4185 New hash algorithm support
1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 25 * Copyright 2013 Saso Kiselkov. All rights reserved. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa.h> 30 #include <sys/spa_impl.h> 31 #include <sys/zio.h> 32 #include <sys/zio_checksum.h> 33 #include <sys/zil.h> 34 #include <zfs_fletcher.h> 35 36 /* 37 * Checksum vectors. 38 * 39 * In the SPA, everything is checksummed. We support checksum vectors 40 * for three distinct reasons: 41 * 42 * 1. Different kinds of data need different levels of protection. 43 * For SPA metadata, we always want a very strong checksum. 44 * For user data, we let users make the trade-off between speed 45 * and checksum strength. 46 * 47 * 2. Cryptographic hash and MAC algorithms are an area of active research. 48 * It is likely that in future hash functions will be at least as strong 49 * as current best-of-breed, and may be substantially faster as well. 50 * We want the ability to take advantage of these new hashes as soon as 51 * they become available. 52 * 53 * 3. If someone develops hardware that can compute a strong hash quickly, 54 * we want the ability to take advantage of that hardware. 55 * 56 * Of course, we don't want a checksum upgrade to invalidate existing 57 * data, so we store the checksum *function* in eight bits of the bp. 58 * This gives us room for up to 256 different checksum functions. 59 * 60 * When writing a block, we always checksum it with the latest-and-greatest 61 * checksum function of the appropriate strength. When reading a block, 62 * we compare the expected checksum against the actual checksum, which we 63 * compute via the checksum function specified by BP_GET_CHECKSUM(bp). 64 * 65 * SALTED CHECKSUMS 66 * 67 * To enable the use of non-cryptographically secure hash algorithms in 68 * dedup we introduce the notion of salted checksums (MACs, really). A salted 69 * checksum is fed both a random 256-bit value (the salt) and the data to be 70 * checksummed. This salt is kept secret (stored on the pool, but never shown 71 * to the user), thus even if an attacker knew of collision weaknesses in the 72 * hash algorithm, they won't be able to mount a known plaintext attack on 73 * the DDT, since the actual hash value cannot be known ahead of time. How 74 * the salt is used is algorithm-specific (some might simply prefix it to the 75 * data block, others might need to utilize a full-blown HMAC). On disk the 76 * salt is stored in a ZAP object in the MOS (DMU_POOL_CHECKSUM_SALT). 77 * 78 * CONTEXT TEMPLATES 79 * 80 * Some hashing algorithms need to perform a substantial amount of 81 * initialization work (e.g. salted checksums above may need to pre-hash the 82 * salt) before being able to process data. Performing this redundant work 83 * for each block would be very wasteful, so we instead allow a checksum 84 * algorithm to do the work once (the first time it's used) and then keep 85 * this pre-initialized context as a template inside the spa_t 86 * (spa_cksum_tmpls). If the zio_checksum_info_t contains non-NULL 87 * ci_tmpl_init and ci_tmpl_free callbacks, they are used to construct and 88 * destruct the pre-initialized checksum context. The pre-initialized 89 * context is then reused during each checksum invocation and passed to the 90 * checksum function. 91 */ 92 93 /*ARGSUSED*/ 94 static void 95 zio_checksum_off(const void *buf, uint64_t size, const zio_cksum_salt_t *salt, 96 const void *ctx_template, zio_cksum_t *zcp) 97 { 98 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); 99 } 100 101 zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = { 102 {{NULL, NULL}, NULL, NULL, 0, 0, 0, 0, "inherit"}, 103 {{NULL, NULL}, NULL, NULL, 0, 0, 0, 0, "on"}, 104 {{zio_checksum_off, zio_checksum_off}, 105 NULL, NULL, 0, 0, 0, 0, "off"}, 106 {{zio_checksum_SHA256, zio_checksum_SHA256}, 107 NULL, NULL, 1, 1, 0, 0, "label"}, 108 {{zio_checksum_SHA256, zio_checksum_SHA256}, 109 NULL, NULL, 1, 1, 0, 0, "gang_header"}, 110 {{fletcher_2_native, fletcher_2_byteswap}, 111 NULL, NULL, 0, 1, 0, 0, "zilog"}, 112 {{fletcher_2_native, fletcher_2_byteswap}, 113 NULL, NULL, 0, 0, 0, 0, "fletcher2"}, 114 {{fletcher_4_native, fletcher_4_byteswap}, 115 NULL, NULL, 1, 0, 0, 0, "fletcher4"}, 116 {{zio_checksum_SHA256, zio_checksum_SHA256}, 117 NULL, NULL, 1, 0, 1, 0, "sha256"}, 118 {{fletcher_4_native, fletcher_4_byteswap}, 119 NULL, NULL, 0, 1, 0, 0, "zilog2"}, 120 {{zio_checksum_off, zio_checksum_off}, 121 NULL, NULL, 0, 0, 0, 0, "noparity"}, 122 {{zio_checksum_SHA512_native, zio_checksum_SHA512_byteswap}, 123 NULL, NULL, 1, 0, 1, 0, "sha512"}, 124 {{zio_checksum_skein_native, zio_checksum_skein_byteswap}, 125 zio_checksum_skein_tmpl_init, zio_checksum_skein_tmpl_free, 126 1, 0, 1, 1, "skein"}, 127 {{zio_checksum_edonr_native, zio_checksum_edonr_byteswap}, 128 zio_checksum_edonr_tmpl_init, zio_checksum_edonr_tmpl_free, 129 1, 0, 1, 1, "edonr"} 130 }; 131 132 enum zio_checksum 133 zio_checksum_select(enum zio_checksum child, enum zio_checksum parent) 134 { 135 ASSERT(child < ZIO_CHECKSUM_FUNCTIONS); 136 ASSERT(parent < ZIO_CHECKSUM_FUNCTIONS); 137 ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON); 138 139 if (child == ZIO_CHECKSUM_INHERIT) 140 return (parent); 141 142 if (child == ZIO_CHECKSUM_ON) 143 return (ZIO_CHECKSUM_ON_VALUE); 144 145 return (child); 146 } 147 148 enum zio_checksum 149 zio_checksum_dedup_select(spa_t *spa, enum zio_checksum child, 150 enum zio_checksum parent) 151 { 152 ASSERT((child & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS); 153 ASSERT((parent & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS); 154 ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON); 155 156 if (child == ZIO_CHECKSUM_INHERIT) 157 return (parent); 158 159 if (child == ZIO_CHECKSUM_ON) 160 return (spa_dedup_checksum(spa)); 161 162 if (child == (ZIO_CHECKSUM_ON | ZIO_CHECKSUM_VERIFY)) 163 return (spa_dedup_checksum(spa) | ZIO_CHECKSUM_VERIFY); 164 165 ASSERT(zio_checksum_table[child & ZIO_CHECKSUM_MASK].ci_dedup || 166 (child & ZIO_CHECKSUM_VERIFY) || child == ZIO_CHECKSUM_OFF); 167 168 return (child); 169 } 170 171 /* 172 * Set the external verifier for a gang block based on <vdev, offset, txg>, 173 * a tuple which is guaranteed to be unique for the life of the pool. 174 */ 175 static void 176 zio_checksum_gang_verifier(zio_cksum_t *zcp, blkptr_t *bp) 177 { 178 dva_t *dva = BP_IDENTITY(bp); 179 uint64_t txg = BP_PHYSICAL_BIRTH(bp); 180 181 ASSERT(BP_IS_GANG(bp)); 182 183 ZIO_SET_CHECKSUM(zcp, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), txg, 0); 184 } 185 186 /* 187 * Set the external verifier for a label block based on its offset. 188 * The vdev is implicit, and the txg is unknowable at pool open time -- 189 * hence the logic in vdev_uberblock_load() to find the most recent copy. 190 */ 191 static void 192 zio_checksum_label_verifier(zio_cksum_t *zcp, uint64_t offset) 193 { 194 ZIO_SET_CHECKSUM(zcp, offset, 0, 0, 0); 195 } 196 197 /* 198 * Calls the template init function of a checksum which supports context 199 * templates and installs the template into the spa_t. 200 */ 201 static void 202 zio_checksum_template_init(enum zio_checksum checksum, spa_t *spa) 203 { 204 zio_checksum_info_t *ci = &zio_checksum_table[checksum]; 205 206 VERIFY(ci->ci_tmpl_init != NULL && ci->ci_tmpl_free != NULL); 207 mutex_enter(&spa->spa_cksum_tmpls_lock); 208 if (spa->spa_cksum_tmpls[checksum] == NULL) { 209 spa->spa_cksum_tmpls[checksum] = 210 ci->ci_tmpl_init(&spa->spa_cksum_salt); 211 VERIFY(spa->spa_cksum_tmpls[checksum] != NULL); 212 } 213 mutex_exit(&spa->spa_cksum_tmpls_lock); 214 } 215 216 /* 217 * Generate the checksum. 218 */ 219 void 220 zio_checksum_compute(zio_t *zio, enum zio_checksum checksum, 221 void *data, uint64_t size) 222 { 223 blkptr_t *bp = zio->io_bp; 224 uint64_t offset = zio->io_offset; 225 zio_checksum_info_t *ci = &zio_checksum_table[checksum]; 226 zio_cksum_t cksum; 227 spa_t *spa = zio->io_spa; 228 229 ASSERT((uint_t)checksum < ZIO_CHECKSUM_FUNCTIONS); 230 ASSERT(ci->ci_func[0] != NULL); 231 232 if (ci->ci_tmpl_init != NULL && spa->spa_cksum_tmpls[checksum] == NULL) 233 zio_checksum_template_init(checksum, spa); 234 235 if (ci->ci_eck) { 236 zio_eck_t *eck; 237 238 if (checksum == ZIO_CHECKSUM_ZILOG2) { 239 zil_chain_t *zilc = data; 240 241 size = P2ROUNDUP_TYPED(zilc->zc_nused, ZIL_MIN_BLKSZ, 242 uint64_t); 243 eck = &zilc->zc_eck; 244 } else { 245 eck = (zio_eck_t *)((char *)data + size) - 1; 246 } 247 if (checksum == ZIO_CHECKSUM_GANG_HEADER) 248 zio_checksum_gang_verifier(&eck->zec_cksum, bp); 249 else if (checksum == ZIO_CHECKSUM_LABEL) 250 zio_checksum_label_verifier(&eck->zec_cksum, offset); 251 else 252 bp->blk_cksum = eck->zec_cksum; 253 eck->zec_magic = ZEC_MAGIC; 254 ci->ci_func[0](data, size, &spa->spa_cksum_salt, 255 spa->spa_cksum_tmpls[checksum], &cksum); 256 eck->zec_cksum = cksum; 257 } else { 258 ci->ci_func[0](data, size, &spa->spa_cksum_salt, 259 spa->spa_cksum_tmpls[checksum], &bp->blk_cksum); 260 } 261 } 262 263 int 264 zio_checksum_error(zio_t *zio, zio_bad_cksum_t *info) 265 { 266 blkptr_t *bp = zio->io_bp; 267 uint_t checksum = (bp == NULL ? zio->io_prop.zp_checksum : 268 (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp))); 269 int byteswap; 270 int error; 271 uint64_t size = (bp == NULL ? zio->io_size : 272 (BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp))); 273 uint64_t offset = zio->io_offset; 274 void *data = zio->io_data; 275 zio_checksum_info_t *ci = &zio_checksum_table[checksum]; 276 zio_cksum_t actual_cksum, expected_cksum, verifier; 277 spa_t *spa = zio->io_spa; 278 279 if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func[0] == NULL) 280 return (SET_ERROR(EINVAL)); 281 282 if (ci->ci_tmpl_init != NULL && spa->spa_cksum_tmpls[checksum] == NULL) 283 zio_checksum_template_init(checksum, spa); 284 285 if (ci->ci_eck) { 286 zio_eck_t *eck; 287 288 if (checksum == ZIO_CHECKSUM_ZILOG2) { 289 zil_chain_t *zilc = data; 290 uint64_t nused; 291 292 eck = &zilc->zc_eck; 293 if (eck->zec_magic == ZEC_MAGIC) 294 nused = zilc->zc_nused; 295 else if (eck->zec_magic == BSWAP_64(ZEC_MAGIC)) 296 nused = BSWAP_64(zilc->zc_nused); 297 else 298 return (SET_ERROR(ECKSUM)); 299 300 if (nused > size) 301 return (SET_ERROR(ECKSUM)); 302 303 size = P2ROUNDUP_TYPED(nused, ZIL_MIN_BLKSZ, uint64_t); 304 } else { 305 eck = (zio_eck_t *)((char *)data + size) - 1; 306 } 307 308 if (checksum == ZIO_CHECKSUM_GANG_HEADER) 309 zio_checksum_gang_verifier(&verifier, bp); 310 else if (checksum == ZIO_CHECKSUM_LABEL) 311 zio_checksum_label_verifier(&verifier, offset); 312 else 313 verifier = bp->blk_cksum; 314 315 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC)); 316 317 if (byteswap) 318 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); 319 320 expected_cksum = eck->zec_cksum; 321 eck->zec_cksum = verifier; 322 ci->ci_func[byteswap](data, size, &spa->spa_cksum_salt, 323 spa->spa_cksum_tmpls[checksum], &actual_cksum); 324 eck->zec_cksum = expected_cksum; 325 326 if (byteswap) 327 byteswap_uint64_array(&expected_cksum, 328 sizeof (zio_cksum_t)); 329 } else { 330 ASSERT(!BP_IS_GANG(bp)); 331 byteswap = BP_SHOULD_BYTESWAP(bp); 332 expected_cksum = bp->blk_cksum; 333 ci->ci_func[byteswap](data, size, &spa->spa_cksum_salt, 334 spa->spa_cksum_tmpls[checksum], &actual_cksum); 335 } 336 337 info->zbc_expected = expected_cksum; 338 info->zbc_actual = actual_cksum; 339 info->zbc_checksum_name = ci->ci_name; 340 info->zbc_byteswapped = byteswap; 341 info->zbc_injected = 0; 342 info->zbc_has_cksum = 1; 343 344 if (!ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) 345 return (SET_ERROR(ECKSUM)); 346 347 if (zio_injection_enabled && !zio->io_error && 348 (error = zio_handle_fault_injection(zio, ECKSUM)) != 0) { 349 350 info->zbc_injected = 1; 351 return (error); 352 } 353 354 return (0); 355 } 356 357 /* 358 * Called by a spa_t that's about to be deallocated. This steps through 359 * all of the checksum context templates and deallocates any that were 360 * initialized using the algorithm-specific template init function. 361 */ 362 void 363 zio_checksum_templates_free(spa_t *spa) 364 { 365 for (int checksum = 0; checksum < ZIO_CHECKSUM_FUNCTIONS; checksum++) { 366 if (spa->spa_cksum_tmpls[checksum] != NULL) { 367 zio_checksum_info_t *ci = &zio_checksum_table[checksum]; 368 369 VERIFY(ci->ci_tmpl_free != NULL); 370 ci->ci_tmpl_free(spa->spa_cksum_tmpls[checksum]); 371 spa->spa_cksum_tmpls[checksum] = NULL; 372 } 373 } 374 } --- EOF ---