new usr/ src/ cnd/ ndnpd/ ndnp/ ndnpd_chkpnt . ¢ 1

R R R R

8538 Wed May 29 20:27:07 2013

new usr/ src/ cnd/ ndmpd/ ndnp/ ndnpd_chkpnt . ¢
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi
Submitted by: Steven Hartland <steven. hartland@ul tiplay.co. uk>
EERERERERERESRESRSESSE]

1/*
* Copyright (c) 2007, 2010, Oracle and/or its affiliates. Al rights reserved.
* Copyright (c) 2013 by Del phix. Al rights reserved.
* Copyright (c) 2013 Steven Hartland. Al rights reserved.
#endif /* | codereview */
*

/

BSD 3 O ause License
Copyright (c) 2007, The Storage Networking Industry Association.

Redi stribution and use in source and binary forns, with or wthout
nodi fication, are permtted provided that the follow ng conditions
are met:

- Redistributions of source code nust retain the above copyri ght
notice, this list of conditions and the follow ng disclainer.

NRERRRRRRR R
COONOUIAWNROW©®O OUAWN

- Redistributions in binary formnust reproduce the above copyright
notice, this list of conditions and the follow ng disclainmer in

N
N

%k k ok b % R bk E bk E ok ok F O % E b ok E b Ok ok Ok Ok % ok Ok % b ok
'

21 the docunentation and/or other materials provided with the
22 di stribution.
23

Nei ther the nane of The Storage Networking Industry Association (SN A)
25 nor the names of its contributors nay be used to endorse or pronote
26 products derived fromthis software wi thout specific prior witten
27 per mi ssi on.
28
29 TH S SOFTWARE | S PROVI DED BY THE COPYRI GHT HOLDERS AND CONTRI BUTORS "AS | S"
30 AND ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG BUT NOT LIM TED TO, THE
31 | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE
32 ARE DI SCLAI MED. | N NO EVENT SHALL THE COPYRI GHT OANER OR CONTRI BUTORS BE
33 LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL, EXEMPLARY, OR
34 CONSEQUENTI AL DAMAGES (I NCLUDI NG, BUT NOT LIM TED TO, PROCUREMENT OF
35) SUBSTI TUTE GOODS OR SERVI CES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS
36 | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF LI ABILITY, WHETHER | N
37 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDI NG NEGLI GENCE OR OTHERW SE)
38 ARI SING I N ANY WAY QUT OF THE USE OF THI S SOFTWARE, EVEN | F ADVI SED OF THE
39 POSSI BI LI TY OF SUCH DAMAGE.
40 */

42 #incl ude <stdio. h>
43 #include <string.h>
44 #incl ude "ndnpd. h"
45 #include <libzfs.h>

47 typedef struct snap_param {
48 char *snp_nane;

49 bool ean_t snp_found;
50 } snap_paramt;

52 static int cleanup_fd = -1;

54 [*
55 * ndnp_has_backup
56 *
57 * Call backup function which | ooks for backup snapshot.
58 * This is a callback function used with zfs_iter_snapshots.
59 *
*

Par anet ers:

new usr/ src/ cnd/ ndmpd/ ndnp/ ndnpd_chkpnt . ¢

61 * zhp (input) - ZFS handl e pointer

62 * data (output) - O - no backup snapshot
63 * 1 - has backup snapshot
64 *

65 * Returns:

66 * 0: on success

67 * -1: otherw se

68 */

69 static int
70 ndnp_has_backup(zfs_handl e_t *zhp, void *data)
{

71

72 const char *nane;

73 snap_paramt *chp = (snap_paramt *)data;
75 name = zfs_get_nane(zhp);

76 if (name == L

77 strstr(nanme, chp->snp_nane) == NULL) {
78 zfs_cl ose(zhp);

79 return (-1);

80 }

82 chp->snp_found = 1;

83 zfs_cl ose(zhp);

85 return (0);

86 }

88 /*

89 * ndnp_has_backup_snapshot

90 *

91 * Returns TRUE if the volune has an active backup snapshot, otherw se,
92 * returns FALSE.

93 *

94 * Paraneters:

95 * vol nane (input) - nane of the volume

96 *

97 * Returns:

98 * 0: on success

99 * -1: otherw se

100 */

101 static int
102 ndnp_has_backup_snapshot (char *vol nane, char *jobnane)

104 zfs_handl e_t *zhp;

105 snap_paramt snp;

106 char “chnane[ZFS_MAXNAMELEN] ;

108 (void) mutex_l ock(&lib_ntx);

109 if ((zhp = zfs_open(zlibh, vol name, ZFS TYPE_DATASET)) == 0)
110 NDMP_LOZ LOG ERR, "Cannot open snapshot %s.", vol nane);
111 (void) mutex_unl ock(&zlib_ntx);

112 return (-1);

113 }

115 snp. snp_found = 0;

116 (void) snprintf(chname, ZFS_MAXNAMELEN, " @s", jobnane);

117 snp. snp_nane = chnane;

119 (void) zfs_iter_snapshots(zhp, ndnp_has_backup, &snp);

120 zfs_cl ose(zhp);

121 (void) mutex_ unl ock(&zl ib_ntx);

123 return (snp.snp_found);

124 }

126 /*

new usr/ src/ cnd/ ndmpd/ ndnp/ ndnpd_chkpnt . ¢

127 * ndnp_creat e_snapshot

128 *

129 * This function will parse the path to get the real volunme nane.
130 * It will then create a snapshot based on volunme and job nane.
131 * This function should be called before the NDVMP backup is started.
132 *

133 * Paraneters:

134 * vol _narme (i nput) name of the vol urme

135 *

136 * Returns:

137 * 0: on success

138 * -1: otherwise

139 */

140 int

141 ndnp_creat e_snapshot (char *vol _nanme, char *jnane)

142 {

143 char vol [ZFS_MAXNAMELEN ;

145 if (vol _name == |

146 get _zfsvol name(vol, sizeof (vol), vol_name) == -1)
147 return (0);

149 I*

150 * If there is an old snapshot left fromthe previous
151 * backup it could be stale one and it nust be

152 * renpved before using it.

153

154 i f (ndnp_has_backup_snapshot (vol, jnane))

155 (voi d) snapshot destroy(vol jname, B_FALSE, B_TRUE, NULL);
157 return (snapshot_create(vol, jnane, B_FALSE, B _TRUE));
158 }

160 /*

161 * ndnp_renove_snapshot

162 *

163 * This function will parse the path to get the real volune nane.
164 * It will then renove the snapshot for that volune and job nane.
165 * This function should be called after NDWP backup is finished.
166 *

167 * Paraneters:

168 * vol _narme (i nput) name of the vol ume

169 *

170 * Returns:

171 * 0: on success

172 * -1: otherw se

173 */

174 int

175 ?dnp_rermve_snapshot(char *vol _nane, char *jnane)

176

177 char vol [ZFS_MAXNAMELEN ;

179 if (vol_name == 0 ||

180 get _zfsvol name(vol , sizeof (vol), vol_nane) == -1)
181 return (0);

183 return (snapshot_destroy(vol, jnanme, B_FALSE, B TRUE, NULL));
184 }

186 /*

187 * Put a hold on snapshot

188 */

189 int

190 snapshot _hol d(char *vol name, char *snapnane, char *jnane, bool ean_t recursive)
191 {

192 zfs_handl e_t *zhp;

new usr/ src/ cnd/ ndpd/ ndnp/ ndnpd_chkpnt . ¢

{

1= 0)

193 char *p;

195 if ((zhp = zfs_open(zlibh, vol name, ZFS TYPE_DATASET)) == 0)
196 NDMP_LOZ LOG ERR, "Cannot open volume %.", vol name);
197 return (-1);

198 }

200 if (cleanup_fd == -1 && (cleanup_fd = open(ZFS_DEV,

201 O RDWR| O EXCL)) < 0)

202 NDVP_LOG(LOG_ERR, "Cannot open dev %l", errno);

203 zfs_cl ose(zhp);

204 return (-1);

205 }

207 p = strchr(snapnanme, '@) + 1;

208 i1f (zfs_hold(zhp, p, jname, recursive, cleanup_fd) != 0) {

4 if (zfs_hold(zhp, p, jname, recursive, B _FALSE, cl eanup fd)
209 NDMP_LOG(LOG ERR, "Cannot hol d snapshot %", p);
210 zfs_cl ose(zhp);

211 return (-1);
212 }

213 zfs_cl ose(zhp);

214 return (0);

215 }

__unchanged_portion_omtted_

new usr/src/cmd/ zf s/ zfs_main. c 1 new usr/src/cnmd/ zf s/ zfs_main. c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 61 #I ncl ude <| | bzfs core. h>
161560 Wed May 29 20: 27: 07 2013 62 #include <zfs_prop. h>
new usr/src/cmd/ zf s/ zfs_main. c 63 #i ncl ude <zfs_del eg. h>
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi 64 #include <libuutil.h>
Submitted by: Steven Hartland <steven. hartland@ul tiplay.co. uk> 65 #include <aclutils.h>
EERERERERERESRESRSESSE] 66 #I ncl ude <d| rect ory h>
1/*
2 * CDDL HEADER START 68 #include "zfs_iter.h"
3 = 69 #include "zfs_util.h"
4 * The contents of this file are subject to the terms of the 70 #include "zfs_comutil.h"
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License. 72 libzfs_handle_t *g_zfs;
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE 74 static FILE *mttab_file;
9 * or http://ww. opensol aris.org/os/licensing. 75 static char history_str[H S_MAX_RECORD LEN] ;
10 * See the License for the specific |anguage governi ng perm ssions 76 static boolean_t |og_history = B_TRUE;
11 * and limtations under the License.
12 = 78 static int zfs_do_clone(int argc, char **argv);
13 * When distributing Covered Code, include this CDDL HEADER i n each 79 static int zfs_do_create(int argc, char **argv);
14 * file and include the License file at usr/src/OPENSOLARI S. LI CENSE. 80 static int zfs_do_destroy(int argc, char **argv);
15 * |f applicable, add the follow ng below this CODL HEADER, with the 81 static int zfs_do_get(int argc, char **argv);
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 static int zfs_do_inherit(int argc, char **argv);
17 * information: Portions Copyright [yyyy]l [nane of copyright owner] 83 static int zfs_do_list(int argc, char **argv);
18 * 84 static int zfs_do_mount(int argc, char **argv);
19 * CDDL HEADER END 85 static int zfs_do_rename(int argc, char **argv);
20 */ 86 static int zfs_do_roll back(int argc, char **argv);
87 static int zfs_do_set(int argc, char **argv);
22 | * 88 static int zfs_do_upgrade(int argc, char **argv);
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved. 89 static int zfs_do_snapshot (int argc, char **argv);
24 * Copyright 2012 Nexenta Systens, Inc. Al rights reserved. 90 static int zfs_do_unnount(int argc, char **argv);
25 * Copyright (c) 2012 by Del phix. Al rights reserved. 91 static int zfs_do_share(int argc, char **argv);
26 * Copyright 2012 Mlan Jurik. Al rights reserved. 92 static int zfs_do_unshare(int argc, char **argv);
27 * Copyright (c) 2012, Joyent, Inc. Al rights reserved. 93 static int zfs_do_send(int argc, char **argv);
28 * Copyright (c) 2013 Steven Hartland. Al rights reserved. 94 static int zfs_do_receive(int argc, char **argv);
29 #endif /* | codereview */ 95 static int zfs_do_pronote(int argc, char **argv);
30 */ 96 static int zfs_do_userspace(int argc, char **argv);
97 static int zfs_do_allowint argc, char **argv);
32 #include <assert.h> 98 static int zfs_do_unallowint argc, char **argv);
33 #include <ctype. h> 99 static int zfs_do_hold(int argc, char **argv);
34 #include <errno. h> 100 static int zfs_do_holds(int argc, char **argv);
35 #include <libgen. h> 101 static int zfs_do_rel ease(int argc, char **argv);
36 #include <libintl.h> 102 static int zfs_do_diff(int argc, char **argv);
37 #include <libuutil.h>
38 #include <libnvpair.h> 104 /*
39 #include <l ocal e. h> 105 * Enable a reasonable set of defaults for |ibumem debuggi ng on DEBUG bui | ds.
40 #include <stddef.h> 106 */
41 #include <stdio.h>
42 #include <stdlib. h> 108 #i fdef DEBUG
43 #include <strings.h> 109 const char *
44 #incl ude <unistd. h> 110 _unem debug_i nit(voi d)
45 #include <fcntl. h> 111 {
46 #i ncl ude <zone. h> 112 return ("default,verbose"); /* $UMEM DEBUG setting */
47 #incl ude <grp. h> 113 }
48 #include <pwd. h>
49 #include <signal.h> 115 const char *
50 #include <sys/list.h> 116 _unmem | oggi ng_init(void)
51 #incl ude <sys/nkdev. h> 117 {
52 #include <sys/mtent. h> 118 return ("fail,contents"); /* $UVEM LOGG NG setting */
53 #include <sys/mttab. h> 119 }
54 #include <sys/nount.h> 120 #endif
55 #include <sys/stat.h>
56 #include <sys/fs/zfs.h> 122 typedef enum {
57 #include <sys/types. h> 123 HELP_CLONE,
58 #i nclude <tine.h> 124 HELP_CREATE,
125 HELP_DESTROY,
60 #include <libzfs.h> 126 HELP_GET,

new usr/src/cmd/ zf s/ zf s_mai n.

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

HELP_| NHERI T,
HELP_UPGRADE,
HELP_LI ST,

HEL P_MOUNT,
HELP_PROVOTE,
HELP_RECEI VE,
HELP_RENAME,
HELP_ROLLBACK,
HELP_SEND,
HELP_SET,
HELP_SHARE,
HELP_SNAPSHOT,
HEL P_UNMOUNT,
HELP_UNSHARE,
HELP_ALLOW
HELP_UNALLOW
HELP_USERSPACE,

HELP_GROUPSPACE,

HELP_HOLD,
HELP_HOLDS,
HEL P_REL EASE,
HELP_DI FF,

149 } zfs_help_t;

151 typedef struct zfs_comand {

152
153
154

const char
int
zfs_hel p_t

155 } zfs_command_t;

157
158
159
160
161
162
163
164
165

/*

nessage.

Mast er conmand t abl e.
usage nmessage.

*nare;
(*func) (int argc,
usage;

Each ZFS command has a nane,
The usage nessages need to be internationalized,
to have a function to return the usage nessage based on a command i ndex.

166 static zfs_command_t command_table[] = {

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

"create",
"destroy",
NULL },
"snapshot ",
"rol | back",
"cl one",
"pronote",
"renanme",
NULL },
"list",
NULL },
"set",
get”,
"inherit",
"upgrade",
"user space",
" groupspace”,
NOLL },
"mount ",
"unnount ",
"share",
"unshare",
NULL },
"send",
"receive",
NULL },

zfs_do_create,
zfs_do_destroy,

zfs_do_snapshot,
zfs_do_rol | back,
zfs_do_cl one,
zfs_do_pronote,
zfs_do_renane,

zfs_do_list,

zfs_do_set,
zfs_do_get,
zfs_do_inherit,
zfs_do_upgr ade,
zfs_do_userspace,
zfs_do_userspace,

zfs_do_nount,
zfs_do_unnount,
zfs_do_share,
zfs_do_ unshare

zfs_do_send,
zfs_do_receive,

char **argv);

HELP_CREATE
HELP_DESTROY

HELP_SNAPSHOT
HELP_ROLLBACK
HELP_CLONE
HELP_PROVOTE
HELP_RENAMVE

HELP_LI ST

HELP_SET
HELP_GET

HELP_| NHERI T
HEL P_UPGRADE
HELP_USERSPACE
HELP_GROUPSPACE

HELP_MOUNT
HEL P_ UNVOUNT
HELP_SHARE
HELP_UNSHARE

HELP_SEND
HELP_RECEI VE

associ ated function,

SO we

D el

and

have

These conmands are organi zed according to how they are displayed in the usage
An enpty conmand (one with a NULL nane)
the generic usage nessage.

indicates an enpty line in

new usr/src/cmd/ zf s/ zfs_main.c

193 { "allow', zfs_do_al |l ow, HELP_ALLOW 1,
194 { NULL },

195 { "unall ow', zfs_do_unal | ow, HELP_UNALLOW 1,
196 { NULL },

197 { "hold", zfs_do_hol d, HELP_HOLD Io
198 { "hol ds", zf s_do_hol ds, HELP_HOLDS },
199 { "rel ease", zfs_do_rel ease, HELP_RELEASE },
200 { "diff", zfs_do_diff, HELP_DI FF },
201 };

203 #defi ne NCOMVAND (sizeof (command_table) / sizeof (command_table[0]))
205 zfs_command_t *current _conmmand;

207 static const char *

208 get_usage(zfs_hel p_t idx)

209 {

210 switch (idx) {

211 case HELP_CLONE:

212 return (gettext("\tclone [-p] [-0 property =val ue] "
213 "<snapshot > <fil esystenjvolune>\n"));

214 case HELP_CREATE:

215 return (gettext("\tcreate [-p] [-0 property=val ue]

216 "<fil esystenm\n"

217 "\tcreate [-ps] [-b blocksize] [-o0 property=val ue] "
218 "-V <size> <volunme>\n"));

219 case HELP_DESTROY:

220 return (gettext("\tdestroy [-fnpRrv] <filesystenvolume>\n"
221 "\tdest roy [-dnpRrv] "

222 "<fil esysten] vol ume>@snap>[%<snap>][,...]\n"));

223 case HELP_CET:

224 return(gettext(\t get [-er] [-d max] "

225 "[-o \"all\" | field[,...]] [-t type[,...]] "

226 [-s source[oo]1vn"

227 "\t Aralfye | propertyl[, ...]

228 "[fil esysten] vol ume| snapshot] Ant))

229 case HELP_I NHERI T:

230 return (gettext("\tinherit [-rS] <property> "

231 "<fil esysten] vol unme| snapshot> ...\n"));

232 case HELP_UPGRADE:

233 return (gettext("\tupgrade [-v]\n"

234 "\tupgrade [-r] [-V version] <-a | filesystem...>\n"));
235 case HELP_LI ST:

236 return(gettext("\tlist [»rH][] "

237 "[-o0 property[,...]] [-t type[.11 [-s property] ...\n
238 "\t [-S pr operty] .

239 "[fil esysten] vol une| snapshot] An"));

240 case HELP_MOUNT:

241 return (gettext("\tmount\n"

242 "\tnount [-vQ [-0 opts] <-a | filesystenr\n"));

243 case HELP_PROMOTE:

244 return (gettext(\tpronote <clone-filesystenr\n"));

245 case HELP_RECEI Vi

246 return (gettext(\treceive [-vnFu] <filesystenivolune|"

247 "snapshot >\ n"

248 "\treceive [-vnFu] [-d | -e] <filesystenr\n"));

249 case HELP_RENAME:

250 return (gettext("\trenane [-f] <filesystenjvol une|snapshot >
251 "<fil esysten| vol une| snapshot >\ n"

252 "\trename [-f] -p <filesystenjvolune> <filesystenivol ume>\n"
253 "\trename -r <snapshot> <snapshot>"));

254 case HELP_ROLLBACK:

255 return (gettext("\trollback [-rRf] <snapshot>\n"));

256 case HELP_SEND:

257 return (gettext("\tsend [-DnPpRv] [-[il] snapshot]

258 "<snapshot>\n"));

new usr/src/cmd/ zf s/ zfs_main. c

259 case HELP_SET:

260 return (gettext("\tset <property=val ue> "

261 "<filesystenvol une|snapshot> ...\n"));

262 case HELP_SHARE:

263 return (gettext("\tshare <-a | filesystenr\n"));

264 case HELP_SNAPSHOT:

265 return (gettext("\tsnapshot [-r] [-o0 property=val ue]
266 "<fil esystem@napnane| vol ume@napnane> ...\n"));
267 case HELP_UNMOUNT:

268 return (gettext("\tunmount [-f] "

269 "<-a | filesysten]nmountpoint>\n"));

270 case HELP_UNSHARE:

271 return (gettext("\tunshare "

272 "<-a | filesysten] mountpoint>\n"));

273 case HELP_ALLOW

274 return (gettext("\tal I ow <fil esystenivol ume>\n"

275 "\taIIow[-I ug]

276 "<\ "everyone\"|user|group>[,...] <pern @etname>[,...]\n"
277 "\t <filesysten|vol une>\n"

278 "\tallow [-1d] -e <pern] @etnanme>[,...] "

279 "<fil esysten vol ume>\n"

280 "\tall ow -c <pern] @etnanme>[,...] <fil esyst en1 vol une>\ n"
281 "\tall ow -s @et nanme <perrr1 @et narre>[B

282 "<filesysten]volume>\n"));

283 case HELP_UNALLOW

284 return (gettext("\tunallow[—rIdug]

285 "<\"everyone\"|user|group>[,...]\n"

286 "\t [<pern| @et name>[,]] <fil esyst en voI unme>\ n"
287 "\tunal low [-rld] -e [<perr'r1 @et nane>[,

288 "<fil esysten vol ume>\n"

289 “\tunallow [-r] -c [<pern| @etname>[,...]]

290 "<filesysten vol ume>\n"

291 "\tunallow [-r] -s @etname [<pern| @etnanme>[,...]] "
292 "<fil esystenvolume>\n"));

293 case HELP_USERSPACE:

294 return (gettext(\tuserspace [- Hinp] [-0 field[,...]1]
295 "[-s f |e|d] \n\t[-S field]

296 "[-t type[,]] <filesysteni snapshot >\n"));

297 case HELP_GROUPSPACE:

298 return (gettext(\tgroupspace [-Hnp] [-o0 field[,...]]
299 "[-s f |e|d].. \n\t]- eld ... "

300 "[-t type[,...]] <fil esyst enj snapshot>\n"));

301 case HELP_HOLD:

302 return (gettext("\thold [-r] <tag> <snapshot> ...\n"));
303 case HELP_HOLDS:

304 return (gettext(\tholds [-r] <snapshot> ...\n"));

305 case HELP_RELEASE:

306 return (gettext(\trelease [-r] <tag> <snapshot> ...\n"));
307 case HELP_DI FF:

308 return (gettext("\tdiff [-FH] <snapshot> "

309 "[snapshot|fil esysteni\n"));

310 }

312 abort();

313 /* NOTREACHED */

314 }

316 void

317 nonen{voi d)

318 {

319 (void) fprintf(stderr, gettext("internal error: out of nenobry\n"));
320 exit(1);

321 }

323 /*

324 * Wility function to guarantee nalloc() success.

new usr/src/cnmd/ zf s/ zfs_main. c

t size)
ta;

a = calloc(1, size)) == NULL)

nomen()

dat a) ;

*str)
pstr = strdup(str);

tr == NULL)
nomen() ;

dupstr);

ine that will print out information for each of
S.

t prop, void *ch)

printf(fp, "\t%15s ", zfs_prop_to_name(prop));

prop_readonl y(prop))
(void) fprintf(fp, NO "),

(void) fprintf(fp, "YES ")
prop_i nheritabl e(prop))

(void) fprintf(fp, " YES ");
(void) fprintf(fp, " NO ");

prop_val ues(prop) == {\IUL;_)
“\n")

"os\n",

(void) fprintf(fp,
(void) fprintf(fp, zfs_prop_val ues(prop));

ZPROP_CONT) ;

nessage. |If we're inside a command, display only the usage for
O herwise, iterate over the entire command table and di spl ay
age nmessage.

request ed)

_t show properties = B_FALSE;
requested ? stdout stderr;

325 */

327 void *

328 safe_nal | oc(size_
329 {

330 voi d *da
332 if ((dat
338

335 return (
336 }

338 static char *
339 safe_strdup(char
340 {

341 char *du
343 if (dups
344

346 return (
347 }

349 [*

350 * Callback rout
351 * the propertie
352 */

353 static int

354 usage_prop_cb(in
355 {

356 FILE *fp =
358 (void) f
360 if (zfs_
361

362 el se

363

365 if (zfs_
366

367 el se

368

370 if (zfs_
371

372 el se

373

375 return (
376 }

378 /| *

379 * Display usage
380 * that command.
381 * a conplete us
382 */

383 static void

384 usage(bool ean_t
385 {

386 int i;
387 bool ean
388 FILE *fp =
390 if (curr

ent _command == NULL) {

new usr/src/cmd/ zf s/ zfs_main. c 7 new usr/src/cnd/ zf s/ zfs_main. c
457 "zfs allow unallow);
392 (void) fprintf(fp, gettext("usage: zfs command args ...\n")); 458 }
393 (void) fprintf(fp,
394 gettext ("where 'command’ is one of the follow ng:\n\n")); 460 /*
461 * See coments at end of main().
396 for (i = 0; i < NCOWAND; i++) { 462 */
397 if (conmand_table[i].name == NULL) 463 if (getenv("ZFS_ABORT") I'= NULL) {
398 (void) fprintf(fp, "\n"); 464 (void) printf("dunping core by request\n");
399 el se 465 abort();
400 (void) fprintf(fp, "%", 466 }
401 get _usage(command_t abl e[i] . usage));
402 } 468 exit(requested ? 0 : 2);
469 }
404 (void) fprintf(fp, gettext("\nEach dataset is of the form
405 " pooI/[at aset/] *dat aset [@ane]\n")); 471 static int
406 } else { 472 parseprop(nvlist_t *props)
407 (void) fprintf(fp, gettext("usage:\n")); 473 {
408 (void) fprintf(fp, "%", get_usage(current_comand->usage)); 474 char *propnane = optarg;
409 } 475 char *propval, *strval;
411 if (current_conmand != NULL && 477 if ((propval = strchr(propnanme, '=")) == NULL) {
412 (strcnp(current_comrand- >nanme, “"set") == 0 || 478 (v |d) fprintf(stderr, gettext("m ssing
413 strcnp(current _comand- >nane, "get") == 0 || 479 = for -0 optlon\n)
414 strcnp(current _comand->nane, "inherit") == 0 || 480 return (-1);
415 strcnp(current _conmand- >nanme, "list") == 0)) 481 }
416 show_properties = B_TRUE; 482 *propval = '\0";
483 propval ++;
418 if (show_properties) { 484 i1 f (nvlist_lookup_string(props, propname, &strval) == 0) {
419 (void) fprintf(fp, 485 (void) fprintf(stderr, gettext("property "%’ "
420 gettext("\nThe foll owi ng properties are supported:\n")); 486 "specified multiple tines\n"), propnane);
487 return (-1);
422 (voi d) fprintf(fp, "\n\t% 14s % % %\ n\n", 488 }
423 ROPERTY", "EDIT", "INHERI T", "VALUES"); 489 if (nvlist_add_string(props, propnane, propval) != 0)
490 nonment();
425 /* Iterate over all properties */ 491 return (0);
426 (void) zprop_iter(usage_prop_cbh, fp, B_FALSE, B_TRUE, 492 }
427 ZFS_TYPE_DATASET) ;
494 static int
429 (void) fprintf(fp, "\t%15s ", "userused@.."); 495 par se_dept h(char *opt, int *flags)
430 (void) fprintf(fp, " NO NO <si ze>\ n") 496 {
431 (void) fprintf(fp, "\t%15s ", "groupused@.."); 497 char *tnp;
432 (void) fprintf(fp, " NO NO <size>\ n") 498 int depth;
433 (void) fprintf(fp, "\t%15s ", "userquota@. ;
434 (void) fprintf(fp, "YES NO <size> | none\n")' 500 depth = (int)strtol (opt, & np, 0);
435 (void) fprintf(fp, "\t%15s ", "groupquota@.."); 501 if (*tmp) {
436 (void) fprintf(fp, "YES NO <size> | nonet n"); 502 (void) fprintf(stderr,
437 (void) fprintf(fp, "\t%15s ", "witten@snap>"); 503 gettext("% is not an integer\n"), optarg);
438 (void) fprintf(fp, " NO NO <size>\n"); 504 usage(B_FALSE) ;
505 }
440 (void) fprintf(fp, gettext("\nSizes are specified in bytes " 506 if (depth < 0)
441 "with standard units such as K, M G etc.\n")); 507 (void) fprintf(stderr,
442 (void) fprintf(fp, gettext("\nUser-defined properties can " 508 gettext ("Depth can not be negative.\n"));
443 "be specified by using a nane containing a colon (:).\n")); 509 usage(B_FALSE) ;
444 (voi d) fprintf(fp, gettext("\nThe {user | group}{used| quota}@" 510 }
445 "properties nust be appended with\n 511 *flags | = (ZFS_| TER_DEPTH_LI M T| ZFS_| TER_RECURSE) ;
446 "a user or group specifier of one of these forns:\n" 512 return (depth);
447 " POSI X nane (eg: \"matt\")\n" 513 }
448 " PCSI X i d (eg: \"126829\")\n"
449 " SMB nane@lomain (eg: \"matt@un\")\n" 515 #defi ne PROGRESS _DELAY 2 /* seconds */
450 " SMB SID (eg: \"S-1-234-567-89\")\n"));
451 } else { 517 static char *pt_reverse = "\b\ b";
452 (void) fprintf(fp, 518 static time_t pt_begin;
453 gettext("\nFor the property list, run: %\n"), 519 static char *pt_header = NULL;
454 "zfs set|get"); 520 static bool ean_t pt_shown;
455 (void) fprintf(fp,
456 gettext("\nFor the del egated permi ssion list, run: %\n"), 522 static void

new usr/src/cmd/ zf s/ zfs_main. c

523 start_progress_tiner(void)

524 {

525 pt_begin = time(NULL) + PROGRESS_DELAY;

526 pt _shown = B_FALSE;

527 }

529 static void

530 {set_progress_header(char *header)

531

532 assert (pt_header == NULL);

533 pt _header = safe_strdup(header);

534 if (pt shown) {

535 (void) printf("%: ", header);

536 (v0| d) fflush(stdout);

537 }

538 }

540 static void

23% deat e_progress(char *update)

543 if (!'pt_shown && time(NULL) > pt_begin) {

544 int len = strlen(update);

546 (void) printf("%: %% .*s", pt_header, update, len, I|en,
547 pt_reverse);

548 (void) fflush(stdout);

549 pt_shown = B_TRUE;

550 } else if (pt_shown) {

551 int len = strlen(update);

553 (void) printf("%%.*s", update, len, len, pt_reverse);
554 (void) fflush(stdout);

558 }

556 }

558 static void

559 finish_progress(char *done)

560 {

561 if (pt_shown) {

562 (void) printf("%\n", done);

563 (void) fflush(stdout);

564 }

565 free(pt_header);

566 pt _header = NULL;

567 }

568 /*

569 * zfs clone [-p] [-0 prop=val ue] <snap> <fs | vol >

570 *

571 * Gven an existing dataset, create a witable copy whose initial contents
572 * are the sanme as the source. The newly created dataset nmintains a
573 * dependency on the original; the original cannot be destroyed so |ong as
574 * the clone exists.

575 *

576 */The "-p’ flag creates all the non-existing ancestors of the target first.
577 *

578 static int

579 zfs_do_cl one(int argc, char **argv)

580 {

581 zfs_handl e_t *zhp = NULL;

582 bool ean_t parents = B_FALSE;

583 nvlist_t *props;

584 int ret = 0;

585 int c;

587 if (nvlist_alloc(&rops, NV_UNI QUE_NAME, 0) != 0)

588 nomen() ;

new usr/src/cnd/ zf s/ zfs_main. c 10
590 /* check options */

591 while ((c = getopt(argc, argv, "o:p")) !=-1) {

592 switch (c) {

593 case '0:

594 i f (parseprop(props))

595 return (1);

596 br eak;

597 case 'p’:

598 parents = B _TRUE;

599 break;

600 case ' ?':

601 (void) fprintf(stderr, gettext("invalid option "%’ \n"),
602 optopt);

603 got o usage;

604 }

605 }

607 argc -= optind;

608 argv += optind;

610 /* check nunber of argunents */

611 if (argc < 1) {

612 (voi d) fpri ntf(st derr, gettext("m ssing source dataset

613 "argument\n"));

614 got o usage;

615 }

616 if (argc < 2)

617 (voi d) fprl ntf(stderr, gettext("m ssing target dataset "
618 "argument\n"));

619 got o usage;

620 1

621 if (argc > 2) {

622 (void) fprintf(stderr, gettext("too many argunments\n"));
623 got o usage;

624 1

626 /* open the source dataset */

627 if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_SNAPSHOT)) == NULL)
628 return (1);

630 if (parents && zfs_nane_valid(argv[1l], ZFS_TYPE_FILESYSTEM |

631 ZFS TYPE_VOLUME)) {

632 /*

633 * Now create the ancestors of the target dataset. |I|f the
634 * target already exists and '-p’ option was used we shoul d not
635 * conpl ai n.

636 */

637 if (zfs_dataset_exists(g_zfs, argv[1l], ZFS_TYPE_FI LESYSTEM |
638 ZFS_TYPE_VOLUME))

639 return (0);

640 if (zfs_create_ancestors(g_zfs, argv[1l]) != 0)

641 return (1);

642 }

644 /* pass to libzfs */

645 ret = zfs_clone(zhp, argv[1], props);

647 /* create the nmountpoint if necessary */

648 if (ret == 0) {

649 zfs_handl e_t *cl one;

651 clone = zfs_open(g_zfs, argv[1l], ZFS_TYPE_DATASET);

652 if (clone !'= NULL)

653 if (zfs_get type(cl one) != ZFS TYPE_VOLUME)

654 if ((ret = zfs_mount(clone, NULL, 0)) == 0)

new usr/src/cmd/ zf s/ zfs_main. c

655
656
657
658

660
661

663

665
666
667
668
669
670
671

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

703
704

706
707
708
709
710
711
712
713
714
715
716

718
719
720

ret = zfs_share(clone);
zfs_cl ose(cl one);

}

zfs_cl ose(zhp);
nvlist_free(props);

return (!lret);

usage:
if (zhp)
zfs_cl ose(zhp);
nvlist_free(props);
usage(B_FALSE) ;
return (-1);
}
/*
* zfs create [-p] [-0 prop=value] ... fs
* zfs create [-ps] [-b blocksize] [-0 prop=val ue] -V vol size
*
* Create a new dataset. This conmand can be used to create fil esystens
* and vol unes. Snapshot creation is handled by 'zfs snapshot’.
* For volunes, the user nust specify a size to be used.
*
* The '-s’ flag applies only to volunmes, and indicates that we should not try
* to set the reservation for this volune. By default we set a reservation
* equal to the size for any volume. For pools with SPA VERSI ON >=
* SPA_VERSI ON_REFRESERVATI ON, we set a refreservation instead.
*
* The '-p’ flag creates all the non-existing ancestors of the target first.
*/
static int
zfs_do_create(int argc, char **argv)
{

zfs_type_t type = ZFS_TYPE_FI LESYSTEM
zfs_handle_t *zhp = NULL;
uint64_t vol si ze;

int c;

bool ean_t noreserve = B_FALSE;
bool ean_t bflag = B_FALSE;

bool ean_t parents = B_FALSE;

int ret = 1;

nvlist_t *props;

uint64_t intval;

int cannobunt = ZFS_CANMOUNT_OFF;

if (nvlist_alloc(&props,
nomeny() ;

NV_UNI QUE_NAME, 0) != 0)

/* check options */
while ((c = getopt(argc, argv,
switch (c) {
case 'V :
type = ZFS_TYPE_VOLUME;
if (zfs_nicestrtonun(g_zfs,

":Vib:so:p")) !'=-1) {

optarg, & ntval) !'=0) {

(void) fprintf(stderr, gettext("bad volune "
"size '%’': %\n"), optarg,
l'ibzfs_error_description(g_zfs));

goto error;

}

if (nvlist_add_uint64(props,
zfs_prop_t o_nanme(ZFS_PROP_VOLSI ZE) ,
nomen() ;

intval) = 0)

11

new usr/src/cnd/ zf s/ zfs_main. c 12
721 vol size = intval;
722 break;
723 case 'p’:
724 parents = B_TRUE;
725 br eak;
726 case 'b’:
727 bflag = B_TRUE;
728 if (zfs_nicestrtonun(g_zfs, optarg, & ntval) != 0)
729 (voi d) fprintf(st derr gettext("bad vol une "
730 bl ock size "%’': %\n"), optarg,
731 li bzfs_error_descrl ption(g_zfs));
732 goto error;
733 }
735 if (nvlist_add_uint64(props,
736 zfs_prop_t o_nanme(ZFS_PROP_VOLBLOCKSI ZE) ,
737 intval) !'= 0)
738 nomemn() ;
739 br eak;
740 case '0:
741 if (parseprop(props))
742 goto error;
743 br eak;
744 case 's’:
745 noreserve = B_TRUE;
746 br eak;
747 case ':':
748 (void) fprintf(stderr, gettext("m ssing size "
749 "argument\n"));
750 goto badusage;
751 case ' ?:
752 (void) fprintf(stderr, gettext("invalid option '%’'\n"),
753 opt opt);
754 goto badusage;
755 }
756 1
758 if ((bflag || noreserve) && type != ZFS TYPE_VOLUME) {
759 (void) fprintf(stderr, gettext("' -s’ and '-b’ can only be "
760 "used when creating a volune\n"));
761 got o badusage;
762 }
764 argc -= optind;
765 argv += optind;
767 /* check nunber of argunments */
768 if (argc == 0) {
769 (void) fprintf(stderr, gettext("m ssing % argunent\n"),
770 zfs_type_t o_nama(type));
771 got o badusage;
772 }
773 if (argc > 1) {
774 (void) fprintf(stderr, gettext("too many arguments\n"));
775 got o badusage;
776 }
778 if (type == ZFS_TYPE_VOLUME && ! noreserve) {
779 zpool _handl e_t *zpool _handl e;
780 nvlist_t *real _props;
781 uint 64_t spa_version;
782 char *p;
783 zfs_prop_t resv_prop;
784 char *strval;
785 char msg[1024];

new usr/src/cnd/ zf s/ zfs_main. c 13

787
788
789
790
791
792
793
794
795
796
797
798
799
800

802
803
804
805
806

808
809

811
812
813
814
815
816
817
818
819

821
822
823
824
825
826
827
828
829
830
831
832
833

835
836
837

839
840

842
843
844
845
846
847
848

850
851
852

if (p= strchr(argv[O] 1))
*p = '\ O

zpool _handl e = zpool _open(g_zfs, argv[O0]);

if (p !'= NULL)
*p = [

if (zpool _handl e == NULL)
goto error;

spa_version = zpool _get_prop_ |nt(zpoo| handl e,
ZPOOL_PROP_VERSI ON, NULL
zpool _cl ose(zpool handl e) ;
if (spa_version >= SPA VERSI ON_REFRESERVATI ON)
resv_prop = ZFS_PROP_REFRESERVATI ON;
el se
resv_prop = ZFS_PROP_RESERVATI ON\;

(void) snpri ntf(m;g, si zeof (nsQ),
gettext("cannot create "%’ "), argv[0]);
if (props & (real _props = zfs_valid propllst(g zfs, type,
props, 0, NULL, msg)) == NULL)
goto error;

vol size = zvol _vol size_to_reservation(vol size, real _props);
nvlist_free(real _props);

if (nvlist_| ookup) string(props, zfs_prop_to_name(resv_prop),

&trval) !=
if (nvlist_add_uint64(props,
zfs_prop_to_name(resv_prop), volsize) !=0) {
nvlist_free(props);
nomemn() ;

}
if (parents && zfs_name_valid(argv[0], type)) {
/*

* Now create the ancestors of target dataset. |f the target
* already exists and '-p’ option was used we should not
* conpl al n.
*/
if (zfs_dataset_exists(g_zfs, argv[0], type)) {
ret = 0;
goto error;

}
if (zfs_create_ancestors(g_zfs, argv[0]) != 0)
goto error;

}

/* pass to libzfs */
if (zfs_create(g_zfs, argv[0], type, props) != 0)
goto error;

if ((zhp = zfs_open(g_zfs, argv[0], ZFS TYPE_DATASET)) == NULL)
goto error;

ret = 0;

/*

* if the user doesn’t want the dataset autonmatically nounted,

* then skip the nmount/share step

|f (zfs_prop_valid_for_type(ZFS_PROP_CANMOUNT, type))
cannmount = zfs_prop_get_i nt(zhp, ZFS_PROP_CANMOUNT) ;

/*
* Mount and/or share the new filesystem as appropriate. W provide a
* verbose error nessage to let the user know that their fil esystem was

new usr/src/cmd/ zf s/ zfs_main.c

853
854
855
856
857
858
859
860
861
862
863
864
865

867 error:

868
869
870
871

* in fact created, even if we failed to nount or share it.
=

if (cannobunt == ZFS_CANMOUNT_ON)
if (zfs_nount(zhp, NULL, 0) != 0) {
(void) fprlntf(stderr, gettext("filesystem"
"successfully created, but not nounted\n"));
ret = 1;
} else if (zfs_share(zhp) !'= 0) {
(void) fprintf(stderr, gettext("filesystem"
"successfully created, but not shared\n"));
ret = 1;

if (zhp)

zfs_cl ose(zhp);
nvlist_free(props);
return (ret);

872 badusage:

873
874
875
876 }
878 /
879
880
881
882
883
884
885
886
887
888
889
890

T I N
-~

nvlist_free(props);
usage(B_FALSE) ;
return (2);

zfs destroy [-rRf] <fs, vol>
zfs destroy [-rRd] <snap>

-r Recursively destroy all children

-R Recursively destroy all dependents, including clones

f Force unnounting of any dependents

-d If we can’t destroy now, mark for deferred destruction

Destroys the given dataset. By default, it will unnount any fil esystens,
and refuse to destroy a dataset that has any dependents. A dependent can
either be a child, or a clone of a child

891 typedef struct destroy_cbdata {

892
893
894
895
896
897
898
899
900
901
902
903

905
906
907
908
909
910

bool ean_t cb_first;

bool ean_t cb_force;

bool ean_t cb_recurse;

bool ean_t cb_error;

bool ean_t cb_docl ones;
zfs_handl e_t *cb_target;

bool ean_t cb_def er _destroy;
bool ean_t cb_verbose;

bool ean_t cb_parsabl e;

bool ean_t cb_dryrun;
nvlist_t *cb_nvl;

nvlist_t *cb_bat chedsnaps;
/* first snap in contiguous run */
char *cb_firstsnap;

/* previous snap in contiguous run */
char *cb_prevsnap;
int64_t cb_snapused;

char *cb_snapspec;

911 } destroy_cbdata_t;

913 /*

914 * Check for any dependents based on the

915 */

‘-1’ or '-R flags.

916 static int
917 destroy_check_dependent (zfs_handl e_t *zhp, void *data)

918 {

14

new usr/src/cmd/ zf s/ zfs_main. c

919 destroy_chdata_t
920 const char *tnane
921 const char *name

923 if (strncnp(tnane,

924 (name[strlen(
925 /*

926 * This i
927 * the hi
928 */

929 if (cbp->
930 g

932 if (cbp->
933 (
934

935

936

937 (
938

939 c
940 c
941 }

943 (void) fp
944 } else {

945

946 * This i
947 * wasn’ t
948 */

949 if (!cbp-
950 zfs_g
951 g

953 if (cbp->
954 (
955

956

957

958 (
959

960 c
961 c
962 c
963 }

965 (void) fp
966 1

968 out:

969 zfs_cl ose(zhp);
970 return (0);
971 }

973 static int
974 destroy_cal | back(zfs_hand
975 {

976 destroy_chdata_t
977 const char *nane
979 if (cb->cb_verbos
980 if (cb->c
981

982 } elseif
983
984

*cbp = data;
= zfs_get _nanme(cbp->cb_target);
= zfs_get _name(zhp);

name, strlen(tnane)) == 0 &&
tname)] ==/’ || nane[strlen(tname)] ==

‘@) {

s a direct descendant, not a clone sonewhere else in

erarchy.

cb_recurse)
oto out;

cb_first) {

void) fprintf(stderr, gettext("cannot destroy '%’ :
"% has children\n"),
zfs_get _nane(cbp->cb_target),
zfs_type_to_nane(zfs_get type(cbp >ch_target)));

void) fprintf(stderr, gettext("use '-r’ to destroy "
"the follow ng datasets:\n"));

bp->cb_first = B_FALSE;

bp->cb_error = B_TRUE;

rintf(stderr, "%\n", zfs_get_name(zhp));

s a clone. W only want to report this if the ’-r’
specified, or the target is a snapshot.

>ch_recurse &%
et _type(cbp->cb_target) != ZFS_TYPE_SNAPSHOT)
oto out;

cb_first) {

void) fprintf(stderr, gettext("cannot destroy '%’ :
"% has dependent clones\n")
zfs_get _nane(cbp->cb_target),
zfs_type_to_nane(zfs_get type(cbp >ch_target)));

v0|d) fprintf(stderr, gettext("use '-R to destroy "

the follow ng dat aset s: \n"));

bp- >cb _first = B_FALSE;

bp->cb_error = B_TRUE;

bp->cb_dryrun = B_TRUE;

rintf(stderr, "%\n", zfs_get_nanme(zhp));

le_t *zhp, void *data)

*cb = data;
= zfs_get _nanme(zhp);

e) {
b_parsabl e) {

(void) printf("destroy\t%\n", nane);

(cb->cb_dryrun)

{
(void) printf(gettext("would destroy %\n"),

nane) ;

15

new usr/src/cnd/ zf s/ zfs_main. c 16
985 } else {

986 (void) printf(gettext("will destroy %\n"),
987 nane) ;

988 }

989 }

991 /*

992 * | gnore pools (which we've already flagged as an error before getting
993 * here).

994 */

995 if (strchr(zfs_get_name(zhp), '/’) == NULL &&

996 zfs_get _type(zhp) == ZFS_TYPE_FI LESYSTEM {

997 zfs_cl ose(zhp);

998 return (0);

999 1

1000 if (cb->cb_dryrun) {

1001 zfs_cl ose(zhp);

1002 return (0);

1003 1

1005 I

1006 * W batch up all contiguous snapshots (even of different
1007 * filesystens) and destroy themw th one ioctl. W can't
1008 * sinply do all snap deletions and then all fs deletions,
1009 * because we nust delete a clone before its origin.

1010 */

1011 if (zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT) ({

1012 fnvlist_add_bool ean(cb->cb_bat chedsnaps, nane);
1013 } else {

1014 int error = zfs_destroy_snaps_nvl (g_zfs,

1015 ch->cb_bat chedsnaps, B_FALSE);

1016 fnvlist_free(cb->cb_bat chedsnaps);

1017 cb->cb_bat chedsnaps = fnvlist_alloc();

1019 if (error I'=0 ||

1020 zfs_unnmount (zhp, NULL, cb->cb_force ? M5_FORCE : =0 ||
1021 zfs_destroy(zhp, cb- >cb defer_destroy) != 0) {
1022 zfs_cl ose(zhp);

1023 return (-1);

1024 }

1025 }

1027 zfs_cl ose(zhp);

1028 return (0);

1029 }

1031 static int

1032 destroy_print_ch(zfs_handl e_t *zhp, void *arg)

1033 {

1034 destroy_chdata_t *cb = arg;

1035 const char *nanme = zfs_get_nane(zhp);

1036 int err = 0;

1038 if (nvlist_exists(cb->cb_nvl, name)) {

1039 if (cb->cb_firstsnap == NULL)

1040 cbh->cb_firstsnap = strdup(nane);

1041 if (cb->cb_prevsnap != NULL)

1042 free(cb->cb_prevsnap);

1043 /* this snap continues the current range */

1044 ch->cb_prevsnap = strdup(nane);

1045 if (cb->cb_firstsnap == NULL || cb->cb_prevsnap == NULL)
1046 nonen() ;

1047 if (cb->cb_verbose)

1048 if (cb->cb_parsable) {

1049 (void) printf("destroy\t%\n", nane);
1050 } else if (cb->cb_dryrun) {

new usr/src/cmd/ zf s/ zfs_main. c 17 new usr/src/cmd/ zf s/ zfs_main. c
1051 (void) printf(gettext("would destroy %\n"), 1117 static int
1052 nane) ; 1118 gat her _snapshot s(zfs_handl e_t *zhp, void *arg)
1053 } else { 1119 {
1054 (void) printf(gettext("wll destroy %\n"), 1120 destroy_chdata_t *cb = arg;
1055 nane) ; 1121 int err = 0;
1056 }
1057 } 1123 err = zfs_iter_snapspec(zhp, cb->cb_snapspec, snapshot_to_nvl_cb, cb);
1058 } else if (cb->cb_firstsnap !'= NULL) { 1124 if (err == ENCENT)
1059 /* end of this range */ 1125 err = 0;
1060 uint64_t used = O; 1126 if (err 1= 0)
1061 err = Tzc_snaprange_space(ch->cb_firstsnap, 1127 goto out;
1062 cb->cb_prevsnap, &used);
1063 cb->cb_snapused += used; 1129 if (cb->cb_verbose) {
1064 free(cb->cb_firstsnap); 1130 err = destroy_print_snapshots(zhp, cb);
1065 cb->cb_firstsnap = NULL; 1131 if (err 1=0)
1066 free(cb->cb_prevsnap); 1132 goto out;
1067 cb->cb_prevsnap = NULL; 1133 }
1068 }
1069 zfs_cl ose(zhp); 1135 if (cb->cb_recurse)
1070) return (err); 1136 err = zfs_iter_fil esystens(zhp, gather_snapshots, cb);
1071
1138 out:
1073 static int 1139 zfs_cl ose(zhp);
1074 destroy_print_snapshots(zfs_handle_t *fs_zhp, destroy_chdata_t *cb) 1140 return (err);
1075 { 1141 }
1076 int err = 0;
1077 assert(cb->cb_firstsnap == NULL); 1143 static int
1078 assert(cb >ch_prevsnap == NUL) 1144 destroy_cl ones(destroy_cbhdata_t *cb)
1079 err = zfs_iter_snapshots_ sorted(fs zhp, destroy_print_cbh, cb); 1145 {
1080 if (cb->cb_firstsnap !'= NULL) { 1146 nvpair_t *pair;
1081 uint64_t used = O; 1147 for (pair = nvlist_next_nvpair(ch->cb_nvl, NULL);
1082 if (err == O) { 1148 pair !'= NULL;
1083 err | zc_snaprange_. space(cb >cb_firstsnap, 1149 pair = nvlist_next_nvpair(cb->cb_nvl, pair)) {
1084 cb >cb_prevsnap, &used); 1150 zfs_handle_t *zhp = zfs_open(g_ zfs nvpai r_nanme(pair),
1085 } 1151 “ZFS_TYPE_SNAPSHOT) ;
1086 cb->cb_snapused += used; 1152 if (zhp '= NULL) {
1087 free(cb->cb_firstsnap); 1153 bool ean_t defer = cb->cb_defer_destroy;
1088 cb->cb_firstsnap = NULL; 1154 int err = 0;
1089 free(cb->cb_prevsnap);
1090 cb->cb_prevsnap = NULL; 1156 /*
1091 } 1157 * W can’t defer destroy non-snapshots, so set it to
1092 return (err); 1158 * false while destroying the clones.
1093 } 1159 */
1160 ch- >cb def er _destroy = B_FALSE;
1095 static int 1161 err = zfs_iter_dependents(zhp, B_FALSE,
1096 snapshot_to_nvl _cb(zfs_handle_t *zhp, void *arg) 1162 destroy_cal | back, cb);
1097 { 1163 cb->cb_defer_destroy = def er;
1098 destroy_cbdata_t *cb = arg; 1164 zfs_cl ose(zhp);
1099 int err = 0; 1165 if (err 1=0)
1166 return (err);
1101 /* Check for clones. */ 1167 }
1102 if (!cb->cb_docl ones && !cb->cb_defer_destroy) { 1168 }
1103 cb->cb_target = zhp; 1169 return (0);
1104 cb->cb_first = B_TRUE; 1170 }
1105 err = zfs_iter_dependents(zhp, B_TRUE,
1106 destroy_check_dependent, cb); 1172 static int
1107 } 1173 zfs_do_destroy(int argc, char **argv)
1174 {
1109 if (err == 0) { 1175 destroy_chdata_t cb = { 0 };
1110 if (nvlist_add_bool ean(cb->cb_nvl, zfs_get_nane(zhp))) 1176 int rv = 0;
1111 nomen() ; 1177 int err = 0;
1112 } 1178 int c;
1113 zfs_cl ose(zhp); 1179 zfs_handle_t *zhp = NULL;
1114 return (err); 1180 char *at;
1115 } 1181 zfs type t type = ZFS TYPE DATASET;

new usr/src/cnd/ zf s/ zfs_main. c 19

1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216

1218
1219

1221
1222
1223
1224
1225
1226
1227
1228
1229

1231
1232

1234
1235

1237
1238
1239
1240
1241

1243
1244
1245
1246
1247
1248

/* chec
while (

}

argc -=
argv +=

/* chec
if (arg

}
if (arg

}

at = st
if (at

k options */
(c = getopt(argc, argv, "vpndfrR')) !=-1) {
switch (c) {
case 'V':
ch. cb_verbose = B_TRUE;
break;
case 'p’:
cb. cb_verbose = B_TRUE;
ch. cb_parsabl e = B_TRUE;
br eak;
case 'n’':
cb.cb_dryrun = B_TRUE;
br eak;
case 'd':
ch. cb_defer_destroy = B_TRUE;
type = ZFS TYPE_SNAPSHOT;
br eak;
case 'f’:
ch.cb_force = B_TRUE;
br eak;
case 'r’:
ch. cb_recurse = B_TRUE;
break;
case 'R :
cb.cb_recurse = B_TRUE;
ch. cb_docl ones = B_TRUE;
break;
case ' ?:
defaul t:
(void) fprintf(stderr, gettext("invalid option %’ \n"),
optopt);
usage(B_FALSE) ;
}
optind;
optind;
k nunmber of arguments */

c == 0)
(void) fprintf(stderr, gettext("m ssing dataset argunent\n"));
usage(B_FALSE) ;

c>1) {
(void) fprintf(stderr, gettext("too many argunents\n"));
usage(B_FALSE) ;

rchr(argv[0], ' @);

I'= NULL) {

/* Build the list of snaps to destroy in cb_nvl. */
cb.cb_nvl = fnvlist_alloc();

*at = '\0";

zhp = zfs_open(g_zfs, argv[O0],
ZFS_TYPE_FI LESYSTEM | ZFS_TYPE_VOLUME) ;
if (zhp == NULL)
return (1);

ch. cb_snapspec = at + 1;
if (gather_snapshots(zfs_handl e_dup(zhp), &cb) !'=0 ||
ch.cb_error) {
rv =1;
goto out;

new usr/src/cnd/ zf s/ zfs_main. c 20
1250 if (nvlist_enpty(cb.cb_nvl))

1251 (void) fprintf(stderr, gettext("could not find any "
1252 "snapshots to destroy; check snapshot names.\n"));
1253 rv =1,

1254 goto out;

1255 }

1257 if (cb.cb_verbose) {

1258 char buf[16];

1259 zfs_ni cenunm(cb. cb_snapused, buf, sizeof (buf));

1260 if (cb.cb_parsable) {

1261 (void) printf("reclaimt%]|u\n",

1262 cb. cb_snapused);

1263 } else if (cb.cb_dryrun)

1264 (void) printf(gettext("would reclaim%\n"),
1265 buf);

1266 } else {

1267 (void) printf(gettext("will reclaim%\n"),
1268 buf);

1269 }

1270 }

1272 if (!cb.cb_dryrun) {

1273 if (cb.cb_doclones) {

1274 cbh. cb_bat chedsnaps = fnvlist_alloc();

1275 err = destroy_cl ones(&cb);

1276 if (err ==

1277 err = zfs_destroy_snaps_nvl (g_zfs,
1278 ch. cb_bat chedsnaps, B_FALSE);
1279 }

1280 if (err 1=0) {

1281 rv = 1;

1282 goto out;

1283 }

1284 }

1285 if (err == 0)

1286 err = zfs_destroy_snaps_nvl (g_zfs, cb.cb_nvl,
1287 cb. cb_def er _destroy);

1288 }

1289 }

1291 if (err 1= 0)

1292 rv = 1;

1293 } else {

1294 /* Open the given dataset */

1295 if ((zhp = zfs_open(g_zfs, argv[0], type)) == NULL)

1296 return (1);

1298 cb.cb_target = zhp;

1300 /*

1301 * Performan explicit check for pools before going any further.
1302 */

1303 if (!cb.cb_recurse & strchr(zfs_get_name(zhp), '/') == NULL &&
1304 zfs_get _type(zhp) == ZFS_TYPE_FI LESYSTEM

1305 (void) fprintf(stderr, gettext("cannot destroy '%’:
1306 "operation does not apply to pools\n"),

1307 zfs_get _nane(zhp));

1308 (void) fprintf(stderr, gettext("use 'zfs destroy -r "
1309 "Os’ to destroy all datasets in the pool\n"),
1310 zfs_get _nane(zhp))

1311 (void) fprintf(stderr, gettext("use 'zpool destroy %' "
1312 "to destroy the pool itself\n"), zfs_get_name(zhp));
1313 rv = 1;

1314 goto out;

new usr/src/cmd/ zf s/ zfs_main. c

1315

1317
1318
1319
1320
1321
1322
1323
1324
1325
1326

1328
1329
1330
1331

1333
1334
1335
1336
1337
1338

1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352

1354
1355
1356
1357
1358
1359
1360

1362
1363
1364
1365
1366

1368
1369
1370
1371
1372
1373

1375
1376
1377
1378
1379
1380

}

/*

* Check for any dependents and/or clones.
*/

ch.cb_first = B_TRUE;

if (!cb.cb_doclones &&

zfs_iter_dependents(zhp, B_TRUE, destroy_check_dependent,

&ch) 1'=0) {
rv =1,
goto out;

}

if (cb.cb_error) {
rv =1;

goto out;

}

ch. cb_bat chedsnaps = fnvlist_alloc();
if (zfs_iter_dependents(zhp, B_FALSE, destroy_call back,
{

&ch) = 0)
rv =1;
goto out;
}
/*
* Do the real thing. The callback will close the
* handl e regardl ess of whether it succeeds or not.
*
/
err = destroy_cal | back(zhp, &cb);
zhp = NULL;

if (err == 0) {
err = zfs_destroy_snaps_nvl (g_zfs,
ch. cb_bat chedsnaps, chb.cb_defer_destroy);

}
if (err 1=0)
rv =1,
}
out :
fnvlist_free(ch.cb_batchedsnaps);
fnvlist_free(cb.cb_nvl);
if (zhp !'= NULL)
zfs_cl ose(zhp);
return (rv);
}

static bool ean_t
i s_recvd_col um(zprop_get_chdata_t *cbp)
{

int i;
zfs_get _colum_t col;

for (i =0; i < ZFS_GET_NCOLS &&
(col = cbp->cb_colums[i]) != GET_COL_NONE; i ++)
if (col == GET_COL_RECVD)
return (B_TRUE);
return (B_FALSE);

}
/*
* zfs get [-rHp] [-o0 all | field[,field]...] [-s source[,source]...]
* < all | property[,property]... > < fs | snap | vol > ...
*
* -r recurse over any child datasets
* -H scripted node. Headers are stripped, and fields are separated

new usr/src/cnmd/ zf s/ zfs_main. c

1381 * by tabs instead of spaces.

1382 * -0 Set of fields to display. One of "nane, property, val ue,
1383 * received, source". Default is "nane, property, val ue, source".
1384 * "all" is an alias for all five.

1385 * -s Set of sources to allow. One of

1386 * "l ocal , defaul t,inherited,received, tenporary, none". Default is
1387 * all six.

1388 * -p Di splay values in parsable (literal) fornat.

1389 *

1390 * Prints properties for the given datasets. The user can control which
1391 * columms to display as well as which property types to allow

1392 */

1394 /*

1395 * Invoked to display the properties for a single dataset.

1396 */

1397 static int

1398 get _cal | back(zfs_handl e_t *zhp, void *data)

1399 {

1400 char buf [ZFS_MAXPROPLEN ;

1401 char rbuf [ZFS_MAXPROPLEN ;

1402 zprop_source_t sourcetype;

1403 char source[ZFS_MAXNAMELEN ;

1404 zprop_get _cbdata_t *cbp = data;

1405 nvlist_t *user_props = zfs_get_user_props(zhp);

1406 zprop_list_t *pl = cbp->cb_proplist;

1407 nvlist_t *propval;

1408 char *strval;

1409 char *sourceval ;

1410 bool ean_t received = is_recvd_col um(chp);

1412 for (; pl !'= NULL; pl = pl->pl_next) {

1413 char *recvdval = NULL;

1414 /*

1415 * Skip the special fake placeholder. This will also skip over
1416 * the nane property when 'all’ is specified.

1417 *

1418 if (pl->pl_prop == ZFS_PROP_NAME &&

1419 pl == cbp->cb_proplist)

1420 cont i nue;

1422 if (pl->pl_prop !'= ZPROP_I NVAL) {

1423 I f (zfs_prop_get(zhp, pl->pl_prop, buf,

1424 si zeof (buf), &sourcetype, source,

1425 si zeof (source),

1426 cbp->cb_literal) !'=0) {

1427 if (pl->pl_all)

1428 conti nue;

1429 if (lzfs_prop_valid_for_type(pl->pl_prop,
1430 ZFS_TYPE_DATASET)) {

1431 (void) fprintf(stderr,

1432 gettext("No such property '%’'\n"),
1433 zfs_prop_to_nanme(pl->pl _prop));
1434 conti nue;

1435 }

1436 sour cetype = ZPROP_SRC_NONE;

1437 (void) strlcpy(buf, "-", sizeof (buf));
1438 }

1440 if (received & (zfs_prop_get_recvd(zhp,

1441 zfs_prop_to_nanme(pl->pl _prop), rbuf, sizeof (rbuf),
1442 cbp->cb_literal) == 0))

1443 recvdval = rbuf;

1445 zprop_print_one_property(zfs_get_nane(zhp), cbp,
1446 zfs_prop_t o_nane(pl ->pl _prop),

22

new usr/src/cmd/ zf s/ zfs_main. c

1447 buf, sourcetype, source, recvdval);

1448 } else if (zfs_prop_userquota(pl - >p| user _prop)) {

1449 sour cetype = ZPROP_SRC_LOCAL;

1451 if (zfs_prop_get_userquota(zhp, pl->pl_user_prop,
1452 buf, sizeof (buf), chbp->cb_literal) !=0) {
1453 sour cetype = ZPROP_SRC_NONE;

1454 (void) strlcpy(buf, "-", sizeof (buf));
1455 }

1457 zprop_print_one_property(zfs_get_nane(zhp), cbp,
1458 pl - >pl _user_prop, buf, sourcetype, source, NULL);
1459 } else if (zfs_prop_witten(pl- >p| user _prop)) {

1460 sour cetype = ZPROP_SRC LOCAL;

1462 if (zfs_prop_get_witten(zhp, pl->pl_user_prop,
1463 buf, si zeof (buf) cbp->cb_literal) !'= 0) {
1464 sourcetype = ZPROP > SRC_NONE;

1465 (void) strlcpy(buf, "-", sizeof (buf));
1466 }

1468 zprop_print_one_property(zfs_get_nane(zhp), cbp,
1469 pl - >pl _user_prop, buf, sourcetype, source, NULL);
1470

1471 if (nvlist_lookup_nvlist(user_props,

1472 pl ->pl _user_prop, &propval) !'= 0) {

1473 if (pl->pl_all)

1474 conti nue;

1475 sourcetype = ZPR(JD SRC_NONE;

1476 strval = "-";

1477 } else {

1478 verify(nvlist_| ookup_string(propval,

1479 ZPROP_VALUE, &strval) == 0);

1480 verify(nvlist_| ookup_string(propval,
1481 ZPROP_SOURCE, &sourceval) == 0);
1483 if (strcnp(sourceval,

1484 zfs_get nar're(zhp)) == 0) {

1485 sour cetype = ZPROP_SRC LOCAL;
1486 } else if (strcnp(sourceval,

1487 ZPROP_SOURCE_VAL_RECVD) == 0) {
1488 sour cetype = ZPROP_SRC_RECEI VED;
1489 } else {

1490 sourcetype = ZPROP_SRC | NHERI TED;
1491 (void) strlcpy(source,

1492 sourceval , sizeof (source));
1493 }

1494 }

1496 if (received & (zfs_prop_get_recvd(zhp,

1497 pl ->pl _user_prop, rbuf, sizeof (rbuf),

1498 cbp->cb_liter aI) == 0))

1499 recvdval = rbuf

1501 zprop_print_one_property(zfs_get_nane(zhp), cbp,
1502 pl - >pl _user_prop, strval, sourcetype,

1503 source, recvdval);

1504

1505

1507

1508 }

1510 static int

1511 zfs_do_get(int argc, char **argv)

1512 {

23

new usr/src/cnmd/ zf s/ zfs_main. c

1513
1514
1515
1516
1517
1518
1519

1521
1522
1523
1524
1525
1526
1527
1528
1529

1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561

1563
1564
1565
1566
1567
1568

1570
1571
1572
1573
1574
1575
1576
1577
1578

zpr
int
int
int
int

/*

op_get_chdata_t cb = { 0 };
1, c, flags = ZFS_| TER_ARGS_CAN_BE_PATHS;
types = ZFS _TYPE DATASET;
char *val ue,

ret = 0;

i

limt = 0;
zprop_list_t fake_name = { 0 };

el ds;

* Set up default columms and sources.

| *
whi

[O
[1
[2
e

.cb sources = ZPROD SRC ALL;
.cb_col urms
.cb_col urms
.cb_col urms
.cb_col urms _COL_
.cb_type = ZFS_TYPE_DATASET;

A8
888
PEE

check optlons */

le ((c =

switch
p

case

case

case

case ’

case

case ’

get?pg(({argc argv, ":d:o:s:rt:Hp")) !'=-1) {

ch.cb_literal = B_TRUE;
br eak;

Td

-

limt = parse_depth(optarg, &flags);

br eak;

£l ags | = ZFS_I TER_RECURSE;
br eak

cb. cb_scripted = B_TRUE;

br eak;

tvoid) fprintf(stderr, gettext("m ssing argunment for "

"'o¢’ option\n"), optopt);
usage(B_FALSE) ;
br eak;
}*
* Process the set of columms to display.

* the structure to give us a blank slate.

*/

We zero out

bzer 0(&cb cb_col ums, sizeof (cb.cb_colums));

V\,hlle (*optarg !'="\0") {
static char *col subopts[] =

{ "nane", property , "val ue",

"source", "all", NULL };

if (i == ZFS_GET_NCOLS)

"received",

(va) fprintf(stderr, gettext("too "

' many flel ds given to
"option\n"));
usage(B_FALSE);

o "

}
switch (getsubopt(&optarg, col_subopts,
&val ue)) {

case O:
cb. cb_col ums[i ++] = GET_COL_NAME;
br eak;

case 1:
ch. cb_col ums[i ++] = CGET_COL_PROPERTY;
br eak;

case 2:

new usr/src/cnd/ zf s/ zfs_main. c 25

1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
A595]
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611

1613
1614
1615
1616
1617
1618
1619

1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

cb. cb_col ums[i ++] = GET_COL_VALUE;

br eak;
case 3:
cbh. cb_colums[i ++] = GET_COL_RECVD,
flags | = ZFS_| TER_ RECVD PROPS;
br eak;
case 4
cb. cb_colums[i ++] = GET_COL_SOURCE;
br eak;
case 5:
if (i >0 {
(void) fprintf(stderr
gettext("\"all\" conflicts "
"wWith specific fields "
"given to -0 option\n"));
usage(B_FALSE) ;
ch. cb_col ums[0] = GET_COL_NAME;
cb. cb_col ums[1] = GET_COL_PROPERTY;
cb. cb_col ums[2] = GET_COL_VALLUE;
cb. cb_col ums[3] = GET_COL_RECVD;
cb. cb_col ums[4] = GET_COL_SOURCE;
flags "| = ZFS_I TER_RECVD PROPS;
i ZFS_GET_NCOLS;
br eak;
defaul t:
(void) fopri ntf(stderr,
gettext("invalid colum name "
" 9s’\n"), value);
usage(B_FAL E)
}
}
br eak;
case 's’:
cb.cbhb _sources = 0;
whi l e (* optarg !'="\0")
static char *source subopts[] = {
"local", "default", "inherited",
"recei ved", "terrporary", "none",
NULL };
switch (getsubopt (&optarg, source_subopts,
&val ue))
case O:
ch. cb_sources | = ZPROP_SRC _LOCAL;
br eak;
case 1:
cb. cb_sources | = ZPROP_SRC_DEFAULT;
br eak;
case 2:
ch. cb_sources | = ZPROP_SRC_|I NHERI TED;
br eak;
case 3:
cb. cb_sources | = ZPROP_SRC_RECEI VED,
br eak;
case 4:
ch. cb_sources | = ZPROP_SRC_TEMPORARY;
br eak;
case 5:
ch. cb_sources | = ZPROP_SRC_NONE;
br eak;
defaul t:

(void) fprintf(stderr,
gettext("invalid source "
"' os’\n"), value);

new usr/src/cmd/ zf s/ zfs_main.c

1645
1646
1647
1648

1650
1651
1652
1653
1654
1655

1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670

1672
1673
1674
1675
1676
1677
1678
1679

1681
1682
1683
1684
1685
1686

1688
1689

1691
1692
1693
1694
1695

1697

1699
1700
1701

1703
1704

1706
1707
1708
1709
1710

}

case

case

Y

—~
*11

break;

?’

26
usage(B_FALSE);

0;
~ZFS_| TER_PROP_LI STSNAPS;

optarg !'="\0")

static char *type_subopts[] = { "filesysteni,

"vol

ume", "snapshot", "all", NULL };

switch (getsubopt(&optarg| type_subopt s,
{

&val

case O:

case 1:

case 2:

case 3:

defaul t:

ue))

types | = ZFS_TYPE_FI LESYSTEM
br eak;

types | = ZFS_TYPE VOLUME,
br eak;

types | = ZFS_TYPE_SNAPSHOT;
br eak;

types = ZFS_TYPE_DATASET,;
br eak;

(void) fprintf(stderr,
gettext("invalid type '%’'\n"),
val ue) ;

usage(B_FALSE) ;

(void) fprintf(stderr, gettext("invalid option "%’ \n"),
optopt) ;
usage(B_FALSE) ;

argc -= optind;
argv += optind;

fprintf(s
rgunment\n"
B_FALSE) ;

0l;

B_FALSE) ;

t
)

_list(g_zfs,

d
)

err, g

fields,

ettext("m ssing property "

&cb. cb_proplist, ZFS TYPE_DATASET)

As part of zfs_expand_proplist(), we keep track of the maxi mum col um

width for each property.

if (argc < 1)
(voi d)
"a
usage(
}
fields = argv|
if (zprop_get
1=0
usage(
argc--;
ar gv++
/*
*

For

the ' NAME (and ' SOURCE) col umms, we

need to know the maxi mum narme | ength. However, the user likely did
"nanme’ as one of the properties to fetch, so we need to

not specify

new usr/src/cnd/ zf s/ zfs_main. c 27

1711
1712
1713
1714
1715
1716
1717
1718
1719

1721

1723
1724
1725

1727
1728
1729
1730

1732
1733 }
/

1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746

* Ok Ok ok Ok Ok OF % bk O

* make sure we always include at |east this property for
* print_get_headers() to work properly.
*

/

if (cb.cb_proplist !'= NULL) {
fake_name. pl _prop = ZFS_PROP_NAME;
fake_nane. pl _width = strlen(gettext("NAVE"));
fake_name. pl _next = cb.cb_proplist;
cb.cb_proplist = &f ake_nane;

}
cb.cb_first = B_TRUE;

/* run for each object */
ret = zfs_for_each(argc, argv, flags, types, NULL,
&cb.cb_proplist, limt, get_callback, &cb);

if (cb.cb_proplist == &f ake_nane)
zprop_free_list(fake_nane. pl _next);
el se
zprop_free_list(cb.cb_proplist);

return (ret);

inherit [-rS] <property> <fs|vol> ...

-r Recurse over all children
-S Revert to received value, if any

For each dataset specified on the command |ine, inherit the given property
fromits parent. Inheriting a property at the pool level will cause it to
use the default value. The '-r’ flag will recurse over all children, and is
useful for setting a property on a hierarchy-w de basis, regardl ess of any
local nodifications for each dataset.

1748 typedef struct inherit_cbdata {

1749
1750
1751 }

const char *cb_propnaneg;
bool ean_t cb_recei ved;

inherit_chbhdata_t;

1753 static int
1754 inherit_recurse_cb(zfs_handle_t *zhp, void *data)

1755 {
1756
1757

1759
1760
1761
1762
1763
1764
1765

1767
1768 }

inherit_cbdata_t *cb = data;
zfs_prop_t prop = zfs_nanme_to_prop(cb->cb_propnane);

*

* |f we're doing it recursively, then ignore properties that
* are not valid for this type of dataset.
*/
if (prop != ZPROP_I NVAL &&
lzfs_prop_valid_for_type(prop, zfs_get_type(zhp)))
return (0);

return (zfs_prop_inherit(zhp, cb->cb_propnane, cb->cb_received) != 0);

1770 static int
1771 inherit_cb(zfs_handl e_t *zhp, void *data)

1772 {
1773

1775
1776 }

inherit_cbdata_t *cb = data;

return (zfs_prop_inherit(zhp, cb->cb_propnane, cb->cb_received) != 0);

new usr/src/cnmd/ zf s/ zfs_main. c

28

1778 static int
1779 zfs_do_inherit(int argc, char **argv)

1780 {
1781
1782
1783
1784
1785
1786
1787

1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804

1806
1807

1809
1810
1811
1812
1813
1814
1815
1816
1817

1819
1820
1821

1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842

int c;

zfs_prop_t prop;
inherit_cbdata_t cb = { 0 };
char *propnane;

int ret = 0;

int flags = 0;

bool ean_t received = B_FALSE;

/* check options */

while ((c = getopt(argc, argv, "rS")) !=-1) {
switch (c) {
case 'r’:
flags | = ZFS_| TER_RECURSE;
break;
case 'S :
recei ved = B_TRUE;
br eak;
case ' ?':
defaul t:
(void) fprintf(stderr, gettext("invalid option %’ \n"),
opt opt);
usage(B_FALSE);
}

}

argc -= optind;
argv += optind;

/* check nunber of arguments */

if (argc < 1)
(void) fprintf(stderr, gettext("mi ssing property argunent\n"));
usage(B_FALSE) ;

}

if (argc < 2)
(void) fprintf(stderr, gettext("mi ssing dataset argument\n"));
usage(B_FALSE) ;

}

propnanme = argv[O0];
argc--;
ar gv++;

if ((prop = zfs_nanme_to_prop(propnane)) != ZPROP_I NVAL) {
1f (zfs_prop_readonly(prop)) {
(void) fprintf(stderr, gettext(
"Us property is read-only\n"),
propnane) ;
return (1);

}
1f (!zfs_prop_inheritable(prop) &k !received) {
(void) fprintf(stderr, gettext("' %’ property cannot
"be I nherited\n"), propnane);
if (prop == ZFS_PROP_QUOTA ||
prop == ZFS_PROP_RESERVATI ON | |
prop == ZFS_PROP_REFQUOTA | |
prop == ZFS_PROP_REFRESERVATI ON)
(void) fprintf(stderr, gettext("use ’'zfs set
"Us=none’ to clear\n"), propnane);

return (1);

}
i1f (received & (prop == ZFS_PROP_VOLSI ZE | |
prop == ZFS_PROP_VERSION)) {

new usr/src/cmd/ zf s/ zfs_main. c

1843 (void) fprintf(stderr, gettext("' %’ property cannot
1844 "be reverted to a received value\n"), propnane);
1845 return (1);

1846 }

1847 } else if (!zfs_prop_user(propnane)) {

1848 (void) fprintf(stderr, gettext("invalid property '%’'\n"),
1849 propnane) ;

1850 usage(B_FALSE) ;

1851 }

1853 cb. cb_propnane = propnang;

1854 cb.cb_received = received;

1856 if (flags & ZFS_| TER RECURSE) {

1857 ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_DATASET,
1858 NULL, NULL, O, inherit_recurse_cbh, &cb);

1859 } else {

1860 ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_DATASET,
1861 NULL, "NULL, 0, inherit_ch, &chb);

1862 }

1864 return (ret);

1865 }

1867 typedef struct upgrade_cbdata {

1868 ui nt64_t cb_nunupgr aded;

1869 uint64_t cb _nunsanmegr aded;

1870 uint64_t ch_nunfail ed;

1871 uint64_t cb_version;

1872 bool ean_t cb_newer;

1873 bool ean_t cb_f oundone;

1874 char cb_l astfs[ZFS_MAXNAMELEN ;

1875 } upgrade_cbdata_t;

1877 static int

1878 sane_pool (zfs_handl e_t *zhp, const char *nane)

1879 {

1880 int lenl = strcspn(nane, "/ @);

1881 const char *zhnane = zfs get nama(zhp)

1882 int len2 = strcspn(zhnarre "T@);

1884 if (lenl !=1len2)

1885 return (B_FALSE);

1886 return (strncnp(nanme, zhnane, |enl) == 0);

1887 }

1889 static int

1890 upgrade_list_call back(zfs_handle_t *zhp, void *data)

1891 {

1892 upgr ade_cbdata_t *cb = data;

1893 int version = zfs_prop_get_int(zhp, ZFS_PROP_VERSI ON);

1895 /* list if it's old/ new */

1896 if ((!cb->cb_newer && version < ZPL_VERSION) ||

1897 (cb->cb_newer && version > ZPL_VERSION)) {

1898 char *str;

1899 if (cb->cb_newer) {

1900 str = gettext("The following filesystens are "

1901 "formatted using a newer software version and\n"
1902 "cannot be accessed on the current system\n\n");
1903 } else {

1904 str = gettext("The following filesystens are "

1905 "out of date, and can be upgraded. After being\n"
1906 "upgraded, these filesystens (and any 'zfs send "
1907 "streans generated from n"

1908 "subsequent snapshots) will no | onger be "

new usr/src/cmd/ zf s/ zfs_main.c

1909 "accessi bl e by ol der software versions.\n\n");
1910 }

1912 if (!cb->cb_foundone) {

1913 (void) puts(str);

1914 (void) pri ntf(gettext(VER FI LESYSTEM n))
1915 (voi d) pnntf(gettext(TP));
1916 cb->cb_f oundone = B_TRUE;

1917 }

1919 (void) printf("%u %\ n", version, zfs_get_nane(zhp));
1920 }

1922 return (0);

1923 }

1925 static int

1926 upgrade_set_cal | back(zfs_handl e_t *zhp, void *data)

1927 {

1928 upgr ade_ cbdata t *cb = data;

1929 int version = zfs _prop_get _int (zhp, ZFS_PROP_VERSI ON);

1930 int needed_spa_version;

1931 int spa_version;

1933 if (zfs_spa_version(zhp, &spa_version) < 0)

1934 return (-1);

1936 needed_spa_versi on = zfs_spa_versi on_nmap(cbh->cb_version);

1938 if (needed_spa_version < 0)

1939 return (-1);

1941 if (spa_version < needed_spa_version) {

1942 /* can’'t upgrade *

1943 (void) printf(gettext("%: can not be "

1944 "upgraded; the pool version needs to first

1945 "be upgraded\nto version %\ n\n"),

1946 zfs_get _nane(zhp), needed_spa_version);

1947 ch->cb_nunf ai | ed++;

1948 return (0);

1949 }

1951 /* upgrade */

1952 if (version < cb->cb_version) {

1953 char verstr[16];

1954 (voi d) snprl ntf(ver str, sizeof (verstr),

1955 "% 1 u", cb->cb_version);

1956 if (cb- >cb_| astfs[0] && lsame_pool (zhp, cb->cb_lastfs)) {
1957 /*

1958 * |f they did "zfs upgrade -a", then we could
1959 * be doing ioctls to different pools. W need
1960 * to log this history once to each pool, and bypass
1961 * the normal history |ogging that happens in main().
1962 */

1963 (void) zpool _log_history(g_zfs, history_str);
1964 I og_hi story = B_FALSE;

1965

1966 i1f (zfs_prop_set(zhp, "version", verstr) == 0)

1967 cb->cb_nunupgr aded++;

1968 el se

1969 cb->cb_nunf ai | ed++;

1970 (void) strcpy(cb->cb_lastfs, zfs_get_nane(zhp));

1971 } else if (version > ch->cb_version) {

1972 /* can’t downgrade */

1973 (void) printf(gettext("%: can not be downgraded;

1974 "it is already at version %\n"),

30

new usr/src/cmd/ zf s/ zfs_main. c 31 new usr/src/cnd/ zf s/ zfs_main. c 32
1975 zfs_get_nanme(zhp), version); 2041 (voi d) pri ntf(gettext(The following fil esystemversions are "
1976 ch->cb_nunf ai | ed++; 2042 "supported:\n\n"));
1977 } else { 2043 (void) printf(gettext("VER DESCRI PTION\N"));
1978 cb->cb_nunsanegr aded++; 2044 (voi d) Printf (M em s e "
1979 } 2045 Moo \ n")
1980 return (0); 2046 (void) printf(gettext(" 1 Initial ZFS filesystemversion\n"));
1981 } 2047 (void) printf(gettext(" 2 Enhanced directory entries\n"));
2048 (voi d) printf(gettext(" 3 Case insensitive and filesystem"
1983 /* 2049 "user identifier (FUD\nN"));
1984 * zfs upgrade 2050 (voi d) pri ntf(gettext(' 4 userquota, groupquota "
1985 * zfs upgrade -v 2051 "properties\n"));
1986 * zfs upgrade [-r] [-V <version>] <-a | filesystenr 2052 (void) pri ntf(gettext(" 5 System attributes\n"));
1987 */ 2053 (voi d) printf(gettext("\nFor nore information on a particular "
1988 static int 2054 ‘version, including supported releases,\n"));
1989 zfs_do_upgrade(int argc, char **argv) 2055 (v0| d) pr| ntf("see the ZFS Adm ni stration Gui de. \ n\ n”);
1990 { 2056
1991 bool ean_t all = B_FALSE; 2057 } else |f (argc || all) {
1992 bool ean_t showersi ons = B_FALSE; 2058 * Upgrade fil esystems */
1993 int ret = 0; 2059 |f (cb.cb_version == 0)
1994 upgrade_chdata_t cb = { 0 }; 2060 cb. cb_version = ZPL_VERSI ON,
1995 char c; 2061 ret = zfs_for_each(argc, argv, flags, ZFS TYPE FI LESYSTEM
1996 int flags = ZFS_| TER_ARGS_CAN_BE_PATHS; 2062 NULL, NULL, O, upgr ade_set _cal I back, &cb);
2063 (void) printf(gettext("%Ilu filesystems upgraded\n"),
1998 /* check 0pt| ons */ 2064 cb. cb_nunupgr aded) ;
1999 while ((c = getopt(argc, argv, "rvVv:a")) !=-1) { 2065 if (cb.cb_nunmsanegraded) {
2000 switch (c) { 2066 (void) printf(gettext("%Ilu filesystens already at
2001 case 'r’: 2067 "this version\n"),
2002 flags | = ZFS_| TER_RECURSE; 2068 cb. cb_nunsanegr aded) ;
2003 br eak; 2069 }
2004 case 'V’ 2070 if (cb.cb_nunfailed != 0)
2005 shower si ons = B_TRUE; 2071 ret = 1;
2006 br eak; 2072 } else {
2007 case 'V : 2073 /* List old-version filesytems */
2008 if (zfs_prop_string_to_index(ZFS_PROP_VERSI ON, 2074 bool ean_t found;
2009 optarg, &cb.cb_version) !'= 0) { 2075 (void) printf(gettext("This systemis currently running "
2010 (void) fprintf(stderr, 2076 "ZFS filesystemversion %lu.\n\n"), ZPL_VERSION);
2011 gettext("invalid version %\n"), optarg);
2012 usage(B_FALSE) ; 2078 flags | = ZFS_I TER_RECURSE;
2013 } 2079 ret = zfs_for_each(0, NULL, flags, ZFS_TYPE_FI LESYSTEM
2014 break; 2080 NULL, NULL, 0, upgrade_list_callback, &ch);
2015 case 'a’:
2016 all = B_TRUE; 2082 found = cb. cb_f oundone;
2017 break; 2083 ch. cb_f oundone = B_FALSE;
2018 case '?': 2084 ch. cb_newer = B_TRUE;
2019 defaul t:
2020 (void) fprintf(stderr, gettext("invalid option %’ \n"), 2086 ret = zfs_for_each(0, NULL, flags, ZFS_TYPE_FILESYSTEM
2021 optopt); 2087 NULL, NULL, O, upgrade_list_callback, &cb);
2022 usage(B_FALSE);
2023 } 2089 if (!cb.cb_foundone && !found) {
2024 } 2090 (void) printf(gettext("Al filesystens are "
2091 "formatted with the current version.\n"));
2026 argc -= optind; 2092 }
2027 argv += optind; 2093 }
2029 if ((tall & 'argc) && ((flags & ZFS_I TER RECURSE) | cb.cb_version)) 2095 return (ret);
2030 usage(B_FALSE) ; 2096 }
2031 if (showersions && (fI ags & ZFS_ I TER RECURSE || all ||
2032 cb.cb_version || argc)) 2098 /*
2033 usage(B_FALSE) ; 2099 * zfs userspace [-Hinp] [-o field[,...]] [-s field [-s field].
2034 if ((all || argc) &&(show/ersmns)) 2100 * [-Sfield [-Sfield]...] [-t type[,...]] f||esystem| snapshot
2035 usage(B_FALSE) ; 2101 * zfs groupspace [-Hinp] [-o field[,...]] [-sfield[s field]...]
2036 if (all &% argc) 2102 * [-Sfield [-Sfield]...] [-t type[,...]] fllesysteml snapshot
2037 usage(B_FALSE); 2103 *
2104 * -H Scripted node; elide headers and separate columms by tabs.
2039 if (showersions) { 2105 * - Translate SID to PCSI X | D.
2040 /* Show i nfo on avail abl e versions. */ 2106 * -n Print nuneric ID instead of user/group nane.

new usr/src/cmd/ zf s/ zfs_main. c 33 new usr/src/cnmd/ zf s/ zfs_main. c

2107 * -0 Control which fields to display. 2173 int i;
2108 * -p Use exact (parseable) nuneric output.
2109 * -s Speci fy sort colums, descending order. 2175 for (i = 0; i < USFIELD LAST; i++) {
2110 * - Speci fy sort colums, ascendi ng order. 2176 if (strenp(field, us_field_nanes[i]) == 0)
2111 * -t Control which object types to display. 2177 return (i);
2112 * 2178 }
2113 * Di spl ays space consuned by, and quotas on, each user in the specified
2114 * filesystem or snapshot. 2180 return (-1);
2115 */ 2181 }
2117 /* us_field_types, us_field_hdr and us_field_nanmes should be kept in sync */ 2183 static int
2118 enumus_field_types { 2184 us_conpare(const void *larg, const void *rarg, void *unused)
2119 USFI ELD_TYPE, 2185 {
2120 USFI ELD_NAMNE, 2186 const us_node_t *I = larg;
2121 USFI ELD_USED, 2187 const us_node t *r = rarg;
2122 USFI ELD_QUCTA 2188 us_sort_info_t *si = (us_sort info_t *)unused;
2123 }; 2189 zfs_sort_colum_t *sortcol = si->si_sortcol;
2124 static char *us_field_hdr[] = { ' YPE "NAME", "USED', "QUOTA" }; 2190 bool ean_t numane = si->si _numane;
2125 static char *us_field_nanes[] = { "t pe , "name", "used", "quota" }; 2191 nvlist_t *Invl =1->usn_nvl;
2126 #define USFI ELD_LAST (sizeof (us_ fi el d_names) / sizeof (char *)) 2192 nvlist_t *rnvl = r->usn_nvl;
2193 int rc = 0;
2128 #define USTYPE_PSX_ GRP (1 << 0) 2194 bool ean_t |vb, rvb;
2129 #define USTYPE PSX USR (1 << 1)
2130 #define USTYPE_SMB GRP (1 << 2) 2196 for (; sortcol !'= NULL; sortcol = sortcol->sc_next) {
2131 #define USTYPE_SMB_ USR (1 << 3) 2197 char *lvstr ="";
2132 #define USTYPE_ALL \ 2198 char *rvstr = "";
2133 (USTYPE_PSX_GRP | USTYPE_PSX_USR | USTYPE_SMB _GRP | USTYPE_SMB_USR) 2199 uint32_t |1v32 = 0;
2200 uint32_t rv32 = 0;
2135 static int us type bits[] = { 2201 uinté4_t Ived4 = 0O;
2136 USTYPE_PSX_GRP, 2202 uint64_t rve4 = 0;
2137 USTYPE_PSX_USR 2203 zfs_prop_t prop = sortcol ->sc_prop;
2138 USTYPE_SMB_GRP, 2204 const char *propnanme = NULL;
2139 USTYPE_SMB_USR, 2205 bool ean_t reverse = sortcol ->sc_reverse;
2140 USTYPE_ALL
2141 }; 2207 switch (prop)
2142 static char *us type names[] = { "posixgroup", "posxiuser", "snbgroup", 2208 case ZFS_PROP_TYPE:
2143 "snmbuser", "all" }; 2209 propnane = "type";
2210 (void) nvlist_| ookup ui nt32(1 nvl, propnanme, & v32);
2145 typedef struct us_node { 2211 (void) nvlist_|ookup_uint32(rnvl, propnane, &rv32);
2146 nvlist_t *usn_nvl ; 2212 if (rv32 !'=1v32)
2147 uu_avl _node_t usn_avl node; 2213 rc = (rv32 <1v32) 2 1: -1;
2148 uu_list_node_t usn_listnode; 2214 br eak;
2149 } us_node_t; 2215 case ZFS_PROP_NAME:
2216 propnane = "name";
2151 typedef struct us_chdata { 2217 if (numane) {
2152 nvlist_t **cb_nvl p; 2218 (void) nvlist_|ookup_uint64(lnvl, propnange,
2153 uu_avl _pool _t *cb_avl _pool ; 2219 &l v64);
2154 uu_avl _t *cb_avl ; 2220 (void) nvlist_lookup_uint64(rnvl, propnane,
2155 bool ean_t cb_numane; 2221 & v64);
2156 bool ean_t cb_ni cenum 2222 if (rv64 1= I v64)
2157 bool ean_t cb_si d2posi x; 2223 = (rve4 <1lved) ? 1: -1,
2158 zf s_userquota_prop_t ch_prop; 2224 } else {
2159 zfs_sort_colum_t *cb_sortcol ; 2225 (void) nvlist_lookup_string(lnvl, propnang,
2160 size_t cb_wi dt h[USFI ELD_LAST] ; 2226 & vstr);
2161 } us_chdata_t; 2227 (void) nvlist_|lookup_string(rnvl, propnang,
2228 &rvstr);
2163 static boolean_t us_popul ated = B_FALSE; 2229 rc = strenp(lvstr, rvstr);
2230 }
2165 typedef struct { 2231 br eak;
2166 zfs_sort_colum_t *si_sortcol; 2232 case ZFS PROP_USED:
2167 bool ean t si _numarne; 2233 case ZFS_PROP_QUOTA:
2168 } us_sort_info_t; 2234 if (!us_popul at ed)
2235 br eak;
2170 static int 2236 if (prop == ZFS_PROP_USED)
2171 us_field_i ndex(char *field) 2237 propnanme = "used";

2172 { 2238 el se

new usr/src/cnd/ zf s/ zfs_main. c 35

2239 propnane = "quota

2240 (void) nvlist_lookup_uint 64(I nvl, propnane, & v64);
2241 (void) nvlist_l ookup_uint64(rnvl, propnane, & v64);
2242 if (rve4 !=1v64)

2243 = (rved4 <Ived) ?2 1 : -1;

2244 break;

2245 }

2247 if (rc!=0) {

2248 if (rc <0)

2249 return (reverse ? 1 : -1);

2250 el se

2251 return (reverse ? -1 : 1);

2252 }

2253 1

2255 /*

2256 * If entries still seemto be the same, check if they are of the sane
2257 * type (snbentity is added only if we are doing SIDto POSIX ID
2258 * transl ati on where we can have duplicate type/ name conbi nations).
2259 *

2260 if (nvlist_| ookup_bool ean_val ue(l nvl, "snbentity", & vb) == 0 &&
2261 nvlist_| ookup_bool ean_val ue(rnvl, "snbentity", &vb) == 0 &&
2262 lvb !'= rvb)

2263 return (Ivb <rvb 2 -1 : 1);

2265 return (0);

2266 }

2268 static inline const char *

2269 us_type2str(unsigned field_type)

2270 {

2271 switch (field_type) {

2272 case USTYPE_PSX_USR:

2273 return (“POSI X User");

2274 case USTYPE_PSX_GRP:

2275 return ("PGSI X Group");

2276 case USTYPE_SNB_USR

2277 return ("SMB User");

2278 case USTYPE_SMB_GCRP:

2279 return ("SMB Goup");

2280 defaul t:

2281 return ("Undefined");

2282 1

2283 }

2285 static int

2286 userspace_cb(void *arg, const char *domain, uid_t rid, uint64_t space)
2287 {

2288 us_chdata_t *cb = (us_cbhdata_t *)arg;

2289 zfs_userquota_prop_t prop = ch->cb_prop;

2290 char *name = NULL;

2291 char *propnane;

2292 char sizebuf[32];

2293 us_node_t *node;

2294 uu_avl _pool _t *avl_pool = cb->cb_avl _pool ;

2295 uu_avl _t *avl = cb->cb_avl;

2296 uu_avl |ndex _t idx;

2297 nvlist_t *props;

2298 us_node_t *n;

2299 zfs_sort_colum_t *sortcol = cb->cb_sortcol;

2300 unsi gned type;

2301 const char *typestr;

2302 si ze_t nanel en;

2303 size_t typelen;

2304 size_t sizelen;

new usr/src/cmd/ zf s/ zfs_main.c

2305
2306
2307

2309
2310
2311
2312
2313

2315
2316
2317
2318
2319
2320
2321

2323
2325

2327
2328
2329
2330
2331
2332
2333

2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346

2348
2349
2350
2351
2352
2353

2355
2356
2357
2358
2359
2360
2361

2363
2364
2365
2366
2367

2369
2370

36
int typeidx, naneidx, sizeidx;
us_sort |nfo t sortinfo = { sortcol cb->cb_numane };
bool ean_t snbentity = B _FALSE;
if (nvlist_alloc(&rops, NV_UNI QUE_NAME, 0) != 0)
nomen() ;

node = safe_mall oc(sizeof (us_node_t));
uu_avl _node_i ni t (node, &node->usn_avl node, avl _pool);

node- >usn_nvl = props;

if (domain !'= NULL & domain[0] !="\0") {
/* SMB */
char sid[ZFS_MAXNAMELEN + 32];
uid_t id;
uint64_t classes;
int err;

directory_error_t e;
snbentity = B_TRUE;
(void) snprintf(sid, sizeof (sid), "%-%", domain, rid);

= ZFS PROP_GROUPUSED || prop == ZFS PROP_GROUPQUOTA) {
type = USTYPE_SMB_GRP;
err = sid_to_id(sid, B FALSE, &id);
} else {
type = USTYPE_SMB_USR
err = sid_to_id(sid, B_TRUE, &id);

if (prop =

}
if (err == O) {
rid =1id
if (!ch- >cb si d2posi x)
e = directory _name_fromsid(NULL, sid, &nane,
&cl asses) ;
if (e !'= NULL)
directory_error_free(e);
if (name == NULL)
nane = sid;
}
}
}
if (cb->cb_sid2posix || domain == NULL || domain[0] =="'\0") {
/* POSI X or -1*/
if (prop == ZFS_PROP_GROUPUSED || prop == ZFS_PROP_GROUPQUOTA) {
type = USTYPE_PSX_GRP,
if (!cb->cb_numane)
struct group *g;
if ((g= getgrgld(rld)) I'= NULL)
= g->gr_nane;
} else {
type = USTYPE_PSX_USR;
if (!cb->cb_numane)
struct passwd *p;
if ((p= getpww d(rid)) !'= NULL)
= p->pw_nane;
}
}
}
/*

* Make sure that the type/name conbination is unique when doi ng

new usr/src/cnd/ zf s/ zfs_main. c 37

2371
2372
2373
2374
2375
2376

2378
2379
2380
2381
2382
2383
2384
2385

2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399

2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412

2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431

2433
2434

2436

* SIDto POSIX ID translation (hence changing the type from SMB to
* POSI X)
*/
if (cb->cb_sid2posix &&
nvl i st_add_bool ean_val ue(props,
nonen()

"snbentity", snbentity) != 0)

/* Cal cul at e/ updat e Wldth of TYPE field */

typestr us_type2str(ty

typelen = strl en(gettext(typestr))

typeidx = us_field_index("type");

if (typelen > cb->ch Wldth[typel dx])
cb->cb_wi dt h[typei dx] = typel en;

if (nvlist_add_uint32(props, "type", type) != 0)
nomen() ;
/* Cal cul ate/update wi dth of NAME field */
if ((cb->cb_numane && cb->cb 5|d2p03|x) || name == NULL) {
if (nvlist_add_uint64(props, "name", rid) != 0)
nomsn()
nanel en = snpri ntf(l\ULL, 0, "%", rid);
} else {
if (nvlist_add_string(props, "nane", nane) != 0)
nomen() ;

nanel en = strlen(nane);

nanei dx = us_fiel d_i ndex("nane");
if (narrel en > cb->cb_wi dth[nanm dx])
cb->cb_wi dt h[narei dx] = nanel en;

/*

* Check if this type/nane conbination is in the list and update it;
* otherw se add new node to the list.

*/

if ((n = uu_avl_find(avl, node, &sortinfo, & dx)) == NULL) {
uu_avl _insert(avl, node, idx);
} else {
nvlist_free(props);
free(node);
node = n;
props = node- >usn_nvl ;

/* Cal cul ate/ update wi dth of USED/ QUOTA fields */
if (cb->cb_nicenum
zfs_ni cenun(space, sizebuf, sizeof (sizebuf));
el se
(v0| d) snprintf(sizebuf, sizeof (sizebuf), "%Iu",
sizelen = st rlen(sizebuf);

space) ;

if (prop == ZFS_ PRO:’ USERUSED || prop == ZFS_PROP_GROUPUSED) {
propnane = "used"
1f (!'nvlist_exist s(props, "quota"))
(void) nvlist_add_uint64(props, "quota", 0);
} else {
propna = "quota";
1f (!'nvlist_exi sts(props "used"))

(v0| d) nvlist_add_uint 64(props, "used", 0);
sizeidx = us_fiel d_i ndex(propnane);
if (si zel en > ch->cb_wi dth[si zel dx])
cb->cb_wi dt h[si zei dx] = si zel en;

if (nvlist_add_uint64(props, propnane, space) != 0)
noment();

return (0);

new usr/src/cmd/ zf s/ zfs_main.c
2437 }

2439 static void
2440 print_us_node(bool ean_t scripted, boolean_t parsable, int *fields, int

2441 size_t *width, us_node_t *node)

2442 {

2443 nvlist_t *nvl = node->usn_nvl;

2444 char val str[ZFS_MAXNAMVELEN] ;

2445 bool ean_t first = B_TRUE;

2446 int cfield = 0;

2447 int field;

2448 uint32_t ustype;

2450 /* Check type */

2451 (void) nvlist_lookup_uint32(nvl, "type", &ustype);

2452 if (!(ustype & types))

2453 return;

2455 while ((field = fiel ds[cf| el d]) != USFIELD LAST) {

2456 nvpalr_t *nvp = NULL;

2457 data_type_t type;

2458 uint32 t val 32;

2459 uint64_t val 64;

2460 char *strval = NULL;

2462 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
2463 if (strcnp(nvpair_nanme(nvp),

2464 us_field_nanmes[field]) == 0)

2465 br eak;

2466 }

2468 type = nvpair_type(nvp);

2469 swtch (type

2470 case DATA_TYPE_UI NT32:

2471 (voi d) nvpair_val ue_uint32(nvp, &val 32);
2472 break;

2473 case DATA TYPE_UlI NT64

2474 (voi d) nvpair_val ue_ui nt64(nvp, &val 64);
2475 break;

2476 case DATA TYPE_STRI NG

2477 (void) nvpair_value_string(nvp, &strval)
2478 br eak;

2479 defaul t:

2480 (void) fprintf(stderr, "invalid data type\n");
2481 }

2483 switch (field) {

2484 case USFI ELD TYPE

2485 strval = (char *)us_type2str(val 32);
2486 br eak;

2487 case USFI ELD_NAME:

2488 if (type == DATA TYPE U NT64) {

2489 (v0| d) sprintf(valstr, "%Ilu", val 64);
2490 strval = valstr;

2491 }

2492 break;

2493 case USFI ELD_USED:

2494 case USFI ELD_QUOTA:

2495 if (type == DATA TYPE_U NT64) {

2496 if (parsable) {

2497 (void) sprintf(valstr, "%Iu",
2498 } else {

2499 zfs_ni cenun(val 64, valstr,
2500 si zeof (valstr));
2501 }

2502 if (field == USFI ELD_QUOTA &&

types,

val 64);

38

new usr/src/cmd/ zf s/ zfs_main. c

2503
2504
2505
2506
2507
2508
2509

2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522

2524
2525
2526

2528
2529

2531
2532
2533

2534 {

2535
2536
2537
2538

2540
2541

2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556

2558
2559
2560
2561
2562
2563

2565
2566

2568

strcnp(val str, "o) == 0)
strval = "none"
el se
strval = valstr;

break;

}
if (Mfirst) {
if (scripted)
(void) printf("\t");

(void) printf(" ");

el se

}
1 f (scrlpted)
oid) printf("u%", strval);
else if (fl eld == USFIELD TYPE || field == USFI ELD_NAME)
(void) printf("%* width[field], strval);
el se
(void) printf("%s", width[field], strval)

first = B_FALSE;
cfiel d++;

}
(void) printf("\n");

static void
print_us(bool ean_t scripted, boolean_t parsable, int *fields, int types,
size_t *width, boolean_t rmmode, uu_avl _t *avl)

us_node_t *node;
const char *col;
int cfield = 0;
int field;

if (!scripted) {
bool ean_t first = B_TRUE;

= fields[cfield]) !

col = gettext(us_field_hd
if (field == USFTELD TYPE
(v0|d) prlnf(flr
hifield],

while ((field = USFI ELD _LAST) {
lfle d]);

[
| f|e|d == USFIELD _NAME) {
st ? "%* " % *st,
col);
} else {
(void) printf(first ? "%s" : " 9§s",
w dth[field], col);

}
first = B_FALSE;
cfiel d++;

) %void) printf("\n");

for (node = uu_avl _first(avl); node; node = uu_avl _next(avl, node)) {

print_us_node(scripted, parsable, fields, types, w dt h, node);

i1 f (rmode)
nvlist_free(node->usn_nvl);

static int
zfs_do_userspace(int argc, char **argv)
2567 {

zfs_handl e_t *zhp

new usr/src/cmd/ zf s/ zfs_main.c

2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594

2596
2597

2599
2600
2601

2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634

zfs_userquota_prop_t p;

uu_avl _pool _t *avl _pool ;

uu_avl _t *avl _tree;

uu_avl _wal k_t *wal k;

char *delim

char deffields[] = "type, nane, used, quot a";
char *ofield =
char *tfield = NULL;
int cfield = 0;
int fields[256];

int i;

bool ean_t scripted = B_FALSE;
bool ean_t prtnum = B_FALSE;
bool ean_t parsabl e = B_FALSE;
bool ean_t si d2posix = B_FALSE;

int ret = 0;
int c;
zfs_sort_colum_t *sortcol = NULL;

int types = USTYPE_PSX_USR | USTYPE SMB_USR;
us_chdata_t cb;

us_node_t *node;

us_node_| _t *rmmode;

uu_list_pool t *listpool;

uu_list_t *list;

uu_avl _index_t idx = 0;

uu_list_index_t idx2 = 0O;

if (argc < 2)
usage(B FALSE) ;

if (strcnp(argv[0], "groupspace") ==
/* Toggl e default group types */
types = USTYPE_PSX_GRP | USTYPE_SMB_GRP;

while ((c = getopt(argc, argv, "nHpo:s:S:t:i")) I=-1) {
switch (c) {
case 'n’:
prtnum = B_TRUE;
break;
case 'H:
scripted = B_TRUE;
br eak;
case 'p’:
parsabl e = B_TRUE;
br eak;
case '0:
ofield = optarg;
break;
case 's’:
case 'S :
if (zfs_add_sort_col urm(&sortcol optarg,
c=='s" ? BFALSE: B TRUE) != 0) {
(void) fpri ntf(stderr
gettext("invalid field "o%’'\n"), optarg);
usage(B_FALSE);
}
break;
case 't’:
tfield = optarg;
break;
case 'i’:
si d2posi x = B_TRUE
br eak;
case ':':

tvoid) fprintf(stderr, gettext("m ssing argunment for
"'o¢’ option\n"), optopt);

new usr/src/cnd/ zf s/ zfs_main. c 41

2635
2636
2637
2638
2639
2640
2641
2642

2644
2645

2647
2648
2649
2650
2651
2652
2653
2654

2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670

2672
2673
2674

2676
2677

2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697

2699
2700

usage(B_FALSE);
break;

case '?':
(voi d) fpri ntf(stderr gettext("invalid option '%’\n"),

opt
usage(B FALSE)
}

argc -= optind;
argv += optind;

if (argc < 1) {
(void) fprintf(stderr, gettext("mi ssing dataset nane\n"));
usage(B_FALSE) ;

}

if (argc > 1) {
(void) fprintf(stderr, gettext("too many argunents\n"));
usage(B_FALSE) ;

}

/* Use default output fields if not specified using -o */
if (ofield == NULL)
ofield = deffields;
do
if ((dellm-strchr(ofleld ',7)) = NULL)
*delim="\0
if ((f|e|ds[cf|eld++] = us_field |ndex(of|eld)) == -1) {
(v 0|d) fprlntf(stderr gettext(invalid type ' %’
for -o option\n"), ofield);
return (-1);

}
if (delim!= NULL)
ofield = delim+ 1;
} while (delim!= NULL);
fields[cfield] = USFIELD LAST;

/* Override output types (-t option)
if (tfield !'= NULL) {

types = 0;
do {
bool ean_t found = B_FALSE;
if ((dellm— strchr(tf|eld ",7)) !'= NULL)
*delim="\0
r (i =0; i < si zeof (us_type_bits) / sizeof (int);
i++) {
if (strcnp(tfield, us_type_nanes[i]) == 0) {
found = B_TRUE;
types | = us_type_bits[i];
br eak;
}
}
if (!found)

(v0|d) fprlntf(stderr gettext("invalid type "
s’ for -t optlon\n) tfield);
return(1);

}
if (delim!= NULL)
tfield = delim+ 1;
} while (dellml— NULL) ;
}

if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE DATASET)) == NULL)
return (1);

new usr/src/cnd/ zf s/ zfs_main. c 42
2702 if ((avl_pool = uu_avl_pool _create("us_avl_pool", sizeof (us_node_t),
2703 offset of (us_node_t, usn_avl node), us_conpare, UU DEFAULT)) == NULL)
2704 noren() ;

2705 if ((avl _tree = uu_avl _create(avl_pool, NULL, UU DEFAULT)) == NULL)
2706 nomeny() ;

2708 /* Always add default sorting colums */

2709 (void) zfs_add_sort_colum(&sortcol, "type", B_FALSE);

2710 (void) zfs_add_sort_colum(&sortcol, "nane", B_FALSE);

2712 cb.cb_sortcol = sortcol;

2713 cb. cb_numane = prtnum

2714 cb. cb_ni cenum = ! parsabl e;

2715 cb. cb_avl _pool = avl_pool ;

2716 cb.cbh_avl = avl _tree;

2717 ch. cb_si d2posi x = si d2posi x;

2719 for (i = 0; i < USFIELD LAST; i++)

2720 cb.cb_width[i] = strlen(gettext(us_field_hdr[i]));

2722 for (p = 0; p < ZFS_NUM USERQUOTA_PROPS; p++) {

2723 if (((p == ZFS PROP_USERUSED || p == ZFS_PROP_USERQUOTA) &&
2724 I (types & (USTYPE_PSX_USR | USTYPE SMB_USR))) ||

2725 ((p == ZFS_PROP_GROUPUSED || p == ZFS _PROP_GROUPQUOTA) &&
2726 I (types & (USTYPE_PSX_GRP | USTYPE_SMB GRP))))

2727 conti nue;

2728 ch.cb _prop = p;

2729 if ((ret = zfs_userspace(zhp, p, userspace_ch, &cb)) != 0)
2730 return (ret);

2731 }

2733 /* Sort the list */

2734 if ((node = uu_avl _first(avl _tree)) == NULL)

2735 return (0);

2737 us_popul ated = B_TRUE;

2739 listpool = uu_list_pool_create("tnplist", sizeof (us_node_t),

2740 offset of (us_node_t, usn_listnode), NULL, UU DEFAULT);

2741 list = uu_list_creat e(l i stpool, NULL, UU DEFAULT)

2742 uu_l i st_node_i nit(node, &node->usn_|istnode, |ist pooI);

2744 while (node != NULL) {

2745 rmode = node;

2746 node = uu_avl _next(avl _tree, node);

2747 uu_avl _renove(avl _tree, rmode);

2748 if (uu_list_find(Tist, rmmode, NULL, & dx2) == NULL)

2749 uu_Ti st msert(list, rmmode, idx2);

2750 }

2752 for (node = uu_list_first(list); node != NULL;

2753 node = uu_list_next(list, node))

2754 us_sort_info_t sortinfo = { sortcol, cb.cb_numane };

2756 if (uu_avl _find(avl _tree, node, &sortinfo, & dx) == NULL)
2757 uu_avl _insert(avl _tree, node, idx);

2758 }

2760 uu_list_destroy(list);

2761 uu_l i st _pool _dest roy(l i st pool);

2763 /* Print and free node nvlist menory */

2764 print us(scrl pted, parsable, fields, types, cb.cb_w dth, B_TRUE,
2765 cb.cb_avl);

new usr/src/cmd/ zf s/ zfs_main. c

43

2767 zfs_free_sort_col ums(sortcol);

2769 /* Clean up the AVL tree */

2770 if ((walk = uu_avl _wal k_start(cb.cb_avl, UU WALK ROBUST)) == NULL)
2771 nonent();

2773 while ((node = uu_avl _wal k_next (wal k)) != NULL) {

2774 uu_avl _renove(cb.cb_avl, node);

2775 free(node);

2776

2778 uu_avl _wal k_end(wal k) ;

2779 uu_avl _destroy(avl _tree);

2780 uu_avl _pool _destroy(avl _pool);

2782 return (ret);

2783 }

2785 [*

2786 * list [-r][-d max] [-H [-o property[,property]...] [-t type[,type]...]
2787 * [-s property [-s property]...] [-S property [-S property]...]
2788 * <dat aset> ...

2789 *

2790 * -r Recurse over all children

2791 * -d Limt recursion by depth.

2792 * -H Scripted node; elide headers and separate col ums by tabs
2793 * -0 Control which fields to display.

2794 * -t Control which object types to display.

2795 * -s Speci fy sort colums, descending order.

2796 * -S Speci fy sort colums, ascendi ng order.

2797 *

2798 * \When given no argunents, lists all filesystems in the system

2799 * Otherwi se, |list the specified datasets, optionally recursing down themif
2800 * '-r’ is specified.

2801 */

2802 typedef struct |ist_chdata {

2803 bool ean_t cb_first;

2804 bool ean_t cb_scripted;

2805 zprop_list_t *cb_proplist;

2806 } list_cbdata_t;

2808 /*

2809 * Gven a list of colums to display, output appropriate headers for each one.
2810 */

2811 static void

2812 print_header(zprop_list_t *pl)

2813 {

2814 char header buf [ZFS_MAXPROPLEN ;

2815 const char *header;

2816 int i;

2817 bool ean_t first = B_TRUE;

2818 bool ean_t right_justify;

2820 for (; pl !'= NULL; pl = pl->pl_next) {

2821 if (Mfirst) {

2822 (void) printf(" ");

2823 } else {

2824 first = B_FALSE;

2825 }

2827 right _justify = B_FALSE;

2828 if (pl->pl _prop 1= ZPROP_I NVAL) {

2829 header = zfs_prop_col um_name(pl - >pl _prop);

2830 right _justify = zfs_prop_align_right(pl- >p| _prop);
2831 } else {

2832 for (i = 0; pl->pl_user_prop[i] !'="\0"; i++4)

new usr/src/cmd/ zf s/ zfs_main.c

44

2833 header buf [i] = toupper(pl->pl _user_prop[i]);
2834 headerbuf[i] = '\0";

2835 header = header buf;

2836 }

2838 if (pl->pl_next == NULL && !right_justify)

2839 (void) printf("%", header);

2840 else if (right_justify)

2841 (void) pri ntf("%s" pl ->pl _wi dth, header);
2842 el se

2843 (void) printf("%*s", pl->pl_w dth, header);
2844 }

2846 (void) printf("\n");

2847 }

2849 [*

2850 * Gven a dataset and a list of fields, print out all the properties according
2851 * to the described |ayout.

2852 */

2853 static void

2854 print_dataset(zfs_handle_t *zhp, zprop_list_t *pl, boolean_t scripted)
2855 {

2856 bool ean_t first = B TRUE;

2857 char pr operty[ZFS MAXPROPLEN ;

2858 nvlist_t *user props = zfs_get_user_props(zhp);

2859 nvlist_t *pr opval ;

2860 char *propst

2861 bool ean_t ri ght_J ustify;

2862 int width;

2864 for (; pl !'= NULL; pl = pl->pl_next) {

2865 if (Mfirst) {

2866 if (scripted)

2867 (void) printf("\t");

2868 el se

2869 (void) printf(" ");

2870 } else {

2871 first = B_FALSE;

2872 }

2874 if (pl->pl_prop !'= ZPROP_I NVAL) {

2875 i1 f (zfs_prop_get(zhp, pl->pl_prop, property,
2876 si zeof (property) NULL, NULL, 0, B _FALSE) != 0)
2877 propstr = "-"

2878 el se

2879 propstr = property;

2881 right_justify = zfs_prop_align_right(pl->pl_prop);
2882 } elseif (zf s_prop_userquot a(pl ->pl _user_prop)) {

2883 if (zfs_prop_get_userquota(zhp, pl->pl_user_prop,
2884 property, si zeof (pr operty), B_FALSE) != 0)
2885 propstr = "-";

2886 el se

2887 propstr = property;

2888 right_justify = B TRUE;

2889 } else if (zfs_prop_witten(pl->pl _user prop)) {

2890 if (zfs_prop_get_witten(zhp, pl->pl_user_prop,
2891 property, si zeof (pr operty), B_FALSE) != 0)
2892 propstr = "-";

2893 el se

2894 propstr = property;

2895 right_justify = B_TRUE;

2896 } else {

2897 if (nvlist_lookup_nvlist(userprops,

2898 pl ->pl _user_prop, &propval) = 0)

new usr/src/cmd/ zf s/ zfs_main. c

or if this is the
don’t include a width

1= -1 {

2899 propstr = "-";

2900 el se

2901 verify(nvlist_|l ookup_stri ng(propval ,
2902 ZPROP_VALUE, &propstr) == 0);
2903 right_justify = B_FALSE;

2904 }

2906 width = pl->pl_width;

2908 /*

2909 * If this is being called in scripted node,
2910 * last colum and it is left-justified,

2911 * format specifier.

2912 */

2913 if (scrlpted | (pl->pl _next == NULL && !right_justify))
2914 void) printf("%", propstr);

2915 else if (rlght_justlfy)

2916 (void) printf("%s", width, propstr);
2917 el se

2918 (void) printf("%*s", width, propstr);
2919 }

2921 (void) printf("\n");

2922 }

2924 [*

2925 * Ceneric callback function to |ist a dataset or snapshot.
2926 */

2927 static int

2928 |ist_call back(zfs_handle_t *zhp, void *data)

2929 {

2930 list_chdata_t *cbp = data;

2932 if (cbp->cb_first) {

2933 if (!cbp->cb_scripted)

2934 print_header (cbp->cb_proplist);

2935 cbp->cb_first = B_FALSE;

2936 }

2938 print_dataset (zhp, cbp->cb_proplist, cbp->cb_scripted);
2940 return (0);

2941 }

2943 static int

2944 zfs_do_list(int argc, char **argv)

2945 {

2946 int c;

2947 bool ean_t scripted = B_FALSE;

2948 st atl c char default_fields[] =

2949 "name, used, avai 'abl e, r ef er enced, nount poi nt " ;

2950 int types = ZFS TYPE_DATASET;

2951 bool ean_t types_specified = B_FALSE;

2952 char *fields = NULL

2953 list_chdata_t cb ={ 0 };

2954 char *val ue;

2955 |ntl|mt—0

2956 int ret = 0;

2957 zfsfsortfcol um_t *sortcol = NULL;

2958 int flags = ZFS | TER PROP_LI STSNAPS | ZFS | TER ARGS CAN BE PATHS;
2960 /* check optlons */

2961 while ((c = getopt(argc argv, ":d:o:rt:Hs:S:"))

2962 switch (c)

2963 case '0':

2964 fields = optarg;

45

new usr/src/cmd/ zf s/ zfs_main.c

2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997

2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012

3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030

case

case

case

case

case

case

case

case

Td

H -

%]

v

optopt);
usage(B_FALSE);

46

br eak;
limt = parse_depth(optarg, &flags);
br eak;
flags | = ZFS_| TER RECURSE
br eak;
scripted = B_TRUE;
break;
i f (zfs_add_sort_col um(&sortcol, optarg,
B_FALSE) != 0)
(void) fprintf(stderr,
gettext("invalid property '%’'\n"), optarg);
usage(B_FALSE) ;
break;
i f (zfs_add_sort_col um(&sortcol, optarg,
B TRUE) I= 0
(void) fprintf(stderr,
gettext("invalid property '%’'\n"), optarg);
usage(B_FALSE) ;
br eak;
iypes = 0;
types_ spemfl ed = B_TRUE;
flags & ~ZFS_| TER PROP_L| STSNAPS;
while (*optarg !'="\0") {
static char *type_subopts[] = { "filesysteni,
"vol ume", "snapshot", "all", NULL };
switch (getsubopt (&optarg, type_subopts,
&val ue))
case O:
types | = ZFS_TYPE_FI LESYSTEM
br eak;
case 1:
types | = ZFS_TYPE_VOLUMVE;
br eak;
case 2:
types | = ZFS TYPE_SNAPSHOT
br eak;
case 3:
types = ZFS_TYPE_DATASET,;
br eak;
defaul t:

(void) fprintf(stderr,
gettext("invalid type '%’\n"),
val ue) ;

usage(B_FALSE) ;

}
}
break;
ivoi d) fprintf(stderr, gettext("m ssing argunment for "
"'o¢’ option\n"), optopt);
usage(B_FALSE) ;
br eak;
(void) fprintf(stderr, gettext("invalid option ’'%’\n"),

new usr/src/cnd/ zf s/ zfs_main. c 47

3031 }

3032 1

3034 argc -= optind;

3035 argv += optind;

3037 if (fields == NULL)

3038 fields = default_fields;

3040 /*

3041 * |f "-o0 space" and no types were specified, don’t display snapshots.
3042 */

3043 if (strcnp(fields, "space") == 0 && types_specified == B_FALSE)
3044 types &= ~ZFS_TYPE_SNAPSHOT;

3046 *

3047 * |f the user specifies '-o0 all’, the zprop_get_list() doesn’t
3048 * nornmally include the name of the dataset. For 'zfs list’, we always
3049 * want this property to be first.

3050 */

3051 if (zprop_get_list(g_zfs, fields, &cb.cb_proplist, ZFS_TYPE_DATASET)
3052 1=0

3053 usage(B_FALSE) ;

3055 ch. cb_script ed = scripted;

3056 cb.cb_first = B_TRUE;

3058 ret = zfs_for_each(argc, argv, flags, types, sortcol, &cb.cb_proplist,
3059 limt, list_callback, &cb);

3061 zprop_free_list(cb.cb_proplist);

3062 zfs_free_sort_col ums(sortcol);

3064 if (ret == 0 & ch.cb_first && !cb.cb_scripted)

3065 (void) printf(gettext("no datasets available\n"));

3067 return (ret);

3068 }

3070 /*

3071 * zfs rename [-f] <fs | snap | vol> <fs | snap | vol >

3072 * zfs renane [-f] -p <fs | vol> <fs | vol >

3073 * zfs renane -r <snap> <snap>

3074 *

3075 * Renanes the given dataset to another of the sane type.

3076 *

3077 * The '-p’ flag creates all the non-existing ancestors of the target first.
3078 *

3079 /* ARGSUSED */

3080 static int

3081 zfs_do_renane(int argc, char **argv)

3082 {

3083 zfs_handl e_t *zhp;

3084 int c;

3085 int ret = 0;

3086 bool ean_t recurse = B_FALSE;

3087 bool ean_t parents = B_FALSE;

3088 bool ean_t force_unnount = B_FALSE;

3090 /* check options */

3091 while ((c = getopt(argc, argv, "prf")) !=-1) {

3092 switch (c) {

3093 case 'p’:

3094 parents = B_TRUE;

3095 break;

3096 case 'r’:

3097
3098
3099
3100
3101
3102
3103
3104
3105
3106

new usr/src/cnd/ zf s/ zfs_main. c

recurse = B_TRUE;
break;

case 'f':
force_unnount = B _TRUE;
br eak;

case '?':

defaul t:
(voi d) fpri ntf(stderr gettext("invalid option %’ \n"

opt

usage(B FALSE)

}

3107
3108

3110
3111

3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127

3129
3130
3131
3132
3133

3135
3136
3137
3138
3139

3141
3142
3143

3145
3146
3147
3148
3149
3150

3152

3154
3155
3156

3158
3159
3160
3161
3162

* Ok Ok Ok %

/

}

argc -= optind;
argv += optind;

/* check nunber of argunments */
if (argc < 1) {
(void) fprintf(stderr,
"argunment\n"));
usage(B_FALSE) ;

gettext("m ssing source dataset

}
if (argc < 2) {
(v0|d) fpnntf(stderr
"argument\n"));
usage(B_FALSE);

gettext("m ssing target dataset

}
if (argc > 2)
(v 0|d) fprlntE;(stderr

gettext("too many argunents\n"));
usage(B_FALS

if (recurse && parents)
(void) fprintf(stderr,
"excl usive\n"));
usage(B_FALSE) ;

if (recurse && strchr(argv[0], '@) == 0) {
(void) fprintf(stderr, gettext("source dataset for
"rename nust be a snapshot\n"));
usage(B_FALSE) ;

recursive "

if ((zhp = zfs_open(g_zfs,
ZFS_TYPE_VOLUME :
return (1);

argv[0], parents ? ZFS TYPE FI LESYSTEM |
ZFS_TYPE_DATASET)) == NULL)

/* 1f we were asked and the nane | ooks good,
if (parents && zfs_nane_valid(argv[1],
zfs_create_ancestors(g_zfs,
zfs_cl ose(zhp);
return (1);

try to create ancestors.
zfs get _type(zhp)) &&
argv[1]) 1= 0){

}

ret = (zfs_renanme(zhp, argv[1l], recurse, force_unnount) != 0);

zfs_cl ose(zhp);
return (ret);

zfs promote <fs>

Pronotes the given clone fs to be the parent

48

),

gettext("-p and -r options are nutually "

*/

new usr/src/cmd/ zf s/ zfs_main. c

3163 /

* ARGSUSED */

3164 static int

3165 zfs_do_pronote(int argc,

3166 {
3167
3168

3170
3171
3172
3173
3174
3175

3177
3178
3179
3180
3181
3182
3183
3184
3185
3186

3188
3189
3190

3192

3195

3196

3197 }
/

3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210 t
3211
3212
3213
3214
3215
3216
3217
3218 }

3220 /
3221
3222
3223
3224
3225

char **argv)

zfs_handl e_t *zhp;
int ret = 0;

/* check options */
if (argc > 1 && argv[1][0]
(voi d) fprlntf(s derr,
11);

gettext("invalid option

argv[1] [
) usage(B_FALSE) ;

/* check nunber of arguments */
if (argc < 2)
(voi d) fprlntf(stderr
" argument\n"));
usage(B_FALSE) ;

}

if (argc > 2) {
(void) fprintf(stderr,
usage(B_FALSE) ;

}

zhp = zfs open(g zfs,
if (zhp =
return (L

argv[1], ZFS_TYPE_FI LESYSTEM |

ret = (zfs_pronote(zhp) != 0);

zfs_cl ose(zhp);
return (ret);

zfs rollback [-rRf] <snapshot >

-r Del ete any interveni ng snapshots before doing roll back
-R Del ete any snapshots and their clones

-f ignored for backwards conpatability

Gven a filesystem rollback to a specific snapshot,
since then and nmaking it the active dataset.
the command will conplain unless the '-r’ flag is given.

* ok Gk ok ko % k% ok

ypedef struct rollback_chdata {
ui nt 64_t cb_create;
bool ean_t cb_first;
int cb_docl ones;
char *cb_target;
int cb_error;
bool ean_t cb_recurse;
bool ean_t cb_dependent ;

rol | back_chdata_t;

* Report any snapshots nore recent than the one specified.
* not speci fi ed.

* 'cb_dependent’ is set, then this is a dependent and we shoul d report
*/without checki ng the transaction group.

*

3226 static int

3227 r
3228 {

ol | back_check(zfs_handl e_t *zhp, void *data)

"%’'\n"),

gettext("too many argunents\n"));

49

gettext("m ssing clone filesystent

ZFS TYPE_VOLUME) ;

di scardi ng any changes
If nore recent snapshots exist,

Used when '-r’ is
W reuse this same callback for the snapshot dependents - if

it

new usr/src/cnmd/ zf s/ zfs_main. c

3229 rol | back_cbhdata_t *cbp = data;

3231 if (cbp->cb_doclones) {

3232 zfs_cl ose(zhp);

3233 return (0);

3234 }

3236 if (!cbp->cb_dependent) {

3237 if (strcnp(zfs_get_nane(zhp), cbp->cb_target) != 0 &&
3238 zfs_get _type(zhp) == ZFS_TYPE_SNAPSHOT &&

3239 zfs_prop_get _i nt(zhp, ZFS_PROP_CREATETXG >

3240 cbp->cb_create) {

3242 if (cbp->cb_first & !chp->cb_recurse) {

3243 (void) fprintf(stderr, gettext("cannot
3244 "rollback to '%’': nore recent snapshots
3245 "exist\n"),

3246 cbp->cb_target);

3247 (void) fprintf(stderr, gettext("use '-r’ to "
3248 ”force del etion of the following "
3249 "snapshot s: \n"))

3250 cbp->cb_first = 0;

3251 cbp->cb_error = 1;

3252 }

3254 if (cbp->cb_recurse) {

3255 cbp->cb_dependent = B_TRUE;

3256 if (zfs_iter_dependents(zhp, B_TRUE,
3257 rol I back_check, cbp) !'= 0) {

3258 zfs_cl ose(zhp);

3259 return (-1);

3260 }

3261 cbp->cb_dependent = B_FALSE;

3262 } else {

3263 (void) fprintf(stderr, "%\n",

3264 zf s_get _nane(zhp));

3265 }

3266

3267 } else {

3268 if (cbp->cb_first && cbp->cb_recurse) {

3269 (void) fprintf(stderr, gettext("cannot rollback to "
3270 "9’ : clones of previous snapshots exist\n"),
3271 cbp->cb_target);

3272 (voi d) fpri ntf(stderr gettext("use '-R to "
3273 force deletion of the fol I ow ng clones and "
3274 "dependents:\n"));

3275 cbp->cb_first = 0;

3276 cbp->cb_error = 1;

3277

3279 (void) fprintf(stderr, "%\n", zfs_get_nane(zhp));
3280 }

3282 zfs_cl ose(zhp);

3283 return (0);

3284 }

3286 static int

3287 zfs_do_rol | back(int argc, char **argv)

3288 {

3289 int ret = 0;

3290 int c;

3291 bool ean_t force = B_FALSE;

3292 rol | back_chdata_t cb = { 0 };

3293 zfs_handle_t *zhp, *snap

3294 char parent nanme[ZFS_MAXNAMELEN ;

new usr/src/cnd/ zf s/ zfs_main. c 51

3295

3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315

3317
3318

3320
3321
3322
3323
3324
3325
3326
3327
3328

3330
3331
3332

3334
3335
3336
3337
3338
3339
3340
3341

3343
3344
3345
3346
3347
3348
3349
3350
3351
3352

3354
3355

3357
3358
3359
3360

char *delim
/* check optlons */
while ((c = getopt(argc, argv, "rRf")) !'=-1) {
switch (c) {
case 'r’:
ch.cb_recurse = 1;
br eak;
case 'R :
ch.cb_recurse = 1;
ch. cb_docl ones = 1;
br eak;
case 'f’:
force = B_TRUE;
break;
case '?':
(void) fprintf(stderr, gettext("invalid option "%’ \n"),
optopt);
usage(B_FALSE);
}
}

argc -= optind;
argv += optind;

/* check nunber of argunments */

if (argc < 1) {
(void) fprintf(stderr, gettext("m ssing dataset argument\n"));
usage(B_FALSE) ;

}

if (argc > 1) {
(void) fprintf(stderr, gettext("too nmany argunents\n"));
usage(B_FALSE) ;

}

/* open the snapshot */
if ((snap = zfs_open(g_zfs, argv[0], ZFS _TYPE SNAPSHOT)) == NULL)
return (1);

/* open the parent dataset */
(void) strlcpy(parentname, argv[0], sizeof (parentnane));
verify((delim= strrchr(parentnane, ' @)) != NULL);

*delim="\0";

if ((zhp = zfs_open(g_zfs, parentnane, ZFS TYPE DATASET)) == NULL) {
zfs_cl ose(snap);
return (1);

}

*

* Check for nore recent snapshots and/ or cl ones based on the presence
* of "-r’ and '-R.

cb.cb_target = argv[O0];

ch.cb_create = zfs prop get _i nt(snap, ZFS_PROP_CREATETXO ;

ch.cb_first = B_TRUE

ch. cb_ error = =0;

if ((ret = zfs_iter_children(zhp, rollback_check, &cb)) != 0)
goto out;

if ((ret = ch.cb_error) !'=0)
goto out;

/*
* Rol | back parent to the given snapshot.
*/

ret = zfs_rollback(zhp, snap, force);

new usr/src/cmd/ zf s/ zfs_main.c

3362 out:

3363 zfs_cl ose(snap) ;

3364 zfs_cl ose(zhp);

3366 if (ret == 0)

3367 return (0);

3368 el se

3369 return (1);

3370 }

3372 /| *

3373 * zfs set property=value { fs | snap | vol }

3374 *

3375 * Sets the given property for all datasets specified on the command |ine.
3376 *

3377 typedef struct set_cbhdata {

3378 char *cb_propnane;

3379 char *cb_val ue;

3380 } set_cbdata_t;

3382 static int

3383 set_cal | back(zfs_handle_t *zhp, void *data)

3384 {

3385 set_cbdata_t *cbp = data;

3387 if (zfs_prop_set(zhp, cbp->cb_propnane, cbp->cb_value) !'= 0) {
3388 switch (libzfs_errno(g_zfs)) {

3389 case EZFS_MOUNTFAI LED:

3390 (void) fprintf(stderr, gettext("property may be set "
3391 "but unable to renount filesystemn"));

3392 break;

3393 case EZFS_SHARENFSFAI LED:

3394 (void) fprintf(stderr, gettext("property may be set "
3395 "but unable to reshare filesystemn"));
3396 break;

3397 }

3398 return (1);

3399 }

3400 return (0);

3401 }

3403 static int

3404 zfs_do_set(int argc, char **argv)

3405 {

3406 set _chdata_t cb;

3407 int ret = 0;

3409 /* check for options */

3410 if (argc > 1 & argv[1][0] == -’

3411 (void) fprintf(stderr, gettext("invalid option '%’'\n"),
3412 argv[1][1]);

3413 usage(B_FALSE) ;

3414 }

3416 /* check nunber of argunents */

3417 if (argc < 2) {

3418 (void) fprintf(stderr, gettext("m ssing property=val ue "
3419 "argument\n"));

3420 usage(B_FALSE) ;

3421 1

3422 if (argc < 3) {

3423 (void) fprintf(stderr, gettext("m ssing dataset name\n"));
3424 usage(B_FALSE) ;

3425 1

new usr/src/cmd/ zf s/ zfs_main. c

53

3427 /* validate property=val ue argunent */

3428 cb. cb_propnane = argv[1];

3429 if (((cb.cb_value = strchr(cb.cb_propnane, '=")) == NULL) ||
3430 (cb.cb_value[1l] == "\0"))

3431 (void) fprintf(stderr, gettext("m ssing value in "
3432 "property=val ue argunent\n"));

3433 usage(B_FALSE);

3434 }

3436 *cb.cb_value = '\0";

3437 cb. cb_val ue++;

3439 if (*cb.cb_propname == '\0") {

3440 (voird) fprintf(stderr,

3441 gettext("m ssing property in property=val ue argunent\n"));
3442 usage(B_FALSE) ;

3443 }

3445 ret = zfs_for_each(argc - 2, argv + 2, NULL,

3446 ZFS TYPE_DATASET, NULL, NULL, 0, set_callback, &cb);
3448 return (ret);

3449 }

3451 typedef struct snap_chdata {

3452 nvlist_t *sd_nvl;

3453 bool ean_t sd_recursive;

3454 const char *sd_snapnane;

3455 } snap_chdata_t;

3457 static int

3458 zfs_snapshot _cb(zfs_handl e_t *zhp, void *arg)

3459 {

3460 snap_chdata_t *sd = arg;

3461 char *nane;

3462 int rv = 0;

3463 int error;

3465 error = asprintf(&ane, "%@s", zfs_get_nanme(zhp), sd->sd_snapnane);
3466 if (error == -1)

3467 nonmen() ;

3468 fnvlist_add_bool ean(sd->sd_nvl, nane);

3469 free(nane);

3471 if (sd->sd_recursive)

3472 rv = zfs_iter_filesystens(zhp, zfs_snapshot_cb, sd);
3473 zfs_cl ose(zhp);

3474 return (rv);

3475 }

3477 | *

3478 * zfs snapshot [-r] [-o0 prop=val ue] <f s@nap>

3479 *

3480 * Creates a snapshot with the given nane. Wile functionally equivalent to
3481 * 'zfs create’, it is a separate cormand to differentiate intent.
3482 */

3483 static int

3484 zfs_do_snapshot (int argc, char **argv)

3485 {

3486 int ret = 0;

3487 char c;

3488 nvlist_t *props;

3489 snap_chdata_t sd = { 0 };

3490 bool ean_t mul tiple_snaps = B_FALSE;

3492 if (nvlist_alloc(&rops, NV_UNI QUE_NAME, 0) != 0)

new usr/src/cnd/ zf s/ zf s_main. c 54
3493 nonmemn() ;

3494 if (nvlist_alloc(&d.sd_nvl, NV_UN QUE_NAME, 0) != 0)
3495 nonmemn() ;

3497 /* check options */

3498 while ((c = getopt(argc, argv, "ro:")) I=-1) {
3499 switch (c) {

3500 case '0:

3501 if (parseprop(props))

3502 return |

3503 break;

3504 case 'r’:

3505 sd. sd_recursive = B_TRUE;

3506 mul tipl e_snaps = B_TRUE;

3507 break;

3508 case ' ?':

3509 (void) fprintf(stderr, gettext("invalid option '%’\n"),
3510 optopt);

3511 got o usage;

3512 }

3513 }

3515 argc -= optind;

3516 argv += optind;

3518 /* check nunber of argunments */

3519 if (argc < 1) {

3520 (void) fprintf(stderr, gettext("m ssing snapshot argunment\n"));
3521 got o usage;

3522 }

3524 if (argc > 1)

3525 mul tipl e_snaps = B_TRUE;

3526 for (; argc > 0; argc--, argv++) {

3527 char *atp;

3528 zfs_handl e_t *zhp;

3530 atp = strchr(argv[0], '@);

3531 if (atp == NULL)

3532 got o usage;

3533 *atp = '\0";

3534 sd. sd_snapnane = atp + 1;

3535 zhp = zfs_open(g_zfs, argv[O0],

3536 ZFS TYPE_FI LESYSTEM | ZFS_TYPE_VOLUME)
3537 if (zhp == NULL)

3538 got o usage;

3539 if (zfs_snapshot_cb(zhp, &sd) != 0)

3540 got o usage;

3541 }

3543 ret = zfs_snapshot_nvl (g_zfs, sd.sd_nvl, props);
3544 nvlist_free(sd.sd_nvl);

3545 nvlist_free(props);

3546 if (ret != 0 && nultiple_snaps)

3547 (void) fprintf(stderr, gettext("no snapshots were created\n"));
3548 return (ret !'= 0);

3550 usage:

3551 nvlist_free(sd.sd_nvl);

3552 nvlist_free(props);

3553 usage(B_FALSE) ;

3554 return (-1);

3555 }

3557 /*

3558 * Send a backup streamto stdout.

new usr/src/cnd/ zf s/ zfs_main. c 55 new usr/src/cnd/ zf s/ zf s_main. c 56
3559 */ 3625 (void) fprintf(stderr, gettext("m ssing snapshot argunment\n"));
3560 static int 3626 usage(B_FALSE) ;
3561 zfs_do_send(int argc, char **argv) 3627 }
3562 { 3628 if (argc > 1) {
3563 char *frommanme = NULL; 3629 (void) fprintf(stderr, gettext("too many argunments\n"));
3564 char *tonanme = NULL; 3630 usage(B_FALSE) ;
3565 char *cp; 3631 }
3566 zfs_handl e_t *zhp;
3567 sendflags_t flags = { 0 }; 3633 if (!flags.dryrun && isatty(STDOUT_FILENO)) {
3568 int c, err; 3634 (void) fprintf(stderr,
3569 nvl i st_t *dbgnv = NULL; 3635 gettext("Error: Streamcan not be witten to a termnal.\n"
3570 bool ean_t extraverbose = B_FALSE; 3636 "You nust redirect standard output.\n"));
3637 return (1);
3572 /* check opti ons */ 3638 }
3573 while ((c = getopt(argc, argv, ":i:l:RDpvnP")) !=-1) {
3574 switch (c) { 3640 cp = strchr(argv[O] @)
3575 case 'i’ 3641 f (cp == NULL
3576 if (fromane) 3642 (v0| d) fprintf(stderr,
3577 usage(B_FALSE) ; 3643 gettext("argunment nust be a snapshot\n"));
3578 fromane = optarg; 3644 usage(B_FALSE) ;
3579 br eak; 3645 }
3580 case '|': 3646 *cp = ’\0’ ;
3581 if (fromane) 3647 tonane = cp + 1;
3582 usage(B_FALSE); 3648 zhp = zfs open(g zfs, argv[0], ZFS TYPE_FILESYSTEM | ZFS_TYPE VOLUVE);
3583 fromane = optarg; 3649 if (zhp == NULL)
3584 flags.doall = B_TRUE; 3650 ret urn (1);
3585 break;
3586 case 'R : 3652 /*
3587 flags.replicate = B_TRUE; 3653 * |f they specified the full path to the snapshot, chop off
3588 br eak; 3654 * everything except the short nanme of the snapshot, but speci al
3589 case 'p’: 3655 * case if they specify the origin.
3590 fl ags. props = B_TRUE; 3656 */
3591 br eak; 3657 if (fromanme && (cp = strchr(fromanme, *@)) '= NULL) {
3592 case 'P': 3658 char origi n[ZFS_MAXNAMELEN] ;
3593 fl ags. parsabl e = B_TRUE; 3659 zprop_source_t src;
3594 fl ags. verbose = B_TRUE;
3595 br eak; 3661 (void) zfs_prop_get(zhp, ZFS_PROP_ORIG N
3596 case 'V’ 3662 origin, sizeof (origin), &rc, NULL, 0 B_FALSE) ;
3597 if (flags.verbose)
3598 extraverbose = B_TRUE; 3664 if (strcrrp(orl gi n, fromane) == 0) {
3599 fl ags. verbose = B_TRUE; 3665 fromane = NULL;
3600 flags. progress = B_TRUE; 3666 flags. frormri gin = B_TRUE;
3601 br eak; 3667 } else {
3602 case 'D: 3668 *cp = '\0";
3603 fl ags. dedup = B_TRUE; 3669 if (cp!= fromane && strcnp(argv[0], fromane)) {
3604 br eak; 3670 (void) fpri ntf(st derr,
3605 case 'n’: 3671 gettext(incremental source nust be "
3606 flags.dryrun = B_TRUE; 3672 in same filesystemn"));
3607 br eak; 3673 usage(B_FALSE);
3608 case ':’: 3674 }
3609 (void) fprintf(stderr, gettext("m ssing argunent for " 3675 fromane = cp + 1;
3610 "'o¢’ option\n"), optopt); 3676 if (strchr(fromame, @) || strchr(fromane, '/')) {
3611 usage(B_FALSE); 3677 (void) fprintf(stderr,
3612 br eak; 3678 gettext("invalid incremental source\n"));
3613 case '?': 3679 usage(B_FALSE);
3614 (void) fprintf(stderr, gettext("invalid option '%’'\n"), 3680 }
3615 optopt); 3681 }
3616 usage(B_FALSE); 3682 }
3617 }
3618 } 3684 if (fl ags replicate & fromanme == NULL)
3685 flags. doall = B_TRUE;
3620 argc -= optind;
3621 argv += optind; 3687 err = zfs_send(zhp, frommanme, tonanme, &flags, STDOUT_FILENO, NULL, O,
3688 extraverbose ? &bgnv : NULL);
3623 /* check nunber of argunents */
3624 if (argc < 1) { 3690 if (extraverbose &% dbgnv != NULL) {

new usr/src/cmd/ zf s/ zfs_main. c

3691 /*

3692 * dunp_nvlist prints to stdout, but that’s been
3693 * redirected to a file. Mke it print to stderr
3694 * instead.

3695 *

3696 (voi d) dup2(STDERR_FI LENO, STDQOUT_FI LENO) ;
3697 dunp_nvli st (dbgnv, 0);

3698 nvlist_free(dbgnv);

3699 }

3700 zfs_cl ose(zhp);

3702 return (err !'= 0);

3703 }

3705 /*

3706 * zfs receive [-vnFu] [-d | -e] <fs@nap>

3707 *

3708 * Restore a backup stream from stdin.

3709 */

3710 static int

3711 zfs_do_receive(int argc, char **argv)

3712 {

3713 int c, err;

3714 recvflags_t flags = { 0 };

3716 /* check options */

3717 while ((c = getopt(argc, argv, ":denuvF')) I=-1) {
3718 switch (c) {

3719 case 'd :

3720 flags.isprefix = B_TRUE;

3721 break;

3722 case 'e':

3723 flags.isprefix = B_TRUE;

3724 flags.istail = B_TRUE;

3725 break;

3726 case 'n’:

3727 flags.dryrun = B_TRUE;

3728 br eak;

3729 case 'u’:

3730 fl ags. nonount = B_TRUE;

3731 br eak;

3732 case 'V’

3733 fl ags. verbose = B_TRUE;

3734 break;

3735 case 'F:

3736 flags.force = B_TRUE;

3737 br eak;

3738 case ':':

3739 (void) fprintf(stderr, gettext("m ssing argunment for
3740 "9’ option\n"), optopt);
3741 usage(B_FALSE);

3742 break;

3743 case ' ?:

3744 (void) fprintf(stderr, gettext("invalid option '%’\n"),
3745 optopt);

3746 usage(B_FALSE);

3747 }

3748 }

3750 argc -= optind;

3751 argv += optind;

3753 /* check nunber of argunments */

3754 if (argc < 1) {

3755 (void) fprintf(stderr, gettext("m ssing snapshot argunent\n"));
3756 usage(B_FALSE) ;

57

new usr/src/cnd/ zf s/ zfs_main. c

3757
3758
3759
3760
3761

3763
3764
3765
3766
3767
3768
3769

3771

3773
3774

3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800

3802

3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819

3821
3822

}
if (argc > 1)
(void) fprintf(stderr, gettext("too many arguments\n"));
usage(B_FALSE) ;
}
if (isatty(STDIN_FILENO) {
(void) fpri ntf(stderr
gettext(Error: Backup stream can not be read "
"froma term nal.
"You nust redirect st andard input.\n"));
return (1);
}
err = zfs_receive(g_zfs, argv[0], &flags, STDI N FILENO NULL);
return (err !'= 0);
}
/*
* al | ow unal | ow st uff
*
/
/* copied from zfs/sys/dsl _del eg.h */
#defi ne ZFS_DELEG PERM CREATE "create"
#def i ne ZFS_DELEG_PERM DESTROY "destroy"
#def i ne ZFS_DELEG PERM SNAPSHOT "snapshot "
#def i ne ZFS_DELEG PERM ROLLBACK "roll back"
#defi ne ZFS_DELEG PERM CLONE “cl one"
#def i ne ZFS_DELEG _PERM PROMOTE " pronot e"
#def i ne ZFS_DELEG _PERM RENAME "rename"
#defi ne ZFS_DELEG_PERM MOUNT "mount "
#def i ne ZFS_DELEG PERM SHARE "share"
#defi ne ZFS_DELEG PERM SEND "send"
#defi ne ZFS_DELEG PERM RECEI VE "receive"
#def i ne ZFS_DELEG_PERM ALLOW "al | ow'
#def i ne ZFS_DELEG_PERM _USERPROP "user prop"
#defi ne ZFS_DELEG_PERM VSCAN "vscan" [* 2?2 */
#def i ne ZFS_DELEG_PERM USERQUCTA "user quot a"
#def i ne ZFS_DELEG_PERM_GROUPQUOTA "groupquot a"
#def i ne ZFS_DELEG_PERM_USERUSED "userused"
#def i ne ZFS_DELEG_PERM GROUPUSED "groupused"”
#def i ne ZFS_DELEG PERM HOLD "hol d"
#def i ne ZFS_DELEG PERM RELEASE "rel ease"
#defi ne ZFS_DELEG PERM DI FF tdiffn
#defi ne ZFS_NUM DELEG NOTES ZFS_DELEG NOTE_NONE
static zfs_deleg_permtab_t zfs_deleg_permtbl[] = {

ZFS_DELEG PERM ALLOW ~ZFS_DELEG NOTE ALLOW},
ZFS_DELEG PERM CLONE, ZFS_DELEG NOTE_CLONE },
ZFS_DELEG PERM CREATE, ZFS_DELEG NOTE_CREATE },
ZFS_DELEG PERM DESTROY, ZFS_DELEG NOTE_DESTROY },
ZFS_DELEG PERM DI FF, ZFS_DELEG NOTE DI FF},
ZFS_DELEG PERM HOLD, ZFS_DELEG NOTE_HOLD }
ZFS_DELEG _PERM MOUNT, ZFS_DELEG NOTE_MOUNT 1},
ZFS_DELEG PERM PROMOTE, ZFS_DELEG NOTE_PROMOTE 1},
ZFS_DELEG PERM RECEI VE, ZFS_DELEG NOTE_RECEI VE },
ZFS_DELEG PERM RELEASE, ZFS_DELEG NOTE_RELEASE },
ZFS_DELEG PERM RENAME, ZFS_DELEG NOTE_RENAME },
ZFS_DELEG PERM ROLLBACK, ZFS_DELEG NOTE_ROLLBACK },
ZFS_DELEG PERM SEND, ZFS_DELEG NOTE_SEND },
ZFS_DELEG PERM SHARE, ZFS_DELEG NOTE_SHARE },
ZFS_DELEG_PERM SNAPSHOT, ZFS_DELEG NOTE_SNAPSHOT },

ZFS DELEG PERM GROUPQUOTA, ZFS DELEG NOTE GROUPQUOTA },
ZFS_DELEG_PERM GROUPUSED, ZFS_DELEG NOTE_GROUPUSED 1},

e

new usr/src/cmd/ zf s/ zfs_main. c 59 new usr/src/cmd/ zf s/ zfs_main.c
3823 { ZFS_DELEG PERM USERPROP, ZFS_DELEG NOTE_USERPRCP }, 3889 };
3824 { ZFS_DELEG PERM USERQUOTA, ZFS DELEG NOTE_USERQUOTA },
3825 { ZFS_DELEG PERM USERUSED, ZFS DELEG NOTE USERUSED }, 3891 static inline const char *
3826 { NULL, ZFS_DELEG NOTE_NONE } 3892 del eg_perm type(zfs_del eg_note_t note)
3827 }; 3893 {
3894 /* subcommands */
3829 /* permission structure */ 3895 switch (note) {
3830 typedef struct del eg_perm { 3896 /* SUBCOWVANDS */
3831 zfs_del eg_who_type_t dp who_t ype; 3897 /* OTHER */
3832 const char dp_nane; 3898 case ZFS_DELEG NOTE_GROUPQUOTA:
3833 bool ean_t dp_l ocal ; 3899 case ZFS_DELEG NOTE_GROUPUSED:
3834 bool ean_t dp_descend; 3900 case ZFS_DELEG NOTE_USERPROP:
3835 } deleg_permt; 3901 case ZFS_DELEG NOTE_USERQUOTA:
3902 case ZFS_DELEG NOTE_USERUSED:
3837 [* */ 3903 7* other */
3838 typedef struct del eg_perm node { 3904 return (gettext("other"));
3839 del eg_perm t dpn_perm 3905 defaul t:
3906 return (gettext("subcomrand"));
3841 uu_avl _node_t dpn_avl _node; 3907 }
3842 } del eg_perm node_t; 3908 }
3844 typedef struct fs_permfs_permt; 3910 static int inline
3911 who_t ype2wei ght (zfs_del eg_who_t ype_t who_type)
3846 /* perm ssions set */ 3912 {
3847 typedef struct who_perm { 3913 int res;
3848 zfs_del eg_who_type_t who_t ype; 3914 switch (who_type) {
3849 const char *who_nane; [* id */ 3915 case ZFS _DELEG NAMED SET_SETS:
3850 char who_ug_nane[256] ; /* user/group nane */ 3916 case ZFS DELEG NAMED_SET:
3851 fs_permt *who_fsperm /* uplink */ 3917 res = 0;
3918 br eak;
3853 uu_avl _t *who_del eg_perm avl ; /* perm ssions */ 3919 case ZFS DELEG CREATE_SETS:
3854 } who_permt; 3920 case ZFS DELEG CREATE:
3921 res = 1;
3856 /* */ 3922 br eak;
3857 typedef struct who_perm node { 3923 case ZFS DELEG USER_SETS:
3858 who_perm t who_perm 3924 case ZFS_DELEG USER:
3859 uu_avl _node_t who_avl _node; 3925 res = 2;
3860 } who_perm node_t; 3926 br eak;
3927 case ZFS_DELEG GROUP_SETS:
3862 typedef struct fs_permset fs_permset_t; 3928 case ZFS DELEG GROUP:
3863 /* fs perm ssions */ 3929 res = 3;
3864 struct fs_perm{ 3930 br eak;
3865 const char *f sp_nane; 3931 case ZFS_ DELEG EVERYONE_SETS:
3932 case ZFS DELEG EVERYONE:
3867 uu_avl _t *fsp_sc_avl; /* sets,create */ 3933 res = 4;
3868 uu_avl _t *fsp_uge_avl ; /* user, group, everyone */ 3934 break;
3935 defaul t:
3870 fs_permset _t *fsp_set; /* uplink */ 3936 res = -1;
3871 }; 3937 }
3873 /* */ 3939 return (res);
3874 typedef struct fs_perm node { 3940 }
3875 fs_permt fspn_fsperm
3876 uu_avl _t *fspn_avl ; 3942 /* ARGSUSED */
3943 static int
3878 uu_list_node_t fspn_list_node; 3944 who_per m conpare(const void *larg, const void *rarg, void *unused)
3879 } fs_permnode_t; 3945 {
3946 const who_permnode_t *| = larg;
3881 /* top |level structure */ 3947 const who_permnode_t *r = rarg;
3882 struct fs_permset { 3948 zfs_del eg_who_type_t Itype = |->who_perm who_type;
3883 uu_list_pool _t *fsps_list_pool; 3949 zfs_del eg_vxho_t ype_t rtype = r->who_perm who_t ype;
3884 uu_list_t *fsps_list; /* list of fs_perms */ 3950 int |weight who_t ype2wei ght (I t ype);
3951 int rwei ght = who type2we| ght(rtype)
3886 uu_avl _pool _t *fsps_naned_set _avl _pool ; 3952 int res = |weight - rweight
3887 uu_avl _pool _t *f sps_who_perm avl _pool ; 3953 if (res == 0)
3888 uu_avl _pool _t *fsps_del eg_per m avl _pool ; 3954 res = strncnp(l->who_perm who_nane, r->who_per m who_nane,

new usr/src/cmd/ zf s/ zfs_main. c

3955 ZFS_NMAX_DELEG NAME- 1)

3957 if (res ==0

3958 return (0);

3959 if (res >0

3960 return (1);

3961 el se

3962 return (-1);

3963 }

3965 /* ARGSUSED */

3966 static int

3967 del eg_perm conpare(const void *larg, const void *rarg, void *unused)
3968 {

3969 const del eg_permnode_t *|I = Iarg,

3970 const del l'eg_perm. node_t *r = rarg;

3971 int res = strncnp(l->dpn_ perm dp_nane, r->dpn_perm dp_nane,
3972 ZFS_NMAX_DELEG NAME-1);

3974 if (res == 0)

3975 return (0);

3977 if (res > 0)

3978 return (1);

3979 el se

3980 return (-1);

3981 }

3983 static inline void

3984 fs_permset_init(fs_permset_t *fspset)

3985 {

3986 bzero(fspset, sizeof (fs_permset_t));

3988 if ((fspset->fsps_list_pool = uu_list_pool_create("fsps_list_pool",
3989 si zeof (fs_perm. node t) offset of (fs_perm nnode_t, fspn_|list_node),
3990 NULL, UU DEFAULT)) == NULH

3991 nonen() ;

3992 if ((fspset->fsps_list = uu_list_create(fspset->fsps_list_pool, NULL,
3993 UU_DEFAULT)) == NULL)

3994 nomen() ;

3996 if ((fspset ->f sps_naned_set _avl _pool = uu_avl _pool _create(
3997 "named_set _avl _pool ", sizeof (who_permnode_t), offsetof(
3998 who_perm node_t, who_avl _node), who_perm conpare,

3999 UU_DEFAULT)) == NULL)

4000 nonmemn() ;

4002 if ((fspset»>fsps who permavl _pool = uu_avl _pool _create(
4003 "who_perm avl _pool ", sizeof (who_permnode_t), offsetof(
4004 who_per m node_t, who_avl _node), V\,ho_perm_conpar e,

4005 UU_DEFAULT)) == NULL)

4006 nomen() ;

4008 if ((fspset->fsps_del eg_permavl_pool = uu_avl_pool _create(
4009 "del eg_perm avl _pool ", sizeof (deleg_permnode_t), offsetof(
4010 del eg perm node_t, dpn_avl _node), deleg_perm conpare, UU DEFAULT))
4011 ==

4012 norren()

4013 }

4015 static inline void fs_permfini(fs_permt *);

4016 static inline void who_permfini (who_permt *);

4018 static inline void
4019 fs_permset _fini(fs_permset_t
4020 {

*fspset)

61

new usr/src/cnmd/ zf s/ zfs_main. c

4021

4023
4024
4025
4026
4027
4028
4029
4030
4031

4033
4034
4035
4036

4038
4039
4040

}

fs_permnode_t *node = uu_list_first(fspset->fsps_list);

while (node != NULL) {

fs_permnode_t *next_node =

uu_l i st_next(fspset->fsps_list, node);
fs_permt *fsperm— &node- >f spn_ fsperm
fs_permfini(fsperm;
uu_li st_renove(fspset >fsps_list,
free(node);
node = next_node;

node) ;

}

uu_avl _pool _destroy(fspset->fsps_naned_set _avl _pool);
uu_avl _pool _dest roy(f spset - >f sps_who_perm avl _pool) ;
uu_avl _pool _dest roy(f spset - >f sps_del eg_per m avl pooI)

static inline void
del eg_perm.init(del eg_permt *del eg _perm zfs_del eg_who_type_t type,

4041 {

4042
4043
4044

4046
4047
4048

}

const char *namne)

del eg_perm >dp_who_t ype = type;
del eg_perm >dp_nane = nane;

static inline void
who_perm.init (who_permt *who_perm fs_permt *fsperm

4049 {

4050
4051

4053

4055
4056
4057

4059
4060
4061
4062

4064
4065

4067

4069
4070
4071

4073
4074
4075
4076

4078
4079

4081
4082

}

zfs_del eg_who_type_t type,

const char *nane)

uu_avl _pool _t *pool ;
pool = fsperm >fsp_set->fsps_del eg_perm avl _pool ;

bzer o(who_perm sizeof (who_permt));

if ((who_perm >who_del eg_perm avl = uu_avl _create(pool, NULL,
UU_DEFAULT)) == NULL)
nonmemn() ;

who_per m >who_t ype = type;
who_per m >who_nane = nane;
who_per m >who_f sperm = fsperm

static inline void
who_perm fini (who_permt *who_perm
4066 {

}

del eg_perm node_t *node = uu_avl _first(who_perm >who_del eg_perm avl);

while (node != NULL) {
del eg_perm node_t *next_node =
uu_avl _next (who_per m >who_del eg_perm avl, node);
uu_avl _renove(who_per m >who_del eg_perm avl ,
free(node);
node = next_node;

node) ;

}

uu_avl _destroy(who_per m >who_del eg_perm avl);

static inline void

fs_perminit(fs_permt *fsperm fs_permset_t *fspset,

4083 {

4084
4085

const char *fsnane)

uu_avl _pool _t
uu_avl _pool _t

*nset _pool = fspset->fsps_named_set_avl _pool ;
*who_pool = fspset->fsps_who_perm avl _pool ;

new usr/src/cmd/ zf s/ zfs_main. c

4087

4089
4090
4091

4093
4094
4095

4097
4098
4099 }

bzero(fsperm sizeof (fs_permt));

if ((fsperm>fsp_sc_avl = uu_avl_create(nset_pool, NULL, UU DEFAULT))
o nomemn() ;

if ((fsperm>fsp uge_avl = uu_avl _create(who_pool, NULL, UU DEFAULT))
o r$h%ﬂ)

fsperm >fsp_set = fspset;
fsperm >f sp_nanme = fsnane;

4101 static inline void
4102 fs_permfini(fs_permt *fsperm

4103 {
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113

4115
4116
4117
4118
4119
4120
4121
4122
4123
4124

4126
4127
4128 }

who_perm node_t *node = uu_avl _first(fsperm>fsp_sc_avl);
whiTe (node !'= NULL)
\A/no_pe(rjm)_node_t *next _node = uu_avl _next (fsperm >fsp_sc_avl,
node
who_permt *who_perm = &node- >who_per m
who_per m fi ni (who_pern;
uu_avl _renove(fsperm >f sp_sc_avl , node);
free(node);
node = next_node;

}

node = uu_avl _first(fsperm>fsp_uge_avl);
while (node !'= NULL) {

who_per m node_t *next _node = uu_avl _next (fsperm >f sp_uge_avl,

node) ;

who_permt *who_perm = &node- >who_perm

who_perm fi ni (who_pern;

uu_avl _renove(fsperm >fsp_uge_avl, node);

free(node);

node = next_node;

}

uu_avl _destroy(fsperm>fsp_sc_avl);
uu_avl _destroy(fsperm >fsp_uge_avl);

4130 static void inline

4131 set_del eg_per m node(uu_avl _t *avl,
zfs_del eg_who_type_t who_type, const char *name, char locality)

4132
4133 {
4134

4136
4137

4139

4141
4142
4143
4144
4145
4146
4147

4150
4151
4152

del eg_perm node_t *node,

uu_avl _index_t idx = 0;

del eg_perm node_t *found_node = NULL;
del eg_permt *del eg_perm = &node- >dpn_perm

del eg_perm.init(del eg_perm who_type, nane);

if ((found node = uu_avl _find(avl, node, NULL, & dx))
== NULL
uu_avl _insert(avl, node, idx);
el se {
node = found_node;
del eg_perm = &node- >dpn_perm

switch (locality) {
case ZFS DELEG LOCAL:
del eg_perm >dp_l ocal = B_TRUE;

63

new usr/src/cnd/ zf s/ zfs_main. c

4153
4154
4155
4156
4157
4158
4159
4160
4161
4162

4164
4165

}

br eak;
case ZFS DELEG DESCENDENT:
del eg_perm >dp_descend =
br eak;
case ZFS_DELEG NA:
br eak;
defaul t:
) assert (B_FALSE); /* invalid locality */

B_TRUE

static inline int

par se_who_pern{who_permt *who_perm nvlist_t *nvl,

4166 {

4167
4168
4169
4170

4172
4173
4174
4175
4176
4177

4179

4181
4182
4183

4185
4186

4188
4189
4190
4191
4192

4194
4195
4196
4197
4198
4199
4200
4201
4202
4203

4205

4207
4208

4210
4211
4212
4213
4214
4215
4216
4217
4218

}

char locality)

nvpair_t *nvp = NULL;

fs_permset _t *fspset = who_per m >who_f sper m >f sp_set ;
uu_avl _t *avl who perm>V\/no del eg_perm avl ;

zfs_del eg_who type t who_type = v\ho_perm>V\ho_type;

while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
const char *nanme = nvpai r nama(nvp);
data_type_t type = nvpair_type(nvp);
uu_avl _pool _t *avl _pool = fspset->f sps_del eg_perm avl _pool ;
del eg_perm node_t *node =
saf e_mal | oc(si zeof (del eg_permnode_t));

assert (type == DATA_TYPE_BOCLEAN);
uu_avl _node_i ni t (node, &node->dpn_avl _node, avl_pool);
set _del eg_perm node(avl, node, who_type, nane, locality);

}
return (0);

static inline int
parse_fs_pernm(fs_permt *fsperm nvlist_t *nvl)

nvpair_t *nvp = NULL;
fs_permset_t *fspset = fsperm >fsp_set;
while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
nvlist_t *nvl2 = NULL
const char *nane = nvpalr _nane(nvp);
uu_avl _t *avl = NULL
uu_avl _pool _t *avI _pooI ;
zfs_del eg_who_type_t permtype = nane[0];
char permlocality = nanme[1];
const char *perm.name = name + 3;
bool ean_t is_set = B_TRUE;
who_permt *who_perm = NULL;

assert('$ == name[2]);

if (nvpair_value_nvlist(nvp, &nvl2) != 0)
return (-1);

switch (permtype) {

case ZFS_DELEG CREATE:

case ZFS DELEG CREATE_SETS:
case ZFS DELEG NAMED SET:

case ZFS DELEG NAMED_SET_SETS:

avl _pool = fspset->fsps_nanmed_set_avl _pool;
avl = fsperm >fsp_sc_avl;
br eak

case ZFS_ DELEG USER:

new usr/src/cnd/ zf s/ zfs_main. c 65 new usr/src/cnd/ zf s/ zfs_main. c 66
4219 case ZFS DELEG USER SETS: 4285 {
4220 case ZFS_DELEG GROUP: 4286 nvpair_t *nvp = NULL;
4221 case ZFS DELEG GROUP_SETS: 4287 uu_avl _index_t idx = O;
4222 case ZFS DELEG EVERYONE:
4223 case ZFS_DELEG EVERYONE_SETS: 4289 whil e ((nvp nvli st next _nvpair(nvl, nvp)) != NULL) {
4224 avl _pool = fspset->fsps_who_perm avl _pool ; 4290 nvliist_t *nvi2 = NULL;
4225 avl = fsperm >fsp_uge_avl; 4291 const char *fsnane = nvpai r _nane(nvp);
4226 br eak; 4292 data_type_t type = nvpair_type(nvp);
4227 } 4293 fs_permt *fsperm = NULL;
4294 fs_permnode_t *node = safe_malloc(sizeof (fs_permnode_t));
4229 if (is_set) { 4295 if (node == NULL)
4230 who_perm node_t *found_node = NULL; 4296 nomen() ;
4231 who_per m_ node_t *node = safe_nall oc(
4232 si zeof (who_perm node_t)); 4298 f sperm = &node- >f spn_f sperm
4233 who_perm = &node- >who_perm
4234 uu_avl _index_t idx = 0; 4300 assert (DATA_TYPE_NVLI ST == type);
4236 uu_avl _node_i ni t (node, &node->who_avl _node, avl _pool); 4302 uu_l i st_node_i nit(node, &node->fspn_|ist_node,
4237 who_perm.init(who_perm fsperm permtype, permnane); 4303 fspset->fsps_list_pool);
4239 if ((found_node = uu_avl _find(avl, node, NULL, & dx)) 4305 idx = uu_list_numodes(fspset->fsps_list);
4240 == NULL) { 4306 fs_perminit(fsperm fspset, fsnane);
4241 if (avl == fsperm>fsp_uge_avl) {
4242 ui d _t rid = 0; 4308 if (nvpair_value_nvlist(nvp, &nvl2) != 0)
4243 struct passw:i p = NULL; 4309 return (-1);
4244 struct group *g = NULL;
4245 const char *ni ce_name = NULL; 4311 (void) parse_fs_perm(fsperm nvl2);
4247 switch (permtype) { 4313 uu_list_insert(fspset->fsps_list, node, idx);
4248 case ZFS_DELEG USER_SETS: 4314 }
4249 case ZFS_DELEG USER
4250 rid = atoi (permnane); 4316 return (0);
4251 p = getpwiid(rid); 4317 }
4252 if (p)
4253 ni ce_name = p->pw_nane; 4319 static inline const char *
4254 br eak; 4320 del eg_perm comment (zfs_del eg_note_t not e)
4255 case ZFS_ DELEG GROUP_SETS: 4321 {
4256 case ZFS_DELEG GROUP: 4322 const char *str ="";
4257 rid = atoi (permnane);
4258 g getgrgl d(rid); 4324 /* subcommands */
4259 if (9) 4325 switch (not e) {
4260 ni ce_nane = g->gr_nane; 4326 * SUBCOWVANDS */
4261 br eak; 4327 case ZFS_DELEG_NOTE_ALLON
4262 } 4328 str = gettext("Mst also have the perm ssion that is being"
4329 "\n\t\t\t\tal |l oned");
4264 if (nice_name != NULL) 4330 br eak;
4265 (void) strlcpy(4331 case ZFS DELEG NOTE_CLONE:
4266 node- >who_per m who_ug_nane, 4332 str = gettext("Mist al so have the ’create’ ability and ’nount’"
4267 ni ce_nane, 256); 4333 "\n\t\t\t\tability in the origin file systent);
4268 } 4334 br eak;
4335 case ZFS_DELEG_NOTE_CREATE:
4270 uu_avl _insert(avl, node, idx); 4336 st r gettext ("Must al so have the 'nmount’ ability");
4271 } else { 4337 bre
4272 node = found_node; 4338 case ZFS_ DELEG NOTE_DESTROY:
4273 who_perm = &node- >who_perm 4339 str gettext("Mist also have the 'nmount’ ability");
4274 } 4340 br eak
4275 } 4341 case ZFS | DELEG 5> NOTE_DI FF:
4342 str = gettext("All ows |ookup of paths within a dataset;"
4277 (voi d) parse_who_pernm(who_perm nvl2, permlocality); 4343 "\n\t\t\t\tgiven an object nunber. Ordinary users need this"
4278 } 4344 "\'n\t\t\t\tin order to use zfs diff");
4345 br eak;
4280 return (0); 4346 case ZFS_DELEG NOTE_HOLD:
4281 } 4347 str = gettext("Allows adding a user hold to a snapshot");
4348 br eak;
4283 static inline int 4349 case ZFS_ DELEG NOTE_MOUNT:
4284 parse_fs_permset(fs_permset_t *fspset, nvlist_t *nvl) 4350 str = gettext("Allows nount/unount of ZFS datasets");

new usr/src/cnd/ zf s/ zfs_main. c 67

4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405

4407
4408

4410
4411
4412
4413
4414
4415
4416

}

struct

* ok kb 3k

br eak;
case ZFS | DELEG NOTE_PROMOTE:
str = gettext(Must al so have the 'nount’\n\t\t\t\tand"
" “pronote’ ability in the origin file systent);
br eak;
case ZFS_| DELEG NOTE_RECEI VE:
str = gettext(Mist al so have the 'mount’ and 'create’"
" ability");
br eak;
case ZFS_| DELEG NOTE_REL EASE:
str = gettext("Allows releasing a user hold which\n\t\t\t\t"
"m ght destroy the snapshot");
br eak;
case ZFS_ DELEG NOTE_RENAME:
str = gettext("Mist also have the ’mount’ and ’create’ "
"\'n\t\t\t\tability in the new parent");
br eak;
case ZFS_DELEG NOTE_ROLLBACK:
str = gettext("");
br eak;
case ZFS_DELEG NOTE_SEND:
str = gettext("");
br eak;
case ZFS_DELEG NOTE_SHARE:
str = gettext("Allows sharing file systems over NFS or SMB"
"\n\t\t\t\tprotocol s");
br eak;
case ZFS_| DELEG NOTE_SNAPSHOT:
str = gettext("");
br eak;

case ZFS | DELEG NOTE_VSCAN:
str = gettext("");
br eak;

/* QOTHER */

case ZFS | DELEG NOTE_GROUPQUOTA:
str = gettext("Al |l ows accessing any groupquota@ .
br eak;

case ZFS DELEG NOTE GROUPUSED:
str = gettext("Allows readi ng any groupused@. .
br eak;

case ZFS_DELEG_NOTE_USERPROD:
str gettext("AI | ows changi ng any user property");
bre

case ZFS_ DELEG NOTE USERQJOTA:
str = gettext("All ows accessing any userquota@..
br eak;

case ZFS_DELEG NOTE_USERUSED:
str = gettext("Allows reading any userused@..
br eak;
/* other */

property");

property");

property")

property");

defaul t:

}

return (str);

str =

all ow_opts {

bool ean_t | ocal;
bool ean_t descend;
bool ean_t user;
bool ean_t group;
bool ean_t everyone;
bool ean_t create;

new usr/src/cmd/ zf s/ zfs_main.c

4417
4418
4419

4421
4422
4423
4424

4425 };

68

bool ean_t set;
bool ean_t recursive; /* unallow only */
bool ean_t prt_usage;

bool ean_t prt_pernms;
char *who;

char *perns;

const char *dataset;

4427 static inline int
4428 prop_cnp(const void *a, const void *b)

4429 {
4430
4431
4432
4433 }

const char *strl = *(const char **)a;
const char *str2 = *(const char **)b;
return (strcnp(strl, str2));

4435 static void
4436 al | ow_usage(bool ean_t un, bool ean_t requested, const char *nsg)

4437 {
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457

4459
4460
4461
4462
4463
4464
4465
4466

4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478

4480
4481
4482

const char *opt _desc[] = {
—h , gettext("show this help nessage and exit"),
-1", gettext("set perm ssion locally"),
-d", gettext("set permssion for descents"),
"-u", gettext("set permssion for user"),

'-g", gettext("set pernmission for group"),
'-e", gettext("set pernission for everyone"),
"-c" gettext("set create tine perm SSI on")
"-s", gettext("define perm ssion set"

/* unal | ow only */
"-r", gettext("renmpve pernissions recursively"),

}

size_t unallow size = sizeof (opt_desc) / sizeof (char *);
size_t aIIOW5|ze = unal | ow_si ze - 2;

const char *props[ZFS_NUM PROPS] ;

int i;

size_t count = O;

FILE *fp = requested ? stdout stderr;

zprop_desc_t pdtbl = zfs_prop_get _ t abl e();

const char *fnt gettext ("% 16s %145\t°/s\n")

(void) fprintf(fp, gettext("Usage: %\n"), get_usage(un ? HELP_UNALLOW :

HELP_ALLOW) ;
(voi d) fprlntf(fp, gettext("Options:\n"));
for (int i =0; 1 < (un ? unallow size : allow.size); i++) {

const char *opt = opt_desc[i++];

const char *optdsc = opt desc[l]

(void) fprintf(fp, gettext(" % 10s %\ n"), opt, optdsc);
}

(void) fprintf(fp, gettext("\nThe follow ng perm ssions are "
"supported:\n\n"));
(void) fpri ntf(fp, ft, gettext("NAVE"),
gettext ("NOTES"));
for (i = 0; i < ZFS_NUM DELEG NOTES; i++) {
const char *perm nanme = zf s_del eg_permtbl[i].z_perm
zfs_deleg_note_t permnote = zfs_deleg_permtbl[i].z_note;
const char *permtype = del eg_permtype(permnote);
const char *perm comrent = del eg_per m comment (per m note);
(void) fprintf(fp, fnt, permnane, permtype, permcomment);

gettext (" TYPE")

}

for (i = 0; i < ZFS_NUM PROPS; i ++)
zprop_desc_t pd = &pdt bl [i1];
if (pd->pd_visible I'= B_TRUE

new usr/src/cmd/ zf s/ zfs_main. c

4483

4485
4486

4488
4489
4490

4492

4494
4495

4497
4498

4500
4501

4503
4504
4505

}

conti nue;

if (pd->pd_attr == PROP_READONLY)
conti nue;
props[count ++] = pd- >pd_nane;

}
props[count] = NULL;

gsort (props, count, sizeof (char *), prop_cnp);
for (i =0; i < count; i++)
(void) fprintf(fp, fnt, props[i], gettext("property"), "");

if (msg != NULL)

(void) fprintf(fp, gettext("\nzfs: error: 9%"), nsQ);

exit(requested ? 0 : 2);

static inline const char *

munge_args(int argc,
char **pernsp)

4506 {

4507
4508
4509
4510
4511
4512
4513

4515
4516

4518
4519

}

char **argv, boolean_t un, size_t expected_argc,

if (un & argc == expected_argc - 1)
*pernsp = NULL;

else if (argc == expected_argc)
*pernsp = argv[argc - 2];

al | ow_usage(un, B_FALSE,
gettext ("wong nunber of paraneters\n"));

el se

return (argv[fargc - 1]);

static void

parse_al l ow_args(int argc,

4520 {

4521
4522
4523
4524

4526
4527
4528

4530
4531
4532
4533
4534

4536
4537
4538
4539

4541
4542
4543
4544
4545
4546
4547
4548

char **argv, boolean_t un, struct allow opts *opts)
int uge_sum = opts->user + opts->group + opts->everyone;

int csuge_sum = opts->create + opts->set + uge_sum

int | dcsuge_sum = csuge_sum + opts->l ocal + opts->descend;

int all_sum= un ? |ldcsuge_sum + opts->recursive : |dcsuge_sum

if (uge_sum > 1)
al | ow_usage(un, B_FALSE,
gettext("-u, -g, and -e are nutually exclusive\n"));

0 && all
aI I ow_usage(un,

if (opts >prt usage)
(argc sum == 0)
B_TRUE, NULL);
el se
usage(B_FALSE);

if (opts->set) {
if (csuge_sum> 1)
al | ow_usage(un, B_FALSE,
gettext("invalid options conbined with -s\n"));

opt s- >dat aset = = nunge_ args(argc,
if (argv[0][0] !="@)
al | ow_usage(un,

argv, un, 3, &opts->perns);

B_FALSE

69

gettext("invalid set nanme: missing '@ prefix\n"));

opts->who = argv[O0];
} elseif (opts >create) {
if (ldcsuge_sum> 1)

al | ow_usage(un, B_FALSE,

new usr/src/cmd/ zf s/ zfs_main.c

4549 gettext("invalid options conmbined with -c\n"));
4550 opt s- >dat aset = nunge_args(argc, argv, un, 2, &opts->perns);
4551 } else if (opts->everyone) {

4552 if (csuge_sum> 1)

4553 al | ow_usage(un, B_FALSE,

4554 gettext("invalid options conbined with -e\n"));
4555 opt s- >dat aset = nunge_args(argc, argv, un, 2, &opts->perns);
4556 } else if (uge_sum== 0 && argc > 0 && strcnp(argv[0], "everyone")
4557 == 0

4558 opt s- >everyone = B_TRUE;

4559 arge--;

4560 ar gv++;

4561 opt s- >dat aset = nunge_args(argc, argv, un, 2, &opts->perns);
4562 } else if (argc == 1 && !un)

4563 opts->prt_perns = B TRUE

4564 opt s- >dat aset = argv[argc-1];

4565 } else {

4566 opt s- >dat aset = nunge_args(argc, argv, un, 3, &opts->perns);
4567 opts->who = argv[O0];

4568 }

4570 if (!opts->local &% !opts->descend) {

4571 opts->l ocal = B_TRUE;

4572 opt s- >descend B_TRUE;

4573 }

4574 }

4576 static void

4577 store_al | ow_perm(zfs_del eg_who_type_t type, boolean_t |ocal, boolean_t descend,
4578 const char *who, char *pernms, nvlist_t *top_nvl)

4579 {

4580

4581 char Id[2] ={'\0, "\O" };

4582 char who_buf [ZFS_ I\/AXNANELEN+32]

4583 char base_type;

4584 char set_type;

4585 nvlist_t *base_nvl = NULL;

4586 nvlist_t *set_nvl = NULL;

4587 nvlist_t *nvl;

4589 if (nvlist_alloc(&ase_nvl, NV_UNIQUE_NAME, 0) != 0)

4590 nomen() ;

4591 if (nvlist_all oc(&set nvl, NV_UNIQUE_NAME, 0) != 0)

4592 nomen() ;

4594 switch (type)

4595 case ZFS DELEG NAMED_SET_SETS:

4596 case ZFS_DELEG NAMED SET:

4597 set _type = ZFS DELEG NAMED SET_SETS;

4598 base type = ZFS_DELEG NAMED_SET;

4599 | d[0] = ZFS_DELEG NA;

4600 br eak;

4601 case ZFS_| DELEG CREATE_SETS:

4602 case ZFS_DELEG CREATE:.

4603 set _type = ZFS_DELEG CREATE_SETS;

4604 base_type = ZFS_DELEG CREATE;

4605 | d[0] = ZFS_DELEG NA;

4606 br eak;

4607 case ZFS _DELEG USER SETS:

4608 case ZFS_DELEG_USER

4609 set _type = ZFS DELEG USER SETS;

4610 base type = ZFS DELEG USER;

4611 if (local)

4612 | d[0] = ZFS_DELEG LOCAL;

4613 if (descend)

4614 Id[1] = ZFS_DELEG DESCENDENT;

new usr/src/cmd/ zf s/ zfs_main. c

4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633

4635
4636
4637

4639
4640
4641
4642
4643
4644

4646
4647
4648
4649

4651
4652
4653
4654
4655

4657
4658
4659
4660

4662
4663
4664
4665
4666
4667
4668
4669
4670

4672
4673
4674

4677
4678
4679
4680

br eak;
case ZFS | DELEG GROUP_SETS:
case ZFS_DELEG GROUP:
set_type = ZFS_DELEG GROUP_SETS;
base_type = ZFS_DELEG GROUP;
if (local)
Id[0] = ZFS DELEG LOCAL;
if (descend)
I d[1] = ZFS_DELEG DESCENDENT;
br eak;
case ZFS | DELEG EVERYONE_SETS:
case ZFS_DELEG EVERYONE:
set _type = ZFS_DELEG EVERYONE_SETS;
base_type = ZFS_DELEG EVERYONE;
if (local)
I d[0] = ZFS_DELEG LOCAL;
if (descend)
d[1] = ZFS_DELEG DESCENDENT
}

if (pernms !'= NULL) {
char *curr = pernms;
char *end = curr + strlen(perns);

while (curr < end) {
char *delim= strchr(curr, ',");
if (delim== NULL)
delim= end;

el se

*delim="\0";
if (curr[0] =="@)

nvl = set_nvl;
el se

nvl = base_nvl;

(oi d) nvlist_add_bool ean(nvl, curr);
if (delim!= end)

*delim=",";
curr = delim+ 1;

}

for (i =0; i <2; i++) {
char locality = Id[i];

if (locality == 0)

continue;

who ! =
(void) snprintf(who_ buf
si zeof (who_buf), " Y $Ys”
base_type, locality, who);

if (!nvlist_enpty(base_nvl)) {
if (NULL)

el se
(void) snprintf(who_buf,
si zeof (who_buf), " %eS”
base_type, locality);

(void) nvlist_add_nvlist(top_nvl, who_buf,

base_nvl);

if (!'nvlist_enpty(set_nvl)) {
if (who 1= NULL)
(voi d) snprintf(who_buf,
si zeof (who_buf), "‘J/m:"/c$°/|s",

71

new usr/src/cmd/ zf s/ zfs_main.c

4681 set _type, locality, who);
4682 el se

4683 (voi d) snprintf(who_buf,

4684 si zeof (who_buf), " °/m%:$",
4685 set _type, locali ty) ;

4687 (void) nvlist_add_nvlist(top_nvl, who_buf,
4688 set_nvl);

4689 }

4690

4691 } else {

4692 for (i =0; i < 2; |++) {

4693 char local i ty = Id[i];

4694 if (locality == 0)

4695 conti nue;

4697 if (who !'= NULL)

4698 (void) snprintf(who_buf, sizeof (who_buf),
4699 "%e%$%", base_type, locality, who);
4700 el se

4701 (voi d) snprl nt f (who_buf, sizeof (who_buf),
4702 €%$", base_type, locality);

4703 (void) nvli st_add_bool ean(top_nvl, who buf);

4705 if (who !'= NULL)

4706 (void) snprintf(who_buf, sizeof (who_buf),
4707 "%e%$%", set_type, locality, who);
4708 el se

4709 (voi d) snprl nt f (who_buf, sizeof (who_buf),
4710 %$", set_type, Iocallty)

4711 (void) nvli st_add_bool ean(top_nvl, who buf);

4712 }

4713 }

4714 }

4716 static int

4717 fonst ruct_fsacl _list(boolean_t un, struct allow opts *opts, nvlist_t **nvlp)
4718

4719 if (nvlist_alloc(nvlp, NV_UNI QUE_NAME, 0) != 0)

4720 nonemn() ;

4722 if (opts->set) {

4723 store_al | ow_pern{ ZFS_DELEG NAMED_SET, opts- >l ocal,

4724 opt s- >descend opt s->who, opts->perns, *nvlp);

4725 } else if (opts->create)

4726 store_al |l ow pern’(ZFS DELEG CREATE, opts->|ocal,

4727 opts->descend, NULL, opts->perns, *nvlp);

4728 } elseif (opts—>everyone) {

4729 store_al | ow_per m(ZFS_DELEG EVERYONE, opts->|ocal,

4730 opt s- >descend, NULL, opts->perns, *nvlp);

4731 } else {

4732 char *curr = opts->who;

4733 char *end = curr + strlen(curr);

4735 while (curr < end) {

4736 const char *who;

4737 zfs_del eg_who_type_t who_t ype;

4738 char *endch;

4739 char *delim= strchr(curr, ',");

4740 char errbuf[256];

4741 char id[64];

4742 struct passwd *p = NULL;

4743 struct group *g = NULL;

4745 uid_t rid;

4746 if (delim== NULL)

new usr/src/cnd/ zf s/ zfs_main. c 73

4747 delim= end;

4748 el se

4749 *delim="\0";

4751 rid = (uid_t)strtol (curr, &endch, 0);

4752 if (opts->user) {

4753 who_type = ZFS_DELEG USER

4754 if (*endch = "\0")

4755 p = getpwnam(curr);

4756 el se

4757 p = getpwuiid(rid);

4759 if (p!= NULL)

4760 rid = p->pw_uid;

4761 el se {

4762 (void) snprintf(errbuf, 256, gettext(
4763 "invalid user %"), curr);
4764 al | ow_usage(un, B_TRUE, errbuf);
4765 }

4766 } else if (opts->group) {

4767 who_type = ZFS_DELEG GROUP;

4768 if (*endch !'="\0")

4769 g = getgrnan(curr);

4770 el se

4771 g = getgrgid(rid);

4773 if (g != NULL)

4774 rid = g->gr_gid,

4775 el se {

4776 (void) snprintf(errbuf, 256, gettext(
4777 "invalid group %"), curr);
4778 al | ow_usage(un, B_TRUE, errbuf);
4779 }

4780 } else {

4781 if (*endch !="\0") {

4782 p = getpwnan(curr);

4783 } else {

4784 p = getpwiid(rid);

4785 }

4787 if (p == NULL)

4788 if (*endch !'="\0")

4789 g = getgrnam(curr);

4790 } else {

4791 g = getgrgid(rid);

4792 }

4794 if (p != NULL)

4795 who_type = ZFS DELEG USER;

4796 rid = p->pw_uid;

4797 } elseif (g !'= NULL) {

4798 who_type = ZFS_DELEG GROUP;
4799 rid = g->gr_gid,;

4800 } else {

4801 (void) snprintf(errbuf, 256, gettext(
4802 "invalid user/group %"), curr);
4803 al | ow_usage(un, B_TRUE, errbuf);
4804 }

4805 }

4807 (void) sprintf(id, "%", rid);

4808 who = id;

4810 store_al | ow_perm(who_t ype, opts->local,

4811 opt s- >descend, who, opts->perns, *nvlp);
4812 curr = delim+ 1;

new usr/src/cmd/ zf s/ zfs_main.c

4813 }
4814 }

4816 return (0);
4817 }

4819 static void
4820 print_set_creat_perns(uu_avl _t *who_avl)

4821 {

4822 const char *sc_title[] = {

4823 gettext("Perm ssion sets:\n"),

4824 gettext("Create tinme permssions:\n"),

4825 NULL

4826 }s

4827 const char **title_ptr = sc_title;

4828 who_per m node_t *who_node = NULL;

4829 int prev_weight = -1;

4831 for (who_node = uu_avl _first(who_avl); who_node != NULL;
4832 who_node = uu_avl _next (who_avl, who_node)) {

4833 uu_avl _t *avl = who_node->who_per m who_del eg_perm avl ;
4834 zfs_del eg_who_type_t who_type = who_node->who_per m who_t ype;
4835 const char *who_nanme = who_node->who_per m who_nane;
4836 int weight = who_t ype2wei ght (who_t ype);

4837 bool ean_t first = B_TRUE;

4838 del eg_per m node_t *del eg_node;

4840 if (prev_weight != weight) {

4841 (void) printf(*title_ptr++);

4842 prev_wei ght = wei ght;

4843 }

4845 if (who_nane == NULL || strnlen(who_nanme, 1) == 0)
4846 (void) printf("\t");

4847 el se

4848 (void) printf("\t% ", who_nane);

4850 for (del eg_node = uu_avl _first(avl); del eg_node != NULL;
4851 del eg_node = uu_avl _next (avl, del eg_node)) {
4852 if (first) {

4853 (void) printf("u%",

4854 del eg_node- >dpn_per m dp_nane) ;
4855 first = B_FALSE;

4856 } else

4857 (void) printf(", %",

4858 del eg_node- >dpn_per m dp_nane) ;
4859 }

4861 (void) printf("\n");

4862 }

4863 }

4865 static void inline

4866 print_uge_del eg_perns(uu_avl _t *who_avl, boolean_t |ocal, boolean_t descend,
4867 const char *title)

4868 {

4869 who_per m node_t *who_node = NULL;

4870 bool ean_t prt_title = B_TRUE;

4871 uu_avl _wal k_t *wal k;

4873 if ((walk = uu_avl _wal k_start(who_avl, UU WALK_ROBUST)) == NULL)
4874 nonmen() ;

4876 whil e ((who_node = uu_avl _wal k_next (wal k)) !'= NULL) {

4877 const char *who_nanme = who_node- >who_per m who_nane;

4878 const char *ni ce_who_nane = who_node- >who_per m who_ug_nane;

new usr/src/cnd/ zf s/ zfs_main. c 75
4879 uu_avl _t *avl = who_node->who_per m who_del eg_perm avl ;
4880 zfs_del eg_who type t who_type = who_node->who_per m who_t ype;
4881 char delim="

4882 del eg_per m node t *del eg_node;

4883 bool ean_t prt_who = B_TRUE;

4885 for (del eg_node = uu_avl _first(avl);

4886 del eg_node != NULL;

4887 del eg_node = uu_avl _next(avl, del eg_node)) {

4888 if (local != del eg_node->dpn_permdp_| ocal ||
4889 descend ! = del eg_node->dpn_per m dp_descend)
4890 conti nue;

4892 if (prt_who) {

4893 const char *who = NULL;

4894 if (prt_title) {

4895 prt_title = B_FALSE;

4896 (void) printf(title);

4897 }

4899 switch (who_type) {

4900 case ZFS DELEG USER SETS:

4901 case ZFS_DELEG USER

4902 who = gettext("user");

4903 if (nice_who_nane)

4904 who_nanme = ni ce_who_nane;
4905 br eak;

4906 case ZFS DELEG GROUP_SETS:

4907 case ZFS_DELEG GROUP:

4908 who = gettext("group");

4909 if (nice_who_nane)

4910 who_nane = ni ce_who_nane;
4911 bre

4912 case ZFS DELEG EVERYONE_SETS:

4913 case ZFS_DELEG EVERYONE.

4914 who = gettext("everyone");

4915 who_nane = NULL;

4916 }

4918 prt_who = B_FALSE

4919 I f (who_name == NULL)

4920 (void) printf("\t%", who);
4921 el se

4922 (void) printf("\t% %", who, who_nane);
4923 }

4925 (void) printf("%%", delim

4926 del eg_node- >dpn_| perm dp_nane) ;

4927 delim=",";

4928 }

4930 if (!prt_who)

4931 (void) printf("\n");

4932 }

4934 uu_avl _wal k_end(wal k) ;

4935 }

4937 static void

4938 print_fs_perns(fs_permset_t *fspset)

4939 {

4940 fs_permnode_t *node = NULL;

4941 char buf [ZFS_MAXNAMELEN+32] ;

4942 const char *dsnane = buf;

4944 for (node = uu_list_first(fspset->fsps_list); node != NULL;

new usr/src/cmd/ zf s/ zfs_main.c

4945 node = uu_list_next(fspset->fsps_list, node))

4946 uu_avl _t *sc_avl = node->fspn_fspermfsp_sc_avl;
4947 uu_avl _t *uge_avl = node->fspn_fsperm fsp_uge_avl;
4948 int left = 0;

4950 (void) snprintf(buf, ZFS_MAXNAMELEN+32,

4951 gettext("---- Permissions on % "),

4952 node- >f spn_f sperm f sp_nane) ;

4953 (void) printf(dsnane);

4954 left = 70 - strlen(buf);

4955 while (left-- > 0)

4956 (void) printf("-");

4957 (void) printf("\n");

4959 print_set_creat_perns(sc_avl);

4960 pri nt_uge_del eg_perns(uge_avl, B TRUE B_FALSE,
4961 gettext("Local perm ssi ons:\n")

4962 print_uge_del eg_perns(uge_avl, B_ FALSE B_TRUE,
4963 get t ext (" Descendent permi ssions: \n"));

4964 print_uge_del eg_perns(uge_avl, B TRUE, B TRUE
4965 gettext ("Local +Descendent perm ssions:\n"));
4966 }

4967 }

4969 static fs_permset_t fs_permset = { NULL, NULL, NULL, NULL };
4971 struct del eg_perns {

4972 bool ean_t un;

4973 nvlist_t *nvl;

4974 };

4976 static int

4977 set_del eg_perns(zfs_handl e_t *zhp, void *data)

4978 {

4979 struct del eg_perns *perns = (struct del eg_perns *)data;
4980 zfs_type_t zfs_type = zfs_get_type(zhp);

4982 if (zfs_type !'= ZFS TYPE_FI LESYSTEM && zfs_type !=
4983 return (0);

4985 return (zfs_set_fsacl (zhp, perms->un, perns->nvl));
4986 }

4988 static int

4989 {zf s_do_al l ow_unal I ow_i npl (i nt argc, char **argv, bool ean_t un)
4990

4991 zfs_handl e_t *zhp;

4992 nvlist_t *permnvl = NULL;

4993 nvlist_t *update_permnvl = NULL;

4994 int error = 1;

4995 int c;

4996 struct allow opts opts = { 0 };

4998 const char *optstr = un ? "ldugecsrh" "1 dugecsh";
5000 /* check opts */

5001 while ((c = getopt(argc, argv, optstr)) !=-1) {

5002 switch (c)

5003 case '|’:

5004 opts.local = B_TRUE;

5005 break;

5006 case 'd:

5007 opts. descend = B_TRUE;

5008 break;

5009 case 'u':

5010 opts.user = B_TRUE;

ZFS_TYPE_VOLUVE)

new usr/src/cmd/ zf s/ zfs_main. c

5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040

5042
5043

5045
5046

5048
5049
5050
5051
5052
5053
5054

5056
5057

5059
5060
5061
5062
5063

5065
5066
5067
5068
5069
5070

5072
5073
5074
5075
5076

}

argc -=
argv +=

/* check
par se_al

/* try t

if ((zhp
ZFS

}

if (zfs_

fs_perm.:

if (pars

}
if (opts.

el se {

. TYPE_VOLUVE))

77
br eak;
case 'g':
opts.group = B_TRUE
br eak;
case 'e’:
opts. everyone = B _TRUE;
br eak;
case 's’:
opts.set = B_TRUE;
break;
case 'c':
opts.create = B_TRUE;
br eak;
case 'r’:
opts.recursive = B_TRUE;
br eak;
case ':’
(v0| d) fpri ntf(stderr gettext ("m ssing argunent for
%’ option\n"), optopt);
usage(B FALSE) ;
br eak
case 'h':
opts.prt_usage = B _TRUE;
br eak;
case ' ?':
(void) fprintf(stderr, gettext("invalid option %’ \n"),
optopt);
usage(B_FALSE);
}
optind;
opti nd;

argunments */
| ow_ar gs(argc,

o open the dataset */
= zfs_open(g_zfs,
== NULL)
(void) fprintf(stderr,
opts. dat aset);
return (-1);

fo
"Fail ed

get _fsacl (zhp, &permnvl) !'= 0)
goto cl eanup2;

set_init(& s_permset);
e_fs_permset (& s_permset, per
(void) fprintf(stderr, "Failed
goto cl eanupl;

prt_perns)
print_fs_pernms(& s_permset);

(void) construct_fsacl_list(un,
if (zfs_set_fsacl (zhp, un, upda
got o cl eanupO;

if (un &% opts.recursive) {
struct del eg_perns data

if (zfs_iter_filesystens(zhp,

&data) != 0)
got o cl eanupO;

opt s. dat aset,

argv, un, &opts);

ZFS_TYPE_FI LESYSTEM |

to open dataset: %\n",

mnvl) '=0) {

to parse fsacl perm ssions\n");

&opts, &update_| perm nvl);

te_permnvl) !I=

= { un, update_permnvl };
set _del eg_per ns,

new usr/src/cmd/ zf s/ zfs_main.c

5077 }

5078 1

5080 error = 0;

5082 cl eanupO:

5083 nvlist_free(permnvl);

5084 if (update_permnvl != NULL)

5085 nvlist_free(update_permnvl);

5086 cl eanupl:

5087 fs_permset_fini (& s_permset);

5088 cl eanup2:

5089 zfs_cl ose(zhp);

5091 return (error);

5092 }

5094 static int

5095 zfs_do_all ow(int argc, char **argv)

5096 {

5097 return (zfs_do_all ow unal l ow_ i npl (argc, argv, B _FALSE));
5098 }

5100 static int

5101 zfs_do_unal low(int argc, char **argv)

5102 {

5103 return (zfs_do_all ow unallow_inpl (argc, argv, B_TRUE));
5104 }

5106 static int

5107 zfs_do_hold_rele_inpl (int argc, char **argv, bool ean_t hol di ng)
5108 {

5109 int errors = 0;

5110 int i;

5111 const char *tag;

5112 bool ean_t recursive = B_FALSE;

5113 const char *opts = holding ? "rt" : "r";

5114 int c;

5116 /* check options */

5117 while ((c = getopt(argc, argv, opts)) !=-1) {

5118 switch (c) {

5119 case 'r’:

5120 recursive = B _TRUE;

5121 br eak;

5122 case ' ?:

5123 (void) fprintf(stderr, gettext("invalid option
5124 optopt);

5125 usage(B_FALSE) ;

5126 }

5127 }

5129 argc -= optind;

5130 argv += optind;

5132 /* check nunber of argunents */

5133 if (argc < 2)

5134 usage(B_FALSE) ;

5136 tag = argv[O0];

5137 --argc;

5138 ++ar gv;

5140 if (holdlng&&tag[0] ==" {

5141 tags starting with ' are reserved for libzfs */
5142 (v0| d) fprintf(stderr, gettext("tag nmay not start with '.

78

"9’ \n"),

)

new usr/src/cnd/ zf s/ zfs_main. c 79

5143 usage(B_FALSE);

5144 1

5146 for (i =0; i < argc; ++i) {

5147 zfs_handl e_t *zhp;

5148 char parent[ZFS_MAXNAMELEN] ;

5149 const char *delim

5150 char *path = argv[i];

5152 delim= strchr(path, '@);

5153 if (delim== NULL) {

5154 (void) fprintf(stderr,

5155 gettext("' %’ is not a snapshot\n"), path);

5156 ++errors;

5157 cont i nue;

5158 }

5159 (void) strncpy(parent, path, delim- path);

5160 parent[delim- path] = "\0";

5162 zhp = zfs_open(g_zfs, parent,

5163 ZFS_TYPE_FI LESYSTEM | ZFS_TYPE_VOLUME) ;

5164 if (zhp == NULL) {

5165 ++errors;

5166 conti nue;

5167 }

5168 if (holding) {

5169 if (zfs_hold(zhp, delim+l, tag, recursive, -1) != 0)
28 if (zfs_hold(zhp, delimtl, tag, recursive,
29 B_FALSE, -1) !=0)

5170 ++errors;

5171 } else {

5172 if (zfs_rel ease(zhp, delim+l, tag, recursive) != 0)

5173 ++errors;

5174 }

5175 zfs_cl ose(zhp);

5176 1

5178 return (errors !'= 0);

5179

____unchanged_portion_onitted_

new usr/src/lib/libzfs/comon/libzfs.h

R R R R

26978 Wed May 29 20:27:07 2013
new usr/src/lib/libzfs/comon/libzfs.h
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi
Submitted by: Steven Hartland <steven. hartland@ul tiplay.co. uk>

LR

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governing pernissions

11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER i n each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]

18 *

19 * CDDL HEADER END

20 */

22 | *

23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
24 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.

25 * Copyright (c) 2012 by Del phix. Al rights reserved.

26 * Copyright (c) 2012, Joyent, Inc. Al rights reserved.

27 * Copyright (c) 2013 Steven Hartland. Al rights reserved.
28 #endif /* | codereview */
29 =/

31 #ifndef _LIBZFS H
32 #define _LI BZFS_H

34 #include <assert. h>

35 #include <libnvpair.h>
36 #include <sys/mttab. h>
37 #include <sys/param h>
38 #include <sys/types. h>
39 #include <sys/varargs. h>
40 #include <sys/fs/zfs.h>
41 #include <sys/avl.h>

42 #incl ude <ucred. h>

44 #ifdef _ _cplusplus
45 extern "C' {
46 #endi f

48 [*

49 * M scel | aneous ZFS constants
50 */

51 #define ZFS_MAXNAMELEN

52 #defi ne ZPOOL_MAXNAMELEN

53 #define ZFS_MAXPROPLEN

54 #define ZPOOL_MAXPROPLEN

MAXNAMELEN
MAXNAMELEN
MAXPATHLEN
MAXPATHLEN

56 /*
57 * libzfs errors
*

59 typedef enum zfs_error {
60 EZFS_SUCCESS = 0, /* no error -- success */

new usr/src/lib/libzfs/comon/libzfs.h

61 EZFS_NOMVEM = 2000, /* out of menory */

62 EZFS_BADPROP, /* invalid property value */

63 EZFS_PROPREADONLY, /* cannot set readonly property */

64 EZFS_PROPTYPE, /* property does not apply to dataset type */
65 EZFS_PROPNONI NHERI T, /* property is not inheritable */

66 EZFS_PROPSPACE, /* bad quota or reservation */

67 EZFS_BADTYPE, /* dataset is not of appropriate type */
68 EZFS_BUSY, /* pool or dataset is busy */

69 EZFS_EXI STS, /* pool or dataset already exists */

70 EZFS_NOENT, /* no such pool or dataset */

71 EZFS BADSTREAM /* bad backup stream */

72 EZFS_DSREADONLY, /* dataset is readonly */

73 EZFS_VOLTOOBI G, /* volunme is too large for 32-bit system*/
74 EZFS | NVAL| DNANE, /* invalid dataset nane */

75 EZFS BADRESTORE, /* unable to restore to destination */

76 EZFS_BADBACKUP, /* backup failed */

77 EZFS_BADTARGET, /* bad attach/detach/replace target */

78 EZFS_NODEVI CE, /* no such device in pool */

79 EZFS_BADDEV, /* invalid device to add */

80 EZFS _NOREPLI CAS, /* no valid replicas */

81 EZFS_RESI LVERI NG /* currently resilvering */

82 EZFS BADVERSI ON, /* unsupported version */

83 EZFS POOLUNAVAI L, /* pool is currently unavailable */

84 EZFS_DEVOVERFLOW /* too many devices in one vdev */

85 EZFS_BADPATH, /* must be an absolute path */

86 EZFS_CROSSTARGET, /* renanme or clone across pool or dataset */
87 EZFS_ZONED, /* used inproperly in local zone */

88 EZFS_MOUNTFAI LED, /* failed to nount dataset */

89 EZFS_UMOUNTFAI LED, /* failed to unnpbunt dataset */

90 EZFS_UNSHARENFSFAI LED, /* unshare(1M failed */

91 EZFS_SHARENFSFAI LED, /* share(1M failed */

92 EZFS PERM /* perm ssion denied */

93 EZFS_NGCSPC, /* out of space */

94 EZFS_FAULT, /* bad address */

95 EZFS | O /* 1/Oerror */

96 EZFS | NTR, /* signal received */

97 EZFS_| SSPARE, /* device is a hot spare */

98 EZFS_| NVALCONFI G /* invalid vdev configuration */

99 EZFS RECURSI VE, /* recursive dependency */

100 EZFS_NOH STORY, /* no history object */

101 EZFS_POOLPROPS, /* couldn't retrieve pool props */

102 EZFS_POOL_NOTSUP, /* ops not supported for this type of pool
103 EZFS POOL_| NVALARG, /* invalid argument for this pool operation */
104 EZFS NAMETOOLONG, /* dataset name is too |long */

105 EZFS_OPENFAI LED, /* open of device failed */

106 EZFS_NOCAP, /* couldn’t get capacity */

107 EZFS_LABELFAI LED, /* wite of |abel failed */

108 EZFS_BADWHO, /* invalid perm ssion who */

109 EZFS_BADPERM /* invalid perm ssion */

110 EZFS_BADPERVSET, /* invalid perm ssion set name */

111 EZFS_NODELEGATI ON, /* del egated adm nistration is disabled */
112 EZFS UNSHARESMBFAI LED, /* failed to unshare over snb */

113 EZFS_SHARESMBFAI LED, /* failed to share over snb */

114 EZFS_BADCACHE, /* bad cache file */

115 EZFS_| SL2CACHE, /* device is for the level 2 ARC */

116 EZFS_VDEVNOTSUP, /* unsupported vdev type */

117 EZFS_NOTSUP, /* ops not supported on this dataset */
118 EZFS_ACTI VE_SPARE, /* pool has active shared spare devices */
119 EZFS_UNPLAYED_ LCGS, /* 1og device has unplayed | ogs */

120 EZFS REFTAG RELE, /* snapshot rel ease: tag not found */

121 EZFS REFTAG HOLD, /* snapshot hold: tag already exists */
122 EZFS_TAGTOOLONG /* snapshot hold/rele: tag too long */
123 EZFS_PI PEFAI LED, /* pipe create failed */

124 EZFS THREADCREATEFAI LED, /* thread create failed */

125 EZFS POSTSPLI T_ONLINE, /* onlining a disk after splitting it */
126 EZFS_SCRUBBI NG, /* currently scrubbing */

new usr/src/lib/libzfs/comon/libzfs.h

127 EZFS_NO_SCRUB, /* no active scrub */

128 EZFS DI FF, /* general failure of zfs diff */
129 EZFS DI FFDATA, /* bad zfs diff data */
130 EZFS_POOLREADONLY, /* pool is in read-only node */
131 EZFS_UNKNOWN

132 } zfs_error_t;

134 /*

135 * The follow ng data structures are all part

136 * of the zfs_allowt data structure which is

137 * used for printing "allow perm ssions.

138 * It is a linked list of zfs_allow t’s which

139 * then contain avl tree's for user/group/sets/...

140 * and each one of the entries in those trees have

141 * avl tree’s for the perm ssions they belong to and

142 * whether they are |ocal, descendent or |ocal +descendent
143 * permissions. The AVL trees are used prinmarily for

144 * sorting purposes, but also so that we can quickly find
145 * a given user and or perm ssion.

146 */

147 typedef struct zfs_permnode {

148 avl _node_t z_node;

149 char z pnarre[NAXPATHLEN]

150 } zfs_perm node_t;

152 typedef struct zfs_allow node {

153 avl _node_t z_node;

154 char z_key[MAXPATHLEN] ; /* nane, such as joe */

155 avl _tree_t z_| ocal descend; /* | ocal +descendent perns */
156 avl tree_t z_local; /* local perm ssions */

157 avl tree t z descend /* descendent perm ssions */

158 } zfs_allow node_t;

160 typedef struct zfs_all ow{

161 struct zfs_allow *z_next;
162 char z_set poi nt[NAXPATHLEN]
163 avl tree_t z_sets;

164 avl _tree_t z_crperns;
165 avl _tree_t z_user;

166 avl _tree_t z_group;

167 avl _tree_t z_everyone;
168 } zfs_allow.t;

170 /*

171 * Basic handl e types

172 */

173 typedef struct zfs_handl e zfs_handle_t;
174 typedef struct zpool _handl e zpool handi e t;
175 typedef struct libzfs handle |ibzfs_handle_ t;

177 |*
178 * Library initialization
179 */

180 extern |ibzfs_handle_t *libzfs_init(void);
181 extern void libzfs_fini(libzfs_handle_t *);

183 extern |ibzfs_handl e_t *zpool _get_handl e(zpool _handle_t *);
184 extern |ibzfs_handle_t *zfs_get_handl e(zfs_handl e_t *);

186 extern void libzfs_print_on_error(libzfs_handle_t *, boolean_t);

188 extern void zfs_save_argunments(int argc, char **, char *, int);
189 extern int zpool _| og_history(libzfs_handle_t *, const char *);

191 extern int |ibzfs_errno(libzfs_handle_t *);
192 extern const char *libzfs_error act|on(||bzfs handl e_t *);

new usr/src/lib/libzfs/comon/libzfs.h

193 extern const char *libzfs_error_description(libzfs_handle_t *);
194 extern void libzfs_mttab_i nlt(l i bzfs_handl e_t *);

195 extern void |ibzfs_mttab_fini(libzfs_handl et *);

196 extern void |ibzfs_mmttab_cache(libzfs_handle_t *, bool ean_t);
197 extern int libzfs_mttab_find(libzfs_handle_t *, const char *,

198 struct mttab *);

199 extern void libzfs rmttab _add(libzfs_handle_t *, const char *,
200 const char *, const char *);

201 extern void libzfs_mttab_renove(libzfs_handle_t *, const char *);
203 /*

204 * Basic handle functions

205 */

206 extern zpool _handl e_t *zpool _open(libzfs_handle_t *, const char *);

207 extern zpool _handl e_t *zpool _open_canfail (libzfs_handle_t *, const char *);
208 extern voi d zpool _close(zpool _handle_t *);

209 extern const char *zpool _get_nanme(zpool _handle_t *);

210 extern int zpool _get_state(zpool _handle_t *);

211 extern char *zpool _state_to_nane(vdev_state_t, vdev_aux_t);

212 extern void zpool _free_handl es(libzfs_handle_t *);

214 | *

215 * Iterate over all active pools in the system

216 */

217 typedef int (*zpool _iter_f)(zpool handle_t *, void *);

218 extern int zpool_ite(| zfs_handle_t *, zpool _iter_f, void *);
220 /*

221 * Functions to create and destroy pools

222 */

223 extern int zpool _create(libzfs_handle_t *, const char *, nvlist_t *,
224 nvlist_t *, nvlist_t *);

225 extern int zpool _destroy(zpool _handle_t *, const char *);

226 extern int zpool _add(zpool _handle_t *, nvlist_t *);

228 typedef struct splitflags {

229 /* do not split, but return the config that would be split off */
230 int dryrun : 1;

232 /* after spllttlng, i mport the pool */

233 int inmport : 1;

234 } splitflags_t;

236 /*

237 * Functions to manipul ate pool and vdev state

238 */

239 extern int zpool _scan(zpool _handle_t *, pool _scan_func_t);

240 extern int zpool _cl ear(zpool handle_t *, const char *, nvi i st _t o),
241 extern int zpool _reguid(zpool _handle_t *);

242 extern int zpool _reopen(zpool _handl e_t *);

244 extern int zpool _vdev_online(zpool _handle_t *, const char *, int,

245 vdev_state_t *);

246 extern int zpool _vdev_offline(zpool _handle_t *, const char *, boolean_t);
247 extern int zpool _vdev attach(zpool handl e_t *, const char *,

248 const char *, nvlist t *, int

249 extern int zpool vdev_detach(zpool " handl e _t *, const char *);

250 extern int zpool _vdev_renove(zpool _handle_t *, const char *);

251 extern int zpool _vdev_split(zpool _handle_t *, char *, nvlist_t **, nvlist_t *,
252 splitflags_t);

254 extern int zpool _vdev_fault(zpool _handle_t *, uint64_t, vdev_aux_t);

255 extern int zpool _vdev_degrade(zpool _handle_t *, uint64_t, vdev_aux_t);
256 extern int zpool _vdev_cl ear(zpool _handle_t *, uint64_t);

258 extern nvlist_t *zpool _find_vdev(zpool _handle_t *, const char *, boolean_t *,

new usr/src/lib/libzfs/comon/libzfs.h 5 new usr/src/lib/libzfs/comon/libzfs.h
259 bool ean_t *, bool ean_t *); 325 ZPOOL_STATUS_REMOVED_DEV, /* renoved device */
260 extern nvlist_t *zpool find_vdev_by physpat h(zpool _handle_t *, const char *,
261 bool ean_t *, boolean_t *, bool ean_t *); 327 I*
262 extern int zpool _| abel _di sk(libzfs_handle_t *, zpool _handle_t *, char *); 328 */ Finally, the follow ng indicates a healthy pool.
329 *
264 | * 330 ZPOOL_STATUS_OK
265 * Functions to manage pool properties 331 } zpool _status_t;
266 */
267 extern int zpool _set_prop(zpool _handle_t *, const char *, const char *); 333 extern zpool _status_t zpool _get_status(zpool _handle_t *, char **);
268 extern int zpool _get_prop(zpool _handle_t *, zpool _prop_t, char *, 334 extern zpool _status_t zpool _inport_status(nvlist_t *, char **);
269 size_t proplen, zprop_source_t *); 335 extern void zpool _dunp_ddt (const ddt_stat_t *dds, const ddt_histogramt *ddh);
270 extern uint64_t zpool get prop_int(zpool handle_t *, zpool prop_t,
271 zprop_source_t *); 337 /*
338 * Statistics and configuration functions.
273 extern const char *zpool _prop_to_nane(zpool _prop_t); 339 */
274 extern const char *zpool _prop_val ues(zpool _prop_t); 340 extern nvlist_t *zpool _get_config(zpool _handle_t *, nvlist_t **);
341 extern nvlist_t *zpool _get_features(zpool _handle_t *);
276 | * 342 extern int zpool refresh_stats(zpool handle_t *, bool ean_t *);
277 * Pool health statistics. 343 extern int zpool _get_errTog(zpool handle_t *, nvlist_t *¥);:
278 */
279 typedef enum { 345 /*
280 l* 346 * Inport and export functions
281 * The followi ng correspond to faults as defined in the (fault.fs.zfs.*) 347 */
282 * event nanespace. FEach is associated with a correspondi ng nessage |D. 348 extern int zpool _export(zpool _handle_t *, bool ean_t, const char *);
283 */ 349 extern int zpool _export_force(zpool _handle_t *, const char *);
284 ZPOOL_STATUS_CORRUPT_CACHE, /* corrupt /kernel/drv/zpool.cache */ 350 extern int zpool _inport(libzfs_handle_t *, nvlist_t *, const char *,
285 ZPOOL_STATUS_M SSI NG DEV_R, /* mssing device with replicas */ 351 char *altroot);
286 ZPOOL_STATUS_M SSI NG_DEV_NR, /* mssing device with no replicas */ 352 extern int zpool _inport_props(libzfs_handle_t *, nvlist_t *, const char *,
287 ZPOOL_STATUS_CORRUPT_LABEL_R, /* bad device |abel with replicas */ 353 nvlist_t *, Tnt);
288 ZPOOL_STATUS_CORRUPT_LABEL_NR, /* bad device |label with no replicas */ 354 extern void zpool _print_unsup_feat(nvlist_t *config);
289 ZPOOL_STATUS_BAD GUI D_SUM /* sum of device guids didn't match */
290 ZPOOL_STATUS_CORRUPT_POOL, /* pool netadata is corrupted */ 356 /*
291 ZPOOL_STATUS_CORRUPT_DATA, /* data errors in user (neta)data */ 357 * Search for pools to inport
292 ZPOOL_STATUS_FAI LI NG_DEV, /* device experiencing errors */ 358 */
293 ZPOOL_STATUS_VERSI ON_NEVER, /* newer on-disk version */
294 ZPOOL_STATUS_HOSTI D_M SMATCH, /* last accessed by another system */ 360 typedef struct inmportargs {
295 ZPOOL_STATUS | O FAI LURE_WAI T, /* failed 1/O, failnode "wait’ */ 361 char **pat h; /* a list of paths to search =Y
296 ZPOOL_STATUS_| O_FAI LURE_CONTINUE, /* failed I/Q failnode 'continue’ */ 362 int paths; /* nunber of paths to search &Y
297 ZPOOL_STATUS_BAD_LOG /* cannot read | og chain(s) */ 363 char *pool nane; /* name of a pool to find */
364 uint64_t guid; /* guid of a pool to find */
299 7% 365 char *cachefil e; /* cachefile to use for inport =)
300 * |f the pool has unsupported features but can still be opened in 366 int can_be_active : 1; /* can the pool be active? */
301 * read-only node, its status is ZPOOL_STATUS_UNSUP_FEAT_WRI TE. |If the 367 int unique : 1; /* does ' pool name’ al ready exist? */
302 * pool has unsupported features but cannot be opened at all, its 368 int exists : 1; /* set on return if pool already exists */
303 * status is ZPOOL_STATUS_UNSUP_FEAT_READ. 369 } inportargs_t;
304 *
305 ZPOOL_STATUS_UNSUP_FEAT_READ, /* unsupported features for read */ 371 extern nvlist_t *zpool _search_inport(libzfs_handle_t *, inportargs_t *);
306 ZPOOL_STATUS_UNSUP_FEAT_WRI TE, /* unsupported features for wite */
373 /* |l egacy pool search routines */
308 e 374 extern nvlist_t *zpool _find_inmport(libzfs_handle_t *, int, char **);
309 * These faults have no corresponding nessage ID. At the tinme we are 375 extern nvlist_t *zpool _find_i nport_cached(libzfs_handle_t *, const char *,
310 * checking the status, the original reason for the FMA fault (I/0O or 376 char *, uint64_t);
311 * checksum errors) has been |ost.
312 */ 378 [*
313 ZPOOL_STATUS_FAULTED_DEV_R, /* faulted device with replicas */ 379 * M scel |l aneous pool functions
314 ZPOOL_STATUS_FAULTED_DEV_NR, /* faulted device with no replicas */ 380 */
381 struct zfs_cnd;
316 /*
317 * The following are not faults per se, but still an error possibly 383 extern const char *zfs_history_event_nanes[];
318 * requiring admnistrative attention. There is no corresponding
319 * nmessage |ID. 385 extern char *zpool _vdev_nane(libzfs_handle_t *, zpool _handle_t *, nvlist_t *,
320 “f 386 bool ean_t verbose);
321 ZPOOL_STATUS_VERSI ON_OLDER, /* ol der |egacy on-disk version */ 387 extern int zpool _upgrade(zpool _handle_t *, uint64_t);
322 ZPOOL_STATUS_FEAT_DI SABLED, /* supported features are disabled */ 388 extern int zpool _get_history(zpool _handle_t *, nvlist_t **);
323 ZPOOL_STATUS_RESI LVERI NG, /* device being resilvered */ 389 extern int zpool _history unpack(char *, uint64_t, uint64_t *,
324 ZPOOL_STATUS_OFFLI NE_DEV, /* device online */ 390 nvlist_t *** uint_t *);

new usr/src/lib/libzfs/comon/libzfs.h

391 extern void zpool _obj_to_path(zpool _handle_t *, uint64_t, uint64_t, char *,
392 size_t len);

393 extern int zfs_ioctl(libzfs_handle_t *, int, struct zfs_cnd *);

394 extern int zpool _get_physpath(zpool _handle_t *, char *, size_t);

395 extern void zpool _expl ain_recover(libzfs_handle_t *, const char *, int,
396 nvliist_t *);

398 /*

399 * Basic handl e mani pul ations. These functions do not create or destroy the
400 * underlying datasets, only the references to them

401 */

402 extern zfs_handl e_t *zfs_open(libzfs_handle_t *, const char *, int);

403 extern zfs_handle_t *zfs_handl e_dup(zfs_handle_t *);

404 extern void zfs_close(zfs_handle t *);

405 extern zfs_type t zfs_get type(const zfs_handl e_t *);

406 extern const char *zfs_get name(const zfs_handle_t *);

407 extern zpool _handl e_t *zfs_get _pool _handl e(const zfs_| handle t*);

409 /*
410 * Property managenent functions. Sonme functions are shared with the kernel,
411 * and are found in sys/fs/zfs.h.

*/

412

414 [*

415 * zfs dataset property managenent
416 */

417 extern const char *zfs_prop_default_string(zfs_prop_t);
418 extern uint64_t zfs_prop_defaul t_nuneric(zfs_prop_t);
419 extern const char *zfs_prop_col um_nanme(zfs_prop_t);
420 extern bool ean_t zfs_prop_align_right(zfs_prop_t);

422 extern nvlist_t *zfs_valid_proplist(libzfs_handle_t *, zfs_type_t,
423 nvlist_t *, uint64_t, zfs_handle_t *, const char *);

425 extern const char *zfs_prop_to_nanme(zfs_prop_t);
426 extern int zfs_prop_set(zfs_handle_t *, const char *, const char *);
427 extern int zfs_prop_get(zfs_handle_t *, zfs_prop_t, char *, size_t,

428 zprop_source_t *, char *, size_t, boolean_t);

429 extern int zfs_prop_get_recvd(zfs_handle_t *, const char *, char *, size_t,
430 bool ean_t);

431 extern int zfs_prop_get_nuneric(zfs_handle_t *, zfs_prop_t, uint64_t *,

432 zprop_source_t *, char *, size_t);

433 extern int zfs_prop_get_userquota_int(zfs_handl e_t *zhp, const char *propnang,
434 uint64_t *propval ue);

435 extern int zfs_prop_get_userquota(zfs_handl e_t *zhp, const char *propnang,
436 char *propbuf, int proplen, boolean_t literal);

437 extern int zfs_prop_get_witten_int(zfs_handle_t *zhp, const char *propnang,
438 uint64_t *propval ue);

439 extern int zfs_prop_get_witten(zfs_handle_t *zhp, const char *propnane,
440 char *propbuf, int proplen, boolean_t literal);

441 extern int zfs_prop_get_feature(zfs_handle_t *zhp, const char *propnane,
442 char *buf, size_t len);

443 extern uint64_t zfs_prop_get_int(zfs_handle_t *, zfs_prop_t);

444 extern int zfs_prop_inherit(zfs_handle_t *, const char *, boolean_t);
445 extern const char *zfs_prop_val ues(zfs_prop_t);

446 extern int zfs_prop_is_string(zfs_prop_t prop);

447 extern nvlist_t *zfs_get_user_props(zfs_handle_t *);

448 extern nvlist_t *zfs_get_recvd_props(zfs_handle_t *);

449 extern nvlist_t *zfs_get_clones_nvl (zfs_handle_t *);

452 typedef struct zprop_list {

453 int pl _prop;
454 char *pl user _prop;
455 struct zprop_list *pl _next;

456 bool ean_t pl _alT;

new usr/src/lib/libzfs/comon/libzfs.h

457 size_t pl _wi dth;
458 size_t pl _recvd_wi dt h;
459 bool ean_t pl _fixed;

460 } zprop_list_t;

462 extern int zfs_expand_proplist(zfs_handle_t *, zprop_list_t **, boolean_t);
463 extern void zfs_prune_proplist(zfs_handle_t *, uint8_t *);

465 #define ZFS_MOUNTPO NT_NONE "none"

466 #define ZFS_MOUNTPO NT_LEGACY "l egacy"

468 #define ZFS_FEATURE DI SABLED "di sabl ed"

469 #define ZFS_FEATURE_ENABLED "enabl ed"

470 #define ZFS_FEATURE_ACTI VE "active"

472 #define ZFS_UNSUPPORTED_| NACTI VE "inactive"
473 #define ZFS_UNSUPPORTED_READONLY "readonl y"
475 | *

476 * zpool property managenent

477 */

478 extern int zpool _expand_proplist(zpool _handle_t *, zprop_list_t **);

479 extern int zpool _prop_get_feature(zpool _handle_t *, const char *, char *,
480 size_t);

481 extern const char *zpool _prop_defaul t_string(zpool _prop_t);

482 extern uint64_t zpool _prop_default_nuneric(zpool _prop_t);

483 extern const char *zpool _prop_col uim_nane(zpool _prop_t);

484 extern bool ean_t zpool _prop_align_right(zpool _prop_t);

486 [*

487 * Functions shared by zfs and zpool property managenent.

488 */

489 extern int zprop_iter(zprop_func func, void *cb, boolean_t show all,

490 bool ean_t ordered, zfs_type_t type);
491 extern int zprop_get_list(libzfs_handle_t *, char *, zprop_list_t **,
492 zfs_type_t);

493 extern void zprop free_list(zprop_list_t *);
495 #define ZFS_GET_NCOLS 5

497 typedef enum {

498 GET_COL_NONE,

499 GET_COL_NAME,

500 CET_COL_PROPERTY,

501 GET_COL_VALUE,

502 GET_COL_RECVD,

503 GET_COL_SOURCE

504 } zfs_get_colum_t;

506 /*

507 * Functions for printing zfs or zpool properties
508 *

509 typedef struct zprop_get_cbdata {

510 int cb_sources;

511 zfs_get_col um_t cb_col ums[ZFS_GET_NCOLS] ;
512 int cb_colw dths[ZFS_GET_NCOLS + 1];

513 bool ean_t cb_scri pt ed;

514 bool ean_t ch_literal;

515 bool ean_t cb_first;

516 zprop_list_t *cb_propl ist;

517 zfs_type_t cb_type;

518 } zprop_get_cbhdata_t;

520 voi d zprop_print_one_property(const char *, zprop_get_chdata_t *,
521 const char *, const char *, zprop_source_t, const char *,
522 const char *);

new usr/src/lib/libzfs/comon/libzfs.h

524 | *
525 * Iterator functions.
526 *

527 typedef int (*zfs_iter_f)(zfs_handle_t *, void *);

new usr/src/lib/libzfs/comon/libzfs.h

589 bool ean_t progress;
590 } sendflags_t;

592 typedef boolean_t (snapfilter_cb_t)(zfs_handle_t *, void *);

594 extern int zfs_send(zfs_handle_t *, const char *, const char *,
595 sendflags_t *, int, snapfilter_cb_t, void *, nvlist_t **);

597 extern int zfs_pronote(zfs_handle_t *);

598 extern int zfs_hold(zfs_handle_t *, const char *, const char *,
599 bool ean_t, int);

600 extern int zfs _hol d nvI(zfs handle t *, int, nvlist_t *);

27 bool ean_t, bool ean_t, int

601 extern int zfs _rel ease(zfs handle to*,
602 extern int zfs_get_hol ds(zfs_ handle_t *, nvlist_t **);
603 extern uint64_t zvol vol size to_reservation(uint64_t, nvlist_t *);
605 typedef int (*zfs_userspace_cb_t)(void *arg, const char *domain,
606 uid_t rid, uint64_t space);

608 extern int zfs_userspace(zfs_handle_t *, zfs_userquota_prop_t,
609 zfs_userspace_cb_t, void *);

611 extern int zfs_get_fsacl(zfs_handle_t *, nvlist_t **);
612 extern int zfs_set_fsacl (zfs_handle_t *, boolean_t, nvlist_t *);

614 typedef struct recvflags {

528 extern int zfs_iter_root(libzfs_handle t *, zfs_ iter_f, void *);

529 extern int zfs_iter_children(zfs_handle_t *, zfs_lter_f, void *);

530 extern int zfs_iter_dependents(zfs_handle_t *, boolean_t, zfs_iter_f, void *);
531 extern int zfs_iter_filesystems(zfs_handle_t *, zfs_iter_f, void *);

532 extern int zfs_iter_snapshots(zfs_handle_t *, zfs_iter_f, void *);

533 extern int zfs_iter_snapshots_sorted(zfs_handle_t *, zfs_iter_f, void *);
534 extern int zfs_iter_snapspec(zfs_handle_t *, const char *, zfs_iter_f, void *);
536 typedef struct get_all_cb {

537 zfs_handl e_t **cb_handl es;

538 size_t cb_all oc;

539 size_t cb_used;

540 bool ean_t cb_verbose;

541 i nt (*cb_getone) (zfs_handle_t *, void *);

542 } get_all _cb_t;

544 void |ibzfs_add_handl e(get _all _cb_t *, zfs_handle_t *);

545 int |ibzfs_dataset_cnp(const void *, const void *);

547 [*

548 * Functions to create and destroy datasets.

549 */

550 extern int zfs_create(libzfs_handle_t *, const char *, zfs_type_t,

551 nvlist_t *);

552 extern int zfs create_ancestors(libzfs_handle_t *, const char *);

553 extern int zfs_destroy(zfs_handle_t *, bool ean_t);

554 extern int zfs_destroy_snaps(zfs_handle_t *, char *, boolean_t);

555 extern int zfs_destroy_snaps_nvl (libzfs_handle_t *, nvlist_t *, boolean_t);
556 extern int zfs clone(zfs_handle_t *, const char *, nvlist_t *);

557 extern int zfs_snapshot(Tibzfs handle_t *, const char *, boolean_t, nvlist_t *);
558 extern int zfs_snapshot_nvl (libzfs_handle_t *hdl, nvlist_t *snaps,

559 nvlist_t *props);

560 extern int zfs_roll back(zfs handl e_t *, zfs_handle_t *, boolean_t);

561 extern int zfs rename(zfs_handle_t *, const char *, bool ean_t, boolean_t);
563 typedef struct sendflags {

564 /* print informational messages (ie, -v was specified)

565 bool ean_t verbose;

567 /* recursive send (ie, -R */

568 bool ean_t replicate;

570 /* for increnmentals, do all internedi ate snapshots */

571 bool ean_t doal | ;

573 /* if dataset is a clone, do incremental fromits origin */

574 bool ean_t fronorigin;

576 /* do deduplication */

577 bool ean_t dedup;

579 /* send properties (ie, -p) */

580 bool ean_t props;

582 /* do not send (no-op, ie. -n) */

583 bool ean_t dryrun;

585 /* parsabl e verbose output (ie. -P)

586 bool ean_t parsabl e;

588 /* show progress (ie. -v) */

615 /* print informational nessages (ie, -v was specified) */

616 bool ean_t verbose;

618 /* the destination is a prefix, not the exact fs (ie, -d) */
619 bool ean_t isprefix;

621 I

622 * Only the tail of the sent snapshot path is appended to the
623 * destination to determne the received snapshot nanme (ie, -e).
624 *

625 bool ean_t istail;

627 /* do not actually do the recv, just check if it would work (ie,
628 bool ean_t dryrun;

630 /* rollback/destroy filesystenms as necessary (eg, -F) */

631 bool ean_t force;

633 /* set "canmount=off" on all nodified filesystens */

634 bool ean_t cannount of f;

636 /* byteswap flag is used internally; callers need not specify */
637 bool ean_t byt eswap;

639 /* do not nount file systems as they are extracted (private) */
640 bool ean_t nonount;

641 } recvflags_t;
__unchanged_portion_om tted_

-n)

10

const char *, const char *, boolean_t);

*/

new usr/src/lib/libzfs/comon/libzfs_dataset.c

R R R R

111557 Wed May 29 20:27: 08 2013
new usr/src/lib/libzfs/comon/libzfs_dataset.c
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi
Submitted by: Steven Hartland <steven. hartland@ul tiplay.co. uk>

LR

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governing pernissions

11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER i n each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]

18 *

19 * CDDL HEADER END

20 */

22 | *

23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
24 * Copyright (c) 2012 by Del phix. Al rights reserved.

25 * Copyright (c) 2012 DEY Storage Systens, Inc. Al rights reserved.
26 * Copyright 2012 Nexenta Systens, Inc. Al rights reserved.

27 * Copyright (c) 2013 Martin Matuska. All rights reserved.

28 * Copyright (c) 2013 Steven Hartland. Al rights reserved.
29 #endif /* | codereview */
30 */

32 #include <ctype. h>

33 #include <errno. h>

34 #include <libintl.h>
35 #include <math. h>

36 #include <stdio. h>

37 #include <stdlib.h>

38 #include <strings. h>
39 #include <unistd. h>

40 #incl ude <stddef.h>

41 #incl ude <zone. h>

42 #include <fcntl. h>

43 #include <sys/mtent. h>
44 #incl ude <sys/nount. h>
45 #include <priv. h>

46 #i ncl ude <pwd. h>

47 #incl ude <grp. h>

48 #incl ude <stddef.h>

49 #incl ude <ucred. h>

50 #incl ude <i dmap. h>

51 #include <aclutils.h>
52 #include <directory. h>

54 #include <sys/dnode. h>
55 #i nclude <sys/spa. h>
56 #include <sys/zap. h>
57 #include <libzfs.h>

59 #include "zfs_nanecheck. h"
60 #include "zfs_prop. h"

new usr/src/lib/libzfs/common/libzfs_dataset.c 2

61
62

64
65

115

117
118
119
120
121
122
123

125
126

#include "libzfs_inpl.h"
#i ncl ude "zfs_del eg. h"

static int userquota_propnane_decode(const char *propnane, bool ean_t zoned,
zfs_userquota_prop_t *typep, char *donmin, int donmminlen, uint64_t *ridp);

/*
* Gven a single type (not a mask of types), return the type in a human
* readable form
*
/

const char *
zfs_type_to_nanme(zfs_type_t type)
{

switch (type) {
case ZFS _TYPE_FI LESYSTEM
return (dgettext (TEXT_DOVAIN, "filesystent));
case ZFS_TYPE_SNAPSHOT:
return (dgettext(TEXT_DOVAIN, "snapshot"));
case ZFS_TYPE VOLUME:
return (dgettext(TEXT_DOVAIN, "vol une"));
}
return (NULL);
}
/*
* Gven a path and mask of ZFS types, return a string describing this dataset.
* This is used when we fail to open a dataset and we cannot get an exact type.
* We guess what the type woul d have been based on the path and the mask of
* acceptabl e types.
*
/
static const char *
path_to_str(const char *path, int types)
{ [
* When given a single type, always report the exact type.
*
if (types == ZFS_TYPE_SNAPSHOT)
return (dgettext(TEXT_DOVAIN, "snapshot"));
if (types == ZFS TYPE_FI LESYSTEM
return (dgettext (TEXT_DOVAIN, "filesystent));
if (types == ZFS_TYPE_VOLUME)
return (dgettext(TEXT_DOVAIN, "volune"));
*
* The user is requesting nore than one type of dataset. |If this is the
* case, consult the path itself. If we're |looking for a snapshot, and
*a'@ is found, then report it as "snapshot". Qherw se, renove the
* snapshot attribute and try again.
*
/
if (types & ZFS_TYPE_SNAPSHOT)
if (strchr(path, '@) != NULL)
return (dgettext(TEXT_DOVAIN, "snapshot"));
return (path_to_str(path, types & ~ZFS_TYPE_SNAPSHQOT));
}
/*
* The user has requested either fil esystens or vol unes.
* We have no way of knowing a priori what type this would be, so al ways
* report it as "filesystent or "volume", our two primtive types.
*
/
if (types & ZFS TYPE_FI LESYSTEM
return (dgettext(TEXT_DOVAIN, “"filesystent));
assert (types & ZFS_TYPE_VOLUVE);
return (dgettext(TEXT_DOVAIN, "volune"));

new usr/src/lib/libzfs/comon/libzfs_dataset.c
127 }
129 /*

130 * Validate a ZFS path. This is used even before trying to open the dataset,
131 * provide a nore neaningful error nessage. We call zfs_error_aux() to

132 * explain exactly why the name was not valid.

133 */

134 int

135 zfs_validate name(llbzfs handl e_t *hdl, const char *path, int type,

136 “bool ean_t nodi fyi ng)

137 {

138 nanmecheck_err_t why;

139 char what;

141 (void) zfs_prop_get_table();

142 if (dataset_nanmecheck(path, &why, &what) !'= 0) {

143 if (hdl !'= NULL)

144 switch (why) {

145 case NAMVE_ERR TOOLONG

146 zf's _error _aux(hdl, dgettext(TEXT_DOVAI N,
147 namlstoolong))

148 br eak;

150 case NAME_ERR LEADI NG_SLASH:

151 zfs _error _aux(hdl, dgettext(TEXT DOVAI N,
152 "| eadi ng sl ash in name' "))

153 br eak;

155 case NAME_ERR_EMPTY_COVPONENT!

156 zfs_error_aux(hdl, dgettext (TEXT DOVAI N,
157 "enpty corrponent in name"));

158 br eak;

160 case NAME_ERR TRAI LI NG_SLASH:

161 zf's _error _aux(hdl, dgettext (TEXT_DOVAI N,
162 "trailing slash in nane"));

163 br eak;

165 case NAME_ERR | NVALCHAR:

166 zfs_error_aux(hdl,

167 dgettext (TEXT DOMAI N, "invalid character
168 "9’ in name"), V\,hat);

169 br eak;

171 case NAME_ERR MULTI PLE_AT:

172 zf's _error aux(hdl dget t ext (TEXT_DOVAI N,
173 "multiple '@ delimters in nane"));
174 br eak;

176 case NAME_ERR NOLETTER:

177 zf's _error _aux(hdl, dgettext(TEXT_DOVAI N,
178 "pool doesn’t begin with a letter"));
179 br eak;

181 case NAME_ERR_RESERVED:

182 zf's _error _aux(hdl, dgettext(TEXT DOMAI N,
183 "nane is reserved"));

184 br eak;

186 case NAME_ERR DI SKLI KE:

187 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
188 "reserved di sk nanme"));

189 br eak;

190 }

191 }

to

new usr/src/lib/libzfs/comon/libzfs_dataset.c

193 return (0);

194 1

196 if (!(type & ZFS_TYPE_SNAPSHOT) && strchr(path, '@) != NULL) {
197 if (hdl T= NULCL)

198 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,

199 "snapshot delinmter '@ in filesystemname"));
200 return (0);

201 }

203 if (type == ZFS TYPE SNAPSHOT && strchr(path, ' @) == NULL) {
204 if (hdl != NOLL)

205 zfs _error aux(hdl dget t ext (TEXT_DOVAI N,

206 "mssing ' @ deliniter in snapshot nane"));
207 return (0);

208 }

210 if (modifying & strchr(path, %) != NULL) {

211 if (hdl !'= NULL)

212 zfs _error _aux(hdl, dgettext(TEXT_DOVAI N,

213 “invalid character % in nane"), '%);

214 return (0);

215 }

217 return (-1);

218 }

220 int

221 zfs_nane_val id(const char *name, zfs_type_t type)

222 {

223 if (type == ZFS_TYPE_POOL)

224 return (zpool _name_val i d(NULL, B_FALSE, nane));

225 return (zfs_validate_name(NULL, nane, type, B _FALSE));

226 }

228 | *

229 * This function takes the raw DSL properties, and filters out the user-defined

230 * properties into a separate nvlist.
231 */

232 static nvlist_t *

233 process_user_props(zfs_handle_t *zhp, nvlist_t *props)

234 {

235 I'i bzfs_handl e_t *hdl = zhp->zfs_hdl;

236 nvpair_t *elem

237 nvlist_t *propval;

238 nvlist_t *nvl;

240 if (nvlist_alloc(&wvl, NV_UNI QUE_NAME, 0) != 0) {

241 (void) no mem)ry(hdl)

242 return (NULL);

243 }

245 el em = NULL;

246 while ((elem= nvlist_next_nvpair(props, elenm) != NULL) {
247 if (!zfs_prop_user(nvpair_nane(elem))

248 cont i nue;

250 verify(nvpair_value_nvlist(elem &propval) == 0);
251 if (nvlist_add_nvlist(nvl, nvpair_nane(elem, propval)
252 nvlist_free(nvl);

253 (void) no_nmenory(hdl);

254 return (NULL);

255 }

256 }

258 return (nvl);

new usr/src/lib/libzfs/comon/libzfs_dataset.c

259 }

261 static zpool _handle_t *

262 zpool _add_handl e(zfs_handl e_t *zhp, const char *pool _nane)

263 {

264 l'i bzfs_handl e_t *hdl = zhp->zfs_hdl;

265 zpool _handl e_t *zph;

267 if ((zph = zpool _open_canfail (hdl, pool _name)) != NULL) {
268 (hdl ->l1 bzfs_pool _| handi es = NULL)

269 zph->zpool _next = hdl ->libzfs_pool _handl es;
270 hdl - >l i bzfs_pool _handl es = zph;

271 }

272 return (zph);

273 }

275 static zpool _handle_t *

276 zpool _find_handl e(zfs_handl e_t *zhp, const char *pool _name, int |en)
277 {

278 l'i bzfs_handl e_t *hdl = zhp->zfs_hdl;

279 zpool _handl e_t *zph = hdl ->li bzfs pool handl es;

281 while ((zph !'= NULL) &&

282 (strncnmp(pool _nane, zpool _get_nanme(zph), len) != 0))
283 zph = zph- >zpoo| _next;

284 return (zph);

285 }

287 [*

288 * Returns a handle to the pool that contains the provi ded dataset.
289 * If a handle to that pool already exists then that handle is returned.
290 * O herwise, a new handle is created and added to the |ist of handles.
291 */

292 static zpool _handle_t *

293 zpool _handl e(zfs_handl e_t *zhp)

294 {

295 char *pool _nane;

296 int len;

297 zpool _handl e_t *zph;

299 len = strcspn(zhp->zfs_name, "/ @) + 1;

300 pool _nane = zfs_alloc(zhp->zfs_hdl, len);

301 (void) strlcpy(pool _name, zhp->zfs_nane, |en);

303 zph = Zpool find_handl e(zhp, pool _nane, len);

304 if (zph == NULL)

305 zph = zpool _add_handl e(zhp, pool _nane);

307 free(pool _nane);

308 return (zph);

309 }

311 void

312 zpool _free_handl es(libzfs_handle_t *hdl)

313 {

314 zpool _handl e_t *next, *zph = hdl->libzfs_pool _handl es;
316 while (zph !'= NULL) {

317 next = zph->zpool _next;

318 zpool _cl ose(zph);

319 zph = next;

320 }

321 hdl - >l i bzf s_pool _handl es = NULL;

322 }

324 | *

new usr/src/lib/libzfs/common/libzfs_dataset.c

325
326
327
328

* Utility function to gather stats (objset and zpl) for the given object.

*/
static int
get _stats_ioctl (zfs_handle_t *zhp, zfs_cml_t *zc)

329 {

330
332

334
335
336
337
338
339
340
341
342
343
344

346
347
348
349
350

I'i bzfs_handl e_t *hdl = zhp->zfs_hdl;

(void) strlcpy(zc->zc_nanme, zhp->zfs_nane,

while (ioctl(hdl->libzfs fd, ZFS | OC OBJSET STATS, zc) != 0) {

if (errno == ENOVE
if (zcnd_expand_dst_nvlis
return (-1);

} else {
) return (-1);

return (0);
}
/*
* Uility function to get the received propertie
*/

static int
get _recvd_props_ioctl (zfs_handl e_t *zhp)

351 {

352
353
354
355

357
358

360

362
363
364
365
366
367
368
369
370
371

373
374
375
376

378
379

381
382

384
385

l'i bzfs_handl e_t *hdl = zhp->zfs_hdl;
nvlist_t *recvdprops;

zfs_cmd_t zc = { 0 };

int err;

if (zcmd_alloc_dst_nvlist(hdl, &c, 0) !=
return (-1);

(void) strlcpy(zc.zc_nane, zhp->zfs_nane,

while (ioctl(hdl->libzfs_fd, ZFS_ | OC_OBJSET_RECVD PROPS, &zc)

if (errno == ENOVEM
if (zcmd_expand_dst_nvlis
return (-1);

} else {
zcemd_free_nvlists(&zc);
return (-1);

}

err = zcmd_read_dst _nvlist(zhp->zfs_hdl,
zcend_free_nvlists(&zc);
if (err 1= 0)

return (-1);

nvlist_free(zhp->zfs_recvd_props);
zhp->zfs_recvd_props = recvdprops;

return (0);

}

static int
put _stats_zhdl (zfs_handl e_t *zhp, zfs_cnd_t *zc)

386 {

387
389

nvlist_t *allprops, *userprops;

zhp->zfs_dnustats = zc->zc_objset_stats;

t(hdl, zc) t=0) {

s of the given object.

0)

si zeof (zc.zc_nane));

t(hdl, &c) != 0) {

&zc, &recvdprops);

/* structure assignnent

si zeof (zc->zc_nane));

1= 0)

*/

new usr/src/lib/libzfs/comon/libzfs_dataset.c

391 if (zcmd_read_dst_nvlist(zhp->zfs_hdl, zc, &allprops) !'=0) {
392 return (-1);

393 }

395 /*

396 * XXX Why do we store the user props separately, in addition to
397 * storing themin zfs_props?

398

399 |f ((userprops = process_user_props(zhp, allprops)) == NULL) {
400 nvlist_free(allprops);

401 return (-1);

402 }

404 nvlist_free(zhp->zfs_props);

405 nvlist_free(zhp->zfs_user props);

407 zhp->zfs_props = all props;

408 zhp->zf s_user _props = user props;

410 return (0);

411 }

413 static int

414 get _stats(zfs_handle_t *zhp)

415 {

416 int rc = 0;

417 zfs_cmd_t zc = { 0 };

419 if (zcmd_all oc_dst_nvlist(zhp->zfs_hdl, &c, 0) != 0)
420 return (-1);

421 if (get_: stats |oct|(zhp, &c) = 0)

422 rc

423 else if (put stats _zhdl (zhp, &zc) !'= 0)

424 rc = -1;

425 zcmd_free_nvlists(é&zc);

426 return (rc);

427 }

429 [*

430 * Refresh the properties currently stored in the handl e.
431 */

432 void

433 zfs_refresh_properties(zfs_handle_t *zhp)

434

435 (void) get_stats(zhp);

436 }

438 | *

439 * Makes a handle fromthe given dataset name. Used by zfs_open() and
440 * zfs_iter_* to create child handles on the fly.

441 */

442 static int

443 nake_dat aset _handl e_common(zfs_handl e_t *zhp, zfs_cmd_t *zc)
444

445 if (put_stats_zhdl (zhp, zc) != 0)

446 return (-1);

448 /*

449 * W&’ ve managed to open the dataset and gather statistics. Determne
450 * the high-level type.

451 */

452 if (zhp->zfs_dnustats. dds type == DMJ_OST_zVQL)

453 zhp->zfs_head_type = ZFS_TYPE_VOLUME;

454 el se if (zhp->zfs dnustats.dds_type == DMJ_OST_ZFS)
455 zhp->zfs_head_type = ZFS_TYPE_FI LESYSTEM

456 el se

new usr/src/lib/libzfs/comon/libzfs_dataset.c

457 abort();

459 if (zhp->zfs_dnustats. dds_i s_snapshot)

460 zhp->zfs_type = ZFS_TYPE_SNAPSHOT;

461 else if (zhp- >zfs_dn"ust ats.dds_type == DMJ_OST_ZVQL)
462 zhp->zfs_type = ZFS_TYPE_ VO_UI\/E

463 el se if (zhp->zfs_dnustats.dds_type == DMJ_OST_ZFS)
464 zhp->zfs_type = ZFS_TYPE_FI LESYSTEM

465 el se

466 abort(); /* we shoul d never see any other types */
468 if ((zhp->zpool _hdl = zpool _handl e(zhp)) == NULL)
469 return (-1);

471 return (0);

472 }

474 zfs_handle_t *
475 neke_dat aset _handl e(li bzfs_|
476 {

handl e_t *hdl, const

char *path)

si zeof §z?p >zfs_nane));
1= 0

== _1) {

477 zfs_cmd_t zc = { 0 };

479 zfs_handl e_t *zhp = cal |l oc(sizeof (zfs_handle_t), 1);
481 if (zhp == NULL)

482 return (NULL);

484 zhp->zfs_hdl = hdl;

485 (void) strlcpy(zhp->zfs_nane, path,
486 if (zcmd_all oc_dst_nvlist(hdl, &zc, 0)
487 free(zhp);

488 return (NULL);

489 }

490 if (get_stats_ioctl(zhp, &c) == -1) {
491 zcemd_free_nvlists(&zc);

492 free(zhp);

493 return (NULL);

494 }

495 i f (make_dat aset _handl e_comon(zhp, &zc)
496 free(zhp);

497 zhp = NULL;

498 }

499 zcmd_free_nvlists(&zc);

500 return (zhp);

501 }

503 zfs_handle_t *
504 make_dat aset _handl e_zc(libz
505 {

fs_handl e_t

*hdl, zfs_cnd_t *zc)

506 zfs_handle_t *zhp = calloc(sizeof (zfs_handle_t), 1);
508 if (zhp = ULL)

509 return (NULL) ;

511 zhp->zfs_hdl = hdl;

512 (voi d) strlcpy(zhp >zfs_nanme, zc->zc_nane, sizeof (zhp->zfs_nane));
513 i f (make_dataset handl e_ commn(zhp, zc) == -1) {

514 free(zhp);

515 return (NULL);

516 }

517 return (zhp);

518 }

520 zfs_handle_t *
521 zfs_handl e_dup(zfs_handl e_t
522 {

*zhp_orig)

new usr/src/lib/libzfs/comon/libzfs_dataset.c

523 zfs_handl e_t *zhp = calloc(sizeof (zfs_handle_t), 1);
525 if (zhp == NULL)

526 return (NULL)

528 zhp->zfs_hdl = zhp_orig->zfs_hdl;

529 zhp->zpool _hdl = zhp_ori g->zpool _hdl ;

530 (void) strlcpy(zhp->zfs_name, zhp_orig->zfs_nane,

531 si zeof (zhp->zfs nane))

532 zhp->zfs_type = zhp_orig- >zf's _type;

533 zhp->zfs_head_type = zhp_orig->zfs_head_type;

534 zhp->zfs_dnustats = zhp_orig->zfs_dnustats;

535 if (zhp_orig->zfs_props != NULL) {

536 if (nvlist_dup(zhp_orig->zfs_props, &zhp->zfs_props, 0)
537 (voi d) no_nmenory(zhp->zfs_hdl);

538 zfs_cl ose(zhp);

539 return (NULL);

540 }

541 1

542 if (zhp_orig->zfs_user_props != NULL) {

543 if (nvI i st_dup(zhp_ori g->zfs_user_props,

544 hp->zfs_user_props, 0) /=0

545 (voi d) no_menory(zhp->zfs_hdl);

546 zfs_cl ose(zhp);

547 return (NULL);

548 }

549 }

550 if (zhp_orig->zfs_recvd_props != NULL)

551 if (nvI i st_dup(zhp_orig->zfs_recvd_props,

552 &zhp- >zfs_recvd_props, 0))

553 (voi d) no_menory(zhp->zfs_hdl);

554 zfs_cl ose(zhp);

555 return (NULL);

556 }

557

558 zhp->zfs_mtcheck = zhp_ori g->zfs_mt check;

559 if (zhp_orig->zfs_mtopts != NULL)

560 zhp->zfs_mtopts = zfs_strdup(zhp_orig->zfs_hdl,
561 zhp_ori g->zfs_mtopts);

562 }

563 zhp->zfs_props_table = zhp_ori g->zfs_props_tabl e;

564 return (zhp);

565 }

567 [*

568 * Opens the given snapshot, filesystem or vol une. The ’types’
569 * argunent is a mask of acceptable types. The function will print an
570 * appropriate error nessage and return NULL if it can't be opened.
571 *

572 zfs_handle_t *

573 zfs_open(libzfs_handle_t *hdl, const char *path, int types)
574 {

575 zfs_handl e_t *zhp;

576 char errbuf[1024];

578 (void) snprintf(errbuf, sizeof (errbuf),

579 dget t ext (TEXT_DOVAI N, "cannot open ' %’ "), path);
581 /*

582 * Validate the nane before we even try to open it.

583 */

584 if (!zfs_validate_nane(hdl, path, ZFS_TYPE_DATASET, B _FALSE)) {
585 zfs _error _aux(hdl, dgettext(TEXT DOVAI N,

586 "invalid dataset name"));

587 (void) zfs_error(hdl, EZFS_ I NVALI DNAME, errbuf);
588 return (NULL);

1= 0) {

new usr/src/lib/libzfs/comon/libzfs_dataset.c

589 }

591 /*

592 * Try to get stats for the dataset, which will tell us if it exists.
593 */

594 errno = 0;

595 if ((zhp = make_dataset _handl e(hdl, path)) == NULL) {
596 (void) zfs_standard_error(hdl, errno, errbuf);
597 return (NULL);

598 }

600 if (!(types & zhp->zfs_type)) {

601 (void) zfs_error(hdl, EZFS BADTYPE, errbuf);
602 zfs_cl ose(zhp);

603 return (NULL);

604 }

606 return (zhp);

607 }

609 /*

610 * Rel ease a ZFS handle. Nothing to do but free the associated nmenory.
611 */

612 void

613 zfs_close(zfs_handl e_t *zhp)

614 {

615 if (zhp->zfs_mtopts)

616 free(zhp->zfs_mtopts);

617 nvlist_free(zhp->zfs_props);

618 nvlist_free(zhp->zfs_user_props);

619 nvlist_free(zhp->zfs_recvd_props);

620 free(zhp);

621 }

623 typedef struct mmttab_node {

624 struct mttab ntn_nt;

625 avl _node_t ntn_node;

626 } mmttab_node_t;

628 static int

629 |ibzfs_mttab_cache_conpare(const void *argl, const void *arg2)
630 {

631 const mttab_node_t *mtnl = argl,;

632 const mttab_node_t *mtn2 = arg2;

633 int rv;

635 rv = strenp(ntnl->ntn_nt.mt_special, ntn2->ntn_nt.mt_special);
637 if (rv == 0)

638 return (0);

639 return (rv >0 ?1: -1);

640 }

642 void

643 libzfs_mttab_init(libzfs_handle_t *hdl)

644 {

645 assert (avl _numodes(&hdl ->li bzfs_mttab_cache) == 0);
646 avl _create(&hdl ->libzfs_mttab_cache, |ibzfs_mttab_cache_conpare,
647 sizeof (mttab_node_t), offsetof(mttab_node_t, ntn_node));
648 }

650 void

651 |ibzfs_mttab_update(libzfs_handle_t *hdl)

652 {

653 struct mttab entry;

10

new usr/src/lib/libzfs/comon/libzfs_dataset.c

655 rewi nd(hdl ->li bzfs_mttab);

656 while (getmmtent (hdl->libzfs_mttab, &entry) == 0) {

657 mttab_node_t *ntn;

659 if (strcnp(entry. mt_fstype, MNTTYPE_ZFS) != 0)

660 cont i nue;

661 nmn = zfs_alloc(hdl, sizeof (mttab_node_t));

662 ntn->ntn_nt.mt_special = zfs_strdup(hdl, entry.mmt_special);
663 ntn->ntn_nt. mt_nountp = zfs_strdup(hdl, entry. mt_nountp);
664 nmtn->mtn_nmt.mt_fstype = zfs_strdup(hdl, entry. mt_fstype);
665 nmtn->mtn_nt.mt_mtopts = zfs_strdup(hdl, entry. mt_mmtopts);
666 avl _add(&hdl - >l i bzfs_mttab_cache, ntn);

667 }

668 }

670 void

671 libzfs_mttab_fini (libzfs_handle_t *hdl)

672 {

673 voi d *cookie = NULL;

674 mttab_node_t *ntn;

676 while (nmn = avl_destroy_nodes(&hdl ->libzfs_mttab_cache, &cookie)) {
677 free(nmn->ntn_nt.mt_special);

678 free(ntn->ntn_nt. mt_nount p);

679 free(nn->ntn_nt.mt_fstype);

680 free(nmtn->ntn_nt.mt_mtopts);

681 free(ntn);

682 }

683 avl _destroy(&hdl ->libzfs_mttab_cache);

684 }

686 void

687 I{i bzfs_mttab_cache(libzfs_handl e_t *hdl, bool ean_t enable)

688

689 hdl - >l i bzf s_mttab_enabl e = enabl e;

690 }

692 int

693 |ibzfs_mttab_find(libzfs_handle_t *hdl, const char *fsnane,

694 struct mttab *entry)

695 {

696 mttab_node_t find;

697 mttab_node_t *ntn;

699 if (!hdl->libzfs_mttab_enable) {

700 struct mttab srch = { 0 };

702 if (avl_numodes(&hdl ->libzfs_mttab_cache))

703 ibzfs_mttab_fini(hdl);

704 rewi nd(hdl ->libzfs_mttab);

705 srch. mt _special = (char *)fsnang;

706 srch. mt _f stype = MNTTYPE_ZFS;

707 if (getmtany(hdl->libzfs_mttab, entry, &srch) == 0)
708 return (0);

709 el se

710 return (ENCENT);

711 1

713 if (avl_numodes(&hdl ->libzfs_mttab_cache) == 0)

714 libzfs_mttab_update(hdl);

716 find.ntn_nt.mt_special = (char *)fsnane;

717 ntn = avl _find(&hdl->libzfs_mttab_cache, &find, NULL);

718 if (nmtn) {

719 *entry = mtn->ntn_nt;

720 return (0);

11

new usr/src/lib/libzfs/comon/libzfs_dataset.c

721 }

722 return (ENOENT);

723 }

725 void

726 |ibzfs_mttab_add(libzfs_handle_t *hdl, const char *special,
727 const char *nountp, const char *mmtopts)

728 {

729 mttab_node_t *ntn;

731 if (avl_numodes(&hdl ->libzfs_mttab_cache) == 0)
732 return;

733 ntn = zfs_alloc(hdl, sizeof (mttab_node_t));

734 ntn->nmtn_nt.mt_special = zfs_strdup(hdl, special);
735 ntn->ntn_nt.mt_nmountp = zfs_strdup(hdl, nountp);
736 ntn->ntn_nt.mt_fstype = zfs_strdup(hdl, MNTTYPE_ZFS);
737 ntn->ntn_nt.mt_mtopts = zfs_strdup(hdl, mtopts);
738 avl _add(&hdl ->l i bzfs_mttab_cache, ntn);

739 }

741 void

742 1ibzfs_mttab_renove(libzfs_handle_t *hdl, const char *fsnane)
743 {

744 mttab_node_t find;

745 mttab_node_t *ret;

747 find.ntn_nt.mt_special = (char *)fsnane;

748 if (ret = avl_find(&hdl->libzfs_mmttab_cache, (void *)&find, NULL)) {
749 avl _renove(&hdl ->libzfs_mttab_cache, ret);
750 free(ret->ntn_nt.mt_special);

751 free(ret->ntn_nt. mt_nountp);

752 free(ret->ntn_nt. mt_fstype);

753 free(ret->ntn_nt.mt_mtopts);

754 free(ret);

755 1

756 }

758 int

759 zfs_spa_version(zfs_handle_t *zhp, int *spa_version)

760 {

761 zpool _handl e_t *zpool _handl e = zhp->zpool _hdl ;

763 if (zpool_handl e == NULL)

764 return (-1);

766 *spa_version = zpool _get_prop_i nt(zpool _handl e,

767 ZPOOL_PROP_VERSI ON, NULL);

768 return (0);

769 }

771 | *

772 * The choice of reservation property depends on the SPA version.
773 */

774 static int

775 zfs_which_resv_prop(zfs_handl e_t *zhp, zfs_prop_t *resv_prop)
776 {

777 int spa_version;

779 if (zfs_spa_version(zhp, &spa_version) < 0)

780 return (-1);

782 if (spa_version >= SPA_VERSI ON_REFRESERVATI ON)

783 *resv_prop = ZFS_PROP_REFRESERVATI ON;

784 el se

785 *resv_prop = ZFS_PROP_RESERVATI ON,

12

new usr/src/lib/libzfs/comon/libzfs_dataset.c

787
788

}
790 /*

return (0);

791 * Gven an nvlist of properties to set, validates that they are correct, and
792 * parses any nuneric properties (index, boolean, etc) if they are specified as

794

793 * strings.
*/

795 nvlist_t *
796 zfs_valid_proplist(libzfs_handle_t *hdl, zfs_type_t type, nvlist_t *nvl,

797
798 {
799
800
801
802
803
804
805

807
808
809
810

812
813
814

816
817
818

820
821
822
823
824
825
826
827
828
829
830
831

833
834
835
836
837
838
839

841
842
843
844
845
846
847

849
850
851
852

uint64_t zoned, zfs_handle_t *zhp, const char *errbuf)

nvpair_t *elem
uint64_t intval;

char *strval;
zfs_prop_t prop;
nvliist_t *ret;

int chosen_normal = -1;
int chosen_utf = -1;

if (nvlist_alloc(&et, NV_UNIQUE NAME, 0) != 0) {
(void) no_nenory(hdl);
return (NULL);

}

/*

* Make sure this property is valid and applies to this type.
*

/

el em = NULL;
while ((elem= nvlist_next_nvpair(nvl, elem)) !'= NULL) {
const char *propname = nvpair_nane(el em;

prop = zfs_nanme_t o_prop(propnane);
1 f (prop == ZPROP_I NVAL && zfs_prop_user (propnane)) {
/*

* This is a user property: nmake sure it's a
* string, and that it’s less than ZAP_MAXNAMELEN.
S

if (nvpair_type(elem != DATA TYPE_STRING ({
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"%’ must be a string"), propnane);
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;

}

if (strlen(nvpair_nane(elen)) >= ZAP_MAXNAMELEN) {
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"property name '%’ is too long"),
propnane) ;
(void) zfs_error(hdl, EZFS BADPROP, errbuf);
goto error;

id) nvpair_value_string(elem &strval);
(nvlist_add_string(ret, propnane, strval) != 0) {
(void) no_nenory(hdl);
goto error;

}
(
[

Vo
f

conti nue;

}

/*

* Currently, only user properties can be nodified on
* snapshots.

*/

13

new usr/src/lib/libzfs/comon/libzfs_dataset.c 14
853 if (type == ZFS_TYPE_SNAPSHOT)
854 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
855 "this property can not be nodified for snapshots"));
856 (void) zfs_error(hdl, EZFS_PROPTYPE, errbuf);
857 goto error;
858 }
860 if (prop == ZPROP_I NVAL && zfs_prop_userquot a(propnane)) {
861 zfs_userquota_prop_t uqtype;
862 char newpr opnane[128] ;
863 char domai n[128] ;
864 uint64_t rid;
865 uint64_t valary[3];
867 i f (userquota_propnane_decode(propnane, zoned,
868 &uqtype, domain, sizeof (domain), &id) !=0) {
869 zfs_error_aux(hdl,
870 dget t ext (TEXT_DOMAI N,
871 ""9%' has an invalid user/group nane"),
872 propnane) ;
873 (void) zfs_error(hdl, EZFS BADPROP, errbuf);
874 goto error;
875 }
877 if (ugtype != ZFS_PROP_USERQUOTA &&
878 uqtype != ZFS_PROP_GROUPQUOTA) {
879 zfs_error_aux(hdl,
880 dgettext (TEXT_DOVAIN, "' %’ is readonly"),
881 propnane) ;
882 (void) zfs_error(hdl, EZFS PROPREADONLY,
883 errbuf);
884 goto error;
885 }
887 if (nvpair_type(el em) == DATA_TYPE_STRI NG
888 (void) nvpair_value_string(elem &strval);
889 if (strcnp(strval, "none") == 0) {
890 intval = 0;
891 } else if (zfs_nicestrtonun(hdl,
892 strval, & ntval) !'=0
893 (void) zfs_error(hdl,
894 EZFS_BADPROP, errbuf);
895 goto error;
896 }
897 } else if (nvpair_type(elem ==
898 DATA_TYPE_UI NT64) {
899 (void) nvpair_val ue_uint64(elem & ntval);
900 if (intval == 0) {
901 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
902 "use 'none’ to disable "
903 "user quot a/ gr oupquota"));
904 goto error;
905
906 } else {
907 zfs_error_aux(hdl, dgettext(TEXT_DOVAIN,
908 "'’ nust be a nunber"), propnane);
909 (void) zfs_error(hdl, EZFS_BADPROP, errbuf);
910 goto error;
911 }
913 /*
914 * Encode the prop nane as
915 * user quot a@hex-rid>-donain, to make it easy
916 * for the kernel to decode.
917 */
918 (voi d) snprintf(newropnanme, sizeof (newpropnane),

new usr/src/lib/libzfs/comon/libzfs_dataset.c

919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936

938
939
940
941
942
943

945
946
947
948
949
950
951

953
954
955
956
957
958
959
960

962
963
964

966
967
968
969
970
971
972

974
975
976
977
978
979
980
981
982
983
984

15
"Us% | x- %", zfs_userquota_prop_prefixes[uqgtype],
(1 ongl ong_ t)rld donai n) ;
val ary[0] = uqtype;
valary[1] = rid;
valary[2] = intval;
if (nvlist_add_ui nt 64 _array(ret, newpropnane,
valary, 3) != 0)
(void) no_renory(hdl);
goto error;
conti nue
} else if (prop == ZPROP_I NVAL && zfs_prop_witten(propnane)) {

zfs_error aux(hdl dgettext(TEXT DOVAI N,

o Tis readonl y'),

propnane) ;
(void) zfs_error(hdl, EZFS_PROPREADONLY, errbuf);
goto error;

}

if (prop == ZPROP_I NVAL) {
zfs _error _aux(hdl, dgettext(TEXT_DOVAIN,
“invalid pr operty "9’ "), propnane);
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;

}

if (!zfs_prop_valid_for_type(prop, type)) {
zfs_error_aux(hdl,
dgettext (TEXT_DOVAIN, "’ %’ does not "
"apply to datasets of this type"), propnane);
(void) zfs_error(hdl, EZFS PROPTYPE, errbuf);
goto error;

}

if (zfs_prop_readonly(prop) &&
(!zfs_prop_setonce(prop) || zhp !'= NULL)) {
zfs_error_aux(hdl,
dgettext (TEXT_DOVAIN, "' %’ is readonly"),
propnane) ;
(void) zfs_error(hdl, EZFS PROPREADONLY, errbuf);
goto error;

}
if (zprop_parse_value(hdl, elem prop, type, ret,
&strval, & ntval, errbuf) 1= 0)
goto error;

| *

* Perform sonme additional checks for specific properties.
*/

switch (prop) {
case ZFS_PROP_VERSI ON:
{

int version;

if (zhp == NULL)
reak;

version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION);

if (intval < version) {
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N

"Can not downgrade; already at version %"),

version);

(void) zfs_error(hdl, EZFS BADPROP, errbuf);

goto error;

br eak;

new usr/src/lib/libzfs/comon/libzfs_dataset.c

985

987
988
989
990
991
992
993
994
995
996
997
998
999
1000

1002
1003
1004
1005
1006
1007

1009
1010

1012
1013
1014

1016
1017
1018
1019
1020
1021

1023
1024
1025
1026
1027
1028
1029
1030

1032
1033
1034
1035
1036

1038
1039
1040
1041
1042
1043

1045

1047
1048
1049
1050

badl abel :

}

case ZFS_PROP_RECORDSI ZE:
case ZFS_PROP_VOLBLOCKS| ZE:

16

7* nmust be power of two within SPA {M N, MAX} BLOCKSI ZE */

if (intval < SPA_M NBLOCKSI ZE ||
intval > SPA_MAXBLOCKSI ZE || !ISP2(intval)) {
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"' 9%’ must be power of 2 from % "
"to %k"), propnang,
(uint_t)SPA_M NBLOCKSI ZE,
(ui nt _t) SPA_MAXBLOCKSI ZE >> 10);

(void) zfs_error(hdl, EZFS BADPROP, errbuf);

goto error;
br eak;
case ZFS PROP_M._SLABEL:
{

/*

* Verify the mslabel string and convert to
* internal hex |abel string.

*/

m | abel _t *new sl ;
char *hex = NULL;

/* Default value is already OK */
if (strcasecnp(strval, ZFS M.SLABEL_DEFAULT) == 0)
br eak;

/* Verify the Iabel can be converted to bi inary form*/

if (((new_sl = m.label_alloc(MAC | LABEL)) == NULL)
(str_to_label (strval, &ew sl, MAC LABEL,
L_NO_CORRECTI ON, NULL) == —1)) {
goto badl abel
}

/* Now translate to hex internal |abel string */
if (label _to_str(new sl, &hex, M. NTERNAL,
DEF_NAMES) != 0)
if (hex)
free(hex);
got o badl abel ;

m | abel _free(new_sl);

/* 1f string is already in internal form we' re done.

if (strcnp(strval, hex) == 0) {
free(hex);
br eak;

}

/* Replace the label string with the internal form

(void) nvlist_renmove(ret, zfs_prop_to_nane(prop),
DATA TYPE_STRI NG) ;

verify(nvlist_add_string(ret, zfs_prop_to_nane(prop),

hex) == 0);
free(hex);

break;
zfs _error _aux(hdl, dgettext (TEXT_DOMAI N,

"invalid nm sl abel "%’ "), strval);
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);

/* internal |abel string */

*/

new usr/src/lib/libzfs/comon/libzfs_dataset.c 17

1051
1052

1054

1056
1057
1058

1060
1061
1062

1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

1084

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116

m | abel _free(new_sl); /* OKif null */
goto error;

}
case ZFS_PROP_MOUNTPO NT:
{

namecheck_err_t why;

if (strcnp(strval, ZFS MOUNTPO NT_NONE) == 0 ||
strenp(strval, ZFS_MOUNTPO NT_LEGACY) == 0)
br eak;

i f (mount poi nt _namecheck(strval, &why)) {
switch (why) {
case NAVE_ERR _LEADI NG SLASH:
zfs_error_aux(hdl,
dget t ext (TEXT_DOVAI N,
"'’ must be an absol ute path,
"’ none’, or 'legacy’'"), propnane);
br eak;
case NAME_ERR TOOLONG
zfs_error_aux(hdl,
dgettext(TEXT DOVAI N
"conponent of %’ is too long"),

propnane) ;
br eak;
}
(void) zfs_error(hdl, EZFS BADPROP, errbuf);
goto error;
}
}
/* FALLTHRU*/
case ZFS_PROP_SHARESMB:
case ZFS PROP_SHARENFS:
/*
* For the nountpoint and sharenfs or sharesnb
* properties, check if it can be set in a
* gl obal / non- gl obal zone based on
* the zoned property val ue:
*
* gl obal zone non- gl obal zone
K e e e e e e e e e m e m o m o m m e m e m o mm e m e m e m e m o mm—m e m e ———— - -
* zoned=on nmount poi nt (no) nmount poi nt (yes)
* sharenfs (no) sharenfs (no)
* sharesnb (no) sharesnb (no)
*
* zoned=of f nmount poi nt (yes) N A
* sharenfs (yes)
* sharesnb (yes)
*
if (zoned) {

if (getzoneid() == GLOBAL_ZONEI D)
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"’ 9%’ cannot be set on "
"dataset in a non-global zone"),
propnane) ;
(void) zfs error(hdl EZFS_ZONED,
errbuf);
got o error
} else if (prop == ZFS_PROP_SHARENFS | |
prop == ZFS_PROP_SHARESVB)
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
" 96’ “cannot be set in "

new usr/src/lib/libzfs/comon/libzfs_dataset.c

1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

1145
1146
1147
1148

1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

1176
1177
1178
1179
1180
1181
1182

18

"a non-gl obal zone"), propnane);
(void) zfs_error(hdl, EZFS_ZONED,
errbuf);
goto error;

} else if (getzoneid() != GLOBAL_ZONEID) {
/*

* |f zoned property is 'off’, this nmust be in
* a global zone. If not, something is wong.
*

/

zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"' 9%’ cannot be set while dataset "
"'zoned' property is set"), propnane);

(void) zfs_error(hdl, EZFS_ZONED, errbuf);

goto error;

-

EE
—~

At this point, it is legitimte to set the
property. Now we want to make sure that the
property value is valid if it is sharenfs.

if ((prop == ZFS PROP_SHARENFS | |
prop == ZFS_PROP_SHARESMB) &&
strcenp(strval, "on") !'= 0 &&
strcenp(strval, "off") = 0) {
zfs_share_proto_t proto;

if (prop == ZFS_PROP_SHARESMB)
pr oto = PROTO_SMB;

el se
proto = PROTO NFS;

Miust be an valid sharing protocol
option string so init the libshare
in order to enable the parser and
then parse the options. W use the
control APl since we don't care about
the current configuration and don't
want the overhead of loading it

until we actually do something.

/

E I T T O

if (zfs_init_libshare(hdl
I

SA TNIT_CONTROL_API) = SA OK) {
/*
* An error occurred so we can’t do
* anything
*
/

zfs _error _aux(hdl, dgettext(TEXT_DOVAI N,
’O/s’ cannot be set: problem™"
"in share initialization"),

propnane) ;
(void) zfs_error(hdl, EZFS BADPROP,
errbuf);
goto error;
}
if (zfs_parse_options(strval, proto) != SA OK) {
/*

* There was an error in parsing so
deal with it by issuing an error
message and | eaving after
uninitializing the the libshare
interface.

* ok ok ok

new usr/src/lib/libzfs/comon/libzfs_dataset.c 19

1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193

1195
1196
1197
1198
1199
1200
1201
1202

1204
1205
1206
1207
1208
1209
1210
1211
1212
1213

1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226

1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239

1241
1242
1243
1244
1245
1246
1247
1248

*

/

zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"’ %’ cannot be set to invalid "
"options"), propnane);

(void) zfs error(hdl EZFS BADPROP,

err uf),
zfs_uninit_libshare(hdl);
goto error;
zfs_uninit_libshare(hdl);
}
br eak;
case ZFS PROP_UTF8ONLY:
chosen_utf = (int)intval;
br eak;
case ZFS_PROP_NORMALI ZE:
chosen_normal = (int)intval;
break;
}
/*

* For changes to existing volunes, we have sone additional
* checks to enforce.
*

if (type == ZFS_TYPE_ VO_UNE &% zhp !'= NULL) {
uint64_t vol size = zfs _prop_get _int(zhp,
ZFS PROP_VQOLSI Z
uint64_t bl ocksize = zfs _prop_get _int(zhp,
ZFS_PROP_VOLBLOCKSI ZE) ;
char buf[64];

switch (prop)
case ZFS_PROP_RESERVATI ON:
case ZFS_PROP_REFRESERVATI ON:
if (intval > volsize) {
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"’°/s’ is greater than current "
"vol ume size"), propnane);
(void) zfs error(hdl EZFS_BADPROP,
errbuf);
goto error;

br eak;

case ZFS PROP_VOLSI ZE:
if (intval % blocksize != 0)

zf s_ni cenunm(bl ocksi ze, buf,
si zeof (buf));

zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"’0/5 nust be a nuItipIe of "
"vol ume bl ock size (%)"),
propnane, buf);

(void) zfs error(hdl EZFS_BADPROP,
errbuf);

goto error;

}

if (intval == 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"'’ cannot be zero"),
propnane) ;
(void) zfs_error(hdl, EZFS BADPROP,
errbuf);
goto error;

new usr/src/lib/libzfs/comon/libzfs_dataset.c 20
1249 br eak;

1250 }

1251 }

1252 }

1254 /*

1255 * |f nornalization was chosen, but no UTF8 choice was nade,
1256 * enforce rejection of non-UTF8 namnes.

1257 *

1258 * |'f nornalization was chosen, but rejecting non-UTF8 nanes
1259 * was explicitly not chosen, it is an error.

1260 *

1261 if (chosen_normal > 0 && chosen_utf < 0) {

1262 if (nvlist_add_uint64(ret,

1263 zfs_prop_to_nanme(ZFS_PROP_UTF8ONLY), 1) != 0) {
1264 (void) no_menory(hdl);

1265 goto error;

1266 }

1267 } else if (chosen_normal > 0 & chosen_utf == 0) {

1268 zfs_error_aux(hdl, dget t ext (TEXT_DOMAI N,

1269 "' 9%’ must be set 'on' if nornalization chosen"),
1270 zfs_prop_t o_name(ZFS_PROP_UTF8ONLY)) ;

1271 (void) zfs_error(hdl, EZFS_BADPROP, errbuf)

1272 goto error;

1273 }

1274 return (ret);

1276 error:

1277 nvlist_free(ret);

1278 return (NULL);

1279 }

1281 int

1282 zfs_add_synthetic_resv(zfs_handle_t *zhp, nvlist_t *nvl)

1283 {

1284 uint64_t ol d_vol si ze;

1285 uint64_t new vol si ze;

1286 uint64_t old_reservation;

1287 uint64_t new reservation;

1288 zfs_prop_t resv_prop;

1289 nvlist_t *props;

1291 *

1292 * If this is an existing volume, and soneone is setting the volsize,
1293 */make sure that it matches the reservation, or add it if necessary.
1294 *

1295 ol d_vol size = zfs_prop_get_int(zhp, ZFS_PROP_VOLSI ZE);

1296 f (zfs_which_resv_prop(zhp, & esv_prop) < 0)

1297 return (-1);

1298 old_reservation = zfs_prop_get_int(zhp, resv_prop);

1300 props = fnvlist_alloc();

1301 fnvli st _add_ui nt 64(props zfs_prop_t o_nanme(ZFS_PROP_VOLBLOCKSI ZE) ,
1302 zfs_prop_get _i nt (zhp, ZFS_PROP_VOLBLOCKSI ZE));

1304 if ((zvol _volsize_to_reservation(old_volsize, props) !=
1305 ol d_reservation) || nvlist_exists(nvl,

1306 zfs_| _prop_to_name(resv_| prop))) {

1307 fnvlist_free(props);

1308 return (0);

1309 1

1310 if (nvlist_lookup_uinté4(nvl, zfs_prop_to_name(ZFS_PROP_VOLSI ZE),
1311 &ew_vol size) !'= 0)

1312 fnvlist_free(props);

1313 return (-1);

1314 }

new usr/src/lib/libzfs/comon/libzfs_dataset.c 21 new usr/src/lib/libzfs/comon/libzfs_dataset.c 22

1315 new_reservation = zvol _vol si ze_to_reservation(new_vol size, props); 1381 } else {

1316 fnvlist_free(props); 1382 (void) zfs_standard_error(hdl, err, errbuf);
1383 }

1318 if (nvlist_add_uint64(nvl, zfs_prop_to_nane(resv_prop), 1384 br eak;

1319 new_reservation) =0

1320 (voi d) no_nenory(zhp->zfs_hdl); 1386 case EI NVAL:

1321 return (-1); 1387 if (prop == ZPROP_I NVAL) {

1322 } 1388 (void) zfs_error(hdl, EZFS_BADPROP, errbuf);

1323 return (1); 1389 } else {

1324 } 1390 (void) zfs_standard_error(hdl, err, errbuf);
1391 }

1326 void 1392 br eak;

1327 zfs_setprop_error(libzfs_handle_t *hdl, zfs_prop_t prop, int err,

1328 char *errbuf) 1394 case EOVERFLOW

1329 { 1395 /*

1330 switch (err) { 1396 */Thi s platformcan’'t address a volune this big.
1397 *

1332 case ENOSPC: 1398 #ifdef _ILP32

1333 /> 1399 if (prop == ZFS PROP_VOLSI ZE) {

1334 * For quotas and reservations, ENOSPC indi cates 1400 (v0| d) zfs_error(hdl, EZFS VOLTOOBI G errbuf);

1335 * sonething different; setting a quota or reservation 1401 br eak

1336 * doesn’t use any disk space. 1402 }

1337 */ 1403 #endi f

1338 switch (prop) { 1404 /* FALLTHROUGH */

1339 case ZFS_PROP_QUOTA: 1405 defaul t:

1340 case ZFS_PROP_REFQUOTA: 1406 (void) zfs_standard_error(hdl, err, errbuf);

1341 zfs_error_aux(hdl , dgettext (TEXT_DOVAI N, 1407 }

1342 'size is less than current used or " 1408 }

1343 "reserved space"));

1344 (void) zfs error(hdl EZFS_PROPSPACE, errbuf); 1410 /*

1345 br eak; 1411 * Gven a property name and val ue, set the property for the given dataset.
1412 */

1347 case ZFS_PROP_RESERVATI ON: 1413 int

1348 case ZFS_PROP_REFRESERVATI ON: 1414 zfs_prop_set(zfs_handl e_t *zhp, const char *propnane, const char *propval)

1349 zfs _error _aux(hdl, dgettext (TEXT_DOMAI N, 1415 {

1350 "size is great er than avail abl e space")); 1416 zfs_cmd_t zc = { 0 };

1351 (void) zfs_error(hdl, EZFS_PROPSPACE, errbuf) 1417 int ret = -1;

1352 br eak; 1418 prop_changel i st _t *cl = NULL;
1419 char errbuf[1024];

1354 defaul t: 1420 l'ibzfs_handle_t *hdl = zhp->zfs_hdl;

1355 (void) zfs_standard_error(hdl, err, errbuf); 1421 nvlist_t *nvl = NULL, *real props;

1356 br eak; 1422 zfs_prop_t prop;

1357 1 1423 bool ean_t do_prefix = B_TRUE;

1358 br eak; 1424 int added_resv;

1360 case EBUSY: 1426 (void) snprintf(errbuf, sizeof (errbuf),

1361 (void) zfs_standard_error(hdl, EBUSY, errbuf); 1427 dgettext (TEXT_DOMAI N, "cannot set property for "%’ "),

1362 br eak; 1428 zhp->zf s_nane) ;

1364 case ERCFS: 1430 if (nvlist_alloc(&wvl, NV_UNIQUE NAME, 0) != 0 ||

1365 (void) zfs_error(hdl, EZFS DSREADONLY, errbuf); 1431 nvlist_add_string(nvl, propnane, propval) != 0) {

1366 br eak; 1432 (void) no_nenory(hdl);
1433 goto error;

1368 case ENOTSUP: 1434 }

1369 zfs _error _aux(hdl, dgettext(TEXT_DOVAI N,

1370 "pool and or dataset nust be upgraded to set this " 1436 if ((realprops = zfs_valid_proplist(hdl, zhp->zfs_type, nvl,

1371 "property or value")); 1437 zfs_prop_get _i nt (zhp, ZFS_PROP_ZONED), zhp, errbuf)) == NULL)

1372 (void) zfs_error(hdl, EZFS BADVERSI ON, errbuf); 1438 goto error;

1373 br eak;
1440 nvlist_free(nvl);

1375 case ERANGE: 1441 nvl = real props;

1376 if (prop == ZFS_PROP_COWPRESSI ON) {

1377 (voi d) zfs_error _aux(hdl, dgettext(TEXT_DOVAIN, 1443 prop = zfs_nane_to_prop(propnane);

1378 "property setting is not allowed on "

1379 "boot abl e datasets")); 1445 if (prop == ZFS_PROP_VOLSI ZE) {

1380 (void) zfs_error(hdl, EZFS_NOTSUP, errbuf); 1446 if ((added resv = zfs_add_synthetic_resv(zhp, nvl)) == -1)

new usr/src/lib/libzfs/comon/libzfs_dataset.c

1447
1448

1450
1451

1453
1454
1455
1456
1457
1458
1459

1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472

1474
1475

1477
1478
1479
1480

1482
1483

1485

1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507

1509
1510
1511
1512

goto error;

}

if ((cl = changelist_gather(zhp, prop, 0, 0)) == NULL)
goto error;

if (prop == ZFS_PROP_MOUNTPO NT && changel i st _haszonedchild(cl)) {
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"child dataset with inherited nountpoint is used "
"in a non-gl obal zone"));
ret = zfs_error(hdl, EZFS_ZONED, errbuf);
goto error,;

-

* ok ok ok

We don’t want to unnount & renpunt the dataset when changi ng
its cannount property to 'on’ or 'noauto’. W only use
the changelist |ogic to unmount when setting cannmount =of f.

if (prop == ZFS_PROP_CANMOUNT) {
uint64_t idx;
int err = zprop_string_to_index(prop, propval, & dx,
ZFS_TYPE_DATASET) ;
if (err == 0 & idx != ZFS_CANMOUNT_OFF)
) do_prefix = B_FALSE;

if (do_prefix &k (ret = changelist_prefix(cl)) != 0)
goto error;

/*
* Execute the corresponding ioctl() to set this property.

*

(void) strlcpy(zc.zc_nanme, zhp->zfs_nanme, sizeof (zc.zc_nane));

if (zemd_wite_src_nvlist(hdl, &c, nvl) !'= 0)
goto error,;

ret = zfs_ioctl (hdl, ZFS_|IOC_SET_PROP, &zc);

if (ret 1'=0) {
zfs_setprop_error(hdl, prop, errno, errbuf);
if (added_resv && errno == ENOSPC)
/* clean up the vol size property we tried to set */
uint64_t ol d_vol size = zfs_prop_get_int(zhp,
ZFS_PROP_VOLSI ZE) ;
nvlist_free(nvl);
zcemd_free_nvlists(&zc);
if (nvlist_alloc(&vl, NV_UNIQUE_NAME, 0) != 0)
goto error;
if (nvlist_add_uint64(nvl,
zfs_prop_t o_nanme(ZFS_PROP_VOLSI ZE) ,

old_vol size) = 0)
goto error;
if (zemd_write_src_nvlist(hdl, &c, nvl) !'= 0)
oto error;

g r
(void) zfs_ioctl(hdl, ZFS_ | OC SET_PROP, &zc);

} else {
if (do_prefix)
ret = changelist_postfix(cl);

/*

* Refresh the statistics so the new property val ue
* is reflected.

*/

23

new usr/src/lib/libzfs/comon/libzfs_dataset.c 24
1513 if (ret == 0)

1514 (void) get_stats(zhp);

1515 }

1517 error:

1518 nvlist_free(nvl);

1519 zend_free_nvlists(&zc);

1520 if (cl)

1521 changel i st _free(cl);

1522 return (ret);

1523 }

1525 /*

1526 * Gven a property, inherit the value fromthe parent dataset, or if received
1527 * is TRUE, revert to the received value, if any.

1528 */

1529 int

1530 zfs_prop_inherit(zfs_handl e_t *zhp, const char *propnane, bool ean_t received)
1531 {

1532 zfs_cmd_t zc = { 0 };

1533 int ret;

1534 prop_changel ist_t *cl;

1535 l'ibzfs_handl e_t *hdl = zhp->zfs_hdl;

1536 char errbuf[1024];

1537 zfs_prop_t prop;

1539 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOVAI N,

1540 "cannot inherit % for '%’"), propnane, zhp->zfs_nane);

1542 zc.zc_cooki e = received,;

1543 if ((prop = zfs_name_to_prop(propnane)) == ZPROP_I NVAL) {

1544 /*

1545 * For user properties, the ambunt of work we have to do is very
1546 * small, so just do it here.

1547 */

1548 if (!zfs_prop_user(propnane)) {

1549 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,

1550 "invalid property"));

1551 return (zfs_error(hdl, EZFS_BADPROP, errbuf));

1552 }

1554 (void) strlcpy(zc.zc_nane, zhp->zfs_name, sizeof (zc.zc_nane));
1555 (void) strlcpy(zc.zc_value, propnane, sizeof (zc.zc_value));
1557 if (zfs_ioctl(zhp->zfs_hdl, ZFS | OC | NHERI T_PROP, &zc) != 0)
1558 return (zfs_standard_error(hdl, errno, errbuf));
1560 return (0);

1561 }

1563 /*

1564 * Verify that this property is inheritable.

1565 */

1566 if (zfs_prop_readonly(prop))

1567 return (zfs_error(hdl, EZFS PROPREADONLY, errbuf));

1569 if (!zfs_prop_inheritable(prop) && !received)

1570 return (zfs_error(hdl, EZFS_PROPNONI NHERI T, errbuf));

1572 /*

1573 * Check to see if the value applies to this type

1574 */

1575 if (!zfs_prop_valid_for_type(prop, zhp->zfs_type))

1576 return (zfs_error(hdl, EZFS_PROPTYPE, errbuf));

1578 /*

new usr/src/lib/libzfs/comon/libzfs_dataset.c 25 new usr/src/lib/libzfs/comon/libzfs_dataset.c 26

1579 * Normalize the nanme, to get rid of shorthand abbreviations. 1645 val ue = zfs_prop_defaul t_numeric(prop);
1580 */ 1646 *source = "";
1581 propnanme = zfs_prop_to_name(prop); 1647 }
1582 (void) strlcpy(zc.zc_nanme, zhp->zfs_nanme, sizeof (zc.zc_nane));
1583 (void) strlcpy(zc.zc_value, propnane, sizeof (zc.zc_value)); 1649 return (val ue);
1650 }
1585 if (prop == ZFS_PROP_MOUNTPO NT && get zonei d() == GLOBAL_ZONEI D &&
1586 zfs_prop_get _i nt (zhp, ZFS_PROP_ZONED)) { 1652 static char *
1587 zfs _error _aux(hdl, dgettext(TEXT DOVAI N, 1653 getprop_string(zfs_handle_t *zhp, zfs_prop_t prop, char **source)
1588 "dataset is used in a non- gl obal zone")); 1654 {
1589 return (zfs_error(hdl, EZFS ZONED, errbuf)); 1655 nvlist_t *nv;
1590 } 1656 char *val ue;
1592 l* 1658 *source = NULL;
1593 * Determ ne datasets which will be affected by this change, if any. 1659 if (nvlist_lookup_nvlist(zhp->zfs_props,
1594 */ 1660 zfs_prop_to_nane(prop), &v) == 0) {
1595 if ((cl = changelist_gather(zhp, prop, 0, 0)) == NULL) 1661 verify(nvlist_| ookup_string(nv, ZPROP_VALUE, &value) == 0);
1596 return (-1); 1662 (void) nvlist_lookup_string(nv, ZPROP_SOURCE, source);
1663 } else {
1598 if (prop == ZFS_PROP_MOUNTPO NT && changel i st _haszonedchild(cl)) { 1664 verify(!zhp->zfs_props_table | |
1599 zfs _error _aux(hdl, dgettext(TEXT_DOVAIN, 1665 zhp- >zfs _props_tabl e[prop] == B_TRUE);
1600 "“child dataset with inherited nountpoint is used " 1666 if ((value = (char *)zfs_prop_ def aul t _string(prop)) == NULL)
1601 "in a non-gl obal zone")); 1667 val ue = "
1602 ret = zfs_error(hdl, EZFS_ZONED, errbuf); 1668 *source = "";
1603 goto error; 1669 }
1604 }
1671 return (val ue);
1606 if ((ret = changelist_prefix(cl)) !=0) 1672 }
1607 goto error;
1674 static bool ean_t
1609 if ((ret = zfs_ioctl (zhp->zfs_hdl, ZFS I OC | NHERI T_PROP, &zc)) != 0) { 1675 zfs_is_recvd_props_node(zfs_handl e_t *zhp)
1610 return (zfs_standard_error(hdl, errno, errbuf)); 1676 {
1611 } else { 1677) return (zhp->zfs_props == zhp->zfs_recvd_props);
1678
1613 if ((ret = changelist_postfix(cl)) != 0)
1614 goto error; 1680 static void
1681 zfs_set_recvd_props_node(zfs_handle_t *zhp, uint64_t *cookie)
1616 /* 1682 {
1617 * Refresh the statistics so the new property is reflected. 1683 *cookie = (uint64_t)(uintptr_t)zhp->zfs_props;
1618 */ 1684 zhp->zfs_props = zhp->zfs_recvd_props;
1619 (void) get_stats(zhp); 1685 }
1620 }
1687 static void
1622 error: 1688 zfs_unset_recvd_props_node(zfs_handl e_t *zhp, uint64_t *cookie)
1623 changel i st _free(cl); 1689 {
1624 return (ret); 1690 zhp->zfs_props = (nvlist_t *)(uintptr_t)*cookie;
1625 } 1691 *cookie = 0;
1692 }
1627 /*
1628 * True DSL properties are stored in an nvlist. The followi ng two functions 1694 /*
1629 * extract them appropriately. 1695 * Internal function for getting a nuneric property. Both zfs_prop_get() and
1630 */ 1696 * zfs_prop_get_int() are built using this interface.
1631 static uint64_t 1697 *
1632 get prop_ui nt 64(zfs_handl e_t *zhp, zfs_prop_t prop, char **source) 1698 * Certain properties can be overridden using 'nount -o0’. In this case, scan
1633 { 1699 * the contents of the /etc/mttab entry, searching for the appropriate options.
1634 nvlist_t *nv; 1700 * If they differ fromthe on-disk values, report the current val ues and mark
1635 uint64_t val ue; 1701 * the source "tenporary".
1702 */
1637 *source = NULL; 1703 static int
1638 if (nvlist_lookup_nvlist(zhp->zfs_props, 1704 get _nuneric_property(zfs_handle_t *zhp, zfs_prop_t prop, zprop_source_t *src,
1639 zfs_prop_to_nane(prop), &v) == 0) { 1705 char **source, uint64_t *val)
1640 verify(nvlist_| ookup_uint64(nv, ZPROP_VALUE, &value) == 0); 1706 {
1641 (void) nvlist_lookup_string(nv, ZPROP_SOURCE, source); 1707 zfs_cmd_t zc = { 0 };
1642 } else { 1708 nvlist_t *zplprops = NULL;
1643 verify(!zhp->zfs_props_table || 1709 struct mttab mt;

1644 zhp->zfs_props_tabl e[prop] == B_TRUE); 1710 char *mmtopt _on = NULL;

new usr/src/lib/libzfs/comon/libzfs_dataset.c 27

1711
1712

1714

1716
1717
1718
1719
1720

1722
1723
1724
1725

1727
1728
1729
1730

1732
1733
1734
1735

1737
1738
1739
1740

1742
1743
1744
1745

1747
1748
1749
1750
1751

1753
1754
1755
1756
1757
1758
1759
1760
1761

1763
1764
1765
1766
1767
1768

1770
1771

1773
1774
1775
1776

char

*mmt opt _of f = NULL;

bool ean_t received = zfs_is_recvd_props_node(zhp);

*source = NULL;

switch (prop)

case
case
case
case
case
case

case

*

}
/

{
ZFS_PROP_ATI MVE:
mt opt _on = MNTOPT_ATI ME;
mt opt _of f = MNTOPT_NOATI ME;
br eak;

ZFS_PROP_DEVI CES:
mt opt _on = MNTOPT_DEVI CES;
mt opt _of f = MNTOPT_NCDEVI CES;
br eak;

ZFS_PROP_EXEC:
mt opt _on = MNTOPT_EXEC;
mt opt _of f = MNTOPT_NOEXEC;
br eak;

ZFS_PROP_READONLY:
mmt opt_on = MNTOPT_RQ,
mt opt _of f = MNTOPT_RW
br eak;

ZFS_PROP_SETUI D:
mmt opt _on = MNTOPT_SETUI D;
mt opt _of f = MNTOPT_NOSETUI D
br eak;

ZFS_PROP_. XATTR
mmtopt _on = MNTOPT_XATTR,
mt opt _of f = MNTOPT_NOXATTR,
br eak;

ZFS_PROP_NBMAND:
mt opt _on = MNTOPT_NBMAND;
mt opt _of f = MNTOPT_NONBMAND;
br eak;

* Because | ooking up the mount options is potentially expensive
* (iterating over all of /etc/mttab), we defer its calculation until
* we're | ooking up a property which requires its presence.

*/

if (!zhp->zfs_mtcheck &&

(mtopt_on !'= NULL || prop == ZFS_PROP_MOUNTED)) {

1 bzfs_handl e_t *hdl = zhp->zfs_hdl;
struct mttab entry;

if (libzfs_mttab_find(hdl, zhp->zfs_nanme, &entry) == 0) {
zhp->zfs_mmtopts = zfs_strdup(hdl,
entry. mt_mtopts);
if (zhp->zfs_mt opts == NULL)
return (-

}
zhp->zfs_mt check = B_TRUE;

if (zhp->zfs_mmtopts == NULL)

el se

mt . mt_mtopts = "";

mt. mt_mtopts = zhp->zfs_mtopts;

new usr/src/lib/libzfs/comon/libzfs_dataset.c

1778
1779
1780
1781
1782
1783
1784
1785
1786

1788
1789

1791
1792
1793
1794
1795
1796
1797
1798
1799
1800

1802
1803
1804
1805
1806
1807
1808

1810
1811
1812
1813
1814

1816
1817
1818

1820
1821
1822

1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842

switch (prop) {

case
case

case

case

ZFS_PROP_ATI ME:
ZFS_PROP_DEVI CES
ZFS_PROP_EXEC.
ZFS_PROP_READONLY
ZFS_PROP_SETUI D:
ZFS_PROP_XATTR:
ZFS_PROP_NBNVAND:
*val = getprop_uint64(zhp, prop, source);

if (recei ved)
br eak

if (hasmtopt (&mt, mtopt_on) && !*val) {
*val = B_TRUE;
if (src)
*src = ZPROP_SRC_TEMPORARY;
} elseif (hasnntopt(&rmt mt opt _of f) &&*val) {
*val = B_FALSE
if (src)
*src = ZPROP_SRC_TEMPORARY;

}
br eak;

ZFS_PROP_CANMOUNT:
ZFS_PROP_VOLSI ZE
ZFS_PROP_QUOTA:
ZFS_PROP_REFQUOTA:
ZFS_PROP_RESERVATI ON:
ZFS_PROP_REFRESERVATI ON:
*val = getprop_uint64(zhp, prop, source);

if (*source == NULL) {
/* not default, nust be |ocal */
*source = zhp->zfs_nane;

}
br eak;

ZFS_PROP_MOUNTED:
*val = (zhp->zfs_mmtopts != NULL)

ZFS_PROP_NUMCLONES:
*val = zhp->zfs_dnustats. dds_num cl ones;

ZFS_PROP_VERS| ON:
ZFS_PROP_NORMALI ZE:
ZFS_PROP_UTF8ONLY:
ZFS_PROP_CASE:
if (!zfs_prop_valid_for_type(prop, zhp->zfs_head_type) ||
zcnd_al | oc_dst _nvlist(zhp->zfs_hdl, &c, 0) T= 0)

return (-1);
id) strl cpy(zc.zc_nane, zhp->zfs_nane, sizeof (zc.zc_nane));
(zfs_ioctl(zhp->zfs_hdl, ZFS | OC_OBJSET_ZPLPROPS, &zc)) {

zcnmd_free_nvli st s(&zc)

return (-1);

(vo
if

}

I1f (zcnd_read_dst_nvlist(zhp->zfs_hdl, &zc, &plprops) !'=0 ||
nvl i st_| ookup_ui nt 64(zpl props, zf s_pr op_t o_nane(prop),
val) = 0)

zcend_free_nvlists(&zc);
return (-1);

i}f (zpl props)

new usr/src/lib/libzfs/comon/libzfs_dataset.c

1843
1844
1845

1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861

1863
1864
1865
1866
1867
1868
1869
1870

1872
1873 }

1875 /*

nvlist_free(zpl props);
zcemd_free_nvlists(&zc);

br eak;
defaul t:
switch (zfs_prop_get type(prop)) {
case PROP_TYPE_NUMBER:
case PROP_ TYPE | NDEX:
*val = getprop_uint64(zhp, prop, source);
/*
* |f we tried to use a default value for a
* readonly property, it neans that it was not
* present.
*/
if (zfs_prop_readonly(prop) &&
*source !'= NULL && (*source)[0] == "\0") {
*source = NULL;
break;
case PROP_TYPE_STRI NG
defaul t:
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOVAI N,
"cannot get non-nuneric property"));
return (zfs_error(zhp->zfs_hdl, EZFS_BADPROP,
dgettext (TEXT_DOVAIN, "internal error")));
}
}
return (0);

1876 * Cal cul ate the source type, given the raw source string.
=

1877

1878 static void
1879 get_source(zfs_handl e_t *zhp, zprop_source_t *srctype, char *source,

1880
1881 {
1882
1883

1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898

1900 }

1902 int
1903 zfs_prop_get_recvd(zfs_handl e_t *zhp, const char *propnane, char *propbuf,
size_t proplen, boolean_t literal)

1904
1905 {
1906
1907

char *statbuf, size_t statlen)

if (statbuf == NULL || *srctype == ZPROP_SRC_TEMPORARY)
return;

if (source == NULL) {
*srctype = ZPROP_SRC NONE;

} else if (source[0] == "\0")
*srctype = ZPROP_SRC _DEFAULT,;

} else if (strstr(source, ZPROP_SOURCE VAL_RECVD) != NULL) {
*srctype = ZPROP_SRC RECEI VED

} else {
if (strcnp(source, zhp->zfs_nanme) == 0) {
*srctype = ZPROP_SRC_LOCAL;
} else {
(void) strlcpy(statbuf, source, statlen);
*srctype = ZPROP_SRC_| NHERI TED;
}
}

zfs _prop_ t prop;
int err = 0;

new usr/src/lib/libzfs/comon/libzfs_dataset.c

1909 if (zhp->zfs_recvd_props == NULL)

1910 if (get_recvd_props_ioctl(zhp) != 0)

1911 return (-1);

1913 prop = zfs_nane_to_prop(propnane);

1915 if (prop !'= ZPROP_INVAL) {

1916 ui nt 64_t cooki e;

1917 if (!'nvlist_exists(zhp->zfs_recvd_props, propnane))
1918 return (-1);

1919 zfs set recvd_props_node(zhp, &cookie);

1920 err = zfs_prop_ get (zhp, prop, propbuf, proplen,
1921 NULL, NULL, O, literal);

1922 zfs_unset _r ecvd_props_m)de(zhp, &cooki e) ;

1923 } else {

1924 nvlist_t *propval;

1925 char *recvdval ;

1926 if (nvlist_lookup_nvlist(zhp->zfs_recvd_props,
1927 propnane, &propval) != 0)

1928 return (-1);

1929 verify(nvlist_| ookup string(propval , ZPROP_VALUE,
1930 & ecvdval) == 0);

1931 (void) strl cpy(pr opbuf recvdval , proplen);
1932 }

1934 return (err == 0?2 0 : -1);

1935 }

1937 static int

1938 get _cl ones_string(zfs_handl e_t *zhp, char *propbuf, size_t proplen)
1939 {

1940 nvlist_t *val ue;

1941 nvpair_t *pair;

1943 value = zfs_get_clones_nvl (zhp);

1944 if (value == NULL)

1945 return (-1);

1947 propbuf[0] = '\0";

1948 for (pair = nvlist_next_nvpair(value, NULL); pair != NULL;
1949 pair = nvlist_next_nvpair(value, pair)) {

1950 if (propbuf[0] !="'\0")

1951 (void) strlcat(propbuf, ",", proplen);
1952 (void) strlcat(propbuf, nvpair_nane(pair), proplen);
1953 }

1955 return (0);

1956 }

1958 struct get_clones_arg {

1959 ui nt 64_t nunctl ones;

1960 nvlist_t *val ue;

1961 const char *origin;

1962 char buf [ZFS_MAXNAMELEN] ;

1963 };

1965 int

1966 get _cl ones_cb(zfs_handl e_t *zhp, void *arg)

1967 {

1968 struct get_clones_arg *gca = arg;

1970 if (gca->nuntlones == 0)

1971 zfs_cl ose(zhp);

1972 return (0);

1973 1

new usr/src/lib/libzfs/comon/libzfs_dataset.c 31 new usr/src/lib/libzfs/comon/libzfs_dataset.c 32
1975 if (zfs_prop_get(zhp, ZFS PROP_ORIG N, gca->buf, sizeof (gca->buf), 2041 }
1976 NULL, NULL, 0, B_TRUE) != 0)
1977 goto out; 2043 verify(nvlist_lookup_nvlist(nv, ZPROP_VALUE, &value) == 0);
1978 if (strcnp(gca- >buf gca->origin) == 0) {
1979 fnvlist_add_bool ean(gca- >va| ue, zfs_get_nanme(zhp)); 2045 return (val ue);
1980 gca- >nuncl ones- - ; 2046 }
1981 }
2048 [*
1983 out: 2049 * Retrieve a property fromthe given object. |If 'literal’ is specified, then
1984 (void) zfs_iter_children(zhp, get_clones_cb, gca); 2050 * nunbers are left as exact values. Oherw se, nunbers are converted to a
1985 zfs_cl ose(zhp); 2051 * hunan-readable form
1986 return (0); 2052 *
1987 } 2053 * Returns O on success, or -1 on error.
2054 */
1989 nvlist_t * 2055 int
1990 zfs_get_clones_nvl (zfs_handl e_t *zhp) 2056 zfs_prop_get(zfs_handl e_t *zhp, zfs_prop_t prop, char *propbuf, size_t proplen,
1991 { 2057 zprop_source_t *src, char *statbuf, size_t statlen, boolean_t literal)
1992 nvlist_t *nv, *val ue; 2058 {
2059 char *source = NULL;
1994 if (nvlist_lookup_nvlist(zhp->zfs_props, 2060 uint64_t val;
1995 zfs_prop_to_nanme(ZFS_PROP_CLONES), &nv) != 0) { 2061 char *str;
1996 struct get_clones_arg gca; 2062 const char *strval;
2063 bool ean_t received = zfs_is_recvd_props_node(zhp);
1998 /*
1999 * if this is a snapshot, then the kernel wasn’'t able 2065 /*
2000 * to get the clones. Do it by slomy iterating. 2066 * Check to see if this property applies to our object
2001 */ 2067 */
2002 if (zhp->zfs_type != ZFS_TYPE_SNAPSHOT) 2068 if (lzfs_prop_valid_for_type(prop, zhp->zfs_type))
2003 return (NULL); 2069 return (-1);
2004 if (nvlist_alloc(&v, NV_UNIQUE_NAME, 0) != 0)
2005 return (NULL); 2071 if (received & zfs_prop_readonl y(prop))
2006 if (nvlist_alloc(&alue, NV_UNIQUE NAME, 0) != 0) { 2072 return (-1);
2007 nvlist_free(nv);
2008 return (NULL); 2074 if (src)
2009 } 2075 *src = ZPROP_SRC_NONE;
2011 gca. nuncl ones = zfs_prop_get_int(zhp, ZFS_PROP_NUMCLONES); 2077 switch (prop) {
2012 gca. val ue = val ue; 2078 case ZFS_PROP_CREATI ON:
2013 gca.origin = zhp->zfs_naneg; 2079 /*
2080 * 'creation’ is atine_t stored in the statistics. W convert
2015 if (gca.nuntlones !=0) { 2081 * this into a string unless 'literal’ is specified.
2016 zfs_handl e_t *root; 2082 =]
2017 char pool [ZFS_VAXNAMELEN] ; 2083 {
2018 char *cp = pool; 2084 val = getprop_ui t64(zhp, prop, &source);
2085 tlrret time = (tine_t)val;
2020 /* get the pool nane */ 2086 struct tmt;
2021 (void) strlcpy(pool, zhp->zfs_nane, sizeof (pool));
2022 (voi d) strsep(&cp, by @); 2088 if (literal
2023 root = zfs_open(zhp->zfs_hdl, pool, 2089 localtine_r(&ine, &) == NULL ||
2024 ZFS_TYPE_FI LESYSTEM ; 2090 st ;fti ma; propbuf, proplen, "% % % %: %M %",
2091 &) == 0
2026 (voi d) get_clones_ch(root, &gca); 2092 (void) snprintf(propbuf, proplen, "%Ilu", val);
2027 } 2093 }
2094 br eak;
2029 if (gca.nuntlones !'= 0 |
2030 nvlist_add_nvlist(nv, ZPROP_VALUE, value) !=0 || 2096 case ZFS_PROP_MOUNTPO NT:
2031 nvlist_add_nvlist(zhp->zfs_props, 2097 4
2032 zfs_prop_to_name(ZFS_PROP_CLONES), nv) != 0) { 2098 * CGetting the precise nountpoint can be tricky.
2033 nvlist_free(nv); 2099 *
2034 nvlist_free(val ue); 2100 * - for 'none’ or 'legacy’, return those val ues.
2035 return (NULL); 2101 * - for inherited nountpoints, we want to take everything
2036 } 2102 L after our ancestor and append it to the inherited val ue.
2037 nvlist_free(nv); 2103 *
2038 nvlist_free(val ue); 2104 * |f the pool has an alternate root, we want to prepend that
2039 verify(0 == nvlist_lookup_nvlist(zhp->zfs_props, 2105 * root to any values we return.
2040 zfs_prop_t o_name(ZFS_PROP_CLONES), &nv)); 2106)

new usr/src/lib/libzfs/comon/libzfs_dataset.c

2108

2110
2111
2112
2113

2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128

2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140

2142
2143
2144
2145
2146
2147
2148
2149

2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161

2163

2165
2166
2167
2168
2169
2170
2171
2172

str = getprop_string(zhp, prop, &source);

if (str[0] =="/") {
char buf [MAXPATHLEN] ;
char *root = buf;
const char *rel path;

/
If we inherit the mountpoint, even froma dataset

the dataset we inherit from |f source is
ZPROP_SOURCE_VAL_RECVD, the received val ue i s not
* inherited.

*

/

if (strcnp(source, ZPROP_SOURCE_VAL_RECVD) == 0) {
rel path = "";

} else {
rel path = zhp->zfs_nane + strlen(source);
if (relpath[0] == "/")

rel pat h++;

}

if ((zpool _get prop(zhp >zpool _hdl,
ZPOOL_PROP_ALTROOT, buf MBXPATHLEN, NULL)) ||
(strcenp(root, "-") ==))
root[0] ="'\0";
/*
* Special case an alternate root of '/’. This will
* avoid having multiple | eading slashes in the
* pount poi nt pat h.

if (strcenp(root, "/") == 0)
r oot ++;

/*

* |f the mountpoint is '/’ then skip over this

* if we are obtaining either an alternate root or
* an inherited nountpoint.

*

/
if (str[1] =='\0" && (root[0] !="\0" ||

rel path[0] !="\0"))
str++;

if (relpath[0] == '\0")
(void) snprintf(propbuf, proplen, "%9%",
root, str);
el se
(void) snprintf(propbuf, pr opI en, °/s°/s°/s°/s
root, str, relpath[0] =="@ *? o,
rel path);
} else {
/* ’legacy’ or 'none’ */
) (void) strlcpy(propbuf, str, proplen);

br eak;

case ZFS_PROP_ORIG N
(voi d) strlcpy(propbuf, getprop_string(zhp, prop, &source),
propl en);

33

*
*
* with a received value, the source will be the path of
*
*

* |f there is no parent at all, return failure to indicate that
*

it doesn't apply to this dataset.
*

/
if (propbuf[0] =="'\0")

new usr/src/lib/libzfs/comon/libzfs_dataset.c

2173
2174

2176
2177
2178
2179

2181
2182
2183
2184

2186
2187

2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207

2209
2210
2211
2212
2213
2214
2215
2216

2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233

2235
2236
2237
2238

return (-1);
br eak;

case ZFS_PROP_CLONES:
if (get_clones_string(zhp, propbuf, proplen) != 0)
return (-1);
br eak;

case ZFS_PROP_QUOTA:

case ZFS_PROP_REFQUOTA:

case ZFS_PROP_RESERVATI ON:
case ZFS_PROP_REFRESERVATI ON:

if (get_nuneric property(zhp, prop, src, &source, &al) != 0)
return (-
/*
* |f quota or reservation is O, we translate this into 'none’
* (unless literal is set), and indicate that it’'s the default
* value. Oherwise, we print the nunber nicely and indicate
* that its set locally.
*
/
if (val == 0) {
if (literal)
(void) strlcpy(propbuf, "0", proplen);
el se
(void) strlcpy(propbuf, "none", proplen);
} else {
if (literal)
(void) snprintf(propbuf, proplen, "%Iu",
(u_l ongl ong_t)val);
el se
zfs_ni cenun{val, propbuf, proplen)
}
br eak;

case ZFS_PROP_REFRATI O
case ZFS_PROP_COVWPRESSRATI O
if (get_nuneric_property(zhp, prop, src, &source, &al) != 0)
return (-1);
(voi d) snprlntf(propbuf proplen, "%1u. %2l 1 ux",
(u_l onglong_t) (val i 100),
(u_l ongl ong_t) (val % 100));
br eak;

case ZFS_PROP_TYPE:
switch (zhp->zfs_type) {
case ZFS_ TYPE FILESYSTEM
str = "filesystent;
br eak;
case ZFS_TYPE_VOLUME:
str = "vol une";

br eak;

case ZFS_TYPE_SNAPSHOT:
str = "snapshot";
abort();

}
(v0| d) snprintf(propbuf, proplen, "%", str);
br eak;

case ZFS_PROP_MOUNTED:
/ *

* The 'nmounted’ property is a pseudo-property that described
* whether the filesystemis currently nmounted. Even though

new usr/src/lib/libzfs/comon/libzfs_dataset.c 35 new usr/src/lib/libzfs/comon/libzfs_dataset.c 36
2239 * it’s a bool ean val ue, the typical values of "on" and "of f" 2305 return (-
2240 * don’t nmake sense, so we translate to "yes" and "no". 2306 (voi d) snpri ntf(propbuf proplen, "%Ilu", (u_longlong_t)val);
2241 */ 2307 br eak
2242 if (get_nuneric property(zhp, ZFS_PROP_MOUNTED,
2243 src, &source, &al) = 0) 2309 def aul t:
2244 return (-1); 2310 switch (zfs_prop_get type(pr op)) {
2245 if (val) 2311 case PROP_TYPE_NUMBER:
2246 (void) strlcpy(propbuf, "yes", proplen); 2312 i T (get_numeric_pr operty(zhp, prop, src,
2247 el se 2313 &source, &al) != 0)
2248 (void) strlcpy(propbuf, "no", proplen); 2314 return (-1);
2249 br eak; 2315 if (literal)
2316 (void) snprintf(propbuf, proplen, "%Iu",
2251 case ZFS_PROP_NAME: 2317 (u_longlong_t)val);
2252 /* 2318 el se
2253 * The 'nane’ property is a pseudo-property derived fromthe 2319 zf s_ni cenun(val , propbuf, proplen);
2254 * dataset nane. It is presented as a real property to sinplify 2320 br eak;
2255 * consumers.
2256 */ 2322 case PROP_TYPE_STRI NG
2257 (void) strlcpy(propbuf, zhp->zfs_nane, proplen); 2323 (void) strlcpy(propbuf,
2258 br eak; 2324 getprop_string(zhp, prop, &source), proplen);
2325 br eak;
2260 case ZFS_PROP_M_SLABEL:
2261 { 2327 case PROP_TYPE_| NDEX:
2262 m | abel _t *new_sl = NULL; 2328 if (get_nuneric_property(zhp, prop, src,
2263 char *ascii = NULL; /* human readabl e | abel */ 2329 &source, &val) != 0)
2330 return (-1);
2265 (void) strlcpy(propbuf, 2331 if (zfs_prop_index_to_string(prop, val, &strval) != 0)
2266 getprop_string(zhp, prop, &source), proplen); 2332 return (-1);
2333 (v0| d) strlcpy(pr opbuf strval, proplen);
2268 if (literal || (strcasecnp(propbuf, 2334
2269 ZFS_M.SLABEL_DEFAULT) == 0))
2270 br eak; 2336 defaul t:
2337 abort();
2272 /* 2338 }
2273 * Try to translate the internal hex string to 2339 }
2274 * human-readabl e output. |If there are any
2275 */ probl ens just use the hex string. 2341 get _source(zhp, src, source, statbuf, statlen);
2276 *
2343 return (0);
2278 if (str_to_label (propbuf, &nuew sl, MAC LABEL, 2344 }
2279 L_NO CORRECTI ON, NULL) == -1) {
2280 m | abel _free(new_sl); 2346 [*
2281 br eak; 2347 * UWility function to get the given numeric property. Does no validation that
2282 } 2348 * the given property is the appropriate type; should only be used with
2349 * hard-coded property types.
2284 if (label _to_str(new.sl, &ascii, M LABEL, 2350 */
2285 DEF_NAMES) != 0) { 2351 uint64_t
2286 if (ascii) 2352 zfs_prop_get _int(zfs_handle_t *zhp, zfs_prop_t prop)
2287 free(ascii); 2353 {
2288 m | abel _free(new_sl); 2354 char *source;
2289 br eak; 2355 uint64_t val;
2290 }
2291 m | abel _free(new_sl); 2357 (void) get_nuneric_property(zhp, prop, NULL, &source, &val);
2293 (void) strlcpy(propbuf, ascii, proplen); 2359 return (val);
2294 free(ascii); 2360 }
2295 }
2296 br eak; 2362 int
2363 zfs_prop_set_int(zfs_handle_t *zhp, zfs_prop_t prop, uint64_t val)
2298 case ZFS_PROP_GUI D 2364 {
2299 ™ 2365 char buf[64];
2300 * QUIDs are stored as nunbers, but they are identifiers.
2301 * We don’t want themto be pretty printed, because pretty 2367 (void) snprintf(buf, sizeof (buf), "%Ilu", (longlong_t)val);
2302 * printing mangles the IDinto a truncated and usel ess val ue. 2368 return (zfs_prop_set(zhp, zfs_prop_to_nane(prop), buf));
2303 */ 2369 }
2304 if (get_nuneric_property(zhp, prop, src, &source, &al) != 0)

new usr/src/lib/libzfs/comon/libzfs_dataset.c

2371 /| *
2372 * Sinmilar to zfs_prop_get(), but returns the value as an integer.
2373 */

2374 int

2375 zfs_prop_get _nuneric(zfs_handle_t *zhp, zfs_prop_t prop, uint64_t *val ue,
2376 zprop_source_t *src, char *statbuf, size_t statlen)

2377 {

2378 char *source;

2380 /*

2381 * Check to see if this property applies to our object

2382 */

2383 if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) {

2384 return (zfs_error_fm(zhp->zfs_hdl, EZFS_PROPTYPE,
2385 dget t ext (TEXT_DOVAI N, "cannot get property '%'"),
2386 zfs_prop_to_name(prop)));

2387 }

2389 if (src)

2390 *src = ZPROP_SRC_NONE;

2392 if (get_numeric property(zhp, prop, src, &source, value) != 0)
2393 return (-

2395 get _source(zhp, src, source, statbuf, statlen);

2397 return (0);

2398 }

2400 static int
2401 idmap_id_to_nuneric_donain_rid(uid_t id, boolean_t isuser,

2402 char **domai np, idmap_rid_t *ridp)

2403 {

2404 i dmap_get _handl e_t *get _hdl = NULL;

2405 i dmap_stat status;

2406 int err = EINVAL;

2408 if (idmap_get_create(&get_hdl) != | DMAP_SUCCESS)
2409 goto out;

2411 if (isuser) {

2412 err = idmap_get _si dbyuid(get_hdl, id,

2413 | DMAP_REQ FLG USE _CACHE, domainp, ridp, &status);
2414 } else {

2415 err = idmap_get _si dbygi d(get_hdl, id,

2416) | DVAP_REQ FLG USE_CACHE, donminp, ridp, &status);
2417

2418 if (err == | DVAP_SUCCESS &&

2419 |drrap get _mappi ngs(get _hdl) == | DMAP_SUCCESS &&
2420 status == | DMAP_SUCCESS)

2421 err = 0;

2422 el se

2423 err = EI NVAL

2424 out:

2425 if (get_hdl)

2426 i dmap_get _destroy(get_hdl);

2427 return (err);

2428 }

2430 /*

2431 * convert the propnane into paraneters needed by kernel
2432 * Eg: userquota@hrens -> ZFS PROP_USERQUOTA, "", 126829

2433 * EQ: userused@mtt @omain -> ZFS_PROP_USERUSED, "S-1-123-456", 789
2434 */

2435 static int

2436 user quot a_pr opnane_decode(const char *propnane, bool ean_t zoned,

new usr/src/lib/libzfs/common/libzfs_dataset.c

2437
2438 {
2439
2440
2441
2442

2444

2446
2447
2448
2449
2450
2451
2452
2453
2454

2456
2457

2459

2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484

2486
2487
2488
2489
2490
2491

2493
2494
2495
2496
2497
2498
2499
2500
2501
2502

zfs_userquota_prop_t *typep, char *dommin, int domminlen, uint64_t *ridp)

zfs_userquota_prop_t type;
char *cp, *end;

char *numericsid = NULL;
bool ean_t isuser;

domain[0] = '\0;

/* Figure out the property type ({user|group}{quotalspace}) */
for (type = 0; type < ZFS _NUM USERQUOTA_ PROPS; type++) {
if (strncnp(propnama zf s_userquota_prop_ preflxes[type]
strlen(zfs_userquota_prop_prefixes[type])) == 0)
br eak;

}

if (type == ZFS_NUM USERQUOTA_PROPS)
return (EI NVAL) ;

*typep = type;

i suser = (type == ZFS_PROP_USERQUOTA | |
type == ZFS_PROP_USERUSED) ;

cp = strchr(propnane, ' @) + 1;
i f (strc?r(cp, '@)) {

* It’s a SID nane (eg "user @onmai n") that needs to be
* turned into S-1-domainl D-RID.

*/

directory_error_t e;

if (zoned && getzoneid() == GLOBAL_ZONEI D)

return (ENOCENT);
if (isuser) {
e = directory_sid_fromuser_nanme(NULL,
cp, &nunericsid);
} else {
= directory_sid_fromgroup_name(NULL,
cp, &nunericsid);

}

if (e !'= NULL)
directory_error_free(e);
return (ENCENT);

}

1f (numericsid == NULL)
return (ENCENT);

nuneri csi d;

|

cp
1= | be further decoded bel ow */

wi
}
if (strncnp(cp, "S-1-", 4) == 0) {
/* It’s a nuneric SID (eg "S 1-234-567-89")
(v0| d) strlcpy(domain, cp, donuinlen);

cp = strrchr(domam)
*cp = '\0

cp++,;

errno = 0;

*ridp = strtoull (cp, &end, 10);

if (numericsid)
free(nunericsid);
nunericsid = NULL;

}
if (errno!=0]] *end !="\0")
return (ElINVAL);
} else if (lisdigit(*cp)) {
/*

new usr/src/lib/libzfs/comon/libzfs_dataset.c

2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525

2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539

2541
2542
2543 }

* |t's a user/group nane (eg "user") that needs to be
* turned into a uid/gid
*/
if (zoned && getzoneid() =
return (ENCENT);
if (isuser) {
struct passwd *pw,
pw = get pwnan{cp);
i f (pw == NULL)
return (ENOCENT);
*ridp = pw >pw_ui d;
} else {
struct group *gr;
gr = getgrnamcp);
if (gr == NULL)
return (ENCENT);
*ridp = gr->gr_gid,;

= GLOBAL_ZONEI D)

} else {
/* 1t's a user/group ID (eg "12345"). */
uid_t id = strtoul (cp, &end, 10);
idmap_rid_t rid;
char *mapdomai n;

if (*end I'="\0")
return (EI NVAL);
if (id > lvy-\xUID) {
/* 1t’s an epheneral ID. */
if (idmap_id_to_numeric_donmin_rid(id, isuser,
&mapdonain, &rid) !'= 0)
return (ENCENT);
(void) strlcpy(domain, rmpdomai n, domainlen);
*ridp = rid,;
} else {
*ridp =
}

}

ASSERT3P(nunericsid, ==, NULL);
return (0);

2545 static int
2546 zfs_prop_get _userquota_comon(zfs_handl e_t *zhp, const char *propnane,

2547
2548 {
2549
2550

2552

2554
2555
2556
2557
2558
2559

2561
2562
2563

2565
2566
2567 }

uint64_t *propval ue, zfs_userquota_prop_t *typep)

int err;
zfs_cmd_t zc = { 0 };

(void) strlcpy(zc.zc_nanme, zhp->zfs_nanme, sizeof (zc.zc_nane));

err = userquot a_propnane_decode(propnane,
zfs_prop_get _int(zhp, ZFS_PROP_ZONED),
typep, zc.zc_value, sizeof (zc.zc_value),
zc.zc_obj set _type = *typep;
if (err)
return (err);

&zc.zc_guid);

err = ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_ | OC_USERSPACE ONE, &zc);

if (err)
return (err);

*propval ue = zc.zc_cooki €;
return (0);

39

new usr/src/lib/libzfs/comon/libzfs_dataset.c

2569 int

2570 zfs_prop_get _userquota_int(zfs_handl e_t *zhp, const char *propnane,
2571 uint64_t *propval ue)

2572 {

2573 zfs_userquota_prop_t type;

2575 return (zfs_prop_get_userquota_comon(zhp, propname, propval ue,
2576 &type));

2577 }

2579 int

2580 zfs_prop_get _userquota(zfs_handle_t *zhp, const char *propnaneg,

2581 char *propbuf, int proplen, boolean_t literal)

2582 {

2583 int err;

2584 ui nt64_t propval ue;

2585 zfs_userquota_prop_t type;

2587 err = zfs_prop_get _userquota_comon(zhp, propnane, &propval ue,
2588 & ype);

2590 if (err)

2591 return (err);

2593 if (literal) {

2594 (void) snpri ntf(propbuf proplen, "%l u", propval ue);
2595 } else if (propvalue == 0 &&

2596 (type == ZFS_PROP_USERQUOTA || type == ZFS PROP_GROUPQUOTA)) {
2597 (void) strlcpy(propbuf, "none", proplen);

2598 } else {

2599 zf s_ni cenun(pr opval ue, propbuf, proplen);

2600 1

2601 return (0);

2602 }

2604 int

2605 zfs_prop_get _witten_int(zfs_handle_t *zhp, const char *propnane,

2606 ui nt 64_t *propval ue)

2607 {

2608 int err;

2609 zfs_cmd_t zc = { 0 };

2610 const char *snapnane;

2612 (void) strlcpy(zc.zc_nanme, zhp->zfs_nane, sizeof (zc.zc_nane));
2614 snapnanme = strchr(propnane, ' @) + 1;

2615 if (strchr(snapname, '@)) {

2616 (void) strlcpy(zc.zc_value, snapnane, sizeof (zc.zc_value));
2617 } else {

2618 /* snapnane is the short name, append it to zhp's fsname */
2619 char *cp;

2621 (void) strlcpy(zc.zc_value, zhp->zfs_nane,

2622 si zeof (zc.zc_value));

2623 cp = strchr(zc.zc_value, '@);

2624 if (cp ! NULL)

2625 cp ='\0";

2626 (voi d) st rlcat(zc. zc_val ue, "@, sizeof (zc.zc_value));
2627 (void) strlcat(zc.zc_value, snapnane, sizeof (zc.zc_value));
2628 }

2630 err = ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_|OC SPACE_WRI TTEN, &zc);
2631 if (err)

2632 return (err);

2634 *propval ue = zc.zc_cooki e;

new usr/src/lib/libzfs/comon/libzfs_dataset.c

2635 return (0);

2636 }

2638 int

2639 zfs_prop_get _witten(zfs_handle_t *zhp, const char *propnarme,

2640 char *propbuf, int proplen, boolean_t literal)

2641 {

2642 int err;

2643 ui nt64_t propval ue;

2645 err = zfs_prop_get_witten_int(zhp, propnane, &propval ue);
2647 if (err)

2648 return (err);

2650 if (literal)

2651 (voi d) snprintf(propbuf, proplen, "%Iu", propvalue);
2652 } else {

2653 zf s_ni cenun(pr opval ue, propbuf, proplen);

2654 }

2655 return (0);

2656 }

2658 /*

2659 * Returns the nane of the given zfs handle.

2660 */

2661 const char *

2662 zfs_get _name(const zfs_handl e_t *zhp)

2663 {

2664 return (zhp->zfs_nane);

2665 }

2667 | *

2668 * Returns the type of the given zfs handle.

2669 */

2670 zfs_type_t

2671 zfs_get _type(const zfs_handle_t *zhp)

2672 {

2673 return (zhp->zfs_type);

2674 }

2676 [*

2677 * |s one dataset name a child dataset of another?

2678 *

2679 * Needs to handl e these cases:

2680 * Dataset 1 "al foo" "al f oo" "al f oo" "al foo"
2681 * Dataset 2 "alfo" "al f oobar" "al bar/baz" "al f ool bar"
2682 * Descendant? No. No. No. Yes.
2683 */

2684 static bool ean_t

2685 i s_descendant (const char *dsl, const char *ds2)

2686 {

2687 size_t dllen = strlen(dsl);

2689 /* ds2 can’'t be a descendant if it's snaller */

2690 if (strlen(ds2) < dilen)

2691 return (B_FALSE);

2693 /* otherw se, conpare strings and verify that there's a '/’
2694 return (ds2[dllen] == "'/’ && (strncnp(dsl, ds2, dllen) == 0));
2695 }

2697 [*

2698 * Gven a conplete nane, return just the portion that refers to the parent.
2699 * WII return -1 if there is no parent (path is just the name of the
2700 * pool)

new usr/src/lib/libzfs/common/libzfs_dataset.c

2701
2702
2703
2704
2705

2707

2709
2710
2711

2713
2714

2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733

2735
2736

2738
2739
2740
2741
2742
2743

2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755

2757
2758
2759
2760
2761
2762
2763
2764
2765
2766

*/
static int
parent _nanme(const char *path, char *buf, size_t buflen)
{
char *sl ashp;
(void) strlcpy(buf, path, buflen);
if ((slashp = strrchr(buf, "/")) == NULL)
return (-1);
*slashp = "\0";
return (0);
}
/*
* | f accept_ancestor is false, then check to make sure that the given path has
* a parent, and that it exists. |f accept_ancestor is true, then find the
* closest existing ancestor for the given path. |In prefixlen return the
* length of already existing prefix of the given path. W also fetch the
* ' zoned property, which is used to validate property settings when creating
* new dat asets.
*/
static int
check_parents(libzfs_handl e_t *hdl, const char *path, uint64_t *zoned,
bool ean_t accept_ancestor, int *prefixlen)
{
zfs_cmd_t zc = { 0 };
char parent[ZFS | NAXNANELENJ
char *slash;
zfs_handl e_t *zhp;
char errbuf[1024];
uint64_t is_zoned;
(void) snprintf(errbuf, sizeof (errbuf),
dget t ext (TEXT_DOVAI N, "cannot create '%’'"), path);
/* get parent, and check to see if this is just a pool */
if (parent_nanme(path, parent, sizeof (parent)) != 0) {
zfs _error _aux(hdl, dgettext(TEXT DOVAI N,
"m ssing dat aset name' "))
return (zfs_error(hdl, EZFS | I NVALI DNAME, errbuf));
}
/* check to see if the pool exists */
if ((slash = strchr(parent, /7)) == NULL)
sl ash = parent + strlen(parent);
(void) strncpy(zc.zc_nane, parent slash - parent);
zc.zc_nane[sl ash - parent] ='\0
if (ioctl(hdl->libzfs_fd, ZFS_ ICC OBJSET_STATS, &zc) != 0 &&
errno == ENCENT)
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"no such pool '9%’"), zc.zc_nane);
return (zfs_error(hdl, EZFS_NCENT, errbuf))
}
/* check to see if the parent dataset exists */
while ((zhp = make_dataset handl e(hdl, parent)) == NULL) {
if (errno == ENCENT && accept_ancestor) {
/*
* Go deeper to find an ancestor, give up on top |level.
*
/
if (parent_nane(parent, parent, sizeof (parent))
zfs_error_aux(hdl, dgettext (TEXT_DOMAI N,
"no such pool '%’"), zc.zc_nane);
return (zfs_error(hdl, EZFS_NCENT, errbuf))

new usr/src/lib/libzfs/comon/libzfs_dataset.c

2767
2768
2769
2770
2771
2772
2773
2774

2776
2777
2778

2780
2781
2782
2783
2784
2785

2787
2788
2789
2790
2791
2792
2793
2794

2796
2797
2798
2799
2800 }

2802 /*
2803 *
2804 */

}
} else if (errno == ENCENT)
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"parent does not exist"));
return (zfs_error(hdl, EZFS_NCENT, errbuf));
} else
return (zfs_standard_error(hdl, errno, errbuf));

}

is_zoned = zfs_prop_get_int(zhp, ZFS_PROP_ZONED);
if (zoned != NULL)
*zoned = i s_zoned;

/* we are in a non-global zone, but parent is in the global zone */
if (getzoneid() != GLOBAL_ZONEID && !is_zoned)

(void) zfs_standard_error(hdl, EPERM errbuf);

zfs_cl ose(zhp);

return (-1);

}

/* make sure parent is a filesystem*/
if (zfs_get_type(zhp) != ZFS_TYPE_FI LESYSTEM ({
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"parent is not a filesystenl));
(void) zfs_error(hdl, EZFS BADTYPE, errbuf);
zfs_cl ose(zhp);
return (-1);

}

zfs_cl ose(zhp);
if (prefixlen !'= NULL)

*prefixlen = strlen(parent);
return (0);

Fi nds whet her the dataset of the given type(s) exists.

2805 bool ean_t
2806 zfs_dataset _exists(libzfs_handle_t *hdl, const char *path, zfs_type_t types)

2807 {
2808

2810
2811

2813
2814
2815
2816
2817

2819
2820
2821
2822
2823
2824 }

2826 /*
2827 *

zfs_handl e_t *zhp;

if (!zfs_validate_nanme(hdl, path, types, B_FALSE))
return (B_FALSE);

/*
* Try to get stats for the dataset, which will tell us if it exists.
*

if ((zhp = make_dataset _handl e(hdl, path)) != NULL) {
int ds_type = zhp->zfs_type;
zfs_cl ose(zhp);
if (types & ds_type)
return (B_TRUE);

}
return (B_FALSE);

Gven a path to "target’, create all the ancestors between

2828 * the prefixlen portion of the path, and the target itself.

2829 *
2830 */
2831 int

Fail if the initial prefixlen-ancestor does not already exist.

2832 create_parents(libzfs_handle_t *hdl, char *target, int prefixlen)

new usr/src/lib/libzfs/common/libzfs_dataset.c 44
2833 {

2834 zfs_handl e_t *h;

2835 char *cp;

2836 const char *opnaneg;

2838 /* make sure prefix exists */

2839 cp = target + prefixlen;

2840 if (*ep!="1/1") {

2841 assert(strchr(cp, /') == NULL);

2842 h = zfs_open(hdl, target, ZFS_TYPE_FI LESYSTEM ;
2843 } else {

2844 *cp = '\0;

2845 h = zfs_open(hdl, target, ZFS_TYPE_FI LESYSTEM;
2846 *cp =17,

2847 1

2848 if (h == NULL)

2849 return (-1);

2850 zfs_cl ose(h);

2852 /*

2853 * Attenpt to create, nmount, and share any ancestor fil esystens,
2854 * up to the prefixlen-1ong one.

2855 */

2856 for (cp = target + prefixlen + 1;

2857 cp = strchr(cp, '/"); *cp ="/, cp++) {

2859 *cp = '\0";

2861 h = make_dat aset _handl e(hdl, target);

2862 if (h) {

2863 /* it already exists, nothing to do here */
2864 zfs_cl ose(h);

2865 conti nue;

2866 }

2868 if (zfs_create(hdl, target, ZFS TYPE_FI LESYSTEM
2869 NULL) !'= 0) {

2870 opnane = dgettext(TEXT_DOVAIN, “"create");
2871 goto ancestorerr;

2872 }

2874 h = zfs_open(hdl, target, ZFS_TYPE_FI LESYSTEM ;
2875 if (h == NULL)

2876 opnanme = dgettext (TEXT_DOVAI N, "open");
2877 goto ancestorerr;

2878 }

2880 if (zfs_mount(h, NULL, 0) != 0) {

2881 opnane = dgettext (TEXT_DOVAIN, "mount");
2882 goto ancestorerr;

2883 }

2885 if (zfs_share(h) !=0) {

2886 opnane = dgettext (TEXT_DOVAIN, "share");
2887 got o ancestorerr;

2888 }

2890 zfs_cl ose(h);

2891 }

2893 return (0);

2895 ancestorerr:

2896 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,

2897 "failed to % ancestor '%’'"), opnane, target);
2898 return (-1);

new usr/src/lib/libzfs/comon/libzfs_dataset.c 45 new usr/src/lib/libzfs/comon/libzfs_dataset.c 46
2899 } 2965 ost = DMJ_OST_ZFS;
2901 /* 2967 if (props & (props = zfs_valid_proplist(hdl, type, props,
2902 * Creates non-existing ancestors of the given path. 2968 zoned, NULL, errbuf)) == 0)
2903 */ 2969 return (-1);
2904 int
2905 zfs_create_ancestors(libzfs_handle_t *hdl, const char *path) 2971 if (type == ZFS_TYPE_VOLUMVE) ({
2906 { 2972 [
2907 int prefix; 2973 * |f we are creating a volunme, the size and bl ock size nust
2908 char *pat h_copy; 2974 * satisfy a fewrestraints. First, the bl ocksize nmust be a
2909 int rc; 2975 * valid block size between SPA {M N, MAX} BLOCKSI ZE. Second, the
2976 * vol size nust be a nultiple of the block size, and cannot be
2911 if (check_parents(hdl, path, NULL, B_TRUE, &prefix) != 0) 2977 * zero.
2912 return (-1); 2978 */
2979 if (props == NULL || nvlist_I ookup_uint64(props,
2914 if ((path_copy = strdup(path)) != NULL) { 2980 zfs_prop_to_nanme(ZFS_PROP_VOLSI ZE), &size) !'= 0) {
2915 rc = create_parents(hdl, path_copy, prefix); 2981 nvlist_free(props);
2916 free(pat h_copy); 2982 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
2917 } 2983 "m ssing vol une size"));
2918 if (path_copy == NULL || rc != 0) 2984 return (zfs_error(hdl, EZFS BADPROP, errbuf));
2919 return (-1); 2985 }
2921 return (0); 2987 if ((ret = nvlist_|ookup_uint64(props,
2922 } 2988 zfs_prop_t o_nanme(ZFS_PROP_VOLBLOCKSI ZE) ,
2989 &bl ocksi ze)) !'= 0) {
2924 [* 2990 if (ret == ENCENT) {
2925 * Create a new filesystem or vol une. 2991 bl ocksi ze = zfs_prop_defaul t _numeri c(
2926 */ 2992 ZFS_PROP_VOLBLOCKSI ZE) ;
2927 int 2993 } else {
2928 zfs_create(libzfs_handle_t *hdl, const char *path, zfs_type_t type, 2994 nvlist_free(props);
2929 nvlist_t *props) 2995 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
2930 { 2996 "m ssing volune bl ock size"));
2931 int ret; 2997 return (zfs_error(hdl, EZFS BADPROP, errbuf));
2932 uint64_t size = 0O; 2998 }
2933 uint64_t bl ocksize = zfs_prop_defaul t _nuneri c(ZFS_PROP_VOLBLOCKSI ZE) ; 2999 }
2934 char errbuf[1024];
2935 uint64_t zoned; 3001 if (size == 0) {
2936 dmu_obj set _type_t ost; 3002 nvlist_free(props);
3003 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
2938 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOVAI N, 3004 "vol ume size cannot be zero"));
2939 "cannot create '9%’'"), path); 3005) return (zfs_error(hdl, EZFS BADPROP, errbuf));
3006
2941 /* validate the path, taking care to note the extended error nessage */
2942 if (!zfs_validate_nanme(hdl, path, type, B _TRUE)) 3008 if (size %blocksize !=0) {
2943 return (zfs_error(hdl, EZFS_ | NVALI DNAME, errbuf)); 3009 nvlist_free(props);
3010 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
2945 /* validate parents exist */ 3011 “vol ume size nmust be a nultiple of volume block "
2946 if (check_parents(hdl, path, &zoned, B_FALSE, NULL) != 0) 3012 "size"));
2947 return (-1); 3013 return (zfs_error(hdl, EZFS BADPROP, errbuf));
3014 }
2949 /* 3015 }
2950 * The failure nodes when creating a dataset of a different type over
2951 * one that already exists is a little strange. |In particular, if you 3017 /* create the dataset */
2952 * try to create a dataset on top of an existing dataset, the ioctl() 3018 ret = lzc_create(path, ost, props);
2953 * will return ENOENT, not EEXI ST. To prevent this from happening, we 3019 nvlist_free(props);
2954 * first try to see if the dataset exists.
2955 */ 3021 /* check for failure */
2956 if (zfs_dataset_exists(hdl, path, ZFS _TYPE _DATASET)) { 3022 if (ret 1= 0)
2957 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N, 3023 char parent[ZFS_MAXNAMELEN] ;
2958 "dat aset al ready exists")); 3024 (voi d) parent_nane(path, parent, sizeof (parent));
2959 return (zfs_error(hdl, EZFS EXI STS, errbuf));
2960 } 3026 switch (errno) {
3027 case ENOCENT:
2962 if (type == ZFS_TYPE_VOLUME) 3028 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
2963 ost = DMJ_OST_ZVQ.; 3029 "no such parent '%’'"), parent);
2964 el se 3030 return (zfs_error(hdl, EZFS_NCENT, errbuf));

new usr/src/lib/libzfs/comon/libzfs_dataset.c

3032 case EI NVAL:

3033 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,

3034 "parent "%’ is not a filesystent), parent);
3035 return (zfs_error(hdl, EZFS_BADTYPE, errbuf));
3037 case EDOM

3038 zfs _error _aux(hdl, dgettext(TEXT_DOVAI N,

3039 "vol ume bl ock size nmust be power of 2 from™
3040 "% to %k"),

3041 (uint_t)SPA M NBLOCKSI ZE

3042 (ui nt _t) SPA_MAXBLOCKSI ZE >> 10);

3044 return (zfs_error(hdl, EZFS_BADPROP, errbuf));
3046 case ENOTSUP:

3047 zfs_error_aux(hdl , dgettext (TEXT_DOVAI N,

3048 pool must be upgraded to set this "

3049 "property or value"));

3050 return (zfs_error(hdl, EZFS BADVERSI ON, errbuf));
3051 #ifdef _ILP32

3052 case EOVERFLOW

3053 /*

3054 * This platformcan’t address a volune this big.
3055 *

3056 if (type == ZFS TYPE_VOLUME)

3057 return (zfs_error(hdl, EZFS_VOLTOOBI G
3058 errbuf));

3059 #endi f

3060 /* FALLTHROUGH */

3061 defaul t:

3062 return (zfs_standard_error(hdl, errno, errbuf));
3063 }

3064 }

3066 return (0);

3067 }

3069 /*

3070 * Destroys the given dataset. The caller must make sure that the fil esystem
3071 * isn't mounted, and that there are no active dependents. If the file system
3072 * does not exist this function does nothing.

3073 *

3074 int

3075 zfs_destroy(zfs_handl e_t *zhp, bool ean_t defer)

3076 {

3077 zfs_cmd_t zc = { 0 };

3079 (void) strlcpy(zc.zc_nanme, zhp->zfs_name, sizeof (zc.zc_nane));
3081 if (ZFS_I'S_VOLUME(zhp)) {

3082 zc. zc_obj set _type = DMJ_OST_zVQL;

3083 } else {

3084 zc.zc_obj set _type = DMJ_OST_ZFS;

3085 }

3087 zc.zc_def er _destroy = defer;

3088 if (zfs_ioctl (zhp->zfs_hdl, ZFS | OC_DESTROY, &zc) != 0 &&

3089 errno ! = ENCENT)

3090 return (zfs_standard_error_fnt(zhp->zfs_hdl, errno,
3091 dget t ext (TEXT_DOVAI N, "cannot destroy '%’'"),

3092 zhp->zfs_nane));

3093 }

3095 renove_nount poi nt (zhp) ;

new usr/src/lib/libzfs/comon/libzfs_dataset.c

3097 return (0);

3098 }

3100 struct destroydata {

3101 nvlist_t *nvl;

3102 const char *snapnama;

3103 };

3105 static int

3106 zfs_check_snap_cb(zfs_handl e_t *zhp, void *arg)

3107 {

3108 struct destroydata *dd = arg;

3109 zfs_handl e_t *szhp;

3110 char name[ZFS_MAXNAMELEN ;

3111 int rv = 0;

3113 (voi d) snprl ntf (nane, sizeof (nane),

3114 "% @s", zhp->zfs_nane, dd- >snapnane)

3116 szhp = nmake_dat aset _handl e(zhp->zfs_hdl, nane);

3117 if (szhp)

3118 verify(nvlist_add_bool ean(dd->nvl, nane) == 0);
3119 zfs_cl ose(szhp);

3120 }

3122 rv = zfs_iter_filesystenms(zhp, zfs_check_snap_cb, dd);
3123 zfs_cl ose(zhp);

3124 return (rv);

3125 }

3127 I *

3128 * Destroys all snapshots with the given name in zhp & descendants.
3129 */

3130 int

3131 zfs_destroy_snaps(zfs_handl e_t *zhp, char *snapnanme, bool ean_t defer)
3132 {

3133 int ret;

3134 struct destroydata dd = { 0 };

3136 dd. snapnane = snapnane;

3137 verify(nvlist_alloc(&dd. nvl, NV_UNI QUE_NAME, 0) == 0);
3138 (void) zfs_check_snap_ cb(zfs handl e_dup(zhp), &dd);

3140 if (nvlist_next_nvpair(dd.nvl, NULL) == NULL) {

3141 ret = zfs_standard_error_fnt(zhp->zfs_hdl, ENCENT,
3142 dget t ext (TEXT_DOVAI N, "cannot destroy '%@s'"),
3143 zhp->zfs_name, snapnane);

3144 } else {

3145 ret = zfs_destroy_snaps_nvl (zhp->zfs_hdl, dd.nvl, defer);
3146

3147 nvlist_free(dd.nvl);

3148 return (ret);

3149 }

3151 /*

3152 * Destroys all the snapshots naned in the nvlist.

3153 */

3154 int

3155 zfs_destroy_snaps_nvl (libzfs_handle_t *hdl, nvlist_t *snaps, bool ean_t defer)
3156 {

3157 int ret;

3158 nvlist_t *errlist;

3160 ret = |zc_destroy_snaps(snaps, defer, &errlist);

3162 if (ret == 0)

new usr/src/lib/libzfs/comon/libzfs_dataset.c 49

3163 return (0);

3165 if (nvlist_next_nvpair(errlist, NULL) == NULL) {

3166 char errbuf[1024];

3167 (void) snprintf(errbuf, sizeof (errbuf),

3168 dget t ext (TEXT_DOVAI N, "cannot destroy snapshots"));
3170 ret = zfs_standard_error(hdl, ret, errbuf);

3171

3172 for (nvpair_t *pair = nvlist_next_nvpair(errlist, NULL);

3173 pair !'= NULL; pair = nvlist_next_nvpair(errlist, pair)) {
3174 char errbuf[1024];

3175 (void) snprintf(errbuf, sizeof (errbuf),

3176 dget t ext (TEXT_DOVAI N, "cannot destroy snapshot 9%"),
3177 nvpai r_nanme(pair));

3179 switch (fnvpair_value_int32(pair)) {

3180 case EEXI ST:

3181 zfs_error_aux(hdl,

3182 dget t ext (TEXT_DOMAI N, "snapshot is cloned"));
3183 ret = zfs_error(hdl, EZFS EXI STS, errbuf);

3184 break;

3185 defaul t:

3186 ret = zfs_standard_error(hdl, errno, errbuf);
3187 br eak;

3188 }

3189 }

3191 return (ret);

3192 }

3194 /*

3195 * Clones the given dataset. The target nust be of the sane type as the source
3196 */

3197 int

3198 zfs_cl one(zfs_handl e_t *zhp, const char *target, nvlist_t *props)

3199 {

3200 char parent [ZFS_MAXNAMVELEN] ;

3201 int ret;

3202 char errbuf[1024];

3203 libzfs_handl e_t *hdl = zhp->zfs_hdl;

3204 uint64_t zoned;

3206 assert (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) ;

3208 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOVAI N,
3209 "cannot create '%’'"), target);

3211 /* validate the target/clone nanme */

3212 if (!zfs_validate_nane(hdl, target, ZFS TYPE_FI LESYSTEM B_TRUE))
3213 return (zfs_error(hdl, EZFS_ | NVALI DNAME, errbuf));
3215 /* validate parents exist */

3216 if (check_parents(hdl, target, &oned, B _FALSE, NULL) != 0)
3217 return (-1);

3219 (void) parent_nane(target, parent, sizeof (parent));

3221 /* do the clone */

3223 if (props) {

3224 zfs_type_t type;

3225 if (ZFS_I'S_VOLUME(zhp)) {

3226 type = ZFS_TYPE_VOLUME;

3227 } else {

3228 type = ZFS TYPE_FI LESYSTEM

new usr/src/lib/libzfs/comon/libzfs_dataset.c 50
3229 }

3230 1f ((props = zfs_valid_proplist(hdl, type, props, zoned,

3231 zhp, errbuf)) == NULL)

3232 return (-1);

3233 }

3235 ret = lzc_clone(target, zhp->zfs_nane, props);

3236 nvlist_free(props);

3238 if (ret 1=0) {

3239 switch (errno) {

3241 case ENOCENT:

3242 /*

3243 * The parent doesn’t exist. W should have caught this
3244 * above, but there may a race condition that has since
3245 * destroyed the parent.

3246 *

3247 * At this point, we don’t know whether it’s the source
3248 * that doesn’t exist anynore, or whether the target
3249 * dataset doesn’'t exist.

3250 */

3251 zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOVAI N,
3252 "no such parent '%’"), parent);

3253 return (zfs_error(zhp->zfs_hdl, EZFS_NOENT, errbuf));
3255 case EXDEV:

3256 zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOVAI N,
3257 "source and target pools differ"));

3258 return (zfs_error(zhp->zfs_hdl, EZFS_CROSSTARGET,
3259 errbuf));

3261 defaul t:

3262 return (zfs_standard_error(zhp->zfs_hdl, errno,

3263 errbuf));

3264 }

3265 }

3267 return (ret);

3268 }

3270 /*

3271 * Pronotes the given clone fs to be the clone parent.

3272 */

3273 int

3274 zfs_pronote(zfs_handl e_t *zhp)

3275 {

3276 l'i bzfs_handl e_t *hdl = zhp->zfs_hdl;

3277 zfs_cmd_t zc = { 0 };

3278 char parent [MAXPATHLEN] ;

3279 int ret;

3280 char errbuf[1024];

3282 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOVAI N,

3283 "cannot pronote '%’'"), zhp->zfs_nane);

3285 if (zhp->zfs_type == ZFS TYPE_SNAPSHOT) {

3286 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,

3287 "snapshots can not be pronoted"));

3288 return (zfs_error(hdl, EZFS_BADTYPE, errbuf));

3289 1

3291 (void) strlcpy(parent, zhp->zfs_dnustats.dds_origin, sizeof (parent));
3292 if (parent[0] == "\0’

3293 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,

3294 "not a cloned filesystent));

new usr/src/lib/libzfs/comon/libzfs_dataset.c

3295 return (zfs_error(hdl, EZFS BADTYPE, errbuf));

3296 1

3298 (void) strlcpy(zc.zc_val ue, zhp->zfs_dnustats.dds_origin,

3299 si zeof (zc.zc_value));

3300 (voi d) strlcpy(zc zc_nane, zhp->zfs_nane, sizeof (zc.zc_nane));
3301 ret = zfs ioctl (hdl, ZFS | OC PROMOTE, &zc);

3303 if (ret 1= 0)

3304 int save_errno = errno;

3306 switch (save_errno) {

3307 case EEXI ST:

3308 /* There is a conflicting snapshot name. */
3309 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,

3310 "conflicting snapshot "%’ fromparent '%’"),
3311 zc.zc_string, parent);

3312 return (zfs_error(hdl, EZFS EXI STS, errbuf));
3314 defaul t:

3315 return (zfs_standard_error(hdl, save_errno, errbuf));
3316 }

3317 1

3318 return (ret);

3319 }

3321 typedef struct snapdata {

3322 nvlist_t *sd_nvl;

3323 const char *sd snapnarre

3324 } snapdata_t;

3326 static int

3327 zfs_snapshot _cb(zfs_handl e_t *zhp, void *arg)

3328 {

3329 snapdata_t *sd = arg;

3330 char nane[ZFS_MAXNAMELEN ;

3331 int rv =0;

3333 (voi d) snprl ntf (name, sizeof (nane),

3334 % @s", zfs_get_nane(zhp), sd->sd_snapnane);

3336 fnvlist_add_bool ean(sd->sd_nvl, nane);

3338 rv = zfs_iter_fil esystens(zhp, zfs_snapshot_cb, sd);

3339 zfs_cl ose(zhp);

3340 return (rv);

3341 }

3343 /*

3344 * Creates snapshots. The keys in the snaps nvlist are the snapshots to be
3345 * created.

3346 */

3347 int

3348 zfs_snapshot _nvl (1ibzfs_handle_t *hdl, nvlist_t *snaps, nvlist_t *props)
3349 {

3350 int ret;

3351 char errbuf[1024]

3352 nvpair_t *elem

3353 nvlist_t *errors;

3355 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOVAI N,
3356 "cannot create snapshots "));

3358 el em = NULL;

3359 while ((elem= nvlist_next_nvpair(snaps, elem)) != NULL) {
3360 const char *snapname = nvpair_nane(el em;

new usr/src/lib/libzfs/comon/libzfs_dataset.c

3362
3363
3364
3365
3366
3367
3368
3369
3370

3372
3373
3374
3375
3376

3378

3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398

3400
3401
3402
3403
3404
3405

3407
3408
3409
3410

3412
3413
3414
3415
3416
3417
3418
3419
3420
3421

3423
3424

3426

/* validate the target nane */
if (!zfs_validate_nane(hdl, snapnane, ZFS_TYPE_SNAPSHOT,
B_TRUE))
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT DOMAI N,
"cannot create snapshot '%’"), snapnane);
return (zfs_error(hdl, EZFS_| NVALI DNAVE, errbuf));
}
}
if (props !'= NULL &&
(props = zfs_valid_proplist(hdl, ZFS TYPE_SNAPSHOT,
props, B _FALSE, NULL, errbuf)) == NULL) {
return (-1);
}
ret = |zc_snapshot(snaps, props, &errors);
if (ret 1= 0)
bool ean_t printed = B_FALSE;
for (elem= nvlist_next_nvpair(errors, NULL);
el em ! = NULL;
el em = nvlist_next_nvpair(errors, elem) {
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT DOVA N,
‘cannot create snapshot '%’ "), nvpair_nanme(elem);
(void) zfs_standard_error(hdl,
fnvpair_val ue_i nt 32(el en), errbuf);
printed = B_TRUE;
}
if (Yprinted) {
switch (ret) {
case EXDEV:
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"mul tiple snapshots of sane "
"fs not allowed"));
(void) zfs_error(hdl, EZFS EXI STS, errbuf);
br eak;
defaul t:
(void) zfs_standard_error(hdl, ret, errbuf);
}
}
}
nvlist_free(props);
nvlist_free(errors);
return (ret);
}
int
zfs_snapshot (1ibzfs_handl e_t *hdl, const char *path, boolean_t recursive,

(nvlist_t *props)
int ret;
snapdata t sd ={ 0},
char fsname[ZFS NAXNAIVELEN]
char *cp;
zfs_handl e_t *zhp;
char errbuf[1024];

(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOVAI N,
"cannot snapshot %"), path);

if (!zfs_validate_nanme(hdl, path, ZFS TYPE_SNAPSHOT, B_TRUE))

new usr/src/lib/libzfs/comon/libzfs_dataset.c 53

3427 return (zfs_error(hdl, EZFS_ | NVALI DNAME, errbuf));
3429 (v0| d) strlcpy(fsnane, path, sizeof (fsnane));

3430 cp = strchr(fsname @);

3431 *cp = '\0";

3432 sd. sd snapnane =cp + 1;

3434 if ((zhp = zfs_open(hdl, fsnane, ZFS _TYPE_FI LESYSTEM |
3435 ZFS_TYPE_VOLUME)) == NULL) {

3436 return (-1);

3437 1

3439 verify(nvlist_alloc(&sd.sd_nvl, NV_UNI QUE_NAME, 0) == 0);
3440 if (recursive)

3441 (voi d) zfs_snapshot_cb(zfs_handl e_dup(zhp), &sd);
3442 } else {

3443 fnvlist_add_bool ean(sd. sd_nvl, path);

3444 }

3446 ret = zfs_snapshot_nvl (hdl, sd.sd_nvl, props);

3447 nvlist_free(sd.sd_nvl);

3448 zfs_cl ose(zhp);

3449 return (ret);

3450 }

3452 [*

3453 * Destroy any nore recent snapshots. W invoke this callback on any dependents
3454 * of the snapshot first. |[If the ’cb_dependent’ nenber is non-zero, then this
3455 * is a dependent and we should just destroy it w thout checking the transaction
3456 *

3457 *

3458 typedef struct rollback_data {

3459 const char *cb_target; /* the snapshot */
3460 ui nt 64_t ch_create; /* creation time reference */
3461 bool ean_t cb_error;

3462 bool ean_t cb_dependent ;

3463 bool ean_t cb_force;

3464 } roll back_data_t;

3466 static int

3467 rol | back_destroy(zfs_handl e_t *zhp, void *data)

3468 {

3469 rol | back_data_t *cbp = data;

3471 if (!cbp->cb_dependent) {

3472 if (strcnp(zhp->zfs_nane, chbp->cb_target) != 0 &&
3473 zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT &&

3474 zfs_prop_get _int(zhp, ZFS_PROP_CREATETXG) >
3475 cbp->cb_create) {

3477 cbp->cb_dependent = B_TRUE;

3478 cbp->cb_error |= zfs_iter_dependents(zhp, B_FALSE,
3479 rol | back_destroy, chp);

3480 cbp->cb_dependent = B_FALSE;

3482 cbp->cb_error | = zfs_destroy(zhp, B_FALSE);
3483

3484 } else {

3485 /* We nust destroy this clone; first unmount it */
3486 prop_changelist_t *clp;

3488 cl p = changel i st_gat her(zhp, ZFS_PROP_NAME, O,

3489 cbp->cb_force ? MS_FORCE: 0);

3490 if (clp == NULL || changellst preflx(clp) 1=0) {
3491 cbp >cb_error = B_TRUE;

3492 zfs_cl ose(zhp);

new usr/src/lib/libzfs/comon/libzfs_dataset.c

3493 return (0);

3494 }

3495 1f (zfs_destroy(zhp, B_FALSE) != 0)

3496 cbp->cb_error = B_TRUE;

3497 el se

3498 changel i st _renove(cl p, zhp->zfs_nane);

3499 (voi d) changelist_postfix(clp);

3500 changel i st _free(clp);

3501 }

3503 zfs_cl ose(zhp);

3504 return (0);

3505 }

3507 /*

3508 * Gven a dataset, rollback to a specific snapshot, discarding any
3509 * data changes since then and neking it the active dataset.

3510 *

3511 * Any snapshots nore recent than the target are destroyed, along with
3512 * their dependents.

3513 */

3514 int

3515 zfs_rol | back(zfs_handl e_t *zhp, zfs_handle_t *snap, boolean_t force)
3516 {

3517 rol I back_data_t cb = { 0 };

3518 int err;

3519 zfs_cmd_t zc = { 0 };

3520 bool ean_t restore resv = 0;

3521 uint64_t ol d_vol size, new_vol si ze;

3522 zfs_prop_t resv_prop;

3524 assert (zhp->zfs_type == ZFS_TYPE_FI LESYSTEM | |

3525 zhp->zfs_type == ZFS_TYPE_VOLUME) ;

3527 /*

3528 * Destroy all recent snapshots and their dependents.

3529 */

3530 cb.cb_force = force;

3531 cb.cb_target = snap->zfs_nane;

3532 cb.cb_create = zfs_prop_get _i nt (snap, ZFS_PROP_CREATETXQG) ;
3533 (void) zfs_iter_children(zhp, rollback_destroy, &ch);

3535 if (cb.cb_error)

3536 return (-1);

3538 /*

3539 * Now that we have verified that the snapshot is the |atest,
3540 rol Il back to the given snapshot.

3541

3543 if (zhp->zfs_type == ZFS_TYPE_VOLUME)

3544 if (zfs_which_resv_prop(zhp, & esv_prop) < 0)

3545 return (-1);

3546 ol d_vol size = zfs_prop_get_int(zhp, ZFS_PROP_VOLSI ZE);
3547 restore_resv =

3548 (ol d_vol size == zfs_prop_get _int(zhp, resv_prop));
3549 1

3551 (void) strlcpy(zc.zc_nanme, zhp->zfs_nane, sizeof (zc.zc_nane));
3553 if (ZFS_IS VOLUVE(zhp))

3554 zc. zc_obj set _type = DMJ_OST_zZVQ,;

3555 el se

3556 zc. zc_obj set _type = DMJ_OST_ZFS;

3558 /*

new usr/src/lib/libzfs/comon/libzfs_dataset.c

3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571

3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590

3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607

3609
3610
3611

3613
3614

3616
3617
3618
3619
3620
3621
3622
3623
3624

* We rely on zfs_iter_children() to verify that there are no
* newer snapshots for the given dataset. Therefore, we can
* sinply pass the nane on to the ioctl() call. There is still
* an unlikely race condition where the user has taken a

* snapshot since we verified that this was the npst recent.
*

*

f

/
((err = zfs_ioctl (zhp->zfs_hdl, ZFS_| OC_ROLLBACK, &zc)) != 0) {
(void) zfs_standard_error fm(zhp >zfs_hdl, errno,
dget t ext (TEXT_DOMAI N, "cannot rol | back %' "),
zhp->zf s_nane) ;
return (err);

For volunes, if the pre-rollback volsize natched the pre-
rol | back reservation and the vol size has changed then set
the reservation property to the post-rollback volsize.
Make a new handl e since the rollback closed the dataset.

* ok ok ok

*

if ((zhp >zfs_type == ZFS _TYPE VOLUME) &&
hp = make_dat aset _handl e(zhp->zfs_hdl,
if (restore_ resv) {

zhp->zfs_nane))) {

new_vol size = zfs_prop_ get int(zhp, ZFS_PROP_VOLSI ZE);

if (old_volsize !'= new vol si ze)
err = zfs_prop_set_int(zhp, resv_prop,
new_vol si ze);

}
zf s_cl ose(zhp);

return (err);

}

/*

* Renanes the given dataset.

*/

int

zfs_renane(zfs_handl e_t *zhp, const char *target,
bool ean_t force_unnount)

bool ean_t recursive,

{
int ret;
zfs_cmd_t zc = { 0 };
char *delim

prop_changelist_t *cl = NULL;
zfs_handle_t *zhrp = NULL

char *parentname = NULL;

char parent [ZFS_MAXNAMVELEN] ;
l'ibzfs_handle_t *hdl = zhp->zfs_hdl;
char errbuf[1024];

/* if we have the sane exact nane, jUSI return success */
if (strcnmp(zhp->zfs_nanme, target) == 0)
return (0);
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOVAI N,
"cannot renane to '%’"), target);

/*
* Make sure the target nane is valid
*
/
if (zhp->zfs_type == ZFS TYPE_SNAPSHOT) {
if ((strchr(target @) == NULL) |
*target == @) {

* Snapshot target nane is abbreviated,
* reconstruct full dataset nane

55

new usr/src/lib/libzfs/comon/libzfs_dataset.c

3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656

3658
3659

3661
3662
3663

3665
3666
3667
3668
3669
3670
3671
3672

3674
3675
3676
3677
3678
3679
3680
3681

3683
3684

3686
3687
3688
3689
3690

*

(void) strlcpy(parent, zhp->zfs_nane,
si zeof (parent));
delim= strchr(parent @)

if (strchr(target, @) == NULL)
*(++delim = "

el se
*delim="\0";

(void) strlcat(parent, target,
target = parent;

} else {
/*

si zeof (parent));

* Make sure we’'re renaming within the same dataset.
*
/
delim= strchr(target, '@);
if (strncnmp(zhp->zfs_nanme, target, delim - targe
1= 0 || zhp->zfs_nane[delim- target] != @) {
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N
"snapshots nust be part of same "
"dataset"));
return (zfs error(hdl
errbuf));

EZFS_CROSSTARGET,
}

}
if (!zfs_validate_nanme(hdl,
return (zfs_error(hdl,

target, zhp->zfs_type, B _TRUE))
EZFS | NVALI DNAME, errbuf));
} else {
if (recursive) {
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"recursive renane nust be a snapshot"));
return (zfs_error(hdl, EZFS_BADTYPE, errbuf));
}

if (!zfs_validate_nanme(hdl,
return (zfs_error(hdl,

target, zhp->zfs_type, B _TRUE))
EZFS_| NVALI DNAME, errbuf));

/* validate parents */
if (check_parents(hdl,
return (-1);

target, NULL, B _FALSE, NULL) != 0)

/* make sure we're in the same pool */
verify((delim= strchr(target, '/')) != NULL);
if (strncnp(zhp->zfs_nane, target, delim- target) != 0 ||
zhp->zfs_name[delim- target] !'="/") {
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
“"datasets nust be within sane pool ")
return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf))
}

/* new name cannot be a child of the current dataset name */
if (is_descendant(zhp->zfs_nane, target)) {
zfs _error _aux(hdl, “dget t ext (TEXT_DOVAI N,
“New dat aset name cannot be a descendant of
"current dataset name")
return (zfs_error(hdl, EZFS_ INVALI DNANMVE, errbuf));

}

(void) snprintf(errbuf, sizeof (errbuf),
dget t ext (TEXT_DOVAI N, "cannot renanme '%’ "), zhp->zfs_nane);

if (getzoneid() == GLOBAL_ZONEID &&
zfs_prop_get |nt(zhp “ZFS_PROP_ZONED)) {
zfs _error _aux(hdl, dgettext(TEXT DOMVAI N,
"dataset is used in a non- gl obal zone"));
return (zfs_error(hdl, EZFS ZONED, errbuf))

new usr/src/lib/libzfs/comon/libzfs_dataset.c 57

3691
3693

3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706

3708
3709
3710
3711

3713
3714
3715
3716
3717
3718
3719

3721
3722
3723

3725
3726
3727
3728

3730
3731

3733

3735
3736
3737
3738
3739
3740
3741

3743
3744
3745
3746
3747
3748
3749
3750

3752
3753
3754
3755
3756

}
if (recursive) {

parentnane = zfs_strdup(zhp->zfs_hdl, zhp->zfs_nane);
1 f (parentname == NULL)

ret = -1,

goto error;

delim = strchr(parentnane, ' @);
*delim="\0";
zhrp = zfs_open(zhp->zfs_hdl, parentname, ZFS_TYPE_DATASET);
if (zhrp == NULL) {
ret = -1;
goto error;

}

} else {
if ((cl = changelist_gather(zhp, ZFS PROP_NAME, O,
force_unmount ? MS_FORCE : 0)) == NULL)
return (-1);

if (changelist_haszonedchild(cl)) {
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"child dataset with inherited nountpoint is used "
"in a non-gl obal zone"));
(void) zfs_error(hdl, EZFS_ZONED, errbuf);
goto error;

}

if ((ret = changelist_prefix(cl)) !=0)
goto error;

}

if (ZFS_I S_VOLUME(zhp))

zc. zc_obj set _type = DMJ_OST_zZVQ.;
el se

zc.zc_obj set _type = DMJ_OST_ZFS;

(void) strlcpy(zc.zc_name, zhp->zfs_nane, sizeof (zc.zc_nane));
(void) strlcpy(zc.zc_value, target, sizeof (zc.zc_value));

zc.zc_cooki e = recursive;
if ((ret = zfs_ioctl (zhp->zfs_hdl, ZFS_ | OC_RENAME, &zc)) != 0) {
/*

* if it was recursive, the one that actually failed wll

* be in zc.zc_nane

*

(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOVAI N,
“cannot rename '%’'"), zc.zc_nane);

if (recursive & errno == EEXI ST)
zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"a child dataset already has a snapshot
"W th the new nane"));
(void) zfs_error(hdl, EZFS EXI STS, errbuf);

} else {
(void) zfs_standard_error(zhp->zfs_hdl, errno, errbuf);
}
/*
* On failure, we still want to remount any fil esystens that

* were previously nounted, so we don't alter the systemstate.
*/

if (!recursive)

new usr/src/lib/libzfs/comon/libzfs_dataset.c 58
3757 (voi d) changelist_postfix(cl);

3758 } else {

3759 if (!recursive) {

3760 changel i st _renane(cl, zfs_get_name(zhp), target);
3761 ret = changelist_postfix(cl);

3762 }

3763 }

3765 error:

3766 if (parentnane) {

3767 free(par ent nane) ;

3768 }

3769 if (zhrp) {

3770 zfs_cl ose(zhrp);

3771 1

3772 if (cl)

3773 changel i st _free(cl);

3774

3775 return (ret);

3776 }

3778 nvlist_t *
3779 zfs_get _user_props(zfs_handl e_t *zhp)

3780 {
3781
3782 }

3784 nvlist_t

return (zhp->zfs_user_props);

*

3785 zfs_get _recvd_props(zfs_handl e_t *zhp)

3786 {
3787
3788
3789
3790
3791 }
/

3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805 */
3806 int

® Ok Ok ok % Ok Ok 3k Ok k%

if (zhp->zfs_recvd_props == NULL)
if (get_recvd_props_ioctl(zhp) !'= 0)
return (NULL);
return (zhp->zfs_recvd_props);

This function is used by 'zfs list’ to determi ne the exact set of colums to
di splay, and their maxi mum wi dths. This does two main things:

- If thisis alist of all properties, then expand the list to include
all native properties, and set a flag so that for each dataset we | ook
for new uni que user properties and add themto the |ist.

- For non fixed-width properties, keep track of the maxi mumw dth seen
so that we can size the colum appropriately. If the user has
requested received property values, we also need to conpute the wdth
of the RECEI VED col um.

3807 zfs_expand_proplist(zfs_handle_t *zhp, zprop_list_t **plp, boolean_t received)

3808 {
3809
3810
3811
3812
3813
3814
3815

3817
3818

3820
3822

l'i bzfs_handl e_t *hdl = zhp->zfs_hdl;
zprop_list_t *entry;

zprop_list_t **last, **start;
nvlist_t *userprops, *propval;
nvpair_t *elem

char *strval;

char buf [ZFS_MAXPROPLEN] ;

if (zprop_expand_list(hdl, plp, ZFS_TYPE_DATASET) != 0)
return (-1);

userprops = zfs_get_user_props(zhp);

entry = *plp;

3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834

3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846

3848
3849
3850
3851
3852
3853
3854
3855

3857
3858
3859
3860
3861
3862
3863

new usr/src/lib/libzfs/comon/libzfs_dataset.c 59
if (entry->pl_all && nvlist_next_nvpair(userprops, NULL) != NULL) {
/*
* CGo through and add any user properties as necessary. W
* start by increnenting our list pointer to the first
* non-native property.
*/
start pl p;
while (start = NULL) {
if ((*start)->pl_prop == ZPROP_| NVAL)
br eak;
start = &(*start)->pl _next;
}
el em = NULL;
while ((elem= nvlist_next_nvpair(userprops, elem) !'= NULL) {
/*
* See if we've already found this property in our list.
*
/
for (last = start; *last != NULL;
last = &(*last)->pl_next) {
if (strenp((*last)->pl_user_prop,
nvpai r_nane(el em) == 0)
br eak;
}
if (*last == NULL) {
if ((entry = zfs_alloc(hdl,
si zeof (zprop_list_t))) == NULL ||
((entry->pl _user_prop = zfs _strdup(hdl,
nvpai r_nanme(elem))) == NULL) {
free(entry);
return (-1);
}
entry->pl _prop = ZPRCP | NVAL;
entry->pl _width = strl en(nvpar r_name(elem);
entry->pl _all = B_TRUE
*last = entry;
}
}
}
/*

3865
3866
3867
3868
3869
3870

3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888

* Now go through and check the wi dth of any non-fixed col ums
*

(entry = *plp; entry !'= NULL; entry = entry->pl_next) {
if (entry->pl_fixed)
cont i nue;

if (entry->pl_prop != ZPROP_I NVAL) {
if (zfs_prop_get(zhp, entry->pl_prop,
buf, sizeof (buf), NULL, NULL, O, B_FALSE) == 0) {
if (strlen(buf) > entry->pl _width)
entry->pl _width = strlen(buf);

}
if (received & zfs_prop_get_recvd(zhp,
zfs_prop_to_nanme(entry->pl _prop),
buf, sizeof (buf), B_FALSE) == 0)
if (strlen(buf) > entry->pl _recvd_w dth)
entry->pl _recvd_w dth = strlen(buf);

} else {
if (nvlist_lookup_nvlist(userprops, entry->pl_user_prop,
&propval) ==
verify(nvlist_| ookup_string(propval,
ZPROP_VALUE, &strval) == 0);

if (strlen(strval) > entry->p|_mndth)

new usr/src/lib/libzfs/comon/libzfs_dataset.c

3889
3890
3891
3892
3893
3894
3895
3896
3897

3899
3900 }

3902 int

entry->pl _width = strlen(strval);

}
if (received && zfs_prop_get_recvd(zhp,
entry->pl _user_prop,
buf, " si zeof (buf), B _FALSE) == 0)
if (strlen(buf) > entry->pl _recvd_wi dt h)
entry->pl _recvd_w dth = strlen(buf);

}

return (0);

3903 zfs_del eg_share_nfs(libzfs_handle_t *hdl, char *dataset, char *path,

3904
3905
3906 {
3907
3908

3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920 }

3922 void

char *resource, void *export, void *sharetab,
int sharemax, zfs_share_op_t operation)

zfs_cmd_t zc = { 0 };
int error;

(void) strlcpy(zc.zc_nanme, dataset, sizeof (zc.zc_nane));
(void) strlcpy(zc.zc_value, path, sizeof (zc.zc_value));
if (resource)

(void) strlcpy(zc.zc_string, resource, sizeof (zc.zc_string));
zc.zc_share. z_sharedata = (uint64_t) (uintptr_t)sharetab;
zc.zc_share. z_exportdata = (uint 64_t)(ui ntptr_t)export;
zc.zc_share. z sharetype = operatr on;

zc. zc_share. z_sharemax = sharens
error = ioctl (hdl->libzfs_fd, ZFSI@ SHARE, &zc);
return (error);

3923 zfs_prune_proplist(zfs_handle_t *zhp, uint8_t *props)

3924 {
3925

3927
3928
3929
3930
3931

3933

3935
3936
3937

3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951 }

nvpair_t *curr;

/*

* Keep a reference to the props-tabl e agai nst which we prune the
* properties.

*/

zhp->zfs_props_tabl e = props;
curr = nvlist_next_nvpair(zhp->zfs_props, NULL);

while (curr) {
zfs_prop_t zfs_prop = zfs_nane_to_prop(nvpair_nane(curr));
nvpair_t *next = nvlist_next_nvpair(zhp->zfs_props, curr);

/
User properties will result in ZPROP_INVAL, and since we
only know how to prune standard ZFS properties, we al ways
|l eave these in the list. This can also happen if we
encounter an unknown DSL property (when running ol der
software, for exanple).

* ok Ok ok % ok F

if (zfs_prop != ZPROP_INVAL && props[zfs_prop] == B_FALSE)
(void) nvlist_renmove(zhp->zfs_props,
nvpai r_nanme(curr), nvpair_type(curr));
curr = next;

3953 static int
3954 zfs_snb_acl _ngnt (1ibzfs_handl e_t *hdl, char *dataset, char *path,

new usr/src/lib/libzfs/comon/libzfs_dataset.c 61 new usr/src/lib/libzfs/comon/libzfs_dataset.c 62
3955 zfs_snb_acl _op_t cnd, char *resourcel, char *resource2) 4021 zfs_snb_acl _purge(libzfs_handle_t *hdl, char *dataset, char *path)
3956 { 4022 {
3957 zfs_cmd_t zc = { 0 }; 4023 return (zfs_snb_acl _ngnt (hdl, dataset, path, ZFS SMB_ACL_PURGE,
3958 nvlist_t *nvlist = NULL; 4024 NULL, NULL));
3959 int error; 4025 }
3961 (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_nane)); 4027 int
3962 (void) strlcpy(zc.zc_value, path, sizeof (zc.zc_value)); 4028 zfs_snb_acl _renane(libzfs_handle_t *hdl, char *dataset, char *path,
3963 zc.zc_cookie = (uint64_t)cnd; 4029 char *ol dnanme, char *newnane)
4030 {
3965 if (cmd == ZFS_SMB_ACL_RENAME) ({ 4031 return (zfs_snb_acl _nmgnt (hdl, dataset, path, ZFS_SWVB_ACL_RENAME,
3966 if (nvlist_alloc(&vlist, NV_UNIQUE_NAME, 0) != 0) { 4032 ol dnane, newnane));
3967 (void) no_nenory(hdl); 4033 }
3968 return (NULL);
3969 } 4035 int
3970 } 4036 zfs_userspace(zfs_handl e_t *zhp, zfs_userquota_prop_t type,
4037 zfs_userspace_cb_t func, void *arg)
3972 switch (cmd) { 4038 {
3973 case ZFS SMB ACL_ADD: 4039 zfs cmd_t zc = { 0}
3974 case ZFS_SMB_ACL_REMOVE: 4040 zfs_useracct _t buf[100];
3975 (void) strlcpy(zc.zc_string, resourcel, sizeof (zc.zc_string)); 4041 l'i bzfs_handl e_t *hdl = zhp->zfs_hdl;
3976 br eak; 4042 int ret;
3977 case ZFS SMB _ACL_RENAMVE
3978 if (nvlist_add_string(nvlist, ZFS SMB_ACL_SRC, 4044 (void) strlcpy(zc.zc_nanme, zhp->zfs_nane, sizeof (zc.zc_nane));
3979 resourcel) != 0)
3980 (void) no_rnenory(hdl); 4046 zc.zc_objset _type = type;
3981 return (-1); 4047 zc.zc_nvlist_dst = (uintptr_t)buf;
3982 }
3983 if (nvlist_add_string(nvlist, ZFS SMB_ACL_TARGET, 4049 for (;;)
3984 resource2) !=0) { 4050 zfs_useracct _t *zua = buf;
3985 (void) no_nenory(hdl);
3986 return (-1); 4052 zc. zc_nvlist_dst_size = sizeof (buf);
3987 } 4053 if (zfs_ioctl(hdl, ZFS_| OC USERSPACE MANY, &zc) != 0) {
3988 if (zemd_wite_src_nvlist(hdl, &c, nvlist) = 0) { 4054 char errbuf[1024];
3989 nvlist_free(nvlist);
3990 return (-1); 4056 (void) snprintf(errbuf, sizeof (errbuf),
3991 } 4057 dget t ext (TEXT_DOVAI N,
3992 br eak; 4058 "cannot get used/quota for %"), zc.zc_nane);
3993 case ZFS_SMB_ACL_PURCE: 4059 return (zfs_standard_error_fmt(hdl, errno, errbuf));
3994 br eak; 4060 }
3995 defaul t: 4061 if (zc.zc_nvlist_dst_size == 0)
3996 return (-1); 4062 br eak;
3997 }
3998 error = ioctl(hdl->libzfs_fd, ZFS | OC_SMB_ACL, &zc); 4064 while (zc.zc_nvlist_dst_size > 0) {
3999 if (nvlist) 4065 if ((ret = func(arg, zua->zu_domain, zua->zu_rid,
4000 nvlist_free(nvlist); 4066 zua->zu_space)) != 0)
4001 return (error); 4067 return (ret);
4002 } 4068 zZua++;
4069 zc.zc_nvlist_dst_size -= sizeof (zfs_useracct_t);
4004 int 4070 }
4005 zfs_snb_acl _add(!ibzfs_handle_t *hdl, char *dataset, 4071 }
4006 char *path, char *resource)
4007 { 4073 return (0);
4008 return (zfs_snb_acl _ngnt (hdl, dataset, path, ZFS_SMB ACL_ADD, 4074 }
4009 resource, NULL));
4010 } 4076 struct holdarg {
4077 nvlist_t *nvl;
4012 int 4078 const char *snapnane;
4013 zfs_snb_acl _renmove(libzfs_handle_t *hdl, char *dataset, 4079 const char *tag;
4014 char *path, char *resource) 4080 bool ean_t recursive;
4015 { 4081 }
4016 return (zfs_snb_acl _ngnt (hdl, dataset, path, ZFS_SVB_ACL_REMOVE,
4017 resource, NULL)); 4083 static int
4018 } 4084 zfs_hol d_one(zfs_handle_t *zhp, void *arg)
4085 {
4020 int 4086 struct holdarg *ha = arg;

new usr/src/lib/libzfs/comon/libzfs_dataset.c 63

28
4087
4088

4090
4091

4118
4119
4120

65
4121
4122
4123
4124
4125

zfs_handl e_t *szhp;
char nanme[ZFS_VAXNAMELEN ;
int rv =0;
(voi d) snprl ntf (nane, sizeof (nane),
"% @s", zhp->zfs_nane, ha- >snapnama)
if (lzc_exists(nane))
szhp = make_dat aset _handl e(zhp->zfs_hdl, nane);
if (szhp)
fnvlist_add_string(ha->nvl, nane, ha->tag);
zfs_cl ose(szhp);
}
if (ha->recursive)
rv = zfs_iter_filesystens(zhp, zfs_hol d_one, ha);
zfs_cl ose(zhp);
return (rv);
}

int
zfs_hol d(zfs_handl e_t *zhp, const char *snapnane,

const char *tag,

bool ean_t recursive, Int cleanup_fd)
bool ean_t recursive, boolean_t enoent_ok, int cleanup_fd)
int ret;

struct holdarg ha;

nvlist_t

*errors;

l'i bzfs_handl e_t *hdl = zhp->zfs_hdl;
char errbuf[1024];

nvpair_t

ha. nvl

*el em

= fnvlist_alloc();

ha. snapnane = snapnane;

ha.tag = tag;

ha. recursive = recursive

(void) zfs_| hold _one(zfs_ handle _dup(zhp), &ha);

if (nvlist_next_nvpair(ha.nvl,

#endi f /* |

}

ret
ret

NULL) == NULL) {
char errbuf[1024];

coderevi ew */

= zfs_hol d_nvl (zhp, cleanup_fd,
= | zc_hol d(ha. nvl,

fnvl | st _free(ha. nvl);

ret = ENOENT;

if (!enoent ok) {

(void) snprintf(errbuf,
dgettext (TEXT_ DOVAI N

"cannot hol d snapshot @),

zhp->zfs_nanme, snapnane);

(void) zfs_standard_error(zhp->zfs_hdl, ret,

(void) zfs_standard_error(hdl, ret,

si zeof (errbuf),

errbuf);
errbuf);

}
return (ret);

ha. nvl);
cl eanup_fd, &errors);

fnvlist_free(ha.nvl);

return (ret);

}

int

zfs_hol d_nvl (zfs_handl e_t *zhp, int cleanup_fd,
{

int

ret;

nvlist_t *hol ds)

new usr/src/lib/libzfs/comon/libzfs_dataset.c

4139
4140
4141
4142

4144
4145

4147
4148
4149

78
4150
4151
4152

4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170

4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192

nvlist_t *errors;

libzfs_handle_t *hdl = zhp->zfs_hdl;
char errbuf[1024];

nvpair_t *elem

errors = NULL

ret = Izc _hol d(hol ds, cleanup_fd, &errors);

if (ret == 0) {

/* There may be errors even in the success case. */
fnvlist_free(errors);

if (ret == 0)

return (0);

}
#endi f /* | codereview */

if (nvlist_next_nvpair(errors, NULL) == NULL) {
/* no hol d-specific errors */
(void) snprintf(errbuf, S|zeof (errbuf),
dgettext(TEXT_DCM—\I N, "cannot hold"));
switch (ret)
case ENOTSUP:
zfs_error_aux(hdl, dgettext(TEXT DOMAI N,
"pool nust be upgraded"));
(void) zfs_error(hdl, EZFS_ BAD\/ERSIO\I errbuf);

br eak;
case ElI NVAL:
(void) zfs_error(hdl, EZFS BADTYPE, errbuf);
br eak;
defaul t:
(void) zfs_standard_error(hdl, ret, errbuf);
}
}
for (elem= nvlist_next_nvpair(errors, NULL);
elem!= NULL;
elem = nvlist_next_nvpair(errors, elen) {
(void) snprintf(errbuf, sizeof (errbuf),
dget t ext (TEXT_DOVAI N,
"cannot hol d snapshot '%’"), nvpair_nane(elen));
switch (fnvpair_value_int32(elem) {
case E2BI G
/*
* Tenporary tags wind up having the ds object id
* prepended. So even if we passed the length check
* above, it’'s still possible for the tag to wind
* up being slightly too |ong.
*
/
(void) zfs_error(hdl, EZFS_TAGTOOLONG errbuf);
br eak;
case ElI NVAL:
(void) zfs_error(hdl, EZFS_BADTYPE, errbuf);
br eak;
case EEXI ST:
(void) zfs_error(hdl, EZFS _REFTAG HOLD, errbuf);
break;
case ENCENT:
i f (enoent_ok)
return (ENCENT);
/* FALLTHROUGH */
defaul t:
(void) zfs_standard_error(hdl,
fnvpair_value_int32(el en), errbuf);
}
}

new usr/src/lib/libzfs/comon/libzfs_dataset.c 65 new usr/src/lib/libzfs/comon/libzfs_dataset.c 66

4200 fnvlist_free(errors); 4255 errors = NULL;
4201 return (ret); 4256 #endif /* | codereview */
4202 } 4257 ret = lzc_release(ha.nvl, &errors);
4258 fnvlist_free(ha.nvl);
94 struct rel easearg {
95 nvliist_t *nvl; 4260 if (ret == 0) {
96 const char *snapnarre; 4261 /* There may be errors even in the success case. */
97 const char *tag; 4262 fnvlist_free(errors);
98 bool ean_t recursive; 154 if (ret ==
99 }; 4263 return (0);
4264 1
4204 static int 4265 #endif /* | codereview */
4205 zfs_rel ease_one(zfs_handl e_t *zhp, void *arg)
4206 { 4267 if (nvlist_next_nvpair(errors, NULL) == NULL) {
4207 struct holdarg *ha = arg; 4268 /* no hol d-specific errors */
105 zfs_handl e_t *szhp; 4269 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOVAI N,
4208 char nane[ZFS_MAXNAMELEN ; 4270 "cannot rel ease"));
4209 int rv =0; 4271 switch (errno) {
4272 case ENOTSUP:
4211 (void) snprintf(name, sizeof (nane), 4273 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
4212 "% @s", zhp->zfs_name, ha->snapnane); 4274 "pool mnust be upgraded"));
4275 (void) zfs_error(hdl, EZFS_ BADVERSI ON, errbuf);
4214 if (lzc_exists(nanme)) { 4276 br eak;
112 szhp = make_dat aset _handl e(zhp->zfs_hdl, nane); 4277 defaul t:
113 if (szhp) { 4278 (void) zfs_standard_error_fnt(hdl, errno, errbuf);
4215 nvlist_t *holds = fnvlist_alloc(); 4279 }
4216 fnvlist_add_bool ean(hol ds, ha->tag); 4280 }
4217 fnvlist_add_nvlist(ha->nvl, nane, holds);
4218 fnvlist_free(holds); 4282 for (elem= nvlist_next_nvpair(errors, NULL);
117 zfs_cl ose(szhp); 4283 el em ! = NULL;
4219 } 4284 elem = nvlist_next_nvpair(errors, elenm) {
4285 (void) snprintf(errbuf, sizeof (errbuf),
4221 if (ha->recursive) 4286 dget t ext (TEXT_DOVAI N,
4222 rv = zfs_iter_filesystens(zhp, zfs_rel ease_one, ha); 4287 "cannot rel ease hold from snapshot "%’ "),
4223 zfs_cl ose(zhp); 4288 nvpai r_nane(el en));
4224 return (rv); 4289 switch (fnvpair_value_int32(elem) {
4225 } 4290 case ESRCH:
4291 (void) zfs_error(hdl, EZFS REFTAG RELE, errbuf);
4227 int 4292 break;
4228 zfs_rel ease(zfs_handl e_t *zhp, const char *snapnane, const char *tag, 4293 case El NVAL:
4229 “bool ean_t recursive) 4294 (voi d) zfs_error(hdl, EZFS_BADTYPE, errbuf);
4230 { 4295 br eak;
4231 int ret; 4296 defaul t:
4232 struct holdarg ha; 4297 (void) zfs_standard_error_fnt(hdl,
4233 nvlist_t *errors; 4298 fnvpair_val ue_i nt 32(elen), errbuf);
4234 nvpair_t *elem 4299 }
4235 I'i bzfs_handl e_t *hdl = zhp->zfs_hdl; 4300 }
4236 char errbuf[1024];
4302 fnvlist_free(errors);
4238 ha.nvl = fnvlist_alloc(); 4303 return (ret);
4239 ha. snapnane = snapnane; 4304 }
4240 ha.tag = ;
4241 ha.recursive = recursive; 4306 int
4242 (void) zfs_rel ease_one(zfs_handl e_dup(zhp), &ha); 4307 {zf s_get _fsacl (zfs_handl e_t *zhp, nvlist_t **nvl)
4308
4244 if (nvlist_next_nvpair(ha.nvl, NULL) == NULL) { 4309 zfs_cmd_t zc = { 0 };
4245 fnvl | st _free(ha.nvl); 4310 l'ibzfs handl e_t *hdl = zhp->zfs_hdl;
4246 ret = ENOENT; 4311 int nvsz 2048;
4247 (void) snprintf(errbuf, sizeof (errbuf), 4312 voi d *nvbuf
4248 dgettext (TEXT_DOVAI N 4313 int err =
4249 "cannot rel ease hold from snapshot " %@’ "), 4314 char err buf [1024];
4250 zhp->zf s_name, snapnane);
4251 (void) zfs_st andard_error(hdl , ret, errbuf); 4316 assert (zhp->zfs_type == ZFS_TYPE_VOLUME | |
4252 return (ret); 4317 zhp->zfs_type == ZFS TYPE_FI LESYSTEM ;
4253 1

4319 tryagain:

new usr/src/lib/libzfs/comon/libzfs_dataset.c

4321
4322
4323
4324
4325

4327
4328

4330

4332
4333
4334
4335
4336
4337
4338
4339
4340

4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366

4368
4369
4370
4371

4373
4374

out :

int
zfs_set

4375 {

4376
4377
4378
4379
4380
4381

4383
4384

_fsacl (zfs_handl e_t *zhp,

nvbuf = malloc(nvsz);

if (nvbuf == NULL) {
err = (zfs_error(hdl,
goto out;

EZFS NOMEM strerror(errno)));
}

zc.zc_nvlist_dst S|ze = nvsz;
zc.zc_nvlist_dst = (uintptr t)nvbuf

(void) strlcpy(zc.zc_nane,

zhp->zfs_name, ZFS_MAXNAMELEN) ;
if (ioctl(hdl->libzfs_fd, ZFS_IOC GET_FSACL, &zc) != 0) {
(void) snpri ntf(errbuf si zeof (errbuf)
dget t ext (TEXT_DOW—\I N, "cannot get perm ssions on '%’"),
zC.zc_nane);
switch (errno) {
case ENOVEM
free(nvbuf);
nvsz = zc.zc_nvlist_dst_size;
goto tryagain;

case ENOTSUP

zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
"pool mnust be upgraded"));

err = zfs_error(hdl, EZFS_BADVERSI ON, errbuf);
break;

case ElI NVAL
err = zfs_error(hdl,
br eak;

case ENOCENT:
err = zfs_error(hdl,
br eak;

defaul t:
err = zfs_standard_error_fnt(hdl,
break;

EZFS _BADTYPE, errbuf);
EZFS_NCENT, errbuf);

errno, errbuf);

} else {
/* success */
int rc = nvlist_unpack(nvbuf,
if (rc) {
(voi d) snprlntf(errbuf si zeof (errbuf), dgettext(
TEXT_DOMAI N, "cannot get permissions on '%'"),
ZC.zC_nane);
err = zfs_standard_error_fm(hdI, rc,

zc.zc_nvlist_dst_size, nvl, 0);

errbuf);
}

free(nvbuf);

return (err);

bool ean_t un, nvlist_t *nvl)
zfs_cmd_t zc = { 0 };

libzfs_handle_t *hdl = zhp->zfs_hdl ;

char *nvbuf;

char errbuf[1024];

size_t nvsz;

int err;

assert (zhp->zfs_type == ZFS_TYPE_VOLUVE | |
zhp->zfs_type == ZFS TYPE_FI LESYSTEM ;

new usr/src/lib/libzfs/comon/libzfs_dataset.c

4386
4387

4389

4391
4392

4394
4395
4396

4398

4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420

4422

4424
4425

4427
4428

int
zfs_get

4429 {

4430
4431

4433

4435
4436

4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451

err = nvlist_size(nvl, &nvsz,
assert(err == 0);

nvbuf = nmalloc(nvsz);

err = nvlist_pack(nvl, &nvbuf, &nvsz,

assert(err == 0);

zc.zc_nvlist_src SI ze = nvsz;
zc.zc_nvlist_src = (ui ntptr t)nvbuf
zc.zc_permaction = un;

(void) strlcpy(zc.zc_nane,

if (zfs_ioctl (hdl,
(void) snprintf(errbuf,
dget t ext (TEXT_DOVAI N,
ZC. zc_nane);
switch (errno) {
case ENOTSUP:
zfs_error_aux(hdl,

zhp->zfs_nane,

ZFS_| OC_SET_FSACL, &zc)

NV_ENCCDE_NATI VE) ;

NV_ENCODE_NATI VE, 0)

1=0) {

si zeof (errbuf),
"cannot set permissions on '%'"),

dget t ext (TEXT_DOVAI N,

"pool nust be upgraded"));

err = zfs_error(hdl,

br eak;
case El NVAL:

err = zfs_error(hdl,

break;
case ENOCENT:

err = zfs_error(hdl,

br eak;

defaul t:
err = zfs_standard
br eak;

}
free(nvbuf);

return (err);

(void) snprintf(errbuf,
dget t ext (TEXT_DOVAI N,
zhp->zfs_nane) ;

switch (err) {

case ENOTSUP:

zfs_error_aux(hdl,

" pool
err = zfs_error(hdl,
break;
case EI NVAL:
err = zfs_error(hdl,
break;
case ENCENT:

err = zfs_error(hdl,

_error_fnt(hdl,

EZFS_BADVERSI ON, errbuf);

EZFS _BADTYPE, errbuf);

EZFS_NCENT, errbuf);

errno,

_hol ds(zfs_handl e_t *zhp, nvlist_t **nvl)
int err;
char errbuf[1024]
err = |zc_get _hol ds(zhp->zfs_nane, nvl);
if (err 1=0)
libzfs_handle_t *hdl = zhp->zfs_hdl;

si zeof (errbuf),
"cannot get holds for "%’ "),

dget t ext (TEXT_DOVAI N,

must be upgraded"));

EZFS_BADVERSI ON, errbuf);

EZFS _BADTYPE, errbuf);

EZFS_NOCENT, errbuf);

si zeof (zc.zc_nane));

errbuf);

new usr/src/lib/libzfs/comon/libzfs_dataset.c

4452
4453
4454
4455
4456
4457

4459
4460 }

4462 uint64_t

br eak;
defaul t:

err = zfs_standard_error_fnt(hdl, errno, errbuf);

br eak;

}

return (err);

4463 zvol _vol size_to_reservation(uint64_t volsize, nvlist_t *props)

4464 {
4465
4466
4467
4468

4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498 }

uint64_t nundb;

ui nt 64_t nbl ocks, vol bl ocksi ze;
int ncopies;

char *strval;

if (nvlist_lookup_string(props,
zfs_prop_t o_nane(ZFS_PROP_COPI ES), &strval) == 0)
ncopi es = atoi(strval);
el se
ncopi es = 1;
if (nvlist_|lookup_uint64(props,
zfs_prop_t o_nanme(ZFS_PROP_VOLBLOCKSI ZE) ,
&vol bl ocksize) '= 0
vol bl ocksi ze = ZVOL_DEFAULT_BLOCKSI ZE;
nbl ocks = vol si ze/ vol bl ocksi ze;
/* start with nmetadnode LO-L6 */
nundb = 7;
/* cal cul ate nunmber of indirects */
while (nblocks > 1) {
nbl ocks += DNODES_PER LEVEL - 1
nbl ocks /= DNODES_PER LEVEL;
nundb += nbl ocks;

}
nundb *= M N(SPA_DVAS_PER BP, ncopies + 1);
vol si ze *= ncopi es;
/*
* this is exactly DN _MAX_ | NDBLKSH FT when netadata isn’t

* conpressed, but in practice they conpress down to about

* 1100 bytes

*/

numdb *= 1ULL << DN_MAX_I| NDBLKSHI FT;
vol si ze += nundb;

return (vol size);

69

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c 1 new usr/src/lib/libzfs/comon/libzfs_sendrecv.c 2

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 61 StatIC COr'ISI ZIO CkSUmt Zero cksum: { O }Y
84531 Wed May 29 20:27:08 2013
new usr/src/lib/libzfs/comon/libzfs_sendrecv.c 63 typedef struct dedup_arg {
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi 64 int i nputfd;
Submitted by: Steven Hartland <steven. hartland@ul tiplay.co. uk> 65 int out put f d;
EERERERERERESRESRSESSE] 66 Ilbzfs handle t *dedup hdl'
1/* 67 } dedup_arg_t;
2 * CDDL HEADER START
3 = 69 typedef struct progress_arg {
4 * The contents of this file are subject to the terms of the 70 zfs_handl e_t *pa_zhp;
5 * Common Devel opnent and Distribution License (the "License"). 71 int pa_fd;
6 * You may not use this file except in conpliance with the License. 72 bool ean_t pa_parsabl e;
7 0% 73 } progress_arg_t;
8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing. 75 typedef struct dataref {
10 * See the License for the specific |anguage governi ng perm ssions 76 uint64_t ref_guid;
11 * and limtations under the License. 77 uint64_t ref_object;
12 = 78 uint64_t ref_offset;
13 * When distributing Covered Code, include this CDDL HEADER i n each 79 } dataref_t;
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the 81 typedef struct dedup_entry {
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 struct dedup_entry *dde_next ;
17 * information: Portions Copyright [yyyy]l [nane of copyright owner] 83 zi o_cksumt dde_chksum
18 * 84 uint64_t dde_prop;
19 * CDDL HEADER END 85 dataref _t dde_ref;
20 */ 86 } dedup_entry_t;
22 | * 88 #define MAX_DDT_PHYSMEM PERCENT 20
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved. 89 #define SMALLEST_PCSSI BLE_MAX_DDT_MB 128
24 * Copyright (c) 2012 by Del phix. Al rights reserved.
25 * Copyright (c) 2012, Joyent, Inc. Al rights reserved. 91 typedef struct dedup_table {
26 * Copyright (c) 2013 Steven Hartland. All rights reserved. 92 dedup_entry_t **dedup_hash_array;
27 #endif /* 1 codereview */ 93 umem cache_t *ddecache;
28 */ 94 ui nt 64_t max_ddt _size; /* max dedup table size in bytes */
95 ui nt 64_t cur_ddt_size; /* current dedup table size in bytes */
30 #include <assert. h> 96 ui nt 64_t ddt _count;
31 #include <ctype. h> 97 int nurmhashbi t's;
32 #include <errno. h> 98 bool ean_t ddt _full;
33 #include <libintl.h> 99 } dedup_table_t;
34 #include <stdio. h>
35 #include <stdlib.h> 101 static int
36 #include <strings.h> 102 high_order_bit(uint64_t n)
37 #include <unistd. h> 103 {
38 #incl ude <stddef.h> 104 int count;
39 #include <fcntl.h>
40 #i ncl ude <sys/nount. h> 106 for (count = 0; n !'= 0; count++)
41 #incl ude <pthread. h> 107 n >>= 1;
42 #include <unmem h> 108 return (count);
43 #include <tine. h> 109 }
45 #include <libzfs.h> 111 static size_t
112 ssread(void *buf, size_t len, FILE *stream
47 #include "zfs_namecheck. h" 113 {
48 #include "zfs_prop. h" 114 size_t outlen;
49 #include "zfs_fletcher.h"
50 #include "libzfs_inpl.h" 116 if ((outlen = fread(buf, len, 1, stream) == 0)
51 #include <sha2. h> 117 return (0);
52 #include <sys/zio_checksum h>
53 #include <sys/ddt.h> 119 return (outlen);
120 }
55 /* in libzfs_dataset.c */
56 extern void zfs_setprop_error(libzfs_handle_t *, zfs_prop_t, int, char *); 122 static void
123 ddt _hash_append(li bzfs_handle_t *hdl, dedup_table_t *ddt, dedup_entry_t **ddepp,
58 static int zfs_receive_inpl (libzfs_handle_t *, const char *, recvflags_t *, 124 zi o_cksumt *cs, uint64_t prop, dataref_t *dr)
59 int, const char *, nvlist_t *, avl_tree_t *, char **, int, uint64_t *); 125 {

126 dedup_entry_t *dde;

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c 3 new usr/src/lib/libzfs/comon/libzfs_sendrecv.c
193 * the output fd specified by the caller of zfs_send()), the
128 if (ddt->cur_ddt_size >= ddt->max_ddt_size) { 194 * joctl is told to direct the output to a pipe, which is read by the
129 if (ddt->ddt_full == B _FALSE) { 195 * alternate thread running TH S function. This function does the
130 zfs_error_aux(hdl, dget t ext (TEXT_DOVAI N, 196 * dedup’ing by:
131 “"Dedup table full. Deduplication will continue " 197 * 1. building a dedup table (the DDT)
132 "W th existing table entries")); 198 * 2. doing checksunms on each data block and inserting a record in the DDT
133 ddt->ddt _full = B_TRUE; 199 * 3. looking for matching checksuns, and
134 } 200 * 4. sending a DRR WRI TE_BYREF record instead of a wite record whenever
135 return; 201 * a duplicate block is found.
136 } 202 * The output of this function then goes to the output fd requested
203 * by the caller of zfs_send().
138 if ((dde = unmem cache_al | oc(ddt->ddecache, UMEM DEFAULT)) 204 *
139 I'= NULL) { 205 static void *
140 assert (*ddepp == NULL); 206 cksunmer (void *arg)
141 dde- >dde_next = NULL; 207 {
142 dde- >dde_chksum = *cs; 208 dedup_arg_t *dda = arg;
143 dde- >dde_prop = prop 209 char *buf = malloc(1<<20);
144 dde- >dde_ref = *d 210 drmu_replay_record_t thedrr;
145 *ddepp = dde; 211 dmu_replay_record_t *drr = &t hedrr;
146 ddt ->cur_ddt_si ze += sizeof (dedup_entry_t); 212 struct drr_begin *drrb = & hedrr.drr_u.drr_begin;
147 ddt - >ddt _count ++; 213 struct drr_end *drre = & hedrr.drr_u.drr_end;
148 } 214 struct drr_object *drro = & hedrr.drr_u.drr_object;
149 } 215 struct drr_wite *drrw = & hedrr.drr_u.drr_wite;
216 struct drr_spill *drrs = &hedrr.drr_u.drr_spill;
151 /* 217 FI LE *of p;
152 * Using the specified dedup table, do a |ookup for an entry with 218 int outfd;
153 * the checksumcs. |If found, return the block’s reference info 219 drmu_replay_record_t wbr_drr = {0};
154 * in *dr. Oherwise, insert a newentry in the dedup table, using 220 struct drr_wite_byref *wbr_drrr = &br_drr.drr_u.drr_wite_byref;
155 * the reference infornation specified by *dr. 221 dedup_tabl e_t ddt;
156 * 222 zi o_cksumt stream cksum
157 * return value: true - entry was found 223 uint64_t physmem = sysconf (_SC_PHYS_PAGES) * sysconf (_SC PAGESI ZE) ;
158 * false - entry was not found 224 ui nt 64_t nunbuckets;
159 */
160 static bool ean_t 226 ddt . max_ddt _si ze =
161 ddt_update(libzfs_handle_t *hdl, dedup_table_t *ddt, zio_cksumt *cs, 227 MAX((physmem * MAX_DDT_PHYSMEM PERCENT) / 100,
162 uint64_t prop, dataref_t *dr) 228 SNALLEST POSSI BLE_MAX_DDT_MB<<20) ;
163 {
164 ui nt 32_t hashcode; 230 nunbuckets = ddt. max_ddt _si ze/ (si zeof (dedup_entry_t));
165 dedup_entry_t **ddepp;
232 /*
167 hashcode = BF64_CET(cs->zc_word[0], O, ddt->nunmhashbits); 233 * nunbuckets nust be a power of 2. Increase nunber to
234 * a power of 2 if necessary.
169 for (ddepp = &(ddt->dedup_hash_array[hashcode]); *ddepp != NULL; 235 */
170 ddepp = &((*ddepp)->dde_next)) { 236 if (!lSP2(nunmbuckets))
171 1 f (ZI O CHECKSUM EQUAL(((*ddepp) - >dde_chksum), *cs) && 237 nunbuckets = 1 << high_order_bit (nunbuckets);
172 (*ddepp) - >dde_prop == prop)
173 *dr = (*ddepp) - >dde_ref; 239 ddt . dedup_hash_array = call oc(nunbuckets, si zeof (dedup_entry_t *));
174 return (B_TRUE); 240 ddt. ddecache = unem cache_create("dde", sizeof (dedup_entry_t), O,
175 } 241 NULL, NULL, NULL, NULL, NULL, 0);
176 } 242 ddt . cur_ddt _size = nunbuckets * si zeof (dedup_entry_t *);
177 ddt _hash_append(hdl, ddt, ddepp, cs, prop, dr); 243 ddt . numhashbi ts = hi gh_order_bit (nunbuckets) - 1;
178 return (B_FALSE); 244 ddt.ddt _full = B_FALSE;
179 }
246 /* Initialize the wite-by-reference block. */
181 static int 247 wbr_drr.drr_type = DRR_WRI TE_BYREF;
182 cksum and_write(const void *buf, uint64_t len, zio_cksumt *zc, int outfd) 248 wbr _drr.drr_payl oadl en = 0;
183 {
184 fletcher_4_incremental _native(buf, len, zc); 250 outfd = dda->out putfd;
185 return (wite(outfd, buf, len)); 251 of p = fdopen(dda- >i nputfd "r");
186 } 252 whil e (ssread(drr, sizeof (dmu_| repl ay_record_t), ofp) !'=0) {
188 /* 254 switch (drr->drr _type) {
189 * This function is started in a separate thread when the dedup option 255 case DRR BEG
190 * has been requested. The main send thread deternines the list of 256 {
191 * snapshots to be included in the send stream and nakes the ioctl calls 257 i nt fflags;
192 * for each one. But instead of having the ioctl send the output to the 258 ZI O_SET_CHECKSUM &stream cksum 0, 0, 0, 0);

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

260
261
262
263
264

266
267
268
269
270
271

273
274
275
276
277
278
279
280
281
282
283
284
285

287
288
289
290
291
292
293
294
295
296
297

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

316
317
318
319
320
321
322
323
324

/* set the DEDUP feature flag for this stream*/
fflags = DMJ_CGET_FEATUREFLAGS(drrb->drr_versi oni nfo);
fflags | = (DMU_BACKUP_FEATURE_DEDUP |
DMU_BACKUP_FEATURE_DEDUPPROPS) ;
DMJ_SET_FEATUREFLAGS(drrb->drr_versioni nfo, fflags);

if (cksumand_wite(drr, sizeof (dnu_replay_record_t),
&stream cksum outfd) == -1)
goto out;
i f (DMJ_GET_STREAM HDRTYPE(drrb->drr_versioni nfo) ==
DMJ_COVPOUNDSTREAM && drr->drr_payl oadlen != 0) {
int sz = drr->drr_payl oadl en;

if (sz > 1<<20) {
free(buf);
buf = malloc(sz);

}
(void) ssread(buf, sz, ofp);
if (ferror(stdin))
perror("fread");
if (cksumand_wite(buf, sz, &streamcksum
outfd) == -1)
goto out;

br eak;

}
case DRR_END:
{

/* use the recal cul ated checksum */
ZI O_SET_CHECKSUM &dr r e- >drr _checksum
stream cksum zc_word[0], stream cksum zc_word[1],
stream cksum zc_word[2], stream cksum zc_word[3]);
if ((wite(outfd, drr,
si zeof (dmu_replay_record_t))) == -1)
goto out;
br eak;

}
case DRR_OBJECT:

if (cksumand_wite(drr, sizeof (dnu_replay_record_t),
&stream cksum outfd) == -1)
goto out;
if (drro->drr_bonuslen > 0) {
(voi d) ssread(buf,

P2ROUNDUP((ui nt 64_t) drro- >drr _bonusl en, 8),

of p);
if (cksumand_write(buf,

P2ROUNDUP((ui nt 64 t)drro >drr _bonusl en, 8),
-1)

&stream cksum outfd) ==
goto out;

br eak;

}
case DRR _SPI LL:

if (cksumand_wite(drr, 5| zeof (dmu_replay_record_t),
&stream cksum outfd) == -1)
goto out;
(void) ssread(buf, drrs->drr_length, ofp);
if (cksumand_wite(buf, drrs->drr_|ength,
&stream cksum outfd) == -1)
goto out;

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

325
326

328
329
330
331
332
333
334

336
337
338

340

342
343
344
345

347
348
349
350
351

353
354
355
356
357
358
359
360
361
362
363
364
365
366

368
369
370

372
373
374
375
376
377
378
379
380
381
382
383
384

386
387
388
389
390

br eak;

}
case DRR FREEOBJECTS:

if (cksumand_wite(drr, sizeof (dnu_replay_record_t),
&stream cksum outfd) == -1)
goto out;
br eak;

}
case DRR WRI TE:
! dat aref _t dat ar ef ;
(voi d) ssread(buf, drrw >drr_|l ength, ofp);

/*
* Use the existing checksumif it’s dedup-capable,
* else calculate a SHA256 checksum for it.
*/

if (ZI O_CHECKSUM EQUAL(drrw >drr_key. ddk_cksum
zero_cksum ||
! DRR_| S_DEDUP_CAPABLE(dr rw>drr _checksunf | ags)) {
SHA256_CTX ct x;
zi o_cksum t t npsha256;

SHA2561 ni t (&ct x) ;

SHA256Updat e(&t x, buf, drrw>drr_| ength);

SHA256FI nal (& npsha256, &ctx);

drrw >drr_key. ddk_cksum zc word[O]
BE_64(t npsha256. zc_word[0]) ;

drrw>drr_key. ddk_cksum zc Word[l]

1

BE_64(t npsha256. zc_word[1]);
drrw >drr_key. ddk_cksum zc word[2
BE_64(t npsha256. zc_word[2]) ;
drrw>drr_key. ddk_cksum zc Word[3] =

BE_64(t npsha256. zc_word[3]) ;
drrw >drr_checksunt ype = ZI O CHECKSUM SHA256;
drrw >drr_checksunfl ags = DRR_CHECKSUM DEDUP;

}

dataref.ref_guid = drrw >drr_togui d;
dataref.ref_object = drrw >drr_object;
dataref.ref _offset = drrw >drr_of fset;

i f (ddt_updat e(dda- >dedup_hdl, &ddt,
&drrw->drr_key. ddk_cksum drrw >drr_key. ddk_pr op,
&dataref)) {

/* block already present in stream*/
wbr _drrr->drr_object drrw >drr_obj ect;
wbr _drrr->drr_of f set drrw >drr_of fset;
wbr_drrr->drr_l ength drrw >drr_| ength;
wbr _drrr->drr_toguid drrw >drr_toguid;
wbr _drrr->drr_refguid = dataref.ref_guid;
wbr _drrr->drr_refobject =
dat aref . ref _obj ect;
wor _drrr->drr_refoffset =
“dataref.ref_offset;

wbr _drrr->drr_checksuntype =
drrw>drr_checksunt ype;

Wbr _drrr->drr_checksunfl ags
drrw >drr_checksunt ype;

wbr _drrr->drr_key. ddk_cksum =

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

391
392
393

395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

413
414
415
416
417
418
419

421
422
423
424
425
426
427
428
429
430
431
432

434
435

437
438
439
440
441
442
443
444
445

447
448

drrw>drr_key. ddk_cksum
wbr _drrr->drr_key. ddk_prop =
drrw>drr_key. ddk_prop;

if (cksumand_write(&wbr_drr,
sizeof (dnu_replay_record_t), &stream cksum
outfd) == -
goto out;
} else {
/* bl ock not previously seen */
if (cksumand_wite(drr,
sizeof (dnmu_replay_record_t), &stream cksum
outfd) == -1)
goto out;
if (cksum.and_wite(buf,
drrw>drr_| ength,
&stream cksum outfd) == -1)
goto out;

}
br eak;

}
case DRR FREE:

if (cksumand_wite(drr, sizeof (dnu_replay_record_t),
&stream cksum outfd) == -1)
goto out;
br eak;

}

defaul t:
(void) printf("INVALID record type Ox%\n",
drr->drr_type);
/* shoul d never happen, so assert */
assert (B_FALSE);

}

umem cache_destroy(ddt. ddecache);
free(ddt.dedup_hash_array);
free(buf);

(void) fclose(ofp);

out :

return (NULL);
}

/*
* Routines for dealing with the AVL tree of fs-nvlists
*
typedef struct fsavl_node {
avl _node_t fn_node;
nvlist_t *fn_nvfs;
char *fn_snapnane;
uint64_t fn_guid;
} fsavl_node_t;

static int
fsavl _conpare(const void *argl, const void *arg2)

449 {

450
451

453
454
455
456

const fsavl_node_t *fnl = argl,;
const fsavl_node_t *fn2 = arg2;

if (fnl->fn_guid > fn2->fn_guid)
return (+1);

else if (fnl->fn_guid < fn2->fn_guid)
return (-1);

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

457 el se
458 return (0);
459 }

461 [*

462 * Gven the GUI D of a snapshot, find its containing fil esystem and
463 * (optionally) nane.

464 */

465 static nvlist_t *

466 fsavl _find(avl _tree_t *avl, uint64_t snapguid, char **snapnane)

467 {

468 fsavl _node_t fn_find;

469 fsavl _node_t *fn;

471 fn_find.fn_guid = snapgui d;

473 fn = avl_find(avl, & n_find, NULL);
474 if (fn) {

475 i f (snapnane)

476 *snapnarme = fn->fn_snapnang;
477 return (fn->fn_nvfs);

478 }

479 return (NULL);

480 }

482 static void
483 fsavl _destroy(avl _tree_t *avl)

484 {

485 fsavl _node_t *fn;
486 voi d *cooki e;

488 if (avl == NULL)
489 return;
491 cooki e = NULL;
492 while ((fn = avl _destroy_nodes(avl, &cookie)) != NULL)
493 free(fn);
494 avl _destroy(avl);
495 free(avl);

496 }

498 [*

499 * Gven an nvlist, produce an avl tree of snapshots, ordered by guid
500 */

501 static avl _tree_t *

502 fsavl _create(nvlist_t *fss)

503 {

504 avl _tree_t *fsavl;

505 nvpair_t *fsel em = NULL;

507 if ((fsavl = malloc(sizeof (avl_tree_t))) == NULL)

508 return (NULL);

510 avl _create(fsavl, fsavl_conpare, sizeof (fsavl_node_t),

511 of f set of (fsavl _node_t, fn_node));

513 while ((fselem= nvlist_next_nvpair(fss, fselem)) !'= NULL) {
514 nvlist_t *nvfs, *snaps;

515 nvpair_t *snapel em = NULL;

517 VERI FY(O0 == nvpair_value_nvlist(fselem &nvfs));

518 VERI FY(O == nvlist_| ookup_nvlist(nvfs, "snaps", &snaps));
520 whil e ((snapel em =

521 nvlist_next_nvpair(snaps, snapelem) != NULL) {
522 fsavl _node_t *fn;

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

523 ui nt64_t quid;

525 VERI FY(0 == nvpai r_val ue_ui nt 64(snapel em &guid));
526 if ((fn = malloc(sizeof (fsavl_node_t))) == NULL) {
527 fsavl _destroy(fsavl);

528 return (NULL);

529

530 fn->fn_nvfs = nvfs;

531 fn->f n_snapname = nvpal r_name(snapel en) ;

532 fn->fn_guid = guid

534 /*

535 * Note: if there are multiple snaps with the
536 * same GQUID, we ignore all but one.

537 */

538 if (avl _find(fsavl, fn, NULL) == NULL)

539 avl _add(fsavl, fn);

540 el se

541 free(fn);

542 }

543 }

545 return (fsavl);

546 }

548 | *

549 * Routines for dealing with the giant nvlist of fs-nvlists, etc.
550 */
551 typedef struct send_data {

2

55 ui nt64_t parent_fronmsnap_guid;

553 nvlist_t *parent_snaps;

554 nvlist_t *fss;

555 nvlist_t *snapprops;

556 const char *fronsnap;

5514 const char *tosnap;

558 bool ean_t recursive;

560 /*

561 * The header nvlist is of the follow ng format:

562 *

563 * "tosnap" -> string

564 * "fromsnap"” -> string (if increnental)

565 * "fss" ->{

566 * id->{

567 kd

568 * "nane" -> string (full name; for debuggi ng)
569 * "parentfronmsnap” -> nunber (guid of fromsnap in parent)
570 *

571 * "props" -> { name -> value (only if set here) }
572 * "snaps" -> { nane (lastnanme) -> nunber (guid) }
573 * "snapprops" -> { name (lastnane) -> { nane -> value } }
574 *

575 * "origin" -> nunber (guid) (if clone)

576 * "sent" -> bool ean (not on-disk)

577 * }

578 * }

579 L

580 *

581 */

582 } send_data_t;
584 static void send_iterate_prop(zfs_handle_t *zhp, nvlist_t *nv);
586 static int

587 send_iterate_snap(zfs_handle_t *zhp, void *arg)
588 {

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c 10

589
590
591
592

594

596
597
598
599
600
601
602
603
604
605

607
608
609
610

612
613
614

616
617

619

621
622
623
624

626
627
628
629
630
631
632
633
634
635
636

638
639
640

642
643
644
645
646
647
648
649
650
651
652
653
654

}

send_data_t *sd arg;

uint64_t guid = zhp->zfs_dnustats. dds_gui d;
char *snapnane;

nvlist_t *nv;

snapnane = strrchr(zhp->zfs_nane, ' @) +1;
VERI FY(O0 == nvlist_add_ui nt 64(sd->parent _snaps, snapnane, guid));
/*

* NB: if there is no fronsnap here (it’s a newy created fs in
* an increnental replication), we will substitute the tosnap.
*/
if ((sd->fromsnap && strcnp(snapname, sd- >fromsnap) == 0) ||
(sd->parent _fromsnap_guid == 0 && sd->tosnap &&
strcnp(snapnane, sd- >tosnap) ==0)) {
sd->parent _fromsnap_guid = gui d;

}

VERI FY(0 == nvlist_alloc(&v, NV_UNIQUE NAME, 0));

send |terate _prop(zhp, nv);

VERI FY(0 == nvli st add nvli st (sd->snapprops, snapnane, nv));
nvlist_free(nv);

zfs_cl ose(zhp);
return (0);

static void
send_i terate_prop(zfs_handle_t *zhp, nvlist_t *nv)
618 {

nvpair_t *el em = NULL;

while ((el em = nvl i st _next_nvpair(zhp->zfs_props, elem) != NULL) {
char *propnanme = nvpair_nanme(el en;
zfs_prop_t prop = zfs_nane_t o_prop(pr opnane) ;
nvlist_t *propnv;

if (!zfs_prop_user(propnane)) {
/*

* Realistically, this should never happen. However,
* we want the ability to add DSL properties wi thout
* needing to make inconpatible version changes. W
* need to ignore unknown properties to allow ol der
* software to still send datasets containing these
*/ properties, with the unknown properties elided.
*
if (prop == ZPROP_| NVAL)

conti nue;

if (zfs_prop_readonly(prop))
conti nue;

}

verify(nvpair_val ue_nvlist(elem &pr opnv) == 0);
if (prop == ZFS_PROP_QUOTA || prop == ZFS_PROP_| RESERVAT| ON ||
prop == ZFS_PROP_REFQUOTA | |
prop == ZFS_PROP_REFRESERVATI ON) {
char *source;
ui nt64_t val ue;
verify(nvlist_| ookup_ui nt 64(pr opnv,
ZPROP_VALUE, &val ue) ==
if (zhp->zfs_type == ZFS_ TYPE " SNAPSHOT)

continue;
/*
* May have no source before SPA VERSI ON RECVD PROPS,
* but is still nodifiable.

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671

673
674
675
676
677
678
679
680
681
682
683
684
685
686

688
689
690
691
692
693
694

696
697
698
699
700
701

703
704
705
706

708
709
710
711
712
713
714
715

717
718
719
720

*
/
if (nvlist_lookup_string(propnv,
ZPROP_SOURCE, ~&source) == {
it ((strcnp(source, zhp->zfs_nane) != 0) &&
(strcnp(sourc
ZPROP_SOURCE_ VAL _RECVD) != 0))
conti nue;

} else {
char *source;
if (nvlist_lookup_string(propnv,
ZPROP_SQURCE, &source) != 0)
conti nue;
if ((strcnp(source,
(strcnp(source,
conti nue;

zhp->zfs_nane) != 0) &&
ZPROP_SOQURCE_VAL_RECVD) != 0))

}

if (zfs_prop_user(propnane) ||
zfs_prop_get type(prop) == PROP_TYPE_STRING {
char *valu
verify(nvl | st_| ookup_string(propnv,
ZPROP_ VALUE &val ue) == 0);
VERI FY(O == nvlist_add_stri ng(nv
} else {
ui nt64_t val ue;
verify(nvlist_I ookup_ui nt 64(propnv,
ZPROP_ VALUE &val ue) == 0);
VERI FY(O == nvlist_add_ui nt 64(nv,

propnane,

pr opnane,

/*

* recursively generate nvlists describing datasets. See comrent
* for the data structure send_data_t above for description of contents

* of the nvlist.
&/

static int
send_iterate_fs(zfs_handle_t *zhp, void *arg)

send_data_t *sd = arg;

nvlist_t *nvfs, *nv;

int rv = 0;

uint64_t parent_fromsnap_gui d_save = sd->parent _fronsnap_gui d;
uint64_t guid = zhp->zfs_dnustats. dds_gui d;

char guidstring[64];

VERI FY(0 == nvlist_alloc(&wvfs, NV_UN QUE_NAME, 0));
VERI FY(0 nvlist_add_string(nvfs, "name", zhp->zfs_nane));
VERI FY(0 == nvlist_add_ui nt64(nvfs, "parentfronmsnap”,

sd- >par ent _fronsnap_gui d));

if (zhp->zfs_dnustats. dds orlgl n[0]) {
zfs_handle_t *origin = zfs _open(zhp->zfs_hdl,
“zhp->zfs_dnustats. dds_orl gin, ZFS_TYPE SNAPSHOT)
if (origin == NULL)
return (-1);
VERI FY(0 == nvlist_add_ui nt 64(nvfs,
origin->zfs_dnustats. dds_gui d));

"origin",
}

/* iterate over props */

VERI FY(0 == nvlist_alloc(&nv,
send_iterate prop(zhp, nv);
VERI FY(0 == nvlist_add_nvlist(nvfs,

NV_UNI QUE_NAME, 0));

"props", nv));

val ue));

val ue));

11

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c 12
721 nvlist_free(nv);
723 /* iterate over snaps, and set sd->parent_fromsnap_guid */
724 sd- >parent _fromsnap_guid = 0;
725 VERI FY(0 == nvlist_alloc(&sd->parent_snaps, NV_UNI QUE_NAME, 0));
726 VERI FY(0 == nvlist_all oc(&sd->snapprops, NV_UNIQUE _NAVE, 0));
727 (void) zfs_iter_snapshots(zhp, send_iterate_snap, sd);
728 VERI FY(0 == nvlist_add_nvlist(nvfs, "snaps", sd- >parent_snaps));
729 VERI FY(0 == nvlist_add_nvlist(nvfs, "snapprops", sd->snapprops));
730 nvl i st_free(sd->parent_snaps);
731 nvlist_free(sd->snapprops);
733 /* add this fs to nvlist */
734 (void) snprintf(guidstring, sizeof (guidstring),
735 "0x% | x", (longlong_t)guid);
736 VERI FY(0 == nvlist_add_nvlist(sd->fss, guidstring, nvfs));
737 nvlist_free(nvfs);
739 /* iterate over children */
740 if (sd->recursive)
741 rv = zfs_iter_filesystens(zhp, send_iterate_fs, sd);
743 sd->parent _fronsnap_guid = parent _fronsnap_gui d_save;
745 zfs_cl ose(zhp);
746 return (rv);
747 }

749 static int

750 gather _nvlist(libzfs_handle_t *hdl,
const char *tosnap, boolean_t recursive,

751
752 {
753
754
755

757
758
759

761
762
763
764

766
767
768
769
770
771
772

774
775
776
777
778

780
781
782 }

784 /|
785
786

*

* Routines specific to

*/

const char *fsnane, const char *fronsnap,
nvlist_t **nvlp, avl_tree_t **avlp)

zfs_handl e_t *zhp;
send_data_t sd = { 0 };
int error;

zhp = zfs open(hdl, fsnane, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
if (zhp == NULL

return (EZFS_BADTYPE) ;

VERI FY(0 == nvlist_alloc(&sd.fss,
sd. fromsnap = fronsnap;

sd. tosnap = tosnap;

sd. recursive = recursive;

NV_UNI QUE_NAME, 0));

if ((error = send_iterate_fs(zhp, &d)) != 0) {
nvlist_free(sd.fss);
if (avlp !'= NULL)
*avl p = NULL;
*nvlp = NULL;
return (error);

}

if (avlp !'= NULL && (*avlp =
nvlist_free(sd.fss);
*nvlp = NULL;
return (EZFS_NOVEM ;

fsavl _create(sd.fss)) == NULL) {

}
*nvlp = sd.fss;
return (0);

"zfs send"

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

787 typedef struct send_dunp_data {
788 /

* these are all just the short snapnane (the part after the @ *
789 const char *fronsnap;
790 const char *tosnap;
791 char prevsnap[ZFS_MAXNAMELEN] ;
792 uint64_t prevsnap_obj;
793 bool ean_t seenfrom seento, replicate, doall, fronorigin;
794 bool ean_t verbose, dryrun, parsable, progress;
795 int outfd;
796 bool ean_t err;
797 nvlist_t *fss;
798 nvlist_t *snaphol ds;
799 #endif /* | codereview */
800 avl _tree_t *fsavl;
801 snaphlter cb_t *filter _Ccb;
802 void *filter_ch _arg;
803 nvlist_t *debugnv;
804 char hol dt ag[ZFS_ IVAXNANELEN]
805 int cleanup_fd;
806 uint64_t size;

807 } send_dunp_data_t;

809 static int
810 estimate_ioctl (zfs_handle_t *zhp, uint64_t fronsnap_obj,

13

zhp->zfs_nane) ;

811 (bool ean_t fronorigin, uint64_t *sizep)

812

813 zfs_cmd_t zc = { 0 };

814 l'i bzfs_handl e_t *hdl = zhp->zfs_hdl;

816 assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT) ;

817 assert(fromsnap_ob; == 0 || !fronorigin);

819 (void) strl cpy(zc zc_name, zhp->zfs_nane, sizeof (zc.zc_nane));
820 zc.zc_obj = fronorigin;

821 zc.zc_sendobj = zfs_prop_get _int(zhp, ZFS_PROP_OBJSETID);

822 zc.zc_fronob] = fronsnap_obj ;

823 zc.zc_guid = 1; /* estinmate flag */

825 if (zfs_ioctl(zhp->zfs_hdl, ZFS_|IOC _SEND, &zc) != 0) {

826 char errbuf[1024];

827 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOVAI N,
828 "warni ng: cannot estinmate space for "%’ "),

830 switch (errno) {

831 case EXDEV:

832 zfs _error _aux(hdl, dgettext(TEXT_DOVAIN,

833 "not an earlier snapshot fromthe sane fs
834 return (zfs_error(hdl, EZFS_CROSSTARCET, errb
836 case ENOCENT:

837 if (zfs_dataset_exists(hdl, zc.zc_nane,

838 ZFS_TYPE_SNAPSHOT)) {

839 zfs_error_aux(hdl, dgettext(TEXT_DOVAIN,
840 "incremental source (@s) does not exist"),
841 zc. zc_val ue);

842 }

843 return (zfs_error(hdl, EZFS_NCENT, errbuf));
845 case El :

846 case EFBIG

847 case EIC

848 case ENOLI NK:

849 case ENGCSPC:

850 case ENCSTR:

851 case ENXIO

852 case EPI PE:

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

853 case ERANGCE:

854 case EFAULT:

855 case ERCFS:

856 zfs_error_aux(hdl, strerror(errno));

857 return (zfs_error(hdl, EZFS_BADBACKUP, errbuf));
859 defaul t:

860 return (zfs_standard_error(hdl, errno, errbuf));
861 }

862 }

864 *sizep = zc.zc_objset _type;

866 return (0);

867 }

869 /*

870 * Dunps a backup of the given snapshot (incremental fromfromsnap if it’s not

871 * NULL) to the file descriptor specified by outfd.
872 */
873 static int

874 dunp_ioctl (zfs_handle_t *zhp, const char *fromsnap, uint64_t fromsnap_obj,

875 bool ean_t fronorigin, int outfd, nvlist_t *debugnv)

876 {

877 zfs_cmd_t zc = { 0 };

878 l'i bzfs_handl e_t *hdl = zhp->zfs_hdl;

879 nvlist_t *thisdbg;

881 assert (zhp->zfs type == ZFS_TYPE_SNAPSHOT) ;

882 assert(fromsnap_obj == 0 || !fronorigin);

884 (void) strlcpy(zc.zc_name, zhp->zfs_nane, sizeof (zc.zc_nane));
885 zc. zc COOkI e = outfd;

886 zc.zc_obj = fronorigin;

887 zc.zc_sendobj = zfs_prop_ get _int(zhp, ZFS_PROP_OBJSETID);

888 zc.zc_fromob] = fromsnap_obj;

890 VERI FY(0 == nvlist_alloc(& hisdbg, NV_UNI QUE_NAME, 0));

891 if (fromsnap && fromsnap[0] != "\0")

892 VERI FY(O0 == nvlist_add_string(thisdbg,

893 "fromsnap", fromsnap));

894 }

896 if (zfs_ioctl(zhp->zfs _hdl, ZFS | OC SEND, &zc) != 0) {

897 char errbuf[1024];

898 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOVAI N,
899 “war ni ng: cannot send '%’'"), zhp->zfs_nane);

901 VERI FY(O0 == nvlist_add_ui nt 64(thi sdbg, "error", errno));
902 if (debugnv) {

903 VERI FY(O0 == nvlist_add_nvli st (debugnv,

904 zhp->zf s_nane, thisdbg));

905 }

906 nvlist_free(thisdbg);

908 switch (errno) {

909 case EXDEV:

910 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,

911 "not an earlier snapshot fromthe sane fs"));
912 return (zfs_error(hdl, EZFS_CROSSTARCET, errbuf));
914 case ENCENT:

915 if (zfs_dataset_exists(hdl, zc.zc_nane,

916 ZFS_TYPE_SNAPSHQT))

917 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,

14

918 "incremental source (@s) does not exist"),

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

15

919 zc. zc_val ue);

920 }

921 return (zfs_error(hdl, EZFS_NCENT, errbuf));
923 case EDQUOT:

924 case EFBIG

925 case EIC

926 case ENOLI NK:

927 case ENGCSPC:

928 case ENCSTR:

929 case ENXIO

930 case EPI PE:

931 case ERANGCE:

932 case EFAULT:

933 case ERCFS:

934 zfs_error_aux(hdl, strerror(errno));

935 return (zfs_error(hdl, EZFS_ BADBACKUP errbuf));
937 defaul t:

938 return (zfs_standard_error(hdl, errno, errbuf));
939 }

940 }

942 if (debugnv)

943 VERI FY(0 == nvlist_add_nvlist(debugnv, zhp->zfs_nane, thisdbg));
944 nvlist_free(thisdbg);

946 return (0);

947 }

949 static void

950 gat her _hol ds(zfs_handl e_t *zhp, send_dunp_data_t *sdd)

26 static int

27 hol d_for_send(zfs_handl e_t *zhp, send_dunp_data_t *sdd)
{

29 zfs_handl e_t *pzhp;

30 int error = 0;

31 char *thissnap;

952 assert (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) ;

35 if (sdd->dryrun)

36 return (0);

954 /*

955 * zfs_send() only sets snapholds for sends that need them

w
©
*

zfs_send() only opens a cleanup_fd for sends that need it,

956 * e.qg. replication and doall.

957 */

958 i f (sdd->snaphol ds == NULL)

959 return;

42 if (sdd->cleanup_fd == -1)

43 return (0);

961 fnvlist_add_string(sdd->snaphol ds, zhp->zfs_nane, sdd->hol dtag);
45 thi ssnap = strchr(zhp->zfs_nanme, '@) + 1;

46 *(thi ssnap - 1) ='\0";

47 pzhp = zfs open(zhp >zfs _hdl, zhp->zfs_name, ZFS_TYPE_DATASET);
48 *(thissnap - 1) = ;

50 I*

51 * It's OKif the parent no | onger exists. The send code wll
52 * handle that error.

53 */

54 if (pzhp) {

55 error = zfs_hol d(pzhp, thissnap, sdd->hol dtag,

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c
56 B _FALSE, B_TRUE, sdd->cl eanup_fd);

57 zfs_close(pzhp),

58 }

60 return (error);

962 }
__unchanged_portion_onitted_

1011 static int

1012 dunp_snapshot (zfs_handl e_t *zhp, void *arg)

1013 {

1014 send_dunp_data_t *sdd = arg;

1015 progress_arg_t pa = { 0 };

1016 pthread_t tid;

1017 char *thi ssnap;

1018 int err;

1019 bool ean_t isfromsnap, istosnap, fronorigin;

1020 bool ean_t exclude = B_FALSE;

1022 err = 0;

1023 #endif /* ! codereview */

1024 thi ssnap = strchr(zhp >zfs_nanme, '@) + 1;

1025 i sfromsnap = (sdd->fronsnap != NULL &&

1026 strcnp(sdd->fronmsnap, thissnap) == 0);

1028 if (!sdd->seenfrom & i sfromsnap) {

1029 gat her _hol ds(zhp, sdd);

122 err = hold_for_send(zhp, sdd);
123 if (err == 0) {

1030 sdd- >seenfrom = B_TRUE;

1031 (void) strcpy(sdd->prevsnap, thissnap);

1032 sdd- >prevsnap_obj = zfs_pr op_ get |nt(zhp, ZFS_PROP_OBJSETI D) ;
126 sdd- >pr evsnap_ob] = zfs _prop_get _int (zhp,
127 ZFS_PRCP OBJSETI D)
128 } else if (err == ENCENT) {
129 err = 0;
130

1033 zfs_cl ose(zhp);

1034 return (0);
132 return (err);

1035 }

1037 if (sdd->seento || !sdd->seenfrom {

1038 zfs_cl ose(zhp);

1039 return (0);

1040 }

1042 i stosnap = (strcnp(sdd->tosnap, thissnap) == 0);

1043 if (istosnap)

1044 sdd- >seento = B_TRUE;

1046 if (!sdd->doall && !isfromsnap && !istosnap) {

1047 if (sdd->replicate) {

1048 char *snapnane;

1049 nvlist_t *snapprops;

1050 /*

1051 * Filter out all internmediate snapshots except origin

1052 * snapshots needed to replicate clones.

1053 */

1054 nvlist_t *nvfs = fsavl _find(sdd->fsavl,

1055 zhp->zfs_dnust at s. dds_gui d, &snapnane)

1057 VERI FY(0 == nvlist_|l ookup_nvlist(nvfs,

1058 "snapprops", &snapprops));

1059 VERI FY(O == nvlist_I ookup_nvli st (snapprops,

16

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

1060
1061
1062
1063
1064
1065

1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083

1085
183
184
185
186
187
188
189

1086
1087

1089
1090
1091
1092

1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117

thi ssnap, &snapprops));

17

exclude = I'nvlist_exists(snapprops, "is_clone_origin");
} else {
excl ude = B_TRUE;
}
}
/*
* |f afilter function exists, call it to determ ne whether

* this snapshot will be sent.
*
/
if (exclude || (sdd->filter_cb !'= NULL &&

sdd->filter_cb(zhp, sdd->filter_cb_arg) ==
/

This snapshot is filtered out.
set prevsnap_obj,

* ok % k% ok ¥

non-increnental send.
*

zfs_cl ose(zhp);

return (0);

}

gat her _hol ds(zhp, sdd);
err = hold_for_send(zhp, sdd);
if (err) {

if (err == ENCENT)

zfs_cl ose(zhp);
return (err);

}

fronorigin = sdd->prevsnap[0] == "\0" &&
(sdd->fronorigin || sdd->replicate);

if (sdd->verbose) {
uint64_t size;
err = estimate_ioctl (zhp,
fronorigin, &size)

if (sdd->parsable)
if (sdd->prevsnap[0] !="'\0")

(void) fprintf(stderr,

Don't send it,
so it will be as if this snapshot didn't
exi st, and the next accepted snapshot will be sent as

an increnental fromthe | ast accepted one, or as the
first (and full) snapshot in the case of a replication,

B_FALSE)) {

and don’t

sdd- >pr evsnap_obj ,

"incremental \t %\t %",

sdd- >prevsnap, zhp->zfs_nane);

} else {

(void) fprintf(stderr,

zhp->zfs_nane) ;

} else {
(voi d) fprintf(stderr
"send from@s to %"),

"full\t%s",

dget t ext (TEXT_DOMAI N,

sdd- >prevsnap, zhp->zf s_nane)

i}f (err == 0) {
i f (sdd->parsable) {

(void) fprintf(stderr
(longl ong_t)si ze);

} else {
char buf[16];

zf s_ni cenun(si ze, buf,
(void) fprintf(stderr,

"\t% Il u\n"

si zeof (buf));
dget t ext (TEXT_DOVAI N,

estimated size is %\n"), buf);

sdd- >si ze += si ze;

new usr/

1118
1119
1120
1121

1123
1124
1125
1126
1127
1128
1129
1130
1131

1133
1134
1135
1136
1137
1138

1140
1141

1143
1144
1145
1146
1147

1149
1150
1151
1152
1153 }

src/lib/libzfs/comon/libzfs_sendrecv.c

} else {
(void) fprintf(stderr, "\n");
}

}
if (!sdd->dryrun) {
/*

* |f progress reporting is requested, spawn a new thread to
* poll ZFS_| OC_SEND_PROGRESS at a regul ar interval.
*
/
if (sdd->progress) {
pa. pa_zhp = zh
pa. pa_fd = sdd- >outfd
pa. pa_parsabl e = sdd- >parsab| e;

if (err = pthread_create(&id, NULL,
send_progress_thread, &pa)) {
zfs_cl ose(zhp);
return (err);

}
}
err = dunp_ioctl (zhp, sdd->prevsnap, sdd->prevsnap_obj,
fronorigin, sdd->outfd, sdd->debugnv);

if (sdd->progress) {
(voi d) pthread_cancel (tid);
(void) pthread_join(tid, NULL);

}

(void) strcpy(sdd->prevsnap, thissnap);

sdd- >prevsnap_obj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID);
zfs_cl ose(zhp);

return (err);

__unchanged_portion_onitted_

1325 /*
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340 */
1341 int

* Ok Ok ok kO % Ok Ok ok % %

1342 zfs_send(zfs_handl e_t *zhp,

1343
1344
1345 {
1346
1347
1348
1349
1350
1351
1352

Generate a send streamfor the dataset identified by the argunment zhp.

The content of the send streamis the snapshot identified by
"tosnap’. Incremental streans are requested in two ways:
- fromthe snapshot identified by "fronmsnap" (if non-null) or
- fromthe origin of the dataset identified by zhp, which nust
be a clone. In this case, "fromsnap" is null and "fronorigin"
is TRUE

The send streamis recursive (i.e. dunps a hierarchy of snapshots) and
uses a special header (with a hdrtype field of DMJ COVPOUNDSTREAM

if "replicate" is set. |If "doall" Is set, dunp all the internediate
snapshots. The DMJ_COMPOUNDSTREAM header is used in the "doall"

case too. If "props" is set, send properties.

const char *fronsnap, const char *tosnap,
sendflags_t *flags, int outfd, snapfilter_cb_t filter_func,
void *cb_arg, nvlist_t **debugnvp)

char errbuf[1024];
send_dunp_data_t sdd
int err = 0;

nvlist_t *fss = NULL;
avl _tree_t *fsavl = NULL;
static uint64_t hol dseq;
int spa_version;

={0}

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

1353

458
1354
1355
1356

1358
1359

1361
1362
1363
1364
1365

1367
1368
1369
1370
1371
1372
1373

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393

1395
1396
1397
1398
1399

1401
1402

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413

1415
1416
1417

pthread_t tid =

pthread_t tid;

int pipefd[2];
dedup_arg_t dda = { 0};
int featureflags = 0;

(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOVAI N,
"cannot send '%’ "), zhp->zfs_nane);

if (fromsnap && fromsnap[0] == '\0")
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT DOVAI N,
"zero-1length increnent al source’ "))
return (zfs_error(zhp->zfs_hdl, EZFS_| N(]ENT errbuf));
}

if (zhp->zfs_type == ZFS_TYPE_FI LESYSTEM {
uint64_t version;
version = zfs_prop_get_int(zhp, ZFS_PROP_VERSI ON);
if (version >= ZPL_VERSI ON_SA)
featureflags | = DMJ_BACKUP_FEATURE_SA SPI LL;
}

}

if (flags->dedup && !flags->dryrun) {
featureflags | = (DMJ_BACKUP_FEATURE DEDUP |
DMU_BACKUP_FEATURE_DEDUPPROPS) ;
if (err = pipe(pipefd))
zfs_error_aux(zhp->zfs_hdl, strerror(errno));
return (z;)s)error(zhp >zfs_hdl, EZFS_PI PEFAI LED,
errbu

}

dda. outputfd = outfd;

dda.inputfd = p| pefd[1];

dda. dedup_hdl = zhp- >7ts hdl ;

if (err = pthread_ create(&tld NULL, cksunmer, &dda)) {
(void) close(pipefd[0]);
(void) close(pipefd[1]);
zfs_error_aux(zhp->zfs_hdl, strerror(errno));
return (zfs_error(zhp->zfs_hdl,

EZFS_THREADCREATEFAI LED, errbuf))

}

if (flags->replicate || flags->doall || flags->props) {
dmu_replay_record_t drr = { 0 };
char *packbuf = NULL;
size_t buflen = 0;
zi o_cksumt zc = 0},

if (flags->replicate || flags->props) {
nvlist_t *hdrnv;

VERI FY(O == nvlist_alloc(&hdrnv, NV_UNI QUE_NAME, 0));
if (fromsnap) {
VERI FY(0 == nvlist_add_string(hdrnv,
"fromsnap", fromsnap));

}

VERI FY(O0 == nvlist_add_string(hdrnv, "tosnap", tosnap));

if (!flags->replicate)
VERI FY(0 == nvlist_add_bool ean(hdrnv,
"not _recursive"));

}

err = gather_nvlist(zhp->zfs_hdl, zhp->zfs_nane,
fromsnap, tosnap, flags->replicate, &fss, &fsavl);
if (err)

19

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

1418
1419
1420
1421
1422
1423
1424
1425
1426

531

532

533
1427
1428

536

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442

1444
1445
1446
1447
1448
1449
1450

559

560
1451
1452
1453

1455
1456
1457
1458
1459
1460

571

572
1461
1462
1463

1465
1466
1467

1469
1470
1471
1472

584
1473
1474

tO err_out;

go
VERI FY(O == nvlist_add_nvl i st(hdrnv, "fss", fss));

err = nvlist_pack(hdrnv, &packbuf, &buflen,
NV_ENCODE_XDR, 0);
i f (debugnvp)
*debugnvp = hdrnv;

el se

nvlist_free(hdrnv);
f (err
f (err) {

fsavl _destroy(fsavl);
nvlist_free(fss);
goto stderr_out;

if (!flags->dryrun)
/* wite first begin record */
drr drr_type = DRR_BEGQ N,

drr.drr_u.drr_begin.drr_magi c = DMJ_BACKUP_MAG C,

DMU_SET_STREAM HDRTYPE(drr drr_u. drr_begin.
“drr_versioni nfo, DMJ COMPOUNDSTREAM ;

DMJ_SET_ FEATUREFLAGS(drr drr_u. drr_begin.
“drr_versioninfo, featureflags);

(void) snprintf(drr.drr_u.drr begln drr_tonang,
S|zeof (drr.drr_u.drr_begin.drr_tonane),
"%s@6", zhp->zfs_nane, tosnap);

drr. drr_payl oadl en = buflen;

err = cksumand_wite(&drr, sizeof (drr), &zc,

/* wite header nvlist */

if (err = -1 & & packbuf !'= NULL) {
err = cksumand_write(packbuf, buflen,
outfd);
}
free(packbuf)
if (err == -

fsavl _destroy(fsavl);
nvlist_free(fss);

err = errno;

goto stderr_out;

}

/* wite end record */
bzero(&drr, sizeof (drr));
drr.drr_type = DRR_END,
drr.drr_u.drr_end. drr_checksum = zc;
err = wite(outfd, &Irr, sizeof (drr));
if (err == -1)

fsavl _destroy(fsavl);

nvlist_free(fss);

err = errno;

goto stderr_out;

err = 0;

}

/* dunp each stream */
sdd. fronsnap = fronsnap;
sdd. tosnap = tosnap;
if (tid!=0)
if (fl ags >dedup)
dd. outfd = pipefd[0];
el se

outfd);

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c 21 new usr/src/lib/libzfs/comon/libzfs_sendrecv.c
1475 sdd. outfd = outfd; 1536 “"total estimated size is %\n"), buf);
1476 sdd.replicate = flags->replicate; 1537 }
1477 sdd. doal | = fl ags->doall; 1538 }
1478 sdd. fronorigin = flags->fronorigin;
1479 sdd. fss = fss; 1540 /* Ensure no snaps found is treated as an error. */
1480 sdd. fsavl = fsavl; 1541 if (!sdd.seento) {
1481 sdd. verbose = fl ags->verbose; 1542 err = ENOCENT;
1482 sdd. parsabl e = fl ags->parsabl e; 1543 goto err_out;
1483 sdd. progress = flags->progress; 1544 }
1484 sdd. dryrun = flags->dryrun;
1485 sdd.filter_cb = filter_func; 1546 /* Skip the second run if dryrun was requested. */
1486 sdd.filter_cb_arg = cb_arg; 1547 if (flags->dryrun)
1487 if (debugnvp) 1548 goto err_out;
1488 sdd. debugnv = *debugnvp;
1550 if (sdd.snapholds != NULL) {
1490 I* 1551 err = zfs_hol d_nvl (zhp, sdd.cleanup_fd, sdd.snaphol ds);
1491 * Sone flags require that we place user holds on the datasets that are 1552 if (err 1=0)
1492 * being sent so they don't get destroyed during the send. W can skip 1553 goto stderr_out;
1493 * this step if the pool is inported read-only since the datasets cannot
1494 * be destroyed. 1555 fnvlist_free(sdd. snaphol ds);
1495 * 1556 sdd. snaphol ds = NULL;
1496 f ('fl ags->dryrun && !zpool _get _prop_int(zfs_get_pool _handl e(zhp), 1557 }
1497 ZPOOL_PROP_READONLY, NULL) &&
1498 zfs_spa_version(zhp, &spa_version) == 0 && 1559 sdd. dryrun = B_FALSE;
1499 spa_versi on >= SPA_VERSI ON | USERREFS && 1560 sdd. verbose = B_FALSE;
1500 (flags->doal | || flags->replicate)) { 1561 }
1501 ++hol dseq;
1502 (voi d) snpr| ntf(sdd. hol dt ag, sizeof (sdd.holdtag), 1563 #endif /* ! codereview */
1503 end-%d- % | u", getpid(), (u_longlong_t)holdseq); 1564 err = dunp_fil esystenms(zhp, &sdd);
1504 sdd. cl eanup fd = open(ZFS DEV, O RDWR O EXCL); 1565 fsavl _destroy(fsavl);
1505 if (sdd.cleanup_fd < 0) { 1566 nvlist_free(fss);
1506 err = errno;
1507 goto st derr_out; 1568 /* Ensure no snaps found is treated as an error. */
1508 } 1569 if (err == 0 && !sdd. seent o)
1509 sdd. snaphol ds = fnvlist_alloc(); 1570 err = ENCENT;
1510 #endif /* ! codereview */
1511 } else { 1572 if (tid!=0) {
1512 sdd. cl eanup_fd = -1; 1573 if (err 1=0)
1513 sdd. snaphol ds = NULL; 1574 (void) pthread_cancel (tid);
1514 #endif /* ! codereview */ 1575 (void) pthread_join(tid, NULL);
AISHI5) } 641 if (flags->dedup) {
1516 if (flags->verbose || sdd.snapholds != NULL) { 1576 (voi d) close(pipefd[0]);
621 if (flags->verbose) { 643 (void) pthread_join(tid, NULL);
1517 /* 1577 }
1518 * Do a verbose no-op dry run to get all the verbose output
1519 * or to gather snapshot hol d’ s before generating any data, 1579 if (sdd.cleanup_fd != -1)
1520 * then do a non-verbose real run to generate the streans. 1580 VERI FY(0 == cl ose(sdd. cl eanup_fd));
624 * before generating any data. Then do a non-verbose real 1581 sdd. cl eanup_fd = -1;
625 * run to generate the streans. 1582 }
1521 */
1522 sdd. dryr un = B_TRUE; 1584 if (!flags->dryrun & (flags->replicate || flags->doall ||
1523 err dunp_fil esystems(zhp, &sdd); 1585 flags->props)) {
1586 /*
1525 if (err 1=0) 1587 * wite final end record. NB: want to do this even if
1526 goto stderr_out; 1588 * there was sonme error, because it mght not be totally
1589 * failed.
1528 if (flags->verbose) { 1590 */
629 sdd. dryrun = fl ags->dryrun; 1591 dnu_replay_record_t drr = { 0 };
630 sdd. verbose = B_FALSE; 1592 drr.drr_type = DRR _END,
1529 if (flags->parsable) { 1593 if (wite(outfd, &lrr, sizeof (drr)) == -1) {
1530 (void) fprintf(stderr, "size\t%Ilu\n", 1594 return (zfs_ st andar d error(zhp >zfs hdl,
1531 (1 ongl ong_t) sdd. si ze); 1595 errno, errbuf));
1532 } else { 1596 }
1533 char buf[16]; 1597 }
1534 zf s_ni cenun(sdd. si ze, buf, sizeof (buf));
1535 (void) fprintf(st derr dget t ext (TEXT_DOVAI N, 1599 return (err || sdd.err);

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c 23

1601 stderr_out:

1602 err = zfs_standard_error(zhp->zfs_hdl, err, errbuf);
1603 err_out:
1604 fsavl _destroy(fsavl);
1605 nvlist_free(fss);
1606 fnvlist_free(sdd. snaphol ds);
1608 #endif /* | codereview */
1609 if (sdd.cleanup_fd !=-1)
1610 VERI FY(0 == cl ose(sdd. cl eanup_fd));
1611 if (tid!=0) {
671 if (flags->dedup) {
1612 (void) pthread_cancel (tid);
1613 (void) pthread_join(tid, NULL);
1614 (void) close(pipefd[0]);
1615 }
1616 return (err);
1617 }

____unchanged_portion_onmtted_

new usr/src/lib/libzfs_core/common/libzfs_core.c 1

R R R R

17104 Wed May 29 20:27:08 2013
new usr/src/lib/libzfs_core/common/libzfs_core.c
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi
Submitted by: Steven Hartland <steven. hartland@ul tiplay.co. uk>

LR

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governing pernissions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
20 */
22 | *

23 * Copyright (c) 2012 by Del phix. Al rights reserved.
24 * Copyright (c) 2013 Steven Hartland. Al rights reserved.
25 #endif /* | codereview */

26 */
28 /*
29 * LibZFS Core (lzc) is intended to replace nost functionality in |ibzfs.
30 * It has the followi ng characteristics:
31 *
32 * - Thread Safe. |libzfs_core is accessible concurrently frommultiple
33 * threads. This is acconplished primarily by avoiding gl obal data
34 * (e.g. caching). Since it’'s thread-safe, there is no reason for a
35 * process to have multiple libzfs "instances". Therefore, we store
36 * our few pieces of data (e.g. the file descriptor) in global
37 * wvariables. The fd is reference-counted so that the |ibzfs_core
38 * library can be "initialized" multiple times (e.g. by different
39 * consurmers within the sane process).
40 *
41 * - Conmitted Interface. The libzfs_core interface will be commtted,
42 * therefore consuners can conpile against it and be confident that
43 * their code will continue to work on future releases of this code.
44 * Currently, the interface is Evolving (not Conmitted), but we intend
45 * to commt to it once it is nore conplete and we deternmine that it
46 * nmeets the needs of all consuners.
47 *
48 * - Programatic Error Handling. |ibzfs_core comrunicates errors with
49 * defined error nunbers, and doesn’t print anything to stdout/stderr.
50 *
51 * - Thin Layer. |libzfs_core is a thin layer, marshaling argunents
52 * to/fromthe kernel ioctls. There is generally a 1:1 correspondence
53 * between libzfs_core functions and ioctls to /dev/zfs.
54 *
55 * - Clear Atonmicity. Because |libzfs_core functions are generally 1:1
56 * with kernel ioctls, and kernel ioctls are general atomc, each
57 * libzfs_core function is atomic. For exanple, creating nultiple
58 * snapshots with a single call to |zc_snapshot() is atomic -- It

*

*

can't fail with only sone of the requested snapshots created, even
in the event of power |oss or system crash.

new usr/src/lib/libzfs_core/common/libzfs_core.c

- Continued |ibzfs Support. Sone higher-I|evel operations (e.g.
support for "zfs send -R') are too conplicated to fit the scope of
l'i bzfs_core. This functionality will continue to live in |ibzfs.
Where appropriate, libzfs will use the underlying atom c operations
of libzfs_core. For exanple, libzfs may inplenment "zfs send -R |
zfs receive" by using individual "send one snapshot", renane,
destroy, and "receive one snapshot" operations in |ibzfs_core.
/'sbin/zfs and /zbin/zpool will link wth both Iibzfs and
l'i bzfs_core. Oher consunmers should aimto use only |ibzfs_core,
since that will be the supported, stable interface going forwards.
/

R T

#i ncl ude <libzfs_core. h>
#i ncl ude <ctype. h>

#i ncl ude <uni std. h>
#incl ude <stdlib. h>

#i ncl ude <string. h>

#i ncl ude <errno. h>

#i nclude <fcntl.h>

#i ncl ude <pthread. h>

#i ncl ude <sys/nvpair. h>
#i ncl ude <sys/param h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>

#i ncl ude <sys/zfs_ioctl.h>

88 static int g_fd;

89 static pthread_nutex_t g_lock = PTHREAD MUTEX_| NI Tl ALI ZER;
90 static int g_refcount;

92 int

93 libzfs_core_init(void)

94 {

95 (voi d) pthread_nutex_| ock(&g_l ock);
96 if (g_refcount == 0) {

97 g_fd = open("/dev/zfs", O RDWR);
98 if (g_fd < 0)

99 (voi d) pthread_mnut ex_unl ock(&g_l ock);
100 return (errno);

101 }

102

103 g_ref count ++;

104 (voi d) pthread_nut ex_unl ock(&g_l ock);
105 return (0);

106 }

108 voi d

109 1ibzfs_core_fini(void)

110

111 (voi d) pthread_nutex_| ock(&g_I ock);
112 ASSERT3S(g_refcount, >, 0);

113 g_refcount--;

114 if (g_refcount == 0)

115 (void) close(g_fd);

116 (voi d) pthread_nutex_unl ock(&g_l ock);
117 }

119 static int

120 | zc_ioctl (zfs_ioc_t ioc, const char *nane,
121 nvlist_t *source, nvlist_t **resultp)

122 {

123 zfs_cmd_t zc = { 0 };

124 int error = 0;

125 char *packed;

126 size_t size;

new usr/src/lib/libzfs_core/common/libzfs_core.c

128 ASSERT3S(g_refcount, >, 0);

130 (void) strlcpy(zc.zc_narme, nane, sizeof (zc.zc_nane));
132 packed = fnvlist_pack(source, &size);

133 zc.zc_nvlist_src = (uint64_t) (uintptr_t)packed;

134 zc.zc_nvlist_src_size = size;

136 if (resultp != NULL) {

137 *resultp = NULL;

138 zc.zc_nvli st dst _size = MAX(size * 2, 128 * 1024);
139 zc. zc_nvlist_dst —(U|nt64t)(U|ntptr _t)

140 mal | oc(zc. zc_nvlist_dst_size);

141 if (zc.zc_nvlist_dst == NULL) {

142 error = ENOMVEM

143 goto out;

144 }

145 1

147 while (ioctl(g_fd, ioc, &c) !'=0) {

148 if (errno == ENOVEM && resultp !'= NULL)

149 free((void *)(uintptr_t)zc.zc_nvlist_dst);
150 zc.zc_nvlist_dst 5|ze *= 2;

151 zc. zc_nvlist_dst (uint64_t)(uintptr_t)
152 mal | oc(zc. zc nvI i st_dst_size);

153 if (zc.zc_nvlist_dst == NULL) {

154 error = ENOVEM

155 goto out;

156

157 } else {

158 error = errno;

159 br eak;

160 }

161

162 if (zc.zc_nvlist_dst_filled) {

163 *resultp = fnvlist_unpack((void *)(uintptr_t)zc.zc_nvlist_dst,
164 zc.zc_nvlist_dst_size);

165 }

167 out:

168 fnvlist_pack_free(packed, size);

169 free((void *)(uintptr_t)zc.zc_nvlist_dst);

170 return (error);

171 }

173 int

174 |1 zc_create(const char *fsnanme, dmu_objset_type_t type, nvlist_t *props)
175 {

176 int error;

177 nvlist_t *args = fnvlist_all oc()

178 fnvlist_add_int 32(ar gs, "type", type);

179 if (props !'= NULL)

180 fnvlist_add_nvlist(args, "props", props);

181 error = |zc_ioctl (ZFS_ | OC_CREATE, fsname, args, NULL);
182 nvlist_free(args);

183 return (error);

184 }

186 int

187 | zc_cl one(const char *fsnanme, const char *origin,
188 nvlist_t *props)

189 {
190 int error;
191 nvlist_t *args = fnvlist_alloc();

192 fnvlist_add_string(args, "origin", origin);

new usr/src/lib/libzfs_core/ common/libzfs_core.c

193 if (props I'= NULL)

194 fnvlist_add_nvlist(args, "props", props);

195 error = |lzc_ioctl (ZFS_|IOC_CLONE, fsnanme, args, NULL);

196 nvli st_f ree(args);

197 return (error);

198 }

200 /*

201 * Creates snapshots.

202 *

203 * The keys in the snaps nvlist are the snapshots to be created.

204 * They nust all be in the same pool .

205 *

206 * The props nvlist is properties to set. Currently only user properties
207 * are supported. { user:prop_nane -> string value }

208 *

209 * The returned results nvlist will have an entry for each snapshot that failed.
210 * The value will be the (int32) error code.

211 *

212 * The return value will be 0 if all snapshots were created, otherwise it wll
213 * be the errno of a (unspecified) snapshot that failed.

214 =/

215 int

216 | zc_snapshot (nvlist_t *snaps, nvlist_t *props, nvlist_t **errlist)

217 {

218 nvpair_t *elem

219 nvlist_t *args;

220 int error;

221 char pool [MAXNAMVELEN] ;

223 *errlist = NULL;

225 /* determ ne the pool nane */

226 el em = nvlist_next _nvpair(snaps, NULL);

227 if (elem == NULL)

228 return (0);

229 (void) strlcpy(pool, nvpair narre(el em, sizeof (pool));

230 pool [strcspn(pool , "/@)] ='\0";

232 args = fnvlist_alloc();

233 fnvlist_add_nvlist(args, "snaps", snaps);

234 if (props != NULL)

235 fnvlist_add_nvlist(args, "props", props);

237 error = |zc_ioctl (ZFS_| OC_SNAPSHOT, pool, args, errlist);

238 nvlist_free(args);

240 return (error);

241 }

243 [*

244 * Destroys snapshots.

245 *

246 * The keys in the snaps nvlist are the snapshots to be destroyed.

247 * They nmust all be in the same pool .

248 *

249 * Snapshots that do not exist will be silently ignored.

250 *

251 * |f 'defer’ is not set, and a snapshot has user holds or clones, the
252 * destroy operation will fail and none of the snapshots wll be

253 * destroyed.

254 *

255 * |f "defer’ is set, and a snapshot has user holds or clones, it will be
256 * marked for deferred destructi on, and will be destroyed when the |ast hold
257 * or clone is renoved/ destroyed.

258 *

new usr/src/lib/libzfs_core/common/libzfs_core.c

259
260

* The return value wll

*

be ENCENT if none of the snapshots existed.

261 #endif /* ! codereview */

262
263
264
24
265
266
267
268
269
270
271
272 |
273 {
274
275
276
277

279
280
281
282
283
284

286
287
288
289

291
292

294
295 }

339 /
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

* The return value will be 0 if all snapshots were destroyed (or marked for

* |later destruction if 'defer’ is set) or didn't exist to begin with and

* at |east one snapshot was destroyed.

* later destruction if 'defer’ is set) or didn't exist to begin wth.

*

* Qtherwise the return value will be the errno of a (unspecified) snapshot
* that failed, no snapshots will be destroyed, and the errlist wll have an
* entry for each snapshot that failed. The value in the errlist will be

* the (int32) error code.

*/

nt

zc_destroy_snaps(nvlist_t *snaps, boolean_t defer, nvlist_t **errlist)
nvpair_t *elem

nvlist_t *args;

int error;

char pool [MVAXNAMVELEN] ;

/* determ ne the pool name */
el em = nvlist_next _nvpair(snaps,
if (elem== NULL)

return (0);
(void) strlcpy(pool, nvpair_nanme(elem, sizeof (pool));
pool [strcspn(pool, "/@)] ="'\0";

args = fnvlist_alloc();

fnvlist_add_nvlist(args,

if (defer)
fnvlist_add_bool ean(args,

NULL) ;

"snaps", snaps);
"defer");

error = |zc_ioctl (ZFS_| OC_DESTROY_SNAPS, pool,
nvlist_free(args);

args, errlist);

return (error);

unchanged_portion_om tted_

*
Create "user hol ds" on snapshots.

t he snapshot can not be destroyed.
by | zc_destroy_snaps(defer=B_TRUE).)

If there is a hold on a snapshot,
(However,

The keys in the nvlist are snapshot names.
The snapshots nust all be in the sane pool.
The value is the nane of the hold (string type).

If cleanup_fd is not -1, it nust be the result of open("/dev/zfs",
In this case, when the cleanup_fd is closed (including on process
termnation), the holds will be released. |f the systemis shut down
uncl eanly, the holds will be rel eased when the pool is next opened

or inported.

Hol ds for snapshots which don’t exist will be skipped and have an entry
added to errlist, but will not cause an overall failure, except in the
case that all hol ds where skipped.

The return value will
hol ds exi st ed.

be ENCENT if none of the snapshots for the requested

The return value will be 0 if the nvl holds was enpty or all holds, for
snapshots that existed, were succesfully created and at |east one hold
was created.

® Ok ok Rk Rk O S Ok b ok b 3k ok kb 3k % ok % k¥

it can be marked for deletion

0 Exl).

new usr/src/lib/libzfs_core/common/libzfs_core.c

364
365
366
367
368
369
115
116
117
118
119
370
371
372
373
374
375
376
377

379
380
381
382
383
384

386
387
388
389

391
392
393
394

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
156
157
158
159
160

*
*
*
*
*
*
*
*
*
*
*
*
n
z

[
[
{

® Ok ok ok ok Rk O S Ok b 3k OF 3k R R b R ok ok ok ok % Ok % b % ok

O herwi se the return value will be the errno of a (unspecified) hold that
failed and no holds will be created.

In all cases the errlist will have an entry for each hold that failed
(name = snapshot), with its value being the error code (int32).

The return value will be O if all holds were created. Otherwi se the return
value will be the errno of a (unspecified) hold that failed, no holds will
be created, and the errlist will have an entry for each hold that

failed (nane = snapshot). The value in the errlist will be the error
code (int32).

/

t

c_hold(nvlist_t *holds, int cleanup_fd, nvlist_t **errlist)

char pool [MAXNAMVELEN] ;
nvlist_t *args;
nvpair_t *elem

int error;

/* determ ne the pool nane */
el em = nvlist_next _nvpair (hol ds,
if (elem == NULL)

return (0);
(void) strlcpy(pool, nvpair_nanme(elem, sizeof (pool));
pool [strcspn(pool, "/@)] ='\0";

args = fnvlist_alloc();

fnvlist_add_nvlist(args,

if (cleanup_fd !'= -1
fnvlist_add_int32(args,

NULL) ;

"hol ds", hol ds);

"cl eanup_fd", cleanup_fd);
error = |lzc_ioctl (ZFS_ | OC_HOLD, pool,

nvlist_free(args);
return (error);

args, errlist);

Rel ease "user hol ds" on snapshots. |[If the snapshot has been marked for
deferred destroy (by |zc_destroy_snaps(defer=B TRUE)), it does not have
any clones, and all the user holds are renpved, then the snapshot will be
destroyed.

The keys in the nvlist are snapshot nanes.
The snapshots nmust all be in the same pool.
The value is a nvlist whose keys are the holds to renove.

Hol ds which failed to rel ease because they didn't exist will have an entry
added to errlist, but will not cause an overall failure, except in the
case that all rel eases where skipped.

The return value will be ENCENT if none of the specified holds existed.
The return value will be O if the nvl holds was enpty or all holds, that
exi sted, were succesfully renpved and at |east one hold was renpved.

O herwise the return value will be the errno of a (unspecified) hold that
failed to rel ease and no holds will be rel eased.

In all cases the errlist will
to rel ease.

The return value will be O if all holds were renoved.

QG herwi se the return value will be the errno of a (unspecified) rel ease
that failed, no holds will be released, and the errlist will have an

entry for each snapshot that has failed rel eases (nane = snapshot).

The value in the errlist will be the error code (int32) of a failed rel ease.

have an entry for each hold that failed to

new usr/src/lib/libzfs_core/common/libzfs_core.c

420 */

421 int

422 1zc_rel ease(nvlist_t *holds, nvlist_t **errlist)
423 {

424 char pool [MAXNAMVELEN] ;

425 nvpair_t *elem

427 /* determ ne the pool nanme */

428 el em = nvlist_next _nvpair(holds, NULL);
429 if (elem == NULL)

430 return (0);

431 (void) strlcpy(pool, nvpair_nanme(el em, sizeof (pool));
432 pool [strcspn(pool, "/@)] ='\0";

434 return (lzc_ioctl (ZFS_I OC_RELEASE, pool,
435 }

____unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/dsl _destroy.c

R R R R

25817 Wed May 29 20:27:08 2013
new usr/src/uts/comon/ fs/zfs/dsl_destroy.c
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi
Submitted by: Steven Hartland <steven. hartland@ul tiplay.co. uk>

LR

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governing pernissions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /=

22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al
23 * Copyright (c) 2013 by Del phix. Al rights reserved.

24 * Copyright (c) 2013 Steven Hartland. Al rights reserved.

25 #endif /* | codereview */

26 */

28 #include <sys/zfs_context.h>
29 #include <sys/dsl _userhol d. h>
30 #include <sys/dsl _dataset. h>
31 #include <sys/dsl_synctask. h>
32 #include <sys/dnu_tx. h>

33 #include <sys/dsl _pool . h>

34 #include <sys/dsl _dir.h>

35 #incl ude <sys/dmu_traverse. h>
36 #include <sys/dsl_scan. h>

37 #include <sys/dnu_obj set. h>
38 #include <sys/zap. h>

39 #include <sys/zfeature.h>

40 #include <sys/zfs_ioctl.h>

41 #incl ude <sys/dsl _del eg. h>

43 typedef struct dmu_snapshots_destroy_arg {

44 nvlist_t *dsda_snaps;

45 nvlist_t *dsda_successful _snaps;
46 bool ean_t dsda_defer;

47 nvlist_t *dsda_errlist;

48 } drmu_snapshots_destroy_arg_t;

50 /*

51 * ds nust be owned.

52 */

53 static int

54 dsl| _destroy_snapshot _check_i npl (dsl _dataset_t *ds, bool ean_t defer)
55

56 if (!dsl_dataset_is_snapshot(ds))

57 return (SET_ERROR(EINVAL));

59 if (dsl_dataset_l ong_hel d(ds))

60 return (SET_ERROR(EBUSY));

rights reserved.

new usr/src/uts/comon/ fs/zfs/dsl

112

114
115
116
117
118

120
121
122
123
124
125
126

_destroy. c

/*
* Only allow deferred destroy on pools that support it.
* NOTE: deferred destroy is only supported on snapshots.
*
f (defer) {
if (spa_version(ds->ds_dir->dd_pool ->dp_spa) <
SPA_VERSI ON_USERREFS)
return (SET_ERROR(ENOTSUP));
return (0);
}
*
* If this snapshot has an el evated user reference count,
* we can’t destroy it yet.
*
/
if (ds->ds_userrefs > 0)
return (SET_ERROR(EBUSY));
/*
* Can't delete a branch point.
*
/
if (ds->ds_phys->ds_numchildren > 1)
return (SET_ERROR(EEXI ST));
return (0);
}
static int
dsl _destroy_snapshot _check(void *arg, dmu_tx_t *tx)
{
dmu_snapshots_destroy_arg_t *dsda = arg;
dsl _pool _t *dp = dnu_tx_pool (tx);
nvpair_t *pair;
int error = 0;
if (!ldmu_tx_is_syncing(tx))
return (0);
for (pair = nvlist_next nvpal r (dsda- >dsda_snaps, NULL);
pair !'= NULL; pair = nvlist_next_nvpair(dsda->dsda_snaps, pair)) {
dsl _dataset _t *ds;
error = dsl_dataset_hol d(dp, nvpair_nane(pair),
FTAG, &ds);
/*
* |f the snapshot does not exist, silently ignore it
* (it's "already destroyed").
*
/
if (error == ENCENT)
cont i nue;
if (error == 0)
error = dsl _destroy_snapshot _check_i npl (ds,
dsda >dsda_defer);
dsl _dat aset _rele(ds, FTAG) ;
}
if (error == 0) {
fnvlist_add_bool ean(dsda- >dsda_successf ul _snaps,
nvpai r_name(pair));
} else {
fnvlist_add_int32(dsda->dsda_errlist,
nvpai r_name(pair), error);
}

127

129
130
131

new usr/src/uts/comon/fs/zfs/dsl _destroy.c
}
pair = nvlist_next_nvpair(dsda->dsda_errlist, NULL);
If (pair !'= NULL)
return (fnvpair_val ue_int32(pair));
if (nvlist_next_nvpair(dsda->dsda_successful _snaps, NULL) == NULL)

133
134

return (ENCENT);

136 #endif /* | codereview */

137
138 }

140 struct

141
142
143
144
145
146 };

return (0);

process_ol d_arg {

dsl _dataset _t *ds;

dsl _dat aset _t *ds_prev;

bool ean_t after_branch_point;
zio_t *pio;

ui nt 64_t used,

conp, unconp;

148 static int

149 process_ol d_cb(void *arg,

150 {
151
152

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169 }

const blkptr_t *bp, dnu_tx_t *tx)
struct process_old_arg *poa = arg;
dsl _pool _t *dp = poa- >ds->ds_dir->dd_pool ;

if (bp->blk_birth <= poa->ds->ds_phys->ds_prev_snap_txg) {
dsl _deadl i st _i nsert (&poa- >ds->ds_deadl i st, bp, tx);
if (poa->ds_prev && !poa->after_branch_point &&
bp->bl k_birth >
poa- >ds_prev->ds_phys->ds_prev_snap_t xg) {
poa- >ds_pr ev- >ds_phys- >ds_uni que_bytes +=
bp_get _dsi ze_sync(dp->dp_spa, bp);

} else {
poa- >used += bp_get_dsi ze_sync(dp->dp_spa, bp);
poa- >conp += BP_CET_PSI ZE(bp) ;
poa- >unconp += BP_GET_UCSI ZE(bp) ;
dsl _free_sync(poa->pio, dp, tx->tx_txg, bp);

}
return (0);

171 static void

172 process_ol d_deadl i st (dsl
_dataset _t *ds_next,

173
174 {
175
176
177
178

180
181

183
184
185
186
187
188
189
190

192

dsl

_dataset _t *ds, dsl_dataset_t *ds_prev,

bool ean_t after_branch_point, dmu_tx_t *tx)

struct process_ol d_arg poa = { 0 };
dsl _pool _t *dp ds->ds_di r->dd_pool ;
obj set _t *mos = dp->dp_| nmet a_obj set ;
uint64_t deadl i st _obj;

ASSERT(ds- >ds_deadl i st . dI
ASSERT(ds_next - >ds_deadl i st . dI

_oldfnt);
_oldfnt);

poa.ds = ds;

poa.ds_prev = ds_prev;

poa. af ter _branch_poi nt = after_branch_point;

poa. pi o = zio_root (dp->dp_spa, TNULL, NULL, Zl O_FLAG_MUSTSUCCEED) ;

VERI FYO(bpob] _iterate(&Is_next->ds deadl i st.dl _bpobj,
process_ol d_cb, &poa, tx));

VERI FYO(zi o_wai t (poa. pi 0));

ASSERT3U(poa. used, ==, ds- >ds_phys— >ds_uni que_byt es);

/* change snapused */

new usr/src/uts/comon/fs/zfs/dsl

193
194

196
197
198
199
200
201
202
203
204
205

207
208

}

st at
dsl

209 {

210
211
212

214
215
216
217
218
219
220

222
223
224
225

227
228
229
230
231
232
233
234
235
236
237

239
240

}

voi d
dsl

241 {

242
243
244
245
246
247

249
250
251

253
254
255
256
257
258

_dat aset _renpve_cl ones_key(dsl

_destroy_snapshot _sync_i npl (dsl _

_destroy. c

dsl _dir_di duse_space(ds->ds_dir, DD _USED_SNAP,
- poa. used, -poa.conp, -poa.unconp, tXx);

/* swap next’s deadlist to our deadlist */

dsl _deadl i st _cl ose(&ds->ds_deadl i st);

dsl _deadl i st _cl ose(&s_next - >ds deadi i st);

deadl i st_obj = ds->ds_phys- >ds _deadl i st Obj,

ds- >ds_phys- >ds deadl i st_obj = ds next >ds_phys- >ds_dead|ist_obj;

ds_next->ds_phys->ds_deadl i st ob] = deadl i st_obj;

dsT_deadl i st_open(&ds->ds_deadl i st, nos,

dsl _deadl i st _open(&ds_next - >ds deadl|st nos,
“ds_next - >ds_phys->ds_deadl i st _obj);

ic void

_dataset _t *ds, uint64_t mntxg, dnu_tx_t
obj set _t *npbs = ds->ds_dir->dd_pool
zap_cursor_t zc;

zap_attribute_t za;

->dp_net a_obj set ;

/*

* If it is the old version, dd_clones doesn’t exist so we can’t

* find the clones, but dsl_deadlist_renove_key() is a no-op so it
* doesn’t matter.

*/

if (ds->ds_dir->dd_phys->dd_cl ones == 0)
return;

(zap_cursor_init(&c, nos, ds->ds_dir->dd_phys->dd_cl ones);
zap_cursor_retrieve(&zc, &za) == 0;
zap_cursor _advance(&zc)) {

dsl _dat aset _t *cl one;

VERI FYO(dsl _dat aset _hol d_obj (ds->ds_di r->dd_pool ,
za.za_first_integer, FTAG, &cl one))
if (clone->ds_dir->dd_origin_txg > ni ntxg) {
dsl _deadl i st _renove_key(&cl one->ds_deadl i st,
“ni nt xg, tx) ;
dsl _dat aset _renove_cl ones_key(cl one,

FTAG) ;

m ntxg, tx);
}
dsl _dat aset _rel e(cl one,

zap_cursor _fini (&zc);

dataset _t *ds, boolean_t defer, dnu_tx_t
int err;

int after_branch_point = FALSE;

dsl _pool _t *dp = ds->ds_dir->dd_pool ;

obj set _t *nobs = dp->dp_net a_obj set;

dsl _dataset _t *ds_prev = NULL;

uint64_t obj;

ASSERT(RRW VRl TE_HELD(&p- >dp_confi g_rw ock));
ASSERT3U(ds- >ds_phys->ds_bp. bl k_birth, <= tx->tx_txg);
ASSERT(r ef count _i s_zer o(&s- >ds_| onghol ds)) ;

if (defer &&

(ds->ds_userrefs > 0 || ds->ds_phys->ds_numchildren > 1)) {
ASSERT(spa_ver si on(dp->dp_spa) >= SPA_VERS| ON_USERREFS) ;
drmu_buf _wi Il _dirty(ds->ds_dbuf, tx);
ds->ds_phys->ds_flags | = DS FLAG DEFER DESTROY;
spa_history_log_internal _ds(ds, "defer_destroy", tx, "");

ds- >ds phys >ds_deadl i st _obj);

*t Xx)

*tx)

new usr/src/uts/comon/fs/zfs/dsl _destroy.c

259
260

276

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

294
295
296

298
299
300

302

304
305
306
307
308
309
310

312
313
314
315
316
317
318
319
320
321
322
323

return;

}
ASSERT3U(ds- >ds_phys->ds_num chil dren, <=, 1);

/* We need to | og before renovi ng it fromthe namespace. */
spa_history_log_internal _ds(ds, "destroy", tx, "");

dsl _scan_ds_destroyed(ds, tx);
obj = ds->ds_object;

if (ds- >ds _phys->ds_prev_snap_obj != 0) {
ASSERT3P(ds->ds_prev, ==, NULL);
VERI FYO(dsl _dat aset _hol d_obj (dp,
ds- >ds_phys->ds_| _Prev_snap_ obj, FTAG &ds_prev));
after_branch_point =
(ds_prev->ds_phys->ds_next _snap_obj != obj);

dmu_buf _wi Il _dirty(ds_prev->ds_dbuf, tx);
if (after_branch_point &&
ds_prev->ds_phys->ds_next _clones_obj != 0) {
dsl _dat aset _renove_from next _cl ones(ds_prev, obj,
i f (ds->ds_phys->ds_next_snap_obj != 0) {

VERI FYO(zap_add_i nt (nos,
ds_prev->ds_phys- >ds_next _cl ones_obj,
ds->ds_phys->ds_next _snap_obj, tx));

}

if (lafter_branch_point) {
ds_prev->ds_phys->ds_next _snap_obj =
ds- >ds_phys->ds_next _snap_obj ;

}

dsl _dat aset _t *ds_next;
uint64_t ol d_uni que;
uint64_t used = 0, conp = 0, unconp =

VERI FYO(ds| _dat aset _hol d_obj (dp,
ds->ds_phys->ds_next _snap_obj, FTAG &ds_next));
ASSERT3U(ds_next - >ds_phys- >ds_prev_snap_obj, ==, Obj)

ol d_uni que = ds_next->ds_phys->ds_uni que_byt es;

dmu_buf _wi I'l _di rty(ds_next->ds_dbuf, tx);

ds_next - >ds_phys->ds_prev_snap_obj =
ds->ds_phys->ds_prev_snap_obj ;

ds_next - >ds_phys->ds_prev_snap_txg =
ds- >ds_phys->ds_prev_snap_t xg;

ASSERT3U(ds- >ds_phys- >ds_prev_snap_t xg, ==,
ds_prev ? ds_prev->ds_phys->ds_creati on _txg : 0);

if (ds_next->ds_deadlist.dl _oldfnt) {
process_ol d_deadl i st (ds, ds_prev, ds_next,
after _branch_point, tx);
} else {
/* Adjust prev’s unique space. */
if (ds_prev && !after_branch_point) {
dsl _deadl i st _space_range(&s_next - >ds_deadl i st
ds_prev->ds_phys->ds_prev_snap_t xg,
ds- >ds_phys->ds_prev_snap_t xg,
&used, &conp, &unconp);
ds_prev->ds_phys->ds_uni que_byt es += used;

tx);

new usr/src/uts/comron/fs/zfs/dsl _destroy.c

325
326
327
328
329
330

332
333
334
335
336
337

339
340
341
342
343
344
345
346

348
349
350

352
353

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

374
375
376
377
378
379
380

382
383
384
385
386
387
388
389
390

/* Adjust snapused. */

dsl _deadl i st _space_r ange(&ds_next - >ds_deadl i st
ds- >ds_phys->ds_prev_snap_t xg, U NT64_NAX,
&used, &conp, &unconp);

dsl _di r_di duse_space(ds->ds_dir, DD USED SNAP,
-used, -conp, -unconp, tx);

/* Move blocks to be freed to pool’s free list. */

dsl _deadl i st _nmove_bpobj (&s_next - >ds_deadl i st,
&dp- >dp_free_bpobj, ds->ds_phys->ds_prev_snap_t xg,
tx);

dsl _di r_di duse_space(tx->tx_pool ->dp_free_dir,
DD_USED HEAD, used, conp, unconp, tx);

/* Merge our deadlist into next’'s and free it. */
dsl _deadl i st _mer ge(&Js_next - >ds_deadl i st,
“ds->ds_phys->ds_deadl i st_obj, tx);

}

dsl _deadl i st _cl ose(&ds->ds_deadl i st);

dsl _deadl i st _free(nos, ds->ds_phys->ds_deadl i st_obj, tx);
dmu_buf _wi I'| _dirty(ds->ds_dbuf, tx);
ds->ds_phys->ds_deadl i st _obj = 0;

/* Col | apse range in clone heads */
dsl _dat aset _renove_cl ones_key(ds,
ds- >ds_phys->ds_creation_txg, tx);

if (dsl

} else {

_dataset _i s_snapshot (ds_next)) {

dsl _dat aset _t *ds_next next;

/
Updat e next’s unique to include bl ocks which
were previously shared by only this snapshot
and it. Those blocks will be born after the
prev snap and before this snap, and will have
died after the next snap and before the one
after that (ie. be on the snap after next’'s
deadl i st).

* ok % ok ok ok % b 3k
-

VERI FYO(dsl _dat aset _hol d_obj (dp,

ds_next - >ds_phys->ds_next _snap_obj, FTAG &ds_nextnext));
dsl _deadl i st _space_r ange(&s_next next - >ds_dead| i st,

ds- >ds_phys- >ds_prev_snap_t xg,

ds- >ds_phys->ds_creation_t xg,

&used, &conp, &unconp);
ds_next - >ds_phys- >ds_uni que_byt es += used;
dsl _dat aset _rel e(ds_next next, FTAG;
ASSERT3P(ds_next->ds_prev, ==, NULL);

/* Col | apse range in this head. */
dsl _dataset _t *hds;
VERI FYO(dsl _dat aset _hol d_obj (dp,
ds->ds_di r- >dd_phys- >dd_head_dat aset _obj, FTAG &hds));
dsl _deadl i st _renpve_key(&ds->ds_deadl i st,
ds->ds_phys->ds_creation_txg, tx);
dsl _dat aset _rel e(hds, FTAQ;

ASSERT3P(ds_next->ds_prev, ==, ds);
dsl| _dat aset _rel e(ds_next->ds_prev, ds_next);
ds_next->ds_prev = NULL;
if (ds_prev)
VERI FYO(ds| _dat aset _hol d_obj (dp,
ds- >ds_phys->ds_prev_snap_obj,
ds_next, &ds_next->ds_prev));

new usr/src/uts/comon/fs/zfs/dsl _destroy.c

392

394
395
396
397
398
399
400
401
402

404
405
406
407
408
409
410
411

413
414
415
416
417
418
419
420

422
423
424
425
426
427
428
429
430

432
433
434
435

437
438
439

441
442

444

446
447
448
449
450
451
452
453
454
455
456

dsl _dat aset _recal c_head_uni q(ds_next);

/*

* Reduce the ampbunt of our unconsuned refreservation
* being charged to our parent by the anpunt of

* new uni que data we have gai ned.

*

if (ol d_unique < ds_next->ds_reserved) {
int64_t nrsdelta;
uint64_t new_uni que =
ds_next - >ds_phys->ds_uni que_byt es;

ASSERT(ol d_uni que <= new_uni que);
nrsdelta = M N(new_uni que - ol d_uni que,
ds_next->ds_reserved - ol d_uni que);
dsl _di r_di duse_space(ds->ds_dir,
DD _USED REFRSRV, -nrsdelta, 0, 0, tx);
}

}
dsl _dat aset _rel e(ds_next, FTAG;

/*

* This must be done after the dsl_traverse(), because it wll
* re-open the objset.

*/

if (ds->ds_objset)
dmu_obj set _evi ct (ds->ds_obj set);
ds->ds_obj set = NULL;

}

/* renpve from snapshot nanespace */

dsl _dataset _t *ds_head;

ASSERT(ds- >ds_phys- >ds_snapnanes_zapobj == 0);

VERI FYO(ds| _dat aset _hol d_obj (dp,
ds->ds_dir->dd_phys->dd_head_dat aset _obj, FTAG &ds_head));

VERI FYO(dsl _dat aset _get _snapnane(ds));

#i fdef ZFS_DEBUG
{

#endi f

uint64_t val;

err = dsl _dataset_snap_| ookup(ds_head,
ds- >ds_snapnane, &val);

ASSERTO(err);

ASSERT3U(val , ==, obj);

VERI FYO(ds| _dat aset _snap_r enove(ds_head, ds->ds_snapnane, tx));
dsl _dat aset _rel e(ds_head, FTAG;

if (ds_prev != NULL)
dsl _dat aset _rel e(ds_prev, FTAQ;

spa_prop_cl ear _boot f s(dp->dp_spa, ds->ds_object, tx);

if (ds->ds_phys->ds_next_cl ones_obj != 0) {
uint64_t count;
ASSERTO(zap_count (nos,
ds- >ds_phys- >ds_next _cl ones_obj, &count) && count == 0);
VERI FYO(dnu_obj ect _free(nos,
ds- >ds_phys- >ds_next _cl ones_obj, tx));

}
if (ds->ds_phys->ds_props_obj != 0)
VERI FYO(zap_destroy(nos, ds->ds_phys->ds_props_obj, tx));
if (ds->ds_phys->ds_userrefs_obj != 0)
VERI FYO(zap_destroy(nos, ds->ds_phys->ds_userrefs_obj, tx));

new usr/src/uts/comon/fs/zfs/dsl _destroy.c

457
458
459
460

462

dsl _dir_rel e(ds->ds_dir, ds);
ds->ds_dir = NULL;
VERI FYO(dnu_obj ect _free(nos, obj, tx));
}
static void

463 dsl _destroy_snapshot _sync(void *arg, dmu_tx_t *tx)

464 {

465 dmu_snapshots_destroy_arg_t *dsda = arg;

466 dsl _pool _t *dp = dnu_t x_pool (tx);

467 nvpalr_t *pair;

469 for (pair = nvlist_next_nvpair (dsda- >dsda_successful _snaps, NULL);
470 pair != NULL;

471 pair = nvlist_next_nvpair(dsda->dsda_successful _snaps, pair)) {
472 dsl _dat aset _t *ds;

474 VERI FYO(dsl _dat aset _hol d(dp, nvpair_nanme(pair), FTAG &ds));
476 dsl _destroy_snapshot _sync_i npl (ds, dsda->dsda_defer, tx);
477 dsl _dataset _rel e(ds, FTAG;

478 }

479 }

481 [*

482 * The semantics of this function are described in the comment above
483 * |zc_destroy_snaps(). To summari ze:

484 *

485 * The snapshots nust all be in the same pool.

486 *

487 * Snapshots that don't exist will be silently ignored (considered to be
488 * "already del eted").

489 *

490 * On success, all snaps will be destroyed and this will return 0.

491 * On failure, no snaps will be destroyed, the errlist will be filled in,
492 * and this will return an errno.

493 *

494 int

495 dsl| _destroy_snapshots_nvl (nvlist_t *snaps, bool ean_t defer,

496 nvliist_t *errlist)

497 {

498 dmu_snapshots_destroy_arg_t dsda;

499 int error;

500 nvpair_t *pair;

502 pair = nvlist_next_nvpair(snaps, NULL);

503 I f (pair == NULL)

504 return (0);

506 dsda. dsda_snaps = snaps;

507 dsda. dsda_successful _snaps = fnvlist_alloc();

508 dsda. dsda_def er = defer;

509 dsda. dsda_errlist = errlist;

511 error = dsl _sync_task(nvpair_nanme(pair),

512 dsl _destroy_snapshot _check, dsl_destroy_snapshot_sync,

513 &dsda, 0);

514 fnvlist_free(dsda. dsda_successful _snaps);

516 return (error);

517 }

519 int

520 dsl _destroy_snapshot (const char *nane, bool ean_t defer)

521 {

522 int error;

new usr/src/uts/comon/ fs/ zfs/dsl

523
524

526
527
528
529
530
531 }

533 struct
534

535

536 };

_destroy. c

nvlist_t *nvl = fnvlist_alloc();
nvliist_t *errlist = fnvlist_alloc();

fnvlist_add_bool ean(nvl, nane);

error = dsl_destroy_: snapshots vl (nvl,
fnvllst _free(errlist);
fnvlist_free(nvl);

return (error);

defer, errlist);

killarg {
dsl _dat aset _t *ds;
dmu_t x_t *tx;

538 /* ARGSUSED */
539 static int

540 kill_blkptr(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
541 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
542 {

543 struct killarg *ka = arg;

544 dmu_tx_t *tx = ka->tx;

546 if (bp == NULL)

547 return (0);

549 if (zb->zb_level == ZB ZIL_LEVEL) {

550 ASSERT(Zl log !'= NULL);

558

552 * |It's a block in the intent log. It has no
553 * accounting, so just free it.

554 *

555 dsl _free(ka->tx->tx_pool, ka->tx->tx_txg, bp);
556 } else {

557 ASSERT(zi | og == NULL);

558 ASSERT3U(bp- >bl k_bi rth > ka->ds- >ds_phys->ds_prev_snap_t xg) ;
559 (voi d) dsl_dataset_bl ock kill (ka->ds, bp, tx, B_FALSE);
560 }

562 return (0);

563 }

565 static void
566 ol d_synchronous_dat aset _destroy(dsl _dataset_t *ds, dmu_tx_t *tx)

567 {
568

570
571
572
573
574
575
576
577
578
579
580
581
582
583 }

struct killarg ka;

/*

* Free everything that we point to (that’'s born after
* the previous snapshot, if we are a clone)

*

* NB: this should be very quick, because we already
* freed all the objects in open context.

*

ka.ds = ds

ka.tx = tx;

VERI FYO(traverse dat aset (ds,
ds- >ds_phys->ds_prev_snap_t xg, TRAVERSE_POCST,
kill_blkptr, &ka)

)
ASSERT(! DS_UNIQUE_I S AOCURATE(ds) || ds->ds_phys->ds_uni que_bytes == 0);

585 typedef struct dsl_destroy_head_arg {

586
587 } dsl

const char *ddha_naneg;

_destroy_head_arg_t;

new usr/src/uts/comron/fs/zfs/dsl _destroy.c

589 int

590 dsl _destroy_head_check_i npl (dsl _dataset _t *ds, int expected_hol ds)
591 {

592 int error;

593 uint64_t count;

594 obj set _t *nps;

596 if (dsl_dataset_is_snapshot(ds))

597 return (SET_ERROR(EI NVAL));

599 if (refcount_count(&ds->ds_| onghol ds) != expected_hol ds)
600 return (SET_ERROR(EBUSY));

602 mos = ds->ds_di r->dd_pool - >dp_net a_obj set ;

604 /*

605 * Can’'t delete a head dataset if there are snapshots of it.
606 * (Except if the only snapshots are fromthe branch we cl oned
607 * from)

608 */

609 if (ds->ds_prev != NULL &&

610 ds->ds_prev->ds_phys->ds_next _snap_obj == ds->ds_obj ect)
611 return (SET_ERROR(EBUSY));

613 *

614 * Can't delete if there are children of this fs.

615 */

616 error = zap_count (nos,

617 ds->ds_di r->dd_phys->dd_chi | d_di r_zapobj, &count);

618 if (error 1'=0)

619 return (error);

620 if (count !'=0

621 return (SET_ERROR(EEXI ST));

623 if (dsl_dir_is_clone(ds->ds_dir) && DS_| S _DEFER DESTROY(ds->ds_prev)
624 ds->ds_prev->ds_phys->ds_num chi |l dren == &&

625 ds->ds_prev->ds_userrefs == 0)

626 /* We need to renpve the origin snapshot as well. */
627 if (!refcount_is_zero(&ds->ds_prev->ds_| onghol ds))
628 return (SET_ERROR(EBUSY));

629 }

630 return (0);

631 }

633 static int

634 dsl _destroy_head_check(void *arg, dmu_tx_t *tx)

635 {

636 dsl _destroy_head_arg_t *ddha = arg;

637 dsl _pool _t *dp = dnu_tx_pool (tx);

638 dsl _dat aset _t *ds;

639 int error;

641 error = dsl_dataset _hol d(dp, ddha->ddha_nane, FTAG &ds);
642 if (error '=0)

643 return (error);

645 error = dsl _destroy_head_check_i npl (ds, 0);

646 dsl _dataset _rel e(ds, FTAQ;

647 return (error);

648 }

650 static void

651 dsl _dir_destroy_sync(uint64_t ddobj, dnu_tx_t *tx)

652 {

653 dsl _dir_t *dd;

654 dsl _pool _t *dp = dnu_tx_pool (tx);

10

&&

new usr/src/uts/comon/fs/zfs/dsl _destroy.c

655
656

658
660
662

664
665
666
667
668

670
671
672
673

675
676
677
678
679

681
682
683

685
686

688
689
690
691

693
694
695
696
697

699
700

702
703
704
705

707
708
709
710
711
712
713

715

719
720

}

voi d
dsl

obj set _t *nps
dd_used_t t;

= dp->dp_net a_obj set;

ASSERT(RRW WRI TE_HELD(&mu_t x_pool (t x) - >dp_confi g_rw ock));
VERI FYO(ds!| _dir_hol d_obj (dp, ddobj, NULL, FTAG &dd));
ASSERTO(dd- >dd_phys- >dd_head_dat aset _obj) ;

/*

* Renpve our reservation. The inpl () routine avoids setting the

* actual property, which would require the (already destroyed) ds.
*/

dsl _dir_set_reservation_sync_inpl (dd, 0, tx);

ASSERTO(dd- >dd_phys- >dd_used_byt es) ;
ASSERTO(dd- >dd_phys- >dd_r eserved);
for (t = 0; t < DD _USED NUM t ++)
ASSERTO(dd->dd_phys->dd_used_br eakdown[t]);

VERI FYO(zap_dest roy(nos, dd->dd_phys->dd_child_dir_zapobj, tx));
VERI FYO(zap_destroy(nos, dd->dd_phys->dd_props_zapobj, tx));

VERI FYO(dsl _del eg_dest roy(nos, dd->dd_phys->dd_del eg_ zapob], tx));
VERI FYO(zap_r enpve(nps,

dd- >dd_par ent - >dd_phys- >dd_chi | d_di r _zapobj, dd->dd_nynane, tx));

dsl _dir_rel e(dd, FTAQ;
VERI FYO(dnu_obj ect _free(nos, ddobj, tx));

_destroy_head_sync_i npl (dsl _dataset _t *ds, dnmu_tx_t *tx)

dsl _pool _t *dp = dnu_t x_pool (tx);
obj set _t *nos dp- >dp_net a_obj set ;
uint64_t obj, ddObJ, prevobj = 0;
bool ean_t rnori gin;

ASSERT3U(ds- >ds_phys->ds_num chil dren, <=, 1);
ASSERT(ds->ds_prev == NULL |

ds->ds_prev->ds_phys->ds_next _snap_obj != ds->ds_object);
ASSERT3U(ds- >ds_phys->ds_bp. bl k_birth, <= tx->tx_txg);
ASSERT(RRW WRI TE_HELD(&p- >dp_confi g_rw ock));

/* We need to | og before renoving it fromthe namaspace */
spa_history_l og_internal _ds(ds, "destroy", tx, "");

rmorigin = (dsl_dir_is_clone(ds->ds_dir) &&
DS_| S DEFER _DESTROY(ds->ds_prev) &&
ds->ds_prev->ds_phys->ds_numchildren == 2 &&
ds->ds_prev->ds_userrefs == 0);

/* Renobve our reservation */
if (ds->ds_reserved != 0) {
dsl_dat aset _set_refreservation_sync_i npl (ds,
(ZPRO=‘ SRC_NONE | ZPROP_SRC LOCAL | ZPROP_SRC RECEI VED),

0, tx);
ASSERTO(ds->ds_reserved);
}

dsl _scan_ds_destroyed(ds, tx);
obj = ds->ds_obj ect;

if (ds->ds_phys->ds_prev_snap_obj != 0) {
/* This is a clone */

11

new usr/src/uts/comon/fs/zfs/dsl _destroy.c

721
722
723

725
726
727
728
729

731
732
733

735
736
737

739
740
741
742
743
744
745
746
747

749

751
752
753
754
755
756
757
758

762
763

765
766
767
768
769
770
771
772
773

775
776
77

779
780

782
783
784
785
786

ASSERT(ds- >ds_prev != NULL);

ASSERT3U(ds- >ds_pr ev->ds_phys- >ds_next _snap_obj, !=, obj);

ASSERTO(ds- >ds_phys->ds_next _snap_obj);
dmu_buf _wi || _dirty(ds->ds_prev->ds_dbuf, tx);

if (ds->ds_prev->ds_phys->ds_next _clones_obj != 0) {
dsl _dat aset _renpve_from next_cl ones(ds->ds_prev,
obj, tx);

}

ASSERT3U(ds- >ds_prev->ds_phys->ds_num children, >, 1);
ds- >ds_prev->ds_phys->ds_num chi | dren--;

}

zfeature_info_t *async_destroy =
&spa_f eat ure_t abl e[SPA_FEATURE_ASYNC _DESTROY] ;
obj set _t *os;

/*
* Destroy the deadlist. Unless it’s a clone, the
* deadlist should be enmpty. (If it’s a clone, it’'s
* safe to ignore the deadlist contents.)
*
/
dsl _deadl i st _cl ose(&ds->ds_deadl i st);
dsl _deadl i st _free(nos, ds->ds_phys->ds_deadlist_obj, tx);
dmu_buf _wi || _di rty(ds->ds_dbuf, tx);
ds->ds_phys->ds_deadl i st_obj = 0;

VERI FYO(dnu_obj set _from ds(ds, &os));

if (!spa_feature_is_enabl ed(dp->dp_spa, async_destroy)) {
ol d_synchronous_dat aset _destroy(ds, tx);

} else {
/*

* Move the bptree into the pool’s list of trees to
* clean up and update space accounting information.
*

uint64_t used, conp, unconp;
zi | _destroy_sync(dmu_objset_zil (os), tx);

if (!spa_feature_is_active(dp->dp_spa, async_destroy)) {
dsl _scan_t *scn = dp->dp_scan;

spa_feature_i ncr(dp->dp_spa, async_destroy, tx);
dp->dp_bptree_obj = bptree_alloc(nos, tx);
VERI FYO(zap_add(nos,
DMJ_POOL_DI RECTORY_OBJECT,
DMJ_POCL_BPTREE OBJ, sizeof (uint64 t), 1,
&dp->dp_bptree_obj, tx));
ASSERT(! scn->scn_async_destroyi ng);
scn->scn_async_destroyi ng = B_TRUE;

used = ds->ds_dir->dd_phys->dd_used_byt es;
= ds->ds_dir->dd_phys->dd_conpressed_byt es;
unconp = ds->ds_dir->dd_phys->dd_unconpressed_bytes;

ASSERT(! DS_UNI QUE_I S_ACCURATE(ds) | |
ds- >ds_phys- >ds_uni que_byt es == used);

bptree_add(nos, dp->dp_bptree_obj,
&ds- >ds_phys- >ds_bp, ds->ds_phys->ds_prev_snap_t xg,
used, conp, unconp, tx);

dsl _dir_di duse _space(ds->ds_dir, DD USED HEAD,
“-used, -conp, -unconp, tx);

12

new usr/src/uts/comon/fs/zfs/dsl _destroy.c

787 dsl _di r_di duse_space(dp->dp_free_dir, DD USED_HEAD,
788 “used, conp, unconp, tx);

789 }

791 if (ds- >ds _prev !'= NULL) {

792 if (spa_version(dp->dp_spa) >= SPA VERSI ON_DI R CLONES) {
793 VERI FYO(zap_r emove_i nt (nos,

794 ds->ds_prev->ds_di r->dd_phys->dd_cl ones,
795 ds->ds_obj ect, tx));

796

797 prevobj = ds->ds_prev->ds_obj ect;

798 dsl _dat aset _rel e(ds->ds_prev, ds);

799 ds->ds_prev = NULL;

800 }

802 /*

803 * This nmust be done after the dsl_traverse(), because it will
804 * re-open the objset.

805 */

806 if (ds->ds_objset) {

807 dnu_obj set _evi ct (ds- >ds_obj set);

808 ds- >ds_obj set = NULL;

809 1

811 /* Erase the link in the dir */

812 dmu_buf _wi I'| _dirty(ds->ds_dir->dd_dbuf, tx);

813 ds->ds d|r >dd_phys->dd_head_dat aset Obj = 0;

814 ddobj = ds->ds_dir->dd_obj ect;

815 ASSERT(ds- >ds_phys- >ds_snapnarres_zapobj 1= 0);

816 VERI FYO(zap_destroy(nos, ds->ds_phys->ds_snapnanes_zapobj, tx));
818 spa_prop_cl ear _boot f s(dp->dp_spa, ds->ds_object, tx);

820 ASSERTO(ds- >ds_phys->ds_next _cl ones_obj);

821 ASSERTO(ds- >ds_phys- >ds_props_obj) ;

822 ASSERTO(ds- >ds_phys- >ds_userrefs Obj)

823 dsl _dir_rel e(ds >ds _dir, ds);

824 ds->ds_dir NULL

825 VERI FYO(drru_obJ ect_free(nmos, obj, tx));

827 dsl _dir_destroy_sync(ddobj, tx);

829 if (rrmorigin) {

830 dsl _dataset _t *pre

831 VERI FYO(dsl _dat aset hoI d_obj (dp, prevobj, FTAG &prev));
832 dsl _destroy_snapshot _sync_i npl (prev, B FALSE, tx);
833 dsl _dataset _rel e(prev, FTAG;

834 1

835 }

837 static void

838 dsl _destroy_head_sync(void *arg, dmu_tx_t *tx)

839 {

840 dsl _destroy_head_arg_t *ddha = arg;

841 dsl _pool _t *dp = dnu_tx_pool (tx);

842 dsl _dat aset _t *ds;

844 VERI FYO(ds| _dat aset _hol d(dp, ddha->ddha_nanme, FTAG &ds));
845 dsl _destroy_head_sync_i npl (ds, tx);

846 dsl _dat aset _rel e(ds, FTAQ;

847 }

849 static void

850 dsl _destroy_head_begi n_sync(void *arg, dmu_tx_t *tx)

851 {

852 dsl _destroy_head_arg_t *ddha = arg;

13

new usr/src/uts/comon/fs/zfs/dsl _destroy.c

853 dsl _pool _t *dp = dnu_tx_pool (tx);

854 dsl _dat aset _t *ds;

856 VERI FYO(ds| _dat aset _hol d(dp, ddha->ddha_nane, FTAG &ds));
858 /* Mark it as inconsistent on-disk, in case we crash */
859 dnu_buf _wi |l _dirty(ds->ds dbuf tx);

860 ds->ds_phys->ds_flags |= DS FLAG | NCONSI STENT;

862 spa_history_l og_internal _ds(ds, "destroy begin", tx, "");
863 dsl _dat aset _rel e(ds, FTAQ;

864 }

866 int

867 dsl _destroy_head(const char *nane)

868 {

869 dsl _destroy_head_arg_t ddha;

870 int error;

871 spa_t *spa,

872 bool ean_t i senabl ed;

874 #ifdef _KERNEL

875 zf s_destroy_unnount _ori gi n(nane) ;

876 #endi f

878 error = spa_open(name, &spa, FTAG;

879 if (error 1= 0)

880 return (error);

881 i senabl ed = spa_ feature i s_enabl ed(s spa,

882 &spa_f eat ure_t abl e[SPA_FEATURE . ASYNC > DESTROY]) ;

883 spa_cl ose(spa, FTAG;

885 ddha. ddha_nane = nane;

887 if (!isenabled) {

888 obj set _t *os;

890 error = dsl_sync_task(name, dsl_destroy_head_check,
891 dsl _destroy_head_begi n_sync, &ddha, 0);

892 if (error 1= 0)

893 return (error);

895 /*

896 * Head deletion is processed in one txg on old pools;
897 * renove the objects fromopen context so that the txg sync
898 * is not too |ong.

899 */

900 error = dmu_obj set _own(nane, DMJ OST_ANY, B _FALSE, FTAG &o0s);
901 if (error == 0) {

902 uint64_t prev_snap_txg =

903 dmu_obj set _ds(os) - >ds_phys->ds_prev_snap_t xg;
904 for (U|nt64t obj = 0; error == 0;

905 error = dnu_obj ect _next (os, &Obj, FALSE,
906 prev_snap_t xg))

907 (void) dnu_free_object(os, obj);
908 /* sync out all frees */

909 txg_wai t _synced(dnu_obj set _pool (0s), 0);
910 dmu_obj set _di sown(os, FTAG;

911 }

912 }

914 return (dsl_sync_task(name, dsl_destroy_head_check,

915 dsl _destroy_head_sync, &ddha, 0));

916 }

918 /*

14

new usr/src/uts/comon/fs/zfs/dsl _destroy.c 15

919
920
921
922
923
924 |

925 int

*
*
*
*

*

Note, this function is used as the callback for dmu_objset_find(). W
always return 0 so that we will continue to find and process
inconsistent datasets, even if we encounter an error trying to

process one of them
*

ARGSUSED */

926 dsl _destroy_inconsi stent(const char *dsnanme, void *arg)

927 {
928

930
931
932
933
934
935
936
937 }

obj set _t *os;

if (dmu_objset_hol d(dsnanme, FTAG &os) == 0) {
bool ean_t inconsistent = DS | S_| NCONSI STENT(dnmu_obj set _ds(os));
dmu_obj set _rel e(os, FTAQ;
if (inconsistent)

}
return (0);

(voi d) dsl_destroy_head(dsnane);

new usr/src/uts/comon/fs/zfs/dsl_pool.c

R R R R

29795 Wed May 29 20:27:09 2013
new usr/src/uts/comon/fs/zfs/dsl_pool.c
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi
Submitted by: Steven Hartland <steven. hartland@ul tiplay.co. uk>
EERERERERERESRESRSESSE]

1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the |icense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing pernissions

and linmtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END
/

NRRRRRRRR R
COONOUITAWNROW©O~NOUTSWN

R T T

21/

22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.

23 * Copyright (c) 2013 by Del phix. Al rights reserved.

24 * Copyright (c) 2013 Steven Hartland. Al rights reserved.
25 #endif /* | codereview */

26 */

28 #incl ude <sys/dsl _pool . h>

29 #include <sys/dsl _dataset. h>
30 #include <sys/dsl _prop. h>

31 #include <sys/dsl _dir.h>

32 #include <sys/dsl_synctask. h>
33 #include <sys/dsl_scan. h>

34 #include <sys/dnode. h>

35 #include <sys/dnu_tx. h>

36 #include <sys/dnu_obj set. h>
37 #include <sys/arc. h>

38 #include <sys/zap. h>

39 #include <sys/zio.h>

40 #include <sys/zfs_context.h>
41 #include <sys/fs/zfs. h>

42 #include <sys/zfs_znode. h>

43 #incl ude <sys/spa_inpl.h>

44 #incl ude <sys/dsl _deadlist.h>
45 #incl ude <sys/bptree. h>

46 #incl ude <sys/zfeature. h>

47 #include <sys/zil _inpl.h>

48 #incl ude <sys/dsl _userhol d. h>

50 int zfs_no_wite_throttle = O;

51 int zfs_wite_limt_shift = 3; /* 1/ 8th of physical menmory */
52 int zfs_txg_synctime_ns = 1000; /* target mllisecs to sync a txg */
54 uint64_t zfs_wite_limt_mn = 32 << 20; /[* minwite limt is 32MB */
55 uint64_t zfs wite_limt_max = 0; /* max data payl oad per txg */
56 uint64_t zfs_ wite_limt_inflated = 0O;

57 uint64_t zfs_ wite_limt_override = 0;

59 knutex_t zfs_wite_limt_Iock;

new usr/src/uts/comon/fs/zfs/dsl_pool.c

61

115

117
118
119
120
121
122

124
125

static pgcnt_t ol d_physmem = 0;

hrtime_t zfs_throttle_delay = MSEC2NSEC(10) ;
hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);

i nt
dsl _pool _open_speci al _dir(dsl _pool _t *dp, const char *name, dsl_dir_t **ddp)
uint64_t obj;
int err;
err = zap_| ookup(dp->dp_net a_obj set,
dp- >dp_r oot _di r- >dd_phys->dd_chi | d_di r _zapobj,
nane, sizeof (obj), 1, &obj);
if (err)
return (err);
return (dsl_dir_hol d_obj (dp, obj, nane, dp, ddp));
}
static dsl_pool _t *

dsl _pool _open_i npl (spa_t *spa, uint64_t txg)
{

dsl _pool _t *dp;
bl kptr_t *bp = spa_get_rootbl kptr(spa);
dp = knmem zal | oc(si zeof (dsl_pool _t), KM SLEEP);
dp- >dp_spa = spa;
dp->dp_neta_rootbp = *bp;
rrw_init(&dp->dp_config_rw ock, B TRUE);
dp->dp_wite_limt = zfs_wite_limt_mn;
txg_init(dp, txg);
txg_list_create(&Ip->dp_dirty_datasets,
of f set of (dsl _dataset _t, ds_dirty_link));
txg_list_create(&p->dp_dirty_zil ogs,
offsetof (zilog_t, zl_dirty_link));
txg_list_create(&p->dp_dirty_dirs,
of fsetof (dsl _dir_t, dd_dirty_link));
txg_list_create(&Ip->dp_sync_t asks,
of f set of (dsl _sync_task_t, dst_node));
mut ex_i ni t (&dp->dp_| ock, NULL, MJTEX_DEFAULT, NULL);
dp->dp_vnrel e_taskq = taskq_create("zfs_vn_rel e_taskq", 1, mnclsyspri,
return (dp);
}
i nt

dsl _pool _init(spa_t *spa, uint64_t txg, dsl_pool _t **dpp)
{

int err;
dsl _pool _t *dp = dsl _pool _open_i npl (spa, txg);

err = dnu_obj set _open_i npl (spa, NULL, &dp->dp_neta_r oot bp,
&dp- >dp_net a_obj set) ;
if (err 1=0)
dsl _pool _cl ose(dp);
el se
*dpp = dp;

return (err);

}

new usr/src/uts/comon/ fs/ zfs/dsl

127 int
128 dsl
129 {
130
131
132
133

135
136
137
138
139
140

142
143
144
145

147
148
149

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

168
169
170
171
172

174
175
176
177
178
179
180

182
183
184
185
186
187
188
189

191
192

_pool

_open(dsl _pool _t *dp)
int err;

dsl _dir_t *dd;

dsl _dat aset _t *ds;
uint64_t obj;

rrw_enter (&dp->dp_config_rw ock, RWWRI TER, FTAG;
err = zap_| ookup(dp->dp_neta Obj set, DMJ_POOL_DI RECTO?Y OBJECT,
DMJ_POOL_ROOT_DATASET, si zeof (UI nt64_t), 1,
&dp->dp_root_dir_obj);
if (err)
goto out;
_hol d_obj (dp,

err = dsl _dir dp->dp_r oot _dir_obj,

NULL, dp, &dp->dp_root_dir)
if (err)
goto out;
err = dsl _pool _open_speci al _dir(dp, MOS_DI R NAME, &dp->dp_nos_dir);
if (err)
goto out;

if (spa_versi on(dp >dp_spa) >= SPA VERSION.ORIG N {
err = dsl _pool _open_speci al _dir(dp, ORI G N D R NAMVE, &dd);
if (err)
goto out
err = dsl _dat aset _hol d_obj (dp,
FTAG ~é&ds) ;
if (err == 0) {
err = dsl _dataset _hol d_obj (dp,
ds- >ds_phys->ds_prev_snap_obj, dp,
&dp->dp_ori gi n_snap) ;
dsl _dataset _rel e(ds, FTAQ;

)_rel e(dd, dp);

dd- >dd_phys->dd_head_dat aset _obj ,

Yoo
dsl _dir
if (err

goto out;

if (spa_version(dp->dp_spa) >= SPA_VERS|I ON_DEADLI STS) {

err = dsl _pool _open_speci al _dir(dp, FREE_DI R_NAME,
&dp->dp_free_dir);
if (err)
goto out;

err = zap_| ookup(dp->dp_net a_obj set,
DMJ_POOL_FREE_BPOBJ, si zeof (ui nt 64 1), 1
if (err)
goto out;
VERI FYO(bpobj open(&dp >dp_free_bpobj,
dp- >dp_net a_obj set, obj));

DMJ_POOL_Di RECTORY_OBJECT,
, &obj);

}

if (spa_feature_is_active(dp->dp_spa,
&spa_ feature t abl e[SPA_FEATURE_ASYNC DESTROY])) {
err = zap_| ookup(dp->dp_neta_objset, DMJ_POOL_DI RECTORY_OBJECT,
DMJ_POOL_BPTREE_OBJ, si zeof (ui nt 64 1), 1,
&dp->dp_bptree_obj);
if (err 1=0)
goto out;

}

if (spa_feature_is_active(dp->dp_spa,
&spa_f eature_t abl e[SPA_FEATURE EMPTY " BPOBJ])) {

_pool . c 3

new usr/src/uts/comon/fs/zfs/dsl

193
194
195
196
197
198

200
201
202
203
204
205
206

208

210 out:
211

212

213 }

215 voi d
216 dsl

218

220
221
222
223
224
225
226
227
228
229
230
231
232

234

236
237
238

240
241
242
243

245
246
247
248
249
250
251
252
253
254 }

256 dsl
257 dsl
258 {

_pool

pool

“pool

_pool . c

err = zap_| ookup(dp->dp_net a_obj set, DMJ_POOL_DI RECTORY_OBJECT,
DMU_POOL_EMPTY BPOBJ, sizeof (uint64_t), 1,
&dp->dp_enpty_bpobj);
if (err 1=0)
goto out;

}

err = zap_| ookup(dp->dp_neta_obj set, DMJ POOL_DI RECTORY_OBJECT,
DMJ_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
&dp->dp_tnp_userrefs_obj);

if (err == ENCENT)

err = 0;
if (err)
goto out;
err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
rrw_exit(&dp->dp_config_rw ock, FTAQ;
return (err);
_cl ose(dsl _pool _t *dp)
/* drop our references from dsl_pool _open()
/*
* Since we held the origin_snap from"syncing" context (which
* includes pool -opening context), it actually only got a "ref"
* and not a hold, so just drop that here.
*/
if (dp->dp_origin_snap)
dsl _dataset _rel e(dp->dp_origi n_snap, dp);
if (dp->dp_nos_dir)
dsl_dir_rel e(dp->dp_nos_dir, dp);
if (dp->dp_free_dir)
dsl _dir_rele(dp->dp_free_dir, dp);
if (dp->dp_root _dir)
dsl _dir_rel e(dp->dp_root _dir, dp);
bpobj _cl ose(&dp->dp_free_bpobj);
/* undo the dmu_objset_open_i npl (nos) from dsl _pool _open() */

if (dp->dp_neta_objset)
dnu_obj set _evi ct (dp- >dp_net a_obj set) ;

txg_list_destroy(&dp->dp_dirty_datasets);
txg_list_destroy(&p->dp_dirty_zilogs);
txg_list_destroy(&dp->dp_sync_tasks);
txg_list_destroy(&dp->dp_dirty_dirs);

arc_fl ush(dp->dp_spa);
txg_fini(dp);
dsl _scan_fini (dp);
rrw_dest roy(&dp- >dp confi g rw ock);
mut ex_dest r oy(&dp- >dp_| ock) ;
taskqg_destroy(dp->dp_vnrel e_taskq);
if (dp->dp_bl kstats)

kmem free(dp->dp_bl kstat s,

sizeof (zfs_all_blkstats_t));

kmem free(dp, sizeof (dsl_pool t)),
t *
“create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)

new usr/src/uts/comon/fs/zfs/dsl_pool.c

259
260
261
262
263
264

266

268
269
270

272
273
274
275

277
278

280
281
282
283

285
286
287
288

290
291
292
293
294
295

297
298
299
300
301
302
303

305
306

308
309

311
312
313
314
315
316
317
318

320
322
324

#i f def
#endi f

int err;

dsl _pool _t *dp = dsl _pool _open_i npl (spa, txg);

dmu_t x_t *tx = dnu_t x_creat e_assi gned(dp, txg);

obj set _t *os;

dsl_dataset_t *ds;

uint64_t obj;

rrw_enter (&p->dp_config_rw ock, RWWRI TER, FTAG;

/* create and open the MOS (neta-objset) */

dp- >dp_net a_obj set = dnu_obj set _create_i npl (spa,
NULL, &dp->dp_neta_rootbp, DMJ OST_META, tx);

/* create the pool directory */

err = zap_create_cl ai n{dp->dp_net a_obj set, DMJ POOL_DI RECTORY_OBJECT,
DMJ_CT_OBJECT_DI RECTORY, DMJ_OT_NONE, 0, tX);

ASSERTO(err) ;

/* Initialize scan structures */
VERI FYO(dsl _scan_init(dp, txg));

/* create and open the root dir */
dp- >dp_r oot _di r _obj dsl _dir_create_sync(dp, NULL, NULL, tx);
VERI FYO(ds!| _dir_hol d Ob] (dp, dp->dp_root_dir_obj,

NULL, dp, &dp->dp_root_dir));

/* create and open the neta-objset dir */
(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
VERI FYO(dsl _pool _open_speci al _dir(dp,

MOS_DI R_NAME, &dp->dp_nos_dir));

MOS_DI R_NAME, tx);

if (spa_version(spa) >= SPA_VERSI ON_DEADLI STS) {
/* create and open the free dir */
(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
FREE_DI R NAME, tX);
VERI FYO(dsl _pool open_speci al _dir(dp,
FREE_DI R_NAME, &dp->dp_free_dir));

/* create and open the free_bplist */
obj = bpobj _al |l oc(dp->dp_neta_obj set, SPA MAXBLOCKSI ZE, tXx);
VERI FY(zap_add(dp->dp_net a_obj set, DMJ POOL_DI RECTORY._ CBJECT
DMJ_POOL_FREE_BPOBJ, si zeof (UI nt64_t), 1, &obj,
VERI FYO(bpobj _open(&dp- >dp free_bpobj,
dp- >dp_net a_obj set, obj));
}

if (spa_version(spa) >= SPA VERS|I ON_DSL_SCRUB)
dsl _pool _create_origin(dp, tx);

/* create the root dataset */
obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, O, tx);
/* create the root objset */
VERI FYO(ds| _dat aset _hol d_obj (dp, obj, FTAG &ds));
os = dmu_obj set_create_inpl (dp->dp_spa, ds,
dsl _dat aset _get _bl kptr(ds), DMJ OST_ZFS, tx);

_KERNEL

zfs_create_fs(os, kcred, zplprops, tx);

dsl _dataset _rel e(ds, FTAQ;
dmu_t x_commi t (tx);
rrw_exit (&dp->dp_config_rw ock, FTAQ;

return (dp);

tx) == 0);

new usr/src/uts/comon/fs/zfs/dsl_pool.c

325 }

327 /| *

328 * Account for the neta-objset space in its placeholder dsl_dir.
329 */

330 void

331 dsl _pool _nps_di duse_space(dsl _pool _t *dp,

332 Int64_t used, int64_t conp, int64_t unconp)

333 {

334 ASSERT3U(conp, ==, unconp); /* it’'s all netadata */

335 mut ex_ent er (&dp- >dp_| ock) ;

336 dp- >dp_nos_used_del ta += used;

337 dp >dp_nos_conpr essed_del ta += conp;

338 dp- >dp_nos_unconpr essed_del ta += unconp;

339 mut ex_exi t (&dp->dp_| ock);

340 }

342 static int

343 deadl i st _enqueue_cb(void *arg, const bl kptr_t *bp, dmu_tx_t *tx)
344 {

345 dsl _deadlist_t *dl = arg;

346 dsl _deadl i st_insert(dl, bp, tx);

347 return (0);

348 }

350 void

351 dsl _pool _sync(dsl _pool _t *dp, uint64_t txg)

352 {

353 zio_t *zio;

354 dmu_tx_t *tx;

355 dsl “dir_t *dd;

356 dsl dataset _t *ds

357 objset _t *mps = dp >dp_net a_obj set;

358 hrtime_t start, wite_tinme;

359 uint64_t data_ wrltten

360 int err;

361 list_t synced_dat asets;

363 list_create(&ynced_datasets, sizeof (dsl_dataset_t),
364 of f set of (dsl _dataset _t, ds_synced_link));

366 /*

367 * W need to copy dp_space_towite() before doing

368 * dsl _sync_task_sync(), because

369 * dsl _dat aset _snapshot _reserve_space() wll increase
370 * dp_space_towite but not actually wite anything.

371 */

372 data_witten = dp->dp_space_towite[txg & TXG MASK] ;

374 tx = dnu_t x_create_assi gned(dp, txg);

376 dp- >dp_read_overhead = O;

377 start = gethrtinme();

379 zio = zio_root (dp->dp_spa, NULL, NULL, ZI O FLAG MJUSTSUCCEED);
380 while (ds = txg_|list_remove(&lp->dp_dirty datasets, txg)) {
381 /*

382 * We nust not sync any non- MOS datasets tw ce, because
383 * we may have taken a snapshot of them However, we
384 * may sync new y-created datasets on pass 2.
385 */

386 ASSERT(!list_link_active(&ds->ds_synced_link));
387 list_insert_tail(&ynced_datasets, ds);

388 dsl _dat aset _sync(ds, zio, tx);

389 1

390 DTRACE_PROBE(pool _sync__1setup);

new usr/src/uts/comon/fs/zfs/dsl_pool.c 7 new usr/src/uts/comon/fs/zfs/dsl_pool.c 8
391 err = zio_wait(zio); 457 if (list_head(&mws->o0s_dirty_dnodes[txg & TXG MASK]) != NULL ||
458 I'i st_head(&nmos->o0s_free_dnodes[txg & TXG 5 MASK]) !'= NULL)
393 wite_time gethrti me() - start; 459 Zio = zio_root (dp->dp_ spa, NULL, NULL, ZI O FLAG MJSTSUCCEED);
394 ASSERT(err == 0); 460 dnu_obj set _sync(nos, zio, tx);
395 DTRACE_PROBE(pooI _sync__2rootzio); 461 err = zio_wait(zio);
462 ASSERT(err == 0);
397 /* 463 dprintf_bp(&dp->dp_neta_rootbp, "nmeta objset rootbp is %", "");
398 * After the data bl ocks have been witten (ensured by the zio_wait() 464 spa_set _root bl kptr (dp->dp_spa, &dp->dp_neta_rootbp);
399 * above), update the user/group space accounting. 465 }
400 */ 466 wite_tinme += gethrtime() - start;
401 for (ds = list_head(&synced_datasets); ds; 467 DTRACE_PROBE2(pool _sync__4io, hrtime_t, wite_tineg,
402 ds = list_next(&ynced_dat asets, ds)) 468 hrtime_t, dp->dp_read_overhead);
403 dnu_obj set _do_user quot a_| updat es(ds->ds_obj set, tx); 469 wite_time -= dp->dp_read_overhead;
405 I* 471 I*
406 * Sync the datasets again to push out the changes due to 472 * 1 f owe nDdify a dataset in the same txg that we want to destroy it,
407 * userspace updates. This nust be done before we process the 473 * its dsl_dir’s dd_dbuf will be dirty, and thus have a hold on it.
408 * sync tasks, so that any snapshots wll have the correct 474 * dsl _dir_destroy _check() will fail if there are unexpected hol ds.
409 * user accounting information (and we won't get confused 475 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
410 * about which blocks are part of the snapshot). 476 * and clearing the hold on it) before we process the sync_tasks.
411 */ 477 * The MOS data dirtied by the sync_tasks will be synced on the next
412 zio = zio root(dp >dp_spa, NULL, NULL, ZI O FLAG MJSTSUCCEED); 478 * pass.
413 while (ds = txg_|ist_renove(&dp->dp_ di rty _datasets, txg)) { 479 */
414 ASSERT(list_link_active(&ds->ds_synced_li nk)) ; 480 DTRACE_PROBE(pool _sync__3t ask);
415 dnu_buf _rel e(ds->ds_dbuf, ds); 481 if (!txg_list_enpty(&dp->dp_sync_tasks, txg)) {
416 dsl _dataset _sync(ds, zio, tx); 482 dsl _sync_task_t *dst;
417 } 483 /*
418 err = zio_wait(zio); 484 * No nore sync tasks should have been added while we
485 * were syncing.
420 /* 486 */
421 * Now that the datasets have been conpletely synced, we can 487 ASSERT(spa_sync_pass(dp->dp_spa) == 1);
422 * clean up our in-nenory structures accunul ated whil e syncing: 488 while (dst = txg_list_renpve(&p->dp_sync_tasks, txg))
423 td 489 dsl _sync_task_sync(dst, tx);
424 * - nove dead bl ocks fromthe pending deadlist to the on-disk deadlist 490 }
425 * - release hold fromdsl_dataset_dirty()
426 */ 492 drmu_t x_commi t (tx);
427 while (ds = list_renmove_head(&synced_datasets)) {
428 obj set_t *os = ds->ds_obj set; 494 dp- >dp_space_towite[txg & TXG MASK] = O;
429 bplist_iterate(&ds->ds_pendi ng_deadl i st, 495 ASSERT(dp- >dp_t enpreserved[txg & TXG MASK] == 0);
430 deadl i st _enqueue_cb, &ds->ds_deadlist, tx);
431 ASSERT(! dmu_obj set _is_dirty(os, txg)); 497 7%
432 dnu_buf _rel e(ds->ds_dbuf, ds); 498 * |f the wite limt max has not been explicitly set, set it
433 } 499 * to a fraction of avail abl e physical menory (default 1/8th).
500 * Note that we nust inflate the limt because the spa
435 start :gethrtima(); 501 * inflates wite sizes to account for data replication.
436 while (dd = txg_list_remove(&p->dp_dirty_dirs, txg)) 502 * Check this each sync phase to catch changing nmenory size.
437 dsl _dir_sync(dd, tx); 503 */
438 Wwite time += gethrtime() - start; 504 if (physmem!= ol d_physmem && zfs_wite_linmt_shift) {
505 mut ex_enter (&fs_wite_|limt_|lock);
440 /* 506 ol d_physnem = physmem
441 * The MOS's space is accounted for in the pool/$MXS 507 zfs_wite_limt_max = ptob(physmem) >> zfs_wite_limt_shift;
442 * (dp_nos_dir). W can't nodify the nbs while we’re syncing 508 zfs_wite limt_inflated = MAX(zfs_wite |i 't_mn,
443 * it, so we renenber the deltas and apply them here. 509 spa_get _asi ze(dp->dp_spa, zfs wite linmt_max));
444 “f 510 mutex_exit(&fs_wite_limt_|ock);
445 if (dp->dp_nos_used_delta !'= 0 || dp->dp_nps_conpressed_delta !=0 || 511 }
446 dp- >dp_nos_unconpressed_delta ! = 0)
447 dsl _di r_di duse_space(dp->dp_nos_dir, DD USED HEAD, 513 /*
448 dp- >dp_nos_used_del ta, 514 * Attenpt to keep the sync tinme consistent by adjusting the
449 dp- >dp_nos_conpr essed_del ta, 515 * ampunt of wite traffic allowed into each transaction group.
450 dp- >dp_nos_unconpressed_del ta, tx); 516 * Wi ght the throughput cal culation towards the current val ue:
451 dp- >dp_nos_used_delta = 0; 517 * thru = 3/4 old_thru + 1/4 new_thru
452 dp- >dp_nos_conpressed_delta = 0; 518 kd
453 dp->dp_nos_unconpressed_delta = 0; 519 * Note: wite_time is in nanosecs while dp_throughput is expressed in
454 } 520 * bytes per mllisecond.
521 */
456 start = gethrtinme(); 522 ASSERT(zfs_wite_limt_mn > 0);

new usr/src/uts/comon/fs/zfs/dsl_pool.c 9 new usr/src/uts/comon/fs/zfs/dsl_pool.c 10
523 if (data_witten > zfs_wite limt_mn/ 8 & 589 {
524 wite_time > MSEC2NSEC(1)) { 590 uint64_t reserved = O;
525 uint64_t throughput = data_witten / NSEC2MSEC(write_tine); 591 uint64_t wite_limt = (zfs_wite_|limt_override ?
592 zfs_wite_limt_override : dp->dp_wite_limt);
527 if (dp- >dp t hroughput)
528 dp- >dp_t hroughput = throughput / 4 + 594 if (zfs_no_wite_throttle)
529 3 * dp->dp_t hroughput / 4; 595 at onmi ¢_add_64(&p- >dp_t enpreserved[t x- >t x_txg & TXG MASK],
530 el se 596 space);
531 dp- >dp_t hroughput = t hroughput; 597 return (0);
532 dp->dp_wite_limt = MN(zfs_wite_limt_inflated, 598 }
533 MAX(zfs write linmit_min,
534 dp- >dp_t hroughput * zfs_txg_synctine_ns)); 600 g%
535 } 601 * Check to see if we have exceeded the maxi num allowed |10 for
536 } 602 * this transaction group. W can do this w thout |ocks since
603 * alittle slop here is ok. Note that we do the reserved check
538 void 604 * with only half the requested reserve: this is because the
539 dsl _pool _sync_done(dsl _pool _t *dp, uint64_t txg) 605 * reserve requests are worst-case, and we really don't want to
540 { 606 * throttle based of f of worst-case estimates.
541 zilog_t *zil og; 607 */
542 dsl _dat aset _t *ds; 608 if (wite_limt > 0) {
609 reserved = dp->dp_space_towite[tx->tx_txg & TXG MASK]
544 while (zilog = txg_list_renmove(&dp->dp_dirty_zilogs, txg)) { 610 dp->dp_t enpreserved[tx->tx_txg & TXG MASK] / 2;
545 ds = dmu_obj set _ds(zil og->zl _os);
546 zil _clean(zilog, txg); 612 if (reserved & reserved > wite_linmt)
547 ASSERT(! dmu_obj set _is_dirty(zilog->zl _os, txg)); 613 return (SET_ERROR(ERESTART));
548 dmu_buf _rel e(ds->ds_dbuf, zilog); 614 }
549 }
550) ASSERT(! dnu_obj set _i s_di rty(dp->dp_neta_objset, txg)); 616 at om c_add_64(&dp->dp_t enpreserved[tx->tx_txg & TXG MASK], space);
5518
618 /*
553 /* 619 * If this transaction group is over 7/8ths capacity, delay
554 * TRUE if the current thread is the tx_sync_thread or if we 620 * the caller 1 clock tick. This will slow down the "fill"
555 */are bei ng called from SPA context during pool initialization. 621 */ rate until the sync process can catch up with us.
556 * 622 *
557 int 623 if (reserved & reserved > (wite_limt - (wite_limt >> 3))) {
558 dsl _pool _sync_context (dsl _pool _t *dp) 624 txg_del ay(dp, tx->tx_txg, zfs_throttle_del ay,
559 { 625 zfs_throttle_resol ution);
560 return (curthread == dp->dp_tx.tx_sync_thread || 626 }
561 spa_is_initializing(dp->dp_spa));
562 } 628 return (0);
629 }
564 uint64_t
565 dsl _pool _adj ust edsi ze(dsl _pool _t *dp, bool ean_t netfree) 631 void
566 { 632 dsl _pool _tenpreserve_cl ear(dsl _pool _t *dp, int64_t space, dmu_tx_t *tx)
567 uint64_t space, resv; 633 {
634 ASSERT(dp- >dp_t enpr eserved[t x- >t x_txg & TXG_MASK] >= space);
569 /* 635 atom c_add_64(&p->dp_t enpreserved[tx->t x_txg & TXG MASK], —space);
570 * Reserve about 1.6% (1/64), or at |least 32MB, for allocation 636 }
571 * efficiency.
572 * XXX The intent log is not accounted for, so it nmust fit 638 void
573 * within this slop. 639 dsl _pool _nmenory_pressure(dsl _pool _t *dp)
574 * 640 {
575 * |f we're trying to assess whether it’s OKto do a free, 641 ui nt64_t space_inuse = O;
576 * cut the reservation in half to allow forward progress 642 int i;
577 * (e.g. make it possible to rm(1l) files froma full pool).
578 */ 644 if (dp->dp_wite_ |limt == zfs_wite_limt_mnin)
579 space = spa_get_dspace(dp->dp_spa); 645 return;
580 resv = MAX(space >> 6, SPA M NDEVSI ZE >> 1);
581 if (netfree) 647 for (i =0; i < TXG SIZE; i++)
582 resv >>= 1; 648 space_i nuse += dp->dp_space_towite[i];
649 space_i nuse += dp->dp_tenpreserved[i];
584 return (space - resv); 650 }
585 } 651 dp->dp_wite_limt = MAX(zfs_wite_limt_mn,
652 M N(dp->dp_write_limt, space_inuse / 4));
587 int 653 }
588 dsl _pool _tenpreserve_space(dsl _pool _t *dp, uint64_t space, dmu_tx_t *tx)

new usr/src/uts/comon/fs/zfs/dsl_pool.c 11 new usr/src/uts/comon/ fs/zfs/dsl_pool.c
655 void 721 }
656 dsl _pool _wi |l use_space(dsl _pool _t *dp, int64_t space, dmu_tx_t *tx) 722 }
657 {
658 if (space > 0) { 724 ASSERT3U(ds- >ds_di r - >dd_phys->dd_ori gi n_obj, ==, prev->ds_object);
659 mut ex_ent er (&dp->dp_| ock) ; 725 ASSERT3U(ds- >ds_phys->ds_prev_snap_obj, ==, prev->ds_object);
660 dp- >dp_space_towite[tx->tx_txg & TXG MASK] += space;
661 mut ex_exi t (&p->dp_l ock); 727 if (prev->ds_phys->ds_next_clones_obj == 0) {
662 } 728 dnu_buf _wi I | _dirty(prev->ds_dbuf, tx);
663 } 729 prev->ds_phys- >ds_next _cl ones_obj =
730 zap_cr eat e(dp- >dp_net a_obj set,
665 /* ARGSUSED */ 731 DMU_OT_NEXT_CLONES, DMJ OT_NONE, 0, tx);
666 static int 732 }
667 upgrade_cl ones_ch(dsl _pool _t *dp, dsl_dataset_t *hds, void *arg) 733 VERI FYO(zap_add_i nt (dp- >dp_net a_obj set,
668 { 734 prev->ds_phys- >ds_next _cl ones_obj, ds->ds_object, tx));
669 dmu_tx_t *tx = arg;
670 dsl _dataset _t *ds, *prev = NULL; 736 dsl _dat aset _rel e(ds, FTAQ;
671 int err; 737 if (prev != dp->dp_origin_snap)
738 dsl _dat aset_rel e(prev, FTAQ;
673 err = dsl _dataset _hol d_obj (dp, hds->ds_object, FTAG &ds); 739 return (0);
674 if (err) 740 }
675 return (err);
742 void
677 whi | e (ds->ds_phys->ds_prev_snap_obj != 0) { 743 dsl _pool _upgrade_cl ones(dsl _pool _t *dp, dmu_tx_t *tx)
678 err = dsl _dataset_hol d_obj (dp, ds->ds_phys->ds_prev_snap_obj, 744 {
679 FTAG &prev); 745 ASSERT(dmu_t x_i s_synci ng(tx));
680 if (err) { 746 ASSERT(dp->dp_origin_snap != NULL)
681 dsl _dat aset _rel e(ds, FTAQ;
682 return (err); 748 VERI FYO(dnu_obj set _fi nd_dp(dp, dp->dp_root_dir_obj, upgrade_cl ones_cb,
683 } 749) tx, DS_FI ND_CH LDREN));
750
685 if (prev->ds_phys->ds_next_snap_obj != ds->ds_object)
686 br eak; 752 | * ARGSUSED */
687 dsl _dataset _rel e(ds, FTAQ; 753 static int
688 ds = prey; 754 upgrade_dir_clones_cb(dsl _pool _t *dp, dsl_dataset_t *ds, void *arg)
689 prev = NULL; 755 {
690 } 756 dmu_tx_t *tx = arg;
757 objset _t *npbs = dp->dp_neta_obj set;
692 if (prev == NULL) {
693 prev = dp->dp_ori gi n_snap; 759 if (ds->ds_dir->dd_phys->dd_origin_obj !'= 0) {
760 dsl _dataset _t *origin;
695 /*
696 * The $ORIG N can't have any data, or the accounting 762 VERI FYO(dsl _dat aset _hol d_obj (dp,
697 * will be wong. 763 ds- >ds_di r- >dd_phys->dd_ori gi n_obj, FTAG &origin));
698 */
699 ASSERTO(pr ev- >ds_phys->ds_bp. bl k_birth); 765 if (origin->ds_dir->dd_phys->dd_clones == 0) {
766 dmu_buf_wi || _dirty(origin->ds d|r—>dd dbuf, tx);
701 /* The origin doesn't get attached to itself */ 767 origin->ds_dir->dd_phys->dd_clones = zap_ creat e(nos,
702 if (ds->ds_object == prev->ds_object) { 768 DMJ_OT_DSL_CLONES, DMJ_OT_NONE, O, tx);
703 dsl _dat aset _rel e(ds, FTAQ; 769 }
704 return (0);
705 } 771 VERI FYO(zap_add_i nt (dp- >dp_net a_obj set,
772 ori gi n->ds_di r->dd_phys->dd_cl ones, ds->ds_object, tx));
707 dmu_buf _wi Il _dirty(ds->ds_dbuf, tx);
708 ds->ds_phys->ds_prev_snap_obj = prev->ds_obj ect; 774 dsl _dataset _rele(origin, FTAG;
709 ds->ds_phys- >ds_prev_snap_txg = prev->ds_phys->ds_creation_txg; 775 }
776 return (0);
711 drmu_buf _wi Il _dirty(ds->ds_dir->dd dbuf tx); 777 }
712 ds->ds_di r->dd_phys->dd_ori gi n_obj = prev->ds_object;
779 void
714 drmu_buf _wi Il _dirty(prev->ds_dbuf, tx); 780 dsl _pool _upgrade_dir_cl ones(dsl _pool _t *dp, dnmu_tx_t *tx)
715 prev->ds_phys->ds_num chi | dr en++; 781 {
782 ASSERT(drmu_t x_i s_synci ng(tx));
717 if (ds->ds_phys->ds_next_snap_obj == 0) { 783 uint64_t obj;
718 ASSERT(ds->ds_prev == NUL L)
719 VERI FYO(dsl| _dat aset _hol d ob] (dp, 785 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_D R NAME, tx);
720 ds- >ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev)); 786 VERI FYO(dsl _pool _open_speci al _di r(dp,

new usr/src/uts/comon/fs/zfs/dsl_pool.c

787 FREE_DI R_NAVE, &dp->dp_free_dir));

789 /*

790 * We can’t use bpobj _alloc(), because spa_version() still

791 * returns the old version, and we need a new version bpobj with
792 * subobj support. So cal i drmu_obj ect _al l oc() directly.

793 */

794 obj = dmu_obj ect_al | oc(dp->dp_neta_obj set, DMJ_OT_BPOBJ,

795 SPA_MAXBLOCKSI ZE, DMJ_OT_BPOBJ_HDR, si zeof “(bpobj phys_t), tx);
796 VERI FYO(zap_add(dp- >dp_met a_obj set, DMJ_POOL_DI RECTORY_OBJECT
797 DMJ_POCL_FREE BPOBJ, sizeof (uint64_t), 1, &bj, tX));

798 VERI FYO(bpobj _open(&dp- >dp free_bpobj, dp- >dp_mat a_obj set, obj));
800 VERI FYO(dnu_obj set _find_dp(dp, dp->dp_root_dir_obj,

801 upgrade_di r_cl ones_cb, tx, DS_FIND _CHI LDREN));

802 }

804 void

805 dsl _pool _create_origin(dsl _pool _t *dp, dnmu_tx_t *tx)

806 {

807 ui nt64_t dsobj;

808 dsl _dat aset _t *ds;

810 ASSERT(dnmu_t x_i s_synci ng(tx))

811 ASSERT(dp->dp_ori gi n_snap == NUL L);

812 ASSERT(rrw_hel d(&p->dp_config_rw ock RWWRI TER)) ;

814 /* create the origin dir, ds, & snap-ds */

815 dsobj = dsl _dataset_create_sync(dp->dp_root_dir, ORI G N_DI R_NAME,
816 NULL, O, kcred, tx);

817 VERI FYO(dsl| _dat aset _hol d_obj (dp, dsobj, FTAG &ds));

818 dsl _dat aset _snapshot _sync_i npl (ds, ORI G N_DIR_NAME, tx);

819 VERI FYO(dsl _dat aset _hol d_obj (dp, ds->ds_phys->ds_prev_snap_obj,
820 dp, &dp->dp_origin_snap));

821 dsl _dataset _rel e(ds, FTAQ;

822 }

824 taskqg_t *

825 dsl _pool _vnrel e_taskq(dsl _pool _t *dp)

826 {

827 return (dp->dp_vnrel e_taskq);

828 }

830 /*

831 * Walk through the pool -wi de zap object of tenporary snapshot user hol ds
832 * and rel ease them

833 */

834 void

835 dsl _pool _cl ean_t np_userrefs(dsl _pool _t *dp)

836 {

837 zap_attribute_t za;

838 zap_cursor_t zc;

839 obj set _t *npbs = dp->dp_net a_obj set;

840 ui nt64_t zapobj = dp->dp_tnp_userrefs_obj;

841 nvlist_t *holds;

842 #endif /* | codereview */

844 if (zapobj == 0)

845 return;

846 ASSERT(spa_ver si on(dp->dp_spa) >= SPA_VERS|I ON_USERREFS) ;

848 holds = fnvlist_alloc();

850 #endif /* ! codereview */

851 for (zap_cursor_init(&c, nos, zapobj);

852 zap_cursor_retrieve(&zc, &za) == O,

13

853
854
855
856
857

883

885
886

888
889
890

892

new usr/src/uts/comon/fs/zfs/dsl_pool.c
zap_cursor _advance(&zc)) {
char *htag;
uint64_t dsobj;
nvlist_t *tags;
#endif /* | codereview */
htag = strchr(za.za_nane, '-');
*htag = "\0’;
++ht ag;
if (nvlist_lookup_nvlist(holds, za.za_nane, & ags) != 0)
tags = fnvlist_alloc();
fnvlist_add_bool ean(tags, htag);
fnvlist_add_nvlist(holds, za.za_name, tags);
fnvlist_free(tags);
} else {
fnvlist_add_bool ean(tags, htag);
dsobj = strtonum(za.za_name, NULL);
dsl _dat aset _user _rel ease trrp(dp, dsob], ht ag) ;
}
dsl| _dat aset _user_rel ease_tnp(dp, holds);
fnvlist_free(holds);
#endif /* | codereview */
zap_cursor _fini (&zc);
}
/*
* Create the pool-wide zap object for storing tenporary snapshot holds.
*
/
voi d
dsl _pool _user_hol d_creat e_obj (dsl _pool _t *dp, dmu_tx_t *tx)
{
obj set _t *mpbs = dp->dp_neta_obj set;
ASSERT(dp->dp_t np_userrefs_obj == 0);
ASSERT(drmu_t x_i s_synci ng(tx));
dp->dp_tnp_userrefs_obj = zap_create_|ink(nps, DMJ OT_USERREFS,
DMJ_POOL_DI RECTORY_OBJECT, DMJ_POOL_TMP_USERREFS, tX);
}
static int
dsl _pool _user_hol d_rel e_i npl (dsl _pool _t *dp, uint64_t dsobj,

893
894

896
897
898
899

901
902

904
905
906
907
908
909
910
911
912
913
914
915

const char *tag, uint64_t now, dmu_tx_t *tx,
obj set _t *nps = dp->dp_neta_obj set;

ui nt64_t zapobj = dp->dp_tnp_userrefs_obj;
char *nane;

int error;

ASSERT(spa_versi on(dp->dp_spa) >= SPA_VERSI ON_USERREFS) ;
ASSERT(dnmu_t x_i s_synci ng(tx));

/*
* |f the pool was created prior to SPA VERSI ON_USERREFS,
* zap object for tenporary holds might not exist yet.
*
/

if (zapobj == 0) {
if (holding) {
dsl _pool _user_hol d_creat e_obj (dp, tx);
zapobj = dp->dp_tnp_userrefs_obj;
} else {
return (SET_ERROR(ENCENT));
}

bool ean_t hol di ng)

the

{

14

new usr/src/uts/ comon/fs/zfs/dsl_pool.c 15

917
918
919
920
921
922

924
925

927
928
929
930
931
932

}
/*

*

S
i nt

name = knmem asprintf("%I|x-%", (u_longlong_t)dsobj, tag);
if (hol ding)

error = zap_add(nos, zapobj, nane, 8, 1, &ow, tx);
el se

error = zap_renove(nos, zapobj, nane, tx);
strfree(nane);

return (error);

Add a tenporary hold for the given dataset object and tag.

dsl _pool _user_hol d(dsl _pool _t *dp, uint64_t dsobj, const char *tag,

933 {

934
935

937
938
939
940
941
942
943
944
945
946

948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982

}
| *

*

*/

i nt

uint64_t now, dmu_tx_t *tx)

return (dsl_pool _user_hold_rel e_inpl(dp, dsobj, tag, now, tx, B TRUE));

Rel ease a tenporary hold for the given dataset object and tag.

dsl _pool _user_rel ease(dsl _pool _t *dp, uint64_t dsobj, const char *tag,

{

® Ok ok ok F Rk Ok Ok R b Sk OF 3k R R b R Sk ok ok %k OF % b % ok 3k Ok % F %

dmu_tx_t *tx)

return (dsl_pool _user_hold_rele_inpl(dp, dsobj, tag, NULL,
tx, B_FALSE));

DSL Pool Configuration Lock

The dp_config_rw ock protects agai nst changes to DSL state (e.g. dataset

creation / destruction / renane / property setting). It nmust be held for
read to hold a dataset or dsl _dir. 1.e. you nust call

dsl _pool _config_enter() or dsl_pool _hold() before calling

dsl _{dataset,dir}_hold{_obj}. 1In nost circunstances, the dp_config_rw ock

must be held continuously until all datasets and dsl_dirs are rel eased.

The only exception to this rule is that if a "long hold" is placed on
a dataset, then the dp_config_rw ock nay be dropped while the dataset
is still held. The long hold will prevent the dataset from being
destroyed -- the destroy will fail with EBUSY. A long hold can be
obt ai ned by calling dsl_dataset_long_hold(), or by "owning" a dataset
(by calling dsl_{dataset, objset}_{try}own{_obj}).

Legi ti mate | ong-hol ders (including owners) should be |ong-running, cancel able

tasks that should cause "zfs destroy" to fail. This includes
consunmers (i.e. a ZPL fil esystem bei ng mounted or ZVOL bei ng open),
"zfs send", and "zfs diff". There are several other |ong-hol ders whose

uses are suboptimal (e.g. "zfs pronote", and zil_suspend()).

The usual formula for |ong-holding would be:
dsl _pool _hol d()
dsl _dat aset _hol d()
... performchecks ...
dsl _dat aset _| ong_hol d()
dsl _pool _rele()
perform | ong-running task ...
dsl _dataset _l ong_rel e()
dsl _dataset _rel e()

Note that when the long hold is released, the dataset is still held but
the pool is not held. The dataset may change arbitrarily during this tine

new usr/src/uts/ comon/fs/zfs/dsl_pool.c 16
983 * (e.g. it could be destroyed). Therefore you shouldn’t do anything to the
984 * dataset except release it.

985 *

986 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
987 * or nodifying operations.

988 *

989 * Modifying operations should generally use dsl_sync_task(). The synctask
990 * infrastructure enforces proper |ocking strategy with respect to the

991 * dp_config_rw ock. See the comment above dsl_sync_task() for details.

992 *

993 * Read-only operations will manually hold the pool, then the dataset, obtain
994 * information fromthe dataset, then rel ease the pool and dataset.

995 * dnu_objset_{hold,rele}() are convenience routines that also do the pool
996 * hold/rele.

997 */

999 int

1000 dsl _pool _hol d(const char *nane, void *tag, dsl_pool _t **dp)

1001 {

1002 spa_t *spa;

1003 int error;

1005 error = spa_open(nane, &spa, tag);

1006 if (error == 0) {

1007 *dp = spa_get_dsl (spa);

1008 dsl _pool _config_enter(*dp, tag);

1009 }

1010 return (error);

1011 }

1013 voi d

1014 dsl _pool _rel e(dsl _pool _t *dp, void *tag)

1015

1016 dsl _pool _config_exit(dp, tag);

1017 spa_cl ose(dp->dp_spa, tag);

1018 }

1020 voi d

1021 dsl _pool _config_enter(dsl _pool _t *dp, void *tag)

1022 {

1023 /*

1024 * W& use a "reentrant” reader-witer |ock, but not reentrantly.

1025 *

1026 * The rrwlock can (with the track_all flag) track all reading threads,

1027 * which is very useful for debugging which code path failed to rel ease

1028 * the lock, and for verifying that the *current* thread does hold

1029 * the | ock.

1030 *

1031 * (Unlike a rw ock, which knows that N threads hold it for

1032 * read, but not *which* threads, so rw_hel d(RW READER) returns TRUE

1033 * if any thread holds it for read, even if this thread doesn't).

1034 */

1035 ASSERT(! rrw_hel d(&p->dp_confi g_rw ock, RW READER));

1036 rrw_enter (&p->dp_config_rw ock, RW READER, tag);

1037 }

1039 void

1040 dsl _pool _config_exit(dsl_pool _t *dp, void *tag)

1041 {

1042 rrw_exit(&dp->dp_config_rw ock, tag);

1043 }

1045 bool ean_t

1046 dsl _pool _config_hel d(dsl _pool _t *dp)

1047 {

1048 return (RRWLOCK_HELD(&dp- >dp_config_rw ock));

new usr/src/uts/comon/fs/zfs/dsl_pool.c

1049 }

17

new usr/src/uts/comon/ fs/zfs/dsl _userhold.c

R R R R

17479 Wed May 29 20:27:09 2013
new usr/src/uts/comon/ fs/zfs/dsl_userhold.c
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi
Submitted by: Steven Hartland <steven. hartland@ul tiplay.co. uk>

LR

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governing pernissions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /=

22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
23 * Copyright (c) 2013 by Del phix. Al rights reserved.

24 * Copyright (c) 2013 Steven Hartland. Al rights reserved.

25 #endif /* | codereview */

26 */

28 #include <sys/zfs_context.h>
29 #include <sys/dsl _userhol d. h>
30 #include <sys/dsl _dataset. h>
31 #include <sys/dsl _destroy. h>
32 #include <sys/dsl_synctask. h>
33 #include <sys/dnu_tx. h>

34 #include <sys/zfs_onexit.h>
35 #include <sys/dsl _pool . h>

36 #include <sys/dsl_dir.h>

37 #include <sys/zfs_ioctl.h>

38 #include <sys/zap. h>

40 typedef struct dsl_dataset_user_hold_arg {

41 nvlist_t *dduha_hol ds;

42 nvlist_t *dduha_chkhol ds;

43 #endif /* | codereview */

44 nvlist_t *dduha_errlist;

45 m nor _t dduha_mi nor;

46 } dsl _dataset _user_hold_arg_t;

48 /*

49 * |f you add new checks here, you may need to add additional checks to the
50 * "tenporary" case in snapshot_check() in dnu_objset.c.

51 */

52 int

53 dsl| _dat aset_user _hol d_check_one(dsl _dataset _t *ds, const char *htag,
54 bool ean_t tenphold, dmu_tx_t *tx)

55 {

56 dsl _pool _t *dp = dnu_tx_pool (tx);

57 obj set _t *npbs = dp->dp_neta_obj set;

58 int error = 0;

60 ASSERT(RRW READ_HELD(&dp- >dp_confi g_rw ock));

new usr/src/uts/comon/ fs/zfs/dsl_userhold.c

62 #endif /* | codereview */

63 if (strlen(htag) > MAXNAMELEN)

64 return (E2BI G ;

65 /* Tenphol ds have a nore restricted |length */

66 if (tenmphold && strlen(htag) + MAX_TAG PREFI X_LEN >= MAXNAMELEN)
67 return (E2BI G ;

69 /* tags must be unique (if ds already exists) */

70 if (ds !'= NULL && ds->ds_phys->ds_userrefs_obj != 0) {
24 if (ds !'= NULL) {

25 nmut ex_ent er (&ds- >ds_| ock) ;

26 if (ds->ds_phys->ds_userrefs_obj != 0) {

71 uint64_t val ue;

73 #endif /* | codereview */

74 error = zap_| ookup(nos, ds->ds_phys->ds_userrefs_obj,
75 htag, 8, 1, &value);

76 if (error ==

77 error = SET_ERROR(EEXI ST) ;

78 else if (error == ENCENT)

79 error = 0;

80 }

28 mut ex_exi t (&Js->ds_| ock);

29 }

82 return (error);

83 }

85 static int
86 dsl| _dataset _user_hol d_check(void *arg, dnmu_tx_t *tx)

87

88 dsl _dat aset _user_hold_arg_t *dduha = arg;

89 dsl _pool _t *dp = dnu_tx_pool (tx);

90 nvpal r_t *pair;

40 int rv = 0;

92 if (spa_version(dp->dp_spa) < SPA VERS|I ON_USERREFS)

93 return (SET_ERROR(ENOTSUP)) ;

95 if (!ldmu_tx_is_syncing(tx))

96 return (0);

98 #endif /* | codereview */

99 for (pair = nvlist_next_nvpair(dduha->dduha_hol ds, NULL); pair != NULL;
100 pair = nvlist_next_nvpair (dduha- >dduha_hol ds, pair))
101 dsl _dataset _t *ds;

102 #endif /* ! codereview */

103 int error = 0;

104 char *htag, *naneg;

45 dsl _dataset _t *ds;

46 char *htag;

106 /* must be a snapshot */

107 name = nvpair_nanme(pair);

108 if (strchr(name, '@) == NULL)

49 if (strchr(nvpair_name(pair), '@) == NULL)

109 error = SET_ERROR(EINVAL);

111 if (error == 0)

112 error = nvpair_value_string(pair, &htag);
114 if (error == 0)

115 error = dsl _dataset _hol d(dp, nane, FTAG &ds);

54 if (error == 0) {

new usr/src/uts/comon/ fs/zfs/dsl _userhold.c

150

error = dsl_dataset_hol d(dp,
nvpai r_nanme(pair), FTAG &ds);

if (error ==) {
error dsl _dat aset _user _hol d_check_one(ds, htag,
dduha >dduha_minor !'= 0, tx);
dsl _dat aset _rel e(ds, FTAG;
}

if (error == 0)

{
fnvlist_add_string(dduha->dduha_chkhol ds, nane, htag);

} else {
/*

* W register ENCENT errors so they can be correctly
* reported if needed, such as when all holds fail.

fnvI i st _add_i nt 32(dduha- >dduha_errlist, name, error);
NOENT)

if (error I= E
return (error);

if (error ! O)

fnvl i st add i nt 32(dduha- >dduha_errli st,
nvpai r_name(pair), error);

}

/* Return ENCENT if no holds woul d be created. */
if (nvlist_next_nvpair(dduha->dduha_chkhol ds, NULL) == NULL)
return (ENCENT);

return (0);
return (rv);

static void

_dataset _user _hol d_sync_one_i npl (nvlist_t *tnpholds, dsl_dataset_t *ds,
const char *htag, mnor_t mnor, uint64_t now, dmu_tx_t *tx)

_dat aset _user _hol d_sync_one(dsl _dataset _t *ds, const char *htag,
mnor_t mnor, uint64_t now, dmu_tx_t *tx)

dsl _pool _t *dp = ds->ds_dir->dd_pool ;
obj set _t “*nmos = dp->dp_met a_obj set ;
ui nt 64_t zapobJ ;

ASSERT(RRW WRI TE_HELD(&p- >dp_confi g_rw ock));

mut ex_ent er (&ds- >ds_| ock) ;
if (ds->ds_phys->ds_userrefs_obj == 0) {
/*
* This is the first user hold for this dataset.
* the userrefs zap object.
*
/

dmu_buf _wi Il _dirty(ds->ds_dbuf, tx);
zapobj = ds->ds_phys->ds_userrefs_obj =
zap_create(nos, DMJ_OT_USERREFS, DMJ OT_NONE, 0, tx);

Create

} else {
zapobj = ds->ds_phys->ds_userrefs_obj;

ds->ds_userref s++;
mut ex_exi t (&ds->ds_| ock) ;

VERI FYO(zap_add(nos, zapobj, htag, 8, 1, &wow, tx));
if (mnor I'=0) {

new usr/src/uts/comon/ fs/zfs/dsl_userhold.c

s) '=0) {

nor);

*)arg;

oesn’t match)",

ca->zhca_hol ds);

m nor)

NULL) {

170 char nanme[MAXNAMELEN] ;
171 nvlist_t *tags;
173 #endif /* | codereview */
174 VERI FYO(dsl _pool _user_hol d(dp, ds->ds_obj ect,
175 htag, now, tx));
176 (void) snpri ntf(nan'e si zeof (nane), "%Ix",
177 (u_l ongl ong_t) ds->ds_obj ect);
179 if (nvlist_|lookup_nvlist(tnpholds, nane, &tag
180 tags = fnvlist_alloc();
181 fnvlist_add_bool ean(tags, htag);
182 fnvlist_add_nvlist(tnpholds, nane, tags);
183 fnvlist_free(tags);
184 } else {
185 fnvlist_add_bool ean(tags, htag);
186
99 dsl _regi ster_onexit_hol d_cl eanup(ds, htag, m
187 }
189 spa_| hi story_l og_i nternal ds(ds "hol d", tx,
190 "tag=% tenp=% refs=%Iu"
191 htag, mnor != 0, ds- >ds_userrefs);
192 }
194 typedef struct zfs_hold_cl eanup_arg {
195 char zhca_spaname[MAXNAMVELEN] ;
196 uint64_t zhca_spa_| Ioad _gui d;
197 nvlist_t *zhca_holds
198 } zfs_hol d_cl eanup_arg_t;
200 static void
201 ?sl _dat aset _user _rel ease_onexit(void *arg)
202
203 zfs_hol d_cl eanup_arg_t *ca = (zfs_hol d_cl eanup_arg_t
204 spa_t *spa;
205 int error;
207 error = spa_open(ca->zhca_spanane, &spa, FTAG;
208 if (error 1=0
209 zfs_dbgmsg("coul dn’t rel ease hol ds on pool =%
210 "because pool is no |onger |oaded",
211 ca- >zhca_spanane) ;
212 return;
213 1
214 if (spa_load_guid(spa) != ca->zhca_spa_|l oad_guid) {
215 zfs_dbgnmsg("coul dn’t rel ease hol ds on pool =% "
216 "because pool is no |onger |oaded (guid d
217 ca->zhca_spanane) ;
218 spa_cl ose(spa, FTAQ;
219 return;
220 }
222 (voi d) dsl_dataset_user_rel ease_t np(spa_get_dsl (spa),
223 fnvlist_free(ca->zhca_hol ds);
224 kmem free(ca, sizeof (zfs_hold_cleanup_arg_t));
225 spa_cl ose(spa, FTAQ;
226 }
228 static void
229 dsl _onexit_hol d_cl eanup(spa_t *spa, nvlist_t *holds, mnor_t
230 {
231 zfs_hol d_cl eanup_arg_t *ca;
233 if (mnor == 0 || nvlist_next_nvpair(holds, NULL) ==
234 fnvlist_free(holds);

new usr/src/uts/comon/ fs/zfs/dsl _userhold.c

235 return;

236 1

238 ASSERT(spa I'= NULL);

239 ca = kmem al | oc(si zeof (*ca), KM SLEEP);

241 (void) strlcpy(ca->zhca_spanane, spa_nanme(spa),

242 si zeof (ca->zhca spanama))

243 ca->zhca_spa_| Ioad _gui d = spa_| | oad _gui d(spa);

244 ca->zhca_hol ds = hol ds

245 VERI FYO(zf s_onexi t_add_cb(m nor,

246 dsl _dat aset _user _rel ease_onexit, ca, NULL));

247 }

249 void

250 dsl _dat aset _user_hol d_sync_one(dsl _dataset _t *ds, const char *htag,
251 mnor_t mnor, uint64_t now, dmu_tx_t *tx)

252 {

253 nvlist_t *tnphol ds;

255 if (mnor !'=0)

256 tnphol ds = fnvlist_alloc();

257 el se

258 t nphol ds = NULL;

259 dsl _dat aset _user _hol d_sync_one_i npl (t nphol ds, ds, htag, mnor, now,
260 dsl _onexit_hol d_cl eanup(dsl _dat aset _get _spa(ds), tnpholds, m nor)
261 }

263 #endif /* ! codereview */
264 static void
265 dsl _dat aset _user_hol d_sync(void *arg, dnu_tx_t *tx)

266 {

267 dsl _dat aset _user_hol d_arg_t *dduha = arg;

268 dsl _pool _t *dp = dnu_tx_pool (tx);

269 nvpalr_t *pair;

270 nvlist_t *tnphol ds;

271 #endif /* | codereview */

272 uint64_t now = gethrestinme_sec();

274 i f (dduha->dduha_m nor != 0)

275 tphol ds = fnvlist_alloc();

276 el se

277 t nphol ds = NULL;

278 for (pair = nvlist_next_nvpair(dduha->dduha_chkhol ds, NULL);

279 pair != NULL;

280 pair = nvlist_next_nvpair (dduha- >dduha_chkhol ds, pair)) {

107 for (pair = nvlist_next_nvpair(dduha->dduha_hol ds, NULL); pair != NULL;
108 pair = nvlist_next_nvpair(dduha->dduha_hol ds, pair)) {

281 dsl _dat aset _t *ds;

283 #endif /* | codereview */

284 VERI FYO(dsl _dat aset _hol d(dp, nvpair_nanme(pair), FTAG &ds));
285 dsl _dat aset _user _hol d_sync_one_i npl (t mphol ds, = ds,

286 “fnvpair_val ue_string(pair), dduha- >dduha_m' nor, now,

110 dsl _dat aset _user _hol d_sync_one(ds, fnvpair_val ue_string(pair),
111 dduha- >dduha_mi nor, now, tx);

287 dsl _dataset_rel e(ds, FTAQ;

288 }

289 dsl _onexit_hol d_cl eanup(dp- >dp_spa, tnpholds, dduha->dduha_m nor);
290 #endif /* | codereview */

291 }

293 /*

294 * The full semantics of this function are described in the coment above

295 * lzc_hol d()
296 *

new usr/src/uts/comron/fs/zfs/dsl _use

297 * To summari ze:

298 #endif /* | codereview */

299 * holds is nvl of snapnane -> h
300 * errlist will be filled in wt

rhol d.c 6

ol dnane
h snapnane -> error
e holds will be tenporary, cleaned up

requested hol ds exi st then ENCENT will be

e holds will be tenporary, which will be cleaned

snapshots that existed, will be created and 0

reated, the errlist will be filled in,

contain entries for holds where the snapshot

hol ds, minor_t cleanup_minor, nvlist_t *errlist)

114 * if cleanup_mnor is not 0, th

115 * when the process exits.

301 *

302 * The snaphosts nust all be in the sane pool.
303 *

304 * Holds for snapshots that don’t exist will be skipped.
305 *

306 * |If none of the snapshots for

307 * returned.

308 *

309 * If cleanup_minor is not O, th

310 * up when the process exits.

311 *

312 * On success all the holds, for

313 * will be returned.

314 *

315 * On failure no holds will be c

316 * and an errno will returned.

317 *

318 * In all cases the errlist wll

319 * didn't exist.

117 * if any fails, all wll fail.

320 */

321 int

322 dsl _dataset_user_hold(nvlist_t *

323 {

324 dsl _dat aset _user_hold_arg_t dduha;
325 nvpair_t *pair;

326 int ret;

327 #endif /* | codereview */

329 pair = nvlist_next_nvpai
330 If (pair == NULL

331 return (0);

333 dduha. dduha_hol ds = hoI ds
334 dduha. dduha_chkhol ds = f
335 #endif /* | codereview */

336 dduha. dduha_errlist = er
337 dduha. dduha_m nor = cl ea
339 ret = dsl _sync_task(nvpai
340 dsl _dat aset _user _hol
341 fnvlist_free(dduha. dduha_
343 return (ret);

124 return (dsl_sync_task(nv
125 dsl _dat aset _user _hol
344 }

346 typedef int (dsl_holdfunc_t)(dsl
347 dsl _dataset _t **dsp);

349 #endif /* | codereview */
350 typedef struct dsl_dataset_user

r(holds, NULL);

nvI ist_alloc();
rlist;
nup_mi nor;

ir_name(pair), dsl_dataset_user_hol d_check,
d_sync, &dduha, fnvlist_num pairs(holds));
chkhol ds) ;

pair_nane(pair), dsl_dataset_user_hol d_check,
d_sync, &dduha, fnvlist_numpairs(holds)));

_pool _t *dp, const char *nane, void *tag,

rel ease_arg {
| df unc;

351 dsl _hol df unc_t *ddura_ho
352 #endif /* | codereview */

353 nvlist_t *ddura_hol ds;
354 nvlist_t *ddura_todel ete;
355 nvlist_t *ddura_errlist;
356 nvlist_t *ddura_chkhol ds;

357 #endif /* | codereview */

new usr/src/uts/comon/ fs/zfs/dsl _userhold.c

358

360
361
362
363
364
365
366

368
369
370
371
128
129
372
373
374
375
376
377
378
133
134

136

380
381

383
384
385

387
388
389

391

393
145
394
395
396

398
399

401
147
402
403

405
406
149
150
407
408

410
411
412
413

} dsl _dataset _user_rel ease_arg_t;

/* Place a dataset hold on the snapshot identified by passed dsobj string */

static int

dsl _dataset _hol d Obj strl ng(dsl _pool _t *dp, const char *dsobj, void *tag,
dsl| _dataset _t **dsp)

{
return (dsl_dataset_hol d_obj (dp, strtonun{dsobj, NULL), tag, dsp));
}
#endif /* | codereview */
static int

dsl _dat aset _user _rel ease_check_one(dsl _dat aset_user_rel ease_arg_t *ddura,
dsl _dataset _t *ds, nvlist_t *holds, const char *nane)

dsl _dat aset _user _rel ease_check_one(dsl _dat aset _t *ds,

(nvlist_t *holds, boolean_t *todel ete)

uint64_t zapobj;
nvpair_t *pair;
nvlist_t *hol ds_found;
#endif /* | codereview */
obj set _t *npbs = ds->ds_dir->dd_pool - >dp_net a_obj set ;
int ret, numhol ds;
int error;
int numholds = O;

*todel ete = B_FALSE;

if (!dsl_dataset_is_snapshot(ds))
return (SET_ERROR(EINVAL));

zapobj = ds- >ds _phys->ds_userrefs_obj;
if (zapobj ==
return (SET ERROR(ESRCH)) ;
ret = 0;
nurmhol ds = 0;

hol ds_found = fnvlist_alloc();
#endif /* | codereview */
for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL;
pair = nvlist_next_nvpair(holds, pair))

/* Make sure the hold exists */
uint64_t tnp;
int error;
const char *nane;

name = nvpair_nanme(pair);
error = zap_|l ookup(nos, zapobj, nane, 8, 1, & np);

/* Non-existent holds aren't always an error. */
error = zap_| ookup(nos, zapobj, nvpair_nane(pair),
if (error == ENCENT)

conti nue;

if (error 1=0) {
fnvlist_free(hol ds_found);
error = SET_ERROR(ESRCH);

if (error 1= 0)
return (error);

}

fnvlist_add_bool ean(hol ds_f ound, nane);
#endi f /* | codereview */
nunhol ds++;
}

8 1, &np);

new usr/src/uts/comon/ fs/zfs/dsl_userhold.c

415 if (DS_I S_DEFER DESTROY(ds) && ds->ds_phys->ds_numchildren == 1 &&
416 ds->ds_userrefs == nunhol ds) {

417 /* we need to destroy the snapshot as well */
418 if (dsl_dataset_| ong_hel d(ds))

419 fnvlist_free(hol ds_found);

153 if (dsl_dataset_| ong_hel d(ds))

420 return (SET ERROR(EBUSY)) ;

155 *todel ete = B_TRUE;

421 }

422 fnvlist_add_bool ean(ddur a- >ddur a_t odel ete, nane);
423 }

425 if (numholds == 0)

426 ret = ENCENT;

427 el se

428 fnvlist_add_nvli st (ddura->ddura_chkhol ds, name, hol ds_found);
429 fnvlist_free(holds_found);

431 return (ret);

157 return (0);

432 }

434 static int

435 dsl| _dat aset _user_rel ease_check(void *arg, dmu_tx_t *tx)

436 {

437 dsl _dat aset _user _rel ease_arg_t *ddura;

438 dsl _hol df unc_t *hol df unc;

439 dsl _pool _t *dp;

163 dsl _dat aset _user_rel ease_arg_t *ddura = arg;

164 dsl _pool _t *dp = dmu_tx_pool (tx);

440 nvpair_t *pair;

166 int rv = 0;

442 if (!dmu_tx_is_syncing(tx))

443 return (0);

445 ASSERT(RRW VRI TE_HELD(&p- >dp_confi g_rw ock));

447 dp = dmu_t x_pool (tx);

448 ddura = (dsl _dataset_user_release_arg_t *)arg;

449 hol df unc = ddur a- >ddur a_hol df unc;

451 #endif /* | codereview */

452 for (pair = nvlist_next_nvpair(ddura->ddura_hol ds, NULL); pair != NULL;
453 pair = nvlist_next_nvpair (ddura->ddura_holds, pair)) {
454 const char *nane;

171 const char *name = nvpair_nane(pair);

455 int error;

456 dsl _dataset _t *ds;

457 nvlist_t *hol ds;

459 name = nvpair_nane(pair);

460 #endif /* | codereview */

461 error = nvpair_value_nvlist(pair, &holds);

462 if (error 1= 0)

463 error = (SET_ERROR(EINVAL));

464 if (error == 0)

465 error = hol df unc(dp, nane, FTAG &ds);
176 return (SET_ERROR(ElI NVAL));

178 error = dsl_dataset_hol d(dp, name, FTAG &ds);
466 if (error == 0)

467 error = dsl _dataset _user_rel ease_check_one(ddura, ds,
468 hol ds, nane);

new usr/src/uts/comon/ fs/zfs/dsl _userhold.c

180
181
182
183
184
185
186
469
470
471
472
473
474
191
192
475
476
477
478
194
479
480

482
483
484
485
486
487

489
197
490

492
493
494
201
202
495
496
497
206
207
498

500
501
502
503

505

507
508
509

511
512
513
514
212
213
214
215
216

bool ean_t del et ene;
error = dsl _dataset _user_rel ease_check_one(ds,
hol ds, &del etene);

if (error == 0 && del etene) {
fnvlist_add_bool ean(ddur a- >ddur a_t odel et e,
nane) ;

}
dsl _dataset _rel e(ds, FTAQ;

1f (error 1= 0)

if (ddura->ddura_errlist !'= NULL)
fnvlist add i nt 32(ddur a- >ddura_errlist, nane,
err

fnvlist add i nt 32(ddur a- >ddura_errlist,
name, error);

/* Non-existent holds aren’t always an error. */
if (error != ENOCENT)

return (error);
rv = error;

}

/*
* Return ENCENT if none of the hol ds existed avoiding the overhead
* of a sync.
*/
if (nvlist_next_nvpair(ddura->ddura_chkhol ds, NULL) == NULL)
return (ENCENT);

return (0);
return (rv);

}

static void

dsl _dat aset _user _rel ease_sync_one(dsl _dat aset _user_rel ease_arg_t *ddura,
dsl _dataset _t *ds, nvlist_t *holds, dnmu_tx_t *tx)

dsl _dat aset _user _rel ease_sync_one(dsl _dataset _t *ds, nvlist_t *holds,
dmu_t x_t *tx)

{

dsl _pool _t *dp = ds->ds_dir->dd_pool ;
obj set _t *npbs = dp->dp_neta_obj set;
uint64_t zapobj ;

int error;

nvpair_t *pair;

for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL;
pair = nvlist_next_nvpair(holds, pair)) {
int error;

const char *nane;
name = nvpair_nanme(pair);

/* Renpve tenporary hold if one exists. */
error = dsl _pool _user_rel ease(dp, ds->ds_object, name, tx);
VERI FY(error == 0 || error == ENOENT);

VERI FY§)§ zap_renove(nos, ds->ds_phys->ds_userrefs_obj, nane,

tx
#endif /* | codereview */

ds->ds_userrefs--;

error = dsl _pool _user_rel ease(dp, ds->ds_object,
nvpai r_name(pair), tx);

VERI FY(error == 0 || error == ENOENT);

zapobj = ds->ds_phys->ds_userrefs_obj;

VERI FYO(zap_r enove(nos, zapobj, nvpair_name(pair), tx));

new usr/src/uts/ common/fs/zfs/dsl _userhold.c 10
516 spa_history_log_internal _ds(ds, "release", tx,

517 "tag=% refs=%1d", nane, (longlong_t)ds->ds_userrefs);
219 "tag=% refs=%1d", nvpair_nane(pair),

220 (longl ong_t)ds->ds_userrefs);

518 }

519 }

521 static void

522 dsl _dat aset _user_rel ease_sync(void *arg, dnmu_tx_t *tx)

523 {

524 dsl _dat aset _user _rel ease _arg_ t *ddura = arg

525 dsl _hol df unc_t *hol df unc = ddur a->ddura_| hol dfunc

526 #endif /* ! codereview */

527 dsl _pool _t *dp = dnu_t x_pool (tx);

528 nvpair_t *pair;

530 ASSERT(RRW VRI TE_HELD(&p- >dp_confi g_rw ock));

532 for (pair = nvlist_next nvpal r (ddur a- >ddur a_chkhol ds, NULL);

533 pair !'= NULL; pair = nvlist_next_nvpair(ddura- >ddura chkhol ds,
534 pair)) {

228 for (pair = nvlist_next_nvpair(ddura->ddura_hol ds, NULL); pair != NULL;
229 pair = nvlist_next_nvpair (ddura->ddura_holds, pair)) {

535 dsl _dat aset _t *ds;

536 const char *nane;

537 #endif /* ! codereview */

539 ame = nvpair_nanme(pair);

540 VERI FYO(hol dfunc(dp, name, FTAG &ds));

542 ds| _dat aset _user _rel ease_sync_one(ddura, ds,

231 VERI FYO(ds| _dat aset _hol d(dp, nvpair nama(palr) FTAG &ds));
232 ds| _dat aset _user_rel ease_sync_one(ds,

543 fnvpair_value_nvlist(pair), tx);

544 if (nvlist_exists(ddura->ddura_todel ete, nane)) {

234 if (nvlist_exists(ddura->ddura_todel ete,

235 nvpai r_name(pair))) {

545 ASSERT(ds->ds_userrefs == 0 &&

546 ds->ds_phys->ds_num children == 1 &&

547 DS_| S DEFER DESTROY(ds));

548 dsl _destroy_snapshot _sync_ |erI (ds, B_FALSE, tx);
549 }

550 dsl _dataset_rel e(ds, FTAQ;

551 }

552 }

554 | *

555 * The full semantics of this function are described in the corment above
556 * |zc_release().

557 *

558 * To summarize:

559 * Rel eases holds specified in the nvl holds.

560 *

561 #endif /* | codereview */

562 * holds is nvl of snapnane -> { holdnane, ... }

563 * errlist will be filled in with snapname -> error

564 *

565 * |If tnpdp is not NULL the nanes for holds should be the dsobj’s of snapshots,
566 * otherw se they should be the nanes of shapshots.

567 *

568 * As a release may cause snapshots to be destroyed this trys to ensure they
569 * aren’t nounted.

570 *

571 * The rel ease of non-existent holds are skipped.

572 *

new usr/src/uts/comon/ fs/zfs/dsl _userhold.c 11 new usr/src/uts/comon/ fs/zfs/dsl_userhold.c 12
573 * At least one hold nmust have been released for the this function to succeed 285 ddurta->ddurta_hol ds, &ddurta->ddurta_del etene);
574 * and return O. 286 dsl _dat aset _rel e(ds, FTAQ;
246 * if any fails, all will fail. 287 return (error);
575 */ 288 }
576 static int
577 dsl _dataset _user_rel ease_inpl (nvlist_t *holds, nvlist_t *errlist, 290 static void
578 dsl _pool _t *tnpdp) 291 dsl _dataset_user_rel ease_tnp_sync(void *arg, dmu_tx_t *tx)
248 int 292 {
249 dsl _dat aset _user_rel ease(nvlist_t *holds, nvlist_t *errlist) 293 dsl| _dat aset _user_rel ease_tnp_arg_t *ddurta = arg;
579 { 294 dsl _pool _t *dp = dmu_tx_pool (tx);
580 dsl _dat aset _user _rel ease_arg_t ddura; 295 dsl _dat aset _t *ds;
581 nvpair_t *pair;
582 char *pool; 297 VERI FYO(ds| _dat aset _hol d_obj (dp, ddurta->ddurta_dsobj, FTAG &ds));
583 #endif /* | codereview */ 298 dsl _dat aset _user_release_sync_one(ds, ddurta->ddurta_holds, tx);
584 int error; 299 if (ddurta->ddurta_del etene) {
300 ASSERT(ds->ds_userrefs == 0 &&
586 pair = nvlist_next_nvpair(holds, NULL); 301 ds->ds_phys->ds_num children == 1 &&
587 if (pair == NULL) 302 DS_| S_DEFER_DESTROY(ds));
588 return (0); 303 dsl _destroy_snapshot _sync_| |an (ds, B_FALSE, tx);
304 }
590 #ifdef _KERNEL 305 dsl _dataset _rel e(ds, FTAQ;
591 /* 306 }
592 * The rel ease may cause snapshots to be destroyed; make sure they
593 * are not nounted. 308 /*
594 */ 309 * Called at spa_load tine to rel ease a stale tenporary user hold.
595 if (trrpdp I'= NULL) { 310 * Also called by the onexit code.
596 * Tenporary hol ds are speci fied by dsobj string. */ 311 */
597 ddura ddur a_hol df unc dsl _dat aset _hol d_obj _string; 312 void
598 pool = spa_| narre(tnpdp >dp spa) ; 313 dsl _dataset_user_rel ease_tnp(dsl _pool _t *dp, uint64_t dsobj, const char *htag)
253 ddur a. ddura_hol ds = hold 314 {
254 ddura. ddura_errli st = errI ist; 315 dsl _dat aset _user _rel ease_tnp_arg_t ddurta;
255 ddura. ddura_t odel ete = fnvli st_al loc(); 316 dsl _dat aset _t *ds;
317 int error;
600 dsl _pool _config_enter(tnpdp, FTAG;
601 for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL; 319 #ifdef _KERNEL
602 pair = nvlist_next_nvpair(holds, pair)) { 320 /* Make sure it is not nmounted. */
257 error = dsl_sync_task(nvpair_nane(pair), dsl_dataset_user_rel ease_check, 321 dsl _pool _config_enter(dp, FTAG;
258 dsl| _dat aset _user_rel ease_sync, &ddura, fnvlist_numpairs(holds)); 322 error = dsl _dataset_hol d_obj (dp, dsobj, FTAG &ds);
259 fnvlist_free(ddura.ddura_todel ete); 607 if (error == 0)
260 return (error); 608 char nanme[MVAXNAMELEN ;
261 } 609 dsl _dat aset _nane(ds, nane);
610 dsl _dataset _rel e(ds, FTAQ;
263 typedef struct dsl_dataset_user_rel ease_tnp_arg { 327 dsl _pool _config_exit(dp, FTAQ;
264 uint64_t ddurta_dsobj; 611 zf s_unnmount _snap(nane) ;
265 nvlist_t *ddurta_hol ds 612 }
266 bool ean_t ddurta_del et ene; 613 }
267 } dsl _dataset _user_rel ease_tnp_arg_t; 614 dsl _pool _config_exit(tnpdp, FTAG;
615 #endif /* | codereview */
269 static int 616 } else {
270 dsl _dataset _user_rel ease_tnp_check(void *arg, dmu_tx_t *tx) 617 /* Non-tenporary holds are specified by name. */
271 { 618 ddur a. ddur a_hol df unc = dsl _dat aset _hol d;
272 dsl _dat aset _user_rel ease_tnp_arg_t *ddurta = arg; 619 pool = nvpair_nane(pair);
273 dsl _pool _t *dp = dnu_tx_pool (tx);
603 dsl _dataset _t *ds; 621 for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL;
275 int error; 622 pair = nvlist_next_nvpair(holds, pair)) {
623 zf s_unnmount _snap(nvpai r nama(pal r));
605 error = dsl _dataset _hol d_obj _string(tnpdp, 624 }
606 nvpair_nane(pair), FTAG &ds); 329 dsl _pool _config_exit(dp, FTAG;
277 if (!dmu_tx_is_syncing(tx)) 625
278 return (0); 626 #endif
280 error = dsl _dataset _hol d_obj (dp, ddurta->ddurta_dsobj, FTAG &ds); 628 ddur a. ddur a_hol ds = hol ds;
281 if (error) 629 ddura.ddura_errlist = errlist;
282 return (error); 630 ddura. ddura_todel ete = fnvlist_alloc();
631 ddur a. ddura_chkhol ds = fnvlist_alloc();
284 error = dsl _dataset _user_rel ease_check_one(ds,

new usr/src/uts/ comon/fs/zfs/dsl _userhold.c 13

633 error = dsl _sync_task(pool, dsl_dataset_user_rel ease_check,
634 dsl dat aset _user_rel ease_sync, &ddura,

635 fnvli st_num pairs(hol ds));

636 fnvlist_free(ddura.ddura_t odel et e);

637 fnvlist_free(ddura.ddura_chkhol ds);

639 return (error);

333 ddurta. ddurta_dsobj = dsobj;

334 ddurta.ddurta_holds = fnvlist_alloc();

335 fnvlist_add_bool ean(ddurta. ddurta_hol ds ht ag) ;

337 (voi d) dsl _sync_t ask(spa_nane(dp->dp_spa),

338 dsl| _dat aset _user_rel ease_t np_check,

339 dsl _dat aset _user _rel ease_tnp_sync, &ddurta, 1);
340 fnvlist_free(ddurta.ddurta_hol ds);

640 }

642 [*

643 * holds is nvl of snapnane -> { holdnane, ... }

644 * errlist will be filled in with snapname -> error

645 */

646 int

647 dsl _dataset _user_rel ease(nvlist_t *holds, nvlist_t *errlist)
343 typedef struct zfs_hold_cleanup_arg {

344 char zhca_spaname[MAXNAMVELEN] ;
345 uint64_t zhca_spa_| oad_gui d;
346 uint64_t zhca_dsobj ;

347 char zhca_ht ag[MAXNAMVELEN] ;

348 } zfs_hol d_cleanup_arg_t;

350 static void
351 dsl _dat aset _user_rel ease_onexit(void *arg)

648 {

649 return (dsl_dataset_user_rel ease_inpl (holds, errlist, NULL));

353 zfs_hol d_cl eanup_arg_t *ca = arg;

354 spa_t *spa;

355 int error;

357 error = spa_open(ca->zhca_spanane, &spa, FTAG;

358 if (error 1= 0)

359 zfs_dbgnmsg("coul dn’t rel ease hold on pool =% ds=%1u tag=% "
360 "because pool is no |longer |oaded",

361 ca->zhca_spanane, ca->zhca_dsobj, ca->zhca_htag);

362 return;

363 }

364 if (spa_load_guid(spa) != ca->zhca_spa_|l oad_guid) {

365 zfs_dbgnsg("coul dn’t rel ease hold on pool =% ds=%I|u tag=% "
366 "because pool is no |onger |oaded (guid doesn’'t match)",
367 ca->zhca_spanane, ca->zhca_dsobj, ca->zhca_htag);

368 spa_cl ose(spa, FTAQ;

369 return;

370 }

372 dsl _dat aset _user _rel ease_t np(spa_get _dsl (spa),

373 ca->zhca dsob] ca->zhca_htag);

374 kmem free(ca, si zeof (zfs_hol'd_cleanup_arg_t));

375 spa_cl ose(spa, FTAQ;

650 }

652 /*

653 * holds is nvl of snapdsobj -> { holdnanme, ... }

654 */

655 #endif /* | codereview */

656 void

657 dsl _dat aset _user_rel ease_t np(struct dsl_pool *dp, nvlist_t *hol ds)
378 dsl _regi ster_onexit_hol d_cl eanup(dsl _dataset _t *ds, const char *htag,

new usr/src/uts/comon/ fs/zfs/dsl_userhold.c

379

658 {

659
660
381
382
383
384
385
386
387
388
389

661 }
__unchanged_portion_onitted_

m nor_t mnor)

ASSERT(dp != NULL);
(voi d) dsl_dataset_user_rel ease_i npl (hol ds, NULL,

dp) ;
zfs_hol d_cT’ eanup_arg_ t *ca = kmem al | oc(si zeof (*ca) KM_SLEEP) ;

spa_t *spa = dsl_dataset_get_spa(ds);
(void) strl cpy(ca->zhca_spaname, spa_nane(spa),
si zeof (ca->zhca spanama))
ca->zhca_spa_| Ioad _guid = spa_ | oad _gui d(spa);
ca->zhca_dsobj = ds->ds_object;
(void) strlcpy(ca->zhca_htag, ht ag, sizeof (ca->zhca_htag));
VERI FYO(zf s_onexi t _add_cb(m nor,
dsl _dat aset _user_rel ease_onexit, ca, NULL));

14

new usr/src/uts/comon/fs/zfs/sys/dsl _dataset.h

R R R R

10207 Wed May 29 20:27:09 2013
new usr/src/uts/comon/ fs/zfs/sys/dsl _dataset.h
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi
Submitted by: Steven Hartland <steven. hartland@ul tiplay.co. uk>
EERERERERERESRESRSESSE]

1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the |icense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing pernissions

and linmtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

NRRRRRRRR R
COONOUITAWNROW©O~NOUTSWN

L I T I R I B R
<

21/

22 Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
23 Copyright (c) 2012 by Del phix. Al rights reserved.

24 Copyright (c) 2012, Joyent, Inc. Al rights reserved.

25 * Copyright (c) 2013 Steven Hartland. Al rights reserved.
26 #endif /* | codereview */

*

/

29 #ifndef _SYS DSL_DATASET H
30 #define _SYS DSL_DATASET H

32 #include <sys/dnu. h>

33 #include <sys/spa. h>

34 #include <sys/txg.h>

35 #include <sys/zio.h>

36 #include <sys/bplist.h>

37 #include <sys/dsl_synctask. h>
38 #include <sys/zfs_context.h>
39 #include <sys/dsl _deadlist.h>
40 #include <sys/refcount. h>

43 extern
44 #endi f

42 #ifdef _ cplusplus
T

46 struct dsl_dataset;
47 struct dsl _dir;
48 struct dsl _pool ;

50 #define DS_FLAG_ | NCONSI STENT
51 #define DS_I S_| NCONSI STENT(ds)
52 ((ds)->ds_phys->ds_flags & DS_FLAG_| NCONSI STENT)
53 /*
54 * Note: nopronpbte can not yet be set, but we want support for it in this
55 * on-disk version, so that we don’'t need to upgrade for it later.

*/

(1ULL<<0)
\

57 #define DS_FLAG_NOPROMOTE (1ULL<<1)

59 /*
60 * DS FLAG UNIl QUE_ACCURATE is set if ds_unique_bytes has been correctly

new usr/src/uts/comon/fs/zfs/sys/dsl _dataset.h

61
62

122

124
125

* calcul ated for head datasets (starting with SPA VERSI ON_UNI QUE_ACCURATE,
* refquotal/refreservations).
*
/
#defi ne DS_FLAG_UNI QUE_ACCURATE (1ULL<<2)

/*

* DS_FLAG DEFER DESTROY is set after ’'zfs destroy -d has been called

* on a dataset. This allows the dataset to be destroyed using ’'zfs rel ease’.
*/

#defi ne DS_FLAG DEFER DESTROY (1ULL<<3)

#define DS | S DEFER DESTROY(ds) \
((ds) - >ds_phys->ds_fl ags & DS_FLAG DEFER_DESTROY)

/*

* DS_FLAG Cl _DATASET is set if the dataset contains a file system whose
* nane | ookups shoul d be perfornmed case-insensitively.

*

#define DS_FLAG Cl _DATASET (1ULL<<16)

#def i ne DS_CREATE_FLAG NODI RTY (1ULL<<24)
typedef struct dsl_dataset_phys {

uint64_t ds_dir_obj; /* DMJ_OT_DSL_DIR */

uint64_t ds_prev_snap_obj; /* DMJ_OT_DSL_DATASET */

ui nt64_t ds_prev_snap_txg;

ui nt64_t ds_next _snap_obj ; /* DMJ_OT_DSL_DATASET */

ui nt 64_t ds_snapnanes_zapobj ; /* DMJ_OT_DSL_DS_SNAP_MAP 0 for snaps */
uint64_t ds_numchildren; /* clonel/snap children; ==0 for head */
uint64_t ds_creation_tine; /* seconds since 1970 */

uint64_t ds_creation_txg;

uint64_t ds_deadlist_obj; /* DMJ_OT_DEADLI ST */

/*

* ds_referenced_bytes, ds_conpressed_bytes, and ds_unconpressed_bytes

* include all blocks referenced by this dataset, including those

* shared with any other datasets.

*

/

uint64_t ds_referenced_bytes;
ui nt64_t ds_conpressed_bytes;
uint64_t ds_unconpressed_bytes;
uint64_t ds_uni que_bytes; /* only relevant to snapshots */

*
* The ds_fsid_guid is a 56-bit ID that can change to avoid
* collisions. The ds_guid is a 64-bit ID that will never
* change, so there is a small probability that it will collide.
*

/

uint64_t ds_fsid_guid;

uint64_t ds_guid;

uint64_t ds_fl ags; /* DS_FLAG * */

bl kptr_t ds_bp;

ui nt64_t ds_next _cl ones_obj ; /* DMJ_OT_DSL_CLONES */

ui nt64_t ds_props_obj; /* DMJ_OT_DSL_PROPS for snaps */
uint64_t ds_userrefs_obj; /* DMJ_OT_USERREFS */

uint64_t ds_pad[5]; /* pad out to 320 bytes for good neasure */

} dsl _dataset _phys_t;

typedef struct dsl_dataset {
/* Imutable: */
struct dsl _dir *ds_dir;
dsl _dat aset _phys_t *ds_phys;
drmu_buf _t *ds_dbuf;
uint64_t ds_object;
uint64_t ds_fsid_guid;

/* only used in syncing context, only valid for non-snapshots: */
struct dsl_dataset *ds_prev;

new usr/src/uts/comon/fs/zfs/sys/dsl _dataset.h

127
128
129

131
132
133

135
136
137
138
139
140
141
142

144
145
146
147
148
149
150

152
153

155
156

158
159

161
162

164
165
166

168
169
170
171
172

174
175

177
178

180
181
182
183
184
185
186
187
188
189
190
191

25

/* has internal |ocking: */
dsl _deadl i st_t ds_deadli st;
bplist_t ds_pending_deadli st;

/* protected by lock on pool’s dp_dirty_datasets list */
txg_node_t ds_dirty_link;
list_node_t ds_synced_li nk

/*
* ds_phys->ds_<accounting> is also protected by ds_| ock.
* Protected by ds_| ock:
*
/
kmut ex_t ds_| ock;
obj set _t *ds_obj set ;
uint64_t ds userrefs
voi d *ds_owner;

/*
* Long holds prevent the ds from being destroyed; they allow the
* ds to remain held even after dropping the dp_config_rw ock.
* Oming counts as a long hold. See the comments above
* dsl _pool _hol d() for details.
*
/

refcount _t ds_I onghol ds;

/* no | ocking; only for making guesses */
uint64_t ds_trysnap_txg;

/* for objset_open() */
kmut ex_t ds_openi ng_| ock;

/* cached refreservation */
/* cached refquota */

uint64_t ds_reserved;
ui nt64_t ds_quot a;

kmut ex_t ds_sendstream | ock;
list_t ds_sendstreans;

/* Protected by ds_l ock; keep at end of struct for better locality */
char ds_snapnanme[MAXNAMELEN ;
} dsl _dataset _t;

/*

* The max length of a tenporary tag prefix is the nunber of hex digits
* required to express U NT64_MAX plus one for the hyphen.

*/

#def i ne MAX_TAG PREFI X_LEN 17

#defi ne dsl _dataset i s_snapshot (ds) \
((ds)->ds_phys->ds_numchildren != 0)

#defi ne DS_UNI QUE_| S_ACCURATE(ds) \
(((ds)->ds_phys->ds_fl ags & DS_FLAG UN QUE_ACCURATE) != 0)

int dsl _dataset_hol d(struct dsl_pool *dp, const char *name, void *tag,
dsl _dat aset _t **dsp);

int dsl_dataset_hold obj(struct dsl _pool *dp, uint64_t dsobj, void *tag,
dsl “dat aset _t **);

voi d dsT_dataset _rel e(dsl _dataset _t *ds, void *tag);

int dsl_dataset_own(struct dsl_pool *dp, const char *nane,
void *tag, dsl_dataset_t **dsp);

int dsl_dataset_own_obj (struct dsl pool *dp, uint64_t dsobj,
void *tag, dsl_dataset t **dsp);

voi d dsl| _dat aset_di sown(dsl _dataset_t *ds, void *tag);

voi d dsl _dat aset _nane(dsl _dataset_t *ds, char *name) ;

bool ean_t dsl _dataset_tryown(dsl _dataset_t *ds, void *tag);

voi d dsl _regi ster_onexit_hol d_cl eanup(dsl _dat aset _t *ds, const char *htag,

new usr/src/uts/comon/fs/zfs/sys/dsl _dataset.h

26
192
193
194
195
196
197
198
199
200
201
202
203

205
206

220

222
223
224
225
226
227
228
229
230
231
232
233

237
238
239
240
241
242
243

245
246
247
248

250
251
252
253
254
255
256

m nor_t mnor);
uint64_t dsl_dataset_create_sync(dsl _dir_t *pds, const char *I|astnane,
dsl _dataset _t *origin, uint64_t flags, cred_t *, dnu_tx_t *);
ui nt64_t dsl_dataset_create_sync_dd(dsl _dir_t *dd, dsl_dataset_t *origin,
uint64_t flags, dmu_tx_t *tx);
t dsl _dataset_snapshot (nvlist_t *snaps, nvlist_t *props, nvlist_t *errors);
t dsl _dataset _pronote(const char *name, char *conflsnap);
t dsl _dataset_cl one_swap(ds| _dataset _t *clone, dsl_dataset_t *origi n_head,
bool ean_t force);
int dsl_dataset_renanme_snapshot (const char *fsnane,
const char *ol dsnapnane, const char *newsnapnane, bool ean_t recursive);
int dsl_dataset_snapshot_tnp(const char *fsnane, const char *snapnane,
m nor_t cleanup_mi nor, const char *htag);

bl kptr_t *dsl _dataset_get_bl kptr(dsl _dataset _t *ds);
voi d dsl _dataset_set_bl kptr(dsl _dataset_t *ds, blkptr_t *bp, dmu_tx_t *tx);

spa_t *dsl| _dataset_get _spa(dsl _dataset_t *ds);
bool ean_t dsl _dataset_nodi fi ed_si nce_| ast snap(dsl _dataset _t *ds);
voi d dsl _dataset_sync(dsl _dataset_t *os, zio_t *zio, dmu_tx_t *tx);

voi d dsl _dataset _ bI ock_born(dsl _dataset _t *ds, const blkptr_t *bp,
dmu_tx_t *tx

i nt dsl_dataset bl ock_kill (dsl _dataset_t *ds, const bl kptr_t *bp,
dmu_tx_t *tx, boolean_t async);

bool ean_t dsl _dat aset _bl ock_freeabl e(dsl _dataset _t *ds, const blkptr_t *bp,
uint64_t bl k_birth);

uint64_t dsl_dataset_prev_snap_txg(dsl_dataset_t *ds);

void dsl _dataset_dirty(dsl_dataset_t *ds, dmu_tx_t *tx);

voi d dsl _dataset_stats(dsl_dataset_t *os, nvlist_t *nv);

voi d dsl _dataset fast_stat(dsl _dataset_t *ds, dnmu_objset_stats_t *stat);

voi d dsl _dat aset _space(dsl _dataset _t *ds,
uint64_t *refdbytesp, uint64_t *avail bytesp,
uint64_t *usedobjsp, uint64_t *avail objsp);

uint64_t dsl_dataset_fsid_guid(dsl_dataset_t *ds);

int dsl_dataset_space_witten(dsl _dataset_t *ol dsnap, dsl_dataset_t *new,
uint64_t *usedp, uint64_t *conpp, uint64_t *unconpp);

int dsl_dataset_space_woul dfree(dsl _dataset_t *firstsnap, dsl_dataset_t *|ast,
uint64_t *usedp, uint64_t *conpp, uint64_t *unconpp);

bool ean_t dsl_dataset _is_dirty(dsl_dataset _t *ds);

int dsl_dsobj_to_dsnanme(char *pname, uint64_t obj, char *buf);

int dsl_dataset_check_quota(dsl _dataset_t *ds, bool ean_t check_quota,
uint64_t asize, uint64_t inflight, uint64_t *used,
uint64_t *ref rsrv)

int dsl_dataset_set refquota(const char *dsnane, zprop_source_t source,
uint64_t quota);

int dsl_dataset_set_refreservation(const char *dsnane, zprop_source_t source,
uint64_t reservation);

bool ean_t dsl _dataset _is_before(dsl _dataset_t *later, dsl_dataset_t *earlier);
voi d dsl _dataset _| ong_hol d(dsl _dataset_t *ds, void *tag);

voi d dsl _dat aset | ong_rel e(dsl _dataset _t *ds, void *tag);

bool ean_t dsl _dataset _| ong_hel d(dsl _dataset _t *ds);

int dsl_dataset_clone_swap_check_i npl (dsl _dataset _t *cl one,
dsl “dataset _t *origin_head, boolean_t force);

voi d dsT_dat aset _cl one_swap_sync_i npl (ds| _dataset _t *cl one,
dsl _dataset _t *origin_head, dmu_tx_t *tx);

int dsl _dataset_snapshot _check_i npl (dsl’ dataset_t *ds, const char *snapnane,
dmu_tx_t *tx);

voi d dsl _dat aset _snapshot _sync_i npl (dsl _dataset _t *ds, const char *snapnane,

new usr/src/uts/comon/fs/zfs/sys/dsl _dataset.h
257 dmu_tx_t *tx);

259 voi d dsl _dataset _renove_from next _cl ones(dsl _dataset_t *ds, uint64_t obj,

260 dmu_tx_t *tx);

261 void dsl _dataset_recal c_head_uni q(dsl _dataset _t *ds);

262 int dsl_dataset_get_snapnane(dsl _dataset_t *ds);

263 int dsl_dataset_snap_| ookup(dsl _dataset_t *ds, const char *nane,

264 uint64_t *val ue);

265 int dsl_dataset_snap_renpve(dsl _dataset_t *ds, const char *name, dmu_tx_t *tx);
266 voi d dsl _dataset_set_refreservation_sync_i npl (dsl _dataset_t *ds,

267 zprop_source_t source, uint64_t value, dnu_tx_t *tx);

268 int dsl_dataset_roll back(const char *fsnane);

270 #ifdef ZFS_DEBUG

271 #define dprintf_ds(ds, fnt, ...) do { \

272 if (zfs_flags & ZFS_DEBUG DPRINTF) { \

273 char *__ds_name = krmem al | oc(MAXNAMELEN, KM SLEEP); \
274 dsl _dat aset _nane(ds, __ds_nane);

275 dprintf("ds=% " fnt, __ds_nane, _ VA ARGS); \
276 kmem free(__ds_name, MAXNAMELEN); \

277

278 _NOTE(CONSTCOND) } while (0)

279 t#el se

280 #define dprintf_ds(dd, fnt, ...)

281 #endif

283 #ifdef __cplusplus
284 }
__unchanged_portion_omtted_

new usr/src/uts/comon/ fs/zfs/sys/dsl _userhold.h

R R R R

1886 Wed May 29 20:27:09 2013
new usr/src/uts/comon/ fs/zfs/sys/dsl _userhold.h
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi
Submitted by: Steven Hartland <steven. hartland@ul tiplay.co. uk>

LR

2 /*

3 * CDDL HEADER START

4 *

5 * The contents of this file are subject to the terms of the

6 * Common Devel opnent and Distribution License (the "License").

7 * You may not use this file except in conpliance with the License.

8 *

9 * You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE
10 * or http://ww opensol aris.org/os/licensing.
11 * See the License for the specific |anguage governing perm ssions
12 * and limtations under the License.
13 =

14 * \Wen distributing Covered Code, include this CDDL HEADER i n each

15 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
16 * |If applicable, add the followi ng below this CDDL HEADER, wth the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [nane of copyright owner]

19 =
20 * CDDL HEADER END
21 */
22 | *
23 * Copyright (c) 2005, 2010, Oacle and/or its affiliates. Al rights reserved.
24 * Copyright (c) 2012 by Del phix. Al rights reserved.

*

Copyright (c) 2012, Joyent, Inc. Al rights reserved.
26 * Copyright (c) 2013 Steven Hartland. Al rights reserved.
27 #endif /* | codereview */

28 */

30 #ifndef _SYS DSL_USERHOLD H
31 #define _SYS _DSL_USERHOLD H

33 #include <sys/nvpair.h>
34 #include <sys/types. h>

36 #ifdef _ cplusplus
37 extern "C' {
38 #endi f

40 struct dsl _pool;
41 struct dsl_dataset;
42 struct dnu_tx;

44 int dsl_dataset _user_hold(nvlist_t *holds, mnor_t cleanup_m nor,

45 nvlist_t *errlist);

46 int dsl_dataset _user_rel ease(nvlist_t *holds, nvlist_t *errlist);

47 int dsl_dataset_get_hol ds(const char *dsname, nvlist_t *nvl);

48 voi d dsl _dataset _user_rel ease_tnp(struct dsl_pool *dp, nvlist_t *holds);
26 void dsl_dataset _user_rel ease_tnp(struct dsl_pool *dp, uint64_t dsobj,

27 const char *htag);

49 int dsl_dataset _user_hol d_check_one(struct dsl_dataset *ds, const char *htag,
50 bool ean_t tenphold, struct dnu_tx *tx);

51 void dsl _dataset _user_hol d_sync_one(struct dsl_dataset *ds, const char *htag,
52 mnor_t mnor, uint64_t now, struct dnu_tx *tx);

54 #ifdef __cplusplus

55 }

56 #endif

58 #endif /* _SYS DSL_USERHOLD H */

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

R R R R

143944 Wed May 29 20:27:10 2013
new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
3740 Poor ZFS send / receive performance due to snapshot hold / rel ease processi
Submitted by: Steven Hartland <steven. hartland@ul tiplay.co. uk>

LR

1/*

*

® ok Sk Ok R OF Sk OF Sk ok Rk ok k% k%

NRRRRRRRR R
COONOUITAWNROW©O~NOUTSWN

N
N
~

IN
~
L I R N I I S I I I I

)
~
*m********
=45

CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the |icense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing pernissions

and linmtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.

Portions Copyright 2011 Martin Matuska

Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
Copyright (c) 2012, Joyent, Inc. Al rights reserved.
Copyright (c) 2013 by Del phix. Al rights reserved.

Copyr i ght (c) 2013 by Saso Kiselkov. Al rights reserved.
Copyright (c) 2013 Steven Hartland. Al rights reserved.
ndif /* | codereview */

ZFS ioctls.

This file handles the ioctls to /dev/zfs,
pool s and fil esystens,

used for configuring ZFS storage
e.g. with /sbin/zfs and /sbin/zpool .

There are two ways that we handle ioctls: the | egacy way where al nost
all of the logic is in the ioctl callback, and the new way where nost
of the marshalling is handled in the common entry point, zfsdev_ioctl().

Non-| egacy ioctls should be registered by calling
zfs_ioctl _register() fromzfs_ioctl_init(). The ioctl is invoked
fromuserland by |zc_ioctl().

The registration arguments are as follows:

const char *nane
The nane of the ioctl. This is used for history logging. |If the
ioctl returns successfully (the callback returns 0), and allow_| og
is true, then a history log entry will be recorded with the input &
output nvlists. The log entry can be printed with "zpool history -i"

zfs_ioc_t ioc
The ioctl request number, which userland will pass to ioctl(2).
The ioctl nunbers can change fromrel ease to rel ease, because
the caller (libzfs) nust be matched to the kernel.

zfs_secpolicy_func_t *secpolicy

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

B I T T I T T I 2 I

This function will be called before the zfs_ioc_func_t, to

determine if this operation is permtted. Tt should return EPERM

on failure, and O on success. Checks include determning if the
dataset is visible in this zone, and if the user has either all

zfs privileges in the zone (SYS_MOUNT), or has been grant ed permi ssion
to do this operation on this dataset with "zfs al | ow

zfs_i oc_nanecheck_t namecheck
This specifies what to expect in the zfs_cnmd_t:zc_name -- a pool
name, a dataset nane, or nothing. |f the name is not well-forned,
the ioctl will fail and the callback will not be called.
Therefore, the callback can assune that the name is well-formed
(e.g. is null-term nated, doesn’t have nore than one '@ character,
doesn’t have invalid characters).

zfs_i oc_pool check_t pool _check
This specifies requirements on the pool state. |If the pool does
not meet them (i s suspended or is readonly), the ioctl wll fail
and the callback will not be called. |f any checks are specified
(i.e. it is not POOL_CHECK NONE), nanecheck nust not be NO _NAME.
Mil ti pl e checks can be or-ed together (e.g. POOL_CHECK_SUSPENDED |
POOL_CHECK_READONLY) .

bool ean_t snush_out nvli st

If smush_outnvlist is true, then the output is presuned to be a
list of errors, and it will be "snushed" down to fit into the
caller’ s buffer, by renoving sone entries and replacing themwith a
single "N_MORE_ ERRORS" entry indicating how many were renoved. See
nvlist_snmush() for details.” |If smush_outnvlist is false, and the
outnvlist does not fit into the userland-provided buffer, then the
ioctl will fail w th ENOVEM

zfs_ioc_func_t *func
The cal | back function that will performthe operation.

The cal | back should return O on success, or an error nunber on

failure. |If the function fails, the userland ioctl will return -1,
and errno will be set to the callback’s return value. The call back
will be called with the follow ng argunents:
const char *nane
The nanme of the pool or dataset to operate on, from
zfs_cmd_t:zc_name. The 'nanecheck’ argunent specifies the
expected type (pool, dataset, or none).

nvlist_t *innvl
The input nvlist, deserialized fromzfs_cnd_t:zc_nvlist_src. O
NULL if no input nvlist was provided. Changes to this nvlist are
ignored. If the input nvlist could not be deserialized, the
ioctl will fail and the callback will not be called.

nvlist_t *outnvl
The output nvlist, initially enpty. The callback can fill it in,
and it will be returned to userland by serializing it into
zfs_cmd_t:zc_nvlist_dst. |If it is non-enpty, and serialization
fails (e.g. because the caller didn't supply a Iarge enough
buffer), then the overall ioctl will fail. See t
"snush_nvlist’ argument above for additional behaV| ors.

There are two typical uses of the output nvlist:

- To return state, e.g. property values. In this case,
smush_outnvlist should be false. |f the buffer was not |arge
enough, the caller will reallocate a |arger buffer and try
the ioctl again.

- To return nultiple errors froman ioctl which makes on-di sk

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

127 * changes. In this case, smush_outnvlist should be true

128 * loctls which make on-di sk nodifications should generally not
129 * use the outnvl if they succeed, because the caller can not
130 * di stingui sh between the operation failing, and

131 * deserialization failing.

132 */

134 #include <sys/types. h>

135 #incl ude <sys/param h>

136 #i ncl ude <sys/errno. h>

137 #i ncl ude <sys/uio. h>

138 #i ncl ude <sys/buf. h>

139 #include <sys/nodctl.h>
140 #i ncl ude <sys/open. h>

141 #include <sys/file.h>

142 #incl ude <sys/kmem h>

143 #incl ude <sys/conf.h>

144 #incl ude <sys/cmm_err. h>
145 #incl ude <sys/stat.h>

146 #include <sys/zfs_ioctl.h>
147 #incl ude <sys/zfs_vfsops. h>
148 #i ncl ude <sys/zfs_znode. h>
149 #incl ude <sys/zap. h>

150 #incl ude <sys/spa. h>

151 #include <sys/spa_inpl.h>
152 #incl ude <sys/vdev. h>

153 #i ncl ude <sys/priv_inpl.h>
154 #incl ude <sys/dnu. h>

155 #include <sys/dsl _dir.h>

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

194 Idi _ident_t zfs_li = NULL;
195 dev_info_t *zfs_dip;

197 uint _t zfs_fsyncer_key
198 extern uint_t rrw_tsd_key
199 static uint_t zfs_allow | og_key

201 typedef int zfs_ioc_legacy_func_t(zfs_cnd_t *);
202 typedef int zfs_ioc_func_t(const char *, nvllst_1 *, nvlist_t *)
203 typedef int zfs secpolicy func_t(zfs_ cmd_t *, nvlist_t *, cred_t *)

205 typedef enum {
NO_NANME,

206)_|)
207 POOL_NAMVE
208 DATASET_NAME

209 } zfs_ioc_nanmecheck_t

211 typedef enum {

212 POOL_CHECK_NONE =1<<0,
213 POOL_CHECK_SUSPENDED = 1 << 1,
214 POOL_CHECK_READONLY =1<<2

215 } zfs_ioc_pool check_t

217 typedef struct zfs_ioc_vec {

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

184
185
186
187

191
192

#
#
#
#
#
#
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i

#
#
#
#

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

ncl ude
ncl ude
ncl ude
ncl ude

<sys/dsl _dat aset. h>
<sys/ dsl _prop. h>
<sys/ dsl _del eg. h>
<sys/ dmu_obj set . h>
<sys/ dmu_i npl . h>
<sys/dmu_t x. h>
<sys/ ddi . h>

<sys/ sunddi . h>
<sys/sunl di . h>
<sys/ policy. h>
<sys/ zone. h>
<sys/nvpair.h>
<sys/ pat hnare. h>
<sys/ mount . h>
<sys/sdt. h>
<sys/fs/zfs. h>
<sys/zfs_ctldir.h>
<sys/zfs_dir.h>
<sys/ zfs_onexit.h>
<sys/ zvol . h>
<sys/dsl _scan. h>
<sharef s/share. h>
<sys/ dmu_obj set . h>
<sys/ dmu_send. h>
<sys/ dsl _destroy. h>
<sys/ dsl _userhol d. h>
<sys/ zf eature. h>

"zfs_namecheck. h"
"zfs_prop. h"
"zfs_del eg. h"
"zfs_comutil.h"

extern struct nodlfs zfs_nodlfs

extern void zfs_init(void);
extern void zfs_fini(void);

218 zfs_ioc_|l egacy func_t *zvec_| egacy_func
219 zfs_ioc_func_t *zvec_func

220 zfs secpollcy func_t *zvec_secpolicy
221 zfs_i oc_namecheck_t zvec_nanecheck;
222 bool ean_t zvec_al | ow | og;
223 zf s_i oc_pool check_t zvec_pool _check;

224 bool ean_t zvec_snush_outnvlist;
225 const char *zvec_nane
226 } zfs_ioc_vec_t

228 /* This array is indexed by zfs userquota prop_t */

229 static const char *userquota_perms[] = {

230 ZFS_DELEG _PERM USERUSED,

231 ZFS_DELEG_PERM USERQUOTA,

232 ZFS_DELEG_PERM_GROUPUSED,

233 ZFS_DELEG_PERM_GROUPQUOTA,

234 };

236 static int zfs_ioc_userspace_upgrade(zfs_cnd_t *zc)

237 static int zfs_check_settabl e(const char *name, nvpair_t *property

238 cred_t *cr);

239 static int zfs_check_clearable(char *dat aset, nvlist_t *props

240 nvliist_t **errors)

241 static int zfs_fill_zplprops_root(uint64_t, nvlist_t *, nvlist_t *,

242 bool ean_t *);

243 int zfs_set_prop_nvlist(const char *, zprop_source_t, nvlist_t *, nvlist_t *);
244 static int get_nvlist(uint64_t nvl, uint64_t size, Tint iflag, nvlist_t **nvp);
246 static int zfs_prop_activate_feature(spa_t *spa, zfeature_info_t *feature)
248 /* _NOTE(PRI NTFLIKE(4)) - this is printf-like, but lint is too whiney */

249 void

250 __dprintf(const char *file, const char *func, int line, const char *fnt, ...)
251 {

252 const char *newfil e;

253 char buf[512];

254 va_list adx;

256 /*

257 * CGet rid of annoying "../comon/" prefix to fil enanme

258 */

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

259 newfllezsrrchr(flle WADN

260 if (newfile !'= NULL) {

261 newfile = newfile + 1; /* Get rid of leading / */
262 } else {

263 newfile = file;

264 }

266 va_start (adx, fnt);

267 (void) vsnpri ntf(buf sizeof (buf), fnt, adx);

268 va_end(adx) ;

270 /*

271 * To get this data use the zfs-dprintf probe as so:
272 * dtrace -q -n ' zfs- dprlntf \

273 * / stringof (arg0) == "dbuf.c"/ \

274 * {printf("%: %", stringof(argl), stringof(arg3))}’
275 * arg0 = file name

276 * argl = function nane

277 * arg2 = line nunber

278 * arg3 = nessage

279 */

280 DTRACE_PROBE4(zfs__dprintf,

281 char *, newfile, char *, func, int, line, char *, buf);
282 }

284 static void

285 history_str_free(char *buf)

286 {

287 kmem free(buf, H S_MAX_RECORD_LEN);

288 }

290 static char *

291 history_str_get(zfs_cnd_t *zc)

292 {

293 char *buf;

295 if (zc->zc_history == NULL)

296 return (NULL);

298 buf = kmem al |l oc(H S_MAX_RECORD _LEN, KM SLEEP);

299 if (copyl nstr((void *)(uintptr_t)zc->zc_history,

300 buf, HI'S_MAX_RECORD LEN, NULL) != 0) {

301 history str_free(buf);

302 return (NULL);

303 }

305 buf [HIS_MAX_RECORD LEN -1] = '\0’;

307 return (buf);

308 }

310 /*

311 */Check to see if the naned dataset is currently defined as bootabl e
312 *

313 static bool ean_t

314 zfs_is_bootfs(const char *nane)

315 {

316 obj set _t *os;

318 if (dmu_objset_hol d(name, FTAG &os) == 0) {

319 bool ean_t ret;

320 ret = (dmu_objset_id(os) == spa_boot fs(dmu_objset_spa(o0s)));
321 dnu_obj set _rel e(os, FTAQ;

322 return (ret);

323 1

324 return (B_FALSE);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
325 }
327 /| *

328 * zfs_earlier_version
329 *

330 * Return non-zero if the spa version is | ess than requested version.

331 */

332 static int

333 zfs_earlier_version(const char *name, int version)
334 {

335 spa_t *spa;

337 if (spa_ open(name &spa, FTAG == 0)

338 (spa_version(spa) < version) {
339 spa_cl ose(spa, FTAQ;

340 return (1);

341 }

342 spa_cl ose(spa, FTAQ;

343

344 return (0);

345 }

347 | *

348 * zpl _earlier_version

349 *

350 * Return TRUE if the ZPL version is |ess than requested version.
351 */

352 static bool ean_t

353 zpl _earlier_version(const char *name, int version)

354 {

355 obj set _t *os;

356 bool ean_t rc = B_TRUE;

358 if (dmu_objset_hol d(nane, FTAG &os) == 0) {

359 uint64_t zpl version;

361 if (dmu_objset_type(os) != DMJ OST_ZFS) {
362 dmu_obj set _rel e(os, FTAQ;

363 return (B_TRUE);

364 }

365 /* XXX readi ng from non-owned objset */
366 if (zfs_get_zplprop(os, ZFS PROP_VERSI ON, &zplversion) ==
367 rc = zplversion < version;

368 dmu_obj set _rel e(os, FTAQ;

369 }

370 return (rc);

371 }

373 static void
374 zfs_log_history(zfs_cnmd_t *zc)

375 {

376 spa_t *spa;

377 char *buf;

379 if ((buf = history_str_get(zc)) == NULL)

380 return;

382 if (spa_open(zc->zc_nane, &spa, FTAGQ == 0) {
383 if (spa_versi on(spa) >= SPA_VERSI ON_ZPOOL_HI STORY)
384 (voi d) spa_history Tog(spa, buf);
385 spa_cl ose(spa, FTAG;

386 }

387 hi story_str_free(buf);

388 }

390 /*

0)

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 7
391 * Policy for top-level read operations (list pools). Requires no privileges,
392 * and can be used in the |local zone, as there is no associ ated dat aset.
393 */

394 /* ARGSUSED */

395 static int

396 zfs_secpolicy_none(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)

397 {

398 return (0);

399 }

401 /*

402 * Policy for dataset read operations (list children, get statistics). Requires
403 * no privileges, but nust be visible in the local zone.

404 */

405 /* ARGSUSED */

406 static int

407 zfs_secpolicy_read(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)

408 {

409 if (1 NGLOBALZONE(curproc) ||

410 zone_dat aset _vi si bl e(zc->zc_nane, NULL))

411 return (0);

413 return (SET_ERROR(ENCENT));

414 }

416 static int

417 zfs_dozonecheck_i npl (const char *dataset, uint64_t zoned, cred_t *cr)
418 {

419 int witable = 1;

421 /*

422 * The dataset nust be visible by this zone -- check this first
423 * so they don’t see EPERM on sonething they shoul dn’t know about.
424 */

425 if (!1NGLOBALZONE(curproc) &&

426 | zone_dat aset _vi si bl e(dataset, &witable))

427 return (SET_ERROR(ENCENT));

429 if (1 NGLOBALZONE(curproc)) {

430 I*

431 * If the fs is zoned, only root can access it fromthe
432 * gl obal zone.

433 */

434 if (secpolicy_zfs(cr) && zoned)

435 return (SET_ERROR(EPERM) ;

436 } else {

437 /*

438 * If we are in a local zone, the 'zoned property nmust be set.
439 *

440 if (!zoned)

441 return (SET_ERROR(EPERM));

443 /* nmust be witable by this zone */

444 if ('witable)

445 return (SET_ERROR(EPERM));

446 }

447 return (0);

448 }

450 static int

451 zfs_dozonecheck(const char *dataset, cred_t *cr)

452 {

453 uint64_t zoned;

455 if (dsl_prop_get_integer(dataset, "zoned", &zoned, NULL))
456 return (SET_ERROR(ENCENT));

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

458 return (zfs_dozonecheck_i npl (dataset, zoned, cr));

459 }

461 static int

462 zfs_dozonecheck_ds(const char *dataset, dsl_dataset_t *ds, cred_t *cr)
463 {

464 uint64_t zoned;

466 if (dsl_prop_get_int_ds(ds, "zoned", &zoned))

467 return (SET_ERROR(ENCENT));

469 return (zfs_dozonecheck_i npl (dataset, zoned, cr));

470 }

472 static int

473 zfs_secpolicy_wite_pernms_ds(const char *name, dsl_dataset_t *ds,

474 const char *perm cred_t *cr)

475 {

476 int error;

478 error = zfs_dozonecheck_ds(nane, ds, cr);

479 if (error == 0)

480 error = secpolicy_zfs(cr);

481 if (error 1= 0)

482 error = dsl _del eg_access_i npl (ds, perm cr);
483 }

484 return (error);

485 }

487 static int

488 zfs_secpolicy_wite_pernms(const char *name, const char *perm cred_t *cr)
489 {

490 int error;

491 dsl _dat aset _t *ds;

492 dsl _pool _t *dp;

494 error = dsl _pool _hol d(nane, FTAG &dp);

495 if (error 1= 0)

496 return (error);

498 error = dsl _dataset_hol d(dp, nane, FTAG &ds);

499 if (error 1= 0)

500 dsl _pool _rel e(dp, FTAQ;

501 return (error);

502 }

504 error = zfs_secpolicy_wite_perns_ds(nane, ds, perm cr);
506 dsl _dataset _rel e(ds, FTAQ;

507 dsl _pool _rel e(dp, FTAG;

508 return (error);

509 }

511 /*

512 * Policy for setting the security |abel property.

513 *

514 * Returns O for success, non-zero for access and other errors.
515 */

516 static int

517 zfs_set_sl abel _policy(const char *nanme, char *strval, cred_t *cr)
518 {

519 char ds_hexsl [MAXNAMVELEN] ;

520 bsl abel _t ds_sl, new_sl;

521 bool ean_t new _default = FALSE;

522 ui nt 64_t zoned;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

523 int needed_priv = -1;

524 int error;

526 /* First get the existing dataset |abel. */

527 error = dsl _prop_get(nane, zfs_prop_to nane(ZFS PROP_M_SLABEL) ,
528 1, sizeof (ds_hexsl), &ds_hexsl, NULL);

529 if (error 1= 0)

530 return (SET_ERROR(EPERM);

532 if (strcasecnp(strval, ZFS_M.SLABEL_DEFAULT) == 0)

533 new_default = TRUE;

535 /* The | abel nust be translatable */

536 if (!'new default && (hexstr_to_label (strval, &ew sl) != 0))
537 return (SET_ERROR(ETNVAL));

539 /*

540 * In a non-gl obal zone, disallow attenpts to set a | abel that
541 * doesn’t match that of the zone; otherw se no other checks
542 * are needed.

543 *

544 if (!1NGLOBALZONE(curproc)) {

545 if (new_default || !blequal (&ew sl, CR SL(CRED())))
546 return (SET_ERROR(EPERM)) ;

547 return (0);

548 }

550 /*

551 * For gl obal -zone datasets (i.e., those whose zoned property is
552 * "off", verify that the specified new label is valid for the
553 * gl obal zone.

554 */

555 if (dsl_prop_get_integer(nang,

556 zfs_prop_t o_name(ZFS_PROP_ZONED), &zoned, NULL))

557 return (SET_ERRCR(EPERM);

558 if (!zoned) {

559 if (zfs_check_gl obal _I| abel (nane, strval) != 0)

560 return (SET_ERROR(EPERM)) ;

561 }

563 /*

564 * |f the existing dataset |abel is nondefault, check if the
565 * dataset is nounted (|abel cannot be changed whil e nounted).
566 * CGet the zfsvfs; if there isn't one, then the dataset isn't
567 * mounted (or isn't a dataset, doesn't exist,

568 */

569 if (strcasecnp(ds_hexsl, ZFS_M.SLABEL_DEFAULT) != 0) {

570 obj set _t *os;

571 static char *setsl _tag = "setsl _tag";

573 1=

574 * Try to own the dataset; abort if there is any error,
575 * (e.g., al ready nounted, in use, or other error).
576

577 error = dnu_obj set _own(nanme, DMJ_OST_ZFS, B_TRUE,

578 setsl _tag, &os);

579 if (error 1= 0)

580 return (SET_ERROR(EPERM) ;

582 drmu_obj set _di sown(os, setsl_tag);

584 if (new_default) {

585 needed_priv = PRI V_FI LE_DOANGRADE_SL;

586 got o out _check;

587 }

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

589 if (hexstr_to_|abel (strval, &ew sl) != 0)
590 return (SET_ERROR(EPERM));

592 if (blstrictdon{&ds_sl, &uew sl))

593 needed_priv = PRI V_FT LE DOWNGRADE_SL;
594 else if (blstrlctdon(&newsl &ds_sl))

595 needed_priv = PRIV_ Fi LE_UPGRADE_SL;
596 } else {

597 /* dataset currently has a default |abel */
598 if (!'new default)

599 needed priv = PRIV_FI LE UPGRADE SL;
600 }

602 out _check:

603 if (needed_priv I= -1)

604 return (PRI V_POLICY(cr, needed_priv, B_FALSE, EPERM NULL));
605 return (0);

606 }

608 static int

609 zfs secpollcy set prop(const char *dsnane, zfs_prop_t prop, nvpair_t *propval,
cr)

610 cred_t

611 {

612 char *strval;

614 /*

615 * Check perm ssions for special properties.

616 */

617 switch (prop) {

618 case ZFS_PROP_ZONED:

619 [*

620 * Disallow setting of 'zoned" fromwi thin a |ocal zone.
621 *

622 if (! NGLOBALZONE(curproc))

623 return (SET_ERROR(EPERM)) ;

624 br eak;

626 case ZFS_PROP_QUOTA:

627 i NGLOBALZONE(cur proc)) {

628 uint64_t zoned;

629 char setpoint[NAXNANELEI\I] ;

630 /*

631 * Unprivileged users are allowed to nodify the
632 * quota on things *under* (ie. contained by)
633 * the thing they own.

634 */

635 if (dsl_prop_get_integer(dsname, "zoned", &zoned,
636 set point))

637 return (SET_ERROR(EPERM) ;

638 if (!zoned || strlen(dsname) <= strlen(setpoint))
639 return (SET_ERROR(EPERM);

640 }

641 br eak;

643 case ZFS_PROP_M.SLABEL:

644 if (!Ts_system|abel ed())

645 return (SET_ERROR(EPERM);

647 if (nvpair_value_string(propval, &strval) == 0) {

648 int err;

650 err = zfs_set_sl abel _policy(dsnane, strval, CREX));
651 if (err 1=0)

652 return (err);

653

}
654 br eak;

10

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

655 }

657 return (zfs_secpolicy wite_perns(dsnane, zfs_prop_to_nane(prop), cr));
658 }

660 /* ARGSUSED */

661 static int

662 zfs_secpolicy_set_fsacl (zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
663 {

664 int error;

666 error = zfs_dozonecheck(zc->zc_nane, cr);

667 if (error 1= 0)

668 return (error);

670 /*

671 * permission to set permssions will be evaluated later in
672 * dsl _del eg_can_al | ow()

673 */

674 return (0);

675 }

677 | * ARGSUSED */

678 static int

679 zfs_secpolicy_rollback(zfs_cnmd_t *zc, nvlist_t *innvl, cred_t *cr)
680 {

681 return (zfs_secpolicy_wite_perns(zc->zc_nang,

682 ZFS_DELEG PERM ROLLBACK, cr));

683 }

685 /* ARGSUSED */

686 static int

687 zfs_secpolicy_send(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)

688 {

689 dsl _pool _t *dp;

690 dsl _dat aset _t *ds;

691 char *cp;

692 int error;

694 /*

695 * Cenerate the current snapshot name fromthe given objsetid, then
696 * use that name for the secpolicy/zone checks.

697 */

698 cp = strchr(zc->zc_nane, ' @);

699 if (cp == NULL)

700 return (SET_ERROR(EINVAL));

701 error = dsl _pool _hol d(zc->zc_nane, FTAG &dp);

702 if (error 1= 0)

703 return (error);

705 error = dsl _dataset_hol d_obj (dp, zc->zc_sendobj, FTAG &ds);
706 if (error 1= 0) {

707 dsl _pool _rel e(dp, FTAG;

708 return (error);

709 }

711 dsl _dat aset _nane(ds, zc->zc_nane);

713 error = zfs_secpolicy_wite_perns_ds(zc->zc_nane, ds,

714 ZFS_DELEG PERM SEND, cr);

715 dsl _dat aset _rel e(ds, FTAQ;

716 dsl _pool _rel e(dp, FTAG;

718 return (error);

719 }

11

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

721 /* ARGSUSED */

722 static int

723 zfs_secpolicy_send_new zfs_cnmd_t *zc, nvlist_t *innvl, cred_t *cr)
724 {

725 return (zfs_secpolicy_wite_pernms(zc->zc_nane,

726 ZFS_DELEG PERM SEND, cr));

727 }

729 [* ARGSUSED */

730 static int

731 zfs_secpolicy_del eg_share(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
732 {

733 vnode_t *vp;

734 int error;

736 if ((error = |ookupnanme(zc->zc_val ue, U O SYSSPACE,

737 NO FOLLOW NULL, &vp)) != 0)

738 return (error);

740 /* Now nake sure mmtpnt and dataset are ZFS */

742 if (vp->v_vfsp->vfs_fstype != zfsfstype ||

743 (strcmp((char *)refstr_val ue(vp->v_vfsp->vfs_resource),
744 zc->zc_nane) != 0))

745 VN_RELE(vp);

746 return (SET_ERROR(EPERM);

747 1

749 VN_RELE(vp);

750 return (dsl_del eg_access(zc->zc_naneg,

751 ZFS_DELEG PERM SHARE, cr));

752 }

754 int

755 zfs_secpolicy_share(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
756 {

757 if (!1NG.OBALZONE(curproc))

758 return (SET_ERROR(EPERM);

760 if (secpolicy_nfs(cr) == 0) {

761 return (0);

762 } else {

763 return (zfs_secpolicy_del eg_share(zc, innvl, cr));
764 1

765 }

767 int

768 zfs_secpolicy_snb_acl (zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
769 {

770 if (! NGLOBALZONE(curproc))

771 return (SET_ERROR(EPERM);

773 if (secpolicy_snb(cr) == 0) {

774 return (0);

775 } else {

776 return (zfs_secpolicy_del eg_share(zc, innvl, cr));
777 1

778 }

780 static int

781 zfs_get_parent(const char *datasetnane, char *parent, int parentsize)
782 {

783 char *cp;

785 /*

786 * Renove the @l a or /bla fromthe end of the nanme to get the parent.

12

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

787 */

788 (void) strncpy(parent, datasetnane, parentsize);
789 cp = strrchr(parent, ' @);

790 if (cp !'= NULL) {

791 cp[0] ="\0";

792 } else {

793 cp = strrchr(parent, '/");

794 if (cp == NULL)

795 return (SET_ERROR(ENCENT));

796 cp[0] ="'\0";

797 1

799 return (0);

800 }

802 int

803 zfs_secpolicy_destroy_perns(const char *name, cred_t *cr)
804 {

805 int error;

807 if ((error = zfs_secpolicy_wite pern‘s(nama

808 ZFS_DELEG PERM MOUNT, cr)) != 0)

809 return (error);

811 return (zfs_secpolicy_wite_perns(name, ZFS_DELEG PERM DESTROY, cr));
812 }

814 /* ARGSUSED */

815 static int

816 zfs_secpolicy_destroy(zfs_cnd_t *zc, nvlist_t *innvl,
817 {

818 return (zfs_secpolicy_destroy_perns(zc->zc_nane, cr));
819 }

cred_t *cr)

821 /*

822 * Destroying snapshots with del egated pernissions requires
823 * descendant nount and destroy permi ssions.

824 */

825 /* ARGSUSED */

826 static int

827 {zfs_secpol icy_destroy_snaps(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
828

829 nvlist_t *snaps;

830 nvpair_t *pair, *nextpair;

831 int error = 0;

833 if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0)

834 return (SET_ERROR(EI NVAL));

835 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;

836 pair = nextpair) {

837 dsl _pool _t *dp;

838 dsl _dat aset _t *ds;

840 error = dsl_pool _hold(nvpair_name(pair), FTAG &dp);
841 if (error 1= 0)

842 br eak;

843 next pa| r = nviist_next _nvpai r(snaps, pair);

844 error = dsl_dataset_hold(dp, nvpair_name(pair), FTAG &ds);
845 if (error ==

846 dsl _dat aset _rel e(ds, FTAQ;

847 dsl _pool _rel e(dp, FTAQ;

849 if (error == {

850 error = zfs_secpolicy_destroy_perns(nvpair_name(pair),
851 ;

cr);
852 } else if (error == ENCENT) {

13

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 14
853 /*

854 * | gnore any snapshots that don't exist (we consider
855 * them "already destroyed"). Renove the nane fromthe
856 * nvl here in case the snapshot is created between
857 * now and when we try to destroy it (in which case
858 * we don’t want to destroy it since we haven't

859 * checked for pernission).

860 *

861 fnvlist_renmove_nvpair(snaps, pair);

862 error = 0;

863 }

864 if (error 1= 0)

865 br eak;

866 }

868 return (error);

869 }

871 int

872 zfs_secpolicy_renane_perns(const char *from const char *to, cred_t *cr)
873 {

874 char par ent name[MAXNAMVELEN] ;

875 int error;

877 if ((error = zfs_secpolicy_wite_pernms(from

878 ZFS_DELEG PERM RENAME, cr)) T= 0)

879 return (error);

881 if ((error = zfs_secpolicy_wite pern‘s(from

882 ZFS_DELEG PERM MOUNT, cr)) != 0)

883 return (error);

885 if ((error = zfs_get_parent(to, parentnang,

886 si zeof (parentnane))) != 0)

887 return (error);

889 if ((error = zfs_secpolicy_wite_perns(parentnang,

890 ZFS_DELEG PERM CREATE, cr)) != 0)

891 return (error);

893 if ((error = zfs_secpolicy_wite_perns(parentnang,

894 ZFS_DELEG PERM MOUNT, cr)) != 0)

895 return (error);

897 return (error);

898 }

900 /* ARGSUSED */

901 static int

902 zfs_secpolicy_renane(zfs_cnd_t *zc, nvlist_t *innvl,
903 {

904 return (zfs_secpolicy_renanme_perns(zc->zc_naneg,
905 }

907 /* ARGSUSED */
908 static int
909 zfs_secpolicy_pronote(zfs_cnd_t *zc, nvlist_t *innvl,

cred_t *cr)

zc->zc_val ue, cr));

cred_t *cr)

910 {

911 dsl _pool _t *dp;

912 dsl _dat aset _t *cl one;

913 int error;

915 error = zfs_secpolicy_wite_perns(zc->zc_naneg,
916 ZFS_DELEG PERM PROMOTE, cr);

917 if (error 1= 0)

918 return (error);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

920 error = dsl_pool _hol d(zc->zc_nane, FTAG &dp);

921 if (error 1= 0)

922 return (error);

924 error = dsl_dataset _hol d(dp, zc->zc_nane, FTAG &clone);
926 if (error == 0) {

927 char parent name[MAXNAMVELEN] ;

928 dsl _dataset _t *origin = NULL;

929 dsl _dir_t *dd;

930 dd = clone->ds_dir;

932 error = dsl_dataset_hol d_obj (dd->dd_pool ,

933 dd- >dd_phys->dd_ori gi n_obj, FTAG &origin);
934 if (error 1= 0)

935 dsl _dataset _rel e(cl one, FTAG;

936 dsl _pool _rel e(dp, FTAQ;

937 return (error);

938 }

940 error = zfs_secpolicy_wite_perns_ds(zc->zc_nane, clone,
941 ZFS_DELEG PERM MOUNT, cr);

943 ds| _dat aset _nane(origin, parentnane);

944 if (error == 0) {

945 error = zfs_secpolicy_wite_perns_ds(parentnane,
946 ZFS_DELEG PERM PROMOTE, “cr);

947 }

948 dsl _dataset _rel e(cl one, FTAG;

949 dsl _dataset_rele(origin, FTAQ;

950 1

951 dsl _pool _rel e(dp, FTAG;

952 return (error);

953 }

955 /* ARGSUSED */
956 static int

957 zfs_secpolicy_recv(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)

958 {

959 int error;

961 if ((error = zfs_secpolicy_wite_perns(zc->zc_|
962 ZFS DELEG PERM RECEI VE, cr)) != 0)

963 return (error);

965 if ((error = zfs_secpolicy_wite_pernms(zc->zc_
966 ZFS DELEG PERM MOUNT, “cr)) !'= 0)

967 return (error);

969 return (zfs_secpolicy_wite_pernms(zc->zc_nane,
970 ZFS_DELEG PERM CREATE, cr));

971 }

973 int

974 zfs_secpolicy_snapshot _perns(const char *nane, cred_t
975 {

976 return (zfs_secpolicy_wite_perns(nane,
977 ZFS_DELEG PERM SNAPSHOT, cr));

978 }

980 /*

982
983 /* ARGSUSED */
984 static int

nane,

nane,

*cr)

981 * Check for permission to create each snapshot in the nvlist.
=

15

origin,

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

985 zfs_secpolicy_snapshot(zfs_cnmd_t *zc, nvlist_t *innvl, cred_t *cr)

986 {

987 nvlist_t *snaps;

988 int error = 0;

989 nvpair_t *pair;

991 if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0)
992 return (SET_ERROR(EINVAL));

993 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
994 pair = nvlist_next_nvpair(snaps, pair)) {

995 char *name = nvpalr_nanme(pair);

996 char *atp = strchr(nane, '@);

998 if (atp == NULL) {

999 error = SET_ERROR(El NVAL) ;

1000 br eak;

1001 }

1002 *atp = '\0’;

1003 error = zfs_secpolicy_snapshot _perns(nane, cr);
1004 *atp = ' @;

1005 if (error I=O)

1006 br eak;

1007 1

1008 return (error);

1009 }

1011 /* ARGSUSED */
1012 static int
1013 zfs_secpolicy_log_history(zfs_cnmd_t *zc, nvlist_t *innvl, cred_t *cr)

1014 {

1015 /*

1016 * Even root nust have a proper TSD so that we know what pool
1017 * to log to.

1018 */

1019 if (tsd_get(zfs_allow.|og_key) == NULL)

1020 return (SET_ERROR(EPERV));

1021 return (0);

1022 }

1024 static int
1025 zfs_secpolicy_create_clone(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)

1026 {

1027 char par ent name[MAXNAMVELEN] ;

1028 int error;

1029 char *origin;

1031 if ((error = zfs_get_parent(zc->zc_nanme, parentnane,
1032 si zeof (parentnane))) != 0)

1033 return (error);

1035 if (nvlist_lookup_string(innvl, "origin', &rigin) == 0 &&
1036 (error = zfs_secpol i cy_) wite perms(orlgln

1037 ZFS_DELEG PERM CLONE, cr)) != 0)

1038 return (error);

1040 if ((error = zfs_secpolicy_wite_perns(parentnane,
1041 ZFS_DELEG PERM CREATE, cr)) != 0)

1042 return (error);

1044 return (zfs_secpolicy_wite_perns(parentnang,

1045 ZFS_DELEG_PERM MOUNT, cr));

1046 }

1048 /*

1049 * Policy for pool operations - create/destroy pools, add vdevs, etc.
1050 * SYS _CONFIG privilege, which is not available in a |ocal zone.

16

Requi res

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 17 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
1051 */ 1117 * They are asking about a posix uid/gid. If it's
1052 /* ARGSUSED */ 1118 * thenself, allowit.
1053 static int 1119 */
1054 zfs_secpolicy_config(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1120 if (zc->zc_objset_type == ZFS_PROP_USERUSED | |
1055 { 1121 zc->zc_obj set _type == ZFS_PROP_USERQUOTA) {
1056 if (secpolicy_sys_config(cr, B_FALSE) != 0) 1122 if (zc->zc_guid == crgetuid(cr))
1057 return (SET_ERROR(EPERM) ; 1123 return (0);
1124 } else {
1059 return (0); 1125 i f (groupnmenber(zc->zc_guid, cr))
1060 } 1126 return (0);
1127 }
1062 /* 1128 }
1063 * Policy for object to name | ookups.
1064 */ 1130 return (zfs_secpolicy_wite_perns(zc->zc_nane,
1065 /* ARGSUSED */ 1131 user quot a_perns[zc- >zc_obj set _type], cr));
1066 static int 1132 }
1067 zfs_secpolicy_diff(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
1068 { 1134 static int
1069 int error; 1135 zfs_secpolicy_userspace_many(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
1136 {
1071 if ((error = secpolicy_sys_config(cr, B _FALSE)) == 0) 1137 int err = zfs_secpolicy_read(zc, innvl, cr);
1072 return (0); 1138 if (err)
1139 return (err);
1074 error = zfs_secpolicy_wite_perns(zc->zc_nane, ZFS _DELEG PERM DI FF, cr);
1075 return (error); 1141 if (zc->zc_objset_type >= ZFS_NUM USERQUOTA_PROPS)
1076 } 1142 return (SET_ERROR(EI NVAL));
1078 /* 1144 return (zfs_secpolicy_wite_perms(zc->zc_nane,
1079 * Policy for fault injection. Requires all privileges. 1145 user quot a_per ns[zc- >zc_obj set _type], cr));
1080 */ 1146 }
1081 /* ARGSUSED */
1082 static int 1148 /* ARGSUSED */
1083 zfs_secpolicy_inject(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) 1149 static int
1084 { 1150 zfs_secpolicy_userspace_upgrade(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
1085 return (secpolicy_zinject(cr)); 1151 {
1086 } 1152 return (zfs_secpolicy_setprop(zc->zc_nane, ZFS_PROP_VERSI ON,
1153 NULL, cr));
1088 /* ARGSUSED */ 1154 }
1089 static int
1090 zfs_secpolicy_inherit_prop(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr) 1156 /* ARGSUSED */
1091 { 1157 static int
1092 zfs_prop_t prop = zfs_nanme_to_prop(zc->zc_val ue); 1158 zfs_secpolicy_hold(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
1159 {
1094 if (prop == ZPROP_I NVAL) { 1160 nvpair_t *pair;
1095 if (!zfs_prop_user(zc->zc_val ue)) 1161 nvlist_t *holds;
1096 return (SET_ERROR(EI NVAL)); 1162 int error;
1097 return (zfs_secpolicy_wite_perms(zc->zc_nane,
1098 ZFS_DELEG PERM USERPROP, cr)); 1164 error = nvlist_lookup_nvlist(innvl, "holds", &holds);
1099 } else { 1165 if (error 1= 0)
1100 return (zfs_secpolicy_setprop(zc->zc_nanme, prop, 1166 return (SET_ERROR(EI NVAL));
1101 NULL, cr));
1102 } 1168 for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL;
1103 } 1169 pair = nvlist_next_nvpair(holds, pair)) {
1170 char fsname[MAXNAMELEN] ;
1105 static int 1171 error = dnu_f sname(nvpair_nane(pair), fsnane);
1106 zfs_secpolicy_userspace_one(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr) 1172 if (error 1= 0)
1107 { 1173 return (error);
1108 int err = zfs_secpolicy_read(zc, innvl, cr); 1174 error = zfs_secpolicy_wite_pernms(fsnane,
1109 if (err) 1175 ZFS_DELEG PERM HOLD, cr);
1110 return (err); 1176 if (error 1= 0)
1177 return (error);
1112 if (zc->zc_objset_type >= ZFS_NUM USERQUOTA PROPS) 1178 }
1113 return (SET_ERROR(EI NVAL)); 1179 return (0);
1180 }
1115 if (zc->zc_value[0] == 0) {
1116 [1182 /* ARGSUSED */

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

1183 static int

1184 zfs_secpolicy_rel ease(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
1185 {

1186 nvpair_t *pair;

1187 int error;

1189 for (pair = nvlist_next_nvpair(innvl, NULL); pair != NULL;
1190 pair = nvlist_next_nvpair(innvl, pair)) {

1191 char fsname[MAXNAMELEN ;

1192 error = dmu_f sname(nvpair_nane(pair), fsnane);
1193 if (error 1= 0)

1194 return (error);

1195 error = zfs_secpolicy_wite_perns(fsnane,

1196 ZFS_DELEG PERM RELEASE, cr);

1197 if (error 1= 0)

1198 return (error);

1199 }

1200 return (0);

1201 }

1203 /*

1204 * Policy for allow ng tenporary snapshots to be taken or rel eased
1205 */

1206 static int

1207 zfs_secpolicy_tnp_snapshot(zfs_cnmd_t *zc, nvlist_t *innvl, cred_t *cr)
1208 {

1209 /*

1210 * A tenporary snapshot is the sane as a snapshot,

1211 * hold, destroy and release all rolled into one.

1212 * Del egated diff alone is sufficient that we allow this.
1213 */

1214 int error;

1216 if ((error = zfs_secpolicy_wite_pernms(zc->zc_nane,

1217 ZFS DELEG PERM DI FF, cr)) == 0)

1218 return (0);

1220 error = zfs_secpolicy_snapshot_perns(zc->zc_nanme, cr);
1221 if (error == 0)

1222 error = zfs_secpolicy_hold(zc, innvl, cr);

1223 if (error == 0)

1224 error = zfs_secpolicy_rel ease(zc, innvl, cr);
1225 if (error == 0)

1226 error = zfs_secpolicy_destroy(zc, innvl, cr);
1227 return (error);

1228 }

1230 /*

1231 * Returns the nvlist as specified by the user in the zfs_cnd_t.
1232 */

1233 static int

1234 get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp)
1235 {

1236 char *packed;

1237 int error;

1238 nvliist_t *list = NULL;

1240 /*

1241 * Read in and unpack the user-supplied nvlist.

1242 */

1243 if (size == 0)

1244 return (SET_ERROR(EINVAL));

1246 packed = kmem al | oc(si ze, KM SLEEP);

1248 if ((error = ddi_copyin((void *)(uintptr_t)nvl, packed, size,

19

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

1249 iflag)) !'=0) {

1250 kmem f ree(packed, size);

1251 return (error);

1252 }

1254 if ((error = nvlist_unpack(packed, size, &ist, 0)) !'=0) {
1255 kmem free(packed, size);

1256 return (error);

1257 }

1259 kmem f ree(packed, size);

1261 *nvp = |list;

1262 return (0);

1263 }

1265 /*

1266 * Reduce the size of this nvlist until it can be serialized in 'max’ bytes.
1267 * Entries will be renoved fromthe end of the nvlist, and one int32 entry
1268 * named "N_MORE_ERRORS" wi || be added indicating how many entries were
1269 * renoved.

1270 */

1271 static int

1272 nvlist_smush(nvlist_t *errors, size_t nmax)

1273 {

1274 size_t size;

1276 size = fnvlist_size(errors);

1278 if (size > max)

1279 nvpair_t *nore_errors;

1280 int = 0;

1282 if (max < 1024)

1283 return (SET_ERROR(ENOVEM) ;

1285 fnvlist_add_int32(errors, ZPROP_N_MORE_ERRCRS, 0);
1286 nore_errors = nvlist_prev_nvpair(errors, NULL);
1288 do {

1289 nvpair_t *pair = nvlist_prev_nvpair(errors,
1290 nore_errors);

1291 fnvlist_renove_nvpair(errors, pair);

1292 n++;

1293 size = fnvlist_size(errors);

1294 } while (size > max);

1296 fnvlist_renove_nvpair(errors, nore_errors);

1297 fnvlist_add_int32(errors, ZPROP_N_MORE_ERRCRS, n);
1298 ASSERT3U(f nvl i st_size(errors), <= max);

1299 }

1301 return (0);

1302 }

1304 static int

1305 put_nvlist(zfs_cnmd_t *zc, nvlist_t *nvl)

1306 {

1307 char *packed = NULL;

1308 int error = 0;

1309 size_t size;

1311 size = fnvlist_size(nvl);

1313 if (size > zc->zc_nvlist_dst_size) {

1314 error = SET_ERROR(ENOVEM) ;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

1315 } else {

1316 packed = fnvlist_pack(nvl, &size);

1317 i1 f (ddi _copyout (packed, (void *)(uintptr_t
1318 size, zc->zc_iflags) != 0)

1319 error = SET_ERROR(EFAULT);

1320 fnvlist_pack_ free(packed, size);

1321 }

1323 zc->zc_nvlist_dst_size = size

1324 zc->zc_nvlist_dst_filled = B_TRUE

1325 return (error);

1326 }

1328 static int

1329 get zf svfs(const char *dsname, zfsvfs_t **zfvp)

1330 {

1331 obj set _t *os;

1332 int error;

1334 error = dnu_obj set _hol d(dsnane, FTAG &os);

1335 if (error '=0

1336 return (error);

1337 if (dmu_objset_type(os) != DMJ_OST_ZFS) {

1338 dmu_obj set _rel e(os, FTAQ;

1339 return (SET_ERROR(EINVAL));

1340 }

1342 mut ex_ent er (&os- >0s_user _ptr_| ock);

1343 *zfvp = dnu_obj set _get _user(o0s);

1344 if (*zfvp) {

1345 VFS_HOLD((*zfvp)->z_vfs);

1346 } else {

1347 error = SET_ERROR(ESRCH);

1348

1349 mut ex_exi t (&os->0s_user _ptr_| ock);

1350 dmu_obj set _rel e(os, FTAG;

1351 return (error);

1352 }

1354 /*

1355 * Find a zfsvfs_t for a mounted filesystem or create our
1356 * case its z_vfs will be NULL, and it will be opened as t
1357 * If "witer’ is set, the z_teardown_lock will be held fo
1358 * which prevents all vnode ops from running.

1359 */

1360 static int

1361 zfsvfs_hol d(const char *nanme, void *tag, zfsvfs_t **zfvp,
1362 {

1363 int error = 0;

1365 if (getzfsvfs(name, zfvp) !'= 0)

1366 error = zfsvfs_create(nane, zfvp);

1367 if (error == 0)

1368 rrw_enter (& *zfvp)->z_teardown_| ock, (writ
1369 RW READER, tag);

1370 if ((*zfvp)->z_unnmounted) {

1371 /*

1372 * XXX we coul d probably try again,
1373 * thread shoul d be just about to
1374 * objset fromthe zfsvfs.

1375 */

1376 rrw_exit (& *zfvp)->z_teardown_| ock,
1377 return (SET_ERROR(EBUSY));

1378 }

1379

1380 return (error);

21

) zc->zc_nvlist_dst,

own, in which
he owner.
r RWWRI TER

bool ean_t writer)

er) ? RWWR TER

since the unnounting
di sassociate the

tag);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

1381 }

1383 static void

1384 zfsvfs_rel e(zfsvfs_t *zfsvfs, void *tag)

1385 {

1386 rrw_exit(&fsvfs->z_teardown_| ock, tag);

1388 if (zfsvfs->z_vfs) {

1389 VFS_RELE(zf svfs->z_vfs);

1390 } else {

1391 dmu_obj set _di sown(zf svfs->z_os, zfsvfs);

1392 zfsvfs_free(zfsvfs);

1393 }

1394 }

1396 static int

1397 zfs_ioc_pool _create(zfs_cnmd_t *zc)

1398 {

1399 int error;

1400 nvlist_t *config, *props = NULL;

1401 nvlist_t *rootprops = NULL;

1402 nvlist_t *zplprops = NULL;

1404 if (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1405 zc->zc_iflags, &config))

1406 return (error);

1408 if (zc->zc_nvlist_src_size !'= 0 & (error =

1409 get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
1410 zc->zc_iflags, &props))) {

1411 nvlist_free(config);

1412 return (error);

1413 }

1415 if (props) {

1416 nvlist_t *nvl = NUL

1417 uint64_t version = SPA VERSI ON,

1419 (void) nvlist_| ookup_ui nt 64(props,

1420 zpool _prop_to_name(ZPOOL_PROP_VERSI ON), &version);
1421 if (!SPA_VERSI CN I'S_SUPPORTED(ver si on))

1422 error = SET_ERROR(EI NVAL);

1423 got o pool _props_bad;

1424 }

1425 (void) nvlist_lookup_nvlist(props, ZPOOL_ROOTFS_PROPS, &nvl);
1426 if (nvl)

1427 error = nvlist_dup(nvl, & ootprops, KM SLEEP);
1428 if (error 1=0

1429 nvlist_free(config);

1430 nvlist_free(props);

1431 return (error);

1432 }

1433) (void) nvlist_renove_all (props, ZPOOL_ROOTFS_PROPS);
1434

1435 VERI FY(nvlist_all oc(&zpl props, NV_UNI QUE_NAME, KM SLEEP) == 0);
1436 error = zfs_fill_zpl props_root(version, rootprops,
1437 zpl props, NULL);

1438 if (error 1=0)

1439 goto pool _props_bad;

1440 }

1442 error = spa_create(zc->zc_nane, config, props, zplprops);
1444 /*

1445 * Set the remmining root properties

1446 */

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 23 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

1447 if (lerror & (error = zfs_set_prop_nvlist(zc->zc_nane, 1513 int error;
1448 ZPROP_SRC LOCAL, rootprops, NULL)) != 0) 1514 bool ean_t force = (bool ean_t)zc->zc_cooki e;
1449 (voi d) spa_destroy(zc->zc_nane); 1515 bool ean_t hardforce = (bool ean_t)zc->zc_gui d;
1451 pool _props_bad: 1517 zfs_l og_history(zc);
1452 nvlist_free(rootprops); 1518 error = spa_export(zc->zc_nane, NULL, force, hardforce);
1453 nvlist_free(zpl props); 1519 if (error == 0)
1454 nvlist_free(config); 1520 zvol _renove_mi nor s(zc->zc_namne) ;
1455 nvlist_free(props); 1521 return (error);
1522 }
1457 return (error);
1458 } 1524 static int
1525 zfs_ioc_pool _configs(zfs_cmd_t *zc)
1460 static int 1526 {
1461 zfs_ioc_pool _destroy(zfs_cnd_t *zc) 1527 nvlist_t *configs;
1462 { 1528 int error;
1463 int error;
1464 zfs_l og_hi story(zc); 1530 if ((configs = spa_all _configs(&zc->zc_cookie)) == NULL)
1465 error = spa_destroy(zc->zc_nane); 1531 return (SET_ERROR(EEXI ST));
1466 if (error == 0)
1467 zvol _renmpve_m nors(zc->zc_nane); 1533 error = put_nvlist(zc, configs);
1468 return (error);
1469 } 1535 nvlist_free(configs);
1471 static int 1537 return (error);
1472 zfs_ioc_pool _inport(zfs_cnmd_t *zc) 1538 }
1473 {
1474 nvlist_t *config, *props = NULL; 1540 /*
1475 uint64_t guid; 1541 * inputs:
1476 int error; 1542 * zc_nane name of the pool
1543 *
1478 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, 1544 * outputs:
1479 zc->zc_iflags, &config)) != 0) 1545 * zc_cookie real errno
1480 return (error); 1546 * zc_nvlist_dst config nvlist
1547 * zc_nvlist_dst_size size of config nvlist
1482 if (zc->zc_nvlist_src_size !=0 & (error = 1548 */
1483 get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, 1549 static int
1484 zc->zc_iflags, &props))) { 1550 zfs_ioc_pool _stats(zfs_cnd_t *zc)
1485 nvlist_free(config); 1551 {
1486 return (error); 1552 nvlist_t *config;
1487 } 1553 int error;
1554 int ret = 0;
1489 if (nvlist_|ookup_uint64(config, ZPOOL_CONFIG POOL_GUI D, &guid) !'= 0 ||
1490 guid !'= zc->zc_gui d) 1556 error = spa_get_stats(zc->zc_nane, &config, zc->zc_val ue,
1491 error = SET_ERROR(EI NVAL) ; 1557 si zeof (zc->zc_value));
1492 el se
1493 error = spa_inport(zc->zc_nane, config, props, zc->zc_cookie); 1559 if (config !'= NULL) {
1560 ret = put_nvlist(zc, config);
1495 if (zc->zc_nvlist_dst !'=0) { 1561 nvlist_free(config);
1496 int err;
1563 /*
1498 if ((err = put_nvlist(zc, config)) != 0) 1564 * The config nmay be present even if 'error’ is non-zero.
1499 error = err; 1565 * In this case we return success, and preserve the real errno
1500 } 1566 * in 'zc_cookie'.
1567 */
1502 nvlist_free(config); 1568 zc->zc_cookie = error;
1569 } else {
1504 if (props) 1570 ret = error;
1505 nvlist_free(props); 1571 }
1507 return (error); 1573 return (ret);
1508 } 1574 }
1510 static int 1576 /*
1511 zfs_i oc_pool _export(zfs_cmd_t *zc) 1577 * Try to inport the given pool, returning pool stats as appropriate so that

1512 { 1578 * user |and knows which devices are available and overall pool health.

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 25 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 26

1579 */ 1645 int error;
1580 static int
1581 zfs_ioc_pool _tryinport(zfs_cnd_t *zc) 1647 if ((error = spa_open(zc->zc_nanme, &spa, FTAG) != 0)
1582 { 1648 return (error);
1583 nvlist_t *tryconfig, *config;
1584 int error; 1650 if (zc->zc_cookie < spa_version(spa) ||
1651 I SPA_VERSI ON | S SUPPORTED(zc- >zc_cooki e)) {
1586 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, 1652 spa_cl ose(spa, FTAG);
1587 zc->zc_iflags, &ryconfig)) !=0) 1653 return (SET_ERROR(E! NVAL))
1588 return (error); 1654 }
1590 config = spa_tryinport(tryconfig); 1656 spa_upgr ade(spa, zc->zc_cookie);
1657 spa_cl ose(spa, FTAQ;
1592 nvlist_free(tryconfig);
1659 return (error);
1594 if (config == NULL) 1660 }
1595 return (SET_ERROR(EI NVAL));
1662 static int
1597 error = put_nvlist(zc, config); 1663 zfs_ioc_pool _get_history(zfs_cnd_t *zc)
1598 nvlist_free(config); 1664 {
1665 spa_t *spa;
1600 return (error); 1666 char *hist_buf;
1601 } 1667 uint64_t size;
1668 int error;
1603 /*
1604 * inputs: 1670 if ((size = zc->zc_history_len) == 0)
1605 * zc_nane nanme of the pool 1671 return (SET_ERROR(EI NVAL));
1606 * zc_cookie scan func (pool _scan_func_t)
1607 */ 1673 if ((error = spa_open(zc->zc_nanme, &spa, FTAG) != 0)
1608 static int 1674 return (error);
1609 zfs_ioc_pool _scan(zfs_cmd_t *zc)
1610 { 1676 if (spa_version(spa) < SPA_ VERSI ON_ZPOOL_HI STORY) {
1611 spa_t *spa; 1677 spa_cl ose(spa, FTA
1612 int error; 1678 return (SET_ERROR(ENOTSUP))
1679 }
1614 if ((error = spa_open(zc->zc_nane, &spa, FTAG) != 0)
1615 return (error); 1681 hi st _buf = kmem al | oc(size, KM SLEEP);
1682 if ((error = spa_history_get(spa, &zc->zc_history_offset,
1617 if (zc->zc_cookie == POOL_SCAN_NONE) 1683 & c->zc_history_len, hist_buf)) == 0) {
1618 error = spa scan_st op(spa) ; 1684 error = ddi _copyout (hi st _buf,
1619 el se 1685 (void *)(uintptr_t)zc->zc_history,
1620 error = spa_scan(spa, zc->zc_cookie); 1686 zc->zc_history_len, zc->zc_iflags);
1687 }
1622 spa_cl ose(spa, FTAQ;
1689 spa_cl ose(spa, FTAQ;
1624 return (error); 1690 kmem free(hi st _buf, size);
1625 } 1691 return (error);
1692 }
1627 static int
1628 zfs_ioc_pool _freeze(zfs_cnd_t *zc) 1694 static int
1629 { 1695 zfs_ioc_pool _reguid(zfs_cnmd_t *zc)
1630 spa_t *spa; 1696 {
1631 int error; 1697 spa_t *spa;
1698 int error;
1633 error = spa_open(zc->zc_nanme, &spa, FTAG;
1634 if (error == 0) { 1700 error = spa_open(zc->zc_nane, &spa, FTAG;
1635 spa_freeze(spa); 1701 if (error == 0) {
1636 spa_cl ose(spa, FTAQ; 1702 error = spa_change_gui d(spa);
1637 } 1703 spa_cl ose(spa, FTAQ;
1638 return (error); 1704 }
1639 } 1705 return (error);
1706 }
1641 static int
1642 zfs_ioc_pool _upgrade(zfs_cnd_t *zc) 1708 static int
1643 { 1709 zfs_ioc_dsobj_to_dsnanme(zfs_cnd_t *zc)

1644 spa_t *spa; 1710 {

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

zc->zc_obj,

FTAG, &0s))

FTAG, &0s))

&zc->zc_stat,

1711 return (dsl_dsobj _to_dsnanme(zc->zc_nane,
1712 }

1714 /*

1715 * inputs:

1716 * zc_nane nanme of filesystem

1717 * zc_obj object to find

1718 *

1719 * outputs:

1720 * zc_val ue name of object

1721 */

1722 static int

1723 zfs_ioc_obj _to_path(zfs_cnmd_t *zc)

1724 {

1725 obj set _t *os;

1726 int error;

1728 /* XXX readi ng from objset not owned */
1729 if ((error = dnu_objset_hol d(zc->zc_nane,
1730 return (error);

1731 if (dmu_objset_type(os) != DMJ OST_ZFS) {
1732 drmu_obj set _rel e(os, FTAQ;

1733 return (SET_ERROR(EINVAL));

1734

1735 error = zfs_obj_to_path(os, zc->zc_obj, zc->zc_val ue,
1736 si zeof (zc->zc_value));

1737 drmu_obj set _rel e(os, FTAG;

1739 return (error);

1740 }

1742 | *

1743 * inputs:

1744 * zc_nane name of fil esystem

1745 * zc_obj object to find

1746 *

1747 * outputs:

1748 * zc_stat stats on object

1749 * zc_val ue path to object

1750 */

1751 static int

1752 zfs_ioc_obj _to_stats(zfs_cmd_t *zc)

1753 {

1754 obj set _t *os;

1755 int error;

1757 /* XXX readi ng from objset not owned */
1758 if ((error = dnu_objset_hol d(zc->zc_nane,
1759 return (error);

1760 if (dmu_objset_type(os) !'= DMJ_OST_ZFS) {
1761 dnu_obj set _rel e(os, FTAQ;

1762 return (SET_ERROR(EINVAL));

1763

1764 error = zfs_obj_to_stats(os, zc->zc_obj,
1765 si zeof (zc->zc_value));

1766 drmu_obj set _rel e(os, FTAG;

1768 return (error);

1769 }

1771 static int

1772 zfs_ioc_vdev_add(zfs_cnd_t *zc)

1773 {

1774 spa_t *spa;

1775 int error;

1776 nvlist_t *config, **l2cache, **spares;

zc->zc_val ue));

1= 0)

1= 0)

zc->zc_val ue,

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 28

1777

uint_t nl2cache = 0, nspares = 0;

1779 error = spa_open(zc->zc_nanme, &spa, FTAG;

1780 if (error = 0)

1781 return (error);

1783 error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1784 zc->zc_iflags, &config);

1785 (void) nvlist_|lookup_nvlist_array(config, ZPOOL_CONFI G L2CACHE,
1786 &l 2cache, &nl 2cache);

1788 (void) nvlist_|lookup_nvlist_array(config, ZPOOL_CONFI G _SPARES,
1789 &spares, &nspares);

1791 I*

1792 * A root pool with concatenated devices is not supported.
1793 * Thus, can not add a device to a root pool.

1794 *

1795 * Intent |og device can not be added to a rootpool because
1796 * during nountroot, zil is replayed, a seperated |og device
1797 * can not be accessed during the nmountroot tine.

1798 *

1799 * | 2cache and spare devices are ok to be added to a rootpool.
1800 *

1801 if (spa_bootfs(spa) != 0 &k nl2cache == 0 && nspares == 0) {
1802 nvlist_free(config);

1803 spa_cl ose(spa, FTAQ;

1804 return (SET_ERROR(EDOM);

1805 }

1807 if (error == 0) {

1808 error = spa_vdev_add(spa, config);

1809 nvlist_free(config);

1810

1811 spa_cl ose(spa, FTAQ;

1812 return (error);

1813 }

1815 /*

1816 * inputs:

1817 * zc_nane name of the pool

1818 * zc_nvlist_conf nvlist of devices to renove

1819 * zc_cookie to stop the renove?

1820 */

1821 static int

1822 zfs_ioc_vdev_renpve(zfs_cnd_t *zc)

1823 {

1824 spa_t *spa;

1825 int error;

1827 error = spa_open(zc->zc_nanme, &spa, FTAG;

1828 if (error 1= 0)

1829 return (error);

1830 error = spa_vdev_renove(spa, zc->zc_guid, B _FALSE);

1831 spa_cl ose(spa, FTAQ;

1832 return (error);

1833 }

1835 static int

1836 zfs_ioc_vdev_set_state(zfs_cnd_t *zc)

1837 {

1838 spa_t *spa;

1839 int error;

1840 vdev_state_t newstate = VDEV_STATE_ UNKNOM;

1842 if ((error = spa_open(zc->zc_nane, &spa, FTAG) != 0)

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

1843 return (error);

1844 switch (zc->zc_cookie) {

1845 case VDEV_STATE_ONLI NE:

1846 error = vdev_online(spa, zc->zc_guid, zc->zc_obj, &newstate);
1847 br eak;

1849 case VDEV_STATE_OFFLI NE:

1850 error = vdev_offline(spa, zc->zc_guid, zc->zc_obj);
1851 br eak;

1853 case VDEV_STATE_FAULTED:

1854 if (zc->zc_obj != VDEV_AUX_ERR EXCEEDED &&

1855 zc->zc_obj !'= VDEV_AUX_EXTERNAL)

1856 zc->zc_obj = VDEV_AUX_ERR_EXCEEDED,;

1858 error = vdev_faul t(spa, zc->zc_guid, zc->zc_obj);
1859 br eak;

1861 case VDEV_STATE_DEGRADED:

1862 if (zc->zc_obj != VDEV_AUX_ERR EXCEEDED &&

1863 zc->zc_obj !'= VDEV_AUX_EXTERNAL)

1864 zc->zc_obj = VDEV_AUX_ERR EXCEEDED;

1866 error = vdev_degrade(spa, zc->zc_guid, zc->zc_obj);
1867 br eak;

1869 defaul t:

1870 error = SET_ERROR(ElI NVAL) ;

1871

1872 zc->zc_cooki e = newstate;

1873 spa_cl ose(spa, FTAQ;

1874 return (error);

1875 }

1877 static int

1878 zfs_ioc_vdev_attach(zfs_cnd_t *zc)

1879 {

1880 spa_t *spa;

1881 int replacing = zc->zc_cooki e;

1882 nvlist_t *config;

1883 int error;

1885 if ((error = spa_open(zc->zc_nane, &spa, FTAG) != 0)
1886 return (error);

1888 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1889 zc->zc_iflags, &config)) == 0) {

1890 error = spa_vdev_attach(spa, zc->zc_guid, config, replacing);
1891 nvlist_free(config);

1892 }

1894 spa_cl ose(spa, FTAQ;

1895 return (error);

1896 }

1898 static int

1899 zfs_ioc_vdev_detach(zfs_cnd_t *zc)

1900 {

1901 spa_t *spa;

1902 int error;

1904 if ((error = spa_open(zc->zc_nanme, &spa, FTAG) != 0)
1905 return (error);

1907 error = spa_vdev_detach(spa, zc->zc_guid, 0, B FALSE);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

exp);

1909 spa_cl ose(spa, FTAQ;

1910 return (error);

1911 }

1913 static int

1914 zfs_ioc_vdev_split(zfs_cnd_t *zc)

1915 {

1916 spa_t *spa;

1917 nvlist_t *config, *props = NULL;

1918 int error;

1919 bool ean_t exp = !l (zc->zc_cooki e & ZPOOL_EXPORT_AFTER SPLIT);
1921 if ((error = spa_open(zc->zc_nane, &spa, FTAG) != 0)
1922 return (error);

1924 if (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1925 zc->zc_iflags, &config))

1926 spa_cl ose(spa, FTAQ;

1927 return (error);

1928 }

1930 if (zc->zc_nvlist_src_size !=0 & (error =
1931 get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
1932 zc->zc_iflags, &props))) {

1933 spa_cl ose(spa, FTAQ;

1934 nvlist_free(config);

1935 return (error);

1936 }

1938 error = spa_vdev_split_mirror(spa, zc->zc_string, config, props,
1940 spa_cl ose(spa, FTAQ;

1942 nvlist_free(config);

1943 nvlist_free(props);

1945 return (error);

1946 }

1948 static int

1949 zfs_ioc_vdev_setpath(zfs_cnd_t *zc)

1950 {

1951 spa_t *spa;

1952 char *path = zc->zc_val ue;

1953 uint64_t guid = zc->zc_guid;

1954 int error;

1956 error = spa_open(zc->zc_nane, &spa, FTAG);
1957 if (error 1= 0)

1958 return (error);

1960 error = spa_vdev_setpat h(spa, guid, path);
1961 spa_cl ose(spa, FTAQ;

1962 return (error);

1963 }

1965 static int

1966 zfs_ioc_vdev_setfru(zfs_cnd_t *zc)

1967 {

1968 spa_t *spa;

1969 char *fru = zc->zc_val ue;

1970 uint64_t guid = zc->zc_guid;

1971 int error;

1973 error = spa_open(zc->zc_nane, &spa, FTAG;
1974 if (error 1= 0)

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 31 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 32
1975 return (error); 2041 * zc_nane name of filesystem
2042 * zc_nvlist_dst_size size of buffer for property nvlist
1977 error = spa_vdev_setfru(spa, guid, fru); 2043 *
1978 spa_cl ose(spa, FTAQ; 2044 * outputs:
1979 return (error); 2045 * zc_nvlist_dst recei ved property nvlist
1980 } 2046 * zc_nvlist_dst_size si ze of recelved property nvlist
2047 *
1982 static int 2048 * Gets received properties (distinct fromlocal properties on or after
1983 zfs_ioc_objset_stats_inpl(zfs_cnd_t *zc, objset_t *os) 2049 * SPA VERSI ON_RECVD PROPS) for callers who want to differentiate received from
1984 { 2050 * |ocal property val ues.
1985 int error = 0; 2051 *
1986 nvlist_t *nv; 2052 static int
2053 zfs_i oc_objset_recvd_props(zfs_cnd_t *zc)
1988 drmu_obj set _fast _stat (os, &zc->zc_objset_stats); 2054 {
2055 int error = 0;
1990 if (zc->zc_nvlist_dst !'= 0 && 2056 nvlist_t *nv;
1991 (error = dsl_prop_get_all(os, &wv)) == 0) {
1992 drmu_obj set _stats(os, nv); 2058 /*
1993 /* 2059 * Wthout this check, we would return |local property values if the
1994 * NB: zvol _get_stats() will read the objset contents, 2060 * caller has not already received properties on or after
1995 * which we aren’t supposed to do with a 2061 * SPA_VERSI ON_RECVD_PROPS.
1996 * DS_MODE_USER hol d, because it coul d be 2062 */
1997 * inconsistent. So this is a bit of a workaround... 2063 if (!dsl_prop_get_hasrecvd(zc->zc_nane))
1998 * XXX reading with out owning 2064 return (SET_ERROR(ENOTSUP)) ;
1999 *
2000 if (!zc->zc_objset_stats.dds_inconsistent && 2066 if (zc->zc_nvlist_dst '= 0 &&
2001 drmu_obj set _type(os) == DMJ_OST_zVOL) { 2067 (error = dsl_prop_get_received(zc->zc_nane, &nv)) == 0) {
2002 error = zvol _get_stats(os, nv); 2068 error = put_nvlist(zc, nv);
2003 if (error == EIOQ 2069 nvlist_free(nv);
2004 return (error); 2070 }
2005 VERI FYO(error);
2006 } 2072 return (error);
2007 error = put_nvlist(zc, nv); 2073 }
2008 nvlist_free(nv);
2009 } 2075 static int
2076 nvl _add_zpl prop(objset _t *os, nvlist_t *props, zfs_prop_t prop)
2011 return (error); 2077 {
2012 } 2078 ui nt64_t val ue;
2079 int error;
2014 /*
2015 * inputs: 2081 /*
2016 * zc_nane name of filesystem 2082 * zfs_get_zplprop() will either find a value or give us
2017 * zc_nvlist_dst_size size of buffer for property nvlist 2083 * the default value (if there is one).
2018 * 2084 */
2019 * outputs: 2085 if ((error = zfs_get_zpl prop(os, prop, &alue)) != 0)
2020 * zc_objset_stats stats 2086 return (error);
2021 * zc_nvlist_dst property nvlist 2087 VERI FY(nvlist_add_ui nt 64(props, zfs_prop_to_nanme(prop), value) == 0);
2022 * zc_nvlist_dst_size size of property nvlist 2088 return (0);
2023 */ 2089 }
2024 static int
2025 zfs_ioc_objset_stats(zfs_cnd_t *zc) 2091 /*
2026 { 2092 * inputs:
2027 obj set _t *os; 2093 * zc_nane name of filesystem
2028 int error; 2094 * zc_nvlist_dst_size size of buffer for zpl property nvlist
2095 *
2030 error = dnu_obj set _hol d(zc->zc_nane, FTAG &o0s); 2096 * outputs:
2031 if (error == 0) { 2097 * zc_nvlist_dst zpl property nvlist
2032 error = zfs_ioc_objset_stats_inpl(zc, os); 2098 * zc_nvlist_dst_size size of zpl property nvlist
2033 dnu_obj set _rel e(os, FTAQ; 2099 */
2034 } 2100 static int
2101 zfs_ioc_objset_zpl props(zfs_cnd_t *zc)
2036 return (error); 2102 {
2037 } 2103 obj set _t *os;
2104 int err;
2039 /*
2040 * inputs: 2106 /* XXX readi ng w thout owning */

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2107
2108

2110

2112
2113
2114
2115
2116
2117
2118
2119
2120

2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134 }

if (err = dmu_objset_

return (err);

hol d(zc->zc_nane, FTAG &os))

dmu_obj set _fast_stat (os,

/

&zc->zc_obj set _stats);

*

* NB: nvl_add_zplprop() will read the objset contents,
* which we aren’t supposed to do with a DS _MODE_USER
* hold, because it could be inconsistent.

if (zc->zc_nvlist_dst = NULL &&
1 zc->zc_obj set _stats. dds_i nconsi stent &&
dmu ob] set_type(os) == DMJ_OST_ZFS) {
nvlist_t *nv;

VERI FY(nvlist_alloc(&nv,
if ((err = nvl_add_zpl prop(os, nv,

NV_UNI QUE_NAME, KM SLEEP) == 0)

ZFS_PROP_VERSI ON)) =

(err = nvl _add_zpl prop(os, nv, ZFS_PROP_NORMALI ZE))
(err = nvl _add_zpl prop(os, nv, ZFS_PROP_ UTFBO\ILY))
(err = nvl _add_zpl prop(os, nv, ZFS _PROP_CASE)) == 0)

err = put_nvlist(zc, nv);
nvlist_free(nv);
} else {
err = SET_ERROR(ENCENT) ;

dmu_obj set _rel e(os,
return (err);

FTAG ;

2136 static bool ean_t
2137 dat aset _nane_hi dden(const char *nane)

2138 {
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151 }
/

2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165

R T T

*/

/*

* Skip over datasets that are not visible in this zone,
* internal datasets (which have a $ in their nane), and
* tenporary datasets (which have a %in their nane).

*

if (strchr(nane, '$) != NULL)
return (B_TRUE);
if (strchr(name, %) = NULL)

return (B_TRUE);

if (!I NGLOBALZONE(curproc) && !zone_dataset_visible(nanme, NULL))
return (B_TRUE);

return (B_FALSE);

inputs:)
zc_name name of filesystem
zc_cooki e zap cursor

zc_nvlist_dst_size size of buffer for property nvlist

out put s:

zc_nane name of next filesystem
zc_cooki e zap cursor

zc_obj set _stats stats

zc_nvlist_dst
zc_nvlist_dst_size

property nvli st
si ze of property nvlist

2166 static int

2167 zfs_i oc_dat aset

2168 {
2169
2170
2171
2172

_list_next(zfs_cnmd_t *zc)

obj set _t *os;

int error;

char *p;

size_t orig_len = strlen(zc->zc_nane);

33

0 &&
=0 &

== 0 &&

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2174 top
2175 if (error = dmu_objset_hol d(zc->zc_nane, FTAG &os)) {

2176 if (error == ENCENT)

2177 error = SET_ERROR(ESRCH);

2178 return (error);

2179 }

2181 p = strrchr(zc->zc_naneg, ‘/’

2182 if (p == NULL || p[1] !'= \0)

2183 (void) strlcat(zc->zc_nane, "/", sizeof (zc->zc_nane));
2184 p = zc->zc_nane + strlen(zc->zc_nane);

2186 do {

2187 error = dmu_dir_list_next(os,

2188 si zeof (zc->zc_nane) - (p - zc->zc_nane), p,

2189 NULL, &zc->zc_cookie);

2190 if (error == ENCENT

2191 error = SET_ERROR(ESRCH) ;

2192 } while (error == 0 && dat aset_nane_hi dden(zc->zc_nane));

2193 dmu_obj set _rel e(os, FTAG;

2195 I*

2196 * |f it’s an internal dataset (ie. with a’'$ in its name),
2197 */don’t try to get stats for it, otherwise we' |l return ENOENT.
2198

2199 if (error == 0 && strchr(zc->zc_nanme, '$') == NULL) {

2200 error = zfs |oc _obj set stats(zc) /* fill in the stats */
2201 if (error == ENCENT)

2202 /* W lost arace with destroy, get the next one. */
2203 zc- >zc _nane[orig_len] ="'\0";

2204 goto top;

2205 }

2206

2207 return (error);

2208 }

2210 /*

2211 * inputs:

2212 * zc_nane nane of filesystem

2213 * zc_cookie zap cursor

2214 * zc_nvlist_dst_size size of buffer for property nvlist

2215 *

2216 * outputs:

2217 * zc_nanme name of next snapshot

2218 * zc_objset_stats stats

2219 * zc_nvlist_dst property nvlist

2220 * zc_nvlist_dst_size size of property nvlist

2221 */

2222 static int

2223 zfs_ioc_snapshot_|ist_next(zfs_cnd_t *zc)

2224 {

2225 obj set _t *os;

2226 int error;

2228 error = dnu_obj set _hol d(zc->zc_nane, FTAG &o0s);

2229 if (error 1= 0) {

2230 return (error == ENOCENT ? ESRCH : error);

2231 }

2233 /*

2234 * A dataset nane of nmaxi num | ength cannot have any snapshots,
2235 * so exit inmediately.

2236 *

2237 if (strlcat(zc->zc_nane, "@, sizeof (zc->zc_nane)) >= MAXNAMELEN) {
2238 dmu_obj set _rel e(os, FTAQ;

34

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2239 return (SET_ERROR(ESRCH));

2240 1

2242 error = dnu_snapshot _| i st _next (os,

2243 si zeof (zc->zc_nane) strlen(zc->zc_nane),

2244 zc->zc_nane + strlen(zc->zc_nane), &zc->zc_obj, &zc->zc_cookie,
2245 NULL) ;

2247 if (error == 0) {

2248 dsl _dataset _t *ds;

2249 dsl _pool _t *dp = os->o0s_dsl| dataset->ds_dir->dd_pool ;
2251 error = dsl_dataset_hol d_obj (dp, zc->zc_obj, FTAG &ds);
2252 if (error == 0) {

2253 obj set _t *ossnap;

2255 error = dnu_objset_fromds(ds, &ossnap);
2256 if (error == 0)

2257 error = zfs_ioc_objset_stats_inpl (zc, ossnap);
2258 dsl _dat aset _rel e(ds, FTAQ;

2259 }

2260 } else if (error == ENCENT) {

2261 error = SET_ERROR(ESRCH);

2262 }

2264 dmu_obj set _rel e(os, FTAG;

2265 /* Tf we failed, undo the @that we tacked on to zc_nanme */
2266 if (error 1= 0)

2267 *strchr(zc->zc_nane, @) = '\0";

2268 return (error);

2269 }

2271 static int

2272 zfs_prop_set_userquota(const char *dsnanme, nvpair_t *pair)

2273 {

2274 const char *propnane = nvpair_nane(pair);

2275 uint64_t *val ary;

2276 unsi gned int vallen;

2277 const char *domai n;

2278 char *dash;

2279 zfs userquota prop_t type;

2280 uint64_t rid;

2281 uint64_t quot a;

2282 zfsvfs_t *zfsvfs;

2283 int err;

2285 if (nvpair_type(pair) == DATA TYPE_NVLI ST) {

2286 nvlist_t *attrs;

2287 VERI FY(nvpai r_val ue_nvlist(pair, &ttrs) == 0);
2288 if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE,

2289 &pair) !'=0)

2290 return (SET_ERROR(EI NVAL));

2291 }

2293 /*

2294 * A correctly constructed propnanme is encoded as

2295 * user quot a@ri d>- <donai n>.

2296 */

2297 if ((dash = strchr(propnanme, '-')) == NULL ||

2298 nvpair_val ue_uint64_array(palir, &alary, &allen) !'=0 ||
2299 vallen 1= 3)

2300 return (SET_ERROR(EINVAL));

2302 domai n = dash + 1;

2303 type = val ary[0];

2304 rid = valary[1];

35

36

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2305 quota = val ary[2];

2307 err = zfsvfs_hol d(dsnanme, FTAG &zfsvfs, B_FALSE);

2308 if (err == 0)

2309 err = zfs_set_userquota(zfsvfs, type, domain, rid, quota);
2310 zf svfs rele(zfsvfs, FTAG;

2311 }

2313 return (err);

2314 }

2316 /*

2317 * |f the naned property is one that has a special function to set its value,
2318 * return O on success and a positive error code on failure; otherwise if it is
2319 * not one of the special properties handled by this function, return -1.
2320 *

2321 * XXX: It would be better for callers of the property interface if we handl ed
2322 * these special cases in dsl_prop.c (in the dsl |ayer).

2323 */

2324 static int

2325 zfs_prop_set spemal(const char *dsnane, zprop_source_t source,

2326 nvpair_t *pair)

2327 {

2328 const char *propname = nvpair_nanme(pair);

2329 zfs_prop_t prop = zfs_nane_to_prop(propnane);

2330 uint64_t intval;

2331 int err;

2333 if (prop == ZPROP_I NVAL)

2334 if (zfs_prop_userquota(propnane))

2335 return (zfs_prop_set_userquota(dsnanme, pair));
2336 return (-1);

2337 }

2339 if (nvpair_type(pair) == DATA _TYPE_NVLI ST) {

2340 nvlist_t *attrs;

2341 VERI FY(nvpai r_val ue_nvlist(pair, &ttrs) == 0);

2342 VERI FY(nvlist_| ookup_nvpair(attrs, ZPROP_ VALUE

2343 &pair) == 0);

2344 }

2346 if (zfs_prop_get_type(prop) == PROP_TYPE_STRI NG

2347 return (-1);

2349 VERI FY(O0 == nvpair_val ue_uint64(pair, & ntval));

2351 switch (prop) {

2352 case ZFS | PRCP g

2353 err = dsl _dir_set_quota(dsnane, source, intval);

2354 br eak;

2355 case ZFS_PRGD_REFQJOTA:

2356 err = dsl _dataset_set_refquota(dsnane, source, intval);
2357 br eak;

2358 case ZFS_PROP_RESERVATI ON:

2359 err = dsl _dir_set_reservation(dsnane, source, intval);
2360 br eak;

2361 case ZFS | PRCP REFRESERVATI ON:

2362 err = dsl _dataset_set_refreservation(dsname, source, intval);
2363 br eak;

2364 case ZFS_PRCP_VO_SI ZE:

2365 err = zvol _set _vol si ze(dsnane, intval);

2366 bre

2367 case ZFS | PR(P VERSI ON\:

2368 {

2369 zfsvfs_t *zfsvfs;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 37 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 38
2371 if ((err = zfsvfs_hol d(dsnane, FTAG &zfsvfs, B TRUE)) != 0) 2437 zfs_set_prop_nvlist(const char *dsnanme, zprop_source_t source, nvlist_t *nvl,
2372 break; 2438 “nvlist_t *errlist)
2439 {
2374 err = zfs_set_version(zfsvfs, intval); 2440 nvpair_t *pair;
2375 zfsvfs_rele(zfsvfs, FTAQ; 2441 nvpair_t *propval;
2442 int rv = 0;
2377 if (err == 0 & intval >= ZPL_VERSI ON_USERSPACE) { 2443 uint64_t intval;
2378 zfs_cmd_t *zc; 2444 char *strval
2445 nvlist_t *genericnvl = fnvlist_alloc();
2380 zc = kmem zal | oc(si zeof (zfs_cnd_t), KM SLEEP); 2446 nvlist_t *retrynvl = fnvlist_alloc();
2381 (void) strcpy(zc->zc_name, dsnane);
2382 (void) zfs_ioc userspace upgrade(zc) 2448 retry:
2383 kmem free(zc, sizeof (zfs_cmd_t)); 2449 pair = NULL;
2384 1 2450 while ((pair = nvlist_next_nvpair(nvl, pair)) !'= NULL) {
2385 br eak; 2451 const char *propname = nvpair_nane(pair);
2386 } 2452 zfs_pr op_ t prop = zfs_nane_t o_prop(propnane);
2387 case ZFS_PROP_COWPRESSI ON: 2453 int err = 0;
2388
2389 if (intval == ZI O COWPRESS_Lz4) { 2455 /* decode the property value */
2390 zfeature_info_t *feature = 2456 propval = pair;
2391 &spa_f eat ur e_t abl e[SPA_FEATURE_LZ4_COVPRESS] ; 2457 if (nvpair type(pair) == DATA TYPE_NVLIST) {
2392 spa_t *spa; 2458 nvlist_t *attrs;
2459 attrs = fnvpal r_val ue_nvlist(pair);
2394 if ((err = spa_open(dsnanme, &spa, FTAG) != 0) 2460 if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
2395 return (err); 2461 &propval) != 0)
2462 err = SET_ERROR(EI NVAL);
2397 /* 2463 }
2398 * Setting the LZ4 conpression algorithmactivates
2399 * the feature. 2465 /* Validate val ue type */
2400 */ 2466 if (err == 0 & prop == ZPROP_I NVAL) {
2401 if (!spa_feature_is_active(spa, feature)) { 2467 if (zfs_prop_user(propnane))
2402 if ((err = zfs_prop_activate_feature(spa, 2468 i1f (nvpair type(propval) != DATA TYPE_STRI NG
2403 feature)) '=0 2469 err = SET_ERROR(EI NVAL) ;
2404 spa_cl ose(spa, FTAGQ; 2470 } else if (zfs_prop_userquot a(propnama)) {
2405 return (err); 2471 if (nvpair_type(propval) !=
2406 } 2472 DATA TYPE_ Ul NT64_ARRAY)
2407 } 2473 err = SET_ERROR(EI NVAL) ;
2474 } else {
2409 spa_cl ose(spa, FTAQ; 2475 err = SET_ERROR(EI NVAL) ;
2410 } 2476 }
2411 /* 2477 } else |f (err == 0) {
2412 * We still want the default set action to be performed in the 2478 f (nvpair_type(propval) == DATA TYPE_STRI NG {
2413 * caller, we only perforned zfeature settings here. 2479 if (zfs_prop_ get _type(prop) != PROP_TYPE_STRI NG
2414 */ 2480 err = RR(P(EI NVAL) ;
2415 err = -1; 2481 } else if (nvpai r_type(propval) == DATA_TYPE_UI NT64) {
2416 br eak; 2482 const char *unused;
2417 }
2484 intval = fnvpair_val ue_ui nt 64(propval);
2419 defaul t:
2420 err = -1; 2486 switch (zfs_prop_ get type(prop)) {
2421 } 2487 case PROP_TYPE_NUWVBI
2488 break;
2423 return (err); 2489 case PRCP_TYPE_STRI NG
2424 } 2490 err = SET_ERROR(EI NVAL) ;
2491 br eak;
2426 | * 2492 case PROP_TYPE_I NDEX:
2427 * This function is best effort. If it fails to set any of the given properties, 2493 if (zfs_prop_index_to_string(prop,
2428 * it continues to set as many as it can and returns the last error 2494 intval, &unused) !'= 0
2429 * encountered. |f the caller provides a non-NULL errlist, it will be filled in 2495 err = SET_ERROR(ElI NVAL) ;
2430 * with the list of nanes of all the properties that failed along with the 2496 br eak;
2431 * corresponding error nunbers. 2497 defaul t:
2432 * 2498 cm_err (CE_PANI C,
2433 * |f every property is set successfully, zero is returned and errlist is not 2499 "unknown property type");
2434 * nodified. 2500 }
2435 */ 2501 } else {
2436 int 2502 err = SET_ERROR(ElI NVAL) ;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2503 }
2504 }

2506 /* Validate permnissions */
2507 if (err == 0)

39

2508 err = zfs_check_settabl e(dsnane, pair, CRED());

2510 if (err ==

) |
2511 err = zfs_prop_set_special (dsnane,
{

2512 if (err == -1)
2513 /*

source, pair);

2514 * For better performance we build up a list of
2515 * properties to set in a single transaction.
&/

2516

2517 err = nvlist_add_nvpair(genericnvl, pair);
2518 } elseif (err =0 & nvl I=retrynvl) {
/*

2519

2520 * This may be a spurious error caused by
2521 * receiving quota and reservation out of order.
2522 * Try again in a second pass.

*/

2523

2524 err = nvlist_add_nvpair(retrynvl, pair);

2525 }
2526 }

2528 if (err !
i

2529 list I'= NULL)

2530 fnvlist_add_int32(errlist,

2531 rv =err;
2532 }
2533 }

2535 if (nvl I'=retrynvl & !nvlist_enpty(retrynvl)) {

2536 nvl = retrynvl;
2537 goto retry;
2538 1

2540 if (!nvlist_enpty(genericnvl) &&

propnane, err);

2541 dsl _props_set (dsnane, source, genericnvl) !'=0) {
/*

2542

2543 * |f this fails, we still want to set as many properties as we

2544 * can, so try setting themindividually.

2545 */
2546 pair = NULL;

2547 while ((pair = nvlist_next nvpal r(genericnvl, pair)) != NULL) {
2548 const char *propname = nvpair_name(pal r);

2549 int err = 0;

2551 propval = pair;

2552 i f (nvpair_type(pair) == DATA_TYPE_NVLI ST) {

2553 nvlist_t *attrs;

2554 attrs = fnvpair_value_nvlist(pair);
2555 propval = fnvlist_lookup_nvpair(attrs,

2556 ZPROP_VALUE) ;
2557 }

2559 if (nvpair_type(propval) == DATA TYPE_STRI NG {
2560 strval = fnvpair_val ue_string(propval);
2561 err = dsl _prop_set_string(dsnane, propnane,

2562 source, strval);
2563 } else {

2564 intval = fnvpair_val ue_ui nt 64(propval);
2565 err = dsl _prop_set_int(dsnanme, propnane, source,

2566 intval);
2567 }

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

) |
errl

2569 if (err '=0
2570 if (

ist !'= NULL)

2571 fnvlist_add_int32(errlist, propnane,

2572 err);
2573 }

2574 r
2575 }

2576 }

2577

2578 nvlist_free(genericnvl);
2579 nvlist_free(retrynvl);

vV = err;

2581 return (rv);
2582 }

2584 [*

2585 * Check that all the properties are valid user properties.
2586 */

2587 static int

2588 zfs_check_userprops(const char *fsname, nvlist_t *nvl)

2589 {

2590 nvpair_t *pair = NULL;

2591 int error = 0;

2593 while ((pair = nvlist_next_nvpair(nvl, pair)) !'= NULL) {
2594 const char *propname = nvpair_nanme(pair);

2595 char *val str;

2597 if (!zfs_prop_user(propnane) ||

2598 nvpai r_type(pair) != DATA TYPE_STRI NG

2599 return (SET_ERROR(EI NVAL));

2601 if (error = zfs_secpolicy_wite_perns(fsnang,
2602 ZFS_DELEG PERM USERPROP, CRED()))

2603 return (error);

2605 if (strlen(propnanme) >= ZAP_NMAXNAMELEN)

2606 return (SET_ERROR(ENAVETOOLONG)) ;

2608 VERI FY(nvpair_val ue_string(pair, &valstr) == 0);
2609 if (strlen(valstr) >= ZAP_MAXVALUELEN)

2610 return (E2BI G ;

2611 }

2612 return (0);

2613 }

2615 static void
2616 props_skip(nvlist_t *props, nvlist_t *skipped, nvlist_t **newprops)
2617 {

2618 nvpair_t *pair;

2620 VERI FY(nvlist_alloc(newprops, NV_UNI QUE_NAME, KM SLEEP) == 0);
2622 pair = NULL;

2623 whil e ((palr = nvlist_next_nvpair(props, pair)) != NULL) {
2624 1f (nvlist_exists(skipped, nvpair_nane(pair)))

2625 cont i nue;

2627 VERI FY(nvl i st_add_nvpair(*newprops, pair) == 0);

2628

2629 }

2631 static int

2632 cl ear _received props(const char *dsnanme, nvlist_t *props,
2633 nvlist_t *skipped)

2634 {

40

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 41

2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649 }
/

2651
2652
2653
2654
2655
2656
2657
2658
2659
2660

* Ok kR % k% k¥

*/

int err = 0;
nvlist_t *cleared_props = NULL;
props_ski p(props, skipped, &cleared_props);
i1t (!nvl ; st_enpty(cleared_props)) {
*

* Acts on local properties until the dataset has received
* properties at |east once on or after SPA VERSI ON_RECVD PROPS.
*/

zprop_source_t flags = (ZPROP_SRC _NONE |
(dsl _prop_get hasrecvd(dsname) ? ZPROP_SRC RECEIVED : 0));
err = zfs_set_prop_nvlist(dsnane, flags, cleared_props, NULL);

}
nvlist_free(cleared_props);
return (err);

inputs:

zc_nane nane of filesystem

zc_val ue nane of property to set
zc_nvlist_src{_size} nvlist of properties to apply
zc_cooki e recei ved properties flag

out put s:

zc_nvlist_dst{_size} error for each unapplied received property

2661 static int
2662 zfs_ioc_set_prop(zfs_cnd_t *zc)

2663 {
2664
2665
2666
2667
2668
2669

2671
2672
2673

2675
2676

2678
2679
2680
2681
2682

2684
2685

2687
2688
2689

2691
2692
2693

2695
2696
2697
2698 }

2700 /

*

nvlist_t *nvl;

bool ean_t received = zc->zc_cooki e;

zprop_source_t source = (received ? ZPROP_SRC RECEI VED :
ZPROP_SRC_LOCAL) ;

nvlist_t *errors;

int error;

if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &nvl)) !'= 0)
return (error);

if (received) {
nvlist_t *origprops;

if (dsl_prop_get_received(zc->zc_nane, &origprops) == 0) {
(voi d) clear_received_props(zc->zc_nane,
origprops, nvl);
nvlist_free(origprops);

}

error = dsl_prop_set_hasrecvd(zc->zc_nane);

}

errors = fnvlist_alloc();
if (error == 0)
error = zfs_set_prop_nvlist(zc->zc_nanme, source, nvl, errors);

if (zc->zc_nvlist_dst != NULL & errors != NULL) {
(void) put_nvlist(zc, errors);
}

nvlist_free(errors);
nvlist_free(nvl);
return (error);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 42
2701 * inputs:

2702 * zc_nane nanme of filesystem

2703 * zc_val ue name of property to inherit

2704 * zc_cookie revert to received value if TRUE

2705 *

2706 * outputs: none

2707 */

2708 static int

2709 zfs_ioc_inherit_prop(zfs_cnd_t *zc)

2710 {

2711 const char *pr opname = zc- >zc_val ue;

2712 zfs_prop_t prop = zfs_name_to prop(propnama)

2713 boolean_t received = zc->zc_cooki e;

2714 zprop_source_t source = (received

2715 ? ZPROP_SRC_NONE /* revert to received value, if any */
2716 ZPROP_SRC_| NHERI TED) ; /* explicitly inherit */

2718 if (received) {

2719 nvlist_t *dumry

2720 nvpair_t *pair;

2721 zprop_type_t type

2722 int err;

2724 /*

2725 * zfs_prop_set_special () expects properties in the formof an
2726 * nvpair with type info.

2727 */

2728 i f (prop = ZPROP_| NVAL)

2729 (I zfs_prop_user (propnane))

2730 return (SET_ERROR(EI NVAL));

2732 type = PR(]3 TYPE_STRI NG,

2733 } else if (pro == ZFS_PROP_VOLSI ZE | |

2734 prop == ZFS_PROP_VERSI ON)

2735 return (SET_ERROR(EI NVAL)) ;

2736 } else {

2737 type = zfs_prop_get _type(prop);

2738

2740 VERI FY(nvlist_alloc(&ummy, NV_UNI QUE NAME, KM SLEEP) == 0);
2742 switch (type) {

2743 case PROP_TYPE_STRI NG

2744 VERI FY(O == nvlist_add_string(dummy, propnane, ""));
2745 bre

2746 case PROP_ TYPE NUMVBER:

2747 case PROP_TYPE_ INDEX

2748 VERI FY(0 == nvlist_add_ui nt 64(dummy, propnanme, 0));
2749 br eak;

2750 defaul t:

2751 nvlist_free(dumy);

2752 return (SET_ERROR(EI NVAL));

2753 }

2755 pair = nvlist_next_nvpair(dunmmy, NULL);

2756 err = zfs_prop_set_special (zc->zc_nane, source, pair);

2757 nvlist_free(dumy);

2758 if (err 1= -1)

2759 return (err); /* special property already handl ed */
2760 } else {

2761 /*

2762 * Only check this in the non-received case. W want to allow
2763 * "inherit -S to revert non-inheritable properties |ike quota
2764 * and reservation to the received or default val ues even though
2765 * they are not considered inheritable.

2766 */

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2767 if (prop !'= ZPROP_INVAL && !zfs_prop_inheritabl e(prop))
2768 return (SET_ERROR(ElI NVAL)) ;

2769 }

2771 /* property name has been validated by zfs_secpolicy_inherit_prop() *
2772 return (dsl_prop_inherit(zc->zc_nanme, zc->zc_val ue, source));
2773 }

2775 static int

2776 zfs_ioc_pool _set_props(zfs_cnd_t *zc)

2777 {

2778 nvlist_t *props;

2779 spa_t *spa;

2780 int error;

2781 nvpair_t *pair;

2783 if (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
2784 zc->zc_ifl ags, &props))

2785 return (error);

2787 /*

2788 * If the only property is the configfile, then just do a spa_|l ookup()
2789 * to handle the faulted case.

2790 */

2791 pair = nvlist_next_nvpair(props, NULL);

2792 if (pair !'= NULL & strcnp(nvpair nane(pair),

2793 zpool _prop_t o_nane(ZPOOL_PROP_CACHEFI LE)) == 0 &&

2794 nvl i st_next_nvpair(props, pair) == NULL) {

2795 nmut ex_ent er (&spa_nanmespace_| ock);

2796 if ((spa = spa_l ookup(zc->zc_nane)) !'= NULL) {

2797 spa_configfil e_set(spa, props, B_FALSE);

2798 spa_confi g_sync(spa, B_FALSE, B_TRUE);

2799

2800 mut ex_exi t (&spa_nanmespace_| ock) ;

2801 if (spa!= NULL)

2802 nvlist_free(props);

2803 return (0);

2804 }

2805 }

2807 if ((error = spa_open(zc->zc_nane, &spa, FTAG) != 0) {

2808 nvlist_free(props);

2809 return (error);

2810 1

2812 error = spa_prop_set(spa, props);

2814 nvlist_free(props);

2815 spa_cl ose(spa, FTAQ;

2817 return (error);

2818 }

2820 static int

2821 zfs_ioc_pool _get_props(zfs_cnmd_t *zc)

2822 {

2823 spa_t *spa;

2824 int error;

2825 nvlist_t *nvp = NULL;

2827 if ((error = spa_open(zc->zc_nane, &spa, FTAG) != 0) {

2828 /*

2829 * |f the pool is faulted, there may be properties we can still
2830 * get (such as altroot and cachefile), so attenpt to get them
2831 * anyway.

2832 */

43

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2833 mt ex enter(&spa namespace_| ock) ;

2834 if ((spa = spa_l ookup(zc->zc name)) 1= NULL)
2835 error = spa_prop_get (spa, &nvp);

2836 mut ex_exi t (& pa_nanmespace_| ock) ;

2837 } else {

2838 error = spa_prop_get(spa, &nvp);

2839 spa_cl ose(spa, FTAQ;

2840 }

2842 if (error == 0 && zc->zc_nvlist_dst !'= NULL)

2843 error = put_nvlist(zc, nvp);

2844 el se

2845 error = SET_ERROR(EFAULT);

2847 nvlist_free(nvp);

2848 return (error);

2849 }

2851 /*

2852 * inputs:

2853 * zc_nane name of fil esystem

2854 * zc_nvlist_src{_size} nvlist of del egated perm ssions

2855 * zc_perm. action all ow unal | ow fl ag

2856 *

2857 * outputs: none

2858 */

2859 static int

2860 zfs_ioc_set_fsacl (zfs_cnd_t *zc)

2861 {

2862 int error;

2863 nvlist_t *fsaclnv = NULL;

2865 if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
2866 zc->zc_iflags, & saclnv)) I'=0)

2867 return (error);

2869 *

2870 * Verify nvlist is constructed correctly

2871 */

2872 if ((error = zfs_deleg_verify_nvlist(fsaclnv)) !'=0) {
2873 nvlist_free(fsaclnv);

2874 return (SET_ERROR(EI NVAL));

2875 }

2877 /*

2878 * |f we don’t have PRIV_SYS MOUNT, then validate
2879 * that user is allowed to hand out each permission in
2880 * the nvlist(s)

2881 */

2883 error = secpolicy_zfs(CRED());

2884 if (error 1= 0)

2885 if (zc->zc_permaction == B_FALSE) {

2886 error = dsl_del eg_can_al | om zc->zc_nane,
2887 fsaclnv, CRED));

2888 } else {

2889 error = dsl_del eg_can_unal | ow(zc->zc_nane,
2890 fsacl nv, CREI));

2891 }

2892 }

2894 if (error == 0)

2895 error = dsl_del eg_set (zc->zc_nane, fsaclnv, zc->zc_permaction);
2897 nvlist_free(fsaclnv);

2898 return (error);

44

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 45 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
2899 } 2965 * outputs:
2966 * zpl props val ues for the zplprops we attach to the master node object
2901 /* 2967 * is_ci true if requested file systemw |l be purely case-insensitive
2902 * inputs: 2968 *
2903 * zc_nane name of fil esystem 2969 * Determne the settings for utf8only, normalization and
2904 * 2970 * casesensitivity. Specific values may have been requested by the
2905 * outputs: 2971 * creator and/or we can inherit values fromthe parent dataset. |If
2906 * zc_nvlist_src{_size} nvlist of del egated perm ssions 2972 * the file systemis of too early a vintage, a creator can not
2907 */ 2973 * request settings for these properties, even if the requested
2908 static int 2974 * setting is the default value. W don't actually want to create dsl
2909 zfs_ioc_get_fsacl (zfs_cnd_t *zc) 2975 * properties for these, so renove themfromthe source nvlist after
2910 { 2976 * processing.
2911 nvlist_t *nvp; 2977 */
2912 int error; 2978 static int
2979 zfs_fill_zpl props_inpl (objset_t *os, uint64_t zplver,
2914 if ((error = dsl_del eg_get(zc->zc_nane, &nvp)) == 0) { 2980 “bool ean_t fuids_ok, boolean_t sa_ok, nvlist_t *createprops,
2915 error = put_nvlist(zc, nvp); 2981 nvlist_t *zplprops, boolean_t *is_ci)
2916 nvlist_free(nvp); 2982 {
2917 } 2983 uint64_t sense = ZFS_PROP_UNDEFI NED;
2984 uint64_t norm = ZFS PROP_UNDEFI NED;
2919 return (error); 2985 uint64_t u8 = ZFS_PROP_UNDEFI NED;
2920 }
2987 ASSERT(zpl props != NULL);
2922 | *
2923 * Search the vfs list for a specified resource. Returns a pointer to it 2989 /*
2924 * or NULL if no suitable entry is found. The caller of this routine 2990 * Pull out creator prop choices, if any.
2925 * is responsible for releasing the returned vfs pointer. 2991 */
2926 */ 2992 if (createprops) {
2927 static vfs_t * 2993 (void) nvlist_|ookup_uint64(createprops,
2928 zfs_get _vfs(const char *resource) 2994 zfs_prop_ to_name(ZFS_PROP_VERSI ON), &zpl ver);
2929 { 2995 (voi d) nvlist_| ookup_ui nt64(creat eprops,
2930 struct vfs *vfsp; 2996 zfs_prop_to_name(ZFS_PROP_NORMALI ZE), &norm;
2931 struct vfs *vfs_found = NULL; 2997 (void) nvlist_renove_all (createprops,
2998 zfs_prop_t o_nanme(ZFS_PROP_NORMALI ZE)) ;
2933 vis_list_read_| ock(); 2999 (void) nvlist_| ookup_ui nt 64(creat eprops,
2934 vfsp = rootvfs; 3000 zfs_prop_t o_nanme(ZFS_PROP_UTF8ONLY), &u8);
2935 do { 3001 (void) nvlist_renove_all (createprops,
2936 if (strcnp(refstr_value(vfsp->vfs_resource), resource) == 0) { 3002 zfs_prop_to_nanme(ZFS_PROP_UTF8ONLY)) ;
2937 VFS_HOLD(vf sp) ; 3003 (void) nvlist_| ookup_ui nt 64(createprops,
2938 vfs_found = vfsp; 3004 zfs_prop_t o_name(ZFS_PROP_CASE), &sense);
2939 br eak; 3005 (void) nvlist_renove_all (createprops,
2940 } 3006 zfs_prop_to_name(ZFS_PROP_CASE)) ;
2941 visp = vfsp->vfs_next; 3007 }
2942 } while (vfsp != rootvfs);
2943 vfs_list_unlock(); 3009 /*
2944 return (vfs_found); 3010 * |f the zpl version requested is whacky or the file system
2945 } 3011 * or pool iIs version is too "young" to support nornulization
3012 * and the creator tried to set a value for one of the props,
2947 |* ARGSUSED */ 3013 * error out.
2948 static void 3014 */
2949 zfs_create_cb(objset_t *os, void *arg, cred_t *cr, dnmu_tx_t *tx) 3015 if ((zplver < ZPL_VERSION INITIAL || zplver > ZPL_VERSION) ||
2950 { 3016 (zplver >= ZPL_VERSION_FUID && !fuids_ok) ||
2951 zfs_creat_t *zct = arg; 3017 (zpl ver >= ZPL_VERSI ON_SA && !sa_ok) T[]
3018 (zpl ver < ZPL_VERSI ON_NORMALI ZATT CN &&
2953 zfs_create_fs(os, cr, zct->zct_zplprops, tx); 3019 (norm != ZFS PROP_UNDEFI NED || u8 != ZFS_PROP_UNDEFI NED | |
2954 } 3020 sense ! = ZFS_PROP_UNDEFI NED)))
3021 return (SET_ERROR(ENOTSUP));
2956 #define ZFS_PROP_UNDEFI NED ((uint64_t)-1)
3023 /*
2958 /* 3024 * Put the version in the zpl props
2959 * inputs: 3025 */
2960 * createprops list of properties requested by creator 3026 VERI FY(nvl i st_add_ui nt 64(zpl props,
2961 * defaul t_zpl ver zpl version to use if unspecified in createprops 3027 zfs_prop_to_nanme(ZFS_PROP_VERSI ON), zplver) == 0);
2962 * fuids_ok fuids allowed in this version of the spa?
2963 * os parent objset pointer (NULL if root fs) 3029 if (norm == ZFS_PROP_UNDEFI NED)
2964 * 3030 VERI FY(zfs_get _zpl prop(os, ZFS PROP_NORMALI ZE, &norn) == 0);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 47
3031 VERI FY(nvlist_add_ui nt 64(zpl props,

3032 zfs_prop_t o_nane(ZFS_PROP_NORMALI ZE), norm) == 0);

3034 /*

3035 * |f we're normalizing, names nust always be valid UTF-8 strings.
3036 */

3037 if (nor n')

3038

3039 if (u8 == ZFS PROD UNDEFI NED)

3040 VERI FY(zfs_get _zpl prop(os, ZFS PROP_UTFS8ONLY, &u8) == 0);
3041 VERI FY(nvlist_add_ui nt 64(zpl props,

3042 zfs_prop_to_nane(ZFS_PROP_UTF8ONLY), u8) == 0);

3044 if (sense == ZFS_PROP_UNDEFI NED)

3045 VERI FY(zfs_get _zpl prop(os, ZFS_PROP_CASE, &sense) == 0);
3046 VERI FY(nvlist_add_ui nt 64(zpl props,

3047 zfs_prop_to_nanme(ZFS_PROP_CASE), sense) == 0);

3049 if (is_ci)

3050 *is_ci = (sense == ZFS_CASE | NSENSI Tl VE) ;

3052 return (0);

3053 }

3055 static int

3056 zfs_fill_zpl props(const char *dataset, nvlist_t *createprops,

3057 nvlist_t *zplprops, boolean_t *is_ci)

3058 {

3059 bool ean_t fuids_ok, sa_ok;

3060 uint64_t zplver = ZPL VERSI o\

3061 objset_t *os = NULL

3062 char parent narre[NAXNAI\/ELEN]

3063 char *cp;

3064 spa_t *spa;

3065 uint64_t spa_vers;

3066 int error;

3068 (void) strlcpy(parentnanme, dataset, sizeof (parentnane));
3069 cp = strrchr(parentnane, '/’);

3070 ASSERT(cp != NULL);

3071 cp[0] ="\0;

3073 if ((error = spa_open(dataset, &spa, FTAGQ) != 0)

3074 return (error);

3076 spa_vers = spa_version(spa);

3077 spa_cl ose(spa, FTAQ;

3079 zpl ver = zfs_zpl _versi on_nap(spa_vers);

3080 fuids_ok = (zplver >= ZPL_VERS|I ON_FU D);

3081 sa_ok = (zplver >= ZPL_VERSI ON_SA);

3083 /*

3084 * QJen parent object set so we can inherit zplprop val ues.
3085

3086 |f ((error = drmu_obj set _hol d(par ent nane, FTAG &os)) != 0)
3087 return (error);

3089 error = zfs_fill_zplprops_inpl (os, zplver, fuids_ok, sa_ok, createprops,
3090 zpl props, is_cl);

3091 drmu_obj set _rel e(os, FTAG)

3092 return (error);

3093 }

3095 static int
3096 zfs_fill_zpl props_root(uint64_t spa_vers,

nvlist_t *createprops,

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 48
3097 nvlist_t *zplprops, boolean_t *is_ci)

3098 {

3099 bool ean_t fuids_ok;

3100 bool ean_t sa_ok;

3101 uint64_t zplver = ZPL_VERSI ON;

3102 int error;

3104 zplver = zfs_zpl _version_map(spa_vers);

3105 fuids_ok = (zplver >= ZPL_VERSI ON_FUI D);

3106 sa_ok = (zplver >= ZPL_VERSI ON_SA);

3108 error = zfs_fill_zplprops_i npl (NULL, zplver, fuids_ok, sa_ok,
3109 createprops, zplprops, is_ci);

3110 return (error);

3111 }

3113 /*

3114 * innvl {

3115 * "type" -> drm _obj set _type_t (int32)

3116 * (optional) "props" -> { prop -> value }

3117 *

3118 *

3119 * outnvl: propnane -> error code (int32)

3120 *

3121 static int

3122 zfs_ioc_create(const char *fsnane, nvlist_t *innvl, nvlist_t *outnvl)
3123 {

3124 int error = 0;

3125 zfs_creat_t zct = { 0 };

3126 nvlist_t *nvprops = NULL;

3127 voi d (*cbfunc) (objset_t *os, void *arg, cred_t *cr, dnu_tx_t *tx);
3128 int32 t type32;

3129 dmu_obj set _type_t type;

3130 bool ean_t is_insensitive = B_FALSE;

3132 if (nvlist_lookup_int32(innvl, "type", & ype32) != 0)
3133 refurn (SET_ERROR(EI NVAL));

3134 type = type32;

3135 (void) nvlist_lookup_nvlist(innvl, "props", &nvprops);
3137 switch (type) {

3138 case DMJ_OST

3139 cbfunc = zf s_create_cb;

3140 br eak;

3142 case DMJ_OST_zVQOL:

3143 cbfunc = zvol _create_cb;

3144 br eak;

3146 defaul t:

3147 cbfunc = NULL;

3148 br eak;

3149 }

3150 if (strchr(fsnane, " @) ||

3151 strchr(fsnane, "%))

3152 return (SET_ERROR(EI NVAL));

3154 zct.zct_props = nvprops;

3156 if (cbfunc == NULL)

3157 return (SET_ERROR(EI NVAL));

3159 if (type == DMJ_OST_ZVOQL)

3160 uint64_t vol si ze, vol bl ocksi ze;

3162 if (nvprops == NULL)

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3163 return (SET_ERROR(EI NVAL));

3164 if (nvlist_| ookup_uint64(nvprops,

3165 zfs_prop_to_name(ZFS_PROP_VOLSI ZE), &vol size) != 0)
3166 return (SET_ERROR(EI NVAL));

3168 if ((error = nvlist_| ookup_uint 64(nvprops,
3169 zfs_prop_t o_nanme(ZFS_PROP_VOLBLOCKSI ZE) ,
3170 &vol bl ocksize)) '= 0 & error != ENCENT)
3171 return (SET_ERROR(EI NVAL));

3173 if (error 1= 0)

3174 vol bl ocksi ze = zfs_prop_defaul t_nuneri c(
3175 ZFS_PROP_VOLBLOCKSI ZE) ;

3177 if ((error = zvol _check_vol bl ocksi ze(

3178 vol bl ocksize)) != 0 ||

3179 (error = zvol _check_vol size(vol si ze,

3180 vol bl ocksi ze)) !'= 0)

3181 return (error);

3182 } else if (type == DMJ_OST_ZFS) {

3183 int error;

3185 /*

3186 * We have to have normalization and

3187 * case-folding flags correct when we do the
3188 * file systemcreation, so go figure them out
3189 * now.

3190 */

3191 VERI FY(nvI i st_alloc(&ct.zct_zpl props,

3192 NV_UNI QUE_NAME, KM SLEEP) == 0);

3193 error = zfs_fill_zpl props(fsnane, nvprops,
3194 zct. zct _zpl props, & s_insensitive);

3195 if (error '=0

3196 nvlist_free(zct.zct_zpl props);

3197 return (error);

3198 }

3199 }

3201 error = dnu_obj set _create(fsnane, type,

3202 is |nsen5|t|ve " ? DS_FLAG Cl DATASEl’ 0, cbfunc, &zct);
3203 nvlist_free(zct.zct_zpl props);

3205 /*

3206 * It would be nice to do this atomically.

3207 i

3208 if (error == 0)

3209 error = zfs_set_prop_nvlist(fsname, ZPROP_SRC LOCAL,
3210 nvprops, outnvl);

3211 if (error 1= 0)

3212 (voi d) dsl _destroy_head(fsnane);

3213 }

3214 return (error);

3215 }

3217 [*

3218 * innvl: {

3219 * "origin" -> name of origin snapshot

3220 * (optional) "props" -> { prop -> value }

3221 *

3222 *

3223 * outnvl: propnane -> error code (int32)

3224 */

3225 static int

3226 zfs_ioc_clone(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl)
3227 {

3228 int error = 0;

49

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3229 nvlist_t *nvprops = NULL;

3230 char *origi n_naneg;

3232 if (nvlist_lookup_string(innvl, "origin", &origin_nane) != 0)
3233 return (SET_ERROR(EI NVAL));

3234 (void) nvlist_lookup_nvlist(innvl, "props", &nvprops);
3236 if (strchr(fsnane, " @) ||

3237 strchr(fsnane, "%

3238 return (SET_ERROR(EI NVAL));

3240 if (dataset_nanecheck(origin_name, NULL, NULL) != 0)

3241 return (SET_ERROR(EI NVAL));

3242 error = dnu_obj set _cl one(fsnane, origin_nane);

3243 if (error 1= 0)

3244 return (error);

3246 /*

3247 * It would be nice to do this atomically.

3248 */

3249 if (error == 0) {

3250 error = zfs_set_prop_nvlist(fsnane, ZPROP_SRC LOCAL,
3251 nvprops, outnvl);

3252 if (error 1= 0)

3253 (voi d) dsl _destroy_head(fsnane);

3254

3255 return (error);

3256 }

3258 /*

3259 * innvl: {

3260 * "snaps" -> { snapshotl, snapshot2 }

3261 * (optional) "props" -> { prop -> value (string) }

3262 *

3263 *

3264 * outnvl: snapshot -> error code (int32)

3265 *

3266 static int

3267 zfs_ioc_snapshot (const char *pool nanme, nvlist_t *innvl, nvlist_t *outnvl)
3268 {

3269 nvlist_t *snaps;

3270 nvlist_t *props = NULL;

3271 int error, poollen;

3272 nvpair_t *pair;

3274 (void) nvlist_lookup_nvlist(innvl, "props", &props);

3275 if ((error = zfs_check_userprops(pool nane, props)) != 0)
3276 return (error);

3278 if (!I'nvlist_enpty(props) &&

3279 zfs_earlier_version(pool name, SPA_VERSI ON_SNAP_PROPS))
3280 return (SET_ERROR(ENOTSUP)) ;

3282 if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0)
3283 return (SET_ERROR(EI NVAL));

3284 pool I en = strlen(pool nane);

3285 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
3286 pair = nvlist_next_nvpair(snaps, pair)) {

3287 const char *nane = nvpair_nane(pair);

3288 const char *cp = strchr(nanme, '@);

3290 /*

3291 * The snap nanme nust contain an @ and the part after it nust
3292 * contain only valid characters.

3293 */

3294 if (cp == NULL || snapshot_nanecheck(cp + 1, NULL, NULL) != 0)

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 51

3295 return (SET_ERROR(EI NVAL));

3297 /*

3298 * The snap nust be in the specified pool.

3299 *

3300 if (strncnp(nanme, pool nane, poollen) !=0

3301 (nane[poollen] !'="'/" &% nanme[poollen] I="@))
3302 return (SET_ERROR(EXDEV));

3304 /* This nust be the only snap of this fs. */

3305 for (nvpair_t *pair2 = nvlist_next_nvpair(snaps, pair);
3306 pair2 !'= NULL; pair2 = nvlist_next_nvpair(snaps, pair2)) {
3307 if (strncnp(nane, nvpair_nane(pair2), cp - name + 1)
3308 == 0)

3309 return (SET_ERROR(EXDEV));

3310 }

3311 }

3312 }

3314 error = dsl_dataset _snapshot (snaps, props, outnvl);

3315 return (error);

3316 }

3318 /*

3319 * innvl: "nessage" -> string

3320 */

3321 /* ARGSUSED */

3322 static int
3323 zfs_ioc_l og_history(const char *unused, nvlist_t *innvl, nvlist_t *outnvl)

3324 {
3325
3326
3327
3328

3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342

3344
3345
3346
3347

3349
3350
3351
3352

3354
3355
3356
3357 }

3359 /*

char *nessage;
spa_t *spa;
int error;
char *pool nare;

/
The pool nane in the ioctl is not set, we get it fromthe TSD,

whi ch was set at the end of the l|ast successful ioctl that allows
I ogging. The secpolicy func already checked that it is set.

Only one log ioctl is allowed after each successful ioctl, so

we clear the TSD here.

R A

pool name = tsd_get (zfs_all ow_| og_key);
(void) tsd_set(zfs_allow_|og_key, NULL);
error = spa_open(pool nane, &spa, FTAG;
strfree(pool nane);
if (error 1= 0)

return (error);

if (nvlist_lookup_string(innvl, "nessage", &message) != 0) {
spa_cl ose(spa, FTAQ;
return (SET_ERROR(EI NVAL));

}

if (spa_version(spa) < SPA VERSI ON_ZPOOL_HI STORY) {
spa_cl ose(spa, FTAQ;
return (SET_ERROR(ENOTSUP));

}

error = spa_history_|l og(spa, nessage);
spa_cl ose(spa, FTAQ;
return (error);

3360 * The dp_config_rw ock nust not be held when calling this, because the

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3361 * unnount nay need to wite out data.

3362 *

3363 * This function is best-effort. Callers nust deal gracefully if it
3364 * renmins nounted (or is remounted after this call).
3365 */

3366 void

3367 zfs_unnount _snap(const char *snapnane)

3368 {

3369 vis_t *vfsp;

3370 zfsvfs_t *zfsvfs;

3372 if (strchr(snapname, '@) == NULL)

3373 return;

3375 vfsp = zfs_get _vfs(snapnane);

3376 if (vfsp == NULL)

3377 return;

3379 zfsvfs = vfsp->vfs_data;

3380 ASSERT(! dsl _pool _confi g_hel d(dmu_obj set _pool (zfsvfs->z_0s)));
3382 if (vn_vfsw ock(vfsp->vfs_vnodecovered) != 0) {
3383 VFS_RELE(vfsp);

3384 return;

3385 }

3386 VFS_RELE(vfsp);

3388 /*

3389 * Always force the unmount for snapshots.

3390 */

3391 (voi d) dounnount (vfsp, MS_FORCE, kcred);

3392 }

3394 /* ARGSUSED */

3395 static int

3396 zfs_unnount _snap_cb(const char *snapnane, void *arg)

3397 {

3398 zf s_unnmount _snap(snapnane) ;

3399 return (0);

3400 }

3402 /*

3403 * When a clone is destroyed, its origin may al so need to be destroyed,
3404 * in which case it nust be unnobunted. This routine will do that unmunt
3405 * if necessary.

3406 */

3407 void

3408 zfs_destroy_unnount _ori gi n(const char *fsnane)

3409 {

3410 int error;

3411 obj set _t *os;

3412 dsl _dat aset _t *ds;

3414 error = dnu_obj set _hol d(fsname, FTAG &os);

3415 if (error 1= 0)

3416 return;

3417 ds = dnu_obj set _ds(o0s);

3418 if (dsl_dir_is_clone(ds->ds_dir) &% DS_|S DEFER DESTROY(ds->ds_prev)) {
3419 char origi nname[MAXNAMVELEN] ;

3420 dsl _dat aset _nanme(ds->ds_prev, origi nnane);
3421 dmu_obj set _rel e(os, FTAQ;

3422 zf s_unnount _snap(ori gi nnane) ;

3423 } else {

3424 drmu_obj set _rel e(os, FTAQ;

3425

3426 }

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3428 /
3429
3430
3431
3432
3433
3434
3435
3436

*
*
*
*
*
*
*

*

*/

innvl: {
"snaps" -> {

snapshot 1, snapshot2 }

(optional bool ean) "defer"

outnvl: snapshot

3437 static int
3438 zfs_ioc_destroy_snaps(const char *pool nanme, nvlist_t *innvl, nvlist_t *outnvl)

3439 {
3440
3441
3442
3443

3445
3446
3447

3449
3450
3451
3452

3454
3455
3456
3457
3458
3459

3461
3462

3464
3465 }
/

3467
3468
3469
3470
3471
3472
3473
3474

* ok kR Ok ok %

*/

int poollen;

-> error code (int32)

nvlist_t *snaps;
nvpair_t *pair;
bool ean_t defer;

if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0)
return (SET_ERROR(EINVAL));

defer = nvlist_exists(innvl, "defer");

pool | en trl en(pool nane) ;

=s
for (pair =

nvlist_next_nvpair(snaps, NULL); pair != NULL;
{

pair = nvlist_next_nvpair(snaps, pair))
const char *nane = nvpair_nane(pair);

/*

* The snap nust be in the specified pool.

*/

if (strncnp(nanme, pool nane, poollen) !=0
(nanme[poollen] !'="/" && nane[poollen] '="'@))

zfs_|

}

return (dsl _i

i nputs:

zc_nane

zc_obj set _type
zc_def er _destroy

out put s:

3475 static int
3476 zfs_ioc_destroy(zfs_cnd_t *zc)

3477 {
3478
3479
3480

3482
3483
3484
3485
3486
3487
3488
3489 }

3491 /
3492

*
*

int err;

return (SET_ERROR(EXDEV));

unnmount _snap(nane) ;

destroy_snapshots_nvl (snaps, defer, outnvl));

nanme of dataset to destroy
type of objset
mark for deferred destroy

none

if (strchr(zc->zc_nanme, '@) && zc->zc_objset _type == DMJ_OST_ZFS)

zfs_

unnount _snap(zc->zc_nane);

if (strchr(zc->zc_nane,

err
el se
err

'@))
= dsl _destroy_snapshot (zc->zc_nane, zc->zc_defer_destroy);

= dsl _destroy_head(zc->zc_nane);

if (zc->zc_objset_type == DMJ_OST_ZVOL && err == 0)
(voi d) zvol _renove_m nor(zc->zc_nane);
return (err);

i nputs:

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

*

54

Zc->zc_nane);

- zc->zc_nane + 1))

3493 zc_nanme nane of dataset to rollback (to npbst recent snapshot)
3494 *

3495 * outputs: none

3496 */

3497 static int

3498 zfs_ioc_roll back(zfs_cnd_t *zc)

3499 {

3500 zfsvfs_t *zfsvfs;

3501 int error;

3503 if (getzfsvfs(zc->zc_nanme, &fsvfs) == 0) {

3504 error = zfs_suspend_fs(zfsvfs);

3505 if (error == 0)

3506 int resume_err;

3508 error = dsl _dataset _roll back(zc->zc_nane);
3509 resume_err = zfs_resune_fs(zfsvfs,
3510 error = error ? error : resune_err;
3511 }

3512 VFS_RELE(zfsvfs->z_vfs);

3513 } else {

3514 error = dsl _dataset_rol | back(zc->zc_nane);
3515 1

3516 return (error);

3517 }

3519 static int

3520 Eecursive_unrrount(const char *fsnane, void *arg)

3521

3522 const char *snapnanme = arg;

3523 char ful | nane[MAXNAMELEN ;

3525 (void) snprintf(fullnane, sizeof (fullnane), "%@s", fsname, snapnane);
3526 zf s_unmount _snap(ful | nane);

3527 return (0);

3528 }

3530 /*

3531 * inputs:

3532 * zc_nane ol d nanme of dataset

3533 * zc_val ue new nane of dataset

3534 * zc_cookie recursive flag (only valid for snapshots)

3535 *

3536 * outputs: none

3537 */

3538 static int

3539 zfs_ioc_renanme(zfs_cnd_t *zc)

3540 {

3541 bool ean_t recursive = zc->zc_cookie & 1;

3542 char *at;

3544 zc->zc_val ue[si zeof (zc->zc_value) - 1] = '\0";

3545 if (dataset_nanmecheck(zc->zc_value, NULL, NULL) !'= 0 ||
3546 strchr(zc->zc_value, "%))

3547 return (SET_ERROR(EINVAL));

3549 at = strchr(zc->zc_nane, ' @);

3550 if (at !'= NULL)

3551 /* snaps nmust be in same fs */

3552 if (strncnp(zc->zc_nanme, zc->zc_val ue, at
3553 return (SET_ERROR(EXDEV));

3554 *at = '\0";

3555 if (zc->zc_objset_type == DMJ_OST_ZFS)

3556 int error = dmu_obj set_find(zc->zc_nane,
3557 recursive_unnmount, at + 1,

3558 recursive ? DS_FIND CH LDREN : 0);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3559 if (error !'=0)

3560 return (error);

3561 }

3562 return (dsl_dataset_renanme_snapshot (zc->zc_nane,

3563 at + 1, strchr(zc->zc_value, '@) + 1, recursive));
3564 } else {

3565 if (zc->zc_objset_type == DMJ_OST_ZVQL)

3566 (void) zvol _renopve_m nor(zc->zc_nane);

3567 return (dsl_dir_renanme(zc->zc_nanme, zc->zc_value));
3568 }

3569

3571 static int

3572 zfs_check_settabl e(const char *dsname, nvpair_t *pair, cred_t *cr)
3573 {

3574 const char *pr opnane = nvpair narre(air)

3575 bool ean_t issnap = (strchr(dsname, ' @) = NULL) ;

3576 zfs_prop_t prop = zfs_name_to_prop(propnane);

3577 uint64_t intval;

3578 int err;

3580 if (prop == ZPROP_I NVAL) {

3581 if (zfs_prop_user(propnane)) {

3582 if (err = zfs_secpolicy_wite_perns(dsnane,
3583 ZFS_DELEG_PERM USERPROP, cr))

3584 return (err);

3585 return (0);

3586 }

3588 if (!issnap && zfs_prop_userquota(propnane)) {

3589 const char *perm = NULL;

3590 const char *uq_prefix =

3591 zfs_user quot a_prop_prefi xes[ZFS_PROP_USERQUOTA| ;
3592 const char *gg_prefix =

3593 zf s_userquot a_prop_prefixes[ZFS_PROP_GROUPQUOTA] ;
3595 if (strncnp(propnanme, uqg_prefix,

3596 strlen(ug_prefix)) == 0) {

3597 perm = ZFS_DELEG PERM USERQUOTA;

3598 } else if (strncnp(propnane, gq_prefix,

3599 strlen(gqg_prefix)) == 0)

3600 perm = ZFS_DELEG _PERM GROUPQUOTA;
3601 } else {

3602 /* USERUSED and GROUPUSED are read-only */
3603 return (SET_ERROR(EI NVAL));

3604 }

3606 if (err = zfs_secpolicy wite_perns(dsnane, perm cr))
3607 return (err);

3608 return (0);

3609 }

3611 return (SET_ERROR(EINVAL));

3612 }

3614 if (issnap)

3615 return (SET_ERROR(EI NVAL));

3617 if (nvpair_type(pair) == DATA TYPE_NVLI ST) {

3618 /*

3619 * dsl _prop_get_all _inpl () returns properties in this
3620 * format.

3621 */

3622 nvlist_t *attrs;

3623 VERI FY(nvpair_value_nvlist(pair, &ttrs) == 0);

3624 VERI FY(nvlist_l ookup_nvpair(attrs, ZPROP_ VALUE

55

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 56
3625 &pair) == 0);

3626 1

3628 *

3629 * Check that this value is valid for this pool version
3630 */

3631 switch (prop) {

3632 case ZFS_PROP_COVPRESSI ON:

3633 /*

3634 * |f the user specified gzip conpression, make sure
3635 * the SPA supports it. W ignore any errors here since
3636 * we'll catch themlater.

3637 *

3638 if (nvpair_type(pair) == DATA _TYPE_ U NT64 &&

3639 nvpai r_val ue_uint64(pair, & ntval) == 0) {

3640 if (intval >= ZIO CO\/PRESS GZIP_1 &&

3641 intval <= ZI O_COMPRESS_&ZI P_9 &&

3642 zfs_earlier_version(dsnane,

3643 SPA_VERSI ON_&ZI P_COWPRESSI ON)) {

3644 return (SET_ERROR(ENOTSUP));

3645 }

3647 if (intval == ZI O COMPRESS ZLE &&

3648 zfs_earlier_version(dsnang,

3649 SPA_VERSI ON_ZLE_COMPRESSI ON))

3650 return (SET_ERROR(ENOTSUP));

3652 if (intval == ZI O COMPRESS_LZ4) {

3653 zfeature info_t *feature =

3654 &spa_f eature_t abl e[

3655 SPA_FEATURE_LZ4_COVPRESS] ;

3656 spa_t *spa;

3658 if ((err = spa_open(dsname, &spa, FTAG) != 0)
3659 return (err);

3661 if (!spa_feature_is_enabl ed(spa, feature)) {
3662 spa_cl ose(spa, FTAQ;

3663 return (SET_ERROR(ENOTSUP)) ;
3664 }

3665 spa_cl ose(spa, FTAQ;

3666 }

3668 /*

3669 * |f this is a bootable dataset then

3670 * verify that the conpression algorithm
3671 * is supported for booting. We nust return
3672 * sonet hi ng ot her than ENOTSUP since it
3673 * inplies a downrev pool version.

3674 */

3675 if (zfs_is_bootfs(dsname) &&

3676 I BOOTFS_COVPRESS_VALI D(intval)) {

3677 return (SET_ERROR(ERANGE));

3678 }

3679

3680 br eak;

3682 case ZFS_PROP_COPI ES:

3683 if (zfs_earlier_version(dsnane, SPA VERSI ON_DI TTO BLOCKS))
3684 return (SET_ERROR(ENOTSUP)) ;

3685 br eak;

3687 case ZFS_PROP_DEDUP:

3688 if (zfs_earlier_version(dsname, SPA VERSI ON DEDUP))
3689 “return (SET_ERROR(ENOTSUP));

3690 br eak;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3692
3693
3694
3695

3697
3698
3699
3700
3701
3702
3703
3704
3705
3706

3708
3709

3711
3712
3713
3714
3715
3716

case ZFS_PROP_SHARESMB:
if (zpl_earlier_version(dsnane, ZPL_VERS|I ON_FU D))
return (SET_ERROR(ENOTSUP));
br eak;

case ZFS_PROP_ACLI NHERI T:
if (nvpair_type(pair) == DATA TYPE_U NT64 &&
nvpai r _val ue_ui nt64(pair, & ntval) == 0) {
if (intval == ZFS ACL_PASSTHROUGH X &&
zfs_earlier_version(dsnaneg,
SPA_VERSI ON_PASSTHROUGH X))
return (SET_ERROR(ENOTSUP));

br eak;

}

return (zfs_secpolicy_setprop(dsnanme, prop, pair,

) CRED())) ;

/*

* Checks for a race condition to nmake sure we don't
* multiple tines.

*/

increment a feature flag

static int

zfs_prop_activate_feature_check(void *arg, dmu_tx_t *tx)

3717 {

3718
3719

3721
3722
3723
3724
3725

3727 |/

3728
3729
3730
3731
3732

spa_t *spa = dnu_t x_pool (tx)->dp_spa;
zfeature_info_t *feature = arg;

if (!spa_feature_is_active(spa,
return (0);

return (SET_ERROR(EBUSY));

feature))

el se

}

*

* The cal | back invoked on feature activation in the sync task caused by
* zfs_prop_activate_feature.
*/

static void

zfs_prop_activate_feature_sync(void *arg, dnmu_tx_t *tx)

3733 {

3734
3735

3737
3738

3740
3741
3742
3743
3744
3745
3746

spa_t *spa = dnu_t x_pool (tx)->dp_spa;
zfeature_info_t *feature = arg;
spa_feature_incr(spa,

feature, tx);

}

/*

* Activates a feature on a pool in response to a property setting. This
* creates a new sync task which nodifies the pool to reflect the feature
* as being active.

*/

static int

zfs_prop_activate_feature(spa_t *spa, zfeature_info_t *feature)

3747 {

3748

3750
3751
3752
3753

3755
3756

int err;

/* EBUSY here indicates that the feature is already active */

err = dsl _sync_t ask(spa_nane(spa),
zfs_prop_activate_feature_check,
feature, 2);

1= 0 & err != EBUSY)
return (err);

zfs_prop_activate_feature_sync,

if (err

57

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 58
3757 el se

3758 return (0);

3759 }

3761 /*

3762 * Renoves properties fromthe given props list that fail perm ssion checks
3763 * needed to clear themand to restore themin case of a receive error. For each
3764 * property, make sure we have both set and inherit pernissions.

3765 *

3766 * Returns the first error encountered if any perm ssion checks fail. If the
3767 * caller provides a non-NULL errlist, it also gives the conplete |list of nanes
3768 * of all the properties that failed a pernission check along with the

3769 * corresponding error nunbers. The caller is responsible for freeing the
3770 * returned errlist.

3771 *

3772 * |f every property checks out successfully, zero is returned and the |ist
3773 * pointed at by errlist is NULL.

3774 */

3775 static int

3776 {zf s_check_cl earabl e(char *dataset, nvlist_t *props, nvlist_t **errlist)

3777

3778 zfs_cmd_t *zc;

3779 nvpair_t *pair, *next_pair;

3780 nvliist_t *errors;

3781 int err, rv = 0;

3783 if (props == NULL)

3784 return (0);

3786 VERI FY(nvlist_alloc(&errors, NV_UNI QUE_NAME, KM SLEEP) == 0);

3788 zc = knem al | oc(sizeof (zfs_cnd_t), KM SLEEP);

3789 (void) strcpy(zc->zc_nane, dataset);

3790 pair = nvlist_next_nvpair(props, NULL);

3791 while (pair != NULL)

3792 next_pair = nvlist_next_nvpair(props, pair);

3794 (void) strcpy(zc->zc_value, nvpair_name(pair));

3795 if ((err = zfs_check_settabl e(dataset, pair, CRED())) != 0 ||
3796 (err = zfs_secpolicy_inherit_prop(zc, NULL, CRED())) != 0) {
3797 VERI FY(nvl 1 st _renove_nvpair(props, pair) == 0);

3798 VERI FY(nvlist_add_int32(errors,

3799 zc->zc_value, err) == 0);

3800

3801 pair = next_pair;

3802 }

3803 kmem free(zc, sizeof (zfs_cnd_t));

3805 if ((pair = nvlist_next_nvpair(errors, NULL)) == NULL) {

3806 nvlist_free(errors);

3807 errors = NULL;

3808 } else {

3809 VERI FY(nvpair_value_int32(pair, &v) == 0);

3810 }

3812 if (errlist == NULL)

3813 nvlist_free(errors);

3814 el se

3815 *errlist = errors;

3817 return (rv);

3818 }

3820 static bool ean_t
3821 propval _equal s(nvpair_t *pl, nvpair_t *p2)

3822 {

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3823 if (nvpalr type(pl) == DATA TYPE_NVLIST) {

3824 _prop_ get all “inpl () format */

3825 nvI | st_t *attrs;

3826 VERI FY(nvpai r_val ue_nvlist(pl, &ttrs) == 0);

3827 VERI FY(nvlist_| ookup_nvpair(attrs, ZPROP_VALUE,
3828 &pl) == 0);

3829 }

3831 if (nvpair_type(p2) == DATA TYPE_NVLIST) {

3832 nvlist_t *attrs;

3833 VERI FY(nvpai r_val ue_nvlist(p2, &ttrs) == 0);

3834 VERI FY(nvlist_| ookup_nvpair(attrs, ZPROP_VALUE,
3835 &p2) == 0);

3836 }

3838 if (nvpair_type(pl) != nvpair_type(p2))

3839 return (B_FALSE);

3841 if (nvpair_type(pl) == DATA TYPE_STRING ({

3842 char *val stri1, *valstr2;

3844 VERI FY(nvpai r _val ue_string(pl, (char **)&alstrl) == 0);
3845 VERI FY(nvpai r _val ue_string(p2, (char **)&val str2) == 0);
3846 return (strcnmp(valstrl, valstr2) == 0);

3847 } else {

3848 uint64_t intvall, intval2;

3850 VERI FY(nvpai r _val ue_ui nt 64(pl, & ntvall) == 0);
3851 VERI FY(nvpai r_val ue_ui nt 64(p2, & ntval2) == 0);
3852 return (intvall == intval 2);

3853 }

3854 }

3856 /*

3857 * Renove properties fromprops if they are not going to change (as deterni ned
3858 * by conparison with origprops). Renove themfromorigprops as well, since we
3859 */do not need to clear or restore properties that won’'t change.
3860 *

3861 static void

3862 props_reduce(nvlist_t *props, nvlist_t *origprops)

3863 {

3864 nvpair_t *pair, *next_pair;

3866 if (origpr ops == NULL)

3867 return; /* all props need to be received */

3869 pair = nvlist_next_nvpair(props, NULL);

3870 while (pair != NULL)

3871 const char *propname = nvpair_name(pair);

3872 nvpair_t *match;

3874 next_pair = nvlist_next_nvpair(props, pair);

3876 if ((nvlist_lookup_nvpair(origprops, propnane,
3877 &match) !'= 0) || !propval _equal s(pair, match))
3878 goto next; /* need to set received value */
3880 /* don’t clear the existing received value */

3881 (void) nvlist_renpve_nvpair(origprops, match);
3882 /* don’t bother receiving the property */

3883 (void) nvlist_renove_nvpair(props, pair);

3884 next:

3885 pair = next_pair;

3886 }

3887 }

59

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3889 #ifdef DEBUG

3890 static boolean_t zfs_ioc_recv_inject_err;

3891 #endi f

3893 /*

3894 * jnputs:

3895 * zc_nane name of containing filesystem

3896 * zc_nvlist_src{_size} nvlist of properties to apply

3897 * zc_val ue name of snapshot to create

3898 * zc_string name of clone origin (if DRR_FLAG CLONE)
3899 * zc_cookie file descriptor to recv from

3900 * zc_begin_record the BEG N record of the stream (not byteswapped)
3901 * zc_guid force flag

3902 * zc_cleanup_fd cl eanup-on-exit file descriptor

3903 * zc_action_handle handl e for this guid/ds mapping (or zero on first call)
3904 *

3905 * outputs:

3906 * zc_cookie nunber of bytes read

3907 * zc_nvlist_dst{_size} error for each unapplied received property
3908 * zc_obj zprop_errflags_t

3909 * zc_action_handl e handl e for th| s gui d/ ds nmappi ng

3910 */

3911 static int

3912 zfs_ioc_recv(zfs_cnd_t *zc)

3913 {

3914 file_t *fp;

3915 dmu_recv_cookie_t drc

3916 bool ean_t force = (bool ean_t)zc->zc_gui d;
3917 int fd;

3918 int error = 0;

3919 int props_error = 0;

3920 nvlist_t *errors;

3921 of fset _t off;

3922 nvlist_t *props = NULL; /* sent properties */
3923 nvlist_t *origprops = NULL; /* existing properties */
3924 char *origin = NULL;

3925 char *tosnap;

3926 char tof s[ZFS_MAXNAVELEN ;

3927 bool ean_t first_r ecvd_props = B_FALSE;

3929 if (dataset_nanecheck(zc->zc_value, NULL, NULL) != 0 ||
3930 strchr(zc->zc_value, @) == NULL ||

3931 strchr(zc->zc_value, '%))

3932 return (SET_ERROR(EI NVAL));

3934 (void) strcpy(tofs, zc->zc_value);

3935 tosnap = strchr(tofs, '@);

3936 *tosnap++ = '\ 0" ;

3938 if (zc->zc_nvlist_src != NULL &&

3939 (error = get_nvlist(zc->zc_nvlist_src,
3940 zc->zc_iflags, &props)) != 0)

3941 return (error);

3943 fd = zc->zc_cooki e;

3944 fp:getf(fd);

3945 if (fp == NULL) {

3946 nvlist_free(props);

3947 return (SET_ERROR(EBADF))

3948 }

3950 VERI FY(nvlist_alloc(&rrors, NV_UN QUE_NAME, KM SLEEP)
3952 if (zc->zc strlng[O])

3953 origin = zc->zc_string;

zc->zc_nvlist_src_size,

== 0);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 61

3955
3956
3957
3958

3960
3961
3962
3963
3964
3965
3966
3967
3968
3969

3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990

3992
3993
3994
3995
3996
3997
3998

4000
4001

4003
4004
4005
4006
4007

4009
4010
4011
4012
4013
4014
4015
4016
4017

4019
4020

error = dnu_recv_begi n(tofs, tosnap,
&zc->zc_begin_record, force, origin, &drc);
if (error 1= 0)
goto out;

Set properties before we receive the streamso that they are applied
to the new data. Note that we nmust call dnu_recv_strean() if
dmu_r ecv_begi n() succeeds.

R
—~

if (props !'= NULL && !drc.drc_newfs) {
if (spa_version(dsl_dataset_get_spa(drc.drc_ds)) >=
SPA_VERSI ON_RECVD_PROPS &&
1'dsl _prop_get _hasrecvd(tofs))
first_recvd_props = B _TRUE;

If new received properties are supplied, they are to
conpl etely replace the existing received properties, so stash
away the existing ones.

* ok Ok k%
-

if (dsl_prop_get_received(tofs, &origprops) == 0) {
nvlist_t *errlist = NULL;
/*
* Don't bother witing a property if its value won't
* change (and avoid the unnecessary security checks).
*
* The first receive after SPA VERSI ON_ RECVD PROPS is a
* special case where we blow away all |ocal properties
* regardl ess.
*/
if (!first_recvd_props)
props_reduce(props, origprops);
if (zfs_check_clearable(tofs, origprops, &errlist) !=0)
(void) nvlist_merge(errors, errlist, 0);
nvlist_free(errlist);

if (clear_received_props(tofs, origprops,

first_recvd_props ? NULL : props) != 0)
zc->zc_obj |= ZPROP_ERR NOCLEAR;
} else {
zc->zc_obj | = ZPROP_ERR_NOCLEAR;
}

if (props !'= NULL) {
props_error = dsl_prop_set_hasrecvd(tofs);

if (props_error == 0) {
(void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEI VED,
props, errors);

}
}
if (zc->zc_nvlist_dst_size !'= 0 &&
(nvlist_smush(errors, zc->zc_nvlist_dst_size) !=0 ||
put_nvlist(zc, errors) !=10)) {
/*
* Caller nade zc->zc_nvlist_dst |ess than the m ni num expected
* size or supplied an invalid address.
*/
props_error = SET_ERROR(ElI NVAL) ;
}

off = fp->f_offset;
error = dnu_recv_strean(&drc, fp->f_vnode, &off, zc->zc_cleanup_fd,

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 62
4021 &zc->zc_action_handl e);

4023 if (error == 0) {

4024 zfsvfs_t *zfsvfs = NULL;

4026 if (getzfsvfs(tofs, &fsvfs) == 0) {

4027 /* online recv */

4028 int end_err;

4030 error = zfs_suspend_fs(zfsvfs);

4031 /*

4032 * |f the suspend fails, then the recv_end will
4033 * |likely also fail, and clean up after itself.
4034 */

4035 end_err = dnmu_recv_end(&drc);

4036 if (error == 0

4037 error = zfs_resune_fs(zfsvfs, tofs);
4038 error = error ? error end_err;

4039 VFS_RELE(zfsvfs->z_vfs);

4040 } else {

4041 error = dnu_recv_end(&drc);

4042 }

4043 1

4045 zc->zc_cookie = off - fp->f_offset;

4046 if (VOP_SEEK(fp->f_vnode, fp->f_offset, &ff, NULL) == 0)

4047 fp->f _offset = off;

4049 #ifdef DEBUG

4050 if (zfs_ioc_recv_inject_err) {

4051 zfs_ioc_recv_inject_err = B_FALSE;

4052 error = 1;

4053

4054 #endi f

4055 /*

4056 * On error, restore the original props.

4057 ki

4058 if (error =0 &% props != NULL && !'drc.drc_newfs) {

4059 if (clear_received_props(tofs, props, NULL) != 0) {

4060 /*

4061 * W failed to clear the received properties.
4062 * Since we nay have left a $recvd value on the
4063 * system we can’t clear the $hasrecvd flag.
4064 */

4065 zc->zc_obj | = ZPROP_ERR NORESTORE;

4066 } else if (first_recvd_props)

4067 dsl _prop_unset _hasrecvd(tofs);

4068 }

4070 if (origprops == NULL && !drc.drc_newfs) {

4071 /* We failed to stash the original properties. */
4072 zc->zc_obj | = ZPROP_ERR _NORESTORE;

4073 }

4075 /*

4076 * dsl _props_set() will not convert RECEIVED to LOCAL on or
4077 * after SPA_VERSI ON_ RECVD PROPS, so we need to specify LOCAL
4078 * explictly if we're restoring |ocal properties cleared in the
4079 * first newstyle receive.

4080 */

4081 if (origprops != NULL &&

4082 zfs_set_prop_nvlist(tofs, (first_recvd_props ?

4083 ZPROP_SRC_LOCAL : ZPROP_SRC_RECEI VED),

4084 origprops, NULL) != 0) {

4085 /*

4086 * W stashed the original properties but failed to

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 63

4087 * restore them

4088 *

4089 zc->zc_obj | = ZPROP_ERR_NORESTORE;
4090 }

4091 }

4092 out:

4093 nvlist_free(props);

4094 nvlist_free(origprops);

4095 nvlist_free(errors);

4096 rel easef (fd);

4098 if (error ==

4099 error = props_error;

4101 return (error);

4102 }

4104 /*

4105 * inputs:

4106 * zc_name nane of snapshot to send

4107 * zc_cookie file descriptor to send streamto

4108 * zc_obj fronmorigin flag (nutually exclusive with zc_fronobj)
4109 * zc_sendobj obj setid of snapshot to send

4110 * zc_fronobj objsetid of incremental fronsnap (nay be zero)
4111 * zc_guid if set, estimate size of streamonly. zc_cookie is ignored.
4112 * out put size in zc_objset_type.

4113 *

4114 * outputs: none

4115 *

4116 static int

4117 zfs_ioc_send(zfs_cnd_t *zc)

4118 {

4119 int error;

4120 of fset_t off;

4121 bool ean_t estimate = (zc->zc_guid != 0);

4123 if (zc->zc_obj !'=0) {

4124 dsl _pool _t *dp;

4125 dsl _dat aset _t *tosnap;

4127 error = dsl _pool _hol d(zc->zc_nane, FTAG &dp);
4128 if (error !=0)

4129 return (error);

4131 error = dsl _dataset_hol d_obj (dp, zc->zc_sendobj, FTAG &tosnap);
4132 if (error !'=0)

4133 dsl _pool _rel e(dp, FTAG;

4134 return (error);

4135 }

4137 if (dsl_dir_is_clone(tosnap->ds_dir))

4138 zc->zc_fronmobj = tosnap->ds_dir->dd_phys->dd_origi n_obj;
4139 dsl _dat aset _rel e(tosnap, FTAQ;

4140 dsl _pool _rel e(dp, FTAG;

4141 }

4143 if (estimate) {

4144 dsl _pool _t *dp;

4145 ds|l _dataset _t *tosnap;

4146 dsl _dataset _t *fromsnap = NULL;

4148 error = dsl _pool _hol d(zc->zc_nane, FTAG &dp);
4149 if (error 1= 0)

4150 return (error);

4152 error = dsl _dataset_hol d_obj (dp, zc->zc_sendobj, FTAG &tosnap);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

4153 if (error '=0) {

4154 dsl _pool _rel e(dp, FTAQ;

4155 return (error);

4156 }

4158 if (zc->zc_fromobj = 0) {

4159 error = dsl_dataset _hol d_obj (dp, zc->zc_fronobj,
4160 FTAG &fromsnap);

4161 if (error !'=0)

4162 dsl _dat aset _rel e(tosnap, FTAG;
4163 dsl _pool _rel e(dp, FTAG;

4164 return (error);

4165 }

4166 }

4168 error = dmu_send_esti mat e(tosnap, fronsnap,
4169 &zc->zc_obj set _type);

4171 if (fromsnap != NULL)

4172 dsl _dat aset _rel e(fronmsnap, FTAG;

4173 ds| _dataset _rel e(tosnap, FTAG;

4174 dsl _pool _rel e(dp, FTAQ;

4175 } else {

4176 file_t *fp = getf(zc->zc_cookie);

4177 if (fp == NULL)

4178 return (SET_ERROR(EBADF));

4180 off = fp->f_offset;

4181 error = dnu_send_obj (zc->zc_nane, zc->zc_sendobj,
4182 zc->zc_fronobj, zc->zc_cookie, fp->f_vnode, &off);
4184 if (VOP_SEEK(fp->f_vnode, fp->f_offset, &ff, NULL) == 0)
4185 fp->f_offset = off;

4186 rel easef (zc->zc_cooki e);

4187 }

4188 return (error);

4189 }

4191 /*

4192 * inputs:

4193 * zc_nane nane of snapshot on which to report progress
4194 * zc_cookie file descriptor of send stream

4195 *

4196 * outputs:

4197 */zc_cooki e nunber of bytes witten in send streamthus far
4198 *

4199 static int

4200 zfs_ioc_send_progress(zfs_cnd_t *zc)

4201 {

4202 dsl _pool _t *dp;

4203 dsl _dataset _t *ds;

4204 dmu_sendarg_t *dsp = NULL;

4205 int error;

4207 error = dsl _pool _hol d(zc->zc_nane, FTAG &dp);

4208 if (error 1= 0)

4209 return (error);

4211 error = dsl_dataset_hol d(dp, zc->zc_nanme, FTAG &ds);
4212 if (error 1= 0)

4213 dsl _pool _rel e(dp, FTAQ;

4214 return (error);

4215 }

4217 mut ex_ent er (&ds- >ds_sendstream | ock) ;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230

4232
4233
4234
4235

4237
4238
4239
4240
4241

4243
4244

}

static i
zfs_ioc_

4245 {

4246

4248
4249

4251
4252

4254
4255

4257
4258

}

static i
zfs_ioc

4259 {

4260
4261

4263
4264

}

static i

zfs_ioc_|

4265 {

4266
4267

4269
4270

4272

4274
4275

4277
4278

}

static i
zfs_ioc

4279 {

4280
4281
4282

4284

_clear_fault(zfs_cnd_t

/*

* Iterate over all

* |f there’'s one which matches the specified file descriptor _and_
* streamwas started by the current process, return the progress of
* that stream

*

/

for (dsp = list_head(&ds->ds_sendstreans); dsp != NULL;
dsp = |ist_next(&ds->ds_sendstreans, dsp)) {
if (dsp->dsa_outfd == zc->zc_cookie &&
dsp- >dsa_proc == curproc)
break;
}

if (dsp !'= NULL)
zc->zc_cookie = *(dsp->dsa_off);

= SET_ERROR(ENCENT) ;

el se
error

mut ex_exi t (&ds- >ds_sendstream | ock) ;
dsl _dataset _rel e(ds, FTAQ;

dsl _pool _rel e(dp, FTAG;

return (error);

nt
inject_fault(zfs_cmd_t *zc)
int id, error;

error = zio_inject_fault(zc->zc_naneg,
&zc->zc_inject_record);

(int)zc->zc_guid, &d,
if (error == 0)
zc->zc_guid = (uint64_t)id;
return (error);
nt
*zc)

return (zio_clear_fault((int)zc->zc_guid));

nt
inject_list_next(zfs_cnd_t *zc)
int id = (int)zc->zc_guid;
int error;
error = zio_inject_list_next(& d, zc->zc_nane, sizeof (zc->zc_nane),
&zc->zc_inject_record);
zc->zc_guid = id;
return (error);
nt
_error_log(zfs_cnd_t *zc)
spa_t *spa;
int error;

size_t count = (size_t)zc->zc_nvlist_dst_size;

if ((error = spa_open(zc->zc_nane, &spa, FTAG) != 0)

65

the send streans currently active on this dataset.

the

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

4285 return (error);

4287 error = spa_get_errlog(spa, (void *)(uintptr_t)zc->zc_nvlist_dst,
4288 &count) ;

4289 if (error == 0)

4290 zc->zc_nvlist_dst_size = count;

4291 el se

4292 zc->zc_nvlist_dst_size = spa_get_errlog_size(spa);
4294 spa_cl ose(spa, FTAQ;

4296 return (error);

4297 }

4299 static int

4300 zfs_ioc_clear(zfs_cnd_t *zc)

4301 {

4302 spa_t *spa;

4303 vdev_t *vd;

4304 int error;

4306 /*

4307 * On zpool clear we also fix up mssing slogs

4308 */

4309 nmut ex_ent er (&spa_nanespace_| ock) ;

4310 spa = spa_| ookup(zc->zc_nane);

4311 if (spa == NULL)

4312 mut ex_exi t (&pa_nanespace_| ock) ;

4313 return (SET_ERROR(EIO);

4314 }

4315 if (spa_get_log_state(spa) == SPA LOG M SSI NG

4316 /* we need to | et spa_open/spa_l oad clear the chains */
4317 spa_set _|l og_state(spa, SPA_LOG CLEAR);

4318

4319 spa- >spa_| ast _open_failed = 0;

4320 mut ex_exi t (&pa_nanmespace_| ock) ;

4322 if (zc->zc_cookie & ZPOOL_NO_REW ND)

4323 error = spa_open(zc->zc_nane, &spa, FTAG;

4324 } else {

4325 nvlist_t *policy;

4326 nvlist_t *config = NULL;

4328 if (zc->zc_nvlist_src == NULL)

4329 return (SET_ ERRCR(EINVAQ)

4331 if ((error = get_nvlist(zc->zc_nvlist_src,

4332 zc->zc_nvl | st_src_size, zc->zc_iflags, &policy)) ==
4333 error = spa_open_rew nd(zc->zc_nane, &spa, FTAG
4334 policy, &config);

4335 if (conflg I'= NULL) {

4336 err;

4338 if ((err = put_nvlist(zc, config)) !'= 0)
4339 error = err;

4340 nvlist_free(config);

4341 }

4342 nvlist_free(policy);

4343 }

4344 }

4346 if (error = 0)

4347 return (error);

4349 spa_vdev_state_enter(spa, SCL_NONE);

0)

{

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 67

4351 if (zc->zc_guid == 0) {

4352 vd = NI ;

4353 } else {

4354 vd = spa_ Iookup by_gui d(spa, zc->zc_guid, B TRUE);
4355 if (vd == NULL) {

4356 (voi d) spa_vdev_state_exit(spa, NULL, ENOCDEV);
4357 spa_cl ose(spa, FTAQ;

4358 return (SET_ERROR(ENOCDEV));

4359 }

4360 }

4362 vdev_cl ear (spa, vd);

4364 (void) spa_vdev_state_exit(spa, NULL, 0);

4366 /*

4367 * Resune any suspended |/GCs.

4368 */

4369 if (zio_resune(spa) != 0)

4370 error = SET_ERROR(EIO;

4372 spa_cl ose(spa, FTAQ;

4374 return (error);

4375 }

4377 static int

4378 zfs_i oc_pool _reopen(zfs_cnd_t *zc)

4379 {

4380 spa_t *spa;

4381 int error;

4383 error = spa_open(zc->zc_nanme, &spa, FTAG;

4384 if (error 1= 0)

4385 return (error);

4387 spa_vdev_state_enter(spa, SCL_NONE);

4389 /*

4390 * If aresilver is already in progress then set the
4391 * spa_scrub_reopen flag to B_TRUE so that we don't restart
4392 * the scan as a side effect of the reopen. Otherwise, |et
4393 * vdev_open() decided if a resilver is required.
4394 */

4395 spa- >spa_scrub_reopen = dsl _scan_resilvering(spa->spa_dsl_pool);
4396 vdev_r eopen(spa- >spa_r oot _vdev);

4397 spa- >spa_scrub_reopen = B_FALSE;

4399 (void) spa_vdev_state_exit(spa, NULL, 0);

4400 spa_cl ose(spa, FTAQ;

4401 return (0);

4402 }

4403 /*

4404 * inputs:

4405 * zc_nane nanme of filesystem

4406 * zc_val ue nanme of origin snapshot

4407 *

4408 * outputs:

4409 * zc_string nane of conflicting snapshot, if there is one
4410 */

4411 static int

4412 zfs_ioc_pronote(zfs_cnd_t *zc)

4413 {

4414 char *cp;

4416 /*

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

4417
4418
4419
4420
4421
4422
4423
4424
4425
4426

4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439

}
/

* Ok kR ok R %k k F

*

*/

* We don’t need to unnmount *all* the origin fs's snapshots, but
* it's easier.
*/
cp = strchr(zc->zc_value, '@);
it (cp)
*cp = '\0

(voi d) dnu_obj set f| nd(zc->zc_val ue,
zfs_unmount _snap_cb, NULL, DS_FI ND_SNAPSHOTS) ;
return (dsl_dataset prormte(zc >zc_nanme, zc- >zc_stri ng));

Retrieve a single {user|group}{used|quota}@.. property.
inputs:
zc_nane nane of filesystem

zc_obj set _type zfs_userquota_ prop_t
"S- 1- 234-567-89")

zc_val ue domai n name (eg.
zc_gui d RIDUDGD

out put s:

zc_cooki e property val ue

4440 static int
4441 zfs_ioc_userspace_one(zfs_cnd_t *zc)
4442 {

4443
4444

4446
4447

4449
4450
4451

4453
4454
4455

4457
4458

4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470

}
!

R I

*/

zfsvfs_t *zfsvfs;
int error;

if (zc->zc_objset_type >= ZFS_NUM USERQUOTA_PROPS)
return (SET_ERROR(EINVAL));

error = zfsvfs_hol d(zc->zc_nane, FTAG &zfsvfs,
if (error 1= 0)
return (error);

B_FALSE) ;

error = zfs_userspace_one(zfsvfs,
zc->zc_obj set _type, zc->zc_val ue,
zfsvfs_rel e(zfsvfs, FTAG;

zc->zc_guid, &zc->zc_cookie);

return (error);

i nputs:)
zc_name name of filesystem
zc_cooki e zap cursor

zc_obj set _type zfs_userquota_prop_t

zc_nvlist_dst[_size] buffer to fill (not really an nvlist)
out put s:

zc_nvlist_dst[_size] data buffer (array of zfs_useracct_t)
zc_cooki e zap cursor

4471 static int
zfs_i oc_userspace_many(zfs_cnd_t *zc)
4473 {

4472

4474
4475

4477
4478

4480
4481
4482

zfsvfs_t *zfsvfs;
int bufsize = zc->zc_nvlist_dst_size;

if (bufsize <= 0)
return (SET_ERROR(ENOVEM)) ;

int error = zfsvfs_hol d(zc->zc_nanme, FTAG &zfsvfs,
if (error 1= 0)
return (error);

B_FALSE) ;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 69 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
4549 int (*zshare_fs)(enum sharefs_sys_op, share_t *, uint32_t);
4484 voi d *buf = kmem_ al | oc(bufsize, KM SLEEP); 4550 int (*zsnbexport_fs)(void *arg, bool ean_t add_share);
4486 error = zfs_userspace_many(zfsvfs, zc->zc_objset_type, &zc->zc_cookie, 4552 int zfs_nfsshare_inited;
4487 buf, &zc->zc_nvlist_dst_size); 4553 int zfs_snbshare_inited;
4489 if (error == 0) { 4555 ddi _npdhandl e_t nfs_nod;
4490 error = xcopyout (buf, 4556 ddi _nodhandl e_t sharefs_nod;
4491 (void *)(uintptr_t)zc->zc_nvlist_dst, 4557 ddi _nodhandl e_t snbsrv_nod;
4492 zc->zc_nvli st _dst_size); 4558 knmutex_t zfs_share_| ock;
4493 1
4494 kmem free(buf, bufsize); 4560 static int
4495 zfsvfs_rel e(zf svfs, FTAG); 4561 zfs_init_sharefs()
4562 {
4497 return (error); 4563 int error;
4498 }
4565 ASSERT(MUTEX_HELD(&f s_share_| ock));
4500 /* 4566 /* Both NFS and SMB shares al so require sharetab support. */
4501 * inputs: 4567 if (sharefs_nmpd == NULL && ((sharef s_nmod =
4502 * zc_name name of filesystem 4568 ddi _nodopen("fs/sharefs"
4503 * 4569 KRTLD_MODE_FI RST, &error)) == NULL)) {
4504 * outputs: 4570 return (SET_ERROR(ENOSYS));
4505 * none 4571 }
4506 */ 4572 if (zshare_fs == NULL && ((zshare_fs =
4507 static int 4573 (int (*)(enum sharefs_sys_op, share_t *, uint32_t))
4508 zfs_i oc_userspace_upgrade(zfs_cnd_t *zc) 4574 ddi _nodsyn(sharefs_nod, "sharefs_inpl", &error)) == NULL)) {
4509 { 4575 return (SET_ERROR(ENOSYS));
4510 obj set _t *os; 4576 }
4511 int error = 0; 4577 return (0);
4512 zfsvfs_t *zfsvfs; 4578 }
4514 if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) { 4580 static int
4515 if (!dmu_ ob] set userused enabl ed(zf svfs->z_os)) { 4581 zfs_ioc_share(zfs_cnd_t *zc)
4516 /* 4582 {
4517 * |f userused is not enabled, it may be because the 4583 int error;
4518 * obj set needs to be closed & reopened (to grow the 4584 int opcode;
4519 * obj set_phys_t). Suspend/resunme the fs will do that.
4520 */ 4586 switch (zc->zc_share.z_sharetype) {
4521 error = zfs_suspend_fs(zfsvfs); 4587 case ZFS_SHARE_NFS:
4522 if (error == 0) 4588 case ZFS_UNSHARE_NFS:
4523 error = zfs_resune_fs(zfsvfs, zc->zc_nane); 4589 if (zfs_nfsshare_inited == 0) {
4524 } 4590 mut ex_ent er (&fs_share_| ock) ;
4525 1f (error == O) 4591 if (nfs_nod == NULL & ((nfs_nod = ddi _nodopen("fs/nfs",
4526 error dmu_obj set _user space_upgr ade(zf svfs->z_os); 4592 KRTLD MODE _FI RST, &error)) == NULL)) {
4527 VFS_RELE(zf svfs >z_vfs); 4593 mut ex_eX|t(&zfs_shar e_l ock);
4528 } else { 4594 return (SET_ERROR(ENCSYS));
4529 /* XXX kind of reading contents without owning */ 4595 }
4530 error = dmu_obj set _hol d(zc->zc_nane, FTAG &os); 4596 if (znfsexport_fs == NULL &&
4531 if (error 1= 0) 4597 ((znfsexport_fs = (int (*)(void *))
4532 return (error); 4598 ddi _nodsyn{(nfs_nod,
4599 "nfs_export"”, &error)) == NULL)) {
4534 error = dmu_obj set _userspace_upgrade(o0s); 4600 mut ex_exi t (&fs_share_| ock);
4535 drmu ObJ set_rele(os, FTAG; 4601 return (SET_ERROR(ENGOSYS));
4536 } 4602
4603 error = zfs_init_sharefs();
4538 return (error); 4604 if (error !'=0)
4539 } 4605 mut ex_exi t (&fs_share_| ock);
4606 return (SET_ERROR(ENCSYS));
4541 [* 4607 }
4542 * \W don’t want to have a hard dependency 4608 zfs_nfsshare_inited = 1;
4543 * agai nst sone special synbols in sharefs 4609 mut ex_exi t (&fs_share_l ock);
4544 * nfs, and snbsrv. Determine themif needed when 4610 }
4545 * the first file systemis shared. 4611 br eak;
4546 * Neither sharefs, nfs or snbsrv are unl oadabl e npdul es. 4612 case ZFS_ SHARE SMVB:
4547 */ 4613 case ZFS_UNSHARE_SMB:
4548 int (*znfsexport_fs)(void *arg); 4614 if (zfs_snbshare_inited == 0) {

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 71 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
4615 nut ex_ent er (&fs_share_| ock); 4681 * zc_nane name of containing filesystem
4616 if (snmbsrv_nmpod == NULL && ((snbsrv_nod = 4682 * zc_obj obj ect # beyond which we want next in-use object #
4617 ddi _nmodopen("drv/snbsrv", 4683 *
4618 KRTLD_MODE_FI RST, &error)) == NULL)) { 4684 * outputs:
4619 mut ex_exi t (&fs_share_| ock); 4685 * zc_obj next in-use object #
4620 return (SET_ERROR(ENOSYS)); 4686 */
4621 } 4687 static int
4622 if (zsnbexport_fs == NULL && ((zsnbexport_fs = 4688 zfs_ioc_next_obj (zfs_cmd_t *zc)
4623 (int (*)(void *, bool ean_t))ddi _mbdsyn(snbsrv_nod, 4689 {
4624 "snmb_server_share", &error)) == NULL)) { 4690 obj set _t *os = NULL;
4625 mut ex_exi t (&fs_share_l ock); 4691 int error;
4626 return (SET_ERROR(ENCSYS));
4627 } 4693 error = dnu_obj set _hol d(zc->zc_nanme, FTAG &os);
4628 error = zfs_init_sharefs(); 4694 if (error 1= 0)
4629 if (error '=0) { 4695 return (error);
4630 mut ex_exi t (&fs_share_l ock);
4631 return (SET_ERROR(ENOSYS)); 4697 error = dnu_obj ect _next (os, &zc->zc_obj, B_FALSE,
4632 } 4698 0s->0s_dsl _dat aset - >ds_phys->ds_prev_snap_t xg) ;
4633 zfs_snbshare_inited = 1;
4634 mut ex_exi t (&fs_share_l ock); 4700 dmu_obj set _rel e(os, FTAG;
4635 } 4701 return (error);
4636 br eak; 4702 }
4637 defaul t:
4638 return (SET_ERROR(EI NVAL)); 4704 [*
4639 } 4705 * inputs:
4706 * zc_nane name of filesystem
4641 switch (zc->zc_share.z_sharetype) { 4707 * zc_val ue prefix name for snapshot
4642 case ZFS_SHARE_NFS: 4708 * zc_cl eanup_fd cl eanup-on-exit file descriptor for calling process
4643 case ZFS_UNSHARE_NFS: 4709 *
4644 if (error = 4710 * outputs:
4645 znf sexport _fs((void *) 4711 * zc_val ue short name of new snapshot
4646 (uintptr_t)zc->zc_share. z_exportdata)) 4712 */
4647 return (error); 4713 static int
4648 br eak; 4714 zfs_ioc_t nmp_snapshot (zfs_cnd_t *zc)
4649 case ZFS_SHARE_SMB: 4715 {
4650 case ZFS_UNSHARE SMB: 4716 char *snap_nane;
4651 if (error = zsnbexport_fs((void *) 4717 char *hol d_nane;
4652 (uintptr_t)zc->zc_share. z_exportdat a, 4718 int error;
4653 zc->zc_share. z_sharetype == ZFS_SHARE_SMB ? 4719 m nor_t mnor;
4654 B TRUE: B FALSE)) {
4655 return (error); 4721 error = zfs_onexit_fd_hol d(zc->zc_cl eanup_fd, &minor);
4656 } 4722 if (error 1= 0)
4657 br eak; 4723 return (error);
4658 1
4725 snap_name = kmem asprintf("%-9%16l1x", zc->zc_val ue,
4660 opcode = (zc->zc_share.z_sharetype == ZFS SHARE NFS || 4726 (u_l onglong_t)ddi _get_| bolt64());
4661 zc->zc_share. z_sharetype == ZFS_SHARE_SMB) ? 4727 hol d_nane = knmem asprintf("%86", zc->zc_val ue);
4662 SHAREFS_ADD : SHAREFS_ REMOVE;
4729 error = dsl_dataset _snapshot _t np(zc->zc_nane, snap_nane, m nor,
4664 /* 4730 hol d_nan®) ;
4665 * Add or renpve share from sharetab 4731 if (error == 0)
4666 */ 4732 (void) strcpy(zc->zc_val ue, snap_nane);
4667 error = zshare_fs(opcode, 4733 strfree(snap_nane);
4668 (void *)(uintptr_t)zc->zc_share. z_sharedat a, 4734 strfree(hol d_nane);
4669 zc->zc_share. z_shar emax) ; 4735 zfs_onexit_fd_rel e(zc->zc_cl eanup_fd);
4736 return (error);
4671 return (error); 4737 }
4673 } 4739 [*
4740 * inputs:
4675 ace_t full _access[] = { 4741 * zc_nane nane of "to" snapshot
4676 {(uid_t)-1, ACE_ALL_PERMS, ACE_EVERYONE, 0} 4742 * zc_val ue name of "from snapshot
4677 }; 4743 * zc_cookie file descriptor to wite diff data on
4744 *
4679 /* 4745 * outputs:
4680 * inputs: 4746 * dnu_diff_record_t’'s to the file descriptor

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 73 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
4747 */ 4813 (strcmp((char *)refstr_val ue(vp->v_vfsp->vfs_resource),
4748 static int 4814 zc->zc_nane) = 0)) {
4749 zfs_ioc_diff(zfs_cnd_t *zc) 4815 VN_RELE(vp) ;
4750 { 4816 return (SET_ERRCR(EI NVAL)) ;
4751 file_t *fp; 4817 }
4752 of fset _t off;
4753 int error; 4819 dzp = VTOZ(vp);
4820 zfsvfs = dzp->z_zfsvfs;
4755 fp = getf(zc >zc_cooki e); 4821 ZFS_ENTER(zf svfs);
4756 if (fp == NULL
4757 return (SET_ERROR(EBADF)) ; 4823 /*
4824 * Create share dir if its mssing.
4759 off = fp->f_offset; 4825 */
4826 mut ex_ent er (&zf svfs->z_| ock)
4761 error = dnu_diff(zc->zc_nane, zc->zc_value, fp->f_vnode, &off); 4827 if (zfsvfs->z_shares_dir == O)
4828 dmu_t x_t *tx;
4763 if (VOP_SEEK(fp->f_vnode, fp->f_offset, &ff, NULL) == 0)
4764 fp->f _offset = off; 4830 tx = dnu_t x_create(zfsvfs->z_os);
4765 rel easef (zc->zc_cooki e); 4831 dmu_t x_hol d_zap(tx, NASTER_NODE_OBJ, TRUE,
4832 TZFS_SHARES DIR);
4767 return (error); 4833 dmu_t x_ hold _zap(tx, DMJ_NEW OBJECT, FALSE, NULL);
4768 } 4834 error = dmu_tx_assign(tx, TXG WAIT);
4835 if (error 1= 0)
4770 | * 4836 dmu_t x_abort (tx);
4771 * Renove all ACL files in shares dir 4837 } else {
4772 */ 4838 error = zfs_create_share_dir(zfsvfs, tx);
4773 static int 4839 drmu_t x_comm t (tx);
4774 zfs_snb_acl _purge(znode_t *dzp) 4840 }
4775 { 4841 if (error 1= 0)
4776 zap_cursor _t zc; 4842 nut ex_exi t (&zf svfs->z_| ock);
4777 zap_attribute_t zap, 4843 VN_RELE(vp) ;
4778 zfsvfs_t *zfsvfs dzp->z_zfsvfs; 4844 ZFS_EXI T(zfsvfs);
4779 int error; 4845 return (error);
4846 }
4781 for (zap_cursor_init(&zc, zfsvfs->z_os, dzp- >z | d); 4847 }
4782 (error = zap_cursor_retrieve(&c, &zap)) == 0; 4848 mut ex_exi t (&zfsvfs->z_| ock);
4783 zap_cursor _advance(&zc)) {
4784 if ((error = VOP_REMOVE(ZTOV(dzp), zap.za_nane, kcred, 4850 ASSERT(zf svfs->z_shares_dir);
4785 NULL, 0)) != 0) 4851 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &sharedir)) != 0)
4786 br eak; 4852 VN_RELE(Vp) ;
4787 } 4853 ZFS_EXI T(zfsvfs);
4788 zap_cursor _fini (&zc); 4854 return (error);
4789 return (error); 4855 }
4790 }
4857 switch (zc->zc_cookie) {
4792 static int 4858 case ZFS_SMB_ACL_ADD:
4793 zfs_ioc_snb_acl (zfs_cmd_t *zc) 4859 vattr.va_mask = AT_MODE| AT_Ul D| AT_d D| AT_TYPE;
4794 { 4860 vattr.va_type = VREG
4795 vnode_t *vp; 4861 vattr.va_node = S | FREG 0777;
4796 znode_t *dzp; 4862 vattr.va_uid = 0;
4797 vnode_t *resourcevp = NULL; 4863 vattr.va_gid = 0;
4798 znode_t *sharedir;
4799 zfsvfs_t *zfsvfs; 4865 vsec.vsa_mask = V. ACE
4800 nvlist_t *nvlist; 4866 vsec.vsa_aclentp = ul | _access;
4801 char *src, *target; 4867 vsec.vsa_acl entsz = | zeof (full _access);
4802 vattr_t vattr; 4868 vsec.vsa_aclcnt = 1;
4803 vsecattr_t vsec;
4804 int error = 0; 4870 error = VOP_CREATE(ZTOV(sharedir), zc->zc_string,
4871 &vattr, EXCL, 0, &resourcevp, kcred, 0, NULL, &vsec);
4806 if ((error = | ookupnanme(zc->zc_val ue, U O SYSSPACE, 4872 if (resourcevp)
4807 NO FOLLOW NULL, &p)) !'= 0) 4873 VN_RELE(r esour cevp) ;
4808 return (error); 4874 br eak;
4810 /* Now make sure mmtpnt and dataset are ZFS */ 4876 case ZFS_SMB_. ACL REMOVE:
4877 error = VOP_REMOVE(ZTOV(sharedir), zc->zc_string, kcred,
4812 if (vp->v_vfsp->vfs_fstype != zfsfstype || 4878 NULL, 0);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 75 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
4879 br eak; 4945 if (error !'=0)
4946 return (error);
4881 case ZFS_SMB_ACL_RENAME: 4947 }
4882 if ((error = get_nvlist(zc->zc_nvlist_src,
4883 zc->zc_nvlist_src_size, zc->zc_iflags, &wvlist)) !'=0) { 4949 error = dsl_dataset _user_hol d(holds, minor, errlist);
4884 VN_RELE(vp) ; 4950 if (mnor !=0)
4885 ZFS_EXI T(zfsvfs); 4951 zfs_onexit_fd_rel e(cl eanup_fd);
4886 return (error); 4952 return (error);
4887 } 4953 }
4888 1f (nvlist_|lookup_string(nvlist, ZFS SMB_ACL_SRC, &src) ||
4889 nvlist_|lookup_string(nvlist, ZFS_SMB_ACL_TARGCET, 4955 [*
4890 & arget)) { 4956 * innvl is not used.
4891 VN_RELE(vp); 4957 *
4892 VN_RELE(ZTOV(sharedir)); 4958 * outnvl: {
4893 ZFS_EXI T(zf svfs); 4959 * hol dnanme -> tinme added (uint64 seconds since epoch)
4894 nvlist_free(nvlist); 4960 * .
4895 return (error); 4961 * }
4896 } 4962 */
4897 error = VOP_RENAME(ZTOV(sharedir), src, ZTOV(sharedir), target, 4963 /* ARGSUSED */
4898 kcred, NULL, 0); 4964 static int
4899 nvlist_free(nvlist); 4965 zfs_ioc_get_hol ds(const char *snapname, nvlist_t *args, nvlist_t *outnvl)
4900 br eak; 4966 {
4967 return (dsl_dataset_get_hol ds(snapnanme, outnvl));
4902 case ZFS_SMB_ACL_PURGE: 4968 }
4903 error = zfs_snb_acl _purge(sharedir);
4904 br eak; 4970 /*
4971 * innvl: {
4906 defaul t: 4972 * snapnanme -> { hol dnanme, ... }
4907 error = SET_ERROR(EI NVAL) ; 4973 * C
4908 br eak; 4974 * '}
4909 } 4975 *
4976 * outnvl: {
4911 VN_RELE(vp); 4977 * snapnane -> error value (int32)
4912 VN_RELE(ZTOV(sharedir)); 4978 * C
4979 * }
4914 ZFS_EXI T(zfsvfs); 4980 */
4981 /* ARGSUSED */
4916 return (error); 4982 static int
4917 } 4983 zfs_ioc_rel ease(const char *pool, nvlist_t *holds, nvlist_t *errlist)
4984 {
4919 /* 29 nvpair_t *pair;
4920 * innvl: {
4921 * "hol ds" -> { snapnane -> hol dnane (string), ... } 31 /*
4922 * (optional) "cleanup_fd" -> fd (int32) 32 * The rel ease may cause the snapshot to be destroyed; make sure it
4923 * & * is not nounted.
4924 * 34 */
4925 * outnvl: { 35 for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL;
4926 * snapnane -> error value (int32) 36 pair = nvlist_next_nvpair(holds, pair))
4927 * L 37 zf s_unmount _snap(nvpai r _name(pair));
4928 * }
4929 */ 4985 return (dsl_dataset_user_rel ease(holds, errlist));
4930 /* ARGSUSED */ 4986 }
4931 static int ______unchanged_portion_omtted_
4932 {zfs_i oc_hol d(const char *pool, nvlist_t *args, nvlist_t *errlist)
4933
4934 nvlist_t *hol ds;
4935 int cleanup_fd = -1;
4936 int error;
4937 mnor_t mnor = 0;
4939 error = nvlist_lookup_nvlist(args, "holds", &holds);
4940 if (error = 0)
4941 return (SET_ERROR(EINVAL));
4943 if (nvlist_lookup_int32(args, "cleanup_fd", &cleanup_fd) == 0) {
4944 error = zfs_onexit_fd_hol d(cl eanup_fd, &mnor);

