1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24  * Copyright (c) 2013 by Delphix. All rights reserved.
  25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
  26  */
  27 
  28 /*
  29  * DVA-based Adjustable Replacement Cache
  30  *
  31  * While much of the theory of operation used here is
  32  * based on the self-tuning, low overhead replacement cache
  33  * presented by Megiddo and Modha at FAST 2003, there are some
  34  * significant differences:
  35  *
  36  * 1. The Megiddo and Modha model assumes any page is evictable.
  37  * Pages in its cache cannot be "locked" into memory.  This makes
  38  * the eviction algorithm simple: evict the last page in the list.
  39  * This also make the performance characteristics easy to reason
  40  * about.  Our cache is not so simple.  At any given moment, some
  41  * subset of the blocks in the cache are un-evictable because we
  42  * have handed out a reference to them.  Blocks are only evictable
  43  * when there are no external references active.  This makes
  44  * eviction far more problematic:  we choose to evict the evictable
  45  * blocks that are the "lowest" in the list.
  46  *
  47  * There are times when it is not possible to evict the requested
  48  * space.  In these circumstances we are unable to adjust the cache
  49  * size.  To prevent the cache growing unbounded at these times we
  50  * implement a "cache throttle" that slows the flow of new data
  51  * into the cache until we can make space available.
  52  *
  53  * 2. The Megiddo and Modha model assumes a fixed cache size.
  54  * Pages are evicted when the cache is full and there is a cache
  55  * miss.  Our model has a variable sized cache.  It grows with
  56  * high use, but also tries to react to memory pressure from the
  57  * operating system: decreasing its size when system memory is
  58  * tight.
  59  *
  60  * 3. The Megiddo and Modha model assumes a fixed page size. All
  61  * elements of the cache are therefore exactly the same size.  So
  62  * when adjusting the cache size following a cache miss, its simply
  63  * a matter of choosing a single page to evict.  In our model, we
  64  * have variable sized cache blocks (rangeing from 512 bytes to
  65  * 128K bytes).  We therefore choose a set of blocks to evict to make
  66  * space for a cache miss that approximates as closely as possible
  67  * the space used by the new block.
  68  *
  69  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
  70  * by N. Megiddo & D. Modha, FAST 2003
  71  */
  72 
  73 /*
  74  * The locking model:
  75  *
  76  * A new reference to a cache buffer can be obtained in two
  77  * ways: 1) via a hash table lookup using the DVA as a key,
  78  * or 2) via one of the ARC lists.  The arc_read() interface
  79  * uses method 1, while the internal arc algorithms for
  80  * adjusting the cache use method 2.  We therefore provide two
  81  * types of locks: 1) the hash table lock array, and 2) the
  82  * arc list locks.
  83  *
  84  * Buffers do not have their own mutexes, rather they rely on the
  85  * hash table mutexes for the bulk of their protection (i.e. most
  86  * fields in the arc_buf_hdr_t are protected by these mutexes).
  87  *
  88  * buf_hash_find() returns the appropriate mutex (held) when it
  89  * locates the requested buffer in the hash table.  It returns
  90  * NULL for the mutex if the buffer was not in the table.
  91  *
  92  * buf_hash_remove() expects the appropriate hash mutex to be
  93  * already held before it is invoked.
  94  *
  95  * Each arc state also has a mutex which is used to protect the
  96  * buffer list associated with the state.  When attempting to
  97  * obtain a hash table lock while holding an arc list lock you
  98  * must use: mutex_tryenter() to avoid deadlock.  Also note that
  99  * the active state mutex must be held before the ghost state mutex.
 100  *
 101  * Arc buffers may have an associated eviction callback function.
 102  * This function will be invoked prior to removing the buffer (e.g.
 103  * in arc_do_user_evicts()).  Note however that the data associated
 104  * with the buffer may be evicted prior to the callback.  The callback
 105  * must be made with *no locks held* (to prevent deadlock).  Additionally,
 106  * the users of callbacks must ensure that their private data is
 107  * protected from simultaneous callbacks from arc_buf_evict()
 108  * and arc_do_user_evicts().
 109  *
 110  * Note that the majority of the performance stats are manipulated
 111  * with atomic operations.
 112  *
 113  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
 114  *
 115  *      - L2ARC buflist creation
 116  *      - L2ARC buflist eviction
 117  *      - L2ARC write completion, which walks L2ARC buflists
 118  *      - ARC header destruction, as it removes from L2ARC buflists
 119  *      - ARC header release, as it removes from L2ARC buflists
 120  */
 121 
 122 #include <sys/spa.h>
 123 #include <sys/zio.h>
 124 #include <sys/zio_compress.h>
 125 #include <sys/zfs_context.h>
 126 #include <sys/arc.h>
 127 #include <sys/refcount.h>
 128 #include <sys/vdev.h>
 129 #include <sys/vdev_impl.h>
 130 #ifdef _KERNEL
 131 #include <sys/vmsystm.h>
 132 #include <vm/anon.h>
 133 #include <sys/fs/swapnode.h>
 134 #include <sys/dnlc.h>
 135 #endif
 136 #include <sys/callb.h>
 137 #include <sys/kstat.h>
 138 #include <zfs_fletcher.h>
 139 
 140 #ifndef _KERNEL
 141 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
 142 boolean_t arc_watch = B_FALSE;
 143 int arc_procfd;
 144 #endif
 145 
 146 static kmutex_t         arc_reclaim_thr_lock;
 147 static kcondvar_t       arc_reclaim_thr_cv;     /* used to signal reclaim thr */
 148 static uint8_t          arc_thread_exit;
 149 
 150 extern int zfs_write_limit_shift;
 151 extern uint64_t zfs_write_limit_max;
 152 extern kmutex_t zfs_write_limit_lock;
 153 
 154 #define ARC_REDUCE_DNLC_PERCENT 3
 155 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
 156 
 157 typedef enum arc_reclaim_strategy {
 158         ARC_RECLAIM_AGGR,               /* Aggressive reclaim strategy */
 159         ARC_RECLAIM_CONS                /* Conservative reclaim strategy */
 160 } arc_reclaim_strategy_t;
 161 
 162 /* number of seconds before growing cache again */
 163 static int              arc_grow_retry = 60;
 164 
 165 /* shift of arc_c for calculating both min and max arc_p */
 166 static int              arc_p_min_shift = 4;
 167 
 168 /* log2(fraction of arc to reclaim) */
 169 static int              arc_shrink_shift = 5;
 170 
 171 /*
 172  * minimum lifespan of a prefetch block in clock ticks
 173  * (initialized in arc_init())
 174  */
 175 static int              arc_min_prefetch_lifespan;
 176 
 177 static int arc_dead;
 178 
 179 /*
 180  * The arc has filled available memory and has now warmed up.
 181  */
 182 static boolean_t arc_warm;
 183 
 184 /*
 185  * These tunables are for performance analysis.
 186  */
 187 uint64_t zfs_arc_max;
 188 uint64_t zfs_arc_min;
 189 uint64_t zfs_arc_meta_limit = 0;
 190 int zfs_arc_grow_retry = 0;
 191 int zfs_arc_shrink_shift = 0;
 192 int zfs_arc_p_min_shift = 0;
 193 int zfs_disable_dup_eviction = 0;
 194 
 195 /*
 196  * Note that buffers can be in one of 6 states:
 197  *      ARC_anon        - anonymous (discussed below)
 198  *      ARC_mru         - recently used, currently cached
 199  *      ARC_mru_ghost   - recentely used, no longer in cache
 200  *      ARC_mfu         - frequently used, currently cached
 201  *      ARC_mfu_ghost   - frequently used, no longer in cache
 202  *      ARC_l2c_only    - exists in L2ARC but not other states
 203  * When there are no active references to the buffer, they are
 204  * are linked onto a list in one of these arc states.  These are
 205  * the only buffers that can be evicted or deleted.  Within each
 206  * state there are multiple lists, one for meta-data and one for
 207  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
 208  * etc.) is tracked separately so that it can be managed more
 209  * explicitly: favored over data, limited explicitly.
 210  *
 211  * Anonymous buffers are buffers that are not associated with
 212  * a DVA.  These are buffers that hold dirty block copies
 213  * before they are written to stable storage.  By definition,
 214  * they are "ref'd" and are considered part of arc_mru
 215  * that cannot be freed.  Generally, they will aquire a DVA
 216  * as they are written and migrate onto the arc_mru list.
 217  *
 218  * The ARC_l2c_only state is for buffers that are in the second
 219  * level ARC but no longer in any of the ARC_m* lists.  The second
 220  * level ARC itself may also contain buffers that are in any of
 221  * the ARC_m* states - meaning that a buffer can exist in two
 222  * places.  The reason for the ARC_l2c_only state is to keep the
 223  * buffer header in the hash table, so that reads that hit the
 224  * second level ARC benefit from these fast lookups.
 225  */
 226 
 227 typedef struct arc_state {
 228         list_t  arcs_list[ARC_BUFC_NUMTYPES];   /* list of evictable buffers */
 229         uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */
 230         uint64_t arcs_size;     /* total amount of data in this state */
 231         kmutex_t arcs_mtx;
 232 } arc_state_t;
 233 
 234 /* The 6 states: */
 235 static arc_state_t ARC_anon;
 236 static arc_state_t ARC_mru;
 237 static arc_state_t ARC_mru_ghost;
 238 static arc_state_t ARC_mfu;
 239 static arc_state_t ARC_mfu_ghost;
 240 static arc_state_t ARC_l2c_only;
 241 
 242 typedef struct arc_stats {
 243         kstat_named_t arcstat_hits;
 244         kstat_named_t arcstat_misses;
 245         kstat_named_t arcstat_demand_data_hits;
 246         kstat_named_t arcstat_demand_data_misses;
 247         kstat_named_t arcstat_demand_metadata_hits;
 248         kstat_named_t arcstat_demand_metadata_misses;
 249         kstat_named_t arcstat_prefetch_data_hits;
 250         kstat_named_t arcstat_prefetch_data_misses;
 251         kstat_named_t arcstat_prefetch_metadata_hits;
 252         kstat_named_t arcstat_prefetch_metadata_misses;
 253         kstat_named_t arcstat_mru_hits;
 254         kstat_named_t arcstat_mru_ghost_hits;
 255         kstat_named_t arcstat_mfu_hits;
 256         kstat_named_t arcstat_mfu_ghost_hits;
 257         kstat_named_t arcstat_deleted;
 258         kstat_named_t arcstat_recycle_miss;
 259         /*
 260          * Number of buffers that could not be evicted because the hash lock
 261          * was held by another thread.  The lock may not necessarily be held
 262          * by something using the same buffer, since hash locks are shared
 263          * by multiple buffers.
 264          */
 265         kstat_named_t arcstat_mutex_miss;
 266         /*
 267          * Number of buffers skipped because they have I/O in progress, are
 268          * indrect prefetch buffers that have not lived long enough, or are
 269          * not from the spa we're trying to evict from.
 270          */
 271         kstat_named_t arcstat_evict_skip;
 272         kstat_named_t arcstat_evict_l2_cached;
 273         kstat_named_t arcstat_evict_l2_eligible;
 274         kstat_named_t arcstat_evict_l2_ineligible;
 275         kstat_named_t arcstat_hash_elements;
 276         kstat_named_t arcstat_hash_elements_max;
 277         kstat_named_t arcstat_hash_collisions;
 278         kstat_named_t arcstat_hash_chains;
 279         kstat_named_t arcstat_hash_chain_max;
 280         kstat_named_t arcstat_p;
 281         kstat_named_t arcstat_c;
 282         kstat_named_t arcstat_c_min;
 283         kstat_named_t arcstat_c_max;
 284         kstat_named_t arcstat_size;
 285         kstat_named_t arcstat_hdr_size;
 286         kstat_named_t arcstat_data_size;
 287         kstat_named_t arcstat_other_size;
 288         kstat_named_t arcstat_l2_hits;
 289         kstat_named_t arcstat_l2_misses;
 290         kstat_named_t arcstat_l2_feeds;
 291         kstat_named_t arcstat_l2_rw_clash;
 292         kstat_named_t arcstat_l2_read_bytes;
 293         kstat_named_t arcstat_l2_write_bytes;
 294         kstat_named_t arcstat_l2_writes_sent;
 295         kstat_named_t arcstat_l2_writes_done;
 296         kstat_named_t arcstat_l2_writes_error;
 297         kstat_named_t arcstat_l2_evict_lock_retry;
 298         kstat_named_t arcstat_l2_evict_reading;
 299         kstat_named_t arcstat_l2_free_on_write;
 300         kstat_named_t arcstat_l2_abort_lowmem;
 301         kstat_named_t arcstat_l2_cksum_bad;
 302         kstat_named_t arcstat_l2_io_error;
 303         kstat_named_t arcstat_l2_size;
 304         kstat_named_t arcstat_l2_asize;
 305         kstat_named_t arcstat_l2_hdr_size;
 306         kstat_named_t arcstat_l2_compress_successes;
 307         kstat_named_t arcstat_l2_compress_zeros;
 308         kstat_named_t arcstat_l2_compress_failures;
 309         kstat_named_t arcstat_memory_throttle_count;
 310         kstat_named_t arcstat_duplicate_buffers;
 311         kstat_named_t arcstat_duplicate_buffers_size;
 312         kstat_named_t arcstat_duplicate_reads;
 313         kstat_named_t arcstat_meta_used;
 314         kstat_named_t arcstat_meta_limit;
 315         kstat_named_t arcstat_meta_max;
 316 } arc_stats_t;
 317 
 318 static arc_stats_t arc_stats = {
 319         { "hits",                       KSTAT_DATA_UINT64 },
 320         { "misses",                     KSTAT_DATA_UINT64 },
 321         { "demand_data_hits",           KSTAT_DATA_UINT64 },
 322         { "demand_data_misses",         KSTAT_DATA_UINT64 },
 323         { "demand_metadata_hits",       KSTAT_DATA_UINT64 },
 324         { "demand_metadata_misses",     KSTAT_DATA_UINT64 },
 325         { "prefetch_data_hits",         KSTAT_DATA_UINT64 },
 326         { "prefetch_data_misses",       KSTAT_DATA_UINT64 },
 327         { "prefetch_metadata_hits",     KSTAT_DATA_UINT64 },
 328         { "prefetch_metadata_misses",   KSTAT_DATA_UINT64 },
 329         { "mru_hits",                   KSTAT_DATA_UINT64 },
 330         { "mru_ghost_hits",             KSTAT_DATA_UINT64 },
 331         { "mfu_hits",                   KSTAT_DATA_UINT64 },
 332         { "mfu_ghost_hits",             KSTAT_DATA_UINT64 },
 333         { "deleted",                    KSTAT_DATA_UINT64 },
 334         { "recycle_miss",               KSTAT_DATA_UINT64 },
 335         { "mutex_miss",                 KSTAT_DATA_UINT64 },
 336         { "evict_skip",                 KSTAT_DATA_UINT64 },
 337         { "evict_l2_cached",            KSTAT_DATA_UINT64 },
 338         { "evict_l2_eligible",          KSTAT_DATA_UINT64 },
 339         { "evict_l2_ineligible",        KSTAT_DATA_UINT64 },
 340         { "hash_elements",              KSTAT_DATA_UINT64 },
 341         { "hash_elements_max",          KSTAT_DATA_UINT64 },
 342         { "hash_collisions",            KSTAT_DATA_UINT64 },
 343         { "hash_chains",                KSTAT_DATA_UINT64 },
 344         { "hash_chain_max",             KSTAT_DATA_UINT64 },
 345         { "p",                          KSTAT_DATA_UINT64 },
 346         { "c",                          KSTAT_DATA_UINT64 },
 347         { "c_min",                      KSTAT_DATA_UINT64 },
 348         { "c_max",                      KSTAT_DATA_UINT64 },
 349         { "size",                       KSTAT_DATA_UINT64 },
 350         { "hdr_size",                   KSTAT_DATA_UINT64 },
 351         { "data_size",                  KSTAT_DATA_UINT64 },
 352         { "other_size",                 KSTAT_DATA_UINT64 },
 353         { "l2_hits",                    KSTAT_DATA_UINT64 },
 354         { "l2_misses",                  KSTAT_DATA_UINT64 },
 355         { "l2_feeds",                   KSTAT_DATA_UINT64 },
 356         { "l2_rw_clash",                KSTAT_DATA_UINT64 },
 357         { "l2_read_bytes",              KSTAT_DATA_UINT64 },
 358         { "l2_write_bytes",             KSTAT_DATA_UINT64 },
 359         { "l2_writes_sent",             KSTAT_DATA_UINT64 },
 360         { "l2_writes_done",             KSTAT_DATA_UINT64 },
 361         { "l2_writes_error",            KSTAT_DATA_UINT64 },
 362         { "l2_evict_lock_retry",        KSTAT_DATA_UINT64 },
 363         { "l2_evict_reading",           KSTAT_DATA_UINT64 },
 364         { "l2_free_on_write",           KSTAT_DATA_UINT64 },
 365         { "l2_abort_lowmem",            KSTAT_DATA_UINT64 },
 366         { "l2_cksum_bad",               KSTAT_DATA_UINT64 },
 367         { "l2_io_error",                KSTAT_DATA_UINT64 },
 368         { "l2_size",                    KSTAT_DATA_UINT64 },
 369         { "l2_asize",                   KSTAT_DATA_UINT64 },
 370         { "l2_hdr_size",                KSTAT_DATA_UINT64 },
 371         { "l2_compress_successes",      KSTAT_DATA_UINT64 },
 372         { "l2_compress_zeros",          KSTAT_DATA_UINT64 },
 373         { "l2_compress_failures",       KSTAT_DATA_UINT64 },
 374         { "memory_throttle_count",      KSTAT_DATA_UINT64 },
 375         { "duplicate_buffers",          KSTAT_DATA_UINT64 },
 376         { "duplicate_buffers_size",     KSTAT_DATA_UINT64 },
 377         { "duplicate_reads",            KSTAT_DATA_UINT64 },
 378         { "arc_meta_used",              KSTAT_DATA_UINT64 },
 379         { "arc_meta_limit",             KSTAT_DATA_UINT64 },
 380         { "arc_meta_max",               KSTAT_DATA_UINT64 }
 381 };
 382 
 383 #define ARCSTAT(stat)   (arc_stats.stat.value.ui64)
 384 
 385 #define ARCSTAT_INCR(stat, val) \
 386         atomic_add_64(&arc_stats.stat.value.ui64, (val))
 387 
 388 #define ARCSTAT_BUMP(stat)      ARCSTAT_INCR(stat, 1)
 389 #define ARCSTAT_BUMPDOWN(stat)  ARCSTAT_INCR(stat, -1)
 390 
 391 #define ARCSTAT_MAX(stat, val) {                                        \
 392         uint64_t m;                                                     \
 393         while ((val) > (m = arc_stats.stat.value.ui64) &&            \
 394             (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))     \
 395                 continue;                                               \
 396 }
 397 
 398 #define ARCSTAT_MAXSTAT(stat) \
 399         ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
 400 
 401 /*
 402  * We define a macro to allow ARC hits/misses to be easily broken down by
 403  * two separate conditions, giving a total of four different subtypes for
 404  * each of hits and misses (so eight statistics total).
 405  */
 406 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
 407         if (cond1) {                                                    \
 408                 if (cond2) {                                            \
 409                         ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
 410                 } else {                                                \
 411                         ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
 412                 }                                                       \
 413         } else {                                                        \
 414                 if (cond2) {                                            \
 415                         ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
 416                 } else {                                                \
 417                         ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
 418                 }                                                       \
 419         }
 420 
 421 kstat_t                 *arc_ksp;
 422 static arc_state_t      *arc_anon;
 423 static arc_state_t      *arc_mru;
 424 static arc_state_t      *arc_mru_ghost;
 425 static arc_state_t      *arc_mfu;
 426 static arc_state_t      *arc_mfu_ghost;
 427 static arc_state_t      *arc_l2c_only;
 428 
 429 /*
 430  * There are several ARC variables that are critical to export as kstats --
 431  * but we don't want to have to grovel around in the kstat whenever we wish to
 432  * manipulate them.  For these variables, we therefore define them to be in
 433  * terms of the statistic variable.  This assures that we are not introducing
 434  * the possibility of inconsistency by having shadow copies of the variables,
 435  * while still allowing the code to be readable.
 436  */
 437 #define arc_size        ARCSTAT(arcstat_size)   /* actual total arc size */
 438 #define arc_p           ARCSTAT(arcstat_p)      /* target size of MRU */
 439 #define arc_c           ARCSTAT(arcstat_c)      /* target size of cache */
 440 #define arc_c_min       ARCSTAT(arcstat_c_min)  /* min target cache size */
 441 #define arc_c_max       ARCSTAT(arcstat_c_max)  /* max target cache size */
 442 #define arc_meta_limit  ARCSTAT(arcstat_meta_limit) /* max size for metadata */
 443 #define arc_meta_used   ARCSTAT(arcstat_meta_used) /* size of metadata */
 444 #define arc_meta_max    ARCSTAT(arcstat_meta_max) /* max size of metadata */
 445 
 446 #define L2ARC_IS_VALID_COMPRESS(_c_) \
 447         ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
 448 
 449 static int              arc_no_grow;    /* Don't try to grow cache size */
 450 static uint64_t         arc_tempreserve;
 451 static uint64_t         arc_loaned_bytes;
 452 
 453 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
 454 
 455 typedef struct arc_callback arc_callback_t;
 456 
 457 struct arc_callback {
 458         void                    *acb_private;
 459         arc_done_func_t         *acb_done;
 460         arc_buf_t               *acb_buf;
 461         zio_t                   *acb_zio_dummy;
 462         arc_callback_t          *acb_next;
 463 };
 464 
 465 typedef struct arc_write_callback arc_write_callback_t;
 466 
 467 struct arc_write_callback {
 468         void            *awcb_private;
 469         arc_done_func_t *awcb_ready;
 470         arc_done_func_t *awcb_done;
 471         arc_buf_t       *awcb_buf;
 472 };
 473 
 474 struct arc_buf_hdr {
 475         /* protected by hash lock */
 476         dva_t                   b_dva;
 477         uint64_t                b_birth;
 478         uint64_t                b_cksum0;
 479 
 480         kmutex_t                b_freeze_lock;
 481         zio_cksum_t             *b_freeze_cksum;
 482         void                    *b_thawed;
 483 
 484         arc_buf_hdr_t           *b_hash_next;
 485         arc_buf_t               *b_buf;
 486         uint32_t                b_flags;
 487         uint32_t                b_datacnt;
 488 
 489         arc_callback_t          *b_acb;
 490         kcondvar_t              b_cv;
 491 
 492         /* immutable */
 493         arc_buf_contents_t      b_type;
 494         uint64_t                b_size;
 495         uint64_t                b_spa;
 496 
 497         /* protected by arc state mutex */
 498         arc_state_t             *b_state;
 499         list_node_t             b_arc_node;
 500 
 501         /* updated atomically */
 502         clock_t                 b_arc_access;
 503 
 504         /* self protecting */
 505         refcount_t              b_refcnt;
 506 
 507         l2arc_buf_hdr_t         *b_l2hdr;
 508         list_node_t             b_l2node;
 509 };
 510 
 511 static arc_buf_t *arc_eviction_list;
 512 static kmutex_t arc_eviction_mtx;
 513 static arc_buf_hdr_t arc_eviction_hdr;
 514 static void arc_get_data_buf(arc_buf_t *buf);
 515 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
 516 static int arc_evict_needed(arc_buf_contents_t type);
 517 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
 518 static void arc_buf_watch(arc_buf_t *buf);
 519 
 520 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
 521 
 522 #define GHOST_STATE(state)      \
 523         ((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||        \
 524         (state) == arc_l2c_only)
 525 
 526 /*
 527  * Private ARC flags.  These flags are private ARC only flags that will show up
 528  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
 529  * be passed in as arc_flags in things like arc_read.  However, these flags
 530  * should never be passed and should only be set by ARC code.  When adding new
 531  * public flags, make sure not to smash the private ones.
 532  */
 533 
 534 #define ARC_IN_HASH_TABLE       (1 << 9)  /* this buffer is hashed */
 535 #define ARC_IO_IN_PROGRESS      (1 << 10) /* I/O in progress for buf */
 536 #define ARC_IO_ERROR            (1 << 11) /* I/O failed for buf */
 537 #define ARC_FREED_IN_READ       (1 << 12) /* buf freed while in read */
 538 #define ARC_BUF_AVAILABLE       (1 << 13) /* block not in active use */
 539 #define ARC_INDIRECT            (1 << 14) /* this is an indirect block */
 540 #define ARC_FREE_IN_PROGRESS    (1 << 15) /* hdr about to be freed */
 541 #define ARC_L2_WRITING          (1 << 16) /* L2ARC write in progress */
 542 #define ARC_L2_EVICTED          (1 << 17) /* evicted during I/O */
 543 #define ARC_L2_WRITE_HEAD       (1 << 18) /* head of write list */
 544 
 545 #define HDR_IN_HASH_TABLE(hdr)  ((hdr)->b_flags & ARC_IN_HASH_TABLE)
 546 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS)
 547 #define HDR_IO_ERROR(hdr)       ((hdr)->b_flags & ARC_IO_ERROR)
 548 #define HDR_PREFETCH(hdr)       ((hdr)->b_flags & ARC_PREFETCH)
 549 #define HDR_FREED_IN_READ(hdr)  ((hdr)->b_flags & ARC_FREED_IN_READ)
 550 #define HDR_BUF_AVAILABLE(hdr)  ((hdr)->b_flags & ARC_BUF_AVAILABLE)
 551 #define HDR_FREE_IN_PROGRESS(hdr)       ((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
 552 #define HDR_L2CACHE(hdr)        ((hdr)->b_flags & ARC_L2CACHE)
 553 #define HDR_L2_READING(hdr)     ((hdr)->b_flags & ARC_IO_IN_PROGRESS &&  \
 554                                     (hdr)->b_l2hdr != NULL)
 555 #define HDR_L2_WRITING(hdr)     ((hdr)->b_flags & ARC_L2_WRITING)
 556 #define HDR_L2_EVICTED(hdr)     ((hdr)->b_flags & ARC_L2_EVICTED)
 557 #define HDR_L2_WRITE_HEAD(hdr)  ((hdr)->b_flags & ARC_L2_WRITE_HEAD)
 558 
 559 /*
 560  * Other sizes
 561  */
 562 
 563 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
 564 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
 565 
 566 /*
 567  * Hash table routines
 568  */
 569 
 570 #define HT_LOCK_PAD     64
 571 
 572 struct ht_lock {
 573         kmutex_t        ht_lock;
 574 #ifdef _KERNEL
 575         unsigned char   pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
 576 #endif
 577 };
 578 
 579 #define BUF_LOCKS 256
 580 typedef struct buf_hash_table {
 581         uint64_t ht_mask;
 582         arc_buf_hdr_t **ht_table;
 583         struct ht_lock ht_locks[BUF_LOCKS];
 584 } buf_hash_table_t;
 585 
 586 static buf_hash_table_t buf_hash_table;
 587 
 588 #define BUF_HASH_INDEX(spa, dva, birth) \
 589         (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
 590 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
 591 #define BUF_HASH_LOCK(idx)      (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
 592 #define HDR_LOCK(hdr) \
 593         (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
 594 
 595 uint64_t zfs_crc64_table[256];
 596 
 597 /*
 598  * Level 2 ARC
 599  */
 600 
 601 #define L2ARC_WRITE_SIZE        (8 * 1024 * 1024)       /* initial write max */
 602 #define L2ARC_HEADROOM          2                       /* num of writes */
 603 /*
 604  * If we discover during ARC scan any buffers to be compressed, we boost
 605  * our headroom for the next scanning cycle by this percentage multiple.
 606  */
 607 #define L2ARC_HEADROOM_BOOST    200
 608 #define L2ARC_FEED_SECS         1               /* caching interval secs */
 609 #define L2ARC_FEED_MIN_MS       200             /* min caching interval ms */
 610 
 611 #define l2arc_writes_sent       ARCSTAT(arcstat_l2_writes_sent)
 612 #define l2arc_writes_done       ARCSTAT(arcstat_l2_writes_done)
 613 
 614 /* L2ARC Performance Tunables */
 615 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;    /* default max write size */
 616 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;  /* extra write during warmup */
 617 uint64_t l2arc_headroom = L2ARC_HEADROOM;       /* number of dev writes */
 618 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
 619 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;     /* interval seconds */
 620 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
 621 boolean_t l2arc_noprefetch = B_TRUE;            /* don't cache prefetch bufs */
 622 boolean_t l2arc_feed_again = B_TRUE;            /* turbo warmup */
 623 boolean_t l2arc_norw = B_FALSE;                 /* no reads during writes */
 624 
 625 /*
 626  * L2ARC Internals
 627  */
 628 typedef struct l2arc_dev {
 629         vdev_t                  *l2ad_vdev;     /* vdev */
 630         spa_t                   *l2ad_spa;      /* spa */
 631         uint64_t                l2ad_hand;      /* next write location */
 632         uint64_t                l2ad_start;     /* first addr on device */
 633         uint64_t                l2ad_end;       /* last addr on device */
 634         uint64_t                l2ad_evict;     /* last addr eviction reached */
 635         boolean_t               l2ad_first;     /* first sweep through */
 636         boolean_t               l2ad_writing;   /* currently writing */
 637         list_t                  *l2ad_buflist;  /* buffer list */
 638         list_node_t             l2ad_node;      /* device list node */
 639 } l2arc_dev_t;
 640 
 641 static list_t L2ARC_dev_list;                   /* device list */
 642 static list_t *l2arc_dev_list;                  /* device list pointer */
 643 static kmutex_t l2arc_dev_mtx;                  /* device list mutex */
 644 static l2arc_dev_t *l2arc_dev_last;             /* last device used */
 645 static kmutex_t l2arc_buflist_mtx;              /* mutex for all buflists */
 646 static list_t L2ARC_free_on_write;              /* free after write buf list */
 647 static list_t *l2arc_free_on_write;             /* free after write list ptr */
 648 static kmutex_t l2arc_free_on_write_mtx;        /* mutex for list */
 649 static uint64_t l2arc_ndev;                     /* number of devices */
 650 
 651 typedef struct l2arc_read_callback {
 652         arc_buf_t               *l2rcb_buf;             /* read buffer */
 653         spa_t                   *l2rcb_spa;             /* spa */
 654         blkptr_t                l2rcb_bp;               /* original blkptr */
 655         zbookmark_t             l2rcb_zb;               /* original bookmark */
 656         int                     l2rcb_flags;            /* original flags */
 657         enum zio_compress       l2rcb_compress;         /* applied compress */
 658 } l2arc_read_callback_t;
 659 
 660 typedef struct l2arc_write_callback {
 661         l2arc_dev_t     *l2wcb_dev;             /* device info */
 662         arc_buf_hdr_t   *l2wcb_head;            /* head of write buflist */
 663 } l2arc_write_callback_t;
 664 
 665 struct l2arc_buf_hdr {
 666         /* protected by arc_buf_hdr  mutex */
 667         l2arc_dev_t             *b_dev;         /* L2ARC device */
 668         uint64_t                b_daddr;        /* disk address, offset byte */
 669         /* compression applied to buffer data */
 670         enum zio_compress       b_compress;
 671         /* real alloc'd buffer size depending on b_compress applied */
 672         int                     b_asize;
 673         /* temporary buffer holder for in-flight compressed data */
 674         void                    *b_tmp_cdata;
 675 };
 676 
 677 typedef struct l2arc_data_free {
 678         /* protected by l2arc_free_on_write_mtx */
 679         void            *l2df_data;
 680         size_t          l2df_size;
 681         void            (*l2df_func)(void *, size_t);
 682         list_node_t     l2df_list_node;
 683 } l2arc_data_free_t;
 684 
 685 static kmutex_t l2arc_feed_thr_lock;
 686 static kcondvar_t l2arc_feed_thr_cv;
 687 static uint8_t l2arc_thread_exit;
 688 
 689 static void l2arc_read_done(zio_t *zio);
 690 static void l2arc_hdr_stat_add(void);
 691 static void l2arc_hdr_stat_remove(void);
 692 
 693 static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr);
 694 static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr,
 695     enum zio_compress c);
 696 static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab);
 697 
 698 static uint64_t
 699 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
 700 {
 701         uint8_t *vdva = (uint8_t *)dva;
 702         uint64_t crc = -1ULL;
 703         int i;
 704 
 705         ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
 706 
 707         for (i = 0; i < sizeof (dva_t); i++)
 708                 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
 709 
 710         crc ^= (spa>>8) ^ birth;
 711 
 712         return (crc);
 713 }
 714 
 715 #define BUF_EMPTY(buf)                                          \
 716         ((buf)->b_dva.dva_word[0] == 0 &&                    \
 717         (buf)->b_dva.dva_word[1] == 0 &&                     \
 718         (buf)->b_birth == 0)
 719 
 720 #define BUF_EQUAL(spa, dva, birth, buf)                         \
 721         ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&       \
 722         ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&       \
 723         ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
 724 
 725 static void
 726 buf_discard_identity(arc_buf_hdr_t *hdr)
 727 {
 728         hdr->b_dva.dva_word[0] = 0;
 729         hdr->b_dva.dva_word[1] = 0;
 730         hdr->b_birth = 0;
 731         hdr->b_cksum0 = 0;
 732 }
 733 
 734 static arc_buf_hdr_t *
 735 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
 736 {
 737         uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
 738         kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
 739         arc_buf_hdr_t *buf;
 740 
 741         mutex_enter(hash_lock);
 742         for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
 743             buf = buf->b_hash_next) {
 744                 if (BUF_EQUAL(spa, dva, birth, buf)) {
 745                         *lockp = hash_lock;
 746                         return (buf);
 747                 }
 748         }
 749         mutex_exit(hash_lock);
 750         *lockp = NULL;
 751         return (NULL);
 752 }
 753 
 754 /*
 755  * Insert an entry into the hash table.  If there is already an element
 756  * equal to elem in the hash table, then the already existing element
 757  * will be returned and the new element will not be inserted.
 758  * Otherwise returns NULL.
 759  */
 760 static arc_buf_hdr_t *
 761 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
 762 {
 763         uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
 764         kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
 765         arc_buf_hdr_t *fbuf;
 766         uint32_t i;
 767 
 768         ASSERT(!HDR_IN_HASH_TABLE(buf));
 769         *lockp = hash_lock;
 770         mutex_enter(hash_lock);
 771         for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
 772             fbuf = fbuf->b_hash_next, i++) {
 773                 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
 774                         return (fbuf);
 775         }
 776 
 777         buf->b_hash_next = buf_hash_table.ht_table[idx];
 778         buf_hash_table.ht_table[idx] = buf;
 779         buf->b_flags |= ARC_IN_HASH_TABLE;
 780 
 781         /* collect some hash table performance data */
 782         if (i > 0) {
 783                 ARCSTAT_BUMP(arcstat_hash_collisions);
 784                 if (i == 1)
 785                         ARCSTAT_BUMP(arcstat_hash_chains);
 786 
 787                 ARCSTAT_MAX(arcstat_hash_chain_max, i);
 788         }
 789 
 790         ARCSTAT_BUMP(arcstat_hash_elements);
 791         ARCSTAT_MAXSTAT(arcstat_hash_elements);
 792 
 793         return (NULL);
 794 }
 795 
 796 static void
 797 buf_hash_remove(arc_buf_hdr_t *buf)
 798 {
 799         arc_buf_hdr_t *fbuf, **bufp;
 800         uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
 801 
 802         ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
 803         ASSERT(HDR_IN_HASH_TABLE(buf));
 804 
 805         bufp = &buf_hash_table.ht_table[idx];
 806         while ((fbuf = *bufp) != buf) {
 807                 ASSERT(fbuf != NULL);
 808                 bufp = &fbuf->b_hash_next;
 809         }
 810         *bufp = buf->b_hash_next;
 811         buf->b_hash_next = NULL;
 812         buf->b_flags &= ~ARC_IN_HASH_TABLE;
 813 
 814         /* collect some hash table performance data */
 815         ARCSTAT_BUMPDOWN(arcstat_hash_elements);
 816 
 817         if (buf_hash_table.ht_table[idx] &&
 818             buf_hash_table.ht_table[idx]->b_hash_next == NULL)
 819                 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
 820 }
 821 
 822 /*
 823  * Global data structures and functions for the buf kmem cache.
 824  */
 825 static kmem_cache_t *hdr_cache;
 826 static kmem_cache_t *buf_cache;
 827 
 828 static void
 829 buf_fini(void)
 830 {
 831         int i;
 832 
 833         kmem_free(buf_hash_table.ht_table,
 834             (buf_hash_table.ht_mask + 1) * sizeof (void *));
 835         for (i = 0; i < BUF_LOCKS; i++)
 836                 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
 837         kmem_cache_destroy(hdr_cache);
 838         kmem_cache_destroy(buf_cache);
 839 }
 840 
 841 /*
 842  * Constructor callback - called when the cache is empty
 843  * and a new buf is requested.
 844  */
 845 /* ARGSUSED */
 846 static int
 847 hdr_cons(void *vbuf, void *unused, int kmflag)
 848 {
 849         arc_buf_hdr_t *buf = vbuf;
 850 
 851         bzero(buf, sizeof (arc_buf_hdr_t));
 852         refcount_create(&buf->b_refcnt);
 853         cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
 854         mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
 855         arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
 856 
 857         return (0);
 858 }
 859 
 860 /* ARGSUSED */
 861 static int
 862 buf_cons(void *vbuf, void *unused, int kmflag)
 863 {
 864         arc_buf_t *buf = vbuf;
 865 
 866         bzero(buf, sizeof (arc_buf_t));
 867         mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
 868         arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
 869 
 870         return (0);
 871 }
 872 
 873 /*
 874  * Destructor callback - called when a cached buf is
 875  * no longer required.
 876  */
 877 /* ARGSUSED */
 878 static void
 879 hdr_dest(void *vbuf, void *unused)
 880 {
 881         arc_buf_hdr_t *buf = vbuf;
 882 
 883         ASSERT(BUF_EMPTY(buf));
 884         refcount_destroy(&buf->b_refcnt);
 885         cv_destroy(&buf->b_cv);
 886         mutex_destroy(&buf->b_freeze_lock);
 887         arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
 888 }
 889 
 890 /* ARGSUSED */
 891 static void
 892 buf_dest(void *vbuf, void *unused)
 893 {
 894         arc_buf_t *buf = vbuf;
 895 
 896         mutex_destroy(&buf->b_evict_lock);
 897         arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
 898 }
 899 
 900 /*
 901  * Reclaim callback -- invoked when memory is low.
 902  */
 903 /* ARGSUSED */
 904 static void
 905 hdr_recl(void *unused)
 906 {
 907         dprintf("hdr_recl called\n");
 908         /*
 909          * umem calls the reclaim func when we destroy the buf cache,
 910          * which is after we do arc_fini().
 911          */
 912         if (!arc_dead)
 913                 cv_signal(&arc_reclaim_thr_cv);
 914 }
 915 
 916 static void
 917 buf_init(void)
 918 {
 919         uint64_t *ct;
 920         uint64_t hsize = 1ULL << 12;
 921         int i, j;
 922 
 923         /*
 924          * The hash table is big enough to fill all of physical memory
 925          * with an average 64K block size.  The table will take up
 926          * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
 927          */
 928         while (hsize * 65536 < physmem * PAGESIZE)
 929                 hsize <<= 1;
 930 retry:
 931         buf_hash_table.ht_mask = hsize - 1;
 932         buf_hash_table.ht_table =
 933             kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
 934         if (buf_hash_table.ht_table == NULL) {
 935                 ASSERT(hsize > (1ULL << 8));
 936                 hsize >>= 1;
 937                 goto retry;
 938         }
 939 
 940         hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
 941             0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
 942         buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
 943             0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
 944 
 945         for (i = 0; i < 256; i++)
 946                 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
 947                         *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
 948 
 949         for (i = 0; i < BUF_LOCKS; i++) {
 950                 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
 951                     NULL, MUTEX_DEFAULT, NULL);
 952         }
 953 }
 954 
 955 #define ARC_MINTIME     (hz>>4) /* 62 ms */
 956 
 957 static void
 958 arc_cksum_verify(arc_buf_t *buf)
 959 {
 960         zio_cksum_t zc;
 961 
 962         if (!(zfs_flags & ZFS_DEBUG_MODIFY))
 963                 return;
 964 
 965         mutex_enter(&buf->b_hdr->b_freeze_lock);
 966         if (buf->b_hdr->b_freeze_cksum == NULL ||
 967             (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
 968                 mutex_exit(&buf->b_hdr->b_freeze_lock);
 969                 return;
 970         }
 971         fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
 972         if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
 973                 panic("buffer modified while frozen!");
 974         mutex_exit(&buf->b_hdr->b_freeze_lock);
 975 }
 976 
 977 static int
 978 arc_cksum_equal(arc_buf_t *buf)
 979 {
 980         zio_cksum_t zc;
 981         int equal;
 982 
 983         mutex_enter(&buf->b_hdr->b_freeze_lock);
 984         fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
 985         equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
 986         mutex_exit(&buf->b_hdr->b_freeze_lock);
 987 
 988         return (equal);
 989 }
 990 
 991 static void
 992 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
 993 {
 994         if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
 995                 return;
 996 
 997         mutex_enter(&buf->b_hdr->b_freeze_lock);
 998         if (buf->b_hdr->b_freeze_cksum != NULL) {
 999                 mutex_exit(&buf->b_hdr->b_freeze_lock);
1000                 return;
1001         }
1002         buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1003         fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1004             buf->b_hdr->b_freeze_cksum);
1005         mutex_exit(&buf->b_hdr->b_freeze_lock);
1006         arc_buf_watch(buf);
1007 }
1008 
1009 #ifndef _KERNEL
1010 typedef struct procctl {
1011         long cmd;
1012         prwatch_t prwatch;
1013 } procctl_t;
1014 #endif
1015 
1016 /* ARGSUSED */
1017 static void
1018 arc_buf_unwatch(arc_buf_t *buf)
1019 {
1020 #ifndef _KERNEL
1021         if (arc_watch) {
1022                 int result;
1023                 procctl_t ctl;
1024                 ctl.cmd = PCWATCH;
1025                 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1026                 ctl.prwatch.pr_size = 0;
1027                 ctl.prwatch.pr_wflags = 0;
1028                 result = write(arc_procfd, &ctl, sizeof (ctl));
1029                 ASSERT3U(result, ==, sizeof (ctl));
1030         }
1031 #endif
1032 }
1033 
1034 /* ARGSUSED */
1035 static void
1036 arc_buf_watch(arc_buf_t *buf)
1037 {
1038 #ifndef _KERNEL
1039         if (arc_watch) {
1040                 int result;
1041                 procctl_t ctl;
1042                 ctl.cmd = PCWATCH;
1043                 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1044                 ctl.prwatch.pr_size = buf->b_hdr->b_size;
1045                 ctl.prwatch.pr_wflags = WA_WRITE;
1046                 result = write(arc_procfd, &ctl, sizeof (ctl));
1047                 ASSERT3U(result, ==, sizeof (ctl));
1048         }
1049 #endif
1050 }
1051 
1052 void
1053 arc_buf_thaw(arc_buf_t *buf)
1054 {
1055         if (zfs_flags & ZFS_DEBUG_MODIFY) {
1056                 if (buf->b_hdr->b_state != arc_anon)
1057                         panic("modifying non-anon buffer!");
1058                 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1059                         panic("modifying buffer while i/o in progress!");
1060                 arc_cksum_verify(buf);
1061         }
1062 
1063         mutex_enter(&buf->b_hdr->b_freeze_lock);
1064         if (buf->b_hdr->b_freeze_cksum != NULL) {
1065                 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1066                 buf->b_hdr->b_freeze_cksum = NULL;
1067         }
1068 
1069         if (zfs_flags & ZFS_DEBUG_MODIFY) {
1070                 if (buf->b_hdr->b_thawed)
1071                         kmem_free(buf->b_hdr->b_thawed, 1);
1072                 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1073         }
1074 
1075         mutex_exit(&buf->b_hdr->b_freeze_lock);
1076 
1077         arc_buf_unwatch(buf);
1078 }
1079 
1080 void
1081 arc_buf_freeze(arc_buf_t *buf)
1082 {
1083         kmutex_t *hash_lock;
1084 
1085         if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1086                 return;
1087 
1088         hash_lock = HDR_LOCK(buf->b_hdr);
1089         mutex_enter(hash_lock);
1090 
1091         ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1092             buf->b_hdr->b_state == arc_anon);
1093         arc_cksum_compute(buf, B_FALSE);
1094         mutex_exit(hash_lock);
1095 
1096 }
1097 
1098 static void
1099 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1100 {
1101         ASSERT(MUTEX_HELD(hash_lock));
1102 
1103         if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1104             (ab->b_state != arc_anon)) {
1105                 uint64_t delta = ab->b_size * ab->b_datacnt;
1106                 list_t *list = &ab->b_state->arcs_list[ab->b_type];
1107                 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1108 
1109                 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1110                 mutex_enter(&ab->b_state->arcs_mtx);
1111                 ASSERT(list_link_active(&ab->b_arc_node));
1112                 list_remove(list, ab);
1113                 if (GHOST_STATE(ab->b_state)) {
1114                         ASSERT0(ab->b_datacnt);
1115                         ASSERT3P(ab->b_buf, ==, NULL);
1116                         delta = ab->b_size;
1117                 }
1118                 ASSERT(delta > 0);
1119                 ASSERT3U(*size, >=, delta);
1120                 atomic_add_64(size, -delta);
1121                 mutex_exit(&ab->b_state->arcs_mtx);
1122                 /* remove the prefetch flag if we get a reference */
1123                 if (ab->b_flags & ARC_PREFETCH)
1124                         ab->b_flags &= ~ARC_PREFETCH;
1125         }
1126 }
1127 
1128 static int
1129 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1130 {
1131         int cnt;
1132         arc_state_t *state = ab->b_state;
1133 
1134         ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1135         ASSERT(!GHOST_STATE(state));
1136 
1137         if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1138             (state != arc_anon)) {
1139                 uint64_t *size = &state->arcs_lsize[ab->b_type];
1140 
1141                 ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1142                 mutex_enter(&state->arcs_mtx);
1143                 ASSERT(!list_link_active(&ab->b_arc_node));
1144                 list_insert_head(&state->arcs_list[ab->b_type], ab);
1145                 ASSERT(ab->b_datacnt > 0);
1146                 atomic_add_64(size, ab->b_size * ab->b_datacnt);
1147                 mutex_exit(&state->arcs_mtx);
1148         }
1149         return (cnt);
1150 }
1151 
1152 /*
1153  * Move the supplied buffer to the indicated state.  The mutex
1154  * for the buffer must be held by the caller.
1155  */
1156 static void
1157 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1158 {
1159         arc_state_t *old_state = ab->b_state;
1160         int64_t refcnt = refcount_count(&ab->b_refcnt);
1161         uint64_t from_delta, to_delta;
1162 
1163         ASSERT(MUTEX_HELD(hash_lock));
1164         ASSERT(new_state != old_state);
1165         ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1166         ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1167         ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1168 
1169         from_delta = to_delta = ab->b_datacnt * ab->b_size;
1170 
1171         /*
1172          * If this buffer is evictable, transfer it from the
1173          * old state list to the new state list.
1174          */
1175         if (refcnt == 0) {
1176                 if (old_state != arc_anon) {
1177                         int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1178                         uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1179 
1180                         if (use_mutex)
1181                                 mutex_enter(&old_state->arcs_mtx);
1182 
1183                         ASSERT(list_link_active(&ab->b_arc_node));
1184                         list_remove(&old_state->arcs_list[ab->b_type], ab);
1185 
1186                         /*
1187                          * If prefetching out of the ghost cache,
1188                          * we will have a non-zero datacnt.
1189                          */
1190                         if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1191                                 /* ghost elements have a ghost size */
1192                                 ASSERT(ab->b_buf == NULL);
1193                                 from_delta = ab->b_size;
1194                         }
1195                         ASSERT3U(*size, >=, from_delta);
1196                         atomic_add_64(size, -from_delta);
1197 
1198                         if (use_mutex)
1199                                 mutex_exit(&old_state->arcs_mtx);
1200                 }
1201                 if (new_state != arc_anon) {
1202                         int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1203                         uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1204 
1205                         if (use_mutex)
1206                                 mutex_enter(&new_state->arcs_mtx);
1207 
1208                         list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1209 
1210                         /* ghost elements have a ghost size */
1211                         if (GHOST_STATE(new_state)) {
1212                                 ASSERT(ab->b_datacnt == 0);
1213                                 ASSERT(ab->b_buf == NULL);
1214                                 to_delta = ab->b_size;
1215                         }
1216                         atomic_add_64(size, to_delta);
1217 
1218                         if (use_mutex)
1219                                 mutex_exit(&new_state->arcs_mtx);
1220                 }
1221         }
1222 
1223         ASSERT(!BUF_EMPTY(ab));
1224         if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1225                 buf_hash_remove(ab);
1226 
1227         /* adjust state sizes */
1228         if (to_delta)
1229                 atomic_add_64(&new_state->arcs_size, to_delta);
1230         if (from_delta) {
1231                 ASSERT3U(old_state->arcs_size, >=, from_delta);
1232                 atomic_add_64(&old_state->arcs_size, -from_delta);
1233         }
1234         ab->b_state = new_state;
1235 
1236         /* adjust l2arc hdr stats */
1237         if (new_state == arc_l2c_only)
1238                 l2arc_hdr_stat_add();
1239         else if (old_state == arc_l2c_only)
1240                 l2arc_hdr_stat_remove();
1241 }
1242 
1243 void
1244 arc_space_consume(uint64_t space, arc_space_type_t type)
1245 {
1246         ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1247 
1248         switch (type) {
1249         case ARC_SPACE_DATA:
1250                 ARCSTAT_INCR(arcstat_data_size, space);
1251                 break;
1252         case ARC_SPACE_OTHER:
1253                 ARCSTAT_INCR(arcstat_other_size, space);
1254                 break;
1255         case ARC_SPACE_HDRS:
1256                 ARCSTAT_INCR(arcstat_hdr_size, space);
1257                 break;
1258         case ARC_SPACE_L2HDRS:
1259                 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1260                 break;
1261         }
1262 
1263         ARCSTAT_INCR(arcstat_meta_used, space);
1264         atomic_add_64(&arc_size, space);
1265 }
1266 
1267 void
1268 arc_space_return(uint64_t space, arc_space_type_t type)
1269 {
1270         ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1271 
1272         switch (type) {
1273         case ARC_SPACE_DATA:
1274                 ARCSTAT_INCR(arcstat_data_size, -space);
1275                 break;
1276         case ARC_SPACE_OTHER:
1277                 ARCSTAT_INCR(arcstat_other_size, -space);
1278                 break;
1279         case ARC_SPACE_HDRS:
1280                 ARCSTAT_INCR(arcstat_hdr_size, -space);
1281                 break;
1282         case ARC_SPACE_L2HDRS:
1283                 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1284                 break;
1285         }
1286 
1287         ASSERT(arc_meta_used >= space);
1288         if (arc_meta_max < arc_meta_used)
1289                 arc_meta_max = arc_meta_used;
1290         ARCSTAT_INCR(arcstat_meta_used, -space);
1291         ASSERT(arc_size >= space);
1292         atomic_add_64(&arc_size, -space);
1293 }
1294 
1295 void *
1296 arc_data_buf_alloc(uint64_t size)
1297 {
1298         if (arc_evict_needed(ARC_BUFC_DATA))
1299                 cv_signal(&arc_reclaim_thr_cv);
1300         atomic_add_64(&arc_size, size);
1301         return (zio_data_buf_alloc(size));
1302 }
1303 
1304 void
1305 arc_data_buf_free(void *buf, uint64_t size)
1306 {
1307         zio_data_buf_free(buf, size);
1308         ASSERT(arc_size >= size);
1309         atomic_add_64(&arc_size, -size);
1310 }
1311 
1312 arc_buf_t *
1313 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1314 {
1315         arc_buf_hdr_t *hdr;
1316         arc_buf_t *buf;
1317 
1318         ASSERT3U(size, >, 0);
1319         hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1320         ASSERT(BUF_EMPTY(hdr));
1321         hdr->b_size = size;
1322         hdr->b_type = type;
1323         hdr->b_spa = spa_load_guid(spa);
1324         hdr->b_state = arc_anon;
1325         hdr->b_arc_access = 0;
1326         buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1327         buf->b_hdr = hdr;
1328         buf->b_data = NULL;
1329         buf->b_efunc = NULL;
1330         buf->b_private = NULL;
1331         buf->b_next = NULL;
1332         hdr->b_buf = buf;
1333         arc_get_data_buf(buf);
1334         hdr->b_datacnt = 1;
1335         hdr->b_flags = 0;
1336         ASSERT(refcount_is_zero(&hdr->b_refcnt));
1337         (void) refcount_add(&hdr->b_refcnt, tag);
1338 
1339         return (buf);
1340 }
1341 
1342 static char *arc_onloan_tag = "onloan";
1343 
1344 /*
1345  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1346  * flight data by arc_tempreserve_space() until they are "returned". Loaned
1347  * buffers must be returned to the arc before they can be used by the DMU or
1348  * freed.
1349  */
1350 arc_buf_t *
1351 arc_loan_buf(spa_t *spa, int size)
1352 {
1353         arc_buf_t *buf;
1354 
1355         buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1356 
1357         atomic_add_64(&arc_loaned_bytes, size);
1358         return (buf);
1359 }
1360 
1361 /*
1362  * Return a loaned arc buffer to the arc.
1363  */
1364 void
1365 arc_return_buf(arc_buf_t *buf, void *tag)
1366 {
1367         arc_buf_hdr_t *hdr = buf->b_hdr;
1368 
1369         ASSERT(buf->b_data != NULL);
1370         (void) refcount_add(&hdr->b_refcnt, tag);
1371         (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1372 
1373         atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1374 }
1375 
1376 /* Detach an arc_buf from a dbuf (tag) */
1377 void
1378 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1379 {
1380         arc_buf_hdr_t *hdr;
1381 
1382         ASSERT(buf->b_data != NULL);
1383         hdr = buf->b_hdr;
1384         (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1385         (void) refcount_remove(&hdr->b_refcnt, tag);
1386         buf->b_efunc = NULL;
1387         buf->b_private = NULL;
1388 
1389         atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1390 }
1391 
1392 static arc_buf_t *
1393 arc_buf_clone(arc_buf_t *from)
1394 {
1395         arc_buf_t *buf;
1396         arc_buf_hdr_t *hdr = from->b_hdr;
1397         uint64_t size = hdr->b_size;
1398 
1399         ASSERT(hdr->b_state != arc_anon);
1400 
1401         buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1402         buf->b_hdr = hdr;
1403         buf->b_data = NULL;
1404         buf->b_efunc = NULL;
1405         buf->b_private = NULL;
1406         buf->b_next = hdr->b_buf;
1407         hdr->b_buf = buf;
1408         arc_get_data_buf(buf);
1409         bcopy(from->b_data, buf->b_data, size);
1410 
1411         /*
1412          * This buffer already exists in the arc so create a duplicate
1413          * copy for the caller.  If the buffer is associated with user data
1414          * then track the size and number of duplicates.  These stats will be
1415          * updated as duplicate buffers are created and destroyed.
1416          */
1417         if (hdr->b_type == ARC_BUFC_DATA) {
1418                 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1419                 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1420         }
1421         hdr->b_datacnt += 1;
1422         return (buf);
1423 }
1424 
1425 void
1426 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1427 {
1428         arc_buf_hdr_t *hdr;
1429         kmutex_t *hash_lock;
1430 
1431         /*
1432          * Check to see if this buffer is evicted.  Callers
1433          * must verify b_data != NULL to know if the add_ref
1434          * was successful.
1435          */
1436         mutex_enter(&buf->b_evict_lock);
1437         if (buf->b_data == NULL) {
1438                 mutex_exit(&buf->b_evict_lock);
1439                 return;
1440         }
1441         hash_lock = HDR_LOCK(buf->b_hdr);
1442         mutex_enter(hash_lock);
1443         hdr = buf->b_hdr;
1444         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1445         mutex_exit(&buf->b_evict_lock);
1446 
1447         ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1448         add_reference(hdr, hash_lock, tag);
1449         DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1450         arc_access(hdr, hash_lock);
1451         mutex_exit(hash_lock);
1452         ARCSTAT_BUMP(arcstat_hits);
1453         ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1454             demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1455             data, metadata, hits);
1456 }
1457 
1458 /*
1459  * Free the arc data buffer.  If it is an l2arc write in progress,
1460  * the buffer is placed on l2arc_free_on_write to be freed later.
1461  */
1462 static void
1463 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1464 {
1465         arc_buf_hdr_t *hdr = buf->b_hdr;
1466 
1467         if (HDR_L2_WRITING(hdr)) {
1468                 l2arc_data_free_t *df;
1469                 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1470                 df->l2df_data = buf->b_data;
1471                 df->l2df_size = hdr->b_size;
1472                 df->l2df_func = free_func;
1473                 mutex_enter(&l2arc_free_on_write_mtx);
1474                 list_insert_head(l2arc_free_on_write, df);
1475                 mutex_exit(&l2arc_free_on_write_mtx);
1476                 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1477         } else {
1478                 free_func(buf->b_data, hdr->b_size);
1479         }
1480 }
1481 
1482 static void
1483 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1484 {
1485         arc_buf_t **bufp;
1486 
1487         /* free up data associated with the buf */
1488         if (buf->b_data) {
1489                 arc_state_t *state = buf->b_hdr->b_state;
1490                 uint64_t size = buf->b_hdr->b_size;
1491                 arc_buf_contents_t type = buf->b_hdr->b_type;
1492 
1493                 arc_cksum_verify(buf);
1494                 arc_buf_unwatch(buf);
1495 
1496                 if (!recycle) {
1497                         if (type == ARC_BUFC_METADATA) {
1498                                 arc_buf_data_free(buf, zio_buf_free);
1499                                 arc_space_return(size, ARC_SPACE_DATA);
1500                         } else {
1501                                 ASSERT(type == ARC_BUFC_DATA);
1502                                 arc_buf_data_free(buf, zio_data_buf_free);
1503                                 ARCSTAT_INCR(arcstat_data_size, -size);
1504                                 atomic_add_64(&arc_size, -size);
1505                         }
1506                 }
1507                 if (list_link_active(&buf->b_hdr->b_arc_node)) {
1508                         uint64_t *cnt = &state->arcs_lsize[type];
1509 
1510                         ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1511                         ASSERT(state != arc_anon);
1512 
1513                         ASSERT3U(*cnt, >=, size);
1514                         atomic_add_64(cnt, -size);
1515                 }
1516                 ASSERT3U(state->arcs_size, >=, size);
1517                 atomic_add_64(&state->arcs_size, -size);
1518                 buf->b_data = NULL;
1519 
1520                 /*
1521                  * If we're destroying a duplicate buffer make sure
1522                  * that the appropriate statistics are updated.
1523                  */
1524                 if (buf->b_hdr->b_datacnt > 1 &&
1525                     buf->b_hdr->b_type == ARC_BUFC_DATA) {
1526                         ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1527                         ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1528                 }
1529                 ASSERT(buf->b_hdr->b_datacnt > 0);
1530                 buf->b_hdr->b_datacnt -= 1;
1531         }
1532 
1533         /* only remove the buf if requested */
1534         if (!all)
1535                 return;
1536 
1537         /* remove the buf from the hdr list */
1538         for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1539                 continue;
1540         *bufp = buf->b_next;
1541         buf->b_next = NULL;
1542 
1543         ASSERT(buf->b_efunc == NULL);
1544 
1545         /* clean up the buf */
1546         buf->b_hdr = NULL;
1547         kmem_cache_free(buf_cache, buf);
1548 }
1549 
1550 static void
1551 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1552 {
1553         ASSERT(refcount_is_zero(&hdr->b_refcnt));
1554         ASSERT3P(hdr->b_state, ==, arc_anon);
1555         ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1556         l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1557 
1558         if (l2hdr != NULL) {
1559                 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1560                 /*
1561                  * To prevent arc_free() and l2arc_evict() from
1562                  * attempting to free the same buffer at the same time,
1563                  * a FREE_IN_PROGRESS flag is given to arc_free() to
1564                  * give it priority.  l2arc_evict() can't destroy this
1565                  * header while we are waiting on l2arc_buflist_mtx.
1566                  *
1567                  * The hdr may be removed from l2ad_buflist before we
1568                  * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1569                  */
1570                 if (!buflist_held) {
1571                         mutex_enter(&l2arc_buflist_mtx);
1572                         l2hdr = hdr->b_l2hdr;
1573                 }
1574 
1575                 if (l2hdr != NULL) {
1576                         list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1577                         ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1578                         ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
1579                         kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1580                         if (hdr->b_state == arc_l2c_only)
1581                                 l2arc_hdr_stat_remove();
1582                         hdr->b_l2hdr = NULL;
1583                 }
1584 
1585                 if (!buflist_held)
1586                         mutex_exit(&l2arc_buflist_mtx);
1587         }
1588 
1589         if (!BUF_EMPTY(hdr)) {
1590                 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1591                 buf_discard_identity(hdr);
1592         }
1593         while (hdr->b_buf) {
1594                 arc_buf_t *buf = hdr->b_buf;
1595 
1596                 if (buf->b_efunc) {
1597                         mutex_enter(&arc_eviction_mtx);
1598                         mutex_enter(&buf->b_evict_lock);
1599                         ASSERT(buf->b_hdr != NULL);
1600                         arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1601                         hdr->b_buf = buf->b_next;
1602                         buf->b_hdr = &arc_eviction_hdr;
1603                         buf->b_next = arc_eviction_list;
1604                         arc_eviction_list = buf;
1605                         mutex_exit(&buf->b_evict_lock);
1606                         mutex_exit(&arc_eviction_mtx);
1607                 } else {
1608                         arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1609                 }
1610         }
1611         if (hdr->b_freeze_cksum != NULL) {
1612                 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1613                 hdr->b_freeze_cksum = NULL;
1614         }
1615         if (hdr->b_thawed) {
1616                 kmem_free(hdr->b_thawed, 1);
1617                 hdr->b_thawed = NULL;
1618         }
1619 
1620         ASSERT(!list_link_active(&hdr->b_arc_node));
1621         ASSERT3P(hdr->b_hash_next, ==, NULL);
1622         ASSERT3P(hdr->b_acb, ==, NULL);
1623         kmem_cache_free(hdr_cache, hdr);
1624 }
1625 
1626 void
1627 arc_buf_free(arc_buf_t *buf, void *tag)
1628 {
1629         arc_buf_hdr_t *hdr = buf->b_hdr;
1630         int hashed = hdr->b_state != arc_anon;
1631 
1632         ASSERT(buf->b_efunc == NULL);
1633         ASSERT(buf->b_data != NULL);
1634 
1635         if (hashed) {
1636                 kmutex_t *hash_lock = HDR_LOCK(hdr);
1637 
1638                 mutex_enter(hash_lock);
1639                 hdr = buf->b_hdr;
1640                 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1641 
1642                 (void) remove_reference(hdr, hash_lock, tag);
1643                 if (hdr->b_datacnt > 1) {
1644                         arc_buf_destroy(buf, FALSE, TRUE);
1645                 } else {
1646                         ASSERT(buf == hdr->b_buf);
1647                         ASSERT(buf->b_efunc == NULL);
1648                         hdr->b_flags |= ARC_BUF_AVAILABLE;
1649                 }
1650                 mutex_exit(hash_lock);
1651         } else if (HDR_IO_IN_PROGRESS(hdr)) {
1652                 int destroy_hdr;
1653                 /*
1654                  * We are in the middle of an async write.  Don't destroy
1655                  * this buffer unless the write completes before we finish
1656                  * decrementing the reference count.
1657                  */
1658                 mutex_enter(&arc_eviction_mtx);
1659                 (void) remove_reference(hdr, NULL, tag);
1660                 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1661                 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1662                 mutex_exit(&arc_eviction_mtx);
1663                 if (destroy_hdr)
1664                         arc_hdr_destroy(hdr);
1665         } else {
1666                 if (remove_reference(hdr, NULL, tag) > 0)
1667                         arc_buf_destroy(buf, FALSE, TRUE);
1668                 else
1669                         arc_hdr_destroy(hdr);
1670         }
1671 }
1672 
1673 boolean_t
1674 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1675 {
1676         arc_buf_hdr_t *hdr = buf->b_hdr;
1677         kmutex_t *hash_lock = HDR_LOCK(hdr);
1678         boolean_t no_callback = (buf->b_efunc == NULL);
1679 
1680         if (hdr->b_state == arc_anon) {
1681                 ASSERT(hdr->b_datacnt == 1);
1682                 arc_buf_free(buf, tag);
1683                 return (no_callback);
1684         }
1685 
1686         mutex_enter(hash_lock);
1687         hdr = buf->b_hdr;
1688         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1689         ASSERT(hdr->b_state != arc_anon);
1690         ASSERT(buf->b_data != NULL);
1691 
1692         (void) remove_reference(hdr, hash_lock, tag);
1693         if (hdr->b_datacnt > 1) {
1694                 if (no_callback)
1695                         arc_buf_destroy(buf, FALSE, TRUE);
1696         } else if (no_callback) {
1697                 ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1698                 ASSERT(buf->b_efunc == NULL);
1699                 hdr->b_flags |= ARC_BUF_AVAILABLE;
1700         }
1701         ASSERT(no_callback || hdr->b_datacnt > 1 ||
1702             refcount_is_zero(&hdr->b_refcnt));
1703         mutex_exit(hash_lock);
1704         return (no_callback);
1705 }
1706 
1707 int
1708 arc_buf_size(arc_buf_t *buf)
1709 {
1710         return (buf->b_hdr->b_size);
1711 }
1712 
1713 /*
1714  * Called from the DMU to determine if the current buffer should be
1715  * evicted. In order to ensure proper locking, the eviction must be initiated
1716  * from the DMU. Return true if the buffer is associated with user data and
1717  * duplicate buffers still exist.
1718  */
1719 boolean_t
1720 arc_buf_eviction_needed(arc_buf_t *buf)
1721 {
1722         arc_buf_hdr_t *hdr;
1723         boolean_t evict_needed = B_FALSE;
1724 
1725         if (zfs_disable_dup_eviction)
1726                 return (B_FALSE);
1727 
1728         mutex_enter(&buf->b_evict_lock);
1729         hdr = buf->b_hdr;
1730         if (hdr == NULL) {
1731                 /*
1732                  * We are in arc_do_user_evicts(); let that function
1733                  * perform the eviction.
1734                  */
1735                 ASSERT(buf->b_data == NULL);
1736                 mutex_exit(&buf->b_evict_lock);
1737                 return (B_FALSE);
1738         } else if (buf->b_data == NULL) {
1739                 /*
1740                  * We have already been added to the arc eviction list;
1741                  * recommend eviction.
1742                  */
1743                 ASSERT3P(hdr, ==, &arc_eviction_hdr);
1744                 mutex_exit(&buf->b_evict_lock);
1745                 return (B_TRUE);
1746         }
1747 
1748         if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1749                 evict_needed = B_TRUE;
1750 
1751         mutex_exit(&buf->b_evict_lock);
1752         return (evict_needed);
1753 }
1754 
1755 /*
1756  * Evict buffers from list until we've removed the specified number of
1757  * bytes.  Move the removed buffers to the appropriate evict state.
1758  * If the recycle flag is set, then attempt to "recycle" a buffer:
1759  * - look for a buffer to evict that is `bytes' long.
1760  * - return the data block from this buffer rather than freeing it.
1761  * This flag is used by callers that are trying to make space for a
1762  * new buffer in a full arc cache.
1763  *
1764  * This function makes a "best effort".  It skips over any buffers
1765  * it can't get a hash_lock on, and so may not catch all candidates.
1766  * It may also return without evicting as much space as requested.
1767  */
1768 static void *
1769 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1770     arc_buf_contents_t type)
1771 {
1772         arc_state_t *evicted_state;
1773         uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1774         arc_buf_hdr_t *ab, *ab_prev = NULL;
1775         list_t *list = &state->arcs_list[type];
1776         kmutex_t *hash_lock;
1777         boolean_t have_lock;
1778         void *stolen = NULL;
1779 
1780         ASSERT(state == arc_mru || state == arc_mfu);
1781 
1782         evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1783 
1784         mutex_enter(&state->arcs_mtx);
1785         mutex_enter(&evicted_state->arcs_mtx);
1786 
1787         for (ab = list_tail(list); ab; ab = ab_prev) {
1788                 ab_prev = list_prev(list, ab);
1789                 /* prefetch buffers have a minimum lifespan */
1790                 if (HDR_IO_IN_PROGRESS(ab) ||
1791                     (spa && ab->b_spa != spa) ||
1792                     (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1793                     ddi_get_lbolt() - ab->b_arc_access <
1794                     arc_min_prefetch_lifespan)) {
1795                         skipped++;
1796                         continue;
1797                 }
1798                 /* "lookahead" for better eviction candidate */
1799                 if (recycle && ab->b_size != bytes &&
1800                     ab_prev && ab_prev->b_size == bytes)
1801                         continue;
1802                 hash_lock = HDR_LOCK(ab);
1803                 have_lock = MUTEX_HELD(hash_lock);
1804                 if (have_lock || mutex_tryenter(hash_lock)) {
1805                         ASSERT0(refcount_count(&ab->b_refcnt));
1806                         ASSERT(ab->b_datacnt > 0);
1807                         while (ab->b_buf) {
1808                                 arc_buf_t *buf = ab->b_buf;
1809                                 if (!mutex_tryenter(&buf->b_evict_lock)) {
1810                                         missed += 1;
1811                                         break;
1812                                 }
1813                                 if (buf->b_data) {
1814                                         bytes_evicted += ab->b_size;
1815                                         if (recycle && ab->b_type == type &&
1816                                             ab->b_size == bytes &&
1817                                             !HDR_L2_WRITING(ab)) {
1818                                                 stolen = buf->b_data;
1819                                                 recycle = FALSE;
1820                                         }
1821                                 }
1822                                 if (buf->b_efunc) {
1823                                         mutex_enter(&arc_eviction_mtx);
1824                                         arc_buf_destroy(buf,
1825                                             buf->b_data == stolen, FALSE);
1826                                         ab->b_buf = buf->b_next;
1827                                         buf->b_hdr = &arc_eviction_hdr;
1828                                         buf->b_next = arc_eviction_list;
1829                                         arc_eviction_list = buf;
1830                                         mutex_exit(&arc_eviction_mtx);
1831                                         mutex_exit(&buf->b_evict_lock);
1832                                 } else {
1833                                         mutex_exit(&buf->b_evict_lock);
1834                                         arc_buf_destroy(buf,
1835                                             buf->b_data == stolen, TRUE);
1836                                 }
1837                         }
1838 
1839                         if (ab->b_l2hdr) {
1840                                 ARCSTAT_INCR(arcstat_evict_l2_cached,
1841                                     ab->b_size);
1842                         } else {
1843                                 if (l2arc_write_eligible(ab->b_spa, ab)) {
1844                                         ARCSTAT_INCR(arcstat_evict_l2_eligible,
1845                                             ab->b_size);
1846                                 } else {
1847                                         ARCSTAT_INCR(
1848                                             arcstat_evict_l2_ineligible,
1849                                             ab->b_size);
1850                                 }
1851                         }
1852 
1853                         if (ab->b_datacnt == 0) {
1854                                 arc_change_state(evicted_state, ab, hash_lock);
1855                                 ASSERT(HDR_IN_HASH_TABLE(ab));
1856                                 ab->b_flags |= ARC_IN_HASH_TABLE;
1857                                 ab->b_flags &= ~ARC_BUF_AVAILABLE;
1858                                 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1859                         }
1860                         if (!have_lock)
1861                                 mutex_exit(hash_lock);
1862                         if (bytes >= 0 && bytes_evicted >= bytes)
1863                                 break;
1864                 } else {
1865                         missed += 1;
1866                 }
1867         }
1868 
1869         mutex_exit(&evicted_state->arcs_mtx);
1870         mutex_exit(&state->arcs_mtx);
1871 
1872         if (bytes_evicted < bytes)
1873                 dprintf("only evicted %lld bytes from %x",
1874                     (longlong_t)bytes_evicted, state);
1875 
1876         if (skipped)
1877                 ARCSTAT_INCR(arcstat_evict_skip, skipped);
1878 
1879         if (missed)
1880                 ARCSTAT_INCR(arcstat_mutex_miss, missed);
1881 
1882         /*
1883          * We have just evicted some data into the ghost state, make
1884          * sure we also adjust the ghost state size if necessary.
1885          */
1886         if (arc_no_grow &&
1887             arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1888                 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1889                     arc_mru_ghost->arcs_size - arc_c;
1890 
1891                 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1892                         int64_t todelete =
1893                             MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1894                         arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1895                 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1896                         int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1897                             arc_mru_ghost->arcs_size +
1898                             arc_mfu_ghost->arcs_size - arc_c);
1899                         arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1900                 }
1901         }
1902 
1903         return (stolen);
1904 }
1905 
1906 /*
1907  * Remove buffers from list until we've removed the specified number of
1908  * bytes.  Destroy the buffers that are removed.
1909  */
1910 static void
1911 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1912 {
1913         arc_buf_hdr_t *ab, *ab_prev;
1914         arc_buf_hdr_t marker = { 0 };
1915         list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1916         kmutex_t *hash_lock;
1917         uint64_t bytes_deleted = 0;
1918         uint64_t bufs_skipped = 0;
1919 
1920         ASSERT(GHOST_STATE(state));
1921 top:
1922         mutex_enter(&state->arcs_mtx);
1923         for (ab = list_tail(list); ab; ab = ab_prev) {
1924                 ab_prev = list_prev(list, ab);
1925                 if (spa && ab->b_spa != spa)
1926                         continue;
1927 
1928                 /* ignore markers */
1929                 if (ab->b_spa == 0)
1930                         continue;
1931 
1932                 hash_lock = HDR_LOCK(ab);
1933                 /* caller may be trying to modify this buffer, skip it */
1934                 if (MUTEX_HELD(hash_lock))
1935                         continue;
1936                 if (mutex_tryenter(hash_lock)) {
1937                         ASSERT(!HDR_IO_IN_PROGRESS(ab));
1938                         ASSERT(ab->b_buf == NULL);
1939                         ARCSTAT_BUMP(arcstat_deleted);
1940                         bytes_deleted += ab->b_size;
1941 
1942                         if (ab->b_l2hdr != NULL) {
1943                                 /*
1944                                  * This buffer is cached on the 2nd Level ARC;
1945                                  * don't destroy the header.
1946                                  */
1947                                 arc_change_state(arc_l2c_only, ab, hash_lock);
1948                                 mutex_exit(hash_lock);
1949                         } else {
1950                                 arc_change_state(arc_anon, ab, hash_lock);
1951                                 mutex_exit(hash_lock);
1952                                 arc_hdr_destroy(ab);
1953                         }
1954 
1955                         DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1956                         if (bytes >= 0 && bytes_deleted >= bytes)
1957                                 break;
1958                 } else if (bytes < 0) {
1959                         /*
1960                          * Insert a list marker and then wait for the
1961                          * hash lock to become available. Once its
1962                          * available, restart from where we left off.
1963                          */
1964                         list_insert_after(list, ab, &marker);
1965                         mutex_exit(&state->arcs_mtx);
1966                         mutex_enter(hash_lock);
1967                         mutex_exit(hash_lock);
1968                         mutex_enter(&state->arcs_mtx);
1969                         ab_prev = list_prev(list, &marker);
1970                         list_remove(list, &marker);
1971                 } else
1972                         bufs_skipped += 1;
1973         }
1974         mutex_exit(&state->arcs_mtx);
1975 
1976         if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1977             (bytes < 0 || bytes_deleted < bytes)) {
1978                 list = &state->arcs_list[ARC_BUFC_METADATA];
1979                 goto top;
1980         }
1981 
1982         if (bufs_skipped) {
1983                 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1984                 ASSERT(bytes >= 0);
1985         }
1986 
1987         if (bytes_deleted < bytes)
1988                 dprintf("only deleted %lld bytes from %p",
1989                     (longlong_t)bytes_deleted, state);
1990 }
1991 
1992 static void
1993 arc_adjust(void)
1994 {
1995         int64_t adjustment, delta;
1996 
1997         /*
1998          * Adjust MRU size
1999          */
2000 
2001         adjustment = MIN((int64_t)(arc_size - arc_c),
2002             (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2003             arc_p));
2004 
2005         if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
2006                 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
2007                 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA);
2008                 adjustment -= delta;
2009         }
2010 
2011         if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2012                 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2013                 (void) arc_evict(arc_mru, NULL, delta, FALSE,
2014                     ARC_BUFC_METADATA);
2015         }
2016 
2017         /*
2018          * Adjust MFU size
2019          */
2020 
2021         adjustment = arc_size - arc_c;
2022 
2023         if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2024                 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
2025                 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA);
2026                 adjustment -= delta;
2027         }
2028 
2029         if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2030                 int64_t delta = MIN(adjustment,
2031                     arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2032                 (void) arc_evict(arc_mfu, NULL, delta, FALSE,
2033                     ARC_BUFC_METADATA);
2034         }
2035 
2036         /*
2037          * Adjust ghost lists
2038          */
2039 
2040         adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2041 
2042         if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2043                 delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2044                 arc_evict_ghost(arc_mru_ghost, NULL, delta);
2045         }
2046 
2047         adjustment =
2048             arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2049 
2050         if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2051                 delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2052                 arc_evict_ghost(arc_mfu_ghost, NULL, delta);
2053         }
2054 }
2055 
2056 static void
2057 arc_do_user_evicts(void)
2058 {
2059         mutex_enter(&arc_eviction_mtx);
2060         while (arc_eviction_list != NULL) {
2061                 arc_buf_t *buf = arc_eviction_list;
2062                 arc_eviction_list = buf->b_next;
2063                 mutex_enter(&buf->b_evict_lock);
2064                 buf->b_hdr = NULL;
2065                 mutex_exit(&buf->b_evict_lock);
2066                 mutex_exit(&arc_eviction_mtx);
2067 
2068                 if (buf->b_efunc != NULL)
2069                         VERIFY(buf->b_efunc(buf) == 0);
2070 
2071                 buf->b_efunc = NULL;
2072                 buf->b_private = NULL;
2073                 kmem_cache_free(buf_cache, buf);
2074                 mutex_enter(&arc_eviction_mtx);
2075         }
2076         mutex_exit(&arc_eviction_mtx);
2077 }
2078 
2079 /*
2080  * Flush all *evictable* data from the cache for the given spa.
2081  * NOTE: this will not touch "active" (i.e. referenced) data.
2082  */
2083 void
2084 arc_flush(spa_t *spa)
2085 {
2086         uint64_t guid = 0;
2087 
2088         if (spa)
2089                 guid = spa_load_guid(spa);
2090 
2091         while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
2092                 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2093                 if (spa)
2094                         break;
2095         }
2096         while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
2097                 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2098                 if (spa)
2099                         break;
2100         }
2101         while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
2102                 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2103                 if (spa)
2104                         break;
2105         }
2106         while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
2107                 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2108                 if (spa)
2109                         break;
2110         }
2111 
2112         arc_evict_ghost(arc_mru_ghost, guid, -1);
2113         arc_evict_ghost(arc_mfu_ghost, guid, -1);
2114 
2115         mutex_enter(&arc_reclaim_thr_lock);
2116         arc_do_user_evicts();
2117         mutex_exit(&arc_reclaim_thr_lock);
2118         ASSERT(spa || arc_eviction_list == NULL);
2119 }
2120 
2121 void
2122 arc_shrink(void)
2123 {
2124         if (arc_c > arc_c_min) {
2125                 uint64_t to_free;
2126 
2127 #ifdef _KERNEL
2128                 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
2129 #else
2130                 to_free = arc_c >> arc_shrink_shift;
2131 #endif
2132                 if (arc_c > arc_c_min + to_free)
2133                         atomic_add_64(&arc_c, -to_free);
2134                 else
2135                         arc_c = arc_c_min;
2136 
2137                 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2138                 if (arc_c > arc_size)
2139                         arc_c = MAX(arc_size, arc_c_min);
2140                 if (arc_p > arc_c)
2141                         arc_p = (arc_c >> 1);
2142                 ASSERT(arc_c >= arc_c_min);
2143                 ASSERT((int64_t)arc_p >= 0);
2144         }
2145 
2146         if (arc_size > arc_c)
2147                 arc_adjust();
2148 }
2149 
2150 /*
2151  * Determine if the system is under memory pressure and is asking
2152  * to reclaim memory. A return value of 1 indicates that the system
2153  * is under memory pressure and that the arc should adjust accordingly.
2154  */
2155 static int
2156 arc_reclaim_needed(void)
2157 {
2158         uint64_t extra;
2159 
2160 #ifdef _KERNEL
2161 
2162         if (needfree)
2163                 return (1);
2164 
2165         /*
2166          * take 'desfree' extra pages, so we reclaim sooner, rather than later
2167          */
2168         extra = desfree;
2169 
2170         /*
2171          * check that we're out of range of the pageout scanner.  It starts to
2172          * schedule paging if freemem is less than lotsfree and needfree.
2173          * lotsfree is the high-water mark for pageout, and needfree is the
2174          * number of needed free pages.  We add extra pages here to make sure
2175          * the scanner doesn't start up while we're freeing memory.
2176          */
2177         if (freemem < lotsfree + needfree + extra)
2178                 return (1);
2179 
2180         /*
2181          * check to make sure that swapfs has enough space so that anon
2182          * reservations can still succeed. anon_resvmem() checks that the
2183          * availrmem is greater than swapfs_minfree, and the number of reserved
2184          * swap pages.  We also add a bit of extra here just to prevent
2185          * circumstances from getting really dire.
2186          */
2187         if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2188                 return (1);
2189 
2190 #if defined(__i386)
2191         /*
2192          * If we're on an i386 platform, it's possible that we'll exhaust the
2193          * kernel heap space before we ever run out of available physical
2194          * memory.  Most checks of the size of the heap_area compare against
2195          * tune.t_minarmem, which is the minimum available real memory that we
2196          * can have in the system.  However, this is generally fixed at 25 pages
2197          * which is so low that it's useless.  In this comparison, we seek to
2198          * calculate the total heap-size, and reclaim if more than 3/4ths of the
2199          * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2200          * free)
2201          */
2202         if (vmem_size(heap_arena, VMEM_FREE) <
2203             (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2))
2204                 return (1);
2205 #endif
2206 
2207         /*
2208          * If zio data pages are being allocated out of a separate heap segment,
2209          * then enforce that the size of available vmem for this arena remains
2210          * above about 1/16th free.
2211          *
2212          * Note: The 1/16th arena free requirement was put in place
2213          * to aggressively evict memory from the arc in order to avoid
2214          * memory fragmentation issues.
2215          */
2216         if (zio_arena != NULL &&
2217             vmem_size(zio_arena, VMEM_FREE) <
2218             (vmem_size(zio_arena, VMEM_ALLOC) >> 4))
2219                 return (1);
2220 #else
2221         if (spa_get_random(100) == 0)
2222                 return (1);
2223 #endif
2224         return (0);
2225 }
2226 
2227 static void
2228 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2229 {
2230         size_t                  i;
2231         kmem_cache_t            *prev_cache = NULL;
2232         kmem_cache_t            *prev_data_cache = NULL;
2233         extern kmem_cache_t     *zio_buf_cache[];
2234         extern kmem_cache_t     *zio_data_buf_cache[];
2235 
2236 #ifdef _KERNEL
2237         if (arc_meta_used >= arc_meta_limit) {
2238                 /*
2239                  * We are exceeding our meta-data cache limit.
2240                  * Purge some DNLC entries to release holds on meta-data.
2241                  */
2242                 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2243         }
2244 #if defined(__i386)
2245         /*
2246          * Reclaim unused memory from all kmem caches.
2247          */
2248         kmem_reap();
2249 #endif
2250 #endif
2251 
2252         /*
2253          * An aggressive reclamation will shrink the cache size as well as
2254          * reap free buffers from the arc kmem caches.
2255          */
2256         if (strat == ARC_RECLAIM_AGGR)
2257                 arc_shrink();
2258 
2259         for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2260                 if (zio_buf_cache[i] != prev_cache) {
2261                         prev_cache = zio_buf_cache[i];
2262                         kmem_cache_reap_now(zio_buf_cache[i]);
2263                 }
2264                 if (zio_data_buf_cache[i] != prev_data_cache) {
2265                         prev_data_cache = zio_data_buf_cache[i];
2266                         kmem_cache_reap_now(zio_data_buf_cache[i]);
2267                 }
2268         }
2269         kmem_cache_reap_now(buf_cache);
2270         kmem_cache_reap_now(hdr_cache);
2271 
2272         /*
2273          * Ask the vmem areana to reclaim unused memory from its
2274          * quantum caches.
2275          */
2276         if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR)
2277                 vmem_qcache_reap(zio_arena);
2278 }
2279 
2280 static void
2281 arc_reclaim_thread(void)
2282 {
2283         clock_t                 growtime = 0;
2284         arc_reclaim_strategy_t  last_reclaim = ARC_RECLAIM_CONS;
2285         callb_cpr_t             cpr;
2286 
2287         CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2288 
2289         mutex_enter(&arc_reclaim_thr_lock);
2290         while (arc_thread_exit == 0) {
2291                 if (arc_reclaim_needed()) {
2292 
2293                         if (arc_no_grow) {
2294                                 if (last_reclaim == ARC_RECLAIM_CONS) {
2295                                         last_reclaim = ARC_RECLAIM_AGGR;
2296                                 } else {
2297                                         last_reclaim = ARC_RECLAIM_CONS;
2298                                 }
2299                         } else {
2300                                 arc_no_grow = TRUE;
2301                                 last_reclaim = ARC_RECLAIM_AGGR;
2302                                 membar_producer();
2303                         }
2304 
2305                         /* reset the growth delay for every reclaim */
2306                         growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2307 
2308                         arc_kmem_reap_now(last_reclaim);
2309                         arc_warm = B_TRUE;
2310 
2311                 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2312                         arc_no_grow = FALSE;
2313                 }
2314 
2315                 arc_adjust();
2316 
2317                 if (arc_eviction_list != NULL)
2318                         arc_do_user_evicts();
2319 
2320                 /* block until needed, or one second, whichever is shorter */
2321                 CALLB_CPR_SAFE_BEGIN(&cpr);
2322                 (void) cv_timedwait(&arc_reclaim_thr_cv,
2323                     &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
2324                 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2325         }
2326 
2327         arc_thread_exit = 0;
2328         cv_broadcast(&arc_reclaim_thr_cv);
2329         CALLB_CPR_EXIT(&cpr);               /* drops arc_reclaim_thr_lock */
2330         thread_exit();
2331 }
2332 
2333 /*
2334  * Adapt arc info given the number of bytes we are trying to add and
2335  * the state that we are comming from.  This function is only called
2336  * when we are adding new content to the cache.
2337  */
2338 static void
2339 arc_adapt(int bytes, arc_state_t *state)
2340 {
2341         int mult;
2342         uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2343 
2344         if (state == arc_l2c_only)
2345                 return;
2346 
2347         ASSERT(bytes > 0);
2348         /*
2349          * Adapt the target size of the MRU list:
2350          *      - if we just hit in the MRU ghost list, then increase
2351          *        the target size of the MRU list.
2352          *      - if we just hit in the MFU ghost list, then increase
2353          *        the target size of the MFU list by decreasing the
2354          *        target size of the MRU list.
2355          */
2356         if (state == arc_mru_ghost) {
2357                 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2358                     1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2359                 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2360 
2361                 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2362         } else if (state == arc_mfu_ghost) {
2363                 uint64_t delta;
2364 
2365                 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2366                     1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2367                 mult = MIN(mult, 10);
2368 
2369                 delta = MIN(bytes * mult, arc_p);
2370                 arc_p = MAX(arc_p_min, arc_p - delta);
2371         }
2372         ASSERT((int64_t)arc_p >= 0);
2373 
2374         if (arc_reclaim_needed()) {
2375                 cv_signal(&arc_reclaim_thr_cv);
2376                 return;
2377         }
2378 
2379         if (arc_no_grow)
2380                 return;
2381 
2382         if (arc_c >= arc_c_max)
2383                 return;
2384 
2385         /*
2386          * If we're within (2 * maxblocksize) bytes of the target
2387          * cache size, increment the target cache size
2388          */
2389         if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2390                 atomic_add_64(&arc_c, (int64_t)bytes);
2391                 if (arc_c > arc_c_max)
2392                         arc_c = arc_c_max;
2393                 else if (state == arc_anon)
2394                         atomic_add_64(&arc_p, (int64_t)bytes);
2395                 if (arc_p > arc_c)
2396                         arc_p = arc_c;
2397         }
2398         ASSERT((int64_t)arc_p >= 0);
2399 }
2400 
2401 /*
2402  * Check if the cache has reached its limits and eviction is required
2403  * prior to insert.
2404  */
2405 static int
2406 arc_evict_needed(arc_buf_contents_t type)
2407 {
2408         if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2409                 return (1);
2410 
2411         if (arc_reclaim_needed())
2412                 return (1);
2413 
2414         return (arc_size > arc_c);
2415 }
2416 
2417 /*
2418  * The buffer, supplied as the first argument, needs a data block.
2419  * So, if we are at cache max, determine which cache should be victimized.
2420  * We have the following cases:
2421  *
2422  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2423  * In this situation if we're out of space, but the resident size of the MFU is
2424  * under the limit, victimize the MFU cache to satisfy this insertion request.
2425  *
2426  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2427  * Here, we've used up all of the available space for the MRU, so we need to
2428  * evict from our own cache instead.  Evict from the set of resident MRU
2429  * entries.
2430  *
2431  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2432  * c minus p represents the MFU space in the cache, since p is the size of the
2433  * cache that is dedicated to the MRU.  In this situation there's still space on
2434  * the MFU side, so the MRU side needs to be victimized.
2435  *
2436  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2437  * MFU's resident set is consuming more space than it has been allotted.  In
2438  * this situation, we must victimize our own cache, the MFU, for this insertion.
2439  */
2440 static void
2441 arc_get_data_buf(arc_buf_t *buf)
2442 {
2443         arc_state_t             *state = buf->b_hdr->b_state;
2444         uint64_t                size = buf->b_hdr->b_size;
2445         arc_buf_contents_t      type = buf->b_hdr->b_type;
2446 
2447         arc_adapt(size, state);
2448 
2449         /*
2450          * We have not yet reached cache maximum size,
2451          * just allocate a new buffer.
2452          */
2453         if (!arc_evict_needed(type)) {
2454                 if (type == ARC_BUFC_METADATA) {
2455                         buf->b_data = zio_buf_alloc(size);
2456                         arc_space_consume(size, ARC_SPACE_DATA);
2457                 } else {
2458                         ASSERT(type == ARC_BUFC_DATA);
2459                         buf->b_data = zio_data_buf_alloc(size);
2460                         ARCSTAT_INCR(arcstat_data_size, size);
2461                         atomic_add_64(&arc_size, size);
2462                 }
2463                 goto out;
2464         }
2465 
2466         /*
2467          * If we are prefetching from the mfu ghost list, this buffer
2468          * will end up on the mru list; so steal space from there.
2469          */
2470         if (state == arc_mfu_ghost)
2471                 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2472         else if (state == arc_mru_ghost)
2473                 state = arc_mru;
2474 
2475         if (state == arc_mru || state == arc_anon) {
2476                 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2477                 state = (arc_mfu->arcs_lsize[type] >= size &&
2478                     arc_p > mru_used) ? arc_mfu : arc_mru;
2479         } else {
2480                 /* MFU cases */
2481                 uint64_t mfu_space = arc_c - arc_p;
2482                 state =  (arc_mru->arcs_lsize[type] >= size &&
2483                     mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2484         }
2485         if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2486                 if (type == ARC_BUFC_METADATA) {
2487                         buf->b_data = zio_buf_alloc(size);
2488                         arc_space_consume(size, ARC_SPACE_DATA);
2489                 } else {
2490                         ASSERT(type == ARC_BUFC_DATA);
2491                         buf->b_data = zio_data_buf_alloc(size);
2492                         ARCSTAT_INCR(arcstat_data_size, size);
2493                         atomic_add_64(&arc_size, size);
2494                 }
2495                 ARCSTAT_BUMP(arcstat_recycle_miss);
2496         }
2497         ASSERT(buf->b_data != NULL);
2498 out:
2499         /*
2500          * Update the state size.  Note that ghost states have a
2501          * "ghost size" and so don't need to be updated.
2502          */
2503         if (!GHOST_STATE(buf->b_hdr->b_state)) {
2504                 arc_buf_hdr_t *hdr = buf->b_hdr;
2505 
2506                 atomic_add_64(&hdr->b_state->arcs_size, size);
2507                 if (list_link_active(&hdr->b_arc_node)) {
2508                         ASSERT(refcount_is_zero(&hdr->b_refcnt));
2509                         atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2510                 }
2511                 /*
2512                  * If we are growing the cache, and we are adding anonymous
2513                  * data, and we have outgrown arc_p, update arc_p
2514                  */
2515                 if (arc_size < arc_c && hdr->b_state == arc_anon &&
2516                     arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2517                         arc_p = MIN(arc_c, arc_p + size);
2518         }
2519 }
2520 
2521 /*
2522  * This routine is called whenever a buffer is accessed.
2523  * NOTE: the hash lock is dropped in this function.
2524  */
2525 static void
2526 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2527 {
2528         clock_t now;
2529 
2530         ASSERT(MUTEX_HELD(hash_lock));
2531 
2532         if (buf->b_state == arc_anon) {
2533                 /*
2534                  * This buffer is not in the cache, and does not
2535                  * appear in our "ghost" list.  Add the new buffer
2536                  * to the MRU state.
2537                  */
2538 
2539                 ASSERT(buf->b_arc_access == 0);
2540                 buf->b_arc_access = ddi_get_lbolt();
2541                 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2542                 arc_change_state(arc_mru, buf, hash_lock);
2543 
2544         } else if (buf->b_state == arc_mru) {
2545                 now = ddi_get_lbolt();
2546 
2547                 /*
2548                  * If this buffer is here because of a prefetch, then either:
2549                  * - clear the flag if this is a "referencing" read
2550                  *   (any subsequent access will bump this into the MFU state).
2551                  * or
2552                  * - move the buffer to the head of the list if this is
2553                  *   another prefetch (to make it less likely to be evicted).
2554                  */
2555                 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2556                         if (refcount_count(&buf->b_refcnt) == 0) {
2557                                 ASSERT(list_link_active(&buf->b_arc_node));
2558                         } else {
2559                                 buf->b_flags &= ~ARC_PREFETCH;
2560                                 ARCSTAT_BUMP(arcstat_mru_hits);
2561                         }
2562                         buf->b_arc_access = now;
2563                         return;
2564                 }
2565 
2566                 /*
2567                  * This buffer has been "accessed" only once so far,
2568                  * but it is still in the cache. Move it to the MFU
2569                  * state.
2570                  */
2571                 if (now > buf->b_arc_access + ARC_MINTIME) {
2572                         /*
2573                          * More than 125ms have passed since we
2574                          * instantiated this buffer.  Move it to the
2575                          * most frequently used state.
2576                          */
2577                         buf->b_arc_access = now;
2578                         DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2579                         arc_change_state(arc_mfu, buf, hash_lock);
2580                 }
2581                 ARCSTAT_BUMP(arcstat_mru_hits);
2582         } else if (buf->b_state == arc_mru_ghost) {
2583                 arc_state_t     *new_state;
2584                 /*
2585                  * This buffer has been "accessed" recently, but
2586                  * was evicted from the cache.  Move it to the
2587                  * MFU state.
2588                  */
2589 
2590                 if (buf->b_flags & ARC_PREFETCH) {
2591                         new_state = arc_mru;
2592                         if (refcount_count(&buf->b_refcnt) > 0)
2593                                 buf->b_flags &= ~ARC_PREFETCH;
2594                         DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2595                 } else {
2596                         new_state = arc_mfu;
2597                         DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2598                 }
2599 
2600                 buf->b_arc_access = ddi_get_lbolt();
2601                 arc_change_state(new_state, buf, hash_lock);
2602 
2603                 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2604         } else if (buf->b_state == arc_mfu) {
2605                 /*
2606                  * This buffer has been accessed more than once and is
2607                  * still in the cache.  Keep it in the MFU state.
2608                  *
2609                  * NOTE: an add_reference() that occurred when we did
2610                  * the arc_read() will have kicked this off the list.
2611                  * If it was a prefetch, we will explicitly move it to
2612                  * the head of the list now.
2613                  */
2614                 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2615                         ASSERT(refcount_count(&buf->b_refcnt) == 0);
2616                         ASSERT(list_link_active(&buf->b_arc_node));
2617                 }
2618                 ARCSTAT_BUMP(arcstat_mfu_hits);
2619                 buf->b_arc_access = ddi_get_lbolt();
2620         } else if (buf->b_state == arc_mfu_ghost) {
2621                 arc_state_t     *new_state = arc_mfu;
2622                 /*
2623                  * This buffer has been accessed more than once but has
2624                  * been evicted from the cache.  Move it back to the
2625                  * MFU state.
2626                  */
2627 
2628                 if (buf->b_flags & ARC_PREFETCH) {
2629                         /*
2630                          * This is a prefetch access...
2631                          * move this block back to the MRU state.
2632                          */
2633                         ASSERT0(refcount_count(&buf->b_refcnt));
2634                         new_state = arc_mru;
2635                 }
2636 
2637                 buf->b_arc_access = ddi_get_lbolt();
2638                 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2639                 arc_change_state(new_state, buf, hash_lock);
2640 
2641                 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2642         } else if (buf->b_state == arc_l2c_only) {
2643                 /*
2644                  * This buffer is on the 2nd Level ARC.
2645                  */
2646 
2647                 buf->b_arc_access = ddi_get_lbolt();
2648                 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2649                 arc_change_state(arc_mfu, buf, hash_lock);
2650         } else {
2651                 ASSERT(!"invalid arc state");
2652         }
2653 }
2654 
2655 /* a generic arc_done_func_t which you can use */
2656 /* ARGSUSED */
2657 void
2658 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2659 {
2660         if (zio == NULL || zio->io_error == 0)
2661                 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2662         VERIFY(arc_buf_remove_ref(buf, arg));
2663 }
2664 
2665 /* a generic arc_done_func_t */
2666 void
2667 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2668 {
2669         arc_buf_t **bufp = arg;
2670         if (zio && zio->io_error) {
2671                 VERIFY(arc_buf_remove_ref(buf, arg));
2672                 *bufp = NULL;
2673         } else {
2674                 *bufp = buf;
2675                 ASSERT(buf->b_data);
2676         }
2677 }
2678 
2679 static void
2680 arc_read_done(zio_t *zio)
2681 {
2682         arc_buf_hdr_t   *hdr, *found;
2683         arc_buf_t       *buf;
2684         arc_buf_t       *abuf;  /* buffer we're assigning to callback */
2685         kmutex_t        *hash_lock;
2686         arc_callback_t  *callback_list, *acb;
2687         int             freeable = FALSE;
2688 
2689         buf = zio->io_private;
2690         hdr = buf->b_hdr;
2691 
2692         /*
2693          * The hdr was inserted into hash-table and removed from lists
2694          * prior to starting I/O.  We should find this header, since
2695          * it's in the hash table, and it should be legit since it's
2696          * not possible to evict it during the I/O.  The only possible
2697          * reason for it not to be found is if we were freed during the
2698          * read.
2699          */
2700         found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2701             &hash_lock);
2702 
2703         ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2704             (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2705             (found == hdr && HDR_L2_READING(hdr)));
2706 
2707         hdr->b_flags &= ~ARC_L2_EVICTED;
2708         if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2709                 hdr->b_flags &= ~ARC_L2CACHE;
2710 
2711         /* byteswap if necessary */
2712         callback_list = hdr->b_acb;
2713         ASSERT(callback_list != NULL);
2714         if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2715                 dmu_object_byteswap_t bswap =
2716                     DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
2717                 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2718                     byteswap_uint64_array :
2719                     dmu_ot_byteswap[bswap].ob_func;
2720                 func(buf->b_data, hdr->b_size);
2721         }
2722 
2723         arc_cksum_compute(buf, B_FALSE);
2724         arc_buf_watch(buf);
2725 
2726         if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2727                 /*
2728                  * Only call arc_access on anonymous buffers.  This is because
2729                  * if we've issued an I/O for an evicted buffer, we've already
2730                  * called arc_access (to prevent any simultaneous readers from
2731                  * getting confused).
2732                  */
2733                 arc_access(hdr, hash_lock);
2734         }
2735 
2736         /* create copies of the data buffer for the callers */
2737         abuf = buf;
2738         for (acb = callback_list; acb; acb = acb->acb_next) {
2739                 if (acb->acb_done) {
2740                         if (abuf == NULL) {
2741                                 ARCSTAT_BUMP(arcstat_duplicate_reads);
2742                                 abuf = arc_buf_clone(buf);
2743                         }
2744                         acb->acb_buf = abuf;
2745                         abuf = NULL;
2746                 }
2747         }
2748         hdr->b_acb = NULL;
2749         hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2750         ASSERT(!HDR_BUF_AVAILABLE(hdr));
2751         if (abuf == buf) {
2752                 ASSERT(buf->b_efunc == NULL);
2753                 ASSERT(hdr->b_datacnt == 1);
2754                 hdr->b_flags |= ARC_BUF_AVAILABLE;
2755         }
2756 
2757         ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2758 
2759         if (zio->io_error != 0) {
2760                 hdr->b_flags |= ARC_IO_ERROR;
2761                 if (hdr->b_state != arc_anon)
2762                         arc_change_state(arc_anon, hdr, hash_lock);
2763                 if (HDR_IN_HASH_TABLE(hdr))
2764                         buf_hash_remove(hdr);
2765                 freeable = refcount_is_zero(&hdr->b_refcnt);
2766         }
2767 
2768         /*
2769          * Broadcast before we drop the hash_lock to avoid the possibility
2770          * that the hdr (and hence the cv) might be freed before we get to
2771          * the cv_broadcast().
2772          */
2773         cv_broadcast(&hdr->b_cv);
2774 
2775         if (hash_lock) {
2776                 mutex_exit(hash_lock);
2777         } else {
2778                 /*
2779                  * This block was freed while we waited for the read to
2780                  * complete.  It has been removed from the hash table and
2781                  * moved to the anonymous state (so that it won't show up
2782                  * in the cache).
2783                  */
2784                 ASSERT3P(hdr->b_state, ==, arc_anon);
2785                 freeable = refcount_is_zero(&hdr->b_refcnt);
2786         }
2787 
2788         /* execute each callback and free its structure */
2789         while ((acb = callback_list) != NULL) {
2790                 if (acb->acb_done)
2791                         acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2792 
2793                 if (acb->acb_zio_dummy != NULL) {
2794                         acb->acb_zio_dummy->io_error = zio->io_error;
2795                         zio_nowait(acb->acb_zio_dummy);
2796                 }
2797 
2798                 callback_list = acb->acb_next;
2799                 kmem_free(acb, sizeof (arc_callback_t));
2800         }
2801 
2802         if (freeable)
2803                 arc_hdr_destroy(hdr);
2804 }
2805 
2806 /*
2807  * "Read" the block at the specified DVA (in bp) via the
2808  * cache.  If the block is found in the cache, invoke the provided
2809  * callback immediately and return.  Note that the `zio' parameter
2810  * in the callback will be NULL in this case, since no IO was
2811  * required.  If the block is not in the cache pass the read request
2812  * on to the spa with a substitute callback function, so that the
2813  * requested block will be added to the cache.
2814  *
2815  * If a read request arrives for a block that has a read in-progress,
2816  * either wait for the in-progress read to complete (and return the
2817  * results); or, if this is a read with a "done" func, add a record
2818  * to the read to invoke the "done" func when the read completes,
2819  * and return; or just return.
2820  *
2821  * arc_read_done() will invoke all the requested "done" functions
2822  * for readers of this block.
2823  */
2824 int
2825 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
2826     void *private, int priority, int zio_flags, uint32_t *arc_flags,
2827     const zbookmark_t *zb)
2828 {
2829         arc_buf_hdr_t *hdr;
2830         arc_buf_t *buf = NULL;
2831         kmutex_t *hash_lock;
2832         zio_t *rzio;
2833         uint64_t guid = spa_load_guid(spa);
2834 
2835 top:
2836         hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2837             &hash_lock);
2838         if (hdr && hdr->b_datacnt > 0) {
2839 
2840                 *arc_flags |= ARC_CACHED;
2841 
2842                 if (HDR_IO_IN_PROGRESS(hdr)) {
2843 
2844                         if (*arc_flags & ARC_WAIT) {
2845                                 cv_wait(&hdr->b_cv, hash_lock);
2846                                 mutex_exit(hash_lock);
2847                                 goto top;
2848                         }
2849                         ASSERT(*arc_flags & ARC_NOWAIT);
2850 
2851                         if (done) {
2852                                 arc_callback_t  *acb = NULL;
2853 
2854                                 acb = kmem_zalloc(sizeof (arc_callback_t),
2855                                     KM_SLEEP);
2856                                 acb->acb_done = done;
2857                                 acb->acb_private = private;
2858                                 if (pio != NULL)
2859                                         acb->acb_zio_dummy = zio_null(pio,
2860                                             spa, NULL, NULL, NULL, zio_flags);
2861 
2862                                 ASSERT(acb->acb_done != NULL);
2863                                 acb->acb_next = hdr->b_acb;
2864                                 hdr->b_acb = acb;
2865                                 add_reference(hdr, hash_lock, private);
2866                                 mutex_exit(hash_lock);
2867                                 return (0);
2868                         }
2869                         mutex_exit(hash_lock);
2870                         return (0);
2871                 }
2872 
2873                 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2874 
2875                 if (done) {
2876                         add_reference(hdr, hash_lock, private);
2877                         /*
2878                          * If this block is already in use, create a new
2879                          * copy of the data so that we will be guaranteed
2880                          * that arc_release() will always succeed.
2881                          */
2882                         buf = hdr->b_buf;
2883                         ASSERT(buf);
2884                         ASSERT(buf->b_data);
2885                         if (HDR_BUF_AVAILABLE(hdr)) {
2886                                 ASSERT(buf->b_efunc == NULL);
2887                                 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2888                         } else {
2889                                 buf = arc_buf_clone(buf);
2890                         }
2891 
2892                 } else if (*arc_flags & ARC_PREFETCH &&
2893                     refcount_count(&hdr->b_refcnt) == 0) {
2894                         hdr->b_flags |= ARC_PREFETCH;
2895                 }
2896                 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2897                 arc_access(hdr, hash_lock);
2898                 if (*arc_flags & ARC_L2CACHE)
2899                         hdr->b_flags |= ARC_L2CACHE;
2900                 if (*arc_flags & ARC_L2COMPRESS)
2901                         hdr->b_flags |= ARC_L2COMPRESS;
2902                 mutex_exit(hash_lock);
2903                 ARCSTAT_BUMP(arcstat_hits);
2904                 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2905                     demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2906                     data, metadata, hits);
2907 
2908                 if (done)
2909                         done(NULL, buf, private);
2910         } else {
2911                 uint64_t size = BP_GET_LSIZE(bp);
2912                 arc_callback_t  *acb;
2913                 vdev_t *vd = NULL;
2914                 uint64_t addr = 0;
2915                 boolean_t devw = B_FALSE;
2916 
2917                 if (hdr == NULL) {
2918                         /* this block is not in the cache */
2919                         arc_buf_hdr_t   *exists;
2920                         arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2921                         buf = arc_buf_alloc(spa, size, private, type);
2922                         hdr = buf->b_hdr;
2923                         hdr->b_dva = *BP_IDENTITY(bp);
2924                         hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
2925                         hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2926                         exists = buf_hash_insert(hdr, &hash_lock);
2927                         if (exists) {
2928                                 /* somebody beat us to the hash insert */
2929                                 mutex_exit(hash_lock);
2930                                 buf_discard_identity(hdr);
2931                                 (void) arc_buf_remove_ref(buf, private);
2932                                 goto top; /* restart the IO request */
2933                         }
2934                         /* if this is a prefetch, we don't have a reference */
2935                         if (*arc_flags & ARC_PREFETCH) {
2936                                 (void) remove_reference(hdr, hash_lock,
2937                                     private);
2938                                 hdr->b_flags |= ARC_PREFETCH;
2939                         }
2940                         if (*arc_flags & ARC_L2CACHE)
2941                                 hdr->b_flags |= ARC_L2CACHE;
2942                         if (*arc_flags & ARC_L2COMPRESS)
2943                                 hdr->b_flags |= ARC_L2COMPRESS;
2944                         if (BP_GET_LEVEL(bp) > 0)
2945                                 hdr->b_flags |= ARC_INDIRECT;
2946                 } else {
2947                         /* this block is in the ghost cache */
2948                         ASSERT(GHOST_STATE(hdr->b_state));
2949                         ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2950                         ASSERT0(refcount_count(&hdr->b_refcnt));
2951                         ASSERT(hdr->b_buf == NULL);
2952 
2953                         /* if this is a prefetch, we don't have a reference */
2954                         if (*arc_flags & ARC_PREFETCH)
2955                                 hdr->b_flags |= ARC_PREFETCH;
2956                         else
2957                                 add_reference(hdr, hash_lock, private);
2958                         if (*arc_flags & ARC_L2CACHE)
2959                                 hdr->b_flags |= ARC_L2CACHE;
2960                         if (*arc_flags & ARC_L2COMPRESS)
2961                                 hdr->b_flags |= ARC_L2COMPRESS;
2962                         buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2963                         buf->b_hdr = hdr;
2964                         buf->b_data = NULL;
2965                         buf->b_efunc = NULL;
2966                         buf->b_private = NULL;
2967                         buf->b_next = NULL;
2968                         hdr->b_buf = buf;
2969                         ASSERT(hdr->b_datacnt == 0);
2970                         hdr->b_datacnt = 1;
2971                         arc_get_data_buf(buf);
2972                         arc_access(hdr, hash_lock);
2973                 }
2974 
2975                 ASSERT(!GHOST_STATE(hdr->b_state));
2976 
2977                 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2978                 acb->acb_done = done;
2979                 acb->acb_private = private;
2980 
2981                 ASSERT(hdr->b_acb == NULL);
2982                 hdr->b_acb = acb;
2983                 hdr->b_flags |= ARC_IO_IN_PROGRESS;
2984 
2985                 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2986                     (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
2987                         devw = hdr->b_l2hdr->b_dev->l2ad_writing;
2988                         addr = hdr->b_l2hdr->b_daddr;
2989                         /*
2990                          * Lock out device removal.
2991                          */
2992                         if (vdev_is_dead(vd) ||
2993                             !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2994                                 vd = NULL;
2995                 }
2996 
2997                 mutex_exit(hash_lock);
2998 
2999                 /*
3000                  * At this point, we have a level 1 cache miss.  Try again in
3001                  * L2ARC if possible.
3002                  */
3003                 ASSERT3U(hdr->b_size, ==, size);
3004                 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3005                     uint64_t, size, zbookmark_t *, zb);
3006                 ARCSTAT_BUMP(arcstat_misses);
3007                 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3008                     demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3009                     data, metadata, misses);
3010 
3011                 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
3012                         /*
3013                          * Read from the L2ARC if the following are true:
3014                          * 1. The L2ARC vdev was previously cached.
3015                          * 2. This buffer still has L2ARC metadata.
3016                          * 3. This buffer isn't currently writing to the L2ARC.
3017                          * 4. The L2ARC entry wasn't evicted, which may
3018                          *    also have invalidated the vdev.
3019                          * 5. This isn't prefetch and l2arc_noprefetch is set.
3020                          */
3021                         if (hdr->b_l2hdr != NULL &&
3022                             !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3023                             !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
3024                                 l2arc_read_callback_t *cb;
3025 
3026                                 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3027                                 ARCSTAT_BUMP(arcstat_l2_hits);
3028 
3029                                 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3030                                     KM_SLEEP);
3031                                 cb->l2rcb_buf = buf;
3032                                 cb->l2rcb_spa = spa;
3033                                 cb->l2rcb_bp = *bp;
3034                                 cb->l2rcb_zb = *zb;
3035                                 cb->l2rcb_flags = zio_flags;
3036                                 cb->l2rcb_compress = hdr->b_l2hdr->b_compress;
3037 
3038                                 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
3039                                     addr + size < vd->vdev_psize -
3040                                     VDEV_LABEL_END_SIZE);
3041 
3042                                 /*
3043                                  * l2arc read.  The SCL_L2ARC lock will be
3044                                  * released by l2arc_read_done().
3045                                  * Issue a null zio if the underlying buffer
3046                                  * was squashed to zero size by compression.
3047                                  */
3048                                 if (hdr->b_l2hdr->b_compress ==
3049                                     ZIO_COMPRESS_EMPTY) {
3050                                         rzio = zio_null(pio, spa, vd,
3051                                             l2arc_read_done, cb,
3052                                             zio_flags | ZIO_FLAG_DONT_CACHE |
3053                                             ZIO_FLAG_CANFAIL |
3054                                             ZIO_FLAG_DONT_PROPAGATE |
3055                                             ZIO_FLAG_DONT_RETRY);
3056                                 } else {
3057                                         rzio = zio_read_phys(pio, vd, addr,
3058                                             hdr->b_l2hdr->b_asize,
3059                                             buf->b_data, ZIO_CHECKSUM_OFF,
3060                                             l2arc_read_done, cb, priority,
3061                                             zio_flags | ZIO_FLAG_DONT_CACHE |
3062                                             ZIO_FLAG_CANFAIL |
3063                                             ZIO_FLAG_DONT_PROPAGATE |
3064                                             ZIO_FLAG_DONT_RETRY, B_FALSE);
3065                                 }
3066                                 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3067                                     zio_t *, rzio);
3068                                 ARCSTAT_INCR(arcstat_l2_read_bytes,
3069                                     hdr->b_l2hdr->b_asize);
3070 
3071                                 if (*arc_flags & ARC_NOWAIT) {
3072                                         zio_nowait(rzio);
3073                                         return (0);
3074                                 }
3075 
3076                                 ASSERT(*arc_flags & ARC_WAIT);
3077                                 if (zio_wait(rzio) == 0)
3078                                         return (0);
3079 
3080                                 /* l2arc read error; goto zio_read() */
3081                         } else {
3082                                 DTRACE_PROBE1(l2arc__miss,
3083                                     arc_buf_hdr_t *, hdr);
3084                                 ARCSTAT_BUMP(arcstat_l2_misses);
3085                                 if (HDR_L2_WRITING(hdr))
3086                                         ARCSTAT_BUMP(arcstat_l2_rw_clash);
3087                                 spa_config_exit(spa, SCL_L2ARC, vd);
3088                         }
3089                 } else {
3090                         if (vd != NULL)
3091                                 spa_config_exit(spa, SCL_L2ARC, vd);
3092                         if (l2arc_ndev != 0) {
3093                                 DTRACE_PROBE1(l2arc__miss,
3094                                     arc_buf_hdr_t *, hdr);
3095                                 ARCSTAT_BUMP(arcstat_l2_misses);
3096                         }
3097                 }
3098 
3099                 rzio = zio_read(pio, spa, bp, buf->b_data, size,
3100                     arc_read_done, buf, priority, zio_flags, zb);
3101 
3102                 if (*arc_flags & ARC_WAIT)
3103                         return (zio_wait(rzio));
3104 
3105                 ASSERT(*arc_flags & ARC_NOWAIT);
3106                 zio_nowait(rzio);
3107         }
3108         return (0);
3109 }
3110 
3111 void
3112 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3113 {
3114         ASSERT(buf->b_hdr != NULL);
3115         ASSERT(buf->b_hdr->b_state != arc_anon);
3116         ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3117         ASSERT(buf->b_efunc == NULL);
3118         ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3119 
3120         buf->b_efunc = func;
3121         buf->b_private = private;
3122 }
3123 
3124 /*
3125  * Notify the arc that a block was freed, and thus will never be used again.
3126  */
3127 void
3128 arc_freed(spa_t *spa, const blkptr_t *bp)
3129 {
3130         arc_buf_hdr_t *hdr;
3131         kmutex_t *hash_lock;
3132         uint64_t guid = spa_load_guid(spa);
3133 
3134         hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
3135             &hash_lock);
3136         if (hdr == NULL)
3137                 return;
3138         if (HDR_BUF_AVAILABLE(hdr)) {
3139                 arc_buf_t *buf = hdr->b_buf;
3140                 add_reference(hdr, hash_lock, FTAG);
3141                 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3142                 mutex_exit(hash_lock);
3143 
3144                 arc_release(buf, FTAG);
3145                 (void) arc_buf_remove_ref(buf, FTAG);
3146         } else {
3147                 mutex_exit(hash_lock);
3148         }
3149 
3150 }
3151 
3152 /*
3153  * This is used by the DMU to let the ARC know that a buffer is
3154  * being evicted, so the ARC should clean up.  If this arc buf
3155  * is not yet in the evicted state, it will be put there.
3156  */
3157 int
3158 arc_buf_evict(arc_buf_t *buf)
3159 {
3160         arc_buf_hdr_t *hdr;
3161         kmutex_t *hash_lock;
3162         arc_buf_t **bufp;
3163 
3164         mutex_enter(&buf->b_evict_lock);
3165         hdr = buf->b_hdr;
3166         if (hdr == NULL) {
3167                 /*
3168                  * We are in arc_do_user_evicts().
3169                  */
3170                 ASSERT(buf->b_data == NULL);
3171                 mutex_exit(&buf->b_evict_lock);
3172                 return (0);
3173         } else if (buf->b_data == NULL) {
3174                 arc_buf_t copy = *buf; /* structure assignment */
3175                 /*
3176                  * We are on the eviction list; process this buffer now
3177                  * but let arc_do_user_evicts() do the reaping.
3178                  */
3179                 buf->b_efunc = NULL;
3180                 mutex_exit(&buf->b_evict_lock);
3181                 VERIFY(copy.b_efunc(&copy) == 0);
3182                 return (1);
3183         }
3184         hash_lock = HDR_LOCK(hdr);
3185         mutex_enter(hash_lock);
3186         hdr = buf->b_hdr;
3187         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3188 
3189         ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3190         ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3191 
3192         /*
3193          * Pull this buffer off of the hdr
3194          */
3195         bufp = &hdr->b_buf;
3196         while (*bufp != buf)
3197                 bufp = &(*bufp)->b_next;
3198         *bufp = buf->b_next;
3199 
3200         ASSERT(buf->b_data != NULL);
3201         arc_buf_destroy(buf, FALSE, FALSE);
3202 
3203         if (hdr->b_datacnt == 0) {
3204                 arc_state_t *old_state = hdr->b_state;
3205                 arc_state_t *evicted_state;
3206 
3207                 ASSERT(hdr->b_buf == NULL);
3208                 ASSERT(refcount_is_zero(&hdr->b_refcnt));
3209 
3210                 evicted_state =
3211                     (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3212 
3213                 mutex_enter(&old_state->arcs_mtx);
3214                 mutex_enter(&evicted_state->arcs_mtx);
3215 
3216                 arc_change_state(evicted_state, hdr, hash_lock);
3217                 ASSERT(HDR_IN_HASH_TABLE(hdr));
3218                 hdr->b_flags |= ARC_IN_HASH_TABLE;
3219                 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3220 
3221                 mutex_exit(&evicted_state->arcs_mtx);
3222                 mutex_exit(&old_state->arcs_mtx);
3223         }
3224         mutex_exit(hash_lock);
3225         mutex_exit(&buf->b_evict_lock);
3226 
3227         VERIFY(buf->b_efunc(buf) == 0);
3228         buf->b_efunc = NULL;
3229         buf->b_private = NULL;
3230         buf->b_hdr = NULL;
3231         buf->b_next = NULL;
3232         kmem_cache_free(buf_cache, buf);
3233         return (1);
3234 }
3235 
3236 /*
3237  * Release this buffer from the cache, making it an anonymous buffer.  This
3238  * must be done after a read and prior to modifying the buffer contents.
3239  * If the buffer has more than one reference, we must make
3240  * a new hdr for the buffer.
3241  */
3242 void
3243 arc_release(arc_buf_t *buf, void *tag)
3244 {
3245         arc_buf_hdr_t *hdr;
3246         kmutex_t *hash_lock = NULL;
3247         l2arc_buf_hdr_t *l2hdr;
3248         uint64_t buf_size;
3249 
3250         /*
3251          * It would be nice to assert that if it's DMU metadata (level >
3252          * 0 || it's the dnode file), then it must be syncing context.
3253          * But we don't know that information at this level.
3254          */
3255 
3256         mutex_enter(&buf->b_evict_lock);
3257         hdr = buf->b_hdr;
3258 
3259         /* this buffer is not on any list */
3260         ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3261 
3262         if (hdr->b_state == arc_anon) {
3263                 /* this buffer is already released */
3264                 ASSERT(buf->b_efunc == NULL);
3265         } else {
3266                 hash_lock = HDR_LOCK(hdr);
3267                 mutex_enter(hash_lock);
3268                 hdr = buf->b_hdr;
3269                 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3270         }
3271 
3272         l2hdr = hdr->b_l2hdr;
3273         if (l2hdr) {
3274                 mutex_enter(&l2arc_buflist_mtx);
3275                 hdr->b_l2hdr = NULL;
3276         }
3277         buf_size = hdr->b_size;
3278 
3279         /*
3280          * Do we have more than one buf?
3281          */
3282         if (hdr->b_datacnt > 1) {
3283                 arc_buf_hdr_t *nhdr;
3284                 arc_buf_t **bufp;
3285                 uint64_t blksz = hdr->b_size;
3286                 uint64_t spa = hdr->b_spa;
3287                 arc_buf_contents_t type = hdr->b_type;
3288                 uint32_t flags = hdr->b_flags;
3289 
3290                 ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3291                 /*
3292                  * Pull the data off of this hdr and attach it to
3293                  * a new anonymous hdr.
3294                  */
3295                 (void) remove_reference(hdr, hash_lock, tag);
3296                 bufp = &hdr->b_buf;
3297                 while (*bufp != buf)
3298                         bufp = &(*bufp)->b_next;
3299                 *bufp = buf->b_next;
3300                 buf->b_next = NULL;
3301 
3302                 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3303                 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3304                 if (refcount_is_zero(&hdr->b_refcnt)) {
3305                         uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3306                         ASSERT3U(*size, >=, hdr->b_size);
3307                         atomic_add_64(size, -hdr->b_size);
3308                 }
3309 
3310                 /*
3311                  * We're releasing a duplicate user data buffer, update
3312                  * our statistics accordingly.
3313                  */
3314                 if (hdr->b_type == ARC_BUFC_DATA) {
3315                         ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3316                         ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3317                             -hdr->b_size);
3318                 }
3319                 hdr->b_datacnt -= 1;
3320                 arc_cksum_verify(buf);
3321                 arc_buf_unwatch(buf);
3322 
3323                 mutex_exit(hash_lock);
3324 
3325                 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3326                 nhdr->b_size = blksz;
3327                 nhdr->b_spa = spa;
3328                 nhdr->b_type = type;
3329                 nhdr->b_buf = buf;
3330                 nhdr->b_state = arc_anon;
3331                 nhdr->b_arc_access = 0;
3332                 nhdr->b_flags = flags & ARC_L2_WRITING;
3333                 nhdr->b_l2hdr = NULL;
3334                 nhdr->b_datacnt = 1;
3335                 nhdr->b_freeze_cksum = NULL;
3336                 (void) refcount_add(&nhdr->b_refcnt, tag);
3337                 buf->b_hdr = nhdr;
3338                 mutex_exit(&buf->b_evict_lock);
3339                 atomic_add_64(&arc_anon->arcs_size, blksz);
3340         } else {
3341                 mutex_exit(&buf->b_evict_lock);
3342                 ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3343                 ASSERT(!list_link_active(&hdr->b_arc_node));
3344                 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3345                 if (hdr->b_state != arc_anon)
3346                         arc_change_state(arc_anon, hdr, hash_lock);
3347                 hdr->b_arc_access = 0;
3348                 if (hash_lock)
3349                         mutex_exit(hash_lock);
3350 
3351                 buf_discard_identity(hdr);
3352                 arc_buf_thaw(buf);
3353         }
3354         buf->b_efunc = NULL;
3355         buf->b_private = NULL;
3356 
3357         if (l2hdr) {
3358                 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
3359                 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3360                 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3361                 ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3362                 mutex_exit(&l2arc_buflist_mtx);
3363         }
3364 }
3365 
3366 int
3367 arc_released(arc_buf_t *buf)
3368 {
3369         int released;
3370 
3371         mutex_enter(&buf->b_evict_lock);
3372         released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3373         mutex_exit(&buf->b_evict_lock);
3374         return (released);
3375 }
3376 
3377 int
3378 arc_has_callback(arc_buf_t *buf)
3379 {
3380         int callback;
3381 
3382         mutex_enter(&buf->b_evict_lock);
3383         callback = (buf->b_efunc != NULL);
3384         mutex_exit(&buf->b_evict_lock);
3385         return (callback);
3386 }
3387 
3388 #ifdef ZFS_DEBUG
3389 int
3390 arc_referenced(arc_buf_t *buf)
3391 {
3392         int referenced;
3393 
3394         mutex_enter(&buf->b_evict_lock);
3395         referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3396         mutex_exit(&buf->b_evict_lock);
3397         return (referenced);
3398 }
3399 #endif
3400 
3401 static void
3402 arc_write_ready(zio_t *zio)
3403 {
3404         arc_write_callback_t *callback = zio->io_private;
3405         arc_buf_t *buf = callback->awcb_buf;
3406         arc_buf_hdr_t *hdr = buf->b_hdr;
3407 
3408         ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3409         callback->awcb_ready(zio, buf, callback->awcb_private);
3410 
3411         /*
3412          * If the IO is already in progress, then this is a re-write
3413          * attempt, so we need to thaw and re-compute the cksum.
3414          * It is the responsibility of the callback to handle the
3415          * accounting for any re-write attempt.
3416          */
3417         if (HDR_IO_IN_PROGRESS(hdr)) {
3418                 mutex_enter(&hdr->b_freeze_lock);
3419                 if (hdr->b_freeze_cksum != NULL) {
3420                         kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3421                         hdr->b_freeze_cksum = NULL;
3422                 }
3423                 mutex_exit(&hdr->b_freeze_lock);
3424         }
3425         arc_cksum_compute(buf, B_FALSE);
3426         hdr->b_flags |= ARC_IO_IN_PROGRESS;
3427 }
3428 
3429 static void
3430 arc_write_done(zio_t *zio)
3431 {
3432         arc_write_callback_t *callback = zio->io_private;
3433         arc_buf_t *buf = callback->awcb_buf;
3434         arc_buf_hdr_t *hdr = buf->b_hdr;
3435 
3436         ASSERT(hdr->b_acb == NULL);
3437 
3438         if (zio->io_error == 0) {
3439                 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3440                 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3441                 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3442         } else {
3443                 ASSERT(BUF_EMPTY(hdr));
3444         }
3445 
3446         /*
3447          * If the block to be written was all-zero, we may have
3448          * compressed it away.  In this case no write was performed
3449          * so there will be no dva/birth/checksum.  The buffer must
3450          * therefore remain anonymous (and uncached).
3451          */
3452         if (!BUF_EMPTY(hdr)) {
3453                 arc_buf_hdr_t *exists;
3454                 kmutex_t *hash_lock;
3455 
3456                 ASSERT(zio->io_error == 0);
3457 
3458                 arc_cksum_verify(buf);
3459 
3460                 exists = buf_hash_insert(hdr, &hash_lock);
3461                 if (exists) {
3462                         /*
3463                          * This can only happen if we overwrite for
3464                          * sync-to-convergence, because we remove
3465                          * buffers from the hash table when we arc_free().
3466                          */
3467                         if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3468                                 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3469                                         panic("bad overwrite, hdr=%p exists=%p",
3470                                             (void *)hdr, (void *)exists);
3471                                 ASSERT(refcount_is_zero(&exists->b_refcnt));
3472                                 arc_change_state(arc_anon, exists, hash_lock);
3473                                 mutex_exit(hash_lock);
3474                                 arc_hdr_destroy(exists);
3475                                 exists = buf_hash_insert(hdr, &hash_lock);
3476                                 ASSERT3P(exists, ==, NULL);
3477                         } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
3478                                 /* nopwrite */
3479                                 ASSERT(zio->io_prop.zp_nopwrite);
3480                                 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3481                                         panic("bad nopwrite, hdr=%p exists=%p",
3482                                             (void *)hdr, (void *)exists);
3483                         } else {
3484                                 /* Dedup */
3485                                 ASSERT(hdr->b_datacnt == 1);
3486                                 ASSERT(hdr->b_state == arc_anon);
3487                                 ASSERT(BP_GET_DEDUP(zio->io_bp));
3488                                 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3489                         }
3490                 }
3491                 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3492                 /* if it's not anon, we are doing a scrub */
3493                 if (!exists && hdr->b_state == arc_anon)
3494                         arc_access(hdr, hash_lock);
3495                 mutex_exit(hash_lock);
3496         } else {
3497                 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3498         }
3499 
3500         ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3501         callback->awcb_done(zio, buf, callback->awcb_private);
3502 
3503         kmem_free(callback, sizeof (arc_write_callback_t));
3504 }
3505 
3506 zio_t *
3507 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3508     blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
3509     const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *done,
3510     void *private, int priority, int zio_flags, const zbookmark_t *zb)
3511 {
3512         arc_buf_hdr_t *hdr = buf->b_hdr;
3513         arc_write_callback_t *callback;
3514         zio_t *zio;
3515 
3516         ASSERT(ready != NULL);
3517         ASSERT(done != NULL);
3518         ASSERT(!HDR_IO_ERROR(hdr));
3519         ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3520         ASSERT(hdr->b_acb == NULL);
3521         if (l2arc)
3522                 hdr->b_flags |= ARC_L2CACHE;
3523         if (l2arc_compress)
3524                 hdr->b_flags |= ARC_L2COMPRESS;
3525         callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3526         callback->awcb_ready = ready;
3527         callback->awcb_done = done;
3528         callback->awcb_private = private;
3529         callback->awcb_buf = buf;
3530 
3531         zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3532             arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3533 
3534         return (zio);
3535 }
3536 
3537 static int
3538 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
3539 {
3540 #ifdef _KERNEL
3541         uint64_t available_memory = ptob(freemem);
3542         static uint64_t page_load = 0;
3543         static uint64_t last_txg = 0;
3544 
3545 #if defined(__i386)
3546         available_memory =
3547             MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3548 #endif
3549         if (available_memory >= zfs_write_limit_max)
3550                 return (0);
3551 
3552         if (txg > last_txg) {
3553                 last_txg = txg;
3554                 page_load = 0;
3555         }
3556         /*
3557          * If we are in pageout, we know that memory is already tight,
3558          * the arc is already going to be evicting, so we just want to
3559          * continue to let page writes occur as quickly as possible.
3560          */
3561         if (curproc == proc_pageout) {
3562                 if (page_load > MAX(ptob(minfree), available_memory) / 4)
3563                         return (SET_ERROR(ERESTART));
3564                 /* Note: reserve is inflated, so we deflate */
3565                 page_load += reserve / 8;
3566                 return (0);
3567         } else if (page_load > 0 && arc_reclaim_needed()) {
3568                 /* memory is low, delay before restarting */
3569                 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3570                 return (SET_ERROR(EAGAIN));
3571         }
3572         page_load = 0;
3573 
3574         if (arc_size > arc_c_min) {
3575                 uint64_t evictable_memory =
3576                     arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3577                     arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3578                     arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3579                     arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3580                 available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3581         }
3582 
3583         if (inflight_data > available_memory / 4) {
3584                 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3585                 return (SET_ERROR(ERESTART));
3586         }
3587 #endif
3588         return (0);
3589 }
3590 
3591 void
3592 arc_tempreserve_clear(uint64_t reserve)
3593 {
3594         atomic_add_64(&arc_tempreserve, -reserve);
3595         ASSERT((int64_t)arc_tempreserve >= 0);
3596 }
3597 
3598 int
3599 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3600 {
3601         int error;
3602         uint64_t anon_size;
3603 
3604 #ifdef ZFS_DEBUG
3605         /*
3606          * Once in a while, fail for no reason.  Everything should cope.
3607          */
3608         if (spa_get_random(10000) == 0) {
3609                 dprintf("forcing random failure\n");
3610                 return (SET_ERROR(ERESTART));
3611         }
3612 #endif
3613         if (reserve > arc_c/4 && !arc_no_grow)
3614                 arc_c = MIN(arc_c_max, reserve * 4);
3615         if (reserve > arc_c)
3616                 return (SET_ERROR(ENOMEM));
3617 
3618         /*
3619          * Don't count loaned bufs as in flight dirty data to prevent long
3620          * network delays from blocking transactions that are ready to be
3621          * assigned to a txg.
3622          */
3623         anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3624 
3625         /*
3626          * Writes will, almost always, require additional memory allocations
3627          * in order to compress/encrypt/etc the data.  We therefore need to
3628          * make sure that there is sufficient available memory for this.
3629          */
3630         if (error = arc_memory_throttle(reserve, anon_size, txg))
3631                 return (error);
3632 
3633         /*
3634          * Throttle writes when the amount of dirty data in the cache
3635          * gets too large.  We try to keep the cache less than half full
3636          * of dirty blocks so that our sync times don't grow too large.
3637          * Note: if two requests come in concurrently, we might let them
3638          * both succeed, when one of them should fail.  Not a huge deal.
3639          */
3640 
3641         if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3642             anon_size > arc_c / 4) {
3643                 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3644                     "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3645                     arc_tempreserve>>10,
3646                     arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3647                     arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3648                     reserve>>10, arc_c>>10);
3649                 return (SET_ERROR(ERESTART));
3650         }
3651         atomic_add_64(&arc_tempreserve, reserve);
3652         return (0);
3653 }
3654 
3655 void
3656 arc_init(void)
3657 {
3658         mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3659         cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3660 
3661         /* Convert seconds to clock ticks */
3662         arc_min_prefetch_lifespan = 1 * hz;
3663 
3664         /* Start out with 1/8 of all memory */
3665         arc_c = physmem * PAGESIZE / 8;
3666 
3667 #ifdef _KERNEL
3668         /*
3669          * On architectures where the physical memory can be larger
3670          * than the addressable space (intel in 32-bit mode), we may
3671          * need to limit the cache to 1/8 of VM size.
3672          */
3673         arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3674 #endif
3675 
3676         /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3677         arc_c_min = MAX(arc_c / 4, 64<<20);
3678         /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3679         if (arc_c * 8 >= 1<<30)
3680                 arc_c_max = (arc_c * 8) - (1<<30);
3681         else
3682                 arc_c_max = arc_c_min;
3683         arc_c_max = MAX(arc_c * 6, arc_c_max);
3684 
3685         /*
3686          * Allow the tunables to override our calculations if they are
3687          * reasonable (ie. over 64MB)
3688          */
3689         if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3690                 arc_c_max = zfs_arc_max;
3691         if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3692                 arc_c_min = zfs_arc_min;
3693 
3694         arc_c = arc_c_max;
3695         arc_p = (arc_c >> 1);
3696 
3697         /* limit meta-data to 1/4 of the arc capacity */
3698         arc_meta_limit = arc_c_max / 4;
3699 
3700         /* Allow the tunable to override if it is reasonable */
3701         if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3702                 arc_meta_limit = zfs_arc_meta_limit;
3703 
3704         if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3705                 arc_c_min = arc_meta_limit / 2;
3706 
3707         if (zfs_arc_grow_retry > 0)
3708                 arc_grow_retry = zfs_arc_grow_retry;
3709 
3710         if (zfs_arc_shrink_shift > 0)
3711                 arc_shrink_shift = zfs_arc_shrink_shift;
3712 
3713         if (zfs_arc_p_min_shift > 0)
3714                 arc_p_min_shift = zfs_arc_p_min_shift;
3715 
3716         /* if kmem_flags are set, lets try to use less memory */
3717         if (kmem_debugging())
3718                 arc_c = arc_c / 2;
3719         if (arc_c < arc_c_min)
3720                 arc_c = arc_c_min;
3721 
3722         arc_anon = &ARC_anon;
3723         arc_mru = &ARC_mru;
3724         arc_mru_ghost = &ARC_mru_ghost;
3725         arc_mfu = &ARC_mfu;
3726         arc_mfu_ghost = &ARC_mfu_ghost;
3727         arc_l2c_only = &ARC_l2c_only;
3728         arc_size = 0;
3729 
3730         mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3731         mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3732         mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3733         mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3734         mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3735         mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3736 
3737         list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3738             sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3739         list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3740             sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3741         list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3742             sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3743         list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3744             sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3745         list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3746             sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3747         list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3748             sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3749         list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3750             sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3751         list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3752             sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3753         list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3754             sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3755         list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3756             sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3757 
3758         buf_init();
3759 
3760         arc_thread_exit = 0;
3761         arc_eviction_list = NULL;
3762         mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3763         bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3764 
3765         arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3766             sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3767 
3768         if (arc_ksp != NULL) {
3769                 arc_ksp->ks_data = &arc_stats;
3770                 kstat_install(arc_ksp);
3771         }
3772 
3773         (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3774             TS_RUN, minclsyspri);
3775 
3776         arc_dead = FALSE;
3777         arc_warm = B_FALSE;
3778 
3779         if (zfs_write_limit_max == 0)
3780                 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3781         else
3782                 zfs_write_limit_shift = 0;
3783         mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3784 }
3785 
3786 void
3787 arc_fini(void)
3788 {
3789         mutex_enter(&arc_reclaim_thr_lock);
3790         arc_thread_exit = 1;
3791         while (arc_thread_exit != 0)
3792                 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3793         mutex_exit(&arc_reclaim_thr_lock);
3794 
3795         arc_flush(NULL);
3796 
3797         arc_dead = TRUE;
3798 
3799         if (arc_ksp != NULL) {
3800                 kstat_delete(arc_ksp);
3801                 arc_ksp = NULL;
3802         }
3803 
3804         mutex_destroy(&arc_eviction_mtx);
3805         mutex_destroy(&arc_reclaim_thr_lock);
3806         cv_destroy(&arc_reclaim_thr_cv);
3807 
3808         list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3809         list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3810         list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3811         list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3812         list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3813         list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3814         list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3815         list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3816 
3817         mutex_destroy(&arc_anon->arcs_mtx);
3818         mutex_destroy(&arc_mru->arcs_mtx);
3819         mutex_destroy(&arc_mru_ghost->arcs_mtx);
3820         mutex_destroy(&arc_mfu->arcs_mtx);
3821         mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3822         mutex_destroy(&arc_l2c_only->arcs_mtx);
3823 
3824         mutex_destroy(&zfs_write_limit_lock);
3825 
3826         buf_fini();
3827 
3828         ASSERT(arc_loaned_bytes == 0);
3829 }
3830 
3831 /*
3832  * Level 2 ARC
3833  *
3834  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3835  * It uses dedicated storage devices to hold cached data, which are populated
3836  * using large infrequent writes.  The main role of this cache is to boost
3837  * the performance of random read workloads.  The intended L2ARC devices
3838  * include short-stroked disks, solid state disks, and other media with
3839  * substantially faster read latency than disk.
3840  *
3841  *                 +-----------------------+
3842  *                 |         ARC           |
3843  *                 +-----------------------+
3844  *                    |         ^     ^
3845  *                    |         |     |
3846  *      l2arc_feed_thread()    arc_read()
3847  *                    |         |     |
3848  *                    |  l2arc read   |
3849  *                    V         |     |
3850  *               +---------------+    |
3851  *               |     L2ARC     |    |
3852  *               +---------------+    |
3853  *                   |    ^           |
3854  *          l2arc_write() |           |
3855  *                   |    |           |
3856  *                   V    |           |
3857  *                 +-------+      +-------+
3858  *                 | vdev  |      | vdev  |
3859  *                 | cache |      | cache |
3860  *                 +-------+      +-------+
3861  *                 +=========+     .-----.
3862  *                 :  L2ARC  :    |-_____-|
3863  *                 : devices :    | Disks |
3864  *                 +=========+    `-_____-'
3865  *
3866  * Read requests are satisfied from the following sources, in order:
3867  *
3868  *      1) ARC
3869  *      2) vdev cache of L2ARC devices
3870  *      3) L2ARC devices
3871  *      4) vdev cache of disks
3872  *      5) disks
3873  *
3874  * Some L2ARC device types exhibit extremely slow write performance.
3875  * To accommodate for this there are some significant differences between
3876  * the L2ARC and traditional cache design:
3877  *
3878  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3879  * the ARC behave as usual, freeing buffers and placing headers on ghost
3880  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3881  * this would add inflated write latencies for all ARC memory pressure.
3882  *
3883  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3884  * It does this by periodically scanning buffers from the eviction-end of
3885  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3886  * not already there. It scans until a headroom of buffers is satisfied,
3887  * which itself is a buffer for ARC eviction. If a compressible buffer is
3888  * found during scanning and selected for writing to an L2ARC device, we
3889  * temporarily boost scanning headroom during the next scan cycle to make
3890  * sure we adapt to compression effects (which might significantly reduce
3891  * the data volume we write to L2ARC). The thread that does this is
3892  * l2arc_feed_thread(), illustrated below; example sizes are included to
3893  * provide a better sense of ratio than this diagram:
3894  *
3895  *             head -->                        tail
3896  *              +---------------------+----------+
3897  *      ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3898  *              +---------------------+----------+   |   o L2ARC eligible
3899  *      ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3900  *              +---------------------+----------+   |
3901  *                   15.9 Gbytes      ^ 32 Mbytes    |
3902  *                                 headroom          |
3903  *                                            l2arc_feed_thread()
3904  *                                                   |
3905  *                       l2arc write hand <--[oooo]--'
3906  *                               |           8 Mbyte
3907  *                               |          write max
3908  *                               V
3909  *                +==============================+
3910  *      L2ARC dev |####|#|###|###|    |####| ... |
3911  *                +==============================+
3912  *                           32 Gbytes
3913  *
3914  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3915  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3916  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3917  * safe to say that this is an uncommon case, since buffers at the end of
3918  * the ARC lists have moved there due to inactivity.
3919  *
3920  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3921  * then the L2ARC simply misses copying some buffers.  This serves as a
3922  * pressure valve to prevent heavy read workloads from both stalling the ARC
3923  * with waits and clogging the L2ARC with writes.  This also helps prevent
3924  * the potential for the L2ARC to churn if it attempts to cache content too
3925  * quickly, such as during backups of the entire pool.
3926  *
3927  * 5. After system boot and before the ARC has filled main memory, there are
3928  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3929  * lists can remain mostly static.  Instead of searching from tail of these
3930  * lists as pictured, the l2arc_feed_thread() will search from the list heads
3931  * for eligible buffers, greatly increasing its chance of finding them.
3932  *
3933  * The L2ARC device write speed is also boosted during this time so that
3934  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
3935  * there are no L2ARC reads, and no fear of degrading read performance
3936  * through increased writes.
3937  *
3938  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3939  * the vdev queue can aggregate them into larger and fewer writes.  Each
3940  * device is written to in a rotor fashion, sweeping writes through
3941  * available space then repeating.
3942  *
3943  * 7. The L2ARC does not store dirty content.  It never needs to flush
3944  * write buffers back to disk based storage.
3945  *
3946  * 8. If an ARC buffer is written (and dirtied) which also exists in the
3947  * L2ARC, the now stale L2ARC buffer is immediately dropped.
3948  *
3949  * The performance of the L2ARC can be tweaked by a number of tunables, which
3950  * may be necessary for different workloads:
3951  *
3952  *      l2arc_write_max         max write bytes per interval
3953  *      l2arc_write_boost       extra write bytes during device warmup
3954  *      l2arc_noprefetch        skip caching prefetched buffers
3955  *      l2arc_headroom          number of max device writes to precache
3956  *      l2arc_headroom_boost    when we find compressed buffers during ARC
3957  *                              scanning, we multiply headroom by this
3958  *                              percentage factor for the next scan cycle,
3959  *                              since more compressed buffers are likely to
3960  *                              be present
3961  *      l2arc_feed_secs         seconds between L2ARC writing
3962  *
3963  * Tunables may be removed or added as future performance improvements are
3964  * integrated, and also may become zpool properties.
3965  *
3966  * There are three key functions that control how the L2ARC warms up:
3967  *
3968  *      l2arc_write_eligible()  check if a buffer is eligible to cache
3969  *      l2arc_write_size()      calculate how much to write
3970  *      l2arc_write_interval()  calculate sleep delay between writes
3971  *
3972  * These three functions determine what to write, how much, and how quickly
3973  * to send writes.
3974  */
3975 
3976 static boolean_t
3977 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
3978 {
3979         /*
3980          * A buffer is *not* eligible for the L2ARC if it:
3981          * 1. belongs to a different spa.
3982          * 2. is already cached on the L2ARC.
3983          * 3. has an I/O in progress (it may be an incomplete read).
3984          * 4. is flagged not eligible (zfs property).
3985          */
3986         if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
3987             HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
3988                 return (B_FALSE);
3989 
3990         return (B_TRUE);
3991 }
3992 
3993 static uint64_t
3994 l2arc_write_size(void)
3995 {
3996         uint64_t size;
3997 
3998         /*
3999          * Make sure our globals have meaningful values in case the user
4000          * altered them.
4001          */
4002         size = l2arc_write_max;
4003         if (size == 0) {
4004                 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
4005                     "be greater than zero, resetting it to the default (%d)",
4006                     L2ARC_WRITE_SIZE);
4007                 size = l2arc_write_max = L2ARC_WRITE_SIZE;
4008         }
4009 
4010         if (arc_warm == B_FALSE)
4011                 size += l2arc_write_boost;
4012 
4013         return (size);
4014 
4015 }
4016 
4017 static clock_t
4018 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4019 {
4020         clock_t interval, next, now;
4021 
4022         /*
4023          * If the ARC lists are busy, increase our write rate; if the
4024          * lists are stale, idle back.  This is achieved by checking
4025          * how much we previously wrote - if it was more than half of
4026          * what we wanted, schedule the next write much sooner.
4027          */
4028         if (l2arc_feed_again && wrote > (wanted / 2))
4029                 interval = (hz * l2arc_feed_min_ms) / 1000;
4030         else
4031                 interval = hz * l2arc_feed_secs;
4032 
4033         now = ddi_get_lbolt();
4034         next = MAX(now, MIN(now + interval, began + interval));
4035 
4036         return (next);
4037 }
4038 
4039 static void
4040 l2arc_hdr_stat_add(void)
4041 {
4042         ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
4043         ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4044 }
4045 
4046 static void
4047 l2arc_hdr_stat_remove(void)
4048 {
4049         ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
4050         ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4051 }
4052 
4053 /*
4054  * Cycle through L2ARC devices.  This is how L2ARC load balances.
4055  * If a device is returned, this also returns holding the spa config lock.
4056  */
4057 static l2arc_dev_t *
4058 l2arc_dev_get_next(void)
4059 {
4060         l2arc_dev_t *first, *next = NULL;
4061 
4062         /*
4063          * Lock out the removal of spas (spa_namespace_lock), then removal
4064          * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
4065          * both locks will be dropped and a spa config lock held instead.
4066          */
4067         mutex_enter(&spa_namespace_lock);
4068         mutex_enter(&l2arc_dev_mtx);
4069 
4070         /* if there are no vdevs, there is nothing to do */
4071         if (l2arc_ndev == 0)
4072                 goto out;
4073 
4074         first = NULL;
4075         next = l2arc_dev_last;
4076         do {
4077                 /* loop around the list looking for a non-faulted vdev */
4078                 if (next == NULL) {
4079                         next = list_head(l2arc_dev_list);
4080                 } else {
4081                         next = list_next(l2arc_dev_list, next);
4082                         if (next == NULL)
4083                                 next = list_head(l2arc_dev_list);
4084                 }
4085 
4086                 /* if we have come back to the start, bail out */
4087                 if (first == NULL)
4088                         first = next;
4089                 else if (next == first)
4090                         break;
4091 
4092         } while (vdev_is_dead(next->l2ad_vdev));
4093 
4094         /* if we were unable to find any usable vdevs, return NULL */
4095         if (vdev_is_dead(next->l2ad_vdev))
4096                 next = NULL;
4097 
4098         l2arc_dev_last = next;
4099 
4100 out:
4101         mutex_exit(&l2arc_dev_mtx);
4102 
4103         /*
4104          * Grab the config lock to prevent the 'next' device from being
4105          * removed while we are writing to it.
4106          */
4107         if (next != NULL)
4108                 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4109         mutex_exit(&spa_namespace_lock);
4110 
4111         return (next);
4112 }
4113 
4114 /*
4115  * Free buffers that were tagged for destruction.
4116  */
4117 static void
4118 l2arc_do_free_on_write()
4119 {
4120         list_t *buflist;
4121         l2arc_data_free_t *df, *df_prev;
4122 
4123         mutex_enter(&l2arc_free_on_write_mtx);
4124         buflist = l2arc_free_on_write;
4125 
4126         for (df = list_tail(buflist); df; df = df_prev) {
4127                 df_prev = list_prev(buflist, df);
4128                 ASSERT(df->l2df_data != NULL);
4129                 ASSERT(df->l2df_func != NULL);
4130                 df->l2df_func(df->l2df_data, df->l2df_size);
4131                 list_remove(buflist, df);
4132                 kmem_free(df, sizeof (l2arc_data_free_t));
4133         }
4134 
4135         mutex_exit(&l2arc_free_on_write_mtx);
4136 }
4137 
4138 /*
4139  * A write to a cache device has completed.  Update all headers to allow
4140  * reads from these buffers to begin.
4141  */
4142 static void
4143 l2arc_write_done(zio_t *zio)
4144 {
4145         l2arc_write_callback_t *cb;
4146         l2arc_dev_t *dev;
4147         list_t *buflist;
4148         arc_buf_hdr_t *head, *ab, *ab_prev;
4149         l2arc_buf_hdr_t *l2hdr;
4150         kmutex_t *hash_lock;
4151 
4152         cb = zio->io_private;
4153         ASSERT(cb != NULL);
4154         dev = cb->l2wcb_dev;
4155         ASSERT(dev != NULL);
4156         head = cb->l2wcb_head;
4157         ASSERT(head != NULL);
4158         buflist = dev->l2ad_buflist;
4159         ASSERT(buflist != NULL);
4160         DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4161             l2arc_write_callback_t *, cb);
4162 
4163         if (zio->io_error != 0)
4164                 ARCSTAT_BUMP(arcstat_l2_writes_error);
4165 
4166         mutex_enter(&l2arc_buflist_mtx);
4167 
4168         /*
4169          * All writes completed, or an error was hit.
4170          */
4171         dev->l2ad_writing = B_FALSE;
4172         for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4173                 ab_prev = list_prev(buflist, ab);
4174 
4175                 hash_lock = HDR_LOCK(ab);
4176                 mutex_enter(hash_lock);
4177 
4178                 l2hdr = ab->b_l2hdr;
4179 
4180                 /*
4181                  * Release the temporary compressed buffer as soon as possible.
4182                  */
4183                 if (l2hdr->b_compress != ZIO_COMPRESS_OFF)
4184                         l2arc_release_cdata_buf(ab);
4185 
4186                 if (zio->io_error != 0) {
4187                         /*
4188                          * Error - drop L2ARC entry.
4189                          */
4190                         list_remove(buflist, ab);
4191                         ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
4192                         ab->b_l2hdr = NULL;
4193                         kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
4194                         ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4195                 }
4196 
4197                 /*
4198                  * Allow ARC to begin reads to this L2ARC entry.
4199                  */
4200                 ab->b_flags &= ~ARC_L2_WRITING;
4201 
4202                 mutex_exit(hash_lock);
4203         }
4204 
4205         atomic_inc_64(&l2arc_writes_done);
4206         list_remove(buflist, head);
4207         kmem_cache_free(hdr_cache, head);
4208         mutex_exit(&l2arc_buflist_mtx);
4209 
4210         l2arc_do_free_on_write();
4211 
4212         kmem_free(cb, sizeof (l2arc_write_callback_t));
4213 }
4214 
4215 /*
4216  * A read to a cache device completed.  Validate buffer contents before
4217  * handing over to the regular ARC routines.
4218  */
4219 static void
4220 l2arc_read_done(zio_t *zio)
4221 {
4222         l2arc_read_callback_t *cb;
4223         arc_buf_hdr_t *hdr;
4224         arc_buf_t *buf;
4225         kmutex_t *hash_lock;
4226         int equal;
4227 
4228         ASSERT(zio->io_vd != NULL);
4229         ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4230 
4231         spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4232 
4233         cb = zio->io_private;
4234         ASSERT(cb != NULL);
4235         buf = cb->l2rcb_buf;
4236         ASSERT(buf != NULL);
4237 
4238         hash_lock = HDR_LOCK(buf->b_hdr);
4239         mutex_enter(hash_lock);
4240         hdr = buf->b_hdr;
4241         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4242 
4243         /*
4244          * If the buffer was compressed, decompress it first.
4245          */
4246         if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
4247                 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
4248         ASSERT(zio->io_data != NULL);
4249 
4250         /*
4251          * Check this survived the L2ARC journey.
4252          */
4253         equal = arc_cksum_equal(buf);
4254         if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4255                 mutex_exit(hash_lock);
4256                 zio->io_private = buf;
4257                 zio->io_bp_copy = cb->l2rcb_bp;   /* XXX fix in L2ARC 2.0 */
4258                 zio->io_bp = &zio->io_bp_copy;        /* XXX fix in L2ARC 2.0 */
4259                 arc_read_done(zio);
4260         } else {
4261                 mutex_exit(hash_lock);
4262                 /*
4263                  * Buffer didn't survive caching.  Increment stats and
4264                  * reissue to the original storage device.
4265                  */
4266                 if (zio->io_error != 0) {
4267                         ARCSTAT_BUMP(arcstat_l2_io_error);
4268                 } else {
4269                         zio->io_error = SET_ERROR(EIO);
4270                 }
4271                 if (!equal)
4272                         ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4273 
4274                 /*
4275                  * If there's no waiter, issue an async i/o to the primary
4276                  * storage now.  If there *is* a waiter, the caller must
4277                  * issue the i/o in a context where it's OK to block.
4278                  */
4279                 if (zio->io_waiter == NULL) {
4280                         zio_t *pio = zio_unique_parent(zio);
4281 
4282                         ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4283 
4284                         zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4285                             buf->b_data, zio->io_size, arc_read_done, buf,
4286                             zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4287                 }
4288         }
4289 
4290         kmem_free(cb, sizeof (l2arc_read_callback_t));
4291 }
4292 
4293 /*
4294  * This is the list priority from which the L2ARC will search for pages to
4295  * cache.  This is used within loops (0..3) to cycle through lists in the
4296  * desired order.  This order can have a significant effect on cache
4297  * performance.
4298  *
4299  * Currently the metadata lists are hit first, MFU then MRU, followed by
4300  * the data lists.  This function returns a locked list, and also returns
4301  * the lock pointer.
4302  */
4303 static list_t *
4304 l2arc_list_locked(int list_num, kmutex_t **lock)
4305 {
4306         list_t *list = NULL;
4307 
4308         ASSERT(list_num >= 0 && list_num <= 3);
4309 
4310         switch (list_num) {
4311         case 0:
4312                 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4313                 *lock = &arc_mfu->arcs_mtx;
4314                 break;
4315         case 1:
4316                 list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4317                 *lock = &arc_mru->arcs_mtx;
4318                 break;
4319         case 2:
4320                 list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4321                 *lock = &arc_mfu->arcs_mtx;
4322                 break;
4323         case 3:
4324                 list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4325                 *lock = &arc_mru->arcs_mtx;
4326                 break;
4327         }
4328 
4329         ASSERT(!(MUTEX_HELD(*lock)));
4330         mutex_enter(*lock);
4331         return (list);
4332 }
4333 
4334 /*
4335  * Evict buffers from the device write hand to the distance specified in
4336  * bytes.  This distance may span populated buffers, it may span nothing.
4337  * This is clearing a region on the L2ARC device ready for writing.
4338  * If the 'all' boolean is set, every buffer is evicted.
4339  */
4340 static void
4341 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4342 {
4343         list_t *buflist;
4344         l2arc_buf_hdr_t *l2hdr;
4345         arc_buf_hdr_t *ab, *ab_prev;
4346         kmutex_t *hash_lock;
4347         uint64_t taddr;
4348 
4349         buflist = dev->l2ad_buflist;
4350 
4351         if (buflist == NULL)
4352                 return;
4353 
4354         if (!all && dev->l2ad_first) {
4355                 /*
4356                  * This is the first sweep through the device.  There is
4357                  * nothing to evict.
4358                  */
4359                 return;
4360         }
4361 
4362         if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4363                 /*
4364                  * When nearing the end of the device, evict to the end
4365                  * before the device write hand jumps to the start.
4366                  */
4367                 taddr = dev->l2ad_end;
4368         } else {
4369                 taddr = dev->l2ad_hand + distance;
4370         }
4371         DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4372             uint64_t, taddr, boolean_t, all);
4373 
4374 top:
4375         mutex_enter(&l2arc_buflist_mtx);
4376         for (ab = list_tail(buflist); ab; ab = ab_prev) {
4377                 ab_prev = list_prev(buflist, ab);
4378 
4379                 hash_lock = HDR_LOCK(ab);
4380                 if (!mutex_tryenter(hash_lock)) {
4381                         /*
4382                          * Missed the hash lock.  Retry.
4383                          */
4384                         ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4385                         mutex_exit(&l2arc_buflist_mtx);
4386                         mutex_enter(hash_lock);
4387                         mutex_exit(hash_lock);
4388                         goto top;
4389                 }
4390 
4391                 if (HDR_L2_WRITE_HEAD(ab)) {
4392                         /*
4393                          * We hit a write head node.  Leave it for
4394                          * l2arc_write_done().
4395                          */
4396                         list_remove(buflist, ab);
4397                         mutex_exit(hash_lock);
4398                         continue;
4399                 }
4400 
4401                 if (!all && ab->b_l2hdr != NULL &&
4402                     (ab->b_l2hdr->b_daddr > taddr ||
4403                     ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4404                         /*
4405                          * We've evicted to the target address,
4406                          * or the end of the device.
4407                          */
4408                         mutex_exit(hash_lock);
4409                         break;
4410                 }
4411 
4412                 if (HDR_FREE_IN_PROGRESS(ab)) {
4413                         /*
4414                          * Already on the path to destruction.
4415                          */
4416                         mutex_exit(hash_lock);
4417                         continue;
4418                 }
4419 
4420                 if (ab->b_state == arc_l2c_only) {
4421                         ASSERT(!HDR_L2_READING(ab));
4422                         /*
4423                          * This doesn't exist in the ARC.  Destroy.
4424                          * arc_hdr_destroy() will call list_remove()
4425                          * and decrement arcstat_l2_size.
4426                          */
4427                         arc_change_state(arc_anon, ab, hash_lock);
4428                         arc_hdr_destroy(ab);
4429                 } else {
4430                         /*
4431                          * Invalidate issued or about to be issued
4432                          * reads, since we may be about to write
4433                          * over this location.
4434                          */
4435                         if (HDR_L2_READING(ab)) {
4436                                 ARCSTAT_BUMP(arcstat_l2_evict_reading);
4437                                 ab->b_flags |= ARC_L2_EVICTED;
4438                         }
4439 
4440                         /*
4441                          * Tell ARC this no longer exists in L2ARC.
4442                          */
4443                         if (ab->b_l2hdr != NULL) {
4444                                 l2hdr = ab->b_l2hdr;
4445                                 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
4446                                 ab->b_l2hdr = NULL;
4447                                 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
4448                                 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4449                         }
4450                         list_remove(buflist, ab);
4451 
4452                         /*
4453                          * This may have been leftover after a
4454                          * failed write.
4455                          */
4456                         ab->b_flags &= ~ARC_L2_WRITING;
4457                 }
4458                 mutex_exit(hash_lock);
4459         }
4460         mutex_exit(&l2arc_buflist_mtx);
4461 
4462         vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4463         dev->l2ad_evict = taddr;
4464 }
4465 
4466 /*
4467  * Find and write ARC buffers to the L2ARC device.
4468  *
4469  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4470  * for reading until they have completed writing.
4471  * The headroom_boost is an in-out parameter used to maintain headroom boost
4472  * state between calls to this function.
4473  *
4474  * Returns the number of bytes actually written (which may be smaller than
4475  * the delta by which the device hand has changed due to alignment).
4476  */
4477 static uint64_t
4478 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
4479     boolean_t *headroom_boost)
4480 {
4481         arc_buf_hdr_t *ab, *ab_prev, *head;
4482         list_t *list;
4483         uint64_t write_asize, write_psize, write_sz, headroom,
4484             buf_compress_minsz;
4485         void *buf_data;
4486         kmutex_t *list_lock;
4487         boolean_t full;
4488         l2arc_write_callback_t *cb;
4489         zio_t *pio, *wzio;
4490         uint64_t guid = spa_load_guid(spa);
4491         const boolean_t do_headroom_boost = *headroom_boost;
4492 
4493         ASSERT(dev->l2ad_vdev != NULL);
4494 
4495         /* Lower the flag now, we might want to raise it again later. */
4496         *headroom_boost = B_FALSE;
4497 
4498         pio = NULL;
4499         write_sz = write_asize = write_psize = 0;
4500         full = B_FALSE;
4501         head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4502         head->b_flags |= ARC_L2_WRITE_HEAD;
4503 
4504         /*
4505          * We will want to try to compress buffers that are at least 2x the
4506          * device sector size.
4507          */
4508         buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
4509 
4510         /*
4511          * Copy buffers for L2ARC writing.
4512          */
4513         mutex_enter(&l2arc_buflist_mtx);
4514         for (int try = 0; try <= 3; try++) {
4515                 uint64_t passed_sz = 0;
4516 
4517                 list = l2arc_list_locked(try, &list_lock);
4518 
4519                 /*
4520                  * L2ARC fast warmup.
4521                  *
4522                  * Until the ARC is warm and starts to evict, read from the
4523                  * head of the ARC lists rather than the tail.
4524                  */
4525                 if (arc_warm == B_FALSE)
4526                         ab = list_head(list);
4527                 else
4528                         ab = list_tail(list);
4529 
4530                 headroom = target_sz * l2arc_headroom;
4531                 if (do_headroom_boost)
4532                         headroom = (headroom * l2arc_headroom_boost) / 100;
4533 
4534                 for (; ab; ab = ab_prev) {
4535                         l2arc_buf_hdr_t *l2hdr;
4536                         kmutex_t *hash_lock;
4537                         uint64_t buf_sz;
4538 
4539                         if (arc_warm == B_FALSE)
4540                                 ab_prev = list_next(list, ab);
4541                         else
4542                                 ab_prev = list_prev(list, ab);
4543 
4544                         hash_lock = HDR_LOCK(ab);
4545                         if (!mutex_tryenter(hash_lock)) {
4546                                 /*
4547                                  * Skip this buffer rather than waiting.
4548                                  */
4549                                 continue;
4550                         }
4551 
4552                         passed_sz += ab->b_size;
4553                         if (passed_sz > headroom) {
4554                                 /*
4555                                  * Searched too far.
4556                                  */
4557                                 mutex_exit(hash_lock);
4558                                 break;
4559                         }
4560 
4561                         if (!l2arc_write_eligible(guid, ab)) {
4562                                 mutex_exit(hash_lock);
4563                                 continue;
4564                         }
4565 
4566                         if ((write_sz + ab->b_size) > target_sz) {
4567                                 full = B_TRUE;
4568                                 mutex_exit(hash_lock);
4569                                 break;
4570                         }
4571 
4572                         if (pio == NULL) {
4573                                 /*
4574                                  * Insert a dummy header on the buflist so
4575                                  * l2arc_write_done() can find where the
4576                                  * write buffers begin without searching.
4577                                  */
4578                                 list_insert_head(dev->l2ad_buflist, head);
4579 
4580                                 cb = kmem_alloc(
4581                                     sizeof (l2arc_write_callback_t), KM_SLEEP);
4582                                 cb->l2wcb_dev = dev;
4583                                 cb->l2wcb_head = head;
4584                                 pio = zio_root(spa, l2arc_write_done, cb,
4585                                     ZIO_FLAG_CANFAIL);
4586                         }
4587 
4588                         /*
4589                          * Create and add a new L2ARC header.
4590                          */
4591                         l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4592                         l2hdr->b_dev = dev;
4593                         ab->b_flags |= ARC_L2_WRITING;
4594 
4595                         /*
4596                          * Temporarily stash the data buffer in b_tmp_cdata.
4597                          * The subsequent write step will pick it up from
4598                          * there. This is because can't access ab->b_buf
4599                          * without holding the hash_lock, which we in turn
4600                          * can't access without holding the ARC list locks
4601                          * (which we want to avoid during compression/writing).
4602                          */
4603                         l2hdr->b_compress = ZIO_COMPRESS_OFF;
4604                         l2hdr->b_asize = ab->b_size;
4605                         l2hdr->b_tmp_cdata = ab->b_buf->b_data;
4606 
4607                         buf_sz = ab->b_size;
4608                         ab->b_l2hdr = l2hdr;
4609 
4610                         list_insert_head(dev->l2ad_buflist, ab);
4611 
4612                         /*
4613                          * Compute and store the buffer cksum before
4614                          * writing.  On debug the cksum is verified first.
4615                          */
4616                         arc_cksum_verify(ab->b_buf);
4617                         arc_cksum_compute(ab->b_buf, B_TRUE);
4618 
4619                         mutex_exit(hash_lock);
4620 
4621                         write_sz += buf_sz;
4622                 }
4623 
4624                 mutex_exit(list_lock);
4625 
4626                 if (full == B_TRUE)
4627                         break;
4628         }
4629 
4630         /* No buffers selected for writing? */
4631         if (pio == NULL) {
4632                 ASSERT0(write_sz);
4633                 mutex_exit(&l2arc_buflist_mtx);
4634                 kmem_cache_free(hdr_cache, head);
4635                 return (0);
4636         }
4637 
4638         /*
4639          * Now start writing the buffers. We're starting at the write head
4640          * and work backwards, retracing the course of the buffer selector
4641          * loop above.
4642          */
4643         for (ab = list_prev(dev->l2ad_buflist, head); ab;
4644             ab = list_prev(dev->l2ad_buflist, ab)) {
4645                 l2arc_buf_hdr_t *l2hdr;
4646                 uint64_t buf_sz;
4647 
4648                 /*
4649                  * We shouldn't need to lock the buffer here, since we flagged
4650                  * it as ARC_L2_WRITING in the previous step, but we must take
4651                  * care to only access its L2 cache parameters. In particular,
4652                  * ab->b_buf may be invalid by now due to ARC eviction.
4653                  */
4654                 l2hdr = ab->b_l2hdr;
4655                 l2hdr->b_daddr = dev->l2ad_hand;
4656 
4657                 if ((ab->b_flags & ARC_L2COMPRESS) &&
4658                     l2hdr->b_asize >= buf_compress_minsz) {
4659                         if (l2arc_compress_buf(l2hdr)) {
4660                                 /*
4661                                  * If compression succeeded, enable headroom
4662                                  * boost on the next scan cycle.
4663                                  */
4664                                 *headroom_boost = B_TRUE;
4665                         }
4666                 }
4667 
4668                 /*
4669                  * Pick up the buffer data we had previously stashed away
4670                  * (and now potentially also compressed).
4671                  */
4672                 buf_data = l2hdr->b_tmp_cdata;
4673                 buf_sz = l2hdr->b_asize;
4674 
4675                 /* Compression may have squashed the buffer to zero length. */
4676                 if (buf_sz != 0) {
4677                         uint64_t buf_p_sz;
4678 
4679                         wzio = zio_write_phys(pio, dev->l2ad_vdev,
4680                             dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4681                             NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4682                             ZIO_FLAG_CANFAIL, B_FALSE);
4683 
4684                         DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4685                             zio_t *, wzio);
4686                         (void) zio_nowait(wzio);
4687 
4688                         write_asize += buf_sz;
4689                         /*
4690                          * Keep the clock hand suitably device-aligned.
4691                          */
4692                         buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4693                         write_psize += buf_p_sz;
4694                         dev->l2ad_hand += buf_p_sz;
4695                 }
4696         }
4697 
4698         mutex_exit(&l2arc_buflist_mtx);
4699 
4700         ASSERT3U(write_asize, <=, target_sz);
4701         ARCSTAT_BUMP(arcstat_l2_writes_sent);
4702         ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
4703         ARCSTAT_INCR(arcstat_l2_size, write_sz);
4704         ARCSTAT_INCR(arcstat_l2_asize, write_asize);
4705         vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
4706 
4707         /*
4708          * Bump device hand to the device start if it is approaching the end.
4709          * l2arc_evict() will already have evicted ahead for this case.
4710          */
4711         if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4712                 vdev_space_update(dev->l2ad_vdev,
4713                     dev->l2ad_end - dev->l2ad_hand, 0, 0);
4714                 dev->l2ad_hand = dev->l2ad_start;
4715                 dev->l2ad_evict = dev->l2ad_start;
4716                 dev->l2ad_first = B_FALSE;
4717         }
4718 
4719         /* dev->l2ad_writing will be lowered in the zio done callback */
4720         dev->l2ad_writing = B_TRUE;
4721         (void) zio_wait(pio);
4722         ASSERT(dev->l2ad_writing == B_FALSE);
4723 
4724         return (write_asize);
4725 }
4726 
4727 /*
4728  * Compresses an L2ARC buffer.
4729  * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its
4730  * size in l2hdr->b_asize. This routine tries to compress the data and
4731  * depending on the compression result there are three possible outcomes:
4732  * *) The buffer was incompressible. The original l2hdr contents were left
4733  *    untouched and are ready for writing to an L2 device.
4734  * *) The buffer was all-zeros, so there is no need to write it to an L2
4735  *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
4736  *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
4737  * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
4738  *    data buffer which holds the compressed data to be written, and b_asize
4739  *    tells us how much data there is. b_compress is set to the appropriate
4740  *    compression algorithm. Once writing is done, invoke
4741  *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
4742  *
4743  * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
4744  * buffer was incompressible).
4745  */
4746 static boolean_t
4747 l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr)
4748 {
4749         void *cdata;
4750         size_t csize, len;
4751 
4752         ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF);
4753         ASSERT(l2hdr->b_tmp_cdata != NULL);
4754 
4755         len = l2hdr->b_asize;
4756         cdata = zio_data_buf_alloc(len);
4757         csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata,
4758             cdata, l2hdr->b_asize);
4759 
4760         if (csize == 0) {
4761                 /* zero block, indicate that there's nothing to write */
4762                 zio_data_buf_free(cdata, len);
4763                 l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
4764                 l2hdr->b_asize = 0;
4765                 l2hdr->b_tmp_cdata = NULL;
4766                 ARCSTAT_BUMP(arcstat_l2_compress_zeros);
4767                 return (B_TRUE);
4768         } else if (csize > 0 && csize < len) {
4769                 /*
4770                  * Compression succeeded, we'll keep the cdata around for
4771                  * writing and release it afterwards.
4772                  */
4773                 l2hdr->b_compress = ZIO_COMPRESS_LZ4;
4774                 l2hdr->b_asize = csize;
4775                 l2hdr->b_tmp_cdata = cdata;
4776                 ARCSTAT_BUMP(arcstat_l2_compress_successes);
4777                 return (B_TRUE);
4778         } else {
4779                 /*
4780                  * Compression failed, release the compressed buffer.
4781                  * l2hdr will be left unmodified.
4782                  */
4783                 zio_data_buf_free(cdata, len);
4784                 ARCSTAT_BUMP(arcstat_l2_compress_failures);
4785                 return (B_FALSE);
4786         }
4787 }
4788 
4789 /*
4790  * Decompresses a zio read back from an l2arc device. On success, the
4791  * underlying zio's io_data buffer is overwritten by the uncompressed
4792  * version. On decompression error (corrupt compressed stream), the
4793  * zio->io_error value is set to signal an I/O error.
4794  *
4795  * Please note that the compressed data stream is not checksummed, so
4796  * if the underlying device is experiencing data corruption, we may feed
4797  * corrupt data to the decompressor, so the decompressor needs to be
4798  * able to handle this situation (LZ4 does).
4799  */
4800 static void
4801 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
4802 {
4803         ASSERT(L2ARC_IS_VALID_COMPRESS(c));
4804 
4805         if (zio->io_error != 0) {
4806                 /*
4807                  * An io error has occured, just restore the original io
4808                  * size in preparation for a main pool read.
4809                  */
4810                 zio->io_orig_size = zio->io_size = hdr->b_size;
4811                 return;
4812         }
4813 
4814         if (c == ZIO_COMPRESS_EMPTY) {
4815                 /*
4816                  * An empty buffer results in a null zio, which means we
4817                  * need to fill its io_data after we're done restoring the
4818                  * buffer's contents.
4819                  */
4820                 ASSERT(hdr->b_buf != NULL);
4821                 bzero(hdr->b_buf->b_data, hdr->b_size);
4822                 zio->io_data = zio->io_orig_data = hdr->b_buf->b_data;
4823         } else {
4824                 ASSERT(zio->io_data != NULL);
4825                 /*
4826                  * We copy the compressed data from the start of the arc buffer
4827                  * (the zio_read will have pulled in only what we need, the
4828                  * rest is garbage which we will overwrite at decompression)
4829                  * and then decompress back to the ARC data buffer. This way we
4830                  * can minimize copying by simply decompressing back over the
4831                  * original compressed data (rather than decompressing to an
4832                  * aux buffer and then copying back the uncompressed buffer,
4833                  * which is likely to be much larger).
4834                  */
4835                 uint64_t csize;
4836                 void *cdata;
4837 
4838                 csize = zio->io_size;
4839                 cdata = zio_data_buf_alloc(csize);
4840                 bcopy(zio->io_data, cdata, csize);
4841                 if (zio_decompress_data(c, cdata, zio->io_data, csize,
4842                     hdr->b_size) != 0)
4843                         zio->io_error = EIO;
4844                 zio_data_buf_free(cdata, csize);
4845         }
4846 
4847         /* Restore the expected uncompressed IO size. */
4848         zio->io_orig_size = zio->io_size = hdr->b_size;
4849 }
4850 
4851 /*
4852  * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
4853  * This buffer serves as a temporary holder of compressed data while
4854  * the buffer entry is being written to an l2arc device. Once that is
4855  * done, we can dispose of it.
4856  */
4857 static void
4858 l2arc_release_cdata_buf(arc_buf_hdr_t *ab)
4859 {
4860         l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr;
4861 
4862         if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) {
4863                 /*
4864                  * If the data was compressed, then we've allocated a
4865                  * temporary buffer for it, so now we need to release it.
4866                  */
4867                 ASSERT(l2hdr->b_tmp_cdata != NULL);
4868                 zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size);
4869         }
4870         l2hdr->b_tmp_cdata = NULL;
4871 }
4872 
4873 /*
4874  * This thread feeds the L2ARC at regular intervals.  This is the beating
4875  * heart of the L2ARC.
4876  */
4877 static void
4878 l2arc_feed_thread(void)
4879 {
4880         callb_cpr_t cpr;
4881         l2arc_dev_t *dev;
4882         spa_t *spa;
4883         uint64_t size, wrote;
4884         clock_t begin, next = ddi_get_lbolt();
4885         boolean_t headroom_boost = B_FALSE;
4886 
4887         CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4888 
4889         mutex_enter(&l2arc_feed_thr_lock);
4890 
4891         while (l2arc_thread_exit == 0) {
4892                 CALLB_CPR_SAFE_BEGIN(&cpr);
4893                 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4894                     next);
4895                 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4896                 next = ddi_get_lbolt() + hz;
4897 
4898                 /*
4899                  * Quick check for L2ARC devices.
4900                  */
4901                 mutex_enter(&l2arc_dev_mtx);
4902                 if (l2arc_ndev == 0) {
4903                         mutex_exit(&l2arc_dev_mtx);
4904                         continue;
4905                 }
4906                 mutex_exit(&l2arc_dev_mtx);
4907                 begin = ddi_get_lbolt();
4908 
4909                 /*
4910                  * This selects the next l2arc device to write to, and in
4911                  * doing so the next spa to feed from: dev->l2ad_spa.   This
4912                  * will return NULL if there are now no l2arc devices or if
4913                  * they are all faulted.
4914                  *
4915                  * If a device is returned, its spa's config lock is also
4916                  * held to prevent device removal.  l2arc_dev_get_next()
4917                  * will grab and release l2arc_dev_mtx.
4918                  */
4919                 if ((dev = l2arc_dev_get_next()) == NULL)
4920                         continue;
4921 
4922                 spa = dev->l2ad_spa;
4923                 ASSERT(spa != NULL);
4924 
4925                 /*
4926                  * If the pool is read-only then force the feed thread to
4927                  * sleep a little longer.
4928                  */
4929                 if (!spa_writeable(spa)) {
4930                         next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
4931                         spa_config_exit(spa, SCL_L2ARC, dev);
4932                         continue;
4933                 }
4934 
4935                 /*
4936                  * Avoid contributing to memory pressure.
4937                  */
4938                 if (arc_reclaim_needed()) {
4939                         ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4940                         spa_config_exit(spa, SCL_L2ARC, dev);
4941                         continue;
4942                 }
4943 
4944                 ARCSTAT_BUMP(arcstat_l2_feeds);
4945 
4946                 size = l2arc_write_size();
4947 
4948                 /*
4949                  * Evict L2ARC buffers that will be overwritten.
4950                  */
4951                 l2arc_evict(dev, size, B_FALSE);
4952 
4953                 /*
4954                  * Write ARC buffers.
4955                  */
4956                 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
4957 
4958                 /*
4959                  * Calculate interval between writes.
4960                  */
4961                 next = l2arc_write_interval(begin, size, wrote);
4962                 spa_config_exit(spa, SCL_L2ARC, dev);
4963         }
4964 
4965         l2arc_thread_exit = 0;
4966         cv_broadcast(&l2arc_feed_thr_cv);
4967         CALLB_CPR_EXIT(&cpr);               /* drops l2arc_feed_thr_lock */
4968         thread_exit();
4969 }
4970 
4971 boolean_t
4972 l2arc_vdev_present(vdev_t *vd)
4973 {
4974         l2arc_dev_t *dev;
4975 
4976         mutex_enter(&l2arc_dev_mtx);
4977         for (dev = list_head(l2arc_dev_list); dev != NULL;
4978             dev = list_next(l2arc_dev_list, dev)) {
4979                 if (dev->l2ad_vdev == vd)
4980                         break;
4981         }
4982         mutex_exit(&l2arc_dev_mtx);
4983 
4984         return (dev != NULL);
4985 }
4986 
4987 /*
4988  * Add a vdev for use by the L2ARC.  By this point the spa has already
4989  * validated the vdev and opened it.
4990  */
4991 void
4992 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
4993 {
4994         l2arc_dev_t *adddev;
4995 
4996         ASSERT(!l2arc_vdev_present(vd));
4997 
4998         /*
4999          * Create a new l2arc device entry.
5000          */
5001         adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
5002         adddev->l2ad_spa = spa;
5003         adddev->l2ad_vdev = vd;
5004         adddev->l2ad_start = VDEV_LABEL_START_SIZE;
5005         adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
5006         adddev->l2ad_hand = adddev->l2ad_start;
5007         adddev->l2ad_evict = adddev->l2ad_start;
5008         adddev->l2ad_first = B_TRUE;
5009         adddev->l2ad_writing = B_FALSE;
5010 
5011         /*
5012          * This is a list of all ARC buffers that are still valid on the
5013          * device.
5014          */
5015         adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
5016         list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
5017             offsetof(arc_buf_hdr_t, b_l2node));
5018 
5019         vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
5020 
5021         /*
5022          * Add device to global list
5023          */
5024         mutex_enter(&l2arc_dev_mtx);
5025         list_insert_head(l2arc_dev_list, adddev);
5026         atomic_inc_64(&l2arc_ndev);
5027         mutex_exit(&l2arc_dev_mtx);
5028 }
5029 
5030 /*
5031  * Remove a vdev from the L2ARC.
5032  */
5033 void
5034 l2arc_remove_vdev(vdev_t *vd)
5035 {
5036         l2arc_dev_t *dev, *nextdev, *remdev = NULL;
5037 
5038         /*
5039          * Find the device by vdev
5040          */
5041         mutex_enter(&l2arc_dev_mtx);
5042         for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
5043                 nextdev = list_next(l2arc_dev_list, dev);
5044                 if (vd == dev->l2ad_vdev) {
5045                         remdev = dev;
5046                         break;
5047                 }
5048         }
5049         ASSERT(remdev != NULL);
5050 
5051         /*
5052          * Remove device from global list
5053          */
5054         list_remove(l2arc_dev_list, remdev);
5055         l2arc_dev_last = NULL;          /* may have been invalidated */
5056         atomic_dec_64(&l2arc_ndev);
5057         mutex_exit(&l2arc_dev_mtx);
5058 
5059         /*
5060          * Clear all buflists and ARC references.  L2ARC device flush.
5061          */
5062         l2arc_evict(remdev, 0, B_TRUE);
5063         list_destroy(remdev->l2ad_buflist);
5064         kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5065         kmem_free(remdev, sizeof (l2arc_dev_t));
5066 }
5067 
5068 void
5069 l2arc_init(void)
5070 {
5071         l2arc_thread_exit = 0;
5072         l2arc_ndev = 0;
5073         l2arc_writes_sent = 0;
5074         l2arc_writes_done = 0;
5075 
5076         mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5077         cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5078         mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
5079         mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
5080         mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5081 
5082         l2arc_dev_list = &L2ARC_dev_list;
5083         l2arc_free_on_write = &L2ARC_free_on_write;
5084         list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5085             offsetof(l2arc_dev_t, l2ad_node));
5086         list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5087             offsetof(l2arc_data_free_t, l2df_list_node));
5088 }
5089 
5090 void
5091 l2arc_fini(void)
5092 {
5093         /*
5094          * This is called from dmu_fini(), which is called from spa_fini();
5095          * Because of this, we can assume that all l2arc devices have
5096          * already been removed when the pools themselves were removed.
5097          */
5098 
5099         l2arc_do_free_on_write();
5100 
5101         mutex_destroy(&l2arc_feed_thr_lock);
5102         cv_destroy(&l2arc_feed_thr_cv);
5103         mutex_destroy(&l2arc_dev_mtx);
5104         mutex_destroy(&l2arc_buflist_mtx);
5105         mutex_destroy(&l2arc_free_on_write_mtx);
5106 
5107         list_destroy(l2arc_dev_list);
5108         list_destroy(l2arc_free_on_write);
5109 }
5110 
5111 void
5112 l2arc_start(void)
5113 {
5114         if (!(spa_mode_global & FWRITE))
5115                 return;
5116 
5117         (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5118             TS_RUN, minclsyspri);
5119 }
5120 
5121 void
5122 l2arc_stop(void)
5123 {
5124         if (!(spa_mode_global & FWRITE))
5125                 return;
5126 
5127         mutex_enter(&l2arc_feed_thr_lock);
5128         cv_signal(&l2arc_feed_thr_cv);      /* kick thread out of startup */
5129         l2arc_thread_exit = 1;
5130         while (l2arc_thread_exit != 0)
5131                 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5132         mutex_exit(&l2arc_feed_thr_lock);
5133 }