new usr/src/uts/comon/ fs/zfs/sys/vdev. h

R R R R

5998 Sun Nov 17 21:32:56 2013
new usr/src/uts/comon/ fs/zfs/sys/vdev. h
4334 I nprove ZFS N-way mirror read performance

R R R R

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
*/

22 | *

23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.

24 * Copyright (c) 2012 by Del phix. Al rights reserved.

25 * Copyright (c) 2013 Steven Hartland. Al rights reserved.
26 #endif /* | codereview */

27 */

29 #ifndef _SYS_VDEV_H
30 #define _SYS VDEV_H

32 #include <sys/spa. h>

33 #include <sys/zio.h>

34 #include <sys/dnu. h>

35 #include <sys/space_nmap. h>
36 #include <sys/fs/zfs.h>

38 #ifdef _ cplusplus
39 extern "C' {

40 #endi f

42 typedef enum vdev_dtl _type

43 DTL_M SSI NG /* 0% replication: no copies of the data */

44 DTL_PARTI AL, /* less than 100%replication: sonme copies mssing */
45 DTL_SCRUB, /* unable to fully repair during scrub/resilver */

46 DTL_QUTAGE, /* tenporarily mssing (used to attenpt detach) */
47 DTL_TYPES

48 } vdev_dtl _type_t;
50 extern bool ean_t zfs_nocachef| ush;

52 extern int vdev_open(vdev_t *);

53 extern void vdev_open_chil dren(vdev t*);

54 extern bool ean_t vdev_uses_zvol s(vdev_t *)

55 extern int vdev_validate(vdev_t *, bool ean_t);

56 extern void vdev_cl ose(vdev_t *);

57 extern int vdev_create(vdev_t *, uint64_t txg, boolean_t isreplace);
58 extern void vdev_reopen(vdev_t *);

59 extern int vdev_validate_aux(vdev_t *vd);

60 extern zio_t *vdev_probe(vdev_t *vd, zio_t *pio);

new usr/src/uts/comon/ fs/zfs/sys/vdev. h

62 extern bool ean_t vdev_is_boot abl e(vdev_t *vd);

63 extern vdev_t *vdev_| ookup_top(spa_t *spa, uint64_t vdev);

64 extern vdev_t *vdev_| ookup_by_guid(vdev_t *vd, uint64_t guid);
65 extern void vdev_dtl _dirty(vdev_t *vd, vdev_dtl_type_t d,

66 uint64_t txg, uint64_t size);
67 extern boolean_t vdev_dtl_contali ns(vdev t *vd, vdev_dtl _type_t d,
68 uint64_t txg, uint64_t size);

69 extern bool ean_t vdev_dtl_errpty(vdev_t *vd, vdev_dtl _type_t d);

70 extern void vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,

71 int scrub_done);

72 extern bool ean_t vdev_dt | _required(vdev_t *vd);
73 extern bool ean_t vdev_resilver_needed(vdev_t *vd,
74 uint64_t *minp, uint64_t *nmaxp);

76 extern void vdev_hol d(vdev_t *);
77 extern void vdev_rele(vdev_t *);

79 extern int vdev_netaslab_init(vdev_t *vd, uint64_t txg);
80 extern void vdev_netaslab_fini(vdev_t *vd);

81 extern voi d vdev_net asl ab_set _si ze(vdev_t *);

82 extern void vdev expand(vdev *vd, uint64_t txg);

83 extern void vdev_split(vdev_t *vd);

84 extern void vdev_deadnman(vdev_t *vd);

87 extern void vdev_get_stats(vdev_t *vd, vdev_stat_t *vs);
88 extern void vdev_cl ear_stats(vdev_t *vd);

89 extern void vdev_stat_update(zio_t *zio, uint64_t psize);
90 extern void vdev_scan_stat_init(vdev_t *vd);

91 extern void vdev_propagate_state(vdev_t *vd);

92 extern void vdev_set _state(vdev_t *vd, bool ean_t isopen, vdev_state_t state,

93 vdev_aux_t aux);

95 extern voi d vdev_space_updat e(vdev_t *vd,
96 int64_t alloc_delta, int64_t defer del ta, int64_t space_delta);

98 extern uint64_t vdev_psize_to_asize(vdev_t *vd, uint64_t psize);

100 extern int vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux);
101 extern int vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux);
102 extern int vdev_online(spa_t *spa, uint64_t guid, uint64_t flags,
103 vdev_state_t *);

104 extern int vdev offii ne(spa_t *spa, uint64_t guid, uint64_t flags);
105 extern void vdev_cl ear(spa_t *spa, vdev_t *vd);

107 extern bool ean_t vdev_is_dead(vdev_t *vd);

108 extern bool ean_t vdev_readabl e(vdev_t *vd);

109 extern bool ean_t vdev_writeabl e(vdev_t *vd)

110 extern bool ean_t vdev_al | ocat abl e(vdev_t *vd);

111 extern bool ean_t vdev_accessibl e(vdev_t *vd, zio_t *zio);

113 extern void vdev_cache_init(vdev_t *vd);
114 extern void vdev_cache_fini (vdev_t *vd);
115 extern int vdev_cache_read(zio_t *zio);

116 extern void vdev_cache wite(zio_t *zi o)
117 extern voi d vdev_cache_purge(vdev_t *vd);

119 extern void vdev_queue_init(vdev_t *vd);

120 extern void vdev_queue_fini (vdev_t *vd);

121 extern zio_t *vdev_queue_io(zio_t *zio);

122 extern void vdev_queue_i o_done(zio_t *zio);

123 extern int vdev_queue_l ength(vdev_t *vd);

124 extern uint64_t vdev_queue_| astof fset(vdev_t *vd);

125 extern void vdev_queue_regi ster_| astof fset(vdev_t *vd, zio_t *zio);
126 #endif /* ! codereview */

new usr/src/uts/comon/ fs/zfs/sys/vdev. h

128 extern void vdev_config_dirty(vdev_t *vd);

129 extern void vdev_config_cl ean(vdev_t *vd);

130 extern int vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg,

131 bool ean_t);

133 extern void vdev_state_dirty(vdev_t *vd);

134 extern void vdev_state_cl ean(vdev_t *vd);

136 typedef enum vdev_config_flag {

137 VDEV_CONFI G SPARE = 1 << 0,

138 VDEV_CONFI G_L2CACHE = 1 << 1,

139 VDEV_CONFI G REMWVI NG = 1 << 2

140 } vdev_config_flag_t;

142 extern void vdev_top_config_generate(spa_t *spa, nvlist_t *config);

143 extern nvlist_t *vdev_config_generate(spa_t *spa, vdev_t *vd,

144 bool ean_t getstats, vdev_config_flag_t flags);

146 /*

147 * Label routines

148 */

149 struct uberbl ock;

150 extern uint64_t vdev_| abel _offset(uint64_t psize, int I, uint64_t offset);
151 extern int vdev_l abel _nunber (uint64_t psise, uint64_t offset);

152 extern nvlist_t *vdev_| abel _read_config(vdev_t *vd, uint64_t txg);

153 extern void vdev_uberbl ock_| oad(vdev_t *, struct uberblock *, nvlist_t **);
155 typedef enum {

156 VDEV_LABEL_CREATE, /* create/add a new device */

157 VDEV_LABEL_REPLACE, /* replace an existing device */

158 VDEV_LABEL _SPARE, /* add a new hot spare */

159 VDEV_LABEL_REMOVE, /* renpbve an existing device */

160 VDEV_LABEL_L2CACHE, /* add an L2ARC cache device */

161 VDEV_LABEL_SPLI T /* generating new | abel for split-off dev */
162 } vdev_| abeltype_t;

164 extern int vdev_|abel _init(vdev_t *vd, uint64_t txg, vdev_|abeltype_t reason);
166 #ifdef __ cplusplus

167 }

168 #endi f

#endif /* _SYS VDEV_H */

new usr/src/uts/comon/ fs/zfs/sys/vdev_inpl.h

R R R R

12018 Sun Nov 17 21:32:56 2013
new usr/src/uts/comon/ fs/zfs/sys/vdev_inpl.h

4334

I nprove ZFS N-way mirror read performance

R R R R

O©CONOUITAWNE

/
CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

® ok Sk ok ok b Sk OF R b Rk Rk ok bk b % %
-~

/

* Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.

* Copyright (c) 2013 by Del phix. Al rights reserved.

* Copyright (c) 2013 Steven Hartland. Al rights reserved.
#endif /* ! codereview */

*/

#i fndef _SYS VDEV_ | MPL_H
#define _SYS_VDEV_| MPL_H

#i ncl ude <sys/avl . h>

#i ncl ude <sys/dnu. h>

#i ncl ude <sys/netasl ab. h>

#i ncl ude <sys/nvpair.h>

#i ncl ude <sys/space_nap. h>

#i ncl ude <sys/vdev. h>

#i ncl ude <sys/ dki o. h>

#i ncl ude <sys/uberbl ock_i npl . h>

#i fdef _ cplusplus
extern "C' {

#endi f
/*
* Virtual device descriptors.
*
* Al storage pool operations go through the virtual device framework,
* which provides data replication and I/0O scheduling.
*

/

/*

* Forward declarations that |ots of things need.
*/

typedef struct vdev_queue vdev_queue_t;

typedef struct vdev_cache vdev_cache_t;

typedef struct vdev_cache_entry vdev_cache_entry_t;

/*
* Virtual device operations
*/

typedef int

vdev_open_func_t (vdev_t *vd, uint64_t *size, uint64_t *max_size,

new usr/src/uts/comon/ fs/zfs/sys/vdev_inpl.h

112

114
115
116
117
118
119
120
121
122
123

125
126
127

uint64_t *ashift);
typedef void vdev_cl ose_func_t (vdev_t *vd);
typedef uint64_t vdev_asize_func_t(vdev_t *vd, uint64_t psize);
typedef int vdev_io_start_func_t(zio_t *zio);
typedef void vdev_i o_done_func_t(zio_t *zio);
typedef void vdev_state_change_func_t (vdev_t *vd, int, int);
typedef void vdev_hol d_func_t (vdev_t *vd);
typedef void vdev_rel e_func_t (vdev_t *vd);

typedef struct vdev_ops {
vdev_open_func_t
vdev_cl ose_func_t
vdev_asi ze_func_t
vdev_i o_start_func_t
vdev_i o_done_func_t
vdev_st at e_change_func_t
vdev_hol d_func_t *vdev_op_hol d;
vdev_rel e_func_t *vdev_op_rel e;
char vdev_op_type[16] ;

*vdev_op_open;
*vdev_op_cl ose;
*vdev_op_asi ze;
*vdev_op_io_start;
*vdev_op_i o_done;
*vdev_op_st at e_change;

bool ean_t vdev_op_| eaf;

} vdev_ops_t;

/*

* Virtual device properties
*/

struct vdev_cache_entry {
char *ve_dat a;
ui nt 64_t ve_of fset;
ui nt64_t ve_l ast used;
avl _node_t ve_of f set _node;
avl _node_t ve_| ast used_node;
ui nt 32_t ve_hits;
uint16_t ve_nmi ssed_updat e;
zio_t *ve_fill_io;

b

struct vdev_cache {
avl _tree_t vc_of fset _tree;
avl _tree_t vc_| astused_tree;
kmut ex_t vc_| ock;

b

typedef struct vdev_queue_class {

ui nt 32_t vqc_acti ve;
/*
* Sorted by offset or tinestanp, depending on if the queue is
* LBA-ordered vs FIFQO
*/
avl _tree_t
} vdev_queue_cl ass_t;

vqc_queued_tree;

struct vdev_queue {

vdev_t *vq_vdev;
vdev_queue_cl ass_t vqg_cl ass[ZI O_PRI ORI TY_NUM QUEUEABLE] ;
avl _tree_t vg_active_tree;
ui nt 64_t vq_l ast _of fset;
hrtime_t vg_io_conplete_ts; /* tine last i/o conpleted */
kmut ex_t vq_| ock;
ui nt 64_t vq_|l ast of f set ;
#endif /* | codereview */
e
/*
* Virtual device descriptor
*/

new usr/src/uts/comon/ fs/zfs/sys/vdev_inpl.h
128 struct vdev {
129
130 * Conmmon to all vdev types.
131 */
132 ui nt 64_t vdev_i d; /* child nunber in vdev parent */
133 ui nt 64_t vdev_gui d; /* unique ID for this vdev */
134 ui nt 64_t vdev_guid_sum /* self guid + all child guids */
135 ui nt 64_t vdev_orig_guid; /* orig. guid prior to renove */
136 ui nt 64_t vdev_asi ze; /* allocatable device capacity */
137 ui nt 64_t vdev_mi n_asi ze; /* mn acceptabl e asize */
138 ui nt 64_t vdev_nex_asi ze; /* max acceptabl e asi ze */
139 ui nt 64_t vdev_ashi ft; /* block alignnent shift =Y
140 ui nt64_t vdev_st at €; /* see VDEV_STATE_ * #defi nes 2
141 ui nt 64_t vdev_prevstate; /* used when reopening a vdev */
142 vdev_ops_t *vdev_ops; /* vdev operations */
143 spa_t *vdev_spa; /* spa for this vdev =)
144 voi d *vdev_t sd; /* type-specific data */
145 vnode_t *vdev_nane_vp; /* vnode for pathnanme */
146 vnode_t *vdev_devi d_vp; /* vnode for devid */
147 vdev_t *vdev_t op; /* top-level vdev */
148 vdev_t *vdev_parent; /* parent vdev */
149 vdev_t **ydev_chil d; /* array of children */
150 ui nt 64_t vdev_children; /* nunber of children */
151 vdev_stat _t vdev_stat; /* virtual device statistics */
152 bool ean_t vdev_expandi ng; /* expand the vdev? */
153 bool ean_t vdev_reopening; /* reopen in progress? */
154 i nt vdev_open_error; /* error on |ast open */
155 kt hread_t *vdev_open_thread, /* thread opening children */
156 ui nt 64_t vdev_crtxg; /* txg when top-level was added */
158 /*
159 * Top-|evel vdev state.
160 */
161 ui nt 64_t vdev_ns_array; /* netaslab array object */
162 ui nt 64_t vdev_ns_shift; /* metaslab size shift */
163 ui nt 64_t vdev_ns_count; /* nunber of netaslabs */
164 met asl ab_group_t *vdev_ny; /* metaslab group =Y
165 nmet asl ab_t **ydev_ns; /* metaslab array 2
166 txg_list_t vdev_ns_li st; /* per-txg dirty netaslab lists */
167 txg_list_t vdev_dt | Ilst /* per-txg dirty DIL lists */
168 t xg_node_t vdev_t xg_ node /* per-txg dirty vdev |inkage =)
169 bool ean_t vdev_rermve_vwant ed; /* async renpve wanted? 2
170 bool ean_t vdev_probe_wanted; /* async probe wanted? */
171 I'ist_node_t vdev_config_dirty_node; /* config dirty |ist */
172 list_node_t vdev_state_dirty_node; /* state dirty list */
173 ui nt64_t vdev_deflate_ratio; /* deflation ratio (x512) &
174 ui nt 64_t vdev_i sl og; /* is an intent |og device */
175 ui nt 64_t vdev_renoving; [/* device is being renoved? */
176 bool ean_t vdev_i shol e; /* is a hole in the namespace */
178 /*
179 * Leaf vdev state.
180 */
181 range_tree_t *vdev_dt| [DTL_TYPES]; /* dirty tinme |ogs */
182 space_map_t *vdev_dtl _sm /* dirty tinme | og space nmap */
183 txg_node_t vdev_dt| _node; /* per-txg dirty DTL |inkage */
184 ui nt 64_t vdev_dt| _object; /* DTL object */
185 ui nt 64_t vdev_psi ze; /* physical device capacity */
186 ui nt64_t vdev_whol edi sk; /* true if this is a whole disk */
187 ui nt 64_t vdev_of fli ne; /* persistent offline state */
188 ui nt 64_t vdev_f aul t ed; /* persistent faulted state */
189 ui nt 64_t vdev_degraded; /* persistent degraded state =
190 ui nt64_t vdev_r enpved; /* persistent renpved state Y
191 ui nt 64_t vdev_resilver_txg; /* persistent resilvering state */
192 ui nt 64_t vdev_nparity; /* nunber of parity devices for raidz */
193 char *vdev_pat h; /* vdev path (if any) *

new usr/src/uts/comon/fs/zfs/sys/vdev_inpl.h 4
194 char *vdev_devi d; /* vdev devid (if any) */

195 char *vdev_physpat h; /* vdev device path (|f any) */

196 char *vdev_fru; /* physical FRU | ocation */

197 ui nt 64_t vdev_not _present; /* not present during inport */

198 ui nt 64_t vdev_unspar e; /* unspare when resilvering done */
199 bool ean_t vdev_nowritecache; /* true if flushwitecache failed */
200 bool ean_t vdev_checkrenove; /* tenporary online test */

201 bool ean_t vdev_forcefault; /* force online fault */

202 bool ean_t vdev_splitting; /* split or repair in progress */

203 bool ean_t vdev_del ayed_cl ose; /* del ayed devi ce cl ose?

204 bool ean_t vdev_t npof f 1 T ne; /* device taken offline terrporarl ly? */
205 bool ean_t vdev_det ached; /* device detached? =

206 bool ean_t vdev_cant _r ead; /* vdev is failing all reads 2

207 bool ean_t vdev_cant _write; /* vdev is failing all wites */

208 bool ean_t vdev_i sspare; /* was a hot spare */

209 bool ean_t vdev_i sl 2cache; /* was a | 2cache device =)

210 vdev_queue_t vdev_queue; /* 110 deadl i ne schedul e queue */

211 vdev_cache_t vdev_cache; /* physical block cache */

212 spa_aux_vdev_t *vdev_aux; /* for |2cache vdevs */

213 zio_t *vdev_probe_zio; /* root of current probe */
214 vdev_aux_t vdev_| abel _aux; /* on-di sk aux state b

215 ui nt16_t vdev_rotation_rate; /* rotational rate of the nedia */
216 #define VDEV_RATE_UNKNOWN

217 #define VDEV_RATE_NON ROTATING 1

218 #endif /* | codereview */

220 /*

221 * For DTrace to work in userland (libzpool) context, these fields nust
222 * remain at the end of the structure. DTrace will use the kernel’s
223 * CTF definition for 'struct vdev', and since the size of a kmutex_t is
224 * larger in userland, the offsets for the rest of the fields would be
225 * incorrect.

226 */

227 kmut ex_t vdev_dt!| _l ock; /* vdev_dtl_{map,resilver} */

228 kmut ex_t vdev_stat | ock; /* vdev_stat *

229 kmut ex_t vdev_probe_ Iock /* protects vdev_probe_zio */

230 };

232 #define VDEV_RAI DZ_NMAXPARI TY 8

234 #define VDEV_PAD_SI ZE (8 << 10)

235 /* 2 padding areas (vl_padl and vl _pad2) to skip */

236 #define VDEV_SKI P_SI ZE VDEV_PAD_SI ZE * 2

237 #define VDEV_PHYS_SI ZE (112" << 10)

238 #define VDEV_UBERBLOCK_RI NG (128 << 10)

240 #define VDEV_UBERBLOCK_SHI FT(vd) \

241 MAX((vd) - >vdev_t op- >vdev_ashi ft, UBERBLOCK_SHI FT)

242 #defi ne VDEV_UBERBLOCK_COUNT(vd) \

243 (VDEV_UBERBLOCK_RI NG >> VDEV_UBERBLOCK_SHI FT(vd))

244 #defi ne VDEV_UBERBLOCK O:FSET(Vd n) \

245 of f set of (vdev_Tabel _t, vl _uberbl ock[(n) << VDEV_UBERBLOCK_SHI FT(vd)])
246 #define VDEV_UBERBLOCK_SI ZE(vd) (1ULL << VDEV_UBERBLOCK_SHI FT(vd))

248 typedef struct vdev_phys {

249 char vp_nvlist[VDEV_PHYS_SI ZE - sizeof (zio_eck_t)];

250 zi o_eck_t vp_zbt;

251 } vdev_phys_t;

253 typedef struct vdev_| abel {

254 char _padl[VDEV_PAD Sl ZE] ;

255 char | “pad2[VDEV_PAD_SI ZE] ;

256 vdev _phys_t vl _vdev_phys;

257 ar vl _uber bl ock[VDEV_UBERBLOCK_RI NG ;

258 } vdev_| Iabel _t;

256K total */

new usr/src/uts/comon/ fs/zfs/sys/vdev_inpl.h

260 /*

261 * vdev_dirty() flags

262 */

263 #define VDD_METASLAB 0x01
264 #define VDD _DTL 0x02

266 /* Offset of enbedded boot | oader region on each |abel */

267 #define VDEV_BOOT_OFFSET (2 * sizeof (vdev_|abel_t))

268 [*

269 * Size of enbedded boot |oader region on each | abel.

270 * The total size of the first two | abels plus the boot area is 4MB.

271 */

272 #define VDEV_BOOT_SI ZE (7ULL << 19) [* 3.5M */

274 | *

275 * Size of label regions at the start and end of each |eaf device.

276 */

277 #define VDEV_LABEL_START_SIZE (2 * sizeof (vdev_|abel_t) + VDEV_BOOT_SI ZE)
278 #defi ne VDEV_LABEL_END SI ZE (2 * sizeof (vdev_|abel _t))

279 #define VDEV_LABELS

280 #define VDEV_BEST_LABEL VDEV_LABELS

282 #define VDEV_ALLOC LOAD
283 #define VDEV_ALLOC_ADD

284 #define VDEV_ALLOC_SPARE
285 #define VDEV_ALLOC_L2CACHE
286 #define VDEV_ALLOC_ROOTPOOL
287 #define VDEV_ALLOC SPLIT
288 #define VDEV_ALLOC_ATTACH

OUAWNRO

290 /*

291 * Allocate or free a vdev

292 */

293 extern vdev_t *vdev_al |l oc_common(spa_t *spa, uint_t id, uint64_t guid,
294 vdev_ops_t *ops);

295 extern int vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *config,

296 vdev_t *parent, uint_t id, int alloctype);

297 extern void vdev_free(vdev_t *vd)

299 /*

300 * Add or renove children and parents

301 */

302 extern void vdev_add_child(vdev_t *pvd, vdev_t *cvd);

303 extern void vdev_renove_child(vdev_t *pvd, vdev_t *cvd);

304 extern void vdev_conpact_children(vdev_t *pvd);

305 extern vdev_t *vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops);
306 extern void vdev_renove_parent (vdev_t *cvd);

308 /*

309 * vdev sync |oad and sync

310 */

311 extern void vdev_| oad_| og_state(vdev_t *nvd, vdev_t *ovd);

312 extern bool ean_t vdev_| og_state_val i d(vdev_ t *vd);

313 extern void vdev_| oad(vdev_t *vd);

314 extern int vdev_dtl _| oad(vdev_t *vd)

315 extern void vdev_sync(vdev_t *vd, uint64_t txg);

316 extern voi d vdev_sync_done(vdev_ t *vd, uint64_t txg);

317 extern void vdev_dirty(vdev_t *vd, i nt flags, void *arg, uint64_t txg);
318 extern void vdev_dirty_| eaves(vdevft *vd, Int flags, uint64_t txg);

320 /*

321 * Avail able vdev types.

322 */

323 extern vdev_ops_t vdev_root _ops;

324 extern vdev_ops_t vdev_mirror_ops;
325 extern vdev_ops_t vdev_repl aci ng_ops;

new usr/src/uts/comon/ fs/zfs/sys/vdev_inpl.h

326 extern vdev_ops_t vdev_rai dz_ops;
327 extern vdev_ops_t vdev_di sk_ops;
328 extern vdev_ops_t vdev_file_ops;
329 extern vdev_ops_t vdev_ni ssing_ops;
330 extern vdev_ops_t vdev_hol e_ops;
331 extern vdev_ops_t vdev_spare_ops;

333 /*

334 * Common size functions

335 */

336 extern uint64_t vdev_default_asize(vdev_t *vd, uint64_t psize);
337 extern uint64_t vdev_get_m n_asize(vdev_t *vd);

338 extern void vdev_set_m n_asi ze(vdev_t *vd);

340 /*

341 * dobal variables

342 */

343 /* zdb uses this tunable, so it nust be declared here to make |int happy. */
344 extern int zfs_vdev_cache_si ze;

346 [*

347 * The vdev_buf _t is used to translate between zio_t and buf_t, and back again.
348 */

349 typedef struct vdev_buf {

350 buf _t vb_buf ; /* buffer that describes the io */

351 zio_t *vb_i o; /* pointer back to the original zio_t */

352 } vdev_buf _t;

354 #ifdef __cplusplus
355 }
356 #endi f

358 #endif /* _SYS VDEV_IMPL_H */

new usr/src/uts/comon/ fs/zfs/vdev_disk.c

R R R R

24357 Sun Nov 17 21:32:56 2013
new usr/src/uts/comon/ fs/zfs/vdev_disk.c
4334 I nprove ZFS N-way mirror read performance

R R R R

__unchanged_portion_onitted_

274 | *

275 * W want to be |oud in DEBUG kernel s when DKI OCGVEDI Al NFCEXT fails,

276 * even a fallback to DKI OCGVEDI Al NFO fails.

277 x|

278 #ifdef DEBUG
279 #define VDEV_DEBUE ...) cmm_err(CE_NOTE, __ VA ARGS)

280 #el se

281 #define VDEV_DEBUG...) /* Nothing... */

282 #endi f

284 static int
285 vdev_di sk_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,

286
287 {
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

305
306
307
308
309
310
311

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

331
332

uint64_t *ashift)

spa_t *spa = vd->vdev_spa;
vdev_di sk_t *dvd = vd->vdev_t sd;
I di _ev_cooki e_t ecooki e;

vdev_di sk_Idi _cb_t *lcb;

uni on {
struct dk_mi nfo_ext ude;
struct dk_m nfo ud;

dks;

struct dk_m nfo_ext *dknmext = &dks. ude;

struct dk_m nfo *dkm = &dks. ud;

int error;

dev_t dev;

int otyp;

bool ean_t val i date_devid = B_FALSE;
ddi _devid_t devid;
uint64_t capacity = 0, blksz = 0, pbsize;

/*

* We nust have a pathnanme, and it nust be absol ute.

*

if (vd->vdev_path == NULL || vd->vdev_path[0] != "/") {
vd->vdev_stat.vs_aux = VDEV_AUX BAD LABEL;
return (SET_ERROR(EINVAL));

}

/*

* Reopen the device if it’s not currently open. O herw se,

* just update the physical size of the device.

*/

if (dvd !'= NULL) {
if (dvd->vd_ldi _offline & dvd->vd_I h == NULL) {
/*

* |If we are opening a device inits offline notify
* context, the LDl handle was just closed. Cean

* up the LD event callbacks and free vd->vdev_tsd.
*/

vdev_di sk_free(vd);

} else {
ASSERT(vd- >vdev_r eopeni ng) ;
got o ski p_open;

}

/*
* Create vd->vdev_tsd.

or when

new usr/src/uts/comon/ fs/zfs/vdev_disk.c

333
334
335

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

361
363

365
366
367

369

371
372
373
374
375
376
377
378
379
380

382
383
384
385
386
387
388
389

391
392
393
394
395
396
397
398

*/
vde
dvd

/

* ok % ok % ok ok ok k% ok ok ok F

*/
if

}
err

if

v_di sk_al | oc(vd);
= vd- >vdev_t sd;

Wien opening a di sk device, we want to preserve the user’s original
intent. W always want to open the device by the path the user gave
us, even if it is one of multiple paths to the same device. But we
al so want to be able to survive disks being renpved/recabl ed.
Therefore the sequence of opening devices is:

1. Try opening the device by path. For |egacy pools without the
"whol e_di sk’ property, attenpt to fix the path by appending 'sO’.

2. If the devid of the device matches the stored val ue, return
success.

3. Oherwise, the device nay have noved. Try opening the device
by the devid instead.

(vd->vdev_devid != NULL) {
if (ddi_devid_str_decode(vd->vdev_devid, &dvd->vd_devid,
&dvd->vd_m nor) = 0)
vd- >vdev_st at.vs_aux = VDEV_AUX BAD_LABEL;
return (SET_ERROR(EI NVAL));

or = EINVAL; /* presune failure */

(vd->vdev_path !'= NULL) {

if (vd->vdev_whol edi sk == -1ULL)
size_t len = strlen(vd->vdev_path) + 3;
char *buf = kmem al | oc(l en, KM SLEEP);

(void) snprintf(buf, len, "%s0", vd->vdev_path);

error = | di _open_by_nane(buf, spa_node(spa), kcred,
&dvd->vd_l h, zfs_li);
if (error == 0)
spa_strfree(vd->vdev_path);
vd->vdev_path = buf;
vd- >vdev_whol edi sk = 1ULL;
} else {
kmem free(buf, len);
}

}

/*

* |f we have not yet opened the device, try to open it by the
* specified path.

*/

if (error 1=0)
error = |di_open_by_nane(vd->vdev_path, spa_node(spa),
kcred, &dvd->vd_lh, zfs_li);
}

/*
* Conpare the devid to the stored val ue.
*/

if (error == 0 && vd->vdev_devid != NULL &&
| di _get_devid(dvd->vd_| h, &devid) == 0) {
i f (ddi _devid_conpare(devid, dvd->vd_devid) != 0) {
error = SET_ERROR(EI NVAL) ;
(void) Idi_close(dvd->vd_| h, spa_node(spa),

399
400
401
402
403

405
406
407
408
409
410
411

413
414
415
416
417
418
419
420

422
423
424
425
426
427
428
429
430

432
433
434
435

437
438
439
440
441
442
443
444
445

447
448
449
450

452
453
454
455
456
457
458
459

new usr/src/uts/comon/ fs/zfs/vdev_disk.c 3
kcred);
dvd->vd_|l h = NULL;
}
ddi _devi d_free(devid);
}
/*
* |f we succeeded in opening the device, but 'vdev_whol edi sk’
* is not yet set, then this nust be a slice.
*
/
if (error == 0 && vd->vdev_whol edi sk == -1ULL)
vd- >vdev_whol edi sk = 0;
}
/*
* |If we were unable to open by path, or the devid check fails, open by
* devid instead.
*
/
if (error =0 && vd->vdev_devid != NULL) {
error = | di _open_by_devi d(dvd->vd_devi d, dvd->vd_m nor,
spa_node(spa), kcred, &vd->vd_lh, zfs_li);
}
/*
* |f all else fails, then try opening by physical path (if avail able)
* or the logical path (if we failed due to the devid check). While not
* as reliable as the devid, this will give us sonmething, and the higher
* | evel vdev validation will prevent us from opening the wong device.
*
if (error) {
if (vd->vdev_devid !'= NULL)
val i date_devid = B_TRUE;
if (vd->vdev_physpath != NULL &&
(dev = ddi _pat hnane_t o_dev_t (vd->vdev_physpath)) !=
error = | di _open_by_dev(&dev, OTYP_BLK, spa_nobde(spa),
kcred, &dvd->vd_lh, zfs_li);
/*
* Note that we don't support the |egacy auto-whol edi sk support
* as above. This hasn't been used in a very long tinme and we
* don’t need to propagate its oddities to this edge condition.
*
/
if (error &% vd—>vdev _path !'= NULL)
error = | di _open_by_nane(vd->vdev_path, spa_node(spa),
kcred, &dvd->vd_lh, zfs_li);
}
if (error) {
vd->vdev_stat.vs_aux = VDEV_AUX_ OPEN_FAl LED;
return (error);
}
/*
* Now that the device has been successfully opened, update the devid
* if necessary.
*
if (validate_devid && spa_writeabl e(spa) &&

461
462
463
464

I di _get_devi d(dvd->vd_| h, &devid) =
if (ddi_devid conpare(dewd dvd >vd_devid) !'=0) {
“char *vd_devi d;

vd_devi d = ddi _devid_str_encode(devid, dvd->vd_mi nor);

zfs_dbgmsg("vdev %: update devid from %, "
"to %", vd->vdev_path, vd->vdev_devid,

spa_strfree(vd->vdev_devid);

vd_devi d);

new usr/src/uts/comon/ fs/zfs/vdev_disk.c

465
466
467
468
469

471
472
473
474
475
476
477

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

496
497
498
499
500
501
502
503
504
505

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524

526
528

529
530

}
/

}
!

}
/

vd- >vdev_devi d = spa_: strdup(vd devid);
ddi _devid_str_free(vd_devid

}
ddi _devi d_free(devid);

*

* Once a device is opened,
* available) is up to date.
*/

verify that the physical device path (if

f (l1di_get_dev(dvd->vd_| h, &dev) == 0 &&
I di _get_otyp(dvd->vd_| h, &typ) == 0) {
char *physpath, *m nornane;

physpath = krmem al | oc(MAXPATHLEN, KM SLEEP);
m norname = NULL;
if (ddi_dev_pat hname(dev, otyp, physpat h) == 0 &&
| di _get _m nor _nane(dvd->vd &mi nor nama) == 0 &&
(vd->vdev_physpath == NULL™ ||
strcnp(vd- >vdev_physpath, physpath) !'= 0)) {
i f (vd->vdev_physpath
spa_strfree(vd->vdev_physpat h);
(void) strlcat(physpath, ":", MAXPATHLEN);
(void) strlcat(physpath, mnorname, MAXPATHLEN);
vd- >vdev_physpat h = spa_strdup(physpath);

1 f (m nornane)
knmem free(m norname, strlen(m nornanme) + 1);
knmem f ree(physpat h, NAXPATHLEN) ;

*

* Regi ster callbacks for the LD offline event.
*/

f (Idi_ev_get_cookie(dvd->vd_I h,
LDI _EV_SUCCESS) {
“1cb = knem zal | oc(si zeof (vdev_disk_Idi _cb_t),
list_insert_tail (&vd->vd_| di _cbs, Tch);
(void) Idi_ev_register call backs(dvd— >vd_| h, ecookie,
&vdev_di sk_off_callb, (void *) vd, & cb->Icb_id);

LDl _EV_OFFLI NE, &ecookie) ==
KM _SLEEP) ;

*

* Register callbacks for the LD degrade event.
*

f (1di_ev_get_cookie(dvd->vd_l h,
LDl _EV_SUCCESS) {

LDl _EV_DEGRADE, &ecooki e)

I cb = kmem zal | oc(si zeof (vdev_disk_Idi_cb_t), KM SLEEP);
list_insert _tail (&dvd->vd_| di _cbs, Tch);
(void) Idi_ev_register_call backs(dvd svd_| h, ecooki e,

&vdev_di sk_dgrd_callb, (void *) vd, 8l cb->I cb_id);

}
ski p_ope/n:

}

*

/

* Determne the actual size of the device.
*

f (1di_get_size(dvd->vd_| h, p3|ze) 1=0) {
vd->vdev_stat.vs_aux = VDEV_AUX_ OPEN_FAl LED;
return (SET_ERROR(EINVAL));

nmax_psi ze = *psize;

*

* Determine the device's mninmmtransfer size.

* If the ioctl isn't supported, assume DEV_BSI ZE.

new usr/src/uts/comon/ fs/zfs/vdev_disk.c

531 */

532 if ((error = 1di_ioctl(dvd->vd_|h, DKI OCGVEDI Al NFOEXT,

533 (intptr t)dkn‘ext FKI OCTL, kcred NULL)) == 0) {

534 capacity = dknext - >dki _capacity - 1;

535 bl ksz = dknext - >dki _| bsi ze;

536 pbsi ze = dkmext - >dki _pbsi ze;

537 } else if ((error = Idi_ioctl(dvd->vd_|h, DKI OCGVEDI Al NFO,
538 (intptr_t)dkm FKIOCTL, kcred, NULL)) == 0) {

539 VDEV_DEBUG(

540 "vdev_di sk_open(\"%\"): fallback to DKI OCGVEDI Al NFO\ n",
541 vd- >vdev_pat h) ;

542 capacity = dkm >dki _capacity - 1;

543 bl ksz = dkm >dki _| bsi ze;

544 pbsi ze = bl ksz;

545 } else {

546 VDEV_DEBUQ "vdev_di sk_open(\"%\"): "

547 "bot h DKI OCGVEDI AT NFQ[, EXT} calls failed, %l\n",
548 vd->vdev_path, error);

549 pbsi ze = DEV_BSI ZE;

550

552 I

553 * Determne the rotation

554 */

555 vd->vdev_rotation_rate = VDEV_RATE_UNKNOM;

556 /* TODO | npl ement when there’s an ioctl which provides this info.

558 #endif /* | codereview */

559 *ashi ft = highbit(MAX(pbsize, SPA M NBLOCKSIZE)) - 1;

561 if (vd->vdev_whol edi sk == 1) {

562 int wee = 1;

564 if (error == 0) {

565 /*

566 * |If we have the capability to expand, we'd have
567 * found out via success from DKI OCGVEDI Al NFO[, EXT} .
568 * Adjust max_psize upward accordingly since we know
569 * we own the whol e di sk now.

570 */

571 *max_psi ze += vdev_di sk_get _space(vd, capacity, blksz);
572 zfs_dbgnmsg(“capacity change: vdev %, psize %lu, "
573 "max_psize % | u", vd->vdev_path, *psize,

574 *max_psi ze) ;

575 }

577 1=

578 * Since we own the whole disk, try to enable disk wite

579 */cachi ng. W ignore errors because it'’s OKif we can't do it.
580 *

581 (void) Idi_ioctl(dvd->vd_| h, DKIOCSETWCE, (intptr_t)&ace,

582 FKI OCTL, kcred, NULL);

583 }

585 /*

586 * Clear the nowitecache bit, so that on a vdev_reopen() we will

587 * try again.

588 */

589 vd- >vdev_nowritecache = B_FALSE;

591 return (0);

592 }

594 static void
595 vdev_di sk_cl ose(vdev_t *vd)
596 {

*/

new usr/src/uts/comon/ fs/zfs/vdev_disk.c

597 vdev_di sk_t *dvd = vd->vdev_t sd;

599 if (vd->vdev_reopening || dvd == NULL)

600 return;

602 if (dvd->vd_m nor !'= NULL) {

603 ddi _devid_str_free(dvd->vd_m nor);

604 dvd- >vd_m nor = NULL;

605 }

607 if (dvd->vd_devid != NULL) {

608 ddi _devi d_free(dvd->vd_devi d);

609 dvd- >vd_devi d = NULL;

610 }

612 if (dvd->vd_lh !'= NULL)

613 (void) Idi close(dvd >vd_| h, spa_node(vd->vdev_spa), kcred);
614 dvd->vd_| h = NULL;

615 1

617 vd- >vdev_del ayed_cl ose = B_FALSE;

618 /*

619 * | f we closed the LDl handle due to an offline notify from LD,
620 * don't free vd->vdev_tsd or unregister the callbacks here;

621 * the offline finalize callback or a reopen will take care of it.
622 *

623 if (dvd->vd_ldi_offline)

624 return;

626 vdev_di sk_free(vd);

627 }

629 int

630 vdev_di sk_physi o(vdev_t *vd, caddr_t data,

631 size_t size, uint64_t offset, int flags, boolean_t isdunp)

632 {

633 vdev_di sk_t *dvd = vd->vdev_t sd;

635 /*

636 * |If the vdev is closed, it’s likely in the REMOVED or FAULTED st ate.
637 * Nothing to be done here but return failure.

638 */

639 if (dvd == NULL || (dvd->vd_ldi_offline & dvd->vd_lh == NULL))
640 return (ElO;

642 ASSERT(vd- >vdev_ops == &vdev_di sk_ops);

644 /*

645 * If in the context of an active crash dunp, use the |di_dunp(9F)
646 * call instead of |di_strategy(9F) as usual.

647 */

648 if (isdump) {

649 ASSERT3P(dvd, !=, NULL);

650 return (Idi_dunp(dvd->vd_| h, data, |btodb(offset),

651 | bt odb(size)));

652 }

654 return (vdev_di sk_| di _physio(dvd->vd_| h, data, size, offset, flags));
655 }

657 int

658 vdev_di sk_| di _physi o(ldi _handle_t vd_|l h, caddr_t data,

659 size_t size, uint64_t offset, int flags)

660 {

661 buf _t *bp;

662 int error = 0;

new usr/src/uts/comon/ fs/zfs/vdev_disk.c

664
665

667

669
670
671
672
673
674

676
677
678
679
680

682
683 }

if (vd_lh == NULL)
return (SET_ERROR(EI NVAL));

ASSERT(flags & B_READ || flags & B_WRITE);

bp = getrbuf(KM SLEEP) ;

bp->b_flags = fl ags | "B _BUSY | B _NOCACHE | B_FAI LFAST;
bp->b_bcount = SI

bp->b_un. b_addr = (v0|d *)dat a;

bp->b_| bl kno = | bt odb(of fset);

bp- >b_buf si ze = si ze;

error = |di strategy(vd I'h, bp);

ASSERT(error =0

if ((error = blov\alt(bp)) == 0 & bp->b_resid = 0)
error = SET_ERROR(EIO;

freerbuf (bp);

return (error);

685 static void

688
689

691
692
693
694
695
696

698
699

701

703
704 }

686 }/dev_di sk_io_intr(buf_t *bp)

vdev_buf _t *vb = (vdev_buf_t *)bp;
zio_t *zio = vb->vb_io;

| *

* The rest of the zio stack only deals with EIO ECKSUM and ENX O

* Rather than teach the rest of the stack about other error
* possibilities (EFAULT, etc), we normalize the error val ue here.
*/

zio->io_error = (geterror(bp) !'=07? EIO: 0);

if (zio->io_error == 0 & bp->b_resid ! = 0)
zio->o_error = SET_ERROR(EIO);

kmem free(vb, sizeof (vdev_buf_t));

zio_interrupt(zio);

706 static void
707 vdev_di sk_ioctl _free(zio_t *zio)

708 {
709
710 }

kmem free(zi o->i o_vsd, sizeof (struct dk_call back));

712 static const zio_vsd_ops_t vdev_disk_vsd_ops = {

713
714

715 };

vdev_di sk_ioctl _free,
zi o_vsd_defaul t cksum 1 report

717 static void
718 vdev_di sk_i octl _done(void *zio_arg, int error)

719 {
720

722

724
725 }

zio_t *zio = zio_arg;
zio->io_error = error;

zio_interrupt(zio);

727 static int
728 vdev_di sk_io_start(zio_t *zio)

new usr/src/uts/comon/ fs/zfs/vdev_disk.c

729 {
730
731
732
733
734
735

737
738
739
740
741
742
743
744

746

763

765
766

768
769
770

772
773

775
776
777
778
779
780
781
782

784
785
786
787
788
789
790
791
792
793
794

vdev_t *vd = zio->io_vd;

vdev_di sk_t *dvd = vd- >vdev_tsd;
vdev_buf _t *vb;

struct dk_cal | back *dkc;

buf _t *bp;

int error;

/*

* |f the vdev is closed, it’s likely in the REMOVED or FAULTED state.

* Nothing to be done here but return failure.

*

if (dvd == NULL || (dvd->vd_Idi_offline & dvd->vd_lh == NULL)) {
zio->io_error = ENXI
return (ZI O_Pl PELI NE_CONTI NUE) ;

}

if (zio->o_type == ZI O TYPE_I OCTL) {
[* XXPOLI CY */
if (!vdev_readabl e(vd)) {
zio->io_error = SET_ERROR(ENXI O);
return (Zl O Pl PELI NE_CONTI NUE) ;
}

switch (zio->io_cnd) {
case DKI OCFLUSHWRI TECACHE:

if (zfs_nocachefl ush)
br eak;

if (vd->vdev nowrltecache) {
zio->io_error SET_ERROR(ENOTSUP) ;
br eak;

}

zi 0->i o_vsd = dkc = knmem al | oc(si zeof (*dkc), KM SLEEP);
zi 0->i o_vsd_ops = &dev_di sk_vsd_ops;

dkc- >dkc_cal | back = vdev_di sk_i oct| _done;
dkc->dkc_flag = FLUSH VOLATI LE;
dkc- >dkc_cooki e = zio;

error = |di_ioctl(dvd->vd_I h, zio->io_cnd,
(uintptr_t)dkc, FKIOCTL, kcred, NULL);

if (error == 0) {
/*

* The ioctl will be done asychronously,
* and will call vdev_disk_ioctl_done()
* upon conpl eti on.

&/

return (Zl O_PI PELI NE_STOP);
}

if (error == ENOTSUP || error == ENOTTY) {
/

If we get ENOTSUP or ENOTTY, we know that
no future attenpts will ever succeed.

In this case we set a persistent bit so
that we don't bother wth the ioctl in the
future.

R S

vd->vdev_now i t ecache = B_TRUE;

zio->io_error = error;

new usr/src/uts/comon/ fs/zfs/vdev_disk.c 9

796 break;

798 defaul t:

799 zi 0->i o_error = SET_ERROR(ENOTSUP) ;

800 }

802 return (Zl O_Pl PELI NE_CONTI NUE) ;

803 }

805 vb = knem al | oc(si zeof (vdev_buf_t), KM SLEEP);

807 vb->vb_io = zio;

808 bp = &vb->vb_buf;

810 bi oi ni t (bp);

811 bp->b_flags = B_BUSY | B_NOCACHE |

812 (zio->io_type == ZI O TYPE_READ ? B READ : B WRI TE);

813 if (1(zio->io0 flags & (ZIO FLAG | O RETRY | Zl O_FLAG TRYHARD)))

814 bp- >b flags | = B_FAI LFAST,

815 bp->b_bcount = zi 0->i o_si ze;

816 bp- >b_un.b_addr = zio->i o_data;

817 bp->b_| bl kno = Ibtodb(2|o >io _of fset);

818 bp- >b_buf si ze = zi o->i 0_si ze

819 bp->b_i odone = (int (*)())vdev disk_io_intr;

821 /* Idi _strategy() will return non-zero only on programming errors */
822 VERI FY(I di _strategy(dvd->vd_l h, bp) == 0);

824 return (ZI O_PlI PELI NE_STCP);

825 }

827 static void

828 vdev_di sk_i o_done(zio_t *zio)

829 {

830 vdev_t *vd = zio->i o0_vd;

832 /*

833 * |f the device returned EIO then attenpt a DKI OCSTATE ioctl to see if
834 * the device has been renpved. |If this is the case, then we trigger an
835 * asynchronous renoval of the device. OQtherw se, probe the device and
836 * make sure it’s still accessible.

837 */

838 if (zio->io_error == EIO & & !vd->vdev_renpve_want ed) {

839 vdev_di sk_t *dvd = vd->vdev_t sd;

840 int state = DKI O _NONE;

842 if (ldi_ioctl(dvd->vd_lh, DKI OCSTATE, (intptr_t)&state,

843 FKIOCTL, kcred, NULL) == O &% state != DKI O | NSERTED) {
844 /*

845 * We post the resource as soon as possible, instead of
846 * when the async renoval actually happens, because the
847 * DEis using this infornmation to discard previous 1/0O
848 * errors.

849 */

850 zf s_post _renove(zi o->i o_spa, vd);

851 vd- >vdev_renpve_want ed = B_TRUE;

852 spa_async_request (zi o->i o_spa, SPA_ASYNC REMOVE) ;

853 } else if (!vd->vdev_del ayed_ close) {

854 vd->vdev_del ayed_cl ose = B_TRUE;

855 }

856 }

857 }

859 vdev_ops_t vdev_disk_ops = {

860 vdev_di sk_open,

new usr/src/uts/comon/ fs/zfs/vdev_disk.c

861
862
863
864
865
866
867
868
869
870

872
873
874
875
876
877

b3
/

o/
int

vdev_di sk_read_r oot | abel (char *devpat h,

878 {

879
880
881
882
883
884
885

887
888
889
890
891
892
893
894
895
896

898
899
900

902
903
904
905

907
908

910
911
912

914
915
916
917
918

920
921
922
923
924

G ven the root
t he devi ce,

vdev_di sk_cl ose,

vdev_def aul t _asi ze,

vdev_di sk_io_start,

vdev_di sk_i o_done,

NULL,

vdev_di sk_hol d,

vdev_di sk_rel e,

VDEV_TYPE_DI SK, /* nane of this vdev type */
B_TRUE /* leaf vdev */

di sk device devid or pathname, read the |abel from

and construct a configuration nvlist.

char *devid, nvlist_t **config)

I di _handl e_t vd_| h;
vdev_| abel _t *I abel ;

uint64_t s, size;
int |;

ddi _devi d_t tnpdevid;
int error = -1;

char *m nor _nane;

/*
* Read the device | abel
*
if (devid !'= NULL && ddi
&m nor_narre) == 0) {
error = | di _open_by_devi d(tnpdevid, m nor_nang,
FREAD, kcred, &d_lh, zfs_li);
ddi _devid free(trrpdew d);
ddi _devi d_str_free(m nor_nane);

and build the nvlist.

_devi d_str_decode(devid, &tnpdevid,

}
if (error & (error = |di_open_by_nanme(devpath, FREAD, kcred, &vd_|h,
zfs_li)))
return (error);
if (1di _get_size(vd_lh, &s)) {
(void) Idi_cl ose(vd h, FREAD, kcred);
return (SET_ERROR(EIO));
}
size = P2ALI GN_TYPED(s, sizeof (vdev_label t), uint64_t);
| abel = kmem al | oc(si zeof (vdev_|abel _t), KM SLEEP);
*config = NULL;
for (I =0; | < VDEV_LABELS; |++) {
uint64_t offset, state, txg =
/* read vdev |abel */
of fset = vdev_| abel _offset(size, |, 0);
if (vdev_disk_|di_physio(vd_|lh, (caddr_t)I abel,
VDEV_SKI P_SI ZE + VDEV_PHYS SI ZE, offset, B READ) != 0)
conti nue;
if (nvlist_unpack(label ->vl _vdev_phys. vp_nvlist,
si zeof (I abel ->vl _vdev_phys.vp_nvlist), config, 0) != 0)

*config = NULL;
conti nue;

}

if (nvlist

_l ookup_ui nt 64(*confi g, ZPOOL_CONFI G POOL_STATE,

10

new usr/src/uts/comon/ fs/zfs/vdev_disk.c

927 &state) !'= 0 || state >= POOL_STATE_DESTROYED) {
928 nvlist_free(*config);

929 *config = NULL;

930 conti nue;

931 }

933 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG POOL_TXG,
934 & xg) '=0 || txg == 0) {

935 nvlist_free(*config);

936 *config = NULL;

937 cont i nue;

938 }

940 br eak;

941 }

943 kmem free(l abel, sizeof (vdev_|abel _t));

944 (void) Idi_close(vd_|lh, FREAD, kcred);

945 if (*config == NULL)

946 error = SET_ERROR(EI DRV ;

948 return (error);

949 }

11

new usr/src/uts/comon/fs/zfs/vdev_nmirror.c

R R R R

16201 Sun Nov 17 21:32:56 2013
new usr/src/uts/comon/fs/zfs/vdev_nirror.c
4334 I nprove ZFS N-way mirror read performance

R R R R

new usr/src/uts/comon/fs/zfs/vdev_nmirror.c

int nm preferred;

int nm r oot ;

mrror_child_t mmchild[1];
} mrror_map_t;

1/* 63 static int vdev_mirror_shift = 21,

2 * CDDL HEADER START

3 * 65 /*

4 * The contents of this file are subject to the terms of the 66 * The |oad configuration settings below are tuned by default for
5 * Common Devel opnent and Distribution License (the "License"). 67 * the case where all devices are of the same rotational type.

6 * You may not use this file except in conpliance with the License. 68 *

7 0* 69 * If there is a mxture of rotating and non-rotating nedia, setting
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 70 * non_rotating_seek_inc to O may well provide better results as it
9 * or http://ww. opensol aris.org/os/licensing. 71 * will direct nore reads to the non-rotating vdevs which are nore
10 * See the License for the specific |anguage governi ng perm ssions 72 * likely to have a higher perfornance.

11 * and limtations under the License. 73 */

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each 75 /* Rotating nmedia | oad cal cul ati on configuration. */

14 * file and include the License file at usr/src/OPENSOLARI S. LI CENSE. 76 /* Rotating nedia |oad increment for non-seeking 1/Os. */

15 * |f applicable, add the follow ng below this CODL HEADER, wth the 77 static int rotating_inc = O;

16 * fields enclosed by brackets "[]" replaced with your own identifying

17 * information: Portions Copyright [yyyy]l [nane of copyright owner] 79 /* Rotating nedia |oad increment for seeking I1/Os. */

18 * 80 static int rotating_seek_inc = 5;

19 * CDDL HEADER END

20 */ 82 /*

21 /* 83 * Offset in bytes fromthe last 1/O which triggers a reduced rotating nedia
22 * Copyright 2010 Sun Mcrosystens, Inc. Al rights reserved. 84 * seek increnent.

23 * Use is subject to license terns. 85 */

24 */ 86 static int rotating_seek_offset = 1 * 1024 * 1024;

26 /* 88 /* Non-rotating nedia | oad cal cul ation configuration. */

27 * Copyright (c) 2013 by Del phix. Al rights reserved. 89 /* Non-rotating nedia |oad mcrement for non-seeking 1/O0s. */

28 * Copyright (c) 2013 Steven Hartland. Al rights reserved. 90 static int non_rotating_inc = 0;

29 #endif /* | codereview */

30 */ 92 /* Non-rotating nedia |oad increment for seeking I/Os. */

93 static int non_rotating_seek_inc = 1;
32 #include <sys/zfs_context.h>

33 #include <sys/spa. h> 95 static inline size_t
34 #include <sys/vdev_inpl . 96 vdev_mirror_nmap_size(int children)
35 #incl ude <sys/zio.h> 97 {
36 #include <sys/fs/zfs.h> 98 return (offsetof (mrror_map_t, mmchild[children]) +
99 sizeof (int) * children);
38 /* 100 }
39 * Virtual device vector for mirroring.
40 */ 102 static inline mrror_map_t *
103 vdev_mirror_map_al l oc(int children, bool ean_t replacing, boolean_t root)
42 typedef struct mirror_child { 104 {
43 vdev_t *nc_vd; 105 mrror_map_t *mm
44 ui nt 64_t nc_of f set;
45 int nc_error; 107 mm = kmem zal | oc(vdev_mirror_map_si ze(children), KM SLEEP);
46 int nt_| oad; 108 mm >mm chi | dren = children;
47 #endif /* 1 codereview */ 109 mm >mm r epl aci ng = repl aci ng;
48 ui nt 8_t nc_tried, 110 mm >mm r oot = root;
49 ui nt 8_t nt_ski pped; 111 mm>mm preferred = (int *)((uintptr_t)mm
50 uint8_t nt_specul ati ve; 112 of fsetof (mrror_map_t, nm. ch d[chil en]))
51} mrror_child_t;
114 return (mm;
53 typedef struct mirror_map { 115 }
54 int *mm _pr ef erred; 34 int vdev_mirror_shift = 21;
55 int mm preferred_cnt;
56 #endif /* | codereview */ 117 static void
57 int nm chi | dren; 118 vdev_mirror_map_free(zio_t *zio)
58 bool ean_t nm r epl aci ng; 119 {
59 bool ean_t nm r oot ; 120 mrror_map_t *mm = zi 0->i o_vsd;
60 mirror_child t mmchild[];
28 int nm_r epl aci ng; 122 kmem free(mm vdev_mirror_map_si ze(nm >mm children));

new usr/src/uts/comon/fs/zfs/vdev_nmirror.c

41 kmem free(mm offsetof (mrror_map_t, mmchild[mm >mmchildren]));
123 }
__unchanged_portion_onitted_
130 static int
131 vdev_mirror_load(mrror_map_t *mm vdev_t *vd, uint64_t zio_offset)
132 {
133 uint64_t |astoffset;
134 int |oad;
136 /* Al DVAs have equal weight at the root. */
137 if (mm>nmmroot)
138 return (I NT_MAX);
140 I*
141 * We don't return INT_MAX if the device is resilvering i.e.
142 * vdev_resilver_txg != 0 as when tested performance was slightly
143 * worse overall when resilvering with conpared to w thout.
144 */
146 /* Standard | oad based on pending queue |ength. */
147 | oad = vdev_queue_| engt h(vd);
148 | ast of fset = vdev_queue_| ast of f set (vd);
150 if (vd->vdev_rotation_rate == VDEV_RATE_NON_ROTATI NG {
151 /* Non-rotating nedla */
152 if (lastoffset == zio_offset)
153 return (I oad + non_rotating_inc);
155 /*
156 * Apply a seek penalty even for non-rotating devices as
157 * sequential 1/O a can be aggregated into fewer operations
158 * on the device, thus avoi ding unnecessary per-conmand
159 * overhead and boosting perfornmance.
160 */
161 return (load + non_rotating_seek_inc);
162 }
164 /* Rotating nedia |I/Os which directly followthe last I/0O */
165 if (lastoffset == zio_offset)
166 return (load + rotating_inc);
168 /*
169 * Apply half the seek increment to |/Os within seek of fset
170 * of the last 1/0 queued to this vdev as they should incure |ess
171 * of a seek increment.
172 */
173 if (ABS(lastoffset - zio_offset) < rotating_seek_offset)
174 return (load + (rotating_seek_inc / 2));
176 /* Apply the full seek increment to all other 1/Os. */
177 return (load + rotating_seek_inc);
178 }
181 #endif /* ! codereview */
182 static mirror_map_t *
183 vdev_mirror_map_init(zio_t *zio)
49 vdev_mirror_map_al l oc(zio_t *zio)
184 {
185 mrror_map_t *mm = NULL;
186 mrror_child_t *nt;
187 vdev_t *vd = zio->io_vd;
188 int c;
54 int c, d;

new usr/src/uts/comon/fs/zfs/vdev_nmirror.c

190
191
192

194
195
60

212
213
214
215 }

if (vd == NULL) {
dva_t *dva
spa_t *spa

= zi 0->i o_bp->bl k_dva;

= zio->io_spa;

mm = vdev_mirror_map_al | oc(BP_GET_NDVAS(zi o- >i o_bp),
B _TRUE) ;

¢ = BP_GET_NDVAS(zi o->i 0_bp);

mm = knmem zal | oc(of fsetof (mrror_map_t, mmchild[c]),
mm >mm chi l dren = c;

mm >mm r epl aci ng = B_FALSE;

mm >mm preferred = spa_get _randon(c);
mm >mm r oot = B_TRUE;

/*
* Check the other, |lower-index DVAs to see if they' re on
* the same vdev as the child we picked. |f they are, use
* themsince they are likely to have been allocated from
* the primary netaslab in use at the tinme, and hence are
* nmore likely to have locality with single-copy data.
*
/
for (¢ = mm>mmpreferred, d =c - 1, d >= 0; d--) {
if (DVA_GET_VDEV(&dva[d]) == DVA GET_VDEV(&dva[c]))
mm >mm preferred = d;
}
for (c = 0; ¢ < mMm>mmchildren; c++) {
nc = &m >mm child[c];
nc->nc_vd = vdev_| ookup_t op(spa, DVA_GET_VDEV(&dva[c]));
nc- >nc_of fset = DVA_GET_OFFSET(&dva[c]);
} else {
mm = vdev_mirror _map_al | oc(vd->vdev_children,

(vd->vdev _ops == &vdev_repl aci ng_ops ||
vd- >vdev_ops == &dev_spare_ops), B FALSE);
¢ = vd->vdev_children;

mm = kmem zal | oc(of fsetof (mrror_map_t, mmchild[c]),
mm >mm chil dren = c;

mm >mm repl aci ng = (vd->vdev_ops == &vdev_repl aci ng_ops ||

vd- >vdev_ops == &vdev_spare_ops);
mm >mm preferred = mm>mmreplacing ? 0 :
(zio->o_offset >> vdev_mirror_shift) %c;
mm >nm root = B _FALSE;

for (c = 0; ¢ < mMm>mmchildren; c++) {
nc = &m >mm child[c];
nc->nc_vd = vd->vdev_child[c];
nc->nc_of fset = zio->io_offset;

}

zi0->io_vsd = mm
zi 0->i o_vsd_ops = &vdev_mirror_vsd_ops;

return (nmm;

__unchanged_portion_omtted_

295 /
296
297
298
299
300
301

*

* Check the other, lower-index DVAs to see if they ' re on the sane
* vdev as the child we picked. |f they are, use them since they

* are likely to have been allocated fromthe primary netaslab in

* use at the tine, and hence are nore likely to have locality with
* singl e-copy data.

*

-~

new usr/src/uts/comon/fs/zfs/vdev_nmirror.c

302 static int
303 vdev_mrror_dva_select(zio_t *zio, int preferred)

304
305
306
307

309
310
311
312
313
314

316
317

319
320

322
323
324
325

327
328
329
330
331
332
333
334
335

337
338
339
340
188
341
342
343
344

346
195
347
348
197

350

352
353
354
355

201
202
203
204
205
206
207
208

{

dva_t *dva = ZI ->i o_bp->bl k_dva;

mrror_map_t *mm = zio->i o_vsd,;

int c;

(c = prefe rred- 1, ¢ >=0; c--) {
if (DVA_GET_VDEV(&dval[c]) == DVA GET_VDEV(&dva[preferred]))
“preferred = c;

return (preferred);
}
static int

vdev_mirror_preferred_child_random ze(zio_t *zio)

mrror_map_t *mm = zi o->i 0_vsd,
int p;

if (mm>mmroot) {
p = spa_get_random(mm >mm preferred_cnt);
return (vdev_mrror_dva_sel ect(zio, nm>mmpreferred[p]));

*
* To ensure we don’'t always favour the first matching vdev,
* which could lead to wear leveling issues on SSD's, we

* use the 1/O offset as a pseudo random seed into the vdevs
* which have the | owest |oad.

*

/
p = (zio->o_offset > vdev_mrror_shift) % nm >nmpreferred_cnt;
return (mm>mmpreferred[p]);
}
/*
* Try to find a vdev whose DTL doesn’t contain the block we want to read
* prefering vdevs based on determ ned | oad.
*
* Try to find a child whose DTL doesn’t contain the block we want to read.
* If we can’t, try the read on any vdev we haven't already tried.
*/
static int

vdev_mirror_child_select(zio_t *zio)

mrror_map_t *nm = zio->i o_vsd;
mrror_child_t *nt;

uint64_t txg = zio->io_txg;

int c, |owest_|oad;

int i, c;

ASSERT(zi 0->i o_bp == NULL || BP_PHYSI CAL_BI RTH(zi o->i o_bp) == txg);
I owest _| oad = | NT_MAX;

mm >mm _pr ef erred_cnt = 0;
for (c = 0; ¢ < m>mmchildren; c++) {
mrror_child_t *nc;

/*

* Try to find a child whose DTL doesn’t contain the block to read.
* If achild is known to be conpletely inaccessible (indicated by
* vdev_readabl e() returning B _FALSE), don't even try.

*/
for (i =0, ¢c = Mm>mmpreferred; i < mm>mmchildren; i++ c++) {
if (¢ >= mm>mm chil dren)
c =0

new usr/src/uts/comon/fs/zfs/vdev_nmirror.c

357
358
359

361
362
363
364
365
366
367

369
212
213
370
371
372
373
374

376
377
378

380
381
382
383
384
385
386

388
389
390
391
392

394
395

397
398
399
400

402
403
404
405
406
407
408
409
217
218
410
411
412
413

415
416
417
418

nc = &m >mm chi
if (mc->ne_tried

Idfc];
|| mc->nmc_ski pped)

continue;

#endif /* ! codereview */
if (!vdev_readab
ntc->nc_e
nc->ne_t
ntc->nct_s

Ie(m: >nt_vd)) {

rror SET_ERROR(ENXI O ;
ried:l; /* don’t even try */
ki pped = 1;

cont i nue;

}

if (vdev_dtl_con
if (!vdev_dtT _co
return (
ntc->nc_e
nt- >nc_s
ntc- >nc_s

tains(nc->nc_vd, DIL_M SSING txg, 1)) {

ntai ns(nc->nc_vd, DTL_M SSING txg,
c);

rror = SET_ERROR(ESTALE);

ki pped = 1;

pecul ative = 1;

cont i nue;

gad

if (nmc->nt_| oad

| owest _|
mm >mm_p

mm >mm pref erred
mm >mm pr ef erred

}

if (mm>mm preferred_cnt
vdev_queue_regi s

mm >mm _chi | d[

return (nm>mmp

}

if (mm>mm preferred_cnt
int ¢ = vdev_mr

vdev_queue_regi s
return (c);
#endif /* | codereview */

/*

* Every device is eithe

*/

for (c =0; ¢ < Mm>mmc
if (!'mm>nmchil

vdev_queue_regi ster_| astoffset (nm >mmchild[c].

|
conti nue;

> | owest _I| oad)

< |l owest_l oad) {
oad = nt->nt_| oad;
referred_cnt = O;

[rm >mm preferred_cnt] = c;
_cnt ++;

== 1)

ter_| astof fset (

mm >mm preferred[0]].nc_vd, zio);
referred[0]);

> 1) {
ror_preferred_chil d_randoni ze(zio);

1)

ter_l astoffset(mm >mm child[c].nc_vd,

r mssing or has this txg in its DIL.
* Look for any child we haven't already tried before giving up.

hildren; c++)
dic].nc_tried)

zi0);

for (c = 0; ¢ < Mm>mmc
if (!'mm>mmchil
return (
) }
#endif /* | codereview */

/*

* Every child fail ed.
*

/

return (-1);

hildren; c++)
dlc].nc_tried)
c);

There's no place left to |ook.

vdev_mirror_| oad(mm nc->nc_vd, nc->nc_of fset);

zi 0);

nc_vd,

new usr/src/uts/comon/fs/zfs/vdev_nmirror.c

419 }

421 static int
422 vdev_mirror_io_start(zio_t *zio)

423 {
424
425
426

428
220

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

456
457
458
459
460
461

463
464
465
466
467
468
469
470

472
473 }

mrror_map_t *mm
mrror_child_t *nt;
int ¢, children;

mm = vdev_mirror_map_init(zio);
mm = vdev_mirror_map_al | oc(zio0);

if (zio->io_type == ZI O TYPE_READ) ({
if ((zto->o_flags & ZI O FLAG SCRUB) && !nm >mm repl aci ng) {
/*

* For scrubbing reads we need to allocate a read
* buffer for each child and issue reads to all
* children. If any child succeeds, it will copy its
* data into zio->o_data in vdev_mrror_scrub_done.
*
/
for (c =0; ¢ < mMm>mmchildren; c++) {
nmc = &m >mm chil d[c];
zi o_nowai t (zi o_vdev_child_io(zio, zio->io_bp,
nc->nc_vd, nc->nc_of f set,
zi o_buf _al | oc(zi o->i o_size), zio->io_size,
zio->io_type, zio->io_priority, O,
vdev_mirror_scrub_done, nt));

}

return (Zl O_PI PELI NE_CONTI NUE) ;
}
/*

* For normal reads just pick one child.
*/

¢ = vdev_mirror_child_sel ect(zio);
children = (¢ >= 0);

} else {
ASSERT(zi 0- >i o_type == ZI O TYPE_WRI TE);

/*
* Wites go to all children.
*/

c =0;
children = mm >mm chi |l dren;

}

while (children--) {
nmc = &mm >mm chil d[c];
zi o_nowai t (zi o_vdev_child_io(zio, zio->io_bp,
nc->nc_vd, nc->nc_of fset, zio->io_data, zio->io_size,
zio->io_type, zio->o_priority, O,
vdev_mirror_child_done, nt));
c++;

}
return (ZI O Pl PELI NE_CONTI NUE) ;

__unchanged_portion_onitted_

new usr/src/uts/ comon/fs/zfs/vdev_queue. c

R R R R

23569 Sun Nov 17 21:32:57 2013
new usr/src/ uts/ comon/ fs/zfs/vdev_queue. c

4334

I nprove ZFS N-way mirror read performance

R R R R

O©CONOUITAWNE

/
CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to license terns.

B T A
- -

/*
* Copyright (c) 2013 by Del phix. Al rights reserved.
* Copyright (c) 2013 Steven Hartland. Al rights reserved.
#endif /* | codereview */
*
/

#i ncl ude <sys/zfs_context.h>
#i ncl ude <sys/vdev_inpl.h>
#i ncl ude <sys/spa_i npl. h>

#i ncl ude <sys/zio. h>

#i ncl ude <sys/avl.h>

#i ncl ude <sys/dsl _pool . h>

/
ZFS 1/ O Schedul er

ZFS issues |1/ O operations to | eaf vdevs to satisfy and conplete zios. The
I/ O schedul er deternmines when and in what order those operations are
issued. The I/0O schedul er divides operations into five I/O classes
prioritized in the followi ng order: sync read, sync wite, async read,
async wite, and scrub/resilver. Each queue defines the m ni mum and

mexi mum nunber of concurrent operations that nmay be issued to the device.
In addition, the device has an aggregate maxi num Note that the sum of the
per - queue m ni nums nust not exceed the aggregate maxi mum and if the
aggregate maxi mumis equal to or greater than the sumof the per-queue
maxi munms, the per-queue mni num has no effect.

For many physical devices, throughput increases w th the nunber of
concurrent operations, but latency typically suffers. Further, physical
devices typically have a limt at which nore concurrent operations have no
effect on throughput or can actually cause it to decrease.

The schedul er selects the next operation to issue by first |ooking for an
1/ 0O cl ass whose m ni num has not been satisfied. Once all are satisfied and
the aggregate maxi num has not been hit, the schedul er |ooks for classes

® Ok ok ok Rk Ok Ok 3k b ok b 3k Ok ok % R ¥ Ok % %

new usr/src/uts/ common/fs/zfs/vdev_queue. c

whose nmaxi mum has not been satisfied. Iteration through the 1/O classes is
done in the order specified above. No further operations are issued if the
aggr egat e maxi mum nunber of concurrent operations has been hit or if there
are no operations queued for an |/O class that has not hit its maxi num
Every time an i/o is queued or an operation conpletes, the I/O schedul er

| ooks for new operations to issue.

Al 1/0 classes have a fixed maxi mum nunber of outstanding operations
except for the async wite class. Asynchronous wites represent the data
that is conmitted to stable storage during the syncing stage for
transaction groups (see txg.c). Transaction groups enter the syncing state
periodically so the nunber of queued async writes will quickly burst up and
then bl eed down to zero. Rather than servicing themas quickly as possible,
the 1/0O schedul er changes the maxi mum nunber of active async wite i/os
according to the amount of dirty data in the pool (see dsl_pool.c). Since
bot h throughput and |l atency typically increase with the nunber of
concurrent operations issued to physical devices, reducing the burstiness
in the number of concurrent operations also stabilizes the response tinme of
operations fromother -- and in particular synchronous -- queues. |In broad
strokes, the I/ O scheduler will iIssue nore concurrent operations fromthe
async write queue as there's nore dirty data in the pool.

Async Wites

The nunber of concurrent operations issued for the async wite 1/0O class
follows a piece-wise |linear function defined by a few adjustable points.

<-- zfs_vdev_async_write_max_active
active

/0
count

—~

<-- zfs_vdev_async_wite_nin_active

100% of zfs_dirty_data_max

-- zfs_vdev_async_wite_active_nax_dirty_percent
————————— zfs_vdev_async_wite_active_mn_dirty_percent

Until the amobunt of dirty data exceeds a m ni num percentage of the dirty
data allowed in the pool, the I/O scheduler will Iimt the nunber of
concurrent operations to the mininum As that threshold is crossed, the
nunber of concurrent operations issued increases linearly to the maxi mum at
the specified maxi num percentage of the dirty data allowed in the pool.

ldeally, the amount of dirty data on a busy pool will stay in the sloped
part of the function between zfs_vdev_async_wite_active_m n_dirty_percent
and zfs_vdev_async_wite_active_max_dirty percent. If it exceeds the

maxi mum percentage, this indicates that the rate of incomng data is
greater than the rate that the backend storage can handle. In this case, we
must further throttle incoming wites (see dmu_tx_delay() for details).

® Ok ok ok ok ok ok o SE ok F R Sk OF 3k R Sk b SR Sk SR F SRk O F O F SR ok b 3k ok ok b SR SR F O % b 3k b 3k ok b ok ok ok % ok ¥

/*

* The maxi num nunber of i/os active to each device.
* the sumof each queue’s max_active.
* queue’s min_active.

*/

ldeally, this will be >=
It nmust be at |east the sumof each

uint32_t zfs_vdev_max_active = 1000;

/*

* Per-queue linmts on the nunber of i/o0s active to each device. |If the
* sum of the queue’s nax_active is < zfs_vdev_max_active, then the
* mn_active conmes into play. W will send mn_active from each queue,

new usr/src/uts/ comon/fs/zfs/vdev_queue. c

128 * and then select fromqueues in the order defined by zio_priority_t.

129 *

130 * In general, smaller max_active's will lead to |ower |atency of synchronous
131 * operations. Larger max_active's may |lead to higher overali throughput,
132 * dependi ng on underlying storage.

133 *

134 * The ratio of the queues’ max_actives determ nes the bal ance of performance
135 * between reads, wites, and scrubs. E.g., increasing

136 * zfs_vdev scrub_mex_active will cause the scrub or resilver to conpl ete
137 * nore quickly, but reads and wites to have higher latency and | ower

138 * throughput.

139 */

140 uint32_t zfs_vdev_sync_read_m n_active = 10;

141 uint32_t zfs_vdev_sync_read_max_active = 10;

142 uint32_t zfs_vdev_sync_wite_mn_active = 10;

143 uint32_t zfs_vdev_sync_wite_max_active = 10;

144 uint32_t zfs_vdev_async_read_min_active = 1;

145 uint32_t zfs_vdev_async_read_max_active = 3;

146 uint32_t zfs_vdev_async_wite_mn_active = 1;

147 uint32_t zfs_vdev_async_wite_max_active = 10;

148 uint32_t zfs_vdev_scrub_min_active = 1;

149 uint32_t zfs_vdev_scrub_max_active = 2;

151 /*

152 * \Wen the pool has less than zfs_vdev_async_wite_active_nin_dirty_percent
153 * dirty data, use zfs_vdev_async_wite_nin_active. Wen it has nore than
154 * zfs_vdev_async_write_active max_dirty_percent, use

155 * zfs_vdev_async_write_max_active. The value is linearly interpolated

156 * between nmin and max.

157 */

158 int zfs_vdev_async_wite_active_mn_dirty_percent = 30;

159 int zfs_vdev_async_wite_active_max_dirty_percent = 60;

161 /*

162 * To reduce | OPs, we aggregate small adjacent I/Os into one large I/0O
163 * For read |/ Cs, we al so aggregate across snull adjacency gaps; for wites
164 * we include spans of optional I/Os to aid aggregation at the di sk even when
165 * they aren’t able to help us aggregate at this level.

166 */

167 int zfs_vdev_aggregation I|mt = SPA_MAXBLOCKSI ZE;

168 int zfs_vdev_read _gap limt = 32 << 10;

169 int zfs_vdev_wite gap linmit = 4 << 10;

171 int

172 }/dev_queue_offset_conpare(const void *x1, const void *x2)

173

174 const zio_t *zl = x1;

175 const zio_t *z2 = x2;

177 if (z1->io_offset < z2->io_offset)

178 return (-1);

179 if (z1->o_offset > z2->io_offset)

180 return (1);

182 if (z1 < z2)

183 return (-1);

184 if (z1 > z2)

185 return (1);

187 return (0);

188 }

190 int

191 vdev_queue_ti mestanp_conpare(const void *x1, const void *x2)

192 {

193 const zio_t *zl = x1;

new usr/src/ uts/ comon/fs/zfs/vdev_queue. c

194

196
197
198
199

201
202
203
204

206
207

209
210

212

214
215

217
218

220
221
222
223
224
225
226
227
228
229
230
231
232
233

235
236

239
240

242

244
245
246

248
249

251
252

254
255
256

258
259

}

voi d

const zio_t *z2 = x2;

if (z1->io_timestanp < z2->io_timestanp)
return (-1);

if (z1->io_timestanp > z2->i o_ti mestanp)
return (1);

if (z1 < z2)

return (-1);
if (z1 > z2)

return (1);

return (0);

vdev_queue_i ni t (vdev_t *vd)
211 {

vdev_queue_t *vq = &d->vdev_queue;
mut ex_i ni t (&g->vq_l ock, NULL, MJTEX_DEFAULT, NULL);
vQ->vqg_vdev = vd,;

avl _create(&vg->vg_active_tree, vdev_queue_of fset_conpare,
“sizeof (zio_t), offsetof(struct zi 0o, io_queue_node));

for (zi o_pri ority_ t p =0; p < ZI OPR ORI TY_NUM QUEUEABLE; p++) {
/*

* The synchronous i/o queues are FIFO rather than LBA ordered.
* This provides nore consistent |atency for these i/os, and

* they tend to not be tightly clustered anyway so there is

* little to no throughput Ioss.

booleant fifo = (p == ZI O PRI ORI TY_SYNC_READ | |
ZI O PRI ORI TY SYNC_WRI TE) ;
avl create(&vq >vq_cl ass[p]. vgc_ queued tree,
fifo ? vdev_queue_ti nestanp_conpare :
vdev_queue_of f set _conpare,
sizeof (zio_t), offsetof(struct zio, io_queue_node));

}

vg- >vg_| astof fset = O;

#endi f /* | codereview */
237 }

voi d

vdev_queue_fini (vdev_t *vd)
241 {

}

vdev_queue_t *vq = &vd->vdev_queue;
(zio_priority_t p =0; p < ZI O PRI ORI TY_NUM QUEUEABLE; p++)
avl _destroy(&qg->vq_cl ass[p].vqc_queued_tree);
avl _destroy(&vqg->vq_active_tree);

mut ex_destroy(&q- >vg_| ock);

static void
vdev_queue_i o_add(vdev_queue_t *vq, zio_t *zio)
253 {

spa_t *spa = zio->i0_spa;
ASSERT3U(zi o->io_priority, <, ZI O_PR ORI TY_NUM QUEUEABLE);
avl _add(&vqg->vq_cl ass[zi o->i o_priority].vqgc_queued_tree, zio);

mut ex_ent er (&spa- >spa_i okst at _| ock);
spa- >spa_queue_stats[zi o->i o_priority].spa_queued++;

new usr/src/uts/ comon/fs/zfs/vdev_queue. c

260
261
262
263 }

if (spa->spa_iokstat != NULL)
kst at _wai t q_ent er (spa->spa_i okst at - >ks_dat a) ;
mut ex_exi t (&spa- >spa_i okst at _| ock);

265 static void
266 vdev_queue_i o_renpve(vdev_queue_t *vq, zio_t *zio)

267 {
268
269
270

272
273
274
275
276
277
278 }

spa_t *spa = zio->i o_spa;
ASSERT3U(zi 0->i o_priority, <, ZI O PRI ORI TY_NUM QUEUEABLE);
avl _renove(&vqg->vq_classfzio->o_priority].vqc_queued_tree, zio);

nmut ex_ent er (&spa- >spa_i okst at _| ock);
ASSERT3U(spa- >spa_queue_stats[zio-> o_priority].spa_queued, > 0);
spa- >spa_queue_stats[zio->i o_priority].spa_queued--;
if (spa->spa_iokstat != NULL)
kst at _wai t q_exit (spa->spa_i okstat - >ks_dat a) ;
mut ex_exi t (&spa- >spa_i okst at _| ock);

280 static void
281 vdev_queue_pendi ng_add(vdev_queue_t *vq, zio_t *zio)

282 {
283
284
285
286
287

289
290
291
292
293
294 }

spa_t *spa = zi 0->i 0_spa;

ASSERT(MJUTEX_HELD(&vq- >vq_| ock)) ;

ASSERT3U(zi o->i o_priority, <, ZI O_PRI ORI TY_NUM_QUEUEABLE) ;
vg->vg_cl ass[zio->i o_priority].vqgc_active++;

avl _add(&vqg->vg_active_tree, zio);

mut ex_ent er (&spa- >spa_i okst at _| ock);
spa- >spa_queue_stats[zio->io_priority].spa_active++;
if (spa->spa_iokstat != NULL)

kstat _runq_enter (spa->spa_i okstat - >ks_dat a) ;
mut ex_exi t (&spa->spa_i okstat _| ock);

296 static void
297 vdev_queue_pendi ng_r enove(vdev_queue_t *vqg, zio_t *zio)

298 {
299
300
301
302
303

305
306
307
308
309

311
312
313
314
315
316
317
318
319
320
321 }

spa_t *spa = zi 0->i 0_spa;

ASSERT(MJUTEX_HELD(&vq- >vq_| ock)) ;

ASSERT3U(zi o->i o_priority, <, ZI O PRI ORI TY_NUM_QUEUEABLE) ;
vg->vqg_cl ass[zio->i o_priority].vqc_active--;

avl _renove(&vQq->vq_active_tree, zio);

nmut ex_ent er (&spa- >spa_i okst at _| ock);
ASSERT3U(spa- >spa_queue_st ats[2| o->io_priority].spa_active, > 0);
spa- >spa_queue_st ats[zi o->i o_priority].spa_active--;
if (spa->spa_iokstat != NULL) {
kstat _io_t *ksio = spa->spa_i okstat->ks_dat a;

kstat _rung_exit (spa->spa_i okst at - >ks_dat a) ;
if (zio->io_type == ZI O TYPE_READ)
ksi 0- >r eads++;
ksi o->nread += zi o- >j 0_si ze;
} else if (zio->i o _type == ZIO_TYPE_WRI TE) {
ksi 0->writes++;
ksi o->nwritten += zio->i o_si ze;

}

}
mut ex_exi t (&spa- >spa_i okst at _| ock);

323 static void
324 vdev_queue_agg_i o_done(zi o_t *ai 0)

325 {

new usr/src/uts/ common/fs/zfs/vdev_queue. c

326 if (aio->io type == ZI O_TYPE_READ) {

327 zio_t *pio;

328 V\hile((plo:uo wal k_parents(aio)) != NULL) {
329 bcopy((char *)ai o->i o_data + (pio->io_offset -
330 ai 0->i o_offset), pio->io_data, pio->io_size);
331 }

332 }

334 zi o_buf _free(ai o->i o_data, aio->io_size);

335 }

337 static int

338 vdev_queue_class_m n_active(zio_priority_t p)

339 {

340 switch (p) {

341 case ZI O PRI ORI TY_SYNC_READ:

342 return (zfs_vdev_sync_read_m n_active);

343 case ZI O PRI ORI TY_SYNC WRI TE:

344 return (zfs_vdev_sync_wite_min_active);

345 case ZI O PRI ORI TY_ASYNC_READ:

346 return (zfs_vdev_async_read_nin_active);

347 case ZI O PRI ORI TY_ASYNC WRI TE:

348 return (zfs_vdev_async_wite_min_active);

349 case ZI O PRI ORI TY_SCRUB:

350 return (zfs_vdev_scrub_mi n_active);

351 defaul t:

352 panic("invalid priority %", p);

353 return (0);

354 }

355 }

357 static int

358 }/dev_queue_rmx_async_vwi tes(uint64_t dirty)

359

360 int wites;

361 uint64_t mn_bytes = zfs_dirty_data_nax *

362 zfs_vdev_async_wite_active_mn_dirty percent / 100;
363 uint64_t max_bytes = zfs_dirty_data_max *

364 zfs_vdev_async_wite_active_max_dirty_percent / 100;
366 if (dirty < mn_bytes)

367 return (zfs_vdev_async_wite_m n_active);

368 if (dirty > max_bytes)

369 return (zfs_vdev_async_wite_nax_active);

371 /*

372 * |inear interpolation:

373 * slope = (max_writes - min_wites) / (max_bytes - mn_bytes)
374 * move right by min_bytes

375 * nmove up by mn_wites

376 */

377 wites = (dirty - mn_bytes) *

378 (zfs_vdev_async_wite_max_active -

379 zfs_vdev_async_write_mn_active) /

380 (max_bytes - min_byt es) +

381 zfs_vdev_async_wite_m n_active;

382 ASSERT3U(wri tes, >=, zf s_vdev_async_wri te_mn_active);
383 ASSERT3U(wr i t es, <=, zfs_vdev_async_wite_nax_active);
384 return (writes);

385 }

387 static int

388 vdev_queue_cl ass_nax_active(spa_t *spa, zio_priority_t p)

389 {

390 switch (p) {

391 case ZI O PRI ORI TY_SYNC_READ:

new usr/src/uts/ comon/fs/zfs/vdev_queue. c

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

408
409
410
411
412
413
414
415
416

418
419

421
422
423
424
425
426
427

429
430
431
432
433
434
435
436
437
438

440
441
442

444
445
446
447
448
449
450
451

453
454
455
456
457

return (zfs_vdev_sync_read_max_active);
case ZI O PRI ORI TY_SYNC WRI TE:

return (zfs_vdev_sync_wite_nax_active);
case ZI O_PRI ORI TY_ASYNC_READ:

return (zfs_vdev_async_read_nax_active);
case ZI O PRI ORI TY_ASYNC WRI TE:

return (vdev_queue_max_async_writes(

spa- >spa_dsl| _pool ->dp_dirty_total));

case ZI O PRI ORI TY_SCRUB:

return (zfs_vdev_scrub_max_active);
defaul t:

panic("invalid priority %", p);

return (0);

}

/*
* Return the i/o class to issue from or ZI O PRI ORI TY_MAX_QUEUEABLE i f
* there is no eligible class.
*/

static zio_priority_t

vdev_queue_cl ass_to_i ssue(vdev_queue_t *vq)

{
spa_t *spa = vqg->vq_vdev->vdev_spa;
zio_priority_t p;
if (avl_numodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
return (ZI O_PRI ORI TY_NUM QUEUEABLE) ;
/* find a queue that has not reached its mninum# outstanding i/os */
for (p = 0; p < ZI O PR ORI TY_NUM QUEUEABLE; p++)
if (avl_numodes(&vq->vq_cl ass[p].vqc_queued_tree) > 0 &&
vg->vq_cl ass[p] . vgc_active <
vdev_queue_cl ass_mi n_active(p))
return (p);
}
/*
* |f we haven't found a queue, |ook for one that hasn't reached its
* maxi num # out standi ng i/ os.
*
for (p =0; p < ZIO_PRI ORI TY_NUM QUEUEABLE; p++) {
if (avl _numodes(&vqg->vq_cl ass[p].vqc_queued_tree) > 0 &&
vq->vq_cl ass[p].vgc_active <
vdev_queue_cl ass_nax_acti ve(spa, p))
return (p);
}
/* No eligible queued i/os */
return (ZI O_PRI ORI TY_NUM QUEUEABLE) ;
}
/

*

* Conpute the range spanned by two i/os, which is the endpoint of the |ast

* (lio->o_offset + |10->i0_size) mnus start of the first (fio->io_offset).

* Conveniently, the gap between fio and lio is given by -10 SPAN(lio, fio);

* thus fio and lio are adjacent if and only if 10 SPAN(lio, fio) == 0.

*

/

#define | O SPAN(fio, lio) ((lio)->i o offset + (lio)->io_size - (fio)->i o_offset)
#define 10 GAP(fio, lio) (-10_SPAN(lio, fio))

static zio_t *

vdev_queue_aggr egat e(vdev_queue_t *vq, zio_t *zio)

{
zio_t *first, *last, *aio, *dio, *mandatory, *nio;
uint64_t maxgap = O;

new usr/src/ uts/ comon/fs/zfs/vdev_queue. c

458
459
460
461
462

464
465

467
468
469
470
471
472
473
474

476

478
479

481
482
483
484
485
486
487
488
489

491
492
493
494

496
497
498
499
500
501
502
503
504
505
506
507

509
510
511
512
513
514
515

517
518
519
520
521
522
523

uint64_t size;

bool ean_t stretch = B_FALSE;

vdev_queue_cl ass_t *vqc = &vg->vqg_cl ass[zio->io_priority];
avl _tree_t *t = &qc->vqc_queued_tree;

enum zio_flag flags = zio->o_flags & ZI O FLAG AGG | NHERI T;

if (zio->io_flags & ZI O FLAG DONT_AGGREGATE)
return (NULL);

The synchronous i/o queues are not sorted by LBA so we can’t
find adjacent i/os. These i/os tend to not be tightly clustered,
or too large to aggregate, so this has little inpact on perfornance.

R

if (zio->o_priority == ZI O PRI ORI TY_SYNC_READ | |
zio->io_priority == ZI O PRI ORI TY_SYNC_WRI TE)
return (NULL);

first = last = zio;

if (zio->io_type == ZI O TYPE_READ)
maxgap = zfs_vdev_read_gap_limt;

We can aggregate |/ OCs that are sufficiently adjacent and of
the sanme flavor, as expressed by the AGG INHERI T fl ags.
The latter requirenent is necessary so that certain
attributes of the I/O such as whether it’s a normal 1/0
or a scrub/resilver, can be preserved in the aggregate.

We can include optional 1/Cs, but don't allow them

to begin a range as they add no benefit in that situation.
/

* ok K ok kb ok ok ¥

/*
* W keep track of the |ast non-optional /O
*

mandatory = (first->io_flags & ZI O FLAG OPTI ONAL) ? NULL : first;
/*

* Wal k backwards through sufficiently contiguous I/Cs
* recording the last non-option I/Q
*/

while ((dio = AVL_PREV(t, first)) != NULL &&
(dio->o_flags & ZI O FLAG AGG INHERIT) == flags &&
1 O_SPAN(di 0, last) <= zfs_vdev_aggregation_limt &&
1 O_GAP(di o, first) <= maxgap)
first = dio;
if (mandatory == NULL && !(first->io_flags & ZI O FLAG OPTI ONAL))
mandatory = first;
}
/*

* Skip any initial optional I/Gs.
*
/

while ((first->io_flags & ZI O FLAG OPTIONAL) && first = last) {
first = AVL_NEXT(t, first);
ASSERT(first = NULL);

}
*
* Wal k forward through sufficiently contiguous I/GCs.
*
/
while ((dio = AVL_NEXT(t, last)) !'= NULL &&
(dio->o_flags & ZI O FLAG AGG INHERI T) == flags &&
10O SPAN(first, dio) <= zfs_vdev_aggregation_limt &&
1O _GAP(l ast, dio) <= maxgap) {

new usr/src/uts/ comon/fs/zfs/vdev_queue. c

524
525
526
527

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

552
553
554
555
556
551
558
559
560
561
562

564
565

567
568

570
571
572
573
574

576
577
578
579
580

582
583
584
585
586
587
588
589

last = dio
if ('(Iast->|o flags & ZI O_FLAG COPTI ONAL))
mandat ory | ast;

Now t hat we’ ve established the range of the 1/0O aggregation
we rust decide what to do with trailing optional I/GCs.

For reads, there's nothing to do. Wiile we are unable to
aggregate further, it’'s possible that a trailing optional
1/0 woul d allow the underlying device to aggregate with
subsequent |/ Cs. We nust therefore determine if the next
non-optional 1/Ois close enough to make aggregati on

* wort hwhil e.

* ok k ok k% o *

*
/
if (zio->io_type == ZIO TYPE_WRI TE && mandatory != NULL) {
zio_t *nio = last;
while ((dio = AVL_NEXT(t, nio)) != NULL &&
10 GAP(nio, dio) == 0 &&
IOG‘-\P(angatory, dio) <= zfs_vdev_wite_gap_limt) {
nio = dio;
if (!'(nio->o0_flags & ZI O FLAG OPTI ONAL)) {
stretch = B_TRUE;
br eak;
}
}
}
if (stretch) {
/* This may be a no-op. */
dio = AVL_NEXT(t, last);
dio-> o _flags & ~ZIO_ FLAG OPTI ONAL;
} else {
while (last !'= mandatory && last != first) {
ASSERT(Iast->io flags & ZI O FLAG OPTI ONAL) ;
last = AVL_PREV(t, last);
) ASSERT(l ast ! = NULL);
}
if (first == last)

return (NULL);

size = | O SPAN(first, last);
ASSERT3U(si ze, <=, zfs_vdev_aggregation_limt);

aio = zio_vdev_del egated_io(first->o_vd, first->io_offset,
zi o_buf _all oc(size), size, first->o_type, zio->o_priority,
flags |zl O FLAG DONT_CACHE | ZI O FLAG DONT_QUEUE,
vdev_queue_agg_i o_done, NULL);

aio->io_tinmestanp = first->io_tinestanp;

nio = first;

do {
dio = nio;
nio = AVL_NEXT(t, dio);
ASSERT3U(di 0->i o_type, ==, aio->i o_type);

if (dio->o_flags & ZI O FLAG NCDATA) {
ASSERT3U(di o->i o_type, ==, ZI O TYPE_WRI TE);
bzero((char *)aio-> o0_data + (dio->io_offset -
ai 0->i o_of fset), dio->io_size);
} else if (dio->o_type == ZI O TYPE_WRI TE)
bcopy(di o->i o_data, (char *)aio->o_data +
(dio->io_offset - aio->o_offset),
di 0->i o_si ze);

new usr/src/uts/ common/ fs/zfs/vdev_queue. c

590

592
593
594
595
596

598
599

601
602

604
605
606
607
608

610
611

613

615
616
617
618

620
621
622
623
624
625
626
627
628
629
630
631
632
633

635
636
637
638
639

641
642
643
644
645
646
647
648
649
650
651
652
653

655

}

}

zi o_add_chil d(di o, aio);
vdev_queue_i o_renove(vq, dio);
zi o_vdev_i o_bypass(di 0);
zi o_execute(dio0);

} while (dio !=last);

return (aio);

static zio_t *
vdev_queue_i o_t o_i ssue(vdev_queue_t *vq)
603 {

agai n:

zio_t *zio, *aio;
zio_priority_t p;

avl _i ndex_t idx;
vdev_queue_cl ass_t *vqc;
zio_t search;

ASSERT(MUTEX_HELD(& q- >vq_I ock));
p = vdev_queue_cl ass_to_i ssue(vq);
if (p == ZI O_PRI ORI TY_NUM QUEUEABLE) {

/* No eligible queued i/os */
return (NULL);

}
/*
* For LBA-ordered queues (async / scrub), issue the i/o which follows
* the nost recently issued i/o in LBA (offset) order.
*
* For FIFO queues (sync), issue the i/o with the | owest tinestanp.
*

vgc = &vq->vq_cl ass[p]
search.io_tinmestanp = 0
search.io_offset = vg->vq_|l ast_offset + 1;
VERI FY3P(avl _fi nd(&vqc»vqc_queued_t ree, &search, & dx), ==, NULL);
zi o = avl _nearest (&vqc->vqc_queued_tree, idx, AVL_AFTER);
if (zio == NULL)
zio = avl _first(&vqc->vqc_queued_tree);
ASSERT3U(zi 0->i o_priority, ==, p);

ai 0 = vdev_queue_aggregate(vqg, zio);
if (aio !'= NULL)
zio = alo;
el se
vdev_queue_i o_renove(vq, zio);
/*
* |f the I/Ois or was optional and therefore has no data, we need to
* sinply discard it. W need to drop the vdev queue’s lock to avoid a
* deadl ock that we could encounter since this I/Owll conplete
* immedi ately.
*/
if (zio->o_flags & ZI O FLAG NODATA) {
mut ex_exi t (&qg- >vq_l ock);
zi o_vdev_i o_bypass(zi o) ;
zi o_execute(zi0);
nut ex_ent er (&vg- >vq_| ock) ;
goto again;

}

vdev_queue_pendi ng_add(vqg, zio);

10

new usr/src/uts/ comon/fs/zfs/vdev_queue. c

656 vg- >vg_| ast _of fset = zi o->i o_of fset;

658 return (zio);

659 }

661 zio_t *

662 vdev_queue_io(zio_t *zio)

663 {

664 vdev_queue_t *vq = &zi 0->i o_vd- >vdev_queue;

665 zio_t *nio;

667 if (zio->io_flags & ZI O FLAG DONT_QUEUE)

668 return (zio);

670 I*

671 * Children i/os inherent their parent’s priority, which m ght
672 * not match the child s i/o type. Fix it up here.

673 */

674 if (zio-> o type == ZI O TYPE READ) {

675 if (zio->io_priority !'= ZI O PRI ORI TY_SYNC READ &&
676 zio->io_priority !'= ZI O_PRI ORI TY_ASYNC READ &&
677 zio->io_priority !'= ZI O PRI ORI TY_SCRUB)

678 zio->io_priority = ZI O PRI ORI TY_ASYNC_READ;
679 } else {

680 ASSERT(zi 0->i o_type == ZI O_TYPE_WRI TE) ;

681 if (zio->io_priority !'= ZI'O PRI ORI TY_SYNC_WRI TE &&
682 zio->o_priority != ZI O PR ORI TY_ASYNC WRI TE)
683 zio->io_priority = ZI O PRI ORI TY_ASYNC_WRI TE;
684 }

686 zio->io_flags | = ZI O FLAG DONT_CACHE | ZI O FLAG DONT_QUEUE;
688 nut ex_ent er (&vq- >vq_| ock) ;

689 zio->io_tinmestanp = gethrtinme();

690 vdev_queue_i o_add(vq, zio);

691 nio = vdev_queue_io_to |ssue(vq)

692 mut ex_exi t (&qg->vq_I ock) ;

694 if (nio == NULL)

695 return (NULL);

697 if (nio->io_done == vdev_queue_agg_i o_done) {

698 zi o_nowai t (ni 0);

699 return (NULL);

700 }

702 return (nio);

703 }

705 void

706 vdev_queue_i o_done(zio_t *zio)

707 {

708 vdev_queue_t *vq = &zi o->i 0o_vd- >vdev_queue;

709 zio_t *nio;

711 if (zio_injection_enabled)

712 del ay(SEC_TO TI CK(zi o_handl e_i o_del ay(zio0)));

714 mut ex_ent er (&g->vq_| ock) ;

716 vdev_queue_pendi ng_r enobve(vg, zio);

718 vqg->vg_i o_conplete_ts = gethrtine();

720 while ((nio = vdev_queue_io_to_issue(vqg)) != NULL) {

721 mut ex_exi t (&qg- >vqg_I ock) ;

11

new usr/src/uts/ comon/ fs/zfs/vdev_queue. c

722 if (nio->io_done == vdev_queue_agg_i o_done) {
723 zi o_nowai t (ni 0);

724 } else {

725 zi o_vdev_i o_rei ssue(nio);
726 zi o_execut e(ni o) ;

727 }

728 mut ex_ent er (& qg- >vq_l ock) ;

729 }

731 mut ex_exi t (&vqg- >vq_l ock);

732 }

734 |

735 As these three nethods are only used for |oad cal cul ati ons we’re not
737
738
739 */
740 int
741 vdev_queue_l engt h(vdev_t *vd)

742 {

743 return (avl_numodes(&vd->vdev_queue. vq_pendi ng_tree));
744 }

vg_l ock mutex use here, instead we prefer to keep it lock free for
per f or mance.

746 uint64_t

747 vdev_queue_| ast of f set (vdev_t *vd)

748 {

749) return (vd->vdev_queue. vg_| ast of fset);
750

752 void

753 vdev_queue_regi ster_| astof fset (vdev_t *vd, zio_t *zio)

754 {

755 vd- >vdev_queue. vg_| ast of fset = zi o->i o_of fset + zio->io_size;
756 }

757 #endif /* | codereview */

*
*
736 * concerned if we get an incorrect value on 32bit platforms due to |ack of
*
*

12

