Print this page
4334 Improve ZFS N-way mirror read performance


   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 /*
  27  * Copyright (c) 2013 by Delphix. All rights reserved.

  28  */
  29 
  30 #include <sys/zfs_context.h>
  31 #include <sys/spa.h>
  32 #include <sys/vdev_impl.h>
  33 #include <sys/zio.h>
  34 #include <sys/fs/zfs.h>
  35 
  36 /*
  37  * Virtual device vector for mirroring.
  38  */
  39 
  40 typedef struct mirror_child {
  41         vdev_t          *mc_vd;
  42         uint64_t        mc_offset;
  43         int             mc_error;

  44         uint8_t         mc_tried;
  45         uint8_t         mc_skipped;
  46         uint8_t         mc_speculative;
  47 } mirror_child_t;
  48 
  49 typedef struct mirror_map {


  50         int             mm_children;
  51         int             mm_replacing;
  52         int             mm_preferred;
  53         int             mm_root;
  54         mirror_child_t  mm_child[1];
  55 } mirror_map_t;
  56 
  57 int vdev_mirror_shift = 21;




















































  58 
  59 static void
  60 vdev_mirror_map_free(zio_t *zio)
  61 {
  62         mirror_map_t *mm = zio->io_vsd;
  63 
  64         kmem_free(mm, offsetof(mirror_map_t, mm_child[mm->mm_children]));
  65 }
  66 
  67 static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
  68         vdev_mirror_map_free,
  69         zio_vsd_default_cksum_report
  70 };
  71 




























































  72 static mirror_map_t *
  73 vdev_mirror_map_alloc(zio_t *zio)
  74 {
  75         mirror_map_t *mm = NULL;
  76         mirror_child_t *mc;
  77         vdev_t *vd = zio->io_vd;
  78         int c, d;
  79 
  80         if (vd == NULL) {
  81                 dva_t *dva = zio->io_bp->blk_dva;
  82                 spa_t *spa = zio->io_spa;
  83 
  84                 c = BP_GET_NDVAS(zio->io_bp);
  85 
  86                 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP);
  87                 mm->mm_children = c;
  88                 mm->mm_replacing = B_FALSE;
  89                 mm->mm_preferred = spa_get_random(c);
  90                 mm->mm_root = B_TRUE;
  91 
  92                 /*
  93                  * Check the other, lower-index DVAs to see if they're on
  94                  * the same vdev as the child we picked.  If they are, use
  95                  * them since they are likely to have been allocated from
  96                  * the primary metaslab in use at the time, and hence are
  97                  * more likely to have locality with single-copy data.
  98                  */
  99                 for (c = mm->mm_preferred, d = c - 1; d >= 0; d--) {
 100                         if (DVA_GET_VDEV(&dva[d]) == DVA_GET_VDEV(&dva[c]))
 101                                 mm->mm_preferred = d;
 102                 }
 103 
 104                 for (c = 0; c < mm->mm_children; c++) {
 105                         mc = &mm->mm_child[c];
 106 
 107                         mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
 108                         mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
 109                 }
 110         } else {
 111                 c = vd->vdev_children;
 112 
 113                 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP);
 114                 mm->mm_children = c;
 115                 mm->mm_replacing = (vd->vdev_ops == &vdev_replacing_ops ||
 116                     vd->vdev_ops == &vdev_spare_ops);
 117                 mm->mm_preferred = mm->mm_replacing ? 0 :
 118                     (zio->io_offset >> vdev_mirror_shift) % c;
 119                 mm->mm_root = B_FALSE;
 120 
 121                 for (c = 0; c < mm->mm_children; c++) {
 122                         mc = &mm->mm_child[c];
 123                         mc->mc_vd = vd->vdev_child[c];
 124                         mc->mc_offset = zio->io_offset;
 125                 }
 126         }
 127 
 128         zio->io_vsd = mm;
 129         zio->io_vsd_ops = &vdev_mirror_vsd_ops;
 130         return (mm);
 131 }
 132 
 133 static int
 134 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
 135     uint64_t *ashift)
 136 {
 137         int numerrors = 0;
 138         int lasterror = 0;
 139 
 140         if (vd->vdev_children == 0) {


 192                 zio_t *pio;
 193 
 194                 mutex_enter(&zio->io_lock);
 195                 while ((pio = zio_walk_parents(zio)) != NULL) {
 196                         mutex_enter(&pio->io_lock);
 197                         ASSERT3U(zio->io_size, >=, pio->io_size);
 198                         bcopy(zio->io_data, pio->io_data, pio->io_size);
 199                         mutex_exit(&pio->io_lock);
 200                 }
 201                 mutex_exit(&zio->io_lock);
 202         }
 203 
 204         zio_buf_free(zio->io_data, zio->io_size);
 205 
 206         mc->mc_error = zio->io_error;
 207         mc->mc_tried = 1;
 208         mc->mc_skipped = 0;
 209 }
 210 
 211 /*
 212  * Try to find a child whose DTL doesn't contain the block we want to read.











































 213  * If we can't, try the read on any vdev we haven't already tried.
 214  */
 215 static int
 216 vdev_mirror_child_select(zio_t *zio)
 217 {
 218         mirror_map_t *mm = zio->io_vsd;
 219         mirror_child_t *mc;
 220         uint64_t txg = zio->io_txg;
 221         int i, c;
 222 
 223         ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg);
 224 
 225         /*
 226          * Try to find a child whose DTL doesn't contain the block to read.
 227          * If a child is known to be completely inaccessible (indicated by
 228          * vdev_readable() returning B_FALSE), don't even try.
 229          */
 230         for (i = 0, c = mm->mm_preferred; i < mm->mm_children; i++, c++) {
 231                 if (c >= mm->mm_children)
 232                         c = 0;
 233                 mc = &mm->mm_child[c];
 234                 if (mc->mc_tried || mc->mc_skipped)
 235                         continue;

 236                 if (!vdev_readable(mc->mc_vd)) {
 237                         mc->mc_error = SET_ERROR(ENXIO);
 238                         mc->mc_tried = 1;    /* don't even try */
 239                         mc->mc_skipped = 1;
 240                         continue;
 241                 }
 242                 if (!vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1))
 243                         return (c);
 244                 mc->mc_error = SET_ERROR(ESTALE);
 245                 mc->mc_skipped = 1;
 246                 mc->mc_speculative = 1;



























 247         }
 248 
 249         /*
 250          * Every device is either missing or has this txg in its DTL.
 251          * Look for any child we haven't already tried before giving up.
 252          */
 253         for (c = 0; c < mm->mm_children; c++)
 254                 if (!mm->mm_child[c].mc_tried)


 255                         return (c);


 256 
 257         /*
 258          * Every child failed.  There's no place left to look.
 259          */
 260         return (-1);
 261 }
 262 
 263 static int
 264 vdev_mirror_io_start(zio_t *zio)
 265 {
 266         mirror_map_t *mm;
 267         mirror_child_t *mc;
 268         int c, children;
 269 
 270         mm = vdev_mirror_map_alloc(zio);
 271 
 272         if (zio->io_type == ZIO_TYPE_READ) {
 273                 if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing) {
 274                         /*
 275                          * For scrubbing reads we need to allocate a read
 276                          * buffer for each child and issue reads to all
 277                          * children.  If any child succeeds, it will copy its
 278                          * data into zio->io_data in vdev_mirror_scrub_done.
 279                          */
 280                         for (c = 0; c < mm->mm_children; c++) {
 281                                 mc = &mm->mm_child[c];
 282                                 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
 283                                     mc->mc_vd, mc->mc_offset,
 284                                     zio_buf_alloc(zio->io_size), zio->io_size,
 285                                     zio->io_type, zio->io_priority, 0,
 286                                     vdev_mirror_scrub_done, mc));
 287                         }
 288                         return (ZIO_PIPELINE_CONTINUE);
 289                 }
 290                 /*




   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 /*
  27  * Copyright (c) 2013 by Delphix. All rights reserved.
  28  * Copyright (c) 2013 Steven Hartland. All rights reserved.
  29  */
  30 
  31 #include <sys/zfs_context.h>
  32 #include <sys/spa.h>
  33 #include <sys/vdev_impl.h>
  34 #include <sys/zio.h>
  35 #include <sys/fs/zfs.h>
  36 
  37 /*
  38  * Virtual device vector for mirroring.
  39  */
  40 
  41 typedef struct mirror_child {
  42         vdev_t          *mc_vd;
  43         uint64_t        mc_offset;
  44         int             mc_error;
  45         int             mc_load;
  46         uint8_t         mc_tried;
  47         uint8_t         mc_skipped;
  48         uint8_t         mc_speculative;
  49 } mirror_child_t;
  50 
  51 typedef struct mirror_map {
  52         int             *mm_preferred;
  53         int             mm_preferred_cnt;
  54         int             mm_children;
  55         boolean_t       mm_replacing;
  56         boolean_t       mm_root;
  57         mirror_child_t  mm_child[];

  58 } mirror_map_t;
  59 
  60 int zfs_vdev_mirror_shift = 21;
  61 
  62 /*
  63  * The load configuration settings below are tuned by default for
  64  * the case where all devices are of the same rotational type.
  65  *
  66  * If there is a mixture of rotating and non-rotating media, setting
  67  * non_rotating_seek_inc to 0 may well provide better results as it
  68  * will direct more reads to the non-rotating vdevs which are more
  69  * likely to have a higher performance.
  70  */
  71 
  72 /* Rotating media load calculation configuration. */
  73 /* Rotating media load increment for non-seeking I/O's. */
  74 int zfs_vdev_mirror_rotating_inc = 0;
  75 
  76 /* Rotating media load increment for seeking I/O's. */
  77 int zfs_vdev_mirror_rotating_seek_inc = 5;
  78 
  79 /*
  80  * Offset in bytes from the last I/O which triggers a reduced rotating media
  81  * seek increment.
  82  */
  83 int zfs_vdev_mirror_rotating_seek_offset = 1 * 1024 * 1024;
  84 
  85 /* Non-rotating media load calculation configuration. */
  86 /* Non-rotating media load increment for non-seeking I/O's. */
  87 int zfs_vdev_mirror_non_rotating_inc = 0;
  88 
  89 /* Non-rotating media load increment for seeking I/O's. */
  90 int zfs_vdev_mirror_non_rotating_seek_inc = 1;
  91 
  92 static inline size_t
  93 vdev_mirror_map_size(int children)
  94 {
  95         return (offsetof(mirror_map_t, mm_child[children]) +
  96             sizeof (int) * children);
  97 }
  98 
  99 static inline mirror_map_t *
 100 vdev_mirror_map_alloc(int children, boolean_t replacing, boolean_t root)
 101 {
 102         mirror_map_t *mm;
 103 
 104         mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP);
 105         mm->mm_children = children;
 106         mm->mm_replacing = replacing;
 107         mm->mm_root = root;
 108         mm->mm_preferred = (int *)((uintptr_t)mm +
 109             offsetof(mirror_map_t, mm_child[children]));
 110 
 111         return (mm);
 112 }
 113 
 114 static void
 115 vdev_mirror_map_free(zio_t *zio)
 116 {
 117         mirror_map_t *mm = zio->io_vsd;
 118 
 119         kmem_free(mm, vdev_mirror_map_size(mm->mm_children));
 120 }
 121 
 122 static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
 123         vdev_mirror_map_free,
 124         zio_vsd_default_cksum_report
 125 };
 126 
 127 /*
 128  * Calculate and return the load of the specified vdev adjusted for a zio at
 129  * the given offset.
 130  *
 131  * The calcuation takes into account the vdev's:
 132  * 1. Rotation rate
 133  * 2. The distance of zio_offset from the last queued request
 134  */
 135 static int
 136 vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset)
 137 {
 138         uint64_t lastoffset;
 139         int load;
 140 
 141         /* All DVAs have equal weight at the root. */
 142         if (mm->mm_root)
 143                 return (INT_MAX);
 144 
 145         /*
 146          * We don't return INT_MAX if the device is resilvering i.e.
 147          * vdev_resilver_txg != 0 as when tested performance was slightly
 148          * worse overall when resilvering with compared to without.
 149          */
 150 
 151         /* Standard load based on pending queue length. */
 152         load = vdev_queue_length(vd);
 153         lastoffset = vdev_queue_last_queued_offset(vd);
 154 
 155         if (vd->vdev_rotation_rate == VDEV_RATE_NON_ROTATING) {
 156                 /* Non-rotating media. */
 157                 if (lastoffset == zio_offset)
 158                         return (load + zfs_vdev_mirror_non_rotating_inc);
 159 
 160                 /*
 161                  * Apply a seek penalty even for non-rotating devices as
 162                  * sequential I/O'a can be aggregated into fewer operations
 163                  * on the device, thus avoiding unnecessary per-command
 164                  * overhead and boosting performance.
 165                  */
 166                 return (load + zfs_vdev_mirror_non_rotating_seek_inc);
 167         }
 168 
 169         /* Rotating media I/O's which directly follow the last I/O. */
 170         if (lastoffset == zio_offset)
 171                 return (load + zfs_vdev_mirror_rotating_inc);
 172 
 173         /*
 174          * Apply half the seek increment to I/O's within seek offset
 175          * of the last I/O queued to this vdev as they should incure less
 176          * of a seek increment.
 177          */
 178         if (ABS(lastoffset - zio_offset) <
 179             zfs_vdev_mirror_rotating_seek_offset)
 180                 return (load + (zfs_vdev_mirror_rotating_seek_inc / 2));
 181 
 182         /* Apply the full seek increment to all other I/O's. */
 183         return (load + zfs_vdev_mirror_rotating_seek_inc);
 184 }
 185 
 186 
 187 static mirror_map_t *
 188 vdev_mirror_map_init(zio_t *zio)
 189 {
 190         mirror_map_t *mm = NULL;
 191         mirror_child_t *mc;
 192         vdev_t *vd = zio->io_vd;
 193         int c;
 194 
 195         if (vd == NULL) {
 196                 dva_t *dva = zio->io_bp->blk_dva;
 197                 spa_t *spa = zio->io_spa;
 198 
 199                 mm = vdev_mirror_map_alloc(BP_GET_NDVAS(zio->io_bp), B_FALSE,
 200                     B_TRUE);


















 201                 for (c = 0; c < mm->mm_children; c++) {
 202                         mc = &mm->mm_child[c];

 203                         mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
 204                         mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
 205                 }
 206         } else {
 207                 mm = vdev_mirror_map_alloc(vd->vdev_children,
 208                     (vd->vdev_ops == &vdev_replacing_ops ||
 209                     vd->vdev_ops == &vdev_spare_ops), B_FALSE);







 210                 for (c = 0; c < mm->mm_children; c++) {
 211                         mc = &mm->mm_child[c];
 212                         mc->mc_vd = vd->vdev_child[c];
 213                         mc->mc_offset = zio->io_offset;
 214                 }
 215         }
 216 
 217         zio->io_vsd = mm;
 218         zio->io_vsd_ops = &vdev_mirror_vsd_ops;
 219         return (mm);
 220 }
 221 
 222 static int
 223 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
 224     uint64_t *ashift)
 225 {
 226         int numerrors = 0;
 227         int lasterror = 0;
 228 
 229         if (vd->vdev_children == 0) {


 281                 zio_t *pio;
 282 
 283                 mutex_enter(&zio->io_lock);
 284                 while ((pio = zio_walk_parents(zio)) != NULL) {
 285                         mutex_enter(&pio->io_lock);
 286                         ASSERT3U(zio->io_size, >=, pio->io_size);
 287                         bcopy(zio->io_data, pio->io_data, pio->io_size);
 288                         mutex_exit(&pio->io_lock);
 289                 }
 290                 mutex_exit(&zio->io_lock);
 291         }
 292 
 293         zio_buf_free(zio->io_data, zio->io_size);
 294 
 295         mc->mc_error = zio->io_error;
 296         mc->mc_tried = 1;
 297         mc->mc_skipped = 0;
 298 }
 299 
 300 /*
 301  * Check the other, lower-index DVAs to see if they're on the same
 302  * vdev as the child we picked.  If they are, use them since they
 303  * are likely to have been allocated from the primary metaslab in
 304  * use at the time, and hence are more likely to have locality with
 305  * single-copy data.
 306  */
 307 static int
 308 vdev_mirror_dva_select(zio_t *zio, int preferred)
 309 {
 310         dva_t *dva = zio->io_bp->blk_dva;
 311         int c;
 312 
 313         for (c = preferred - 1; c >= 0; c--) {
 314                 if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred]))
 315                         preferred = c;
 316         }
 317         return (preferred);
 318 }
 319 
 320 static int
 321 vdev_mirror_preferred_child_randomize(zio_t *zio)
 322 {
 323         mirror_map_t *mm = zio->io_vsd;
 324         int p;
 325 
 326         if (mm->mm_root) {
 327                 p = spa_get_random(mm->mm_preferred_cnt);
 328                 return (vdev_mirror_dva_select(zio, mm->mm_preferred[p]));
 329         }
 330 
 331         /*
 332          * To ensure we don't always favour the first matching vdev,
 333          * which could lead to wear leveling issues on SSD's, we
 334          * use the I/O offset as a pseudo random seed into the vdevs
 335          * which have the lowest load.
 336          */
 337         p = (zio->io_offset >> zfs_vdev_mirror_shift) % mm->mm_preferred_cnt;
 338         return (mm->mm_preferred[p]);
 339 }
 340 
 341 /*
 342  * Try to find a vdev whose DTL doesn't contain the block we want to read
 343  * prefering vdevs based on determined load.
 344  *
 345  * If we can't, try the read on any vdev we haven't already tried.
 346  */
 347 static int
 348 vdev_mirror_child_select(zio_t *zio)
 349 {
 350         mirror_map_t *mm = zio->io_vsd;

 351         uint64_t txg = zio->io_txg;
 352         int c, lowest_load;
 353 
 354         ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg);
 355 
 356         lowest_load = INT_MAX;
 357         mm->mm_preferred_cnt = 0;
 358         for (c = 0; c < mm->mm_children; c++) {
 359                 mirror_child_t *mc;
 360 



 361                 mc = &mm->mm_child[c];
 362                 if (mc->mc_tried || mc->mc_skipped)
 363                         continue;
 364 
 365                 if (!vdev_readable(mc->mc_vd)) {
 366                         mc->mc_error = SET_ERROR(ENXIO);
 367                         mc->mc_tried = 1;    /* don't even try */
 368                         mc->mc_skipped = 1;
 369                         continue;
 370                 }
 371 
 372                 if (vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) {
 373                         mc->mc_error = SET_ERROR(ESTALE);
 374                         mc->mc_skipped = 1;
 375                         mc->mc_speculative = 1;
 376                         continue;
 377                 }
 378 
 379                 mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset);
 380                 if (mc->mc_load > lowest_load)
 381                         continue;
 382 
 383                 if (mc->mc_load < lowest_load) {
 384                         lowest_load = mc->mc_load;
 385                         mm->mm_preferred_cnt = 0;
 386                 }
 387                 mm->mm_preferred[mm->mm_preferred_cnt] = c;
 388                 mm->mm_preferred_cnt++;
 389         }
 390 
 391         if (mm->mm_preferred_cnt == 1) {
 392                 vdev_queue_register_last_queued_offset(
 393                     mm->mm_child[mm->mm_preferred[0]].mc_vd, zio);
 394                 return (mm->mm_preferred[0]);
 395         }
 396 
 397         if (mm->mm_preferred_cnt > 1) {
 398                 int c = vdev_mirror_preferred_child_randomize(zio);
 399 
 400                 vdev_queue_register_last_queued_offset(mm->mm_child[c].mc_vd,
 401                     zio);
 402                 return (c);
 403         }
 404 
 405         /*
 406          * Every device is either missing or has this txg in its DTL.
 407          * Look for any child we haven't already tried before giving up.
 408          */
 409         for (c = 0; c < mm->mm_children; c++) {
 410                 if (!mm->mm_child[c].mc_tried) {
 411                         vdev_queue_register_last_queued_offset(
 412                             mm->mm_child[c].mc_vd, zio);
 413                         return (c);
 414                 }
 415         }
 416 
 417         /*
 418          * Every child failed.  There's no place left to look.
 419          */
 420         return (-1);
 421 }
 422 
 423 static int
 424 vdev_mirror_io_start(zio_t *zio)
 425 {
 426         mirror_map_t *mm;
 427         mirror_child_t *mc;
 428         int c, children;
 429 
 430         mm = vdev_mirror_map_init(zio);
 431 
 432         if (zio->io_type == ZIO_TYPE_READ) {
 433                 if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing) {
 434                         /*
 435                          * For scrubbing reads we need to allocate a read
 436                          * buffer for each child and issue reads to all
 437                          * children.  If any child succeeds, it will copy its
 438                          * data into zio->io_data in vdev_mirror_scrub_done.
 439                          */
 440                         for (c = 0; c < mm->mm_children; c++) {
 441                                 mc = &mm->mm_child[c];
 442                                 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
 443                                     mc->mc_vd, mc->mc_offset,
 444                                     zio_buf_alloc(zio->io_size), zio->io_size,
 445                                     zio->io_type, zio->io_priority, 0,
 446                                     vdev_mirror_scrub_done, mc));
 447                         }
 448                         return (ZIO_PIPELINE_CONTINUE);
 449                 }
 450                 /*