1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * DVA-based Adjustable Replacement Cache 31 * 32 * While much of the theory of operation used here is 33 * based on the self-tuning, low overhead replacement cache 34 * presented by Megiddo and Modha at FAST 2003, there are some 35 * significant differences: 36 * 37 * 1. The Megiddo and Modha model assumes any page is evictable. 38 * Pages in its cache cannot be "locked" into memory. This makes 39 * the eviction algorithm simple: evict the last page in the list. 40 * This also make the performance characteristics easy to reason 41 * about. Our cache is not so simple. At any given moment, some 42 * subset of the blocks in the cache are un-evictable because we 43 * have handed out a reference to them. Blocks are only evictable 44 * when there are no external references active. This makes 45 * eviction far more problematic: we choose to evict the evictable 46 * blocks that are the "lowest" in the list. 47 * 48 * There are times when it is not possible to evict the requested 49 * space. In these circumstances we are unable to adjust the cache 50 * size. To prevent the cache growing unbounded at these times we 51 * implement a "cache throttle" that slows the flow of new data 52 * into the cache until we can make space available. 53 * 54 * 2. The Megiddo and Modha model assumes a fixed cache size. 55 * Pages are evicted when the cache is full and there is a cache 56 * miss. Our model has a variable sized cache. It grows with 57 * high use, but also tries to react to memory pressure from the 58 * operating system: decreasing its size when system memory is 59 * tight. 60 * 61 * 3. The Megiddo and Modha model assumes a fixed page size. All 62 * elements of the cache are therefore exactly the same size. So 63 * when adjusting the cache size following a cache miss, its simply 64 * a matter of choosing a single page to evict. In our model, we 65 * have variable sized cache blocks (rangeing from 512 bytes to 66 * 128K bytes). We therefore choose a set of blocks to evict to make 67 * space for a cache miss that approximates as closely as possible 68 * the space used by the new block. 69 * 70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71 * by N. Megiddo & D. Modha, FAST 2003 72 */ 73 74 /* 75 * The locking model: 76 * 77 * A new reference to a cache buffer can be obtained in two 78 * ways: 1) via a hash table lookup using the DVA as a key, 79 * or 2) via one of the ARC lists. The arc_read() interface 80 * uses method 1, while the internal arc algorithms for 81 * adjusting the cache use method 2. We therefore provide two 82 * types of locks: 1) the hash table lock array, and 2) the 83 * arc list locks. 84 * 85 * Buffers do not have their own mutexes, rather they rely on the 86 * hash table mutexes for the bulk of their protection (i.e. most 87 * fields in the arc_buf_hdr_t are protected by these mutexes). 88 * 89 * buf_hash_find() returns the appropriate mutex (held) when it 90 * locates the requested buffer in the hash table. It returns 91 * NULL for the mutex if the buffer was not in the table. 92 * 93 * buf_hash_remove() expects the appropriate hash mutex to be 94 * already held before it is invoked. 95 * 96 * Each arc state also has a mutex which is used to protect the 97 * buffer list associated with the state. When attempting to 98 * obtain a hash table lock while holding an arc list lock you 99 * must use: mutex_tryenter() to avoid deadlock. Also note that 100 * the active state mutex must be held before the ghost state mutex. 101 * 102 * Arc buffers may have an associated eviction callback function. 103 * This function will be invoked prior to removing the buffer (e.g. 104 * in arc_do_user_evicts()). Note however that the data associated 105 * with the buffer may be evicted prior to the callback. The callback 106 * must be made with *no locks held* (to prevent deadlock). Additionally, 107 * the users of callbacks must ensure that their private data is 108 * protected from simultaneous callbacks from arc_clear_callback() 109 * and arc_do_user_evicts(). 110 * 111 * Note that the majority of the performance stats are manipulated 112 * with atomic operations. 113 * 114 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 115 * 116 * - L2ARC buflist creation 117 * - L2ARC buflist eviction 118 * - L2ARC write completion, which walks L2ARC buflists 119 * - ARC header destruction, as it removes from L2ARC buflists 120 * - ARC header release, as it removes from L2ARC buflists 121 */ 122 123 #include <sys/spa.h> 124 #include <sys/zio.h> 125 #include <sys/zio_compress.h> 126 #include <sys/zfs_context.h> 127 #include <sys/arc.h> 128 #include <sys/refcount.h> 129 #include <sys/vdev.h> 130 #include <sys/vdev_impl.h> 131 #include <sys/dsl_pool.h> 132 #ifdef _KERNEL 133 #include <sys/vmsystm.h> 134 #include <vm/anon.h> 135 #include <sys/fs/swapnode.h> 136 #include <sys/dnlc.h> 137 #endif 138 #include <sys/callb.h> 139 #include <sys/kstat.h> 140 #include <zfs_fletcher.h> 141 142 #ifndef _KERNEL 143 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 144 boolean_t arc_watch = B_FALSE; 145 int arc_procfd; 146 #endif 147 148 static kmutex_t arc_reclaim_thr_lock; 149 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 150 static uint8_t arc_thread_exit; 151 152 #define ARC_REDUCE_DNLC_PERCENT 3 153 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 154 155 typedef enum arc_reclaim_strategy { 156 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 157 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 158 } arc_reclaim_strategy_t; 159 160 /* 161 * The number of iterations through arc_evict_*() before we 162 * drop & reacquire the lock. 163 */ 164 int arc_evict_iterations = 100; 165 166 /* number of seconds before growing cache again */ 167 static int arc_grow_retry = 60; 168 169 /* shift of arc_c for calculating both min and max arc_p */ 170 static int arc_p_min_shift = 4; 171 172 /* log2(fraction of arc to reclaim) */ 173 static int arc_shrink_shift = 5; 174 175 /* 176 * minimum lifespan of a prefetch block in clock ticks 177 * (initialized in arc_init()) 178 */ 179 static int arc_min_prefetch_lifespan; 180 181 /* 182 * If this percent of memory is free, don't throttle. 183 */ 184 int arc_lotsfree_percent = 10; 185 186 static int arc_dead; 187 188 /* 189 * The arc has filled available memory and has now warmed up. 190 */ 191 static boolean_t arc_warm; 192 193 /* 194 * These tunables are for performance analysis. 195 */ 196 uint64_t zfs_arc_max; 197 uint64_t zfs_arc_min; 198 uint64_t zfs_arc_meta_limit = 0; 199 int zfs_arc_grow_retry = 0; 200 int zfs_arc_shrink_shift = 0; 201 int zfs_arc_p_min_shift = 0; 202 int zfs_disable_dup_eviction = 0; 203 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 204 205 /* 206 * Note that buffers can be in one of 6 states: 207 * ARC_anon - anonymous (discussed below) 208 * ARC_mru - recently used, currently cached 209 * ARC_mru_ghost - recentely used, no longer in cache 210 * ARC_mfu - frequently used, currently cached 211 * ARC_mfu_ghost - frequently used, no longer in cache 212 * ARC_l2c_only - exists in L2ARC but not other states 213 * When there are no active references to the buffer, they are 214 * are linked onto a list in one of these arc states. These are 215 * the only buffers that can be evicted or deleted. Within each 216 * state there are multiple lists, one for meta-data and one for 217 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 218 * etc.) is tracked separately so that it can be managed more 219 * explicitly: favored over data, limited explicitly. 220 * 221 * Anonymous buffers are buffers that are not associated with 222 * a DVA. These are buffers that hold dirty block copies 223 * before they are written to stable storage. By definition, 224 * they are "ref'd" and are considered part of arc_mru 225 * that cannot be freed. Generally, they will aquire a DVA 226 * as they are written and migrate onto the arc_mru list. 227 * 228 * The ARC_l2c_only state is for buffers that are in the second 229 * level ARC but no longer in any of the ARC_m* lists. The second 230 * level ARC itself may also contain buffers that are in any of 231 * the ARC_m* states - meaning that a buffer can exist in two 232 * places. The reason for the ARC_l2c_only state is to keep the 233 * buffer header in the hash table, so that reads that hit the 234 * second level ARC benefit from these fast lookups. 235 */ 236 237 typedef struct arc_state { 238 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 239 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 240 uint64_t arcs_size; /* total amount of data in this state */ 241 kmutex_t arcs_mtx; 242 } arc_state_t; 243 244 /* The 6 states: */ 245 static arc_state_t ARC_anon; 246 static arc_state_t ARC_mru; 247 static arc_state_t ARC_mru_ghost; 248 static arc_state_t ARC_mfu; 249 static arc_state_t ARC_mfu_ghost; 250 static arc_state_t ARC_l2c_only; 251 252 typedef struct arc_stats { 253 kstat_named_t arcstat_hits; 254 kstat_named_t arcstat_misses; 255 kstat_named_t arcstat_demand_data_hits; 256 kstat_named_t arcstat_demand_data_misses; 257 kstat_named_t arcstat_demand_metadata_hits; 258 kstat_named_t arcstat_demand_metadata_misses; 259 kstat_named_t arcstat_prefetch_data_hits; 260 kstat_named_t arcstat_prefetch_data_misses; 261 kstat_named_t arcstat_prefetch_metadata_hits; 262 kstat_named_t arcstat_prefetch_metadata_misses; 263 kstat_named_t arcstat_mru_hits; 264 kstat_named_t arcstat_mru_ghost_hits; 265 kstat_named_t arcstat_mfu_hits; 266 kstat_named_t arcstat_mfu_ghost_hits; 267 kstat_named_t arcstat_deleted; 268 kstat_named_t arcstat_recycle_miss; 269 /* 270 * Number of buffers that could not be evicted because the hash lock 271 * was held by another thread. The lock may not necessarily be held 272 * by something using the same buffer, since hash locks are shared 273 * by multiple buffers. 274 */ 275 kstat_named_t arcstat_mutex_miss; 276 /* 277 * Number of buffers skipped because they have I/O in progress, are 278 * indrect prefetch buffers that have not lived long enough, or are 279 * not from the spa we're trying to evict from. 280 */ 281 kstat_named_t arcstat_evict_skip; 282 kstat_named_t arcstat_evict_l2_cached; 283 kstat_named_t arcstat_evict_l2_eligible; 284 kstat_named_t arcstat_evict_l2_ineligible; 285 kstat_named_t arcstat_hash_elements; 286 kstat_named_t arcstat_hash_elements_max; 287 kstat_named_t arcstat_hash_collisions; 288 kstat_named_t arcstat_hash_chains; 289 kstat_named_t arcstat_hash_chain_max; 290 kstat_named_t arcstat_p; 291 kstat_named_t arcstat_c; 292 kstat_named_t arcstat_c_min; 293 kstat_named_t arcstat_c_max; 294 kstat_named_t arcstat_size; 295 kstat_named_t arcstat_hdr_size; 296 kstat_named_t arcstat_data_size; 297 kstat_named_t arcstat_other_size; 298 kstat_named_t arcstat_l2_hits; 299 kstat_named_t arcstat_l2_misses; 300 kstat_named_t arcstat_l2_feeds; 301 kstat_named_t arcstat_l2_rw_clash; 302 kstat_named_t arcstat_l2_read_bytes; 303 kstat_named_t arcstat_l2_write_bytes; 304 kstat_named_t arcstat_l2_writes_sent; 305 kstat_named_t arcstat_l2_writes_done; 306 kstat_named_t arcstat_l2_writes_error; 307 kstat_named_t arcstat_l2_writes_hdr_miss; 308 kstat_named_t arcstat_l2_evict_lock_retry; 309 kstat_named_t arcstat_l2_evict_reading; 310 kstat_named_t arcstat_l2_free_on_write; 311 kstat_named_t arcstat_l2_abort_lowmem; 312 kstat_named_t arcstat_l2_cksum_bad; 313 kstat_named_t arcstat_l2_io_error; 314 kstat_named_t arcstat_l2_size; 315 kstat_named_t arcstat_l2_asize; 316 kstat_named_t arcstat_l2_hdr_size; 317 kstat_named_t arcstat_l2_compress_successes; 318 kstat_named_t arcstat_l2_compress_zeros; 319 kstat_named_t arcstat_l2_compress_failures; 320 kstat_named_t arcstat_memory_throttle_count; 321 kstat_named_t arcstat_duplicate_buffers; 322 kstat_named_t arcstat_duplicate_buffers_size; 323 kstat_named_t arcstat_duplicate_reads; 324 kstat_named_t arcstat_meta_used; 325 kstat_named_t arcstat_meta_limit; 326 kstat_named_t arcstat_meta_max; 327 } arc_stats_t; 328 329 static arc_stats_t arc_stats = { 330 { "hits", KSTAT_DATA_UINT64 }, 331 { "misses", KSTAT_DATA_UINT64 }, 332 { "demand_data_hits", KSTAT_DATA_UINT64 }, 333 { "demand_data_misses", KSTAT_DATA_UINT64 }, 334 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 335 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 336 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 337 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 338 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 339 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 340 { "mru_hits", KSTAT_DATA_UINT64 }, 341 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 342 { "mfu_hits", KSTAT_DATA_UINT64 }, 343 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 344 { "deleted", KSTAT_DATA_UINT64 }, 345 { "recycle_miss", KSTAT_DATA_UINT64 }, 346 { "mutex_miss", KSTAT_DATA_UINT64 }, 347 { "evict_skip", KSTAT_DATA_UINT64 }, 348 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 349 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 350 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 351 { "hash_elements", KSTAT_DATA_UINT64 }, 352 { "hash_elements_max", KSTAT_DATA_UINT64 }, 353 { "hash_collisions", KSTAT_DATA_UINT64 }, 354 { "hash_chains", KSTAT_DATA_UINT64 }, 355 { "hash_chain_max", KSTAT_DATA_UINT64 }, 356 { "p", KSTAT_DATA_UINT64 }, 357 { "c", KSTAT_DATA_UINT64 }, 358 { "c_min", KSTAT_DATA_UINT64 }, 359 { "c_max", KSTAT_DATA_UINT64 }, 360 { "size", KSTAT_DATA_UINT64 }, 361 { "hdr_size", KSTAT_DATA_UINT64 }, 362 { "data_size", KSTAT_DATA_UINT64 }, 363 { "other_size", KSTAT_DATA_UINT64 }, 364 { "l2_hits", KSTAT_DATA_UINT64 }, 365 { "l2_misses", KSTAT_DATA_UINT64 }, 366 { "l2_feeds", KSTAT_DATA_UINT64 }, 367 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 368 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 369 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 370 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 371 { "l2_writes_done", KSTAT_DATA_UINT64 }, 372 { "l2_writes_error", KSTAT_DATA_UINT64 }, 373 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 374 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 375 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 376 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 377 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 378 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 379 { "l2_io_error", KSTAT_DATA_UINT64 }, 380 { "l2_size", KSTAT_DATA_UINT64 }, 381 { "l2_asize", KSTAT_DATA_UINT64 }, 382 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 383 { "l2_compress_successes", KSTAT_DATA_UINT64 }, 384 { "l2_compress_zeros", KSTAT_DATA_UINT64 }, 385 { "l2_compress_failures", KSTAT_DATA_UINT64 }, 386 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 387 { "duplicate_buffers", KSTAT_DATA_UINT64 }, 388 { "duplicate_buffers_size", KSTAT_DATA_UINT64 }, 389 { "duplicate_reads", KSTAT_DATA_UINT64 }, 390 { "arc_meta_used", KSTAT_DATA_UINT64 }, 391 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 392 { "arc_meta_max", KSTAT_DATA_UINT64 } 393 }; 394 395 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 396 397 #define ARCSTAT_INCR(stat, val) \ 398 atomic_add_64(&arc_stats.stat.value.ui64, (val)) 399 400 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 401 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 402 403 #define ARCSTAT_MAX(stat, val) { \ 404 uint64_t m; \ 405 while ((val) > (m = arc_stats.stat.value.ui64) && \ 406 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 407 continue; \ 408 } 409 410 #define ARCSTAT_MAXSTAT(stat) \ 411 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 412 413 /* 414 * We define a macro to allow ARC hits/misses to be easily broken down by 415 * two separate conditions, giving a total of four different subtypes for 416 * each of hits and misses (so eight statistics total). 417 */ 418 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 419 if (cond1) { \ 420 if (cond2) { \ 421 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 422 } else { \ 423 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 424 } \ 425 } else { \ 426 if (cond2) { \ 427 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 428 } else { \ 429 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 430 } \ 431 } 432 433 kstat_t *arc_ksp; 434 static arc_state_t *arc_anon; 435 static arc_state_t *arc_mru; 436 static arc_state_t *arc_mru_ghost; 437 static arc_state_t *arc_mfu; 438 static arc_state_t *arc_mfu_ghost; 439 static arc_state_t *arc_l2c_only; 440 441 /* 442 * There are several ARC variables that are critical to export as kstats -- 443 * but we don't want to have to grovel around in the kstat whenever we wish to 444 * manipulate them. For these variables, we therefore define them to be in 445 * terms of the statistic variable. This assures that we are not introducing 446 * the possibility of inconsistency by having shadow copies of the variables, 447 * while still allowing the code to be readable. 448 */ 449 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 450 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 451 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 452 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 453 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 454 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 455 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ 456 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 457 458 #define L2ARC_IS_VALID_COMPRESS(_c_) \ 459 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY) 460 461 static int arc_no_grow; /* Don't try to grow cache size */ 462 static uint64_t arc_tempreserve; 463 static uint64_t arc_loaned_bytes; 464 465 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 466 467 typedef struct arc_callback arc_callback_t; 468 469 struct arc_callback { 470 void *acb_private; 471 arc_done_func_t *acb_done; 472 arc_buf_t *acb_buf; 473 zio_t *acb_zio_dummy; 474 arc_callback_t *acb_next; 475 }; 476 477 typedef struct arc_write_callback arc_write_callback_t; 478 479 struct arc_write_callback { 480 void *awcb_private; 481 arc_done_func_t *awcb_ready; 482 arc_done_func_t *awcb_physdone; 483 arc_done_func_t *awcb_done; 484 arc_buf_t *awcb_buf; 485 }; 486 487 struct arc_buf_hdr { 488 /* protected by hash lock */ 489 dva_t b_dva; 490 uint64_t b_birth; 491 uint64_t b_cksum0; 492 493 kmutex_t b_freeze_lock; 494 zio_cksum_t *b_freeze_cksum; 495 void *b_thawed; 496 497 arc_buf_hdr_t *b_hash_next; 498 arc_buf_t *b_buf; 499 uint32_t b_flags; 500 uint32_t b_datacnt; 501 502 arc_callback_t *b_acb; 503 kcondvar_t b_cv; 504 505 /* immutable */ 506 arc_buf_contents_t b_type; 507 uint64_t b_size; 508 uint64_t b_spa; 509 510 /* protected by arc state mutex */ 511 arc_state_t *b_state; 512 list_node_t b_arc_node; 513 514 /* updated atomically */ 515 clock_t b_arc_access; 516 517 /* self protecting */ 518 refcount_t b_refcnt; 519 520 l2arc_buf_hdr_t *b_l2hdr; 521 list_node_t b_l2node; 522 }; 523 524 static arc_buf_t *arc_eviction_list; 525 static kmutex_t arc_eviction_mtx; 526 static arc_buf_hdr_t arc_eviction_hdr; 527 static void arc_get_data_buf(arc_buf_t *buf); 528 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 529 static int arc_evict_needed(arc_buf_contents_t type); 530 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); 531 static void arc_buf_watch(arc_buf_t *buf); 532 533 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab); 534 535 #define GHOST_STATE(state) \ 536 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 537 (state) == arc_l2c_only) 538 539 /* 540 * Private ARC flags. These flags are private ARC only flags that will show up 541 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 542 * be passed in as arc_flags in things like arc_read. However, these flags 543 * should never be passed and should only be set by ARC code. When adding new 544 * public flags, make sure not to smash the private ones. 545 */ 546 547 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 548 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 549 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 550 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 551 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 552 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 553 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 554 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 555 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 556 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 557 558 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 559 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 560 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 561 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 562 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 563 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 564 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 565 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 566 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 567 (hdr)->b_l2hdr != NULL) 568 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 569 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 570 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 571 572 /* 573 * Other sizes 574 */ 575 576 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 577 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 578 579 /* 580 * Hash table routines 581 */ 582 583 struct ht_table { 584 arc_buf_hdr_t *hdr; 585 kmutex_t lock; 586 }; 587 588 typedef struct buf_hash_table { 589 uint64_t ht_mask; 590 struct ht_table *ht_table; 591 } buf_hash_table_t; 592 593 #pragma align 64(buf_hash_table) 594 static buf_hash_table_t buf_hash_table; 595 596 #define BUF_HASH_INDEX(spa, dva, birth) \ 597 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 598 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_table[idx].lock) 599 #define HDR_LOCK(hdr) \ 600 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 601 602 uint64_t zfs_crc64_table[256]; 603 604 /* 605 * Level 2 ARC 606 */ 607 608 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 609 #define L2ARC_HEADROOM 2 /* num of writes */ 610 /* 611 * If we discover during ARC scan any buffers to be compressed, we boost 612 * our headroom for the next scanning cycle by this percentage multiple. 613 */ 614 #define L2ARC_HEADROOM_BOOST 200 615 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 616 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 617 618 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 619 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 620 621 /* L2ARC Performance Tunables */ 622 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 623 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 624 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 625 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 626 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 627 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 628 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 629 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 630 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 631 632 /* 633 * L2ARC Internals 634 */ 635 typedef struct l2arc_dev { 636 vdev_t *l2ad_vdev; /* vdev */ 637 spa_t *l2ad_spa; /* spa */ 638 uint64_t l2ad_hand; /* next write location */ 639 uint64_t l2ad_start; /* first addr on device */ 640 uint64_t l2ad_end; /* last addr on device */ 641 uint64_t l2ad_evict; /* last addr eviction reached */ 642 boolean_t l2ad_first; /* first sweep through */ 643 boolean_t l2ad_writing; /* currently writing */ 644 list_t *l2ad_buflist; /* buffer list */ 645 list_node_t l2ad_node; /* device list node */ 646 } l2arc_dev_t; 647 648 static list_t L2ARC_dev_list; /* device list */ 649 static list_t *l2arc_dev_list; /* device list pointer */ 650 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 651 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 652 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 653 static list_t L2ARC_free_on_write; /* free after write buf list */ 654 static list_t *l2arc_free_on_write; /* free after write list ptr */ 655 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 656 static uint64_t l2arc_ndev; /* number of devices */ 657 658 typedef struct l2arc_read_callback { 659 arc_buf_t *l2rcb_buf; /* read buffer */ 660 spa_t *l2rcb_spa; /* spa */ 661 blkptr_t l2rcb_bp; /* original blkptr */ 662 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 663 int l2rcb_flags; /* original flags */ 664 enum zio_compress l2rcb_compress; /* applied compress */ 665 } l2arc_read_callback_t; 666 667 typedef struct l2arc_write_callback { 668 l2arc_dev_t *l2wcb_dev; /* device info */ 669 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 670 } l2arc_write_callback_t; 671 672 struct l2arc_buf_hdr { 673 /* protected by arc_buf_hdr mutex */ 674 l2arc_dev_t *b_dev; /* L2ARC device */ 675 uint64_t b_daddr; /* disk address, offset byte */ 676 /* compression applied to buffer data */ 677 enum zio_compress b_compress; 678 /* real alloc'd buffer size depending on b_compress applied */ 679 int b_asize; 680 /* temporary buffer holder for in-flight compressed data */ 681 void *b_tmp_cdata; 682 }; 683 684 typedef struct l2arc_data_free { 685 /* protected by l2arc_free_on_write_mtx */ 686 void *l2df_data; 687 size_t l2df_size; 688 void (*l2df_func)(void *, size_t); 689 list_node_t l2df_list_node; 690 } l2arc_data_free_t; 691 692 static kmutex_t l2arc_feed_thr_lock; 693 static kcondvar_t l2arc_feed_thr_cv; 694 static uint8_t l2arc_thread_exit; 695 696 static void l2arc_read_done(zio_t *zio); 697 static void l2arc_hdr_stat_add(void); 698 static void l2arc_hdr_stat_remove(void); 699 700 static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr); 701 static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, 702 enum zio_compress c); 703 static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab); 704 705 static uint64_t 706 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 707 { 708 uint8_t *vdva = (uint8_t *)dva; 709 uint64_t crc = -1ULL; 710 int i; 711 712 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 713 714 for (i = 0; i < sizeof (dva_t); i++) 715 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 716 717 crc ^= (spa>>8) ^ birth; 718 719 return (crc); 720 } 721 722 #define BUF_EMPTY(buf) \ 723 ((buf)->b_dva.dva_word[0] == 0 && \ 724 (buf)->b_dva.dva_word[1] == 0 && \ 725 (buf)->b_cksum0 == 0) 726 727 #define BUF_EQUAL(spa, dva, birth, buf) \ 728 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 729 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 730 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 731 732 static void 733 buf_discard_identity(arc_buf_hdr_t *hdr) 734 { 735 hdr->b_dva.dva_word[0] = 0; 736 hdr->b_dva.dva_word[1] = 0; 737 hdr->b_birth = 0; 738 hdr->b_cksum0 = 0; 739 } 740 741 static arc_buf_hdr_t * 742 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 743 { 744 const dva_t *dva = BP_IDENTITY(bp); 745 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 746 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 747 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 748 arc_buf_hdr_t *buf; 749 750 mutex_enter(hash_lock); 751 for (buf = buf_hash_table.ht_table[idx].hdr; buf != NULL; 752 buf = buf->b_hash_next) { 753 if (BUF_EQUAL(spa, dva, birth, buf)) { 754 *lockp = hash_lock; 755 return (buf); 756 } 757 } 758 mutex_exit(hash_lock); 759 *lockp = NULL; 760 return (NULL); 761 } 762 763 /* 764 * Insert an entry into the hash table. If there is already an element 765 * equal to elem in the hash table, then the already existing element 766 * will be returned and the new element will not be inserted. 767 * Otherwise returns NULL. 768 */ 769 static arc_buf_hdr_t * 770 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 771 { 772 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 773 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 774 arc_buf_hdr_t *fbuf; 775 uint32_t i; 776 777 ASSERT(!DVA_IS_EMPTY(&buf->b_dva)); 778 ASSERT(buf->b_birth != 0); 779 ASSERT(!HDR_IN_HASH_TABLE(buf)); 780 *lockp = hash_lock; 781 mutex_enter(hash_lock); 782 for (fbuf = buf_hash_table.ht_table[idx].hdr, i = 0; fbuf != NULL; 783 fbuf = fbuf->b_hash_next, i++) { 784 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 785 return (fbuf); 786 } 787 788 buf->b_hash_next = buf_hash_table.ht_table[idx].hdr; 789 buf_hash_table.ht_table[idx].hdr = buf; 790 buf->b_flags |= ARC_IN_HASH_TABLE; 791 792 /* collect some hash table performance data */ 793 if (i > 0) { 794 ARCSTAT_BUMP(arcstat_hash_collisions); 795 if (i == 1) 796 ARCSTAT_BUMP(arcstat_hash_chains); 797 798 ARCSTAT_MAX(arcstat_hash_chain_max, i); 799 } 800 801 ARCSTAT_BUMP(arcstat_hash_elements); 802 ARCSTAT_MAXSTAT(arcstat_hash_elements); 803 804 return (NULL); 805 } 806 807 static void 808 buf_hash_remove(arc_buf_hdr_t *buf) 809 { 810 arc_buf_hdr_t *fbuf, **bufp; 811 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 812 813 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 814 ASSERT(HDR_IN_HASH_TABLE(buf)); 815 816 bufp = &buf_hash_table.ht_table[idx].hdr; 817 while ((fbuf = *bufp) != buf) { 818 ASSERT(fbuf != NULL); 819 bufp = &fbuf->b_hash_next; 820 } 821 *bufp = buf->b_hash_next; 822 buf->b_hash_next = NULL; 823 buf->b_flags &= ~ARC_IN_HASH_TABLE; 824 825 /* collect some hash table performance data */ 826 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 827 828 if (buf_hash_table.ht_table[idx].hdr && 829 buf_hash_table.ht_table[idx].hdr->b_hash_next == NULL) 830 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 831 } 832 833 /* 834 * Global data structures and functions for the buf kmem cache. 835 */ 836 static kmem_cache_t *hdr_cache; 837 static kmem_cache_t *buf_cache; 838 839 static void 840 buf_fini(void) 841 { 842 int i; 843 844 for (i = 0; i < buf_hash_table.ht_mask + 1; i++) 845 mutex_destroy(&buf_hash_table.ht_table[i].lock); 846 kmem_free(buf_hash_table.ht_table, 847 (buf_hash_table.ht_mask + 1) * sizeof (struct ht_table)); 848 kmem_cache_destroy(hdr_cache); 849 kmem_cache_destroy(buf_cache); 850 } 851 852 /* 853 * Constructor callback - called when the cache is empty 854 * and a new buf is requested. 855 */ 856 /* ARGSUSED */ 857 static int 858 hdr_cons(void *vbuf, void *unused, int kmflag) 859 { 860 arc_buf_hdr_t *buf = vbuf; 861 862 bzero(buf, sizeof (arc_buf_hdr_t)); 863 refcount_create(&buf->b_refcnt); 864 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 865 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 866 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 867 868 return (0); 869 } 870 871 /* ARGSUSED */ 872 static int 873 buf_cons(void *vbuf, void *unused, int kmflag) 874 { 875 arc_buf_t *buf = vbuf; 876 877 bzero(buf, sizeof (arc_buf_t)); 878 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 879 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 880 881 return (0); 882 } 883 884 /* 885 * Destructor callback - called when a cached buf is 886 * no longer required. 887 */ 888 /* ARGSUSED */ 889 static void 890 hdr_dest(void *vbuf, void *unused) 891 { 892 arc_buf_hdr_t *buf = vbuf; 893 894 ASSERT(BUF_EMPTY(buf)); 895 refcount_destroy(&buf->b_refcnt); 896 cv_destroy(&buf->b_cv); 897 mutex_destroy(&buf->b_freeze_lock); 898 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 899 } 900 901 /* ARGSUSED */ 902 static void 903 buf_dest(void *vbuf, void *unused) 904 { 905 arc_buf_t *buf = vbuf; 906 907 mutex_destroy(&buf->b_evict_lock); 908 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 909 } 910 911 /* 912 * Reclaim callback -- invoked when memory is low. 913 */ 914 /* ARGSUSED */ 915 static void 916 hdr_recl(void *unused) 917 { 918 dprintf("hdr_recl called\n"); 919 /* 920 * umem calls the reclaim func when we destroy the buf cache, 921 * which is after we do arc_fini(). 922 */ 923 if (!arc_dead) 924 cv_signal(&arc_reclaim_thr_cv); 925 } 926 927 static void 928 buf_init(void) 929 { 930 uint64_t *ct; 931 uint64_t hsize = 1ULL << 12; 932 int i, j; 933 934 /* 935 * The hash table is big enough to fill all of physical memory 936 * with an average block size of zfs_arc_average_blocksize (default 8K). 937 * By default, the table will take up 938 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 939 */ 940 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 941 hsize <<= 1; 942 retry: 943 buf_hash_table.ht_mask = hsize - 1; 944 buf_hash_table.ht_table = 945 kmem_zalloc(hsize * sizeof (struct ht_table), KM_NOSLEEP); 946 if (buf_hash_table.ht_table == NULL) { 947 ASSERT(hsize > (1ULL << 8)); 948 hsize >>= 1; 949 goto retry; 950 } 951 952 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 953 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 954 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 955 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 956 957 for (i = 0; i < 256; i++) 958 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 959 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 960 961 for (i = 0; i < hsize; i++) { 962 mutex_init(&buf_hash_table.ht_table[i].lock, 963 NULL, MUTEX_DEFAULT, NULL); 964 } 965 } 966 967 #define ARC_MINTIME (hz>>4) /* 62 ms */ 968 969 static void 970 arc_cksum_verify(arc_buf_t *buf) 971 { 972 zio_cksum_t zc; 973 974 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 975 return; 976 977 mutex_enter(&buf->b_hdr->b_freeze_lock); 978 if (buf->b_hdr->b_freeze_cksum == NULL || 979 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 980 mutex_exit(&buf->b_hdr->b_freeze_lock); 981 return; 982 } 983 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 984 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 985 panic("buffer modified while frozen!"); 986 mutex_exit(&buf->b_hdr->b_freeze_lock); 987 } 988 989 static int 990 arc_cksum_equal(arc_buf_t *buf) 991 { 992 zio_cksum_t zc; 993 int equal; 994 995 mutex_enter(&buf->b_hdr->b_freeze_lock); 996 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 997 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 998 mutex_exit(&buf->b_hdr->b_freeze_lock); 999 1000 return (equal); 1001 } 1002 1003 static void 1004 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 1005 { 1006 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 1007 return; 1008 1009 mutex_enter(&buf->b_hdr->b_freeze_lock); 1010 if (buf->b_hdr->b_freeze_cksum != NULL) { 1011 mutex_exit(&buf->b_hdr->b_freeze_lock); 1012 return; 1013 } 1014 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 1015 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 1016 buf->b_hdr->b_freeze_cksum); 1017 mutex_exit(&buf->b_hdr->b_freeze_lock); 1018 arc_buf_watch(buf); 1019 } 1020 1021 #ifndef _KERNEL 1022 typedef struct procctl { 1023 long cmd; 1024 prwatch_t prwatch; 1025 } procctl_t; 1026 #endif 1027 1028 /* ARGSUSED */ 1029 static void 1030 arc_buf_unwatch(arc_buf_t *buf) 1031 { 1032 #ifndef _KERNEL 1033 if (arc_watch) { 1034 int result; 1035 procctl_t ctl; 1036 ctl.cmd = PCWATCH; 1037 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1038 ctl.prwatch.pr_size = 0; 1039 ctl.prwatch.pr_wflags = 0; 1040 result = write(arc_procfd, &ctl, sizeof (ctl)); 1041 ASSERT3U(result, ==, sizeof (ctl)); 1042 } 1043 #endif 1044 } 1045 1046 /* ARGSUSED */ 1047 static void 1048 arc_buf_watch(arc_buf_t *buf) 1049 { 1050 #ifndef _KERNEL 1051 if (arc_watch) { 1052 int result; 1053 procctl_t ctl; 1054 ctl.cmd = PCWATCH; 1055 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1056 ctl.prwatch.pr_size = buf->b_hdr->b_size; 1057 ctl.prwatch.pr_wflags = WA_WRITE; 1058 result = write(arc_procfd, &ctl, sizeof (ctl)); 1059 ASSERT3U(result, ==, sizeof (ctl)); 1060 } 1061 #endif 1062 } 1063 1064 void 1065 arc_buf_thaw(arc_buf_t *buf) 1066 { 1067 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1068 if (buf->b_hdr->b_state != arc_anon) 1069 panic("modifying non-anon buffer!"); 1070 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 1071 panic("modifying buffer while i/o in progress!"); 1072 arc_cksum_verify(buf); 1073 } 1074 1075 mutex_enter(&buf->b_hdr->b_freeze_lock); 1076 if (buf->b_hdr->b_freeze_cksum != NULL) { 1077 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1078 buf->b_hdr->b_freeze_cksum = NULL; 1079 } 1080 1081 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1082 if (buf->b_hdr->b_thawed) 1083 kmem_free(buf->b_hdr->b_thawed, 1); 1084 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP); 1085 } 1086 1087 mutex_exit(&buf->b_hdr->b_freeze_lock); 1088 1089 arc_buf_unwatch(buf); 1090 } 1091 1092 void 1093 arc_buf_freeze(arc_buf_t *buf) 1094 { 1095 kmutex_t *hash_lock; 1096 1097 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1098 return; 1099 1100 hash_lock = HDR_LOCK(buf->b_hdr); 1101 mutex_enter(hash_lock); 1102 1103 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 1104 buf->b_hdr->b_state == arc_anon); 1105 arc_cksum_compute(buf, B_FALSE); 1106 mutex_exit(hash_lock); 1107 1108 } 1109 1110 static void 1111 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1112 { 1113 ASSERT(MUTEX_HELD(hash_lock)); 1114 1115 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 1116 (ab->b_state != arc_anon)) { 1117 uint64_t delta = ab->b_size * ab->b_datacnt; 1118 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 1119 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 1120 1121 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 1122 mutex_enter(&ab->b_state->arcs_mtx); 1123 ASSERT(list_link_active(&ab->b_arc_node)); 1124 list_remove(list, ab); 1125 if (GHOST_STATE(ab->b_state)) { 1126 ASSERT0(ab->b_datacnt); 1127 ASSERT3P(ab->b_buf, ==, NULL); 1128 delta = ab->b_size; 1129 } 1130 ASSERT(delta > 0); 1131 ASSERT3U(*size, >=, delta); 1132 atomic_add_64(size, -delta); 1133 mutex_exit(&ab->b_state->arcs_mtx); 1134 /* remove the prefetch flag if we get a reference */ 1135 if (ab->b_flags & ARC_PREFETCH) 1136 ab->b_flags &= ~ARC_PREFETCH; 1137 } 1138 } 1139 1140 static int 1141 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1142 { 1143 int cnt; 1144 arc_state_t *state = ab->b_state; 1145 1146 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1147 ASSERT(!GHOST_STATE(state)); 1148 1149 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1150 (state != arc_anon)) { 1151 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1152 1153 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1154 mutex_enter(&state->arcs_mtx); 1155 ASSERT(!list_link_active(&ab->b_arc_node)); 1156 list_insert_head(&state->arcs_list[ab->b_type], ab); 1157 ASSERT(ab->b_datacnt > 0); 1158 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1159 mutex_exit(&state->arcs_mtx); 1160 } 1161 return (cnt); 1162 } 1163 1164 /* 1165 * Move the supplied buffer to the indicated state. The mutex 1166 * for the buffer must be held by the caller. 1167 */ 1168 static void 1169 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1170 { 1171 arc_state_t *old_state = ab->b_state; 1172 int64_t refcnt = refcount_count(&ab->b_refcnt); 1173 uint64_t from_delta, to_delta; 1174 1175 ASSERT(MUTEX_HELD(hash_lock)); 1176 ASSERT3P(new_state, !=, old_state); 1177 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1178 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1179 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon); 1180 1181 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1182 1183 /* 1184 * If this buffer is evictable, transfer it from the 1185 * old state list to the new state list. 1186 */ 1187 if (refcnt == 0) { 1188 if (old_state != arc_anon) { 1189 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1190 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1191 1192 if (use_mutex) 1193 mutex_enter(&old_state->arcs_mtx); 1194 1195 ASSERT(list_link_active(&ab->b_arc_node)); 1196 list_remove(&old_state->arcs_list[ab->b_type], ab); 1197 1198 /* 1199 * If prefetching out of the ghost cache, 1200 * we will have a non-zero datacnt. 1201 */ 1202 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1203 /* ghost elements have a ghost size */ 1204 ASSERT(ab->b_buf == NULL); 1205 from_delta = ab->b_size; 1206 } 1207 ASSERT3U(*size, >=, from_delta); 1208 atomic_add_64(size, -from_delta); 1209 1210 if (use_mutex) 1211 mutex_exit(&old_state->arcs_mtx); 1212 } 1213 if (new_state != arc_anon) { 1214 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1215 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1216 1217 if (use_mutex) 1218 mutex_enter(&new_state->arcs_mtx); 1219 1220 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1221 1222 /* ghost elements have a ghost size */ 1223 if (GHOST_STATE(new_state)) { 1224 ASSERT(ab->b_datacnt == 0); 1225 ASSERT(ab->b_buf == NULL); 1226 to_delta = ab->b_size; 1227 } 1228 atomic_add_64(size, to_delta); 1229 1230 if (use_mutex) 1231 mutex_exit(&new_state->arcs_mtx); 1232 } 1233 } 1234 1235 ASSERT(!BUF_EMPTY(ab)); 1236 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab)) 1237 buf_hash_remove(ab); 1238 1239 /* adjust state sizes */ 1240 if (to_delta) 1241 atomic_add_64(&new_state->arcs_size, to_delta); 1242 if (from_delta) { 1243 ASSERT3U(old_state->arcs_size, >=, from_delta); 1244 atomic_add_64(&old_state->arcs_size, -from_delta); 1245 } 1246 ab->b_state = new_state; 1247 1248 /* adjust l2arc hdr stats */ 1249 if (new_state == arc_l2c_only) 1250 l2arc_hdr_stat_add(); 1251 else if (old_state == arc_l2c_only) 1252 l2arc_hdr_stat_remove(); 1253 } 1254 1255 void 1256 arc_space_consume(uint64_t space, arc_space_type_t type) 1257 { 1258 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1259 1260 switch (type) { 1261 case ARC_SPACE_DATA: 1262 ARCSTAT_INCR(arcstat_data_size, space); 1263 break; 1264 case ARC_SPACE_OTHER: 1265 ARCSTAT_INCR(arcstat_other_size, space); 1266 break; 1267 case ARC_SPACE_HDRS: 1268 ARCSTAT_INCR(arcstat_hdr_size, space); 1269 break; 1270 case ARC_SPACE_L2HDRS: 1271 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1272 break; 1273 } 1274 1275 ARCSTAT_INCR(arcstat_meta_used, space); 1276 atomic_add_64(&arc_size, space); 1277 } 1278 1279 void 1280 arc_space_return(uint64_t space, arc_space_type_t type) 1281 { 1282 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1283 1284 switch (type) { 1285 case ARC_SPACE_DATA: 1286 ARCSTAT_INCR(arcstat_data_size, -space); 1287 break; 1288 case ARC_SPACE_OTHER: 1289 ARCSTAT_INCR(arcstat_other_size, -space); 1290 break; 1291 case ARC_SPACE_HDRS: 1292 ARCSTAT_INCR(arcstat_hdr_size, -space); 1293 break; 1294 case ARC_SPACE_L2HDRS: 1295 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1296 break; 1297 } 1298 1299 ASSERT(arc_meta_used >= space); 1300 if (arc_meta_max < arc_meta_used) 1301 arc_meta_max = arc_meta_used; 1302 ARCSTAT_INCR(arcstat_meta_used, -space); 1303 ASSERT(arc_size >= space); 1304 atomic_add_64(&arc_size, -space); 1305 } 1306 1307 void * 1308 arc_data_buf_alloc(uint64_t size) 1309 { 1310 if (arc_evict_needed(ARC_BUFC_DATA)) 1311 cv_signal(&arc_reclaim_thr_cv); 1312 atomic_add_64(&arc_size, size); 1313 return (zio_data_buf_alloc(size)); 1314 } 1315 1316 void 1317 arc_data_buf_free(void *buf, uint64_t size) 1318 { 1319 zio_data_buf_free(buf, size); 1320 ASSERT(arc_size >= size); 1321 atomic_add_64(&arc_size, -size); 1322 } 1323 1324 arc_buf_t * 1325 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1326 { 1327 arc_buf_hdr_t *hdr; 1328 arc_buf_t *buf; 1329 1330 ASSERT3U(size, >, 0); 1331 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1332 ASSERT(BUF_EMPTY(hdr)); 1333 hdr->b_size = size; 1334 hdr->b_type = type; 1335 hdr->b_spa = spa_load_guid(spa); 1336 hdr->b_state = arc_anon; 1337 hdr->b_arc_access = 0; 1338 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1339 buf->b_hdr = hdr; 1340 buf->b_data = NULL; 1341 buf->b_efunc = NULL; 1342 buf->b_private = NULL; 1343 buf->b_next = NULL; 1344 hdr->b_buf = buf; 1345 arc_get_data_buf(buf); 1346 hdr->b_datacnt = 1; 1347 hdr->b_flags = 0; 1348 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1349 (void) refcount_add(&hdr->b_refcnt, tag); 1350 1351 return (buf); 1352 } 1353 1354 static char *arc_onloan_tag = "onloan"; 1355 1356 /* 1357 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1358 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1359 * buffers must be returned to the arc before they can be used by the DMU or 1360 * freed. 1361 */ 1362 arc_buf_t * 1363 arc_loan_buf(spa_t *spa, int size) 1364 { 1365 arc_buf_t *buf; 1366 1367 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1368 1369 atomic_add_64(&arc_loaned_bytes, size); 1370 return (buf); 1371 } 1372 1373 /* 1374 * Return a loaned arc buffer to the arc. 1375 */ 1376 void 1377 arc_return_buf(arc_buf_t *buf, void *tag) 1378 { 1379 arc_buf_hdr_t *hdr = buf->b_hdr; 1380 1381 ASSERT(buf->b_data != NULL); 1382 (void) refcount_add(&hdr->b_refcnt, tag); 1383 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag); 1384 1385 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1386 } 1387 1388 /* Detach an arc_buf from a dbuf (tag) */ 1389 void 1390 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 1391 { 1392 arc_buf_hdr_t *hdr; 1393 1394 ASSERT(buf->b_data != NULL); 1395 hdr = buf->b_hdr; 1396 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag); 1397 (void) refcount_remove(&hdr->b_refcnt, tag); 1398 buf->b_efunc = NULL; 1399 buf->b_private = NULL; 1400 1401 atomic_add_64(&arc_loaned_bytes, hdr->b_size); 1402 } 1403 1404 static arc_buf_t * 1405 arc_buf_clone(arc_buf_t *from) 1406 { 1407 arc_buf_t *buf; 1408 arc_buf_hdr_t *hdr = from->b_hdr; 1409 uint64_t size = hdr->b_size; 1410 1411 ASSERT(hdr->b_state != arc_anon); 1412 1413 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1414 buf->b_hdr = hdr; 1415 buf->b_data = NULL; 1416 buf->b_efunc = NULL; 1417 buf->b_private = NULL; 1418 buf->b_next = hdr->b_buf; 1419 hdr->b_buf = buf; 1420 arc_get_data_buf(buf); 1421 bcopy(from->b_data, buf->b_data, size); 1422 1423 /* 1424 * This buffer already exists in the arc so create a duplicate 1425 * copy for the caller. If the buffer is associated with user data 1426 * then track the size and number of duplicates. These stats will be 1427 * updated as duplicate buffers are created and destroyed. 1428 */ 1429 if (hdr->b_type == ARC_BUFC_DATA) { 1430 ARCSTAT_BUMP(arcstat_duplicate_buffers); 1431 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size); 1432 } 1433 hdr->b_datacnt += 1; 1434 return (buf); 1435 } 1436 1437 void 1438 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1439 { 1440 arc_buf_hdr_t *hdr; 1441 kmutex_t *hash_lock; 1442 1443 /* 1444 * Check to see if this buffer is evicted. Callers 1445 * must verify b_data != NULL to know if the add_ref 1446 * was successful. 1447 */ 1448 mutex_enter(&buf->b_evict_lock); 1449 if (buf->b_data == NULL) { 1450 mutex_exit(&buf->b_evict_lock); 1451 return; 1452 } 1453 hash_lock = HDR_LOCK(buf->b_hdr); 1454 mutex_enter(hash_lock); 1455 hdr = buf->b_hdr; 1456 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1457 mutex_exit(&buf->b_evict_lock); 1458 1459 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1460 add_reference(hdr, hash_lock, tag); 1461 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1462 arc_access(hdr, hash_lock); 1463 mutex_exit(hash_lock); 1464 ARCSTAT_BUMP(arcstat_hits); 1465 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1466 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1467 data, metadata, hits); 1468 } 1469 1470 /* 1471 * Free the arc data buffer. If it is an l2arc write in progress, 1472 * the buffer is placed on l2arc_free_on_write to be freed later. 1473 */ 1474 static void 1475 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t)) 1476 { 1477 arc_buf_hdr_t *hdr = buf->b_hdr; 1478 1479 if (HDR_L2_WRITING(hdr)) { 1480 l2arc_data_free_t *df; 1481 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1482 df->l2df_data = buf->b_data; 1483 df->l2df_size = hdr->b_size; 1484 df->l2df_func = free_func; 1485 mutex_enter(&l2arc_free_on_write_mtx); 1486 list_insert_head(l2arc_free_on_write, df); 1487 mutex_exit(&l2arc_free_on_write_mtx); 1488 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1489 } else { 1490 free_func(buf->b_data, hdr->b_size); 1491 } 1492 } 1493 1494 /* 1495 * Free up buf->b_data and if 'remove' is set, then pull the 1496 * arc_buf_t off of the the arc_buf_hdr_t's list and free it. 1497 */ 1498 static void 1499 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t remove) 1500 { 1501 arc_buf_t **bufp; 1502 1503 /* free up data associated with the buf */ 1504 if (buf->b_data) { 1505 arc_state_t *state = buf->b_hdr->b_state; 1506 uint64_t size = buf->b_hdr->b_size; 1507 arc_buf_contents_t type = buf->b_hdr->b_type; 1508 1509 arc_cksum_verify(buf); 1510 arc_buf_unwatch(buf); 1511 1512 if (!recycle) { 1513 if (type == ARC_BUFC_METADATA) { 1514 arc_buf_data_free(buf, zio_buf_free); 1515 arc_space_return(size, ARC_SPACE_DATA); 1516 } else { 1517 ASSERT(type == ARC_BUFC_DATA); 1518 arc_buf_data_free(buf, zio_data_buf_free); 1519 ARCSTAT_INCR(arcstat_data_size, -size); 1520 atomic_add_64(&arc_size, -size); 1521 } 1522 } 1523 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1524 uint64_t *cnt = &state->arcs_lsize[type]; 1525 1526 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1527 ASSERT(state != arc_anon); 1528 1529 ASSERT3U(*cnt, >=, size); 1530 atomic_add_64(cnt, -size); 1531 } 1532 ASSERT3U(state->arcs_size, >=, size); 1533 atomic_add_64(&state->arcs_size, -size); 1534 buf->b_data = NULL; 1535 1536 /* 1537 * If we're destroying a duplicate buffer make sure 1538 * that the appropriate statistics are updated. 1539 */ 1540 if (buf->b_hdr->b_datacnt > 1 && 1541 buf->b_hdr->b_type == ARC_BUFC_DATA) { 1542 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 1543 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size); 1544 } 1545 ASSERT(buf->b_hdr->b_datacnt > 0); 1546 buf->b_hdr->b_datacnt -= 1; 1547 } 1548 1549 /* only remove the buf if requested */ 1550 if (!remove) 1551 return; 1552 1553 /* remove the buf from the hdr list */ 1554 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1555 continue; 1556 *bufp = buf->b_next; 1557 buf->b_next = NULL; 1558 1559 ASSERT(buf->b_efunc == NULL); 1560 1561 /* clean up the buf */ 1562 buf->b_hdr = NULL; 1563 kmem_cache_free(buf_cache, buf); 1564 } 1565 1566 static void 1567 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1568 { 1569 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1570 ASSERT3P(hdr->b_state, ==, arc_anon); 1571 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1572 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 1573 1574 if (l2hdr != NULL) { 1575 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); 1576 /* 1577 * To prevent arc_free() and l2arc_evict() from 1578 * attempting to free the same buffer at the same time, 1579 * a FREE_IN_PROGRESS flag is given to arc_free() to 1580 * give it priority. l2arc_evict() can't destroy this 1581 * header while we are waiting on l2arc_buflist_mtx. 1582 * 1583 * The hdr may be removed from l2ad_buflist before we 1584 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1585 */ 1586 if (!buflist_held) { 1587 mutex_enter(&l2arc_buflist_mtx); 1588 l2hdr = hdr->b_l2hdr; 1589 } 1590 1591 if (l2hdr != NULL) { 1592 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 1593 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1594 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 1595 if (l2hdr->b_dev->l2ad_vdev) 1596 vdev_space_update(l2hdr->b_dev->l2ad_vdev, 1597 -l2hdr->b_asize, 0, 0); 1598 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 1599 if (hdr->b_state == arc_l2c_only) 1600 l2arc_hdr_stat_remove(); 1601 hdr->b_l2hdr = NULL; 1602 } 1603 1604 if (!buflist_held) 1605 mutex_exit(&l2arc_buflist_mtx); 1606 } 1607 1608 if (!BUF_EMPTY(hdr)) { 1609 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1610 buf_discard_identity(hdr); 1611 } 1612 while (hdr->b_buf) { 1613 arc_buf_t *buf = hdr->b_buf; 1614 1615 if (buf->b_efunc) { 1616 mutex_enter(&arc_eviction_mtx); 1617 mutex_enter(&buf->b_evict_lock); 1618 ASSERT(buf->b_hdr != NULL); 1619 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1620 hdr->b_buf = buf->b_next; 1621 buf->b_hdr = &arc_eviction_hdr; 1622 buf->b_next = arc_eviction_list; 1623 arc_eviction_list = buf; 1624 mutex_exit(&buf->b_evict_lock); 1625 mutex_exit(&arc_eviction_mtx); 1626 } else { 1627 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1628 } 1629 } 1630 if (hdr->b_freeze_cksum != NULL) { 1631 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1632 hdr->b_freeze_cksum = NULL; 1633 } 1634 if (hdr->b_thawed) { 1635 kmem_free(hdr->b_thawed, 1); 1636 hdr->b_thawed = NULL; 1637 } 1638 1639 ASSERT(!list_link_active(&hdr->b_arc_node)); 1640 ASSERT3P(hdr->b_hash_next, ==, NULL); 1641 ASSERT3P(hdr->b_acb, ==, NULL); 1642 kmem_cache_free(hdr_cache, hdr); 1643 } 1644 1645 void 1646 arc_buf_free(arc_buf_t *buf, void *tag) 1647 { 1648 arc_buf_hdr_t *hdr = buf->b_hdr; 1649 int hashed = hdr->b_state != arc_anon; 1650 1651 ASSERT(buf->b_efunc == NULL); 1652 ASSERT(buf->b_data != NULL); 1653 1654 if (hashed) { 1655 kmutex_t *hash_lock = HDR_LOCK(hdr); 1656 1657 mutex_enter(hash_lock); 1658 hdr = buf->b_hdr; 1659 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1660 1661 (void) remove_reference(hdr, hash_lock, tag); 1662 if (hdr->b_datacnt > 1) { 1663 arc_buf_destroy(buf, FALSE, TRUE); 1664 } else { 1665 ASSERT(buf == hdr->b_buf); 1666 ASSERT(buf->b_efunc == NULL); 1667 hdr->b_flags |= ARC_BUF_AVAILABLE; 1668 } 1669 mutex_exit(hash_lock); 1670 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1671 int destroy_hdr; 1672 /* 1673 * We are in the middle of an async write. Don't destroy 1674 * this buffer unless the write completes before we finish 1675 * decrementing the reference count. 1676 */ 1677 mutex_enter(&arc_eviction_mtx); 1678 (void) remove_reference(hdr, NULL, tag); 1679 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1680 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1681 mutex_exit(&arc_eviction_mtx); 1682 if (destroy_hdr) 1683 arc_hdr_destroy(hdr); 1684 } else { 1685 if (remove_reference(hdr, NULL, tag) > 0) 1686 arc_buf_destroy(buf, FALSE, TRUE); 1687 else 1688 arc_hdr_destroy(hdr); 1689 } 1690 } 1691 1692 boolean_t 1693 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1694 { 1695 arc_buf_hdr_t *hdr = buf->b_hdr; 1696 kmutex_t *hash_lock = HDR_LOCK(hdr); 1697 boolean_t no_callback = (buf->b_efunc == NULL); 1698 1699 if (hdr->b_state == arc_anon) { 1700 ASSERT(hdr->b_datacnt == 1); 1701 arc_buf_free(buf, tag); 1702 return (no_callback); 1703 } 1704 1705 mutex_enter(hash_lock); 1706 hdr = buf->b_hdr; 1707 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1708 ASSERT(hdr->b_state != arc_anon); 1709 ASSERT(buf->b_data != NULL); 1710 1711 (void) remove_reference(hdr, hash_lock, tag); 1712 if (hdr->b_datacnt > 1) { 1713 if (no_callback) 1714 arc_buf_destroy(buf, FALSE, TRUE); 1715 } else if (no_callback) { 1716 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1717 ASSERT(buf->b_efunc == NULL); 1718 hdr->b_flags |= ARC_BUF_AVAILABLE; 1719 } 1720 ASSERT(no_callback || hdr->b_datacnt > 1 || 1721 refcount_is_zero(&hdr->b_refcnt)); 1722 mutex_exit(hash_lock); 1723 return (no_callback); 1724 } 1725 1726 int 1727 arc_buf_size(arc_buf_t *buf) 1728 { 1729 return (buf->b_hdr->b_size); 1730 } 1731 1732 /* 1733 * Called from the DMU to determine if the current buffer should be 1734 * evicted. In order to ensure proper locking, the eviction must be initiated 1735 * from the DMU. Return true if the buffer is associated with user data and 1736 * duplicate buffers still exist. 1737 */ 1738 boolean_t 1739 arc_buf_eviction_needed(arc_buf_t *buf) 1740 { 1741 arc_buf_hdr_t *hdr; 1742 boolean_t evict_needed = B_FALSE; 1743 1744 if (zfs_disable_dup_eviction) 1745 return (B_FALSE); 1746 1747 mutex_enter(&buf->b_evict_lock); 1748 hdr = buf->b_hdr; 1749 if (hdr == NULL) { 1750 /* 1751 * We are in arc_do_user_evicts(); let that function 1752 * perform the eviction. 1753 */ 1754 ASSERT(buf->b_data == NULL); 1755 mutex_exit(&buf->b_evict_lock); 1756 return (B_FALSE); 1757 } else if (buf->b_data == NULL) { 1758 /* 1759 * We have already been added to the arc eviction list; 1760 * recommend eviction. 1761 */ 1762 ASSERT3P(hdr, ==, &arc_eviction_hdr); 1763 mutex_exit(&buf->b_evict_lock); 1764 return (B_TRUE); 1765 } 1766 1767 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA) 1768 evict_needed = B_TRUE; 1769 1770 mutex_exit(&buf->b_evict_lock); 1771 return (evict_needed); 1772 } 1773 1774 int zfs_fastflush = 1; 1775 1776 /* 1777 * Evict buffers from list until we've removed the specified number of 1778 * bytes. Move the removed buffers to the appropriate evict state. 1779 * If the recycle flag is set, then attempt to "recycle" a buffer: 1780 * - look for a buffer to evict that is `bytes' long. 1781 * - return the data block from this buffer rather than freeing it. 1782 * This flag is used by callers that are trying to make space for a 1783 * new buffer in a full arc cache. 1784 * 1785 * This function makes a "best effort". It skips over any buffers 1786 * it can't get a hash_lock on, and so may not catch all candidates. 1787 * It may also return without evicting as much space as requested. 1788 */ 1789 static void * 1790 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1791 arc_buf_contents_t type) 1792 { 1793 arc_state_t *evicted_state; 1794 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1795 arc_buf_hdr_t *ab, *ab_prev = NULL; 1796 list_t *list = &state->arcs_list[type]; 1797 kmutex_t *hash_lock; 1798 boolean_t have_lock; 1799 void *stolen = NULL; 1800 arc_buf_hdr_t marker = { 0 }; 1801 int count = 0; 1802 1803 ASSERT(state == arc_mru || state == arc_mfu); 1804 1805 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1806 1807 mutex_enter(&state->arcs_mtx); 1808 mutex_enter(&evicted_state->arcs_mtx); 1809 1810 for (ab = list_tail(list); ab; ab = ab_prev) { 1811 ab_prev = list_prev(list, ab); 1812 /* prefetch buffers have a minimum lifespan */ 1813 if (HDR_IO_IN_PROGRESS(ab) || 1814 (spa && ab->b_spa != spa) || 1815 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1816 ddi_get_lbolt() - ab->b_arc_access < 1817 arc_min_prefetch_lifespan)) { 1818 skipped++; 1819 continue; 1820 } 1821 /* "lookahead" for better eviction candidate */ 1822 if (recycle && ab->b_size != bytes && 1823 ab_prev && ab_prev->b_size == bytes) 1824 continue; 1825 1826 /* ignore markers */ 1827 if (ab->b_spa == 0) 1828 continue; 1829 1830 /* 1831 * It may take a long time to evict all the bufs requested. 1832 * To avoid blocking all arc activity, periodically drop 1833 * the arcs_mtx and give other threads a chance to run 1834 * before reacquiring the lock. 1835 * 1836 * If we are looking for a buffer to recycle, we are in 1837 * the hot code path, so don't sleep. 1838 */ 1839 if (!recycle && count++ > arc_evict_iterations) { 1840 list_insert_after(list, ab, &marker); 1841 mutex_exit(&evicted_state->arcs_mtx); 1842 mutex_exit(&state->arcs_mtx); 1843 kpreempt(KPREEMPT_SYNC); 1844 mutex_enter(&state->arcs_mtx); 1845 mutex_enter(&evicted_state->arcs_mtx); 1846 ab_prev = list_prev(list, &marker); 1847 list_remove(list, &marker); 1848 count = 0; 1849 continue; 1850 } 1851 1852 hash_lock = HDR_LOCK(ab); 1853 have_lock = MUTEX_HELD(hash_lock); 1854 if (have_lock || mutex_tryenter(hash_lock)) { 1855 ASSERT0(refcount_count(&ab->b_refcnt)); 1856 ASSERT(ab->b_datacnt > 0); 1857 while (ab->b_buf) { 1858 arc_buf_t *buf = ab->b_buf; 1859 if (!mutex_tryenter(&buf->b_evict_lock)) { 1860 missed += 1; 1861 break; 1862 } 1863 if (buf->b_data) { 1864 bytes_evicted += ab->b_size; 1865 if (recycle && ab->b_type == type && 1866 ab->b_size == bytes && 1867 !HDR_L2_WRITING(ab)) { 1868 stolen = buf->b_data; 1869 recycle = FALSE; 1870 } 1871 } 1872 if (buf->b_efunc) { 1873 mutex_enter(&arc_eviction_mtx); 1874 arc_buf_destroy(buf, 1875 buf->b_data == stolen, FALSE); 1876 ab->b_buf = buf->b_next; 1877 buf->b_hdr = &arc_eviction_hdr; 1878 buf->b_next = arc_eviction_list; 1879 arc_eviction_list = buf; 1880 mutex_exit(&arc_eviction_mtx); 1881 mutex_exit(&buf->b_evict_lock); 1882 } else { 1883 mutex_exit(&buf->b_evict_lock); 1884 arc_buf_destroy(buf, 1885 buf->b_data == stolen, TRUE); 1886 } 1887 } 1888 1889 if (ab->b_l2hdr) { 1890 ARCSTAT_INCR(arcstat_evict_l2_cached, 1891 ab->b_size); 1892 } else { 1893 if (l2arc_write_eligible(ab->b_spa, ab)) { 1894 ARCSTAT_INCR(arcstat_evict_l2_eligible, 1895 ab->b_size); 1896 } else { 1897 ARCSTAT_INCR( 1898 arcstat_evict_l2_ineligible, 1899 ab->b_size); 1900 } 1901 } 1902 1903 if (ab->b_datacnt == 0) { 1904 arc_change_state(evicted_state, ab, hash_lock); 1905 ASSERT(HDR_IN_HASH_TABLE(ab)); 1906 ab->b_flags |= ARC_IN_HASH_TABLE; 1907 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1908 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1909 } 1910 if (!have_lock) 1911 mutex_exit(hash_lock); 1912 if (bytes >= 0 && bytes_evicted >= bytes) 1913 break; 1914 } else { 1915 missed += 1; 1916 } 1917 } 1918 1919 mutex_exit(&evicted_state->arcs_mtx); 1920 mutex_exit(&state->arcs_mtx); 1921 1922 if (bytes_evicted < bytes) 1923 dprintf("only evicted %lld bytes from %x", 1924 (longlong_t)bytes_evicted, state); 1925 1926 if (skipped) 1927 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1928 1929 if (missed) 1930 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1931 1932 /* 1933 * Note: we have just evicted some data into the ghost state, 1934 * potentially putting the ghost size over the desired size. Rather 1935 * that evicting from the ghost list in this hot code path, leave 1936 * this chore to the arc_reclaim_thread(). 1937 */ 1938 1939 return (stolen); 1940 } 1941 1942 /* 1943 * Remove buffers from list until we've removed the specified number of 1944 * bytes. Destroy the buffers that are removed. 1945 */ 1946 static void 1947 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1948 { 1949 arc_buf_hdr_t *ab, *ab_prev; 1950 arc_buf_hdr_t marker = { 0 }; 1951 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1952 kmutex_t *hash_lock; 1953 uint64_t bytes_deleted = 0; 1954 uint64_t bufs_skipped = 0; 1955 int count = 0; 1956 1957 ASSERT(GHOST_STATE(state)); 1958 top: 1959 mutex_enter(&state->arcs_mtx); 1960 for (ab = list_tail(list); ab; ab = ab_prev) { 1961 ab_prev = list_prev(list, ab); 1962 if (ab->b_type > ARC_BUFC_NUMTYPES) 1963 panic("invalid ab=%p", (void *)ab); 1964 if (spa && ab->b_spa != spa) 1965 continue; 1966 1967 /* ignore markers */ 1968 if (ab->b_spa == 0) 1969 continue; 1970 1971 hash_lock = HDR_LOCK(ab); 1972 /* caller may be trying to modify this buffer, skip it */ 1973 if (MUTEX_HELD(hash_lock)) 1974 continue; 1975 1976 /* 1977 * It may take a long time to evict all the bufs requested. 1978 * To avoid blocking all arc activity, periodically drop 1979 * the arcs_mtx and give other threads a chance to run 1980 * before reacquiring the lock. 1981 */ 1982 if (count++ > arc_evict_iterations) { 1983 list_insert_after(list, ab, &marker); 1984 mutex_exit(&state->arcs_mtx); 1985 kpreempt(KPREEMPT_SYNC); 1986 mutex_enter(&state->arcs_mtx); 1987 ab_prev = list_prev(list, &marker); 1988 list_remove(list, &marker); 1989 count = 0; 1990 continue; 1991 } 1992 if (mutex_tryenter(hash_lock)) { 1993 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1994 ASSERT(ab->b_buf == NULL); 1995 ARCSTAT_BUMP(arcstat_deleted); 1996 bytes_deleted += ab->b_size; 1997 1998 if (ab->b_l2hdr != NULL) { 1999 /* 2000 * This buffer is cached on the 2nd Level ARC; 2001 * don't destroy the header. 2002 */ 2003 arc_change_state(arc_l2c_only, ab, hash_lock); 2004 mutex_exit(hash_lock); 2005 } else { 2006 arc_change_state(arc_anon, ab, hash_lock); 2007 mutex_exit(hash_lock); 2008 arc_hdr_destroy(ab); 2009 } 2010 2011 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 2012 if (bytes >= 0 && bytes_deleted >= bytes) 2013 break; 2014 } else if (bytes < 0) { 2015 /* 2016 * Insert a list marker and then wait for the 2017 * hash lock to become available. Once its 2018 * available, restart from where we left off. 2019 */ 2020 list_insert_after(list, ab, &marker); 2021 mutex_exit(&state->arcs_mtx); 2022 mutex_enter(hash_lock); 2023 mutex_exit(hash_lock); 2024 mutex_enter(&state->arcs_mtx); 2025 ab_prev = list_prev(list, &marker); 2026 list_remove(list, &marker); 2027 } else { 2028 bufs_skipped += 1; 2029 } 2030 2031 } 2032 mutex_exit(&state->arcs_mtx); 2033 2034 if (list == &state->arcs_list[ARC_BUFC_DATA] && 2035 (bytes < 0 || bytes_deleted < bytes)) { 2036 list = &state->arcs_list[ARC_BUFC_METADATA]; 2037 goto top; 2038 } 2039 2040 if (bufs_skipped) { 2041 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 2042 ASSERT(bytes >= 0); 2043 } 2044 2045 if (bytes_deleted < bytes) 2046 dprintf("only deleted %lld bytes from %p", 2047 (longlong_t)bytes_deleted, state); 2048 } 2049 2050 static void 2051 arc_adjust(void) 2052 { 2053 int64_t adjustment, delta; 2054 2055 /* 2056 * Adjust MRU size 2057 */ 2058 2059 adjustment = MIN((int64_t)(arc_size - arc_c), 2060 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - 2061 arc_p)); 2062 2063 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 2064 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 2065 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 2066 adjustment -= delta; 2067 } 2068 2069 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2070 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 2071 (void) arc_evict(arc_mru, NULL, delta, FALSE, 2072 ARC_BUFC_METADATA); 2073 } 2074 2075 /* 2076 * Adjust MFU size 2077 */ 2078 2079 adjustment = arc_size - arc_c; 2080 2081 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 2082 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 2083 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 2084 adjustment -= delta; 2085 } 2086 2087 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2088 int64_t delta = MIN(adjustment, 2089 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 2090 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 2091 ARC_BUFC_METADATA); 2092 } 2093 2094 /* 2095 * Adjust ghost lists 2096 */ 2097 2098 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 2099 2100 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 2101 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 2102 arc_evict_ghost(arc_mru_ghost, NULL, delta); 2103 } 2104 2105 adjustment = 2106 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 2107 2108 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 2109 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 2110 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 2111 } 2112 } 2113 2114 static void 2115 arc_do_user_evicts(void) 2116 { 2117 mutex_enter(&arc_eviction_mtx); 2118 while (arc_eviction_list != NULL) { 2119 arc_buf_t *buf = arc_eviction_list; 2120 arc_eviction_list = buf->b_next; 2121 mutex_enter(&buf->b_evict_lock); 2122 buf->b_hdr = NULL; 2123 mutex_exit(&buf->b_evict_lock); 2124 mutex_exit(&arc_eviction_mtx); 2125 2126 if (buf->b_efunc != NULL) 2127 VERIFY0(buf->b_efunc(buf->b_private)); 2128 2129 buf->b_efunc = NULL; 2130 buf->b_private = NULL; 2131 kmem_cache_free(buf_cache, buf); 2132 mutex_enter(&arc_eviction_mtx); 2133 } 2134 mutex_exit(&arc_eviction_mtx); 2135 } 2136 2137 typedef struct arc_async_flush_data { 2138 uint64_t aaf_guid; 2139 } arc_async_flush_data_t; 2140 2141 static taskq_t *arc_flush_taskq; 2142 2143 static void 2144 _arc_flush(uint64_t guid) 2145 { 2146 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 2147 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 2148 if (guid) 2149 break; 2150 } 2151 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 2152 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 2153 if (guid) 2154 break; 2155 } 2156 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 2157 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 2158 if (guid) 2159 break; 2160 } 2161 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 2162 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 2163 if (guid) 2164 break; 2165 } 2166 2167 arc_evict_ghost(arc_mru_ghost, guid, -1); 2168 arc_evict_ghost(arc_mfu_ghost, guid, -1); 2169 2170 mutex_enter(&arc_reclaim_thr_lock); 2171 arc_do_user_evicts(); 2172 mutex_exit(&arc_reclaim_thr_lock); 2173 } 2174 2175 static void 2176 arc_flush_task(void *arg) 2177 { 2178 arc_async_flush_data_t *aaf = (arc_async_flush_data_t *)arg; 2179 _arc_flush(aaf->aaf_guid); 2180 kmem_free(aaf, sizeof (arc_async_flush_data_t)); 2181 } 2182 2183 /* 2184 * Flush all *evictable* data from the cache for the given spa. 2185 * NOTE: this will not touch "active" (i.e. referenced) data. 2186 */ 2187 void 2188 arc_flush(spa_t *spa) 2189 { 2190 uint64_t guid = 0; 2191 boolean_t async_flush = (spa ? zfs_fastflush : FALSE); 2192 arc_async_flush_data_t *aaf = NULL; 2193 2194 if (spa) { 2195 guid = spa_load_guid(spa); 2196 if (async_flush) { 2197 aaf = kmem_alloc(sizeof (arc_async_flush_data_t), 2198 KM_SLEEP); 2199 aaf->aaf_guid = guid; 2200 } 2201 } 2202 2203 /* 2204 * Try to flush per-spa remaining ARC ghost buffers and buffers in 2205 * arc_eviction_list asynchronously while a pool is being closed. 2206 * An ARC buffer is bound to spa only by guid, so buffer can 2207 * exist even when pool has already gone. If asynchronous flushing 2208 * fails we fall back to regular (synchronous) one. 2209 * NOTE: If asynchronous flushing had not yet finished when the pool 2210 * was imported again it wouldn't be a problem, even when guids before 2211 * and after export/import are the same. We can evict only unreferenced 2212 * buffers, other are skipped. 2213 */ 2214 if (!async_flush || (taskq_dispatch(arc_flush_taskq, arc_flush_task, 2215 aaf, TQ_NOSLEEP) == NULL)) { 2216 _arc_flush(guid); 2217 ASSERT(spa || arc_eviction_list == NULL); 2218 if (async_flush) 2219 kmem_free(aaf, sizeof (arc_async_flush_data_t)); 2220 } 2221 } 2222 2223 void 2224 arc_shrink(void) 2225 { 2226 if (arc_c > arc_c_min) { 2227 uint64_t to_free; 2228 2229 #ifdef _KERNEL 2230 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 2231 #else 2232 to_free = arc_c >> arc_shrink_shift; 2233 #endif 2234 if (arc_c > arc_c_min + to_free) 2235 atomic_add_64(&arc_c, -to_free); 2236 else 2237 arc_c = arc_c_min; 2238 2239 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 2240 if (arc_c > arc_size) 2241 arc_c = MAX(arc_size, arc_c_min); 2242 if (arc_p > arc_c) 2243 arc_p = (arc_c >> 1); 2244 ASSERT(arc_c >= arc_c_min); 2245 ASSERT((int64_t)arc_p >= 0); 2246 } 2247 2248 if (arc_size > arc_c) 2249 arc_adjust(); 2250 } 2251 2252 /* 2253 * Determine if the system is under memory pressure and is asking 2254 * to reclaim memory. A return value of 1 indicates that the system 2255 * is under memory pressure and that the arc should adjust accordingly. 2256 */ 2257 static int 2258 arc_reclaim_needed(void) 2259 { 2260 uint64_t extra; 2261 2262 #ifdef _KERNEL 2263 2264 if (needfree) 2265 return (1); 2266 2267 /* 2268 * take 'desfree' extra pages, so we reclaim sooner, rather than later 2269 */ 2270 extra = desfree; 2271 2272 /* 2273 * check that we're out of range of the pageout scanner. It starts to 2274 * schedule paging if freemem is less than lotsfree and needfree. 2275 * lotsfree is the high-water mark for pageout, and needfree is the 2276 * number of needed free pages. We add extra pages here to make sure 2277 * the scanner doesn't start up while we're freeing memory. 2278 */ 2279 if (freemem < lotsfree + needfree + extra) 2280 return (1); 2281 2282 /* 2283 * check to make sure that swapfs has enough space so that anon 2284 * reservations can still succeed. anon_resvmem() checks that the 2285 * availrmem is greater than swapfs_minfree, and the number of reserved 2286 * swap pages. We also add a bit of extra here just to prevent 2287 * circumstances from getting really dire. 2288 */ 2289 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 2290 return (1); 2291 2292 /* 2293 * Check that we have enough availrmem that memory locking (e.g., via 2294 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 2295 * stores the number of pages that cannot be locked; when availrmem 2296 * drops below pages_pp_maximum, page locking mechanisms such as 2297 * page_pp_lock() will fail.) 2298 */ 2299 if (availrmem <= pages_pp_maximum) 2300 return (1); 2301 2302 #if defined(__i386) 2303 /* 2304 * If we're on an i386 platform, it's possible that we'll exhaust the 2305 * kernel heap space before we ever run out of available physical 2306 * memory. Most checks of the size of the heap_area compare against 2307 * tune.t_minarmem, which is the minimum available real memory that we 2308 * can have in the system. However, this is generally fixed at 25 pages 2309 * which is so low that it's useless. In this comparison, we seek to 2310 * calculate the total heap-size, and reclaim if more than 3/4ths of the 2311 * heap is allocated. (Or, in the calculation, if less than 1/4th is 2312 * free) 2313 */ 2314 if (vmem_size(heap_arena, VMEM_FREE) < 2315 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2)) 2316 return (1); 2317 #endif 2318 2319 /* 2320 * If zio data pages are being allocated out of a separate heap segment, 2321 * then enforce that the size of available vmem for this arena remains 2322 * above about 1/16th free. 2323 * 2324 * Note: The 1/16th arena free requirement was put in place 2325 * to aggressively evict memory from the arc in order to avoid 2326 * memory fragmentation issues. 2327 */ 2328 if (zio_arena != NULL && 2329 vmem_size(zio_arena, VMEM_FREE) < 2330 (vmem_size(zio_arena, VMEM_ALLOC) >> 4)) 2331 return (1); 2332 #else 2333 if (spa_get_random(100) == 0) 2334 return (1); 2335 #endif 2336 return (0); 2337 } 2338 2339 static void 2340 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 2341 { 2342 size_t i; 2343 kmem_cache_t *prev_cache = NULL; 2344 kmem_cache_t *prev_data_cache = NULL; 2345 extern kmem_cache_t *zio_buf_cache[]; 2346 extern kmem_cache_t *zio_data_buf_cache[]; 2347 extern kmem_cache_t *range_seg_cache; 2348 2349 #ifdef _KERNEL 2350 if (arc_meta_used >= arc_meta_limit) { 2351 /* 2352 * We are exceeding our meta-data cache limit. 2353 * Purge some DNLC entries to release holds on meta-data. 2354 */ 2355 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 2356 } 2357 #if defined(__i386) 2358 /* 2359 * Reclaim unused memory from all kmem caches. 2360 */ 2361 kmem_reap(); 2362 #endif 2363 #endif 2364 2365 /* 2366 * An aggressive reclamation will shrink the cache size as well as 2367 * reap free buffers from the arc kmem caches. 2368 */ 2369 if (strat == ARC_RECLAIM_AGGR) 2370 arc_shrink(); 2371 2372 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 2373 if (zio_buf_cache[i] != prev_cache) { 2374 prev_cache = zio_buf_cache[i]; 2375 kmem_cache_reap_now(zio_buf_cache[i]); 2376 } 2377 if (zio_data_buf_cache[i] != prev_data_cache) { 2378 prev_data_cache = zio_data_buf_cache[i]; 2379 kmem_cache_reap_now(zio_data_buf_cache[i]); 2380 } 2381 } 2382 kmem_cache_reap_now(buf_cache); 2383 kmem_cache_reap_now(hdr_cache); 2384 kmem_cache_reap_now(range_seg_cache); 2385 2386 /* 2387 * Ask the vmem areana to reclaim unused memory from its 2388 * quantum caches. 2389 */ 2390 if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR) 2391 vmem_qcache_reap(zio_arena); 2392 } 2393 2394 static void 2395 arc_reclaim_thread(void) 2396 { 2397 clock_t growtime = 0; 2398 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 2399 callb_cpr_t cpr; 2400 2401 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2402 2403 mutex_enter(&arc_reclaim_thr_lock); 2404 while (arc_thread_exit == 0) { 2405 if (arc_reclaim_needed()) { 2406 2407 if (arc_no_grow) { 2408 if (last_reclaim == ARC_RECLAIM_CONS) { 2409 last_reclaim = ARC_RECLAIM_AGGR; 2410 } else { 2411 last_reclaim = ARC_RECLAIM_CONS; 2412 } 2413 } else { 2414 arc_no_grow = TRUE; 2415 last_reclaim = ARC_RECLAIM_AGGR; 2416 membar_producer(); 2417 } 2418 2419 /* reset the growth delay for every reclaim */ 2420 growtime = ddi_get_lbolt() + (arc_grow_retry * hz); 2421 2422 arc_kmem_reap_now(last_reclaim); 2423 arc_warm = B_TRUE; 2424 2425 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) { 2426 arc_no_grow = FALSE; 2427 } 2428 2429 arc_adjust(); 2430 2431 if (arc_eviction_list != NULL) 2432 arc_do_user_evicts(); 2433 2434 /* block until needed, or one second, whichever is shorter */ 2435 CALLB_CPR_SAFE_BEGIN(&cpr); 2436 (void) cv_timedwait(&arc_reclaim_thr_cv, 2437 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz)); 2438 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2439 } 2440 2441 arc_thread_exit = 0; 2442 cv_broadcast(&arc_reclaim_thr_cv); 2443 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2444 thread_exit(); 2445 } 2446 2447 /* 2448 * Adapt arc info given the number of bytes we are trying to add and 2449 * the state that we are comming from. This function is only called 2450 * when we are adding new content to the cache. 2451 */ 2452 static void 2453 arc_adapt(int bytes, arc_state_t *state) 2454 { 2455 int mult; 2456 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2457 2458 if (state == arc_l2c_only) 2459 return; 2460 2461 ASSERT(bytes > 0); 2462 /* 2463 * Adapt the target size of the MRU list: 2464 * - if we just hit in the MRU ghost list, then increase 2465 * the target size of the MRU list. 2466 * - if we just hit in the MFU ghost list, then increase 2467 * the target size of the MFU list by decreasing the 2468 * target size of the MRU list. 2469 */ 2470 if (state == arc_mru_ghost) { 2471 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2472 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2473 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 2474 2475 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2476 } else if (state == arc_mfu_ghost) { 2477 uint64_t delta; 2478 2479 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2480 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2481 mult = MIN(mult, 10); 2482 2483 delta = MIN(bytes * mult, arc_p); 2484 arc_p = MAX(arc_p_min, arc_p - delta); 2485 } 2486 ASSERT((int64_t)arc_p >= 0); 2487 2488 if (arc_reclaim_needed()) { 2489 cv_signal(&arc_reclaim_thr_cv); 2490 return; 2491 } 2492 2493 if (arc_no_grow) 2494 return; 2495 2496 if (arc_c >= arc_c_max) 2497 return; 2498 2499 /* 2500 * If we're within (2 * maxblocksize) bytes of the target 2501 * cache size, increment the target cache size 2502 */ 2503 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2504 atomic_add_64(&arc_c, (int64_t)bytes); 2505 if (arc_c > arc_c_max) 2506 arc_c = arc_c_max; 2507 else if (state == arc_anon) 2508 atomic_add_64(&arc_p, (int64_t)bytes); 2509 if (arc_p > arc_c) 2510 arc_p = arc_c; 2511 } 2512 ASSERT((int64_t)arc_p >= 0); 2513 } 2514 2515 /* 2516 * Check if the cache has reached its limits and eviction is required 2517 * prior to insert. 2518 */ 2519 static int 2520 arc_evict_needed(arc_buf_contents_t type) 2521 { 2522 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2523 return (1); 2524 2525 if (arc_reclaim_needed()) 2526 return (1); 2527 2528 return (arc_size > arc_c); 2529 } 2530 2531 /* 2532 * The buffer, supplied as the first argument, needs a data block. 2533 * So, if we are at cache max, determine which cache should be victimized. 2534 * We have the following cases: 2535 * 2536 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2537 * In this situation if we're out of space, but the resident size of the MFU is 2538 * under the limit, victimize the MFU cache to satisfy this insertion request. 2539 * 2540 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2541 * Here, we've used up all of the available space for the MRU, so we need to 2542 * evict from our own cache instead. Evict from the set of resident MRU 2543 * entries. 2544 * 2545 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2546 * c minus p represents the MFU space in the cache, since p is the size of the 2547 * cache that is dedicated to the MRU. In this situation there's still space on 2548 * the MFU side, so the MRU side needs to be victimized. 2549 * 2550 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2551 * MFU's resident set is consuming more space than it has been allotted. In 2552 * this situation, we must victimize our own cache, the MFU, for this insertion. 2553 */ 2554 static void 2555 arc_get_data_buf(arc_buf_t *buf) 2556 { 2557 arc_state_t *state = buf->b_hdr->b_state; 2558 uint64_t size = buf->b_hdr->b_size; 2559 arc_buf_contents_t type = buf->b_hdr->b_type; 2560 2561 arc_adapt(size, state); 2562 2563 /* 2564 * We have not yet reached cache maximum size, 2565 * just allocate a new buffer. 2566 */ 2567 if (!arc_evict_needed(type)) { 2568 if (type == ARC_BUFC_METADATA) { 2569 buf->b_data = zio_buf_alloc(size); 2570 arc_space_consume(size, ARC_SPACE_DATA); 2571 } else { 2572 ASSERT(type == ARC_BUFC_DATA); 2573 buf->b_data = zio_data_buf_alloc(size); 2574 ARCSTAT_INCR(arcstat_data_size, size); 2575 atomic_add_64(&arc_size, size); 2576 } 2577 goto out; 2578 } 2579 2580 /* 2581 * If we are prefetching from the mfu ghost list, this buffer 2582 * will end up on the mru list; so steal space from there. 2583 */ 2584 if (state == arc_mfu_ghost) 2585 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2586 else if (state == arc_mru_ghost) 2587 state = arc_mru; 2588 2589 if (state == arc_mru || state == arc_anon) { 2590 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2591 state = (arc_mfu->arcs_lsize[type] >= size && 2592 arc_p > mru_used) ? arc_mfu : arc_mru; 2593 } else { 2594 /* MFU cases */ 2595 uint64_t mfu_space = arc_c - arc_p; 2596 state = (arc_mru->arcs_lsize[type] >= size && 2597 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2598 } 2599 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2600 if (type == ARC_BUFC_METADATA) { 2601 buf->b_data = zio_buf_alloc(size); 2602 arc_space_consume(size, ARC_SPACE_DATA); 2603 } else { 2604 ASSERT(type == ARC_BUFC_DATA); 2605 buf->b_data = zio_data_buf_alloc(size); 2606 ARCSTAT_INCR(arcstat_data_size, size); 2607 atomic_add_64(&arc_size, size); 2608 } 2609 ARCSTAT_BUMP(arcstat_recycle_miss); 2610 } 2611 ASSERT(buf->b_data != NULL); 2612 out: 2613 /* 2614 * Update the state size. Note that ghost states have a 2615 * "ghost size" and so don't need to be updated. 2616 */ 2617 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2618 arc_buf_hdr_t *hdr = buf->b_hdr; 2619 2620 atomic_add_64(&hdr->b_state->arcs_size, size); 2621 if (list_link_active(&hdr->b_arc_node)) { 2622 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2623 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2624 } 2625 /* 2626 * If we are growing the cache, and we are adding anonymous 2627 * data, and we have outgrown arc_p, update arc_p 2628 */ 2629 if (arc_size < arc_c && hdr->b_state == arc_anon && 2630 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2631 arc_p = MIN(arc_c, arc_p + size); 2632 } 2633 } 2634 2635 /* 2636 * This routine is called whenever a buffer is accessed. 2637 * NOTE: the hash lock is dropped in this function. 2638 */ 2639 static void 2640 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2641 { 2642 clock_t now; 2643 2644 ASSERT(MUTEX_HELD(hash_lock)); 2645 2646 if (buf->b_state == arc_anon) { 2647 /* 2648 * This buffer is not in the cache, and does not 2649 * appear in our "ghost" list. Add the new buffer 2650 * to the MRU state. 2651 */ 2652 2653 ASSERT(buf->b_arc_access == 0); 2654 buf->b_arc_access = ddi_get_lbolt(); 2655 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2656 arc_change_state(arc_mru, buf, hash_lock); 2657 2658 } else if (buf->b_state == arc_mru) { 2659 now = ddi_get_lbolt(); 2660 2661 /* 2662 * If this buffer is here because of a prefetch, then either: 2663 * - clear the flag if this is a "referencing" read 2664 * (any subsequent access will bump this into the MFU state). 2665 * or 2666 * - move the buffer to the head of the list if this is 2667 * another prefetch (to make it less likely to be evicted). 2668 */ 2669 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2670 if (refcount_count(&buf->b_refcnt) == 0) { 2671 ASSERT(list_link_active(&buf->b_arc_node)); 2672 } else { 2673 buf->b_flags &= ~ARC_PREFETCH; 2674 ARCSTAT_BUMP(arcstat_mru_hits); 2675 } 2676 buf->b_arc_access = now; 2677 return; 2678 } 2679 2680 /* 2681 * This buffer has been "accessed" only once so far, 2682 * but it is still in the cache. Move it to the MFU 2683 * state. 2684 */ 2685 if (now > buf->b_arc_access + ARC_MINTIME) { 2686 /* 2687 * More than 125ms have passed since we 2688 * instantiated this buffer. Move it to the 2689 * most frequently used state. 2690 */ 2691 buf->b_arc_access = now; 2692 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2693 arc_change_state(arc_mfu, buf, hash_lock); 2694 } 2695 ARCSTAT_BUMP(arcstat_mru_hits); 2696 } else if (buf->b_state == arc_mru_ghost) { 2697 arc_state_t *new_state; 2698 /* 2699 * This buffer has been "accessed" recently, but 2700 * was evicted from the cache. Move it to the 2701 * MFU state. 2702 */ 2703 2704 if (buf->b_flags & ARC_PREFETCH) { 2705 new_state = arc_mru; 2706 if (refcount_count(&buf->b_refcnt) > 0) 2707 buf->b_flags &= ~ARC_PREFETCH; 2708 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2709 } else { 2710 new_state = arc_mfu; 2711 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2712 } 2713 2714 buf->b_arc_access = ddi_get_lbolt(); 2715 arc_change_state(new_state, buf, hash_lock); 2716 2717 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2718 } else if (buf->b_state == arc_mfu) { 2719 /* 2720 * This buffer has been accessed more than once and is 2721 * still in the cache. Keep it in the MFU state. 2722 * 2723 * NOTE: an add_reference() that occurred when we did 2724 * the arc_read() will have kicked this off the list. 2725 * If it was a prefetch, we will explicitly move it to 2726 * the head of the list now. 2727 */ 2728 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2729 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2730 ASSERT(list_link_active(&buf->b_arc_node)); 2731 } 2732 ARCSTAT_BUMP(arcstat_mfu_hits); 2733 buf->b_arc_access = ddi_get_lbolt(); 2734 } else if (buf->b_state == arc_mfu_ghost) { 2735 arc_state_t *new_state = arc_mfu; 2736 /* 2737 * This buffer has been accessed more than once but has 2738 * been evicted from the cache. Move it back to the 2739 * MFU state. 2740 */ 2741 2742 if (buf->b_flags & ARC_PREFETCH) { 2743 /* 2744 * This is a prefetch access... 2745 * move this block back to the MRU state. 2746 */ 2747 ASSERT0(refcount_count(&buf->b_refcnt)); 2748 new_state = arc_mru; 2749 } 2750 2751 buf->b_arc_access = ddi_get_lbolt(); 2752 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2753 arc_change_state(new_state, buf, hash_lock); 2754 2755 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2756 } else if (buf->b_state == arc_l2c_only) { 2757 /* 2758 * This buffer is on the 2nd Level ARC. 2759 */ 2760 2761 buf->b_arc_access = ddi_get_lbolt(); 2762 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2763 arc_change_state(arc_mfu, buf, hash_lock); 2764 } else { 2765 ASSERT(!"invalid arc state"); 2766 } 2767 } 2768 2769 /* a generic arc_done_func_t which you can use */ 2770 /* ARGSUSED */ 2771 void 2772 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2773 { 2774 if (zio == NULL || zio->io_error == 0) 2775 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2776 VERIFY(arc_buf_remove_ref(buf, arg)); 2777 } 2778 2779 /* a generic arc_done_func_t */ 2780 void 2781 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2782 { 2783 arc_buf_t **bufp = arg; 2784 if (zio && zio->io_error) { 2785 VERIFY(arc_buf_remove_ref(buf, arg)); 2786 *bufp = NULL; 2787 } else { 2788 *bufp = buf; 2789 ASSERT(buf->b_data); 2790 } 2791 } 2792 2793 static void 2794 arc_read_done(zio_t *zio) 2795 { 2796 arc_buf_hdr_t *hdr; 2797 arc_buf_t *buf; 2798 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2799 kmutex_t *hash_lock = NULL; 2800 arc_callback_t *callback_list, *acb; 2801 int freeable = FALSE; 2802 2803 buf = zio->io_private; 2804 hdr = buf->b_hdr; 2805 2806 /* 2807 * The hdr was inserted into hash-table and removed from lists 2808 * prior to starting I/O. We should find this header, since 2809 * it's in the hash table, and it should be legit since it's 2810 * not possible to evict it during the I/O. The only possible 2811 * reason for it not to be found is if we were freed during the 2812 * read. 2813 */ 2814 if (HDR_IN_HASH_TABLE(hdr)) { 2815 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 2816 ASSERT3U(hdr->b_dva.dva_word[0], ==, 2817 BP_IDENTITY(zio->io_bp)->dva_word[0]); 2818 ASSERT3U(hdr->b_dva.dva_word[1], ==, 2819 BP_IDENTITY(zio->io_bp)->dva_word[1]); 2820 2821 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 2822 &hash_lock); 2823 2824 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && 2825 hash_lock == NULL) || 2826 (found == hdr && 2827 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2828 (found == hdr && HDR_L2_READING(hdr))); 2829 } 2830 2831 hdr->b_flags &= ~ARC_L2_EVICTED; 2832 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2833 hdr->b_flags &= ~ARC_L2CACHE; 2834 2835 /* byteswap if necessary */ 2836 callback_list = hdr->b_acb; 2837 ASSERT(callback_list != NULL); 2838 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 2839 dmu_object_byteswap_t bswap = 2840 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 2841 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2842 byteswap_uint64_array : 2843 dmu_ot_byteswap[bswap].ob_func; 2844 func(buf->b_data, hdr->b_size); 2845 } 2846 2847 arc_cksum_compute(buf, B_FALSE); 2848 arc_buf_watch(buf); 2849 2850 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { 2851 /* 2852 * Only call arc_access on anonymous buffers. This is because 2853 * if we've issued an I/O for an evicted buffer, we've already 2854 * called arc_access (to prevent any simultaneous readers from 2855 * getting confused). 2856 */ 2857 arc_access(hdr, hash_lock); 2858 } 2859 2860 /* create copies of the data buffer for the callers */ 2861 abuf = buf; 2862 for (acb = callback_list; acb; acb = acb->acb_next) { 2863 if (acb->acb_done) { 2864 if (abuf == NULL) { 2865 ARCSTAT_BUMP(arcstat_duplicate_reads); 2866 abuf = arc_buf_clone(buf); 2867 } 2868 acb->acb_buf = abuf; 2869 abuf = NULL; 2870 } 2871 } 2872 hdr->b_acb = NULL; 2873 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2874 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2875 if (abuf == buf) { 2876 ASSERT(buf->b_efunc == NULL); 2877 ASSERT(hdr->b_datacnt == 1); 2878 hdr->b_flags |= ARC_BUF_AVAILABLE; 2879 } 2880 2881 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2882 2883 if (zio->io_error != 0) { 2884 hdr->b_flags |= ARC_IO_ERROR; 2885 if (hdr->b_state != arc_anon) 2886 arc_change_state(arc_anon, hdr, hash_lock); 2887 if (HDR_IN_HASH_TABLE(hdr)) 2888 buf_hash_remove(hdr); 2889 freeable = refcount_is_zero(&hdr->b_refcnt); 2890 } 2891 2892 /* 2893 * Broadcast before we drop the hash_lock to avoid the possibility 2894 * that the hdr (and hence the cv) might be freed before we get to 2895 * the cv_broadcast(). 2896 */ 2897 cv_broadcast(&hdr->b_cv); 2898 2899 if (hash_lock) { 2900 mutex_exit(hash_lock); 2901 } else { 2902 /* 2903 * This block was freed while we waited for the read to 2904 * complete. It has been removed from the hash table and 2905 * moved to the anonymous state (so that it won't show up 2906 * in the cache). 2907 */ 2908 ASSERT3P(hdr->b_state, ==, arc_anon); 2909 freeable = refcount_is_zero(&hdr->b_refcnt); 2910 } 2911 2912 /* execute each callback and free its structure */ 2913 while ((acb = callback_list) != NULL) { 2914 if (acb->acb_done) 2915 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2916 2917 if (acb->acb_zio_dummy != NULL) { 2918 acb->acb_zio_dummy->io_error = zio->io_error; 2919 zio_nowait(acb->acb_zio_dummy); 2920 } 2921 2922 callback_list = acb->acb_next; 2923 kmem_free(acb, sizeof (arc_callback_t)); 2924 } 2925 2926 if (freeable) 2927 arc_hdr_destroy(hdr); 2928 } 2929 2930 /* 2931 * "Read" the block at the specified DVA (in bp) via the 2932 * cache. If the block is found in the cache, invoke the provided 2933 * callback immediately and return. Note that the `zio' parameter 2934 * in the callback will be NULL in this case, since no IO was 2935 * required. If the block is not in the cache pass the read request 2936 * on to the spa with a substitute callback function, so that the 2937 * requested block will be added to the cache. 2938 * 2939 * If a read request arrives for a block that has a read in-progress, 2940 * either wait for the in-progress read to complete (and return the 2941 * results); or, if this is a read with a "done" func, add a record 2942 * to the read to invoke the "done" func when the read completes, 2943 * and return; or just return. 2944 * 2945 * arc_read_done() will invoke all the requested "done" functions 2946 * for readers of this block. 2947 */ 2948 int 2949 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 2950 void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags, 2951 const zbookmark_phys_t *zb) 2952 { 2953 arc_buf_hdr_t *hdr = NULL; 2954 arc_buf_t *buf = NULL; 2955 kmutex_t *hash_lock = NULL; 2956 zio_t *rzio; 2957 uint64_t guid = spa_load_guid(spa); 2958 2959 ASSERT(!BP_IS_EMBEDDED(bp) || 2960 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 2961 2962 top: 2963 if (!BP_IS_EMBEDDED(bp)) { 2964 /* 2965 * Embedded BP's have no DVA and require no I/O to "read". 2966 * Create an anonymous arc buf to back it. 2967 */ 2968 hdr = buf_hash_find(guid, bp, &hash_lock); 2969 } 2970 2971 if (hdr != NULL && hdr->b_datacnt > 0) { 2972 2973 *arc_flags |= ARC_CACHED; 2974 2975 if (HDR_IO_IN_PROGRESS(hdr)) { 2976 2977 if (*arc_flags & ARC_WAIT) { 2978 cv_wait(&hdr->b_cv, hash_lock); 2979 mutex_exit(hash_lock); 2980 goto top; 2981 } 2982 ASSERT(*arc_flags & ARC_NOWAIT); 2983 2984 if (done) { 2985 arc_callback_t *acb = NULL; 2986 2987 acb = kmem_zalloc(sizeof (arc_callback_t), 2988 KM_SLEEP); 2989 acb->acb_done = done; 2990 acb->acb_private = private; 2991 if (pio != NULL) 2992 acb->acb_zio_dummy = zio_null(pio, 2993 spa, NULL, NULL, NULL, zio_flags); 2994 2995 ASSERT(acb->acb_done != NULL); 2996 acb->acb_next = hdr->b_acb; 2997 hdr->b_acb = acb; 2998 add_reference(hdr, hash_lock, private); 2999 mutex_exit(hash_lock); 3000 return (0); 3001 } 3002 mutex_exit(hash_lock); 3003 return (0); 3004 } 3005 3006 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 3007 3008 if (done) { 3009 add_reference(hdr, hash_lock, private); 3010 /* 3011 * If this block is already in use, create a new 3012 * copy of the data so that we will be guaranteed 3013 * that arc_release() will always succeed. 3014 */ 3015 buf = hdr->b_buf; 3016 ASSERT(buf); 3017 ASSERT(buf->b_data); 3018 if (HDR_BUF_AVAILABLE(hdr)) { 3019 ASSERT(buf->b_efunc == NULL); 3020 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 3021 } else { 3022 buf = arc_buf_clone(buf); 3023 } 3024 3025 } else if (*arc_flags & ARC_PREFETCH && 3026 refcount_count(&hdr->b_refcnt) == 0) { 3027 hdr->b_flags |= ARC_PREFETCH; 3028 } 3029 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 3030 arc_access(hdr, hash_lock); 3031 if (*arc_flags & ARC_L2CACHE) 3032 hdr->b_flags |= ARC_L2CACHE; 3033 if (*arc_flags & ARC_L2COMPRESS) 3034 hdr->b_flags |= ARC_L2COMPRESS; 3035 mutex_exit(hash_lock); 3036 ARCSTAT_BUMP(arcstat_hits); 3037 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 3038 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 3039 data, metadata, hits); 3040 3041 if (done) 3042 done(NULL, buf, private); 3043 } else { 3044 uint64_t size = BP_GET_LSIZE(bp); 3045 arc_callback_t *acb; 3046 vdev_t *vd = NULL; 3047 uint64_t addr = 0; 3048 boolean_t devw = B_FALSE; 3049 enum zio_compress b_compress = ZIO_COMPRESS_OFF; 3050 uint64_t b_asize = 0; 3051 3052 if (hdr == NULL) { 3053 /* this block is not in the cache */ 3054 arc_buf_hdr_t *exists = NULL; 3055 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 3056 buf = arc_buf_alloc(spa, size, private, type); 3057 hdr = buf->b_hdr; 3058 if (!BP_IS_EMBEDDED(bp)) { 3059 hdr->b_dva = *BP_IDENTITY(bp); 3060 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 3061 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 3062 exists = buf_hash_insert(hdr, &hash_lock); 3063 } 3064 if (exists != NULL) { 3065 /* somebody beat us to the hash insert */ 3066 mutex_exit(hash_lock); 3067 buf_discard_identity(hdr); 3068 (void) arc_buf_remove_ref(buf, private); 3069 goto top; /* restart the IO request */ 3070 } 3071 /* if this is a prefetch, we don't have a reference */ 3072 if (*arc_flags & ARC_PREFETCH) { 3073 (void) remove_reference(hdr, hash_lock, 3074 private); 3075 hdr->b_flags |= ARC_PREFETCH; 3076 } 3077 if (*arc_flags & ARC_L2CACHE) 3078 hdr->b_flags |= ARC_L2CACHE; 3079 if (*arc_flags & ARC_L2COMPRESS) 3080 hdr->b_flags |= ARC_L2COMPRESS; 3081 if (BP_GET_LEVEL(bp) > 0) 3082 hdr->b_flags |= ARC_INDIRECT; 3083 } else { 3084 /* this block is in the ghost cache */ 3085 ASSERT(GHOST_STATE(hdr->b_state)); 3086 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3087 ASSERT0(refcount_count(&hdr->b_refcnt)); 3088 ASSERT(hdr->b_buf == NULL); 3089 3090 /* if this is a prefetch, we don't have a reference */ 3091 if (*arc_flags & ARC_PREFETCH) 3092 hdr->b_flags |= ARC_PREFETCH; 3093 else 3094 add_reference(hdr, hash_lock, private); 3095 if (*arc_flags & ARC_L2CACHE) 3096 hdr->b_flags |= ARC_L2CACHE; 3097 if (*arc_flags & ARC_L2COMPRESS) 3098 hdr->b_flags |= ARC_L2COMPRESS; 3099 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 3100 buf->b_hdr = hdr; 3101 buf->b_data = NULL; 3102 buf->b_efunc = NULL; 3103 buf->b_private = NULL; 3104 buf->b_next = NULL; 3105 hdr->b_buf = buf; 3106 ASSERT(hdr->b_datacnt == 0); 3107 hdr->b_datacnt = 1; 3108 arc_get_data_buf(buf); 3109 arc_access(hdr, hash_lock); 3110 } 3111 3112 ASSERT(!GHOST_STATE(hdr->b_state)); 3113 3114 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 3115 acb->acb_done = done; 3116 acb->acb_private = private; 3117 3118 ASSERT(hdr->b_acb == NULL); 3119 hdr->b_acb = acb; 3120 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3121 3122 if (hdr->b_l2hdr != NULL && 3123 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 3124 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 3125 addr = hdr->b_l2hdr->b_daddr; 3126 b_compress = hdr->b_l2hdr->b_compress; 3127 b_asize = hdr->b_l2hdr->b_asize; 3128 /* 3129 * Lock out device removal. 3130 */ 3131 if (vdev_is_dead(vd) || 3132 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 3133 vd = NULL; 3134 } 3135 3136 if (hash_lock != NULL) 3137 mutex_exit(hash_lock); 3138 3139 /* 3140 * At this point, we have a level 1 cache miss. Try again in 3141 * L2ARC if possible. 3142 */ 3143 ASSERT3U(hdr->b_size, ==, size); 3144 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 3145 uint64_t, size, zbookmark_phys_t *, zb); 3146 ARCSTAT_BUMP(arcstat_misses); 3147 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 3148 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 3149 data, metadata, misses); 3150 3151 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 3152 /* 3153 * Read from the L2ARC if the following are true: 3154 * 1. The L2ARC vdev was previously cached. 3155 * 2. This buffer still has L2ARC metadata. 3156 * 3. This buffer isn't currently writing to the L2ARC. 3157 * 4. The L2ARC entry wasn't evicted, which may 3158 * also have invalidated the vdev. 3159 * 5. This isn't prefetch and l2arc_noprefetch is set. 3160 */ 3161 if (hdr->b_l2hdr != NULL && 3162 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 3163 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 3164 l2arc_read_callback_t *cb; 3165 3166 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 3167 ARCSTAT_BUMP(arcstat_l2_hits); 3168 3169 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 3170 KM_SLEEP); 3171 cb->l2rcb_buf = buf; 3172 cb->l2rcb_spa = spa; 3173 cb->l2rcb_bp = *bp; 3174 cb->l2rcb_zb = *zb; 3175 cb->l2rcb_flags = zio_flags; 3176 cb->l2rcb_compress = b_compress; 3177 3178 ASSERT(addr >= VDEV_LABEL_START_SIZE && 3179 addr + size < vd->vdev_psize - 3180 VDEV_LABEL_END_SIZE); 3181 3182 /* 3183 * l2arc read. The SCL_L2ARC lock will be 3184 * released by l2arc_read_done(). 3185 * Issue a null zio if the underlying buffer 3186 * was squashed to zero size by compression. 3187 */ 3188 if (b_compress == ZIO_COMPRESS_EMPTY) { 3189 rzio = zio_null(pio, spa, vd, 3190 l2arc_read_done, cb, 3191 zio_flags | ZIO_FLAG_DONT_CACHE | 3192 ZIO_FLAG_CANFAIL | 3193 ZIO_FLAG_DONT_PROPAGATE | 3194 ZIO_FLAG_DONT_RETRY); 3195 } else { 3196 rzio = zio_read_phys(pio, vd, addr, 3197 b_asize, buf->b_data, 3198 ZIO_CHECKSUM_OFF, 3199 l2arc_read_done, cb, priority, 3200 zio_flags | ZIO_FLAG_DONT_CACHE | 3201 ZIO_FLAG_CANFAIL | 3202 ZIO_FLAG_DONT_PROPAGATE | 3203 ZIO_FLAG_DONT_RETRY, B_FALSE); 3204 } 3205 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 3206 zio_t *, rzio); 3207 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize); 3208 3209 if (*arc_flags & ARC_NOWAIT) { 3210 zio_nowait(rzio); 3211 return (0); 3212 } 3213 3214 ASSERT(*arc_flags & ARC_WAIT); 3215 if (zio_wait(rzio) == 0) 3216 return (0); 3217 3218 /* l2arc read error; goto zio_read() */ 3219 } else { 3220 DTRACE_PROBE1(l2arc__miss, 3221 arc_buf_hdr_t *, hdr); 3222 ARCSTAT_BUMP(arcstat_l2_misses); 3223 if (HDR_L2_WRITING(hdr)) 3224 ARCSTAT_BUMP(arcstat_l2_rw_clash); 3225 spa_config_exit(spa, SCL_L2ARC, vd); 3226 } 3227 } else { 3228 if (vd != NULL) 3229 spa_config_exit(spa, SCL_L2ARC, vd); 3230 if (l2arc_ndev != 0) { 3231 DTRACE_PROBE1(l2arc__miss, 3232 arc_buf_hdr_t *, hdr); 3233 ARCSTAT_BUMP(arcstat_l2_misses); 3234 } 3235 } 3236 3237 rzio = zio_read(pio, spa, bp, buf->b_data, size, 3238 arc_read_done, buf, priority, zio_flags, zb); 3239 3240 if (*arc_flags & ARC_WAIT) 3241 return (zio_wait(rzio)); 3242 3243 ASSERT(*arc_flags & ARC_NOWAIT); 3244 zio_nowait(rzio); 3245 } 3246 return (0); 3247 } 3248 3249 void 3250 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 3251 { 3252 ASSERT(buf->b_hdr != NULL); 3253 ASSERT(buf->b_hdr->b_state != arc_anon); 3254 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 3255 ASSERT(buf->b_efunc == NULL); 3256 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 3257 3258 buf->b_efunc = func; 3259 buf->b_private = private; 3260 } 3261 3262 /* 3263 * Notify the arc that a block was freed, and thus will never be used again. 3264 */ 3265 void 3266 arc_freed(spa_t *spa, const blkptr_t *bp) 3267 { 3268 arc_buf_hdr_t *hdr; 3269 kmutex_t *hash_lock; 3270 uint64_t guid = spa_load_guid(spa); 3271 3272 ASSERT(!BP_IS_EMBEDDED(bp)); 3273 3274 hdr = buf_hash_find(guid, bp, &hash_lock); 3275 if (hdr == NULL) 3276 return; 3277 if (HDR_BUF_AVAILABLE(hdr)) { 3278 arc_buf_t *buf = hdr->b_buf; 3279 add_reference(hdr, hash_lock, FTAG); 3280 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 3281 mutex_exit(hash_lock); 3282 3283 arc_release(buf, FTAG); 3284 (void) arc_buf_remove_ref(buf, FTAG); 3285 } else { 3286 mutex_exit(hash_lock); 3287 } 3288 3289 } 3290 3291 /* 3292 * Clear the user eviction callback set by arc_set_callback(), first calling 3293 * it if it exists. Because the presence of a callback keeps an arc_buf cached 3294 * clearing the callback may result in the arc_buf being destroyed. However, 3295 * it will not result in the *last* arc_buf being destroyed, hence the data 3296 * will remain cached in the ARC. We make a copy of the arc buffer here so 3297 * that we can process the callback without holding any locks. 3298 * 3299 * It's possible that the callback is already in the process of being cleared 3300 * by another thread. In this case we can not clear the callback. 3301 * 3302 * Returns B_TRUE if the callback was successfully called and cleared. 3303 */ 3304 boolean_t 3305 arc_clear_callback(arc_buf_t *buf) 3306 { 3307 arc_buf_hdr_t *hdr; 3308 kmutex_t *hash_lock; 3309 arc_evict_func_t *efunc = buf->b_efunc; 3310 void *private = buf->b_private; 3311 3312 mutex_enter(&buf->b_evict_lock); 3313 hdr = buf->b_hdr; 3314 if (hdr == NULL) { 3315 /* 3316 * We are in arc_do_user_evicts(). 3317 */ 3318 ASSERT(buf->b_data == NULL); 3319 mutex_exit(&buf->b_evict_lock); 3320 return (B_FALSE); 3321 } else if (buf->b_data == NULL) { 3322 /* 3323 * We are on the eviction list; process this buffer now 3324 * but let arc_do_user_evicts() do the reaping. 3325 */ 3326 buf->b_efunc = NULL; 3327 mutex_exit(&buf->b_evict_lock); 3328 VERIFY0(efunc(private)); 3329 return (B_TRUE); 3330 } 3331 hash_lock = HDR_LOCK(hdr); 3332 mutex_enter(hash_lock); 3333 hdr = buf->b_hdr; 3334 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3335 3336 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 3337 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 3338 3339 buf->b_efunc = NULL; 3340 buf->b_private = NULL; 3341 3342 if (hdr->b_datacnt > 1) { 3343 mutex_exit(&buf->b_evict_lock); 3344 arc_buf_destroy(buf, FALSE, TRUE); 3345 } else { 3346 ASSERT(buf == hdr->b_buf); 3347 hdr->b_flags |= ARC_BUF_AVAILABLE; 3348 mutex_exit(&buf->b_evict_lock); 3349 } 3350 3351 mutex_exit(hash_lock); 3352 VERIFY0(efunc(private)); 3353 return (B_TRUE); 3354 } 3355 3356 /* 3357 * Release this buffer from the cache, making it an anonymous buffer. This 3358 * must be done after a read and prior to modifying the buffer contents. 3359 * If the buffer has more than one reference, we must make 3360 * a new hdr for the buffer. 3361 */ 3362 void 3363 arc_release(arc_buf_t *buf, void *tag) 3364 { 3365 arc_buf_hdr_t *hdr; 3366 kmutex_t *hash_lock = NULL; 3367 l2arc_buf_hdr_t *l2hdr; 3368 uint64_t buf_size; 3369 3370 /* 3371 * It would be nice to assert that if it's DMU metadata (level > 3372 * 0 || it's the dnode file), then it must be syncing context. 3373 * But we don't know that information at this level. 3374 */ 3375 3376 mutex_enter(&buf->b_evict_lock); 3377 hdr = buf->b_hdr; 3378 3379 /* this buffer is not on any list */ 3380 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 3381 3382 if (hdr->b_state == arc_anon) { 3383 /* this buffer is already released */ 3384 ASSERT(buf->b_efunc == NULL); 3385 } else { 3386 hash_lock = HDR_LOCK(hdr); 3387 mutex_enter(hash_lock); 3388 hdr = buf->b_hdr; 3389 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3390 } 3391 3392 l2hdr = hdr->b_l2hdr; 3393 if (l2hdr) { 3394 mutex_enter(&l2arc_buflist_mtx); 3395 hdr->b_l2hdr = NULL; 3396 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3397 } 3398 buf_size = hdr->b_size; 3399 3400 /* 3401 * Do we have more than one buf? 3402 */ 3403 if (hdr->b_datacnt > 1) { 3404 arc_buf_hdr_t *nhdr; 3405 arc_buf_t **bufp; 3406 uint64_t blksz = hdr->b_size; 3407 uint64_t spa = hdr->b_spa; 3408 arc_buf_contents_t type = hdr->b_type; 3409 uint32_t flags = hdr->b_flags; 3410 3411 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 3412 /* 3413 * Pull the data off of this hdr and attach it to 3414 * a new anonymous hdr. 3415 */ 3416 (void) remove_reference(hdr, hash_lock, tag); 3417 bufp = &hdr->b_buf; 3418 while (*bufp != buf) 3419 bufp = &(*bufp)->b_next; 3420 *bufp = buf->b_next; 3421 buf->b_next = NULL; 3422 3423 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3424 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3425 if (refcount_is_zero(&hdr->b_refcnt)) { 3426 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3427 ASSERT3U(*size, >=, hdr->b_size); 3428 atomic_add_64(size, -hdr->b_size); 3429 } 3430 3431 /* 3432 * We're releasing a duplicate user data buffer, update 3433 * our statistics accordingly. 3434 */ 3435 if (hdr->b_type == ARC_BUFC_DATA) { 3436 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 3437 ARCSTAT_INCR(arcstat_duplicate_buffers_size, 3438 -hdr->b_size); 3439 } 3440 hdr->b_datacnt -= 1; 3441 arc_cksum_verify(buf); 3442 arc_buf_unwatch(buf); 3443 3444 mutex_exit(hash_lock); 3445 3446 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3447 nhdr->b_size = blksz; 3448 nhdr->b_spa = spa; 3449 nhdr->b_type = type; 3450 nhdr->b_buf = buf; 3451 nhdr->b_state = arc_anon; 3452 nhdr->b_arc_access = 0; 3453 nhdr->b_flags = flags & ARC_L2_WRITING; 3454 nhdr->b_l2hdr = NULL; 3455 nhdr->b_datacnt = 1; 3456 nhdr->b_freeze_cksum = NULL; 3457 (void) refcount_add(&nhdr->b_refcnt, tag); 3458 buf->b_hdr = nhdr; 3459 mutex_exit(&buf->b_evict_lock); 3460 atomic_add_64(&arc_anon->arcs_size, blksz); 3461 } else { 3462 mutex_exit(&buf->b_evict_lock); 3463 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3464 ASSERT(!list_link_active(&hdr->b_arc_node)); 3465 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3466 if (hdr->b_state != arc_anon) 3467 arc_change_state(arc_anon, hdr, hash_lock); 3468 hdr->b_arc_access = 0; 3469 if (hash_lock) 3470 mutex_exit(hash_lock); 3471 3472 buf_discard_identity(hdr); 3473 arc_buf_thaw(buf); 3474 } 3475 buf->b_efunc = NULL; 3476 buf->b_private = NULL; 3477 3478 if (l2hdr) { 3479 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 3480 if (l2hdr->b_dev->l2ad_vdev) 3481 vdev_space_update(l2hdr->b_dev->l2ad_vdev, 3482 -l2hdr->b_asize, 0, 0); 3483 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3484 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3485 mutex_exit(&l2arc_buflist_mtx); 3486 } 3487 } 3488 3489 int 3490 arc_released(arc_buf_t *buf) 3491 { 3492 int released; 3493 3494 mutex_enter(&buf->b_evict_lock); 3495 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3496 mutex_exit(&buf->b_evict_lock); 3497 return (released); 3498 } 3499 3500 #ifdef ZFS_DEBUG 3501 int 3502 arc_referenced(arc_buf_t *buf) 3503 { 3504 int referenced; 3505 3506 mutex_enter(&buf->b_evict_lock); 3507 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3508 mutex_exit(&buf->b_evict_lock); 3509 return (referenced); 3510 } 3511 #endif 3512 3513 static void 3514 arc_write_ready(zio_t *zio) 3515 { 3516 arc_write_callback_t *callback = zio->io_private; 3517 arc_buf_t *buf = callback->awcb_buf; 3518 arc_buf_hdr_t *hdr = buf->b_hdr; 3519 3520 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3521 callback->awcb_ready(zio, buf, callback->awcb_private); 3522 3523 /* 3524 * If the IO is already in progress, then this is a re-write 3525 * attempt, so we need to thaw and re-compute the cksum. 3526 * It is the responsibility of the callback to handle the 3527 * accounting for any re-write attempt. 3528 */ 3529 if (HDR_IO_IN_PROGRESS(hdr)) { 3530 mutex_enter(&hdr->b_freeze_lock); 3531 if (hdr->b_freeze_cksum != NULL) { 3532 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3533 hdr->b_freeze_cksum = NULL; 3534 } 3535 mutex_exit(&hdr->b_freeze_lock); 3536 } 3537 arc_cksum_compute(buf, B_FALSE); 3538 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3539 } 3540 3541 /* 3542 * The SPA calls this callback for each physical write that happens on behalf 3543 * of a logical write. See the comment in dbuf_write_physdone() for details. 3544 */ 3545 static void 3546 arc_write_physdone(zio_t *zio) 3547 { 3548 arc_write_callback_t *cb = zio->io_private; 3549 if (cb->awcb_physdone != NULL) 3550 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 3551 } 3552 3553 static void 3554 arc_write_done(zio_t *zio) 3555 { 3556 arc_write_callback_t *callback = zio->io_private; 3557 arc_buf_t *buf = callback->awcb_buf; 3558 arc_buf_hdr_t *hdr = buf->b_hdr; 3559 3560 ASSERT(hdr->b_acb == NULL); 3561 3562 if (zio->io_error == 0) { 3563 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 3564 buf_discard_identity(hdr); 3565 } else { 3566 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3567 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 3568 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3569 } 3570 } else { 3571 ASSERT(BUF_EMPTY(hdr)); 3572 } 3573 3574 /* 3575 * If the block to be written was all-zero or compressed enough to be 3576 * embedded in the BP, no write was performed so there will be no 3577 * dva/birth/checksum. The buffer must therefore remain anonymous 3578 * (and uncached). 3579 */ 3580 if (!BUF_EMPTY(hdr)) { 3581 arc_buf_hdr_t *exists; 3582 kmutex_t *hash_lock; 3583 3584 ASSERT(zio->io_error == 0); 3585 3586 arc_cksum_verify(buf); 3587 3588 exists = buf_hash_insert(hdr, &hash_lock); 3589 if (exists) { 3590 /* 3591 * This can only happen if we overwrite for 3592 * sync-to-convergence, because we remove 3593 * buffers from the hash table when we arc_free(). 3594 */ 3595 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 3596 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3597 panic("bad overwrite, hdr=%p exists=%p", 3598 (void *)hdr, (void *)exists); 3599 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3600 arc_change_state(arc_anon, exists, hash_lock); 3601 mutex_exit(hash_lock); 3602 arc_hdr_destroy(exists); 3603 exists = buf_hash_insert(hdr, &hash_lock); 3604 ASSERT3P(exists, ==, NULL); 3605 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 3606 /* nopwrite */ 3607 ASSERT(zio->io_prop.zp_nopwrite); 3608 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3609 panic("bad nopwrite, hdr=%p exists=%p", 3610 (void *)hdr, (void *)exists); 3611 } else { 3612 /* Dedup */ 3613 ASSERT(hdr->b_datacnt == 1); 3614 ASSERT(hdr->b_state == arc_anon); 3615 ASSERT(BP_GET_DEDUP(zio->io_bp)); 3616 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 3617 } 3618 } 3619 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3620 /* if it's not anon, we are doing a scrub */ 3621 if (!exists && hdr->b_state == arc_anon) 3622 arc_access(hdr, hash_lock); 3623 mutex_exit(hash_lock); 3624 } else { 3625 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3626 } 3627 3628 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3629 callback->awcb_done(zio, buf, callback->awcb_private); 3630 3631 kmem_free(callback, sizeof (arc_write_callback_t)); 3632 } 3633 3634 zio_t * 3635 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 3636 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress, 3637 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone, 3638 arc_done_func_t *done, void *private, zio_priority_t priority, 3639 int zio_flags, const zbookmark_phys_t *zb) 3640 { 3641 arc_buf_hdr_t *hdr = buf->b_hdr; 3642 arc_write_callback_t *callback; 3643 zio_t *zio; 3644 3645 ASSERT(ready != NULL); 3646 ASSERT(done != NULL); 3647 ASSERT(!HDR_IO_ERROR(hdr)); 3648 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3649 ASSERT(hdr->b_acb == NULL); 3650 if (l2arc) 3651 hdr->b_flags |= ARC_L2CACHE; 3652 if (l2arc_compress) 3653 hdr->b_flags |= ARC_L2COMPRESS; 3654 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3655 callback->awcb_ready = ready; 3656 callback->awcb_physdone = physdone; 3657 callback->awcb_done = done; 3658 callback->awcb_private = private; 3659 callback->awcb_buf = buf; 3660 3661 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 3662 arc_write_ready, arc_write_physdone, arc_write_done, callback, 3663 priority, zio_flags, zb); 3664 3665 return (zio); 3666 } 3667 3668 static int 3669 arc_memory_throttle(uint64_t reserve, uint64_t txg) 3670 { 3671 #ifdef _KERNEL 3672 uint64_t available_memory = ptob(freemem); 3673 static uint64_t page_load = 0; 3674 static uint64_t last_txg = 0; 3675 3676 #if defined(__i386) 3677 available_memory = 3678 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3679 #endif 3680 3681 if (freemem > physmem * arc_lotsfree_percent / 100) 3682 return (0); 3683 3684 if (txg > last_txg) { 3685 last_txg = txg; 3686 page_load = 0; 3687 } 3688 /* 3689 * If we are in pageout, we know that memory is already tight, 3690 * the arc is already going to be evicting, so we just want to 3691 * continue to let page writes occur as quickly as possible. 3692 */ 3693 if (curproc == proc_pageout) { 3694 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3695 return (SET_ERROR(ERESTART)); 3696 /* Note: reserve is inflated, so we deflate */ 3697 page_load += reserve / 8; 3698 return (0); 3699 } else if (page_load > 0 && arc_reclaim_needed()) { 3700 /* memory is low, delay before restarting */ 3701 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3702 return (SET_ERROR(EAGAIN)); 3703 } 3704 page_load = 0; 3705 #endif 3706 return (0); 3707 } 3708 3709 void 3710 arc_tempreserve_clear(uint64_t reserve) 3711 { 3712 atomic_add_64(&arc_tempreserve, -reserve); 3713 ASSERT((int64_t)arc_tempreserve >= 0); 3714 } 3715 3716 int 3717 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3718 { 3719 int error; 3720 uint64_t anon_size; 3721 3722 if (reserve > arc_c/4 && !arc_no_grow) 3723 arc_c = MIN(arc_c_max, reserve * 4); 3724 if (reserve > arc_c) 3725 return (SET_ERROR(ENOMEM)); 3726 3727 /* 3728 * Don't count loaned bufs as in flight dirty data to prevent long 3729 * network delays from blocking transactions that are ready to be 3730 * assigned to a txg. 3731 */ 3732 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3733 3734 /* 3735 * Writes will, almost always, require additional memory allocations 3736 * in order to compress/encrypt/etc the data. We therefore need to 3737 * make sure that there is sufficient available memory for this. 3738 */ 3739 error = arc_memory_throttle(reserve, txg); 3740 if (error != 0) 3741 return (error); 3742 3743 /* 3744 * Throttle writes when the amount of dirty data in the cache 3745 * gets too large. We try to keep the cache less than half full 3746 * of dirty blocks so that our sync times don't grow too large. 3747 * Note: if two requests come in concurrently, we might let them 3748 * both succeed, when one of them should fail. Not a huge deal. 3749 */ 3750 3751 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3752 anon_size > arc_c / 4) { 3753 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3754 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3755 arc_tempreserve>>10, 3756 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3757 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3758 reserve>>10, arc_c>>10); 3759 return (SET_ERROR(ERESTART)); 3760 } 3761 atomic_add_64(&arc_tempreserve, reserve); 3762 return (0); 3763 } 3764 3765 /* Tuneable, default is 64, which is essentially arbitrary */ 3766 int zfs_flush_ntasks = 64; 3767 3768 void 3769 arc_init(void) 3770 { 3771 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3772 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3773 3774 /* Convert seconds to clock ticks */ 3775 arc_min_prefetch_lifespan = 1 * hz; 3776 3777 /* Start out with 1/8 of all memory */ 3778 arc_c = physmem * PAGESIZE / 8; 3779 3780 #ifdef _KERNEL 3781 /* 3782 * On architectures where the physical memory can be larger 3783 * than the addressable space (intel in 32-bit mode), we may 3784 * need to limit the cache to 1/8 of VM size. 3785 */ 3786 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3787 #endif 3788 3789 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3790 arc_c_min = MAX(arc_c / 4, 64<<20); 3791 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3792 if (arc_c * 8 >= 1<<30) 3793 arc_c_max = (arc_c * 8) - (1<<30); 3794 else 3795 arc_c_max = arc_c_min; 3796 arc_c_max = MAX(arc_c * 6, arc_c_max); 3797 3798 /* 3799 * Allow the tunables to override our calculations if they are 3800 * reasonable (ie. over 64MB) 3801 */ 3802 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3803 arc_c_max = zfs_arc_max; 3804 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3805 arc_c_min = zfs_arc_min; 3806 3807 arc_c = arc_c_max; 3808 arc_p = (arc_c >> 1); 3809 3810 /* limit meta-data to 1/4 of the arc capacity */ 3811 arc_meta_limit = arc_c_max / 4; 3812 3813 /* Allow the tunable to override if it is reasonable */ 3814 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3815 arc_meta_limit = zfs_arc_meta_limit; 3816 3817 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3818 arc_c_min = arc_meta_limit / 2; 3819 3820 if (zfs_arc_grow_retry > 0) 3821 arc_grow_retry = zfs_arc_grow_retry; 3822 3823 if (zfs_arc_shrink_shift > 0) 3824 arc_shrink_shift = zfs_arc_shrink_shift; 3825 3826 if (zfs_arc_p_min_shift > 0) 3827 arc_p_min_shift = zfs_arc_p_min_shift; 3828 3829 /* if kmem_flags are set, lets try to use less memory */ 3830 if (kmem_debugging()) 3831 arc_c = arc_c / 2; 3832 if (arc_c < arc_c_min) 3833 arc_c = arc_c_min; 3834 3835 arc_anon = &ARC_anon; 3836 arc_mru = &ARC_mru; 3837 arc_mru_ghost = &ARC_mru_ghost; 3838 arc_mfu = &ARC_mfu; 3839 arc_mfu_ghost = &ARC_mfu_ghost; 3840 arc_l2c_only = &ARC_l2c_only; 3841 arc_size = 0; 3842 3843 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3844 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3845 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3846 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3847 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3848 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3849 3850 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3851 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3852 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3853 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3854 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3855 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3856 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3857 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3858 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3859 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3860 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3861 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3862 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3863 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3864 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3865 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3866 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3867 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3868 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3869 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3870 3871 arc_flush_taskq = taskq_create("arc_flush_tq", 3872 max_ncpus, minclsyspri, 1, zfs_flush_ntasks, TASKQ_DYNAMIC); 3873 buf_init(); 3874 3875 arc_thread_exit = 0; 3876 arc_eviction_list = NULL; 3877 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3878 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3879 3880 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3881 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3882 3883 if (arc_ksp != NULL) { 3884 arc_ksp->ks_data = &arc_stats; 3885 kstat_install(arc_ksp); 3886 } 3887 3888 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3889 TS_RUN, minclsyspri); 3890 3891 arc_dead = FALSE; 3892 arc_warm = B_FALSE; 3893 3894 /* 3895 * Calculate maximum amount of dirty data per pool. 3896 * 3897 * If it has been set by /etc/system, take that. 3898 * Otherwise, use a percentage of physical memory defined by 3899 * zfs_dirty_data_max_percent (default 10%) with a cap at 3900 * zfs_dirty_data_max_max (default 4GB). 3901 */ 3902 if (zfs_dirty_data_max == 0) { 3903 zfs_dirty_data_max = physmem * PAGESIZE * 3904 zfs_dirty_data_max_percent / 100; 3905 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 3906 zfs_dirty_data_max_max); 3907 } 3908 } 3909 3910 void 3911 arc_fini(void) 3912 { 3913 mutex_enter(&arc_reclaim_thr_lock); 3914 arc_thread_exit = 1; 3915 while (arc_thread_exit != 0) 3916 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3917 mutex_exit(&arc_reclaim_thr_lock); 3918 3919 arc_flush(NULL); 3920 3921 arc_dead = TRUE; 3922 3923 if (arc_ksp != NULL) { 3924 kstat_delete(arc_ksp); 3925 arc_ksp = NULL; 3926 } 3927 3928 mutex_destroy(&arc_eviction_mtx); 3929 mutex_destroy(&arc_reclaim_thr_lock); 3930 cv_destroy(&arc_reclaim_thr_cv); 3931 3932 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3933 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3934 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3935 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3936 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3937 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3938 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3939 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3940 3941 mutex_destroy(&arc_anon->arcs_mtx); 3942 mutex_destroy(&arc_mru->arcs_mtx); 3943 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3944 mutex_destroy(&arc_mfu->arcs_mtx); 3945 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3946 mutex_destroy(&arc_l2c_only->arcs_mtx); 3947 3948 taskq_destroy(arc_flush_taskq); 3949 buf_fini(); 3950 3951 ASSERT(arc_loaned_bytes == 0); 3952 } 3953 3954 /* 3955 * Level 2 ARC 3956 * 3957 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3958 * It uses dedicated storage devices to hold cached data, which are populated 3959 * using large infrequent writes. The main role of this cache is to boost 3960 * the performance of random read workloads. The intended L2ARC devices 3961 * include short-stroked disks, solid state disks, and other media with 3962 * substantially faster read latency than disk. 3963 * 3964 * +-----------------------+ 3965 * | ARC | 3966 * +-----------------------+ 3967 * | ^ ^ 3968 * | | | 3969 * l2arc_feed_thread() arc_read() 3970 * | | | 3971 * | l2arc read | 3972 * V | | 3973 * +---------------+ | 3974 * | L2ARC | | 3975 * +---------------+ | 3976 * | ^ | 3977 * l2arc_write() | | 3978 * | | | 3979 * V | | 3980 * +-------+ +-------+ 3981 * | vdev | | vdev | 3982 * | cache | | cache | 3983 * +-------+ +-------+ 3984 * +=========+ .-----. 3985 * : L2ARC : |-_____-| 3986 * : devices : | Disks | 3987 * +=========+ `-_____-' 3988 * 3989 * Read requests are satisfied from the following sources, in order: 3990 * 3991 * 1) ARC 3992 * 2) vdev cache of L2ARC devices 3993 * 3) L2ARC devices 3994 * 4) vdev cache of disks 3995 * 5) disks 3996 * 3997 * Some L2ARC device types exhibit extremely slow write performance. 3998 * To accommodate for this there are some significant differences between 3999 * the L2ARC and traditional cache design: 4000 * 4001 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 4002 * the ARC behave as usual, freeing buffers and placing headers on ghost 4003 * lists. The ARC does not send buffers to the L2ARC during eviction as 4004 * this would add inflated write latencies for all ARC memory pressure. 4005 * 4006 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 4007 * It does this by periodically scanning buffers from the eviction-end of 4008 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 4009 * not already there. It scans until a headroom of buffers is satisfied, 4010 * which itself is a buffer for ARC eviction. If a compressible buffer is 4011 * found during scanning and selected for writing to an L2ARC device, we 4012 * temporarily boost scanning headroom during the next scan cycle to make 4013 * sure we adapt to compression effects (which might significantly reduce 4014 * the data volume we write to L2ARC). The thread that does this is 4015 * l2arc_feed_thread(), illustrated below; example sizes are included to 4016 * provide a better sense of ratio than this diagram: 4017 * 4018 * head --> tail 4019 * +---------------------+----------+ 4020 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 4021 * +---------------------+----------+ | o L2ARC eligible 4022 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 4023 * +---------------------+----------+ | 4024 * 15.9 Gbytes ^ 32 Mbytes | 4025 * headroom | 4026 * l2arc_feed_thread() 4027 * | 4028 * l2arc write hand <--[oooo]--' 4029 * | 8 Mbyte 4030 * | write max 4031 * V 4032 * +==============================+ 4033 * L2ARC dev |####|#|###|###| |####| ... | 4034 * +==============================+ 4035 * 32 Gbytes 4036 * 4037 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 4038 * evicted, then the L2ARC has cached a buffer much sooner than it probably 4039 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 4040 * safe to say that this is an uncommon case, since buffers at the end of 4041 * the ARC lists have moved there due to inactivity. 4042 * 4043 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 4044 * then the L2ARC simply misses copying some buffers. This serves as a 4045 * pressure valve to prevent heavy read workloads from both stalling the ARC 4046 * with waits and clogging the L2ARC with writes. This also helps prevent 4047 * the potential for the L2ARC to churn if it attempts to cache content too 4048 * quickly, such as during backups of the entire pool. 4049 * 4050 * 5. After system boot and before the ARC has filled main memory, there are 4051 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 4052 * lists can remain mostly static. Instead of searching from tail of these 4053 * lists as pictured, the l2arc_feed_thread() will search from the list heads 4054 * for eligible buffers, greatly increasing its chance of finding them. 4055 * 4056 * The L2ARC device write speed is also boosted during this time so that 4057 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 4058 * there are no L2ARC reads, and no fear of degrading read performance 4059 * through increased writes. 4060 * 4061 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 4062 * the vdev queue can aggregate them into larger and fewer writes. Each 4063 * device is written to in a rotor fashion, sweeping writes through 4064 * available space then repeating. 4065 * 4066 * 7. The L2ARC does not store dirty content. It never needs to flush 4067 * write buffers back to disk based storage. 4068 * 4069 * 8. If an ARC buffer is written (and dirtied) which also exists in the 4070 * L2ARC, the now stale L2ARC buffer is immediately dropped. 4071 * 4072 * The performance of the L2ARC can be tweaked by a number of tunables, which 4073 * may be necessary for different workloads: 4074 * 4075 * l2arc_write_max max write bytes per interval 4076 * l2arc_write_boost extra write bytes during device warmup 4077 * l2arc_noprefetch skip caching prefetched buffers 4078 * l2arc_headroom number of max device writes to precache 4079 * l2arc_headroom_boost when we find compressed buffers during ARC 4080 * scanning, we multiply headroom by this 4081 * percentage factor for the next scan cycle, 4082 * since more compressed buffers are likely to 4083 * be present 4084 * l2arc_feed_secs seconds between L2ARC writing 4085 * 4086 * Tunables may be removed or added as future performance improvements are 4087 * integrated, and also may become zpool properties. 4088 * 4089 * There are three key functions that control how the L2ARC warms up: 4090 * 4091 * l2arc_write_eligible() check if a buffer is eligible to cache 4092 * l2arc_write_size() calculate how much to write 4093 * l2arc_write_interval() calculate sleep delay between writes 4094 * 4095 * These three functions determine what to write, how much, and how quickly 4096 * to send writes. 4097 */ 4098 4099 static boolean_t 4100 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) 4101 { 4102 /* 4103 * A buffer is *not* eligible for the L2ARC if it: 4104 * 1. belongs to a different spa. 4105 * 2. is already cached on the L2ARC. 4106 * 3. has an I/O in progress (it may be an incomplete read). 4107 * 4. is flagged not eligible (zfs property). 4108 */ 4109 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL || 4110 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 4111 return (B_FALSE); 4112 4113 return (B_TRUE); 4114 } 4115 4116 static uint64_t 4117 l2arc_write_size(void) 4118 { 4119 uint64_t size; 4120 4121 /* 4122 * Make sure our globals have meaningful values in case the user 4123 * altered them. 4124 */ 4125 size = l2arc_write_max; 4126 if (size == 0) { 4127 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 4128 "be greater than zero, resetting it to the default (%d)", 4129 L2ARC_WRITE_SIZE); 4130 size = l2arc_write_max = L2ARC_WRITE_SIZE; 4131 } 4132 4133 if (arc_warm == B_FALSE) 4134 size += l2arc_write_boost; 4135 4136 return (size); 4137 4138 } 4139 4140 static clock_t 4141 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 4142 { 4143 clock_t interval, next, now; 4144 4145 /* 4146 * If the ARC lists are busy, increase our write rate; if the 4147 * lists are stale, idle back. This is achieved by checking 4148 * how much we previously wrote - if it was more than half of 4149 * what we wanted, schedule the next write much sooner. 4150 */ 4151 if (l2arc_feed_again && wrote > (wanted / 2)) 4152 interval = (hz * l2arc_feed_min_ms) / 1000; 4153 else 4154 interval = hz * l2arc_feed_secs; 4155 4156 now = ddi_get_lbolt(); 4157 next = MAX(now, MIN(now + interval, began + interval)); 4158 4159 return (next); 4160 } 4161 4162 static void 4163 l2arc_hdr_stat_add(void) 4164 { 4165 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 4166 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 4167 } 4168 4169 static void 4170 l2arc_hdr_stat_remove(void) 4171 { 4172 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 4173 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 4174 } 4175 4176 /* 4177 * Cycle through L2ARC devices. This is how L2ARC load balances. 4178 * If a device is returned, this also returns holding the spa config lock. 4179 */ 4180 static l2arc_dev_t * 4181 l2arc_dev_get_next(void) 4182 { 4183 l2arc_dev_t *first, *next = NULL; 4184 4185 /* 4186 * Lock out the removal of spas (spa_namespace_lock), then removal 4187 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 4188 * both locks will be dropped and a spa config lock held instead. 4189 */ 4190 mutex_enter(&spa_namespace_lock); 4191 mutex_enter(&l2arc_dev_mtx); 4192 4193 /* if there are no vdevs, there is nothing to do */ 4194 if (l2arc_ndev == 0) 4195 goto out; 4196 4197 first = NULL; 4198 next = l2arc_dev_last; 4199 do { 4200 /* loop around the list looking for a non-faulted vdev */ 4201 if (next == NULL) { 4202 next = list_head(l2arc_dev_list); 4203 } else { 4204 next = list_next(l2arc_dev_list, next); 4205 if (next == NULL) 4206 next = list_head(l2arc_dev_list); 4207 } 4208 4209 /* if we have come back to the start, bail out */ 4210 if (first == NULL) 4211 first = next; 4212 else if (next == first) 4213 break; 4214 4215 } while (vdev_is_dead(next->l2ad_vdev)); 4216 4217 /* if we were unable to find any usable vdevs, return NULL */ 4218 if (vdev_is_dead(next->l2ad_vdev)) 4219 next = NULL; 4220 4221 l2arc_dev_last = next; 4222 4223 out: 4224 mutex_exit(&l2arc_dev_mtx); 4225 4226 /* 4227 * Grab the config lock to prevent the 'next' device from being 4228 * removed while we are writing to it. 4229 */ 4230 if (next != NULL) 4231 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 4232 mutex_exit(&spa_namespace_lock); 4233 4234 return (next); 4235 } 4236 4237 /* 4238 * Free buffers that were tagged for destruction. 4239 */ 4240 static void 4241 l2arc_do_free_on_write() 4242 { 4243 list_t *buflist; 4244 l2arc_data_free_t *df, *df_prev; 4245 4246 mutex_enter(&l2arc_free_on_write_mtx); 4247 buflist = l2arc_free_on_write; 4248 4249 for (df = list_tail(buflist); df; df = df_prev) { 4250 df_prev = list_prev(buflist, df); 4251 ASSERT(df->l2df_data != NULL); 4252 ASSERT(df->l2df_func != NULL); 4253 df->l2df_func(df->l2df_data, df->l2df_size); 4254 list_remove(buflist, df); 4255 kmem_free(df, sizeof (l2arc_data_free_t)); 4256 } 4257 4258 mutex_exit(&l2arc_free_on_write_mtx); 4259 } 4260 4261 /* 4262 * A write to a cache device has completed. Update all headers to allow 4263 * reads from these buffers to begin. 4264 */ 4265 static void 4266 l2arc_write_done(zio_t *zio) 4267 { 4268 l2arc_write_callback_t *cb; 4269 l2arc_dev_t *dev; 4270 list_t *buflist; 4271 arc_buf_hdr_t *head, *ab, *ab_prev; 4272 l2arc_buf_hdr_t *abl2; 4273 kmutex_t *hash_lock; 4274 int64_t bytes_dropped = 0; 4275 4276 cb = zio->io_private; 4277 ASSERT(cb != NULL); 4278 dev = cb->l2wcb_dev; 4279 ASSERT(dev != NULL); 4280 head = cb->l2wcb_head; 4281 ASSERT(head != NULL); 4282 buflist = dev->l2ad_buflist; 4283 ASSERT(buflist != NULL); 4284 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 4285 l2arc_write_callback_t *, cb); 4286 4287 if (zio->io_error != 0) 4288 ARCSTAT_BUMP(arcstat_l2_writes_error); 4289 4290 mutex_enter(&l2arc_buflist_mtx); 4291 4292 /* 4293 * All writes completed, or an error was hit. 4294 */ 4295 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 4296 ab_prev = list_prev(buflist, ab); 4297 abl2 = ab->b_l2hdr; 4298 4299 /* 4300 * Release the temporary compressed buffer as soon as possible. 4301 */ 4302 if (abl2->b_compress != ZIO_COMPRESS_OFF) 4303 l2arc_release_cdata_buf(ab); 4304 4305 hash_lock = HDR_LOCK(ab); 4306 if (!mutex_tryenter(hash_lock)) { 4307 /* 4308 * This buffer misses out. It may be in a stage 4309 * of eviction. Its ARC_L2_WRITING flag will be 4310 * left set, denying reads to this buffer. 4311 */ 4312 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 4313 continue; 4314 } 4315 4316 if (zio->io_error != 0) { 4317 /* 4318 * Error - drop L2ARC entry. 4319 */ 4320 list_remove(buflist, ab); 4321 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize); 4322 bytes_dropped += abl2->b_asize; 4323 ab->b_l2hdr = NULL; 4324 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4325 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4326 } 4327 4328 /* 4329 * Allow ARC to begin reads to this L2ARC entry. 4330 */ 4331 ab->b_flags &= ~ARC_L2_WRITING; 4332 4333 mutex_exit(hash_lock); 4334 } 4335 4336 atomic_inc_64(&l2arc_writes_done); 4337 list_remove(buflist, head); 4338 kmem_cache_free(hdr_cache, head); 4339 mutex_exit(&l2arc_buflist_mtx); 4340 4341 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 4342 4343 l2arc_do_free_on_write(); 4344 4345 kmem_free(cb, sizeof (l2arc_write_callback_t)); 4346 } 4347 4348 /* 4349 * A read to a cache device completed. Validate buffer contents before 4350 * handing over to the regular ARC routines. 4351 */ 4352 static void 4353 l2arc_read_done(zio_t *zio) 4354 { 4355 l2arc_read_callback_t *cb; 4356 arc_buf_hdr_t *hdr; 4357 arc_buf_t *buf; 4358 kmutex_t *hash_lock; 4359 int equal; 4360 4361 ASSERT(zio->io_vd != NULL); 4362 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 4363 4364 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 4365 4366 cb = zio->io_private; 4367 ASSERT(cb != NULL); 4368 buf = cb->l2rcb_buf; 4369 ASSERT(buf != NULL); 4370 4371 hash_lock = HDR_LOCK(buf->b_hdr); 4372 mutex_enter(hash_lock); 4373 hdr = buf->b_hdr; 4374 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 4375 4376 /* 4377 * If the buffer was compressed, decompress it first. 4378 */ 4379 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF) 4380 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress); 4381 ASSERT(zio->io_data != NULL); 4382 4383 /* 4384 * Check this survived the L2ARC journey. 4385 */ 4386 equal = arc_cksum_equal(buf); 4387 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 4388 mutex_exit(hash_lock); 4389 zio->io_private = buf; 4390 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 4391 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 4392 arc_read_done(zio); 4393 } else { 4394 mutex_exit(hash_lock); 4395 /* 4396 * Buffer didn't survive caching. Increment stats and 4397 * reissue to the original storage device. 4398 */ 4399 if (zio->io_error != 0) { 4400 ARCSTAT_BUMP(arcstat_l2_io_error); 4401 } else { 4402 zio->io_error = SET_ERROR(EIO); 4403 } 4404 if (!equal) 4405 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4406 4407 /* 4408 * If there's no waiter, issue an async i/o to the primary 4409 * storage now. If there *is* a waiter, the caller must 4410 * issue the i/o in a context where it's OK to block. 4411 */ 4412 if (zio->io_waiter == NULL) { 4413 zio_t *pio = zio_unique_parent(zio); 4414 4415 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4416 4417 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4418 buf->b_data, zio->io_size, arc_read_done, buf, 4419 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4420 } 4421 } 4422 4423 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4424 } 4425 4426 /* 4427 * This is the list priority from which the L2ARC will search for pages to 4428 * cache. This is used within loops (0..3) to cycle through lists in the 4429 * desired order. This order can have a significant effect on cache 4430 * performance. 4431 * 4432 * Currently the metadata lists are hit first, MFU then MRU, followed by 4433 * the data lists. This function returns a locked list, and also returns 4434 * the lock pointer. 4435 */ 4436 static list_t * 4437 l2arc_list_locked(int list_num, kmutex_t **lock) 4438 { 4439 list_t *list = NULL; 4440 4441 ASSERT(list_num >= 0 && list_num <= 3); 4442 4443 switch (list_num) { 4444 case 0: 4445 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4446 *lock = &arc_mfu->arcs_mtx; 4447 break; 4448 case 1: 4449 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4450 *lock = &arc_mru->arcs_mtx; 4451 break; 4452 case 2: 4453 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4454 *lock = &arc_mfu->arcs_mtx; 4455 break; 4456 case 3: 4457 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4458 *lock = &arc_mru->arcs_mtx; 4459 break; 4460 } 4461 4462 ASSERT(!(MUTEX_HELD(*lock))); 4463 mutex_enter(*lock); 4464 return (list); 4465 } 4466 4467 /* 4468 * Evict buffers from the device write hand to the distance specified in 4469 * bytes. This distance may span populated buffers, it may span nothing. 4470 * This is clearing a region on the L2ARC device ready for writing. 4471 * If the 'all' boolean is set, every buffer is evicted. 4472 */ 4473 static void 4474 _l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all, 4475 boolean_t space_update) 4476 { 4477 list_t *buflist; 4478 l2arc_buf_hdr_t *abl2; 4479 arc_buf_hdr_t *ab, *ab_prev; 4480 kmutex_t *hash_lock; 4481 uint64_t taddr; 4482 int64_t bytes_evicted = 0; 4483 4484 buflist = dev->l2ad_buflist; 4485 4486 if (buflist == NULL) 4487 return; 4488 4489 if (!all && dev->l2ad_first) { 4490 /* 4491 * This is the first sweep through the device. There is 4492 * nothing to evict. 4493 */ 4494 return; 4495 } 4496 4497 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4498 /* 4499 * When nearing the end of the device, evict to the end 4500 * before the device write hand jumps to the start. 4501 */ 4502 taddr = dev->l2ad_end; 4503 } else { 4504 taddr = dev->l2ad_hand + distance; 4505 } 4506 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4507 uint64_t, taddr, boolean_t, all); 4508 4509 top: 4510 mutex_enter(&l2arc_buflist_mtx); 4511 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4512 ab_prev = list_prev(buflist, ab); 4513 4514 hash_lock = HDR_LOCK(ab); 4515 if (!mutex_tryenter(hash_lock)) { 4516 /* 4517 * Missed the hash lock. Retry. 4518 */ 4519 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4520 mutex_exit(&l2arc_buflist_mtx); 4521 mutex_enter(hash_lock); 4522 mutex_exit(hash_lock); 4523 goto top; 4524 } 4525 4526 if (HDR_L2_WRITE_HEAD(ab)) { 4527 /* 4528 * We hit a write head node. Leave it for 4529 * l2arc_write_done(). 4530 */ 4531 list_remove(buflist, ab); 4532 mutex_exit(hash_lock); 4533 continue; 4534 } 4535 4536 if (!all && ab->b_l2hdr != NULL && 4537 (ab->b_l2hdr->b_daddr > taddr || 4538 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4539 /* 4540 * We've evicted to the target address, 4541 * or the end of the device. 4542 */ 4543 mutex_exit(hash_lock); 4544 break; 4545 } 4546 4547 if (HDR_FREE_IN_PROGRESS(ab)) { 4548 /* 4549 * Already on the path to destruction. 4550 */ 4551 mutex_exit(hash_lock); 4552 continue; 4553 } 4554 4555 if (ab->b_state == arc_l2c_only) { 4556 ASSERT(!HDR_L2_READING(ab)); 4557 /* 4558 * This doesn't exist in the ARC. Destroy. 4559 * arc_hdr_destroy() will call list_remove() 4560 * and decrement arcstat_l2_size. 4561 */ 4562 arc_change_state(arc_anon, ab, hash_lock); 4563 arc_hdr_destroy(ab); 4564 } else { 4565 /* 4566 * Invalidate issued or about to be issued 4567 * reads, since we may be about to write 4568 * over this location. 4569 */ 4570 if (HDR_L2_READING(ab)) { 4571 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4572 ab->b_flags |= ARC_L2_EVICTED; 4573 } 4574 4575 /* 4576 * Tell ARC this no longer exists in L2ARC. 4577 */ 4578 if (ab->b_l2hdr != NULL) { 4579 abl2 = ab->b_l2hdr; 4580 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize); 4581 bytes_evicted += abl2->b_asize; 4582 ab->b_l2hdr = NULL; 4583 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4584 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4585 } 4586 list_remove(buflist, ab); 4587 4588 /* 4589 * This may have been leftover after a 4590 * failed write. 4591 */ 4592 ab->b_flags &= ~ARC_L2_WRITING; 4593 } 4594 mutex_exit(hash_lock); 4595 } 4596 mutex_exit(&l2arc_buflist_mtx); 4597 4598 /* 4599 * Note: l2ad_vdev can only be touched if space_update is set, 4600 * otherwise the vdev might have been removed by an async 4601 * spa_unload. 4602 */ 4603 if (space_update) { 4604 vdev_space_update(dev->l2ad_vdev, -bytes_evicted, 0, 0); 4605 dev->l2ad_evict = taddr; 4606 } 4607 } 4608 4609 /* 4610 * Asynchronous task for eviction of all the buffers for this L2ARC device 4611 * The task is dispatched in l2arc_evict() 4612 */ 4613 typedef struct { 4614 l2arc_dev_t *dev; 4615 } l2arc_evict_data_t; 4616 4617 static void 4618 l2arc_evict_task(void *arg) 4619 { 4620 l2arc_evict_data_t *d = (l2arc_evict_data_t *)arg; 4621 ASSERT(d && d->dev); 4622 4623 /* 4624 * Evict l2arc buffers asynchronously; we need to keep the device 4625 * around until we are sure there aren't any buffers referencing it. 4626 * We do not need to hold any config locks, etc. because at this point, 4627 * we are the only ones who knows about this device (the in-core 4628 * structure), so no new buffers can be created (e.g. if the pool is 4629 * re-imported while the asynchronous eviction is in progress) that 4630 * reference this same in-core structure. Also remove the vdev link 4631 * since further use of it as l2arc device is prohibited. 4632 */ 4633 d->dev->l2ad_vdev = NULL; 4634 _l2arc_evict(d->dev, 0LL, B_TRUE, B_FALSE); 4635 4636 /* Same cleanup as in the synchronous path */ 4637 list_destroy(d->dev->l2ad_buflist); 4638 kmem_free(d->dev->l2ad_buflist, sizeof (list_t)); 4639 kmem_free(d->dev, sizeof (l2arc_dev_t)); 4640 /* Task argument cleanup */ 4641 kmem_free(arg, sizeof (l2arc_evict_data_t)); 4642 } 4643 4644 boolean_t zfs_l2arc_async_evict = B_TRUE; 4645 4646 /* 4647 * Perform l2arc eviction for buffers associated with this device 4648 * If evicting all buffers (done at pool export time), try to evict 4649 * asynchronously, and fall back to synchronous eviction in case of error 4650 * Tell the caller whether to cleanup the device: 4651 * - B_TRUE means "asynchronous eviction, do not cleanup" 4652 * - B_FALSE means "synchronous eviction, done, please cleanup" 4653 */ 4654 static boolean_t 4655 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4656 { 4657 /* 4658 * If we are evicting all the buffers for this device, which happens 4659 * at pool export time, schedule asynchronous task 4660 */ 4661 if (all && zfs_l2arc_async_evict) { 4662 l2arc_evict_data_t *arg = 4663 kmem_alloc(sizeof (l2arc_evict_data_t), KM_SLEEP); 4664 arg->dev = dev; 4665 4666 dev->l2ad_evict = dev->l2ad_end; 4667 4668 if ((taskq_dispatch(arc_flush_taskq, l2arc_evict_task, 4669 arg, TQ_NOSLEEP) == NULL)) { 4670 /* 4671 * Failed to dispatch asynchronous task 4672 * cleanup, evict synchronously, avoid adjusting 4673 * vdev space second time 4674 */ 4675 kmem_free(arg, sizeof (l2arc_evict_data_t)); 4676 _l2arc_evict(dev, distance, all, B_FALSE); 4677 } else { 4678 /* 4679 * Successfull dispatch, vdev space updated 4680 */ 4681 return (B_TRUE); 4682 } 4683 } else { 4684 /* Evict synchronously */ 4685 _l2arc_evict(dev, distance, all, B_TRUE); 4686 } 4687 4688 return (B_FALSE); 4689 } 4690 4691 /* 4692 * Find and write ARC buffers to the L2ARC device. 4693 * 4694 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4695 * for reading until they have completed writing. 4696 * The headroom_boost is an in-out parameter used to maintain headroom boost 4697 * state between calls to this function. 4698 * 4699 * Returns the number of bytes actually written (which may be smaller than 4700 * the delta by which the device hand has changed due to alignment). 4701 */ 4702 static uint64_t 4703 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz, 4704 boolean_t *headroom_boost) 4705 { 4706 arc_buf_hdr_t *ab, *ab_prev, *head; 4707 list_t *list; 4708 uint64_t write_asize, write_psize, write_sz, headroom, 4709 buf_compress_minsz; 4710 void *buf_data; 4711 kmutex_t *list_lock; 4712 boolean_t full; 4713 l2arc_write_callback_t *cb; 4714 zio_t *pio, *wzio; 4715 uint64_t guid = spa_load_guid(spa); 4716 const boolean_t do_headroom_boost = *headroom_boost; 4717 4718 ASSERT(dev->l2ad_vdev != NULL); 4719 4720 /* Lower the flag now, we might want to raise it again later. */ 4721 *headroom_boost = B_FALSE; 4722 4723 pio = NULL; 4724 write_sz = write_asize = write_psize = 0; 4725 full = B_FALSE; 4726 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4727 head->b_flags |= ARC_L2_WRITE_HEAD; 4728 4729 /* 4730 * We will want to try to compress buffers that are at least 2x the 4731 * device sector size. 4732 */ 4733 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift; 4734 4735 /* 4736 * Copy buffers for L2ARC writing. 4737 */ 4738 mutex_enter(&l2arc_buflist_mtx); 4739 for (int try = 0; try <= 3; try++) { 4740 uint64_t passed_sz = 0; 4741 4742 list = l2arc_list_locked(try, &list_lock); 4743 4744 /* 4745 * L2ARC fast warmup. 4746 * 4747 * Until the ARC is warm and starts to evict, read from the 4748 * head of the ARC lists rather than the tail. 4749 */ 4750 if (arc_warm == B_FALSE) 4751 ab = list_head(list); 4752 else 4753 ab = list_tail(list); 4754 4755 headroom = target_sz * l2arc_headroom; 4756 if (do_headroom_boost) 4757 headroom = (headroom * l2arc_headroom_boost) / 100; 4758 4759 for (; ab; ab = ab_prev) { 4760 l2arc_buf_hdr_t *l2hdr; 4761 kmutex_t *hash_lock; 4762 uint64_t buf_sz; 4763 4764 if (arc_warm == B_FALSE) 4765 ab_prev = list_next(list, ab); 4766 else 4767 ab_prev = list_prev(list, ab); 4768 4769 hash_lock = HDR_LOCK(ab); 4770 if (!mutex_tryenter(hash_lock)) { 4771 /* 4772 * Skip this buffer rather than waiting. 4773 */ 4774 continue; 4775 } 4776 4777 passed_sz += ab->b_size; 4778 if (passed_sz > headroom) { 4779 /* 4780 * Searched too far. 4781 */ 4782 mutex_exit(hash_lock); 4783 break; 4784 } 4785 4786 if (!l2arc_write_eligible(guid, ab)) { 4787 mutex_exit(hash_lock); 4788 continue; 4789 } 4790 4791 if ((write_sz + ab->b_size) > target_sz) { 4792 full = B_TRUE; 4793 mutex_exit(hash_lock); 4794 break; 4795 } 4796 4797 if (pio == NULL) { 4798 /* 4799 * Insert a dummy header on the buflist so 4800 * l2arc_write_done() can find where the 4801 * write buffers begin without searching. 4802 */ 4803 list_insert_head(dev->l2ad_buflist, head); 4804 4805 cb = kmem_alloc( 4806 sizeof (l2arc_write_callback_t), KM_SLEEP); 4807 cb->l2wcb_dev = dev; 4808 cb->l2wcb_head = head; 4809 pio = zio_root(spa, l2arc_write_done, cb, 4810 ZIO_FLAG_CANFAIL); 4811 } 4812 4813 /* 4814 * Create and add a new L2ARC header. 4815 */ 4816 l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4817 l2hdr->b_dev = dev; 4818 ab->b_flags |= ARC_L2_WRITING; 4819 4820 /* 4821 * Temporarily stash the data buffer in b_tmp_cdata. 4822 * The subsequent write step will pick it up from 4823 * there. This is because can't access ab->b_buf 4824 * without holding the hash_lock, which we in turn 4825 * can't access without holding the ARC list locks 4826 * (which we want to avoid during compression/writing). 4827 */ 4828 l2hdr->b_compress = ZIO_COMPRESS_OFF; 4829 l2hdr->b_asize = ab->b_size; 4830 l2hdr->b_tmp_cdata = ab->b_buf->b_data; 4831 4832 buf_sz = ab->b_size; 4833 ab->b_l2hdr = l2hdr; 4834 4835 list_insert_head(dev->l2ad_buflist, ab); 4836 4837 /* 4838 * Compute and store the buffer cksum before 4839 * writing. On debug the cksum is verified first. 4840 */ 4841 arc_cksum_verify(ab->b_buf); 4842 arc_cksum_compute(ab->b_buf, B_TRUE); 4843 4844 mutex_exit(hash_lock); 4845 4846 write_sz += buf_sz; 4847 } 4848 4849 mutex_exit(list_lock); 4850 4851 if (full == B_TRUE) 4852 break; 4853 } 4854 4855 /* No buffers selected for writing? */ 4856 if (pio == NULL) { 4857 ASSERT0(write_sz); 4858 mutex_exit(&l2arc_buflist_mtx); 4859 kmem_cache_free(hdr_cache, head); 4860 return (0); 4861 } 4862 4863 /* 4864 * Now start writing the buffers. We're starting at the write head 4865 * and work backwards, retracing the course of the buffer selector 4866 * loop above. 4867 */ 4868 for (ab = list_prev(dev->l2ad_buflist, head); ab; 4869 ab = list_prev(dev->l2ad_buflist, ab)) { 4870 l2arc_buf_hdr_t *l2hdr; 4871 uint64_t buf_sz; 4872 4873 /* 4874 * We shouldn't need to lock the buffer here, since we flagged 4875 * it as ARC_L2_WRITING in the previous step, but we must take 4876 * care to only access its L2 cache parameters. In particular, 4877 * ab->b_buf may be invalid by now due to ARC eviction. 4878 */ 4879 l2hdr = ab->b_l2hdr; 4880 l2hdr->b_daddr = dev->l2ad_hand; 4881 4882 if ((ab->b_flags & ARC_L2COMPRESS) && 4883 l2hdr->b_asize >= buf_compress_minsz) { 4884 if (l2arc_compress_buf(l2hdr)) { 4885 /* 4886 * If compression succeeded, enable headroom 4887 * boost on the next scan cycle. 4888 */ 4889 *headroom_boost = B_TRUE; 4890 } 4891 } 4892 4893 /* 4894 * Pick up the buffer data we had previously stashed away 4895 * (and now potentially also compressed). 4896 */ 4897 buf_data = l2hdr->b_tmp_cdata; 4898 buf_sz = l2hdr->b_asize; 4899 4900 /* Compression may have squashed the buffer to zero length. */ 4901 if (buf_sz != 0) { 4902 uint64_t buf_p_sz; 4903 4904 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4905 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4906 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4907 ZIO_FLAG_CANFAIL, B_FALSE); 4908 4909 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4910 zio_t *, wzio); 4911 (void) zio_nowait(wzio); 4912 4913 write_asize += buf_sz; 4914 /* 4915 * Keep the clock hand suitably device-aligned. 4916 */ 4917 buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4918 write_psize += buf_p_sz; 4919 dev->l2ad_hand += buf_p_sz; 4920 } 4921 } 4922 4923 mutex_exit(&l2arc_buflist_mtx); 4924 4925 ASSERT3U(write_asize, <=, target_sz); 4926 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4927 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize); 4928 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4929 ARCSTAT_INCR(arcstat_l2_asize, write_asize); 4930 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0); 4931 4932 /* 4933 * Bump device hand to the device start if it is approaching the end. 4934 * l2arc_evict() will already have evicted ahead for this case. 4935 */ 4936 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4937 dev->l2ad_hand = dev->l2ad_start; 4938 dev->l2ad_evict = dev->l2ad_start; 4939 dev->l2ad_first = B_FALSE; 4940 } 4941 4942 dev->l2ad_writing = B_TRUE; 4943 (void) zio_wait(pio); 4944 dev->l2ad_writing = B_FALSE; 4945 4946 return (write_asize); 4947 } 4948 4949 /* 4950 * Compresses an L2ARC buffer. 4951 * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its 4952 * size in l2hdr->b_asize. This routine tries to compress the data and 4953 * depending on the compression result there are three possible outcomes: 4954 * *) The buffer was incompressible. The original l2hdr contents were left 4955 * untouched and are ready for writing to an L2 device. 4956 * *) The buffer was all-zeros, so there is no need to write it to an L2 4957 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is 4958 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY. 4959 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary 4960 * data buffer which holds the compressed data to be written, and b_asize 4961 * tells us how much data there is. b_compress is set to the appropriate 4962 * compression algorithm. Once writing is done, invoke 4963 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer. 4964 * 4965 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the 4966 * buffer was incompressible). 4967 */ 4968 static boolean_t 4969 l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr) 4970 { 4971 void *cdata; 4972 size_t csize, len, rounded; 4973 4974 ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF); 4975 ASSERT(l2hdr->b_tmp_cdata != NULL); 4976 4977 len = l2hdr->b_asize; 4978 cdata = zio_data_buf_alloc(len); 4979 csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata, 4980 cdata, l2hdr->b_asize); 4981 4982 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE); 4983 if (rounded > csize) { 4984 bzero((char *)cdata + csize, rounded - csize); 4985 csize = rounded; 4986 } 4987 4988 if (csize == 0) { 4989 /* zero block, indicate that there's nothing to write */ 4990 zio_data_buf_free(cdata, len); 4991 l2hdr->b_compress = ZIO_COMPRESS_EMPTY; 4992 l2hdr->b_asize = 0; 4993 l2hdr->b_tmp_cdata = NULL; 4994 ARCSTAT_BUMP(arcstat_l2_compress_zeros); 4995 return (B_TRUE); 4996 } else if (csize > 0 && csize < len) { 4997 /* 4998 * Compression succeeded, we'll keep the cdata around for 4999 * writing and release it afterwards. 5000 */ 5001 l2hdr->b_compress = ZIO_COMPRESS_LZ4; 5002 l2hdr->b_asize = csize; 5003 l2hdr->b_tmp_cdata = cdata; 5004 ARCSTAT_BUMP(arcstat_l2_compress_successes); 5005 return (B_TRUE); 5006 } else { 5007 /* 5008 * Compression failed, release the compressed buffer. 5009 * l2hdr will be left unmodified. 5010 */ 5011 zio_data_buf_free(cdata, len); 5012 ARCSTAT_BUMP(arcstat_l2_compress_failures); 5013 return (B_FALSE); 5014 } 5015 } 5016 5017 /* 5018 * Decompresses a zio read back from an l2arc device. On success, the 5019 * underlying zio's io_data buffer is overwritten by the uncompressed 5020 * version. On decompression error (corrupt compressed stream), the 5021 * zio->io_error value is set to signal an I/O error. 5022 * 5023 * Please note that the compressed data stream is not checksummed, so 5024 * if the underlying device is experiencing data corruption, we may feed 5025 * corrupt data to the decompressor, so the decompressor needs to be 5026 * able to handle this situation (LZ4 does). 5027 */ 5028 static void 5029 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c) 5030 { 5031 ASSERT(L2ARC_IS_VALID_COMPRESS(c)); 5032 5033 if (zio->io_error != 0) { 5034 /* 5035 * An io error has occured, just restore the original io 5036 * size in preparation for a main pool read. 5037 */ 5038 zio->io_orig_size = zio->io_size = hdr->b_size; 5039 return; 5040 } 5041 5042 if (c == ZIO_COMPRESS_EMPTY) { 5043 /* 5044 * An empty buffer results in a null zio, which means we 5045 * need to fill its io_data after we're done restoring the 5046 * buffer's contents. 5047 */ 5048 ASSERT(hdr->b_buf != NULL); 5049 bzero(hdr->b_buf->b_data, hdr->b_size); 5050 zio->io_data = zio->io_orig_data = hdr->b_buf->b_data; 5051 } else { 5052 ASSERT(zio->io_data != NULL); 5053 /* 5054 * We copy the compressed data from the start of the arc buffer 5055 * (the zio_read will have pulled in only what we need, the 5056 * rest is garbage which we will overwrite at decompression) 5057 * and then decompress back to the ARC data buffer. This way we 5058 * can minimize copying by simply decompressing back over the 5059 * original compressed data (rather than decompressing to an 5060 * aux buffer and then copying back the uncompressed buffer, 5061 * which is likely to be much larger). 5062 */ 5063 uint64_t csize; 5064 void *cdata; 5065 5066 csize = zio->io_size; 5067 cdata = zio_data_buf_alloc(csize); 5068 bcopy(zio->io_data, cdata, csize); 5069 if (zio_decompress_data(c, cdata, zio->io_data, csize, 5070 hdr->b_size) != 0) 5071 zio->io_error = EIO; 5072 zio_data_buf_free(cdata, csize); 5073 } 5074 5075 /* Restore the expected uncompressed IO size. */ 5076 zio->io_orig_size = zio->io_size = hdr->b_size; 5077 } 5078 5079 /* 5080 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure. 5081 * This buffer serves as a temporary holder of compressed data while 5082 * the buffer entry is being written to an l2arc device. Once that is 5083 * done, we can dispose of it. 5084 */ 5085 static void 5086 l2arc_release_cdata_buf(arc_buf_hdr_t *ab) 5087 { 5088 l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr; 5089 5090 if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) { 5091 /* 5092 * If the data was compressed, then we've allocated a 5093 * temporary buffer for it, so now we need to release it. 5094 */ 5095 ASSERT(l2hdr->b_tmp_cdata != NULL); 5096 zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size); 5097 } 5098 l2hdr->b_tmp_cdata = NULL; 5099 } 5100 5101 /* 5102 * This thread feeds the L2ARC at regular intervals. This is the beating 5103 * heart of the L2ARC. 5104 */ 5105 static void 5106 l2arc_feed_thread(void) 5107 { 5108 callb_cpr_t cpr; 5109 l2arc_dev_t *dev; 5110 spa_t *spa; 5111 uint64_t size, wrote; 5112 clock_t begin, next = ddi_get_lbolt(); 5113 boolean_t headroom_boost = B_FALSE; 5114 5115 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 5116 5117 mutex_enter(&l2arc_feed_thr_lock); 5118 5119 while (l2arc_thread_exit == 0) { 5120 CALLB_CPR_SAFE_BEGIN(&cpr); 5121 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 5122 next); 5123 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 5124 next = ddi_get_lbolt() + hz; 5125 5126 /* 5127 * Quick check for L2ARC devices. 5128 */ 5129 mutex_enter(&l2arc_dev_mtx); 5130 if (l2arc_ndev == 0) { 5131 mutex_exit(&l2arc_dev_mtx); 5132 continue; 5133 } 5134 mutex_exit(&l2arc_dev_mtx); 5135 begin = ddi_get_lbolt(); 5136 5137 /* 5138 * This selects the next l2arc device to write to, and in 5139 * doing so the next spa to feed from: dev->l2ad_spa. This 5140 * will return NULL if there are now no l2arc devices or if 5141 * they are all faulted. 5142 * 5143 * If a device is returned, its spa's config lock is also 5144 * held to prevent device removal. l2arc_dev_get_next() 5145 * will grab and release l2arc_dev_mtx. 5146 */ 5147 if ((dev = l2arc_dev_get_next()) == NULL) 5148 continue; 5149 5150 spa = dev->l2ad_spa; 5151 ASSERT(spa != NULL); 5152 5153 /* 5154 * If the pool is read-only then force the feed thread to 5155 * sleep a little longer. 5156 */ 5157 if (!spa_writeable(spa)) { 5158 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 5159 spa_config_exit(spa, SCL_L2ARC, dev); 5160 continue; 5161 } 5162 5163 /* 5164 * Avoid contributing to memory pressure. 5165 */ 5166 if (arc_reclaim_needed()) { 5167 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 5168 spa_config_exit(spa, SCL_L2ARC, dev); 5169 continue; 5170 } 5171 5172 ARCSTAT_BUMP(arcstat_l2_feeds); 5173 5174 size = l2arc_write_size(); 5175 5176 /* 5177 * Evict L2ARC buffers that will be overwritten. 5178 * B_FALSE guarantees synchronous eviction. 5179 */ 5180 (void) l2arc_evict(dev, size, B_FALSE); 5181 5182 /* 5183 * Write ARC buffers. 5184 */ 5185 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost); 5186 5187 /* 5188 * Calculate interval between writes. 5189 */ 5190 next = l2arc_write_interval(begin, size, wrote); 5191 spa_config_exit(spa, SCL_L2ARC, dev); 5192 } 5193 5194 l2arc_thread_exit = 0; 5195 cv_broadcast(&l2arc_feed_thr_cv); 5196 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 5197 thread_exit(); 5198 } 5199 5200 boolean_t 5201 l2arc_vdev_present(vdev_t *vd) 5202 { 5203 l2arc_dev_t *dev; 5204 5205 mutex_enter(&l2arc_dev_mtx); 5206 for (dev = list_head(l2arc_dev_list); dev != NULL; 5207 dev = list_next(l2arc_dev_list, dev)) { 5208 if (dev->l2ad_vdev == vd) 5209 break; 5210 } 5211 mutex_exit(&l2arc_dev_mtx); 5212 5213 return (dev != NULL); 5214 } 5215 5216 /* 5217 * Add a vdev for use by the L2ARC. By this point the spa has already 5218 * validated the vdev and opened it. 5219 */ 5220 void 5221 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 5222 { 5223 l2arc_dev_t *adddev; 5224 5225 ASSERT(!l2arc_vdev_present(vd)); 5226 5227 /* 5228 * Create a new l2arc device entry. 5229 */ 5230 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 5231 adddev->l2ad_spa = spa; 5232 adddev->l2ad_vdev = vd; 5233 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 5234 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 5235 adddev->l2ad_hand = adddev->l2ad_start; 5236 adddev->l2ad_evict = adddev->l2ad_start; 5237 adddev->l2ad_first = B_TRUE; 5238 adddev->l2ad_writing = B_FALSE; 5239 5240 /* 5241 * This is a list of all ARC buffers that are still valid on the 5242 * device. 5243 */ 5244 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 5245 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 5246 offsetof(arc_buf_hdr_t, b_l2node)); 5247 5248 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 5249 5250 /* 5251 * Add device to global list 5252 */ 5253 mutex_enter(&l2arc_dev_mtx); 5254 list_insert_head(l2arc_dev_list, adddev); 5255 atomic_inc_64(&l2arc_ndev); 5256 mutex_exit(&l2arc_dev_mtx); 5257 } 5258 5259 /* 5260 * Remove a vdev from the L2ARC. 5261 */ 5262 void 5263 l2arc_remove_vdev(vdev_t *vd) 5264 { 5265 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 5266 5267 /* 5268 * Find the device by vdev 5269 */ 5270 mutex_enter(&l2arc_dev_mtx); 5271 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 5272 nextdev = list_next(l2arc_dev_list, dev); 5273 if (vd == dev->l2ad_vdev) { 5274 remdev = dev; 5275 break; 5276 } 5277 } 5278 ASSERT(remdev != NULL); 5279 5280 /* 5281 * Remove device from global list 5282 */ 5283 list_remove(l2arc_dev_list, remdev); 5284 l2arc_dev_last = NULL; /* may have been invalidated */ 5285 atomic_dec_64(&l2arc_ndev); 5286 mutex_exit(&l2arc_dev_mtx); 5287 5288 /* 5289 * Clear all buflists and ARC references. L2ARC device flush. 5290 */ 5291 if (l2arc_evict(remdev, 0, B_TRUE) == B_FALSE) { 5292 /* 5293 * The eviction was done synchronously, cleanup here 5294 * Otherwise, the asynchronous task will cleanup 5295 */ 5296 list_destroy(remdev->l2ad_buflist); 5297 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 5298 kmem_free(remdev, sizeof (l2arc_dev_t)); 5299 } 5300 } 5301 5302 void 5303 l2arc_init(void) 5304 { 5305 l2arc_thread_exit = 0; 5306 l2arc_ndev = 0; 5307 l2arc_writes_sent = 0; 5308 l2arc_writes_done = 0; 5309 5310 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 5311 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 5312 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 5313 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 5314 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 5315 5316 l2arc_dev_list = &L2ARC_dev_list; 5317 l2arc_free_on_write = &L2ARC_free_on_write; 5318 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 5319 offsetof(l2arc_dev_t, l2ad_node)); 5320 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 5321 offsetof(l2arc_data_free_t, l2df_list_node)); 5322 } 5323 5324 void 5325 l2arc_fini(void) 5326 { 5327 /* 5328 * This is called from dmu_fini(), which is called from spa_fini(); 5329 * Because of this, we can assume that all l2arc devices have 5330 * already been removed when the pools themselves were removed. 5331 */ 5332 5333 l2arc_do_free_on_write(); 5334 5335 mutex_destroy(&l2arc_feed_thr_lock); 5336 cv_destroy(&l2arc_feed_thr_cv); 5337 mutex_destroy(&l2arc_dev_mtx); 5338 mutex_destroy(&l2arc_buflist_mtx); 5339 mutex_destroy(&l2arc_free_on_write_mtx); 5340 5341 list_destroy(l2arc_dev_list); 5342 list_destroy(l2arc_free_on_write); 5343 } 5344 5345 void 5346 l2arc_start(void) 5347 { 5348 if (!(spa_mode_global & FWRITE)) 5349 return; 5350 5351 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 5352 TS_RUN, minclsyspri); 5353 } 5354 5355 void 5356 l2arc_stop(void) 5357 { 5358 if (!(spa_mode_global & FWRITE)) 5359 return; 5360 5361 mutex_enter(&l2arc_feed_thr_lock); 5362 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 5363 l2arc_thread_exit = 1; 5364 while (l2arc_thread_exit != 0) 5365 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 5366 mutex_exit(&l2arc_feed_thr_lock); 5367 }