1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 Steven Hartland. All rights reserved. 26 */ 27 28 /* 29 * The objective of this program is to provide a DMU/ZAP/SPA stress test 30 * that runs entirely in userland, is easy to use, and easy to extend. 31 * 32 * The overall design of the ztest program is as follows: 33 * 34 * (1) For each major functional area (e.g. adding vdevs to a pool, 35 * creating and destroying datasets, reading and writing objects, etc) 36 * we have a simple routine to test that functionality. These 37 * individual routines do not have to do anything "stressful". 38 * 39 * (2) We turn these simple functionality tests into a stress test by 40 * running them all in parallel, with as many threads as desired, 41 * and spread across as many datasets, objects, and vdevs as desired. 42 * 43 * (3) While all this is happening, we inject faults into the pool to 44 * verify that self-healing data really works. 45 * 46 * (4) Every time we open a dataset, we change its checksum and compression 47 * functions. Thus even individual objects vary from block to block 48 * in which checksum they use and whether they're compressed. 49 * 50 * (5) To verify that we never lose on-disk consistency after a crash, 51 * we run the entire test in a child of the main process. 52 * At random times, the child self-immolates with a SIGKILL. 53 * This is the software equivalent of pulling the power cord. 54 * The parent then runs the test again, using the existing 55 * storage pool, as many times as desired. If backwards compatability 56 * testing is enabled ztest will sometimes run the "older" version 57 * of ztest after a SIGKILL. 58 * 59 * (6) To verify that we don't have future leaks or temporal incursions, 60 * many of the functional tests record the transaction group number 61 * as part of their data. When reading old data, they verify that 62 * the transaction group number is less than the current, open txg. 63 * If you add a new test, please do this if applicable. 64 * 65 * When run with no arguments, ztest runs for about five minutes and 66 * produces no output if successful. To get a little bit of information, 67 * specify -V. To get more information, specify -VV, and so on. 68 * 69 * To turn this into an overnight stress test, use -T to specify run time. 70 * 71 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 72 * to increase the pool capacity, fanout, and overall stress level. 73 * 74 * Use the -k option to set the desired frequency of kills. 75 * 76 * When ztest invokes itself it passes all relevant information through a 77 * temporary file which is mmap-ed in the child process. This allows shared 78 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 79 * stored at offset 0 of this file and contains information on the size and 80 * number of shared structures in the file. The information stored in this file 81 * must remain backwards compatible with older versions of ztest so that 82 * ztest can invoke them during backwards compatibility testing (-B). 83 */ 84 85 #include <sys/zfs_context.h> 86 #include <sys/spa.h> 87 #include <sys/dmu.h> 88 #include <sys/txg.h> 89 #include <sys/dbuf.h> 90 #include <sys/zap.h> 91 #include <sys/dmu_objset.h> 92 #include <sys/poll.h> 93 #include <sys/stat.h> 94 #include <sys/time.h> 95 #include <sys/wait.h> 96 #include <sys/mman.h> 97 #include <sys/resource.h> 98 #include <sys/zio.h> 99 #include <sys/zil.h> 100 #include <sys/zil_impl.h> 101 #include <sys/vdev_impl.h> 102 #include <sys/vdev_file.h> 103 #include <sys/spa_impl.h> 104 #include <sys/metaslab_impl.h> 105 #include <sys/dsl_prop.h> 106 #include <sys/dsl_dataset.h> 107 #include <sys/dsl_destroy.h> 108 #include <sys/dsl_scan.h> 109 #include <sys/zio_checksum.h> 110 #include <sys/refcount.h> 111 #include <sys/zfeature.h> 112 #include <sys/dsl_userhold.h> 113 #include <stdio.h> 114 #include <stdio_ext.h> 115 #include <stdlib.h> 116 #include <unistd.h> 117 #include <signal.h> 118 #include <umem.h> 119 #include <dlfcn.h> 120 #include <ctype.h> 121 #include <math.h> 122 #include <sys/fs/zfs.h> 123 #include <libnvpair.h> 124 125 static int ztest_fd_data = -1; 126 static int ztest_fd_rand = -1; 127 128 typedef struct ztest_shared_hdr { 129 uint64_t zh_hdr_size; 130 uint64_t zh_opts_size; 131 uint64_t zh_size; 132 uint64_t zh_stats_size; 133 uint64_t zh_stats_count; 134 uint64_t zh_ds_size; 135 uint64_t zh_ds_count; 136 } ztest_shared_hdr_t; 137 138 static ztest_shared_hdr_t *ztest_shared_hdr; 139 140 typedef struct ztest_shared_opts { 141 char zo_pool[MAXNAMELEN]; 142 char zo_dir[MAXNAMELEN]; 143 char zo_alt_ztest[MAXNAMELEN]; 144 char zo_alt_libpath[MAXNAMELEN]; 145 uint64_t zo_vdevs; 146 uint64_t zo_vdevtime; 147 size_t zo_vdev_size; 148 int zo_ashift; 149 int zo_mirrors; 150 int zo_raidz; 151 int zo_raidz_parity; 152 int zo_datasets; 153 int zo_threads; 154 uint64_t zo_passtime; 155 uint64_t zo_killrate; 156 int zo_verbose; 157 int zo_init; 158 uint64_t zo_time; 159 uint64_t zo_maxloops; 160 uint64_t zo_metaslab_gang_bang; 161 } ztest_shared_opts_t; 162 163 static const ztest_shared_opts_t ztest_opts_defaults = { 164 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 165 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 166 .zo_alt_ztest = { '\0' }, 167 .zo_alt_libpath = { '\0' }, 168 .zo_vdevs = 5, 169 .zo_ashift = SPA_MINBLOCKSHIFT, 170 .zo_mirrors = 2, 171 .zo_raidz = 4, 172 .zo_raidz_parity = 1, 173 .zo_vdev_size = SPA_MINDEVSIZE, 174 .zo_datasets = 7, 175 .zo_threads = 23, 176 .zo_passtime = 60, /* 60 seconds */ 177 .zo_killrate = 70, /* 70% kill rate */ 178 .zo_verbose = 0, 179 .zo_init = 1, 180 .zo_time = 300, /* 5 minutes */ 181 .zo_maxloops = 50, /* max loops during spa_freeze() */ 182 .zo_metaslab_gang_bang = 32 << 10 183 }; 184 185 extern uint64_t metaslab_gang_bang; 186 extern uint64_t metaslab_df_alloc_threshold; 187 188 static ztest_shared_opts_t *ztest_shared_opts; 189 static ztest_shared_opts_t ztest_opts; 190 191 typedef struct ztest_shared_ds { 192 uint64_t zd_seq; 193 } ztest_shared_ds_t; 194 195 static ztest_shared_ds_t *ztest_shared_ds; 196 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 197 198 #define BT_MAGIC 0x123456789abcdefULL 199 #define MAXFAULTS() \ 200 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 201 202 enum ztest_io_type { 203 ZTEST_IO_WRITE_TAG, 204 ZTEST_IO_WRITE_PATTERN, 205 ZTEST_IO_WRITE_ZEROES, 206 ZTEST_IO_TRUNCATE, 207 ZTEST_IO_SETATTR, 208 ZTEST_IO_REWRITE, 209 ZTEST_IO_TYPES 210 }; 211 212 typedef struct ztest_block_tag { 213 uint64_t bt_magic; 214 uint64_t bt_objset; 215 uint64_t bt_object; 216 uint64_t bt_offset; 217 uint64_t bt_gen; 218 uint64_t bt_txg; 219 uint64_t bt_crtxg; 220 } ztest_block_tag_t; 221 222 typedef struct bufwad { 223 uint64_t bw_index; 224 uint64_t bw_txg; 225 uint64_t bw_data; 226 } bufwad_t; 227 228 /* 229 * XXX -- fix zfs range locks to be generic so we can use them here. 230 */ 231 typedef enum { 232 RL_READER, 233 RL_WRITER, 234 RL_APPEND 235 } rl_type_t; 236 237 typedef struct rll { 238 void *rll_writer; 239 int rll_readers; 240 mutex_t rll_lock; 241 cond_t rll_cv; 242 } rll_t; 243 244 typedef struct rl { 245 uint64_t rl_object; 246 uint64_t rl_offset; 247 uint64_t rl_size; 248 rll_t *rl_lock; 249 } rl_t; 250 251 #define ZTEST_RANGE_LOCKS 64 252 #define ZTEST_OBJECT_LOCKS 64 253 254 /* 255 * Object descriptor. Used as a template for object lookup/create/remove. 256 */ 257 typedef struct ztest_od { 258 uint64_t od_dir; 259 uint64_t od_object; 260 dmu_object_type_t od_type; 261 dmu_object_type_t od_crtype; 262 uint64_t od_blocksize; 263 uint64_t od_crblocksize; 264 uint64_t od_gen; 265 uint64_t od_crgen; 266 char od_name[MAXNAMELEN]; 267 } ztest_od_t; 268 269 /* 270 * Per-dataset state. 271 */ 272 typedef struct ztest_ds { 273 ztest_shared_ds_t *zd_shared; 274 objset_t *zd_os; 275 rwlock_t zd_zilog_lock; 276 zilog_t *zd_zilog; 277 ztest_od_t *zd_od; /* debugging aid */ 278 char zd_name[MAXNAMELEN]; 279 mutex_t zd_dirobj_lock; 280 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 281 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 282 } ztest_ds_t; 283 284 /* 285 * Per-iteration state. 286 */ 287 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 288 289 typedef struct ztest_info { 290 ztest_func_t *zi_func; /* test function */ 291 uint64_t zi_iters; /* iterations per execution */ 292 uint64_t *zi_interval; /* execute every <interval> seconds */ 293 } ztest_info_t; 294 295 typedef struct ztest_shared_callstate { 296 uint64_t zc_count; /* per-pass count */ 297 uint64_t zc_time; /* per-pass time */ 298 uint64_t zc_next; /* next time to call this function */ 299 } ztest_shared_callstate_t; 300 301 static ztest_shared_callstate_t *ztest_shared_callstate; 302 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 303 304 /* 305 * Note: these aren't static because we want dladdr() to work. 306 */ 307 ztest_func_t ztest_dmu_read_write; 308 ztest_func_t ztest_dmu_write_parallel; 309 ztest_func_t ztest_dmu_object_alloc_free; 310 ztest_func_t ztest_dmu_commit_callbacks; 311 ztest_func_t ztest_zap; 312 ztest_func_t ztest_zap_parallel; 313 ztest_func_t ztest_zil_commit; 314 ztest_func_t ztest_zil_remount; 315 ztest_func_t ztest_dmu_read_write_zcopy; 316 ztest_func_t ztest_dmu_objset_create_destroy; 317 ztest_func_t ztest_dmu_prealloc; 318 ztest_func_t ztest_fzap; 319 ztest_func_t ztest_dmu_snapshot_create_destroy; 320 ztest_func_t ztest_dsl_prop_get_set; 321 ztest_func_t ztest_spa_prop_get_set; 322 ztest_func_t ztest_spa_create_destroy; 323 ztest_func_t ztest_fault_inject; 324 ztest_func_t ztest_ddt_repair; 325 ztest_func_t ztest_dmu_snapshot_hold; 326 ztest_func_t ztest_spa_rename; 327 ztest_func_t ztest_scrub; 328 ztest_func_t ztest_dsl_dataset_promote_busy; 329 ztest_func_t ztest_vdev_attach_detach; 330 ztest_func_t ztest_vdev_LUN_growth; 331 ztest_func_t ztest_vdev_add_remove; 332 ztest_func_t ztest_vdev_aux_add_remove; 333 ztest_func_t ztest_split_pool; 334 ztest_func_t ztest_reguid; 335 ztest_func_t ztest_spa_upgrade; 336 337 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 338 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 339 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 340 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 341 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 342 343 ztest_info_t ztest_info[] = { 344 { ztest_dmu_read_write, 1, &zopt_always }, 345 { ztest_dmu_write_parallel, 10, &zopt_always }, 346 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 347 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 348 { ztest_zap, 30, &zopt_always }, 349 { ztest_zap_parallel, 100, &zopt_always }, 350 { ztest_split_pool, 1, &zopt_always }, 351 { ztest_zil_commit, 1, &zopt_incessant }, 352 { ztest_zil_remount, 1, &zopt_sometimes }, 353 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 354 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 355 { ztest_dsl_prop_get_set, 1, &zopt_often }, 356 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 357 #if 0 358 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 359 #endif 360 { ztest_fzap, 1, &zopt_sometimes }, 361 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 362 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 363 { ztest_fault_inject, 1, &zopt_sometimes }, 364 { ztest_ddt_repair, 1, &zopt_sometimes }, 365 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 366 { ztest_reguid, 1, &zopt_sometimes }, 367 { ztest_spa_rename, 1, &zopt_rarely }, 368 { ztest_scrub, 1, &zopt_rarely }, 369 { ztest_spa_upgrade, 1, &zopt_rarely }, 370 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 371 { ztest_vdev_attach_detach, 1, &zopt_sometimes }, 372 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 373 { ztest_vdev_add_remove, 1, 374 &ztest_opts.zo_vdevtime }, 375 { ztest_vdev_aux_add_remove, 1, 376 &ztest_opts.zo_vdevtime }, 377 }; 378 379 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 380 381 /* 382 * The following struct is used to hold a list of uncalled commit callbacks. 383 * The callbacks are ordered by txg number. 384 */ 385 typedef struct ztest_cb_list { 386 mutex_t zcl_callbacks_lock; 387 list_t zcl_callbacks; 388 } ztest_cb_list_t; 389 390 /* 391 * Stuff we need to share writably between parent and child. 392 */ 393 typedef struct ztest_shared { 394 boolean_t zs_do_init; 395 hrtime_t zs_proc_start; 396 hrtime_t zs_proc_stop; 397 hrtime_t zs_thread_start; 398 hrtime_t zs_thread_stop; 399 hrtime_t zs_thread_kill; 400 uint64_t zs_enospc_count; 401 uint64_t zs_vdev_next_leaf; 402 uint64_t zs_vdev_aux; 403 uint64_t zs_alloc; 404 uint64_t zs_space; 405 uint64_t zs_splits; 406 uint64_t zs_mirrors; 407 uint64_t zs_metaslab_sz; 408 uint64_t zs_metaslab_df_alloc_threshold; 409 uint64_t zs_guid; 410 } ztest_shared_t; 411 412 #define ID_PARALLEL -1ULL 413 414 static char ztest_dev_template[] = "%s/%s.%llua"; 415 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 416 ztest_shared_t *ztest_shared; 417 418 static spa_t *ztest_spa = NULL; 419 static ztest_ds_t *ztest_ds; 420 421 static mutex_t ztest_vdev_lock; 422 423 /* 424 * The ztest_name_lock protects the pool and dataset namespace used by 425 * the individual tests. To modify the namespace, consumers must grab 426 * this lock as writer. Grabbing the lock as reader will ensure that the 427 * namespace does not change while the lock is held. 428 */ 429 static rwlock_t ztest_name_lock; 430 431 static boolean_t ztest_dump_core = B_TRUE; 432 static boolean_t ztest_exiting; 433 434 /* Global commit callback list */ 435 static ztest_cb_list_t zcl; 436 437 enum ztest_object { 438 ZTEST_META_DNODE = 0, 439 ZTEST_DIROBJ, 440 ZTEST_OBJECTS 441 }; 442 443 static void usage(boolean_t) __NORETURN; 444 445 /* 446 * These libumem hooks provide a reasonable set of defaults for the allocator's 447 * debugging facilities. 448 */ 449 const char * 450 _umem_debug_init() 451 { 452 return ("default,verbose"); /* $UMEM_DEBUG setting */ 453 } 454 455 const char * 456 _umem_logging_init(void) 457 { 458 return ("fail,contents"); /* $UMEM_LOGGING setting */ 459 } 460 461 #define FATAL_MSG_SZ 1024 462 463 char *fatal_msg; 464 465 static void 466 fatal(int do_perror, char *message, ...) 467 { 468 va_list args; 469 int save_errno = errno; 470 char buf[FATAL_MSG_SZ]; 471 472 (void) fflush(stdout); 473 474 va_start(args, message); 475 (void) sprintf(buf, "ztest: "); 476 /* LINTED */ 477 (void) vsprintf(buf + strlen(buf), message, args); 478 va_end(args); 479 if (do_perror) { 480 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 481 ": %s", strerror(save_errno)); 482 } 483 (void) fprintf(stderr, "%s\n", buf); 484 fatal_msg = buf; /* to ease debugging */ 485 if (ztest_dump_core) 486 abort(); 487 exit(3); 488 } 489 490 static int 491 str2shift(const char *buf) 492 { 493 const char *ends = "BKMGTPEZ"; 494 int i; 495 496 if (buf[0] == '\0') 497 return (0); 498 for (i = 0; i < strlen(ends); i++) { 499 if (toupper(buf[0]) == ends[i]) 500 break; 501 } 502 if (i == strlen(ends)) { 503 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 504 buf); 505 usage(B_FALSE); 506 } 507 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 508 return (10*i); 509 } 510 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 511 usage(B_FALSE); 512 /* NOTREACHED */ 513 } 514 515 static uint64_t 516 nicenumtoull(const char *buf) 517 { 518 char *end; 519 uint64_t val; 520 521 val = strtoull(buf, &end, 0); 522 if (end == buf) { 523 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 524 usage(B_FALSE); 525 } else if (end[0] == '.') { 526 double fval = strtod(buf, &end); 527 fval *= pow(2, str2shift(end)); 528 if (fval > UINT64_MAX) { 529 (void) fprintf(stderr, "ztest: value too large: %s\n", 530 buf); 531 usage(B_FALSE); 532 } 533 val = (uint64_t)fval; 534 } else { 535 int shift = str2shift(end); 536 if (shift >= 64 || (val << shift) >> shift != val) { 537 (void) fprintf(stderr, "ztest: value too large: %s\n", 538 buf); 539 usage(B_FALSE); 540 } 541 val <<= shift; 542 } 543 return (val); 544 } 545 546 static void 547 usage(boolean_t requested) 548 { 549 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 550 551 char nice_vdev_size[10]; 552 char nice_gang_bang[10]; 553 FILE *fp = requested ? stdout : stderr; 554 555 nicenum(zo->zo_vdev_size, nice_vdev_size); 556 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang); 557 558 (void) fprintf(fp, "Usage: %s\n" 559 "\t[-v vdevs (default: %llu)]\n" 560 "\t[-s size_of_each_vdev (default: %s)]\n" 561 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 562 "\t[-m mirror_copies (default: %d)]\n" 563 "\t[-r raidz_disks (default: %d)]\n" 564 "\t[-R raidz_parity (default: %d)]\n" 565 "\t[-d datasets (default: %d)]\n" 566 "\t[-t threads (default: %d)]\n" 567 "\t[-g gang_block_threshold (default: %s)]\n" 568 "\t[-i init_count (default: %d)] initialize pool i times\n" 569 "\t[-k kill_percentage (default: %llu%%)]\n" 570 "\t[-p pool_name (default: %s)]\n" 571 "\t[-f dir (default: %s)] file directory for vdev files\n" 572 "\t[-V] verbose (use multiple times for ever more blather)\n" 573 "\t[-E] use existing pool instead of creating new one\n" 574 "\t[-T time (default: %llu sec)] total run time\n" 575 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 576 "\t[-P passtime (default: %llu sec)] time per pass\n" 577 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 578 "\t[-h] (print help)\n" 579 "", 580 zo->zo_pool, 581 (u_longlong_t)zo->zo_vdevs, /* -v */ 582 nice_vdev_size, /* -s */ 583 zo->zo_ashift, /* -a */ 584 zo->zo_mirrors, /* -m */ 585 zo->zo_raidz, /* -r */ 586 zo->zo_raidz_parity, /* -R */ 587 zo->zo_datasets, /* -d */ 588 zo->zo_threads, /* -t */ 589 nice_gang_bang, /* -g */ 590 zo->zo_init, /* -i */ 591 (u_longlong_t)zo->zo_killrate, /* -k */ 592 zo->zo_pool, /* -p */ 593 zo->zo_dir, /* -f */ 594 (u_longlong_t)zo->zo_time, /* -T */ 595 (u_longlong_t)zo->zo_maxloops, /* -F */ 596 (u_longlong_t)zo->zo_passtime); 597 exit(requested ? 0 : 1); 598 } 599 600 static void 601 process_options(int argc, char **argv) 602 { 603 char *path; 604 ztest_shared_opts_t *zo = &ztest_opts; 605 606 int opt; 607 uint64_t value; 608 char altdir[MAXNAMELEN] = { 0 }; 609 610 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 611 612 while ((opt = getopt(argc, argv, 613 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) { 614 value = 0; 615 switch (opt) { 616 case 'v': 617 case 's': 618 case 'a': 619 case 'm': 620 case 'r': 621 case 'R': 622 case 'd': 623 case 't': 624 case 'g': 625 case 'i': 626 case 'k': 627 case 'T': 628 case 'P': 629 case 'F': 630 value = nicenumtoull(optarg); 631 } 632 switch (opt) { 633 case 'v': 634 zo->zo_vdevs = value; 635 break; 636 case 's': 637 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 638 break; 639 case 'a': 640 zo->zo_ashift = value; 641 break; 642 case 'm': 643 zo->zo_mirrors = value; 644 break; 645 case 'r': 646 zo->zo_raidz = MAX(1, value); 647 break; 648 case 'R': 649 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 650 break; 651 case 'd': 652 zo->zo_datasets = MAX(1, value); 653 break; 654 case 't': 655 zo->zo_threads = MAX(1, value); 656 break; 657 case 'g': 658 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, 659 value); 660 break; 661 case 'i': 662 zo->zo_init = value; 663 break; 664 case 'k': 665 zo->zo_killrate = value; 666 break; 667 case 'p': 668 (void) strlcpy(zo->zo_pool, optarg, 669 sizeof (zo->zo_pool)); 670 break; 671 case 'f': 672 path = realpath(optarg, NULL); 673 if (path == NULL) { 674 (void) fprintf(stderr, "error: %s: %s\n", 675 optarg, strerror(errno)); 676 usage(B_FALSE); 677 } else { 678 (void) strlcpy(zo->zo_dir, path, 679 sizeof (zo->zo_dir)); 680 } 681 break; 682 case 'V': 683 zo->zo_verbose++; 684 break; 685 case 'E': 686 zo->zo_init = 0; 687 break; 688 case 'T': 689 zo->zo_time = value; 690 break; 691 case 'P': 692 zo->zo_passtime = MAX(1, value); 693 break; 694 case 'F': 695 zo->zo_maxloops = MAX(1, value); 696 break; 697 case 'B': 698 (void) strlcpy(altdir, optarg, sizeof (altdir)); 699 break; 700 case 'h': 701 usage(B_TRUE); 702 break; 703 case '?': 704 default: 705 usage(B_FALSE); 706 break; 707 } 708 } 709 710 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 711 712 zo->zo_vdevtime = 713 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 714 UINT64_MAX >> 2); 715 716 if (strlen(altdir) > 0) { 717 char *cmd; 718 char *realaltdir; 719 char *bin; 720 char *ztest; 721 char *isa; 722 int isalen; 723 724 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 725 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 726 727 VERIFY(NULL != realpath(getexecname(), cmd)); 728 if (0 != access(altdir, F_OK)) { 729 ztest_dump_core = B_FALSE; 730 fatal(B_TRUE, "invalid alternate ztest path: %s", 731 altdir); 732 } 733 VERIFY(NULL != realpath(altdir, realaltdir)); 734 735 /* 736 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 737 * We want to extract <isa> to determine if we should use 738 * 32 or 64 bit binaries. 739 */ 740 bin = strstr(cmd, "/usr/bin/"); 741 ztest = strstr(bin, "/ztest"); 742 isa = bin + 9; 743 isalen = ztest - isa; 744 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 745 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 746 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 747 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 748 749 if (0 != access(zo->zo_alt_ztest, X_OK)) { 750 ztest_dump_core = B_FALSE; 751 fatal(B_TRUE, "invalid alternate ztest: %s", 752 zo->zo_alt_ztest); 753 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 754 ztest_dump_core = B_FALSE; 755 fatal(B_TRUE, "invalid alternate lib directory %s", 756 zo->zo_alt_libpath); 757 } 758 759 umem_free(cmd, MAXPATHLEN); 760 umem_free(realaltdir, MAXPATHLEN); 761 } 762 } 763 764 static void 765 ztest_kill(ztest_shared_t *zs) 766 { 767 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 768 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 769 (void) kill(getpid(), SIGKILL); 770 } 771 772 static uint64_t 773 ztest_random(uint64_t range) 774 { 775 uint64_t r; 776 777 ASSERT3S(ztest_fd_rand, >=, 0); 778 779 if (range == 0) 780 return (0); 781 782 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 783 fatal(1, "short read from /dev/urandom"); 784 785 return (r % range); 786 } 787 788 /* ARGSUSED */ 789 static void 790 ztest_record_enospc(const char *s) 791 { 792 ztest_shared->zs_enospc_count++; 793 } 794 795 static uint64_t 796 ztest_get_ashift(void) 797 { 798 if (ztest_opts.zo_ashift == 0) 799 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 800 return (ztest_opts.zo_ashift); 801 } 802 803 static nvlist_t * 804 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) 805 { 806 char pathbuf[MAXPATHLEN]; 807 uint64_t vdev; 808 nvlist_t *file; 809 810 if (ashift == 0) 811 ashift = ztest_get_ashift(); 812 813 if (path == NULL) { 814 path = pathbuf; 815 816 if (aux != NULL) { 817 vdev = ztest_shared->zs_vdev_aux; 818 (void) snprintf(path, sizeof (pathbuf), 819 ztest_aux_template, ztest_opts.zo_dir, 820 pool == NULL ? ztest_opts.zo_pool : pool, 821 aux, vdev); 822 } else { 823 vdev = ztest_shared->zs_vdev_next_leaf++; 824 (void) snprintf(path, sizeof (pathbuf), 825 ztest_dev_template, ztest_opts.zo_dir, 826 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 827 } 828 } 829 830 if (size != 0) { 831 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 832 if (fd == -1) 833 fatal(1, "can't open %s", path); 834 if (ftruncate(fd, size) != 0) 835 fatal(1, "can't ftruncate %s", path); 836 (void) close(fd); 837 } 838 839 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 840 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 841 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 842 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 843 844 return (file); 845 } 846 847 static nvlist_t * 848 make_vdev_raidz(char *path, char *aux, char *pool, size_t size, 849 uint64_t ashift, int r) 850 { 851 nvlist_t *raidz, **child; 852 int c; 853 854 if (r < 2) 855 return (make_vdev_file(path, aux, pool, size, ashift)); 856 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 857 858 for (c = 0; c < r; c++) 859 child[c] = make_vdev_file(path, aux, pool, size, ashift); 860 861 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 862 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 863 VDEV_TYPE_RAIDZ) == 0); 864 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 865 ztest_opts.zo_raidz_parity) == 0); 866 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 867 child, r) == 0); 868 869 for (c = 0; c < r; c++) 870 nvlist_free(child[c]); 871 872 umem_free(child, r * sizeof (nvlist_t *)); 873 874 return (raidz); 875 } 876 877 static nvlist_t * 878 make_vdev_mirror(char *path, char *aux, char *pool, size_t size, 879 uint64_t ashift, int r, int m) 880 { 881 nvlist_t *mirror, **child; 882 int c; 883 884 if (m < 1) 885 return (make_vdev_raidz(path, aux, pool, size, ashift, r)); 886 887 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 888 889 for (c = 0; c < m; c++) 890 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); 891 892 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 893 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 894 VDEV_TYPE_MIRROR) == 0); 895 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 896 child, m) == 0); 897 898 for (c = 0; c < m; c++) 899 nvlist_free(child[c]); 900 901 umem_free(child, m * sizeof (nvlist_t *)); 902 903 return (mirror); 904 } 905 906 static nvlist_t * 907 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, 908 int log, int r, int m, int t) 909 { 910 nvlist_t *root, **child; 911 int c; 912 913 ASSERT(t > 0); 914 915 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 916 917 for (c = 0; c < t; c++) { 918 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 919 r, m); 920 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 921 log) == 0); 922 } 923 924 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 925 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 926 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 927 child, t) == 0); 928 929 for (c = 0; c < t; c++) 930 nvlist_free(child[c]); 931 932 umem_free(child, t * sizeof (nvlist_t *)); 933 934 return (root); 935 } 936 937 /* 938 * Find a random spa version. Returns back a random spa version in the 939 * range [initial_version, SPA_VERSION_FEATURES]. 940 */ 941 static uint64_t 942 ztest_random_spa_version(uint64_t initial_version) 943 { 944 uint64_t version = initial_version; 945 946 if (version <= SPA_VERSION_BEFORE_FEATURES) { 947 version = version + 948 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 949 } 950 951 if (version > SPA_VERSION_BEFORE_FEATURES) 952 version = SPA_VERSION_FEATURES; 953 954 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 955 return (version); 956 } 957 958 static int 959 ztest_random_blocksize(void) 960 { 961 return (1 << (SPA_MINBLOCKSHIFT + 962 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1))); 963 } 964 965 static int 966 ztest_random_ibshift(void) 967 { 968 return (DN_MIN_INDBLKSHIFT + 969 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 970 } 971 972 static uint64_t 973 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 974 { 975 uint64_t top; 976 vdev_t *rvd = spa->spa_root_vdev; 977 vdev_t *tvd; 978 979 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 980 981 do { 982 top = ztest_random(rvd->vdev_children); 983 tvd = rvd->vdev_child[top]; 984 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 985 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 986 987 return (top); 988 } 989 990 static uint64_t 991 ztest_random_dsl_prop(zfs_prop_t prop) 992 { 993 uint64_t value; 994 995 do { 996 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 997 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 998 999 return (value); 1000 } 1001 1002 static int 1003 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1004 boolean_t inherit) 1005 { 1006 const char *propname = zfs_prop_to_name(prop); 1007 const char *valname; 1008 char setpoint[MAXPATHLEN]; 1009 uint64_t curval; 1010 int error; 1011 1012 error = dsl_prop_set_int(osname, propname, 1013 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1014 1015 if (error == ENOSPC) { 1016 ztest_record_enospc(FTAG); 1017 return (error); 1018 } 1019 ASSERT0(error); 1020 1021 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1022 1023 if (ztest_opts.zo_verbose >= 6) { 1024 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 1025 (void) printf("%s %s = %s at '%s'\n", 1026 osname, propname, valname, setpoint); 1027 } 1028 1029 return (error); 1030 } 1031 1032 static int 1033 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1034 { 1035 spa_t *spa = ztest_spa; 1036 nvlist_t *props = NULL; 1037 int error; 1038 1039 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1040 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1041 1042 error = spa_prop_set(spa, props); 1043 1044 nvlist_free(props); 1045 1046 if (error == ENOSPC) { 1047 ztest_record_enospc(FTAG); 1048 return (error); 1049 } 1050 ASSERT0(error); 1051 1052 return (error); 1053 } 1054 1055 static void 1056 ztest_rll_init(rll_t *rll) 1057 { 1058 rll->rll_writer = NULL; 1059 rll->rll_readers = 0; 1060 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 1061 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 1062 } 1063 1064 static void 1065 ztest_rll_destroy(rll_t *rll) 1066 { 1067 ASSERT(rll->rll_writer == NULL); 1068 ASSERT(rll->rll_readers == 0); 1069 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 1070 VERIFY(cond_destroy(&rll->rll_cv) == 0); 1071 } 1072 1073 static void 1074 ztest_rll_lock(rll_t *rll, rl_type_t type) 1075 { 1076 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1077 1078 if (type == RL_READER) { 1079 while (rll->rll_writer != NULL) 1080 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1081 rll->rll_readers++; 1082 } else { 1083 while (rll->rll_writer != NULL || rll->rll_readers) 1084 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1085 rll->rll_writer = curthread; 1086 } 1087 1088 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1089 } 1090 1091 static void 1092 ztest_rll_unlock(rll_t *rll) 1093 { 1094 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1095 1096 if (rll->rll_writer) { 1097 ASSERT(rll->rll_readers == 0); 1098 rll->rll_writer = NULL; 1099 } else { 1100 ASSERT(rll->rll_readers != 0); 1101 ASSERT(rll->rll_writer == NULL); 1102 rll->rll_readers--; 1103 } 1104 1105 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1106 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 1107 1108 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1109 } 1110 1111 static void 1112 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1113 { 1114 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1115 1116 ztest_rll_lock(rll, type); 1117 } 1118 1119 static void 1120 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1121 { 1122 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1123 1124 ztest_rll_unlock(rll); 1125 } 1126 1127 static rl_t * 1128 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1129 uint64_t size, rl_type_t type) 1130 { 1131 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1132 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1133 rl_t *rl; 1134 1135 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1136 rl->rl_object = object; 1137 rl->rl_offset = offset; 1138 rl->rl_size = size; 1139 rl->rl_lock = rll; 1140 1141 ztest_rll_lock(rll, type); 1142 1143 return (rl); 1144 } 1145 1146 static void 1147 ztest_range_unlock(rl_t *rl) 1148 { 1149 rll_t *rll = rl->rl_lock; 1150 1151 ztest_rll_unlock(rll); 1152 1153 umem_free(rl, sizeof (*rl)); 1154 } 1155 1156 static void 1157 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1158 { 1159 zd->zd_os = os; 1160 zd->zd_zilog = dmu_objset_zil(os); 1161 zd->zd_shared = szd; 1162 dmu_objset_name(os, zd->zd_name); 1163 1164 if (zd->zd_shared != NULL) 1165 zd->zd_shared->zd_seq = 0; 1166 1167 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0); 1168 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 1169 1170 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1171 ztest_rll_init(&zd->zd_object_lock[l]); 1172 1173 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1174 ztest_rll_init(&zd->zd_range_lock[l]); 1175 } 1176 1177 static void 1178 ztest_zd_fini(ztest_ds_t *zd) 1179 { 1180 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 1181 1182 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1183 ztest_rll_destroy(&zd->zd_object_lock[l]); 1184 1185 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1186 ztest_rll_destroy(&zd->zd_range_lock[l]); 1187 } 1188 1189 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1190 1191 static uint64_t 1192 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1193 { 1194 uint64_t txg; 1195 int error; 1196 1197 /* 1198 * Attempt to assign tx to some transaction group. 1199 */ 1200 error = dmu_tx_assign(tx, txg_how); 1201 if (error) { 1202 if (error == ERESTART) { 1203 ASSERT(txg_how == TXG_NOWAIT); 1204 dmu_tx_wait(tx); 1205 } else { 1206 ASSERT3U(error, ==, ENOSPC); 1207 ztest_record_enospc(tag); 1208 } 1209 dmu_tx_abort(tx); 1210 return (0); 1211 } 1212 txg = dmu_tx_get_txg(tx); 1213 ASSERT(txg != 0); 1214 return (txg); 1215 } 1216 1217 static void 1218 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1219 { 1220 uint64_t *ip = buf; 1221 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1222 1223 while (ip < ip_end) 1224 *ip++ = value; 1225 } 1226 1227 static boolean_t 1228 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1229 { 1230 uint64_t *ip = buf; 1231 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1232 uint64_t diff = 0; 1233 1234 while (ip < ip_end) 1235 diff |= (value - *ip++); 1236 1237 return (diff == 0); 1238 } 1239 1240 static void 1241 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1242 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1243 { 1244 bt->bt_magic = BT_MAGIC; 1245 bt->bt_objset = dmu_objset_id(os); 1246 bt->bt_object = object; 1247 bt->bt_offset = offset; 1248 bt->bt_gen = gen; 1249 bt->bt_txg = txg; 1250 bt->bt_crtxg = crtxg; 1251 } 1252 1253 static void 1254 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1255 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1256 { 1257 ASSERT(bt->bt_magic == BT_MAGIC); 1258 ASSERT(bt->bt_objset == dmu_objset_id(os)); 1259 ASSERT(bt->bt_object == object); 1260 ASSERT(bt->bt_offset == offset); 1261 ASSERT(bt->bt_gen <= gen); 1262 ASSERT(bt->bt_txg <= txg); 1263 ASSERT(bt->bt_crtxg == crtxg); 1264 } 1265 1266 static ztest_block_tag_t * 1267 ztest_bt_bonus(dmu_buf_t *db) 1268 { 1269 dmu_object_info_t doi; 1270 ztest_block_tag_t *bt; 1271 1272 dmu_object_info_from_db(db, &doi); 1273 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1274 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1275 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1276 1277 return (bt); 1278 } 1279 1280 /* 1281 * ZIL logging ops 1282 */ 1283 1284 #define lrz_type lr_mode 1285 #define lrz_blocksize lr_uid 1286 #define lrz_ibshift lr_gid 1287 #define lrz_bonustype lr_rdev 1288 #define lrz_bonuslen lr_crtime[1] 1289 1290 static void 1291 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1292 { 1293 char *name = (void *)(lr + 1); /* name follows lr */ 1294 size_t namesize = strlen(name) + 1; 1295 itx_t *itx; 1296 1297 if (zil_replaying(zd->zd_zilog, tx)) 1298 return; 1299 1300 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1301 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1302 sizeof (*lr) + namesize - sizeof (lr_t)); 1303 1304 zil_itx_assign(zd->zd_zilog, itx, tx); 1305 } 1306 1307 static void 1308 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1309 { 1310 char *name = (void *)(lr + 1); /* name follows lr */ 1311 size_t namesize = strlen(name) + 1; 1312 itx_t *itx; 1313 1314 if (zil_replaying(zd->zd_zilog, tx)) 1315 return; 1316 1317 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1318 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1319 sizeof (*lr) + namesize - sizeof (lr_t)); 1320 1321 itx->itx_oid = object; 1322 zil_itx_assign(zd->zd_zilog, itx, tx); 1323 } 1324 1325 static void 1326 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1327 { 1328 itx_t *itx; 1329 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1330 1331 if (zil_replaying(zd->zd_zilog, tx)) 1332 return; 1333 1334 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1335 write_state = WR_INDIRECT; 1336 1337 itx = zil_itx_create(TX_WRITE, 1338 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1339 1340 if (write_state == WR_COPIED && 1341 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1342 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1343 zil_itx_destroy(itx); 1344 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1345 write_state = WR_NEED_COPY; 1346 } 1347 itx->itx_private = zd; 1348 itx->itx_wr_state = write_state; 1349 itx->itx_sync = (ztest_random(8) == 0); 1350 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1351 1352 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1353 sizeof (*lr) - sizeof (lr_t)); 1354 1355 zil_itx_assign(zd->zd_zilog, itx, tx); 1356 } 1357 1358 static void 1359 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1360 { 1361 itx_t *itx; 1362 1363 if (zil_replaying(zd->zd_zilog, tx)) 1364 return; 1365 1366 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1367 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1368 sizeof (*lr) - sizeof (lr_t)); 1369 1370 itx->itx_sync = B_FALSE; 1371 zil_itx_assign(zd->zd_zilog, itx, tx); 1372 } 1373 1374 static void 1375 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1376 { 1377 itx_t *itx; 1378 1379 if (zil_replaying(zd->zd_zilog, tx)) 1380 return; 1381 1382 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1383 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1384 sizeof (*lr) - sizeof (lr_t)); 1385 1386 itx->itx_sync = B_FALSE; 1387 zil_itx_assign(zd->zd_zilog, itx, tx); 1388 } 1389 1390 /* 1391 * ZIL replay ops 1392 */ 1393 static int 1394 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1395 { 1396 char *name = (void *)(lr + 1); /* name follows lr */ 1397 objset_t *os = zd->zd_os; 1398 ztest_block_tag_t *bbt; 1399 dmu_buf_t *db; 1400 dmu_tx_t *tx; 1401 uint64_t txg; 1402 int error = 0; 1403 1404 if (byteswap) 1405 byteswap_uint64_array(lr, sizeof (*lr)); 1406 1407 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1408 ASSERT(name[0] != '\0'); 1409 1410 tx = dmu_tx_create(os); 1411 1412 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1413 1414 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1415 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1416 } else { 1417 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1418 } 1419 1420 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1421 if (txg == 0) 1422 return (ENOSPC); 1423 1424 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1425 1426 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1427 if (lr->lr_foid == 0) { 1428 lr->lr_foid = zap_create(os, 1429 lr->lrz_type, lr->lrz_bonustype, 1430 lr->lrz_bonuslen, tx); 1431 } else { 1432 error = zap_create_claim(os, lr->lr_foid, 1433 lr->lrz_type, lr->lrz_bonustype, 1434 lr->lrz_bonuslen, tx); 1435 } 1436 } else { 1437 if (lr->lr_foid == 0) { 1438 lr->lr_foid = dmu_object_alloc(os, 1439 lr->lrz_type, 0, lr->lrz_bonustype, 1440 lr->lrz_bonuslen, tx); 1441 } else { 1442 error = dmu_object_claim(os, lr->lr_foid, 1443 lr->lrz_type, 0, lr->lrz_bonustype, 1444 lr->lrz_bonuslen, tx); 1445 } 1446 } 1447 1448 if (error) { 1449 ASSERT3U(error, ==, EEXIST); 1450 ASSERT(zd->zd_zilog->zl_replay); 1451 dmu_tx_commit(tx); 1452 return (error); 1453 } 1454 1455 ASSERT(lr->lr_foid != 0); 1456 1457 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1458 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1459 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1460 1461 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1462 bbt = ztest_bt_bonus(db); 1463 dmu_buf_will_dirty(db, tx); 1464 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1465 dmu_buf_rele(db, FTAG); 1466 1467 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1468 &lr->lr_foid, tx)); 1469 1470 (void) ztest_log_create(zd, tx, lr); 1471 1472 dmu_tx_commit(tx); 1473 1474 return (0); 1475 } 1476 1477 static int 1478 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1479 { 1480 char *name = (void *)(lr + 1); /* name follows lr */ 1481 objset_t *os = zd->zd_os; 1482 dmu_object_info_t doi; 1483 dmu_tx_t *tx; 1484 uint64_t object, txg; 1485 1486 if (byteswap) 1487 byteswap_uint64_array(lr, sizeof (*lr)); 1488 1489 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1490 ASSERT(name[0] != '\0'); 1491 1492 VERIFY3U(0, ==, 1493 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1494 ASSERT(object != 0); 1495 1496 ztest_object_lock(zd, object, RL_WRITER); 1497 1498 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1499 1500 tx = dmu_tx_create(os); 1501 1502 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1503 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1504 1505 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1506 if (txg == 0) { 1507 ztest_object_unlock(zd, object); 1508 return (ENOSPC); 1509 } 1510 1511 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1512 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1513 } else { 1514 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1515 } 1516 1517 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1518 1519 (void) ztest_log_remove(zd, tx, lr, object); 1520 1521 dmu_tx_commit(tx); 1522 1523 ztest_object_unlock(zd, object); 1524 1525 return (0); 1526 } 1527 1528 static int 1529 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1530 { 1531 objset_t *os = zd->zd_os; 1532 void *data = lr + 1; /* data follows lr */ 1533 uint64_t offset, length; 1534 ztest_block_tag_t *bt = data; 1535 ztest_block_tag_t *bbt; 1536 uint64_t gen, txg, lrtxg, crtxg; 1537 dmu_object_info_t doi; 1538 dmu_tx_t *tx; 1539 dmu_buf_t *db; 1540 arc_buf_t *abuf = NULL; 1541 rl_t *rl; 1542 1543 if (byteswap) 1544 byteswap_uint64_array(lr, sizeof (*lr)); 1545 1546 offset = lr->lr_offset; 1547 length = lr->lr_length; 1548 1549 /* If it's a dmu_sync() block, write the whole block */ 1550 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1551 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1552 if (length < blocksize) { 1553 offset -= offset % blocksize; 1554 length = blocksize; 1555 } 1556 } 1557 1558 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1559 byteswap_uint64_array(bt, sizeof (*bt)); 1560 1561 if (bt->bt_magic != BT_MAGIC) 1562 bt = NULL; 1563 1564 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1565 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1566 1567 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1568 1569 dmu_object_info_from_db(db, &doi); 1570 1571 bbt = ztest_bt_bonus(db); 1572 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1573 gen = bbt->bt_gen; 1574 crtxg = bbt->bt_crtxg; 1575 lrtxg = lr->lr_common.lrc_txg; 1576 1577 tx = dmu_tx_create(os); 1578 1579 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1580 1581 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1582 P2PHASE(offset, length) == 0) 1583 abuf = dmu_request_arcbuf(db, length); 1584 1585 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1586 if (txg == 0) { 1587 if (abuf != NULL) 1588 dmu_return_arcbuf(abuf); 1589 dmu_buf_rele(db, FTAG); 1590 ztest_range_unlock(rl); 1591 ztest_object_unlock(zd, lr->lr_foid); 1592 return (ENOSPC); 1593 } 1594 1595 if (bt != NULL) { 1596 /* 1597 * Usually, verify the old data before writing new data -- 1598 * but not always, because we also want to verify correct 1599 * behavior when the data was not recently read into cache. 1600 */ 1601 ASSERT(offset % doi.doi_data_block_size == 0); 1602 if (ztest_random(4) != 0) { 1603 int prefetch = ztest_random(2) ? 1604 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1605 ztest_block_tag_t rbt; 1606 1607 VERIFY(dmu_read(os, lr->lr_foid, offset, 1608 sizeof (rbt), &rbt, prefetch) == 0); 1609 if (rbt.bt_magic == BT_MAGIC) { 1610 ztest_bt_verify(&rbt, os, lr->lr_foid, 1611 offset, gen, txg, crtxg); 1612 } 1613 } 1614 1615 /* 1616 * Writes can appear to be newer than the bonus buffer because 1617 * the ztest_get_data() callback does a dmu_read() of the 1618 * open-context data, which may be different than the data 1619 * as it was when the write was generated. 1620 */ 1621 if (zd->zd_zilog->zl_replay) { 1622 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1623 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1624 bt->bt_crtxg); 1625 } 1626 1627 /* 1628 * Set the bt's gen/txg to the bonus buffer's gen/txg 1629 * so that all of the usual ASSERTs will work. 1630 */ 1631 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1632 } 1633 1634 if (abuf == NULL) { 1635 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1636 } else { 1637 bcopy(data, abuf->b_data, length); 1638 dmu_assign_arcbuf(db, offset, abuf, tx); 1639 } 1640 1641 (void) ztest_log_write(zd, tx, lr); 1642 1643 dmu_buf_rele(db, FTAG); 1644 1645 dmu_tx_commit(tx); 1646 1647 ztest_range_unlock(rl); 1648 ztest_object_unlock(zd, lr->lr_foid); 1649 1650 return (0); 1651 } 1652 1653 static int 1654 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1655 { 1656 objset_t *os = zd->zd_os; 1657 dmu_tx_t *tx; 1658 uint64_t txg; 1659 rl_t *rl; 1660 1661 if (byteswap) 1662 byteswap_uint64_array(lr, sizeof (*lr)); 1663 1664 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1665 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1666 RL_WRITER); 1667 1668 tx = dmu_tx_create(os); 1669 1670 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1671 1672 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1673 if (txg == 0) { 1674 ztest_range_unlock(rl); 1675 ztest_object_unlock(zd, lr->lr_foid); 1676 return (ENOSPC); 1677 } 1678 1679 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1680 lr->lr_length, tx) == 0); 1681 1682 (void) ztest_log_truncate(zd, tx, lr); 1683 1684 dmu_tx_commit(tx); 1685 1686 ztest_range_unlock(rl); 1687 ztest_object_unlock(zd, lr->lr_foid); 1688 1689 return (0); 1690 } 1691 1692 static int 1693 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1694 { 1695 objset_t *os = zd->zd_os; 1696 dmu_tx_t *tx; 1697 dmu_buf_t *db; 1698 ztest_block_tag_t *bbt; 1699 uint64_t txg, lrtxg, crtxg; 1700 1701 if (byteswap) 1702 byteswap_uint64_array(lr, sizeof (*lr)); 1703 1704 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1705 1706 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1707 1708 tx = dmu_tx_create(os); 1709 dmu_tx_hold_bonus(tx, lr->lr_foid); 1710 1711 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1712 if (txg == 0) { 1713 dmu_buf_rele(db, FTAG); 1714 ztest_object_unlock(zd, lr->lr_foid); 1715 return (ENOSPC); 1716 } 1717 1718 bbt = ztest_bt_bonus(db); 1719 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1720 crtxg = bbt->bt_crtxg; 1721 lrtxg = lr->lr_common.lrc_txg; 1722 1723 if (zd->zd_zilog->zl_replay) { 1724 ASSERT(lr->lr_size != 0); 1725 ASSERT(lr->lr_mode != 0); 1726 ASSERT(lrtxg != 0); 1727 } else { 1728 /* 1729 * Randomly change the size and increment the generation. 1730 */ 1731 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1732 sizeof (*bbt); 1733 lr->lr_mode = bbt->bt_gen + 1; 1734 ASSERT(lrtxg == 0); 1735 } 1736 1737 /* 1738 * Verify that the current bonus buffer is not newer than our txg. 1739 */ 1740 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1741 MAX(txg, lrtxg), crtxg); 1742 1743 dmu_buf_will_dirty(db, tx); 1744 1745 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1746 ASSERT3U(lr->lr_size, <=, db->db_size); 1747 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 1748 bbt = ztest_bt_bonus(db); 1749 1750 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1751 1752 dmu_buf_rele(db, FTAG); 1753 1754 (void) ztest_log_setattr(zd, tx, lr); 1755 1756 dmu_tx_commit(tx); 1757 1758 ztest_object_unlock(zd, lr->lr_foid); 1759 1760 return (0); 1761 } 1762 1763 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1764 NULL, /* 0 no such transaction type */ 1765 ztest_replay_create, /* TX_CREATE */ 1766 NULL, /* TX_MKDIR */ 1767 NULL, /* TX_MKXATTR */ 1768 NULL, /* TX_SYMLINK */ 1769 ztest_replay_remove, /* TX_REMOVE */ 1770 NULL, /* TX_RMDIR */ 1771 NULL, /* TX_LINK */ 1772 NULL, /* TX_RENAME */ 1773 ztest_replay_write, /* TX_WRITE */ 1774 ztest_replay_truncate, /* TX_TRUNCATE */ 1775 ztest_replay_setattr, /* TX_SETATTR */ 1776 NULL, /* TX_ACL */ 1777 NULL, /* TX_CREATE_ACL */ 1778 NULL, /* TX_CREATE_ATTR */ 1779 NULL, /* TX_CREATE_ACL_ATTR */ 1780 NULL, /* TX_MKDIR_ACL */ 1781 NULL, /* TX_MKDIR_ATTR */ 1782 NULL, /* TX_MKDIR_ACL_ATTR */ 1783 NULL, /* TX_WRITE2 */ 1784 }; 1785 1786 /* 1787 * ZIL get_data callbacks 1788 */ 1789 1790 static void 1791 ztest_get_done(zgd_t *zgd, int error) 1792 { 1793 ztest_ds_t *zd = zgd->zgd_private; 1794 uint64_t object = zgd->zgd_rl->rl_object; 1795 1796 if (zgd->zgd_db) 1797 dmu_buf_rele(zgd->zgd_db, zgd); 1798 1799 ztest_range_unlock(zgd->zgd_rl); 1800 ztest_object_unlock(zd, object); 1801 1802 if (error == 0 && zgd->zgd_bp) 1803 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1804 1805 umem_free(zgd, sizeof (*zgd)); 1806 } 1807 1808 static int 1809 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1810 { 1811 ztest_ds_t *zd = arg; 1812 objset_t *os = zd->zd_os; 1813 uint64_t object = lr->lr_foid; 1814 uint64_t offset = lr->lr_offset; 1815 uint64_t size = lr->lr_length; 1816 blkptr_t *bp = &lr->lr_blkptr; 1817 uint64_t txg = lr->lr_common.lrc_txg; 1818 uint64_t crtxg; 1819 dmu_object_info_t doi; 1820 dmu_buf_t *db; 1821 zgd_t *zgd; 1822 int error; 1823 1824 ztest_object_lock(zd, object, RL_READER); 1825 error = dmu_bonus_hold(os, object, FTAG, &db); 1826 if (error) { 1827 ztest_object_unlock(zd, object); 1828 return (error); 1829 } 1830 1831 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1832 1833 if (crtxg == 0 || crtxg > txg) { 1834 dmu_buf_rele(db, FTAG); 1835 ztest_object_unlock(zd, object); 1836 return (ENOENT); 1837 } 1838 1839 dmu_object_info_from_db(db, &doi); 1840 dmu_buf_rele(db, FTAG); 1841 db = NULL; 1842 1843 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1844 zgd->zgd_zilog = zd->zd_zilog; 1845 zgd->zgd_private = zd; 1846 1847 if (buf != NULL) { /* immediate write */ 1848 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1849 RL_READER); 1850 1851 error = dmu_read(os, object, offset, size, buf, 1852 DMU_READ_NO_PREFETCH); 1853 ASSERT(error == 0); 1854 } else { 1855 size = doi.doi_data_block_size; 1856 if (ISP2(size)) { 1857 offset = P2ALIGN(offset, size); 1858 } else { 1859 ASSERT(offset < size); 1860 offset = 0; 1861 } 1862 1863 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1864 RL_READER); 1865 1866 error = dmu_buf_hold(os, object, offset, zgd, &db, 1867 DMU_READ_NO_PREFETCH); 1868 1869 if (error == 0) { 1870 blkptr_t *obp = dmu_buf_get_blkptr(db); 1871 if (obp) { 1872 ASSERT(BP_IS_HOLE(bp)); 1873 *bp = *obp; 1874 } 1875 1876 zgd->zgd_db = db; 1877 zgd->zgd_bp = bp; 1878 1879 ASSERT(db->db_offset == offset); 1880 ASSERT(db->db_size == size); 1881 1882 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1883 ztest_get_done, zgd); 1884 1885 if (error == 0) 1886 return (0); 1887 } 1888 } 1889 1890 ztest_get_done(zgd, error); 1891 1892 return (error); 1893 } 1894 1895 static void * 1896 ztest_lr_alloc(size_t lrsize, char *name) 1897 { 1898 char *lr; 1899 size_t namesize = name ? strlen(name) + 1 : 0; 1900 1901 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1902 1903 if (name) 1904 bcopy(name, lr + lrsize, namesize); 1905 1906 return (lr); 1907 } 1908 1909 void 1910 ztest_lr_free(void *lr, size_t lrsize, char *name) 1911 { 1912 size_t namesize = name ? strlen(name) + 1 : 0; 1913 1914 umem_free(lr, lrsize + namesize); 1915 } 1916 1917 /* 1918 * Lookup a bunch of objects. Returns the number of objects not found. 1919 */ 1920 static int 1921 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1922 { 1923 int missing = 0; 1924 int error; 1925 1926 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1927 1928 for (int i = 0; i < count; i++, od++) { 1929 od->od_object = 0; 1930 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1931 sizeof (uint64_t), 1, &od->od_object); 1932 if (error) { 1933 ASSERT(error == ENOENT); 1934 ASSERT(od->od_object == 0); 1935 missing++; 1936 } else { 1937 dmu_buf_t *db; 1938 ztest_block_tag_t *bbt; 1939 dmu_object_info_t doi; 1940 1941 ASSERT(od->od_object != 0); 1942 ASSERT(missing == 0); /* there should be no gaps */ 1943 1944 ztest_object_lock(zd, od->od_object, RL_READER); 1945 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1946 od->od_object, FTAG, &db)); 1947 dmu_object_info_from_db(db, &doi); 1948 bbt = ztest_bt_bonus(db); 1949 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1950 od->od_type = doi.doi_type; 1951 od->od_blocksize = doi.doi_data_block_size; 1952 od->od_gen = bbt->bt_gen; 1953 dmu_buf_rele(db, FTAG); 1954 ztest_object_unlock(zd, od->od_object); 1955 } 1956 } 1957 1958 return (missing); 1959 } 1960 1961 static int 1962 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1963 { 1964 int missing = 0; 1965 1966 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1967 1968 for (int i = 0; i < count; i++, od++) { 1969 if (missing) { 1970 od->od_object = 0; 1971 missing++; 1972 continue; 1973 } 1974 1975 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1976 1977 lr->lr_doid = od->od_dir; 1978 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 1979 lr->lrz_type = od->od_crtype; 1980 lr->lrz_blocksize = od->od_crblocksize; 1981 lr->lrz_ibshift = ztest_random_ibshift(); 1982 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 1983 lr->lrz_bonuslen = dmu_bonus_max(); 1984 lr->lr_gen = od->od_crgen; 1985 lr->lr_crtime[0] = time(NULL); 1986 1987 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 1988 ASSERT(missing == 0); 1989 od->od_object = 0; 1990 missing++; 1991 } else { 1992 od->od_object = lr->lr_foid; 1993 od->od_type = od->od_crtype; 1994 od->od_blocksize = od->od_crblocksize; 1995 od->od_gen = od->od_crgen; 1996 ASSERT(od->od_object != 0); 1997 } 1998 1999 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2000 } 2001 2002 return (missing); 2003 } 2004 2005 static int 2006 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2007 { 2008 int missing = 0; 2009 int error; 2010 2011 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 2012 2013 od += count - 1; 2014 2015 for (int i = count - 1; i >= 0; i--, od--) { 2016 if (missing) { 2017 missing++; 2018 continue; 2019 } 2020 2021 /* 2022 * No object was found. 2023 */ 2024 if (od->od_object == 0) 2025 continue; 2026 2027 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2028 2029 lr->lr_doid = od->od_dir; 2030 2031 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2032 ASSERT3U(error, ==, ENOSPC); 2033 missing++; 2034 } else { 2035 od->od_object = 0; 2036 } 2037 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2038 } 2039 2040 return (missing); 2041 } 2042 2043 static int 2044 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2045 void *data) 2046 { 2047 lr_write_t *lr; 2048 int error; 2049 2050 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2051 2052 lr->lr_foid = object; 2053 lr->lr_offset = offset; 2054 lr->lr_length = size; 2055 lr->lr_blkoff = 0; 2056 BP_ZERO(&lr->lr_blkptr); 2057 2058 bcopy(data, lr + 1, size); 2059 2060 error = ztest_replay_write(zd, lr, B_FALSE); 2061 2062 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2063 2064 return (error); 2065 } 2066 2067 static int 2068 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2069 { 2070 lr_truncate_t *lr; 2071 int error; 2072 2073 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2074 2075 lr->lr_foid = object; 2076 lr->lr_offset = offset; 2077 lr->lr_length = size; 2078 2079 error = ztest_replay_truncate(zd, lr, B_FALSE); 2080 2081 ztest_lr_free(lr, sizeof (*lr), NULL); 2082 2083 return (error); 2084 } 2085 2086 static int 2087 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2088 { 2089 lr_setattr_t *lr; 2090 int error; 2091 2092 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2093 2094 lr->lr_foid = object; 2095 lr->lr_size = 0; 2096 lr->lr_mode = 0; 2097 2098 error = ztest_replay_setattr(zd, lr, B_FALSE); 2099 2100 ztest_lr_free(lr, sizeof (*lr), NULL); 2101 2102 return (error); 2103 } 2104 2105 static void 2106 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2107 { 2108 objset_t *os = zd->zd_os; 2109 dmu_tx_t *tx; 2110 uint64_t txg; 2111 rl_t *rl; 2112 2113 txg_wait_synced(dmu_objset_pool(os), 0); 2114 2115 ztest_object_lock(zd, object, RL_READER); 2116 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2117 2118 tx = dmu_tx_create(os); 2119 2120 dmu_tx_hold_write(tx, object, offset, size); 2121 2122 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2123 2124 if (txg != 0) { 2125 dmu_prealloc(os, object, offset, size, tx); 2126 dmu_tx_commit(tx); 2127 txg_wait_synced(dmu_objset_pool(os), txg); 2128 } else { 2129 (void) dmu_free_long_range(os, object, offset, size); 2130 } 2131 2132 ztest_range_unlock(rl); 2133 ztest_object_unlock(zd, object); 2134 } 2135 2136 static void 2137 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2138 { 2139 int err; 2140 ztest_block_tag_t wbt; 2141 dmu_object_info_t doi; 2142 enum ztest_io_type io_type; 2143 uint64_t blocksize; 2144 void *data; 2145 2146 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2147 blocksize = doi.doi_data_block_size; 2148 data = umem_alloc(blocksize, UMEM_NOFAIL); 2149 2150 /* 2151 * Pick an i/o type at random, biased toward writing block tags. 2152 */ 2153 io_type = ztest_random(ZTEST_IO_TYPES); 2154 if (ztest_random(2) == 0) 2155 io_type = ZTEST_IO_WRITE_TAG; 2156 2157 (void) rw_rdlock(&zd->zd_zilog_lock); 2158 2159 switch (io_type) { 2160 2161 case ZTEST_IO_WRITE_TAG: 2162 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 2163 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2164 break; 2165 2166 case ZTEST_IO_WRITE_PATTERN: 2167 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2168 if (ztest_random(2) == 0) { 2169 /* 2170 * Induce fletcher2 collisions to ensure that 2171 * zio_ddt_collision() detects and resolves them 2172 * when using fletcher2-verify for deduplication. 2173 */ 2174 ((uint64_t *)data)[0] ^= 1ULL << 63; 2175 ((uint64_t *)data)[4] ^= 1ULL << 63; 2176 } 2177 (void) ztest_write(zd, object, offset, blocksize, data); 2178 break; 2179 2180 case ZTEST_IO_WRITE_ZEROES: 2181 bzero(data, blocksize); 2182 (void) ztest_write(zd, object, offset, blocksize, data); 2183 break; 2184 2185 case ZTEST_IO_TRUNCATE: 2186 (void) ztest_truncate(zd, object, offset, blocksize); 2187 break; 2188 2189 case ZTEST_IO_SETATTR: 2190 (void) ztest_setattr(zd, object); 2191 break; 2192 2193 case ZTEST_IO_REWRITE: 2194 (void) rw_rdlock(&ztest_name_lock); 2195 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2196 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2197 B_FALSE); 2198 VERIFY(err == 0 || err == ENOSPC); 2199 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2200 ZFS_PROP_COMPRESSION, 2201 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2202 B_FALSE); 2203 VERIFY(err == 0 || err == ENOSPC); 2204 (void) rw_unlock(&ztest_name_lock); 2205 2206 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2207 DMU_READ_NO_PREFETCH)); 2208 2209 (void) ztest_write(zd, object, offset, blocksize, data); 2210 break; 2211 } 2212 2213 (void) rw_unlock(&zd->zd_zilog_lock); 2214 2215 umem_free(data, blocksize); 2216 } 2217 2218 /* 2219 * Initialize an object description template. 2220 */ 2221 static void 2222 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2223 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2224 { 2225 od->od_dir = ZTEST_DIROBJ; 2226 od->od_object = 0; 2227 2228 od->od_crtype = type; 2229 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2230 od->od_crgen = gen; 2231 2232 od->od_type = DMU_OT_NONE; 2233 od->od_blocksize = 0; 2234 od->od_gen = 0; 2235 2236 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2237 tag, (int64_t)id, index); 2238 } 2239 2240 /* 2241 * Lookup or create the objects for a test using the od template. 2242 * If the objects do not all exist, or if 'remove' is specified, 2243 * remove any existing objects and create new ones. Otherwise, 2244 * use the existing objects. 2245 */ 2246 static int 2247 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2248 { 2249 int count = size / sizeof (*od); 2250 int rv = 0; 2251 2252 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2253 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2254 (ztest_remove(zd, od, count) != 0 || 2255 ztest_create(zd, od, count) != 0)) 2256 rv = -1; 2257 zd->zd_od = od; 2258 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2259 2260 return (rv); 2261 } 2262 2263 /* ARGSUSED */ 2264 void 2265 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2266 { 2267 zilog_t *zilog = zd->zd_zilog; 2268 2269 (void) rw_rdlock(&zd->zd_zilog_lock); 2270 2271 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2272 2273 /* 2274 * Remember the committed values in zd, which is in parent/child 2275 * shared memory. If we die, the next iteration of ztest_run() 2276 * will verify that the log really does contain this record. 2277 */ 2278 mutex_enter(&zilog->zl_lock); 2279 ASSERT(zd->zd_shared != NULL); 2280 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2281 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2282 mutex_exit(&zilog->zl_lock); 2283 2284 (void) rw_unlock(&zd->zd_zilog_lock); 2285 } 2286 2287 /* 2288 * This function is designed to simulate the operations that occur during a 2289 * mount/unmount operation. We hold the dataset across these operations in an 2290 * attempt to expose any implicit assumptions about ZIL management. 2291 */ 2292 /* ARGSUSED */ 2293 void 2294 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2295 { 2296 objset_t *os = zd->zd_os; 2297 2298 /* 2299 * We grab the zd_dirobj_lock to ensure that no other thread is 2300 * updating the zil (i.e. adding in-memory log records) and the 2301 * zd_zilog_lock to block any I/O. 2302 */ 2303 VERIFY0(mutex_lock(&zd->zd_dirobj_lock)); 2304 (void) rw_wrlock(&zd->zd_zilog_lock); 2305 2306 /* zfsvfs_teardown() */ 2307 zil_close(zd->zd_zilog); 2308 2309 /* zfsvfs_setup() */ 2310 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2311 zil_replay(os, zd, ztest_replay_vector); 2312 2313 (void) rw_unlock(&zd->zd_zilog_lock); 2314 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2315 } 2316 2317 /* 2318 * Verify that we can't destroy an active pool, create an existing pool, 2319 * or create a pool with a bad vdev spec. 2320 */ 2321 /* ARGSUSED */ 2322 void 2323 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2324 { 2325 ztest_shared_opts_t *zo = &ztest_opts; 2326 spa_t *spa; 2327 nvlist_t *nvroot; 2328 2329 /* 2330 * Attempt to create using a bad file. 2331 */ 2332 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2333 VERIFY3U(ENOENT, ==, 2334 spa_create("ztest_bad_file", nvroot, NULL, NULL)); 2335 nvlist_free(nvroot); 2336 2337 /* 2338 * Attempt to create using a bad mirror. 2339 */ 2340 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1); 2341 VERIFY3U(ENOENT, ==, 2342 spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); 2343 nvlist_free(nvroot); 2344 2345 /* 2346 * Attempt to create an existing pool. It shouldn't matter 2347 * what's in the nvroot; we should fail with EEXIST. 2348 */ 2349 (void) rw_rdlock(&ztest_name_lock); 2350 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2351 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); 2352 nvlist_free(nvroot); 2353 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2354 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2355 spa_close(spa, FTAG); 2356 2357 (void) rw_unlock(&ztest_name_lock); 2358 } 2359 2360 /* ARGSUSED */ 2361 void 2362 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 2363 { 2364 spa_t *spa; 2365 uint64_t initial_version = SPA_VERSION_INITIAL; 2366 uint64_t version, newversion; 2367 nvlist_t *nvroot, *props; 2368 char *name; 2369 2370 VERIFY0(mutex_lock(&ztest_vdev_lock)); 2371 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 2372 2373 /* 2374 * Clean up from previous runs. 2375 */ 2376 (void) spa_destroy(name); 2377 2378 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 2379 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); 2380 2381 /* 2382 * If we're configuring a RAIDZ device then make sure that the 2383 * the initial version is capable of supporting that feature. 2384 */ 2385 switch (ztest_opts.zo_raidz_parity) { 2386 case 0: 2387 case 1: 2388 initial_version = SPA_VERSION_INITIAL; 2389 break; 2390 case 2: 2391 initial_version = SPA_VERSION_RAIDZ2; 2392 break; 2393 case 3: 2394 initial_version = SPA_VERSION_RAIDZ3; 2395 break; 2396 } 2397 2398 /* 2399 * Create a pool with a spa version that can be upgraded. Pick 2400 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 2401 */ 2402 do { 2403 version = ztest_random_spa_version(initial_version); 2404 } while (version > SPA_VERSION_BEFORE_FEATURES); 2405 2406 props = fnvlist_alloc(); 2407 fnvlist_add_uint64(props, 2408 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 2409 VERIFY0(spa_create(name, nvroot, props, NULL)); 2410 fnvlist_free(nvroot); 2411 fnvlist_free(props); 2412 2413 VERIFY0(spa_open(name, &spa, FTAG)); 2414 VERIFY3U(spa_version(spa), ==, version); 2415 newversion = ztest_random_spa_version(version + 1); 2416 2417 if (ztest_opts.zo_verbose >= 4) { 2418 (void) printf("upgrading spa version from %llu to %llu\n", 2419 (u_longlong_t)version, (u_longlong_t)newversion); 2420 } 2421 2422 spa_upgrade(spa, newversion); 2423 VERIFY3U(spa_version(spa), >, version); 2424 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 2425 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 2426 spa_close(spa, FTAG); 2427 2428 strfree(name); 2429 VERIFY0(mutex_unlock(&ztest_vdev_lock)); 2430 } 2431 2432 static vdev_t * 2433 vdev_lookup_by_path(vdev_t *vd, const char *path) 2434 { 2435 vdev_t *mvd; 2436 2437 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2438 return (vd); 2439 2440 for (int c = 0; c < vd->vdev_children; c++) 2441 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2442 NULL) 2443 return (mvd); 2444 2445 return (NULL); 2446 } 2447 2448 /* 2449 * Find the first available hole which can be used as a top-level. 2450 */ 2451 int 2452 find_vdev_hole(spa_t *spa) 2453 { 2454 vdev_t *rvd = spa->spa_root_vdev; 2455 int c; 2456 2457 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2458 2459 for (c = 0; c < rvd->vdev_children; c++) { 2460 vdev_t *cvd = rvd->vdev_child[c]; 2461 2462 if (cvd->vdev_ishole) 2463 break; 2464 } 2465 return (c); 2466 } 2467 2468 /* 2469 * Verify that vdev_add() works as expected. 2470 */ 2471 /* ARGSUSED */ 2472 void 2473 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2474 { 2475 ztest_shared_t *zs = ztest_shared; 2476 spa_t *spa = ztest_spa; 2477 uint64_t leaves; 2478 uint64_t guid; 2479 nvlist_t *nvroot; 2480 int error; 2481 2482 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2483 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2484 2485 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2486 2487 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2488 2489 /* 2490 * If we have slogs then remove them 1/4 of the time. 2491 */ 2492 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2493 /* 2494 * Grab the guid from the head of the log class rotor. 2495 */ 2496 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2497 2498 spa_config_exit(spa, SCL_VDEV, FTAG); 2499 2500 /* 2501 * We have to grab the zs_name_lock as writer to 2502 * prevent a race between removing a slog (dmu_objset_find) 2503 * and destroying a dataset. Removing the slog will 2504 * grab a reference on the dataset which may cause 2505 * dmu_objset_destroy() to fail with EBUSY thus 2506 * leaving the dataset in an inconsistent state. 2507 */ 2508 VERIFY(rw_wrlock(&ztest_name_lock) == 0); 2509 error = spa_vdev_remove(spa, guid, B_FALSE); 2510 VERIFY(rw_unlock(&ztest_name_lock) == 0); 2511 2512 if (error && error != EEXIST) 2513 fatal(0, "spa_vdev_remove() = %d", error); 2514 } else { 2515 spa_config_exit(spa, SCL_VDEV, FTAG); 2516 2517 /* 2518 * Make 1/4 of the devices be log devices. 2519 */ 2520 nvroot = make_vdev_root(NULL, NULL, NULL, 2521 ztest_opts.zo_vdev_size, 0, 2522 ztest_random(4) == 0, ztest_opts.zo_raidz, 2523 zs->zs_mirrors, 1); 2524 2525 error = spa_vdev_add(spa, nvroot); 2526 nvlist_free(nvroot); 2527 2528 if (error == ENOSPC) 2529 ztest_record_enospc("spa_vdev_add"); 2530 else if (error != 0) 2531 fatal(0, "spa_vdev_add() = %d", error); 2532 } 2533 2534 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2535 } 2536 2537 /* 2538 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2539 */ 2540 /* ARGSUSED */ 2541 void 2542 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2543 { 2544 ztest_shared_t *zs = ztest_shared; 2545 spa_t *spa = ztest_spa; 2546 vdev_t *rvd = spa->spa_root_vdev; 2547 spa_aux_vdev_t *sav; 2548 char *aux; 2549 uint64_t guid = 0; 2550 int error; 2551 2552 if (ztest_random(2) == 0) { 2553 sav = &spa->spa_spares; 2554 aux = ZPOOL_CONFIG_SPARES; 2555 } else { 2556 sav = &spa->spa_l2cache; 2557 aux = ZPOOL_CONFIG_L2CACHE; 2558 } 2559 2560 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2561 2562 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2563 2564 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2565 /* 2566 * Pick a random device to remove. 2567 */ 2568 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2569 } else { 2570 /* 2571 * Find an unused device we can add. 2572 */ 2573 zs->zs_vdev_aux = 0; 2574 for (;;) { 2575 char path[MAXPATHLEN]; 2576 int c; 2577 (void) snprintf(path, sizeof (path), ztest_aux_template, 2578 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 2579 zs->zs_vdev_aux); 2580 for (c = 0; c < sav->sav_count; c++) 2581 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2582 path) == 0) 2583 break; 2584 if (c == sav->sav_count && 2585 vdev_lookup_by_path(rvd, path) == NULL) 2586 break; 2587 zs->zs_vdev_aux++; 2588 } 2589 } 2590 2591 spa_config_exit(spa, SCL_VDEV, FTAG); 2592 2593 if (guid == 0) { 2594 /* 2595 * Add a new device. 2596 */ 2597 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 2598 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2599 error = spa_vdev_add(spa, nvroot); 2600 if (error != 0) 2601 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2602 nvlist_free(nvroot); 2603 } else { 2604 /* 2605 * Remove an existing device. Sometimes, dirty its 2606 * vdev state first to make sure we handle removal 2607 * of devices that have pending state changes. 2608 */ 2609 if (ztest_random(2) == 0) 2610 (void) vdev_online(spa, guid, 0, NULL); 2611 2612 error = spa_vdev_remove(spa, guid, B_FALSE); 2613 if (error != 0 && error != EBUSY) 2614 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2615 } 2616 2617 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2618 } 2619 2620 /* 2621 * split a pool if it has mirror tlvdevs 2622 */ 2623 /* ARGSUSED */ 2624 void 2625 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2626 { 2627 ztest_shared_t *zs = ztest_shared; 2628 spa_t *spa = ztest_spa; 2629 vdev_t *rvd = spa->spa_root_vdev; 2630 nvlist_t *tree, **child, *config, *split, **schild; 2631 uint_t c, children, schildren = 0, lastlogid = 0; 2632 int error = 0; 2633 2634 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2635 2636 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2637 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 2638 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2639 return; 2640 } 2641 2642 /* clean up the old pool, if any */ 2643 (void) spa_destroy("splitp"); 2644 2645 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2646 2647 /* generate a config from the existing config */ 2648 mutex_enter(&spa->spa_props_lock); 2649 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2650 &tree) == 0); 2651 mutex_exit(&spa->spa_props_lock); 2652 2653 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2654 &children) == 0); 2655 2656 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2657 for (c = 0; c < children; c++) { 2658 vdev_t *tvd = rvd->vdev_child[c]; 2659 nvlist_t **mchild; 2660 uint_t mchildren; 2661 2662 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2663 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2664 0) == 0); 2665 VERIFY(nvlist_add_string(schild[schildren], 2666 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2667 VERIFY(nvlist_add_uint64(schild[schildren], 2668 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2669 if (lastlogid == 0) 2670 lastlogid = schildren; 2671 ++schildren; 2672 continue; 2673 } 2674 lastlogid = 0; 2675 VERIFY(nvlist_lookup_nvlist_array(child[c], 2676 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2677 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2678 } 2679 2680 /* OK, create a config that can be used to split */ 2681 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2682 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2683 VDEV_TYPE_ROOT) == 0); 2684 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2685 lastlogid != 0 ? lastlogid : schildren) == 0); 2686 2687 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2688 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2689 2690 for (c = 0; c < schildren; c++) 2691 nvlist_free(schild[c]); 2692 free(schild); 2693 nvlist_free(split); 2694 2695 spa_config_exit(spa, SCL_VDEV, FTAG); 2696 2697 (void) rw_wrlock(&ztest_name_lock); 2698 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2699 (void) rw_unlock(&ztest_name_lock); 2700 2701 nvlist_free(config); 2702 2703 if (error == 0) { 2704 (void) printf("successful split - results:\n"); 2705 mutex_enter(&spa_namespace_lock); 2706 show_pool_stats(spa); 2707 show_pool_stats(spa_lookup("splitp")); 2708 mutex_exit(&spa_namespace_lock); 2709 ++zs->zs_splits; 2710 --zs->zs_mirrors; 2711 } 2712 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2713 2714 } 2715 2716 /* 2717 * Verify that we can attach and detach devices. 2718 */ 2719 /* ARGSUSED */ 2720 void 2721 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2722 { 2723 ztest_shared_t *zs = ztest_shared; 2724 spa_t *spa = ztest_spa; 2725 spa_aux_vdev_t *sav = &spa->spa_spares; 2726 vdev_t *rvd = spa->spa_root_vdev; 2727 vdev_t *oldvd, *newvd, *pvd; 2728 nvlist_t *root; 2729 uint64_t leaves; 2730 uint64_t leaf, top; 2731 uint64_t ashift = ztest_get_ashift(); 2732 uint64_t oldguid, pguid; 2733 size_t oldsize, newsize; 2734 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2735 int replacing; 2736 int oldvd_has_siblings = B_FALSE; 2737 int newvd_is_spare = B_FALSE; 2738 int oldvd_is_log; 2739 int error, expected_error; 2740 2741 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2742 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 2743 2744 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2745 2746 /* 2747 * Decide whether to do an attach or a replace. 2748 */ 2749 replacing = ztest_random(2); 2750 2751 /* 2752 * Pick a random top-level vdev. 2753 */ 2754 top = ztest_random_vdev_top(spa, B_TRUE); 2755 2756 /* 2757 * Pick a random leaf within it. 2758 */ 2759 leaf = ztest_random(leaves); 2760 2761 /* 2762 * Locate this vdev. 2763 */ 2764 oldvd = rvd->vdev_child[top]; 2765 if (zs->zs_mirrors >= 1) { 2766 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2767 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2768 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 2769 } 2770 if (ztest_opts.zo_raidz > 1) { 2771 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2772 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 2773 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 2774 } 2775 2776 /* 2777 * If we're already doing an attach or replace, oldvd may be a 2778 * mirror vdev -- in which case, pick a random child. 2779 */ 2780 while (oldvd->vdev_children != 0) { 2781 oldvd_has_siblings = B_TRUE; 2782 ASSERT(oldvd->vdev_children >= 2); 2783 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2784 } 2785 2786 oldguid = oldvd->vdev_guid; 2787 oldsize = vdev_get_min_asize(oldvd); 2788 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2789 (void) strcpy(oldpath, oldvd->vdev_path); 2790 pvd = oldvd->vdev_parent; 2791 pguid = pvd->vdev_guid; 2792 2793 /* 2794 * If oldvd has siblings, then half of the time, detach it. 2795 */ 2796 if (oldvd_has_siblings && ztest_random(2) == 0) { 2797 spa_config_exit(spa, SCL_VDEV, FTAG); 2798 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2799 if (error != 0 && error != ENODEV && error != EBUSY && 2800 error != ENOTSUP) 2801 fatal(0, "detach (%s) returned %d", oldpath, error); 2802 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2803 return; 2804 } 2805 2806 /* 2807 * For the new vdev, choose with equal probability between the two 2808 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2809 */ 2810 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2811 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2812 newvd_is_spare = B_TRUE; 2813 (void) strcpy(newpath, newvd->vdev_path); 2814 } else { 2815 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2816 ztest_opts.zo_dir, ztest_opts.zo_pool, 2817 top * leaves + leaf); 2818 if (ztest_random(2) == 0) 2819 newpath[strlen(newpath) - 1] = 'b'; 2820 newvd = vdev_lookup_by_path(rvd, newpath); 2821 } 2822 2823 if (newvd) { 2824 newsize = vdev_get_min_asize(newvd); 2825 } else { 2826 /* 2827 * Make newsize a little bigger or smaller than oldsize. 2828 * If it's smaller, the attach should fail. 2829 * If it's larger, and we're doing a replace, 2830 * we should get dynamic LUN growth when we're done. 2831 */ 2832 newsize = 10 * oldsize / (9 + ztest_random(3)); 2833 } 2834 2835 /* 2836 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2837 * unless it's a replace; in that case any non-replacing parent is OK. 2838 * 2839 * If newvd is already part of the pool, it should fail with EBUSY. 2840 * 2841 * If newvd is too small, it should fail with EOVERFLOW. 2842 */ 2843 if (pvd->vdev_ops != &vdev_mirror_ops && 2844 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2845 pvd->vdev_ops == &vdev_replacing_ops || 2846 pvd->vdev_ops == &vdev_spare_ops)) 2847 expected_error = ENOTSUP; 2848 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2849 expected_error = ENOTSUP; 2850 else if (newvd == oldvd) 2851 expected_error = replacing ? 0 : EBUSY; 2852 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2853 expected_error = EBUSY; 2854 else if (newsize < oldsize) 2855 expected_error = EOVERFLOW; 2856 else if (ashift > oldvd->vdev_top->vdev_ashift) 2857 expected_error = EDOM; 2858 else 2859 expected_error = 0; 2860 2861 spa_config_exit(spa, SCL_VDEV, FTAG); 2862 2863 /* 2864 * Build the nvlist describing newpath. 2865 */ 2866 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 2867 ashift, 0, 0, 0, 1); 2868 2869 error = spa_vdev_attach(spa, oldguid, root, replacing); 2870 2871 nvlist_free(root); 2872 2873 /* 2874 * If our parent was the replacing vdev, but the replace completed, 2875 * then instead of failing with ENOTSUP we may either succeed, 2876 * fail with ENODEV, or fail with EOVERFLOW. 2877 */ 2878 if (expected_error == ENOTSUP && 2879 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2880 expected_error = error; 2881 2882 /* 2883 * If someone grew the LUN, the replacement may be too small. 2884 */ 2885 if (error == EOVERFLOW || error == EBUSY) 2886 expected_error = error; 2887 2888 /* XXX workaround 6690467 */ 2889 if (error != expected_error && expected_error != EBUSY) { 2890 fatal(0, "attach (%s %llu, %s %llu, %d) " 2891 "returned %d, expected %d", 2892 oldpath, (longlong_t)oldsize, newpath, 2893 (longlong_t)newsize, replacing, error, expected_error); 2894 } 2895 2896 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2897 } 2898 2899 /* 2900 * Callback function which expands the physical size of the vdev. 2901 */ 2902 vdev_t * 2903 grow_vdev(vdev_t *vd, void *arg) 2904 { 2905 spa_t *spa = vd->vdev_spa; 2906 size_t *newsize = arg; 2907 size_t fsize; 2908 int fd; 2909 2910 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2911 ASSERT(vd->vdev_ops->vdev_op_leaf); 2912 2913 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2914 return (vd); 2915 2916 fsize = lseek(fd, 0, SEEK_END); 2917 (void) ftruncate(fd, *newsize); 2918 2919 if (ztest_opts.zo_verbose >= 6) { 2920 (void) printf("%s grew from %lu to %lu bytes\n", 2921 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2922 } 2923 (void) close(fd); 2924 return (NULL); 2925 } 2926 2927 /* 2928 * Callback function which expands a given vdev by calling vdev_online(). 2929 */ 2930 /* ARGSUSED */ 2931 vdev_t * 2932 online_vdev(vdev_t *vd, void *arg) 2933 { 2934 spa_t *spa = vd->vdev_spa; 2935 vdev_t *tvd = vd->vdev_top; 2936 uint64_t guid = vd->vdev_guid; 2937 uint64_t generation = spa->spa_config_generation + 1; 2938 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2939 int error; 2940 2941 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2942 ASSERT(vd->vdev_ops->vdev_op_leaf); 2943 2944 /* Calling vdev_online will initialize the new metaslabs */ 2945 spa_config_exit(spa, SCL_STATE, spa); 2946 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2947 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2948 2949 /* 2950 * If vdev_online returned an error or the underlying vdev_open 2951 * failed then we abort the expand. The only way to know that 2952 * vdev_open fails is by checking the returned newstate. 2953 */ 2954 if (error || newstate != VDEV_STATE_HEALTHY) { 2955 if (ztest_opts.zo_verbose >= 5) { 2956 (void) printf("Unable to expand vdev, state %llu, " 2957 "error %d\n", (u_longlong_t)newstate, error); 2958 } 2959 return (vd); 2960 } 2961 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2962 2963 /* 2964 * Since we dropped the lock we need to ensure that we're 2965 * still talking to the original vdev. It's possible this 2966 * vdev may have been detached/replaced while we were 2967 * trying to online it. 2968 */ 2969 if (generation != spa->spa_config_generation) { 2970 if (ztest_opts.zo_verbose >= 5) { 2971 (void) printf("vdev configuration has changed, " 2972 "guid %llu, state %llu, expected gen %llu, " 2973 "got gen %llu\n", 2974 (u_longlong_t)guid, 2975 (u_longlong_t)tvd->vdev_state, 2976 (u_longlong_t)generation, 2977 (u_longlong_t)spa->spa_config_generation); 2978 } 2979 return (vd); 2980 } 2981 return (NULL); 2982 } 2983 2984 /* 2985 * Traverse the vdev tree calling the supplied function. 2986 * We continue to walk the tree until we either have walked all 2987 * children or we receive a non-NULL return from the callback. 2988 * If a NULL callback is passed, then we just return back the first 2989 * leaf vdev we encounter. 2990 */ 2991 vdev_t * 2992 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 2993 { 2994 if (vd->vdev_ops->vdev_op_leaf) { 2995 if (func == NULL) 2996 return (vd); 2997 else 2998 return (func(vd, arg)); 2999 } 3000 3001 for (uint_t c = 0; c < vd->vdev_children; c++) { 3002 vdev_t *cvd = vd->vdev_child[c]; 3003 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3004 return (cvd); 3005 } 3006 return (NULL); 3007 } 3008 3009 /* 3010 * Verify that dynamic LUN growth works as expected. 3011 */ 3012 /* ARGSUSED */ 3013 void 3014 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3015 { 3016 spa_t *spa = ztest_spa; 3017 vdev_t *vd, *tvd; 3018 metaslab_class_t *mc; 3019 metaslab_group_t *mg; 3020 size_t psize, newsize; 3021 uint64_t top; 3022 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 3023 3024 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 3025 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3026 3027 top = ztest_random_vdev_top(spa, B_TRUE); 3028 3029 tvd = spa->spa_root_vdev->vdev_child[top]; 3030 mg = tvd->vdev_mg; 3031 mc = mg->mg_class; 3032 old_ms_count = tvd->vdev_ms_count; 3033 old_class_space = metaslab_class_get_space(mc); 3034 3035 /* 3036 * Determine the size of the first leaf vdev associated with 3037 * our top-level device. 3038 */ 3039 vd = vdev_walk_tree(tvd, NULL, NULL); 3040 ASSERT3P(vd, !=, NULL); 3041 ASSERT(vd->vdev_ops->vdev_op_leaf); 3042 3043 psize = vd->vdev_psize; 3044 3045 /* 3046 * We only try to expand the vdev if it's healthy, less than 4x its 3047 * original size, and it has a valid psize. 3048 */ 3049 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 3050 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 3051 spa_config_exit(spa, SCL_STATE, spa); 3052 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3053 return; 3054 } 3055 ASSERT(psize > 0); 3056 newsize = psize + psize / 8; 3057 ASSERT3U(newsize, >, psize); 3058 3059 if (ztest_opts.zo_verbose >= 6) { 3060 (void) printf("Expanding LUN %s from %lu to %lu\n", 3061 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 3062 } 3063 3064 /* 3065 * Growing the vdev is a two step process: 3066 * 1). expand the physical size (i.e. relabel) 3067 * 2). online the vdev to create the new metaslabs 3068 */ 3069 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 3070 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 3071 tvd->vdev_state != VDEV_STATE_HEALTHY) { 3072 if (ztest_opts.zo_verbose >= 5) { 3073 (void) printf("Could not expand LUN because " 3074 "the vdev configuration changed.\n"); 3075 } 3076 spa_config_exit(spa, SCL_STATE, spa); 3077 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3078 return; 3079 } 3080 3081 spa_config_exit(spa, SCL_STATE, spa); 3082 3083 /* 3084 * Expanding the LUN will update the config asynchronously, 3085 * thus we must wait for the async thread to complete any 3086 * pending tasks before proceeding. 3087 */ 3088 for (;;) { 3089 boolean_t done; 3090 mutex_enter(&spa->spa_async_lock); 3091 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 3092 mutex_exit(&spa->spa_async_lock); 3093 if (done) 3094 break; 3095 txg_wait_synced(spa_get_dsl(spa), 0); 3096 (void) poll(NULL, 0, 100); 3097 } 3098 3099 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3100 3101 tvd = spa->spa_root_vdev->vdev_child[top]; 3102 new_ms_count = tvd->vdev_ms_count; 3103 new_class_space = metaslab_class_get_space(mc); 3104 3105 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 3106 if (ztest_opts.zo_verbose >= 5) { 3107 (void) printf("Could not verify LUN expansion due to " 3108 "intervening vdev offline or remove.\n"); 3109 } 3110 spa_config_exit(spa, SCL_STATE, spa); 3111 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3112 return; 3113 } 3114 3115 /* 3116 * Make sure we were able to grow the vdev. 3117 */ 3118 if (new_ms_count <= old_ms_count) 3119 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 3120 old_ms_count, new_ms_count); 3121 3122 /* 3123 * Make sure we were able to grow the pool. 3124 */ 3125 if (new_class_space <= old_class_space) 3126 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 3127 old_class_space, new_class_space); 3128 3129 if (ztest_opts.zo_verbose >= 5) { 3130 char oldnumbuf[6], newnumbuf[6]; 3131 3132 nicenum(old_class_space, oldnumbuf); 3133 nicenum(new_class_space, newnumbuf); 3134 (void) printf("%s grew from %s to %s\n", 3135 spa->spa_name, oldnumbuf, newnumbuf); 3136 } 3137 3138 spa_config_exit(spa, SCL_STATE, spa); 3139 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3140 } 3141 3142 /* 3143 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3144 */ 3145 /* ARGSUSED */ 3146 static void 3147 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3148 { 3149 /* 3150 * Create the objects common to all ztest datasets. 3151 */ 3152 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3153 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3154 } 3155 3156 static int 3157 ztest_dataset_create(char *dsname) 3158 { 3159 uint64_t zilset = ztest_random(100); 3160 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 3161 ztest_objset_create_cb, NULL); 3162 3163 if (err || zilset < 80) 3164 return (err); 3165 3166 if (ztest_opts.zo_verbose >= 6) 3167 (void) printf("Setting dataset %s to sync always\n", dsname); 3168 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3169 ZFS_SYNC_ALWAYS, B_FALSE)); 3170 } 3171 3172 /* ARGSUSED */ 3173 static int 3174 ztest_objset_destroy_cb(const char *name, void *arg) 3175 { 3176 objset_t *os; 3177 dmu_object_info_t doi; 3178 int error; 3179 3180 /* 3181 * Verify that the dataset contains a directory object. 3182 */ 3183 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); 3184 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3185 if (error != ENOENT) { 3186 /* We could have crashed in the middle of destroying it */ 3187 ASSERT0(error); 3188 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3189 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3190 } 3191 dmu_objset_disown(os, FTAG); 3192 3193 /* 3194 * Destroy the dataset. 3195 */ 3196 if (strchr(name, '@') != NULL) { 3197 VERIFY0(dsl_destroy_snapshot(name, B_FALSE)); 3198 } else { 3199 VERIFY0(dsl_destroy_head(name)); 3200 } 3201 return (0); 3202 } 3203 3204 static boolean_t 3205 ztest_snapshot_create(char *osname, uint64_t id) 3206 { 3207 char snapname[MAXNAMELEN]; 3208 int error; 3209 3210 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); 3211 3212 error = dmu_objset_snapshot_one(osname, snapname); 3213 if (error == ENOSPC) { 3214 ztest_record_enospc(FTAG); 3215 return (B_FALSE); 3216 } 3217 if (error != 0 && error != EEXIST) { 3218 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, 3219 snapname, error); 3220 } 3221 return (B_TRUE); 3222 } 3223 3224 static boolean_t 3225 ztest_snapshot_destroy(char *osname, uint64_t id) 3226 { 3227 char snapname[MAXNAMELEN]; 3228 int error; 3229 3230 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 3231 (u_longlong_t)id); 3232 3233 error = dsl_destroy_snapshot(snapname, B_FALSE); 3234 if (error != 0 && error != ENOENT) 3235 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3236 return (B_TRUE); 3237 } 3238 3239 /* ARGSUSED */ 3240 void 3241 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3242 { 3243 ztest_ds_t zdtmp; 3244 int iters; 3245 int error; 3246 objset_t *os, *os2; 3247 char name[MAXNAMELEN]; 3248 zilog_t *zilog; 3249 3250 (void) rw_rdlock(&ztest_name_lock); 3251 3252 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", 3253 ztest_opts.zo_pool, (u_longlong_t)id); 3254 3255 /* 3256 * If this dataset exists from a previous run, process its replay log 3257 * half of the time. If we don't replay it, then dmu_objset_destroy() 3258 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3259 */ 3260 if (ztest_random(2) == 0 && 3261 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 3262 ztest_zd_init(&zdtmp, NULL, os); 3263 zil_replay(os, &zdtmp, ztest_replay_vector); 3264 ztest_zd_fini(&zdtmp); 3265 dmu_objset_disown(os, FTAG); 3266 } 3267 3268 /* 3269 * There may be an old instance of the dataset we're about to 3270 * create lying around from a previous run. If so, destroy it 3271 * and all of its snapshots. 3272 */ 3273 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3274 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3275 3276 /* 3277 * Verify that the destroyed dataset is no longer in the namespace. 3278 */ 3279 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3280 FTAG, &os)); 3281 3282 /* 3283 * Verify that we can create a new dataset. 3284 */ 3285 error = ztest_dataset_create(name); 3286 if (error) { 3287 if (error == ENOSPC) { 3288 ztest_record_enospc(FTAG); 3289 (void) rw_unlock(&ztest_name_lock); 3290 return; 3291 } 3292 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3293 } 3294 3295 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 3296 3297 ztest_zd_init(&zdtmp, NULL, os); 3298 3299 /* 3300 * Open the intent log for it. 3301 */ 3302 zilog = zil_open(os, ztest_get_data); 3303 3304 /* 3305 * Put some objects in there, do a little I/O to them, 3306 * and randomly take a couple of snapshots along the way. 3307 */ 3308 iters = ztest_random(5); 3309 for (int i = 0; i < iters; i++) { 3310 ztest_dmu_object_alloc_free(&zdtmp, id); 3311 if (ztest_random(iters) == 0) 3312 (void) ztest_snapshot_create(name, i); 3313 } 3314 3315 /* 3316 * Verify that we cannot create an existing dataset. 3317 */ 3318 VERIFY3U(EEXIST, ==, 3319 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 3320 3321 /* 3322 * Verify that we can hold an objset that is also owned. 3323 */ 3324 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3325 dmu_objset_rele(os2, FTAG); 3326 3327 /* 3328 * Verify that we cannot own an objset that is already owned. 3329 */ 3330 VERIFY3U(EBUSY, ==, 3331 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 3332 3333 zil_close(zilog); 3334 dmu_objset_disown(os, FTAG); 3335 ztest_zd_fini(&zdtmp); 3336 3337 (void) rw_unlock(&ztest_name_lock); 3338 } 3339 3340 /* 3341 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3342 */ 3343 void 3344 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3345 { 3346 (void) rw_rdlock(&ztest_name_lock); 3347 (void) ztest_snapshot_destroy(zd->zd_name, id); 3348 (void) ztest_snapshot_create(zd->zd_name, id); 3349 (void) rw_unlock(&ztest_name_lock); 3350 } 3351 3352 /* 3353 * Cleanup non-standard snapshots and clones. 3354 */ 3355 void 3356 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3357 { 3358 char snap1name[MAXNAMELEN]; 3359 char clone1name[MAXNAMELEN]; 3360 char snap2name[MAXNAMELEN]; 3361 char clone2name[MAXNAMELEN]; 3362 char snap3name[MAXNAMELEN]; 3363 int error; 3364 3365 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3366 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3367 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3368 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3369 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3370 3371 error = dsl_destroy_head(clone2name); 3372 if (error && error != ENOENT) 3373 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); 3374 error = dsl_destroy_snapshot(snap3name, B_FALSE); 3375 if (error && error != ENOENT) 3376 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); 3377 error = dsl_destroy_snapshot(snap2name, B_FALSE); 3378 if (error && error != ENOENT) 3379 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); 3380 error = dsl_destroy_head(clone1name); 3381 if (error && error != ENOENT) 3382 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); 3383 error = dsl_destroy_snapshot(snap1name, B_FALSE); 3384 if (error && error != ENOENT) 3385 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); 3386 } 3387 3388 /* 3389 * Verify dsl_dataset_promote handles EBUSY 3390 */ 3391 void 3392 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3393 { 3394 objset_t *os; 3395 char snap1name[MAXNAMELEN]; 3396 char clone1name[MAXNAMELEN]; 3397 char snap2name[MAXNAMELEN]; 3398 char clone2name[MAXNAMELEN]; 3399 char snap3name[MAXNAMELEN]; 3400 char *osname = zd->zd_name; 3401 int error; 3402 3403 (void) rw_rdlock(&ztest_name_lock); 3404 3405 ztest_dsl_dataset_cleanup(osname, id); 3406 3407 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3408 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3409 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3410 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3411 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3412 3413 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 3414 if (error && error != EEXIST) { 3415 if (error == ENOSPC) { 3416 ztest_record_enospc(FTAG); 3417 goto out; 3418 } 3419 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3420 } 3421 3422 error = dmu_objset_clone(clone1name, snap1name); 3423 if (error) { 3424 if (error == ENOSPC) { 3425 ztest_record_enospc(FTAG); 3426 goto out; 3427 } 3428 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3429 } 3430 3431 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 3432 if (error && error != EEXIST) { 3433 if (error == ENOSPC) { 3434 ztest_record_enospc(FTAG); 3435 goto out; 3436 } 3437 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3438 } 3439 3440 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 3441 if (error && error != EEXIST) { 3442 if (error == ENOSPC) { 3443 ztest_record_enospc(FTAG); 3444 goto out; 3445 } 3446 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3447 } 3448 3449 error = dmu_objset_clone(clone2name, snap3name); 3450 if (error) { 3451 if (error == ENOSPC) { 3452 ztest_record_enospc(FTAG); 3453 goto out; 3454 } 3455 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3456 } 3457 3458 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os); 3459 if (error) 3460 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); 3461 error = dsl_dataset_promote(clone2name, NULL); 3462 if (error != EBUSY) 3463 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3464 error); 3465 dmu_objset_disown(os, FTAG); 3466 3467 out: 3468 ztest_dsl_dataset_cleanup(osname, id); 3469 3470 (void) rw_unlock(&ztest_name_lock); 3471 } 3472 3473 /* 3474 * Verify that dmu_object_{alloc,free} work as expected. 3475 */ 3476 void 3477 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3478 { 3479 ztest_od_t od[4]; 3480 int batchsize = sizeof (od) / sizeof (od[0]); 3481 3482 for (int b = 0; b < batchsize; b++) 3483 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3484 3485 /* 3486 * Destroy the previous batch of objects, create a new batch, 3487 * and do some I/O on the new objects. 3488 */ 3489 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3490 return; 3491 3492 while (ztest_random(4 * batchsize) != 0) 3493 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3494 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3495 } 3496 3497 /* 3498 * Verify that dmu_{read,write} work as expected. 3499 */ 3500 void 3501 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3502 { 3503 objset_t *os = zd->zd_os; 3504 ztest_od_t od[2]; 3505 dmu_tx_t *tx; 3506 int i, freeit, error; 3507 uint64_t n, s, txg; 3508 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3509 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3510 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3511 uint64_t regions = 997; 3512 uint64_t stride = 123456789ULL; 3513 uint64_t width = 40; 3514 int free_percent = 5; 3515 3516 /* 3517 * This test uses two objects, packobj and bigobj, that are always 3518 * updated together (i.e. in the same tx) so that their contents are 3519 * in sync and can be compared. Their contents relate to each other 3520 * in a simple way: packobj is a dense array of 'bufwad' structures, 3521 * while bigobj is a sparse array of the same bufwads. Specifically, 3522 * for any index n, there are three bufwads that should be identical: 3523 * 3524 * packobj, at offset n * sizeof (bufwad_t) 3525 * bigobj, at the head of the nth chunk 3526 * bigobj, at the tail of the nth chunk 3527 * 3528 * The chunk size is arbitrary. It doesn't have to be a power of two, 3529 * and it doesn't have any relation to the object blocksize. 3530 * The only requirement is that it can hold at least two bufwads. 3531 * 3532 * Normally, we write the bufwad to each of these locations. 3533 * However, free_percent of the time we instead write zeroes to 3534 * packobj and perform a dmu_free_range() on bigobj. By comparing 3535 * bigobj to packobj, we can verify that the DMU is correctly 3536 * tracking which parts of an object are allocated and free, 3537 * and that the contents of the allocated blocks are correct. 3538 */ 3539 3540 /* 3541 * Read the directory info. If it's the first time, set things up. 3542 */ 3543 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3544 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3545 3546 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3547 return; 3548 3549 bigobj = od[0].od_object; 3550 packobj = od[1].od_object; 3551 chunksize = od[0].od_gen; 3552 ASSERT(chunksize == od[1].od_gen); 3553 3554 /* 3555 * Prefetch a random chunk of the big object. 3556 * Our aim here is to get some async reads in flight 3557 * for blocks that we may free below; the DMU should 3558 * handle this race correctly. 3559 */ 3560 n = ztest_random(regions) * stride + ztest_random(width); 3561 s = 1 + ztest_random(2 * width - 1); 3562 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize); 3563 3564 /* 3565 * Pick a random index and compute the offsets into packobj and bigobj. 3566 */ 3567 n = ztest_random(regions) * stride + ztest_random(width); 3568 s = 1 + ztest_random(width - 1); 3569 3570 packoff = n * sizeof (bufwad_t); 3571 packsize = s * sizeof (bufwad_t); 3572 3573 bigoff = n * chunksize; 3574 bigsize = s * chunksize; 3575 3576 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3577 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3578 3579 /* 3580 * free_percent of the time, free a range of bigobj rather than 3581 * overwriting it. 3582 */ 3583 freeit = (ztest_random(100) < free_percent); 3584 3585 /* 3586 * Read the current contents of our objects. 3587 */ 3588 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3589 DMU_READ_PREFETCH); 3590 ASSERT0(error); 3591 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3592 DMU_READ_PREFETCH); 3593 ASSERT0(error); 3594 3595 /* 3596 * Get a tx for the mods to both packobj and bigobj. 3597 */ 3598 tx = dmu_tx_create(os); 3599 3600 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3601 3602 if (freeit) 3603 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3604 else 3605 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3606 3607 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3608 if (txg == 0) { 3609 umem_free(packbuf, packsize); 3610 umem_free(bigbuf, bigsize); 3611 return; 3612 } 3613 3614 dmu_object_set_checksum(os, bigobj, 3615 (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx); 3616 3617 dmu_object_set_compress(os, bigobj, 3618 (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx); 3619 3620 /* 3621 * For each index from n to n + s, verify that the existing bufwad 3622 * in packobj matches the bufwads at the head and tail of the 3623 * corresponding chunk in bigobj. Then update all three bufwads 3624 * with the new values we want to write out. 3625 */ 3626 for (i = 0; i < s; i++) { 3627 /* LINTED */ 3628 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3629 /* LINTED */ 3630 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3631 /* LINTED */ 3632 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3633 3634 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3635 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3636 3637 if (pack->bw_txg > txg) 3638 fatal(0, "future leak: got %llx, open txg is %llx", 3639 pack->bw_txg, txg); 3640 3641 if (pack->bw_data != 0 && pack->bw_index != n + i) 3642 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3643 pack->bw_index, n, i); 3644 3645 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3646 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3647 3648 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3649 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3650 3651 if (freeit) { 3652 bzero(pack, sizeof (bufwad_t)); 3653 } else { 3654 pack->bw_index = n + i; 3655 pack->bw_txg = txg; 3656 pack->bw_data = 1 + ztest_random(-2ULL); 3657 } 3658 *bigH = *pack; 3659 *bigT = *pack; 3660 } 3661 3662 /* 3663 * We've verified all the old bufwads, and made new ones. 3664 * Now write them out. 3665 */ 3666 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3667 3668 if (freeit) { 3669 if (ztest_opts.zo_verbose >= 7) { 3670 (void) printf("freeing offset %llx size %llx" 3671 " txg %llx\n", 3672 (u_longlong_t)bigoff, 3673 (u_longlong_t)bigsize, 3674 (u_longlong_t)txg); 3675 } 3676 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3677 } else { 3678 if (ztest_opts.zo_verbose >= 7) { 3679 (void) printf("writing offset %llx size %llx" 3680 " txg %llx\n", 3681 (u_longlong_t)bigoff, 3682 (u_longlong_t)bigsize, 3683 (u_longlong_t)txg); 3684 } 3685 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3686 } 3687 3688 dmu_tx_commit(tx); 3689 3690 /* 3691 * Sanity check the stuff we just wrote. 3692 */ 3693 { 3694 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3695 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3696 3697 VERIFY(0 == dmu_read(os, packobj, packoff, 3698 packsize, packcheck, DMU_READ_PREFETCH)); 3699 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3700 bigsize, bigcheck, DMU_READ_PREFETCH)); 3701 3702 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3703 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3704 3705 umem_free(packcheck, packsize); 3706 umem_free(bigcheck, bigsize); 3707 } 3708 3709 umem_free(packbuf, packsize); 3710 umem_free(bigbuf, bigsize); 3711 } 3712 3713 void 3714 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3715 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3716 { 3717 uint64_t i; 3718 bufwad_t *pack; 3719 bufwad_t *bigH; 3720 bufwad_t *bigT; 3721 3722 /* 3723 * For each index from n to n + s, verify that the existing bufwad 3724 * in packobj matches the bufwads at the head and tail of the 3725 * corresponding chunk in bigobj. Then update all three bufwads 3726 * with the new values we want to write out. 3727 */ 3728 for (i = 0; i < s; i++) { 3729 /* LINTED */ 3730 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3731 /* LINTED */ 3732 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3733 /* LINTED */ 3734 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3735 3736 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3737 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3738 3739 if (pack->bw_txg > txg) 3740 fatal(0, "future leak: got %llx, open txg is %llx", 3741 pack->bw_txg, txg); 3742 3743 if (pack->bw_data != 0 && pack->bw_index != n + i) 3744 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3745 pack->bw_index, n, i); 3746 3747 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3748 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3749 3750 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3751 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3752 3753 pack->bw_index = n + i; 3754 pack->bw_txg = txg; 3755 pack->bw_data = 1 + ztest_random(-2ULL); 3756 3757 *bigH = *pack; 3758 *bigT = *pack; 3759 } 3760 } 3761 3762 void 3763 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3764 { 3765 objset_t *os = zd->zd_os; 3766 ztest_od_t od[2]; 3767 dmu_tx_t *tx; 3768 uint64_t i; 3769 int error; 3770 uint64_t n, s, txg; 3771 bufwad_t *packbuf, *bigbuf; 3772 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3773 uint64_t blocksize = ztest_random_blocksize(); 3774 uint64_t chunksize = blocksize; 3775 uint64_t regions = 997; 3776 uint64_t stride = 123456789ULL; 3777 uint64_t width = 9; 3778 dmu_buf_t *bonus_db; 3779 arc_buf_t **bigbuf_arcbufs; 3780 dmu_object_info_t doi; 3781 3782 /* 3783 * This test uses two objects, packobj and bigobj, that are always 3784 * updated together (i.e. in the same tx) so that their contents are 3785 * in sync and can be compared. Their contents relate to each other 3786 * in a simple way: packobj is a dense array of 'bufwad' structures, 3787 * while bigobj is a sparse array of the same bufwads. Specifically, 3788 * for any index n, there are three bufwads that should be identical: 3789 * 3790 * packobj, at offset n * sizeof (bufwad_t) 3791 * bigobj, at the head of the nth chunk 3792 * bigobj, at the tail of the nth chunk 3793 * 3794 * The chunk size is set equal to bigobj block size so that 3795 * dmu_assign_arcbuf() can be tested for object updates. 3796 */ 3797 3798 /* 3799 * Read the directory info. If it's the first time, set things up. 3800 */ 3801 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3802 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3803 3804 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3805 return; 3806 3807 bigobj = od[0].od_object; 3808 packobj = od[1].od_object; 3809 blocksize = od[0].od_blocksize; 3810 chunksize = blocksize; 3811 ASSERT(chunksize == od[1].od_gen); 3812 3813 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3814 VERIFY(ISP2(doi.doi_data_block_size)); 3815 VERIFY(chunksize == doi.doi_data_block_size); 3816 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3817 3818 /* 3819 * Pick a random index and compute the offsets into packobj and bigobj. 3820 */ 3821 n = ztest_random(regions) * stride + ztest_random(width); 3822 s = 1 + ztest_random(width - 1); 3823 3824 packoff = n * sizeof (bufwad_t); 3825 packsize = s * sizeof (bufwad_t); 3826 3827 bigoff = n * chunksize; 3828 bigsize = s * chunksize; 3829 3830 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3831 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3832 3833 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3834 3835 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3836 3837 /* 3838 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3839 * Iteration 1 test zcopy to already referenced dbufs. 3840 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3841 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3842 * Iteration 4 test zcopy when dbuf is no longer dirty. 3843 * Iteration 5 test zcopy when it can't be done. 3844 * Iteration 6 one more zcopy write. 3845 */ 3846 for (i = 0; i < 7; i++) { 3847 uint64_t j; 3848 uint64_t off; 3849 3850 /* 3851 * In iteration 5 (i == 5) use arcbufs 3852 * that don't match bigobj blksz to test 3853 * dmu_assign_arcbuf() when it can't directly 3854 * assign an arcbuf to a dbuf. 3855 */ 3856 for (j = 0; j < s; j++) { 3857 if (i != 5) { 3858 bigbuf_arcbufs[j] = 3859 dmu_request_arcbuf(bonus_db, chunksize); 3860 } else { 3861 bigbuf_arcbufs[2 * j] = 3862 dmu_request_arcbuf(bonus_db, chunksize / 2); 3863 bigbuf_arcbufs[2 * j + 1] = 3864 dmu_request_arcbuf(bonus_db, chunksize / 2); 3865 } 3866 } 3867 3868 /* 3869 * Get a tx for the mods to both packobj and bigobj. 3870 */ 3871 tx = dmu_tx_create(os); 3872 3873 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3874 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3875 3876 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3877 if (txg == 0) { 3878 umem_free(packbuf, packsize); 3879 umem_free(bigbuf, bigsize); 3880 for (j = 0; j < s; j++) { 3881 if (i != 5) { 3882 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3883 } else { 3884 dmu_return_arcbuf( 3885 bigbuf_arcbufs[2 * j]); 3886 dmu_return_arcbuf( 3887 bigbuf_arcbufs[2 * j + 1]); 3888 } 3889 } 3890 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3891 dmu_buf_rele(bonus_db, FTAG); 3892 return; 3893 } 3894 3895 /* 3896 * 50% of the time don't read objects in the 1st iteration to 3897 * test dmu_assign_arcbuf() for the case when there're no 3898 * existing dbufs for the specified offsets. 3899 */ 3900 if (i != 0 || ztest_random(2) != 0) { 3901 error = dmu_read(os, packobj, packoff, 3902 packsize, packbuf, DMU_READ_PREFETCH); 3903 ASSERT0(error); 3904 error = dmu_read(os, bigobj, bigoff, bigsize, 3905 bigbuf, DMU_READ_PREFETCH); 3906 ASSERT0(error); 3907 } 3908 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3909 n, chunksize, txg); 3910 3911 /* 3912 * We've verified all the old bufwads, and made new ones. 3913 * Now write them out. 3914 */ 3915 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3916 if (ztest_opts.zo_verbose >= 7) { 3917 (void) printf("writing offset %llx size %llx" 3918 " txg %llx\n", 3919 (u_longlong_t)bigoff, 3920 (u_longlong_t)bigsize, 3921 (u_longlong_t)txg); 3922 } 3923 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3924 dmu_buf_t *dbt; 3925 if (i != 5) { 3926 bcopy((caddr_t)bigbuf + (off - bigoff), 3927 bigbuf_arcbufs[j]->b_data, chunksize); 3928 } else { 3929 bcopy((caddr_t)bigbuf + (off - bigoff), 3930 bigbuf_arcbufs[2 * j]->b_data, 3931 chunksize / 2); 3932 bcopy((caddr_t)bigbuf + (off - bigoff) + 3933 chunksize / 2, 3934 bigbuf_arcbufs[2 * j + 1]->b_data, 3935 chunksize / 2); 3936 } 3937 3938 if (i == 1) { 3939 VERIFY(dmu_buf_hold(os, bigobj, off, 3940 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 3941 } 3942 if (i != 5) { 3943 dmu_assign_arcbuf(bonus_db, off, 3944 bigbuf_arcbufs[j], tx); 3945 } else { 3946 dmu_assign_arcbuf(bonus_db, off, 3947 bigbuf_arcbufs[2 * j], tx); 3948 dmu_assign_arcbuf(bonus_db, 3949 off + chunksize / 2, 3950 bigbuf_arcbufs[2 * j + 1], tx); 3951 } 3952 if (i == 1) { 3953 dmu_buf_rele(dbt, FTAG); 3954 } 3955 } 3956 dmu_tx_commit(tx); 3957 3958 /* 3959 * Sanity check the stuff we just wrote. 3960 */ 3961 { 3962 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3963 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3964 3965 VERIFY(0 == dmu_read(os, packobj, packoff, 3966 packsize, packcheck, DMU_READ_PREFETCH)); 3967 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3968 bigsize, bigcheck, DMU_READ_PREFETCH)); 3969 3970 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3971 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3972 3973 umem_free(packcheck, packsize); 3974 umem_free(bigcheck, bigsize); 3975 } 3976 if (i == 2) { 3977 txg_wait_open(dmu_objset_pool(os), 0); 3978 } else if (i == 3) { 3979 txg_wait_synced(dmu_objset_pool(os), 0); 3980 } 3981 } 3982 3983 dmu_buf_rele(bonus_db, FTAG); 3984 umem_free(packbuf, packsize); 3985 umem_free(bigbuf, bigsize); 3986 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3987 } 3988 3989 /* ARGSUSED */ 3990 void 3991 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 3992 { 3993 ztest_od_t od[1]; 3994 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 3995 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3996 3997 /* 3998 * Have multiple threads write to large offsets in an object 3999 * to verify that parallel writes to an object -- even to the 4000 * same blocks within the object -- doesn't cause any trouble. 4001 */ 4002 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4003 4004 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4005 return; 4006 4007 while (ztest_random(10) != 0) 4008 ztest_io(zd, od[0].od_object, offset); 4009 } 4010 4011 void 4012 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 4013 { 4014 ztest_od_t od[1]; 4015 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 4016 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4017 uint64_t count = ztest_random(20) + 1; 4018 uint64_t blocksize = ztest_random_blocksize(); 4019 void *data; 4020 4021 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4022 4023 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4024 return; 4025 4026 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 4027 return; 4028 4029 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 4030 4031 data = umem_zalloc(blocksize, UMEM_NOFAIL); 4032 4033 while (ztest_random(count) != 0) { 4034 uint64_t randoff = offset + (ztest_random(count) * blocksize); 4035 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 4036 data) != 0) 4037 break; 4038 while (ztest_random(4) != 0) 4039 ztest_io(zd, od[0].od_object, randoff); 4040 } 4041 4042 umem_free(data, blocksize); 4043 } 4044 4045 /* 4046 * Verify that zap_{create,destroy,add,remove,update} work as expected. 4047 */ 4048 #define ZTEST_ZAP_MIN_INTS 1 4049 #define ZTEST_ZAP_MAX_INTS 4 4050 #define ZTEST_ZAP_MAX_PROPS 1000 4051 4052 void 4053 ztest_zap(ztest_ds_t *zd, uint64_t id) 4054 { 4055 objset_t *os = zd->zd_os; 4056 ztest_od_t od[1]; 4057 uint64_t object; 4058 uint64_t txg, last_txg; 4059 uint64_t value[ZTEST_ZAP_MAX_INTS]; 4060 uint64_t zl_ints, zl_intsize, prop; 4061 int i, ints; 4062 dmu_tx_t *tx; 4063 char propname[100], txgname[100]; 4064 int error; 4065 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 4066 4067 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4068 4069 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4070 return; 4071 4072 object = od[0].od_object; 4073 4074 /* 4075 * Generate a known hash collision, and verify that 4076 * we can lookup and remove both entries. 4077 */ 4078 tx = dmu_tx_create(os); 4079 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4080 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4081 if (txg == 0) 4082 return; 4083 for (i = 0; i < 2; i++) { 4084 value[i] = i; 4085 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 4086 1, &value[i], tx)); 4087 } 4088 for (i = 0; i < 2; i++) { 4089 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 4090 sizeof (uint64_t), 1, &value[i], tx)); 4091 VERIFY3U(0, ==, 4092 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 4093 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4094 ASSERT3U(zl_ints, ==, 1); 4095 } 4096 for (i = 0; i < 2; i++) { 4097 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 4098 } 4099 dmu_tx_commit(tx); 4100 4101 /* 4102 * Generate a buch of random entries. 4103 */ 4104 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 4105 4106 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4107 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4108 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4109 bzero(value, sizeof (value)); 4110 last_txg = 0; 4111 4112 /* 4113 * If these zap entries already exist, validate their contents. 4114 */ 4115 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4116 if (error == 0) { 4117 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4118 ASSERT3U(zl_ints, ==, 1); 4119 4120 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 4121 zl_ints, &last_txg) == 0); 4122 4123 VERIFY(zap_length(os, object, propname, &zl_intsize, 4124 &zl_ints) == 0); 4125 4126 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4127 ASSERT3U(zl_ints, ==, ints); 4128 4129 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4130 zl_ints, value) == 0); 4131 4132 for (i = 0; i < ints; i++) { 4133 ASSERT3U(value[i], ==, last_txg + object + i); 4134 } 4135 } else { 4136 ASSERT3U(error, ==, ENOENT); 4137 } 4138 4139 /* 4140 * Atomically update two entries in our zap object. 4141 * The first is named txg_%llu, and contains the txg 4142 * in which the property was last updated. The second 4143 * is named prop_%llu, and the nth element of its value 4144 * should be txg + object + n. 4145 */ 4146 tx = dmu_tx_create(os); 4147 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4148 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4149 if (txg == 0) 4150 return; 4151 4152 if (last_txg > txg) 4153 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4154 4155 for (i = 0; i < ints; i++) 4156 value[i] = txg + object + i; 4157 4158 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4159 1, &txg, tx)); 4160 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4161 ints, value, tx)); 4162 4163 dmu_tx_commit(tx); 4164 4165 /* 4166 * Remove a random pair of entries. 4167 */ 4168 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4169 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4170 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4171 4172 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4173 4174 if (error == ENOENT) 4175 return; 4176 4177 ASSERT0(error); 4178 4179 tx = dmu_tx_create(os); 4180 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4181 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4182 if (txg == 0) 4183 return; 4184 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4185 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4186 dmu_tx_commit(tx); 4187 } 4188 4189 /* 4190 * Testcase to test the upgrading of a microzap to fatzap. 4191 */ 4192 void 4193 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4194 { 4195 objset_t *os = zd->zd_os; 4196 ztest_od_t od[1]; 4197 uint64_t object, txg; 4198 4199 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4200 4201 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4202 return; 4203 4204 object = od[0].od_object; 4205 4206 /* 4207 * Add entries to this ZAP and make sure it spills over 4208 * and gets upgraded to a fatzap. Also, since we are adding 4209 * 2050 entries we should see ptrtbl growth and leaf-block split. 4210 */ 4211 for (int i = 0; i < 2050; i++) { 4212 char name[MAXNAMELEN]; 4213 uint64_t value = i; 4214 dmu_tx_t *tx; 4215 int error; 4216 4217 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4218 id, value); 4219 4220 tx = dmu_tx_create(os); 4221 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4222 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4223 if (txg == 0) 4224 return; 4225 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4226 &value, tx); 4227 ASSERT(error == 0 || error == EEXIST); 4228 dmu_tx_commit(tx); 4229 } 4230 } 4231 4232 /* ARGSUSED */ 4233 void 4234 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4235 { 4236 objset_t *os = zd->zd_os; 4237 ztest_od_t od[1]; 4238 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4239 dmu_tx_t *tx; 4240 int i, namelen, error; 4241 int micro = ztest_random(2); 4242 char name[20], string_value[20]; 4243 void *data; 4244 4245 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 4246 4247 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4248 return; 4249 4250 object = od[0].od_object; 4251 4252 /* 4253 * Generate a random name of the form 'xxx.....' where each 4254 * x is a random printable character and the dots are dots. 4255 * There are 94 such characters, and the name length goes from 4256 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4257 */ 4258 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4259 4260 for (i = 0; i < 3; i++) 4261 name[i] = '!' + ztest_random('~' - '!' + 1); 4262 for (; i < namelen - 1; i++) 4263 name[i] = '.'; 4264 name[i] = '\0'; 4265 4266 if ((namelen & 1) || micro) { 4267 wsize = sizeof (txg); 4268 wc = 1; 4269 data = &txg; 4270 } else { 4271 wsize = 1; 4272 wc = namelen; 4273 data = string_value; 4274 } 4275 4276 count = -1ULL; 4277 VERIFY0(zap_count(os, object, &count)); 4278 ASSERT(count != -1ULL); 4279 4280 /* 4281 * Select an operation: length, lookup, add, update, remove. 4282 */ 4283 i = ztest_random(5); 4284 4285 if (i >= 2) { 4286 tx = dmu_tx_create(os); 4287 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4288 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4289 if (txg == 0) 4290 return; 4291 bcopy(name, string_value, namelen); 4292 } else { 4293 tx = NULL; 4294 txg = 0; 4295 bzero(string_value, namelen); 4296 } 4297 4298 switch (i) { 4299 4300 case 0: 4301 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 4302 if (error == 0) { 4303 ASSERT3U(wsize, ==, zl_wsize); 4304 ASSERT3U(wc, ==, zl_wc); 4305 } else { 4306 ASSERT3U(error, ==, ENOENT); 4307 } 4308 break; 4309 4310 case 1: 4311 error = zap_lookup(os, object, name, wsize, wc, data); 4312 if (error == 0) { 4313 if (data == string_value && 4314 bcmp(name, data, namelen) != 0) 4315 fatal(0, "name '%s' != val '%s' len %d", 4316 name, data, namelen); 4317 } else { 4318 ASSERT3U(error, ==, ENOENT); 4319 } 4320 break; 4321 4322 case 2: 4323 error = zap_add(os, object, name, wsize, wc, data, tx); 4324 ASSERT(error == 0 || error == EEXIST); 4325 break; 4326 4327 case 3: 4328 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4329 break; 4330 4331 case 4: 4332 error = zap_remove(os, object, name, tx); 4333 ASSERT(error == 0 || error == ENOENT); 4334 break; 4335 } 4336 4337 if (tx != NULL) 4338 dmu_tx_commit(tx); 4339 } 4340 4341 /* 4342 * Commit callback data. 4343 */ 4344 typedef struct ztest_cb_data { 4345 list_node_t zcd_node; 4346 uint64_t zcd_txg; 4347 int zcd_expected_err; 4348 boolean_t zcd_added; 4349 boolean_t zcd_called; 4350 spa_t *zcd_spa; 4351 } ztest_cb_data_t; 4352 4353 /* This is the actual commit callback function */ 4354 static void 4355 ztest_commit_callback(void *arg, int error) 4356 { 4357 ztest_cb_data_t *data = arg; 4358 uint64_t synced_txg; 4359 4360 VERIFY(data != NULL); 4361 VERIFY3S(data->zcd_expected_err, ==, error); 4362 VERIFY(!data->zcd_called); 4363 4364 synced_txg = spa_last_synced_txg(data->zcd_spa); 4365 if (data->zcd_txg > synced_txg) 4366 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4367 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4368 synced_txg); 4369 4370 data->zcd_called = B_TRUE; 4371 4372 if (error == ECANCELED) { 4373 ASSERT0(data->zcd_txg); 4374 ASSERT(!data->zcd_added); 4375 4376 /* 4377 * The private callback data should be destroyed here, but 4378 * since we are going to check the zcd_called field after 4379 * dmu_tx_abort(), we will destroy it there. 4380 */ 4381 return; 4382 } 4383 4384 /* Was this callback added to the global callback list? */ 4385 if (!data->zcd_added) 4386 goto out; 4387 4388 ASSERT3U(data->zcd_txg, !=, 0); 4389 4390 /* Remove our callback from the list */ 4391 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4392 list_remove(&zcl.zcl_callbacks, data); 4393 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4394 4395 out: 4396 umem_free(data, sizeof (ztest_cb_data_t)); 4397 } 4398 4399 /* Allocate and initialize callback data structure */ 4400 static ztest_cb_data_t * 4401 ztest_create_cb_data(objset_t *os, uint64_t txg) 4402 { 4403 ztest_cb_data_t *cb_data; 4404 4405 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4406 4407 cb_data->zcd_txg = txg; 4408 cb_data->zcd_spa = dmu_objset_spa(os); 4409 4410 return (cb_data); 4411 } 4412 4413 /* 4414 * If a number of txgs equal to this threshold have been created after a commit 4415 * callback has been registered but not called, then we assume there is an 4416 * implementation bug. 4417 */ 4418 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4419 4420 /* 4421 * Commit callback test. 4422 */ 4423 void 4424 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4425 { 4426 objset_t *os = zd->zd_os; 4427 ztest_od_t od[1]; 4428 dmu_tx_t *tx; 4429 ztest_cb_data_t *cb_data[3], *tmp_cb; 4430 uint64_t old_txg, txg; 4431 int i, error; 4432 4433 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4434 4435 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4436 return; 4437 4438 tx = dmu_tx_create(os); 4439 4440 cb_data[0] = ztest_create_cb_data(os, 0); 4441 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4442 4443 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4444 4445 /* Every once in a while, abort the transaction on purpose */ 4446 if (ztest_random(100) == 0) 4447 error = -1; 4448 4449 if (!error) 4450 error = dmu_tx_assign(tx, TXG_NOWAIT); 4451 4452 txg = error ? 0 : dmu_tx_get_txg(tx); 4453 4454 cb_data[0]->zcd_txg = txg; 4455 cb_data[1] = ztest_create_cb_data(os, txg); 4456 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4457 4458 if (error) { 4459 /* 4460 * It's not a strict requirement to call the registered 4461 * callbacks from inside dmu_tx_abort(), but that's what 4462 * it's supposed to happen in the current implementation 4463 * so we will check for that. 4464 */ 4465 for (i = 0; i < 2; i++) { 4466 cb_data[i]->zcd_expected_err = ECANCELED; 4467 VERIFY(!cb_data[i]->zcd_called); 4468 } 4469 4470 dmu_tx_abort(tx); 4471 4472 for (i = 0; i < 2; i++) { 4473 VERIFY(cb_data[i]->zcd_called); 4474 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4475 } 4476 4477 return; 4478 } 4479 4480 cb_data[2] = ztest_create_cb_data(os, txg); 4481 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4482 4483 /* 4484 * Read existing data to make sure there isn't a future leak. 4485 */ 4486 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4487 &old_txg, DMU_READ_PREFETCH)); 4488 4489 if (old_txg > txg) 4490 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4491 old_txg, txg); 4492 4493 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4494 4495 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4496 4497 /* 4498 * Since commit callbacks don't have any ordering requirement and since 4499 * it is theoretically possible for a commit callback to be called 4500 * after an arbitrary amount of time has elapsed since its txg has been 4501 * synced, it is difficult to reliably determine whether a commit 4502 * callback hasn't been called due to high load or due to a flawed 4503 * implementation. 4504 * 4505 * In practice, we will assume that if after a certain number of txgs a 4506 * commit callback hasn't been called, then most likely there's an 4507 * implementation bug.. 4508 */ 4509 tmp_cb = list_head(&zcl.zcl_callbacks); 4510 if (tmp_cb != NULL && 4511 tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) { 4512 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4513 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4514 } 4515 4516 /* 4517 * Let's find the place to insert our callbacks. 4518 * 4519 * Even though the list is ordered by txg, it is possible for the 4520 * insertion point to not be the end because our txg may already be 4521 * quiescing at this point and other callbacks in the open txg 4522 * (from other objsets) may have sneaked in. 4523 */ 4524 tmp_cb = list_tail(&zcl.zcl_callbacks); 4525 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4526 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4527 4528 /* Add the 3 callbacks to the list */ 4529 for (i = 0; i < 3; i++) { 4530 if (tmp_cb == NULL) 4531 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4532 else 4533 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4534 cb_data[i]); 4535 4536 cb_data[i]->zcd_added = B_TRUE; 4537 VERIFY(!cb_data[i]->zcd_called); 4538 4539 tmp_cb = cb_data[i]; 4540 } 4541 4542 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4543 4544 dmu_tx_commit(tx); 4545 } 4546 4547 /* ARGSUSED */ 4548 void 4549 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4550 { 4551 zfs_prop_t proplist[] = { 4552 ZFS_PROP_CHECKSUM, 4553 ZFS_PROP_COMPRESSION, 4554 ZFS_PROP_COPIES, 4555 ZFS_PROP_DEDUP 4556 }; 4557 4558 (void) rw_rdlock(&ztest_name_lock); 4559 4560 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4561 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4562 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4563 4564 (void) rw_unlock(&ztest_name_lock); 4565 } 4566 4567 /* ARGSUSED */ 4568 void 4569 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4570 { 4571 nvlist_t *props = NULL; 4572 4573 (void) rw_rdlock(&ztest_name_lock); 4574 4575 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 4576 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4577 4578 VERIFY0(spa_prop_get(ztest_spa, &props)); 4579 4580 if (ztest_opts.zo_verbose >= 6) 4581 dump_nvlist(props, 4); 4582 4583 nvlist_free(props); 4584 4585 (void) rw_unlock(&ztest_name_lock); 4586 } 4587 4588 static int 4589 user_release_one(const char *snapname, const char *holdname) 4590 { 4591 nvlist_t *snaps, *holds; 4592 int error; 4593 4594 snaps = fnvlist_alloc(); 4595 holds = fnvlist_alloc(); 4596 fnvlist_add_boolean(holds, holdname); 4597 fnvlist_add_nvlist(snaps, snapname, holds); 4598 fnvlist_free(holds); 4599 error = dsl_dataset_user_release(snaps, NULL); 4600 fnvlist_free(snaps); 4601 return (error); 4602 } 4603 4604 /* 4605 * Test snapshot hold/release and deferred destroy. 4606 */ 4607 void 4608 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4609 { 4610 int error; 4611 objset_t *os = zd->zd_os; 4612 objset_t *origin; 4613 char snapname[100]; 4614 char fullname[100]; 4615 char clonename[100]; 4616 char tag[100]; 4617 char osname[MAXNAMELEN]; 4618 nvlist_t *holds; 4619 4620 (void) rw_rdlock(&ztest_name_lock); 4621 4622 dmu_objset_name(os, osname); 4623 4624 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); 4625 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 4626 (void) snprintf(clonename, sizeof (clonename), 4627 "%s/ch1_%llu", osname, id); 4628 (void) snprintf(tag, sizeof (tag), "tag_%llu", id); 4629 4630 /* 4631 * Clean up from any previous run. 4632 */ 4633 error = dsl_destroy_head(clonename); 4634 if (error != ENOENT) 4635 ASSERT0(error); 4636 error = user_release_one(fullname, tag); 4637 if (error != ESRCH && error != ENOENT) 4638 ASSERT0(error); 4639 error = dsl_destroy_snapshot(fullname, B_FALSE); 4640 if (error != ENOENT) 4641 ASSERT0(error); 4642 4643 /* 4644 * Create snapshot, clone it, mark snap for deferred destroy, 4645 * destroy clone, verify snap was also destroyed. 4646 */ 4647 error = dmu_objset_snapshot_one(osname, snapname); 4648 if (error) { 4649 if (error == ENOSPC) { 4650 ztest_record_enospc("dmu_objset_snapshot"); 4651 goto out; 4652 } 4653 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4654 } 4655 4656 error = dmu_objset_clone(clonename, fullname); 4657 if (error) { 4658 if (error == ENOSPC) { 4659 ztest_record_enospc("dmu_objset_clone"); 4660 goto out; 4661 } 4662 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4663 } 4664 4665 error = dsl_destroy_snapshot(fullname, B_TRUE); 4666 if (error) { 4667 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4668 fullname, error); 4669 } 4670 4671 error = dsl_destroy_head(clonename); 4672 if (error) 4673 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); 4674 4675 error = dmu_objset_hold(fullname, FTAG, &origin); 4676 if (error != ENOENT) 4677 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4678 4679 /* 4680 * Create snapshot, add temporary hold, verify that we can't 4681 * destroy a held snapshot, mark for deferred destroy, 4682 * release hold, verify snapshot was destroyed. 4683 */ 4684 error = dmu_objset_snapshot_one(osname, snapname); 4685 if (error) { 4686 if (error == ENOSPC) { 4687 ztest_record_enospc("dmu_objset_snapshot"); 4688 goto out; 4689 } 4690 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4691 } 4692 4693 holds = fnvlist_alloc(); 4694 fnvlist_add_string(holds, fullname, tag); 4695 error = dsl_dataset_user_hold(holds, 0, NULL); 4696 fnvlist_free(holds); 4697 4698 if (error) 4699 fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag); 4700 4701 error = dsl_destroy_snapshot(fullname, B_FALSE); 4702 if (error != EBUSY) { 4703 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 4704 fullname, error); 4705 } 4706 4707 error = dsl_destroy_snapshot(fullname, B_TRUE); 4708 if (error) { 4709 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4710 fullname, error); 4711 } 4712 4713 error = user_release_one(fullname, tag); 4714 if (error) 4715 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error); 4716 4717 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 4718 4719 out: 4720 (void) rw_unlock(&ztest_name_lock); 4721 } 4722 4723 /* 4724 * Inject random faults into the on-disk data. 4725 */ 4726 /* ARGSUSED */ 4727 void 4728 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4729 { 4730 ztest_shared_t *zs = ztest_shared; 4731 spa_t *spa = ztest_spa; 4732 int fd; 4733 uint64_t offset; 4734 uint64_t leaves; 4735 uint64_t bad = 0x1990c0ffeedecade; 4736 uint64_t top, leaf; 4737 char path0[MAXPATHLEN]; 4738 char pathrand[MAXPATHLEN]; 4739 size_t fsize; 4740 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 4741 int iters = 1000; 4742 int maxfaults; 4743 int mirror_save; 4744 vdev_t *vd0 = NULL; 4745 uint64_t guid0 = 0; 4746 boolean_t islog = B_FALSE; 4747 4748 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4749 maxfaults = MAXFAULTS(); 4750 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 4751 mirror_save = zs->zs_mirrors; 4752 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4753 4754 ASSERT(leaves >= 1); 4755 4756 /* 4757 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4758 */ 4759 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4760 4761 if (ztest_random(2) == 0) { 4762 /* 4763 * Inject errors on a normal data device or slog device. 4764 */ 4765 top = ztest_random_vdev_top(spa, B_TRUE); 4766 leaf = ztest_random(leaves) + zs->zs_splits; 4767 4768 /* 4769 * Generate paths to the first leaf in this top-level vdev, 4770 * and to the random leaf we selected. We'll induce transient 4771 * write failures and random online/offline activity on leaf 0, 4772 * and we'll write random garbage to the randomly chosen leaf. 4773 */ 4774 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4775 ztest_opts.zo_dir, ztest_opts.zo_pool, 4776 top * leaves + zs->zs_splits); 4777 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4778 ztest_opts.zo_dir, ztest_opts.zo_pool, 4779 top * leaves + leaf); 4780 4781 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4782 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4783 islog = B_TRUE; 4784 4785 if (vd0 != NULL && maxfaults != 1) { 4786 /* 4787 * Make vd0 explicitly claim to be unreadable, 4788 * or unwriteable, or reach behind its back 4789 * and close the underlying fd. We can do this if 4790 * maxfaults == 0 because we'll fail and reexecute, 4791 * and we can do it if maxfaults >= 2 because we'll 4792 * have enough redundancy. If maxfaults == 1, the 4793 * combination of this with injection of random data 4794 * corruption below exceeds the pool's fault tolerance. 4795 */ 4796 vdev_file_t *vf = vd0->vdev_tsd; 4797 4798 if (vf != NULL && ztest_random(3) == 0) { 4799 (void) close(vf->vf_vnode->v_fd); 4800 vf->vf_vnode->v_fd = -1; 4801 } else if (ztest_random(2) == 0) { 4802 vd0->vdev_cant_read = B_TRUE; 4803 } else { 4804 vd0->vdev_cant_write = B_TRUE; 4805 } 4806 guid0 = vd0->vdev_guid; 4807 } 4808 } else { 4809 /* 4810 * Inject errors on an l2cache device. 4811 */ 4812 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4813 4814 if (sav->sav_count == 0) { 4815 spa_config_exit(spa, SCL_STATE, FTAG); 4816 return; 4817 } 4818 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4819 guid0 = vd0->vdev_guid; 4820 (void) strcpy(path0, vd0->vdev_path); 4821 (void) strcpy(pathrand, vd0->vdev_path); 4822 4823 leaf = 0; 4824 leaves = 1; 4825 maxfaults = INT_MAX; /* no limit on cache devices */ 4826 } 4827 4828 spa_config_exit(spa, SCL_STATE, FTAG); 4829 4830 /* 4831 * If we can tolerate two or more faults, or we're dealing 4832 * with a slog, randomly online/offline vd0. 4833 */ 4834 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4835 if (ztest_random(10) < 6) { 4836 int flags = (ztest_random(2) == 0 ? 4837 ZFS_OFFLINE_TEMPORARY : 0); 4838 4839 /* 4840 * We have to grab the zs_name_lock as writer to 4841 * prevent a race between offlining a slog and 4842 * destroying a dataset. Offlining the slog will 4843 * grab a reference on the dataset which may cause 4844 * dmu_objset_destroy() to fail with EBUSY thus 4845 * leaving the dataset in an inconsistent state. 4846 */ 4847 if (islog) 4848 (void) rw_wrlock(&ztest_name_lock); 4849 4850 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4851 4852 if (islog) 4853 (void) rw_unlock(&ztest_name_lock); 4854 } else { 4855 /* 4856 * Ideally we would like to be able to randomly 4857 * call vdev_[on|off]line without holding locks 4858 * to force unpredictable failures but the side 4859 * effects of vdev_[on|off]line prevent us from 4860 * doing so. We grab the ztest_vdev_lock here to 4861 * prevent a race between injection testing and 4862 * aux_vdev removal. 4863 */ 4864 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4865 (void) vdev_online(spa, guid0, 0, NULL); 4866 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4867 } 4868 } 4869 4870 if (maxfaults == 0) 4871 return; 4872 4873 /* 4874 * We have at least single-fault tolerance, so inject data corruption. 4875 */ 4876 fd = open(pathrand, O_RDWR); 4877 4878 if (fd == -1) /* we hit a gap in the device namespace */ 4879 return; 4880 4881 fsize = lseek(fd, 0, SEEK_END); 4882 4883 while (--iters != 0) { 4884 offset = ztest_random(fsize / (leaves << bshift)) * 4885 (leaves << bshift) + (leaf << bshift) + 4886 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4887 4888 if (offset >= fsize) 4889 continue; 4890 4891 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4892 if (mirror_save != zs->zs_mirrors) { 4893 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4894 (void) close(fd); 4895 return; 4896 } 4897 4898 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 4899 fatal(1, "can't inject bad word at 0x%llx in %s", 4900 offset, pathrand); 4901 4902 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4903 4904 if (ztest_opts.zo_verbose >= 7) 4905 (void) printf("injected bad word into %s," 4906 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 4907 } 4908 4909 (void) close(fd); 4910 } 4911 4912 /* 4913 * Verify that DDT repair works as expected. 4914 */ 4915 void 4916 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 4917 { 4918 ztest_shared_t *zs = ztest_shared; 4919 spa_t *spa = ztest_spa; 4920 objset_t *os = zd->zd_os; 4921 ztest_od_t od[1]; 4922 uint64_t object, blocksize, txg, pattern, psize; 4923 enum zio_checksum checksum = spa_dedup_checksum(spa); 4924 dmu_buf_t *db; 4925 dmu_tx_t *tx; 4926 void *buf; 4927 blkptr_t blk; 4928 int copies = 2 * ZIO_DEDUPDITTO_MIN; 4929 4930 blocksize = ztest_random_blocksize(); 4931 blocksize = MIN(blocksize, 2048); /* because we write so many */ 4932 4933 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4934 4935 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4936 return; 4937 4938 /* 4939 * Take the name lock as writer to prevent anyone else from changing 4940 * the pool and dataset properies we need to maintain during this test. 4941 */ 4942 (void) rw_wrlock(&ztest_name_lock); 4943 4944 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 4945 B_FALSE) != 0 || 4946 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 4947 B_FALSE) != 0) { 4948 (void) rw_unlock(&ztest_name_lock); 4949 return; 4950 } 4951 4952 object = od[0].od_object; 4953 blocksize = od[0].od_blocksize; 4954 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os); 4955 4956 ASSERT(object != 0); 4957 4958 tx = dmu_tx_create(os); 4959 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 4960 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 4961 if (txg == 0) { 4962 (void) rw_unlock(&ztest_name_lock); 4963 return; 4964 } 4965 4966 /* 4967 * Write all the copies of our block. 4968 */ 4969 for (int i = 0; i < copies; i++) { 4970 uint64_t offset = i * blocksize; 4971 int error = dmu_buf_hold(os, object, offset, FTAG, &db, 4972 DMU_READ_NO_PREFETCH); 4973 if (error != 0) { 4974 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", 4975 os, (long long)object, (long long) offset, error); 4976 } 4977 ASSERT(db->db_offset == offset); 4978 ASSERT(db->db_size == blocksize); 4979 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 4980 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 4981 dmu_buf_will_fill(db, tx); 4982 ztest_pattern_set(db->db_data, db->db_size, pattern); 4983 dmu_buf_rele(db, FTAG); 4984 } 4985 4986 dmu_tx_commit(tx); 4987 txg_wait_synced(spa_get_dsl(spa), txg); 4988 4989 /* 4990 * Find out what block we got. 4991 */ 4992 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, 4993 DMU_READ_NO_PREFETCH)); 4994 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 4995 dmu_buf_rele(db, FTAG); 4996 4997 /* 4998 * Damage the block. Dedup-ditto will save us when we read it later. 4999 */ 5000 psize = BP_GET_PSIZE(&blk); 5001 buf = zio_buf_alloc(psize); 5002 ztest_pattern_set(buf, psize, ~pattern); 5003 5004 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 5005 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 5006 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 5007 5008 zio_buf_free(buf, psize); 5009 5010 (void) rw_unlock(&ztest_name_lock); 5011 } 5012 5013 /* 5014 * Scrub the pool. 5015 */ 5016 /* ARGSUSED */ 5017 void 5018 ztest_scrub(ztest_ds_t *zd, uint64_t id) 5019 { 5020 spa_t *spa = ztest_spa; 5021 5022 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5023 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 5024 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5025 } 5026 5027 /* 5028 * Change the guid for the pool. 5029 */ 5030 /* ARGSUSED */ 5031 void 5032 ztest_reguid(ztest_ds_t *zd, uint64_t id) 5033 { 5034 spa_t *spa = ztest_spa; 5035 uint64_t orig, load; 5036 int error; 5037 5038 orig = spa_guid(spa); 5039 load = spa_load_guid(spa); 5040 5041 (void) rw_wrlock(&ztest_name_lock); 5042 error = spa_change_guid(spa); 5043 (void) rw_unlock(&ztest_name_lock); 5044 5045 if (error != 0) 5046 return; 5047 5048 if (ztest_opts.zo_verbose >= 4) { 5049 (void) printf("Changed guid old %llu -> %llu\n", 5050 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 5051 } 5052 5053 VERIFY3U(orig, !=, spa_guid(spa)); 5054 VERIFY3U(load, ==, spa_load_guid(spa)); 5055 } 5056 5057 /* 5058 * Rename the pool to a different name and then rename it back. 5059 */ 5060 /* ARGSUSED */ 5061 void 5062 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 5063 { 5064 char *oldname, *newname; 5065 spa_t *spa; 5066 5067 (void) rw_wrlock(&ztest_name_lock); 5068 5069 oldname = ztest_opts.zo_pool; 5070 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 5071 (void) strcpy(newname, oldname); 5072 (void) strcat(newname, "_tmp"); 5073 5074 /* 5075 * Do the rename 5076 */ 5077 VERIFY3U(0, ==, spa_rename(oldname, newname)); 5078 5079 /* 5080 * Try to open it under the old name, which shouldn't exist 5081 */ 5082 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5083 5084 /* 5085 * Open it under the new name and make sure it's still the same spa_t. 5086 */ 5087 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5088 5089 ASSERT(spa == ztest_spa); 5090 spa_close(spa, FTAG); 5091 5092 /* 5093 * Rename it back to the original 5094 */ 5095 VERIFY3U(0, ==, spa_rename(newname, oldname)); 5096 5097 /* 5098 * Make sure it can still be opened 5099 */ 5100 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5101 5102 ASSERT(spa == ztest_spa); 5103 spa_close(spa, FTAG); 5104 5105 umem_free(newname, strlen(newname) + 1); 5106 5107 (void) rw_unlock(&ztest_name_lock); 5108 } 5109 5110 /* 5111 * Verify pool integrity by running zdb. 5112 */ 5113 static void 5114 ztest_run_zdb(char *pool) 5115 { 5116 int status; 5117 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 5118 char zbuf[1024]; 5119 char *bin; 5120 char *ztest; 5121 char *isa; 5122 int isalen; 5123 FILE *fp; 5124 5125 (void) realpath(getexecname(), zdb); 5126 5127 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 5128 bin = strstr(zdb, "/usr/bin/"); 5129 ztest = strstr(bin, "/ztest"); 5130 isa = bin + 8; 5131 isalen = ztest - isa; 5132 isa = strdup(isa); 5133 /* LINTED */ 5134 (void) sprintf(bin, 5135 "/usr/sbin%.*s/zdb -bcc%s%s -U %s %s", 5136 isalen, 5137 isa, 5138 ztest_opts.zo_verbose >= 3 ? "s" : "", 5139 ztest_opts.zo_verbose >= 4 ? "v" : "", 5140 spa_config_path, 5141 pool); 5142 free(isa); 5143 5144 if (ztest_opts.zo_verbose >= 5) 5145 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 5146 5147 fp = popen(zdb, "r"); 5148 5149 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 5150 if (ztest_opts.zo_verbose >= 3) 5151 (void) printf("%s", zbuf); 5152 5153 status = pclose(fp); 5154 5155 if (status == 0) 5156 return; 5157 5158 ztest_dump_core = 0; 5159 if (WIFEXITED(status)) 5160 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 5161 else 5162 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 5163 } 5164 5165 static void 5166 ztest_walk_pool_directory(char *header) 5167 { 5168 spa_t *spa = NULL; 5169 5170 if (ztest_opts.zo_verbose >= 6) 5171 (void) printf("%s\n", header); 5172 5173 mutex_enter(&spa_namespace_lock); 5174 while ((spa = spa_next(spa)) != NULL) 5175 if (ztest_opts.zo_verbose >= 6) 5176 (void) printf("\t%s\n", spa_name(spa)); 5177 mutex_exit(&spa_namespace_lock); 5178 } 5179 5180 static void 5181 ztest_spa_import_export(char *oldname, char *newname) 5182 { 5183 nvlist_t *config, *newconfig; 5184 uint64_t pool_guid; 5185 spa_t *spa; 5186 int error; 5187 5188 if (ztest_opts.zo_verbose >= 4) { 5189 (void) printf("import/export: old = %s, new = %s\n", 5190 oldname, newname); 5191 } 5192 5193 /* 5194 * Clean up from previous runs. 5195 */ 5196 (void) spa_destroy(newname); 5197 5198 /* 5199 * Get the pool's configuration and guid. 5200 */ 5201 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5202 5203 /* 5204 * Kick off a scrub to tickle scrub/export races. 5205 */ 5206 if (ztest_random(2) == 0) 5207 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5208 5209 pool_guid = spa_guid(spa); 5210 spa_close(spa, FTAG); 5211 5212 ztest_walk_pool_directory("pools before export"); 5213 5214 /* 5215 * Export it. 5216 */ 5217 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 5218 5219 ztest_walk_pool_directory("pools after export"); 5220 5221 /* 5222 * Try to import it. 5223 */ 5224 newconfig = spa_tryimport(config); 5225 ASSERT(newconfig != NULL); 5226 nvlist_free(newconfig); 5227 5228 /* 5229 * Import it under the new name. 5230 */ 5231 error = spa_import(newname, config, NULL, 0); 5232 if (error != 0) { 5233 dump_nvlist(config, 0); 5234 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 5235 oldname, newname, error); 5236 } 5237 5238 ztest_walk_pool_directory("pools after import"); 5239 5240 /* 5241 * Try to import it again -- should fail with EEXIST. 5242 */ 5243 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 5244 5245 /* 5246 * Try to import it under a different name -- should fail with EEXIST. 5247 */ 5248 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 5249 5250 /* 5251 * Verify that the pool is no longer visible under the old name. 5252 */ 5253 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5254 5255 /* 5256 * Verify that we can open and close the pool using the new name. 5257 */ 5258 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5259 ASSERT(pool_guid == spa_guid(spa)); 5260 spa_close(spa, FTAG); 5261 5262 nvlist_free(config); 5263 } 5264 5265 static void 5266 ztest_resume(spa_t *spa) 5267 { 5268 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 5269 (void) printf("resuming from suspended state\n"); 5270 spa_vdev_state_enter(spa, SCL_NONE); 5271 vdev_clear(spa, NULL); 5272 (void) spa_vdev_state_exit(spa, NULL, 0); 5273 (void) zio_resume(spa); 5274 } 5275 5276 static void * 5277 ztest_resume_thread(void *arg) 5278 { 5279 spa_t *spa = arg; 5280 5281 while (!ztest_exiting) { 5282 if (spa_suspended(spa)) 5283 ztest_resume(spa); 5284 (void) poll(NULL, 0, 100); 5285 } 5286 return (NULL); 5287 } 5288 5289 static void * 5290 ztest_deadman_thread(void *arg) 5291 { 5292 ztest_shared_t *zs = arg; 5293 int grace = 300; 5294 hrtime_t delta; 5295 5296 delta = (zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + grace; 5297 5298 (void) poll(NULL, 0, (int)(1000 * delta)); 5299 5300 fatal(0, "failed to complete within %d seconds of deadline", grace); 5301 5302 return (NULL); 5303 } 5304 5305 static void 5306 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 5307 { 5308 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 5309 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 5310 hrtime_t functime = gethrtime(); 5311 5312 for (int i = 0; i < zi->zi_iters; i++) 5313 zi->zi_func(zd, id); 5314 5315 functime = gethrtime() - functime; 5316 5317 atomic_add_64(&zc->zc_count, 1); 5318 atomic_add_64(&zc->zc_time, functime); 5319 5320 if (ztest_opts.zo_verbose >= 4) { 5321 Dl_info dli; 5322 (void) dladdr((void *)zi->zi_func, &dli); 5323 (void) printf("%6.2f sec in %s\n", 5324 (double)functime / NANOSEC, dli.dli_sname); 5325 } 5326 } 5327 5328 static void * 5329 ztest_thread(void *arg) 5330 { 5331 int rand; 5332 uint64_t id = (uintptr_t)arg; 5333 ztest_shared_t *zs = ztest_shared; 5334 uint64_t call_next; 5335 hrtime_t now; 5336 ztest_info_t *zi; 5337 ztest_shared_callstate_t *zc; 5338 5339 while ((now = gethrtime()) < zs->zs_thread_stop) { 5340 /* 5341 * See if it's time to force a crash. 5342 */ 5343 if (now > zs->zs_thread_kill) 5344 ztest_kill(zs); 5345 5346 /* 5347 * If we're getting ENOSPC with some regularity, stop. 5348 */ 5349 if (zs->zs_enospc_count > 10) 5350 break; 5351 5352 /* 5353 * Pick a random function to execute. 5354 */ 5355 rand = ztest_random(ZTEST_FUNCS); 5356 zi = &ztest_info[rand]; 5357 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 5358 call_next = zc->zc_next; 5359 5360 if (now >= call_next && 5361 atomic_cas_64(&zc->zc_next, call_next, call_next + 5362 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 5363 ztest_execute(rand, zi, id); 5364 } 5365 } 5366 5367 return (NULL); 5368 } 5369 5370 static void 5371 ztest_dataset_name(char *dsname, char *pool, int d) 5372 { 5373 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); 5374 } 5375 5376 static void 5377 ztest_dataset_destroy(int d) 5378 { 5379 char name[MAXNAMELEN]; 5380 5381 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5382 5383 if (ztest_opts.zo_verbose >= 3) 5384 (void) printf("Destroying %s to free up space\n", name); 5385 5386 /* 5387 * Cleanup any non-standard clones and snapshots. In general, 5388 * ztest thread t operates on dataset (t % zopt_datasets), 5389 * so there may be more than one thing to clean up. 5390 */ 5391 for (int t = d; t < ztest_opts.zo_threads; 5392 t += ztest_opts.zo_datasets) { 5393 ztest_dsl_dataset_cleanup(name, t); 5394 } 5395 5396 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5397 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5398 } 5399 5400 static void 5401 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5402 { 5403 uint64_t usedobjs, dirobjs, scratch; 5404 5405 /* 5406 * ZTEST_DIROBJ is the object directory for the entire dataset. 5407 * Therefore, the number of objects in use should equal the 5408 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5409 * If not, we have an object leak. 5410 * 5411 * Note that we can only check this in ztest_dataset_open(), 5412 * when the open-context and syncing-context values agree. 5413 * That's because zap_count() returns the open-context value, 5414 * while dmu_objset_space() returns the rootbp fill count. 5415 */ 5416 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5417 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5418 ASSERT3U(dirobjs + 1, ==, usedobjs); 5419 } 5420 5421 static int 5422 ztest_dataset_open(int d) 5423 { 5424 ztest_ds_t *zd = &ztest_ds[d]; 5425 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 5426 objset_t *os; 5427 zilog_t *zilog; 5428 char name[MAXNAMELEN]; 5429 int error; 5430 5431 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5432 5433 (void) rw_rdlock(&ztest_name_lock); 5434 5435 error = ztest_dataset_create(name); 5436 if (error == ENOSPC) { 5437 (void) rw_unlock(&ztest_name_lock); 5438 ztest_record_enospc(FTAG); 5439 return (error); 5440 } 5441 ASSERT(error == 0 || error == EEXIST); 5442 5443 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os)); 5444 (void) rw_unlock(&ztest_name_lock); 5445 5446 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 5447 5448 zilog = zd->zd_zilog; 5449 5450 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5451 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5452 fatal(0, "missing log records: claimed %llu < committed %llu", 5453 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5454 5455 ztest_dataset_dirobj_verify(zd); 5456 5457 zil_replay(os, zd, ztest_replay_vector); 5458 5459 ztest_dataset_dirobj_verify(zd); 5460 5461 if (ztest_opts.zo_verbose >= 6) 5462 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5463 zd->zd_name, 5464 (u_longlong_t)zilog->zl_parse_blk_count, 5465 (u_longlong_t)zilog->zl_parse_lr_count, 5466 (u_longlong_t)zilog->zl_replaying_seq); 5467 5468 zilog = zil_open(os, ztest_get_data); 5469 5470 if (zilog->zl_replaying_seq != 0 && 5471 zilog->zl_replaying_seq < committed_seq) 5472 fatal(0, "missing log records: replayed %llu < committed %llu", 5473 zilog->zl_replaying_seq, committed_seq); 5474 5475 return (0); 5476 } 5477 5478 static void 5479 ztest_dataset_close(int d) 5480 { 5481 ztest_ds_t *zd = &ztest_ds[d]; 5482 5483 zil_close(zd->zd_zilog); 5484 dmu_objset_disown(zd->zd_os, zd); 5485 5486 ztest_zd_fini(zd); 5487 } 5488 5489 /* 5490 * Kick off threads to run tests on all datasets in parallel. 5491 */ 5492 static void 5493 ztest_run(ztest_shared_t *zs) 5494 { 5495 thread_t *tid; 5496 spa_t *spa; 5497 objset_t *os; 5498 thread_t resume_tid; 5499 int error; 5500 5501 ztest_exiting = B_FALSE; 5502 5503 /* 5504 * Initialize parent/child shared state. 5505 */ 5506 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5507 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5508 5509 zs->zs_thread_start = gethrtime(); 5510 zs->zs_thread_stop = 5511 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 5512 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5513 zs->zs_thread_kill = zs->zs_thread_stop; 5514 if (ztest_random(100) < ztest_opts.zo_killrate) { 5515 zs->zs_thread_kill -= 5516 ztest_random(ztest_opts.zo_passtime * NANOSEC); 5517 } 5518 5519 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5520 5521 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5522 offsetof(ztest_cb_data_t, zcd_node)); 5523 5524 /* 5525 * Open our pool. 5526 */ 5527 kernel_init(FREAD | FWRITE); 5528 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5529 spa->spa_debug = B_TRUE; 5530 ztest_spa = spa; 5531 5532 VERIFY0(dmu_objset_own(ztest_opts.zo_pool, 5533 DMU_OST_ANY, B_TRUE, FTAG, &os)); 5534 zs->zs_guid = dmu_objset_fsid_guid(os); 5535 dmu_objset_disown(os, FTAG); 5536 5537 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5538 5539 /* 5540 * We don't expect the pool to suspend unless maxfaults == 0, 5541 * in which case ztest_fault_inject() temporarily takes away 5542 * the only valid replica. 5543 */ 5544 if (MAXFAULTS() == 0) 5545 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5546 else 5547 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5548 5549 /* 5550 * Create a thread to periodically resume suspended I/O. 5551 */ 5552 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5553 &resume_tid) == 0); 5554 5555 /* 5556 * Create a deadman thread to abort() if we hang. 5557 */ 5558 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5559 NULL) == 0); 5560 5561 /* 5562 * Verify that we can safely inquire about about any object, 5563 * whether it's allocated or not. To make it interesting, 5564 * we probe a 5-wide window around each power of two. 5565 * This hits all edge cases, including zero and the max. 5566 */ 5567 for (int t = 0; t < 64; t++) { 5568 for (int d = -5; d <= 5; d++) { 5569 error = dmu_object_info(spa->spa_meta_objset, 5570 (1ULL << t) + d, NULL); 5571 ASSERT(error == 0 || error == ENOENT || 5572 error == EINVAL); 5573 } 5574 } 5575 5576 /* 5577 * If we got any ENOSPC errors on the previous run, destroy something. 5578 */ 5579 if (zs->zs_enospc_count != 0) { 5580 int d = ztest_random(ztest_opts.zo_datasets); 5581 ztest_dataset_destroy(d); 5582 } 5583 zs->zs_enospc_count = 0; 5584 5585 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 5586 UMEM_NOFAIL); 5587 5588 if (ztest_opts.zo_verbose >= 4) 5589 (void) printf("starting main threads...\n"); 5590 5591 /* 5592 * Kick off all the tests that run in parallel. 5593 */ 5594 for (int t = 0; t < ztest_opts.zo_threads; t++) { 5595 if (t < ztest_opts.zo_datasets && 5596 ztest_dataset_open(t) != 0) 5597 return; 5598 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5599 THR_BOUND, &tid[t]) == 0); 5600 } 5601 5602 /* 5603 * Wait for all of the tests to complete. We go in reverse order 5604 * so we don't close datasets while threads are still using them. 5605 */ 5606 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 5607 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5608 if (t < ztest_opts.zo_datasets) 5609 ztest_dataset_close(t); 5610 } 5611 5612 txg_wait_synced(spa_get_dsl(spa), 0); 5613 5614 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5615 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5616 5617 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 5618 5619 /* Kill the resume thread */ 5620 ztest_exiting = B_TRUE; 5621 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5622 ztest_resume(spa); 5623 5624 /* 5625 * Right before closing the pool, kick off a bunch of async I/O; 5626 * spa_close() should wait for it to complete. 5627 */ 5628 for (uint64_t object = 1; object < 50; object++) 5629 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20); 5630 5631 spa_close(spa, FTAG); 5632 5633 /* 5634 * Verify that we can loop over all pools. 5635 */ 5636 mutex_enter(&spa_namespace_lock); 5637 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5638 if (ztest_opts.zo_verbose > 3) 5639 (void) printf("spa_next: found %s\n", spa_name(spa)); 5640 mutex_exit(&spa_namespace_lock); 5641 5642 /* 5643 * Verify that we can export the pool and reimport it under a 5644 * different name. 5645 */ 5646 if (ztest_random(2) == 0) { 5647 char name[MAXNAMELEN]; 5648 (void) snprintf(name, MAXNAMELEN, "%s_import", 5649 ztest_opts.zo_pool); 5650 ztest_spa_import_export(ztest_opts.zo_pool, name); 5651 ztest_spa_import_export(name, ztest_opts.zo_pool); 5652 } 5653 5654 kernel_fini(); 5655 5656 list_destroy(&zcl.zcl_callbacks); 5657 5658 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5659 5660 (void) rwlock_destroy(&ztest_name_lock); 5661 (void) _mutex_destroy(&ztest_vdev_lock); 5662 } 5663 5664 static void 5665 ztest_freeze(void) 5666 { 5667 ztest_ds_t *zd = &ztest_ds[0]; 5668 spa_t *spa; 5669 int numloops = 0; 5670 5671 if (ztest_opts.zo_verbose >= 3) 5672 (void) printf("testing spa_freeze()...\n"); 5673 5674 kernel_init(FREAD | FWRITE); 5675 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5676 VERIFY3U(0, ==, ztest_dataset_open(0)); 5677 spa->spa_debug = B_TRUE; 5678 ztest_spa = spa; 5679 5680 /* 5681 * Force the first log block to be transactionally allocated. 5682 * We have to do this before we freeze the pool -- otherwise 5683 * the log chain won't be anchored. 5684 */ 5685 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5686 ztest_dmu_object_alloc_free(zd, 0); 5687 zil_commit(zd->zd_zilog, 0); 5688 } 5689 5690 txg_wait_synced(spa_get_dsl(spa), 0); 5691 5692 /* 5693 * Freeze the pool. This stops spa_sync() from doing anything, 5694 * so that the only way to record changes from now on is the ZIL. 5695 */ 5696 spa_freeze(spa); 5697 5698 /* 5699 * Run tests that generate log records but don't alter the pool config 5700 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5701 * We do a txg_wait_synced() after each iteration to force the txg 5702 * to increase well beyond the last synced value in the uberblock. 5703 * The ZIL should be OK with that. 5704 */ 5705 while (ztest_random(10) != 0 && 5706 numloops++ < ztest_opts.zo_maxloops) { 5707 ztest_dmu_write_parallel(zd, 0); 5708 ztest_dmu_object_alloc_free(zd, 0); 5709 txg_wait_synced(spa_get_dsl(spa), 0); 5710 } 5711 5712 /* 5713 * Commit all of the changes we just generated. 5714 */ 5715 zil_commit(zd->zd_zilog, 0); 5716 txg_wait_synced(spa_get_dsl(spa), 0); 5717 5718 /* 5719 * Close our dataset and close the pool. 5720 */ 5721 ztest_dataset_close(0); 5722 spa_close(spa, FTAG); 5723 kernel_fini(); 5724 5725 /* 5726 * Open and close the pool and dataset to induce log replay. 5727 */ 5728 kernel_init(FREAD | FWRITE); 5729 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5730 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 5731 VERIFY3U(0, ==, ztest_dataset_open(0)); 5732 ztest_dataset_close(0); 5733 5734 spa->spa_debug = B_TRUE; 5735 ztest_spa = spa; 5736 txg_wait_synced(spa_get_dsl(spa), 0); 5737 ztest_reguid(NULL, 0); 5738 5739 spa_close(spa, FTAG); 5740 kernel_fini(); 5741 } 5742 5743 void 5744 print_time(hrtime_t t, char *timebuf) 5745 { 5746 hrtime_t s = t / NANOSEC; 5747 hrtime_t m = s / 60; 5748 hrtime_t h = m / 60; 5749 hrtime_t d = h / 24; 5750 5751 s -= m * 60; 5752 m -= h * 60; 5753 h -= d * 24; 5754 5755 timebuf[0] = '\0'; 5756 5757 if (d) 5758 (void) sprintf(timebuf, 5759 "%llud%02lluh%02llum%02llus", d, h, m, s); 5760 else if (h) 5761 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5762 else if (m) 5763 (void) sprintf(timebuf, "%llum%02llus", m, s); 5764 else 5765 (void) sprintf(timebuf, "%llus", s); 5766 } 5767 5768 static nvlist_t * 5769 make_random_props() 5770 { 5771 nvlist_t *props; 5772 5773 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5774 if (ztest_random(2) == 0) 5775 return (props); 5776 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5777 5778 return (props); 5779 } 5780 5781 /* 5782 * Create a storage pool with the given name and initial vdev size. 5783 * Then test spa_freeze() functionality. 5784 */ 5785 static void 5786 ztest_init(ztest_shared_t *zs) 5787 { 5788 spa_t *spa; 5789 nvlist_t *nvroot, *props; 5790 5791 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5792 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5793 5794 kernel_init(FREAD | FWRITE); 5795 5796 /* 5797 * Create the storage pool. 5798 */ 5799 (void) spa_destroy(ztest_opts.zo_pool); 5800 ztest_shared->zs_vdev_next_leaf = 0; 5801 zs->zs_splits = 0; 5802 zs->zs_mirrors = ztest_opts.zo_mirrors; 5803 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 5804 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 5805 props = make_random_props(); 5806 for (int i = 0; i < SPA_FEATURES; i++) { 5807 char buf[1024]; 5808 (void) snprintf(buf, sizeof (buf), "feature@%s", 5809 spa_feature_table[i].fi_uname); 5810 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 5811 } 5812 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); 5813 nvlist_free(nvroot); 5814 5815 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5816 zs->zs_metaslab_sz = 5817 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5818 5819 spa_close(spa, FTAG); 5820 5821 kernel_fini(); 5822 5823 ztest_run_zdb(ztest_opts.zo_pool); 5824 5825 ztest_freeze(); 5826 5827 ztest_run_zdb(ztest_opts.zo_pool); 5828 5829 (void) rwlock_destroy(&ztest_name_lock); 5830 (void) _mutex_destroy(&ztest_vdev_lock); 5831 } 5832 5833 static void 5834 setup_data_fd(void) 5835 { 5836 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 5837 5838 ztest_fd_data = mkstemp(ztest_name_data); 5839 ASSERT3S(ztest_fd_data, >=, 0); 5840 (void) unlink(ztest_name_data); 5841 } 5842 5843 5844 static int 5845 shared_data_size(ztest_shared_hdr_t *hdr) 5846 { 5847 int size; 5848 5849 size = hdr->zh_hdr_size; 5850 size += hdr->zh_opts_size; 5851 size += hdr->zh_size; 5852 size += hdr->zh_stats_size * hdr->zh_stats_count; 5853 size += hdr->zh_ds_size * hdr->zh_ds_count; 5854 5855 return (size); 5856 } 5857 5858 static void 5859 setup_hdr(void) 5860 { 5861 int size; 5862 ztest_shared_hdr_t *hdr; 5863 5864 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5865 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5866 ASSERT(hdr != MAP_FAILED); 5867 5868 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 5869 5870 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 5871 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 5872 hdr->zh_size = sizeof (ztest_shared_t); 5873 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 5874 hdr->zh_stats_count = ZTEST_FUNCS; 5875 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 5876 hdr->zh_ds_count = ztest_opts.zo_datasets; 5877 5878 size = shared_data_size(hdr); 5879 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 5880 5881 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5882 } 5883 5884 static void 5885 setup_data(void) 5886 { 5887 int size, offset; 5888 ztest_shared_hdr_t *hdr; 5889 uint8_t *buf; 5890 5891 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5892 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 5893 ASSERT(hdr != MAP_FAILED); 5894 5895 size = shared_data_size(hdr); 5896 5897 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5898 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 5899 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5900 ASSERT(hdr != MAP_FAILED); 5901 buf = (uint8_t *)hdr; 5902 5903 offset = hdr->zh_hdr_size; 5904 ztest_shared_opts = (void *)&buf[offset]; 5905 offset += hdr->zh_opts_size; 5906 ztest_shared = (void *)&buf[offset]; 5907 offset += hdr->zh_size; 5908 ztest_shared_callstate = (void *)&buf[offset]; 5909 offset += hdr->zh_stats_size * hdr->zh_stats_count; 5910 ztest_shared_ds = (void *)&buf[offset]; 5911 } 5912 5913 static boolean_t 5914 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 5915 { 5916 pid_t pid; 5917 int status; 5918 char *cmdbuf = NULL; 5919 5920 pid = fork(); 5921 5922 if (cmd == NULL) { 5923 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 5924 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 5925 cmd = cmdbuf; 5926 } 5927 5928 if (pid == -1) 5929 fatal(1, "fork failed"); 5930 5931 if (pid == 0) { /* child */ 5932 char *emptyargv[2] = { cmd, NULL }; 5933 char fd_data_str[12]; 5934 5935 struct rlimit rl = { 1024, 1024 }; 5936 (void) setrlimit(RLIMIT_NOFILE, &rl); 5937 5938 (void) close(ztest_fd_rand); 5939 VERIFY3U(11, >=, 5940 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 5941 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 5942 5943 (void) enable_extended_FILE_stdio(-1, -1); 5944 if (libpath != NULL) 5945 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 5946 (void) execv(cmd, emptyargv); 5947 ztest_dump_core = B_FALSE; 5948 fatal(B_TRUE, "exec failed: %s", cmd); 5949 } 5950 5951 if (cmdbuf != NULL) { 5952 umem_free(cmdbuf, MAXPATHLEN); 5953 cmd = NULL; 5954 } 5955 5956 while (waitpid(pid, &status, 0) != pid) 5957 continue; 5958 if (statusp != NULL) 5959 *statusp = status; 5960 5961 if (WIFEXITED(status)) { 5962 if (WEXITSTATUS(status) != 0) { 5963 (void) fprintf(stderr, "child exited with code %d\n", 5964 WEXITSTATUS(status)); 5965 exit(2); 5966 } 5967 return (B_FALSE); 5968 } else if (WIFSIGNALED(status)) { 5969 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 5970 (void) fprintf(stderr, "child died with signal %d\n", 5971 WTERMSIG(status)); 5972 exit(3); 5973 } 5974 return (B_TRUE); 5975 } else { 5976 (void) fprintf(stderr, "something strange happened to child\n"); 5977 exit(4); 5978 /* NOTREACHED */ 5979 } 5980 } 5981 5982 static void 5983 ztest_run_init(void) 5984 { 5985 ztest_shared_t *zs = ztest_shared; 5986 5987 ASSERT(ztest_opts.zo_init != 0); 5988 5989 /* 5990 * Blow away any existing copy of zpool.cache 5991 */ 5992 (void) remove(spa_config_path); 5993 5994 /* 5995 * Create and initialize our storage pool. 5996 */ 5997 for (int i = 1; i <= ztest_opts.zo_init; i++) { 5998 bzero(zs, sizeof (ztest_shared_t)); 5999 if (ztest_opts.zo_verbose >= 3 && 6000 ztest_opts.zo_init != 1) { 6001 (void) printf("ztest_init(), pass %d\n", i); 6002 } 6003 ztest_init(zs); 6004 } 6005 } 6006 6007 int 6008 main(int argc, char **argv) 6009 { 6010 int kills = 0; 6011 int iters = 0; 6012 int older = 0; 6013 int newer = 0; 6014 ztest_shared_t *zs; 6015 ztest_info_t *zi; 6016 ztest_shared_callstate_t *zc; 6017 char timebuf[100]; 6018 char numbuf[6]; 6019 spa_t *spa; 6020 char *cmd; 6021 boolean_t hasalt; 6022 char *fd_data_str = getenv("ZTEST_FD_DATA"); 6023 6024 (void) setvbuf(stdout, NULL, _IOLBF, 0); 6025 6026 dprintf_setup(&argc, argv); 6027 6028 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 6029 ASSERT3S(ztest_fd_rand, >=, 0); 6030 6031 if (!fd_data_str) { 6032 process_options(argc, argv); 6033 6034 setup_data_fd(); 6035 setup_hdr(); 6036 setup_data(); 6037 bcopy(&ztest_opts, ztest_shared_opts, 6038 sizeof (*ztest_shared_opts)); 6039 } else { 6040 ztest_fd_data = atoi(fd_data_str); 6041 setup_data(); 6042 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 6043 } 6044 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 6045 6046 /* Override location of zpool.cache */ 6047 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 6048 ztest_opts.zo_dir), !=, -1); 6049 6050 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 6051 UMEM_NOFAIL); 6052 zs = ztest_shared; 6053 6054 if (fd_data_str) { 6055 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang; 6056 metaslab_df_alloc_threshold = 6057 zs->zs_metaslab_df_alloc_threshold; 6058 6059 if (zs->zs_do_init) 6060 ztest_run_init(); 6061 else 6062 ztest_run(zs); 6063 exit(0); 6064 } 6065 6066 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 6067 6068 if (ztest_opts.zo_verbose >= 1) { 6069 (void) printf("%llu vdevs, %d datasets, %d threads," 6070 " %llu seconds...\n", 6071 (u_longlong_t)ztest_opts.zo_vdevs, 6072 ztest_opts.zo_datasets, 6073 ztest_opts.zo_threads, 6074 (u_longlong_t)ztest_opts.zo_time); 6075 } 6076 6077 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 6078 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 6079 6080 zs->zs_do_init = B_TRUE; 6081 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 6082 if (ztest_opts.zo_verbose >= 1) { 6083 (void) printf("Executing older ztest for " 6084 "initialization: %s\n", ztest_opts.zo_alt_ztest); 6085 } 6086 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 6087 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 6088 } else { 6089 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 6090 } 6091 zs->zs_do_init = B_FALSE; 6092 6093 zs->zs_proc_start = gethrtime(); 6094 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 6095 6096 for (int f = 0; f < ZTEST_FUNCS; f++) { 6097 zi = &ztest_info[f]; 6098 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6099 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 6100 zc->zc_next = UINT64_MAX; 6101 else 6102 zc->zc_next = zs->zs_proc_start + 6103 ztest_random(2 * zi->zi_interval[0] + 1); 6104 } 6105 6106 /* 6107 * Run the tests in a loop. These tests include fault injection 6108 * to verify that self-healing data works, and forced crashes 6109 * to verify that we never lose on-disk consistency. 6110 */ 6111 while (gethrtime() < zs->zs_proc_stop) { 6112 int status; 6113 boolean_t killed; 6114 6115 /* 6116 * Initialize the workload counters for each function. 6117 */ 6118 for (int f = 0; f < ZTEST_FUNCS; f++) { 6119 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6120 zc->zc_count = 0; 6121 zc->zc_time = 0; 6122 } 6123 6124 /* Set the allocation switch size */ 6125 zs->zs_metaslab_df_alloc_threshold = 6126 ztest_random(zs->zs_metaslab_sz / 4) + 1; 6127 6128 if (!hasalt || ztest_random(2) == 0) { 6129 if (hasalt && ztest_opts.zo_verbose >= 1) { 6130 (void) printf("Executing newer ztest: %s\n", 6131 cmd); 6132 } 6133 newer++; 6134 killed = exec_child(cmd, NULL, B_TRUE, &status); 6135 } else { 6136 if (hasalt && ztest_opts.zo_verbose >= 1) { 6137 (void) printf("Executing older ztest: %s\n", 6138 ztest_opts.zo_alt_ztest); 6139 } 6140 older++; 6141 killed = exec_child(ztest_opts.zo_alt_ztest, 6142 ztest_opts.zo_alt_libpath, B_TRUE, &status); 6143 } 6144 6145 if (killed) 6146 kills++; 6147 iters++; 6148 6149 if (ztest_opts.zo_verbose >= 1) { 6150 hrtime_t now = gethrtime(); 6151 6152 now = MIN(now, zs->zs_proc_stop); 6153 print_time(zs->zs_proc_stop - now, timebuf); 6154 nicenum(zs->zs_space, numbuf); 6155 6156 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 6157 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 6158 iters, 6159 WIFEXITED(status) ? "Complete" : "SIGKILL", 6160 (u_longlong_t)zs->zs_enospc_count, 6161 100.0 * zs->zs_alloc / zs->zs_space, 6162 numbuf, 6163 100.0 * (now - zs->zs_proc_start) / 6164 (ztest_opts.zo_time * NANOSEC), timebuf); 6165 } 6166 6167 if (ztest_opts.zo_verbose >= 2) { 6168 (void) printf("\nWorkload summary:\n\n"); 6169 (void) printf("%7s %9s %s\n", 6170 "Calls", "Time", "Function"); 6171 (void) printf("%7s %9s %s\n", 6172 "-----", "----", "--------"); 6173 for (int f = 0; f < ZTEST_FUNCS; f++) { 6174 Dl_info dli; 6175 6176 zi = &ztest_info[f]; 6177 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6178 print_time(zc->zc_time, timebuf); 6179 (void) dladdr((void *)zi->zi_func, &dli); 6180 (void) printf("%7llu %9s %s\n", 6181 (u_longlong_t)zc->zc_count, timebuf, 6182 dli.dli_sname); 6183 } 6184 (void) printf("\n"); 6185 } 6186 6187 /* 6188 * It's possible that we killed a child during a rename test, 6189 * in which case we'll have a 'ztest_tmp' pool lying around 6190 * instead of 'ztest'. Do a blind rename in case this happened. 6191 */ 6192 kernel_init(FREAD); 6193 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) { 6194 spa_close(spa, FTAG); 6195 } else { 6196 char tmpname[MAXNAMELEN]; 6197 kernel_fini(); 6198 kernel_init(FREAD | FWRITE); 6199 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 6200 ztest_opts.zo_pool); 6201 (void) spa_rename(tmpname, ztest_opts.zo_pool); 6202 } 6203 kernel_fini(); 6204 6205 ztest_run_zdb(ztest_opts.zo_pool); 6206 } 6207 6208 if (ztest_opts.zo_verbose >= 1) { 6209 if (hasalt) { 6210 (void) printf("%d runs of older ztest: %s\n", older, 6211 ztest_opts.zo_alt_ztest); 6212 (void) printf("%d runs of newer ztest: %s\n", newer, 6213 cmd); 6214 } 6215 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 6216 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 6217 } 6218 6219 umem_free(cmd, MAXNAMELEN); 6220 6221 return (0); 6222 }