1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 
  25 #include <sys/zfs_context.h>
  26 #include <sys/spa.h>
  27 #include <sys/zio.h>
  28 #include <sys/zio_checksum.h>
  29 #include <sys/zil.h>
  30 #include <zfs_fletcher.h>
  31 
  32 /*
  33  * Checksum vectors.
  34  *
  35  * In the SPA, everything is checksummed.  We support checksum vectors
  36  * for three distinct reasons:
  37  *
  38  *   1. Different kinds of data need different levels of protection.
  39  *      For SPA metadata, we always want a very strong checksum.
  40  *      For user data, we let users make the trade-off between speed
  41  *      and checksum strength.
  42  *
  43  *   2. Cryptographic hash and MAC algorithms are an area of active research.
  44  *      It is likely that in future hash functions will be at least as strong
  45  *      as current best-of-breed, and may be substantially faster as well.
  46  *      We want the ability to take advantage of these new hashes as soon as
  47  *      they become available.
  48  *
  49  *   3. If someone develops hardware that can compute a strong hash quickly,
  50  *      we want the ability to take advantage of that hardware.
  51  *
  52  * Of course, we don't want a checksum upgrade to invalidate existing
  53  * data, so we store the checksum *function* in eight bits of the bp.
  54  * This gives us room for up to 256 different checksum functions.
  55  *
  56  * When writing a block, we always checksum it with the latest-and-greatest
  57  * checksum function of the appropriate strength.  When reading a block,
  58  * we compare the expected checksum against the actual checksum, which we
  59  * compute via the checksum function specified by BP_GET_CHECKSUM(bp).
  60  */
  61 
  62 /*ARGSUSED*/
  63 static void
  64 zio_checksum_off(const void *buf, uint64_t size, zio_cksum_t *zcp)
  65 {
  66         ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
  67 }
  68 
  69 zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
  70         {{NULL,                 NULL},                  0, 0, 0, "inherit"},
  71         {{NULL,                 NULL},                  0, 0, 0, "on"},
  72         {{zio_checksum_off,     zio_checksum_off},      0, 0, 0, "off"},
  73         {{zio_checksum_SHA256,  zio_checksum_SHA256},   1, 1, 0, "label"},
  74         {{zio_checksum_SHA256,  zio_checksum_SHA256},   1, 1, 0, "gang_header"},
  75         {{fletcher_2_native,    fletcher_2_byteswap},   0, 1, 0, "zilog"},
  76         {{fletcher_2_native,    fletcher_2_byteswap},   0, 0, 0, "fletcher2"},
  77         {{fletcher_4_native,    fletcher_4_byteswap},   1, 0, 0, "fletcher4"},
  78         {{zio_checksum_SHA256,  zio_checksum_SHA256},   1, 0, 1, "sha256"},
  79         {{fletcher_4_native,    fletcher_4_byteswap},   0, 1, 0, "zilog2"},
  80         {{zio_checksum_EdonR512_256,    zio_checksum_EdonR512_256_byteswap},
  81             1, 0, 1, "edonr512/256"},
  82 };
  83 
  84 enum zio_checksum
  85 zio_checksum_select(enum zio_checksum child, enum zio_checksum parent)
  86 {
  87         ASSERT(child < ZIO_CHECKSUM_FUNCTIONS);
  88         ASSERT(parent < ZIO_CHECKSUM_FUNCTIONS);
  89         ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);
  90 
  91         if (child == ZIO_CHECKSUM_INHERIT)
  92                 return (parent);
  93 
  94         if (child == ZIO_CHECKSUM_ON)
  95                 return (ZIO_CHECKSUM_ON_VALUE);
  96 
  97         return (child);
  98 }
  99 
 100 enum zio_checksum
 101 zio_checksum_dedup_select(spa_t *spa, enum zio_checksum child,
 102     enum zio_checksum parent)
 103 {
 104         ASSERT((child & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
 105         ASSERT((parent & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
 106         ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);
 107 
 108         if (child == ZIO_CHECKSUM_INHERIT)
 109                 return (parent);
 110 
 111         if (child == ZIO_CHECKSUM_ON)
 112                 return (spa_dedup_checksum(spa));
 113 
 114         if (child == (ZIO_CHECKSUM_ON | ZIO_CHECKSUM_VERIFY))
 115                 return (spa_dedup_checksum(spa) | ZIO_CHECKSUM_VERIFY);
 116 
 117         ASSERT(zio_checksum_table[child & ZIO_CHECKSUM_MASK].ci_dedup ||
 118             (child & ZIO_CHECKSUM_VERIFY) || child == ZIO_CHECKSUM_OFF);
 119 
 120         return (child);
 121 }
 122 
 123 /*
 124  * Set the external verifier for a gang block based on <vdev, offset, txg>,
 125  * a tuple which is guaranteed to be unique for the life of the pool.
 126  */
 127 static void
 128 zio_checksum_gang_verifier(zio_cksum_t *zcp, blkptr_t *bp)
 129 {
 130         dva_t *dva = BP_IDENTITY(bp);
 131         uint64_t txg = BP_PHYSICAL_BIRTH(bp);
 132 
 133         ASSERT(BP_IS_GANG(bp));
 134 
 135         ZIO_SET_CHECKSUM(zcp, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), txg, 0);
 136 }
 137 
 138 /*
 139  * Set the external verifier for a label block based on its offset.
 140  * The vdev is implicit, and the txg is unknowable at pool open time --
 141  * hence the logic in vdev_uberblock_load() to find the most recent copy.
 142  */
 143 static void
 144 zio_checksum_label_verifier(zio_cksum_t *zcp, uint64_t offset)
 145 {
 146         ZIO_SET_CHECKSUM(zcp, offset, 0, 0, 0);
 147 }
 148 
 149 /*
 150  * Generate the checksum.
 151  */
 152 void
 153 zio_checksum_compute(zio_t *zio, enum zio_checksum checksum,
 154         void *data, uint64_t size)
 155 {
 156         blkptr_t *bp = zio->io_bp;
 157         uint64_t offset = zio->io_offset;
 158         zio_checksum_info_t *ci = &zio_checksum_table[checksum];
 159         zio_cksum_t cksum;
 160 
 161         ASSERT((uint_t)checksum < ZIO_CHECKSUM_FUNCTIONS);
 162         ASSERT(ci->ci_func[0] != NULL);
 163 
 164         if (ci->ci_eck) {
 165                 zio_eck_t *eck;
 166 
 167                 if (checksum == ZIO_CHECKSUM_ZILOG2) {
 168                         zil_chain_t *zilc = data;
 169 
 170                         size = P2ROUNDUP_TYPED(zilc->zc_nused, ZIL_MIN_BLKSZ,
 171                             uint64_t);
 172                         eck = &zilc->zc_eck;
 173                 } else {
 174                         eck = (zio_eck_t *)((char *)data + size) - 1;
 175                 }
 176                 if (checksum == ZIO_CHECKSUM_GANG_HEADER)
 177                         zio_checksum_gang_verifier(&eck->zec_cksum, bp);
 178                 else if (checksum == ZIO_CHECKSUM_LABEL)
 179                         zio_checksum_label_verifier(&eck->zec_cksum, offset);
 180                 else
 181                         bp->blk_cksum = eck->zec_cksum;
 182                 eck->zec_magic = ZEC_MAGIC;
 183                 ci->ci_func[0](data, size, &cksum);
 184                 eck->zec_cksum = cksum;
 185         } else {
 186                 ci->ci_func[0](data, size, &bp->blk_cksum);
 187         }
 188 }
 189 
 190 int
 191 zio_checksum_error(zio_t *zio, zio_bad_cksum_t *info)
 192 {
 193         blkptr_t *bp = zio->io_bp;
 194         uint_t checksum = (bp == NULL ? zio->io_prop.zp_checksum :
 195             (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp)));
 196         int byteswap;
 197         int error;
 198         uint64_t size = (bp == NULL ? zio->io_size :
 199             (BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp)));
 200         uint64_t offset = zio->io_offset;
 201         void *data = zio->io_data;
 202         zio_checksum_info_t *ci = &zio_checksum_table[checksum];
 203         zio_cksum_t actual_cksum, expected_cksum, verifier;
 204 
 205         if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func[0] == NULL)
 206                 return (EINVAL);
 207 
 208         if (ci->ci_eck) {
 209                 zio_eck_t *eck;
 210 
 211                 if (checksum == ZIO_CHECKSUM_ZILOG2) {
 212                         zil_chain_t *zilc = data;
 213                         uint64_t nused;
 214 
 215                         eck = &zilc->zc_eck;
 216                         if (eck->zec_magic == ZEC_MAGIC)
 217                                 nused = zilc->zc_nused;
 218                         else if (eck->zec_magic == BSWAP_64(ZEC_MAGIC))
 219                                 nused = BSWAP_64(zilc->zc_nused);
 220                         else
 221                                 return (ECKSUM);
 222 
 223                         if (nused > size)
 224                                 return (ECKSUM);
 225 
 226                         size = P2ROUNDUP_TYPED(nused, ZIL_MIN_BLKSZ, uint64_t);
 227                 } else {
 228                         eck = (zio_eck_t *)((char *)data + size) - 1;
 229                 }
 230 
 231                 if (checksum == ZIO_CHECKSUM_GANG_HEADER)
 232                         zio_checksum_gang_verifier(&verifier, bp);
 233                 else if (checksum == ZIO_CHECKSUM_LABEL)
 234                         zio_checksum_label_verifier(&verifier, offset);
 235                 else
 236                         verifier = bp->blk_cksum;
 237 
 238                 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
 239 
 240                 if (byteswap)
 241                         byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
 242 
 243                 expected_cksum = eck->zec_cksum;
 244                 eck->zec_cksum = verifier;
 245                 ci->ci_func[byteswap](data, size, &actual_cksum);
 246                 eck->zec_cksum = expected_cksum;
 247 
 248                 if (byteswap)
 249                         byteswap_uint64_array(&expected_cksum,
 250                             sizeof (zio_cksum_t));
 251         } else {
 252                 ASSERT(!BP_IS_GANG(bp));
 253                 byteswap = BP_SHOULD_BYTESWAP(bp);
 254                 expected_cksum = bp->blk_cksum;
 255                 ci->ci_func[byteswap](data, size, &actual_cksum);
 256         }
 257 
 258         info->zbc_expected = expected_cksum;
 259         info->zbc_actual = actual_cksum;
 260         info->zbc_checksum_name = ci->ci_name;
 261         info->zbc_byteswapped = byteswap;
 262         info->zbc_injected = 0;
 263         info->zbc_has_cksum = 1;
 264 
 265         if (!ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
 266                 return (ECKSUM);
 267 
 268         if (zio_injection_enabled && !zio->io_error &&
 269             (error = zio_handle_fault_injection(zio, ECKSUM)) != 0) {
 270 
 271                 info->zbc_injected = 1;
 272                 return (error);
 273         }
 274 
 275         return (0);
 276 }