1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2013 by Delphix. All rights reserved. 28 * Copyright (c) 2013 Steven Hartland. All rights reserved. 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/spa.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/zio.h> 35 #include <sys/fs/zfs.h> 36 37 /* 38 * Virtual device vector for mirroring. 39 */ 40 41 typedef struct mirror_child { 42 vdev_t *mc_vd; 43 uint64_t mc_offset; 44 int mc_error; 45 int mc_load; 46 uint8_t mc_tried; 47 uint8_t mc_skipped; 48 uint8_t mc_speculative; 49 } mirror_child_t; 50 51 typedef struct mirror_map { 52 int *mm_preferred; 53 int mm_preferred_cnt; 54 int mm_children; 55 boolean_t mm_replacing; 56 boolean_t mm_root; 57 mirror_child_t mm_child[]; 58 } mirror_map_t; 59 60 int zfs_vdev_mirror_shift = 21; 61 62 /* 63 * The load configuration settings below are tuned by default for 64 * the case where all devices are of the same rotational type. 65 * 66 * If there is a mixture of rotating and non-rotating media, setting 67 * non_rotating_seek_inc to 0 may well provide better results as it 68 * will direct more reads to the non-rotating vdevs which are more 69 * likely to have a higher performance. 70 */ 71 72 /* Rotating media load calculation configuration. */ 73 /* Rotating media load increment for non-seeking I/O's. */ 74 int zfs_vdev_mirror_rotating_inc = 0; 75 76 /* Rotating media load increment for seeking I/O's. */ 77 int zfs_vdev_mirror_rotating_seek_inc = 5; 78 79 /* 80 * Offset in bytes from the last I/O which triggers a reduced rotating media 81 * seek increment. 82 */ 83 int zfs_vdev_mirror_rotating_seek_offset = 1 * 1024 * 1024; 84 85 /* Non-rotating media load calculation configuration. */ 86 /* Non-rotating media load increment for non-seeking I/O's. */ 87 int zfs_vdev_mirror_non_rotating_inc = 0; 88 89 /* Non-rotating media load increment for seeking I/O's. */ 90 int zfs_vdev_mirror_non_rotating_seek_inc = 1; 91 92 static inline size_t 93 vdev_mirror_map_size(int children) 94 { 95 return (offsetof(mirror_map_t, mm_child[children]) + 96 sizeof (int) * children); 97 } 98 99 static inline mirror_map_t * 100 vdev_mirror_map_alloc(int children, boolean_t replacing, boolean_t root) 101 { 102 mirror_map_t *mm; 103 104 mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP); 105 mm->mm_children = children; 106 mm->mm_replacing = replacing; 107 mm->mm_root = root; 108 mm->mm_preferred = (int *)((uintptr_t)mm + 109 offsetof(mirror_map_t, mm_child[children])); 110 111 return (mm); 112 } 113 114 static void 115 vdev_mirror_map_free(zio_t *zio) 116 { 117 mirror_map_t *mm = zio->io_vsd; 118 119 kmem_free(mm, vdev_mirror_map_size(mm->mm_children)); 120 } 121 122 static const zio_vsd_ops_t vdev_mirror_vsd_ops = { 123 vdev_mirror_map_free, 124 zio_vsd_default_cksum_report 125 }; 126 127 /* 128 * Calculate and return the load of the specified vdev adjusted for a zio at 129 * the given offset. 130 * 131 * The calcuation takes into account the vdev's: 132 * 1. Rotation rate 133 * 2. The distance of zio_offset from the last queued request 134 */ 135 static int 136 vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset) 137 { 138 uint64_t lastoffset; 139 int load; 140 141 /* All DVAs have equal weight at the root. */ 142 if (mm->mm_root) 143 return (INT_MAX); 144 145 /* 146 * We don't return INT_MAX if the device is resilvering i.e. 147 * vdev_resilver_txg != 0 as when tested performance was slightly 148 * worse overall when resilvering with compared to without. 149 */ 150 151 /* Standard load based on pending queue length. */ 152 load = vdev_queue_length(vd); 153 lastoffset = vdev_queue_last_queued_offset(vd); 154 155 if (vd->vdev_rotation_rate == VDEV_RATE_NON_ROTATING) { 156 /* Non-rotating media. */ 157 if (lastoffset == zio_offset) 158 return (load + zfs_vdev_mirror_non_rotating_inc); 159 160 /* 161 * Apply a seek penalty even for non-rotating devices as 162 * sequential I/O'a can be aggregated into fewer operations 163 * on the device, thus avoiding unnecessary per-command 164 * overhead and boosting performance. 165 */ 166 return (load + zfs_vdev_mirror_non_rotating_seek_inc); 167 } 168 169 /* Rotating media I/O's which directly follow the last I/O. */ 170 if (lastoffset == zio_offset) 171 return (load + zfs_vdev_mirror_rotating_inc); 172 173 /* 174 * Apply half the seek increment to I/O's within seek offset 175 * of the last I/O queued to this vdev as they should incure less 176 * of a seek increment. 177 */ 178 if (ABS(lastoffset - zio_offset) < 179 zfs_vdev_mirror_rotating_seek_offset) 180 return (load + (zfs_vdev_mirror_rotating_seek_inc / 2)); 181 182 /* Apply the full seek increment to all other I/O's. */ 183 return (load + zfs_vdev_mirror_rotating_seek_inc); 184 } 185 186 187 static mirror_map_t * 188 vdev_mirror_map_init(zio_t *zio) 189 { 190 mirror_map_t *mm = NULL; 191 mirror_child_t *mc; 192 vdev_t *vd = zio->io_vd; 193 int c; 194 195 if (vd == NULL) { 196 dva_t *dva = zio->io_bp->blk_dva; 197 spa_t *spa = zio->io_spa; 198 199 mm = vdev_mirror_map_alloc(BP_GET_NDVAS(zio->io_bp), B_FALSE, 200 B_TRUE); 201 for (c = 0; c < mm->mm_children; c++) { 202 mc = &mm->mm_child[c]; 203 mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c])); 204 mc->mc_offset = DVA_GET_OFFSET(&dva[c]); 205 } 206 } else { 207 mm = vdev_mirror_map_alloc(vd->vdev_children, 208 (vd->vdev_ops == &vdev_replacing_ops || 209 vd->vdev_ops == &vdev_spare_ops), B_FALSE); 210 for (c = 0; c < mm->mm_children; c++) { 211 mc = &mm->mm_child[c]; 212 mc->mc_vd = vd->vdev_child[c]; 213 mc->mc_offset = zio->io_offset; 214 } 215 } 216 217 zio->io_vsd = mm; 218 zio->io_vsd_ops = &vdev_mirror_vsd_ops; 219 return (mm); 220 } 221 222 static int 223 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize, 224 uint64_t *ashift) 225 { 226 int numerrors = 0; 227 int lasterror = 0; 228 229 if (vd->vdev_children == 0) { 230 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 231 return (SET_ERROR(EINVAL)); 232 } 233 234 vdev_open_children(vd); 235 236 for (int c = 0; c < vd->vdev_children; c++) { 237 vdev_t *cvd = vd->vdev_child[c]; 238 239 if (cvd->vdev_open_error) { 240 lasterror = cvd->vdev_open_error; 241 numerrors++; 242 continue; 243 } 244 245 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1; 246 *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1; 247 *ashift = MAX(*ashift, cvd->vdev_ashift); 248 } 249 250 if (numerrors == vd->vdev_children) { 251 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS; 252 return (lasterror); 253 } 254 255 return (0); 256 } 257 258 static void 259 vdev_mirror_close(vdev_t *vd) 260 { 261 for (int c = 0; c < vd->vdev_children; c++) 262 vdev_close(vd->vdev_child[c]); 263 } 264 265 static void 266 vdev_mirror_child_done(zio_t *zio) 267 { 268 mirror_child_t *mc = zio->io_private; 269 270 mc->mc_error = zio->io_error; 271 mc->mc_tried = 1; 272 mc->mc_skipped = 0; 273 } 274 275 static void 276 vdev_mirror_scrub_done(zio_t *zio) 277 { 278 mirror_child_t *mc = zio->io_private; 279 280 if (zio->io_error == 0) { 281 zio_t *pio; 282 283 mutex_enter(&zio->io_lock); 284 while ((pio = zio_walk_parents(zio)) != NULL) { 285 mutex_enter(&pio->io_lock); 286 ASSERT3U(zio->io_size, >=, pio->io_size); 287 bcopy(zio->io_data, pio->io_data, pio->io_size); 288 mutex_exit(&pio->io_lock); 289 } 290 mutex_exit(&zio->io_lock); 291 } 292 293 zio_buf_free(zio->io_data, zio->io_size); 294 295 mc->mc_error = zio->io_error; 296 mc->mc_tried = 1; 297 mc->mc_skipped = 0; 298 } 299 300 /* 301 * Check the other, lower-index DVAs to see if they're on the same 302 * vdev as the child we picked. If they are, use them since they 303 * are likely to have been allocated from the primary metaslab in 304 * use at the time, and hence are more likely to have locality with 305 * single-copy data. 306 */ 307 static int 308 vdev_mirror_dva_select(zio_t *zio, int preferred) 309 { 310 dva_t *dva = zio->io_bp->blk_dva; 311 int c; 312 313 for (c = preferred - 1; c >= 0; c--) { 314 if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred])) 315 preferred = c; 316 } 317 return (preferred); 318 } 319 320 static int 321 vdev_mirror_preferred_child_randomize(zio_t *zio) 322 { 323 mirror_map_t *mm = zio->io_vsd; 324 int p; 325 326 if (mm->mm_root) { 327 p = spa_get_random(mm->mm_preferred_cnt); 328 return (vdev_mirror_dva_select(zio, mm->mm_preferred[p])); 329 } 330 331 /* 332 * To ensure we don't always favour the first matching vdev, 333 * which could lead to wear leveling issues on SSD's, we 334 * use the I/O offset as a pseudo random seed into the vdevs 335 * which have the lowest load. 336 */ 337 p = (zio->io_offset >> zfs_vdev_mirror_shift) % mm->mm_preferred_cnt; 338 return (mm->mm_preferred[p]); 339 } 340 341 /* 342 * Try to find a vdev whose DTL doesn't contain the block we want to read 343 * prefering vdevs based on determined load. 344 * 345 * If we can't, try the read on any vdev we haven't already tried. 346 */ 347 static int 348 vdev_mirror_child_select(zio_t *zio) 349 { 350 mirror_map_t *mm = zio->io_vsd; 351 uint64_t txg = zio->io_txg; 352 int c, lowest_load; 353 354 ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg); 355 356 lowest_load = INT_MAX; 357 mm->mm_preferred_cnt = 0; 358 for (c = 0; c < mm->mm_children; c++) { 359 mirror_child_t *mc; 360 361 mc = &mm->mm_child[c]; 362 if (mc->mc_tried || mc->mc_skipped) 363 continue; 364 365 if (!vdev_readable(mc->mc_vd)) { 366 mc->mc_error = SET_ERROR(ENXIO); 367 mc->mc_tried = 1; /* don't even try */ 368 mc->mc_skipped = 1; 369 continue; 370 } 371 372 if (vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) { 373 mc->mc_error = SET_ERROR(ESTALE); 374 mc->mc_skipped = 1; 375 mc->mc_speculative = 1; 376 continue; 377 } 378 379 mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset); 380 if (mc->mc_load > lowest_load) 381 continue; 382 383 if (mc->mc_load < lowest_load) { 384 lowest_load = mc->mc_load; 385 mm->mm_preferred_cnt = 0; 386 } 387 mm->mm_preferred[mm->mm_preferred_cnt] = c; 388 mm->mm_preferred_cnt++; 389 } 390 391 if (mm->mm_preferred_cnt == 1) { 392 vdev_queue_register_last_queued_offset( 393 mm->mm_child[mm->mm_preferred[0]].mc_vd, zio); 394 return (mm->mm_preferred[0]); 395 } 396 397 if (mm->mm_preferred_cnt > 1) { 398 int c = vdev_mirror_preferred_child_randomize(zio); 399 400 vdev_queue_register_last_queued_offset(mm->mm_child[c].mc_vd, 401 zio); 402 return (c); 403 } 404 405 /* 406 * Every device is either missing or has this txg in its DTL. 407 * Look for any child we haven't already tried before giving up. 408 */ 409 for (c = 0; c < mm->mm_children; c++) { 410 if (!mm->mm_child[c].mc_tried) { 411 vdev_queue_register_last_queued_offset( 412 mm->mm_child[c].mc_vd, zio); 413 return (c); 414 } 415 } 416 417 /* 418 * Every child failed. There's no place left to look. 419 */ 420 return (-1); 421 } 422 423 static int 424 vdev_mirror_io_start(zio_t *zio) 425 { 426 mirror_map_t *mm; 427 mirror_child_t *mc; 428 int c, children; 429 430 mm = vdev_mirror_map_init(zio); 431 432 if (zio->io_type == ZIO_TYPE_READ) { 433 if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing) { 434 /* 435 * For scrubbing reads we need to allocate a read 436 * buffer for each child and issue reads to all 437 * children. If any child succeeds, it will copy its 438 * data into zio->io_data in vdev_mirror_scrub_done. 439 */ 440 for (c = 0; c < mm->mm_children; c++) { 441 mc = &mm->mm_child[c]; 442 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 443 mc->mc_vd, mc->mc_offset, 444 zio_buf_alloc(zio->io_size), zio->io_size, 445 zio->io_type, zio->io_priority, 0, 446 vdev_mirror_scrub_done, mc)); 447 } 448 return (ZIO_PIPELINE_CONTINUE); 449 } 450 /* 451 * For normal reads just pick one child. 452 */ 453 c = vdev_mirror_child_select(zio); 454 children = (c >= 0); 455 } else { 456 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 457 458 /* 459 * Writes go to all children. 460 */ 461 c = 0; 462 children = mm->mm_children; 463 } 464 465 while (children--) { 466 mc = &mm->mm_child[c]; 467 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 468 mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size, 469 zio->io_type, zio->io_priority, 0, 470 vdev_mirror_child_done, mc)); 471 c++; 472 } 473 474 return (ZIO_PIPELINE_CONTINUE); 475 } 476 477 static int 478 vdev_mirror_worst_error(mirror_map_t *mm) 479 { 480 int error[2] = { 0, 0 }; 481 482 for (int c = 0; c < mm->mm_children; c++) { 483 mirror_child_t *mc = &mm->mm_child[c]; 484 int s = mc->mc_speculative; 485 error[s] = zio_worst_error(error[s], mc->mc_error); 486 } 487 488 return (error[0] ? error[0] : error[1]); 489 } 490 491 static void 492 vdev_mirror_io_done(zio_t *zio) 493 { 494 mirror_map_t *mm = zio->io_vsd; 495 mirror_child_t *mc; 496 int c; 497 int good_copies = 0; 498 int unexpected_errors = 0; 499 500 for (c = 0; c < mm->mm_children; c++) { 501 mc = &mm->mm_child[c]; 502 503 if (mc->mc_error) { 504 if (!mc->mc_skipped) 505 unexpected_errors++; 506 } else if (mc->mc_tried) { 507 good_copies++; 508 } 509 } 510 511 if (zio->io_type == ZIO_TYPE_WRITE) { 512 /* 513 * XXX -- for now, treat partial writes as success. 514 * 515 * Now that we support write reallocation, it would be better 516 * to treat partial failure as real failure unless there are 517 * no non-degraded top-level vdevs left, and not update DTLs 518 * if we intend to reallocate. 519 */ 520 /* XXPOLICY */ 521 if (good_copies != mm->mm_children) { 522 /* 523 * Always require at least one good copy. 524 * 525 * For ditto blocks (io_vd == NULL), require 526 * all copies to be good. 527 * 528 * XXX -- for replacing vdevs, there's no great answer. 529 * If the old device is really dead, we may not even 530 * be able to access it -- so we only want to 531 * require good writes to the new device. But if 532 * the new device turns out to be flaky, we want 533 * to be able to detach it -- which requires all 534 * writes to the old device to have succeeded. 535 */ 536 if (good_copies == 0 || zio->io_vd == NULL) 537 zio->io_error = vdev_mirror_worst_error(mm); 538 } 539 return; 540 } 541 542 ASSERT(zio->io_type == ZIO_TYPE_READ); 543 544 /* 545 * If we don't have a good copy yet, keep trying other children. 546 */ 547 /* XXPOLICY */ 548 if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) { 549 ASSERT(c >= 0 && c < mm->mm_children); 550 mc = &mm->mm_child[c]; 551 zio_vdev_io_redone(zio); 552 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 553 mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size, 554 ZIO_TYPE_READ, zio->io_priority, 0, 555 vdev_mirror_child_done, mc)); 556 return; 557 } 558 559 /* XXPOLICY */ 560 if (good_copies == 0) { 561 zio->io_error = vdev_mirror_worst_error(mm); 562 ASSERT(zio->io_error != 0); 563 } 564 565 if (good_copies && spa_writeable(zio->io_spa) && 566 (unexpected_errors || 567 (zio->io_flags & ZIO_FLAG_RESILVER) || 568 ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_replacing))) { 569 /* 570 * Use the good data we have in hand to repair damaged children. 571 */ 572 for (c = 0; c < mm->mm_children; c++) { 573 /* 574 * Don't rewrite known good children. 575 * Not only is it unnecessary, it could 576 * actually be harmful: if the system lost 577 * power while rewriting the only good copy, 578 * there would be no good copies left! 579 */ 580 mc = &mm->mm_child[c]; 581 582 if (mc->mc_error == 0) { 583 if (mc->mc_tried) 584 continue; 585 if (!(zio->io_flags & ZIO_FLAG_SCRUB) && 586 !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL, 587 zio->io_txg, 1)) 588 continue; 589 mc->mc_error = SET_ERROR(ESTALE); 590 } 591 592 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 593 mc->mc_vd, mc->mc_offset, 594 zio->io_data, zio->io_size, 595 ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE, 596 ZIO_FLAG_IO_REPAIR | (unexpected_errors ? 597 ZIO_FLAG_SELF_HEAL : 0), NULL, NULL)); 598 } 599 } 600 } 601 602 static void 603 vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded) 604 { 605 if (faulted == vd->vdev_children) 606 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 607 VDEV_AUX_NO_REPLICAS); 608 else if (degraded + faulted != 0) 609 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); 610 else 611 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE); 612 } 613 614 vdev_ops_t vdev_mirror_ops = { 615 vdev_mirror_open, 616 vdev_mirror_close, 617 vdev_default_asize, 618 vdev_mirror_io_start, 619 vdev_mirror_io_done, 620 vdev_mirror_state_change, 621 NULL, 622 NULL, 623 VDEV_TYPE_MIRROR, /* name of this vdev type */ 624 B_FALSE /* not a leaf vdev */ 625 }; 626 627 vdev_ops_t vdev_replacing_ops = { 628 vdev_mirror_open, 629 vdev_mirror_close, 630 vdev_default_asize, 631 vdev_mirror_io_start, 632 vdev_mirror_io_done, 633 vdev_mirror_state_change, 634 NULL, 635 NULL, 636 VDEV_TYPE_REPLACING, /* name of this vdev type */ 637 B_FALSE /* not a leaf vdev */ 638 }; 639 640 vdev_ops_t vdev_spare_ops = { 641 vdev_mirror_open, 642 vdev_mirror_close, 643 vdev_default_asize, 644 vdev_mirror_io_start, 645 vdev_mirror_io_done, 646 vdev_mirror_state_change, 647 NULL, 648 NULL, 649 VDEV_TYPE_SPARE, /* name of this vdev type */ 650 B_FALSE /* not a leaf vdev */ 651 };