Print this page
4334 Improve ZFS N-way mirror read performance


   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 /*
  27  * Copyright (c) 2013 by Delphix. All rights reserved.

  28  */
  29 
  30 #include <sys/zfs_context.h>
  31 #include <sys/spa.h>
  32 #include <sys/vdev_impl.h>
  33 #include <sys/zio.h>
  34 #include <sys/fs/zfs.h>
  35 
  36 /*
  37  * Virtual device vector for mirroring.
  38  */
  39 
  40 typedef struct mirror_child {
  41         vdev_t          *mc_vd;
  42         uint64_t        mc_offset;
  43         int             mc_error;

  44         uint8_t         mc_tried;
  45         uint8_t         mc_skipped;
  46         uint8_t         mc_speculative;
  47 } mirror_child_t;
  48 
  49 typedef struct mirror_map {


  50         int             mm_children;
  51         int             mm_replacing;
  52         int             mm_preferred;
  53         int             mm_root;
  54         mirror_child_t  mm_child[1];
  55 } mirror_map_t;
  56 
  57 int vdev_mirror_shift = 21;




















































  58 
  59 static void
  60 vdev_mirror_map_free(zio_t *zio)
  61 {
  62         mirror_map_t *mm = zio->io_vsd;
  63 
  64         kmem_free(mm, offsetof(mirror_map_t, mm_child[mm->mm_children]));
  65 }
  66 
  67 static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
  68         vdev_mirror_map_free,
  69         zio_vsd_default_cksum_report
  70 };
  71 



















































  72 static mirror_map_t *
  73 vdev_mirror_map_alloc(zio_t *zio)
  74 {
  75         mirror_map_t *mm = NULL;
  76         mirror_child_t *mc;
  77         vdev_t *vd = zio->io_vd;
  78         int c, d;
  79 
  80         if (vd == NULL) {
  81                 dva_t *dva = zio->io_bp->blk_dva;
  82                 spa_t *spa = zio->io_spa;
  83 
  84                 c = BP_GET_NDVAS(zio->io_bp);
  85 
  86                 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP);
  87                 mm->mm_children = c;
  88                 mm->mm_replacing = B_FALSE;
  89                 mm->mm_preferred = spa_get_random(c);
  90                 mm->mm_root = B_TRUE;
  91 
  92                 /*
  93                  * Check the other, lower-index DVAs to see if they're on
  94                  * the same vdev as the child we picked.  If they are, use
  95                  * them since they are likely to have been allocated from
  96                  * the primary metaslab in use at the time, and hence are
  97                  * more likely to have locality with single-copy data.
  98                  */
  99                 for (c = mm->mm_preferred, d = c - 1; d >= 0; d--) {
 100                         if (DVA_GET_VDEV(&dva[d]) == DVA_GET_VDEV(&dva[c]))
 101                                 mm->mm_preferred = d;
 102                 }
 103 
 104                 for (c = 0; c < mm->mm_children; c++) {
 105                         mc = &mm->mm_child[c];
 106 
 107                         mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
 108                         mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
 109                 }
 110         } else {
 111                 c = vd->vdev_children;
 112 
 113                 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP);
 114                 mm->mm_children = c;
 115                 mm->mm_replacing = (vd->vdev_ops == &vdev_replacing_ops ||
 116                     vd->vdev_ops == &vdev_spare_ops);
 117                 mm->mm_preferred = mm->mm_replacing ? 0 :
 118                     (zio->io_offset >> vdev_mirror_shift) % c;
 119                 mm->mm_root = B_FALSE;
 120 
 121                 for (c = 0; c < mm->mm_children; c++) {
 122                         mc = &mm->mm_child[c];
 123                         mc->mc_vd = vd->vdev_child[c];
 124                         mc->mc_offset = zio->io_offset;
 125                 }
 126         }
 127 
 128         zio->io_vsd = mm;
 129         zio->io_vsd_ops = &vdev_mirror_vsd_ops;
 130         return (mm);
 131 }
 132 
 133 static int
 134 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
 135     uint64_t *ashift)
 136 {
 137         int numerrors = 0;
 138         int lasterror = 0;
 139 
 140         if (vd->vdev_children == 0) {


 192                 zio_t *pio;
 193 
 194                 mutex_enter(&zio->io_lock);
 195                 while ((pio = zio_walk_parents(zio)) != NULL) {
 196                         mutex_enter(&pio->io_lock);
 197                         ASSERT3U(zio->io_size, >=, pio->io_size);
 198                         bcopy(zio->io_data, pio->io_data, pio->io_size);
 199                         mutex_exit(&pio->io_lock);
 200                 }
 201                 mutex_exit(&zio->io_lock);
 202         }
 203 
 204         zio_buf_free(zio->io_data, zio->io_size);
 205 
 206         mc->mc_error = zio->io_error;
 207         mc->mc_tried = 1;
 208         mc->mc_skipped = 0;
 209 }
 210 
 211 /*
 212  * Try to find a child whose DTL doesn't contain the block we want to read.












































 213  * If we can't, try the read on any vdev we haven't already tried.
 214  */
 215 static int
 216 vdev_mirror_child_select(zio_t *zio)
 217 {
 218         mirror_map_t *mm = zio->io_vsd;
 219         mirror_child_t *mc;
 220         uint64_t txg = zio->io_txg;
 221         int i, c;
 222 
 223         ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg);
 224 
 225         /*
 226          * Try to find a child whose DTL doesn't contain the block to read.
 227          * If a child is known to be completely inaccessible (indicated by
 228          * vdev_readable() returning B_FALSE), don't even try.
 229          */
 230         for (i = 0, c = mm->mm_preferred; i < mm->mm_children; i++, c++) {
 231                 if (c >= mm->mm_children)
 232                         c = 0;
 233                 mc = &mm->mm_child[c];
 234                 if (mc->mc_tried || mc->mc_skipped)
 235                         continue;

 236                 if (!vdev_readable(mc->mc_vd)) {
 237                         mc->mc_error = SET_ERROR(ENXIO);
 238                         mc->mc_tried = 1;    /* don't even try */
 239                         mc->mc_skipped = 1;
 240                         continue;
 241                 }
 242                 if (!vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1))
 243                         return (c);
 244                 mc->mc_error = SET_ERROR(ESTALE);
 245                 mc->mc_skipped = 1;
 246                 mc->mc_speculative = 1;


























 247         }
 248 
 249         /*
 250          * Every device is either missing or has this txg in its DTL.
 251          * Look for any child we haven't already tried before giving up.
 252          */
 253         for (c = 0; c < mm->mm_children; c++)
 254                 if (!mm->mm_child[c].mc_tried)


 255                         return (c);


 256 
 257         /*
 258          * Every child failed.  There's no place left to look.
 259          */
 260         return (-1);
 261 }
 262 
 263 static int
 264 vdev_mirror_io_start(zio_t *zio)
 265 {
 266         mirror_map_t *mm;
 267         mirror_child_t *mc;
 268         int c, children;
 269 
 270         mm = vdev_mirror_map_alloc(zio);
 271 
 272         if (zio->io_type == ZIO_TYPE_READ) {
 273                 if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing) {
 274                         /*
 275                          * For scrubbing reads we need to allocate a read
 276                          * buffer for each child and issue reads to all
 277                          * children.  If any child succeeds, it will copy its
 278                          * data into zio->io_data in vdev_mirror_scrub_done.
 279                          */
 280                         for (c = 0; c < mm->mm_children; c++) {
 281                                 mc = &mm->mm_child[c];
 282                                 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
 283                                     mc->mc_vd, mc->mc_offset,
 284                                     zio_buf_alloc(zio->io_size), zio->io_size,
 285                                     zio->io_type, zio->io_priority, 0,
 286                                     vdev_mirror_scrub_done, mc));
 287                         }
 288                         return (ZIO_PIPELINE_CONTINUE);
 289                 }
 290                 /*




   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 /*
  27  * Copyright (c) 2013 by Delphix. All rights reserved.
  28  * Copyright (c) 2013 Steven Hartland. All rights reserved.
  29  */
  30 
  31 #include <sys/zfs_context.h>
  32 #include <sys/spa.h>
  33 #include <sys/vdev_impl.h>
  34 #include <sys/zio.h>
  35 #include <sys/fs/zfs.h>
  36 
  37 /*
  38  * Virtual device vector for mirroring.
  39  */
  40 
  41 typedef struct mirror_child {
  42         vdev_t          *mc_vd;
  43         uint64_t        mc_offset;
  44         int             mc_error;
  45         int             mc_load;
  46         uint8_t         mc_tried;
  47         uint8_t         mc_skipped;
  48         uint8_t         mc_speculative;
  49 } mirror_child_t;
  50 
  51 typedef struct mirror_map {
  52         int             *mm_preferred;
  53         int             mm_preferred_cnt;
  54         int             mm_children;
  55         boolean_t       mm_replacing;
  56         boolean_t       mm_root;
  57         mirror_child_t  mm_child[];

  58 } mirror_map_t;
  59 
  60 static int vdev_mirror_shift = 21;
  61 
  62 /*
  63  * The load configuration settings below are tuned by default for
  64  * the case where all devices are of the same rotational type.
  65  *
  66  * If there is a mixture of rotating and non-rotating media, setting
  67  * non_rotating_seek_inc to 0 may well provide better results as it
  68  * will direct more reads to the non-rotating vdevs which are more
  69  * likely to have a higher performance.
  70  */
  71 
  72 /* Rotating media load calculation configuration. */
  73 /* Rotating media load increment for non-seeking I/O's. */
  74 static int rotating_inc = 0;
  75 
  76 /* Rotating media load increment for seeking I/O's. */
  77 static int rotating_seek_inc = 5;
  78 
  79 /*
  80  * Offset in bytes from the last I/O which triggers a reduced rotating media
  81  * seek increment.
  82  */
  83 static int rotating_seek_offset = 1 * 1024 * 1024;
  84 
  85 /* Non-rotating media load calculation configuration. */
  86 /* Non-rotating media load increment for non-seeking I/O's. */
  87 static int non_rotating_inc = 0;
  88 
  89 /* Non-rotating media load increment for seeking I/O's. */
  90 static int non_rotating_seek_inc = 1;
  91 
  92 static inline size_t
  93 vdev_mirror_map_size(int children)
  94 {
  95         return (offsetof(mirror_map_t, mm_child[children]) +
  96             sizeof (int) * children);
  97 }
  98 
  99 static inline mirror_map_t *
 100 vdev_mirror_map_alloc(int children, boolean_t replacing, boolean_t root)
 101 {
 102         mirror_map_t *mm;
 103 
 104         mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP);
 105         mm->mm_children = children;
 106         mm->mm_replacing = replacing;
 107         mm->mm_root = root;
 108         mm->mm_preferred = (int *)((uintptr_t)mm +
 109             offsetof(mirror_map_t, mm_child[children]));
 110 
 111         return (mm);
 112 }
 113 
 114 static void
 115 vdev_mirror_map_free(zio_t *zio)
 116 {
 117         mirror_map_t *mm = zio->io_vsd;
 118 
 119         kmem_free(mm, vdev_mirror_map_size(mm->mm_children));
 120 }
 121 
 122 static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
 123         vdev_mirror_map_free,
 124         zio_vsd_default_cksum_report
 125 };
 126 
 127 static int
 128 vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset)
 129 {
 130         uint64_t lastoffset;
 131         int load;
 132 
 133         /* All DVAs have equal weight at the root. */
 134         if (mm->mm_root)
 135                 return (INT_MAX);
 136 
 137         /*
 138          * We don't return INT_MAX if the device is resilvering i.e.
 139          * vdev_resilver_txg != 0 as when tested performance was slightly
 140          * worse overall when resilvering with compared to without.
 141          */
 142 
 143         /* Standard load based on pending queue length. */
 144         load = vdev_queue_length(vd);
 145         lastoffset = vdev_queue_lastoffset(vd);
 146 
 147         if (vd->vdev_rotation_rate == VDEV_RATE_NON_ROTATING) {
 148                 /* Non-rotating media. */
 149                 if (lastoffset == zio_offset)
 150                         return (load + non_rotating_inc);
 151 
 152                 /*
 153                  * Apply a seek penalty even for non-rotating devices as
 154                  * sequential I/O'a can be aggregated into fewer operations
 155                  * on the device, thus avoiding unnecessary per-command
 156                  * overhead and boosting performance.
 157                  */
 158                 return (load + non_rotating_seek_inc);
 159         }
 160 
 161         /* Rotating media I/O's which directly follow the last I/O. */
 162         if (lastoffset == zio_offset)
 163                 return (load + rotating_inc);
 164 
 165         /*
 166          * Apply half the seek increment to I/O's within seek offset
 167          * of the last I/O queued to this vdev as they should incure less
 168          * of a seek increment.
 169          */
 170         if (ABS(lastoffset - zio_offset) < rotating_seek_offset)
 171                 return (load + (rotating_seek_inc / 2));
 172 
 173         /* Apply the full seek increment to all other I/O's. */
 174         return (load + rotating_seek_inc);
 175 }
 176 
 177 
 178 static mirror_map_t *
 179 vdev_mirror_map_init(zio_t *zio)
 180 {
 181         mirror_map_t *mm = NULL;
 182         mirror_child_t *mc;
 183         vdev_t *vd = zio->io_vd;
 184         int c;
 185 
 186         if (vd == NULL) {
 187                 dva_t *dva = zio->io_bp->blk_dva;
 188                 spa_t *spa = zio->io_spa;
 189 
 190                 mm = vdev_mirror_map_alloc(BP_GET_NDVAS(zio->io_bp), B_FALSE,
 191                     B_TRUE);


















 192                 for (c = 0; c < mm->mm_children; c++) {
 193                         mc = &mm->mm_child[c];

 194                         mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
 195                         mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
 196                 }
 197         } else {
 198                 mm = vdev_mirror_map_alloc(vd->vdev_children,
 199                     (vd->vdev_ops == &vdev_replacing_ops ||
 200                     vd->vdev_ops == &vdev_spare_ops), B_FALSE);







 201                 for (c = 0; c < mm->mm_children; c++) {
 202                         mc = &mm->mm_child[c];
 203                         mc->mc_vd = vd->vdev_child[c];
 204                         mc->mc_offset = zio->io_offset;
 205                 }
 206         }
 207 
 208         zio->io_vsd = mm;
 209         zio->io_vsd_ops = &vdev_mirror_vsd_ops;
 210         return (mm);
 211 }
 212 
 213 static int
 214 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
 215     uint64_t *ashift)
 216 {
 217         int numerrors = 0;
 218         int lasterror = 0;
 219 
 220         if (vd->vdev_children == 0) {


 272                 zio_t *pio;
 273 
 274                 mutex_enter(&zio->io_lock);
 275                 while ((pio = zio_walk_parents(zio)) != NULL) {
 276                         mutex_enter(&pio->io_lock);
 277                         ASSERT3U(zio->io_size, >=, pio->io_size);
 278                         bcopy(zio->io_data, pio->io_data, pio->io_size);
 279                         mutex_exit(&pio->io_lock);
 280                 }
 281                 mutex_exit(&zio->io_lock);
 282         }
 283 
 284         zio_buf_free(zio->io_data, zio->io_size);
 285 
 286         mc->mc_error = zio->io_error;
 287         mc->mc_tried = 1;
 288         mc->mc_skipped = 0;
 289 }
 290 
 291 /*
 292  * Check the other, lower-index DVAs to see if they're on the same
 293  * vdev as the child we picked.  If they are, use them since they
 294  * are likely to have been allocated from the primary metaslab in
 295  * use at the time, and hence are more likely to have locality with
 296  * single-copy data.
 297  */
 298 static int
 299 vdev_mirror_dva_select(zio_t *zio, int preferred)
 300 {
 301         dva_t *dva = zio->io_bp->blk_dva;
 302         mirror_map_t *mm = zio->io_vsd;
 303         int c;
 304 
 305         for (c = preferred - 1; c >= 0; c--) {
 306                 if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred]))
 307                         preferred = c;
 308         }
 309         return (preferred);
 310 }
 311 
 312 static int
 313 vdev_mirror_preferred_child_randomize(zio_t *zio)
 314 {
 315         mirror_map_t *mm = zio->io_vsd;
 316         int p;
 317 
 318         if (mm->mm_root) {
 319                 p = spa_get_random(mm->mm_preferred_cnt);
 320                 return (vdev_mirror_dva_select(zio, mm->mm_preferred[p]));
 321         }
 322 
 323         /*
 324          * To ensure we don't always favour the first matching vdev,
 325          * which could lead to wear leveling issues on SSD's, we
 326          * use the I/O offset as a pseudo random seed into the vdevs
 327          * which have the lowest load.
 328          */
 329         p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt;
 330         return (mm->mm_preferred[p]);
 331 }
 332 
 333 /*
 334  * Try to find a vdev whose DTL doesn't contain the block we want to read
 335  * prefering vdevs based on determined load.
 336  *
 337  * If we can't, try the read on any vdev we haven't already tried.
 338  */
 339 static int
 340 vdev_mirror_child_select(zio_t *zio)
 341 {
 342         mirror_map_t *mm = zio->io_vsd;

 343         uint64_t txg = zio->io_txg;
 344         int c, lowest_load;
 345 
 346         ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg);
 347 
 348         lowest_load = INT_MAX;
 349         mm->mm_preferred_cnt = 0;
 350         for (c = 0; c < mm->mm_children; c++) {
 351                 mirror_child_t *mc;
 352 



 353                 mc = &mm->mm_child[c];
 354                 if (mc->mc_tried || mc->mc_skipped)
 355                         continue;
 356 
 357                 if (!vdev_readable(mc->mc_vd)) {
 358                         mc->mc_error = SET_ERROR(ENXIO);
 359                         mc->mc_tried = 1;    /* don't even try */
 360                         mc->mc_skipped = 1;
 361                         continue;
 362                 }
 363 
 364                 if (vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) {
 365                         mc->mc_error = SET_ERROR(ESTALE);
 366                         mc->mc_skipped = 1;
 367                         mc->mc_speculative = 1;
 368                         continue;
 369                 }
 370 
 371                 mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset);
 372                 if (mc->mc_load > lowest_load)
 373                         continue;
 374 
 375                 if (mc->mc_load < lowest_load) {
 376                         lowest_load = mc->mc_load;
 377                         mm->mm_preferred_cnt = 0;
 378                 }
 379                 mm->mm_preferred[mm->mm_preferred_cnt] = c;
 380                 mm->mm_preferred_cnt++;
 381         }
 382 
 383         if (mm->mm_preferred_cnt == 1) {
 384                 vdev_queue_register_lastoffset(
 385                     mm->mm_child[mm->mm_preferred[0]].mc_vd, zio);
 386                 return (mm->mm_preferred[0]);
 387         }
 388 
 389         if (mm->mm_preferred_cnt > 1) {
 390                 int c = vdev_mirror_preferred_child_randomize(zio);
 391 
 392                 vdev_queue_register_lastoffset(mm->mm_child[c].mc_vd, zio);
 393                 return (c);
 394         }
 395 
 396         /*
 397          * Every device is either missing or has this txg in its DTL.
 398          * Look for any child we haven't already tried before giving up.
 399          */
 400         for (c = 0; c < mm->mm_children; c++) {
 401                 if (!mm->mm_child[c].mc_tried) {
 402                         vdev_queue_register_lastoffset(mm->mm_child[c].mc_vd,
 403                             zio);
 404                         return (c);
 405                 }
 406         }
 407 
 408         /*
 409          * Every child failed.  There's no place left to look.
 410          */
 411         return (-1);
 412 }
 413 
 414 static int
 415 vdev_mirror_io_start(zio_t *zio)
 416 {
 417         mirror_map_t *mm;
 418         mirror_child_t *mc;
 419         int c, children;
 420 
 421         mm = vdev_mirror_map_init(zio);
 422 
 423         if (zio->io_type == ZIO_TYPE_READ) {
 424                 if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing) {
 425                         /*
 426                          * For scrubbing reads we need to allocate a read
 427                          * buffer for each child and issue reads to all
 428                          * children.  If any child succeeds, it will copy its
 429                          * data into zio->io_data in vdev_mirror_scrub_done.
 430                          */
 431                         for (c = 0; c < mm->mm_children; c++) {
 432                                 mc = &mm->mm_child[c];
 433                                 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
 434                                     mc->mc_vd, mc->mc_offset,
 435                                     zio_buf_alloc(zio->io_size), zio->io_size,
 436                                     zio->io_type, zio->io_priority, 0,
 437                                     vdev_mirror_scrub_done, mc));
 438                         }
 439                         return (ZIO_PIPELINE_CONTINUE);
 440                 }
 441                 /*