1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 */ 26 27 /* 28 * Virtual Device Labels 29 * --------------------- 30 * 31 * The vdev label serves several distinct purposes: 32 * 33 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 34 * identity within the pool. 35 * 36 * 2. Verify that all the devices given in a configuration are present 37 * within the pool. 38 * 39 * 3. Determine the uberblock for the pool. 40 * 41 * 4. In case of an import operation, determine the configuration of the 42 * toplevel vdev of which it is a part. 43 * 44 * 5. If an import operation cannot find all the devices in the pool, 45 * provide enough information to the administrator to determine which 46 * devices are missing. 47 * 48 * It is important to note that while the kernel is responsible for writing the 49 * label, it only consumes the information in the first three cases. The 50 * latter information is only consumed in userland when determining the 51 * configuration to import a pool. 52 * 53 * 54 * Label Organization 55 * ------------------ 56 * 57 * Before describing the contents of the label, it's important to understand how 58 * the labels are written and updated with respect to the uberblock. 59 * 60 * When the pool configuration is altered, either because it was newly created 61 * or a device was added, we want to update all the labels such that we can deal 62 * with fatal failure at any point. To this end, each disk has two labels which 63 * are updated before and after the uberblock is synced. Assuming we have 64 * labels and an uberblock with the following transaction groups: 65 * 66 * L1 UB L2 67 * +------+ +------+ +------+ 68 * | | | | | | 69 * | t10 | | t10 | | t10 | 70 * | | | | | | 71 * +------+ +------+ +------+ 72 * 73 * In this stable state, the labels and the uberblock were all updated within 74 * the same transaction group (10). Each label is mirrored and checksummed, so 75 * that we can detect when we fail partway through writing the label. 76 * 77 * In order to identify which labels are valid, the labels are written in the 78 * following manner: 79 * 80 * 1. For each vdev, update 'L1' to the new label 81 * 2. Update the uberblock 82 * 3. For each vdev, update 'L2' to the new label 83 * 84 * Given arbitrary failure, we can determine the correct label to use based on 85 * the transaction group. If we fail after updating L1 but before updating the 86 * UB, we will notice that L1's transaction group is greater than the uberblock, 87 * so L2 must be valid. If we fail after writing the uberblock but before 88 * writing L2, we will notice that L2's transaction group is less than L1, and 89 * therefore L1 is valid. 90 * 91 * Another added complexity is that not every label is updated when the config 92 * is synced. If we add a single device, we do not want to have to re-write 93 * every label for every device in the pool. This means that both L1 and L2 may 94 * be older than the pool uberblock, because the necessary information is stored 95 * on another vdev. 96 * 97 * 98 * On-disk Format 99 * -------------- 100 * 101 * The vdev label consists of two distinct parts, and is wrapped within the 102 * vdev_label_t structure. The label includes 8k of padding to permit legacy 103 * VTOC disk labels, but is otherwise ignored. 104 * 105 * The first half of the label is a packed nvlist which contains pool wide 106 * properties, per-vdev properties, and configuration information. It is 107 * described in more detail below. 108 * 109 * The latter half of the label consists of a redundant array of uberblocks. 110 * These uberblocks are updated whenever a transaction group is committed, 111 * or when the configuration is updated. When a pool is loaded, we scan each 112 * vdev for the 'best' uberblock. 113 * 114 * 115 * Configuration Information 116 * ------------------------- 117 * 118 * The nvlist describing the pool and vdev contains the following elements: 119 * 120 * version ZFS on-disk version 121 * name Pool name 122 * state Pool state 123 * txg Transaction group in which this label was written 124 * pool_guid Unique identifier for this pool 125 * vdev_tree An nvlist describing vdev tree. 126 * features_for_read 127 * An nvlist of the features necessary for reading the MOS. 128 * 129 * Each leaf device label also contains the following: 130 * 131 * top_guid Unique ID for top-level vdev in which this is contained 132 * guid Unique ID for the leaf vdev 133 * 134 * The 'vs' configuration follows the format described in 'spa_config.c'. 135 */ 136 137 #include <sys/zfs_context.h> 138 #include <sys/spa.h> 139 #include <sys/spa_impl.h> 140 #include <sys/dmu.h> 141 #include <sys/zap.h> 142 #include <sys/vdev.h> 143 #include <sys/vdev_impl.h> 144 #include <sys/uberblock_impl.h> 145 #include <sys/metaslab.h> 146 #include <sys/zio.h> 147 #include <sys/dsl_scan.h> 148 #include <sys/fs/zfs.h> 149 150 /* 151 * Basic routines to read and write from a vdev label. 152 * Used throughout the rest of this file. 153 */ 154 uint64_t 155 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 156 { 157 ASSERT(offset < sizeof (vdev_label_t)); 158 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 159 160 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 161 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 162 } 163 164 /* 165 * Returns back the vdev label associated with the passed in offset. 166 */ 167 int 168 vdev_label_number(uint64_t psize, uint64_t offset) 169 { 170 int l; 171 172 if (offset >= psize - VDEV_LABEL_END_SIZE) { 173 offset -= psize - VDEV_LABEL_END_SIZE; 174 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 175 } 176 l = offset / sizeof (vdev_label_t); 177 return (l < VDEV_LABELS ? l : -1); 178 } 179 180 static void 181 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 182 uint64_t size, zio_done_func_t *done, void *private, int flags) 183 { 184 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) == 185 SCL_STATE_ALL); 186 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 187 188 zio_nowait(zio_read_phys(zio, vd, 189 vdev_label_offset(vd->vdev_psize, l, offset), 190 size, buf, ZIO_CHECKSUM_LABEL, done, private, 191 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 192 } 193 194 static void 195 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 196 uint64_t size, zio_done_func_t *done, void *private, int flags) 197 { 198 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL || 199 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) == 200 (SCL_CONFIG | SCL_STATE) && 201 dsl_pool_sync_context(spa_get_dsl(zio->io_spa)))); 202 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 203 204 zio_nowait(zio_write_phys(zio, vd, 205 vdev_label_offset(vd->vdev_psize, l, offset), 206 size, buf, ZIO_CHECKSUM_LABEL, done, private, 207 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 208 } 209 210 /* 211 * Generate the nvlist representing this vdev's config. 212 */ 213 nvlist_t * 214 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 215 vdev_config_flag_t flags) 216 { 217 nvlist_t *nv = NULL; 218 219 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 220 221 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 222 vd->vdev_ops->vdev_op_type) == 0); 223 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 224 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) 225 == 0); 226 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); 227 228 if (vd->vdev_path != NULL) 229 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, 230 vd->vdev_path) == 0); 231 232 if (vd->vdev_devid != NULL) 233 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, 234 vd->vdev_devid) == 0); 235 236 if (vd->vdev_physpath != NULL) 237 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 238 vd->vdev_physpath) == 0); 239 240 if (vd->vdev_fru != NULL) 241 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU, 242 vd->vdev_fru) == 0); 243 244 if (vd->vdev_nparity != 0) { 245 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 246 VDEV_TYPE_RAIDZ) == 0); 247 248 /* 249 * Make sure someone hasn't managed to sneak a fancy new vdev 250 * into a crufty old storage pool. 251 */ 252 ASSERT(vd->vdev_nparity == 1 || 253 (vd->vdev_nparity <= 2 && 254 spa_version(spa) >= SPA_VERSION_RAIDZ2) || 255 (vd->vdev_nparity <= 3 && 256 spa_version(spa) >= SPA_VERSION_RAIDZ3)); 257 258 /* 259 * Note that we'll add the nparity tag even on storage pools 260 * that only support a single parity device -- older software 261 * will just ignore it. 262 */ 263 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, 264 vd->vdev_nparity) == 0); 265 } 266 267 if (vd->vdev_wholedisk != -1ULL) 268 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 269 vd->vdev_wholedisk) == 0); 270 271 if (vd->vdev_not_present) 272 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0); 273 274 if (vd->vdev_isspare) 275 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0); 276 277 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 278 vd == vd->vdev_top) { 279 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 280 vd->vdev_ms_array) == 0); 281 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 282 vd->vdev_ms_shift) == 0); 283 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, 284 vd->vdev_ashift) == 0); 285 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 286 vd->vdev_asize) == 0); 287 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, 288 vd->vdev_islog) == 0); 289 if (vd->vdev_removing) 290 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 291 vd->vdev_removing) == 0); 292 } 293 294 if (flags & VDEV_CONFIG_L2CACHE) 295 /* indicate that we support L2ARC persistency */ 296 VERIFY(nvlist_add_boolean_value(nv, 297 ZPOOL_CONFIG_L2CACHE_PERSISTENT, B_TRUE) == 0); 298 299 if (vd->vdev_dtl_smo.smo_object != 0) 300 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 301 vd->vdev_dtl_smo.smo_object) == 0); 302 303 if (vd->vdev_crtxg) 304 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 305 vd->vdev_crtxg) == 0); 306 307 if (getstats) { 308 vdev_stat_t vs; 309 pool_scan_stat_t ps; 310 311 vdev_get_stats(vd, &vs); 312 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 313 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0); 314 315 /* provide either current or previous scan information */ 316 if (spa_scan_get_stats(spa, &ps) == 0) { 317 VERIFY(nvlist_add_uint64_array(nv, 318 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 319 sizeof (pool_scan_stat_t) / sizeof (uint64_t)) 320 == 0); 321 } 322 } 323 324 if (!vd->vdev_ops->vdev_op_leaf) { 325 nvlist_t **child; 326 int c, idx; 327 328 ASSERT(!vd->vdev_ishole); 329 330 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 331 KM_SLEEP); 332 333 for (c = 0, idx = 0; c < vd->vdev_children; c++) { 334 vdev_t *cvd = vd->vdev_child[c]; 335 336 /* 337 * If we're generating an nvlist of removing 338 * vdevs then skip over any device which is 339 * not being removed. 340 */ 341 if ((flags & VDEV_CONFIG_REMOVING) && 342 !cvd->vdev_removing) 343 continue; 344 345 child[idx++] = vdev_config_generate(spa, cvd, 346 getstats, flags); 347 } 348 349 if (idx) { 350 VERIFY(nvlist_add_nvlist_array(nv, 351 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 352 } 353 354 for (c = 0; c < idx; c++) 355 nvlist_free(child[c]); 356 357 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 358 359 } else { 360 const char *aux = NULL; 361 362 if (vd->vdev_offline && !vd->vdev_tmpoffline) 363 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, 364 B_TRUE) == 0); 365 if (vd->vdev_resilvering) 366 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVERING, 367 B_TRUE) == 0); 368 if (vd->vdev_faulted) 369 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, 370 B_TRUE) == 0); 371 if (vd->vdev_degraded) 372 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, 373 B_TRUE) == 0); 374 if (vd->vdev_removed) 375 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, 376 B_TRUE) == 0); 377 if (vd->vdev_unspare) 378 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, 379 B_TRUE) == 0); 380 if (vd->vdev_ishole) 381 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, 382 B_TRUE) == 0); 383 384 switch (vd->vdev_stat.vs_aux) { 385 case VDEV_AUX_ERR_EXCEEDED: 386 aux = "err_exceeded"; 387 break; 388 389 case VDEV_AUX_EXTERNAL: 390 aux = "external"; 391 break; 392 } 393 394 if (aux != NULL) 395 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, 396 aux) == 0); 397 398 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 399 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 400 vd->vdev_orig_guid) == 0); 401 } 402 } 403 404 return (nv); 405 } 406 407 /* 408 * Generate a view of the top-level vdevs. If we currently have holes 409 * in the namespace, then generate an array which contains a list of holey 410 * vdevs. Additionally, add the number of top-level children that currently 411 * exist. 412 */ 413 void 414 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 415 { 416 vdev_t *rvd = spa->spa_root_vdev; 417 uint64_t *array; 418 uint_t c, idx; 419 420 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 421 422 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 423 vdev_t *tvd = rvd->vdev_child[c]; 424 425 if (tvd->vdev_ishole) 426 array[idx++] = c; 427 } 428 429 if (idx) { 430 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 431 array, idx) == 0); 432 } 433 434 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 435 rvd->vdev_children) == 0); 436 437 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 438 } 439 440 /* 441 * Returns the configuration from the label of the given vdev. For vdevs 442 * which don't have a txg value stored on their label (i.e. spares/cache) 443 * or have not been completely initialized (txg = 0) just return 444 * the configuration from the first valid label we find. Otherwise, 445 * find the most up-to-date label that does not exceed the specified 446 * 'txg' value. 447 */ 448 nvlist_t * 449 vdev_label_read_config(vdev_t *vd, uint64_t txg) 450 { 451 spa_t *spa = vd->vdev_spa; 452 nvlist_t *config = NULL; 453 vdev_phys_t *vp; 454 zio_t *zio; 455 uint64_t best_txg = 0; 456 int error = 0; 457 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 458 ZIO_FLAG_SPECULATIVE; 459 460 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 461 462 if (!vdev_readable(vd)) 463 return (NULL); 464 465 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 466 467 retry: 468 for (int l = 0; l < VDEV_LABELS; l++) { 469 nvlist_t *label = NULL; 470 471 zio = zio_root(spa, NULL, NULL, flags); 472 473 vdev_label_read(zio, vd, l, vp, 474 offsetof(vdev_label_t, vl_vdev_phys), 475 sizeof (vdev_phys_t), NULL, NULL, flags); 476 477 if (zio_wait(zio) == 0 && 478 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 479 &label, 0) == 0) { 480 uint64_t label_txg = 0; 481 482 /* 483 * Auxiliary vdevs won't have txg values in their 484 * labels and newly added vdevs may not have been 485 * completely initialized so just return the 486 * configuration from the first valid label we 487 * encounter. 488 */ 489 error = nvlist_lookup_uint64(label, 490 ZPOOL_CONFIG_POOL_TXG, &label_txg); 491 if ((error || label_txg == 0) && !config) { 492 config = label; 493 break; 494 } else if (label_txg <= txg && label_txg > best_txg) { 495 best_txg = label_txg; 496 nvlist_free(config); 497 config = fnvlist_dup(label); 498 } 499 } 500 501 if (label != NULL) { 502 nvlist_free(label); 503 label = NULL; 504 } 505 } 506 507 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 508 flags |= ZIO_FLAG_TRYHARD; 509 goto retry; 510 } 511 512 zio_buf_free(vp, sizeof (vdev_phys_t)); 513 514 return (config); 515 } 516 517 /* 518 * Determine if a device is in use. The 'spare_guid' parameter will be filled 519 * in with the device guid if this spare is active elsewhere on the system. 520 */ 521 static boolean_t 522 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 523 uint64_t *spare_guid, uint64_t *l2cache_guid) 524 { 525 spa_t *spa = vd->vdev_spa; 526 uint64_t state, pool_guid, device_guid, txg, spare_pool; 527 uint64_t vdtxg = 0; 528 nvlist_t *label; 529 530 if (spare_guid) 531 *spare_guid = 0ULL; 532 if (l2cache_guid) 533 *l2cache_guid = 0ULL; 534 535 /* 536 * Read the label, if any, and perform some basic sanity checks. 537 */ 538 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 539 return (B_FALSE); 540 541 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 542 &vdtxg); 543 544 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 545 &state) != 0 || 546 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 547 &device_guid) != 0) { 548 nvlist_free(label); 549 return (B_FALSE); 550 } 551 552 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 553 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 554 &pool_guid) != 0 || 555 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 556 &txg) != 0)) { 557 nvlist_free(label); 558 return (B_FALSE); 559 } 560 561 nvlist_free(label); 562 563 /* 564 * Check to see if this device indeed belongs to the pool it claims to 565 * be a part of. The only way this is allowed is if the device is a hot 566 * spare (which we check for later on). 567 */ 568 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 569 !spa_guid_exists(pool_guid, device_guid) && 570 !spa_spare_exists(device_guid, NULL, NULL) && 571 !spa_l2cache_exists(device_guid, NULL)) 572 return (B_FALSE); 573 574 /* 575 * If the transaction group is zero, then this an initialized (but 576 * unused) label. This is only an error if the create transaction 577 * on-disk is the same as the one we're using now, in which case the 578 * user has attempted to add the same vdev multiple times in the same 579 * transaction. 580 */ 581 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 582 txg == 0 && vdtxg == crtxg) 583 return (B_TRUE); 584 585 /* 586 * Check to see if this is a spare device. We do an explicit check for 587 * spa_has_spare() here because it may be on our pending list of spares 588 * to add. We also check if it is an l2cache device. 589 */ 590 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 591 spa_has_spare(spa, device_guid)) { 592 if (spare_guid) 593 *spare_guid = device_guid; 594 595 switch (reason) { 596 case VDEV_LABEL_CREATE: 597 case VDEV_LABEL_L2CACHE: 598 return (B_TRUE); 599 600 case VDEV_LABEL_REPLACE: 601 return (!spa_has_spare(spa, device_guid) || 602 spare_pool != 0ULL); 603 604 case VDEV_LABEL_SPARE: 605 return (spa_has_spare(spa, device_guid)); 606 } 607 } 608 609 /* 610 * Check to see if this is an l2cache device. 611 */ 612 if (spa_l2cache_exists(device_guid, NULL)) 613 return (B_TRUE); 614 615 /* 616 * We can't rely on a pool's state if it's been imported 617 * read-only. Instead we look to see if the pools is marked 618 * read-only in the namespace and set the state to active. 619 */ 620 if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL && 621 spa_mode(spa) == FREAD) 622 state = POOL_STATE_ACTIVE; 623 624 /* 625 * If the device is marked ACTIVE, then this device is in use by another 626 * pool on the system. 627 */ 628 return (state == POOL_STATE_ACTIVE); 629 } 630 631 /* 632 * Initialize a vdev label. We check to make sure each leaf device is not in 633 * use, and writable. We put down an initial label which we will later 634 * overwrite with a complete label. Note that it's important to do this 635 * sequentially, not in parallel, so that we catch cases of multiple use of the 636 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 637 * itself. 638 */ 639 int 640 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 641 { 642 spa_t *spa = vd->vdev_spa; 643 nvlist_t *label; 644 vdev_phys_t *vp; 645 char *pad2; 646 uberblock_t *ub; 647 zio_t *zio; 648 char *buf; 649 size_t buflen; 650 int error; 651 uint64_t spare_guid, l2cache_guid; 652 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 653 654 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 655 656 for (int c = 0; c < vd->vdev_children; c++) 657 if ((error = vdev_label_init(vd->vdev_child[c], 658 crtxg, reason)) != 0) 659 return (error); 660 661 /* Track the creation time for this vdev */ 662 vd->vdev_crtxg = crtxg; 663 664 if (!vd->vdev_ops->vdev_op_leaf) 665 return (0); 666 667 /* 668 * Dead vdevs cannot be initialized. 669 */ 670 if (vdev_is_dead(vd)) 671 return (SET_ERROR(EIO)); 672 673 /* 674 * Determine if the vdev is in use. 675 */ 676 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 677 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 678 return (SET_ERROR(EBUSY)); 679 680 /* 681 * If this is a request to add or replace a spare or l2cache device 682 * that is in use elsewhere on the system, then we must update the 683 * guid (which was initialized to a random value) to reflect the 684 * actual GUID (which is shared between multiple pools). 685 */ 686 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 687 spare_guid != 0ULL) { 688 uint64_t guid_delta = spare_guid - vd->vdev_guid; 689 690 vd->vdev_guid += guid_delta; 691 692 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 693 pvd->vdev_guid_sum += guid_delta; 694 695 /* 696 * If this is a replacement, then we want to fallthrough to the 697 * rest of the code. If we're adding a spare, then it's already 698 * labeled appropriately and we can just return. 699 */ 700 if (reason == VDEV_LABEL_SPARE) 701 return (0); 702 ASSERT(reason == VDEV_LABEL_REPLACE || 703 reason == VDEV_LABEL_SPLIT); 704 } 705 706 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 707 l2cache_guid != 0ULL) { 708 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 709 710 vd->vdev_guid += guid_delta; 711 712 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 713 pvd->vdev_guid_sum += guid_delta; 714 715 /* 716 * If this is a replacement, then we want to fallthrough to the 717 * rest of the code. If we're adding an l2cache, then it's 718 * already labeled appropriately and we can just return. 719 */ 720 if (reason == VDEV_LABEL_L2CACHE) 721 return (0); 722 ASSERT(reason == VDEV_LABEL_REPLACE); 723 } 724 725 /* 726 * Initialize its label. 727 */ 728 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 729 bzero(vp, sizeof (vdev_phys_t)); 730 731 /* 732 * Generate a label describing the pool and our top-level vdev. 733 * We mark it as being from txg 0 to indicate that it's not 734 * really part of an active pool just yet. The labels will 735 * be written again with a meaningful txg by spa_sync(). 736 */ 737 if (reason == VDEV_LABEL_SPARE || 738 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 739 /* 740 * For inactive hot spares, we generate a special label that 741 * identifies as a mutually shared hot spare. We write the 742 * label if we are adding a hot spare, or if we are removing an 743 * active hot spare (in which case we want to revert the 744 * labels). 745 */ 746 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 747 748 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 749 spa_version(spa)) == 0); 750 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 751 POOL_STATE_SPARE) == 0); 752 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 753 vd->vdev_guid) == 0); 754 } else if (reason == VDEV_LABEL_L2CACHE || 755 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 756 /* 757 * For level 2 ARC devices, add a special label. 758 */ 759 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 760 761 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 762 spa_version(spa)) == 0); 763 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 764 POOL_STATE_L2CACHE) == 0); 765 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 766 vd->vdev_guid) == 0); 767 } else { 768 uint64_t txg = 0ULL; 769 770 if (reason == VDEV_LABEL_SPLIT) 771 txg = spa->spa_uberblock.ub_txg; 772 label = spa_config_generate(spa, vd, txg, B_FALSE); 773 774 /* 775 * Add our creation time. This allows us to detect multiple 776 * vdev uses as described above, and automatically expires if we 777 * fail. 778 */ 779 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 780 crtxg) == 0); 781 } 782 783 buf = vp->vp_nvlist; 784 buflen = sizeof (vp->vp_nvlist); 785 786 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 787 if (error != 0) { 788 nvlist_free(label); 789 zio_buf_free(vp, sizeof (vdev_phys_t)); 790 /* EFAULT means nvlist_pack ran out of room */ 791 return (error == EFAULT ? ENAMETOOLONG : EINVAL); 792 } 793 794 /* 795 * Initialize uberblock template. 796 */ 797 ub = zio_buf_alloc(VDEV_UBERBLOCK_RING); 798 bzero(ub, VDEV_UBERBLOCK_RING); 799 *ub = spa->spa_uberblock; 800 ub->ub_txg = 0; 801 802 /* Initialize the 2nd padding area. */ 803 pad2 = zio_buf_alloc(VDEV_PAD_SIZE); 804 bzero(pad2, VDEV_PAD_SIZE); 805 806 /* 807 * Write everything in parallel. 808 */ 809 retry: 810 zio = zio_root(spa, NULL, NULL, flags); 811 812 for (int l = 0; l < VDEV_LABELS; l++) { 813 814 vdev_label_write(zio, vd, l, vp, 815 offsetof(vdev_label_t, vl_vdev_phys), 816 sizeof (vdev_phys_t), NULL, NULL, flags); 817 818 /* 819 * Skip the 1st padding area. 820 * Zero out the 2nd padding area where it might have 821 * left over data from previous filesystem format. 822 */ 823 vdev_label_write(zio, vd, l, pad2, 824 offsetof(vdev_label_t, vl_pad2), 825 VDEV_PAD_SIZE, NULL, NULL, flags); 826 827 vdev_label_write(zio, vd, l, ub, 828 offsetof(vdev_label_t, vl_uberblock), 829 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 830 } 831 832 error = zio_wait(zio); 833 834 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 835 flags |= ZIO_FLAG_TRYHARD; 836 goto retry; 837 } 838 839 nvlist_free(label); 840 zio_buf_free(pad2, VDEV_PAD_SIZE); 841 zio_buf_free(ub, VDEV_UBERBLOCK_RING); 842 zio_buf_free(vp, sizeof (vdev_phys_t)); 843 844 /* 845 * If this vdev hasn't been previously identified as a spare, then we 846 * mark it as such only if a) we are labeling it as a spare, or b) it 847 * exists as a spare elsewhere in the system. Do the same for 848 * level 2 ARC devices. 849 */ 850 if (error == 0 && !vd->vdev_isspare && 851 (reason == VDEV_LABEL_SPARE || 852 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 853 spa_spare_add(vd); 854 855 if (error == 0 && !vd->vdev_isl2cache && 856 (reason == VDEV_LABEL_L2CACHE || 857 spa_l2cache_exists(vd->vdev_guid, NULL))) 858 spa_l2cache_add(vd); 859 860 return (error); 861 } 862 863 /* 864 * ========================================================================== 865 * uberblock load/sync 866 * ========================================================================== 867 */ 868 869 /* 870 * Consider the following situation: txg is safely synced to disk. We've 871 * written the first uberblock for txg + 1, and then we lose power. When we 872 * come back up, we fail to see the uberblock for txg + 1 because, say, 873 * it was on a mirrored device and the replica to which we wrote txg + 1 874 * is now offline. If we then make some changes and sync txg + 1, and then 875 * the missing replica comes back, then for a few seconds we'll have two 876 * conflicting uberblocks on disk with the same txg. The solution is simple: 877 * among uberblocks with equal txg, choose the one with the latest timestamp. 878 */ 879 static int 880 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 881 { 882 if (ub1->ub_txg < ub2->ub_txg) 883 return (-1); 884 if (ub1->ub_txg > ub2->ub_txg) 885 return (1); 886 887 if (ub1->ub_timestamp < ub2->ub_timestamp) 888 return (-1); 889 if (ub1->ub_timestamp > ub2->ub_timestamp) 890 return (1); 891 892 return (0); 893 } 894 895 struct ubl_cbdata { 896 uberblock_t *ubl_ubbest; /* Best uberblock */ 897 vdev_t *ubl_vd; /* vdev associated with the above */ 898 }; 899 900 static void 901 vdev_uberblock_load_done(zio_t *zio) 902 { 903 vdev_t *vd = zio->io_vd; 904 spa_t *spa = zio->io_spa; 905 zio_t *rio = zio->io_private; 906 uberblock_t *ub = zio->io_data; 907 struct ubl_cbdata *cbp = rio->io_private; 908 909 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 910 911 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 912 mutex_enter(&rio->io_lock); 913 if (ub->ub_txg <= spa->spa_load_max_txg && 914 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 915 /* 916 * Keep track of the vdev in which this uberblock 917 * was found. We will use this information later 918 * to obtain the config nvlist associated with 919 * this uberblock. 920 */ 921 *cbp->ubl_ubbest = *ub; 922 cbp->ubl_vd = vd; 923 } 924 mutex_exit(&rio->io_lock); 925 } 926 927 zio_buf_free(zio->io_data, zio->io_size); 928 } 929 930 static void 931 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 932 struct ubl_cbdata *cbp) 933 { 934 for (int c = 0; c < vd->vdev_children; c++) 935 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 936 937 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 938 for (int l = 0; l < VDEV_LABELS; l++) { 939 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 940 vdev_label_read(zio, vd, l, 941 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), 942 VDEV_UBERBLOCK_OFFSET(vd, n), 943 VDEV_UBERBLOCK_SIZE(vd), 944 vdev_uberblock_load_done, zio, flags); 945 } 946 } 947 } 948 } 949 950 /* 951 * Reads the 'best' uberblock from disk along with its associated 952 * configuration. First, we read the uberblock array of each label of each 953 * vdev, keeping track of the uberblock with the highest txg in each array. 954 * Then, we read the configuration from the same vdev as the best uberblock. 955 */ 956 void 957 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 958 { 959 zio_t *zio; 960 spa_t *spa = rvd->vdev_spa; 961 struct ubl_cbdata cb; 962 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 963 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 964 965 ASSERT(ub); 966 ASSERT(config); 967 968 bzero(ub, sizeof (uberblock_t)); 969 *config = NULL; 970 971 cb.ubl_ubbest = ub; 972 cb.ubl_vd = NULL; 973 974 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 975 zio = zio_root(spa, NULL, &cb, flags); 976 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 977 (void) zio_wait(zio); 978 979 /* 980 * It's possible that the best uberblock was discovered on a label 981 * that has a configuration which was written in a future txg. 982 * Search all labels on this vdev to find the configuration that 983 * matches the txg for our uberblock. 984 */ 985 if (cb.ubl_vd != NULL) 986 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 987 spa_config_exit(spa, SCL_ALL, FTAG); 988 } 989 990 /* 991 * On success, increment root zio's count of good writes. 992 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 993 */ 994 static void 995 vdev_uberblock_sync_done(zio_t *zio) 996 { 997 uint64_t *good_writes = zio->io_private; 998 999 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 1000 atomic_add_64(good_writes, 1); 1001 } 1002 1003 /* 1004 * Write the uberblock to all labels of all leaves of the specified vdev. 1005 */ 1006 static void 1007 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags) 1008 { 1009 uberblock_t *ubbuf; 1010 int n; 1011 1012 for (int c = 0; c < vd->vdev_children; c++) 1013 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags); 1014 1015 if (!vd->vdev_ops->vdev_op_leaf) 1016 return; 1017 1018 if (!vdev_writeable(vd)) 1019 return; 1020 1021 n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 1022 1023 ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 1024 bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 1025 *ubbuf = *ub; 1026 1027 for (int l = 0; l < VDEV_LABELS; l++) 1028 vdev_label_write(zio, vd, l, ubbuf, 1029 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1030 vdev_uberblock_sync_done, zio->io_private, 1031 flags | ZIO_FLAG_DONT_PROPAGATE); 1032 1033 zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 1034 } 1035 1036 /* Sync the uberblocks to all vdevs in svd[] */ 1037 int 1038 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1039 { 1040 spa_t *spa = svd[0]->vdev_spa; 1041 zio_t *zio; 1042 uint64_t good_writes = 0; 1043 1044 zio = zio_root(spa, NULL, &good_writes, flags); 1045 1046 for (int v = 0; v < svdcount; v++) 1047 vdev_uberblock_sync(zio, ub, svd[v], flags); 1048 1049 (void) zio_wait(zio); 1050 1051 /* 1052 * Flush the uberblocks to disk. This ensures that the odd labels 1053 * are no longer needed (because the new uberblocks and the even 1054 * labels are safely on disk), so it is safe to overwrite them. 1055 */ 1056 zio = zio_root(spa, NULL, NULL, flags); 1057 1058 for (int v = 0; v < svdcount; v++) 1059 zio_flush(zio, svd[v]); 1060 1061 (void) zio_wait(zio); 1062 1063 return (good_writes >= 1 ? 0 : EIO); 1064 } 1065 1066 /* 1067 * On success, increment the count of good writes for our top-level vdev. 1068 */ 1069 static void 1070 vdev_label_sync_done(zio_t *zio) 1071 { 1072 uint64_t *good_writes = zio->io_private; 1073 1074 if (zio->io_error == 0) 1075 atomic_add_64(good_writes, 1); 1076 } 1077 1078 /* 1079 * If there weren't enough good writes, indicate failure to the parent. 1080 */ 1081 static void 1082 vdev_label_sync_top_done(zio_t *zio) 1083 { 1084 uint64_t *good_writes = zio->io_private; 1085 1086 if (*good_writes == 0) 1087 zio->io_error = SET_ERROR(EIO); 1088 1089 kmem_free(good_writes, sizeof (uint64_t)); 1090 } 1091 1092 /* 1093 * We ignore errors for log and cache devices, simply free the private data. 1094 */ 1095 static void 1096 vdev_label_sync_ignore_done(zio_t *zio) 1097 { 1098 kmem_free(zio->io_private, sizeof (uint64_t)); 1099 } 1100 1101 /* 1102 * Write all even or odd labels to all leaves of the specified vdev. 1103 */ 1104 static void 1105 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags) 1106 { 1107 nvlist_t *label; 1108 vdev_phys_t *vp; 1109 char *buf; 1110 size_t buflen; 1111 1112 for (int c = 0; c < vd->vdev_children; c++) 1113 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags); 1114 1115 if (!vd->vdev_ops->vdev_op_leaf) 1116 return; 1117 1118 if (!vdev_writeable(vd)) 1119 return; 1120 1121 /* 1122 * Generate a label describing the top-level config to which we belong. 1123 */ 1124 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1125 1126 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 1127 bzero(vp, sizeof (vdev_phys_t)); 1128 1129 buf = vp->vp_nvlist; 1130 buflen = sizeof (vp->vp_nvlist); 1131 1132 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { 1133 for (; l < VDEV_LABELS; l += 2) { 1134 vdev_label_write(zio, vd, l, vp, 1135 offsetof(vdev_label_t, vl_vdev_phys), 1136 sizeof (vdev_phys_t), 1137 vdev_label_sync_done, zio->io_private, 1138 flags | ZIO_FLAG_DONT_PROPAGATE); 1139 } 1140 } 1141 1142 zio_buf_free(vp, sizeof (vdev_phys_t)); 1143 nvlist_free(label); 1144 } 1145 1146 int 1147 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1148 { 1149 list_t *dl = &spa->spa_config_dirty_list; 1150 vdev_t *vd; 1151 zio_t *zio; 1152 int error; 1153 1154 /* 1155 * Write the new labels to disk. 1156 */ 1157 zio = zio_root(spa, NULL, NULL, flags); 1158 1159 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1160 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), 1161 KM_SLEEP); 1162 1163 ASSERT(!vd->vdev_ishole); 1164 1165 zio_t *vio = zio_null(zio, spa, NULL, 1166 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1167 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1168 good_writes, flags); 1169 vdev_label_sync(vio, vd, l, txg, flags); 1170 zio_nowait(vio); 1171 } 1172 1173 error = zio_wait(zio); 1174 1175 /* 1176 * Flush the new labels to disk. 1177 */ 1178 zio = zio_root(spa, NULL, NULL, flags); 1179 1180 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 1181 zio_flush(zio, vd); 1182 1183 (void) zio_wait(zio); 1184 1185 return (error); 1186 } 1187 1188 /* 1189 * Sync the uberblock and any changes to the vdev configuration. 1190 * 1191 * The order of operations is carefully crafted to ensure that 1192 * if the system panics or loses power at any time, the state on disk 1193 * is still transactionally consistent. The in-line comments below 1194 * describe the failure semantics at each stage. 1195 * 1196 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1197 * at any time, you can just call it again, and it will resume its work. 1198 */ 1199 int 1200 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard) 1201 { 1202 spa_t *spa = svd[0]->vdev_spa; 1203 uberblock_t *ub = &spa->spa_uberblock; 1204 vdev_t *vd; 1205 zio_t *zio; 1206 int error; 1207 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1208 1209 /* 1210 * Normally, we don't want to try too hard to write every label and 1211 * uberblock. If there is a flaky disk, we don't want the rest of the 1212 * sync process to block while we retry. But if we can't write a 1213 * single label out, we should retry with ZIO_FLAG_TRYHARD before 1214 * bailing out and declaring the pool faulted. 1215 */ 1216 if (tryhard) 1217 flags |= ZIO_FLAG_TRYHARD; 1218 1219 ASSERT(ub->ub_txg <= txg); 1220 1221 /* 1222 * If this isn't a resync due to I/O errors, 1223 * and nothing changed in this transaction group, 1224 * and the vdev configuration hasn't changed, 1225 * then there's nothing to do. 1226 */ 1227 if (ub->ub_txg < txg && 1228 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && 1229 list_is_empty(&spa->spa_config_dirty_list)) 1230 return (0); 1231 1232 if (txg > spa_freeze_txg(spa)) 1233 return (0); 1234 1235 ASSERT(txg <= spa->spa_final_txg); 1236 1237 /* 1238 * Flush the write cache of every disk that's been written to 1239 * in this transaction group. This ensures that all blocks 1240 * written in this txg will be committed to stable storage 1241 * before any uberblock that references them. 1242 */ 1243 zio = zio_root(spa, NULL, NULL, flags); 1244 1245 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 1246 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1247 zio_flush(zio, vd); 1248 1249 (void) zio_wait(zio); 1250 1251 /* 1252 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1253 * system dies in the middle of this process, that's OK: all of the 1254 * even labels that made it to disk will be newer than any uberblock, 1255 * and will therefore be considered invalid. The odd labels (L1, L3), 1256 * which have not yet been touched, will still be valid. We flush 1257 * the new labels to disk to ensure that all even-label updates 1258 * are committed to stable storage before the uberblock update. 1259 */ 1260 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) 1261 return (error); 1262 1263 /* 1264 * Sync the uberblocks to all vdevs in svd[]. 1265 * If the system dies in the middle of this step, there are two cases 1266 * to consider, and the on-disk state is consistent either way: 1267 * 1268 * (1) If none of the new uberblocks made it to disk, then the 1269 * previous uberblock will be the newest, and the odd labels 1270 * (which had not yet been touched) will be valid with respect 1271 * to that uberblock. 1272 * 1273 * (2) If one or more new uberblocks made it to disk, then they 1274 * will be the newest, and the even labels (which had all 1275 * been successfully committed) will be valid with respect 1276 * to the new uberblocks. 1277 */ 1278 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) 1279 return (error); 1280 1281 /* 1282 * Sync out odd labels for every dirty vdev. If the system dies 1283 * in the middle of this process, the even labels and the new 1284 * uberblocks will suffice to open the pool. The next time 1285 * the pool is opened, the first thing we'll do -- before any 1286 * user data is modified -- is mark every vdev dirty so that 1287 * all labels will be brought up to date. We flush the new labels 1288 * to disk to ensure that all odd-label updates are committed to 1289 * stable storage before the next transaction group begins. 1290 */ 1291 return (vdev_label_sync_list(spa, 1, txg, flags)); 1292 }