
new/usr/src/uts/common/fs/zfs/sys/vdev.h 1

**
 5998 Sun Nov 17 21:32:56 2013
new/usr/src/uts/common/fs/zfs/sys/vdev.h
4334 Improve ZFS N-way mirror read performance
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012 by Delphix. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 #endif /* ! codereview */
27 */

29 #ifndef _SYS_VDEV_H
30 #define _SYS_VDEV_H

32 #include <sys/spa.h>
33 #include <sys/zio.h>
34 #include <sys/dmu.h>
35 #include <sys/space_map.h>
36 #include <sys/fs/zfs.h>

38 #ifdef __cplusplus
39 extern "C" {
40 #endif

42 typedef enum vdev_dtl_type {
43 DTL_MISSING, /* 0% replication: no copies of the data */
44 DTL_PARTIAL, /* less than 100% replication: some copies missing */
45 DTL_SCRUB, /* unable to fully repair during scrub/resilver */
46 DTL_OUTAGE, /* temporarily missing (used to attempt detach) */
47 DTL_TYPES
48 } vdev_dtl_type_t;

50 extern boolean_t zfs_nocacheflush;

52 extern int vdev_open(vdev_t *);
53 extern void vdev_open_children(vdev_t *);
54 extern boolean_t vdev_uses_zvols(vdev_t *);
55 extern int vdev_validate(vdev_t *, boolean_t);
56 extern void vdev_close(vdev_t *);
57 extern int vdev_create(vdev_t *, uint64_t txg, boolean_t isreplace);
58 extern void vdev_reopen(vdev_t *);
59 extern int vdev_validate_aux(vdev_t *vd);
60 extern zio_t *vdev_probe(vdev_t *vd, zio_t *pio);

new/usr/src/uts/common/fs/zfs/sys/vdev.h 2

62 extern boolean_t vdev_is_bootable(vdev_t *vd);
63 extern vdev_t *vdev_lookup_top(spa_t *spa, uint64_t vdev);
64 extern vdev_t *vdev_lookup_by_guid(vdev_t *vd, uint64_t guid);
65 extern void vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t d,
66 uint64_t txg, uint64_t size);
67 extern boolean_t vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t d,
68 uint64_t txg, uint64_t size);
69 extern boolean_t vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t d);
70 extern void vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
71 int scrub_done);
72 extern boolean_t vdev_dtl_required(vdev_t *vd);
73 extern boolean_t vdev_resilver_needed(vdev_t *vd,
74 uint64_t *minp, uint64_t *maxp);

76 extern void vdev_hold(vdev_t *);
77 extern void vdev_rele(vdev_t *);

79 extern int vdev_metaslab_init(vdev_t *vd, uint64_t txg);
80 extern void vdev_metaslab_fini(vdev_t *vd);
81 extern void vdev_metaslab_set_size(vdev_t *);
82 extern void vdev_expand(vdev_t *vd, uint64_t txg);
83 extern void vdev_split(vdev_t *vd);
84 extern void vdev_deadman(vdev_t *vd);

87 extern void vdev_get_stats(vdev_t *vd, vdev_stat_t *vs);
88 extern void vdev_clear_stats(vdev_t *vd);
89 extern void vdev_stat_update(zio_t *zio, uint64_t psize);
90 extern void vdev_scan_stat_init(vdev_t *vd);
91 extern void vdev_propagate_state(vdev_t *vd);
92 extern void vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state,
93 vdev_aux_t aux);

95 extern void vdev_space_update(vdev_t *vd,
96 int64_t alloc_delta, int64_t defer_delta, int64_t space_delta);

98 extern uint64_t vdev_psize_to_asize(vdev_t *vd, uint64_t psize);

100 extern int vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux);
101 extern int vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux);
102 extern int vdev_online(spa_t *spa, uint64_t guid, uint64_t flags,
103 vdev_state_t *);
104 extern int vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags);
105 extern void vdev_clear(spa_t *spa, vdev_t *vd);

107 extern boolean_t vdev_is_dead(vdev_t *vd);
108 extern boolean_t vdev_readable(vdev_t *vd);
109 extern boolean_t vdev_writeable(vdev_t *vd);
110 extern boolean_t vdev_allocatable(vdev_t *vd);
111 extern boolean_t vdev_accessible(vdev_t *vd, zio_t *zio);

113 extern void vdev_cache_init(vdev_t *vd);
114 extern void vdev_cache_fini(vdev_t *vd);
115 extern int vdev_cache_read(zio_t *zio);
116 extern void vdev_cache_write(zio_t *zio);
117 extern void vdev_cache_purge(vdev_t *vd);

119 extern void vdev_queue_init(vdev_t *vd);
120 extern void vdev_queue_fini(vdev_t *vd);
121 extern zio_t *vdev_queue_io(zio_t *zio);
122 extern void vdev_queue_io_done(zio_t *zio);
123 extern int vdev_queue_length(vdev_t *vd);
124 extern uint64_t vdev_queue_lastoffset(vdev_t *vd);
125 extern void vdev_queue_register_lastoffset(vdev_t *vd, zio_t *zio);
126 #endif /* ! codereview */

new/usr/src/uts/common/fs/zfs/sys/vdev.h 3

128 extern void vdev_config_dirty(vdev_t *vd);
129 extern void vdev_config_clean(vdev_t *vd);
130 extern int vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg,
131 boolean_t);

133 extern void vdev_state_dirty(vdev_t *vd);
134 extern void vdev_state_clean(vdev_t *vd);

136 typedef enum vdev_config_flag {
137 VDEV_CONFIG_SPARE = 1 << 0,
138 VDEV_CONFIG_L2CACHE = 1 << 1,
139 VDEV_CONFIG_REMOVING = 1 << 2
140 } vdev_config_flag_t;

142 extern void vdev_top_config_generate(spa_t *spa, nvlist_t *config);
143 extern nvlist_t *vdev_config_generate(spa_t *spa, vdev_t *vd,
144 boolean_t getstats, vdev_config_flag_t flags);

146 /*
147 * Label routines
148 */
149 struct uberblock;
150 extern uint64_t vdev_label_offset(uint64_t psize, int l, uint64_t offset);
151 extern int vdev_label_number(uint64_t psise, uint64_t offset);
152 extern nvlist_t *vdev_label_read_config(vdev_t *vd, uint64_t txg);
153 extern void vdev_uberblock_load(vdev_t *, struct uberblock *, nvlist_t **);

155 typedef enum {
156 VDEV_LABEL_CREATE, /* create/add a new device */
157 VDEV_LABEL_REPLACE, /* replace an existing device */
158 VDEV_LABEL_SPARE, /* add a new hot spare */
159 VDEV_LABEL_REMOVE, /* remove an existing device */
160 VDEV_LABEL_L2CACHE, /* add an L2ARC cache device */
161 VDEV_LABEL_SPLIT /* generating new label for split-off dev */
162 } vdev_labeltype_t;

164 extern int vdev_label_init(vdev_t *vd, uint64_t txg, vdev_labeltype_t reason);

166 #ifdef __cplusplus
167 }
168 #endif

170 #endif /* _SYS_VDEV_H */

new/usr/src/uts/common/fs/zfs/sys/vdev_impl.h 1

**
 12018 Sun Nov 17 21:32:56 2013
new/usr/src/uts/common/fs/zfs/sys/vdev_impl.h
4334 Improve ZFS N-way mirror read performance
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 #endif /* ! codereview */
26 */

28 #ifndef _SYS_VDEV_IMPL_H
29 #define _SYS_VDEV_IMPL_H

31 #include <sys/avl.h>
32 #include <sys/dmu.h>
33 #include <sys/metaslab.h>
34 #include <sys/nvpair.h>
35 #include <sys/space_map.h>
36 #include <sys/vdev.h>
37 #include <sys/dkio.h>
38 #include <sys/uberblock_impl.h>

40 #ifdef __cplusplus
41 extern "C" {
42 #endif

44 /*
45 * Virtual device descriptors.
46 *
47 * All storage pool operations go through the virtual device framework,
48 * which provides data replication and I/O scheduling.
49 */

51 /*
52 * Forward declarations that lots of things need.
53 */
54 typedef struct vdev_queue vdev_queue_t;
55 typedef struct vdev_cache vdev_cache_t;
56 typedef struct vdev_cache_entry vdev_cache_entry_t;

58 /*
59 * Virtual device operations
60 */
61 typedef int vdev_open_func_t(vdev_t *vd, uint64_t *size, uint64_t *max_size,

new/usr/src/uts/common/fs/zfs/sys/vdev_impl.h 2

62 uint64_t *ashift);
63 typedef void vdev_close_func_t(vdev_t *vd);
64 typedef uint64_t vdev_asize_func_t(vdev_t *vd, uint64_t psize);
65 typedef int vdev_io_start_func_t(zio_t *zio);
66 typedef void vdev_io_done_func_t(zio_t *zio);
67 typedef void vdev_state_change_func_t(vdev_t *vd, int, int);
68 typedef void vdev_hold_func_t(vdev_t *vd);
69 typedef void vdev_rele_func_t(vdev_t *vd);

71 typedef struct vdev_ops {
72 vdev_open_func_t *vdev_op_open;
73 vdev_close_func_t *vdev_op_close;
74 vdev_asize_func_t *vdev_op_asize;
75 vdev_io_start_func_t *vdev_op_io_start;
76 vdev_io_done_func_t *vdev_op_io_done;
77 vdev_state_change_func_t *vdev_op_state_change;
78 vdev_hold_func_t *vdev_op_hold;
79 vdev_rele_func_t *vdev_op_rele;
80 char vdev_op_type[16];
81 boolean_t vdev_op_leaf;
82 } vdev_ops_t;

84 /*
85 * Virtual device properties
86 */
87 struct vdev_cache_entry {
88 char *ve_data;
89 uint64_t ve_offset;
90 uint64_t ve_lastused;
91 avl_node_t ve_offset_node;
92 avl_node_t ve_lastused_node;
93 uint32_t ve_hits;
94 uint16_t ve_missed_update;
95 zio_t *ve_fill_io;
96 };

98 struct vdev_cache {
99 avl_tree_t vc_offset_tree;
100 avl_tree_t vc_lastused_tree;
101 kmutex_t vc_lock;
102 };

104 typedef struct vdev_queue_class {
105 uint32_t vqc_active;

107 /*
108 * Sorted by offset or timestamp, depending on if the queue is
109 * LBA-ordered vs FIFO.
110 */
111 avl_tree_t vqc_queued_tree;
112 } vdev_queue_class_t;

114 struct vdev_queue {
115 vdev_t *vq_vdev;
116 vdev_queue_class_t vq_class[ZIO_PRIORITY_NUM_QUEUEABLE];
117 avl_tree_t vq_active_tree;
118 uint64_t vq_last_offset;
119 hrtime_t vq_io_complete_ts; /* time last i/o completed */
120 kmutex_t vq_lock;
121 uint64_t vq_lastoffset;
122 #endif /* ! codereview */
123 };

125 /*
126 * Virtual device descriptor
127 */

new/usr/src/uts/common/fs/zfs/sys/vdev_impl.h 3

128 struct vdev {
129 /*
130 * Common to all vdev types.
131 */
132 uint64_t vdev_id; /* child number in vdev parent */
133 uint64_t vdev_guid; /* unique ID for this vdev */
134 uint64_t vdev_guid_sum; /* self guid + all child guids */
135 uint64_t vdev_orig_guid; /* orig. guid prior to remove */
136 uint64_t vdev_asize; /* allocatable device capacity */
137 uint64_t vdev_min_asize; /* min acceptable asize */
138 uint64_t vdev_max_asize; /* max acceptable asize */
139 uint64_t vdev_ashift; /* block alignment shift */
140 uint64_t vdev_state; /* see VDEV_STATE_* #defines */
141 uint64_t vdev_prevstate; /* used when reopening a vdev */
142 vdev_ops_t *vdev_ops; /* vdev operations */
143 spa_t *vdev_spa; /* spa for this vdev */
144 void *vdev_tsd; /* type-specific data */
145 vnode_t *vdev_name_vp; /* vnode for pathname */
146 vnode_t *vdev_devid_vp; /* vnode for devid */
147 vdev_t *vdev_top; /* top-level vdev */
148 vdev_t *vdev_parent; /* parent vdev */
149 vdev_t **vdev_child; /* array of children */
150 uint64_t vdev_children; /* number of children */
151 vdev_stat_t vdev_stat; /* virtual device statistics */
152 boolean_t vdev_expanding; /* expand the vdev? */
153 boolean_t vdev_reopening; /* reopen in progress? */
154 int vdev_open_error; /* error on last open */
155 kthread_t *vdev_open_thread; /* thread opening children */
156 uint64_t vdev_crtxg; /* txg when top-level was added */

158 /*
159 * Top-level vdev state.
160 */
161 uint64_t vdev_ms_array; /* metaslab array object */
162 uint64_t vdev_ms_shift; /* metaslab size shift */
163 uint64_t vdev_ms_count; /* number of metaslabs */
164 metaslab_group_t *vdev_mg; /* metaslab group */
165 metaslab_t **vdev_ms; /* metaslab array */
166 txg_list_t vdev_ms_list; /* per-txg dirty metaslab lists */
167 txg_list_t vdev_dtl_list; /* per-txg dirty DTL lists */
168 txg_node_t vdev_txg_node; /* per-txg dirty vdev linkage */
169 boolean_t vdev_remove_wanted; /* async remove wanted? */
170 boolean_t vdev_probe_wanted; /* async probe wanted? */
171 list_node_t vdev_config_dirty_node; /* config dirty list */
172 list_node_t vdev_state_dirty_node; /* state dirty list */
173 uint64_t vdev_deflate_ratio; /* deflation ratio (x512) */
174 uint64_t vdev_islog; /* is an intent log device */
175 uint64_t vdev_removing; /* device is being removed? */
176 boolean_t vdev_ishole; /* is a hole in the namespace */

178 /*
179 * Leaf vdev state.
180 */
181 range_tree_t *vdev_dtl[DTL_TYPES]; /* dirty time logs */
182 space_map_t *vdev_dtl_sm; /* dirty time log space map */
183 txg_node_t vdev_dtl_node; /* per-txg dirty DTL linkage */
184 uint64_t vdev_dtl_object; /* DTL object */
185 uint64_t vdev_psize; /* physical device capacity */
186 uint64_t vdev_wholedisk; /* true if this is a whole disk */
187 uint64_t vdev_offline; /* persistent offline state */
188 uint64_t vdev_faulted; /* persistent faulted state */
189 uint64_t vdev_degraded; /* persistent degraded state */
190 uint64_t vdev_removed; /* persistent removed state */
191 uint64_t vdev_resilver_txg; /* persistent resilvering state */
192 uint64_t vdev_nparity; /* number of parity devices for raidz */
193 char *vdev_path; /* vdev path (if any) */

new/usr/src/uts/common/fs/zfs/sys/vdev_impl.h 4

194 char *vdev_devid; /* vdev devid (if any) */
195 char *vdev_physpath; /* vdev device path (if any) */
196 char *vdev_fru; /* physical FRU location */
197 uint64_t vdev_not_present; /* not present during import */
198 uint64_t vdev_unspare; /* unspare when resilvering done */
199 boolean_t vdev_nowritecache; /* true if flushwritecache failed */
200 boolean_t vdev_checkremove; /* temporary online test */
201 boolean_t vdev_forcefault; /* force online fault */
202 boolean_t vdev_splitting; /* split or repair in progress */
203 boolean_t vdev_delayed_close; /* delayed device close? */
204 boolean_t vdev_tmpoffline; /* device taken offline temporarily? */
205 boolean_t vdev_detached; /* device detached? */
206 boolean_t vdev_cant_read; /* vdev is failing all reads */
207 boolean_t vdev_cant_write; /* vdev is failing all writes */
208 boolean_t vdev_isspare; /* was a hot spare */
209 boolean_t vdev_isl2cache; /* was a l2cache device */
210 vdev_queue_t vdev_queue; /* I/O deadline schedule queue */
211 vdev_cache_t vdev_cache; /* physical block cache */
212 spa_aux_vdev_t *vdev_aux; /* for l2cache vdevs */
213 zio_t *vdev_probe_zio; /* root of current probe */
214 vdev_aux_t vdev_label_aux; /* on-disk aux state */
215 uint16_t vdev_rotation_rate; /* rotational rate of the media */
216 #define VDEV_RATE_UNKNOWN 0
217 #define VDEV_RATE_NON_ROTATING 1
218 #endif /* ! codereview */

220 /*
221 * For DTrace to work in userland (libzpool) context, these fields must
222 * remain at the end of the structure. DTrace will use the kernel’s
223 * CTF definition for ’struct vdev’, and since the size of a kmutex_t is
224 * larger in userland, the offsets for the rest of the fields would be
225 * incorrect.
226 */
227 kmutex_t vdev_dtl_lock; /* vdev_dtl_{map,resilver} */
228 kmutex_t vdev_stat_lock; /* vdev_stat */
229 kmutex_t vdev_probe_lock; /* protects vdev_probe_zio */
230 };

232 #define VDEV_RAIDZ_MAXPARITY 3

234 #define VDEV_PAD_SIZE (8 << 10)
235 /* 2 padding areas (vl_pad1 and vl_pad2) to skip */
236 #define VDEV_SKIP_SIZE VDEV_PAD_SIZE * 2
237 #define VDEV_PHYS_SIZE (112 << 10)
238 #define VDEV_UBERBLOCK_RING (128 << 10)

240 #define VDEV_UBERBLOCK_SHIFT(vd) \
241 MAX((vd)->vdev_top->vdev_ashift, UBERBLOCK_SHIFT)
242 #define VDEV_UBERBLOCK_COUNT(vd) \
243 (VDEV_UBERBLOCK_RING >> VDEV_UBERBLOCK_SHIFT(vd))
244 #define VDEV_UBERBLOCK_OFFSET(vd, n) \
245 offsetof(vdev_label_t, vl_uberblock[(n) << VDEV_UBERBLOCK_SHIFT(vd)])
246 #define VDEV_UBERBLOCK_SIZE(vd) (1ULL << VDEV_UBERBLOCK_SHIFT(vd))

248 typedef struct vdev_phys {
249 char vp_nvlist[VDEV_PHYS_SIZE - sizeof (zio_eck_t)];
250 zio_eck_t vp_zbt;
251 } vdev_phys_t;

253 typedef struct vdev_label {
254 char vl_pad1[VDEV_PAD_SIZE]; /* 8K */
255 char vl_pad2[VDEV_PAD_SIZE]; /* 8K */
256 vdev_phys_t vl_vdev_phys; /* 112K */
257 char vl_uberblock[VDEV_UBERBLOCK_RING]; /* 128K */
258 } vdev_label_t; /* 256K total */

new/usr/src/uts/common/fs/zfs/sys/vdev_impl.h 5

260 /*
261 * vdev_dirty() flags
262 */
263 #define VDD_METASLAB 0x01
264 #define VDD_DTL 0x02

266 /* Offset of embedded boot loader region on each label */
267 #define VDEV_BOOT_OFFSET (2 * sizeof (vdev_label_t))
268 /*
269 * Size of embedded boot loader region on each label.
270 * The total size of the first two labels plus the boot area is 4MB.
271 */
272 #define VDEV_BOOT_SIZE (7ULL << 19) /* 3.5M */

274 /*
275 * Size of label regions at the start and end of each leaf device.
276 */
277 #define VDEV_LABEL_START_SIZE (2 * sizeof (vdev_label_t) + VDEV_BOOT_SIZE)
278 #define VDEV_LABEL_END_SIZE (2 * sizeof (vdev_label_t))
279 #define VDEV_LABELS 4
280 #define VDEV_BEST_LABEL VDEV_LABELS

282 #define VDEV_ALLOC_LOAD 0
283 #define VDEV_ALLOC_ADD 1
284 #define VDEV_ALLOC_SPARE 2
285 #define VDEV_ALLOC_L2CACHE 3
286 #define VDEV_ALLOC_ROOTPOOL 4
287 #define VDEV_ALLOC_SPLIT 5
288 #define VDEV_ALLOC_ATTACH 6

290 /*
291 * Allocate or free a vdev
292 */
293 extern vdev_t *vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid,
294 vdev_ops_t *ops);
295 extern int vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *config,
296 vdev_t *parent, uint_t id, int alloctype);
297 extern void vdev_free(vdev_t *vd);

299 /*
300 * Add or remove children and parents
301 */
302 extern void vdev_add_child(vdev_t *pvd, vdev_t *cvd);
303 extern void vdev_remove_child(vdev_t *pvd, vdev_t *cvd);
304 extern void vdev_compact_children(vdev_t *pvd);
305 extern vdev_t *vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops);
306 extern void vdev_remove_parent(vdev_t *cvd);

308 /*
309 * vdev sync load and sync
310 */
311 extern void vdev_load_log_state(vdev_t *nvd, vdev_t *ovd);
312 extern boolean_t vdev_log_state_valid(vdev_t *vd);
313 extern void vdev_load(vdev_t *vd);
314 extern int vdev_dtl_load(vdev_t *vd);
315 extern void vdev_sync(vdev_t *vd, uint64_t txg);
316 extern void vdev_sync_done(vdev_t *vd, uint64_t txg);
317 extern void vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg);
318 extern void vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg);

320 /*
321 * Available vdev types.
322 */
323 extern vdev_ops_t vdev_root_ops;
324 extern vdev_ops_t vdev_mirror_ops;
325 extern vdev_ops_t vdev_replacing_ops;

new/usr/src/uts/common/fs/zfs/sys/vdev_impl.h 6

326 extern vdev_ops_t vdev_raidz_ops;
327 extern vdev_ops_t vdev_disk_ops;
328 extern vdev_ops_t vdev_file_ops;
329 extern vdev_ops_t vdev_missing_ops;
330 extern vdev_ops_t vdev_hole_ops;
331 extern vdev_ops_t vdev_spare_ops;

333 /*
334 * Common size functions
335 */
336 extern uint64_t vdev_default_asize(vdev_t *vd, uint64_t psize);
337 extern uint64_t vdev_get_min_asize(vdev_t *vd);
338 extern void vdev_set_min_asize(vdev_t *vd);

340 /*
341 * Global variables
342 */
343 /* zdb uses this tunable, so it must be declared here to make lint happy. */
344 extern int zfs_vdev_cache_size;

346 /*
347 * The vdev_buf_t is used to translate between zio_t and buf_t, and back again.
348 */
349 typedef struct vdev_buf {
350 buf_t vb_buf; /* buffer that describes the io */
351 zio_t *vb_io; /* pointer back to the original zio_t */
352 } vdev_buf_t;

354 #ifdef __cplusplus
355 }
356 #endif

358 #endif /* _SYS_VDEV_IMPL_H */

new/usr/src/uts/common/fs/zfs/vdev_disk.c 1

**
 24357 Sun Nov 17 21:32:56 2013
new/usr/src/uts/common/fs/zfs/vdev_disk.c
4334 Improve ZFS N-way mirror read performance
**
______unchanged_portion_omitted_

274 /*
275 * We want to be loud in DEBUG kernels when DKIOCGMEDIAINFOEXT fails, or when
276 * even a fallback to DKIOCGMEDIAINFO fails.
277 */
278 #ifdef DEBUG
279 #define VDEV_DEBUG(...) cmn_err(CE_NOTE, __VA_ARGS__)
280 #else
281 #define VDEV_DEBUG(...) /* Nothing... */
282 #endif

284 static int
285 vdev_disk_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
286 uint64_t *ashift)
287 {
288 spa_t *spa = vd->vdev_spa;
289 vdev_disk_t *dvd = vd->vdev_tsd;
290 ldi_ev_cookie_t ecookie;
291 vdev_disk_ldi_cb_t *lcb;
292 union {
293 struct dk_minfo_ext ude;
294 struct dk_minfo ud;
295 } dks;
296 struct dk_minfo_ext *dkmext = &dks.ude;
297 struct dk_minfo *dkm = &dks.ud;
298 int error;
299 dev_t dev;
300 int otyp;
301 boolean_t validate_devid = B_FALSE;
302 ddi_devid_t devid;
303 uint64_t capacity = 0, blksz = 0, pbsize;

305 /*
306 * We must have a pathname, and it must be absolute.
307 */
308 if (vd->vdev_path == NULL || vd->vdev_path[0] != ’/’) {
309 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
310 return (SET_ERROR(EINVAL));
311 }

313 /*
314 * Reopen the device if it’s not currently open. Otherwise,
315 * just update the physical size of the device.
316 */
317 if (dvd != NULL) {
318 if (dvd->vd_ldi_offline && dvd->vd_lh == NULL) {
319 /*
320 * If we are opening a device in its offline notify
321 * context, the LDI handle was just closed. Clean
322 * up the LDI event callbacks and free vd->vdev_tsd.
323 */
324 vdev_disk_free(vd);
325 } else {
326 ASSERT(vd->vdev_reopening);
327 goto skip_open;
328 }
329 }

331 /*
332 * Create vd->vdev_tsd.

new/usr/src/uts/common/fs/zfs/vdev_disk.c 2

333 */
334 vdev_disk_alloc(vd);
335 dvd = vd->vdev_tsd;

337 /*
338 * When opening a disk device, we want to preserve the user’s original
339 * intent. We always want to open the device by the path the user gave
340 * us, even if it is one of multiple paths to the same device. But we
341 * also want to be able to survive disks being removed/recabled.
342 * Therefore the sequence of opening devices is:
343 *
344 * 1. Try opening the device by path. For legacy pools without the
345 * ’whole_disk’ property, attempt to fix the path by appending ’s0’.
346 *
347 * 2. If the devid of the device matches the stored value, return
348 * success.
349 *
350 * 3. Otherwise, the device may have moved. Try opening the device
351 * by the devid instead.
352 */
353 if (vd->vdev_devid != NULL) {
354 if (ddi_devid_str_decode(vd->vdev_devid, &dvd->vd_devid,
355 &dvd->vd_minor) != 0) {
356 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
357 return (SET_ERROR(EINVAL));
358 }
359 }

361 error = EINVAL; /* presume failure */

363 if (vd->vdev_path != NULL) {

365 if (vd->vdev_wholedisk == -1ULL) {
366 size_t len = strlen(vd->vdev_path) + 3;
367 char *buf = kmem_alloc(len, KM_SLEEP);

369 (void) snprintf(buf, len, "%ss0", vd->vdev_path);

371 error = ldi_open_by_name(buf, spa_mode(spa), kcred,
372 &dvd->vd_lh, zfs_li);
373 if (error == 0) {
374 spa_strfree(vd->vdev_path);
375 vd->vdev_path = buf;
376 vd->vdev_wholedisk = 1ULL;
377 } else {
378 kmem_free(buf, len);
379 }
380 }

382 /*
383 * If we have not yet opened the device, try to open it by the
384 * specified path.
385 */
386 if (error != 0) {
387 error = ldi_open_by_name(vd->vdev_path, spa_mode(spa),
388 kcred, &dvd->vd_lh, zfs_li);
389 }

391 /*
392 * Compare the devid to the stored value.
393 */
394 if (error == 0 && vd->vdev_devid != NULL &&
395 ldi_get_devid(dvd->vd_lh, &devid) == 0) {
396 if (ddi_devid_compare(devid, dvd->vd_devid) != 0) {
397 error = SET_ERROR(EINVAL);
398 (void) ldi_close(dvd->vd_lh, spa_mode(spa),

new/usr/src/uts/common/fs/zfs/vdev_disk.c 3

399 kcred);
400 dvd->vd_lh = NULL;
401 }
402 ddi_devid_free(devid);
403 }

405 /*
406 * If we succeeded in opening the device, but ’vdev_wholedisk’
407 * is not yet set, then this must be a slice.
408 */
409 if (error == 0 && vd->vdev_wholedisk == -1ULL)
410 vd->vdev_wholedisk = 0;
411 }

413 /*
414 * If we were unable to open by path, or the devid check fails, open by
415 * devid instead.
416 */
417 if (error != 0 && vd->vdev_devid != NULL) {
418 error = ldi_open_by_devid(dvd->vd_devid, dvd->vd_minor,
419 spa_mode(spa), kcred, &dvd->vd_lh, zfs_li);
420 }

422 /*
423 * If all else fails, then try opening by physical path (if available)
424 * or the logical path (if we failed due to the devid check). While not
425 * as reliable as the devid, this will give us something, and the higher
426 * level vdev validation will prevent us from opening the wrong device.
427 */
428 if (error) {
429 if (vd->vdev_devid != NULL)
430 validate_devid = B_TRUE;

432 if (vd->vdev_physpath != NULL &&
433 (dev = ddi_pathname_to_dev_t(vd->vdev_physpath)) != NODEV)
434 error = ldi_open_by_dev(&dev, OTYP_BLK, spa_mode(spa),
435 kcred, &dvd->vd_lh, zfs_li);

437 /*
438 * Note that we don’t support the legacy auto-wholedisk support
439 * as above. This hasn’t been used in a very long time and we
440 * don’t need to propagate its oddities to this edge condition.
441 */
442 if (error && vd->vdev_path != NULL)
443 error = ldi_open_by_name(vd->vdev_path, spa_mode(spa),
444 kcred, &dvd->vd_lh, zfs_li);
445 }

447 if (error) {
448 vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED;
449 return (error);
450 }

452 /*
453 * Now that the device has been successfully opened, update the devid
454 * if necessary.
455 */
456 if (validate_devid && spa_writeable(spa) &&
457 ldi_get_devid(dvd->vd_lh, &devid) == 0) {
458 if (ddi_devid_compare(devid, dvd->vd_devid) != 0) {
459 char *vd_devid;

461 vd_devid = ddi_devid_str_encode(devid, dvd->vd_minor);
462 zfs_dbgmsg("vdev %s: update devid from %s, "
463 "to %s", vd->vdev_path, vd->vdev_devid, vd_devid);
464 spa_strfree(vd->vdev_devid);

new/usr/src/uts/common/fs/zfs/vdev_disk.c 4

465 vd->vdev_devid = spa_strdup(vd_devid);
466 ddi_devid_str_free(vd_devid);
467 }
468 ddi_devid_free(devid);
469 }

471 /*
472 * Once a device is opened, verify that the physical device path (if
473 * available) is up to date.
474 */
475 if (ldi_get_dev(dvd->vd_lh, &dev) == 0 &&
476 ldi_get_otyp(dvd->vd_lh, &otyp) == 0) {
477 char *physpath, *minorname;

479 physpath = kmem_alloc(MAXPATHLEN, KM_SLEEP);
480 minorname = NULL;
481 if (ddi_dev_pathname(dev, otyp, physpath) == 0 &&
482 ldi_get_minor_name(dvd->vd_lh, &minorname) == 0 &&
483 (vd->vdev_physpath == NULL ||
484 strcmp(vd->vdev_physpath, physpath) != 0)) {
485 if (vd->vdev_physpath)
486 spa_strfree(vd->vdev_physpath);
487 (void) strlcat(physpath, ":", MAXPATHLEN);
488 (void) strlcat(physpath, minorname, MAXPATHLEN);
489 vd->vdev_physpath = spa_strdup(physpath);
490 }
491 if (minorname)
492 kmem_free(minorname, strlen(minorname) + 1);
493 kmem_free(physpath, MAXPATHLEN);
494 }

496 /*
497 * Register callbacks for the LDI offline event.
498 */
499 if (ldi_ev_get_cookie(dvd->vd_lh, LDI_EV_OFFLINE, &ecookie) ==
500 LDI_EV_SUCCESS) {
501 lcb = kmem_zalloc(sizeof (vdev_disk_ldi_cb_t), KM_SLEEP);
502 list_insert_tail(&dvd->vd_ldi_cbs, lcb);
503 (void) ldi_ev_register_callbacks(dvd->vd_lh, ecookie,
504 &vdev_disk_off_callb, (void *) vd, &lcb->lcb_id);
505 }

507 /*
508 * Register callbacks for the LDI degrade event.
509 */
510 if (ldi_ev_get_cookie(dvd->vd_lh, LDI_EV_DEGRADE, &ecookie) ==
511 LDI_EV_SUCCESS) {
512 lcb = kmem_zalloc(sizeof (vdev_disk_ldi_cb_t), KM_SLEEP);
513 list_insert_tail(&dvd->vd_ldi_cbs, lcb);
514 (void) ldi_ev_register_callbacks(dvd->vd_lh, ecookie,
515 &vdev_disk_dgrd_callb, (void *) vd, &lcb->lcb_id);
516 }
517 skip_open:
518 /*
519 * Determine the actual size of the device.
520 */
521 if (ldi_get_size(dvd->vd_lh, psize) != 0) {
522 vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED;
523 return (SET_ERROR(EINVAL));
524 }

526 *max_psize = *psize;

528 /*
529 * Determine the device’s minimum transfer size.
530 * If the ioctl isn’t supported, assume DEV_BSIZE.

new/usr/src/uts/common/fs/zfs/vdev_disk.c 5

531 */
532 if ((error = ldi_ioctl(dvd->vd_lh, DKIOCGMEDIAINFOEXT,
533 (intptr_t)dkmext, FKIOCTL, kcred, NULL)) == 0) {
534 capacity = dkmext->dki_capacity - 1;
535 blksz = dkmext->dki_lbsize;
536 pbsize = dkmext->dki_pbsize;
537 } else if ((error = ldi_ioctl(dvd->vd_lh, DKIOCGMEDIAINFO,
538 (intptr_t)dkm, FKIOCTL, kcred, NULL)) == 0) {
539 VDEV_DEBUG(
540 "vdev_disk_open(\"%s\"): fallback to DKIOCGMEDIAINFO\n",
541 vd->vdev_path);
542 capacity = dkm->dki_capacity - 1;
543 blksz = dkm->dki_lbsize;
544 pbsize = blksz;
545 } else {
546 VDEV_DEBUG("vdev_disk_open(\"%s\"): "
547 "both DKIOCGMEDIAINFO{,EXT} calls failed, %d\n",
548 vd->vdev_path, error);
549 pbsize = DEV_BSIZE;
550 }

552 /*
553 * Determine the rotation
554 */
555 vd->vdev_rotation_rate = VDEV_RATE_UNKNOWN;
556 /* TODO: Implement when there’s an ioctl which provides this info. */

558 #endif /* ! codereview */
559 *ashift = highbit(MAX(pbsize, SPA_MINBLOCKSIZE)) - 1;

561 if (vd->vdev_wholedisk == 1) {
562 int wce = 1;

564 if (error == 0) {
565 /*
566 * If we have the capability to expand, we’d have
567 * found out via success from DKIOCGMEDIAINFO{,EXT}.
568 * Adjust max_psize upward accordingly since we know
569 * we own the whole disk now.
570 */
571 *max_psize += vdev_disk_get_space(vd, capacity, blksz);
572 zfs_dbgmsg("capacity change: vdev %s, psize %llu, "
573 "max_psize %llu", vd->vdev_path, *psize,
574 *max_psize);
575 }

577 /*
578 * Since we own the whole disk, try to enable disk write
579 * caching. We ignore errors because it’s OK if we can’t do it.
580 */
581 (void) ldi_ioctl(dvd->vd_lh, DKIOCSETWCE, (intptr_t)&wce,
582 FKIOCTL, kcred, NULL);
583 }

585 /*
586 * Clear the nowritecache bit, so that on a vdev_reopen() we will
587 * try again.
588 */
589 vd->vdev_nowritecache = B_FALSE;

591 return (0);
592 }

594 static void
595 vdev_disk_close(vdev_t *vd)
596 {

new/usr/src/uts/common/fs/zfs/vdev_disk.c 6

597 vdev_disk_t *dvd = vd->vdev_tsd;

599 if (vd->vdev_reopening || dvd == NULL)
600 return;

602 if (dvd->vd_minor != NULL) {
603 ddi_devid_str_free(dvd->vd_minor);
604 dvd->vd_minor = NULL;
605 }

607 if (dvd->vd_devid != NULL) {
608 ddi_devid_free(dvd->vd_devid);
609 dvd->vd_devid = NULL;
610 }

612 if (dvd->vd_lh != NULL) {
613 (void) ldi_close(dvd->vd_lh, spa_mode(vd->vdev_spa), kcred);
614 dvd->vd_lh = NULL;
615 }

617 vd->vdev_delayed_close = B_FALSE;
618 /*
619 * If we closed the LDI handle due to an offline notify from LDI,
620 * don’t free vd->vdev_tsd or unregister the callbacks here;
621 * the offline finalize callback or a reopen will take care of it.
622 */
623 if (dvd->vd_ldi_offline)
624 return;

626 vdev_disk_free(vd);
627 }

629 int
630 vdev_disk_physio(vdev_t *vd, caddr_t data,
631 size_t size, uint64_t offset, int flags, boolean_t isdump)
632 {
633 vdev_disk_t *dvd = vd->vdev_tsd;

635 /*
636 * If the vdev is closed, it’s likely in the REMOVED or FAULTED state.
637 * Nothing to be done here but return failure.
638 */
639 if (dvd == NULL || (dvd->vd_ldi_offline && dvd->vd_lh == NULL))
640 return (EIO);

642 ASSERT(vd->vdev_ops == &vdev_disk_ops);

644 /*
645 * If in the context of an active crash dump, use the ldi_dump(9F)
646 * call instead of ldi_strategy(9F) as usual.
647 */
648 if (isdump) {
649 ASSERT3P(dvd, !=, NULL);
650 return (ldi_dump(dvd->vd_lh, data, lbtodb(offset),
651 lbtodb(size)));
652 }

654 return (vdev_disk_ldi_physio(dvd->vd_lh, data, size, offset, flags));
655 }

657 int
658 vdev_disk_ldi_physio(ldi_handle_t vd_lh, caddr_t data,
659 size_t size, uint64_t offset, int flags)
660 {
661 buf_t *bp;
662 int error = 0;

new/usr/src/uts/common/fs/zfs/vdev_disk.c 7

664 if (vd_lh == NULL)
665 return (SET_ERROR(EINVAL));

667 ASSERT(flags & B_READ || flags & B_WRITE);

669 bp = getrbuf(KM_SLEEP);
670 bp->b_flags = flags | B_BUSY | B_NOCACHE | B_FAILFAST;
671 bp->b_bcount = size;
672 bp->b_un.b_addr = (void *)data;
673 bp->b_lblkno = lbtodb(offset);
674 bp->b_bufsize = size;

676 error = ldi_strategy(vd_lh, bp);
677 ASSERT(error == 0);
678 if ((error = biowait(bp)) == 0 && bp->b_resid != 0)
679 error = SET_ERROR(EIO);
680 freerbuf(bp);

682 return (error);
683 }

685 static void
686 vdev_disk_io_intr(buf_t *bp)
687 {
688 vdev_buf_t *vb = (vdev_buf_t *)bp;
689 zio_t *zio = vb->vb_io;

691 /*
692 * The rest of the zio stack only deals with EIO, ECKSUM, and ENXIO.
693 * Rather than teach the rest of the stack about other error
694 * possibilities (EFAULT, etc), we normalize the error value here.
695 */
696 zio->io_error = (geterror(bp) != 0 ? EIO : 0);

698 if (zio->io_error == 0 && bp->b_resid != 0)
699 zio->io_error = SET_ERROR(EIO);

701 kmem_free(vb, sizeof (vdev_buf_t));

703 zio_interrupt(zio);
704 }

706 static void
707 vdev_disk_ioctl_free(zio_t *zio)
708 {
709 kmem_free(zio->io_vsd, sizeof (struct dk_callback));
710 }

712 static const zio_vsd_ops_t vdev_disk_vsd_ops = {
713 vdev_disk_ioctl_free,
714 zio_vsd_default_cksum_report
715 };

717 static void
718 vdev_disk_ioctl_done(void *zio_arg, int error)
719 {
720 zio_t *zio = zio_arg;

722 zio->io_error = error;

724 zio_interrupt(zio);
725 }

727 static int
728 vdev_disk_io_start(zio_t *zio)

new/usr/src/uts/common/fs/zfs/vdev_disk.c 8

729 {
730 vdev_t *vd = zio->io_vd;
731 vdev_disk_t *dvd = vd->vdev_tsd;
732 vdev_buf_t *vb;
733 struct dk_callback *dkc;
734 buf_t *bp;
735 int error;

737 /*
738 * If the vdev is closed, it’s likely in the REMOVED or FAULTED state.
739 * Nothing to be done here but return failure.
740 */
741 if (dvd == NULL || (dvd->vd_ldi_offline && dvd->vd_lh == NULL)) {
742 zio->io_error = ENXIO;
743 return (ZIO_PIPELINE_CONTINUE);
744 }

746 if (zio->io_type == ZIO_TYPE_IOCTL) {
747 /* XXPOLICY */
748 if (!vdev_readable(vd)) {
749 zio->io_error = SET_ERROR(ENXIO);
750 return (ZIO_PIPELINE_CONTINUE);
751 }

753 switch (zio->io_cmd) {

755 case DKIOCFLUSHWRITECACHE:

757 if (zfs_nocacheflush)
758 break;

760 if (vd->vdev_nowritecache) {
761 zio->io_error = SET_ERROR(ENOTSUP);
762 break;
763 }

765 zio->io_vsd = dkc = kmem_alloc(sizeof (*dkc), KM_SLEEP);
766 zio->io_vsd_ops = &vdev_disk_vsd_ops;

768 dkc->dkc_callback = vdev_disk_ioctl_done;
769 dkc->dkc_flag = FLUSH_VOLATILE;
770 dkc->dkc_cookie = zio;

772 error = ldi_ioctl(dvd->vd_lh, zio->io_cmd,
773 (uintptr_t)dkc, FKIOCTL, kcred, NULL);

775 if (error == 0) {
776 /*
777 * The ioctl will be done asychronously,
778 * and will call vdev_disk_ioctl_done()
779 * upon completion.
780 */
781 return (ZIO_PIPELINE_STOP);
782 }

784 if (error == ENOTSUP || error == ENOTTY) {
785 /*
786 * If we get ENOTSUP or ENOTTY, we know that
787 * no future attempts will ever succeed.
788 * In this case we set a persistent bit so
789 * that we don’t bother with the ioctl in the
790 * future.
791 */
792 vd->vdev_nowritecache = B_TRUE;
793 }
794 zio->io_error = error;

new/usr/src/uts/common/fs/zfs/vdev_disk.c 9

796 break;

798 default:
799 zio->io_error = SET_ERROR(ENOTSUP);
800 }

802 return (ZIO_PIPELINE_CONTINUE);
803 }

805 vb = kmem_alloc(sizeof (vdev_buf_t), KM_SLEEP);

807 vb->vb_io = zio;
808 bp = &vb->vb_buf;

810 bioinit(bp);
811 bp->b_flags = B_BUSY | B_NOCACHE |
812 (zio->io_type == ZIO_TYPE_READ ? B_READ : B_WRITE);
813 if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
814 bp->b_flags |= B_FAILFAST;
815 bp->b_bcount = zio->io_size;
816 bp->b_un.b_addr = zio->io_data;
817 bp->b_lblkno = lbtodb(zio->io_offset);
818 bp->b_bufsize = zio->io_size;
819 bp->b_iodone = (int (*)())vdev_disk_io_intr;

821 /* ldi_strategy() will return non-zero only on programming errors */
822 VERIFY(ldi_strategy(dvd->vd_lh, bp) == 0);

824 return (ZIO_PIPELINE_STOP);
825 }

827 static void
828 vdev_disk_io_done(zio_t *zio)
829 {
830 vdev_t *vd = zio->io_vd;

832 /*
833 * If the device returned EIO, then attempt a DKIOCSTATE ioctl to see if
834 * the device has been removed. If this is the case, then we trigger an
835 * asynchronous removal of the device. Otherwise, probe the device and
836 * make sure it’s still accessible.
837 */
838 if (zio->io_error == EIO && !vd->vdev_remove_wanted) {
839 vdev_disk_t *dvd = vd->vdev_tsd;
840 int state = DKIO_NONE;

842 if (ldi_ioctl(dvd->vd_lh, DKIOCSTATE, (intptr_t)&state,
843 FKIOCTL, kcred, NULL) == 0 && state != DKIO_INSERTED) {
844 /*
845 * We post the resource as soon as possible, instead of
846 * when the async removal actually happens, because the
847 * DE is using this information to discard previous I/O
848 * errors.
849 */
850 zfs_post_remove(zio->io_spa, vd);
851 vd->vdev_remove_wanted = B_TRUE;
852 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
853 } else if (!vd->vdev_delayed_close) {
854 vd->vdev_delayed_close = B_TRUE;
855 }
856 }
857 }

859 vdev_ops_t vdev_disk_ops = {
860 vdev_disk_open,

new/usr/src/uts/common/fs/zfs/vdev_disk.c 10

861 vdev_disk_close,
862 vdev_default_asize,
863 vdev_disk_io_start,
864 vdev_disk_io_done,
865 NULL,
866 vdev_disk_hold,
867 vdev_disk_rele,
868 VDEV_TYPE_DISK, /* name of this vdev type */
869 B_TRUE /* leaf vdev */
870 };

872 /*
873 * Given the root disk device devid or pathname, read the label from
874 * the device, and construct a configuration nvlist.
875 */
876 int
877 vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config)
878 {
879 ldi_handle_t vd_lh;
880 vdev_label_t *label;
881 uint64_t s, size;
882 int l;
883 ddi_devid_t tmpdevid;
884 int error = -1;
885 char *minor_name;

887 /*
888 * Read the device label and build the nvlist.
889 */
890 if (devid != NULL && ddi_devid_str_decode(devid, &tmpdevid,
891 &minor_name) == 0) {
892 error = ldi_open_by_devid(tmpdevid, minor_name,
893 FREAD, kcred, &vd_lh, zfs_li);
894 ddi_devid_free(tmpdevid);
895 ddi_devid_str_free(minor_name);
896 }

898 if (error && (error = ldi_open_by_name(devpath, FREAD, kcred, &vd_lh,
899 zfs_li)))
900 return (error);

902 if (ldi_get_size(vd_lh, &s)) {
903 (void) ldi_close(vd_lh, FREAD, kcred);
904 return (SET_ERROR(EIO));
905 }

907 size = P2ALIGN_TYPED(s, sizeof (vdev_label_t), uint64_t);
908 label = kmem_alloc(sizeof (vdev_label_t), KM_SLEEP);

910 *config = NULL;
911 for (l = 0; l < VDEV_LABELS; l++) {
912 uint64_t offset, state, txg = 0;

914 /* read vdev label */
915 offset = vdev_label_offset(size, l, 0);
916 if (vdev_disk_ldi_physio(vd_lh, (caddr_t)label,
917 VDEV_SKIP_SIZE + VDEV_PHYS_SIZE, offset, B_READ) != 0)
918 continue;

920 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
921 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) {
922 *config = NULL;
923 continue;
924 }

926 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,

new/usr/src/uts/common/fs/zfs/vdev_disk.c 11

927 &state) != 0 || state >= POOL_STATE_DESTROYED) {
928 nvlist_free(*config);
929 *config = NULL;
930 continue;
931 }

933 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
934 &txg) != 0 || txg == 0) {
935 nvlist_free(*config);
936 *config = NULL;
937 continue;
938 }

940 break;
941 }

943 kmem_free(label, sizeof (vdev_label_t));
944 (void) ldi_close(vd_lh, FREAD, kcred);
945 if (*config == NULL)
946 error = SET_ERROR(EIDRM);

948 return (error);
949 }

new/usr/src/uts/common/fs/zfs/vdev_mirror.c 1

**
 16201 Sun Nov 17 21:32:56 2013
new/usr/src/uts/common/fs/zfs/vdev_mirror.c
4334 Improve ZFS N-way mirror read performance
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /*
27 * Copyright (c) 2013 by Delphix. All rights reserved.
28 * Copyright (c) 2013 Steven Hartland. All rights reserved.
29 #endif /* ! codereview */
30 */

32 #include <sys/zfs_context.h>
33 #include <sys/spa.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/zio.h>
36 #include <sys/fs/zfs.h>

38 /*
39 * Virtual device vector for mirroring.
40 */

42 typedef struct mirror_child {
43 vdev_t *mc_vd;
44 uint64_t mc_offset;
45 int mc_error;
46 int mc_load;
47 #endif /* ! codereview */
48 uint8_t mc_tried;
49 uint8_t mc_skipped;
50 uint8_t mc_speculative;
51 } mirror_child_t;

53 typedef struct mirror_map {
54 int *mm_preferred;
55 int mm_preferred_cnt;
56 #endif /* ! codereview */
57 int mm_children;
58 boolean_t mm_replacing;
59 boolean_t mm_root;
60 mirror_child_t mm_child[];
28 int mm_replacing;

new/usr/src/uts/common/fs/zfs/vdev_mirror.c 2

29 int mm_preferred;
30 int mm_root;
31 mirror_child_t mm_child[1];
61 } mirror_map_t;

63 static int vdev_mirror_shift = 21;

65 /*
66 * The load configuration settings below are tuned by default for
67 * the case where all devices are of the same rotational type.
68 *
69 * If there is a mixture of rotating and non-rotating media, setting
70 * non_rotating_seek_inc to 0 may well provide better results as it
71 * will direct more reads to the non-rotating vdevs which are more
72 * likely to have a higher performance.
73 */

75 /* Rotating media load calculation configuration. */
76 /* Rotating media load increment for non-seeking I/O’s. */
77 static int rotating_inc = 0;

79 /* Rotating media load increment for seeking I/O’s. */
80 static int rotating_seek_inc = 5;

82 /*
83 * Offset in bytes from the last I/O which triggers a reduced rotating media
84 * seek increment.
85 */
86 static int rotating_seek_offset = 1 * 1024 * 1024;

88 /* Non-rotating media load calculation configuration. */
89 /* Non-rotating media load increment for non-seeking I/O’s. */
90 static int non_rotating_inc = 0;

92 /* Non-rotating media load increment for seeking I/O’s. */
93 static int non_rotating_seek_inc = 1;

95 static inline size_t
96 vdev_mirror_map_size(int children)
97 {
98 return (offsetof(mirror_map_t, mm_child[children]) +
99 sizeof (int) * children);
100 }

102 static inline mirror_map_t *
103 vdev_mirror_map_alloc(int children, boolean_t replacing, boolean_t root)
104 {
105 mirror_map_t *mm;

107 mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP);
108 mm->mm_children = children;
109 mm->mm_replacing = replacing;
110 mm->mm_root = root;
111 mm->mm_preferred = (int *)((uintptr_t)mm +
112 offsetof(mirror_map_t, mm_child[children]));

114 return (mm);
115 }
34 int vdev_mirror_shift = 21;

117 static void
118 vdev_mirror_map_free(zio_t *zio)
119 {
120 mirror_map_t *mm = zio->io_vsd;

122 kmem_free(mm, vdev_mirror_map_size(mm->mm_children));

new/usr/src/uts/common/fs/zfs/vdev_mirror.c 3

41 kmem_free(mm, offsetof(mirror_map_t, mm_child[mm->mm_children]));
123 }

______unchanged_portion_omitted_

130 static int
131 vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset)
132 {
133 uint64_t lastoffset;
134 int load;

136 /* All DVAs have equal weight at the root. */
137 if (mm->mm_root)
138 return (INT_MAX);

140 /*
141 * We don’t return INT_MAX if the device is resilvering i.e.
142 * vdev_resilver_txg != 0 as when tested performance was slightly
143 * worse overall when resilvering with compared to without.
144 */

146 /* Standard load based on pending queue length. */
147 load = vdev_queue_length(vd);
148 lastoffset = vdev_queue_lastoffset(vd);

150 if (vd->vdev_rotation_rate == VDEV_RATE_NON_ROTATING) {
151 /* Non-rotating media. */
152 if (lastoffset == zio_offset)
153 return (load + non_rotating_inc);

155 /*
156 * Apply a seek penalty even for non-rotating devices as
157 * sequential I/O’a can be aggregated into fewer operations
158 * on the device, thus avoiding unnecessary per-command
159 * overhead and boosting performance.
160 */
161 return (load + non_rotating_seek_inc);
162 }

164 /* Rotating media I/O’s which directly follow the last I/O. */
165 if (lastoffset == zio_offset)
166 return (load + rotating_inc);

168 /*
169 * Apply half the seek increment to I/O’s within seek offset
170 * of the last I/O queued to this vdev as they should incure less
171 * of a seek increment.
172 */
173 if (ABS(lastoffset - zio_offset) < rotating_seek_offset)
174 return (load + (rotating_seek_inc / 2));

176 /* Apply the full seek increment to all other I/O’s. */
177 return (load + rotating_seek_inc);
178 }

181 #endif /* ! codereview */
182 static mirror_map_t *
183 vdev_mirror_map_init(zio_t *zio)
49 vdev_mirror_map_alloc(zio_t *zio)
184 {
185 mirror_map_t *mm = NULL;
186 mirror_child_t *mc;
187 vdev_t *vd = zio->io_vd;
188 int c;
54 int c, d;

new/usr/src/uts/common/fs/zfs/vdev_mirror.c 4

190 if (vd == NULL) {
191 dva_t *dva = zio->io_bp->blk_dva;
192 spa_t *spa = zio->io_spa;

194 mm = vdev_mirror_map_alloc(BP_GET_NDVAS(zio->io_bp), B_FALSE,
195 B_TRUE);
60 c = BP_GET_NDVAS(zio->io_bp);

62 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP);
63 mm->mm_children = c;
64 mm->mm_replacing = B_FALSE;
65 mm->mm_preferred = spa_get_random(c);
66 mm->mm_root = B_TRUE;

68 /*
69 * Check the other, lower-index DVAs to see if they’re on
70 * the same vdev as the child we picked. If they are, use
71 * them since they are likely to have been allocated from
72 * the primary metaslab in use at the time, and hence are
73 * more likely to have locality with single-copy data.
74 */
75 for (c = mm->mm_preferred, d = c - 1; d >= 0; d--) {
76 if (DVA_GET_VDEV(&dva[d]) == DVA_GET_VDEV(&dva[c]))
77 mm->mm_preferred = d;
78 }

196 for (c = 0; c < mm->mm_children; c++) {
197 mc = &mm->mm_child[c];

198 mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
199 mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
200 }
201 } else {
202 mm = vdev_mirror_map_alloc(vd->vdev_children,
203 (vd->vdev_ops == &vdev_replacing_ops ||
204 vd->vdev_ops == &vdev_spare_ops), B_FALSE);
87 c = vd->vdev_children;

89 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP);
90 mm->mm_children = c;
91 mm->mm_replacing = (vd->vdev_ops == &vdev_replacing_ops ||
92 vd->vdev_ops == &vdev_spare_ops);
93 mm->mm_preferred = mm->mm_replacing ? 0 :
94 (zio->io_offset >> vdev_mirror_shift) % c;
95 mm->mm_root = B_FALSE;

205 for (c = 0; c < mm->mm_children; c++) {
206 mc = &mm->mm_child[c];
207 mc->mc_vd = vd->vdev_child[c];
208 mc->mc_offset = zio->io_offset;
209 }
210 }

212 zio->io_vsd = mm;
213 zio->io_vsd_ops = &vdev_mirror_vsd_ops;
214 return (mm);
215 }

______unchanged_portion_omitted_

295 /*
296 * Check the other, lower-index DVAs to see if they’re on the same
297 * vdev as the child we picked. If they are, use them since they
298 * are likely to have been allocated from the primary metaslab in
299 * use at the time, and hence are more likely to have locality with
300 * single-copy data.
301 */

new/usr/src/uts/common/fs/zfs/vdev_mirror.c 5

302 static int
303 vdev_mirror_dva_select(zio_t *zio, int preferred)
304 {
305 dva_t *dva = zio->io_bp->blk_dva;
306 mirror_map_t *mm = zio->io_vsd;
307 int c;

309 for (c = preferred - 1; c >= 0; c--) {
310 if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred]))
311 preferred = c;
312 }
313 return (preferred);
314 }

316 static int
317 vdev_mirror_preferred_child_randomize(zio_t *zio)
318 {
319 mirror_map_t *mm = zio->io_vsd;
320 int p;

322 if (mm->mm_root) {
323 p = spa_get_random(mm->mm_preferred_cnt);
324 return (vdev_mirror_dva_select(zio, mm->mm_preferred[p]));
325 }

327 /*
328 * To ensure we don’t always favour the first matching vdev,
329 * which could lead to wear leveling issues on SSD’s, we
330 * use the I/O offset as a pseudo random seed into the vdevs
331 * which have the lowest load.
332 */
333 p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt;
334 return (mm->mm_preferred[p]);
335 }

337 /*
338 * Try to find a vdev whose DTL doesn’t contain the block we want to read
339 * prefering vdevs based on determined load.
340 *
188 * Try to find a child whose DTL doesn’t contain the block we want to read.
341 * If we can’t, try the read on any vdev we haven’t already tried.
342 */
343 static int
344 vdev_mirror_child_select(zio_t *zio)
345 {
346 mirror_map_t *mm = zio->io_vsd;
195 mirror_child_t *mc;
347 uint64_t txg = zio->io_txg;
348 int c, lowest_load;
197 int i, c;

350 ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg);

352 lowest_load = INT_MAX;
353 mm->mm_preferred_cnt = 0;
354 for (c = 0; c < mm->mm_children; c++) {
355 mirror_child_t *mc;

201 /*
202 * Try to find a child whose DTL doesn’t contain the block to read.
203 * If a child is known to be completely inaccessible (indicated by
204 * vdev_readable() returning B_FALSE), don’t even try.
205 */
206 for (i = 0, c = mm->mm_preferred; i < mm->mm_children; i++, c++) {
207 if (c >= mm->mm_children)
208 c = 0;

new/usr/src/uts/common/fs/zfs/vdev_mirror.c 6

357 mc = &mm->mm_child[c];
358 if (mc->mc_tried || mc->mc_skipped)
359 continue;

361 #endif /* ! codereview */
362 if (!vdev_readable(mc->mc_vd)) {
363 mc->mc_error = SET_ERROR(ENXIO);
364 mc->mc_tried = 1; /* don’t even try */
365 mc->mc_skipped = 1;
366 continue;
367 }

369 if (vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) {
212 if (!vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1))
213 return (c);
370 mc->mc_error = SET_ERROR(ESTALE);
371 mc->mc_skipped = 1;
372 mc->mc_speculative = 1;
373 continue;
374 }

376 mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset);
377 if (mc->mc_load > lowest_load)
378 continue;

380 if (mc->mc_load < lowest_load) {
381 lowest_load = mc->mc_load;
382 mm->mm_preferred_cnt = 0;
383 }
384 mm->mm_preferred[mm->mm_preferred_cnt] = c;
385 mm->mm_preferred_cnt++;
386 }

388 if (mm->mm_preferred_cnt == 1) {
389 vdev_queue_register_lastoffset(
390 mm->mm_child[mm->mm_preferred[0]].mc_vd, zio);
391 return (mm->mm_preferred[0]);
392 }

394 if (mm->mm_preferred_cnt > 1) {
395 int c = vdev_mirror_preferred_child_randomize(zio);

397 vdev_queue_register_lastoffset(mm->mm_child[c].mc_vd, zio);
398 return (c);
399 #endif /* ! codereview */
400 }

402 /*
403 * Every device is either missing or has this txg in its DTL.
404 * Look for any child we haven’t already tried before giving up.
405 */
406 for (c = 0; c < mm->mm_children; c++) {
407 if (!mm->mm_child[c].mc_tried) {
408 vdev_queue_register_lastoffset(mm->mm_child[c].mc_vd,
409 zio);
217 for (c = 0; c < mm->mm_children; c++)
218 if (!mm->mm_child[c].mc_tried)
410 return (c);
411 }
412 }
413 #endif /* ! codereview */

415 /*
416 * Every child failed. There’s no place left to look.
417 */
418 return (-1);

new/usr/src/uts/common/fs/zfs/vdev_mirror.c 7

419 }

421 static int
422 vdev_mirror_io_start(zio_t *zio)
423 {
424 mirror_map_t *mm;
425 mirror_child_t *mc;
426 int c, children;

428 mm = vdev_mirror_map_init(zio);
220 mm = vdev_mirror_map_alloc(zio);

430 if (zio->io_type == ZIO_TYPE_READ) {
431 if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing) {
432 /*
433 * For scrubbing reads we need to allocate a read
434 * buffer for each child and issue reads to all
435 * children. If any child succeeds, it will copy its
436 * data into zio->io_data in vdev_mirror_scrub_done.
437 */
438 for (c = 0; c < mm->mm_children; c++) {
439 mc = &mm->mm_child[c];
440 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
441 mc->mc_vd, mc->mc_offset,
442 zio_buf_alloc(zio->io_size), zio->io_size,
443 zio->io_type, zio->io_priority, 0,
444 vdev_mirror_scrub_done, mc));
445 }
446 return (ZIO_PIPELINE_CONTINUE);
447 }
448 /*
449 * For normal reads just pick one child.
450 */
451 c = vdev_mirror_child_select(zio);
452 children = (c >= 0);
453 } else {
454 ASSERT(zio->io_type == ZIO_TYPE_WRITE);

456 /*
457 * Writes go to all children.
458 */
459 c = 0;
460 children = mm->mm_children;
461 }

463 while (children--) {
464 mc = &mm->mm_child[c];
465 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
466 mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size,
467 zio->io_type, zio->io_priority, 0,
468 vdev_mirror_child_done, mc));
469 c++;
470 }

472 return (ZIO_PIPELINE_CONTINUE);
473 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/vdev_queue.c 1

**
 23569 Sun Nov 17 21:32:57 2013
new/usr/src/uts/common/fs/zfs/vdev_queue.c
4334 Improve ZFS N-way mirror read performance
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /*
27 * Copyright (c) 2013 by Delphix. All rights reserved.
28 * Copyright (c) 2013 Steven Hartland. All rights reserved.
29 #endif /* ! codereview */
30 */

32 #include <sys/zfs_context.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/spa_impl.h>
35 #include <sys/zio.h>
36 #include <sys/avl.h>
37 #include <sys/dsl_pool.h>

39 /*
40 * ZFS I/O Scheduler
41 * ---------------
42 *
43 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The
44 * I/O scheduler determines when and in what order those operations are
45 * issued. The I/O scheduler divides operations into five I/O classes
46 * prioritized in the following order: sync read, sync write, async read,
47 * async write, and scrub/resilver. Each queue defines the minimum and
48 * maximum number of concurrent operations that may be issued to the device.
49 * In addition, the device has an aggregate maximum. Note that the sum of the
50 * per-queue minimums must not exceed the aggregate maximum, and if the
51 * aggregate maximum is equal to or greater than the sum of the per-queue
52 * maximums, the per-queue minimum has no effect.
53 *
54 * For many physical devices, throughput increases with the number of
55 * concurrent operations, but latency typically suffers. Further, physical
56 * devices typically have a limit at which more concurrent operations have no
57 * effect on throughput or can actually cause it to decrease.
58 *
59 * The scheduler selects the next operation to issue by first looking for an
60 * I/O class whose minimum has not been satisfied. Once all are satisfied and
61 * the aggregate maximum has not been hit, the scheduler looks for classes

new/usr/src/uts/common/fs/zfs/vdev_queue.c 2

62 * whose maximum has not been satisfied. Iteration through the I/O classes is
63 * done in the order specified above. No further operations are issued if the
64 * aggregate maximum number of concurrent operations has been hit or if there
65 * are no operations queued for an I/O class that has not hit its maximum.
66 * Every time an i/o is queued or an operation completes, the I/O scheduler
67 * looks for new operations to issue.
68 *
69 * All I/O classes have a fixed maximum number of outstanding operations
70 * except for the async write class. Asynchronous writes represent the data
71 * that is committed to stable storage during the syncing stage for
72 * transaction groups (see txg.c). Transaction groups enter the syncing state
73 * periodically so the number of queued async writes will quickly burst up and
74 * then bleed down to zero. Rather than servicing them as quickly as possible,
75 * the I/O scheduler changes the maximum number of active async write i/os
76 * according to the amount of dirty data in the pool (see dsl_pool.c). Since
77 * both throughput and latency typically increase with the number of
78 * concurrent operations issued to physical devices, reducing the burstiness
79 * in the number of concurrent operations also stabilizes the response time of
80 * operations from other -- and in particular synchronous -- queues. In broad
81 * strokes, the I/O scheduler will issue more concurrent operations from the
82 * async write queue as there’s more dirty data in the pool.
83 *
84 * Async Writes
85 *
86 * The number of concurrent operations issued for the async write I/O class
87 * follows a piece-wise linear function defined by a few adjustable points.
88 *
89 * | o---------| <-- zfs_vdev_async_write_max_active
90 * ^ | /^ |
91 * | | / | |
92 * active | / | |
93 * I/O | / | |
94 * count | / | |
95 * | / | |
96 * |------------o | | <-- zfs_vdev_async_write_min_active
97 * 0|____________^______|_________|
98 * 0% | | 100% of zfs_dirty_data_max
99 * | |
100 * | ‘-- zfs_vdev_async_write_active_max_dirty_percent
101 * ‘--------- zfs_vdev_async_write_active_min_dirty_percent
102 *
103 * Until the amount of dirty data exceeds a minimum percentage of the dirty
104 * data allowed in the pool, the I/O scheduler will limit the number of
105 * concurrent operations to the minimum. As that threshold is crossed, the
106 * number of concurrent operations issued increases linearly to the maximum at
107 * the specified maximum percentage of the dirty data allowed in the pool.
108 *
109 * Ideally, the amount of dirty data on a busy pool will stay in the sloped
110 * part of the function between zfs_vdev_async_write_active_min_dirty_percent
111 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
112 * maximum percentage, this indicates that the rate of incoming data is
113 * greater than the rate that the backend storage can handle. In this case, we
114 * must further throttle incoming writes (see dmu_tx_delay() for details).
115 */

117 /*
118 * The maximum number of i/os active to each device. Ideally, this will be >=
119 * the sum of each queue’s max_active. It must be at least the sum of each
120 * queue’s min_active.
121 */
122 uint32_t zfs_vdev_max_active = 1000;

124 /*
125 * Per-queue limits on the number of i/os active to each device. If the
126 * sum of the queue’s max_active is < zfs_vdev_max_active, then the
127 * min_active comes into play. We will send min_active from each queue,

new/usr/src/uts/common/fs/zfs/vdev_queue.c 3

128 * and then select from queues in the order defined by zio_priority_t.
129 *
130 * In general, smaller max_active’s will lead to lower latency of synchronous
131 * operations. Larger max_active’s may lead to higher overall throughput,
132 * depending on underlying storage.
133 *
134 * The ratio of the queues’ max_actives determines the balance of performance
135 * between reads, writes, and scrubs. E.g., increasing
136 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
137 * more quickly, but reads and writes to have higher latency and lower
138 * throughput.
139 */
140 uint32_t zfs_vdev_sync_read_min_active = 10;
141 uint32_t zfs_vdev_sync_read_max_active = 10;
142 uint32_t zfs_vdev_sync_write_min_active = 10;
143 uint32_t zfs_vdev_sync_write_max_active = 10;
144 uint32_t zfs_vdev_async_read_min_active = 1;
145 uint32_t zfs_vdev_async_read_max_active = 3;
146 uint32_t zfs_vdev_async_write_min_active = 1;
147 uint32_t zfs_vdev_async_write_max_active = 10;
148 uint32_t zfs_vdev_scrub_min_active = 1;
149 uint32_t zfs_vdev_scrub_max_active = 2;

151 /*
152 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
153 * dirty data, use zfs_vdev_async_write_min_active. When it has more than
154 * zfs_vdev_async_write_active_max_dirty_percent, use
155 * zfs_vdev_async_write_max_active. The value is linearly interpolated
156 * between min and max.
157 */
158 int zfs_vdev_async_write_active_min_dirty_percent = 30;
159 int zfs_vdev_async_write_active_max_dirty_percent = 60;

161 /*
162 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
163 * For read I/Os, we also aggregate across small adjacency gaps; for writes
164 * we include spans of optional I/Os to aid aggregation at the disk even when
165 * they aren’t able to help us aggregate at this level.
166 */
167 int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE;
168 int zfs_vdev_read_gap_limit = 32 << 10;
169 int zfs_vdev_write_gap_limit = 4 << 10;

171 int
172 vdev_queue_offset_compare(const void *x1, const void *x2)
173 {
174 const zio_t *z1 = x1;
175 const zio_t *z2 = x2;

177 if (z1->io_offset < z2->io_offset)
178 return (-1);
179 if (z1->io_offset > z2->io_offset)
180 return (1);

182 if (z1 < z2)
183 return (-1);
184 if (z1 > z2)
185 return (1);

187 return (0);
188 }

190 int
191 vdev_queue_timestamp_compare(const void *x1, const void *x2)
192 {
193 const zio_t *z1 = x1;

new/usr/src/uts/common/fs/zfs/vdev_queue.c 4

194 const zio_t *z2 = x2;

196 if (z1->io_timestamp < z2->io_timestamp)
197 return (-1);
198 if (z1->io_timestamp > z2->io_timestamp)
199 return (1);

201 if (z1 < z2)
202 return (-1);
203 if (z1 > z2)
204 return (1);

206 return (0);
207 }

209 void
210 vdev_queue_init(vdev_t *vd)
211 {
212 vdev_queue_t *vq = &vd->vdev_queue;

214 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
215 vq->vq_vdev = vd;

217 avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
218 sizeof (zio_t), offsetof(struct zio, io_queue_node));

220 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
221 /*
222 * The synchronous i/o queues are FIFO rather than LBA ordered.
223 * This provides more consistent latency for these i/os, and
224 * they tend to not be tightly clustered anyway so there is
225 * little to no throughput loss.
226 */
227 boolean_t fifo = (p == ZIO_PRIORITY_SYNC_READ ||
228 p == ZIO_PRIORITY_SYNC_WRITE);
229 avl_create(&vq->vq_class[p].vqc_queued_tree,
230 fifo ? vdev_queue_timestamp_compare :
231 vdev_queue_offset_compare,
232 sizeof (zio_t), offsetof(struct zio, io_queue_node));
233 }

235 vq->vq_lastoffset = 0;
236 #endif /* ! codereview */
237 }

239 void
240 vdev_queue_fini(vdev_t *vd)
241 {
242 vdev_queue_t *vq = &vd->vdev_queue;

244 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
245 avl_destroy(&vq->vq_class[p].vqc_queued_tree);
246 avl_destroy(&vq->vq_active_tree);

248 mutex_destroy(&vq->vq_lock);
249 }

251 static void
252 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
253 {
254 spa_t *spa = zio->io_spa;
255 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
256 avl_add(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio);

258 mutex_enter(&spa->spa_iokstat_lock);
259 spa->spa_queue_stats[zio->io_priority].spa_queued++;

new/usr/src/uts/common/fs/zfs/vdev_queue.c 5

260 if (spa->spa_iokstat != NULL)
261 kstat_waitq_enter(spa->spa_iokstat->ks_data);
262 mutex_exit(&spa->spa_iokstat_lock);
263 }

265 static void
266 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
267 {
268 spa_t *spa = zio->io_spa;
269 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
270 avl_remove(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio);

272 mutex_enter(&spa->spa_iokstat_lock);
273 ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
274 spa->spa_queue_stats[zio->io_priority].spa_queued--;
275 if (spa->spa_iokstat != NULL)
276 kstat_waitq_exit(spa->spa_iokstat->ks_data);
277 mutex_exit(&spa->spa_iokstat_lock);
278 }

280 static void
281 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
282 {
283 spa_t *spa = zio->io_spa;
284 ASSERT(MUTEX_HELD(&vq->vq_lock));
285 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
286 vq->vq_class[zio->io_priority].vqc_active++;
287 avl_add(&vq->vq_active_tree, zio);

289 mutex_enter(&spa->spa_iokstat_lock);
290 spa->spa_queue_stats[zio->io_priority].spa_active++;
291 if (spa->spa_iokstat != NULL)
292 kstat_runq_enter(spa->spa_iokstat->ks_data);
293 mutex_exit(&spa->spa_iokstat_lock);
294 }

296 static void
297 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
298 {
299 spa_t *spa = zio->io_spa;
300 ASSERT(MUTEX_HELD(&vq->vq_lock));
301 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
302 vq->vq_class[zio->io_priority].vqc_active--;
303 avl_remove(&vq->vq_active_tree, zio);

305 mutex_enter(&spa->spa_iokstat_lock);
306 ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
307 spa->spa_queue_stats[zio->io_priority].spa_active--;
308 if (spa->spa_iokstat != NULL) {
309 kstat_io_t *ksio = spa->spa_iokstat->ks_data;

311 kstat_runq_exit(spa->spa_iokstat->ks_data);
312 if (zio->io_type == ZIO_TYPE_READ) {
313 ksio->reads++;
314 ksio->nread += zio->io_size;
315 } else if (zio->io_type == ZIO_TYPE_WRITE) {
316 ksio->writes++;
317 ksio->nwritten += zio->io_size;
318 }
319 }
320 mutex_exit(&spa->spa_iokstat_lock);
321 }

323 static void
324 vdev_queue_agg_io_done(zio_t *aio)
325 {

new/usr/src/uts/common/fs/zfs/vdev_queue.c 6

326 if (aio->io_type == ZIO_TYPE_READ) {
327 zio_t *pio;
328 while ((pio = zio_walk_parents(aio)) != NULL) {
329 bcopy((char *)aio->io_data + (pio->io_offset -
330 aio->io_offset), pio->io_data, pio->io_size);
331 }
332 }

334 zio_buf_free(aio->io_data, aio->io_size);
335 }

337 static int
338 vdev_queue_class_min_active(zio_priority_t p)
339 {
340 switch (p) {
341 case ZIO_PRIORITY_SYNC_READ:
342 return (zfs_vdev_sync_read_min_active);
343 case ZIO_PRIORITY_SYNC_WRITE:
344 return (zfs_vdev_sync_write_min_active);
345 case ZIO_PRIORITY_ASYNC_READ:
346 return (zfs_vdev_async_read_min_active);
347 case ZIO_PRIORITY_ASYNC_WRITE:
348 return (zfs_vdev_async_write_min_active);
349 case ZIO_PRIORITY_SCRUB:
350 return (zfs_vdev_scrub_min_active);
351 default:
352 panic("invalid priority %u", p);
353 return (0);
354 }
355 }

357 static int
358 vdev_queue_max_async_writes(uint64_t dirty)
359 {
360 int writes;
361 uint64_t min_bytes = zfs_dirty_data_max *
362 zfs_vdev_async_write_active_min_dirty_percent / 100;
363 uint64_t max_bytes = zfs_dirty_data_max *
364 zfs_vdev_async_write_active_max_dirty_percent / 100;

366 if (dirty < min_bytes)
367 return (zfs_vdev_async_write_min_active);
368 if (dirty > max_bytes)
369 return (zfs_vdev_async_write_max_active);

371 /*
372 * linear interpolation:
373 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
374 * move right by min_bytes
375 * move up by min_writes
376 */
377 writes = (dirty - min_bytes) *
378 (zfs_vdev_async_write_max_active -
379 zfs_vdev_async_write_min_active) /
380 (max_bytes - min_bytes) +
381 zfs_vdev_async_write_min_active;
382 ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
383 ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
384 return (writes);
385 }

387 static int
388 vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
389 {
390 switch (p) {
391 case ZIO_PRIORITY_SYNC_READ:

new/usr/src/uts/common/fs/zfs/vdev_queue.c 7

392 return (zfs_vdev_sync_read_max_active);
393 case ZIO_PRIORITY_SYNC_WRITE:
394 return (zfs_vdev_sync_write_max_active);
395 case ZIO_PRIORITY_ASYNC_READ:
396 return (zfs_vdev_async_read_max_active);
397 case ZIO_PRIORITY_ASYNC_WRITE:
398 return (vdev_queue_max_async_writes(
399 spa->spa_dsl_pool->dp_dirty_total));
400 case ZIO_PRIORITY_SCRUB:
401 return (zfs_vdev_scrub_max_active);
402 default:
403 panic("invalid priority %u", p);
404 return (0);
405 }
406 }

408 /*
409 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
410 * there is no eligible class.
411 */
412 static zio_priority_t
413 vdev_queue_class_to_issue(vdev_queue_t *vq)
414 {
415 spa_t *spa = vq->vq_vdev->vdev_spa;
416 zio_priority_t p;

418 if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
419 return (ZIO_PRIORITY_NUM_QUEUEABLE);

421 /* find a queue that has not reached its minimum # outstanding i/os */
422 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
423 if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 &&
424 vq->vq_class[p].vqc_active <
425 vdev_queue_class_min_active(p))
426 return (p);
427 }

429 /*
430 * If we haven’t found a queue, look for one that hasn’t reached its
431 * maximum # outstanding i/os.
432 */
433 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
434 if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 &&
435 vq->vq_class[p].vqc_active <
436 vdev_queue_class_max_active(spa, p))
437 return (p);
438 }

440 /* No eligible queued i/os */
441 return (ZIO_PRIORITY_NUM_QUEUEABLE);
442 }

444 /*
445 * Compute the range spanned by two i/os, which is the endpoint of the last
446 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
447 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
448 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
449 */
450 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
451 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))

453 static zio_t *
454 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
455 {
456 zio_t *first, *last, *aio, *dio, *mandatory, *nio;
457 uint64_t maxgap = 0;

new/usr/src/uts/common/fs/zfs/vdev_queue.c 8

458 uint64_t size;
459 boolean_t stretch = B_FALSE;
460 vdev_queue_class_t *vqc = &vq->vq_class[zio->io_priority];
461 avl_tree_t *t = &vqc->vqc_queued_tree;
462 enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;

464 if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
465 return (NULL);

467 /*
468 * The synchronous i/o queues are not sorted by LBA, so we can’t
469 * find adjacent i/os. These i/os tend to not be tightly clustered,
470 * or too large to aggregate, so this has little impact on performance.
471 */
472 if (zio->io_priority == ZIO_PRIORITY_SYNC_READ ||
473 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE)
474 return (NULL);

476 first = last = zio;

478 if (zio->io_type == ZIO_TYPE_READ)
479 maxgap = zfs_vdev_read_gap_limit;

481 /*
482 * We can aggregate I/Os that are sufficiently adjacent and of
483 * the same flavor, as expressed by the AGG_INHERIT flags.
484 * The latter requirement is necessary so that certain
485 * attributes of the I/O, such as whether it’s a normal I/O
486 * or a scrub/resilver, can be preserved in the aggregate.
487 * We can include optional I/Os, but don’t allow them
488 * to begin a range as they add no benefit in that situation.
489 */

491 /*
492 * We keep track of the last non-optional I/O.
493 */
494 mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;

496 /*
497 * Walk backwards through sufficiently contiguous I/Os
498 * recording the last non-option I/O.
499 */
500 while ((dio = AVL_PREV(t, first)) != NULL &&
501 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
502 IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
503 IO_GAP(dio, first) <= maxgap) {
504 first = dio;
505 if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
506 mandatory = first;
507 }

509 /*
510 * Skip any initial optional I/Os.
511 */
512 while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
513 first = AVL_NEXT(t, first);
514 ASSERT(first != NULL);
515 }

517 /*
518 * Walk forward through sufficiently contiguous I/Os.
519 */
520 while ((dio = AVL_NEXT(t, last)) != NULL &&
521 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
522 IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit &&
523 IO_GAP(last, dio) <= maxgap) {

new/usr/src/uts/common/fs/zfs/vdev_queue.c 9

524 last = dio;
525 if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
526 mandatory = last;
527 }

529 /*
530 * Now that we’ve established the range of the I/O aggregation
531 * we must decide what to do with trailing optional I/Os.
532 * For reads, there’s nothing to do. While we are unable to
533 * aggregate further, it’s possible that a trailing optional
534 * I/O would allow the underlying device to aggregate with
535 * subsequent I/Os. We must therefore determine if the next
536 * non-optional I/O is close enough to make aggregation
537 * worthwhile.
538 */
539 if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
540 zio_t *nio = last;
541 while ((dio = AVL_NEXT(t, nio)) != NULL &&
542 IO_GAP(nio, dio) == 0 &&
543 IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
544 nio = dio;
545 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
546 stretch = B_TRUE;
547 break;
548 }
549 }
550 }

552 if (stretch) {
553 /* This may be a no-op. */
554 dio = AVL_NEXT(t, last);
555 dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
556 } else {
557 while (last != mandatory && last != first) {
558 ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
559 last = AVL_PREV(t, last);
560 ASSERT(last != NULL);
561 }
562 }

564 if (first == last)
565 return (NULL);

567 size = IO_SPAN(first, last);
568 ASSERT3U(size, <=, zfs_vdev_aggregation_limit);

570 aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
571 zio_buf_alloc(size), size, first->io_type, zio->io_priority,
572 flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
573 vdev_queue_agg_io_done, NULL);
574 aio->io_timestamp = first->io_timestamp;

576 nio = first;
577 do {
578 dio = nio;
579 nio = AVL_NEXT(t, dio);
580 ASSERT3U(dio->io_type, ==, aio->io_type);

582 if (dio->io_flags & ZIO_FLAG_NODATA) {
583 ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
584 bzero((char *)aio->io_data + (dio->io_offset -
585 aio->io_offset), dio->io_size);
586 } else if (dio->io_type == ZIO_TYPE_WRITE) {
587 bcopy(dio->io_data, (char *)aio->io_data +
588 (dio->io_offset - aio->io_offset),
589 dio->io_size);

new/usr/src/uts/common/fs/zfs/vdev_queue.c 10

590 }

592 zio_add_child(dio, aio);
593 vdev_queue_io_remove(vq, dio);
594 zio_vdev_io_bypass(dio);
595 zio_execute(dio);
596 } while (dio != last);

598 return (aio);
599 }

601 static zio_t *
602 vdev_queue_io_to_issue(vdev_queue_t *vq)
603 {
604 zio_t *zio, *aio;
605 zio_priority_t p;
606 avl_index_t idx;
607 vdev_queue_class_t *vqc;
608 zio_t search;

610 again:
611 ASSERT(MUTEX_HELD(&vq->vq_lock));

613 p = vdev_queue_class_to_issue(vq);

615 if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
616 /* No eligible queued i/os */
617 return (NULL);
618 }

620 /*
621 * For LBA-ordered queues (async / scrub), issue the i/o which follows
622 * the most recently issued i/o in LBA (offset) order.
623 *
624 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
625 */
626 vqc = &vq->vq_class[p];
627 search.io_timestamp = 0;
628 search.io_offset = vq->vq_last_offset + 1;
629 VERIFY3P(avl_find(&vqc->vqc_queued_tree, &search, &idx), ==, NULL);
630 zio = avl_nearest(&vqc->vqc_queued_tree, idx, AVL_AFTER);
631 if (zio == NULL)
632 zio = avl_first(&vqc->vqc_queued_tree);
633 ASSERT3U(zio->io_priority, ==, p);

635 aio = vdev_queue_aggregate(vq, zio);
636 if (aio != NULL)
637 zio = aio;
638 else
639 vdev_queue_io_remove(vq, zio);

641 /*
642 * If the I/O is or was optional and therefore has no data, we need to
643 * simply discard it. We need to drop the vdev queue’s lock to avoid a
644 * deadlock that we could encounter since this I/O will complete
645 * immediately.
646 */
647 if (zio->io_flags & ZIO_FLAG_NODATA) {
648 mutex_exit(&vq->vq_lock);
649 zio_vdev_io_bypass(zio);
650 zio_execute(zio);
651 mutex_enter(&vq->vq_lock);
652 goto again;
653 }

655 vdev_queue_pending_add(vq, zio);

new/usr/src/uts/common/fs/zfs/vdev_queue.c 11

656 vq->vq_last_offset = zio->io_offset;

658 return (zio);
659 }

661 zio_t *
662 vdev_queue_io(zio_t *zio)
663 {
664 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
665 zio_t *nio;

667 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
668 return (zio);

670 /*
671 * Children i/os inherent their parent’s priority, which might
672 * not match the child’s i/o type. Fix it up here.
673 */
674 if (zio->io_type == ZIO_TYPE_READ) {
675 if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
676 zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
677 zio->io_priority != ZIO_PRIORITY_SCRUB)
678 zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
679 } else {
680 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
681 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
682 zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
683 zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
684 }

686 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;

688 mutex_enter(&vq->vq_lock);
689 zio->io_timestamp = gethrtime();
690 vdev_queue_io_add(vq, zio);
691 nio = vdev_queue_io_to_issue(vq);
692 mutex_exit(&vq->vq_lock);

694 if (nio == NULL)
695 return (NULL);

697 if (nio->io_done == vdev_queue_agg_io_done) {
698 zio_nowait(nio);
699 return (NULL);
700 }

702 return (nio);
703 }

705 void
706 vdev_queue_io_done(zio_t *zio)
707 {
708 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
709 zio_t *nio;

711 if (zio_injection_enabled)
712 delay(SEC_TO_TICK(zio_handle_io_delay(zio)));

714 mutex_enter(&vq->vq_lock);

716 vdev_queue_pending_remove(vq, zio);

718 vq->vq_io_complete_ts = gethrtime();

720 while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
721 mutex_exit(&vq->vq_lock);

new/usr/src/uts/common/fs/zfs/vdev_queue.c 12

722 if (nio->io_done == vdev_queue_agg_io_done) {
723 zio_nowait(nio);
724 } else {
725 zio_vdev_io_reissue(nio);
726 zio_execute(nio);
727 }
728 mutex_enter(&vq->vq_lock);
729 }

731 mutex_exit(&vq->vq_lock);
732 }

734 /*
735 * As these three methods are only used for load calculations we’re not
736 * concerned if we get an incorrect value on 32bit platforms due to lack of
737 * vq_lock mutex use here, instead we prefer to keep it lock free for
738 * performance.
739 */
740 int
741 vdev_queue_length(vdev_t *vd)
742 {
743 return (avl_numnodes(&vd->vdev_queue.vq_pending_tree));
744 }

746 uint64_t
747 vdev_queue_lastoffset(vdev_t *vd)
748 {
749 return (vd->vdev_queue.vq_lastoffset);
750 }

752 void
753 vdev_queue_register_lastoffset(vdev_t *vd, zio_t *zio)
754 {
755 vd->vdev_queue.vq_lastoffset = zio->io_offset + zio->io_size;
756 }
757 #endif /* ! codereview */

