
new/usr/src/uts/i86pc/io/pci/pci_common.c 1

**
 47022 Mon Oct 1 13:29:57 2012
new/usr/src/uts/i86pc/io/pci/pci_common.c
3235 pci: pci_common_intr_ops() leaks ddi_acc_handle_t
Reviewed by: Dan McDonald <danmcd@nexenta.com>
Reviewed by: Boris Protopopov <boris.protopopov@nexenta.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 *
25 * Copyright (c) 2012, Nexenta Systems, Inc. All rights reserved.
26 #endif /* ! codereview */
27 */

29 /*
30 * File that has code which is common between pci(7d) and npe(7d)
31 * It shares the following:
32 * - interrupt code
33 * - pci_tools ioctl code
34 * - name_child code
35 * - set_parent_private_data code
36 */

38 #include <sys/conf.h>
39 #include <sys/pci.h>
40 #include <sys/sunndi.h>
41 #include <sys/mach_intr.h>
42 #include <sys/pci_intr_lib.h>
43 #include <sys/psm.h>
44 #include <sys/policy.h>
45 #include <sys/sysmacros.h>
46 #include <sys/clock.h>
47 #include <sys/apic.h>
48 #include <sys/pci_tools.h>
49 #include <io/pci/pci_var.h>
50 #include <io/pci/pci_tools_ext.h>
51 #include <io/pci/pci_common.h>
52 #include <sys/pci_cfgspace.h>
53 #include <sys/pci_impl.h>
54 #include <sys/pci_cap.h>

56 /*
57 * Function prototypes
58 */
59 static int pci_get_priority(dev_info_t *, ddi_intr_handle_impl_t *, int *);

new/usr/src/uts/i86pc/io/pci/pci_common.c 2

60 static int pci_enable_intr(dev_info_t *, dev_info_t *,
61 ddi_intr_handle_impl_t *, uint32_t);
62 static void pci_disable_intr(dev_info_t *, dev_info_t *,
63 ddi_intr_handle_impl_t *, uint32_t);
64 static int pci_alloc_intr_fixed(dev_info_t *, dev_info_t *,
65 ddi_intr_handle_impl_t *, void *);
66 static int pci_free_intr_fixed(dev_info_t *, dev_info_t *,
67 ddi_intr_handle_impl_t *);

69 /* Extern declarations for PSM module */
70 extern int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *,
71 psm_intr_op_t, int *);
72 extern ddi_irm_pool_t *apix_irm_pool_p;

74 /*
75 * pci_name_child:
76 *
77 * Assign the address portion of the node name
78 */
79 int
80 pci_common_name_child(dev_info_t *child, char *name, int namelen)
81 {
82 int dev, func, length;
83 char **unit_addr;
84 uint_t n;
85 pci_regspec_t *pci_rp;

87 if (ndi_dev_is_persistent_node(child) == 0) {
88 /*
89 * For .conf node, use "unit-address" property
90 */
91 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, child,
92 DDI_PROP_DONTPASS, "unit-address", &unit_addr, &n) !=
93 DDI_PROP_SUCCESS) {
94 cmn_err(CE_WARN, "cannot find unit-address in %s.conf",
95 ddi_get_name(child));
96 return (DDI_FAILURE);
97 }
98 if (n != 1 || *unit_addr == NULL || **unit_addr == 0) {
99 cmn_err(CE_WARN, "unit-address property in %s.conf"
100 " not well-formed", ddi_get_name(child));
101 ddi_prop_free(unit_addr);
102 return (DDI_FAILURE);
103 }
104 (void) snprintf(name, namelen, "%s", *unit_addr);
105 ddi_prop_free(unit_addr);
106 return (DDI_SUCCESS);
107 }

109 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
110 "reg", (int **)&pci_rp, (uint_t *)&length) != DDI_PROP_SUCCESS) {
111 cmn_err(CE_WARN, "cannot find reg property in %s",
112 ddi_get_name(child));
113 return (DDI_FAILURE);
114 }

116 /* copy the device identifications */
117 dev = PCI_REG_DEV_G(pci_rp->pci_phys_hi);
118 func = PCI_REG_FUNC_G(pci_rp->pci_phys_hi);

120 /*
121 * free the memory allocated by ddi_prop_lookup_int_array
122 */
123 ddi_prop_free(pci_rp);

125 if (func != 0) {

new/usr/src/uts/i86pc/io/pci/pci_common.c 3

126 (void) snprintf(name, namelen, "%x,%x", dev, func);
127 } else {
128 (void) snprintf(name, namelen, "%x", dev);
129 }

131 return (DDI_SUCCESS);
132 }

134 /*
135 * Interrupt related code:
136 *
137 * The following busop is common to npe and pci drivers
138 * bus_introp
139 */

141 /*
142 * Create the ddi_parent_private_data for a pseudo child.
143 */
144 void
145 pci_common_set_parent_private_data(dev_info_t *dip)
146 {
147 struct ddi_parent_private_data *pdptr;

149 pdptr = (struct ddi_parent_private_data *)kmem_zalloc(
150 (sizeof (struct ddi_parent_private_data) +
151 sizeof (struct intrspec)), KM_SLEEP);
152 pdptr->par_intr = (struct intrspec *)(pdptr + 1);
153 pdptr->par_nintr = 1;
154 ddi_set_parent_data(dip, pdptr);
155 }

157 /*
158 * pci_get_priority:
159 * Figure out the priority of the device
160 */
161 static int
162 pci_get_priority(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp, int *pri)
163 {
164 struct intrspec *ispec;

166 DDI_INTR_NEXDBG((CE_CONT, "pci_get_priority: dip = 0x%p, hdlp = %p\n",
167 (void *)dip, (void *)hdlp));

169 if ((ispec = (struct intrspec *)pci_intx_get_ispec(dip, dip,
170 hdlp->ih_inum)) == NULL) {
171 if (DDI_INTR_IS_MSI_OR_MSIX(hdlp->ih_type)) {
172 *pri = pci_class_to_pil(dip);
173 pci_common_set_parent_private_data(hdlp->ih_dip);
174 ispec = (struct intrspec *)pci_intx_get_ispec(dip, dip,
175 hdlp->ih_inum);
176 return (DDI_SUCCESS);
177 }
178 return (DDI_FAILURE);
179 }

181 *pri = ispec->intrspec_pri;
182 return (DDI_SUCCESS);
183 }

187 static int pcieb_intr_pri_counter = 0;

189 /*
190 * pci_common_intr_ops: bus_intr_op() function for interrupt support
191 */

new/usr/src/uts/i86pc/io/pci/pci_common.c 4

192 int
193 pci_common_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t intr_op,
194 ddi_intr_handle_impl_t *hdlp, void *result)
195 {
196 int priority = 0;
197 int psm_status = 0;
198 int pci_status = 0;
199 int pci_rval, psm_rval = PSM_FAILURE;
200 int types = 0;
201 int pciepci = 0;
202 int i, j, count;
203 int rv;
204 int behavior;
205 int cap_ptr;
206 boolean_t did_pci_config_setup = B_FALSE;
207 boolean_t did_intr_vec_alloc = B_FALSE;
208 boolean_t did_msi_cap_set = B_FALSE;
209 #endif /* ! codereview */
210 uint16_t msi_cap_base, msix_cap_base, cap_ctrl;
211 char *prop;
212 ddi_intrspec_t isp;
213 struct intrspec *ispec;
214 ddi_intr_handle_impl_t tmp_hdl;
215 ddi_intr_msix_t *msix_p;
216 ihdl_plat_t *ihdl_plat_datap;
217 ddi_intr_handle_t *h_array;
218 ddi_acc_handle_t handle;
219 apic_get_intr_t intrinfo;

221 DDI_INTR_NEXDBG((CE_CONT,
222 "pci_common_intr_ops: pdip 0x%p, rdip 0x%p, op %x handle 0x%p\n",
223 (void *)pdip, (void *)rdip, intr_op, (void *)hdlp));

225 /* Process the request */
226 switch (intr_op) {
227 case DDI_INTROP_SUPPORTED_TYPES:
228 /*
229 * First we determine the interrupt types supported by the
230 * device itself, then we filter them through what the OS
231 * and system supports. We determine system-level
232 * interrupt type support for anything other than fixed intrs
233 * through the psm_intr_ops vector
234 */
235 rv = DDI_FAILURE;

237 /* Fixed supported by default */
238 types = DDI_INTR_TYPE_FIXED;

240 if (psm_intr_ops == NULL) {
241 *(int *)result = types;
242 return (DDI_SUCCESS);
243 }
244 if (pci_config_setup(rdip, &handle) != DDI_SUCCESS)
245 return (DDI_FAILURE);

247 /* Sanity test cap control values if found */

249 if (PCI_CAP_LOCATE(handle, PCI_CAP_ID_MSI, &msi_cap_base) ==
250 DDI_SUCCESS) {
251 cap_ctrl = PCI_CAP_GET16(handle, 0, msi_cap_base,
252 PCI_MSI_CTRL);
253 if (cap_ctrl == PCI_CAP_EINVAL16)
254 goto SUPPORTED_TYPES_OUT;

256 types |= DDI_INTR_TYPE_MSI;
257 }

new/usr/src/uts/i86pc/io/pci/pci_common.c 5

259 if (PCI_CAP_LOCATE(handle, PCI_CAP_ID_MSI_X, &msix_cap_base) ==
260 DDI_SUCCESS) {
261 cap_ctrl = PCI_CAP_GET16(handle, 0, msix_cap_base,
262 PCI_MSIX_CTRL);
263 if (cap_ctrl == PCI_CAP_EINVAL16)
264 goto SUPPORTED_TYPES_OUT;

266 types |= DDI_INTR_TYPE_MSIX;
267 }

269 /*
270 * Filter device-level types through system-level support
271 */
272 tmp_hdl.ih_type = types;
273 if ((*psm_intr_ops)(rdip, &tmp_hdl, PSM_INTR_OP_CHECK_MSI,
274 &types) != PSM_SUCCESS)
275 goto SUPPORTED_TYPES_OUT;

277 DDI_INTR_NEXDBG((CE_CONT, "pci_common_intr_ops: "
278 "rdip: 0x%p supported types: 0x%x\n", (void *)rdip,
279 types));

281 /*
282 * Export any MSI/MSI-X cap locations via properties
283 */
284 if (types & DDI_INTR_TYPE_MSI) {
285 if (ndi_prop_update_int(DDI_DEV_T_NONE, rdip,
286 "pci-msi-capid-pointer", (int)msi_cap_base) !=
287 DDI_PROP_SUCCESS)
288 goto SUPPORTED_TYPES_OUT;
289 }
290 if (types & DDI_INTR_TYPE_MSIX) {
291 if (ndi_prop_update_int(DDI_DEV_T_NONE, rdip,
292 "pci-msix-capid-pointer", (int)msix_cap_base) !=
293 DDI_PROP_SUCCESS)
294 goto SUPPORTED_TYPES_OUT;
295 }

297 rv = DDI_SUCCESS;

299 SUPPORTED_TYPES_OUT:
300 *(int *)result = types;
301 pci_config_teardown(&handle);
302 return (rv);

304 case DDI_INTROP_NAVAIL:
305 case DDI_INTROP_NINTRS:
306 if (DDI_INTR_IS_MSI_OR_MSIX(hdlp->ih_type)) {
307 if (pci_msi_get_nintrs(hdlp->ih_dip, hdlp->ih_type,
308 result) != DDI_SUCCESS)
309 return (DDI_FAILURE);
310 } else {
311 *(int *)result = i_ddi_get_intx_nintrs(hdlp->ih_dip);
312 if (*(int *)result == 0)
313 return (DDI_FAILURE);
314 }
315 break;
316 case DDI_INTROP_ALLOC:

318 /*
319 * FIXED type
320 */
321 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
322 return (pci_alloc_intr_fixed(pdip, rdip, hdlp, result));
323 /*

new/usr/src/uts/i86pc/io/pci/pci_common.c 6

324 * MSI or MSIX (figure out number of vectors available)
325 */
326 if (DDI_INTR_IS_MSI_OR_MSIX(hdlp->ih_type) &&
327 (psm_intr_ops != NULL) &&
328 (pci_get_priority(rdip, hdlp, &priority) == DDI_SUCCESS)) {
329 /*
330 * Following check is a special case for ’pcieb’.
331 * This makes sure vectors with the right priority
332 * are allocated for pcieb during ALLOC time.
333 */
334 if (strcmp(ddi_driver_name(rdip), "pcieb") == 0) {
335 hdlp->ih_pri =
336 (pcieb_intr_pri_counter % 2) ? 4 : 7;
337 pciepci = 1;
338 } else
339 hdlp->ih_pri = priority;
340 behavior = (int)(uintptr_t)hdlp->ih_scratch2;

342 /*
343 * Cache in the config handle and cap_ptr
344 */
345 if (i_ddi_get_pci_config_handle(rdip) == NULL) {
346 if (pci_config_setup(rdip, &handle) !=
347 DDI_SUCCESS)
348 return (DDI_FAILURE);
349 i_ddi_set_pci_config_handle(rdip, handle);
350 did_pci_config_setup = B_TRUE;
351 #endif /* ! codereview */
352 }

354 prop = NULL;
355 cap_ptr = 0;
356 if (hdlp->ih_type == DDI_INTR_TYPE_MSI)
357 prop = "pci-msi-capid-pointer";
358 else if (hdlp->ih_type == DDI_INTR_TYPE_MSIX)
359 prop = "pci-msix-capid-pointer";

361 /*
362 * Enforce the calling of DDI_INTROP_SUPPORTED_TYPES
363 * for MSI(X) before allocation
364 */
365 if (prop != NULL) {
366 cap_ptr = ddi_prop_get_int(DDI_DEV_T_ANY, rdip,
367 DDI_PROP_DONTPASS, prop, 0);
368 if (cap_ptr == 0) {
369 DDI_INTR_NEXDBG((CE_CONT,
370 "pci_common_intr_ops: rdip: 0x%p "
371 "attempted MSI(X) alloc without "
372 "cap property\n", (void *)rdip));
373 return (DDI_FAILURE);
374 }
375 }
376 i_ddi_set_msi_msix_cap_ptr(rdip, cap_ptr);
377 did_msi_cap_set = B_TRUE;
378 #endif /* ! codereview */

380 /*
381 * Allocate interrupt vectors
382 */
383 (void) (*psm_intr_ops)(rdip, hdlp,
384 PSM_INTR_OP_ALLOC_VECTORS, result);

386 if (*(int *)result == 0) {
387 rv = DDI_INTR_NOTFOUND;
388 goto HANDLE_ALLOC_FAILURE;
389 }

new/usr/src/uts/i86pc/io/pci/pci_common.c 7

390 did_intr_vec_alloc = B_TRUE;
24 if (*(int *)result == 0)
25 return (DDI_INTR_NOTFOUND);

392 /* verify behavior flag and take appropriate action */
393 if ((behavior == DDI_INTR_ALLOC_STRICT) &&
394 (*(int *)result < hdlp->ih_scratch1)) {
395 DDI_INTR_NEXDBG((CE_CONT,
396 "pci_common_intr_ops: behavior %x, "
397 "couldn’t get enough intrs\n", behavior));
398 hdlp->ih_scratch1 = *(int *)result;
399 rv = DDI_EAGAIN;
400 goto HANDLE_ALLOC_FAILURE;
34 (void) (*psm_intr_ops)(rdip, hdlp,
35 PSM_INTR_OP_FREE_VECTORS, NULL);
36 return (DDI_EAGAIN);
401 }

403 if (hdlp->ih_type == DDI_INTR_TYPE_MSIX) {
404 if (!(msix_p = i_ddi_get_msix(hdlp->ih_dip))) {
405 msix_p = pci_msix_init(hdlp->ih_dip);
406 if (msix_p) {
407 i_ddi_set_msix(hdlp->ih_dip,
408 msix_p);
409 } else {
410 DDI_INTR_NEXDBG((CE_CONT,
411 "pci_common_intr_ops: MSI-X"
412 "table initilization failed"
413 ", rdip 0x%p inum 0x%x\n",
414 (void *)rdip,
415 hdlp->ih_inum));

417 rv = DDI_FAILURE;
418 goto HANDLE_ALLOC_FAILURE;
53 (void) (*psm_intr_ops)(rdip,
54 hdlp,
55 PSM_INTR_OP_FREE_VECTORS,
56 NULL);

58 return (DDI_FAILURE);
419 }
420 }
421 }

423 if (pciepci) {
424 /* update priority in ispec */
425 isp = pci_intx_get_ispec(pdip, rdip,
426 (int)hdlp->ih_inum);
427 ispec = (struct intrspec *)isp;
428 if (ispec)
429 ispec->intrspec_pri = hdlp->ih_pri;
430 ++pcieb_intr_pri_counter;
431 }

433 } else
434 return (DDI_FAILURE);
435 break;

437 HANDLE_ALLOC_FAILURE:
438 if (did_intr_vec_alloc == B_TRUE)
439 (void) (*psm_intr_ops)(rdip, hdlp,
440 PSM_INTR_OP_FREE_VECTORS, NULL);
441 if (did_msi_cap_set == B_TRUE)
442 i_ddi_set_msi_msix_cap_ptr(rdip, 0);
443 if (did_pci_config_setup == B_TRUE) {
444 (void) pci_config_teardown(&handle);

new/usr/src/uts/i86pc/io/pci/pci_common.c 8

445 i_ddi_set_pci_config_handle(rdip, NULL);
446 }
447 return (rv);

449 #endif /* ! codereview */
450 case DDI_INTROP_FREE:
451 if (DDI_INTR_IS_MSI_OR_MSIX(hdlp->ih_type) &&
452 (psm_intr_ops != NULL)) {
453 if (i_ddi_intr_get_current_nintrs(hdlp->ih_dip) - 1 ==
454 0) {
455 if (handle = i_ddi_get_pci_config_handle(
456 rdip)) {
457 (void) pci_config_teardown(&handle);
458 i_ddi_set_pci_config_handle(rdip, NULL);
459 }
460 if (cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip))
461 i_ddi_set_msi_msix_cap_ptr(rdip, 0);
462 }

464 (void) (*psm_intr_ops)(rdip, hdlp,
465 PSM_INTR_OP_FREE_VECTORS, NULL);

467 if (hdlp->ih_type == DDI_INTR_TYPE_MSIX) {
468 msix_p = i_ddi_get_msix(hdlp->ih_dip);
469 if (msix_p &&
470 (i_ddi_intr_get_current_nintrs(
471 hdlp->ih_dip) - 1) == 0) {
472 pci_msix_fini(msix_p);
473 i_ddi_set_msix(hdlp->ih_dip, NULL);
474 }
475 }
476 } else if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) {
477 return (pci_free_intr_fixed(pdip, rdip, hdlp));
478 } else
479 return (DDI_FAILURE);
480 break;
481 case DDI_INTROP_GETPRI:
482 /* Get the priority */
483 if (pci_get_priority(rdip, hdlp, &priority) != DDI_SUCCESS)
484 return (DDI_FAILURE);
485 DDI_INTR_NEXDBG((CE_CONT, "pci_common_intr_ops: "
486 "priority = 0x%x\n", priority));
487 *(int *)result = priority;
488 break;
489 case DDI_INTROP_SETPRI:
490 /* Validate the interrupt priority passed */
491 if (*(int *)result > LOCK_LEVEL)
492 return (DDI_FAILURE);

494 /* Ensure that PSM is all initialized */
495 if (psm_intr_ops == NULL)
496 return (DDI_FAILURE);

498 isp = pci_intx_get_ispec(pdip, rdip, (int)hdlp->ih_inum);
499 ispec = (struct intrspec *)isp;
500 if (ispec == NULL)
501 return (DDI_FAILURE);

503 /* For fixed interrupts */
504 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) {
505 /* if interrupt is shared, return failure */
506 ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
507 psm_rval = (*psm_intr_ops)(rdip, hdlp,
508 PSM_INTR_OP_GET_SHARED, &psm_status);
509 /*
510 * For fixed interrupts, the irq may not have been

new/usr/src/uts/i86pc/io/pci/pci_common.c 9

511 * allocated when SET_PRI is called, and the above
512 * GET_SHARED op may return PSM_FAILURE. This is not
513 * a real error and is ignored below.
514 */
515 if ((psm_rval != PSM_FAILURE) && (psm_status == 1)) {
516 DDI_INTR_NEXDBG((CE_CONT,
517 "pci_common_intr_ops: "
518 "dip 0x%p cannot setpri, psm_rval=%d,"
519 "psm_status=%d\n", (void *)rdip, psm_rval,
520 psm_status));
521 return (DDI_FAILURE);
522 }
523 }

525 /* Change the priority */
526 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_PRI, result) ==
527 PSM_FAILURE)
528 return (DDI_FAILURE);

530 /* update ispec */
531 ispec->intrspec_pri = *(int *)result;
532 break;
533 case DDI_INTROP_ADDISR:
534 /* update ispec */
535 isp = pci_intx_get_ispec(pdip, rdip, (int)hdlp->ih_inum);
536 ispec = (struct intrspec *)isp;
537 if (ispec) {
538 ispec->intrspec_func = hdlp->ih_cb_func;
539 ihdl_plat_datap = (ihdl_plat_t *)hdlp->ih_private;
540 pci_kstat_create(&ihdl_plat_datap->ip_ksp, pdip, hdlp);
541 }
542 break;
543 case DDI_INTROP_REMISR:
544 /* Get the interrupt structure pointer */
545 isp = pci_intx_get_ispec(pdip, rdip, (int)hdlp->ih_inum);
546 ispec = (struct intrspec *)isp;
547 if (ispec) {
548 ispec->intrspec_func = (uint_t (*)()) 0;
549 ihdl_plat_datap = (ihdl_plat_t *)hdlp->ih_private;
550 if (ihdl_plat_datap->ip_ksp != NULL)
551 pci_kstat_delete(ihdl_plat_datap->ip_ksp);
552 }
553 break;
554 case DDI_INTROP_GETCAP:
555 /*
556 * First check the config space and/or
557 * MSI capability register(s)
558 */
559 if (DDI_INTR_IS_MSI_OR_MSIX(hdlp->ih_type))
560 pci_rval = pci_msi_get_cap(rdip, hdlp->ih_type,
561 &pci_status);
562 else if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
563 pci_rval = pci_intx_get_cap(rdip, &pci_status);

565 /* next check with PSM module */
566 if (psm_intr_ops != NULL)
567 psm_rval = (*psm_intr_ops)(rdip, hdlp,
568 PSM_INTR_OP_GET_CAP, &psm_status);

570 DDI_INTR_NEXDBG((CE_CONT, "pci: GETCAP returned psm_rval = %x, "
571 "psm_status = %x, pci_rval = %x, pci_status = %x\n",
572 psm_rval, psm_status, pci_rval, pci_status));

574 if (psm_rval == PSM_FAILURE && pci_rval == DDI_FAILURE) {
575 *(int *)result = 0;
576 return (DDI_FAILURE);

new/usr/src/uts/i86pc/io/pci/pci_common.c 10

577 }

579 if (psm_rval == PSM_SUCCESS)
580 *(int *)result = psm_status;

582 if (pci_rval == DDI_SUCCESS)
583 *(int *)result |= pci_status;

585 DDI_INTR_NEXDBG((CE_CONT, "pci: GETCAP returned = %x\n",
586 *(int *)result));
587 break;
588 case DDI_INTROP_SETCAP:
589 DDI_INTR_NEXDBG((CE_CONT, "pci_common_intr_ops: "
590 "SETCAP cap=0x%x\n", *(int *)result));
591 if (psm_intr_ops == NULL)
592 return (DDI_FAILURE);

594 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_CAP, result)) {
595 DDI_INTR_NEXDBG((CE_CONT, "GETCAP: psm_intr_ops"
596 " returned failure\n"));
597 return (DDI_FAILURE);
598 }
599 break;
600 case DDI_INTROP_ENABLE:
601 DDI_INTR_NEXDBG((CE_CONT, "pci_common_intr_ops: ENABLE\n"));
602 if (psm_intr_ops == NULL)
603 return (DDI_FAILURE);

605 if (pci_enable_intr(pdip, rdip, hdlp, hdlp->ih_inum) !=
606 DDI_SUCCESS)
607 return (DDI_FAILURE);

609 DDI_INTR_NEXDBG((CE_CONT, "pci_common_intr_ops: ENABLE "
610 "vector=0x%x\n", hdlp->ih_vector));
611 break;
612 case DDI_INTROP_DISABLE:
613 DDI_INTR_NEXDBG((CE_CONT, "pci_common_intr_ops: DISABLE\n"));
614 if (psm_intr_ops == NULL)
615 return (DDI_FAILURE);

617 pci_disable_intr(pdip, rdip, hdlp, hdlp->ih_inum);
618 DDI_INTR_NEXDBG((CE_CONT, "pci_common_intr_ops: DISABLE "
619 "vector = %x\n", hdlp->ih_vector));
620 break;
621 case DDI_INTROP_BLOCKENABLE:
622 DDI_INTR_NEXDBG((CE_CONT, "pci_common_intr_ops: "
623 "BLOCKENABLE\n"));
624 if (hdlp->ih_type != DDI_INTR_TYPE_MSI) {
625 DDI_INTR_NEXDBG((CE_CONT, "BLOCKENABLE: not MSI\n"));
626 return (DDI_FAILURE);
627 }

629 /* Check if psm_intr_ops is NULL? */
630 if (psm_intr_ops == NULL)
631 return (DDI_FAILURE);

633 count = hdlp->ih_scratch1;
634 h_array = (ddi_intr_handle_t *)hdlp->ih_scratch2;
635 for (i = 0; i < count; i++) {
636 hdlp = (ddi_intr_handle_impl_t *)h_array[i];
637 if (pci_enable_intr(pdip, rdip, hdlp,
638 hdlp->ih_inum) != DDI_SUCCESS) {
639 DDI_INTR_NEXDBG((CE_CONT, "BLOCKENABLE: "
640 "pci_enable_intr failed for %d\n", i));
641 for (j = 0; j < i; j++) {
642 hdlp = (ddi_intr_handle_impl_t *)

new/usr/src/uts/i86pc/io/pci/pci_common.c 11

643 h_array[j];
644 pci_disable_intr(pdip, rdip, hdlp,
645 hdlp->ih_inum);
646 }
647 return (DDI_FAILURE);
648 }
649 DDI_INTR_NEXDBG((CE_CONT, "pci_common_intr_ops: "
650 "BLOCKENABLE inum %x done\n", hdlp->ih_inum));
651 }
652 break;
653 case DDI_INTROP_BLOCKDISABLE:
654 DDI_INTR_NEXDBG((CE_CONT, "pci_common_intr_ops: "
655 "BLOCKDISABLE\n"));
656 if (hdlp->ih_type != DDI_INTR_TYPE_MSI) {
657 DDI_INTR_NEXDBG((CE_CONT, "BLOCKDISABLE: not MSI\n"));
658 return (DDI_FAILURE);
659 }

661 /* Check if psm_intr_ops is present */
662 if (psm_intr_ops == NULL)
663 return (DDI_FAILURE);

665 count = hdlp->ih_scratch1;
666 h_array = (ddi_intr_handle_t *)hdlp->ih_scratch2;
667 for (i = 0; i < count; i++) {
668 hdlp = (ddi_intr_handle_impl_t *)h_array[i];
669 pci_disable_intr(pdip, rdip, hdlp, hdlp->ih_inum);
670 DDI_INTR_NEXDBG((CE_CONT, "pci_common_intr_ops: "
671 "BLOCKDISABLE inum %x done\n", hdlp->ih_inum));
672 }
673 break;
674 case DDI_INTROP_SETMASK:
675 case DDI_INTROP_CLRMASK:
676 /*
677 * First handle in the config space
678 */
679 if (intr_op == DDI_INTROP_SETMASK) {
680 if (DDI_INTR_IS_MSI_OR_MSIX(hdlp->ih_type))
681 pci_status = pci_msi_set_mask(rdip,
682 hdlp->ih_type, hdlp->ih_inum);
683 else if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
684 pci_status = pci_intx_set_mask(rdip);
685 } else {
686 if (DDI_INTR_IS_MSI_OR_MSIX(hdlp->ih_type))
687 pci_status = pci_msi_clr_mask(rdip,
688 hdlp->ih_type, hdlp->ih_inum);
689 else if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
690 pci_status = pci_intx_clr_mask(rdip);
691 }

693 /* For MSI/X; no need to check with PSM module */
694 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
695 return (pci_status);

697 /* For fixed interrupts only: handle config space first */
698 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED &&
699 pci_status == DDI_SUCCESS)
700 break;

702 /* For fixed interrupts only: confer with PSM module next */
703 if (psm_intr_ops != NULL) {
704 /* If interrupt is shared; do nothing */
705 psm_rval = (*psm_intr_ops)(rdip, hdlp,
706 PSM_INTR_OP_GET_SHARED, &psm_status);

708 if (psm_rval == PSM_FAILURE || psm_status == 1)

new/usr/src/uts/i86pc/io/pci/pci_common.c 12

709 return (pci_status);

711 /* Now, PSM module should try to set/clear the mask */
712 if (intr_op == DDI_INTROP_SETMASK)
713 psm_rval = (*psm_intr_ops)(rdip, hdlp,
714 PSM_INTR_OP_SET_MASK, NULL);
715 else
716 psm_rval = (*psm_intr_ops)(rdip, hdlp,
717 PSM_INTR_OP_CLEAR_MASK, NULL);
718 }
719 return ((psm_rval == PSM_FAILURE) ? DDI_FAILURE : DDI_SUCCESS);
720 case DDI_INTROP_GETPENDING:
721 /*
722 * First check the config space and/or
723 * MSI capability register(s)
724 */
725 if (DDI_INTR_IS_MSI_OR_MSIX(hdlp->ih_type))
726 pci_rval = pci_msi_get_pending(rdip, hdlp->ih_type,
727 hdlp->ih_inum, &pci_status);
728 else if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
729 pci_rval = pci_intx_get_pending(rdip, &pci_status);

731 /* On failure; next try with PSM module */
732 if (pci_rval != DDI_SUCCESS && psm_intr_ops != NULL)
733 psm_rval = (*psm_intr_ops)(rdip, hdlp,
734 PSM_INTR_OP_GET_PENDING, &psm_status);

736 DDI_INTR_NEXDBG((CE_CONT, "pci: GETPENDING returned "
737 "psm_rval = %x, psm_status = %x, pci_rval = %x, "
738 "pci_status = %x\n", psm_rval, psm_status, pci_rval,
739 pci_status));
740 if (psm_rval == PSM_FAILURE && pci_rval == DDI_FAILURE) {
741 *(int *)result = 0;
742 return (DDI_FAILURE);
743 }

745 if (psm_rval != PSM_FAILURE)
746 *(int *)result = psm_status;
747 else if (pci_rval != DDI_FAILURE)
748 *(int *)result = pci_status;
749 DDI_INTR_NEXDBG((CE_CONT, "pci: GETPENDING returned = %x\n",
750 *(int *)result));
751 break;
752 case DDI_INTROP_GETTARGET:
753 DDI_INTR_NEXDBG((CE_CONT, "pci_common_intr_ops: GETTARGET\n"));

755 bcopy(hdlp, &tmp_hdl, sizeof (ddi_intr_handle_impl_t));
756 tmp_hdl.ih_private = (void *)&intrinfo;
757 intrinfo.avgi_req_flags = PSMGI_INTRBY_DEFAULT;
758 intrinfo.avgi_req_flags |= PSMGI_REQ_CPUID;

760 if ((*psm_intr_ops)(rdip, &tmp_hdl, PSM_INTR_OP_GET_INTR,
761 NULL) == PSM_FAILURE)
762 return (DDI_FAILURE);

764 *(int *)result = intrinfo.avgi_cpu_id;
765 DDI_INTR_NEXDBG((CE_CONT, "pci_common_intr_ops: GETTARGET "
766 "vector = 0x%x, cpu = 0x%x\n", hdlp->ih_vector,
767 *(int *)result));
768 break;
769 case DDI_INTROP_SETTARGET:
770 DDI_INTR_NEXDBG((CE_CONT, "pci_common_intr_ops: SETTARGET\n"));

772 bcopy(hdlp, &tmp_hdl, sizeof (ddi_intr_handle_impl_t));
773 tmp_hdl.ih_private = (void *)(uintptr_t)*(int *)result;
774 tmp_hdl.ih_flags = PSMGI_INTRBY_DEFAULT;

new/usr/src/uts/i86pc/io/pci/pci_common.c 13

776 if ((*psm_intr_ops)(rdip, &tmp_hdl, PSM_INTR_OP_SET_CPU,
777 &psm_status) == PSM_FAILURE)
778 return (DDI_FAILURE);

780 hdlp->ih_vector = tmp_hdl.ih_vector;
781 DDI_INTR_NEXDBG((CE_CONT, "pci_common_intr_ops: SETTARGET "
782 "vector = 0x%x\n", hdlp->ih_vector));
783 break;
784 case DDI_INTROP_GETPOOL:
785 /*
786 * For MSI/X interrupts use global IRM pool if available.
787 */
788 if (apix_irm_pool_p && DDI_INTR_IS_MSI_OR_MSIX(hdlp->ih_type)) {
789 *(ddi_irm_pool_t **)result = apix_irm_pool_p;
790 return (DDI_SUCCESS);
791 }
792 return (DDI_ENOTSUP);
793 default:
794 return (i_ddi_intr_ops(pdip, rdip, intr_op, hdlp, result));
795 }

797 return (DDI_SUCCESS);
798 }

800 /*
801 * Allocate a vector for FIXED type interrupt.
802 */
803 int
804 pci_alloc_intr_fixed(dev_info_t *pdip, dev_info_t *rdip,
805 ddi_intr_handle_impl_t *hdlp, void *result)
806 {
807 struct intrspec *ispec;
808 ddi_intr_handle_impl_t info_hdl;
809 int ret;
810 int free_phdl = 0;
811 int pci_rval;
812 int pci_status = 0;
813 apic_get_type_t type_info;

815 if (psm_intr_ops == NULL)
816 return (DDI_FAILURE);

818 /* Figure out if this device supports MASKING */
819 pci_rval = pci_intx_get_cap(rdip, &pci_status);
820 if (pci_rval == DDI_SUCCESS && pci_status)
821 hdlp->ih_cap |= pci_status;

823 /*
824 * If the PSM module is "APIX" then pass the request for
825 * allocating the vector now.
826 */
827 bzero(&info_hdl, sizeof (ddi_intr_handle_impl_t));
828 info_hdl.ih_private = &type_info;
829 if ((*psm_intr_ops)(NULL, &info_hdl, PSM_INTR_OP_APIC_TYPE, NULL) ==
830 PSM_SUCCESS && strcmp(type_info.avgi_type, APIC_APIX_NAME) == 0) {
831 ispec = (struct intrspec *)pci_intx_get_ispec(pdip, rdip,
832 (int)hdlp->ih_inum);
833 if (ispec == NULL)
834 return (DDI_FAILURE);
835 if (hdlp->ih_private == NULL) { /* allocate phdl structure */
836 free_phdl = 1;
837 i_ddi_alloc_intr_phdl(hdlp);
838 }
839 ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
840 ret = (*psm_intr_ops)(rdip, hdlp,

new/usr/src/uts/i86pc/io/pci/pci_common.c 14

841 PSM_INTR_OP_ALLOC_VECTORS, result);
842 if (free_phdl) { /* free up the phdl structure */
843 free_phdl = 0;
844 i_ddi_free_intr_phdl(hdlp);
845 hdlp->ih_private = NULL;
846 }
847 } else {
848 /*
849 * No APIX module; fall back to the old scheme where the
850 * interrupt vector is allocated during ddi_enable_intr() call.
851 */
852 *(int *)result = 1;
853 ret = DDI_SUCCESS;
854 }

856 return (ret);
857 }

859 /*
860 * Free up the vector for FIXED (legacy) type interrupt.
861 */
862 static int
863 pci_free_intr_fixed(dev_info_t *pdip, dev_info_t *rdip,
864 ddi_intr_handle_impl_t *hdlp)
865 {
866 struct intrspec *ispec;
867 ddi_intr_handle_impl_t info_hdl;
868 int ret;
869 apic_get_type_t type_info;

871 if (psm_intr_ops == NULL)
872 return (DDI_FAILURE);

874 /*
875 * If the PSM module is "APIX" then pass the request to it
876 * to free up the vector now.
877 */
878 bzero(&info_hdl, sizeof (ddi_intr_handle_impl_t));
879 info_hdl.ih_private = &type_info;
880 if ((*psm_intr_ops)(NULL, &info_hdl, PSM_INTR_OP_APIC_TYPE, NULL) ==
881 PSM_SUCCESS && strcmp(type_info.avgi_type, APIC_APIX_NAME) == 0) {
882 ispec = (struct intrspec *)pci_intx_get_ispec(pdip, rdip,
883 (int)hdlp->ih_inum);
884 if (ispec == NULL)
885 return (DDI_FAILURE);
886 ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
887 ret = (*psm_intr_ops)(rdip, hdlp,
888 PSM_INTR_OP_FREE_VECTORS, NULL);
889 } else {
890 /*
891 * No APIX module; fall back to the old scheme where
892 * the interrupt vector was already freed during
893 * ddi_disable_intr() call.
894 */
895 ret = DDI_SUCCESS;
896 }

898 return (ret);
899 }

901 int
902 pci_get_intr_from_vecirq(apic_get_intr_t *intrinfo_p,
903 int vecirq, boolean_t is_irq)
904 {
905 ddi_intr_handle_impl_t get_info_ii_hdl;

new/usr/src/uts/i86pc/io/pci/pci_common.c 15

907 if (is_irq)
908 intrinfo_p->avgi_req_flags |= PSMGI_INTRBY_IRQ;

910 /*
911 * For this locally-declared and used handle, ih_private will contain a
912 * pointer to apic_get_intr_t, not an ihdl_plat_t as used for
913 * global interrupt handling.
914 */
915 get_info_ii_hdl.ih_private = intrinfo_p;
916 get_info_ii_hdl.ih_vector = vecirq;

918 if ((*psm_intr_ops)(NULL, &get_info_ii_hdl,
919 PSM_INTR_OP_GET_INTR, NULL) == PSM_FAILURE)
920 return (DDI_FAILURE);

922 return (DDI_SUCCESS);
923 }

926 int
927 pci_get_cpu_from_vecirq(int vecirq, boolean_t is_irq)
928 {
929 int rval;
930 apic_get_intr_t intrinfo;

932 intrinfo.avgi_req_flags = PSMGI_REQ_CPUID;
933 rval = pci_get_intr_from_vecirq(&intrinfo, vecirq, is_irq);

935 if (rval == DDI_SUCCESS)
936 return (intrinfo.avgi_cpu_id);
937 else
938 return (-1);
939 }

942 static int
943 pci_enable_intr(dev_info_t *pdip, dev_info_t *rdip,
944 ddi_intr_handle_impl_t *hdlp, uint32_t inum)
945 {
946 struct intrspec *ispec;
947 int irq;
948 ihdl_plat_t *ihdl_plat_datap = (ihdl_plat_t *)hdlp->ih_private;

950 DDI_INTR_NEXDBG((CE_CONT, "pci_enable_intr: hdlp %p inum %x\n",
951 (void *)hdlp, inum));

953 /* Translate the interrupt if needed */
954 ispec = (struct intrspec *)pci_intx_get_ispec(pdip, rdip, (int)inum);
955 if (ispec == NULL)
956 return (DDI_FAILURE);
957 if (DDI_INTR_IS_MSI_OR_MSIX(hdlp->ih_type)) {
958 ispec->intrspec_vec = inum;
959 ispec->intrspec_pri = hdlp->ih_pri;
960 }
961 ihdl_plat_datap->ip_ispecp = ispec;

963 /* translate the interrupt if needed */
964 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_XLATE_VECTOR, &irq) ==
965 PSM_FAILURE)
966 return (DDI_FAILURE);
967 DDI_INTR_NEXDBG((CE_CONT, "pci_enable_intr: priority=%x irq=%x\n",
968 hdlp->ih_pri, irq));

970 /* Add the interrupt handler */
971 if (!add_avintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func,
972 DEVI(rdip)->devi_name, irq, hdlp->ih_cb_arg1,

new/usr/src/uts/i86pc/io/pci/pci_common.c 16

973 hdlp->ih_cb_arg2, &ihdl_plat_datap->ip_ticks, rdip))
974 return (DDI_FAILURE);

976 hdlp->ih_vector = irq;

978 return (DDI_SUCCESS);
979 }

982 static void
983 pci_disable_intr(dev_info_t *pdip, dev_info_t *rdip,
984 ddi_intr_handle_impl_t *hdlp, uint32_t inum)
985 {
986 int irq;
987 struct intrspec *ispec;
988 ihdl_plat_t *ihdl_plat_datap = (ihdl_plat_t *)hdlp->ih_private;

990 DDI_INTR_NEXDBG((CE_CONT, "pci_disable_intr: \n"));
991 ispec = (struct intrspec *)pci_intx_get_ispec(pdip, rdip, (int)inum);
992 if (ispec == NULL)
993 return;
994 if (DDI_INTR_IS_MSI_OR_MSIX(hdlp->ih_type)) {
995 ispec->intrspec_vec = inum;
996 ispec->intrspec_pri = hdlp->ih_pri;
997 }
998 ihdl_plat_datap->ip_ispecp = ispec;

1000 /* translate the interrupt if needed */
1001 (void) (*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_XLATE_VECTOR, &irq);

1003 /* Disable the interrupt handler */
1004 rem_avintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func, irq);
1005 ihdl_plat_datap->ip_ispecp = NULL;
1006 }

1008 /*
1009 * Miscellaneous library function
1010 */
1011 int
1012 pci_common_get_reg_prop(dev_info_t *dip, pci_regspec_t *pci_rp)
1013 {
1014 int i;
1015 int number;
1016 int assigned_addr_len;
1017 uint_t phys_hi = pci_rp->pci_phys_hi;
1018 pci_regspec_t *assigned_addr;

1020 if (((phys_hi & PCI_REG_ADDR_M) == PCI_ADDR_CONFIG) ||
1021 (phys_hi & PCI_RELOCAT_B))
1022 return (DDI_SUCCESS);

1024 /*
1025 * the "reg" property specifies relocatable, get and interpret the
1026 * "assigned-addresses" property.
1027 */
1028 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
1029 "assigned-addresses", (int **)&assigned_addr,
1030 (uint_t *)&assigned_addr_len) != DDI_PROP_SUCCESS)
1031 return (DDI_FAILURE);

1033 /*
1034 * Scan the "assigned-addresses" for one that matches the specified
1035 * "reg" property entry.
1036 */
1037 phys_hi &= PCI_CONF_ADDR_MASK;
1038 number = assigned_addr_len / (sizeof (pci_regspec_t) / sizeof (int));

new/usr/src/uts/i86pc/io/pci/pci_common.c 17

1039 for (i = 0; i < number; i++) {
1040 if ((assigned_addr[i].pci_phys_hi & PCI_CONF_ADDR_MASK) ==
1041 phys_hi) {
1042 pci_rp->pci_phys_mid = assigned_addr[i].pci_phys_mid;
1043 pci_rp->pci_phys_low = assigned_addr[i].pci_phys_low;
1044 ddi_prop_free(assigned_addr);
1045 return (DDI_SUCCESS);
1046 }
1047 }

1049 ddi_prop_free(assigned_addr);
1050 return (DDI_FAILURE);
1051 }

1054 /*
1055 * To handle PCI tool ioctls
1056 */

1058 /*ARGSUSED*/
1059 int
1060 pci_common_ioctl(dev_info_t *dip, dev_t dev, int cmd, intptr_t arg,
1061 int mode, cred_t *credp, int *rvalp)
1062 {
1063 minor_t minor = getminor(dev);
1064 int rv = ENOTTY;

1066 switch (PCI_MINOR_NUM_TO_PCI_DEVNUM(minor)) {
1067 case PCI_TOOL_REG_MINOR_NUM:

1069 switch (cmd) {
1070 case PCITOOL_DEVICE_SET_REG:
1071 case PCITOOL_DEVICE_GET_REG:

1073 /* Require full privileges. */
1074 if (secpolicy_kmdb(credp))
1075 rv = EPERM;
1076 else
1077 rv = pcitool_dev_reg_ops(dip, (void *)arg,
1078 cmd, mode);
1079 break;

1081 case PCITOOL_NEXUS_SET_REG:
1082 case PCITOOL_NEXUS_GET_REG:

1084 /* Require full privileges. */
1085 if (secpolicy_kmdb(credp))
1086 rv = EPERM;
1087 else
1088 rv = pcitool_bus_reg_ops(dip, (void *)arg,
1089 cmd, mode);
1090 break;
1091 }
1092 break;

1094 case PCI_TOOL_INTR_MINOR_NUM:

1096 switch (cmd) {
1097 case PCITOOL_DEVICE_SET_INTR:

1099 /* Require PRIV_SYS_RES_CONFIG, same as psradm */
1100 if (secpolicy_ponline(credp)) {
1101 rv = EPERM;
1102 break;
1103 }

new/usr/src/uts/i86pc/io/pci/pci_common.c 18

1105 /*FALLTHRU*/
1106 /* These require no special privileges. */
1107 case PCITOOL_DEVICE_GET_INTR:
1108 case PCITOOL_SYSTEM_INTR_INFO:
1109 rv = pcitool_intr_admn(dip, (void *)arg, cmd, mode);
1110 break;
1111 }
1112 break;

1114 default:
1115 break;
1116 }

1118 return (rv);
1119 }

1122 int
1123 pci_common_ctlops_poke(peekpoke_ctlops_t *in_args)
1124 {
1125 size_t size = in_args->size;
1126 uintptr_t dev_addr = in_args->dev_addr;
1127 uintptr_t host_addr = in_args->host_addr;
1128 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
1129 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle;
1130 size_t repcount = in_args->repcount;
1131 uint_t flags = in_args->flags;
1132 int err = DDI_SUCCESS;

1134 /*
1135 * if no handle then this is a poke. We have to return failure here
1136 * as we have no way of knowing whether this is a MEM or IO space access
1137 */
1138 if (in_args->handle == NULL)
1139 return (DDI_FAILURE);

1141 /*
1142 * rest of this function is actually for cautious puts
1143 */
1144 for (; repcount; repcount--) {
1145 if (hp->ahi_acc_attr == DDI_ACCATTR_CONFIG_SPACE) {
1146 switch (size) {
1147 case sizeof (uint8_t):
1148 pci_config_wr8(hp, (uint8_t *)dev_addr,
1149 *(uint8_t *)host_addr);
1150 break;
1151 case sizeof (uint16_t):
1152 pci_config_wr16(hp, (uint16_t *)dev_addr,
1153 *(uint16_t *)host_addr);
1154 break;
1155 case sizeof (uint32_t):
1156 pci_config_wr32(hp, (uint32_t *)dev_addr,
1157 *(uint32_t *)host_addr);
1158 break;
1159 case sizeof (uint64_t):
1160 pci_config_wr64(hp, (uint64_t *)dev_addr,
1161 *(uint64_t *)host_addr);
1162 break;
1163 default:
1164 err = DDI_FAILURE;
1165 break;
1166 }
1167 } else if (hp->ahi_acc_attr & DDI_ACCATTR_IO_SPACE) {
1168 if (hdlp->ah_acc.devacc_attr_endian_flags ==
1169 DDI_STRUCTURE_BE_ACC) {
1170 switch (size) {

new/usr/src/uts/i86pc/io/pci/pci_common.c 19

1171 case sizeof (uint8_t):
1172 i_ddi_io_put8(hp,
1173 (uint8_t *)dev_addr,
1174 *(uint8_t *)host_addr);
1175 break;
1176 case sizeof (uint16_t):
1177 i_ddi_io_swap_put16(hp,
1178 (uint16_t *)dev_addr,
1179 *(uint16_t *)host_addr);
1180 break;
1181 case sizeof (uint32_t):
1182 i_ddi_io_swap_put32(hp,
1183 (uint32_t *)dev_addr,
1184 *(uint32_t *)host_addr);
1185 break;
1186 /*
1187 * note the 64-bit case is a dummy
1188 * function - so no need to swap
1189 */
1190 case sizeof (uint64_t):
1191 i_ddi_io_put64(hp,
1192 (uint64_t *)dev_addr,
1193 *(uint64_t *)host_addr);
1194 break;
1195 default:
1196 err = DDI_FAILURE;
1197 break;
1198 }
1199 } else {
1200 switch (size) {
1201 case sizeof (uint8_t):
1202 i_ddi_io_put8(hp,
1203 (uint8_t *)dev_addr,
1204 *(uint8_t *)host_addr);
1205 break;
1206 case sizeof (uint16_t):
1207 i_ddi_io_put16(hp,
1208 (uint16_t *)dev_addr,
1209 *(uint16_t *)host_addr);
1210 break;
1211 case sizeof (uint32_t):
1212 i_ddi_io_put32(hp,
1213 (uint32_t *)dev_addr,
1214 *(uint32_t *)host_addr);
1215 break;
1216 case sizeof (uint64_t):
1217 i_ddi_io_put64(hp,
1218 (uint64_t *)dev_addr,
1219 *(uint64_t *)host_addr);
1220 break;
1221 default:
1222 err = DDI_FAILURE;
1223 break;
1224 }
1225 }
1226 } else {
1227 if (hdlp->ah_acc.devacc_attr_endian_flags ==
1228 DDI_STRUCTURE_BE_ACC) {
1229 switch (size) {
1230 case sizeof (uint8_t):
1231 *(uint8_t *)dev_addr =
1232 *(uint8_t *)host_addr;
1233 break;
1234 case sizeof (uint16_t):
1235 *(uint16_t *)dev_addr =
1236 ddi_swap16(*(uint16_t *)host_addr);

new/usr/src/uts/i86pc/io/pci/pci_common.c 20

1237 break;
1238 case sizeof (uint32_t):
1239 *(uint32_t *)dev_addr =
1240 ddi_swap32(*(uint32_t *)host_addr);
1241 break;
1242 case sizeof (uint64_t):
1243 *(uint64_t *)dev_addr =
1244 ddi_swap64(*(uint64_t *)host_addr);
1245 break;
1246 default:
1247 err = DDI_FAILURE;
1248 break;
1249 }
1250 } else {
1251 switch (size) {
1252 case sizeof (uint8_t):
1253 *(uint8_t *)dev_addr =
1254 *(uint8_t *)host_addr;
1255 break;
1256 case sizeof (uint16_t):
1257 *(uint16_t *)dev_addr =
1258 *(uint16_t *)host_addr;
1259 break;
1260 case sizeof (uint32_t):
1261 *(uint32_t *)dev_addr =
1262 *(uint32_t *)host_addr;
1263 break;
1264 case sizeof (uint64_t):
1265 *(uint64_t *)dev_addr =
1266 *(uint64_t *)host_addr;
1267 break;
1268 default:
1269 err = DDI_FAILURE;
1270 break;
1271 }
1272 }
1273 }
1274 host_addr += size;
1275 if (flags == DDI_DEV_AUTOINCR)
1276 dev_addr += size;
1277 }
1278 return (err);
1279 }

1282 int
1283 pci_fm_acc_setup(ddi_acc_hdl_t *hp, off_t offset, off_t len)
1284 {
1285 ddi_acc_impl_t *ap = (ddi_acc_impl_t *)hp->ah_platform_private;

1287 /* endian-ness check */
1288 if (hp->ah_acc.devacc_attr_endian_flags == DDI_STRUCTURE_BE_ACC)
1289 return (DDI_FAILURE);

1291 /*
1292 * range check
1293 */
1294 if ((offset >= PCI_CONF_HDR_SIZE) ||
1295 (len > PCI_CONF_HDR_SIZE) ||
1296 (offset + len > PCI_CONF_HDR_SIZE))
1297 return (DDI_FAILURE);

1299 ap->ahi_acc_attr |= DDI_ACCATTR_CONFIG_SPACE;
1300 /*
1301 * always use cautious mechanism for config space gets
1302 */

new/usr/src/uts/i86pc/io/pci/pci_common.c 21

1303 ap->ahi_get8 = i_ddi_caut_get8;
1304 ap->ahi_get16 = i_ddi_caut_get16;
1305 ap->ahi_get32 = i_ddi_caut_get32;
1306 ap->ahi_get64 = i_ddi_caut_get64;
1307 ap->ahi_rep_get8 = i_ddi_caut_rep_get8;
1308 ap->ahi_rep_get16 = i_ddi_caut_rep_get16;
1309 ap->ahi_rep_get32 = i_ddi_caut_rep_get32;
1310 ap->ahi_rep_get64 = i_ddi_caut_rep_get64;
1311 if (hp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) {
1312 ap->ahi_put8 = i_ddi_caut_put8;
1313 ap->ahi_put16 = i_ddi_caut_put16;
1314 ap->ahi_put32 = i_ddi_caut_put32;
1315 ap->ahi_put64 = i_ddi_caut_put64;
1316 ap->ahi_rep_put8 = i_ddi_caut_rep_put8;
1317 ap->ahi_rep_put16 = i_ddi_caut_rep_put16;
1318 ap->ahi_rep_put32 = i_ddi_caut_rep_put32;
1319 ap->ahi_rep_put64 = i_ddi_caut_rep_put64;
1320 } else {
1321 ap->ahi_put8 = pci_config_wr8;
1322 ap->ahi_put16 = pci_config_wr16;
1323 ap->ahi_put32 = pci_config_wr32;
1324 ap->ahi_put64 = pci_config_wr64;
1325 ap->ahi_rep_put8 = pci_config_rep_wr8;
1326 ap->ahi_rep_put16 = pci_config_rep_wr16;
1327 ap->ahi_rep_put32 = pci_config_rep_wr32;
1328 ap->ahi_rep_put64 = pci_config_rep_wr64;
1329 }

1331 /* Initialize to default check/notify functions */
1332 ap->ahi_fault_check = i_ddi_acc_fault_check;
1333 ap->ahi_fault_notify = i_ddi_acc_fault_notify;
1334 ap->ahi_fault = 0;
1335 impl_acc_err_init(hp);
1336 return (DDI_SUCCESS);
1337 }

1340 int
1341 pci_common_ctlops_peek(peekpoke_ctlops_t *in_args)
1342 {
1343 size_t size = in_args->size;
1344 uintptr_t dev_addr = in_args->dev_addr;
1345 uintptr_t host_addr = in_args->host_addr;
1346 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
1347 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle;
1348 size_t repcount = in_args->repcount;
1349 uint_t flags = in_args->flags;
1350 int err = DDI_SUCCESS;

1352 /*
1353 * if no handle then this is a peek. We have to return failure here
1354 * as we have no way of knowing whether this is a MEM or IO space access
1355 */
1356 if (in_args->handle == NULL)
1357 return (DDI_FAILURE);

1359 for (; repcount; repcount--) {
1360 if (hp->ahi_acc_attr == DDI_ACCATTR_CONFIG_SPACE) {
1361 switch (size) {
1362 case sizeof (uint8_t):
1363 *(uint8_t *)host_addr = pci_config_rd8(hp,
1364 (uint8_t *)dev_addr);
1365 break;
1366 case sizeof (uint16_t):
1367 *(uint16_t *)host_addr = pci_config_rd16(hp,
1368 (uint16_t *)dev_addr);

new/usr/src/uts/i86pc/io/pci/pci_common.c 22

1369 break;
1370 case sizeof (uint32_t):
1371 *(uint32_t *)host_addr = pci_config_rd32(hp,
1372 (uint32_t *)dev_addr);
1373 break;
1374 case sizeof (uint64_t):
1375 *(uint64_t *)host_addr = pci_config_rd64(hp,
1376 (uint64_t *)dev_addr);
1377 break;
1378 default:
1379 err = DDI_FAILURE;
1380 break;
1381 }
1382 } else if (hp->ahi_acc_attr & DDI_ACCATTR_IO_SPACE) {
1383 if (hdlp->ah_acc.devacc_attr_endian_flags ==
1384 DDI_STRUCTURE_BE_ACC) {
1385 switch (size) {
1386 case sizeof (uint8_t):
1387 *(uint8_t *)host_addr =
1388 i_ddi_io_get8(hp,
1389 (uint8_t *)dev_addr);
1390 break;
1391 case sizeof (uint16_t):
1392 *(uint16_t *)host_addr =
1393 i_ddi_io_swap_get16(hp,
1394 (uint16_t *)dev_addr);
1395 break;
1396 case sizeof (uint32_t):
1397 *(uint32_t *)host_addr =
1398 i_ddi_io_swap_get32(hp,
1399 (uint32_t *)dev_addr);
1400 break;
1401 /*
1402 * note the 64-bit case is a dummy
1403 * function - so no need to swap
1404 */
1405 case sizeof (uint64_t):
1406 *(uint64_t *)host_addr =
1407 i_ddi_io_get64(hp,
1408 (uint64_t *)dev_addr);
1409 break;
1410 default:
1411 err = DDI_FAILURE;
1412 break;
1413 }
1414 } else {
1415 switch (size) {
1416 case sizeof (uint8_t):
1417 *(uint8_t *)host_addr =
1418 i_ddi_io_get8(hp,
1419 (uint8_t *)dev_addr);
1420 break;
1421 case sizeof (uint16_t):
1422 *(uint16_t *)host_addr =
1423 i_ddi_io_get16(hp,
1424 (uint16_t *)dev_addr);
1425 break;
1426 case sizeof (uint32_t):
1427 *(uint32_t *)host_addr =
1428 i_ddi_io_get32(hp,
1429 (uint32_t *)dev_addr);
1430 break;
1431 case sizeof (uint64_t):
1432 *(uint64_t *)host_addr =
1433 i_ddi_io_get64(hp,
1434 (uint64_t *)dev_addr);

new/usr/src/uts/i86pc/io/pci/pci_common.c 23

1435 break;
1436 default:
1437 err = DDI_FAILURE;
1438 break;
1439 }
1440 }
1441 } else {
1442 if (hdlp->ah_acc.devacc_attr_endian_flags ==
1443 DDI_STRUCTURE_BE_ACC) {
1444 switch (in_args->size) {
1445 case sizeof (uint8_t):
1446 *(uint8_t *)host_addr =
1447 *(uint8_t *)dev_addr;
1448 break;
1449 case sizeof (uint16_t):
1450 *(uint16_t *)host_addr =
1451 ddi_swap16(*(uint16_t *)dev_addr);
1452 break;
1453 case sizeof (uint32_t):
1454 *(uint32_t *)host_addr =
1455 ddi_swap32(*(uint32_t *)dev_addr);
1456 break;
1457 case sizeof (uint64_t):
1458 *(uint64_t *)host_addr =
1459 ddi_swap64(*(uint64_t *)dev_addr);
1460 break;
1461 default:
1462 err = DDI_FAILURE;
1463 break;
1464 }
1465 } else {
1466 switch (in_args->size) {
1467 case sizeof (uint8_t):
1468 *(uint8_t *)host_addr =
1469 *(uint8_t *)dev_addr;
1470 break;
1471 case sizeof (uint16_t):
1472 *(uint16_t *)host_addr =
1473 *(uint16_t *)dev_addr;
1474 break;
1475 case sizeof (uint32_t):
1476 *(uint32_t *)host_addr =
1477 *(uint32_t *)dev_addr;
1478 break;
1479 case sizeof (uint64_t):
1480 *(uint64_t *)host_addr =
1481 *(uint64_t *)dev_addr;
1482 break;
1483 default:
1484 err = DDI_FAILURE;
1485 break;
1486 }
1487 }
1488 }
1489 host_addr += size;
1490 if (flags == DDI_DEV_AUTOINCR)
1491 dev_addr += size;
1492 }
1493 return (err);
1494 }

1496 /*ARGSUSED*/
1497 int
1498 pci_common_peekpoke(dev_info_t *dip, dev_info_t *rdip,
1499 ddi_ctl_enum_t ctlop, void *arg, void *result)
1500 {

new/usr/src/uts/i86pc/io/pci/pci_common.c 24

1501 if (ctlop == DDI_CTLOPS_PEEK)
1502 return (pci_common_ctlops_peek((peekpoke_ctlops_t *)arg));
1503 else
1504 return (pci_common_ctlops_poke((peekpoke_ctlops_t *)arg));
1505 }

1507 /*
1508 * These are the get and put functions to be shared with drivers. The
1509 * mutex locking is done inside the functions referenced, rather than
1510 * here, and is thus shared across PCI child drivers and any other
1511 * consumers of PCI config space (such as the ACPI subsystem).
1512 *
1513 * The configuration space addresses come in as pointers. This is fine on
1514 * a 32-bit system, where the VM space and configuration space are the same
1515 * size. It’s not such a good idea on a 64-bit system, where memory
1516 * addresses are twice as large as configuration space addresses. At some
1517 * point in the call tree we need to take a stand and say "you are 32-bit
1518 * from this time forth", and this seems like a nice self-contained place.
1519 */

1521 uint8_t
1522 pci_config_rd8(ddi_acc_impl_t *hdlp, uint8_t *addr)
1523 {
1524 pci_acc_cfblk_t *cfp;
1525 uint8_t rval;
1526 int reg;

1528 ASSERT64(((uintptr_t)addr >> 32) == 0);

1530 reg = (int)(uintptr_t)addr;

1532 cfp = (pci_acc_cfblk_t *)&hdlp->ahi_common.ah_bus_private;

1534 rval = (*pci_getb_func)(cfp->c_busnum, cfp->c_devnum, cfp->c_funcnum,
1535 reg);

1537 return (rval);
1538 }

1540 void
1541 pci_config_rep_rd8(ddi_acc_impl_t *hdlp, uint8_t *host_addr,
1542 uint8_t *dev_addr, size_t repcount, uint_t flags)
1543 {
1544 uint8_t *h, *d;

1546 h = host_addr;
1547 d = dev_addr;

1549 if (flags == DDI_DEV_AUTOINCR)
1550 for (; repcount; repcount--)
1551 *h++ = pci_config_rd8(hdlp, d++);
1552 else
1553 for (; repcount; repcount--)
1554 *h++ = pci_config_rd8(hdlp, d);
1555 }

1557 uint16_t
1558 pci_config_rd16(ddi_acc_impl_t *hdlp, uint16_t *addr)
1559 {
1560 pci_acc_cfblk_t *cfp;
1561 uint16_t rval;
1562 int reg;

1564 ASSERT64(((uintptr_t)addr >> 32) == 0);

1566 reg = (int)(uintptr_t)addr;

new/usr/src/uts/i86pc/io/pci/pci_common.c 25

1568 cfp = (pci_acc_cfblk_t *)&hdlp->ahi_common.ah_bus_private;

1570 rval = (*pci_getw_func)(cfp->c_busnum, cfp->c_devnum, cfp->c_funcnum,
1571 reg);

1573 return (rval);
1574 }

1576 void
1577 pci_config_rep_rd16(ddi_acc_impl_t *hdlp, uint16_t *host_addr,
1578 uint16_t *dev_addr, size_t repcount, uint_t flags)
1579 {
1580 uint16_t *h, *d;

1582 h = host_addr;
1583 d = dev_addr;

1585 if (flags == DDI_DEV_AUTOINCR)
1586 for (; repcount; repcount--)
1587 *h++ = pci_config_rd16(hdlp, d++);
1588 else
1589 for (; repcount; repcount--)
1590 *h++ = pci_config_rd16(hdlp, d);
1591 }

1593 uint32_t
1594 pci_config_rd32(ddi_acc_impl_t *hdlp, uint32_t *addr)
1595 {
1596 pci_acc_cfblk_t *cfp;
1597 uint32_t rval;
1598 int reg;

1600 ASSERT64(((uintptr_t)addr >> 32) == 0);

1602 reg = (int)(uintptr_t)addr;

1604 cfp = (pci_acc_cfblk_t *)&hdlp->ahi_common.ah_bus_private;

1606 rval = (*pci_getl_func)(cfp->c_busnum, cfp->c_devnum,
1607 cfp->c_funcnum, reg);

1609 return (rval);
1610 }

1612 void
1613 pci_config_rep_rd32(ddi_acc_impl_t *hdlp, uint32_t *host_addr,
1614 uint32_t *dev_addr, size_t repcount, uint_t flags)
1615 {
1616 uint32_t *h, *d;

1618 h = host_addr;
1619 d = dev_addr;

1621 if (flags == DDI_DEV_AUTOINCR)
1622 for (; repcount; repcount--)
1623 *h++ = pci_config_rd32(hdlp, d++);
1624 else
1625 for (; repcount; repcount--)
1626 *h++ = pci_config_rd32(hdlp, d);
1627 }

1630 void
1631 pci_config_wr8(ddi_acc_impl_t *hdlp, uint8_t *addr, uint8_t value)
1632 {

new/usr/src/uts/i86pc/io/pci/pci_common.c 26

1633 pci_acc_cfblk_t *cfp;
1634 int reg;

1636 ASSERT64(((uintptr_t)addr >> 32) == 0);

1638 reg = (int)(uintptr_t)addr;

1640 cfp = (pci_acc_cfblk_t *)&hdlp->ahi_common.ah_bus_private;

1642 (*pci_putb_func)(cfp->c_busnum, cfp->c_devnum,
1643 cfp->c_funcnum, reg, value);
1644 }

1646 void
1647 pci_config_rep_wr8(ddi_acc_impl_t *hdlp, uint8_t *host_addr,
1648 uint8_t *dev_addr, size_t repcount, uint_t flags)
1649 {
1650 uint8_t *h, *d;

1652 h = host_addr;
1653 d = dev_addr;

1655 if (flags == DDI_DEV_AUTOINCR)
1656 for (; repcount; repcount--)
1657 pci_config_wr8(hdlp, d++, *h++);
1658 else
1659 for (; repcount; repcount--)
1660 pci_config_wr8(hdlp, d, *h++);
1661 }

1663 void
1664 pci_config_wr16(ddi_acc_impl_t *hdlp, uint16_t *addr, uint16_t value)
1665 {
1666 pci_acc_cfblk_t *cfp;
1667 int reg;

1669 ASSERT64(((uintptr_t)addr >> 32) == 0);

1671 reg = (int)(uintptr_t)addr;

1673 cfp = (pci_acc_cfblk_t *)&hdlp->ahi_common.ah_bus_private;

1675 (*pci_putw_func)(cfp->c_busnum, cfp->c_devnum,
1676 cfp->c_funcnum, reg, value);
1677 }

1679 void
1680 pci_config_rep_wr16(ddi_acc_impl_t *hdlp, uint16_t *host_addr,
1681 uint16_t *dev_addr, size_t repcount, uint_t flags)
1682 {
1683 uint16_t *h, *d;

1685 h = host_addr;
1686 d = dev_addr;

1688 if (flags == DDI_DEV_AUTOINCR)
1689 for (; repcount; repcount--)
1690 pci_config_wr16(hdlp, d++, *h++);
1691 else
1692 for (; repcount; repcount--)
1693 pci_config_wr16(hdlp, d, *h++);
1694 }

1696 void
1697 pci_config_wr32(ddi_acc_impl_t *hdlp, uint32_t *addr, uint32_t value)
1698 {

new/usr/src/uts/i86pc/io/pci/pci_common.c 27

1699 pci_acc_cfblk_t *cfp;
1700 int reg;

1702 ASSERT64(((uintptr_t)addr >> 32) == 0);

1704 reg = (int)(uintptr_t)addr;

1706 cfp = (pci_acc_cfblk_t *)&hdlp->ahi_common.ah_bus_private;

1708 (*pci_putl_func)(cfp->c_busnum, cfp->c_devnum,
1709 cfp->c_funcnum, reg, value);
1710 }

1712 void
1713 pci_config_rep_wr32(ddi_acc_impl_t *hdlp, uint32_t *host_addr,
1714 uint32_t *dev_addr, size_t repcount, uint_t flags)
1715 {
1716 uint32_t *h, *d;

1718 h = host_addr;
1719 d = dev_addr;

1721 if (flags == DDI_DEV_AUTOINCR)
1722 for (; repcount; repcount--)
1723 pci_config_wr32(hdlp, d++, *h++);
1724 else
1725 for (; repcount; repcount--)
1726 pci_config_wr32(hdlp, d, *h++);
1727 }

1729 uint64_t
1730 pci_config_rd64(ddi_acc_impl_t *hdlp, uint64_t *addr)
1731 {
1732 uint32_t lw_val;
1733 uint32_t hi_val;
1734 uint32_t *dp;
1735 uint64_t val;

1737 dp = (uint32_t *)addr;
1738 lw_val = pci_config_rd32(hdlp, dp);
1739 dp++;
1740 hi_val = pci_config_rd32(hdlp, dp);
1741 val = ((uint64_t)hi_val << 32) | lw_val;
1742 return (val);
1743 }

1745 void
1746 pci_config_wr64(ddi_acc_impl_t *hdlp, uint64_t *addr, uint64_t value)
1747 {
1748 uint32_t lw_val;
1749 uint32_t hi_val;
1750 uint32_t *dp;

1752 dp = (uint32_t *)addr;
1753 lw_val = (uint32_t)(value & 0xffffffff);
1754 hi_val = (uint32_t)(value >> 32);
1755 pci_config_wr32(hdlp, dp, lw_val);
1756 dp++;
1757 pci_config_wr32(hdlp, dp, hi_val);
1758 }

1760 void
1761 pci_config_rep_rd64(ddi_acc_impl_t *hdlp, uint64_t *host_addr,
1762 uint64_t *dev_addr, size_t repcount, uint_t flags)
1763 {
1764 if (flags == DDI_DEV_AUTOINCR) {

new/usr/src/uts/i86pc/io/pci/pci_common.c 28

1765 for (; repcount; repcount--)
1766 *host_addr++ = pci_config_rd64(hdlp, dev_addr++);
1767 } else {
1768 for (; repcount; repcount--)
1769 *host_addr++ = pci_config_rd64(hdlp, dev_addr);
1770 }
1771 }

1773 void
1774 pci_config_rep_wr64(ddi_acc_impl_t *hdlp, uint64_t *host_addr,
1775 uint64_t *dev_addr, size_t repcount, uint_t flags)
1776 {
1777 if (flags == DDI_DEV_AUTOINCR) {
1778 for (; repcount; repcount--)
1779 pci_config_wr64(hdlp, host_addr++, *dev_addr++);
1780 } else {
1781 for (; repcount; repcount--)
1782 pci_config_wr64(hdlp, host_addr++, *dev_addr);
1783 }
1784 }

