new usr/src/uts/i86pc/iolpci/pci_common.c

R R R R

47022 Mon Cct

1 13:29:57 2012

new usr/src/uts/i86pc/iolpci/pci_comon.c

3235

pci: pci_comon_intr_ops() |eaks ddi _acc_handl e_t

Revi ewed by: Dan McDonal d <danntd@exent a. con>
Revi ewed by: Boris Protopopov <boris. protopopov@exenta.conr

hkkkkkkkkkkkkkkkkkk kR kX hkkhkhkkkhkkkkhhhkhhkhkhkkk Rk kkk kK k%

1

NRERRRERRRR R
COONOUITAWNROW©O~NOUTSWN

/ *
* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governing perm ssions

* and limtations under the License.
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

| f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

/*

* Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
*

* Copyright (c) 2012, Nexenta Systens, Inc. All rights reserved.

#endif /* | codereview */

*/

File that has code which is common between pci (7d) and npe(7d)
I't shares the follow ng:

- interrupt code

- pci_tools ioctl code

- nane_child code

- set_parent _private_data code

* ok Ok ok k% * %

/

#i ncl ude <sys/conf. h>

#i ncl ude <sys/pci.h>

#i ncl ude <sys/sunndi . h>

#i ncl ude <sys/mach_intr. h>

#i ncl ude <sys/pci_intr_lib.h>
#i ncl ude <sys/psm h>

#i ncl ude <sys/policy.h>

#i ncl ude <sys/sysnmacros. h>

#i ncl ude <sys/ cl ock. h>

#i ncl ude <sys/apic. h>

#i ncl ude <sys/pci_tools. h>

#i ncl ude <i o/ pci/ pci _var. h>

#i ncl ude <i o/ pci/pci_tool s_ext.h>
#i ncl ude <i o/ pci/ pci _comon. h>
#i ncl ude <sys/pci _cfgspace. h>
#i ncl ude <sys/pci _i npl.h>

#i ncl ude <sys/ pci _cap. h>

/*

* Function prototypes

o/

static int pci _get _priority(dev_info_t *, ddi _intr_handle_inpl _t *, int *);

new usr/src/uts/i86pc/iolpci/pci_conmmon.c

114

116
117
118

120
121
122
123

static int pci _enabl e_intr(dev_info_t *, dev_info_t *,
ddi _intr_handle_inpl _t *, uint32_t);
static void pci _disable_intr(dev_info_t *, dev_info_t *,

ddi _intr_handle_inpl _t *, uint32_t);

static int pci _alloc_intr_fixed(dev_info_t *, dev_info_t *,
ddi _intr_handle_inpl _t *, void *);

static int pci _free_intr_fixed(dev_info_t *, dev_info_t *,
ddi _intr_handl e_inpl _t *);

/* Extern declarations for PSM nodule */

extern int (*psm.intr_ops)(dev_info_t *, ddi_intr_handle_inpl _t *,
psmintr_op_t, int *);
extern ddi _irmpool _t *api x_i rm pool _p;

/*
* pci _name_chil d:
*
* Assign the address portion of the node nane
*/
int
pci _common_nane_chil d(dev_info_t *child, char *name, int nanelen)
int dev, func, length;
char **unit _addr;
uint_t n;

pci _regspec_t *pci_rp;

if (ndi _/dev_i s_persistent_node(child) == 0) {

* For .conf node, use "unit-address" property
*
/
if (ddi _prop_|l ookup_string_array(DDl _DEV_T_ANY, child,
DDI _PROP_DONTPASS, "unit-address", &unit_addr, &n) !=
DDl _PROP_SUCCESS) {
cmrm_err (CE_WARN, "cannot find unit-address in %.conf",
ddi _get _nanme(child));
return (DDI _FAI LURE);

}
1f (n!=1]| *unit_addr == NULL || **unit_addr == 0)
cmrm_err (CE_WARN, "unit-address property in %.conf"
" not well-formed", ddi_get_nane(child));
ddi _prop_free(unit_addr);
return (DDl _FAI LURE);

}
(void) snprintf(name, nanelen, "%", *unit_addr);
ddi _prop_free(unit_addr);
return (DDl _SUCCESS);
}

if (ddi _prop_l ookup_int_array(DDl _DEV_T_ANY, child, DDl _PROP_DONTPASS,
"reg", (int **)&pci_rp, (uint_t *)& ength) != DDl _PROP_SUCCESS) {
crm_err (CE_WARN, "cannot find reg property in %",
ddi _get _nane(child));
return (DDl _FAI LURE);
}

/* copy the device identifications */
dev = PCl _REG DEV_Q(pci _rp->pci _phys_hi);

func = PCl _REG FUNC_Q pci _rp->pci _phys_hi);

/*
* free the nenory allocated by ddi _prop_| ookup_i nt_array
*/

ddi _prop_free(pci_rp);
if (func !'=0) {

new usr/src/uts/i86pc/iolpci/pci_common.c

126 (void) snprintf(name, nanelen, "%, %", dev, func);
127 } else {

128 (void) snprintf(nanme, nanelen, "%", dev);

129 }

131 return (DDl _SUCCESS);

132 }

134 /*

135 * Interrupt rel ated code:

136

137 * The follow ng busop is common to npe and pci drivers

138 bus_i ntrop

139 */

141 /*

142 * Create the ddi _parent_private_data for a pseudo child.

143 */

144 void

145 pci _common_set _parent _private_data(dev_info_t *dip)

146 {

147 struct ddi _parent _private_data *pdptr;

149 pdptr = (struct ddi_parent_private_data *)kmem zall oc(

150 (sizeof (struct ddi_parent_private_data) +

151 si zeof (struct intrspec)), KM SLEEP);

152 pdptr->par_intr = (struct intrspec *)(pdptr + 1);

153 pdptr->par_nintr = 1;

154 ddi _set_parent_data(di p, pdptr);

155 }

157 /*

158 * pci_get_priority:

159 * Figure out the priority of the device

160 */

161 static int

162 pci_get_priority(dev_info_t *dip, ddi_intr_handle_inpl_t *hdlp, int *pri)
163 {

164 struct intrspec *ispec;

166 DDI _I NTR_NEXDBG((CE_CONT, "pci _get_priority: dip = Ox%, hdlp = %\n",
167 “(void *)dip, (void *)hdlp));

169 if ((| spec = (struct intrspec *)pci_intx_get_ispec(dip, dip,
170 hdl p->i h_i num)) == NULL)

171 if (DD _ INTRIS MBI _OR_MSI X(hdl p >|htype)) {

172 *pri = pci _ class_to p||(d|

173 pci _common_set _parent _pri vate dat a(hdl p->i h_di p);
174 i spec = (struct intrspec *)pci_intx_get_ispec(dip, dip,
175 hdl p->i h_i nun);

176 return (DDI _SUCCESS);

177 }

178 return (DDl _FAI LURE);

179 }

181 *pri = ispec->intrspec_pri;

182 return (DDl _SUCCESS);

183 }

187 static int pcieb_intr_pri

189
190
191

/*

*

*/

_counter = 0;

pci _common_intr_ops: bus_intr_op() function for interrupt support

new usr/src/uts/i86pc/iolpci/pci_conmmon.c
192 int
193 pci _common_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t intr
194 ddi _intr_handl e_inpl _t *hdl p, void *result)
195 {
196 int priority =0
197 int psmstatus = 0;
198 int pci _status = 0;
199 int pci _rval, psm. rval = PSM_FAI LURE;
200 int types = O,
201 i nt pciepci = 0;
202 int 1, j, count;
203 int rv;
204 int behavi or;
205 int cap_ptr;
206 bool ean_t di d_pci _config_setup = B_FALSE;
207 bool ean_t did_intr_vec_alloc = B FALSE;
208 bool ean_t di d_nsi _cap_set = B_FALSE;
209 #endif /* ! codereview */
210 uint16_t msi _cap_base, mnsi x_cap_base, cap_ctrl;
211 char *prop;
212 ddi _i ntrspec_t isp;
213 struct intrspec *i spec;
214 ddi _intr_handle_inpl _t tnp_ hdI
215 ddi _i ntr_nsix_t *msi X_p;
216 i hdl _plat _t *i hdl _pl at _dat ap;
217 ddi _i ntr_handl e_t *h_array;
218 ddi _acc_handl e_t handl e;
219 apic_get _intr_t intri nfo;
221 DDI _| NTR_NEXDBG((CE_CONT,
222 "pci _comon_intr_ops: pdip Ox%, rdip O0x%, op % handl e Ox%\
223 (void *)pdip, (void *)rdip, intr_op, (void *)hdlp));
225 /* Process the request */
226 switch (intr_op) {
227 case DDl _I NTROP_SUPPCRTED_TYPES:
228 /*
229 * First we determine the interrupt types supported by the
230 * device itself, then we filter themthrough what the CS
231 * and system supports. We determ ne system| evel
232 * interrupt type support for anything other than fixed intrs
233 * through the psm.intr_ops vector
234 */
235 rv = DDI _FAI LURE;
237 /* Fixed supported by default */
238 types = DDI _I NTR_TYPE_FI XED;
240 if (psmintr_ops == NULL) {
241 *(int *)result = types;
242 return (DDI_SUCCESS);
243 1
244 1f (pci_config_setup(rdip, &handle) != DD _SUCCESS)
245 return (DDl _FAI LURE);
247 /* Sanity test cap control values if found */
249 if (PCl_CAP_LOCATE(handl e, PClI_CAP_ID MsSl, &mrsi_cap_base)
250 DDl _SUCCESS) {
251 cap_ctrl = PCl CAP GET16(handl e, 0, mnsi_cap_base,
252 PCI NSI CTRL
253 if (cap_ctrl == PCI CAP_EI NVAL16)
254 got o SUPP(RT ED TYPES_OQUT;

DDl _I NTR_TYPE_MBI

256 types | =
257 }

_op,

n",

new usr/src/uts/i86pc/iolpci/pci_common.c

259
260
261
262
263
264

266
267

269
270
271
272
273
274
275

277
278
279

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

299
300
301
302

304
305
306
307
308
309
310
311
312
313
314
315
316

318
319
320
321
322
323

if (PCl_CAP_LCCATE(handl e, PClI_CAP_ID MSI_X, &nsix_cap_base) ==
DDl _SUCCESS) {
cap_ctrl = PCl _CAP_GET16(handl e, 0, nsix_cap_base,
PCl _MSI X CTRL)
if (cap_ctrl == PCI CAP_EI NVAL16)
got o SUPPORTED TYPES_QUT;

types | = DDl _I NTR_TYPE_MSI X;

}

*

* Filter device-level types through systemlevel support
)

tnp_hdl .i h_type = types;
if ((*psm.intr_ops)(rdip, & np_hdl,
& ypes) != PSM SUCCESS)
got o SUPPORTED TYPES OUT;

PSM | NTR_OP_CHECK_MSI ,

DDI INTR _NEXDBG((CE_CONT, "pci_comopn_intr_op "
"rdip: Ox% supported types: Ox%\n", (v0| d *)rdip,
types));

/*

* Export any MSI/MSI-X cap |ocations via properties
*

/

if (types & DD _I NTR TYPE_MNBI)
if (nd| _prop_ update mt(DDI_DEVTNO\IE rdip,
"pci - nsi - capi d- p0| nter", (int)nsi_cap_base) !=
DDI _PROP_SUCCESS
“got 0 SUPPORTED _TYPES_OUT;

}
i f (types & DDl _I NTR_TYPE_MSI X) {
(ndl “prop_update_i nt (DDl _DEV_T_NONE, rdip,
"pci - nsi X- capi d-poi nter™, (int)msix_cap_base) !=
DDl _PROP_SUCCESS)
! got 0 SUPPORTED_TYPES_QUT;

rv = DDI _SUCCESS;

SUPPORTED_TYPES_QUT:

*(int *)result = types;
pci _confi g_t ear down(&andl e) ;
return (rv);

case DDl _| NTROP_NAVAI L:
case DDl _| NTROP_NI NTRS:
if (DDI_INTR IS NSI _OR MBI X(hdl p->i h_type)) {
if (pci _get_nintrs(hdl p->i h_di p, hdl p->i h_type,
result) I'= DDl _SUCCESS)
return (DDl _FAI LURE);
} else {
*(int *)result = i_ddi_get_intx_nintrs(hdl p->ih_dip);
if (*(int *)result == 0)
return (DDl _FAI LURE);
}
br eak;

case DDl _| NTROP_ALLOC:
/ *

* FIXED type
*)
if (hdl p->i h_type == DDI _I NTR_TYPE_FI XED)

return (pci_alloc_intr_fixed(pdip, rdip, hdlp, result));

/| *

new usr/src/uts/i86pc/iolpci/pci_common.c

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

342
343
344
345
346
347
348
349
350
351
352

354
355
356
357
358
359

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

380
381
382
383
384

386
387
388
389

#endi f /* |

#endi f /* !

* MBI or MBIX (figure out nunber of vectors avail able)
=

if (DDI_INTR_IS MSI_OR MSI X(hdl p->i h_type) &&
(psmintr_ops != NULL) &&
(pci_get_priority(rdip, hdlp, &riority) == DDl _SUCCESS)) {
/*

* Fol I owi ng check is a special case for 'pcieb’.
* This makes sure vectors with the right priority
* are allocated for pcieb during ALLOC tine.

*/

if (strenp(ddi _driver_nanme(rdip), "pcieb") == 0) {

hdl p->i h_pri =
(pmeb intr_pri_counter %2) ? 4: 7;
pciepci = 1;
} else
hdl p->ih_pri = priority
behavi or (lnt)(w ntptr t)hdlp >i h_scratch2;
/*

* Cache in the config handl e and cap_ptr
*
if (i_ddi_get_pci_config_handl e(rdip) == NULL) {
i (pci_confi g setup(rdip, &handle) !=
DDI _SUCCESS
return (DDl _FAI LURE);
| ddi _set _pci _config_handl e(rdi p, handle);
did_pci_config_setup = B_TRUE;
coderevi ew */

if (hdlp->ih type == DDI _I NTR_TYPE NSI)
prop = "pci - nsi - capi d- poi nter"

else if (hdlp- >|h _type == DDl _I NTR_ TYPE = MBI X)
prop = "pci-msi x- capi d- poi nter";

/*
* Enforce the calling of DDl _| NTROP_SUPPORTED_TYPES
* for MBI(X) before allocation
*

if (prop != NULL) {
cap_ptr = ddi _prop_get _int (DDl _DEV_T_ANY, rdip,
DDI R(PDO\ITPASS prop, 0);
if (cap_ptr == 0) {
DDI INTR _NEXDBE((CE_CONT,

“pci _comon_intr_ops: rdip: Ox% "
atterrpted MSI(X) all oc wthout "
"cap property\n", (void *)rdip));

) return (DD _FAI LURE);

i _ddi _set _msi _nsix_cap_ptr(rdip, cap_ptr);
di d_nsi _cap_set = B_TRUE;
coderevi ew */

/*
* Allocate interrupt vectors
*/
(void) (*psm.intr_ops)(rdip, hdlp,
PSM | NTR_OP_ALLOC VECTORS, result);

if (*(int *)result ==
rv = DDl _I NTR_NOTFOUND;
goto HANDLE ALLOC FAI LURE;

new usr/src/uts/i86pc/iolpci/pci_common.c 7 new usr/src/uts/i86pc/iolpci/pci_conmon.c

390 did_intr_vec_alloc = B_TRUE; 445 i _ddi _set _pci _config_handl e(rdip, NULL);

24 if (*(int *)result == 0) 446 }
25 return (DDl _I NTR_NOTFOUND) ; 447 return (rv);

392 /* verify behavior flag and take appropriate action */ 449 #endif /* | codereview */

393 if ((behavior == DDI_I NTR_ALLOC STRICT) && 450 case DDl _| NTROP_FREE:

394 (*(int *)result < hdlp->ih_scratchl)) { 451 if (DDI_INTR_IS MSI_OR MsI X(hdl p->i h_type) &&

395 DD _| NTR_NEXDBG((CE_CONT, 452 (psm | ntr_ops != NOLL)) {

396 "pci _comon_i ntr_ops: behavior %, " 453 (| ddi _intr_get_current_nintrs(hdl p->i h_dip) - ==

397 "couldn’t get enough intrs\n", behavior)); 454

398 hdl p->i h_scratchl = *(int *)result; 455 if (handle = i_ddi _get_pci_config_handl e(

399 rv = DDl _EAGAI N; 456 rdip)) {

400 goto HANDLE_ALLOC FAI LURE; 457 (voi d) pci_config_teardown(&handl e);
34 (void) (*psm.intr_ops)(rdip, hdlp, 458 i _ddi _set_pci _config_handl e(rdi p, NULL);
35 PSM | NTR_OP_FREE_VECTORS, NULL); 459 }

36 return (DD _EAGAIN); 460 if (cap_ptr = i_ddi_get_nsi_nsix_cap_ptr(rdip))

401 } 461 I _ddi _set _nsi_nsix_cap_ptr(rdip, 0);

462 }

403 if (hdlp->ih_type == DDl _I NTR TYPE_MBI X) {

404 if (I'(msix_p = i_ddi_get_msix(hdl p->ih_dip))) { 464 (void) (*psm.intr_ops)(rdip, hdlp,

405 nsi X_p = pci_nsix_init(hdl p->ih_dip); 465 PSM_| NTR_OP_FREE_VECTORS, NULL);

406 if (meix_p) {

407 i_ddi _set _msi x(hdl p->i h_di p, 467 if (hdlp->ih type == DDI _I NTR_TYPE_MSI X) {

408 nsi X_p) ; 468 neix_p =i ddi _get _nsi x(hdl p->i h_di p);

409 } else { 469 if (msix_p &&

410 DDI _| NTR_NEXDBG((CE_CONT, 470 (i _ddi _intr_get_current_nintrs(

411 "pci _comon_i ntr_ops: MsI-X" 471 hdl p->h_dip) - 1) == 0) {

412 "table initilization failed" 472 pci_mS|xf|n|(mS|x p);

413 ", rdip Ox% inum Ox%\n", 473 1 _ddi _set _nsi x(hdl p->i h_di p, NULL);

414 (void *)rdip, 474 }

415 hdl p->i h_i num); 475 }

476 } else if (hdlp->ih_type == I NTR_TYPE_FI XED) {

417 rv = DDl _FAI LURE; 477 return (pci_free_ |ntr _fixed(pdip, rdip, hdlp));

418 got o HANDLE_ALLOC FAI LURE; 478 } else
53 (voi d) (*psm.intr_ops) (rdip, 479 return (DDl _FAI LURE);

54 hdl p, 480 br eak;
55 PSM | NTR_OP_FREE_VECTORS, 481 case DDl _| NTROP_CETPRI :
56 NULL) ; 482 /* Get the priority */
483 if (pci_get_priority(rdip, hdlp, &riority) != DDl _SUCCESS)
58 return (DDl _FAI LURE); 484 return (DDl _FA ILURE)

419 } 485 DDI I NTR NEXDBG((CE CONT, "pci_comon_intr_ops: "

420 } 486 "priority = 0x%<\ n", priority));

421 } 487 *(int *)result prlorlty;

488 br eak;

423 if (pciepci) { 489 case DDl _| NTROP_SETPRI :

424 /* update priority in ispec */ 490 /* Validate the interrupt priority passed */

425 isp = pci_intx_get_ispec(pdip, rdip, 491 if (*(int *)result > LOCK_LEVEL)

426 (i nt)hdl p->i h_i nunm; 492 return (DDl _FAI LURE);

427 i spec = (struct intrspec *)isp;

428 if (ispec) 494 /* Ensure that PSMis all initialized */

429 i spec->intrspec_pri = hdlp->ih_pri; 495 if (psm.intr_ops == NULL)

430 ++pcieb_intr_pri_counter; 496 return (DDl _FAI LURE);

431 }

498 isp = pci_intx_get_ispec(pdip, rdip, (int)hdlp->ih_inun;

433 } else 499 ispec = (struct intrspec *)isp;

434 return (DDl _FAI LURE); 500 if (ispec == NULL)

435 br eak; 501 return (DDl _FAI LURE);

437 HANDLE_ALLOC FAI LURE: 503 /* For fixed interrupts */

438 if (did_intr_vec_alloc == B_TRUE) 504 if (hdl p->ih_type == DDl _I NTR_TYPE_FI XED) {

439 “(void) (*psm.intr_ops)(rdip, hdlp, 505 /* if interrupt is shared, return failure */

440 PSM_I NTR CP FREE_VECTORS, NULL); 506 ((ihdl _plat_t *)hdl p->i h_private)->ip_i specp = ispec;

441 if (did_nsi_cap_set == B_TRUE) 507 psmrval = (*psm.intr_ops)(rdip, hdlp,

442 i _ddi _set_nmsi _msi X _cap_ pt r(rdip, 0); 508 PSM | NTR_OP_GET_SHARED, &psm st at us);

443 if (did_pci_confi g setup == B _TRUE) { 509 /*

444 (void) pci_config_teardown(&handl e); 510 * For fixed interrupts, the irq may not have been

new usr/src/uts/i86pc/iolpci/pci_common.c

511
512
513
514
515
516
517
518
519
520
521
522
523

525
526
527
528

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

565
566
567
568

570
571
572

574
575
576

* allocated when SET_PRI is called, and the above
* CGET_SHARED op nay return PSM FAILURE. This is not
*/a real error and is ignored bel ow.
*
if ((psmrval != PSM FAI LURE) && (psmstatus == 1)) {
DD _I NTR_NEXDBG((CE_CONT,
"pci _common_i ntr_ops:
"di p Ox% cannot setpri, psmrval =%l,"
"psmstatus=%\n", (void *)rdip, psmrval,
psm status));
return (DDl _FAl LURE)

}

/* Change the priority */
if ((*psm.intr_ops)(rdip, hdlp, PSMINTR OP_SET_PRI, result) ==
PSM_FAI LURE)
return (DDl _FAI LURE);

/* update ispec */

i spec->intrspec_pri = *(int *)result;

br eak;

case DDl _| NTROP_ADDI SR:

/* update ispec */

isp = pci_intx_get_ispec(pdip, rdip, (int)hdlp->ih_inum;

ispec = (struct intrspec *)isp;

if (ispec) {
i spec->i ntrspec_func = hdl p->i h_cb_func;
i hdl _plat_datap = (ihdl _plat_t *)hdl p->i h_private;
pci _kstat _create(& hdl _pl at _dat ap->i p_ksp, pdip, hdlp);

——

br eak;
case DDl _I NTRCP REM SR:
7* Get the interrupt structure pointer */
isp = pCI intx_get_ispec(pdip, rdip, (int)hdlp->ih_inum;
i spec = (struct intrspec *)isp;
if (ispec) {

i spec->intrspec_func = (uint_t (*)()) O;
i hdl _plat_datap = (ihdl _plat_t *)hdl p->ih_private;
if (ihdl _plat_datap->i p_ksp T= NULL)
pci _kstat _del ete(i hdl _pl at _dat ap->i p_ksp) ;
}
br eak;

case DDI INTRCP GETCAP:

~

* First check the config space and/or
* MBI capability register(s)
*/
if (DDI_INTR_IS_MSI_OR M| X(hdl p->i h_type))
pci _rval = pci_nsi_get_cap(rdip, hdlp->ih_type,
&pci _stat us);
else if (hdlp->i h type == | NTR_TYPE_FI XED)
pci _rval = pci_i ntx _get_cap(rdip, &pci_status);

/* next check with PSM nodul e */
if (psmintr_ops != NULL)
psmrval = (*psm.intr_ops)(rdip, hdlp,
PSM | NTR_OP_GET_CAP, &psm st atus);

DDl _| NTR_NEXDBG((CE_CONT, "pci: GETCAP returned psmrval = 9%,
"psmstatus = %, pci_rval = %, pci_status = %\n",
psmrval, psmstatus, pci_rval, pci_status));

if (psmrval == PSM FAl LURE && pci _rval == DDI _FAI LURE) {
*(int *)result = 0;
return (DDI_FAl LURE)

new usr/src/uts/i86pc/iolpci/pci_conmon.c

577

579
580

582
583

585
586
587
588
589
590
591
592

594
595
596
597
598
599
600
601
602
603

605
606
607

609
610
611
612
613
614
615

617
618
619
620
621
622
623
624
625
626
627

629
630
631

633
634
635
636
637
638
639
640
641
642

case DDI

case DDI

case DDI

case DDI

}

if (psmrval == PSM SUCCESS)
= psmstatus;

if (pci

DDl _I NTR_NEXDBG((CE_CONT, “pci

*(int *)result

*(int *)result

Tx(int *)result));
br eak;
_l NTRCP SETCAP:

DDI INTR _NEXDBQ((CE_ OCNT
" SETCAP cap=0x%\ n"

_rval == DDI _SUCCESS)

| = pci

"pci

*(1nt

if (psmintr_ops == NULL)
return (DDl _FAI LURE);

if ((*psm.intr_ops)(rdip,
DDI

eak;

o~
—-=

_I NTR_NEXDBG (CE

return (DDI _FAI LURE);

NTROP_ENABLE:

hdl p,

DDl _| NTR_NEXDBG((CE_CONT, "pci
if (psm.intr_ops == NULL)
return (DDl _FAI LURE);

if (pci
DDl

DDI _| NTR_NEXDBG((CE_CONT,

_enabl e_i ntr (pdip,
SUCCESS;

"pci

_status;

_common_i ntr_ops:

*)result));

returned failure\n"));

rdi p, hdl
“return (DDl _FAl LURE);

common_i ntr_ops:

p, hdl p->i h_i num

"vect or =0x%\ n", hdl p->i h_vector));

br eak;

_ I NTROP_DI SABLE:
DDI _| NTR_NEXDBG((CE_CONT, "pci
if (psm.intr_ops == NULL)

return (DDl _FAI LURE);

pci _dis

DDl I NTR NEXDBG((CE CONT

"ve
br eak;

abl e_i ntr(pdip,

rdip,

h

" pci

dl p,

common_intr _ops:

_common_i ntr_ops:

_common_i ntr_ops:

PSM I NTR_OP_SET_CAP,

hdl p->i h_i nun) ;

ctor = 9\ n", hdlp->i h_vector));

| NTROP_BLOCKENABLE:
DDI _| NTR_NEXDBG((CE_CONT, " pci

" BL

if (hdlp > h_type I= DDI
I'NTR_NEXDBG((CE_CONT,

}

OCKENABLE\ n")) ;

return (DDI _FAI LURE) ;

I NTR_TYPE_MNBI)

/* Check if psm.intr_ops is NULL? */

if (psmintr_ops ==

NULL)

return (DDI _FAI LURE);

count = hdl p->i h_scratchi;

h_array =

for (i

= 0; i < count;

hdlp = (ddi _intr
if (pci_enable_intr(pdip,
hdl p->i h_i num

= 0;
hdi p

i

_common_i ntr_ops:

{

(ddi _intr_handl e_t *)hdl p->i h_scratch2;
i++) {
_handle_inpl _t *)h_array[i];
rdi p, hdl

dip,

DD _SUCCESS) {
DDl _TNTR_NEXDBG((CE_CONT,

< ij;

(ddi

GETCAP returned = %\n",

10

result)) {
CONT, "GETCAP: psmintr_ops'

" BLOCKENABLE:

_handl e_i npl

_enable_intr failed for %l\n",
i+4)

_intr _t

ENABLE\ n"));

ENABLE "

DI SABLE\n")) ;

Di SABLE "

"BLOCKENABLE: not MsI\n"));

i));

*)

new usr/src/uts/i86pc/iolpci/pci_common.c

643 h_array[j];

644 pci _di sabl e_i ntr(pdip, rdip,

645 hdl p->i h_i num ;

646 }

647 return (DDl _FAI LURE);

648 }

649 DDI _I NTR_NEXDBG((CE_CONT, "pci _ conmon_| intr_ops:
650 """ BLOCKENABLE i num % done\n", hdl p->i h_i num);
651 }

652 br eak;

653 case DDl _| NTROP_BLOCKDI SABLE:

654 DDl _| NTR_NEXDBG((CE_CONT, "pci _conmon_intr_ops: "

655 “"BLOCKDI SABLE\ n™)) ;

656 if (hdlp->ih_type != DD _INTR TYPE_MBI) {

657 DDl _TNTR_NEXDBG((CE_CONT, "BLOCKDI SABLE:

658 return (DDl _FAI LURE);

659 }

661 /* Check if psmintr_ops is present */

662 if (psm.intr_ops == NULL)

663 return (DDI _FAI LURE);

665 count = hdl p->i h_scratchi;

666 h_array = (ddi _intr_handl e_t *)hdl p->i h_scratch2;

667 for (i =0; i < count; i++

668 hdlp = (ddi _intr_handle_inpl _t *)h_array[i];

669 pci _di sable_intr(pdip, rdi P, hdl p, hdl p->i h_i num;
670 DDl _I NTR NEXDBG((CE CONT, "pci_common_intr ops "
671) " BLOCKDI SABLE i num % done\n", hdlp->ih_inum);
672

673 br eak;

674 case DDl _| NTROP_SETMASK:

675 case DDl _| NTROP_CLRVASK:

676 /*

677 * First handle in the config space

678 */

679 if (intr op == DDI _| NTROP_SETMASK) {

680 (DDI INTR_I'S_MBI _OR_MsI X(hdl p->i h_t ype))

681 pci _status = pci_nsi _set _mask(rdip,

682 hdl p->i h_type, hdl p->i h_i num;

683 else if (hdlp->i h_type == DDl _I| NTR TYPE_Fi XED)
684 pci _status = pci_intx_set_mask(rdip);

685 } else {

686 if (DDI_INTR IS _MSI OQIVSIX(hde >ih_type))

687 pci _status = pci _nsi _clr_mask(rdip,

688 “hdl p->ih _type, hdl p->ih_inunj;

689 else if (hdlp->h_type == DDl _I NTR TYPE_FI XED)
690 pci_status = pci _intx_clr_mask(rdip);

691 }

693 /* For MSI/X; no need to check with PSM nodul e */

694 if (hdlp->ih type !'= DDl _I NTR_TYPE_FI XED)

695 return (pci_status);

697 /* For fixed interrupts only: handle config space first */
698 if (hdlp->ih_type == DDl _I NTR TYPE_FI XED &&

699 pci _status == DDI _SUCCESS)

700 br eak;

702 /* For fixed interrupts only: confer with PSM nodul e next
703 if (psmintr_ops != NULL) {

704 /* 1f interrupt is shared; do nothing */

705 psmrval = (*psm.intr_ops)(rdip, hdlp,

706 PSM | NTR_OP_GET_SHARED, &psm st at us);

708 if (psmrval == PSM FAILURE || psmstatus == 1)

11

12

new usr/src/uts/i86pc/iolpci/pci_conmon.c

709 return (pci_status);

711 /* Now, PSM nodul e should try to set/clear the mask */
712 if (intr_op == DDI _| NTROP_SETVMASK)

713 psmrval = (*psmintr_ops)(rdip, hdlp,

714 PSM | NTR OP_SET_MASK, NULL);

715 el se

716 psmrval = (*psm.intr_ops)(rdip, hdlp,

717 PSM | NTR_OP_CLEAR_MASK, NULL);

718 }

719 return ((psmrval == PSM FAI LURE) ? DDI _FAI LURE :

720 case DDl _| NTROP_GETPENDI NG

721 /*

722 * First check the config space and/or

723 * MBI capability register(s)

724 /

725 if (DDI_INTR_IS_ IVBI (RNBIX(hde >i h_type))

726 pci _rval = pci _nsi _get _pendi ng(rdip, hdl p->i h_type,
727 “hdl p->i h_i num &pci _status);

728 el se if (hdlp->ih type == DDI _I NTR_TYPE_FI XED)

729 pci _rval = pci_intx_get_pendi ng(rdip, &pci_

731 /* On failure; next try with PSM nodul e */

732 if (pci_rval != DDI_SUCCESS && psm.intr_ops != NULL)

733 psmrval = (*psm.intr_ops)(rdip, hdlp,

734 PSM | NTR_OP_GET_PENDI NG &psm st at us);

736 DDI INTR NEXDBG((CE CONT, "pci: GETPENDI NG returned "

737 "psmrval = %, psm status = %, pci_rval = %,

738 "pci_status = = o\ n" psmrval, psmstatus, pci_

739 pci _stat us))

740 if (psmrval == PSM_FAl LURE && pci _rval == DDI _FAI LURE) {
741 *(int *)result =

742 return (DDI_FAI LURE)

743 }

745 if (psm_rval I = PSM_FAI LURE)

746 *(int *)result = psmstatus;

747 else if (pCI rval != DDl _FAI LURE)

748 *(int *)result = pci_status;

749 DDI _I NTR_NEXDBG (CE_CONT, "pci: GETPENDI NG returned = 9%\n",
750 “x(int *)result));

751 br eak;

752 case DDl _I NTRCP_GEI’TARGET:

753 DDI _| NTR_NEXDBG (CE_CONT, "pci _common_i ntr_ops: GETTARGET\n"));
755 bcopy(hdl p, & np_hdl, sizeof (ddi_intr_handle_inpl_

756 tnp_hdl.ih_prlvate—(v0|d*)&1ntrinfo

757 intrinfo.avgi _req_flags = PSM3 _| NTRBY_DEFAULT;

758 intrinfo.avgi _req_flags |= PSMA _REQ CPUI D

760 if ((*psmintr_ops)(rdip, & np_hdl, PSM INTR OP_GET_I NTR
761 NULL) == PSM FAI LURE)

762 return (DDl _FAI LURE);

764 *(int *)result = intrinfo. anI _cpu_id;

765 DDI INTR NEXDBG((CE CONT, "pci_comon_intr_ops: GETTARCGET "
766 "vect or 0x%, cpu = 0x9%\n", hdlp->ih_vector,

767 *(int *)result))

768 br eak;

769 case DDl _| NTROP_SETTARGET:

770 DDI _| NTR_NEXDBQ (CE_CONT, "pci_common_i ntr_ops: SETTARGET\n"));
772 bcopy(hdl p, & np_hdl, sizeof (ddi_intr_handle_inpl

773 tmp_hdl .ih_private = (void *)(uintptr_t)*(int *)result

774 tmp_ hdI i h_flags = PSM3 _I NTRBY_DEFAULT;

new usr/src/uts/i86pc/iolpcilpci

776
777
778

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795

797
798

800
801
802
803
804
805
806
807
808
809
810
811
812
813

815
816

818
819
820
821

823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

}
/

pci _al loc_intr_fixed(dev_info_t

{

if ((*psmintr_ops)(rdip, & np_hdl,
&psm status) == PSM FAI LURE)
return (DDI _FAI LURE);

PSM | NTR_OP_SET_CPU,

hdl p->i h_vector = tnp_hdl. |h_vector;

DDI INTR NEXDBG((CE CONT, "pci_comon_intr_ops: SETTARGET "

"vector = Ox9%\n", hdlp->ih_vector));
br eak
case DDl _| NTROP_GETPOCOL
*
* For MBI/ X interrupts use global IRMpool if available.
*
if (apix_irmpool _p && DDl _I NTR_ I S_MSI _OR Ml X(hdl p->i h_type)) {
*(ddi _irmpool _t **)result = api x_i rm pool _p;
return (DDl _SUCCESS);
}
return (DDl _ENOTSUP);
defaul t:
return (i_ddi_intr_ops(pdip, rdip, intr_op, hdlp, result));

}
return (DDl _SUCCESS);

*
* Allocate a vector for FIXED type interrupt.
*/

nt
*pdi p, dev_info_t *rdip,

ddi _intr_handl e_inpl _t *hdlp, void *result)
struct intrspec *i spec;
ddi _intr_handl e_inpl _t info_hdl;
int ret;
int free_phdl = 0;
int pci _rval;
int pci _status = 0;
api c_get _type_t type_i nfo;

if (psm.intr_ops == NULL)
return (DDl _FAI LURE);

/* Figure out if this device supports MASKI NG */

pci _rval = pci_intx_get_cap(rdip, &pci_status);
1 f (pci_rval == DDI _SUCCESS && pci _status)
hdl p->i h_cap | = pci _status;

If the PSM nodule is "API X" then pass the request for
al l ocating the vector now.

& nfo_hdl, sizeof (ddi_intr_handle_inpl_t));

ero(
o_hdl.ih_private = & ype_info;
((*psm.intr_ops) (NULL, & nfo_hdl, PSM.INTR_OP_API C TYPE, NULL) ==

*
*
*
*
bze
i nf
if ((*

PSM SUCCESS && strcnp(type_info. avgi

_type, APl C APl X_NAME) == 0) {
ispec = (struct intrspec *)pci_intx_get_ispec(pdip, rdip,
(i nt)hdl p->i h_i num;
if (ispec == NULL)
return (DDl _FAl LURE);
if (hdlp->h_private == NULL) { /* allocate phdl structure */
free_phdl = 1;
i _ddi_all oc_intr_phdl (hdl p);
}
((ihdl _plat_t *)hdl p->i h_private)->ip_i specp = i spec;
ret = (*psm.intr_ops)(rdip, hdlp,

_conmon. ¢ 13

14

new usr/src/uts/i86pc/iolpci/pci_common.c

841 PSM | NTR_OP_ALLCC VECTORS, result)

842 if (free_phdl) { /* free upthe phdl structure */
843 free_phdl = 0;

844 i _ddi _free_intr_phdl (hdl p);

845 hdl p->i h_private = NULL;

846 }

847 } else {

848 /*

849 * No API X nodul e; fall back to the old schene where the
850 * interrupt vector is allocated during ddi_enable_intr() call.
851 */

852 *(int *)result = 1;

853 ret = DDI _SUCCESS;

854 }

856 return (ret);

857 }

859 /*

860 */Fr ee up the vector for FIXED (legacy) type interrupt.

861 *

862 static int

863 pci_free_intr_fixed(dev_info_t *pdip, dev_info_t *rdip,

864 ddi _i ntr_handl e_i npl _t *hdl p)

865 {

866 struct intrspec *i spec;

867 ddi _i ntr_handl e_i npl _t info_hdl;

868 int ret;

869 api c_get _type_t type_info;

871 if (psm.intr_ops == NULL)

872 return (DDl _FAI LURE);

874 /*

875 * |If the PSM nodule is "API X' then pass the request to it
876 * to free up the vector now.

877 *

878 bzero(& nfo_hdl, sizeof (ddi_intr_handle_inpl_t));

879 info_hdl.ih prlvate-&typelnfo

880 if ((*psmintr_ops)(NULL, & nfo_hdl, PSM INTR OP_API C TYPE, NULL) ==
881 PSM_SUCCESS && strcnp(type_ info. avgi _type, APl C_API X NANE) == 0) {
882 i spec = (struct intrspec *)pci_intx_get_ispec(pdip, rdip,
883 (|nt)hd|p >i h_i num ;

884 if (ispec == NULL

885 return (DDl _FAI LURE);

886 ((i hdl pI at _t *)hdl p->ih_private)->ip_ispecp = ispec;
887 ret (*psmiintr_ops)(rdip, hdlp,

888 PSM_I NTR_OP_FREE VECTORS, NULL);

889 } else {

890 /*

891 * No API X nodul e; fall back to the old schene where
892 * the interrupt vector was already freed during

893 * ddi _disable_intr() call

894 */

895 ret = DDl _SUCCESS;

896 }

898 return (ret);

899 }

901 int

902 pci_get_intr_fromvecirq(apic_get_intr_t *intrinfo_p,

903 int vecirq, boolean_t is_irq)

904 {

905 ddi _intr_handle_inpl _t get_info_ii_hdl;

new usr/src/uts/i86pc/iolpci/pci_common.c 15 new usr/src/uts/i86pc/iolpci/pci_conmon.c
907 if (is_irq) 973 hdl p->i h_cb_arg2, & hdl _plat_datap->ip_ticks, rdip))
908 intrinfo_p->avgi _req_flags | = PSM3 _I NTRBY_I RQ 974 return (DD _FAI LURE);
910 /* 976 hdl p->i h_vector = irgq;
911 * For this locally-declared and used handle, ih_private will contain a
912 * pointer to apic_get_intr_t, not an ihdl pI at_t as used for 978 return (DDl _SUCCESS);
913 * global interrupt handling. 979 }
914 */
915 get_info_ii_hdl.ih_private = intrinfo_p;
916 get_info_ii_hdl.ih_vector = veciraq; 982 static void
983 pci _disable_intr(dev_info_t *pdip, dev_info_t *rdip,
918 if ((*psm.intr_ops)(NULL, &get_info_ii_hdl, 984 ddi _intr_handl e_inpl _t *hdl p, uint32_t inum
919 PSM | NTR_OP_GET_I NTR, NULL) == PSM_FAI LURE) 985 {
920 return (DDl _FAI LURE); 986 int irg;
987 struct intrspec *ispec;
922) return (DDl _SUCCESS); 988 i hdl _plat _t *i hdl _pl at _datap = (i hdl _plat_t *)hdl p->i h_private;
923
990 DDl _| NTR _NEXDBG((CE_CONT, "pci_disable_intr: \n"));
991 i spec = (struct intrspec *)pci_intx_get_ispec(pdip, rdip, (int)inum;
926 int 992 if (i spec == NULL)
927 pci_get _cpu_fromvecirqg(int vecirqg, boolean_t is_irq) 993 return;
928 { 994 if (DDl _INTR_IS_MSI_OR _MSI X(hdl p->i h_type)) {
929 int rval; 995 i spec->i ntrspec_vec = inum
930 apic_get_intr_t intrinfo; 996 i spec->intrspec_pri = hdlp->ih_pri;
997 }
932 intrinfo.avgi _req_flags = PSM3A _REQ CPU D, 998 i hdl _pl at _dat ap->i p_i specp = i spec;
933 rval = pci_get_intr_fromvecirq(& ntrinfo, vecirq, is_irq);
1000 /* translate the interrupt if needed */
935 if (rval == DDl _SUCCESS) 1001 (void) (*psm.intr_ops)(rdip, hdlp, PSMI|NTR OP_XLATE VECTOR, &irq);
936 return (intrinfo.avgi _cpu_id);
937 el se 1003 /* Disable the interrupt handler */
938 return (-1); 1004 remavintr((void *)hdlp, hde >|h pr|, hdl p->i h_cb_func, irq);
939 } 1005 i hdl_pl at _dat ap- >i p_i specp = NULL
1006 }
942 static int 1008 /*
943 pci_enable_intr(dev_info_t *pdip, dev_info_t *rdip, 1009 * M scellaneous library function
944 ddi _intr_handl e_inpl _t *hdl p, uint32_t inum 1010 */
945 { 1011 int
946 struct intrspec *| spec 1012 pci_common_get _reg_prop(dev_info_t *dip, pci_regspec_t *pci_rp)
947 int 1013 {
948 i hdl _pl at _t *l hdl _plat_datap = (ihdl_plat_t *)hdlp->ih_private; 1014 int i;
1015 int nunber ;
950 DDI _I NTR_NEXDBG((CE_CONT, "pci_enable_intr: hdlp % inum %\n", 1016 int assi gned_addr _| en;
951 “(void *)hdlp, inum); 1017 ui nt _t phys_hi = pci _rp->pci _phys_hi;
1018 pci _regspec_t *assi gned_addr;
953 /* Translate the interrupt if needed */
954 ispec = (struct intrspec *)pci_intx_get_ispec(pdip, rdip, (int)inun; 1020 if (((phys_hi & PCI_REG ADDR M == PCI _ADDR CONFI G ||
955 if (ispec == NULL) 1021 (phys_hi & PCI _RELOCAT B))
956 return (DDl _FAI LURE); 1022 return (DDl _SUCCESS);
957 if (DDl _INTR_I S_MsI O?NSIX(hde >i h_type)) {
958 i spec->intrspec_vec = inum 1024 /*
959 ispec->intrspec_pri = hdlp->ih_pri; 1025 * the "reg" property specifies relocatable, get and interpret the
960 } 1026 * "assi gned-addresses" property.
961 i hdl _pl at _dat ap->i p_i specp = i spec; 1027 */
1028 if (ddi _prop_l ookup_int_array(DD _DEV_T_ANY, dip, DDl _PROP_DONTPASS,
963 /* translate the interrupt if needed */ 1029 "assi gned- addr esses™, (int **)&assigned_addr,
964 if ((*psm.intr_ops)(rdip, hdlp, PSMI|NTR OP_XLATE VECTOR, & rq) == 1030 (uint_t *)&assi gned_addr_l en) != DDl _PROP SU(I.‘ESS)
965 PSM_FAI LURE) 1031 return (DDl _FAI LURE);
966 return (DDl _FAI LURE);
967 DDl _I NTR NEXDBG((CE CONT, "pci_enable_intr: priority=% irqg=%\n", 1033 /*
968 “hdl p->i h_pri, irq)); 1034 * Scan the "assigned-addresses" for one that matches the specified
1035 * "reg" property entry.
970 /* Add the interrupt handler */ 1036 */
971 if (ladd_avintr((void *)hdl p, hdlp->ih_pri, hdlp->ih_cb_func, 1037 phys_hi &= PCl _CONF_ADDR_MASK;
972 DEVI (rdi p) - >devi _nanme, irqg, hdlp->ih_cb_argl, 1038 number = assigned_addr _len / (sizeof (pci_regspec_t) / sizeof (int));

new usr/src/uts/i86pc/iolpci/pci_common.c 17 new usr/src/uts/i86pc/iolpci/pci_conmmon.c 18
1039 for (i =0; i < nunber; i++) { 1105 [* FALLTHRU* /
1040 if ((assigned_addr[i].pci_phys_hi & PCl_CONF_ADDR MASK) == 1106 /* These require no special privileges. */
1041 phys_hi) | 1107 case PCI TOOL_DEVI CE_GET_| NTR:
1042 pci _rp->pci _phys_md = assigned_addr[i].pci_phys_m d; 1108 case PCl TOOL_SYSTEM | NTR_I NFO
1043 pci _rp->pci _phys_| ow = assi gned_addr[i].pci_phys_| ow, 1109 rv = pcitool _intr_adm(dip, (void *)arg, cnd, node);
1044 ddi _prop_free(assi gned_addr); 1110 br eak;
1045 return (DDl _SUCCESS); 1111 }
1046 } 1112 br eak;
1047 }
1114 defaul t:
1049 ddi _prop_free(assi gned_addr); 1115 br eak;
1050 return (DDl _FAI LURE); 1116 }
1051 }
1118 return (rv);
1119 }
1054 /*
1055 * To handle PCl tool ioctls
1056 */ 1122 int
1123 pci _common_ct | ops_poke(peekpoke_ctl ops_t *in_args)
1058 /* ARGSUSED*/ 1124 {
1059 int 1125 size_t size = in_args->size;
1060 pci_common_ioctl (dev_info_t *dip, dev_t dev, int cnd, intptr_t arg, 1126 uintptr_t dev_addr = i n_ar gs- >dev_addr ;
1061 int node, cred_t *credp, int *rvalp) 1127 uintptr_t host addr = in_args->host _addr;
1062 { 1128 ddi _acc_i npl _t = (ddi _acc_inpl _t *)in_args->handl e;
1063 m nor_t mnor = getminor(dev); 1129 ddi _acc_hdl _t *hdl p = (ddi _acc_hdl_t *)in_args->handl e;
1064 int rv = ENOTTY; 1130 size_t repcount = in_args->repcount;
1131 uint_t flags = in_args->flags;
1066 switch (PCI_M NOR NUM TO PCl _DEVNUM ninor)) { 1132 int err = DDl _SUCCESS;
1067 case PCl _TOOL_REG M NOR_NUM
1134 /*
1069 switch (cnd) { 1135 * if no handle then this is a poke. We have to return failure here
1070 case PClI TOOL_DEVI CE_SET_REG 1136 * as we have no way of know ng whether this is a MEMor | O space access
1071 case PCl TOOL_DEVI CE_GET_REG 1137 */
1138 if (in_args->handl e == NULL)
1073 /* Require full privileges. */ 1139 return (DDl _FAI LURE);
1074 if (secpoli cy knd (credp))
1075 rv = 1141 7%
1076 el se 1142 * rest of this function is actually for cautious puts
1077 rv = pcitool _dev_reg_ops(dip, (void *)arg, 1143 */
1078 cmd, node); 1144 for (; repcount; repcount--) {
1079 br eak; 1145 if (hp- >ahi _acc_attr == DDl _ACCATTR_CONFI G_SPACE) {
1146 switch (size) {
1081 case PCl TOOL_NEXUS_SET_REG 1147 case sizeof (uint8_t):
1082 case PCl TOOL_NEXUS_CGET_REG 1148 pci _config_w (h (uint8_: t *) dev_addr,
1149 *(uint8_t *)host_addr
1084 /* Require full privileges. */ 1150 br eak;
1085 if (secpolicy_| kmjb(credp)) 1151 case sizeof (uintl6_t):
1086 rv = 1152 pci _config_w 16(hp (U| nt16_t *)dev_addr,
1087 el se 1153 *(uint16_t *)h _addr);
1088 rv = pcitool _bus_reg_ops(dip, (void *)arg, 1154 br eak;
1089 cmd, node); 1155 case sizeof (uint32_t):
1090 br eak; 1156 pci _config_w 32(hp (U| nt32_t *)dev_addr,
1091 } 1157 *(uint32_t *)host_addr);
1092 br eak; 1158 br eak;
1159 case sizeof (uint64_t):
1094 case PCI _TOCOL_I NTR_M NOR_NUM 1160 pci _config_w 64(hp, (uint64_t *)dev_addr,
1161 *(uint64_t *)host_addr);
1096 switch (cmd) { 1162 br eak;
1097 case PCl TOOL_DEVI CE_SET_I NTR: 1163 defaul t:
1164 err = DDI _FAI LURE;
1099 /* Require PRIV_SYS RES CONFI G sane as psradm */ 1165 br eak;
1100 if (secpolicy_ponline(credp)) { 1166 }
1101 rv = EPERM 1167 } else if (hp->ahi_acc_attr & DDI _ACCATTR_| O SPACE) {
1102 br eak; 1168 i f (hdl p->ah_acc. devacc_attr_endi an_fl ags ==
1103 } 1169 DDl _STRUCTURE_BE_ACC)
1170 switch (size) {

new usr/src/uts/i86pc/iolpci/pci_common.c

1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236

case si zeof (UI nt8_t):
i_ddi _i o_put8(hp,
(uint8_t *)dev_addr,
*(uint8_t *)host addr)
br eak;

o

case sizeof (uintl6_t):
i _ddi _i o_swap_put 16(hp,
(uint16_t *)dev_addr,
*(uint16_t *)host addr);
br eak;
case sizeof (uint32_t):
i _ddi _i o_swap_put 32(hp,
(uint32_t *)dev_addr,
*(uint32_t *)host_addr);
br eak;
/*
* note the 64-bit case is a dummy
* function - so no need to swap
*/

case si zeof (w nt 64 t)

*(ul nt 64
br eak;

) host addr) ;

defaul t:
err = DDl _FAI LURE
br eak;

} else {
switch (size) {

case sizeof (uint8_t):
i_ddi _i o_put8(hp,
(uint8_t *)dev_addr,
*(uint8_t *)host addr)
br eak;
case sizeof (uintl6_t):
i_ddi _i o_put16(hp,
(uint16_t *)dev_addr,
*(uint1l6_t *)host_addr);
br eak;
case sizeof (uint32_t):
i _ddi _i o_put32(hp,
(uint32_t *)dev_addr,
*(uint32_t *)host addr)
br eak;
case sizeof (uint64_t):
i _ddi _i o_put 64(hp,
(uint64_t *)dev_addr,
*(uint64_t *)host addr)
br eak;
defaul t:
err = DDl _FAI LURE
) br eak;

}
e {

i f (hdl p->ah_acc. devacc_attr_endi an_fl ags ==
DDl _STRUCTURE_BE_ACC) {

“switch (size) {

case sizeof (uint8_t):
*(uint8_t *)dev_addr =

*(uint8_t *)host_ addr;

br eak;

case si zeof (UI nt16_t):
*(uint16_t *)dev addr =

19

ddi _swap16(*(uint16_t *)host_addr);

new usr/src/uts/i86pc/iolpci/pci_conmmon.c

1237 br eak;

1238 case sizeof (U| nt32_t):

1239 *(uint32_t *)dev addr =
1240 ddi _swap32(*(ui nt 32 _t *)host_addr);
1241 br eak;

1242 case si zeof (UI nt64_t):

1243 *(uint64_t *)dev addr =
1244 ddi _swap64(*(ui nt 64 t *)host_addr);
1245 br eak;

1246 defaul t:

1247 err = DDl _FAI LURE

1248 br eak;

1249 }

1250 } else {

1251 switch (size) {

1252 case sizeof (uint8_t):

1253 *(uint8_t *)dev_addr =
1254 *(uint8_t *)host_ addr;
1255 br eak;

1256 case sizeof (w nt16_t):

1257 *(uint16_t *)dev_addr =
1258 *(uint16_t *)host addr;
1259 br eak;

1260 case sizeof (w nt32_t):

1261 *(uint32_t *)dev_addr =
1262 *(uint32_t *)host_ addr;
1263 br eak;

1264 case sizeof (w nt64_t):

1265 *(uint64_t *)dev_addr =
1266 *(uint64_t *)host_; addr;
1267 br eak;

1268 defaul t:

1269 err = DDl _FAI LURE

1270 br eak;

1271 }

1272 }

1273

1274 host _addr += si ze;

1275 if (flags == DDl _DEV_AUTO NCR)

1276 dev_addr™ += si ze;

1277 }

1278 return (err);

1279 }

1282 int

1283 pci _fm acc_setup(ddi _acc_hdl _t *
1284 {

hp, off_t offset, off_t |en)

1285 ddi _acc_inpl _t *ap = (ddi_acc_inpl_t *)hp->ah_platformprivate;
1287 /* endi an-ness check */

1288 if (hp->ah_acc. devacc_attr_endi an_fl ags == DDl _STRUCTURE_BE_ACC)
1289 return (DDl _FAI LURE);

1291 /*

1292 * range check

1293 */

1294 if ((offset >= PCl _CONF_HDR_SI ZE) ||

1295 (len > PCl _CONF_HDR_SI ZE) ||

1296 (of fset + I'en > PCI_CONF_HDR_SI ZE))

1297 return (DDl _FAI LURE);

1299 ap- >ahi _acc_attr | = DDl _ACCATTR_CONFI G_SPACE;

1300 /*

1301 * al ways use cautious nechani smfor config space gets

1302 */

new usr/src/uts/i86pc/iolpcil/pci_comon.c 21
1303 ap->ahi _get8 = i _ddi _caut _get8;

1304 ap->ahi _get 16 = i _ddi _caut _get 16;

1305 ap->ahi _get 32 = i _ddi _caut _get 32;

1306 ap- >ahi _get64 = i _ddi _caut_get 64;

1307 ap->ahi _rep_get8 = i _ddi _caut_rep_get8§;

1308 ap->ahi _rep_get16 = i _ddi _caut _rep_get 16;

1309 ap->ahi _rep_get 32 = i _ddi _caut _rep_get 32;

1310 ap->ahi _rep_get 64 = i _ddi _caut _rep_get 64;

1311 if (hp->ah_acc.devacc_attr_access == DDl _CAUTI QUS_ACC) {
1312 ap- >ahi _put8 = i _ddi _caut _put8;

1313 ap- >ahi _put16 = i _ddi _caut _put 16;

1314 ap- >ahi _put 32 = i _ddi _caut _put 32;

1315 ap->ahi _put 64 = i _ddi _caut_put 64;

1316 ap->ahi _rep_put8 = i _ddi _caut_rep_put8;

1317 ap->ahi _rep_put16 = i _ddi _caut_rep_put 16;

1318 ap->ahi _rep_put 32 = i _ddi _caut _rep_put 32;

1319 ap->ahi _rep_put64 = i_ddi _caut _rep_put 64;

1320 } else {

1321 ap- >ahi _put8 = pci _config_wS8;

1322 ap->ahi _put 16 = pci _config_w 16;

1323 ap->ahi _put 32 = pci _confi g_w 32;

1324 ap- >ahi _put 64 = pci _config_w 64;

1325 ap->ahi _rep_put8 = pci_config_rep_w8;

1326 ap->ahi _rep_put 16 = pci_config_rep_w 16;

1327 ap->ahi _rep_put32 = pci_config_rep_w 32;

1328 ap->ahi _rep_put64 = pci _config_rep_w 64;

1329 }

1331 /* Initialize to default check/notify functions */

1332 ap->ahi _faul t _check = | _ddi _acc_faul t _check;

1333 ap->ahi _fault_notify = i_ddi _acc_fault_noti fy;

1334 ap->ahi _fault = 0;

1335 inpl _acc_err_init(hp);

1336 return (DDl _SUCCESS);

1337 }

1340 int

1341 pci_common_ct | ops_peek(peekpoke_ctl ops_t *in_args)

1342 {

1343 size_t size = in_args->size;

1344 uintptr_t dev_addr = in_args->dev_addr;

1345 uintptr_t host addr = in_args->host_addr;

1346 ddi _acc_inpl _t *hp = (ddi _acc_inpl _t *)in_args->handl e;
1347 ddi _acc_hdl _t *hdl p = (ddi _acc_hdl _t *)in_args->handl e;
1348 size_t repcount = in_args->repcount;

1349 uint_t flags = in_args->flags;

1350 int err = DDl _SUCCESS;

1352 /*

1353 * if no handle then this is a peek. W have to return failure here
1354 * as we have no way of know ng whether this is a MEMor | O space access
18355] */

1356 if (in_args->handle == NULL)

1357 return (DDl _FAI LURE);

1359 for (; repcount; repcount--) {

1360 if (hp->ahi_acc_attr == DDl _ACCATTR _CONFI G_SPACE) ({
1361 switch (size) {

1362 case sizeof (uint8_t):

1363 *(uint8_t *) host _addr = pci_config_rd8(hp,
1364 (uint8_t *)dev_ addr)

1365 br eak;

1366 case sizeof (uintl6_t):

1367 *(uint16_t *)host_addr = pci_config_rdi16(hp,

1368 (uint16_t

t *)dev_ addr)

new usr/src/uts/i86pc/iolpci/pci_conmmon.c

1369 br eak;

1370 case sizeof (UI nt32_t):

1371 *(uint32_t)h st _addr = pci_config_rd32(hp,
1372 (uint32_t *)dev_addr);

1373 br eak;

1374 case sizeof (uint64_t):

1375 *(uint64_t)host_addr = pci_config_rd64(hp,
1376 (uint64_t *)dev_addr);

1377 br eak;

1378 defaul t:

1379 err = DD _FAI LURE;

1380 br eak;

1381 }

1382 } else if (hp->ahi_acc_attr & DDl _ACCATTR_| O SPACE) {
1383 i f (hdl p->ah_acc. devacc_attr_endi an_fl ags ==
1384 DDI _STRUCTURE_BE_ACC) {

1385 switch (size) {

1386 case sizeof (uint8_t):

1387 *(uint8_t *)host_addr =
1388 i _ddi _i o_get 8(hp,

1389 (uint8_t *)dev_addr);
1390 br eak;

1391 case si zeof (U| nt16_t):

1392 *(uint16_t *)host_addr =
1393 i _ddi _i o_swap_get 16(hp,
1394 (uint16_t *)dev_addr);
1395 br eak;

1396 case si zeof (w nt32_t):

1397 *(uint32_t *)host_addr =
1398 i _ddi _i o_swap_get 32(hp|
1399 (uint32_t *)dev_addr);
1400 br eak;

1401 /*

1402 * note the 64-bit case is a dummy
1403 * function - so no need to swap
1404 */

1405 case sizeof (uint64_t):

1406 *(uint64_t *)host_addr =
1407 i _ddi _i o_get 64(hp,
1408 (w nt64_t *)dev_addr);
1409 br eak

1410 defaul t:

1411 err = DDl _FAI LURE;

1412 br eak;

1413 }

1414 } else {

1415 switch (size) {

1416 case sizeof (uint8_t):

1417 *(uint8_t *)host_addr =
1418 i _ddi _i o_get 8(hp,

1419 (uint8_t *)dev_addr);
1420 br eak;

1421 case si zeof (UI nt16_t):

1422 *(uint16_t *)host_addr =
1423 i _ddi _i o_get 16(hp,
1424 (uint16_t *)dev_addr);
1425 br eak;

1426 case si zeof (UI nt32_t):

1427 *(uint32_t *)host_addr =
1428 i _ddi _i o_get32(hp,
1429 (uint32_t *)dev_addr);
1430 br eak;

1431 case si zeof (UI nté4_t):

1432 *(uint64_t *)host_addr =
1433 i _ddi _i o_get 64(hp,
1434 (uint64_t *)dev_addr);

22

new usr/src/uts/i86pc/iolpci/pci_common.c

1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494 }

1496 /* ARGSUSED*/
1497 int
1498 pci _

1499
1500 {

br eak;
defaul t:

err = DDl _FAI LURE;
) br eak;

} else {
i f (hdl p->ah_acc. devacc_attr_endi an_f| ags
DDl _STRUCTURE_BE_ACC)
“switch (in_args->size) {
case sizeof (uint8_t):
*(uint8_t *)host_addr =
*(uint8_t *)dev_addr;
br eak;
case sizeof (w nt16_t):
*(uint16_t *)host addr =
ddi _swap16(*(ui nt 16_t
br eak;
case si zeof (U| nt32_t):
*(uint32_t *)host addr =
ddi _swap32(*(ui nt 32_t
br eak;
case si zeof (U| nt64_t):
*(uint64_t *)host addr =
ddi _swap64(* (ui nt 64_t
br eak;
defaul t:
err = DDl _FAI LURE;
br eak;

} else {

switch (in_args->size) {

case sizeof (uint8_t):
*(uint8_t *)host_addr =

*(uint8_t *)dev_addr;

br eak;

case sizeof (uintl6_t):
*(uint16_t *)host_addr =

*(uint1l6_t *)dev_addr;

br eak;
case sizeof (uint32_t):
*(uint32_t *)host_addr =

*(uint32_t *)dev_addr;

br eak;
case sizeof (uint64_t):
*(uint64_t *)host_addr =

*(uint64_t *)dev_addr;

br eak;

defaul t:
err = DDl _FAl LURE;
br eak;

}

}

host _addr += si ze;
if (flags == DDl _DEV _AUTO NCR)
dev addr 4= size;

return (err);

common_peekpoke(dev_info_t *dip, dev_info_t *rdip,
ddi’

“ctl_enumt ctlop, void *arg, void *result)

*) dev_addr);

*) dev_addr);

*) dev_addr);

23

new usr/src/uts/i86pc/iolpci/pci_conmmon.c

1501 if (ctlop == DDl _CTLOPS PEEK)

1502 return (pci_common_ctl ops_peek((peekpoke_ctlops_t *)arg));
1503 el se

1504 return (pci_comon_ct!| ops_poke((peekpoke_ctlops_t *)arg));
1505 }

1507 /*

1508 * These are the get and put functions to be shared with drivers. The
1509 * nutex locking is done inside the functions referenced, rather than
1510 * here, and is thus shared across PCl child drivers and any other

1511 * consuners of PCl config space (such as the ACPlI subsysten).

1512 *

1513 * The configuration space addresses cone in as pointers. This is fine on
1514 * a 32-bit system where the VM space and configuration space are the sane
1515 * size. |It’s not such a good idea on a 64-bit system where nenory

1516 * addresses are twice as large as configuration space addresses. At sone
1517 * point in the call tree we need to take a stand and say "you are 32-bit
1518 * fromthis time forth", and this seens |like a nice self-contained place.
1519 */

1521 uint8_t

1522 pci conflg rd8(ddi _acc_inpl _t *hdlp, uint8_t *addr)

1523 {

1524 pci _acc_cfbl k_t *cfp;

1525 uints_t rval;

1526 int reg;

1528 ASSERT64(((ui ntptr_t)addr >> 32) == 0);

1530 reg = (int)(uintptr_t)addr;

1532 cfp = (pci_acc_cfblk_t *)&hdl p->ahi _conmon. ah_bus_pri vate;

1534 rval = (*pci_getb_func)(cfp->c_busnum cfp->c_devnum cfp->c_funcnum
1535 reg);

1537 return (rval);

1538 }

1540 void

1541 pci conflg rep_rd8(ddi _acc_inpl _t *hdlp, uint8_t *host_addr,

1542 int8_t *dev_addr, size_t repcount, uint_t flags)

1543 {

1544 uint8 t *h, *d;

1546 h = host_addr;

1547 d = dev_addr;

1549 if (flags == DDI _DEV_AUTO NCR)

1550 for (; repcount; repcount--)

1551 *h++ = pci_config_rd8(hdl p, d++);

1552 el se

1553 for (; repcount; repcount--)

1554 *h++ = pci_config_rd8(hdlp, d);

1555 }

1557 uint16_t

1558 pci _config_rd16(ddi _acc_inpl_t *hdlp, uintl6_t *addr)

1559 {

1560 pci _acc_cfblk_t *cfp;

1561 uint16_t rval;

1562 int reg;

1564 ASSERT64(((ui ntptr_t)addr >> 32) == 0);

1566 reg = (int)(uintptr_t)addr;

new usr/src/uts/i86pc/iolpcil/pci_comon.c 25

1568 cfp = (pci_acc_cfblk_t *)&hdl p->ahi _conmon. ah_bus_pri vate;
1570 rval = (*pci_getw_func)(cfp->c_busnum cfp->c_devnum cfp->c_funcnum
1571 reg);

1573 return (rval);

1574 }

1576 void

1577 pci_config_rep_rdil6(ddi _acc_inpl _t *hdlp, uintl1l6_t *host_addr,
1578 uint16_t *dev_addr, size_t repcount, uint_t flags)

1579 {

1580 uintl6_t *h, *d;

1582 h = host_addr;

1583 d = dev_addr;

1585 if (flags == DDl _DEV_AUTO NCR)

1586 for (; repcount; repcount--)

1587 *h++ = pci_config_rd16(hdl p, d++);

1588 el se

1589 for (; repcount; repcount--)

1590 *h++ = pci _config_rd16(hdlp, d);

1591 }

1593 uint32_t
1594 pci_config_rd32(ddi _acc_inpl _t *hdlp, uint32_t *addr)

1595 {

1596 pci _acc_cfbl k_t *cfp;

1597 uint32_t rval;

1598 int reg;

1600 ASSERT64(((ui ntptr_t)addr >> 32) == 0);

1602 reg = (int)(uintptr_t)addr;

1604 cfp = (pci_acc_cfbl k_t *)&hdl p->ahi _conmon. ah_bus_pri vat e;
1606 rval = (*pci_getl_func) (cfp->c_busnum cfp->c_devnum
1607 cfp->c_funcnum reg);

1609 return (rval);

1610 }

1612 voi d

1613 pci _config_rep_rd32(ddi _acc_inpl _t *hdl p, uint32_t *host_addr,
1614 uint32_t *dev_addr, size_t repcount, uint_t flags)
1615 {

1616 uint32_t *h, *d;

1618 h = host_addr;

1619 d = dev_addr;

1621 if (flags == DDI _DEV_AUTO NCR)

1622 for (; repcount; repcount--)

1623 *h++ = pci _config_rd32(hdl p, d++);
1624 el se

1625 for (; repcount; repcount--)

1626 *h++ = pci _config_rd32(hdlp, d);

1627 }

1630 voi d

1631 pci_config_w 8(ddi _acc_inpl _t *hdlp, uint8_t *addr, uint8_t val ue)
1632 {

new usr/src/uts/i86pc/iolpci/pci_conmmon.c

1633 pci _acc_cfbl k_t *cfp;

1634 Int reg;

1636 ASSERT64(((ui ntptr_t)addr >> 32) == 0);

1638 reg = (int)(uintptr_t)addr;

1640 cfp = (pci _acc_cfbl k_t *)&hdl p->ahi _conmon. ah_bus_pri vate;
1642 (*pci _putb_func) (cf p->c_busnum cf p->c_devnum

1643 cfp->c_funcnum reg, value);

1644 }

1646 void

1647 pci_config_rep_w 8(ddi _acc_inpl _t *hdlp, uint8_t *host_addr,
1648 uint8_t *dev_addr, size_t repcount, uint_t flags)
1649 {

1650 uint8_t *h, *d;

1652 h = host_addr;

1653 d = dev_addr;

1655 if (flags == DDl _DEV_AUTO NCR)

1656 for (; repcount; repcount--)

1657 pci _config_w 8(hdl p, d++, *h++);
1658 el se

1659 for (; repcount; repcount--)

1660 pci _config_w 8(hdl p, d, *h++);

1661 }

1663 voi d

1664 pci_config_w 16(ddi _acc_inpl _t *hdlp, uint16_t *addr, uint16_t val ue)
1665 {

1666 pci _acc_cfblk_t *cfp;

1667 Int reg;

1669 ASSERT64(((ui ntptr_t)addr >> 32) == 0);

1671 reg = (int)(uintptr_t)addr;

1673 cfp = (pci_acc_cfbl k_t *)&hdl p->ahi _conmon. ah_bus_pri vate;
1675 (*pci _putw_func) (cf p->c_busnum cf p->c_devnum

1676 cfp->c_funcnum reg, value);

1677 }

1679 void

1680 pci_config_rep_w 16(ddi _acc_inpl _t *hdlp, uint1l6_t *host_addr,
1681 uint16_t *dev_addr, size_t repcount, uint_t flags)
1682 {

1683 uint16_t *h, *d;

1685 h = host_addr;

1686 d = dev_addr;

1688 if (flags == DDI _DEV_AUTO NCR)

1689 for (; repcount; repcount--)

1690 pci _config_w 16(hdl p, d++, *h++);
1691 el se

1692 for (; repcount; repcount--)

1693 pci _config_w 16(hdl p, d, *h++);

1694 }

1696 void

1697 pci_config_w 32(ddi _acc_inpl _t *hdlp, uint32_t *addr, uint32_t val ue)
1698 {

new usr/src/uts/i86pc/iolpcil/pci_comon.c 27

1699 pci _acc_cfbl k_t *cfp;

1700 Int reg;

1702 ASSERT64(((ui ntptr_t)addr >> 32) == 0);

1704 reg = (int)(uintptr_t)addr;

1706 cfp = (pci _acc_cfbl k_t *)&hdl p->ahi _conmmon. ah_bus_pri vate;
1708 (*pci _putl _func) (cf p->c_busnum cf p->c_devnum
1709 cfp->c_funcnum reg, value);

1710 }

1712 void

1713 pci_config_rep_w 32(ddi _acc_inpl _t *hdl p, uint32_t *host_addr,
1714 uint32_t *dev_addr, size_t repcount, uint_t flags)
1715 {

1716 uint32_t *h, *d;

1718 h = host_addr;

1719 d = dev_addr;

1721 if (flags == DDl _DEV_AUTO NCR)

1722 for (; repcount repcount - -)

1723 pci _ confi g_w 32(hdl p, d++, *h++);
1724 el se

1725 for (; repcount; repcount--)

1726 pci _config_w 32(hdl p, d, *h++);
1727 }

1729 uint64_t
1730 pci_config_rd64(ddi _acc_inpl _t *hdlp, uint64_t *addr)

1731 {

1732 uint32_t Iw.val;

1733 uint32_t hi_val;

1734 ui nt32_t *dp;

1735 uint64_t val;

1737 dp = (uint32_t *)addr;

1738 Iw_val = pci_config_rd32(hdlp, dp);

1739 dp++;

1740 hi _val = pci_config_rd32(hdl p, dp);

1741 val = ((uint64_t)hi _val << 32) | lw_val;

1742 return (val);

1743 }

1745 voi d

1746 pci_config_w 64(ddi _acc_inpl _t *hdlp, uint64_t *addr, uint64_t val ue)
1747 {

1748 uint32_t lwval;

1749 uint32_t hi_val;

1750 uint32_t *dp;

1752 dp = (uint32_t *)addr;

1753 Ilw val = (uint32_t)(value & Oxffffffff);

1754 hi _val = (uint32_t)(value >> 32);

1755 pci _config_w 32(hdl p, dp, lw.val);

1756 dp++;

1757 pci _config_w 32(hdl p, dp, hi_val);

1758 }

1760 voi d

1761 pci _config_rep_rdé4(ddi _acc_inpl _t *hdlp, uint64_t *host_addr,
1762 uint64_t *dev_addr, size_t repcount, uint_t flags)
1763 {

1764 if (flags == DDl _DEV_AUTO NCR) {

new usr/src/uts/i86pc/iolpci/pci_conmon.c

1765 for (; repcount repcount - -)

1766 host addr++ = pci _config_rdé4(hdl p, dev_addr++);
1767 } else {

1768 for (; repcount; repcount--)

1769 *host _addr++ = pci _config_rd64(hdl p, dev_addr);
1770 1

1771 }

1773 voi d

1774 pci_config_rep_w 64(ddi _acc_inpl _t *hdl p, uint64_t *host_addr,

1775 uint64_t *dev_addr, size_t repcount, uint_t flags)

1776 {

1777 if (flags == DDI _DEV_AUTO NCR) {

1778 for (; repcount; repcount--)

1779 pci conflg wr 64(hdl p, host _addr ++, *dev_addr ++);
1780 } else {

1781 for (; repcount; repcount--)

1782 pci conflg wr 64(hdl p, host _addr ++, *dev_addr);
1783 1

1784 }

