Print this page
Optimize creation and removal of temporary "user holds" placed on
snapshots by a zfs send, by ensuring all the required holds and
releases are done in a single dsl_sync_task.
Creation now collates the required holds during a dry run and
then uses a single lzc_hold call via zfs_hold_apply instead of
processing each snapshot in turn.
Defered (on exit) cleanup by the kernel is also now done in
dsl_sync_task by reusing dsl_dataset_user_release.
On a test with 11 volumes in a tree each with 8 snapshots on a
single HDD zpool this reduces the time required to perform a full
send from 20 seconds to under 0.8 seconds.
For reference eliminating the hold entirely reduces this 0.15
seconds.
While I'm here:-
* Remove some unused structures
* Fix nvlist_t leak in zfs_release_one
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/zfs/dsl_pool.c
+++ new/usr/src/uts/common/fs/zfs/dsl_pool.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 24 */
25 25
26 26 #include <sys/dsl_pool.h>
27 27 #include <sys/dsl_dataset.h>
28 28 #include <sys/dsl_prop.h>
29 29 #include <sys/dsl_dir.h>
30 30 #include <sys/dsl_synctask.h>
31 31 #include <sys/dsl_scan.h>
32 32 #include <sys/dnode.h>
33 33 #include <sys/dmu_tx.h>
34 34 #include <sys/dmu_objset.h>
35 35 #include <sys/arc.h>
36 36 #include <sys/zap.h>
37 37 #include <sys/zio.h>
38 38 #include <sys/zfs_context.h>
39 39 #include <sys/fs/zfs.h>
40 40 #include <sys/zfs_znode.h>
41 41 #include <sys/spa_impl.h>
42 42 #include <sys/dsl_deadlist.h>
43 43 #include <sys/bptree.h>
44 44 #include <sys/zfeature.h>
45 45 #include <sys/zil_impl.h>
46 46 #include <sys/dsl_userhold.h>
47 47
48 48 int zfs_no_write_throttle = 0;
49 49 int zfs_write_limit_shift = 3; /* 1/8th of physical memory */
50 50 int zfs_txg_synctime_ms = 1000; /* target millisecs to sync a txg */
51 51
52 52 uint64_t zfs_write_limit_min = 32 << 20; /* min write limit is 32MB */
53 53 uint64_t zfs_write_limit_max = 0; /* max data payload per txg */
54 54 uint64_t zfs_write_limit_inflated = 0;
55 55 uint64_t zfs_write_limit_override = 0;
56 56
57 57 kmutex_t zfs_write_limit_lock;
58 58
59 59 static pgcnt_t old_physmem = 0;
60 60
61 61 hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
62 62 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
63 63
64 64 int
65 65 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
66 66 {
67 67 uint64_t obj;
68 68 int err;
69 69
70 70 err = zap_lookup(dp->dp_meta_objset,
71 71 dp->dp_root_dir->dd_phys->dd_child_dir_zapobj,
72 72 name, sizeof (obj), 1, &obj);
73 73 if (err)
74 74 return (err);
75 75
76 76 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
77 77 }
78 78
79 79 static dsl_pool_t *
80 80 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
81 81 {
82 82 dsl_pool_t *dp;
83 83 blkptr_t *bp = spa_get_rootblkptr(spa);
84 84
85 85 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
86 86 dp->dp_spa = spa;
87 87 dp->dp_meta_rootbp = *bp;
88 88 rrw_init(&dp->dp_config_rwlock, B_TRUE);
89 89 dp->dp_write_limit = zfs_write_limit_min;
90 90 txg_init(dp, txg);
91 91
92 92 txg_list_create(&dp->dp_dirty_datasets,
93 93 offsetof(dsl_dataset_t, ds_dirty_link));
94 94 txg_list_create(&dp->dp_dirty_zilogs,
95 95 offsetof(zilog_t, zl_dirty_link));
96 96 txg_list_create(&dp->dp_dirty_dirs,
97 97 offsetof(dsl_dir_t, dd_dirty_link));
98 98 txg_list_create(&dp->dp_sync_tasks,
99 99 offsetof(dsl_sync_task_t, dst_node));
100 100
101 101 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
102 102
103 103 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
104 104 1, 4, 0);
105 105
106 106 return (dp);
107 107 }
108 108
109 109 int
110 110 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
111 111 {
112 112 int err;
113 113 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
114 114
115 115 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
116 116 &dp->dp_meta_objset);
117 117 if (err != 0)
118 118 dsl_pool_close(dp);
119 119 else
120 120 *dpp = dp;
121 121
122 122 return (err);
123 123 }
124 124
125 125 int
126 126 dsl_pool_open(dsl_pool_t *dp)
127 127 {
128 128 int err;
129 129 dsl_dir_t *dd;
130 130 dsl_dataset_t *ds;
131 131 uint64_t obj;
132 132
133 133 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
134 134 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
135 135 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
136 136 &dp->dp_root_dir_obj);
137 137 if (err)
138 138 goto out;
139 139
140 140 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
141 141 NULL, dp, &dp->dp_root_dir);
142 142 if (err)
143 143 goto out;
144 144
145 145 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
146 146 if (err)
147 147 goto out;
148 148
149 149 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
150 150 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
151 151 if (err)
152 152 goto out;
153 153 err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj,
154 154 FTAG, &ds);
155 155 if (err == 0) {
156 156 err = dsl_dataset_hold_obj(dp,
157 157 ds->ds_phys->ds_prev_snap_obj, dp,
158 158 &dp->dp_origin_snap);
159 159 dsl_dataset_rele(ds, FTAG);
160 160 }
161 161 dsl_dir_rele(dd, dp);
162 162 if (err)
163 163 goto out;
164 164 }
165 165
166 166 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
167 167 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
168 168 &dp->dp_free_dir);
169 169 if (err)
170 170 goto out;
171 171
172 172 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
173 173 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
174 174 if (err)
175 175 goto out;
176 176 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
177 177 dp->dp_meta_objset, obj));
178 178 }
179 179
180 180 if (spa_feature_is_active(dp->dp_spa,
181 181 &spa_feature_table[SPA_FEATURE_ASYNC_DESTROY])) {
182 182 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
183 183 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
184 184 &dp->dp_bptree_obj);
185 185 if (err != 0)
186 186 goto out;
187 187 }
188 188
189 189 if (spa_feature_is_active(dp->dp_spa,
190 190 &spa_feature_table[SPA_FEATURE_EMPTY_BPOBJ])) {
191 191 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
192 192 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
193 193 &dp->dp_empty_bpobj);
194 194 if (err != 0)
195 195 goto out;
196 196 }
197 197
198 198 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
199 199 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
200 200 &dp->dp_tmp_userrefs_obj);
201 201 if (err == ENOENT)
202 202 err = 0;
203 203 if (err)
204 204 goto out;
205 205
206 206 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
207 207
208 208 out:
209 209 rrw_exit(&dp->dp_config_rwlock, FTAG);
210 210 return (err);
211 211 }
212 212
213 213 void
214 214 dsl_pool_close(dsl_pool_t *dp)
215 215 {
216 216 /* drop our references from dsl_pool_open() */
217 217
218 218 /*
219 219 * Since we held the origin_snap from "syncing" context (which
220 220 * includes pool-opening context), it actually only got a "ref"
221 221 * and not a hold, so just drop that here.
222 222 */
223 223 if (dp->dp_origin_snap)
224 224 dsl_dataset_rele(dp->dp_origin_snap, dp);
225 225 if (dp->dp_mos_dir)
226 226 dsl_dir_rele(dp->dp_mos_dir, dp);
227 227 if (dp->dp_free_dir)
228 228 dsl_dir_rele(dp->dp_free_dir, dp);
229 229 if (dp->dp_root_dir)
230 230 dsl_dir_rele(dp->dp_root_dir, dp);
231 231
232 232 bpobj_close(&dp->dp_free_bpobj);
233 233
234 234 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
235 235 if (dp->dp_meta_objset)
236 236 dmu_objset_evict(dp->dp_meta_objset);
237 237
238 238 txg_list_destroy(&dp->dp_dirty_datasets);
239 239 txg_list_destroy(&dp->dp_dirty_zilogs);
240 240 txg_list_destroy(&dp->dp_sync_tasks);
241 241 txg_list_destroy(&dp->dp_dirty_dirs);
242 242
243 243 arc_flush(dp->dp_spa);
244 244 txg_fini(dp);
245 245 dsl_scan_fini(dp);
246 246 rrw_destroy(&dp->dp_config_rwlock);
247 247 mutex_destroy(&dp->dp_lock);
248 248 taskq_destroy(dp->dp_vnrele_taskq);
249 249 if (dp->dp_blkstats)
250 250 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
251 251 kmem_free(dp, sizeof (dsl_pool_t));
252 252 }
253 253
254 254 dsl_pool_t *
255 255 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
256 256 {
257 257 int err;
258 258 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
259 259 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
260 260 objset_t *os;
261 261 dsl_dataset_t *ds;
262 262 uint64_t obj;
263 263
264 264 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
265 265
266 266 /* create and open the MOS (meta-objset) */
267 267 dp->dp_meta_objset = dmu_objset_create_impl(spa,
268 268 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
269 269
270 270 /* create the pool directory */
271 271 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
272 272 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
273 273 ASSERT0(err);
274 274
275 275 /* Initialize scan structures */
276 276 VERIFY0(dsl_scan_init(dp, txg));
277 277
278 278 /* create and open the root dir */
279 279 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
280 280 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
281 281 NULL, dp, &dp->dp_root_dir));
282 282
283 283 /* create and open the meta-objset dir */
284 284 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
285 285 VERIFY0(dsl_pool_open_special_dir(dp,
286 286 MOS_DIR_NAME, &dp->dp_mos_dir));
287 287
288 288 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
289 289 /* create and open the free dir */
290 290 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
291 291 FREE_DIR_NAME, tx);
292 292 VERIFY0(dsl_pool_open_special_dir(dp,
293 293 FREE_DIR_NAME, &dp->dp_free_dir));
294 294
295 295 /* create and open the free_bplist */
296 296 obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx);
297 297 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
298 298 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
299 299 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
300 300 dp->dp_meta_objset, obj));
301 301 }
302 302
303 303 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
304 304 dsl_pool_create_origin(dp, tx);
305 305
306 306 /* create the root dataset */
307 307 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
308 308
309 309 /* create the root objset */
310 310 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
311 311 os = dmu_objset_create_impl(dp->dp_spa, ds,
312 312 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
313 313 #ifdef _KERNEL
314 314 zfs_create_fs(os, kcred, zplprops, tx);
315 315 #endif
316 316 dsl_dataset_rele(ds, FTAG);
317 317
318 318 dmu_tx_commit(tx);
319 319
320 320 rrw_exit(&dp->dp_config_rwlock, FTAG);
321 321
322 322 return (dp);
323 323 }
324 324
325 325 /*
326 326 * Account for the meta-objset space in its placeholder dsl_dir.
327 327 */
328 328 void
329 329 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
330 330 int64_t used, int64_t comp, int64_t uncomp)
331 331 {
332 332 ASSERT3U(comp, ==, uncomp); /* it's all metadata */
333 333 mutex_enter(&dp->dp_lock);
334 334 dp->dp_mos_used_delta += used;
335 335 dp->dp_mos_compressed_delta += comp;
336 336 dp->dp_mos_uncompressed_delta += uncomp;
337 337 mutex_exit(&dp->dp_lock);
338 338 }
339 339
340 340 static int
341 341 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
342 342 {
343 343 dsl_deadlist_t *dl = arg;
344 344 dsl_deadlist_insert(dl, bp, tx);
345 345 return (0);
346 346 }
347 347
348 348 void
349 349 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
350 350 {
351 351 zio_t *zio;
352 352 dmu_tx_t *tx;
353 353 dsl_dir_t *dd;
354 354 dsl_dataset_t *ds;
355 355 objset_t *mos = dp->dp_meta_objset;
356 356 hrtime_t start, write_time;
357 357 uint64_t data_written;
358 358 int err;
359 359 list_t synced_datasets;
360 360
361 361 list_create(&synced_datasets, sizeof (dsl_dataset_t),
362 362 offsetof(dsl_dataset_t, ds_synced_link));
363 363
364 364 /*
365 365 * We need to copy dp_space_towrite() before doing
366 366 * dsl_sync_task_sync(), because
367 367 * dsl_dataset_snapshot_reserve_space() will increase
368 368 * dp_space_towrite but not actually write anything.
369 369 */
370 370 data_written = dp->dp_space_towrite[txg & TXG_MASK];
371 371
372 372 tx = dmu_tx_create_assigned(dp, txg);
373 373
374 374 dp->dp_read_overhead = 0;
375 375 start = gethrtime();
376 376
377 377 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
378 378 while (ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) {
379 379 /*
380 380 * We must not sync any non-MOS datasets twice, because
381 381 * we may have taken a snapshot of them. However, we
382 382 * may sync newly-created datasets on pass 2.
383 383 */
384 384 ASSERT(!list_link_active(&ds->ds_synced_link));
385 385 list_insert_tail(&synced_datasets, ds);
386 386 dsl_dataset_sync(ds, zio, tx);
387 387 }
388 388 DTRACE_PROBE(pool_sync__1setup);
389 389 err = zio_wait(zio);
390 390
391 391 write_time = gethrtime() - start;
392 392 ASSERT(err == 0);
393 393 DTRACE_PROBE(pool_sync__2rootzio);
394 394
395 395 /*
396 396 * After the data blocks have been written (ensured by the zio_wait()
397 397 * above), update the user/group space accounting.
398 398 */
399 399 for (ds = list_head(&synced_datasets); ds;
400 400 ds = list_next(&synced_datasets, ds))
401 401 dmu_objset_do_userquota_updates(ds->ds_objset, tx);
402 402
403 403 /*
404 404 * Sync the datasets again to push out the changes due to
405 405 * userspace updates. This must be done before we process the
406 406 * sync tasks, so that any snapshots will have the correct
407 407 * user accounting information (and we won't get confused
408 408 * about which blocks are part of the snapshot).
409 409 */
410 410 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
411 411 while (ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) {
412 412 ASSERT(list_link_active(&ds->ds_synced_link));
413 413 dmu_buf_rele(ds->ds_dbuf, ds);
414 414 dsl_dataset_sync(ds, zio, tx);
415 415 }
416 416 err = zio_wait(zio);
417 417
418 418 /*
419 419 * Now that the datasets have been completely synced, we can
420 420 * clean up our in-memory structures accumulated while syncing:
421 421 *
422 422 * - move dead blocks from the pending deadlist to the on-disk deadlist
423 423 * - release hold from dsl_dataset_dirty()
424 424 */
425 425 while (ds = list_remove_head(&synced_datasets)) {
426 426 objset_t *os = ds->ds_objset;
427 427 bplist_iterate(&ds->ds_pending_deadlist,
428 428 deadlist_enqueue_cb, &ds->ds_deadlist, tx);
429 429 ASSERT(!dmu_objset_is_dirty(os, txg));
430 430 dmu_buf_rele(ds->ds_dbuf, ds);
431 431 }
432 432
433 433 start = gethrtime();
434 434 while (dd = txg_list_remove(&dp->dp_dirty_dirs, txg))
435 435 dsl_dir_sync(dd, tx);
436 436 write_time += gethrtime() - start;
437 437
438 438 /*
439 439 * The MOS's space is accounted for in the pool/$MOS
440 440 * (dp_mos_dir). We can't modify the mos while we're syncing
441 441 * it, so we remember the deltas and apply them here.
442 442 */
443 443 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
444 444 dp->dp_mos_uncompressed_delta != 0) {
445 445 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
446 446 dp->dp_mos_used_delta,
447 447 dp->dp_mos_compressed_delta,
448 448 dp->dp_mos_uncompressed_delta, tx);
449 449 dp->dp_mos_used_delta = 0;
450 450 dp->dp_mos_compressed_delta = 0;
451 451 dp->dp_mos_uncompressed_delta = 0;
452 452 }
453 453
454 454 start = gethrtime();
455 455 if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
456 456 list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
457 457 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
458 458 dmu_objset_sync(mos, zio, tx);
459 459 err = zio_wait(zio);
460 460 ASSERT(err == 0);
461 461 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
462 462 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
463 463 }
464 464 write_time += gethrtime() - start;
465 465 DTRACE_PROBE2(pool_sync__4io, hrtime_t, write_time,
466 466 hrtime_t, dp->dp_read_overhead);
467 467 write_time -= dp->dp_read_overhead;
468 468
469 469 /*
470 470 * If we modify a dataset in the same txg that we want to destroy it,
471 471 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
472 472 * dsl_dir_destroy_check() will fail if there are unexpected holds.
473 473 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
474 474 * and clearing the hold on it) before we process the sync_tasks.
475 475 * The MOS data dirtied by the sync_tasks will be synced on the next
476 476 * pass.
477 477 */
478 478 DTRACE_PROBE(pool_sync__3task);
479 479 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
480 480 dsl_sync_task_t *dst;
481 481 /*
482 482 * No more sync tasks should have been added while we
483 483 * were syncing.
484 484 */
485 485 ASSERT(spa_sync_pass(dp->dp_spa) == 1);
486 486 while (dst = txg_list_remove(&dp->dp_sync_tasks, txg))
487 487 dsl_sync_task_sync(dst, tx);
488 488 }
489 489
490 490 dmu_tx_commit(tx);
491 491
492 492 dp->dp_space_towrite[txg & TXG_MASK] = 0;
493 493 ASSERT(dp->dp_tempreserved[txg & TXG_MASK] == 0);
494 494
495 495 /*
496 496 * If the write limit max has not been explicitly set, set it
497 497 * to a fraction of available physical memory (default 1/8th).
498 498 * Note that we must inflate the limit because the spa
499 499 * inflates write sizes to account for data replication.
500 500 * Check this each sync phase to catch changing memory size.
501 501 */
502 502 if (physmem != old_physmem && zfs_write_limit_shift) {
503 503 mutex_enter(&zfs_write_limit_lock);
504 504 old_physmem = physmem;
505 505 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
506 506 zfs_write_limit_inflated = MAX(zfs_write_limit_min,
507 507 spa_get_asize(dp->dp_spa, zfs_write_limit_max));
508 508 mutex_exit(&zfs_write_limit_lock);
509 509 }
510 510
511 511 /*
512 512 * Attempt to keep the sync time consistent by adjusting the
513 513 * amount of write traffic allowed into each transaction group.
514 514 * Weight the throughput calculation towards the current value:
515 515 * thru = 3/4 old_thru + 1/4 new_thru
516 516 *
517 517 * Note: write_time is in nanosecs while dp_throughput is expressed in
518 518 * bytes per millisecond.
519 519 */
520 520 ASSERT(zfs_write_limit_min > 0);
521 521 if (data_written > zfs_write_limit_min / 8 &&
522 522 write_time > MSEC2NSEC(1)) {
523 523 uint64_t throughput = data_written / NSEC2MSEC(write_time);
524 524
525 525 if (dp->dp_throughput)
526 526 dp->dp_throughput = throughput / 4 +
527 527 3 * dp->dp_throughput / 4;
528 528 else
529 529 dp->dp_throughput = throughput;
530 530 dp->dp_write_limit = MIN(zfs_write_limit_inflated,
531 531 MAX(zfs_write_limit_min,
532 532 dp->dp_throughput * zfs_txg_synctime_ms));
533 533 }
534 534 }
535 535
536 536 void
537 537 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
538 538 {
539 539 zilog_t *zilog;
540 540 dsl_dataset_t *ds;
541 541
542 542 while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) {
543 543 ds = dmu_objset_ds(zilog->zl_os);
544 544 zil_clean(zilog, txg);
545 545 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
546 546 dmu_buf_rele(ds->ds_dbuf, zilog);
547 547 }
548 548 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
549 549 }
550 550
551 551 /*
552 552 * TRUE if the current thread is the tx_sync_thread or if we
553 553 * are being called from SPA context during pool initialization.
554 554 */
555 555 int
556 556 dsl_pool_sync_context(dsl_pool_t *dp)
557 557 {
558 558 return (curthread == dp->dp_tx.tx_sync_thread ||
559 559 spa_is_initializing(dp->dp_spa));
560 560 }
561 561
562 562 uint64_t
563 563 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
564 564 {
565 565 uint64_t space, resv;
566 566
567 567 /*
568 568 * Reserve about 1.6% (1/64), or at least 32MB, for allocation
569 569 * efficiency.
570 570 * XXX The intent log is not accounted for, so it must fit
571 571 * within this slop.
572 572 *
573 573 * If we're trying to assess whether it's OK to do a free,
574 574 * cut the reservation in half to allow forward progress
575 575 * (e.g. make it possible to rm(1) files from a full pool).
576 576 */
577 577 space = spa_get_dspace(dp->dp_spa);
578 578 resv = MAX(space >> 6, SPA_MINDEVSIZE >> 1);
579 579 if (netfree)
580 580 resv >>= 1;
581 581
582 582 return (space - resv);
583 583 }
584 584
585 585 int
586 586 dsl_pool_tempreserve_space(dsl_pool_t *dp, uint64_t space, dmu_tx_t *tx)
587 587 {
588 588 uint64_t reserved = 0;
589 589 uint64_t write_limit = (zfs_write_limit_override ?
590 590 zfs_write_limit_override : dp->dp_write_limit);
591 591
592 592 if (zfs_no_write_throttle) {
593 593 atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK],
594 594 space);
595 595 return (0);
596 596 }
597 597
598 598 /*
599 599 * Check to see if we have exceeded the maximum allowed IO for
600 600 * this transaction group. We can do this without locks since
601 601 * a little slop here is ok. Note that we do the reserved check
602 602 * with only half the requested reserve: this is because the
603 603 * reserve requests are worst-case, and we really don't want to
604 604 * throttle based off of worst-case estimates.
605 605 */
606 606 if (write_limit > 0) {
607 607 reserved = dp->dp_space_towrite[tx->tx_txg & TXG_MASK]
608 608 + dp->dp_tempreserved[tx->tx_txg & TXG_MASK] / 2;
609 609
610 610 if (reserved && reserved > write_limit)
611 611 return (SET_ERROR(ERESTART));
612 612 }
613 613
614 614 atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], space);
615 615
616 616 /*
617 617 * If this transaction group is over 7/8ths capacity, delay
618 618 * the caller 1 clock tick. This will slow down the "fill"
619 619 * rate until the sync process can catch up with us.
620 620 */
621 621 if (reserved && reserved > (write_limit - (write_limit >> 3))) {
622 622 txg_delay(dp, tx->tx_txg, zfs_throttle_delay,
623 623 zfs_throttle_resolution);
624 624 }
625 625
626 626 return (0);
627 627 }
628 628
629 629 void
630 630 dsl_pool_tempreserve_clear(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
631 631 {
632 632 ASSERT(dp->dp_tempreserved[tx->tx_txg & TXG_MASK] >= space);
633 633 atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], -space);
634 634 }
635 635
636 636 void
637 637 dsl_pool_memory_pressure(dsl_pool_t *dp)
638 638 {
639 639 uint64_t space_inuse = 0;
640 640 int i;
641 641
642 642 if (dp->dp_write_limit == zfs_write_limit_min)
643 643 return;
644 644
645 645 for (i = 0; i < TXG_SIZE; i++) {
646 646 space_inuse += dp->dp_space_towrite[i];
647 647 space_inuse += dp->dp_tempreserved[i];
648 648 }
649 649 dp->dp_write_limit = MAX(zfs_write_limit_min,
650 650 MIN(dp->dp_write_limit, space_inuse / 4));
651 651 }
652 652
653 653 void
654 654 dsl_pool_willuse_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
655 655 {
656 656 if (space > 0) {
657 657 mutex_enter(&dp->dp_lock);
658 658 dp->dp_space_towrite[tx->tx_txg & TXG_MASK] += space;
659 659 mutex_exit(&dp->dp_lock);
660 660 }
661 661 }
662 662
663 663 /* ARGSUSED */
664 664 static int
665 665 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
666 666 {
667 667 dmu_tx_t *tx = arg;
668 668 dsl_dataset_t *ds, *prev = NULL;
669 669 int err;
670 670
671 671 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
672 672 if (err)
673 673 return (err);
674 674
675 675 while (ds->ds_phys->ds_prev_snap_obj != 0) {
676 676 err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
677 677 FTAG, &prev);
678 678 if (err) {
679 679 dsl_dataset_rele(ds, FTAG);
680 680 return (err);
681 681 }
682 682
683 683 if (prev->ds_phys->ds_next_snap_obj != ds->ds_object)
684 684 break;
685 685 dsl_dataset_rele(ds, FTAG);
686 686 ds = prev;
687 687 prev = NULL;
688 688 }
689 689
690 690 if (prev == NULL) {
691 691 prev = dp->dp_origin_snap;
692 692
693 693 /*
694 694 * The $ORIGIN can't have any data, or the accounting
695 695 * will be wrong.
696 696 */
697 697 ASSERT0(prev->ds_phys->ds_bp.blk_birth);
698 698
699 699 /* The origin doesn't get attached to itself */
700 700 if (ds->ds_object == prev->ds_object) {
701 701 dsl_dataset_rele(ds, FTAG);
702 702 return (0);
703 703 }
704 704
705 705 dmu_buf_will_dirty(ds->ds_dbuf, tx);
706 706 ds->ds_phys->ds_prev_snap_obj = prev->ds_object;
707 707 ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg;
708 708
709 709 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
710 710 ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object;
711 711
712 712 dmu_buf_will_dirty(prev->ds_dbuf, tx);
713 713 prev->ds_phys->ds_num_children++;
714 714
715 715 if (ds->ds_phys->ds_next_snap_obj == 0) {
716 716 ASSERT(ds->ds_prev == NULL);
717 717 VERIFY0(dsl_dataset_hold_obj(dp,
718 718 ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev));
719 719 }
720 720 }
721 721
722 722 ASSERT3U(ds->ds_dir->dd_phys->dd_origin_obj, ==, prev->ds_object);
723 723 ASSERT3U(ds->ds_phys->ds_prev_snap_obj, ==, prev->ds_object);
724 724
725 725 if (prev->ds_phys->ds_next_clones_obj == 0) {
726 726 dmu_buf_will_dirty(prev->ds_dbuf, tx);
727 727 prev->ds_phys->ds_next_clones_obj =
728 728 zap_create(dp->dp_meta_objset,
729 729 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
730 730 }
731 731 VERIFY0(zap_add_int(dp->dp_meta_objset,
732 732 prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx));
733 733
734 734 dsl_dataset_rele(ds, FTAG);
735 735 if (prev != dp->dp_origin_snap)
736 736 dsl_dataset_rele(prev, FTAG);
737 737 return (0);
738 738 }
739 739
740 740 void
741 741 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
742 742 {
743 743 ASSERT(dmu_tx_is_syncing(tx));
744 744 ASSERT(dp->dp_origin_snap != NULL);
745 745
746 746 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
747 747 tx, DS_FIND_CHILDREN));
748 748 }
749 749
750 750 /* ARGSUSED */
751 751 static int
752 752 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
753 753 {
754 754 dmu_tx_t *tx = arg;
755 755 objset_t *mos = dp->dp_meta_objset;
756 756
757 757 if (ds->ds_dir->dd_phys->dd_origin_obj != 0) {
758 758 dsl_dataset_t *origin;
759 759
760 760 VERIFY0(dsl_dataset_hold_obj(dp,
761 761 ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin));
762 762
763 763 if (origin->ds_dir->dd_phys->dd_clones == 0) {
764 764 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
765 765 origin->ds_dir->dd_phys->dd_clones = zap_create(mos,
766 766 DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx);
767 767 }
768 768
769 769 VERIFY0(zap_add_int(dp->dp_meta_objset,
770 770 origin->ds_dir->dd_phys->dd_clones, ds->ds_object, tx));
771 771
772 772 dsl_dataset_rele(origin, FTAG);
773 773 }
774 774 return (0);
775 775 }
776 776
777 777 void
778 778 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
779 779 {
780 780 ASSERT(dmu_tx_is_syncing(tx));
781 781 uint64_t obj;
782 782
783 783 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
784 784 VERIFY0(dsl_pool_open_special_dir(dp,
785 785 FREE_DIR_NAME, &dp->dp_free_dir));
786 786
787 787 /*
788 788 * We can't use bpobj_alloc(), because spa_version() still
789 789 * returns the old version, and we need a new-version bpobj with
790 790 * subobj support. So call dmu_object_alloc() directly.
791 791 */
792 792 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
793 793 SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
794 794 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
795 795 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
796 796 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
797 797
798 798 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
799 799 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN));
800 800 }
801 801
802 802 void
803 803 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
804 804 {
805 805 uint64_t dsobj;
806 806 dsl_dataset_t *ds;
807 807
808 808 ASSERT(dmu_tx_is_syncing(tx));
809 809 ASSERT(dp->dp_origin_snap == NULL);
810 810 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
811 811
812 812 /* create the origin dir, ds, & snap-ds */
813 813 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
814 814 NULL, 0, kcred, tx);
815 815 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
816 816 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
817 817 VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
818 818 dp, &dp->dp_origin_snap));
819 819 dsl_dataset_rele(ds, FTAG);
820 820 }
821 821
822 822 taskq_t *
823 823 dsl_pool_vnrele_taskq(dsl_pool_t *dp)
824 824 {
↓ open down ↓ |
824 lines elided |
↑ open up ↑ |
825 825 return (dp->dp_vnrele_taskq);
826 826 }
827 827
828 828 /*
829 829 * Walk through the pool-wide zap object of temporary snapshot user holds
830 830 * and release them.
831 831 */
832 832 void
833 833 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
834 834 {
835 + char *htag;
835 836 zap_attribute_t za;
836 837 zap_cursor_t zc;
837 838 objset_t *mos = dp->dp_meta_objset;
838 839 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
840 + uint64_t dsobj;
841 + nvlist_t *holds, *tags;
842 + dsl_dataset_t *ds;
843 + char name[MAXNAMELEN];
839 844
840 845 if (zapobj == 0)
841 846 return;
842 847 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
843 848
849 + holds = fnvlist_alloc();
850 +
851 + dsl_pool_config_enter(dp, FTAG);
844 852 for (zap_cursor_init(&zc, mos, zapobj);
845 853 zap_cursor_retrieve(&zc, &za) == 0;
846 854 zap_cursor_advance(&zc)) {
847 - char *htag;
848 - uint64_t dsobj;
849 -
850 855 htag = strchr(za.za_name, '-');
851 856 *htag = '\0';
852 857 ++htag;
853 858 dsobj = strtonum(za.za_name, NULL);
854 - dsl_dataset_user_release_tmp(dp, dsobj, htag);
859 + if (dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds) == 0) {
860 + dsl_dataset_name(ds, name);
861 + if (nvlist_lookup_nvlist(holds, name, &tags) != 0) {
862 + tags = fnvlist_alloc();
863 + fnvlist_add_boolean(tags, htag);
864 + fnvlist_add_nvlist(holds, name, tags);
865 + fnvlist_free(tags);
866 + } else {
867 + fnvlist_add_boolean(tags, htag);
868 + }
869 + dsl_dataset_rele(ds, FTAG);
870 + }
855 871 }
872 + dsl_pool_config_exit(dp, FTAG);
873 + dsl_dataset_user_release(holds, NULL);
874 + fnvlist_free(holds);
856 875 zap_cursor_fini(&zc);
857 876 }
858 877
859 878 /*
860 879 * Create the pool-wide zap object for storing temporary snapshot holds.
861 880 */
862 881 void
863 882 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
864 883 {
865 884 objset_t *mos = dp->dp_meta_objset;
866 885
867 886 ASSERT(dp->dp_tmp_userrefs_obj == 0);
868 887 ASSERT(dmu_tx_is_syncing(tx));
869 888
870 889 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
871 890 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
872 891 }
873 892
874 893 static int
875 894 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
876 895 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
877 896 {
878 897 objset_t *mos = dp->dp_meta_objset;
879 898 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
880 899 char *name;
881 900 int error;
882 901
883 902 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
884 903 ASSERT(dmu_tx_is_syncing(tx));
885 904
886 905 /*
887 906 * If the pool was created prior to SPA_VERSION_USERREFS, the
888 907 * zap object for temporary holds might not exist yet.
889 908 */
890 909 if (zapobj == 0) {
891 910 if (holding) {
892 911 dsl_pool_user_hold_create_obj(dp, tx);
893 912 zapobj = dp->dp_tmp_userrefs_obj;
894 913 } else {
895 914 return (SET_ERROR(ENOENT));
896 915 }
897 916 }
898 917
899 918 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
900 919 if (holding)
901 920 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
902 921 else
903 922 error = zap_remove(mos, zapobj, name, tx);
904 923 strfree(name);
905 924
906 925 return (error);
907 926 }
908 927
909 928 /*
910 929 * Add a temporary hold for the given dataset object and tag.
911 930 */
912 931 int
913 932 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
914 933 uint64_t now, dmu_tx_t *tx)
915 934 {
916 935 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
917 936 }
918 937
919 938 /*
920 939 * Release a temporary hold for the given dataset object and tag.
921 940 */
922 941 int
923 942 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
924 943 dmu_tx_t *tx)
925 944 {
926 945 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL,
927 946 tx, B_FALSE));
928 947 }
929 948
930 949 /*
931 950 * DSL Pool Configuration Lock
932 951 *
933 952 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
934 953 * creation / destruction / rename / property setting). It must be held for
935 954 * read to hold a dataset or dsl_dir. I.e. you must call
936 955 * dsl_pool_config_enter() or dsl_pool_hold() before calling
937 956 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
938 957 * must be held continuously until all datasets and dsl_dirs are released.
939 958 *
940 959 * The only exception to this rule is that if a "long hold" is placed on
941 960 * a dataset, then the dp_config_rwlock may be dropped while the dataset
942 961 * is still held. The long hold will prevent the dataset from being
943 962 * destroyed -- the destroy will fail with EBUSY. A long hold can be
944 963 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
945 964 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
946 965 *
947 966 * Legitimate long-holders (including owners) should be long-running, cancelable
948 967 * tasks that should cause "zfs destroy" to fail. This includes DMU
949 968 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
950 969 * "zfs send", and "zfs diff". There are several other long-holders whose
951 970 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
952 971 *
953 972 * The usual formula for long-holding would be:
954 973 * dsl_pool_hold()
955 974 * dsl_dataset_hold()
956 975 * ... perform checks ...
957 976 * dsl_dataset_long_hold()
958 977 * dsl_pool_rele()
959 978 * ... perform long-running task ...
960 979 * dsl_dataset_long_rele()
961 980 * dsl_dataset_rele()
962 981 *
963 982 * Note that when the long hold is released, the dataset is still held but
964 983 * the pool is not held. The dataset may change arbitrarily during this time
965 984 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the
966 985 * dataset except release it.
967 986 *
968 987 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
969 988 * or modifying operations.
970 989 *
971 990 * Modifying operations should generally use dsl_sync_task(). The synctask
972 991 * infrastructure enforces proper locking strategy with respect to the
973 992 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
974 993 *
975 994 * Read-only operations will manually hold the pool, then the dataset, obtain
976 995 * information from the dataset, then release the pool and dataset.
977 996 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
978 997 * hold/rele.
979 998 */
980 999
981 1000 int
982 1001 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
983 1002 {
984 1003 spa_t *spa;
985 1004 int error;
986 1005
987 1006 error = spa_open(name, &spa, tag);
988 1007 if (error == 0) {
989 1008 *dp = spa_get_dsl(spa);
990 1009 dsl_pool_config_enter(*dp, tag);
991 1010 }
992 1011 return (error);
993 1012 }
994 1013
995 1014 void
996 1015 dsl_pool_rele(dsl_pool_t *dp, void *tag)
997 1016 {
998 1017 dsl_pool_config_exit(dp, tag);
999 1018 spa_close(dp->dp_spa, tag);
1000 1019 }
1001 1020
1002 1021 void
1003 1022 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1004 1023 {
1005 1024 /*
1006 1025 * We use a "reentrant" reader-writer lock, but not reentrantly.
1007 1026 *
1008 1027 * The rrwlock can (with the track_all flag) track all reading threads,
1009 1028 * which is very useful for debugging which code path failed to release
1010 1029 * the lock, and for verifying that the *current* thread does hold
1011 1030 * the lock.
1012 1031 *
1013 1032 * (Unlike a rwlock, which knows that N threads hold it for
1014 1033 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1015 1034 * if any thread holds it for read, even if this thread doesn't).
1016 1035 */
1017 1036 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1018 1037 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1019 1038 }
1020 1039
1021 1040 void
1022 1041 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1023 1042 {
1024 1043 rrw_exit(&dp->dp_config_rwlock, tag);
1025 1044 }
1026 1045
1027 1046 boolean_t
1028 1047 dsl_pool_config_held(dsl_pool_t *dp)
1029 1048 {
1030 1049 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1031 1050 }
↓ open down ↓ |
166 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX