
new/usr/src/cmd/ndmpd/ndmp/ndmpd_chkpnt.c 1

**
 8538 Wed May 29 20:27:07 2013
new/usr/src/cmd/ndmpd/ndmp/ndmpd_chkpnt.c
3740 Poor ZFS send / receive performance due to snapshot hold / release processi
Submitted by: Steven Hartland <steven.hartland@multiplay.co.uk>
**

1 /*
2 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2013 by Delphix. All rights reserved.
4 * Copyright (c) 2013 Steven Hartland. All rights reserved.
5 #endif /* ! codereview */
6 */

8 /*
9 * BSD 3 Clause License

10 *
11 * Copyright (c) 2007, The Storage Networking Industry Association.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * - Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 *
24 * - Neither the name of The Storage Networking Industry Association (SNIA)
25 * nor the names of its contributors may be used to endorse or promote
26 * products derived from this software without specific prior written
27 * permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
30 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
33 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
34 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
37 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39 * POSSIBILITY OF SUCH DAMAGE.
40 */

42 #include <stdio.h>
43 #include <string.h>
44 #include "ndmpd.h"
45 #include <libzfs.h>

47 typedef struct snap_param {
48 char *snp_name;
49 boolean_t snp_found;
50 } snap_param_t;

52 static int cleanup_fd = -1;

54 /*
55 * ndmp_has_backup
56 *
57 * Call backup function which looks for backup snapshot.
58 * This is a callback function used with zfs_iter_snapshots.
59 *
60 * Parameters:

new/usr/src/cmd/ndmpd/ndmp/ndmpd_chkpnt.c 2

61 * zhp (input) - ZFS handle pointer
62 * data (output) - 0 - no backup snapshot
63 * 1 - has backup snapshot
64 *
65 * Returns:
66 * 0: on success
67 * -1: otherwise
68 */
69 static int
70 ndmp_has_backup(zfs_handle_t *zhp, void *data)
71 {
72 const char *name;
73 snap_param_t *chp = (snap_param_t *)data;

75 name = zfs_get_name(zhp);
76 if (name == NULL ||
77 strstr(name, chp->snp_name) == NULL) {
78 zfs_close(zhp);
79 return (-1);
80 }

82 chp->snp_found = 1;
83 zfs_close(zhp);

85 return (0);
86 }

88 /*
89 * ndmp_has_backup_snapshot
90 *
91 * Returns TRUE if the volume has an active backup snapshot, otherwise,
92 * returns FALSE.
93 *
94 * Parameters:
95 * volname (input) - name of the volume
96 *
97 * Returns:
98 * 0: on success
99 * -1: otherwise
100 */
101 static int
102 ndmp_has_backup_snapshot(char *volname, char *jobname)
103 {
104 zfs_handle_t *zhp;
105 snap_param_t snp;
106 char chname[ZFS_MAXNAMELEN];

108 (void) mutex_lock(&zlib_mtx);
109 if ((zhp = zfs_open(zlibh, volname, ZFS_TYPE_DATASET)) == 0) {
110 NDMP_LOG(LOG_ERR, "Cannot open snapshot %s.", volname);
111 (void) mutex_unlock(&zlib_mtx);
112 return (-1);
113 }

115 snp.snp_found = 0;
116 (void) snprintf(chname, ZFS_MAXNAMELEN, "@%s", jobname);
117 snp.snp_name = chname;

119 (void) zfs_iter_snapshots(zhp, ndmp_has_backup, &snp);
120 zfs_close(zhp);
121 (void) mutex_unlock(&zlib_mtx);

123 return (snp.snp_found);
124 }

126 /*

new/usr/src/cmd/ndmpd/ndmp/ndmpd_chkpnt.c 3

127 * ndmp_create_snapshot
128 *
129 * This function will parse the path to get the real volume name.
130 * It will then create a snapshot based on volume and job name.
131 * This function should be called before the NDMP backup is started.
132 *
133 * Parameters:
134 * vol_name (input) - name of the volume
135 *
136 * Returns:
137 * 0: on success
138 * -1: otherwise
139 */
140 int
141 ndmp_create_snapshot(char *vol_name, char *jname)
142 {
143 char vol[ZFS_MAXNAMELEN];

145 if (vol_name == 0 ||
146 get_zfsvolname(vol, sizeof (vol), vol_name) == -1)
147 return (0);

149 /*
150 * If there is an old snapshot left from the previous
151 * backup it could be stale one and it must be
152 * removed before using it.
153 */
154 if (ndmp_has_backup_snapshot(vol, jname))
155 (void) snapshot_destroy(vol, jname, B_FALSE, B_TRUE, NULL);

157 return (snapshot_create(vol, jname, B_FALSE, B_TRUE));
158 }

160 /*
161 * ndmp_remove_snapshot
162 *
163 * This function will parse the path to get the real volume name.
164 * It will then remove the snapshot for that volume and job name.
165 * This function should be called after NDMP backup is finished.
166 *
167 * Parameters:
168 * vol_name (input) - name of the volume
169 *
170 * Returns:
171 * 0: on success
172 * -1: otherwise
173 */
174 int
175 ndmp_remove_snapshot(char *vol_name, char *jname)
176 {
177 char vol[ZFS_MAXNAMELEN];

179 if (vol_name == 0 ||
180 get_zfsvolname(vol, sizeof (vol), vol_name) == -1)
181 return (0);

183 return (snapshot_destroy(vol, jname, B_FALSE, B_TRUE, NULL));
184 }

186 /*
187 * Put a hold on snapshot
188 */
189 int
190 snapshot_hold(char *volname, char *snapname, char *jname, boolean_t recursive)
191 {
192 zfs_handle_t *zhp;

new/usr/src/cmd/ndmpd/ndmp/ndmpd_chkpnt.c 4

193 char *p;

195 if ((zhp = zfs_open(zlibh, volname, ZFS_TYPE_DATASET)) == 0) {
196 NDMP_LOG(LOG_ERR, "Cannot open volume %s.", volname);
197 return (-1);
198 }

200 if (cleanup_fd == -1 && (cleanup_fd = open(ZFS_DEV,
201 O_RDWR|O_EXCL)) < 0) {
202 NDMP_LOG(LOG_ERR, "Cannot open dev %d", errno);
203 zfs_close(zhp);
204 return (-1);
205 }

207 p = strchr(snapname, ’@’) + 1;
208 if (zfs_hold(zhp, p, jname, recursive, cleanup_fd) != 0) {
4 if (zfs_hold(zhp, p, jname, recursive, B_FALSE, cleanup_fd) != 0) {

209 NDMP_LOG(LOG_ERR, "Cannot hold snapshot %s", p);
210 zfs_close(zhp);
211 return (-1);
212 }
213 zfs_close(zhp);
214 return (0);
215 }

______unchanged_portion_omitted_

new/usr/src/cmd/zfs/zfs_main.c 1

**
 161560 Wed May 29 20:27:07 2013
new/usr/src/cmd/zfs/zfs_main.c
3740 Poor ZFS send / receive performance due to snapshot hold / release processi
Submitted by: Steven Hartland <steven.hartland@multiplay.co.uk>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2012 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 * Copyright 2012 Milan Jurik. All rights reserved.
27 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
28 * Copyright (c) 2013 Steven Hartland. All rights reserved.
29 #endif /* ! codereview */
30 */

32 #include <assert.h>
33 #include <ctype.h>
34 #include <errno.h>
35 #include <libgen.h>
36 #include <libintl.h>
37 #include <libuutil.h>
38 #include <libnvpair.h>
39 #include <locale.h>
40 #include <stddef.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <strings.h>
44 #include <unistd.h>
45 #include <fcntl.h>
46 #include <zone.h>
47 #include <grp.h>
48 #include <pwd.h>
49 #include <signal.h>
50 #include <sys/list.h>
51 #include <sys/mkdev.h>
52 #include <sys/mntent.h>
53 #include <sys/mnttab.h>
54 #include <sys/mount.h>
55 #include <sys/stat.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/types.h>
58 #include <time.h>

60 #include <libzfs.h>

new/usr/src/cmd/zfs/zfs_main.c 2

61 #include <libzfs_core.h>
62 #include <zfs_prop.h>
63 #include <zfs_deleg.h>
64 #include <libuutil.h>
65 #include <aclutils.h>
66 #include <directory.h>

68 #include "zfs_iter.h"
69 #include "zfs_util.h"
70 #include "zfs_comutil.h"

72 libzfs_handle_t *g_zfs;

74 static FILE *mnttab_file;
75 static char history_str[HIS_MAX_RECORD_LEN];
76 static boolean_t log_history = B_TRUE;

78 static int zfs_do_clone(int argc, char **argv);
79 static int zfs_do_create(int argc, char **argv);
80 static int zfs_do_destroy(int argc, char **argv);
81 static int zfs_do_get(int argc, char **argv);
82 static int zfs_do_inherit(int argc, char **argv);
83 static int zfs_do_list(int argc, char **argv);
84 static int zfs_do_mount(int argc, char **argv);
85 static int zfs_do_rename(int argc, char **argv);
86 static int zfs_do_rollback(int argc, char **argv);
87 static int zfs_do_set(int argc, char **argv);
88 static int zfs_do_upgrade(int argc, char **argv);
89 static int zfs_do_snapshot(int argc, char **argv);
90 static int zfs_do_unmount(int argc, char **argv);
91 static int zfs_do_share(int argc, char **argv);
92 static int zfs_do_unshare(int argc, char **argv);
93 static int zfs_do_send(int argc, char **argv);
94 static int zfs_do_receive(int argc, char **argv);
95 static int zfs_do_promote(int argc, char **argv);
96 static int zfs_do_userspace(int argc, char **argv);
97 static int zfs_do_allow(int argc, char **argv);
98 static int zfs_do_unallow(int argc, char **argv);
99 static int zfs_do_hold(int argc, char **argv);
100 static int zfs_do_holds(int argc, char **argv);
101 static int zfs_do_release(int argc, char **argv);
102 static int zfs_do_diff(int argc, char **argv);

104 /*
105 * Enable a reasonable set of defaults for libumem debugging on DEBUG builds.
106 */

108 #ifdef DEBUG
109 const char *
110 _umem_debug_init(void)
111 {
112 return ("default,verbose"); /* $UMEM_DEBUG setting */
113 }

115 const char *
116 _umem_logging_init(void)
117 {
118 return ("fail,contents"); /* $UMEM_LOGGING setting */
119 }
120 #endif

122 typedef enum {
123 HELP_CLONE,
124 HELP_CREATE,
125 HELP_DESTROY,
126 HELP_GET,

new/usr/src/cmd/zfs/zfs_main.c 3

127 HELP_INHERIT,
128 HELP_UPGRADE,
129 HELP_LIST,
130 HELP_MOUNT,
131 HELP_PROMOTE,
132 HELP_RECEIVE,
133 HELP_RENAME,
134 HELP_ROLLBACK,
135 HELP_SEND,
136 HELP_SET,
137 HELP_SHARE,
138 HELP_SNAPSHOT,
139 HELP_UNMOUNT,
140 HELP_UNSHARE,
141 HELP_ALLOW,
142 HELP_UNALLOW,
143 HELP_USERSPACE,
144 HELP_GROUPSPACE,
145 HELP_HOLD,
146 HELP_HOLDS,
147 HELP_RELEASE,
148 HELP_DIFF,
149 } zfs_help_t;

151 typedef struct zfs_command {
152 const char *name;
153 int (*func)(int argc, char **argv);
154 zfs_help_t usage;
155 } zfs_command_t;

157 /*
158 * Master command table. Each ZFS command has a name, associated function, and
159 * usage message. The usage messages need to be internationalized, so we have
160 * to have a function to return the usage message based on a command index.
161 *
162 * These commands are organized according to how they are displayed in the usage
163 * message. An empty command (one with a NULL name) indicates an empty line in
164 * the generic usage message.
165 */
166 static zfs_command_t command_table[] = {
167 { "create", zfs_do_create, HELP_CREATE },
168 { "destroy", zfs_do_destroy, HELP_DESTROY },
169 { NULL },
170 { "snapshot", zfs_do_snapshot, HELP_SNAPSHOT },
171 { "rollback", zfs_do_rollback, HELP_ROLLBACK },
172 { "clone", zfs_do_clone, HELP_CLONE },
173 { "promote", zfs_do_promote, HELP_PROMOTE },
174 { "rename", zfs_do_rename, HELP_RENAME },
175 { NULL },
176 { "list", zfs_do_list, HELP_LIST },
177 { NULL },
178 { "set", zfs_do_set, HELP_SET },
179 { "get", zfs_do_get, HELP_GET },
180 { "inherit", zfs_do_inherit, HELP_INHERIT },
181 { "upgrade", zfs_do_upgrade, HELP_UPGRADE },
182 { "userspace", zfs_do_userspace, HELP_USERSPACE },
183 { "groupspace", zfs_do_userspace, HELP_GROUPSPACE },
184 { NULL },
185 { "mount", zfs_do_mount, HELP_MOUNT },
186 { "unmount", zfs_do_unmount, HELP_UNMOUNT },
187 { "share", zfs_do_share, HELP_SHARE },
188 { "unshare", zfs_do_unshare, HELP_UNSHARE },
189 { NULL },
190 { "send", zfs_do_send, HELP_SEND },
191 { "receive", zfs_do_receive, HELP_RECEIVE },
192 { NULL },

new/usr/src/cmd/zfs/zfs_main.c 4

193 { "allow", zfs_do_allow, HELP_ALLOW },
194 { NULL },
195 { "unallow", zfs_do_unallow, HELP_UNALLOW },
196 { NULL },
197 { "hold", zfs_do_hold, HELP_HOLD },
198 { "holds", zfs_do_holds, HELP_HOLDS },
199 { "release", zfs_do_release, HELP_RELEASE },
200 { "diff", zfs_do_diff, HELP_DIFF },
201 };

203 #define NCOMMAND (sizeof (command_table) / sizeof (command_table[0]))

205 zfs_command_t *current_command;

207 static const char *
208 get_usage(zfs_help_t idx)
209 {
210 switch (idx) {
211 case HELP_CLONE:
212 return (gettext("\tclone [-p] [-o property=value] ... "
213 "<snapshot> <filesystem|volume>\n"));
214 case HELP_CREATE:
215 return (gettext("\tcreate [-p] [-o property=value] ... "
216 "<filesystem>\n"
217 "\tcreate [-ps] [-b blocksize] [-o property=value] ... "
218 "-V <size> <volume>\n"));
219 case HELP_DESTROY:
220 return (gettext("\tdestroy [-fnpRrv] <filesystem|volume>\n"
221 "\tdestroy [-dnpRrv] "
222 "<filesystem|volume>@<snap>[%<snap>][,...]\n"));
223 case HELP_GET:
224 return (gettext("\tget [-rHp] [-d max] "
225 "[-o \"all\" | field[,...]] [-t type[,...]] "
226 "[-s source[,...]]\n"
227 "\t <\"all\" | property[,...]> "
228 "[filesystem|volume|snapshot] ...\n"));
229 case HELP_INHERIT:
230 return (gettext("\tinherit [-rS] <property> "
231 "<filesystem|volume|snapshot> ...\n"));
232 case HELP_UPGRADE:
233 return (gettext("\tupgrade [-v]\n"
234 "\tupgrade [-r] [-V version] <-a | filesystem ...>\n"));
235 case HELP_LIST:
236 return (gettext("\tlist [-rH][-d max] "
237 "[-o property[,...]] [-t type[,...]] [-s property] ...\n"
238 "\t [-S property] ... "
239 "[filesystem|volume|snapshot] ...\n"));
240 case HELP_MOUNT:
241 return (gettext("\tmount\n"
242 "\tmount [-vO] [-o opts] <-a | filesystem>\n"));
243 case HELP_PROMOTE:
244 return (gettext("\tpromote <clone-filesystem>\n"));
245 case HELP_RECEIVE:
246 return (gettext("\treceive [-vnFu] <filesystem|volume|"
247 "snapshot>\n"
248 "\treceive [-vnFu] [-d | -e] <filesystem>\n"));
249 case HELP_RENAME:
250 return (gettext("\trename [-f] <filesystem|volume|snapshot> "
251 "<filesystem|volume|snapshot>\n"
252 "\trename [-f] -p <filesystem|volume> <filesystem|volume>\n"
253 "\trename -r <snapshot> <snapshot>"));
254 case HELP_ROLLBACK:
255 return (gettext("\trollback [-rRf] <snapshot>\n"));
256 case HELP_SEND:
257 return (gettext("\tsend [-DnPpRv] [-[iI] snapshot] "
258 "<snapshot>\n"));

new/usr/src/cmd/zfs/zfs_main.c 5

259 case HELP_SET:
260 return (gettext("\tset <property=value> "
261 "<filesystem|volume|snapshot> ...\n"));
262 case HELP_SHARE:
263 return (gettext("\tshare <-a | filesystem>\n"));
264 case HELP_SNAPSHOT:
265 return (gettext("\tsnapshot [-r] [-o property=value] ... "
266 "<filesystem@snapname|volume@snapname> ...\n"));
267 case HELP_UNMOUNT:
268 return (gettext("\tunmount [-f] "
269 "<-a | filesystem|mountpoint>\n"));
270 case HELP_UNSHARE:
271 return (gettext("\tunshare "
272 "<-a | filesystem|mountpoint>\n"));
273 case HELP_ALLOW:
274 return (gettext("\tallow <filesystem|volume>\n"
275 "\tallow [-ldug] "
276 "<\"everyone\"|user|group>[,...] <perm|@setname>[,...]\n"
277 "\t <filesystem|volume>\n"
278 "\tallow [-ld] -e <perm|@setname>[,...] "
279 "<filesystem|volume>\n"
280 "\tallow -c <perm|@setname>[,...] <filesystem|volume>\n"
281 "\tallow -s @setname <perm|@setname>[,...] "
282 "<filesystem|volume>\n"));
283 case HELP_UNALLOW:
284 return (gettext("\tunallow [-rldug] "
285 "<\"everyone\"|user|group>[,...]\n"
286 "\t [<perm|@setname>[,...]] <filesystem|volume>\n"
287 "\tunallow [-rld] -e [<perm|@setname>[,...]] "
288 "<filesystem|volume>\n"
289 "\tunallow [-r] -c [<perm|@setname>[,...]] "
290 "<filesystem|volume>\n"
291 "\tunallow [-r] -s @setname [<perm|@setname>[,...]] "
292 "<filesystem|volume>\n"));
293 case HELP_USERSPACE:
294 return (gettext("\tuserspace [-Hinp] [-o field[,...]] "
295 "[-s field] ...\n\t[-S field] ... "
296 "[-t type[,...]] <filesystem|snapshot>\n"));
297 case HELP_GROUPSPACE:
298 return (gettext("\tgroupspace [-Hinp] [-o field[,...]] "
299 "[-s field] ...\n\t[-S field] ... "
300 "[-t type[,...]] <filesystem|snapshot>\n"));
301 case HELP_HOLD:
302 return (gettext("\thold [-r] <tag> <snapshot> ...\n"));
303 case HELP_HOLDS:
304 return (gettext("\tholds [-r] <snapshot> ...\n"));
305 case HELP_RELEASE:
306 return (gettext("\trelease [-r] <tag> <snapshot> ...\n"));
307 case HELP_DIFF:
308 return (gettext("\tdiff [-FHt] <snapshot> "
309 "[snapshot|filesystem]\n"));
310 }

312 abort();
313 /* NOTREACHED */
314 }

316 void
317 nomem(void)
318 {
319 (void) fprintf(stderr, gettext("internal error: out of memory\n"));
320 exit(1);
321 }

323 /*
324 * Utility function to guarantee malloc() success.

new/usr/src/cmd/zfs/zfs_main.c 6

325 */

327 void *
328 safe_malloc(size_t size)
329 {
330 void *data;

332 if ((data = calloc(1, size)) == NULL)
333 nomem();

335 return (data);
336 }

338 static char *
339 safe_strdup(char *str)
340 {
341 char *dupstr = strdup(str);

343 if (dupstr == NULL)
344 nomem();

346 return (dupstr);
347 }

349 /*
350 * Callback routine that will print out information for each of
351 * the properties.
352 */
353 static int
354 usage_prop_cb(int prop, void *cb)
355 {
356 FILE *fp = cb;

358 (void) fprintf(fp, "\t%-15s ", zfs_prop_to_name(prop));

360 if (zfs_prop_readonly(prop))
361 (void) fprintf(fp, " NO ");
362 else
363 (void) fprintf(fp, "YES ");

365 if (zfs_prop_inheritable(prop))
366 (void) fprintf(fp, " YES ");
367 else
368 (void) fprintf(fp, " NO ");

370 if (zfs_prop_values(prop) == NULL)
371 (void) fprintf(fp, "-\n");
372 else
373 (void) fprintf(fp, "%s\n", zfs_prop_values(prop));

375 return (ZPROP_CONT);
376 }

378 /*
379 * Display usage message. If we’re inside a command, display only the usage for
380 * that command. Otherwise, iterate over the entire command table and display
381 * a complete usage message.
382 */
383 static void
384 usage(boolean_t requested)
385 {
386 int i;
387 boolean_t show_properties = B_FALSE;
388 FILE *fp = requested ? stdout : stderr;

390 if (current_command == NULL) {

new/usr/src/cmd/zfs/zfs_main.c 7

392 (void) fprintf(fp, gettext("usage: zfs command args ...\n"));
393 (void) fprintf(fp,
394 gettext("where ’command’ is one of the following:\n\n"));

396 for (i = 0; i < NCOMMAND; i++) {
397 if (command_table[i].name == NULL)
398 (void) fprintf(fp, "\n");
399 else
400 (void) fprintf(fp, "%s",
401 get_usage(command_table[i].usage));
402 }

404 (void) fprintf(fp, gettext("\nEach dataset is of the form: "
405 "pool/[dataset/]*dataset[@name]\n"));
406 } else {
407 (void) fprintf(fp, gettext("usage:\n"));
408 (void) fprintf(fp, "%s", get_usage(current_command->usage));
409 }

411 if (current_command != NULL &&
412 (strcmp(current_command->name, "set") == 0 ||
413 strcmp(current_command->name, "get") == 0 ||
414 strcmp(current_command->name, "inherit") == 0 ||
415 strcmp(current_command->name, "list") == 0))
416 show_properties = B_TRUE;

418 if (show_properties) {
419 (void) fprintf(fp,
420 gettext("\nThe following properties are supported:\n"));

422 (void) fprintf(fp, "\n\t%-14s %s %s %s\n\n",
423 "PROPERTY", "EDIT", "INHERIT", "VALUES");

425 /* Iterate over all properties */
426 (void) zprop_iter(usage_prop_cb, fp, B_FALSE, B_TRUE,
427 ZFS_TYPE_DATASET);

429 (void) fprintf(fp, "\t%-15s ", "userused@...");
430 (void) fprintf(fp, " NO NO <size>\n");
431 (void) fprintf(fp, "\t%-15s ", "groupused@...");
432 (void) fprintf(fp, " NO NO <size>\n");
433 (void) fprintf(fp, "\t%-15s ", "userquota@...");
434 (void) fprintf(fp, "YES NO <size> | none\n");
435 (void) fprintf(fp, "\t%-15s ", "groupquota@...");
436 (void) fprintf(fp, "YES NO <size> | none\n");
437 (void) fprintf(fp, "\t%-15s ", "written@<snap>");
438 (void) fprintf(fp, " NO NO <size>\n");

440 (void) fprintf(fp, gettext("\nSizes are specified in bytes "
441 "with standard units such as K, M, G, etc.\n"));
442 (void) fprintf(fp, gettext("\nUser-defined properties can "
443 "be specified by using a name containing a colon (:).\n"));
444 (void) fprintf(fp, gettext("\nThe {user|group}{used|quota}@ "
445 "properties must be appended with\n"
446 "a user or group specifier of one of these forms:\n"
447 " POSIX name (eg: \"matt\")\n"
448 " POSIX id (eg: \"126829\")\n"
449 " SMB name@domain (eg: \"matt@sun\")\n"
450 " SMB SID (eg: \"S-1-234-567-89\")\n"));
451 } else {
452 (void) fprintf(fp,
453 gettext("\nFor the property list, run: %s\n"),
454 "zfs set|get");
455 (void) fprintf(fp,
456 gettext("\nFor the delegated permission list, run: %s\n"),

new/usr/src/cmd/zfs/zfs_main.c 8

457 "zfs allow|unallow");
458 }

460 /*
461 * See comments at end of main().
462 */
463 if (getenv("ZFS_ABORT") != NULL) {
464 (void) printf("dumping core by request\n");
465 abort();
466 }

468 exit(requested ? 0 : 2);
469 }

471 static int
472 parseprop(nvlist_t *props)
473 {
474 char *propname = optarg;
475 char *propval, *strval;

477 if ((propval = strchr(propname, ’=’)) == NULL) {
478 (void) fprintf(stderr, gettext("missing "
479 "’=’ for -o option\n"));
480 return (-1);
481 }
482 *propval = ’\0’;
483 propval++;
484 if (nvlist_lookup_string(props, propname, &strval) == 0) {
485 (void) fprintf(stderr, gettext("property ’%s’ "
486 "specified multiple times\n"), propname);
487 return (-1);
488 }
489 if (nvlist_add_string(props, propname, propval) != 0)
490 nomem();
491 return (0);
492 }

494 static int
495 parse_depth(char *opt, int *flags)
496 {
497 char *tmp;
498 int depth;

500 depth = (int)strtol(opt, &tmp, 0);
501 if (*tmp) {
502 (void) fprintf(stderr,
503 gettext("%s is not an integer\n"), optarg);
504 usage(B_FALSE);
505 }
506 if (depth < 0) {
507 (void) fprintf(stderr,
508 gettext("Depth can not be negative.\n"));
509 usage(B_FALSE);
510 }
511 *flags |= (ZFS_ITER_DEPTH_LIMIT|ZFS_ITER_RECURSE);
512 return (depth);
513 }

515 #define PROGRESS_DELAY 2 /* seconds */

517 static char *pt_reverse = "\b";
518 static time_t pt_begin;
519 static char *pt_header = NULL;
520 static boolean_t pt_shown;

522 static void

new/usr/src/cmd/zfs/zfs_main.c 9

523 start_progress_timer(void)
524 {
525 pt_begin = time(NULL) + PROGRESS_DELAY;
526 pt_shown = B_FALSE;
527 }

529 static void
530 set_progress_header(char *header)
531 {
532 assert(pt_header == NULL);
533 pt_header = safe_strdup(header);
534 if (pt_shown) {
535 (void) printf("%s: ", header);
536 (void) fflush(stdout);
537 }
538 }

540 static void
541 update_progress(char *update)
542 {
543 if (!pt_shown && time(NULL) > pt_begin) {
544 int len = strlen(update);

546 (void) printf("%s: %s%*.*s", pt_header, update, len, len,
547 pt_reverse);
548 (void) fflush(stdout);
549 pt_shown = B_TRUE;
550 } else if (pt_shown) {
551 int len = strlen(update);

553 (void) printf("%s%*.*s", update, len, len, pt_reverse);
554 (void) fflush(stdout);
555 }
556 }

558 static void
559 finish_progress(char *done)
560 {
561 if (pt_shown) {
562 (void) printf("%s\n", done);
563 (void) fflush(stdout);
564 }
565 free(pt_header);
566 pt_header = NULL;
567 }
568 /*
569 * zfs clone [-p] [-o prop=value] ... <snap> <fs | vol>
570 *
571 * Given an existing dataset, create a writable copy whose initial contents
572 * are the same as the source. The newly created dataset maintains a
573 * dependency on the original; the original cannot be destroyed so long as
574 * the clone exists.
575 *
576 * The ’-p’ flag creates all the non-existing ancestors of the target first.
577 */
578 static int
579 zfs_do_clone(int argc, char **argv)
580 {
581 zfs_handle_t *zhp = NULL;
582 boolean_t parents = B_FALSE;
583 nvlist_t *props;
584 int ret = 0;
585 int c;

587 if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0)
588 nomem();

new/usr/src/cmd/zfs/zfs_main.c 10

590 /* check options */
591 while ((c = getopt(argc, argv, "o:p")) != -1) {
592 switch (c) {
593 case ’o’:
594 if (parseprop(props))
595 return (1);
596 break;
597 case ’p’:
598 parents = B_TRUE;
599 break;
600 case ’?’:
601 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
602 optopt);
603 goto usage;
604 }
605 }

607 argc -= optind;
608 argv += optind;

610 /* check number of arguments */
611 if (argc < 1) {
612 (void) fprintf(stderr, gettext("missing source dataset "
613 "argument\n"));
614 goto usage;
615 }
616 if (argc < 2) {
617 (void) fprintf(stderr, gettext("missing target dataset "
618 "argument\n"));
619 goto usage;
620 }
621 if (argc > 2) {
622 (void) fprintf(stderr, gettext("too many arguments\n"));
623 goto usage;
624 }

626 /* open the source dataset */
627 if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_SNAPSHOT)) == NULL)
628 return (1);

630 if (parents && zfs_name_valid(argv[1], ZFS_TYPE_FILESYSTEM |
631 ZFS_TYPE_VOLUME)) {
632 /*
633 * Now create the ancestors of the target dataset. If the
634 * target already exists and ’-p’ option was used we should not
635 * complain.
636 */
637 if (zfs_dataset_exists(g_zfs, argv[1], ZFS_TYPE_FILESYSTEM |
638 ZFS_TYPE_VOLUME))
639 return (0);
640 if (zfs_create_ancestors(g_zfs, argv[1]) != 0)
641 return (1);
642 }

644 /* pass to libzfs */
645 ret = zfs_clone(zhp, argv[1], props);

647 /* create the mountpoint if necessary */
648 if (ret == 0) {
649 zfs_handle_t *clone;

651 clone = zfs_open(g_zfs, argv[1], ZFS_TYPE_DATASET);
652 if (clone != NULL) {
653 if (zfs_get_type(clone) != ZFS_TYPE_VOLUME)
654 if ((ret = zfs_mount(clone, NULL, 0)) == 0)

new/usr/src/cmd/zfs/zfs_main.c 11

655 ret = zfs_share(clone);
656 zfs_close(clone);
657 }
658 }

660 zfs_close(zhp);
661 nvlist_free(props);

663 return (!!ret);

665 usage:
666 if (zhp)
667 zfs_close(zhp);
668 nvlist_free(props);
669 usage(B_FALSE);
670 return (-1);
671 }

673 /*
674 * zfs create [-p] [-o prop=value] ... fs
675 * zfs create [-ps] [-b blocksize] [-o prop=value] ... -V vol size
676 *
677 * Create a new dataset. This command can be used to create filesystems
678 * and volumes. Snapshot creation is handled by ’zfs snapshot’.
679 * For volumes, the user must specify a size to be used.
680 *
681 * The ’-s’ flag applies only to volumes, and indicates that we should not try
682 * to set the reservation for this volume. By default we set a reservation
683 * equal to the size for any volume. For pools with SPA_VERSION >=
684 * SPA_VERSION_REFRESERVATION, we set a refreservation instead.
685 *
686 * The ’-p’ flag creates all the non-existing ancestors of the target first.
687 */
688 static int
689 zfs_do_create(int argc, char **argv)
690 {
691 zfs_type_t type = ZFS_TYPE_FILESYSTEM;
692 zfs_handle_t *zhp = NULL;
693 uint64_t volsize;
694 int c;
695 boolean_t noreserve = B_FALSE;
696 boolean_t bflag = B_FALSE;
697 boolean_t parents = B_FALSE;
698 int ret = 1;
699 nvlist_t *props;
700 uint64_t intval;
701 int canmount = ZFS_CANMOUNT_OFF;

703 if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0)
704 nomem();

706 /* check options */
707 while ((c = getopt(argc, argv, ":V:b:so:p")) != -1) {
708 switch (c) {
709 case ’V’:
710 type = ZFS_TYPE_VOLUME;
711 if (zfs_nicestrtonum(g_zfs, optarg, &intval) != 0) {
712 (void) fprintf(stderr, gettext("bad volume "
713 "size ’%s’: %s\n"), optarg,
714 libzfs_error_description(g_zfs));
715 goto error;
716 }

718 if (nvlist_add_uint64(props,
719 zfs_prop_to_name(ZFS_PROP_VOLSIZE), intval) != 0)
720 nomem();

new/usr/src/cmd/zfs/zfs_main.c 12

721 volsize = intval;
722 break;
723 case ’p’:
724 parents = B_TRUE;
725 break;
726 case ’b’:
727 bflag = B_TRUE;
728 if (zfs_nicestrtonum(g_zfs, optarg, &intval) != 0) {
729 (void) fprintf(stderr, gettext("bad volume "
730 "block size ’%s’: %s\n"), optarg,
731 libzfs_error_description(g_zfs));
732 goto error;
733 }

735 if (nvlist_add_uint64(props,
736 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
737 intval) != 0)
738 nomem();
739 break;
740 case ’o’:
741 if (parseprop(props))
742 goto error;
743 break;
744 case ’s’:
745 noreserve = B_TRUE;
746 break;
747 case ’:’:
748 (void) fprintf(stderr, gettext("missing size "
749 "argument\n"));
750 goto badusage;
751 case ’?’:
752 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
753 optopt);
754 goto badusage;
755 }
756 }

758 if ((bflag || noreserve) && type != ZFS_TYPE_VOLUME) {
759 (void) fprintf(stderr, gettext("’-s’ and ’-b’ can only be "
760 "used when creating a volume\n"));
761 goto badusage;
762 }

764 argc -= optind;
765 argv += optind;

767 /* check number of arguments */
768 if (argc == 0) {
769 (void) fprintf(stderr, gettext("missing %s argument\n"),
770 zfs_type_to_name(type));
771 goto badusage;
772 }
773 if (argc > 1) {
774 (void) fprintf(stderr, gettext("too many arguments\n"));
775 goto badusage;
776 }

778 if (type == ZFS_TYPE_VOLUME && !noreserve) {
779 zpool_handle_t *zpool_handle;
780 nvlist_t *real_props;
781 uint64_t spa_version;
782 char *p;
783 zfs_prop_t resv_prop;
784 char *strval;
785 char msg[1024];

new/usr/src/cmd/zfs/zfs_main.c 13

787 if (p = strchr(argv[0], ’/’))
788 *p = ’\0’;
789 zpool_handle = zpool_open(g_zfs, argv[0]);
790 if (p != NULL)
791 *p = ’/’;
792 if (zpool_handle == NULL)
793 goto error;
794 spa_version = zpool_get_prop_int(zpool_handle,
795 ZPOOL_PROP_VERSION, NULL);
796 zpool_close(zpool_handle);
797 if (spa_version >= SPA_VERSION_REFRESERVATION)
798 resv_prop = ZFS_PROP_REFRESERVATION;
799 else
800 resv_prop = ZFS_PROP_RESERVATION;

802 (void) snprintf(msg, sizeof (msg),
803 gettext("cannot create ’%s’"), argv[0]);
804 if (props && (real_props = zfs_valid_proplist(g_zfs, type,
805 props, 0, NULL, msg)) == NULL)
806 goto error;

808 volsize = zvol_volsize_to_reservation(volsize, real_props);
809 nvlist_free(real_props);

811 if (nvlist_lookup_string(props, zfs_prop_to_name(resv_prop),
812 &strval) != 0) {
813 if (nvlist_add_uint64(props,
814 zfs_prop_to_name(resv_prop), volsize) != 0) {
815 nvlist_free(props);
816 nomem();
817 }
818 }
819 }

821 if (parents && zfs_name_valid(argv[0], type)) {
822 /*
823 * Now create the ancestors of target dataset. If the target
824 * already exists and ’-p’ option was used we should not
825 * complain.
826 */
827 if (zfs_dataset_exists(g_zfs, argv[0], type)) {
828 ret = 0;
829 goto error;
830 }
831 if (zfs_create_ancestors(g_zfs, argv[0]) != 0)
832 goto error;
833 }

835 /* pass to libzfs */
836 if (zfs_create(g_zfs, argv[0], type, props) != 0)
837 goto error;

839 if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_DATASET)) == NULL)
840 goto error;

842 ret = 0;
843 /*
844 * if the user doesn’t want the dataset automatically mounted,
845 * then skip the mount/share step
846 */
847 if (zfs_prop_valid_for_type(ZFS_PROP_CANMOUNT, type))
848 canmount = zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT);

850 /*
851 * Mount and/or share the new filesystem as appropriate. We provide a
852 * verbose error message to let the user know that their filesystem was

new/usr/src/cmd/zfs/zfs_main.c 14

853 * in fact created, even if we failed to mount or share it.
854 */
855 if (canmount == ZFS_CANMOUNT_ON) {
856 if (zfs_mount(zhp, NULL, 0) != 0) {
857 (void) fprintf(stderr, gettext("filesystem "
858 "successfully created, but not mounted\n"));
859 ret = 1;
860 } else if (zfs_share(zhp) != 0) {
861 (void) fprintf(stderr, gettext("filesystem "
862 "successfully created, but not shared\n"));
863 ret = 1;
864 }
865 }

867 error:
868 if (zhp)
869 zfs_close(zhp);
870 nvlist_free(props);
871 return (ret);
872 badusage:
873 nvlist_free(props);
874 usage(B_FALSE);
875 return (2);
876 }

878 /*
879 * zfs destroy [-rRf] <fs, vol>
880 * zfs destroy [-rRd] <snap>
881 *
882 * -r Recursively destroy all children
883 * -R Recursively destroy all dependents, including clones
884 * -f Force unmounting of any dependents
885 * -d If we can’t destroy now, mark for deferred destruction
886 *
887 * Destroys the given dataset. By default, it will unmount any filesystems,
888 * and refuse to destroy a dataset that has any dependents. A dependent can
889 * either be a child, or a clone of a child.
890 */
891 typedef struct destroy_cbdata {
892 boolean_t cb_first;
893 boolean_t cb_force;
894 boolean_t cb_recurse;
895 boolean_t cb_error;
896 boolean_t cb_doclones;
897 zfs_handle_t *cb_target;
898 boolean_t cb_defer_destroy;
899 boolean_t cb_verbose;
900 boolean_t cb_parsable;
901 boolean_t cb_dryrun;
902 nvlist_t *cb_nvl;
903 nvlist_t *cb_batchedsnaps;

905 /* first snap in contiguous run */
906 char *cb_firstsnap;
907 /* previous snap in contiguous run */
908 char *cb_prevsnap;
909 int64_t cb_snapused;
910 char *cb_snapspec;
911 } destroy_cbdata_t;

913 /*
914 * Check for any dependents based on the ’-r’ or ’-R’ flags.
915 */
916 static int
917 destroy_check_dependent(zfs_handle_t *zhp, void *data)
918 {

new/usr/src/cmd/zfs/zfs_main.c 15

919 destroy_cbdata_t *cbp = data;
920 const char *tname = zfs_get_name(cbp->cb_target);
921 const char *name = zfs_get_name(zhp);

923 if (strncmp(tname, name, strlen(tname)) == 0 &&
924 (name[strlen(tname)] == ’/’ || name[strlen(tname)] == ’@’)) {
925 /*
926 * This is a direct descendant, not a clone somewhere else in
927 * the hierarchy.
928 */
929 if (cbp->cb_recurse)
930 goto out;

932 if (cbp->cb_first) {
933 (void) fprintf(stderr, gettext("cannot destroy ’%s’: "
934 "%s has children\n"),
935 zfs_get_name(cbp->cb_target),
936 zfs_type_to_name(zfs_get_type(cbp->cb_target)));
937 (void) fprintf(stderr, gettext("use ’-r’ to destroy "
938 "the following datasets:\n"));
939 cbp->cb_first = B_FALSE;
940 cbp->cb_error = B_TRUE;
941 }

943 (void) fprintf(stderr, "%s\n", zfs_get_name(zhp));
944 } else {
945 /*
946 * This is a clone. We only want to report this if the ’-r’
947 * wasn’t specified, or the target is a snapshot.
948 */
949 if (!cbp->cb_recurse &&
950 zfs_get_type(cbp->cb_target) != ZFS_TYPE_SNAPSHOT)
951 goto out;

953 if (cbp->cb_first) {
954 (void) fprintf(stderr, gettext("cannot destroy ’%s’: "
955 "%s has dependent clones\n"),
956 zfs_get_name(cbp->cb_target),
957 zfs_type_to_name(zfs_get_type(cbp->cb_target)));
958 (void) fprintf(stderr, gettext("use ’-R’ to destroy "
959 "the following datasets:\n"));
960 cbp->cb_first = B_FALSE;
961 cbp->cb_error = B_TRUE;
962 cbp->cb_dryrun = B_TRUE;
963 }

965 (void) fprintf(stderr, "%s\n", zfs_get_name(zhp));
966 }

968 out:
969 zfs_close(zhp);
970 return (0);
971 }

973 static int
974 destroy_callback(zfs_handle_t *zhp, void *data)
975 {
976 destroy_cbdata_t *cb = data;
977 const char *name = zfs_get_name(zhp);

979 if (cb->cb_verbose) {
980 if (cb->cb_parsable) {
981 (void) printf("destroy\t%s\n", name);
982 } else if (cb->cb_dryrun) {
983 (void) printf(gettext("would destroy %s\n"),
984 name);

new/usr/src/cmd/zfs/zfs_main.c 16

985 } else {
986 (void) printf(gettext("will destroy %s\n"),
987 name);
988 }
989 }

991 /*
992 * Ignore pools (which we’ve already flagged as an error before getting
993 * here).
994 */
995 if (strchr(zfs_get_name(zhp), ’/’) == NULL &&
996 zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) {
997 zfs_close(zhp);
998 return (0);
999 }

1000 if (cb->cb_dryrun) {
1001 zfs_close(zhp);
1002 return (0);
1003 }

1005 /*
1006 * We batch up all contiguous snapshots (even of different
1007 * filesystems) and destroy them with one ioctl. We can’t
1008 * simply do all snap deletions and then all fs deletions,
1009 * because we must delete a clone before its origin.
1010 */
1011 if (zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT) {
1012 fnvlist_add_boolean(cb->cb_batchedsnaps, name);
1013 } else {
1014 int error = zfs_destroy_snaps_nvl(g_zfs,
1015 cb->cb_batchedsnaps, B_FALSE);
1016 fnvlist_free(cb->cb_batchedsnaps);
1017 cb->cb_batchedsnaps = fnvlist_alloc();

1019 if (error != 0 ||
1020 zfs_unmount(zhp, NULL, cb->cb_force ? MS_FORCE : 0) != 0 ||
1021 zfs_destroy(zhp, cb->cb_defer_destroy) != 0) {
1022 zfs_close(zhp);
1023 return (-1);
1024 }
1025 }

1027 zfs_close(zhp);
1028 return (0);
1029 }

1031 static int
1032 destroy_print_cb(zfs_handle_t *zhp, void *arg)
1033 {
1034 destroy_cbdata_t *cb = arg;
1035 const char *name = zfs_get_name(zhp);
1036 int err = 0;

1038 if (nvlist_exists(cb->cb_nvl, name)) {
1039 if (cb->cb_firstsnap == NULL)
1040 cb->cb_firstsnap = strdup(name);
1041 if (cb->cb_prevsnap != NULL)
1042 free(cb->cb_prevsnap);
1043 /* this snap continues the current range */
1044 cb->cb_prevsnap = strdup(name);
1045 if (cb->cb_firstsnap == NULL || cb->cb_prevsnap == NULL)
1046 nomem();
1047 if (cb->cb_verbose) {
1048 if (cb->cb_parsable) {
1049 (void) printf("destroy\t%s\n", name);
1050 } else if (cb->cb_dryrun) {

new/usr/src/cmd/zfs/zfs_main.c 17

1051 (void) printf(gettext("would destroy %s\n"),
1052 name);
1053 } else {
1054 (void) printf(gettext("will destroy %s\n"),
1055 name);
1056 }
1057 }
1058 } else if (cb->cb_firstsnap != NULL) {
1059 /* end of this range */
1060 uint64_t used = 0;
1061 err = lzc_snaprange_space(cb->cb_firstsnap,
1062 cb->cb_prevsnap, &used);
1063 cb->cb_snapused += used;
1064 free(cb->cb_firstsnap);
1065 cb->cb_firstsnap = NULL;
1066 free(cb->cb_prevsnap);
1067 cb->cb_prevsnap = NULL;
1068 }
1069 zfs_close(zhp);
1070 return (err);
1071 }

1073 static int
1074 destroy_print_snapshots(zfs_handle_t *fs_zhp, destroy_cbdata_t *cb)
1075 {
1076 int err = 0;
1077 assert(cb->cb_firstsnap == NULL);
1078 assert(cb->cb_prevsnap == NULL);
1079 err = zfs_iter_snapshots_sorted(fs_zhp, destroy_print_cb, cb);
1080 if (cb->cb_firstsnap != NULL) {
1081 uint64_t used = 0;
1082 if (err == 0) {
1083 err = lzc_snaprange_space(cb->cb_firstsnap,
1084 cb->cb_prevsnap, &used);
1085 }
1086 cb->cb_snapused += used;
1087 free(cb->cb_firstsnap);
1088 cb->cb_firstsnap = NULL;
1089 free(cb->cb_prevsnap);
1090 cb->cb_prevsnap = NULL;
1091 }
1092 return (err);
1093 }

1095 static int
1096 snapshot_to_nvl_cb(zfs_handle_t *zhp, void *arg)
1097 {
1098 destroy_cbdata_t *cb = arg;
1099 int err = 0;

1101 /* Check for clones. */
1102 if (!cb->cb_doclones && !cb->cb_defer_destroy) {
1103 cb->cb_target = zhp;
1104 cb->cb_first = B_TRUE;
1105 err = zfs_iter_dependents(zhp, B_TRUE,
1106 destroy_check_dependent, cb);
1107 }

1109 if (err == 0) {
1110 if (nvlist_add_boolean(cb->cb_nvl, zfs_get_name(zhp)))
1111 nomem();
1112 }
1113 zfs_close(zhp);
1114 return (err);
1115 }

new/usr/src/cmd/zfs/zfs_main.c 18

1117 static int
1118 gather_snapshots(zfs_handle_t *zhp, void *arg)
1119 {
1120 destroy_cbdata_t *cb = arg;
1121 int err = 0;

1123 err = zfs_iter_snapspec(zhp, cb->cb_snapspec, snapshot_to_nvl_cb, cb);
1124 if (err == ENOENT)
1125 err = 0;
1126 if (err != 0)
1127 goto out;

1129 if (cb->cb_verbose) {
1130 err = destroy_print_snapshots(zhp, cb);
1131 if (err != 0)
1132 goto out;
1133 }

1135 if (cb->cb_recurse)
1136 err = zfs_iter_filesystems(zhp, gather_snapshots, cb);

1138 out:
1139 zfs_close(zhp);
1140 return (err);
1141 }

1143 static int
1144 destroy_clones(destroy_cbdata_t *cb)
1145 {
1146 nvpair_t *pair;
1147 for (pair = nvlist_next_nvpair(cb->cb_nvl, NULL);
1148 pair != NULL;
1149 pair = nvlist_next_nvpair(cb->cb_nvl, pair)) {
1150 zfs_handle_t *zhp = zfs_open(g_zfs, nvpair_name(pair),
1151 ZFS_TYPE_SNAPSHOT);
1152 if (zhp != NULL) {
1153 boolean_t defer = cb->cb_defer_destroy;
1154 int err = 0;

1156 /*
1157 * We can’t defer destroy non-snapshots, so set it to
1158 * false while destroying the clones.
1159 */
1160 cb->cb_defer_destroy = B_FALSE;
1161 err = zfs_iter_dependents(zhp, B_FALSE,
1162 destroy_callback, cb);
1163 cb->cb_defer_destroy = defer;
1164 zfs_close(zhp);
1165 if (err != 0)
1166 return (err);
1167 }
1168 }
1169 return (0);
1170 }

1172 static int
1173 zfs_do_destroy(int argc, char **argv)
1174 {
1175 destroy_cbdata_t cb = { 0 };
1176 int rv = 0;
1177 int err = 0;
1178 int c;
1179 zfs_handle_t *zhp = NULL;
1180 char *at;
1181 zfs_type_t type = ZFS_TYPE_DATASET;

new/usr/src/cmd/zfs/zfs_main.c 19

1183 /* check options */
1184 while ((c = getopt(argc, argv, "vpndfrR")) != -1) {
1185 switch (c) {
1186 case ’v’:
1187 cb.cb_verbose = B_TRUE;
1188 break;
1189 case ’p’:
1190 cb.cb_verbose = B_TRUE;
1191 cb.cb_parsable = B_TRUE;
1192 break;
1193 case ’n’:
1194 cb.cb_dryrun = B_TRUE;
1195 break;
1196 case ’d’:
1197 cb.cb_defer_destroy = B_TRUE;
1198 type = ZFS_TYPE_SNAPSHOT;
1199 break;
1200 case ’f’:
1201 cb.cb_force = B_TRUE;
1202 break;
1203 case ’r’:
1204 cb.cb_recurse = B_TRUE;
1205 break;
1206 case ’R’:
1207 cb.cb_recurse = B_TRUE;
1208 cb.cb_doclones = B_TRUE;
1209 break;
1210 case ’?’:
1211 default:
1212 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
1213 optopt);
1214 usage(B_FALSE);
1215 }
1216 }

1218 argc -= optind;
1219 argv += optind;

1221 /* check number of arguments */
1222 if (argc == 0) {
1223 (void) fprintf(stderr, gettext("missing dataset argument\n"));
1224 usage(B_FALSE);
1225 }
1226 if (argc > 1) {
1227 (void) fprintf(stderr, gettext("too many arguments\n"));
1228 usage(B_FALSE);
1229 }

1231 at = strchr(argv[0], ’@’);
1232 if (at != NULL) {

1234 /* Build the list of snaps to destroy in cb_nvl. */
1235 cb.cb_nvl = fnvlist_alloc();

1237 *at = ’\0’;
1238 zhp = zfs_open(g_zfs, argv[0],
1239 ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
1240 if (zhp == NULL)
1241 return (1);

1243 cb.cb_snapspec = at + 1;
1244 if (gather_snapshots(zfs_handle_dup(zhp), &cb) != 0 ||
1245 cb.cb_error) {
1246 rv = 1;
1247 goto out;
1248 }

new/usr/src/cmd/zfs/zfs_main.c 20

1250 if (nvlist_empty(cb.cb_nvl)) {
1251 (void) fprintf(stderr, gettext("could not find any "
1252 "snapshots to destroy; check snapshot names.\n"));
1253 rv = 1;
1254 goto out;
1255 }

1257 if (cb.cb_verbose) {
1258 char buf[16];
1259 zfs_nicenum(cb.cb_snapused, buf, sizeof (buf));
1260 if (cb.cb_parsable) {
1261 (void) printf("reclaim\t%llu\n",
1262 cb.cb_snapused);
1263 } else if (cb.cb_dryrun) {
1264 (void) printf(gettext("would reclaim %s\n"),
1265 buf);
1266 } else {
1267 (void) printf(gettext("will reclaim %s\n"),
1268 buf);
1269 }
1270 }

1272 if (!cb.cb_dryrun) {
1273 if (cb.cb_doclones) {
1274 cb.cb_batchedsnaps = fnvlist_alloc();
1275 err = destroy_clones(&cb);
1276 if (err == 0) {
1277 err = zfs_destroy_snaps_nvl(g_zfs,
1278 cb.cb_batchedsnaps, B_FALSE);
1279 }
1280 if (err != 0) {
1281 rv = 1;
1282 goto out;
1283 }
1284 }
1285 if (err == 0) {
1286 err = zfs_destroy_snaps_nvl(g_zfs, cb.cb_nvl,
1287 cb.cb_defer_destroy);
1288 }
1289 }

1291 if (err != 0)
1292 rv = 1;
1293 } else {
1294 /* Open the given dataset */
1295 if ((zhp = zfs_open(g_zfs, argv[0], type)) == NULL)
1296 return (1);

1298 cb.cb_target = zhp;

1300 /*
1301 * Perform an explicit check for pools before going any further.
1302 */
1303 if (!cb.cb_recurse && strchr(zfs_get_name(zhp), ’/’) == NULL &&
1304 zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) {
1305 (void) fprintf(stderr, gettext("cannot destroy ’%s’: "
1306 "operation does not apply to pools\n"),
1307 zfs_get_name(zhp));
1308 (void) fprintf(stderr, gettext("use ’zfs destroy -r "
1309 "%s’ to destroy all datasets in the pool\n"),
1310 zfs_get_name(zhp));
1311 (void) fprintf(stderr, gettext("use ’zpool destroy %s’ "
1312 "to destroy the pool itself\n"), zfs_get_name(zhp));
1313 rv = 1;
1314 goto out;

new/usr/src/cmd/zfs/zfs_main.c 21

1315 }

1317 /*
1318 * Check for any dependents and/or clones.
1319 */
1320 cb.cb_first = B_TRUE;
1321 if (!cb.cb_doclones &&
1322 zfs_iter_dependents(zhp, B_TRUE, destroy_check_dependent,
1323 &cb) != 0) {
1324 rv = 1;
1325 goto out;
1326 }

1328 if (cb.cb_error) {
1329 rv = 1;
1330 goto out;
1331 }

1333 cb.cb_batchedsnaps = fnvlist_alloc();
1334 if (zfs_iter_dependents(zhp, B_FALSE, destroy_callback,
1335 &cb) != 0) {
1336 rv = 1;
1337 goto out;
1338 }

1340 /*
1341 * Do the real thing. The callback will close the
1342 * handle regardless of whether it succeeds or not.
1343 */
1344 err = destroy_callback(zhp, &cb);
1345 zhp = NULL;
1346 if (err == 0) {
1347 err = zfs_destroy_snaps_nvl(g_zfs,
1348 cb.cb_batchedsnaps, cb.cb_defer_destroy);
1349 }
1350 if (err != 0)
1351 rv = 1;
1352 }

1354 out:
1355 fnvlist_free(cb.cb_batchedsnaps);
1356 fnvlist_free(cb.cb_nvl);
1357 if (zhp != NULL)
1358 zfs_close(zhp);
1359 return (rv);
1360 }

1362 static boolean_t
1363 is_recvd_column(zprop_get_cbdata_t *cbp)
1364 {
1365 int i;
1366 zfs_get_column_t col;

1368 for (i = 0; i < ZFS_GET_NCOLS &&
1369 (col = cbp->cb_columns[i]) != GET_COL_NONE; i++)
1370 if (col == GET_COL_RECVD)
1371 return (B_TRUE);
1372 return (B_FALSE);
1373 }

1375 /*
1376 * zfs get [-rHp] [-o all | field[,field]...] [-s source[,source]...]
1377 * < all | property[,property]... > < fs | snap | vol > ...
1378 *
1379 * -r recurse over any child datasets
1380 * -H scripted mode. Headers are stripped, and fields are separated

new/usr/src/cmd/zfs/zfs_main.c 22

1381 * by tabs instead of spaces.
1382 * -o Set of fields to display. One of "name,property,value,
1383 * received,source". Default is "name,property,value,source".
1384 * "all" is an alias for all five.
1385 * -s Set of sources to allow. One of
1386 * "local,default,inherited,received,temporary,none". Default is
1387 * all six.
1388 * -p Display values in parsable (literal) format.
1389 *
1390 * Prints properties for the given datasets. The user can control which
1391 * columns to display as well as which property types to allow.
1392 */

1394 /*
1395 * Invoked to display the properties for a single dataset.
1396 */
1397 static int
1398 get_callback(zfs_handle_t *zhp, void *data)
1399 {
1400 char buf[ZFS_MAXPROPLEN];
1401 char rbuf[ZFS_MAXPROPLEN];
1402 zprop_source_t sourcetype;
1403 char source[ZFS_MAXNAMELEN];
1404 zprop_get_cbdata_t *cbp = data;
1405 nvlist_t *user_props = zfs_get_user_props(zhp);
1406 zprop_list_t *pl = cbp->cb_proplist;
1407 nvlist_t *propval;
1408 char *strval;
1409 char *sourceval;
1410 boolean_t received = is_recvd_column(cbp);

1412 for (; pl != NULL; pl = pl->pl_next) {
1413 char *recvdval = NULL;
1414 /*
1415 * Skip the special fake placeholder. This will also skip over
1416 * the name property when ’all’ is specified.
1417 */
1418 if (pl->pl_prop == ZFS_PROP_NAME &&
1419 pl == cbp->cb_proplist)
1420 continue;

1422 if (pl->pl_prop != ZPROP_INVAL) {
1423 if (zfs_prop_get(zhp, pl->pl_prop, buf,
1424 sizeof (buf), &sourcetype, source,
1425 sizeof (source),
1426 cbp->cb_literal) != 0) {
1427 if (pl->pl_all)
1428 continue;
1429 if (!zfs_prop_valid_for_type(pl->pl_prop,
1430 ZFS_TYPE_DATASET)) {
1431 (void) fprintf(stderr,
1432 gettext("No such property ’%s’\n"),
1433 zfs_prop_to_name(pl->pl_prop));
1434 continue;
1435 }
1436 sourcetype = ZPROP_SRC_NONE;
1437 (void) strlcpy(buf, "-", sizeof (buf));
1438 }

1440 if (received && (zfs_prop_get_recvd(zhp,
1441 zfs_prop_to_name(pl->pl_prop), rbuf, sizeof (rbuf),
1442 cbp->cb_literal) == 0))
1443 recvdval = rbuf;

1445 zprop_print_one_property(zfs_get_name(zhp), cbp,
1446 zfs_prop_to_name(pl->pl_prop),

new/usr/src/cmd/zfs/zfs_main.c 23

1447 buf, sourcetype, source, recvdval);
1448 } else if (zfs_prop_userquota(pl->pl_user_prop)) {
1449 sourcetype = ZPROP_SRC_LOCAL;

1451 if (zfs_prop_get_userquota(zhp, pl->pl_user_prop,
1452 buf, sizeof (buf), cbp->cb_literal) != 0) {
1453 sourcetype = ZPROP_SRC_NONE;
1454 (void) strlcpy(buf, "-", sizeof (buf));
1455 }

1457 zprop_print_one_property(zfs_get_name(zhp), cbp,
1458 pl->pl_user_prop, buf, sourcetype, source, NULL);
1459 } else if (zfs_prop_written(pl->pl_user_prop)) {
1460 sourcetype = ZPROP_SRC_LOCAL;

1462 if (zfs_prop_get_written(zhp, pl->pl_user_prop,
1463 buf, sizeof (buf), cbp->cb_literal) != 0) {
1464 sourcetype = ZPROP_SRC_NONE;
1465 (void) strlcpy(buf, "-", sizeof (buf));
1466 }

1468 zprop_print_one_property(zfs_get_name(zhp), cbp,
1469 pl->pl_user_prop, buf, sourcetype, source, NULL);
1470 } else {
1471 if (nvlist_lookup_nvlist(user_props,
1472 pl->pl_user_prop, &propval) != 0) {
1473 if (pl->pl_all)
1474 continue;
1475 sourcetype = ZPROP_SRC_NONE;
1476 strval = "-";
1477 } else {
1478 verify(nvlist_lookup_string(propval,
1479 ZPROP_VALUE, &strval) == 0);
1480 verify(nvlist_lookup_string(propval,
1481 ZPROP_SOURCE, &sourceval) == 0);

1483 if (strcmp(sourceval,
1484 zfs_get_name(zhp)) == 0) {
1485 sourcetype = ZPROP_SRC_LOCAL;
1486 } else if (strcmp(sourceval,
1487 ZPROP_SOURCE_VAL_RECVD) == 0) {
1488 sourcetype = ZPROP_SRC_RECEIVED;
1489 } else {
1490 sourcetype = ZPROP_SRC_INHERITED;
1491 (void) strlcpy(source,
1492 sourceval, sizeof (source));
1493 }
1494 }

1496 if (received && (zfs_prop_get_recvd(zhp,
1497 pl->pl_user_prop, rbuf, sizeof (rbuf),
1498 cbp->cb_literal) == 0))
1499 recvdval = rbuf;

1501 zprop_print_one_property(zfs_get_name(zhp), cbp,
1502 pl->pl_user_prop, strval, sourcetype,
1503 source, recvdval);
1504 }
1505 }

1507 return (0);
1508 }

1510 static int
1511 zfs_do_get(int argc, char **argv)
1512 {

new/usr/src/cmd/zfs/zfs_main.c 24

1513 zprop_get_cbdata_t cb = { 0 };
1514 int i, c, flags = ZFS_ITER_ARGS_CAN_BE_PATHS;
1515 int types = ZFS_TYPE_DATASET;
1516 char *value, *fields;
1517 int ret = 0;
1518 int limit = 0;
1519 zprop_list_t fake_name = { 0 };

1521 /*
1522 * Set up default columns and sources.
1523 */
1524 cb.cb_sources = ZPROP_SRC_ALL;
1525 cb.cb_columns[0] = GET_COL_NAME;
1526 cb.cb_columns[1] = GET_COL_PROPERTY;
1527 cb.cb_columns[2] = GET_COL_VALUE;
1528 cb.cb_columns[3] = GET_COL_SOURCE;
1529 cb.cb_type = ZFS_TYPE_DATASET;

1531 /* check options */
1532 while ((c = getopt(argc, argv, ":d:o:s:rt:Hp")) != -1) {
1533 switch (c) {
1534 case ’p’:
1535 cb.cb_literal = B_TRUE;
1536 break;
1537 case ’d’:
1538 limit = parse_depth(optarg, &flags);
1539 break;
1540 case ’r’:
1541 flags |= ZFS_ITER_RECURSE;
1542 break;
1543 case ’H’:
1544 cb.cb_scripted = B_TRUE;
1545 break;
1546 case ’:’:
1547 (void) fprintf(stderr, gettext("missing argument for "
1548 "’%c’ option\n"), optopt);
1549 usage(B_FALSE);
1550 break;
1551 case ’o’:
1552 /*
1553 * Process the set of columns to display. We zero out
1554 * the structure to give us a blank slate.
1555 */
1556 bzero(&cb.cb_columns, sizeof (cb.cb_columns));
1557 i = 0;
1558 while (*optarg != ’\0’) {
1559 static char *col_subopts[] =
1560 { "name", "property", "value", "received",
1561 "source", "all", NULL };

1563 if (i == ZFS_GET_NCOLS) {
1564 (void) fprintf(stderr, gettext("too "
1565 "many fields given to -o "
1566 "option\n"));
1567 usage(B_FALSE);
1568 }

1570 switch (getsubopt(&optarg, col_subopts,
1571 &value)) {
1572 case 0:
1573 cb.cb_columns[i++] = GET_COL_NAME;
1574 break;
1575 case 1:
1576 cb.cb_columns[i++] = GET_COL_PROPERTY;
1577 break;
1578 case 2:

new/usr/src/cmd/zfs/zfs_main.c 25

1579 cb.cb_columns[i++] = GET_COL_VALUE;
1580 break;
1581 case 3:
1582 cb.cb_columns[i++] = GET_COL_RECVD;
1583 flags |= ZFS_ITER_RECVD_PROPS;
1584 break;
1585 case 4:
1586 cb.cb_columns[i++] = GET_COL_SOURCE;
1587 break;
1588 case 5:
1589 if (i > 0) {
1590 (void) fprintf(stderr,
1591 gettext("\"all\" conflicts "
1592 "with specific fields "
1593 "given to -o option\n"));
1594 usage(B_FALSE);
1595 }
1596 cb.cb_columns[0] = GET_COL_NAME;
1597 cb.cb_columns[1] = GET_COL_PROPERTY;
1598 cb.cb_columns[2] = GET_COL_VALUE;
1599 cb.cb_columns[3] = GET_COL_RECVD;
1600 cb.cb_columns[4] = GET_COL_SOURCE;
1601 flags |= ZFS_ITER_RECVD_PROPS;
1602 i = ZFS_GET_NCOLS;
1603 break;
1604 default:
1605 (void) fprintf(stderr,
1606 gettext("invalid column name "
1607 "’%s’\n"), value);
1608 usage(B_FALSE);
1609 }
1610 }
1611 break;

1613 case ’s’:
1614 cb.cb_sources = 0;
1615 while (*optarg != ’\0’) {
1616 static char *source_subopts[] = {
1617 "local", "default", "inherited",
1618 "received", "temporary", "none",
1619 NULL };

1621 switch (getsubopt(&optarg, source_subopts,
1622 &value)) {
1623 case 0:
1624 cb.cb_sources |= ZPROP_SRC_LOCAL;
1625 break;
1626 case 1:
1627 cb.cb_sources |= ZPROP_SRC_DEFAULT;
1628 break;
1629 case 2:
1630 cb.cb_sources |= ZPROP_SRC_INHERITED;
1631 break;
1632 case 3:
1633 cb.cb_sources |= ZPROP_SRC_RECEIVED;
1634 break;
1635 case 4:
1636 cb.cb_sources |= ZPROP_SRC_TEMPORARY;
1637 break;
1638 case 5:
1639 cb.cb_sources |= ZPROP_SRC_NONE;
1640 break;
1641 default:
1642 (void) fprintf(stderr,
1643 gettext("invalid source "
1644 "’%s’\n"), value);

new/usr/src/cmd/zfs/zfs_main.c 26

1645 usage(B_FALSE);
1646 }
1647 }
1648 break;

1650 case ’t’:
1651 types = 0;
1652 flags &= ~ZFS_ITER_PROP_LISTSNAPS;
1653 while (*optarg != ’\0’) {
1654 static char *type_subopts[] = { "filesystem",
1655 "volume", "snapshot", "all", NULL };

1657 switch (getsubopt(&optarg, type_subopts,
1658 &value)) {
1659 case 0:
1660 types |= ZFS_TYPE_FILESYSTEM;
1661 break;
1662 case 1:
1663 types |= ZFS_TYPE_VOLUME;
1664 break;
1665 case 2:
1666 types |= ZFS_TYPE_SNAPSHOT;
1667 break;
1668 case 3:
1669 types = ZFS_TYPE_DATASET;
1670 break;

1672 default:
1673 (void) fprintf(stderr,
1674 gettext("invalid type ’%s’\n"),
1675 value);
1676 usage(B_FALSE);
1677 }
1678 }
1679 break;

1681 case ’?’:
1682 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
1683 optopt);
1684 usage(B_FALSE);
1685 }
1686 }

1688 argc -= optind;
1689 argv += optind;

1691 if (argc < 1) {
1692 (void) fprintf(stderr, gettext("missing property "
1693 "argument\n"));
1694 usage(B_FALSE);
1695 }

1697 fields = argv[0];

1699 if (zprop_get_list(g_zfs, fields, &cb.cb_proplist, ZFS_TYPE_DATASET)
1700 != 0)
1701 usage(B_FALSE);

1703 argc--;
1704 argv++;

1706 /*
1707 * As part of zfs_expand_proplist(), we keep track of the maximum column
1708 * width for each property. For the ’NAME’ (and ’SOURCE’) columns, we
1709 * need to know the maximum name length. However, the user likely did
1710 * not specify ’name’ as one of the properties to fetch, so we need to

new/usr/src/cmd/zfs/zfs_main.c 27

1711 * make sure we always include at least this property for
1712 * print_get_headers() to work properly.
1713 */
1714 if (cb.cb_proplist != NULL) {
1715 fake_name.pl_prop = ZFS_PROP_NAME;
1716 fake_name.pl_width = strlen(gettext("NAME"));
1717 fake_name.pl_next = cb.cb_proplist;
1718 cb.cb_proplist = &fake_name;
1719 }

1721 cb.cb_first = B_TRUE;

1723 /* run for each object */
1724 ret = zfs_for_each(argc, argv, flags, types, NULL,
1725 &cb.cb_proplist, limit, get_callback, &cb);

1727 if (cb.cb_proplist == &fake_name)
1728 zprop_free_list(fake_name.pl_next);
1729 else
1730 zprop_free_list(cb.cb_proplist);

1732 return (ret);
1733 }

1735 /*
1736 * inherit [-rS] <property> <fs|vol> ...
1737 *
1738 * -r Recurse over all children
1739 * -S Revert to received value, if any
1740 *
1741 * For each dataset specified on the command line, inherit the given property
1742 * from its parent. Inheriting a property at the pool level will cause it to
1743 * use the default value. The ’-r’ flag will recurse over all children, and is
1744 * useful for setting a property on a hierarchy-wide basis, regardless of any
1745 * local modifications for each dataset.
1746 */

1748 typedef struct inherit_cbdata {
1749 const char *cb_propname;
1750 boolean_t cb_received;
1751 } inherit_cbdata_t;

1753 static int
1754 inherit_recurse_cb(zfs_handle_t *zhp, void *data)
1755 {
1756 inherit_cbdata_t *cb = data;
1757 zfs_prop_t prop = zfs_name_to_prop(cb->cb_propname);

1759 /*
1760 * If we’re doing it recursively, then ignore properties that
1761 * are not valid for this type of dataset.
1762 */
1763 if (prop != ZPROP_INVAL &&
1764 !zfs_prop_valid_for_type(prop, zfs_get_type(zhp)))
1765 return (0);

1767 return (zfs_prop_inherit(zhp, cb->cb_propname, cb->cb_received) != 0);
1768 }

1770 static int
1771 inherit_cb(zfs_handle_t *zhp, void *data)
1772 {
1773 inherit_cbdata_t *cb = data;

1775 return (zfs_prop_inherit(zhp, cb->cb_propname, cb->cb_received) != 0);
1776 }

new/usr/src/cmd/zfs/zfs_main.c 28

1778 static int
1779 zfs_do_inherit(int argc, char **argv)
1780 {
1781 int c;
1782 zfs_prop_t prop;
1783 inherit_cbdata_t cb = { 0 };
1784 char *propname;
1785 int ret = 0;
1786 int flags = 0;
1787 boolean_t received = B_FALSE;

1789 /* check options */
1790 while ((c = getopt(argc, argv, "rS")) != -1) {
1791 switch (c) {
1792 case ’r’:
1793 flags |= ZFS_ITER_RECURSE;
1794 break;
1795 case ’S’:
1796 received = B_TRUE;
1797 break;
1798 case ’?’:
1799 default:
1800 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
1801 optopt);
1802 usage(B_FALSE);
1803 }
1804 }

1806 argc -= optind;
1807 argv += optind;

1809 /* check number of arguments */
1810 if (argc < 1) {
1811 (void) fprintf(stderr, gettext("missing property argument\n"));
1812 usage(B_FALSE);
1813 }
1814 if (argc < 2) {
1815 (void) fprintf(stderr, gettext("missing dataset argument\n"));
1816 usage(B_FALSE);
1817 }

1819 propname = argv[0];
1820 argc--;
1821 argv++;

1823 if ((prop = zfs_name_to_prop(propname)) != ZPROP_INVAL) {
1824 if (zfs_prop_readonly(prop)) {
1825 (void) fprintf(stderr, gettext(
1826 "%s property is read-only\n"),
1827 propname);
1828 return (1);
1829 }
1830 if (!zfs_prop_inheritable(prop) && !received) {
1831 (void) fprintf(stderr, gettext("’%s’ property cannot "
1832 "be inherited\n"), propname);
1833 if (prop == ZFS_PROP_QUOTA ||
1834 prop == ZFS_PROP_RESERVATION ||
1835 prop == ZFS_PROP_REFQUOTA ||
1836 prop == ZFS_PROP_REFRESERVATION)
1837 (void) fprintf(stderr, gettext("use ’zfs set "
1838 "%s=none’ to clear\n"), propname);
1839 return (1);
1840 }
1841 if (received && (prop == ZFS_PROP_VOLSIZE ||
1842 prop == ZFS_PROP_VERSION)) {

new/usr/src/cmd/zfs/zfs_main.c 29

1843 (void) fprintf(stderr, gettext("’%s’ property cannot "
1844 "be reverted to a received value\n"), propname);
1845 return (1);
1846 }
1847 } else if (!zfs_prop_user(propname)) {
1848 (void) fprintf(stderr, gettext("invalid property ’%s’\n"),
1849 propname);
1850 usage(B_FALSE);
1851 }

1853 cb.cb_propname = propname;
1854 cb.cb_received = received;

1856 if (flags & ZFS_ITER_RECURSE) {
1857 ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_DATASET,
1858 NULL, NULL, 0, inherit_recurse_cb, &cb);
1859 } else {
1860 ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_DATASET,
1861 NULL, NULL, 0, inherit_cb, &cb);
1862 }

1864 return (ret);
1865 }

1867 typedef struct upgrade_cbdata {
1868 uint64_t cb_numupgraded;
1869 uint64_t cb_numsamegraded;
1870 uint64_t cb_numfailed;
1871 uint64_t cb_version;
1872 boolean_t cb_newer;
1873 boolean_t cb_foundone;
1874 char cb_lastfs[ZFS_MAXNAMELEN];
1875 } upgrade_cbdata_t;

1877 static int
1878 same_pool(zfs_handle_t *zhp, const char *name)
1879 {
1880 int len1 = strcspn(name, "/@");
1881 const char *zhname = zfs_get_name(zhp);
1882 int len2 = strcspn(zhname, "/@");

1884 if (len1 != len2)
1885 return (B_FALSE);
1886 return (strncmp(name, zhname, len1) == 0);
1887 }

1889 static int
1890 upgrade_list_callback(zfs_handle_t *zhp, void *data)
1891 {
1892 upgrade_cbdata_t *cb = data;
1893 int version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION);

1895 /* list if it’s old/new */
1896 if ((!cb->cb_newer && version < ZPL_VERSION) ||
1897 (cb->cb_newer && version > ZPL_VERSION)) {
1898 char *str;
1899 if (cb->cb_newer) {
1900 str = gettext("The following filesystems are "
1901 "formatted using a newer software version and\n"
1902 "cannot be accessed on the current system.\n\n");
1903 } else {
1904 str = gettext("The following filesystems are "
1905 "out of date, and can be upgraded. After being\n"
1906 "upgraded, these filesystems (and any ’zfs send’ "
1907 "streams generated from\n"
1908 "subsequent snapshots) will no longer be "

new/usr/src/cmd/zfs/zfs_main.c 30

1909 "accessible by older software versions.\n\n");
1910 }

1912 if (!cb->cb_foundone) {
1913 (void) puts(str);
1914 (void) printf(gettext("VER FILESYSTEM\n"));
1915 (void) printf(gettext("--- ------------\n"));
1916 cb->cb_foundone = B_TRUE;
1917 }

1919 (void) printf("%2u %s\n", version, zfs_get_name(zhp));
1920 }

1922 return (0);
1923 }

1925 static int
1926 upgrade_set_callback(zfs_handle_t *zhp, void *data)
1927 {
1928 upgrade_cbdata_t *cb = data;
1929 int version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION);
1930 int needed_spa_version;
1931 int spa_version;

1933 if (zfs_spa_version(zhp, &spa_version) < 0)
1934 return (-1);

1936 needed_spa_version = zfs_spa_version_map(cb->cb_version);

1938 if (needed_spa_version < 0)
1939 return (-1);

1941 if (spa_version < needed_spa_version) {
1942 /* can’t upgrade */
1943 (void) printf(gettext("%s: can not be "
1944 "upgraded; the pool version needs to first "
1945 "be upgraded\nto version %d\n\n"),
1946 zfs_get_name(zhp), needed_spa_version);
1947 cb->cb_numfailed++;
1948 return (0);
1949 }

1951 /* upgrade */
1952 if (version < cb->cb_version) {
1953 char verstr[16];
1954 (void) snprintf(verstr, sizeof (verstr),
1955 "%llu", cb->cb_version);
1956 if (cb->cb_lastfs[0] && !same_pool(zhp, cb->cb_lastfs)) {
1957 /*
1958 * If they did "zfs upgrade -a", then we could
1959 * be doing ioctls to different pools. We need
1960 * to log this history once to each pool, and bypass
1961 * the normal history logging that happens in main().
1962 */
1963 (void) zpool_log_history(g_zfs, history_str);
1964 log_history = B_FALSE;
1965 }
1966 if (zfs_prop_set(zhp, "version", verstr) == 0)
1967 cb->cb_numupgraded++;
1968 else
1969 cb->cb_numfailed++;
1970 (void) strcpy(cb->cb_lastfs, zfs_get_name(zhp));
1971 } else if (version > cb->cb_version) {
1972 /* can’t downgrade */
1973 (void) printf(gettext("%s: can not be downgraded; "
1974 "it is already at version %u\n"),

new/usr/src/cmd/zfs/zfs_main.c 31

1975 zfs_get_name(zhp), version);
1976 cb->cb_numfailed++;
1977 } else {
1978 cb->cb_numsamegraded++;
1979 }
1980 return (0);
1981 }

1983 /*
1984 * zfs upgrade
1985 * zfs upgrade -v
1986 * zfs upgrade [-r] [-V <version>] <-a | filesystem>
1987 */
1988 static int
1989 zfs_do_upgrade(int argc, char **argv)
1990 {
1991 boolean_t all = B_FALSE;
1992 boolean_t showversions = B_FALSE;
1993 int ret = 0;
1994 upgrade_cbdata_t cb = { 0 };
1995 char c;
1996 int flags = ZFS_ITER_ARGS_CAN_BE_PATHS;

1998 /* check options */
1999 while ((c = getopt(argc, argv, "rvV:a")) != -1) {
2000 switch (c) {
2001 case ’r’:
2002 flags |= ZFS_ITER_RECURSE;
2003 break;
2004 case ’v’:
2005 showversions = B_TRUE;
2006 break;
2007 case ’V’:
2008 if (zfs_prop_string_to_index(ZFS_PROP_VERSION,
2009 optarg, &cb.cb_version) != 0) {
2010 (void) fprintf(stderr,
2011 gettext("invalid version %s\n"), optarg);
2012 usage(B_FALSE);
2013 }
2014 break;
2015 case ’a’:
2016 all = B_TRUE;
2017 break;
2018 case ’?’:
2019 default:
2020 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
2021 optopt);
2022 usage(B_FALSE);
2023 }
2024 }

2026 argc -= optind;
2027 argv += optind;

2029 if ((!all && !argc) && ((flags & ZFS_ITER_RECURSE) | cb.cb_version))
2030 usage(B_FALSE);
2031 if (showversions && (flags & ZFS_ITER_RECURSE || all ||
2032 cb.cb_version || argc))
2033 usage(B_FALSE);
2034 if ((all || argc) && (showversions))
2035 usage(B_FALSE);
2036 if (all && argc)
2037 usage(B_FALSE);

2039 if (showversions) {
2040 /* Show info on available versions. */

new/usr/src/cmd/zfs/zfs_main.c 32

2041 (void) printf(gettext("The following filesystem versions are "
2042 "supported:\n\n"));
2043 (void) printf(gettext("VER DESCRIPTION\n"));
2044 (void) printf("--- ---"
2045 "---------------\n");
2046 (void) printf(gettext(" 1 Initial ZFS filesystem version\n"));
2047 (void) printf(gettext(" 2 Enhanced directory entries\n"));
2048 (void) printf(gettext(" 3 Case insensitive and filesystem "
2049 "user identifier (FUID)\n"));
2050 (void) printf(gettext(" 4 userquota, groupquota "
2051 "properties\n"));
2052 (void) printf(gettext(" 5 System attributes\n"));
2053 (void) printf(gettext("\nFor more information on a particular "
2054 "version, including supported releases,\n"));
2055 (void) printf("see the ZFS Administration Guide.\n\n");
2056 ret = 0;
2057 } else if (argc || all) {
2058 /* Upgrade filesystems */
2059 if (cb.cb_version == 0)
2060 cb.cb_version = ZPL_VERSION;
2061 ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_FILESYSTEM,
2062 NULL, NULL, 0, upgrade_set_callback, &cb);
2063 (void) printf(gettext("%llu filesystems upgraded\n"),
2064 cb.cb_numupgraded);
2065 if (cb.cb_numsamegraded) {
2066 (void) printf(gettext("%llu filesystems already at "
2067 "this version\n"),
2068 cb.cb_numsamegraded);
2069 }
2070 if (cb.cb_numfailed != 0)
2071 ret = 1;
2072 } else {
2073 /* List old-version filesytems */
2074 boolean_t found;
2075 (void) printf(gettext("This system is currently running "
2076 "ZFS filesystem version %llu.\n\n"), ZPL_VERSION);

2078 flags |= ZFS_ITER_RECURSE;
2079 ret = zfs_for_each(0, NULL, flags, ZFS_TYPE_FILESYSTEM,
2080 NULL, NULL, 0, upgrade_list_callback, &cb);

2082 found = cb.cb_foundone;
2083 cb.cb_foundone = B_FALSE;
2084 cb.cb_newer = B_TRUE;

2086 ret = zfs_for_each(0, NULL, flags, ZFS_TYPE_FILESYSTEM,
2087 NULL, NULL, 0, upgrade_list_callback, &cb);

2089 if (!cb.cb_foundone && !found) {
2090 (void) printf(gettext("All filesystems are "
2091 "formatted with the current version.\n"));
2092 }
2093 }

2095 return (ret);
2096 }

2098 /*
2099 * zfs userspace [-Hinp] [-o field[,...]] [-s field [-s field]...]
2100 * [-S field [-S field]...] [-t type[,...]] filesystem | snapshot
2101 * zfs groupspace [-Hinp] [-o field[,...]] [-s field [-s field]...]
2102 * [-S field [-S field]...] [-t type[,...]] filesystem | snapshot
2103 *
2104 * -H Scripted mode; elide headers and separate columns by tabs.
2105 * -i Translate SID to POSIX ID.
2106 * -n Print numeric ID instead of user/group name.

new/usr/src/cmd/zfs/zfs_main.c 33

2107 * -o Control which fields to display.
2108 * -p Use exact (parseable) numeric output.
2109 * -s Specify sort columns, descending order.
2110 * -S Specify sort columns, ascending order.
2111 * -t Control which object types to display.
2112 *
2113 * Displays space consumed by, and quotas on, each user in the specified
2114 * filesystem or snapshot.
2115 */

2117 /* us_field_types, us_field_hdr and us_field_names should be kept in sync */
2118 enum us_field_types {
2119 USFIELD_TYPE,
2120 USFIELD_NAME,
2121 USFIELD_USED,
2122 USFIELD_QUOTA
2123 };
2124 static char *us_field_hdr[] = { "TYPE", "NAME", "USED", "QUOTA" };
2125 static char *us_field_names[] = { "type", "name", "used", "quota" };
2126 #define USFIELD_LAST (sizeof (us_field_names) / sizeof (char *))

2128 #define USTYPE_PSX_GRP (1 << 0)
2129 #define USTYPE_PSX_USR (1 << 1)
2130 #define USTYPE_SMB_GRP (1 << 2)
2131 #define USTYPE_SMB_USR (1 << 3)
2132 #define USTYPE_ALL \
2133 (USTYPE_PSX_GRP | USTYPE_PSX_USR | USTYPE_SMB_GRP | USTYPE_SMB_USR)

2135 static int us_type_bits[] = {
2136 USTYPE_PSX_GRP,
2137 USTYPE_PSX_USR,
2138 USTYPE_SMB_GRP,
2139 USTYPE_SMB_USR,
2140 USTYPE_ALL
2141 };
2142 static char *us_type_names[] = { "posixgroup", "posxiuser", "smbgroup",
2143 "smbuser", "all" };

2145 typedef struct us_node {
2146 nvlist_t *usn_nvl;
2147 uu_avl_node_t usn_avlnode;
2148 uu_list_node_t usn_listnode;
2149 } us_node_t;

2151 typedef struct us_cbdata {
2152 nvlist_t **cb_nvlp;
2153 uu_avl_pool_t *cb_avl_pool;
2154 uu_avl_t *cb_avl;
2155 boolean_t cb_numname;
2156 boolean_t cb_nicenum;
2157 boolean_t cb_sid2posix;
2158 zfs_userquota_prop_t cb_prop;
2159 zfs_sort_column_t *cb_sortcol;
2160 size_t cb_width[USFIELD_LAST];
2161 } us_cbdata_t;

2163 static boolean_t us_populated = B_FALSE;

2165 typedef struct {
2166 zfs_sort_column_t *si_sortcol;
2167 boolean_t si_numname;
2168 } us_sort_info_t;

2170 static int
2171 us_field_index(char *field)
2172 {

new/usr/src/cmd/zfs/zfs_main.c 34

2173 int i;

2175 for (i = 0; i < USFIELD_LAST; i++) {
2176 if (strcmp(field, us_field_names[i]) == 0)
2177 return (i);
2178 }

2180 return (-1);
2181 }

2183 static int
2184 us_compare(const void *larg, const void *rarg, void *unused)
2185 {
2186 const us_node_t *l = larg;
2187 const us_node_t *r = rarg;
2188 us_sort_info_t *si = (us_sort_info_t *)unused;
2189 zfs_sort_column_t *sortcol = si->si_sortcol;
2190 boolean_t numname = si->si_numname;
2191 nvlist_t *lnvl = l->usn_nvl;
2192 nvlist_t *rnvl = r->usn_nvl;
2193 int rc = 0;
2194 boolean_t lvb, rvb;

2196 for (; sortcol != NULL; sortcol = sortcol->sc_next) {
2197 char *lvstr = "";
2198 char *rvstr = "";
2199 uint32_t lv32 = 0;
2200 uint32_t rv32 = 0;
2201 uint64_t lv64 = 0;
2202 uint64_t rv64 = 0;
2203 zfs_prop_t prop = sortcol->sc_prop;
2204 const char *propname = NULL;
2205 boolean_t reverse = sortcol->sc_reverse;

2207 switch (prop) {
2208 case ZFS_PROP_TYPE:
2209 propname = "type";
2210 (void) nvlist_lookup_uint32(lnvl, propname, &lv32);
2211 (void) nvlist_lookup_uint32(rnvl, propname, &rv32);
2212 if (rv32 != lv32)
2213 rc = (rv32 < lv32) ? 1 : -1;
2214 break;
2215 case ZFS_PROP_NAME:
2216 propname = "name";
2217 if (numname) {
2218 (void) nvlist_lookup_uint64(lnvl, propname,
2219 &lv64);
2220 (void) nvlist_lookup_uint64(rnvl, propname,
2221 &rv64);
2222 if (rv64 != lv64)
2223 rc = (rv64 < lv64) ? 1 : -1;
2224 } else {
2225 (void) nvlist_lookup_string(lnvl, propname,
2226 &lvstr);
2227 (void) nvlist_lookup_string(rnvl, propname,
2228 &rvstr);
2229 rc = strcmp(lvstr, rvstr);
2230 }
2231 break;
2232 case ZFS_PROP_USED:
2233 case ZFS_PROP_QUOTA:
2234 if (!us_populated)
2235 break;
2236 if (prop == ZFS_PROP_USED)
2237 propname = "used";
2238 else

new/usr/src/cmd/zfs/zfs_main.c 35

2239 propname = "quota";
2240 (void) nvlist_lookup_uint64(lnvl, propname, &lv64);
2241 (void) nvlist_lookup_uint64(rnvl, propname, &rv64);
2242 if (rv64 != lv64)
2243 rc = (rv64 < lv64) ? 1 : -1;
2244 break;
2245 }

2247 if (rc != 0) {
2248 if (rc < 0)
2249 return (reverse ? 1 : -1);
2250 else
2251 return (reverse ? -1 : 1);
2252 }
2253 }

2255 /*
2256 * If entries still seem to be the same, check if they are of the same
2257 * type (smbentity is added only if we are doing SID to POSIX ID
2258 * translation where we can have duplicate type/name combinations).
2259 */
2260 if (nvlist_lookup_boolean_value(lnvl, "smbentity", &lvb) == 0 &&
2261 nvlist_lookup_boolean_value(rnvl, "smbentity", &rvb) == 0 &&
2262 lvb != rvb)
2263 return (lvb < rvb ? -1 : 1);

2265 return (0);
2266 }

2268 static inline const char *
2269 us_type2str(unsigned field_type)
2270 {
2271 switch (field_type) {
2272 case USTYPE_PSX_USR:
2273 return ("POSIX User");
2274 case USTYPE_PSX_GRP:
2275 return ("POSIX Group");
2276 case USTYPE_SMB_USR:
2277 return ("SMB User");
2278 case USTYPE_SMB_GRP:
2279 return ("SMB Group");
2280 default:
2281 return ("Undefined");
2282 }
2283 }

2285 static int
2286 userspace_cb(void *arg, const char *domain, uid_t rid, uint64_t space)
2287 {
2288 us_cbdata_t *cb = (us_cbdata_t *)arg;
2289 zfs_userquota_prop_t prop = cb->cb_prop;
2290 char *name = NULL;
2291 char *propname;
2292 char sizebuf[32];
2293 us_node_t *node;
2294 uu_avl_pool_t *avl_pool = cb->cb_avl_pool;
2295 uu_avl_t *avl = cb->cb_avl;
2296 uu_avl_index_t idx;
2297 nvlist_t *props;
2298 us_node_t *n;
2299 zfs_sort_column_t *sortcol = cb->cb_sortcol;
2300 unsigned type;
2301 const char *typestr;
2302 size_t namelen;
2303 size_t typelen;
2304 size_t sizelen;

new/usr/src/cmd/zfs/zfs_main.c 36

2305 int typeidx, nameidx, sizeidx;
2306 us_sort_info_t sortinfo = { sortcol, cb->cb_numname };
2307 boolean_t smbentity = B_FALSE;

2309 if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0)
2310 nomem();
2311 node = safe_malloc(sizeof (us_node_t));
2312 uu_avl_node_init(node, &node->usn_avlnode, avl_pool);
2313 node->usn_nvl = props;

2315 if (domain != NULL && domain[0] != ’\0’) {
2316 /* SMB */
2317 char sid[ZFS_MAXNAMELEN + 32];
2318 uid_t id;
2319 uint64_t classes;
2320 int err;
2321 directory_error_t e;

2323 smbentity = B_TRUE;

2325 (void) snprintf(sid, sizeof (sid), "%s-%u", domain, rid);

2327 if (prop == ZFS_PROP_GROUPUSED || prop == ZFS_PROP_GROUPQUOTA) {
2328 type = USTYPE_SMB_GRP;
2329 err = sid_to_id(sid, B_FALSE, &id);
2330 } else {
2331 type = USTYPE_SMB_USR;
2332 err = sid_to_id(sid, B_TRUE, &id);
2333 }

2335 if (err == 0) {
2336 rid = id;
2337 if (!cb->cb_sid2posix) {
2338 e = directory_name_from_sid(NULL, sid, &name,
2339 &classes);
2340 if (e != NULL)
2341 directory_error_free(e);
2342 if (name == NULL)
2343 name = sid;
2344 }
2345 }
2346 }

2348 if (cb->cb_sid2posix || domain == NULL || domain[0] == ’\0’) {
2349 /* POSIX or -i */
2350 if (prop == ZFS_PROP_GROUPUSED || prop == ZFS_PROP_GROUPQUOTA) {
2351 type = USTYPE_PSX_GRP;
2352 if (!cb->cb_numname) {
2353 struct group *g;

2355 if ((g = getgrgid(rid)) != NULL)
2356 name = g->gr_name;
2357 }
2358 } else {
2359 type = USTYPE_PSX_USR;
2360 if (!cb->cb_numname) {
2361 struct passwd *p;

2363 if ((p = getpwuid(rid)) != NULL)
2364 name = p->pw_name;
2365 }
2366 }
2367 }

2369 /*
2370 * Make sure that the type/name combination is unique when doing

new/usr/src/cmd/zfs/zfs_main.c 37

2371 * SID to POSIX ID translation (hence changing the type from SMB to
2372 * POSIX).
2373 */
2374 if (cb->cb_sid2posix &&
2375 nvlist_add_boolean_value(props, "smbentity", smbentity) != 0)
2376 nomem();

2378 /* Calculate/update width of TYPE field */
2379 typestr = us_type2str(type);
2380 typelen = strlen(gettext(typestr));
2381 typeidx = us_field_index("type");
2382 if (typelen > cb->cb_width[typeidx])
2383 cb->cb_width[typeidx] = typelen;
2384 if (nvlist_add_uint32(props, "type", type) != 0)
2385 nomem();

2387 /* Calculate/update width of NAME field */
2388 if ((cb->cb_numname && cb->cb_sid2posix) || name == NULL) {
2389 if (nvlist_add_uint64(props, "name", rid) != 0)
2390 nomem();
2391 namelen = snprintf(NULL, 0, "%u", rid);
2392 } else {
2393 if (nvlist_add_string(props, "name", name) != 0)
2394 nomem();
2395 namelen = strlen(name);
2396 }
2397 nameidx = us_field_index("name");
2398 if (namelen > cb->cb_width[nameidx])
2399 cb->cb_width[nameidx] = namelen;

2401 /*
2402 * Check if this type/name combination is in the list and update it;
2403 * otherwise add new node to the list.
2404 */
2405 if ((n = uu_avl_find(avl, node, &sortinfo, &idx)) == NULL) {
2406 uu_avl_insert(avl, node, idx);
2407 } else {
2408 nvlist_free(props);
2409 free(node);
2410 node = n;
2411 props = node->usn_nvl;
2412 }

2414 /* Calculate/update width of USED/QUOTA fields */
2415 if (cb->cb_nicenum)
2416 zfs_nicenum(space, sizebuf, sizeof (sizebuf));
2417 else
2418 (void) snprintf(sizebuf, sizeof (sizebuf), "%llu", space);
2419 sizelen = strlen(sizebuf);
2420 if (prop == ZFS_PROP_USERUSED || prop == ZFS_PROP_GROUPUSED) {
2421 propname = "used";
2422 if (!nvlist_exists(props, "quota"))
2423 (void) nvlist_add_uint64(props, "quota", 0);
2424 } else {
2425 propname = "quota";
2426 if (!nvlist_exists(props, "used"))
2427 (void) nvlist_add_uint64(props, "used", 0);
2428 }
2429 sizeidx = us_field_index(propname);
2430 if (sizelen > cb->cb_width[sizeidx])
2431 cb->cb_width[sizeidx] = sizelen;

2433 if (nvlist_add_uint64(props, propname, space) != 0)
2434 nomem();

2436 return (0);

new/usr/src/cmd/zfs/zfs_main.c 38

2437 }

2439 static void
2440 print_us_node(boolean_t scripted, boolean_t parsable, int *fields, int types,
2441 size_t *width, us_node_t *node)
2442 {
2443 nvlist_t *nvl = node->usn_nvl;
2444 char valstr[ZFS_MAXNAMELEN];
2445 boolean_t first = B_TRUE;
2446 int cfield = 0;
2447 int field;
2448 uint32_t ustype;

2450 /* Check type */
2451 (void) nvlist_lookup_uint32(nvl, "type", &ustype);
2452 if (!(ustype & types))
2453 return;

2455 while ((field = fields[cfield]) != USFIELD_LAST) {
2456 nvpair_t *nvp = NULL;
2457 data_type_t type;
2458 uint32_t val32;
2459 uint64_t val64;
2460 char *strval = NULL;

2462 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
2463 if (strcmp(nvpair_name(nvp),
2464 us_field_names[field]) == 0)
2465 break;
2466 }

2468 type = nvpair_type(nvp);
2469 switch (type) {
2470 case DATA_TYPE_UINT32:
2471 (void) nvpair_value_uint32(nvp, &val32);
2472 break;
2473 case DATA_TYPE_UINT64:
2474 (void) nvpair_value_uint64(nvp, &val64);
2475 break;
2476 case DATA_TYPE_STRING:
2477 (void) nvpair_value_string(nvp, &strval);
2478 break;
2479 default:
2480 (void) fprintf(stderr, "invalid data type\n");
2481 }

2483 switch (field) {
2484 case USFIELD_TYPE:
2485 strval = (char *)us_type2str(val32);
2486 break;
2487 case USFIELD_NAME:
2488 if (type == DATA_TYPE_UINT64) {
2489 (void) sprintf(valstr, "%llu", val64);
2490 strval = valstr;
2491 }
2492 break;
2493 case USFIELD_USED:
2494 case USFIELD_QUOTA:
2495 if (type == DATA_TYPE_UINT64) {
2496 if (parsable) {
2497 (void) sprintf(valstr, "%llu", val64);
2498 } else {
2499 zfs_nicenum(val64, valstr,
2500 sizeof (valstr));
2501 }
2502 if (field == USFIELD_QUOTA &&

new/usr/src/cmd/zfs/zfs_main.c 39

2503 strcmp(valstr, "0") == 0)
2504 strval = "none";
2505 else
2506 strval = valstr;
2507 }
2508 break;
2509 }

2511 if (!first) {
2512 if (scripted)
2513 (void) printf("\t");
2514 else
2515 (void) printf(" ");
2516 }
2517 if (scripted)
2518 (void) printf("%s", strval);
2519 else if (field == USFIELD_TYPE || field == USFIELD_NAME)
2520 (void) printf("%-*s", width[field], strval);
2521 else
2522 (void) printf("%*s", width[field], strval);

2524 first = B_FALSE;
2525 cfield++;
2526 }

2528 (void) printf("\n");
2529 }

2531 static void
2532 print_us(boolean_t scripted, boolean_t parsable, int *fields, int types,
2533 size_t *width, boolean_t rmnode, uu_avl_t *avl)
2534 {
2535 us_node_t *node;
2536 const char *col;
2537 int cfield = 0;
2538 int field;

2540 if (!scripted) {
2541 boolean_t first = B_TRUE;

2543 while ((field = fields[cfield]) != USFIELD_LAST) {
2544 col = gettext(us_field_hdr[field]);
2545 if (field == USFIELD_TYPE || field == USFIELD_NAME) {
2546 (void) printf(first ? "%-*s" : " %-*s",
2547 width[field], col);
2548 } else {
2549 (void) printf(first ? "%*s" : " %*s",
2550 width[field], col);
2551 }
2552 first = B_FALSE;
2553 cfield++;
2554 }
2555 (void) printf("\n");
2556 }

2558 for (node = uu_avl_first(avl); node; node = uu_avl_next(avl, node)) {
2559 print_us_node(scripted, parsable, fields, types, width, node);
2560 if (rmnode)
2561 nvlist_free(node->usn_nvl);
2562 }
2563 }

2565 static int
2566 zfs_do_userspace(int argc, char **argv)
2567 {
2568 zfs_handle_t *zhp;

new/usr/src/cmd/zfs/zfs_main.c 40

2569 zfs_userquota_prop_t p;
2570 uu_avl_pool_t *avl_pool;
2571 uu_avl_t *avl_tree;
2572 uu_avl_walk_t *walk;
2573 char *delim;
2574 char deffields[] = "type,name,used,quota";
2575 char *ofield = NULL;
2576 char *tfield = NULL;
2577 int cfield = 0;
2578 int fields[256];
2579 int i;
2580 boolean_t scripted = B_FALSE;
2581 boolean_t prtnum = B_FALSE;
2582 boolean_t parsable = B_FALSE;
2583 boolean_t sid2posix = B_FALSE;
2584 int ret = 0;
2585 int c;
2586 zfs_sort_column_t *sortcol = NULL;
2587 int types = USTYPE_PSX_USR | USTYPE_SMB_USR;
2588 us_cbdata_t cb;
2589 us_node_t *node;
2590 us_node_t *rmnode;
2591 uu_list_pool_t *listpool;
2592 uu_list_t *list;
2593 uu_avl_index_t idx = 0;
2594 uu_list_index_t idx2 = 0;

2596 if (argc < 2)
2597 usage(B_FALSE);

2599 if (strcmp(argv[0], "groupspace") == 0)
2600 /* Toggle default group types */
2601 types = USTYPE_PSX_GRP | USTYPE_SMB_GRP;

2603 while ((c = getopt(argc, argv, "nHpo:s:S:t:i")) != -1) {
2604 switch (c) {
2605 case ’n’:
2606 prtnum = B_TRUE;
2607 break;
2608 case ’H’:
2609 scripted = B_TRUE;
2610 break;
2611 case ’p’:
2612 parsable = B_TRUE;
2613 break;
2614 case ’o’:
2615 ofield = optarg;
2616 break;
2617 case ’s’:
2618 case ’S’:
2619 if (zfs_add_sort_column(&sortcol, optarg,
2620 c == ’s’ ? B_FALSE : B_TRUE) != 0) {
2621 (void) fprintf(stderr,
2622 gettext("invalid field ’%s’\n"), optarg);
2623 usage(B_FALSE);
2624 }
2625 break;
2626 case ’t’:
2627 tfield = optarg;
2628 break;
2629 case ’i’:
2630 sid2posix = B_TRUE;
2631 break;
2632 case ’:’:
2633 (void) fprintf(stderr, gettext("missing argument for "
2634 "’%c’ option\n"), optopt);

new/usr/src/cmd/zfs/zfs_main.c 41

2635 usage(B_FALSE);
2636 break;
2637 case ’?’:
2638 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
2639 optopt);
2640 usage(B_FALSE);
2641 }
2642 }

2644 argc -= optind;
2645 argv += optind;

2647 if (argc < 1) {
2648 (void) fprintf(stderr, gettext("missing dataset name\n"));
2649 usage(B_FALSE);
2650 }
2651 if (argc > 1) {
2652 (void) fprintf(stderr, gettext("too many arguments\n"));
2653 usage(B_FALSE);
2654 }

2656 /* Use default output fields if not specified using -o */
2657 if (ofield == NULL)
2658 ofield = deffields;
2659 do {
2660 if ((delim = strchr(ofield, ’,’)) != NULL)
2661 *delim = ’\0’;
2662 if ((fields[cfield++] = us_field_index(ofield)) == -1) {
2663 (void) fprintf(stderr, gettext("invalid type ’%s’ "
2664 "for -o option\n"), ofield);
2665 return (-1);
2666 }
2667 if (delim != NULL)
2668 ofield = delim + 1;
2669 } while (delim != NULL);
2670 fields[cfield] = USFIELD_LAST;

2672 /* Override output types (-t option) */
2673 if (tfield != NULL) {
2674 types = 0;

2676 do {
2677 boolean_t found = B_FALSE;

2679 if ((delim = strchr(tfield, ’,’)) != NULL)
2680 *delim = ’\0’;
2681 for (i = 0; i < sizeof (us_type_bits) / sizeof (int);
2682 i++) {
2683 if (strcmp(tfield, us_type_names[i]) == 0) {
2684 found = B_TRUE;
2685 types |= us_type_bits[i];
2686 break;
2687 }
2688 }
2689 if (!found) {
2690 (void) fprintf(stderr, gettext("invalid type "
2691 "’%s’ for -t option\n"), tfield);
2692 return (-1);
2693 }
2694 if (delim != NULL)
2695 tfield = delim + 1;
2696 } while (delim != NULL);
2697 }

2699 if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_DATASET)) == NULL)
2700 return (1);

new/usr/src/cmd/zfs/zfs_main.c 42

2702 if ((avl_pool = uu_avl_pool_create("us_avl_pool", sizeof (us_node_t),
2703 offsetof(us_node_t, usn_avlnode), us_compare, UU_DEFAULT)) == NULL)
2704 nomem();
2705 if ((avl_tree = uu_avl_create(avl_pool, NULL, UU_DEFAULT)) == NULL)
2706 nomem();

2708 /* Always add default sorting columns */
2709 (void) zfs_add_sort_column(&sortcol, "type", B_FALSE);
2710 (void) zfs_add_sort_column(&sortcol, "name", B_FALSE);

2712 cb.cb_sortcol = sortcol;
2713 cb.cb_numname = prtnum;
2714 cb.cb_nicenum = !parsable;
2715 cb.cb_avl_pool = avl_pool;
2716 cb.cb_avl = avl_tree;
2717 cb.cb_sid2posix = sid2posix;

2719 for (i = 0; i < USFIELD_LAST; i++)
2720 cb.cb_width[i] = strlen(gettext(us_field_hdr[i]));

2722 for (p = 0; p < ZFS_NUM_USERQUOTA_PROPS; p++) {
2723 if (((p == ZFS_PROP_USERUSED || p == ZFS_PROP_USERQUOTA) &&
2724 !(types & (USTYPE_PSX_USR | USTYPE_SMB_USR))) ||
2725 ((p == ZFS_PROP_GROUPUSED || p == ZFS_PROP_GROUPQUOTA) &&
2726 !(types & (USTYPE_PSX_GRP | USTYPE_SMB_GRP))))
2727 continue;
2728 cb.cb_prop = p;
2729 if ((ret = zfs_userspace(zhp, p, userspace_cb, &cb)) != 0)
2730 return (ret);
2731 }

2733 /* Sort the list */
2734 if ((node = uu_avl_first(avl_tree)) == NULL)
2735 return (0);

2737 us_populated = B_TRUE;

2739 listpool = uu_list_pool_create("tmplist", sizeof (us_node_t),
2740 offsetof(us_node_t, usn_listnode), NULL, UU_DEFAULT);
2741 list = uu_list_create(listpool, NULL, UU_DEFAULT);
2742 uu_list_node_init(node, &node->usn_listnode, listpool);

2744 while (node != NULL) {
2745 rmnode = node;
2746 node = uu_avl_next(avl_tree, node);
2747 uu_avl_remove(avl_tree, rmnode);
2748 if (uu_list_find(list, rmnode, NULL, &idx2) == NULL)
2749 uu_list_insert(list, rmnode, idx2);
2750 }

2752 for (node = uu_list_first(list); node != NULL;
2753 node = uu_list_next(list, node)) {
2754 us_sort_info_t sortinfo = { sortcol, cb.cb_numname };

2756 if (uu_avl_find(avl_tree, node, &sortinfo, &idx) == NULL)
2757 uu_avl_insert(avl_tree, node, idx);
2758 }

2760 uu_list_destroy(list);
2761 uu_list_pool_destroy(listpool);

2763 /* Print and free node nvlist memory */
2764 print_us(scripted, parsable, fields, types, cb.cb_width, B_TRUE,
2765 cb.cb_avl);

new/usr/src/cmd/zfs/zfs_main.c 43

2767 zfs_free_sort_columns(sortcol);

2769 /* Clean up the AVL tree */
2770 if ((walk = uu_avl_walk_start(cb.cb_avl, UU_WALK_ROBUST)) == NULL)
2771 nomem();

2773 while ((node = uu_avl_walk_next(walk)) != NULL) {
2774 uu_avl_remove(cb.cb_avl, node);
2775 free(node);
2776 }

2778 uu_avl_walk_end(walk);
2779 uu_avl_destroy(avl_tree);
2780 uu_avl_pool_destroy(avl_pool);

2782 return (ret);
2783 }

2785 /*
2786 * list [-r][-d max] [-H] [-o property[,property]...] [-t type[,type]...]
2787 * [-s property [-s property]...] [-S property [-S property]...]
2788 * <dataset> ...
2789 *
2790 * -r Recurse over all children
2791 * -d Limit recursion by depth.
2792 * -H Scripted mode; elide headers and separate columns by tabs
2793 * -o Control which fields to display.
2794 * -t Control which object types to display.
2795 * -s Specify sort columns, descending order.
2796 * -S Specify sort columns, ascending order.
2797 *
2798 * When given no arguments, lists all filesystems in the system.
2799 * Otherwise, list the specified datasets, optionally recursing down them if
2800 * ’-r’ is specified.
2801 */
2802 typedef struct list_cbdata {
2803 boolean_t cb_first;
2804 boolean_t cb_scripted;
2805 zprop_list_t *cb_proplist;
2806 } list_cbdata_t;

2808 /*
2809 * Given a list of columns to display, output appropriate headers for each one.
2810 */
2811 static void
2812 print_header(zprop_list_t *pl)
2813 {
2814 char headerbuf[ZFS_MAXPROPLEN];
2815 const char *header;
2816 int i;
2817 boolean_t first = B_TRUE;
2818 boolean_t right_justify;

2820 for (; pl != NULL; pl = pl->pl_next) {
2821 if (!first) {
2822 (void) printf(" ");
2823 } else {
2824 first = B_FALSE;
2825 }

2827 right_justify = B_FALSE;
2828 if (pl->pl_prop != ZPROP_INVAL) {
2829 header = zfs_prop_column_name(pl->pl_prop);
2830 right_justify = zfs_prop_align_right(pl->pl_prop);
2831 } else {
2832 for (i = 0; pl->pl_user_prop[i] != ’\0’; i++)

new/usr/src/cmd/zfs/zfs_main.c 44

2833 headerbuf[i] = toupper(pl->pl_user_prop[i]);
2834 headerbuf[i] = ’\0’;
2835 header = headerbuf;
2836 }

2838 if (pl->pl_next == NULL && !right_justify)
2839 (void) printf("%s", header);
2840 else if (right_justify)
2841 (void) printf("%*s", pl->pl_width, header);
2842 else
2843 (void) printf("%-*s", pl->pl_width, header);
2844 }

2846 (void) printf("\n");
2847 }

2849 /*
2850 * Given a dataset and a list of fields, print out all the properties according
2851 * to the described layout.
2852 */
2853 static void
2854 print_dataset(zfs_handle_t *zhp, zprop_list_t *pl, boolean_t scripted)
2855 {
2856 boolean_t first = B_TRUE;
2857 char property[ZFS_MAXPROPLEN];
2858 nvlist_t *userprops = zfs_get_user_props(zhp);
2859 nvlist_t *propval;
2860 char *propstr;
2861 boolean_t right_justify;
2862 int width;

2864 for (; pl != NULL; pl = pl->pl_next) {
2865 if (!first) {
2866 if (scripted)
2867 (void) printf("\t");
2868 else
2869 (void) printf(" ");
2870 } else {
2871 first = B_FALSE;
2872 }

2874 if (pl->pl_prop != ZPROP_INVAL) {
2875 if (zfs_prop_get(zhp, pl->pl_prop, property,
2876 sizeof (property), NULL, NULL, 0, B_FALSE) != 0)
2877 propstr = "-";
2878 else
2879 propstr = property;

2881 right_justify = zfs_prop_align_right(pl->pl_prop);
2882 } else if (zfs_prop_userquota(pl->pl_user_prop)) {
2883 if (zfs_prop_get_userquota(zhp, pl->pl_user_prop,
2884 property, sizeof (property), B_FALSE) != 0)
2885 propstr = "-";
2886 else
2887 propstr = property;
2888 right_justify = B_TRUE;
2889 } else if (zfs_prop_written(pl->pl_user_prop)) {
2890 if (zfs_prop_get_written(zhp, pl->pl_user_prop,
2891 property, sizeof (property), B_FALSE) != 0)
2892 propstr = "-";
2893 else
2894 propstr = property;
2895 right_justify = B_TRUE;
2896 } else {
2897 if (nvlist_lookup_nvlist(userprops,
2898 pl->pl_user_prop, &propval) != 0)

new/usr/src/cmd/zfs/zfs_main.c 45

2899 propstr = "-";
2900 else
2901 verify(nvlist_lookup_string(propval,
2902 ZPROP_VALUE, &propstr) == 0);
2903 right_justify = B_FALSE;
2904 }

2906 width = pl->pl_width;

2908 /*
2909 * If this is being called in scripted mode, or if this is the
2910 * last column and it is left-justified, don’t include a width
2911 * format specifier.
2912 */
2913 if (scripted || (pl->pl_next == NULL && !right_justify))
2914 (void) printf("%s", propstr);
2915 else if (right_justify)
2916 (void) printf("%*s", width, propstr);
2917 else
2918 (void) printf("%-*s", width, propstr);
2919 }

2921 (void) printf("\n");
2922 }

2924 /*
2925 * Generic callback function to list a dataset or snapshot.
2926 */
2927 static int
2928 list_callback(zfs_handle_t *zhp, void *data)
2929 {
2930 list_cbdata_t *cbp = data;

2932 if (cbp->cb_first) {
2933 if (!cbp->cb_scripted)
2934 print_header(cbp->cb_proplist);
2935 cbp->cb_first = B_FALSE;
2936 }

2938 print_dataset(zhp, cbp->cb_proplist, cbp->cb_scripted);

2940 return (0);
2941 }

2943 static int
2944 zfs_do_list(int argc, char **argv)
2945 {
2946 int c;
2947 boolean_t scripted = B_FALSE;
2948 static char default_fields[] =
2949 "name,used,available,referenced,mountpoint";
2950 int types = ZFS_TYPE_DATASET;
2951 boolean_t types_specified = B_FALSE;
2952 char *fields = NULL;
2953 list_cbdata_t cb = { 0 };
2954 char *value;
2955 int limit = 0;
2956 int ret = 0;
2957 zfs_sort_column_t *sortcol = NULL;
2958 int flags = ZFS_ITER_PROP_LISTSNAPS | ZFS_ITER_ARGS_CAN_BE_PATHS;

2960 /* check options */
2961 while ((c = getopt(argc, argv, ":d:o:rt:Hs:S:")) != -1) {
2962 switch (c) {
2963 case ’o’:
2964 fields = optarg;

new/usr/src/cmd/zfs/zfs_main.c 46

2965 break;
2966 case ’d’:
2967 limit = parse_depth(optarg, &flags);
2968 break;
2969 case ’r’:
2970 flags |= ZFS_ITER_RECURSE;
2971 break;
2972 case ’H’:
2973 scripted = B_TRUE;
2974 break;
2975 case ’s’:
2976 if (zfs_add_sort_column(&sortcol, optarg,
2977 B_FALSE) != 0) {
2978 (void) fprintf(stderr,
2979 gettext("invalid property ’%s’\n"), optarg);
2980 usage(B_FALSE);
2981 }
2982 break;
2983 case ’S’:
2984 if (zfs_add_sort_column(&sortcol, optarg,
2985 B_TRUE) != 0) {
2986 (void) fprintf(stderr,
2987 gettext("invalid property ’%s’\n"), optarg);
2988 usage(B_FALSE);
2989 }
2990 break;
2991 case ’t’:
2992 types = 0;
2993 types_specified = B_TRUE;
2994 flags &= ~ZFS_ITER_PROP_LISTSNAPS;
2995 while (*optarg != ’\0’) {
2996 static char *type_subopts[] = { "filesystem",
2997 "volume", "snapshot", "all", NULL };

2999 switch (getsubopt(&optarg, type_subopts,
3000 &value)) {
3001 case 0:
3002 types |= ZFS_TYPE_FILESYSTEM;
3003 break;
3004 case 1:
3005 types |= ZFS_TYPE_VOLUME;
3006 break;
3007 case 2:
3008 types |= ZFS_TYPE_SNAPSHOT;
3009 break;
3010 case 3:
3011 types = ZFS_TYPE_DATASET;
3012 break;

3014 default:
3015 (void) fprintf(stderr,
3016 gettext("invalid type ’%s’\n"),
3017 value);
3018 usage(B_FALSE);
3019 }
3020 }
3021 break;
3022 case ’:’:
3023 (void) fprintf(stderr, gettext("missing argument for "
3024 "’%c’ option\n"), optopt);
3025 usage(B_FALSE);
3026 break;
3027 case ’?’:
3028 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
3029 optopt);
3030 usage(B_FALSE);

new/usr/src/cmd/zfs/zfs_main.c 47

3031 }
3032 }

3034 argc -= optind;
3035 argv += optind;

3037 if (fields == NULL)
3038 fields = default_fields;

3040 /*
3041 * If "-o space" and no types were specified, don’t display snapshots.
3042 */
3043 if (strcmp(fields, "space") == 0 && types_specified == B_FALSE)
3044 types &= ~ZFS_TYPE_SNAPSHOT;

3046 /*
3047 * If the user specifies ’-o all’, the zprop_get_list() doesn’t
3048 * normally include the name of the dataset. For ’zfs list’, we always
3049 * want this property to be first.
3050 */
3051 if (zprop_get_list(g_zfs, fields, &cb.cb_proplist, ZFS_TYPE_DATASET)
3052 != 0)
3053 usage(B_FALSE);

3055 cb.cb_scripted = scripted;
3056 cb.cb_first = B_TRUE;

3058 ret = zfs_for_each(argc, argv, flags, types, sortcol, &cb.cb_proplist,
3059 limit, list_callback, &cb);

3061 zprop_free_list(cb.cb_proplist);
3062 zfs_free_sort_columns(sortcol);

3064 if (ret == 0 && cb.cb_first && !cb.cb_scripted)
3065 (void) printf(gettext("no datasets available\n"));

3067 return (ret);
3068 }

3070 /*
3071 * zfs rename [-f] <fs | snap | vol> <fs | snap | vol>
3072 * zfs rename [-f] -p <fs | vol> <fs | vol>
3073 * zfs rename -r <snap> <snap>
3074 *
3075 * Renames the given dataset to another of the same type.
3076 *
3077 * The ’-p’ flag creates all the non-existing ancestors of the target first.
3078 */
3079 /* ARGSUSED */
3080 static int
3081 zfs_do_rename(int argc, char **argv)
3082 {
3083 zfs_handle_t *zhp;
3084 int c;
3085 int ret = 0;
3086 boolean_t recurse = B_FALSE;
3087 boolean_t parents = B_FALSE;
3088 boolean_t force_unmount = B_FALSE;

3090 /* check options */
3091 while ((c = getopt(argc, argv, "prf")) != -1) {
3092 switch (c) {
3093 case ’p’:
3094 parents = B_TRUE;
3095 break;
3096 case ’r’:

new/usr/src/cmd/zfs/zfs_main.c 48

3097 recurse = B_TRUE;
3098 break;
3099 case ’f’:
3100 force_unmount = B_TRUE;
3101 break;
3102 case ’?’:
3103 default:
3104 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
3105 optopt);
3106 usage(B_FALSE);
3107 }
3108 }

3110 argc -= optind;
3111 argv += optind;

3113 /* check number of arguments */
3114 if (argc < 1) {
3115 (void) fprintf(stderr, gettext("missing source dataset "
3116 "argument\n"));
3117 usage(B_FALSE);
3118 }
3119 if (argc < 2) {
3120 (void) fprintf(stderr, gettext("missing target dataset "
3121 "argument\n"));
3122 usage(B_FALSE);
3123 }
3124 if (argc > 2) {
3125 (void) fprintf(stderr, gettext("too many arguments\n"));
3126 usage(B_FALSE);
3127 }

3129 if (recurse && parents) {
3130 (void) fprintf(stderr, gettext("-p and -r options are mutually "
3131 "exclusive\n"));
3132 usage(B_FALSE);
3133 }

3135 if (recurse && strchr(argv[0], ’@’) == 0) {
3136 (void) fprintf(stderr, gettext("source dataset for recursive "
3137 "rename must be a snapshot\n"));
3138 usage(B_FALSE);
3139 }

3141 if ((zhp = zfs_open(g_zfs, argv[0], parents ? ZFS_TYPE_FILESYSTEM |
3142 ZFS_TYPE_VOLUME : ZFS_TYPE_DATASET)) == NULL)
3143 return (1);

3145 /* If we were asked and the name looks good, try to create ancestors. */
3146 if (parents && zfs_name_valid(argv[1], zfs_get_type(zhp)) &&
3147 zfs_create_ancestors(g_zfs, argv[1]) != 0) {
3148 zfs_close(zhp);
3149 return (1);
3150 }

3152 ret = (zfs_rename(zhp, argv[1], recurse, force_unmount) != 0);

3154 zfs_close(zhp);
3155 return (ret);
3156 }

3158 /*
3159 * zfs promote <fs>
3160 *
3161 * Promotes the given clone fs to be the parent
3162 */

new/usr/src/cmd/zfs/zfs_main.c 49

3163 /* ARGSUSED */
3164 static int
3165 zfs_do_promote(int argc, char **argv)
3166 {
3167 zfs_handle_t *zhp;
3168 int ret = 0;

3170 /* check options */
3171 if (argc > 1 && argv[1][0] == ’-’) {
3172 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
3173 argv[1][1]);
3174 usage(B_FALSE);
3175 }

3177 /* check number of arguments */
3178 if (argc < 2) {
3179 (void) fprintf(stderr, gettext("missing clone filesystem"
3180 " argument\n"));
3181 usage(B_FALSE);
3182 }
3183 if (argc > 2) {
3184 (void) fprintf(stderr, gettext("too many arguments\n"));
3185 usage(B_FALSE);
3186 }

3188 zhp = zfs_open(g_zfs, argv[1], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
3189 if (zhp == NULL)
3190 return (1);

3192 ret = (zfs_promote(zhp) != 0);

3195 zfs_close(zhp);
3196 return (ret);
3197 }

3199 /*
3200 * zfs rollback [-rRf] <snapshot>
3201 *
3202 * -r Delete any intervening snapshots before doing rollback
3203 * -R Delete any snapshots and their clones
3204 * -f ignored for backwards compatability
3205 *
3206 * Given a filesystem, rollback to a specific snapshot, discarding any changes
3207 * since then and making it the active dataset. If more recent snapshots exist,
3208 * the command will complain unless the ’-r’ flag is given.
3209 */
3210 typedef struct rollback_cbdata {
3211 uint64_t cb_create;
3212 boolean_t cb_first;
3213 int cb_doclones;
3214 char *cb_target;
3215 int cb_error;
3216 boolean_t cb_recurse;
3217 boolean_t cb_dependent;
3218 } rollback_cbdata_t;

3220 /*
3221 * Report any snapshots more recent than the one specified. Used when ’-r’ is
3222 * not specified. We reuse this same callback for the snapshot dependents - if
3223 * ’cb_dependent’ is set, then this is a dependent and we should report it
3224 * without checking the transaction group.
3225 */
3226 static int
3227 rollback_check(zfs_handle_t *zhp, void *data)
3228 {

new/usr/src/cmd/zfs/zfs_main.c 50

3229 rollback_cbdata_t *cbp = data;

3231 if (cbp->cb_doclones) {
3232 zfs_close(zhp);
3233 return (0);
3234 }

3236 if (!cbp->cb_dependent) {
3237 if (strcmp(zfs_get_name(zhp), cbp->cb_target) != 0 &&
3238 zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT &&
3239 zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG) >
3240 cbp->cb_create) {

3242 if (cbp->cb_first && !cbp->cb_recurse) {
3243 (void) fprintf(stderr, gettext("cannot "
3244 "rollback to ’%s’: more recent snapshots "
3245 "exist\n"),
3246 cbp->cb_target);
3247 (void) fprintf(stderr, gettext("use ’-r’ to "
3248 "force deletion of the following "
3249 "snapshots:\n"));
3250 cbp->cb_first = 0;
3251 cbp->cb_error = 1;
3252 }

3254 if (cbp->cb_recurse) {
3255 cbp->cb_dependent = B_TRUE;
3256 if (zfs_iter_dependents(zhp, B_TRUE,
3257 rollback_check, cbp) != 0) {
3258 zfs_close(zhp);
3259 return (-1);
3260 }
3261 cbp->cb_dependent = B_FALSE;
3262 } else {
3263 (void) fprintf(stderr, "%s\n",
3264 zfs_get_name(zhp));
3265 }
3266 }
3267 } else {
3268 if (cbp->cb_first && cbp->cb_recurse) {
3269 (void) fprintf(stderr, gettext("cannot rollback to "
3270 "’%s’: clones of previous snapshots exist\n"),
3271 cbp->cb_target);
3272 (void) fprintf(stderr, gettext("use ’-R’ to "
3273 "force deletion of the following clones and "
3274 "dependents:\n"));
3275 cbp->cb_first = 0;
3276 cbp->cb_error = 1;
3277 }

3279 (void) fprintf(stderr, "%s\n", zfs_get_name(zhp));
3280 }

3282 zfs_close(zhp);
3283 return (0);
3284 }

3286 static int
3287 zfs_do_rollback(int argc, char **argv)
3288 {
3289 int ret = 0;
3290 int c;
3291 boolean_t force = B_FALSE;
3292 rollback_cbdata_t cb = { 0 };
3293 zfs_handle_t *zhp, *snap;
3294 char parentname[ZFS_MAXNAMELEN];

new/usr/src/cmd/zfs/zfs_main.c 51

3295 char *delim;

3297 /* check options */
3298 while ((c = getopt(argc, argv, "rRf")) != -1) {
3299 switch (c) {
3300 case ’r’:
3301 cb.cb_recurse = 1;
3302 break;
3303 case ’R’:
3304 cb.cb_recurse = 1;
3305 cb.cb_doclones = 1;
3306 break;
3307 case ’f’:
3308 force = B_TRUE;
3309 break;
3310 case ’?’:
3311 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
3312 optopt);
3313 usage(B_FALSE);
3314 }
3315 }

3317 argc -= optind;
3318 argv += optind;

3320 /* check number of arguments */
3321 if (argc < 1) {
3322 (void) fprintf(stderr, gettext("missing dataset argument\n"));
3323 usage(B_FALSE);
3324 }
3325 if (argc > 1) {
3326 (void) fprintf(stderr, gettext("too many arguments\n"));
3327 usage(B_FALSE);
3328 }

3330 /* open the snapshot */
3331 if ((snap = zfs_open(g_zfs, argv[0], ZFS_TYPE_SNAPSHOT)) == NULL)
3332 return (1);

3334 /* open the parent dataset */
3335 (void) strlcpy(parentname, argv[0], sizeof (parentname));
3336 verify((delim = strrchr(parentname, ’@’)) != NULL);
3337 *delim = ’\0’;
3338 if ((zhp = zfs_open(g_zfs, parentname, ZFS_TYPE_DATASET)) == NULL) {
3339 zfs_close(snap);
3340 return (1);
3341 }

3343 /*
3344 * Check for more recent snapshots and/or clones based on the presence
3345 * of ’-r’ and ’-R’.
3346 */
3347 cb.cb_target = argv[0];
3348 cb.cb_create = zfs_prop_get_int(snap, ZFS_PROP_CREATETXG);
3349 cb.cb_first = B_TRUE;
3350 cb.cb_error = 0;
3351 if ((ret = zfs_iter_children(zhp, rollback_check, &cb)) != 0)
3352 goto out;

3354 if ((ret = cb.cb_error) != 0)
3355 goto out;

3357 /*
3358 * Rollback parent to the given snapshot.
3359 */
3360 ret = zfs_rollback(zhp, snap, force);

new/usr/src/cmd/zfs/zfs_main.c 52

3362 out:
3363 zfs_close(snap);
3364 zfs_close(zhp);

3366 if (ret == 0)
3367 return (0);
3368 else
3369 return (1);
3370 }

3372 /*
3373 * zfs set property=value { fs | snap | vol } ...
3374 *
3375 * Sets the given property for all datasets specified on the command line.
3376 */
3377 typedef struct set_cbdata {
3378 char *cb_propname;
3379 char *cb_value;
3380 } set_cbdata_t;

3382 static int
3383 set_callback(zfs_handle_t *zhp, void *data)
3384 {
3385 set_cbdata_t *cbp = data;

3387 if (zfs_prop_set(zhp, cbp->cb_propname, cbp->cb_value) != 0) {
3388 switch (libzfs_errno(g_zfs)) {
3389 case EZFS_MOUNTFAILED:
3390 (void) fprintf(stderr, gettext("property may be set "
3391 "but unable to remount filesystem\n"));
3392 break;
3393 case EZFS_SHARENFSFAILED:
3394 (void) fprintf(stderr, gettext("property may be set "
3395 "but unable to reshare filesystem\n"));
3396 break;
3397 }
3398 return (1);
3399 }
3400 return (0);
3401 }

3403 static int
3404 zfs_do_set(int argc, char **argv)
3405 {
3406 set_cbdata_t cb;
3407 int ret = 0;

3409 /* check for options */
3410 if (argc > 1 && argv[1][0] == ’-’) {
3411 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
3412 argv[1][1]);
3413 usage(B_FALSE);
3414 }

3416 /* check number of arguments */
3417 if (argc < 2) {
3418 (void) fprintf(stderr, gettext("missing property=value "
3419 "argument\n"));
3420 usage(B_FALSE);
3421 }
3422 if (argc < 3) {
3423 (void) fprintf(stderr, gettext("missing dataset name\n"));
3424 usage(B_FALSE);
3425 }

new/usr/src/cmd/zfs/zfs_main.c 53

3427 /* validate property=value argument */
3428 cb.cb_propname = argv[1];
3429 if (((cb.cb_value = strchr(cb.cb_propname, ’=’)) == NULL) ||
3430 (cb.cb_value[1] == ’\0’)) {
3431 (void) fprintf(stderr, gettext("missing value in "
3432 "property=value argument\n"));
3433 usage(B_FALSE);
3434 }

3436 *cb.cb_value = ’\0’;
3437 cb.cb_value++;

3439 if (*cb.cb_propname == ’\0’) {
3440 (void) fprintf(stderr,
3441 gettext("missing property in property=value argument\n"));
3442 usage(B_FALSE);
3443 }

3445 ret = zfs_for_each(argc - 2, argv + 2, NULL,
3446 ZFS_TYPE_DATASET, NULL, NULL, 0, set_callback, &cb);

3448 return (ret);
3449 }

3451 typedef struct snap_cbdata {
3452 nvlist_t *sd_nvl;
3453 boolean_t sd_recursive;
3454 const char *sd_snapname;
3455 } snap_cbdata_t;

3457 static int
3458 zfs_snapshot_cb(zfs_handle_t *zhp, void *arg)
3459 {
3460 snap_cbdata_t *sd = arg;
3461 char *name;
3462 int rv = 0;
3463 int error;

3465 error = asprintf(&name, "%s@%s", zfs_get_name(zhp), sd->sd_snapname);
3466 if (error == -1)
3467 nomem();
3468 fnvlist_add_boolean(sd->sd_nvl, name);
3469 free(name);

3471 if (sd->sd_recursive)
3472 rv = zfs_iter_filesystems(zhp, zfs_snapshot_cb, sd);
3473 zfs_close(zhp);
3474 return (rv);
3475 }

3477 /*
3478 * zfs snapshot [-r] [-o prop=value] ... <fs@snap>
3479 *
3480 * Creates a snapshot with the given name. While functionally equivalent to
3481 * ’zfs create’, it is a separate command to differentiate intent.
3482 */
3483 static int
3484 zfs_do_snapshot(int argc, char **argv)
3485 {
3486 int ret = 0;
3487 char c;
3488 nvlist_t *props;
3489 snap_cbdata_t sd = { 0 };
3490 boolean_t multiple_snaps = B_FALSE;

3492 if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0)

new/usr/src/cmd/zfs/zfs_main.c 54

3493 nomem();
3494 if (nvlist_alloc(&sd.sd_nvl, NV_UNIQUE_NAME, 0) != 0)
3495 nomem();

3497 /* check options */
3498 while ((c = getopt(argc, argv, "ro:")) != -1) {
3499 switch (c) {
3500 case ’o’:
3501 if (parseprop(props))
3502 return (1);
3503 break;
3504 case ’r’:
3505 sd.sd_recursive = B_TRUE;
3506 multiple_snaps = B_TRUE;
3507 break;
3508 case ’?’:
3509 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
3510 optopt);
3511 goto usage;
3512 }
3513 }

3515 argc -= optind;
3516 argv += optind;

3518 /* check number of arguments */
3519 if (argc < 1) {
3520 (void) fprintf(stderr, gettext("missing snapshot argument\n"));
3521 goto usage;
3522 }

3524 if (argc > 1)
3525 multiple_snaps = B_TRUE;
3526 for (; argc > 0; argc--, argv++) {
3527 char *atp;
3528 zfs_handle_t *zhp;

3530 atp = strchr(argv[0], ’@’);
3531 if (atp == NULL)
3532 goto usage;
3533 *atp = ’\0’;
3534 sd.sd_snapname = atp + 1;
3535 zhp = zfs_open(g_zfs, argv[0],
3536 ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
3537 if (zhp == NULL)
3538 goto usage;
3539 if (zfs_snapshot_cb(zhp, &sd) != 0)
3540 goto usage;
3541 }

3543 ret = zfs_snapshot_nvl(g_zfs, sd.sd_nvl, props);
3544 nvlist_free(sd.sd_nvl);
3545 nvlist_free(props);
3546 if (ret != 0 && multiple_snaps)
3547 (void) fprintf(stderr, gettext("no snapshots were created\n"));
3548 return (ret != 0);

3550 usage:
3551 nvlist_free(sd.sd_nvl);
3552 nvlist_free(props);
3553 usage(B_FALSE);
3554 return (-1);
3555 }

3557 /*
3558 * Send a backup stream to stdout.

new/usr/src/cmd/zfs/zfs_main.c 55

3559 */
3560 static int
3561 zfs_do_send(int argc, char **argv)
3562 {
3563 char *fromname = NULL;
3564 char *toname = NULL;
3565 char *cp;
3566 zfs_handle_t *zhp;
3567 sendflags_t flags = { 0 };
3568 int c, err;
3569 nvlist_t *dbgnv = NULL;
3570 boolean_t extraverbose = B_FALSE;

3572 /* check options */
3573 while ((c = getopt(argc, argv, ":i:I:RDpvnP")) != -1) {
3574 switch (c) {
3575 case ’i’:
3576 if (fromname)
3577 usage(B_FALSE);
3578 fromname = optarg;
3579 break;
3580 case ’I’:
3581 if (fromname)
3582 usage(B_FALSE);
3583 fromname = optarg;
3584 flags.doall = B_TRUE;
3585 break;
3586 case ’R’:
3587 flags.replicate = B_TRUE;
3588 break;
3589 case ’p’:
3590 flags.props = B_TRUE;
3591 break;
3592 case ’P’:
3593 flags.parsable = B_TRUE;
3594 flags.verbose = B_TRUE;
3595 break;
3596 case ’v’:
3597 if (flags.verbose)
3598 extraverbose = B_TRUE;
3599 flags.verbose = B_TRUE;
3600 flags.progress = B_TRUE;
3601 break;
3602 case ’D’:
3603 flags.dedup = B_TRUE;
3604 break;
3605 case ’n’:
3606 flags.dryrun = B_TRUE;
3607 break;
3608 case ’:’:
3609 (void) fprintf(stderr, gettext("missing argument for "
3610 "’%c’ option\n"), optopt);
3611 usage(B_FALSE);
3612 break;
3613 case ’?’:
3614 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
3615 optopt);
3616 usage(B_FALSE);
3617 }
3618 }

3620 argc -= optind;
3621 argv += optind;

3623 /* check number of arguments */
3624 if (argc < 1) {

new/usr/src/cmd/zfs/zfs_main.c 56

3625 (void) fprintf(stderr, gettext("missing snapshot argument\n"));
3626 usage(B_FALSE);
3627 }
3628 if (argc > 1) {
3629 (void) fprintf(stderr, gettext("too many arguments\n"));
3630 usage(B_FALSE);
3631 }

3633 if (!flags.dryrun && isatty(STDOUT_FILENO)) {
3634 (void) fprintf(stderr,
3635 gettext("Error: Stream can not be written to a terminal.\n"
3636 "You must redirect standard output.\n"));
3637 return (1);
3638 }

3640 cp = strchr(argv[0], ’@’);
3641 if (cp == NULL) {
3642 (void) fprintf(stderr,
3643 gettext("argument must be a snapshot\n"));
3644 usage(B_FALSE);
3645 }
3646 *cp = ’\0’;
3647 toname = cp + 1;
3648 zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
3649 if (zhp == NULL)
3650 return (1);

3652 /*
3653 * If they specified the full path to the snapshot, chop off
3654 * everything except the short name of the snapshot, but special
3655 * case if they specify the origin.
3656 */
3657 if (fromname && (cp = strchr(fromname, ’@’)) != NULL) {
3658 char origin[ZFS_MAXNAMELEN];
3659 zprop_source_t src;

3661 (void) zfs_prop_get(zhp, ZFS_PROP_ORIGIN,
3662 origin, sizeof (origin), &src, NULL, 0, B_FALSE);

3664 if (strcmp(origin, fromname) == 0) {
3665 fromname = NULL;
3666 flags.fromorigin = B_TRUE;
3667 } else {
3668 *cp = ’\0’;
3669 if (cp != fromname && strcmp(argv[0], fromname)) {
3670 (void) fprintf(stderr,
3671 gettext("incremental source must be "
3672 "in same filesystem\n"));
3673 usage(B_FALSE);
3674 }
3675 fromname = cp + 1;
3676 if (strchr(fromname, ’@’) || strchr(fromname, ’/’)) {
3677 (void) fprintf(stderr,
3678 gettext("invalid incremental source\n"));
3679 usage(B_FALSE);
3680 }
3681 }
3682 }

3684 if (flags.replicate && fromname == NULL)
3685 flags.doall = B_TRUE;

3687 err = zfs_send(zhp, fromname, toname, &flags, STDOUT_FILENO, NULL, 0,
3688 extraverbose ? &dbgnv : NULL);

3690 if (extraverbose && dbgnv != NULL) {

new/usr/src/cmd/zfs/zfs_main.c 57

3691 /*
3692 * dump_nvlist prints to stdout, but that’s been
3693 * redirected to a file. Make it print to stderr
3694 * instead.
3695 */
3696 (void) dup2(STDERR_FILENO, STDOUT_FILENO);
3697 dump_nvlist(dbgnv, 0);
3698 nvlist_free(dbgnv);
3699 }
3700 zfs_close(zhp);

3702 return (err != 0);
3703 }

3705 /*
3706 * zfs receive [-vnFu] [-d | -e] <fs@snap>
3707 *
3708 * Restore a backup stream from stdin.
3709 */
3710 static int
3711 zfs_do_receive(int argc, char **argv)
3712 {
3713 int c, err;
3714 recvflags_t flags = { 0 };

3716 /* check options */
3717 while ((c = getopt(argc, argv, ":denuvF")) != -1) {
3718 switch (c) {
3719 case ’d’:
3720 flags.isprefix = B_TRUE;
3721 break;
3722 case ’e’:
3723 flags.isprefix = B_TRUE;
3724 flags.istail = B_TRUE;
3725 break;
3726 case ’n’:
3727 flags.dryrun = B_TRUE;
3728 break;
3729 case ’u’:
3730 flags.nomount = B_TRUE;
3731 break;
3732 case ’v’:
3733 flags.verbose = B_TRUE;
3734 break;
3735 case ’F’:
3736 flags.force = B_TRUE;
3737 break;
3738 case ’:’:
3739 (void) fprintf(stderr, gettext("missing argument for "
3740 "’%c’ option\n"), optopt);
3741 usage(B_FALSE);
3742 break;
3743 case ’?’:
3744 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
3745 optopt);
3746 usage(B_FALSE);
3747 }
3748 }

3750 argc -= optind;
3751 argv += optind;

3753 /* check number of arguments */
3754 if (argc < 1) {
3755 (void) fprintf(stderr, gettext("missing snapshot argument\n"));
3756 usage(B_FALSE);

new/usr/src/cmd/zfs/zfs_main.c 58

3757 }
3758 if (argc > 1) {
3759 (void) fprintf(stderr, gettext("too many arguments\n"));
3760 usage(B_FALSE);
3761 }

3763 if (isatty(STDIN_FILENO)) {
3764 (void) fprintf(stderr,
3765 gettext("Error: Backup stream can not be read "
3766 "from a terminal.\n"
3767 "You must redirect standard input.\n"));
3768 return (1);
3769 }

3771 err = zfs_receive(g_zfs, argv[0], &flags, STDIN_FILENO, NULL);

3773 return (err != 0);
3774 }

3776 /*
3777 * allow/unallow stuff
3778 */
3779 /* copied from zfs/sys/dsl_deleg.h */
3780 #define ZFS_DELEG_PERM_CREATE "create"
3781 #define ZFS_DELEG_PERM_DESTROY "destroy"
3782 #define ZFS_DELEG_PERM_SNAPSHOT "snapshot"
3783 #define ZFS_DELEG_PERM_ROLLBACK "rollback"
3784 #define ZFS_DELEG_PERM_CLONE "clone"
3785 #define ZFS_DELEG_PERM_PROMOTE "promote"
3786 #define ZFS_DELEG_PERM_RENAME "rename"
3787 #define ZFS_DELEG_PERM_MOUNT "mount"
3788 #define ZFS_DELEG_PERM_SHARE "share"
3789 #define ZFS_DELEG_PERM_SEND "send"
3790 #define ZFS_DELEG_PERM_RECEIVE "receive"
3791 #define ZFS_DELEG_PERM_ALLOW "allow"
3792 #define ZFS_DELEG_PERM_USERPROP "userprop"
3793 #define ZFS_DELEG_PERM_VSCAN "vscan" /* ??? */
3794 #define ZFS_DELEG_PERM_USERQUOTA "userquota"
3795 #define ZFS_DELEG_PERM_GROUPQUOTA "groupquota"
3796 #define ZFS_DELEG_PERM_USERUSED "userused"
3797 #define ZFS_DELEG_PERM_GROUPUSED "groupused"
3798 #define ZFS_DELEG_PERM_HOLD "hold"
3799 #define ZFS_DELEG_PERM_RELEASE "release"
3800 #define ZFS_DELEG_PERM_DIFF "diff"

3802 #define ZFS_NUM_DELEG_NOTES ZFS_DELEG_NOTE_NONE

3804 static zfs_deleg_perm_tab_t zfs_deleg_perm_tbl[] = {
3805 { ZFS_DELEG_PERM_ALLOW, ZFS_DELEG_NOTE_ALLOW },
3806 { ZFS_DELEG_PERM_CLONE, ZFS_DELEG_NOTE_CLONE },
3807 { ZFS_DELEG_PERM_CREATE, ZFS_DELEG_NOTE_CREATE },
3808 { ZFS_DELEG_PERM_DESTROY, ZFS_DELEG_NOTE_DESTROY },
3809 { ZFS_DELEG_PERM_DIFF, ZFS_DELEG_NOTE_DIFF},
3810 { ZFS_DELEG_PERM_HOLD, ZFS_DELEG_NOTE_HOLD },
3811 { ZFS_DELEG_PERM_MOUNT, ZFS_DELEG_NOTE_MOUNT },
3812 { ZFS_DELEG_PERM_PROMOTE, ZFS_DELEG_NOTE_PROMOTE },
3813 { ZFS_DELEG_PERM_RECEIVE, ZFS_DELEG_NOTE_RECEIVE },
3814 { ZFS_DELEG_PERM_RELEASE, ZFS_DELEG_NOTE_RELEASE },
3815 { ZFS_DELEG_PERM_RENAME, ZFS_DELEG_NOTE_RENAME },
3816 { ZFS_DELEG_PERM_ROLLBACK, ZFS_DELEG_NOTE_ROLLBACK },
3817 { ZFS_DELEG_PERM_SEND, ZFS_DELEG_NOTE_SEND },
3818 { ZFS_DELEG_PERM_SHARE, ZFS_DELEG_NOTE_SHARE },
3819 { ZFS_DELEG_PERM_SNAPSHOT, ZFS_DELEG_NOTE_SNAPSHOT },

3821 { ZFS_DELEG_PERM_GROUPQUOTA, ZFS_DELEG_NOTE_GROUPQUOTA },
3822 { ZFS_DELEG_PERM_GROUPUSED, ZFS_DELEG_NOTE_GROUPUSED },

new/usr/src/cmd/zfs/zfs_main.c 59

3823 { ZFS_DELEG_PERM_USERPROP, ZFS_DELEG_NOTE_USERPROP },
3824 { ZFS_DELEG_PERM_USERQUOTA, ZFS_DELEG_NOTE_USERQUOTA },
3825 { ZFS_DELEG_PERM_USERUSED, ZFS_DELEG_NOTE_USERUSED },
3826 { NULL, ZFS_DELEG_NOTE_NONE }
3827 };

3829 /* permission structure */
3830 typedef struct deleg_perm {
3831 zfs_deleg_who_type_t dp_who_type;
3832 const char *dp_name;
3833 boolean_t dp_local;
3834 boolean_t dp_descend;
3835 } deleg_perm_t;

3837 /* */
3838 typedef struct deleg_perm_node {
3839 deleg_perm_t dpn_perm;

3841 uu_avl_node_t dpn_avl_node;
3842 } deleg_perm_node_t;

3844 typedef struct fs_perm fs_perm_t;

3846 /* permissions set */
3847 typedef struct who_perm {
3848 zfs_deleg_who_type_t who_type;
3849 const char *who_name; /* id */
3850 char who_ug_name[256]; /* user/group name */
3851 fs_perm_t *who_fsperm; /* uplink */

3853 uu_avl_t *who_deleg_perm_avl; /* permissions */
3854 } who_perm_t;

3856 /* */
3857 typedef struct who_perm_node {
3858 who_perm_t who_perm;
3859 uu_avl_node_t who_avl_node;
3860 } who_perm_node_t;

3862 typedef struct fs_perm_set fs_perm_set_t;
3863 /* fs permissions */
3864 struct fs_perm {
3865 const char *fsp_name;

3867 uu_avl_t *fsp_sc_avl; /* sets,create */
3868 uu_avl_t *fsp_uge_avl; /* user,group,everyone */

3870 fs_perm_set_t *fsp_set; /* uplink */
3871 };

3873 /* */
3874 typedef struct fs_perm_node {
3875 fs_perm_t fspn_fsperm;
3876 uu_avl_t *fspn_avl;

3878 uu_list_node_t fspn_list_node;
3879 } fs_perm_node_t;

3881 /* top level structure */
3882 struct fs_perm_set {
3883 uu_list_pool_t *fsps_list_pool;
3884 uu_list_t *fsps_list; /* list of fs_perms */

3886 uu_avl_pool_t *fsps_named_set_avl_pool;
3887 uu_avl_pool_t *fsps_who_perm_avl_pool;
3888 uu_avl_pool_t *fsps_deleg_perm_avl_pool;

new/usr/src/cmd/zfs/zfs_main.c 60

3889 };

3891 static inline const char *
3892 deleg_perm_type(zfs_deleg_note_t note)
3893 {
3894 /* subcommands */
3895 switch (note) {
3896 /* SUBCOMMANDS */
3897 /* OTHER */
3898 case ZFS_DELEG_NOTE_GROUPQUOTA:
3899 case ZFS_DELEG_NOTE_GROUPUSED:
3900 case ZFS_DELEG_NOTE_USERPROP:
3901 case ZFS_DELEG_NOTE_USERQUOTA:
3902 case ZFS_DELEG_NOTE_USERUSED:
3903 /* other */
3904 return (gettext("other"));
3905 default:
3906 return (gettext("subcommand"));
3907 }
3908 }

3910 static int inline
3911 who_type2weight(zfs_deleg_who_type_t who_type)
3912 {
3913 int res;
3914 switch (who_type) {
3915 case ZFS_DELEG_NAMED_SET_SETS:
3916 case ZFS_DELEG_NAMED_SET:
3917 res = 0;
3918 break;
3919 case ZFS_DELEG_CREATE_SETS:
3920 case ZFS_DELEG_CREATE:
3921 res = 1;
3922 break;
3923 case ZFS_DELEG_USER_SETS:
3924 case ZFS_DELEG_USER:
3925 res = 2;
3926 break;
3927 case ZFS_DELEG_GROUP_SETS:
3928 case ZFS_DELEG_GROUP:
3929 res = 3;
3930 break;
3931 case ZFS_DELEG_EVERYONE_SETS:
3932 case ZFS_DELEG_EVERYONE:
3933 res = 4;
3934 break;
3935 default:
3936 res = -1;
3937 }

3939 return (res);
3940 }

3942 /* ARGSUSED */
3943 static int
3944 who_perm_compare(const void *larg, const void *rarg, void *unused)
3945 {
3946 const who_perm_node_t *l = larg;
3947 const who_perm_node_t *r = rarg;
3948 zfs_deleg_who_type_t ltype = l->who_perm.who_type;
3949 zfs_deleg_who_type_t rtype = r->who_perm.who_type;
3950 int lweight = who_type2weight(ltype);
3951 int rweight = who_type2weight(rtype);
3952 int res = lweight - rweight;
3953 if (res == 0)
3954 res = strncmp(l->who_perm.who_name, r->who_perm.who_name,

new/usr/src/cmd/zfs/zfs_main.c 61

3955 ZFS_MAX_DELEG_NAME-1);

3957 if (res == 0)
3958 return (0);
3959 if (res > 0)
3960 return (1);
3961 else
3962 return (-1);
3963 }

3965 /* ARGSUSED */
3966 static int
3967 deleg_perm_compare(const void *larg, const void *rarg, void *unused)
3968 {
3969 const deleg_perm_node_t *l = larg;
3970 const deleg_perm_node_t *r = rarg;
3971 int res = strncmp(l->dpn_perm.dp_name, r->dpn_perm.dp_name,
3972 ZFS_MAX_DELEG_NAME-1);

3974 if (res == 0)
3975 return (0);

3977 if (res > 0)
3978 return (1);
3979 else
3980 return (-1);
3981 }

3983 static inline void
3984 fs_perm_set_init(fs_perm_set_t *fspset)
3985 {
3986 bzero(fspset, sizeof (fs_perm_set_t));

3988 if ((fspset->fsps_list_pool = uu_list_pool_create("fsps_list_pool",
3989 sizeof (fs_perm_node_t), offsetof(fs_perm_node_t, fspn_list_node),
3990 NULL, UU_DEFAULT)) == NULL)
3991 nomem();
3992 if ((fspset->fsps_list = uu_list_create(fspset->fsps_list_pool, NULL,
3993 UU_DEFAULT)) == NULL)
3994 nomem();

3996 if ((fspset->fsps_named_set_avl_pool = uu_avl_pool_create(
3997 "named_set_avl_pool", sizeof (who_perm_node_t), offsetof(
3998 who_perm_node_t, who_avl_node), who_perm_compare,
3999 UU_DEFAULT)) == NULL)
4000 nomem();

4002 if ((fspset->fsps_who_perm_avl_pool = uu_avl_pool_create(
4003 "who_perm_avl_pool", sizeof (who_perm_node_t), offsetof(
4004 who_perm_node_t, who_avl_node), who_perm_compare,
4005 UU_DEFAULT)) == NULL)
4006 nomem();

4008 if ((fspset->fsps_deleg_perm_avl_pool = uu_avl_pool_create(
4009 "deleg_perm_avl_pool", sizeof (deleg_perm_node_t), offsetof(
4010 deleg_perm_node_t, dpn_avl_node), deleg_perm_compare, UU_DEFAULT))
4011 == NULL)
4012 nomem();
4013 }

4015 static inline void fs_perm_fini(fs_perm_t *);
4016 static inline void who_perm_fini(who_perm_t *);

4018 static inline void
4019 fs_perm_set_fini(fs_perm_set_t *fspset)
4020 {

new/usr/src/cmd/zfs/zfs_main.c 62

4021 fs_perm_node_t *node = uu_list_first(fspset->fsps_list);

4023 while (node != NULL) {
4024 fs_perm_node_t *next_node =
4025 uu_list_next(fspset->fsps_list, node);
4026 fs_perm_t *fsperm = &node->fspn_fsperm;
4027 fs_perm_fini(fsperm);
4028 uu_list_remove(fspset->fsps_list, node);
4029 free(node);
4030 node = next_node;
4031 }

4033 uu_avl_pool_destroy(fspset->fsps_named_set_avl_pool);
4034 uu_avl_pool_destroy(fspset->fsps_who_perm_avl_pool);
4035 uu_avl_pool_destroy(fspset->fsps_deleg_perm_avl_pool);
4036 }

4038 static inline void
4039 deleg_perm_init(deleg_perm_t *deleg_perm, zfs_deleg_who_type_t type,
4040 const char *name)
4041 {
4042 deleg_perm->dp_who_type = type;
4043 deleg_perm->dp_name = name;
4044 }

4046 static inline void
4047 who_perm_init(who_perm_t *who_perm, fs_perm_t *fsperm,
4048 zfs_deleg_who_type_t type, const char *name)
4049 {
4050 uu_avl_pool_t *pool;
4051 pool = fsperm->fsp_set->fsps_deleg_perm_avl_pool;

4053 bzero(who_perm, sizeof (who_perm_t));

4055 if ((who_perm->who_deleg_perm_avl = uu_avl_create(pool, NULL,
4056 UU_DEFAULT)) == NULL)
4057 nomem();

4059 who_perm->who_type = type;
4060 who_perm->who_name = name;
4061 who_perm->who_fsperm = fsperm;
4062 }

4064 static inline void
4065 who_perm_fini(who_perm_t *who_perm)
4066 {
4067 deleg_perm_node_t *node = uu_avl_first(who_perm->who_deleg_perm_avl);

4069 while (node != NULL) {
4070 deleg_perm_node_t *next_node =
4071 uu_avl_next(who_perm->who_deleg_perm_avl, node);

4073 uu_avl_remove(who_perm->who_deleg_perm_avl, node);
4074 free(node);
4075 node = next_node;
4076 }

4078 uu_avl_destroy(who_perm->who_deleg_perm_avl);
4079 }

4081 static inline void
4082 fs_perm_init(fs_perm_t *fsperm, fs_perm_set_t *fspset, const char *fsname)
4083 {
4084 uu_avl_pool_t *nset_pool = fspset->fsps_named_set_avl_pool;
4085 uu_avl_pool_t *who_pool = fspset->fsps_who_perm_avl_pool;

new/usr/src/cmd/zfs/zfs_main.c 63

4087 bzero(fsperm, sizeof (fs_perm_t));

4089 if ((fsperm->fsp_sc_avl = uu_avl_create(nset_pool, NULL, UU_DEFAULT))
4090 == NULL)
4091 nomem();

4093 if ((fsperm->fsp_uge_avl = uu_avl_create(who_pool, NULL, UU_DEFAULT))
4094 == NULL)
4095 nomem();

4097 fsperm->fsp_set = fspset;
4098 fsperm->fsp_name = fsname;
4099 }

4101 static inline void
4102 fs_perm_fini(fs_perm_t *fsperm)
4103 {
4104 who_perm_node_t *node = uu_avl_first(fsperm->fsp_sc_avl);
4105 while (node != NULL) {
4106 who_perm_node_t *next_node = uu_avl_next(fsperm->fsp_sc_avl,
4107 node);
4108 who_perm_t *who_perm = &node->who_perm;
4109 who_perm_fini(who_perm);
4110 uu_avl_remove(fsperm->fsp_sc_avl, node);
4111 free(node);
4112 node = next_node;
4113 }

4115 node = uu_avl_first(fsperm->fsp_uge_avl);
4116 while (node != NULL) {
4117 who_perm_node_t *next_node = uu_avl_next(fsperm->fsp_uge_avl,
4118 node);
4119 who_perm_t *who_perm = &node->who_perm;
4120 who_perm_fini(who_perm);
4121 uu_avl_remove(fsperm->fsp_uge_avl, node);
4122 free(node);
4123 node = next_node;
4124 }

4126 uu_avl_destroy(fsperm->fsp_sc_avl);
4127 uu_avl_destroy(fsperm->fsp_uge_avl);
4128 }

4130 static void inline
4131 set_deleg_perm_node(uu_avl_t *avl, deleg_perm_node_t *node,
4132 zfs_deleg_who_type_t who_type, const char *name, char locality)
4133 {
4134 uu_avl_index_t idx = 0;

4136 deleg_perm_node_t *found_node = NULL;
4137 deleg_perm_t *deleg_perm = &node->dpn_perm;

4139 deleg_perm_init(deleg_perm, who_type, name);

4141 if ((found_node = uu_avl_find(avl, node, NULL, &idx))
4142 == NULL)
4143 uu_avl_insert(avl, node, idx);
4144 else {
4145 node = found_node;
4146 deleg_perm = &node->dpn_perm;
4147 }

4150 switch (locality) {
4151 case ZFS_DELEG_LOCAL:
4152 deleg_perm->dp_local = B_TRUE;

new/usr/src/cmd/zfs/zfs_main.c 64

4153 break;
4154 case ZFS_DELEG_DESCENDENT:
4155 deleg_perm->dp_descend = B_TRUE;
4156 break;
4157 case ZFS_DELEG_NA:
4158 break;
4159 default:
4160 assert(B_FALSE); /* invalid locality */
4161 }
4162 }

4164 static inline int
4165 parse_who_perm(who_perm_t *who_perm, nvlist_t *nvl, char locality)
4166 {
4167 nvpair_t *nvp = NULL;
4168 fs_perm_set_t *fspset = who_perm->who_fsperm->fsp_set;
4169 uu_avl_t *avl = who_perm->who_deleg_perm_avl;
4170 zfs_deleg_who_type_t who_type = who_perm->who_type;

4172 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4173 const char *name = nvpair_name(nvp);
4174 data_type_t type = nvpair_type(nvp);
4175 uu_avl_pool_t *avl_pool = fspset->fsps_deleg_perm_avl_pool;
4176 deleg_perm_node_t *node =
4177 safe_malloc(sizeof (deleg_perm_node_t));

4179 assert(type == DATA_TYPE_BOOLEAN);

4181 uu_avl_node_init(node, &node->dpn_avl_node, avl_pool);
4182 set_deleg_perm_node(avl, node, who_type, name, locality);
4183 }

4185 return (0);
4186 }

4188 static inline int
4189 parse_fs_perm(fs_perm_t *fsperm, nvlist_t *nvl)
4190 {
4191 nvpair_t *nvp = NULL;
4192 fs_perm_set_t *fspset = fsperm->fsp_set;

4194 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4195 nvlist_t *nvl2 = NULL;
4196 const char *name = nvpair_name(nvp);
4197 uu_avl_t *avl = NULL;
4198 uu_avl_pool_t *avl_pool;
4199 zfs_deleg_who_type_t perm_type = name[0];
4200 char perm_locality = name[1];
4201 const char *perm_name = name + 3;
4202 boolean_t is_set = B_TRUE;
4203 who_perm_t *who_perm = NULL;

4205 assert(’$’ == name[2]);

4207 if (nvpair_value_nvlist(nvp, &nvl2) != 0)
4208 return (-1);

4210 switch (perm_type) {
4211 case ZFS_DELEG_CREATE:
4212 case ZFS_DELEG_CREATE_SETS:
4213 case ZFS_DELEG_NAMED_SET:
4214 case ZFS_DELEG_NAMED_SET_SETS:
4215 avl_pool = fspset->fsps_named_set_avl_pool;
4216 avl = fsperm->fsp_sc_avl;
4217 break;
4218 case ZFS_DELEG_USER:

new/usr/src/cmd/zfs/zfs_main.c 65

4219 case ZFS_DELEG_USER_SETS:
4220 case ZFS_DELEG_GROUP:
4221 case ZFS_DELEG_GROUP_SETS:
4222 case ZFS_DELEG_EVERYONE:
4223 case ZFS_DELEG_EVERYONE_SETS:
4224 avl_pool = fspset->fsps_who_perm_avl_pool;
4225 avl = fsperm->fsp_uge_avl;
4226 break;
4227 }

4229 if (is_set) {
4230 who_perm_node_t *found_node = NULL;
4231 who_perm_node_t *node = safe_malloc(
4232 sizeof (who_perm_node_t));
4233 who_perm = &node->who_perm;
4234 uu_avl_index_t idx = 0;

4236 uu_avl_node_init(node, &node->who_avl_node, avl_pool);
4237 who_perm_init(who_perm, fsperm, perm_type, perm_name);

4239 if ((found_node = uu_avl_find(avl, node, NULL, &idx))
4240 == NULL) {
4241 if (avl == fsperm->fsp_uge_avl) {
4242 uid_t rid = 0;
4243 struct passwd *p = NULL;
4244 struct group *g = NULL;
4245 const char *nice_name = NULL;

4247 switch (perm_type) {
4248 case ZFS_DELEG_USER_SETS:
4249 case ZFS_DELEG_USER:
4250 rid = atoi(perm_name);
4251 p = getpwuid(rid);
4252 if (p)
4253 nice_name = p->pw_name;
4254 break;
4255 case ZFS_DELEG_GROUP_SETS:
4256 case ZFS_DELEG_GROUP:
4257 rid = atoi(perm_name);
4258 g = getgrgid(rid);
4259 if (g)
4260 nice_name = g->gr_name;
4261 break;
4262 }

4264 if (nice_name != NULL)
4265 (void) strlcpy(
4266 node->who_perm.who_ug_name,
4267 nice_name, 256);
4268 }

4270 uu_avl_insert(avl, node, idx);
4271 } else {
4272 node = found_node;
4273 who_perm = &node->who_perm;
4274 }
4275 }

4277 (void) parse_who_perm(who_perm, nvl2, perm_locality);
4278 }

4280 return (0);
4281 }

4283 static inline int
4284 parse_fs_perm_set(fs_perm_set_t *fspset, nvlist_t *nvl)

new/usr/src/cmd/zfs/zfs_main.c 66

4285 {
4286 nvpair_t *nvp = NULL;
4287 uu_avl_index_t idx = 0;

4289 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4290 nvlist_t *nvl2 = NULL;
4291 const char *fsname = nvpair_name(nvp);
4292 data_type_t type = nvpair_type(nvp);
4293 fs_perm_t *fsperm = NULL;
4294 fs_perm_node_t *node = safe_malloc(sizeof (fs_perm_node_t));
4295 if (node == NULL)
4296 nomem();

4298 fsperm = &node->fspn_fsperm;

4300 assert(DATA_TYPE_NVLIST == type);

4302 uu_list_node_init(node, &node->fspn_list_node,
4303 fspset->fsps_list_pool);

4305 idx = uu_list_numnodes(fspset->fsps_list);
4306 fs_perm_init(fsperm, fspset, fsname);

4308 if (nvpair_value_nvlist(nvp, &nvl2) != 0)
4309 return (-1);

4311 (void) parse_fs_perm(fsperm, nvl2);

4313 uu_list_insert(fspset->fsps_list, node, idx);
4314 }

4316 return (0);
4317 }

4319 static inline const char *
4320 deleg_perm_comment(zfs_deleg_note_t note)
4321 {
4322 const char *str = "";

4324 /* subcommands */
4325 switch (note) {
4326 /* SUBCOMMANDS */
4327 case ZFS_DELEG_NOTE_ALLOW:
4328 str = gettext("Must also have the permission that is being"
4329 "\n\t\t\t\tallowed");
4330 break;
4331 case ZFS_DELEG_NOTE_CLONE:
4332 str = gettext("Must also have the ’create’ ability and ’mount’"
4333 "\n\t\t\t\tability in the origin file system");
4334 break;
4335 case ZFS_DELEG_NOTE_CREATE:
4336 str = gettext("Must also have the ’mount’ ability");
4337 break;
4338 case ZFS_DELEG_NOTE_DESTROY:
4339 str = gettext("Must also have the ’mount’ ability");
4340 break;
4341 case ZFS_DELEG_NOTE_DIFF:
4342 str = gettext("Allows lookup of paths within a dataset;"
4343 "\n\t\t\t\tgiven an object number. Ordinary users need this"
4344 "\n\t\t\t\tin order to use zfs diff");
4345 break;
4346 case ZFS_DELEG_NOTE_HOLD:
4347 str = gettext("Allows adding a user hold to a snapshot");
4348 break;
4349 case ZFS_DELEG_NOTE_MOUNT:
4350 str = gettext("Allows mount/umount of ZFS datasets");

new/usr/src/cmd/zfs/zfs_main.c 67

4351 break;
4352 case ZFS_DELEG_NOTE_PROMOTE:
4353 str = gettext("Must also have the ’mount’\n\t\t\t\tand"
4354 " ’promote’ ability in the origin file system");
4355 break;
4356 case ZFS_DELEG_NOTE_RECEIVE:
4357 str = gettext("Must also have the ’mount’ and ’create’"
4358 " ability");
4359 break;
4360 case ZFS_DELEG_NOTE_RELEASE:
4361 str = gettext("Allows releasing a user hold which\n\t\t\t\t"
4362 "might destroy the snapshot");
4363 break;
4364 case ZFS_DELEG_NOTE_RENAME:
4365 str = gettext("Must also have the ’mount’ and ’create’"
4366 "\n\t\t\t\tability in the new parent");
4367 break;
4368 case ZFS_DELEG_NOTE_ROLLBACK:
4369 str = gettext("");
4370 break;
4371 case ZFS_DELEG_NOTE_SEND:
4372 str = gettext("");
4373 break;
4374 case ZFS_DELEG_NOTE_SHARE:
4375 str = gettext("Allows sharing file systems over NFS or SMB"
4376 "\n\t\t\t\tprotocols");
4377 break;
4378 case ZFS_DELEG_NOTE_SNAPSHOT:
4379 str = gettext("");
4380 break;
4381 /*
4382 * case ZFS_DELEG_NOTE_VSCAN:
4383 * str = gettext("");
4384 * break;
4385 */
4386 /* OTHER */
4387 case ZFS_DELEG_NOTE_GROUPQUOTA:
4388 str = gettext("Allows accessing any groupquota@... property");
4389 break;
4390 case ZFS_DELEG_NOTE_GROUPUSED:
4391 str = gettext("Allows reading any groupused@... property");
4392 break;
4393 case ZFS_DELEG_NOTE_USERPROP:
4394 str = gettext("Allows changing any user property");
4395 break;
4396 case ZFS_DELEG_NOTE_USERQUOTA:
4397 str = gettext("Allows accessing any userquota@... property");
4398 break;
4399 case ZFS_DELEG_NOTE_USERUSED:
4400 str = gettext("Allows reading any userused@... property");
4401 break;
4402 /* other */
4403 default:
4404 str = "";
4405 }

4407 return (str);
4408 }

4410 struct allow_opts {
4411 boolean_t local;
4412 boolean_t descend;
4413 boolean_t user;
4414 boolean_t group;
4415 boolean_t everyone;
4416 boolean_t create;

new/usr/src/cmd/zfs/zfs_main.c 68

4417 boolean_t set;
4418 boolean_t recursive; /* unallow only */
4419 boolean_t prt_usage;

4421 boolean_t prt_perms;
4422 char *who;
4423 char *perms;
4424 const char *dataset;
4425 };

4427 static inline int
4428 prop_cmp(const void *a, const void *b)
4429 {
4430 const char *str1 = *(const char **)a;
4431 const char *str2 = *(const char **)b;
4432 return (strcmp(str1, str2));
4433 }

4435 static void
4436 allow_usage(boolean_t un, boolean_t requested, const char *msg)
4437 {
4438 const char *opt_desc[] = {
4439 "-h", gettext("show this help message and exit"),
4440 "-l", gettext("set permission locally"),
4441 "-d", gettext("set permission for descents"),
4442 "-u", gettext("set permission for user"),
4443 "-g", gettext("set permission for group"),
4444 "-e", gettext("set permission for everyone"),
4445 "-c", gettext("set create time permission"),
4446 "-s", gettext("define permission set"),
4447 /* unallow only */
4448 "-r", gettext("remove permissions recursively"),
4449 };
4450 size_t unallow_size = sizeof (opt_desc) / sizeof (char *);
4451 size_t allow_size = unallow_size - 2;
4452 const char *props[ZFS_NUM_PROPS];
4453 int i;
4454 size_t count = 0;
4455 FILE *fp = requested ? stdout : stderr;
4456 zprop_desc_t *pdtbl = zfs_prop_get_table();
4457 const char *fmt = gettext("%-16s %-14s\t%s\n");

4459 (void) fprintf(fp, gettext("Usage: %s\n"), get_usage(un ? HELP_UNALLOW :
4460 HELP_ALLOW));
4461 (void) fprintf(fp, gettext("Options:\n"));
4462 for (int i = 0; i < (un ? unallow_size : allow_size); i++) {
4463 const char *opt = opt_desc[i++];
4464 const char *optdsc = opt_desc[i];
4465 (void) fprintf(fp, gettext(" %-10s %s\n"), opt, optdsc);
4466 }

4468 (void) fprintf(fp, gettext("\nThe following permissions are "
4469 "supported:\n\n"));
4470 (void) fprintf(fp, fmt, gettext("NAME"), gettext("TYPE"),
4471 gettext("NOTES"));
4472 for (i = 0; i < ZFS_NUM_DELEG_NOTES; i++) {
4473 const char *perm_name = zfs_deleg_perm_tbl[i].z_perm;
4474 zfs_deleg_note_t perm_note = zfs_deleg_perm_tbl[i].z_note;
4475 const char *perm_type = deleg_perm_type(perm_note);
4476 const char *perm_comment = deleg_perm_comment(perm_note);
4477 (void) fprintf(fp, fmt, perm_name, perm_type, perm_comment);
4478 }

4480 for (i = 0; i < ZFS_NUM_PROPS; i++) {
4481 zprop_desc_t *pd = &pdtbl[i];
4482 if (pd->pd_visible != B_TRUE)

new/usr/src/cmd/zfs/zfs_main.c 69

4483 continue;

4485 if (pd->pd_attr == PROP_READONLY)
4486 continue;

4488 props[count++] = pd->pd_name;
4489 }
4490 props[count] = NULL;

4492 qsort(props, count, sizeof (char *), prop_cmp);

4494 for (i = 0; i < count; i++)
4495 (void) fprintf(fp, fmt, props[i], gettext("property"), "");

4497 if (msg != NULL)
4498 (void) fprintf(fp, gettext("\nzfs: error: %s"), msg);

4500 exit(requested ? 0 : 2);
4501 }

4503 static inline const char *
4504 munge_args(int argc, char **argv, boolean_t un, size_t expected_argc,
4505 char **permsp)
4506 {
4507 if (un && argc == expected_argc - 1)
4508 *permsp = NULL;
4509 else if (argc == expected_argc)
4510 *permsp = argv[argc - 2];
4511 else
4512 allow_usage(un, B_FALSE,
4513 gettext("wrong number of parameters\n"));

4515 return (argv[argc - 1]);
4516 }

4518 static void
4519 parse_allow_args(int argc, char **argv, boolean_t un, struct allow_opts *opts)
4520 {
4521 int uge_sum = opts->user + opts->group + opts->everyone;
4522 int csuge_sum = opts->create + opts->set + uge_sum;
4523 int ldcsuge_sum = csuge_sum + opts->local + opts->descend;
4524 int all_sum = un ? ldcsuge_sum + opts->recursive : ldcsuge_sum;

4526 if (uge_sum > 1)
4527 allow_usage(un, B_FALSE,
4528 gettext("-u, -g, and -e are mutually exclusive\n"));

4530 if (opts->prt_usage)
4531 if (argc == 0 && all_sum == 0)
4532 allow_usage(un, B_TRUE, NULL);
4533 else
4534 usage(B_FALSE);

4536 if (opts->set) {
4537 if (csuge_sum > 1)
4538 allow_usage(un, B_FALSE,
4539 gettext("invalid options combined with -s\n"));

4541 opts->dataset = munge_args(argc, argv, un, 3, &opts->perms);
4542 if (argv[0][0] != ’@’)
4543 allow_usage(un, B_FALSE,
4544 gettext("invalid set name: missing ’@’ prefix\n"));
4545 opts->who = argv[0];
4546 } else if (opts->create) {
4547 if (ldcsuge_sum > 1)
4548 allow_usage(un, B_FALSE,

new/usr/src/cmd/zfs/zfs_main.c 70

4549 gettext("invalid options combined with -c\n"));
4550 opts->dataset = munge_args(argc, argv, un, 2, &opts->perms);
4551 } else if (opts->everyone) {
4552 if (csuge_sum > 1)
4553 allow_usage(un, B_FALSE,
4554 gettext("invalid options combined with -e\n"));
4555 opts->dataset = munge_args(argc, argv, un, 2, &opts->perms);
4556 } else if (uge_sum == 0 && argc > 0 && strcmp(argv[0], "everyone")
4557 == 0) {
4558 opts->everyone = B_TRUE;
4559 argc--;
4560 argv++;
4561 opts->dataset = munge_args(argc, argv, un, 2, &opts->perms);
4562 } else if (argc == 1 && !un) {
4563 opts->prt_perms = B_TRUE;
4564 opts->dataset = argv[argc-1];
4565 } else {
4566 opts->dataset = munge_args(argc, argv, un, 3, &opts->perms);
4567 opts->who = argv[0];
4568 }

4570 if (!opts->local && !opts->descend) {
4571 opts->local = B_TRUE;
4572 opts->descend = B_TRUE;
4573 }
4574 }

4576 static void
4577 store_allow_perm(zfs_deleg_who_type_t type, boolean_t local, boolean_t descend,
4578 const char *who, char *perms, nvlist_t *top_nvl)
4579 {
4580 int i;
4581 char ld[2] = { ’\0’, ’\0’ };
4582 char who_buf[ZFS_MAXNAMELEN+32];
4583 char base_type;
4584 char set_type;
4585 nvlist_t *base_nvl = NULL;
4586 nvlist_t *set_nvl = NULL;
4587 nvlist_t *nvl;

4589 if (nvlist_alloc(&base_nvl, NV_UNIQUE_NAME, 0) != 0)
4590 nomem();
4591 if (nvlist_alloc(&set_nvl, NV_UNIQUE_NAME, 0) != 0)
4592 nomem();

4594 switch (type) {
4595 case ZFS_DELEG_NAMED_SET_SETS:
4596 case ZFS_DELEG_NAMED_SET:
4597 set_type = ZFS_DELEG_NAMED_SET_SETS;
4598 base_type = ZFS_DELEG_NAMED_SET;
4599 ld[0] = ZFS_DELEG_NA;
4600 break;
4601 case ZFS_DELEG_CREATE_SETS:
4602 case ZFS_DELEG_CREATE:
4603 set_type = ZFS_DELEG_CREATE_SETS;
4604 base_type = ZFS_DELEG_CREATE;
4605 ld[0] = ZFS_DELEG_NA;
4606 break;
4607 case ZFS_DELEG_USER_SETS:
4608 case ZFS_DELEG_USER:
4609 set_type = ZFS_DELEG_USER_SETS;
4610 base_type = ZFS_DELEG_USER;
4611 if (local)
4612 ld[0] = ZFS_DELEG_LOCAL;
4613 if (descend)
4614 ld[1] = ZFS_DELEG_DESCENDENT;

new/usr/src/cmd/zfs/zfs_main.c 71

4615 break;
4616 case ZFS_DELEG_GROUP_SETS:
4617 case ZFS_DELEG_GROUP:
4618 set_type = ZFS_DELEG_GROUP_SETS;
4619 base_type = ZFS_DELEG_GROUP;
4620 if (local)
4621 ld[0] = ZFS_DELEG_LOCAL;
4622 if (descend)
4623 ld[1] = ZFS_DELEG_DESCENDENT;
4624 break;
4625 case ZFS_DELEG_EVERYONE_SETS:
4626 case ZFS_DELEG_EVERYONE:
4627 set_type = ZFS_DELEG_EVERYONE_SETS;
4628 base_type = ZFS_DELEG_EVERYONE;
4629 if (local)
4630 ld[0] = ZFS_DELEG_LOCAL;
4631 if (descend)
4632 ld[1] = ZFS_DELEG_DESCENDENT;
4633 }

4635 if (perms != NULL) {
4636 char *curr = perms;
4637 char *end = curr + strlen(perms);

4639 while (curr < end) {
4640 char *delim = strchr(curr, ’,’);
4641 if (delim == NULL)
4642 delim = end;
4643 else
4644 *delim = ’\0’;

4646 if (curr[0] == ’@’)
4647 nvl = set_nvl;
4648 else
4649 nvl = base_nvl;

4651 (void) nvlist_add_boolean(nvl, curr);
4652 if (delim != end)
4653 *delim = ’,’;
4654 curr = delim + 1;
4655 }

4657 for (i = 0; i < 2; i++) {
4658 char locality = ld[i];
4659 if (locality == 0)
4660 continue;

4662 if (!nvlist_empty(base_nvl)) {
4663 if (who != NULL)
4664 (void) snprintf(who_buf,
4665 sizeof (who_buf), "%c%c$%s",
4666 base_type, locality, who);
4667 else
4668 (void) snprintf(who_buf,
4669 sizeof (who_buf), "%c%c$",
4670 base_type, locality);

4672 (void) nvlist_add_nvlist(top_nvl, who_buf,
4673 base_nvl);
4674 }

4677 if (!nvlist_empty(set_nvl)) {
4678 if (who != NULL)
4679 (void) snprintf(who_buf,
4680 sizeof (who_buf), "%c%c$%s",

new/usr/src/cmd/zfs/zfs_main.c 72

4681 set_type, locality, who);
4682 else
4683 (void) snprintf(who_buf,
4684 sizeof (who_buf), "%c%c$",
4685 set_type, locality);

4687 (void) nvlist_add_nvlist(top_nvl, who_buf,
4688 set_nvl);
4689 }
4690 }
4691 } else {
4692 for (i = 0; i < 2; i++) {
4693 char locality = ld[i];
4694 if (locality == 0)
4695 continue;

4697 if (who != NULL)
4698 (void) snprintf(who_buf, sizeof (who_buf),
4699 "%c%c$%s", base_type, locality, who);
4700 else
4701 (void) snprintf(who_buf, sizeof (who_buf),
4702 "%c%c$", base_type, locality);
4703 (void) nvlist_add_boolean(top_nvl, who_buf);

4705 if (who != NULL)
4706 (void) snprintf(who_buf, sizeof (who_buf),
4707 "%c%c$%s", set_type, locality, who);
4708 else
4709 (void) snprintf(who_buf, sizeof (who_buf),
4710 "%c%c$", set_type, locality);
4711 (void) nvlist_add_boolean(top_nvl, who_buf);
4712 }
4713 }
4714 }

4716 static int
4717 construct_fsacl_list(boolean_t un, struct allow_opts *opts, nvlist_t **nvlp)
4718 {
4719 if (nvlist_alloc(nvlp, NV_UNIQUE_NAME, 0) != 0)
4720 nomem();

4722 if (opts->set) {
4723 store_allow_perm(ZFS_DELEG_NAMED_SET, opts->local,
4724 opts->descend, opts->who, opts->perms, *nvlp);
4725 } else if (opts->create) {
4726 store_allow_perm(ZFS_DELEG_CREATE, opts->local,
4727 opts->descend, NULL, opts->perms, *nvlp);
4728 } else if (opts->everyone) {
4729 store_allow_perm(ZFS_DELEG_EVERYONE, opts->local,
4730 opts->descend, NULL, opts->perms, *nvlp);
4731 } else {
4732 char *curr = opts->who;
4733 char *end = curr + strlen(curr);

4735 while (curr < end) {
4736 const char *who;
4737 zfs_deleg_who_type_t who_type;
4738 char *endch;
4739 char *delim = strchr(curr, ’,’);
4740 char errbuf[256];
4741 char id[64];
4742 struct passwd *p = NULL;
4743 struct group *g = NULL;

4745 uid_t rid;
4746 if (delim == NULL)

new/usr/src/cmd/zfs/zfs_main.c 73

4747 delim = end;
4748 else
4749 *delim = ’\0’;

4751 rid = (uid_t)strtol(curr, &endch, 0);
4752 if (opts->user) {
4753 who_type = ZFS_DELEG_USER;
4754 if (*endch != ’\0’)
4755 p = getpwnam(curr);
4756 else
4757 p = getpwuid(rid);

4759 if (p != NULL)
4760 rid = p->pw_uid;
4761 else {
4762 (void) snprintf(errbuf, 256, gettext(
4763 "invalid user %s"), curr);
4764 allow_usage(un, B_TRUE, errbuf);
4765 }
4766 } else if (opts->group) {
4767 who_type = ZFS_DELEG_GROUP;
4768 if (*endch != ’\0’)
4769 g = getgrnam(curr);
4770 else
4771 g = getgrgid(rid);

4773 if (g != NULL)
4774 rid = g->gr_gid;
4775 else {
4776 (void) snprintf(errbuf, 256, gettext(
4777 "invalid group %s"), curr);
4778 allow_usage(un, B_TRUE, errbuf);
4779 }
4780 } else {
4781 if (*endch != ’\0’) {
4782 p = getpwnam(curr);
4783 } else {
4784 p = getpwuid(rid);
4785 }

4787 if (p == NULL)
4788 if (*endch != ’\0’) {
4789 g = getgrnam(curr);
4790 } else {
4791 g = getgrgid(rid);
4792 }

4794 if (p != NULL) {
4795 who_type = ZFS_DELEG_USER;
4796 rid = p->pw_uid;
4797 } else if (g != NULL) {
4798 who_type = ZFS_DELEG_GROUP;
4799 rid = g->gr_gid;
4800 } else {
4801 (void) snprintf(errbuf, 256, gettext(
4802 "invalid user/group %s"), curr);
4803 allow_usage(un, B_TRUE, errbuf);
4804 }
4805 }

4807 (void) sprintf(id, "%u", rid);
4808 who = id;

4810 store_allow_perm(who_type, opts->local,
4811 opts->descend, who, opts->perms, *nvlp);
4812 curr = delim + 1;

new/usr/src/cmd/zfs/zfs_main.c 74

4813 }
4814 }

4816 return (0);
4817 }

4819 static void
4820 print_set_creat_perms(uu_avl_t *who_avl)
4821 {
4822 const char *sc_title[] = {
4823 gettext("Permission sets:\n"),
4824 gettext("Create time permissions:\n"),
4825 NULL
4826 };
4827 const char **title_ptr = sc_title;
4828 who_perm_node_t *who_node = NULL;
4829 int prev_weight = -1;

4831 for (who_node = uu_avl_first(who_avl); who_node != NULL;
4832 who_node = uu_avl_next(who_avl, who_node)) {
4833 uu_avl_t *avl = who_node->who_perm.who_deleg_perm_avl;
4834 zfs_deleg_who_type_t who_type = who_node->who_perm.who_type;
4835 const char *who_name = who_node->who_perm.who_name;
4836 int weight = who_type2weight(who_type);
4837 boolean_t first = B_TRUE;
4838 deleg_perm_node_t *deleg_node;

4840 if (prev_weight != weight) {
4841 (void) printf(*title_ptr++);
4842 prev_weight = weight;
4843 }

4845 if (who_name == NULL || strnlen(who_name, 1) == 0)
4846 (void) printf("\t");
4847 else
4848 (void) printf("\t%s ", who_name);

4850 for (deleg_node = uu_avl_first(avl); deleg_node != NULL;
4851 deleg_node = uu_avl_next(avl, deleg_node)) {
4852 if (first) {
4853 (void) printf("%s",
4854 deleg_node->dpn_perm.dp_name);
4855 first = B_FALSE;
4856 } else
4857 (void) printf(",%s",
4858 deleg_node->dpn_perm.dp_name);
4859 }

4861 (void) printf("\n");
4862 }
4863 }

4865 static void inline
4866 print_uge_deleg_perms(uu_avl_t *who_avl, boolean_t local, boolean_t descend,
4867 const char *title)
4868 {
4869 who_perm_node_t *who_node = NULL;
4870 boolean_t prt_title = B_TRUE;
4871 uu_avl_walk_t *walk;

4873 if ((walk = uu_avl_walk_start(who_avl, UU_WALK_ROBUST)) == NULL)
4874 nomem();

4876 while ((who_node = uu_avl_walk_next(walk)) != NULL) {
4877 const char *who_name = who_node->who_perm.who_name;
4878 const char *nice_who_name = who_node->who_perm.who_ug_name;

new/usr/src/cmd/zfs/zfs_main.c 75

4879 uu_avl_t *avl = who_node->who_perm.who_deleg_perm_avl;
4880 zfs_deleg_who_type_t who_type = who_node->who_perm.who_type;
4881 char delim = ’ ’;
4882 deleg_perm_node_t *deleg_node;
4883 boolean_t prt_who = B_TRUE;

4885 for (deleg_node = uu_avl_first(avl);
4886 deleg_node != NULL;
4887 deleg_node = uu_avl_next(avl, deleg_node)) {
4888 if (local != deleg_node->dpn_perm.dp_local ||
4889 descend != deleg_node->dpn_perm.dp_descend)
4890 continue;

4892 if (prt_who) {
4893 const char *who = NULL;
4894 if (prt_title) {
4895 prt_title = B_FALSE;
4896 (void) printf(title);
4897 }

4899 switch (who_type) {
4900 case ZFS_DELEG_USER_SETS:
4901 case ZFS_DELEG_USER:
4902 who = gettext("user");
4903 if (nice_who_name)
4904 who_name = nice_who_name;
4905 break;
4906 case ZFS_DELEG_GROUP_SETS:
4907 case ZFS_DELEG_GROUP:
4908 who = gettext("group");
4909 if (nice_who_name)
4910 who_name = nice_who_name;
4911 break;
4912 case ZFS_DELEG_EVERYONE_SETS:
4913 case ZFS_DELEG_EVERYONE:
4914 who = gettext("everyone");
4915 who_name = NULL;
4916 }

4918 prt_who = B_FALSE;
4919 if (who_name == NULL)
4920 (void) printf("\t%s", who);
4921 else
4922 (void) printf("\t%s %s", who, who_name);
4923 }

4925 (void) printf("%c%s", delim,
4926 deleg_node->dpn_perm.dp_name);
4927 delim = ’,’;
4928 }

4930 if (!prt_who)
4931 (void) printf("\n");
4932 }

4934 uu_avl_walk_end(walk);
4935 }

4937 static void
4938 print_fs_perms(fs_perm_set_t *fspset)
4939 {
4940 fs_perm_node_t *node = NULL;
4941 char buf[ZFS_MAXNAMELEN+32];
4942 const char *dsname = buf;

4944 for (node = uu_list_first(fspset->fsps_list); node != NULL;

new/usr/src/cmd/zfs/zfs_main.c 76

4945 node = uu_list_next(fspset->fsps_list, node)) {
4946 uu_avl_t *sc_avl = node->fspn_fsperm.fsp_sc_avl;
4947 uu_avl_t *uge_avl = node->fspn_fsperm.fsp_uge_avl;
4948 int left = 0;

4950 (void) snprintf(buf, ZFS_MAXNAMELEN+32,
4951 gettext("---- Permissions on %s "),
4952 node->fspn_fsperm.fsp_name);
4953 (void) printf(dsname);
4954 left = 70 - strlen(buf);
4955 while (left-- > 0)
4956 (void) printf("-");
4957 (void) printf("\n");

4959 print_set_creat_perms(sc_avl);
4960 print_uge_deleg_perms(uge_avl, B_TRUE, B_FALSE,
4961 gettext("Local permissions:\n"));
4962 print_uge_deleg_perms(uge_avl, B_FALSE, B_TRUE,
4963 gettext("Descendent permissions:\n"));
4964 print_uge_deleg_perms(uge_avl, B_TRUE, B_TRUE,
4965 gettext("Local+Descendent permissions:\n"));
4966 }
4967 }

4969 static fs_perm_set_t fs_perm_set = { NULL, NULL, NULL, NULL };

4971 struct deleg_perms {
4972 boolean_t un;
4973 nvlist_t *nvl;
4974 };

4976 static int
4977 set_deleg_perms(zfs_handle_t *zhp, void *data)
4978 {
4979 struct deleg_perms *perms = (struct deleg_perms *)data;
4980 zfs_type_t zfs_type = zfs_get_type(zhp);

4982 if (zfs_type != ZFS_TYPE_FILESYSTEM && zfs_type != ZFS_TYPE_VOLUME)
4983 return (0);

4985 return (zfs_set_fsacl(zhp, perms->un, perms->nvl));
4986 }

4988 static int
4989 zfs_do_allow_unallow_impl(int argc, char **argv, boolean_t un)
4990 {
4991 zfs_handle_t *zhp;
4992 nvlist_t *perm_nvl = NULL;
4993 nvlist_t *update_perm_nvl = NULL;
4994 int error = 1;
4995 int c;
4996 struct allow_opts opts = { 0 };

4998 const char *optstr = un ? "ldugecsrh" : "ldugecsh";

5000 /* check opts */
5001 while ((c = getopt(argc, argv, optstr)) != -1) {
5002 switch (c) {
5003 case ’l’:
5004 opts.local = B_TRUE;
5005 break;
5006 case ’d’:
5007 opts.descend = B_TRUE;
5008 break;
5009 case ’u’:
5010 opts.user = B_TRUE;

new/usr/src/cmd/zfs/zfs_main.c 77

5011 break;
5012 case ’g’:
5013 opts.group = B_TRUE;
5014 break;
5015 case ’e’:
5016 opts.everyone = B_TRUE;
5017 break;
5018 case ’s’:
5019 opts.set = B_TRUE;
5020 break;
5021 case ’c’:
5022 opts.create = B_TRUE;
5023 break;
5024 case ’r’:
5025 opts.recursive = B_TRUE;
5026 break;
5027 case ’:’:
5028 (void) fprintf(stderr, gettext("missing argument for "
5029 "’%c’ option\n"), optopt);
5030 usage(B_FALSE);
5031 break;
5032 case ’h’:
5033 opts.prt_usage = B_TRUE;
5034 break;
5035 case ’?’:
5036 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
5037 optopt);
5038 usage(B_FALSE);
5039 }
5040 }

5042 argc -= optind;
5043 argv += optind;

5045 /* check arguments */
5046 parse_allow_args(argc, argv, un, &opts);

5048 /* try to open the dataset */
5049 if ((zhp = zfs_open(g_zfs, opts.dataset, ZFS_TYPE_FILESYSTEM |
5050 ZFS_TYPE_VOLUME)) == NULL) {
5051 (void) fprintf(stderr, "Failed to open dataset: %s\n",
5052 opts.dataset);
5053 return (-1);
5054 }

5056 if (zfs_get_fsacl(zhp, &perm_nvl) != 0)
5057 goto cleanup2;

5059 fs_perm_set_init(&fs_perm_set);
5060 if (parse_fs_perm_set(&fs_perm_set, perm_nvl) != 0) {
5061 (void) fprintf(stderr, "Failed to parse fsacl permissions\n");
5062 goto cleanup1;
5063 }

5065 if (opts.prt_perms)
5066 print_fs_perms(&fs_perm_set);
5067 else {
5068 (void) construct_fsacl_list(un, &opts, &update_perm_nvl);
5069 if (zfs_set_fsacl(zhp, un, update_perm_nvl) != 0)
5070 goto cleanup0;

5072 if (un && opts.recursive) {
5073 struct deleg_perms data = { un, update_perm_nvl };
5074 if (zfs_iter_filesystems(zhp, set_deleg_perms,
5075 &data) != 0)
5076 goto cleanup0;

new/usr/src/cmd/zfs/zfs_main.c 78

5077 }
5078 }

5080 error = 0;

5082 cleanup0:
5083 nvlist_free(perm_nvl);
5084 if (update_perm_nvl != NULL)
5085 nvlist_free(update_perm_nvl);
5086 cleanup1:
5087 fs_perm_set_fini(&fs_perm_set);
5088 cleanup2:
5089 zfs_close(zhp);

5091 return (error);
5092 }

5094 static int
5095 zfs_do_allow(int argc, char **argv)
5096 {
5097 return (zfs_do_allow_unallow_impl(argc, argv, B_FALSE));
5098 }

5100 static int
5101 zfs_do_unallow(int argc, char **argv)
5102 {
5103 return (zfs_do_allow_unallow_impl(argc, argv, B_TRUE));
5104 }

5106 static int
5107 zfs_do_hold_rele_impl(int argc, char **argv, boolean_t holding)
5108 {
5109 int errors = 0;
5110 int i;
5111 const char *tag;
5112 boolean_t recursive = B_FALSE;
5113 const char *opts = holding ? "rt" : "r";
5114 int c;

5116 /* check options */
5117 while ((c = getopt(argc, argv, opts)) != -1) {
5118 switch (c) {
5119 case ’r’:
5120 recursive = B_TRUE;
5121 break;
5122 case ’?’:
5123 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
5124 optopt);
5125 usage(B_FALSE);
5126 }
5127 }

5129 argc -= optind;
5130 argv += optind;

5132 /* check number of arguments */
5133 if (argc < 2)
5134 usage(B_FALSE);

5136 tag = argv[0];
5137 --argc;
5138 ++argv;

5140 if (holding && tag[0] == ’.’) {
5141 /* tags starting with ’.’ are reserved for libzfs */
5142 (void) fprintf(stderr, gettext("tag may not start with ’.’\n"));

new/usr/src/cmd/zfs/zfs_main.c 79

5143 usage(B_FALSE);
5144 }

5146 for (i = 0; i < argc; ++i) {
5147 zfs_handle_t *zhp;
5148 char parent[ZFS_MAXNAMELEN];
5149 const char *delim;
5150 char *path = argv[i];

5152 delim = strchr(path, ’@’);
5153 if (delim == NULL) {
5154 (void) fprintf(stderr,
5155 gettext("’%s’ is not a snapshot\n"), path);
5156 ++errors;
5157 continue;
5158 }
5159 (void) strncpy(parent, path, delim - path);
5160 parent[delim - path] = ’\0’;

5162 zhp = zfs_open(g_zfs, parent,
5163 ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
5164 if (zhp == NULL) {
5165 ++errors;
5166 continue;
5167 }
5168 if (holding) {
5169 if (zfs_hold(zhp, delim+1, tag, recursive, -1) != 0)
28 if (zfs_hold(zhp, delim+1, tag, recursive,
29 B_FALSE, -1) != 0)

5170 ++errors;
5171 } else {
5172 if (zfs_release(zhp, delim+1, tag, recursive) != 0)
5173 ++errors;
5174 }
5175 zfs_close(zhp);
5176 }

5178 return (errors != 0);
5179 }
______unchanged_portion_omitted_

new/usr/src/lib/libzfs/common/libzfs.h 1

**
 26978 Wed May 29 20:27:07 2013
new/usr/src/lib/libzfs/common/libzfs.h
3740 Poor ZFS send / receive performance due to snapshot hold / release processi
Submitted by: Steven Hartland <steven.hartland@multiplay.co.uk>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2013 Steven Hartland. All rights reserved.
28 #endif /* ! codereview */
29 */

31 #ifndef _LIBZFS_H
32 #define _LIBZFS_H

34 #include <assert.h>
35 #include <libnvpair.h>
36 #include <sys/mnttab.h>
37 #include <sys/param.h>
38 #include <sys/types.h>
39 #include <sys/varargs.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/avl.h>
42 #include <ucred.h>

44 #ifdef __cplusplus
45 extern "C" {
46 #endif

48 /*
49 * Miscellaneous ZFS constants
50 */
51 #define ZFS_MAXNAMELEN MAXNAMELEN
52 #define ZPOOL_MAXNAMELEN MAXNAMELEN
53 #define ZFS_MAXPROPLEN MAXPATHLEN
54 #define ZPOOL_MAXPROPLEN MAXPATHLEN

56 /*
57 * libzfs errors
58 */
59 typedef enum zfs_error {
60 EZFS_SUCCESS = 0, /* no error -- success */

new/usr/src/lib/libzfs/common/libzfs.h 2

61 EZFS_NOMEM = 2000, /* out of memory */
62 EZFS_BADPROP, /* invalid property value */
63 EZFS_PROPREADONLY, /* cannot set readonly property */
64 EZFS_PROPTYPE, /* property does not apply to dataset type */
65 EZFS_PROPNONINHERIT, /* property is not inheritable */
66 EZFS_PROPSPACE, /* bad quota or reservation */
67 EZFS_BADTYPE, /* dataset is not of appropriate type */
68 EZFS_BUSY, /* pool or dataset is busy */
69 EZFS_EXISTS, /* pool or dataset already exists */
70 EZFS_NOENT, /* no such pool or dataset */
71 EZFS_BADSTREAM, /* bad backup stream */
72 EZFS_DSREADONLY, /* dataset is readonly */
73 EZFS_VOLTOOBIG, /* volume is too large for 32-bit system */
74 EZFS_INVALIDNAME, /* invalid dataset name */
75 EZFS_BADRESTORE, /* unable to restore to destination */
76 EZFS_BADBACKUP, /* backup failed */
77 EZFS_BADTARGET, /* bad attach/detach/replace target */
78 EZFS_NODEVICE, /* no such device in pool */
79 EZFS_BADDEV, /* invalid device to add */
80 EZFS_NOREPLICAS, /* no valid replicas */
81 EZFS_RESILVERING, /* currently resilvering */
82 EZFS_BADVERSION, /* unsupported version */
83 EZFS_POOLUNAVAIL, /* pool is currently unavailable */
84 EZFS_DEVOVERFLOW, /* too many devices in one vdev */
85 EZFS_BADPATH, /* must be an absolute path */
86 EZFS_CROSSTARGET, /* rename or clone across pool or dataset */
87 EZFS_ZONED, /* used improperly in local zone */
88 EZFS_MOUNTFAILED, /* failed to mount dataset */
89 EZFS_UMOUNTFAILED, /* failed to unmount dataset */
90 EZFS_UNSHARENFSFAILED, /* unshare(1M) failed */
91 EZFS_SHARENFSFAILED, /* share(1M) failed */
92 EZFS_PERM, /* permission denied */
93 EZFS_NOSPC, /* out of space */
94 EZFS_FAULT, /* bad address */
95 EZFS_IO, /* I/O error */
96 EZFS_INTR, /* signal received */
97 EZFS_ISSPARE, /* device is a hot spare */
98 EZFS_INVALCONFIG, /* invalid vdev configuration */
99 EZFS_RECURSIVE, /* recursive dependency */
100 EZFS_NOHISTORY, /* no history object */
101 EZFS_POOLPROPS, /* couldn’t retrieve pool props */
102 EZFS_POOL_NOTSUP, /* ops not supported for this type of pool */
103 EZFS_POOL_INVALARG, /* invalid argument for this pool operation */
104 EZFS_NAMETOOLONG, /* dataset name is too long */
105 EZFS_OPENFAILED, /* open of device failed */
106 EZFS_NOCAP, /* couldn’t get capacity */
107 EZFS_LABELFAILED, /* write of label failed */
108 EZFS_BADWHO, /* invalid permission who */
109 EZFS_BADPERM, /* invalid permission */
110 EZFS_BADPERMSET, /* invalid permission set name */
111 EZFS_NODELEGATION, /* delegated administration is disabled */
112 EZFS_UNSHARESMBFAILED, /* failed to unshare over smb */
113 EZFS_SHARESMBFAILED, /* failed to share over smb */
114 EZFS_BADCACHE, /* bad cache file */
115 EZFS_ISL2CACHE, /* device is for the level 2 ARC */
116 EZFS_VDEVNOTSUP, /* unsupported vdev type */
117 EZFS_NOTSUP, /* ops not supported on this dataset */
118 EZFS_ACTIVE_SPARE, /* pool has active shared spare devices */
119 EZFS_UNPLAYED_LOGS, /* log device has unplayed logs */
120 EZFS_REFTAG_RELE, /* snapshot release: tag not found */
121 EZFS_REFTAG_HOLD, /* snapshot hold: tag already exists */
122 EZFS_TAGTOOLONG, /* snapshot hold/rele: tag too long */
123 EZFS_PIPEFAILED, /* pipe create failed */
124 EZFS_THREADCREATEFAILED, /* thread create failed */
125 EZFS_POSTSPLIT_ONLINE, /* onlining a disk after splitting it */
126 EZFS_SCRUBBING, /* currently scrubbing */

new/usr/src/lib/libzfs/common/libzfs.h 3

127 EZFS_NO_SCRUB, /* no active scrub */
128 EZFS_DIFF, /* general failure of zfs diff */
129 EZFS_DIFFDATA, /* bad zfs diff data */
130 EZFS_POOLREADONLY, /* pool is in read-only mode */
131 EZFS_UNKNOWN
132 } zfs_error_t;

134 /*
135 * The following data structures are all part
136 * of the zfs_allow_t data structure which is
137 * used for printing ’allow’ permissions.
138 * It is a linked list of zfs_allow_t’s which
139 * then contain avl tree’s for user/group/sets/...
140 * and each one of the entries in those trees have
141 * avl tree’s for the permissions they belong to and
142 * whether they are local,descendent or local+descendent
143 * permissions. The AVL trees are used primarily for
144 * sorting purposes, but also so that we can quickly find
145 * a given user and or permission.
146 */
147 typedef struct zfs_perm_node {
148 avl_node_t z_node;
149 char z_pname[MAXPATHLEN];
150 } zfs_perm_node_t;

152 typedef struct zfs_allow_node {
153 avl_node_t z_node;
154 char z_key[MAXPATHLEN]; /* name, such as joe */
155 avl_tree_t z_localdescend; /* local+descendent perms */
156 avl_tree_t z_local; /* local permissions */
157 avl_tree_t z_descend; /* descendent permissions */
158 } zfs_allow_node_t;

160 typedef struct zfs_allow {
161 struct zfs_allow *z_next;
162 char z_setpoint[MAXPATHLEN];
163 avl_tree_t z_sets;
164 avl_tree_t z_crperms;
165 avl_tree_t z_user;
166 avl_tree_t z_group;
167 avl_tree_t z_everyone;
168 } zfs_allow_t;

170 /*
171 * Basic handle types
172 */
173 typedef struct zfs_handle zfs_handle_t;
174 typedef struct zpool_handle zpool_handle_t;
175 typedef struct libzfs_handle libzfs_handle_t;

177 /*
178 * Library initialization
179 */
180 extern libzfs_handle_t *libzfs_init(void);
181 extern void libzfs_fini(libzfs_handle_t *);

183 extern libzfs_handle_t *zpool_get_handle(zpool_handle_t *);
184 extern libzfs_handle_t *zfs_get_handle(zfs_handle_t *);

186 extern void libzfs_print_on_error(libzfs_handle_t *, boolean_t);

188 extern void zfs_save_arguments(int argc, char **, char *, int);
189 extern int zpool_log_history(libzfs_handle_t *, const char *);

191 extern int libzfs_errno(libzfs_handle_t *);
192 extern const char *libzfs_error_action(libzfs_handle_t *);

new/usr/src/lib/libzfs/common/libzfs.h 4

193 extern const char *libzfs_error_description(libzfs_handle_t *);
194 extern void libzfs_mnttab_init(libzfs_handle_t *);
195 extern void libzfs_mnttab_fini(libzfs_handle_t *);
196 extern void libzfs_mnttab_cache(libzfs_handle_t *, boolean_t);
197 extern int libzfs_mnttab_find(libzfs_handle_t *, const char *,
198 struct mnttab *);
199 extern void libzfs_mnttab_add(libzfs_handle_t *, const char *,
200 const char *, const char *);
201 extern void libzfs_mnttab_remove(libzfs_handle_t *, const char *);

203 /*
204 * Basic handle functions
205 */
206 extern zpool_handle_t *zpool_open(libzfs_handle_t *, const char *);
207 extern zpool_handle_t *zpool_open_canfail(libzfs_handle_t *, const char *);
208 extern void zpool_close(zpool_handle_t *);
209 extern const char *zpool_get_name(zpool_handle_t *);
210 extern int zpool_get_state(zpool_handle_t *);
211 extern char *zpool_state_to_name(vdev_state_t, vdev_aux_t);
212 extern void zpool_free_handles(libzfs_handle_t *);

214 /*
215 * Iterate over all active pools in the system.
216 */
217 typedef int (*zpool_iter_f)(zpool_handle_t *, void *);
218 extern int zpool_iter(libzfs_handle_t *, zpool_iter_f, void *);

220 /*
221 * Functions to create and destroy pools
222 */
223 extern int zpool_create(libzfs_handle_t *, const char *, nvlist_t *,
224 nvlist_t *, nvlist_t *);
225 extern int zpool_destroy(zpool_handle_t *, const char *);
226 extern int zpool_add(zpool_handle_t *, nvlist_t *);

228 typedef struct splitflags {
229 /* do not split, but return the config that would be split off */
230 int dryrun : 1;

232 /* after splitting, import the pool */
233 int import : 1;
234 } splitflags_t;

236 /*
237 * Functions to manipulate pool and vdev state
238 */
239 extern int zpool_scan(zpool_handle_t *, pool_scan_func_t);
240 extern int zpool_clear(zpool_handle_t *, const char *, nvlist_t *);
241 extern int zpool_reguid(zpool_handle_t *);
242 extern int zpool_reopen(zpool_handle_t *);

244 extern int zpool_vdev_online(zpool_handle_t *, const char *, int,
245 vdev_state_t *);
246 extern int zpool_vdev_offline(zpool_handle_t *, const char *, boolean_t);
247 extern int zpool_vdev_attach(zpool_handle_t *, const char *,
248 const char *, nvlist_t *, int);
249 extern int zpool_vdev_detach(zpool_handle_t *, const char *);
250 extern int zpool_vdev_remove(zpool_handle_t *, const char *);
251 extern int zpool_vdev_split(zpool_handle_t *, char *, nvlist_t **, nvlist_t *,
252 splitflags_t);

254 extern int zpool_vdev_fault(zpool_handle_t *, uint64_t, vdev_aux_t);
255 extern int zpool_vdev_degrade(zpool_handle_t *, uint64_t, vdev_aux_t);
256 extern int zpool_vdev_clear(zpool_handle_t *, uint64_t);

258 extern nvlist_t *zpool_find_vdev(zpool_handle_t *, const char *, boolean_t *,

new/usr/src/lib/libzfs/common/libzfs.h 5

259 boolean_t *, boolean_t *);
260 extern nvlist_t *zpool_find_vdev_by_physpath(zpool_handle_t *, const char *,
261 boolean_t *, boolean_t *, boolean_t *);
262 extern int zpool_label_disk(libzfs_handle_t *, zpool_handle_t *, char *);

264 /*
265 * Functions to manage pool properties
266 */
267 extern int zpool_set_prop(zpool_handle_t *, const char *, const char *);
268 extern int zpool_get_prop(zpool_handle_t *, zpool_prop_t, char *,
269 size_t proplen, zprop_source_t *);
270 extern uint64_t zpool_get_prop_int(zpool_handle_t *, zpool_prop_t,
271 zprop_source_t *);

273 extern const char *zpool_prop_to_name(zpool_prop_t);
274 extern const char *zpool_prop_values(zpool_prop_t);

276 /*
277 * Pool health statistics.
278 */
279 typedef enum {
280 /*
281 * The following correspond to faults as defined in the (fault.fs.zfs.*)
282 * event namespace. Each is associated with a corresponding message ID.
283 */
284 ZPOOL_STATUS_CORRUPT_CACHE, /* corrupt /kernel/drv/zpool.cache */
285 ZPOOL_STATUS_MISSING_DEV_R, /* missing device with replicas */
286 ZPOOL_STATUS_MISSING_DEV_NR, /* missing device with no replicas */
287 ZPOOL_STATUS_CORRUPT_LABEL_R, /* bad device label with replicas */
288 ZPOOL_STATUS_CORRUPT_LABEL_NR, /* bad device label with no replicas */
289 ZPOOL_STATUS_BAD_GUID_SUM, /* sum of device guids didn’t match */
290 ZPOOL_STATUS_CORRUPT_POOL, /* pool metadata is corrupted */
291 ZPOOL_STATUS_CORRUPT_DATA, /* data errors in user (meta)data */
292 ZPOOL_STATUS_FAILING_DEV, /* device experiencing errors */
293 ZPOOL_STATUS_VERSION_NEWER, /* newer on-disk version */
294 ZPOOL_STATUS_HOSTID_MISMATCH, /* last accessed by another system */
295 ZPOOL_STATUS_IO_FAILURE_WAIT, /* failed I/O, failmode ’wait’ */
296 ZPOOL_STATUS_IO_FAILURE_CONTINUE, /* failed I/O, failmode ’continue’ */
297 ZPOOL_STATUS_BAD_LOG, /* cannot read log chain(s) */

299 /*
300 * If the pool has unsupported features but can still be opened in
301 * read-only mode, its status is ZPOOL_STATUS_UNSUP_FEAT_WRITE. If the
302 * pool has unsupported features but cannot be opened at all, its
303 * status is ZPOOL_STATUS_UNSUP_FEAT_READ.
304 */
305 ZPOOL_STATUS_UNSUP_FEAT_READ, /* unsupported features for read */
306 ZPOOL_STATUS_UNSUP_FEAT_WRITE, /* unsupported features for write */

308 /*
309 * These faults have no corresponding message ID. At the time we are
310 * checking the status, the original reason for the FMA fault (I/O or
311 * checksum errors) has been lost.
312 */
313 ZPOOL_STATUS_FAULTED_DEV_R, /* faulted device with replicas */
314 ZPOOL_STATUS_FAULTED_DEV_NR, /* faulted device with no replicas */

316 /*
317 * The following are not faults per se, but still an error possibly
318 * requiring administrative attention. There is no corresponding
319 * message ID.
320 */
321 ZPOOL_STATUS_VERSION_OLDER, /* older legacy on-disk version */
322 ZPOOL_STATUS_FEAT_DISABLED, /* supported features are disabled */
323 ZPOOL_STATUS_RESILVERING, /* device being resilvered */
324 ZPOOL_STATUS_OFFLINE_DEV, /* device online */

new/usr/src/lib/libzfs/common/libzfs.h 6

325 ZPOOL_STATUS_REMOVED_DEV, /* removed device */

327 /*
328 * Finally, the following indicates a healthy pool.
329 */
330 ZPOOL_STATUS_OK
331 } zpool_status_t;

333 extern zpool_status_t zpool_get_status(zpool_handle_t *, char **);
334 extern zpool_status_t zpool_import_status(nvlist_t *, char **);
335 extern void zpool_dump_ddt(const ddt_stat_t *dds, const ddt_histogram_t *ddh);

337 /*
338 * Statistics and configuration functions.
339 */
340 extern nvlist_t *zpool_get_config(zpool_handle_t *, nvlist_t **);
341 extern nvlist_t *zpool_get_features(zpool_handle_t *);
342 extern int zpool_refresh_stats(zpool_handle_t *, boolean_t *);
343 extern int zpool_get_errlog(zpool_handle_t *, nvlist_t **);

345 /*
346 * Import and export functions
347 */
348 extern int zpool_export(zpool_handle_t *, boolean_t, const char *);
349 extern int zpool_export_force(zpool_handle_t *, const char *);
350 extern int zpool_import(libzfs_handle_t *, nvlist_t *, const char *,
351 char *altroot);
352 extern int zpool_import_props(libzfs_handle_t *, nvlist_t *, const char *,
353 nvlist_t *, int);
354 extern void zpool_print_unsup_feat(nvlist_t *config);

356 /*
357 * Search for pools to import
358 */

360 typedef struct importargs {
361 char **path; /* a list of paths to search */
362 int paths; /* number of paths to search */
363 char *poolname; /* name of a pool to find */
364 uint64_t guid; /* guid of a pool to find */
365 char *cachefile; /* cachefile to use for import */
366 int can_be_active : 1; /* can the pool be active? */
367 int unique : 1; /* does ’poolname’ already exist? */
368 int exists : 1; /* set on return if pool already exists */
369 } importargs_t;

371 extern nvlist_t *zpool_search_import(libzfs_handle_t *, importargs_t *);

373 /* legacy pool search routines */
374 extern nvlist_t *zpool_find_import(libzfs_handle_t *, int, char **);
375 extern nvlist_t *zpool_find_import_cached(libzfs_handle_t *, const char *,
376 char *, uint64_t);

378 /*
379 * Miscellaneous pool functions
380 */
381 struct zfs_cmd;

383 extern const char *zfs_history_event_names[];

385 extern char *zpool_vdev_name(libzfs_handle_t *, zpool_handle_t *, nvlist_t *,
386 boolean_t verbose);
387 extern int zpool_upgrade(zpool_handle_t *, uint64_t);
388 extern int zpool_get_history(zpool_handle_t *, nvlist_t **);
389 extern int zpool_history_unpack(char *, uint64_t, uint64_t *,
390 nvlist_t ***, uint_t *);

new/usr/src/lib/libzfs/common/libzfs.h 7

391 extern void zpool_obj_to_path(zpool_handle_t *, uint64_t, uint64_t, char *,
392 size_t len);
393 extern int zfs_ioctl(libzfs_handle_t *, int, struct zfs_cmd *);
394 extern int zpool_get_physpath(zpool_handle_t *, char *, size_t);
395 extern void zpool_explain_recover(libzfs_handle_t *, const char *, int,
396 nvlist_t *);

398 /*
399 * Basic handle manipulations. These functions do not create or destroy the
400 * underlying datasets, only the references to them.
401 */
402 extern zfs_handle_t *zfs_open(libzfs_handle_t *, const char *, int);
403 extern zfs_handle_t *zfs_handle_dup(zfs_handle_t *);
404 extern void zfs_close(zfs_handle_t *);
405 extern zfs_type_t zfs_get_type(const zfs_handle_t *);
406 extern const char *zfs_get_name(const zfs_handle_t *);
407 extern zpool_handle_t *zfs_get_pool_handle(const zfs_handle_t *);

409 /*
410 * Property management functions. Some functions are shared with the kernel,
411 * and are found in sys/fs/zfs.h.
412 */

414 /*
415 * zfs dataset property management
416 */
417 extern const char *zfs_prop_default_string(zfs_prop_t);
418 extern uint64_t zfs_prop_default_numeric(zfs_prop_t);
419 extern const char *zfs_prop_column_name(zfs_prop_t);
420 extern boolean_t zfs_prop_align_right(zfs_prop_t);

422 extern nvlist_t *zfs_valid_proplist(libzfs_handle_t *, zfs_type_t,
423 nvlist_t *, uint64_t, zfs_handle_t *, const char *);

425 extern const char *zfs_prop_to_name(zfs_prop_t);
426 extern int zfs_prop_set(zfs_handle_t *, const char *, const char *);
427 extern int zfs_prop_get(zfs_handle_t *, zfs_prop_t, char *, size_t,
428 zprop_source_t *, char *, size_t, boolean_t);
429 extern int zfs_prop_get_recvd(zfs_handle_t *, const char *, char *, size_t,
430 boolean_t);
431 extern int zfs_prop_get_numeric(zfs_handle_t *, zfs_prop_t, uint64_t *,
432 zprop_source_t *, char *, size_t);
433 extern int zfs_prop_get_userquota_int(zfs_handle_t *zhp, const char *propname,
434 uint64_t *propvalue);
435 extern int zfs_prop_get_userquota(zfs_handle_t *zhp, const char *propname,
436 char *propbuf, int proplen, boolean_t literal);
437 extern int zfs_prop_get_written_int(zfs_handle_t *zhp, const char *propname,
438 uint64_t *propvalue);
439 extern int zfs_prop_get_written(zfs_handle_t *zhp, const char *propname,
440 char *propbuf, int proplen, boolean_t literal);
441 extern int zfs_prop_get_feature(zfs_handle_t *zhp, const char *propname,
442 char *buf, size_t len);
443 extern uint64_t zfs_prop_get_int(zfs_handle_t *, zfs_prop_t);
444 extern int zfs_prop_inherit(zfs_handle_t *, const char *, boolean_t);
445 extern const char *zfs_prop_values(zfs_prop_t);
446 extern int zfs_prop_is_string(zfs_prop_t prop);
447 extern nvlist_t *zfs_get_user_props(zfs_handle_t *);
448 extern nvlist_t *zfs_get_recvd_props(zfs_handle_t *);
449 extern nvlist_t *zfs_get_clones_nvl(zfs_handle_t *);

452 typedef struct zprop_list {
453 int pl_prop;
454 char *pl_user_prop;
455 struct zprop_list *pl_next;
456 boolean_t pl_all;

new/usr/src/lib/libzfs/common/libzfs.h 8

457 size_t pl_width;
458 size_t pl_recvd_width;
459 boolean_t pl_fixed;
460 } zprop_list_t;

462 extern int zfs_expand_proplist(zfs_handle_t *, zprop_list_t **, boolean_t);
463 extern void zfs_prune_proplist(zfs_handle_t *, uint8_t *);

465 #define ZFS_MOUNTPOINT_NONE "none"
466 #define ZFS_MOUNTPOINT_LEGACY "legacy"

468 #define ZFS_FEATURE_DISABLED "disabled"
469 #define ZFS_FEATURE_ENABLED "enabled"
470 #define ZFS_FEATURE_ACTIVE "active"

472 #define ZFS_UNSUPPORTED_INACTIVE "inactive"
473 #define ZFS_UNSUPPORTED_READONLY "readonly"

475 /*
476 * zpool property management
477 */
478 extern int zpool_expand_proplist(zpool_handle_t *, zprop_list_t **);
479 extern int zpool_prop_get_feature(zpool_handle_t *, const char *, char *,
480 size_t);
481 extern const char *zpool_prop_default_string(zpool_prop_t);
482 extern uint64_t zpool_prop_default_numeric(zpool_prop_t);
483 extern const char *zpool_prop_column_name(zpool_prop_t);
484 extern boolean_t zpool_prop_align_right(zpool_prop_t);

486 /*
487 * Functions shared by zfs and zpool property management.
488 */
489 extern int zprop_iter(zprop_func func, void *cb, boolean_t show_all,
490 boolean_t ordered, zfs_type_t type);
491 extern int zprop_get_list(libzfs_handle_t *, char *, zprop_list_t **,
492 zfs_type_t);
493 extern void zprop_free_list(zprop_list_t *);

495 #define ZFS_GET_NCOLS 5

497 typedef enum {
498 GET_COL_NONE,
499 GET_COL_NAME,
500 GET_COL_PROPERTY,
501 GET_COL_VALUE,
502 GET_COL_RECVD,
503 GET_COL_SOURCE
504 } zfs_get_column_t;

506 /*
507 * Functions for printing zfs or zpool properties
508 */
509 typedef struct zprop_get_cbdata {
510 int cb_sources;
511 zfs_get_column_t cb_columns[ZFS_GET_NCOLS];
512 int cb_colwidths[ZFS_GET_NCOLS + 1];
513 boolean_t cb_scripted;
514 boolean_t cb_literal;
515 boolean_t cb_first;
516 zprop_list_t *cb_proplist;
517 zfs_type_t cb_type;
518 } zprop_get_cbdata_t;

520 void zprop_print_one_property(const char *, zprop_get_cbdata_t *,
521 const char *, const char *, zprop_source_t, const char *,
522 const char *);

new/usr/src/lib/libzfs/common/libzfs.h 9

524 /*
525 * Iterator functions.
526 */
527 typedef int (*zfs_iter_f)(zfs_handle_t *, void *);
528 extern int zfs_iter_root(libzfs_handle_t *, zfs_iter_f, void *);
529 extern int zfs_iter_children(zfs_handle_t *, zfs_iter_f, void *);
530 extern int zfs_iter_dependents(zfs_handle_t *, boolean_t, zfs_iter_f, void *);
531 extern int zfs_iter_filesystems(zfs_handle_t *, zfs_iter_f, void *);
532 extern int zfs_iter_snapshots(zfs_handle_t *, zfs_iter_f, void *);
533 extern int zfs_iter_snapshots_sorted(zfs_handle_t *, zfs_iter_f, void *);
534 extern int zfs_iter_snapspec(zfs_handle_t *, const char *, zfs_iter_f, void *);

536 typedef struct get_all_cb {
537 zfs_handle_t **cb_handles;
538 size_t cb_alloc;
539 size_t cb_used;
540 boolean_t cb_verbose;
541 int (*cb_getone)(zfs_handle_t *, void *);
542 } get_all_cb_t;

544 void libzfs_add_handle(get_all_cb_t *, zfs_handle_t *);
545 int libzfs_dataset_cmp(const void *, const void *);

547 /*
548 * Functions to create and destroy datasets.
549 */
550 extern int zfs_create(libzfs_handle_t *, const char *, zfs_type_t,
551 nvlist_t *);
552 extern int zfs_create_ancestors(libzfs_handle_t *, const char *);
553 extern int zfs_destroy(zfs_handle_t *, boolean_t);
554 extern int zfs_destroy_snaps(zfs_handle_t *, char *, boolean_t);
555 extern int zfs_destroy_snaps_nvl(libzfs_handle_t *, nvlist_t *, boolean_t);
556 extern int zfs_clone(zfs_handle_t *, const char *, nvlist_t *);
557 extern int zfs_snapshot(libzfs_handle_t *, const char *, boolean_t, nvlist_t *);
558 extern int zfs_snapshot_nvl(libzfs_handle_t *hdl, nvlist_t *snaps,
559 nvlist_t *props);
560 extern int zfs_rollback(zfs_handle_t *, zfs_handle_t *, boolean_t);
561 extern int zfs_rename(zfs_handle_t *, const char *, boolean_t, boolean_t);

563 typedef struct sendflags {
564 /* print informational messages (ie, -v was specified) */
565 boolean_t verbose;

567 /* recursive send (ie, -R) */
568 boolean_t replicate;

570 /* for incrementals, do all intermediate snapshots */
571 boolean_t doall;

573 /* if dataset is a clone, do incremental from its origin */
574 boolean_t fromorigin;

576 /* do deduplication */
577 boolean_t dedup;

579 /* send properties (ie, -p) */
580 boolean_t props;

582 /* do not send (no-op, ie. -n) */
583 boolean_t dryrun;

585 /* parsable verbose output (ie. -P) */
586 boolean_t parsable;

588 /* show progress (ie. -v) */

new/usr/src/lib/libzfs/common/libzfs.h 10

589 boolean_t progress;
590 } sendflags_t;

592 typedef boolean_t (snapfilter_cb_t)(zfs_handle_t *, void *);

594 extern int zfs_send(zfs_handle_t *, const char *, const char *,
595 sendflags_t *, int, snapfilter_cb_t, void *, nvlist_t **);

597 extern int zfs_promote(zfs_handle_t *);
598 extern int zfs_hold(zfs_handle_t *, const char *, const char *,
599 boolean_t, int);
600 extern int zfs_hold_nvl(zfs_handle_t *, int, nvlist_t *);
27 boolean_t, boolean_t, int);
601 extern int zfs_release(zfs_handle_t *, const char *, const char *, boolean_t);
602 extern int zfs_get_holds(zfs_handle_t *, nvlist_t **);
603 extern uint64_t zvol_volsize_to_reservation(uint64_t, nvlist_t *);

605 typedef int (*zfs_userspace_cb_t)(void *arg, const char *domain,
606 uid_t rid, uint64_t space);

608 extern int zfs_userspace(zfs_handle_t *, zfs_userquota_prop_t,
609 zfs_userspace_cb_t, void *);

611 extern int zfs_get_fsacl(zfs_handle_t *, nvlist_t **);
612 extern int zfs_set_fsacl(zfs_handle_t *, boolean_t, nvlist_t *);

614 typedef struct recvflags {
615 /* print informational messages (ie, -v was specified) */
616 boolean_t verbose;

618 /* the destination is a prefix, not the exact fs (ie, -d) */
619 boolean_t isprefix;

621 /*
622 * Only the tail of the sent snapshot path is appended to the
623 * destination to determine the received snapshot name (ie, -e).
624 */
625 boolean_t istail;

627 /* do not actually do the recv, just check if it would work (ie, -n) */
628 boolean_t dryrun;

630 /* rollback/destroy filesystems as necessary (eg, -F) */
631 boolean_t force;

633 /* set "canmount=off" on all modified filesystems */
634 boolean_t canmountoff;

636 /* byteswap flag is used internally; callers need not specify */
637 boolean_t byteswap;

639 /* do not mount file systems as they are extracted (private) */
640 boolean_t nomount;
641 } recvflags_t;

______unchanged_portion_omitted_

new/usr/src/lib/libzfs/common/libzfs_dataset.c 1

**
 111557 Wed May 29 20:27:08 2013
new/usr/src/lib/libzfs/common/libzfs_dataset.c
3740 Poor ZFS send / receive performance due to snapshot hold / release processi
Submitted by: Steven Hartland <steven.hartland@multiplay.co.uk>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012 by Delphix. All rights reserved.
25 * Copyright (c) 2012 DEY Storage Systems, Inc. All rights reserved.
26 * Copyright 2012 Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2013 Martin Matuska. All rights reserved.
28 * Copyright (c) 2013 Steven Hartland. All rights reserved.
29 #endif /* ! codereview */
30 */

32 #include <ctype.h>
33 #include <errno.h>
34 #include <libintl.h>
35 #include <math.h>
36 #include <stdio.h>
37 #include <stdlib.h>
38 #include <strings.h>
39 #include <unistd.h>
40 #include <stddef.h>
41 #include <zone.h>
42 #include <fcntl.h>
43 #include <sys/mntent.h>
44 #include <sys/mount.h>
45 #include <priv.h>
46 #include <pwd.h>
47 #include <grp.h>
48 #include <stddef.h>
49 #include <ucred.h>
50 #include <idmap.h>
51 #include <aclutils.h>
52 #include <directory.h>

54 #include <sys/dnode.h>
55 #include <sys/spa.h>
56 #include <sys/zap.h>
57 #include <libzfs.h>

59 #include "zfs_namecheck.h"
60 #include "zfs_prop.h"

new/usr/src/lib/libzfs/common/libzfs_dataset.c 2

61 #include "libzfs_impl.h"
62 #include "zfs_deleg.h"

64 static int userquota_propname_decode(const char *propname, boolean_t zoned,
65 zfs_userquota_prop_t *typep, char *domain, int domainlen, uint64_t *ridp);

67 /*
68 * Given a single type (not a mask of types), return the type in a human
69 * readable form.
70 */
71 const char *
72 zfs_type_to_name(zfs_type_t type)
73 {
74 switch (type) {
75 case ZFS_TYPE_FILESYSTEM:
76 return (dgettext(TEXT_DOMAIN, "filesystem"));
77 case ZFS_TYPE_SNAPSHOT:
78 return (dgettext(TEXT_DOMAIN, "snapshot"));
79 case ZFS_TYPE_VOLUME:
80 return (dgettext(TEXT_DOMAIN, "volume"));
81 }

83 return (NULL);
84 }

86 /*
87 * Given a path and mask of ZFS types, return a string describing this dataset.
88 * This is used when we fail to open a dataset and we cannot get an exact type.
89 * We guess what the type would have been based on the path and the mask of
90 * acceptable types.
91 */
92 static const char *
93 path_to_str(const char *path, int types)
94 {
95 /*
96 * When given a single type, always report the exact type.
97 */
98 if (types == ZFS_TYPE_SNAPSHOT)
99 return (dgettext(TEXT_DOMAIN, "snapshot"));
100 if (types == ZFS_TYPE_FILESYSTEM)
101 return (dgettext(TEXT_DOMAIN, "filesystem"));
102 if (types == ZFS_TYPE_VOLUME)
103 return (dgettext(TEXT_DOMAIN, "volume"));

105 /*
106 * The user is requesting more than one type of dataset. If this is the
107 * case, consult the path itself. If we’re looking for a snapshot, and
108 * a ’@’ is found, then report it as "snapshot". Otherwise, remove the
109 * snapshot attribute and try again.
110 */
111 if (types & ZFS_TYPE_SNAPSHOT) {
112 if (strchr(path, ’@’) != NULL)
113 return (dgettext(TEXT_DOMAIN, "snapshot"));
114 return (path_to_str(path, types & ~ZFS_TYPE_SNAPSHOT));
115 }

117 /*
118 * The user has requested either filesystems or volumes.
119 * We have no way of knowing a priori what type this would be, so always
120 * report it as "filesystem" or "volume", our two primitive types.
121 */
122 if (types & ZFS_TYPE_FILESYSTEM)
123 return (dgettext(TEXT_DOMAIN, "filesystem"));

125 assert(types & ZFS_TYPE_VOLUME);
126 return (dgettext(TEXT_DOMAIN, "volume"));

new/usr/src/lib/libzfs/common/libzfs_dataset.c 3

127 }

129 /*
130 * Validate a ZFS path. This is used even before trying to open the dataset, to
131 * provide a more meaningful error message. We call zfs_error_aux() to
132 * explain exactly why the name was not valid.
133 */
134 int
135 zfs_validate_name(libzfs_handle_t *hdl, const char *path, int type,
136 boolean_t modifying)
137 {
138 namecheck_err_t why;
139 char what;

141 (void) zfs_prop_get_table();
142 if (dataset_namecheck(path, &why, &what) != 0) {
143 if (hdl != NULL) {
144 switch (why) {
145 case NAME_ERR_TOOLONG:
146 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
147 "name is too long"));
148 break;

150 case NAME_ERR_LEADING_SLASH:
151 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
152 "leading slash in name"));
153 break;

155 case NAME_ERR_EMPTY_COMPONENT:
156 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
157 "empty component in name"));
158 break;

160 case NAME_ERR_TRAILING_SLASH:
161 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
162 "trailing slash in name"));
163 break;

165 case NAME_ERR_INVALCHAR:
166 zfs_error_aux(hdl,
167 dgettext(TEXT_DOMAIN, "invalid character "
168 "’%c’ in name"), what);
169 break;

171 case NAME_ERR_MULTIPLE_AT:
172 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
173 "multiple ’@’ delimiters in name"));
174 break;

176 case NAME_ERR_NOLETTER:
177 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
178 "pool doesn’t begin with a letter"));
179 break;

181 case NAME_ERR_RESERVED:
182 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
183 "name is reserved"));
184 break;

186 case NAME_ERR_DISKLIKE:
187 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
188 "reserved disk name"));
189 break;
190 }
191 }

new/usr/src/lib/libzfs/common/libzfs_dataset.c 4

193 return (0);
194 }

196 if (!(type & ZFS_TYPE_SNAPSHOT) && strchr(path, ’@’) != NULL) {
197 if (hdl != NULL)
198 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
199 "snapshot delimiter ’@’ in filesystem name"));
200 return (0);
201 }

203 if (type == ZFS_TYPE_SNAPSHOT && strchr(path, ’@’) == NULL) {
204 if (hdl != NULL)
205 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
206 "missing ’@’ delimiter in snapshot name"));
207 return (0);
208 }

210 if (modifying && strchr(path, ’%’) != NULL) {
211 if (hdl != NULL)
212 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
213 "invalid character %c in name"), ’%’);
214 return (0);
215 }

217 return (-1);
218 }

220 int
221 zfs_name_valid(const char *name, zfs_type_t type)
222 {
223 if (type == ZFS_TYPE_POOL)
224 return (zpool_name_valid(NULL, B_FALSE, name));
225 return (zfs_validate_name(NULL, name, type, B_FALSE));
226 }

228 /*
229 * This function takes the raw DSL properties, and filters out the user-defined
230 * properties into a separate nvlist.
231 */
232 static nvlist_t *
233 process_user_props(zfs_handle_t *zhp, nvlist_t *props)
234 {
235 libzfs_handle_t *hdl = zhp->zfs_hdl;
236 nvpair_t *elem;
237 nvlist_t *propval;
238 nvlist_t *nvl;

240 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) {
241 (void) no_memory(hdl);
242 return (NULL);
243 }

245 elem = NULL;
246 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
247 if (!zfs_prop_user(nvpair_name(elem)))
248 continue;

250 verify(nvpair_value_nvlist(elem, &propval) == 0);
251 if (nvlist_add_nvlist(nvl, nvpair_name(elem), propval) != 0) {
252 nvlist_free(nvl);
253 (void) no_memory(hdl);
254 return (NULL);
255 }
256 }

258 return (nvl);

new/usr/src/lib/libzfs/common/libzfs_dataset.c 5

259 }

261 static zpool_handle_t *
262 zpool_add_handle(zfs_handle_t *zhp, const char *pool_name)
263 {
264 libzfs_handle_t *hdl = zhp->zfs_hdl;
265 zpool_handle_t *zph;

267 if ((zph = zpool_open_canfail(hdl, pool_name)) != NULL) {
268 if (hdl->libzfs_pool_handles != NULL)
269 zph->zpool_next = hdl->libzfs_pool_handles;
270 hdl->libzfs_pool_handles = zph;
271 }
272 return (zph);
273 }

275 static zpool_handle_t *
276 zpool_find_handle(zfs_handle_t *zhp, const char *pool_name, int len)
277 {
278 libzfs_handle_t *hdl = zhp->zfs_hdl;
279 zpool_handle_t *zph = hdl->libzfs_pool_handles;

281 while ((zph != NULL) &&
282 (strncmp(pool_name, zpool_get_name(zph), len) != 0))
283 zph = zph->zpool_next;
284 return (zph);
285 }

287 /*
288 * Returns a handle to the pool that contains the provided dataset.
289 * If a handle to that pool already exists then that handle is returned.
290 * Otherwise, a new handle is created and added to the list of handles.
291 */
292 static zpool_handle_t *
293 zpool_handle(zfs_handle_t *zhp)
294 {
295 char *pool_name;
296 int len;
297 zpool_handle_t *zph;

299 len = strcspn(zhp->zfs_name, "/@") + 1;
300 pool_name = zfs_alloc(zhp->zfs_hdl, len);
301 (void) strlcpy(pool_name, zhp->zfs_name, len);

303 zph = zpool_find_handle(zhp, pool_name, len);
304 if (zph == NULL)
305 zph = zpool_add_handle(zhp, pool_name);

307 free(pool_name);
308 return (zph);
309 }

311 void
312 zpool_free_handles(libzfs_handle_t *hdl)
313 {
314 zpool_handle_t *next, *zph = hdl->libzfs_pool_handles;

316 while (zph != NULL) {
317 next = zph->zpool_next;
318 zpool_close(zph);
319 zph = next;
320 }
321 hdl->libzfs_pool_handles = NULL;
322 }

324 /*

new/usr/src/lib/libzfs/common/libzfs_dataset.c 6

325 * Utility function to gather stats (objset and zpl) for the given object.
326 */
327 static int
328 get_stats_ioctl(zfs_handle_t *zhp, zfs_cmd_t *zc)
329 {
330 libzfs_handle_t *hdl = zhp->zfs_hdl;

332 (void) strlcpy(zc->zc_name, zhp->zfs_name, sizeof (zc->zc_name));

334 while (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, zc) != 0) {
335 if (errno == ENOMEM) {
336 if (zcmd_expand_dst_nvlist(hdl, zc) != 0) {
337 return (-1);
338 }
339 } else {
340 return (-1);
341 }
342 }
343 return (0);
344 }

346 /*
347 * Utility function to get the received properties of the given object.
348 */
349 static int
350 get_recvd_props_ioctl(zfs_handle_t *zhp)
351 {
352 libzfs_handle_t *hdl = zhp->zfs_hdl;
353 nvlist_t *recvdprops;
354 zfs_cmd_t zc = { 0 };
355 int err;

357 if (zcmd_alloc_dst_nvlist(hdl, &zc, 0) != 0)
358 return (-1);

360 (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));

362 while (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_RECVD_PROPS, &zc) != 0) {
363 if (errno == ENOMEM) {
364 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
365 return (-1);
366 }
367 } else {
368 zcmd_free_nvlists(&zc);
369 return (-1);
370 }
371 }

373 err = zcmd_read_dst_nvlist(zhp->zfs_hdl, &zc, &recvdprops);
374 zcmd_free_nvlists(&zc);
375 if (err != 0)
376 return (-1);

378 nvlist_free(zhp->zfs_recvd_props);
379 zhp->zfs_recvd_props = recvdprops;

381 return (0);
382 }

384 static int
385 put_stats_zhdl(zfs_handle_t *zhp, zfs_cmd_t *zc)
386 {
387 nvlist_t *allprops, *userprops;

389 zhp->zfs_dmustats = zc->zc_objset_stats; /* structure assignment */

new/usr/src/lib/libzfs/common/libzfs_dataset.c 7

391 if (zcmd_read_dst_nvlist(zhp->zfs_hdl, zc, &allprops) != 0) {
392 return (-1);
393 }

395 /*
396 * XXX Why do we store the user props separately, in addition to
397 * storing them in zfs_props?
398 */
399 if ((userprops = process_user_props(zhp, allprops)) == NULL) {
400 nvlist_free(allprops);
401 return (-1);
402 }

404 nvlist_free(zhp->zfs_props);
405 nvlist_free(zhp->zfs_user_props);

407 zhp->zfs_props = allprops;
408 zhp->zfs_user_props = userprops;

410 return (0);
411 }

413 static int
414 get_stats(zfs_handle_t *zhp)
415 {
416 int rc = 0;
417 zfs_cmd_t zc = { 0 };

419 if (zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0)
420 return (-1);
421 if (get_stats_ioctl(zhp, &zc) != 0)
422 rc = -1;
423 else if (put_stats_zhdl(zhp, &zc) != 0)
424 rc = -1;
425 zcmd_free_nvlists(&zc);
426 return (rc);
427 }

429 /*
430 * Refresh the properties currently stored in the handle.
431 */
432 void
433 zfs_refresh_properties(zfs_handle_t *zhp)
434 {
435 (void) get_stats(zhp);
436 }

438 /*
439 * Makes a handle from the given dataset name. Used by zfs_open() and
440 * zfs_iter_* to create child handles on the fly.
441 */
442 static int
443 make_dataset_handle_common(zfs_handle_t *zhp, zfs_cmd_t *zc)
444 {
445 if (put_stats_zhdl(zhp, zc) != 0)
446 return (-1);

448 /*
449 * We’ve managed to open the dataset and gather statistics. Determine
450 * the high-level type.
451 */
452 if (zhp->zfs_dmustats.dds_type == DMU_OST_ZVOL)
453 zhp->zfs_head_type = ZFS_TYPE_VOLUME;
454 else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZFS)
455 zhp->zfs_head_type = ZFS_TYPE_FILESYSTEM;
456 else

new/usr/src/lib/libzfs/common/libzfs_dataset.c 8

457 abort();

459 if (zhp->zfs_dmustats.dds_is_snapshot)
460 zhp->zfs_type = ZFS_TYPE_SNAPSHOT;
461 else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZVOL)
462 zhp->zfs_type = ZFS_TYPE_VOLUME;
463 else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZFS)
464 zhp->zfs_type = ZFS_TYPE_FILESYSTEM;
465 else
466 abort(); /* we should never see any other types */

468 if ((zhp->zpool_hdl = zpool_handle(zhp)) == NULL)
469 return (-1);

471 return (0);
472 }

474 zfs_handle_t *
475 make_dataset_handle(libzfs_handle_t *hdl, const char *path)
476 {
477 zfs_cmd_t zc = { 0 };

479 zfs_handle_t *zhp = calloc(sizeof (zfs_handle_t), 1);

481 if (zhp == NULL)
482 return (NULL);

484 zhp->zfs_hdl = hdl;
485 (void) strlcpy(zhp->zfs_name, path, sizeof (zhp->zfs_name));
486 if (zcmd_alloc_dst_nvlist(hdl, &zc, 0) != 0) {
487 free(zhp);
488 return (NULL);
489 }
490 if (get_stats_ioctl(zhp, &zc) == -1) {
491 zcmd_free_nvlists(&zc);
492 free(zhp);
493 return (NULL);
494 }
495 if (make_dataset_handle_common(zhp, &zc) == -1) {
496 free(zhp);
497 zhp = NULL;
498 }
499 zcmd_free_nvlists(&zc);
500 return (zhp);
501 }

503 zfs_handle_t *
504 make_dataset_handle_zc(libzfs_handle_t *hdl, zfs_cmd_t *zc)
505 {
506 zfs_handle_t *zhp = calloc(sizeof (zfs_handle_t), 1);

508 if (zhp == NULL)
509 return (NULL);

511 zhp->zfs_hdl = hdl;
512 (void) strlcpy(zhp->zfs_name, zc->zc_name, sizeof (zhp->zfs_name));
513 if (make_dataset_handle_common(zhp, zc) == -1) {
514 free(zhp);
515 return (NULL);
516 }
517 return (zhp);
518 }

520 zfs_handle_t *
521 zfs_handle_dup(zfs_handle_t *zhp_orig)
522 {

new/usr/src/lib/libzfs/common/libzfs_dataset.c 9

523 zfs_handle_t *zhp = calloc(sizeof (zfs_handle_t), 1);

525 if (zhp == NULL)
526 return (NULL);

528 zhp->zfs_hdl = zhp_orig->zfs_hdl;
529 zhp->zpool_hdl = zhp_orig->zpool_hdl;
530 (void) strlcpy(zhp->zfs_name, zhp_orig->zfs_name,
531 sizeof (zhp->zfs_name));
532 zhp->zfs_type = zhp_orig->zfs_type;
533 zhp->zfs_head_type = zhp_orig->zfs_head_type;
534 zhp->zfs_dmustats = zhp_orig->zfs_dmustats;
535 if (zhp_orig->zfs_props != NULL) {
536 if (nvlist_dup(zhp_orig->zfs_props, &zhp->zfs_props, 0) != 0) {
537 (void) no_memory(zhp->zfs_hdl);
538 zfs_close(zhp);
539 return (NULL);
540 }
541 }
542 if (zhp_orig->zfs_user_props != NULL) {
543 if (nvlist_dup(zhp_orig->zfs_user_props,
544 &zhp->zfs_user_props, 0) != 0) {
545 (void) no_memory(zhp->zfs_hdl);
546 zfs_close(zhp);
547 return (NULL);
548 }
549 }
550 if (zhp_orig->zfs_recvd_props != NULL) {
551 if (nvlist_dup(zhp_orig->zfs_recvd_props,
552 &zhp->zfs_recvd_props, 0)) {
553 (void) no_memory(zhp->zfs_hdl);
554 zfs_close(zhp);
555 return (NULL);
556 }
557 }
558 zhp->zfs_mntcheck = zhp_orig->zfs_mntcheck;
559 if (zhp_orig->zfs_mntopts != NULL) {
560 zhp->zfs_mntopts = zfs_strdup(zhp_orig->zfs_hdl,
561 zhp_orig->zfs_mntopts);
562 }
563 zhp->zfs_props_table = zhp_orig->zfs_props_table;
564 return (zhp);
565 }

567 /*
568 * Opens the given snapshot, filesystem, or volume. The ’types’
569 * argument is a mask of acceptable types. The function will print an
570 * appropriate error message and return NULL if it can’t be opened.
571 */
572 zfs_handle_t *
573 zfs_open(libzfs_handle_t *hdl, const char *path, int types)
574 {
575 zfs_handle_t *zhp;
576 char errbuf[1024];

578 (void) snprintf(errbuf, sizeof (errbuf),
579 dgettext(TEXT_DOMAIN, "cannot open ’%s’"), path);

581 /*
582 * Validate the name before we even try to open it.
583 */
584 if (!zfs_validate_name(hdl, path, ZFS_TYPE_DATASET, B_FALSE)) {
585 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
586 "invalid dataset name"));
587 (void) zfs_error(hdl, EZFS_INVALIDNAME, errbuf);
588 return (NULL);

new/usr/src/lib/libzfs/common/libzfs_dataset.c 10

589 }

591 /*
592 * Try to get stats for the dataset, which will tell us if it exists.
593 */
594 errno = 0;
595 if ((zhp = make_dataset_handle(hdl, path)) == NULL) {
596 (void) zfs_standard_error(hdl, errno, errbuf);
597 return (NULL);
598 }

600 if (!(types & zhp->zfs_type)) {
601 (void) zfs_error(hdl, EZFS_BADTYPE, errbuf);
602 zfs_close(zhp);
603 return (NULL);
604 }

606 return (zhp);
607 }

609 /*
610 * Release a ZFS handle. Nothing to do but free the associated memory.
611 */
612 void
613 zfs_close(zfs_handle_t *zhp)
614 {
615 if (zhp->zfs_mntopts)
616 free(zhp->zfs_mntopts);
617 nvlist_free(zhp->zfs_props);
618 nvlist_free(zhp->zfs_user_props);
619 nvlist_free(zhp->zfs_recvd_props);
620 free(zhp);
621 }

623 typedef struct mnttab_node {
624 struct mnttab mtn_mt;
625 avl_node_t mtn_node;
626 } mnttab_node_t;

628 static int
629 libzfs_mnttab_cache_compare(const void *arg1, const void *arg2)
630 {
631 const mnttab_node_t *mtn1 = arg1;
632 const mnttab_node_t *mtn2 = arg2;
633 int rv;

635 rv = strcmp(mtn1->mtn_mt.mnt_special, mtn2->mtn_mt.mnt_special);

637 if (rv == 0)
638 return (0);
639 return (rv > 0 ? 1 : -1);
640 }

642 void
643 libzfs_mnttab_init(libzfs_handle_t *hdl)
644 {
645 assert(avl_numnodes(&hdl->libzfs_mnttab_cache) == 0);
646 avl_create(&hdl->libzfs_mnttab_cache, libzfs_mnttab_cache_compare,
647 sizeof (mnttab_node_t), offsetof(mnttab_node_t, mtn_node));
648 }

650 void
651 libzfs_mnttab_update(libzfs_handle_t *hdl)
652 {
653 struct mnttab entry;

new/usr/src/lib/libzfs/common/libzfs_dataset.c 11

655 rewind(hdl->libzfs_mnttab);
656 while (getmntent(hdl->libzfs_mnttab, &entry) == 0) {
657 mnttab_node_t *mtn;

659 if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
660 continue;
661 mtn = zfs_alloc(hdl, sizeof (mnttab_node_t));
662 mtn->mtn_mt.mnt_special = zfs_strdup(hdl, entry.mnt_special);
663 mtn->mtn_mt.mnt_mountp = zfs_strdup(hdl, entry.mnt_mountp);
664 mtn->mtn_mt.mnt_fstype = zfs_strdup(hdl, entry.mnt_fstype);
665 mtn->mtn_mt.mnt_mntopts = zfs_strdup(hdl, entry.mnt_mntopts);
666 avl_add(&hdl->libzfs_mnttab_cache, mtn);
667 }
668 }

670 void
671 libzfs_mnttab_fini(libzfs_handle_t *hdl)
672 {
673 void *cookie = NULL;
674 mnttab_node_t *mtn;

676 while (mtn = avl_destroy_nodes(&hdl->libzfs_mnttab_cache, &cookie)) {
677 free(mtn->mtn_mt.mnt_special);
678 free(mtn->mtn_mt.mnt_mountp);
679 free(mtn->mtn_mt.mnt_fstype);
680 free(mtn->mtn_mt.mnt_mntopts);
681 free(mtn);
682 }
683 avl_destroy(&hdl->libzfs_mnttab_cache);
684 }

686 void
687 libzfs_mnttab_cache(libzfs_handle_t *hdl, boolean_t enable)
688 {
689 hdl->libzfs_mnttab_enable = enable;
690 }

692 int
693 libzfs_mnttab_find(libzfs_handle_t *hdl, const char *fsname,
694 struct mnttab *entry)
695 {
696 mnttab_node_t find;
697 mnttab_node_t *mtn;

699 if (!hdl->libzfs_mnttab_enable) {
700 struct mnttab srch = { 0 };

702 if (avl_numnodes(&hdl->libzfs_mnttab_cache))
703 libzfs_mnttab_fini(hdl);
704 rewind(hdl->libzfs_mnttab);
705 srch.mnt_special = (char *)fsname;
706 srch.mnt_fstype = MNTTYPE_ZFS;
707 if (getmntany(hdl->libzfs_mnttab, entry, &srch) == 0)
708 return (0);
709 else
710 return (ENOENT);
711 }

713 if (avl_numnodes(&hdl->libzfs_mnttab_cache) == 0)
714 libzfs_mnttab_update(hdl);

716 find.mtn_mt.mnt_special = (char *)fsname;
717 mtn = avl_find(&hdl->libzfs_mnttab_cache, &find, NULL);
718 if (mtn) {
719 *entry = mtn->mtn_mt;
720 return (0);

new/usr/src/lib/libzfs/common/libzfs_dataset.c 12

721 }
722 return (ENOENT);
723 }

725 void
726 libzfs_mnttab_add(libzfs_handle_t *hdl, const char *special,
727 const char *mountp, const char *mntopts)
728 {
729 mnttab_node_t *mtn;

731 if (avl_numnodes(&hdl->libzfs_mnttab_cache) == 0)
732 return;
733 mtn = zfs_alloc(hdl, sizeof (mnttab_node_t));
734 mtn->mtn_mt.mnt_special = zfs_strdup(hdl, special);
735 mtn->mtn_mt.mnt_mountp = zfs_strdup(hdl, mountp);
736 mtn->mtn_mt.mnt_fstype = zfs_strdup(hdl, MNTTYPE_ZFS);
737 mtn->mtn_mt.mnt_mntopts = zfs_strdup(hdl, mntopts);
738 avl_add(&hdl->libzfs_mnttab_cache, mtn);
739 }

741 void
742 libzfs_mnttab_remove(libzfs_handle_t *hdl, const char *fsname)
743 {
744 mnttab_node_t find;
745 mnttab_node_t *ret;

747 find.mtn_mt.mnt_special = (char *)fsname;
748 if (ret = avl_find(&hdl->libzfs_mnttab_cache, (void *)&find, NULL)) {
749 avl_remove(&hdl->libzfs_mnttab_cache, ret);
750 free(ret->mtn_mt.mnt_special);
751 free(ret->mtn_mt.mnt_mountp);
752 free(ret->mtn_mt.mnt_fstype);
753 free(ret->mtn_mt.mnt_mntopts);
754 free(ret);
755 }
756 }

758 int
759 zfs_spa_version(zfs_handle_t *zhp, int *spa_version)
760 {
761 zpool_handle_t *zpool_handle = zhp->zpool_hdl;

763 if (zpool_handle == NULL)
764 return (-1);

766 *spa_version = zpool_get_prop_int(zpool_handle,
767 ZPOOL_PROP_VERSION, NULL);
768 return (0);
769 }

771 /*
772 * The choice of reservation property depends on the SPA version.
773 */
774 static int
775 zfs_which_resv_prop(zfs_handle_t *zhp, zfs_prop_t *resv_prop)
776 {
777 int spa_version;

779 if (zfs_spa_version(zhp, &spa_version) < 0)
780 return (-1);

782 if (spa_version >= SPA_VERSION_REFRESERVATION)
783 *resv_prop = ZFS_PROP_REFRESERVATION;
784 else
785 *resv_prop = ZFS_PROP_RESERVATION;

new/usr/src/lib/libzfs/common/libzfs_dataset.c 13

787 return (0);
788 }

790 /*
791 * Given an nvlist of properties to set, validates that they are correct, and
792 * parses any numeric properties (index, boolean, etc) if they are specified as
793 * strings.
794 */
795 nvlist_t *
796 zfs_valid_proplist(libzfs_handle_t *hdl, zfs_type_t type, nvlist_t *nvl,
797 uint64_t zoned, zfs_handle_t *zhp, const char *errbuf)
798 {
799 nvpair_t *elem;
800 uint64_t intval;
801 char *strval;
802 zfs_prop_t prop;
803 nvlist_t *ret;
804 int chosen_normal = -1;
805 int chosen_utf = -1;

807 if (nvlist_alloc(&ret, NV_UNIQUE_NAME, 0) != 0) {
808 (void) no_memory(hdl);
809 return (NULL);
810 }

812 /*
813 * Make sure this property is valid and applies to this type.
814 */

816 elem = NULL;
817 while ((elem = nvlist_next_nvpair(nvl, elem)) != NULL) {
818 const char *propname = nvpair_name(elem);

820 prop = zfs_name_to_prop(propname);
821 if (prop == ZPROP_INVAL && zfs_prop_user(propname)) {
822 /*
823 * This is a user property: make sure it’s a
824 * string, and that it’s less than ZAP_MAXNAMELEN.
825 */
826 if (nvpair_type(elem) != DATA_TYPE_STRING) {
827 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
828 "’%s’ must be a string"), propname);
829 (void) zfs_error(hdl, EZFS_BADPROP, errbuf);
830 goto error;
831 }

833 if (strlen(nvpair_name(elem)) >= ZAP_MAXNAMELEN) {
834 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
835 "property name ’%s’ is too long"),
836 propname);
837 (void) zfs_error(hdl, EZFS_BADPROP, errbuf);
838 goto error;
839 }

841 (void) nvpair_value_string(elem, &strval);
842 if (nvlist_add_string(ret, propname, strval) != 0) {
843 (void) no_memory(hdl);
844 goto error;
845 }
846 continue;
847 }

849 /*
850 * Currently, only user properties can be modified on
851 * snapshots.
852 */

new/usr/src/lib/libzfs/common/libzfs_dataset.c 14

853 if (type == ZFS_TYPE_SNAPSHOT) {
854 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
855 "this property can not be modified for snapshots"));
856 (void) zfs_error(hdl, EZFS_PROPTYPE, errbuf);
857 goto error;
858 }

860 if (prop == ZPROP_INVAL && zfs_prop_userquota(propname)) {
861 zfs_userquota_prop_t uqtype;
862 char newpropname[128];
863 char domain[128];
864 uint64_t rid;
865 uint64_t valary[3];

867 if (userquota_propname_decode(propname, zoned,
868 &uqtype, domain, sizeof (domain), &rid) != 0) {
869 zfs_error_aux(hdl,
870 dgettext(TEXT_DOMAIN,
871 "’%s’ has an invalid user/group name"),
872 propname);
873 (void) zfs_error(hdl, EZFS_BADPROP, errbuf);
874 goto error;
875 }

877 if (uqtype != ZFS_PROP_USERQUOTA &&
878 uqtype != ZFS_PROP_GROUPQUOTA) {
879 zfs_error_aux(hdl,
880 dgettext(TEXT_DOMAIN, "’%s’ is readonly"),
881 propname);
882 (void) zfs_error(hdl, EZFS_PROPREADONLY,
883 errbuf);
884 goto error;
885 }

887 if (nvpair_type(elem) == DATA_TYPE_STRING) {
888 (void) nvpair_value_string(elem, &strval);
889 if (strcmp(strval, "none") == 0) {
890 intval = 0;
891 } else if (zfs_nicestrtonum(hdl,
892 strval, &intval) != 0) {
893 (void) zfs_error(hdl,
894 EZFS_BADPROP, errbuf);
895 goto error;
896 }
897 } else if (nvpair_type(elem) ==
898 DATA_TYPE_UINT64) {
899 (void) nvpair_value_uint64(elem, &intval);
900 if (intval == 0) {
901 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
902 "use ’none’ to disable "
903 "userquota/groupquota"));
904 goto error;
905 }
906 } else {
907 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
908 "’%s’ must be a number"), propname);
909 (void) zfs_error(hdl, EZFS_BADPROP, errbuf);
910 goto error;
911 }

913 /*
914 * Encode the prop name as
915 * userquota@<hex-rid>-domain, to make it easy
916 * for the kernel to decode.
917 */
918 (void) snprintf(newpropname, sizeof (newpropname),

new/usr/src/lib/libzfs/common/libzfs_dataset.c 15

919 "%s%llx-%s", zfs_userquota_prop_prefixes[uqtype],
920 (longlong_t)rid, domain);
921 valary[0] = uqtype;
922 valary[1] = rid;
923 valary[2] = intval;
924 if (nvlist_add_uint64_array(ret, newpropname,
925 valary, 3) != 0) {
926 (void) no_memory(hdl);
927 goto error;
928 }
929 continue;
930 } else if (prop == ZPROP_INVAL && zfs_prop_written(propname)) {
931 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
932 "’%s’ is readonly"),
933 propname);
934 (void) zfs_error(hdl, EZFS_PROPREADONLY, errbuf);
935 goto error;
936 }

938 if (prop == ZPROP_INVAL) {
939 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
940 "invalid property ’%s’"), propname);
941 (void) zfs_error(hdl, EZFS_BADPROP, errbuf);
942 goto error;
943 }

945 if (!zfs_prop_valid_for_type(prop, type)) {
946 zfs_error_aux(hdl,
947 dgettext(TEXT_DOMAIN, "’%s’ does not "
948 "apply to datasets of this type"), propname);
949 (void) zfs_error(hdl, EZFS_PROPTYPE, errbuf);
950 goto error;
951 }

953 if (zfs_prop_readonly(prop) &&
954 (!zfs_prop_setonce(prop) || zhp != NULL)) {
955 zfs_error_aux(hdl,
956 dgettext(TEXT_DOMAIN, "’%s’ is readonly"),
957 propname);
958 (void) zfs_error(hdl, EZFS_PROPREADONLY, errbuf);
959 goto error;
960 }

962 if (zprop_parse_value(hdl, elem, prop, type, ret,
963 &strval, &intval, errbuf) != 0)
964 goto error;

966 /*
967 * Perform some additional checks for specific properties.
968 */
969 switch (prop) {
970 case ZFS_PROP_VERSION:
971 {
972 int version;

974 if (zhp == NULL)
975 break;
976 version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION);
977 if (intval < version) {
978 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
979 "Can not downgrade; already at version %u"),
980 version);
981 (void) zfs_error(hdl, EZFS_BADPROP, errbuf);
982 goto error;
983 }
984 break;

new/usr/src/lib/libzfs/common/libzfs_dataset.c 16

985 }

987 case ZFS_PROP_RECORDSIZE:
988 case ZFS_PROP_VOLBLOCKSIZE:
989 /* must be power of two within SPA_{MIN,MAX}BLOCKSIZE */
990 if (intval < SPA_MINBLOCKSIZE ||
991 intval > SPA_MAXBLOCKSIZE || !ISP2(intval)) {
992 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
993 "’%s’ must be power of 2 from %u "
994 "to %uk"), propname,
995 (uint_t)SPA_MINBLOCKSIZE,
996 (uint_t)SPA_MAXBLOCKSIZE >> 10);
997 (void) zfs_error(hdl, EZFS_BADPROP, errbuf);
998 goto error;
999 }

1000 break;

1002 case ZFS_PROP_MLSLABEL:
1003 {
1004 /*
1005 * Verify the mlslabel string and convert to
1006 * internal hex label string.
1007 */

1009 m_label_t *new_sl;
1010 char *hex = NULL; /* internal label string */

1012 /* Default value is already OK. */
1013 if (strcasecmp(strval, ZFS_MLSLABEL_DEFAULT) == 0)
1014 break;

1016 /* Verify the label can be converted to binary form */
1017 if (((new_sl = m_label_alloc(MAC_LABEL)) == NULL) ||
1018 (str_to_label(strval, &new_sl, MAC_LABEL,
1019 L_NO_CORRECTION, NULL) == -1)) {
1020 goto badlabel;
1021 }

1023 /* Now translate to hex internal label string */
1024 if (label_to_str(new_sl, &hex, M_INTERNAL,
1025 DEF_NAMES) != 0) {
1026 if (hex)
1027 free(hex);
1028 goto badlabel;
1029 }
1030 m_label_free(new_sl);

1032 /* If string is already in internal form, we’re done. */
1033 if (strcmp(strval, hex) == 0) {
1034 free(hex);
1035 break;
1036 }

1038 /* Replace the label string with the internal form. */
1039 (void) nvlist_remove(ret, zfs_prop_to_name(prop),
1040 DATA_TYPE_STRING);
1041 verify(nvlist_add_string(ret, zfs_prop_to_name(prop),
1042 hex) == 0);
1043 free(hex);

1045 break;

1047 badlabel:
1048 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1049 "invalid mlslabel ’%s’"), strval);
1050 (void) zfs_error(hdl, EZFS_BADPROP, errbuf);

new/usr/src/lib/libzfs/common/libzfs_dataset.c 17

1051 m_label_free(new_sl); /* OK if null */
1052 goto error;

1054 }

1056 case ZFS_PROP_MOUNTPOINT:
1057 {
1058 namecheck_err_t why;

1060 if (strcmp(strval, ZFS_MOUNTPOINT_NONE) == 0 ||
1061 strcmp(strval, ZFS_MOUNTPOINT_LEGACY) == 0)
1062 break;

1064 if (mountpoint_namecheck(strval, &why)) {
1065 switch (why) {
1066 case NAME_ERR_LEADING_SLASH:
1067 zfs_error_aux(hdl,
1068 dgettext(TEXT_DOMAIN,
1069 "’%s’ must be an absolute path, "
1070 "’none’, or ’legacy’"), propname);
1071 break;
1072 case NAME_ERR_TOOLONG:
1073 zfs_error_aux(hdl,
1074 dgettext(TEXT_DOMAIN,
1075 "component of ’%s’ is too long"),
1076 propname);
1077 break;
1078 }
1079 (void) zfs_error(hdl, EZFS_BADPROP, errbuf);
1080 goto error;
1081 }
1082 }

1084 /*FALLTHRU*/

1086 case ZFS_PROP_SHARESMB:
1087 case ZFS_PROP_SHARENFS:
1088 /*
1089 * For the mountpoint and sharenfs or sharesmb
1090 * properties, check if it can be set in a
1091 * global/non-global zone based on
1092 * the zoned property value:
1093 *
1094 * global zone non-global zone
1095 * --
1096 * zoned=on mountpoint (no) mountpoint (yes)
1097 * sharenfs (no) sharenfs (no)
1098 * sharesmb (no) sharesmb (no)
1099 *
1100 * zoned=off mountpoint (yes) N/A
1101 * sharenfs (yes)
1102 * sharesmb (yes)
1103 */
1104 if (zoned) {
1105 if (getzoneid() == GLOBAL_ZONEID) {
1106 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1107 "’%s’ cannot be set on "
1108 "dataset in a non-global zone"),
1109 propname);
1110 (void) zfs_error(hdl, EZFS_ZONED,
1111 errbuf);
1112 goto error;
1113 } else if (prop == ZFS_PROP_SHARENFS ||
1114 prop == ZFS_PROP_SHARESMB) {
1115 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1116 "’%s’ cannot be set in "

new/usr/src/lib/libzfs/common/libzfs_dataset.c 18

1117 "a non-global zone"), propname);
1118 (void) zfs_error(hdl, EZFS_ZONED,
1119 errbuf);
1120 goto error;
1121 }
1122 } else if (getzoneid() != GLOBAL_ZONEID) {
1123 /*
1124 * If zoned property is ’off’, this must be in
1125 * a global zone. If not, something is wrong.
1126 */
1127 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1128 "’%s’ cannot be set while dataset "
1129 "’zoned’ property is set"), propname);
1130 (void) zfs_error(hdl, EZFS_ZONED, errbuf);
1131 goto error;
1132 }

1134 /*
1135 * At this point, it is legitimate to set the
1136 * property. Now we want to make sure that the
1137 * property value is valid if it is sharenfs.
1138 */
1139 if ((prop == ZFS_PROP_SHARENFS ||
1140 prop == ZFS_PROP_SHARESMB) &&
1141 strcmp(strval, "on") != 0 &&
1142 strcmp(strval, "off") != 0) {
1143 zfs_share_proto_t proto;

1145 if (prop == ZFS_PROP_SHARESMB)
1146 proto = PROTO_SMB;
1147 else
1148 proto = PROTO_NFS;

1150 /*
1151 * Must be an valid sharing protocol
1152 * option string so init the libshare
1153 * in order to enable the parser and
1154 * then parse the options. We use the
1155 * control API since we don’t care about
1156 * the current configuration and don’t
1157 * want the overhead of loading it
1158 * until we actually do something.
1159 */

1161 if (zfs_init_libshare(hdl,
1162 SA_INIT_CONTROL_API) != SA_OK) {
1163 /*
1164 * An error occurred so we can’t do
1165 * anything
1166 */
1167 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1168 "’%s’ cannot be set: problem "
1169 "in share initialization"),
1170 propname);
1171 (void) zfs_error(hdl, EZFS_BADPROP,
1172 errbuf);
1173 goto error;
1174 }

1176 if (zfs_parse_options(strval, proto) != SA_OK) {
1177 /*
1178 * There was an error in parsing so
1179 * deal with it by issuing an error
1180 * message and leaving after
1181 * uninitializing the the libshare
1182 * interface.

new/usr/src/lib/libzfs/common/libzfs_dataset.c 19

1183 */
1184 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1185 "’%s’ cannot be set to invalid "
1186 "options"), propname);
1187 (void) zfs_error(hdl, EZFS_BADPROP,
1188 errbuf);
1189 zfs_uninit_libshare(hdl);
1190 goto error;
1191 }
1192 zfs_uninit_libshare(hdl);
1193 }

1195 break;
1196 case ZFS_PROP_UTF8ONLY:
1197 chosen_utf = (int)intval;
1198 break;
1199 case ZFS_PROP_NORMALIZE:
1200 chosen_normal = (int)intval;
1201 break;
1202 }

1204 /*
1205 * For changes to existing volumes, we have some additional
1206 * checks to enforce.
1207 */
1208 if (type == ZFS_TYPE_VOLUME && zhp != NULL) {
1209 uint64_t volsize = zfs_prop_get_int(zhp,
1210 ZFS_PROP_VOLSIZE);
1211 uint64_t blocksize = zfs_prop_get_int(zhp,
1212 ZFS_PROP_VOLBLOCKSIZE);
1213 char buf[64];

1215 switch (prop) {
1216 case ZFS_PROP_RESERVATION:
1217 case ZFS_PROP_REFRESERVATION:
1218 if (intval > volsize) {
1219 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1220 "’%s’ is greater than current "
1221 "volume size"), propname);
1222 (void) zfs_error(hdl, EZFS_BADPROP,
1223 errbuf);
1224 goto error;
1225 }
1226 break;

1228 case ZFS_PROP_VOLSIZE:
1229 if (intval % blocksize != 0) {
1230 zfs_nicenum(blocksize, buf,
1231 sizeof (buf));
1232 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1233 "’%s’ must be a multiple of "
1234 "volume block size (%s)"),
1235 propname, buf);
1236 (void) zfs_error(hdl, EZFS_BADPROP,
1237 errbuf);
1238 goto error;
1239 }

1241 if (intval == 0) {
1242 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1243 "’%s’ cannot be zero"),
1244 propname);
1245 (void) zfs_error(hdl, EZFS_BADPROP,
1246 errbuf);
1247 goto error;
1248 }

new/usr/src/lib/libzfs/common/libzfs_dataset.c 20

1249 break;
1250 }
1251 }
1252 }

1254 /*
1255 * If normalization was chosen, but no UTF8 choice was made,
1256 * enforce rejection of non-UTF8 names.
1257 *
1258 * If normalization was chosen, but rejecting non-UTF8 names
1259 * was explicitly not chosen, it is an error.
1260 */
1261 if (chosen_normal > 0 && chosen_utf < 0) {
1262 if (nvlist_add_uint64(ret,
1263 zfs_prop_to_name(ZFS_PROP_UTF8ONLY), 1) != 0) {
1264 (void) no_memory(hdl);
1265 goto error;
1266 }
1267 } else if (chosen_normal > 0 && chosen_utf == 0) {
1268 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1269 "’%s’ must be set ’on’ if normalization chosen"),
1270 zfs_prop_to_name(ZFS_PROP_UTF8ONLY));
1271 (void) zfs_error(hdl, EZFS_BADPROP, errbuf);
1272 goto error;
1273 }
1274 return (ret);

1276 error:
1277 nvlist_free(ret);
1278 return (NULL);
1279 }

1281 int
1282 zfs_add_synthetic_resv(zfs_handle_t *zhp, nvlist_t *nvl)
1283 {
1284 uint64_t old_volsize;
1285 uint64_t new_volsize;
1286 uint64_t old_reservation;
1287 uint64_t new_reservation;
1288 zfs_prop_t resv_prop;
1289 nvlist_t *props;

1291 /*
1292 * If this is an existing volume, and someone is setting the volsize,
1293 * make sure that it matches the reservation, or add it if necessary.
1294 */
1295 old_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE);
1296 if (zfs_which_resv_prop(zhp, &resv_prop) < 0)
1297 return (-1);
1298 old_reservation = zfs_prop_get_int(zhp, resv_prop);

1300 props = fnvlist_alloc();
1301 fnvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
1302 zfs_prop_get_int(zhp, ZFS_PROP_VOLBLOCKSIZE));

1304 if ((zvol_volsize_to_reservation(old_volsize, props) !=
1305 old_reservation) || nvlist_exists(nvl,
1306 zfs_prop_to_name(resv_prop))) {
1307 fnvlist_free(props);
1308 return (0);
1309 }
1310 if (nvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_VOLSIZE),
1311 &new_volsize) != 0) {
1312 fnvlist_free(props);
1313 return (-1);
1314 }

new/usr/src/lib/libzfs/common/libzfs_dataset.c 21

1315 new_reservation = zvol_volsize_to_reservation(new_volsize, props);
1316 fnvlist_free(props);

1318 if (nvlist_add_uint64(nvl, zfs_prop_to_name(resv_prop),
1319 new_reservation) != 0) {
1320 (void) no_memory(zhp->zfs_hdl);
1321 return (-1);
1322 }
1323 return (1);
1324 }

1326 void
1327 zfs_setprop_error(libzfs_handle_t *hdl, zfs_prop_t prop, int err,
1328 char *errbuf)
1329 {
1330 switch (err) {

1332 case ENOSPC:
1333 /*
1334 * For quotas and reservations, ENOSPC indicates
1335 * something different; setting a quota or reservation
1336 * doesn’t use any disk space.
1337 */
1338 switch (prop) {
1339 case ZFS_PROP_QUOTA:
1340 case ZFS_PROP_REFQUOTA:
1341 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1342 "size is less than current used or "
1343 "reserved space"));
1344 (void) zfs_error(hdl, EZFS_PROPSPACE, errbuf);
1345 break;

1347 case ZFS_PROP_RESERVATION:
1348 case ZFS_PROP_REFRESERVATION:
1349 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1350 "size is greater than available space"));
1351 (void) zfs_error(hdl, EZFS_PROPSPACE, errbuf);
1352 break;

1354 default:
1355 (void) zfs_standard_error(hdl, err, errbuf);
1356 break;
1357 }
1358 break;

1360 case EBUSY:
1361 (void) zfs_standard_error(hdl, EBUSY, errbuf);
1362 break;

1364 case EROFS:
1365 (void) zfs_error(hdl, EZFS_DSREADONLY, errbuf);
1366 break;

1368 case ENOTSUP:
1369 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1370 "pool and or dataset must be upgraded to set this "
1371 "property or value"));
1372 (void) zfs_error(hdl, EZFS_BADVERSION, errbuf);
1373 break;

1375 case ERANGE:
1376 if (prop == ZFS_PROP_COMPRESSION) {
1377 (void) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1378 "property setting is not allowed on "
1379 "bootable datasets"));
1380 (void) zfs_error(hdl, EZFS_NOTSUP, errbuf);

new/usr/src/lib/libzfs/common/libzfs_dataset.c 22

1381 } else {
1382 (void) zfs_standard_error(hdl, err, errbuf);
1383 }
1384 break;

1386 case EINVAL:
1387 if (prop == ZPROP_INVAL) {
1388 (void) zfs_error(hdl, EZFS_BADPROP, errbuf);
1389 } else {
1390 (void) zfs_standard_error(hdl, err, errbuf);
1391 }
1392 break;

1394 case EOVERFLOW:
1395 /*
1396 * This platform can’t address a volume this big.
1397 */
1398 #ifdef _ILP32
1399 if (prop == ZFS_PROP_VOLSIZE) {
1400 (void) zfs_error(hdl, EZFS_VOLTOOBIG, errbuf);
1401 break;
1402 }
1403 #endif
1404 /* FALLTHROUGH */
1405 default:
1406 (void) zfs_standard_error(hdl, err, errbuf);
1407 }
1408 }

1410 /*
1411 * Given a property name and value, set the property for the given dataset.
1412 */
1413 int
1414 zfs_prop_set(zfs_handle_t *zhp, const char *propname, const char *propval)
1415 {
1416 zfs_cmd_t zc = { 0 };
1417 int ret = -1;
1418 prop_changelist_t *cl = NULL;
1419 char errbuf[1024];
1420 libzfs_handle_t *hdl = zhp->zfs_hdl;
1421 nvlist_t *nvl = NULL, *realprops;
1422 zfs_prop_t prop;
1423 boolean_t do_prefix = B_TRUE;
1424 int added_resv;

1426 (void) snprintf(errbuf, sizeof (errbuf),
1427 dgettext(TEXT_DOMAIN, "cannot set property for ’%s’"),
1428 zhp->zfs_name);

1430 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0 ||
1431 nvlist_add_string(nvl, propname, propval) != 0) {
1432 (void) no_memory(hdl);
1433 goto error;
1434 }

1436 if ((realprops = zfs_valid_proplist(hdl, zhp->zfs_type, nvl,
1437 zfs_prop_get_int(zhp, ZFS_PROP_ZONED), zhp, errbuf)) == NULL)
1438 goto error;

1440 nvlist_free(nvl);
1441 nvl = realprops;

1443 prop = zfs_name_to_prop(propname);

1445 if (prop == ZFS_PROP_VOLSIZE) {
1446 if ((added_resv = zfs_add_synthetic_resv(zhp, nvl)) == -1)

new/usr/src/lib/libzfs/common/libzfs_dataset.c 23

1447 goto error;
1448 }

1450 if ((cl = changelist_gather(zhp, prop, 0, 0)) == NULL)
1451 goto error;

1453 if (prop == ZFS_PROP_MOUNTPOINT && changelist_haszonedchild(cl)) {
1454 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1455 "child dataset with inherited mountpoint is used "
1456 "in a non-global zone"));
1457 ret = zfs_error(hdl, EZFS_ZONED, errbuf);
1458 goto error;
1459 }

1461 /*
1462 * We don’t want to unmount & remount the dataset when changing
1463 * its canmount property to ’on’ or ’noauto’. We only use
1464 * the changelist logic to unmount when setting canmount=off.
1465 */
1466 if (prop == ZFS_PROP_CANMOUNT) {
1467 uint64_t idx;
1468 int err = zprop_string_to_index(prop, propval, &idx,
1469 ZFS_TYPE_DATASET);
1470 if (err == 0 && idx != ZFS_CANMOUNT_OFF)
1471 do_prefix = B_FALSE;
1472 }

1474 if (do_prefix && (ret = changelist_prefix(cl)) != 0)
1475 goto error;

1477 /*
1478 * Execute the corresponding ioctl() to set this property.
1479 */
1480 (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));

1482 if (zcmd_write_src_nvlist(hdl, &zc, nvl) != 0)
1483 goto error;

1485 ret = zfs_ioctl(hdl, ZFS_IOC_SET_PROP, &zc);

1487 if (ret != 0) {
1488 zfs_setprop_error(hdl, prop, errno, errbuf);
1489 if (added_resv && errno == ENOSPC) {
1490 /* clean up the volsize property we tried to set */
1491 uint64_t old_volsize = zfs_prop_get_int(zhp,
1492 ZFS_PROP_VOLSIZE);
1493 nvlist_free(nvl);
1494 zcmd_free_nvlists(&zc);
1495 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0)
1496 goto error;
1497 if (nvlist_add_uint64(nvl,
1498 zfs_prop_to_name(ZFS_PROP_VOLSIZE),
1499 old_volsize) != 0)
1500 goto error;
1501 if (zcmd_write_src_nvlist(hdl, &zc, nvl) != 0)
1502 goto error;
1503 (void) zfs_ioctl(hdl, ZFS_IOC_SET_PROP, &zc);
1504 }
1505 } else {
1506 if (do_prefix)
1507 ret = changelist_postfix(cl);

1509 /*
1510 * Refresh the statistics so the new property value
1511 * is reflected.
1512 */

new/usr/src/lib/libzfs/common/libzfs_dataset.c 24

1513 if (ret == 0)
1514 (void) get_stats(zhp);
1515 }

1517 error:
1518 nvlist_free(nvl);
1519 zcmd_free_nvlists(&zc);
1520 if (cl)
1521 changelist_free(cl);
1522 return (ret);
1523 }

1525 /*
1526 * Given a property, inherit the value from the parent dataset, or if received
1527 * is TRUE, revert to the received value, if any.
1528 */
1529 int
1530 zfs_prop_inherit(zfs_handle_t *zhp, const char *propname, boolean_t received)
1531 {
1532 zfs_cmd_t zc = { 0 };
1533 int ret;
1534 prop_changelist_t *cl;
1535 libzfs_handle_t *hdl = zhp->zfs_hdl;
1536 char errbuf[1024];
1537 zfs_prop_t prop;

1539 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
1540 "cannot inherit %s for ’%s’"), propname, zhp->zfs_name);

1542 zc.zc_cookie = received;
1543 if ((prop = zfs_name_to_prop(propname)) == ZPROP_INVAL) {
1544 /*
1545 * For user properties, the amount of work we have to do is very
1546 * small, so just do it here.
1547 */
1548 if (!zfs_prop_user(propname)) {
1549 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1550 "invalid property"));
1551 return (zfs_error(hdl, EZFS_BADPROP, errbuf));
1552 }

1554 (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
1555 (void) strlcpy(zc.zc_value, propname, sizeof (zc.zc_value));

1557 if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_INHERIT_PROP, &zc) != 0)
1558 return (zfs_standard_error(hdl, errno, errbuf));

1560 return (0);
1561 }

1563 /*
1564 * Verify that this property is inheritable.
1565 */
1566 if (zfs_prop_readonly(prop))
1567 return (zfs_error(hdl, EZFS_PROPREADONLY, errbuf));

1569 if (!zfs_prop_inheritable(prop) && !received)
1570 return (zfs_error(hdl, EZFS_PROPNONINHERIT, errbuf));

1572 /*
1573 * Check to see if the value applies to this type
1574 */
1575 if (!zfs_prop_valid_for_type(prop, zhp->zfs_type))
1576 return (zfs_error(hdl, EZFS_PROPTYPE, errbuf));

1578 /*

new/usr/src/lib/libzfs/common/libzfs_dataset.c 25

1579 * Normalize the name, to get rid of shorthand abbreviations.
1580 */
1581 propname = zfs_prop_to_name(prop);
1582 (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
1583 (void) strlcpy(zc.zc_value, propname, sizeof (zc.zc_value));

1585 if (prop == ZFS_PROP_MOUNTPOINT && getzoneid() == GLOBAL_ZONEID &&
1586 zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) {
1587 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1588 "dataset is used in a non-global zone"));
1589 return (zfs_error(hdl, EZFS_ZONED, errbuf));
1590 }

1592 /*
1593 * Determine datasets which will be affected by this change, if any.
1594 */
1595 if ((cl = changelist_gather(zhp, prop, 0, 0)) == NULL)
1596 return (-1);

1598 if (prop == ZFS_PROP_MOUNTPOINT && changelist_haszonedchild(cl)) {
1599 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1600 "child dataset with inherited mountpoint is used "
1601 "in a non-global zone"));
1602 ret = zfs_error(hdl, EZFS_ZONED, errbuf);
1603 goto error;
1604 }

1606 if ((ret = changelist_prefix(cl)) != 0)
1607 goto error;

1609 if ((ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_INHERIT_PROP, &zc)) != 0) {
1610 return (zfs_standard_error(hdl, errno, errbuf));
1611 } else {

1613 if ((ret = changelist_postfix(cl)) != 0)
1614 goto error;

1616 /*
1617 * Refresh the statistics so the new property is reflected.
1618 */
1619 (void) get_stats(zhp);
1620 }

1622 error:
1623 changelist_free(cl);
1624 return (ret);
1625 }

1627 /*
1628 * True DSL properties are stored in an nvlist. The following two functions
1629 * extract them appropriately.
1630 */
1631 static uint64_t
1632 getprop_uint64(zfs_handle_t *zhp, zfs_prop_t prop, char **source)
1633 {
1634 nvlist_t *nv;
1635 uint64_t value;

1637 *source = NULL;
1638 if (nvlist_lookup_nvlist(zhp->zfs_props,
1639 zfs_prop_to_name(prop), &nv) == 0) {
1640 verify(nvlist_lookup_uint64(nv, ZPROP_VALUE, &value) == 0);
1641 (void) nvlist_lookup_string(nv, ZPROP_SOURCE, source);
1642 } else {
1643 verify(!zhp->zfs_props_table ||
1644 zhp->zfs_props_table[prop] == B_TRUE);

new/usr/src/lib/libzfs/common/libzfs_dataset.c 26

1645 value = zfs_prop_default_numeric(prop);
1646 *source = "";
1647 }

1649 return (value);
1650 }

1652 static char *
1653 getprop_string(zfs_handle_t *zhp, zfs_prop_t prop, char **source)
1654 {
1655 nvlist_t *nv;
1656 char *value;

1658 *source = NULL;
1659 if (nvlist_lookup_nvlist(zhp->zfs_props,
1660 zfs_prop_to_name(prop), &nv) == 0) {
1661 verify(nvlist_lookup_string(nv, ZPROP_VALUE, &value) == 0);
1662 (void) nvlist_lookup_string(nv, ZPROP_SOURCE, source);
1663 } else {
1664 verify(!zhp->zfs_props_table ||
1665 zhp->zfs_props_table[prop] == B_TRUE);
1666 if ((value = (char *)zfs_prop_default_string(prop)) == NULL)
1667 value = "";
1668 *source = "";
1669 }

1671 return (value);
1672 }

1674 static boolean_t
1675 zfs_is_recvd_props_mode(zfs_handle_t *zhp)
1676 {
1677 return (zhp->zfs_props == zhp->zfs_recvd_props);
1678 }

1680 static void
1681 zfs_set_recvd_props_mode(zfs_handle_t *zhp, uint64_t *cookie)
1682 {
1683 *cookie = (uint64_t)(uintptr_t)zhp->zfs_props;
1684 zhp->zfs_props = zhp->zfs_recvd_props;
1685 }

1687 static void
1688 zfs_unset_recvd_props_mode(zfs_handle_t *zhp, uint64_t *cookie)
1689 {
1690 zhp->zfs_props = (nvlist_t *)(uintptr_t)*cookie;
1691 *cookie = 0;
1692 }

1694 /*
1695 * Internal function for getting a numeric property. Both zfs_prop_get() and
1696 * zfs_prop_get_int() are built using this interface.
1697 *
1698 * Certain properties can be overridden using ’mount -o’. In this case, scan
1699 * the contents of the /etc/mnttab entry, searching for the appropriate options.
1700 * If they differ from the on-disk values, report the current values and mark
1701 * the source "temporary".
1702 */
1703 static int
1704 get_numeric_property(zfs_handle_t *zhp, zfs_prop_t prop, zprop_source_t *src,
1705 char **source, uint64_t *val)
1706 {
1707 zfs_cmd_t zc = { 0 };
1708 nvlist_t *zplprops = NULL;
1709 struct mnttab mnt;
1710 char *mntopt_on = NULL;

new/usr/src/lib/libzfs/common/libzfs_dataset.c 27

1711 char *mntopt_off = NULL;
1712 boolean_t received = zfs_is_recvd_props_mode(zhp);

1714 *source = NULL;

1716 switch (prop) {
1717 case ZFS_PROP_ATIME:
1718 mntopt_on = MNTOPT_ATIME;
1719 mntopt_off = MNTOPT_NOATIME;
1720 break;

1722 case ZFS_PROP_DEVICES:
1723 mntopt_on = MNTOPT_DEVICES;
1724 mntopt_off = MNTOPT_NODEVICES;
1725 break;

1727 case ZFS_PROP_EXEC:
1728 mntopt_on = MNTOPT_EXEC;
1729 mntopt_off = MNTOPT_NOEXEC;
1730 break;

1732 case ZFS_PROP_READONLY:
1733 mntopt_on = MNTOPT_RO;
1734 mntopt_off = MNTOPT_RW;
1735 break;

1737 case ZFS_PROP_SETUID:
1738 mntopt_on = MNTOPT_SETUID;
1739 mntopt_off = MNTOPT_NOSETUID;
1740 break;

1742 case ZFS_PROP_XATTR:
1743 mntopt_on = MNTOPT_XATTR;
1744 mntopt_off = MNTOPT_NOXATTR;
1745 break;

1747 case ZFS_PROP_NBMAND:
1748 mntopt_on = MNTOPT_NBMAND;
1749 mntopt_off = MNTOPT_NONBMAND;
1750 break;
1751 }

1753 /*
1754 * Because looking up the mount options is potentially expensive
1755 * (iterating over all of /etc/mnttab), we defer its calculation until
1756 * we’re looking up a property which requires its presence.
1757 */
1758 if (!zhp->zfs_mntcheck &&
1759 (mntopt_on != NULL || prop == ZFS_PROP_MOUNTED)) {
1760 libzfs_handle_t *hdl = zhp->zfs_hdl;
1761 struct mnttab entry;

1763 if (libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0) {
1764 zhp->zfs_mntopts = zfs_strdup(hdl,
1765 entry.mnt_mntopts);
1766 if (zhp->zfs_mntopts == NULL)
1767 return (-1);
1768 }

1770 zhp->zfs_mntcheck = B_TRUE;
1771 }

1773 if (zhp->zfs_mntopts == NULL)
1774 mnt.mnt_mntopts = "";
1775 else
1776 mnt.mnt_mntopts = zhp->zfs_mntopts;

new/usr/src/lib/libzfs/common/libzfs_dataset.c 28

1778 switch (prop) {
1779 case ZFS_PROP_ATIME:
1780 case ZFS_PROP_DEVICES:
1781 case ZFS_PROP_EXEC:
1782 case ZFS_PROP_READONLY:
1783 case ZFS_PROP_SETUID:
1784 case ZFS_PROP_XATTR:
1785 case ZFS_PROP_NBMAND:
1786 *val = getprop_uint64(zhp, prop, source);

1788 if (received)
1789 break;

1791 if (hasmntopt(&mnt, mntopt_on) && !*val) {
1792 *val = B_TRUE;
1793 if (src)
1794 *src = ZPROP_SRC_TEMPORARY;
1795 } else if (hasmntopt(&mnt, mntopt_off) && *val) {
1796 *val = B_FALSE;
1797 if (src)
1798 *src = ZPROP_SRC_TEMPORARY;
1799 }
1800 break;

1802 case ZFS_PROP_CANMOUNT:
1803 case ZFS_PROP_VOLSIZE:
1804 case ZFS_PROP_QUOTA:
1805 case ZFS_PROP_REFQUOTA:
1806 case ZFS_PROP_RESERVATION:
1807 case ZFS_PROP_REFRESERVATION:
1808 *val = getprop_uint64(zhp, prop, source);

1810 if (*source == NULL) {
1811 /* not default, must be local */
1812 *source = zhp->zfs_name;
1813 }
1814 break;

1816 case ZFS_PROP_MOUNTED:
1817 *val = (zhp->zfs_mntopts != NULL);
1818 break;

1820 case ZFS_PROP_NUMCLONES:
1821 *val = zhp->zfs_dmustats.dds_num_clones;
1822 break;

1824 case ZFS_PROP_VERSION:
1825 case ZFS_PROP_NORMALIZE:
1826 case ZFS_PROP_UTF8ONLY:
1827 case ZFS_PROP_CASE:
1828 if (!zfs_prop_valid_for_type(prop, zhp->zfs_head_type) ||
1829 zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0)
1830 return (-1);
1831 (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
1832 if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_OBJSET_ZPLPROPS, &zc)) {
1833 zcmd_free_nvlists(&zc);
1834 return (-1);
1835 }
1836 if (zcmd_read_dst_nvlist(zhp->zfs_hdl, &zc, &zplprops) != 0 ||
1837 nvlist_lookup_uint64(zplprops, zfs_prop_to_name(prop),
1838 val) != 0) {
1839 zcmd_free_nvlists(&zc);
1840 return (-1);
1841 }
1842 if (zplprops)

new/usr/src/lib/libzfs/common/libzfs_dataset.c 29

1843 nvlist_free(zplprops);
1844 zcmd_free_nvlists(&zc);
1845 break;

1847 default:
1848 switch (zfs_prop_get_type(prop)) {
1849 case PROP_TYPE_NUMBER:
1850 case PROP_TYPE_INDEX:
1851 *val = getprop_uint64(zhp, prop, source);
1852 /*
1853 * If we tried to use a default value for a
1854 * readonly property, it means that it was not
1855 * present.
1856 */
1857 if (zfs_prop_readonly(prop) &&
1858 *source != NULL && (*source)[0] == ’\0’) {
1859 *source = NULL;
1860 }
1861 break;

1863 case PROP_TYPE_STRING:
1864 default:
1865 zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
1866 "cannot get non-numeric property"));
1867 return (zfs_error(zhp->zfs_hdl, EZFS_BADPROP,
1868 dgettext(TEXT_DOMAIN, "internal error")));
1869 }
1870 }

1872 return (0);
1873 }

1875 /*
1876 * Calculate the source type, given the raw source string.
1877 */
1878 static void
1879 get_source(zfs_handle_t *zhp, zprop_source_t *srctype, char *source,
1880 char *statbuf, size_t statlen)
1881 {
1882 if (statbuf == NULL || *srctype == ZPROP_SRC_TEMPORARY)
1883 return;

1885 if (source == NULL) {
1886 *srctype = ZPROP_SRC_NONE;
1887 } else if (source[0] == ’\0’) {
1888 *srctype = ZPROP_SRC_DEFAULT;
1889 } else if (strstr(source, ZPROP_SOURCE_VAL_RECVD) != NULL) {
1890 *srctype = ZPROP_SRC_RECEIVED;
1891 } else {
1892 if (strcmp(source, zhp->zfs_name) == 0) {
1893 *srctype = ZPROP_SRC_LOCAL;
1894 } else {
1895 (void) strlcpy(statbuf, source, statlen);
1896 *srctype = ZPROP_SRC_INHERITED;
1897 }
1898 }

1900 }

1902 int
1903 zfs_prop_get_recvd(zfs_handle_t *zhp, const char *propname, char *propbuf,
1904 size_t proplen, boolean_t literal)
1905 {
1906 zfs_prop_t prop;
1907 int err = 0;

new/usr/src/lib/libzfs/common/libzfs_dataset.c 30

1909 if (zhp->zfs_recvd_props == NULL)
1910 if (get_recvd_props_ioctl(zhp) != 0)
1911 return (-1);

1913 prop = zfs_name_to_prop(propname);

1915 if (prop != ZPROP_INVAL) {
1916 uint64_t cookie;
1917 if (!nvlist_exists(zhp->zfs_recvd_props, propname))
1918 return (-1);
1919 zfs_set_recvd_props_mode(zhp, &cookie);
1920 err = zfs_prop_get(zhp, prop, propbuf, proplen,
1921 NULL, NULL, 0, literal);
1922 zfs_unset_recvd_props_mode(zhp, &cookie);
1923 } else {
1924 nvlist_t *propval;
1925 char *recvdval;
1926 if (nvlist_lookup_nvlist(zhp->zfs_recvd_props,
1927 propname, &propval) != 0)
1928 return (-1);
1929 verify(nvlist_lookup_string(propval, ZPROP_VALUE,
1930 &recvdval) == 0);
1931 (void) strlcpy(propbuf, recvdval, proplen);
1932 }

1934 return (err == 0 ? 0 : -1);
1935 }

1937 static int
1938 get_clones_string(zfs_handle_t *zhp, char *propbuf, size_t proplen)
1939 {
1940 nvlist_t *value;
1941 nvpair_t *pair;

1943 value = zfs_get_clones_nvl(zhp);
1944 if (value == NULL)
1945 return (-1);

1947 propbuf[0] = ’\0’;
1948 for (pair = nvlist_next_nvpair(value, NULL); pair != NULL;
1949 pair = nvlist_next_nvpair(value, pair)) {
1950 if (propbuf[0] != ’\0’)
1951 (void) strlcat(propbuf, ",", proplen);
1952 (void) strlcat(propbuf, nvpair_name(pair), proplen);
1953 }

1955 return (0);
1956 }

1958 struct get_clones_arg {
1959 uint64_t numclones;
1960 nvlist_t *value;
1961 const char *origin;
1962 char buf[ZFS_MAXNAMELEN];
1963 };

1965 int
1966 get_clones_cb(zfs_handle_t *zhp, void *arg)
1967 {
1968 struct get_clones_arg *gca = arg;

1970 if (gca->numclones == 0) {
1971 zfs_close(zhp);
1972 return (0);
1973 }

new/usr/src/lib/libzfs/common/libzfs_dataset.c 31

1975 if (zfs_prop_get(zhp, ZFS_PROP_ORIGIN, gca->buf, sizeof (gca->buf),
1976 NULL, NULL, 0, B_TRUE) != 0)
1977 goto out;
1978 if (strcmp(gca->buf, gca->origin) == 0) {
1979 fnvlist_add_boolean(gca->value, zfs_get_name(zhp));
1980 gca->numclones--;
1981 }

1983 out:
1984 (void) zfs_iter_children(zhp, get_clones_cb, gca);
1985 zfs_close(zhp);
1986 return (0);
1987 }

1989 nvlist_t *
1990 zfs_get_clones_nvl(zfs_handle_t *zhp)
1991 {
1992 nvlist_t *nv, *value;

1994 if (nvlist_lookup_nvlist(zhp->zfs_props,
1995 zfs_prop_to_name(ZFS_PROP_CLONES), &nv) != 0) {
1996 struct get_clones_arg gca;

1998 /*
1999 * if this is a snapshot, then the kernel wasn’t able
2000 * to get the clones. Do it by slowly iterating.
2001 */
2002 if (zhp->zfs_type != ZFS_TYPE_SNAPSHOT)
2003 return (NULL);
2004 if (nvlist_alloc(&nv, NV_UNIQUE_NAME, 0) != 0)
2005 return (NULL);
2006 if (nvlist_alloc(&value, NV_UNIQUE_NAME, 0) != 0) {
2007 nvlist_free(nv);
2008 return (NULL);
2009 }

2011 gca.numclones = zfs_prop_get_int(zhp, ZFS_PROP_NUMCLONES);
2012 gca.value = value;
2013 gca.origin = zhp->zfs_name;

2015 if (gca.numclones != 0) {
2016 zfs_handle_t *root;
2017 char pool[ZFS_MAXNAMELEN];
2018 char *cp = pool;

2020 /* get the pool name */
2021 (void) strlcpy(pool, zhp->zfs_name, sizeof (pool));
2022 (void) strsep(&cp, "/@");
2023 root = zfs_open(zhp->zfs_hdl, pool,
2024 ZFS_TYPE_FILESYSTEM);

2026 (void) get_clones_cb(root, &gca);
2027 }

2029 if (gca.numclones != 0 ||
2030 nvlist_add_nvlist(nv, ZPROP_VALUE, value) != 0 ||
2031 nvlist_add_nvlist(zhp->zfs_props,
2032 zfs_prop_to_name(ZFS_PROP_CLONES), nv) != 0) {
2033 nvlist_free(nv);
2034 nvlist_free(value);
2035 return (NULL);
2036 }
2037 nvlist_free(nv);
2038 nvlist_free(value);
2039 verify(0 == nvlist_lookup_nvlist(zhp->zfs_props,
2040 zfs_prop_to_name(ZFS_PROP_CLONES), &nv));

new/usr/src/lib/libzfs/common/libzfs_dataset.c 32

2041 }

2043 verify(nvlist_lookup_nvlist(nv, ZPROP_VALUE, &value) == 0);

2045 return (value);
2046 }

2048 /*
2049 * Retrieve a property from the given object. If ’literal’ is specified, then
2050 * numbers are left as exact values. Otherwise, numbers are converted to a
2051 * human-readable form.
2052 *
2053 * Returns 0 on success, or -1 on error.
2054 */
2055 int
2056 zfs_prop_get(zfs_handle_t *zhp, zfs_prop_t prop, char *propbuf, size_t proplen,
2057 zprop_source_t *src, char *statbuf, size_t statlen, boolean_t literal)
2058 {
2059 char *source = NULL;
2060 uint64_t val;
2061 char *str;
2062 const char *strval;
2063 boolean_t received = zfs_is_recvd_props_mode(zhp);

2065 /*
2066 * Check to see if this property applies to our object
2067 */
2068 if (!zfs_prop_valid_for_type(prop, zhp->zfs_type))
2069 return (-1);

2071 if (received && zfs_prop_readonly(prop))
2072 return (-1);

2074 if (src)
2075 *src = ZPROP_SRC_NONE;

2077 switch (prop) {
2078 case ZFS_PROP_CREATION:
2079 /*
2080 * ’creation’ is a time_t stored in the statistics. We convert
2081 * this into a string unless ’literal’ is specified.
2082 */
2083 {
2084 val = getprop_uint64(zhp, prop, &source);
2085 time_t time = (time_t)val;
2086 struct tm t;

2088 if (literal ||
2089 localtime_r(&time, &t) == NULL ||
2090 strftime(propbuf, proplen, "%a %b %e %k:%M %Y",
2091 &t) == 0)
2092 (void) snprintf(propbuf, proplen, "%llu", val);
2093 }
2094 break;

2096 case ZFS_PROP_MOUNTPOINT:
2097 /*
2098 * Getting the precise mountpoint can be tricky.
2099 *
2100 * - for ’none’ or ’legacy’, return those values.
2101 * - for inherited mountpoints, we want to take everything
2102 * after our ancestor and append it to the inherited value.
2103 *
2104 * If the pool has an alternate root, we want to prepend that
2105 * root to any values we return.
2106 */

new/usr/src/lib/libzfs/common/libzfs_dataset.c 33

2108 str = getprop_string(zhp, prop, &source);

2110 if (str[0] == ’/’) {
2111 char buf[MAXPATHLEN];
2112 char *root = buf;
2113 const char *relpath;

2115 /*
2116 * If we inherit the mountpoint, even from a dataset
2117 * with a received value, the source will be the path of
2118 * the dataset we inherit from. If source is
2119 * ZPROP_SOURCE_VAL_RECVD, the received value is not
2120 * inherited.
2121 */
2122 if (strcmp(source, ZPROP_SOURCE_VAL_RECVD) == 0) {
2123 relpath = "";
2124 } else {
2125 relpath = zhp->zfs_name + strlen(source);
2126 if (relpath[0] == ’/’)
2127 relpath++;
2128 }

2130 if ((zpool_get_prop(zhp->zpool_hdl,
2131 ZPOOL_PROP_ALTROOT, buf, MAXPATHLEN, NULL)) ||
2132 (strcmp(root, "-") == 0))
2133 root[0] = ’\0’;
2134 /*
2135 * Special case an alternate root of ’/’. This will
2136 * avoid having multiple leading slashes in the
2137 * mountpoint path.
2138 */
2139 if (strcmp(root, "/") == 0)
2140 root++;

2142 /*
2143 * If the mountpoint is ’/’ then skip over this
2144 * if we are obtaining either an alternate root or
2145 * an inherited mountpoint.
2146 */
2147 if (str[1] == ’\0’ && (root[0] != ’\0’ ||
2148 relpath[0] != ’\0’))
2149 str++;

2151 if (relpath[0] == ’\0’)
2152 (void) snprintf(propbuf, proplen, "%s%s",
2153 root, str);
2154 else
2155 (void) snprintf(propbuf, proplen, "%s%s%s%s",
2156 root, str, relpath[0] == ’@’ ? "" : "/",
2157 relpath);
2158 } else {
2159 /* ’legacy’ or ’none’ */
2160 (void) strlcpy(propbuf, str, proplen);
2161 }

2163 break;

2165 case ZFS_PROP_ORIGIN:
2166 (void) strlcpy(propbuf, getprop_string(zhp, prop, &source),
2167 proplen);
2168 /*
2169 * If there is no parent at all, return failure to indicate that
2170 * it doesn’t apply to this dataset.
2171 */
2172 if (propbuf[0] == ’\0’)

new/usr/src/lib/libzfs/common/libzfs_dataset.c 34

2173 return (-1);
2174 break;

2176 case ZFS_PROP_CLONES:
2177 if (get_clones_string(zhp, propbuf, proplen) != 0)
2178 return (-1);
2179 break;

2181 case ZFS_PROP_QUOTA:
2182 case ZFS_PROP_REFQUOTA:
2183 case ZFS_PROP_RESERVATION:
2184 case ZFS_PROP_REFRESERVATION:

2186 if (get_numeric_property(zhp, prop, src, &source, &val) != 0)
2187 return (-1);

2189 /*
2190 * If quota or reservation is 0, we translate this into ’none’
2191 * (unless literal is set), and indicate that it’s the default
2192 * value. Otherwise, we print the number nicely and indicate
2193 * that its set locally.
2194 */
2195 if (val == 0) {
2196 if (literal)
2197 (void) strlcpy(propbuf, "0", proplen);
2198 else
2199 (void) strlcpy(propbuf, "none", proplen);
2200 } else {
2201 if (literal)
2202 (void) snprintf(propbuf, proplen, "%llu",
2203 (u_longlong_t)val);
2204 else
2205 zfs_nicenum(val, propbuf, proplen);
2206 }
2207 break;

2209 case ZFS_PROP_REFRATIO:
2210 case ZFS_PROP_COMPRESSRATIO:
2211 if (get_numeric_property(zhp, prop, src, &source, &val) != 0)
2212 return (-1);
2213 (void) snprintf(propbuf, proplen, "%llu.%02llux",
2214 (u_longlong_t)(val / 100),
2215 (u_longlong_t)(val % 100));
2216 break;

2218 case ZFS_PROP_TYPE:
2219 switch (zhp->zfs_type) {
2220 case ZFS_TYPE_FILESYSTEM:
2221 str = "filesystem";
2222 break;
2223 case ZFS_TYPE_VOLUME:
2224 str = "volume";
2225 break;
2226 case ZFS_TYPE_SNAPSHOT:
2227 str = "snapshot";
2228 break;
2229 default:
2230 abort();
2231 }
2232 (void) snprintf(propbuf, proplen, "%s", str);
2233 break;

2235 case ZFS_PROP_MOUNTED:
2236 /*
2237 * The ’mounted’ property is a pseudo-property that described
2238 * whether the filesystem is currently mounted. Even though

new/usr/src/lib/libzfs/common/libzfs_dataset.c 35

2239 * it’s a boolean value, the typical values of "on" and "off"
2240 * don’t make sense, so we translate to "yes" and "no".
2241 */
2242 if (get_numeric_property(zhp, ZFS_PROP_MOUNTED,
2243 src, &source, &val) != 0)
2244 return (-1);
2245 if (val)
2246 (void) strlcpy(propbuf, "yes", proplen);
2247 else
2248 (void) strlcpy(propbuf, "no", proplen);
2249 break;

2251 case ZFS_PROP_NAME:
2252 /*
2253 * The ’name’ property is a pseudo-property derived from the
2254 * dataset name. It is presented as a real property to simplify
2255 * consumers.
2256 */
2257 (void) strlcpy(propbuf, zhp->zfs_name, proplen);
2258 break;

2260 case ZFS_PROP_MLSLABEL:
2261 {
2262 m_label_t *new_sl = NULL;
2263 char *ascii = NULL; /* human readable label */

2265 (void) strlcpy(propbuf,
2266 getprop_string(zhp, prop, &source), proplen);

2268 if (literal || (strcasecmp(propbuf,
2269 ZFS_MLSLABEL_DEFAULT) == 0))
2270 break;

2272 /*
2273 * Try to translate the internal hex string to
2274 * human-readable output. If there are any
2275 * problems just use the hex string.
2276 */

2278 if (str_to_label(propbuf, &new_sl, MAC_LABEL,
2279 L_NO_CORRECTION, NULL) == -1) {
2280 m_label_free(new_sl);
2281 break;
2282 }

2284 if (label_to_str(new_sl, &ascii, M_LABEL,
2285 DEF_NAMES) != 0) {
2286 if (ascii)
2287 free(ascii);
2288 m_label_free(new_sl);
2289 break;
2290 }
2291 m_label_free(new_sl);

2293 (void) strlcpy(propbuf, ascii, proplen);
2294 free(ascii);
2295 }
2296 break;

2298 case ZFS_PROP_GUID:
2299 /*
2300 * GUIDs are stored as numbers, but they are identifiers.
2301 * We don’t want them to be pretty printed, because pretty
2302 * printing mangles the ID into a truncated and useless value.
2303 */
2304 if (get_numeric_property(zhp, prop, src, &source, &val) != 0)

new/usr/src/lib/libzfs/common/libzfs_dataset.c 36

2305 return (-1);
2306 (void) snprintf(propbuf, proplen, "%llu", (u_longlong_t)val);
2307 break;

2309 default:
2310 switch (zfs_prop_get_type(prop)) {
2311 case PROP_TYPE_NUMBER:
2312 if (get_numeric_property(zhp, prop, src,
2313 &source, &val) != 0)
2314 return (-1);
2315 if (literal)
2316 (void) snprintf(propbuf, proplen, "%llu",
2317 (u_longlong_t)val);
2318 else
2319 zfs_nicenum(val, propbuf, proplen);
2320 break;

2322 case PROP_TYPE_STRING:
2323 (void) strlcpy(propbuf,
2324 getprop_string(zhp, prop, &source), proplen);
2325 break;

2327 case PROP_TYPE_INDEX:
2328 if (get_numeric_property(zhp, prop, src,
2329 &source, &val) != 0)
2330 return (-1);
2331 if (zfs_prop_index_to_string(prop, val, &strval) != 0)
2332 return (-1);
2333 (void) strlcpy(propbuf, strval, proplen);
2334 break;

2336 default:
2337 abort();
2338 }
2339 }

2341 get_source(zhp, src, source, statbuf, statlen);

2343 return (0);
2344 }

2346 /*
2347 * Utility function to get the given numeric property. Does no validation that
2348 * the given property is the appropriate type; should only be used with
2349 * hard-coded property types.
2350 */
2351 uint64_t
2352 zfs_prop_get_int(zfs_handle_t *zhp, zfs_prop_t prop)
2353 {
2354 char *source;
2355 uint64_t val;

2357 (void) get_numeric_property(zhp, prop, NULL, &source, &val);

2359 return (val);
2360 }

2362 int
2363 zfs_prop_set_int(zfs_handle_t *zhp, zfs_prop_t prop, uint64_t val)
2364 {
2365 char buf[64];

2367 (void) snprintf(buf, sizeof (buf), "%llu", (longlong_t)val);
2368 return (zfs_prop_set(zhp, zfs_prop_to_name(prop), buf));
2369 }

new/usr/src/lib/libzfs/common/libzfs_dataset.c 37

2371 /*
2372 * Similar to zfs_prop_get(), but returns the value as an integer.
2373 */
2374 int
2375 zfs_prop_get_numeric(zfs_handle_t *zhp, zfs_prop_t prop, uint64_t *value,
2376 zprop_source_t *src, char *statbuf, size_t statlen)
2377 {
2378 char *source;

2380 /*
2381 * Check to see if this property applies to our object
2382 */
2383 if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) {
2384 return (zfs_error_fmt(zhp->zfs_hdl, EZFS_PROPTYPE,
2385 dgettext(TEXT_DOMAIN, "cannot get property ’%s’"),
2386 zfs_prop_to_name(prop)));
2387 }

2389 if (src)
2390 *src = ZPROP_SRC_NONE;

2392 if (get_numeric_property(zhp, prop, src, &source, value) != 0)
2393 return (-1);

2395 get_source(zhp, src, source, statbuf, statlen);

2397 return (0);
2398 }

2400 static int
2401 idmap_id_to_numeric_domain_rid(uid_t id, boolean_t isuser,
2402 char **domainp, idmap_rid_t *ridp)
2403 {
2404 idmap_get_handle_t *get_hdl = NULL;
2405 idmap_stat status;
2406 int err = EINVAL;

2408 if (idmap_get_create(&get_hdl) != IDMAP_SUCCESS)
2409 goto out;

2411 if (isuser) {
2412 err = idmap_get_sidbyuid(get_hdl, id,
2413 IDMAP_REQ_FLG_USE_CACHE, domainp, ridp, &status);
2414 } else {
2415 err = idmap_get_sidbygid(get_hdl, id,
2416 IDMAP_REQ_FLG_USE_CACHE, domainp, ridp, &status);
2417 }
2418 if (err == IDMAP_SUCCESS &&
2419 idmap_get_mappings(get_hdl) == IDMAP_SUCCESS &&
2420 status == IDMAP_SUCCESS)
2421 err = 0;
2422 else
2423 err = EINVAL;
2424 out:
2425 if (get_hdl)
2426 idmap_get_destroy(get_hdl);
2427 return (err);
2428 }

2430 /*
2431 * convert the propname into parameters needed by kernel
2432 * Eg: userquota@ahrens -> ZFS_PROP_USERQUOTA, "", 126829
2433 * Eg: userused@matt@domain -> ZFS_PROP_USERUSED, "S-1-123-456", 789
2434 */
2435 static int
2436 userquota_propname_decode(const char *propname, boolean_t zoned,

new/usr/src/lib/libzfs/common/libzfs_dataset.c 38

2437 zfs_userquota_prop_t *typep, char *domain, int domainlen, uint64_t *ridp)
2438 {
2439 zfs_userquota_prop_t type;
2440 char *cp, *end;
2441 char *numericsid = NULL;
2442 boolean_t isuser;

2444 domain[0] = ’\0’;

2446 /* Figure out the property type ({user|group}{quota|space}) */
2447 for (type = 0; type < ZFS_NUM_USERQUOTA_PROPS; type++) {
2448 if (strncmp(propname, zfs_userquota_prop_prefixes[type],
2449 strlen(zfs_userquota_prop_prefixes[type])) == 0)
2450 break;
2451 }
2452 if (type == ZFS_NUM_USERQUOTA_PROPS)
2453 return (EINVAL);
2454 *typep = type;

2456 isuser = (type == ZFS_PROP_USERQUOTA ||
2457 type == ZFS_PROP_USERUSED);

2459 cp = strchr(propname, ’@’) + 1;

2461 if (strchr(cp, ’@’)) {
2462 /*
2463 * It’s a SID name (eg "user@domain") that needs to be
2464 * turned into S-1-domainID-RID.
2465 */
2466 directory_error_t e;
2467 if (zoned && getzoneid() == GLOBAL_ZONEID)
2468 return (ENOENT);
2469 if (isuser) {
2470 e = directory_sid_from_user_name(NULL,
2471 cp, &numericsid);
2472 } else {
2473 e = directory_sid_from_group_name(NULL,
2474 cp, &numericsid);
2475 }
2476 if (e != NULL) {
2477 directory_error_free(e);
2478 return (ENOENT);
2479 }
2480 if (numericsid == NULL)
2481 return (ENOENT);
2482 cp = numericsid;
2483 /* will be further decoded below */
2484 }

2486 if (strncmp(cp, "S-1-", 4) == 0) {
2487 /* It’s a numeric SID (eg "S-1-234-567-89") */
2488 (void) strlcpy(domain, cp, domainlen);
2489 cp = strrchr(domain, ’-’);
2490 *cp = ’\0’;
2491 cp++;

2493 errno = 0;
2494 *ridp = strtoull(cp, &end, 10);
2495 if (numericsid) {
2496 free(numericsid);
2497 numericsid = NULL;
2498 }
2499 if (errno != 0 || *end != ’\0’)
2500 return (EINVAL);
2501 } else if (!isdigit(*cp)) {
2502 /*

new/usr/src/lib/libzfs/common/libzfs_dataset.c 39

2503 * It’s a user/group name (eg "user") that needs to be
2504 * turned into a uid/gid
2505 */
2506 if (zoned && getzoneid() == GLOBAL_ZONEID)
2507 return (ENOENT);
2508 if (isuser) {
2509 struct passwd *pw;
2510 pw = getpwnam(cp);
2511 if (pw == NULL)
2512 return (ENOENT);
2513 *ridp = pw->pw_uid;
2514 } else {
2515 struct group *gr;
2516 gr = getgrnam(cp);
2517 if (gr == NULL)
2518 return (ENOENT);
2519 *ridp = gr->gr_gid;
2520 }
2521 } else {
2522 /* It’s a user/group ID (eg "12345"). */
2523 uid_t id = strtoul(cp, &end, 10);
2524 idmap_rid_t rid;
2525 char *mapdomain;

2527 if (*end != ’\0’)
2528 return (EINVAL);
2529 if (id > MAXUID) {
2530 /* It’s an ephemeral ID. */
2531 if (idmap_id_to_numeric_domain_rid(id, isuser,
2532 &mapdomain, &rid) != 0)
2533 return (ENOENT);
2534 (void) strlcpy(domain, mapdomain, domainlen);
2535 *ridp = rid;
2536 } else {
2537 *ridp = id;
2538 }
2539 }

2541 ASSERT3P(numericsid, ==, NULL);
2542 return (0);
2543 }

2545 static int
2546 zfs_prop_get_userquota_common(zfs_handle_t *zhp, const char *propname,
2547 uint64_t *propvalue, zfs_userquota_prop_t *typep)
2548 {
2549 int err;
2550 zfs_cmd_t zc = { 0 };

2552 (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));

2554 err = userquota_propname_decode(propname,
2555 zfs_prop_get_int(zhp, ZFS_PROP_ZONED),
2556 typep, zc.zc_value, sizeof (zc.zc_value), &zc.zc_guid);
2557 zc.zc_objset_type = *typep;
2558 if (err)
2559 return (err);

2561 err = ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_USERSPACE_ONE, &zc);
2562 if (err)
2563 return (err);

2565 *propvalue = zc.zc_cookie;
2566 return (0);
2567 }

new/usr/src/lib/libzfs/common/libzfs_dataset.c 40

2569 int
2570 zfs_prop_get_userquota_int(zfs_handle_t *zhp, const char *propname,
2571 uint64_t *propvalue)
2572 {
2573 zfs_userquota_prop_t type;

2575 return (zfs_prop_get_userquota_common(zhp, propname, propvalue,
2576 &type));
2577 }

2579 int
2580 zfs_prop_get_userquota(zfs_handle_t *zhp, const char *propname,
2581 char *propbuf, int proplen, boolean_t literal)
2582 {
2583 int err;
2584 uint64_t propvalue;
2585 zfs_userquota_prop_t type;

2587 err = zfs_prop_get_userquota_common(zhp, propname, &propvalue,
2588 &type);

2590 if (err)
2591 return (err);

2593 if (literal) {
2594 (void) snprintf(propbuf, proplen, "%llu", propvalue);
2595 } else if (propvalue == 0 &&
2596 (type == ZFS_PROP_USERQUOTA || type == ZFS_PROP_GROUPQUOTA)) {
2597 (void) strlcpy(propbuf, "none", proplen);
2598 } else {
2599 zfs_nicenum(propvalue, propbuf, proplen);
2600 }
2601 return (0);
2602 }

2604 int
2605 zfs_prop_get_written_int(zfs_handle_t *zhp, const char *propname,
2606 uint64_t *propvalue)
2607 {
2608 int err;
2609 zfs_cmd_t zc = { 0 };
2610 const char *snapname;

2612 (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));

2614 snapname = strchr(propname, ’@’) + 1;
2615 if (strchr(snapname, ’@’)) {
2616 (void) strlcpy(zc.zc_value, snapname, sizeof (zc.zc_value));
2617 } else {
2618 /* snapname is the short name, append it to zhp’s fsname */
2619 char *cp;

2621 (void) strlcpy(zc.zc_value, zhp->zfs_name,
2622 sizeof (zc.zc_value));
2623 cp = strchr(zc.zc_value, ’@’);
2624 if (cp != NULL)
2625 *cp = ’\0’;
2626 (void) strlcat(zc.zc_value, "@", sizeof (zc.zc_value));
2627 (void) strlcat(zc.zc_value, snapname, sizeof (zc.zc_value));
2628 }

2630 err = ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_SPACE_WRITTEN, &zc);
2631 if (err)
2632 return (err);

2634 *propvalue = zc.zc_cookie;

new/usr/src/lib/libzfs/common/libzfs_dataset.c 41

2635 return (0);
2636 }

2638 int
2639 zfs_prop_get_written(zfs_handle_t *zhp, const char *propname,
2640 char *propbuf, int proplen, boolean_t literal)
2641 {
2642 int err;
2643 uint64_t propvalue;

2645 err = zfs_prop_get_written_int(zhp, propname, &propvalue);

2647 if (err)
2648 return (err);

2650 if (literal) {
2651 (void) snprintf(propbuf, proplen, "%llu", propvalue);
2652 } else {
2653 zfs_nicenum(propvalue, propbuf, proplen);
2654 }
2655 return (0);
2656 }

2658 /*
2659 * Returns the name of the given zfs handle.
2660 */
2661 const char *
2662 zfs_get_name(const zfs_handle_t *zhp)
2663 {
2664 return (zhp->zfs_name);
2665 }

2667 /*
2668 * Returns the type of the given zfs handle.
2669 */
2670 zfs_type_t
2671 zfs_get_type(const zfs_handle_t *zhp)
2672 {
2673 return (zhp->zfs_type);
2674 }

2676 /*
2677 * Is one dataset name a child dataset of another?
2678 *
2679 * Needs to handle these cases:
2680 * Dataset 1 "a/foo" "a/foo" "a/foo" "a/foo"
2681 * Dataset 2 "a/fo" "a/foobar" "a/bar/baz" "a/foo/bar"
2682 * Descendant? No. No. No. Yes.
2683 */
2684 static boolean_t
2685 is_descendant(const char *ds1, const char *ds2)
2686 {
2687 size_t d1len = strlen(ds1);

2689 /* ds2 can’t be a descendant if it’s smaller */
2690 if (strlen(ds2) < d1len)
2691 return (B_FALSE);

2693 /* otherwise, compare strings and verify that there’s a ’/’ char */
2694 return (ds2[d1len] == ’/’ && (strncmp(ds1, ds2, d1len) == 0));
2695 }

2697 /*
2698 * Given a complete name, return just the portion that refers to the parent.
2699 * Will return -1 if there is no parent (path is just the name of the
2700 * pool).

new/usr/src/lib/libzfs/common/libzfs_dataset.c 42

2701 */
2702 static int
2703 parent_name(const char *path, char *buf, size_t buflen)
2704 {
2705 char *slashp;

2707 (void) strlcpy(buf, path, buflen);

2709 if ((slashp = strrchr(buf, ’/’)) == NULL)
2710 return (-1);
2711 *slashp = ’\0’;

2713 return (0);
2714 }

2716 /*
2717 * If accept_ancestor is false, then check to make sure that the given path has
2718 * a parent, and that it exists. If accept_ancestor is true, then find the
2719 * closest existing ancestor for the given path. In prefixlen return the
2720 * length of already existing prefix of the given path. We also fetch the
2721 * ’zoned’ property, which is used to validate property settings when creating
2722 * new datasets.
2723 */
2724 static int
2725 check_parents(libzfs_handle_t *hdl, const char *path, uint64_t *zoned,
2726 boolean_t accept_ancestor, int *prefixlen)
2727 {
2728 zfs_cmd_t zc = { 0 };
2729 char parent[ZFS_MAXNAMELEN];
2730 char *slash;
2731 zfs_handle_t *zhp;
2732 char errbuf[1024];
2733 uint64_t is_zoned;

2735 (void) snprintf(errbuf, sizeof (errbuf),
2736 dgettext(TEXT_DOMAIN, "cannot create ’%s’"), path);

2738 /* get parent, and check to see if this is just a pool */
2739 if (parent_name(path, parent, sizeof (parent)) != 0) {
2740 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
2741 "missing dataset name"));
2742 return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
2743 }

2745 /* check to see if the pool exists */
2746 if ((slash = strchr(parent, ’/’)) == NULL)
2747 slash = parent + strlen(parent);
2748 (void) strncpy(zc.zc_name, parent, slash - parent);
2749 zc.zc_name[slash - parent] = ’\0’;
2750 if (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0 &&
2751 errno == ENOENT) {
2752 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
2753 "no such pool ’%s’"), zc.zc_name);
2754 return (zfs_error(hdl, EZFS_NOENT, errbuf));
2755 }

2757 /* check to see if the parent dataset exists */
2758 while ((zhp = make_dataset_handle(hdl, parent)) == NULL) {
2759 if (errno == ENOENT && accept_ancestor) {
2760 /*
2761 * Go deeper to find an ancestor, give up on top level.
2762 */
2763 if (parent_name(parent, parent, sizeof (parent)) != 0) {
2764 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
2765 "no such pool ’%s’"), zc.zc_name);
2766 return (zfs_error(hdl, EZFS_NOENT, errbuf));

new/usr/src/lib/libzfs/common/libzfs_dataset.c 43

2767 }
2768 } else if (errno == ENOENT) {
2769 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
2770 "parent does not exist"));
2771 return (zfs_error(hdl, EZFS_NOENT, errbuf));
2772 } else
2773 return (zfs_standard_error(hdl, errno, errbuf));
2774 }

2776 is_zoned = zfs_prop_get_int(zhp, ZFS_PROP_ZONED);
2777 if (zoned != NULL)
2778 *zoned = is_zoned;

2780 /* we are in a non-global zone, but parent is in the global zone */
2781 if (getzoneid() != GLOBAL_ZONEID && !is_zoned) {
2782 (void) zfs_standard_error(hdl, EPERM, errbuf);
2783 zfs_close(zhp);
2784 return (-1);
2785 }

2787 /* make sure parent is a filesystem */
2788 if (zfs_get_type(zhp) != ZFS_TYPE_FILESYSTEM) {
2789 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
2790 "parent is not a filesystem"));
2791 (void) zfs_error(hdl, EZFS_BADTYPE, errbuf);
2792 zfs_close(zhp);
2793 return (-1);
2794 }

2796 zfs_close(zhp);
2797 if (prefixlen != NULL)
2798 *prefixlen = strlen(parent);
2799 return (0);
2800 }

2802 /*
2803 * Finds whether the dataset of the given type(s) exists.
2804 */
2805 boolean_t
2806 zfs_dataset_exists(libzfs_handle_t *hdl, const char *path, zfs_type_t types)
2807 {
2808 zfs_handle_t *zhp;

2810 if (!zfs_validate_name(hdl, path, types, B_FALSE))
2811 return (B_FALSE);

2813 /*
2814 * Try to get stats for the dataset, which will tell us if it exists.
2815 */
2816 if ((zhp = make_dataset_handle(hdl, path)) != NULL) {
2817 int ds_type = zhp->zfs_type;

2819 zfs_close(zhp);
2820 if (types & ds_type)
2821 return (B_TRUE);
2822 }
2823 return (B_FALSE);
2824 }

2826 /*
2827 * Given a path to ’target’, create all the ancestors between
2828 * the prefixlen portion of the path, and the target itself.
2829 * Fail if the initial prefixlen-ancestor does not already exist.
2830 */
2831 int
2832 create_parents(libzfs_handle_t *hdl, char *target, int prefixlen)

new/usr/src/lib/libzfs/common/libzfs_dataset.c 44

2833 {
2834 zfs_handle_t *h;
2835 char *cp;
2836 const char *opname;

2838 /* make sure prefix exists */
2839 cp = target + prefixlen;
2840 if (*cp != ’/’) {
2841 assert(strchr(cp, ’/’) == NULL);
2842 h = zfs_open(hdl, target, ZFS_TYPE_FILESYSTEM);
2843 } else {
2844 *cp = ’\0’;
2845 h = zfs_open(hdl, target, ZFS_TYPE_FILESYSTEM);
2846 *cp = ’/’;
2847 }
2848 if (h == NULL)
2849 return (-1);
2850 zfs_close(h);

2852 /*
2853 * Attempt to create, mount, and share any ancestor filesystems,
2854 * up to the prefixlen-long one.
2855 */
2856 for (cp = target + prefixlen + 1;
2857 cp = strchr(cp, ’/’); *cp = ’/’, cp++) {

2859 *cp = ’\0’;

2861 h = make_dataset_handle(hdl, target);
2862 if (h) {
2863 /* it already exists, nothing to do here */
2864 zfs_close(h);
2865 continue;
2866 }

2868 if (zfs_create(hdl, target, ZFS_TYPE_FILESYSTEM,
2869 NULL) != 0) {
2870 opname = dgettext(TEXT_DOMAIN, "create");
2871 goto ancestorerr;
2872 }

2874 h = zfs_open(hdl, target, ZFS_TYPE_FILESYSTEM);
2875 if (h == NULL) {
2876 opname = dgettext(TEXT_DOMAIN, "open");
2877 goto ancestorerr;
2878 }

2880 if (zfs_mount(h, NULL, 0) != 0) {
2881 opname = dgettext(TEXT_DOMAIN, "mount");
2882 goto ancestorerr;
2883 }

2885 if (zfs_share(h) != 0) {
2886 opname = dgettext(TEXT_DOMAIN, "share");
2887 goto ancestorerr;
2888 }

2890 zfs_close(h);
2891 }

2893 return (0);

2895 ancestorerr:
2896 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
2897 "failed to %s ancestor ’%s’"), opname, target);
2898 return (-1);

new/usr/src/lib/libzfs/common/libzfs_dataset.c 45

2899 }

2901 /*
2902 * Creates non-existing ancestors of the given path.
2903 */
2904 int
2905 zfs_create_ancestors(libzfs_handle_t *hdl, const char *path)
2906 {
2907 int prefix;
2908 char *path_copy;
2909 int rc;

2911 if (check_parents(hdl, path, NULL, B_TRUE, &prefix) != 0)
2912 return (-1);

2914 if ((path_copy = strdup(path)) != NULL) {
2915 rc = create_parents(hdl, path_copy, prefix);
2916 free(path_copy);
2917 }
2918 if (path_copy == NULL || rc != 0)
2919 return (-1);

2921 return (0);
2922 }

2924 /*
2925 * Create a new filesystem or volume.
2926 */
2927 int
2928 zfs_create(libzfs_handle_t *hdl, const char *path, zfs_type_t type,
2929 nvlist_t *props)
2930 {
2931 int ret;
2932 uint64_t size = 0;
2933 uint64_t blocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
2934 char errbuf[1024];
2935 uint64_t zoned;
2936 dmu_objset_type_t ost;

2938 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
2939 "cannot create ’%s’"), path);

2941 /* validate the path, taking care to note the extended error message */
2942 if (!zfs_validate_name(hdl, path, type, B_TRUE))
2943 return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));

2945 /* validate parents exist */
2946 if (check_parents(hdl, path, &zoned, B_FALSE, NULL) != 0)
2947 return (-1);

2949 /*
2950 * The failure modes when creating a dataset of a different type over
2951 * one that already exists is a little strange. In particular, if you
2952 * try to create a dataset on top of an existing dataset, the ioctl()
2953 * will return ENOENT, not EEXIST. To prevent this from happening, we
2954 * first try to see if the dataset exists.
2955 */
2956 if (zfs_dataset_exists(hdl, path, ZFS_TYPE_DATASET)) {
2957 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
2958 "dataset already exists"));
2959 return (zfs_error(hdl, EZFS_EXISTS, errbuf));
2960 }

2962 if (type == ZFS_TYPE_VOLUME)
2963 ost = DMU_OST_ZVOL;
2964 else

new/usr/src/lib/libzfs/common/libzfs_dataset.c 46

2965 ost = DMU_OST_ZFS;

2967 if (props && (props = zfs_valid_proplist(hdl, type, props,
2968 zoned, NULL, errbuf)) == 0)
2969 return (-1);

2971 if (type == ZFS_TYPE_VOLUME) {
2972 /*
2973 * If we are creating a volume, the size and block size must
2974 * satisfy a few restraints. First, the blocksize must be a
2975 * valid block size between SPA_{MIN,MAX}BLOCKSIZE. Second, the
2976 * volsize must be a multiple of the block size, and cannot be
2977 * zero.
2978 */
2979 if (props == NULL || nvlist_lookup_uint64(props,
2980 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &size) != 0) {
2981 nvlist_free(props);
2982 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
2983 "missing volume size"));
2984 return (zfs_error(hdl, EZFS_BADPROP, errbuf));
2985 }

2987 if ((ret = nvlist_lookup_uint64(props,
2988 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
2989 &blocksize)) != 0) {
2990 if (ret == ENOENT) {
2991 blocksize = zfs_prop_default_numeric(
2992 ZFS_PROP_VOLBLOCKSIZE);
2993 } else {
2994 nvlist_free(props);
2995 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
2996 "missing volume block size"));
2997 return (zfs_error(hdl, EZFS_BADPROP, errbuf));
2998 }
2999 }

3001 if (size == 0) {
3002 nvlist_free(props);
3003 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
3004 "volume size cannot be zero"));
3005 return (zfs_error(hdl, EZFS_BADPROP, errbuf));
3006 }

3008 if (size % blocksize != 0) {
3009 nvlist_free(props);
3010 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
3011 "volume size must be a multiple of volume block "
3012 "size"));
3013 return (zfs_error(hdl, EZFS_BADPROP, errbuf));
3014 }
3015 }

3017 /* create the dataset */
3018 ret = lzc_create(path, ost, props);
3019 nvlist_free(props);

3021 /* check for failure */
3022 if (ret != 0) {
3023 char parent[ZFS_MAXNAMELEN];
3024 (void) parent_name(path, parent, sizeof (parent));

3026 switch (errno) {
3027 case ENOENT:
3028 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
3029 "no such parent ’%s’"), parent);
3030 return (zfs_error(hdl, EZFS_NOENT, errbuf));

new/usr/src/lib/libzfs/common/libzfs_dataset.c 47

3032 case EINVAL:
3033 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
3034 "parent ’%s’ is not a filesystem"), parent);
3035 return (zfs_error(hdl, EZFS_BADTYPE, errbuf));

3037 case EDOM:
3038 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
3039 "volume block size must be power of 2 from "
3040 "%u to %uk"),
3041 (uint_t)SPA_MINBLOCKSIZE,
3042 (uint_t)SPA_MAXBLOCKSIZE >> 10);

3044 return (zfs_error(hdl, EZFS_BADPROP, errbuf));

3046 case ENOTSUP:
3047 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
3048 "pool must be upgraded to set this "
3049 "property or value"));
3050 return (zfs_error(hdl, EZFS_BADVERSION, errbuf));
3051 #ifdef _ILP32
3052 case EOVERFLOW:
3053 /*
3054 * This platform can’t address a volume this big.
3055 */
3056 if (type == ZFS_TYPE_VOLUME)
3057 return (zfs_error(hdl, EZFS_VOLTOOBIG,
3058 errbuf));
3059 #endif
3060 /* FALLTHROUGH */
3061 default:
3062 return (zfs_standard_error(hdl, errno, errbuf));
3063 }
3064 }

3066 return (0);
3067 }

3069 /*
3070 * Destroys the given dataset. The caller must make sure that the filesystem
3071 * isn’t mounted, and that there are no active dependents. If the file system
3072 * does not exist this function does nothing.
3073 */
3074 int
3075 zfs_destroy(zfs_handle_t *zhp, boolean_t defer)
3076 {
3077 zfs_cmd_t zc = { 0 };

3079 (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));

3081 if (ZFS_IS_VOLUME(zhp)) {
3082 zc.zc_objset_type = DMU_OST_ZVOL;
3083 } else {
3084 zc.zc_objset_type = DMU_OST_ZFS;
3085 }

3087 zc.zc_defer_destroy = defer;
3088 if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_DESTROY, &zc) != 0 &&
3089 errno != ENOENT) {
3090 return (zfs_standard_error_fmt(zhp->zfs_hdl, errno,
3091 dgettext(TEXT_DOMAIN, "cannot destroy ’%s’"),
3092 zhp->zfs_name));
3093 }

3095 remove_mountpoint(zhp);

new/usr/src/lib/libzfs/common/libzfs_dataset.c 48

3097 return (0);
3098 }

3100 struct destroydata {
3101 nvlist_t *nvl;
3102 const char *snapname;
3103 };

3105 static int
3106 zfs_check_snap_cb(zfs_handle_t *zhp, void *arg)
3107 {
3108 struct destroydata *dd = arg;
3109 zfs_handle_t *szhp;
3110 char name[ZFS_MAXNAMELEN];
3111 int rv = 0;

3113 (void) snprintf(name, sizeof (name),
3114 "%s@%s", zhp->zfs_name, dd->snapname);

3116 szhp = make_dataset_handle(zhp->zfs_hdl, name);
3117 if (szhp) {
3118 verify(nvlist_add_boolean(dd->nvl, name) == 0);
3119 zfs_close(szhp);
3120 }

3122 rv = zfs_iter_filesystems(zhp, zfs_check_snap_cb, dd);
3123 zfs_close(zhp);
3124 return (rv);
3125 }

3127 /*
3128 * Destroys all snapshots with the given name in zhp & descendants.
3129 */
3130 int
3131 zfs_destroy_snaps(zfs_handle_t *zhp, char *snapname, boolean_t defer)
3132 {
3133 int ret;
3134 struct destroydata dd = { 0 };

3136 dd.snapname = snapname;
3137 verify(nvlist_alloc(&dd.nvl, NV_UNIQUE_NAME, 0) == 0);
3138 (void) zfs_check_snap_cb(zfs_handle_dup(zhp), &dd);

3140 if (nvlist_next_nvpair(dd.nvl, NULL) == NULL) {
3141 ret = zfs_standard_error_fmt(zhp->zfs_hdl, ENOENT,
3142 dgettext(TEXT_DOMAIN, "cannot destroy ’%s@%s’"),
3143 zhp->zfs_name, snapname);
3144 } else {
3145 ret = zfs_destroy_snaps_nvl(zhp->zfs_hdl, dd.nvl, defer);
3146 }
3147 nvlist_free(dd.nvl);
3148 return (ret);
3149 }

3151 /*
3152 * Destroys all the snapshots named in the nvlist.
3153 */
3154 int
3155 zfs_destroy_snaps_nvl(libzfs_handle_t *hdl, nvlist_t *snaps, boolean_t defer)
3156 {
3157 int ret;
3158 nvlist_t *errlist;

3160 ret = lzc_destroy_snaps(snaps, defer, &errlist);

3162 if (ret == 0)

new/usr/src/lib/libzfs/common/libzfs_dataset.c 49

3163 return (0);

3165 if (nvlist_next_nvpair(errlist, NULL) == NULL) {
3166 char errbuf[1024];
3167 (void) snprintf(errbuf, sizeof (errbuf),
3168 dgettext(TEXT_DOMAIN, "cannot destroy snapshots"));

3170 ret = zfs_standard_error(hdl, ret, errbuf);
3171 }
3172 for (nvpair_t *pair = nvlist_next_nvpair(errlist, NULL);
3173 pair != NULL; pair = nvlist_next_nvpair(errlist, pair)) {
3174 char errbuf[1024];
3175 (void) snprintf(errbuf, sizeof (errbuf),
3176 dgettext(TEXT_DOMAIN, "cannot destroy snapshot %s"),
3177 nvpair_name(pair));

3179 switch (fnvpair_value_int32(pair)) {
3180 case EEXIST:
3181 zfs_error_aux(hdl,
3182 dgettext(TEXT_DOMAIN, "snapshot is cloned"));
3183 ret = zfs_error(hdl, EZFS_EXISTS, errbuf);
3184 break;
3185 default:
3186 ret = zfs_standard_error(hdl, errno, errbuf);
3187 break;
3188 }
3189 }

3191 return (ret);
3192 }

3194 /*
3195 * Clones the given dataset. The target must be of the same type as the source.
3196 */
3197 int
3198 zfs_clone(zfs_handle_t *zhp, const char *target, nvlist_t *props)
3199 {
3200 char parent[ZFS_MAXNAMELEN];
3201 int ret;
3202 char errbuf[1024];
3203 libzfs_handle_t *hdl = zhp->zfs_hdl;
3204 uint64_t zoned;

3206 assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT);

3208 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
3209 "cannot create ’%s’"), target);

3211 /* validate the target/clone name */
3212 if (!zfs_validate_name(hdl, target, ZFS_TYPE_FILESYSTEM, B_TRUE))
3213 return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));

3215 /* validate parents exist */
3216 if (check_parents(hdl, target, &zoned, B_FALSE, NULL) != 0)
3217 return (-1);

3219 (void) parent_name(target, parent, sizeof (parent));

3221 /* do the clone */

3223 if (props) {
3224 zfs_type_t type;
3225 if (ZFS_IS_VOLUME(zhp)) {
3226 type = ZFS_TYPE_VOLUME;
3227 } else {
3228 type = ZFS_TYPE_FILESYSTEM;

new/usr/src/lib/libzfs/common/libzfs_dataset.c 50

3229 }
3230 if ((props = zfs_valid_proplist(hdl, type, props, zoned,
3231 zhp, errbuf)) == NULL)
3232 return (-1);
3233 }

3235 ret = lzc_clone(target, zhp->zfs_name, props);
3236 nvlist_free(props);

3238 if (ret != 0) {
3239 switch (errno) {

3241 case ENOENT:
3242 /*
3243 * The parent doesn’t exist. We should have caught this
3244 * above, but there may a race condition that has since
3245 * destroyed the parent.
3246 *
3247 * At this point, we don’t know whether it’s the source
3248 * that doesn’t exist anymore, or whether the target
3249 * dataset doesn’t exist.
3250 */
3251 zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
3252 "no such parent ’%s’"), parent);
3253 return (zfs_error(zhp->zfs_hdl, EZFS_NOENT, errbuf));

3255 case EXDEV:
3256 zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
3257 "source and target pools differ"));
3258 return (zfs_error(zhp->zfs_hdl, EZFS_CROSSTARGET,
3259 errbuf));

3261 default:
3262 return (zfs_standard_error(zhp->zfs_hdl, errno,
3263 errbuf));
3264 }
3265 }

3267 return (ret);
3268 }

3270 /*
3271 * Promotes the given clone fs to be the clone parent.
3272 */
3273 int
3274 zfs_promote(zfs_handle_t *zhp)
3275 {
3276 libzfs_handle_t *hdl = zhp->zfs_hdl;
3277 zfs_cmd_t zc = { 0 };
3278 char parent[MAXPATHLEN];
3279 int ret;
3280 char errbuf[1024];

3282 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
3283 "cannot promote ’%s’"), zhp->zfs_name);

3285 if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) {
3286 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
3287 "snapshots can not be promoted"));
3288 return (zfs_error(hdl, EZFS_BADTYPE, errbuf));
3289 }

3291 (void) strlcpy(parent, zhp->zfs_dmustats.dds_origin, sizeof (parent));
3292 if (parent[0] == ’\0’) {
3293 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
3294 "not a cloned filesystem"));

new/usr/src/lib/libzfs/common/libzfs_dataset.c 51

3295 return (zfs_error(hdl, EZFS_BADTYPE, errbuf));
3296 }

3298 (void) strlcpy(zc.zc_value, zhp->zfs_dmustats.dds_origin,
3299 sizeof (zc.zc_value));
3300 (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
3301 ret = zfs_ioctl(hdl, ZFS_IOC_PROMOTE, &zc);

3303 if (ret != 0) {
3304 int save_errno = errno;

3306 switch (save_errno) {
3307 case EEXIST:
3308 /* There is a conflicting snapshot name. */
3309 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
3310 "conflicting snapshot ’%s’ from parent ’%s’"),
3311 zc.zc_string, parent);
3312 return (zfs_error(hdl, EZFS_EXISTS, errbuf));

3314 default:
3315 return (zfs_standard_error(hdl, save_errno, errbuf));
3316 }
3317 }
3318 return (ret);
3319 }

3321 typedef struct snapdata {
3322 nvlist_t *sd_nvl;
3323 const char *sd_snapname;
3324 } snapdata_t;

3326 static int
3327 zfs_snapshot_cb(zfs_handle_t *zhp, void *arg)
3328 {
3329 snapdata_t *sd = arg;
3330 char name[ZFS_MAXNAMELEN];
3331 int rv = 0;

3333 (void) snprintf(name, sizeof (name),
3334 "%s@%s", zfs_get_name(zhp), sd->sd_snapname);

3336 fnvlist_add_boolean(sd->sd_nvl, name);

3338 rv = zfs_iter_filesystems(zhp, zfs_snapshot_cb, sd);
3339 zfs_close(zhp);
3340 return (rv);
3341 }

3343 /*
3344 * Creates snapshots. The keys in the snaps nvlist are the snapshots to be
3345 * created.
3346 */
3347 int
3348 zfs_snapshot_nvl(libzfs_handle_t *hdl, nvlist_t *snaps, nvlist_t *props)
3349 {
3350 int ret;
3351 char errbuf[1024];
3352 nvpair_t *elem;
3353 nvlist_t *errors;

3355 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
3356 "cannot create snapshots "));

3358 elem = NULL;
3359 while ((elem = nvlist_next_nvpair(snaps, elem)) != NULL) {
3360 const char *snapname = nvpair_name(elem);

new/usr/src/lib/libzfs/common/libzfs_dataset.c 52

3362 /* validate the target name */
3363 if (!zfs_validate_name(hdl, snapname, ZFS_TYPE_SNAPSHOT,
3364 B_TRUE)) {
3365 (void) snprintf(errbuf, sizeof (errbuf),
3366 dgettext(TEXT_DOMAIN,
3367 "cannot create snapshot ’%s’"), snapname);
3368 return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
3369 }
3370 }

3372 if (props != NULL &&
3373 (props = zfs_valid_proplist(hdl, ZFS_TYPE_SNAPSHOT,
3374 props, B_FALSE, NULL, errbuf)) == NULL) {
3375 return (-1);
3376 }

3378 ret = lzc_snapshot(snaps, props, &errors);

3380 if (ret != 0) {
3381 boolean_t printed = B_FALSE;
3382 for (elem = nvlist_next_nvpair(errors, NULL);
3383 elem != NULL;
3384 elem = nvlist_next_nvpair(errors, elem)) {
3385 (void) snprintf(errbuf, sizeof (errbuf),
3386 dgettext(TEXT_DOMAIN,
3387 "cannot create snapshot ’%s’"), nvpair_name(elem));
3388 (void) zfs_standard_error(hdl,
3389 fnvpair_value_int32(elem), errbuf);
3390 printed = B_TRUE;
3391 }
3392 if (!printed) {
3393 switch (ret) {
3394 case EXDEV:
3395 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
3396 "multiple snapshots of same "
3397 "fs not allowed"));
3398 (void) zfs_error(hdl, EZFS_EXISTS, errbuf);

3400 break;
3401 default:
3402 (void) zfs_standard_error(hdl, ret, errbuf);
3403 }
3404 }
3405 }

3407 nvlist_free(props);
3408 nvlist_free(errors);
3409 return (ret);
3410 }

3412 int
3413 zfs_snapshot(libzfs_handle_t *hdl, const char *path, boolean_t recursive,
3414 nvlist_t *props)
3415 {
3416 int ret;
3417 snapdata_t sd = { 0 };
3418 char fsname[ZFS_MAXNAMELEN];
3419 char *cp;
3420 zfs_handle_t *zhp;
3421 char errbuf[1024];

3423 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
3424 "cannot snapshot %s"), path);

3426 if (!zfs_validate_name(hdl, path, ZFS_TYPE_SNAPSHOT, B_TRUE))

new/usr/src/lib/libzfs/common/libzfs_dataset.c 53

3427 return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));

3429 (void) strlcpy(fsname, path, sizeof (fsname));
3430 cp = strchr(fsname, ’@’);
3431 *cp = ’\0’;
3432 sd.sd_snapname = cp + 1;

3434 if ((zhp = zfs_open(hdl, fsname, ZFS_TYPE_FILESYSTEM |
3435 ZFS_TYPE_VOLUME)) == NULL) {
3436 return (-1);
3437 }

3439 verify(nvlist_alloc(&sd.sd_nvl, NV_UNIQUE_NAME, 0) == 0);
3440 if (recursive) {
3441 (void) zfs_snapshot_cb(zfs_handle_dup(zhp), &sd);
3442 } else {
3443 fnvlist_add_boolean(sd.sd_nvl, path);
3444 }

3446 ret = zfs_snapshot_nvl(hdl, sd.sd_nvl, props);
3447 nvlist_free(sd.sd_nvl);
3448 zfs_close(zhp);
3449 return (ret);
3450 }

3452 /*
3453 * Destroy any more recent snapshots. We invoke this callback on any dependents
3454 * of the snapshot first. If the ’cb_dependent’ member is non-zero, then this
3455 * is a dependent and we should just destroy it without checking the transaction
3456 * group.
3457 */
3458 typedef struct rollback_data {
3459 const char *cb_target; /* the snapshot */
3460 uint64_t cb_create; /* creation time reference */
3461 boolean_t cb_error;
3462 boolean_t cb_dependent;
3463 boolean_t cb_force;
3464 } rollback_data_t;

3466 static int
3467 rollback_destroy(zfs_handle_t *zhp, void *data)
3468 {
3469 rollback_data_t *cbp = data;

3471 if (!cbp->cb_dependent) {
3472 if (strcmp(zhp->zfs_name, cbp->cb_target) != 0 &&
3473 zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT &&
3474 zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG) >
3475 cbp->cb_create) {

3477 cbp->cb_dependent = B_TRUE;
3478 cbp->cb_error |= zfs_iter_dependents(zhp, B_FALSE,
3479 rollback_destroy, cbp);
3480 cbp->cb_dependent = B_FALSE;

3482 cbp->cb_error |= zfs_destroy(zhp, B_FALSE);
3483 }
3484 } else {
3485 /* We must destroy this clone; first unmount it */
3486 prop_changelist_t *clp;

3488 clp = changelist_gather(zhp, ZFS_PROP_NAME, 0,
3489 cbp->cb_force ? MS_FORCE: 0);
3490 if (clp == NULL || changelist_prefix(clp) != 0) {
3491 cbp->cb_error = B_TRUE;
3492 zfs_close(zhp);

new/usr/src/lib/libzfs/common/libzfs_dataset.c 54

3493 return (0);
3494 }
3495 if (zfs_destroy(zhp, B_FALSE) != 0)
3496 cbp->cb_error = B_TRUE;
3497 else
3498 changelist_remove(clp, zhp->zfs_name);
3499 (void) changelist_postfix(clp);
3500 changelist_free(clp);
3501 }

3503 zfs_close(zhp);
3504 return (0);
3505 }

3507 /*
3508 * Given a dataset, rollback to a specific snapshot, discarding any
3509 * data changes since then and making it the active dataset.
3510 *
3511 * Any snapshots more recent than the target are destroyed, along with
3512 * their dependents.
3513 */
3514 int
3515 zfs_rollback(zfs_handle_t *zhp, zfs_handle_t *snap, boolean_t force)
3516 {
3517 rollback_data_t cb = { 0 };
3518 int err;
3519 zfs_cmd_t zc = { 0 };
3520 boolean_t restore_resv = 0;
3521 uint64_t old_volsize, new_volsize;
3522 zfs_prop_t resv_prop;

3524 assert(zhp->zfs_type == ZFS_TYPE_FILESYSTEM ||
3525 zhp->zfs_type == ZFS_TYPE_VOLUME);

3527 /*
3528 * Destroy all recent snapshots and their dependents.
3529 */
3530 cb.cb_force = force;
3531 cb.cb_target = snap->zfs_name;
3532 cb.cb_create = zfs_prop_get_int(snap, ZFS_PROP_CREATETXG);
3533 (void) zfs_iter_children(zhp, rollback_destroy, &cb);

3535 if (cb.cb_error)
3536 return (-1);

3538 /*
3539 * Now that we have verified that the snapshot is the latest,
3540 * rollback to the given snapshot.
3541 */

3543 if (zhp->zfs_type == ZFS_TYPE_VOLUME) {
3544 if (zfs_which_resv_prop(zhp, &resv_prop) < 0)
3545 return (-1);
3546 old_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE);
3547 restore_resv =
3548 (old_volsize == zfs_prop_get_int(zhp, resv_prop));
3549 }

3551 (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));

3553 if (ZFS_IS_VOLUME(zhp))
3554 zc.zc_objset_type = DMU_OST_ZVOL;
3555 else
3556 zc.zc_objset_type = DMU_OST_ZFS;

3558 /*

new/usr/src/lib/libzfs/common/libzfs_dataset.c 55

3559 * We rely on zfs_iter_children() to verify that there are no
3560 * newer snapshots for the given dataset. Therefore, we can
3561 * simply pass the name on to the ioctl() call. There is still
3562 * an unlikely race condition where the user has taken a
3563 * snapshot since we verified that this was the most recent.
3564 *
3565 */
3566 if ((err = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_ROLLBACK, &zc)) != 0) {
3567 (void) zfs_standard_error_fmt(zhp->zfs_hdl, errno,
3568 dgettext(TEXT_DOMAIN, "cannot rollback ’%s’"),
3569 zhp->zfs_name);
3570 return (err);
3571 }

3573 /*
3574 * For volumes, if the pre-rollback volsize matched the pre-
3575 * rollback reservation and the volsize has changed then set
3576 * the reservation property to the post-rollback volsize.
3577 * Make a new handle since the rollback closed the dataset.
3578 */
3579 if ((zhp->zfs_type == ZFS_TYPE_VOLUME) &&
3580 (zhp = make_dataset_handle(zhp->zfs_hdl, zhp->zfs_name))) {
3581 if (restore_resv) {
3582 new_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE);
3583 if (old_volsize != new_volsize)
3584 err = zfs_prop_set_int(zhp, resv_prop,
3585 new_volsize);
3586 }
3587 zfs_close(zhp);
3588 }
3589 return (err);
3590 }

3592 /*
3593 * Renames the given dataset.
3594 */
3595 int
3596 zfs_rename(zfs_handle_t *zhp, const char *target, boolean_t recursive,
3597 boolean_t force_unmount)
3598 {
3599 int ret;
3600 zfs_cmd_t zc = { 0 };
3601 char *delim;
3602 prop_changelist_t *cl = NULL;
3603 zfs_handle_t *zhrp = NULL;
3604 char *parentname = NULL;
3605 char parent[ZFS_MAXNAMELEN];
3606 libzfs_handle_t *hdl = zhp->zfs_hdl;
3607 char errbuf[1024];

3609 /* if we have the same exact name, just return success */
3610 if (strcmp(zhp->zfs_name, target) == 0)
3611 return (0);

3613 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
3614 "cannot rename to ’%s’"), target);

3616 /*
3617 * Make sure the target name is valid
3618 */
3619 if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) {
3620 if ((strchr(target, ’@’) == NULL) ||
3621 *target == ’@’) {
3622 /*
3623 * Snapshot target name is abbreviated,
3624 * reconstruct full dataset name

new/usr/src/lib/libzfs/common/libzfs_dataset.c 56

3625 */
3626 (void) strlcpy(parent, zhp->zfs_name,
3627 sizeof (parent));
3628 delim = strchr(parent, ’@’);
3629 if (strchr(target, ’@’) == NULL)
3630 *(++delim) = ’\0’;
3631 else
3632 *delim = ’\0’;
3633 (void) strlcat(parent, target, sizeof (parent));
3634 target = parent;
3635 } else {
3636 /*
3637 * Make sure we’re renaming within the same dataset.
3638 */
3639 delim = strchr(target, ’@’);
3640 if (strncmp(zhp->zfs_name, target, delim - target)
3641 != 0 || zhp->zfs_name[delim - target] != ’@’) {
3642 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
3643 "snapshots must be part of same "
3644 "dataset"));
3645 return (zfs_error(hdl, EZFS_CROSSTARGET,
3646 errbuf));
3647 }
3648 }
3649 if (!zfs_validate_name(hdl, target, zhp->zfs_type, B_TRUE))
3650 return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
3651 } else {
3652 if (recursive) {
3653 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
3654 "recursive rename must be a snapshot"));
3655 return (zfs_error(hdl, EZFS_BADTYPE, errbuf));
3656 }

3658 if (!zfs_validate_name(hdl, target, zhp->zfs_type, B_TRUE))
3659 return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));

3661 /* validate parents */
3662 if (check_parents(hdl, target, NULL, B_FALSE, NULL) != 0)
3663 return (-1);

3665 /* make sure we’re in the same pool */
3666 verify((delim = strchr(target, ’/’)) != NULL);
3667 if (strncmp(zhp->zfs_name, target, delim - target) != 0 ||
3668 zhp->zfs_name[delim - target] != ’/’) {
3669 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
3670 "datasets must be within same pool"));
3671 return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf));
3672 }

3674 /* new name cannot be a child of the current dataset name */
3675 if (is_descendant(zhp->zfs_name, target)) {
3676 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
3677 "New dataset name cannot be a descendant of "
3678 "current dataset name"));
3679 return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
3680 }
3681 }

3683 (void) snprintf(errbuf, sizeof (errbuf),
3684 dgettext(TEXT_DOMAIN, "cannot rename ’%s’"), zhp->zfs_name);

3686 if (getzoneid() == GLOBAL_ZONEID &&
3687 zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) {
3688 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
3689 "dataset is used in a non-global zone"));
3690 return (zfs_error(hdl, EZFS_ZONED, errbuf));

new/usr/src/lib/libzfs/common/libzfs_dataset.c 57

3691 }

3693 if (recursive) {

3695 parentname = zfs_strdup(zhp->zfs_hdl, zhp->zfs_name);
3696 if (parentname == NULL) {
3697 ret = -1;
3698 goto error;
3699 }
3700 delim = strchr(parentname, ’@’);
3701 *delim = ’\0’;
3702 zhrp = zfs_open(zhp->zfs_hdl, parentname, ZFS_TYPE_DATASET);
3703 if (zhrp == NULL) {
3704 ret = -1;
3705 goto error;
3706 }

3708 } else {
3709 if ((cl = changelist_gather(zhp, ZFS_PROP_NAME, 0,
3710 force_unmount ? MS_FORCE : 0)) == NULL)
3711 return (-1);

3713 if (changelist_haszonedchild(cl)) {
3714 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
3715 "child dataset with inherited mountpoint is used "
3716 "in a non-global zone"));
3717 (void) zfs_error(hdl, EZFS_ZONED, errbuf);
3718 goto error;
3719 }

3721 if ((ret = changelist_prefix(cl)) != 0)
3722 goto error;
3723 }

3725 if (ZFS_IS_VOLUME(zhp))
3726 zc.zc_objset_type = DMU_OST_ZVOL;
3727 else
3728 zc.zc_objset_type = DMU_OST_ZFS;

3730 (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
3731 (void) strlcpy(zc.zc_value, target, sizeof (zc.zc_value));

3733 zc.zc_cookie = recursive;

3735 if ((ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_RENAME, &zc)) != 0) {
3736 /*
3737 * if it was recursive, the one that actually failed will
3738 * be in zc.zc_name
3739 */
3740 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
3741 "cannot rename ’%s’"), zc.zc_name);

3743 if (recursive && errno == EEXIST) {
3744 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
3745 "a child dataset already has a snapshot "
3746 "with the new name"));
3747 (void) zfs_error(hdl, EZFS_EXISTS, errbuf);
3748 } else {
3749 (void) zfs_standard_error(zhp->zfs_hdl, errno, errbuf);
3750 }

3752 /*
3753 * On failure, we still want to remount any filesystems that
3754 * were previously mounted, so we don’t alter the system state.
3755 */
3756 if (!recursive)

new/usr/src/lib/libzfs/common/libzfs_dataset.c 58

3757 (void) changelist_postfix(cl);
3758 } else {
3759 if (!recursive) {
3760 changelist_rename(cl, zfs_get_name(zhp), target);
3761 ret = changelist_postfix(cl);
3762 }
3763 }

3765 error:
3766 if (parentname) {
3767 free(parentname);
3768 }
3769 if (zhrp) {
3770 zfs_close(zhrp);
3771 }
3772 if (cl) {
3773 changelist_free(cl);
3774 }
3775 return (ret);
3776 }

3778 nvlist_t *
3779 zfs_get_user_props(zfs_handle_t *zhp)
3780 {
3781 return (zhp->zfs_user_props);
3782 }

3784 nvlist_t *
3785 zfs_get_recvd_props(zfs_handle_t *zhp)
3786 {
3787 if (zhp->zfs_recvd_props == NULL)
3788 if (get_recvd_props_ioctl(zhp) != 0)
3789 return (NULL);
3790 return (zhp->zfs_recvd_props);
3791 }

3793 /*
3794 * This function is used by ’zfs list’ to determine the exact set of columns to
3795 * display, and their maximum widths. This does two main things:
3796 *
3797 * - If this is a list of all properties, then expand the list to include
3798 * all native properties, and set a flag so that for each dataset we look
3799 * for new unique user properties and add them to the list.
3800 *
3801 * - For non fixed-width properties, keep track of the maximum width seen
3802 * so that we can size the column appropriately. If the user has
3803 * requested received property values, we also need to compute the width
3804 * of the RECEIVED column.
3805 */
3806 int
3807 zfs_expand_proplist(zfs_handle_t *zhp, zprop_list_t **plp, boolean_t received)
3808 {
3809 libzfs_handle_t *hdl = zhp->zfs_hdl;
3810 zprop_list_t *entry;
3811 zprop_list_t **last, **start;
3812 nvlist_t *userprops, *propval;
3813 nvpair_t *elem;
3814 char *strval;
3815 char buf[ZFS_MAXPROPLEN];

3817 if (zprop_expand_list(hdl, plp, ZFS_TYPE_DATASET) != 0)
3818 return (-1);

3820 userprops = zfs_get_user_props(zhp);

3822 entry = *plp;

new/usr/src/lib/libzfs/common/libzfs_dataset.c 59

3823 if (entry->pl_all && nvlist_next_nvpair(userprops, NULL) != NULL) {
3824 /*
3825 * Go through and add any user properties as necessary. We
3826 * start by incrementing our list pointer to the first
3827 * non-native property.
3828 */
3829 start = plp;
3830 while (*start != NULL) {
3831 if ((*start)->pl_prop == ZPROP_INVAL)
3832 break;
3833 start = &(*start)->pl_next;
3834 }

3836 elem = NULL;
3837 while ((elem = nvlist_next_nvpair(userprops, elem)) != NULL) {
3838 /*
3839 * See if we’ve already found this property in our list.
3840 */
3841 for (last = start; *last != NULL;
3842 last = &(*last)->pl_next) {
3843 if (strcmp((*last)->pl_user_prop,
3844 nvpair_name(elem)) == 0)
3845 break;
3846 }

3848 if (*last == NULL) {
3849 if ((entry = zfs_alloc(hdl,
3850 sizeof (zprop_list_t))) == NULL ||
3851 ((entry->pl_user_prop = zfs_strdup(hdl,
3852 nvpair_name(elem)))) == NULL) {
3853 free(entry);
3854 return (-1);
3855 }

3857 entry->pl_prop = ZPROP_INVAL;
3858 entry->pl_width = strlen(nvpair_name(elem));
3859 entry->pl_all = B_TRUE;
3860 *last = entry;
3861 }
3862 }
3863 }

3865 /*
3866 * Now go through and check the width of any non-fixed columns
3867 */
3868 for (entry = *plp; entry != NULL; entry = entry->pl_next) {
3869 if (entry->pl_fixed)
3870 continue;

3872 if (entry->pl_prop != ZPROP_INVAL) {
3873 if (zfs_prop_get(zhp, entry->pl_prop,
3874 buf, sizeof (buf), NULL, NULL, 0, B_FALSE) == 0) {
3875 if (strlen(buf) > entry->pl_width)
3876 entry->pl_width = strlen(buf);
3877 }
3878 if (received && zfs_prop_get_recvd(zhp,
3879 zfs_prop_to_name(entry->pl_prop),
3880 buf, sizeof (buf), B_FALSE) == 0)
3881 if (strlen(buf) > entry->pl_recvd_width)
3882 entry->pl_recvd_width = strlen(buf);
3883 } else {
3884 if (nvlist_lookup_nvlist(userprops, entry->pl_user_prop,
3885 &propval) == 0) {
3886 verify(nvlist_lookup_string(propval,
3887 ZPROP_VALUE, &strval) == 0);
3888 if (strlen(strval) > entry->pl_width)

new/usr/src/lib/libzfs/common/libzfs_dataset.c 60

3889 entry->pl_width = strlen(strval);
3890 }
3891 if (received && zfs_prop_get_recvd(zhp,
3892 entry->pl_user_prop,
3893 buf, sizeof (buf), B_FALSE) == 0)
3894 if (strlen(buf) > entry->pl_recvd_width)
3895 entry->pl_recvd_width = strlen(buf);
3896 }
3897 }

3899 return (0);
3900 }

3902 int
3903 zfs_deleg_share_nfs(libzfs_handle_t *hdl, char *dataset, char *path,
3904 char *resource, void *export, void *sharetab,
3905 int sharemax, zfs_share_op_t operation)
3906 {
3907 zfs_cmd_t zc = { 0 };
3908 int error;

3910 (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
3911 (void) strlcpy(zc.zc_value, path, sizeof (zc.zc_value));
3912 if (resource)
3913 (void) strlcpy(zc.zc_string, resource, sizeof (zc.zc_string));
3914 zc.zc_share.z_sharedata = (uint64_t)(uintptr_t)sharetab;
3915 zc.zc_share.z_exportdata = (uint64_t)(uintptr_t)export;
3916 zc.zc_share.z_sharetype = operation;
3917 zc.zc_share.z_sharemax = sharemax;
3918 error = ioctl(hdl->libzfs_fd, ZFS_IOC_SHARE, &zc);
3919 return (error);
3920 }

3922 void
3923 zfs_prune_proplist(zfs_handle_t *zhp, uint8_t *props)
3924 {
3925 nvpair_t *curr;

3927 /*
3928 * Keep a reference to the props-table against which we prune the
3929 * properties.
3930 */
3931 zhp->zfs_props_table = props;

3933 curr = nvlist_next_nvpair(zhp->zfs_props, NULL);

3935 while (curr) {
3936 zfs_prop_t zfs_prop = zfs_name_to_prop(nvpair_name(curr));
3937 nvpair_t *next = nvlist_next_nvpair(zhp->zfs_props, curr);

3939 /*
3940 * User properties will result in ZPROP_INVAL, and since we
3941 * only know how to prune standard ZFS properties, we always
3942 * leave these in the list. This can also happen if we
3943 * encounter an unknown DSL property (when running older
3944 * software, for example).
3945 */
3946 if (zfs_prop != ZPROP_INVAL && props[zfs_prop] == B_FALSE)
3947 (void) nvlist_remove(zhp->zfs_props,
3948 nvpair_name(curr), nvpair_type(curr));
3949 curr = next;
3950 }
3951 }

3953 static int
3954 zfs_smb_acl_mgmt(libzfs_handle_t *hdl, char *dataset, char *path,

new/usr/src/lib/libzfs/common/libzfs_dataset.c 61

3955 zfs_smb_acl_op_t cmd, char *resource1, char *resource2)
3956 {
3957 zfs_cmd_t zc = { 0 };
3958 nvlist_t *nvlist = NULL;
3959 int error;

3961 (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
3962 (void) strlcpy(zc.zc_value, path, sizeof (zc.zc_value));
3963 zc.zc_cookie = (uint64_t)cmd;

3965 if (cmd == ZFS_SMB_ACL_RENAME) {
3966 if (nvlist_alloc(&nvlist, NV_UNIQUE_NAME, 0) != 0) {
3967 (void) no_memory(hdl);
3968 return (NULL);
3969 }
3970 }

3972 switch (cmd) {
3973 case ZFS_SMB_ACL_ADD:
3974 case ZFS_SMB_ACL_REMOVE:
3975 (void) strlcpy(zc.zc_string, resource1, sizeof (zc.zc_string));
3976 break;
3977 case ZFS_SMB_ACL_RENAME:
3978 if (nvlist_add_string(nvlist, ZFS_SMB_ACL_SRC,
3979 resource1) != 0) {
3980 (void) no_memory(hdl);
3981 return (-1);
3982 }
3983 if (nvlist_add_string(nvlist, ZFS_SMB_ACL_TARGET,
3984 resource2) != 0) {
3985 (void) no_memory(hdl);
3986 return (-1);
3987 }
3988 if (zcmd_write_src_nvlist(hdl, &zc, nvlist) != 0) {
3989 nvlist_free(nvlist);
3990 return (-1);
3991 }
3992 break;
3993 case ZFS_SMB_ACL_PURGE:
3994 break;
3995 default:
3996 return (-1);
3997 }
3998 error = ioctl(hdl->libzfs_fd, ZFS_IOC_SMB_ACL, &zc);
3999 if (nvlist)
4000 nvlist_free(nvlist);
4001 return (error);
4002 }

4004 int
4005 zfs_smb_acl_add(libzfs_handle_t *hdl, char *dataset,
4006 char *path, char *resource)
4007 {
4008 return (zfs_smb_acl_mgmt(hdl, dataset, path, ZFS_SMB_ACL_ADD,
4009 resource, NULL));
4010 }

4012 int
4013 zfs_smb_acl_remove(libzfs_handle_t *hdl, char *dataset,
4014 char *path, char *resource)
4015 {
4016 return (zfs_smb_acl_mgmt(hdl, dataset, path, ZFS_SMB_ACL_REMOVE,
4017 resource, NULL));
4018 }

4020 int

new/usr/src/lib/libzfs/common/libzfs_dataset.c 62

4021 zfs_smb_acl_purge(libzfs_handle_t *hdl, char *dataset, char *path)
4022 {
4023 return (zfs_smb_acl_mgmt(hdl, dataset, path, ZFS_SMB_ACL_PURGE,
4024 NULL, NULL));
4025 }

4027 int
4028 zfs_smb_acl_rename(libzfs_handle_t *hdl, char *dataset, char *path,
4029 char *oldname, char *newname)
4030 {
4031 return (zfs_smb_acl_mgmt(hdl, dataset, path, ZFS_SMB_ACL_RENAME,
4032 oldname, newname));
4033 }

4035 int
4036 zfs_userspace(zfs_handle_t *zhp, zfs_userquota_prop_t type,
4037 zfs_userspace_cb_t func, void *arg)
4038 {
4039 zfs_cmd_t zc = { 0 };
4040 zfs_useracct_t buf[100];
4041 libzfs_handle_t *hdl = zhp->zfs_hdl;
4042 int ret;

4044 (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));

4046 zc.zc_objset_type = type;
4047 zc.zc_nvlist_dst = (uintptr_t)buf;

4049 for (;;) {
4050 zfs_useracct_t *zua = buf;

4052 zc.zc_nvlist_dst_size = sizeof (buf);
4053 if (zfs_ioctl(hdl, ZFS_IOC_USERSPACE_MANY, &zc) != 0) {
4054 char errbuf[1024];

4056 (void) snprintf(errbuf, sizeof (errbuf),
4057 dgettext(TEXT_DOMAIN,
4058 "cannot get used/quota for %s"), zc.zc_name);
4059 return (zfs_standard_error_fmt(hdl, errno, errbuf));
4060 }
4061 if (zc.zc_nvlist_dst_size == 0)
4062 break;

4064 while (zc.zc_nvlist_dst_size > 0) {
4065 if ((ret = func(arg, zua->zu_domain, zua->zu_rid,
4066 zua->zu_space)) != 0)
4067 return (ret);
4068 zua++;
4069 zc.zc_nvlist_dst_size -= sizeof (zfs_useracct_t);
4070 }
4071 }

4073 return (0);
4074 }

4076 struct holdarg {
4077 nvlist_t *nvl;
4078 const char *snapname;
4079 const char *tag;
4080 boolean_t recursive;
4081 };

4083 static int
4084 zfs_hold_one(zfs_handle_t *zhp, void *arg)
4085 {
4086 struct holdarg *ha = arg;

new/usr/src/lib/libzfs/common/libzfs_dataset.c 63

28 zfs_handle_t *szhp;
4087 char name[ZFS_MAXNAMELEN];
4088 int rv = 0;

4090 (void) snprintf(name, sizeof (name),
4091 "%s@%s", zhp->zfs_name, ha->snapname);

4093 if (lzc_exists(name))
35 szhp = make_dataset_handle(zhp->zfs_hdl, name);
36 if (szhp) {

4094 fnvlist_add_string(ha->nvl, name, ha->tag);
38 zfs_close(szhp);
39 }

4096 if (ha->recursive)
4097 rv = zfs_iter_filesystems(zhp, zfs_hold_one, ha);
4098 zfs_close(zhp);
4099 return (rv);
4100 }

4102 int
4103 zfs_hold(zfs_handle_t *zhp, const char *snapname, const char *tag,
4104 boolean_t recursive, int cleanup_fd)
49 boolean_t recursive, boolean_t enoent_ok, int cleanup_fd)

4105 {
4106 int ret;
4107 struct holdarg ha;
53 nvlist_t *errors;
54 libzfs_handle_t *hdl = zhp->zfs_hdl;
55 char errbuf[1024];
56 nvpair_t *elem;

4109 ha.nvl = fnvlist_alloc();
4110 ha.snapname = snapname;
4111 ha.tag = tag;
4112 ha.recursive = recursive;
4113 (void) zfs_hold_one(zfs_handle_dup(zhp), &ha);

4115 if (nvlist_next_nvpair(ha.nvl, NULL) == NULL) {
4116 char errbuf[1024];

4118 #endif /* ! codereview */
4119 fnvlist_free(ha.nvl);
4120 ret = ENOENT;
65 if (!enoent_ok) {

4121 (void) snprintf(errbuf, sizeof (errbuf),
4122 dgettext(TEXT_DOMAIN,
4123 "cannot hold snapshot ’%s@%s’"),
4124 zhp->zfs_name, snapname);
4125 (void) zfs_standard_error(zhp->zfs_hdl, ret, errbuf);
70 (void) zfs_standard_error(hdl, ret, errbuf);
71 }

4126 return (ret);
4127 }

4129 ret = zfs_hold_nvl(zhp, cleanup_fd, ha.nvl);
75 ret = lzc_hold(ha.nvl, cleanup_fd, &errors);

4130 fnvlist_free(ha.nvl);

4132 return (ret);
4133 }

4135 int
4136 zfs_hold_nvl(zfs_handle_t *zhp, int cleanup_fd, nvlist_t *holds)
4137 {
4138 int ret;

new/usr/src/lib/libzfs/common/libzfs_dataset.c 64

4139 nvlist_t *errors;
4140 libzfs_handle_t *hdl = zhp->zfs_hdl;
4141 char errbuf[1024];
4142 nvpair_t *elem;

4144 errors = NULL;
4145 ret = lzc_hold(holds, cleanup_fd, &errors);

4147 if (ret == 0) {
4148 /* There may be errors even in the success case. */
4149 fnvlist_free(errors);
78 if (ret == 0)

4150 return (0);
4151 }
4152 #endif /* ! codereview */

4154 if (nvlist_next_nvpair(errors, NULL) == NULL) {
4155 /* no hold-specific errors */
4156 (void) snprintf(errbuf, sizeof (errbuf),
4157 dgettext(TEXT_DOMAIN, "cannot hold"));
4158 switch (ret) {
4159 case ENOTSUP:
4160 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
4161 "pool must be upgraded"));
4162 (void) zfs_error(hdl, EZFS_BADVERSION, errbuf);
4163 break;
4164 case EINVAL:
4165 (void) zfs_error(hdl, EZFS_BADTYPE, errbuf);
4166 break;
4167 default:
4168 (void) zfs_standard_error(hdl, ret, errbuf);
4169 }
4170 }

4172 for (elem = nvlist_next_nvpair(errors, NULL);
4173 elem != NULL;
4174 elem = nvlist_next_nvpair(errors, elem)) {
4175 (void) snprintf(errbuf, sizeof (errbuf),
4176 dgettext(TEXT_DOMAIN,
4177 "cannot hold snapshot ’%s’"), nvpair_name(elem));
4178 switch (fnvpair_value_int32(elem)) {
4179 case E2BIG:
4180 /*
4181 * Temporary tags wind up having the ds object id
4182 * prepended. So even if we passed the length check
4183 * above, it’s still possible for the tag to wind
4184 * up being slightly too long.
4185 */
4186 (void) zfs_error(hdl, EZFS_TAGTOOLONG, errbuf);
4187 break;
4188 case EINVAL:
4189 (void) zfs_error(hdl, EZFS_BADTYPE, errbuf);
4190 break;
4191 case EEXIST:
4192 (void) zfs_error(hdl, EZFS_REFTAG_HOLD, errbuf);
4193 break;
80 case ENOENT:
81 if (enoent_ok)
82 return (ENOENT);
83 /* FALLTHROUGH */

4194 default:
4195 (void) zfs_standard_error(hdl,
4196 fnvpair_value_int32(elem), errbuf);
4197 }
4198 }

new/usr/src/lib/libzfs/common/libzfs_dataset.c 65

4200 fnvlist_free(errors);
4201 return (ret);
4202 }

94 struct releasearg {
95 nvlist_t *nvl;
96 const char *snapname;
97 const char *tag;
98 boolean_t recursive;
99 };

4204 static int
4205 zfs_release_one(zfs_handle_t *zhp, void *arg)
4206 {
4207 struct holdarg *ha = arg;
105 zfs_handle_t *szhp;
4208 char name[ZFS_MAXNAMELEN];
4209 int rv = 0;

4211 (void) snprintf(name, sizeof (name),
4212 "%s@%s", zhp->zfs_name, ha->snapname);

4214 if (lzc_exists(name)) {
112 szhp = make_dataset_handle(zhp->zfs_hdl, name);
113 if (szhp) {
4215 nvlist_t *holds = fnvlist_alloc();
4216 fnvlist_add_boolean(holds, ha->tag);
4217 fnvlist_add_nvlist(ha->nvl, name, holds);
4218 fnvlist_free(holds);
117 zfs_close(szhp);
4219 }

4221 if (ha->recursive)
4222 rv = zfs_iter_filesystems(zhp, zfs_release_one, ha);
4223 zfs_close(zhp);
4224 return (rv);
4225 }

4227 int
4228 zfs_release(zfs_handle_t *zhp, const char *snapname, const char *tag,
4229 boolean_t recursive)
4230 {
4231 int ret;
4232 struct holdarg ha;
4233 nvlist_t *errors;
4234 nvpair_t *elem;
4235 libzfs_handle_t *hdl = zhp->zfs_hdl;
4236 char errbuf[1024];

4238 ha.nvl = fnvlist_alloc();
4239 ha.snapname = snapname;
4240 ha.tag = tag;
4241 ha.recursive = recursive;
4242 (void) zfs_release_one(zfs_handle_dup(zhp), &ha);

4244 if (nvlist_next_nvpair(ha.nvl, NULL) == NULL) {
4245 fnvlist_free(ha.nvl);
4246 ret = ENOENT;
4247 (void) snprintf(errbuf, sizeof (errbuf),
4248 dgettext(TEXT_DOMAIN,
4249 "cannot release hold from snapshot ’%s@%s’"),
4250 zhp->zfs_name, snapname);
4251 (void) zfs_standard_error(hdl, ret, errbuf);
4252 return (ret);
4253 }

new/usr/src/lib/libzfs/common/libzfs_dataset.c 66

4255 errors = NULL;
4256 #endif /* ! codereview */
4257 ret = lzc_release(ha.nvl, &errors);
4258 fnvlist_free(ha.nvl);

4260 if (ret == 0) {
4261 /* There may be errors even in the success case. */
4262 fnvlist_free(errors);
154 if (ret == 0)
4263 return (0);
4264 }
4265 #endif /* ! codereview */

4267 if (nvlist_next_nvpair(errors, NULL) == NULL) {
4268 /* no hold-specific errors */
4269 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
4270 "cannot release"));
4271 switch (errno) {
4272 case ENOTSUP:
4273 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
4274 "pool must be upgraded"));
4275 (void) zfs_error(hdl, EZFS_BADVERSION, errbuf);
4276 break;
4277 default:
4278 (void) zfs_standard_error_fmt(hdl, errno, errbuf);
4279 }
4280 }

4282 for (elem = nvlist_next_nvpair(errors, NULL);
4283 elem != NULL;
4284 elem = nvlist_next_nvpair(errors, elem)) {
4285 (void) snprintf(errbuf, sizeof (errbuf),
4286 dgettext(TEXT_DOMAIN,
4287 "cannot release hold from snapshot ’%s’"),
4288 nvpair_name(elem));
4289 switch (fnvpair_value_int32(elem)) {
4290 case ESRCH:
4291 (void) zfs_error(hdl, EZFS_REFTAG_RELE, errbuf);
4292 break;
4293 case EINVAL:
4294 (void) zfs_error(hdl, EZFS_BADTYPE, errbuf);
4295 break;
4296 default:
4297 (void) zfs_standard_error_fmt(hdl,
4298 fnvpair_value_int32(elem), errbuf);
4299 }
4300 }

4302 fnvlist_free(errors);
4303 return (ret);
4304 }

4306 int
4307 zfs_get_fsacl(zfs_handle_t *zhp, nvlist_t **nvl)
4308 {
4309 zfs_cmd_t zc = { 0 };
4310 libzfs_handle_t *hdl = zhp->zfs_hdl;
4311 int nvsz = 2048;
4312 void *nvbuf;
4313 int err = 0;
4314 char errbuf[1024];

4316 assert(zhp->zfs_type == ZFS_TYPE_VOLUME ||
4317 zhp->zfs_type == ZFS_TYPE_FILESYSTEM);

4319 tryagain:

new/usr/src/lib/libzfs/common/libzfs_dataset.c 67

4321 nvbuf = malloc(nvsz);
4322 if (nvbuf == NULL) {
4323 err = (zfs_error(hdl, EZFS_NOMEM, strerror(errno)));
4324 goto out;
4325 }

4327 zc.zc_nvlist_dst_size = nvsz;
4328 zc.zc_nvlist_dst = (uintptr_t)nvbuf;

4330 (void) strlcpy(zc.zc_name, zhp->zfs_name, ZFS_MAXNAMELEN);

4332 if (ioctl(hdl->libzfs_fd, ZFS_IOC_GET_FSACL, &zc) != 0) {
4333 (void) snprintf(errbuf, sizeof (errbuf),
4334 dgettext(TEXT_DOMAIN, "cannot get permissions on ’%s’"),
4335 zc.zc_name);
4336 switch (errno) {
4337 case ENOMEM:
4338 free(nvbuf);
4339 nvsz = zc.zc_nvlist_dst_size;
4340 goto tryagain;

4342 case ENOTSUP:
4343 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
4344 "pool must be upgraded"));
4345 err = zfs_error(hdl, EZFS_BADVERSION, errbuf);
4346 break;
4347 case EINVAL:
4348 err = zfs_error(hdl, EZFS_BADTYPE, errbuf);
4349 break;
4350 case ENOENT:
4351 err = zfs_error(hdl, EZFS_NOENT, errbuf);
4352 break;
4353 default:
4354 err = zfs_standard_error_fmt(hdl, errno, errbuf);
4355 break;
4356 }
4357 } else {
4358 /* success */
4359 int rc = nvlist_unpack(nvbuf, zc.zc_nvlist_dst_size, nvl, 0);
4360 if (rc) {
4361 (void) snprintf(errbuf, sizeof (errbuf), dgettext(
4362 TEXT_DOMAIN, "cannot get permissions on ’%s’"),
4363 zc.zc_name);
4364 err = zfs_standard_error_fmt(hdl, rc, errbuf);
4365 }
4366 }

4368 free(nvbuf);
4369 out:
4370 return (err);
4371 }

4373 int
4374 zfs_set_fsacl(zfs_handle_t *zhp, boolean_t un, nvlist_t *nvl)
4375 {
4376 zfs_cmd_t zc = { 0 };
4377 libzfs_handle_t *hdl = zhp->zfs_hdl;
4378 char *nvbuf;
4379 char errbuf[1024];
4380 size_t nvsz;
4381 int err;

4383 assert(zhp->zfs_type == ZFS_TYPE_VOLUME ||
4384 zhp->zfs_type == ZFS_TYPE_FILESYSTEM);

new/usr/src/lib/libzfs/common/libzfs_dataset.c 68

4386 err = nvlist_size(nvl, &nvsz, NV_ENCODE_NATIVE);
4387 assert(err == 0);

4389 nvbuf = malloc(nvsz);

4391 err = nvlist_pack(nvl, &nvbuf, &nvsz, NV_ENCODE_NATIVE, 0);
4392 assert(err == 0);

4394 zc.zc_nvlist_src_size = nvsz;
4395 zc.zc_nvlist_src = (uintptr_t)nvbuf;
4396 zc.zc_perm_action = un;

4398 (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));

4400 if (zfs_ioctl(hdl, ZFS_IOC_SET_FSACL, &zc) != 0) {
4401 (void) snprintf(errbuf, sizeof (errbuf),
4402 dgettext(TEXT_DOMAIN, "cannot set permissions on ’%s’"),
4403 zc.zc_name);
4404 switch (errno) {
4405 case ENOTSUP:
4406 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
4407 "pool must be upgraded"));
4408 err = zfs_error(hdl, EZFS_BADVERSION, errbuf);
4409 break;
4410 case EINVAL:
4411 err = zfs_error(hdl, EZFS_BADTYPE, errbuf);
4412 break;
4413 case ENOENT:
4414 err = zfs_error(hdl, EZFS_NOENT, errbuf);
4415 break;
4416 default:
4417 err = zfs_standard_error_fmt(hdl, errno, errbuf);
4418 break;
4419 }
4420 }

4422 free(nvbuf);

4424 return (err);
4425 }

4427 int
4428 zfs_get_holds(zfs_handle_t *zhp, nvlist_t **nvl)
4429 {
4430 int err;
4431 char errbuf[1024];

4433 err = lzc_get_holds(zhp->zfs_name, nvl);

4435 if (err != 0) {
4436 libzfs_handle_t *hdl = zhp->zfs_hdl;

4438 (void) snprintf(errbuf, sizeof (errbuf),
4439 dgettext(TEXT_DOMAIN, "cannot get holds for ’%s’"),
4440 zhp->zfs_name);
4441 switch (err) {
4442 case ENOTSUP:
4443 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
4444 "pool must be upgraded"));
4445 err = zfs_error(hdl, EZFS_BADVERSION, errbuf);
4446 break;
4447 case EINVAL:
4448 err = zfs_error(hdl, EZFS_BADTYPE, errbuf);
4449 break;
4450 case ENOENT:
4451 err = zfs_error(hdl, EZFS_NOENT, errbuf);

new/usr/src/lib/libzfs/common/libzfs_dataset.c 69

4452 break;
4453 default:
4454 err = zfs_standard_error_fmt(hdl, errno, errbuf);
4455 break;
4456 }
4457 }

4459 return (err);
4460 }

4462 uint64_t
4463 zvol_volsize_to_reservation(uint64_t volsize, nvlist_t *props)
4464 {
4465 uint64_t numdb;
4466 uint64_t nblocks, volblocksize;
4467 int ncopies;
4468 char *strval;

4470 if (nvlist_lookup_string(props,
4471 zfs_prop_to_name(ZFS_PROP_COPIES), &strval) == 0)
4472 ncopies = atoi(strval);
4473 else
4474 ncopies = 1;
4475 if (nvlist_lookup_uint64(props,
4476 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
4477 &volblocksize) != 0)
4478 volblocksize = ZVOL_DEFAULT_BLOCKSIZE;
4479 nblocks = volsize/volblocksize;
4480 /* start with metadnode L0-L6 */
4481 numdb = 7;
4482 /* calculate number of indirects */
4483 while (nblocks > 1) {
4484 nblocks += DNODES_PER_LEVEL - 1;
4485 nblocks /= DNODES_PER_LEVEL;
4486 numdb += nblocks;
4487 }
4488 numdb *= MIN(SPA_DVAS_PER_BP, ncopies + 1);
4489 volsize *= ncopies;
4490 /*
4491 * this is exactly DN_MAX_INDBLKSHIFT when metadata isn’t
4492 * compressed, but in practice they compress down to about
4493 * 1100 bytes
4494 */
4495 numdb *= 1ULL << DN_MAX_INDBLKSHIFT;
4496 volsize += numdb;
4497 return (volsize);
4498 }

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 1

**
 84531 Wed May 29 20:27:08 2013
new/usr/src/lib/libzfs/common/libzfs_sendrecv.c
3740 Poor ZFS send / receive performance due to snapshot hold / release processi
Submitted by: Steven Hartland <steven.hartland@multiplay.co.uk>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012 by Delphix. All rights reserved.
25 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
26 * Copyright (c) 2013 Steven Hartland. All rights reserved.
27 #endif /* ! codereview */
28 */

30 #include <assert.h>
31 #include <ctype.h>
32 #include <errno.h>
33 #include <libintl.h>
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <strings.h>
37 #include <unistd.h>
38 #include <stddef.h>
39 #include <fcntl.h>
40 #include <sys/mount.h>
41 #include <pthread.h>
42 #include <umem.h>
43 #include <time.h>

45 #include <libzfs.h>

47 #include "zfs_namecheck.h"
48 #include "zfs_prop.h"
49 #include "zfs_fletcher.h"
50 #include "libzfs_impl.h"
51 #include <sha2.h>
52 #include <sys/zio_checksum.h>
53 #include <sys/ddt.h>

55 /* in libzfs_dataset.c */
56 extern void zfs_setprop_error(libzfs_handle_t *, zfs_prop_t, int, char *);

58 static int zfs_receive_impl(libzfs_handle_t *, const char *, recvflags_t *,
59 int, const char *, nvlist_t *, avl_tree_t *, char **, int, uint64_t *);

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 2

61 static const zio_cksum_t zero_cksum = { 0 };

63 typedef struct dedup_arg {
64 int inputfd;
65 int outputfd;
66 libzfs_handle_t *dedup_hdl;
67 } dedup_arg_t;

69 typedef struct progress_arg {
70 zfs_handle_t *pa_zhp;
71 int pa_fd;
72 boolean_t pa_parsable;
73 } progress_arg_t;

75 typedef struct dataref {
76 uint64_t ref_guid;
77 uint64_t ref_object;
78 uint64_t ref_offset;
79 } dataref_t;

81 typedef struct dedup_entry {
82 struct dedup_entry *dde_next;
83 zio_cksum_t dde_chksum;
84 uint64_t dde_prop;
85 dataref_t dde_ref;
86 } dedup_entry_t;

88 #define MAX_DDT_PHYSMEM_PERCENT 20
89 #define SMALLEST_POSSIBLE_MAX_DDT_MB 128

91 typedef struct dedup_table {
92 dedup_entry_t **dedup_hash_array;
93 umem_cache_t *ddecache;
94 uint64_t max_ddt_size; /* max dedup table size in bytes */
95 uint64_t cur_ddt_size; /* current dedup table size in bytes */
96 uint64_t ddt_count;
97 int numhashbits;
98 boolean_t ddt_full;
99 } dedup_table_t;

101 static int
102 high_order_bit(uint64_t n)
103 {
104 int count;

106 for (count = 0; n != 0; count++)
107 n >>= 1;
108 return (count);
109 }

111 static size_t
112 ssread(void *buf, size_t len, FILE *stream)
113 {
114 size_t outlen;

116 if ((outlen = fread(buf, len, 1, stream)) == 0)
117 return (0);

119 return (outlen);
120 }

122 static void
123 ddt_hash_append(libzfs_handle_t *hdl, dedup_table_t *ddt, dedup_entry_t **ddepp,
124 zio_cksum_t *cs, uint64_t prop, dataref_t *dr)
125 {
126 dedup_entry_t *dde;

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 3

128 if (ddt->cur_ddt_size >= ddt->max_ddt_size) {
129 if (ddt->ddt_full == B_FALSE) {
130 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
131 "Dedup table full. Deduplication will continue "
132 "with existing table entries"));
133 ddt->ddt_full = B_TRUE;
134 }
135 return;
136 }

138 if ((dde = umem_cache_alloc(ddt->ddecache, UMEM_DEFAULT))
139 != NULL) {
140 assert(*ddepp == NULL);
141 dde->dde_next = NULL;
142 dde->dde_chksum = *cs;
143 dde->dde_prop = prop;
144 dde->dde_ref = *dr;
145 *ddepp = dde;
146 ddt->cur_ddt_size += sizeof (dedup_entry_t);
147 ddt->ddt_count++;
148 }
149 }

151 /*
152 * Using the specified dedup table, do a lookup for an entry with
153 * the checksum cs. If found, return the block’s reference info
154 * in *dr. Otherwise, insert a new entry in the dedup table, using
155 * the reference information specified by *dr.
156 *
157 * return value: true - entry was found
158 * false - entry was not found
159 */
160 static boolean_t
161 ddt_update(libzfs_handle_t *hdl, dedup_table_t *ddt, zio_cksum_t *cs,
162 uint64_t prop, dataref_t *dr)
163 {
164 uint32_t hashcode;
165 dedup_entry_t **ddepp;

167 hashcode = BF64_GET(cs->zc_word[0], 0, ddt->numhashbits);

169 for (ddepp = &(ddt->dedup_hash_array[hashcode]); *ddepp != NULL;
170 ddepp = &((*ddepp)->dde_next)) {
171 if (ZIO_CHECKSUM_EQUAL(((*ddepp)->dde_chksum), *cs) &&
172 (*ddepp)->dde_prop == prop) {
173 *dr = (*ddepp)->dde_ref;
174 return (B_TRUE);
175 }
176 }
177 ddt_hash_append(hdl, ddt, ddepp, cs, prop, dr);
178 return (B_FALSE);
179 }

181 static int
182 cksum_and_write(const void *buf, uint64_t len, zio_cksum_t *zc, int outfd)
183 {
184 fletcher_4_incremental_native(buf, len, zc);
185 return (write(outfd, buf, len));
186 }

188 /*
189 * This function is started in a separate thread when the dedup option
190 * has been requested. The main send thread determines the list of
191 * snapshots to be included in the send stream and makes the ioctl calls
192 * for each one. But instead of having the ioctl send the output to the

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 4

193 * the output fd specified by the caller of zfs_send()), the
194 * ioctl is told to direct the output to a pipe, which is read by the
195 * alternate thread running THIS function. This function does the
196 * dedup’ing by:
197 * 1. building a dedup table (the DDT)
198 * 2. doing checksums on each data block and inserting a record in the DDT
199 * 3. looking for matching checksums, and
200 * 4. sending a DRR_WRITE_BYREF record instead of a write record whenever
201 * a duplicate block is found.
202 * The output of this function then goes to the output fd requested
203 * by the caller of zfs_send().
204 */
205 static void *
206 cksummer(void *arg)
207 {
208 dedup_arg_t *dda = arg;
209 char *buf = malloc(1<<20);
210 dmu_replay_record_t thedrr;
211 dmu_replay_record_t *drr = &thedrr;
212 struct drr_begin *drrb = &thedrr.drr_u.drr_begin;
213 struct drr_end *drre = &thedrr.drr_u.drr_end;
214 struct drr_object *drro = &thedrr.drr_u.drr_object;
215 struct drr_write *drrw = &thedrr.drr_u.drr_write;
216 struct drr_spill *drrs = &thedrr.drr_u.drr_spill;
217 FILE *ofp;
218 int outfd;
219 dmu_replay_record_t wbr_drr = {0};
220 struct drr_write_byref *wbr_drrr = &wbr_drr.drr_u.drr_write_byref;
221 dedup_table_t ddt;
222 zio_cksum_t stream_cksum;
223 uint64_t physmem = sysconf(_SC_PHYS_PAGES) * sysconf(_SC_PAGESIZE);
224 uint64_t numbuckets;

226 ddt.max_ddt_size =
227 MAX((physmem * MAX_DDT_PHYSMEM_PERCENT)/100,
228 SMALLEST_POSSIBLE_MAX_DDT_MB<<20);

230 numbuckets = ddt.max_ddt_size/(sizeof (dedup_entry_t));

232 /*
233 * numbuckets must be a power of 2. Increase number to
234 * a power of 2 if necessary.
235 */
236 if (!ISP2(numbuckets))
237 numbuckets = 1 << high_order_bit(numbuckets);

239 ddt.dedup_hash_array = calloc(numbuckets, sizeof (dedup_entry_t *));
240 ddt.ddecache = umem_cache_create("dde", sizeof (dedup_entry_t), 0,
241 NULL, NULL, NULL, NULL, NULL, 0);
242 ddt.cur_ddt_size = numbuckets * sizeof (dedup_entry_t *);
243 ddt.numhashbits = high_order_bit(numbuckets) - 1;
244 ddt.ddt_full = B_FALSE;

246 /* Initialize the write-by-reference block. */
247 wbr_drr.drr_type = DRR_WRITE_BYREF;
248 wbr_drr.drr_payloadlen = 0;

250 outfd = dda->outputfd;
251 ofp = fdopen(dda->inputfd, "r");
252 while (ssread(drr, sizeof (dmu_replay_record_t), ofp) != 0) {

254 switch (drr->drr_type) {
255 case DRR_BEGIN:
256 {
257 int fflags;
258 ZIO_SET_CHECKSUM(&stream_cksum, 0, 0, 0, 0);

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 5

260 /* set the DEDUP feature flag for this stream */
261 fflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
262 fflags |= (DMU_BACKUP_FEATURE_DEDUP |
263 DMU_BACKUP_FEATURE_DEDUPPROPS);
264 DMU_SET_FEATUREFLAGS(drrb->drr_versioninfo, fflags);

266 if (cksum_and_write(drr, sizeof (dmu_replay_record_t),
267 &stream_cksum, outfd) == -1)
268 goto out;
269 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
270 DMU_COMPOUNDSTREAM && drr->drr_payloadlen != 0) {
271 int sz = drr->drr_payloadlen;

273 if (sz > 1<<20) {
274 free(buf);
275 buf = malloc(sz);
276 }
277 (void) ssread(buf, sz, ofp);
278 if (ferror(stdin))
279 perror("fread");
280 if (cksum_and_write(buf, sz, &stream_cksum,
281 outfd) == -1)
282 goto out;
283 }
284 break;
285 }

287 case DRR_END:
288 {
289 /* use the recalculated checksum */
290 ZIO_SET_CHECKSUM(&drre->drr_checksum,
291 stream_cksum.zc_word[0], stream_cksum.zc_word[1],
292 stream_cksum.zc_word[2], stream_cksum.zc_word[3]);
293 if ((write(outfd, drr,
294 sizeof (dmu_replay_record_t))) == -1)
295 goto out;
296 break;
297 }

299 case DRR_OBJECT:
300 {
301 if (cksum_and_write(drr, sizeof (dmu_replay_record_t),
302 &stream_cksum, outfd) == -1)
303 goto out;
304 if (drro->drr_bonuslen > 0) {
305 (void) ssread(buf,
306 P2ROUNDUP((uint64_t)drro->drr_bonuslen, 8),
307 ofp);
308 if (cksum_and_write(buf,
309 P2ROUNDUP((uint64_t)drro->drr_bonuslen, 8),
310 &stream_cksum, outfd) == -1)
311 goto out;
312 }
313 break;
314 }

316 case DRR_SPILL:
317 {
318 if (cksum_and_write(drr, sizeof (dmu_replay_record_t),
319 &stream_cksum, outfd) == -1)
320 goto out;
321 (void) ssread(buf, drrs->drr_length, ofp);
322 if (cksum_and_write(buf, drrs->drr_length,
323 &stream_cksum, outfd) == -1)
324 goto out;

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 6

325 break;
326 }

328 case DRR_FREEOBJECTS:
329 {
330 if (cksum_and_write(drr, sizeof (dmu_replay_record_t),
331 &stream_cksum, outfd) == -1)
332 goto out;
333 break;
334 }

336 case DRR_WRITE:
337 {
338 dataref_t dataref;

340 (void) ssread(buf, drrw->drr_length, ofp);

342 /*
343 * Use the existing checksum if it’s dedup-capable,
344 * else calculate a SHA256 checksum for it.
345 */

347 if (ZIO_CHECKSUM_EQUAL(drrw->drr_key.ddk_cksum,
348 zero_cksum) ||
349 !DRR_IS_DEDUP_CAPABLE(drrw->drr_checksumflags)) {
350 SHA256_CTX ctx;
351 zio_cksum_t tmpsha256;

353 SHA256Init(&ctx);
354 SHA256Update(&ctx, buf, drrw->drr_length);
355 SHA256Final(&tmpsha256, &ctx);
356 drrw->drr_key.ddk_cksum.zc_word[0] =
357 BE_64(tmpsha256.zc_word[0]);
358 drrw->drr_key.ddk_cksum.zc_word[1] =
359 BE_64(tmpsha256.zc_word[1]);
360 drrw->drr_key.ddk_cksum.zc_word[2] =
361 BE_64(tmpsha256.zc_word[2]);
362 drrw->drr_key.ddk_cksum.zc_word[3] =
363 BE_64(tmpsha256.zc_word[3]);
364 drrw->drr_checksumtype = ZIO_CHECKSUM_SHA256;
365 drrw->drr_checksumflags = DRR_CHECKSUM_DEDUP;
366 }

368 dataref.ref_guid = drrw->drr_toguid;
369 dataref.ref_object = drrw->drr_object;
370 dataref.ref_offset = drrw->drr_offset;

372 if (ddt_update(dda->dedup_hdl, &ddt,
373 &drrw->drr_key.ddk_cksum, drrw->drr_key.ddk_prop,
374 &dataref)) {
375 /* block already present in stream */
376 wbr_drrr->drr_object = drrw->drr_object;
377 wbr_drrr->drr_offset = drrw->drr_offset;
378 wbr_drrr->drr_length = drrw->drr_length;
379 wbr_drrr->drr_toguid = drrw->drr_toguid;
380 wbr_drrr->drr_refguid = dataref.ref_guid;
381 wbr_drrr->drr_refobject =
382 dataref.ref_object;
383 wbr_drrr->drr_refoffset =
384 dataref.ref_offset;

386 wbr_drrr->drr_checksumtype =
387 drrw->drr_checksumtype;
388 wbr_drrr->drr_checksumflags =
389 drrw->drr_checksumtype;
390 wbr_drrr->drr_key.ddk_cksum =

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 7

391 drrw->drr_key.ddk_cksum;
392 wbr_drrr->drr_key.ddk_prop =
393 drrw->drr_key.ddk_prop;

395 if (cksum_and_write(&wbr_drr,
396 sizeof (dmu_replay_record_t), &stream_cksum,
397 outfd) == -1)
398 goto out;
399 } else {
400 /* block not previously seen */
401 if (cksum_and_write(drr,
402 sizeof (dmu_replay_record_t), &stream_cksum,
403 outfd) == -1)
404 goto out;
405 if (cksum_and_write(buf,
406 drrw->drr_length,
407 &stream_cksum, outfd) == -1)
408 goto out;
409 }
410 break;
411 }

413 case DRR_FREE:
414 {
415 if (cksum_and_write(drr, sizeof (dmu_replay_record_t),
416 &stream_cksum, outfd) == -1)
417 goto out;
418 break;
419 }

421 default:
422 (void) printf("INVALID record type 0x%x\n",
423 drr->drr_type);
424 /* should never happen, so assert */
425 assert(B_FALSE);
426 }
427 }
428 out:
429 umem_cache_destroy(ddt.ddecache);
430 free(ddt.dedup_hash_array);
431 free(buf);
432 (void) fclose(ofp);

434 return (NULL);
435 }

437 /*
438 * Routines for dealing with the AVL tree of fs-nvlists
439 */
440 typedef struct fsavl_node {
441 avl_node_t fn_node;
442 nvlist_t *fn_nvfs;
443 char *fn_snapname;
444 uint64_t fn_guid;
445 } fsavl_node_t;

447 static int
448 fsavl_compare(const void *arg1, const void *arg2)
449 {
450 const fsavl_node_t *fn1 = arg1;
451 const fsavl_node_t *fn2 = arg2;

453 if (fn1->fn_guid > fn2->fn_guid)
454 return (+1);
455 else if (fn1->fn_guid < fn2->fn_guid)
456 return (-1);

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 8

457 else
458 return (0);
459 }

461 /*
462 * Given the GUID of a snapshot, find its containing filesystem and
463 * (optionally) name.
464 */
465 static nvlist_t *
466 fsavl_find(avl_tree_t *avl, uint64_t snapguid, char **snapname)
467 {
468 fsavl_node_t fn_find;
469 fsavl_node_t *fn;

471 fn_find.fn_guid = snapguid;

473 fn = avl_find(avl, &fn_find, NULL);
474 if (fn) {
475 if (snapname)
476 *snapname = fn->fn_snapname;
477 return (fn->fn_nvfs);
478 }
479 return (NULL);
480 }

482 static void
483 fsavl_destroy(avl_tree_t *avl)
484 {
485 fsavl_node_t *fn;
486 void *cookie;

488 if (avl == NULL)
489 return;

491 cookie = NULL;
492 while ((fn = avl_destroy_nodes(avl, &cookie)) != NULL)
493 free(fn);
494 avl_destroy(avl);
495 free(avl);
496 }

498 /*
499 * Given an nvlist, produce an avl tree of snapshots, ordered by guid
500 */
501 static avl_tree_t *
502 fsavl_create(nvlist_t *fss)
503 {
504 avl_tree_t *fsavl;
505 nvpair_t *fselem = NULL;

507 if ((fsavl = malloc(sizeof (avl_tree_t))) == NULL)
508 return (NULL);

510 avl_create(fsavl, fsavl_compare, sizeof (fsavl_node_t),
511 offsetof(fsavl_node_t, fn_node));

513 while ((fselem = nvlist_next_nvpair(fss, fselem)) != NULL) {
514 nvlist_t *nvfs, *snaps;
515 nvpair_t *snapelem = NULL;

517 VERIFY(0 == nvpair_value_nvlist(fselem, &nvfs));
518 VERIFY(0 == nvlist_lookup_nvlist(nvfs, "snaps", &snaps));

520 while ((snapelem =
521 nvlist_next_nvpair(snaps, snapelem)) != NULL) {
522 fsavl_node_t *fn;

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 9

523 uint64_t guid;

525 VERIFY(0 == nvpair_value_uint64(snapelem, &guid));
526 if ((fn = malloc(sizeof (fsavl_node_t))) == NULL) {
527 fsavl_destroy(fsavl);
528 return (NULL);
529 }
530 fn->fn_nvfs = nvfs;
531 fn->fn_snapname = nvpair_name(snapelem);
532 fn->fn_guid = guid;

534 /*
535 * Note: if there are multiple snaps with the
536 * same GUID, we ignore all but one.
537 */
538 if (avl_find(fsavl, fn, NULL) == NULL)
539 avl_add(fsavl, fn);
540 else
541 free(fn);
542 }
543 }

545 return (fsavl);
546 }

548 /*
549 * Routines for dealing with the giant nvlist of fs-nvlists, etc.
550 */
551 typedef struct send_data {
552 uint64_t parent_fromsnap_guid;
553 nvlist_t *parent_snaps;
554 nvlist_t *fss;
555 nvlist_t *snapprops;
556 const char *fromsnap;
557 const char *tosnap;
558 boolean_t recursive;

560 /*
561 * The header nvlist is of the following format:
562 * {
563 * "tosnap" -> string
564 * "fromsnap" -> string (if incremental)
565 * "fss" -> {
566 * id -> {
567 *
568 * "name" -> string (full name; for debugging)
569 * "parentfromsnap" -> number (guid of fromsnap in parent)
570 *
571 * "props" -> { name -> value (only if set here) }
572 * "snaps" -> { name (lastname) -> number (guid) }
573 * "snapprops" -> { name (lastname) -> { name -> value } }
574 *
575 * "origin" -> number (guid) (if clone)
576 * "sent" -> boolean (not on-disk)
577 * }
578 * }
579 * }
580 *
581 */
582 } send_data_t;

584 static void send_iterate_prop(zfs_handle_t *zhp, nvlist_t *nv);

586 static int
587 send_iterate_snap(zfs_handle_t *zhp, void *arg)
588 {

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 10

589 send_data_t *sd = arg;
590 uint64_t guid = zhp->zfs_dmustats.dds_guid;
591 char *snapname;
592 nvlist_t *nv;

594 snapname = strrchr(zhp->zfs_name, ’@’)+1;

596 VERIFY(0 == nvlist_add_uint64(sd->parent_snaps, snapname, guid));
597 /*
598 * NB: if there is no fromsnap here (it’s a newly created fs in
599 * an incremental replication), we will substitute the tosnap.
600 */
601 if ((sd->fromsnap && strcmp(snapname, sd->fromsnap) == 0) ||
602 (sd->parent_fromsnap_guid == 0 && sd->tosnap &&
603 strcmp(snapname, sd->tosnap) == 0)) {
604 sd->parent_fromsnap_guid = guid;
605 }

607 VERIFY(0 == nvlist_alloc(&nv, NV_UNIQUE_NAME, 0));
608 send_iterate_prop(zhp, nv);
609 VERIFY(0 == nvlist_add_nvlist(sd->snapprops, snapname, nv));
610 nvlist_free(nv);

612 zfs_close(zhp);
613 return (0);
614 }

616 static void
617 send_iterate_prop(zfs_handle_t *zhp, nvlist_t *nv)
618 {
619 nvpair_t *elem = NULL;

621 while ((elem = nvlist_next_nvpair(zhp->zfs_props, elem)) != NULL) {
622 char *propname = nvpair_name(elem);
623 zfs_prop_t prop = zfs_name_to_prop(propname);
624 nvlist_t *propnv;

626 if (!zfs_prop_user(propname)) {
627 /*
628 * Realistically, this should never happen. However,
629 * we want the ability to add DSL properties without
630 * needing to make incompatible version changes. We
631 * need to ignore unknown properties to allow older
632 * software to still send datasets containing these
633 * properties, with the unknown properties elided.
634 */
635 if (prop == ZPROP_INVAL)
636 continue;

638 if (zfs_prop_readonly(prop))
639 continue;
640 }

642 verify(nvpair_value_nvlist(elem, &propnv) == 0);
643 if (prop == ZFS_PROP_QUOTA || prop == ZFS_PROP_RESERVATION ||
644 prop == ZFS_PROP_REFQUOTA ||
645 prop == ZFS_PROP_REFRESERVATION) {
646 char *source;
647 uint64_t value;
648 verify(nvlist_lookup_uint64(propnv,
649 ZPROP_VALUE, &value) == 0);
650 if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT)
651 continue;
652 /*
653 * May have no source before SPA_VERSION_RECVD_PROPS,
654 * but is still modifiable.

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 11

655 */
656 if (nvlist_lookup_string(propnv,
657 ZPROP_SOURCE, &source) == 0) {
658 if ((strcmp(source, zhp->zfs_name) != 0) &&
659 (strcmp(source,
660 ZPROP_SOURCE_VAL_RECVD) != 0))
661 continue;
662 }
663 } else {
664 char *source;
665 if (nvlist_lookup_string(propnv,
666 ZPROP_SOURCE, &source) != 0)
667 continue;
668 if ((strcmp(source, zhp->zfs_name) != 0) &&
669 (strcmp(source, ZPROP_SOURCE_VAL_RECVD) != 0))
670 continue;
671 }

673 if (zfs_prop_user(propname) ||
674 zfs_prop_get_type(prop) == PROP_TYPE_STRING) {
675 char *value;
676 verify(nvlist_lookup_string(propnv,
677 ZPROP_VALUE, &value) == 0);
678 VERIFY(0 == nvlist_add_string(nv, propname, value));
679 } else {
680 uint64_t value;
681 verify(nvlist_lookup_uint64(propnv,
682 ZPROP_VALUE, &value) == 0);
683 VERIFY(0 == nvlist_add_uint64(nv, propname, value));
684 }
685 }
686 }

688 /*
689 * recursively generate nvlists describing datasets. See comment
690 * for the data structure send_data_t above for description of contents
691 * of the nvlist.
692 */
693 static int
694 send_iterate_fs(zfs_handle_t *zhp, void *arg)
695 {
696 send_data_t *sd = arg;
697 nvlist_t *nvfs, *nv;
698 int rv = 0;
699 uint64_t parent_fromsnap_guid_save = sd->parent_fromsnap_guid;
700 uint64_t guid = zhp->zfs_dmustats.dds_guid;
701 char guidstring[64];

703 VERIFY(0 == nvlist_alloc(&nvfs, NV_UNIQUE_NAME, 0));
704 VERIFY(0 == nvlist_add_string(nvfs, "name", zhp->zfs_name));
705 VERIFY(0 == nvlist_add_uint64(nvfs, "parentfromsnap",
706 sd->parent_fromsnap_guid));

708 if (zhp->zfs_dmustats.dds_origin[0]) {
709 zfs_handle_t *origin = zfs_open(zhp->zfs_hdl,
710 zhp->zfs_dmustats.dds_origin, ZFS_TYPE_SNAPSHOT);
711 if (origin == NULL)
712 return (-1);
713 VERIFY(0 == nvlist_add_uint64(nvfs, "origin",
714 origin->zfs_dmustats.dds_guid));
715 }

717 /* iterate over props */
718 VERIFY(0 == nvlist_alloc(&nv, NV_UNIQUE_NAME, 0));
719 send_iterate_prop(zhp, nv);
720 VERIFY(0 == nvlist_add_nvlist(nvfs, "props", nv));

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 12

721 nvlist_free(nv);

723 /* iterate over snaps, and set sd->parent_fromsnap_guid */
724 sd->parent_fromsnap_guid = 0;
725 VERIFY(0 == nvlist_alloc(&sd->parent_snaps, NV_UNIQUE_NAME, 0));
726 VERIFY(0 == nvlist_alloc(&sd->snapprops, NV_UNIQUE_NAME, 0));
727 (void) zfs_iter_snapshots(zhp, send_iterate_snap, sd);
728 VERIFY(0 == nvlist_add_nvlist(nvfs, "snaps", sd->parent_snaps));
729 VERIFY(0 == nvlist_add_nvlist(nvfs, "snapprops", sd->snapprops));
730 nvlist_free(sd->parent_snaps);
731 nvlist_free(sd->snapprops);

733 /* add this fs to nvlist */
734 (void) snprintf(guidstring, sizeof (guidstring),
735 "0x%llx", (longlong_t)guid);
736 VERIFY(0 == nvlist_add_nvlist(sd->fss, guidstring, nvfs));
737 nvlist_free(nvfs);

739 /* iterate over children */
740 if (sd->recursive)
741 rv = zfs_iter_filesystems(zhp, send_iterate_fs, sd);

743 sd->parent_fromsnap_guid = parent_fromsnap_guid_save;

745 zfs_close(zhp);
746 return (rv);
747 }

749 static int
750 gather_nvlist(libzfs_handle_t *hdl, const char *fsname, const char *fromsnap,
751 const char *tosnap, boolean_t recursive, nvlist_t **nvlp, avl_tree_t **avlp)
752 {
753 zfs_handle_t *zhp;
754 send_data_t sd = { 0 };
755 int error;

757 zhp = zfs_open(hdl, fsname, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
758 if (zhp == NULL)
759 return (EZFS_BADTYPE);

761 VERIFY(0 == nvlist_alloc(&sd.fss, NV_UNIQUE_NAME, 0));
762 sd.fromsnap = fromsnap;
763 sd.tosnap = tosnap;
764 sd.recursive = recursive;

766 if ((error = send_iterate_fs(zhp, &sd)) != 0) {
767 nvlist_free(sd.fss);
768 if (avlp != NULL)
769 *avlp = NULL;
770 *nvlp = NULL;
771 return (error);
772 }

774 if (avlp != NULL && (*avlp = fsavl_create(sd.fss)) == NULL) {
775 nvlist_free(sd.fss);
776 *nvlp = NULL;
777 return (EZFS_NOMEM);
778 }

780 *nvlp = sd.fss;
781 return (0);
782 }

784 /*
785 * Routines specific to "zfs send"
786 */

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 13

787 typedef struct send_dump_data {
788 /* these are all just the short snapname (the part after the @) */
789 const char *fromsnap;
790 const char *tosnap;
791 char prevsnap[ZFS_MAXNAMELEN];
792 uint64_t prevsnap_obj;
793 boolean_t seenfrom, seento, replicate, doall, fromorigin;
794 boolean_t verbose, dryrun, parsable, progress;
795 int outfd;
796 boolean_t err;
797 nvlist_t *fss;
798 nvlist_t *snapholds;
799 #endif /* ! codereview */
800 avl_tree_t *fsavl;
801 snapfilter_cb_t *filter_cb;
802 void *filter_cb_arg;
803 nvlist_t *debugnv;
804 char holdtag[ZFS_MAXNAMELEN];
805 int cleanup_fd;
806 uint64_t size;
807 } send_dump_data_t;

809 static int
810 estimate_ioctl(zfs_handle_t *zhp, uint64_t fromsnap_obj,
811 boolean_t fromorigin, uint64_t *sizep)
812 {
813 zfs_cmd_t zc = { 0 };
814 libzfs_handle_t *hdl = zhp->zfs_hdl;

816 assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT);
817 assert(fromsnap_obj == 0 || !fromorigin);

819 (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
820 zc.zc_obj = fromorigin;
821 zc.zc_sendobj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID);
822 zc.zc_fromobj = fromsnap_obj;
823 zc.zc_guid = 1; /* estimate flag */

825 if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_SEND, &zc) != 0) {
826 char errbuf[1024];
827 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
828 "warning: cannot estimate space for ’%s’"), zhp->zfs_name);

830 switch (errno) {
831 case EXDEV:
832 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
833 "not an earlier snapshot from the same fs"));
834 return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf));

836 case ENOENT:
837 if (zfs_dataset_exists(hdl, zc.zc_name,
838 ZFS_TYPE_SNAPSHOT)) {
839 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
840 "incremental source (@%s) does not exist"),
841 zc.zc_value);
842 }
843 return (zfs_error(hdl, EZFS_NOENT, errbuf));

845 case EDQUOT:
846 case EFBIG:
847 case EIO:
848 case ENOLINK:
849 case ENOSPC:
850 case ENOSTR:
851 case ENXIO:
852 case EPIPE:

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 14

853 case ERANGE:
854 case EFAULT:
855 case EROFS:
856 zfs_error_aux(hdl, strerror(errno));
857 return (zfs_error(hdl, EZFS_BADBACKUP, errbuf));

859 default:
860 return (zfs_standard_error(hdl, errno, errbuf));
861 }
862 }

864 *sizep = zc.zc_objset_type;

866 return (0);
867 }

869 /*
870 * Dumps a backup of the given snapshot (incremental from fromsnap if it’s not
871 * NULL) to the file descriptor specified by outfd.
872 */
873 static int
874 dump_ioctl(zfs_handle_t *zhp, const char *fromsnap, uint64_t fromsnap_obj,
875 boolean_t fromorigin, int outfd, nvlist_t *debugnv)
876 {
877 zfs_cmd_t zc = { 0 };
878 libzfs_handle_t *hdl = zhp->zfs_hdl;
879 nvlist_t *thisdbg;

881 assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT);
882 assert(fromsnap_obj == 0 || !fromorigin);

884 (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
885 zc.zc_cookie = outfd;
886 zc.zc_obj = fromorigin;
887 zc.zc_sendobj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID);
888 zc.zc_fromobj = fromsnap_obj;

890 VERIFY(0 == nvlist_alloc(&thisdbg, NV_UNIQUE_NAME, 0));
891 if (fromsnap && fromsnap[0] != ’\0’) {
892 VERIFY(0 == nvlist_add_string(thisdbg,
893 "fromsnap", fromsnap));
894 }

896 if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_SEND, &zc) != 0) {
897 char errbuf[1024];
898 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
899 "warning: cannot send ’%s’"), zhp->zfs_name);

901 VERIFY(0 == nvlist_add_uint64(thisdbg, "error", errno));
902 if (debugnv) {
903 VERIFY(0 == nvlist_add_nvlist(debugnv,
904 zhp->zfs_name, thisdbg));
905 }
906 nvlist_free(thisdbg);

908 switch (errno) {
909 case EXDEV:
910 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
911 "not an earlier snapshot from the same fs"));
912 return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf));

914 case ENOENT:
915 if (zfs_dataset_exists(hdl, zc.zc_name,
916 ZFS_TYPE_SNAPSHOT)) {
917 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
918 "incremental source (@%s) does not exist"),

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 15

919 zc.zc_value);
920 }
921 return (zfs_error(hdl, EZFS_NOENT, errbuf));

923 case EDQUOT:
924 case EFBIG:
925 case EIO:
926 case ENOLINK:
927 case ENOSPC:
928 case ENOSTR:
929 case ENXIO:
930 case EPIPE:
931 case ERANGE:
932 case EFAULT:
933 case EROFS:
934 zfs_error_aux(hdl, strerror(errno));
935 return (zfs_error(hdl, EZFS_BADBACKUP, errbuf));

937 default:
938 return (zfs_standard_error(hdl, errno, errbuf));
939 }
940 }

942 if (debugnv)
943 VERIFY(0 == nvlist_add_nvlist(debugnv, zhp->zfs_name, thisdbg));
944 nvlist_free(thisdbg);

946 return (0);
947 }

949 static void
950 gather_holds(zfs_handle_t *zhp, send_dump_data_t *sdd)
26 static int
27 hold_for_send(zfs_handle_t *zhp, send_dump_data_t *sdd)
951 {
29 zfs_handle_t *pzhp;
30 int error = 0;
31 char *thissnap;

952 assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT);

35 if (sdd->dryrun)
36 return (0);

954 /*
955 * zfs_send() only sets snapholds for sends that need them,
39 * zfs_send() only opens a cleanup_fd for sends that need it,
956 * e.g. replication and doall.
957 */
958 if (sdd->snapholds == NULL)
959 return;
42 if (sdd->cleanup_fd == -1)
43 return (0);

961 fnvlist_add_string(sdd->snapholds, zhp->zfs_name, sdd->holdtag);
45 thissnap = strchr(zhp->zfs_name, ’@’) + 1;
46 *(thissnap - 1) = ’\0’;
47 pzhp = zfs_open(zhp->zfs_hdl, zhp->zfs_name, ZFS_TYPE_DATASET);
48 *(thissnap - 1) = ’@’;

50 /*
51 * It’s OK if the parent no longer exists. The send code will
52 * handle that error.
53 */
54 if (pzhp) {
55 error = zfs_hold(pzhp, thissnap, sdd->holdtag,

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 16

56 B_FALSE, B_TRUE, sdd->cleanup_fd);
57 zfs_close(pzhp);
58 }

60 return (error);
962 }

______unchanged_portion_omitted_

1011 static int
1012 dump_snapshot(zfs_handle_t *zhp, void *arg)
1013 {
1014 send_dump_data_t *sdd = arg;
1015 progress_arg_t pa = { 0 };
1016 pthread_t tid;

1017 char *thissnap;
1018 int err;
1019 boolean_t isfromsnap, istosnap, fromorigin;
1020 boolean_t exclude = B_FALSE;

1022 err = 0;
1023 #endif /* ! codereview */
1024 thissnap = strchr(zhp->zfs_name, ’@’) + 1;
1025 isfromsnap = (sdd->fromsnap != NULL &&
1026 strcmp(sdd->fromsnap, thissnap) == 0);

1028 if (!sdd->seenfrom && isfromsnap) {
1029 gather_holds(zhp, sdd);
122 err = hold_for_send(zhp, sdd);
123 if (err == 0) {
1030 sdd->seenfrom = B_TRUE;
1031 (void) strcpy(sdd->prevsnap, thissnap);
1032 sdd->prevsnap_obj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID);
126 sdd->prevsnap_obj = zfs_prop_get_int(zhp,
127 ZFS_PROP_OBJSETID);
128 } else if (err == ENOENT) {
129 err = 0;
130 }
1033 zfs_close(zhp);
1034 return (0);
132 return (err);
1035 }

1037 if (sdd->seento || !sdd->seenfrom) {
1038 zfs_close(zhp);
1039 return (0);
1040 }

1042 istosnap = (strcmp(sdd->tosnap, thissnap) == 0);
1043 if (istosnap)
1044 sdd->seento = B_TRUE;

1046 if (!sdd->doall && !isfromsnap && !istosnap) {
1047 if (sdd->replicate) {
1048 char *snapname;
1049 nvlist_t *snapprops;
1050 /*
1051 * Filter out all intermediate snapshots except origin
1052 * snapshots needed to replicate clones.
1053 */
1054 nvlist_t *nvfs = fsavl_find(sdd->fsavl,
1055 zhp->zfs_dmustats.dds_guid, &snapname);

1057 VERIFY(0 == nvlist_lookup_nvlist(nvfs,
1058 "snapprops", &snapprops));
1059 VERIFY(0 == nvlist_lookup_nvlist(snapprops,

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 17

1060 thissnap, &snapprops));
1061 exclude = !nvlist_exists(snapprops, "is_clone_origin");
1062 } else {
1063 exclude = B_TRUE;
1064 }
1065 }

1067 /*
1068 * If a filter function exists, call it to determine whether
1069 * this snapshot will be sent.
1070 */
1071 if (exclude || (sdd->filter_cb != NULL &&
1072 sdd->filter_cb(zhp, sdd->filter_cb_arg) == B_FALSE)) {
1073 /*
1074 * This snapshot is filtered out. Don’t send it, and don’t
1075 * set prevsnap_obj, so it will be as if this snapshot didn’t
1076 * exist, and the next accepted snapshot will be sent as
1077 * an incremental from the last accepted one, or as the
1078 * first (and full) snapshot in the case of a replication,
1079 * non-incremental send.
1080 */
1081 zfs_close(zhp);
1082 return (0);
1083 }

1085 gather_holds(zhp, sdd);
183 err = hold_for_send(zhp, sdd);
184 if (err) {
185 if (err == ENOENT)
186 err = 0;
187 zfs_close(zhp);
188 return (err);
189 }

1086 fromorigin = sdd->prevsnap[0] == ’\0’ &&
1087 (sdd->fromorigin || sdd->replicate);

1089 if (sdd->verbose) {
1090 uint64_t size;
1091 err = estimate_ioctl(zhp, sdd->prevsnap_obj,
1092 fromorigin, &size);

1094 if (sdd->parsable) {
1095 if (sdd->prevsnap[0] != ’\0’) {
1096 (void) fprintf(stderr, "incremental\t%s\t%s",
1097 sdd->prevsnap, zhp->zfs_name);
1098 } else {
1099 (void) fprintf(stderr, "full\t%s",
1100 zhp->zfs_name);
1101 }
1102 } else {
1103 (void) fprintf(stderr, dgettext(TEXT_DOMAIN,
1104 "send from @%s to %s"),
1105 sdd->prevsnap, zhp->zfs_name);
1106 }
1107 if (err == 0) {
1108 if (sdd->parsable) {
1109 (void) fprintf(stderr, "\t%llu\n",
1110 (longlong_t)size);
1111 } else {
1112 char buf[16];
1113 zfs_nicenum(size, buf, sizeof (buf));
1114 (void) fprintf(stderr, dgettext(TEXT_DOMAIN,
1115 " estimated size is %s\n"), buf);
1116 }
1117 sdd->size += size;

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 18

1118 } else {
1119 (void) fprintf(stderr, "\n");
1120 }
1121 }

1123 if (!sdd->dryrun) {
1124 /*
1125 * If progress reporting is requested, spawn a new thread to
1126 * poll ZFS_IOC_SEND_PROGRESS at a regular interval.
1127 */
1128 if (sdd->progress) {
1129 pa.pa_zhp = zhp;
1130 pa.pa_fd = sdd->outfd;
1131 pa.pa_parsable = sdd->parsable;

1133 if (err = pthread_create(&tid, NULL,
1134 send_progress_thread, &pa)) {
1135 zfs_close(zhp);
1136 return (err);
1137 }
1138 }

1140 err = dump_ioctl(zhp, sdd->prevsnap, sdd->prevsnap_obj,
1141 fromorigin, sdd->outfd, sdd->debugnv);

1143 if (sdd->progress) {
1144 (void) pthread_cancel(tid);
1145 (void) pthread_join(tid, NULL);
1146 }
1147 }

1149 (void) strcpy(sdd->prevsnap, thissnap);
1150 sdd->prevsnap_obj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID);
1151 zfs_close(zhp);
1152 return (err);
1153 }
______unchanged_portion_omitted_

1325 /*
1326 * Generate a send stream for the dataset identified by the argument zhp.
1327 *
1328 * The content of the send stream is the snapshot identified by
1329 * ’tosnap’. Incremental streams are requested in two ways:
1330 * - from the snapshot identified by "fromsnap" (if non-null) or
1331 * - from the origin of the dataset identified by zhp, which must
1332 * be a clone. In this case, "fromsnap" is null and "fromorigin"
1333 * is TRUE.
1334 *
1335 * The send stream is recursive (i.e. dumps a hierarchy of snapshots) and
1336 * uses a special header (with a hdrtype field of DMU_COMPOUNDSTREAM)
1337 * if "replicate" is set. If "doall" is set, dump all the intermediate
1338 * snapshots. The DMU_COMPOUNDSTREAM header is used in the "doall"
1339 * case too. If "props" is set, send properties.
1340 */
1341 int
1342 zfs_send(zfs_handle_t *zhp, const char *fromsnap, const char *tosnap,
1343 sendflags_t *flags, int outfd, snapfilter_cb_t filter_func,
1344 void *cb_arg, nvlist_t **debugnvp)
1345 {
1346 char errbuf[1024];
1347 send_dump_data_t sdd = { 0 };
1348 int err = 0;
1349 nvlist_t *fss = NULL;
1350 avl_tree_t *fsavl = NULL;
1351 static uint64_t holdseq;
1352 int spa_version;

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 19

1353 pthread_t tid = 0;
458 pthread_t tid;
1354 int pipefd[2];
1355 dedup_arg_t dda = { 0 };
1356 int featureflags = 0;

1358 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
1359 "cannot send ’%s’"), zhp->zfs_name);

1361 if (fromsnap && fromsnap[0] == ’\0’) {
1362 zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
1363 "zero-length incremental source"));
1364 return (zfs_error(zhp->zfs_hdl, EZFS_NOENT, errbuf));
1365 }

1367 if (zhp->zfs_type == ZFS_TYPE_FILESYSTEM) {
1368 uint64_t version;
1369 version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION);
1370 if (version >= ZPL_VERSION_SA) {
1371 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
1372 }
1373 }

1375 if (flags->dedup && !flags->dryrun) {
1376 featureflags |= (DMU_BACKUP_FEATURE_DEDUP |
1377 DMU_BACKUP_FEATURE_DEDUPPROPS);
1378 if (err = pipe(pipefd)) {
1379 zfs_error_aux(zhp->zfs_hdl, strerror(errno));
1380 return (zfs_error(zhp->zfs_hdl, EZFS_PIPEFAILED,
1381 errbuf));
1382 }
1383 dda.outputfd = outfd;
1384 dda.inputfd = pipefd[1];
1385 dda.dedup_hdl = zhp->zfs_hdl;
1386 if (err = pthread_create(&tid, NULL, cksummer, &dda)) {
1387 (void) close(pipefd[0]);
1388 (void) close(pipefd[1]);
1389 zfs_error_aux(zhp->zfs_hdl, strerror(errno));
1390 return (zfs_error(zhp->zfs_hdl,
1391 EZFS_THREADCREATEFAILED, errbuf));
1392 }
1393 }

1395 if (flags->replicate || flags->doall || flags->props) {
1396 dmu_replay_record_t drr = { 0 };
1397 char *packbuf = NULL;
1398 size_t buflen = 0;
1399 zio_cksum_t zc = { 0 };

1401 if (flags->replicate || flags->props) {
1402 nvlist_t *hdrnv;

1404 VERIFY(0 == nvlist_alloc(&hdrnv, NV_UNIQUE_NAME, 0));
1405 if (fromsnap) {
1406 VERIFY(0 == nvlist_add_string(hdrnv,
1407 "fromsnap", fromsnap));
1408 }
1409 VERIFY(0 == nvlist_add_string(hdrnv, "tosnap", tosnap));
1410 if (!flags->replicate) {
1411 VERIFY(0 == nvlist_add_boolean(hdrnv,
1412 "not_recursive"));
1413 }

1415 err = gather_nvlist(zhp->zfs_hdl, zhp->zfs_name,
1416 fromsnap, tosnap, flags->replicate, &fss, &fsavl);
1417 if (err)

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 20

1418 goto err_out;
1419 VERIFY(0 == nvlist_add_nvlist(hdrnv, "fss", fss));
1420 err = nvlist_pack(hdrnv, &packbuf, &buflen,
1421 NV_ENCODE_XDR, 0);
1422 if (debugnvp)
1423 *debugnvp = hdrnv;
1424 else
1425 nvlist_free(hdrnv);
1426 if (err)
531 if (err) {
532 fsavl_destroy(fsavl);
533 nvlist_free(fss);

1427 goto stderr_out;
1428 }
536 }

1430 if (!flags->dryrun) {
1431 /* write first begin record */
1432 drr.drr_type = DRR_BEGIN;
1433 drr.drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC;
1434 DMU_SET_STREAM_HDRTYPE(drr.drr_u.drr_begin.
1435 drr_versioninfo, DMU_COMPOUNDSTREAM);
1436 DMU_SET_FEATUREFLAGS(drr.drr_u.drr_begin.
1437 drr_versioninfo, featureflags);
1438 (void) snprintf(drr.drr_u.drr_begin.drr_toname,
1439 sizeof (drr.drr_u.drr_begin.drr_toname),
1440 "%s@%s", zhp->zfs_name, tosnap);
1441 drr.drr_payloadlen = buflen;
1442 err = cksum_and_write(&drr, sizeof (drr), &zc, outfd);

1444 /* write header nvlist */
1445 if (err != -1 && packbuf != NULL) {
1446 err = cksum_and_write(packbuf, buflen, &zc,
1447 outfd);
1448 }
1449 free(packbuf);
1450 if (err == -1) {
559 fsavl_destroy(fsavl);
560 nvlist_free(fss);

1451 err = errno;
1452 goto stderr_out;
1453 }

1455 /* write end record */
1456 bzero(&drr, sizeof (drr));
1457 drr.drr_type = DRR_END;
1458 drr.drr_u.drr_end.drr_checksum = zc;
1459 err = write(outfd, &drr, sizeof (drr));
1460 if (err == -1) {
571 fsavl_destroy(fsavl);
572 nvlist_free(fss);

1461 err = errno;
1462 goto stderr_out;
1463 }

1465 err = 0;
1466 }
1467 }

1469 /* dump each stream */
1470 sdd.fromsnap = fromsnap;
1471 sdd.tosnap = tosnap;
1472 if (tid != 0)
584 if (flags->dedup)
1473 sdd.outfd = pipefd[0];
1474 else

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 21

1475 sdd.outfd = outfd;
1476 sdd.replicate = flags->replicate;
1477 sdd.doall = flags->doall;
1478 sdd.fromorigin = flags->fromorigin;
1479 sdd.fss = fss;
1480 sdd.fsavl = fsavl;
1481 sdd.verbose = flags->verbose;
1482 sdd.parsable = flags->parsable;
1483 sdd.progress = flags->progress;
1484 sdd.dryrun = flags->dryrun;
1485 sdd.filter_cb = filter_func;
1486 sdd.filter_cb_arg = cb_arg;
1487 if (debugnvp)
1488 sdd.debugnv = *debugnvp;

1490 /*
1491 * Some flags require that we place user holds on the datasets that are
1492 * being sent so they don’t get destroyed during the send. We can skip
1493 * this step if the pool is imported read-only since the datasets cannot
1494 * be destroyed.
1495 */
1496 if (!flags->dryrun && !zpool_get_prop_int(zfs_get_pool_handle(zhp),
1497 ZPOOL_PROP_READONLY, NULL) &&
1498 zfs_spa_version(zhp, &spa_version) == 0 &&
1499 spa_version >= SPA_VERSION_USERREFS &&
1500 (flags->doall || flags->replicate)) {
1501 ++holdseq;
1502 (void) snprintf(sdd.holdtag, sizeof (sdd.holdtag),
1503 ".send-%d-%llu", getpid(), (u_longlong_t)holdseq);
1504 sdd.cleanup_fd = open(ZFS_DEV, O_RDWR|O_EXCL);
1505 if (sdd.cleanup_fd < 0) {
1506 err = errno;
1507 goto stderr_out;
1508 }
1509 sdd.snapholds = fnvlist_alloc();
1510 #endif /* ! codereview */
1511 } else {
1512 sdd.cleanup_fd = -1;
1513 sdd.snapholds = NULL;
1514 #endif /* ! codereview */
1515 }
1516 if (flags->verbose || sdd.snapholds != NULL) {
621 if (flags->verbose) {
1517 /*
1518 * Do a verbose no-op dry run to get all the verbose output
1519 * or to gather snapshot hold’s before generating any data,
1520 * then do a non-verbose real run to generate the streams.
624 * before generating any data. Then do a non-verbose real
625 * run to generate the streams.
1521 */
1522 sdd.dryrun = B_TRUE;
1523 err = dump_filesystems(zhp, &sdd);

1525 if (err != 0)
1526 goto stderr_out;

1528 if (flags->verbose) {
629 sdd.dryrun = flags->dryrun;
630 sdd.verbose = B_FALSE;
1529 if (flags->parsable) {
1530 (void) fprintf(stderr, "size\t%llu\n",
1531 (longlong_t)sdd.size);
1532 } else {
1533 char buf[16];
1534 zfs_nicenum(sdd.size, buf, sizeof (buf));
1535 (void) fprintf(stderr, dgettext(TEXT_DOMAIN,

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 22

1536 "total estimated size is %s\n"), buf);
1537 }
1538 }

1540 /* Ensure no snaps found is treated as an error. */
1541 if (!sdd.seento) {
1542 err = ENOENT;
1543 goto err_out;
1544 }

1546 /* Skip the second run if dryrun was requested. */
1547 if (flags->dryrun)
1548 goto err_out;

1550 if (sdd.snapholds != NULL) {
1551 err = zfs_hold_nvl(zhp, sdd.cleanup_fd, sdd.snapholds);
1552 if (err != 0)
1553 goto stderr_out;

1555 fnvlist_free(sdd.snapholds);
1556 sdd.snapholds = NULL;
1557 }

1559 sdd.dryrun = B_FALSE;
1560 sdd.verbose = B_FALSE;
1561 }

1563 #endif /* ! codereview */
1564 err = dump_filesystems(zhp, &sdd);
1565 fsavl_destroy(fsavl);
1566 nvlist_free(fss);

1568 /* Ensure no snaps found is treated as an error. */
1569 if (err == 0 && !sdd.seento)
1570 err = ENOENT;

1572 if (tid != 0) {
1573 if (err != 0)
1574 (void) pthread_cancel(tid);
1575 (void) pthread_join(tid, NULL);
641 if (flags->dedup) {
1576 (void) close(pipefd[0]);
643 (void) pthread_join(tid, NULL);
1577 }

1579 if (sdd.cleanup_fd != -1) {
1580 VERIFY(0 == close(sdd.cleanup_fd));
1581 sdd.cleanup_fd = -1;
1582 }

1584 if (!flags->dryrun && (flags->replicate || flags->doall ||
1585 flags->props)) {
1586 /*
1587 * write final end record. NB: want to do this even if
1588 * there was some error, because it might not be totally
1589 * failed.
1590 */
1591 dmu_replay_record_t drr = { 0 };
1592 drr.drr_type = DRR_END;
1593 if (write(outfd, &drr, sizeof (drr)) == -1) {
1594 return (zfs_standard_error(zhp->zfs_hdl,
1595 errno, errbuf));
1596 }
1597 }

1599 return (err || sdd.err);

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 23

1601 stderr_out:
1602 err = zfs_standard_error(zhp->zfs_hdl, err, errbuf);
1603 err_out:
1604 fsavl_destroy(fsavl);
1605 nvlist_free(fss);
1606 fnvlist_free(sdd.snapholds);

1608 #endif /* ! codereview */
1609 if (sdd.cleanup_fd != -1)
1610 VERIFY(0 == close(sdd.cleanup_fd));
1611 if (tid != 0) {
671 if (flags->dedup) {
1612 (void) pthread_cancel(tid);
1613 (void) pthread_join(tid, NULL);
1614 (void) close(pipefd[0]);
1615 }
1616 return (err);
1617 }
______unchanged_portion_omitted_

new/usr/src/lib/libzfs_core/common/libzfs_core.c 1

**
 17104 Wed May 29 20:27:08 2013
new/usr/src/lib/libzfs_core/common/libzfs_core.c
3740 Poor ZFS send / receive performance due to snapshot hold / release processi
Submitted by: Steven Hartland <steven.hartland@multiplay.co.uk>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 #endif /* ! codereview */
26 */

28 /*
29 * LibZFS_Core (lzc) is intended to replace most functionality in libzfs.
30 * It has the following characteristics:
31 *
32 * - Thread Safe. libzfs_core is accessible concurrently from multiple
33 * threads. This is accomplished primarily by avoiding global data
34 * (e.g. caching). Since it’s thread-safe, there is no reason for a
35 * process to have multiple libzfs "instances". Therefore, we store
36 * our few pieces of data (e.g. the file descriptor) in global
37 * variables. The fd is reference-counted so that the libzfs_core
38 * library can be "initialized" multiple times (e.g. by different
39 * consumers within the same process).
40 *
41 * - Committed Interface. The libzfs_core interface will be committed,
42 * therefore consumers can compile against it and be confident that
43 * their code will continue to work on future releases of this code.
44 * Currently, the interface is Evolving (not Committed), but we intend
45 * to commit to it once it is more complete and we determine that it
46 * meets the needs of all consumers.
47 *
48 * - Programatic Error Handling. libzfs_core communicates errors with
49 * defined error numbers, and doesn’t print anything to stdout/stderr.
50 *
51 * - Thin Layer. libzfs_core is a thin layer, marshaling arguments
52 * to/from the kernel ioctls. There is generally a 1:1 correspondence
53 * between libzfs_core functions and ioctls to /dev/zfs.
54 *
55 * - Clear Atomicity. Because libzfs_core functions are generally 1:1
56 * with kernel ioctls, and kernel ioctls are general atomic, each
57 * libzfs_core function is atomic. For example, creating multiple
58 * snapshots with a single call to lzc_snapshot() is atomic -- it
59 * can’t fail with only some of the requested snapshots created, even
60 * in the event of power loss or system crash.

new/usr/src/lib/libzfs_core/common/libzfs_core.c 2

61 *
62 * - Continued libzfs Support. Some higher-level operations (e.g.
63 * support for "zfs send -R") are too complicated to fit the scope of
64 * libzfs_core. This functionality will continue to live in libzfs.
65 * Where appropriate, libzfs will use the underlying atomic operations
66 * of libzfs_core. For example, libzfs may implement "zfs send -R |
67 * zfs receive" by using individual "send one snapshot", rename,
68 * destroy, and "receive one snapshot" operations in libzfs_core.
69 * /sbin/zfs and /zbin/zpool will link with both libzfs and
70 * libzfs_core. Other consumers should aim to use only libzfs_core,
71 * since that will be the supported, stable interface going forwards.
72 */

74 #include <libzfs_core.h>
75 #include <ctype.h>
76 #include <unistd.h>
77 #include <stdlib.h>
78 #include <string.h>
79 #include <errno.h>
80 #include <fcntl.h>
81 #include <pthread.h>
82 #include <sys/nvpair.h>
83 #include <sys/param.h>
84 #include <sys/types.h>
85 #include <sys/stat.h>
86 #include <sys/zfs_ioctl.h>

88 static int g_fd;
89 static pthread_mutex_t g_lock = PTHREAD_MUTEX_INITIALIZER;
90 static int g_refcount;

92 int
93 libzfs_core_init(void)
94 {
95 (void) pthread_mutex_lock(&g_lock);
96 if (g_refcount == 0) {
97 g_fd = open("/dev/zfs", O_RDWR);
98 if (g_fd < 0) {
99 (void) pthread_mutex_unlock(&g_lock);
100 return (errno);
101 }
102 }
103 g_refcount++;
104 (void) pthread_mutex_unlock(&g_lock);
105 return (0);
106 }

108 void
109 libzfs_core_fini(void)
110 {
111 (void) pthread_mutex_lock(&g_lock);
112 ASSERT3S(g_refcount, >, 0);
113 g_refcount--;
114 if (g_refcount == 0)
115 (void) close(g_fd);
116 (void) pthread_mutex_unlock(&g_lock);
117 }

119 static int
120 lzc_ioctl(zfs_ioc_t ioc, const char *name,
121 nvlist_t *source, nvlist_t **resultp)
122 {
123 zfs_cmd_t zc = { 0 };
124 int error = 0;
125 char *packed;
126 size_t size;

new/usr/src/lib/libzfs_core/common/libzfs_core.c 3

128 ASSERT3S(g_refcount, >, 0);

130 (void) strlcpy(zc.zc_name, name, sizeof (zc.zc_name));

132 packed = fnvlist_pack(source, &size);
133 zc.zc_nvlist_src = (uint64_t)(uintptr_t)packed;
134 zc.zc_nvlist_src_size = size;

136 if (resultp != NULL) {
137 *resultp = NULL;
138 zc.zc_nvlist_dst_size = MAX(size * 2, 128 * 1024);
139 zc.zc_nvlist_dst = (uint64_t)(uintptr_t)
140 malloc(zc.zc_nvlist_dst_size);
141 if (zc.zc_nvlist_dst == NULL) {
142 error = ENOMEM;
143 goto out;
144 }
145 }

147 while (ioctl(g_fd, ioc, &zc) != 0) {
148 if (errno == ENOMEM && resultp != NULL) {
149 free((void *)(uintptr_t)zc.zc_nvlist_dst);
150 zc.zc_nvlist_dst_size *= 2;
151 zc.zc_nvlist_dst = (uint64_t)(uintptr_t)
152 malloc(zc.zc_nvlist_dst_size);
153 if (zc.zc_nvlist_dst == NULL) {
154 error = ENOMEM;
155 goto out;
156 }
157 } else {
158 error = errno;
159 break;
160 }
161 }
162 if (zc.zc_nvlist_dst_filled) {
163 *resultp = fnvlist_unpack((void *)(uintptr_t)zc.zc_nvlist_dst,
164 zc.zc_nvlist_dst_size);
165 }

167 out:
168 fnvlist_pack_free(packed, size);
169 free((void *)(uintptr_t)zc.zc_nvlist_dst);
170 return (error);
171 }

173 int
174 lzc_create(const char *fsname, dmu_objset_type_t type, nvlist_t *props)
175 {
176 int error;
177 nvlist_t *args = fnvlist_alloc();
178 fnvlist_add_int32(args, "type", type);
179 if (props != NULL)
180 fnvlist_add_nvlist(args, "props", props);
181 error = lzc_ioctl(ZFS_IOC_CREATE, fsname, args, NULL);
182 nvlist_free(args);
183 return (error);
184 }

186 int
187 lzc_clone(const char *fsname, const char *origin,
188 nvlist_t *props)
189 {
190 int error;
191 nvlist_t *args = fnvlist_alloc();
192 fnvlist_add_string(args, "origin", origin);

new/usr/src/lib/libzfs_core/common/libzfs_core.c 4

193 if (props != NULL)
194 fnvlist_add_nvlist(args, "props", props);
195 error = lzc_ioctl(ZFS_IOC_CLONE, fsname, args, NULL);
196 nvlist_free(args);
197 return (error);
198 }

200 /*
201 * Creates snapshots.
202 *
203 * The keys in the snaps nvlist are the snapshots to be created.
204 * They must all be in the same pool.
205 *
206 * The props nvlist is properties to set. Currently only user properties
207 * are supported. { user:prop_name -> string value }
208 *
209 * The returned results nvlist will have an entry for each snapshot that failed.
210 * The value will be the (int32) error code.
211 *
212 * The return value will be 0 if all snapshots were created, otherwise it will
213 * be the errno of a (unspecified) snapshot that failed.
214 */
215 int
216 lzc_snapshot(nvlist_t *snaps, nvlist_t *props, nvlist_t **errlist)
217 {
218 nvpair_t *elem;
219 nvlist_t *args;
220 int error;
221 char pool[MAXNAMELEN];

223 *errlist = NULL;

225 /* determine the pool name */
226 elem = nvlist_next_nvpair(snaps, NULL);
227 if (elem == NULL)
228 return (0);
229 (void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
230 pool[strcspn(pool, "/@")] = ’\0’;

232 args = fnvlist_alloc();
233 fnvlist_add_nvlist(args, "snaps", snaps);
234 if (props != NULL)
235 fnvlist_add_nvlist(args, "props", props);

237 error = lzc_ioctl(ZFS_IOC_SNAPSHOT, pool, args, errlist);
238 nvlist_free(args);

240 return (error);
241 }

243 /*
244 * Destroys snapshots.
245 *
246 * The keys in the snaps nvlist are the snapshots to be destroyed.
247 * They must all be in the same pool.
248 *
249 * Snapshots that do not exist will be silently ignored.
250 *
251 * If ’defer’ is not set, and a snapshot has user holds or clones, the
252 * destroy operation will fail and none of the snapshots will be
253 * destroyed.
254 *
255 * If ’defer’ is set, and a snapshot has user holds or clones, it will be
256 * marked for deferred destruction, and will be destroyed when the last hold
257 * or clone is removed/destroyed.
258 *

new/usr/src/lib/libzfs_core/common/libzfs_core.c 5

259 * The return value will be ENOENT if none of the snapshots existed.
260 *
261 #endif /* ! codereview */
262 * The return value will be 0 if all snapshots were destroyed (or marked for
263 * later destruction if ’defer’ is set) or didn’t exist to begin with and
264 * at least one snapshot was destroyed.
24 * later destruction if ’defer’ is set) or didn’t exist to begin with.
265 *
266 * Otherwise the return value will be the errno of a (unspecified) snapshot
267 * that failed, no snapshots will be destroyed, and the errlist will have an
268 * entry for each snapshot that failed. The value in the errlist will be
269 * the (int32) error code.
270 */
271 int
272 lzc_destroy_snaps(nvlist_t *snaps, boolean_t defer, nvlist_t **errlist)
273 {
274 nvpair_t *elem;
275 nvlist_t *args;
276 int error;
277 char pool[MAXNAMELEN];

279 /* determine the pool name */
280 elem = nvlist_next_nvpair(snaps, NULL);
281 if (elem == NULL)
282 return (0);
283 (void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
284 pool[strcspn(pool, "/@")] = ’\0’;

286 args = fnvlist_alloc();
287 fnvlist_add_nvlist(args, "snaps", snaps);
288 if (defer)
289 fnvlist_add_boolean(args, "defer");

291 error = lzc_ioctl(ZFS_IOC_DESTROY_SNAPS, pool, args, errlist);
292 nvlist_free(args);

294 return (error);

295 }
______unchanged_portion_omitted_

339 /*
340 * Create "user holds" on snapshots. If there is a hold on a snapshot,
341 * the snapshot can not be destroyed. (However, it can be marked for deletion
342 * by lzc_destroy_snaps(defer=B_TRUE).)
343 *
344 * The keys in the nvlist are snapshot names.
345 * The snapshots must all be in the same pool.
346 * The value is the name of the hold (string type).
347 *
348 * If cleanup_fd is not -1, it must be the result of open("/dev/zfs", O_EXCL).
349 * In this case, when the cleanup_fd is closed (including on process
350 * termination), the holds will be released. If the system is shut down
351 * uncleanly, the holds will be released when the pool is next opened
352 * or imported.
353 *
354 * Holds for snapshots which don’t exist will be skipped and have an entry
355 * added to errlist, but will not cause an overall failure, except in the
356 * case that all holds where skipped.
357 *
358 * The return value will be ENOENT if none of the snapshots for the requested
359 * holds existed.
360 *
361 * The return value will be 0 if the nvl holds was empty or all holds, for
362 * snapshots that existed, were succesfully created and at least one hold
363 * was created.

new/usr/src/lib/libzfs_core/common/libzfs_core.c 6

364 *
365 * Otherwise the return value will be the errno of a (unspecified) hold that
366 * failed and no holds will be created.
367 *
368 * In all cases the errlist will have an entry for each hold that failed
369 * (name = snapshot), with its value being the error code (int32).
115 * The return value will be 0 if all holds were created. Otherwise the return
116 * value will be the errno of a (unspecified) hold that failed, no holds will
117 * be created, and the errlist will have an entry for each hold that
118 * failed (name = snapshot). The value in the errlist will be the error
119 * code (int32).
370 */
371 int
372 lzc_hold(nvlist_t *holds, int cleanup_fd, nvlist_t **errlist)
373 {
374 char pool[MAXNAMELEN];
375 nvlist_t *args;
376 nvpair_t *elem;
377 int error;

379 /* determine the pool name */
380 elem = nvlist_next_nvpair(holds, NULL);
381 if (elem == NULL)
382 return (0);
383 (void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
384 pool[strcspn(pool, "/@")] = ’\0’;

386 args = fnvlist_alloc();
387 fnvlist_add_nvlist(args, "holds", holds);
388 if (cleanup_fd != -1)
389 fnvlist_add_int32(args, "cleanup_fd", cleanup_fd);

391 error = lzc_ioctl(ZFS_IOC_HOLD, pool, args, errlist);
392 nvlist_free(args);
393 return (error);
394 }

396 /*
397 * Release "user holds" on snapshots. If the snapshot has been marked for
398 * deferred destroy (by lzc_destroy_snaps(defer=B_TRUE)), it does not have
399 * any clones, and all the user holds are removed, then the snapshot will be
400 * destroyed.
401 *
402 * The keys in the nvlist are snapshot names.
403 * The snapshots must all be in the same pool.
404 * The value is a nvlist whose keys are the holds to remove.
405 *
406 * Holds which failed to release because they didn’t exist will have an entry
407 * added to errlist, but will not cause an overall failure, except in the
408 * case that all releases where skipped.
409 *
410 * The return value will be ENOENT if none of the specified holds existed.
411 *
412 * The return value will be 0 if the nvl holds was empty or all holds, that
413 * existed, were succesfully removed and at least one hold was removed.
414 *
415 * Otherwise the return value will be the errno of a (unspecified) hold that
416 * failed to release and no holds will be released.
417 *
418 * In all cases the errlist will have an entry for each hold that failed to
419 * to release.
156 * The return value will be 0 if all holds were removed.
157 * Otherwise the return value will be the errno of a (unspecified) release
158 * that failed, no holds will be released, and the errlist will have an
159 * entry for each snapshot that has failed releases (name = snapshot).
160 * The value in the errlist will be the error code (int32) of a failed release.

new/usr/src/lib/libzfs_core/common/libzfs_core.c 7

420 */
421 int
422 lzc_release(nvlist_t *holds, nvlist_t **errlist)
423 {
424 char pool[MAXNAMELEN];
425 nvpair_t *elem;

427 /* determine the pool name */
428 elem = nvlist_next_nvpair(holds, NULL);
429 if (elem == NULL)
430 return (0);
431 (void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
432 pool[strcspn(pool, "/@")] = ’\0’;

434 return (lzc_ioctl(ZFS_IOC_RELEASE, pool, holds, errlist));
435 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/dsl_destroy.c 1

**
 25817 Wed May 29 20:27:08 2013
new/usr/src/uts/common/fs/zfs/dsl_destroy.c
3740 Poor ZFS send / receive performance due to snapshot hold / release processi
Submitted by: Steven Hartland <steven.hartland@multiplay.co.uk>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 #endif /* ! codereview */
26 */

28 #include <sys/zfs_context.h>
29 #include <sys/dsl_userhold.h>
30 #include <sys/dsl_dataset.h>
31 #include <sys/dsl_synctask.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dsl_pool.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dmu_traverse.h>
36 #include <sys/dsl_scan.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/zap.h>
39 #include <sys/zfeature.h>
40 #include <sys/zfs_ioctl.h>
41 #include <sys/dsl_deleg.h>

43 typedef struct dmu_snapshots_destroy_arg {
44 nvlist_t *dsda_snaps;
45 nvlist_t *dsda_successful_snaps;
46 boolean_t dsda_defer;
47 nvlist_t *dsda_errlist;
48 } dmu_snapshots_destroy_arg_t;

50 /*
51 * ds must be owned.
52 */
53 static int
54 dsl_destroy_snapshot_check_impl(dsl_dataset_t *ds, boolean_t defer)
55 {
56 if (!dsl_dataset_is_snapshot(ds))
57 return (SET_ERROR(EINVAL));

59 if (dsl_dataset_long_held(ds))
60 return (SET_ERROR(EBUSY));

new/usr/src/uts/common/fs/zfs/dsl_destroy.c 2

62 /*
63 * Only allow deferred destroy on pools that support it.
64 * NOTE: deferred destroy is only supported on snapshots.
65 */
66 if (defer) {
67 if (spa_version(ds->ds_dir->dd_pool->dp_spa) <
68 SPA_VERSION_USERREFS)
69 return (SET_ERROR(ENOTSUP));
70 return (0);
71 }

73 /*
74 * If this snapshot has an elevated user reference count,
75 * we can’t destroy it yet.
76 */
77 if (ds->ds_userrefs > 0)
78 return (SET_ERROR(EBUSY));

80 /*
81 * Can’t delete a branch point.
82 */
83 if (ds->ds_phys->ds_num_children > 1)
84 return (SET_ERROR(EEXIST));

86 return (0);
87 }

89 static int
90 dsl_destroy_snapshot_check(void *arg, dmu_tx_t *tx)
91 {
92 dmu_snapshots_destroy_arg_t *dsda = arg;
93 dsl_pool_t *dp = dmu_tx_pool(tx);
94 nvpair_t *pair;
95 int error = 0;

97 if (!dmu_tx_is_syncing(tx))
98 return (0);

100 for (pair = nvlist_next_nvpair(dsda->dsda_snaps, NULL);
101 pair != NULL; pair = nvlist_next_nvpair(dsda->dsda_snaps, pair)) {
102 dsl_dataset_t *ds;

104 error = dsl_dataset_hold(dp, nvpair_name(pair),
105 FTAG, &ds);

107 /*
108 * If the snapshot does not exist, silently ignore it
109 * (it’s "already destroyed").
110 */
111 if (error == ENOENT)
112 continue;

114 if (error == 0) {
115 error = dsl_destroy_snapshot_check_impl(ds,
116 dsda->dsda_defer);
117 dsl_dataset_rele(ds, FTAG);
118 }

120 if (error == 0) {
121 fnvlist_add_boolean(dsda->dsda_successful_snaps,
122 nvpair_name(pair));
123 } else {
124 fnvlist_add_int32(dsda->dsda_errlist,
125 nvpair_name(pair), error);
126 }

new/usr/src/uts/common/fs/zfs/dsl_destroy.c 3

127 }

129 pair = nvlist_next_nvpair(dsda->dsda_errlist, NULL);
130 if (pair != NULL)
131 return (fnvpair_value_int32(pair));

133 if (nvlist_next_nvpair(dsda->dsda_successful_snaps, NULL) == NULL)
134 return (ENOENT);

136 #endif /* ! codereview */
137 return (0);
138 }

140 struct process_old_arg {
141 dsl_dataset_t *ds;
142 dsl_dataset_t *ds_prev;
143 boolean_t after_branch_point;
144 zio_t *pio;
145 uint64_t used, comp, uncomp;
146 };

148 static int
149 process_old_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
150 {
151 struct process_old_arg *poa = arg;
152 dsl_pool_t *dp = poa->ds->ds_dir->dd_pool;

154 if (bp->blk_birth <= poa->ds->ds_phys->ds_prev_snap_txg) {
155 dsl_deadlist_insert(&poa->ds->ds_deadlist, bp, tx);
156 if (poa->ds_prev && !poa->after_branch_point &&
157 bp->blk_birth >
158 poa->ds_prev->ds_phys->ds_prev_snap_txg) {
159 poa->ds_prev->ds_phys->ds_unique_bytes +=
160 bp_get_dsize_sync(dp->dp_spa, bp);
161 }
162 } else {
163 poa->used += bp_get_dsize_sync(dp->dp_spa, bp);
164 poa->comp += BP_GET_PSIZE(bp);
165 poa->uncomp += BP_GET_UCSIZE(bp);
166 dsl_free_sync(poa->pio, dp, tx->tx_txg, bp);
167 }
168 return (0);
169 }

171 static void
172 process_old_deadlist(dsl_dataset_t *ds, dsl_dataset_t *ds_prev,
173 dsl_dataset_t *ds_next, boolean_t after_branch_point, dmu_tx_t *tx)
174 {
175 struct process_old_arg poa = { 0 };
176 dsl_pool_t *dp = ds->ds_dir->dd_pool;
177 objset_t *mos = dp->dp_meta_objset;
178 uint64_t deadlist_obj;

180 ASSERT(ds->ds_deadlist.dl_oldfmt);
181 ASSERT(ds_next->ds_deadlist.dl_oldfmt);

183 poa.ds = ds;
184 poa.ds_prev = ds_prev;
185 poa.after_branch_point = after_branch_point;
186 poa.pio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
187 VERIFY0(bpobj_iterate(&ds_next->ds_deadlist.dl_bpobj,
188 process_old_cb, &poa, tx));
189 VERIFY0(zio_wait(poa.pio));
190 ASSERT3U(poa.used, ==, ds->ds_phys->ds_unique_bytes);

192 /* change snapused */

new/usr/src/uts/common/fs/zfs/dsl_destroy.c 4

193 dsl_dir_diduse_space(ds->ds_dir, DD_USED_SNAP,
194 -poa.used, -poa.comp, -poa.uncomp, tx);

196 /* swap next’s deadlist to our deadlist */
197 dsl_deadlist_close(&ds->ds_deadlist);
198 dsl_deadlist_close(&ds_next->ds_deadlist);
199 deadlist_obj = ds->ds_phys->ds_deadlist_obj;
200 ds->ds_phys->ds_deadlist_obj = ds_next->ds_phys->ds_deadlist_obj;
201 ds_next->ds_phys->ds_deadlist_obj = deadlist_obj;
202 dsl_deadlist_open(&ds->ds_deadlist, mos, ds->ds_phys->ds_deadlist_obj);
203 dsl_deadlist_open(&ds_next->ds_deadlist, mos,
204 ds_next->ds_phys->ds_deadlist_obj);
205 }

207 static void
208 dsl_dataset_remove_clones_key(dsl_dataset_t *ds, uint64_t mintxg, dmu_tx_t *tx)
209 {
210 objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset;
211 zap_cursor_t zc;
212 zap_attribute_t za;

214 /*
215 * If it is the old version, dd_clones doesn’t exist so we can’t
216 * find the clones, but dsl_deadlist_remove_key() is a no-op so it
217 * doesn’t matter.
218 */
219 if (ds->ds_dir->dd_phys->dd_clones == 0)
220 return;

222 for (zap_cursor_init(&zc, mos, ds->ds_dir->dd_phys->dd_clones);
223 zap_cursor_retrieve(&zc, &za) == 0;
224 zap_cursor_advance(&zc)) {
225 dsl_dataset_t *clone;

227 VERIFY0(dsl_dataset_hold_obj(ds->ds_dir->dd_pool,
228 za.za_first_integer, FTAG, &clone));
229 if (clone->ds_dir->dd_origin_txg > mintxg) {
230 dsl_deadlist_remove_key(&clone->ds_deadlist,
231 mintxg, tx);
232 dsl_dataset_remove_clones_key(clone, mintxg, tx);
233 }
234 dsl_dataset_rele(clone, FTAG);
235 }
236 zap_cursor_fini(&zc);
237 }

239 void
240 dsl_destroy_snapshot_sync_impl(dsl_dataset_t *ds, boolean_t defer, dmu_tx_t *tx)
241 {
242 int err;
243 int after_branch_point = FALSE;
244 dsl_pool_t *dp = ds->ds_dir->dd_pool;
245 objset_t *mos = dp->dp_meta_objset;
246 dsl_dataset_t *ds_prev = NULL;
247 uint64_t obj;

249 ASSERT(RRW_WRITE_HELD(&dp->dp_config_rwlock));
250 ASSERT3U(ds->ds_phys->ds_bp.blk_birth, <=, tx->tx_txg);
251 ASSERT(refcount_is_zero(&ds->ds_longholds));

253 if (defer &&
254 (ds->ds_userrefs > 0 || ds->ds_phys->ds_num_children > 1)) {
255 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
256 dmu_buf_will_dirty(ds->ds_dbuf, tx);
257 ds->ds_phys->ds_flags |= DS_FLAG_DEFER_DESTROY;
258 spa_history_log_internal_ds(ds, "defer_destroy", tx, "");

new/usr/src/uts/common/fs/zfs/dsl_destroy.c 5

259 return;
260 }

262 ASSERT3U(ds->ds_phys->ds_num_children, <=, 1);

264 /* We need to log before removing it from the namespace. */
265 spa_history_log_internal_ds(ds, "destroy", tx, "");

267 dsl_scan_ds_destroyed(ds, tx);

269 obj = ds->ds_object;

271 if (ds->ds_phys->ds_prev_snap_obj != 0) {
272 ASSERT3P(ds->ds_prev, ==, NULL);
273 VERIFY0(dsl_dataset_hold_obj(dp,
274 ds->ds_phys->ds_prev_snap_obj, FTAG, &ds_prev));
275 after_branch_point =
276 (ds_prev->ds_phys->ds_next_snap_obj != obj);

278 dmu_buf_will_dirty(ds_prev->ds_dbuf, tx);
279 if (after_branch_point &&
280 ds_prev->ds_phys->ds_next_clones_obj != 0) {
281 dsl_dataset_remove_from_next_clones(ds_prev, obj, tx);
282 if (ds->ds_phys->ds_next_snap_obj != 0) {
283 VERIFY0(zap_add_int(mos,
284 ds_prev->ds_phys->ds_next_clones_obj,
285 ds->ds_phys->ds_next_snap_obj, tx));
286 }
287 }
288 if (!after_branch_point) {
289 ds_prev->ds_phys->ds_next_snap_obj =
290 ds->ds_phys->ds_next_snap_obj;
291 }
292 }

294 dsl_dataset_t *ds_next;
295 uint64_t old_unique;
296 uint64_t used = 0, comp = 0, uncomp = 0;

298 VERIFY0(dsl_dataset_hold_obj(dp,
299 ds->ds_phys->ds_next_snap_obj, FTAG, &ds_next));
300 ASSERT3U(ds_next->ds_phys->ds_prev_snap_obj, ==, obj);

302 old_unique = ds_next->ds_phys->ds_unique_bytes;

304 dmu_buf_will_dirty(ds_next->ds_dbuf, tx);
305 ds_next->ds_phys->ds_prev_snap_obj =
306 ds->ds_phys->ds_prev_snap_obj;
307 ds_next->ds_phys->ds_prev_snap_txg =
308 ds->ds_phys->ds_prev_snap_txg;
309 ASSERT3U(ds->ds_phys->ds_prev_snap_txg, ==,
310 ds_prev ? ds_prev->ds_phys->ds_creation_txg : 0);

312 if (ds_next->ds_deadlist.dl_oldfmt) {
313 process_old_deadlist(ds, ds_prev, ds_next,
314 after_branch_point, tx);
315 } else {
316 /* Adjust prev’s unique space. */
317 if (ds_prev && !after_branch_point) {
318 dsl_deadlist_space_range(&ds_next->ds_deadlist,
319 ds_prev->ds_phys->ds_prev_snap_txg,
320 ds->ds_phys->ds_prev_snap_txg,
321 &used, &comp, &uncomp);
322 ds_prev->ds_phys->ds_unique_bytes += used;
323 }

new/usr/src/uts/common/fs/zfs/dsl_destroy.c 6

325 /* Adjust snapused. */
326 dsl_deadlist_space_range(&ds_next->ds_deadlist,
327 ds->ds_phys->ds_prev_snap_txg, UINT64_MAX,
328 &used, &comp, &uncomp);
329 dsl_dir_diduse_space(ds->ds_dir, DD_USED_SNAP,
330 -used, -comp, -uncomp, tx);

332 /* Move blocks to be freed to pool’s free list. */
333 dsl_deadlist_move_bpobj(&ds_next->ds_deadlist,
334 &dp->dp_free_bpobj, ds->ds_phys->ds_prev_snap_txg,
335 tx);
336 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir,
337 DD_USED_HEAD, used, comp, uncomp, tx);

339 /* Merge our deadlist into next’s and free it. */
340 dsl_deadlist_merge(&ds_next->ds_deadlist,
341 ds->ds_phys->ds_deadlist_obj, tx);
342 }
343 dsl_deadlist_close(&ds->ds_deadlist);
344 dsl_deadlist_free(mos, ds->ds_phys->ds_deadlist_obj, tx);
345 dmu_buf_will_dirty(ds->ds_dbuf, tx);
346 ds->ds_phys->ds_deadlist_obj = 0;

348 /* Collapse range in clone heads */
349 dsl_dataset_remove_clones_key(ds,
350 ds->ds_phys->ds_creation_txg, tx);

352 if (dsl_dataset_is_snapshot(ds_next)) {
353 dsl_dataset_t *ds_nextnext;

355 /*
356 * Update next’s unique to include blocks which
357 * were previously shared by only this snapshot
358 * and it. Those blocks will be born after the
359 * prev snap and before this snap, and will have
360 * died after the next snap and before the one
361 * after that (ie. be on the snap after next’s
362 * deadlist).
363 */
364 VERIFY0(dsl_dataset_hold_obj(dp,
365 ds_next->ds_phys->ds_next_snap_obj, FTAG, &ds_nextnext));
366 dsl_deadlist_space_range(&ds_nextnext->ds_deadlist,
367 ds->ds_phys->ds_prev_snap_txg,
368 ds->ds_phys->ds_creation_txg,
369 &used, &comp, &uncomp);
370 ds_next->ds_phys->ds_unique_bytes += used;
371 dsl_dataset_rele(ds_nextnext, FTAG);
372 ASSERT3P(ds_next->ds_prev, ==, NULL);

374 /* Collapse range in this head. */
375 dsl_dataset_t *hds;
376 VERIFY0(dsl_dataset_hold_obj(dp,
377 ds->ds_dir->dd_phys->dd_head_dataset_obj, FTAG, &hds));
378 dsl_deadlist_remove_key(&hds->ds_deadlist,
379 ds->ds_phys->ds_creation_txg, tx);
380 dsl_dataset_rele(hds, FTAG);

382 } else {
383 ASSERT3P(ds_next->ds_prev, ==, ds);
384 dsl_dataset_rele(ds_next->ds_prev, ds_next);
385 ds_next->ds_prev = NULL;
386 if (ds_prev) {
387 VERIFY0(dsl_dataset_hold_obj(dp,
388 ds->ds_phys->ds_prev_snap_obj,
389 ds_next, &ds_next->ds_prev));
390 }

new/usr/src/uts/common/fs/zfs/dsl_destroy.c 7

392 dsl_dataset_recalc_head_uniq(ds_next);

394 /*
395 * Reduce the amount of our unconsumed refreservation
396 * being charged to our parent by the amount of
397 * new unique data we have gained.
398 */
399 if (old_unique < ds_next->ds_reserved) {
400 int64_t mrsdelta;
401 uint64_t new_unique =
402 ds_next->ds_phys->ds_unique_bytes;

404 ASSERT(old_unique <= new_unique);
405 mrsdelta = MIN(new_unique - old_unique,
406 ds_next->ds_reserved - old_unique);
407 dsl_dir_diduse_space(ds->ds_dir,
408 DD_USED_REFRSRV, -mrsdelta, 0, 0, tx);
409 }
410 }
411 dsl_dataset_rele(ds_next, FTAG);

413 /*
414 * This must be done after the dsl_traverse(), because it will
415 * re-open the objset.
416 */
417 if (ds->ds_objset) {
418 dmu_objset_evict(ds->ds_objset);
419 ds->ds_objset = NULL;
420 }

422 /* remove from snapshot namespace */
423 dsl_dataset_t *ds_head;
424 ASSERT(ds->ds_phys->ds_snapnames_zapobj == 0);
425 VERIFY0(dsl_dataset_hold_obj(dp,
426 ds->ds_dir->dd_phys->dd_head_dataset_obj, FTAG, &ds_head));
427 VERIFY0(dsl_dataset_get_snapname(ds));
428 #ifdef ZFS_DEBUG
429 {
430 uint64_t val;

432 err = dsl_dataset_snap_lookup(ds_head,
433 ds->ds_snapname, &val);
434 ASSERT0(err);
435 ASSERT3U(val, ==, obj);
436 }
437 #endif
438 VERIFY0(dsl_dataset_snap_remove(ds_head, ds->ds_snapname, tx));
439 dsl_dataset_rele(ds_head, FTAG);

441 if (ds_prev != NULL)
442 dsl_dataset_rele(ds_prev, FTAG);

444 spa_prop_clear_bootfs(dp->dp_spa, ds->ds_object, tx);

446 if (ds->ds_phys->ds_next_clones_obj != 0) {
447 uint64_t count;
448 ASSERT0(zap_count(mos,
449 ds->ds_phys->ds_next_clones_obj, &count) && count == 0);
450 VERIFY0(dmu_object_free(mos,
451 ds->ds_phys->ds_next_clones_obj, tx));
452 }
453 if (ds->ds_phys->ds_props_obj != 0)
454 VERIFY0(zap_destroy(mos, ds->ds_phys->ds_props_obj, tx));
455 if (ds->ds_phys->ds_userrefs_obj != 0)
456 VERIFY0(zap_destroy(mos, ds->ds_phys->ds_userrefs_obj, tx));

new/usr/src/uts/common/fs/zfs/dsl_destroy.c 8

457 dsl_dir_rele(ds->ds_dir, ds);
458 ds->ds_dir = NULL;
459 VERIFY0(dmu_object_free(mos, obj, tx));
460 }

462 static void
463 dsl_destroy_snapshot_sync(void *arg, dmu_tx_t *tx)
464 {
465 dmu_snapshots_destroy_arg_t *dsda = arg;
466 dsl_pool_t *dp = dmu_tx_pool(tx);
467 nvpair_t *pair;

469 for (pair = nvlist_next_nvpair(dsda->dsda_successful_snaps, NULL);
470 pair != NULL;
471 pair = nvlist_next_nvpair(dsda->dsda_successful_snaps, pair)) {
472 dsl_dataset_t *ds;

474 VERIFY0(dsl_dataset_hold(dp, nvpair_name(pair), FTAG, &ds));

476 dsl_destroy_snapshot_sync_impl(ds, dsda->dsda_defer, tx);
477 dsl_dataset_rele(ds, FTAG);
478 }
479 }

481 /*
482 * The semantics of this function are described in the comment above
483 * lzc_destroy_snaps(). To summarize:
484 *
485 * The snapshots must all be in the same pool.
486 *
487 * Snapshots that don’t exist will be silently ignored (considered to be
488 * "already deleted").
489 *
490 * On success, all snaps will be destroyed and this will return 0.
491 * On failure, no snaps will be destroyed, the errlist will be filled in,
492 * and this will return an errno.
493 */
494 int
495 dsl_destroy_snapshots_nvl(nvlist_t *snaps, boolean_t defer,
496 nvlist_t *errlist)
497 {
498 dmu_snapshots_destroy_arg_t dsda;
499 int error;
500 nvpair_t *pair;

502 pair = nvlist_next_nvpair(snaps, NULL);
503 if (pair == NULL)
504 return (0);

506 dsda.dsda_snaps = snaps;
507 dsda.dsda_successful_snaps = fnvlist_alloc();
508 dsda.dsda_defer = defer;
509 dsda.dsda_errlist = errlist;

511 error = dsl_sync_task(nvpair_name(pair),
512 dsl_destroy_snapshot_check, dsl_destroy_snapshot_sync,
513 &dsda, 0);
514 fnvlist_free(dsda.dsda_successful_snaps);

516 return (error);
517 }

519 int
520 dsl_destroy_snapshot(const char *name, boolean_t defer)
521 {
522 int error;

new/usr/src/uts/common/fs/zfs/dsl_destroy.c 9

523 nvlist_t *nvl = fnvlist_alloc();
524 nvlist_t *errlist = fnvlist_alloc();

526 fnvlist_add_boolean(nvl, name);
527 error = dsl_destroy_snapshots_nvl(nvl, defer, errlist);
528 fnvlist_free(errlist);
529 fnvlist_free(nvl);
530 return (error);
531 }

533 struct killarg {
534 dsl_dataset_t *ds;
535 dmu_tx_t *tx;
536 };

538 /* ARGSUSED */
539 static int
540 kill_blkptr(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
541 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
542 {
543 struct killarg *ka = arg;
544 dmu_tx_t *tx = ka->tx;

546 if (bp == NULL)
547 return (0);

549 if (zb->zb_level == ZB_ZIL_LEVEL) {
550 ASSERT(zilog != NULL);
551 /*
552 * It’s a block in the intent log. It has no
553 * accounting, so just free it.
554 */
555 dsl_free(ka->tx->tx_pool, ka->tx->tx_txg, bp);
556 } else {
557 ASSERT(zilog == NULL);
558 ASSERT3U(bp->blk_birth, >, ka->ds->ds_phys->ds_prev_snap_txg);
559 (void) dsl_dataset_block_kill(ka->ds, bp, tx, B_FALSE);
560 }

562 return (0);
563 }

565 static void
566 old_synchronous_dataset_destroy(dsl_dataset_t *ds, dmu_tx_t *tx)
567 {
568 struct killarg ka;

570 /*
571 * Free everything that we point to (that’s born after
572 * the previous snapshot, if we are a clone)
573 *
574 * NB: this should be very quick, because we already
575 * freed all the objects in open context.
576 */
577 ka.ds = ds;
578 ka.tx = tx;
579 VERIFY0(traverse_dataset(ds,
580 ds->ds_phys->ds_prev_snap_txg, TRAVERSE_POST,
581 kill_blkptr, &ka));
582 ASSERT(!DS_UNIQUE_IS_ACCURATE(ds) || ds->ds_phys->ds_unique_bytes == 0);
583 }

585 typedef struct dsl_destroy_head_arg {
586 const char *ddha_name;
587 } dsl_destroy_head_arg_t;

new/usr/src/uts/common/fs/zfs/dsl_destroy.c 10

589 int
590 dsl_destroy_head_check_impl(dsl_dataset_t *ds, int expected_holds)
591 {
592 int error;
593 uint64_t count;
594 objset_t *mos;

596 if (dsl_dataset_is_snapshot(ds))
597 return (SET_ERROR(EINVAL));

599 if (refcount_count(&ds->ds_longholds) != expected_holds)
600 return (SET_ERROR(EBUSY));

602 mos = ds->ds_dir->dd_pool->dp_meta_objset;

604 /*
605 * Can’t delete a head dataset if there are snapshots of it.
606 * (Except if the only snapshots are from the branch we cloned
607 * from.)
608 */
609 if (ds->ds_prev != NULL &&
610 ds->ds_prev->ds_phys->ds_next_snap_obj == ds->ds_object)
611 return (SET_ERROR(EBUSY));

613 /*
614 * Can’t delete if there are children of this fs.
615 */
616 error = zap_count(mos,
617 ds->ds_dir->dd_phys->dd_child_dir_zapobj, &count);
618 if (error != 0)
619 return (error);
620 if (count != 0)
621 return (SET_ERROR(EEXIST));

623 if (dsl_dir_is_clone(ds->ds_dir) && DS_IS_DEFER_DESTROY(ds->ds_prev) &&
624 ds->ds_prev->ds_phys->ds_num_children == 2 &&
625 ds->ds_prev->ds_userrefs == 0) {
626 /* We need to remove the origin snapshot as well. */
627 if (!refcount_is_zero(&ds->ds_prev->ds_longholds))
628 return (SET_ERROR(EBUSY));
629 }
630 return (0);
631 }

633 static int
634 dsl_destroy_head_check(void *arg, dmu_tx_t *tx)
635 {
636 dsl_destroy_head_arg_t *ddha = arg;
637 dsl_pool_t *dp = dmu_tx_pool(tx);
638 dsl_dataset_t *ds;
639 int error;

641 error = dsl_dataset_hold(dp, ddha->ddha_name, FTAG, &ds);
642 if (error != 0)
643 return (error);

645 error = dsl_destroy_head_check_impl(ds, 0);
646 dsl_dataset_rele(ds, FTAG);
647 return (error);
648 }

650 static void
651 dsl_dir_destroy_sync(uint64_t ddobj, dmu_tx_t *tx)
652 {
653 dsl_dir_t *dd;
654 dsl_pool_t *dp = dmu_tx_pool(tx);

new/usr/src/uts/common/fs/zfs/dsl_destroy.c 11

655 objset_t *mos = dp->dp_meta_objset;
656 dd_used_t t;

658 ASSERT(RRW_WRITE_HELD(&dmu_tx_pool(tx)->dp_config_rwlock));

660 VERIFY0(dsl_dir_hold_obj(dp, ddobj, NULL, FTAG, &dd));

662 ASSERT0(dd->dd_phys->dd_head_dataset_obj);

664 /*
665 * Remove our reservation. The impl() routine avoids setting the
666 * actual property, which would require the (already destroyed) ds.
667 */
668 dsl_dir_set_reservation_sync_impl(dd, 0, tx);

670 ASSERT0(dd->dd_phys->dd_used_bytes);
671 ASSERT0(dd->dd_phys->dd_reserved);
672 for (t = 0; t < DD_USED_NUM; t++)
673 ASSERT0(dd->dd_phys->dd_used_breakdown[t]);

675 VERIFY0(zap_destroy(mos, dd->dd_phys->dd_child_dir_zapobj, tx));
676 VERIFY0(zap_destroy(mos, dd->dd_phys->dd_props_zapobj, tx));
677 VERIFY0(dsl_deleg_destroy(mos, dd->dd_phys->dd_deleg_zapobj, tx));
678 VERIFY0(zap_remove(mos,
679 dd->dd_parent->dd_phys->dd_child_dir_zapobj, dd->dd_myname, tx));

681 dsl_dir_rele(dd, FTAG);
682 VERIFY0(dmu_object_free(mos, ddobj, tx));
683 }

685 void
686 dsl_destroy_head_sync_impl(dsl_dataset_t *ds, dmu_tx_t *tx)
687 {
688 dsl_pool_t *dp = dmu_tx_pool(tx);
689 objset_t *mos = dp->dp_meta_objset;
690 uint64_t obj, ddobj, prevobj = 0;
691 boolean_t rmorigin;

693 ASSERT3U(ds->ds_phys->ds_num_children, <=, 1);
694 ASSERT(ds->ds_prev == NULL ||
695 ds->ds_prev->ds_phys->ds_next_snap_obj != ds->ds_object);
696 ASSERT3U(ds->ds_phys->ds_bp.blk_birth, <=, tx->tx_txg);
697 ASSERT(RRW_WRITE_HELD(&dp->dp_config_rwlock));

699 /* We need to log before removing it from the namespace. */
700 spa_history_log_internal_ds(ds, "destroy", tx, "");

702 rmorigin = (dsl_dir_is_clone(ds->ds_dir) &&
703 DS_IS_DEFER_DESTROY(ds->ds_prev) &&
704 ds->ds_prev->ds_phys->ds_num_children == 2 &&
705 ds->ds_prev->ds_userrefs == 0);

707 /* Remove our reservation */
708 if (ds->ds_reserved != 0) {
709 dsl_dataset_set_refreservation_sync_impl(ds,
710 (ZPROP_SRC_NONE | ZPROP_SRC_LOCAL | ZPROP_SRC_RECEIVED),
711 0, tx);
712 ASSERT0(ds->ds_reserved);
713 }

715 dsl_scan_ds_destroyed(ds, tx);

717 obj = ds->ds_object;

719 if (ds->ds_phys->ds_prev_snap_obj != 0) {
720 /* This is a clone */

new/usr/src/uts/common/fs/zfs/dsl_destroy.c 12

721 ASSERT(ds->ds_prev != NULL);
722 ASSERT3U(ds->ds_prev->ds_phys->ds_next_snap_obj, !=, obj);
723 ASSERT0(ds->ds_phys->ds_next_snap_obj);

725 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
726 if (ds->ds_prev->ds_phys->ds_next_clones_obj != 0) {
727 dsl_dataset_remove_from_next_clones(ds->ds_prev,
728 obj, tx);
729 }

731 ASSERT3U(ds->ds_prev->ds_phys->ds_num_children, >, 1);
732 ds->ds_prev->ds_phys->ds_num_children--;
733 }

735 zfeature_info_t *async_destroy =
736 &spa_feature_table[SPA_FEATURE_ASYNC_DESTROY];
737 objset_t *os;

739 /*
740 * Destroy the deadlist. Unless it’s a clone, the
741 * deadlist should be empty. (If it’s a clone, it’s
742 * safe to ignore the deadlist contents.)
743 */
744 dsl_deadlist_close(&ds->ds_deadlist);
745 dsl_deadlist_free(mos, ds->ds_phys->ds_deadlist_obj, tx);
746 dmu_buf_will_dirty(ds->ds_dbuf, tx);
747 ds->ds_phys->ds_deadlist_obj = 0;

749 VERIFY0(dmu_objset_from_ds(ds, &os));

751 if (!spa_feature_is_enabled(dp->dp_spa, async_destroy)) {
752 old_synchronous_dataset_destroy(ds, tx);
753 } else {
754 /*
755 * Move the bptree into the pool’s list of trees to
756 * clean up and update space accounting information.
757 */
758 uint64_t used, comp, uncomp;

760 zil_destroy_sync(dmu_objset_zil(os), tx);

762 if (!spa_feature_is_active(dp->dp_spa, async_destroy)) {
763 dsl_scan_t *scn = dp->dp_scan;

765 spa_feature_incr(dp->dp_spa, async_destroy, tx);
766 dp->dp_bptree_obj = bptree_alloc(mos, tx);
767 VERIFY0(zap_add(mos,
768 DMU_POOL_DIRECTORY_OBJECT,
769 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
770 &dp->dp_bptree_obj, tx));
771 ASSERT(!scn->scn_async_destroying);
772 scn->scn_async_destroying = B_TRUE;
773 }

775 used = ds->ds_dir->dd_phys->dd_used_bytes;
776 comp = ds->ds_dir->dd_phys->dd_compressed_bytes;
777 uncomp = ds->ds_dir->dd_phys->dd_uncompressed_bytes;

779 ASSERT(!DS_UNIQUE_IS_ACCURATE(ds) ||
780 ds->ds_phys->ds_unique_bytes == used);

782 bptree_add(mos, dp->dp_bptree_obj,
783 &ds->ds_phys->ds_bp, ds->ds_phys->ds_prev_snap_txg,
784 used, comp, uncomp, tx);
785 dsl_dir_diduse_space(ds->ds_dir, DD_USED_HEAD,
786 -used, -comp, -uncomp, tx);

new/usr/src/uts/common/fs/zfs/dsl_destroy.c 13

787 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
788 used, comp, uncomp, tx);
789 }

791 if (ds->ds_prev != NULL) {
792 if (spa_version(dp->dp_spa) >= SPA_VERSION_DIR_CLONES) {
793 VERIFY0(zap_remove_int(mos,
794 ds->ds_prev->ds_dir->dd_phys->dd_clones,
795 ds->ds_object, tx));
796 }
797 prevobj = ds->ds_prev->ds_object;
798 dsl_dataset_rele(ds->ds_prev, ds);
799 ds->ds_prev = NULL;
800 }

802 /*
803 * This must be done after the dsl_traverse(), because it will
804 * re-open the objset.
805 */
806 if (ds->ds_objset) {
807 dmu_objset_evict(ds->ds_objset);
808 ds->ds_objset = NULL;
809 }

811 /* Erase the link in the dir */
812 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
813 ds->ds_dir->dd_phys->dd_head_dataset_obj = 0;
814 ddobj = ds->ds_dir->dd_object;
815 ASSERT(ds->ds_phys->ds_snapnames_zapobj != 0);
816 VERIFY0(zap_destroy(mos, ds->ds_phys->ds_snapnames_zapobj, tx));

818 spa_prop_clear_bootfs(dp->dp_spa, ds->ds_object, tx);

820 ASSERT0(ds->ds_phys->ds_next_clones_obj);
821 ASSERT0(ds->ds_phys->ds_props_obj);
822 ASSERT0(ds->ds_phys->ds_userrefs_obj);
823 dsl_dir_rele(ds->ds_dir, ds);
824 ds->ds_dir = NULL;
825 VERIFY0(dmu_object_free(mos, obj, tx));

827 dsl_dir_destroy_sync(ddobj, tx);

829 if (rmorigin) {
830 dsl_dataset_t *prev;
831 VERIFY0(dsl_dataset_hold_obj(dp, prevobj, FTAG, &prev));
832 dsl_destroy_snapshot_sync_impl(prev, B_FALSE, tx);
833 dsl_dataset_rele(prev, FTAG);
834 }
835 }

837 static void
838 dsl_destroy_head_sync(void *arg, dmu_tx_t *tx)
839 {
840 dsl_destroy_head_arg_t *ddha = arg;
841 dsl_pool_t *dp = dmu_tx_pool(tx);
842 dsl_dataset_t *ds;

844 VERIFY0(dsl_dataset_hold(dp, ddha->ddha_name, FTAG, &ds));
845 dsl_destroy_head_sync_impl(ds, tx);
846 dsl_dataset_rele(ds, FTAG);
847 }

849 static void
850 dsl_destroy_head_begin_sync(void *arg, dmu_tx_t *tx)
851 {
852 dsl_destroy_head_arg_t *ddha = arg;

new/usr/src/uts/common/fs/zfs/dsl_destroy.c 14

853 dsl_pool_t *dp = dmu_tx_pool(tx);
854 dsl_dataset_t *ds;

856 VERIFY0(dsl_dataset_hold(dp, ddha->ddha_name, FTAG, &ds));

858 /* Mark it as inconsistent on-disk, in case we crash */
859 dmu_buf_will_dirty(ds->ds_dbuf, tx);
860 ds->ds_phys->ds_flags |= DS_FLAG_INCONSISTENT;

862 spa_history_log_internal_ds(ds, "destroy begin", tx, "");
863 dsl_dataset_rele(ds, FTAG);
864 }

866 int
867 dsl_destroy_head(const char *name)
868 {
869 dsl_destroy_head_arg_t ddha;
870 int error;
871 spa_t *spa;
872 boolean_t isenabled;

874 #ifdef _KERNEL
875 zfs_destroy_unmount_origin(name);
876 #endif

878 error = spa_open(name, &spa, FTAG);
879 if (error != 0)
880 return (error);
881 isenabled = spa_feature_is_enabled(spa,
882 &spa_feature_table[SPA_FEATURE_ASYNC_DESTROY]);
883 spa_close(spa, FTAG);

885 ddha.ddha_name = name;

887 if (!isenabled) {
888 objset_t *os;

890 error = dsl_sync_task(name, dsl_destroy_head_check,
891 dsl_destroy_head_begin_sync, &ddha, 0);
892 if (error != 0)
893 return (error);

895 /*
896 * Head deletion is processed in one txg on old pools;
897 * remove the objects from open context so that the txg sync
898 * is not too long.
899 */
900 error = dmu_objset_own(name, DMU_OST_ANY, B_FALSE, FTAG, &os);
901 if (error == 0) {
902 uint64_t prev_snap_txg =
903 dmu_objset_ds(os)->ds_phys->ds_prev_snap_txg;
904 for (uint64_t obj = 0; error == 0;
905 error = dmu_object_next(os, &obj, FALSE,
906 prev_snap_txg))
907 (void) dmu_free_object(os, obj);
908 /* sync out all frees */
909 txg_wait_synced(dmu_objset_pool(os), 0);
910 dmu_objset_disown(os, FTAG);
911 }
912 }

914 return (dsl_sync_task(name, dsl_destroy_head_check,
915 dsl_destroy_head_sync, &ddha, 0));
916 }

918 /*

new/usr/src/uts/common/fs/zfs/dsl_destroy.c 15

919 * Note, this function is used as the callback for dmu_objset_find(). We
920 * always return 0 so that we will continue to find and process
921 * inconsistent datasets, even if we encounter an error trying to
922 * process one of them.
923 */
924 /* ARGSUSED */
925 int
926 dsl_destroy_inconsistent(const char *dsname, void *arg)
927 {
928 objset_t *os;

930 if (dmu_objset_hold(dsname, FTAG, &os) == 0) {
931 boolean_t inconsistent = DS_IS_INCONSISTENT(dmu_objset_ds(os));
932 dmu_objset_rele(os, FTAG);
933 if (inconsistent)
934 (void) dsl_destroy_head(dsname);
935 }
936 return (0);
937 }

new/usr/src/uts/common/fs/zfs/dsl_pool.c 1

**
 29795 Wed May 29 20:27:09 2013
new/usr/src/uts/common/fs/zfs/dsl_pool.c
3740 Poor ZFS send / receive performance due to snapshot hold / release processi
Submitted by: Steven Hartland <steven.hartland@multiplay.co.uk>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 #endif /* ! codereview */
26 */

28 #include <sys/dsl_pool.h>
29 #include <sys/dsl_dataset.h>
30 #include <sys/dsl_prop.h>
31 #include <sys/dsl_dir.h>
32 #include <sys/dsl_synctask.h>
33 #include <sys/dsl_scan.h>
34 #include <sys/dnode.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/arc.h>
38 #include <sys/zap.h>
39 #include <sys/zio.h>
40 #include <sys/zfs_context.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/zfs_znode.h>
43 #include <sys/spa_impl.h>
44 #include <sys/dsl_deadlist.h>
45 #include <sys/bptree.h>
46 #include <sys/zfeature.h>
47 #include <sys/zil_impl.h>
48 #include <sys/dsl_userhold.h>

50 int zfs_no_write_throttle = 0;
51 int zfs_write_limit_shift = 3; /* 1/8th of physical memory */
52 int zfs_txg_synctime_ms = 1000; /* target millisecs to sync a txg */

54 uint64_t zfs_write_limit_min = 32 << 20; /* min write limit is 32MB */
55 uint64_t zfs_write_limit_max = 0; /* max data payload per txg */
56 uint64_t zfs_write_limit_inflated = 0;
57 uint64_t zfs_write_limit_override = 0;

59 kmutex_t zfs_write_limit_lock;

new/usr/src/uts/common/fs/zfs/dsl_pool.c 2

61 static pgcnt_t old_physmem = 0;

63 hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
64 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);

66 int
67 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
68 {
69 uint64_t obj;
70 int err;

72 err = zap_lookup(dp->dp_meta_objset,
73 dp->dp_root_dir->dd_phys->dd_child_dir_zapobj,
74 name, sizeof (obj), 1, &obj);
75 if (err)
76 return (err);

78 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
79 }

81 static dsl_pool_t *
82 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
83 {
84 dsl_pool_t *dp;
85 blkptr_t *bp = spa_get_rootblkptr(spa);

87 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
88 dp->dp_spa = spa;
89 dp->dp_meta_rootbp = *bp;
90 rrw_init(&dp->dp_config_rwlock, B_TRUE);
91 dp->dp_write_limit = zfs_write_limit_min;
92 txg_init(dp, txg);

94 txg_list_create(&dp->dp_dirty_datasets,
95 offsetof(dsl_dataset_t, ds_dirty_link));
96 txg_list_create(&dp->dp_dirty_zilogs,
97 offsetof(zilog_t, zl_dirty_link));
98 txg_list_create(&dp->dp_dirty_dirs,
99 offsetof(dsl_dir_t, dd_dirty_link));
100 txg_list_create(&dp->dp_sync_tasks,
101 offsetof(dsl_sync_task_t, dst_node));

103 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);

105 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
106 1, 4, 0);

108 return (dp);
109 }

111 int
112 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
113 {
114 int err;
115 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);

117 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
118 &dp->dp_meta_objset);
119 if (err != 0)
120 dsl_pool_close(dp);
121 else
122 *dpp = dp;

124 return (err);
125 }

new/usr/src/uts/common/fs/zfs/dsl_pool.c 3

127 int
128 dsl_pool_open(dsl_pool_t *dp)
129 {
130 int err;
131 dsl_dir_t *dd;
132 dsl_dataset_t *ds;
133 uint64_t obj;

135 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
136 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
137 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
138 &dp->dp_root_dir_obj);
139 if (err)
140 goto out;

142 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
143 NULL, dp, &dp->dp_root_dir);
144 if (err)
145 goto out;

147 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
148 if (err)
149 goto out;

151 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
152 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
153 if (err)
154 goto out;
155 err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj,
156 FTAG, &ds);
157 if (err == 0) {
158 err = dsl_dataset_hold_obj(dp,
159 ds->ds_phys->ds_prev_snap_obj, dp,
160 &dp->dp_origin_snap);
161 dsl_dataset_rele(ds, FTAG);
162 }
163 dsl_dir_rele(dd, dp);
164 if (err)
165 goto out;
166 }

168 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
169 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
170 &dp->dp_free_dir);
171 if (err)
172 goto out;

174 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
175 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
176 if (err)
177 goto out;
178 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
179 dp->dp_meta_objset, obj));
180 }

182 if (spa_feature_is_active(dp->dp_spa,
183 &spa_feature_table[SPA_FEATURE_ASYNC_DESTROY])) {
184 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
185 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
186 &dp->dp_bptree_obj);
187 if (err != 0)
188 goto out;
189 }

191 if (spa_feature_is_active(dp->dp_spa,
192 &spa_feature_table[SPA_FEATURE_EMPTY_BPOBJ])) {

new/usr/src/uts/common/fs/zfs/dsl_pool.c 4

193 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
194 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
195 &dp->dp_empty_bpobj);
196 if (err != 0)
197 goto out;
198 }

200 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
201 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
202 &dp->dp_tmp_userrefs_obj);
203 if (err == ENOENT)
204 err = 0;
205 if (err)
206 goto out;

208 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);

210 out:
211 rrw_exit(&dp->dp_config_rwlock, FTAG);
212 return (err);
213 }

215 void
216 dsl_pool_close(dsl_pool_t *dp)
217 {
218 /* drop our references from dsl_pool_open() */

220 /*
221 * Since we held the origin_snap from "syncing" context (which
222 * includes pool-opening context), it actually only got a "ref"
223 * and not a hold, so just drop that here.
224 */
225 if (dp->dp_origin_snap)
226 dsl_dataset_rele(dp->dp_origin_snap, dp);
227 if (dp->dp_mos_dir)
228 dsl_dir_rele(dp->dp_mos_dir, dp);
229 if (dp->dp_free_dir)
230 dsl_dir_rele(dp->dp_free_dir, dp);
231 if (dp->dp_root_dir)
232 dsl_dir_rele(dp->dp_root_dir, dp);

234 bpobj_close(&dp->dp_free_bpobj);

236 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
237 if (dp->dp_meta_objset)
238 dmu_objset_evict(dp->dp_meta_objset);

240 txg_list_destroy(&dp->dp_dirty_datasets);
241 txg_list_destroy(&dp->dp_dirty_zilogs);
242 txg_list_destroy(&dp->dp_sync_tasks);
243 txg_list_destroy(&dp->dp_dirty_dirs);

245 arc_flush(dp->dp_spa);
246 txg_fini(dp);
247 dsl_scan_fini(dp);
248 rrw_destroy(&dp->dp_config_rwlock);
249 mutex_destroy(&dp->dp_lock);
250 taskq_destroy(dp->dp_vnrele_taskq);
251 if (dp->dp_blkstats)
252 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
253 kmem_free(dp, sizeof (dsl_pool_t));
254 }

256 dsl_pool_t *
257 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
258 {

new/usr/src/uts/common/fs/zfs/dsl_pool.c 5

259 int err;
260 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
261 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
262 objset_t *os;
263 dsl_dataset_t *ds;
264 uint64_t obj;

266 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);

268 /* create and open the MOS (meta-objset) */
269 dp->dp_meta_objset = dmu_objset_create_impl(spa,
270 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);

272 /* create the pool directory */
273 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
274 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
275 ASSERT0(err);

277 /* Initialize scan structures */
278 VERIFY0(dsl_scan_init(dp, txg));

280 /* create and open the root dir */
281 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
282 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
283 NULL, dp, &dp->dp_root_dir));

285 /* create and open the meta-objset dir */
286 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
287 VERIFY0(dsl_pool_open_special_dir(dp,
288 MOS_DIR_NAME, &dp->dp_mos_dir));

290 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
291 /* create and open the free dir */
292 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
293 FREE_DIR_NAME, tx);
294 VERIFY0(dsl_pool_open_special_dir(dp,
295 FREE_DIR_NAME, &dp->dp_free_dir));

297 /* create and open the free_bplist */
298 obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx);
299 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
300 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
301 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
302 dp->dp_meta_objset, obj));
303 }

305 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
306 dsl_pool_create_origin(dp, tx);

308 /* create the root dataset */
309 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);

311 /* create the root objset */
312 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
313 os = dmu_objset_create_impl(dp->dp_spa, ds,
314 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
315 #ifdef _KERNEL
316 zfs_create_fs(os, kcred, zplprops, tx);
317 #endif
318 dsl_dataset_rele(ds, FTAG);

320 dmu_tx_commit(tx);

322 rrw_exit(&dp->dp_config_rwlock, FTAG);

324 return (dp);

new/usr/src/uts/common/fs/zfs/dsl_pool.c 6

325 }

327 /*
328 * Account for the meta-objset space in its placeholder dsl_dir.
329 */
330 void
331 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
332 int64_t used, int64_t comp, int64_t uncomp)
333 {
334 ASSERT3U(comp, ==, uncomp); /* it’s all metadata */
335 mutex_enter(&dp->dp_lock);
336 dp->dp_mos_used_delta += used;
337 dp->dp_mos_compressed_delta += comp;
338 dp->dp_mos_uncompressed_delta += uncomp;
339 mutex_exit(&dp->dp_lock);
340 }

342 static int
343 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
344 {
345 dsl_deadlist_t *dl = arg;
346 dsl_deadlist_insert(dl, bp, tx);
347 return (0);
348 }

350 void
351 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
352 {
353 zio_t *zio;
354 dmu_tx_t *tx;
355 dsl_dir_t *dd;
356 dsl_dataset_t *ds;
357 objset_t *mos = dp->dp_meta_objset;
358 hrtime_t start, write_time;
359 uint64_t data_written;
360 int err;
361 list_t synced_datasets;

363 list_create(&synced_datasets, sizeof (dsl_dataset_t),
364 offsetof(dsl_dataset_t, ds_synced_link));

366 /*
367 * We need to copy dp_space_towrite() before doing
368 * dsl_sync_task_sync(), because
369 * dsl_dataset_snapshot_reserve_space() will increase
370 * dp_space_towrite but not actually write anything.
371 */
372 data_written = dp->dp_space_towrite[txg & TXG_MASK];

374 tx = dmu_tx_create_assigned(dp, txg);

376 dp->dp_read_overhead = 0;
377 start = gethrtime();

379 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
380 while (ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) {
381 /*
382 * We must not sync any non-MOS datasets twice, because
383 * we may have taken a snapshot of them. However, we
384 * may sync newly-created datasets on pass 2.
385 */
386 ASSERT(!list_link_active(&ds->ds_synced_link));
387 list_insert_tail(&synced_datasets, ds);
388 dsl_dataset_sync(ds, zio, tx);
389 }
390 DTRACE_PROBE(pool_sync__1setup);

new/usr/src/uts/common/fs/zfs/dsl_pool.c 7

391 err = zio_wait(zio);

393 write_time = gethrtime() - start;
394 ASSERT(err == 0);
395 DTRACE_PROBE(pool_sync__2rootzio);

397 /*
398 * After the data blocks have been written (ensured by the zio_wait()
399 * above), update the user/group space accounting.
400 */
401 for (ds = list_head(&synced_datasets); ds;
402 ds = list_next(&synced_datasets, ds))
403 dmu_objset_do_userquota_updates(ds->ds_objset, tx);

405 /*
406 * Sync the datasets again to push out the changes due to
407 * userspace updates. This must be done before we process the
408 * sync tasks, so that any snapshots will have the correct
409 * user accounting information (and we won’t get confused
410 * about which blocks are part of the snapshot).
411 */
412 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
413 while (ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) {
414 ASSERT(list_link_active(&ds->ds_synced_link));
415 dmu_buf_rele(ds->ds_dbuf, ds);
416 dsl_dataset_sync(ds, zio, tx);
417 }
418 err = zio_wait(zio);

420 /*
421 * Now that the datasets have been completely synced, we can
422 * clean up our in-memory structures accumulated while syncing:
423 *
424 * - move dead blocks from the pending deadlist to the on-disk deadlist
425 * - release hold from dsl_dataset_dirty()
426 */
427 while (ds = list_remove_head(&synced_datasets)) {
428 objset_t *os = ds->ds_objset;
429 bplist_iterate(&ds->ds_pending_deadlist,
430 deadlist_enqueue_cb, &ds->ds_deadlist, tx);
431 ASSERT(!dmu_objset_is_dirty(os, txg));
432 dmu_buf_rele(ds->ds_dbuf, ds);
433 }

435 start = gethrtime();
436 while (dd = txg_list_remove(&dp->dp_dirty_dirs, txg))
437 dsl_dir_sync(dd, tx);
438 write_time += gethrtime() - start;

440 /*
441 * The MOS’s space is accounted for in the pool/$MOS
442 * (dp_mos_dir). We can’t modify the mos while we’re syncing
443 * it, so we remember the deltas and apply them here.
444 */
445 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
446 dp->dp_mos_uncompressed_delta != 0) {
447 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
448 dp->dp_mos_used_delta,
449 dp->dp_mos_compressed_delta,
450 dp->dp_mos_uncompressed_delta, tx);
451 dp->dp_mos_used_delta = 0;
452 dp->dp_mos_compressed_delta = 0;
453 dp->dp_mos_uncompressed_delta = 0;
454 }

456 start = gethrtime();

new/usr/src/uts/common/fs/zfs/dsl_pool.c 8

457 if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
458 list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
459 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
460 dmu_objset_sync(mos, zio, tx);
461 err = zio_wait(zio);
462 ASSERT(err == 0);
463 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
464 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
465 }
466 write_time += gethrtime() - start;
467 DTRACE_PROBE2(pool_sync__4io, hrtime_t, write_time,
468 hrtime_t, dp->dp_read_overhead);
469 write_time -= dp->dp_read_overhead;

471 /*
472 * If we modify a dataset in the same txg that we want to destroy it,
473 * its dsl_dir’s dd_dbuf will be dirty, and thus have a hold on it.
474 * dsl_dir_destroy_check() will fail if there are unexpected holds.
475 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
476 * and clearing the hold on it) before we process the sync_tasks.
477 * The MOS data dirtied by the sync_tasks will be synced on the next
478 * pass.
479 */
480 DTRACE_PROBE(pool_sync__3task);
481 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
482 dsl_sync_task_t *dst;
483 /*
484 * No more sync tasks should have been added while we
485 * were syncing.
486 */
487 ASSERT(spa_sync_pass(dp->dp_spa) == 1);
488 while (dst = txg_list_remove(&dp->dp_sync_tasks, txg))
489 dsl_sync_task_sync(dst, tx);
490 }

492 dmu_tx_commit(tx);

494 dp->dp_space_towrite[txg & TXG_MASK] = 0;
495 ASSERT(dp->dp_tempreserved[txg & TXG_MASK] == 0);

497 /*
498 * If the write limit max has not been explicitly set, set it
499 * to a fraction of available physical memory (default 1/8th).
500 * Note that we must inflate the limit because the spa
501 * inflates write sizes to account for data replication.
502 * Check this each sync phase to catch changing memory size.
503 */
504 if (physmem != old_physmem && zfs_write_limit_shift) {
505 mutex_enter(&zfs_write_limit_lock);
506 old_physmem = physmem;
507 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
508 zfs_write_limit_inflated = MAX(zfs_write_limit_min,
509 spa_get_asize(dp->dp_spa, zfs_write_limit_max));
510 mutex_exit(&zfs_write_limit_lock);
511 }

513 /*
514 * Attempt to keep the sync time consistent by adjusting the
515 * amount of write traffic allowed into each transaction group.
516 * Weight the throughput calculation towards the current value:
517 * thru = 3/4 old_thru + 1/4 new_thru
518 *
519 * Note: write_time is in nanosecs while dp_throughput is expressed in
520 * bytes per millisecond.
521 */
522 ASSERT(zfs_write_limit_min > 0);

new/usr/src/uts/common/fs/zfs/dsl_pool.c 9

523 if (data_written > zfs_write_limit_min / 8 &&
524 write_time > MSEC2NSEC(1)) {
525 uint64_t throughput = data_written / NSEC2MSEC(write_time);

527 if (dp->dp_throughput)
528 dp->dp_throughput = throughput / 4 +
529 3 * dp->dp_throughput / 4;
530 else
531 dp->dp_throughput = throughput;
532 dp->dp_write_limit = MIN(zfs_write_limit_inflated,
533 MAX(zfs_write_limit_min,
534 dp->dp_throughput * zfs_txg_synctime_ms));
535 }
536 }

538 void
539 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
540 {
541 zilog_t *zilog;
542 dsl_dataset_t *ds;

544 while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) {
545 ds = dmu_objset_ds(zilog->zl_os);
546 zil_clean(zilog, txg);
547 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
548 dmu_buf_rele(ds->ds_dbuf, zilog);
549 }
550 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
551 }

553 /*
554 * TRUE if the current thread is the tx_sync_thread or if we
555 * are being called from SPA context during pool initialization.
556 */
557 int
558 dsl_pool_sync_context(dsl_pool_t *dp)
559 {
560 return (curthread == dp->dp_tx.tx_sync_thread ||
561 spa_is_initializing(dp->dp_spa));
562 }

564 uint64_t
565 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
566 {
567 uint64_t space, resv;

569 /*
570 * Reserve about 1.6% (1/64), or at least 32MB, for allocation
571 * efficiency.
572 * XXX The intent log is not accounted for, so it must fit
573 * within this slop.
574 *
575 * If we’re trying to assess whether it’s OK to do a free,
576 * cut the reservation in half to allow forward progress
577 * (e.g. make it possible to rm(1) files from a full pool).
578 */
579 space = spa_get_dspace(dp->dp_spa);
580 resv = MAX(space >> 6, SPA_MINDEVSIZE >> 1);
581 if (netfree)
582 resv >>= 1;

584 return (space - resv);
585 }

587 int
588 dsl_pool_tempreserve_space(dsl_pool_t *dp, uint64_t space, dmu_tx_t *tx)

new/usr/src/uts/common/fs/zfs/dsl_pool.c 10

589 {
590 uint64_t reserved = 0;
591 uint64_t write_limit = (zfs_write_limit_override ?
592 zfs_write_limit_override : dp->dp_write_limit);

594 if (zfs_no_write_throttle) {
595 atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK],
596 space);
597 return (0);
598 }

600 /*
601 * Check to see if we have exceeded the maximum allowed IO for
602 * this transaction group. We can do this without locks since
603 * a little slop here is ok. Note that we do the reserved check
604 * with only half the requested reserve: this is because the
605 * reserve requests are worst-case, and we really don’t want to
606 * throttle based off of worst-case estimates.
607 */
608 if (write_limit > 0) {
609 reserved = dp->dp_space_towrite[tx->tx_txg & TXG_MASK]
610 + dp->dp_tempreserved[tx->tx_txg & TXG_MASK] / 2;

612 if (reserved && reserved > write_limit)
613 return (SET_ERROR(ERESTART));
614 }

616 atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], space);

618 /*
619 * If this transaction group is over 7/8ths capacity, delay
620 * the caller 1 clock tick. This will slow down the "fill"
621 * rate until the sync process can catch up with us.
622 */
623 if (reserved && reserved > (write_limit - (write_limit >> 3))) {
624 txg_delay(dp, tx->tx_txg, zfs_throttle_delay,
625 zfs_throttle_resolution);
626 }

628 return (0);
629 }

631 void
632 dsl_pool_tempreserve_clear(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
633 {
634 ASSERT(dp->dp_tempreserved[tx->tx_txg & TXG_MASK] >= space);
635 atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], -space);
636 }

638 void
639 dsl_pool_memory_pressure(dsl_pool_t *dp)
640 {
641 uint64_t space_inuse = 0;
642 int i;

644 if (dp->dp_write_limit == zfs_write_limit_min)
645 return;

647 for (i = 0; i < TXG_SIZE; i++) {
648 space_inuse += dp->dp_space_towrite[i];
649 space_inuse += dp->dp_tempreserved[i];
650 }
651 dp->dp_write_limit = MAX(zfs_write_limit_min,
652 MIN(dp->dp_write_limit, space_inuse / 4));
653 }

new/usr/src/uts/common/fs/zfs/dsl_pool.c 11

655 void
656 dsl_pool_willuse_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
657 {
658 if (space > 0) {
659 mutex_enter(&dp->dp_lock);
660 dp->dp_space_towrite[tx->tx_txg & TXG_MASK] += space;
661 mutex_exit(&dp->dp_lock);
662 }
663 }

665 /* ARGSUSED */
666 static int
667 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
668 {
669 dmu_tx_t *tx = arg;
670 dsl_dataset_t *ds, *prev = NULL;
671 int err;

673 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
674 if (err)
675 return (err);

677 while (ds->ds_phys->ds_prev_snap_obj != 0) {
678 err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
679 FTAG, &prev);
680 if (err) {
681 dsl_dataset_rele(ds, FTAG);
682 return (err);
683 }

685 if (prev->ds_phys->ds_next_snap_obj != ds->ds_object)
686 break;
687 dsl_dataset_rele(ds, FTAG);
688 ds = prev;
689 prev = NULL;
690 }

692 if (prev == NULL) {
693 prev = dp->dp_origin_snap;

695 /*
696 * The $ORIGIN can’t have any data, or the accounting
697 * will be wrong.
698 */
699 ASSERT0(prev->ds_phys->ds_bp.blk_birth);

701 /* The origin doesn’t get attached to itself */
702 if (ds->ds_object == prev->ds_object) {
703 dsl_dataset_rele(ds, FTAG);
704 return (0);
705 }

707 dmu_buf_will_dirty(ds->ds_dbuf, tx);
708 ds->ds_phys->ds_prev_snap_obj = prev->ds_object;
709 ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg;

711 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
712 ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object;

714 dmu_buf_will_dirty(prev->ds_dbuf, tx);
715 prev->ds_phys->ds_num_children++;

717 if (ds->ds_phys->ds_next_snap_obj == 0) {
718 ASSERT(ds->ds_prev == NULL);
719 VERIFY0(dsl_dataset_hold_obj(dp,
720 ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev));

new/usr/src/uts/common/fs/zfs/dsl_pool.c 12

721 }
722 }

724 ASSERT3U(ds->ds_dir->dd_phys->dd_origin_obj, ==, prev->ds_object);
725 ASSERT3U(ds->ds_phys->ds_prev_snap_obj, ==, prev->ds_object);

727 if (prev->ds_phys->ds_next_clones_obj == 0) {
728 dmu_buf_will_dirty(prev->ds_dbuf, tx);
729 prev->ds_phys->ds_next_clones_obj =
730 zap_create(dp->dp_meta_objset,
731 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
732 }
733 VERIFY0(zap_add_int(dp->dp_meta_objset,
734 prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx));

736 dsl_dataset_rele(ds, FTAG);
737 if (prev != dp->dp_origin_snap)
738 dsl_dataset_rele(prev, FTAG);
739 return (0);
740 }

742 void
743 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
744 {
745 ASSERT(dmu_tx_is_syncing(tx));
746 ASSERT(dp->dp_origin_snap != NULL);

748 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
749 tx, DS_FIND_CHILDREN));
750 }

752 /* ARGSUSED */
753 static int
754 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
755 {
756 dmu_tx_t *tx = arg;
757 objset_t *mos = dp->dp_meta_objset;

759 if (ds->ds_dir->dd_phys->dd_origin_obj != 0) {
760 dsl_dataset_t *origin;

762 VERIFY0(dsl_dataset_hold_obj(dp,
763 ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin));

765 if (origin->ds_dir->dd_phys->dd_clones == 0) {
766 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
767 origin->ds_dir->dd_phys->dd_clones = zap_create(mos,
768 DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx);
769 }

771 VERIFY0(zap_add_int(dp->dp_meta_objset,
772 origin->ds_dir->dd_phys->dd_clones, ds->ds_object, tx));

774 dsl_dataset_rele(origin, FTAG);
775 }
776 return (0);
777 }

779 void
780 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
781 {
782 ASSERT(dmu_tx_is_syncing(tx));
783 uint64_t obj;

785 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
786 VERIFY0(dsl_pool_open_special_dir(dp,

new/usr/src/uts/common/fs/zfs/dsl_pool.c 13

787 FREE_DIR_NAME, &dp->dp_free_dir));

789 /*
790 * We can’t use bpobj_alloc(), because spa_version() still
791 * returns the old version, and we need a new-version bpobj with
792 * subobj support. So call dmu_object_alloc() directly.
793 */
794 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
795 SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
796 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
797 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
798 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));

800 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
801 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN));
802 }

804 void
805 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
806 {
807 uint64_t dsobj;
808 dsl_dataset_t *ds;

810 ASSERT(dmu_tx_is_syncing(tx));
811 ASSERT(dp->dp_origin_snap == NULL);
812 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));

814 /* create the origin dir, ds, & snap-ds */
815 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
816 NULL, 0, kcred, tx);
817 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
818 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
819 VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
820 dp, &dp->dp_origin_snap));
821 dsl_dataset_rele(ds, FTAG);
822 }

824 taskq_t *
825 dsl_pool_vnrele_taskq(dsl_pool_t *dp)
826 {
827 return (dp->dp_vnrele_taskq);
828 }

830 /*
831 * Walk through the pool-wide zap object of temporary snapshot user holds
832 * and release them.
833 */
834 void
835 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
836 {
837 zap_attribute_t za;
838 zap_cursor_t zc;
839 objset_t *mos = dp->dp_meta_objset;
840 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
841 nvlist_t *holds;
842 #endif /* ! codereview */

844 if (zapobj == 0)
845 return;
846 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);

848 holds = fnvlist_alloc();

850 #endif /* ! codereview */
851 for (zap_cursor_init(&zc, mos, zapobj);
852 zap_cursor_retrieve(&zc, &za) == 0;

new/usr/src/uts/common/fs/zfs/dsl_pool.c 14

853 zap_cursor_advance(&zc)) {
854 char *htag;
855 uint64_t dsobj;
856 nvlist_t *tags;
857 #endif /* ! codereview */

859 htag = strchr(za.za_name, ’-’);
860 *htag = ’\0’;
861 ++htag;
862 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
863 tags = fnvlist_alloc();
864 fnvlist_add_boolean(tags, htag);
865 fnvlist_add_nvlist(holds, za.za_name, tags);
866 fnvlist_free(tags);
867 } else {
868 fnvlist_add_boolean(tags, htag);
869 }
24 dsobj = strtonum(za.za_name, NULL);
25 dsl_dataset_user_release_tmp(dp, dsobj, htag);
870 }
871 dsl_dataset_user_release_tmp(dp, holds);
872 fnvlist_free(holds);
873 #endif /* ! codereview */
874 zap_cursor_fini(&zc);
875 }

877 /*
878 * Create the pool-wide zap object for storing temporary snapshot holds.
879 */
880 void
881 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
882 {
883 objset_t *mos = dp->dp_meta_objset;

885 ASSERT(dp->dp_tmp_userrefs_obj == 0);
886 ASSERT(dmu_tx_is_syncing(tx));

888 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
889 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
890 }

892 static int
893 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
894 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
895 {
896 objset_t *mos = dp->dp_meta_objset;
897 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
898 char *name;
899 int error;

901 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
902 ASSERT(dmu_tx_is_syncing(tx));

904 /*
905 * If the pool was created prior to SPA_VERSION_USERREFS, the
906 * zap object for temporary holds might not exist yet.
907 */
908 if (zapobj == 0) {
909 if (holding) {
910 dsl_pool_user_hold_create_obj(dp, tx);
911 zapobj = dp->dp_tmp_userrefs_obj;
912 } else {
913 return (SET_ERROR(ENOENT));
914 }
915 }

new/usr/src/uts/common/fs/zfs/dsl_pool.c 15

917 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
918 if (holding)
919 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
920 else
921 error = zap_remove(mos, zapobj, name, tx);
922 strfree(name);

924 return (error);
925 }

927 /*
928 * Add a temporary hold for the given dataset object and tag.
929 */
930 int
931 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
932 uint64_t now, dmu_tx_t *tx)
933 {
934 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
935 }

937 /*
938 * Release a temporary hold for the given dataset object and tag.
939 */
940 int
941 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
942 dmu_tx_t *tx)
943 {
944 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL,
945 tx, B_FALSE));
946 }

948 /*
949 * DSL Pool Configuration Lock
950 *
951 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
952 * creation / destruction / rename / property setting). It must be held for
953 * read to hold a dataset or dsl_dir. I.e. you must call
954 * dsl_pool_config_enter() or dsl_pool_hold() before calling
955 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
956 * must be held continuously until all datasets and dsl_dirs are released.
957 *
958 * The only exception to this rule is that if a "long hold" is placed on
959 * a dataset, then the dp_config_rwlock may be dropped while the dataset
960 * is still held. The long hold will prevent the dataset from being
961 * destroyed -- the destroy will fail with EBUSY. A long hold can be
962 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
963 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
964 *
965 * Legitimate long-holders (including owners) should be long-running, cancelable
966 * tasks that should cause "zfs destroy" to fail. This includes DMU
967 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
968 * "zfs send", and "zfs diff". There are several other long-holders whose
969 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
970 *
971 * The usual formula for long-holding would be:
972 * dsl_pool_hold()
973 * dsl_dataset_hold()
974 * ... perform checks ...
975 * dsl_dataset_long_hold()
976 * dsl_pool_rele()
977 * ... perform long-running task ...
978 * dsl_dataset_long_rele()
979 * dsl_dataset_rele()
980 *
981 * Note that when the long hold is released, the dataset is still held but
982 * the pool is not held. The dataset may change arbitrarily during this time

new/usr/src/uts/common/fs/zfs/dsl_pool.c 16

983 * (e.g. it could be destroyed). Therefore you shouldn’t do anything to the
984 * dataset except release it.
985 *
986 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
987 * or modifying operations.
988 *
989 * Modifying operations should generally use dsl_sync_task(). The synctask
990 * infrastructure enforces proper locking strategy with respect to the
991 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
992 *
993 * Read-only operations will manually hold the pool, then the dataset, obtain
994 * information from the dataset, then release the pool and dataset.
995 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
996 * hold/rele.
997 */

999 int
1000 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1001 {
1002 spa_t *spa;
1003 int error;

1005 error = spa_open(name, &spa, tag);
1006 if (error == 0) {
1007 *dp = spa_get_dsl(spa);
1008 dsl_pool_config_enter(*dp, tag);
1009 }
1010 return (error);
1011 }

1013 void
1014 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1015 {
1016 dsl_pool_config_exit(dp, tag);
1017 spa_close(dp->dp_spa, tag);
1018 }

1020 void
1021 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1022 {
1023 /*
1024 * We use a "reentrant" reader-writer lock, but not reentrantly.
1025 *
1026 * The rrwlock can (with the track_all flag) track all reading threads,
1027 * which is very useful for debugging which code path failed to release
1028 * the lock, and for verifying that the *current* thread does hold
1029 * the lock.
1030 *
1031 * (Unlike a rwlock, which knows that N threads hold it for
1032 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1033 * if any thread holds it for read, even if this thread doesn’t).
1034 */
1035 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1036 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1037 }

1039 void
1040 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1041 {
1042 rrw_exit(&dp->dp_config_rwlock, tag);
1043 }

1045 boolean_t
1046 dsl_pool_config_held(dsl_pool_t *dp)
1047 {
1048 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));

new/usr/src/uts/common/fs/zfs/dsl_pool.c 17

1049 }

new/usr/src/uts/common/fs/zfs/dsl_userhold.c 1

**
 17479 Wed May 29 20:27:09 2013
new/usr/src/uts/common/fs/zfs/dsl_userhold.c
3740 Poor ZFS send / receive performance due to snapshot hold / release processi
Submitted by: Steven Hartland <steven.hartland@multiplay.co.uk>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 #endif /* ! codereview */
26 */

28 #include <sys/zfs_context.h>
29 #include <sys/dsl_userhold.h>
30 #include <sys/dsl_dataset.h>
31 #include <sys/dsl_destroy.h>
32 #include <sys/dsl_synctask.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/zfs_onexit.h>
35 #include <sys/dsl_pool.h>
36 #include <sys/dsl_dir.h>
37 #include <sys/zfs_ioctl.h>
38 #include <sys/zap.h>

40 typedef struct dsl_dataset_user_hold_arg {
41 nvlist_t *dduha_holds;
42 nvlist_t *dduha_chkholds;
43 #endif /* ! codereview */
44 nvlist_t *dduha_errlist;
45 minor_t dduha_minor;
46 } dsl_dataset_user_hold_arg_t;

48 /*
49 * If you add new checks here, you may need to add additional checks to the
50 * "temporary" case in snapshot_check() in dmu_objset.c.
51 */
52 int
53 dsl_dataset_user_hold_check_one(dsl_dataset_t *ds, const char *htag,
54 boolean_t temphold, dmu_tx_t *tx)
55 {
56 dsl_pool_t *dp = dmu_tx_pool(tx);
57 objset_t *mos = dp->dp_meta_objset;
58 int error = 0;

60 ASSERT(RRW_READ_HELD(&dp->dp_config_rwlock));

new/usr/src/uts/common/fs/zfs/dsl_userhold.c 2

62 #endif /* ! codereview */
63 if (strlen(htag) > MAXNAMELEN)
64 return (E2BIG);
65 /* Tempholds have a more restricted length */
66 if (temphold && strlen(htag) + MAX_TAG_PREFIX_LEN >= MAXNAMELEN)
67 return (E2BIG);

69 /* tags must be unique (if ds already exists) */
70 if (ds != NULL && ds->ds_phys->ds_userrefs_obj != 0) {
24 if (ds != NULL) {
25 mutex_enter(&ds->ds_lock);
26 if (ds->ds_phys->ds_userrefs_obj != 0) {
71 uint64_t value;

73 #endif /* ! codereview */
74 error = zap_lookup(mos, ds->ds_phys->ds_userrefs_obj,
75 htag, 8, 1, &value);
76 if (error == 0)
77 error = SET_ERROR(EEXIST);
78 else if (error == ENOENT)
79 error = 0;
80 }
28 mutex_exit(&ds->ds_lock);
29 }

82 return (error);
83 }

85 static int
86 dsl_dataset_user_hold_check(void *arg, dmu_tx_t *tx)
87 {
88 dsl_dataset_user_hold_arg_t *dduha = arg;
89 dsl_pool_t *dp = dmu_tx_pool(tx);
90 nvpair_t *pair;
40 int rv = 0;

92 if (spa_version(dp->dp_spa) < SPA_VERSION_USERREFS)
93 return (SET_ERROR(ENOTSUP));

95 if (!dmu_tx_is_syncing(tx))
96 return (0);

98 #endif /* ! codereview */
99 for (pair = nvlist_next_nvpair(dduha->dduha_holds, NULL); pair != NULL;
100 pair = nvlist_next_nvpair(dduha->dduha_holds, pair)) {
101 dsl_dataset_t *ds;
102 #endif /* ! codereview */
103 int error = 0;
104 char *htag, *name;
45 dsl_dataset_t *ds;
46 char *htag;

106 /* must be a snapshot */
107 name = nvpair_name(pair);
108 if (strchr(name, ’@’) == NULL)
49 if (strchr(nvpair_name(pair), ’@’) == NULL)
109 error = SET_ERROR(EINVAL);

111 if (error == 0)
112 error = nvpair_value_string(pair, &htag);

114 if (error == 0)
115 error = dsl_dataset_hold(dp, name, FTAG, &ds);

54 if (error == 0) {

new/usr/src/uts/common/fs/zfs/dsl_userhold.c 3

55 error = dsl_dataset_hold(dp,
56 nvpair_name(pair), FTAG, &ds);
57 }
117 if (error == 0) {
118 error = dsl_dataset_user_hold_check_one(ds, htag,
119 dduha->dduha_minor != 0, tx);
120 dsl_dataset_rele(ds, FTAG);
121 }

123 if (error == 0) {
124 fnvlist_add_string(dduha->dduha_chkholds, name, htag);
125 } else {
126 /*
127 * We register ENOENT errors so they can be correctly
128 * reported if needed, such as when all holds fail.
129 */
130 fnvlist_add_int32(dduha->dduha_errlist, name, error);
131 if (error != ENOENT)
132 return (error);
64 if (error != 0) {
65 rv = error;
66 fnvlist_add_int32(dduha->dduha_errlist,
67 nvpair_name(pair), error);
133 }
134 }

136 /* Return ENOENT if no holds would be created. */
137 if (nvlist_next_nvpair(dduha->dduha_chkholds, NULL) == NULL)
138 return (ENOENT);

140 return (0);
70 return (rv);
141 }

144 static void
145 dsl_dataset_user_hold_sync_one_impl(nvlist_t *tmpholds, dsl_dataset_t *ds,
146 const char *htag, minor_t minor, uint64_t now, dmu_tx_t *tx)
73 void
74 dsl_dataset_user_hold_sync_one(dsl_dataset_t *ds, const char *htag,
75 minor_t minor, uint64_t now, dmu_tx_t *tx)
147 {
148 dsl_pool_t *dp = ds->ds_dir->dd_pool;
149 objset_t *mos = dp->dp_meta_objset;
150 uint64_t zapobj;

152 ASSERT(RRW_WRITE_HELD(&dp->dp_config_rwlock));

81 mutex_enter(&ds->ds_lock);
154 if (ds->ds_phys->ds_userrefs_obj == 0) {
155 /*
156 * This is the first user hold for this dataset. Create
157 * the userrefs zap object.
158 */
159 dmu_buf_will_dirty(ds->ds_dbuf, tx);
160 zapobj = ds->ds_phys->ds_userrefs_obj =
161 zap_create(mos, DMU_OT_USERREFS, DMU_OT_NONE, 0, tx);
162 } else {
163 zapobj = ds->ds_phys->ds_userrefs_obj;
164 }
165 ds->ds_userrefs++;
94 mutex_exit(&ds->ds_lock);

167 VERIFY0(zap_add(mos, zapobj, htag, 8, 1, &now, tx));

169 if (minor != 0) {

new/usr/src/uts/common/fs/zfs/dsl_userhold.c 4

170 char name[MAXNAMELEN];
171 nvlist_t *tags;

173 #endif /* ! codereview */
174 VERIFY0(dsl_pool_user_hold(dp, ds->ds_object,
175 htag, now, tx));
176 (void) snprintf(name, sizeof (name), "%llx",
177 (u_longlong_t)ds->ds_object);

179 if (nvlist_lookup_nvlist(tmpholds, name, &tags) != 0) {
180 tags = fnvlist_alloc();
181 fnvlist_add_boolean(tags, htag);
182 fnvlist_add_nvlist(tmpholds, name, tags);
183 fnvlist_free(tags);
184 } else {
185 fnvlist_add_boolean(tags, htag);
186 }
99 dsl_register_onexit_hold_cleanup(ds, htag, minor);
187 }

189 spa_history_log_internal_ds(ds, "hold", tx,
190 "tag=%s temp=%d refs=%llu",
191 htag, minor != 0, ds->ds_userrefs);
192 }

194 typedef struct zfs_hold_cleanup_arg {
195 char zhca_spaname[MAXNAMELEN];
196 uint64_t zhca_spa_load_guid;
197 nvlist_t *zhca_holds;
198 } zfs_hold_cleanup_arg_t;

200 static void
201 dsl_dataset_user_release_onexit(void *arg)
202 {
203 zfs_hold_cleanup_arg_t *ca = (zfs_hold_cleanup_arg_t *)arg;
204 spa_t *spa;
205 int error;

207 error = spa_open(ca->zhca_spaname, &spa, FTAG);
208 if (error != 0) {
209 zfs_dbgmsg("couldn’t release holds on pool=%s "
210 "because pool is no longer loaded",
211 ca->zhca_spaname);
212 return;
213 }
214 if (spa_load_guid(spa) != ca->zhca_spa_load_guid) {
215 zfs_dbgmsg("couldn’t release holds on pool=%s "
216 "because pool is no longer loaded (guid doesn’t match)",
217 ca->zhca_spaname);
218 spa_close(spa, FTAG);
219 return;
220 }

222 (void) dsl_dataset_user_release_tmp(spa_get_dsl(spa), ca->zhca_holds);
223 fnvlist_free(ca->zhca_holds);
224 kmem_free(ca, sizeof (zfs_hold_cleanup_arg_t));
225 spa_close(spa, FTAG);
226 }

228 static void
229 dsl_onexit_hold_cleanup(spa_t *spa, nvlist_t *holds, minor_t minor)
230 {
231 zfs_hold_cleanup_arg_t *ca;

233 if (minor == 0 || nvlist_next_nvpair(holds, NULL) == NULL) {
234 fnvlist_free(holds);

new/usr/src/uts/common/fs/zfs/dsl_userhold.c 5

235 return;
236 }

238 ASSERT(spa != NULL);
239 ca = kmem_alloc(sizeof (*ca), KM_SLEEP);

241 (void) strlcpy(ca->zhca_spaname, spa_name(spa),
242 sizeof (ca->zhca_spaname));
243 ca->zhca_spa_load_guid = spa_load_guid(spa);
244 ca->zhca_holds = holds;
245 VERIFY0(zfs_onexit_add_cb(minor,
246 dsl_dataset_user_release_onexit, ca, NULL));
247 }

249 void
250 dsl_dataset_user_hold_sync_one(dsl_dataset_t *ds, const char *htag,
251 minor_t minor, uint64_t now, dmu_tx_t *tx)
252 {
253 nvlist_t *tmpholds;

255 if (minor != 0)
256 tmpholds = fnvlist_alloc();
257 else
258 tmpholds = NULL;
259 dsl_dataset_user_hold_sync_one_impl(tmpholds, ds, htag, minor, now, tx);
260 dsl_onexit_hold_cleanup(dsl_dataset_get_spa(ds), tmpholds, minor);
261 }

263 #endif /* ! codereview */
264 static void
265 dsl_dataset_user_hold_sync(void *arg, dmu_tx_t *tx)
266 {
267 dsl_dataset_user_hold_arg_t *dduha = arg;
268 dsl_pool_t *dp = dmu_tx_pool(tx);
269 nvpair_t *pair;
270 nvlist_t *tmpholds;
271 #endif /* ! codereview */
272 uint64_t now = gethrestime_sec();

274 if (dduha->dduha_minor != 0)
275 tmpholds = fnvlist_alloc();
276 else
277 tmpholds = NULL;
278 for (pair = nvlist_next_nvpair(dduha->dduha_chkholds, NULL);
279 pair != NULL;
280 pair = nvlist_next_nvpair(dduha->dduha_chkholds, pair)) {
107 for (pair = nvlist_next_nvpair(dduha->dduha_holds, NULL); pair != NULL;
108 pair = nvlist_next_nvpair(dduha->dduha_holds, pair)) {
281 dsl_dataset_t *ds;

283 #endif /* ! codereview */
284 VERIFY0(dsl_dataset_hold(dp, nvpair_name(pair), FTAG, &ds));
285 dsl_dataset_user_hold_sync_one_impl(tmpholds, ds,
286 fnvpair_value_string(pair), dduha->dduha_minor, now, tx);
110 dsl_dataset_user_hold_sync_one(ds, fnvpair_value_string(pair),
111 dduha->dduha_minor, now, tx);
287 dsl_dataset_rele(ds, FTAG);
288 }
289 dsl_onexit_hold_cleanup(dp->dp_spa, tmpholds, dduha->dduha_minor);
290 #endif /* ! codereview */
291 }

293 /*
294 * The full semantics of this function are described in the comment above
295 * lzc_hold().
296 *

new/usr/src/uts/common/fs/zfs/dsl_userhold.c 6

297 * To summarize:
298 #endif /* ! codereview */
299 * holds is nvl of snapname -> holdname
300 * errlist will be filled in with snapname -> error
114 * if cleanup_minor is not 0, the holds will be temporary, cleaned up
115 * when the process exits.
301 *
302 * The snaphosts must all be in the same pool.
303 *
304 * Holds for snapshots that don’t exist will be skipped.
305 *
306 * If none of the snapshots for requested holds exist then ENOENT will be
307 * returned.
308 *
309 * If cleanup_minor is not 0, the holds will be temporary, which will be cleaned
310 * up when the process exits.
311 *
312 * On success all the holds, for snapshots that existed, will be created and 0
313 * will be returned.
314 *
315 * On failure no holds will be created, the errlist will be filled in,
316 * and an errno will returned.
317 *
318 * In all cases the errlist will contain entries for holds where the snapshot
319 * didn’t exist.
117 * if any fails, all will fail.
320 */
321 int
322 dsl_dataset_user_hold(nvlist_t *holds, minor_t cleanup_minor, nvlist_t *errlist)
323 {
324 dsl_dataset_user_hold_arg_t dduha;
325 nvpair_t *pair;
326 int ret;
327 #endif /* ! codereview */

329 pair = nvlist_next_nvpair(holds, NULL);
330 if (pair == NULL)
331 return (0);

333 dduha.dduha_holds = holds;
334 dduha.dduha_chkholds = fnvlist_alloc();
335 #endif /* ! codereview */
336 dduha.dduha_errlist = errlist;
337 dduha.dduha_minor = cleanup_minor;

339 ret = dsl_sync_task(nvpair_name(pair), dsl_dataset_user_hold_check,
340 dsl_dataset_user_hold_sync, &dduha, fnvlist_num_pairs(holds));
341 fnvlist_free(dduha.dduha_chkholds);

343 return (ret);
124 return (dsl_sync_task(nvpair_name(pair), dsl_dataset_user_hold_check,
125 dsl_dataset_user_hold_sync, &dduha, fnvlist_num_pairs(holds)));
344 }

346 typedef int (dsl_holdfunc_t)(dsl_pool_t *dp, const char *name, void *tag,
347 dsl_dataset_t **dsp);

349 #endif /* ! codereview */
350 typedef struct dsl_dataset_user_release_arg {
351 dsl_holdfunc_t *ddura_holdfunc;
352 #endif /* ! codereview */
353 nvlist_t *ddura_holds;
354 nvlist_t *ddura_todelete;
355 nvlist_t *ddura_errlist;
356 nvlist_t *ddura_chkholds;
357 #endif /* ! codereview */

new/usr/src/uts/common/fs/zfs/dsl_userhold.c 7

358 } dsl_dataset_user_release_arg_t;

360 /* Place a dataset hold on the snapshot identified by passed dsobj string */
361 static int
362 dsl_dataset_hold_obj_string(dsl_pool_t *dp, const char *dsobj, void *tag,
363 dsl_dataset_t **dsp)
364 {
365 return (dsl_dataset_hold_obj(dp, strtonum(dsobj, NULL), tag, dsp));
366 }

368 #endif /* ! codereview */
369 static int
370 dsl_dataset_user_release_check_one(dsl_dataset_user_release_arg_t *ddura,
371 dsl_dataset_t *ds, nvlist_t *holds, const char *name)
128 dsl_dataset_user_release_check_one(dsl_dataset_t *ds,
129 nvlist_t *holds, boolean_t *todelete)
372 {
373 uint64_t zapobj;
374 nvpair_t *pair;
375 nvlist_t *holds_found;
376 #endif /* ! codereview */
377 objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset;
378 int ret, numholds;
133 int error;
134 int numholds = 0;

136 *todelete = B_FALSE;

380 if (!dsl_dataset_is_snapshot(ds))
381 return (SET_ERROR(EINVAL));

383 zapobj = ds->ds_phys->ds_userrefs_obj;
384 if (zapobj == 0)
385 return (SET_ERROR(ESRCH));

387 ret = 0;
388 numholds = 0;
389 holds_found = fnvlist_alloc();

391 #endif /* ! codereview */
392 for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL;
393 pair = nvlist_next_nvpair(holds, pair)) {
145 /* Make sure the hold exists */
394 uint64_t tmp;
395 int error;
396 const char *name;

398 name = nvpair_name(pair);
399 error = zap_lookup(mos, zapobj, name, 8, 1, &tmp);

401 /* Non-existent holds aren’t always an error. */
147 error = zap_lookup(mos, zapobj, nvpair_name(pair), 8, 1, &tmp);
402 if (error == ENOENT)
403 continue;

405 if (error != 0) {
406 fnvlist_free(holds_found);
149 error = SET_ERROR(ESRCH);
150 if (error != 0)
407 return (error);
408 }

410 fnvlist_add_boolean(holds_found, name);
411 #endif /* ! codereview */
412 numholds++;
413 }

new/usr/src/uts/common/fs/zfs/dsl_userhold.c 8

415 if (DS_IS_DEFER_DESTROY(ds) && ds->ds_phys->ds_num_children == 1 &&
416 ds->ds_userrefs == numholds) {
417 /* we need to destroy the snapshot as well */
418 if (dsl_dataset_long_held(ds)) {
419 fnvlist_free(holds_found);

153 if (dsl_dataset_long_held(ds))
420 return (SET_ERROR(EBUSY));
155 *todelete = B_TRUE;
421 }
422 fnvlist_add_boolean(ddura->ddura_todelete, name);
423 }

425 if (numholds == 0)
426 ret = ENOENT;
427 else
428 fnvlist_add_nvlist(ddura->ddura_chkholds, name, holds_found);
429 fnvlist_free(holds_found);

431 return (ret);
157 return (0);
432 }

434 static int
435 dsl_dataset_user_release_check(void *arg, dmu_tx_t *tx)
436 {
437 dsl_dataset_user_release_arg_t *ddura;
438 dsl_holdfunc_t *holdfunc;
439 dsl_pool_t *dp;
163 dsl_dataset_user_release_arg_t *ddura = arg;
164 dsl_pool_t *dp = dmu_tx_pool(tx);
440 nvpair_t *pair;
166 int rv = 0;

442 if (!dmu_tx_is_syncing(tx))
443 return (0);

445 ASSERT(RRW_WRITE_HELD(&dp->dp_config_rwlock));

447 dp = dmu_tx_pool(tx);
448 ddura = (dsl_dataset_user_release_arg_t *)arg;
449 holdfunc = ddura->ddura_holdfunc;

451 #endif /* ! codereview */
452 for (pair = nvlist_next_nvpair(ddura->ddura_holds, NULL); pair != NULL;
453 pair = nvlist_next_nvpair(ddura->ddura_holds, pair)) {
454 const char *name;
171 const char *name = nvpair_name(pair);
455 int error;
456 dsl_dataset_t *ds;
457 nvlist_t *holds;

459 name = nvpair_name(pair);
460 #endif /* ! codereview */
461 error = nvpair_value_nvlist(pair, &holds);
462 if (error != 0)
463 error = (SET_ERROR(EINVAL));
464 if (error == 0)
465 error = holdfunc(dp, name, FTAG, &ds);
176 return (SET_ERROR(EINVAL));

178 error = dsl_dataset_hold(dp, name, FTAG, &ds);
466 if (error == 0) {
467 error = dsl_dataset_user_release_check_one(ddura, ds,
468 holds, name);

new/usr/src/uts/common/fs/zfs/dsl_userhold.c 9

180 boolean_t deleteme;
181 error = dsl_dataset_user_release_check_one(ds,
182 holds, &deleteme);
183 if (error == 0 && deleteme) {
184 fnvlist_add_boolean(ddura->ddura_todelete,
185 name);
186 }
469 dsl_dataset_rele(ds, FTAG);
470 }
471 if (error != 0) {
472 if (ddura->ddura_errlist != NULL) {
473 fnvlist_add_int32(ddura->ddura_errlist, name,
474 error);
191 fnvlist_add_int32(ddura->ddura_errlist,
192 name, error);
475 }
476 /* Non-existent holds aren’t always an error. */
477 if (error != ENOENT)
478 return (error);
194 rv = error;
479 }
480 }

482 /*
483 * Return ENOENT if none of the holds existed avoiding the overhead
484 * of a sync.
485 */
486 if (nvlist_next_nvpair(ddura->ddura_chkholds, NULL) == NULL)
487 return (ENOENT);

489 return (0);
197 return (rv);
490 }

492 static void
493 dsl_dataset_user_release_sync_one(dsl_dataset_user_release_arg_t *ddura,
494 dsl_dataset_t *ds, nvlist_t *holds, dmu_tx_t *tx)
201 dsl_dataset_user_release_sync_one(dsl_dataset_t *ds, nvlist_t *holds,
202 dmu_tx_t *tx)
495 {
496 dsl_pool_t *dp = ds->ds_dir->dd_pool;
497 objset_t *mos = dp->dp_meta_objset;
206 uint64_t zapobj;
207 int error;
498 nvpair_t *pair;

500 for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL;
501 pair = nvlist_next_nvpair(holds, pair)) {
502 int error;
503 const char *name;

505 name = nvpair_name(pair);

507 /* Remove temporary hold if one exists. */
508 error = dsl_pool_user_release(dp, ds->ds_object, name, tx);
509 VERIFY(error == 0 || error == ENOENT);

511 VERIFY0(zap_remove(mos, ds->ds_phys->ds_userrefs_obj, name,
512 tx));
513 #endif /* ! codereview */
514 ds->ds_userrefs--;
212 error = dsl_pool_user_release(dp, ds->ds_object,
213 nvpair_name(pair), tx);
214 VERIFY(error == 0 || error == ENOENT);
215 zapobj = ds->ds_phys->ds_userrefs_obj;
216 VERIFY0(zap_remove(mos, zapobj, nvpair_name(pair), tx));

new/usr/src/uts/common/fs/zfs/dsl_userhold.c 10

516 spa_history_log_internal_ds(ds, "release", tx,
517 "tag=%s refs=%lld", name, (longlong_t)ds->ds_userrefs);
219 "tag=%s refs=%lld", nvpair_name(pair),
220 (longlong_t)ds->ds_userrefs);
518 }
519 }

521 static void
522 dsl_dataset_user_release_sync(void *arg, dmu_tx_t *tx)
523 {
524 dsl_dataset_user_release_arg_t *ddura = arg;
525 dsl_holdfunc_t *holdfunc = ddura->ddura_holdfunc;
526 #endif /* ! codereview */
527 dsl_pool_t *dp = dmu_tx_pool(tx);
528 nvpair_t *pair;

530 ASSERT(RRW_WRITE_HELD(&dp->dp_config_rwlock));

532 for (pair = nvlist_next_nvpair(ddura->ddura_chkholds, NULL);
533 pair != NULL; pair = nvlist_next_nvpair(ddura->ddura_chkholds,
534 pair)) {
228 for (pair = nvlist_next_nvpair(ddura->ddura_holds, NULL); pair != NULL;
229 pair = nvlist_next_nvpair(ddura->ddura_holds, pair)) {
535 dsl_dataset_t *ds;
536 const char *name;
537 #endif /* ! codereview */

539 name = nvpair_name(pair);
540 VERIFY0(holdfunc(dp, name, FTAG, &ds));

542 dsl_dataset_user_release_sync_one(ddura, ds,
231 VERIFY0(dsl_dataset_hold(dp, nvpair_name(pair), FTAG, &ds));
232 dsl_dataset_user_release_sync_one(ds,
543 fnvpair_value_nvlist(pair), tx);
544 if (nvlist_exists(ddura->ddura_todelete, name)) {
234 if (nvlist_exists(ddura->ddura_todelete,
235 nvpair_name(pair))) {
545 ASSERT(ds->ds_userrefs == 0 &&
546 ds->ds_phys->ds_num_children == 1 &&
547 DS_IS_DEFER_DESTROY(ds));
548 dsl_destroy_snapshot_sync_impl(ds, B_FALSE, tx);
549 }
550 dsl_dataset_rele(ds, FTAG);
551 }
552 }

554 /*
555 * The full semantics of this function are described in the comment above
556 * lzc_release().
557 *
558 * To summarize:
559 * Releases holds specified in the nvl holds.
560 *
561 #endif /* ! codereview */
562 * holds is nvl of snapname -> { holdname, ... }
563 * errlist will be filled in with snapname -> error
564 *
565 * If tmpdp is not NULL the names for holds should be the dsobj’s of snapshots,
566 * otherwise they should be the names of shapshots.
567 *
568 * As a release may cause snapshots to be destroyed this trys to ensure they
569 * aren’t mounted.
570 *
571 * The release of non-existent holds are skipped.
572 *

new/usr/src/uts/common/fs/zfs/dsl_userhold.c 11

573 * At least one hold must have been released for the this function to succeed
574 * and return 0.
246 * if any fails, all will fail.
575 */
576 static int
577 dsl_dataset_user_release_impl(nvlist_t *holds, nvlist_t *errlist,
578 dsl_pool_t *tmpdp)
248 int
249 dsl_dataset_user_release(nvlist_t *holds, nvlist_t *errlist)
579 {
580 dsl_dataset_user_release_arg_t ddura;
581 nvpair_t *pair;
582 char *pool;
583 #endif /* ! codereview */
584 int error;

586 pair = nvlist_next_nvpair(holds, NULL);
587 if (pair == NULL)
588 return (0);

590 #ifdef _KERNEL
591 /*
592 * The release may cause snapshots to be destroyed; make sure they
593 * are not mounted.
594 */
595 if (tmpdp != NULL) {
596 /* Temporary holds are specified by dsobj string. */
597 ddura.ddura_holdfunc = dsl_dataset_hold_obj_string;
598 pool = spa_name(tmpdp->dp_spa);
253 ddura.ddura_holds = holds;
254 ddura.ddura_errlist = errlist;
255 ddura.ddura_todelete = fnvlist_alloc();

600 dsl_pool_config_enter(tmpdp, FTAG);
601 for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL;
602 pair = nvlist_next_nvpair(holds, pair)) {
257 error = dsl_sync_task(nvpair_name(pair), dsl_dataset_user_release_check,
258 dsl_dataset_user_release_sync, &ddura, fnvlist_num_pairs(holds));
259 fnvlist_free(ddura.ddura_todelete);
260 return (error);
261 }

263 typedef struct dsl_dataset_user_release_tmp_arg {
264 uint64_t ddurta_dsobj;
265 nvlist_t *ddurta_holds;
266 boolean_t ddurta_deleteme;
267 } dsl_dataset_user_release_tmp_arg_t;

269 static int
270 dsl_dataset_user_release_tmp_check(void *arg, dmu_tx_t *tx)
271 {
272 dsl_dataset_user_release_tmp_arg_t *ddurta = arg;
273 dsl_pool_t *dp = dmu_tx_pool(tx);
603 dsl_dataset_t *ds;
275 int error;

605 error = dsl_dataset_hold_obj_string(tmpdp,
606 nvpair_name(pair), FTAG, &ds);
277 if (!dmu_tx_is_syncing(tx))
278 return (0);

280 error = dsl_dataset_hold_obj(dp, ddurta->ddurta_dsobj, FTAG, &ds);
281 if (error)
282 return (error);

284 error = dsl_dataset_user_release_check_one(ds,

new/usr/src/uts/common/fs/zfs/dsl_userhold.c 12

285 ddurta->ddurta_holds, &ddurta->ddurta_deleteme);
286 dsl_dataset_rele(ds, FTAG);
287 return (error);
288 }

290 static void
291 dsl_dataset_user_release_tmp_sync(void *arg, dmu_tx_t *tx)
292 {
293 dsl_dataset_user_release_tmp_arg_t *ddurta = arg;
294 dsl_pool_t *dp = dmu_tx_pool(tx);
295 dsl_dataset_t *ds;

297 VERIFY0(dsl_dataset_hold_obj(dp, ddurta->ddurta_dsobj, FTAG, &ds));
298 dsl_dataset_user_release_sync_one(ds, ddurta->ddurta_holds, tx);
299 if (ddurta->ddurta_deleteme) {
300 ASSERT(ds->ds_userrefs == 0 &&
301 ds->ds_phys->ds_num_children == 1 &&
302 DS_IS_DEFER_DESTROY(ds));
303 dsl_destroy_snapshot_sync_impl(ds, B_FALSE, tx);
304 }
305 dsl_dataset_rele(ds, FTAG);
306 }

308 /*
309 * Called at spa_load time to release a stale temporary user hold.
310 * Also called by the onexit code.
311 */
312 void
313 dsl_dataset_user_release_tmp(dsl_pool_t *dp, uint64_t dsobj, const char *htag)
314 {
315 dsl_dataset_user_release_tmp_arg_t ddurta;
316 dsl_dataset_t *ds;
317 int error;

319 #ifdef _KERNEL
320 /* Make sure it is not mounted. */
321 dsl_pool_config_enter(dp, FTAG);
322 error = dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds);
607 if (error == 0) {
608 char name[MAXNAMELEN];
609 dsl_dataset_name(ds, name);
610 dsl_dataset_rele(ds, FTAG);
327 dsl_pool_config_exit(dp, FTAG);
611 zfs_unmount_snap(name);
612 }
613 }
614 dsl_pool_config_exit(tmpdp, FTAG);
615 #endif /* ! codereview */
616 } else {
617 /* Non-temporary holds are specified by name. */
618 ddura.ddura_holdfunc = dsl_dataset_hold;
619 pool = nvpair_name(pair);

621 for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL;
622 pair = nvlist_next_nvpair(holds, pair)) {
623 zfs_unmount_snap(nvpair_name(pair));
624 }
329 dsl_pool_config_exit(dp, FTAG);
625 }
626 #endif

628 ddura.ddura_holds = holds;
629 ddura.ddura_errlist = errlist;
630 ddura.ddura_todelete = fnvlist_alloc();
631 ddura.ddura_chkholds = fnvlist_alloc();

new/usr/src/uts/common/fs/zfs/dsl_userhold.c 13

633 error = dsl_sync_task(pool, dsl_dataset_user_release_check,
634 dsl_dataset_user_release_sync, &ddura,
635 fnvlist_num_pairs(holds));
636 fnvlist_free(ddura.ddura_todelete);
637 fnvlist_free(ddura.ddura_chkholds);

639 return (error);
333 ddurta.ddurta_dsobj = dsobj;
334 ddurta.ddurta_holds = fnvlist_alloc();
335 fnvlist_add_boolean(ddurta.ddurta_holds, htag);

337 (void) dsl_sync_task(spa_name(dp->dp_spa),
338 dsl_dataset_user_release_tmp_check,
339 dsl_dataset_user_release_tmp_sync, &ddurta, 1);
340 fnvlist_free(ddurta.ddurta_holds);
640 }

642 /*
643 * holds is nvl of snapname -> { holdname, ... }
644 * errlist will be filled in with snapname -> error
645 */
646 int
647 dsl_dataset_user_release(nvlist_t *holds, nvlist_t *errlist)
343 typedef struct zfs_hold_cleanup_arg {
344 char zhca_spaname[MAXNAMELEN];
345 uint64_t zhca_spa_load_guid;
346 uint64_t zhca_dsobj;
347 char zhca_htag[MAXNAMELEN];
348 } zfs_hold_cleanup_arg_t;

350 static void
351 dsl_dataset_user_release_onexit(void *arg)
648 {
649 return (dsl_dataset_user_release_impl(holds, errlist, NULL));
353 zfs_hold_cleanup_arg_t *ca = arg;
354 spa_t *spa;
355 int error;

357 error = spa_open(ca->zhca_spaname, &spa, FTAG);
358 if (error != 0) {
359 zfs_dbgmsg("couldn’t release hold on pool=%s ds=%llu tag=%s "
360 "because pool is no longer loaded",
361 ca->zhca_spaname, ca->zhca_dsobj, ca->zhca_htag);
362 return;
363 }
364 if (spa_load_guid(spa) != ca->zhca_spa_load_guid) {
365 zfs_dbgmsg("couldn’t release hold on pool=%s ds=%llu tag=%s "
366 "because pool is no longer loaded (guid doesn’t match)",
367 ca->zhca_spaname, ca->zhca_dsobj, ca->zhca_htag);
368 spa_close(spa, FTAG);
369 return;
370 }

372 dsl_dataset_user_release_tmp(spa_get_dsl(spa),
373 ca->zhca_dsobj, ca->zhca_htag);
374 kmem_free(ca, sizeof (zfs_hold_cleanup_arg_t));
375 spa_close(spa, FTAG);
650 }

652 /*
653 * holds is nvl of snapdsobj -> { holdname, ... }
654 */
655 #endif /* ! codereview */
656 void
657 dsl_dataset_user_release_tmp(struct dsl_pool *dp, nvlist_t *holds)
378 dsl_register_onexit_hold_cleanup(dsl_dataset_t *ds, const char *htag,

new/usr/src/uts/common/fs/zfs/dsl_userhold.c 14

379 minor_t minor)
658 {
659 ASSERT(dp != NULL);
660 (void) dsl_dataset_user_release_impl(holds, NULL, dp);
381 zfs_hold_cleanup_arg_t *ca = kmem_alloc(sizeof (*ca), KM_SLEEP);
382 spa_t *spa = dsl_dataset_get_spa(ds);
383 (void) strlcpy(ca->zhca_spaname, spa_name(spa),
384 sizeof (ca->zhca_spaname));
385 ca->zhca_spa_load_guid = spa_load_guid(spa);
386 ca->zhca_dsobj = ds->ds_object;
387 (void) strlcpy(ca->zhca_htag, htag, sizeof (ca->zhca_htag));
388 VERIFY0(zfs_onexit_add_cb(minor,
389 dsl_dataset_user_release_onexit, ca, NULL));
661 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/dsl_dataset.h 1

**
 10207 Wed May 29 20:27:09 2013
new/usr/src/uts/common/fs/zfs/sys/dsl_dataset.h
3740 Poor ZFS send / receive performance due to snapshot hold / release processi
Submitted by: Steven Hartland <steven.hartland@multiplay.co.uk>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 #endif /* ! codereview */
27 */

29 #ifndef _SYS_DSL_DATASET_H
30 #define _SYS_DSL_DATASET_H

32 #include <sys/dmu.h>
33 #include <sys/spa.h>
34 #include <sys/txg.h>
35 #include <sys/zio.h>
36 #include <sys/bplist.h>
37 #include <sys/dsl_synctask.h>
38 #include <sys/zfs_context.h>
39 #include <sys/dsl_deadlist.h>
40 #include <sys/refcount.h>

42 #ifdef __cplusplus
43 extern "C" {
44 #endif

46 struct dsl_dataset;
47 struct dsl_dir;
48 struct dsl_pool;

50 #define DS_FLAG_INCONSISTENT (1ULL<<0)
51 #define DS_IS_INCONSISTENT(ds) \
52 ((ds)->ds_phys->ds_flags & DS_FLAG_INCONSISTENT)
53 /*
54 * Note: nopromote can not yet be set, but we want support for it in this
55 * on-disk version, so that we don’t need to upgrade for it later.
56 */
57 #define DS_FLAG_NOPROMOTE (1ULL<<1)

59 /*
60 * DS_FLAG_UNIQUE_ACCURATE is set if ds_unique_bytes has been correctly

new/usr/src/uts/common/fs/zfs/sys/dsl_dataset.h 2

61 * calculated for head datasets (starting with SPA_VERSION_UNIQUE_ACCURATE,
62 * refquota/refreservations).
63 */
64 #define DS_FLAG_UNIQUE_ACCURATE (1ULL<<2)

66 /*
67 * DS_FLAG_DEFER_DESTROY is set after ’zfs destroy -d’ has been called
68 * on a dataset. This allows the dataset to be destroyed using ’zfs release’.
69 */
70 #define DS_FLAG_DEFER_DESTROY (1ULL<<3)
71 #define DS_IS_DEFER_DESTROY(ds) \
72 ((ds)->ds_phys->ds_flags & DS_FLAG_DEFER_DESTROY)

74 /*
75 * DS_FLAG_CI_DATASET is set if the dataset contains a file system whose
76 * name lookups should be performed case-insensitively.
77 */
78 #define DS_FLAG_CI_DATASET (1ULL<<16)

80 #define DS_CREATE_FLAG_NODIRTY (1ULL<<24)

82 typedef struct dsl_dataset_phys {
83 uint64_t ds_dir_obj; /* DMU_OT_DSL_DIR */
84 uint64_t ds_prev_snap_obj; /* DMU_OT_DSL_DATASET */
85 uint64_t ds_prev_snap_txg;
86 uint64_t ds_next_snap_obj; /* DMU_OT_DSL_DATASET */
87 uint64_t ds_snapnames_zapobj; /* DMU_OT_DSL_DS_SNAP_MAP 0 for snaps */
88 uint64_t ds_num_children; /* clone/snap children; ==0 for head */
89 uint64_t ds_creation_time; /* seconds since 1970 */
90 uint64_t ds_creation_txg;
91 uint64_t ds_deadlist_obj; /* DMU_OT_DEADLIST */
92 /*
93 * ds_referenced_bytes, ds_compressed_bytes, and ds_uncompressed_bytes
94 * include all blocks referenced by this dataset, including those
95 * shared with any other datasets.
96 */
97 uint64_t ds_referenced_bytes;
98 uint64_t ds_compressed_bytes;
99 uint64_t ds_uncompressed_bytes;
100 uint64_t ds_unique_bytes; /* only relevant to snapshots */
101 /*
102 * The ds_fsid_guid is a 56-bit ID that can change to avoid
103 * collisions. The ds_guid is a 64-bit ID that will never
104 * change, so there is a small probability that it will collide.
105 */
106 uint64_t ds_fsid_guid;
107 uint64_t ds_guid;
108 uint64_t ds_flags; /* DS_FLAG_* */
109 blkptr_t ds_bp;
110 uint64_t ds_next_clones_obj; /* DMU_OT_DSL_CLONES */
111 uint64_t ds_props_obj; /* DMU_OT_DSL_PROPS for snaps */
112 uint64_t ds_userrefs_obj; /* DMU_OT_USERREFS */
113 uint64_t ds_pad[5]; /* pad out to 320 bytes for good measure */
114 } dsl_dataset_phys_t;

116 typedef struct dsl_dataset {
117 /* Immutable: */
118 struct dsl_dir *ds_dir;
119 dsl_dataset_phys_t *ds_phys;
120 dmu_buf_t *ds_dbuf;
121 uint64_t ds_object;
122 uint64_t ds_fsid_guid;

124 /* only used in syncing context, only valid for non-snapshots: */
125 struct dsl_dataset *ds_prev;

new/usr/src/uts/common/fs/zfs/sys/dsl_dataset.h 3

127 /* has internal locking: */
128 dsl_deadlist_t ds_deadlist;
129 bplist_t ds_pending_deadlist;

131 /* protected by lock on pool’s dp_dirty_datasets list */
132 txg_node_t ds_dirty_link;
133 list_node_t ds_synced_link;

135 /*
136 * ds_phys->ds_<accounting> is also protected by ds_lock.
137 * Protected by ds_lock:
138 */
139 kmutex_t ds_lock;
140 objset_t *ds_objset;
141 uint64_t ds_userrefs;
142 void *ds_owner;

144 /*
145 * Long holds prevent the ds from being destroyed; they allow the
146 * ds to remain held even after dropping the dp_config_rwlock.
147 * Owning counts as a long hold. See the comments above
148 * dsl_pool_hold() for details.
149 */
150 refcount_t ds_longholds;

152 /* no locking; only for making guesses */
153 uint64_t ds_trysnap_txg;

155 /* for objset_open() */
156 kmutex_t ds_opening_lock;

158 uint64_t ds_reserved; /* cached refreservation */
159 uint64_t ds_quota; /* cached refquota */

161 kmutex_t ds_sendstream_lock;
162 list_t ds_sendstreams;

164 /* Protected by ds_lock; keep at end of struct for better locality */
165 char ds_snapname[MAXNAMELEN];
166 } dsl_dataset_t;

168 /*
169 * The max length of a temporary tag prefix is the number of hex digits
170 * required to express UINT64_MAX plus one for the hyphen.
171 */
172 #define MAX_TAG_PREFIX_LEN 17

174 #define dsl_dataset_is_snapshot(ds) \
175 ((ds)->ds_phys->ds_num_children != 0)

177 #define DS_UNIQUE_IS_ACCURATE(ds) \
178 (((ds)->ds_phys->ds_flags & DS_FLAG_UNIQUE_ACCURATE) != 0)

180 int dsl_dataset_hold(struct dsl_pool *dp, const char *name, void *tag,
181 dsl_dataset_t **dsp);
182 int dsl_dataset_hold_obj(struct dsl_pool *dp, uint64_t dsobj, void *tag,
183 dsl_dataset_t **);
184 void dsl_dataset_rele(dsl_dataset_t *ds, void *tag);
185 int dsl_dataset_own(struct dsl_pool *dp, const char *name,
186 void *tag, dsl_dataset_t **dsp);
187 int dsl_dataset_own_obj(struct dsl_pool *dp, uint64_t dsobj,
188 void *tag, dsl_dataset_t **dsp);
189 void dsl_dataset_disown(dsl_dataset_t *ds, void *tag);
190 void dsl_dataset_name(dsl_dataset_t *ds, char *name);
191 boolean_t dsl_dataset_tryown(dsl_dataset_t *ds, void *tag);
25 void dsl_register_onexit_hold_cleanup(dsl_dataset_t *ds, const char *htag,

new/usr/src/uts/common/fs/zfs/sys/dsl_dataset.h 4

26 minor_t minor);
192 uint64_t dsl_dataset_create_sync(dsl_dir_t *pds, const char *lastname,
193 dsl_dataset_t *origin, uint64_t flags, cred_t *, dmu_tx_t *);
194 uint64_t dsl_dataset_create_sync_dd(dsl_dir_t *dd, dsl_dataset_t *origin,
195 uint64_t flags, dmu_tx_t *tx);
196 int dsl_dataset_snapshot(nvlist_t *snaps, nvlist_t *props, nvlist_t *errors);
197 int dsl_dataset_promote(const char *name, char *conflsnap);
198 int dsl_dataset_clone_swap(dsl_dataset_t *clone, dsl_dataset_t *origin_head,
199 boolean_t force);
200 int dsl_dataset_rename_snapshot(const char *fsname,
201 const char *oldsnapname, const char *newsnapname, boolean_t recursive);
202 int dsl_dataset_snapshot_tmp(const char *fsname, const char *snapname,
203 minor_t cleanup_minor, const char *htag);

205 blkptr_t *dsl_dataset_get_blkptr(dsl_dataset_t *ds);
206 void dsl_dataset_set_blkptr(dsl_dataset_t *ds, blkptr_t *bp, dmu_tx_t *tx);

208 spa_t *dsl_dataset_get_spa(dsl_dataset_t *ds);

210 boolean_t dsl_dataset_modified_since_lastsnap(dsl_dataset_t *ds);

212 void dsl_dataset_sync(dsl_dataset_t *os, zio_t *zio, dmu_tx_t *tx);

214 void dsl_dataset_block_born(dsl_dataset_t *ds, const blkptr_t *bp,
215 dmu_tx_t *tx);
216 int dsl_dataset_block_kill(dsl_dataset_t *ds, const blkptr_t *bp,
217 dmu_tx_t *tx, boolean_t async);
218 boolean_t dsl_dataset_block_freeable(dsl_dataset_t *ds, const blkptr_t *bp,
219 uint64_t blk_birth);
220 uint64_t dsl_dataset_prev_snap_txg(dsl_dataset_t *ds);

222 void dsl_dataset_dirty(dsl_dataset_t *ds, dmu_tx_t *tx);
223 void dsl_dataset_stats(dsl_dataset_t *os, nvlist_t *nv);
224 void dsl_dataset_fast_stat(dsl_dataset_t *ds, dmu_objset_stats_t *stat);
225 void dsl_dataset_space(dsl_dataset_t *ds,
226 uint64_t *refdbytesp, uint64_t *availbytesp,
227 uint64_t *usedobjsp, uint64_t *availobjsp);
228 uint64_t dsl_dataset_fsid_guid(dsl_dataset_t *ds);
229 int dsl_dataset_space_written(dsl_dataset_t *oldsnap, dsl_dataset_t *new,
230 uint64_t *usedp, uint64_t *compp, uint64_t *uncompp);
231 int dsl_dataset_space_wouldfree(dsl_dataset_t *firstsnap, dsl_dataset_t *last,
232 uint64_t *usedp, uint64_t *compp, uint64_t *uncompp);
233 boolean_t dsl_dataset_is_dirty(dsl_dataset_t *ds);

235 int dsl_dsobj_to_dsname(char *pname, uint64_t obj, char *buf);

237 int dsl_dataset_check_quota(dsl_dataset_t *ds, boolean_t check_quota,
238 uint64_t asize, uint64_t inflight, uint64_t *used,
239 uint64_t *ref_rsrv);
240 int dsl_dataset_set_refquota(const char *dsname, zprop_source_t source,
241 uint64_t quota);
242 int dsl_dataset_set_refreservation(const char *dsname, zprop_source_t source,
243 uint64_t reservation);

245 boolean_t dsl_dataset_is_before(dsl_dataset_t *later, dsl_dataset_t *earlier);
246 void dsl_dataset_long_hold(dsl_dataset_t *ds, void *tag);
247 void dsl_dataset_long_rele(dsl_dataset_t *ds, void *tag);
248 boolean_t dsl_dataset_long_held(dsl_dataset_t *ds);

250 int dsl_dataset_clone_swap_check_impl(dsl_dataset_t *clone,
251 dsl_dataset_t *origin_head, boolean_t force);
252 void dsl_dataset_clone_swap_sync_impl(dsl_dataset_t *clone,
253 dsl_dataset_t *origin_head, dmu_tx_t *tx);
254 int dsl_dataset_snapshot_check_impl(dsl_dataset_t *ds, const char *snapname,
255 dmu_tx_t *tx);
256 void dsl_dataset_snapshot_sync_impl(dsl_dataset_t *ds, const char *snapname,

new/usr/src/uts/common/fs/zfs/sys/dsl_dataset.h 5

257 dmu_tx_t *tx);

259 void dsl_dataset_remove_from_next_clones(dsl_dataset_t *ds, uint64_t obj,
260 dmu_tx_t *tx);
261 void dsl_dataset_recalc_head_uniq(dsl_dataset_t *ds);
262 int dsl_dataset_get_snapname(dsl_dataset_t *ds);
263 int dsl_dataset_snap_lookup(dsl_dataset_t *ds, const char *name,
264 uint64_t *value);
265 int dsl_dataset_snap_remove(dsl_dataset_t *ds, const char *name, dmu_tx_t *tx);
266 void dsl_dataset_set_refreservation_sync_impl(dsl_dataset_t *ds,
267 zprop_source_t source, uint64_t value, dmu_tx_t *tx);
268 int dsl_dataset_rollback(const char *fsname);

270 #ifdef ZFS_DEBUG
271 #define dprintf_ds(ds, fmt, ...) do { \
272 if (zfs_flags & ZFS_DEBUG_DPRINTF) { \
273 char *__ds_name = kmem_alloc(MAXNAMELEN, KM_SLEEP); \
274 dsl_dataset_name(ds, __ds_name); \
275 dprintf("ds=%s " fmt, __ds_name, __VA_ARGS__); \
276 kmem_free(__ds_name, MAXNAMELEN); \
277 } \
278 _NOTE(CONSTCOND) } while (0)
279 #else
280 #define dprintf_ds(dd, fmt, ...)
281 #endif

283 #ifdef __cplusplus
284 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/dsl_userhold.h 1

**
 1886 Wed May 29 20:27:09 2013
new/usr/src/uts/common/fs/zfs/sys/dsl_userhold.h
3740 Poor ZFS send / receive performance due to snapshot hold / release processi
Submitted by: Steven Hartland <steven.hartland@multiplay.co.uk>
**

2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012 by Delphix. All rights reserved.
25 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
26 * Copyright (c) 2013 Steven Hartland. All rights reserved.
27 #endif /* ! codereview */
28 */

30 #ifndef _SYS_DSL_USERHOLD_H
31 #define _SYS_DSL_USERHOLD_H

33 #include <sys/nvpair.h>
34 #include <sys/types.h>

36 #ifdef __cplusplus
37 extern "C" {
38 #endif

40 struct dsl_pool;
41 struct dsl_dataset;
42 struct dmu_tx;

44 int dsl_dataset_user_hold(nvlist_t *holds, minor_t cleanup_minor,
45 nvlist_t *errlist);
46 int dsl_dataset_user_release(nvlist_t *holds, nvlist_t *errlist);
47 int dsl_dataset_get_holds(const char *dsname, nvlist_t *nvl);
48 void dsl_dataset_user_release_tmp(struct dsl_pool *dp, nvlist_t *holds);
26 void dsl_dataset_user_release_tmp(struct dsl_pool *dp, uint64_t dsobj,
27 const char *htag);
49 int dsl_dataset_user_hold_check_one(struct dsl_dataset *ds, const char *htag,
50 boolean_t temphold, struct dmu_tx *tx);
51 void dsl_dataset_user_hold_sync_one(struct dsl_dataset *ds, const char *htag,
52 minor_t minor, uint64_t now, struct dmu_tx *tx);

54 #ifdef __cplusplus
55 }
56 #endif

58 #endif /* _SYS_DSL_USERHOLD_H */

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 1

**
 143944 Wed May 29 20:27:10 2013
new/usr/src/uts/common/fs/zfs/zfs_ioctl.c
3740 Poor ZFS send / receive performance due to snapshot hold / release processi
Submitted by: Steven Hartland <steven.hartland@multiplay.co.uk>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Portions Copyright 2011 Martin Matuska
25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2013 by Delphix. All rights reserved.
28 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2013 Steven Hartland. All rights reserved.
30 #endif /* ! codereview */
31 */

33 /*
34 * ZFS ioctls.
35 *
36 * This file handles the ioctls to /dev/zfs, used for configuring ZFS storage
37 * pools and filesystems, e.g. with /sbin/zfs and /sbin/zpool.
38 *
39 * There are two ways that we handle ioctls: the legacy way where almost
40 * all of the logic is in the ioctl callback, and the new way where most
41 * of the marshalling is handled in the common entry point, zfsdev_ioctl().
42 *
43 * Non-legacy ioctls should be registered by calling
44 * zfs_ioctl_register() from zfs_ioctl_init(). The ioctl is invoked
45 * from userland by lzc_ioctl().
46 *
47 * The registration arguments are as follows:
48 *
49 * const char *name
50 * The name of the ioctl. This is used for history logging. If the
51 * ioctl returns successfully (the callback returns 0), and allow_log
52 * is true, then a history log entry will be recorded with the input &
53 * output nvlists. The log entry can be printed with "zpool history -i".
54 *
55 * zfs_ioc_t ioc
56 * The ioctl request number, which userland will pass to ioctl(2).
57 * The ioctl numbers can change from release to release, because
58 * the caller (libzfs) must be matched to the kernel.
59 *
60 * zfs_secpolicy_func_t *secpolicy

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 2

61 * This function will be called before the zfs_ioc_func_t, to
62 * determine if this operation is permitted. It should return EPERM
63 * on failure, and 0 on success. Checks include determining if the
64 * dataset is visible in this zone, and if the user has either all
65 * zfs privileges in the zone (SYS_MOUNT), or has been granted permission
66 * to do this operation on this dataset with "zfs allow".
67 *
68 * zfs_ioc_namecheck_t namecheck
69 * This specifies what to expect in the zfs_cmd_t:zc_name -- a pool
70 * name, a dataset name, or nothing. If the name is not well-formed,
71 * the ioctl will fail and the callback will not be called.
72 * Therefore, the callback can assume that the name is well-formed
73 * (e.g. is null-terminated, doesn’t have more than one ’@’ character,
74 * doesn’t have invalid characters).
75 *
76 * zfs_ioc_poolcheck_t pool_check
77 * This specifies requirements on the pool state. If the pool does
78 * not meet them (is suspended or is readonly), the ioctl will fail
79 * and the callback will not be called. If any checks are specified
80 * (i.e. it is not POOL_CHECK_NONE), namecheck must not be NO_NAME.
81 * Multiple checks can be or-ed together (e.g. POOL_CHECK_SUSPENDED |
82 * POOL_CHECK_READONLY).
83 *
84 * boolean_t smush_outnvlist
85 * If smush_outnvlist is true, then the output is presumed to be a
86 * list of errors, and it will be "smushed" down to fit into the
87 * caller’s buffer, by removing some entries and replacing them with a
88 * single "N_MORE_ERRORS" entry indicating how many were removed. See
89 * nvlist_smush() for details. If smush_outnvlist is false, and the
90 * outnvlist does not fit into the userland-provided buffer, then the
91 * ioctl will fail with ENOMEM.
92 *
93 * zfs_ioc_func_t *func
94 * The callback function that will perform the operation.
95 *
96 * The callback should return 0 on success, or an error number on
97 * failure. If the function fails, the userland ioctl will return -1,
98 * and errno will be set to the callback’s return value. The callback
99 * will be called with the following arguments:
100 *
101 * const char *name
102 * The name of the pool or dataset to operate on, from
103 * zfs_cmd_t:zc_name. The ’namecheck’ argument specifies the
104 * expected type (pool, dataset, or none).
105 *
106 * nvlist_t *innvl
107 * The input nvlist, deserialized from zfs_cmd_t:zc_nvlist_src. Or
108 * NULL if no input nvlist was provided. Changes to this nvlist are
109 * ignored. If the input nvlist could not be deserialized, the
110 * ioctl will fail and the callback will not be called.
111 *
112 * nvlist_t *outnvl
113 * The output nvlist, initially empty. The callback can fill it in,
114 * and it will be returned to userland by serializing it into
115 * zfs_cmd_t:zc_nvlist_dst. If it is non-empty, and serialization
116 * fails (e.g. because the caller didn’t supply a large enough
117 * buffer), then the overall ioctl will fail. See the
118 * ’smush_nvlist’ argument above for additional behaviors.
119 *
120 * There are two typical uses of the output nvlist:
121 * - To return state, e.g. property values. In this case,
122 * smush_outnvlist should be false. If the buffer was not large
123 * enough, the caller will reallocate a larger buffer and try
124 * the ioctl again.
125 *
126 * - To return multiple errors from an ioctl which makes on-disk

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 3

127 * changes. In this case, smush_outnvlist should be true.
128 * Ioctls which make on-disk modifications should generally not
129 * use the outnvl if they succeed, because the caller can not
130 * distinguish between the operation failing, and
131 * deserialization failing.
132 */

134 #include <sys/types.h>
135 #include <sys/param.h>
136 #include <sys/errno.h>
137 #include <sys/uio.h>
138 #include <sys/buf.h>
139 #include <sys/modctl.h>
140 #include <sys/open.h>
141 #include <sys/file.h>
142 #include <sys/kmem.h>
143 #include <sys/conf.h>
144 #include <sys/cmn_err.h>
145 #include <sys/stat.h>
146 #include <sys/zfs_ioctl.h>
147 #include <sys/zfs_vfsops.h>
148 #include <sys/zfs_znode.h>
149 #include <sys/zap.h>
150 #include <sys/spa.h>
151 #include <sys/spa_impl.h>
152 #include <sys/vdev.h>
153 #include <sys/priv_impl.h>
154 #include <sys/dmu.h>
155 #include <sys/dsl_dir.h>
156 #include <sys/dsl_dataset.h>
157 #include <sys/dsl_prop.h>
158 #include <sys/dsl_deleg.h>
159 #include <sys/dmu_objset.h>
160 #include <sys/dmu_impl.h>
161 #include <sys/dmu_tx.h>
162 #include <sys/ddi.h>
163 #include <sys/sunddi.h>
164 #include <sys/sunldi.h>
165 #include <sys/policy.h>
166 #include <sys/zone.h>
167 #include <sys/nvpair.h>
168 #include <sys/pathname.h>
169 #include <sys/mount.h>
170 #include <sys/sdt.h>
171 #include <sys/fs/zfs.h>
172 #include <sys/zfs_ctldir.h>
173 #include <sys/zfs_dir.h>
174 #include <sys/zfs_onexit.h>
175 #include <sys/zvol.h>
176 #include <sys/dsl_scan.h>
177 #include <sharefs/share.h>
178 #include <sys/dmu_objset.h>
179 #include <sys/dmu_send.h>
180 #include <sys/dsl_destroy.h>
181 #include <sys/dsl_userhold.h>
182 #include <sys/zfeature.h>

184 #include "zfs_namecheck.h"
185 #include "zfs_prop.h"
186 #include "zfs_deleg.h"
187 #include "zfs_comutil.h"

189 extern struct modlfs zfs_modlfs;

191 extern void zfs_init(void);
192 extern void zfs_fini(void);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 4

194 ldi_ident_t zfs_li = NULL;
195 dev_info_t *zfs_dip;

197 uint_t zfs_fsyncer_key;
198 extern uint_t rrw_tsd_key;
199 static uint_t zfs_allow_log_key;

201 typedef int zfs_ioc_legacy_func_t(zfs_cmd_t *);
202 typedef int zfs_ioc_func_t(const char *, nvlist_t *, nvlist_t *);
203 typedef int zfs_secpolicy_func_t(zfs_cmd_t *, nvlist_t *, cred_t *);

205 typedef enum {
206 NO_NAME,
207 POOL_NAME,
208 DATASET_NAME
209 } zfs_ioc_namecheck_t;

211 typedef enum {
212 POOL_CHECK_NONE = 1 << 0,
213 POOL_CHECK_SUSPENDED = 1 << 1,
214 POOL_CHECK_READONLY = 1 << 2,
215 } zfs_ioc_poolcheck_t;

217 typedef struct zfs_ioc_vec {
218 zfs_ioc_legacy_func_t *zvec_legacy_func;
219 zfs_ioc_func_t *zvec_func;
220 zfs_secpolicy_func_t *zvec_secpolicy;
221 zfs_ioc_namecheck_t zvec_namecheck;
222 boolean_t zvec_allow_log;
223 zfs_ioc_poolcheck_t zvec_pool_check;
224 boolean_t zvec_smush_outnvlist;
225 const char *zvec_name;
226 } zfs_ioc_vec_t;

228 /* This array is indexed by zfs_userquota_prop_t */
229 static const char *userquota_perms[] = {
230 ZFS_DELEG_PERM_USERUSED,
231 ZFS_DELEG_PERM_USERQUOTA,
232 ZFS_DELEG_PERM_GROUPUSED,
233 ZFS_DELEG_PERM_GROUPQUOTA,
234 };

236 static int zfs_ioc_userspace_upgrade(zfs_cmd_t *zc);
237 static int zfs_check_settable(const char *name, nvpair_t *property,
238 cred_t *cr);
239 static int zfs_check_clearable(char *dataset, nvlist_t *props,
240 nvlist_t **errors);
241 static int zfs_fill_zplprops_root(uint64_t, nvlist_t *, nvlist_t *,
242 boolean_t *);
243 int zfs_set_prop_nvlist(const char *, zprop_source_t, nvlist_t *, nvlist_t *);
244 static int get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp);

246 static int zfs_prop_activate_feature(spa_t *spa, zfeature_info_t *feature);

248 /* _NOTE(PRINTFLIKE(4)) - this is printf-like, but lint is too whiney */
249 void
250 __dprintf(const char *file, const char *func, int line, const char *fmt, ...)
251 {
252 const char *newfile;
253 char buf[512];
254 va_list adx;

256 /*
257 * Get rid of annoying "../common/" prefix to filename.
258 */

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 5

259 newfile = strrchr(file, ’/’);
260 if (newfile != NULL) {
261 newfile = newfile + 1; /* Get rid of leading / */
262 } else {
263 newfile = file;
264 }

266 va_start(adx, fmt);
267 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
268 va_end(adx);

270 /*
271 * To get this data, use the zfs-dprintf probe as so:
272 * dtrace -q -n ’zfs-dprintf \
273 * /stringof(arg0) == "dbuf.c"/ \
274 * {printf("%s: %s", stringof(arg1), stringof(arg3))}’
275 * arg0 = file name
276 * arg1 = function name
277 * arg2 = line number
278 * arg3 = message
279 */
280 DTRACE_PROBE4(zfs__dprintf,
281 char *, newfile, char *, func, int, line, char *, buf);
282 }

284 static void
285 history_str_free(char *buf)
286 {
287 kmem_free(buf, HIS_MAX_RECORD_LEN);
288 }

290 static char *
291 history_str_get(zfs_cmd_t *zc)
292 {
293 char *buf;

295 if (zc->zc_history == NULL)
296 return (NULL);

298 buf = kmem_alloc(HIS_MAX_RECORD_LEN, KM_SLEEP);
299 if (copyinstr((void *)(uintptr_t)zc->zc_history,
300 buf, HIS_MAX_RECORD_LEN, NULL) != 0) {
301 history_str_free(buf);
302 return (NULL);
303 }

305 buf[HIS_MAX_RECORD_LEN -1] = ’\0’;

307 return (buf);
308 }

310 /*
311 * Check to see if the named dataset is currently defined as bootable
312 */
313 static boolean_t
314 zfs_is_bootfs(const char *name)
315 {
316 objset_t *os;

318 if (dmu_objset_hold(name, FTAG, &os) == 0) {
319 boolean_t ret;
320 ret = (dmu_objset_id(os) == spa_bootfs(dmu_objset_spa(os)));
321 dmu_objset_rele(os, FTAG);
322 return (ret);
323 }
324 return (B_FALSE);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 6

325 }

327 /*
328 * zfs_earlier_version
329 *
330 * Return non-zero if the spa version is less than requested version.
331 */
332 static int
333 zfs_earlier_version(const char *name, int version)
334 {
335 spa_t *spa;

337 if (spa_open(name, &spa, FTAG) == 0) {
338 if (spa_version(spa) < version) {
339 spa_close(spa, FTAG);
340 return (1);
341 }
342 spa_close(spa, FTAG);
343 }
344 return (0);
345 }

347 /*
348 * zpl_earlier_version
349 *
350 * Return TRUE if the ZPL version is less than requested version.
351 */
352 static boolean_t
353 zpl_earlier_version(const char *name, int version)
354 {
355 objset_t *os;
356 boolean_t rc = B_TRUE;

358 if (dmu_objset_hold(name, FTAG, &os) == 0) {
359 uint64_t zplversion;

361 if (dmu_objset_type(os) != DMU_OST_ZFS) {
362 dmu_objset_rele(os, FTAG);
363 return (B_TRUE);
364 }
365 /* XXX reading from non-owned objset */
366 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &zplversion) == 0)
367 rc = zplversion < version;
368 dmu_objset_rele(os, FTAG);
369 }
370 return (rc);
371 }

373 static void
374 zfs_log_history(zfs_cmd_t *zc)
375 {
376 spa_t *spa;
377 char *buf;

379 if ((buf = history_str_get(zc)) == NULL)
380 return;

382 if (spa_open(zc->zc_name, &spa, FTAG) == 0) {
383 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY)
384 (void) spa_history_log(spa, buf);
385 spa_close(spa, FTAG);
386 }
387 history_str_free(buf);
388 }

390 /*

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 7

391 * Policy for top-level read operations (list pools). Requires no privileges,
392 * and can be used in the local zone, as there is no associated dataset.
393 */
394 /* ARGSUSED */
395 static int
396 zfs_secpolicy_none(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
397 {
398 return (0);
399 }

401 /*
402 * Policy for dataset read operations (list children, get statistics). Requires
403 * no privileges, but must be visible in the local zone.
404 */
405 /* ARGSUSED */
406 static int
407 zfs_secpolicy_read(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
408 {
409 if (INGLOBALZONE(curproc) ||
410 zone_dataset_visible(zc->zc_name, NULL))
411 return (0);

413 return (SET_ERROR(ENOENT));
414 }

416 static int
417 zfs_dozonecheck_impl(const char *dataset, uint64_t zoned, cred_t *cr)
418 {
419 int writable = 1;

421 /*
422 * The dataset must be visible by this zone -- check this first
423 * so they don’t see EPERM on something they shouldn’t know about.
424 */
425 if (!INGLOBALZONE(curproc) &&
426 !zone_dataset_visible(dataset, &writable))
427 return (SET_ERROR(ENOENT));

429 if (INGLOBALZONE(curproc)) {
430 /*
431 * If the fs is zoned, only root can access it from the
432 * global zone.
433 */
434 if (secpolicy_zfs(cr) && zoned)
435 return (SET_ERROR(EPERM));
436 } else {
437 /*
438 * If we are in a local zone, the ’zoned’ property must be set.
439 */
440 if (!zoned)
441 return (SET_ERROR(EPERM));

443 /* must be writable by this zone */
444 if (!writable)
445 return (SET_ERROR(EPERM));
446 }
447 return (0);
448 }

450 static int
451 zfs_dozonecheck(const char *dataset, cred_t *cr)
452 {
453 uint64_t zoned;

455 if (dsl_prop_get_integer(dataset, "zoned", &zoned, NULL))
456 return (SET_ERROR(ENOENT));

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 8

458 return (zfs_dozonecheck_impl(dataset, zoned, cr));
459 }

461 static int
462 zfs_dozonecheck_ds(const char *dataset, dsl_dataset_t *ds, cred_t *cr)
463 {
464 uint64_t zoned;

466 if (dsl_prop_get_int_ds(ds, "zoned", &zoned))
467 return (SET_ERROR(ENOENT));

469 return (zfs_dozonecheck_impl(dataset, zoned, cr));
470 }

472 static int
473 zfs_secpolicy_write_perms_ds(const char *name, dsl_dataset_t *ds,
474 const char *perm, cred_t *cr)
475 {
476 int error;

478 error = zfs_dozonecheck_ds(name, ds, cr);
479 if (error == 0) {
480 error = secpolicy_zfs(cr);
481 if (error != 0)
482 error = dsl_deleg_access_impl(ds, perm, cr);
483 }
484 return (error);
485 }

487 static int
488 zfs_secpolicy_write_perms(const char *name, const char *perm, cred_t *cr)
489 {
490 int error;
491 dsl_dataset_t *ds;
492 dsl_pool_t *dp;

494 error = dsl_pool_hold(name, FTAG, &dp);
495 if (error != 0)
496 return (error);

498 error = dsl_dataset_hold(dp, name, FTAG, &ds);
499 if (error != 0) {
500 dsl_pool_rele(dp, FTAG);
501 return (error);
502 }

504 error = zfs_secpolicy_write_perms_ds(name, ds, perm, cr);

506 dsl_dataset_rele(ds, FTAG);
507 dsl_pool_rele(dp, FTAG);
508 return (error);
509 }

511 /*
512 * Policy for setting the security label property.
513 *
514 * Returns 0 for success, non-zero for access and other errors.
515 */
516 static int
517 zfs_set_slabel_policy(const char *name, char *strval, cred_t *cr)
518 {
519 char ds_hexsl[MAXNAMELEN];
520 bslabel_t ds_sl, new_sl;
521 boolean_t new_default = FALSE;
522 uint64_t zoned;

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 9

523 int needed_priv = -1;
524 int error;

526 /* First get the existing dataset label. */
527 error = dsl_prop_get(name, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
528 1, sizeof (ds_hexsl), &ds_hexsl, NULL);
529 if (error != 0)
530 return (SET_ERROR(EPERM));

532 if (strcasecmp(strval, ZFS_MLSLABEL_DEFAULT) == 0)
533 new_default = TRUE;

535 /* The label must be translatable */
536 if (!new_default && (hexstr_to_label(strval, &new_sl) != 0))
537 return (SET_ERROR(EINVAL));

539 /*
540 * In a non-global zone, disallow attempts to set a label that
541 * doesn’t match that of the zone; otherwise no other checks
542 * are needed.
543 */
544 if (!INGLOBALZONE(curproc)) {
545 if (new_default || !blequal(&new_sl, CR_SL(CRED())))
546 return (SET_ERROR(EPERM));
547 return (0);
548 }

550 /*
551 * For global-zone datasets (i.e., those whose zoned property is
552 * "off", verify that the specified new label is valid for the
553 * global zone.
554 */
555 if (dsl_prop_get_integer(name,
556 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
557 return (SET_ERROR(EPERM));
558 if (!zoned) {
559 if (zfs_check_global_label(name, strval) != 0)
560 return (SET_ERROR(EPERM));
561 }

563 /*
564 * If the existing dataset label is nondefault, check if the
565 * dataset is mounted (label cannot be changed while mounted).
566 * Get the zfsvfs; if there isn’t one, then the dataset isn’t
567 * mounted (or isn’t a dataset, doesn’t exist, ...).
568 */
569 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) != 0) {
570 objset_t *os;
571 static char *setsl_tag = "setsl_tag";

573 /*
574 * Try to own the dataset; abort if there is any error,
575 * (e.g., already mounted, in use, or other error).
576 */
577 error = dmu_objset_own(name, DMU_OST_ZFS, B_TRUE,
578 setsl_tag, &os);
579 if (error != 0)
580 return (SET_ERROR(EPERM));

582 dmu_objset_disown(os, setsl_tag);

584 if (new_default) {
585 needed_priv = PRIV_FILE_DOWNGRADE_SL;
586 goto out_check;
587 }

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 10

589 if (hexstr_to_label(strval, &new_sl) != 0)
590 return (SET_ERROR(EPERM));

592 if (blstrictdom(&ds_sl, &new_sl))
593 needed_priv = PRIV_FILE_DOWNGRADE_SL;
594 else if (blstrictdom(&new_sl, &ds_sl))
595 needed_priv = PRIV_FILE_UPGRADE_SL;
596 } else {
597 /* dataset currently has a default label */
598 if (!new_default)
599 needed_priv = PRIV_FILE_UPGRADE_SL;
600 }

602 out_check:
603 if (needed_priv != -1)
604 return (PRIV_POLICY(cr, needed_priv, B_FALSE, EPERM, NULL));
605 return (0);
606 }

608 static int
609 zfs_secpolicy_setprop(const char *dsname, zfs_prop_t prop, nvpair_t *propval,
610 cred_t *cr)
611 {
612 char *strval;

614 /*
615 * Check permissions for special properties.
616 */
617 switch (prop) {
618 case ZFS_PROP_ZONED:
619 /*
620 * Disallow setting of ’zoned’ from within a local zone.
621 */
622 if (!INGLOBALZONE(curproc))
623 return (SET_ERROR(EPERM));
624 break;

626 case ZFS_PROP_QUOTA:
627 if (!INGLOBALZONE(curproc)) {
628 uint64_t zoned;
629 char setpoint[MAXNAMELEN];
630 /*
631 * Unprivileged users are allowed to modify the
632 * quota on things *under* (ie. contained by)
633 * the thing they own.
634 */
635 if (dsl_prop_get_integer(dsname, "zoned", &zoned,
636 setpoint))
637 return (SET_ERROR(EPERM));
638 if (!zoned || strlen(dsname) <= strlen(setpoint))
639 return (SET_ERROR(EPERM));
640 }
641 break;

643 case ZFS_PROP_MLSLABEL:
644 if (!is_system_labeled())
645 return (SET_ERROR(EPERM));

647 if (nvpair_value_string(propval, &strval) == 0) {
648 int err;

650 err = zfs_set_slabel_policy(dsname, strval, CRED());
651 if (err != 0)
652 return (err);
653 }
654 break;

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 11

655 }

657 return (zfs_secpolicy_write_perms(dsname, zfs_prop_to_name(prop), cr));
658 }

660 /* ARGSUSED */
661 static int
662 zfs_secpolicy_set_fsacl(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
663 {
664 int error;

666 error = zfs_dozonecheck(zc->zc_name, cr);
667 if (error != 0)
668 return (error);

670 /*
671 * permission to set permissions will be evaluated later in
672 * dsl_deleg_can_allow()
673 */
674 return (0);
675 }

677 /* ARGSUSED */
678 static int
679 zfs_secpolicy_rollback(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
680 {
681 return (zfs_secpolicy_write_perms(zc->zc_name,
682 ZFS_DELEG_PERM_ROLLBACK, cr));
683 }

685 /* ARGSUSED */
686 static int
687 zfs_secpolicy_send(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
688 {
689 dsl_pool_t *dp;
690 dsl_dataset_t *ds;
691 char *cp;
692 int error;

694 /*
695 * Generate the current snapshot name from the given objsetid, then
696 * use that name for the secpolicy/zone checks.
697 */
698 cp = strchr(zc->zc_name, ’@’);
699 if (cp == NULL)
700 return (SET_ERROR(EINVAL));
701 error = dsl_pool_hold(zc->zc_name, FTAG, &dp);
702 if (error != 0)
703 return (error);

705 error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &ds);
706 if (error != 0) {
707 dsl_pool_rele(dp, FTAG);
708 return (error);
709 }

711 dsl_dataset_name(ds, zc->zc_name);

713 error = zfs_secpolicy_write_perms_ds(zc->zc_name, ds,
714 ZFS_DELEG_PERM_SEND, cr);
715 dsl_dataset_rele(ds, FTAG);
716 dsl_pool_rele(dp, FTAG);

718 return (error);
719 }

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 12

721 /* ARGSUSED */
722 static int
723 zfs_secpolicy_send_new(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
724 {
725 return (zfs_secpolicy_write_perms(zc->zc_name,
726 ZFS_DELEG_PERM_SEND, cr));
727 }

729 /* ARGSUSED */
730 static int
731 zfs_secpolicy_deleg_share(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
732 {
733 vnode_t *vp;
734 int error;

736 if ((error = lookupname(zc->zc_value, UIO_SYSSPACE,
737 NO_FOLLOW, NULL, &vp)) != 0)
738 return (error);

740 /* Now make sure mntpnt and dataset are ZFS */

742 if (vp->v_vfsp->vfs_fstype != zfsfstype ||
743 (strcmp((char *)refstr_value(vp->v_vfsp->vfs_resource),
744 zc->zc_name) != 0)) {
745 VN_RELE(vp);
746 return (SET_ERROR(EPERM));
747 }

749 VN_RELE(vp);
750 return (dsl_deleg_access(zc->zc_name,
751 ZFS_DELEG_PERM_SHARE, cr));
752 }

754 int
755 zfs_secpolicy_share(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
756 {
757 if (!INGLOBALZONE(curproc))
758 return (SET_ERROR(EPERM));

760 if (secpolicy_nfs(cr) == 0) {
761 return (0);
762 } else {
763 return (zfs_secpolicy_deleg_share(zc, innvl, cr));
764 }
765 }

767 int
768 zfs_secpolicy_smb_acl(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
769 {
770 if (!INGLOBALZONE(curproc))
771 return (SET_ERROR(EPERM));

773 if (secpolicy_smb(cr) == 0) {
774 return (0);
775 } else {
776 return (zfs_secpolicy_deleg_share(zc, innvl, cr));
777 }
778 }

780 static int
781 zfs_get_parent(const char *datasetname, char *parent, int parentsize)
782 {
783 char *cp;

785 /*
786 * Remove the @bla or /bla from the end of the name to get the parent.

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 13

787 */
788 (void) strncpy(parent, datasetname, parentsize);
789 cp = strrchr(parent, ’@’);
790 if (cp != NULL) {
791 cp[0] = ’\0’;
792 } else {
793 cp = strrchr(parent, ’/’);
794 if (cp == NULL)
795 return (SET_ERROR(ENOENT));
796 cp[0] = ’\0’;
797 }

799 return (0);
800 }

802 int
803 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
804 {
805 int error;

807 if ((error = zfs_secpolicy_write_perms(name,
808 ZFS_DELEG_PERM_MOUNT, cr)) != 0)
809 return (error);

811 return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_DESTROY, cr));
812 }

814 /* ARGSUSED */
815 static int
816 zfs_secpolicy_destroy(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
817 {
818 return (zfs_secpolicy_destroy_perms(zc->zc_name, cr));
819 }

821 /*
822 * Destroying snapshots with delegated permissions requires
823 * descendant mount and destroy permissions.
824 */
825 /* ARGSUSED */
826 static int
827 zfs_secpolicy_destroy_snaps(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
828 {
829 nvlist_t *snaps;
830 nvpair_t *pair, *nextpair;
831 int error = 0;

833 if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0)
834 return (SET_ERROR(EINVAL));
835 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
836 pair = nextpair) {
837 dsl_pool_t *dp;
838 dsl_dataset_t *ds;

840 error = dsl_pool_hold(nvpair_name(pair), FTAG, &dp);
841 if (error != 0)
842 break;
843 nextpair = nvlist_next_nvpair(snaps, pair);
844 error = dsl_dataset_hold(dp, nvpair_name(pair), FTAG, &ds);
845 if (error == 0)
846 dsl_dataset_rele(ds, FTAG);
847 dsl_pool_rele(dp, FTAG);

849 if (error == 0) {
850 error = zfs_secpolicy_destroy_perms(nvpair_name(pair),
851 cr);
852 } else if (error == ENOENT) {

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 14

853 /*
854 * Ignore any snapshots that don’t exist (we consider
855 * them "already destroyed"). Remove the name from the
856 * nvl here in case the snapshot is created between
857 * now and when we try to destroy it (in which case
858 * we don’t want to destroy it since we haven’t
859 * checked for permission).
860 */
861 fnvlist_remove_nvpair(snaps, pair);
862 error = 0;
863 }
864 if (error != 0)
865 break;
866 }

868 return (error);
869 }

871 int
872 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
873 {
874 char parentname[MAXNAMELEN];
875 int error;

877 if ((error = zfs_secpolicy_write_perms(from,
878 ZFS_DELEG_PERM_RENAME, cr)) != 0)
879 return (error);

881 if ((error = zfs_secpolicy_write_perms(from,
882 ZFS_DELEG_PERM_MOUNT, cr)) != 0)
883 return (error);

885 if ((error = zfs_get_parent(to, parentname,
886 sizeof (parentname))) != 0)
887 return (error);

889 if ((error = zfs_secpolicy_write_perms(parentname,
890 ZFS_DELEG_PERM_CREATE, cr)) != 0)
891 return (error);

893 if ((error = zfs_secpolicy_write_perms(parentname,
894 ZFS_DELEG_PERM_MOUNT, cr)) != 0)
895 return (error);

897 return (error);
898 }

900 /* ARGSUSED */
901 static int
902 zfs_secpolicy_rename(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
903 {
904 return (zfs_secpolicy_rename_perms(zc->zc_name, zc->zc_value, cr));
905 }

907 /* ARGSUSED */
908 static int
909 zfs_secpolicy_promote(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
910 {
911 dsl_pool_t *dp;
912 dsl_dataset_t *clone;
913 int error;

915 error = zfs_secpolicy_write_perms(zc->zc_name,
916 ZFS_DELEG_PERM_PROMOTE, cr);
917 if (error != 0)
918 return (error);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 15

920 error = dsl_pool_hold(zc->zc_name, FTAG, &dp);
921 if (error != 0)
922 return (error);

924 error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &clone);

926 if (error == 0) {
927 char parentname[MAXNAMELEN];
928 dsl_dataset_t *origin = NULL;
929 dsl_dir_t *dd;
930 dd = clone->ds_dir;

932 error = dsl_dataset_hold_obj(dd->dd_pool,
933 dd->dd_phys->dd_origin_obj, FTAG, &origin);
934 if (error != 0) {
935 dsl_dataset_rele(clone, FTAG);
936 dsl_pool_rele(dp, FTAG);
937 return (error);
938 }

940 error = zfs_secpolicy_write_perms_ds(zc->zc_name, clone,
941 ZFS_DELEG_PERM_MOUNT, cr);

943 dsl_dataset_name(origin, parentname);
944 if (error == 0) {
945 error = zfs_secpolicy_write_perms_ds(parentname, origin,
946 ZFS_DELEG_PERM_PROMOTE, cr);
947 }
948 dsl_dataset_rele(clone, FTAG);
949 dsl_dataset_rele(origin, FTAG);
950 }
951 dsl_pool_rele(dp, FTAG);
952 return (error);
953 }

955 /* ARGSUSED */
956 static int
957 zfs_secpolicy_recv(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
958 {
959 int error;

961 if ((error = zfs_secpolicy_write_perms(zc->zc_name,
962 ZFS_DELEG_PERM_RECEIVE, cr)) != 0)
963 return (error);

965 if ((error = zfs_secpolicy_write_perms(zc->zc_name,
966 ZFS_DELEG_PERM_MOUNT, cr)) != 0)
967 return (error);

969 return (zfs_secpolicy_write_perms(zc->zc_name,
970 ZFS_DELEG_PERM_CREATE, cr));
971 }

973 int
974 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
975 {
976 return (zfs_secpolicy_write_perms(name,
977 ZFS_DELEG_PERM_SNAPSHOT, cr));
978 }

980 /*
981 * Check for permission to create each snapshot in the nvlist.
982 */
983 /* ARGSUSED */
984 static int

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 16

985 zfs_secpolicy_snapshot(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
986 {
987 nvlist_t *snaps;
988 int error = 0;
989 nvpair_t *pair;

991 if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0)
992 return (SET_ERROR(EINVAL));
993 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
994 pair = nvlist_next_nvpair(snaps, pair)) {
995 char *name = nvpair_name(pair);
996 char *atp = strchr(name, ’@’);

998 if (atp == NULL) {
999 error = SET_ERROR(EINVAL);

1000 break;
1001 }
1002 *atp = ’\0’;
1003 error = zfs_secpolicy_snapshot_perms(name, cr);
1004 *atp = ’@’;
1005 if (error != 0)
1006 break;
1007 }
1008 return (error);
1009 }

1011 /* ARGSUSED */
1012 static int
1013 zfs_secpolicy_log_history(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1014 {
1015 /*
1016 * Even root must have a proper TSD so that we know what pool
1017 * to log to.
1018 */
1019 if (tsd_get(zfs_allow_log_key) == NULL)
1020 return (SET_ERROR(EPERM));
1021 return (0);
1022 }

1024 static int
1025 zfs_secpolicy_create_clone(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1026 {
1027 char parentname[MAXNAMELEN];
1028 int error;
1029 char *origin;

1031 if ((error = zfs_get_parent(zc->zc_name, parentname,
1032 sizeof (parentname))) != 0)
1033 return (error);

1035 if (nvlist_lookup_string(innvl, "origin", &origin) == 0 &&
1036 (error = zfs_secpolicy_write_perms(origin,
1037 ZFS_DELEG_PERM_CLONE, cr)) != 0)
1038 return (error);

1040 if ((error = zfs_secpolicy_write_perms(parentname,
1041 ZFS_DELEG_PERM_CREATE, cr)) != 0)
1042 return (error);

1044 return (zfs_secpolicy_write_perms(parentname,
1045 ZFS_DELEG_PERM_MOUNT, cr));
1046 }

1048 /*
1049 * Policy for pool operations - create/destroy pools, add vdevs, etc. Requires
1050 * SYS_CONFIG privilege, which is not available in a local zone.

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 17

1051 */
1052 /* ARGSUSED */
1053 static int
1054 zfs_secpolicy_config(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1055 {
1056 if (secpolicy_sys_config(cr, B_FALSE) != 0)
1057 return (SET_ERROR(EPERM));

1059 return (0);
1060 }

1062 /*
1063 * Policy for object to name lookups.
1064 */
1065 /* ARGSUSED */
1066 static int
1067 zfs_secpolicy_diff(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1068 {
1069 int error;

1071 if ((error = secpolicy_sys_config(cr, B_FALSE)) == 0)
1072 return (0);

1074 error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_DIFF, cr);
1075 return (error);
1076 }

1078 /*
1079 * Policy for fault injection. Requires all privileges.
1080 */
1081 /* ARGSUSED */
1082 static int
1083 zfs_secpolicy_inject(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1084 {
1085 return (secpolicy_zinject(cr));
1086 }

1088 /* ARGSUSED */
1089 static int
1090 zfs_secpolicy_inherit_prop(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1091 {
1092 zfs_prop_t prop = zfs_name_to_prop(zc->zc_value);

1094 if (prop == ZPROP_INVAL) {
1095 if (!zfs_prop_user(zc->zc_value))
1096 return (SET_ERROR(EINVAL));
1097 return (zfs_secpolicy_write_perms(zc->zc_name,
1098 ZFS_DELEG_PERM_USERPROP, cr));
1099 } else {
1100 return (zfs_secpolicy_setprop(zc->zc_name, prop,
1101 NULL, cr));
1102 }
1103 }

1105 static int
1106 zfs_secpolicy_userspace_one(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1107 {
1108 int err = zfs_secpolicy_read(zc, innvl, cr);
1109 if (err)
1110 return (err);

1112 if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS)
1113 return (SET_ERROR(EINVAL));

1115 if (zc->zc_value[0] == 0) {
1116 /*

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 18

1117 * They are asking about a posix uid/gid. If it’s
1118 * themself, allow it.
1119 */
1120 if (zc->zc_objset_type == ZFS_PROP_USERUSED ||
1121 zc->zc_objset_type == ZFS_PROP_USERQUOTA) {
1122 if (zc->zc_guid == crgetuid(cr))
1123 return (0);
1124 } else {
1125 if (groupmember(zc->zc_guid, cr))
1126 return (0);
1127 }
1128 }

1130 return (zfs_secpolicy_write_perms(zc->zc_name,
1131 userquota_perms[zc->zc_objset_type], cr));
1132 }

1134 static int
1135 zfs_secpolicy_userspace_many(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1136 {
1137 int err = zfs_secpolicy_read(zc, innvl, cr);
1138 if (err)
1139 return (err);

1141 if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS)
1142 return (SET_ERROR(EINVAL));

1144 return (zfs_secpolicy_write_perms(zc->zc_name,
1145 userquota_perms[zc->zc_objset_type], cr));
1146 }

1148 /* ARGSUSED */
1149 static int
1150 zfs_secpolicy_userspace_upgrade(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1151 {
1152 return (zfs_secpolicy_setprop(zc->zc_name, ZFS_PROP_VERSION,
1153 NULL, cr));
1154 }

1156 /* ARGSUSED */
1157 static int
1158 zfs_secpolicy_hold(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1159 {
1160 nvpair_t *pair;
1161 nvlist_t *holds;
1162 int error;

1164 error = nvlist_lookup_nvlist(innvl, "holds", &holds);
1165 if (error != 0)
1166 return (SET_ERROR(EINVAL));

1168 for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL;
1169 pair = nvlist_next_nvpair(holds, pair)) {
1170 char fsname[MAXNAMELEN];
1171 error = dmu_fsname(nvpair_name(pair), fsname);
1172 if (error != 0)
1173 return (error);
1174 error = zfs_secpolicy_write_perms(fsname,
1175 ZFS_DELEG_PERM_HOLD, cr);
1176 if (error != 0)
1177 return (error);
1178 }
1179 return (0);
1180 }

1182 /* ARGSUSED */

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 19

1183 static int
1184 zfs_secpolicy_release(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1185 {
1186 nvpair_t *pair;
1187 int error;

1189 for (pair = nvlist_next_nvpair(innvl, NULL); pair != NULL;
1190 pair = nvlist_next_nvpair(innvl, pair)) {
1191 char fsname[MAXNAMELEN];
1192 error = dmu_fsname(nvpair_name(pair), fsname);
1193 if (error != 0)
1194 return (error);
1195 error = zfs_secpolicy_write_perms(fsname,
1196 ZFS_DELEG_PERM_RELEASE, cr);
1197 if (error != 0)
1198 return (error);
1199 }
1200 return (0);
1201 }

1203 /*
1204 * Policy for allowing temporary snapshots to be taken or released
1205 */
1206 static int
1207 zfs_secpolicy_tmp_snapshot(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1208 {
1209 /*
1210 * A temporary snapshot is the same as a snapshot,
1211 * hold, destroy and release all rolled into one.
1212 * Delegated diff alone is sufficient that we allow this.
1213 */
1214 int error;

1216 if ((error = zfs_secpolicy_write_perms(zc->zc_name,
1217 ZFS_DELEG_PERM_DIFF, cr)) == 0)
1218 return (0);

1220 error = zfs_secpolicy_snapshot_perms(zc->zc_name, cr);
1221 if (error == 0)
1222 error = zfs_secpolicy_hold(zc, innvl, cr);
1223 if (error == 0)
1224 error = zfs_secpolicy_release(zc, innvl, cr);
1225 if (error == 0)
1226 error = zfs_secpolicy_destroy(zc, innvl, cr);
1227 return (error);
1228 }

1230 /*
1231 * Returns the nvlist as specified by the user in the zfs_cmd_t.
1232 */
1233 static int
1234 get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp)
1235 {
1236 char *packed;
1237 int error;
1238 nvlist_t *list = NULL;

1240 /*
1241 * Read in and unpack the user-supplied nvlist.
1242 */
1243 if (size == 0)
1244 return (SET_ERROR(EINVAL));

1246 packed = kmem_alloc(size, KM_SLEEP);

1248 if ((error = ddi_copyin((void *)(uintptr_t)nvl, packed, size,

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 20

1249 iflag)) != 0) {
1250 kmem_free(packed, size);
1251 return (error);
1252 }

1254 if ((error = nvlist_unpack(packed, size, &list, 0)) != 0) {
1255 kmem_free(packed, size);
1256 return (error);
1257 }

1259 kmem_free(packed, size);

1261 *nvp = list;
1262 return (0);
1263 }

1265 /*
1266 * Reduce the size of this nvlist until it can be serialized in ’max’ bytes.
1267 * Entries will be removed from the end of the nvlist, and one int32 entry
1268 * named "N_MORE_ERRORS" will be added indicating how many entries were
1269 * removed.
1270 */
1271 static int
1272 nvlist_smush(nvlist_t *errors, size_t max)
1273 {
1274 size_t size;

1276 size = fnvlist_size(errors);

1278 if (size > max) {
1279 nvpair_t *more_errors;
1280 int n = 0;

1282 if (max < 1024)
1283 return (SET_ERROR(ENOMEM));

1285 fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, 0);
1286 more_errors = nvlist_prev_nvpair(errors, NULL);

1288 do {
1289 nvpair_t *pair = nvlist_prev_nvpair(errors,
1290 more_errors);
1291 fnvlist_remove_nvpair(errors, pair);
1292 n++;
1293 size = fnvlist_size(errors);
1294 } while (size > max);

1296 fnvlist_remove_nvpair(errors, more_errors);
1297 fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, n);
1298 ASSERT3U(fnvlist_size(errors), <=, max);
1299 }

1301 return (0);
1302 }

1304 static int
1305 put_nvlist(zfs_cmd_t *zc, nvlist_t *nvl)
1306 {
1307 char *packed = NULL;
1308 int error = 0;
1309 size_t size;

1311 size = fnvlist_size(nvl);

1313 if (size > zc->zc_nvlist_dst_size) {
1314 error = SET_ERROR(ENOMEM);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 21

1315 } else {
1316 packed = fnvlist_pack(nvl, &size);
1317 if (ddi_copyout(packed, (void *)(uintptr_t)zc->zc_nvlist_dst,
1318 size, zc->zc_iflags) != 0)
1319 error = SET_ERROR(EFAULT);
1320 fnvlist_pack_free(packed, size);
1321 }

1323 zc->zc_nvlist_dst_size = size;
1324 zc->zc_nvlist_dst_filled = B_TRUE;
1325 return (error);
1326 }

1328 static int
1329 getzfsvfs(const char *dsname, zfsvfs_t **zfvp)
1330 {
1331 objset_t *os;
1332 int error;

1334 error = dmu_objset_hold(dsname, FTAG, &os);
1335 if (error != 0)
1336 return (error);
1337 if (dmu_objset_type(os) != DMU_OST_ZFS) {
1338 dmu_objset_rele(os, FTAG);
1339 return (SET_ERROR(EINVAL));
1340 }

1342 mutex_enter(&os->os_user_ptr_lock);
1343 *zfvp = dmu_objset_get_user(os);
1344 if (*zfvp) {
1345 VFS_HOLD((*zfvp)->z_vfs);
1346 } else {
1347 error = SET_ERROR(ESRCH);
1348 }
1349 mutex_exit(&os->os_user_ptr_lock);
1350 dmu_objset_rele(os, FTAG);
1351 return (error);
1352 }

1354 /*
1355 * Find a zfsvfs_t for a mounted filesystem, or create our own, in which
1356 * case its z_vfs will be NULL, and it will be opened as the owner.
1357 * If ’writer’ is set, the z_teardown_lock will be held for RW_WRITER,
1358 * which prevents all vnode ops from running.
1359 */
1360 static int
1361 zfsvfs_hold(const char *name, void *tag, zfsvfs_t **zfvp, boolean_t writer)
1362 {
1363 int error = 0;

1365 if (getzfsvfs(name, zfvp) != 0)
1366 error = zfsvfs_create(name, zfvp);
1367 if (error == 0) {
1368 rrw_enter(&(*zfvp)->z_teardown_lock, (writer) ? RW_WRITER :
1369 RW_READER, tag);
1370 if ((*zfvp)->z_unmounted) {
1371 /*
1372 * XXX we could probably try again, since the unmounting
1373 * thread should be just about to disassociate the
1374 * objset from the zfsvfs.
1375 */
1376 rrw_exit(&(*zfvp)->z_teardown_lock, tag);
1377 return (SET_ERROR(EBUSY));
1378 }
1379 }
1380 return (error);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 22

1381 }

1383 static void
1384 zfsvfs_rele(zfsvfs_t *zfsvfs, void *tag)
1385 {
1386 rrw_exit(&zfsvfs->z_teardown_lock, tag);

1388 if (zfsvfs->z_vfs) {
1389 VFS_RELE(zfsvfs->z_vfs);
1390 } else {
1391 dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1392 zfsvfs_free(zfsvfs);
1393 }
1394 }

1396 static int
1397 zfs_ioc_pool_create(zfs_cmd_t *zc)
1398 {
1399 int error;
1400 nvlist_t *config, *props = NULL;
1401 nvlist_t *rootprops = NULL;
1402 nvlist_t *zplprops = NULL;

1404 if (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1405 zc->zc_iflags, &config))
1406 return (error);

1408 if (zc->zc_nvlist_src_size != 0 && (error =
1409 get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
1410 zc->zc_iflags, &props))) {
1411 nvlist_free(config);
1412 return (error);
1413 }

1415 if (props) {
1416 nvlist_t *nvl = NULL;
1417 uint64_t version = SPA_VERSION;

1419 (void) nvlist_lookup_uint64(props,
1420 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version);
1421 if (!SPA_VERSION_IS_SUPPORTED(version)) {
1422 error = SET_ERROR(EINVAL);
1423 goto pool_props_bad;
1424 }
1425 (void) nvlist_lookup_nvlist(props, ZPOOL_ROOTFS_PROPS, &nvl);
1426 if (nvl) {
1427 error = nvlist_dup(nvl, &rootprops, KM_SLEEP);
1428 if (error != 0) {
1429 nvlist_free(config);
1430 nvlist_free(props);
1431 return (error);
1432 }
1433 (void) nvlist_remove_all(props, ZPOOL_ROOTFS_PROPS);
1434 }
1435 VERIFY(nvlist_alloc(&zplprops, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1436 error = zfs_fill_zplprops_root(version, rootprops,
1437 zplprops, NULL);
1438 if (error != 0)
1439 goto pool_props_bad;
1440 }

1442 error = spa_create(zc->zc_name, config, props, zplprops);

1444 /*
1445 * Set the remaining root properties
1446 */

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 23

1447 if (!error && (error = zfs_set_prop_nvlist(zc->zc_name,
1448 ZPROP_SRC_LOCAL, rootprops, NULL)) != 0)
1449 (void) spa_destroy(zc->zc_name);

1451 pool_props_bad:
1452 nvlist_free(rootprops);
1453 nvlist_free(zplprops);
1454 nvlist_free(config);
1455 nvlist_free(props);

1457 return (error);
1458 }

1460 static int
1461 zfs_ioc_pool_destroy(zfs_cmd_t *zc)
1462 {
1463 int error;
1464 zfs_log_history(zc);
1465 error = spa_destroy(zc->zc_name);
1466 if (error == 0)
1467 zvol_remove_minors(zc->zc_name);
1468 return (error);
1469 }

1471 static int
1472 zfs_ioc_pool_import(zfs_cmd_t *zc)
1473 {
1474 nvlist_t *config, *props = NULL;
1475 uint64_t guid;
1476 int error;

1478 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1479 zc->zc_iflags, &config)) != 0)
1480 return (error);

1482 if (zc->zc_nvlist_src_size != 0 && (error =
1483 get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
1484 zc->zc_iflags, &props))) {
1485 nvlist_free(config);
1486 return (error);
1487 }

1489 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1490 guid != zc->zc_guid)
1491 error = SET_ERROR(EINVAL);
1492 else
1493 error = spa_import(zc->zc_name, config, props, zc->zc_cookie);

1495 if (zc->zc_nvlist_dst != 0) {
1496 int err;

1498 if ((err = put_nvlist(zc, config)) != 0)
1499 error = err;
1500 }

1502 nvlist_free(config);

1504 if (props)
1505 nvlist_free(props);

1507 return (error);
1508 }

1510 static int
1511 zfs_ioc_pool_export(zfs_cmd_t *zc)
1512 {

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 24

1513 int error;
1514 boolean_t force = (boolean_t)zc->zc_cookie;
1515 boolean_t hardforce = (boolean_t)zc->zc_guid;

1517 zfs_log_history(zc);
1518 error = spa_export(zc->zc_name, NULL, force, hardforce);
1519 if (error == 0)
1520 zvol_remove_minors(zc->zc_name);
1521 return (error);
1522 }

1524 static int
1525 zfs_ioc_pool_configs(zfs_cmd_t *zc)
1526 {
1527 nvlist_t *configs;
1528 int error;

1530 if ((configs = spa_all_configs(&zc->zc_cookie)) == NULL)
1531 return (SET_ERROR(EEXIST));

1533 error = put_nvlist(zc, configs);

1535 nvlist_free(configs);

1537 return (error);
1538 }

1540 /*
1541 * inputs:
1542 * zc_name name of the pool
1543 *
1544 * outputs:
1545 * zc_cookie real errno
1546 * zc_nvlist_dst config nvlist
1547 * zc_nvlist_dst_size size of config nvlist
1548 */
1549 static int
1550 zfs_ioc_pool_stats(zfs_cmd_t *zc)
1551 {
1552 nvlist_t *config;
1553 int error;
1554 int ret = 0;

1556 error = spa_get_stats(zc->zc_name, &config, zc->zc_value,
1557 sizeof (zc->zc_value));

1559 if (config != NULL) {
1560 ret = put_nvlist(zc, config);
1561 nvlist_free(config);

1563 /*
1564 * The config may be present even if ’error’ is non-zero.
1565 * In this case we return success, and preserve the real errno
1566 * in ’zc_cookie’.
1567 */
1568 zc->zc_cookie = error;
1569 } else {
1570 ret = error;
1571 }

1573 return (ret);
1574 }

1576 /*
1577 * Try to import the given pool, returning pool stats as appropriate so that
1578 * user land knows which devices are available and overall pool health.

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 25

1579 */
1580 static int
1581 zfs_ioc_pool_tryimport(zfs_cmd_t *zc)
1582 {
1583 nvlist_t *tryconfig, *config;
1584 int error;

1586 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1587 zc->zc_iflags, &tryconfig)) != 0)
1588 return (error);

1590 config = spa_tryimport(tryconfig);

1592 nvlist_free(tryconfig);

1594 if (config == NULL)
1595 return (SET_ERROR(EINVAL));

1597 error = put_nvlist(zc, config);
1598 nvlist_free(config);

1600 return (error);
1601 }

1603 /*
1604 * inputs:
1605 * zc_name name of the pool
1606 * zc_cookie scan func (pool_scan_func_t)
1607 */
1608 static int
1609 zfs_ioc_pool_scan(zfs_cmd_t *zc)
1610 {
1611 spa_t *spa;
1612 int error;

1614 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
1615 return (error);

1617 if (zc->zc_cookie == POOL_SCAN_NONE)
1618 error = spa_scan_stop(spa);
1619 else
1620 error = spa_scan(spa, zc->zc_cookie);

1622 spa_close(spa, FTAG);

1624 return (error);
1625 }

1627 static int
1628 zfs_ioc_pool_freeze(zfs_cmd_t *zc)
1629 {
1630 spa_t *spa;
1631 int error;

1633 error = spa_open(zc->zc_name, &spa, FTAG);
1634 if (error == 0) {
1635 spa_freeze(spa);
1636 spa_close(spa, FTAG);
1637 }
1638 return (error);
1639 }

1641 static int
1642 zfs_ioc_pool_upgrade(zfs_cmd_t *zc)
1643 {
1644 spa_t *spa;

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 26

1645 int error;

1647 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
1648 return (error);

1650 if (zc->zc_cookie < spa_version(spa) ||
1651 !SPA_VERSION_IS_SUPPORTED(zc->zc_cookie)) {
1652 spa_close(spa, FTAG);
1653 return (SET_ERROR(EINVAL));
1654 }

1656 spa_upgrade(spa, zc->zc_cookie);
1657 spa_close(spa, FTAG);

1659 return (error);
1660 }

1662 static int
1663 zfs_ioc_pool_get_history(zfs_cmd_t *zc)
1664 {
1665 spa_t *spa;
1666 char *hist_buf;
1667 uint64_t size;
1668 int error;

1670 if ((size = zc->zc_history_len) == 0)
1671 return (SET_ERROR(EINVAL));

1673 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
1674 return (error);

1676 if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) {
1677 spa_close(spa, FTAG);
1678 return (SET_ERROR(ENOTSUP));
1679 }

1681 hist_buf = kmem_alloc(size, KM_SLEEP);
1682 if ((error = spa_history_get(spa, &zc->zc_history_offset,
1683 &zc->zc_history_len, hist_buf)) == 0) {
1684 error = ddi_copyout(hist_buf,
1685 (void *)(uintptr_t)zc->zc_history,
1686 zc->zc_history_len, zc->zc_iflags);
1687 }

1689 spa_close(spa, FTAG);
1690 kmem_free(hist_buf, size);
1691 return (error);
1692 }

1694 static int
1695 zfs_ioc_pool_reguid(zfs_cmd_t *zc)
1696 {
1697 spa_t *spa;
1698 int error;

1700 error = spa_open(zc->zc_name, &spa, FTAG);
1701 if (error == 0) {
1702 error = spa_change_guid(spa);
1703 spa_close(spa, FTAG);
1704 }
1705 return (error);
1706 }

1708 static int
1709 zfs_ioc_dsobj_to_dsname(zfs_cmd_t *zc)
1710 {

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 27

1711 return (dsl_dsobj_to_dsname(zc->zc_name, zc->zc_obj, zc->zc_value));
1712 }

1714 /*
1715 * inputs:
1716 * zc_name name of filesystem
1717 * zc_obj object to find
1718 *
1719 * outputs:
1720 * zc_value name of object
1721 */
1722 static int
1723 zfs_ioc_obj_to_path(zfs_cmd_t *zc)
1724 {
1725 objset_t *os;
1726 int error;

1728 /* XXX reading from objset not owned */
1729 if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os)) != 0)
1730 return (error);
1731 if (dmu_objset_type(os) != DMU_OST_ZFS) {
1732 dmu_objset_rele(os, FTAG);
1733 return (SET_ERROR(EINVAL));
1734 }
1735 error = zfs_obj_to_path(os, zc->zc_obj, zc->zc_value,
1736 sizeof (zc->zc_value));
1737 dmu_objset_rele(os, FTAG);

1739 return (error);
1740 }

1742 /*
1743 * inputs:
1744 * zc_name name of filesystem
1745 * zc_obj object to find
1746 *
1747 * outputs:
1748 * zc_stat stats on object
1749 * zc_value path to object
1750 */
1751 static int
1752 zfs_ioc_obj_to_stats(zfs_cmd_t *zc)
1753 {
1754 objset_t *os;
1755 int error;

1757 /* XXX reading from objset not owned */
1758 if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os)) != 0)
1759 return (error);
1760 if (dmu_objset_type(os) != DMU_OST_ZFS) {
1761 dmu_objset_rele(os, FTAG);
1762 return (SET_ERROR(EINVAL));
1763 }
1764 error = zfs_obj_to_stats(os, zc->zc_obj, &zc->zc_stat, zc->zc_value,
1765 sizeof (zc->zc_value));
1766 dmu_objset_rele(os, FTAG);

1768 return (error);
1769 }

1771 static int
1772 zfs_ioc_vdev_add(zfs_cmd_t *zc)
1773 {
1774 spa_t *spa;
1775 int error;
1776 nvlist_t *config, **l2cache, **spares;

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 28

1777 uint_t nl2cache = 0, nspares = 0;

1779 error = spa_open(zc->zc_name, &spa, FTAG);
1780 if (error != 0)
1781 return (error);

1783 error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1784 zc->zc_iflags, &config);
1785 (void) nvlist_lookup_nvlist_array(config, ZPOOL_CONFIG_L2CACHE,
1786 &l2cache, &nl2cache);

1788 (void) nvlist_lookup_nvlist_array(config, ZPOOL_CONFIG_SPARES,
1789 &spares, &nspares);

1791 /*
1792 * A root pool with concatenated devices is not supported.
1793 * Thus, can not add a device to a root pool.
1794 *
1795 * Intent log device can not be added to a rootpool because
1796 * during mountroot, zil is replayed, a seperated log device
1797 * can not be accessed during the mountroot time.
1798 *
1799 * l2cache and spare devices are ok to be added to a rootpool.
1800 */
1801 if (spa_bootfs(spa) != 0 && nl2cache == 0 && nspares == 0) {
1802 nvlist_free(config);
1803 spa_close(spa, FTAG);
1804 return (SET_ERROR(EDOM));
1805 }

1807 if (error == 0) {
1808 error = spa_vdev_add(spa, config);
1809 nvlist_free(config);
1810 }
1811 spa_close(spa, FTAG);
1812 return (error);
1813 }

1815 /*
1816 * inputs:
1817 * zc_name name of the pool
1818 * zc_nvlist_conf nvlist of devices to remove
1819 * zc_cookie to stop the remove?
1820 */
1821 static int
1822 zfs_ioc_vdev_remove(zfs_cmd_t *zc)
1823 {
1824 spa_t *spa;
1825 int error;

1827 error = spa_open(zc->zc_name, &spa, FTAG);
1828 if (error != 0)
1829 return (error);
1830 error = spa_vdev_remove(spa, zc->zc_guid, B_FALSE);
1831 spa_close(spa, FTAG);
1832 return (error);
1833 }

1835 static int
1836 zfs_ioc_vdev_set_state(zfs_cmd_t *zc)
1837 {
1838 spa_t *spa;
1839 int error;
1840 vdev_state_t newstate = VDEV_STATE_UNKNOWN;

1842 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 29

1843 return (error);
1844 switch (zc->zc_cookie) {
1845 case VDEV_STATE_ONLINE:
1846 error = vdev_online(spa, zc->zc_guid, zc->zc_obj, &newstate);
1847 break;

1849 case VDEV_STATE_OFFLINE:
1850 error = vdev_offline(spa, zc->zc_guid, zc->zc_obj);
1851 break;

1853 case VDEV_STATE_FAULTED:
1854 if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED &&
1855 zc->zc_obj != VDEV_AUX_EXTERNAL)
1856 zc->zc_obj = VDEV_AUX_ERR_EXCEEDED;

1858 error = vdev_fault(spa, zc->zc_guid, zc->zc_obj);
1859 break;

1861 case VDEV_STATE_DEGRADED:
1862 if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED &&
1863 zc->zc_obj != VDEV_AUX_EXTERNAL)
1864 zc->zc_obj = VDEV_AUX_ERR_EXCEEDED;

1866 error = vdev_degrade(spa, zc->zc_guid, zc->zc_obj);
1867 break;

1869 default:
1870 error = SET_ERROR(EINVAL);
1871 }
1872 zc->zc_cookie = newstate;
1873 spa_close(spa, FTAG);
1874 return (error);
1875 }

1877 static int
1878 zfs_ioc_vdev_attach(zfs_cmd_t *zc)
1879 {
1880 spa_t *spa;
1881 int replacing = zc->zc_cookie;
1882 nvlist_t *config;
1883 int error;

1885 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
1886 return (error);

1888 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1889 zc->zc_iflags, &config)) == 0) {
1890 error = spa_vdev_attach(spa, zc->zc_guid, config, replacing);
1891 nvlist_free(config);
1892 }

1894 spa_close(spa, FTAG);
1895 return (error);
1896 }

1898 static int
1899 zfs_ioc_vdev_detach(zfs_cmd_t *zc)
1900 {
1901 spa_t *spa;
1902 int error;

1904 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
1905 return (error);

1907 error = spa_vdev_detach(spa, zc->zc_guid, 0, B_FALSE);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 30

1909 spa_close(spa, FTAG);
1910 return (error);
1911 }

1913 static int
1914 zfs_ioc_vdev_split(zfs_cmd_t *zc)
1915 {
1916 spa_t *spa;
1917 nvlist_t *config, *props = NULL;
1918 int error;
1919 boolean_t exp = !!(zc->zc_cookie & ZPOOL_EXPORT_AFTER_SPLIT);

1921 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
1922 return (error);

1924 if (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1925 zc->zc_iflags, &config)) {
1926 spa_close(spa, FTAG);
1927 return (error);
1928 }

1930 if (zc->zc_nvlist_src_size != 0 && (error =
1931 get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
1932 zc->zc_iflags, &props))) {
1933 spa_close(spa, FTAG);
1934 nvlist_free(config);
1935 return (error);
1936 }

1938 error = spa_vdev_split_mirror(spa, zc->zc_string, config, props, exp);

1940 spa_close(spa, FTAG);

1942 nvlist_free(config);
1943 nvlist_free(props);

1945 return (error);
1946 }

1948 static int
1949 zfs_ioc_vdev_setpath(zfs_cmd_t *zc)
1950 {
1951 spa_t *spa;
1952 char *path = zc->zc_value;
1953 uint64_t guid = zc->zc_guid;
1954 int error;

1956 error = spa_open(zc->zc_name, &spa, FTAG);
1957 if (error != 0)
1958 return (error);

1960 error = spa_vdev_setpath(spa, guid, path);
1961 spa_close(spa, FTAG);
1962 return (error);
1963 }

1965 static int
1966 zfs_ioc_vdev_setfru(zfs_cmd_t *zc)
1967 {
1968 spa_t *spa;
1969 char *fru = zc->zc_value;
1970 uint64_t guid = zc->zc_guid;
1971 int error;

1973 error = spa_open(zc->zc_name, &spa, FTAG);
1974 if (error != 0)

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 31

1975 return (error);

1977 error = spa_vdev_setfru(spa, guid, fru);
1978 spa_close(spa, FTAG);
1979 return (error);
1980 }

1982 static int
1983 zfs_ioc_objset_stats_impl(zfs_cmd_t *zc, objset_t *os)
1984 {
1985 int error = 0;
1986 nvlist_t *nv;

1988 dmu_objset_fast_stat(os, &zc->zc_objset_stats);

1990 if (zc->zc_nvlist_dst != 0 &&
1991 (error = dsl_prop_get_all(os, &nv)) == 0) {
1992 dmu_objset_stats(os, nv);
1993 /*
1994 * NB: zvol_get_stats() will read the objset contents,
1995 * which we aren’t supposed to do with a
1996 * DS_MODE_USER hold, because it could be
1997 * inconsistent. So this is a bit of a workaround...
1998 * XXX reading with out owning
1999 */
2000 if (!zc->zc_objset_stats.dds_inconsistent &&
2001 dmu_objset_type(os) == DMU_OST_ZVOL) {
2002 error = zvol_get_stats(os, nv);
2003 if (error == EIO)
2004 return (error);
2005 VERIFY0(error);
2006 }
2007 error = put_nvlist(zc, nv);
2008 nvlist_free(nv);
2009 }

2011 return (error);
2012 }

2014 /*
2015 * inputs:
2016 * zc_name name of filesystem
2017 * zc_nvlist_dst_size size of buffer for property nvlist
2018 *
2019 * outputs:
2020 * zc_objset_stats stats
2021 * zc_nvlist_dst property nvlist
2022 * zc_nvlist_dst_size size of property nvlist
2023 */
2024 static int
2025 zfs_ioc_objset_stats(zfs_cmd_t *zc)
2026 {
2027 objset_t *os;
2028 int error;

2030 error = dmu_objset_hold(zc->zc_name, FTAG, &os);
2031 if (error == 0) {
2032 error = zfs_ioc_objset_stats_impl(zc, os);
2033 dmu_objset_rele(os, FTAG);
2034 }

2036 return (error);
2037 }

2039 /*
2040 * inputs:

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 32

2041 * zc_name name of filesystem
2042 * zc_nvlist_dst_size size of buffer for property nvlist
2043 *
2044 * outputs:
2045 * zc_nvlist_dst received property nvlist
2046 * zc_nvlist_dst_size size of received property nvlist
2047 *
2048 * Gets received properties (distinct from local properties on or after
2049 * SPA_VERSION_RECVD_PROPS) for callers who want to differentiate received from
2050 * local property values.
2051 */
2052 static int
2053 zfs_ioc_objset_recvd_props(zfs_cmd_t *zc)
2054 {
2055 int error = 0;
2056 nvlist_t *nv;

2058 /*
2059 * Without this check, we would return local property values if the
2060 * caller has not already received properties on or after
2061 * SPA_VERSION_RECVD_PROPS.
2062 */
2063 if (!dsl_prop_get_hasrecvd(zc->zc_name))
2064 return (SET_ERROR(ENOTSUP));

2066 if (zc->zc_nvlist_dst != 0 &&
2067 (error = dsl_prop_get_received(zc->zc_name, &nv)) == 0) {
2068 error = put_nvlist(zc, nv);
2069 nvlist_free(nv);
2070 }

2072 return (error);
2073 }

2075 static int
2076 nvl_add_zplprop(objset_t *os, nvlist_t *props, zfs_prop_t prop)
2077 {
2078 uint64_t value;
2079 int error;

2081 /*
2082 * zfs_get_zplprop() will either find a value or give us
2083 * the default value (if there is one).
2084 */
2085 if ((error = zfs_get_zplprop(os, prop, &value)) != 0)
2086 return (error);
2087 VERIFY(nvlist_add_uint64(props, zfs_prop_to_name(prop), value) == 0);
2088 return (0);
2089 }

2091 /*
2092 * inputs:
2093 * zc_name name of filesystem
2094 * zc_nvlist_dst_size size of buffer for zpl property nvlist
2095 *
2096 * outputs:
2097 * zc_nvlist_dst zpl property nvlist
2098 * zc_nvlist_dst_size size of zpl property nvlist
2099 */
2100 static int
2101 zfs_ioc_objset_zplprops(zfs_cmd_t *zc)
2102 {
2103 objset_t *os;
2104 int err;

2106 /* XXX reading without owning */

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 33

2107 if (err = dmu_objset_hold(zc->zc_name, FTAG, &os))
2108 return (err);

2110 dmu_objset_fast_stat(os, &zc->zc_objset_stats);

2112 /*
2113 * NB: nvl_add_zplprop() will read the objset contents,
2114 * which we aren’t supposed to do with a DS_MODE_USER
2115 * hold, because it could be inconsistent.
2116 */
2117 if (zc->zc_nvlist_dst != NULL &&
2118 !zc->zc_objset_stats.dds_inconsistent &&
2119 dmu_objset_type(os) == DMU_OST_ZFS) {
2120 nvlist_t *nv;

2122 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2123 if ((err = nvl_add_zplprop(os, nv, ZFS_PROP_VERSION)) == 0 &&
2124 (err = nvl_add_zplprop(os, nv, ZFS_PROP_NORMALIZE)) == 0 &&
2125 (err = nvl_add_zplprop(os, nv, ZFS_PROP_UTF8ONLY)) == 0 &&
2126 (err = nvl_add_zplprop(os, nv, ZFS_PROP_CASE)) == 0)
2127 err = put_nvlist(zc, nv);
2128 nvlist_free(nv);
2129 } else {
2130 err = SET_ERROR(ENOENT);
2131 }
2132 dmu_objset_rele(os, FTAG);
2133 return (err);
2134 }

2136 static boolean_t
2137 dataset_name_hidden(const char *name)
2138 {
2139 /*
2140 * Skip over datasets that are not visible in this zone,
2141 * internal datasets (which have a $ in their name), and
2142 * temporary datasets (which have a % in their name).
2143 */
2144 if (strchr(name, ’$’) != NULL)
2145 return (B_TRUE);
2146 if (strchr(name, ’%’) != NULL)
2147 return (B_TRUE);
2148 if (!INGLOBALZONE(curproc) && !zone_dataset_visible(name, NULL))
2149 return (B_TRUE);
2150 return (B_FALSE);
2151 }

2153 /*
2154 * inputs:
2155 * zc_name name of filesystem
2156 * zc_cookie zap cursor
2157 * zc_nvlist_dst_size size of buffer for property nvlist
2158 *
2159 * outputs:
2160 * zc_name name of next filesystem
2161 * zc_cookie zap cursor
2162 * zc_objset_stats stats
2163 * zc_nvlist_dst property nvlist
2164 * zc_nvlist_dst_size size of property nvlist
2165 */
2166 static int
2167 zfs_ioc_dataset_list_next(zfs_cmd_t *zc)
2168 {
2169 objset_t *os;
2170 int error;
2171 char *p;
2172 size_t orig_len = strlen(zc->zc_name);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 34

2174 top:
2175 if (error = dmu_objset_hold(zc->zc_name, FTAG, &os)) {
2176 if (error == ENOENT)
2177 error = SET_ERROR(ESRCH);
2178 return (error);
2179 }

2181 p = strrchr(zc->zc_name, ’/’);
2182 if (p == NULL || p[1] != ’\0’)
2183 (void) strlcat(zc->zc_name, "/", sizeof (zc->zc_name));
2184 p = zc->zc_name + strlen(zc->zc_name);

2186 do {
2187 error = dmu_dir_list_next(os,
2188 sizeof (zc->zc_name) - (p - zc->zc_name), p,
2189 NULL, &zc->zc_cookie);
2190 if (error == ENOENT)
2191 error = SET_ERROR(ESRCH);
2192 } while (error == 0 && dataset_name_hidden(zc->zc_name));
2193 dmu_objset_rele(os, FTAG);

2195 /*
2196 * If it’s an internal dataset (ie. with a ’$’ in its name),
2197 * don’t try to get stats for it, otherwise we’ll return ENOENT.
2198 */
2199 if (error == 0 && strchr(zc->zc_name, ’$’) == NULL) {
2200 error = zfs_ioc_objset_stats(zc); /* fill in the stats */
2201 if (error == ENOENT) {
2202 /* We lost a race with destroy, get the next one. */
2203 zc->zc_name[orig_len] = ’\0’;
2204 goto top;
2205 }
2206 }
2207 return (error);
2208 }

2210 /*
2211 * inputs:
2212 * zc_name name of filesystem
2213 * zc_cookie zap cursor
2214 * zc_nvlist_dst_size size of buffer for property nvlist
2215 *
2216 * outputs:
2217 * zc_name name of next snapshot
2218 * zc_objset_stats stats
2219 * zc_nvlist_dst property nvlist
2220 * zc_nvlist_dst_size size of property nvlist
2221 */
2222 static int
2223 zfs_ioc_snapshot_list_next(zfs_cmd_t *zc)
2224 {
2225 objset_t *os;
2226 int error;

2228 error = dmu_objset_hold(zc->zc_name, FTAG, &os);
2229 if (error != 0) {
2230 return (error == ENOENT ? ESRCH : error);
2231 }

2233 /*
2234 * A dataset name of maximum length cannot have any snapshots,
2235 * so exit immediately.
2236 */
2237 if (strlcat(zc->zc_name, "@", sizeof (zc->zc_name)) >= MAXNAMELEN) {
2238 dmu_objset_rele(os, FTAG);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 35

2239 return (SET_ERROR(ESRCH));
2240 }

2242 error = dmu_snapshot_list_next(os,
2243 sizeof (zc->zc_name) - strlen(zc->zc_name),
2244 zc->zc_name + strlen(zc->zc_name), &zc->zc_obj, &zc->zc_cookie,
2245 NULL);

2247 if (error == 0) {
2248 dsl_dataset_t *ds;
2249 dsl_pool_t *dp = os->os_dsl_dataset->ds_dir->dd_pool;

2251 error = dsl_dataset_hold_obj(dp, zc->zc_obj, FTAG, &ds);
2252 if (error == 0) {
2253 objset_t *ossnap;

2255 error = dmu_objset_from_ds(ds, &ossnap);
2256 if (error == 0)
2257 error = zfs_ioc_objset_stats_impl(zc, ossnap);
2258 dsl_dataset_rele(ds, FTAG);
2259 }
2260 } else if (error == ENOENT) {
2261 error = SET_ERROR(ESRCH);
2262 }

2264 dmu_objset_rele(os, FTAG);
2265 /* if we failed, undo the @ that we tacked on to zc_name */
2266 if (error != 0)
2267 *strchr(zc->zc_name, ’@’) = ’\0’;
2268 return (error);
2269 }

2271 static int
2272 zfs_prop_set_userquota(const char *dsname, nvpair_t *pair)
2273 {
2274 const char *propname = nvpair_name(pair);
2275 uint64_t *valary;
2276 unsigned int vallen;
2277 const char *domain;
2278 char *dash;
2279 zfs_userquota_prop_t type;
2280 uint64_t rid;
2281 uint64_t quota;
2282 zfsvfs_t *zfsvfs;
2283 int err;

2285 if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
2286 nvlist_t *attrs;
2287 VERIFY(nvpair_value_nvlist(pair, &attrs) == 0);
2288 if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
2289 &pair) != 0)
2290 return (SET_ERROR(EINVAL));
2291 }

2293 /*
2294 * A correctly constructed propname is encoded as
2295 * userquota@<rid>-<domain>.
2296 */
2297 if ((dash = strchr(propname, ’-’)) == NULL ||
2298 nvpair_value_uint64_array(pair, &valary, &vallen) != 0 ||
2299 vallen != 3)
2300 return (SET_ERROR(EINVAL));

2302 domain = dash + 1;
2303 type = valary[0];
2304 rid = valary[1];

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 36

2305 quota = valary[2];

2307 err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_FALSE);
2308 if (err == 0) {
2309 err = zfs_set_userquota(zfsvfs, type, domain, rid, quota);
2310 zfsvfs_rele(zfsvfs, FTAG);
2311 }

2313 return (err);
2314 }

2316 /*
2317 * If the named property is one that has a special function to set its value,
2318 * return 0 on success and a positive error code on failure; otherwise if it is
2319 * not one of the special properties handled by this function, return -1.
2320 *
2321 * XXX: It would be better for callers of the property interface if we handled
2322 * these special cases in dsl_prop.c (in the dsl layer).
2323 */
2324 static int
2325 zfs_prop_set_special(const char *dsname, zprop_source_t source,
2326 nvpair_t *pair)
2327 {
2328 const char *propname = nvpair_name(pair);
2329 zfs_prop_t prop = zfs_name_to_prop(propname);
2330 uint64_t intval;
2331 int err;

2333 if (prop == ZPROP_INVAL) {
2334 if (zfs_prop_userquota(propname))
2335 return (zfs_prop_set_userquota(dsname, pair));
2336 return (-1);
2337 }

2339 if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
2340 nvlist_t *attrs;
2341 VERIFY(nvpair_value_nvlist(pair, &attrs) == 0);
2342 VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
2343 &pair) == 0);
2344 }

2346 if (zfs_prop_get_type(prop) == PROP_TYPE_STRING)
2347 return (-1);

2349 VERIFY(0 == nvpair_value_uint64(pair, &intval));

2351 switch (prop) {
2352 case ZFS_PROP_QUOTA:
2353 err = dsl_dir_set_quota(dsname, source, intval);
2354 break;
2355 case ZFS_PROP_REFQUOTA:
2356 err = dsl_dataset_set_refquota(dsname, source, intval);
2357 break;
2358 case ZFS_PROP_RESERVATION:
2359 err = dsl_dir_set_reservation(dsname, source, intval);
2360 break;
2361 case ZFS_PROP_REFRESERVATION:
2362 err = dsl_dataset_set_refreservation(dsname, source, intval);
2363 break;
2364 case ZFS_PROP_VOLSIZE:
2365 err = zvol_set_volsize(dsname, intval);
2366 break;
2367 case ZFS_PROP_VERSION:
2368 {
2369 zfsvfs_t *zfsvfs;

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 37

2371 if ((err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_TRUE)) != 0)
2372 break;

2374 err = zfs_set_version(zfsvfs, intval);
2375 zfsvfs_rele(zfsvfs, FTAG);

2377 if (err == 0 && intval >= ZPL_VERSION_USERSPACE) {
2378 zfs_cmd_t *zc;

2380 zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP);
2381 (void) strcpy(zc->zc_name, dsname);
2382 (void) zfs_ioc_userspace_upgrade(zc);
2383 kmem_free(zc, sizeof (zfs_cmd_t));
2384 }
2385 break;
2386 }
2387 case ZFS_PROP_COMPRESSION:
2388 {
2389 if (intval == ZIO_COMPRESS_LZ4) {
2390 zfeature_info_t *feature =
2391 &spa_feature_table[SPA_FEATURE_LZ4_COMPRESS];
2392 spa_t *spa;

2394 if ((err = spa_open(dsname, &spa, FTAG)) != 0)
2395 return (err);

2397 /*
2398 * Setting the LZ4 compression algorithm activates
2399 * the feature.
2400 */
2401 if (!spa_feature_is_active(spa, feature)) {
2402 if ((err = zfs_prop_activate_feature(spa,
2403 feature)) != 0) {
2404 spa_close(spa, FTAG);
2405 return (err);
2406 }
2407 }

2409 spa_close(spa, FTAG);
2410 }
2411 /*
2412 * We still want the default set action to be performed in the
2413 * caller, we only performed zfeature settings here.
2414 */
2415 err = -1;
2416 break;
2417 }

2419 default:
2420 err = -1;
2421 }

2423 return (err);
2424 }

2426 /*
2427 * This function is best effort. If it fails to set any of the given properties,
2428 * it continues to set as many as it can and returns the last error
2429 * encountered. If the caller provides a non-NULL errlist, it will be filled in
2430 * with the list of names of all the properties that failed along with the
2431 * corresponding error numbers.
2432 *
2433 * If every property is set successfully, zero is returned and errlist is not
2434 * modified.
2435 */
2436 int

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 38

2437 zfs_set_prop_nvlist(const char *dsname, zprop_source_t source, nvlist_t *nvl,
2438 nvlist_t *errlist)
2439 {
2440 nvpair_t *pair;
2441 nvpair_t *propval;
2442 int rv = 0;
2443 uint64_t intval;
2444 char *strval;
2445 nvlist_t *genericnvl = fnvlist_alloc();
2446 nvlist_t *retrynvl = fnvlist_alloc();

2448 retry:
2449 pair = NULL;
2450 while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) {
2451 const char *propname = nvpair_name(pair);
2452 zfs_prop_t prop = zfs_name_to_prop(propname);
2453 int err = 0;

2455 /* decode the property value */
2456 propval = pair;
2457 if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
2458 nvlist_t *attrs;
2459 attrs = fnvpair_value_nvlist(pair);
2460 if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
2461 &propval) != 0)
2462 err = SET_ERROR(EINVAL);
2463 }

2465 /* Validate value type */
2466 if (err == 0 && prop == ZPROP_INVAL) {
2467 if (zfs_prop_user(propname)) {
2468 if (nvpair_type(propval) != DATA_TYPE_STRING)
2469 err = SET_ERROR(EINVAL);
2470 } else if (zfs_prop_userquota(propname)) {
2471 if (nvpair_type(propval) !=
2472 DATA_TYPE_UINT64_ARRAY)
2473 err = SET_ERROR(EINVAL);
2474 } else {
2475 err = SET_ERROR(EINVAL);
2476 }
2477 } else if (err == 0) {
2478 if (nvpair_type(propval) == DATA_TYPE_STRING) {
2479 if (zfs_prop_get_type(prop) != PROP_TYPE_STRING)
2480 err = SET_ERROR(EINVAL);
2481 } else if (nvpair_type(propval) == DATA_TYPE_UINT64) {
2482 const char *unused;

2484 intval = fnvpair_value_uint64(propval);

2486 switch (zfs_prop_get_type(prop)) {
2487 case PROP_TYPE_NUMBER:
2488 break;
2489 case PROP_TYPE_STRING:
2490 err = SET_ERROR(EINVAL);
2491 break;
2492 case PROP_TYPE_INDEX:
2493 if (zfs_prop_index_to_string(prop,
2494 intval, &unused) != 0)
2495 err = SET_ERROR(EINVAL);
2496 break;
2497 default:
2498 cmn_err(CE_PANIC,
2499 "unknown property type");
2500 }
2501 } else {
2502 err = SET_ERROR(EINVAL);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 39

2503 }
2504 }

2506 /* Validate permissions */
2507 if (err == 0)
2508 err = zfs_check_settable(dsname, pair, CRED());

2510 if (err == 0) {
2511 err = zfs_prop_set_special(dsname, source, pair);
2512 if (err == -1) {
2513 /*
2514 * For better performance we build up a list of
2515 * properties to set in a single transaction.
2516 */
2517 err = nvlist_add_nvpair(genericnvl, pair);
2518 } else if (err != 0 && nvl != retrynvl) {
2519 /*
2520 * This may be a spurious error caused by
2521 * receiving quota and reservation out of order.
2522 * Try again in a second pass.
2523 */
2524 err = nvlist_add_nvpair(retrynvl, pair);
2525 }
2526 }

2528 if (err != 0) {
2529 if (errlist != NULL)
2530 fnvlist_add_int32(errlist, propname, err);
2531 rv = err;
2532 }
2533 }

2535 if (nvl != retrynvl && !nvlist_empty(retrynvl)) {
2536 nvl = retrynvl;
2537 goto retry;
2538 }

2540 if (!nvlist_empty(genericnvl) &&
2541 dsl_props_set(dsname, source, genericnvl) != 0) {
2542 /*
2543 * If this fails, we still want to set as many properties as we
2544 * can, so try setting them individually.
2545 */
2546 pair = NULL;
2547 while ((pair = nvlist_next_nvpair(genericnvl, pair)) != NULL) {
2548 const char *propname = nvpair_name(pair);
2549 int err = 0;

2551 propval = pair;
2552 if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
2553 nvlist_t *attrs;
2554 attrs = fnvpair_value_nvlist(pair);
2555 propval = fnvlist_lookup_nvpair(attrs,
2556 ZPROP_VALUE);
2557 }

2559 if (nvpair_type(propval) == DATA_TYPE_STRING) {
2560 strval = fnvpair_value_string(propval);
2561 err = dsl_prop_set_string(dsname, propname,
2562 source, strval);
2563 } else {
2564 intval = fnvpair_value_uint64(propval);
2565 err = dsl_prop_set_int(dsname, propname, source,
2566 intval);
2567 }

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 40

2569 if (err != 0) {
2570 if (errlist != NULL) {
2571 fnvlist_add_int32(errlist, propname,
2572 err);
2573 }
2574 rv = err;
2575 }
2576 }
2577 }
2578 nvlist_free(genericnvl);
2579 nvlist_free(retrynvl);

2581 return (rv);
2582 }

2584 /*
2585 * Check that all the properties are valid user properties.
2586 */
2587 static int
2588 zfs_check_userprops(const char *fsname, nvlist_t *nvl)
2589 {
2590 nvpair_t *pair = NULL;
2591 int error = 0;

2593 while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) {
2594 const char *propname = nvpair_name(pair);
2595 char *valstr;

2597 if (!zfs_prop_user(propname) ||
2598 nvpair_type(pair) != DATA_TYPE_STRING)
2599 return (SET_ERROR(EINVAL));

2601 if (error = zfs_secpolicy_write_perms(fsname,
2602 ZFS_DELEG_PERM_USERPROP, CRED()))
2603 return (error);

2605 if (strlen(propname) >= ZAP_MAXNAMELEN)
2606 return (SET_ERROR(ENAMETOOLONG));

2608 VERIFY(nvpair_value_string(pair, &valstr) == 0);
2609 if (strlen(valstr) >= ZAP_MAXVALUELEN)
2610 return (E2BIG);
2611 }
2612 return (0);
2613 }

2615 static void
2616 props_skip(nvlist_t *props, nvlist_t *skipped, nvlist_t **newprops)
2617 {
2618 nvpair_t *pair;

2620 VERIFY(nvlist_alloc(newprops, NV_UNIQUE_NAME, KM_SLEEP) == 0);

2622 pair = NULL;
2623 while ((pair = nvlist_next_nvpair(props, pair)) != NULL) {
2624 if (nvlist_exists(skipped, nvpair_name(pair)))
2625 continue;

2627 VERIFY(nvlist_add_nvpair(*newprops, pair) == 0);
2628 }
2629 }

2631 static int
2632 clear_received_props(const char *dsname, nvlist_t *props,
2633 nvlist_t *skipped)
2634 {

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 41

2635 int err = 0;
2636 nvlist_t *cleared_props = NULL;
2637 props_skip(props, skipped, &cleared_props);
2638 if (!nvlist_empty(cleared_props)) {
2639 /*
2640 * Acts on local properties until the dataset has received
2641 * properties at least once on or after SPA_VERSION_RECVD_PROPS.
2642 */
2643 zprop_source_t flags = (ZPROP_SRC_NONE |
2644 (dsl_prop_get_hasrecvd(dsname) ? ZPROP_SRC_RECEIVED : 0));
2645 err = zfs_set_prop_nvlist(dsname, flags, cleared_props, NULL);
2646 }
2647 nvlist_free(cleared_props);
2648 return (err);
2649 }

2651 /*
2652 * inputs:
2653 * zc_name name of filesystem
2654 * zc_value name of property to set
2655 * zc_nvlist_src{_size} nvlist of properties to apply
2656 * zc_cookie received properties flag
2657 *
2658 * outputs:
2659 * zc_nvlist_dst{_size} error for each unapplied received property
2660 */
2661 static int
2662 zfs_ioc_set_prop(zfs_cmd_t *zc)
2663 {
2664 nvlist_t *nvl;
2665 boolean_t received = zc->zc_cookie;
2666 zprop_source_t source = (received ? ZPROP_SRC_RECEIVED :
2667 ZPROP_SRC_LOCAL);
2668 nvlist_t *errors;
2669 int error;

2671 if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
2672 zc->zc_iflags, &nvl)) != 0)
2673 return (error);

2675 if (received) {
2676 nvlist_t *origprops;

2678 if (dsl_prop_get_received(zc->zc_name, &origprops) == 0) {
2679 (void) clear_received_props(zc->zc_name,
2680 origprops, nvl);
2681 nvlist_free(origprops);
2682 }

2684 error = dsl_prop_set_hasrecvd(zc->zc_name);
2685 }

2687 errors = fnvlist_alloc();
2688 if (error == 0)
2689 error = zfs_set_prop_nvlist(zc->zc_name, source, nvl, errors);

2691 if (zc->zc_nvlist_dst != NULL && errors != NULL) {
2692 (void) put_nvlist(zc, errors);
2693 }

2695 nvlist_free(errors);
2696 nvlist_free(nvl);
2697 return (error);
2698 }

2700 /*

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 42

2701 * inputs:
2702 * zc_name name of filesystem
2703 * zc_value name of property to inherit
2704 * zc_cookie revert to received value if TRUE
2705 *
2706 * outputs: none
2707 */
2708 static int
2709 zfs_ioc_inherit_prop(zfs_cmd_t *zc)
2710 {
2711 const char *propname = zc->zc_value;
2712 zfs_prop_t prop = zfs_name_to_prop(propname);
2713 boolean_t received = zc->zc_cookie;
2714 zprop_source_t source = (received
2715 ? ZPROP_SRC_NONE /* revert to received value, if any */
2716 : ZPROP_SRC_INHERITED); /* explicitly inherit */

2718 if (received) {
2719 nvlist_t *dummy;
2720 nvpair_t *pair;
2721 zprop_type_t type;
2722 int err;

2724 /*
2725 * zfs_prop_set_special() expects properties in the form of an
2726 * nvpair with type info.
2727 */
2728 if (prop == ZPROP_INVAL) {
2729 if (!zfs_prop_user(propname))
2730 return (SET_ERROR(EINVAL));

2732 type = PROP_TYPE_STRING;
2733 } else if (prop == ZFS_PROP_VOLSIZE ||
2734 prop == ZFS_PROP_VERSION) {
2735 return (SET_ERROR(EINVAL));
2736 } else {
2737 type = zfs_prop_get_type(prop);
2738 }

2740 VERIFY(nvlist_alloc(&dummy, NV_UNIQUE_NAME, KM_SLEEP) == 0);

2742 switch (type) {
2743 case PROP_TYPE_STRING:
2744 VERIFY(0 == nvlist_add_string(dummy, propname, ""));
2745 break;
2746 case PROP_TYPE_NUMBER:
2747 case PROP_TYPE_INDEX:
2748 VERIFY(0 == nvlist_add_uint64(dummy, propname, 0));
2749 break;
2750 default:
2751 nvlist_free(dummy);
2752 return (SET_ERROR(EINVAL));
2753 }

2755 pair = nvlist_next_nvpair(dummy, NULL);
2756 err = zfs_prop_set_special(zc->zc_name, source, pair);
2757 nvlist_free(dummy);
2758 if (err != -1)
2759 return (err); /* special property already handled */
2760 } else {
2761 /*
2762 * Only check this in the non-received case. We want to allow
2763 * ’inherit -S’ to revert non-inheritable properties like quota
2764 * and reservation to the received or default values even though
2765 * they are not considered inheritable.
2766 */

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 43

2767 if (prop != ZPROP_INVAL && !zfs_prop_inheritable(prop))
2768 return (SET_ERROR(EINVAL));
2769 }

2771 /* property name has been validated by zfs_secpolicy_inherit_prop() */
2772 return (dsl_prop_inherit(zc->zc_name, zc->zc_value, source));
2773 }

2775 static int
2776 zfs_ioc_pool_set_props(zfs_cmd_t *zc)
2777 {
2778 nvlist_t *props;
2779 spa_t *spa;
2780 int error;
2781 nvpair_t *pair;

2783 if (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
2784 zc->zc_iflags, &props))
2785 return (error);

2787 /*
2788 * If the only property is the configfile, then just do a spa_lookup()
2789 * to handle the faulted case.
2790 */
2791 pair = nvlist_next_nvpair(props, NULL);
2792 if (pair != NULL && strcmp(nvpair_name(pair),
2793 zpool_prop_to_name(ZPOOL_PROP_CACHEFILE)) == 0 &&
2794 nvlist_next_nvpair(props, pair) == NULL) {
2795 mutex_enter(&spa_namespace_lock);
2796 if ((spa = spa_lookup(zc->zc_name)) != NULL) {
2797 spa_configfile_set(spa, props, B_FALSE);
2798 spa_config_sync(spa, B_FALSE, B_TRUE);
2799 }
2800 mutex_exit(&spa_namespace_lock);
2801 if (spa != NULL) {
2802 nvlist_free(props);
2803 return (0);
2804 }
2805 }

2807 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) {
2808 nvlist_free(props);
2809 return (error);
2810 }

2812 error = spa_prop_set(spa, props);

2814 nvlist_free(props);
2815 spa_close(spa, FTAG);

2817 return (error);
2818 }

2820 static int
2821 zfs_ioc_pool_get_props(zfs_cmd_t *zc)
2822 {
2823 spa_t *spa;
2824 int error;
2825 nvlist_t *nvp = NULL;

2827 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) {
2828 /*
2829 * If the pool is faulted, there may be properties we can still
2830 * get (such as altroot and cachefile), so attempt to get them
2831 * anyway.
2832 */

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 44

2833 mutex_enter(&spa_namespace_lock);
2834 if ((spa = spa_lookup(zc->zc_name)) != NULL)
2835 error = spa_prop_get(spa, &nvp);
2836 mutex_exit(&spa_namespace_lock);
2837 } else {
2838 error = spa_prop_get(spa, &nvp);
2839 spa_close(spa, FTAG);
2840 }

2842 if (error == 0 && zc->zc_nvlist_dst != NULL)
2843 error = put_nvlist(zc, nvp);
2844 else
2845 error = SET_ERROR(EFAULT);

2847 nvlist_free(nvp);
2848 return (error);
2849 }

2851 /*
2852 * inputs:
2853 * zc_name name of filesystem
2854 * zc_nvlist_src{_size} nvlist of delegated permissions
2855 * zc_perm_action allow/unallow flag
2856 *
2857 * outputs: none
2858 */
2859 static int
2860 zfs_ioc_set_fsacl(zfs_cmd_t *zc)
2861 {
2862 int error;
2863 nvlist_t *fsaclnv = NULL;

2865 if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
2866 zc->zc_iflags, &fsaclnv)) != 0)
2867 return (error);

2869 /*
2870 * Verify nvlist is constructed correctly
2871 */
2872 if ((error = zfs_deleg_verify_nvlist(fsaclnv)) != 0) {
2873 nvlist_free(fsaclnv);
2874 return (SET_ERROR(EINVAL));
2875 }

2877 /*
2878 * If we don’t have PRIV_SYS_MOUNT, then validate
2879 * that user is allowed to hand out each permission in
2880 * the nvlist(s)
2881 */

2883 error = secpolicy_zfs(CRED());
2884 if (error != 0) {
2885 if (zc->zc_perm_action == B_FALSE) {
2886 error = dsl_deleg_can_allow(zc->zc_name,
2887 fsaclnv, CRED());
2888 } else {
2889 error = dsl_deleg_can_unallow(zc->zc_name,
2890 fsaclnv, CRED());
2891 }
2892 }

2894 if (error == 0)
2895 error = dsl_deleg_set(zc->zc_name, fsaclnv, zc->zc_perm_action);

2897 nvlist_free(fsaclnv);
2898 return (error);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 45

2899 }

2901 /*
2902 * inputs:
2903 * zc_name name of filesystem
2904 *
2905 * outputs:
2906 * zc_nvlist_src{_size} nvlist of delegated permissions
2907 */
2908 static int
2909 zfs_ioc_get_fsacl(zfs_cmd_t *zc)
2910 {
2911 nvlist_t *nvp;
2912 int error;

2914 if ((error = dsl_deleg_get(zc->zc_name, &nvp)) == 0) {
2915 error = put_nvlist(zc, nvp);
2916 nvlist_free(nvp);
2917 }

2919 return (error);
2920 }

2922 /*
2923 * Search the vfs list for a specified resource. Returns a pointer to it
2924 * or NULL if no suitable entry is found. The caller of this routine
2925 * is responsible for releasing the returned vfs pointer.
2926 */
2927 static vfs_t *
2928 zfs_get_vfs(const char *resource)
2929 {
2930 struct vfs *vfsp;
2931 struct vfs *vfs_found = NULL;

2933 vfs_list_read_lock();
2934 vfsp = rootvfs;
2935 do {
2936 if (strcmp(refstr_value(vfsp->vfs_resource), resource) == 0) {
2937 VFS_HOLD(vfsp);
2938 vfs_found = vfsp;
2939 break;
2940 }
2941 vfsp = vfsp->vfs_next;
2942 } while (vfsp != rootvfs);
2943 vfs_list_unlock();
2944 return (vfs_found);
2945 }

2947 /* ARGSUSED */
2948 static void
2949 zfs_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
2950 {
2951 zfs_creat_t *zct = arg;

2953 zfs_create_fs(os, cr, zct->zct_zplprops, tx);
2954 }

2956 #define ZFS_PROP_UNDEFINED ((uint64_t)-1)

2958 /*
2959 * inputs:
2960 * createprops list of properties requested by creator
2961 * default_zplver zpl version to use if unspecified in createprops
2962 * fuids_ok fuids allowed in this version of the spa?
2963 * os parent objset pointer (NULL if root fs)
2964 *

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 46

2965 * outputs:
2966 * zplprops values for the zplprops we attach to the master node object
2967 * is_ci true if requested file system will be purely case-insensitive
2968 *
2969 * Determine the settings for utf8only, normalization and
2970 * casesensitivity. Specific values may have been requested by the
2971 * creator and/or we can inherit values from the parent dataset. If
2972 * the file system is of too early a vintage, a creator can not
2973 * request settings for these properties, even if the requested
2974 * setting is the default value. We don’t actually want to create dsl
2975 * properties for these, so remove them from the source nvlist after
2976 * processing.
2977 */
2978 static int
2979 zfs_fill_zplprops_impl(objset_t *os, uint64_t zplver,
2980 boolean_t fuids_ok, boolean_t sa_ok, nvlist_t *createprops,
2981 nvlist_t *zplprops, boolean_t *is_ci)
2982 {
2983 uint64_t sense = ZFS_PROP_UNDEFINED;
2984 uint64_t norm = ZFS_PROP_UNDEFINED;
2985 uint64_t u8 = ZFS_PROP_UNDEFINED;

2987 ASSERT(zplprops != NULL);

2989 /*
2990 * Pull out creator prop choices, if any.
2991 */
2992 if (createprops) {
2993 (void) nvlist_lookup_uint64(createprops,
2994 zfs_prop_to_name(ZFS_PROP_VERSION), &zplver);
2995 (void) nvlist_lookup_uint64(createprops,
2996 zfs_prop_to_name(ZFS_PROP_NORMALIZE), &norm);
2997 (void) nvlist_remove_all(createprops,
2998 zfs_prop_to_name(ZFS_PROP_NORMALIZE));
2999 (void) nvlist_lookup_uint64(createprops,
3000 zfs_prop_to_name(ZFS_PROP_UTF8ONLY), &u8);
3001 (void) nvlist_remove_all(createprops,
3002 zfs_prop_to_name(ZFS_PROP_UTF8ONLY));
3003 (void) nvlist_lookup_uint64(createprops,
3004 zfs_prop_to_name(ZFS_PROP_CASE), &sense);
3005 (void) nvlist_remove_all(createprops,
3006 zfs_prop_to_name(ZFS_PROP_CASE));
3007 }

3009 /*
3010 * If the zpl version requested is whacky or the file system
3011 * or pool is version is too "young" to support normalization
3012 * and the creator tried to set a value for one of the props,
3013 * error out.
3014 */
3015 if ((zplver < ZPL_VERSION_INITIAL || zplver > ZPL_VERSION) ||
3016 (zplver >= ZPL_VERSION_FUID && !fuids_ok) ||
3017 (zplver >= ZPL_VERSION_SA && !sa_ok) ||
3018 (zplver < ZPL_VERSION_NORMALIZATION &&
3019 (norm != ZFS_PROP_UNDEFINED || u8 != ZFS_PROP_UNDEFINED ||
3020 sense != ZFS_PROP_UNDEFINED)))
3021 return (SET_ERROR(ENOTSUP));

3023 /*
3024 * Put the version in the zplprops
3025 */
3026 VERIFY(nvlist_add_uint64(zplprops,
3027 zfs_prop_to_name(ZFS_PROP_VERSION), zplver) == 0);

3029 if (norm == ZFS_PROP_UNDEFINED)
3030 VERIFY(zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &norm) == 0);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 47

3031 VERIFY(nvlist_add_uint64(zplprops,
3032 zfs_prop_to_name(ZFS_PROP_NORMALIZE), norm) == 0);

3034 /*
3035 * If we’re normalizing, names must always be valid UTF-8 strings.
3036 */
3037 if (norm)
3038 u8 = 1;
3039 if (u8 == ZFS_PROP_UNDEFINED)
3040 VERIFY(zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &u8) == 0);
3041 VERIFY(nvlist_add_uint64(zplprops,
3042 zfs_prop_to_name(ZFS_PROP_UTF8ONLY), u8) == 0);

3044 if (sense == ZFS_PROP_UNDEFINED)
3045 VERIFY(zfs_get_zplprop(os, ZFS_PROP_CASE, &sense) == 0);
3046 VERIFY(nvlist_add_uint64(zplprops,
3047 zfs_prop_to_name(ZFS_PROP_CASE), sense) == 0);

3049 if (is_ci)
3050 *is_ci = (sense == ZFS_CASE_INSENSITIVE);

3052 return (0);
3053 }

3055 static int
3056 zfs_fill_zplprops(const char *dataset, nvlist_t *createprops,
3057 nvlist_t *zplprops, boolean_t *is_ci)
3058 {
3059 boolean_t fuids_ok, sa_ok;
3060 uint64_t zplver = ZPL_VERSION;
3061 objset_t *os = NULL;
3062 char parentname[MAXNAMELEN];
3063 char *cp;
3064 spa_t *spa;
3065 uint64_t spa_vers;
3066 int error;

3068 (void) strlcpy(parentname, dataset, sizeof (parentname));
3069 cp = strrchr(parentname, ’/’);
3070 ASSERT(cp != NULL);
3071 cp[0] = ’\0’;

3073 if ((error = spa_open(dataset, &spa, FTAG)) != 0)
3074 return (error);

3076 spa_vers = spa_version(spa);
3077 spa_close(spa, FTAG);

3079 zplver = zfs_zpl_version_map(spa_vers);
3080 fuids_ok = (zplver >= ZPL_VERSION_FUID);
3081 sa_ok = (zplver >= ZPL_VERSION_SA);

3083 /*
3084 * Open parent object set so we can inherit zplprop values.
3085 */
3086 if ((error = dmu_objset_hold(parentname, FTAG, &os)) != 0)
3087 return (error);

3089 error = zfs_fill_zplprops_impl(os, zplver, fuids_ok, sa_ok, createprops,
3090 zplprops, is_ci);
3091 dmu_objset_rele(os, FTAG);
3092 return (error);
3093 }

3095 static int
3096 zfs_fill_zplprops_root(uint64_t spa_vers, nvlist_t *createprops,

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 48

3097 nvlist_t *zplprops, boolean_t *is_ci)
3098 {
3099 boolean_t fuids_ok;
3100 boolean_t sa_ok;
3101 uint64_t zplver = ZPL_VERSION;
3102 int error;

3104 zplver = zfs_zpl_version_map(spa_vers);
3105 fuids_ok = (zplver >= ZPL_VERSION_FUID);
3106 sa_ok = (zplver >= ZPL_VERSION_SA);

3108 error = zfs_fill_zplprops_impl(NULL, zplver, fuids_ok, sa_ok,
3109 createprops, zplprops, is_ci);
3110 return (error);
3111 }

3113 /*
3114 * innvl: {
3115 * "type" -> dmu_objset_type_t (int32)
3116 * (optional) "props" -> { prop -> value }
3117 * }
3118 *
3119 * outnvl: propname -> error code (int32)
3120 */
3121 static int
3122 zfs_ioc_create(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl)
3123 {
3124 int error = 0;
3125 zfs_creat_t zct = { 0 };
3126 nvlist_t *nvprops = NULL;
3127 void (*cbfunc)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx);
3128 int32_t type32;
3129 dmu_objset_type_t type;
3130 boolean_t is_insensitive = B_FALSE;

3132 if (nvlist_lookup_int32(innvl, "type", &type32) != 0)
3133 return (SET_ERROR(EINVAL));
3134 type = type32;
3135 (void) nvlist_lookup_nvlist(innvl, "props", &nvprops);

3137 switch (type) {
3138 case DMU_OST_ZFS:
3139 cbfunc = zfs_create_cb;
3140 break;

3142 case DMU_OST_ZVOL:
3143 cbfunc = zvol_create_cb;
3144 break;

3146 default:
3147 cbfunc = NULL;
3148 break;
3149 }
3150 if (strchr(fsname, ’@’) ||
3151 strchr(fsname, ’%’))
3152 return (SET_ERROR(EINVAL));

3154 zct.zct_props = nvprops;

3156 if (cbfunc == NULL)
3157 return (SET_ERROR(EINVAL));

3159 if (type == DMU_OST_ZVOL) {
3160 uint64_t volsize, volblocksize;

3162 if (nvprops == NULL)

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 49

3163 return (SET_ERROR(EINVAL));
3164 if (nvlist_lookup_uint64(nvprops,
3165 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) != 0)
3166 return (SET_ERROR(EINVAL));

3168 if ((error = nvlist_lookup_uint64(nvprops,
3169 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
3170 &volblocksize)) != 0 && error != ENOENT)
3171 return (SET_ERROR(EINVAL));

3173 if (error != 0)
3174 volblocksize = zfs_prop_default_numeric(
3175 ZFS_PROP_VOLBLOCKSIZE);

3177 if ((error = zvol_check_volblocksize(
3178 volblocksize)) != 0 ||
3179 (error = zvol_check_volsize(volsize,
3180 volblocksize)) != 0)
3181 return (error);
3182 } else if (type == DMU_OST_ZFS) {
3183 int error;

3185 /*
3186 * We have to have normalization and
3187 * case-folding flags correct when we do the
3188 * file system creation, so go figure them out
3189 * now.
3190 */
3191 VERIFY(nvlist_alloc(&zct.zct_zplprops,
3192 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3193 error = zfs_fill_zplprops(fsname, nvprops,
3194 zct.zct_zplprops, &is_insensitive);
3195 if (error != 0) {
3196 nvlist_free(zct.zct_zplprops);
3197 return (error);
3198 }
3199 }

3201 error = dmu_objset_create(fsname, type,
3202 is_insensitive ? DS_FLAG_CI_DATASET : 0, cbfunc, &zct);
3203 nvlist_free(zct.zct_zplprops);

3205 /*
3206 * It would be nice to do this atomically.
3207 */
3208 if (error == 0) {
3209 error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL,
3210 nvprops, outnvl);
3211 if (error != 0)
3212 (void) dsl_destroy_head(fsname);
3213 }
3214 return (error);
3215 }

3217 /*
3218 * innvl: {
3219 * "origin" -> name of origin snapshot
3220 * (optional) "props" -> { prop -> value }
3221 * }
3222 *
3223 * outnvl: propname -> error code (int32)
3224 */
3225 static int
3226 zfs_ioc_clone(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl)
3227 {
3228 int error = 0;

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 50

3229 nvlist_t *nvprops = NULL;
3230 char *origin_name;

3232 if (nvlist_lookup_string(innvl, "origin", &origin_name) != 0)
3233 return (SET_ERROR(EINVAL));
3234 (void) nvlist_lookup_nvlist(innvl, "props", &nvprops);

3236 if (strchr(fsname, ’@’) ||
3237 strchr(fsname, ’%’))
3238 return (SET_ERROR(EINVAL));

3240 if (dataset_namecheck(origin_name, NULL, NULL) != 0)
3241 return (SET_ERROR(EINVAL));
3242 error = dmu_objset_clone(fsname, origin_name);
3243 if (error != 0)
3244 return (error);

3246 /*
3247 * It would be nice to do this atomically.
3248 */
3249 if (error == 0) {
3250 error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL,
3251 nvprops, outnvl);
3252 if (error != 0)
3253 (void) dsl_destroy_head(fsname);
3254 }
3255 return (error);
3256 }

3258 /*
3259 * innvl: {
3260 * "snaps" -> { snapshot1, snapshot2 }
3261 * (optional) "props" -> { prop -> value (string) }
3262 * }
3263 *
3264 * outnvl: snapshot -> error code (int32)
3265 */
3266 static int
3267 zfs_ioc_snapshot(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl)
3268 {
3269 nvlist_t *snaps;
3270 nvlist_t *props = NULL;
3271 int error, poollen;
3272 nvpair_t *pair;

3274 (void) nvlist_lookup_nvlist(innvl, "props", &props);
3275 if ((error = zfs_check_userprops(poolname, props)) != 0)
3276 return (error);

3278 if (!nvlist_empty(props) &&
3279 zfs_earlier_version(poolname, SPA_VERSION_SNAP_PROPS))
3280 return (SET_ERROR(ENOTSUP));

3282 if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0)
3283 return (SET_ERROR(EINVAL));
3284 poollen = strlen(poolname);
3285 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
3286 pair = nvlist_next_nvpair(snaps, pair)) {
3287 const char *name = nvpair_name(pair);
3288 const char *cp = strchr(name, ’@’);

3290 /*
3291 * The snap name must contain an @, and the part after it must
3292 * contain only valid characters.
3293 */
3294 if (cp == NULL || snapshot_namecheck(cp + 1, NULL, NULL) != 0)

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 51

3295 return (SET_ERROR(EINVAL));

3297 /*
3298 * The snap must be in the specified pool.
3299 */
3300 if (strncmp(name, poolname, poollen) != 0 ||
3301 (name[poollen] != ’/’ && name[poollen] != ’@’))
3302 return (SET_ERROR(EXDEV));

3304 /* This must be the only snap of this fs. */
3305 for (nvpair_t *pair2 = nvlist_next_nvpair(snaps, pair);
3306 pair2 != NULL; pair2 = nvlist_next_nvpair(snaps, pair2)) {
3307 if (strncmp(name, nvpair_name(pair2), cp - name + 1)
3308 == 0) {
3309 return (SET_ERROR(EXDEV));
3310 }
3311 }
3312 }

3314 error = dsl_dataset_snapshot(snaps, props, outnvl);
3315 return (error);
3316 }

3318 /*
3319 * innvl: "message" -> string
3320 */
3321 /* ARGSUSED */
3322 static int
3323 zfs_ioc_log_history(const char *unused, nvlist_t *innvl, nvlist_t *outnvl)
3324 {
3325 char *message;
3326 spa_t *spa;
3327 int error;
3328 char *poolname;

3330 /*
3331 * The poolname in the ioctl is not set, we get it from the TSD,
3332 * which was set at the end of the last successful ioctl that allows
3333 * logging. The secpolicy func already checked that it is set.
3334 * Only one log ioctl is allowed after each successful ioctl, so
3335 * we clear the TSD here.
3336 */
3337 poolname = tsd_get(zfs_allow_log_key);
3338 (void) tsd_set(zfs_allow_log_key, NULL);
3339 error = spa_open(poolname, &spa, FTAG);
3340 strfree(poolname);
3341 if (error != 0)
3342 return (error);

3344 if (nvlist_lookup_string(innvl, "message", &message) != 0) {
3345 spa_close(spa, FTAG);
3346 return (SET_ERROR(EINVAL));
3347 }

3349 if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) {
3350 spa_close(spa, FTAG);
3351 return (SET_ERROR(ENOTSUP));
3352 }

3354 error = spa_history_log(spa, message);
3355 spa_close(spa, FTAG);
3356 return (error);
3357 }

3359 /*
3360 * The dp_config_rwlock must not be held when calling this, because the

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 52

3361 * unmount may need to write out data.
3362 *
3363 * This function is best-effort. Callers must deal gracefully if it
3364 * remains mounted (or is remounted after this call).
3365 */
3366 void
3367 zfs_unmount_snap(const char *snapname)
3368 {
3369 vfs_t *vfsp;
3370 zfsvfs_t *zfsvfs;

3372 if (strchr(snapname, ’@’) == NULL)
3373 return;

3375 vfsp = zfs_get_vfs(snapname);
3376 if (vfsp == NULL)
3377 return;

3379 zfsvfs = vfsp->vfs_data;
3380 ASSERT(!dsl_pool_config_held(dmu_objset_pool(zfsvfs->z_os)));

3382 if (vn_vfswlock(vfsp->vfs_vnodecovered) != 0) {
3383 VFS_RELE(vfsp);
3384 return;
3385 }
3386 VFS_RELE(vfsp);

3388 /*
3389 * Always force the unmount for snapshots.
3390 */
3391 (void) dounmount(vfsp, MS_FORCE, kcred);
3392 }

3394 /* ARGSUSED */
3395 static int
3396 zfs_unmount_snap_cb(const char *snapname, void *arg)
3397 {
3398 zfs_unmount_snap(snapname);
3399 return (0);
3400 }

3402 /*
3403 * When a clone is destroyed, its origin may also need to be destroyed,
3404 * in which case it must be unmounted. This routine will do that unmount
3405 * if necessary.
3406 */
3407 void
3408 zfs_destroy_unmount_origin(const char *fsname)
3409 {
3410 int error;
3411 objset_t *os;
3412 dsl_dataset_t *ds;

3414 error = dmu_objset_hold(fsname, FTAG, &os);
3415 if (error != 0)
3416 return;
3417 ds = dmu_objset_ds(os);
3418 if (dsl_dir_is_clone(ds->ds_dir) && DS_IS_DEFER_DESTROY(ds->ds_prev)) {
3419 char originname[MAXNAMELEN];
3420 dsl_dataset_name(ds->ds_prev, originname);
3421 dmu_objset_rele(os, FTAG);
3422 zfs_unmount_snap(originname);
3423 } else {
3424 dmu_objset_rele(os, FTAG);
3425 }
3426 }

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 53

3428 /*
3429 * innvl: {
3430 * "snaps" -> { snapshot1, snapshot2 }
3431 * (optional boolean) "defer"
3432 * }
3433 *
3434 * outnvl: snapshot -> error code (int32)
3435 *
3436 */
3437 static int
3438 zfs_ioc_destroy_snaps(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl)
3439 {
3440 int poollen;
3441 nvlist_t *snaps;
3442 nvpair_t *pair;
3443 boolean_t defer;

3445 if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0)
3446 return (SET_ERROR(EINVAL));
3447 defer = nvlist_exists(innvl, "defer");

3449 poollen = strlen(poolname);
3450 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
3451 pair = nvlist_next_nvpair(snaps, pair)) {
3452 const char *name = nvpair_name(pair);

3454 /*
3455 * The snap must be in the specified pool.
3456 */
3457 if (strncmp(name, poolname, poollen) != 0 ||
3458 (name[poollen] != ’/’ && name[poollen] != ’@’))
3459 return (SET_ERROR(EXDEV));

3461 zfs_unmount_snap(name);
3462 }

3464 return (dsl_destroy_snapshots_nvl(snaps, defer, outnvl));
3465 }

3467 /*
3468 * inputs:
3469 * zc_name name of dataset to destroy
3470 * zc_objset_type type of objset
3471 * zc_defer_destroy mark for deferred destroy
3472 *
3473 * outputs: none
3474 */
3475 static int
3476 zfs_ioc_destroy(zfs_cmd_t *zc)
3477 {
3478 int err;
3479 if (strchr(zc->zc_name, ’@’) && zc->zc_objset_type == DMU_OST_ZFS)
3480 zfs_unmount_snap(zc->zc_name);

3482 if (strchr(zc->zc_name, ’@’))
3483 err = dsl_destroy_snapshot(zc->zc_name, zc->zc_defer_destroy);
3484 else
3485 err = dsl_destroy_head(zc->zc_name);
3486 if (zc->zc_objset_type == DMU_OST_ZVOL && err == 0)
3487 (void) zvol_remove_minor(zc->zc_name);
3488 return (err);
3489 }

3491 /*
3492 * inputs:

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 54

3493 * zc_name name of dataset to rollback (to most recent snapshot)
3494 *
3495 * outputs: none
3496 */
3497 static int
3498 zfs_ioc_rollback(zfs_cmd_t *zc)
3499 {
3500 zfsvfs_t *zfsvfs;
3501 int error;

3503 if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) {
3504 error = zfs_suspend_fs(zfsvfs);
3505 if (error == 0) {
3506 int resume_err;

3508 error = dsl_dataset_rollback(zc->zc_name);
3509 resume_err = zfs_resume_fs(zfsvfs, zc->zc_name);
3510 error = error ? error : resume_err;
3511 }
3512 VFS_RELE(zfsvfs->z_vfs);
3513 } else {
3514 error = dsl_dataset_rollback(zc->zc_name);
3515 }
3516 return (error);
3517 }

3519 static int
3520 recursive_unmount(const char *fsname, void *arg)
3521 {
3522 const char *snapname = arg;
3523 char fullname[MAXNAMELEN];

3525 (void) snprintf(fullname, sizeof (fullname), "%s@%s", fsname, snapname);
3526 zfs_unmount_snap(fullname);
3527 return (0);
3528 }

3530 /*
3531 * inputs:
3532 * zc_name old name of dataset
3533 * zc_value new name of dataset
3534 * zc_cookie recursive flag (only valid for snapshots)
3535 *
3536 * outputs: none
3537 */
3538 static int
3539 zfs_ioc_rename(zfs_cmd_t *zc)
3540 {
3541 boolean_t recursive = zc->zc_cookie & 1;
3542 char *at;

3544 zc->zc_value[sizeof (zc->zc_value) - 1] = ’\0’;
3545 if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 ||
3546 strchr(zc->zc_value, ’%’))
3547 return (SET_ERROR(EINVAL));

3549 at = strchr(zc->zc_name, ’@’);
3550 if (at != NULL) {
3551 /* snaps must be in same fs */
3552 if (strncmp(zc->zc_name, zc->zc_value, at - zc->zc_name + 1))
3553 return (SET_ERROR(EXDEV));
3554 *at = ’\0’;
3555 if (zc->zc_objset_type == DMU_OST_ZFS) {
3556 int error = dmu_objset_find(zc->zc_name,
3557 recursive_unmount, at + 1,
3558 recursive ? DS_FIND_CHILDREN : 0);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 55

3559 if (error != 0)
3560 return (error);
3561 }
3562 return (dsl_dataset_rename_snapshot(zc->zc_name,
3563 at + 1, strchr(zc->zc_value, ’@’) + 1, recursive));
3564 } else {
3565 if (zc->zc_objset_type == DMU_OST_ZVOL)
3566 (void) zvol_remove_minor(zc->zc_name);
3567 return (dsl_dir_rename(zc->zc_name, zc->zc_value));
3568 }
3569 }

3571 static int
3572 zfs_check_settable(const char *dsname, nvpair_t *pair, cred_t *cr)
3573 {
3574 const char *propname = nvpair_name(pair);
3575 boolean_t issnap = (strchr(dsname, ’@’) != NULL);
3576 zfs_prop_t prop = zfs_name_to_prop(propname);
3577 uint64_t intval;
3578 int err;

3580 if (prop == ZPROP_INVAL) {
3581 if (zfs_prop_user(propname)) {
3582 if (err = zfs_secpolicy_write_perms(dsname,
3583 ZFS_DELEG_PERM_USERPROP, cr))
3584 return (err);
3585 return (0);
3586 }

3588 if (!issnap && zfs_prop_userquota(propname)) {
3589 const char *perm = NULL;
3590 const char *uq_prefix =
3591 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA];
3592 const char *gq_prefix =
3593 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA];

3595 if (strncmp(propname, uq_prefix,
3596 strlen(uq_prefix)) == 0) {
3597 perm = ZFS_DELEG_PERM_USERQUOTA;
3598 } else if (strncmp(propname, gq_prefix,
3599 strlen(gq_prefix)) == 0) {
3600 perm = ZFS_DELEG_PERM_GROUPQUOTA;
3601 } else {
3602 /* USERUSED and GROUPUSED are read-only */
3603 return (SET_ERROR(EINVAL));
3604 }

3606 if (err = zfs_secpolicy_write_perms(dsname, perm, cr))
3607 return (err);
3608 return (0);
3609 }

3611 return (SET_ERROR(EINVAL));
3612 }

3614 if (issnap)
3615 return (SET_ERROR(EINVAL));

3617 if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
3618 /*
3619 * dsl_prop_get_all_impl() returns properties in this
3620 * format.
3621 */
3622 nvlist_t *attrs;
3623 VERIFY(nvpair_value_nvlist(pair, &attrs) == 0);
3624 VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE,

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 56

3625 &pair) == 0);
3626 }

3628 /*
3629 * Check that this value is valid for this pool version
3630 */
3631 switch (prop) {
3632 case ZFS_PROP_COMPRESSION:
3633 /*
3634 * If the user specified gzip compression, make sure
3635 * the SPA supports it. We ignore any errors here since
3636 * we’ll catch them later.
3637 */
3638 if (nvpair_type(pair) == DATA_TYPE_UINT64 &&
3639 nvpair_value_uint64(pair, &intval) == 0) {
3640 if (intval >= ZIO_COMPRESS_GZIP_1 &&
3641 intval <= ZIO_COMPRESS_GZIP_9 &&
3642 zfs_earlier_version(dsname,
3643 SPA_VERSION_GZIP_COMPRESSION)) {
3644 return (SET_ERROR(ENOTSUP));
3645 }

3647 if (intval == ZIO_COMPRESS_ZLE &&
3648 zfs_earlier_version(dsname,
3649 SPA_VERSION_ZLE_COMPRESSION))
3650 return (SET_ERROR(ENOTSUP));

3652 if (intval == ZIO_COMPRESS_LZ4) {
3653 zfeature_info_t *feature =
3654 &spa_feature_table[
3655 SPA_FEATURE_LZ4_COMPRESS];
3656 spa_t *spa;

3658 if ((err = spa_open(dsname, &spa, FTAG)) != 0)
3659 return (err);

3661 if (!spa_feature_is_enabled(spa, feature)) {
3662 spa_close(spa, FTAG);
3663 return (SET_ERROR(ENOTSUP));
3664 }
3665 spa_close(spa, FTAG);
3666 }

3668 /*
3669 * If this is a bootable dataset then
3670 * verify that the compression algorithm
3671 * is supported for booting. We must return
3672 * something other than ENOTSUP since it
3673 * implies a downrev pool version.
3674 */
3675 if (zfs_is_bootfs(dsname) &&
3676 !BOOTFS_COMPRESS_VALID(intval)) {
3677 return (SET_ERROR(ERANGE));
3678 }
3679 }
3680 break;

3682 case ZFS_PROP_COPIES:
3683 if (zfs_earlier_version(dsname, SPA_VERSION_DITTO_BLOCKS))
3684 return (SET_ERROR(ENOTSUP));
3685 break;

3687 case ZFS_PROP_DEDUP:
3688 if (zfs_earlier_version(dsname, SPA_VERSION_DEDUP))
3689 return (SET_ERROR(ENOTSUP));
3690 break;

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 57

3692 case ZFS_PROP_SHARESMB:
3693 if (zpl_earlier_version(dsname, ZPL_VERSION_FUID))
3694 return (SET_ERROR(ENOTSUP));
3695 break;

3697 case ZFS_PROP_ACLINHERIT:
3698 if (nvpair_type(pair) == DATA_TYPE_UINT64 &&
3699 nvpair_value_uint64(pair, &intval) == 0) {
3700 if (intval == ZFS_ACL_PASSTHROUGH_X &&
3701 zfs_earlier_version(dsname,
3702 SPA_VERSION_PASSTHROUGH_X))
3703 return (SET_ERROR(ENOTSUP));
3704 }
3705 break;
3706 }

3708 return (zfs_secpolicy_setprop(dsname, prop, pair, CRED()));
3709 }

3711 /*
3712 * Checks for a race condition to make sure we don’t increment a feature flag
3713 * multiple times.
3714 */
3715 static int
3716 zfs_prop_activate_feature_check(void *arg, dmu_tx_t *tx)
3717 {
3718 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
3719 zfeature_info_t *feature = arg;

3721 if (!spa_feature_is_active(spa, feature))
3722 return (0);
3723 else
3724 return (SET_ERROR(EBUSY));
3725 }

3727 /*
3728 * The callback invoked on feature activation in the sync task caused by
3729 * zfs_prop_activate_feature.
3730 */
3731 static void
3732 zfs_prop_activate_feature_sync(void *arg, dmu_tx_t *tx)
3733 {
3734 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
3735 zfeature_info_t *feature = arg;

3737 spa_feature_incr(spa, feature, tx);
3738 }

3740 /*
3741 * Activates a feature on a pool in response to a property setting. This
3742 * creates a new sync task which modifies the pool to reflect the feature
3743 * as being active.
3744 */
3745 static int
3746 zfs_prop_activate_feature(spa_t *spa, zfeature_info_t *feature)
3747 {
3748 int err;

3750 /* EBUSY here indicates that the feature is already active */
3751 err = dsl_sync_task(spa_name(spa),
3752 zfs_prop_activate_feature_check, zfs_prop_activate_feature_sync,
3753 feature, 2);

3755 if (err != 0 && err != EBUSY)
3756 return (err);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 58

3757 else
3758 return (0);
3759 }

3761 /*
3762 * Removes properties from the given props list that fail permission checks
3763 * needed to clear them and to restore them in case of a receive error. For each
3764 * property, make sure we have both set and inherit permissions.
3765 *
3766 * Returns the first error encountered if any permission checks fail. If the
3767 * caller provides a non-NULL errlist, it also gives the complete list of names
3768 * of all the properties that failed a permission check along with the
3769 * corresponding error numbers. The caller is responsible for freeing the
3770 * returned errlist.
3771 *
3772 * If every property checks out successfully, zero is returned and the list
3773 * pointed at by errlist is NULL.
3774 */
3775 static int
3776 zfs_check_clearable(char *dataset, nvlist_t *props, nvlist_t **errlist)
3777 {
3778 zfs_cmd_t *zc;
3779 nvpair_t *pair, *next_pair;
3780 nvlist_t *errors;
3781 int err, rv = 0;

3783 if (props == NULL)
3784 return (0);

3786 VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0);

3788 zc = kmem_alloc(sizeof (zfs_cmd_t), KM_SLEEP);
3789 (void) strcpy(zc->zc_name, dataset);
3790 pair = nvlist_next_nvpair(props, NULL);
3791 while (pair != NULL) {
3792 next_pair = nvlist_next_nvpair(props, pair);

3794 (void) strcpy(zc->zc_value, nvpair_name(pair));
3795 if ((err = zfs_check_settable(dataset, pair, CRED())) != 0 ||
3796 (err = zfs_secpolicy_inherit_prop(zc, NULL, CRED())) != 0) {
3797 VERIFY(nvlist_remove_nvpair(props, pair) == 0);
3798 VERIFY(nvlist_add_int32(errors,
3799 zc->zc_value, err) == 0);
3800 }
3801 pair = next_pair;
3802 }
3803 kmem_free(zc, sizeof (zfs_cmd_t));

3805 if ((pair = nvlist_next_nvpair(errors, NULL)) == NULL) {
3806 nvlist_free(errors);
3807 errors = NULL;
3808 } else {
3809 VERIFY(nvpair_value_int32(pair, &rv) == 0);
3810 }

3812 if (errlist == NULL)
3813 nvlist_free(errors);
3814 else
3815 *errlist = errors;

3817 return (rv);
3818 }

3820 static boolean_t
3821 propval_equals(nvpair_t *p1, nvpair_t *p2)
3822 {

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 59

3823 if (nvpair_type(p1) == DATA_TYPE_NVLIST) {
3824 /* dsl_prop_get_all_impl() format */
3825 nvlist_t *attrs;
3826 VERIFY(nvpair_value_nvlist(p1, &attrs) == 0);
3827 VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
3828 &p1) == 0);
3829 }

3831 if (nvpair_type(p2) == DATA_TYPE_NVLIST) {
3832 nvlist_t *attrs;
3833 VERIFY(nvpair_value_nvlist(p2, &attrs) == 0);
3834 VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
3835 &p2) == 0);
3836 }

3838 if (nvpair_type(p1) != nvpair_type(p2))
3839 return (B_FALSE);

3841 if (nvpair_type(p1) == DATA_TYPE_STRING) {
3842 char *valstr1, *valstr2;

3844 VERIFY(nvpair_value_string(p1, (char **)&valstr1) == 0);
3845 VERIFY(nvpair_value_string(p2, (char **)&valstr2) == 0);
3846 return (strcmp(valstr1, valstr2) == 0);
3847 } else {
3848 uint64_t intval1, intval2;

3850 VERIFY(nvpair_value_uint64(p1, &intval1) == 0);
3851 VERIFY(nvpair_value_uint64(p2, &intval2) == 0);
3852 return (intval1 == intval2);
3853 }
3854 }

3856 /*
3857 * Remove properties from props if they are not going to change (as determined
3858 * by comparison with origprops). Remove them from origprops as well, since we
3859 * do not need to clear or restore properties that won’t change.
3860 */
3861 static void
3862 props_reduce(nvlist_t *props, nvlist_t *origprops)
3863 {
3864 nvpair_t *pair, *next_pair;

3866 if (origprops == NULL)
3867 return; /* all props need to be received */

3869 pair = nvlist_next_nvpair(props, NULL);
3870 while (pair != NULL) {
3871 const char *propname = nvpair_name(pair);
3872 nvpair_t *match;

3874 next_pair = nvlist_next_nvpair(props, pair);

3876 if ((nvlist_lookup_nvpair(origprops, propname,
3877 &match) != 0) || !propval_equals(pair, match))
3878 goto next; /* need to set received value */

3880 /* don’t clear the existing received value */
3881 (void) nvlist_remove_nvpair(origprops, match);
3882 /* don’t bother receiving the property */
3883 (void) nvlist_remove_nvpair(props, pair);
3884 next:
3885 pair = next_pair;
3886 }
3887 }

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 60

3889 #ifdef DEBUG
3890 static boolean_t zfs_ioc_recv_inject_err;
3891 #endif

3893 /*
3894 * inputs:
3895 * zc_name name of containing filesystem
3896 * zc_nvlist_src{_size} nvlist of properties to apply
3897 * zc_value name of snapshot to create
3898 * zc_string name of clone origin (if DRR_FLAG_CLONE)
3899 * zc_cookie file descriptor to recv from
3900 * zc_begin_record the BEGIN record of the stream (not byteswapped)
3901 * zc_guid force flag
3902 * zc_cleanup_fd cleanup-on-exit file descriptor
3903 * zc_action_handle handle for this guid/ds mapping (or zero on first call)
3904 *
3905 * outputs:
3906 * zc_cookie number of bytes read
3907 * zc_nvlist_dst{_size} error for each unapplied received property
3908 * zc_obj zprop_errflags_t
3909 * zc_action_handle handle for this guid/ds mapping
3910 */
3911 static int
3912 zfs_ioc_recv(zfs_cmd_t *zc)
3913 {
3914 file_t *fp;
3915 dmu_recv_cookie_t drc;
3916 boolean_t force = (boolean_t)zc->zc_guid;
3917 int fd;
3918 int error = 0;
3919 int props_error = 0;
3920 nvlist_t *errors;
3921 offset_t off;
3922 nvlist_t *props = NULL; /* sent properties */
3923 nvlist_t *origprops = NULL; /* existing properties */
3924 char *origin = NULL;
3925 char *tosnap;
3926 char tofs[ZFS_MAXNAMELEN];
3927 boolean_t first_recvd_props = B_FALSE;

3929 if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 ||
3930 strchr(zc->zc_value, ’@’) == NULL ||
3931 strchr(zc->zc_value, ’%’))
3932 return (SET_ERROR(EINVAL));

3934 (void) strcpy(tofs, zc->zc_value);
3935 tosnap = strchr(tofs, ’@’);
3936 *tosnap++ = ’\0’;

3938 if (zc->zc_nvlist_src != NULL &&
3939 (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
3940 zc->zc_iflags, &props)) != 0)
3941 return (error);

3943 fd = zc->zc_cookie;
3944 fp = getf(fd);
3945 if (fp == NULL) {
3946 nvlist_free(props);
3947 return (SET_ERROR(EBADF));
3948 }

3950 VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0);

3952 if (zc->zc_string[0])
3953 origin = zc->zc_string;

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 61

3955 error = dmu_recv_begin(tofs, tosnap,
3956 &zc->zc_begin_record, force, origin, &drc);
3957 if (error != 0)
3958 goto out;

3960 /*
3961 * Set properties before we receive the stream so that they are applied
3962 * to the new data. Note that we must call dmu_recv_stream() if
3963 * dmu_recv_begin() succeeds.
3964 */
3965 if (props != NULL && !drc.drc_newfs) {
3966 if (spa_version(dsl_dataset_get_spa(drc.drc_ds)) >=
3967 SPA_VERSION_RECVD_PROPS &&
3968 !dsl_prop_get_hasrecvd(tofs))
3969 first_recvd_props = B_TRUE;

3971 /*
3972 * If new received properties are supplied, they are to
3973 * completely replace the existing received properties, so stash
3974 * away the existing ones.
3975 */
3976 if (dsl_prop_get_received(tofs, &origprops) == 0) {
3977 nvlist_t *errlist = NULL;
3978 /*
3979 * Don’t bother writing a property if its value won’t
3980 * change (and avoid the unnecessary security checks).
3981 *
3982 * The first receive after SPA_VERSION_RECVD_PROPS is a
3983 * special case where we blow away all local properties
3984 * regardless.
3985 */
3986 if (!first_recvd_props)
3987 props_reduce(props, origprops);
3988 if (zfs_check_clearable(tofs, origprops, &errlist) != 0)
3989 (void) nvlist_merge(errors, errlist, 0);
3990 nvlist_free(errlist);

3992 if (clear_received_props(tofs, origprops,
3993 first_recvd_props ? NULL : props) != 0)
3994 zc->zc_obj |= ZPROP_ERR_NOCLEAR;
3995 } else {
3996 zc->zc_obj |= ZPROP_ERR_NOCLEAR;
3997 }
3998 }

4000 if (props != NULL) {
4001 props_error = dsl_prop_set_hasrecvd(tofs);

4003 if (props_error == 0) {
4004 (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEIVED,
4005 props, errors);
4006 }
4007 }

4009 if (zc->zc_nvlist_dst_size != 0 &&
4010 (nvlist_smush(errors, zc->zc_nvlist_dst_size) != 0 ||
4011 put_nvlist(zc, errors) != 0)) {
4012 /*
4013 * Caller made zc->zc_nvlist_dst less than the minimum expected
4014 * size or supplied an invalid address.
4015 */
4016 props_error = SET_ERROR(EINVAL);
4017 }

4019 off = fp->f_offset;
4020 error = dmu_recv_stream(&drc, fp->f_vnode, &off, zc->zc_cleanup_fd,

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 62

4021 &zc->zc_action_handle);

4023 if (error == 0) {
4024 zfsvfs_t *zfsvfs = NULL;

4026 if (getzfsvfs(tofs, &zfsvfs) == 0) {
4027 /* online recv */
4028 int end_err;

4030 error = zfs_suspend_fs(zfsvfs);
4031 /*
4032 * If the suspend fails, then the recv_end will
4033 * likely also fail, and clean up after itself.
4034 */
4035 end_err = dmu_recv_end(&drc);
4036 if (error == 0)
4037 error = zfs_resume_fs(zfsvfs, tofs);
4038 error = error ? error : end_err;
4039 VFS_RELE(zfsvfs->z_vfs);
4040 } else {
4041 error = dmu_recv_end(&drc);
4042 }
4043 }

4045 zc->zc_cookie = off - fp->f_offset;
4046 if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0)
4047 fp->f_offset = off;

4049 #ifdef DEBUG
4050 if (zfs_ioc_recv_inject_err) {
4051 zfs_ioc_recv_inject_err = B_FALSE;
4052 error = 1;
4053 }
4054 #endif
4055 /*
4056 * On error, restore the original props.
4057 */
4058 if (error != 0 && props != NULL && !drc.drc_newfs) {
4059 if (clear_received_props(tofs, props, NULL) != 0) {
4060 /*
4061 * We failed to clear the received properties.
4062 * Since we may have left a $recvd value on the
4063 * system, we can’t clear the $hasrecvd flag.
4064 */
4065 zc->zc_obj |= ZPROP_ERR_NORESTORE;
4066 } else if (first_recvd_props) {
4067 dsl_prop_unset_hasrecvd(tofs);
4068 }

4070 if (origprops == NULL && !drc.drc_newfs) {
4071 /* We failed to stash the original properties. */
4072 zc->zc_obj |= ZPROP_ERR_NORESTORE;
4073 }

4075 /*
4076 * dsl_props_set() will not convert RECEIVED to LOCAL on or
4077 * after SPA_VERSION_RECVD_PROPS, so we need to specify LOCAL
4078 * explictly if we’re restoring local properties cleared in the
4079 * first new-style receive.
4080 */
4081 if (origprops != NULL &&
4082 zfs_set_prop_nvlist(tofs, (first_recvd_props ?
4083 ZPROP_SRC_LOCAL : ZPROP_SRC_RECEIVED),
4084 origprops, NULL) != 0) {
4085 /*
4086 * We stashed the original properties but failed to

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 63

4087 * restore them.
4088 */
4089 zc->zc_obj |= ZPROP_ERR_NORESTORE;
4090 }
4091 }
4092 out:
4093 nvlist_free(props);
4094 nvlist_free(origprops);
4095 nvlist_free(errors);
4096 releasef(fd);

4098 if (error == 0)
4099 error = props_error;

4101 return (error);
4102 }

4104 /*
4105 * inputs:
4106 * zc_name name of snapshot to send
4107 * zc_cookie file descriptor to send stream to
4108 * zc_obj fromorigin flag (mutually exclusive with zc_fromobj)
4109 * zc_sendobj objsetid of snapshot to send
4110 * zc_fromobj objsetid of incremental fromsnap (may be zero)
4111 * zc_guid if set, estimate size of stream only. zc_cookie is ignored.
4112 * output size in zc_objset_type.
4113 *
4114 * outputs: none
4115 */
4116 static int
4117 zfs_ioc_send(zfs_cmd_t *zc)
4118 {
4119 int error;
4120 offset_t off;
4121 boolean_t estimate = (zc->zc_guid != 0);

4123 if (zc->zc_obj != 0) {
4124 dsl_pool_t *dp;
4125 dsl_dataset_t *tosnap;

4127 error = dsl_pool_hold(zc->zc_name, FTAG, &dp);
4128 if (error != 0)
4129 return (error);

4131 error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &tosnap);
4132 if (error != 0) {
4133 dsl_pool_rele(dp, FTAG);
4134 return (error);
4135 }

4137 if (dsl_dir_is_clone(tosnap->ds_dir))
4138 zc->zc_fromobj = tosnap->ds_dir->dd_phys->dd_origin_obj;
4139 dsl_dataset_rele(tosnap, FTAG);
4140 dsl_pool_rele(dp, FTAG);
4141 }

4143 if (estimate) {
4144 dsl_pool_t *dp;
4145 dsl_dataset_t *tosnap;
4146 dsl_dataset_t *fromsnap = NULL;

4148 error = dsl_pool_hold(zc->zc_name, FTAG, &dp);
4149 if (error != 0)
4150 return (error);

4152 error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &tosnap);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 64

4153 if (error != 0) {
4154 dsl_pool_rele(dp, FTAG);
4155 return (error);
4156 }

4158 if (zc->zc_fromobj != 0) {
4159 error = dsl_dataset_hold_obj(dp, zc->zc_fromobj,
4160 FTAG, &fromsnap);
4161 if (error != 0) {
4162 dsl_dataset_rele(tosnap, FTAG);
4163 dsl_pool_rele(dp, FTAG);
4164 return (error);
4165 }
4166 }

4168 error = dmu_send_estimate(tosnap, fromsnap,
4169 &zc->zc_objset_type);

4171 if (fromsnap != NULL)
4172 dsl_dataset_rele(fromsnap, FTAG);
4173 dsl_dataset_rele(tosnap, FTAG);
4174 dsl_pool_rele(dp, FTAG);
4175 } else {
4176 file_t *fp = getf(zc->zc_cookie);
4177 if (fp == NULL)
4178 return (SET_ERROR(EBADF));

4180 off = fp->f_offset;
4181 error = dmu_send_obj(zc->zc_name, zc->zc_sendobj,
4182 zc->zc_fromobj, zc->zc_cookie, fp->f_vnode, &off);

4184 if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0)
4185 fp->f_offset = off;
4186 releasef(zc->zc_cookie);
4187 }
4188 return (error);
4189 }

4191 /*
4192 * inputs:
4193 * zc_name name of snapshot on which to report progress
4194 * zc_cookie file descriptor of send stream
4195 *
4196 * outputs:
4197 * zc_cookie number of bytes written in send stream thus far
4198 */
4199 static int
4200 zfs_ioc_send_progress(zfs_cmd_t *zc)
4201 {
4202 dsl_pool_t *dp;
4203 dsl_dataset_t *ds;
4204 dmu_sendarg_t *dsp = NULL;
4205 int error;

4207 error = dsl_pool_hold(zc->zc_name, FTAG, &dp);
4208 if (error != 0)
4209 return (error);

4211 error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &ds);
4212 if (error != 0) {
4213 dsl_pool_rele(dp, FTAG);
4214 return (error);
4215 }

4217 mutex_enter(&ds->ds_sendstream_lock);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 65

4219 /*
4220 * Iterate over all the send streams currently active on this dataset.
4221 * If there’s one which matches the specified file descriptor _and_ the
4222 * stream was started by the current process, return the progress of
4223 * that stream.
4224 */
4225 for (dsp = list_head(&ds->ds_sendstreams); dsp != NULL;
4226 dsp = list_next(&ds->ds_sendstreams, dsp)) {
4227 if (dsp->dsa_outfd == zc->zc_cookie &&
4228 dsp->dsa_proc == curproc)
4229 break;
4230 }

4232 if (dsp != NULL)
4233 zc->zc_cookie = *(dsp->dsa_off);
4234 else
4235 error = SET_ERROR(ENOENT);

4237 mutex_exit(&ds->ds_sendstream_lock);
4238 dsl_dataset_rele(ds, FTAG);
4239 dsl_pool_rele(dp, FTAG);
4240 return (error);
4241 }

4243 static int
4244 zfs_ioc_inject_fault(zfs_cmd_t *zc)
4245 {
4246 int id, error;

4248 error = zio_inject_fault(zc->zc_name, (int)zc->zc_guid, &id,
4249 &zc->zc_inject_record);

4251 if (error == 0)
4252 zc->zc_guid = (uint64_t)id;

4254 return (error);
4255 }

4257 static int
4258 zfs_ioc_clear_fault(zfs_cmd_t *zc)
4259 {
4260 return (zio_clear_fault((int)zc->zc_guid));
4261 }

4263 static int
4264 zfs_ioc_inject_list_next(zfs_cmd_t *zc)
4265 {
4266 int id = (int)zc->zc_guid;
4267 int error;

4269 error = zio_inject_list_next(&id, zc->zc_name, sizeof (zc->zc_name),
4270 &zc->zc_inject_record);

4272 zc->zc_guid = id;

4274 return (error);
4275 }

4277 static int
4278 zfs_ioc_error_log(zfs_cmd_t *zc)
4279 {
4280 spa_t *spa;
4281 int error;
4282 size_t count = (size_t)zc->zc_nvlist_dst_size;

4284 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 66

4285 return (error);

4287 error = spa_get_errlog(spa, (void *)(uintptr_t)zc->zc_nvlist_dst,
4288 &count);
4289 if (error == 0)
4290 zc->zc_nvlist_dst_size = count;
4291 else
4292 zc->zc_nvlist_dst_size = spa_get_errlog_size(spa);

4294 spa_close(spa, FTAG);

4296 return (error);
4297 }

4299 static int
4300 zfs_ioc_clear(zfs_cmd_t *zc)
4301 {
4302 spa_t *spa;
4303 vdev_t *vd;
4304 int error;

4306 /*
4307 * On zpool clear we also fix up missing slogs
4308 */
4309 mutex_enter(&spa_namespace_lock);
4310 spa = spa_lookup(zc->zc_name);
4311 if (spa == NULL) {
4312 mutex_exit(&spa_namespace_lock);
4313 return (SET_ERROR(EIO));
4314 }
4315 if (spa_get_log_state(spa) == SPA_LOG_MISSING) {
4316 /* we need to let spa_open/spa_load clear the chains */
4317 spa_set_log_state(spa, SPA_LOG_CLEAR);
4318 }
4319 spa->spa_last_open_failed = 0;
4320 mutex_exit(&spa_namespace_lock);

4322 if (zc->zc_cookie & ZPOOL_NO_REWIND) {
4323 error = spa_open(zc->zc_name, &spa, FTAG);
4324 } else {
4325 nvlist_t *policy;
4326 nvlist_t *config = NULL;

4328 if (zc->zc_nvlist_src == NULL)
4329 return (SET_ERROR(EINVAL));

4331 if ((error = get_nvlist(zc->zc_nvlist_src,
4332 zc->zc_nvlist_src_size, zc->zc_iflags, &policy)) == 0) {
4333 error = spa_open_rewind(zc->zc_name, &spa, FTAG,
4334 policy, &config);
4335 if (config != NULL) {
4336 int err;

4338 if ((err = put_nvlist(zc, config)) != 0)
4339 error = err;
4340 nvlist_free(config);
4341 }
4342 nvlist_free(policy);
4343 }
4344 }

4346 if (error != 0)
4347 return (error);

4349 spa_vdev_state_enter(spa, SCL_NONE);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 67

4351 if (zc->zc_guid == 0) {
4352 vd = NULL;
4353 } else {
4354 vd = spa_lookup_by_guid(spa, zc->zc_guid, B_TRUE);
4355 if (vd == NULL) {
4356 (void) spa_vdev_state_exit(spa, NULL, ENODEV);
4357 spa_close(spa, FTAG);
4358 return (SET_ERROR(ENODEV));
4359 }
4360 }

4362 vdev_clear(spa, vd);

4364 (void) spa_vdev_state_exit(spa, NULL, 0);

4366 /*
4367 * Resume any suspended I/Os.
4368 */
4369 if (zio_resume(spa) != 0)
4370 error = SET_ERROR(EIO);

4372 spa_close(spa, FTAG);

4374 return (error);
4375 }

4377 static int
4378 zfs_ioc_pool_reopen(zfs_cmd_t *zc)
4379 {
4380 spa_t *spa;
4381 int error;

4383 error = spa_open(zc->zc_name, &spa, FTAG);
4384 if (error != 0)
4385 return (error);

4387 spa_vdev_state_enter(spa, SCL_NONE);

4389 /*
4390 * If a resilver is already in progress then set the
4391 * spa_scrub_reopen flag to B_TRUE so that we don’t restart
4392 * the scan as a side effect of the reopen. Otherwise, let
4393 * vdev_open() decided if a resilver is required.
4394 */
4395 spa->spa_scrub_reopen = dsl_scan_resilvering(spa->spa_dsl_pool);
4396 vdev_reopen(spa->spa_root_vdev);
4397 spa->spa_scrub_reopen = B_FALSE;

4399 (void) spa_vdev_state_exit(spa, NULL, 0);
4400 spa_close(spa, FTAG);
4401 return (0);
4402 }
4403 /*
4404 * inputs:
4405 * zc_name name of filesystem
4406 * zc_value name of origin snapshot
4407 *
4408 * outputs:
4409 * zc_string name of conflicting snapshot, if there is one
4410 */
4411 static int
4412 zfs_ioc_promote(zfs_cmd_t *zc)
4413 {
4414 char *cp;

4416 /*

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 68

4417 * We don’t need to unmount *all* the origin fs’s snapshots, but
4418 * it’s easier.
4419 */
4420 cp = strchr(zc->zc_value, ’@’);
4421 if (cp)
4422 *cp = ’\0’;
4423 (void) dmu_objset_find(zc->zc_value,
4424 zfs_unmount_snap_cb, NULL, DS_FIND_SNAPSHOTS);
4425 return (dsl_dataset_promote(zc->zc_name, zc->zc_string));
4426 }

4428 /*
4429 * Retrieve a single {user|group}{used|quota}@... property.
4430 *
4431 * inputs:
4432 * zc_name name of filesystem
4433 * zc_objset_type zfs_userquota_prop_t
4434 * zc_value domain name (eg. "S-1-234-567-89")
4435 * zc_guid RID/UID/GID
4436 *
4437 * outputs:
4438 * zc_cookie property value
4439 */
4440 static int
4441 zfs_ioc_userspace_one(zfs_cmd_t *zc)
4442 {
4443 zfsvfs_t *zfsvfs;
4444 int error;

4446 if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS)
4447 return (SET_ERROR(EINVAL));

4449 error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE);
4450 if (error != 0)
4451 return (error);

4453 error = zfs_userspace_one(zfsvfs,
4454 zc->zc_objset_type, zc->zc_value, zc->zc_guid, &zc->zc_cookie);
4455 zfsvfs_rele(zfsvfs, FTAG);

4457 return (error);
4458 }

4460 /*
4461 * inputs:
4462 * zc_name name of filesystem
4463 * zc_cookie zap cursor
4464 * zc_objset_type zfs_userquota_prop_t
4465 * zc_nvlist_dst[_size] buffer to fill (not really an nvlist)
4466 *
4467 * outputs:
4468 * zc_nvlist_dst[_size] data buffer (array of zfs_useracct_t)
4469 * zc_cookie zap cursor
4470 */
4471 static int
4472 zfs_ioc_userspace_many(zfs_cmd_t *zc)
4473 {
4474 zfsvfs_t *zfsvfs;
4475 int bufsize = zc->zc_nvlist_dst_size;

4477 if (bufsize <= 0)
4478 return (SET_ERROR(ENOMEM));

4480 int error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE);
4481 if (error != 0)
4482 return (error);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 69

4484 void *buf = kmem_alloc(bufsize, KM_SLEEP);

4486 error = zfs_userspace_many(zfsvfs, zc->zc_objset_type, &zc->zc_cookie,
4487 buf, &zc->zc_nvlist_dst_size);

4489 if (error == 0) {
4490 error = xcopyout(buf,
4491 (void *)(uintptr_t)zc->zc_nvlist_dst,
4492 zc->zc_nvlist_dst_size);
4493 }
4494 kmem_free(buf, bufsize);
4495 zfsvfs_rele(zfsvfs, FTAG);

4497 return (error);
4498 }

4500 /*
4501 * inputs:
4502 * zc_name name of filesystem
4503 *
4504 * outputs:
4505 * none
4506 */
4507 static int
4508 zfs_ioc_userspace_upgrade(zfs_cmd_t *zc)
4509 {
4510 objset_t *os;
4511 int error = 0;
4512 zfsvfs_t *zfsvfs;

4514 if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) {
4515 if (!dmu_objset_userused_enabled(zfsvfs->z_os)) {
4516 /*
4517 * If userused is not enabled, it may be because the
4518 * objset needs to be closed & reopened (to grow the
4519 * objset_phys_t). Suspend/resume the fs will do that.
4520 */
4521 error = zfs_suspend_fs(zfsvfs);
4522 if (error == 0)
4523 error = zfs_resume_fs(zfsvfs, zc->zc_name);
4524 }
4525 if (error == 0)
4526 error = dmu_objset_userspace_upgrade(zfsvfs->z_os);
4527 VFS_RELE(zfsvfs->z_vfs);
4528 } else {
4529 /* XXX kind of reading contents without owning */
4530 error = dmu_objset_hold(zc->zc_name, FTAG, &os);
4531 if (error != 0)
4532 return (error);

4534 error = dmu_objset_userspace_upgrade(os);
4535 dmu_objset_rele(os, FTAG);
4536 }

4538 return (error);
4539 }

4541 /*
4542 * We don’t want to have a hard dependency
4543 * against some special symbols in sharefs
4544 * nfs, and smbsrv. Determine them if needed when
4545 * the first file system is shared.
4546 * Neither sharefs, nfs or smbsrv are unloadable modules.
4547 */
4548 int (*znfsexport_fs)(void *arg);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 70

4549 int (*zshare_fs)(enum sharefs_sys_op, share_t *, uint32_t);
4550 int (*zsmbexport_fs)(void *arg, boolean_t add_share);

4552 int zfs_nfsshare_inited;
4553 int zfs_smbshare_inited;

4555 ddi_modhandle_t nfs_mod;
4556 ddi_modhandle_t sharefs_mod;
4557 ddi_modhandle_t smbsrv_mod;
4558 kmutex_t zfs_share_lock;

4560 static int
4561 zfs_init_sharefs()
4562 {
4563 int error;

4565 ASSERT(MUTEX_HELD(&zfs_share_lock));
4566 /* Both NFS and SMB shares also require sharetab support. */
4567 if (sharefs_mod == NULL && ((sharefs_mod =
4568 ddi_modopen("fs/sharefs",
4569 KRTLD_MODE_FIRST, &error)) == NULL)) {
4570 return (SET_ERROR(ENOSYS));
4571 }
4572 if (zshare_fs == NULL && ((zshare_fs =
4573 (int (*)(enum sharefs_sys_op, share_t *, uint32_t))
4574 ddi_modsym(sharefs_mod, "sharefs_impl", &error)) == NULL)) {
4575 return (SET_ERROR(ENOSYS));
4576 }
4577 return (0);
4578 }

4580 static int
4581 zfs_ioc_share(zfs_cmd_t *zc)
4582 {
4583 int error;
4584 int opcode;

4586 switch (zc->zc_share.z_sharetype) {
4587 case ZFS_SHARE_NFS:
4588 case ZFS_UNSHARE_NFS:
4589 if (zfs_nfsshare_inited == 0) {
4590 mutex_enter(&zfs_share_lock);
4591 if (nfs_mod == NULL && ((nfs_mod = ddi_modopen("fs/nfs",
4592 KRTLD_MODE_FIRST, &error)) == NULL)) {
4593 mutex_exit(&zfs_share_lock);
4594 return (SET_ERROR(ENOSYS));
4595 }
4596 if (znfsexport_fs == NULL &&
4597 ((znfsexport_fs = (int (*)(void *))
4598 ddi_modsym(nfs_mod,
4599 "nfs_export", &error)) == NULL)) {
4600 mutex_exit(&zfs_share_lock);
4601 return (SET_ERROR(ENOSYS));
4602 }
4603 error = zfs_init_sharefs();
4604 if (error != 0) {
4605 mutex_exit(&zfs_share_lock);
4606 return (SET_ERROR(ENOSYS));
4607 }
4608 zfs_nfsshare_inited = 1;
4609 mutex_exit(&zfs_share_lock);
4610 }
4611 break;
4612 case ZFS_SHARE_SMB:
4613 case ZFS_UNSHARE_SMB:
4614 if (zfs_smbshare_inited == 0) {

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 71

4615 mutex_enter(&zfs_share_lock);
4616 if (smbsrv_mod == NULL && ((smbsrv_mod =
4617 ddi_modopen("drv/smbsrv",
4618 KRTLD_MODE_FIRST, &error)) == NULL)) {
4619 mutex_exit(&zfs_share_lock);
4620 return (SET_ERROR(ENOSYS));
4621 }
4622 if (zsmbexport_fs == NULL && ((zsmbexport_fs =
4623 (int (*)(void *, boolean_t))ddi_modsym(smbsrv_mod,
4624 "smb_server_share", &error)) == NULL)) {
4625 mutex_exit(&zfs_share_lock);
4626 return (SET_ERROR(ENOSYS));
4627 }
4628 error = zfs_init_sharefs();
4629 if (error != 0) {
4630 mutex_exit(&zfs_share_lock);
4631 return (SET_ERROR(ENOSYS));
4632 }
4633 zfs_smbshare_inited = 1;
4634 mutex_exit(&zfs_share_lock);
4635 }
4636 break;
4637 default:
4638 return (SET_ERROR(EINVAL));
4639 }

4641 switch (zc->zc_share.z_sharetype) {
4642 case ZFS_SHARE_NFS:
4643 case ZFS_UNSHARE_NFS:
4644 if (error =
4645 znfsexport_fs((void *)
4646 (uintptr_t)zc->zc_share.z_exportdata))
4647 return (error);
4648 break;
4649 case ZFS_SHARE_SMB:
4650 case ZFS_UNSHARE_SMB:
4651 if (error = zsmbexport_fs((void *)
4652 (uintptr_t)zc->zc_share.z_exportdata,
4653 zc->zc_share.z_sharetype == ZFS_SHARE_SMB ?
4654 B_TRUE: B_FALSE)) {
4655 return (error);
4656 }
4657 break;
4658 }

4660 opcode = (zc->zc_share.z_sharetype == ZFS_SHARE_NFS ||
4661 zc->zc_share.z_sharetype == ZFS_SHARE_SMB) ?
4662 SHAREFS_ADD : SHAREFS_REMOVE;

4664 /*
4665 * Add or remove share from sharetab
4666 */
4667 error = zshare_fs(opcode,
4668 (void *)(uintptr_t)zc->zc_share.z_sharedata,
4669 zc->zc_share.z_sharemax);

4671 return (error);

4673 }

4675 ace_t full_access[] = {
4676 {(uid_t)-1, ACE_ALL_PERMS, ACE_EVERYONE, 0}
4677 };

4679 /*
4680 * inputs:

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 72

4681 * zc_name name of containing filesystem
4682 * zc_obj object # beyond which we want next in-use object #
4683 *
4684 * outputs:
4685 * zc_obj next in-use object #
4686 */
4687 static int
4688 zfs_ioc_next_obj(zfs_cmd_t *zc)
4689 {
4690 objset_t *os = NULL;
4691 int error;

4693 error = dmu_objset_hold(zc->zc_name, FTAG, &os);
4694 if (error != 0)
4695 return (error);

4697 error = dmu_object_next(os, &zc->zc_obj, B_FALSE,
4698 os->os_dsl_dataset->ds_phys->ds_prev_snap_txg);

4700 dmu_objset_rele(os, FTAG);
4701 return (error);
4702 }

4704 /*
4705 * inputs:
4706 * zc_name name of filesystem
4707 * zc_value prefix name for snapshot
4708 * zc_cleanup_fd cleanup-on-exit file descriptor for calling process
4709 *
4710 * outputs:
4711 * zc_value short name of new snapshot
4712 */
4713 static int
4714 zfs_ioc_tmp_snapshot(zfs_cmd_t *zc)
4715 {
4716 char *snap_name;
4717 char *hold_name;
4718 int error;
4719 minor_t minor;

4721 error = zfs_onexit_fd_hold(zc->zc_cleanup_fd, &minor);
4722 if (error != 0)
4723 return (error);

4725 snap_name = kmem_asprintf("%s-%016llx", zc->zc_value,
4726 (u_longlong_t)ddi_get_lbolt64());
4727 hold_name = kmem_asprintf("%%%s", zc->zc_value);

4729 error = dsl_dataset_snapshot_tmp(zc->zc_name, snap_name, minor,
4730 hold_name);
4731 if (error == 0)
4732 (void) strcpy(zc->zc_value, snap_name);
4733 strfree(snap_name);
4734 strfree(hold_name);
4735 zfs_onexit_fd_rele(zc->zc_cleanup_fd);
4736 return (error);
4737 }

4739 /*
4740 * inputs:
4741 * zc_name name of "to" snapshot
4742 * zc_value name of "from" snapshot
4743 * zc_cookie file descriptor to write diff data on
4744 *
4745 * outputs:
4746 * dmu_diff_record_t’s to the file descriptor

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 73

4747 */
4748 static int
4749 zfs_ioc_diff(zfs_cmd_t *zc)
4750 {
4751 file_t *fp;
4752 offset_t off;
4753 int error;

4755 fp = getf(zc->zc_cookie);
4756 if (fp == NULL)
4757 return (SET_ERROR(EBADF));

4759 off = fp->f_offset;

4761 error = dmu_diff(zc->zc_name, zc->zc_value, fp->f_vnode, &off);

4763 if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0)
4764 fp->f_offset = off;
4765 releasef(zc->zc_cookie);

4767 return (error);
4768 }

4770 /*
4771 * Remove all ACL files in shares dir
4772 */
4773 static int
4774 zfs_smb_acl_purge(znode_t *dzp)
4775 {
4776 zap_cursor_t zc;
4777 zap_attribute_t zap;
4778 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
4779 int error;

4781 for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id);
4782 (error = zap_cursor_retrieve(&zc, &zap)) == 0;
4783 zap_cursor_advance(&zc)) {
4784 if ((error = VOP_REMOVE(ZTOV(dzp), zap.za_name, kcred,
4785 NULL, 0)) != 0)
4786 break;
4787 }
4788 zap_cursor_fini(&zc);
4789 return (error);
4790 }

4792 static int
4793 zfs_ioc_smb_acl(zfs_cmd_t *zc)
4794 {
4795 vnode_t *vp;
4796 znode_t *dzp;
4797 vnode_t *resourcevp = NULL;
4798 znode_t *sharedir;
4799 zfsvfs_t *zfsvfs;
4800 nvlist_t *nvlist;
4801 char *src, *target;
4802 vattr_t vattr;
4803 vsecattr_t vsec;
4804 int error = 0;

4806 if ((error = lookupname(zc->zc_value, UIO_SYSSPACE,
4807 NO_FOLLOW, NULL, &vp)) != 0)
4808 return (error);

4810 /* Now make sure mntpnt and dataset are ZFS */

4812 if (vp->v_vfsp->vfs_fstype != zfsfstype ||

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 74

4813 (strcmp((char *)refstr_value(vp->v_vfsp->vfs_resource),
4814 zc->zc_name) != 0)) {
4815 VN_RELE(vp);
4816 return (SET_ERROR(EINVAL));
4817 }

4819 dzp = VTOZ(vp);
4820 zfsvfs = dzp->z_zfsvfs;
4821 ZFS_ENTER(zfsvfs);

4823 /*
4824 * Create share dir if its missing.
4825 */
4826 mutex_enter(&zfsvfs->z_lock);
4827 if (zfsvfs->z_shares_dir == 0) {
4828 dmu_tx_t *tx;

4830 tx = dmu_tx_create(zfsvfs->z_os);
4831 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, TRUE,
4832 ZFS_SHARES_DIR);
4833 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
4834 error = dmu_tx_assign(tx, TXG_WAIT);
4835 if (error != 0) {
4836 dmu_tx_abort(tx);
4837 } else {
4838 error = zfs_create_share_dir(zfsvfs, tx);
4839 dmu_tx_commit(tx);
4840 }
4841 if (error != 0) {
4842 mutex_exit(&zfsvfs->z_lock);
4843 VN_RELE(vp);
4844 ZFS_EXIT(zfsvfs);
4845 return (error);
4846 }
4847 }
4848 mutex_exit(&zfsvfs->z_lock);

4850 ASSERT(zfsvfs->z_shares_dir);
4851 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &sharedir)) != 0) {
4852 VN_RELE(vp);
4853 ZFS_EXIT(zfsvfs);
4854 return (error);
4855 }

4857 switch (zc->zc_cookie) {
4858 case ZFS_SMB_ACL_ADD:
4859 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
4860 vattr.va_type = VREG;
4861 vattr.va_mode = S_IFREG|0777;
4862 vattr.va_uid = 0;
4863 vattr.va_gid = 0;

4865 vsec.vsa_mask = VSA_ACE;
4866 vsec.vsa_aclentp = &full_access;
4867 vsec.vsa_aclentsz = sizeof (full_access);
4868 vsec.vsa_aclcnt = 1;

4870 error = VOP_CREATE(ZTOV(sharedir), zc->zc_string,
4871 &vattr, EXCL, 0, &resourcevp, kcred, 0, NULL, &vsec);
4872 if (resourcevp)
4873 VN_RELE(resourcevp);
4874 break;

4876 case ZFS_SMB_ACL_REMOVE:
4877 error = VOP_REMOVE(ZTOV(sharedir), zc->zc_string, kcred,
4878 NULL, 0);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 75

4879 break;

4881 case ZFS_SMB_ACL_RENAME:
4882 if ((error = get_nvlist(zc->zc_nvlist_src,
4883 zc->zc_nvlist_src_size, zc->zc_iflags, &nvlist)) != 0) {
4884 VN_RELE(vp);
4885 ZFS_EXIT(zfsvfs);
4886 return (error);
4887 }
4888 if (nvlist_lookup_string(nvlist, ZFS_SMB_ACL_SRC, &src) ||
4889 nvlist_lookup_string(nvlist, ZFS_SMB_ACL_TARGET,
4890 &target)) {
4891 VN_RELE(vp);
4892 VN_RELE(ZTOV(sharedir));
4893 ZFS_EXIT(zfsvfs);
4894 nvlist_free(nvlist);
4895 return (error);
4896 }
4897 error = VOP_RENAME(ZTOV(sharedir), src, ZTOV(sharedir), target,
4898 kcred, NULL, 0);
4899 nvlist_free(nvlist);
4900 break;

4902 case ZFS_SMB_ACL_PURGE:
4903 error = zfs_smb_acl_purge(sharedir);
4904 break;

4906 default:
4907 error = SET_ERROR(EINVAL);
4908 break;
4909 }

4911 VN_RELE(vp);
4912 VN_RELE(ZTOV(sharedir));

4914 ZFS_EXIT(zfsvfs);

4916 return (error);
4917 }

4919 /*
4920 * innvl: {
4921 * "holds" -> { snapname -> holdname (string), ... }
4922 * (optional) "cleanup_fd" -> fd (int32)
4923 * }
4924 *
4925 * outnvl: {
4926 * snapname -> error value (int32)
4927 * ...
4928 * }
4929 */
4930 /* ARGSUSED */
4931 static int
4932 zfs_ioc_hold(const char *pool, nvlist_t *args, nvlist_t *errlist)
4933 {
4934 nvlist_t *holds;
4935 int cleanup_fd = -1;
4936 int error;
4937 minor_t minor = 0;

4939 error = nvlist_lookup_nvlist(args, "holds", &holds);
4940 if (error != 0)
4941 return (SET_ERROR(EINVAL));

4943 if (nvlist_lookup_int32(args, "cleanup_fd", &cleanup_fd) == 0) {
4944 error = zfs_onexit_fd_hold(cleanup_fd, &minor);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 76

4945 if (error != 0)
4946 return (error);
4947 }

4949 error = dsl_dataset_user_hold(holds, minor, errlist);
4950 if (minor != 0)
4951 zfs_onexit_fd_rele(cleanup_fd);
4952 return (error);
4953 }

4955 /*
4956 * innvl is not used.
4957 *
4958 * outnvl: {
4959 * holdname -> time added (uint64 seconds since epoch)
4960 * ...
4961 * }
4962 */
4963 /* ARGSUSED */
4964 static int
4965 zfs_ioc_get_holds(const char *snapname, nvlist_t *args, nvlist_t *outnvl)
4966 {
4967 return (dsl_dataset_get_holds(snapname, outnvl));
4968 }

4970 /*
4971 * innvl: {
4972 * snapname -> { holdname, ... }
4973 * ...
4974 * }
4975 *
4976 * outnvl: {
4977 * snapname -> error value (int32)
4978 * ...
4979 * }
4980 */
4981 /* ARGSUSED */
4982 static int
4983 zfs_ioc_release(const char *pool, nvlist_t *holds, nvlist_t *errlist)
4984 {
29 nvpair_t *pair;

31 /*
32 * The release may cause the snapshot to be destroyed; make sure it
33 * is not mounted.
34 */
35 for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL;
36 pair = nvlist_next_nvpair(holds, pair))
37 zfs_unmount_snap(nvpair_name(pair));

4985 return (dsl_dataset_user_release(holds, errlist));
4986 }
______unchanged_portion_omitted_

