1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 */ 27 28 /* 29 * DVA-based Adjustable Replacement Cache 30 * 31 * While much of the theory of operation used here is 32 * based on the self-tuning, low overhead replacement cache 33 * presented by Megiddo and Modha at FAST 2003, there are some 34 * significant differences: 35 * 36 * 1. The Megiddo and Modha model assumes any page is evictable. 37 * Pages in its cache cannot be "locked" into memory. This makes 38 * the eviction algorithm simple: evict the last page in the list. 39 * This also make the performance characteristics easy to reason 40 * about. Our cache is not so simple. At any given moment, some 41 * subset of the blocks in the cache are un-evictable because we 42 * have handed out a reference to them. Blocks are only evictable 43 * when there are no external references active. This makes 44 * eviction far more problematic: we choose to evict the evictable 45 * blocks that are the "lowest" in the list. 46 * 47 * There are times when it is not possible to evict the requested 48 * space. In these circumstances we are unable to adjust the cache 49 * size. To prevent the cache growing unbounded at these times we 50 * implement a "cache throttle" that slows the flow of new data 51 * into the cache until we can make space available. 52 * 53 * 2. The Megiddo and Modha model assumes a fixed cache size. 54 * Pages are evicted when the cache is full and there is a cache 55 * miss. Our model has a variable sized cache. It grows with 56 * high use, but also tries to react to memory pressure from the 57 * operating system: decreasing its size when system memory is 58 * tight. 59 * 60 * 3. The Megiddo and Modha model assumes a fixed page size. All 61 * elements of the cache are therefore exactly the same size. So 62 * when adjusting the cache size following a cache miss, its simply 63 * a matter of choosing a single page to evict. In our model, we 64 * have variable sized cache blocks (rangeing from 512 bytes to 65 * 128K bytes). We therefore choose a set of blocks to evict to make 66 * space for a cache miss that approximates as closely as possible 67 * the space used by the new block. 68 * 69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 70 * by N. Megiddo & D. Modha, FAST 2003 71 */ 72 73 /* 74 * The locking model: 75 * 76 * A new reference to a cache buffer can be obtained in two 77 * ways: 1) via a hash table lookup using the DVA as a key, 78 * or 2) via one of the ARC lists. The arc_read() interface 79 * uses method 1, while the internal arc algorithms for 80 * adjusting the cache use method 2. We therefore provide two 81 * types of locks: 1) the hash table lock array, and 2) the 82 * arc list locks. 83 * 84 * Buffers do not have their own mutexes, rather they rely on the 85 * hash table mutexes for the bulk of their protection (i.e. most 86 * fields in the arc_buf_hdr_t are protected by these mutexes). 87 * 88 * buf_hash_find() returns the appropriate mutex (held) when it 89 * locates the requested buffer in the hash table. It returns 90 * NULL for the mutex if the buffer was not in the table. 91 * 92 * buf_hash_remove() expects the appropriate hash mutex to be 93 * already held before it is invoked. 94 * 95 * Each arc state also has a mutex which is used to protect the 96 * buffer list associated with the state. When attempting to 97 * obtain a hash table lock while holding an arc list lock you 98 * must use: mutex_tryenter() to avoid deadlock. Also note that 99 * the active state mutex must be held before the ghost state mutex. 100 * 101 * Arc buffers may have an associated eviction callback function. 102 * This function will be invoked prior to removing the buffer (e.g. 103 * in arc_do_user_evicts()). Note however that the data associated 104 * with the buffer may be evicted prior to the callback. The callback 105 * must be made with *no locks held* (to prevent deadlock). Additionally, 106 * the users of callbacks must ensure that their private data is 107 * protected from simultaneous callbacks from arc_buf_evict() 108 * and arc_do_user_evicts(). 109 * 110 * Note that the majority of the performance stats are manipulated 111 * with atomic operations. 112 * 113 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 114 * 115 * - L2ARC buflist creation 116 * - L2ARC buflist eviction 117 * - L2ARC write completion, which walks L2ARC buflists 118 * - ARC header destruction, as it removes from L2ARC buflists 119 * - ARC header release, as it removes from L2ARC buflists 120 * 121 * Please note that if you first grab the l2arc_buflist_mtx, you can't do a 122 * mutex_enter on a buffer's hash_lock anymore due to lock inversion. To grab 123 * the hash_lock you must use mutex_tryenter and possibly deal with the buffer 124 * not being available (due to e.g. some other thread holding it while trying 125 * to unconditionally grab the l2arc_buflist_mtx which you are holding). The 126 * inverse situation (first grab hash_lock, then l2arc_buflist_mtx) is safe. 127 */ 128 129 #include <sys/spa.h> 130 #include <sys/zio.h> 131 #include <sys/zio_compress.h> 132 #include <sys/zfs_context.h> 133 #include <sys/arc.h> 134 #include <sys/refcount.h> 135 #include <sys/vdev.h> 136 #include <sys/vdev_impl.h> 137 #ifdef _KERNEL 138 #include <sys/vmsystm.h> 139 #include <vm/anon.h> 140 #include <sys/fs/swapnode.h> 141 #include <sys/dnlc.h> 142 #endif 143 #include <sys/callb.h> 144 #include <sys/kstat.h> 145 #include <zfs_fletcher.h> 146 147 #ifndef _KERNEL 148 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 149 boolean_t arc_watch = B_FALSE; 150 int arc_procfd; 151 #endif 152 153 static kmutex_t arc_reclaim_thr_lock; 154 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 155 static uint8_t arc_thread_exit; 156 157 extern int zfs_write_limit_shift; 158 extern uint64_t zfs_write_limit_max; 159 extern kmutex_t zfs_write_limit_lock; 160 161 #define ARC_REDUCE_DNLC_PERCENT 3 162 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 163 164 typedef enum arc_reclaim_strategy { 165 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 166 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 167 } arc_reclaim_strategy_t; 168 169 /* number of seconds before growing cache again */ 170 static int arc_grow_retry = 60; 171 172 /* shift of arc_c for calculating both min and max arc_p */ 173 static int arc_p_min_shift = 4; 174 175 /* log2(fraction of arc to reclaim) */ 176 static int arc_shrink_shift = 5; 177 178 /* 179 * minimum lifespan of a prefetch block in clock ticks 180 * (initialized in arc_init()) 181 */ 182 static int arc_min_prefetch_lifespan; 183 184 static int arc_dead; 185 186 /* 187 * The arc has filled available memory and has now warmed up. 188 */ 189 static boolean_t arc_warm; 190 191 /* 192 * These tunables are for performance analysis. 193 */ 194 uint64_t zfs_arc_max; 195 uint64_t zfs_arc_min; 196 uint64_t zfs_arc_meta_limit = 0; 197 int zfs_arc_grow_retry = 0; 198 int zfs_arc_shrink_shift = 0; 199 int zfs_arc_p_min_shift = 0; 200 int zfs_disable_dup_eviction = 0; 201 202 /* 203 * Note that buffers can be in one of 6 states: 204 * ARC_anon - anonymous (discussed below) 205 * ARC_mru - recently used, currently cached 206 * ARC_mru_ghost - recentely used, no longer in cache 207 * ARC_mfu - frequently used, currently cached 208 * ARC_mfu_ghost - frequently used, no longer in cache 209 * ARC_l2c_only - exists in L2ARC but not other states 210 * When there are no active references to the buffer, they are 211 * are linked onto a list in one of these arc states. These are 212 * the only buffers that can be evicted or deleted. Within each 213 * state there are multiple lists, one for meta-data and one for 214 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 215 * etc.) is tracked separately so that it can be managed more 216 * explicitly: favored over data, limited explicitly. 217 * 218 * Anonymous buffers are buffers that are not associated with 219 * a DVA. These are buffers that hold dirty block copies 220 * before they are written to stable storage. By definition, 221 * they are "ref'd" and are considered part of arc_mru 222 * that cannot be freed. Generally, they will aquire a DVA 223 * as they are written and migrate onto the arc_mru list. 224 * 225 * The ARC_l2c_only state is for buffers that are in the second 226 * level ARC but no longer in any of the ARC_m* lists. The second 227 * level ARC itself may also contain buffers that are in any of 228 * the ARC_m* states - meaning that a buffer can exist in two 229 * places. The reason for the ARC_l2c_only state is to keep the 230 * buffer header in the hash table, so that reads that hit the 231 * second level ARC benefit from these fast lookups. 232 */ 233 234 typedef struct arc_state { 235 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 236 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 237 uint64_t arcs_size; /* total amount of data in this state */ 238 kmutex_t arcs_mtx; 239 } arc_state_t; 240 241 /* The 6 states: */ 242 static arc_state_t ARC_anon; 243 static arc_state_t ARC_mru; 244 static arc_state_t ARC_mru_ghost; 245 static arc_state_t ARC_mfu; 246 static arc_state_t ARC_mfu_ghost; 247 static arc_state_t ARC_l2c_only; 248 249 typedef struct arc_stats { 250 kstat_named_t arcstat_hits; 251 kstat_named_t arcstat_misses; 252 kstat_named_t arcstat_demand_data_hits; 253 kstat_named_t arcstat_demand_data_misses; 254 kstat_named_t arcstat_demand_metadata_hits; 255 kstat_named_t arcstat_demand_metadata_misses; 256 kstat_named_t arcstat_prefetch_data_hits; 257 kstat_named_t arcstat_prefetch_data_misses; 258 kstat_named_t arcstat_prefetch_metadata_hits; 259 kstat_named_t arcstat_prefetch_metadata_misses; 260 kstat_named_t arcstat_mru_hits; 261 kstat_named_t arcstat_mru_ghost_hits; 262 kstat_named_t arcstat_mfu_hits; 263 kstat_named_t arcstat_mfu_ghost_hits; 264 kstat_named_t arcstat_deleted; 265 kstat_named_t arcstat_recycle_miss; 266 /* 267 * Number of buffers that could not be evicted because the hash lock 268 * was held by another thread. The lock may not necessarily be held 269 * by something using the same buffer, since hash locks are shared 270 * by multiple buffers. 271 */ 272 kstat_named_t arcstat_mutex_miss; 273 /* 274 * Number of buffers skipped because they have I/O in progress, are 275 * indrect prefetch buffers that have not lived long enough, or are 276 * not from the spa we're trying to evict from. 277 */ 278 kstat_named_t arcstat_evict_skip; 279 kstat_named_t arcstat_evict_l2_cached; 280 kstat_named_t arcstat_evict_l2_eligible; 281 kstat_named_t arcstat_evict_l2_ineligible; 282 kstat_named_t arcstat_hash_elements; 283 kstat_named_t arcstat_hash_elements_max; 284 kstat_named_t arcstat_hash_collisions; 285 kstat_named_t arcstat_hash_chains; 286 kstat_named_t arcstat_hash_chain_max; 287 kstat_named_t arcstat_p; 288 kstat_named_t arcstat_c; 289 kstat_named_t arcstat_c_min; 290 kstat_named_t arcstat_c_max; 291 kstat_named_t arcstat_size; 292 kstat_named_t arcstat_hdr_size; 293 kstat_named_t arcstat_data_size; 294 kstat_named_t arcstat_other_size; 295 kstat_named_t arcstat_l2_hits; 296 kstat_named_t arcstat_l2_misses; 297 kstat_named_t arcstat_l2_feeds; 298 kstat_named_t arcstat_l2_rw_clash; 299 kstat_named_t arcstat_l2_read_bytes; 300 kstat_named_t arcstat_l2_write_bytes; 301 kstat_named_t arcstat_l2_writes_sent; 302 kstat_named_t arcstat_l2_writes_done; 303 kstat_named_t arcstat_l2_writes_error; 304 kstat_named_t arcstat_l2_writes_hdr_miss; 305 kstat_named_t arcstat_l2_evict_lock_retry; 306 kstat_named_t arcstat_l2_evict_reading; 307 kstat_named_t arcstat_l2_free_on_write; 308 kstat_named_t arcstat_l2_abort_lowmem; 309 kstat_named_t arcstat_l2_cksum_bad; 310 kstat_named_t arcstat_l2_io_error; 311 kstat_named_t arcstat_l2_size; 312 kstat_named_t arcstat_l2_asize; 313 kstat_named_t arcstat_l2_hdr_size; 314 kstat_named_t arcstat_l2_compress_successes; 315 kstat_named_t arcstat_l2_compress_zeros; 316 kstat_named_t arcstat_l2_compress_failures; 317 kstat_named_t arcstat_memory_throttle_count; 318 kstat_named_t arcstat_duplicate_buffers; 319 kstat_named_t arcstat_duplicate_buffers_size; 320 kstat_named_t arcstat_duplicate_reads; 321 kstat_named_t arcstat_meta_used; 322 kstat_named_t arcstat_meta_limit; 323 kstat_named_t arcstat_meta_max; 324 } arc_stats_t; 325 326 static arc_stats_t arc_stats = { 327 { "hits", KSTAT_DATA_UINT64 }, 328 { "misses", KSTAT_DATA_UINT64 }, 329 { "demand_data_hits", KSTAT_DATA_UINT64 }, 330 { "demand_data_misses", KSTAT_DATA_UINT64 }, 331 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 332 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 333 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 334 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 335 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 336 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 337 { "mru_hits", KSTAT_DATA_UINT64 }, 338 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 339 { "mfu_hits", KSTAT_DATA_UINT64 }, 340 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 341 { "deleted", KSTAT_DATA_UINT64 }, 342 { "recycle_miss", KSTAT_DATA_UINT64 }, 343 { "mutex_miss", KSTAT_DATA_UINT64 }, 344 { "evict_skip", KSTAT_DATA_UINT64 }, 345 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 346 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 347 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 348 { "hash_elements", KSTAT_DATA_UINT64 }, 349 { "hash_elements_max", KSTAT_DATA_UINT64 }, 350 { "hash_collisions", KSTAT_DATA_UINT64 }, 351 { "hash_chains", KSTAT_DATA_UINT64 }, 352 { "hash_chain_max", KSTAT_DATA_UINT64 }, 353 { "p", KSTAT_DATA_UINT64 }, 354 { "c", KSTAT_DATA_UINT64 }, 355 { "c_min", KSTAT_DATA_UINT64 }, 356 { "c_max", KSTAT_DATA_UINT64 }, 357 { "size", KSTAT_DATA_UINT64 }, 358 { "hdr_size", KSTAT_DATA_UINT64 }, 359 { "data_size", KSTAT_DATA_UINT64 }, 360 { "other_size", KSTAT_DATA_UINT64 }, 361 { "l2_hits", KSTAT_DATA_UINT64 }, 362 { "l2_misses", KSTAT_DATA_UINT64 }, 363 { "l2_feeds", KSTAT_DATA_UINT64 }, 364 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 365 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 366 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 367 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 368 { "l2_writes_done", KSTAT_DATA_UINT64 }, 369 { "l2_writes_error", KSTAT_DATA_UINT64 }, 370 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 371 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 372 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 373 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 374 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 375 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 376 { "l2_io_error", KSTAT_DATA_UINT64 }, 377 { "l2_size", KSTAT_DATA_UINT64 }, 378 { "l2_asize", KSTAT_DATA_UINT64 }, 379 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 380 { "l2_compress_successes", KSTAT_DATA_UINT64 }, 381 { "l2_compress_zeros", KSTAT_DATA_UINT64 }, 382 { "l2_compress_failures", KSTAT_DATA_UINT64 }, 383 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 384 { "duplicate_buffers", KSTAT_DATA_UINT64 }, 385 { "duplicate_buffers_size", KSTAT_DATA_UINT64 }, 386 { "duplicate_reads", KSTAT_DATA_UINT64 }, 387 { "arc_meta_used", KSTAT_DATA_UINT64 }, 388 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 389 { "arc_meta_max", KSTAT_DATA_UINT64 } 390 }; 391 392 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 393 394 #define ARCSTAT_INCR(stat, val) \ 395 atomic_add_64(&arc_stats.stat.value.ui64, (val)) 396 397 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 398 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 399 400 #define ARCSTAT_MAX(stat, val) { \ 401 uint64_t m; \ 402 while ((val) > (m = arc_stats.stat.value.ui64) && \ 403 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 404 continue; \ 405 } 406 407 #define ARCSTAT_MAXSTAT(stat) \ 408 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 409 410 /* 411 * We define a macro to allow ARC hits/misses to be easily broken down by 412 * two separate conditions, giving a total of four different subtypes for 413 * each of hits and misses (so eight statistics total). 414 */ 415 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 416 if (cond1) { \ 417 if (cond2) { \ 418 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 419 } else { \ 420 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 421 } \ 422 } else { \ 423 if (cond2) { \ 424 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 425 } else { \ 426 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 427 } \ 428 } 429 430 kstat_t *arc_ksp; 431 static arc_state_t *arc_anon; 432 static arc_state_t *arc_mru; 433 static arc_state_t *arc_mru_ghost; 434 static arc_state_t *arc_mfu; 435 static arc_state_t *arc_mfu_ghost; 436 static arc_state_t *arc_l2c_only; 437 438 /* 439 * There are several ARC variables that are critical to export as kstats -- 440 * but we don't want to have to grovel around in the kstat whenever we wish to 441 * manipulate them. For these variables, we therefore define them to be in 442 * terms of the statistic variable. This assures that we are not introducing 443 * the possibility of inconsistency by having shadow copies of the variables, 444 * while still allowing the code to be readable. 445 */ 446 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 447 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 448 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 449 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 450 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 451 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 452 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ 453 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 454 455 #define L2ARC_IS_VALID_COMPRESS(_c_) \ 456 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY) 457 458 static int arc_no_grow; /* Don't try to grow cache size */ 459 static uint64_t arc_tempreserve; 460 static uint64_t arc_loaned_bytes; 461 462 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 463 464 typedef struct arc_callback arc_callback_t; 465 466 struct arc_callback { 467 void *acb_private; 468 arc_done_func_t *acb_done; 469 arc_buf_t *acb_buf; 470 zio_t *acb_zio_dummy; 471 arc_callback_t *acb_next; 472 }; 473 474 typedef struct arc_write_callback arc_write_callback_t; 475 476 struct arc_write_callback { 477 void *awcb_private; 478 arc_done_func_t *awcb_ready; 479 arc_done_func_t *awcb_done; 480 arc_buf_t *awcb_buf; 481 }; 482 483 struct arc_buf_hdr { 484 /* protected by hash lock */ 485 dva_t b_dva; 486 uint64_t b_birth; 487 uint64_t b_cksum0; 488 489 kmutex_t b_freeze_lock; 490 zio_cksum_t *b_freeze_cksum; 491 void *b_thawed; 492 493 arc_buf_hdr_t *b_hash_next; 494 arc_buf_t *b_buf; 495 uint32_t b_flags; 496 uint32_t b_datacnt; 497 498 arc_callback_t *b_acb; 499 kcondvar_t b_cv; 500 501 /* immutable */ 502 arc_buf_contents_t b_type; 503 uint64_t b_size; 504 uint64_t b_spa; 505 506 /* protected by arc state mutex */ 507 arc_state_t *b_state; 508 list_node_t b_arc_node; 509 510 /* updated atomically */ 511 clock_t b_arc_access; 512 513 /* self protecting */ 514 refcount_t b_refcnt; 515 516 l2arc_buf_hdr_t *b_l2hdr; 517 list_node_t b_l2node; 518 }; 519 520 static arc_buf_t *arc_eviction_list; 521 static kmutex_t arc_eviction_mtx; 522 static arc_buf_hdr_t arc_eviction_hdr; 523 static void arc_get_data_buf(arc_buf_t *buf); 524 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 525 static int arc_evict_needed(arc_buf_contents_t type); 526 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); 527 static void arc_buf_watch(arc_buf_t *buf); 528 529 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab); 530 531 #define GHOST_STATE(state) \ 532 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 533 (state) == arc_l2c_only) 534 535 /* 536 * Private ARC flags. These flags are private ARC only flags that will show up 537 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 538 * be passed in as arc_flags in things like arc_read. However, these flags 539 * should never be passed and should only be set by ARC code. When adding new 540 * public flags, make sure not to smash the private ones. 541 */ 542 543 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 544 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 545 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 546 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 547 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 548 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 549 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 550 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 551 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 552 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 553 554 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 555 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 556 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 557 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 558 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 559 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 560 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 561 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 562 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 563 (hdr)->b_l2hdr != NULL) 564 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 565 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 566 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 567 568 /* 569 * Other sizes 570 */ 571 572 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 573 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 574 575 /* 576 * Hash table routines 577 */ 578 579 #define HT_LOCK_PAD 64 580 581 struct ht_lock { 582 kmutex_t ht_lock; 583 #ifdef _KERNEL 584 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 585 #endif 586 }; 587 588 #define BUF_LOCKS 256 589 typedef struct buf_hash_table { 590 uint64_t ht_mask; 591 arc_buf_hdr_t **ht_table; 592 struct ht_lock ht_locks[BUF_LOCKS]; 593 } buf_hash_table_t; 594 595 static buf_hash_table_t buf_hash_table; 596 597 #define BUF_HASH_INDEX(spa, dva, birth) \ 598 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 599 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 600 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 601 #define HDR_LOCK(hdr) \ 602 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 603 604 uint64_t zfs_crc64_table[256]; 605 606 /* 607 * Level 2 ARC 608 */ 609 610 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 611 #define L2ARC_HEADROOM 2 /* num of writes */ 612 /* 613 * If we discover during ARC scan any buffers to be compressed, we boost 614 * our headroom for the next scanning cycle by this percentage multiple. 615 */ 616 #define L2ARC_HEADROOM_BOOST 200 617 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 618 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 619 620 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 621 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 622 623 /* L2ARC Performance Tunables */ 624 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 625 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 626 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 627 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 628 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 629 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 630 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 631 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 632 boolean_t l2arc_norw = B_FALSE; /* no reads during writes */ 633 634 /* 635 * L2ARC Internals 636 */ 637 typedef struct l2arc_dev { 638 vdev_t *l2ad_vdev; /* vdev */ 639 spa_t *l2ad_spa; /* spa */ 640 uint64_t l2ad_hand; /* next write location */ 641 uint64_t l2ad_start; /* first addr on device */ 642 uint64_t l2ad_end; /* last addr on device */ 643 uint64_t l2ad_evict; /* last addr eviction reached */ 644 boolean_t l2ad_first; /* first sweep through */ 645 boolean_t l2ad_writing; /* currently writing */ 646 list_t *l2ad_buflist; /* buffer list */ 647 list_node_t l2ad_node; /* device list node */ 648 } l2arc_dev_t; 649 650 static list_t L2ARC_dev_list; /* device list */ 651 static list_t *l2arc_dev_list; /* device list pointer */ 652 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 653 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 654 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 655 static list_t L2ARC_free_on_write; /* free after write buf list */ 656 static list_t *l2arc_free_on_write; /* free after write list ptr */ 657 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 658 static uint64_t l2arc_ndev; /* number of devices */ 659 660 typedef struct l2arc_read_callback { 661 arc_buf_t *l2rcb_buf; /* read buffer */ 662 spa_t *l2rcb_spa; /* spa */ 663 blkptr_t l2rcb_bp; /* original blkptr */ 664 zbookmark_t l2rcb_zb; /* original bookmark */ 665 int l2rcb_flags; /* original flags */ 666 enum zio_compress l2rcb_compress; /* applied compress */ 667 } l2arc_read_callback_t; 668 669 typedef struct l2arc_write_callback { 670 l2arc_dev_t *l2wcb_dev; /* device info */ 671 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 672 } l2arc_write_callback_t; 673 674 struct l2arc_buf_hdr { 675 /* protected by arc_buf_hdr mutex */ 676 l2arc_dev_t *b_dev; /* L2ARC device */ 677 uint64_t b_daddr; /* disk address, offset byte */ 678 /* compression applied to buffer data */ 679 enum zio_compress b_compress; 680 /* real alloc'd buffer size depending on b_compress applied */ 681 int b_asize; 682 }; 683 684 typedef struct l2arc_data_free { 685 /* protected by l2arc_free_on_write_mtx */ 686 void *l2df_data; 687 size_t l2df_size; 688 void (*l2df_func)(void *, size_t); 689 list_node_t l2df_list_node; 690 } l2arc_data_free_t; 691 692 static kmutex_t l2arc_feed_thr_lock; 693 static kcondvar_t l2arc_feed_thr_cv; 694 static uint8_t l2arc_thread_exit; 695 696 static void l2arc_read_done(zio_t *zio); 697 static void l2arc_hdr_stat_add(void); 698 static void l2arc_hdr_stat_remove(void); 699 700 static boolean_t l2arc_compress_buf(void *in_data, uint64_t in_sz, 701 void **out_data, uint64_t *out_sz, enum zio_compress *compress); 702 static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, 703 enum zio_compress c); 704 705 static uint64_t 706 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 707 { 708 uint8_t *vdva = (uint8_t *)dva; 709 uint64_t crc = -1ULL; 710 int i; 711 712 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 713 714 for (i = 0; i < sizeof (dva_t); i++) 715 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 716 717 crc ^= (spa>>8) ^ birth; 718 719 return (crc); 720 } 721 722 #define BUF_EMPTY(buf) \ 723 ((buf)->b_dva.dva_word[0] == 0 && \ 724 (buf)->b_dva.dva_word[1] == 0 && \ 725 (buf)->b_birth == 0) 726 727 #define BUF_EQUAL(spa, dva, birth, buf) \ 728 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 729 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 730 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 731 732 static void 733 buf_discard_identity(arc_buf_hdr_t *hdr) 734 { 735 hdr->b_dva.dva_word[0] = 0; 736 hdr->b_dva.dva_word[1] = 0; 737 hdr->b_birth = 0; 738 hdr->b_cksum0 = 0; 739 } 740 741 static arc_buf_hdr_t * 742 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp) 743 { 744 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 745 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 746 arc_buf_hdr_t *buf; 747 748 mutex_enter(hash_lock); 749 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 750 buf = buf->b_hash_next) { 751 if (BUF_EQUAL(spa, dva, birth, buf)) { 752 *lockp = hash_lock; 753 return (buf); 754 } 755 } 756 mutex_exit(hash_lock); 757 *lockp = NULL; 758 return (NULL); 759 } 760 761 /* 762 * Insert an entry into the hash table. If there is already an element 763 * equal to elem in the hash table, then the already existing element 764 * will be returned and the new element will not be inserted. 765 * Otherwise returns NULL. 766 */ 767 static arc_buf_hdr_t * 768 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 769 { 770 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 771 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 772 arc_buf_hdr_t *fbuf; 773 uint32_t i; 774 775 ASSERT(!HDR_IN_HASH_TABLE(buf)); 776 *lockp = hash_lock; 777 mutex_enter(hash_lock); 778 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 779 fbuf = fbuf->b_hash_next, i++) { 780 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 781 return (fbuf); 782 } 783 784 buf->b_hash_next = buf_hash_table.ht_table[idx]; 785 buf_hash_table.ht_table[idx] = buf; 786 buf->b_flags |= ARC_IN_HASH_TABLE; 787 788 /* collect some hash table performance data */ 789 if (i > 0) { 790 ARCSTAT_BUMP(arcstat_hash_collisions); 791 if (i == 1) 792 ARCSTAT_BUMP(arcstat_hash_chains); 793 794 ARCSTAT_MAX(arcstat_hash_chain_max, i); 795 } 796 797 ARCSTAT_BUMP(arcstat_hash_elements); 798 ARCSTAT_MAXSTAT(arcstat_hash_elements); 799 800 return (NULL); 801 } 802 803 static void 804 buf_hash_remove(arc_buf_hdr_t *buf) 805 { 806 arc_buf_hdr_t *fbuf, **bufp; 807 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 808 809 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 810 ASSERT(HDR_IN_HASH_TABLE(buf)); 811 812 bufp = &buf_hash_table.ht_table[idx]; 813 while ((fbuf = *bufp) != buf) { 814 ASSERT(fbuf != NULL); 815 bufp = &fbuf->b_hash_next; 816 } 817 *bufp = buf->b_hash_next; 818 buf->b_hash_next = NULL; 819 buf->b_flags &= ~ARC_IN_HASH_TABLE; 820 821 /* collect some hash table performance data */ 822 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 823 824 if (buf_hash_table.ht_table[idx] && 825 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 826 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 827 } 828 829 /* 830 * Global data structures and functions for the buf kmem cache. 831 */ 832 static kmem_cache_t *hdr_cache; 833 static kmem_cache_t *buf_cache; 834 835 static void 836 buf_fini(void) 837 { 838 int i; 839 840 kmem_free(buf_hash_table.ht_table, 841 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 842 for (i = 0; i < BUF_LOCKS; i++) 843 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 844 kmem_cache_destroy(hdr_cache); 845 kmem_cache_destroy(buf_cache); 846 } 847 848 /* 849 * Constructor callback - called when the cache is empty 850 * and a new buf is requested. 851 */ 852 /* ARGSUSED */ 853 static int 854 hdr_cons(void *vbuf, void *unused, int kmflag) 855 { 856 arc_buf_hdr_t *buf = vbuf; 857 858 bzero(buf, sizeof (arc_buf_hdr_t)); 859 refcount_create(&buf->b_refcnt); 860 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 861 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 862 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 863 864 return (0); 865 } 866 867 /* ARGSUSED */ 868 static int 869 buf_cons(void *vbuf, void *unused, int kmflag) 870 { 871 arc_buf_t *buf = vbuf; 872 873 bzero(buf, sizeof (arc_buf_t)); 874 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 875 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 876 877 return (0); 878 } 879 880 /* 881 * Destructor callback - called when a cached buf is 882 * no longer required. 883 */ 884 /* ARGSUSED */ 885 static void 886 hdr_dest(void *vbuf, void *unused) 887 { 888 arc_buf_hdr_t *buf = vbuf; 889 890 ASSERT(BUF_EMPTY(buf)); 891 refcount_destroy(&buf->b_refcnt); 892 cv_destroy(&buf->b_cv); 893 mutex_destroy(&buf->b_freeze_lock); 894 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 895 } 896 897 /* ARGSUSED */ 898 static void 899 buf_dest(void *vbuf, void *unused) 900 { 901 arc_buf_t *buf = vbuf; 902 903 mutex_destroy(&buf->b_evict_lock); 904 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 905 } 906 907 /* 908 * Reclaim callback -- invoked when memory is low. 909 */ 910 /* ARGSUSED */ 911 static void 912 hdr_recl(void *unused) 913 { 914 dprintf("hdr_recl called\n"); 915 /* 916 * umem calls the reclaim func when we destroy the buf cache, 917 * which is after we do arc_fini(). 918 */ 919 if (!arc_dead) 920 cv_signal(&arc_reclaim_thr_cv); 921 } 922 923 static void 924 buf_init(void) 925 { 926 uint64_t *ct; 927 uint64_t hsize = 1ULL << 12; 928 int i, j; 929 930 /* 931 * The hash table is big enough to fill all of physical memory 932 * with an average 64K block size. The table will take up 933 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 934 */ 935 while (hsize * 65536 < physmem * PAGESIZE) 936 hsize <<= 1; 937 retry: 938 buf_hash_table.ht_mask = hsize - 1; 939 buf_hash_table.ht_table = 940 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 941 if (buf_hash_table.ht_table == NULL) { 942 ASSERT(hsize > (1ULL << 8)); 943 hsize >>= 1; 944 goto retry; 945 } 946 947 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 948 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 949 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 950 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 951 952 for (i = 0; i < 256; i++) 953 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 954 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 955 956 for (i = 0; i < BUF_LOCKS; i++) { 957 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 958 NULL, MUTEX_DEFAULT, NULL); 959 } 960 } 961 962 #define ARC_MINTIME (hz>>4) /* 62 ms */ 963 964 static void 965 arc_cksum_verify(arc_buf_t *buf) 966 { 967 zio_cksum_t zc; 968 969 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 970 return; 971 972 mutex_enter(&buf->b_hdr->b_freeze_lock); 973 if (buf->b_hdr->b_freeze_cksum == NULL || 974 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 975 mutex_exit(&buf->b_hdr->b_freeze_lock); 976 return; 977 } 978 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 979 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 980 panic("buffer modified while frozen!"); 981 mutex_exit(&buf->b_hdr->b_freeze_lock); 982 } 983 984 static int 985 arc_cksum_equal(arc_buf_t *buf) 986 { 987 zio_cksum_t zc; 988 int equal; 989 990 mutex_enter(&buf->b_hdr->b_freeze_lock); 991 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 992 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 993 mutex_exit(&buf->b_hdr->b_freeze_lock); 994 995 return (equal); 996 } 997 998 static void 999 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 1000 { 1001 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 1002 return; 1003 1004 mutex_enter(&buf->b_hdr->b_freeze_lock); 1005 if (buf->b_hdr->b_freeze_cksum != NULL) { 1006 mutex_exit(&buf->b_hdr->b_freeze_lock); 1007 return; 1008 } 1009 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 1010 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 1011 buf->b_hdr->b_freeze_cksum); 1012 mutex_exit(&buf->b_hdr->b_freeze_lock); 1013 arc_buf_watch(buf); 1014 } 1015 1016 #ifndef _KERNEL 1017 typedef struct procctl { 1018 long cmd; 1019 prwatch_t prwatch; 1020 } procctl_t; 1021 #endif 1022 1023 /* ARGSUSED */ 1024 static void 1025 arc_buf_unwatch(arc_buf_t *buf) 1026 { 1027 #ifndef _KERNEL 1028 if (arc_watch) { 1029 int result; 1030 procctl_t ctl; 1031 ctl.cmd = PCWATCH; 1032 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1033 ctl.prwatch.pr_size = 0; 1034 ctl.prwatch.pr_wflags = 0; 1035 result = write(arc_procfd, &ctl, sizeof (ctl)); 1036 ASSERT3U(result, ==, sizeof (ctl)); 1037 } 1038 #endif 1039 } 1040 1041 /* ARGSUSED */ 1042 static void 1043 arc_buf_watch(arc_buf_t *buf) 1044 { 1045 #ifndef _KERNEL 1046 if (arc_watch) { 1047 int result; 1048 procctl_t ctl; 1049 ctl.cmd = PCWATCH; 1050 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1051 ctl.prwatch.pr_size = buf->b_hdr->b_size; 1052 ctl.prwatch.pr_wflags = WA_WRITE; 1053 result = write(arc_procfd, &ctl, sizeof (ctl)); 1054 ASSERT3U(result, ==, sizeof (ctl)); 1055 } 1056 #endif 1057 } 1058 1059 void 1060 arc_buf_thaw(arc_buf_t *buf) 1061 { 1062 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1063 if (buf->b_hdr->b_state != arc_anon) 1064 panic("modifying non-anon buffer!"); 1065 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 1066 panic("modifying buffer while i/o in progress!"); 1067 arc_cksum_verify(buf); 1068 } 1069 1070 mutex_enter(&buf->b_hdr->b_freeze_lock); 1071 if (buf->b_hdr->b_freeze_cksum != NULL) { 1072 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1073 buf->b_hdr->b_freeze_cksum = NULL; 1074 } 1075 1076 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1077 if (buf->b_hdr->b_thawed) 1078 kmem_free(buf->b_hdr->b_thawed, 1); 1079 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP); 1080 } 1081 1082 mutex_exit(&buf->b_hdr->b_freeze_lock); 1083 1084 arc_buf_unwatch(buf); 1085 } 1086 1087 void 1088 arc_buf_freeze(arc_buf_t *buf) 1089 { 1090 kmutex_t *hash_lock; 1091 1092 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1093 return; 1094 1095 hash_lock = HDR_LOCK(buf->b_hdr); 1096 mutex_enter(hash_lock); 1097 1098 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 1099 buf->b_hdr->b_state == arc_anon); 1100 arc_cksum_compute(buf, B_FALSE); 1101 mutex_exit(hash_lock); 1102 1103 } 1104 1105 static void 1106 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1107 { 1108 ASSERT(MUTEX_HELD(hash_lock)); 1109 1110 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 1111 (ab->b_state != arc_anon)) { 1112 uint64_t delta = ab->b_size * ab->b_datacnt; 1113 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 1114 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 1115 1116 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 1117 mutex_enter(&ab->b_state->arcs_mtx); 1118 ASSERT(list_link_active(&ab->b_arc_node)); 1119 list_remove(list, ab); 1120 if (GHOST_STATE(ab->b_state)) { 1121 ASSERT0(ab->b_datacnt); 1122 ASSERT3P(ab->b_buf, ==, NULL); 1123 delta = ab->b_size; 1124 } 1125 ASSERT(delta > 0); 1126 ASSERT3U(*size, >=, delta); 1127 atomic_add_64(size, -delta); 1128 mutex_exit(&ab->b_state->arcs_mtx); 1129 /* remove the prefetch flag if we get a reference */ 1130 if (ab->b_flags & ARC_PREFETCH) 1131 ab->b_flags &= ~ARC_PREFETCH; 1132 } 1133 } 1134 1135 static int 1136 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1137 { 1138 int cnt; 1139 arc_state_t *state = ab->b_state; 1140 1141 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1142 ASSERT(!GHOST_STATE(state)); 1143 1144 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1145 (state != arc_anon)) { 1146 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1147 1148 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1149 mutex_enter(&state->arcs_mtx); 1150 ASSERT(!list_link_active(&ab->b_arc_node)); 1151 list_insert_head(&state->arcs_list[ab->b_type], ab); 1152 ASSERT(ab->b_datacnt > 0); 1153 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1154 mutex_exit(&state->arcs_mtx); 1155 } 1156 return (cnt); 1157 } 1158 1159 /* 1160 * Move the supplied buffer to the indicated state. The mutex 1161 * for the buffer must be held by the caller. 1162 */ 1163 static void 1164 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1165 { 1166 arc_state_t *old_state = ab->b_state; 1167 int64_t refcnt = refcount_count(&ab->b_refcnt); 1168 uint64_t from_delta, to_delta; 1169 1170 ASSERT(MUTEX_HELD(hash_lock)); 1171 ASSERT(new_state != old_state); 1172 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1173 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1174 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon); 1175 1176 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1177 1178 /* 1179 * If this buffer is evictable, transfer it from the 1180 * old state list to the new state list. 1181 */ 1182 if (refcnt == 0) { 1183 if (old_state != arc_anon) { 1184 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1185 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1186 1187 if (use_mutex) 1188 mutex_enter(&old_state->arcs_mtx); 1189 1190 ASSERT(list_link_active(&ab->b_arc_node)); 1191 list_remove(&old_state->arcs_list[ab->b_type], ab); 1192 1193 /* 1194 * If prefetching out of the ghost cache, 1195 * we will have a non-zero datacnt. 1196 */ 1197 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1198 /* ghost elements have a ghost size */ 1199 ASSERT(ab->b_buf == NULL); 1200 from_delta = ab->b_size; 1201 } 1202 ASSERT3U(*size, >=, from_delta); 1203 atomic_add_64(size, -from_delta); 1204 1205 if (use_mutex) 1206 mutex_exit(&old_state->arcs_mtx); 1207 } 1208 if (new_state != arc_anon) { 1209 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1210 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1211 1212 if (use_mutex) 1213 mutex_enter(&new_state->arcs_mtx); 1214 1215 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1216 1217 /* ghost elements have a ghost size */ 1218 if (GHOST_STATE(new_state)) { 1219 ASSERT(ab->b_datacnt == 0); 1220 ASSERT(ab->b_buf == NULL); 1221 to_delta = ab->b_size; 1222 } 1223 atomic_add_64(size, to_delta); 1224 1225 if (use_mutex) 1226 mutex_exit(&new_state->arcs_mtx); 1227 } 1228 } 1229 1230 ASSERT(!BUF_EMPTY(ab)); 1231 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab)) 1232 buf_hash_remove(ab); 1233 1234 /* adjust state sizes */ 1235 if (to_delta) 1236 atomic_add_64(&new_state->arcs_size, to_delta); 1237 if (from_delta) { 1238 ASSERT3U(old_state->arcs_size, >=, from_delta); 1239 atomic_add_64(&old_state->arcs_size, -from_delta); 1240 } 1241 ab->b_state = new_state; 1242 1243 /* adjust l2arc hdr stats */ 1244 if (new_state == arc_l2c_only) 1245 l2arc_hdr_stat_add(); 1246 else if (old_state == arc_l2c_only) 1247 l2arc_hdr_stat_remove(); 1248 } 1249 1250 void 1251 arc_space_consume(uint64_t space, arc_space_type_t type) 1252 { 1253 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1254 1255 switch (type) { 1256 case ARC_SPACE_DATA: 1257 ARCSTAT_INCR(arcstat_data_size, space); 1258 break; 1259 case ARC_SPACE_OTHER: 1260 ARCSTAT_INCR(arcstat_other_size, space); 1261 break; 1262 case ARC_SPACE_HDRS: 1263 ARCSTAT_INCR(arcstat_hdr_size, space); 1264 break; 1265 case ARC_SPACE_L2HDRS: 1266 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1267 break; 1268 } 1269 1270 ARCSTAT_INCR(arcstat_meta_used, space); 1271 atomic_add_64(&arc_size, space); 1272 } 1273 1274 void 1275 arc_space_return(uint64_t space, arc_space_type_t type) 1276 { 1277 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1278 1279 switch (type) { 1280 case ARC_SPACE_DATA: 1281 ARCSTAT_INCR(arcstat_data_size, -space); 1282 break; 1283 case ARC_SPACE_OTHER: 1284 ARCSTAT_INCR(arcstat_other_size, -space); 1285 break; 1286 case ARC_SPACE_HDRS: 1287 ARCSTAT_INCR(arcstat_hdr_size, -space); 1288 break; 1289 case ARC_SPACE_L2HDRS: 1290 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1291 break; 1292 } 1293 1294 ASSERT(arc_meta_used >= space); 1295 if (arc_meta_max < arc_meta_used) 1296 arc_meta_max = arc_meta_used; 1297 ARCSTAT_INCR(arcstat_meta_used, -space); 1298 ASSERT(arc_size >= space); 1299 atomic_add_64(&arc_size, -space); 1300 } 1301 1302 void * 1303 arc_data_buf_alloc(uint64_t size) 1304 { 1305 if (arc_evict_needed(ARC_BUFC_DATA)) 1306 cv_signal(&arc_reclaim_thr_cv); 1307 atomic_add_64(&arc_size, size); 1308 return (zio_data_buf_alloc(size)); 1309 } 1310 1311 void 1312 arc_data_buf_free(void *buf, uint64_t size) 1313 { 1314 zio_data_buf_free(buf, size); 1315 ASSERT(arc_size >= size); 1316 atomic_add_64(&arc_size, -size); 1317 } 1318 1319 arc_buf_t * 1320 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1321 { 1322 arc_buf_hdr_t *hdr; 1323 arc_buf_t *buf; 1324 1325 ASSERT3U(size, >, 0); 1326 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1327 ASSERT(BUF_EMPTY(hdr)); 1328 hdr->b_size = size; 1329 hdr->b_type = type; 1330 hdr->b_spa = spa_load_guid(spa); 1331 hdr->b_state = arc_anon; 1332 hdr->b_arc_access = 0; 1333 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1334 buf->b_hdr = hdr; 1335 buf->b_data = NULL; 1336 buf->b_efunc = NULL; 1337 buf->b_private = NULL; 1338 buf->b_next = NULL; 1339 hdr->b_buf = buf; 1340 arc_get_data_buf(buf); 1341 hdr->b_datacnt = 1; 1342 hdr->b_flags = 0; 1343 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1344 (void) refcount_add(&hdr->b_refcnt, tag); 1345 1346 return (buf); 1347 } 1348 1349 static char *arc_onloan_tag = "onloan"; 1350 1351 /* 1352 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1353 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1354 * buffers must be returned to the arc before they can be used by the DMU or 1355 * freed. 1356 */ 1357 arc_buf_t * 1358 arc_loan_buf(spa_t *spa, int size) 1359 { 1360 arc_buf_t *buf; 1361 1362 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1363 1364 atomic_add_64(&arc_loaned_bytes, size); 1365 return (buf); 1366 } 1367 1368 /* 1369 * Return a loaned arc buffer to the arc. 1370 */ 1371 void 1372 arc_return_buf(arc_buf_t *buf, void *tag) 1373 { 1374 arc_buf_hdr_t *hdr = buf->b_hdr; 1375 1376 ASSERT(buf->b_data != NULL); 1377 (void) refcount_add(&hdr->b_refcnt, tag); 1378 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag); 1379 1380 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1381 } 1382 1383 /* Detach an arc_buf from a dbuf (tag) */ 1384 void 1385 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 1386 { 1387 arc_buf_hdr_t *hdr; 1388 1389 ASSERT(buf->b_data != NULL); 1390 hdr = buf->b_hdr; 1391 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag); 1392 (void) refcount_remove(&hdr->b_refcnt, tag); 1393 buf->b_efunc = NULL; 1394 buf->b_private = NULL; 1395 1396 atomic_add_64(&arc_loaned_bytes, hdr->b_size); 1397 } 1398 1399 static arc_buf_t * 1400 arc_buf_clone(arc_buf_t *from) 1401 { 1402 arc_buf_t *buf; 1403 arc_buf_hdr_t *hdr = from->b_hdr; 1404 uint64_t size = hdr->b_size; 1405 1406 ASSERT(hdr->b_state != arc_anon); 1407 1408 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1409 buf->b_hdr = hdr; 1410 buf->b_data = NULL; 1411 buf->b_efunc = NULL; 1412 buf->b_private = NULL; 1413 buf->b_next = hdr->b_buf; 1414 hdr->b_buf = buf; 1415 arc_get_data_buf(buf); 1416 bcopy(from->b_data, buf->b_data, size); 1417 1418 /* 1419 * This buffer already exists in the arc so create a duplicate 1420 * copy for the caller. If the buffer is associated with user data 1421 * then track the size and number of duplicates. These stats will be 1422 * updated as duplicate buffers are created and destroyed. 1423 */ 1424 if (hdr->b_type == ARC_BUFC_DATA) { 1425 ARCSTAT_BUMP(arcstat_duplicate_buffers); 1426 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size); 1427 } 1428 hdr->b_datacnt += 1; 1429 return (buf); 1430 } 1431 1432 void 1433 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1434 { 1435 arc_buf_hdr_t *hdr; 1436 kmutex_t *hash_lock; 1437 1438 /* 1439 * Check to see if this buffer is evicted. Callers 1440 * must verify b_data != NULL to know if the add_ref 1441 * was successful. 1442 */ 1443 mutex_enter(&buf->b_evict_lock); 1444 if (buf->b_data == NULL) { 1445 mutex_exit(&buf->b_evict_lock); 1446 return; 1447 } 1448 hash_lock = HDR_LOCK(buf->b_hdr); 1449 mutex_enter(hash_lock); 1450 hdr = buf->b_hdr; 1451 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1452 mutex_exit(&buf->b_evict_lock); 1453 1454 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1455 add_reference(hdr, hash_lock, tag); 1456 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1457 arc_access(hdr, hash_lock); 1458 mutex_exit(hash_lock); 1459 ARCSTAT_BUMP(arcstat_hits); 1460 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1461 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1462 data, metadata, hits); 1463 } 1464 1465 /* 1466 * Free the arc data buffer. If it is an l2arc write in progress, 1467 * the buffer is placed on l2arc_free_on_write to be freed later. 1468 */ 1469 static void 1470 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t)) 1471 { 1472 arc_buf_hdr_t *hdr = buf->b_hdr; 1473 1474 if (HDR_L2_WRITING(hdr)) { 1475 l2arc_data_free_t *df; 1476 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1477 df->l2df_data = buf->b_data; 1478 df->l2df_size = hdr->b_size; 1479 df->l2df_func = free_func; 1480 mutex_enter(&l2arc_free_on_write_mtx); 1481 list_insert_head(l2arc_free_on_write, df); 1482 mutex_exit(&l2arc_free_on_write_mtx); 1483 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1484 } else { 1485 free_func(buf->b_data, hdr->b_size); 1486 } 1487 } 1488 1489 static void 1490 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1491 { 1492 arc_buf_t **bufp; 1493 1494 /* free up data associated with the buf */ 1495 if (buf->b_data) { 1496 arc_state_t *state = buf->b_hdr->b_state; 1497 uint64_t size = buf->b_hdr->b_size; 1498 arc_buf_contents_t type = buf->b_hdr->b_type; 1499 1500 arc_cksum_verify(buf); 1501 arc_buf_unwatch(buf); 1502 1503 if (!recycle) { 1504 if (type == ARC_BUFC_METADATA) { 1505 arc_buf_data_free(buf, zio_buf_free); 1506 arc_space_return(size, ARC_SPACE_DATA); 1507 } else { 1508 ASSERT(type == ARC_BUFC_DATA); 1509 arc_buf_data_free(buf, zio_data_buf_free); 1510 ARCSTAT_INCR(arcstat_data_size, -size); 1511 atomic_add_64(&arc_size, -size); 1512 } 1513 } 1514 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1515 uint64_t *cnt = &state->arcs_lsize[type]; 1516 1517 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1518 ASSERT(state != arc_anon); 1519 1520 ASSERT3U(*cnt, >=, size); 1521 atomic_add_64(cnt, -size); 1522 } 1523 ASSERT3U(state->arcs_size, >=, size); 1524 atomic_add_64(&state->arcs_size, -size); 1525 buf->b_data = NULL; 1526 1527 /* 1528 * If we're destroying a duplicate buffer make sure 1529 * that the appropriate statistics are updated. 1530 */ 1531 if (buf->b_hdr->b_datacnt > 1 && 1532 buf->b_hdr->b_type == ARC_BUFC_DATA) { 1533 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 1534 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size); 1535 } 1536 ASSERT(buf->b_hdr->b_datacnt > 0); 1537 buf->b_hdr->b_datacnt -= 1; 1538 } 1539 1540 /* only remove the buf if requested */ 1541 if (!all) 1542 return; 1543 1544 /* remove the buf from the hdr list */ 1545 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1546 continue; 1547 *bufp = buf->b_next; 1548 buf->b_next = NULL; 1549 1550 ASSERT(buf->b_efunc == NULL); 1551 1552 /* clean up the buf */ 1553 buf->b_hdr = NULL; 1554 kmem_cache_free(buf_cache, buf); 1555 } 1556 1557 static void 1558 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1559 { 1560 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1561 ASSERT3P(hdr->b_state, ==, arc_anon); 1562 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1563 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 1564 1565 if (l2hdr != NULL) { 1566 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); 1567 /* 1568 * To prevent arc_free() and l2arc_evict() from 1569 * attempting to free the same buffer at the same time, 1570 * a FREE_IN_PROGRESS flag is given to arc_free() to 1571 * give it priority. l2arc_evict() can't destroy this 1572 * header while we are waiting on l2arc_buflist_mtx. 1573 * 1574 * The hdr may be removed from l2ad_buflist before we 1575 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1576 */ 1577 if (!buflist_held) { 1578 mutex_enter(&l2arc_buflist_mtx); 1579 l2hdr = hdr->b_l2hdr; 1580 } 1581 1582 if (l2hdr != NULL) { 1583 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 1584 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1585 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 1586 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 1587 if (hdr->b_state == arc_l2c_only) 1588 l2arc_hdr_stat_remove(); 1589 hdr->b_l2hdr = NULL; 1590 } 1591 1592 if (!buflist_held) 1593 mutex_exit(&l2arc_buflist_mtx); 1594 } 1595 1596 if (!BUF_EMPTY(hdr)) { 1597 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1598 buf_discard_identity(hdr); 1599 } 1600 while (hdr->b_buf) { 1601 arc_buf_t *buf = hdr->b_buf; 1602 1603 if (buf->b_efunc) { 1604 mutex_enter(&arc_eviction_mtx); 1605 mutex_enter(&buf->b_evict_lock); 1606 ASSERT(buf->b_hdr != NULL); 1607 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1608 hdr->b_buf = buf->b_next; 1609 buf->b_hdr = &arc_eviction_hdr; 1610 buf->b_next = arc_eviction_list; 1611 arc_eviction_list = buf; 1612 mutex_exit(&buf->b_evict_lock); 1613 mutex_exit(&arc_eviction_mtx); 1614 } else { 1615 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1616 } 1617 } 1618 if (hdr->b_freeze_cksum != NULL) { 1619 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1620 hdr->b_freeze_cksum = NULL; 1621 } 1622 if (hdr->b_thawed) { 1623 kmem_free(hdr->b_thawed, 1); 1624 hdr->b_thawed = NULL; 1625 } 1626 1627 ASSERT(!list_link_active(&hdr->b_arc_node)); 1628 ASSERT3P(hdr->b_hash_next, ==, NULL); 1629 ASSERT3P(hdr->b_acb, ==, NULL); 1630 kmem_cache_free(hdr_cache, hdr); 1631 } 1632 1633 void 1634 arc_buf_free(arc_buf_t *buf, void *tag) 1635 { 1636 arc_buf_hdr_t *hdr = buf->b_hdr; 1637 int hashed = hdr->b_state != arc_anon; 1638 1639 ASSERT(buf->b_efunc == NULL); 1640 ASSERT(buf->b_data != NULL); 1641 1642 if (hashed) { 1643 kmutex_t *hash_lock = HDR_LOCK(hdr); 1644 1645 mutex_enter(hash_lock); 1646 hdr = buf->b_hdr; 1647 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1648 1649 (void) remove_reference(hdr, hash_lock, tag); 1650 if (hdr->b_datacnt > 1) { 1651 arc_buf_destroy(buf, FALSE, TRUE); 1652 } else { 1653 ASSERT(buf == hdr->b_buf); 1654 ASSERT(buf->b_efunc == NULL); 1655 hdr->b_flags |= ARC_BUF_AVAILABLE; 1656 } 1657 mutex_exit(hash_lock); 1658 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1659 int destroy_hdr; 1660 /* 1661 * We are in the middle of an async write. Don't destroy 1662 * this buffer unless the write completes before we finish 1663 * decrementing the reference count. 1664 */ 1665 mutex_enter(&arc_eviction_mtx); 1666 (void) remove_reference(hdr, NULL, tag); 1667 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1668 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1669 mutex_exit(&arc_eviction_mtx); 1670 if (destroy_hdr) 1671 arc_hdr_destroy(hdr); 1672 } else { 1673 if (remove_reference(hdr, NULL, tag) > 0) 1674 arc_buf_destroy(buf, FALSE, TRUE); 1675 else 1676 arc_hdr_destroy(hdr); 1677 } 1678 } 1679 1680 boolean_t 1681 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1682 { 1683 arc_buf_hdr_t *hdr = buf->b_hdr; 1684 kmutex_t *hash_lock = HDR_LOCK(hdr); 1685 boolean_t no_callback = (buf->b_efunc == NULL); 1686 1687 if (hdr->b_state == arc_anon) { 1688 ASSERT(hdr->b_datacnt == 1); 1689 arc_buf_free(buf, tag); 1690 return (no_callback); 1691 } 1692 1693 mutex_enter(hash_lock); 1694 hdr = buf->b_hdr; 1695 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1696 ASSERT(hdr->b_state != arc_anon); 1697 ASSERT(buf->b_data != NULL); 1698 1699 (void) remove_reference(hdr, hash_lock, tag); 1700 if (hdr->b_datacnt > 1) { 1701 if (no_callback) 1702 arc_buf_destroy(buf, FALSE, TRUE); 1703 } else if (no_callback) { 1704 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1705 ASSERT(buf->b_efunc == NULL); 1706 hdr->b_flags |= ARC_BUF_AVAILABLE; 1707 } 1708 ASSERT(no_callback || hdr->b_datacnt > 1 || 1709 refcount_is_zero(&hdr->b_refcnt)); 1710 mutex_exit(hash_lock); 1711 return (no_callback); 1712 } 1713 1714 int 1715 arc_buf_size(arc_buf_t *buf) 1716 { 1717 return (buf->b_hdr->b_size); 1718 } 1719 1720 /* 1721 * Called from the DMU to determine if the current buffer should be 1722 * evicted. In order to ensure proper locking, the eviction must be initiated 1723 * from the DMU. Return true if the buffer is associated with user data and 1724 * duplicate buffers still exist. 1725 */ 1726 boolean_t 1727 arc_buf_eviction_needed(arc_buf_t *buf) 1728 { 1729 arc_buf_hdr_t *hdr; 1730 boolean_t evict_needed = B_FALSE; 1731 1732 if (zfs_disable_dup_eviction) 1733 return (B_FALSE); 1734 1735 mutex_enter(&buf->b_evict_lock); 1736 hdr = buf->b_hdr; 1737 if (hdr == NULL) { 1738 /* 1739 * We are in arc_do_user_evicts(); let that function 1740 * perform the eviction. 1741 */ 1742 ASSERT(buf->b_data == NULL); 1743 mutex_exit(&buf->b_evict_lock); 1744 return (B_FALSE); 1745 } else if (buf->b_data == NULL) { 1746 /* 1747 * We have already been added to the arc eviction list; 1748 * recommend eviction. 1749 */ 1750 ASSERT3P(hdr, ==, &arc_eviction_hdr); 1751 mutex_exit(&buf->b_evict_lock); 1752 return (B_TRUE); 1753 } 1754 1755 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA) 1756 evict_needed = B_TRUE; 1757 1758 mutex_exit(&buf->b_evict_lock); 1759 return (evict_needed); 1760 } 1761 1762 /* 1763 * Evict buffers from list until we've removed the specified number of 1764 * bytes. Move the removed buffers to the appropriate evict state. 1765 * If the recycle flag is set, then attempt to "recycle" a buffer: 1766 * - look for a buffer to evict that is `bytes' long. 1767 * - return the data block from this buffer rather than freeing it. 1768 * This flag is used by callers that are trying to make space for a 1769 * new buffer in a full arc cache. 1770 * 1771 * This function makes a "best effort". It skips over any buffers 1772 * it can't get a hash_lock on, and so may not catch all candidates. 1773 * It may also return without evicting as much space as requested. 1774 */ 1775 static void * 1776 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1777 arc_buf_contents_t type) 1778 { 1779 arc_state_t *evicted_state; 1780 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1781 arc_buf_hdr_t *ab, *ab_prev = NULL; 1782 list_t *list = &state->arcs_list[type]; 1783 kmutex_t *hash_lock; 1784 boolean_t have_lock; 1785 void *stolen = NULL; 1786 1787 ASSERT(state == arc_mru || state == arc_mfu); 1788 1789 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1790 1791 mutex_enter(&state->arcs_mtx); 1792 mutex_enter(&evicted_state->arcs_mtx); 1793 1794 for (ab = list_tail(list); ab; ab = ab_prev) { 1795 ab_prev = list_prev(list, ab); 1796 /* prefetch buffers have a minimum lifespan */ 1797 if (HDR_IO_IN_PROGRESS(ab) || 1798 (spa && ab->b_spa != spa) || 1799 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1800 ddi_get_lbolt() - ab->b_arc_access < 1801 arc_min_prefetch_lifespan)) { 1802 skipped++; 1803 continue; 1804 } 1805 /* "lookahead" for better eviction candidate */ 1806 if (recycle && ab->b_size != bytes && 1807 ab_prev && ab_prev->b_size == bytes) 1808 continue; 1809 hash_lock = HDR_LOCK(ab); 1810 have_lock = MUTEX_HELD(hash_lock); 1811 if (have_lock || mutex_tryenter(hash_lock)) { 1812 ASSERT0(refcount_count(&ab->b_refcnt)); 1813 ASSERT(ab->b_datacnt > 0); 1814 while (ab->b_buf) { 1815 arc_buf_t *buf = ab->b_buf; 1816 if (!mutex_tryenter(&buf->b_evict_lock)) { 1817 missed += 1; 1818 break; 1819 } 1820 if (buf->b_data) { 1821 bytes_evicted += ab->b_size; 1822 if (recycle && ab->b_type == type && 1823 ab->b_size == bytes && 1824 !HDR_L2_WRITING(ab)) { 1825 stolen = buf->b_data; 1826 recycle = FALSE; 1827 } 1828 } 1829 if (buf->b_efunc) { 1830 mutex_enter(&arc_eviction_mtx); 1831 arc_buf_destroy(buf, 1832 buf->b_data == stolen, FALSE); 1833 ab->b_buf = buf->b_next; 1834 buf->b_hdr = &arc_eviction_hdr; 1835 buf->b_next = arc_eviction_list; 1836 arc_eviction_list = buf; 1837 mutex_exit(&arc_eviction_mtx); 1838 mutex_exit(&buf->b_evict_lock); 1839 } else { 1840 mutex_exit(&buf->b_evict_lock); 1841 arc_buf_destroy(buf, 1842 buf->b_data == stolen, TRUE); 1843 } 1844 } 1845 1846 if (ab->b_l2hdr) { 1847 ARCSTAT_INCR(arcstat_evict_l2_cached, 1848 ab->b_size); 1849 } else { 1850 if (l2arc_write_eligible(ab->b_spa, ab)) { 1851 ARCSTAT_INCR(arcstat_evict_l2_eligible, 1852 ab->b_size); 1853 } else { 1854 ARCSTAT_INCR( 1855 arcstat_evict_l2_ineligible, 1856 ab->b_size); 1857 } 1858 } 1859 1860 if (ab->b_datacnt == 0) { 1861 arc_change_state(evicted_state, ab, hash_lock); 1862 ASSERT(HDR_IN_HASH_TABLE(ab)); 1863 ab->b_flags |= ARC_IN_HASH_TABLE; 1864 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1865 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1866 } 1867 if (!have_lock) 1868 mutex_exit(hash_lock); 1869 if (bytes >= 0 && bytes_evicted >= bytes) 1870 break; 1871 } else { 1872 missed += 1; 1873 } 1874 } 1875 1876 mutex_exit(&evicted_state->arcs_mtx); 1877 mutex_exit(&state->arcs_mtx); 1878 1879 if (bytes_evicted < bytes) 1880 dprintf("only evicted %lld bytes from %x", 1881 (longlong_t)bytes_evicted, state); 1882 1883 if (skipped) 1884 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1885 1886 if (missed) 1887 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1888 1889 /* 1890 * We have just evicted some data into the ghost state, make 1891 * sure we also adjust the ghost state size if necessary. 1892 */ 1893 if (arc_no_grow && 1894 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) { 1895 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size + 1896 arc_mru_ghost->arcs_size - arc_c; 1897 1898 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) { 1899 int64_t todelete = 1900 MIN(arc_mru_ghost->arcs_lsize[type], mru_over); 1901 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1902 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) { 1903 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type], 1904 arc_mru_ghost->arcs_size + 1905 arc_mfu_ghost->arcs_size - arc_c); 1906 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1907 } 1908 } 1909 1910 return (stolen); 1911 } 1912 1913 /* 1914 * Remove buffers from list until we've removed the specified number of 1915 * bytes. Destroy the buffers that are removed. 1916 */ 1917 static void 1918 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1919 { 1920 arc_buf_hdr_t *ab, *ab_prev; 1921 arc_buf_hdr_t marker = { 0 }; 1922 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1923 kmutex_t *hash_lock; 1924 uint64_t bytes_deleted = 0; 1925 uint64_t bufs_skipped = 0; 1926 1927 ASSERT(GHOST_STATE(state)); 1928 top: 1929 mutex_enter(&state->arcs_mtx); 1930 for (ab = list_tail(list); ab; ab = ab_prev) { 1931 ab_prev = list_prev(list, ab); 1932 if (spa && ab->b_spa != spa) 1933 continue; 1934 1935 /* ignore markers */ 1936 if (ab->b_spa == 0) 1937 continue; 1938 1939 hash_lock = HDR_LOCK(ab); 1940 /* caller may be trying to modify this buffer, skip it */ 1941 if (MUTEX_HELD(hash_lock)) 1942 continue; 1943 if (mutex_tryenter(hash_lock)) { 1944 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1945 ASSERT(ab->b_buf == NULL); 1946 ARCSTAT_BUMP(arcstat_deleted); 1947 bytes_deleted += ab->b_size; 1948 1949 if (ab->b_l2hdr != NULL) { 1950 /* 1951 * This buffer is cached on the 2nd Level ARC; 1952 * don't destroy the header. 1953 */ 1954 arc_change_state(arc_l2c_only, ab, hash_lock); 1955 mutex_exit(hash_lock); 1956 } else { 1957 arc_change_state(arc_anon, ab, hash_lock); 1958 mutex_exit(hash_lock); 1959 arc_hdr_destroy(ab); 1960 } 1961 1962 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1963 if (bytes >= 0 && bytes_deleted >= bytes) 1964 break; 1965 } else if (bytes < 0) { 1966 /* 1967 * Insert a list marker and then wait for the 1968 * hash lock to become available. Once its 1969 * available, restart from where we left off. 1970 */ 1971 list_insert_after(list, ab, &marker); 1972 mutex_exit(&state->arcs_mtx); 1973 mutex_enter(hash_lock); 1974 mutex_exit(hash_lock); 1975 mutex_enter(&state->arcs_mtx); 1976 ab_prev = list_prev(list, &marker); 1977 list_remove(list, &marker); 1978 } else 1979 bufs_skipped += 1; 1980 } 1981 mutex_exit(&state->arcs_mtx); 1982 1983 if (list == &state->arcs_list[ARC_BUFC_DATA] && 1984 (bytes < 0 || bytes_deleted < bytes)) { 1985 list = &state->arcs_list[ARC_BUFC_METADATA]; 1986 goto top; 1987 } 1988 1989 if (bufs_skipped) { 1990 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 1991 ASSERT(bytes >= 0); 1992 } 1993 1994 if (bytes_deleted < bytes) 1995 dprintf("only deleted %lld bytes from %p", 1996 (longlong_t)bytes_deleted, state); 1997 } 1998 1999 static void 2000 arc_adjust(void) 2001 { 2002 int64_t adjustment, delta; 2003 2004 /* 2005 * Adjust MRU size 2006 */ 2007 2008 adjustment = MIN((int64_t)(arc_size - arc_c), 2009 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - 2010 arc_p)); 2011 2012 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 2013 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 2014 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 2015 adjustment -= delta; 2016 } 2017 2018 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2019 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 2020 (void) arc_evict(arc_mru, NULL, delta, FALSE, 2021 ARC_BUFC_METADATA); 2022 } 2023 2024 /* 2025 * Adjust MFU size 2026 */ 2027 2028 adjustment = arc_size - arc_c; 2029 2030 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 2031 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 2032 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 2033 adjustment -= delta; 2034 } 2035 2036 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2037 int64_t delta = MIN(adjustment, 2038 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 2039 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 2040 ARC_BUFC_METADATA); 2041 } 2042 2043 /* 2044 * Adjust ghost lists 2045 */ 2046 2047 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 2048 2049 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 2050 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 2051 arc_evict_ghost(arc_mru_ghost, NULL, delta); 2052 } 2053 2054 adjustment = 2055 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 2056 2057 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 2058 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 2059 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 2060 } 2061 } 2062 2063 static void 2064 arc_do_user_evicts(void) 2065 { 2066 mutex_enter(&arc_eviction_mtx); 2067 while (arc_eviction_list != NULL) { 2068 arc_buf_t *buf = arc_eviction_list; 2069 arc_eviction_list = buf->b_next; 2070 mutex_enter(&buf->b_evict_lock); 2071 buf->b_hdr = NULL; 2072 mutex_exit(&buf->b_evict_lock); 2073 mutex_exit(&arc_eviction_mtx); 2074 2075 if (buf->b_efunc != NULL) 2076 VERIFY(buf->b_efunc(buf) == 0); 2077 2078 buf->b_efunc = NULL; 2079 buf->b_private = NULL; 2080 kmem_cache_free(buf_cache, buf); 2081 mutex_enter(&arc_eviction_mtx); 2082 } 2083 mutex_exit(&arc_eviction_mtx); 2084 } 2085 2086 /* 2087 * Flush all *evictable* data from the cache for the given spa. 2088 * NOTE: this will not touch "active" (i.e. referenced) data. 2089 */ 2090 void 2091 arc_flush(spa_t *spa) 2092 { 2093 uint64_t guid = 0; 2094 2095 if (spa) 2096 guid = spa_load_guid(spa); 2097 2098 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 2099 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 2100 if (spa) 2101 break; 2102 } 2103 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 2104 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 2105 if (spa) 2106 break; 2107 } 2108 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 2109 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 2110 if (spa) 2111 break; 2112 } 2113 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 2114 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 2115 if (spa) 2116 break; 2117 } 2118 2119 arc_evict_ghost(arc_mru_ghost, guid, -1); 2120 arc_evict_ghost(arc_mfu_ghost, guid, -1); 2121 2122 mutex_enter(&arc_reclaim_thr_lock); 2123 arc_do_user_evicts(); 2124 mutex_exit(&arc_reclaim_thr_lock); 2125 ASSERT(spa || arc_eviction_list == NULL); 2126 } 2127 2128 void 2129 arc_shrink(void) 2130 { 2131 if (arc_c > arc_c_min) { 2132 uint64_t to_free; 2133 2134 #ifdef _KERNEL 2135 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 2136 #else 2137 to_free = arc_c >> arc_shrink_shift; 2138 #endif 2139 if (arc_c > arc_c_min + to_free) 2140 atomic_add_64(&arc_c, -to_free); 2141 else 2142 arc_c = arc_c_min; 2143 2144 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 2145 if (arc_c > arc_size) 2146 arc_c = MAX(arc_size, arc_c_min); 2147 if (arc_p > arc_c) 2148 arc_p = (arc_c >> 1); 2149 ASSERT(arc_c >= arc_c_min); 2150 ASSERT((int64_t)arc_p >= 0); 2151 } 2152 2153 if (arc_size > arc_c) 2154 arc_adjust(); 2155 } 2156 2157 /* 2158 * Determine if the system is under memory pressure and is asking 2159 * to reclaim memory. A return value of 1 indicates that the system 2160 * is under memory pressure and that the arc should adjust accordingly. 2161 */ 2162 static int 2163 arc_reclaim_needed(void) 2164 { 2165 uint64_t extra; 2166 2167 #ifdef _KERNEL 2168 2169 if (needfree) 2170 return (1); 2171 2172 /* 2173 * take 'desfree' extra pages, so we reclaim sooner, rather than later 2174 */ 2175 extra = desfree; 2176 2177 /* 2178 * check that we're out of range of the pageout scanner. It starts to 2179 * schedule paging if freemem is less than lotsfree and needfree. 2180 * lotsfree is the high-water mark for pageout, and needfree is the 2181 * number of needed free pages. We add extra pages here to make sure 2182 * the scanner doesn't start up while we're freeing memory. 2183 */ 2184 if (freemem < lotsfree + needfree + extra) 2185 return (1); 2186 2187 /* 2188 * check to make sure that swapfs has enough space so that anon 2189 * reservations can still succeed. anon_resvmem() checks that the 2190 * availrmem is greater than swapfs_minfree, and the number of reserved 2191 * swap pages. We also add a bit of extra here just to prevent 2192 * circumstances from getting really dire. 2193 */ 2194 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 2195 return (1); 2196 2197 #if defined(__i386) 2198 /* 2199 * If we're on an i386 platform, it's possible that we'll exhaust the 2200 * kernel heap space before we ever run out of available physical 2201 * memory. Most checks of the size of the heap_area compare against 2202 * tune.t_minarmem, which is the minimum available real memory that we 2203 * can have in the system. However, this is generally fixed at 25 pages 2204 * which is so low that it's useless. In this comparison, we seek to 2205 * calculate the total heap-size, and reclaim if more than 3/4ths of the 2206 * heap is allocated. (Or, in the calculation, if less than 1/4th is 2207 * free) 2208 */ 2209 if (vmem_size(heap_arena, VMEM_FREE) < 2210 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2)) 2211 return (1); 2212 #endif 2213 2214 /* 2215 * If zio data pages are being allocated out of a separate heap segment, 2216 * then enforce that the size of available vmem for this arena remains 2217 * above about 1/16th free. 2218 * 2219 * Note: The 1/16th arena free requirement was put in place 2220 * to aggressively evict memory from the arc in order to avoid 2221 * memory fragmentation issues. 2222 */ 2223 if (zio_arena != NULL && 2224 vmem_size(zio_arena, VMEM_FREE) < 2225 (vmem_size(zio_arena, VMEM_ALLOC) >> 4)) 2226 return (1); 2227 #else 2228 if (spa_get_random(100) == 0) 2229 return (1); 2230 #endif 2231 return (0); 2232 } 2233 2234 static void 2235 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 2236 { 2237 size_t i; 2238 kmem_cache_t *prev_cache = NULL; 2239 kmem_cache_t *prev_data_cache = NULL; 2240 extern kmem_cache_t *zio_buf_cache[]; 2241 extern kmem_cache_t *zio_data_buf_cache[]; 2242 2243 #ifdef _KERNEL 2244 if (arc_meta_used >= arc_meta_limit) { 2245 /* 2246 * We are exceeding our meta-data cache limit. 2247 * Purge some DNLC entries to release holds on meta-data. 2248 */ 2249 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 2250 } 2251 #if defined(__i386) 2252 /* 2253 * Reclaim unused memory from all kmem caches. 2254 */ 2255 kmem_reap(); 2256 #endif 2257 #endif 2258 2259 /* 2260 * An aggressive reclamation will shrink the cache size as well as 2261 * reap free buffers from the arc kmem caches. 2262 */ 2263 if (strat == ARC_RECLAIM_AGGR) 2264 arc_shrink(); 2265 2266 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 2267 if (zio_buf_cache[i] != prev_cache) { 2268 prev_cache = zio_buf_cache[i]; 2269 kmem_cache_reap_now(zio_buf_cache[i]); 2270 } 2271 if (zio_data_buf_cache[i] != prev_data_cache) { 2272 prev_data_cache = zio_data_buf_cache[i]; 2273 kmem_cache_reap_now(zio_data_buf_cache[i]); 2274 } 2275 } 2276 kmem_cache_reap_now(buf_cache); 2277 kmem_cache_reap_now(hdr_cache); 2278 2279 /* 2280 * Ask the vmem areana to reclaim unused memory from its 2281 * quantum caches. 2282 */ 2283 if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR) 2284 vmem_qcache_reap(zio_arena); 2285 } 2286 2287 static void 2288 arc_reclaim_thread(void) 2289 { 2290 clock_t growtime = 0; 2291 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 2292 callb_cpr_t cpr; 2293 2294 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2295 2296 mutex_enter(&arc_reclaim_thr_lock); 2297 while (arc_thread_exit == 0) { 2298 if (arc_reclaim_needed()) { 2299 2300 if (arc_no_grow) { 2301 if (last_reclaim == ARC_RECLAIM_CONS) { 2302 last_reclaim = ARC_RECLAIM_AGGR; 2303 } else { 2304 last_reclaim = ARC_RECLAIM_CONS; 2305 } 2306 } else { 2307 arc_no_grow = TRUE; 2308 last_reclaim = ARC_RECLAIM_AGGR; 2309 membar_producer(); 2310 } 2311 2312 /* reset the growth delay for every reclaim */ 2313 growtime = ddi_get_lbolt() + (arc_grow_retry * hz); 2314 2315 arc_kmem_reap_now(last_reclaim); 2316 arc_warm = B_TRUE; 2317 2318 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) { 2319 arc_no_grow = FALSE; 2320 } 2321 2322 arc_adjust(); 2323 2324 if (arc_eviction_list != NULL) 2325 arc_do_user_evicts(); 2326 2327 /* block until needed, or one second, whichever is shorter */ 2328 CALLB_CPR_SAFE_BEGIN(&cpr); 2329 (void) cv_timedwait(&arc_reclaim_thr_cv, 2330 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz)); 2331 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2332 } 2333 2334 arc_thread_exit = 0; 2335 cv_broadcast(&arc_reclaim_thr_cv); 2336 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2337 thread_exit(); 2338 } 2339 2340 /* 2341 * Adapt arc info given the number of bytes we are trying to add and 2342 * the state that we are comming from. This function is only called 2343 * when we are adding new content to the cache. 2344 */ 2345 static void 2346 arc_adapt(int bytes, arc_state_t *state) 2347 { 2348 int mult; 2349 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2350 2351 if (state == arc_l2c_only) 2352 return; 2353 2354 ASSERT(bytes > 0); 2355 /* 2356 * Adapt the target size of the MRU list: 2357 * - if we just hit in the MRU ghost list, then increase 2358 * the target size of the MRU list. 2359 * - if we just hit in the MFU ghost list, then increase 2360 * the target size of the MFU list by decreasing the 2361 * target size of the MRU list. 2362 */ 2363 if (state == arc_mru_ghost) { 2364 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2365 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2366 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 2367 2368 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2369 } else if (state == arc_mfu_ghost) { 2370 uint64_t delta; 2371 2372 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2373 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2374 mult = MIN(mult, 10); 2375 2376 delta = MIN(bytes * mult, arc_p); 2377 arc_p = MAX(arc_p_min, arc_p - delta); 2378 } 2379 ASSERT((int64_t)arc_p >= 0); 2380 2381 if (arc_reclaim_needed()) { 2382 cv_signal(&arc_reclaim_thr_cv); 2383 return; 2384 } 2385 2386 if (arc_no_grow) 2387 return; 2388 2389 if (arc_c >= arc_c_max) 2390 return; 2391 2392 /* 2393 * If we're within (2 * maxblocksize) bytes of the target 2394 * cache size, increment the target cache size 2395 */ 2396 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2397 atomic_add_64(&arc_c, (int64_t)bytes); 2398 if (arc_c > arc_c_max) 2399 arc_c = arc_c_max; 2400 else if (state == arc_anon) 2401 atomic_add_64(&arc_p, (int64_t)bytes); 2402 if (arc_p > arc_c) 2403 arc_p = arc_c; 2404 } 2405 ASSERT((int64_t)arc_p >= 0); 2406 } 2407 2408 /* 2409 * Check if the cache has reached its limits and eviction is required 2410 * prior to insert. 2411 */ 2412 static int 2413 arc_evict_needed(arc_buf_contents_t type) 2414 { 2415 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2416 return (1); 2417 2418 if (arc_reclaim_needed()) 2419 return (1); 2420 2421 return (arc_size > arc_c); 2422 } 2423 2424 /* 2425 * The buffer, supplied as the first argument, needs a data block. 2426 * So, if we are at cache max, determine which cache should be victimized. 2427 * We have the following cases: 2428 * 2429 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2430 * In this situation if we're out of space, but the resident size of the MFU is 2431 * under the limit, victimize the MFU cache to satisfy this insertion request. 2432 * 2433 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2434 * Here, we've used up all of the available space for the MRU, so we need to 2435 * evict from our own cache instead. Evict from the set of resident MRU 2436 * entries. 2437 * 2438 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2439 * c minus p represents the MFU space in the cache, since p is the size of the 2440 * cache that is dedicated to the MRU. In this situation there's still space on 2441 * the MFU side, so the MRU side needs to be victimized. 2442 * 2443 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2444 * MFU's resident set is consuming more space than it has been allotted. In 2445 * this situation, we must victimize our own cache, the MFU, for this insertion. 2446 */ 2447 static void 2448 arc_get_data_buf(arc_buf_t *buf) 2449 { 2450 arc_state_t *state = buf->b_hdr->b_state; 2451 uint64_t size = buf->b_hdr->b_size; 2452 arc_buf_contents_t type = buf->b_hdr->b_type; 2453 2454 arc_adapt(size, state); 2455 2456 /* 2457 * We have not yet reached cache maximum size, 2458 * just allocate a new buffer. 2459 */ 2460 if (!arc_evict_needed(type)) { 2461 if (type == ARC_BUFC_METADATA) { 2462 buf->b_data = zio_buf_alloc(size); 2463 arc_space_consume(size, ARC_SPACE_DATA); 2464 } else { 2465 ASSERT(type == ARC_BUFC_DATA); 2466 buf->b_data = zio_data_buf_alloc(size); 2467 ARCSTAT_INCR(arcstat_data_size, size); 2468 atomic_add_64(&arc_size, size); 2469 } 2470 goto out; 2471 } 2472 2473 /* 2474 * If we are prefetching from the mfu ghost list, this buffer 2475 * will end up on the mru list; so steal space from there. 2476 */ 2477 if (state == arc_mfu_ghost) 2478 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2479 else if (state == arc_mru_ghost) 2480 state = arc_mru; 2481 2482 if (state == arc_mru || state == arc_anon) { 2483 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2484 state = (arc_mfu->arcs_lsize[type] >= size && 2485 arc_p > mru_used) ? arc_mfu : arc_mru; 2486 } else { 2487 /* MFU cases */ 2488 uint64_t mfu_space = arc_c - arc_p; 2489 state = (arc_mru->arcs_lsize[type] >= size && 2490 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2491 } 2492 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2493 if (type == ARC_BUFC_METADATA) { 2494 buf->b_data = zio_buf_alloc(size); 2495 arc_space_consume(size, ARC_SPACE_DATA); 2496 } else { 2497 ASSERT(type == ARC_BUFC_DATA); 2498 buf->b_data = zio_data_buf_alloc(size); 2499 ARCSTAT_INCR(arcstat_data_size, size); 2500 atomic_add_64(&arc_size, size); 2501 } 2502 ARCSTAT_BUMP(arcstat_recycle_miss); 2503 } 2504 ASSERT(buf->b_data != NULL); 2505 out: 2506 /* 2507 * Update the state size. Note that ghost states have a 2508 * "ghost size" and so don't need to be updated. 2509 */ 2510 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2511 arc_buf_hdr_t *hdr = buf->b_hdr; 2512 2513 atomic_add_64(&hdr->b_state->arcs_size, size); 2514 if (list_link_active(&hdr->b_arc_node)) { 2515 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2516 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2517 } 2518 /* 2519 * If we are growing the cache, and we are adding anonymous 2520 * data, and we have outgrown arc_p, update arc_p 2521 */ 2522 if (arc_size < arc_c && hdr->b_state == arc_anon && 2523 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2524 arc_p = MIN(arc_c, arc_p + size); 2525 } 2526 } 2527 2528 /* 2529 * This routine is called whenever a buffer is accessed. 2530 * NOTE: the hash lock is dropped in this function. 2531 */ 2532 static void 2533 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2534 { 2535 clock_t now; 2536 2537 ASSERT(MUTEX_HELD(hash_lock)); 2538 2539 if (buf->b_state == arc_anon) { 2540 /* 2541 * This buffer is not in the cache, and does not 2542 * appear in our "ghost" list. Add the new buffer 2543 * to the MRU state. 2544 */ 2545 2546 ASSERT(buf->b_arc_access == 0); 2547 buf->b_arc_access = ddi_get_lbolt(); 2548 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2549 arc_change_state(arc_mru, buf, hash_lock); 2550 2551 } else if (buf->b_state == arc_mru) { 2552 now = ddi_get_lbolt(); 2553 2554 /* 2555 * If this buffer is here because of a prefetch, then either: 2556 * - clear the flag if this is a "referencing" read 2557 * (any subsequent access will bump this into the MFU state). 2558 * or 2559 * - move the buffer to the head of the list if this is 2560 * another prefetch (to make it less likely to be evicted). 2561 */ 2562 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2563 if (refcount_count(&buf->b_refcnt) == 0) { 2564 ASSERT(list_link_active(&buf->b_arc_node)); 2565 } else { 2566 buf->b_flags &= ~ARC_PREFETCH; 2567 ARCSTAT_BUMP(arcstat_mru_hits); 2568 } 2569 buf->b_arc_access = now; 2570 return; 2571 } 2572 2573 /* 2574 * This buffer has been "accessed" only once so far, 2575 * but it is still in the cache. Move it to the MFU 2576 * state. 2577 */ 2578 if (now > buf->b_arc_access + ARC_MINTIME) { 2579 /* 2580 * More than 125ms have passed since we 2581 * instantiated this buffer. Move it to the 2582 * most frequently used state. 2583 */ 2584 buf->b_arc_access = now; 2585 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2586 arc_change_state(arc_mfu, buf, hash_lock); 2587 } 2588 ARCSTAT_BUMP(arcstat_mru_hits); 2589 } else if (buf->b_state == arc_mru_ghost) { 2590 arc_state_t *new_state; 2591 /* 2592 * This buffer has been "accessed" recently, but 2593 * was evicted from the cache. Move it to the 2594 * MFU state. 2595 */ 2596 2597 if (buf->b_flags & ARC_PREFETCH) { 2598 new_state = arc_mru; 2599 if (refcount_count(&buf->b_refcnt) > 0) 2600 buf->b_flags &= ~ARC_PREFETCH; 2601 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2602 } else { 2603 new_state = arc_mfu; 2604 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2605 } 2606 2607 buf->b_arc_access = ddi_get_lbolt(); 2608 arc_change_state(new_state, buf, hash_lock); 2609 2610 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2611 } else if (buf->b_state == arc_mfu) { 2612 /* 2613 * This buffer has been accessed more than once and is 2614 * still in the cache. Keep it in the MFU state. 2615 * 2616 * NOTE: an add_reference() that occurred when we did 2617 * the arc_read() will have kicked this off the list. 2618 * If it was a prefetch, we will explicitly move it to 2619 * the head of the list now. 2620 */ 2621 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2622 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2623 ASSERT(list_link_active(&buf->b_arc_node)); 2624 } 2625 ARCSTAT_BUMP(arcstat_mfu_hits); 2626 buf->b_arc_access = ddi_get_lbolt(); 2627 } else if (buf->b_state == arc_mfu_ghost) { 2628 arc_state_t *new_state = arc_mfu; 2629 /* 2630 * This buffer has been accessed more than once but has 2631 * been evicted from the cache. Move it back to the 2632 * MFU state. 2633 */ 2634 2635 if (buf->b_flags & ARC_PREFETCH) { 2636 /* 2637 * This is a prefetch access... 2638 * move this block back to the MRU state. 2639 */ 2640 ASSERT0(refcount_count(&buf->b_refcnt)); 2641 new_state = arc_mru; 2642 } 2643 2644 buf->b_arc_access = ddi_get_lbolt(); 2645 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2646 arc_change_state(new_state, buf, hash_lock); 2647 2648 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2649 } else if (buf->b_state == arc_l2c_only) { 2650 /* 2651 * This buffer is on the 2nd Level ARC. 2652 */ 2653 2654 buf->b_arc_access = ddi_get_lbolt(); 2655 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2656 arc_change_state(arc_mfu, buf, hash_lock); 2657 } else { 2658 ASSERT(!"invalid arc state"); 2659 } 2660 } 2661 2662 /* a generic arc_done_func_t which you can use */ 2663 /* ARGSUSED */ 2664 void 2665 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2666 { 2667 if (zio == NULL || zio->io_error == 0) 2668 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2669 VERIFY(arc_buf_remove_ref(buf, arg)); 2670 } 2671 2672 /* a generic arc_done_func_t */ 2673 void 2674 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2675 { 2676 arc_buf_t **bufp = arg; 2677 if (zio && zio->io_error) { 2678 VERIFY(arc_buf_remove_ref(buf, arg)); 2679 *bufp = NULL; 2680 } else { 2681 *bufp = buf; 2682 ASSERT(buf->b_data); 2683 } 2684 } 2685 2686 static void 2687 arc_read_done(zio_t *zio) 2688 { 2689 arc_buf_hdr_t *hdr, *found; 2690 arc_buf_t *buf; 2691 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2692 kmutex_t *hash_lock; 2693 arc_callback_t *callback_list, *acb; 2694 int freeable = FALSE; 2695 2696 buf = zio->io_private; 2697 hdr = buf->b_hdr; 2698 2699 /* 2700 * The hdr was inserted into hash-table and removed from lists 2701 * prior to starting I/O. We should find this header, since 2702 * it's in the hash table, and it should be legit since it's 2703 * not possible to evict it during the I/O. The only possible 2704 * reason for it not to be found is if we were freed during the 2705 * read. 2706 */ 2707 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth, 2708 &hash_lock); 2709 2710 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 2711 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2712 (found == hdr && HDR_L2_READING(hdr))); 2713 2714 hdr->b_flags &= ~ARC_L2_EVICTED; 2715 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2716 hdr->b_flags &= ~ARC_L2CACHE; 2717 2718 /* byteswap if necessary */ 2719 callback_list = hdr->b_acb; 2720 ASSERT(callback_list != NULL); 2721 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 2722 dmu_object_byteswap_t bswap = 2723 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 2724 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2725 byteswap_uint64_array : 2726 dmu_ot_byteswap[bswap].ob_func; 2727 func(buf->b_data, hdr->b_size); 2728 } 2729 2730 arc_cksum_compute(buf, B_FALSE); 2731 arc_buf_watch(buf); 2732 2733 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { 2734 /* 2735 * Only call arc_access on anonymous buffers. This is because 2736 * if we've issued an I/O for an evicted buffer, we've already 2737 * called arc_access (to prevent any simultaneous readers from 2738 * getting confused). 2739 */ 2740 arc_access(hdr, hash_lock); 2741 } 2742 2743 /* create copies of the data buffer for the callers */ 2744 abuf = buf; 2745 for (acb = callback_list; acb; acb = acb->acb_next) { 2746 if (acb->acb_done) { 2747 if (abuf == NULL) { 2748 ARCSTAT_BUMP(arcstat_duplicate_reads); 2749 abuf = arc_buf_clone(buf); 2750 } 2751 acb->acb_buf = abuf; 2752 abuf = NULL; 2753 } 2754 } 2755 hdr->b_acb = NULL; 2756 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2757 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2758 if (abuf == buf) { 2759 ASSERT(buf->b_efunc == NULL); 2760 ASSERT(hdr->b_datacnt == 1); 2761 hdr->b_flags |= ARC_BUF_AVAILABLE; 2762 } 2763 2764 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2765 2766 if (zio->io_error != 0) { 2767 hdr->b_flags |= ARC_IO_ERROR; 2768 if (hdr->b_state != arc_anon) 2769 arc_change_state(arc_anon, hdr, hash_lock); 2770 if (HDR_IN_HASH_TABLE(hdr)) 2771 buf_hash_remove(hdr); 2772 freeable = refcount_is_zero(&hdr->b_refcnt); 2773 } 2774 2775 /* 2776 * Broadcast before we drop the hash_lock to avoid the possibility 2777 * that the hdr (and hence the cv) might be freed before we get to 2778 * the cv_broadcast(). 2779 */ 2780 cv_broadcast(&hdr->b_cv); 2781 2782 if (hash_lock) { 2783 mutex_exit(hash_lock); 2784 } else { 2785 /* 2786 * This block was freed while we waited for the read to 2787 * complete. It has been removed from the hash table and 2788 * moved to the anonymous state (so that it won't show up 2789 * in the cache). 2790 */ 2791 ASSERT3P(hdr->b_state, ==, arc_anon); 2792 freeable = refcount_is_zero(&hdr->b_refcnt); 2793 } 2794 2795 /* execute each callback and free its structure */ 2796 while ((acb = callback_list) != NULL) { 2797 if (acb->acb_done) 2798 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2799 2800 if (acb->acb_zio_dummy != NULL) { 2801 acb->acb_zio_dummy->io_error = zio->io_error; 2802 zio_nowait(acb->acb_zio_dummy); 2803 } 2804 2805 callback_list = acb->acb_next; 2806 kmem_free(acb, sizeof (arc_callback_t)); 2807 } 2808 2809 if (freeable) 2810 arc_hdr_destroy(hdr); 2811 } 2812 2813 /* 2814 * "Read" the block at the specified DVA (in bp) via the 2815 * cache. If the block is found in the cache, invoke the provided 2816 * callback immediately and return. Note that the `zio' parameter 2817 * in the callback will be NULL in this case, since no IO was 2818 * required. If the block is not in the cache pass the read request 2819 * on to the spa with a substitute callback function, so that the 2820 * requested block will be added to the cache. 2821 * 2822 * If a read request arrives for a block that has a read in-progress, 2823 * either wait for the in-progress read to complete (and return the 2824 * results); or, if this is a read with a "done" func, add a record 2825 * to the read to invoke the "done" func when the read completes, 2826 * and return; or just return. 2827 * 2828 * arc_read_done() will invoke all the requested "done" functions 2829 * for readers of this block. 2830 */ 2831 int 2832 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 2833 void *private, int priority, int zio_flags, uint32_t *arc_flags, 2834 const zbookmark_t *zb) 2835 { 2836 arc_buf_hdr_t *hdr; 2837 arc_buf_t *buf = NULL; 2838 kmutex_t *hash_lock; 2839 zio_t *rzio; 2840 uint64_t guid = spa_load_guid(spa); 2841 2842 top: 2843 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp), 2844 &hash_lock); 2845 if (hdr && hdr->b_datacnt > 0) { 2846 2847 *arc_flags |= ARC_CACHED; 2848 2849 if (HDR_IO_IN_PROGRESS(hdr)) { 2850 2851 if (*arc_flags & ARC_WAIT) { 2852 cv_wait(&hdr->b_cv, hash_lock); 2853 mutex_exit(hash_lock); 2854 goto top; 2855 } 2856 ASSERT(*arc_flags & ARC_NOWAIT); 2857 2858 if (done) { 2859 arc_callback_t *acb = NULL; 2860 2861 acb = kmem_zalloc(sizeof (arc_callback_t), 2862 KM_SLEEP); 2863 acb->acb_done = done; 2864 acb->acb_private = private; 2865 if (pio != NULL) 2866 acb->acb_zio_dummy = zio_null(pio, 2867 spa, NULL, NULL, NULL, zio_flags); 2868 2869 ASSERT(acb->acb_done != NULL); 2870 acb->acb_next = hdr->b_acb; 2871 hdr->b_acb = acb; 2872 add_reference(hdr, hash_lock, private); 2873 mutex_exit(hash_lock); 2874 return (0); 2875 } 2876 mutex_exit(hash_lock); 2877 return (0); 2878 } 2879 2880 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2881 2882 if (done) { 2883 add_reference(hdr, hash_lock, private); 2884 /* 2885 * If this block is already in use, create a new 2886 * copy of the data so that we will be guaranteed 2887 * that arc_release() will always succeed. 2888 */ 2889 buf = hdr->b_buf; 2890 ASSERT(buf); 2891 ASSERT(buf->b_data); 2892 if (HDR_BUF_AVAILABLE(hdr)) { 2893 ASSERT(buf->b_efunc == NULL); 2894 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2895 } else { 2896 buf = arc_buf_clone(buf); 2897 } 2898 2899 } else if (*arc_flags & ARC_PREFETCH && 2900 refcount_count(&hdr->b_refcnt) == 0) { 2901 hdr->b_flags |= ARC_PREFETCH; 2902 } 2903 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2904 arc_access(hdr, hash_lock); 2905 if (*arc_flags & ARC_L2CACHE) 2906 hdr->b_flags |= ARC_L2CACHE; 2907 if (*arc_flags & ARC_L2COMPRESS) 2908 hdr->b_flags |= ARC_L2COMPRESS; 2909 mutex_exit(hash_lock); 2910 ARCSTAT_BUMP(arcstat_hits); 2911 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2912 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2913 data, metadata, hits); 2914 2915 if (done) 2916 done(NULL, buf, private); 2917 } else { 2918 uint64_t size = BP_GET_LSIZE(bp); 2919 arc_callback_t *acb; 2920 vdev_t *vd = NULL; 2921 uint64_t addr = 0; 2922 boolean_t devw = B_FALSE; 2923 2924 if (hdr == NULL) { 2925 /* this block is not in the cache */ 2926 arc_buf_hdr_t *exists; 2927 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 2928 buf = arc_buf_alloc(spa, size, private, type); 2929 hdr = buf->b_hdr; 2930 hdr->b_dva = *BP_IDENTITY(bp); 2931 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 2932 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 2933 exists = buf_hash_insert(hdr, &hash_lock); 2934 if (exists) { 2935 /* somebody beat us to the hash insert */ 2936 mutex_exit(hash_lock); 2937 buf_discard_identity(hdr); 2938 (void) arc_buf_remove_ref(buf, private); 2939 goto top; /* restart the IO request */ 2940 } 2941 /* if this is a prefetch, we don't have a reference */ 2942 if (*arc_flags & ARC_PREFETCH) { 2943 (void) remove_reference(hdr, hash_lock, 2944 private); 2945 hdr->b_flags |= ARC_PREFETCH; 2946 } 2947 if (*arc_flags & ARC_L2CACHE) 2948 hdr->b_flags |= ARC_L2CACHE; 2949 if (*arc_flags & ARC_L2COMPRESS) 2950 hdr->b_flags |= ARC_L2COMPRESS; 2951 if (BP_GET_LEVEL(bp) > 0) 2952 hdr->b_flags |= ARC_INDIRECT; 2953 } else { 2954 /* this block is in the ghost cache */ 2955 ASSERT(GHOST_STATE(hdr->b_state)); 2956 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2957 ASSERT0(refcount_count(&hdr->b_refcnt)); 2958 ASSERT(hdr->b_buf == NULL); 2959 2960 /* if this is a prefetch, we don't have a reference */ 2961 if (*arc_flags & ARC_PREFETCH) 2962 hdr->b_flags |= ARC_PREFETCH; 2963 else 2964 add_reference(hdr, hash_lock, private); 2965 if (*arc_flags & ARC_L2CACHE) 2966 hdr->b_flags |= ARC_L2CACHE; 2967 if (*arc_flags & ARC_L2COMPRESS) 2968 hdr->b_flags |= ARC_L2COMPRESS; 2969 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2970 buf->b_hdr = hdr; 2971 buf->b_data = NULL; 2972 buf->b_efunc = NULL; 2973 buf->b_private = NULL; 2974 buf->b_next = NULL; 2975 hdr->b_buf = buf; 2976 ASSERT(hdr->b_datacnt == 0); 2977 hdr->b_datacnt = 1; 2978 arc_get_data_buf(buf); 2979 arc_access(hdr, hash_lock); 2980 } 2981 2982 ASSERT(!GHOST_STATE(hdr->b_state)); 2983 2984 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2985 acb->acb_done = done; 2986 acb->acb_private = private; 2987 2988 ASSERT(hdr->b_acb == NULL); 2989 hdr->b_acb = acb; 2990 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2991 2992 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL && 2993 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 2994 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 2995 addr = hdr->b_l2hdr->b_daddr; 2996 /* 2997 * Lock out device removal. 2998 */ 2999 if (vdev_is_dead(vd) || 3000 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 3001 vd = NULL; 3002 } 3003 3004 mutex_exit(hash_lock); 3005 3006 /* 3007 * At this point, we have a level 1 cache miss. Try again in 3008 * L2ARC if possible. 3009 */ 3010 ASSERT3U(hdr->b_size, ==, size); 3011 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 3012 uint64_t, size, zbookmark_t *, zb); 3013 ARCSTAT_BUMP(arcstat_misses); 3014 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 3015 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 3016 data, metadata, misses); 3017 3018 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 3019 /* 3020 * Read from the L2ARC if the following are true: 3021 * 1. The L2ARC vdev was previously cached. 3022 * 2. This buffer still has L2ARC metadata. 3023 * 3. This buffer isn't currently writing to the L2ARC. 3024 * 4. The L2ARC entry wasn't evicted, which may 3025 * also have invalidated the vdev. 3026 * 5. This isn't prefetch and l2arc_noprefetch is set. 3027 */ 3028 if (hdr->b_l2hdr != NULL && 3029 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 3030 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 3031 l2arc_read_callback_t *cb; 3032 3033 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 3034 ARCSTAT_BUMP(arcstat_l2_hits); 3035 3036 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 3037 KM_SLEEP); 3038 cb->l2rcb_buf = buf; 3039 cb->l2rcb_spa = spa; 3040 cb->l2rcb_bp = *bp; 3041 cb->l2rcb_zb = *zb; 3042 cb->l2rcb_flags = zio_flags; 3043 cb->l2rcb_compress = hdr->b_l2hdr->b_compress; 3044 3045 ASSERT(addr >= VDEV_LABEL_START_SIZE && 3046 addr + size < vd->vdev_psize - 3047 VDEV_LABEL_END_SIZE); 3048 3049 /* 3050 * l2arc read. The SCL_L2ARC lock will be 3051 * released by l2arc_read_done(). 3052 * Issue a null zio if the underlying buffer 3053 * was squashed to zero size by compression. 3054 */ 3055 if (hdr->b_l2hdr->b_compress == 3056 ZIO_COMPRESS_EMPTY) { 3057 rzio = zio_null(pio, spa, vd, 3058 l2arc_read_done, cb, 3059 zio_flags | ZIO_FLAG_DONT_CACHE | 3060 ZIO_FLAG_CANFAIL | 3061 ZIO_FLAG_DONT_PROPAGATE | 3062 ZIO_FLAG_DONT_RETRY); 3063 } else { 3064 rzio = zio_read_phys(pio, vd, addr, 3065 hdr->b_l2hdr->b_asize, 3066 buf->b_data, ZIO_CHECKSUM_OFF, 3067 l2arc_read_done, cb, priority, 3068 zio_flags | ZIO_FLAG_DONT_CACHE | 3069 ZIO_FLAG_CANFAIL | 3070 ZIO_FLAG_DONT_PROPAGATE | 3071 ZIO_FLAG_DONT_RETRY, B_FALSE); 3072 } 3073 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 3074 zio_t *, rzio); 3075 ARCSTAT_INCR(arcstat_l2_read_bytes, 3076 hdr->b_l2hdr->b_asize); 3077 3078 if (*arc_flags & ARC_NOWAIT) { 3079 zio_nowait(rzio); 3080 return (0); 3081 } 3082 3083 ASSERT(*arc_flags & ARC_WAIT); 3084 if (zio_wait(rzio) == 0) 3085 return (0); 3086 3087 /* l2arc read error; goto zio_read() */ 3088 } else { 3089 DTRACE_PROBE1(l2arc__miss, 3090 arc_buf_hdr_t *, hdr); 3091 ARCSTAT_BUMP(arcstat_l2_misses); 3092 if (HDR_L2_WRITING(hdr)) 3093 ARCSTAT_BUMP(arcstat_l2_rw_clash); 3094 spa_config_exit(spa, SCL_L2ARC, vd); 3095 } 3096 } else { 3097 if (vd != NULL) 3098 spa_config_exit(spa, SCL_L2ARC, vd); 3099 if (l2arc_ndev != 0) { 3100 DTRACE_PROBE1(l2arc__miss, 3101 arc_buf_hdr_t *, hdr); 3102 ARCSTAT_BUMP(arcstat_l2_misses); 3103 } 3104 } 3105 3106 rzio = zio_read(pio, spa, bp, buf->b_data, size, 3107 arc_read_done, buf, priority, zio_flags, zb); 3108 3109 if (*arc_flags & ARC_WAIT) 3110 return (zio_wait(rzio)); 3111 3112 ASSERT(*arc_flags & ARC_NOWAIT); 3113 zio_nowait(rzio); 3114 } 3115 return (0); 3116 } 3117 3118 void 3119 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 3120 { 3121 ASSERT(buf->b_hdr != NULL); 3122 ASSERT(buf->b_hdr->b_state != arc_anon); 3123 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 3124 ASSERT(buf->b_efunc == NULL); 3125 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 3126 3127 buf->b_efunc = func; 3128 buf->b_private = private; 3129 } 3130 3131 /* 3132 * Notify the arc that a block was freed, and thus will never be used again. 3133 */ 3134 void 3135 arc_freed(spa_t *spa, const blkptr_t *bp) 3136 { 3137 arc_buf_hdr_t *hdr; 3138 kmutex_t *hash_lock; 3139 uint64_t guid = spa_load_guid(spa); 3140 3141 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp), 3142 &hash_lock); 3143 if (hdr == NULL) 3144 return; 3145 if (HDR_BUF_AVAILABLE(hdr)) { 3146 arc_buf_t *buf = hdr->b_buf; 3147 add_reference(hdr, hash_lock, FTAG); 3148 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 3149 mutex_exit(hash_lock); 3150 3151 arc_release(buf, FTAG); 3152 (void) arc_buf_remove_ref(buf, FTAG); 3153 } else { 3154 mutex_exit(hash_lock); 3155 } 3156 3157 } 3158 3159 /* 3160 * This is used by the DMU to let the ARC know that a buffer is 3161 * being evicted, so the ARC should clean up. If this arc buf 3162 * is not yet in the evicted state, it will be put there. 3163 */ 3164 int 3165 arc_buf_evict(arc_buf_t *buf) 3166 { 3167 arc_buf_hdr_t *hdr; 3168 kmutex_t *hash_lock; 3169 arc_buf_t **bufp; 3170 3171 mutex_enter(&buf->b_evict_lock); 3172 hdr = buf->b_hdr; 3173 if (hdr == NULL) { 3174 /* 3175 * We are in arc_do_user_evicts(). 3176 */ 3177 ASSERT(buf->b_data == NULL); 3178 mutex_exit(&buf->b_evict_lock); 3179 return (0); 3180 } else if (buf->b_data == NULL) { 3181 arc_buf_t copy = *buf; /* structure assignment */ 3182 /* 3183 * We are on the eviction list; process this buffer now 3184 * but let arc_do_user_evicts() do the reaping. 3185 */ 3186 buf->b_efunc = NULL; 3187 mutex_exit(&buf->b_evict_lock); 3188 VERIFY(copy.b_efunc(©) == 0); 3189 return (1); 3190 } 3191 hash_lock = HDR_LOCK(hdr); 3192 mutex_enter(hash_lock); 3193 hdr = buf->b_hdr; 3194 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3195 3196 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 3197 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 3198 3199 /* 3200 * Pull this buffer off of the hdr 3201 */ 3202 bufp = &hdr->b_buf; 3203 while (*bufp != buf) 3204 bufp = &(*bufp)->b_next; 3205 *bufp = buf->b_next; 3206 3207 ASSERT(buf->b_data != NULL); 3208 arc_buf_destroy(buf, FALSE, FALSE); 3209 3210 if (hdr->b_datacnt == 0) { 3211 arc_state_t *old_state = hdr->b_state; 3212 arc_state_t *evicted_state; 3213 3214 ASSERT(hdr->b_buf == NULL); 3215 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 3216 3217 evicted_state = 3218 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3219 3220 mutex_enter(&old_state->arcs_mtx); 3221 mutex_enter(&evicted_state->arcs_mtx); 3222 3223 arc_change_state(evicted_state, hdr, hash_lock); 3224 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3225 hdr->b_flags |= ARC_IN_HASH_TABLE; 3226 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 3227 3228 mutex_exit(&evicted_state->arcs_mtx); 3229 mutex_exit(&old_state->arcs_mtx); 3230 } 3231 mutex_exit(hash_lock); 3232 mutex_exit(&buf->b_evict_lock); 3233 3234 VERIFY(buf->b_efunc(buf) == 0); 3235 buf->b_efunc = NULL; 3236 buf->b_private = NULL; 3237 buf->b_hdr = NULL; 3238 buf->b_next = NULL; 3239 kmem_cache_free(buf_cache, buf); 3240 return (1); 3241 } 3242 3243 /* 3244 * Release this buffer from the cache, making it an anonymous buffer. This 3245 * must be done after a read and prior to modifying the buffer contents. 3246 * If the buffer has more than one reference, we must make 3247 * a new hdr for the buffer. 3248 */ 3249 void 3250 arc_release(arc_buf_t *buf, void *tag) 3251 { 3252 arc_buf_hdr_t *hdr; 3253 kmutex_t *hash_lock = NULL; 3254 l2arc_buf_hdr_t *l2hdr; 3255 uint64_t buf_size; 3256 3257 /* 3258 * It would be nice to assert that if it's DMU metadata (level > 3259 * 0 || it's the dnode file), then it must be syncing context. 3260 * But we don't know that information at this level. 3261 */ 3262 3263 mutex_enter(&buf->b_evict_lock); 3264 hdr = buf->b_hdr; 3265 3266 /* this buffer is not on any list */ 3267 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 3268 3269 if (hdr->b_state == arc_anon) { 3270 /* this buffer is already released */ 3271 ASSERT(buf->b_efunc == NULL); 3272 } else { 3273 hash_lock = HDR_LOCK(hdr); 3274 mutex_enter(hash_lock); 3275 hdr = buf->b_hdr; 3276 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3277 } 3278 3279 l2hdr = hdr->b_l2hdr; 3280 if (l2hdr) { 3281 mutex_enter(&l2arc_buflist_mtx); 3282 hdr->b_l2hdr = NULL; 3283 } 3284 buf_size = hdr->b_size; 3285 3286 /* 3287 * Do we have more than one buf? 3288 */ 3289 if (hdr->b_datacnt > 1) { 3290 arc_buf_hdr_t *nhdr; 3291 arc_buf_t **bufp; 3292 uint64_t blksz = hdr->b_size; 3293 uint64_t spa = hdr->b_spa; 3294 arc_buf_contents_t type = hdr->b_type; 3295 uint32_t flags = hdr->b_flags; 3296 3297 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 3298 /* 3299 * Pull the data off of this hdr and attach it to 3300 * a new anonymous hdr. 3301 */ 3302 (void) remove_reference(hdr, hash_lock, tag); 3303 bufp = &hdr->b_buf; 3304 while (*bufp != buf) 3305 bufp = &(*bufp)->b_next; 3306 *bufp = buf->b_next; 3307 buf->b_next = NULL; 3308 3309 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3310 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3311 if (refcount_is_zero(&hdr->b_refcnt)) { 3312 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3313 ASSERT3U(*size, >=, hdr->b_size); 3314 atomic_add_64(size, -hdr->b_size); 3315 } 3316 3317 /* 3318 * We're releasing a duplicate user data buffer, update 3319 * our statistics accordingly. 3320 */ 3321 if (hdr->b_type == ARC_BUFC_DATA) { 3322 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 3323 ARCSTAT_INCR(arcstat_duplicate_buffers_size, 3324 -hdr->b_size); 3325 } 3326 hdr->b_datacnt -= 1; 3327 arc_cksum_verify(buf); 3328 arc_buf_unwatch(buf); 3329 3330 mutex_exit(hash_lock); 3331 3332 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3333 nhdr->b_size = blksz; 3334 nhdr->b_spa = spa; 3335 nhdr->b_type = type; 3336 nhdr->b_buf = buf; 3337 nhdr->b_state = arc_anon; 3338 nhdr->b_arc_access = 0; 3339 nhdr->b_flags = flags & ARC_L2_WRITING; 3340 nhdr->b_l2hdr = NULL; 3341 nhdr->b_datacnt = 1; 3342 nhdr->b_freeze_cksum = NULL; 3343 (void) refcount_add(&nhdr->b_refcnt, tag); 3344 buf->b_hdr = nhdr; 3345 mutex_exit(&buf->b_evict_lock); 3346 atomic_add_64(&arc_anon->arcs_size, blksz); 3347 } else { 3348 mutex_exit(&buf->b_evict_lock); 3349 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3350 ASSERT(!list_link_active(&hdr->b_arc_node)); 3351 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3352 if (hdr->b_state != arc_anon) 3353 arc_change_state(arc_anon, hdr, hash_lock); 3354 hdr->b_arc_access = 0; 3355 if (hash_lock) 3356 mutex_exit(hash_lock); 3357 3358 buf_discard_identity(hdr); 3359 arc_buf_thaw(buf); 3360 } 3361 buf->b_efunc = NULL; 3362 buf->b_private = NULL; 3363 3364 if (l2hdr) { 3365 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 3366 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3367 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3368 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3369 mutex_exit(&l2arc_buflist_mtx); 3370 } 3371 } 3372 3373 int 3374 arc_released(arc_buf_t *buf) 3375 { 3376 int released; 3377 3378 mutex_enter(&buf->b_evict_lock); 3379 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3380 mutex_exit(&buf->b_evict_lock); 3381 return (released); 3382 } 3383 3384 int 3385 arc_has_callback(arc_buf_t *buf) 3386 { 3387 int callback; 3388 3389 mutex_enter(&buf->b_evict_lock); 3390 callback = (buf->b_efunc != NULL); 3391 mutex_exit(&buf->b_evict_lock); 3392 return (callback); 3393 } 3394 3395 #ifdef ZFS_DEBUG 3396 int 3397 arc_referenced(arc_buf_t *buf) 3398 { 3399 int referenced; 3400 3401 mutex_enter(&buf->b_evict_lock); 3402 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3403 mutex_exit(&buf->b_evict_lock); 3404 return (referenced); 3405 } 3406 #endif 3407 3408 static void 3409 arc_write_ready(zio_t *zio) 3410 { 3411 arc_write_callback_t *callback = zio->io_private; 3412 arc_buf_t *buf = callback->awcb_buf; 3413 arc_buf_hdr_t *hdr = buf->b_hdr; 3414 3415 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3416 callback->awcb_ready(zio, buf, callback->awcb_private); 3417 3418 /* 3419 * If the IO is already in progress, then this is a re-write 3420 * attempt, so we need to thaw and re-compute the cksum. 3421 * It is the responsibility of the callback to handle the 3422 * accounting for any re-write attempt. 3423 */ 3424 if (HDR_IO_IN_PROGRESS(hdr)) { 3425 mutex_enter(&hdr->b_freeze_lock); 3426 if (hdr->b_freeze_cksum != NULL) { 3427 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3428 hdr->b_freeze_cksum = NULL; 3429 } 3430 mutex_exit(&hdr->b_freeze_lock); 3431 } 3432 arc_cksum_compute(buf, B_FALSE); 3433 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3434 } 3435 3436 static void 3437 arc_write_done(zio_t *zio) 3438 { 3439 arc_write_callback_t *callback = zio->io_private; 3440 arc_buf_t *buf = callback->awcb_buf; 3441 arc_buf_hdr_t *hdr = buf->b_hdr; 3442 3443 ASSERT(hdr->b_acb == NULL); 3444 3445 if (zio->io_error == 0) { 3446 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3447 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 3448 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3449 } else { 3450 ASSERT(BUF_EMPTY(hdr)); 3451 } 3452 3453 /* 3454 * If the block to be written was all-zero, we may have 3455 * compressed it away. In this case no write was performed 3456 * so there will be no dva/birth/checksum. The buffer must 3457 * therefore remain anonymous (and uncached). 3458 */ 3459 if (!BUF_EMPTY(hdr)) { 3460 arc_buf_hdr_t *exists; 3461 kmutex_t *hash_lock; 3462 3463 ASSERT(zio->io_error == 0); 3464 3465 arc_cksum_verify(buf); 3466 3467 exists = buf_hash_insert(hdr, &hash_lock); 3468 if (exists) { 3469 /* 3470 * This can only happen if we overwrite for 3471 * sync-to-convergence, because we remove 3472 * buffers from the hash table when we arc_free(). 3473 */ 3474 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 3475 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3476 panic("bad overwrite, hdr=%p exists=%p", 3477 (void *)hdr, (void *)exists); 3478 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3479 arc_change_state(arc_anon, exists, hash_lock); 3480 mutex_exit(hash_lock); 3481 arc_hdr_destroy(exists); 3482 exists = buf_hash_insert(hdr, &hash_lock); 3483 ASSERT3P(exists, ==, NULL); 3484 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 3485 /* nopwrite */ 3486 ASSERT(zio->io_prop.zp_nopwrite); 3487 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3488 panic("bad nopwrite, hdr=%p exists=%p", 3489 (void *)hdr, (void *)exists); 3490 } else { 3491 /* Dedup */ 3492 ASSERT(hdr->b_datacnt == 1); 3493 ASSERT(hdr->b_state == arc_anon); 3494 ASSERT(BP_GET_DEDUP(zio->io_bp)); 3495 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 3496 } 3497 } 3498 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3499 /* if it's not anon, we are doing a scrub */ 3500 if (!exists && hdr->b_state == arc_anon) 3501 arc_access(hdr, hash_lock); 3502 mutex_exit(hash_lock); 3503 } else { 3504 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3505 } 3506 3507 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3508 callback->awcb_done(zio, buf, callback->awcb_private); 3509 3510 kmem_free(callback, sizeof (arc_write_callback_t)); 3511 } 3512 3513 zio_t * 3514 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 3515 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress, 3516 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *done, 3517 void *private, int priority, int zio_flags, const zbookmark_t *zb) 3518 { 3519 arc_buf_hdr_t *hdr = buf->b_hdr; 3520 arc_write_callback_t *callback; 3521 zio_t *zio; 3522 3523 ASSERT(ready != NULL); 3524 ASSERT(done != NULL); 3525 ASSERT(!HDR_IO_ERROR(hdr)); 3526 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3527 ASSERT(hdr->b_acb == NULL); 3528 if (l2arc) 3529 hdr->b_flags |= ARC_L2CACHE; 3530 if (l2arc_compress) 3531 hdr->b_flags |= ARC_L2COMPRESS; 3532 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3533 callback->awcb_ready = ready; 3534 callback->awcb_done = done; 3535 callback->awcb_private = private; 3536 callback->awcb_buf = buf; 3537 3538 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 3539 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb); 3540 3541 return (zio); 3542 } 3543 3544 static int 3545 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg) 3546 { 3547 #ifdef _KERNEL 3548 uint64_t available_memory = ptob(freemem); 3549 static uint64_t page_load = 0; 3550 static uint64_t last_txg = 0; 3551 3552 #if defined(__i386) 3553 available_memory = 3554 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3555 #endif 3556 if (available_memory >= zfs_write_limit_max) 3557 return (0); 3558 3559 if (txg > last_txg) { 3560 last_txg = txg; 3561 page_load = 0; 3562 } 3563 /* 3564 * If we are in pageout, we know that memory is already tight, 3565 * the arc is already going to be evicting, so we just want to 3566 * continue to let page writes occur as quickly as possible. 3567 */ 3568 if (curproc == proc_pageout) { 3569 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3570 return (SET_ERROR(ERESTART)); 3571 /* Note: reserve is inflated, so we deflate */ 3572 page_load += reserve / 8; 3573 return (0); 3574 } else if (page_load > 0 && arc_reclaim_needed()) { 3575 /* memory is low, delay before restarting */ 3576 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3577 return (SET_ERROR(EAGAIN)); 3578 } 3579 page_load = 0; 3580 3581 if (arc_size > arc_c_min) { 3582 uint64_t evictable_memory = 3583 arc_mru->arcs_lsize[ARC_BUFC_DATA] + 3584 arc_mru->arcs_lsize[ARC_BUFC_METADATA] + 3585 arc_mfu->arcs_lsize[ARC_BUFC_DATA] + 3586 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]; 3587 available_memory += MIN(evictable_memory, arc_size - arc_c_min); 3588 } 3589 3590 if (inflight_data > available_memory / 4) { 3591 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3592 return (SET_ERROR(ERESTART)); 3593 } 3594 #endif 3595 return (0); 3596 } 3597 3598 void 3599 arc_tempreserve_clear(uint64_t reserve) 3600 { 3601 atomic_add_64(&arc_tempreserve, -reserve); 3602 ASSERT((int64_t)arc_tempreserve >= 0); 3603 } 3604 3605 int 3606 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3607 { 3608 int error; 3609 uint64_t anon_size; 3610 3611 #ifdef ZFS_DEBUG 3612 /* 3613 * Once in a while, fail for no reason. Everything should cope. 3614 */ 3615 if (spa_get_random(10000) == 0) { 3616 dprintf("forcing random failure\n"); 3617 return (SET_ERROR(ERESTART)); 3618 } 3619 #endif 3620 if (reserve > arc_c/4 && !arc_no_grow) 3621 arc_c = MIN(arc_c_max, reserve * 4); 3622 if (reserve > arc_c) 3623 return (SET_ERROR(ENOMEM)); 3624 3625 /* 3626 * Don't count loaned bufs as in flight dirty data to prevent long 3627 * network delays from blocking transactions that are ready to be 3628 * assigned to a txg. 3629 */ 3630 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3631 3632 /* 3633 * Writes will, almost always, require additional memory allocations 3634 * in order to compress/encrypt/etc the data. We therefore need to 3635 * make sure that there is sufficient available memory for this. 3636 */ 3637 if (error = arc_memory_throttle(reserve, anon_size, txg)) 3638 return (error); 3639 3640 /* 3641 * Throttle writes when the amount of dirty data in the cache 3642 * gets too large. We try to keep the cache less than half full 3643 * of dirty blocks so that our sync times don't grow too large. 3644 * Note: if two requests come in concurrently, we might let them 3645 * both succeed, when one of them should fail. Not a huge deal. 3646 */ 3647 3648 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3649 anon_size > arc_c / 4) { 3650 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3651 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3652 arc_tempreserve>>10, 3653 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3654 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3655 reserve>>10, arc_c>>10); 3656 return (SET_ERROR(ERESTART)); 3657 } 3658 atomic_add_64(&arc_tempreserve, reserve); 3659 return (0); 3660 } 3661 3662 void 3663 arc_init(void) 3664 { 3665 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3666 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3667 3668 /* Convert seconds to clock ticks */ 3669 arc_min_prefetch_lifespan = 1 * hz; 3670 3671 /* Start out with 1/8 of all memory */ 3672 arc_c = physmem * PAGESIZE / 8; 3673 3674 #ifdef _KERNEL 3675 /* 3676 * On architectures where the physical memory can be larger 3677 * than the addressable space (intel in 32-bit mode), we may 3678 * need to limit the cache to 1/8 of VM size. 3679 */ 3680 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3681 #endif 3682 3683 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3684 arc_c_min = MAX(arc_c / 4, 64<<20); 3685 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3686 if (arc_c * 8 >= 1<<30) 3687 arc_c_max = (arc_c * 8) - (1<<30); 3688 else 3689 arc_c_max = arc_c_min; 3690 arc_c_max = MAX(arc_c * 6, arc_c_max); 3691 3692 /* 3693 * Allow the tunables to override our calculations if they are 3694 * reasonable (ie. over 64MB) 3695 */ 3696 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3697 arc_c_max = zfs_arc_max; 3698 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3699 arc_c_min = zfs_arc_min; 3700 3701 arc_c = arc_c_max; 3702 arc_p = (arc_c >> 1); 3703 3704 /* limit meta-data to 1/4 of the arc capacity */ 3705 arc_meta_limit = arc_c_max / 4; 3706 3707 /* Allow the tunable to override if it is reasonable */ 3708 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3709 arc_meta_limit = zfs_arc_meta_limit; 3710 3711 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3712 arc_c_min = arc_meta_limit / 2; 3713 3714 if (zfs_arc_grow_retry > 0) 3715 arc_grow_retry = zfs_arc_grow_retry; 3716 3717 if (zfs_arc_shrink_shift > 0) 3718 arc_shrink_shift = zfs_arc_shrink_shift; 3719 3720 if (zfs_arc_p_min_shift > 0) 3721 arc_p_min_shift = zfs_arc_p_min_shift; 3722 3723 /* if kmem_flags are set, lets try to use less memory */ 3724 if (kmem_debugging()) 3725 arc_c = arc_c / 2; 3726 if (arc_c < arc_c_min) 3727 arc_c = arc_c_min; 3728 3729 arc_anon = &ARC_anon; 3730 arc_mru = &ARC_mru; 3731 arc_mru_ghost = &ARC_mru_ghost; 3732 arc_mfu = &ARC_mfu; 3733 arc_mfu_ghost = &ARC_mfu_ghost; 3734 arc_l2c_only = &ARC_l2c_only; 3735 arc_size = 0; 3736 3737 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3738 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3739 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3740 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3741 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3742 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3743 3744 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3745 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3746 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3747 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3748 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3749 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3750 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3751 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3752 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3753 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3754 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3755 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3756 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3757 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3758 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3759 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3760 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3761 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3762 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3763 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3764 3765 buf_init(); 3766 3767 arc_thread_exit = 0; 3768 arc_eviction_list = NULL; 3769 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3770 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3771 3772 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3773 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3774 3775 if (arc_ksp != NULL) { 3776 arc_ksp->ks_data = &arc_stats; 3777 kstat_install(arc_ksp); 3778 } 3779 3780 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3781 TS_RUN, minclsyspri); 3782 3783 arc_dead = FALSE; 3784 arc_warm = B_FALSE; 3785 3786 if (zfs_write_limit_max == 0) 3787 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; 3788 else 3789 zfs_write_limit_shift = 0; 3790 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL); 3791 } 3792 3793 void 3794 arc_fini(void) 3795 { 3796 mutex_enter(&arc_reclaim_thr_lock); 3797 arc_thread_exit = 1; 3798 while (arc_thread_exit != 0) 3799 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3800 mutex_exit(&arc_reclaim_thr_lock); 3801 3802 arc_flush(NULL); 3803 3804 arc_dead = TRUE; 3805 3806 if (arc_ksp != NULL) { 3807 kstat_delete(arc_ksp); 3808 arc_ksp = NULL; 3809 } 3810 3811 mutex_destroy(&arc_eviction_mtx); 3812 mutex_destroy(&arc_reclaim_thr_lock); 3813 cv_destroy(&arc_reclaim_thr_cv); 3814 3815 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3816 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3817 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3818 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3819 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3820 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3821 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3822 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3823 3824 mutex_destroy(&arc_anon->arcs_mtx); 3825 mutex_destroy(&arc_mru->arcs_mtx); 3826 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3827 mutex_destroy(&arc_mfu->arcs_mtx); 3828 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3829 mutex_destroy(&arc_l2c_only->arcs_mtx); 3830 3831 mutex_destroy(&zfs_write_limit_lock); 3832 3833 buf_fini(); 3834 3835 ASSERT(arc_loaned_bytes == 0); 3836 } 3837 3838 /* 3839 * Level 2 ARC 3840 * 3841 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3842 * It uses dedicated storage devices to hold cached data, which are populated 3843 * using large infrequent writes. The main role of this cache is to boost 3844 * the performance of random read workloads. The intended L2ARC devices 3845 * include short-stroked disks, solid state disks, and other media with 3846 * substantially faster read latency than disk. 3847 * 3848 * +-----------------------+ 3849 * | ARC | 3850 * +-----------------------+ 3851 * | ^ ^ 3852 * | | | 3853 * l2arc_feed_thread() arc_read() 3854 * | | | 3855 * | l2arc read | 3856 * V | | 3857 * +---------------+ | 3858 * | L2ARC | | 3859 * +---------------+ | 3860 * | ^ | 3861 * l2arc_write() | | 3862 * | | | 3863 * V | | 3864 * +-------+ +-------+ 3865 * | vdev | | vdev | 3866 * | cache | | cache | 3867 * +-------+ +-------+ 3868 * +=========+ .-----. 3869 * : L2ARC : |-_____-| 3870 * : devices : | Disks | 3871 * +=========+ `-_____-' 3872 * 3873 * Read requests are satisfied from the following sources, in order: 3874 * 3875 * 1) ARC 3876 * 2) vdev cache of L2ARC devices 3877 * 3) L2ARC devices 3878 * 4) vdev cache of disks 3879 * 5) disks 3880 * 3881 * Some L2ARC device types exhibit extremely slow write performance. 3882 * To accommodate for this there are some significant differences between 3883 * the L2ARC and traditional cache design: 3884 * 3885 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3886 * the ARC behave as usual, freeing buffers and placing headers on ghost 3887 * lists. The ARC does not send buffers to the L2ARC during eviction as 3888 * this would add inflated write latencies for all ARC memory pressure. 3889 * 3890 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3891 * It does this by periodically scanning buffers from the eviction-end of 3892 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3893 * not already there. It scans until a headroom of buffers is satisfied, 3894 * which itself is a buffer for ARC eviction. If a compressible buffer is 3895 * found during scanning and selected for writing to an L2ARC device, we 3896 * temporarily boost scanning headroom during the next scan cycle to make 3897 * sure we adapt to compression effects (which might significantly reduce 3898 * the data volume we write to L2ARC). The thread that does this is 3899 * l2arc_feed_thread(), illustrated below; example sizes are included to 3900 * provide a better sense of ratio than this diagram: 3901 * 3902 * head --> tail 3903 * +---------------------+----------+ 3904 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3905 * +---------------------+----------+ | o L2ARC eligible 3906 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3907 * +---------------------+----------+ | 3908 * 15.9 Gbytes ^ 32 Mbytes | 3909 * headroom | 3910 * l2arc_feed_thread() 3911 * | 3912 * l2arc write hand <--[oooo]--' 3913 * | 8 Mbyte 3914 * | write max 3915 * V 3916 * +==============================+ 3917 * L2ARC dev |####|#|###|###| |####| ... | 3918 * +==============================+ 3919 * 32 Gbytes 3920 * 3921 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3922 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3923 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3924 * safe to say that this is an uncommon case, since buffers at the end of 3925 * the ARC lists have moved there due to inactivity. 3926 * 3927 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3928 * then the L2ARC simply misses copying some buffers. This serves as a 3929 * pressure valve to prevent heavy read workloads from both stalling the ARC 3930 * with waits and clogging the L2ARC with writes. This also helps prevent 3931 * the potential for the L2ARC to churn if it attempts to cache content too 3932 * quickly, such as during backups of the entire pool. 3933 * 3934 * 5. After system boot and before the ARC has filled main memory, there are 3935 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 3936 * lists can remain mostly static. Instead of searching from tail of these 3937 * lists as pictured, the l2arc_feed_thread() will search from the list heads 3938 * for eligible buffers, greatly increasing its chance of finding them. 3939 * 3940 * The L2ARC device write speed is also boosted during this time so that 3941 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 3942 * there are no L2ARC reads, and no fear of degrading read performance 3943 * through increased writes. 3944 * 3945 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 3946 * the vdev queue can aggregate them into larger and fewer writes. Each 3947 * device is written to in a rotor fashion, sweeping writes through 3948 * available space then repeating. 3949 * 3950 * 7. The L2ARC does not store dirty content. It never needs to flush 3951 * write buffers back to disk based storage. 3952 * 3953 * 8. If an ARC buffer is written (and dirtied) which also exists in the 3954 * L2ARC, the now stale L2ARC buffer is immediately dropped. 3955 * 3956 * The performance of the L2ARC can be tweaked by a number of tunables, which 3957 * may be necessary for different workloads: 3958 * 3959 * l2arc_write_max max write bytes per interval 3960 * l2arc_write_boost extra write bytes during device warmup 3961 * l2arc_noprefetch skip caching prefetched buffers 3962 * l2arc_headroom number of max device writes to precache 3963 * l2arc_headroom_boost when we find compressed buffers during ARC 3964 * scanning, we multiply headroom by this 3965 * percentage factor for the next scan cycle, 3966 * since more compressed buffers are likely to 3967 * be present 3968 * l2arc_feed_secs seconds between L2ARC writing 3969 * 3970 * Tunables may be removed or added as future performance improvements are 3971 * integrated, and also may become zpool properties. 3972 * 3973 * There are three key functions that control how the L2ARC warms up: 3974 * 3975 * l2arc_write_eligible() check if a buffer is eligible to cache 3976 * l2arc_write_size() calculate how much to write 3977 * l2arc_write_interval() calculate sleep delay between writes 3978 * 3979 * These three functions determine what to write, how much, and how quickly 3980 * to send writes. 3981 */ 3982 3983 static boolean_t 3984 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) 3985 { 3986 /* 3987 * A buffer is *not* eligible for the L2ARC if it: 3988 * 1. belongs to a different spa. 3989 * 2. is already cached on the L2ARC. 3990 * 3. has an I/O in progress (it may be an incomplete read). 3991 * 4. is flagged not eligible (zfs property). 3992 */ 3993 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL || 3994 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 3995 return (B_FALSE); 3996 3997 return (B_TRUE); 3998 } 3999 4000 static uint64_t 4001 l2arc_write_size(void) 4002 { 4003 uint64_t size; 4004 4005 /* 4006 * Make sure our globals have meaningful values in case the user 4007 * altered them. 4008 */ 4009 size = l2arc_write_max; 4010 if (size == 0) { 4011 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 4012 "be greater than zero, resetting it to the default (%d)", 4013 L2ARC_WRITE_SIZE); 4014 size = l2arc_write_max = L2ARC_WRITE_SIZE; 4015 } 4016 4017 if (arc_warm == B_FALSE) 4018 size += l2arc_write_boost; 4019 4020 return (size); 4021 4022 } 4023 4024 static clock_t 4025 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 4026 { 4027 clock_t interval, next, now; 4028 4029 /* 4030 * If the ARC lists are busy, increase our write rate; if the 4031 * lists are stale, idle back. This is achieved by checking 4032 * how much we previously wrote - if it was more than half of 4033 * what we wanted, schedule the next write much sooner. 4034 */ 4035 if (l2arc_feed_again && wrote > (wanted / 2)) 4036 interval = (hz * l2arc_feed_min_ms) / 1000; 4037 else 4038 interval = hz * l2arc_feed_secs; 4039 4040 now = ddi_get_lbolt(); 4041 next = MAX(now, MIN(now + interval, began + interval)); 4042 4043 return (next); 4044 } 4045 4046 static void 4047 l2arc_hdr_stat_add(void) 4048 { 4049 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 4050 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 4051 } 4052 4053 static void 4054 l2arc_hdr_stat_remove(void) 4055 { 4056 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 4057 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 4058 } 4059 4060 /* 4061 * Cycle through L2ARC devices. This is how L2ARC load balances. 4062 * If a device is returned, this also returns holding the spa config lock. 4063 */ 4064 static l2arc_dev_t * 4065 l2arc_dev_get_next(void) 4066 { 4067 l2arc_dev_t *first, *next = NULL; 4068 4069 /* 4070 * Lock out the removal of spas (spa_namespace_lock), then removal 4071 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 4072 * both locks will be dropped and a spa config lock held instead. 4073 */ 4074 mutex_enter(&spa_namespace_lock); 4075 mutex_enter(&l2arc_dev_mtx); 4076 4077 /* if there are no vdevs, there is nothing to do */ 4078 if (l2arc_ndev == 0) 4079 goto out; 4080 4081 first = NULL; 4082 next = l2arc_dev_last; 4083 do { 4084 /* loop around the list looking for a non-faulted vdev */ 4085 if (next == NULL) { 4086 next = list_head(l2arc_dev_list); 4087 } else { 4088 next = list_next(l2arc_dev_list, next); 4089 if (next == NULL) 4090 next = list_head(l2arc_dev_list); 4091 } 4092 4093 /* if we have come back to the start, bail out */ 4094 if (first == NULL) 4095 first = next; 4096 else if (next == first) 4097 break; 4098 4099 } while (vdev_is_dead(next->l2ad_vdev)); 4100 4101 /* if we were unable to find any usable vdevs, return NULL */ 4102 if (vdev_is_dead(next->l2ad_vdev)) 4103 next = NULL; 4104 4105 l2arc_dev_last = next; 4106 4107 out: 4108 mutex_exit(&l2arc_dev_mtx); 4109 4110 /* 4111 * Grab the config lock to prevent the 'next' device from being 4112 * removed while we are writing to it. 4113 */ 4114 if (next != NULL) 4115 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 4116 mutex_exit(&spa_namespace_lock); 4117 4118 return (next); 4119 } 4120 4121 /* 4122 * Free buffers that were tagged for destruction. 4123 */ 4124 static void 4125 l2arc_do_free_on_write(void) 4126 { 4127 list_t *buflist; 4128 l2arc_data_free_t *df, *df_prev; 4129 4130 mutex_enter(&l2arc_free_on_write_mtx); 4131 buflist = l2arc_free_on_write; 4132 4133 for (df = list_tail(buflist); df; df = df_prev) { 4134 df_prev = list_prev(buflist, df); 4135 ASSERT(df->l2df_data != NULL); 4136 ASSERT(df->l2df_func != NULL); 4137 df->l2df_func(df->l2df_data, df->l2df_size); 4138 list_remove(buflist, df); 4139 kmem_free(df, sizeof (l2arc_data_free_t)); 4140 } 4141 4142 mutex_exit(&l2arc_free_on_write_mtx); 4143 } 4144 4145 /* 4146 * A write to a cache device has completed. Update all headers to allow 4147 * reads from these buffers to begin. 4148 */ 4149 static void 4150 l2arc_write_done(zio_t *zio) 4151 { 4152 l2arc_write_callback_t *cb; 4153 l2arc_dev_t *dev; 4154 list_t *buflist; 4155 arc_buf_hdr_t *head, *ab; 4156 4157 struct defer_done_entry { 4158 arc_buf_hdr_t *dde_buf; 4159 list_node_t dde_node; 4160 } *dde, *dde_next; 4161 list_t defer_done_list; 4162 4163 cb = zio->io_private; 4164 ASSERT(cb != NULL); 4165 dev = cb->l2wcb_dev; 4166 ASSERT(dev != NULL); 4167 head = cb->l2wcb_head; 4168 ASSERT(head != NULL); 4169 buflist = dev->l2ad_buflist; 4170 ASSERT(buflist != NULL); 4171 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 4172 l2arc_write_callback_t *, cb); 4173 4174 if (zio->io_error != 0) 4175 ARCSTAT_BUMP(arcstat_l2_writes_error); 4176 4177 mutex_enter(&l2arc_buflist_mtx); 4178 4179 /* 4180 * All writes completed, or an error was hit. 4181 */ 4182 list_create(&defer_done_list, sizeof (*dde), 4183 offsetof(struct defer_done_entry, dde_node)); 4184 for (ab = list_prev(buflist, head); ab; ab = list_prev(buflist, ab)) { 4185 /* 4186 * Can't pause here to grab hash_lock while also holding 4187 * l2arc_buflist_mtx, so place the buffers on a temporary 4188 * thread-local list for later processing. 4189 */ 4190 dde = kmem_alloc(sizeof (*dde), KM_SLEEP); 4191 dde->dde_buf = ab; 4192 list_insert_tail(&defer_done_list, dde); 4193 } 4194 4195 atomic_inc_64(&l2arc_writes_done); 4196 list_remove(buflist, head); 4197 kmem_cache_free(hdr_cache, head); 4198 mutex_exit(&l2arc_buflist_mtx); 4199 4200 /* 4201 * Now process the buffers. We're not holding l2arc_buflist_mtx 4202 * anymore, so we can do a regular mutex_enter on the hash_lock. 4203 */ 4204 for (dde = list_head(&defer_done_list); dde != NULL; dde = dde_next) { 4205 kmutex_t *hash_lock; 4206 4207 dde_next = list_next(&defer_done_list, dde); 4208 ab = dde->dde_buf; 4209 hash_lock = HDR_LOCK(ab); 4210 4211 mutex_enter(hash_lock); 4212 4213 if (zio->io_error != 0) { 4214 /* 4215 * Error - drop L2ARC entry. 4216 */ 4217 l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr; 4218 mutex_enter(&l2arc_buflist_mtx); 4219 list_remove(buflist, ab); 4220 mutex_exit(&l2arc_buflist_mtx); 4221 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 4222 ab->b_l2hdr = NULL; 4223 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 4224 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4225 } 4226 4227 /* 4228 * Allow ARC to begin reads to this L2ARC entry. 4229 */ 4230 ab->b_flags &= ~ARC_L2_WRITING; 4231 4232 mutex_exit(hash_lock); 4233 4234 list_remove(&defer_done_list, dde); 4235 } 4236 list_destroy(&defer_done_list); 4237 4238 l2arc_do_free_on_write(); 4239 4240 kmem_free(cb, sizeof (l2arc_write_callback_t)); 4241 } 4242 4243 /* 4244 * A read to a cache device completed. Validate buffer contents before 4245 * handing over to the regular ARC routines. 4246 */ 4247 static void 4248 l2arc_read_done(zio_t *zio) 4249 { 4250 l2arc_read_callback_t *cb; 4251 arc_buf_hdr_t *hdr; 4252 arc_buf_t *buf; 4253 kmutex_t *hash_lock; 4254 int equal; 4255 4256 ASSERT(zio->io_vd != NULL); 4257 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 4258 4259 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 4260 4261 cb = zio->io_private; 4262 ASSERT(cb != NULL); 4263 buf = cb->l2rcb_buf; 4264 ASSERT(buf != NULL); 4265 4266 hash_lock = HDR_LOCK(buf->b_hdr); 4267 mutex_enter(hash_lock); 4268 hdr = buf->b_hdr; 4269 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 4270 4271 /* 4272 * If the buffer was compressed, decompress it first. 4273 */ 4274 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF) 4275 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress); 4276 ASSERT(zio->io_data != NULL); 4277 4278 /* 4279 * Check this survived the L2ARC journey. 4280 */ 4281 equal = arc_cksum_equal(buf); 4282 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 4283 mutex_exit(hash_lock); 4284 zio->io_private = buf; 4285 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 4286 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 4287 arc_read_done(zio); 4288 } else { 4289 mutex_exit(hash_lock); 4290 /* 4291 * Buffer didn't survive caching. Increment stats and 4292 * reissue to the original storage device. 4293 */ 4294 if (zio->io_error != 0) { 4295 ARCSTAT_BUMP(arcstat_l2_io_error); 4296 } else { 4297 zio->io_error = SET_ERROR(EIO); 4298 } 4299 if (!equal) 4300 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4301 4302 /* 4303 * If there's no waiter, issue an async i/o to the primary 4304 * storage now. If there *is* a waiter, the caller must 4305 * issue the i/o in a context where it's OK to block. 4306 */ 4307 if (zio->io_waiter == NULL) { 4308 zio_t *pio = zio_unique_parent(zio); 4309 4310 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4311 4312 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4313 buf->b_data, zio->io_size, arc_read_done, buf, 4314 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4315 } 4316 } 4317 4318 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4319 } 4320 4321 /* 4322 * This is the list priority from which the L2ARC will search for pages to 4323 * cache. This is used within loops (0..3) to cycle through lists in the 4324 * desired order. This order can have a significant effect on cache 4325 * performance. 4326 * 4327 * Currently the metadata lists are hit first, MFU then MRU, followed by 4328 * the data lists. This function returns a locked list, and also returns 4329 * the lock pointer. 4330 */ 4331 static list_t * 4332 l2arc_list_locked(int list_num, kmutex_t **lock) 4333 { 4334 list_t *list = NULL; 4335 4336 ASSERT(list_num >= 0 && list_num <= 3); 4337 4338 switch (list_num) { 4339 case 0: 4340 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4341 *lock = &arc_mfu->arcs_mtx; 4342 break; 4343 case 1: 4344 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4345 *lock = &arc_mru->arcs_mtx; 4346 break; 4347 case 2: 4348 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4349 *lock = &arc_mfu->arcs_mtx; 4350 break; 4351 case 3: 4352 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4353 *lock = &arc_mru->arcs_mtx; 4354 break; 4355 } 4356 4357 ASSERT(!(MUTEX_HELD(*lock))); 4358 mutex_enter(*lock); 4359 return (list); 4360 } 4361 4362 /* 4363 * Evict buffers from the device write hand to the distance specified in 4364 * bytes. This distance may span populated buffers, it may span nothing. 4365 * This is clearing a region on the L2ARC device ready for writing. 4366 * If the 'all' boolean is set, every buffer is evicted. 4367 */ 4368 static void 4369 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4370 { 4371 list_t *buflist; 4372 l2arc_buf_hdr_t *l2hdr; 4373 arc_buf_hdr_t *ab, *ab_prev; 4374 kmutex_t *hash_lock; 4375 uint64_t taddr; 4376 4377 buflist = dev->l2ad_buflist; 4378 4379 if (buflist == NULL) 4380 return; 4381 4382 if (!all && dev->l2ad_first) { 4383 /* 4384 * This is the first sweep through the device. There is 4385 * nothing to evict. 4386 */ 4387 return; 4388 } 4389 4390 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4391 /* 4392 * When nearing the end of the device, evict to the end 4393 * before the device write hand jumps to the start. 4394 */ 4395 taddr = dev->l2ad_end; 4396 } else { 4397 taddr = dev->l2ad_hand + distance; 4398 } 4399 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4400 uint64_t, taddr, boolean_t, all); 4401 4402 top: 4403 mutex_enter(&l2arc_buflist_mtx); 4404 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4405 ab_prev = list_prev(buflist, ab); 4406 4407 hash_lock = HDR_LOCK(ab); 4408 if (!mutex_tryenter(hash_lock)) { 4409 /* 4410 * Missed the hash lock. Retry. 4411 */ 4412 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4413 mutex_exit(&l2arc_buflist_mtx); 4414 mutex_enter(hash_lock); 4415 mutex_exit(hash_lock); 4416 goto top; 4417 } 4418 4419 if (HDR_L2_WRITE_HEAD(ab)) { 4420 /* 4421 * We hit a write head node. Leave it for 4422 * l2arc_write_done(). 4423 */ 4424 list_remove(buflist, ab); 4425 mutex_exit(hash_lock); 4426 continue; 4427 } 4428 4429 if (!all && ab->b_l2hdr != NULL && 4430 (ab->b_l2hdr->b_daddr > taddr || 4431 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4432 /* 4433 * We've evicted to the target address, 4434 * or the end of the device. 4435 */ 4436 mutex_exit(hash_lock); 4437 break; 4438 } 4439 4440 if (HDR_FREE_IN_PROGRESS(ab)) { 4441 /* 4442 * Already on the path to destruction. 4443 */ 4444 mutex_exit(hash_lock); 4445 continue; 4446 } 4447 4448 if (ab->b_state == arc_l2c_only) { 4449 ASSERT(!HDR_L2_READING(ab)); 4450 /* 4451 * This doesn't exist in the ARC. Destroy. 4452 * arc_hdr_destroy() will call list_remove() 4453 * and decrement arcstat_l2_size. 4454 */ 4455 arc_change_state(arc_anon, ab, hash_lock); 4456 arc_hdr_destroy(ab); 4457 } else { 4458 /* 4459 * Invalidate issued or about to be issued 4460 * reads, since we may be about to write 4461 * over this location. 4462 */ 4463 if (HDR_L2_READING(ab)) { 4464 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4465 ab->b_flags |= ARC_L2_EVICTED; 4466 } 4467 4468 /* 4469 * Tell ARC this no longer exists in L2ARC. 4470 */ 4471 if (ab->b_l2hdr != NULL) { 4472 l2hdr = ab->b_l2hdr; 4473 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 4474 ab->b_l2hdr = NULL; 4475 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 4476 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4477 } 4478 list_remove(buflist, ab); 4479 4480 /* 4481 * This may have been leftover after a 4482 * failed write. 4483 */ 4484 ab->b_flags &= ~ARC_L2_WRITING; 4485 } 4486 mutex_exit(hash_lock); 4487 } 4488 mutex_exit(&l2arc_buflist_mtx); 4489 4490 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0); 4491 dev->l2ad_evict = taddr; 4492 } 4493 4494 /* 4495 * Find and write ARC buffers to the L2ARC device. 4496 * 4497 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4498 * for reading until they have completed writing. 4499 * The headroom_boost is an in-out parameter used to maintain headroom boost 4500 * state between calls to this function. 4501 * 4502 * Returns the number of bytes actually written (which may be smaller than 4503 * the delta by which the device hand has changed due to alignment). 4504 */ 4505 static uint64_t 4506 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz, 4507 boolean_t *headroom_boost) 4508 { 4509 arc_buf_hdr_t *ab, *ab_prev, *head; 4510 list_t *list; 4511 uint64_t write_asize, write_psize, write_sz, headroom, 4512 buf_compress_minsz; 4513 void *buf_data; 4514 kmutex_t *list_lock; 4515 boolean_t full; 4516 l2arc_write_callback_t *cb; 4517 zio_t *pio, *wzio; 4518 uint64_t guid = spa_load_guid(spa); 4519 const boolean_t do_headroom_boost = *headroom_boost; 4520 struct defer_write_entry { 4521 arc_buf_hdr_t *dwe_buf; 4522 void *dwe_orig_data; 4523 uint64_t dwe_orig_size; 4524 list_node_t *dwe_node; 4525 } *dwe, *dwe_next; 4526 list_t defer_write_list; 4527 4528 ASSERT(dev->l2ad_vdev != NULL); 4529 4530 /* Lower the flag now, we might want to raise it again later. */ 4531 *headroom_boost = B_FALSE; 4532 4533 pio = NULL; 4534 write_sz = write_asize = write_psize = 0; 4535 full = B_FALSE; 4536 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4537 head->b_flags |= ARC_L2_WRITE_HEAD; 4538 4539 /* 4540 * We will want to try to compress buffers that are at least 2x the 4541 * device sector size. 4542 */ 4543 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift; 4544 4545 /* 4546 * Copy buffers for L2ARC writing. 4547 */ 4548 list_create(&defer_write_list, sizeof (*dwe), 4549 offsetof(struct defer_write_entry, dwe_node)); 4550 mutex_enter(&l2arc_buflist_mtx); 4551 for (int try = 0; try <= 3; try++) { 4552 uint64_t passed_sz = 0; 4553 4554 list = l2arc_list_locked(try, &list_lock); 4555 4556 /* 4557 * L2ARC fast warmup. 4558 * 4559 * Until the ARC is warm and starts to evict, read from the 4560 * head of the ARC lists rather than the tail. 4561 */ 4562 if (arc_warm == B_FALSE) 4563 ab = list_head(list); 4564 else 4565 ab = list_tail(list); 4566 4567 headroom = target_sz * l2arc_headroom; 4568 if (do_headroom_boost) 4569 headroom = (headroom * l2arc_headroom_boost) / 100; 4570 4571 for (; ab; ab = ab_prev) { 4572 l2arc_buf_hdr_t *l2hdr; 4573 kmutex_t *hash_lock; 4574 4575 if (arc_warm == B_FALSE) 4576 ab_prev = list_next(list, ab); 4577 else 4578 ab_prev = list_prev(list, ab); 4579 4580 hash_lock = HDR_LOCK(ab); 4581 if (!mutex_tryenter(hash_lock)) { 4582 /* 4583 * Skip this buffer rather than waiting. 4584 */ 4585 continue; 4586 } 4587 4588 passed_sz += ab->b_size; 4589 if (passed_sz > headroom) { 4590 /* 4591 * Searched too far. 4592 */ 4593 mutex_exit(hash_lock); 4594 break; 4595 } 4596 4597 if (!l2arc_write_eligible(guid, ab)) { 4598 mutex_exit(hash_lock); 4599 continue; 4600 } 4601 4602 if ((write_sz + ab->b_size) > target_sz) { 4603 full = B_TRUE; 4604 mutex_exit(hash_lock); 4605 break; 4606 } 4607 4608 if (pio == NULL) { 4609 /* 4610 * Insert a dummy header on the buflist so 4611 * l2arc_write_done() can find where the 4612 * write buffers begin without searching. 4613 */ 4614 list_insert_head(dev->l2ad_buflist, head); 4615 4616 cb = kmem_alloc( 4617 sizeof (l2arc_write_callback_t), KM_SLEEP); 4618 cb->l2wcb_dev = dev; 4619 cb->l2wcb_head = head; 4620 pio = zio_root(spa, l2arc_write_done, cb, 4621 ZIO_FLAG_CANFAIL); 4622 } 4623 4624 /* 4625 * Create and add a new L2ARC header. 4626 */ 4627 l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4628 l2hdr->b_dev = dev; 4629 ab->b_flags |= ARC_L2_WRITING; 4630 l2hdr->b_compress = ZIO_COMPRESS_OFF; 4631 l2hdr->b_asize = ab->b_size; 4632 4633 /* 4634 * Temporarily stash the buffer in defer_write_entries. 4635 * The subsequent write step will pick it up from 4636 * there. This is because we can't access ab->b_buf 4637 * without holding the hash_lock, which we in turn 4638 * can't access without holding the ARC list locks 4639 * while walking the ARC lists (we want to avoid 4640 * holding these locks during compression/writing). 4641 */ 4642 dwe = kmem_alloc(sizeof (*dwe), KM_SLEEP); 4643 dwe->dwe_buf = ab; 4644 dwe->dwe_orig_data = ab->b_buf->b_data; 4645 dwe->dwe_orig_size = ab->b_size; 4646 4647 ab->b_l2hdr = l2hdr; 4648 4649 list_insert_head(dev->l2ad_buflist, ab); 4650 list_insert_tail(&defer_write_list, dwe); 4651 4652 /* 4653 * Compute and store the buffer cksum before 4654 * writing. On debug the cksum is verified first. 4655 */ 4656 arc_cksum_verify(ab->b_buf); 4657 arc_cksum_compute(ab->b_buf, B_TRUE); 4658 4659 mutex_exit(hash_lock); 4660 4661 write_sz += dwe->dwe_orig_size; 4662 } 4663 4664 mutex_exit(list_lock); 4665 4666 if (full == B_TRUE) 4667 break; 4668 } 4669 4670 /* No buffers selected for writing? */ 4671 if (pio == NULL) { 4672 ASSERT0(write_sz); 4673 mutex_exit(&l2arc_buflist_mtx); 4674 kmem_cache_free(hdr_cache, head); 4675 list_destroy(&defer_write_list); 4676 return (0); 4677 } 4678 4679 mutex_exit(&l2arc_buflist_mtx); 4680 4681 /* 4682 * Now start writing the buffers. We're starting at the write head 4683 * and work backwards, retracing the course of the buffer selector 4684 * loop above. 4685 */ 4686 for (dwe = list_head(&defer_write_list); dwe != NULL; dwe = dwe_next) { 4687 l2arc_buf_hdr_t *l2hdr; 4688 uint64_t buf_sz; 4689 4690 dwe_next = list_next(&defer_write_list, dwe); 4691 ab = dwe->dwe_buf; 4692 4693 /* 4694 * Accessing ab->b_l2hdr without locking is safe here because 4695 * we're holding the l2arc_buflist_mtx and no other thread will 4696 * ever directly modify the L2 fields. In particular ab->b_buf 4697 * may be invalid by now due to ARC eviction. 4698 */ 4699 l2hdr = ab->b_l2hdr; 4700 l2hdr->b_daddr = dev->l2ad_hand; 4701 4702 if ((ab->b_flags & ARC_L2COMPRESS) && 4703 l2hdr->b_asize >= buf_compress_minsz && 4704 l2arc_compress_buf(dwe->dwe_orig_data, dwe->dwe_orig_size, 4705 &buf_data, &buf_sz, &l2hdr->b_compress)) { 4706 /* 4707 * If compression succeeded, enable headroom 4708 * boost on the next scan cycle. 4709 */ 4710 *headroom_boost = B_TRUE; 4711 l2hdr->b_asize = buf_sz; 4712 } else { 4713 buf_data = dwe->dwe_orig_data; 4714 buf_sz = dwe->dwe_orig_size; 4715 l2hdr->b_asize = dwe->dwe_orig_size; 4716 } 4717 4718 /* Compression may have squashed the buffer to zero length. */ 4719 if (buf_sz != 0) { 4720 uint64_t buf_p_sz; 4721 4722 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4723 dev->l2ad_hand, l2hdr->b_asize, buf_data, 4724 ZIO_CHECKSUM_OFF, NULL, NULL, 4725 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, 4726 B_FALSE); 4727 4728 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4729 zio_t *, wzio); 4730 (void) zio_nowait(wzio); 4731 4732 write_asize += l2hdr->b_asize; 4733 /* 4734 * Keep the clock hand suitably device-aligned. 4735 */ 4736 buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4737 write_psize += buf_p_sz; 4738 dev->l2ad_hand += buf_p_sz; 4739 } 4740 4741 list_remove(&defer_write_list, dwe); 4742 kmem_free(dwe, sizeof (*dwe)); 4743 } 4744 4745 list_destroy(&defer_write_list); 4746 4747 ASSERT3U(write_asize, <=, target_sz); 4748 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4749 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize); 4750 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4751 ARCSTAT_INCR(arcstat_l2_asize, write_asize); 4752 vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0); 4753 4754 /* 4755 * Bump device hand to the device start if it is approaching the end. 4756 * l2arc_evict() will already have evicted ahead for this case. 4757 */ 4758 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4759 vdev_space_update(dev->l2ad_vdev, 4760 dev->l2ad_end - dev->l2ad_hand, 0, 0); 4761 dev->l2ad_hand = dev->l2ad_start; 4762 dev->l2ad_evict = dev->l2ad_start; 4763 dev->l2ad_first = B_FALSE; 4764 } 4765 4766 dev->l2ad_writing = B_TRUE; 4767 (void) zio_wait(pio); 4768 dev->l2ad_writing = B_FALSE; 4769 4770 return (write_asize); 4771 } 4772 4773 /* 4774 * Compresses an L2ARC buffer. 4775 * The data to be compressed is in in_data and its size in in_sz. This routine 4776 * tries to compress the data and depending on the compression result there 4777 * are three possible outcomes: 4778 * *) The buffer was incompressible. The function returns with B_FALSE and 4779 * does nothing else. 4780 * *) The buffer was all-zeros, so there is no need to write it to an L2 4781 * device. To indicate this situation, the *out_data is set to NULL, 4782 * *out_sz is set to zero, *compress is set to ZIO_COMPRESS_EMPTY and 4783 * the function returns B_TRUE. 4784 * *) Compression succeeded and *out_data was set to point to a buffer holding 4785 * the compressed data buffer, *out_sz was set to indicate the output size, 4786 * *compress was set to the appropriate compression algorithm and B_TRUE is 4787 * returned. Once writing is done the buffer will be automatically freed by 4788 * l2arc_do_free_on_write(). 4789 */ 4790 static boolean_t 4791 l2arc_compress_buf(void *in_data, uint64_t in_sz, void **out_data, 4792 uint64_t *out_sz, enum zio_compress *compress) 4793 { 4794 void *cdata; 4795 4796 cdata = zio_data_buf_alloc(in_sz); 4797 *out_sz = zio_compress_data(ZIO_COMPRESS_LZ4, in_data, cdata, in_sz); 4798 4799 if (*out_sz == 0) { 4800 /* Zero block, indicate that there's nothing to write. */ 4801 zio_data_buf_free(cdata, in_sz); 4802 *compress = ZIO_COMPRESS_EMPTY; 4803 *out_data = NULL; 4804 ARCSTAT_BUMP(arcstat_l2_compress_zeros); 4805 return (B_TRUE); 4806 } else if (*out_sz > 0 && *out_sz < in_sz) { 4807 /* 4808 * Compression succeeded, we'll keep the cdata around for 4809 * writing and release it after writing. 4810 */ 4811 l2arc_data_free_t *df; 4812 4813 *compress = ZIO_COMPRESS_LZ4; 4814 *out_data = cdata; 4815 4816 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 4817 df->l2df_data = cdata; 4818 df->l2df_size = *out_sz; 4819 df->l2df_func = zio_data_buf_free; 4820 mutex_enter(&l2arc_free_on_write_mtx); 4821 list_insert_head(l2arc_free_on_write, df); 4822 mutex_exit(&l2arc_free_on_write_mtx); 4823 4824 ARCSTAT_BUMP(arcstat_l2_compress_successes); 4825 ARCSTAT_BUMP(arcstat_l2_free_on_write); 4826 return (B_TRUE); 4827 } else { 4828 /* 4829 * Compression failed, release the compressed buffer. 4830 */ 4831 zio_data_buf_free(cdata, in_sz); 4832 ARCSTAT_BUMP(arcstat_l2_compress_failures); 4833 return (B_FALSE); 4834 } 4835 } 4836 4837 /* 4838 * Decompresses a zio read back from an l2arc device. On success, the 4839 * underlying zio's io_data buffer is overwritten by the uncompressed 4840 * version. On decompression error (corrupt compressed stream), the 4841 * zio->io_error value is set to signal an I/O error. 4842 * 4843 * Please note that the compressed data stream is not checksummed, so 4844 * if the underlying device is experiencing data corruption, we may feed 4845 * corrupt data to the decompressor, so the decompressor needs to be 4846 * able to handle this situation (LZ4 does). 4847 */ 4848 static void 4849 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c) 4850 { 4851 ASSERT(L2ARC_IS_VALID_COMPRESS(c)); 4852 4853 if (zio->io_error != 0) { 4854 /* 4855 * An io error has occured, just restore the original io 4856 * size in preparation for a main pool read. 4857 */ 4858 zio->io_orig_size = zio->io_size = hdr->b_size; 4859 return; 4860 } 4861 4862 if (c == ZIO_COMPRESS_EMPTY) { 4863 /* 4864 * An empty buffer results in a null zio, which means we 4865 * need to fill its io_data after we're done restoring the 4866 * buffer's contents. 4867 */ 4868 ASSERT(hdr->b_buf != NULL); 4869 bzero(hdr->b_buf->b_data, hdr->b_size); 4870 zio->io_data = zio->io_orig_data = hdr->b_buf->b_data; 4871 } else { 4872 ASSERT(zio->io_data != NULL); 4873 /* 4874 * We copy the compressed data from the start of the arc buffer 4875 * (the zio_read will have pulled in only what we need, the 4876 * rest is garbage which we will overwrite at decompression) 4877 * and then decompress back to the ARC data buffer. This way we 4878 * can minimize copying by simply decompressing back over the 4879 * original compressed data (rather than decompressing to an 4880 * aux buffer and then copying back the uncompressed buffer, 4881 * which is likely to be much larger). 4882 */ 4883 uint64_t csize; 4884 void *cdata; 4885 4886 csize = zio->io_size; 4887 cdata = zio_data_buf_alloc(csize); 4888 bcopy(zio->io_data, cdata, csize); 4889 if (zio_decompress_data(c, cdata, zio->io_data, csize, 4890 hdr->b_size) != 0) 4891 zio->io_error = EIO; 4892 zio_data_buf_free(cdata, csize); 4893 } 4894 4895 /* Restore the expected uncompressed IO size. */ 4896 zio->io_orig_size = zio->io_size = hdr->b_size; 4897 } 4898 4899 /* 4900 * This thread feeds the L2ARC at regular intervals. This is the beating 4901 * heart of the L2ARC. 4902 */ 4903 static void 4904 l2arc_feed_thread(void) 4905 { 4906 callb_cpr_t cpr; 4907 l2arc_dev_t *dev; 4908 spa_t *spa; 4909 uint64_t size, wrote; 4910 clock_t begin, next = ddi_get_lbolt(); 4911 boolean_t headroom_boost = B_FALSE; 4912 4913 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4914 4915 mutex_enter(&l2arc_feed_thr_lock); 4916 4917 while (l2arc_thread_exit == 0) { 4918 CALLB_CPR_SAFE_BEGIN(&cpr); 4919 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4920 next); 4921 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 4922 next = ddi_get_lbolt() + hz; 4923 4924 /* 4925 * Quick check for L2ARC devices. 4926 */ 4927 mutex_enter(&l2arc_dev_mtx); 4928 if (l2arc_ndev == 0) { 4929 mutex_exit(&l2arc_dev_mtx); 4930 continue; 4931 } 4932 mutex_exit(&l2arc_dev_mtx); 4933 begin = ddi_get_lbolt(); 4934 4935 /* 4936 * This selects the next l2arc device to write to, and in 4937 * doing so the next spa to feed from: dev->l2ad_spa. This 4938 * will return NULL if there are now no l2arc devices or if 4939 * they are all faulted. 4940 * 4941 * If a device is returned, its spa's config lock is also 4942 * held to prevent device removal. l2arc_dev_get_next() 4943 * will grab and release l2arc_dev_mtx. 4944 */ 4945 if ((dev = l2arc_dev_get_next()) == NULL) 4946 continue; 4947 4948 spa = dev->l2ad_spa; 4949 ASSERT(spa != NULL); 4950 4951 /* 4952 * If the pool is read-only then force the feed thread to 4953 * sleep a little longer. 4954 */ 4955 if (!spa_writeable(spa)) { 4956 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 4957 spa_config_exit(spa, SCL_L2ARC, dev); 4958 continue; 4959 } 4960 4961 /* 4962 * Avoid contributing to memory pressure. 4963 */ 4964 if (arc_reclaim_needed()) { 4965 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 4966 spa_config_exit(spa, SCL_L2ARC, dev); 4967 continue; 4968 } 4969 4970 ARCSTAT_BUMP(arcstat_l2_feeds); 4971 4972 size = l2arc_write_size(); 4973 4974 /* 4975 * Evict L2ARC buffers that will be overwritten. 4976 */ 4977 l2arc_evict(dev, size, B_FALSE); 4978 4979 /* 4980 * Write ARC buffers. 4981 */ 4982 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost); 4983 4984 /* 4985 * Calculate interval between writes. 4986 */ 4987 next = l2arc_write_interval(begin, size, wrote); 4988 spa_config_exit(spa, SCL_L2ARC, dev); 4989 } 4990 4991 l2arc_thread_exit = 0; 4992 cv_broadcast(&l2arc_feed_thr_cv); 4993 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 4994 thread_exit(); 4995 } 4996 4997 boolean_t 4998 l2arc_vdev_present(vdev_t *vd) 4999 { 5000 l2arc_dev_t *dev; 5001 5002 mutex_enter(&l2arc_dev_mtx); 5003 for (dev = list_head(l2arc_dev_list); dev != NULL; 5004 dev = list_next(l2arc_dev_list, dev)) { 5005 if (dev->l2ad_vdev == vd) 5006 break; 5007 } 5008 mutex_exit(&l2arc_dev_mtx); 5009 5010 return (dev != NULL); 5011 } 5012 5013 /* 5014 * Add a vdev for use by the L2ARC. By this point the spa has already 5015 * validated the vdev and opened it. 5016 */ 5017 void 5018 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 5019 { 5020 l2arc_dev_t *adddev; 5021 5022 ASSERT(!l2arc_vdev_present(vd)); 5023 5024 /* 5025 * Create a new l2arc device entry. 5026 */ 5027 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 5028 adddev->l2ad_spa = spa; 5029 adddev->l2ad_vdev = vd; 5030 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 5031 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 5032 adddev->l2ad_hand = adddev->l2ad_start; 5033 adddev->l2ad_evict = adddev->l2ad_start; 5034 adddev->l2ad_first = B_TRUE; 5035 adddev->l2ad_writing = B_FALSE; 5036 5037 /* 5038 * This is a list of all ARC buffers that are still valid on the 5039 * device. 5040 */ 5041 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 5042 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 5043 offsetof(arc_buf_hdr_t, b_l2node)); 5044 5045 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 5046 5047 /* 5048 * Add device to global list 5049 */ 5050 mutex_enter(&l2arc_dev_mtx); 5051 list_insert_head(l2arc_dev_list, adddev); 5052 atomic_inc_64(&l2arc_ndev); 5053 mutex_exit(&l2arc_dev_mtx); 5054 } 5055 5056 /* 5057 * Remove a vdev from the L2ARC. 5058 */ 5059 void 5060 l2arc_remove_vdev(vdev_t *vd) 5061 { 5062 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 5063 5064 /* 5065 * Find the device by vdev 5066 */ 5067 mutex_enter(&l2arc_dev_mtx); 5068 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 5069 nextdev = list_next(l2arc_dev_list, dev); 5070 if (vd == dev->l2ad_vdev) { 5071 remdev = dev; 5072 break; 5073 } 5074 } 5075 ASSERT(remdev != NULL); 5076 5077 /* 5078 * Remove device from global list 5079 */ 5080 list_remove(l2arc_dev_list, remdev); 5081 l2arc_dev_last = NULL; /* may have been invalidated */ 5082 atomic_dec_64(&l2arc_ndev); 5083 mutex_exit(&l2arc_dev_mtx); 5084 5085 /* 5086 * Clear all buflists and ARC references. L2ARC device flush. 5087 */ 5088 l2arc_evict(remdev, 0, B_TRUE); 5089 list_destroy(remdev->l2ad_buflist); 5090 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 5091 kmem_free(remdev, sizeof (l2arc_dev_t)); 5092 } 5093 5094 void 5095 l2arc_init(void) 5096 { 5097 l2arc_thread_exit = 0; 5098 l2arc_ndev = 0; 5099 l2arc_writes_sent = 0; 5100 l2arc_writes_done = 0; 5101 5102 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 5103 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 5104 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 5105 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 5106 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 5107 5108 l2arc_dev_list = &L2ARC_dev_list; 5109 l2arc_free_on_write = &L2ARC_free_on_write; 5110 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 5111 offsetof(l2arc_dev_t, l2ad_node)); 5112 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 5113 offsetof(l2arc_data_free_t, l2df_list_node)); 5114 } 5115 5116 void 5117 l2arc_fini(void) 5118 { 5119 /* 5120 * This is called from dmu_fini(), which is called from spa_fini(); 5121 * Because of this, we can assume that all l2arc devices have 5122 * already been removed when the pools themselves were removed. 5123 */ 5124 5125 l2arc_do_free_on_write(); 5126 5127 mutex_destroy(&l2arc_feed_thr_lock); 5128 cv_destroy(&l2arc_feed_thr_cv); 5129 mutex_destroy(&l2arc_dev_mtx); 5130 mutex_destroy(&l2arc_buflist_mtx); 5131 mutex_destroy(&l2arc_free_on_write_mtx); 5132 5133 list_destroy(l2arc_dev_list); 5134 list_destroy(l2arc_free_on_write); 5135 } 5136 5137 void 5138 l2arc_start(void) 5139 { 5140 if (!(spa_mode_global & FWRITE)) 5141 return; 5142 5143 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 5144 TS_RUN, minclsyspri); 5145 } 5146 5147 void 5148 l2arc_stop(void) 5149 { 5150 if (!(spa_mode_global & FWRITE)) 5151 return; 5152 5153 mutex_enter(&l2arc_feed_thr_lock); 5154 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 5155 l2arc_thread_exit = 1; 5156 while (l2arc_thread_exit != 0) 5157 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 5158 mutex_exit(&l2arc_feed_thr_lock); 5159 }