1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2013 by Delphix. All rights reserved.
  25  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
  26  * Copyright 2013 Saso Kiselkov. All rights reserved.
  27  */
  28 
  29 /*
  30  * SPA: Storage Pool Allocator
  31  *
  32  * This file contains all the routines used when modifying on-disk SPA state.
  33  * This includes opening, importing, destroying, exporting a pool, and syncing a
  34  * pool.
  35  */
  36 
  37 #include <sys/zfs_context.h>
  38 #include <sys/fm/fs/zfs.h>
  39 #include <sys/spa_impl.h>
  40 #include <sys/zio.h>
  41 #include <sys/zio_checksum.h>
  42 #include <sys/dmu.h>
  43 #include <sys/dmu_tx.h>
  44 #include <sys/zap.h>
  45 #include <sys/zil.h>
  46 #include <sys/ddt.h>
  47 #include <sys/vdev_impl.h>
  48 #include <sys/metaslab.h>
  49 #include <sys/metaslab_impl.h>
  50 #include <sys/uberblock_impl.h>
  51 #include <sys/txg.h>
  52 #include <sys/avl.h>
  53 #include <sys/dmu_traverse.h>
  54 #include <sys/dmu_objset.h>
  55 #include <sys/unique.h>
  56 #include <sys/dsl_pool.h>
  57 #include <sys/dsl_dataset.h>
  58 #include <sys/dsl_dir.h>
  59 #include <sys/dsl_prop.h>
  60 #include <sys/dsl_synctask.h>
  61 #include <sys/fs/zfs.h>
  62 #include <sys/arc.h>
  63 #include <sys/callb.h>
  64 #include <sys/systeminfo.h>
  65 #include <sys/spa_boot.h>
  66 #include <sys/zfs_ioctl.h>
  67 #include <sys/dsl_scan.h>
  68 #include <sys/zfeature.h>
  69 #include <sys/dsl_destroy.h>
  70 
  71 #ifdef  _KERNEL
  72 #include <sys/bootprops.h>
  73 #include <sys/callb.h>
  74 #include <sys/cpupart.h>
  75 #include <sys/pool.h>
  76 #include <sys/sysdc.h>
  77 #include <sys/zone.h>
  78 #endif  /* _KERNEL */
  79 
  80 #include "zfs_prop.h"
  81 #include "zfs_comutil.h"
  82 
  83 /*
  84  * The interval, in seconds, at which failed configuration cache file writes
  85  * should be retried.
  86  */
  87 static int zfs_ccw_retry_interval = 300;
  88 
  89 typedef enum zti_modes {
  90         ZTI_MODE_FIXED,                 /* value is # of threads (min 1) */
  91         ZTI_MODE_BATCH,                 /* cpu-intensive; value is ignored */
  92         ZTI_MODE_NULL,                  /* don't create a taskq */
  93         ZTI_NMODES
  94 } zti_modes_t;
  95 
  96 #define ZTI_P(n, q)     { ZTI_MODE_FIXED, (n), (q) }
  97 #define ZTI_BATCH       { ZTI_MODE_BATCH, 0, 1 }
  98 #define ZTI_NULL        { ZTI_MODE_NULL, 0, 0 }
  99 
 100 #define ZTI_N(n)        ZTI_P(n, 1)
 101 #define ZTI_ONE         ZTI_N(1)
 102 
 103 typedef struct zio_taskq_info {
 104         zti_modes_t zti_mode;
 105         uint_t zti_value;
 106         uint_t zti_count;
 107 } zio_taskq_info_t;
 108 
 109 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
 110         "issue", "issue_high", "intr", "intr_high"
 111 };
 112 
 113 /*
 114  * This table defines the taskq settings for each ZFS I/O type. When
 115  * initializing a pool, we use this table to create an appropriately sized
 116  * taskq. Some operations are low volume and therefore have a small, static
 117  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
 118  * macros. Other operations process a large amount of data; the ZTI_BATCH
 119  * macro causes us to create a taskq oriented for throughput. Some operations
 120  * are so high frequency and short-lived that the taskq itself can become a a
 121  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
 122  * additional degree of parallelism specified by the number of threads per-
 123  * taskq and the number of taskqs; when dispatching an event in this case, the
 124  * particular taskq is chosen at random.
 125  *
 126  * The different taskq priorities are to handle the different contexts (issue
 127  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
 128  * need to be handled with minimum delay.
 129  */
 130 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
 131         /* ISSUE        ISSUE_HIGH      INTR            INTR_HIGH */
 132         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* NULL */
 133         { ZTI_N(8),     ZTI_NULL,       ZTI_BATCH,      ZTI_NULL }, /* READ */
 134         { ZTI_BATCH,    ZTI_N(5),       ZTI_N(8),       ZTI_N(5) }, /* WRITE */
 135         { ZTI_P(12, 8), ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* FREE */
 136         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* CLAIM */
 137         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* IOCTL */
 138 };
 139 
 140 static void spa_sync_version(void *arg, dmu_tx_t *tx);
 141 static void spa_sync_props(void *arg, dmu_tx_t *tx);
 142 static boolean_t spa_has_active_shared_spare(spa_t *spa);
 143 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
 144     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
 145     char **ereport);
 146 static void spa_vdev_resilver_done(spa_t *spa);
 147 
 148 uint_t          zio_taskq_batch_pct = 75;       /* 1 thread per cpu in pset */
 149 id_t            zio_taskq_psrset_bind = PS_NONE;
 150 boolean_t       zio_taskq_sysdc = B_TRUE;       /* use SDC scheduling class */
 151 uint_t          zio_taskq_basedc = 80;          /* base duty cycle */
 152 
 153 boolean_t       spa_create_process = B_TRUE;    /* no process ==> no sysdc */
 154 extern int      zfs_sync_pass_deferred_free;
 155 
 156 /*
 157  * This (illegal) pool name is used when temporarily importing a spa_t in order
 158  * to get the vdev stats associated with the imported devices.
 159  */
 160 #define TRYIMPORT_NAME  "$import"
 161 
 162 /*
 163  * ==========================================================================
 164  * SPA properties routines
 165  * ==========================================================================
 166  */
 167 
 168 /*
 169  * Add a (source=src, propname=propval) list to an nvlist.
 170  */
 171 static void
 172 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
 173     uint64_t intval, zprop_source_t src)
 174 {
 175         const char *propname = zpool_prop_to_name(prop);
 176         nvlist_t *propval;
 177 
 178         VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 179         VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
 180 
 181         if (strval != NULL)
 182                 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
 183         else
 184                 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
 185 
 186         VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
 187         nvlist_free(propval);
 188 }
 189 
 190 /*
 191  * Get property values from the spa configuration.
 192  */
 193 static void
 194 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
 195 {
 196         vdev_t *rvd = spa->spa_root_vdev;
 197         dsl_pool_t *pool = spa->spa_dsl_pool;
 198         uint64_t size;
 199         uint64_t alloc;
 200         uint64_t space;
 201         uint64_t cap, version;
 202         zprop_source_t src = ZPROP_SRC_NONE;
 203         spa_config_dirent_t *dp;
 204 
 205         ASSERT(MUTEX_HELD(&spa->spa_props_lock));
 206 
 207         if (rvd != NULL) {
 208                 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
 209                 size = metaslab_class_get_space(spa_normal_class(spa));
 210                 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
 211                 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
 212                 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
 213                 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
 214                     size - alloc, src);
 215 
 216                 space = 0;
 217                 for (int c = 0; c < rvd->vdev_children; c++) {
 218                         vdev_t *tvd = rvd->vdev_child[c];
 219                         space += tvd->vdev_max_asize - tvd->vdev_asize;
 220                 }
 221                 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
 222                     src);
 223 
 224                 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
 225                     (spa_mode(spa) == FREAD), src);
 226 
 227                 cap = (size == 0) ? 0 : (alloc * 100 / size);
 228                 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
 229 
 230                 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
 231                     ddt_get_pool_dedup_ratio(spa), src);
 232 
 233                 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
 234                     rvd->vdev_state, src);
 235 
 236                 version = spa_version(spa);
 237                 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
 238                         src = ZPROP_SRC_DEFAULT;
 239                 else
 240                         src = ZPROP_SRC_LOCAL;
 241                 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
 242         }
 243 
 244         if (pool != NULL) {
 245                 dsl_dir_t *freedir = pool->dp_free_dir;
 246 
 247                 /*
 248                  * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
 249                  * when opening pools before this version freedir will be NULL.
 250                  */
 251                 if (freedir != NULL) {
 252                         spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
 253                             freedir->dd_phys->dd_used_bytes, src);
 254                 } else {
 255                         spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
 256                             NULL, 0, src);
 257                 }
 258         }
 259 
 260         spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
 261 
 262         if (spa->spa_comment != NULL) {
 263                 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
 264                     0, ZPROP_SRC_LOCAL);
 265         }
 266 
 267         if (spa->spa_root != NULL)
 268                 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
 269                     0, ZPROP_SRC_LOCAL);
 270 
 271         if ((dp = list_head(&spa->spa_config_list)) != NULL) {
 272                 if (dp->scd_path == NULL) {
 273                         spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 274                             "none", 0, ZPROP_SRC_LOCAL);
 275                 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
 276                         spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 277                             dp->scd_path, 0, ZPROP_SRC_LOCAL);
 278                 }
 279         }
 280 }
 281 
 282 /*
 283  * Get zpool property values.
 284  */
 285 int
 286 spa_prop_get(spa_t *spa, nvlist_t **nvp)
 287 {
 288         objset_t *mos = spa->spa_meta_objset;
 289         zap_cursor_t zc;
 290         zap_attribute_t za;
 291         int err;
 292 
 293         VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 294 
 295         mutex_enter(&spa->spa_props_lock);
 296 
 297         /*
 298          * Get properties from the spa config.
 299          */
 300         spa_prop_get_config(spa, nvp);
 301 
 302         /* If no pool property object, no more prop to get. */
 303         if (mos == NULL || spa->spa_pool_props_object == 0) {
 304                 mutex_exit(&spa->spa_props_lock);
 305                 return (0);
 306         }
 307 
 308         /*
 309          * Get properties from the MOS pool property object.
 310          */
 311         for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
 312             (err = zap_cursor_retrieve(&zc, &za)) == 0;
 313             zap_cursor_advance(&zc)) {
 314                 uint64_t intval = 0;
 315                 char *strval = NULL;
 316                 zprop_source_t src = ZPROP_SRC_DEFAULT;
 317                 zpool_prop_t prop;
 318 
 319                 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
 320                         continue;
 321 
 322                 switch (za.za_integer_length) {
 323                 case 8:
 324                         /* integer property */
 325                         if (za.za_first_integer !=
 326                             zpool_prop_default_numeric(prop))
 327                                 src = ZPROP_SRC_LOCAL;
 328 
 329                         if (prop == ZPOOL_PROP_BOOTFS) {
 330                                 dsl_pool_t *dp;
 331                                 dsl_dataset_t *ds = NULL;
 332 
 333                                 dp = spa_get_dsl(spa);
 334                                 dsl_pool_config_enter(dp, FTAG);
 335                                 if (err = dsl_dataset_hold_obj(dp,
 336                                     za.za_first_integer, FTAG, &ds)) {
 337                                         dsl_pool_config_exit(dp, FTAG);
 338                                         break;
 339                                 }
 340 
 341                                 strval = kmem_alloc(
 342                                     MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
 343                                     KM_SLEEP);
 344                                 dsl_dataset_name(ds, strval);
 345                                 dsl_dataset_rele(ds, FTAG);
 346                                 dsl_pool_config_exit(dp, FTAG);
 347                         } else {
 348                                 strval = NULL;
 349                                 intval = za.za_first_integer;
 350                         }
 351 
 352                         spa_prop_add_list(*nvp, prop, strval, intval, src);
 353 
 354                         if (strval != NULL)
 355                                 kmem_free(strval,
 356                                     MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
 357 
 358                         break;
 359 
 360                 case 1:
 361                         /* string property */
 362                         strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
 363                         err = zap_lookup(mos, spa->spa_pool_props_object,
 364                             za.za_name, 1, za.za_num_integers, strval);
 365                         if (err) {
 366                                 kmem_free(strval, za.za_num_integers);
 367                                 break;
 368                         }
 369                         spa_prop_add_list(*nvp, prop, strval, 0, src);
 370                         kmem_free(strval, za.za_num_integers);
 371                         break;
 372 
 373                 default:
 374                         break;
 375                 }
 376         }
 377         zap_cursor_fini(&zc);
 378         mutex_exit(&spa->spa_props_lock);
 379 out:
 380         if (err && err != ENOENT) {
 381                 nvlist_free(*nvp);
 382                 *nvp = NULL;
 383                 return (err);
 384         }
 385 
 386         return (0);
 387 }
 388 
 389 /*
 390  * Validate the given pool properties nvlist and modify the list
 391  * for the property values to be set.
 392  */
 393 static int
 394 spa_prop_validate(spa_t *spa, nvlist_t *props)
 395 {
 396         nvpair_t *elem;
 397         int error = 0, reset_bootfs = 0;
 398         uint64_t objnum = 0;
 399         boolean_t has_feature = B_FALSE;
 400 
 401         elem = NULL;
 402         while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
 403                 uint64_t intval;
 404                 char *strval, *slash, *check, *fname;
 405                 const char *propname = nvpair_name(elem);
 406                 zpool_prop_t prop = zpool_name_to_prop(propname);
 407 
 408                 switch (prop) {
 409                 case ZPROP_INVAL:
 410                         if (!zpool_prop_feature(propname)) {
 411                                 error = SET_ERROR(EINVAL);
 412                                 break;
 413                         }
 414 
 415                         /*
 416                          * Sanitize the input.
 417                          */
 418                         if (nvpair_type(elem) != DATA_TYPE_UINT64) {
 419                                 error = SET_ERROR(EINVAL);
 420                                 break;
 421                         }
 422 
 423                         if (nvpair_value_uint64(elem, &intval) != 0) {
 424                                 error = SET_ERROR(EINVAL);
 425                                 break;
 426                         }
 427 
 428                         if (intval != 0) {
 429                                 error = SET_ERROR(EINVAL);
 430                                 break;
 431                         }
 432 
 433                         fname = strchr(propname, '@') + 1;
 434                         if (zfeature_lookup_name(fname, NULL) != 0) {
 435                                 error = SET_ERROR(EINVAL);
 436                                 break;
 437                         }
 438 
 439                         has_feature = B_TRUE;
 440                         break;
 441 
 442                 case ZPOOL_PROP_VERSION:
 443                         error = nvpair_value_uint64(elem, &intval);
 444                         if (!error &&
 445                             (intval < spa_version(spa) ||
 446                             intval > SPA_VERSION_BEFORE_FEATURES ||
 447                             has_feature))
 448                                 error = SET_ERROR(EINVAL);
 449                         break;
 450 
 451                 case ZPOOL_PROP_DELEGATION:
 452                 case ZPOOL_PROP_AUTOREPLACE:
 453                 case ZPOOL_PROP_LISTSNAPS:
 454                 case ZPOOL_PROP_AUTOEXPAND:
 455                         error = nvpair_value_uint64(elem, &intval);
 456                         if (!error && intval > 1)
 457                                 error = SET_ERROR(EINVAL);
 458                         break;
 459 
 460                 case ZPOOL_PROP_BOOTFS:
 461                         /*
 462                          * If the pool version is less than SPA_VERSION_BOOTFS,
 463                          * or the pool is still being created (version == 0),
 464                          * the bootfs property cannot be set.
 465                          */
 466                         if (spa_version(spa) < SPA_VERSION_BOOTFS) {
 467                                 error = SET_ERROR(ENOTSUP);
 468                                 break;
 469                         }
 470 
 471                         /*
 472                          * Make sure the vdev config is bootable
 473                          */
 474                         if (!vdev_is_bootable(spa->spa_root_vdev)) {
 475                                 error = SET_ERROR(ENOTSUP);
 476                                 break;
 477                         }
 478 
 479                         reset_bootfs = 1;
 480 
 481                         error = nvpair_value_string(elem, &strval);
 482 
 483                         if (!error) {
 484                                 objset_t *os;
 485                                 uint64_t compress;
 486 
 487                                 if (strval == NULL || strval[0] == '\0') {
 488                                         objnum = zpool_prop_default_numeric(
 489                                             ZPOOL_PROP_BOOTFS);
 490                                         break;
 491                                 }
 492 
 493                                 if (error = dmu_objset_hold(strval, FTAG, &os))
 494                                         break;
 495 
 496                                 /* Must be ZPL and not gzip compressed. */
 497 
 498                                 if (dmu_objset_type(os) != DMU_OST_ZFS) {
 499                                         error = SET_ERROR(ENOTSUP);
 500                                 } else if ((error =
 501                                     dsl_prop_get_int_ds(dmu_objset_ds(os),
 502                                     zfs_prop_to_name(ZFS_PROP_COMPRESSION),
 503                                     &compress)) == 0 &&
 504                                     !BOOTFS_COMPRESS_VALID(compress)) {
 505                                         error = SET_ERROR(ENOTSUP);
 506                                 } else {
 507                                         objnum = dmu_objset_id(os);
 508                                 }
 509                                 dmu_objset_rele(os, FTAG);
 510                         }
 511                         break;
 512 
 513                 case ZPOOL_PROP_FAILUREMODE:
 514                         error = nvpair_value_uint64(elem, &intval);
 515                         if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
 516                             intval > ZIO_FAILURE_MODE_PANIC))
 517                                 error = SET_ERROR(EINVAL);
 518 
 519                         /*
 520                          * This is a special case which only occurs when
 521                          * the pool has completely failed. This allows
 522                          * the user to change the in-core failmode property
 523                          * without syncing it out to disk (I/Os might
 524                          * currently be blocked). We do this by returning
 525                          * EIO to the caller (spa_prop_set) to trick it
 526                          * into thinking we encountered a property validation
 527                          * error.
 528                          */
 529                         if (!error && spa_suspended(spa)) {
 530                                 spa->spa_failmode = intval;
 531                                 error = SET_ERROR(EIO);
 532                         }
 533                         break;
 534 
 535                 case ZPOOL_PROP_CACHEFILE:
 536                         if ((error = nvpair_value_string(elem, &strval)) != 0)
 537                                 break;
 538 
 539                         if (strval[0] == '\0')
 540                                 break;
 541 
 542                         if (strcmp(strval, "none") == 0)
 543                                 break;
 544 
 545                         if (strval[0] != '/') {
 546                                 error = SET_ERROR(EINVAL);
 547                                 break;
 548                         }
 549 
 550                         slash = strrchr(strval, '/');
 551                         ASSERT(slash != NULL);
 552 
 553                         if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
 554                             strcmp(slash, "/..") == 0)
 555                                 error = SET_ERROR(EINVAL);
 556                         break;
 557 
 558                 case ZPOOL_PROP_COMMENT:
 559                         if ((error = nvpair_value_string(elem, &strval)) != 0)
 560                                 break;
 561                         for (check = strval; *check != '\0'; check++) {
 562                                 /*
 563                                  * The kernel doesn't have an easy isprint()
 564                                  * check.  For this kernel check, we merely
 565                                  * check ASCII apart from DEL.  Fix this if
 566                                  * there is an easy-to-use kernel isprint().
 567                                  */
 568                                 if (*check >= 0x7f) {
 569                                         error = SET_ERROR(EINVAL);
 570                                         break;
 571                                 }
 572                                 check++;
 573                         }
 574                         if (strlen(strval) > ZPROP_MAX_COMMENT)
 575                                 error = E2BIG;
 576                         break;
 577 
 578                 case ZPOOL_PROP_DEDUPDITTO:
 579                         if (spa_version(spa) < SPA_VERSION_DEDUP)
 580                                 error = SET_ERROR(ENOTSUP);
 581                         else
 582                                 error = nvpair_value_uint64(elem, &intval);
 583                         if (error == 0 &&
 584                             intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
 585                                 error = SET_ERROR(EINVAL);
 586                         break;
 587                 }
 588 
 589                 if (error)
 590                         break;
 591         }
 592 
 593         if (!error && reset_bootfs) {
 594                 error = nvlist_remove(props,
 595                     zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
 596 
 597                 if (!error) {
 598                         error = nvlist_add_uint64(props,
 599                             zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
 600                 }
 601         }
 602 
 603         return (error);
 604 }
 605 
 606 void
 607 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
 608 {
 609         char *cachefile;
 610         spa_config_dirent_t *dp;
 611 
 612         if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
 613             &cachefile) != 0)
 614                 return;
 615 
 616         dp = kmem_alloc(sizeof (spa_config_dirent_t),
 617             KM_SLEEP);
 618 
 619         if (cachefile[0] == '\0')
 620                 dp->scd_path = spa_strdup(spa_config_path);
 621         else if (strcmp(cachefile, "none") == 0)
 622                 dp->scd_path = NULL;
 623         else
 624                 dp->scd_path = spa_strdup(cachefile);
 625 
 626         list_insert_head(&spa->spa_config_list, dp);
 627         if (need_sync)
 628                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
 629 }
 630 
 631 int
 632 spa_prop_set(spa_t *spa, nvlist_t *nvp)
 633 {
 634         int error;
 635         nvpair_t *elem = NULL;
 636         boolean_t need_sync = B_FALSE;
 637 
 638         if ((error = spa_prop_validate(spa, nvp)) != 0)
 639                 return (error);
 640 
 641         while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
 642                 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
 643 
 644                 if (prop == ZPOOL_PROP_CACHEFILE ||
 645                     prop == ZPOOL_PROP_ALTROOT ||
 646                     prop == ZPOOL_PROP_READONLY)
 647                         continue;
 648 
 649                 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
 650                         uint64_t ver;
 651 
 652                         if (prop == ZPOOL_PROP_VERSION) {
 653                                 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
 654                         } else {
 655                                 ASSERT(zpool_prop_feature(nvpair_name(elem)));
 656                                 ver = SPA_VERSION_FEATURES;
 657                                 need_sync = B_TRUE;
 658                         }
 659 
 660                         /* Save time if the version is already set. */
 661                         if (ver == spa_version(spa))
 662                                 continue;
 663 
 664                         /*
 665                          * In addition to the pool directory object, we might
 666                          * create the pool properties object, the features for
 667                          * read object, the features for write object, or the
 668                          * feature descriptions object.
 669                          */
 670                         error = dsl_sync_task(spa->spa_name, NULL,
 671                             spa_sync_version, &ver, 6);
 672                         if (error)
 673                                 return (error);
 674                         continue;
 675                 }
 676 
 677                 need_sync = B_TRUE;
 678                 break;
 679         }
 680 
 681         if (need_sync) {
 682                 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
 683                     nvp, 6));
 684         }
 685 
 686         return (0);
 687 }
 688 
 689 /*
 690  * If the bootfs property value is dsobj, clear it.
 691  */
 692 void
 693 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
 694 {
 695         if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
 696                 VERIFY(zap_remove(spa->spa_meta_objset,
 697                     spa->spa_pool_props_object,
 698                     zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
 699                 spa->spa_bootfs = 0;
 700         }
 701 }
 702 
 703 /*ARGSUSED*/
 704 static int
 705 spa_change_guid_check(void *arg, dmu_tx_t *tx)
 706 {
 707         uint64_t *newguid = arg;
 708         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 709         vdev_t *rvd = spa->spa_root_vdev;
 710         uint64_t vdev_state;
 711 
 712         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 713         vdev_state = rvd->vdev_state;
 714         spa_config_exit(spa, SCL_STATE, FTAG);
 715 
 716         if (vdev_state != VDEV_STATE_HEALTHY)
 717                 return (SET_ERROR(ENXIO));
 718 
 719         ASSERT3U(spa_guid(spa), !=, *newguid);
 720 
 721         return (0);
 722 }
 723 
 724 static void
 725 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
 726 {
 727         uint64_t *newguid = arg;
 728         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 729         uint64_t oldguid;
 730         vdev_t *rvd = spa->spa_root_vdev;
 731 
 732         oldguid = spa_guid(spa);
 733 
 734         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 735         rvd->vdev_guid = *newguid;
 736         rvd->vdev_guid_sum += (*newguid - oldguid);
 737         vdev_config_dirty(rvd);
 738         spa_config_exit(spa, SCL_STATE, FTAG);
 739 
 740         spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
 741             oldguid, *newguid);
 742 }
 743 
 744 /*
 745  * Change the GUID for the pool.  This is done so that we can later
 746  * re-import a pool built from a clone of our own vdevs.  We will modify
 747  * the root vdev's guid, our own pool guid, and then mark all of our
 748  * vdevs dirty.  Note that we must make sure that all our vdevs are
 749  * online when we do this, or else any vdevs that weren't present
 750  * would be orphaned from our pool.  We are also going to issue a
 751  * sysevent to update any watchers.
 752  */
 753 int
 754 spa_change_guid(spa_t *spa)
 755 {
 756         int error;
 757         uint64_t guid;
 758 
 759         mutex_enter(&spa->spa_vdev_top_lock);
 760         mutex_enter(&spa_namespace_lock);
 761         guid = spa_generate_guid(NULL);
 762 
 763         error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
 764             spa_change_guid_sync, &guid, 5);
 765 
 766         if (error == 0) {
 767                 spa_config_sync(spa, B_FALSE, B_TRUE);
 768                 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
 769         }
 770 
 771         mutex_exit(&spa_namespace_lock);
 772         mutex_exit(&spa->spa_vdev_top_lock);
 773 
 774         return (error);
 775 }
 776 
 777 /*
 778  * ==========================================================================
 779  * SPA state manipulation (open/create/destroy/import/export)
 780  * ==========================================================================
 781  */
 782 
 783 static int
 784 spa_error_entry_compare(const void *a, const void *b)
 785 {
 786         spa_error_entry_t *sa = (spa_error_entry_t *)a;
 787         spa_error_entry_t *sb = (spa_error_entry_t *)b;
 788         int ret;
 789 
 790         ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
 791             sizeof (zbookmark_t));
 792 
 793         if (ret < 0)
 794                 return (-1);
 795         else if (ret > 0)
 796                 return (1);
 797         else
 798                 return (0);
 799 }
 800 
 801 /*
 802  * Utility function which retrieves copies of the current logs and
 803  * re-initializes them in the process.
 804  */
 805 void
 806 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
 807 {
 808         ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
 809 
 810         bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
 811         bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
 812 
 813         avl_create(&spa->spa_errlist_scrub,
 814             spa_error_entry_compare, sizeof (spa_error_entry_t),
 815             offsetof(spa_error_entry_t, se_avl));
 816         avl_create(&spa->spa_errlist_last,
 817             spa_error_entry_compare, sizeof (spa_error_entry_t),
 818             offsetof(spa_error_entry_t, se_avl));
 819 }
 820 
 821 static void
 822 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
 823 {
 824         const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
 825         enum zti_modes mode = ztip->zti_mode;
 826         uint_t value = ztip->zti_value;
 827         uint_t count = ztip->zti_count;
 828         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 829         char name[32];
 830         uint_t flags = 0;
 831         boolean_t batch = B_FALSE;
 832 
 833         if (mode == ZTI_MODE_NULL) {
 834                 tqs->stqs_count = 0;
 835                 tqs->stqs_taskq = NULL;
 836                 return;
 837         }
 838 
 839         ASSERT3U(count, >, 0);
 840 
 841         tqs->stqs_count = count;
 842         tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
 843 
 844         switch (mode) {
 845         case ZTI_MODE_FIXED:
 846                 ASSERT3U(value, >=, 1);
 847                 value = MAX(value, 1);
 848                 break;
 849 
 850         case ZTI_MODE_BATCH:
 851                 batch = B_TRUE;
 852                 flags |= TASKQ_THREADS_CPU_PCT;
 853                 value = zio_taskq_batch_pct;
 854                 break;
 855 
 856         default:
 857                 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
 858                     "spa_activate()",
 859                     zio_type_name[t], zio_taskq_types[q], mode, value);
 860                 break;
 861         }
 862 
 863         for (uint_t i = 0; i < count; i++) {
 864                 taskq_t *tq;
 865 
 866                 if (count > 1) {
 867                         (void) snprintf(name, sizeof (name), "%s_%s_%u",
 868                             zio_type_name[t], zio_taskq_types[q], i);
 869                 } else {
 870                         (void) snprintf(name, sizeof (name), "%s_%s",
 871                             zio_type_name[t], zio_taskq_types[q]);
 872                 }
 873 
 874                 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
 875                         if (batch)
 876                                 flags |= TASKQ_DC_BATCH;
 877 
 878                         tq = taskq_create_sysdc(name, value, 50, INT_MAX,
 879                             spa->spa_proc, zio_taskq_basedc, flags);
 880                 } else {
 881                         pri_t pri = maxclsyspri;
 882                         /*
 883                          * The write issue taskq can be extremely CPU
 884                          * intensive.  Run it at slightly lower priority
 885                          * than the other taskqs.
 886                          */
 887                         if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
 888                                 pri--;
 889 
 890                         tq = taskq_create_proc(name, value, pri, 50,
 891                             INT_MAX, spa->spa_proc, flags);
 892                 }
 893 
 894                 tqs->stqs_taskq[i] = tq;
 895         }
 896 }
 897 
 898 static void
 899 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
 900 {
 901         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 902 
 903         if (tqs->stqs_taskq == NULL) {
 904                 ASSERT0(tqs->stqs_count);
 905                 return;
 906         }
 907 
 908         for (uint_t i = 0; i < tqs->stqs_count; i++) {
 909                 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
 910                 taskq_destroy(tqs->stqs_taskq[i]);
 911         }
 912 
 913         kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
 914         tqs->stqs_taskq = NULL;
 915 }
 916 
 917 /*
 918  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
 919  * Note that a type may have multiple discrete taskqs to avoid lock contention
 920  * on the taskq itself. In that case we choose which taskq at random by using
 921  * the low bits of gethrtime().
 922  */
 923 void
 924 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
 925     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
 926 {
 927         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 928         taskq_t *tq;
 929 
 930         ASSERT3P(tqs->stqs_taskq, !=, NULL);
 931         ASSERT3U(tqs->stqs_count, !=, 0);
 932 
 933         if (tqs->stqs_count == 1) {
 934                 tq = tqs->stqs_taskq[0];
 935         } else {
 936                 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
 937         }
 938 
 939         taskq_dispatch_ent(tq, func, arg, flags, ent);
 940 }
 941 
 942 static void
 943 spa_create_zio_taskqs(spa_t *spa)
 944 {
 945         for (int t = 0; t < ZIO_TYPES; t++) {
 946                 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
 947                         spa_taskqs_init(spa, t, q);
 948                 }
 949         }
 950 }
 951 
 952 #ifdef _KERNEL
 953 static void
 954 spa_thread(void *arg)
 955 {
 956         callb_cpr_t cprinfo;
 957 
 958         spa_t *spa = arg;
 959         user_t *pu = PTOU(curproc);
 960 
 961         CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
 962             spa->spa_name);
 963 
 964         ASSERT(curproc != &p0);
 965         (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
 966             "zpool-%s", spa->spa_name);
 967         (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
 968 
 969         /* bind this thread to the requested psrset */
 970         if (zio_taskq_psrset_bind != PS_NONE) {
 971                 pool_lock();
 972                 mutex_enter(&cpu_lock);
 973                 mutex_enter(&pidlock);
 974                 mutex_enter(&curproc->p_lock);
 975 
 976                 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
 977                     0, NULL, NULL) == 0)  {
 978                         curthread->t_bind_pset = zio_taskq_psrset_bind;
 979                 } else {
 980                         cmn_err(CE_WARN,
 981                             "Couldn't bind process for zfs pool \"%s\" to "
 982                             "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
 983                 }
 984 
 985                 mutex_exit(&curproc->p_lock);
 986                 mutex_exit(&pidlock);
 987                 mutex_exit(&cpu_lock);
 988                 pool_unlock();
 989         }
 990 
 991         if (zio_taskq_sysdc) {
 992                 sysdc_thread_enter(curthread, 100, 0);
 993         }
 994 
 995         spa->spa_proc = curproc;
 996         spa->spa_did = curthread->t_did;
 997 
 998         spa_create_zio_taskqs(spa);
 999 
1000         mutex_enter(&spa->spa_proc_lock);
1001         ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1002 
1003         spa->spa_proc_state = SPA_PROC_ACTIVE;
1004         cv_broadcast(&spa->spa_proc_cv);
1005 
1006         CALLB_CPR_SAFE_BEGIN(&cprinfo);
1007         while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1008                 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1009         CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1010 
1011         ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1012         spa->spa_proc_state = SPA_PROC_GONE;
1013         spa->spa_proc = &p0;
1014         cv_broadcast(&spa->spa_proc_cv);
1015         CALLB_CPR_EXIT(&cprinfo);   /* drops spa_proc_lock */
1016 
1017         mutex_enter(&curproc->p_lock);
1018         lwp_exit();
1019 }
1020 #endif
1021 
1022 /*
1023  * Activate an uninitialized pool.
1024  */
1025 static void
1026 spa_activate(spa_t *spa, int mode)
1027 {
1028         ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1029 
1030         spa->spa_state = POOL_STATE_ACTIVE;
1031         spa->spa_mode = mode;
1032 
1033         spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1034         spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1035 
1036         /* Try to create a covering process */
1037         mutex_enter(&spa->spa_proc_lock);
1038         ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1039         ASSERT(spa->spa_proc == &p0);
1040         spa->spa_did = 0;
1041 
1042         /* Only create a process if we're going to be around a while. */
1043         if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1044                 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1045                     NULL, 0) == 0) {
1046                         spa->spa_proc_state = SPA_PROC_CREATED;
1047                         while (spa->spa_proc_state == SPA_PROC_CREATED) {
1048                                 cv_wait(&spa->spa_proc_cv,
1049                                     &spa->spa_proc_lock);
1050                         }
1051                         ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1052                         ASSERT(spa->spa_proc != &p0);
1053                         ASSERT(spa->spa_did != 0);
1054                 } else {
1055 #ifdef _KERNEL
1056                         cmn_err(CE_WARN,
1057                             "Couldn't create process for zfs pool \"%s\"\n",
1058                             spa->spa_name);
1059 #endif
1060                 }
1061         }
1062         mutex_exit(&spa->spa_proc_lock);
1063 
1064         /* If we didn't create a process, we need to create our taskqs. */
1065         if (spa->spa_proc == &p0) {
1066                 spa_create_zio_taskqs(spa);
1067         }
1068 
1069         list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1070             offsetof(vdev_t, vdev_config_dirty_node));
1071         list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1072             offsetof(vdev_t, vdev_state_dirty_node));
1073 
1074         txg_list_create(&spa->spa_vdev_txg_list,
1075             offsetof(struct vdev, vdev_txg_node));
1076 
1077         avl_create(&spa->spa_errlist_scrub,
1078             spa_error_entry_compare, sizeof (spa_error_entry_t),
1079             offsetof(spa_error_entry_t, se_avl));
1080         avl_create(&spa->spa_errlist_last,
1081             spa_error_entry_compare, sizeof (spa_error_entry_t),
1082             offsetof(spa_error_entry_t, se_avl));
1083 }
1084 
1085 /*
1086  * Opposite of spa_activate().
1087  */
1088 static void
1089 spa_deactivate(spa_t *spa)
1090 {
1091         ASSERT(spa->spa_sync_on == B_FALSE);
1092         ASSERT(spa->spa_dsl_pool == NULL);
1093         ASSERT(spa->spa_root_vdev == NULL);
1094         ASSERT(spa->spa_async_zio_root == NULL);
1095         ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1096 
1097         txg_list_destroy(&spa->spa_vdev_txg_list);
1098 
1099         list_destroy(&spa->spa_config_dirty_list);
1100         list_destroy(&spa->spa_state_dirty_list);
1101 
1102         for (int t = 0; t < ZIO_TYPES; t++) {
1103                 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1104                         spa_taskqs_fini(spa, t, q);
1105                 }
1106         }
1107 
1108         metaslab_class_destroy(spa->spa_normal_class);
1109         spa->spa_normal_class = NULL;
1110 
1111         metaslab_class_destroy(spa->spa_log_class);
1112         spa->spa_log_class = NULL;
1113 
1114         /*
1115          * If this was part of an import or the open otherwise failed, we may
1116          * still have errors left in the queues.  Empty them just in case.
1117          */
1118         spa_errlog_drain(spa);
1119 
1120         avl_destroy(&spa->spa_errlist_scrub);
1121         avl_destroy(&spa->spa_errlist_last);
1122 
1123         spa->spa_state = POOL_STATE_UNINITIALIZED;
1124 
1125         mutex_enter(&spa->spa_proc_lock);
1126         if (spa->spa_proc_state != SPA_PROC_NONE) {
1127                 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1128                 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1129                 cv_broadcast(&spa->spa_proc_cv);
1130                 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1131                         ASSERT(spa->spa_proc != &p0);
1132                         cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1133                 }
1134                 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1135                 spa->spa_proc_state = SPA_PROC_NONE;
1136         }
1137         ASSERT(spa->spa_proc == &p0);
1138         mutex_exit(&spa->spa_proc_lock);
1139 
1140         /*
1141          * We want to make sure spa_thread() has actually exited the ZFS
1142          * module, so that the module can't be unloaded out from underneath
1143          * it.
1144          */
1145         if (spa->spa_did != 0) {
1146                 thread_join(spa->spa_did);
1147                 spa->spa_did = 0;
1148         }
1149 }
1150 
1151 /*
1152  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1153  * will create all the necessary vdevs in the appropriate layout, with each vdev
1154  * in the CLOSED state.  This will prep the pool before open/creation/import.
1155  * All vdev validation is done by the vdev_alloc() routine.
1156  */
1157 static int
1158 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1159     uint_t id, int atype)
1160 {
1161         nvlist_t **child;
1162         uint_t children;
1163         int error;
1164 
1165         if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1166                 return (error);
1167 
1168         if ((*vdp)->vdev_ops->vdev_op_leaf)
1169                 return (0);
1170 
1171         error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1172             &child, &children);
1173 
1174         if (error == ENOENT)
1175                 return (0);
1176 
1177         if (error) {
1178                 vdev_free(*vdp);
1179                 *vdp = NULL;
1180                 return (SET_ERROR(EINVAL));
1181         }
1182 
1183         for (int c = 0; c < children; c++) {
1184                 vdev_t *vd;
1185                 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1186                     atype)) != 0) {
1187                         vdev_free(*vdp);
1188                         *vdp = NULL;
1189                         return (error);
1190                 }
1191         }
1192 
1193         ASSERT(*vdp != NULL);
1194 
1195         return (0);
1196 }
1197 
1198 /*
1199  * Opposite of spa_load().
1200  */
1201 static void
1202 spa_unload(spa_t *spa)
1203 {
1204         int i;
1205 
1206         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1207 
1208         /*
1209          * Stop async tasks.
1210          */
1211         spa_async_suspend(spa);
1212 
1213         /*
1214          * Stop syncing.
1215          */
1216         if (spa->spa_sync_on) {
1217                 txg_sync_stop(spa->spa_dsl_pool);
1218                 spa->spa_sync_on = B_FALSE;
1219         }
1220 
1221         /*
1222          * Wait for any outstanding async I/O to complete.
1223          */
1224         if (spa->spa_async_zio_root != NULL) {
1225                 (void) zio_wait(spa->spa_async_zio_root);
1226                 spa->spa_async_zio_root = NULL;
1227         }
1228 
1229         bpobj_close(&spa->spa_deferred_bpobj);
1230 
1231         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1232 
1233         /*
1234          * Close all vdevs.
1235          */
1236         if (spa->spa_root_vdev)
1237                 vdev_free(spa->spa_root_vdev);
1238         ASSERT(spa->spa_root_vdev == NULL);
1239 
1240         /*
1241          * Close the dsl pool.
1242          */
1243         if (spa->spa_dsl_pool) {
1244                 dsl_pool_close(spa->spa_dsl_pool);
1245                 spa->spa_dsl_pool = NULL;
1246                 spa->spa_meta_objset = NULL;
1247         }
1248 
1249         ddt_unload(spa);
1250 
1251 
1252         /*
1253          * Drop and purge level 2 cache
1254          */
1255         spa_l2cache_drop(spa);
1256 
1257         for (i = 0; i < spa->spa_spares.sav_count; i++)
1258                 vdev_free(spa->spa_spares.sav_vdevs[i]);
1259         if (spa->spa_spares.sav_vdevs) {
1260                 kmem_free(spa->spa_spares.sav_vdevs,
1261                     spa->spa_spares.sav_count * sizeof (void *));
1262                 spa->spa_spares.sav_vdevs = NULL;
1263         }
1264         if (spa->spa_spares.sav_config) {
1265                 nvlist_free(spa->spa_spares.sav_config);
1266                 spa->spa_spares.sav_config = NULL;
1267         }
1268         spa->spa_spares.sav_count = 0;
1269 
1270         for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1271                 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1272                 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1273         }
1274         if (spa->spa_l2cache.sav_vdevs) {
1275                 kmem_free(spa->spa_l2cache.sav_vdevs,
1276                     spa->spa_l2cache.sav_count * sizeof (void *));
1277                 spa->spa_l2cache.sav_vdevs = NULL;
1278         }
1279         if (spa->spa_l2cache.sav_config) {
1280                 nvlist_free(spa->spa_l2cache.sav_config);
1281                 spa->spa_l2cache.sav_config = NULL;
1282         }
1283         spa->spa_l2cache.sav_count = 0;
1284 
1285         spa->spa_async_suspended = 0;
1286 
1287         if (spa->spa_comment != NULL) {
1288                 spa_strfree(spa->spa_comment);
1289                 spa->spa_comment = NULL;
1290         }
1291 
1292         spa_config_exit(spa, SCL_ALL, FTAG);
1293 }
1294 
1295 /*
1296  * Load (or re-load) the current list of vdevs describing the active spares for
1297  * this pool.  When this is called, we have some form of basic information in
1298  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1299  * then re-generate a more complete list including status information.
1300  */
1301 static void
1302 spa_load_spares(spa_t *spa)
1303 {
1304         nvlist_t **spares;
1305         uint_t nspares;
1306         int i;
1307         vdev_t *vd, *tvd;
1308 
1309         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1310 
1311         /*
1312          * First, close and free any existing spare vdevs.
1313          */
1314         for (i = 0; i < spa->spa_spares.sav_count; i++) {
1315                 vd = spa->spa_spares.sav_vdevs[i];
1316 
1317                 /* Undo the call to spa_activate() below */
1318                 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1319                     B_FALSE)) != NULL && tvd->vdev_isspare)
1320                         spa_spare_remove(tvd);
1321                 vdev_close(vd);
1322                 vdev_free(vd);
1323         }
1324 
1325         if (spa->spa_spares.sav_vdevs)
1326                 kmem_free(spa->spa_spares.sav_vdevs,
1327                     spa->spa_spares.sav_count * sizeof (void *));
1328 
1329         if (spa->spa_spares.sav_config == NULL)
1330                 nspares = 0;
1331         else
1332                 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1333                     ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1334 
1335         spa->spa_spares.sav_count = (int)nspares;
1336         spa->spa_spares.sav_vdevs = NULL;
1337 
1338         if (nspares == 0)
1339                 return;
1340 
1341         /*
1342          * Construct the array of vdevs, opening them to get status in the
1343          * process.   For each spare, there is potentially two different vdev_t
1344          * structures associated with it: one in the list of spares (used only
1345          * for basic validation purposes) and one in the active vdev
1346          * configuration (if it's spared in).  During this phase we open and
1347          * validate each vdev on the spare list.  If the vdev also exists in the
1348          * active configuration, then we also mark this vdev as an active spare.
1349          */
1350         spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1351             KM_SLEEP);
1352         for (i = 0; i < spa->spa_spares.sav_count; i++) {
1353                 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1354                     VDEV_ALLOC_SPARE) == 0);
1355                 ASSERT(vd != NULL);
1356 
1357                 spa->spa_spares.sav_vdevs[i] = vd;
1358 
1359                 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1360                     B_FALSE)) != NULL) {
1361                         if (!tvd->vdev_isspare)
1362                                 spa_spare_add(tvd);
1363 
1364                         /*
1365                          * We only mark the spare active if we were successfully
1366                          * able to load the vdev.  Otherwise, importing a pool
1367                          * with a bad active spare would result in strange
1368                          * behavior, because multiple pool would think the spare
1369                          * is actively in use.
1370                          *
1371                          * There is a vulnerability here to an equally bizarre
1372                          * circumstance, where a dead active spare is later
1373                          * brought back to life (onlined or otherwise).  Given
1374                          * the rarity of this scenario, and the extra complexity
1375                          * it adds, we ignore the possibility.
1376                          */
1377                         if (!vdev_is_dead(tvd))
1378                                 spa_spare_activate(tvd);
1379                 }
1380 
1381                 vd->vdev_top = vd;
1382                 vd->vdev_aux = &spa->spa_spares;
1383 
1384                 if (vdev_open(vd) != 0)
1385                         continue;
1386 
1387                 if (vdev_validate_aux(vd) == 0)
1388                         spa_spare_add(vd);
1389         }
1390 
1391         /*
1392          * Recompute the stashed list of spares, with status information
1393          * this time.
1394          */
1395         VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1396             DATA_TYPE_NVLIST_ARRAY) == 0);
1397 
1398         spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1399             KM_SLEEP);
1400         for (i = 0; i < spa->spa_spares.sav_count; i++)
1401                 spares[i] = vdev_config_generate(spa,
1402                     spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1403         VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1404             ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1405         for (i = 0; i < spa->spa_spares.sav_count; i++)
1406                 nvlist_free(spares[i]);
1407         kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1408 }
1409 
1410 /*
1411  * Load (or re-load) the current list of vdevs describing the active l2cache for
1412  * this pool.  When this is called, we have some form of basic information in
1413  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1414  * then re-generate a more complete list including status information.
1415  * Devices which are already active have their details maintained, and are
1416  * not re-opened.
1417  */
1418 static void
1419 spa_load_l2cache(spa_t *spa)
1420 {
1421         nvlist_t **l2cache;
1422         uint_t nl2cache;
1423         int i, j, oldnvdevs;
1424         uint64_t guid;
1425         vdev_t *vd, **oldvdevs, **newvdevs;
1426         spa_aux_vdev_t *sav = &spa->spa_l2cache;
1427 
1428         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1429 
1430         if (sav->sav_config != NULL) {
1431                 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1432                     ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1433                 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1434         } else {
1435                 nl2cache = 0;
1436                 newvdevs = NULL;
1437         }
1438 
1439         oldvdevs = sav->sav_vdevs;
1440         oldnvdevs = sav->sav_count;
1441         sav->sav_vdevs = NULL;
1442         sav->sav_count = 0;
1443 
1444         /*
1445          * Process new nvlist of vdevs.
1446          */
1447         for (i = 0; i < nl2cache; i++) {
1448                 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1449                     &guid) == 0);
1450 
1451                 newvdevs[i] = NULL;
1452                 for (j = 0; j < oldnvdevs; j++) {
1453                         vd = oldvdevs[j];
1454                         if (vd != NULL && guid == vd->vdev_guid) {
1455                                 /*
1456                                  * Retain previous vdev for add/remove ops.
1457                                  */
1458                                 newvdevs[i] = vd;
1459                                 oldvdevs[j] = NULL;
1460                                 break;
1461                         }
1462                 }
1463 
1464                 if (newvdevs[i] == NULL) {
1465                         /*
1466                          * Create new vdev
1467                          */
1468                         VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1469                             VDEV_ALLOC_L2CACHE) == 0);
1470                         ASSERT(vd != NULL);
1471                         newvdevs[i] = vd;
1472 
1473                         /*
1474                          * Commit this vdev as an l2cache device,
1475                          * even if it fails to open.
1476                          */
1477                         spa_l2cache_add(vd);
1478 
1479                         vd->vdev_top = vd;
1480                         vd->vdev_aux = sav;
1481 
1482                         spa_l2cache_activate(vd);
1483 
1484                         if (vdev_open(vd) != 0)
1485                                 continue;
1486 
1487                         (void) vdev_validate_aux(vd);
1488 
1489                         if (!vdev_is_dead(vd))
1490                                 l2arc_add_vdev(spa, vd);
1491                 }
1492         }
1493 
1494         /*
1495          * Purge vdevs that were dropped
1496          */
1497         for (i = 0; i < oldnvdevs; i++) {
1498                 uint64_t pool;
1499 
1500                 vd = oldvdevs[i];
1501                 if (vd != NULL) {
1502                         ASSERT(vd->vdev_isl2cache);
1503 
1504                         if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1505                             pool != 0ULL && l2arc_vdev_present(vd))
1506                                 l2arc_remove_vdev(vd);
1507                         vdev_clear_stats(vd);
1508                         vdev_free(vd);
1509                 }
1510         }
1511 
1512         if (oldvdevs)
1513                 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1514 
1515         if (sav->sav_config == NULL)
1516                 goto out;
1517 
1518         sav->sav_vdevs = newvdevs;
1519         sav->sav_count = (int)nl2cache;
1520 
1521         /*
1522          * Recompute the stashed list of l2cache devices, with status
1523          * information this time.
1524          */
1525         VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1526             DATA_TYPE_NVLIST_ARRAY) == 0);
1527 
1528         l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1529         for (i = 0; i < sav->sav_count; i++)
1530                 l2cache[i] = vdev_config_generate(spa,
1531                     sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1532         VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1533             ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1534 out:
1535         for (i = 0; i < sav->sav_count; i++)
1536                 nvlist_free(l2cache[i]);
1537         if (sav->sav_count)
1538                 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1539 }
1540 
1541 static int
1542 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1543 {
1544         dmu_buf_t *db;
1545         char *packed = NULL;
1546         size_t nvsize = 0;
1547         int error;
1548         *value = NULL;
1549 
1550         VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1551         nvsize = *(uint64_t *)db->db_data;
1552         dmu_buf_rele(db, FTAG);
1553 
1554         packed = kmem_alloc(nvsize, KM_SLEEP);
1555         error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1556             DMU_READ_PREFETCH);
1557         if (error == 0)
1558                 error = nvlist_unpack(packed, nvsize, value, 0);
1559         kmem_free(packed, nvsize);
1560 
1561         return (error);
1562 }
1563 
1564 /*
1565  * Checks to see if the given vdev could not be opened, in which case we post a
1566  * sysevent to notify the autoreplace code that the device has been removed.
1567  */
1568 static void
1569 spa_check_removed(vdev_t *vd)
1570 {
1571         for (int c = 0; c < vd->vdev_children; c++)
1572                 spa_check_removed(vd->vdev_child[c]);
1573 
1574         if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1575             !vd->vdev_ishole) {
1576                 zfs_post_autoreplace(vd->vdev_spa, vd);
1577                 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1578         }
1579 }
1580 
1581 /*
1582  * Validate the current config against the MOS config
1583  */
1584 static boolean_t
1585 spa_config_valid(spa_t *spa, nvlist_t *config)
1586 {
1587         vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1588         nvlist_t *nv;
1589 
1590         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1591 
1592         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1593         VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1594 
1595         ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1596 
1597         /*
1598          * If we're doing a normal import, then build up any additional
1599          * diagnostic information about missing devices in this config.
1600          * We'll pass this up to the user for further processing.
1601          */
1602         if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1603                 nvlist_t **child, *nv;
1604                 uint64_t idx = 0;
1605 
1606                 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1607                     KM_SLEEP);
1608                 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1609 
1610                 for (int c = 0; c < rvd->vdev_children; c++) {
1611                         vdev_t *tvd = rvd->vdev_child[c];
1612                         vdev_t *mtvd  = mrvd->vdev_child[c];
1613 
1614                         if (tvd->vdev_ops == &vdev_missing_ops &&
1615                             mtvd->vdev_ops != &vdev_missing_ops &&
1616                             mtvd->vdev_islog)
1617                                 child[idx++] = vdev_config_generate(spa, mtvd,
1618                                     B_FALSE, 0);
1619                 }
1620 
1621                 if (idx) {
1622                         VERIFY(nvlist_add_nvlist_array(nv,
1623                             ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1624                         VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1625                             ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1626 
1627                         for (int i = 0; i < idx; i++)
1628                                 nvlist_free(child[i]);
1629                 }
1630                 nvlist_free(nv);
1631                 kmem_free(child, rvd->vdev_children * sizeof (char **));
1632         }
1633 
1634         /*
1635          * Compare the root vdev tree with the information we have
1636          * from the MOS config (mrvd). Check each top-level vdev
1637          * with the corresponding MOS config top-level (mtvd).
1638          */
1639         for (int c = 0; c < rvd->vdev_children; c++) {
1640                 vdev_t *tvd = rvd->vdev_child[c];
1641                 vdev_t *mtvd  = mrvd->vdev_child[c];
1642 
1643                 /*
1644                  * Resolve any "missing" vdevs in the current configuration.
1645                  * If we find that the MOS config has more accurate information
1646                  * about the top-level vdev then use that vdev instead.
1647                  */
1648                 if (tvd->vdev_ops == &vdev_missing_ops &&
1649                     mtvd->vdev_ops != &vdev_missing_ops) {
1650 
1651                         if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1652                                 continue;
1653 
1654                         /*
1655                          * Device specific actions.
1656                          */
1657                         if (mtvd->vdev_islog) {
1658                                 spa_set_log_state(spa, SPA_LOG_CLEAR);
1659                         } else {
1660                                 /*
1661                                  * XXX - once we have 'readonly' pool
1662                                  * support we should be able to handle
1663                                  * missing data devices by transitioning
1664                                  * the pool to readonly.
1665                                  */
1666                                 continue;
1667                         }
1668 
1669                         /*
1670                          * Swap the missing vdev with the data we were
1671                          * able to obtain from the MOS config.
1672                          */
1673                         vdev_remove_child(rvd, tvd);
1674                         vdev_remove_child(mrvd, mtvd);
1675 
1676                         vdev_add_child(rvd, mtvd);
1677                         vdev_add_child(mrvd, tvd);
1678 
1679                         spa_config_exit(spa, SCL_ALL, FTAG);
1680                         vdev_load(mtvd);
1681                         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1682 
1683                         vdev_reopen(rvd);
1684                 } else if (mtvd->vdev_islog) {
1685                         /*
1686                          * Load the slog device's state from the MOS config
1687                          * since it's possible that the label does not
1688                          * contain the most up-to-date information.
1689                          */
1690                         vdev_load_log_state(tvd, mtvd);
1691                         vdev_reopen(tvd);
1692                 }
1693         }
1694         vdev_free(mrvd);
1695         spa_config_exit(spa, SCL_ALL, FTAG);
1696 
1697         /*
1698          * Ensure we were able to validate the config.
1699          */
1700         return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1701 }
1702 
1703 /*
1704  * Check for missing log devices
1705  */
1706 static boolean_t
1707 spa_check_logs(spa_t *spa)
1708 {
1709         boolean_t rv = B_FALSE;
1710 
1711         switch (spa->spa_log_state) {
1712         case SPA_LOG_MISSING:
1713                 /* need to recheck in case slog has been restored */
1714         case SPA_LOG_UNKNOWN:
1715                 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1716                     NULL, DS_FIND_CHILDREN) != 0);
1717                 if (rv)
1718                         spa_set_log_state(spa, SPA_LOG_MISSING);
1719                 break;
1720         }
1721         return (rv);
1722 }
1723 
1724 static boolean_t
1725 spa_passivate_log(spa_t *spa)
1726 {
1727         vdev_t *rvd = spa->spa_root_vdev;
1728         boolean_t slog_found = B_FALSE;
1729 
1730         ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1731 
1732         if (!spa_has_slogs(spa))
1733                 return (B_FALSE);
1734 
1735         for (int c = 0; c < rvd->vdev_children; c++) {
1736                 vdev_t *tvd = rvd->vdev_child[c];
1737                 metaslab_group_t *mg = tvd->vdev_mg;
1738 
1739                 if (tvd->vdev_islog) {
1740                         metaslab_group_passivate(mg);
1741                         slog_found = B_TRUE;
1742                 }
1743         }
1744 
1745         return (slog_found);
1746 }
1747 
1748 static void
1749 spa_activate_log(spa_t *spa)
1750 {
1751         vdev_t *rvd = spa->spa_root_vdev;
1752 
1753         ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1754 
1755         for (int c = 0; c < rvd->vdev_children; c++) {
1756                 vdev_t *tvd = rvd->vdev_child[c];
1757                 metaslab_group_t *mg = tvd->vdev_mg;
1758 
1759                 if (tvd->vdev_islog)
1760                         metaslab_group_activate(mg);
1761         }
1762 }
1763 
1764 int
1765 spa_offline_log(spa_t *spa)
1766 {
1767         int error;
1768 
1769         error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1770             NULL, DS_FIND_CHILDREN);
1771         if (error == 0) {
1772                 /*
1773                  * We successfully offlined the log device, sync out the
1774                  * current txg so that the "stubby" block can be removed
1775                  * by zil_sync().
1776                  */
1777                 txg_wait_synced(spa->spa_dsl_pool, 0);
1778         }
1779         return (error);
1780 }
1781 
1782 static void
1783 spa_aux_check_removed(spa_aux_vdev_t *sav)
1784 {
1785         for (int i = 0; i < sav->sav_count; i++)
1786                 spa_check_removed(sav->sav_vdevs[i]);
1787 }
1788 
1789 void
1790 spa_claim_notify(zio_t *zio)
1791 {
1792         spa_t *spa = zio->io_spa;
1793 
1794         if (zio->io_error)
1795                 return;
1796 
1797         mutex_enter(&spa->spa_props_lock);       /* any mutex will do */
1798         if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1799                 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1800         mutex_exit(&spa->spa_props_lock);
1801 }
1802 
1803 typedef struct spa_load_error {
1804         uint64_t        sle_meta_count;
1805         uint64_t        sle_data_count;
1806 } spa_load_error_t;
1807 
1808 static void
1809 spa_load_verify_done(zio_t *zio)
1810 {
1811         blkptr_t *bp = zio->io_bp;
1812         spa_load_error_t *sle = zio->io_private;
1813         dmu_object_type_t type = BP_GET_TYPE(bp);
1814         int error = zio->io_error;
1815 
1816         if (error) {
1817                 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1818                     type != DMU_OT_INTENT_LOG)
1819                         atomic_add_64(&sle->sle_meta_count, 1);
1820                 else
1821                         atomic_add_64(&sle->sle_data_count, 1);
1822         }
1823         zio_data_buf_free(zio->io_data, zio->io_size);
1824 }
1825 
1826 /*ARGSUSED*/
1827 static int
1828 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1829     const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1830 {
1831         if (bp != NULL) {
1832                 zio_t *rio = arg;
1833                 size_t size = BP_GET_PSIZE(bp);
1834                 void *data = zio_data_buf_alloc(size);
1835 
1836                 zio_nowait(zio_read(rio, spa, bp, data, size,
1837                     spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1838                     ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1839                     ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1840         }
1841         return (0);
1842 }
1843 
1844 static int
1845 spa_load_verify(spa_t *spa)
1846 {
1847         zio_t *rio;
1848         spa_load_error_t sle = { 0 };
1849         zpool_rewind_policy_t policy;
1850         boolean_t verify_ok = B_FALSE;
1851         int error;
1852 
1853         zpool_get_rewind_policy(spa->spa_config, &policy);
1854 
1855         if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1856                 return (0);
1857 
1858         rio = zio_root(spa, NULL, &sle,
1859             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1860 
1861         error = traverse_pool(spa, spa->spa_verify_min_txg,
1862             TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1863 
1864         (void) zio_wait(rio);
1865 
1866         spa->spa_load_meta_errors = sle.sle_meta_count;
1867         spa->spa_load_data_errors = sle.sle_data_count;
1868 
1869         if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1870             sle.sle_data_count <= policy.zrp_maxdata) {
1871                 int64_t loss = 0;
1872 
1873                 verify_ok = B_TRUE;
1874                 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1875                 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1876 
1877                 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1878                 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1879                     ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1880                 VERIFY(nvlist_add_int64(spa->spa_load_info,
1881                     ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1882                 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1883                     ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1884         } else {
1885                 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1886         }
1887 
1888         if (error) {
1889                 if (error != ENXIO && error != EIO)
1890                         error = SET_ERROR(EIO);
1891                 return (error);
1892         }
1893 
1894         return (verify_ok ? 0 : EIO);
1895 }
1896 
1897 /*
1898  * Find a value in the pool props object.
1899  */
1900 static void
1901 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1902 {
1903         (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1904             zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1905 }
1906 
1907 /*
1908  * Find a value in the pool directory object.
1909  */
1910 static int
1911 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1912 {
1913         return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1914             name, sizeof (uint64_t), 1, val));
1915 }
1916 
1917 static int
1918 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1919 {
1920         vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1921         return (err);
1922 }
1923 
1924 /*
1925  * Fix up config after a partly-completed split.  This is done with the
1926  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1927  * pool have that entry in their config, but only the splitting one contains
1928  * a list of all the guids of the vdevs that are being split off.
1929  *
1930  * This function determines what to do with that list: either rejoin
1931  * all the disks to the pool, or complete the splitting process.  To attempt
1932  * the rejoin, each disk that is offlined is marked online again, and
1933  * we do a reopen() call.  If the vdev label for every disk that was
1934  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1935  * then we call vdev_split() on each disk, and complete the split.
1936  *
1937  * Otherwise we leave the config alone, with all the vdevs in place in
1938  * the original pool.
1939  */
1940 static void
1941 spa_try_repair(spa_t *spa, nvlist_t *config)
1942 {
1943         uint_t extracted;
1944         uint64_t *glist;
1945         uint_t i, gcount;
1946         nvlist_t *nvl;
1947         vdev_t **vd;
1948         boolean_t attempt_reopen;
1949 
1950         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1951                 return;
1952 
1953         /* check that the config is complete */
1954         if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1955             &glist, &gcount) != 0)
1956                 return;
1957 
1958         vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1959 
1960         /* attempt to online all the vdevs & validate */
1961         attempt_reopen = B_TRUE;
1962         for (i = 0; i < gcount; i++) {
1963                 if (glist[i] == 0)      /* vdev is hole */
1964                         continue;
1965 
1966                 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1967                 if (vd[i] == NULL) {
1968                         /*
1969                          * Don't bother attempting to reopen the disks;
1970                          * just do the split.
1971                          */
1972                         attempt_reopen = B_FALSE;
1973                 } else {
1974                         /* attempt to re-online it */
1975                         vd[i]->vdev_offline = B_FALSE;
1976                 }
1977         }
1978 
1979         if (attempt_reopen) {
1980                 vdev_reopen(spa->spa_root_vdev);
1981 
1982                 /* check each device to see what state it's in */
1983                 for (extracted = 0, i = 0; i < gcount; i++) {
1984                         if (vd[i] != NULL &&
1985                             vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1986                                 break;
1987                         ++extracted;
1988                 }
1989         }
1990 
1991         /*
1992          * If every disk has been moved to the new pool, or if we never
1993          * even attempted to look at them, then we split them off for
1994          * good.
1995          */
1996         if (!attempt_reopen || gcount == extracted) {
1997                 for (i = 0; i < gcount; i++)
1998                         if (vd[i] != NULL)
1999                                 vdev_split(vd[i]);
2000                 vdev_reopen(spa->spa_root_vdev);
2001         }
2002 
2003         kmem_free(vd, gcount * sizeof (vdev_t *));
2004 }
2005 
2006 static int
2007 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2008     boolean_t mosconfig)
2009 {
2010         nvlist_t *config = spa->spa_config;
2011         char *ereport = FM_EREPORT_ZFS_POOL;
2012         char *comment;
2013         int error;
2014         uint64_t pool_guid;
2015         nvlist_t *nvl;
2016 
2017         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2018                 return (SET_ERROR(EINVAL));
2019 
2020         ASSERT(spa->spa_comment == NULL);
2021         if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2022                 spa->spa_comment = spa_strdup(comment);
2023 
2024         /*
2025          * Versioning wasn't explicitly added to the label until later, so if
2026          * it's not present treat it as the initial version.
2027          */
2028         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2029             &spa->spa_ubsync.ub_version) != 0)
2030                 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2031 
2032         (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2033             &spa->spa_config_txg);
2034 
2035         if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2036             spa_guid_exists(pool_guid, 0)) {
2037                 error = SET_ERROR(EEXIST);
2038         } else {
2039                 spa->spa_config_guid = pool_guid;
2040 
2041                 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2042                     &nvl) == 0) {
2043                         VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2044                             KM_SLEEP) == 0);
2045                 }
2046 
2047                 nvlist_free(spa->spa_load_info);
2048                 spa->spa_load_info = fnvlist_alloc();
2049 
2050                 gethrestime(&spa->spa_loaded_ts);
2051                 error = spa_load_impl(spa, pool_guid, config, state, type,
2052                     mosconfig, &ereport);
2053         }
2054 
2055         spa->spa_minref = refcount_count(&spa->spa_refcount);
2056         if (error) {
2057                 if (error != EEXIST) {
2058                         spa->spa_loaded_ts.tv_sec = 0;
2059                         spa->spa_loaded_ts.tv_nsec = 0;
2060                 }
2061                 if (error != EBADF) {
2062                         zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2063                 }
2064         }
2065         spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2066         spa->spa_ena = 0;
2067 
2068         return (error);
2069 }
2070 
2071 /*
2072  * Load an existing storage pool, using the pool's builtin spa_config as a
2073  * source of configuration information.
2074  */
2075 static int
2076 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2077     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2078     char **ereport)
2079 {
2080         int error = 0;
2081         nvlist_t *nvroot = NULL;
2082         nvlist_t *label;
2083         vdev_t *rvd;
2084         uberblock_t *ub = &spa->spa_uberblock;
2085         uint64_t children, config_cache_txg = spa->spa_config_txg;
2086         int orig_mode = spa->spa_mode;
2087         int parse;
2088         uint64_t obj;
2089         boolean_t missing_feat_write = B_FALSE;
2090 
2091         /*
2092          * If this is an untrusted config, access the pool in read-only mode.
2093          * This prevents things like resilvering recently removed devices.
2094          */
2095         if (!mosconfig)
2096                 spa->spa_mode = FREAD;
2097 
2098         ASSERT(MUTEX_HELD(&spa_namespace_lock));
2099 
2100         spa->spa_load_state = state;
2101 
2102         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2103                 return (SET_ERROR(EINVAL));
2104 
2105         parse = (type == SPA_IMPORT_EXISTING ?
2106             VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2107 
2108         /*
2109          * Create "The Godfather" zio to hold all async IOs
2110          */
2111         spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2112             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2113 
2114         /*
2115          * Parse the configuration into a vdev tree.  We explicitly set the
2116          * value that will be returned by spa_version() since parsing the
2117          * configuration requires knowing the version number.
2118          */
2119         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2120         error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2121         spa_config_exit(spa, SCL_ALL, FTAG);
2122 
2123         if (error != 0)
2124                 return (error);
2125 
2126         ASSERT(spa->spa_root_vdev == rvd);
2127 
2128         if (type != SPA_IMPORT_ASSEMBLE) {
2129                 ASSERT(spa_guid(spa) == pool_guid);
2130         }
2131 
2132         /*
2133          * Try to open all vdevs, loading each label in the process.
2134          */
2135         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2136         error = vdev_open(rvd);
2137         spa_config_exit(spa, SCL_ALL, FTAG);
2138         if (error != 0)
2139                 return (error);
2140 
2141         /*
2142          * We need to validate the vdev labels against the configuration that
2143          * we have in hand, which is dependent on the setting of mosconfig. If
2144          * mosconfig is true then we're validating the vdev labels based on
2145          * that config.  Otherwise, we're validating against the cached config
2146          * (zpool.cache) that was read when we loaded the zfs module, and then
2147          * later we will recursively call spa_load() and validate against
2148          * the vdev config.
2149          *
2150          * If we're assembling a new pool that's been split off from an
2151          * existing pool, the labels haven't yet been updated so we skip
2152          * validation for now.
2153          */
2154         if (type != SPA_IMPORT_ASSEMBLE) {
2155                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2156                 error = vdev_validate(rvd, mosconfig);
2157                 spa_config_exit(spa, SCL_ALL, FTAG);
2158 
2159                 if (error != 0)
2160                         return (error);
2161 
2162                 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2163                         return (SET_ERROR(ENXIO));
2164         }
2165 
2166         /*
2167          * Find the best uberblock.
2168          */
2169         vdev_uberblock_load(rvd, ub, &label);
2170 
2171         /*
2172          * If we weren't able to find a single valid uberblock, return failure.
2173          */
2174         if (ub->ub_txg == 0) {
2175                 nvlist_free(label);
2176                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2177         }
2178 
2179         /*
2180          * If the pool has an unsupported version we can't open it.
2181          */
2182         if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2183                 nvlist_free(label);
2184                 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2185         }
2186 
2187         if (ub->ub_version >= SPA_VERSION_FEATURES) {
2188                 nvlist_t *features;
2189 
2190                 /*
2191                  * If we weren't able to find what's necessary for reading the
2192                  * MOS in the label, return failure.
2193                  */
2194                 if (label == NULL || nvlist_lookup_nvlist(label,
2195                     ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2196                         nvlist_free(label);
2197                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2198                             ENXIO));
2199                 }
2200 
2201                 /*
2202                  * Update our in-core representation with the definitive values
2203                  * from the label.
2204                  */
2205                 nvlist_free(spa->spa_label_features);
2206                 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2207         }
2208 
2209         nvlist_free(label);
2210 
2211         /*
2212          * Look through entries in the label nvlist's features_for_read. If
2213          * there is a feature listed there which we don't understand then we
2214          * cannot open a pool.
2215          */
2216         if (ub->ub_version >= SPA_VERSION_FEATURES) {
2217                 nvlist_t *unsup_feat;
2218 
2219                 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2220                     0);
2221 
2222                 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2223                     NULL); nvp != NULL;
2224                     nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2225                         if (!zfeature_is_supported(nvpair_name(nvp))) {
2226                                 VERIFY(nvlist_add_string(unsup_feat,
2227                                     nvpair_name(nvp), "") == 0);
2228                         }
2229                 }
2230 
2231                 if (!nvlist_empty(unsup_feat)) {
2232                         VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2233                             ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2234                         nvlist_free(unsup_feat);
2235                         return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2236                             ENOTSUP));
2237                 }
2238 
2239                 nvlist_free(unsup_feat);
2240         }
2241 
2242         /*
2243          * If the vdev guid sum doesn't match the uberblock, we have an
2244          * incomplete configuration.  We first check to see if the pool
2245          * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2246          * If it is, defer the vdev_guid_sum check till later so we
2247          * can handle missing vdevs.
2248          */
2249         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2250             &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2251             rvd->vdev_guid_sum != ub->ub_guid_sum)
2252                 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2253 
2254         if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2255                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2256                 spa_try_repair(spa, config);
2257                 spa_config_exit(spa, SCL_ALL, FTAG);
2258                 nvlist_free(spa->spa_config_splitting);
2259                 spa->spa_config_splitting = NULL;
2260         }
2261 
2262         /*
2263          * Initialize internal SPA structures.
2264          */
2265         spa->spa_state = POOL_STATE_ACTIVE;
2266         spa->spa_ubsync = spa->spa_uberblock;
2267         spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2268             TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2269         spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2270             spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2271         spa->spa_claim_max_txg = spa->spa_first_txg;
2272         spa->spa_prev_software_version = ub->ub_software_version;
2273 
2274         error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2275         if (error)
2276                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2277         spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2278 
2279         if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2280                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2281 
2282         if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2283                 boolean_t missing_feat_read = B_FALSE;
2284                 nvlist_t *unsup_feat, *enabled_feat;
2285 
2286                 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2287                     &spa->spa_feat_for_read_obj) != 0) {
2288                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2289                 }
2290 
2291                 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2292                     &spa->spa_feat_for_write_obj) != 0) {
2293                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2294                 }
2295 
2296                 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2297                     &spa->spa_feat_desc_obj) != 0) {
2298                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2299                 }
2300 
2301                 enabled_feat = fnvlist_alloc();
2302                 unsup_feat = fnvlist_alloc();
2303 
2304                 if (!feature_is_supported(spa->spa_meta_objset,
2305                     spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2306                     unsup_feat, enabled_feat))
2307                         missing_feat_read = B_TRUE;
2308 
2309                 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2310                         if (!feature_is_supported(spa->spa_meta_objset,
2311                             spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2312                             unsup_feat, enabled_feat)) {
2313                                 missing_feat_write = B_TRUE;
2314                         }
2315                 }
2316 
2317                 fnvlist_add_nvlist(spa->spa_load_info,
2318                     ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2319 
2320                 if (!nvlist_empty(unsup_feat)) {
2321                         fnvlist_add_nvlist(spa->spa_load_info,
2322                             ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2323                 }
2324 
2325                 fnvlist_free(enabled_feat);
2326                 fnvlist_free(unsup_feat);
2327 
2328                 if (!missing_feat_read) {
2329                         fnvlist_add_boolean(spa->spa_load_info,
2330                             ZPOOL_CONFIG_CAN_RDONLY);
2331                 }
2332 
2333                 /*
2334                  * If the state is SPA_LOAD_TRYIMPORT, our objective is
2335                  * twofold: to determine whether the pool is available for
2336                  * import in read-write mode and (if it is not) whether the
2337                  * pool is available for import in read-only mode. If the pool
2338                  * is available for import in read-write mode, it is displayed
2339                  * as available in userland; if it is not available for import
2340                  * in read-only mode, it is displayed as unavailable in
2341                  * userland. If the pool is available for import in read-only
2342                  * mode but not read-write mode, it is displayed as unavailable
2343                  * in userland with a special note that the pool is actually
2344                  * available for open in read-only mode.
2345                  *
2346                  * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2347                  * missing a feature for write, we must first determine whether
2348                  * the pool can be opened read-only before returning to
2349                  * userland in order to know whether to display the
2350                  * abovementioned note.
2351                  */
2352                 if (missing_feat_read || (missing_feat_write &&
2353                     spa_writeable(spa))) {
2354                         return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2355                             ENOTSUP));
2356                 }
2357         }
2358 
2359         spa->spa_is_initializing = B_TRUE;
2360         error = dsl_pool_open(spa->spa_dsl_pool);
2361         spa->spa_is_initializing = B_FALSE;
2362         if (error != 0)
2363                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2364 
2365         if (!mosconfig) {
2366                 uint64_t hostid;
2367                 nvlist_t *policy = NULL, *nvconfig;
2368 
2369                 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2370                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2371 
2372                 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2373                     ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2374                         char *hostname;
2375                         unsigned long myhostid = 0;
2376 
2377                         VERIFY(nvlist_lookup_string(nvconfig,
2378                             ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2379 
2380 #ifdef  _KERNEL
2381                         myhostid = zone_get_hostid(NULL);
2382 #else   /* _KERNEL */
2383                         /*
2384                          * We're emulating the system's hostid in userland, so
2385                          * we can't use zone_get_hostid().
2386                          */
2387                         (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2388 #endif  /* _KERNEL */
2389                         if (hostid != 0 && myhostid != 0 &&
2390                             hostid != myhostid) {
2391                                 nvlist_free(nvconfig);
2392                                 cmn_err(CE_WARN, "pool '%s' could not be "
2393                                     "loaded as it was last accessed by "
2394                                     "another system (host: %s hostid: 0x%lx). "
2395                                     "See: http://illumos.org/msg/ZFS-8000-EY",
2396                                     spa_name(spa), hostname,
2397                                     (unsigned long)hostid);
2398                                 return (SET_ERROR(EBADF));
2399                         }
2400                 }
2401                 if (nvlist_lookup_nvlist(spa->spa_config,
2402                     ZPOOL_REWIND_POLICY, &policy) == 0)
2403                         VERIFY(nvlist_add_nvlist(nvconfig,
2404                             ZPOOL_REWIND_POLICY, policy) == 0);
2405 
2406                 spa_config_set(spa, nvconfig);
2407                 spa_unload(spa);
2408                 spa_deactivate(spa);
2409                 spa_activate(spa, orig_mode);
2410 
2411                 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2412         }
2413 
2414         /* Grab the secret checksum salt from the MOS. */
2415         if (spa_dir_prop(spa, DMU_POOL_CHECKSUM_SALT,
2416             &spa->spa_cksum_salt_obj) == 0) {
2417                 if (zap_lookup(spa->spa_meta_objset, spa->spa_cksum_salt_obj,
2418                     DMU_POOL_CHECKSUM_SALT, 1,
2419                     sizeof (spa->spa_cksum_salt.zcs_bytes),
2420                     spa->spa_cksum_salt.zcs_bytes) != 0) {
2421                         /*
2422                          * MOS format is broken, the salt object is there but
2423                          * is missing the actual salt value.
2424                          */
2425                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2426                 }
2427         } else {
2428                 /* Generate a new salt for subsequent use */
2429                 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2430                     sizeof (spa->spa_cksum_salt.zcs_bytes));
2431         }
2432 
2433         if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2434                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2435         error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2436         if (error != 0)
2437                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2438 
2439         /*
2440          * Load the bit that tells us to use the new accounting function
2441          * (raid-z deflation).  If we have an older pool, this will not
2442          * be present.
2443          */
2444         error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2445         if (error != 0 && error != ENOENT)
2446                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2447 
2448         error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2449             &spa->spa_creation_version);
2450         if (error != 0 && error != ENOENT)
2451                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2452 
2453         /*
2454          * Load the persistent error log.  If we have an older pool, this will
2455          * not be present.
2456          */
2457         error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2458         if (error != 0 && error != ENOENT)
2459                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2460 
2461         error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2462             &spa->spa_errlog_scrub);
2463         if (error != 0 && error != ENOENT)
2464                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2465 
2466         /*
2467          * Load the history object.  If we have an older pool, this
2468          * will not be present.
2469          */
2470         error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2471         if (error != 0 && error != ENOENT)
2472                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2473 
2474         /*
2475          * If we're assembling the pool from the split-off vdevs of
2476          * an existing pool, we don't want to attach the spares & cache
2477          * devices.
2478          */
2479 
2480         /*
2481          * Load any hot spares for this pool.
2482          */
2483         error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2484         if (error != 0 && error != ENOENT)
2485                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2486         if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2487                 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2488                 if (load_nvlist(spa, spa->spa_spares.sav_object,
2489                     &spa->spa_spares.sav_config) != 0)
2490                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2491 
2492                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2493                 spa_load_spares(spa);
2494                 spa_config_exit(spa, SCL_ALL, FTAG);
2495         } else if (error == 0) {
2496                 spa->spa_spares.sav_sync = B_TRUE;
2497         }
2498 
2499         /*
2500          * Load any level 2 ARC devices for this pool.
2501          */
2502         error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2503             &spa->spa_l2cache.sav_object);
2504         if (error != 0 && error != ENOENT)
2505                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2506         if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2507                 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2508                 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2509                     &spa->spa_l2cache.sav_config) != 0)
2510                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2511 
2512                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2513                 spa_load_l2cache(spa);
2514                 spa_config_exit(spa, SCL_ALL, FTAG);
2515         } else if (error == 0) {
2516                 spa->spa_l2cache.sav_sync = B_TRUE;
2517         }
2518 
2519         spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2520 
2521         error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2522         if (error && error != ENOENT)
2523                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2524 
2525         if (error == 0) {
2526                 uint64_t autoreplace;
2527 
2528                 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2529                 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2530                 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2531                 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2532                 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2533                 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2534                     &spa->spa_dedup_ditto);
2535 
2536                 spa->spa_autoreplace = (autoreplace != 0);
2537         }
2538 
2539         /*
2540          * If the 'autoreplace' property is set, then post a resource notifying
2541          * the ZFS DE that it should not issue any faults for unopenable
2542          * devices.  We also iterate over the vdevs, and post a sysevent for any
2543          * unopenable vdevs so that the normal autoreplace handler can take
2544          * over.
2545          */
2546         if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2547                 spa_check_removed(spa->spa_root_vdev);
2548                 /*
2549                  * For the import case, this is done in spa_import(), because
2550                  * at this point we're using the spare definitions from
2551                  * the MOS config, not necessarily from the userland config.
2552                  */
2553                 if (state != SPA_LOAD_IMPORT) {
2554                         spa_aux_check_removed(&spa->spa_spares);
2555                         spa_aux_check_removed(&spa->spa_l2cache);
2556                 }
2557         }
2558 
2559         /*
2560          * Load the vdev state for all toplevel vdevs.
2561          */
2562         vdev_load(rvd);
2563 
2564         /*
2565          * Propagate the leaf DTLs we just loaded all the way up the tree.
2566          */
2567         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2568         vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2569         spa_config_exit(spa, SCL_ALL, FTAG);
2570 
2571         /*
2572          * Load the DDTs (dedup tables).
2573          */
2574         error = ddt_load(spa);
2575         if (error != 0)
2576                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2577 
2578         spa_update_dspace(spa);
2579 
2580         /*
2581          * Validate the config, using the MOS config to fill in any
2582          * information which might be missing.  If we fail to validate
2583          * the config then declare the pool unfit for use. If we're
2584          * assembling a pool from a split, the log is not transferred
2585          * over.
2586          */
2587         if (type != SPA_IMPORT_ASSEMBLE) {
2588                 nvlist_t *nvconfig;
2589 
2590                 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2591                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2592 
2593                 if (!spa_config_valid(spa, nvconfig)) {
2594                         nvlist_free(nvconfig);
2595                         return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2596                             ENXIO));
2597                 }
2598                 nvlist_free(nvconfig);
2599 
2600                 /*
2601                  * Now that we've validated the config, check the state of the
2602                  * root vdev.  If it can't be opened, it indicates one or
2603                  * more toplevel vdevs are faulted.
2604                  */
2605                 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2606                         return (SET_ERROR(ENXIO));
2607 
2608                 if (spa_check_logs(spa)) {
2609                         *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2610                         return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2611                 }
2612         }
2613 
2614         if (missing_feat_write) {
2615                 ASSERT(state == SPA_LOAD_TRYIMPORT);
2616 
2617                 /*
2618                  * At this point, we know that we can open the pool in
2619                  * read-only mode but not read-write mode. We now have enough
2620                  * information and can return to userland.
2621                  */
2622                 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2623         }
2624 
2625         /*
2626          * We've successfully opened the pool, verify that we're ready
2627          * to start pushing transactions.
2628          */
2629         if (state != SPA_LOAD_TRYIMPORT) {
2630                 if (error = spa_load_verify(spa))
2631                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2632                             error));
2633         }
2634 
2635         if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2636             spa->spa_load_max_txg == UINT64_MAX)) {
2637                 dmu_tx_t *tx;
2638                 int need_update = B_FALSE;
2639 
2640                 ASSERT(state != SPA_LOAD_TRYIMPORT);
2641 
2642                 /*
2643                  * Claim log blocks that haven't been committed yet.
2644                  * This must all happen in a single txg.
2645                  * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2646                  * invoked from zil_claim_log_block()'s i/o done callback.
2647                  * Price of rollback is that we abandon the log.
2648                  */
2649                 spa->spa_claiming = B_TRUE;
2650 
2651                 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2652                     spa_first_txg(spa));
2653                 (void) dmu_objset_find(spa_name(spa),
2654                     zil_claim, tx, DS_FIND_CHILDREN);
2655                 dmu_tx_commit(tx);
2656 
2657                 spa->spa_claiming = B_FALSE;
2658 
2659                 spa_set_log_state(spa, SPA_LOG_GOOD);
2660                 spa->spa_sync_on = B_TRUE;
2661                 txg_sync_start(spa->spa_dsl_pool);
2662 
2663                 /*
2664                  * Wait for all claims to sync.  We sync up to the highest
2665                  * claimed log block birth time so that claimed log blocks
2666                  * don't appear to be from the future.  spa_claim_max_txg
2667                  * will have been set for us by either zil_check_log_chain()
2668                  * (invoked from spa_check_logs()) or zil_claim() above.
2669                  */
2670                 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2671 
2672                 /*
2673                  * If the config cache is stale, or we have uninitialized
2674                  * metaslabs (see spa_vdev_add()), then update the config.
2675                  *
2676                  * If this is a verbatim import, trust the current
2677                  * in-core spa_config and update the disk labels.
2678                  */
2679                 if (config_cache_txg != spa->spa_config_txg ||
2680                     state == SPA_LOAD_IMPORT ||
2681                     state == SPA_LOAD_RECOVER ||
2682                     (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2683                         need_update = B_TRUE;
2684 
2685                 for (int c = 0; c < rvd->vdev_children; c++)
2686                         if (rvd->vdev_child[c]->vdev_ms_array == 0)
2687                                 need_update = B_TRUE;
2688 
2689                 /*
2690                  * Update the config cache asychronously in case we're the
2691                  * root pool, in which case the config cache isn't writable yet.
2692                  */
2693                 if (need_update)
2694                         spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2695 
2696                 /*
2697                  * Check all DTLs to see if anything needs resilvering.
2698                  */
2699                 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2700                     vdev_resilver_needed(rvd, NULL, NULL))
2701                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2702 
2703                 /*
2704                  * Log the fact that we booted up (so that we can detect if
2705                  * we rebooted in the middle of an operation).
2706                  */
2707                 spa_history_log_version(spa, "open");
2708 
2709                 /*
2710                  * Delete any inconsistent datasets.
2711                  */
2712                 (void) dmu_objset_find(spa_name(spa),
2713                     dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2714 
2715                 /*
2716                  * Clean up any stale temporary dataset userrefs.
2717                  */
2718                 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2719         }
2720 
2721         return (0);
2722 }
2723 
2724 static int
2725 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2726 {
2727         int mode = spa->spa_mode;
2728 
2729         spa_unload(spa);
2730         spa_deactivate(spa);
2731 
2732         spa->spa_load_max_txg--;
2733 
2734         spa_activate(spa, mode);
2735         spa_async_suspend(spa);
2736 
2737         return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2738 }
2739 
2740 /*
2741  * If spa_load() fails this function will try loading prior txg's. If
2742  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2743  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2744  * function will not rewind the pool and will return the same error as
2745  * spa_load().
2746  */
2747 static int
2748 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2749     uint64_t max_request, int rewind_flags)
2750 {
2751         nvlist_t *loadinfo = NULL;
2752         nvlist_t *config = NULL;
2753         int load_error, rewind_error;
2754         uint64_t safe_rewind_txg;
2755         uint64_t min_txg;
2756 
2757         if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2758                 spa->spa_load_max_txg = spa->spa_load_txg;
2759                 spa_set_log_state(spa, SPA_LOG_CLEAR);
2760         } else {
2761                 spa->spa_load_max_txg = max_request;
2762         }
2763 
2764         load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2765             mosconfig);
2766         if (load_error == 0)
2767                 return (0);
2768 
2769         if (spa->spa_root_vdev != NULL)
2770                 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2771 
2772         spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2773         spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2774 
2775         if (rewind_flags & ZPOOL_NEVER_REWIND) {
2776                 nvlist_free(config);
2777                 return (load_error);
2778         }
2779 
2780         if (state == SPA_LOAD_RECOVER) {
2781                 /* Price of rolling back is discarding txgs, including log */
2782                 spa_set_log_state(spa, SPA_LOG_CLEAR);
2783         } else {
2784                 /*
2785                  * If we aren't rolling back save the load info from our first
2786                  * import attempt so that we can restore it after attempting
2787                  * to rewind.
2788                  */
2789                 loadinfo = spa->spa_load_info;
2790                 spa->spa_load_info = fnvlist_alloc();
2791         }
2792 
2793         spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2794         safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2795         min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2796             TXG_INITIAL : safe_rewind_txg;
2797 
2798         /*
2799          * Continue as long as we're finding errors, we're still within
2800          * the acceptable rewind range, and we're still finding uberblocks
2801          */
2802         while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2803             spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2804                 if (spa->spa_load_max_txg < safe_rewind_txg)
2805                         spa->spa_extreme_rewind = B_TRUE;
2806                 rewind_error = spa_load_retry(spa, state, mosconfig);
2807         }
2808 
2809         spa->spa_extreme_rewind = B_FALSE;
2810         spa->spa_load_max_txg = UINT64_MAX;
2811 
2812         if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2813                 spa_config_set(spa, config);
2814 
2815         if (state == SPA_LOAD_RECOVER) {
2816                 ASSERT3P(loadinfo, ==, NULL);
2817                 return (rewind_error);
2818         } else {
2819                 /* Store the rewind info as part of the initial load info */
2820                 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2821                     spa->spa_load_info);
2822 
2823                 /* Restore the initial load info */
2824                 fnvlist_free(spa->spa_load_info);
2825                 spa->spa_load_info = loadinfo;
2826 
2827                 return (load_error);
2828         }
2829 }
2830 
2831 /*
2832  * Pool Open/Import
2833  *
2834  * The import case is identical to an open except that the configuration is sent
2835  * down from userland, instead of grabbed from the configuration cache.  For the
2836  * case of an open, the pool configuration will exist in the
2837  * POOL_STATE_UNINITIALIZED state.
2838  *
2839  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2840  * the same time open the pool, without having to keep around the spa_t in some
2841  * ambiguous state.
2842  */
2843 static int
2844 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2845     nvlist_t **config)
2846 {
2847         spa_t *spa;
2848         spa_load_state_t state = SPA_LOAD_OPEN;
2849         int error;
2850         int locked = B_FALSE;
2851 
2852         *spapp = NULL;
2853 
2854         /*
2855          * As disgusting as this is, we need to support recursive calls to this
2856          * function because dsl_dir_open() is called during spa_load(), and ends
2857          * up calling spa_open() again.  The real fix is to figure out how to
2858          * avoid dsl_dir_open() calling this in the first place.
2859          */
2860         if (mutex_owner(&spa_namespace_lock) != curthread) {
2861                 mutex_enter(&spa_namespace_lock);
2862                 locked = B_TRUE;
2863         }
2864 
2865         if ((spa = spa_lookup(pool)) == NULL) {
2866                 if (locked)
2867                         mutex_exit(&spa_namespace_lock);
2868                 return (SET_ERROR(ENOENT));
2869         }
2870 
2871         if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2872                 zpool_rewind_policy_t policy;
2873 
2874                 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2875                     &policy);
2876                 if (policy.zrp_request & ZPOOL_DO_REWIND)
2877                         state = SPA_LOAD_RECOVER;
2878 
2879                 spa_activate(spa, spa_mode_global);
2880 
2881                 if (state != SPA_LOAD_RECOVER)
2882                         spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2883 
2884                 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2885                     policy.zrp_request);
2886 
2887                 if (error == EBADF) {
2888                         /*
2889                          * If vdev_validate() returns failure (indicated by
2890                          * EBADF), it indicates that one of the vdevs indicates
2891                          * that the pool has been exported or destroyed.  If
2892                          * this is the case, the config cache is out of sync and
2893                          * we should remove the pool from the namespace.
2894                          */
2895                         spa_unload(spa);
2896                         spa_deactivate(spa);
2897                         spa_config_sync(spa, B_TRUE, B_TRUE);
2898                         spa_remove(spa);
2899                         if (locked)
2900                                 mutex_exit(&spa_namespace_lock);
2901                         return (SET_ERROR(ENOENT));
2902                 }
2903 
2904                 if (error) {
2905                         /*
2906                          * We can't open the pool, but we still have useful
2907                          * information: the state of each vdev after the
2908                          * attempted vdev_open().  Return this to the user.
2909                          */
2910                         if (config != NULL && spa->spa_config) {
2911                                 VERIFY(nvlist_dup(spa->spa_config, config,
2912                                     KM_SLEEP) == 0);
2913                                 VERIFY(nvlist_add_nvlist(*config,
2914                                     ZPOOL_CONFIG_LOAD_INFO,
2915                                     spa->spa_load_info) == 0);
2916                         }
2917                         spa_unload(spa);
2918                         spa_deactivate(spa);
2919                         spa->spa_last_open_failed = error;
2920                         if (locked)
2921                                 mutex_exit(&spa_namespace_lock);
2922                         *spapp = NULL;
2923                         return (error);
2924                 }
2925         }
2926 
2927         spa_open_ref(spa, tag);
2928 
2929         if (config != NULL)
2930                 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2931 
2932         /*
2933          * If we've recovered the pool, pass back any information we
2934          * gathered while doing the load.
2935          */
2936         if (state == SPA_LOAD_RECOVER) {
2937                 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2938                     spa->spa_load_info) == 0);
2939         }
2940 
2941         if (locked) {
2942                 spa->spa_last_open_failed = 0;
2943                 spa->spa_last_ubsync_txg = 0;
2944                 spa->spa_load_txg = 0;
2945                 mutex_exit(&spa_namespace_lock);
2946         }
2947 
2948         *spapp = spa;
2949 
2950         return (0);
2951 }
2952 
2953 int
2954 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2955     nvlist_t **config)
2956 {
2957         return (spa_open_common(name, spapp, tag, policy, config));
2958 }
2959 
2960 int
2961 spa_open(const char *name, spa_t **spapp, void *tag)
2962 {
2963         return (spa_open_common(name, spapp, tag, NULL, NULL));
2964 }
2965 
2966 /*
2967  * Lookup the given spa_t, incrementing the inject count in the process,
2968  * preventing it from being exported or destroyed.
2969  */
2970 spa_t *
2971 spa_inject_addref(char *name)
2972 {
2973         spa_t *spa;
2974 
2975         mutex_enter(&spa_namespace_lock);
2976         if ((spa = spa_lookup(name)) == NULL) {
2977                 mutex_exit(&spa_namespace_lock);
2978                 return (NULL);
2979         }
2980         spa->spa_inject_ref++;
2981         mutex_exit(&spa_namespace_lock);
2982 
2983         return (spa);
2984 }
2985 
2986 void
2987 spa_inject_delref(spa_t *spa)
2988 {
2989         mutex_enter(&spa_namespace_lock);
2990         spa->spa_inject_ref--;
2991         mutex_exit(&spa_namespace_lock);
2992 }
2993 
2994 /*
2995  * Add spares device information to the nvlist.
2996  */
2997 static void
2998 spa_add_spares(spa_t *spa, nvlist_t *config)
2999 {
3000         nvlist_t **spares;
3001         uint_t i, nspares;
3002         nvlist_t *nvroot;
3003         uint64_t guid;
3004         vdev_stat_t *vs;
3005         uint_t vsc;
3006         uint64_t pool;
3007 
3008         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3009 
3010         if (spa->spa_spares.sav_count == 0)
3011                 return;
3012 
3013         VERIFY(nvlist_lookup_nvlist(config,
3014             ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3015         VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3016             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3017         if (nspares != 0) {
3018                 VERIFY(nvlist_add_nvlist_array(nvroot,
3019                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3020                 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3021                     ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3022 
3023                 /*
3024                  * Go through and find any spares which have since been
3025                  * repurposed as an active spare.  If this is the case, update
3026                  * their status appropriately.
3027                  */
3028                 for (i = 0; i < nspares; i++) {
3029                         VERIFY(nvlist_lookup_uint64(spares[i],
3030                             ZPOOL_CONFIG_GUID, &guid) == 0);
3031                         if (spa_spare_exists(guid, &pool, NULL) &&
3032                             pool != 0ULL) {
3033                                 VERIFY(nvlist_lookup_uint64_array(
3034                                     spares[i], ZPOOL_CONFIG_VDEV_STATS,
3035                                     (uint64_t **)&vs, &vsc) == 0);
3036                                 vs->vs_state = VDEV_STATE_CANT_OPEN;
3037                                 vs->vs_aux = VDEV_AUX_SPARED;
3038                         }
3039                 }
3040         }
3041 }
3042 
3043 /*
3044  * Add l2cache device information to the nvlist, including vdev stats.
3045  */
3046 static void
3047 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3048 {
3049         nvlist_t **l2cache;
3050         uint_t i, j, nl2cache;
3051         nvlist_t *nvroot;
3052         uint64_t guid;
3053         vdev_t *vd;
3054         vdev_stat_t *vs;
3055         uint_t vsc;
3056 
3057         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3058 
3059         if (spa->spa_l2cache.sav_count == 0)
3060                 return;
3061 
3062         VERIFY(nvlist_lookup_nvlist(config,
3063             ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3064         VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3065             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3066         if (nl2cache != 0) {
3067                 VERIFY(nvlist_add_nvlist_array(nvroot,
3068                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3069                 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3070                     ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3071 
3072                 /*
3073                  * Update level 2 cache device stats.
3074                  */
3075 
3076                 for (i = 0; i < nl2cache; i++) {
3077                         VERIFY(nvlist_lookup_uint64(l2cache[i],
3078                             ZPOOL_CONFIG_GUID, &guid) == 0);
3079 
3080                         vd = NULL;
3081                         for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3082                                 if (guid ==
3083                                     spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3084                                         vd = spa->spa_l2cache.sav_vdevs[j];
3085                                         break;
3086                                 }
3087                         }
3088                         ASSERT(vd != NULL);
3089 
3090                         VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3091                             ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3092                             == 0);
3093                         vdev_get_stats(vd, vs);
3094                 }
3095         }
3096 }
3097 
3098 static void
3099 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3100 {
3101         nvlist_t *features;
3102         zap_cursor_t zc;
3103         zap_attribute_t za;
3104 
3105         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3106         VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3107 
3108         if (spa->spa_feat_for_read_obj != 0) {
3109                 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3110                     spa->spa_feat_for_read_obj);
3111                     zap_cursor_retrieve(&zc, &za) == 0;
3112                     zap_cursor_advance(&zc)) {
3113                         ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3114                             za.za_num_integers == 1);
3115                         VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3116                             za.za_first_integer));
3117                 }
3118                 zap_cursor_fini(&zc);
3119         }
3120 
3121         if (spa->spa_feat_for_write_obj != 0) {
3122                 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3123                     spa->spa_feat_for_write_obj);
3124                     zap_cursor_retrieve(&zc, &za) == 0;
3125                     zap_cursor_advance(&zc)) {
3126                         ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3127                             za.za_num_integers == 1);
3128                         VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3129                             za.za_first_integer));
3130                 }
3131                 zap_cursor_fini(&zc);
3132         }
3133 
3134         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3135             features) == 0);
3136         nvlist_free(features);
3137 }
3138 
3139 int
3140 spa_get_stats(const char *name, nvlist_t **config,
3141     char *altroot, size_t buflen)
3142 {
3143         int error;
3144         spa_t *spa;
3145 
3146         *config = NULL;
3147         error = spa_open_common(name, &spa, FTAG, NULL, config);
3148 
3149         if (spa != NULL) {
3150                 /*
3151                  * This still leaves a window of inconsistency where the spares
3152                  * or l2cache devices could change and the config would be
3153                  * self-inconsistent.
3154                  */
3155                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3156 
3157                 if (*config != NULL) {
3158                         uint64_t loadtimes[2];
3159 
3160                         loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3161                         loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3162                         VERIFY(nvlist_add_uint64_array(*config,
3163                             ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3164 
3165                         VERIFY(nvlist_add_uint64(*config,
3166                             ZPOOL_CONFIG_ERRCOUNT,
3167                             spa_get_errlog_size(spa)) == 0);
3168 
3169                         if (spa_suspended(spa))
3170                                 VERIFY(nvlist_add_uint64(*config,
3171                                     ZPOOL_CONFIG_SUSPENDED,
3172                                     spa->spa_failmode) == 0);
3173 
3174                         spa_add_spares(spa, *config);
3175                         spa_add_l2cache(spa, *config);
3176                         spa_add_feature_stats(spa, *config);
3177                 }
3178         }
3179 
3180         /*
3181          * We want to get the alternate root even for faulted pools, so we cheat
3182          * and call spa_lookup() directly.
3183          */
3184         if (altroot) {
3185                 if (spa == NULL) {
3186                         mutex_enter(&spa_namespace_lock);
3187                         spa = spa_lookup(name);
3188                         if (spa)
3189                                 spa_altroot(spa, altroot, buflen);
3190                         else
3191                                 altroot[0] = '\0';
3192                         spa = NULL;
3193                         mutex_exit(&spa_namespace_lock);
3194                 } else {
3195                         spa_altroot(spa, altroot, buflen);
3196                 }
3197         }
3198 
3199         if (spa != NULL) {
3200                 spa_config_exit(spa, SCL_CONFIG, FTAG);
3201                 spa_close(spa, FTAG);
3202         }
3203 
3204         return (error);
3205 }
3206 
3207 /*
3208  * Validate that the auxiliary device array is well formed.  We must have an
3209  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3210  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3211  * specified, as long as they are well-formed.
3212  */
3213 static int
3214 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3215     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3216     vdev_labeltype_t label)
3217 {
3218         nvlist_t **dev;
3219         uint_t i, ndev;
3220         vdev_t *vd;
3221         int error;
3222 
3223         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3224 
3225         /*
3226          * It's acceptable to have no devs specified.
3227          */
3228         if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3229                 return (0);
3230 
3231         if (ndev == 0)
3232                 return (SET_ERROR(EINVAL));
3233 
3234         /*
3235          * Make sure the pool is formatted with a version that supports this
3236          * device type.
3237          */
3238         if (spa_version(spa) < version)
3239                 return (SET_ERROR(ENOTSUP));
3240 
3241         /*
3242          * Set the pending device list so we correctly handle device in-use
3243          * checking.
3244          */
3245         sav->sav_pending = dev;
3246         sav->sav_npending = ndev;
3247 
3248         for (i = 0; i < ndev; i++) {
3249                 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3250                     mode)) != 0)
3251                         goto out;
3252 
3253                 if (!vd->vdev_ops->vdev_op_leaf) {
3254                         vdev_free(vd);
3255                         error = SET_ERROR(EINVAL);
3256                         goto out;
3257                 }
3258 
3259                 /*
3260                  * The L2ARC currently only supports disk devices in
3261                  * kernel context.  For user-level testing, we allow it.
3262                  */
3263 #ifdef _KERNEL
3264                 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3265                     strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3266                         error = SET_ERROR(ENOTBLK);
3267                         vdev_free(vd);
3268                         goto out;
3269                 }
3270 #endif
3271                 vd->vdev_top = vd;
3272 
3273                 if ((error = vdev_open(vd)) == 0 &&
3274                     (error = vdev_label_init(vd, crtxg, label)) == 0) {
3275                         VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3276                             vd->vdev_guid) == 0);
3277                 }
3278 
3279                 vdev_free(vd);
3280 
3281                 if (error &&
3282                     (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3283                         goto out;
3284                 else
3285                         error = 0;
3286         }
3287 
3288 out:
3289         sav->sav_pending = NULL;
3290         sav->sav_npending = 0;
3291         return (error);
3292 }
3293 
3294 static int
3295 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3296 {
3297         int error;
3298 
3299         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3300 
3301         if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3302             &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3303             VDEV_LABEL_SPARE)) != 0) {
3304                 return (error);
3305         }
3306 
3307         return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3308             &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3309             VDEV_LABEL_L2CACHE));
3310 }
3311 
3312 static void
3313 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3314     const char *config)
3315 {
3316         int i;
3317 
3318         if (sav->sav_config != NULL) {
3319                 nvlist_t **olddevs;
3320                 uint_t oldndevs;
3321                 nvlist_t **newdevs;
3322 
3323                 /*
3324                  * Generate new dev list by concatentating with the
3325                  * current dev list.
3326                  */
3327                 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3328                     &olddevs, &oldndevs) == 0);
3329 
3330                 newdevs = kmem_alloc(sizeof (void *) *
3331                     (ndevs + oldndevs), KM_SLEEP);
3332                 for (i = 0; i < oldndevs; i++)
3333                         VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3334                             KM_SLEEP) == 0);
3335                 for (i = 0; i < ndevs; i++)
3336                         VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3337                             KM_SLEEP) == 0);
3338 
3339                 VERIFY(nvlist_remove(sav->sav_config, config,
3340                     DATA_TYPE_NVLIST_ARRAY) == 0);
3341 
3342                 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3343                     config, newdevs, ndevs + oldndevs) == 0);
3344                 for (i = 0; i < oldndevs + ndevs; i++)
3345                         nvlist_free(newdevs[i]);
3346                 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3347         } else {
3348                 /*
3349                  * Generate a new dev list.
3350                  */
3351                 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3352                     KM_SLEEP) == 0);
3353                 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3354                     devs, ndevs) == 0);
3355         }
3356 }
3357 
3358 /*
3359  * Stop and drop level 2 ARC devices
3360  */
3361 void
3362 spa_l2cache_drop(spa_t *spa)
3363 {
3364         vdev_t *vd;
3365         int i;
3366         spa_aux_vdev_t *sav = &spa->spa_l2cache;
3367 
3368         for (i = 0; i < sav->sav_count; i++) {
3369                 uint64_t pool;
3370 
3371                 vd = sav->sav_vdevs[i];
3372                 ASSERT(vd != NULL);
3373 
3374                 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3375                     pool != 0ULL && l2arc_vdev_present(vd))
3376                         l2arc_remove_vdev(vd);
3377         }
3378 }
3379 
3380 /*
3381  * Pool Creation
3382  */
3383 int
3384 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3385     nvlist_t *zplprops)
3386 {
3387         spa_t *spa;
3388         char *altroot = NULL;
3389         vdev_t *rvd;
3390         dsl_pool_t *dp;
3391         dmu_tx_t *tx;
3392         int error = 0;
3393         uint64_t txg = TXG_INITIAL;
3394         nvlist_t **spares, **l2cache;
3395         uint_t nspares, nl2cache;
3396         uint64_t version, obj;
3397         boolean_t has_features;
3398 
3399         /*
3400          * If this pool already exists, return failure.
3401          */
3402         mutex_enter(&spa_namespace_lock);
3403         if (spa_lookup(pool) != NULL) {
3404                 mutex_exit(&spa_namespace_lock);
3405                 return (SET_ERROR(EEXIST));
3406         }
3407 
3408         /*
3409          * Allocate a new spa_t structure.
3410          */
3411         (void) nvlist_lookup_string(props,
3412             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3413         spa = spa_add(pool, NULL, altroot);
3414         spa_activate(spa, spa_mode_global);
3415 
3416         if (props && (error = spa_prop_validate(spa, props))) {
3417                 spa_deactivate(spa);
3418                 spa_remove(spa);
3419                 mutex_exit(&spa_namespace_lock);
3420                 return (error);
3421         }
3422 
3423         has_features = B_FALSE;
3424         for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3425             elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3426                 if (zpool_prop_feature(nvpair_name(elem)))
3427                         has_features = B_TRUE;
3428         }
3429 
3430         if (has_features || nvlist_lookup_uint64(props,
3431             zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3432                 version = SPA_VERSION;
3433         }
3434         ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3435 
3436         spa->spa_first_txg = txg;
3437         spa->spa_uberblock.ub_txg = txg - 1;
3438         spa->spa_uberblock.ub_version = version;
3439         spa->spa_ubsync = spa->spa_uberblock;
3440 
3441         /*
3442          * Create "The Godfather" zio to hold all async IOs
3443          */
3444         spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3445             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3446 
3447         /*
3448          * Create the root vdev.
3449          */
3450         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3451 
3452         error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3453 
3454         ASSERT(error != 0 || rvd != NULL);
3455         ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3456 
3457         if (error == 0 && !zfs_allocatable_devs(nvroot))
3458                 error = SET_ERROR(EINVAL);
3459 
3460         if (error == 0 &&
3461             (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3462             (error = spa_validate_aux(spa, nvroot, txg,
3463             VDEV_ALLOC_ADD)) == 0) {
3464                 for (int c = 0; c < rvd->vdev_children; c++) {
3465                         vdev_metaslab_set_size(rvd->vdev_child[c]);
3466                         vdev_expand(rvd->vdev_child[c], txg);
3467                 }
3468         }
3469 
3470         spa_config_exit(spa, SCL_ALL, FTAG);
3471 
3472         if (error != 0) {
3473                 spa_unload(spa);
3474                 spa_deactivate(spa);
3475                 spa_remove(spa);
3476                 mutex_exit(&spa_namespace_lock);
3477                 return (error);
3478         }
3479 
3480         /*
3481          * Get the list of spares, if specified.
3482          */
3483         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3484             &spares, &nspares) == 0) {
3485                 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3486                     KM_SLEEP) == 0);
3487                 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3488                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3489                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3490                 spa_load_spares(spa);
3491                 spa_config_exit(spa, SCL_ALL, FTAG);
3492                 spa->spa_spares.sav_sync = B_TRUE;
3493         }
3494 
3495         /*
3496          * Get the list of level 2 cache devices, if specified.
3497          */
3498         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3499             &l2cache, &nl2cache) == 0) {
3500                 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3501                     NV_UNIQUE_NAME, KM_SLEEP) == 0);
3502                 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3503                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3504                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3505                 spa_load_l2cache(spa);
3506                 spa_config_exit(spa, SCL_ALL, FTAG);
3507                 spa->spa_l2cache.sav_sync = B_TRUE;
3508         }
3509 
3510         spa->spa_is_initializing = B_TRUE;
3511         spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3512         spa->spa_meta_objset = dp->dp_meta_objset;
3513         spa->spa_is_initializing = B_FALSE;
3514 
3515         /*
3516          * Create DDTs (dedup tables).
3517          */
3518         ddt_create(spa);
3519 
3520         spa_update_dspace(spa);
3521 
3522         tx = dmu_tx_create_assigned(dp, txg);
3523 
3524         /*
3525          * Create the pool config object.
3526          */
3527         spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3528             DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3529             DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3530 
3531         if (zap_add(spa->spa_meta_objset,
3532             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3533             sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3534                 cmn_err(CE_PANIC, "failed to add pool config");
3535         }
3536 
3537         if (spa_version(spa) >= SPA_VERSION_FEATURES)
3538                 spa_feature_create_zap_objects(spa, tx);
3539 
3540         if (zap_add(spa->spa_meta_objset,
3541             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3542             sizeof (uint64_t), 1, &version, tx) != 0) {
3543                 cmn_err(CE_PANIC, "failed to add pool version");
3544         }
3545 
3546         /* Newly created pools with the right version are always deflated. */
3547         if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3548                 spa->spa_deflate = TRUE;
3549                 if (zap_add(spa->spa_meta_objset,
3550                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3551                     sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3552                         cmn_err(CE_PANIC, "failed to add deflate");
3553                 }
3554         }
3555 
3556         /*
3557          * Create the deferred-free bpobj.  Turn off compression
3558          * because sync-to-convergence takes longer if the blocksize
3559          * keeps changing.
3560          */
3561         obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3562         dmu_object_set_compress(spa->spa_meta_objset, obj,
3563             ZIO_COMPRESS_OFF, tx);
3564         if (zap_add(spa->spa_meta_objset,
3565             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3566             sizeof (uint64_t), 1, &obj, tx) != 0) {
3567                 cmn_err(CE_PANIC, "failed to add bpobj");
3568         }
3569         VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3570             spa->spa_meta_objset, obj));
3571 
3572         /*
3573          * Create the pool's history object.
3574          */
3575         if (version >= SPA_VERSION_ZPOOL_HISTORY)
3576                 spa_history_create_obj(spa, tx);
3577 
3578         /*
3579          * Generate some random noise for salted checksums to operate on. As
3580          * soon as a salted checksum is used for the first time we will
3581          * generate the persistent MOS object to hold the salt (see
3582          * spa_activate_salted_cksum).
3583          */
3584         (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3585             sizeof (spa->spa_cksum_salt.zcs_bytes));
3586 
3587         /*
3588          * Set pool properties.
3589          */
3590         spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3591         spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3592         spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3593         spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3594 
3595         if (props != NULL) {
3596                 spa_configfile_set(spa, props, B_FALSE);
3597                 spa_sync_props(props, tx);
3598         }
3599 
3600         dmu_tx_commit(tx);
3601 
3602         spa->spa_sync_on = B_TRUE;
3603         txg_sync_start(spa->spa_dsl_pool);
3604 
3605         /*
3606          * We explicitly wait for the first transaction to complete so that our
3607          * bean counters are appropriately updated.
3608          */
3609         txg_wait_synced(spa->spa_dsl_pool, txg);
3610 
3611         spa_config_sync(spa, B_FALSE, B_TRUE);
3612 
3613         spa_history_log_version(spa, "create");
3614 
3615         spa->spa_minref = refcount_count(&spa->spa_refcount);
3616 
3617         mutex_exit(&spa_namespace_lock);
3618 
3619         return (0);
3620 }
3621 
3622 #ifdef _KERNEL
3623 /*
3624  * Get the root pool information from the root disk, then import the root pool
3625  * during the system boot up time.
3626  */
3627 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3628 
3629 static nvlist_t *
3630 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3631 {
3632         nvlist_t *config;
3633         nvlist_t *nvtop, *nvroot;
3634         uint64_t pgid;
3635 
3636         if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3637                 return (NULL);
3638 
3639         /*
3640          * Add this top-level vdev to the child array.
3641          */
3642         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3643             &nvtop) == 0);
3644         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3645             &pgid) == 0);
3646         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3647 
3648         /*
3649          * Put this pool's top-level vdevs into a root vdev.
3650          */
3651         VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3652         VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3653             VDEV_TYPE_ROOT) == 0);
3654         VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3655         VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3656         VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3657             &nvtop, 1) == 0);
3658 
3659         /*
3660          * Replace the existing vdev_tree with the new root vdev in
3661          * this pool's configuration (remove the old, add the new).
3662          */
3663         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3664         nvlist_free(nvroot);
3665         return (config);
3666 }
3667 
3668 /*
3669  * Walk the vdev tree and see if we can find a device with "better"
3670  * configuration. A configuration is "better" if the label on that
3671  * device has a more recent txg.
3672  */
3673 static void
3674 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3675 {
3676         for (int c = 0; c < vd->vdev_children; c++)
3677                 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3678 
3679         if (vd->vdev_ops->vdev_op_leaf) {
3680                 nvlist_t *label;
3681                 uint64_t label_txg;
3682 
3683                 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3684                     &label) != 0)
3685                         return;
3686 
3687                 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3688                     &label_txg) == 0);
3689 
3690                 /*
3691                  * Do we have a better boot device?
3692                  */
3693                 if (label_txg > *txg) {
3694                         *txg = label_txg;
3695                         *avd = vd;
3696                 }
3697                 nvlist_free(label);
3698         }
3699 }
3700 
3701 /*
3702  * Import a root pool.
3703  *
3704  * For x86. devpath_list will consist of devid and/or physpath name of
3705  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3706  * The GRUB "findroot" command will return the vdev we should boot.
3707  *
3708  * For Sparc, devpath_list consists the physpath name of the booting device
3709  * no matter the rootpool is a single device pool or a mirrored pool.
3710  * e.g.
3711  *      "/pci@1f,0/ide@d/disk@0,0:a"
3712  */
3713 int
3714 spa_import_rootpool(char *devpath, char *devid)
3715 {
3716         spa_t *spa;
3717         vdev_t *rvd, *bvd, *avd = NULL;
3718         nvlist_t *config, *nvtop;
3719         uint64_t guid, txg;
3720         char *pname;
3721         int error;
3722 
3723         /*
3724          * Read the label from the boot device and generate a configuration.
3725          */
3726         config = spa_generate_rootconf(devpath, devid, &guid);
3727 #if defined(_OBP) && defined(_KERNEL)
3728         if (config == NULL) {
3729                 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3730                         /* iscsi boot */
3731                         get_iscsi_bootpath_phy(devpath);
3732                         config = spa_generate_rootconf(devpath, devid, &guid);
3733                 }
3734         }
3735 #endif
3736         if (config == NULL) {
3737                 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3738                     devpath);
3739                 return (SET_ERROR(EIO));
3740         }
3741 
3742         VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3743             &pname) == 0);
3744         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3745 
3746         mutex_enter(&spa_namespace_lock);
3747         if ((spa = spa_lookup(pname)) != NULL) {
3748                 /*
3749                  * Remove the existing root pool from the namespace so that we
3750                  * can replace it with the correct config we just read in.
3751                  */
3752                 spa_remove(spa);
3753         }
3754 
3755         spa = spa_add(pname, config, NULL);
3756         spa->spa_is_root = B_TRUE;
3757         spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3758 
3759         /*
3760          * Build up a vdev tree based on the boot device's label config.
3761          */
3762         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3763             &nvtop) == 0);
3764         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3765         error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3766             VDEV_ALLOC_ROOTPOOL);
3767         spa_config_exit(spa, SCL_ALL, FTAG);
3768         if (error) {
3769                 mutex_exit(&spa_namespace_lock);
3770                 nvlist_free(config);
3771                 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3772                     pname);
3773                 return (error);
3774         }
3775 
3776         /*
3777          * Get the boot vdev.
3778          */
3779         if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3780                 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3781                     (u_longlong_t)guid);
3782                 error = SET_ERROR(ENOENT);
3783                 goto out;
3784         }
3785 
3786         /*
3787          * Determine if there is a better boot device.
3788          */
3789         avd = bvd;
3790         spa_alt_rootvdev(rvd, &avd, &txg);
3791         if (avd != bvd) {
3792                 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3793                     "try booting from '%s'", avd->vdev_path);
3794                 error = SET_ERROR(EINVAL);
3795                 goto out;
3796         }
3797 
3798         /*
3799          * If the boot device is part of a spare vdev then ensure that
3800          * we're booting off the active spare.
3801          */
3802         if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3803             !bvd->vdev_isspare) {
3804                 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3805                     "try booting from '%s'",
3806                     bvd->vdev_parent->
3807                     vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3808                 error = SET_ERROR(EINVAL);
3809                 goto out;
3810         }
3811 
3812         error = 0;
3813 out:
3814         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3815         vdev_free(rvd);
3816         spa_config_exit(spa, SCL_ALL, FTAG);
3817         mutex_exit(&spa_namespace_lock);
3818 
3819         nvlist_free(config);
3820         return (error);
3821 }
3822 
3823 #endif
3824 
3825 /*
3826  * Import a non-root pool into the system.
3827  */
3828 int
3829 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3830 {
3831         spa_t *spa;
3832         char *altroot = NULL;
3833         spa_load_state_t state = SPA_LOAD_IMPORT;
3834         zpool_rewind_policy_t policy;
3835         uint64_t mode = spa_mode_global;
3836         uint64_t readonly = B_FALSE;
3837         int error;
3838         nvlist_t *nvroot;
3839         nvlist_t **spares, **l2cache;
3840         uint_t nspares, nl2cache;
3841 
3842         /*
3843          * If a pool with this name exists, return failure.
3844          */
3845         mutex_enter(&spa_namespace_lock);
3846         if (spa_lookup(pool) != NULL) {
3847                 mutex_exit(&spa_namespace_lock);
3848                 return (SET_ERROR(EEXIST));
3849         }
3850 
3851         /*
3852          * Create and initialize the spa structure.
3853          */
3854         (void) nvlist_lookup_string(props,
3855             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3856         (void) nvlist_lookup_uint64(props,
3857             zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3858         if (readonly)
3859                 mode = FREAD;
3860         spa = spa_add(pool, config, altroot);
3861         spa->spa_import_flags = flags;
3862 
3863         /*
3864          * Verbatim import - Take a pool and insert it into the namespace
3865          * as if it had been loaded at boot.
3866          */
3867         if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3868                 if (props != NULL)
3869                         spa_configfile_set(spa, props, B_FALSE);
3870 
3871                 spa_config_sync(spa, B_FALSE, B_TRUE);
3872 
3873                 mutex_exit(&spa_namespace_lock);
3874                 return (0);
3875         }
3876 
3877         spa_activate(spa, mode);
3878 
3879         /*
3880          * Don't start async tasks until we know everything is healthy.
3881          */
3882         spa_async_suspend(spa);
3883 
3884         zpool_get_rewind_policy(config, &policy);
3885         if (policy.zrp_request & ZPOOL_DO_REWIND)
3886                 state = SPA_LOAD_RECOVER;
3887 
3888         /*
3889          * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3890          * because the user-supplied config is actually the one to trust when
3891          * doing an import.
3892          */
3893         if (state != SPA_LOAD_RECOVER)
3894                 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3895 
3896         error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3897             policy.zrp_request);
3898 
3899         /*
3900          * Propagate anything learned while loading the pool and pass it
3901          * back to caller (i.e. rewind info, missing devices, etc).
3902          */
3903         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3904             spa->spa_load_info) == 0);
3905 
3906         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3907         /*
3908          * Toss any existing sparelist, as it doesn't have any validity
3909          * anymore, and conflicts with spa_has_spare().
3910          */
3911         if (spa->spa_spares.sav_config) {
3912                 nvlist_free(spa->spa_spares.sav_config);
3913                 spa->spa_spares.sav_config = NULL;
3914                 spa_load_spares(spa);
3915         }
3916         if (spa->spa_l2cache.sav_config) {
3917                 nvlist_free(spa->spa_l2cache.sav_config);
3918                 spa->spa_l2cache.sav_config = NULL;
3919                 spa_load_l2cache(spa);
3920         }
3921 
3922         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3923             &nvroot) == 0);
3924         if (error == 0)
3925                 error = spa_validate_aux(spa, nvroot, -1ULL,
3926                     VDEV_ALLOC_SPARE);
3927         if (error == 0)
3928                 error = spa_validate_aux(spa, nvroot, -1ULL,
3929                     VDEV_ALLOC_L2CACHE);
3930         spa_config_exit(spa, SCL_ALL, FTAG);
3931 
3932         if (props != NULL)
3933                 spa_configfile_set(spa, props, B_FALSE);
3934 
3935         if (error != 0 || (props && spa_writeable(spa) &&
3936             (error = spa_prop_set(spa, props)))) {
3937                 spa_unload(spa);
3938                 spa_deactivate(spa);
3939                 spa_remove(spa);
3940                 mutex_exit(&spa_namespace_lock);
3941                 return (error);
3942         }
3943 
3944         spa_async_resume(spa);
3945 
3946         /*
3947          * Override any spares and level 2 cache devices as specified by
3948          * the user, as these may have correct device names/devids, etc.
3949          */
3950         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3951             &spares, &nspares) == 0) {
3952                 if (spa->spa_spares.sav_config)
3953                         VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3954                             ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3955                 else
3956                         VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3957                             NV_UNIQUE_NAME, KM_SLEEP) == 0);
3958                 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3959                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3960                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3961                 spa_load_spares(spa);
3962                 spa_config_exit(spa, SCL_ALL, FTAG);
3963                 spa->spa_spares.sav_sync = B_TRUE;
3964         }
3965         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3966             &l2cache, &nl2cache) == 0) {
3967                 if (spa->spa_l2cache.sav_config)
3968                         VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3969                             ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3970                 else
3971                         VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3972                             NV_UNIQUE_NAME, KM_SLEEP) == 0);
3973                 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3974                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3975                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3976                 spa_load_l2cache(spa);
3977                 spa_config_exit(spa, SCL_ALL, FTAG);
3978                 spa->spa_l2cache.sav_sync = B_TRUE;
3979         }
3980 
3981         /*
3982          * Check for any removed devices.
3983          */
3984         if (spa->spa_autoreplace) {
3985                 spa_aux_check_removed(&spa->spa_spares);
3986                 spa_aux_check_removed(&spa->spa_l2cache);
3987         }
3988 
3989         if (spa_writeable(spa)) {
3990                 /*
3991                  * Update the config cache to include the newly-imported pool.
3992                  */
3993                 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3994         }
3995 
3996         /*
3997          * It's possible that the pool was expanded while it was exported.
3998          * We kick off an async task to handle this for us.
3999          */
4000         spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4001 
4002         mutex_exit(&spa_namespace_lock);
4003         spa_history_log_version(spa, "import");
4004 
4005         return (0);
4006 }
4007 
4008 nvlist_t *
4009 spa_tryimport(nvlist_t *tryconfig)
4010 {
4011         nvlist_t *config = NULL;
4012         char *poolname;
4013         spa_t *spa;
4014         uint64_t state;
4015         int error;
4016 
4017         if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4018                 return (NULL);
4019 
4020         if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4021                 return (NULL);
4022 
4023         /*
4024          * Create and initialize the spa structure.
4025          */
4026         mutex_enter(&spa_namespace_lock);
4027         spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4028         spa_activate(spa, FREAD);
4029 
4030         /*
4031          * Pass off the heavy lifting to spa_load().
4032          * Pass TRUE for mosconfig because the user-supplied config
4033          * is actually the one to trust when doing an import.
4034          */
4035         error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4036 
4037         /*
4038          * If 'tryconfig' was at least parsable, return the current config.
4039          */
4040         if (spa->spa_root_vdev != NULL) {
4041                 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4042                 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4043                     poolname) == 0);
4044                 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4045                     state) == 0);
4046                 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4047                     spa->spa_uberblock.ub_timestamp) == 0);
4048                 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4049                     spa->spa_load_info) == 0);
4050 
4051                 /*
4052                  * If the bootfs property exists on this pool then we
4053                  * copy it out so that external consumers can tell which
4054                  * pools are bootable.
4055                  */
4056                 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4057                         char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4058 
4059                         /*
4060                          * We have to play games with the name since the
4061                          * pool was opened as TRYIMPORT_NAME.
4062                          */
4063                         if (dsl_dsobj_to_dsname(spa_name(spa),
4064                             spa->spa_bootfs, tmpname) == 0) {
4065                                 char *cp;
4066                                 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4067 
4068                                 cp = strchr(tmpname, '/');
4069                                 if (cp == NULL) {
4070                                         (void) strlcpy(dsname, tmpname,
4071                                             MAXPATHLEN);
4072                                 } else {
4073                                         (void) snprintf(dsname, MAXPATHLEN,
4074                                             "%s/%s", poolname, ++cp);
4075                                 }
4076                                 VERIFY(nvlist_add_string(config,
4077                                     ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4078                                 kmem_free(dsname, MAXPATHLEN);
4079                         }
4080                         kmem_free(tmpname, MAXPATHLEN);
4081                 }
4082 
4083                 /*
4084                  * Add the list of hot spares and level 2 cache devices.
4085                  */
4086                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4087                 spa_add_spares(spa, config);
4088                 spa_add_l2cache(spa, config);
4089                 spa_config_exit(spa, SCL_CONFIG, FTAG);
4090         }
4091 
4092         spa_unload(spa);
4093         spa_deactivate(spa);
4094         spa_remove(spa);
4095         mutex_exit(&spa_namespace_lock);
4096 
4097         return (config);
4098 }
4099 
4100 /*
4101  * Pool export/destroy
4102  *
4103  * The act of destroying or exporting a pool is very simple.  We make sure there
4104  * is no more pending I/O and any references to the pool are gone.  Then, we
4105  * update the pool state and sync all the labels to disk, removing the
4106  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4107  * we don't sync the labels or remove the configuration cache.
4108  */
4109 static int
4110 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4111     boolean_t force, boolean_t hardforce)
4112 {
4113         spa_t *spa;
4114 
4115         if (oldconfig)
4116                 *oldconfig = NULL;
4117 
4118         if (!(spa_mode_global & FWRITE))
4119                 return (SET_ERROR(EROFS));
4120 
4121         mutex_enter(&spa_namespace_lock);
4122         if ((spa = spa_lookup(pool)) == NULL) {
4123                 mutex_exit(&spa_namespace_lock);
4124                 return (SET_ERROR(ENOENT));
4125         }
4126 
4127         /*
4128          * Put a hold on the pool, drop the namespace lock, stop async tasks,
4129          * reacquire the namespace lock, and see if we can export.
4130          */
4131         spa_open_ref(spa, FTAG);
4132         mutex_exit(&spa_namespace_lock);
4133         spa_async_suspend(spa);
4134         mutex_enter(&spa_namespace_lock);
4135         spa_close(spa, FTAG);
4136 
4137         /*
4138          * The pool will be in core if it's openable,
4139          * in which case we can modify its state.
4140          */
4141         if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4142                 /*
4143                  * Objsets may be open only because they're dirty, so we
4144                  * have to force it to sync before checking spa_refcnt.
4145                  */
4146                 txg_wait_synced(spa->spa_dsl_pool, 0);
4147 
4148                 /*
4149                  * A pool cannot be exported or destroyed if there are active
4150                  * references.  If we are resetting a pool, allow references by
4151                  * fault injection handlers.
4152                  */
4153                 if (!spa_refcount_zero(spa) ||
4154                     (spa->spa_inject_ref != 0 &&
4155                     new_state != POOL_STATE_UNINITIALIZED)) {
4156                         spa_async_resume(spa);
4157                         mutex_exit(&spa_namespace_lock);
4158                         return (SET_ERROR(EBUSY));
4159                 }
4160 
4161                 /*
4162                  * A pool cannot be exported if it has an active shared spare.
4163                  * This is to prevent other pools stealing the active spare
4164                  * from an exported pool. At user's own will, such pool can
4165                  * be forcedly exported.
4166                  */
4167                 if (!force && new_state == POOL_STATE_EXPORTED &&
4168                     spa_has_active_shared_spare(spa)) {
4169                         spa_async_resume(spa);
4170                         mutex_exit(&spa_namespace_lock);
4171                         return (SET_ERROR(EXDEV));
4172                 }
4173 
4174                 /*
4175                  * We want this to be reflected on every label,
4176                  * so mark them all dirty.  spa_unload() will do the
4177                  * final sync that pushes these changes out.
4178                  */
4179                 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4180                         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4181                         spa->spa_state = new_state;
4182                         spa->spa_final_txg = spa_last_synced_txg(spa) +
4183                             TXG_DEFER_SIZE + 1;
4184                         vdev_config_dirty(spa->spa_root_vdev);
4185                         spa_config_exit(spa, SCL_ALL, FTAG);
4186                 }
4187         }
4188 
4189         spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4190 
4191         if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4192                 spa_unload(spa);
4193                 spa_deactivate(spa);
4194         }
4195 
4196         if (oldconfig && spa->spa_config)
4197                 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4198 
4199         if (new_state != POOL_STATE_UNINITIALIZED) {
4200                 if (!hardforce)
4201                         spa_config_sync(spa, B_TRUE, B_TRUE);
4202                 spa_remove(spa);
4203         }
4204         mutex_exit(&spa_namespace_lock);
4205 
4206         return (0);
4207 }
4208 
4209 /*
4210  * Destroy a storage pool.
4211  */
4212 int
4213 spa_destroy(char *pool)
4214 {
4215         return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4216             B_FALSE, B_FALSE));
4217 }
4218 
4219 /*
4220  * Export a storage pool.
4221  */
4222 int
4223 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4224     boolean_t hardforce)
4225 {
4226         return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4227             force, hardforce));
4228 }
4229 
4230 /*
4231  * Similar to spa_export(), this unloads the spa_t without actually removing it
4232  * from the namespace in any way.
4233  */
4234 int
4235 spa_reset(char *pool)
4236 {
4237         return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4238             B_FALSE, B_FALSE));
4239 }
4240 
4241 /*
4242  * ==========================================================================
4243  * Device manipulation
4244  * ==========================================================================
4245  */
4246 
4247 /*
4248  * Add a device to a storage pool.
4249  */
4250 int
4251 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4252 {
4253         uint64_t txg, id;
4254         int error;
4255         vdev_t *rvd = spa->spa_root_vdev;
4256         vdev_t *vd, *tvd;
4257         nvlist_t **spares, **l2cache;
4258         uint_t nspares, nl2cache;
4259 
4260         ASSERT(spa_writeable(spa));
4261 
4262         txg = spa_vdev_enter(spa);
4263 
4264         if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4265             VDEV_ALLOC_ADD)) != 0)
4266                 return (spa_vdev_exit(spa, NULL, txg, error));
4267 
4268         spa->spa_pending_vdev = vd;  /* spa_vdev_exit() will clear this */
4269 
4270         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4271             &nspares) != 0)
4272                 nspares = 0;
4273 
4274         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4275             &nl2cache) != 0)
4276                 nl2cache = 0;
4277 
4278         if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4279                 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4280 
4281         if (vd->vdev_children != 0 &&
4282             (error = vdev_create(vd, txg, B_FALSE)) != 0)
4283                 return (spa_vdev_exit(spa, vd, txg, error));
4284 
4285         /*
4286          * We must validate the spares and l2cache devices after checking the
4287          * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4288          */
4289         if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4290                 return (spa_vdev_exit(spa, vd, txg, error));
4291 
4292         /*
4293          * Transfer each new top-level vdev from vd to rvd.
4294          */
4295         for (int c = 0; c < vd->vdev_children; c++) {
4296 
4297                 /*
4298                  * Set the vdev id to the first hole, if one exists.
4299                  */
4300                 for (id = 0; id < rvd->vdev_children; id++) {
4301                         if (rvd->vdev_child[id]->vdev_ishole) {
4302                                 vdev_free(rvd->vdev_child[id]);
4303                                 break;
4304                         }
4305                 }
4306                 tvd = vd->vdev_child[c];
4307                 vdev_remove_child(vd, tvd);
4308                 tvd->vdev_id = id;
4309                 vdev_add_child(rvd, tvd);
4310                 vdev_config_dirty(tvd);
4311         }
4312 
4313         if (nspares != 0) {
4314                 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4315                     ZPOOL_CONFIG_SPARES);
4316                 spa_load_spares(spa);
4317                 spa->spa_spares.sav_sync = B_TRUE;
4318         }
4319 
4320         if (nl2cache != 0) {
4321                 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4322                     ZPOOL_CONFIG_L2CACHE);
4323                 spa_load_l2cache(spa);
4324                 spa->spa_l2cache.sav_sync = B_TRUE;
4325         }
4326 
4327         /*
4328          * We have to be careful when adding new vdevs to an existing pool.
4329          * If other threads start allocating from these vdevs before we
4330          * sync the config cache, and we lose power, then upon reboot we may
4331          * fail to open the pool because there are DVAs that the config cache
4332          * can't translate.  Therefore, we first add the vdevs without
4333          * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4334          * and then let spa_config_update() initialize the new metaslabs.
4335          *
4336          * spa_load() checks for added-but-not-initialized vdevs, so that
4337          * if we lose power at any point in this sequence, the remaining
4338          * steps will be completed the next time we load the pool.
4339          */
4340         (void) spa_vdev_exit(spa, vd, txg, 0);
4341 
4342         mutex_enter(&spa_namespace_lock);
4343         spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4344         mutex_exit(&spa_namespace_lock);
4345 
4346         return (0);
4347 }
4348 
4349 /*
4350  * Attach a device to a mirror.  The arguments are the path to any device
4351  * in the mirror, and the nvroot for the new device.  If the path specifies
4352  * a device that is not mirrored, we automatically insert the mirror vdev.
4353  *
4354  * If 'replacing' is specified, the new device is intended to replace the
4355  * existing device; in this case the two devices are made into their own
4356  * mirror using the 'replacing' vdev, which is functionally identical to
4357  * the mirror vdev (it actually reuses all the same ops) but has a few
4358  * extra rules: you can't attach to it after it's been created, and upon
4359  * completion of resilvering, the first disk (the one being replaced)
4360  * is automatically detached.
4361  */
4362 int
4363 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4364 {
4365         uint64_t txg, dtl_max_txg;
4366         vdev_t *rvd = spa->spa_root_vdev;
4367         vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4368         vdev_ops_t *pvops;
4369         char *oldvdpath, *newvdpath;
4370         int newvd_isspare;
4371         int error;
4372 
4373         ASSERT(spa_writeable(spa));
4374 
4375         txg = spa_vdev_enter(spa);
4376 
4377         oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4378 
4379         if (oldvd == NULL)
4380                 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4381 
4382         if (!oldvd->vdev_ops->vdev_op_leaf)
4383                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4384 
4385         pvd = oldvd->vdev_parent;
4386 
4387         if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4388             VDEV_ALLOC_ATTACH)) != 0)
4389                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4390 
4391         if (newrootvd->vdev_children != 1)
4392                 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4393 
4394         newvd = newrootvd->vdev_child[0];
4395 
4396         if (!newvd->vdev_ops->vdev_op_leaf)
4397                 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4398 
4399         if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4400                 return (spa_vdev_exit(spa, newrootvd, txg, error));
4401 
4402         /*
4403          * Spares can't replace logs
4404          */
4405         if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4406                 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4407 
4408         if (!replacing) {
4409                 /*
4410                  * For attach, the only allowable parent is a mirror or the root
4411                  * vdev.
4412                  */
4413                 if (pvd->vdev_ops != &vdev_mirror_ops &&
4414                     pvd->vdev_ops != &vdev_root_ops)
4415                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4416 
4417                 pvops = &vdev_mirror_ops;
4418         } else {
4419                 /*
4420                  * Active hot spares can only be replaced by inactive hot
4421                  * spares.
4422                  */
4423                 if (pvd->vdev_ops == &vdev_spare_ops &&
4424                     oldvd->vdev_isspare &&
4425                     !spa_has_spare(spa, newvd->vdev_guid))
4426                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4427 
4428                 /*
4429                  * If the source is a hot spare, and the parent isn't already a
4430                  * spare, then we want to create a new hot spare.  Otherwise, we
4431                  * want to create a replacing vdev.  The user is not allowed to
4432                  * attach to a spared vdev child unless the 'isspare' state is
4433                  * the same (spare replaces spare, non-spare replaces
4434                  * non-spare).
4435                  */
4436                 if (pvd->vdev_ops == &vdev_replacing_ops &&
4437                     spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4438                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4439                 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4440                     newvd->vdev_isspare != oldvd->vdev_isspare) {
4441                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4442                 }
4443 
4444                 if (newvd->vdev_isspare)
4445                         pvops = &vdev_spare_ops;
4446                 else
4447                         pvops = &vdev_replacing_ops;
4448         }
4449 
4450         /*
4451          * Make sure the new device is big enough.
4452          */
4453         if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4454                 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4455 
4456         /*
4457          * The new device cannot have a higher alignment requirement
4458          * than the top-level vdev.
4459          */
4460         if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4461                 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4462 
4463         /*
4464          * If this is an in-place replacement, update oldvd's path and devid
4465          * to make it distinguishable from newvd, and unopenable from now on.
4466          */
4467         if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4468                 spa_strfree(oldvd->vdev_path);
4469                 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4470                     KM_SLEEP);
4471                 (void) sprintf(oldvd->vdev_path, "%s/%s",
4472                     newvd->vdev_path, "old");
4473                 if (oldvd->vdev_devid != NULL) {
4474                         spa_strfree(oldvd->vdev_devid);
4475                         oldvd->vdev_devid = NULL;
4476                 }
4477         }
4478 
4479         /* mark the device being resilvered */
4480         newvd->vdev_resilver_txg = txg;
4481 
4482         /*
4483          * If the parent is not a mirror, or if we're replacing, insert the new
4484          * mirror/replacing/spare vdev above oldvd.
4485          */
4486         if (pvd->vdev_ops != pvops)
4487                 pvd = vdev_add_parent(oldvd, pvops);
4488 
4489         ASSERT(pvd->vdev_top->vdev_parent == rvd);
4490         ASSERT(pvd->vdev_ops == pvops);
4491         ASSERT(oldvd->vdev_parent == pvd);
4492 
4493         /*
4494          * Extract the new device from its root and add it to pvd.
4495          */
4496         vdev_remove_child(newrootvd, newvd);
4497         newvd->vdev_id = pvd->vdev_children;
4498         newvd->vdev_crtxg = oldvd->vdev_crtxg;
4499         vdev_add_child(pvd, newvd);
4500 
4501         tvd = newvd->vdev_top;
4502         ASSERT(pvd->vdev_top == tvd);
4503         ASSERT(tvd->vdev_parent == rvd);
4504 
4505         vdev_config_dirty(tvd);
4506 
4507         /*
4508          * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4509          * for any dmu_sync-ed blocks.  It will propagate upward when
4510          * spa_vdev_exit() calls vdev_dtl_reassess().
4511          */
4512         dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4513 
4514         vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4515             dtl_max_txg - TXG_INITIAL);
4516 
4517         if (newvd->vdev_isspare) {
4518                 spa_spare_activate(newvd);
4519                 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4520         }
4521 
4522         oldvdpath = spa_strdup(oldvd->vdev_path);
4523         newvdpath = spa_strdup(newvd->vdev_path);
4524         newvd_isspare = newvd->vdev_isspare;
4525 
4526         /*
4527          * Mark newvd's DTL dirty in this txg.
4528          */
4529         vdev_dirty(tvd, VDD_DTL, newvd, txg);
4530 
4531         /*
4532          * Schedule the resilver to restart in the future. We do this to
4533          * ensure that dmu_sync-ed blocks have been stitched into the
4534          * respective datasets.
4535          */
4536         dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4537 
4538         /*
4539          * Commit the config
4540          */
4541         (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4542 
4543         spa_history_log_internal(spa, "vdev attach", NULL,
4544             "%s vdev=%s %s vdev=%s",
4545             replacing && newvd_isspare ? "spare in" :
4546             replacing ? "replace" : "attach", newvdpath,
4547             replacing ? "for" : "to", oldvdpath);
4548 
4549         spa_strfree(oldvdpath);
4550         spa_strfree(newvdpath);
4551 
4552         if (spa->spa_bootfs)
4553                 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4554 
4555         return (0);
4556 }
4557 
4558 /*
4559  * Detach a device from a mirror or replacing vdev.
4560  *
4561  * If 'replace_done' is specified, only detach if the parent
4562  * is a replacing vdev.
4563  */
4564 int
4565 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4566 {
4567         uint64_t txg;
4568         int error;
4569         vdev_t *rvd = spa->spa_root_vdev;
4570         vdev_t *vd, *pvd, *cvd, *tvd;
4571         boolean_t unspare = B_FALSE;
4572         uint64_t unspare_guid = 0;
4573         char *vdpath;
4574 
4575         ASSERT(spa_writeable(spa));
4576 
4577         txg = spa_vdev_enter(spa);
4578 
4579         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4580 
4581         if (vd == NULL)
4582                 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4583 
4584         if (!vd->vdev_ops->vdev_op_leaf)
4585                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4586 
4587         pvd = vd->vdev_parent;
4588 
4589         /*
4590          * If the parent/child relationship is not as expected, don't do it.
4591          * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4592          * vdev that's replacing B with C.  The user's intent in replacing
4593          * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4594          * the replace by detaching C, the expected behavior is to end up
4595          * M(A,B).  But suppose that right after deciding to detach C,
4596          * the replacement of B completes.  We would have M(A,C), and then
4597          * ask to detach C, which would leave us with just A -- not what
4598          * the user wanted.  To prevent this, we make sure that the
4599          * parent/child relationship hasn't changed -- in this example,
4600          * that C's parent is still the replacing vdev R.
4601          */
4602         if (pvd->vdev_guid != pguid && pguid != 0)
4603                 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4604 
4605         /*
4606          * Only 'replacing' or 'spare' vdevs can be replaced.
4607          */
4608         if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4609             pvd->vdev_ops != &vdev_spare_ops)
4610                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4611 
4612         ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4613             spa_version(spa) >= SPA_VERSION_SPARES);
4614 
4615         /*
4616          * Only mirror, replacing, and spare vdevs support detach.
4617          */
4618         if (pvd->vdev_ops != &vdev_replacing_ops &&
4619             pvd->vdev_ops != &vdev_mirror_ops &&
4620             pvd->vdev_ops != &vdev_spare_ops)
4621                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4622 
4623         /*
4624          * If this device has the only valid copy of some data,
4625          * we cannot safely detach it.
4626          */
4627         if (vdev_dtl_required(vd))
4628                 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4629 
4630         ASSERT(pvd->vdev_children >= 2);
4631 
4632         /*
4633          * If we are detaching the second disk from a replacing vdev, then
4634          * check to see if we changed the original vdev's path to have "/old"
4635          * at the end in spa_vdev_attach().  If so, undo that change now.
4636          */
4637         if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4638             vd->vdev_path != NULL) {
4639                 size_t len = strlen(vd->vdev_path);
4640 
4641                 for (int c = 0; c < pvd->vdev_children; c++) {
4642                         cvd = pvd->vdev_child[c];
4643 
4644                         if (cvd == vd || cvd->vdev_path == NULL)
4645                                 continue;
4646 
4647                         if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4648                             strcmp(cvd->vdev_path + len, "/old") == 0) {
4649                                 spa_strfree(cvd->vdev_path);
4650                                 cvd->vdev_path = spa_strdup(vd->vdev_path);
4651                                 break;
4652                         }
4653                 }
4654         }
4655 
4656         /*
4657          * If we are detaching the original disk from a spare, then it implies
4658          * that the spare should become a real disk, and be removed from the
4659          * active spare list for the pool.
4660          */
4661         if (pvd->vdev_ops == &vdev_spare_ops &&
4662             vd->vdev_id == 0 &&
4663             pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4664                 unspare = B_TRUE;
4665 
4666         /*
4667          * Erase the disk labels so the disk can be used for other things.
4668          * This must be done after all other error cases are handled,
4669          * but before we disembowel vd (so we can still do I/O to it).
4670          * But if we can't do it, don't treat the error as fatal --
4671          * it may be that the unwritability of the disk is the reason
4672          * it's being detached!
4673          */
4674         error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4675 
4676         /*
4677          * Remove vd from its parent and compact the parent's children.
4678          */
4679         vdev_remove_child(pvd, vd);
4680         vdev_compact_children(pvd);
4681 
4682         /*
4683          * Remember one of the remaining children so we can get tvd below.
4684          */
4685         cvd = pvd->vdev_child[pvd->vdev_children - 1];
4686 
4687         /*
4688          * If we need to remove the remaining child from the list of hot spares,
4689          * do it now, marking the vdev as no longer a spare in the process.
4690          * We must do this before vdev_remove_parent(), because that can
4691          * change the GUID if it creates a new toplevel GUID.  For a similar
4692          * reason, we must remove the spare now, in the same txg as the detach;
4693          * otherwise someone could attach a new sibling, change the GUID, and
4694          * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4695          */
4696         if (unspare) {
4697                 ASSERT(cvd->vdev_isspare);
4698                 spa_spare_remove(cvd);
4699                 unspare_guid = cvd->vdev_guid;
4700                 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4701                 cvd->vdev_unspare = B_TRUE;
4702         }
4703 
4704         /*
4705          * If the parent mirror/replacing vdev only has one child,
4706          * the parent is no longer needed.  Remove it from the tree.
4707          */
4708         if (pvd->vdev_children == 1) {
4709                 if (pvd->vdev_ops == &vdev_spare_ops)
4710                         cvd->vdev_unspare = B_FALSE;
4711                 vdev_remove_parent(cvd);
4712         }
4713 
4714 
4715         /*
4716          * We don't set tvd until now because the parent we just removed
4717          * may have been the previous top-level vdev.
4718          */
4719         tvd = cvd->vdev_top;
4720         ASSERT(tvd->vdev_parent == rvd);
4721 
4722         /*
4723          * Reevaluate the parent vdev state.
4724          */
4725         vdev_propagate_state(cvd);
4726 
4727         /*
4728          * If the 'autoexpand' property is set on the pool then automatically
4729          * try to expand the size of the pool. For example if the device we
4730          * just detached was smaller than the others, it may be possible to
4731          * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4732          * first so that we can obtain the updated sizes of the leaf vdevs.
4733          */
4734         if (spa->spa_autoexpand) {
4735                 vdev_reopen(tvd);
4736                 vdev_expand(tvd, txg);
4737         }
4738 
4739         vdev_config_dirty(tvd);
4740 
4741         /*
4742          * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4743          * vd->vdev_detached is set and free vd's DTL object in syncing context.
4744          * But first make sure we're not on any *other* txg's DTL list, to
4745          * prevent vd from being accessed after it's freed.
4746          */
4747         vdpath = spa_strdup(vd->vdev_path);
4748         for (int t = 0; t < TXG_SIZE; t++)
4749                 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4750         vd->vdev_detached = B_TRUE;
4751         vdev_dirty(tvd, VDD_DTL, vd, txg);
4752 
4753         spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4754 
4755         /* hang on to the spa before we release the lock */
4756         spa_open_ref(spa, FTAG);
4757 
4758         error = spa_vdev_exit(spa, vd, txg, 0);
4759 
4760         spa_history_log_internal(spa, "detach", NULL,
4761             "vdev=%s", vdpath);
4762         spa_strfree(vdpath);
4763 
4764         /*
4765          * If this was the removal of the original device in a hot spare vdev,
4766          * then we want to go through and remove the device from the hot spare
4767          * list of every other pool.
4768          */
4769         if (unspare) {
4770                 spa_t *altspa = NULL;
4771 
4772                 mutex_enter(&spa_namespace_lock);
4773                 while ((altspa = spa_next(altspa)) != NULL) {
4774                         if (altspa->spa_state != POOL_STATE_ACTIVE ||
4775                             altspa == spa)
4776                                 continue;
4777 
4778                         spa_open_ref(altspa, FTAG);
4779                         mutex_exit(&spa_namespace_lock);
4780                         (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4781                         mutex_enter(&spa_namespace_lock);
4782                         spa_close(altspa, FTAG);
4783                 }
4784                 mutex_exit(&spa_namespace_lock);
4785 
4786                 /* search the rest of the vdevs for spares to remove */
4787                 spa_vdev_resilver_done(spa);
4788         }
4789 
4790         /* all done with the spa; OK to release */
4791         mutex_enter(&spa_namespace_lock);
4792         spa_close(spa, FTAG);
4793         mutex_exit(&spa_namespace_lock);
4794 
4795         return (error);
4796 }
4797 
4798 /*
4799  * Split a set of devices from their mirrors, and create a new pool from them.
4800  */
4801 int
4802 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4803     nvlist_t *props, boolean_t exp)
4804 {
4805         int error = 0;
4806         uint64_t txg, *glist;
4807         spa_t *newspa;
4808         uint_t c, children, lastlog;
4809         nvlist_t **child, *nvl, *tmp;
4810         dmu_tx_t *tx;
4811         char *altroot = NULL;
4812         vdev_t *rvd, **vml = NULL;                      /* vdev modify list */
4813         boolean_t activate_slog;
4814 
4815         ASSERT(spa_writeable(spa));
4816 
4817         txg = spa_vdev_enter(spa);
4818 
4819         /* clear the log and flush everything up to now */
4820         activate_slog = spa_passivate_log(spa);
4821         (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4822         error = spa_offline_log(spa);
4823         txg = spa_vdev_config_enter(spa);
4824 
4825         if (activate_slog)
4826                 spa_activate_log(spa);
4827 
4828         if (error != 0)
4829                 return (spa_vdev_exit(spa, NULL, txg, error));
4830 
4831         /* check new spa name before going any further */
4832         if (spa_lookup(newname) != NULL)
4833                 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4834 
4835         /*
4836          * scan through all the children to ensure they're all mirrors
4837          */
4838         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4839             nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4840             &children) != 0)
4841                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4842 
4843         /* first, check to ensure we've got the right child count */
4844         rvd = spa->spa_root_vdev;
4845         lastlog = 0;
4846         for (c = 0; c < rvd->vdev_children; c++) {
4847                 vdev_t *vd = rvd->vdev_child[c];
4848 
4849                 /* don't count the holes & logs as children */
4850                 if (vd->vdev_islog || vd->vdev_ishole) {
4851                         if (lastlog == 0)
4852                                 lastlog = c;
4853                         continue;
4854                 }
4855 
4856                 lastlog = 0;
4857         }
4858         if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4859                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4860 
4861         /* next, ensure no spare or cache devices are part of the split */
4862         if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4863             nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4864                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4865 
4866         vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4867         glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4868 
4869         /* then, loop over each vdev and validate it */
4870         for (c = 0; c < children; c++) {
4871                 uint64_t is_hole = 0;
4872 
4873                 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4874                     &is_hole);
4875 
4876                 if (is_hole != 0) {
4877                         if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4878                             spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4879                                 continue;
4880                         } else {
4881                                 error = SET_ERROR(EINVAL);
4882                                 break;
4883                         }
4884                 }
4885 
4886                 /* which disk is going to be split? */
4887                 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4888                     &glist[c]) != 0) {
4889                         error = SET_ERROR(EINVAL);
4890                         break;
4891                 }
4892 
4893                 /* look it up in the spa */
4894                 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4895                 if (vml[c] == NULL) {
4896                         error = SET_ERROR(ENODEV);
4897                         break;
4898                 }
4899 
4900                 /* make sure there's nothing stopping the split */
4901                 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4902                     vml[c]->vdev_islog ||
4903                     vml[c]->vdev_ishole ||
4904                     vml[c]->vdev_isspare ||
4905                     vml[c]->vdev_isl2cache ||
4906                     !vdev_writeable(vml[c]) ||
4907                     vml[c]->vdev_children != 0 ||
4908                     vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4909                     c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4910                         error = SET_ERROR(EINVAL);
4911                         break;
4912                 }
4913 
4914                 if (vdev_dtl_required(vml[c])) {
4915                         error = SET_ERROR(EBUSY);
4916                         break;
4917                 }
4918 
4919                 /* we need certain info from the top level */
4920                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4921                     vml[c]->vdev_top->vdev_ms_array) == 0);
4922                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4923                     vml[c]->vdev_top->vdev_ms_shift) == 0);
4924                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4925                     vml[c]->vdev_top->vdev_asize) == 0);
4926                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4927                     vml[c]->vdev_top->vdev_ashift) == 0);
4928         }
4929 
4930         if (error != 0) {
4931                 kmem_free(vml, children * sizeof (vdev_t *));
4932                 kmem_free(glist, children * sizeof (uint64_t));
4933                 return (spa_vdev_exit(spa, NULL, txg, error));
4934         }
4935 
4936         /* stop writers from using the disks */
4937         for (c = 0; c < children; c++) {
4938                 if (vml[c] != NULL)
4939                         vml[c]->vdev_offline = B_TRUE;
4940         }
4941         vdev_reopen(spa->spa_root_vdev);
4942 
4943         /*
4944          * Temporarily record the splitting vdevs in the spa config.  This
4945          * will disappear once the config is regenerated.
4946          */
4947         VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4948         VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4949             glist, children) == 0);
4950         kmem_free(glist, children * sizeof (uint64_t));
4951 
4952         mutex_enter(&spa->spa_props_lock);
4953         VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4954             nvl) == 0);
4955         mutex_exit(&spa->spa_props_lock);
4956         spa->spa_config_splitting = nvl;
4957         vdev_config_dirty(spa->spa_root_vdev);
4958 
4959         /* configure and create the new pool */
4960         VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4961         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4962             exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4963         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4964             spa_version(spa)) == 0);
4965         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4966             spa->spa_config_txg) == 0);
4967         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4968             spa_generate_guid(NULL)) == 0);
4969         (void) nvlist_lookup_string(props,
4970             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4971 
4972         /* add the new pool to the namespace */
4973         newspa = spa_add(newname, config, altroot);
4974         newspa->spa_config_txg = spa->spa_config_txg;
4975         spa_set_log_state(newspa, SPA_LOG_CLEAR);
4976 
4977         /* release the spa config lock, retaining the namespace lock */
4978         spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4979 
4980         if (zio_injection_enabled)
4981                 zio_handle_panic_injection(spa, FTAG, 1);
4982 
4983         spa_activate(newspa, spa_mode_global);
4984         spa_async_suspend(newspa);
4985 
4986         /* create the new pool from the disks of the original pool */
4987         error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4988         if (error)
4989                 goto out;
4990 
4991         /* if that worked, generate a real config for the new pool */
4992         if (newspa->spa_root_vdev != NULL) {
4993                 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4994                     NV_UNIQUE_NAME, KM_SLEEP) == 0);
4995                 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4996                     ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4997                 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4998                     B_TRUE));
4999         }
5000 
5001         /* set the props */
5002         if (props != NULL) {
5003                 spa_configfile_set(newspa, props, B_FALSE);
5004                 error = spa_prop_set(newspa, props);
5005                 if (error)
5006                         goto out;
5007         }
5008 
5009         /* flush everything */
5010         txg = spa_vdev_config_enter(newspa);
5011         vdev_config_dirty(newspa->spa_root_vdev);
5012         (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5013 
5014         if (zio_injection_enabled)
5015                 zio_handle_panic_injection(spa, FTAG, 2);
5016 
5017         spa_async_resume(newspa);
5018 
5019         /* finally, update the original pool's config */
5020         txg = spa_vdev_config_enter(spa);
5021         tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5022         error = dmu_tx_assign(tx, TXG_WAIT);
5023         if (error != 0)
5024                 dmu_tx_abort(tx);
5025         for (c = 0; c < children; c++) {
5026                 if (vml[c] != NULL) {
5027                         vdev_split(vml[c]);
5028                         if (error == 0)
5029                                 spa_history_log_internal(spa, "detach", tx,
5030                                     "vdev=%s", vml[c]->vdev_path);
5031                         vdev_free(vml[c]);
5032                 }
5033         }
5034         vdev_config_dirty(spa->spa_root_vdev);
5035         spa->spa_config_splitting = NULL;
5036         nvlist_free(nvl);
5037         if (error == 0)
5038                 dmu_tx_commit(tx);
5039         (void) spa_vdev_exit(spa, NULL, txg, 0);
5040 
5041         if (zio_injection_enabled)
5042                 zio_handle_panic_injection(spa, FTAG, 3);
5043 
5044         /* split is complete; log a history record */
5045         spa_history_log_internal(newspa, "split", NULL,
5046             "from pool %s", spa_name(spa));
5047 
5048         kmem_free(vml, children * sizeof (vdev_t *));
5049 
5050         /* if we're not going to mount the filesystems in userland, export */
5051         if (exp)
5052                 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5053                     B_FALSE, B_FALSE);
5054 
5055         return (error);
5056 
5057 out:
5058         spa_unload(newspa);
5059         spa_deactivate(newspa);
5060         spa_remove(newspa);
5061 
5062         txg = spa_vdev_config_enter(spa);
5063 
5064         /* re-online all offlined disks */
5065         for (c = 0; c < children; c++) {
5066                 if (vml[c] != NULL)
5067                         vml[c]->vdev_offline = B_FALSE;
5068         }
5069         vdev_reopen(spa->spa_root_vdev);
5070 
5071         nvlist_free(spa->spa_config_splitting);
5072         spa->spa_config_splitting = NULL;
5073         (void) spa_vdev_exit(spa, NULL, txg, error);
5074 
5075         kmem_free(vml, children * sizeof (vdev_t *));
5076         return (error);
5077 }
5078 
5079 static nvlist_t *
5080 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5081 {
5082         for (int i = 0; i < count; i++) {
5083                 uint64_t guid;
5084 
5085                 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5086                     &guid) == 0);
5087 
5088                 if (guid == target_guid)
5089                         return (nvpp[i]);
5090         }
5091 
5092         return (NULL);
5093 }
5094 
5095 static void
5096 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5097         nvlist_t *dev_to_remove)
5098 {
5099         nvlist_t **newdev = NULL;
5100 
5101         if (count > 1)
5102                 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5103 
5104         for (int i = 0, j = 0; i < count; i++) {
5105                 if (dev[i] == dev_to_remove)
5106                         continue;
5107                 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5108         }
5109 
5110         VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5111         VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5112 
5113         for (int i = 0; i < count - 1; i++)
5114                 nvlist_free(newdev[i]);
5115 
5116         if (count > 1)
5117                 kmem_free(newdev, (count - 1) * sizeof (void *));
5118 }
5119 
5120 /*
5121  * Evacuate the device.
5122  */
5123 static int
5124 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5125 {
5126         uint64_t txg;
5127         int error = 0;
5128 
5129         ASSERT(MUTEX_HELD(&spa_namespace_lock));
5130         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5131         ASSERT(vd == vd->vdev_top);
5132 
5133         /*
5134          * Evacuate the device.  We don't hold the config lock as writer
5135          * since we need to do I/O but we do keep the
5136          * spa_namespace_lock held.  Once this completes the device
5137          * should no longer have any blocks allocated on it.
5138          */
5139         if (vd->vdev_islog) {
5140                 if (vd->vdev_stat.vs_alloc != 0)
5141                         error = spa_offline_log(spa);
5142         } else {
5143                 error = SET_ERROR(ENOTSUP);
5144         }
5145 
5146         if (error)
5147                 return (error);
5148 
5149         /*
5150          * The evacuation succeeded.  Remove any remaining MOS metadata
5151          * associated with this vdev, and wait for these changes to sync.
5152          */
5153         ASSERT0(vd->vdev_stat.vs_alloc);
5154         txg = spa_vdev_config_enter(spa);
5155         vd->vdev_removing = B_TRUE;
5156         vdev_dirty_leaves(vd, VDD_DTL, txg);
5157         vdev_config_dirty(vd);
5158         spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5159 
5160         return (0);
5161 }
5162 
5163 /*
5164  * Complete the removal by cleaning up the namespace.
5165  */
5166 static void
5167 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5168 {
5169         vdev_t *rvd = spa->spa_root_vdev;
5170         uint64_t id = vd->vdev_id;
5171         boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5172 
5173         ASSERT(MUTEX_HELD(&spa_namespace_lock));
5174         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5175         ASSERT(vd == vd->vdev_top);
5176 
5177         /*
5178          * Only remove any devices which are empty.
5179          */
5180         if (vd->vdev_stat.vs_alloc != 0)
5181                 return;
5182 
5183         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5184 
5185         if (list_link_active(&vd->vdev_state_dirty_node))
5186                 vdev_state_clean(vd);
5187         if (list_link_active(&vd->vdev_config_dirty_node))
5188                 vdev_config_clean(vd);
5189 
5190         vdev_free(vd);
5191 
5192         if (last_vdev) {
5193                 vdev_compact_children(rvd);
5194         } else {
5195                 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5196                 vdev_add_child(rvd, vd);
5197         }
5198         vdev_config_dirty(rvd);
5199 
5200         /*
5201          * Reassess the health of our root vdev.
5202          */
5203         vdev_reopen(rvd);
5204 }
5205 
5206 /*
5207  * Remove a device from the pool -
5208  *
5209  * Removing a device from the vdev namespace requires several steps
5210  * and can take a significant amount of time.  As a result we use
5211  * the spa_vdev_config_[enter/exit] functions which allow us to
5212  * grab and release the spa_config_lock while still holding the namespace
5213  * lock.  During each step the configuration is synced out.
5214  *
5215  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5216  * devices.
5217  */
5218 int
5219 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5220 {
5221         vdev_t *vd;
5222         metaslab_group_t *mg;
5223         nvlist_t **spares, **l2cache, *nv;
5224         uint64_t txg = 0;
5225         uint_t nspares, nl2cache;
5226         int error = 0;
5227         boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5228 
5229         ASSERT(spa_writeable(spa));
5230 
5231         if (!locked)
5232                 txg = spa_vdev_enter(spa);
5233 
5234         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5235 
5236         if (spa->spa_spares.sav_vdevs != NULL &&
5237             nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5238             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5239             (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5240                 /*
5241                  * Only remove the hot spare if it's not currently in use
5242                  * in this pool.
5243                  */
5244                 if (vd == NULL || unspare) {
5245                         spa_vdev_remove_aux(spa->spa_spares.sav_config,
5246                             ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5247                         spa_load_spares(spa);
5248                         spa->spa_spares.sav_sync = B_TRUE;
5249                 } else {
5250                         error = SET_ERROR(EBUSY);
5251                 }
5252         } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5253             nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5254             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5255             (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5256                 /*
5257                  * Cache devices can always be removed.
5258                  */
5259                 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5260                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5261                 spa_load_l2cache(spa);
5262                 spa->spa_l2cache.sav_sync = B_TRUE;
5263         } else if (vd != NULL && vd->vdev_islog) {
5264                 ASSERT(!locked);
5265                 ASSERT(vd == vd->vdev_top);
5266 
5267                 /*
5268                  * XXX - Once we have bp-rewrite this should
5269                  * become the common case.
5270                  */
5271 
5272                 mg = vd->vdev_mg;
5273 
5274                 /*
5275                  * Stop allocating from this vdev.
5276                  */
5277                 metaslab_group_passivate(mg);
5278 
5279                 /*
5280                  * Wait for the youngest allocations and frees to sync,
5281                  * and then wait for the deferral of those frees to finish.
5282                  */
5283                 spa_vdev_config_exit(spa, NULL,
5284                     txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5285 
5286                 /*
5287                  * Attempt to evacuate the vdev.
5288                  */
5289                 error = spa_vdev_remove_evacuate(spa, vd);
5290 
5291                 txg = spa_vdev_config_enter(spa);
5292 
5293                 /*
5294                  * If we couldn't evacuate the vdev, unwind.
5295                  */
5296                 if (error) {
5297                         metaslab_group_activate(mg);
5298                         return (spa_vdev_exit(spa, NULL, txg, error));
5299                 }
5300 
5301                 /*
5302                  * Clean up the vdev namespace.
5303                  */
5304                 spa_vdev_remove_from_namespace(spa, vd);
5305 
5306         } else if (vd != NULL) {
5307                 /*
5308                  * Normal vdevs cannot be removed (yet).
5309                  */
5310                 error = SET_ERROR(ENOTSUP);
5311         } else {
5312                 /*
5313                  * There is no vdev of any kind with the specified guid.
5314                  */
5315                 error = SET_ERROR(ENOENT);
5316         }
5317 
5318         if (!locked)
5319                 return (spa_vdev_exit(spa, NULL, txg, error));
5320 
5321         return (error);
5322 }
5323 
5324 /*
5325  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5326  * currently spared, so we can detach it.
5327  */
5328 static vdev_t *
5329 spa_vdev_resilver_done_hunt(vdev_t *vd)
5330 {
5331         vdev_t *newvd, *oldvd;
5332 
5333         for (int c = 0; c < vd->vdev_children; c++) {
5334                 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5335                 if (oldvd != NULL)
5336                         return (oldvd);
5337         }
5338 
5339         /*
5340          * Check for a completed replacement.  We always consider the first
5341          * vdev in the list to be the oldest vdev, and the last one to be
5342          * the newest (see spa_vdev_attach() for how that works).  In
5343          * the case where the newest vdev is faulted, we will not automatically
5344          * remove it after a resilver completes.  This is OK as it will require
5345          * user intervention to determine which disk the admin wishes to keep.
5346          */
5347         if (vd->vdev_ops == &vdev_replacing_ops) {
5348                 ASSERT(vd->vdev_children > 1);
5349 
5350                 newvd = vd->vdev_child[vd->vdev_children - 1];
5351                 oldvd = vd->vdev_child[0];
5352 
5353                 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5354                     vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5355                     !vdev_dtl_required(oldvd))
5356                         return (oldvd);
5357         }
5358 
5359         /*
5360          * Check for a completed resilver with the 'unspare' flag set.
5361          */
5362         if (vd->vdev_ops == &vdev_spare_ops) {
5363                 vdev_t *first = vd->vdev_child[0];
5364                 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5365 
5366                 if (last->vdev_unspare) {
5367                         oldvd = first;
5368                         newvd = last;
5369                 } else if (first->vdev_unspare) {
5370                         oldvd = last;
5371                         newvd = first;
5372                 } else {
5373                         oldvd = NULL;
5374                 }
5375 
5376                 if (oldvd != NULL &&
5377                     vdev_dtl_empty(newvd, DTL_MISSING) &&
5378                     vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5379                     !vdev_dtl_required(oldvd))
5380                         return (oldvd);
5381 
5382                 /*
5383                  * If there are more than two spares attached to a disk,
5384                  * and those spares are not required, then we want to
5385                  * attempt to free them up now so that they can be used
5386                  * by other pools.  Once we're back down to a single
5387                  * disk+spare, we stop removing them.
5388                  */
5389                 if (vd->vdev_children > 2) {
5390                         newvd = vd->vdev_child[1];
5391 
5392                         if (newvd->vdev_isspare && last->vdev_isspare &&
5393                             vdev_dtl_empty(last, DTL_MISSING) &&
5394                             vdev_dtl_empty(last, DTL_OUTAGE) &&
5395                             !vdev_dtl_required(newvd))
5396                                 return (newvd);
5397                 }
5398         }
5399 
5400         return (NULL);
5401 }
5402 
5403 static void
5404 spa_vdev_resilver_done(spa_t *spa)
5405 {
5406         vdev_t *vd, *pvd, *ppvd;
5407         uint64_t guid, sguid, pguid, ppguid;
5408 
5409         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5410 
5411         while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5412                 pvd = vd->vdev_parent;
5413                 ppvd = pvd->vdev_parent;
5414                 guid = vd->vdev_guid;
5415                 pguid = pvd->vdev_guid;
5416                 ppguid = ppvd->vdev_guid;
5417                 sguid = 0;
5418                 /*
5419                  * If we have just finished replacing a hot spared device, then
5420                  * we need to detach the parent's first child (the original hot
5421                  * spare) as well.
5422                  */
5423                 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5424                     ppvd->vdev_children == 2) {
5425                         ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5426                         sguid = ppvd->vdev_child[1]->vdev_guid;
5427                 }
5428                 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5429 
5430                 spa_config_exit(spa, SCL_ALL, FTAG);
5431                 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5432                         return;
5433                 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5434                         return;
5435                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5436         }
5437 
5438         spa_config_exit(spa, SCL_ALL, FTAG);
5439 }
5440 
5441 /*
5442  * Update the stored path or FRU for this vdev.
5443  */
5444 int
5445 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5446     boolean_t ispath)
5447 {
5448         vdev_t *vd;
5449         boolean_t sync = B_FALSE;
5450 
5451         ASSERT(spa_writeable(spa));
5452 
5453         spa_vdev_state_enter(spa, SCL_ALL);
5454 
5455         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5456                 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5457 
5458         if (!vd->vdev_ops->vdev_op_leaf)
5459                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5460 
5461         if (ispath) {
5462                 if (strcmp(value, vd->vdev_path) != 0) {
5463                         spa_strfree(vd->vdev_path);
5464                         vd->vdev_path = spa_strdup(value);
5465                         sync = B_TRUE;
5466                 }
5467         } else {
5468                 if (vd->vdev_fru == NULL) {
5469                         vd->vdev_fru = spa_strdup(value);
5470                         sync = B_TRUE;
5471                 } else if (strcmp(value, vd->vdev_fru) != 0) {
5472                         spa_strfree(vd->vdev_fru);
5473                         vd->vdev_fru = spa_strdup(value);
5474                         sync = B_TRUE;
5475                 }
5476         }
5477 
5478         return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5479 }
5480 
5481 int
5482 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5483 {
5484         return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5485 }
5486 
5487 int
5488 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5489 {
5490         return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5491 }
5492 
5493 /*
5494  * ==========================================================================
5495  * SPA Scanning
5496  * ==========================================================================
5497  */
5498 
5499 int
5500 spa_scan_stop(spa_t *spa)
5501 {
5502         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5503         if (dsl_scan_resilvering(spa->spa_dsl_pool))
5504                 return (SET_ERROR(EBUSY));
5505         return (dsl_scan_cancel(spa->spa_dsl_pool));
5506 }
5507 
5508 int
5509 spa_scan(spa_t *spa, pool_scan_func_t func)
5510 {
5511         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5512 
5513         if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5514                 return (SET_ERROR(ENOTSUP));
5515 
5516         /*
5517          * If a resilver was requested, but there is no DTL on a
5518          * writeable leaf device, we have nothing to do.
5519          */
5520         if (func == POOL_SCAN_RESILVER &&
5521             !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5522                 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5523                 return (0);
5524         }
5525 
5526         return (dsl_scan(spa->spa_dsl_pool, func));
5527 }
5528 
5529 /*
5530  * ==========================================================================
5531  * SPA async task processing
5532  * ==========================================================================
5533  */
5534 
5535 static void
5536 spa_async_remove(spa_t *spa, vdev_t *vd)
5537 {
5538         if (vd->vdev_remove_wanted) {
5539                 vd->vdev_remove_wanted = B_FALSE;
5540                 vd->vdev_delayed_close = B_FALSE;
5541                 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5542 
5543                 /*
5544                  * We want to clear the stats, but we don't want to do a full
5545                  * vdev_clear() as that will cause us to throw away
5546                  * degraded/faulted state as well as attempt to reopen the
5547                  * device, all of which is a waste.
5548                  */
5549                 vd->vdev_stat.vs_read_errors = 0;
5550                 vd->vdev_stat.vs_write_errors = 0;
5551                 vd->vdev_stat.vs_checksum_errors = 0;
5552 
5553                 vdev_state_dirty(vd->vdev_top);
5554         }
5555 
5556         for (int c = 0; c < vd->vdev_children; c++)
5557                 spa_async_remove(spa, vd->vdev_child[c]);
5558 }
5559 
5560 static void
5561 spa_async_probe(spa_t *spa, vdev_t *vd)
5562 {
5563         if (vd->vdev_probe_wanted) {
5564                 vd->vdev_probe_wanted = B_FALSE;
5565                 vdev_reopen(vd);        /* vdev_open() does the actual probe */
5566         }
5567 
5568         for (int c = 0; c < vd->vdev_children; c++)
5569                 spa_async_probe(spa, vd->vdev_child[c]);
5570 }
5571 
5572 static void
5573 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5574 {
5575         sysevent_id_t eid;
5576         nvlist_t *attr;
5577         char *physpath;
5578 
5579         if (!spa->spa_autoexpand)
5580                 return;
5581 
5582         for (int c = 0; c < vd->vdev_children; c++) {
5583                 vdev_t *cvd = vd->vdev_child[c];
5584                 spa_async_autoexpand(spa, cvd);
5585         }
5586 
5587         if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5588                 return;
5589 
5590         physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5591         (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5592 
5593         VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5594         VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5595 
5596         (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5597             ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5598 
5599         nvlist_free(attr);
5600         kmem_free(physpath, MAXPATHLEN);
5601 }
5602 
5603 static void
5604 spa_async_thread(spa_t *spa)
5605 {
5606         int tasks;
5607 
5608         ASSERT(spa->spa_sync_on);
5609 
5610         mutex_enter(&spa->spa_async_lock);
5611         tasks = spa->spa_async_tasks;
5612         spa->spa_async_tasks = 0;
5613         mutex_exit(&spa->spa_async_lock);
5614 
5615         /*
5616          * See if the config needs to be updated.
5617          */
5618         if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5619                 uint64_t old_space, new_space;
5620 
5621                 mutex_enter(&spa_namespace_lock);
5622                 old_space = metaslab_class_get_space(spa_normal_class(spa));
5623                 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5624                 new_space = metaslab_class_get_space(spa_normal_class(spa));
5625                 mutex_exit(&spa_namespace_lock);
5626 
5627                 /*
5628                  * If the pool grew as a result of the config update,
5629                  * then log an internal history event.
5630                  */
5631                 if (new_space != old_space) {
5632                         spa_history_log_internal(spa, "vdev online", NULL,
5633                             "pool '%s' size: %llu(+%llu)",
5634                             spa_name(spa), new_space, new_space - old_space);
5635                 }
5636         }
5637 
5638         /*
5639          * See if any devices need to be marked REMOVED.
5640          */
5641         if (tasks & SPA_ASYNC_REMOVE) {
5642                 spa_vdev_state_enter(spa, SCL_NONE);
5643                 spa_async_remove(spa, spa->spa_root_vdev);
5644                 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5645                         spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5646                 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5647                         spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5648                 (void) spa_vdev_state_exit(spa, NULL, 0);
5649         }
5650 
5651         if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5652                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5653                 spa_async_autoexpand(spa, spa->spa_root_vdev);
5654                 spa_config_exit(spa, SCL_CONFIG, FTAG);
5655         }
5656 
5657         /*
5658          * See if any devices need to be probed.
5659          */
5660         if (tasks & SPA_ASYNC_PROBE) {
5661                 spa_vdev_state_enter(spa, SCL_NONE);
5662                 spa_async_probe(spa, spa->spa_root_vdev);
5663                 (void) spa_vdev_state_exit(spa, NULL, 0);
5664         }
5665 
5666         /*
5667          * If any devices are done replacing, detach them.
5668          */
5669         if (tasks & SPA_ASYNC_RESILVER_DONE)
5670                 spa_vdev_resilver_done(spa);
5671 
5672         /*
5673          * Kick off a resilver.
5674          */
5675         if (tasks & SPA_ASYNC_RESILVER)
5676                 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5677 
5678         /*
5679          * Let the world know that we're done.
5680          */
5681         mutex_enter(&spa->spa_async_lock);
5682         spa->spa_async_thread = NULL;
5683         cv_broadcast(&spa->spa_async_cv);
5684         mutex_exit(&spa->spa_async_lock);
5685         thread_exit();
5686 }
5687 
5688 void
5689 spa_async_suspend(spa_t *spa)
5690 {
5691         mutex_enter(&spa->spa_async_lock);
5692         spa->spa_async_suspended++;
5693         while (spa->spa_async_thread != NULL)
5694                 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5695         mutex_exit(&spa->spa_async_lock);
5696 }
5697 
5698 void
5699 spa_async_resume(spa_t *spa)
5700 {
5701         mutex_enter(&spa->spa_async_lock);
5702         ASSERT(spa->spa_async_suspended != 0);
5703         spa->spa_async_suspended--;
5704         mutex_exit(&spa->spa_async_lock);
5705 }
5706 
5707 static boolean_t
5708 spa_async_tasks_pending(spa_t *spa)
5709 {
5710         uint_t non_config_tasks;
5711         uint_t config_task;
5712         boolean_t config_task_suspended;
5713 
5714         non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5715         config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5716         if (spa->spa_ccw_fail_time == 0) {
5717                 config_task_suspended = B_FALSE;
5718         } else {
5719                 config_task_suspended =
5720                     (gethrtime() - spa->spa_ccw_fail_time) <
5721                     (zfs_ccw_retry_interval * NANOSEC);
5722         }
5723 
5724         return (non_config_tasks || (config_task && !config_task_suspended));
5725 }
5726 
5727 static void
5728 spa_async_dispatch(spa_t *spa)
5729 {
5730         mutex_enter(&spa->spa_async_lock);
5731         if (spa_async_tasks_pending(spa) &&
5732             !spa->spa_async_suspended &&
5733             spa->spa_async_thread == NULL &&
5734             rootdir != NULL)
5735                 spa->spa_async_thread = thread_create(NULL, 0,
5736                     spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5737         mutex_exit(&spa->spa_async_lock);
5738 }
5739 
5740 void
5741 spa_async_request(spa_t *spa, int task)
5742 {
5743         zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5744         mutex_enter(&spa->spa_async_lock);
5745         spa->spa_async_tasks |= task;
5746         mutex_exit(&spa->spa_async_lock);
5747 }
5748 
5749 /*
5750  * ==========================================================================
5751  * SPA syncing routines
5752  * ==========================================================================
5753  */
5754 
5755 static int
5756 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5757 {
5758         bpobj_t *bpo = arg;
5759         bpobj_enqueue(bpo, bp, tx);
5760         return (0);
5761 }
5762 
5763 static int
5764 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5765 {
5766         zio_t *zio = arg;
5767 
5768         zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5769             zio->io_flags));
5770         return (0);
5771 }
5772 
5773 /*
5774  * Note: this simple function is not inlined to make it easier to dtrace the
5775  * amount of time spent syncing frees.
5776  */
5777 static void
5778 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5779 {
5780         zio_t *zio = zio_root(spa, NULL, NULL, 0);
5781         bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5782         VERIFY(zio_wait(zio) == 0);
5783 }
5784 
5785 /*
5786  * Note: this simple function is not inlined to make it easier to dtrace the
5787  * amount of time spent syncing deferred frees.
5788  */
5789 static void
5790 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5791 {
5792         zio_t *zio = zio_root(spa, NULL, NULL, 0);
5793         VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5794             spa_free_sync_cb, zio, tx), ==, 0);
5795         VERIFY0(zio_wait(zio));
5796 }
5797 
5798 
5799 static void
5800 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5801 {
5802         char *packed = NULL;
5803         size_t bufsize;
5804         size_t nvsize = 0;
5805         dmu_buf_t *db;
5806 
5807         VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5808 
5809         /*
5810          * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5811          * information.  This avoids the dbuf_will_dirty() path and
5812          * saves us a pre-read to get data we don't actually care about.
5813          */
5814         bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5815         packed = kmem_alloc(bufsize, KM_SLEEP);
5816 
5817         VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5818             KM_SLEEP) == 0);
5819         bzero(packed + nvsize, bufsize - nvsize);
5820 
5821         dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5822 
5823         kmem_free(packed, bufsize);
5824 
5825         VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5826         dmu_buf_will_dirty(db, tx);
5827         *(uint64_t *)db->db_data = nvsize;
5828         dmu_buf_rele(db, FTAG);
5829 }
5830 
5831 static void
5832 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5833     const char *config, const char *entry)
5834 {
5835         nvlist_t *nvroot;
5836         nvlist_t **list;
5837         int i;
5838 
5839         if (!sav->sav_sync)
5840                 return;
5841 
5842         /*
5843          * Update the MOS nvlist describing the list of available devices.
5844          * spa_validate_aux() will have already made sure this nvlist is
5845          * valid and the vdevs are labeled appropriately.
5846          */
5847         if (sav->sav_object == 0) {
5848                 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5849                     DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5850                     sizeof (uint64_t), tx);
5851                 VERIFY(zap_update(spa->spa_meta_objset,
5852                     DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5853                     &sav->sav_object, tx) == 0);
5854         }
5855 
5856         VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5857         if (sav->sav_count == 0) {
5858                 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5859         } else {
5860                 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5861                 for (i = 0; i < sav->sav_count; i++)
5862                         list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5863                             B_FALSE, VDEV_CONFIG_L2CACHE);
5864                 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5865                     sav->sav_count) == 0);
5866                 for (i = 0; i < sav->sav_count; i++)
5867                         nvlist_free(list[i]);
5868                 kmem_free(list, sav->sav_count * sizeof (void *));
5869         }
5870 
5871         spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5872         nvlist_free(nvroot);
5873 
5874         sav->sav_sync = B_FALSE;
5875 }
5876 
5877 static void
5878 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5879 {
5880         nvlist_t *config;
5881 
5882         if (list_is_empty(&spa->spa_config_dirty_list))
5883                 return;
5884 
5885         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5886 
5887         config = spa_config_generate(spa, spa->spa_root_vdev,
5888             dmu_tx_get_txg(tx), B_FALSE);
5889 
5890         /*
5891          * If we're upgrading the spa version then make sure that
5892          * the config object gets updated with the correct version.
5893          */
5894         if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5895                 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5896                     spa->spa_uberblock.ub_version);
5897 
5898         spa_config_exit(spa, SCL_STATE, FTAG);
5899 
5900         if (spa->spa_config_syncing)
5901                 nvlist_free(spa->spa_config_syncing);
5902         spa->spa_config_syncing = config;
5903 
5904         spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5905 }
5906 
5907 static void
5908 spa_sync_version(void *arg, dmu_tx_t *tx)
5909 {
5910         uint64_t *versionp = arg;
5911         uint64_t version = *versionp;
5912         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5913 
5914         /*
5915          * Setting the version is special cased when first creating the pool.
5916          */
5917         ASSERT(tx->tx_txg != TXG_INITIAL);
5918 
5919         ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5920         ASSERT(version >= spa_version(spa));
5921 
5922         spa->spa_uberblock.ub_version = version;
5923         vdev_config_dirty(spa->spa_root_vdev);
5924         spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5925 }
5926 
5927 /*
5928  * Set zpool properties.
5929  */
5930 static void
5931 spa_sync_props(void *arg, dmu_tx_t *tx)
5932 {
5933         nvlist_t *nvp = arg;
5934         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5935         objset_t *mos = spa->spa_meta_objset;
5936         nvpair_t *elem = NULL;
5937 
5938         mutex_enter(&spa->spa_props_lock);
5939 
5940         while ((elem = nvlist_next_nvpair(nvp, elem))) {
5941                 uint64_t intval;
5942                 char *strval, *fname;
5943                 zpool_prop_t prop;
5944                 const char *propname;
5945                 zprop_type_t proptype;
5946                 zfeature_info_t *feature;
5947 
5948                 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5949                 case ZPROP_INVAL:
5950                         /*
5951                          * We checked this earlier in spa_prop_validate().
5952                          */
5953                         ASSERT(zpool_prop_feature(nvpair_name(elem)));
5954 
5955                         fname = strchr(nvpair_name(elem), '@') + 1;
5956                         VERIFY0(zfeature_lookup_name(fname, &feature));
5957 
5958                         spa_feature_enable(spa, feature, tx);
5959                         spa_history_log_internal(spa, "set", tx,
5960                             "%s=enabled", nvpair_name(elem));
5961                         break;
5962 
5963                 case ZPOOL_PROP_VERSION:
5964                         intval = fnvpair_value_uint64(elem);
5965                         /*
5966                          * The version is synced seperatly before other
5967                          * properties and should be correct by now.
5968                          */
5969                         ASSERT3U(spa_version(spa), >=, intval);
5970                         break;
5971 
5972                 case ZPOOL_PROP_ALTROOT:
5973                         /*
5974                          * 'altroot' is a non-persistent property. It should
5975                          * have been set temporarily at creation or import time.
5976                          */
5977                         ASSERT(spa->spa_root != NULL);
5978                         break;
5979 
5980                 case ZPOOL_PROP_READONLY:
5981                 case ZPOOL_PROP_CACHEFILE:
5982                         /*
5983                          * 'readonly' and 'cachefile' are also non-persisitent
5984                          * properties.
5985                          */
5986                         break;
5987                 case ZPOOL_PROP_COMMENT:
5988                         strval = fnvpair_value_string(elem);
5989                         if (spa->spa_comment != NULL)
5990                                 spa_strfree(spa->spa_comment);
5991                         spa->spa_comment = spa_strdup(strval);
5992                         /*
5993                          * We need to dirty the configuration on all the vdevs
5994                          * so that their labels get updated.  It's unnecessary
5995                          * to do this for pool creation since the vdev's
5996                          * configuratoin has already been dirtied.
5997                          */
5998                         if (tx->tx_txg != TXG_INITIAL)
5999                                 vdev_config_dirty(spa->spa_root_vdev);
6000                         spa_history_log_internal(spa, "set", tx,
6001                             "%s=%s", nvpair_name(elem), strval);
6002                         break;
6003                 default:
6004                         /*
6005                          * Set pool property values in the poolprops mos object.
6006                          */
6007                         if (spa->spa_pool_props_object == 0) {
6008                                 spa->spa_pool_props_object =
6009                                     zap_create_link(mos, DMU_OT_POOL_PROPS,
6010                                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6011                                     tx);
6012                         }
6013 
6014                         /* normalize the property name */
6015                         propname = zpool_prop_to_name(prop);
6016                         proptype = zpool_prop_get_type(prop);
6017 
6018                         if (nvpair_type(elem) == DATA_TYPE_STRING) {
6019                                 ASSERT(proptype == PROP_TYPE_STRING);
6020                                 strval = fnvpair_value_string(elem);
6021                                 VERIFY0(zap_update(mos,
6022                                     spa->spa_pool_props_object, propname,
6023                                     1, strlen(strval) + 1, strval, tx));
6024                                 spa_history_log_internal(spa, "set", tx,
6025                                     "%s=%s", nvpair_name(elem), strval);
6026                         } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6027                                 intval = fnvpair_value_uint64(elem);
6028 
6029                                 if (proptype == PROP_TYPE_INDEX) {
6030                                         const char *unused;
6031                                         VERIFY0(zpool_prop_index_to_string(
6032                                             prop, intval, &unused));
6033                                 }
6034                                 VERIFY0(zap_update(mos,
6035                                     spa->spa_pool_props_object, propname,
6036                                     8, 1, &intval, tx));
6037                                 spa_history_log_internal(spa, "set", tx,
6038                                     "%s=%lld", nvpair_name(elem), intval);
6039                         } else {
6040                                 ASSERT(0); /* not allowed */
6041                         }
6042 
6043                         switch (prop) {
6044                         case ZPOOL_PROP_DELEGATION:
6045                                 spa->spa_delegation = intval;
6046                                 break;
6047                         case ZPOOL_PROP_BOOTFS:
6048                                 spa->spa_bootfs = intval;
6049                                 break;
6050                         case ZPOOL_PROP_FAILUREMODE:
6051                                 spa->spa_failmode = intval;
6052                                 break;
6053                         case ZPOOL_PROP_AUTOEXPAND:
6054                                 spa->spa_autoexpand = intval;
6055                                 if (tx->tx_txg != TXG_INITIAL)
6056                                         spa_async_request(spa,
6057                                             SPA_ASYNC_AUTOEXPAND);
6058                                 break;
6059                         case ZPOOL_PROP_DEDUPDITTO:
6060                                 spa->spa_dedup_ditto = intval;
6061                                 break;
6062                         default:
6063                                 break;
6064                         }
6065                 }
6066 
6067         }
6068 
6069         mutex_exit(&spa->spa_props_lock);
6070 }
6071 
6072 /*
6073  * Perform one-time upgrade on-disk changes.  spa_version() does not
6074  * reflect the new version this txg, so there must be no changes this
6075  * txg to anything that the upgrade code depends on after it executes.
6076  * Therefore this must be called after dsl_pool_sync() does the sync
6077  * tasks.
6078  */
6079 static void
6080 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6081 {
6082         dsl_pool_t *dp = spa->spa_dsl_pool;
6083 
6084         ASSERT(spa->spa_sync_pass == 1);
6085 
6086         rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6087 
6088         if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6089             spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6090                 dsl_pool_create_origin(dp, tx);
6091 
6092                 /* Keeping the origin open increases spa_minref */
6093                 spa->spa_minref += 3;
6094         }
6095 
6096         if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6097             spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6098                 dsl_pool_upgrade_clones(dp, tx);
6099         }
6100 
6101         if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6102             spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6103                 dsl_pool_upgrade_dir_clones(dp, tx);
6104 
6105                 /* Keeping the freedir open increases spa_minref */
6106                 spa->spa_minref += 3;
6107         }
6108 
6109         if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6110             spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6111                 spa_feature_create_zap_objects(spa, tx);
6112         }
6113         rrw_exit(&dp->dp_config_rwlock, FTAG);
6114 }
6115 
6116 /*
6117  * Sync the specified transaction group.  New blocks may be dirtied as
6118  * part of the process, so we iterate until it converges.
6119  */
6120 void
6121 spa_sync(spa_t *spa, uint64_t txg)
6122 {
6123         dsl_pool_t *dp = spa->spa_dsl_pool;
6124         objset_t *mos = spa->spa_meta_objset;
6125         bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6126         vdev_t *rvd = spa->spa_root_vdev;
6127         vdev_t *vd;
6128         dmu_tx_t *tx;
6129         int error;
6130 
6131         VERIFY(spa_writeable(spa));
6132 
6133         /*
6134          * Lock out configuration changes.
6135          */
6136         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6137 
6138         spa->spa_syncing_txg = txg;
6139         spa->spa_sync_pass = 0;
6140 
6141         /*
6142          * If there are any pending vdev state changes, convert them
6143          * into config changes that go out with this transaction group.
6144          */
6145         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6146         while (list_head(&spa->spa_state_dirty_list) != NULL) {
6147                 /*
6148                  * We need the write lock here because, for aux vdevs,
6149                  * calling vdev_config_dirty() modifies sav_config.
6150                  * This is ugly and will become unnecessary when we
6151                  * eliminate the aux vdev wart by integrating all vdevs
6152                  * into the root vdev tree.
6153                  */
6154                 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6155                 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6156                 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6157                         vdev_state_clean(vd);
6158                         vdev_config_dirty(vd);
6159                 }
6160                 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6161                 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6162         }
6163         spa_config_exit(spa, SCL_STATE, FTAG);
6164 
6165         tx = dmu_tx_create_assigned(dp, txg);
6166 
6167         spa->spa_sync_starttime = gethrtime();
6168         VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6169             spa->spa_sync_starttime + spa->spa_deadman_synctime));
6170 
6171         /*
6172          * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6173          * set spa_deflate if we have no raid-z vdevs.
6174          */
6175         if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6176             spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6177                 int i;
6178 
6179                 for (i = 0; i < rvd->vdev_children; i++) {
6180                         vd = rvd->vdev_child[i];
6181                         if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6182                                 break;
6183                 }
6184                 if (i == rvd->vdev_children) {
6185                         spa->spa_deflate = TRUE;
6186                         VERIFY(0 == zap_add(spa->spa_meta_objset,
6187                             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6188                             sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6189                 }
6190         }
6191 
6192         /*
6193          * If anything has changed in this txg, or if someone is waiting
6194          * for this txg to sync (eg, spa_vdev_remove()), push the
6195          * deferred frees from the previous txg.  If not, leave them
6196          * alone so that we don't generate work on an otherwise idle
6197          * system.
6198          */
6199         if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6200             !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6201             !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6202             ((dsl_scan_active(dp->dp_scan) ||
6203             txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6204                 spa_sync_deferred_frees(spa, tx);
6205         }
6206 
6207         /*
6208          * Iterate to convergence.
6209          */
6210         do {
6211                 int pass = ++spa->spa_sync_pass;
6212 
6213                 spa_sync_config_object(spa, tx);
6214                 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6215                     ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6216                 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6217                     ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6218                 spa_errlog_sync(spa, txg);
6219                 dsl_pool_sync(dp, txg);
6220 
6221                 if (pass < zfs_sync_pass_deferred_free) {
6222                         spa_sync_frees(spa, free_bpl, tx);
6223                 } else {
6224                         bplist_iterate(free_bpl, bpobj_enqueue_cb,
6225                             &spa->spa_deferred_bpobj, tx);
6226                 }
6227 
6228                 ddt_sync(spa, txg);
6229                 dsl_scan_sync(dp, tx);
6230 
6231                 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6232                         vdev_sync(vd, txg);
6233 
6234                 if (pass == 1)
6235                         spa_sync_upgrades(spa, tx);
6236 
6237         } while (dmu_objset_is_dirty(mos, txg));
6238 
6239         /*
6240          * Rewrite the vdev configuration (which includes the uberblock)
6241          * to commit the transaction group.
6242          *
6243          * If there are no dirty vdevs, we sync the uberblock to a few
6244          * random top-level vdevs that are known to be visible in the
6245          * config cache (see spa_vdev_add() for a complete description).
6246          * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6247          */
6248         for (;;) {
6249                 /*
6250                  * We hold SCL_STATE to prevent vdev open/close/etc.
6251                  * while we're attempting to write the vdev labels.
6252                  */
6253                 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6254 
6255                 if (list_is_empty(&spa->spa_config_dirty_list)) {
6256                         vdev_t *svd[SPA_DVAS_PER_BP];
6257                         int svdcount = 0;
6258                         int children = rvd->vdev_children;
6259                         int c0 = spa_get_random(children);
6260 
6261                         for (int c = 0; c < children; c++) {
6262                                 vd = rvd->vdev_child[(c0 + c) % children];
6263                                 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6264                                         continue;
6265                                 svd[svdcount++] = vd;
6266                                 if (svdcount == SPA_DVAS_PER_BP)
6267                                         break;
6268                         }
6269                         error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6270                         if (error != 0)
6271                                 error = vdev_config_sync(svd, svdcount, txg,
6272                                     B_TRUE);
6273                 } else {
6274                         error = vdev_config_sync(rvd->vdev_child,
6275                             rvd->vdev_children, txg, B_FALSE);
6276                         if (error != 0)
6277                                 error = vdev_config_sync(rvd->vdev_child,
6278                                     rvd->vdev_children, txg, B_TRUE);
6279                 }
6280 
6281                 if (error == 0)
6282                         spa->spa_last_synced_guid = rvd->vdev_guid;
6283 
6284                 spa_config_exit(spa, SCL_STATE, FTAG);
6285 
6286                 if (error == 0)
6287                         break;
6288                 zio_suspend(spa, NULL);
6289                 zio_resume_wait(spa);
6290         }
6291         dmu_tx_commit(tx);
6292 
6293         VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6294 
6295         /*
6296          * Clear the dirty config list.
6297          */
6298         while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6299                 vdev_config_clean(vd);
6300 
6301         /*
6302          * Now that the new config has synced transactionally,
6303          * let it become visible to the config cache.
6304          */
6305         if (spa->spa_config_syncing != NULL) {
6306                 spa_config_set(spa, spa->spa_config_syncing);
6307                 spa->spa_config_txg = txg;
6308                 spa->spa_config_syncing = NULL;
6309         }
6310 
6311         spa->spa_ubsync = spa->spa_uberblock;
6312 
6313         dsl_pool_sync_done(dp, txg);
6314 
6315         /*
6316          * Update usable space statistics.
6317          */
6318         while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6319                 vdev_sync_done(vd, txg);
6320 
6321         spa_update_dspace(spa);
6322 
6323         /*
6324          * It had better be the case that we didn't dirty anything
6325          * since vdev_config_sync().
6326          */
6327         ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6328         ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6329         ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6330 
6331         spa->spa_sync_pass = 0;
6332 
6333         spa_config_exit(spa, SCL_CONFIG, FTAG);
6334 
6335         spa_handle_ignored_writes(spa);
6336 
6337         /*
6338          * If any async tasks have been requested, kick them off.
6339          */
6340         spa_async_dispatch(spa);
6341 }
6342 
6343 /*
6344  * Sync all pools.  We don't want to hold the namespace lock across these
6345  * operations, so we take a reference on the spa_t and drop the lock during the
6346  * sync.
6347  */
6348 void
6349 spa_sync_allpools(void)
6350 {
6351         spa_t *spa = NULL;
6352         mutex_enter(&spa_namespace_lock);
6353         while ((spa = spa_next(spa)) != NULL) {
6354                 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6355                     !spa_writeable(spa) || spa_suspended(spa))
6356                         continue;
6357                 spa_open_ref(spa, FTAG);
6358                 mutex_exit(&spa_namespace_lock);
6359                 txg_wait_synced(spa_get_dsl(spa), 0);
6360                 mutex_enter(&spa_namespace_lock);
6361                 spa_close(spa, FTAG);
6362         }
6363         mutex_exit(&spa_namespace_lock);
6364 }
6365 
6366 /*
6367  * ==========================================================================
6368  * Miscellaneous routines
6369  * ==========================================================================
6370  */
6371 
6372 /*
6373  * Remove all pools in the system.
6374  */
6375 void
6376 spa_evict_all(void)
6377 {
6378         spa_t *spa;
6379 
6380         /*
6381          * Remove all cached state.  All pools should be closed now,
6382          * so every spa in the AVL tree should be unreferenced.
6383          */
6384         mutex_enter(&spa_namespace_lock);
6385         while ((spa = spa_next(NULL)) != NULL) {
6386                 /*
6387                  * Stop async tasks.  The async thread may need to detach
6388                  * a device that's been replaced, which requires grabbing
6389                  * spa_namespace_lock, so we must drop it here.
6390                  */
6391                 spa_open_ref(spa, FTAG);
6392                 mutex_exit(&spa_namespace_lock);
6393                 spa_async_suspend(spa);
6394                 mutex_enter(&spa_namespace_lock);
6395                 spa_close(spa, FTAG);
6396 
6397                 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6398                         spa_unload(spa);
6399                         spa_deactivate(spa);
6400                 }
6401                 spa_remove(spa);
6402         }
6403         mutex_exit(&spa_namespace_lock);
6404 }
6405 
6406 vdev_t *
6407 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6408 {
6409         vdev_t *vd;
6410         int i;
6411 
6412         if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6413                 return (vd);
6414 
6415         if (aux) {
6416                 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6417                         vd = spa->spa_l2cache.sav_vdevs[i];
6418                         if (vd->vdev_guid == guid)
6419                                 return (vd);
6420                 }
6421 
6422                 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6423                         vd = spa->spa_spares.sav_vdevs[i];
6424                         if (vd->vdev_guid == guid)
6425                                 return (vd);
6426                 }
6427         }
6428 
6429         return (NULL);
6430 }
6431 
6432 void
6433 spa_upgrade(spa_t *spa, uint64_t version)
6434 {
6435         ASSERT(spa_writeable(spa));
6436 
6437         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6438 
6439         /*
6440          * This should only be called for a non-faulted pool, and since a
6441          * future version would result in an unopenable pool, this shouldn't be
6442          * possible.
6443          */
6444         ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6445         ASSERT(version >= spa->spa_uberblock.ub_version);
6446 
6447         spa->spa_uberblock.ub_version = version;
6448         vdev_config_dirty(spa->spa_root_vdev);
6449 
6450         spa_config_exit(spa, SCL_ALL, FTAG);
6451 
6452         txg_wait_synced(spa_get_dsl(spa), 0);
6453 }
6454 
6455 boolean_t
6456 spa_has_spare(spa_t *spa, uint64_t guid)
6457 {
6458         int i;
6459         uint64_t spareguid;
6460         spa_aux_vdev_t *sav = &spa->spa_spares;
6461 
6462         for (i = 0; i < sav->sav_count; i++)
6463                 if (sav->sav_vdevs[i]->vdev_guid == guid)
6464                         return (B_TRUE);
6465 
6466         for (i = 0; i < sav->sav_npending; i++) {
6467                 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6468                     &spareguid) == 0 && spareguid == guid)
6469                         return (B_TRUE);
6470         }
6471 
6472         return (B_FALSE);
6473 }
6474 
6475 /*
6476  * Check if a pool has an active shared spare device.
6477  * Note: reference count of an active spare is 2, as a spare and as a replace
6478  */
6479 static boolean_t
6480 spa_has_active_shared_spare(spa_t *spa)
6481 {
6482         int i, refcnt;
6483         uint64_t pool;
6484         spa_aux_vdev_t *sav = &spa->spa_spares;
6485 
6486         for (i = 0; i < sav->sav_count; i++) {
6487                 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6488                     &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6489                     refcnt > 2)
6490                         return (B_TRUE);
6491         }
6492 
6493         return (B_FALSE);
6494 }
6495 
6496 /*
6497  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6498  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6499  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6500  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6501  * or zdb as real changes.
6502  */
6503 void
6504 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6505 {
6506 #ifdef _KERNEL
6507         sysevent_t              *ev;
6508         sysevent_attr_list_t    *attr = NULL;
6509         sysevent_value_t        value;
6510         sysevent_id_t           eid;
6511 
6512         ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6513             SE_SLEEP);
6514 
6515         value.value_type = SE_DATA_TYPE_STRING;
6516         value.value.sv_string = spa_name(spa);
6517         if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6518                 goto done;
6519 
6520         value.value_type = SE_DATA_TYPE_UINT64;
6521         value.value.sv_uint64 = spa_guid(spa);
6522         if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6523                 goto done;
6524 
6525         if (vd) {
6526                 value.value_type = SE_DATA_TYPE_UINT64;
6527                 value.value.sv_uint64 = vd->vdev_guid;
6528                 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6529                     SE_SLEEP) != 0)
6530                         goto done;
6531 
6532                 if (vd->vdev_path) {
6533                         value.value_type = SE_DATA_TYPE_STRING;
6534                         value.value.sv_string = vd->vdev_path;
6535                         if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6536                             &value, SE_SLEEP) != 0)
6537                                 goto done;
6538                 }
6539         }
6540 
6541         if (sysevent_attach_attributes(ev, attr) != 0)
6542                 goto done;
6543         attr = NULL;
6544 
6545         (void) log_sysevent(ev, SE_SLEEP, &eid);
6546 
6547 done:
6548         if (attr)
6549                 sysevent_free_attr(attr);
6550         sysevent_free(ev);
6551 #endif
6552 }