 } 2347 } 2348 if (secp != NULL) { 2349 (void) crsetugid(cr, secp->s_rootid, 2350 secp->s_rootid); 2351 (void) crsetgroups(cr, 0, NULL); 2352 } 2353 } 2354 break; 2355 2356 default: 2357 /* 2358 * Find the secinfo structure. We should be able 2359 * to find it by the time we reach here. 2360 * nfsauth_access() has done the checking. 2361 */ 2362 secp = NULL; 2363 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2364 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum == 2365 nfsflavor) { 2366 secp = &exi->exi_export.ex_secinfo[i]; 2367 break; 2368 } 2369 } 2370 2371 if (!secp) { 2372 cmn_err(CE_NOTE, "nfs_server: client %s%shad " 2373 "no secinfo data for flavor %d", 2374 client_name(req), client_addr(req, buf), 2375 nfsflavor); 2376 return (0); 2377 } 2378 2379 if (!checkwin(rpcflavor, secp->s_window, req)) { 2380 cmn_err(CE_NOTE, 2381 "nfs_server: client %s%sused invalid " 2382 "auth window value", 2383 client_name(req), client_addr(req, buf)); 2384 return (0); 2385 } 2386 2387 /* 2388 * Map root principals listed in the share's root= list to root, 2389 * and map any others principals that were mapped to root by RPC 2390 * to anon. If not going to anon, set to rootid (root_mapping). 2391 */ 2392 if (principal && sec_svc_inrootlist(rpcflavor, principal, 2393 secp->s_rootcnt, secp->s_rootnames)) { 2394 if (crgetuid(cr) == 0 && secp->s_rootid == 0) 2395 return (1); 2396 2397 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid); 2398 2399 /* 2400 * NOTE: If and when kernel-land privilege tracing is 2401 * added this may have to be replaced with code that 2402 * retrieves root's supplementary groups (e.g., using 2403 * kgss_get_group_info(). In the meantime principals 2404 * mapped to uid 0 get all privileges, so setting cr's 2405 * supplementary groups for them does nothing. 2406 */ 2407 (void) crsetgroups(cr, 0, NULL); 2408 2409 return (1); 2410 } 2411 2412 /* 2413 * Not a root princ, or not in root list, map UID 0/nobody to 2414 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to 2415 * UID_NOBODY and GID_NOBODY, respectively.) 2416 */ 2417 if (crgetuid(cr) != 0 && 2418 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY)) 2419 return (1); 2420 2421 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2422 exi->exi_export.ex_anon); 2423 (void) crsetgroups(cr, 0, NULL); 2424 break; 2425 } /* switch on rpcflavor */ 2426 2427 /* 2428 * Even if anon access is disallowed via ex_anon == -1, we allow 2429 * this access if anon_ok is set. So set creds to the default 2430 * "nobody" id. 2431 */ 2432 2433 if (anon_res != 0) { 2434 cmn_err(CE_NOTE, 2435 "nfs_server: client %s%ssent wrong " 2436 "authentication for %s", 2437 client_name(req), client_addr(req, buf), 2438 exi->exi_export.ex_path ? 2439 exi->exi_export.ex_path : "?"); 2440 return (0); 2441 } 2442 2443 return (1); 2444 } 2445 2446 2447 static char * 2448 client_name(struct svc_req *req) 2449 { 2450 char *hostname = NULL; 2451 2452 /* 2453 * If it's a Unix cred then use the 2454 * hostname from the credential. 2455 */ 2456 if (req->rq_cred.oa_flavor == AUTH_UNIX) { 2457 hostname = ((struct authunix_parms *) 2458 req->rq_clntcred)->aup_machname; 2459 } 2460 if (hostname == NULL) 2461 hostname = ""; 2462 2463 return (hostname); 2464 } 2465 2466 static char * 2467 client_addr(struct svc_req *req, char *buf) 2468 { 2469 struct sockaddr *ca; 2470 uchar_t *b; 2471 char *frontspace = ""; 2472 2473 /* 2474 * We assume we are called in tandem with client_name and the 2475 * format string looks like "...client %s%sblah blah..." 2476 * 2477 * If it's a Unix cred then client_name returned 2478 * a host name, so we need insert a space between host name 2479 * and IP address. 2480 */ 2481 if (req->rq_cred.oa_flavor == AUTH_UNIX) 2482 frontspace = " "; 2483 2484 /* 2485 * Convert the caller's IP address to a dotted string 2486 */ 2487 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 2488 2489 if (ca->sa_family == AF_INET) { 2490 b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr; 2491 (void) sprintf(buf, "%s(%d.%d.%d.%d) ", frontspace, 2492 b[0] & 0xFF, b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF); 2493 } else if (ca->sa_family == AF_INET6) { 2494 struct sockaddr_in6 *sin6; 2495 sin6 = (struct sockaddr_in6 *)ca; 2496 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr, 2497 buf, INET6_ADDRSTRLEN); 2498 2499 } else { 2500 2501 /* 2502 * No IP address to print. If there was a host name 2503 * printed, then we print a space. 2504 */ 2505 (void) sprintf(buf, frontspace); 2506 } 2507 2508 return (buf); 2509 } 2510 2511 /* 2512 * NFS Server initialization routine. This routine should only be called 2513 * once. It performs the following tasks: 2514 * - Call sub-initialization routines (localize access to variables) 2515 * - Initialize all locks 2516 * - initialize the version 3 write verifier 2517 */ 2518 int 2519 nfs_srvinit(void) 2520 { 2521 int error; 2522 2523 error = nfs_exportinit(); 2524 if (error != 0) 2525 return (error); 2526 error = rfs4_srvrinit(); 2527 if (error != 0) { 2528 nfs_exportfini(); 2529 return (error); 2530 } 2531 rfs_srvrinit(); 2532 rfs3_srvrinit(); 2533 nfsauth_init(); 2534 2535 /* Init the stuff to control start/stop */ 2536 nfs_server_upordown = NFS_SERVER_STOPPED; 2537 mutex_init(&nfs_server_upordown_lock, NULL, MUTEX_DEFAULT, NULL); 2538 cv_init(&nfs_server_upordown_cv, NULL, CV_DEFAULT, NULL); 2539 mutex_init(&rdma_wait_mutex, NULL, MUTEX_DEFAULT, NULL); 2540 cv_init(&rdma_wait_cv, NULL, CV_DEFAULT, NULL); 2541 2542 return (0); 2543 } 2544 2545 /* 2546 * NFS Server finalization routine. This routine is called to cleanup the 2547 * initialization work previously performed if the NFS server module could 2548 * not be loaded correctly. 2549 */ 2550 void 2551 nfs_srvfini(void) 2552 { 2553 nfsauth_fini(); 2554 rfs3_srvrfini(); 2555 rfs_srvrfini(); 2556 nfs_exportfini(); 2557 2558 mutex_destroy(&nfs_server_upordown_lock); 2559 cv_destroy(&nfs_server_upordown_cv); 2560 mutex_destroy(&rdma_wait_mutex); 2561 cv_destroy(&rdma_wait_cv); 2562 } 2563 2564 /* 2565 * Set up an iovec array of up to cnt pointers. 2566 */ 2567 2568 void 2569 mblk_to_iov(mblk_t *m, int cnt, struct iovec *iovp) 2570 { 2571 while (m != NULL && cnt-- > 0) { 2572 iovp->iov_base = (caddr_t)m->b_rptr; 2573 iovp->iov_len = (m->b_wptr - m->b_rptr); 2574 iovp++; 2575 m = m->b_cont; 2576 } 2577 } 2578 2579 /* 2580 * Common code between NFS Version 2 and NFS Version 3 for the public 2581 * filehandle multicomponent lookups. 2582 */ 2583 2584 /* 2585 * Public filehandle evaluation of a multi-component lookup, following 2586 * symbolic links, if necessary. This may result in a vnode in another 2587 * filesystem, which is OK as long as the other filesystem is exported. 2588 * 2589 * Note that the exi will be set either to NULL or a new reference to the 2590 * exportinfo struct that corresponds to the vnode of the multi-component path. 2591 * It is the callers responsibility to release this reference. 2592 */ 2593 int 2594 rfs_publicfh_mclookup(char *p, vnode_t *dvp, cred_t *cr, vnode_t **vpp, 2595 struct exportinfo **exi, struct sec_ol *sec) 2596 { 2597 int pathflag; 2598 vnode_t *mc_dvp = NULL; 2599 vnode_t *realvp; 2600 int error; 2601 2602 *exi = NULL; 2603 2604 /* 2605 * check if the given path is a url or native path. Since p is 2606 * modified by MCLpath(), it may be empty after returning from 2607 * there, and should be checked. 2608 */ 2609 if ((pathflag = MCLpath(&p)) == -1) 2610 return (EIO); 2611 2612 /* 2613 * If pathflag is SECURITY_QUERY, turn the SEC_QUERY bit 2614 * on in sec->sec_flags. This bit will later serve as an 2615 * indication in makefh_ol() or makefh3_ol() to overload the 2616 * filehandle to contain the sec modes used by the server for 2617 * the path. 2618 */ 2619 if (pathflag == SECURITY_QUERY) { 2620 if ((sec->sec_index = (uint_t)(*p)) > 0) { 2621 sec->sec_flags |= SEC_QUERY; 2622 p++; 2623 if ((pathflag = MCLpath(&p)) == -1) 2624 return (EIO); 2625 } else { 2626 cmn_err(CE_NOTE, 2627 "nfs_server: invalid security index %d, " 2628 "violating WebNFS SNEGO protocol.", sec->sec_index); 2629 return (EIO); 2630 } 2631 } 2632 2633 if (p[0] == '\0') { 2634 error = ENOENT; 2635 goto publicfh_done; 2636 } 2637 2638 error = rfs_pathname(p, &mc_dvp, vpp, dvp, cr, pathflag); 2639 2640 /* 2641 * If name resolves to "/" we get EINVAL since we asked for 2642 * the vnode of the directory that the file is in. Try again 2643 * with NULL directory vnode. 2644 */ 2645 if (error == EINVAL) { 2646 error = rfs_pathname(p, NULL, vpp, dvp, cr, pathflag); 2647 if (!error) { 2648 ASSERT(*vpp != NULL); 2649 if ((*vpp)->v_type == VDIR) { 2650 VN_HOLD(*vpp); 2651 mc_dvp = *vpp; 2652 } else { 2653 /* 2654 * This should not happen, the filesystem is 2655 * in an inconsistent state. Fail the lookup 2656 * at this point. 2657 */ 2658 VN_RELE(*vpp); 2659 error = EINVAL; 2660 } 2661 } 2662 } 2663 2664 if (error) 2665 goto publicfh_done; 2666 2667 if (*vpp == NULL) { 2668 error = ENOENT; 2669 goto publicfh_done; 2670 } 2671 2672 ASSERT(mc_dvp != NULL); 2673 ASSERT(*vpp != NULL); 2674 2675 if ((*vpp)->v_type == VDIR) { 2676 do { 2677 /* 2678 * *vpp may be an AutoFS node, so we perform 2679 * a VOP_ACCESS() to trigger the mount of the intended 2680 * filesystem, so we can perform the lookup in the 2681 * intended filesystem. 2682 */ 2683 (void) VOP_ACCESS(*vpp, 0, 0, cr, NULL); 2684 2685 /* 2686 * If vnode is covered, get the 2687 * the topmost vnode. 2688 */ 2689 if (vn_mountedvfs(*vpp) != NULL) { 2690 error = traverse(vpp); 2691 if (error) { 2692 VN_RELE(*vpp); 2693 goto publicfh_done; 2694 } 2695 } 2696 2697 if (VOP_REALVP(*vpp, &realvp, NULL) == 0 && 2698 realvp != *vpp) { 2699 /* 2700 * If realvp is different from *vpp 2701 * then release our reference on *vpp, so that 2702 * the export access check be performed on the 2703 * real filesystem instead. 2704 */ 2705 VN_HOLD(realvp); 2706 VN_RELE(*vpp); 2707 *vpp = realvp; 2708 } else { 2709 break; 2710 } 2711 /* LINTED */ 2712 } while (TRUE); 2713 2714 /* 2715 * Let nfs_vptexi() figure what the real parent is. 2716 */ 2717 VN_RELE(mc_dvp); 2718 mc_dvp = NULL; 2719 2720 } else { 2721 /* 2722 * If vnode is covered, get the 2723 * the topmost vnode. 2724 */ 2725 if (vn_mountedvfs(mc_dvp) != NULL) { 2726 error = traverse(&mc_dvp); 2727 if (error) { 2728 VN_RELE(*vpp); 2729 goto publicfh_done; 2730 } 2731 } 2732 2733 if (VOP_REALVP(mc_dvp, &realvp, NULL) == 0 && 2734 realvp != mc_dvp) { 2735 /* 2736 * *vpp is a file, obtain realvp of the parent 2737 * directory vnode. 2738 */ 2739 VN_HOLD(realvp); 2740 VN_RELE(mc_dvp); 2741 mc_dvp = realvp; 2742 } 2743 } 2744 2745 /* 2746 * The pathname may take us from the public filesystem to another. 2747 * If that's the case then just set the exportinfo to the new export 2748 * and build filehandle for it. Thanks to per-access checking there's 2749 * no security issues with doing this. If the client is not allowed 2750 * access to this new export then it will get an access error when it 2751 * tries to use the filehandle 2752 */ 2753 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) { 2754 VN_RELE(*vpp); 2755 goto publicfh_done; 2756 } 2757 2758 /* 2759 * Not allowed access to pseudo exports. 2760 */ 2761 if (PSEUDO(*exi)) { 2762 error = ENOENT; 2763 VN_RELE(*vpp); 2764 goto publicfh_done; 2765 } 2766 2767 /* 2768 * Do a lookup for the index file. We know the index option doesn't 2769 * allow paths through handling in the share command, so mc_dvp will 2770 * be the parent for the index file vnode, if its present. Use 2771 * temporary pointers to preserve and reuse the vnode pointers of the 2772 * original directory in case there's no index file. Note that the 2773 * index file is a native path, and should not be interpreted by 2774 * the URL parser in rfs_pathname() 2775 */ 2776 if (((*exi)->exi_export.ex_flags & EX_INDEX) && 2777 ((*vpp)->v_type == VDIR) && (pathflag == URLPATH)) { 2778 vnode_t *tvp, *tmc_dvp; /* temporary vnode pointers */ 2779 2780 tmc_dvp = mc_dvp; 2781 mc_dvp = tvp = *vpp; 2782 2783 error = rfs_pathname((*exi)->exi_export.ex_index, NULL, vpp, 2784 mc_dvp, cr, NATIVEPATH); 2785 2786 if (error == ENOENT) { 2787 *vpp = tvp; 2788 mc_dvp = tmc_dvp; 2789 error = 0; 2790 } else { /* ok or error other than ENOENT */ 2791 if (tmc_dvp) 2792 VN_RELE(tmc_dvp); 2793 if (error) 2794 goto publicfh_done; 2795 2796 /* 2797 * Found a valid vp for index "filename". Sanity check 2798 * for odd case where a directory is provided as index 2799 * option argument and leads us to another filesystem 2800 */ 2801 2802 /* Release the reference on the old exi value */ 2803 ASSERT(*exi != NULL); 2804 exi_rele(*exi); 2805 2806 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) { 2807 VN_RELE(*vpp); 2808 goto publicfh_done; 2809 } 2810 } 2811 } 2812 2813 publicfh_done: 2814 if (mc_dvp) 2815 VN_RELE(mc_dvp); 2816 2817 return (error); 2818 } 2819 2820 /* 2821 * Evaluate a multi-component path 2822 */ 2823 int 2824 rfs_pathname( 2825 char *path, /* pathname to evaluate */ 2826 vnode_t **dirvpp, /* ret for ptr to parent dir vnode */ 2827 vnode_t **compvpp, /* ret for ptr to component vnode */ 2828 vnode_t *startdvp, /* starting vnode */ 2829 cred_t *cr, /* user's credential */ 2830 int pathflag) /* flag to identify path, e.g. URL */ 2831 { 2832 char namebuf[TYPICALMAXPATHLEN]; 2833 struct pathname pn; 2834 int error; 2835 2836 /* 2837 * If pathname starts with '/', then set startdvp to root. 2838 */ 2839 if (*path == '/') { 2840 while (*path == '/') 2841 path++; 2842 2843 startdvp = rootdir; 2844 } 2845 2846 error = pn_get_buf(path, UIO_SYSSPACE, &pn, namebuf, sizeof (namebuf)); 2847 if (error == 0) { 2848 /* 2849 * Call the URL parser for URL paths to modify the original 2850 * string to handle any '%' encoded characters that exist. 2851 * Done here to avoid an extra bcopy in the lookup. 2852 * We need to be careful about pathlen's. We know that 2853 * rfs_pathname() is called with a non-empty path. However, 2854 * it could be emptied due to the path simply being all /'s, 2855 * which is valid to proceed with the lookup, or due to the 2856 * URL parser finding an encoded null character at the 2857 * beginning of path which should not proceed with the lookup. 2858 */ 2859 if (pn.pn_pathlen != 0 && pathflag == URLPATH) { 2860 URLparse(pn.pn_path); 2861 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) 2862 return (ENOENT); 2863 } 2864 VN_HOLD(startdvp); 2865 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp, 2866 rootdir, startdvp, cr); 2867 } 2868 if (error == ENAMETOOLONG) { 2869 /* 2870 * This thread used a pathname > TYPICALMAXPATHLEN bytes long. 2871 */ 2872 if (error = pn_get(path, UIO_SYSSPACE, &pn)) 2873 return (error); 2874 if (pn.pn_pathlen != 0 && pathflag == URLPATH) { 2875 URLparse(pn.pn_path); 2876 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) { 2877 pn_free(&pn); 2878 return (ENOENT); 2879 } 2880 } 2881 VN_HOLD(startdvp); 2882 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp, 2883 rootdir, startdvp, cr); 2884 pn_free(&pn); 2885 } 2886 2887 return (error); 2888 } 2889 2890 /* 2891 * Adapt the multicomponent lookup path depending on the pathtype 2892 */ 2893 static int 2894 MCLpath(char **path) 2895 { 2896 unsigned char c = (unsigned char)**path; 2897 2898 /* 2899 * If the MCL path is between 0x20 and 0x7E (graphic printable 2900 * character of the US-ASCII coded character set), its a URL path, 2901 * per RFC 1738. 2902 */ 2903 if (c >= 0x20 && c <= 0x7E) 2904 return (URLPATH); 2905 2906 /* 2907 * If the first octet of the MCL path is not an ASCII character 2908 * then it must be interpreted as a tag value that describes the 2909 * format of the remaining octets of the MCL path. 2910 * 2911 * If the first octet of the MCL path is 0x81 it is a query 2912 * for the security info. 2913 */ 2914 switch (c) { 2915 case 0x80: /* native path, i.e. MCL via mount protocol */ 2916 (*path)++; 2917 return (NATIVEPATH); 2918 case 0x81: /* security query */ 2919 (*path)++; 2920 return (SECURITY_QUERY); 2921 default: 2922 return (-1); 2923 } 2924 } 2925 2926 #define fromhex(c) ((c >= '0' && c <= '9') ? (c - '0') : \ 2927 ((c >= 'A' && c <= 'F') ? (c - 'A' + 10) :\ 2928 ((c >= 'a' && c <= 'f') ? (c - 'a' + 10) : 0))) 2929 2930 /* 2931 * The implementation of URLparse guarantees that the final string will 2932 * fit in the original one. Replaces '%' occurrences followed by 2 characters 2933 * with its corresponding hexadecimal character. 2934 */ 2935 static void 2936 URLparse(char *str) 2937 { 2938 char *p, *q; 2939 2940 p = q = str; 2941 while (*p) { 2942 *q = *p; 2943 if (*p++ == '%') { 2944 if (*p) { 2945 *q = fromhex(*p) * 16; 2946 p++; 2947 if (*p) { 2948 *q += fromhex(*p); 2949 p++; 2950 } 2951 } 2952 } 2953 q++; 2954 } 2955 *q = '\0'; 2956 } 2957 2958 2959 /* 2960 * Get the export information for the lookup vnode, and verify its 2961 * useable. 2962 */ 2963 int 2964 nfs_check_vpexi(vnode_t *mc_dvp, vnode_t *vp, cred_t *cr, 2965 struct exportinfo **exi) 2966 { 2967 int walk; 2968 int error = 0; 2969 2970 *exi = nfs_vptoexi(mc_dvp, vp, cr, &walk, NULL, FALSE); 2971 if (*exi == NULL) 2972 error = EACCES; 2973 else { 2974 /* 2975 * If nosub is set for this export then 2976 * a lookup relative to the public fh 2977 * must not terminate below the 2978 * exported directory. 2979 */ 2980 if ((*exi)->exi_export.ex_flags & EX_NOSUB && walk > 0) 2981 error = EACCES; 2982 } 2983 2984 return (error); 2985 } 2986 2987 /* 2988 * Do the main work of handling HA-NFSv4 Resource Group failover on 2989 * Sun Cluster. 2990 * We need to detect whether any RG admin paths have been added or removed, 2991 * and adjust resources accordingly. 2992 * Currently we're using a very inefficient algorithm, ~ 2 * O(n**2). In 2993 * order to scale, the list and array of paths need to be held in more 2994 * suitable data structures. 2995 */ 2996 static void 2997 hanfsv4_failover(void) 2998 { 2999 int i, start_grace, numadded_paths = 0; 3000 char **added_paths = NULL; 3001 rfs4_dss_path_t *dss_path; 3002 3003 /* 3004 * Note: currently, rfs4_dss_pathlist cannot be NULL, since 3005 * it will always include an entry for NFS4_DSS_VAR_DIR. If we 3006 * make the latter dynamically specified too, the following will 3007 * need to be adjusted. 3008 */ 3009 3010 /* 3011 * First, look for removed paths: RGs that have been failed-over 3012 * away from this node. 3013 * Walk the "currently-serving" rfs4_dss_pathlist and, for each 3014 * path, check if it is on the "passed-in" rfs4_dss_newpaths array 3015 * from nfsd. If not, that RG path has been removed. 3016 * 3017 * Note that nfsd has sorted rfs4_dss_newpaths for us, and removed 3018 * any duplicates. 3019 */ 3020 dss_path = rfs4_dss_pathlist; 3021 do { 3022 int found = 0; 3023 char *path = dss_path->path; 3024 3025 /* used only for non-HA so may not be removed */ 3026 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) { 3027 dss_path = dss_path->next; 3028 continue; 3029 } 3030 3031 for (i = 0; i < rfs4_dss_numnewpaths; i++) { 3032 int cmpret; 3033 char *newpath = rfs4_dss_newpaths[i]; 3034 3035 /* 3036 * Since nfsd has sorted rfs4_dss_newpaths for us, 3037 * once the return from strcmp is negative we know 3038 * we've passed the point where "path" should be, 3039 * and can stop searching: "path" has been removed. 3040 */ 3041 cmpret = strcmp(path, newpath); 3042 if (cmpret < 0) 3043 break; 3044 if (cmpret == 0) { 3045 found = 1; 3046 break; 3047 } 3048 } 3049 3050 if (found == 0) { 3051 unsigned index = dss_path->index; 3052 rfs4_servinst_t *sip = dss_path->sip; 3053 rfs4_dss_path_t *path_next = dss_path->next; 3054 3055 /* 3056 * This path has been removed. 3057 * We must clear out the servinst reference to 3058 * it, since it's now owned by another 3059 * node: we should not attempt to touch it. 3060 */ 3061 ASSERT(dss_path == sip->dss_paths[index]); 3062 sip->dss_paths[index] = NULL; 3063 3064 /* remove from "currently-serving" list, and destroy */ 3065 remque(dss_path); 3066 /* allow for NUL */ 3067 kmem_free(dss_path->path, strlen(dss_path->path) + 1); 3068 kmem_free(dss_path, sizeof (rfs4_dss_path_t)); 3069 3070 dss_path = path_next; 3071 } else { 3072 /* path was found; not removed */ 3073 dss_path = dss_path->next; 3074 } 3075 } while (dss_path != rfs4_dss_pathlist); 3076 3077 /* 3078 * Now, look for added paths: RGs that have been failed-over 3079 * to this node. 3080 * Walk the "passed-in" rfs4_dss_newpaths array from nfsd and, 3081 * for each path, check if it is on the "currently-serving" 3082 * rfs4_dss_pathlist. If not, that RG path has been added. 3083 * 3084 * Note: we don't do duplicate detection here; nfsd does that for us. 3085 * 3086 * Note: numadded_paths <= rfs4_dss_numnewpaths, which gives us 3087 * an upper bound for the size needed for added_paths[numadded_paths]. 3088 */ 3089 3090 /* probably more space than we need, but guaranteed to be enough */ 3091 if (rfs4_dss_numnewpaths > 0) { 3092 size_t sz = rfs4_dss_numnewpaths * sizeof (char *); 3093 added_paths = kmem_zalloc(sz, KM_SLEEP); 3094 } 3095 3096 /* walk the "passed-in" rfs4_dss_newpaths array from nfsd */ 3097 for (i = 0; i < rfs4_dss_numnewpaths; i++) { 3098 int found = 0; 3099 char *newpath = rfs4_dss_newpaths[i]; 3100 3101 dss_path = rfs4_dss_pathlist; 3102 do { 3103 char *path = dss_path->path; 3104 3105 /* used only for non-HA */ 3106 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) { 3107 dss_path = dss_path->next; 3108 continue; 3109 } 3110 3111 if (strncmp(path, newpath, strlen(path)) == 0) { 3112 found = 1; 3113 break; 3114 } 3115 3116 dss_path = dss_path->next; 3117 } while (dss_path != rfs4_dss_pathlist); 3118 3119 if (found == 0) { 3120 added_paths[numadded_paths] = newpath; 3121 numadded_paths++; 3122 } 3123 } 3124 3125 /* did we find any added paths? */ 3126 if (numadded_paths > 0) { 3127 /* create a new server instance, and start its grace period */ 3128 start_grace = 1; 3129 rfs4_servinst_create(start_grace, numadded_paths, added_paths); 3130 3131 /* read in the stable storage state from these paths */ 3132 rfs4_dss_readstate(numadded_paths, added_paths); 3133 3134 /* 3135 * Multiple failovers during a grace period will cause 3136 * clients of the same resource group to be partitioned 3137 * into different server instances, with different 3138 * grace periods. Since clients of the same resource 3139 * group must be subject to the same grace period, 3140 * we need to reset all currently active grace periods. 3141 */ 3142 rfs4_grace_reset_all(); 3143 } 3144 3145 if (rfs4_dss_numnewpaths > 0) 3146 kmem_free(added_paths, rfs4_dss_numnewpaths * sizeof (char *)); 3147 } 3148 3149 /* 3150 * Used by NFSv3 and NFSv4 server to query label of 3151 * a pathname component during lookup/access ops. 3152 */ 3153 ts_label_t * 3154 nfs_getflabel(vnode_t *vp, struct exportinfo *exi) 3155 { 3156 zone_t *zone; 3157 ts_label_t *zone_label; 3158 char *path; 3159 3160 mutex_enter(&vp->v_lock); 3161 if (vp->v_path != NULL) { 3162 zone = zone_find_by_any_path(vp->v_path, B_FALSE); 3163 mutex_exit(&vp->v_lock); 3164 } else { 3165 /* 3166 * v_path not cached. Fall back on pathname of exported 3167 * file system as we rely on pathname from which we can 3168 * derive a label. The exported file system portion of 3169 * path is sufficient to obtain a label. 3170 */ 3171 path = exi->exi_export.ex_path; 3172 if (path == NULL) { 3173 mutex_exit(&vp->v_lock); 3174 return (NULL); 3175 } 3176 zone = zone_find_by_any_path(path, B_FALSE); 3177 mutex_exit(&vp->v_lock); 3178 } 3179 /* 3180 * Caller has verified that the file is either 3181 * exported or visible. So if the path falls in 3182 * global zone, admin_low is returned; otherwise 3183 * the zone's label is returned. 3184 */ 3185 zone_label = zone->zone_slabel; 3186 label_hold(zone_label); 3187 zone_rele(zone); 3188 return (zone_label); 3189 } 3190 3191 /* 3192 * TX NFS routine used by NFSv3 and NFSv4 to do label check 3193 * on client label and server's file object lable. 3194 */ 3195 boolean_t 3196 do_rfs_label_check(bslabel_t *clabel, vnode_t *vp, int flag, 3197 struct exportinfo *exi) 3198 { 3199 bslabel_t *slabel; 3200 ts_label_t *tslabel; 3201 boolean_t result; 3202 3203 if ((tslabel = nfs_getflabel(vp, exi)) == NULL) { 3204 return (B_FALSE); 3205 } 3206 slabel = label2bslabel(tslabel); 3207 DTRACE_PROBE4(tx__rfs__log__info__labelcheck, char *, 3208 "comparing server's file label(1) with client label(2) (vp(3))", 3209 bslabel_t *, slabel, bslabel_t *, clabel, vnode_t *, vp); 3210 3211 if (flag == EQUALITY_CHECK) 3212 result = blequal(clabel, slabel); 3213 else 3214 result = bldominates(clabel, slabel); 3215 label_rele(tslabel); 3216 return (result); 3217 } 3218 3219 /* 3220 * Callback function to return the loaned buffers. 3221 * Calls VOP_RETZCBUF() only after all uio_iov[] 3222 * buffers are returned. nu_ref maintains the count. 3223 */ 3224 void 3225 rfs_free_xuio(void *free_arg) 3226 { 3227 uint_t ref; 3228 nfs_xuio_t *nfsuiop = (nfs_xuio_t *)free_arg; 3229 3230 ref = atomic_dec_uint_nv(&nfsuiop->nu_ref); 3231 3232 /* 3233 * Call VOP_RETZCBUF() only when all the iov buffers 3234 * are sent OTW. 3235 */ 3236 if (ref != 0) 3237 return; 3238 3239 if (((uio_t *)nfsuiop)->uio_extflg & UIO_XUIO) { 3240 (void) VOP_RETZCBUF(nfsuiop->nu_vp, (xuio_t *)free_arg, NULL, 3241 NULL); 3242 VN_RELE(nfsuiop->nu_vp); 3243 } 3244 3245 kmem_cache_free(nfs_xuio_cache, free_arg); 3246 } 3247 3248 xuio_t * 3249 rfs_setup_xuio(vnode_t *vp) 3250 { 3251 nfs_xuio_t *nfsuiop; 3252 3253 nfsuiop = kmem_cache_alloc(nfs_xuio_cache, KM_SLEEP); 3254 3255 bzero(nfsuiop, sizeof (nfs_xuio_t)); 3256 nfsuiop->nu_vp = vp; 3257 3258 /* 3259 * ref count set to 1. more may be added 3260 * if multiple mblks refer to multiple iov's. 3261 * This is done in uio_to_mblk(). 3262 */ 3263 3264 nfsuiop->nu_ref = 1; 3265 3266 nfsuiop->nu_frtn.free_func = rfs_free_xuio; 3267 nfsuiop->nu_frtn.free_arg = (char *)nfsuiop; 3268 3269 nfsuiop->nu_uio.xu_type = UIOTYPE_ZEROCOPY; 3270 3271 return (&nfsuiop->nu_uio); 3272 } 3273 3274 mblk_t * 3275 uio_to_mblk(uio_t *uiop) 3276 { 3277 struct iovec *iovp; 3278 int i; 3279 mblk_t *mp, *mp1; 3280 nfs_xuio_t *nfsuiop = (nfs_xuio_t *)uiop; 3281 3282 if (uiop->uio_iovcnt == 0) 3283 return (NULL); 3284 3285 iovp = uiop->uio_iov; 3286 mp = mp1 = esballoca((uchar_t *)iovp->iov_base, iovp->iov_len, 3287 BPRI_MED, &nfsuiop->nu_frtn); 3288 ASSERT(mp != NULL); 3289 3290 mp->b_wptr += iovp->iov_len; 3291 mp->b_datap->db_type = M_DATA; 3292 3293 for (i = 1; i < uiop->uio_iovcnt; i++) { 3294 iovp = (uiop->uio_iov + i); 3295 3296 mp1->b_cont = esballoca( 3297 (uchar_t *)iovp->iov_base, iovp->iov_len, BPRI_MED, 3298 &nfsuiop->nu_frtn); 3299 3300 mp1 = mp1->b_cont; 3301 ASSERT(mp1 != NULL); 3302 mp1->b_wptr += iovp->iov_len; 3303 mp1->b_datap->db_type = M_DATA; 3304 } 3305 3306 nfsuiop->nu_ref = uiop->uio_iovcnt; 3307 3308 return (mp); 3309 } 3310 3311 void 3312 rfs_rndup_mblks(mblk_t *mp, uint_t len, int buf_loaned) 3313 { 3314 int i, rndup; 3315 int alloc_err = 0; 3316 mblk_t *rmp; 3317 3318 rndup = BYTES_PER_XDR_UNIT - (len % BYTES_PER_XDR_UNIT); 3319 3320 /* single mblk_t non copy-reduction case */ 3321 if (!buf_loaned) { 3322 mp->b_wptr += len; 3323 if (rndup != BYTES_PER_XDR_UNIT) { 3324 for (i = 0; i < rndup; i++) 3325 *mp->b_wptr++ = '\0'; 3326 } 3327 return; 3328 } 3329 3330 /* no need for extra rndup */ 3331 if (rndup == BYTES_PER_XDR_UNIT) 3332 return; 3333 3334 while (mp->b_cont) 3335 mp = mp->b_cont; 3336 3337 /* 3338 * In case of copy-reduction mblks, the size of the mblks 3339 * are fixed and are of the size of the loaned buffers. 3340 * Allocate a roundup mblk and chain it to the data 3341 * buffers. This is sub-optimal, but not expected to 3342 * happen in regular common workloads. 3343 */ 3344 3345 rmp = allocb_wait(rndup, BPRI_MED, STR_NOSIG, &alloc_err); 3346 ASSERT(rmp != NULL); 3347 ASSERT(alloc_err == 0); 3348 3349 for (i = 0; i < rndup; i++) 3350 *rmp->b_wptr++ = '\0'; 3351 3352 rmp->b_datap->db_type = M_DATA; 3353 mp->b_cont = rmp; 3354 }