Print this page
4185 New hash algorithm support
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/zfs/zio_checksum.c
+++ new/usr/src/uts/common/fs/zfs/zio_checksum.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 24 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25 + * Copyright 2013 Saso Kiselkov. All rights reserved.
25 26 */
26 27
27 28 #include <sys/zfs_context.h>
28 29 #include <sys/spa.h>
30 +#include <sys/spa_impl.h>
29 31 #include <sys/zio.h>
30 32 #include <sys/zio_checksum.h>
31 33 #include <sys/zil.h>
32 34 #include <zfs_fletcher.h>
33 35
34 36 /*
35 37 * Checksum vectors.
36 38 *
37 39 * In the SPA, everything is checksummed. We support checksum vectors
38 40 * for three distinct reasons:
39 41 *
40 42 * 1. Different kinds of data need different levels of protection.
41 43 * For SPA metadata, we always want a very strong checksum.
42 44 * For user data, we let users make the trade-off between speed
43 45 * and checksum strength.
44 46 *
45 47 * 2. Cryptographic hash and MAC algorithms are an area of active research.
46 48 * It is likely that in future hash functions will be at least as strong
47 49 * as current best-of-breed, and may be substantially faster as well.
48 50 * We want the ability to take advantage of these new hashes as soon as
49 51 * they become available.
50 52 *
51 53 * 3. If someone develops hardware that can compute a strong hash quickly,
↓ open down ↓ |
13 lines elided |
↑ open up ↑ |
52 54 * we want the ability to take advantage of that hardware.
53 55 *
54 56 * Of course, we don't want a checksum upgrade to invalidate existing
55 57 * data, so we store the checksum *function* in eight bits of the bp.
56 58 * This gives us room for up to 256 different checksum functions.
57 59 *
58 60 * When writing a block, we always checksum it with the latest-and-greatest
59 61 * checksum function of the appropriate strength. When reading a block,
60 62 * we compare the expected checksum against the actual checksum, which we
61 63 * compute via the checksum function specified by BP_GET_CHECKSUM(bp).
64 + *
65 + * SALTED CHECKSUMS
66 + *
67 + * To enable the use of non-cryptographically secure hash algorithms in
68 + * dedup we introduce the notion of salted checksums (MACs, really). A salted
69 + * checksum is fed both a random 256-bit value (the salt) and the data to be
70 + * checksummed. This salt is kept secret (stored on the pool, but never shown
71 + * to the user), thus even if an attacker knew of collision weaknesses in the
72 + * hash algorithm, they won't be able to mount a known plaintext attack on
73 + * the DDT, since the actual hash value cannot be known ahead of time. How
74 + * the salt is used is algorithm-specific (some might simply prefix it to the
75 + * data block, others might need to utilize a full-blown HMAC). On disk the
76 + * salt is stored in a ZAP object in the MOS (DMU_POOL_CHECKSUM_SALT).
77 + *
78 + * CONTEXT TEMPLATES
79 + *
80 + * Some hashing algorithms need to perform a substantial amount of
81 + * initialization work (e.g. salted checksums above may need to pre-hash the
82 + * salt) before being able to process data. Performing this redundant work
83 + * for each block would be very wasteful, so we instead allow a checksum
84 + * algorithm to do the work once (the first time it's used) and then keep
85 + * this pre-initialized context as a template inside the spa_t
86 + * (spa_cksum_tmpls). If the zio_checksum_info_t contains non-NULL
87 + * ci_tmpl_init and ci_tmpl_free callbacks, they are used to construct and
88 + * destruct the pre-initialized checksum context. The pre-initialized
89 + * context is then reused during each checksum invocation and passed to the
90 + * checksum function.
62 91 */
63 92
64 93 /*ARGSUSED*/
65 94 static void
66 -zio_checksum_off(const void *buf, uint64_t size, zio_cksum_t *zcp)
95 +zio_checksum_off(const void *buf, uint64_t size, const zio_cksum_salt_t *salt,
96 + const void *ctx_template, zio_cksum_t *zcp)
67 97 {
68 98 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
69 99 }
70 100
71 101 zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
72 - {{NULL, NULL}, 0, 0, 0, "inherit"},
73 - {{NULL, NULL}, 0, 0, 0, "on"},
74 - {{zio_checksum_off, zio_checksum_off}, 0, 0, 0, "off"},
75 - {{zio_checksum_SHA256, zio_checksum_SHA256}, 1, 1, 0, "label"},
76 - {{zio_checksum_SHA256, zio_checksum_SHA256}, 1, 1, 0, "gang_header"},
77 - {{fletcher_2_native, fletcher_2_byteswap}, 0, 1, 0, "zilog"},
78 - {{fletcher_2_native, fletcher_2_byteswap}, 0, 0, 0, "fletcher2"},
79 - {{fletcher_4_native, fletcher_4_byteswap}, 1, 0, 0, "fletcher4"},
80 - {{zio_checksum_SHA256, zio_checksum_SHA256}, 1, 0, 1, "sha256"},
81 - {{fletcher_4_native, fletcher_4_byteswap}, 0, 1, 0, "zilog2"},
82 - {{zio_checksum_off, zio_checksum_off}, 0, 0, 0, "noparity"},
102 + {{NULL, NULL}, NULL, NULL, 0, 0, 0, 0, "inherit"},
103 + {{NULL, NULL}, NULL, NULL, 0, 0, 0, 0, "on"},
104 + {{zio_checksum_off, zio_checksum_off},
105 + NULL, NULL, 0, 0, 0, 0, "off"},
106 + {{zio_checksum_SHA256, zio_checksum_SHA256},
107 + NULL, NULL, 1, 1, 0, 0, "label"},
108 + {{zio_checksum_SHA256, zio_checksum_SHA256},
109 + NULL, NULL, 1, 1, 0, 0, "gang_header"},
110 + {{fletcher_2_native, fletcher_2_byteswap},
111 + NULL, NULL, 0, 1, 0, 0, "zilog"},
112 + {{fletcher_2_native, fletcher_2_byteswap},
113 + NULL, NULL, 0, 0, 0, 0, "fletcher2"},
114 + {{fletcher_4_native, fletcher_4_byteswap},
115 + NULL, NULL, 1, 0, 0, 0, "fletcher4"},
116 + {{zio_checksum_SHA256, zio_checksum_SHA256},
117 + NULL, NULL, 1, 0, 1, 0, "sha256"},
118 + {{fletcher_4_native, fletcher_4_byteswap},
119 + NULL, NULL, 0, 1, 0, 0, "zilog2"},
120 + {{zio_checksum_off, zio_checksum_off},
121 + NULL, NULL, 0, 0, 0, 0, "noparity"},
122 + {{zio_checksum_SHA512_native, zio_checksum_SHA512_byteswap},
123 + NULL, NULL, 1, 0, 1, 0, "sha512"},
124 + {{zio_checksum_skein_native, zio_checksum_skein_byteswap},
125 + zio_checksum_skein_tmpl_init, zio_checksum_skein_tmpl_free,
126 + 1, 0, 1, 1, "skein"},
127 + {{zio_checksum_edonr_native, zio_checksum_edonr_byteswap},
128 + zio_checksum_edonr_tmpl_init, zio_checksum_edonr_tmpl_free,
129 + 1, 0, 1, 1, "edonr"}
83 130 };
84 131
85 132 enum zio_checksum
86 133 zio_checksum_select(enum zio_checksum child, enum zio_checksum parent)
87 134 {
88 135 ASSERT(child < ZIO_CHECKSUM_FUNCTIONS);
89 136 ASSERT(parent < ZIO_CHECKSUM_FUNCTIONS);
90 137 ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);
91 138
92 139 if (child == ZIO_CHECKSUM_INHERIT)
93 140 return (parent);
94 141
95 142 if (child == ZIO_CHECKSUM_ON)
96 143 return (ZIO_CHECKSUM_ON_VALUE);
97 144
98 145 return (child);
99 146 }
100 147
101 148 enum zio_checksum
102 149 zio_checksum_dedup_select(spa_t *spa, enum zio_checksum child,
103 150 enum zio_checksum parent)
104 151 {
105 152 ASSERT((child & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
106 153 ASSERT((parent & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
107 154 ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);
108 155
109 156 if (child == ZIO_CHECKSUM_INHERIT)
110 157 return (parent);
111 158
112 159 if (child == ZIO_CHECKSUM_ON)
113 160 return (spa_dedup_checksum(spa));
114 161
115 162 if (child == (ZIO_CHECKSUM_ON | ZIO_CHECKSUM_VERIFY))
116 163 return (spa_dedup_checksum(spa) | ZIO_CHECKSUM_VERIFY);
117 164
118 165 ASSERT(zio_checksum_table[child & ZIO_CHECKSUM_MASK].ci_dedup ||
119 166 (child & ZIO_CHECKSUM_VERIFY) || child == ZIO_CHECKSUM_OFF);
120 167
121 168 return (child);
122 169 }
123 170
124 171 /*
125 172 * Set the external verifier for a gang block based on <vdev, offset, txg>,
126 173 * a tuple which is guaranteed to be unique for the life of the pool.
127 174 */
128 175 static void
129 176 zio_checksum_gang_verifier(zio_cksum_t *zcp, blkptr_t *bp)
130 177 {
131 178 dva_t *dva = BP_IDENTITY(bp);
132 179 uint64_t txg = BP_PHYSICAL_BIRTH(bp);
133 180
134 181 ASSERT(BP_IS_GANG(bp));
135 182
136 183 ZIO_SET_CHECKSUM(zcp, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), txg, 0);
137 184 }
138 185
139 186 /*
140 187 * Set the external verifier for a label block based on its offset.
↓ open down ↓ |
48 lines elided |
↑ open up ↑ |
141 188 * The vdev is implicit, and the txg is unknowable at pool open time --
142 189 * hence the logic in vdev_uberblock_load() to find the most recent copy.
143 190 */
144 191 static void
145 192 zio_checksum_label_verifier(zio_cksum_t *zcp, uint64_t offset)
146 193 {
147 194 ZIO_SET_CHECKSUM(zcp, offset, 0, 0, 0);
148 195 }
149 196
150 197 /*
198 + * Calls the template init function of a checksum which supports context
199 + * templates and installs the template into the spa_t.
200 + */
201 +static void
202 +zio_checksum_template_init(enum zio_checksum checksum, spa_t *spa)
203 +{
204 + zio_checksum_info_t *ci = &zio_checksum_table[checksum];
205 +
206 + VERIFY(ci->ci_tmpl_init != NULL && ci->ci_tmpl_free != NULL);
207 + mutex_enter(&spa->spa_cksum_tmpls_lock);
208 + if (spa->spa_cksum_tmpls[checksum] == NULL) {
209 + spa->spa_cksum_tmpls[checksum] =
210 + ci->ci_tmpl_init(&spa->spa_cksum_salt);
211 + VERIFY(spa->spa_cksum_tmpls[checksum] != NULL);
212 + }
213 + mutex_exit(&spa->spa_cksum_tmpls_lock);
214 +}
215 +
216 +/*
151 217 * Generate the checksum.
152 218 */
153 219 void
154 220 zio_checksum_compute(zio_t *zio, enum zio_checksum checksum,
155 221 void *data, uint64_t size)
156 222 {
157 223 blkptr_t *bp = zio->io_bp;
158 224 uint64_t offset = zio->io_offset;
159 225 zio_checksum_info_t *ci = &zio_checksum_table[checksum];
160 226 zio_cksum_t cksum;
227 + spa_t *spa = zio->io_spa;
161 228
162 229 ASSERT((uint_t)checksum < ZIO_CHECKSUM_FUNCTIONS);
163 230 ASSERT(ci->ci_func[0] != NULL);
164 231
232 + if (ci->ci_tmpl_init != NULL && spa->spa_cksum_tmpls[checksum] == NULL)
233 + zio_checksum_template_init(checksum, spa);
234 +
165 235 if (ci->ci_eck) {
166 236 zio_eck_t *eck;
167 237
168 238 if (checksum == ZIO_CHECKSUM_ZILOG2) {
169 239 zil_chain_t *zilc = data;
170 240
171 241 size = P2ROUNDUP_TYPED(zilc->zc_nused, ZIL_MIN_BLKSZ,
172 242 uint64_t);
173 243 eck = &zilc->zc_eck;
174 244 } else {
175 245 eck = (zio_eck_t *)((char *)data + size) - 1;
176 246 }
177 247 if (checksum == ZIO_CHECKSUM_GANG_HEADER)
178 248 zio_checksum_gang_verifier(&eck->zec_cksum, bp);
179 249 else if (checksum == ZIO_CHECKSUM_LABEL)
180 250 zio_checksum_label_verifier(&eck->zec_cksum, offset);
181 251 else
182 252 bp->blk_cksum = eck->zec_cksum;
183 253 eck->zec_magic = ZEC_MAGIC;
184 - ci->ci_func[0](data, size, &cksum);
254 + ci->ci_func[0](data, size, &spa->spa_cksum_salt,
255 + spa->spa_cksum_tmpls[checksum], &cksum);
185 256 eck->zec_cksum = cksum;
186 257 } else {
187 - ci->ci_func[0](data, size, &bp->blk_cksum);
258 + ci->ci_func[0](data, size, &spa->spa_cksum_salt,
259 + spa->spa_cksum_tmpls[checksum], &bp->blk_cksum);
188 260 }
189 261 }
190 262
191 263 int
192 264 zio_checksum_error(zio_t *zio, zio_bad_cksum_t *info)
193 265 {
194 266 blkptr_t *bp = zio->io_bp;
195 267 uint_t checksum = (bp == NULL ? zio->io_prop.zp_checksum :
196 268 (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp)));
197 269 int byteswap;
198 270 int error;
199 271 uint64_t size = (bp == NULL ? zio->io_size :
200 272 (BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp)));
201 273 uint64_t offset = zio->io_offset;
202 274 void *data = zio->io_data;
203 275 zio_checksum_info_t *ci = &zio_checksum_table[checksum];
204 276 zio_cksum_t actual_cksum, expected_cksum, verifier;
277 + spa_t *spa = zio->io_spa;
205 278
206 279 if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func[0] == NULL)
207 280 return (SET_ERROR(EINVAL));
208 281
282 + if (ci->ci_tmpl_init != NULL && spa->spa_cksum_tmpls[checksum] == NULL)
283 + zio_checksum_template_init(checksum, spa);
284 +
209 285 if (ci->ci_eck) {
210 286 zio_eck_t *eck;
211 287
212 288 if (checksum == ZIO_CHECKSUM_ZILOG2) {
213 289 zil_chain_t *zilc = data;
214 290 uint64_t nused;
215 291
216 292 eck = &zilc->zc_eck;
217 293 if (eck->zec_magic == ZEC_MAGIC)
218 294 nused = zilc->zc_nused;
219 295 else if (eck->zec_magic == BSWAP_64(ZEC_MAGIC))
220 296 nused = BSWAP_64(zilc->zc_nused);
221 297 else
222 298 return (SET_ERROR(ECKSUM));
223 299
224 300 if (nused > size)
225 301 return (SET_ERROR(ECKSUM));
226 302
227 303 size = P2ROUNDUP_TYPED(nused, ZIL_MIN_BLKSZ, uint64_t);
228 304 } else {
229 305 eck = (zio_eck_t *)((char *)data + size) - 1;
230 306 }
231 307
232 308 if (checksum == ZIO_CHECKSUM_GANG_HEADER)
233 309 zio_checksum_gang_verifier(&verifier, bp);
234 310 else if (checksum == ZIO_CHECKSUM_LABEL)
235 311 zio_checksum_label_verifier(&verifier, offset);
↓ open down ↓ |
17 lines elided |
↑ open up ↑ |
236 312 else
237 313 verifier = bp->blk_cksum;
238 314
239 315 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
240 316
241 317 if (byteswap)
242 318 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
243 319
244 320 expected_cksum = eck->zec_cksum;
245 321 eck->zec_cksum = verifier;
246 - ci->ci_func[byteswap](data, size, &actual_cksum);
322 + ci->ci_func[byteswap](data, size, &spa->spa_cksum_salt,
323 + spa->spa_cksum_tmpls[checksum], &actual_cksum);
247 324 eck->zec_cksum = expected_cksum;
248 325
249 326 if (byteswap)
250 327 byteswap_uint64_array(&expected_cksum,
251 328 sizeof (zio_cksum_t));
252 329 } else {
253 330 ASSERT(!BP_IS_GANG(bp));
254 331 byteswap = BP_SHOULD_BYTESWAP(bp);
255 332 expected_cksum = bp->blk_cksum;
256 - ci->ci_func[byteswap](data, size, &actual_cksum);
333 + ci->ci_func[byteswap](data, size, &spa->spa_cksum_salt,
334 + spa->spa_cksum_tmpls[checksum], &actual_cksum);
257 335 }
258 336
259 337 info->zbc_expected = expected_cksum;
260 338 info->zbc_actual = actual_cksum;
261 339 info->zbc_checksum_name = ci->ci_name;
262 340 info->zbc_byteswapped = byteswap;
263 341 info->zbc_injected = 0;
264 342 info->zbc_has_cksum = 1;
265 343
266 344 if (!ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
267 345 return (SET_ERROR(ECKSUM));
268 346
269 347 if (zio_injection_enabled && !zio->io_error &&
270 348 (error = zio_handle_fault_injection(zio, ECKSUM)) != 0) {
271 349
272 350 info->zbc_injected = 1;
273 351 return (error);
274 352 }
275 353
276 354 return (0);
355 +}
356 +
357 +/*
358 + * Called by a spa_t that's about to be deallocated. This steps through
359 + * all of the checksum context templates and deallocates any that were
360 + * initialized using the algorithm-specific template init function.
361 + */
362 +void
363 +zio_checksum_templates_free(spa_t *spa)
364 +{
365 + for (int checksum = 0; checksum < ZIO_CHECKSUM_FUNCTIONS; checksum++) {
366 + if (spa->spa_cksum_tmpls[checksum] != NULL) {
367 + zio_checksum_info_t *ci = &zio_checksum_table[checksum];
368 +
369 + VERIFY(ci->ci_tmpl_free != NULL);
370 + ci->ci_tmpl_free(spa->spa_cksum_tmpls[checksum]);
371 + spa->spa_cksum_tmpls[checksum] = NULL;
372 + }
373 + }
277 374 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX