1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2013 by Delphix. All rights reserved. 28 * Copyright (c) 2013 Steven Hartland. All rights reserved. 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/spa_impl.h> 34 #include <sys/zio.h> 35 #include <sys/avl.h> 36 #include <sys/dsl_pool.h> 37 38 /* 39 * ZFS I/O Scheduler 40 * --------------- 41 * 42 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The 43 * I/O scheduler determines when and in what order those operations are 44 * issued. The I/O scheduler divides operations into five I/O classes 45 * prioritized in the following order: sync read, sync write, async read, 46 * async write, and scrub/resilver. Each queue defines the minimum and 47 * maximum number of concurrent operations that may be issued to the device. 48 * In addition, the device has an aggregate maximum. Note that the sum of the 49 * per-queue minimums must not exceed the aggregate maximum, and if the 50 * aggregate maximum is equal to or greater than the sum of the per-queue 51 * maximums, the per-queue minimum has no effect. 52 * 53 * For many physical devices, throughput increases with the number of 54 * concurrent operations, but latency typically suffers. Further, physical 55 * devices typically have a limit at which more concurrent operations have no 56 * effect on throughput or can actually cause it to decrease. 57 * 58 * The scheduler selects the next operation to issue by first looking for an 59 * I/O class whose minimum has not been satisfied. Once all are satisfied and 60 * the aggregate maximum has not been hit, the scheduler looks for classes 61 * whose maximum has not been satisfied. Iteration through the I/O classes is 62 * done in the order specified above. No further operations are issued if the 63 * aggregate maximum number of concurrent operations has been hit or if there 64 * are no operations queued for an I/O class that has not hit its maximum. 65 * Every time an i/o is queued or an operation completes, the I/O scheduler 66 * looks for new operations to issue. 67 * 68 * All I/O classes have a fixed maximum number of outstanding operations 69 * except for the async write class. Asynchronous writes represent the data 70 * that is committed to stable storage during the syncing stage for 71 * transaction groups (see txg.c). Transaction groups enter the syncing state 72 * periodically so the number of queued async writes will quickly burst up and 73 * then bleed down to zero. Rather than servicing them as quickly as possible, 74 * the I/O scheduler changes the maximum number of active async write i/os 75 * according to the amount of dirty data in the pool (see dsl_pool.c). Since 76 * both throughput and latency typically increase with the number of 77 * concurrent operations issued to physical devices, reducing the burstiness 78 * in the number of concurrent operations also stabilizes the response time of 79 * operations from other -- and in particular synchronous -- queues. In broad 80 * strokes, the I/O scheduler will issue more concurrent operations from the 81 * async write queue as there's more dirty data in the pool. 82 * 83 * Async Writes 84 * 85 * The number of concurrent operations issued for the async write I/O class 86 * follows a piece-wise linear function defined by a few adjustable points. 87 * 88 * | o---------| <-- zfs_vdev_async_write_max_active 89 * ^ | /^ | 90 * | | / | | 91 * active | / | | 92 * I/O | / | | 93 * count | / | | 94 * | / | | 95 * |------------o | | <-- zfs_vdev_async_write_min_active 96 * 0|____________^______|_________| 97 * 0% | | 100% of zfs_dirty_data_max 98 * | | 99 * | `-- zfs_vdev_async_write_active_max_dirty_percent 100 * `--------- zfs_vdev_async_write_active_min_dirty_percent 101 * 102 * Until the amount of dirty data exceeds a minimum percentage of the dirty 103 * data allowed in the pool, the I/O scheduler will limit the number of 104 * concurrent operations to the minimum. As that threshold is crossed, the 105 * number of concurrent operations issued increases linearly to the maximum at 106 * the specified maximum percentage of the dirty data allowed in the pool. 107 * 108 * Ideally, the amount of dirty data on a busy pool will stay in the sloped 109 * part of the function between zfs_vdev_async_write_active_min_dirty_percent 110 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the 111 * maximum percentage, this indicates that the rate of incoming data is 112 * greater than the rate that the backend storage can handle. In this case, we 113 * must further throttle incoming writes (see dmu_tx_delay() for details). 114 */ 115 116 /* 117 * The maximum number of i/os active to each device. Ideally, this will be >= 118 * the sum of each queue's max_active. It must be at least the sum of each 119 * queue's min_active. 120 */ 121 uint32_t zfs_vdev_max_active = 1000; 122 123 /* 124 * Per-queue limits on the number of i/os active to each device. If the 125 * sum of the queue's max_active is < zfs_vdev_max_active, then the 126 * min_active comes into play. We will send min_active from each queue, 127 * and then select from queues in the order defined by zio_priority_t. 128 * 129 * In general, smaller max_active's will lead to lower latency of synchronous 130 * operations. Larger max_active's may lead to higher overall throughput, 131 * depending on underlying storage. 132 * 133 * The ratio of the queues' max_actives determines the balance of performance 134 * between reads, writes, and scrubs. E.g., increasing 135 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete 136 * more quickly, but reads and writes to have higher latency and lower 137 * throughput. 138 */ 139 uint32_t zfs_vdev_sync_read_min_active = 10; 140 uint32_t zfs_vdev_sync_read_max_active = 10; 141 uint32_t zfs_vdev_sync_write_min_active = 10; 142 uint32_t zfs_vdev_sync_write_max_active = 10; 143 uint32_t zfs_vdev_async_read_min_active = 1; 144 uint32_t zfs_vdev_async_read_max_active = 3; 145 uint32_t zfs_vdev_async_write_min_active = 1; 146 uint32_t zfs_vdev_async_write_max_active = 10; 147 uint32_t zfs_vdev_scrub_min_active = 1; 148 uint32_t zfs_vdev_scrub_max_active = 2; 149 150 /* 151 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent 152 * dirty data, use zfs_vdev_async_write_min_active. When it has more than 153 * zfs_vdev_async_write_active_max_dirty_percent, use 154 * zfs_vdev_async_write_max_active. The value is linearly interpolated 155 * between min and max. 156 */ 157 int zfs_vdev_async_write_active_min_dirty_percent = 30; 158 int zfs_vdev_async_write_active_max_dirty_percent = 60; 159 160 /* 161 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O. 162 * For read I/Os, we also aggregate across small adjacency gaps; for writes 163 * we include spans of optional I/Os to aid aggregation at the disk even when 164 * they aren't able to help us aggregate at this level. 165 */ 166 int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE; 167 int zfs_vdev_read_gap_limit = 32 << 10; 168 int zfs_vdev_write_gap_limit = 4 << 10; 169 170 int 171 vdev_queue_offset_compare(const void *x1, const void *x2) 172 { 173 const zio_t *z1 = x1; 174 const zio_t *z2 = x2; 175 176 if (z1->io_offset < z2->io_offset) 177 return (-1); 178 if (z1->io_offset > z2->io_offset) 179 return (1); 180 181 if (z1 < z2) 182 return (-1); 183 if (z1 > z2) 184 return (1); 185 186 return (0); 187 } 188 189 int 190 vdev_queue_timestamp_compare(const void *x1, const void *x2) 191 { 192 const zio_t *z1 = x1; 193 const zio_t *z2 = x2; 194 195 if (z1->io_timestamp < z2->io_timestamp) 196 return (-1); 197 if (z1->io_timestamp > z2->io_timestamp) 198 return (1); 199 200 if (z1 < z2) 201 return (-1); 202 if (z1 > z2) 203 return (1); 204 205 return (0); 206 } 207 208 void 209 vdev_queue_init(vdev_t *vd) 210 { 211 vdev_queue_t *vq = &vd->vdev_queue; 212 213 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL); 214 vq->vq_vdev = vd; 215 216 avl_create(&vq->vq_active_tree, vdev_queue_offset_compare, 217 sizeof (zio_t), offsetof(struct zio, io_queue_node)); 218 219 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 220 /* 221 * The synchronous i/o queues are FIFO rather than LBA ordered. 222 * This provides more consistent latency for these i/os, and 223 * they tend to not be tightly clustered anyway so there is 224 * little to no throughput loss. 225 */ 226 boolean_t fifo = (p == ZIO_PRIORITY_SYNC_READ || 227 p == ZIO_PRIORITY_SYNC_WRITE); 228 avl_create(&vq->vq_class[p].vqc_queued_tree, 229 fifo ? vdev_queue_timestamp_compare : 230 vdev_queue_offset_compare, 231 sizeof (zio_t), offsetof(struct zio, io_queue_node)); 232 } 233 234 vq->vq_lastoffset = 0; 235 } 236 237 void 238 vdev_queue_fini(vdev_t *vd) 239 { 240 vdev_queue_t *vq = &vd->vdev_queue; 241 242 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) 243 avl_destroy(&vq->vq_class[p].vqc_queued_tree); 244 avl_destroy(&vq->vq_active_tree); 245 246 mutex_destroy(&vq->vq_lock); 247 } 248 249 static void 250 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio) 251 { 252 spa_t *spa = zio->io_spa; 253 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 254 avl_add(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio); 255 256 mutex_enter(&spa->spa_iokstat_lock); 257 spa->spa_queue_stats[zio->io_priority].spa_queued++; 258 if (spa->spa_iokstat != NULL) 259 kstat_waitq_enter(spa->spa_iokstat->ks_data); 260 mutex_exit(&spa->spa_iokstat_lock); 261 } 262 263 static void 264 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio) 265 { 266 spa_t *spa = zio->io_spa; 267 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 268 avl_remove(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio); 269 270 mutex_enter(&spa->spa_iokstat_lock); 271 ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0); 272 spa->spa_queue_stats[zio->io_priority].spa_queued--; 273 if (spa->spa_iokstat != NULL) 274 kstat_waitq_exit(spa->spa_iokstat->ks_data); 275 mutex_exit(&spa->spa_iokstat_lock); 276 } 277 278 static void 279 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio) 280 { 281 spa_t *spa = zio->io_spa; 282 ASSERT(MUTEX_HELD(&vq->vq_lock)); 283 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 284 vq->vq_class[zio->io_priority].vqc_active++; 285 avl_add(&vq->vq_active_tree, zio); 286 287 mutex_enter(&spa->spa_iokstat_lock); 288 spa->spa_queue_stats[zio->io_priority].spa_active++; 289 if (spa->spa_iokstat != NULL) 290 kstat_runq_enter(spa->spa_iokstat->ks_data); 291 mutex_exit(&spa->spa_iokstat_lock); 292 } 293 294 static void 295 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio) 296 { 297 spa_t *spa = zio->io_spa; 298 ASSERT(MUTEX_HELD(&vq->vq_lock)); 299 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 300 vq->vq_class[zio->io_priority].vqc_active--; 301 avl_remove(&vq->vq_active_tree, zio); 302 303 mutex_enter(&spa->spa_iokstat_lock); 304 ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0); 305 spa->spa_queue_stats[zio->io_priority].spa_active--; 306 if (spa->spa_iokstat != NULL) { 307 kstat_io_t *ksio = spa->spa_iokstat->ks_data; 308 309 kstat_runq_exit(spa->spa_iokstat->ks_data); 310 if (zio->io_type == ZIO_TYPE_READ) { 311 ksio->reads++; 312 ksio->nread += zio->io_size; 313 } else if (zio->io_type == ZIO_TYPE_WRITE) { 314 ksio->writes++; 315 ksio->nwritten += zio->io_size; 316 } 317 } 318 mutex_exit(&spa->spa_iokstat_lock); 319 } 320 321 static void 322 vdev_queue_agg_io_done(zio_t *aio) 323 { 324 if (aio->io_type == ZIO_TYPE_READ) { 325 zio_t *pio; 326 while ((pio = zio_walk_parents(aio)) != NULL) { 327 bcopy((char *)aio->io_data + (pio->io_offset - 328 aio->io_offset), pio->io_data, pio->io_size); 329 } 330 } 331 332 zio_buf_free(aio->io_data, aio->io_size); 333 } 334 335 static int 336 vdev_queue_class_min_active(zio_priority_t p) 337 { 338 switch (p) { 339 case ZIO_PRIORITY_SYNC_READ: 340 return (zfs_vdev_sync_read_min_active); 341 case ZIO_PRIORITY_SYNC_WRITE: 342 return (zfs_vdev_sync_write_min_active); 343 case ZIO_PRIORITY_ASYNC_READ: 344 return (zfs_vdev_async_read_min_active); 345 case ZIO_PRIORITY_ASYNC_WRITE: 346 return (zfs_vdev_async_write_min_active); 347 case ZIO_PRIORITY_SCRUB: 348 return (zfs_vdev_scrub_min_active); 349 default: 350 panic("invalid priority %u", p); 351 return (0); 352 } 353 } 354 355 static int 356 vdev_queue_max_async_writes(uint64_t dirty) 357 { 358 int writes; 359 uint64_t min_bytes = zfs_dirty_data_max * 360 zfs_vdev_async_write_active_min_dirty_percent / 100; 361 uint64_t max_bytes = zfs_dirty_data_max * 362 zfs_vdev_async_write_active_max_dirty_percent / 100; 363 364 if (dirty < min_bytes) 365 return (zfs_vdev_async_write_min_active); 366 if (dirty > max_bytes) 367 return (zfs_vdev_async_write_max_active); 368 369 /* 370 * linear interpolation: 371 * slope = (max_writes - min_writes) / (max_bytes - min_bytes) 372 * move right by min_bytes 373 * move up by min_writes 374 */ 375 writes = (dirty - min_bytes) * 376 (zfs_vdev_async_write_max_active - 377 zfs_vdev_async_write_min_active) / 378 (max_bytes - min_bytes) + 379 zfs_vdev_async_write_min_active; 380 ASSERT3U(writes, >=, zfs_vdev_async_write_min_active); 381 ASSERT3U(writes, <=, zfs_vdev_async_write_max_active); 382 return (writes); 383 } 384 385 static int 386 vdev_queue_class_max_active(spa_t *spa, zio_priority_t p) 387 { 388 switch (p) { 389 case ZIO_PRIORITY_SYNC_READ: 390 return (zfs_vdev_sync_read_max_active); 391 case ZIO_PRIORITY_SYNC_WRITE: 392 return (zfs_vdev_sync_write_max_active); 393 case ZIO_PRIORITY_ASYNC_READ: 394 return (zfs_vdev_async_read_max_active); 395 case ZIO_PRIORITY_ASYNC_WRITE: 396 return (vdev_queue_max_async_writes( 397 spa->spa_dsl_pool->dp_dirty_total)); 398 case ZIO_PRIORITY_SCRUB: 399 return (zfs_vdev_scrub_max_active); 400 default: 401 panic("invalid priority %u", p); 402 return (0); 403 } 404 } 405 406 /* 407 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if 408 * there is no eligible class. 409 */ 410 static zio_priority_t 411 vdev_queue_class_to_issue(vdev_queue_t *vq) 412 { 413 spa_t *spa = vq->vq_vdev->vdev_spa; 414 zio_priority_t p; 415 416 if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active) 417 return (ZIO_PRIORITY_NUM_QUEUEABLE); 418 419 /* find a queue that has not reached its minimum # outstanding i/os */ 420 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 421 if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 && 422 vq->vq_class[p].vqc_active < 423 vdev_queue_class_min_active(p)) 424 return (p); 425 } 426 427 /* 428 * If we haven't found a queue, look for one that hasn't reached its 429 * maximum # outstanding i/os. 430 */ 431 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 432 if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 && 433 vq->vq_class[p].vqc_active < 434 vdev_queue_class_max_active(spa, p)) 435 return (p); 436 } 437 438 /* No eligible queued i/os */ 439 return (ZIO_PRIORITY_NUM_QUEUEABLE); 440 } 441 442 /* 443 * Compute the range spanned by two i/os, which is the endpoint of the last 444 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset). 445 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio); 446 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0. 447 */ 448 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset) 449 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio)) 450 451 static zio_t * 452 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) 453 { 454 zio_t *first, *last, *aio, *dio, *mandatory, *nio; 455 uint64_t maxgap = 0; 456 uint64_t size; 457 boolean_t stretch = B_FALSE; 458 vdev_queue_class_t *vqc = &vq->vq_class[zio->io_priority]; 459 avl_tree_t *t = &vqc->vqc_queued_tree; 460 enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT; 461 462 if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE) 463 return (NULL); 464 465 /* 466 * The synchronous i/o queues are not sorted by LBA, so we can't 467 * find adjacent i/os. These i/os tend to not be tightly clustered, 468 * or too large to aggregate, so this has little impact on performance. 469 */ 470 if (zio->io_priority == ZIO_PRIORITY_SYNC_READ || 471 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) 472 return (NULL); 473 474 first = last = zio; 475 476 if (zio->io_type == ZIO_TYPE_READ) 477 maxgap = zfs_vdev_read_gap_limit; 478 479 /* 480 * We can aggregate I/Os that are sufficiently adjacent and of 481 * the same flavor, as expressed by the AGG_INHERIT flags. 482 * The latter requirement is necessary so that certain 483 * attributes of the I/O, such as whether it's a normal I/O 484 * or a scrub/resilver, can be preserved in the aggregate. 485 * We can include optional I/Os, but don't allow them 486 * to begin a range as they add no benefit in that situation. 487 */ 488 489 /* 490 * We keep track of the last non-optional I/O. 491 */ 492 mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first; 493 494 /* 495 * Walk backwards through sufficiently contiguous I/Os 496 * recording the last non-option I/O. 497 */ 498 while ((dio = AVL_PREV(t, first)) != NULL && 499 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 500 IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit && 501 IO_GAP(dio, first) <= maxgap) { 502 first = dio; 503 if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL)) 504 mandatory = first; 505 } 506 507 /* 508 * Skip any initial optional I/Os. 509 */ 510 while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) { 511 first = AVL_NEXT(t, first); 512 ASSERT(first != NULL); 513 } 514 515 /* 516 * Walk forward through sufficiently contiguous I/Os. 517 */ 518 while ((dio = AVL_NEXT(t, last)) != NULL && 519 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 520 IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit && 521 IO_GAP(last, dio) <= maxgap) { 522 last = dio; 523 if (!(last->io_flags & ZIO_FLAG_OPTIONAL)) 524 mandatory = last; 525 } 526 527 /* 528 * Now that we've established the range of the I/O aggregation 529 * we must decide what to do with trailing optional I/Os. 530 * For reads, there's nothing to do. While we are unable to 531 * aggregate further, it's possible that a trailing optional 532 * I/O would allow the underlying device to aggregate with 533 * subsequent I/Os. We must therefore determine if the next 534 * non-optional I/O is close enough to make aggregation 535 * worthwhile. 536 */ 537 if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) { 538 zio_t *nio = last; 539 while ((dio = AVL_NEXT(t, nio)) != NULL && 540 IO_GAP(nio, dio) == 0 && 541 IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) { 542 nio = dio; 543 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) { 544 stretch = B_TRUE; 545 break; 546 } 547 } 548 } 549 550 if (stretch) { 551 /* This may be a no-op. */ 552 dio = AVL_NEXT(t, last); 553 dio->io_flags &= ~ZIO_FLAG_OPTIONAL; 554 } else { 555 while (last != mandatory && last != first) { 556 ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL); 557 last = AVL_PREV(t, last); 558 ASSERT(last != NULL); 559 } 560 } 561 562 if (first == last) 563 return (NULL); 564 565 size = IO_SPAN(first, last); 566 ASSERT3U(size, <=, zfs_vdev_aggregation_limit); 567 568 aio = zio_vdev_delegated_io(first->io_vd, first->io_offset, 569 zio_buf_alloc(size), size, first->io_type, zio->io_priority, 570 flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE, 571 vdev_queue_agg_io_done, NULL); 572 aio->io_timestamp = first->io_timestamp; 573 574 nio = first; 575 do { 576 dio = nio; 577 nio = AVL_NEXT(t, dio); 578 ASSERT3U(dio->io_type, ==, aio->io_type); 579 580 if (dio->io_flags & ZIO_FLAG_NODATA) { 581 ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE); 582 bzero((char *)aio->io_data + (dio->io_offset - 583 aio->io_offset), dio->io_size); 584 } else if (dio->io_type == ZIO_TYPE_WRITE) { 585 bcopy(dio->io_data, (char *)aio->io_data + 586 (dio->io_offset - aio->io_offset), 587 dio->io_size); 588 } 589 590 zio_add_child(dio, aio); 591 vdev_queue_io_remove(vq, dio); 592 zio_vdev_io_bypass(dio); 593 zio_execute(dio); 594 } while (dio != last); 595 596 return (aio); 597 } 598 599 static zio_t * 600 vdev_queue_io_to_issue(vdev_queue_t *vq) 601 { 602 zio_t *zio, *aio; 603 zio_priority_t p; 604 avl_index_t idx; 605 vdev_queue_class_t *vqc; 606 zio_t search; 607 608 again: 609 ASSERT(MUTEX_HELD(&vq->vq_lock)); 610 611 p = vdev_queue_class_to_issue(vq); 612 613 if (p == ZIO_PRIORITY_NUM_QUEUEABLE) { 614 /* No eligible queued i/os */ 615 return (NULL); 616 } 617 618 /* 619 * For LBA-ordered queues (async / scrub), issue the i/o which follows 620 * the most recently issued i/o in LBA (offset) order. 621 * 622 * For FIFO queues (sync), issue the i/o with the lowest timestamp. 623 */ 624 vqc = &vq->vq_class[p]; 625 search.io_timestamp = 0; 626 search.io_offset = vq->vq_last_offset + 1; 627 VERIFY3P(avl_find(&vqc->vqc_queued_tree, &search, &idx), ==, NULL); 628 zio = avl_nearest(&vqc->vqc_queued_tree, idx, AVL_AFTER); 629 if (zio == NULL) 630 zio = avl_first(&vqc->vqc_queued_tree); 631 ASSERT3U(zio->io_priority, ==, p); 632 633 aio = vdev_queue_aggregate(vq, zio); 634 if (aio != NULL) 635 zio = aio; 636 else 637 vdev_queue_io_remove(vq, zio); 638 639 /* 640 * If the I/O is or was optional and therefore has no data, we need to 641 * simply discard it. We need to drop the vdev queue's lock to avoid a 642 * deadlock that we could encounter since this I/O will complete 643 * immediately. 644 */ 645 if (zio->io_flags & ZIO_FLAG_NODATA) { 646 mutex_exit(&vq->vq_lock); 647 zio_vdev_io_bypass(zio); 648 zio_execute(zio); 649 mutex_enter(&vq->vq_lock); 650 goto again; 651 } 652 653 vdev_queue_pending_add(vq, zio); 654 vq->vq_last_offset = zio->io_offset; 655 656 return (zio); 657 } 658 659 zio_t * 660 vdev_queue_io(zio_t *zio) 661 { 662 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 663 zio_t *nio; 664 665 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE) 666 return (zio); 667 668 /* 669 * Children i/os inherent their parent's priority, which might 670 * not match the child's i/o type. Fix it up here. 671 */ 672 if (zio->io_type == ZIO_TYPE_READ) { 673 if (zio->io_priority != ZIO_PRIORITY_SYNC_READ && 674 zio->io_priority != ZIO_PRIORITY_ASYNC_READ && 675 zio->io_priority != ZIO_PRIORITY_SCRUB) 676 zio->io_priority = ZIO_PRIORITY_ASYNC_READ; 677 } else { 678 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 679 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE && 680 zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE) 681 zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE; 682 } 683 684 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE; 685 686 mutex_enter(&vq->vq_lock); 687 zio->io_timestamp = gethrtime(); 688 vdev_queue_io_add(vq, zio); 689 nio = vdev_queue_io_to_issue(vq); 690 mutex_exit(&vq->vq_lock); 691 692 if (nio == NULL) 693 return (NULL); 694 695 if (nio->io_done == vdev_queue_agg_io_done) { 696 zio_nowait(nio); 697 return (NULL); 698 } 699 700 return (nio); 701 } 702 703 void 704 vdev_queue_io_done(zio_t *zio) 705 { 706 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 707 zio_t *nio; 708 709 if (zio_injection_enabled) 710 delay(SEC_TO_TICK(zio_handle_io_delay(zio))); 711 712 mutex_enter(&vq->vq_lock); 713 714 vdev_queue_pending_remove(vq, zio); 715 716 vq->vq_io_complete_ts = gethrtime(); 717 718 while ((nio = vdev_queue_io_to_issue(vq)) != NULL) { 719 mutex_exit(&vq->vq_lock); 720 if (nio->io_done == vdev_queue_agg_io_done) { 721 zio_nowait(nio); 722 } else { 723 zio_vdev_io_reissue(nio); 724 zio_execute(nio); 725 } 726 mutex_enter(&vq->vq_lock); 727 } 728 729 mutex_exit(&vq->vq_lock); 730 } 731 732 /* 733 * As these three methods are only used for load calculations we're not 734 * concerned if we get an incorrect value on 32bit platforms due to lack of 735 * vq_lock mutex use here, instead we prefer to keep it lock free for 736 * performance. 737 */ 738 int 739 vdev_queue_length(vdev_t *vd) 740 { 741 return (avl_numnodes(&vd->vdev_queue.vq_pending_tree)); 742 } 743 744 uint64_t 745 vdev_queue_lastoffset(vdev_t *vd) 746 { 747 return (vd->vdev_queue.vq_lastoffset); 748 } 749 750 void 751 vdev_queue_register_lastoffset(vdev_t *vd, zio_t *zio) 752 { 753 vd->vdev_queue.vq_lastoffset = zio->io_offset + zio->io_size; 754 }