1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 26 * Copyright 2013 Saso Kiselkov. All rights reserved. 27 */ 28 29 /* 30 * SPA: Storage Pool Allocator 31 * 32 * This file contains all the routines used when modifying on-disk SPA state. 33 * This includes opening, importing, destroying, exporting a pool, and syncing a 34 * pool. 35 */ 36 37 #include <sys/zfs_context.h> 38 #include <sys/fm/fs/zfs.h> 39 #include <sys/spa_impl.h> 40 #include <sys/zio.h> 41 #include <sys/zio_checksum.h> 42 #include <sys/dmu.h> 43 #include <sys/dmu_tx.h> 44 #include <sys/zap.h> 45 #include <sys/zil.h> 46 #include <sys/ddt.h> 47 #include <sys/vdev_impl.h> 48 #include <sys/metaslab.h> 49 #include <sys/metaslab_impl.h> 50 #include <sys/uberblock_impl.h> 51 #include <sys/txg.h> 52 #include <sys/avl.h> 53 #include <sys/dmu_traverse.h> 54 #include <sys/dmu_objset.h> 55 #include <sys/unique.h> 56 #include <sys/dsl_pool.h> 57 #include <sys/dsl_dataset.h> 58 #include <sys/dsl_dir.h> 59 #include <sys/dsl_prop.h> 60 #include <sys/dsl_synctask.h> 61 #include <sys/fs/zfs.h> 62 #include <sys/arc.h> 63 #include <sys/callb.h> 64 #include <sys/systeminfo.h> 65 #include <sys/spa_boot.h> 66 #include <sys/zfs_ioctl.h> 67 #include <sys/dsl_scan.h> 68 #include <sys/zfeature.h> 69 #include <sys/dsl_destroy.h> 70 71 #ifdef _KERNEL 72 #include <sys/bootprops.h> 73 #include <sys/callb.h> 74 #include <sys/cpupart.h> 75 #include <sys/pool.h> 76 #include <sys/sysdc.h> 77 #include <sys/zone.h> 78 #endif /* _KERNEL */ 79 80 #include "zfs_prop.h" 81 #include "zfs_comutil.h" 82 83 /* 84 * The interval, in seconds, at which failed configuration cache file writes 85 * should be retried. 86 */ 87 static int zfs_ccw_retry_interval = 300; 88 89 typedef enum zti_modes { 90 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 91 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 92 ZTI_MODE_NULL, /* don't create a taskq */ 93 ZTI_NMODES 94 } zti_modes_t; 95 96 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 97 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 98 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 99 100 #define ZTI_N(n) ZTI_P(n, 1) 101 #define ZTI_ONE ZTI_N(1) 102 103 typedef struct zio_taskq_info { 104 zti_modes_t zti_mode; 105 uint_t zti_value; 106 uint_t zti_count; 107 } zio_taskq_info_t; 108 109 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 110 "issue", "issue_high", "intr", "intr_high" 111 }; 112 113 /* 114 * This table defines the taskq settings for each ZFS I/O type. When 115 * initializing a pool, we use this table to create an appropriately sized 116 * taskq. Some operations are low volume and therefore have a small, static 117 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 118 * macros. Other operations process a large amount of data; the ZTI_BATCH 119 * macro causes us to create a taskq oriented for throughput. Some operations 120 * are so high frequency and short-lived that the taskq itself can become a a 121 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 122 * additional degree of parallelism specified by the number of threads per- 123 * taskq and the number of taskqs; when dispatching an event in this case, the 124 * particular taskq is chosen at random. 125 * 126 * The different taskq priorities are to handle the different contexts (issue 127 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 128 * need to be handled with minimum delay. 129 */ 130 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 131 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 132 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 133 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */ 134 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 135 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 137 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 138 }; 139 140 static void spa_sync_version(void *arg, dmu_tx_t *tx); 141 static void spa_sync_props(void *arg, dmu_tx_t *tx); 142 static boolean_t spa_has_active_shared_spare(spa_t *spa); 143 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 144 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 145 char **ereport); 146 static void spa_vdev_resilver_done(spa_t *spa); 147 148 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 149 id_t zio_taskq_psrset_bind = PS_NONE; 150 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 151 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 152 153 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 154 extern int zfs_sync_pass_deferred_free; 155 156 /* 157 * This (illegal) pool name is used when temporarily importing a spa_t in order 158 * to get the vdev stats associated with the imported devices. 159 */ 160 #define TRYIMPORT_NAME "$import" 161 162 /* 163 * ========================================================================== 164 * SPA properties routines 165 * ========================================================================== 166 */ 167 168 /* 169 * Add a (source=src, propname=propval) list to an nvlist. 170 */ 171 static void 172 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 173 uint64_t intval, zprop_source_t src) 174 { 175 const char *propname = zpool_prop_to_name(prop); 176 nvlist_t *propval; 177 178 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 179 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 180 181 if (strval != NULL) 182 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 183 else 184 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 185 186 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 187 nvlist_free(propval); 188 } 189 190 /* 191 * Get property values from the spa configuration. 192 */ 193 static void 194 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 195 { 196 vdev_t *rvd = spa->spa_root_vdev; 197 dsl_pool_t *pool = spa->spa_dsl_pool; 198 uint64_t size; 199 uint64_t alloc; 200 uint64_t space; 201 uint64_t cap, version; 202 zprop_source_t src = ZPROP_SRC_NONE; 203 spa_config_dirent_t *dp; 204 205 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 206 207 if (rvd != NULL) { 208 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 209 size = metaslab_class_get_space(spa_normal_class(spa)); 210 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 211 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 212 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 213 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 214 size - alloc, src); 215 216 space = 0; 217 for (int c = 0; c < rvd->vdev_children; c++) { 218 vdev_t *tvd = rvd->vdev_child[c]; 219 space += tvd->vdev_max_asize - tvd->vdev_asize; 220 } 221 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space, 222 src); 223 224 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 225 (spa_mode(spa) == FREAD), src); 226 227 cap = (size == 0) ? 0 : (alloc * 100 / size); 228 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 229 230 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 231 ddt_get_pool_dedup_ratio(spa), src); 232 233 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 234 rvd->vdev_state, src); 235 236 version = spa_version(spa); 237 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 238 src = ZPROP_SRC_DEFAULT; 239 else 240 src = ZPROP_SRC_LOCAL; 241 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 242 } 243 244 if (pool != NULL) { 245 dsl_dir_t *freedir = pool->dp_free_dir; 246 247 /* 248 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 249 * when opening pools before this version freedir will be NULL. 250 */ 251 if (freedir != NULL) { 252 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 253 freedir->dd_phys->dd_used_bytes, src); 254 } else { 255 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 256 NULL, 0, src); 257 } 258 } 259 260 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 261 262 if (spa->spa_comment != NULL) { 263 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 264 0, ZPROP_SRC_LOCAL); 265 } 266 267 if (spa->spa_root != NULL) 268 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 269 0, ZPROP_SRC_LOCAL); 270 271 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 272 if (dp->scd_path == NULL) { 273 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 274 "none", 0, ZPROP_SRC_LOCAL); 275 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 276 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 277 dp->scd_path, 0, ZPROP_SRC_LOCAL); 278 } 279 } 280 } 281 282 /* 283 * Get zpool property values. 284 */ 285 int 286 spa_prop_get(spa_t *spa, nvlist_t **nvp) 287 { 288 objset_t *mos = spa->spa_meta_objset; 289 zap_cursor_t zc; 290 zap_attribute_t za; 291 int err; 292 293 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 294 295 mutex_enter(&spa->spa_props_lock); 296 297 /* 298 * Get properties from the spa config. 299 */ 300 spa_prop_get_config(spa, nvp); 301 302 /* If no pool property object, no more prop to get. */ 303 if (mos == NULL || spa->spa_pool_props_object == 0) { 304 mutex_exit(&spa->spa_props_lock); 305 return (0); 306 } 307 308 /* 309 * Get properties from the MOS pool property object. 310 */ 311 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 312 (err = zap_cursor_retrieve(&zc, &za)) == 0; 313 zap_cursor_advance(&zc)) { 314 uint64_t intval = 0; 315 char *strval = NULL; 316 zprop_source_t src = ZPROP_SRC_DEFAULT; 317 zpool_prop_t prop; 318 319 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 320 continue; 321 322 switch (za.za_integer_length) { 323 case 8: 324 /* integer property */ 325 if (za.za_first_integer != 326 zpool_prop_default_numeric(prop)) 327 src = ZPROP_SRC_LOCAL; 328 329 if (prop == ZPOOL_PROP_BOOTFS) { 330 dsl_pool_t *dp; 331 dsl_dataset_t *ds = NULL; 332 333 dp = spa_get_dsl(spa); 334 dsl_pool_config_enter(dp, FTAG); 335 if (err = dsl_dataset_hold_obj(dp, 336 za.za_first_integer, FTAG, &ds)) { 337 dsl_pool_config_exit(dp, FTAG); 338 break; 339 } 340 341 strval = kmem_alloc( 342 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 343 KM_SLEEP); 344 dsl_dataset_name(ds, strval); 345 dsl_dataset_rele(ds, FTAG); 346 dsl_pool_config_exit(dp, FTAG); 347 } else { 348 strval = NULL; 349 intval = za.za_first_integer; 350 } 351 352 spa_prop_add_list(*nvp, prop, strval, intval, src); 353 354 if (strval != NULL) 355 kmem_free(strval, 356 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 357 358 break; 359 360 case 1: 361 /* string property */ 362 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 363 err = zap_lookup(mos, spa->spa_pool_props_object, 364 za.za_name, 1, za.za_num_integers, strval); 365 if (err) { 366 kmem_free(strval, za.za_num_integers); 367 break; 368 } 369 spa_prop_add_list(*nvp, prop, strval, 0, src); 370 kmem_free(strval, za.za_num_integers); 371 break; 372 373 default: 374 break; 375 } 376 } 377 zap_cursor_fini(&zc); 378 mutex_exit(&spa->spa_props_lock); 379 out: 380 if (err && err != ENOENT) { 381 nvlist_free(*nvp); 382 *nvp = NULL; 383 return (err); 384 } 385 386 return (0); 387 } 388 389 /* 390 * Validate the given pool properties nvlist and modify the list 391 * for the property values to be set. 392 */ 393 static int 394 spa_prop_validate(spa_t *spa, nvlist_t *props) 395 { 396 nvpair_t *elem; 397 int error = 0, reset_bootfs = 0; 398 uint64_t objnum = 0; 399 boolean_t has_feature = B_FALSE; 400 401 elem = NULL; 402 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 403 uint64_t intval; 404 char *strval, *slash, *check, *fname; 405 const char *propname = nvpair_name(elem); 406 zpool_prop_t prop = zpool_name_to_prop(propname); 407 408 switch (prop) { 409 case ZPROP_INVAL: 410 if (!zpool_prop_feature(propname)) { 411 error = SET_ERROR(EINVAL); 412 break; 413 } 414 415 /* 416 * Sanitize the input. 417 */ 418 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 419 error = SET_ERROR(EINVAL); 420 break; 421 } 422 423 if (nvpair_value_uint64(elem, &intval) != 0) { 424 error = SET_ERROR(EINVAL); 425 break; 426 } 427 428 if (intval != 0) { 429 error = SET_ERROR(EINVAL); 430 break; 431 } 432 433 fname = strchr(propname, '@') + 1; 434 if (zfeature_lookup_name(fname, NULL) != 0) { 435 error = SET_ERROR(EINVAL); 436 break; 437 } 438 439 has_feature = B_TRUE; 440 break; 441 442 case ZPOOL_PROP_VERSION: 443 error = nvpair_value_uint64(elem, &intval); 444 if (!error && 445 (intval < spa_version(spa) || 446 intval > SPA_VERSION_BEFORE_FEATURES || 447 has_feature)) 448 error = SET_ERROR(EINVAL); 449 break; 450 451 case ZPOOL_PROP_DELEGATION: 452 case ZPOOL_PROP_AUTOREPLACE: 453 case ZPOOL_PROP_LISTSNAPS: 454 case ZPOOL_PROP_AUTOEXPAND: 455 error = nvpair_value_uint64(elem, &intval); 456 if (!error && intval > 1) 457 error = SET_ERROR(EINVAL); 458 break; 459 460 case ZPOOL_PROP_BOOTFS: 461 /* 462 * If the pool version is less than SPA_VERSION_BOOTFS, 463 * or the pool is still being created (version == 0), 464 * the bootfs property cannot be set. 465 */ 466 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 467 error = SET_ERROR(ENOTSUP); 468 break; 469 } 470 471 /* 472 * Make sure the vdev config is bootable 473 */ 474 if (!vdev_is_bootable(spa->spa_root_vdev)) { 475 error = SET_ERROR(ENOTSUP); 476 break; 477 } 478 479 reset_bootfs = 1; 480 481 error = nvpair_value_string(elem, &strval); 482 483 if (!error) { 484 objset_t *os; 485 uint64_t compress; 486 487 if (strval == NULL || strval[0] == '\0') { 488 objnum = zpool_prop_default_numeric( 489 ZPOOL_PROP_BOOTFS); 490 break; 491 } 492 493 if (error = dmu_objset_hold(strval, FTAG, &os)) 494 break; 495 496 /* Must be ZPL and not gzip compressed. */ 497 498 if (dmu_objset_type(os) != DMU_OST_ZFS) { 499 error = SET_ERROR(ENOTSUP); 500 } else if ((error = 501 dsl_prop_get_int_ds(dmu_objset_ds(os), 502 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 503 &compress)) == 0 && 504 !BOOTFS_COMPRESS_VALID(compress)) { 505 error = SET_ERROR(ENOTSUP); 506 } else { 507 objnum = dmu_objset_id(os); 508 } 509 dmu_objset_rele(os, FTAG); 510 } 511 break; 512 513 case ZPOOL_PROP_FAILUREMODE: 514 error = nvpair_value_uint64(elem, &intval); 515 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 516 intval > ZIO_FAILURE_MODE_PANIC)) 517 error = SET_ERROR(EINVAL); 518 519 /* 520 * This is a special case which only occurs when 521 * the pool has completely failed. This allows 522 * the user to change the in-core failmode property 523 * without syncing it out to disk (I/Os might 524 * currently be blocked). We do this by returning 525 * EIO to the caller (spa_prop_set) to trick it 526 * into thinking we encountered a property validation 527 * error. 528 */ 529 if (!error && spa_suspended(spa)) { 530 spa->spa_failmode = intval; 531 error = SET_ERROR(EIO); 532 } 533 break; 534 535 case ZPOOL_PROP_CACHEFILE: 536 if ((error = nvpair_value_string(elem, &strval)) != 0) 537 break; 538 539 if (strval[0] == '\0') 540 break; 541 542 if (strcmp(strval, "none") == 0) 543 break; 544 545 if (strval[0] != '/') { 546 error = SET_ERROR(EINVAL); 547 break; 548 } 549 550 slash = strrchr(strval, '/'); 551 ASSERT(slash != NULL); 552 553 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 554 strcmp(slash, "/..") == 0) 555 error = SET_ERROR(EINVAL); 556 break; 557 558 case ZPOOL_PROP_COMMENT: 559 if ((error = nvpair_value_string(elem, &strval)) != 0) 560 break; 561 for (check = strval; *check != '\0'; check++) { 562 /* 563 * The kernel doesn't have an easy isprint() 564 * check. For this kernel check, we merely 565 * check ASCII apart from DEL. Fix this if 566 * there is an easy-to-use kernel isprint(). 567 */ 568 if (*check >= 0x7f) { 569 error = SET_ERROR(EINVAL); 570 break; 571 } 572 check++; 573 } 574 if (strlen(strval) > ZPROP_MAX_COMMENT) 575 error = E2BIG; 576 break; 577 578 case ZPOOL_PROP_DEDUPDITTO: 579 if (spa_version(spa) < SPA_VERSION_DEDUP) 580 error = SET_ERROR(ENOTSUP); 581 else 582 error = nvpair_value_uint64(elem, &intval); 583 if (error == 0 && 584 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 585 error = SET_ERROR(EINVAL); 586 break; 587 } 588 589 if (error) 590 break; 591 } 592 593 if (!error && reset_bootfs) { 594 error = nvlist_remove(props, 595 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 596 597 if (!error) { 598 error = nvlist_add_uint64(props, 599 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 600 } 601 } 602 603 return (error); 604 } 605 606 void 607 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 608 { 609 char *cachefile; 610 spa_config_dirent_t *dp; 611 612 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 613 &cachefile) != 0) 614 return; 615 616 dp = kmem_alloc(sizeof (spa_config_dirent_t), 617 KM_SLEEP); 618 619 if (cachefile[0] == '\0') 620 dp->scd_path = spa_strdup(spa_config_path); 621 else if (strcmp(cachefile, "none") == 0) 622 dp->scd_path = NULL; 623 else 624 dp->scd_path = spa_strdup(cachefile); 625 626 list_insert_head(&spa->spa_config_list, dp); 627 if (need_sync) 628 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 629 } 630 631 int 632 spa_prop_set(spa_t *spa, nvlist_t *nvp) 633 { 634 int error; 635 nvpair_t *elem = NULL; 636 boolean_t need_sync = B_FALSE; 637 638 if ((error = spa_prop_validate(spa, nvp)) != 0) 639 return (error); 640 641 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 642 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 643 644 if (prop == ZPOOL_PROP_CACHEFILE || 645 prop == ZPOOL_PROP_ALTROOT || 646 prop == ZPOOL_PROP_READONLY) 647 continue; 648 649 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 650 uint64_t ver; 651 652 if (prop == ZPOOL_PROP_VERSION) { 653 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 654 } else { 655 ASSERT(zpool_prop_feature(nvpair_name(elem))); 656 ver = SPA_VERSION_FEATURES; 657 need_sync = B_TRUE; 658 } 659 660 /* Save time if the version is already set. */ 661 if (ver == spa_version(spa)) 662 continue; 663 664 /* 665 * In addition to the pool directory object, we might 666 * create the pool properties object, the features for 667 * read object, the features for write object, or the 668 * feature descriptions object. 669 */ 670 error = dsl_sync_task(spa->spa_name, NULL, 671 spa_sync_version, &ver, 6); 672 if (error) 673 return (error); 674 continue; 675 } 676 677 need_sync = B_TRUE; 678 break; 679 } 680 681 if (need_sync) { 682 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 683 nvp, 6)); 684 } 685 686 return (0); 687 } 688 689 /* 690 * If the bootfs property value is dsobj, clear it. 691 */ 692 void 693 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 694 { 695 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 696 VERIFY(zap_remove(spa->spa_meta_objset, 697 spa->spa_pool_props_object, 698 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 699 spa->spa_bootfs = 0; 700 } 701 } 702 703 /*ARGSUSED*/ 704 static int 705 spa_change_guid_check(void *arg, dmu_tx_t *tx) 706 { 707 uint64_t *newguid = arg; 708 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 709 vdev_t *rvd = spa->spa_root_vdev; 710 uint64_t vdev_state; 711 712 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 713 vdev_state = rvd->vdev_state; 714 spa_config_exit(spa, SCL_STATE, FTAG); 715 716 if (vdev_state != VDEV_STATE_HEALTHY) 717 return (SET_ERROR(ENXIO)); 718 719 ASSERT3U(spa_guid(spa), !=, *newguid); 720 721 return (0); 722 } 723 724 static void 725 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 726 { 727 uint64_t *newguid = arg; 728 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 729 uint64_t oldguid; 730 vdev_t *rvd = spa->spa_root_vdev; 731 732 oldguid = spa_guid(spa); 733 734 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 735 rvd->vdev_guid = *newguid; 736 rvd->vdev_guid_sum += (*newguid - oldguid); 737 vdev_config_dirty(rvd); 738 spa_config_exit(spa, SCL_STATE, FTAG); 739 740 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 741 oldguid, *newguid); 742 } 743 744 /* 745 * Change the GUID for the pool. This is done so that we can later 746 * re-import a pool built from a clone of our own vdevs. We will modify 747 * the root vdev's guid, our own pool guid, and then mark all of our 748 * vdevs dirty. Note that we must make sure that all our vdevs are 749 * online when we do this, or else any vdevs that weren't present 750 * would be orphaned from our pool. We are also going to issue a 751 * sysevent to update any watchers. 752 */ 753 int 754 spa_change_guid(spa_t *spa) 755 { 756 int error; 757 uint64_t guid; 758 759 mutex_enter(&spa->spa_vdev_top_lock); 760 mutex_enter(&spa_namespace_lock); 761 guid = spa_generate_guid(NULL); 762 763 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 764 spa_change_guid_sync, &guid, 5); 765 766 if (error == 0) { 767 spa_config_sync(spa, B_FALSE, B_TRUE); 768 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 769 } 770 771 mutex_exit(&spa_namespace_lock); 772 mutex_exit(&spa->spa_vdev_top_lock); 773 774 return (error); 775 } 776 777 /* 778 * ========================================================================== 779 * SPA state manipulation (open/create/destroy/import/export) 780 * ========================================================================== 781 */ 782 783 static int 784 spa_error_entry_compare(const void *a, const void *b) 785 { 786 spa_error_entry_t *sa = (spa_error_entry_t *)a; 787 spa_error_entry_t *sb = (spa_error_entry_t *)b; 788 int ret; 789 790 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 791 sizeof (zbookmark_t)); 792 793 if (ret < 0) 794 return (-1); 795 else if (ret > 0) 796 return (1); 797 else 798 return (0); 799 } 800 801 /* 802 * Utility function which retrieves copies of the current logs and 803 * re-initializes them in the process. 804 */ 805 void 806 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 807 { 808 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 809 810 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 811 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 812 813 avl_create(&spa->spa_errlist_scrub, 814 spa_error_entry_compare, sizeof (spa_error_entry_t), 815 offsetof(spa_error_entry_t, se_avl)); 816 avl_create(&spa->spa_errlist_last, 817 spa_error_entry_compare, sizeof (spa_error_entry_t), 818 offsetof(spa_error_entry_t, se_avl)); 819 } 820 821 static void 822 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 823 { 824 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 825 enum zti_modes mode = ztip->zti_mode; 826 uint_t value = ztip->zti_value; 827 uint_t count = ztip->zti_count; 828 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 829 char name[32]; 830 uint_t flags = 0; 831 boolean_t batch = B_FALSE; 832 833 if (mode == ZTI_MODE_NULL) { 834 tqs->stqs_count = 0; 835 tqs->stqs_taskq = NULL; 836 return; 837 } 838 839 ASSERT3U(count, >, 0); 840 841 tqs->stqs_count = count; 842 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 843 844 switch (mode) { 845 case ZTI_MODE_FIXED: 846 ASSERT3U(value, >=, 1); 847 value = MAX(value, 1); 848 break; 849 850 case ZTI_MODE_BATCH: 851 batch = B_TRUE; 852 flags |= TASKQ_THREADS_CPU_PCT; 853 value = zio_taskq_batch_pct; 854 break; 855 856 default: 857 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 858 "spa_activate()", 859 zio_type_name[t], zio_taskq_types[q], mode, value); 860 break; 861 } 862 863 for (uint_t i = 0; i < count; i++) { 864 taskq_t *tq; 865 866 if (count > 1) { 867 (void) snprintf(name, sizeof (name), "%s_%s_%u", 868 zio_type_name[t], zio_taskq_types[q], i); 869 } else { 870 (void) snprintf(name, sizeof (name), "%s_%s", 871 zio_type_name[t], zio_taskq_types[q]); 872 } 873 874 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 875 if (batch) 876 flags |= TASKQ_DC_BATCH; 877 878 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 879 spa->spa_proc, zio_taskq_basedc, flags); 880 } else { 881 pri_t pri = maxclsyspri; 882 /* 883 * The write issue taskq can be extremely CPU 884 * intensive. Run it at slightly lower priority 885 * than the other taskqs. 886 */ 887 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 888 pri--; 889 890 tq = taskq_create_proc(name, value, pri, 50, 891 INT_MAX, spa->spa_proc, flags); 892 } 893 894 tqs->stqs_taskq[i] = tq; 895 } 896 } 897 898 static void 899 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 900 { 901 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 902 903 if (tqs->stqs_taskq == NULL) { 904 ASSERT0(tqs->stqs_count); 905 return; 906 } 907 908 for (uint_t i = 0; i < tqs->stqs_count; i++) { 909 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 910 taskq_destroy(tqs->stqs_taskq[i]); 911 } 912 913 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 914 tqs->stqs_taskq = NULL; 915 } 916 917 /* 918 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 919 * Note that a type may have multiple discrete taskqs to avoid lock contention 920 * on the taskq itself. In that case we choose which taskq at random by using 921 * the low bits of gethrtime(). 922 */ 923 void 924 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 925 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 926 { 927 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 928 taskq_t *tq; 929 930 ASSERT3P(tqs->stqs_taskq, !=, NULL); 931 ASSERT3U(tqs->stqs_count, !=, 0); 932 933 if (tqs->stqs_count == 1) { 934 tq = tqs->stqs_taskq[0]; 935 } else { 936 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 937 } 938 939 taskq_dispatch_ent(tq, func, arg, flags, ent); 940 } 941 942 static void 943 spa_create_zio_taskqs(spa_t *spa) 944 { 945 for (int t = 0; t < ZIO_TYPES; t++) { 946 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 947 spa_taskqs_init(spa, t, q); 948 } 949 } 950 } 951 952 #ifdef _KERNEL 953 static void 954 spa_thread(void *arg) 955 { 956 callb_cpr_t cprinfo; 957 958 spa_t *spa = arg; 959 user_t *pu = PTOU(curproc); 960 961 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 962 spa->spa_name); 963 964 ASSERT(curproc != &p0); 965 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 966 "zpool-%s", spa->spa_name); 967 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 968 969 /* bind this thread to the requested psrset */ 970 if (zio_taskq_psrset_bind != PS_NONE) { 971 pool_lock(); 972 mutex_enter(&cpu_lock); 973 mutex_enter(&pidlock); 974 mutex_enter(&curproc->p_lock); 975 976 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 977 0, NULL, NULL) == 0) { 978 curthread->t_bind_pset = zio_taskq_psrset_bind; 979 } else { 980 cmn_err(CE_WARN, 981 "Couldn't bind process for zfs pool \"%s\" to " 982 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 983 } 984 985 mutex_exit(&curproc->p_lock); 986 mutex_exit(&pidlock); 987 mutex_exit(&cpu_lock); 988 pool_unlock(); 989 } 990 991 if (zio_taskq_sysdc) { 992 sysdc_thread_enter(curthread, 100, 0); 993 } 994 995 spa->spa_proc = curproc; 996 spa->spa_did = curthread->t_did; 997 998 spa_create_zio_taskqs(spa); 999 1000 mutex_enter(&spa->spa_proc_lock); 1001 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1002 1003 spa->spa_proc_state = SPA_PROC_ACTIVE; 1004 cv_broadcast(&spa->spa_proc_cv); 1005 1006 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1007 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1008 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1009 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1010 1011 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1012 spa->spa_proc_state = SPA_PROC_GONE; 1013 spa->spa_proc = &p0; 1014 cv_broadcast(&spa->spa_proc_cv); 1015 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1016 1017 mutex_enter(&curproc->p_lock); 1018 lwp_exit(); 1019 } 1020 #endif 1021 1022 /* 1023 * Activate an uninitialized pool. 1024 */ 1025 static void 1026 spa_activate(spa_t *spa, int mode) 1027 { 1028 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1029 1030 spa->spa_state = POOL_STATE_ACTIVE; 1031 spa->spa_mode = mode; 1032 1033 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1034 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1035 1036 /* Try to create a covering process */ 1037 mutex_enter(&spa->spa_proc_lock); 1038 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1039 ASSERT(spa->spa_proc == &p0); 1040 spa->spa_did = 0; 1041 1042 /* Only create a process if we're going to be around a while. */ 1043 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1044 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1045 NULL, 0) == 0) { 1046 spa->spa_proc_state = SPA_PROC_CREATED; 1047 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1048 cv_wait(&spa->spa_proc_cv, 1049 &spa->spa_proc_lock); 1050 } 1051 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1052 ASSERT(spa->spa_proc != &p0); 1053 ASSERT(spa->spa_did != 0); 1054 } else { 1055 #ifdef _KERNEL 1056 cmn_err(CE_WARN, 1057 "Couldn't create process for zfs pool \"%s\"\n", 1058 spa->spa_name); 1059 #endif 1060 } 1061 } 1062 mutex_exit(&spa->spa_proc_lock); 1063 1064 /* If we didn't create a process, we need to create our taskqs. */ 1065 if (spa->spa_proc == &p0) { 1066 spa_create_zio_taskqs(spa); 1067 } 1068 1069 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1070 offsetof(vdev_t, vdev_config_dirty_node)); 1071 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1072 offsetof(vdev_t, vdev_state_dirty_node)); 1073 1074 txg_list_create(&spa->spa_vdev_txg_list, 1075 offsetof(struct vdev, vdev_txg_node)); 1076 1077 avl_create(&spa->spa_errlist_scrub, 1078 spa_error_entry_compare, sizeof (spa_error_entry_t), 1079 offsetof(spa_error_entry_t, se_avl)); 1080 avl_create(&spa->spa_errlist_last, 1081 spa_error_entry_compare, sizeof (spa_error_entry_t), 1082 offsetof(spa_error_entry_t, se_avl)); 1083 } 1084 1085 /* 1086 * Opposite of spa_activate(). 1087 */ 1088 static void 1089 spa_deactivate(spa_t *spa) 1090 { 1091 ASSERT(spa->spa_sync_on == B_FALSE); 1092 ASSERT(spa->spa_dsl_pool == NULL); 1093 ASSERT(spa->spa_root_vdev == NULL); 1094 ASSERT(spa->spa_async_zio_root == NULL); 1095 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1096 1097 txg_list_destroy(&spa->spa_vdev_txg_list); 1098 1099 list_destroy(&spa->spa_config_dirty_list); 1100 list_destroy(&spa->spa_state_dirty_list); 1101 1102 for (int t = 0; t < ZIO_TYPES; t++) { 1103 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1104 spa_taskqs_fini(spa, t, q); 1105 } 1106 } 1107 1108 metaslab_class_destroy(spa->spa_normal_class); 1109 spa->spa_normal_class = NULL; 1110 1111 metaslab_class_destroy(spa->spa_log_class); 1112 spa->spa_log_class = NULL; 1113 1114 /* 1115 * If this was part of an import or the open otherwise failed, we may 1116 * still have errors left in the queues. Empty them just in case. 1117 */ 1118 spa_errlog_drain(spa); 1119 1120 avl_destroy(&spa->spa_errlist_scrub); 1121 avl_destroy(&spa->spa_errlist_last); 1122 1123 spa->spa_state = POOL_STATE_UNINITIALIZED; 1124 1125 mutex_enter(&spa->spa_proc_lock); 1126 if (spa->spa_proc_state != SPA_PROC_NONE) { 1127 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1128 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1129 cv_broadcast(&spa->spa_proc_cv); 1130 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1131 ASSERT(spa->spa_proc != &p0); 1132 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1133 } 1134 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1135 spa->spa_proc_state = SPA_PROC_NONE; 1136 } 1137 ASSERT(spa->spa_proc == &p0); 1138 mutex_exit(&spa->spa_proc_lock); 1139 1140 /* 1141 * We want to make sure spa_thread() has actually exited the ZFS 1142 * module, so that the module can't be unloaded out from underneath 1143 * it. 1144 */ 1145 if (spa->spa_did != 0) { 1146 thread_join(spa->spa_did); 1147 spa->spa_did = 0; 1148 } 1149 } 1150 1151 /* 1152 * Verify a pool configuration, and construct the vdev tree appropriately. This 1153 * will create all the necessary vdevs in the appropriate layout, with each vdev 1154 * in the CLOSED state. This will prep the pool before open/creation/import. 1155 * All vdev validation is done by the vdev_alloc() routine. 1156 */ 1157 static int 1158 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1159 uint_t id, int atype) 1160 { 1161 nvlist_t **child; 1162 uint_t children; 1163 int error; 1164 1165 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1166 return (error); 1167 1168 if ((*vdp)->vdev_ops->vdev_op_leaf) 1169 return (0); 1170 1171 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1172 &child, &children); 1173 1174 if (error == ENOENT) 1175 return (0); 1176 1177 if (error) { 1178 vdev_free(*vdp); 1179 *vdp = NULL; 1180 return (SET_ERROR(EINVAL)); 1181 } 1182 1183 for (int c = 0; c < children; c++) { 1184 vdev_t *vd; 1185 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1186 atype)) != 0) { 1187 vdev_free(*vdp); 1188 *vdp = NULL; 1189 return (error); 1190 } 1191 } 1192 1193 ASSERT(*vdp != NULL); 1194 1195 return (0); 1196 } 1197 1198 /* 1199 * Opposite of spa_load(). 1200 */ 1201 static void 1202 spa_unload(spa_t *spa) 1203 { 1204 int i; 1205 1206 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1207 1208 /* 1209 * Stop async tasks. 1210 */ 1211 spa_async_suspend(spa); 1212 1213 /* 1214 * Stop syncing. 1215 */ 1216 if (spa->spa_sync_on) { 1217 txg_sync_stop(spa->spa_dsl_pool); 1218 spa->spa_sync_on = B_FALSE; 1219 } 1220 1221 /* 1222 * Wait for any outstanding async I/O to complete. 1223 */ 1224 if (spa->spa_async_zio_root != NULL) { 1225 (void) zio_wait(spa->spa_async_zio_root); 1226 spa->spa_async_zio_root = NULL; 1227 } 1228 1229 bpobj_close(&spa->spa_deferred_bpobj); 1230 1231 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1232 1233 /* 1234 * Close all vdevs. 1235 */ 1236 if (spa->spa_root_vdev) 1237 vdev_free(spa->spa_root_vdev); 1238 ASSERT(spa->spa_root_vdev == NULL); 1239 1240 /* 1241 * Close the dsl pool. 1242 */ 1243 if (spa->spa_dsl_pool) { 1244 dsl_pool_close(spa->spa_dsl_pool); 1245 spa->spa_dsl_pool = NULL; 1246 spa->spa_meta_objset = NULL; 1247 } 1248 1249 ddt_unload(spa); 1250 1251 1252 /* 1253 * Drop and purge level 2 cache 1254 */ 1255 spa_l2cache_drop(spa); 1256 1257 for (i = 0; i < spa->spa_spares.sav_count; i++) 1258 vdev_free(spa->spa_spares.sav_vdevs[i]); 1259 if (spa->spa_spares.sav_vdevs) { 1260 kmem_free(spa->spa_spares.sav_vdevs, 1261 spa->spa_spares.sav_count * sizeof (void *)); 1262 spa->spa_spares.sav_vdevs = NULL; 1263 } 1264 if (spa->spa_spares.sav_config) { 1265 nvlist_free(spa->spa_spares.sav_config); 1266 spa->spa_spares.sav_config = NULL; 1267 } 1268 spa->spa_spares.sav_count = 0; 1269 1270 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1271 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1272 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1273 } 1274 if (spa->spa_l2cache.sav_vdevs) { 1275 kmem_free(spa->spa_l2cache.sav_vdevs, 1276 spa->spa_l2cache.sav_count * sizeof (void *)); 1277 spa->spa_l2cache.sav_vdevs = NULL; 1278 } 1279 if (spa->spa_l2cache.sav_config) { 1280 nvlist_free(spa->spa_l2cache.sav_config); 1281 spa->spa_l2cache.sav_config = NULL; 1282 } 1283 spa->spa_l2cache.sav_count = 0; 1284 1285 spa->spa_async_suspended = 0; 1286 1287 if (spa->spa_comment != NULL) { 1288 spa_strfree(spa->spa_comment); 1289 spa->spa_comment = NULL; 1290 } 1291 1292 spa_config_exit(spa, SCL_ALL, FTAG); 1293 } 1294 1295 /* 1296 * Load (or re-load) the current list of vdevs describing the active spares for 1297 * this pool. When this is called, we have some form of basic information in 1298 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1299 * then re-generate a more complete list including status information. 1300 */ 1301 static void 1302 spa_load_spares(spa_t *spa) 1303 { 1304 nvlist_t **spares; 1305 uint_t nspares; 1306 int i; 1307 vdev_t *vd, *tvd; 1308 1309 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1310 1311 /* 1312 * First, close and free any existing spare vdevs. 1313 */ 1314 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1315 vd = spa->spa_spares.sav_vdevs[i]; 1316 1317 /* Undo the call to spa_activate() below */ 1318 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1319 B_FALSE)) != NULL && tvd->vdev_isspare) 1320 spa_spare_remove(tvd); 1321 vdev_close(vd); 1322 vdev_free(vd); 1323 } 1324 1325 if (spa->spa_spares.sav_vdevs) 1326 kmem_free(spa->spa_spares.sav_vdevs, 1327 spa->spa_spares.sav_count * sizeof (void *)); 1328 1329 if (spa->spa_spares.sav_config == NULL) 1330 nspares = 0; 1331 else 1332 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1333 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1334 1335 spa->spa_spares.sav_count = (int)nspares; 1336 spa->spa_spares.sav_vdevs = NULL; 1337 1338 if (nspares == 0) 1339 return; 1340 1341 /* 1342 * Construct the array of vdevs, opening them to get status in the 1343 * process. For each spare, there is potentially two different vdev_t 1344 * structures associated with it: one in the list of spares (used only 1345 * for basic validation purposes) and one in the active vdev 1346 * configuration (if it's spared in). During this phase we open and 1347 * validate each vdev on the spare list. If the vdev also exists in the 1348 * active configuration, then we also mark this vdev as an active spare. 1349 */ 1350 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1351 KM_SLEEP); 1352 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1353 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1354 VDEV_ALLOC_SPARE) == 0); 1355 ASSERT(vd != NULL); 1356 1357 spa->spa_spares.sav_vdevs[i] = vd; 1358 1359 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1360 B_FALSE)) != NULL) { 1361 if (!tvd->vdev_isspare) 1362 spa_spare_add(tvd); 1363 1364 /* 1365 * We only mark the spare active if we were successfully 1366 * able to load the vdev. Otherwise, importing a pool 1367 * with a bad active spare would result in strange 1368 * behavior, because multiple pool would think the spare 1369 * is actively in use. 1370 * 1371 * There is a vulnerability here to an equally bizarre 1372 * circumstance, where a dead active spare is later 1373 * brought back to life (onlined or otherwise). Given 1374 * the rarity of this scenario, and the extra complexity 1375 * it adds, we ignore the possibility. 1376 */ 1377 if (!vdev_is_dead(tvd)) 1378 spa_spare_activate(tvd); 1379 } 1380 1381 vd->vdev_top = vd; 1382 vd->vdev_aux = &spa->spa_spares; 1383 1384 if (vdev_open(vd) != 0) 1385 continue; 1386 1387 if (vdev_validate_aux(vd) == 0) 1388 spa_spare_add(vd); 1389 } 1390 1391 /* 1392 * Recompute the stashed list of spares, with status information 1393 * this time. 1394 */ 1395 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1396 DATA_TYPE_NVLIST_ARRAY) == 0); 1397 1398 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1399 KM_SLEEP); 1400 for (i = 0; i < spa->spa_spares.sav_count; i++) 1401 spares[i] = vdev_config_generate(spa, 1402 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1403 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1404 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1405 for (i = 0; i < spa->spa_spares.sav_count; i++) 1406 nvlist_free(spares[i]); 1407 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1408 } 1409 1410 /* 1411 * Load (or re-load) the current list of vdevs describing the active l2cache for 1412 * this pool. When this is called, we have some form of basic information in 1413 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1414 * then re-generate a more complete list including status information. 1415 * Devices which are already active have their details maintained, and are 1416 * not re-opened. 1417 */ 1418 static void 1419 spa_load_l2cache(spa_t *spa) 1420 { 1421 nvlist_t **l2cache; 1422 uint_t nl2cache; 1423 int i, j, oldnvdevs; 1424 uint64_t guid; 1425 vdev_t *vd, **oldvdevs, **newvdevs; 1426 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1427 1428 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1429 1430 if (sav->sav_config != NULL) { 1431 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1432 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1433 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1434 } else { 1435 nl2cache = 0; 1436 newvdevs = NULL; 1437 } 1438 1439 oldvdevs = sav->sav_vdevs; 1440 oldnvdevs = sav->sav_count; 1441 sav->sav_vdevs = NULL; 1442 sav->sav_count = 0; 1443 1444 /* 1445 * Process new nvlist of vdevs. 1446 */ 1447 for (i = 0; i < nl2cache; i++) { 1448 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1449 &guid) == 0); 1450 1451 newvdevs[i] = NULL; 1452 for (j = 0; j < oldnvdevs; j++) { 1453 vd = oldvdevs[j]; 1454 if (vd != NULL && guid == vd->vdev_guid) { 1455 /* 1456 * Retain previous vdev for add/remove ops. 1457 */ 1458 newvdevs[i] = vd; 1459 oldvdevs[j] = NULL; 1460 break; 1461 } 1462 } 1463 1464 if (newvdevs[i] == NULL) { 1465 /* 1466 * Create new vdev 1467 */ 1468 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1469 VDEV_ALLOC_L2CACHE) == 0); 1470 ASSERT(vd != NULL); 1471 newvdevs[i] = vd; 1472 1473 /* 1474 * Commit this vdev as an l2cache device, 1475 * even if it fails to open. 1476 */ 1477 spa_l2cache_add(vd); 1478 1479 vd->vdev_top = vd; 1480 vd->vdev_aux = sav; 1481 1482 spa_l2cache_activate(vd); 1483 1484 if (vdev_open(vd) != 0) 1485 continue; 1486 1487 (void) vdev_validate_aux(vd); 1488 1489 if (!vdev_is_dead(vd)) 1490 l2arc_add_vdev(spa, vd); 1491 } 1492 } 1493 1494 /* 1495 * Purge vdevs that were dropped 1496 */ 1497 for (i = 0; i < oldnvdevs; i++) { 1498 uint64_t pool; 1499 1500 vd = oldvdevs[i]; 1501 if (vd != NULL) { 1502 ASSERT(vd->vdev_isl2cache); 1503 1504 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1505 pool != 0ULL && l2arc_vdev_present(vd)) 1506 l2arc_remove_vdev(vd); 1507 vdev_clear_stats(vd); 1508 vdev_free(vd); 1509 } 1510 } 1511 1512 if (oldvdevs) 1513 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1514 1515 if (sav->sav_config == NULL) 1516 goto out; 1517 1518 sav->sav_vdevs = newvdevs; 1519 sav->sav_count = (int)nl2cache; 1520 1521 /* 1522 * Recompute the stashed list of l2cache devices, with status 1523 * information this time. 1524 */ 1525 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1526 DATA_TYPE_NVLIST_ARRAY) == 0); 1527 1528 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1529 for (i = 0; i < sav->sav_count; i++) 1530 l2cache[i] = vdev_config_generate(spa, 1531 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1532 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1533 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1534 out: 1535 for (i = 0; i < sav->sav_count; i++) 1536 nvlist_free(l2cache[i]); 1537 if (sav->sav_count) 1538 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1539 } 1540 1541 static int 1542 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1543 { 1544 dmu_buf_t *db; 1545 char *packed = NULL; 1546 size_t nvsize = 0; 1547 int error; 1548 *value = NULL; 1549 1550 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1551 nvsize = *(uint64_t *)db->db_data; 1552 dmu_buf_rele(db, FTAG); 1553 1554 packed = kmem_alloc(nvsize, KM_SLEEP); 1555 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1556 DMU_READ_PREFETCH); 1557 if (error == 0) 1558 error = nvlist_unpack(packed, nvsize, value, 0); 1559 kmem_free(packed, nvsize); 1560 1561 return (error); 1562 } 1563 1564 /* 1565 * Checks to see if the given vdev could not be opened, in which case we post a 1566 * sysevent to notify the autoreplace code that the device has been removed. 1567 */ 1568 static void 1569 spa_check_removed(vdev_t *vd) 1570 { 1571 for (int c = 0; c < vd->vdev_children; c++) 1572 spa_check_removed(vd->vdev_child[c]); 1573 1574 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1575 !vd->vdev_ishole) { 1576 zfs_post_autoreplace(vd->vdev_spa, vd); 1577 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1578 } 1579 } 1580 1581 /* 1582 * Validate the current config against the MOS config 1583 */ 1584 static boolean_t 1585 spa_config_valid(spa_t *spa, nvlist_t *config) 1586 { 1587 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1588 nvlist_t *nv; 1589 1590 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1591 1592 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1593 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1594 1595 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1596 1597 /* 1598 * If we're doing a normal import, then build up any additional 1599 * diagnostic information about missing devices in this config. 1600 * We'll pass this up to the user for further processing. 1601 */ 1602 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1603 nvlist_t **child, *nv; 1604 uint64_t idx = 0; 1605 1606 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1607 KM_SLEEP); 1608 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1609 1610 for (int c = 0; c < rvd->vdev_children; c++) { 1611 vdev_t *tvd = rvd->vdev_child[c]; 1612 vdev_t *mtvd = mrvd->vdev_child[c]; 1613 1614 if (tvd->vdev_ops == &vdev_missing_ops && 1615 mtvd->vdev_ops != &vdev_missing_ops && 1616 mtvd->vdev_islog) 1617 child[idx++] = vdev_config_generate(spa, mtvd, 1618 B_FALSE, 0); 1619 } 1620 1621 if (idx) { 1622 VERIFY(nvlist_add_nvlist_array(nv, 1623 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1624 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1625 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1626 1627 for (int i = 0; i < idx; i++) 1628 nvlist_free(child[i]); 1629 } 1630 nvlist_free(nv); 1631 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1632 } 1633 1634 /* 1635 * Compare the root vdev tree with the information we have 1636 * from the MOS config (mrvd). Check each top-level vdev 1637 * with the corresponding MOS config top-level (mtvd). 1638 */ 1639 for (int c = 0; c < rvd->vdev_children; c++) { 1640 vdev_t *tvd = rvd->vdev_child[c]; 1641 vdev_t *mtvd = mrvd->vdev_child[c]; 1642 1643 /* 1644 * Resolve any "missing" vdevs in the current configuration. 1645 * If we find that the MOS config has more accurate information 1646 * about the top-level vdev then use that vdev instead. 1647 */ 1648 if (tvd->vdev_ops == &vdev_missing_ops && 1649 mtvd->vdev_ops != &vdev_missing_ops) { 1650 1651 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1652 continue; 1653 1654 /* 1655 * Device specific actions. 1656 */ 1657 if (mtvd->vdev_islog) { 1658 spa_set_log_state(spa, SPA_LOG_CLEAR); 1659 } else { 1660 /* 1661 * XXX - once we have 'readonly' pool 1662 * support we should be able to handle 1663 * missing data devices by transitioning 1664 * the pool to readonly. 1665 */ 1666 continue; 1667 } 1668 1669 /* 1670 * Swap the missing vdev with the data we were 1671 * able to obtain from the MOS config. 1672 */ 1673 vdev_remove_child(rvd, tvd); 1674 vdev_remove_child(mrvd, mtvd); 1675 1676 vdev_add_child(rvd, mtvd); 1677 vdev_add_child(mrvd, tvd); 1678 1679 spa_config_exit(spa, SCL_ALL, FTAG); 1680 vdev_load(mtvd); 1681 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1682 1683 vdev_reopen(rvd); 1684 } else if (mtvd->vdev_islog) { 1685 /* 1686 * Load the slog device's state from the MOS config 1687 * since it's possible that the label does not 1688 * contain the most up-to-date information. 1689 */ 1690 vdev_load_log_state(tvd, mtvd); 1691 vdev_reopen(tvd); 1692 } 1693 } 1694 vdev_free(mrvd); 1695 spa_config_exit(spa, SCL_ALL, FTAG); 1696 1697 /* 1698 * Ensure we were able to validate the config. 1699 */ 1700 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1701 } 1702 1703 /* 1704 * Check for missing log devices 1705 */ 1706 static boolean_t 1707 spa_check_logs(spa_t *spa) 1708 { 1709 boolean_t rv = B_FALSE; 1710 1711 switch (spa->spa_log_state) { 1712 case SPA_LOG_MISSING: 1713 /* need to recheck in case slog has been restored */ 1714 case SPA_LOG_UNKNOWN: 1715 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain, 1716 NULL, DS_FIND_CHILDREN) != 0); 1717 if (rv) 1718 spa_set_log_state(spa, SPA_LOG_MISSING); 1719 break; 1720 } 1721 return (rv); 1722 } 1723 1724 static boolean_t 1725 spa_passivate_log(spa_t *spa) 1726 { 1727 vdev_t *rvd = spa->spa_root_vdev; 1728 boolean_t slog_found = B_FALSE; 1729 1730 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1731 1732 if (!spa_has_slogs(spa)) 1733 return (B_FALSE); 1734 1735 for (int c = 0; c < rvd->vdev_children; c++) { 1736 vdev_t *tvd = rvd->vdev_child[c]; 1737 metaslab_group_t *mg = tvd->vdev_mg; 1738 1739 if (tvd->vdev_islog) { 1740 metaslab_group_passivate(mg); 1741 slog_found = B_TRUE; 1742 } 1743 } 1744 1745 return (slog_found); 1746 } 1747 1748 static void 1749 spa_activate_log(spa_t *spa) 1750 { 1751 vdev_t *rvd = spa->spa_root_vdev; 1752 1753 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1754 1755 for (int c = 0; c < rvd->vdev_children; c++) { 1756 vdev_t *tvd = rvd->vdev_child[c]; 1757 metaslab_group_t *mg = tvd->vdev_mg; 1758 1759 if (tvd->vdev_islog) 1760 metaslab_group_activate(mg); 1761 } 1762 } 1763 1764 int 1765 spa_offline_log(spa_t *spa) 1766 { 1767 int error; 1768 1769 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1770 NULL, DS_FIND_CHILDREN); 1771 if (error == 0) { 1772 /* 1773 * We successfully offlined the log device, sync out the 1774 * current txg so that the "stubby" block can be removed 1775 * by zil_sync(). 1776 */ 1777 txg_wait_synced(spa->spa_dsl_pool, 0); 1778 } 1779 return (error); 1780 } 1781 1782 static void 1783 spa_aux_check_removed(spa_aux_vdev_t *sav) 1784 { 1785 for (int i = 0; i < sav->sav_count; i++) 1786 spa_check_removed(sav->sav_vdevs[i]); 1787 } 1788 1789 void 1790 spa_claim_notify(zio_t *zio) 1791 { 1792 spa_t *spa = zio->io_spa; 1793 1794 if (zio->io_error) 1795 return; 1796 1797 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1798 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1799 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1800 mutex_exit(&spa->spa_props_lock); 1801 } 1802 1803 typedef struct spa_load_error { 1804 uint64_t sle_meta_count; 1805 uint64_t sle_data_count; 1806 } spa_load_error_t; 1807 1808 static void 1809 spa_load_verify_done(zio_t *zio) 1810 { 1811 blkptr_t *bp = zio->io_bp; 1812 spa_load_error_t *sle = zio->io_private; 1813 dmu_object_type_t type = BP_GET_TYPE(bp); 1814 int error = zio->io_error; 1815 1816 if (error) { 1817 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1818 type != DMU_OT_INTENT_LOG) 1819 atomic_add_64(&sle->sle_meta_count, 1); 1820 else 1821 atomic_add_64(&sle->sle_data_count, 1); 1822 } 1823 zio_data_buf_free(zio->io_data, zio->io_size); 1824 } 1825 1826 /*ARGSUSED*/ 1827 static int 1828 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1829 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1830 { 1831 if (bp != NULL) { 1832 zio_t *rio = arg; 1833 size_t size = BP_GET_PSIZE(bp); 1834 void *data = zio_data_buf_alloc(size); 1835 1836 zio_nowait(zio_read(rio, spa, bp, data, size, 1837 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1838 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1839 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1840 } 1841 return (0); 1842 } 1843 1844 static int 1845 spa_load_verify(spa_t *spa) 1846 { 1847 zio_t *rio; 1848 spa_load_error_t sle = { 0 }; 1849 zpool_rewind_policy_t policy; 1850 boolean_t verify_ok = B_FALSE; 1851 int error; 1852 1853 zpool_get_rewind_policy(spa->spa_config, &policy); 1854 1855 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1856 return (0); 1857 1858 rio = zio_root(spa, NULL, &sle, 1859 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1860 1861 error = traverse_pool(spa, spa->spa_verify_min_txg, 1862 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1863 1864 (void) zio_wait(rio); 1865 1866 spa->spa_load_meta_errors = sle.sle_meta_count; 1867 spa->spa_load_data_errors = sle.sle_data_count; 1868 1869 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1870 sle.sle_data_count <= policy.zrp_maxdata) { 1871 int64_t loss = 0; 1872 1873 verify_ok = B_TRUE; 1874 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1875 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1876 1877 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1878 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1879 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1880 VERIFY(nvlist_add_int64(spa->spa_load_info, 1881 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1882 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1883 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1884 } else { 1885 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1886 } 1887 1888 if (error) { 1889 if (error != ENXIO && error != EIO) 1890 error = SET_ERROR(EIO); 1891 return (error); 1892 } 1893 1894 return (verify_ok ? 0 : EIO); 1895 } 1896 1897 /* 1898 * Find a value in the pool props object. 1899 */ 1900 static void 1901 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1902 { 1903 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1904 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1905 } 1906 1907 /* 1908 * Find a value in the pool directory object. 1909 */ 1910 static int 1911 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1912 { 1913 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1914 name, sizeof (uint64_t), 1, val)); 1915 } 1916 1917 static int 1918 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1919 { 1920 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1921 return (err); 1922 } 1923 1924 /* 1925 * Fix up config after a partly-completed split. This is done with the 1926 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1927 * pool have that entry in their config, but only the splitting one contains 1928 * a list of all the guids of the vdevs that are being split off. 1929 * 1930 * This function determines what to do with that list: either rejoin 1931 * all the disks to the pool, or complete the splitting process. To attempt 1932 * the rejoin, each disk that is offlined is marked online again, and 1933 * we do a reopen() call. If the vdev label for every disk that was 1934 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1935 * then we call vdev_split() on each disk, and complete the split. 1936 * 1937 * Otherwise we leave the config alone, with all the vdevs in place in 1938 * the original pool. 1939 */ 1940 static void 1941 spa_try_repair(spa_t *spa, nvlist_t *config) 1942 { 1943 uint_t extracted; 1944 uint64_t *glist; 1945 uint_t i, gcount; 1946 nvlist_t *nvl; 1947 vdev_t **vd; 1948 boolean_t attempt_reopen; 1949 1950 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1951 return; 1952 1953 /* check that the config is complete */ 1954 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1955 &glist, &gcount) != 0) 1956 return; 1957 1958 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1959 1960 /* attempt to online all the vdevs & validate */ 1961 attempt_reopen = B_TRUE; 1962 for (i = 0; i < gcount; i++) { 1963 if (glist[i] == 0) /* vdev is hole */ 1964 continue; 1965 1966 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1967 if (vd[i] == NULL) { 1968 /* 1969 * Don't bother attempting to reopen the disks; 1970 * just do the split. 1971 */ 1972 attempt_reopen = B_FALSE; 1973 } else { 1974 /* attempt to re-online it */ 1975 vd[i]->vdev_offline = B_FALSE; 1976 } 1977 } 1978 1979 if (attempt_reopen) { 1980 vdev_reopen(spa->spa_root_vdev); 1981 1982 /* check each device to see what state it's in */ 1983 for (extracted = 0, i = 0; i < gcount; i++) { 1984 if (vd[i] != NULL && 1985 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1986 break; 1987 ++extracted; 1988 } 1989 } 1990 1991 /* 1992 * If every disk has been moved to the new pool, or if we never 1993 * even attempted to look at them, then we split them off for 1994 * good. 1995 */ 1996 if (!attempt_reopen || gcount == extracted) { 1997 for (i = 0; i < gcount; i++) 1998 if (vd[i] != NULL) 1999 vdev_split(vd[i]); 2000 vdev_reopen(spa->spa_root_vdev); 2001 } 2002 2003 kmem_free(vd, gcount * sizeof (vdev_t *)); 2004 } 2005 2006 static int 2007 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2008 boolean_t mosconfig) 2009 { 2010 nvlist_t *config = spa->spa_config; 2011 char *ereport = FM_EREPORT_ZFS_POOL; 2012 char *comment; 2013 int error; 2014 uint64_t pool_guid; 2015 nvlist_t *nvl; 2016 2017 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2018 return (SET_ERROR(EINVAL)); 2019 2020 ASSERT(spa->spa_comment == NULL); 2021 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2022 spa->spa_comment = spa_strdup(comment); 2023 2024 /* 2025 * Versioning wasn't explicitly added to the label until later, so if 2026 * it's not present treat it as the initial version. 2027 */ 2028 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2029 &spa->spa_ubsync.ub_version) != 0) 2030 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2031 2032 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2033 &spa->spa_config_txg); 2034 2035 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2036 spa_guid_exists(pool_guid, 0)) { 2037 error = SET_ERROR(EEXIST); 2038 } else { 2039 spa->spa_config_guid = pool_guid; 2040 2041 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2042 &nvl) == 0) { 2043 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2044 KM_SLEEP) == 0); 2045 } 2046 2047 nvlist_free(spa->spa_load_info); 2048 spa->spa_load_info = fnvlist_alloc(); 2049 2050 gethrestime(&spa->spa_loaded_ts); 2051 error = spa_load_impl(spa, pool_guid, config, state, type, 2052 mosconfig, &ereport); 2053 } 2054 2055 spa->spa_minref = refcount_count(&spa->spa_refcount); 2056 if (error) { 2057 if (error != EEXIST) { 2058 spa->spa_loaded_ts.tv_sec = 0; 2059 spa->spa_loaded_ts.tv_nsec = 0; 2060 } 2061 if (error != EBADF) { 2062 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2063 } 2064 } 2065 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2066 spa->spa_ena = 0; 2067 2068 return (error); 2069 } 2070 2071 /* 2072 * Load an existing storage pool, using the pool's builtin spa_config as a 2073 * source of configuration information. 2074 */ 2075 static int 2076 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2077 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2078 char **ereport) 2079 { 2080 int error = 0; 2081 nvlist_t *nvroot = NULL; 2082 nvlist_t *label; 2083 vdev_t *rvd; 2084 uberblock_t *ub = &spa->spa_uberblock; 2085 uint64_t children, config_cache_txg = spa->spa_config_txg; 2086 int orig_mode = spa->spa_mode; 2087 int parse; 2088 uint64_t obj; 2089 boolean_t missing_feat_write = B_FALSE; 2090 2091 /* 2092 * If this is an untrusted config, access the pool in read-only mode. 2093 * This prevents things like resilvering recently removed devices. 2094 */ 2095 if (!mosconfig) 2096 spa->spa_mode = FREAD; 2097 2098 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2099 2100 spa->spa_load_state = state; 2101 2102 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2103 return (SET_ERROR(EINVAL)); 2104 2105 parse = (type == SPA_IMPORT_EXISTING ? 2106 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2107 2108 /* 2109 * Create "The Godfather" zio to hold all async IOs 2110 */ 2111 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2112 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2113 2114 /* 2115 * Parse the configuration into a vdev tree. We explicitly set the 2116 * value that will be returned by spa_version() since parsing the 2117 * configuration requires knowing the version number. 2118 */ 2119 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2120 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2121 spa_config_exit(spa, SCL_ALL, FTAG); 2122 2123 if (error != 0) 2124 return (error); 2125 2126 ASSERT(spa->spa_root_vdev == rvd); 2127 2128 if (type != SPA_IMPORT_ASSEMBLE) { 2129 ASSERT(spa_guid(spa) == pool_guid); 2130 } 2131 2132 /* 2133 * Try to open all vdevs, loading each label in the process. 2134 */ 2135 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2136 error = vdev_open(rvd); 2137 spa_config_exit(spa, SCL_ALL, FTAG); 2138 if (error != 0) 2139 return (error); 2140 2141 /* 2142 * We need to validate the vdev labels against the configuration that 2143 * we have in hand, which is dependent on the setting of mosconfig. If 2144 * mosconfig is true then we're validating the vdev labels based on 2145 * that config. Otherwise, we're validating against the cached config 2146 * (zpool.cache) that was read when we loaded the zfs module, and then 2147 * later we will recursively call spa_load() and validate against 2148 * the vdev config. 2149 * 2150 * If we're assembling a new pool that's been split off from an 2151 * existing pool, the labels haven't yet been updated so we skip 2152 * validation for now. 2153 */ 2154 if (type != SPA_IMPORT_ASSEMBLE) { 2155 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2156 error = vdev_validate(rvd, mosconfig); 2157 spa_config_exit(spa, SCL_ALL, FTAG); 2158 2159 if (error != 0) 2160 return (error); 2161 2162 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2163 return (SET_ERROR(ENXIO)); 2164 } 2165 2166 /* 2167 * Find the best uberblock. 2168 */ 2169 vdev_uberblock_load(rvd, ub, &label); 2170 2171 /* 2172 * If we weren't able to find a single valid uberblock, return failure. 2173 */ 2174 if (ub->ub_txg == 0) { 2175 nvlist_free(label); 2176 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2177 } 2178 2179 /* 2180 * If the pool has an unsupported version we can't open it. 2181 */ 2182 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2183 nvlist_free(label); 2184 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2185 } 2186 2187 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2188 nvlist_t *features; 2189 2190 /* 2191 * If we weren't able to find what's necessary for reading the 2192 * MOS in the label, return failure. 2193 */ 2194 if (label == NULL || nvlist_lookup_nvlist(label, 2195 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2196 nvlist_free(label); 2197 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2198 ENXIO)); 2199 } 2200 2201 /* 2202 * Update our in-core representation with the definitive values 2203 * from the label. 2204 */ 2205 nvlist_free(spa->spa_label_features); 2206 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2207 } 2208 2209 nvlist_free(label); 2210 2211 /* 2212 * Look through entries in the label nvlist's features_for_read. If 2213 * there is a feature listed there which we don't understand then we 2214 * cannot open a pool. 2215 */ 2216 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2217 nvlist_t *unsup_feat; 2218 2219 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2220 0); 2221 2222 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2223 NULL); nvp != NULL; 2224 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2225 if (!zfeature_is_supported(nvpair_name(nvp))) { 2226 VERIFY(nvlist_add_string(unsup_feat, 2227 nvpair_name(nvp), "") == 0); 2228 } 2229 } 2230 2231 if (!nvlist_empty(unsup_feat)) { 2232 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2233 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2234 nvlist_free(unsup_feat); 2235 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2236 ENOTSUP)); 2237 } 2238 2239 nvlist_free(unsup_feat); 2240 } 2241 2242 /* 2243 * If the vdev guid sum doesn't match the uberblock, we have an 2244 * incomplete configuration. We first check to see if the pool 2245 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2246 * If it is, defer the vdev_guid_sum check till later so we 2247 * can handle missing vdevs. 2248 */ 2249 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2250 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2251 rvd->vdev_guid_sum != ub->ub_guid_sum) 2252 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2253 2254 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2255 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2256 spa_try_repair(spa, config); 2257 spa_config_exit(spa, SCL_ALL, FTAG); 2258 nvlist_free(spa->spa_config_splitting); 2259 spa->spa_config_splitting = NULL; 2260 } 2261 2262 /* 2263 * Initialize internal SPA structures. 2264 */ 2265 spa->spa_state = POOL_STATE_ACTIVE; 2266 spa->spa_ubsync = spa->spa_uberblock; 2267 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2268 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2269 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2270 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2271 spa->spa_claim_max_txg = spa->spa_first_txg; 2272 spa->spa_prev_software_version = ub->ub_software_version; 2273 2274 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2275 if (error) 2276 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2277 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2278 2279 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2280 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2281 2282 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2283 boolean_t missing_feat_read = B_FALSE; 2284 nvlist_t *unsup_feat, *enabled_feat; 2285 2286 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2287 &spa->spa_feat_for_read_obj) != 0) { 2288 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2289 } 2290 2291 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2292 &spa->spa_feat_for_write_obj) != 0) { 2293 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2294 } 2295 2296 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2297 &spa->spa_feat_desc_obj) != 0) { 2298 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2299 } 2300 2301 enabled_feat = fnvlist_alloc(); 2302 unsup_feat = fnvlist_alloc(); 2303 2304 if (!feature_is_supported(spa->spa_meta_objset, 2305 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj, 2306 unsup_feat, enabled_feat)) 2307 missing_feat_read = B_TRUE; 2308 2309 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2310 if (!feature_is_supported(spa->spa_meta_objset, 2311 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj, 2312 unsup_feat, enabled_feat)) { 2313 missing_feat_write = B_TRUE; 2314 } 2315 } 2316 2317 fnvlist_add_nvlist(spa->spa_load_info, 2318 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2319 2320 if (!nvlist_empty(unsup_feat)) { 2321 fnvlist_add_nvlist(spa->spa_load_info, 2322 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2323 } 2324 2325 fnvlist_free(enabled_feat); 2326 fnvlist_free(unsup_feat); 2327 2328 if (!missing_feat_read) { 2329 fnvlist_add_boolean(spa->spa_load_info, 2330 ZPOOL_CONFIG_CAN_RDONLY); 2331 } 2332 2333 /* 2334 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2335 * twofold: to determine whether the pool is available for 2336 * import in read-write mode and (if it is not) whether the 2337 * pool is available for import in read-only mode. If the pool 2338 * is available for import in read-write mode, it is displayed 2339 * as available in userland; if it is not available for import 2340 * in read-only mode, it is displayed as unavailable in 2341 * userland. If the pool is available for import in read-only 2342 * mode but not read-write mode, it is displayed as unavailable 2343 * in userland with a special note that the pool is actually 2344 * available for open in read-only mode. 2345 * 2346 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2347 * missing a feature for write, we must first determine whether 2348 * the pool can be opened read-only before returning to 2349 * userland in order to know whether to display the 2350 * abovementioned note. 2351 */ 2352 if (missing_feat_read || (missing_feat_write && 2353 spa_writeable(spa))) { 2354 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2355 ENOTSUP)); 2356 } 2357 } 2358 2359 spa->spa_is_initializing = B_TRUE; 2360 error = dsl_pool_open(spa->spa_dsl_pool); 2361 spa->spa_is_initializing = B_FALSE; 2362 if (error != 0) 2363 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2364 2365 if (!mosconfig) { 2366 uint64_t hostid; 2367 nvlist_t *policy = NULL, *nvconfig; 2368 2369 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2370 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2371 2372 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2373 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2374 char *hostname; 2375 unsigned long myhostid = 0; 2376 2377 VERIFY(nvlist_lookup_string(nvconfig, 2378 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2379 2380 #ifdef _KERNEL 2381 myhostid = zone_get_hostid(NULL); 2382 #else /* _KERNEL */ 2383 /* 2384 * We're emulating the system's hostid in userland, so 2385 * we can't use zone_get_hostid(). 2386 */ 2387 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2388 #endif /* _KERNEL */ 2389 if (hostid != 0 && myhostid != 0 && 2390 hostid != myhostid) { 2391 nvlist_free(nvconfig); 2392 cmn_err(CE_WARN, "pool '%s' could not be " 2393 "loaded as it was last accessed by " 2394 "another system (host: %s hostid: 0x%lx). " 2395 "See: http://illumos.org/msg/ZFS-8000-EY", 2396 spa_name(spa), hostname, 2397 (unsigned long)hostid); 2398 return (SET_ERROR(EBADF)); 2399 } 2400 } 2401 if (nvlist_lookup_nvlist(spa->spa_config, 2402 ZPOOL_REWIND_POLICY, &policy) == 0) 2403 VERIFY(nvlist_add_nvlist(nvconfig, 2404 ZPOOL_REWIND_POLICY, policy) == 0); 2405 2406 spa_config_set(spa, nvconfig); 2407 spa_unload(spa); 2408 spa_deactivate(spa); 2409 spa_activate(spa, orig_mode); 2410 2411 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2412 } 2413 2414 /* Grab the secret checksum salt from the MOS. */ 2415 if (spa_dir_prop(spa, DMU_POOL_CHECKSUM_SALT, 2416 &spa->spa_cksum_salt_obj) == 0) { 2417 if (zap_lookup(spa->spa_meta_objset, spa->spa_cksum_salt_obj, 2418 DMU_POOL_CHECKSUM_SALT, 1, 2419 sizeof (spa->spa_cksum_salt.zcs_bytes), 2420 spa->spa_cksum_salt.zcs_bytes) != 0) { 2421 /* 2422 * MOS format is broken, the salt object is there but 2423 * is missing the actual salt value. 2424 */ 2425 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2426 } 2427 } else { 2428 /* Generate a new salt for subsequent use */ 2429 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 2430 sizeof (spa->spa_cksum_salt.zcs_bytes)); 2431 } 2432 2433 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2434 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2435 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2436 if (error != 0) 2437 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2438 2439 /* 2440 * Load the bit that tells us to use the new accounting function 2441 * (raid-z deflation). If we have an older pool, this will not 2442 * be present. 2443 */ 2444 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2445 if (error != 0 && error != ENOENT) 2446 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2447 2448 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2449 &spa->spa_creation_version); 2450 if (error != 0 && error != ENOENT) 2451 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2452 2453 /* 2454 * Load the persistent error log. If we have an older pool, this will 2455 * not be present. 2456 */ 2457 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2458 if (error != 0 && error != ENOENT) 2459 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2460 2461 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2462 &spa->spa_errlog_scrub); 2463 if (error != 0 && error != ENOENT) 2464 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2465 2466 /* 2467 * Load the history object. If we have an older pool, this 2468 * will not be present. 2469 */ 2470 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2471 if (error != 0 && error != ENOENT) 2472 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2473 2474 /* 2475 * If we're assembling the pool from the split-off vdevs of 2476 * an existing pool, we don't want to attach the spares & cache 2477 * devices. 2478 */ 2479 2480 /* 2481 * Load any hot spares for this pool. 2482 */ 2483 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2484 if (error != 0 && error != ENOENT) 2485 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2486 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2487 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2488 if (load_nvlist(spa, spa->spa_spares.sav_object, 2489 &spa->spa_spares.sav_config) != 0) 2490 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2491 2492 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2493 spa_load_spares(spa); 2494 spa_config_exit(spa, SCL_ALL, FTAG); 2495 } else if (error == 0) { 2496 spa->spa_spares.sav_sync = B_TRUE; 2497 } 2498 2499 /* 2500 * Load any level 2 ARC devices for this pool. 2501 */ 2502 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2503 &spa->spa_l2cache.sav_object); 2504 if (error != 0 && error != ENOENT) 2505 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2506 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2507 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2508 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2509 &spa->spa_l2cache.sav_config) != 0) 2510 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2511 2512 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2513 spa_load_l2cache(spa); 2514 spa_config_exit(spa, SCL_ALL, FTAG); 2515 } else if (error == 0) { 2516 spa->spa_l2cache.sav_sync = B_TRUE; 2517 } 2518 2519 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2520 2521 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2522 if (error && error != ENOENT) 2523 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2524 2525 if (error == 0) { 2526 uint64_t autoreplace; 2527 2528 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2529 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2530 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2531 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2532 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2533 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2534 &spa->spa_dedup_ditto); 2535 2536 spa->spa_autoreplace = (autoreplace != 0); 2537 } 2538 2539 /* 2540 * If the 'autoreplace' property is set, then post a resource notifying 2541 * the ZFS DE that it should not issue any faults for unopenable 2542 * devices. We also iterate over the vdevs, and post a sysevent for any 2543 * unopenable vdevs so that the normal autoreplace handler can take 2544 * over. 2545 */ 2546 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2547 spa_check_removed(spa->spa_root_vdev); 2548 /* 2549 * For the import case, this is done in spa_import(), because 2550 * at this point we're using the spare definitions from 2551 * the MOS config, not necessarily from the userland config. 2552 */ 2553 if (state != SPA_LOAD_IMPORT) { 2554 spa_aux_check_removed(&spa->spa_spares); 2555 spa_aux_check_removed(&spa->spa_l2cache); 2556 } 2557 } 2558 2559 /* 2560 * Load the vdev state for all toplevel vdevs. 2561 */ 2562 vdev_load(rvd); 2563 2564 /* 2565 * Propagate the leaf DTLs we just loaded all the way up the tree. 2566 */ 2567 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2568 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2569 spa_config_exit(spa, SCL_ALL, FTAG); 2570 2571 /* 2572 * Load the DDTs (dedup tables). 2573 */ 2574 error = ddt_load(spa); 2575 if (error != 0) 2576 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2577 2578 spa_update_dspace(spa); 2579 2580 /* 2581 * Validate the config, using the MOS config to fill in any 2582 * information which might be missing. If we fail to validate 2583 * the config then declare the pool unfit for use. If we're 2584 * assembling a pool from a split, the log is not transferred 2585 * over. 2586 */ 2587 if (type != SPA_IMPORT_ASSEMBLE) { 2588 nvlist_t *nvconfig; 2589 2590 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2591 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2592 2593 if (!spa_config_valid(spa, nvconfig)) { 2594 nvlist_free(nvconfig); 2595 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2596 ENXIO)); 2597 } 2598 nvlist_free(nvconfig); 2599 2600 /* 2601 * Now that we've validated the config, check the state of the 2602 * root vdev. If it can't be opened, it indicates one or 2603 * more toplevel vdevs are faulted. 2604 */ 2605 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2606 return (SET_ERROR(ENXIO)); 2607 2608 if (spa_check_logs(spa)) { 2609 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2610 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2611 } 2612 } 2613 2614 if (missing_feat_write) { 2615 ASSERT(state == SPA_LOAD_TRYIMPORT); 2616 2617 /* 2618 * At this point, we know that we can open the pool in 2619 * read-only mode but not read-write mode. We now have enough 2620 * information and can return to userland. 2621 */ 2622 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2623 } 2624 2625 /* 2626 * We've successfully opened the pool, verify that we're ready 2627 * to start pushing transactions. 2628 */ 2629 if (state != SPA_LOAD_TRYIMPORT) { 2630 if (error = spa_load_verify(spa)) 2631 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2632 error)); 2633 } 2634 2635 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2636 spa->spa_load_max_txg == UINT64_MAX)) { 2637 dmu_tx_t *tx; 2638 int need_update = B_FALSE; 2639 2640 ASSERT(state != SPA_LOAD_TRYIMPORT); 2641 2642 /* 2643 * Claim log blocks that haven't been committed yet. 2644 * This must all happen in a single txg. 2645 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2646 * invoked from zil_claim_log_block()'s i/o done callback. 2647 * Price of rollback is that we abandon the log. 2648 */ 2649 spa->spa_claiming = B_TRUE; 2650 2651 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2652 spa_first_txg(spa)); 2653 (void) dmu_objset_find(spa_name(spa), 2654 zil_claim, tx, DS_FIND_CHILDREN); 2655 dmu_tx_commit(tx); 2656 2657 spa->spa_claiming = B_FALSE; 2658 2659 spa_set_log_state(spa, SPA_LOG_GOOD); 2660 spa->spa_sync_on = B_TRUE; 2661 txg_sync_start(spa->spa_dsl_pool); 2662 2663 /* 2664 * Wait for all claims to sync. We sync up to the highest 2665 * claimed log block birth time so that claimed log blocks 2666 * don't appear to be from the future. spa_claim_max_txg 2667 * will have been set for us by either zil_check_log_chain() 2668 * (invoked from spa_check_logs()) or zil_claim() above. 2669 */ 2670 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2671 2672 /* 2673 * If the config cache is stale, or we have uninitialized 2674 * metaslabs (see spa_vdev_add()), then update the config. 2675 * 2676 * If this is a verbatim import, trust the current 2677 * in-core spa_config and update the disk labels. 2678 */ 2679 if (config_cache_txg != spa->spa_config_txg || 2680 state == SPA_LOAD_IMPORT || 2681 state == SPA_LOAD_RECOVER || 2682 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2683 need_update = B_TRUE; 2684 2685 for (int c = 0; c < rvd->vdev_children; c++) 2686 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2687 need_update = B_TRUE; 2688 2689 /* 2690 * Update the config cache asychronously in case we're the 2691 * root pool, in which case the config cache isn't writable yet. 2692 */ 2693 if (need_update) 2694 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2695 2696 /* 2697 * Check all DTLs to see if anything needs resilvering. 2698 */ 2699 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2700 vdev_resilver_needed(rvd, NULL, NULL)) 2701 spa_async_request(spa, SPA_ASYNC_RESILVER); 2702 2703 /* 2704 * Log the fact that we booted up (so that we can detect if 2705 * we rebooted in the middle of an operation). 2706 */ 2707 spa_history_log_version(spa, "open"); 2708 2709 /* 2710 * Delete any inconsistent datasets. 2711 */ 2712 (void) dmu_objset_find(spa_name(spa), 2713 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2714 2715 /* 2716 * Clean up any stale temporary dataset userrefs. 2717 */ 2718 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2719 } 2720 2721 return (0); 2722 } 2723 2724 static int 2725 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2726 { 2727 int mode = spa->spa_mode; 2728 2729 spa_unload(spa); 2730 spa_deactivate(spa); 2731 2732 spa->spa_load_max_txg--; 2733 2734 spa_activate(spa, mode); 2735 spa_async_suspend(spa); 2736 2737 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2738 } 2739 2740 /* 2741 * If spa_load() fails this function will try loading prior txg's. If 2742 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2743 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2744 * function will not rewind the pool and will return the same error as 2745 * spa_load(). 2746 */ 2747 static int 2748 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2749 uint64_t max_request, int rewind_flags) 2750 { 2751 nvlist_t *loadinfo = NULL; 2752 nvlist_t *config = NULL; 2753 int load_error, rewind_error; 2754 uint64_t safe_rewind_txg; 2755 uint64_t min_txg; 2756 2757 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2758 spa->spa_load_max_txg = spa->spa_load_txg; 2759 spa_set_log_state(spa, SPA_LOG_CLEAR); 2760 } else { 2761 spa->spa_load_max_txg = max_request; 2762 } 2763 2764 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2765 mosconfig); 2766 if (load_error == 0) 2767 return (0); 2768 2769 if (spa->spa_root_vdev != NULL) 2770 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2771 2772 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2773 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2774 2775 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2776 nvlist_free(config); 2777 return (load_error); 2778 } 2779 2780 if (state == SPA_LOAD_RECOVER) { 2781 /* Price of rolling back is discarding txgs, including log */ 2782 spa_set_log_state(spa, SPA_LOG_CLEAR); 2783 } else { 2784 /* 2785 * If we aren't rolling back save the load info from our first 2786 * import attempt so that we can restore it after attempting 2787 * to rewind. 2788 */ 2789 loadinfo = spa->spa_load_info; 2790 spa->spa_load_info = fnvlist_alloc(); 2791 } 2792 2793 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2794 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2795 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2796 TXG_INITIAL : safe_rewind_txg; 2797 2798 /* 2799 * Continue as long as we're finding errors, we're still within 2800 * the acceptable rewind range, and we're still finding uberblocks 2801 */ 2802 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2803 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2804 if (spa->spa_load_max_txg < safe_rewind_txg) 2805 spa->spa_extreme_rewind = B_TRUE; 2806 rewind_error = spa_load_retry(spa, state, mosconfig); 2807 } 2808 2809 spa->spa_extreme_rewind = B_FALSE; 2810 spa->spa_load_max_txg = UINT64_MAX; 2811 2812 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2813 spa_config_set(spa, config); 2814 2815 if (state == SPA_LOAD_RECOVER) { 2816 ASSERT3P(loadinfo, ==, NULL); 2817 return (rewind_error); 2818 } else { 2819 /* Store the rewind info as part of the initial load info */ 2820 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2821 spa->spa_load_info); 2822 2823 /* Restore the initial load info */ 2824 fnvlist_free(spa->spa_load_info); 2825 spa->spa_load_info = loadinfo; 2826 2827 return (load_error); 2828 } 2829 } 2830 2831 /* 2832 * Pool Open/Import 2833 * 2834 * The import case is identical to an open except that the configuration is sent 2835 * down from userland, instead of grabbed from the configuration cache. For the 2836 * case of an open, the pool configuration will exist in the 2837 * POOL_STATE_UNINITIALIZED state. 2838 * 2839 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2840 * the same time open the pool, without having to keep around the spa_t in some 2841 * ambiguous state. 2842 */ 2843 static int 2844 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2845 nvlist_t **config) 2846 { 2847 spa_t *spa; 2848 spa_load_state_t state = SPA_LOAD_OPEN; 2849 int error; 2850 int locked = B_FALSE; 2851 2852 *spapp = NULL; 2853 2854 /* 2855 * As disgusting as this is, we need to support recursive calls to this 2856 * function because dsl_dir_open() is called during spa_load(), and ends 2857 * up calling spa_open() again. The real fix is to figure out how to 2858 * avoid dsl_dir_open() calling this in the first place. 2859 */ 2860 if (mutex_owner(&spa_namespace_lock) != curthread) { 2861 mutex_enter(&spa_namespace_lock); 2862 locked = B_TRUE; 2863 } 2864 2865 if ((spa = spa_lookup(pool)) == NULL) { 2866 if (locked) 2867 mutex_exit(&spa_namespace_lock); 2868 return (SET_ERROR(ENOENT)); 2869 } 2870 2871 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2872 zpool_rewind_policy_t policy; 2873 2874 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2875 &policy); 2876 if (policy.zrp_request & ZPOOL_DO_REWIND) 2877 state = SPA_LOAD_RECOVER; 2878 2879 spa_activate(spa, spa_mode_global); 2880 2881 if (state != SPA_LOAD_RECOVER) 2882 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2883 2884 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2885 policy.zrp_request); 2886 2887 if (error == EBADF) { 2888 /* 2889 * If vdev_validate() returns failure (indicated by 2890 * EBADF), it indicates that one of the vdevs indicates 2891 * that the pool has been exported or destroyed. If 2892 * this is the case, the config cache is out of sync and 2893 * we should remove the pool from the namespace. 2894 */ 2895 spa_unload(spa); 2896 spa_deactivate(spa); 2897 spa_config_sync(spa, B_TRUE, B_TRUE); 2898 spa_remove(spa); 2899 if (locked) 2900 mutex_exit(&spa_namespace_lock); 2901 return (SET_ERROR(ENOENT)); 2902 } 2903 2904 if (error) { 2905 /* 2906 * We can't open the pool, but we still have useful 2907 * information: the state of each vdev after the 2908 * attempted vdev_open(). Return this to the user. 2909 */ 2910 if (config != NULL && spa->spa_config) { 2911 VERIFY(nvlist_dup(spa->spa_config, config, 2912 KM_SLEEP) == 0); 2913 VERIFY(nvlist_add_nvlist(*config, 2914 ZPOOL_CONFIG_LOAD_INFO, 2915 spa->spa_load_info) == 0); 2916 } 2917 spa_unload(spa); 2918 spa_deactivate(spa); 2919 spa->spa_last_open_failed = error; 2920 if (locked) 2921 mutex_exit(&spa_namespace_lock); 2922 *spapp = NULL; 2923 return (error); 2924 } 2925 } 2926 2927 spa_open_ref(spa, tag); 2928 2929 if (config != NULL) 2930 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2931 2932 /* 2933 * If we've recovered the pool, pass back any information we 2934 * gathered while doing the load. 2935 */ 2936 if (state == SPA_LOAD_RECOVER) { 2937 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2938 spa->spa_load_info) == 0); 2939 } 2940 2941 if (locked) { 2942 spa->spa_last_open_failed = 0; 2943 spa->spa_last_ubsync_txg = 0; 2944 spa->spa_load_txg = 0; 2945 mutex_exit(&spa_namespace_lock); 2946 } 2947 2948 *spapp = spa; 2949 2950 return (0); 2951 } 2952 2953 int 2954 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2955 nvlist_t **config) 2956 { 2957 return (spa_open_common(name, spapp, tag, policy, config)); 2958 } 2959 2960 int 2961 spa_open(const char *name, spa_t **spapp, void *tag) 2962 { 2963 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2964 } 2965 2966 /* 2967 * Lookup the given spa_t, incrementing the inject count in the process, 2968 * preventing it from being exported or destroyed. 2969 */ 2970 spa_t * 2971 spa_inject_addref(char *name) 2972 { 2973 spa_t *spa; 2974 2975 mutex_enter(&spa_namespace_lock); 2976 if ((spa = spa_lookup(name)) == NULL) { 2977 mutex_exit(&spa_namespace_lock); 2978 return (NULL); 2979 } 2980 spa->spa_inject_ref++; 2981 mutex_exit(&spa_namespace_lock); 2982 2983 return (spa); 2984 } 2985 2986 void 2987 spa_inject_delref(spa_t *spa) 2988 { 2989 mutex_enter(&spa_namespace_lock); 2990 spa->spa_inject_ref--; 2991 mutex_exit(&spa_namespace_lock); 2992 } 2993 2994 /* 2995 * Add spares device information to the nvlist. 2996 */ 2997 static void 2998 spa_add_spares(spa_t *spa, nvlist_t *config) 2999 { 3000 nvlist_t **spares; 3001 uint_t i, nspares; 3002 nvlist_t *nvroot; 3003 uint64_t guid; 3004 vdev_stat_t *vs; 3005 uint_t vsc; 3006 uint64_t pool; 3007 3008 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3009 3010 if (spa->spa_spares.sav_count == 0) 3011 return; 3012 3013 VERIFY(nvlist_lookup_nvlist(config, 3014 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3015 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3016 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3017 if (nspares != 0) { 3018 VERIFY(nvlist_add_nvlist_array(nvroot, 3019 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3020 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3021 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3022 3023 /* 3024 * Go through and find any spares which have since been 3025 * repurposed as an active spare. If this is the case, update 3026 * their status appropriately. 3027 */ 3028 for (i = 0; i < nspares; i++) { 3029 VERIFY(nvlist_lookup_uint64(spares[i], 3030 ZPOOL_CONFIG_GUID, &guid) == 0); 3031 if (spa_spare_exists(guid, &pool, NULL) && 3032 pool != 0ULL) { 3033 VERIFY(nvlist_lookup_uint64_array( 3034 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3035 (uint64_t **)&vs, &vsc) == 0); 3036 vs->vs_state = VDEV_STATE_CANT_OPEN; 3037 vs->vs_aux = VDEV_AUX_SPARED; 3038 } 3039 } 3040 } 3041 } 3042 3043 /* 3044 * Add l2cache device information to the nvlist, including vdev stats. 3045 */ 3046 static void 3047 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3048 { 3049 nvlist_t **l2cache; 3050 uint_t i, j, nl2cache; 3051 nvlist_t *nvroot; 3052 uint64_t guid; 3053 vdev_t *vd; 3054 vdev_stat_t *vs; 3055 uint_t vsc; 3056 3057 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3058 3059 if (spa->spa_l2cache.sav_count == 0) 3060 return; 3061 3062 VERIFY(nvlist_lookup_nvlist(config, 3063 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3064 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3065 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3066 if (nl2cache != 0) { 3067 VERIFY(nvlist_add_nvlist_array(nvroot, 3068 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3069 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3070 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3071 3072 /* 3073 * Update level 2 cache device stats. 3074 */ 3075 3076 for (i = 0; i < nl2cache; i++) { 3077 VERIFY(nvlist_lookup_uint64(l2cache[i], 3078 ZPOOL_CONFIG_GUID, &guid) == 0); 3079 3080 vd = NULL; 3081 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3082 if (guid == 3083 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3084 vd = spa->spa_l2cache.sav_vdevs[j]; 3085 break; 3086 } 3087 } 3088 ASSERT(vd != NULL); 3089 3090 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3091 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3092 == 0); 3093 vdev_get_stats(vd, vs); 3094 } 3095 } 3096 } 3097 3098 static void 3099 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3100 { 3101 nvlist_t *features; 3102 zap_cursor_t zc; 3103 zap_attribute_t za; 3104 3105 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3106 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3107 3108 if (spa->spa_feat_for_read_obj != 0) { 3109 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3110 spa->spa_feat_for_read_obj); 3111 zap_cursor_retrieve(&zc, &za) == 0; 3112 zap_cursor_advance(&zc)) { 3113 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3114 za.za_num_integers == 1); 3115 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3116 za.za_first_integer)); 3117 } 3118 zap_cursor_fini(&zc); 3119 } 3120 3121 if (spa->spa_feat_for_write_obj != 0) { 3122 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3123 spa->spa_feat_for_write_obj); 3124 zap_cursor_retrieve(&zc, &za) == 0; 3125 zap_cursor_advance(&zc)) { 3126 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3127 za.za_num_integers == 1); 3128 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3129 za.za_first_integer)); 3130 } 3131 zap_cursor_fini(&zc); 3132 } 3133 3134 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3135 features) == 0); 3136 nvlist_free(features); 3137 } 3138 3139 int 3140 spa_get_stats(const char *name, nvlist_t **config, 3141 char *altroot, size_t buflen) 3142 { 3143 int error; 3144 spa_t *spa; 3145 3146 *config = NULL; 3147 error = spa_open_common(name, &spa, FTAG, NULL, config); 3148 3149 if (spa != NULL) { 3150 /* 3151 * This still leaves a window of inconsistency where the spares 3152 * or l2cache devices could change and the config would be 3153 * self-inconsistent. 3154 */ 3155 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3156 3157 if (*config != NULL) { 3158 uint64_t loadtimes[2]; 3159 3160 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3161 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3162 VERIFY(nvlist_add_uint64_array(*config, 3163 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3164 3165 VERIFY(nvlist_add_uint64(*config, 3166 ZPOOL_CONFIG_ERRCOUNT, 3167 spa_get_errlog_size(spa)) == 0); 3168 3169 if (spa_suspended(spa)) 3170 VERIFY(nvlist_add_uint64(*config, 3171 ZPOOL_CONFIG_SUSPENDED, 3172 spa->spa_failmode) == 0); 3173 3174 spa_add_spares(spa, *config); 3175 spa_add_l2cache(spa, *config); 3176 spa_add_feature_stats(spa, *config); 3177 } 3178 } 3179 3180 /* 3181 * We want to get the alternate root even for faulted pools, so we cheat 3182 * and call spa_lookup() directly. 3183 */ 3184 if (altroot) { 3185 if (spa == NULL) { 3186 mutex_enter(&spa_namespace_lock); 3187 spa = spa_lookup(name); 3188 if (spa) 3189 spa_altroot(spa, altroot, buflen); 3190 else 3191 altroot[0] = '\0'; 3192 spa = NULL; 3193 mutex_exit(&spa_namespace_lock); 3194 } else { 3195 spa_altroot(spa, altroot, buflen); 3196 } 3197 } 3198 3199 if (spa != NULL) { 3200 spa_config_exit(spa, SCL_CONFIG, FTAG); 3201 spa_close(spa, FTAG); 3202 } 3203 3204 return (error); 3205 } 3206 3207 /* 3208 * Validate that the auxiliary device array is well formed. We must have an 3209 * array of nvlists, each which describes a valid leaf vdev. If this is an 3210 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3211 * specified, as long as they are well-formed. 3212 */ 3213 static int 3214 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3215 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3216 vdev_labeltype_t label) 3217 { 3218 nvlist_t **dev; 3219 uint_t i, ndev; 3220 vdev_t *vd; 3221 int error; 3222 3223 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3224 3225 /* 3226 * It's acceptable to have no devs specified. 3227 */ 3228 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3229 return (0); 3230 3231 if (ndev == 0) 3232 return (SET_ERROR(EINVAL)); 3233 3234 /* 3235 * Make sure the pool is formatted with a version that supports this 3236 * device type. 3237 */ 3238 if (spa_version(spa) < version) 3239 return (SET_ERROR(ENOTSUP)); 3240 3241 /* 3242 * Set the pending device list so we correctly handle device in-use 3243 * checking. 3244 */ 3245 sav->sav_pending = dev; 3246 sav->sav_npending = ndev; 3247 3248 for (i = 0; i < ndev; i++) { 3249 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3250 mode)) != 0) 3251 goto out; 3252 3253 if (!vd->vdev_ops->vdev_op_leaf) { 3254 vdev_free(vd); 3255 error = SET_ERROR(EINVAL); 3256 goto out; 3257 } 3258 3259 /* 3260 * The L2ARC currently only supports disk devices in 3261 * kernel context. For user-level testing, we allow it. 3262 */ 3263 #ifdef _KERNEL 3264 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3265 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3266 error = SET_ERROR(ENOTBLK); 3267 vdev_free(vd); 3268 goto out; 3269 } 3270 #endif 3271 vd->vdev_top = vd; 3272 3273 if ((error = vdev_open(vd)) == 0 && 3274 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3275 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3276 vd->vdev_guid) == 0); 3277 } 3278 3279 vdev_free(vd); 3280 3281 if (error && 3282 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3283 goto out; 3284 else 3285 error = 0; 3286 } 3287 3288 out: 3289 sav->sav_pending = NULL; 3290 sav->sav_npending = 0; 3291 return (error); 3292 } 3293 3294 static int 3295 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3296 { 3297 int error; 3298 3299 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3300 3301 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3302 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3303 VDEV_LABEL_SPARE)) != 0) { 3304 return (error); 3305 } 3306 3307 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3308 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3309 VDEV_LABEL_L2CACHE)); 3310 } 3311 3312 static void 3313 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3314 const char *config) 3315 { 3316 int i; 3317 3318 if (sav->sav_config != NULL) { 3319 nvlist_t **olddevs; 3320 uint_t oldndevs; 3321 nvlist_t **newdevs; 3322 3323 /* 3324 * Generate new dev list by concatentating with the 3325 * current dev list. 3326 */ 3327 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3328 &olddevs, &oldndevs) == 0); 3329 3330 newdevs = kmem_alloc(sizeof (void *) * 3331 (ndevs + oldndevs), KM_SLEEP); 3332 for (i = 0; i < oldndevs; i++) 3333 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3334 KM_SLEEP) == 0); 3335 for (i = 0; i < ndevs; i++) 3336 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3337 KM_SLEEP) == 0); 3338 3339 VERIFY(nvlist_remove(sav->sav_config, config, 3340 DATA_TYPE_NVLIST_ARRAY) == 0); 3341 3342 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3343 config, newdevs, ndevs + oldndevs) == 0); 3344 for (i = 0; i < oldndevs + ndevs; i++) 3345 nvlist_free(newdevs[i]); 3346 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3347 } else { 3348 /* 3349 * Generate a new dev list. 3350 */ 3351 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3352 KM_SLEEP) == 0); 3353 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3354 devs, ndevs) == 0); 3355 } 3356 } 3357 3358 /* 3359 * Stop and drop level 2 ARC devices 3360 */ 3361 void 3362 spa_l2cache_drop(spa_t *spa) 3363 { 3364 vdev_t *vd; 3365 int i; 3366 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3367 3368 for (i = 0; i < sav->sav_count; i++) { 3369 uint64_t pool; 3370 3371 vd = sav->sav_vdevs[i]; 3372 ASSERT(vd != NULL); 3373 3374 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3375 pool != 0ULL && l2arc_vdev_present(vd)) 3376 l2arc_remove_vdev(vd); 3377 } 3378 } 3379 3380 /* 3381 * Pool Creation 3382 */ 3383 int 3384 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3385 nvlist_t *zplprops) 3386 { 3387 spa_t *spa; 3388 char *altroot = NULL; 3389 vdev_t *rvd; 3390 dsl_pool_t *dp; 3391 dmu_tx_t *tx; 3392 int error = 0; 3393 uint64_t txg = TXG_INITIAL; 3394 nvlist_t **spares, **l2cache; 3395 uint_t nspares, nl2cache; 3396 uint64_t version, obj; 3397 boolean_t has_features; 3398 3399 /* 3400 * If this pool already exists, return failure. 3401 */ 3402 mutex_enter(&spa_namespace_lock); 3403 if (spa_lookup(pool) != NULL) { 3404 mutex_exit(&spa_namespace_lock); 3405 return (SET_ERROR(EEXIST)); 3406 } 3407 3408 /* 3409 * Allocate a new spa_t structure. 3410 */ 3411 (void) nvlist_lookup_string(props, 3412 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3413 spa = spa_add(pool, NULL, altroot); 3414 spa_activate(spa, spa_mode_global); 3415 3416 if (props && (error = spa_prop_validate(spa, props))) { 3417 spa_deactivate(spa); 3418 spa_remove(spa); 3419 mutex_exit(&spa_namespace_lock); 3420 return (error); 3421 } 3422 3423 has_features = B_FALSE; 3424 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3425 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3426 if (zpool_prop_feature(nvpair_name(elem))) 3427 has_features = B_TRUE; 3428 } 3429 3430 if (has_features || nvlist_lookup_uint64(props, 3431 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3432 version = SPA_VERSION; 3433 } 3434 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3435 3436 spa->spa_first_txg = txg; 3437 spa->spa_uberblock.ub_txg = txg - 1; 3438 spa->spa_uberblock.ub_version = version; 3439 spa->spa_ubsync = spa->spa_uberblock; 3440 3441 /* 3442 * Create "The Godfather" zio to hold all async IOs 3443 */ 3444 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 3445 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 3446 3447 /* 3448 * Create the root vdev. 3449 */ 3450 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3451 3452 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3453 3454 ASSERT(error != 0 || rvd != NULL); 3455 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3456 3457 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3458 error = SET_ERROR(EINVAL); 3459 3460 if (error == 0 && 3461 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3462 (error = spa_validate_aux(spa, nvroot, txg, 3463 VDEV_ALLOC_ADD)) == 0) { 3464 for (int c = 0; c < rvd->vdev_children; c++) { 3465 vdev_metaslab_set_size(rvd->vdev_child[c]); 3466 vdev_expand(rvd->vdev_child[c], txg); 3467 } 3468 } 3469 3470 spa_config_exit(spa, SCL_ALL, FTAG); 3471 3472 if (error != 0) { 3473 spa_unload(spa); 3474 spa_deactivate(spa); 3475 spa_remove(spa); 3476 mutex_exit(&spa_namespace_lock); 3477 return (error); 3478 } 3479 3480 /* 3481 * Get the list of spares, if specified. 3482 */ 3483 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3484 &spares, &nspares) == 0) { 3485 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3486 KM_SLEEP) == 0); 3487 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3488 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3489 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3490 spa_load_spares(spa); 3491 spa_config_exit(spa, SCL_ALL, FTAG); 3492 spa->spa_spares.sav_sync = B_TRUE; 3493 } 3494 3495 /* 3496 * Get the list of level 2 cache devices, if specified. 3497 */ 3498 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3499 &l2cache, &nl2cache) == 0) { 3500 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3501 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3502 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3503 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3504 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3505 spa_load_l2cache(spa); 3506 spa_config_exit(spa, SCL_ALL, FTAG); 3507 spa->spa_l2cache.sav_sync = B_TRUE; 3508 } 3509 3510 spa->spa_is_initializing = B_TRUE; 3511 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3512 spa->spa_meta_objset = dp->dp_meta_objset; 3513 spa->spa_is_initializing = B_FALSE; 3514 3515 /* 3516 * Create DDTs (dedup tables). 3517 */ 3518 ddt_create(spa); 3519 3520 spa_update_dspace(spa); 3521 3522 tx = dmu_tx_create_assigned(dp, txg); 3523 3524 /* 3525 * Create the pool config object. 3526 */ 3527 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3528 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3529 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3530 3531 if (zap_add(spa->spa_meta_objset, 3532 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3533 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3534 cmn_err(CE_PANIC, "failed to add pool config"); 3535 } 3536 3537 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3538 spa_feature_create_zap_objects(spa, tx); 3539 3540 if (zap_add(spa->spa_meta_objset, 3541 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3542 sizeof (uint64_t), 1, &version, tx) != 0) { 3543 cmn_err(CE_PANIC, "failed to add pool version"); 3544 } 3545 3546 /* Newly created pools with the right version are always deflated. */ 3547 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3548 spa->spa_deflate = TRUE; 3549 if (zap_add(spa->spa_meta_objset, 3550 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3551 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3552 cmn_err(CE_PANIC, "failed to add deflate"); 3553 } 3554 } 3555 3556 /* 3557 * Create the deferred-free bpobj. Turn off compression 3558 * because sync-to-convergence takes longer if the blocksize 3559 * keeps changing. 3560 */ 3561 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3562 dmu_object_set_compress(spa->spa_meta_objset, obj, 3563 ZIO_COMPRESS_OFF, tx); 3564 if (zap_add(spa->spa_meta_objset, 3565 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3566 sizeof (uint64_t), 1, &obj, tx) != 0) { 3567 cmn_err(CE_PANIC, "failed to add bpobj"); 3568 } 3569 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3570 spa->spa_meta_objset, obj)); 3571 3572 /* 3573 * Create the pool's history object. 3574 */ 3575 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3576 spa_history_create_obj(spa, tx); 3577 3578 /* 3579 * Generate some random noise for salted checksums to operate on. As 3580 * soon as a salted checksum is used for the first time we will 3581 * generate the persistent MOS object to hold the salt (see 3582 * spa_activate_salted_cksum). 3583 */ 3584 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 3585 sizeof (spa->spa_cksum_salt.zcs_bytes)); 3586 3587 /* 3588 * Set pool properties. 3589 */ 3590 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3591 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3592 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3593 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3594 3595 if (props != NULL) { 3596 spa_configfile_set(spa, props, B_FALSE); 3597 spa_sync_props(props, tx); 3598 } 3599 3600 dmu_tx_commit(tx); 3601 3602 spa->spa_sync_on = B_TRUE; 3603 txg_sync_start(spa->spa_dsl_pool); 3604 3605 /* 3606 * We explicitly wait for the first transaction to complete so that our 3607 * bean counters are appropriately updated. 3608 */ 3609 txg_wait_synced(spa->spa_dsl_pool, txg); 3610 3611 spa_config_sync(spa, B_FALSE, B_TRUE); 3612 3613 spa_history_log_version(spa, "create"); 3614 3615 spa->spa_minref = refcount_count(&spa->spa_refcount); 3616 3617 mutex_exit(&spa_namespace_lock); 3618 3619 return (0); 3620 } 3621 3622 #ifdef _KERNEL 3623 /* 3624 * Get the root pool information from the root disk, then import the root pool 3625 * during the system boot up time. 3626 */ 3627 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3628 3629 static nvlist_t * 3630 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3631 { 3632 nvlist_t *config; 3633 nvlist_t *nvtop, *nvroot; 3634 uint64_t pgid; 3635 3636 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3637 return (NULL); 3638 3639 /* 3640 * Add this top-level vdev to the child array. 3641 */ 3642 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3643 &nvtop) == 0); 3644 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3645 &pgid) == 0); 3646 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3647 3648 /* 3649 * Put this pool's top-level vdevs into a root vdev. 3650 */ 3651 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3652 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3653 VDEV_TYPE_ROOT) == 0); 3654 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3655 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3656 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3657 &nvtop, 1) == 0); 3658 3659 /* 3660 * Replace the existing vdev_tree with the new root vdev in 3661 * this pool's configuration (remove the old, add the new). 3662 */ 3663 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3664 nvlist_free(nvroot); 3665 return (config); 3666 } 3667 3668 /* 3669 * Walk the vdev tree and see if we can find a device with "better" 3670 * configuration. A configuration is "better" if the label on that 3671 * device has a more recent txg. 3672 */ 3673 static void 3674 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3675 { 3676 for (int c = 0; c < vd->vdev_children; c++) 3677 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3678 3679 if (vd->vdev_ops->vdev_op_leaf) { 3680 nvlist_t *label; 3681 uint64_t label_txg; 3682 3683 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3684 &label) != 0) 3685 return; 3686 3687 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3688 &label_txg) == 0); 3689 3690 /* 3691 * Do we have a better boot device? 3692 */ 3693 if (label_txg > *txg) { 3694 *txg = label_txg; 3695 *avd = vd; 3696 } 3697 nvlist_free(label); 3698 } 3699 } 3700 3701 /* 3702 * Import a root pool. 3703 * 3704 * For x86. devpath_list will consist of devid and/or physpath name of 3705 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3706 * The GRUB "findroot" command will return the vdev we should boot. 3707 * 3708 * For Sparc, devpath_list consists the physpath name of the booting device 3709 * no matter the rootpool is a single device pool or a mirrored pool. 3710 * e.g. 3711 * "/pci@1f,0/ide@d/disk@0,0:a" 3712 */ 3713 int 3714 spa_import_rootpool(char *devpath, char *devid) 3715 { 3716 spa_t *spa; 3717 vdev_t *rvd, *bvd, *avd = NULL; 3718 nvlist_t *config, *nvtop; 3719 uint64_t guid, txg; 3720 char *pname; 3721 int error; 3722 3723 /* 3724 * Read the label from the boot device and generate a configuration. 3725 */ 3726 config = spa_generate_rootconf(devpath, devid, &guid); 3727 #if defined(_OBP) && defined(_KERNEL) 3728 if (config == NULL) { 3729 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3730 /* iscsi boot */ 3731 get_iscsi_bootpath_phy(devpath); 3732 config = spa_generate_rootconf(devpath, devid, &guid); 3733 } 3734 } 3735 #endif 3736 if (config == NULL) { 3737 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3738 devpath); 3739 return (SET_ERROR(EIO)); 3740 } 3741 3742 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3743 &pname) == 0); 3744 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3745 3746 mutex_enter(&spa_namespace_lock); 3747 if ((spa = spa_lookup(pname)) != NULL) { 3748 /* 3749 * Remove the existing root pool from the namespace so that we 3750 * can replace it with the correct config we just read in. 3751 */ 3752 spa_remove(spa); 3753 } 3754 3755 spa = spa_add(pname, config, NULL); 3756 spa->spa_is_root = B_TRUE; 3757 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3758 3759 /* 3760 * Build up a vdev tree based on the boot device's label config. 3761 */ 3762 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3763 &nvtop) == 0); 3764 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3765 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3766 VDEV_ALLOC_ROOTPOOL); 3767 spa_config_exit(spa, SCL_ALL, FTAG); 3768 if (error) { 3769 mutex_exit(&spa_namespace_lock); 3770 nvlist_free(config); 3771 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3772 pname); 3773 return (error); 3774 } 3775 3776 /* 3777 * Get the boot vdev. 3778 */ 3779 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3780 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3781 (u_longlong_t)guid); 3782 error = SET_ERROR(ENOENT); 3783 goto out; 3784 } 3785 3786 /* 3787 * Determine if there is a better boot device. 3788 */ 3789 avd = bvd; 3790 spa_alt_rootvdev(rvd, &avd, &txg); 3791 if (avd != bvd) { 3792 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3793 "try booting from '%s'", avd->vdev_path); 3794 error = SET_ERROR(EINVAL); 3795 goto out; 3796 } 3797 3798 /* 3799 * If the boot device is part of a spare vdev then ensure that 3800 * we're booting off the active spare. 3801 */ 3802 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3803 !bvd->vdev_isspare) { 3804 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3805 "try booting from '%s'", 3806 bvd->vdev_parent-> 3807 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3808 error = SET_ERROR(EINVAL); 3809 goto out; 3810 } 3811 3812 error = 0; 3813 out: 3814 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3815 vdev_free(rvd); 3816 spa_config_exit(spa, SCL_ALL, FTAG); 3817 mutex_exit(&spa_namespace_lock); 3818 3819 nvlist_free(config); 3820 return (error); 3821 } 3822 3823 #endif 3824 3825 /* 3826 * Import a non-root pool into the system. 3827 */ 3828 int 3829 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3830 { 3831 spa_t *spa; 3832 char *altroot = NULL; 3833 spa_load_state_t state = SPA_LOAD_IMPORT; 3834 zpool_rewind_policy_t policy; 3835 uint64_t mode = spa_mode_global; 3836 uint64_t readonly = B_FALSE; 3837 int error; 3838 nvlist_t *nvroot; 3839 nvlist_t **spares, **l2cache; 3840 uint_t nspares, nl2cache; 3841 3842 /* 3843 * If a pool with this name exists, return failure. 3844 */ 3845 mutex_enter(&spa_namespace_lock); 3846 if (spa_lookup(pool) != NULL) { 3847 mutex_exit(&spa_namespace_lock); 3848 return (SET_ERROR(EEXIST)); 3849 } 3850 3851 /* 3852 * Create and initialize the spa structure. 3853 */ 3854 (void) nvlist_lookup_string(props, 3855 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3856 (void) nvlist_lookup_uint64(props, 3857 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3858 if (readonly) 3859 mode = FREAD; 3860 spa = spa_add(pool, config, altroot); 3861 spa->spa_import_flags = flags; 3862 3863 /* 3864 * Verbatim import - Take a pool and insert it into the namespace 3865 * as if it had been loaded at boot. 3866 */ 3867 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3868 if (props != NULL) 3869 spa_configfile_set(spa, props, B_FALSE); 3870 3871 spa_config_sync(spa, B_FALSE, B_TRUE); 3872 3873 mutex_exit(&spa_namespace_lock); 3874 return (0); 3875 } 3876 3877 spa_activate(spa, mode); 3878 3879 /* 3880 * Don't start async tasks until we know everything is healthy. 3881 */ 3882 spa_async_suspend(spa); 3883 3884 zpool_get_rewind_policy(config, &policy); 3885 if (policy.zrp_request & ZPOOL_DO_REWIND) 3886 state = SPA_LOAD_RECOVER; 3887 3888 /* 3889 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3890 * because the user-supplied config is actually the one to trust when 3891 * doing an import. 3892 */ 3893 if (state != SPA_LOAD_RECOVER) 3894 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3895 3896 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3897 policy.zrp_request); 3898 3899 /* 3900 * Propagate anything learned while loading the pool and pass it 3901 * back to caller (i.e. rewind info, missing devices, etc). 3902 */ 3903 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3904 spa->spa_load_info) == 0); 3905 3906 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3907 /* 3908 * Toss any existing sparelist, as it doesn't have any validity 3909 * anymore, and conflicts with spa_has_spare(). 3910 */ 3911 if (spa->spa_spares.sav_config) { 3912 nvlist_free(spa->spa_spares.sav_config); 3913 spa->spa_spares.sav_config = NULL; 3914 spa_load_spares(spa); 3915 } 3916 if (spa->spa_l2cache.sav_config) { 3917 nvlist_free(spa->spa_l2cache.sav_config); 3918 spa->spa_l2cache.sav_config = NULL; 3919 spa_load_l2cache(spa); 3920 } 3921 3922 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3923 &nvroot) == 0); 3924 if (error == 0) 3925 error = spa_validate_aux(spa, nvroot, -1ULL, 3926 VDEV_ALLOC_SPARE); 3927 if (error == 0) 3928 error = spa_validate_aux(spa, nvroot, -1ULL, 3929 VDEV_ALLOC_L2CACHE); 3930 spa_config_exit(spa, SCL_ALL, FTAG); 3931 3932 if (props != NULL) 3933 spa_configfile_set(spa, props, B_FALSE); 3934 3935 if (error != 0 || (props && spa_writeable(spa) && 3936 (error = spa_prop_set(spa, props)))) { 3937 spa_unload(spa); 3938 spa_deactivate(spa); 3939 spa_remove(spa); 3940 mutex_exit(&spa_namespace_lock); 3941 return (error); 3942 } 3943 3944 spa_async_resume(spa); 3945 3946 /* 3947 * Override any spares and level 2 cache devices as specified by 3948 * the user, as these may have correct device names/devids, etc. 3949 */ 3950 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3951 &spares, &nspares) == 0) { 3952 if (spa->spa_spares.sav_config) 3953 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3954 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3955 else 3956 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3957 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3958 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3959 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3960 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3961 spa_load_spares(spa); 3962 spa_config_exit(spa, SCL_ALL, FTAG); 3963 spa->spa_spares.sav_sync = B_TRUE; 3964 } 3965 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3966 &l2cache, &nl2cache) == 0) { 3967 if (spa->spa_l2cache.sav_config) 3968 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3969 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3970 else 3971 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3972 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3973 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3974 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3975 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3976 spa_load_l2cache(spa); 3977 spa_config_exit(spa, SCL_ALL, FTAG); 3978 spa->spa_l2cache.sav_sync = B_TRUE; 3979 } 3980 3981 /* 3982 * Check for any removed devices. 3983 */ 3984 if (spa->spa_autoreplace) { 3985 spa_aux_check_removed(&spa->spa_spares); 3986 spa_aux_check_removed(&spa->spa_l2cache); 3987 } 3988 3989 if (spa_writeable(spa)) { 3990 /* 3991 * Update the config cache to include the newly-imported pool. 3992 */ 3993 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3994 } 3995 3996 /* 3997 * It's possible that the pool was expanded while it was exported. 3998 * We kick off an async task to handle this for us. 3999 */ 4000 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4001 4002 mutex_exit(&spa_namespace_lock); 4003 spa_history_log_version(spa, "import"); 4004 4005 return (0); 4006 } 4007 4008 nvlist_t * 4009 spa_tryimport(nvlist_t *tryconfig) 4010 { 4011 nvlist_t *config = NULL; 4012 char *poolname; 4013 spa_t *spa; 4014 uint64_t state; 4015 int error; 4016 4017 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 4018 return (NULL); 4019 4020 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 4021 return (NULL); 4022 4023 /* 4024 * Create and initialize the spa structure. 4025 */ 4026 mutex_enter(&spa_namespace_lock); 4027 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4028 spa_activate(spa, FREAD); 4029 4030 /* 4031 * Pass off the heavy lifting to spa_load(). 4032 * Pass TRUE for mosconfig because the user-supplied config 4033 * is actually the one to trust when doing an import. 4034 */ 4035 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4036 4037 /* 4038 * If 'tryconfig' was at least parsable, return the current config. 4039 */ 4040 if (spa->spa_root_vdev != NULL) { 4041 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4042 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4043 poolname) == 0); 4044 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4045 state) == 0); 4046 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4047 spa->spa_uberblock.ub_timestamp) == 0); 4048 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4049 spa->spa_load_info) == 0); 4050 4051 /* 4052 * If the bootfs property exists on this pool then we 4053 * copy it out so that external consumers can tell which 4054 * pools are bootable. 4055 */ 4056 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4057 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4058 4059 /* 4060 * We have to play games with the name since the 4061 * pool was opened as TRYIMPORT_NAME. 4062 */ 4063 if (dsl_dsobj_to_dsname(spa_name(spa), 4064 spa->spa_bootfs, tmpname) == 0) { 4065 char *cp; 4066 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4067 4068 cp = strchr(tmpname, '/'); 4069 if (cp == NULL) { 4070 (void) strlcpy(dsname, tmpname, 4071 MAXPATHLEN); 4072 } else { 4073 (void) snprintf(dsname, MAXPATHLEN, 4074 "%s/%s", poolname, ++cp); 4075 } 4076 VERIFY(nvlist_add_string(config, 4077 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4078 kmem_free(dsname, MAXPATHLEN); 4079 } 4080 kmem_free(tmpname, MAXPATHLEN); 4081 } 4082 4083 /* 4084 * Add the list of hot spares and level 2 cache devices. 4085 */ 4086 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4087 spa_add_spares(spa, config); 4088 spa_add_l2cache(spa, config); 4089 spa_config_exit(spa, SCL_CONFIG, FTAG); 4090 } 4091 4092 spa_unload(spa); 4093 spa_deactivate(spa); 4094 spa_remove(spa); 4095 mutex_exit(&spa_namespace_lock); 4096 4097 return (config); 4098 } 4099 4100 /* 4101 * Pool export/destroy 4102 * 4103 * The act of destroying or exporting a pool is very simple. We make sure there 4104 * is no more pending I/O and any references to the pool are gone. Then, we 4105 * update the pool state and sync all the labels to disk, removing the 4106 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4107 * we don't sync the labels or remove the configuration cache. 4108 */ 4109 static int 4110 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4111 boolean_t force, boolean_t hardforce) 4112 { 4113 spa_t *spa; 4114 4115 if (oldconfig) 4116 *oldconfig = NULL; 4117 4118 if (!(spa_mode_global & FWRITE)) 4119 return (SET_ERROR(EROFS)); 4120 4121 mutex_enter(&spa_namespace_lock); 4122 if ((spa = spa_lookup(pool)) == NULL) { 4123 mutex_exit(&spa_namespace_lock); 4124 return (SET_ERROR(ENOENT)); 4125 } 4126 4127 /* 4128 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4129 * reacquire the namespace lock, and see if we can export. 4130 */ 4131 spa_open_ref(spa, FTAG); 4132 mutex_exit(&spa_namespace_lock); 4133 spa_async_suspend(spa); 4134 mutex_enter(&spa_namespace_lock); 4135 spa_close(spa, FTAG); 4136 4137 /* 4138 * The pool will be in core if it's openable, 4139 * in which case we can modify its state. 4140 */ 4141 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4142 /* 4143 * Objsets may be open only because they're dirty, so we 4144 * have to force it to sync before checking spa_refcnt. 4145 */ 4146 txg_wait_synced(spa->spa_dsl_pool, 0); 4147 4148 /* 4149 * A pool cannot be exported or destroyed if there are active 4150 * references. If we are resetting a pool, allow references by 4151 * fault injection handlers. 4152 */ 4153 if (!spa_refcount_zero(spa) || 4154 (spa->spa_inject_ref != 0 && 4155 new_state != POOL_STATE_UNINITIALIZED)) { 4156 spa_async_resume(spa); 4157 mutex_exit(&spa_namespace_lock); 4158 return (SET_ERROR(EBUSY)); 4159 } 4160 4161 /* 4162 * A pool cannot be exported if it has an active shared spare. 4163 * This is to prevent other pools stealing the active spare 4164 * from an exported pool. At user's own will, such pool can 4165 * be forcedly exported. 4166 */ 4167 if (!force && new_state == POOL_STATE_EXPORTED && 4168 spa_has_active_shared_spare(spa)) { 4169 spa_async_resume(spa); 4170 mutex_exit(&spa_namespace_lock); 4171 return (SET_ERROR(EXDEV)); 4172 } 4173 4174 /* 4175 * We want this to be reflected on every label, 4176 * so mark them all dirty. spa_unload() will do the 4177 * final sync that pushes these changes out. 4178 */ 4179 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4180 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4181 spa->spa_state = new_state; 4182 spa->spa_final_txg = spa_last_synced_txg(spa) + 4183 TXG_DEFER_SIZE + 1; 4184 vdev_config_dirty(spa->spa_root_vdev); 4185 spa_config_exit(spa, SCL_ALL, FTAG); 4186 } 4187 } 4188 4189 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4190 4191 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4192 spa_unload(spa); 4193 spa_deactivate(spa); 4194 } 4195 4196 if (oldconfig && spa->spa_config) 4197 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4198 4199 if (new_state != POOL_STATE_UNINITIALIZED) { 4200 if (!hardforce) 4201 spa_config_sync(spa, B_TRUE, B_TRUE); 4202 spa_remove(spa); 4203 } 4204 mutex_exit(&spa_namespace_lock); 4205 4206 return (0); 4207 } 4208 4209 /* 4210 * Destroy a storage pool. 4211 */ 4212 int 4213 spa_destroy(char *pool) 4214 { 4215 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4216 B_FALSE, B_FALSE)); 4217 } 4218 4219 /* 4220 * Export a storage pool. 4221 */ 4222 int 4223 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4224 boolean_t hardforce) 4225 { 4226 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4227 force, hardforce)); 4228 } 4229 4230 /* 4231 * Similar to spa_export(), this unloads the spa_t without actually removing it 4232 * from the namespace in any way. 4233 */ 4234 int 4235 spa_reset(char *pool) 4236 { 4237 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4238 B_FALSE, B_FALSE)); 4239 } 4240 4241 /* 4242 * ========================================================================== 4243 * Device manipulation 4244 * ========================================================================== 4245 */ 4246 4247 /* 4248 * Add a device to a storage pool. 4249 */ 4250 int 4251 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4252 { 4253 uint64_t txg, id; 4254 int error; 4255 vdev_t *rvd = spa->spa_root_vdev; 4256 vdev_t *vd, *tvd; 4257 nvlist_t **spares, **l2cache; 4258 uint_t nspares, nl2cache; 4259 4260 ASSERT(spa_writeable(spa)); 4261 4262 txg = spa_vdev_enter(spa); 4263 4264 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4265 VDEV_ALLOC_ADD)) != 0) 4266 return (spa_vdev_exit(spa, NULL, txg, error)); 4267 4268 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4269 4270 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4271 &nspares) != 0) 4272 nspares = 0; 4273 4274 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4275 &nl2cache) != 0) 4276 nl2cache = 0; 4277 4278 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4279 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4280 4281 if (vd->vdev_children != 0 && 4282 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4283 return (spa_vdev_exit(spa, vd, txg, error)); 4284 4285 /* 4286 * We must validate the spares and l2cache devices after checking the 4287 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4288 */ 4289 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4290 return (spa_vdev_exit(spa, vd, txg, error)); 4291 4292 /* 4293 * Transfer each new top-level vdev from vd to rvd. 4294 */ 4295 for (int c = 0; c < vd->vdev_children; c++) { 4296 4297 /* 4298 * Set the vdev id to the first hole, if one exists. 4299 */ 4300 for (id = 0; id < rvd->vdev_children; id++) { 4301 if (rvd->vdev_child[id]->vdev_ishole) { 4302 vdev_free(rvd->vdev_child[id]); 4303 break; 4304 } 4305 } 4306 tvd = vd->vdev_child[c]; 4307 vdev_remove_child(vd, tvd); 4308 tvd->vdev_id = id; 4309 vdev_add_child(rvd, tvd); 4310 vdev_config_dirty(tvd); 4311 } 4312 4313 if (nspares != 0) { 4314 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4315 ZPOOL_CONFIG_SPARES); 4316 spa_load_spares(spa); 4317 spa->spa_spares.sav_sync = B_TRUE; 4318 } 4319 4320 if (nl2cache != 0) { 4321 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4322 ZPOOL_CONFIG_L2CACHE); 4323 spa_load_l2cache(spa); 4324 spa->spa_l2cache.sav_sync = B_TRUE; 4325 } 4326 4327 /* 4328 * We have to be careful when adding new vdevs to an existing pool. 4329 * If other threads start allocating from these vdevs before we 4330 * sync the config cache, and we lose power, then upon reboot we may 4331 * fail to open the pool because there are DVAs that the config cache 4332 * can't translate. Therefore, we first add the vdevs without 4333 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4334 * and then let spa_config_update() initialize the new metaslabs. 4335 * 4336 * spa_load() checks for added-but-not-initialized vdevs, so that 4337 * if we lose power at any point in this sequence, the remaining 4338 * steps will be completed the next time we load the pool. 4339 */ 4340 (void) spa_vdev_exit(spa, vd, txg, 0); 4341 4342 mutex_enter(&spa_namespace_lock); 4343 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4344 mutex_exit(&spa_namespace_lock); 4345 4346 return (0); 4347 } 4348 4349 /* 4350 * Attach a device to a mirror. The arguments are the path to any device 4351 * in the mirror, and the nvroot for the new device. If the path specifies 4352 * a device that is not mirrored, we automatically insert the mirror vdev. 4353 * 4354 * If 'replacing' is specified, the new device is intended to replace the 4355 * existing device; in this case the two devices are made into their own 4356 * mirror using the 'replacing' vdev, which is functionally identical to 4357 * the mirror vdev (it actually reuses all the same ops) but has a few 4358 * extra rules: you can't attach to it after it's been created, and upon 4359 * completion of resilvering, the first disk (the one being replaced) 4360 * is automatically detached. 4361 */ 4362 int 4363 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4364 { 4365 uint64_t txg, dtl_max_txg; 4366 vdev_t *rvd = spa->spa_root_vdev; 4367 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4368 vdev_ops_t *pvops; 4369 char *oldvdpath, *newvdpath; 4370 int newvd_isspare; 4371 int error; 4372 4373 ASSERT(spa_writeable(spa)); 4374 4375 txg = spa_vdev_enter(spa); 4376 4377 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4378 4379 if (oldvd == NULL) 4380 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4381 4382 if (!oldvd->vdev_ops->vdev_op_leaf) 4383 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4384 4385 pvd = oldvd->vdev_parent; 4386 4387 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4388 VDEV_ALLOC_ATTACH)) != 0) 4389 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4390 4391 if (newrootvd->vdev_children != 1) 4392 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4393 4394 newvd = newrootvd->vdev_child[0]; 4395 4396 if (!newvd->vdev_ops->vdev_op_leaf) 4397 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4398 4399 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4400 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4401 4402 /* 4403 * Spares can't replace logs 4404 */ 4405 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4406 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4407 4408 if (!replacing) { 4409 /* 4410 * For attach, the only allowable parent is a mirror or the root 4411 * vdev. 4412 */ 4413 if (pvd->vdev_ops != &vdev_mirror_ops && 4414 pvd->vdev_ops != &vdev_root_ops) 4415 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4416 4417 pvops = &vdev_mirror_ops; 4418 } else { 4419 /* 4420 * Active hot spares can only be replaced by inactive hot 4421 * spares. 4422 */ 4423 if (pvd->vdev_ops == &vdev_spare_ops && 4424 oldvd->vdev_isspare && 4425 !spa_has_spare(spa, newvd->vdev_guid)) 4426 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4427 4428 /* 4429 * If the source is a hot spare, and the parent isn't already a 4430 * spare, then we want to create a new hot spare. Otherwise, we 4431 * want to create a replacing vdev. The user is not allowed to 4432 * attach to a spared vdev child unless the 'isspare' state is 4433 * the same (spare replaces spare, non-spare replaces 4434 * non-spare). 4435 */ 4436 if (pvd->vdev_ops == &vdev_replacing_ops && 4437 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4438 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4439 } else if (pvd->vdev_ops == &vdev_spare_ops && 4440 newvd->vdev_isspare != oldvd->vdev_isspare) { 4441 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4442 } 4443 4444 if (newvd->vdev_isspare) 4445 pvops = &vdev_spare_ops; 4446 else 4447 pvops = &vdev_replacing_ops; 4448 } 4449 4450 /* 4451 * Make sure the new device is big enough. 4452 */ 4453 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4454 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4455 4456 /* 4457 * The new device cannot have a higher alignment requirement 4458 * than the top-level vdev. 4459 */ 4460 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4461 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4462 4463 /* 4464 * If this is an in-place replacement, update oldvd's path and devid 4465 * to make it distinguishable from newvd, and unopenable from now on. 4466 */ 4467 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4468 spa_strfree(oldvd->vdev_path); 4469 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4470 KM_SLEEP); 4471 (void) sprintf(oldvd->vdev_path, "%s/%s", 4472 newvd->vdev_path, "old"); 4473 if (oldvd->vdev_devid != NULL) { 4474 spa_strfree(oldvd->vdev_devid); 4475 oldvd->vdev_devid = NULL; 4476 } 4477 } 4478 4479 /* mark the device being resilvered */ 4480 newvd->vdev_resilver_txg = txg; 4481 4482 /* 4483 * If the parent is not a mirror, or if we're replacing, insert the new 4484 * mirror/replacing/spare vdev above oldvd. 4485 */ 4486 if (pvd->vdev_ops != pvops) 4487 pvd = vdev_add_parent(oldvd, pvops); 4488 4489 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4490 ASSERT(pvd->vdev_ops == pvops); 4491 ASSERT(oldvd->vdev_parent == pvd); 4492 4493 /* 4494 * Extract the new device from its root and add it to pvd. 4495 */ 4496 vdev_remove_child(newrootvd, newvd); 4497 newvd->vdev_id = pvd->vdev_children; 4498 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4499 vdev_add_child(pvd, newvd); 4500 4501 tvd = newvd->vdev_top; 4502 ASSERT(pvd->vdev_top == tvd); 4503 ASSERT(tvd->vdev_parent == rvd); 4504 4505 vdev_config_dirty(tvd); 4506 4507 /* 4508 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4509 * for any dmu_sync-ed blocks. It will propagate upward when 4510 * spa_vdev_exit() calls vdev_dtl_reassess(). 4511 */ 4512 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4513 4514 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4515 dtl_max_txg - TXG_INITIAL); 4516 4517 if (newvd->vdev_isspare) { 4518 spa_spare_activate(newvd); 4519 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4520 } 4521 4522 oldvdpath = spa_strdup(oldvd->vdev_path); 4523 newvdpath = spa_strdup(newvd->vdev_path); 4524 newvd_isspare = newvd->vdev_isspare; 4525 4526 /* 4527 * Mark newvd's DTL dirty in this txg. 4528 */ 4529 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4530 4531 /* 4532 * Schedule the resilver to restart in the future. We do this to 4533 * ensure that dmu_sync-ed blocks have been stitched into the 4534 * respective datasets. 4535 */ 4536 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4537 4538 /* 4539 * Commit the config 4540 */ 4541 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4542 4543 spa_history_log_internal(spa, "vdev attach", NULL, 4544 "%s vdev=%s %s vdev=%s", 4545 replacing && newvd_isspare ? "spare in" : 4546 replacing ? "replace" : "attach", newvdpath, 4547 replacing ? "for" : "to", oldvdpath); 4548 4549 spa_strfree(oldvdpath); 4550 spa_strfree(newvdpath); 4551 4552 if (spa->spa_bootfs) 4553 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4554 4555 return (0); 4556 } 4557 4558 /* 4559 * Detach a device from a mirror or replacing vdev. 4560 * 4561 * If 'replace_done' is specified, only detach if the parent 4562 * is a replacing vdev. 4563 */ 4564 int 4565 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4566 { 4567 uint64_t txg; 4568 int error; 4569 vdev_t *rvd = spa->spa_root_vdev; 4570 vdev_t *vd, *pvd, *cvd, *tvd; 4571 boolean_t unspare = B_FALSE; 4572 uint64_t unspare_guid = 0; 4573 char *vdpath; 4574 4575 ASSERT(spa_writeable(spa)); 4576 4577 txg = spa_vdev_enter(spa); 4578 4579 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4580 4581 if (vd == NULL) 4582 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4583 4584 if (!vd->vdev_ops->vdev_op_leaf) 4585 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4586 4587 pvd = vd->vdev_parent; 4588 4589 /* 4590 * If the parent/child relationship is not as expected, don't do it. 4591 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4592 * vdev that's replacing B with C. The user's intent in replacing 4593 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4594 * the replace by detaching C, the expected behavior is to end up 4595 * M(A,B). But suppose that right after deciding to detach C, 4596 * the replacement of B completes. We would have M(A,C), and then 4597 * ask to detach C, which would leave us with just A -- not what 4598 * the user wanted. To prevent this, we make sure that the 4599 * parent/child relationship hasn't changed -- in this example, 4600 * that C's parent is still the replacing vdev R. 4601 */ 4602 if (pvd->vdev_guid != pguid && pguid != 0) 4603 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4604 4605 /* 4606 * Only 'replacing' or 'spare' vdevs can be replaced. 4607 */ 4608 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4609 pvd->vdev_ops != &vdev_spare_ops) 4610 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4611 4612 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4613 spa_version(spa) >= SPA_VERSION_SPARES); 4614 4615 /* 4616 * Only mirror, replacing, and spare vdevs support detach. 4617 */ 4618 if (pvd->vdev_ops != &vdev_replacing_ops && 4619 pvd->vdev_ops != &vdev_mirror_ops && 4620 pvd->vdev_ops != &vdev_spare_ops) 4621 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4622 4623 /* 4624 * If this device has the only valid copy of some data, 4625 * we cannot safely detach it. 4626 */ 4627 if (vdev_dtl_required(vd)) 4628 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4629 4630 ASSERT(pvd->vdev_children >= 2); 4631 4632 /* 4633 * If we are detaching the second disk from a replacing vdev, then 4634 * check to see if we changed the original vdev's path to have "/old" 4635 * at the end in spa_vdev_attach(). If so, undo that change now. 4636 */ 4637 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4638 vd->vdev_path != NULL) { 4639 size_t len = strlen(vd->vdev_path); 4640 4641 for (int c = 0; c < pvd->vdev_children; c++) { 4642 cvd = pvd->vdev_child[c]; 4643 4644 if (cvd == vd || cvd->vdev_path == NULL) 4645 continue; 4646 4647 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4648 strcmp(cvd->vdev_path + len, "/old") == 0) { 4649 spa_strfree(cvd->vdev_path); 4650 cvd->vdev_path = spa_strdup(vd->vdev_path); 4651 break; 4652 } 4653 } 4654 } 4655 4656 /* 4657 * If we are detaching the original disk from a spare, then it implies 4658 * that the spare should become a real disk, and be removed from the 4659 * active spare list for the pool. 4660 */ 4661 if (pvd->vdev_ops == &vdev_spare_ops && 4662 vd->vdev_id == 0 && 4663 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4664 unspare = B_TRUE; 4665 4666 /* 4667 * Erase the disk labels so the disk can be used for other things. 4668 * This must be done after all other error cases are handled, 4669 * but before we disembowel vd (so we can still do I/O to it). 4670 * But if we can't do it, don't treat the error as fatal -- 4671 * it may be that the unwritability of the disk is the reason 4672 * it's being detached! 4673 */ 4674 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4675 4676 /* 4677 * Remove vd from its parent and compact the parent's children. 4678 */ 4679 vdev_remove_child(pvd, vd); 4680 vdev_compact_children(pvd); 4681 4682 /* 4683 * Remember one of the remaining children so we can get tvd below. 4684 */ 4685 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4686 4687 /* 4688 * If we need to remove the remaining child from the list of hot spares, 4689 * do it now, marking the vdev as no longer a spare in the process. 4690 * We must do this before vdev_remove_parent(), because that can 4691 * change the GUID if it creates a new toplevel GUID. For a similar 4692 * reason, we must remove the spare now, in the same txg as the detach; 4693 * otherwise someone could attach a new sibling, change the GUID, and 4694 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4695 */ 4696 if (unspare) { 4697 ASSERT(cvd->vdev_isspare); 4698 spa_spare_remove(cvd); 4699 unspare_guid = cvd->vdev_guid; 4700 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4701 cvd->vdev_unspare = B_TRUE; 4702 } 4703 4704 /* 4705 * If the parent mirror/replacing vdev only has one child, 4706 * the parent is no longer needed. Remove it from the tree. 4707 */ 4708 if (pvd->vdev_children == 1) { 4709 if (pvd->vdev_ops == &vdev_spare_ops) 4710 cvd->vdev_unspare = B_FALSE; 4711 vdev_remove_parent(cvd); 4712 } 4713 4714 4715 /* 4716 * We don't set tvd until now because the parent we just removed 4717 * may have been the previous top-level vdev. 4718 */ 4719 tvd = cvd->vdev_top; 4720 ASSERT(tvd->vdev_parent == rvd); 4721 4722 /* 4723 * Reevaluate the parent vdev state. 4724 */ 4725 vdev_propagate_state(cvd); 4726 4727 /* 4728 * If the 'autoexpand' property is set on the pool then automatically 4729 * try to expand the size of the pool. For example if the device we 4730 * just detached was smaller than the others, it may be possible to 4731 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4732 * first so that we can obtain the updated sizes of the leaf vdevs. 4733 */ 4734 if (spa->spa_autoexpand) { 4735 vdev_reopen(tvd); 4736 vdev_expand(tvd, txg); 4737 } 4738 4739 vdev_config_dirty(tvd); 4740 4741 /* 4742 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4743 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4744 * But first make sure we're not on any *other* txg's DTL list, to 4745 * prevent vd from being accessed after it's freed. 4746 */ 4747 vdpath = spa_strdup(vd->vdev_path); 4748 for (int t = 0; t < TXG_SIZE; t++) 4749 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4750 vd->vdev_detached = B_TRUE; 4751 vdev_dirty(tvd, VDD_DTL, vd, txg); 4752 4753 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4754 4755 /* hang on to the spa before we release the lock */ 4756 spa_open_ref(spa, FTAG); 4757 4758 error = spa_vdev_exit(spa, vd, txg, 0); 4759 4760 spa_history_log_internal(spa, "detach", NULL, 4761 "vdev=%s", vdpath); 4762 spa_strfree(vdpath); 4763 4764 /* 4765 * If this was the removal of the original device in a hot spare vdev, 4766 * then we want to go through and remove the device from the hot spare 4767 * list of every other pool. 4768 */ 4769 if (unspare) { 4770 spa_t *altspa = NULL; 4771 4772 mutex_enter(&spa_namespace_lock); 4773 while ((altspa = spa_next(altspa)) != NULL) { 4774 if (altspa->spa_state != POOL_STATE_ACTIVE || 4775 altspa == spa) 4776 continue; 4777 4778 spa_open_ref(altspa, FTAG); 4779 mutex_exit(&spa_namespace_lock); 4780 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4781 mutex_enter(&spa_namespace_lock); 4782 spa_close(altspa, FTAG); 4783 } 4784 mutex_exit(&spa_namespace_lock); 4785 4786 /* search the rest of the vdevs for spares to remove */ 4787 spa_vdev_resilver_done(spa); 4788 } 4789 4790 /* all done with the spa; OK to release */ 4791 mutex_enter(&spa_namespace_lock); 4792 spa_close(spa, FTAG); 4793 mutex_exit(&spa_namespace_lock); 4794 4795 return (error); 4796 } 4797 4798 /* 4799 * Split a set of devices from their mirrors, and create a new pool from them. 4800 */ 4801 int 4802 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4803 nvlist_t *props, boolean_t exp) 4804 { 4805 int error = 0; 4806 uint64_t txg, *glist; 4807 spa_t *newspa; 4808 uint_t c, children, lastlog; 4809 nvlist_t **child, *nvl, *tmp; 4810 dmu_tx_t *tx; 4811 char *altroot = NULL; 4812 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4813 boolean_t activate_slog; 4814 4815 ASSERT(spa_writeable(spa)); 4816 4817 txg = spa_vdev_enter(spa); 4818 4819 /* clear the log and flush everything up to now */ 4820 activate_slog = spa_passivate_log(spa); 4821 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4822 error = spa_offline_log(spa); 4823 txg = spa_vdev_config_enter(spa); 4824 4825 if (activate_slog) 4826 spa_activate_log(spa); 4827 4828 if (error != 0) 4829 return (spa_vdev_exit(spa, NULL, txg, error)); 4830 4831 /* check new spa name before going any further */ 4832 if (spa_lookup(newname) != NULL) 4833 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4834 4835 /* 4836 * scan through all the children to ensure they're all mirrors 4837 */ 4838 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4839 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4840 &children) != 0) 4841 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4842 4843 /* first, check to ensure we've got the right child count */ 4844 rvd = spa->spa_root_vdev; 4845 lastlog = 0; 4846 for (c = 0; c < rvd->vdev_children; c++) { 4847 vdev_t *vd = rvd->vdev_child[c]; 4848 4849 /* don't count the holes & logs as children */ 4850 if (vd->vdev_islog || vd->vdev_ishole) { 4851 if (lastlog == 0) 4852 lastlog = c; 4853 continue; 4854 } 4855 4856 lastlog = 0; 4857 } 4858 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4859 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4860 4861 /* next, ensure no spare or cache devices are part of the split */ 4862 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4863 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4864 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4865 4866 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4867 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4868 4869 /* then, loop over each vdev and validate it */ 4870 for (c = 0; c < children; c++) { 4871 uint64_t is_hole = 0; 4872 4873 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4874 &is_hole); 4875 4876 if (is_hole != 0) { 4877 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4878 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4879 continue; 4880 } else { 4881 error = SET_ERROR(EINVAL); 4882 break; 4883 } 4884 } 4885 4886 /* which disk is going to be split? */ 4887 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4888 &glist[c]) != 0) { 4889 error = SET_ERROR(EINVAL); 4890 break; 4891 } 4892 4893 /* look it up in the spa */ 4894 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4895 if (vml[c] == NULL) { 4896 error = SET_ERROR(ENODEV); 4897 break; 4898 } 4899 4900 /* make sure there's nothing stopping the split */ 4901 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4902 vml[c]->vdev_islog || 4903 vml[c]->vdev_ishole || 4904 vml[c]->vdev_isspare || 4905 vml[c]->vdev_isl2cache || 4906 !vdev_writeable(vml[c]) || 4907 vml[c]->vdev_children != 0 || 4908 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4909 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4910 error = SET_ERROR(EINVAL); 4911 break; 4912 } 4913 4914 if (vdev_dtl_required(vml[c])) { 4915 error = SET_ERROR(EBUSY); 4916 break; 4917 } 4918 4919 /* we need certain info from the top level */ 4920 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4921 vml[c]->vdev_top->vdev_ms_array) == 0); 4922 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4923 vml[c]->vdev_top->vdev_ms_shift) == 0); 4924 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4925 vml[c]->vdev_top->vdev_asize) == 0); 4926 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4927 vml[c]->vdev_top->vdev_ashift) == 0); 4928 } 4929 4930 if (error != 0) { 4931 kmem_free(vml, children * sizeof (vdev_t *)); 4932 kmem_free(glist, children * sizeof (uint64_t)); 4933 return (spa_vdev_exit(spa, NULL, txg, error)); 4934 } 4935 4936 /* stop writers from using the disks */ 4937 for (c = 0; c < children; c++) { 4938 if (vml[c] != NULL) 4939 vml[c]->vdev_offline = B_TRUE; 4940 } 4941 vdev_reopen(spa->spa_root_vdev); 4942 4943 /* 4944 * Temporarily record the splitting vdevs in the spa config. This 4945 * will disappear once the config is regenerated. 4946 */ 4947 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4948 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4949 glist, children) == 0); 4950 kmem_free(glist, children * sizeof (uint64_t)); 4951 4952 mutex_enter(&spa->spa_props_lock); 4953 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4954 nvl) == 0); 4955 mutex_exit(&spa->spa_props_lock); 4956 spa->spa_config_splitting = nvl; 4957 vdev_config_dirty(spa->spa_root_vdev); 4958 4959 /* configure and create the new pool */ 4960 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4961 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4962 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4963 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4964 spa_version(spa)) == 0); 4965 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4966 spa->spa_config_txg) == 0); 4967 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4968 spa_generate_guid(NULL)) == 0); 4969 (void) nvlist_lookup_string(props, 4970 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4971 4972 /* add the new pool to the namespace */ 4973 newspa = spa_add(newname, config, altroot); 4974 newspa->spa_config_txg = spa->spa_config_txg; 4975 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4976 4977 /* release the spa config lock, retaining the namespace lock */ 4978 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4979 4980 if (zio_injection_enabled) 4981 zio_handle_panic_injection(spa, FTAG, 1); 4982 4983 spa_activate(newspa, spa_mode_global); 4984 spa_async_suspend(newspa); 4985 4986 /* create the new pool from the disks of the original pool */ 4987 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4988 if (error) 4989 goto out; 4990 4991 /* if that worked, generate a real config for the new pool */ 4992 if (newspa->spa_root_vdev != NULL) { 4993 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4994 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4995 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4996 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4997 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4998 B_TRUE)); 4999 } 5000 5001 /* set the props */ 5002 if (props != NULL) { 5003 spa_configfile_set(newspa, props, B_FALSE); 5004 error = spa_prop_set(newspa, props); 5005 if (error) 5006 goto out; 5007 } 5008 5009 /* flush everything */ 5010 txg = spa_vdev_config_enter(newspa); 5011 vdev_config_dirty(newspa->spa_root_vdev); 5012 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 5013 5014 if (zio_injection_enabled) 5015 zio_handle_panic_injection(spa, FTAG, 2); 5016 5017 spa_async_resume(newspa); 5018 5019 /* finally, update the original pool's config */ 5020 txg = spa_vdev_config_enter(spa); 5021 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 5022 error = dmu_tx_assign(tx, TXG_WAIT); 5023 if (error != 0) 5024 dmu_tx_abort(tx); 5025 for (c = 0; c < children; c++) { 5026 if (vml[c] != NULL) { 5027 vdev_split(vml[c]); 5028 if (error == 0) 5029 spa_history_log_internal(spa, "detach", tx, 5030 "vdev=%s", vml[c]->vdev_path); 5031 vdev_free(vml[c]); 5032 } 5033 } 5034 vdev_config_dirty(spa->spa_root_vdev); 5035 spa->spa_config_splitting = NULL; 5036 nvlist_free(nvl); 5037 if (error == 0) 5038 dmu_tx_commit(tx); 5039 (void) spa_vdev_exit(spa, NULL, txg, 0); 5040 5041 if (zio_injection_enabled) 5042 zio_handle_panic_injection(spa, FTAG, 3); 5043 5044 /* split is complete; log a history record */ 5045 spa_history_log_internal(newspa, "split", NULL, 5046 "from pool %s", spa_name(spa)); 5047 5048 kmem_free(vml, children * sizeof (vdev_t *)); 5049 5050 /* if we're not going to mount the filesystems in userland, export */ 5051 if (exp) 5052 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5053 B_FALSE, B_FALSE); 5054 5055 return (error); 5056 5057 out: 5058 spa_unload(newspa); 5059 spa_deactivate(newspa); 5060 spa_remove(newspa); 5061 5062 txg = spa_vdev_config_enter(spa); 5063 5064 /* re-online all offlined disks */ 5065 for (c = 0; c < children; c++) { 5066 if (vml[c] != NULL) 5067 vml[c]->vdev_offline = B_FALSE; 5068 } 5069 vdev_reopen(spa->spa_root_vdev); 5070 5071 nvlist_free(spa->spa_config_splitting); 5072 spa->spa_config_splitting = NULL; 5073 (void) spa_vdev_exit(spa, NULL, txg, error); 5074 5075 kmem_free(vml, children * sizeof (vdev_t *)); 5076 return (error); 5077 } 5078 5079 static nvlist_t * 5080 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5081 { 5082 for (int i = 0; i < count; i++) { 5083 uint64_t guid; 5084 5085 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5086 &guid) == 0); 5087 5088 if (guid == target_guid) 5089 return (nvpp[i]); 5090 } 5091 5092 return (NULL); 5093 } 5094 5095 static void 5096 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5097 nvlist_t *dev_to_remove) 5098 { 5099 nvlist_t **newdev = NULL; 5100 5101 if (count > 1) 5102 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5103 5104 for (int i = 0, j = 0; i < count; i++) { 5105 if (dev[i] == dev_to_remove) 5106 continue; 5107 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5108 } 5109 5110 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5111 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5112 5113 for (int i = 0; i < count - 1; i++) 5114 nvlist_free(newdev[i]); 5115 5116 if (count > 1) 5117 kmem_free(newdev, (count - 1) * sizeof (void *)); 5118 } 5119 5120 /* 5121 * Evacuate the device. 5122 */ 5123 static int 5124 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5125 { 5126 uint64_t txg; 5127 int error = 0; 5128 5129 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5130 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5131 ASSERT(vd == vd->vdev_top); 5132 5133 /* 5134 * Evacuate the device. We don't hold the config lock as writer 5135 * since we need to do I/O but we do keep the 5136 * spa_namespace_lock held. Once this completes the device 5137 * should no longer have any blocks allocated on it. 5138 */ 5139 if (vd->vdev_islog) { 5140 if (vd->vdev_stat.vs_alloc != 0) 5141 error = spa_offline_log(spa); 5142 } else { 5143 error = SET_ERROR(ENOTSUP); 5144 } 5145 5146 if (error) 5147 return (error); 5148 5149 /* 5150 * The evacuation succeeded. Remove any remaining MOS metadata 5151 * associated with this vdev, and wait for these changes to sync. 5152 */ 5153 ASSERT0(vd->vdev_stat.vs_alloc); 5154 txg = spa_vdev_config_enter(spa); 5155 vd->vdev_removing = B_TRUE; 5156 vdev_dirty_leaves(vd, VDD_DTL, txg); 5157 vdev_config_dirty(vd); 5158 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5159 5160 return (0); 5161 } 5162 5163 /* 5164 * Complete the removal by cleaning up the namespace. 5165 */ 5166 static void 5167 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5168 { 5169 vdev_t *rvd = spa->spa_root_vdev; 5170 uint64_t id = vd->vdev_id; 5171 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5172 5173 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5174 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5175 ASSERT(vd == vd->vdev_top); 5176 5177 /* 5178 * Only remove any devices which are empty. 5179 */ 5180 if (vd->vdev_stat.vs_alloc != 0) 5181 return; 5182 5183 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5184 5185 if (list_link_active(&vd->vdev_state_dirty_node)) 5186 vdev_state_clean(vd); 5187 if (list_link_active(&vd->vdev_config_dirty_node)) 5188 vdev_config_clean(vd); 5189 5190 vdev_free(vd); 5191 5192 if (last_vdev) { 5193 vdev_compact_children(rvd); 5194 } else { 5195 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5196 vdev_add_child(rvd, vd); 5197 } 5198 vdev_config_dirty(rvd); 5199 5200 /* 5201 * Reassess the health of our root vdev. 5202 */ 5203 vdev_reopen(rvd); 5204 } 5205 5206 /* 5207 * Remove a device from the pool - 5208 * 5209 * Removing a device from the vdev namespace requires several steps 5210 * and can take a significant amount of time. As a result we use 5211 * the spa_vdev_config_[enter/exit] functions which allow us to 5212 * grab and release the spa_config_lock while still holding the namespace 5213 * lock. During each step the configuration is synced out. 5214 * 5215 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5216 * devices. 5217 */ 5218 int 5219 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5220 { 5221 vdev_t *vd; 5222 metaslab_group_t *mg; 5223 nvlist_t **spares, **l2cache, *nv; 5224 uint64_t txg = 0; 5225 uint_t nspares, nl2cache; 5226 int error = 0; 5227 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5228 5229 ASSERT(spa_writeable(spa)); 5230 5231 if (!locked) 5232 txg = spa_vdev_enter(spa); 5233 5234 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5235 5236 if (spa->spa_spares.sav_vdevs != NULL && 5237 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5238 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5239 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5240 /* 5241 * Only remove the hot spare if it's not currently in use 5242 * in this pool. 5243 */ 5244 if (vd == NULL || unspare) { 5245 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5246 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5247 spa_load_spares(spa); 5248 spa->spa_spares.sav_sync = B_TRUE; 5249 } else { 5250 error = SET_ERROR(EBUSY); 5251 } 5252 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5253 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5254 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5255 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5256 /* 5257 * Cache devices can always be removed. 5258 */ 5259 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5260 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5261 spa_load_l2cache(spa); 5262 spa->spa_l2cache.sav_sync = B_TRUE; 5263 } else if (vd != NULL && vd->vdev_islog) { 5264 ASSERT(!locked); 5265 ASSERT(vd == vd->vdev_top); 5266 5267 /* 5268 * XXX - Once we have bp-rewrite this should 5269 * become the common case. 5270 */ 5271 5272 mg = vd->vdev_mg; 5273 5274 /* 5275 * Stop allocating from this vdev. 5276 */ 5277 metaslab_group_passivate(mg); 5278 5279 /* 5280 * Wait for the youngest allocations and frees to sync, 5281 * and then wait for the deferral of those frees to finish. 5282 */ 5283 spa_vdev_config_exit(spa, NULL, 5284 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5285 5286 /* 5287 * Attempt to evacuate the vdev. 5288 */ 5289 error = spa_vdev_remove_evacuate(spa, vd); 5290 5291 txg = spa_vdev_config_enter(spa); 5292 5293 /* 5294 * If we couldn't evacuate the vdev, unwind. 5295 */ 5296 if (error) { 5297 metaslab_group_activate(mg); 5298 return (spa_vdev_exit(spa, NULL, txg, error)); 5299 } 5300 5301 /* 5302 * Clean up the vdev namespace. 5303 */ 5304 spa_vdev_remove_from_namespace(spa, vd); 5305 5306 } else if (vd != NULL) { 5307 /* 5308 * Normal vdevs cannot be removed (yet). 5309 */ 5310 error = SET_ERROR(ENOTSUP); 5311 } else { 5312 /* 5313 * There is no vdev of any kind with the specified guid. 5314 */ 5315 error = SET_ERROR(ENOENT); 5316 } 5317 5318 if (!locked) 5319 return (spa_vdev_exit(spa, NULL, txg, error)); 5320 5321 return (error); 5322 } 5323 5324 /* 5325 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5326 * currently spared, so we can detach it. 5327 */ 5328 static vdev_t * 5329 spa_vdev_resilver_done_hunt(vdev_t *vd) 5330 { 5331 vdev_t *newvd, *oldvd; 5332 5333 for (int c = 0; c < vd->vdev_children; c++) { 5334 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5335 if (oldvd != NULL) 5336 return (oldvd); 5337 } 5338 5339 /* 5340 * Check for a completed replacement. We always consider the first 5341 * vdev in the list to be the oldest vdev, and the last one to be 5342 * the newest (see spa_vdev_attach() for how that works). In 5343 * the case where the newest vdev is faulted, we will not automatically 5344 * remove it after a resilver completes. This is OK as it will require 5345 * user intervention to determine which disk the admin wishes to keep. 5346 */ 5347 if (vd->vdev_ops == &vdev_replacing_ops) { 5348 ASSERT(vd->vdev_children > 1); 5349 5350 newvd = vd->vdev_child[vd->vdev_children - 1]; 5351 oldvd = vd->vdev_child[0]; 5352 5353 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5354 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5355 !vdev_dtl_required(oldvd)) 5356 return (oldvd); 5357 } 5358 5359 /* 5360 * Check for a completed resilver with the 'unspare' flag set. 5361 */ 5362 if (vd->vdev_ops == &vdev_spare_ops) { 5363 vdev_t *first = vd->vdev_child[0]; 5364 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5365 5366 if (last->vdev_unspare) { 5367 oldvd = first; 5368 newvd = last; 5369 } else if (first->vdev_unspare) { 5370 oldvd = last; 5371 newvd = first; 5372 } else { 5373 oldvd = NULL; 5374 } 5375 5376 if (oldvd != NULL && 5377 vdev_dtl_empty(newvd, DTL_MISSING) && 5378 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5379 !vdev_dtl_required(oldvd)) 5380 return (oldvd); 5381 5382 /* 5383 * If there are more than two spares attached to a disk, 5384 * and those spares are not required, then we want to 5385 * attempt to free them up now so that they can be used 5386 * by other pools. Once we're back down to a single 5387 * disk+spare, we stop removing them. 5388 */ 5389 if (vd->vdev_children > 2) { 5390 newvd = vd->vdev_child[1]; 5391 5392 if (newvd->vdev_isspare && last->vdev_isspare && 5393 vdev_dtl_empty(last, DTL_MISSING) && 5394 vdev_dtl_empty(last, DTL_OUTAGE) && 5395 !vdev_dtl_required(newvd)) 5396 return (newvd); 5397 } 5398 } 5399 5400 return (NULL); 5401 } 5402 5403 static void 5404 spa_vdev_resilver_done(spa_t *spa) 5405 { 5406 vdev_t *vd, *pvd, *ppvd; 5407 uint64_t guid, sguid, pguid, ppguid; 5408 5409 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5410 5411 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5412 pvd = vd->vdev_parent; 5413 ppvd = pvd->vdev_parent; 5414 guid = vd->vdev_guid; 5415 pguid = pvd->vdev_guid; 5416 ppguid = ppvd->vdev_guid; 5417 sguid = 0; 5418 /* 5419 * If we have just finished replacing a hot spared device, then 5420 * we need to detach the parent's first child (the original hot 5421 * spare) as well. 5422 */ 5423 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5424 ppvd->vdev_children == 2) { 5425 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5426 sguid = ppvd->vdev_child[1]->vdev_guid; 5427 } 5428 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5429 5430 spa_config_exit(spa, SCL_ALL, FTAG); 5431 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5432 return; 5433 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5434 return; 5435 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5436 } 5437 5438 spa_config_exit(spa, SCL_ALL, FTAG); 5439 } 5440 5441 /* 5442 * Update the stored path or FRU for this vdev. 5443 */ 5444 int 5445 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5446 boolean_t ispath) 5447 { 5448 vdev_t *vd; 5449 boolean_t sync = B_FALSE; 5450 5451 ASSERT(spa_writeable(spa)); 5452 5453 spa_vdev_state_enter(spa, SCL_ALL); 5454 5455 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5456 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5457 5458 if (!vd->vdev_ops->vdev_op_leaf) 5459 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5460 5461 if (ispath) { 5462 if (strcmp(value, vd->vdev_path) != 0) { 5463 spa_strfree(vd->vdev_path); 5464 vd->vdev_path = spa_strdup(value); 5465 sync = B_TRUE; 5466 } 5467 } else { 5468 if (vd->vdev_fru == NULL) { 5469 vd->vdev_fru = spa_strdup(value); 5470 sync = B_TRUE; 5471 } else if (strcmp(value, vd->vdev_fru) != 0) { 5472 spa_strfree(vd->vdev_fru); 5473 vd->vdev_fru = spa_strdup(value); 5474 sync = B_TRUE; 5475 } 5476 } 5477 5478 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5479 } 5480 5481 int 5482 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5483 { 5484 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5485 } 5486 5487 int 5488 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5489 { 5490 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5491 } 5492 5493 /* 5494 * ========================================================================== 5495 * SPA Scanning 5496 * ========================================================================== 5497 */ 5498 5499 int 5500 spa_scan_stop(spa_t *spa) 5501 { 5502 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5503 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5504 return (SET_ERROR(EBUSY)); 5505 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5506 } 5507 5508 int 5509 spa_scan(spa_t *spa, pool_scan_func_t func) 5510 { 5511 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5512 5513 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5514 return (SET_ERROR(ENOTSUP)); 5515 5516 /* 5517 * If a resilver was requested, but there is no DTL on a 5518 * writeable leaf device, we have nothing to do. 5519 */ 5520 if (func == POOL_SCAN_RESILVER && 5521 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5522 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5523 return (0); 5524 } 5525 5526 return (dsl_scan(spa->spa_dsl_pool, func)); 5527 } 5528 5529 /* 5530 * ========================================================================== 5531 * SPA async task processing 5532 * ========================================================================== 5533 */ 5534 5535 static void 5536 spa_async_remove(spa_t *spa, vdev_t *vd) 5537 { 5538 if (vd->vdev_remove_wanted) { 5539 vd->vdev_remove_wanted = B_FALSE; 5540 vd->vdev_delayed_close = B_FALSE; 5541 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5542 5543 /* 5544 * We want to clear the stats, but we don't want to do a full 5545 * vdev_clear() as that will cause us to throw away 5546 * degraded/faulted state as well as attempt to reopen the 5547 * device, all of which is a waste. 5548 */ 5549 vd->vdev_stat.vs_read_errors = 0; 5550 vd->vdev_stat.vs_write_errors = 0; 5551 vd->vdev_stat.vs_checksum_errors = 0; 5552 5553 vdev_state_dirty(vd->vdev_top); 5554 } 5555 5556 for (int c = 0; c < vd->vdev_children; c++) 5557 spa_async_remove(spa, vd->vdev_child[c]); 5558 } 5559 5560 static void 5561 spa_async_probe(spa_t *spa, vdev_t *vd) 5562 { 5563 if (vd->vdev_probe_wanted) { 5564 vd->vdev_probe_wanted = B_FALSE; 5565 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5566 } 5567 5568 for (int c = 0; c < vd->vdev_children; c++) 5569 spa_async_probe(spa, vd->vdev_child[c]); 5570 } 5571 5572 static void 5573 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5574 { 5575 sysevent_id_t eid; 5576 nvlist_t *attr; 5577 char *physpath; 5578 5579 if (!spa->spa_autoexpand) 5580 return; 5581 5582 for (int c = 0; c < vd->vdev_children; c++) { 5583 vdev_t *cvd = vd->vdev_child[c]; 5584 spa_async_autoexpand(spa, cvd); 5585 } 5586 5587 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5588 return; 5589 5590 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5591 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5592 5593 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5594 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5595 5596 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5597 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5598 5599 nvlist_free(attr); 5600 kmem_free(physpath, MAXPATHLEN); 5601 } 5602 5603 static void 5604 spa_async_thread(spa_t *spa) 5605 { 5606 int tasks; 5607 5608 ASSERT(spa->spa_sync_on); 5609 5610 mutex_enter(&spa->spa_async_lock); 5611 tasks = spa->spa_async_tasks; 5612 spa->spa_async_tasks = 0; 5613 mutex_exit(&spa->spa_async_lock); 5614 5615 /* 5616 * See if the config needs to be updated. 5617 */ 5618 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5619 uint64_t old_space, new_space; 5620 5621 mutex_enter(&spa_namespace_lock); 5622 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5623 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5624 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5625 mutex_exit(&spa_namespace_lock); 5626 5627 /* 5628 * If the pool grew as a result of the config update, 5629 * then log an internal history event. 5630 */ 5631 if (new_space != old_space) { 5632 spa_history_log_internal(spa, "vdev online", NULL, 5633 "pool '%s' size: %llu(+%llu)", 5634 spa_name(spa), new_space, new_space - old_space); 5635 } 5636 } 5637 5638 /* 5639 * See if any devices need to be marked REMOVED. 5640 */ 5641 if (tasks & SPA_ASYNC_REMOVE) { 5642 spa_vdev_state_enter(spa, SCL_NONE); 5643 spa_async_remove(spa, spa->spa_root_vdev); 5644 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5645 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5646 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5647 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5648 (void) spa_vdev_state_exit(spa, NULL, 0); 5649 } 5650 5651 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5652 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5653 spa_async_autoexpand(spa, spa->spa_root_vdev); 5654 spa_config_exit(spa, SCL_CONFIG, FTAG); 5655 } 5656 5657 /* 5658 * See if any devices need to be probed. 5659 */ 5660 if (tasks & SPA_ASYNC_PROBE) { 5661 spa_vdev_state_enter(spa, SCL_NONE); 5662 spa_async_probe(spa, spa->spa_root_vdev); 5663 (void) spa_vdev_state_exit(spa, NULL, 0); 5664 } 5665 5666 /* 5667 * If any devices are done replacing, detach them. 5668 */ 5669 if (tasks & SPA_ASYNC_RESILVER_DONE) 5670 spa_vdev_resilver_done(spa); 5671 5672 /* 5673 * Kick off a resilver. 5674 */ 5675 if (tasks & SPA_ASYNC_RESILVER) 5676 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5677 5678 /* 5679 * Let the world know that we're done. 5680 */ 5681 mutex_enter(&spa->spa_async_lock); 5682 spa->spa_async_thread = NULL; 5683 cv_broadcast(&spa->spa_async_cv); 5684 mutex_exit(&spa->spa_async_lock); 5685 thread_exit(); 5686 } 5687 5688 void 5689 spa_async_suspend(spa_t *spa) 5690 { 5691 mutex_enter(&spa->spa_async_lock); 5692 spa->spa_async_suspended++; 5693 while (spa->spa_async_thread != NULL) 5694 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5695 mutex_exit(&spa->spa_async_lock); 5696 } 5697 5698 void 5699 spa_async_resume(spa_t *spa) 5700 { 5701 mutex_enter(&spa->spa_async_lock); 5702 ASSERT(spa->spa_async_suspended != 0); 5703 spa->spa_async_suspended--; 5704 mutex_exit(&spa->spa_async_lock); 5705 } 5706 5707 static boolean_t 5708 spa_async_tasks_pending(spa_t *spa) 5709 { 5710 uint_t non_config_tasks; 5711 uint_t config_task; 5712 boolean_t config_task_suspended; 5713 5714 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5715 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5716 if (spa->spa_ccw_fail_time == 0) { 5717 config_task_suspended = B_FALSE; 5718 } else { 5719 config_task_suspended = 5720 (gethrtime() - spa->spa_ccw_fail_time) < 5721 (zfs_ccw_retry_interval * NANOSEC); 5722 } 5723 5724 return (non_config_tasks || (config_task && !config_task_suspended)); 5725 } 5726 5727 static void 5728 spa_async_dispatch(spa_t *spa) 5729 { 5730 mutex_enter(&spa->spa_async_lock); 5731 if (spa_async_tasks_pending(spa) && 5732 !spa->spa_async_suspended && 5733 spa->spa_async_thread == NULL && 5734 rootdir != NULL) 5735 spa->spa_async_thread = thread_create(NULL, 0, 5736 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5737 mutex_exit(&spa->spa_async_lock); 5738 } 5739 5740 void 5741 spa_async_request(spa_t *spa, int task) 5742 { 5743 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5744 mutex_enter(&spa->spa_async_lock); 5745 spa->spa_async_tasks |= task; 5746 mutex_exit(&spa->spa_async_lock); 5747 } 5748 5749 /* 5750 * ========================================================================== 5751 * SPA syncing routines 5752 * ========================================================================== 5753 */ 5754 5755 static int 5756 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5757 { 5758 bpobj_t *bpo = arg; 5759 bpobj_enqueue(bpo, bp, tx); 5760 return (0); 5761 } 5762 5763 static int 5764 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5765 { 5766 zio_t *zio = arg; 5767 5768 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5769 zio->io_flags)); 5770 return (0); 5771 } 5772 5773 /* 5774 * Note: this simple function is not inlined to make it easier to dtrace the 5775 * amount of time spent syncing frees. 5776 */ 5777 static void 5778 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 5779 { 5780 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5781 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 5782 VERIFY(zio_wait(zio) == 0); 5783 } 5784 5785 /* 5786 * Note: this simple function is not inlined to make it easier to dtrace the 5787 * amount of time spent syncing deferred frees. 5788 */ 5789 static void 5790 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 5791 { 5792 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5793 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 5794 spa_free_sync_cb, zio, tx), ==, 0); 5795 VERIFY0(zio_wait(zio)); 5796 } 5797 5798 5799 static void 5800 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5801 { 5802 char *packed = NULL; 5803 size_t bufsize; 5804 size_t nvsize = 0; 5805 dmu_buf_t *db; 5806 5807 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5808 5809 /* 5810 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5811 * information. This avoids the dbuf_will_dirty() path and 5812 * saves us a pre-read to get data we don't actually care about. 5813 */ 5814 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5815 packed = kmem_alloc(bufsize, KM_SLEEP); 5816 5817 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5818 KM_SLEEP) == 0); 5819 bzero(packed + nvsize, bufsize - nvsize); 5820 5821 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5822 5823 kmem_free(packed, bufsize); 5824 5825 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5826 dmu_buf_will_dirty(db, tx); 5827 *(uint64_t *)db->db_data = nvsize; 5828 dmu_buf_rele(db, FTAG); 5829 } 5830 5831 static void 5832 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5833 const char *config, const char *entry) 5834 { 5835 nvlist_t *nvroot; 5836 nvlist_t **list; 5837 int i; 5838 5839 if (!sav->sav_sync) 5840 return; 5841 5842 /* 5843 * Update the MOS nvlist describing the list of available devices. 5844 * spa_validate_aux() will have already made sure this nvlist is 5845 * valid and the vdevs are labeled appropriately. 5846 */ 5847 if (sav->sav_object == 0) { 5848 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5849 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5850 sizeof (uint64_t), tx); 5851 VERIFY(zap_update(spa->spa_meta_objset, 5852 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5853 &sav->sav_object, tx) == 0); 5854 } 5855 5856 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5857 if (sav->sav_count == 0) { 5858 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5859 } else { 5860 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5861 for (i = 0; i < sav->sav_count; i++) 5862 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5863 B_FALSE, VDEV_CONFIG_L2CACHE); 5864 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5865 sav->sav_count) == 0); 5866 for (i = 0; i < sav->sav_count; i++) 5867 nvlist_free(list[i]); 5868 kmem_free(list, sav->sav_count * sizeof (void *)); 5869 } 5870 5871 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5872 nvlist_free(nvroot); 5873 5874 sav->sav_sync = B_FALSE; 5875 } 5876 5877 static void 5878 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5879 { 5880 nvlist_t *config; 5881 5882 if (list_is_empty(&spa->spa_config_dirty_list)) 5883 return; 5884 5885 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5886 5887 config = spa_config_generate(spa, spa->spa_root_vdev, 5888 dmu_tx_get_txg(tx), B_FALSE); 5889 5890 /* 5891 * If we're upgrading the spa version then make sure that 5892 * the config object gets updated with the correct version. 5893 */ 5894 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5895 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5896 spa->spa_uberblock.ub_version); 5897 5898 spa_config_exit(spa, SCL_STATE, FTAG); 5899 5900 if (spa->spa_config_syncing) 5901 nvlist_free(spa->spa_config_syncing); 5902 spa->spa_config_syncing = config; 5903 5904 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5905 } 5906 5907 static void 5908 spa_sync_version(void *arg, dmu_tx_t *tx) 5909 { 5910 uint64_t *versionp = arg; 5911 uint64_t version = *versionp; 5912 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5913 5914 /* 5915 * Setting the version is special cased when first creating the pool. 5916 */ 5917 ASSERT(tx->tx_txg != TXG_INITIAL); 5918 5919 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5920 ASSERT(version >= spa_version(spa)); 5921 5922 spa->spa_uberblock.ub_version = version; 5923 vdev_config_dirty(spa->spa_root_vdev); 5924 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 5925 } 5926 5927 /* 5928 * Set zpool properties. 5929 */ 5930 static void 5931 spa_sync_props(void *arg, dmu_tx_t *tx) 5932 { 5933 nvlist_t *nvp = arg; 5934 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5935 objset_t *mos = spa->spa_meta_objset; 5936 nvpair_t *elem = NULL; 5937 5938 mutex_enter(&spa->spa_props_lock); 5939 5940 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5941 uint64_t intval; 5942 char *strval, *fname; 5943 zpool_prop_t prop; 5944 const char *propname; 5945 zprop_type_t proptype; 5946 zfeature_info_t *feature; 5947 5948 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5949 case ZPROP_INVAL: 5950 /* 5951 * We checked this earlier in spa_prop_validate(). 5952 */ 5953 ASSERT(zpool_prop_feature(nvpair_name(elem))); 5954 5955 fname = strchr(nvpair_name(elem), '@') + 1; 5956 VERIFY0(zfeature_lookup_name(fname, &feature)); 5957 5958 spa_feature_enable(spa, feature, tx); 5959 spa_history_log_internal(spa, "set", tx, 5960 "%s=enabled", nvpair_name(elem)); 5961 break; 5962 5963 case ZPOOL_PROP_VERSION: 5964 intval = fnvpair_value_uint64(elem); 5965 /* 5966 * The version is synced seperatly before other 5967 * properties and should be correct by now. 5968 */ 5969 ASSERT3U(spa_version(spa), >=, intval); 5970 break; 5971 5972 case ZPOOL_PROP_ALTROOT: 5973 /* 5974 * 'altroot' is a non-persistent property. It should 5975 * have been set temporarily at creation or import time. 5976 */ 5977 ASSERT(spa->spa_root != NULL); 5978 break; 5979 5980 case ZPOOL_PROP_READONLY: 5981 case ZPOOL_PROP_CACHEFILE: 5982 /* 5983 * 'readonly' and 'cachefile' are also non-persisitent 5984 * properties. 5985 */ 5986 break; 5987 case ZPOOL_PROP_COMMENT: 5988 strval = fnvpair_value_string(elem); 5989 if (spa->spa_comment != NULL) 5990 spa_strfree(spa->spa_comment); 5991 spa->spa_comment = spa_strdup(strval); 5992 /* 5993 * We need to dirty the configuration on all the vdevs 5994 * so that their labels get updated. It's unnecessary 5995 * to do this for pool creation since the vdev's 5996 * configuratoin has already been dirtied. 5997 */ 5998 if (tx->tx_txg != TXG_INITIAL) 5999 vdev_config_dirty(spa->spa_root_vdev); 6000 spa_history_log_internal(spa, "set", tx, 6001 "%s=%s", nvpair_name(elem), strval); 6002 break; 6003 default: 6004 /* 6005 * Set pool property values in the poolprops mos object. 6006 */ 6007 if (spa->spa_pool_props_object == 0) { 6008 spa->spa_pool_props_object = 6009 zap_create_link(mos, DMU_OT_POOL_PROPS, 6010 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 6011 tx); 6012 } 6013 6014 /* normalize the property name */ 6015 propname = zpool_prop_to_name(prop); 6016 proptype = zpool_prop_get_type(prop); 6017 6018 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6019 ASSERT(proptype == PROP_TYPE_STRING); 6020 strval = fnvpair_value_string(elem); 6021 VERIFY0(zap_update(mos, 6022 spa->spa_pool_props_object, propname, 6023 1, strlen(strval) + 1, strval, tx)); 6024 spa_history_log_internal(spa, "set", tx, 6025 "%s=%s", nvpair_name(elem), strval); 6026 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6027 intval = fnvpair_value_uint64(elem); 6028 6029 if (proptype == PROP_TYPE_INDEX) { 6030 const char *unused; 6031 VERIFY0(zpool_prop_index_to_string( 6032 prop, intval, &unused)); 6033 } 6034 VERIFY0(zap_update(mos, 6035 spa->spa_pool_props_object, propname, 6036 8, 1, &intval, tx)); 6037 spa_history_log_internal(spa, "set", tx, 6038 "%s=%lld", nvpair_name(elem), intval); 6039 } else { 6040 ASSERT(0); /* not allowed */ 6041 } 6042 6043 switch (prop) { 6044 case ZPOOL_PROP_DELEGATION: 6045 spa->spa_delegation = intval; 6046 break; 6047 case ZPOOL_PROP_BOOTFS: 6048 spa->spa_bootfs = intval; 6049 break; 6050 case ZPOOL_PROP_FAILUREMODE: 6051 spa->spa_failmode = intval; 6052 break; 6053 case ZPOOL_PROP_AUTOEXPAND: 6054 spa->spa_autoexpand = intval; 6055 if (tx->tx_txg != TXG_INITIAL) 6056 spa_async_request(spa, 6057 SPA_ASYNC_AUTOEXPAND); 6058 break; 6059 case ZPOOL_PROP_DEDUPDITTO: 6060 spa->spa_dedup_ditto = intval; 6061 break; 6062 default: 6063 break; 6064 } 6065 } 6066 6067 } 6068 6069 mutex_exit(&spa->spa_props_lock); 6070 } 6071 6072 /* 6073 * Perform one-time upgrade on-disk changes. spa_version() does not 6074 * reflect the new version this txg, so there must be no changes this 6075 * txg to anything that the upgrade code depends on after it executes. 6076 * Therefore this must be called after dsl_pool_sync() does the sync 6077 * tasks. 6078 */ 6079 static void 6080 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6081 { 6082 dsl_pool_t *dp = spa->spa_dsl_pool; 6083 6084 ASSERT(spa->spa_sync_pass == 1); 6085 6086 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6087 6088 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6089 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6090 dsl_pool_create_origin(dp, tx); 6091 6092 /* Keeping the origin open increases spa_minref */ 6093 spa->spa_minref += 3; 6094 } 6095 6096 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6097 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6098 dsl_pool_upgrade_clones(dp, tx); 6099 } 6100 6101 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6102 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6103 dsl_pool_upgrade_dir_clones(dp, tx); 6104 6105 /* Keeping the freedir open increases spa_minref */ 6106 spa->spa_minref += 3; 6107 } 6108 6109 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6110 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6111 spa_feature_create_zap_objects(spa, tx); 6112 } 6113 rrw_exit(&dp->dp_config_rwlock, FTAG); 6114 } 6115 6116 /* 6117 * Sync the specified transaction group. New blocks may be dirtied as 6118 * part of the process, so we iterate until it converges. 6119 */ 6120 void 6121 spa_sync(spa_t *spa, uint64_t txg) 6122 { 6123 dsl_pool_t *dp = spa->spa_dsl_pool; 6124 objset_t *mos = spa->spa_meta_objset; 6125 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6126 vdev_t *rvd = spa->spa_root_vdev; 6127 vdev_t *vd; 6128 dmu_tx_t *tx; 6129 int error; 6130 6131 VERIFY(spa_writeable(spa)); 6132 6133 /* 6134 * Lock out configuration changes. 6135 */ 6136 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6137 6138 spa->spa_syncing_txg = txg; 6139 spa->spa_sync_pass = 0; 6140 6141 /* 6142 * If there are any pending vdev state changes, convert them 6143 * into config changes that go out with this transaction group. 6144 */ 6145 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6146 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6147 /* 6148 * We need the write lock here because, for aux vdevs, 6149 * calling vdev_config_dirty() modifies sav_config. 6150 * This is ugly and will become unnecessary when we 6151 * eliminate the aux vdev wart by integrating all vdevs 6152 * into the root vdev tree. 6153 */ 6154 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6155 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6156 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6157 vdev_state_clean(vd); 6158 vdev_config_dirty(vd); 6159 } 6160 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6161 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6162 } 6163 spa_config_exit(spa, SCL_STATE, FTAG); 6164 6165 tx = dmu_tx_create_assigned(dp, txg); 6166 6167 spa->spa_sync_starttime = gethrtime(); 6168 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6169 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6170 6171 /* 6172 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6173 * set spa_deflate if we have no raid-z vdevs. 6174 */ 6175 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6176 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6177 int i; 6178 6179 for (i = 0; i < rvd->vdev_children; i++) { 6180 vd = rvd->vdev_child[i]; 6181 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6182 break; 6183 } 6184 if (i == rvd->vdev_children) { 6185 spa->spa_deflate = TRUE; 6186 VERIFY(0 == zap_add(spa->spa_meta_objset, 6187 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6188 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6189 } 6190 } 6191 6192 /* 6193 * If anything has changed in this txg, or if someone is waiting 6194 * for this txg to sync (eg, spa_vdev_remove()), push the 6195 * deferred frees from the previous txg. If not, leave them 6196 * alone so that we don't generate work on an otherwise idle 6197 * system. 6198 */ 6199 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 6200 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 6201 !txg_list_empty(&dp->dp_sync_tasks, txg) || 6202 ((dsl_scan_active(dp->dp_scan) || 6203 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 6204 spa_sync_deferred_frees(spa, tx); 6205 } 6206 6207 /* 6208 * Iterate to convergence. 6209 */ 6210 do { 6211 int pass = ++spa->spa_sync_pass; 6212 6213 spa_sync_config_object(spa, tx); 6214 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6215 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6216 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6217 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6218 spa_errlog_sync(spa, txg); 6219 dsl_pool_sync(dp, txg); 6220 6221 if (pass < zfs_sync_pass_deferred_free) { 6222 spa_sync_frees(spa, free_bpl, tx); 6223 } else { 6224 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6225 &spa->spa_deferred_bpobj, tx); 6226 } 6227 6228 ddt_sync(spa, txg); 6229 dsl_scan_sync(dp, tx); 6230 6231 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6232 vdev_sync(vd, txg); 6233 6234 if (pass == 1) 6235 spa_sync_upgrades(spa, tx); 6236 6237 } while (dmu_objset_is_dirty(mos, txg)); 6238 6239 /* 6240 * Rewrite the vdev configuration (which includes the uberblock) 6241 * to commit the transaction group. 6242 * 6243 * If there are no dirty vdevs, we sync the uberblock to a few 6244 * random top-level vdevs that are known to be visible in the 6245 * config cache (see spa_vdev_add() for a complete description). 6246 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6247 */ 6248 for (;;) { 6249 /* 6250 * We hold SCL_STATE to prevent vdev open/close/etc. 6251 * while we're attempting to write the vdev labels. 6252 */ 6253 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6254 6255 if (list_is_empty(&spa->spa_config_dirty_list)) { 6256 vdev_t *svd[SPA_DVAS_PER_BP]; 6257 int svdcount = 0; 6258 int children = rvd->vdev_children; 6259 int c0 = spa_get_random(children); 6260 6261 for (int c = 0; c < children; c++) { 6262 vd = rvd->vdev_child[(c0 + c) % children]; 6263 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6264 continue; 6265 svd[svdcount++] = vd; 6266 if (svdcount == SPA_DVAS_PER_BP) 6267 break; 6268 } 6269 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6270 if (error != 0) 6271 error = vdev_config_sync(svd, svdcount, txg, 6272 B_TRUE); 6273 } else { 6274 error = vdev_config_sync(rvd->vdev_child, 6275 rvd->vdev_children, txg, B_FALSE); 6276 if (error != 0) 6277 error = vdev_config_sync(rvd->vdev_child, 6278 rvd->vdev_children, txg, B_TRUE); 6279 } 6280 6281 if (error == 0) 6282 spa->spa_last_synced_guid = rvd->vdev_guid; 6283 6284 spa_config_exit(spa, SCL_STATE, FTAG); 6285 6286 if (error == 0) 6287 break; 6288 zio_suspend(spa, NULL); 6289 zio_resume_wait(spa); 6290 } 6291 dmu_tx_commit(tx); 6292 6293 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6294 6295 /* 6296 * Clear the dirty config list. 6297 */ 6298 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6299 vdev_config_clean(vd); 6300 6301 /* 6302 * Now that the new config has synced transactionally, 6303 * let it become visible to the config cache. 6304 */ 6305 if (spa->spa_config_syncing != NULL) { 6306 spa_config_set(spa, spa->spa_config_syncing); 6307 spa->spa_config_txg = txg; 6308 spa->spa_config_syncing = NULL; 6309 } 6310 6311 spa->spa_ubsync = spa->spa_uberblock; 6312 6313 dsl_pool_sync_done(dp, txg); 6314 6315 /* 6316 * Update usable space statistics. 6317 */ 6318 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6319 vdev_sync_done(vd, txg); 6320 6321 spa_update_dspace(spa); 6322 6323 /* 6324 * It had better be the case that we didn't dirty anything 6325 * since vdev_config_sync(). 6326 */ 6327 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6328 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6329 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6330 6331 spa->spa_sync_pass = 0; 6332 6333 spa_config_exit(spa, SCL_CONFIG, FTAG); 6334 6335 spa_handle_ignored_writes(spa); 6336 6337 /* 6338 * If any async tasks have been requested, kick them off. 6339 */ 6340 spa_async_dispatch(spa); 6341 } 6342 6343 /* 6344 * Sync all pools. We don't want to hold the namespace lock across these 6345 * operations, so we take a reference on the spa_t and drop the lock during the 6346 * sync. 6347 */ 6348 void 6349 spa_sync_allpools(void) 6350 { 6351 spa_t *spa = NULL; 6352 mutex_enter(&spa_namespace_lock); 6353 while ((spa = spa_next(spa)) != NULL) { 6354 if (spa_state(spa) != POOL_STATE_ACTIVE || 6355 !spa_writeable(spa) || spa_suspended(spa)) 6356 continue; 6357 spa_open_ref(spa, FTAG); 6358 mutex_exit(&spa_namespace_lock); 6359 txg_wait_synced(spa_get_dsl(spa), 0); 6360 mutex_enter(&spa_namespace_lock); 6361 spa_close(spa, FTAG); 6362 } 6363 mutex_exit(&spa_namespace_lock); 6364 } 6365 6366 /* 6367 * ========================================================================== 6368 * Miscellaneous routines 6369 * ========================================================================== 6370 */ 6371 6372 /* 6373 * Remove all pools in the system. 6374 */ 6375 void 6376 spa_evict_all(void) 6377 { 6378 spa_t *spa; 6379 6380 /* 6381 * Remove all cached state. All pools should be closed now, 6382 * so every spa in the AVL tree should be unreferenced. 6383 */ 6384 mutex_enter(&spa_namespace_lock); 6385 while ((spa = spa_next(NULL)) != NULL) { 6386 /* 6387 * Stop async tasks. The async thread may need to detach 6388 * a device that's been replaced, which requires grabbing 6389 * spa_namespace_lock, so we must drop it here. 6390 */ 6391 spa_open_ref(spa, FTAG); 6392 mutex_exit(&spa_namespace_lock); 6393 spa_async_suspend(spa); 6394 mutex_enter(&spa_namespace_lock); 6395 spa_close(spa, FTAG); 6396 6397 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6398 spa_unload(spa); 6399 spa_deactivate(spa); 6400 } 6401 spa_remove(spa); 6402 } 6403 mutex_exit(&spa_namespace_lock); 6404 } 6405 6406 vdev_t * 6407 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6408 { 6409 vdev_t *vd; 6410 int i; 6411 6412 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6413 return (vd); 6414 6415 if (aux) { 6416 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6417 vd = spa->spa_l2cache.sav_vdevs[i]; 6418 if (vd->vdev_guid == guid) 6419 return (vd); 6420 } 6421 6422 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6423 vd = spa->spa_spares.sav_vdevs[i]; 6424 if (vd->vdev_guid == guid) 6425 return (vd); 6426 } 6427 } 6428 6429 return (NULL); 6430 } 6431 6432 void 6433 spa_upgrade(spa_t *spa, uint64_t version) 6434 { 6435 ASSERT(spa_writeable(spa)); 6436 6437 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6438 6439 /* 6440 * This should only be called for a non-faulted pool, and since a 6441 * future version would result in an unopenable pool, this shouldn't be 6442 * possible. 6443 */ 6444 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6445 ASSERT(version >= spa->spa_uberblock.ub_version); 6446 6447 spa->spa_uberblock.ub_version = version; 6448 vdev_config_dirty(spa->spa_root_vdev); 6449 6450 spa_config_exit(spa, SCL_ALL, FTAG); 6451 6452 txg_wait_synced(spa_get_dsl(spa), 0); 6453 } 6454 6455 boolean_t 6456 spa_has_spare(spa_t *spa, uint64_t guid) 6457 { 6458 int i; 6459 uint64_t spareguid; 6460 spa_aux_vdev_t *sav = &spa->spa_spares; 6461 6462 for (i = 0; i < sav->sav_count; i++) 6463 if (sav->sav_vdevs[i]->vdev_guid == guid) 6464 return (B_TRUE); 6465 6466 for (i = 0; i < sav->sav_npending; i++) { 6467 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6468 &spareguid) == 0 && spareguid == guid) 6469 return (B_TRUE); 6470 } 6471 6472 return (B_FALSE); 6473 } 6474 6475 /* 6476 * Check if a pool has an active shared spare device. 6477 * Note: reference count of an active spare is 2, as a spare and as a replace 6478 */ 6479 static boolean_t 6480 spa_has_active_shared_spare(spa_t *spa) 6481 { 6482 int i, refcnt; 6483 uint64_t pool; 6484 spa_aux_vdev_t *sav = &spa->spa_spares; 6485 6486 for (i = 0; i < sav->sav_count; i++) { 6487 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6488 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6489 refcnt > 2) 6490 return (B_TRUE); 6491 } 6492 6493 return (B_FALSE); 6494 } 6495 6496 /* 6497 * Post a sysevent corresponding to the given event. The 'name' must be one of 6498 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6499 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6500 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6501 * or zdb as real changes. 6502 */ 6503 void 6504 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6505 { 6506 #ifdef _KERNEL 6507 sysevent_t *ev; 6508 sysevent_attr_list_t *attr = NULL; 6509 sysevent_value_t value; 6510 sysevent_id_t eid; 6511 6512 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6513 SE_SLEEP); 6514 6515 value.value_type = SE_DATA_TYPE_STRING; 6516 value.value.sv_string = spa_name(spa); 6517 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6518 goto done; 6519 6520 value.value_type = SE_DATA_TYPE_UINT64; 6521 value.value.sv_uint64 = spa_guid(spa); 6522 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6523 goto done; 6524 6525 if (vd) { 6526 value.value_type = SE_DATA_TYPE_UINT64; 6527 value.value.sv_uint64 = vd->vdev_guid; 6528 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6529 SE_SLEEP) != 0) 6530 goto done; 6531 6532 if (vd->vdev_path) { 6533 value.value_type = SE_DATA_TYPE_STRING; 6534 value.value.sv_string = vd->vdev_path; 6535 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6536 &value, SE_SLEEP) != 0) 6537 goto done; 6538 } 6539 } 6540 6541 if (sysevent_attach_attributes(ev, attr) != 0) 6542 goto done; 6543 attr = NULL; 6544 6545 (void) log_sysevent(ev, SE_SLEEP, &eid); 6546 6547 done: 6548 if (attr) 6549 sysevent_free_attr(attr); 6550 sysevent_free(ev); 6551 #endif 6552 }