1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 by Delphix. All rights reserved. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/uberblock_impl.h> 36 #include <sys/metaslab.h> 37 #include <sys/metaslab_impl.h> 38 #include <sys/space_map.h> 39 #include <sys/zio.h> 40 #include <sys/zap.h> 41 #include <sys/fs/zfs.h> 42 #include <sys/arc.h> 43 #include <sys/zil.h> 44 #include <sys/dsl_scan.h> 45 46 /* 47 * Virtual device management. 48 */ 49 50 static vdev_ops_t *vdev_ops_table[] = { 51 &vdev_root_ops, 52 &vdev_raidz_ops, 53 &vdev_mirror_ops, 54 &vdev_replacing_ops, 55 &vdev_spare_ops, 56 &vdev_disk_ops, 57 &vdev_file_ops, 58 &vdev_missing_ops, 59 &vdev_hole_ops, 60 NULL 61 }; 62 63 /* maximum scrub/resilver I/O queue per leaf vdev */ 64 int zfs_scrub_limit = 10; 65 66 /* 67 * Given a vdev type, return the appropriate ops vector. 68 */ 69 static vdev_ops_t * 70 vdev_getops(const char *type) 71 { 72 vdev_ops_t *ops, **opspp; 73 74 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 75 if (strcmp(ops->vdev_op_type, type) == 0) 76 break; 77 78 return (ops); 79 } 80 81 /* 82 * Default asize function: return the MAX of psize with the asize of 83 * all children. This is what's used by anything other than RAID-Z. 84 */ 85 uint64_t 86 vdev_default_asize(vdev_t *vd, uint64_t psize) 87 { 88 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 89 uint64_t csize; 90 91 for (int c = 0; c < vd->vdev_children; c++) { 92 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 93 asize = MAX(asize, csize); 94 } 95 96 return (asize); 97 } 98 99 /* 100 * Get the minimum allocatable size. We define the allocatable size as 101 * the vdev's asize rounded to the nearest metaslab. This allows us to 102 * replace or attach devices which don't have the same physical size but 103 * can still satisfy the same number of allocations. 104 */ 105 uint64_t 106 vdev_get_min_asize(vdev_t *vd) 107 { 108 vdev_t *pvd = vd->vdev_parent; 109 110 /* 111 * If our parent is NULL (inactive spare or cache) or is the root, 112 * just return our own asize. 113 */ 114 if (pvd == NULL) 115 return (vd->vdev_asize); 116 117 /* 118 * The top-level vdev just returns the allocatable size rounded 119 * to the nearest metaslab. 120 */ 121 if (vd == vd->vdev_top) 122 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 123 124 /* 125 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 126 * so each child must provide at least 1/Nth of its asize. 127 */ 128 if (pvd->vdev_ops == &vdev_raidz_ops) 129 return (pvd->vdev_min_asize / pvd->vdev_children); 130 131 return (pvd->vdev_min_asize); 132 } 133 134 void 135 vdev_set_min_asize(vdev_t *vd) 136 { 137 vd->vdev_min_asize = vdev_get_min_asize(vd); 138 139 for (int c = 0; c < vd->vdev_children; c++) 140 vdev_set_min_asize(vd->vdev_child[c]); 141 } 142 143 vdev_t * 144 vdev_lookup_top(spa_t *spa, uint64_t vdev) 145 { 146 vdev_t *rvd = spa->spa_root_vdev; 147 148 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 149 150 if (vdev < rvd->vdev_children) { 151 ASSERT(rvd->vdev_child[vdev] != NULL); 152 return (rvd->vdev_child[vdev]); 153 } 154 155 return (NULL); 156 } 157 158 vdev_t * 159 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 160 { 161 vdev_t *mvd; 162 163 if (vd->vdev_guid == guid) 164 return (vd); 165 166 for (int c = 0; c < vd->vdev_children; c++) 167 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 168 NULL) 169 return (mvd); 170 171 return (NULL); 172 } 173 174 void 175 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 176 { 177 size_t oldsize, newsize; 178 uint64_t id = cvd->vdev_id; 179 vdev_t **newchild; 180 181 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 182 ASSERT(cvd->vdev_parent == NULL); 183 184 cvd->vdev_parent = pvd; 185 186 if (pvd == NULL) 187 return; 188 189 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 190 191 oldsize = pvd->vdev_children * sizeof (vdev_t *); 192 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 193 newsize = pvd->vdev_children * sizeof (vdev_t *); 194 195 newchild = kmem_zalloc(newsize, KM_SLEEP); 196 if (pvd->vdev_child != NULL) { 197 bcopy(pvd->vdev_child, newchild, oldsize); 198 kmem_free(pvd->vdev_child, oldsize); 199 } 200 201 pvd->vdev_child = newchild; 202 pvd->vdev_child[id] = cvd; 203 204 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 205 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 206 207 /* 208 * Walk up all ancestors to update guid sum. 209 */ 210 for (; pvd != NULL; pvd = pvd->vdev_parent) 211 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 212 } 213 214 void 215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 216 { 217 int c; 218 uint_t id = cvd->vdev_id; 219 220 ASSERT(cvd->vdev_parent == pvd); 221 222 if (pvd == NULL) 223 return; 224 225 ASSERT(id < pvd->vdev_children); 226 ASSERT(pvd->vdev_child[id] == cvd); 227 228 pvd->vdev_child[id] = NULL; 229 cvd->vdev_parent = NULL; 230 231 for (c = 0; c < pvd->vdev_children; c++) 232 if (pvd->vdev_child[c]) 233 break; 234 235 if (c == pvd->vdev_children) { 236 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 237 pvd->vdev_child = NULL; 238 pvd->vdev_children = 0; 239 } 240 241 /* 242 * Walk up all ancestors to update guid sum. 243 */ 244 for (; pvd != NULL; pvd = pvd->vdev_parent) 245 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 246 } 247 248 /* 249 * Remove any holes in the child array. 250 */ 251 void 252 vdev_compact_children(vdev_t *pvd) 253 { 254 vdev_t **newchild, *cvd; 255 int oldc = pvd->vdev_children; 256 int newc; 257 258 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 259 260 for (int c = newc = 0; c < oldc; c++) 261 if (pvd->vdev_child[c]) 262 newc++; 263 264 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 265 266 for (int c = newc = 0; c < oldc; c++) { 267 if ((cvd = pvd->vdev_child[c]) != NULL) { 268 newchild[newc] = cvd; 269 cvd->vdev_id = newc++; 270 } 271 } 272 273 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 274 pvd->vdev_child = newchild; 275 pvd->vdev_children = newc; 276 } 277 278 /* 279 * Allocate and minimally initialize a vdev_t. 280 */ 281 vdev_t * 282 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 283 { 284 vdev_t *vd; 285 286 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 287 288 if (spa->spa_root_vdev == NULL) { 289 ASSERT(ops == &vdev_root_ops); 290 spa->spa_root_vdev = vd; 291 spa->spa_load_guid = spa_generate_guid(NULL); 292 } 293 294 if (guid == 0 && ops != &vdev_hole_ops) { 295 if (spa->spa_root_vdev == vd) { 296 /* 297 * The root vdev's guid will also be the pool guid, 298 * which must be unique among all pools. 299 */ 300 guid = spa_generate_guid(NULL); 301 } else { 302 /* 303 * Any other vdev's guid must be unique within the pool. 304 */ 305 guid = spa_generate_guid(spa); 306 } 307 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 308 } 309 310 vd->vdev_spa = spa; 311 vd->vdev_id = id; 312 vd->vdev_guid = guid; 313 vd->vdev_guid_sum = guid; 314 vd->vdev_ops = ops; 315 vd->vdev_state = VDEV_STATE_CLOSED; 316 vd->vdev_ishole = (ops == &vdev_hole_ops); 317 318 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 319 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 320 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 321 for (int t = 0; t < DTL_TYPES; t++) { 322 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0, 323 &vd->vdev_dtl_lock); 324 } 325 txg_list_create(&vd->vdev_ms_list, 326 offsetof(struct metaslab, ms_txg_node)); 327 txg_list_create(&vd->vdev_dtl_list, 328 offsetof(struct vdev, vdev_dtl_node)); 329 vd->vdev_stat.vs_timestamp = gethrtime(); 330 vdev_queue_init(vd); 331 vdev_cache_init(vd); 332 333 return (vd); 334 } 335 336 /* 337 * Allocate a new vdev. The 'alloctype' is used to control whether we are 338 * creating a new vdev or loading an existing one - the behavior is slightly 339 * different for each case. 340 */ 341 int 342 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 343 int alloctype) 344 { 345 vdev_ops_t *ops; 346 char *type; 347 uint64_t guid = 0, islog, nparity; 348 vdev_t *vd; 349 350 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 351 352 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 353 return (SET_ERROR(EINVAL)); 354 355 if ((ops = vdev_getops(type)) == NULL) 356 return (SET_ERROR(EINVAL)); 357 358 /* 359 * If this is a load, get the vdev guid from the nvlist. 360 * Otherwise, vdev_alloc_common() will generate one for us. 361 */ 362 if (alloctype == VDEV_ALLOC_LOAD) { 363 uint64_t label_id; 364 365 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 366 label_id != id) 367 return (SET_ERROR(EINVAL)); 368 369 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 370 return (SET_ERROR(EINVAL)); 371 } else if (alloctype == VDEV_ALLOC_SPARE) { 372 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 373 return (SET_ERROR(EINVAL)); 374 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 375 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 376 return (SET_ERROR(EINVAL)); 377 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 378 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 379 return (SET_ERROR(EINVAL)); 380 } 381 382 /* 383 * The first allocated vdev must be of type 'root'. 384 */ 385 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 386 return (SET_ERROR(EINVAL)); 387 388 /* 389 * Determine whether we're a log vdev. 390 */ 391 islog = 0; 392 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 393 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 394 return (SET_ERROR(ENOTSUP)); 395 396 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 397 return (SET_ERROR(ENOTSUP)); 398 399 /* 400 * Set the nparity property for RAID-Z vdevs. 401 */ 402 nparity = -1ULL; 403 if (ops == &vdev_raidz_ops) { 404 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 405 &nparity) == 0) { 406 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 407 return (SET_ERROR(EINVAL)); 408 /* 409 * Previous versions could only support 1 or 2 parity 410 * device. 411 */ 412 if (nparity > 1 && 413 spa_version(spa) < SPA_VERSION_RAIDZ2) 414 return (SET_ERROR(ENOTSUP)); 415 if (nparity > 2 && 416 spa_version(spa) < SPA_VERSION_RAIDZ3) 417 return (SET_ERROR(ENOTSUP)); 418 } else { 419 /* 420 * We require the parity to be specified for SPAs that 421 * support multiple parity levels. 422 */ 423 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 424 return (SET_ERROR(EINVAL)); 425 /* 426 * Otherwise, we default to 1 parity device for RAID-Z. 427 */ 428 nparity = 1; 429 } 430 } else { 431 nparity = 0; 432 } 433 ASSERT(nparity != -1ULL); 434 435 vd = vdev_alloc_common(spa, id, guid, ops); 436 437 vd->vdev_islog = islog; 438 vd->vdev_nparity = nparity; 439 440 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 441 vd->vdev_path = spa_strdup(vd->vdev_path); 442 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 443 vd->vdev_devid = spa_strdup(vd->vdev_devid); 444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 445 &vd->vdev_physpath) == 0) 446 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 447 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 448 vd->vdev_fru = spa_strdup(vd->vdev_fru); 449 450 /* 451 * Set the whole_disk property. If it's not specified, leave the value 452 * as -1. 453 */ 454 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 455 &vd->vdev_wholedisk) != 0) 456 vd->vdev_wholedisk = -1ULL; 457 458 /* 459 * Look for the 'not present' flag. This will only be set if the device 460 * was not present at the time of import. 461 */ 462 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 463 &vd->vdev_not_present); 464 465 /* 466 * Get the alignment requirement. 467 */ 468 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 469 470 /* 471 * Retrieve the vdev creation time. 472 */ 473 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 474 &vd->vdev_crtxg); 475 476 /* 477 * If we're a top-level vdev, try to load the allocation parameters. 478 */ 479 if (parent && !parent->vdev_parent && 480 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 481 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 482 &vd->vdev_ms_array); 483 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 484 &vd->vdev_ms_shift); 485 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 486 &vd->vdev_asize); 487 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 488 &vd->vdev_removing); 489 } 490 491 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 492 ASSERT(alloctype == VDEV_ALLOC_LOAD || 493 alloctype == VDEV_ALLOC_ADD || 494 alloctype == VDEV_ALLOC_SPLIT || 495 alloctype == VDEV_ALLOC_ROOTPOOL); 496 vd->vdev_mg = metaslab_group_create(islog ? 497 spa_log_class(spa) : spa_normal_class(spa), vd); 498 } 499 500 /* 501 * If we're a leaf vdev, try to load the DTL object and other state. 502 */ 503 if (vd->vdev_ops->vdev_op_leaf && 504 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 505 alloctype == VDEV_ALLOC_ROOTPOOL)) { 506 if (alloctype == VDEV_ALLOC_LOAD) { 507 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 508 &vd->vdev_dtl_smo.smo_object); 509 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 510 &vd->vdev_unspare); 511 } 512 513 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 514 uint64_t spare = 0; 515 516 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 517 &spare) == 0 && spare) 518 spa_spare_add(vd); 519 } 520 521 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 522 &vd->vdev_offline); 523 524 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING, 525 &vd->vdev_resilvering); 526 527 /* 528 * When importing a pool, we want to ignore the persistent fault 529 * state, as the diagnosis made on another system may not be 530 * valid in the current context. Local vdevs will 531 * remain in the faulted state. 532 */ 533 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 534 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 535 &vd->vdev_faulted); 536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 537 &vd->vdev_degraded); 538 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 539 &vd->vdev_removed); 540 541 if (vd->vdev_faulted || vd->vdev_degraded) { 542 char *aux; 543 544 vd->vdev_label_aux = 545 VDEV_AUX_ERR_EXCEEDED; 546 if (nvlist_lookup_string(nv, 547 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 548 strcmp(aux, "external") == 0) 549 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 550 } 551 } 552 } 553 554 /* 555 * Add ourselves to the parent's list of children. 556 */ 557 vdev_add_child(parent, vd); 558 559 *vdp = vd; 560 561 return (0); 562 } 563 564 void 565 vdev_free(vdev_t *vd) 566 { 567 spa_t *spa = vd->vdev_spa; 568 569 /* 570 * vdev_free() implies closing the vdev first. This is simpler than 571 * trying to ensure complicated semantics for all callers. 572 */ 573 vdev_close(vd); 574 575 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 576 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 577 578 /* 579 * Free all children. 580 */ 581 for (int c = 0; c < vd->vdev_children; c++) 582 vdev_free(vd->vdev_child[c]); 583 584 ASSERT(vd->vdev_child == NULL); 585 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 586 587 /* 588 * Discard allocation state. 589 */ 590 if (vd->vdev_mg != NULL) { 591 vdev_metaslab_fini(vd); 592 metaslab_group_destroy(vd->vdev_mg); 593 } 594 595 ASSERT0(vd->vdev_stat.vs_space); 596 ASSERT0(vd->vdev_stat.vs_dspace); 597 ASSERT0(vd->vdev_stat.vs_alloc); 598 599 /* 600 * Remove this vdev from its parent's child list. 601 */ 602 vdev_remove_child(vd->vdev_parent, vd); 603 604 ASSERT(vd->vdev_parent == NULL); 605 606 /* 607 * Clean up vdev structure. 608 */ 609 vdev_queue_fini(vd); 610 vdev_cache_fini(vd); 611 612 if (vd->vdev_path) 613 spa_strfree(vd->vdev_path); 614 if (vd->vdev_devid) 615 spa_strfree(vd->vdev_devid); 616 if (vd->vdev_physpath) 617 spa_strfree(vd->vdev_physpath); 618 if (vd->vdev_fru) 619 spa_strfree(vd->vdev_fru); 620 621 if (vd->vdev_isspare) 622 spa_spare_remove(vd); 623 if (vd->vdev_isl2cache) 624 spa_l2cache_remove(vd); 625 626 txg_list_destroy(&vd->vdev_ms_list); 627 txg_list_destroy(&vd->vdev_dtl_list); 628 629 mutex_enter(&vd->vdev_dtl_lock); 630 for (int t = 0; t < DTL_TYPES; t++) { 631 space_map_unload(&vd->vdev_dtl[t]); 632 space_map_destroy(&vd->vdev_dtl[t]); 633 } 634 mutex_exit(&vd->vdev_dtl_lock); 635 636 mutex_destroy(&vd->vdev_dtl_lock); 637 mutex_destroy(&vd->vdev_stat_lock); 638 mutex_destroy(&vd->vdev_probe_lock); 639 640 if (vd == spa->spa_root_vdev) 641 spa->spa_root_vdev = NULL; 642 643 kmem_free(vd, sizeof (vdev_t)); 644 } 645 646 /* 647 * Transfer top-level vdev state from svd to tvd. 648 */ 649 static void 650 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 651 { 652 spa_t *spa = svd->vdev_spa; 653 metaslab_t *msp; 654 vdev_t *vd; 655 int t; 656 657 ASSERT(tvd == tvd->vdev_top); 658 659 tvd->vdev_ms_array = svd->vdev_ms_array; 660 tvd->vdev_ms_shift = svd->vdev_ms_shift; 661 tvd->vdev_ms_count = svd->vdev_ms_count; 662 663 svd->vdev_ms_array = 0; 664 svd->vdev_ms_shift = 0; 665 svd->vdev_ms_count = 0; 666 667 if (tvd->vdev_mg) 668 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 669 tvd->vdev_mg = svd->vdev_mg; 670 tvd->vdev_ms = svd->vdev_ms; 671 672 svd->vdev_mg = NULL; 673 svd->vdev_ms = NULL; 674 675 if (tvd->vdev_mg != NULL) 676 tvd->vdev_mg->mg_vd = tvd; 677 678 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 679 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 680 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 681 682 svd->vdev_stat.vs_alloc = 0; 683 svd->vdev_stat.vs_space = 0; 684 svd->vdev_stat.vs_dspace = 0; 685 686 for (t = 0; t < TXG_SIZE; t++) { 687 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 688 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 689 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 690 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 691 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 692 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 693 } 694 695 if (list_link_active(&svd->vdev_config_dirty_node)) { 696 vdev_config_clean(svd); 697 vdev_config_dirty(tvd); 698 } 699 700 if (list_link_active(&svd->vdev_state_dirty_node)) { 701 vdev_state_clean(svd); 702 vdev_state_dirty(tvd); 703 } 704 705 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 706 svd->vdev_deflate_ratio = 0; 707 708 tvd->vdev_islog = svd->vdev_islog; 709 svd->vdev_islog = 0; 710 } 711 712 static void 713 vdev_top_update(vdev_t *tvd, vdev_t *vd) 714 { 715 if (vd == NULL) 716 return; 717 718 vd->vdev_top = tvd; 719 720 for (int c = 0; c < vd->vdev_children; c++) 721 vdev_top_update(tvd, vd->vdev_child[c]); 722 } 723 724 /* 725 * Add a mirror/replacing vdev above an existing vdev. 726 */ 727 vdev_t * 728 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 729 { 730 spa_t *spa = cvd->vdev_spa; 731 vdev_t *pvd = cvd->vdev_parent; 732 vdev_t *mvd; 733 734 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 735 736 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 737 738 mvd->vdev_asize = cvd->vdev_asize; 739 mvd->vdev_min_asize = cvd->vdev_min_asize; 740 mvd->vdev_max_asize = cvd->vdev_max_asize; 741 mvd->vdev_ashift = cvd->vdev_ashift; 742 mvd->vdev_state = cvd->vdev_state; 743 mvd->vdev_crtxg = cvd->vdev_crtxg; 744 745 vdev_remove_child(pvd, cvd); 746 vdev_add_child(pvd, mvd); 747 cvd->vdev_id = mvd->vdev_children; 748 vdev_add_child(mvd, cvd); 749 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 750 751 if (mvd == mvd->vdev_top) 752 vdev_top_transfer(cvd, mvd); 753 754 return (mvd); 755 } 756 757 /* 758 * Remove a 1-way mirror/replacing vdev from the tree. 759 */ 760 void 761 vdev_remove_parent(vdev_t *cvd) 762 { 763 vdev_t *mvd = cvd->vdev_parent; 764 vdev_t *pvd = mvd->vdev_parent; 765 766 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 767 768 ASSERT(mvd->vdev_children == 1); 769 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 770 mvd->vdev_ops == &vdev_replacing_ops || 771 mvd->vdev_ops == &vdev_spare_ops); 772 cvd->vdev_ashift = mvd->vdev_ashift; 773 774 vdev_remove_child(mvd, cvd); 775 vdev_remove_child(pvd, mvd); 776 777 /* 778 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 779 * Otherwise, we could have detached an offline device, and when we 780 * go to import the pool we'll think we have two top-level vdevs, 781 * instead of a different version of the same top-level vdev. 782 */ 783 if (mvd->vdev_top == mvd) { 784 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 785 cvd->vdev_orig_guid = cvd->vdev_guid; 786 cvd->vdev_guid += guid_delta; 787 cvd->vdev_guid_sum += guid_delta; 788 } 789 cvd->vdev_id = mvd->vdev_id; 790 vdev_add_child(pvd, cvd); 791 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 792 793 if (cvd == cvd->vdev_top) 794 vdev_top_transfer(mvd, cvd); 795 796 ASSERT(mvd->vdev_children == 0); 797 vdev_free(mvd); 798 } 799 800 int 801 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 802 { 803 spa_t *spa = vd->vdev_spa; 804 objset_t *mos = spa->spa_meta_objset; 805 uint64_t m; 806 uint64_t oldc = vd->vdev_ms_count; 807 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 808 metaslab_t **mspp; 809 int error; 810 811 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 812 813 /* 814 * This vdev is not being allocated from yet or is a hole. 815 */ 816 if (vd->vdev_ms_shift == 0) 817 return (0); 818 819 ASSERT(!vd->vdev_ishole); 820 821 /* 822 * Compute the raidz-deflation ratio. Note, we hard-code 823 * in 128k (1 << 17) because it is the current "typical" blocksize. 824 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, 825 * or we will inconsistently account for existing bp's. 826 */ 827 vd->vdev_deflate_ratio = (1 << 17) / 828 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 829 830 ASSERT(oldc <= newc); 831 832 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 833 834 if (oldc != 0) { 835 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 836 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 837 } 838 839 vd->vdev_ms = mspp; 840 vd->vdev_ms_count = newc; 841 842 for (m = oldc; m < newc; m++) { 843 space_map_obj_t smo = { 0, 0, 0 }; 844 if (txg == 0) { 845 uint64_t object = 0; 846 error = dmu_read(mos, vd->vdev_ms_array, 847 m * sizeof (uint64_t), sizeof (uint64_t), &object, 848 DMU_READ_PREFETCH); 849 if (error) 850 return (error); 851 if (object != 0) { 852 dmu_buf_t *db; 853 error = dmu_bonus_hold(mos, object, FTAG, &db); 854 if (error) 855 return (error); 856 ASSERT3U(db->db_size, >=, sizeof (smo)); 857 bcopy(db->db_data, &smo, sizeof (smo)); 858 ASSERT3U(smo.smo_object, ==, object); 859 dmu_buf_rele(db, FTAG); 860 } 861 } 862 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 863 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 864 } 865 866 if (txg == 0) 867 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 868 869 /* 870 * If the vdev is being removed we don't activate 871 * the metaslabs since we want to ensure that no new 872 * allocations are performed on this device. 873 */ 874 if (oldc == 0 && !vd->vdev_removing) 875 metaslab_group_activate(vd->vdev_mg); 876 877 if (txg == 0) 878 spa_config_exit(spa, SCL_ALLOC, FTAG); 879 880 return (0); 881 } 882 883 void 884 vdev_metaslab_fini(vdev_t *vd) 885 { 886 uint64_t m; 887 uint64_t count = vd->vdev_ms_count; 888 889 if (vd->vdev_ms != NULL) { 890 metaslab_group_passivate(vd->vdev_mg); 891 for (m = 0; m < count; m++) 892 if (vd->vdev_ms[m] != NULL) 893 metaslab_fini(vd->vdev_ms[m]); 894 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 895 vd->vdev_ms = NULL; 896 } 897 } 898 899 typedef struct vdev_probe_stats { 900 boolean_t vps_readable; 901 boolean_t vps_writeable; 902 int vps_flags; 903 } vdev_probe_stats_t; 904 905 static void 906 vdev_probe_done(zio_t *zio) 907 { 908 spa_t *spa = zio->io_spa; 909 vdev_t *vd = zio->io_vd; 910 vdev_probe_stats_t *vps = zio->io_private; 911 912 ASSERT(vd->vdev_probe_zio != NULL); 913 914 if (zio->io_type == ZIO_TYPE_READ) { 915 if (zio->io_error == 0) 916 vps->vps_readable = 1; 917 if (zio->io_error == 0 && spa_writeable(spa)) { 918 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 919 zio->io_offset, zio->io_size, zio->io_data, 920 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 921 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 922 } else { 923 zio_buf_free(zio->io_data, zio->io_size); 924 } 925 } else if (zio->io_type == ZIO_TYPE_WRITE) { 926 if (zio->io_error == 0) 927 vps->vps_writeable = 1; 928 zio_buf_free(zio->io_data, zio->io_size); 929 } else if (zio->io_type == ZIO_TYPE_NULL) { 930 zio_t *pio; 931 932 vd->vdev_cant_read |= !vps->vps_readable; 933 vd->vdev_cant_write |= !vps->vps_writeable; 934 935 if (vdev_readable(vd) && 936 (vdev_writeable(vd) || !spa_writeable(spa))) { 937 zio->io_error = 0; 938 } else { 939 ASSERT(zio->io_error != 0); 940 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 941 spa, vd, NULL, 0, 0); 942 zio->io_error = SET_ERROR(ENXIO); 943 } 944 945 mutex_enter(&vd->vdev_probe_lock); 946 ASSERT(vd->vdev_probe_zio == zio); 947 vd->vdev_probe_zio = NULL; 948 mutex_exit(&vd->vdev_probe_lock); 949 950 while ((pio = zio_walk_parents(zio)) != NULL) 951 if (!vdev_accessible(vd, pio)) 952 pio->io_error = SET_ERROR(ENXIO); 953 954 kmem_free(vps, sizeof (*vps)); 955 } 956 } 957 958 /* 959 * Determine whether this device is accessible. 960 * 961 * Read and write to several known locations: the pad regions of each 962 * vdev label but the first, which we leave alone in case it contains 963 * a VTOC. 964 */ 965 zio_t * 966 vdev_probe(vdev_t *vd, zio_t *zio) 967 { 968 spa_t *spa = vd->vdev_spa; 969 vdev_probe_stats_t *vps = NULL; 970 zio_t *pio; 971 972 ASSERT(vd->vdev_ops->vdev_op_leaf); 973 974 /* 975 * Don't probe the probe. 976 */ 977 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 978 return (NULL); 979 980 /* 981 * To prevent 'probe storms' when a device fails, we create 982 * just one probe i/o at a time. All zios that want to probe 983 * this vdev will become parents of the probe io. 984 */ 985 mutex_enter(&vd->vdev_probe_lock); 986 987 if ((pio = vd->vdev_probe_zio) == NULL) { 988 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 989 990 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 991 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 992 ZIO_FLAG_TRYHARD; 993 994 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 995 /* 996 * vdev_cant_read and vdev_cant_write can only 997 * transition from TRUE to FALSE when we have the 998 * SCL_ZIO lock as writer; otherwise they can only 999 * transition from FALSE to TRUE. This ensures that 1000 * any zio looking at these values can assume that 1001 * failures persist for the life of the I/O. That's 1002 * important because when a device has intermittent 1003 * connectivity problems, we want to ensure that 1004 * they're ascribed to the device (ENXIO) and not 1005 * the zio (EIO). 1006 * 1007 * Since we hold SCL_ZIO as writer here, clear both 1008 * values so the probe can reevaluate from first 1009 * principles. 1010 */ 1011 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1012 vd->vdev_cant_read = B_FALSE; 1013 vd->vdev_cant_write = B_FALSE; 1014 } 1015 1016 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1017 vdev_probe_done, vps, 1018 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1019 1020 /* 1021 * We can't change the vdev state in this context, so we 1022 * kick off an async task to do it on our behalf. 1023 */ 1024 if (zio != NULL) { 1025 vd->vdev_probe_wanted = B_TRUE; 1026 spa_async_request(spa, SPA_ASYNC_PROBE); 1027 } 1028 } 1029 1030 if (zio != NULL) 1031 zio_add_child(zio, pio); 1032 1033 mutex_exit(&vd->vdev_probe_lock); 1034 1035 if (vps == NULL) { 1036 ASSERT(zio != NULL); 1037 return (NULL); 1038 } 1039 1040 for (int l = 1; l < VDEV_LABELS; l++) { 1041 zio_nowait(zio_read_phys(pio, vd, 1042 vdev_label_offset(vd->vdev_psize, l, 1043 offsetof(vdev_label_t, vl_pad2)), 1044 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1045 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1046 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1047 } 1048 1049 if (zio == NULL) 1050 return (pio); 1051 1052 zio_nowait(pio); 1053 return (NULL); 1054 } 1055 1056 static void 1057 vdev_open_child(void *arg) 1058 { 1059 vdev_t *vd = arg; 1060 1061 vd->vdev_open_thread = curthread; 1062 vd->vdev_open_error = vdev_open(vd); 1063 vd->vdev_open_thread = NULL; 1064 } 1065 1066 boolean_t 1067 vdev_uses_zvols(vdev_t *vd) 1068 { 1069 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1070 strlen(ZVOL_DIR)) == 0) 1071 return (B_TRUE); 1072 for (int c = 0; c < vd->vdev_children; c++) 1073 if (vdev_uses_zvols(vd->vdev_child[c])) 1074 return (B_TRUE); 1075 return (B_FALSE); 1076 } 1077 1078 void 1079 vdev_open_children(vdev_t *vd) 1080 { 1081 taskq_t *tq; 1082 int children = vd->vdev_children; 1083 1084 /* 1085 * in order to handle pools on top of zvols, do the opens 1086 * in a single thread so that the same thread holds the 1087 * spa_namespace_lock 1088 */ 1089 if (vdev_uses_zvols(vd)) { 1090 for (int c = 0; c < children; c++) 1091 vd->vdev_child[c]->vdev_open_error = 1092 vdev_open(vd->vdev_child[c]); 1093 return; 1094 } 1095 tq = taskq_create("vdev_open", children, minclsyspri, 1096 children, children, TASKQ_PREPOPULATE); 1097 1098 for (int c = 0; c < children; c++) 1099 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1100 TQ_SLEEP) != NULL); 1101 1102 taskq_destroy(tq); 1103 } 1104 1105 /* 1106 * Prepare a virtual device for access. 1107 */ 1108 int 1109 vdev_open(vdev_t *vd) 1110 { 1111 spa_t *spa = vd->vdev_spa; 1112 int error; 1113 uint64_t osize = 0; 1114 uint64_t max_osize = 0; 1115 uint64_t asize, max_asize, psize; 1116 uint64_t ashift = 0; 1117 1118 ASSERT(vd->vdev_open_thread == curthread || 1119 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1120 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1121 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1122 vd->vdev_state == VDEV_STATE_OFFLINE); 1123 1124 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1125 vd->vdev_cant_read = B_FALSE; 1126 vd->vdev_cant_write = B_FALSE; 1127 vd->vdev_min_asize = vdev_get_min_asize(vd); 1128 1129 /* 1130 * If this vdev is not removed, check its fault status. If it's 1131 * faulted, bail out of the open. 1132 */ 1133 if (!vd->vdev_removed && vd->vdev_faulted) { 1134 ASSERT(vd->vdev_children == 0); 1135 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1136 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1137 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1138 vd->vdev_label_aux); 1139 return (SET_ERROR(ENXIO)); 1140 } else if (vd->vdev_offline) { 1141 ASSERT(vd->vdev_children == 0); 1142 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1143 return (SET_ERROR(ENXIO)); 1144 } 1145 1146 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1147 1148 /* 1149 * Reset the vdev_reopening flag so that we actually close 1150 * the vdev on error. 1151 */ 1152 vd->vdev_reopening = B_FALSE; 1153 if (zio_injection_enabled && error == 0) 1154 error = zio_handle_device_injection(vd, NULL, ENXIO); 1155 1156 if (error) { 1157 if (vd->vdev_removed && 1158 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1159 vd->vdev_removed = B_FALSE; 1160 1161 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1162 vd->vdev_stat.vs_aux); 1163 return (error); 1164 } 1165 1166 vd->vdev_removed = B_FALSE; 1167 1168 /* 1169 * Recheck the faulted flag now that we have confirmed that 1170 * the vdev is accessible. If we're faulted, bail. 1171 */ 1172 if (vd->vdev_faulted) { 1173 ASSERT(vd->vdev_children == 0); 1174 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1175 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1176 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1177 vd->vdev_label_aux); 1178 return (SET_ERROR(ENXIO)); 1179 } 1180 1181 if (vd->vdev_degraded) { 1182 ASSERT(vd->vdev_children == 0); 1183 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1184 VDEV_AUX_ERR_EXCEEDED); 1185 } else { 1186 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1187 } 1188 1189 /* 1190 * For hole or missing vdevs we just return success. 1191 */ 1192 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1193 return (0); 1194 1195 for (int c = 0; c < vd->vdev_children; c++) { 1196 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1197 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1198 VDEV_AUX_NONE); 1199 break; 1200 } 1201 } 1202 1203 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1204 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1205 1206 if (vd->vdev_children == 0) { 1207 if (osize < SPA_MINDEVSIZE) { 1208 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1209 VDEV_AUX_TOO_SMALL); 1210 return (SET_ERROR(EOVERFLOW)); 1211 } 1212 psize = osize; 1213 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1214 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1215 VDEV_LABEL_END_SIZE); 1216 } else { 1217 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1218 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1219 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1220 VDEV_AUX_TOO_SMALL); 1221 return (SET_ERROR(EOVERFLOW)); 1222 } 1223 psize = 0; 1224 asize = osize; 1225 max_asize = max_osize; 1226 } 1227 1228 vd->vdev_psize = psize; 1229 1230 /* 1231 * Make sure the allocatable size hasn't shrunk. 1232 */ 1233 if (asize < vd->vdev_min_asize) { 1234 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1235 VDEV_AUX_BAD_LABEL); 1236 return (SET_ERROR(EINVAL)); 1237 } 1238 1239 if (vd->vdev_asize == 0) { 1240 /* 1241 * This is the first-ever open, so use the computed values. 1242 * For testing purposes, a higher ashift can be requested. 1243 */ 1244 vd->vdev_asize = asize; 1245 vd->vdev_max_asize = max_asize; 1246 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1247 } else { 1248 /* 1249 * Detect if the alignment requirement has increased. 1250 * We don't want to make the pool unavailable, just 1251 * issue a warning instead. 1252 */ 1253 if (ashift > vd->vdev_top->vdev_ashift && 1254 vd->vdev_ops->vdev_op_leaf) { 1255 cmn_err(CE_WARN, 1256 "Disk, '%s', has a block alignment that is " 1257 "larger than the pool's alignment\n", 1258 vd->vdev_path); 1259 } 1260 vd->vdev_max_asize = max_asize; 1261 } 1262 1263 /* 1264 * If all children are healthy and the asize has increased, 1265 * then we've experienced dynamic LUN growth. If automatic 1266 * expansion is enabled then use the additional space. 1267 */ 1268 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1269 (vd->vdev_expanding || spa->spa_autoexpand)) 1270 vd->vdev_asize = asize; 1271 1272 vdev_set_min_asize(vd); 1273 1274 /* 1275 * Ensure we can issue some IO before declaring the 1276 * vdev open for business. 1277 */ 1278 if (vd->vdev_ops->vdev_op_leaf && 1279 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1280 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1281 VDEV_AUX_ERR_EXCEEDED); 1282 return (error); 1283 } 1284 1285 /* 1286 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1287 * resilver. But don't do this if we are doing a reopen for a scrub, 1288 * since this would just restart the scrub we are already doing. 1289 */ 1290 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1291 vdev_resilver_needed(vd, NULL, NULL)) 1292 spa_async_request(spa, SPA_ASYNC_RESILVER); 1293 1294 return (0); 1295 } 1296 1297 /* 1298 * Called once the vdevs are all opened, this routine validates the label 1299 * contents. This needs to be done before vdev_load() so that we don't 1300 * inadvertently do repair I/Os to the wrong device. 1301 * 1302 * If 'strict' is false ignore the spa guid check. This is necessary because 1303 * if the machine crashed during a re-guid the new guid might have been written 1304 * to all of the vdev labels, but not the cached config. The strict check 1305 * will be performed when the pool is opened again using the mos config. 1306 * 1307 * This function will only return failure if one of the vdevs indicates that it 1308 * has since been destroyed or exported. This is only possible if 1309 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1310 * will be updated but the function will return 0. 1311 */ 1312 int 1313 vdev_validate(vdev_t *vd, boolean_t strict) 1314 { 1315 spa_t *spa = vd->vdev_spa; 1316 nvlist_t *label; 1317 uint64_t guid = 0, top_guid; 1318 uint64_t state; 1319 1320 for (int c = 0; c < vd->vdev_children; c++) 1321 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1322 return (SET_ERROR(EBADF)); 1323 1324 /* 1325 * If the device has already failed, or was marked offline, don't do 1326 * any further validation. Otherwise, label I/O will fail and we will 1327 * overwrite the previous state. 1328 */ 1329 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1330 uint64_t aux_guid = 0; 1331 nvlist_t *nvl; 1332 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1333 spa_last_synced_txg(spa) : -1ULL; 1334 1335 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1336 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1337 VDEV_AUX_BAD_LABEL); 1338 return (0); 1339 } 1340 1341 /* 1342 * Determine if this vdev has been split off into another 1343 * pool. If so, then refuse to open it. 1344 */ 1345 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1346 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1347 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1348 VDEV_AUX_SPLIT_POOL); 1349 nvlist_free(label); 1350 return (0); 1351 } 1352 1353 if (strict && (nvlist_lookup_uint64(label, 1354 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1355 guid != spa_guid(spa))) { 1356 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1357 VDEV_AUX_CORRUPT_DATA); 1358 nvlist_free(label); 1359 return (0); 1360 } 1361 1362 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1363 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1364 &aux_guid) != 0) 1365 aux_guid = 0; 1366 1367 /* 1368 * If this vdev just became a top-level vdev because its 1369 * sibling was detached, it will have adopted the parent's 1370 * vdev guid -- but the label may or may not be on disk yet. 1371 * Fortunately, either version of the label will have the 1372 * same top guid, so if we're a top-level vdev, we can 1373 * safely compare to that instead. 1374 * 1375 * If we split this vdev off instead, then we also check the 1376 * original pool's guid. We don't want to consider the vdev 1377 * corrupt if it is partway through a split operation. 1378 */ 1379 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1380 &guid) != 0 || 1381 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1382 &top_guid) != 0 || 1383 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1384 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1385 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1386 VDEV_AUX_CORRUPT_DATA); 1387 nvlist_free(label); 1388 return (0); 1389 } 1390 1391 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1392 &state) != 0) { 1393 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1394 VDEV_AUX_CORRUPT_DATA); 1395 nvlist_free(label); 1396 return (0); 1397 } 1398 1399 nvlist_free(label); 1400 1401 /* 1402 * If this is a verbatim import, no need to check the 1403 * state of the pool. 1404 */ 1405 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1406 spa_load_state(spa) == SPA_LOAD_OPEN && 1407 state != POOL_STATE_ACTIVE) 1408 return (SET_ERROR(EBADF)); 1409 1410 /* 1411 * If we were able to open and validate a vdev that was 1412 * previously marked permanently unavailable, clear that state 1413 * now. 1414 */ 1415 if (vd->vdev_not_present) 1416 vd->vdev_not_present = 0; 1417 } 1418 1419 return (0); 1420 } 1421 1422 /* 1423 * Close a virtual device. 1424 */ 1425 void 1426 vdev_close(vdev_t *vd) 1427 { 1428 spa_t *spa = vd->vdev_spa; 1429 vdev_t *pvd = vd->vdev_parent; 1430 1431 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1432 1433 /* 1434 * If our parent is reopening, then we are as well, unless we are 1435 * going offline. 1436 */ 1437 if (pvd != NULL && pvd->vdev_reopening) 1438 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1439 1440 vd->vdev_ops->vdev_op_close(vd); 1441 1442 vdev_cache_purge(vd); 1443 1444 /* 1445 * We record the previous state before we close it, so that if we are 1446 * doing a reopen(), we don't generate FMA ereports if we notice that 1447 * it's still faulted. 1448 */ 1449 vd->vdev_prevstate = vd->vdev_state; 1450 1451 if (vd->vdev_offline) 1452 vd->vdev_state = VDEV_STATE_OFFLINE; 1453 else 1454 vd->vdev_state = VDEV_STATE_CLOSED; 1455 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1456 } 1457 1458 void 1459 vdev_hold(vdev_t *vd) 1460 { 1461 spa_t *spa = vd->vdev_spa; 1462 1463 ASSERT(spa_is_root(spa)); 1464 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1465 return; 1466 1467 for (int c = 0; c < vd->vdev_children; c++) 1468 vdev_hold(vd->vdev_child[c]); 1469 1470 if (vd->vdev_ops->vdev_op_leaf) 1471 vd->vdev_ops->vdev_op_hold(vd); 1472 } 1473 1474 void 1475 vdev_rele(vdev_t *vd) 1476 { 1477 spa_t *spa = vd->vdev_spa; 1478 1479 ASSERT(spa_is_root(spa)); 1480 for (int c = 0; c < vd->vdev_children; c++) 1481 vdev_rele(vd->vdev_child[c]); 1482 1483 if (vd->vdev_ops->vdev_op_leaf) 1484 vd->vdev_ops->vdev_op_rele(vd); 1485 } 1486 1487 /* 1488 * Reopen all interior vdevs and any unopened leaves. We don't actually 1489 * reopen leaf vdevs which had previously been opened as they might deadlock 1490 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1491 * If the leaf has never been opened then open it, as usual. 1492 */ 1493 void 1494 vdev_reopen(vdev_t *vd) 1495 { 1496 spa_t *spa = vd->vdev_spa; 1497 1498 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1499 1500 /* set the reopening flag unless we're taking the vdev offline */ 1501 vd->vdev_reopening = !vd->vdev_offline; 1502 vdev_close(vd); 1503 (void) vdev_open(vd); 1504 1505 /* 1506 * Call vdev_validate() here to make sure we have the same device. 1507 * Otherwise, a device with an invalid label could be successfully 1508 * opened in response to vdev_reopen(). 1509 */ 1510 if (vd->vdev_aux) { 1511 (void) vdev_validate_aux(vd); 1512 if (vdev_readable(vd) && vdev_writeable(vd) && 1513 vd->vdev_aux == &spa->spa_l2cache && 1514 !l2arc_vdev_present(vd)) { 1515 /* 1516 * When reopening we can assume persistent L2ARC is 1517 * supported, since we've already opened the device 1518 * in the past and prepended an L2 uberblock. 1519 */ 1520 l2arc_add_vdev(spa, vd, B_TRUE); 1521 } 1522 } else { 1523 (void) vdev_validate(vd, B_TRUE); 1524 } 1525 1526 /* 1527 * Reassess parent vdev's health. 1528 */ 1529 vdev_propagate_state(vd); 1530 } 1531 1532 int 1533 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1534 { 1535 int error; 1536 1537 /* 1538 * Normally, partial opens (e.g. of a mirror) are allowed. 1539 * For a create, however, we want to fail the request if 1540 * there are any components we can't open. 1541 */ 1542 error = vdev_open(vd); 1543 1544 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1545 vdev_close(vd); 1546 return (error ? error : ENXIO); 1547 } 1548 1549 /* 1550 * Recursively initialize all labels. 1551 */ 1552 if ((error = vdev_label_init(vd, txg, isreplacing ? 1553 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1554 vdev_close(vd); 1555 return (error); 1556 } 1557 1558 return (0); 1559 } 1560 1561 void 1562 vdev_metaslab_set_size(vdev_t *vd) 1563 { 1564 /* 1565 * Aim for roughly 200 metaslabs per vdev. 1566 */ 1567 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1568 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1569 } 1570 1571 void 1572 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1573 { 1574 ASSERT(vd == vd->vdev_top); 1575 ASSERT(!vd->vdev_ishole); 1576 ASSERT(ISP2(flags)); 1577 ASSERT(spa_writeable(vd->vdev_spa)); 1578 1579 if (flags & VDD_METASLAB) 1580 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1581 1582 if (flags & VDD_DTL) 1583 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1584 1585 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1586 } 1587 1588 /* 1589 * DTLs. 1590 * 1591 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1592 * the vdev has less than perfect replication. There are four kinds of DTL: 1593 * 1594 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1595 * 1596 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1597 * 1598 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1599 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1600 * txgs that was scrubbed. 1601 * 1602 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1603 * persistent errors or just some device being offline. 1604 * Unlike the other three, the DTL_OUTAGE map is not generally 1605 * maintained; it's only computed when needed, typically to 1606 * determine whether a device can be detached. 1607 * 1608 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1609 * either has the data or it doesn't. 1610 * 1611 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1612 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1613 * if any child is less than fully replicated, then so is its parent. 1614 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1615 * comprising only those txgs which appear in 'maxfaults' or more children; 1616 * those are the txgs we don't have enough replication to read. For example, 1617 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1618 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1619 * two child DTL_MISSING maps. 1620 * 1621 * It should be clear from the above that to compute the DTLs and outage maps 1622 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1623 * Therefore, that is all we keep on disk. When loading the pool, or after 1624 * a configuration change, we generate all other DTLs from first principles. 1625 */ 1626 void 1627 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1628 { 1629 space_map_t *sm = &vd->vdev_dtl[t]; 1630 1631 ASSERT(t < DTL_TYPES); 1632 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1633 ASSERT(spa_writeable(vd->vdev_spa)); 1634 1635 mutex_enter(sm->sm_lock); 1636 if (!space_map_contains(sm, txg, size)) 1637 space_map_add(sm, txg, size); 1638 mutex_exit(sm->sm_lock); 1639 } 1640 1641 boolean_t 1642 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1643 { 1644 space_map_t *sm = &vd->vdev_dtl[t]; 1645 boolean_t dirty = B_FALSE; 1646 1647 ASSERT(t < DTL_TYPES); 1648 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1649 1650 mutex_enter(sm->sm_lock); 1651 if (sm->sm_space != 0) 1652 dirty = space_map_contains(sm, txg, size); 1653 mutex_exit(sm->sm_lock); 1654 1655 return (dirty); 1656 } 1657 1658 boolean_t 1659 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1660 { 1661 space_map_t *sm = &vd->vdev_dtl[t]; 1662 boolean_t empty; 1663 1664 mutex_enter(sm->sm_lock); 1665 empty = (sm->sm_space == 0); 1666 mutex_exit(sm->sm_lock); 1667 1668 return (empty); 1669 } 1670 1671 /* 1672 * Reassess DTLs after a config change or scrub completion. 1673 */ 1674 void 1675 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1676 { 1677 spa_t *spa = vd->vdev_spa; 1678 avl_tree_t reftree; 1679 int minref; 1680 1681 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1682 1683 for (int c = 0; c < vd->vdev_children; c++) 1684 vdev_dtl_reassess(vd->vdev_child[c], txg, 1685 scrub_txg, scrub_done); 1686 1687 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1688 return; 1689 1690 if (vd->vdev_ops->vdev_op_leaf) { 1691 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1692 1693 mutex_enter(&vd->vdev_dtl_lock); 1694 if (scrub_txg != 0 && 1695 (spa->spa_scrub_started || 1696 (scn && scn->scn_phys.scn_errors == 0))) { 1697 /* 1698 * We completed a scrub up to scrub_txg. If we 1699 * did it without rebooting, then the scrub dtl 1700 * will be valid, so excise the old region and 1701 * fold in the scrub dtl. Otherwise, leave the 1702 * dtl as-is if there was an error. 1703 * 1704 * There's little trick here: to excise the beginning 1705 * of the DTL_MISSING map, we put it into a reference 1706 * tree and then add a segment with refcnt -1 that 1707 * covers the range [0, scrub_txg). This means 1708 * that each txg in that range has refcnt -1 or 0. 1709 * We then add DTL_SCRUB with a refcnt of 2, so that 1710 * entries in the range [0, scrub_txg) will have a 1711 * positive refcnt -- either 1 or 2. We then convert 1712 * the reference tree into the new DTL_MISSING map. 1713 */ 1714 space_map_ref_create(&reftree); 1715 space_map_ref_add_map(&reftree, 1716 &vd->vdev_dtl[DTL_MISSING], 1); 1717 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1); 1718 space_map_ref_add_map(&reftree, 1719 &vd->vdev_dtl[DTL_SCRUB], 2); 1720 space_map_ref_generate_map(&reftree, 1721 &vd->vdev_dtl[DTL_MISSING], 1); 1722 space_map_ref_destroy(&reftree); 1723 } 1724 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1725 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1726 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]); 1727 if (scrub_done) 1728 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1729 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1730 if (!vdev_readable(vd)) 1731 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1732 else 1733 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1734 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]); 1735 mutex_exit(&vd->vdev_dtl_lock); 1736 1737 if (txg != 0) 1738 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1739 return; 1740 } 1741 1742 mutex_enter(&vd->vdev_dtl_lock); 1743 for (int t = 0; t < DTL_TYPES; t++) { 1744 /* account for child's outage in parent's missing map */ 1745 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1746 if (t == DTL_SCRUB) 1747 continue; /* leaf vdevs only */ 1748 if (t == DTL_PARTIAL) 1749 minref = 1; /* i.e. non-zero */ 1750 else if (vd->vdev_nparity != 0) 1751 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1752 else 1753 minref = vd->vdev_children; /* any kind of mirror */ 1754 space_map_ref_create(&reftree); 1755 for (int c = 0; c < vd->vdev_children; c++) { 1756 vdev_t *cvd = vd->vdev_child[c]; 1757 mutex_enter(&cvd->vdev_dtl_lock); 1758 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1); 1759 mutex_exit(&cvd->vdev_dtl_lock); 1760 } 1761 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref); 1762 space_map_ref_destroy(&reftree); 1763 } 1764 mutex_exit(&vd->vdev_dtl_lock); 1765 } 1766 1767 static int 1768 vdev_dtl_load(vdev_t *vd) 1769 { 1770 spa_t *spa = vd->vdev_spa; 1771 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1772 objset_t *mos = spa->spa_meta_objset; 1773 dmu_buf_t *db; 1774 int error; 1775 1776 ASSERT(vd->vdev_children == 0); 1777 1778 if (smo->smo_object == 0) 1779 return (0); 1780 1781 ASSERT(!vd->vdev_ishole); 1782 1783 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1784 return (error); 1785 1786 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1787 bcopy(db->db_data, smo, sizeof (*smo)); 1788 dmu_buf_rele(db, FTAG); 1789 1790 mutex_enter(&vd->vdev_dtl_lock); 1791 error = space_map_load(&vd->vdev_dtl[DTL_MISSING], 1792 NULL, SM_ALLOC, smo, mos); 1793 mutex_exit(&vd->vdev_dtl_lock); 1794 1795 return (error); 1796 } 1797 1798 void 1799 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1800 { 1801 spa_t *spa = vd->vdev_spa; 1802 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1803 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING]; 1804 objset_t *mos = spa->spa_meta_objset; 1805 space_map_t smsync; 1806 kmutex_t smlock; 1807 dmu_buf_t *db; 1808 dmu_tx_t *tx; 1809 1810 ASSERT(!vd->vdev_ishole); 1811 1812 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1813 1814 if (vd->vdev_detached) { 1815 if (smo->smo_object != 0) { 1816 int err = dmu_object_free(mos, smo->smo_object, tx); 1817 ASSERT0(err); 1818 smo->smo_object = 0; 1819 } 1820 dmu_tx_commit(tx); 1821 return; 1822 } 1823 1824 if (smo->smo_object == 0) { 1825 ASSERT(smo->smo_objsize == 0); 1826 ASSERT(smo->smo_alloc == 0); 1827 smo->smo_object = dmu_object_alloc(mos, 1828 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1829 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1830 ASSERT(smo->smo_object != 0); 1831 vdev_config_dirty(vd->vdev_top); 1832 } 1833 1834 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1835 1836 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1837 &smlock); 1838 1839 mutex_enter(&smlock); 1840 1841 mutex_enter(&vd->vdev_dtl_lock); 1842 space_map_walk(sm, space_map_add, &smsync); 1843 mutex_exit(&vd->vdev_dtl_lock); 1844 1845 space_map_truncate(smo, mos, tx); 1846 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1847 space_map_vacate(&smsync, NULL, NULL); 1848 1849 space_map_destroy(&smsync); 1850 1851 mutex_exit(&smlock); 1852 mutex_destroy(&smlock); 1853 1854 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1855 dmu_buf_will_dirty(db, tx); 1856 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1857 bcopy(smo, db->db_data, sizeof (*smo)); 1858 dmu_buf_rele(db, FTAG); 1859 1860 dmu_tx_commit(tx); 1861 } 1862 1863 /* 1864 * Determine whether the specified vdev can be offlined/detached/removed 1865 * without losing data. 1866 */ 1867 boolean_t 1868 vdev_dtl_required(vdev_t *vd) 1869 { 1870 spa_t *spa = vd->vdev_spa; 1871 vdev_t *tvd = vd->vdev_top; 1872 uint8_t cant_read = vd->vdev_cant_read; 1873 boolean_t required; 1874 1875 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1876 1877 if (vd == spa->spa_root_vdev || vd == tvd) 1878 return (B_TRUE); 1879 1880 /* 1881 * Temporarily mark the device as unreadable, and then determine 1882 * whether this results in any DTL outages in the top-level vdev. 1883 * If not, we can safely offline/detach/remove the device. 1884 */ 1885 vd->vdev_cant_read = B_TRUE; 1886 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1887 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 1888 vd->vdev_cant_read = cant_read; 1889 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1890 1891 if (!required && zio_injection_enabled) 1892 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 1893 1894 return (required); 1895 } 1896 1897 /* 1898 * Determine if resilver is needed, and if so the txg range. 1899 */ 1900 boolean_t 1901 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 1902 { 1903 boolean_t needed = B_FALSE; 1904 uint64_t thismin = UINT64_MAX; 1905 uint64_t thismax = 0; 1906 1907 if (vd->vdev_children == 0) { 1908 mutex_enter(&vd->vdev_dtl_lock); 1909 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 && 1910 vdev_writeable(vd)) { 1911 space_seg_t *ss; 1912 1913 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root); 1914 thismin = ss->ss_start - 1; 1915 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root); 1916 thismax = ss->ss_end; 1917 needed = B_TRUE; 1918 } 1919 mutex_exit(&vd->vdev_dtl_lock); 1920 } else { 1921 for (int c = 0; c < vd->vdev_children; c++) { 1922 vdev_t *cvd = vd->vdev_child[c]; 1923 uint64_t cmin, cmax; 1924 1925 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 1926 thismin = MIN(thismin, cmin); 1927 thismax = MAX(thismax, cmax); 1928 needed = B_TRUE; 1929 } 1930 } 1931 } 1932 1933 if (needed && minp) { 1934 *minp = thismin; 1935 *maxp = thismax; 1936 } 1937 return (needed); 1938 } 1939 1940 void 1941 vdev_load(vdev_t *vd) 1942 { 1943 /* 1944 * Recursively load all children. 1945 */ 1946 for (int c = 0; c < vd->vdev_children; c++) 1947 vdev_load(vd->vdev_child[c]); 1948 1949 /* 1950 * If this is a top-level vdev, initialize its metaslabs. 1951 */ 1952 if (vd == vd->vdev_top && !vd->vdev_ishole && 1953 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1954 vdev_metaslab_init(vd, 0) != 0)) 1955 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1956 VDEV_AUX_CORRUPT_DATA); 1957 1958 /* 1959 * If this is a leaf vdev, load its DTL. 1960 */ 1961 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1962 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1963 VDEV_AUX_CORRUPT_DATA); 1964 } 1965 1966 /* 1967 * The special vdev case is used for hot spares and l2cache devices. Its 1968 * sole purpose it to set the vdev state for the associated vdev. To do this, 1969 * we make sure that we can open the underlying device, then try to read the 1970 * label, and make sure that the label is sane and that it hasn't been 1971 * repurposed to another pool. 1972 */ 1973 int 1974 vdev_validate_aux(vdev_t *vd) 1975 { 1976 nvlist_t *label; 1977 uint64_t guid, version; 1978 uint64_t state; 1979 1980 if (!vdev_readable(vd)) 1981 return (0); 1982 1983 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 1984 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1985 VDEV_AUX_CORRUPT_DATA); 1986 return (-1); 1987 } 1988 1989 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1990 !SPA_VERSION_IS_SUPPORTED(version) || 1991 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1992 guid != vd->vdev_guid || 1993 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1994 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1995 VDEV_AUX_CORRUPT_DATA); 1996 nvlist_free(label); 1997 return (-1); 1998 } 1999 2000 /* 2001 * We don't actually check the pool state here. If it's in fact in 2002 * use by another pool, we update this fact on the fly when requested. 2003 */ 2004 nvlist_free(label); 2005 return (0); 2006 } 2007 2008 void 2009 vdev_remove(vdev_t *vd, uint64_t txg) 2010 { 2011 spa_t *spa = vd->vdev_spa; 2012 objset_t *mos = spa->spa_meta_objset; 2013 dmu_tx_t *tx; 2014 2015 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2016 2017 if (vd->vdev_dtl_smo.smo_object) { 2018 ASSERT0(vd->vdev_dtl_smo.smo_alloc); 2019 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx); 2020 vd->vdev_dtl_smo.smo_object = 0; 2021 } 2022 2023 if (vd->vdev_ms != NULL) { 2024 for (int m = 0; m < vd->vdev_ms_count; m++) { 2025 metaslab_t *msp = vd->vdev_ms[m]; 2026 2027 if (msp == NULL || msp->ms_smo.smo_object == 0) 2028 continue; 2029 2030 ASSERT0(msp->ms_smo.smo_alloc); 2031 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx); 2032 msp->ms_smo.smo_object = 0; 2033 } 2034 } 2035 2036 if (vd->vdev_ms_array) { 2037 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2038 vd->vdev_ms_array = 0; 2039 vd->vdev_ms_shift = 0; 2040 } 2041 dmu_tx_commit(tx); 2042 } 2043 2044 void 2045 vdev_sync_done(vdev_t *vd, uint64_t txg) 2046 { 2047 metaslab_t *msp; 2048 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2049 2050 ASSERT(!vd->vdev_ishole); 2051 2052 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2053 metaslab_sync_done(msp, txg); 2054 2055 if (reassess) 2056 metaslab_sync_reassess(vd->vdev_mg); 2057 } 2058 2059 void 2060 vdev_sync(vdev_t *vd, uint64_t txg) 2061 { 2062 spa_t *spa = vd->vdev_spa; 2063 vdev_t *lvd; 2064 metaslab_t *msp; 2065 dmu_tx_t *tx; 2066 2067 ASSERT(!vd->vdev_ishole); 2068 2069 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2070 ASSERT(vd == vd->vdev_top); 2071 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2072 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2073 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2074 ASSERT(vd->vdev_ms_array != 0); 2075 vdev_config_dirty(vd); 2076 dmu_tx_commit(tx); 2077 } 2078 2079 /* 2080 * Remove the metadata associated with this vdev once it's empty. 2081 */ 2082 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2083 vdev_remove(vd, txg); 2084 2085 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2086 metaslab_sync(msp, txg); 2087 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2088 } 2089 2090 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2091 vdev_dtl_sync(lvd, txg); 2092 2093 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2094 } 2095 2096 uint64_t 2097 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2098 { 2099 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2100 } 2101 2102 /* 2103 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2104 * not be opened, and no I/O is attempted. 2105 */ 2106 int 2107 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2108 { 2109 vdev_t *vd, *tvd; 2110 2111 spa_vdev_state_enter(spa, SCL_NONE); 2112 2113 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2114 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2115 2116 if (!vd->vdev_ops->vdev_op_leaf) 2117 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2118 2119 tvd = vd->vdev_top; 2120 2121 /* 2122 * We don't directly use the aux state here, but if we do a 2123 * vdev_reopen(), we need this value to be present to remember why we 2124 * were faulted. 2125 */ 2126 vd->vdev_label_aux = aux; 2127 2128 /* 2129 * Faulted state takes precedence over degraded. 2130 */ 2131 vd->vdev_delayed_close = B_FALSE; 2132 vd->vdev_faulted = 1ULL; 2133 vd->vdev_degraded = 0ULL; 2134 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2135 2136 /* 2137 * If this device has the only valid copy of the data, then 2138 * back off and simply mark the vdev as degraded instead. 2139 */ 2140 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2141 vd->vdev_degraded = 1ULL; 2142 vd->vdev_faulted = 0ULL; 2143 2144 /* 2145 * If we reopen the device and it's not dead, only then do we 2146 * mark it degraded. 2147 */ 2148 vdev_reopen(tvd); 2149 2150 if (vdev_readable(vd)) 2151 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2152 } 2153 2154 return (spa_vdev_state_exit(spa, vd, 0)); 2155 } 2156 2157 /* 2158 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2159 * user that something is wrong. The vdev continues to operate as normal as far 2160 * as I/O is concerned. 2161 */ 2162 int 2163 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2164 { 2165 vdev_t *vd; 2166 2167 spa_vdev_state_enter(spa, SCL_NONE); 2168 2169 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2170 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2171 2172 if (!vd->vdev_ops->vdev_op_leaf) 2173 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2174 2175 /* 2176 * If the vdev is already faulted, then don't do anything. 2177 */ 2178 if (vd->vdev_faulted || vd->vdev_degraded) 2179 return (spa_vdev_state_exit(spa, NULL, 0)); 2180 2181 vd->vdev_degraded = 1ULL; 2182 if (!vdev_is_dead(vd)) 2183 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2184 aux); 2185 2186 return (spa_vdev_state_exit(spa, vd, 0)); 2187 } 2188 2189 /* 2190 * Online the given vdev. 2191 * 2192 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2193 * spare device should be detached when the device finishes resilvering. 2194 * Second, the online should be treated like a 'test' online case, so no FMA 2195 * events are generated if the device fails to open. 2196 */ 2197 int 2198 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2199 { 2200 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2201 2202 spa_vdev_state_enter(spa, SCL_NONE); 2203 2204 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2205 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2206 2207 if (!vd->vdev_ops->vdev_op_leaf) 2208 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2209 2210 tvd = vd->vdev_top; 2211 vd->vdev_offline = B_FALSE; 2212 vd->vdev_tmpoffline = B_FALSE; 2213 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2214 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2215 2216 /* XXX - L2ARC 1.0 does not support expansion */ 2217 if (!vd->vdev_aux) { 2218 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2219 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2220 } 2221 2222 vdev_reopen(tvd); 2223 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2224 2225 if (!vd->vdev_aux) { 2226 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2227 pvd->vdev_expanding = B_FALSE; 2228 } 2229 2230 if (newstate) 2231 *newstate = vd->vdev_state; 2232 if ((flags & ZFS_ONLINE_UNSPARE) && 2233 !vdev_is_dead(vd) && vd->vdev_parent && 2234 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2235 vd->vdev_parent->vdev_child[0] == vd) 2236 vd->vdev_unspare = B_TRUE; 2237 2238 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2239 2240 /* XXX - L2ARC 1.0 does not support expansion */ 2241 if (vd->vdev_aux) 2242 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2243 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2244 } 2245 return (spa_vdev_state_exit(spa, vd, 0)); 2246 } 2247 2248 static int 2249 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2250 { 2251 vdev_t *vd, *tvd; 2252 int error = 0; 2253 uint64_t generation; 2254 metaslab_group_t *mg; 2255 2256 top: 2257 spa_vdev_state_enter(spa, SCL_ALLOC); 2258 2259 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2260 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2261 2262 if (!vd->vdev_ops->vdev_op_leaf) 2263 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2264 2265 tvd = vd->vdev_top; 2266 mg = tvd->vdev_mg; 2267 generation = spa->spa_config_generation + 1; 2268 2269 /* 2270 * If the device isn't already offline, try to offline it. 2271 */ 2272 if (!vd->vdev_offline) { 2273 /* 2274 * If this device has the only valid copy of some data, 2275 * don't allow it to be offlined. Log devices are always 2276 * expendable. 2277 */ 2278 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2279 vdev_dtl_required(vd)) 2280 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2281 2282 /* 2283 * If the top-level is a slog and it has had allocations 2284 * then proceed. We check that the vdev's metaslab group 2285 * is not NULL since it's possible that we may have just 2286 * added this vdev but not yet initialized its metaslabs. 2287 */ 2288 if (tvd->vdev_islog && mg != NULL) { 2289 /* 2290 * Prevent any future allocations. 2291 */ 2292 metaslab_group_passivate(mg); 2293 (void) spa_vdev_state_exit(spa, vd, 0); 2294 2295 error = spa_offline_log(spa); 2296 2297 spa_vdev_state_enter(spa, SCL_ALLOC); 2298 2299 /* 2300 * Check to see if the config has changed. 2301 */ 2302 if (error || generation != spa->spa_config_generation) { 2303 metaslab_group_activate(mg); 2304 if (error) 2305 return (spa_vdev_state_exit(spa, 2306 vd, error)); 2307 (void) spa_vdev_state_exit(spa, vd, 0); 2308 goto top; 2309 } 2310 ASSERT0(tvd->vdev_stat.vs_alloc); 2311 } 2312 2313 /* 2314 * Offline this device and reopen its top-level vdev. 2315 * If the top-level vdev is a log device then just offline 2316 * it. Otherwise, if this action results in the top-level 2317 * vdev becoming unusable, undo it and fail the request. 2318 */ 2319 vd->vdev_offline = B_TRUE; 2320 vdev_reopen(tvd); 2321 2322 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2323 vdev_is_dead(tvd)) { 2324 vd->vdev_offline = B_FALSE; 2325 vdev_reopen(tvd); 2326 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2327 } 2328 2329 /* 2330 * Add the device back into the metaslab rotor so that 2331 * once we online the device it's open for business. 2332 */ 2333 if (tvd->vdev_islog && mg != NULL) 2334 metaslab_group_activate(mg); 2335 } 2336 2337 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2338 2339 return (spa_vdev_state_exit(spa, vd, 0)); 2340 } 2341 2342 int 2343 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2344 { 2345 int error; 2346 2347 mutex_enter(&spa->spa_vdev_top_lock); 2348 error = vdev_offline_locked(spa, guid, flags); 2349 mutex_exit(&spa->spa_vdev_top_lock); 2350 2351 return (error); 2352 } 2353 2354 /* 2355 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2356 * vdev_offline(), we assume the spa config is locked. We also clear all 2357 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2358 */ 2359 void 2360 vdev_clear(spa_t *spa, vdev_t *vd) 2361 { 2362 vdev_t *rvd = spa->spa_root_vdev; 2363 2364 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2365 2366 if (vd == NULL) 2367 vd = rvd; 2368 2369 vd->vdev_stat.vs_read_errors = 0; 2370 vd->vdev_stat.vs_write_errors = 0; 2371 vd->vdev_stat.vs_checksum_errors = 0; 2372 2373 for (int c = 0; c < vd->vdev_children; c++) 2374 vdev_clear(spa, vd->vdev_child[c]); 2375 2376 /* 2377 * If we're in the FAULTED state or have experienced failed I/O, then 2378 * clear the persistent state and attempt to reopen the device. We 2379 * also mark the vdev config dirty, so that the new faulted state is 2380 * written out to disk. 2381 */ 2382 if (vd->vdev_faulted || vd->vdev_degraded || 2383 !vdev_readable(vd) || !vdev_writeable(vd)) { 2384 2385 /* 2386 * When reopening in reponse to a clear event, it may be due to 2387 * a fmadm repair request. In this case, if the device is 2388 * still broken, we want to still post the ereport again. 2389 */ 2390 vd->vdev_forcefault = B_TRUE; 2391 2392 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2393 vd->vdev_cant_read = B_FALSE; 2394 vd->vdev_cant_write = B_FALSE; 2395 2396 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2397 2398 vd->vdev_forcefault = B_FALSE; 2399 2400 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2401 vdev_state_dirty(vd->vdev_top); 2402 2403 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2404 spa_async_request(spa, SPA_ASYNC_RESILVER); 2405 2406 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2407 } 2408 2409 /* 2410 * When clearing a FMA-diagnosed fault, we always want to 2411 * unspare the device, as we assume that the original spare was 2412 * done in response to the FMA fault. 2413 */ 2414 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2415 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2416 vd->vdev_parent->vdev_child[0] == vd) 2417 vd->vdev_unspare = B_TRUE; 2418 } 2419 2420 boolean_t 2421 vdev_is_dead(vdev_t *vd) 2422 { 2423 /* 2424 * Holes and missing devices are always considered "dead". 2425 * This simplifies the code since we don't have to check for 2426 * these types of devices in the various code paths. 2427 * Instead we rely on the fact that we skip over dead devices 2428 * before issuing I/O to them. 2429 */ 2430 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2431 vd->vdev_ops == &vdev_missing_ops); 2432 } 2433 2434 boolean_t 2435 vdev_readable(vdev_t *vd) 2436 { 2437 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2438 } 2439 2440 boolean_t 2441 vdev_writeable(vdev_t *vd) 2442 { 2443 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2444 } 2445 2446 boolean_t 2447 vdev_allocatable(vdev_t *vd) 2448 { 2449 uint64_t state = vd->vdev_state; 2450 2451 /* 2452 * We currently allow allocations from vdevs which may be in the 2453 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2454 * fails to reopen then we'll catch it later when we're holding 2455 * the proper locks. Note that we have to get the vdev state 2456 * in a local variable because although it changes atomically, 2457 * we're asking two separate questions about it. 2458 */ 2459 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2460 !vd->vdev_cant_write && !vd->vdev_ishole); 2461 } 2462 2463 boolean_t 2464 vdev_accessible(vdev_t *vd, zio_t *zio) 2465 { 2466 ASSERT(zio->io_vd == vd); 2467 2468 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2469 return (B_FALSE); 2470 2471 if (zio->io_type == ZIO_TYPE_READ) 2472 return (!vd->vdev_cant_read); 2473 2474 if (zio->io_type == ZIO_TYPE_WRITE) 2475 return (!vd->vdev_cant_write); 2476 2477 return (B_TRUE); 2478 } 2479 2480 /* 2481 * Get statistics for the given vdev. 2482 */ 2483 void 2484 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2485 { 2486 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2487 2488 mutex_enter(&vd->vdev_stat_lock); 2489 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2490 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2491 vs->vs_state = vd->vdev_state; 2492 vs->vs_rsize = vdev_get_min_asize(vd); 2493 if (vd->vdev_ops->vdev_op_leaf) 2494 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2495 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize; 2496 mutex_exit(&vd->vdev_stat_lock); 2497 2498 /* 2499 * If we're getting stats on the root vdev, aggregate the I/O counts 2500 * over all top-level vdevs (i.e. the direct children of the root). 2501 */ 2502 if (vd == rvd) { 2503 for (int c = 0; c < rvd->vdev_children; c++) { 2504 vdev_t *cvd = rvd->vdev_child[c]; 2505 vdev_stat_t *cvs = &cvd->vdev_stat; 2506 2507 mutex_enter(&vd->vdev_stat_lock); 2508 for (int t = 0; t < ZIO_TYPES; t++) { 2509 vs->vs_ops[t] += cvs->vs_ops[t]; 2510 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2511 } 2512 cvs->vs_scan_removing = cvd->vdev_removing; 2513 mutex_exit(&vd->vdev_stat_lock); 2514 } 2515 } 2516 } 2517 2518 void 2519 vdev_clear_stats(vdev_t *vd) 2520 { 2521 mutex_enter(&vd->vdev_stat_lock); 2522 vd->vdev_stat.vs_space = 0; 2523 vd->vdev_stat.vs_dspace = 0; 2524 vd->vdev_stat.vs_alloc = 0; 2525 mutex_exit(&vd->vdev_stat_lock); 2526 } 2527 2528 void 2529 vdev_scan_stat_init(vdev_t *vd) 2530 { 2531 vdev_stat_t *vs = &vd->vdev_stat; 2532 2533 for (int c = 0; c < vd->vdev_children; c++) 2534 vdev_scan_stat_init(vd->vdev_child[c]); 2535 2536 mutex_enter(&vd->vdev_stat_lock); 2537 vs->vs_scan_processed = 0; 2538 mutex_exit(&vd->vdev_stat_lock); 2539 } 2540 2541 void 2542 vdev_stat_update(zio_t *zio, uint64_t psize) 2543 { 2544 spa_t *spa = zio->io_spa; 2545 vdev_t *rvd = spa->spa_root_vdev; 2546 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2547 vdev_t *pvd; 2548 uint64_t txg = zio->io_txg; 2549 vdev_stat_t *vs = &vd->vdev_stat; 2550 zio_type_t type = zio->io_type; 2551 int flags = zio->io_flags; 2552 2553 /* 2554 * If this i/o is a gang leader, it didn't do any actual work. 2555 */ 2556 if (zio->io_gang_tree) 2557 return; 2558 2559 if (zio->io_error == 0) { 2560 /* 2561 * If this is a root i/o, don't count it -- we've already 2562 * counted the top-level vdevs, and vdev_get_stats() will 2563 * aggregate them when asked. This reduces contention on 2564 * the root vdev_stat_lock and implicitly handles blocks 2565 * that compress away to holes, for which there is no i/o. 2566 * (Holes never create vdev children, so all the counters 2567 * remain zero, which is what we want.) 2568 * 2569 * Note: this only applies to successful i/o (io_error == 0) 2570 * because unlike i/o counts, errors are not additive. 2571 * When reading a ditto block, for example, failure of 2572 * one top-level vdev does not imply a root-level error. 2573 */ 2574 if (vd == rvd) 2575 return; 2576 2577 ASSERT(vd == zio->io_vd); 2578 2579 if (flags & ZIO_FLAG_IO_BYPASS) 2580 return; 2581 2582 mutex_enter(&vd->vdev_stat_lock); 2583 2584 if (flags & ZIO_FLAG_IO_REPAIR) { 2585 if (flags & ZIO_FLAG_SCAN_THREAD) { 2586 dsl_scan_phys_t *scn_phys = 2587 &spa->spa_dsl_pool->dp_scan->scn_phys; 2588 uint64_t *processed = &scn_phys->scn_processed; 2589 2590 /* XXX cleanup? */ 2591 if (vd->vdev_ops->vdev_op_leaf) 2592 atomic_add_64(processed, psize); 2593 vs->vs_scan_processed += psize; 2594 } 2595 2596 if (flags & ZIO_FLAG_SELF_HEAL) 2597 vs->vs_self_healed += psize; 2598 } 2599 2600 vs->vs_ops[type]++; 2601 vs->vs_bytes[type] += psize; 2602 2603 mutex_exit(&vd->vdev_stat_lock); 2604 return; 2605 } 2606 2607 if (flags & ZIO_FLAG_SPECULATIVE) 2608 return; 2609 2610 /* 2611 * If this is an I/O error that is going to be retried, then ignore the 2612 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2613 * hard errors, when in reality they can happen for any number of 2614 * innocuous reasons (bus resets, MPxIO link failure, etc). 2615 */ 2616 if (zio->io_error == EIO && 2617 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2618 return; 2619 2620 /* 2621 * Intent logs writes won't propagate their error to the root 2622 * I/O so don't mark these types of failures as pool-level 2623 * errors. 2624 */ 2625 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2626 return; 2627 2628 mutex_enter(&vd->vdev_stat_lock); 2629 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2630 if (zio->io_error == ECKSUM) 2631 vs->vs_checksum_errors++; 2632 else 2633 vs->vs_read_errors++; 2634 } 2635 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2636 vs->vs_write_errors++; 2637 mutex_exit(&vd->vdev_stat_lock); 2638 2639 if (type == ZIO_TYPE_WRITE && txg != 0 && 2640 (!(flags & ZIO_FLAG_IO_REPAIR) || 2641 (flags & ZIO_FLAG_SCAN_THREAD) || 2642 spa->spa_claiming)) { 2643 /* 2644 * This is either a normal write (not a repair), or it's 2645 * a repair induced by the scrub thread, or it's a repair 2646 * made by zil_claim() during spa_load() in the first txg. 2647 * In the normal case, we commit the DTL change in the same 2648 * txg as the block was born. In the scrub-induced repair 2649 * case, we know that scrubs run in first-pass syncing context, 2650 * so we commit the DTL change in spa_syncing_txg(spa). 2651 * In the zil_claim() case, we commit in spa_first_txg(spa). 2652 * 2653 * We currently do not make DTL entries for failed spontaneous 2654 * self-healing writes triggered by normal (non-scrubbing) 2655 * reads, because we have no transactional context in which to 2656 * do so -- and it's not clear that it'd be desirable anyway. 2657 */ 2658 if (vd->vdev_ops->vdev_op_leaf) { 2659 uint64_t commit_txg = txg; 2660 if (flags & ZIO_FLAG_SCAN_THREAD) { 2661 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2662 ASSERT(spa_sync_pass(spa) == 1); 2663 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2664 commit_txg = spa_syncing_txg(spa); 2665 } else if (spa->spa_claiming) { 2666 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2667 commit_txg = spa_first_txg(spa); 2668 } 2669 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2670 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2671 return; 2672 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2673 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2674 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2675 } 2676 if (vd != rvd) 2677 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2678 } 2679 } 2680 2681 /* 2682 * Update the in-core space usage stats for this vdev, its metaslab class, 2683 * and the root vdev. 2684 */ 2685 void 2686 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2687 int64_t space_delta) 2688 { 2689 int64_t dspace_delta = space_delta; 2690 spa_t *spa = vd->vdev_spa; 2691 vdev_t *rvd = spa->spa_root_vdev; 2692 metaslab_group_t *mg = vd->vdev_mg; 2693 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2694 2695 ASSERT(vd == vd->vdev_top); 2696 2697 /* 2698 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2699 * factor. We must calculate this here and not at the root vdev 2700 * because the root vdev's psize-to-asize is simply the max of its 2701 * childrens', thus not accurate enough for us. 2702 */ 2703 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2704 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2705 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2706 vd->vdev_deflate_ratio; 2707 2708 mutex_enter(&vd->vdev_stat_lock); 2709 vd->vdev_stat.vs_alloc += alloc_delta; 2710 vd->vdev_stat.vs_space += space_delta; 2711 vd->vdev_stat.vs_dspace += dspace_delta; 2712 mutex_exit(&vd->vdev_stat_lock); 2713 2714 if (mc == spa_normal_class(spa)) { 2715 mutex_enter(&rvd->vdev_stat_lock); 2716 rvd->vdev_stat.vs_alloc += alloc_delta; 2717 rvd->vdev_stat.vs_space += space_delta; 2718 rvd->vdev_stat.vs_dspace += dspace_delta; 2719 mutex_exit(&rvd->vdev_stat_lock); 2720 } 2721 2722 if (mc != NULL) { 2723 ASSERT(rvd == vd->vdev_parent); 2724 ASSERT(vd->vdev_ms_count != 0); 2725 2726 metaslab_class_space_update(mc, 2727 alloc_delta, defer_delta, space_delta, dspace_delta); 2728 } 2729 } 2730 2731 /* 2732 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2733 * so that it will be written out next time the vdev configuration is synced. 2734 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2735 */ 2736 void 2737 vdev_config_dirty(vdev_t *vd) 2738 { 2739 spa_t *spa = vd->vdev_spa; 2740 vdev_t *rvd = spa->spa_root_vdev; 2741 int c; 2742 2743 ASSERT(spa_writeable(spa)); 2744 2745 /* 2746 * If this is an aux vdev (as with l2cache and spare devices), then we 2747 * update the vdev config manually and set the sync flag. 2748 */ 2749 if (vd->vdev_aux != NULL) { 2750 spa_aux_vdev_t *sav = vd->vdev_aux; 2751 nvlist_t **aux; 2752 uint_t naux; 2753 2754 for (c = 0; c < sav->sav_count; c++) { 2755 if (sav->sav_vdevs[c] == vd) 2756 break; 2757 } 2758 2759 if (c == sav->sav_count) { 2760 /* 2761 * We're being removed. There's nothing more to do. 2762 */ 2763 ASSERT(sav->sav_sync == B_TRUE); 2764 return; 2765 } 2766 2767 sav->sav_sync = B_TRUE; 2768 2769 if (nvlist_lookup_nvlist_array(sav->sav_config, 2770 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2771 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2772 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2773 } 2774 2775 ASSERT(c < naux); 2776 2777 /* 2778 * Setting the nvlist in the middle if the array is a little 2779 * sketchy, but it will work. 2780 */ 2781 nvlist_free(aux[c]); 2782 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 2783 2784 return; 2785 } 2786 2787 /* 2788 * The dirty list is protected by the SCL_CONFIG lock. The caller 2789 * must either hold SCL_CONFIG as writer, or must be the sync thread 2790 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2791 * so this is sufficient to ensure mutual exclusion. 2792 */ 2793 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2794 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2795 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2796 2797 if (vd == rvd) { 2798 for (c = 0; c < rvd->vdev_children; c++) 2799 vdev_config_dirty(rvd->vdev_child[c]); 2800 } else { 2801 ASSERT(vd == vd->vdev_top); 2802 2803 if (!list_link_active(&vd->vdev_config_dirty_node) && 2804 !vd->vdev_ishole) 2805 list_insert_head(&spa->spa_config_dirty_list, vd); 2806 } 2807 } 2808 2809 void 2810 vdev_config_clean(vdev_t *vd) 2811 { 2812 spa_t *spa = vd->vdev_spa; 2813 2814 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2815 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2816 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2817 2818 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2819 list_remove(&spa->spa_config_dirty_list, vd); 2820 } 2821 2822 /* 2823 * Mark a top-level vdev's state as dirty, so that the next pass of 2824 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2825 * the state changes from larger config changes because they require 2826 * much less locking, and are often needed for administrative actions. 2827 */ 2828 void 2829 vdev_state_dirty(vdev_t *vd) 2830 { 2831 spa_t *spa = vd->vdev_spa; 2832 2833 ASSERT(spa_writeable(spa)); 2834 ASSERT(vd == vd->vdev_top); 2835 2836 /* 2837 * The state list is protected by the SCL_STATE lock. The caller 2838 * must either hold SCL_STATE as writer, or must be the sync thread 2839 * (which holds SCL_STATE as reader). There's only one sync thread, 2840 * so this is sufficient to ensure mutual exclusion. 2841 */ 2842 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2843 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2844 spa_config_held(spa, SCL_STATE, RW_READER))); 2845 2846 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 2847 list_insert_head(&spa->spa_state_dirty_list, vd); 2848 } 2849 2850 void 2851 vdev_state_clean(vdev_t *vd) 2852 { 2853 spa_t *spa = vd->vdev_spa; 2854 2855 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2856 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2857 spa_config_held(spa, SCL_STATE, RW_READER))); 2858 2859 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2860 list_remove(&spa->spa_state_dirty_list, vd); 2861 } 2862 2863 /* 2864 * Propagate vdev state up from children to parent. 2865 */ 2866 void 2867 vdev_propagate_state(vdev_t *vd) 2868 { 2869 spa_t *spa = vd->vdev_spa; 2870 vdev_t *rvd = spa->spa_root_vdev; 2871 int degraded = 0, faulted = 0; 2872 int corrupted = 0; 2873 vdev_t *child; 2874 2875 if (vd->vdev_children > 0) { 2876 for (int c = 0; c < vd->vdev_children; c++) { 2877 child = vd->vdev_child[c]; 2878 2879 /* 2880 * Don't factor holes into the decision. 2881 */ 2882 if (child->vdev_ishole) 2883 continue; 2884 2885 if (!vdev_readable(child) || 2886 (!vdev_writeable(child) && spa_writeable(spa))) { 2887 /* 2888 * Root special: if there is a top-level log 2889 * device, treat the root vdev as if it were 2890 * degraded. 2891 */ 2892 if (child->vdev_islog && vd == rvd) 2893 degraded++; 2894 else 2895 faulted++; 2896 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 2897 degraded++; 2898 } 2899 2900 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2901 corrupted++; 2902 } 2903 2904 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2905 2906 /* 2907 * Root special: if there is a top-level vdev that cannot be 2908 * opened due to corrupted metadata, then propagate the root 2909 * vdev's aux state as 'corrupt' rather than 'insufficient 2910 * replicas'. 2911 */ 2912 if (corrupted && vd == rvd && 2913 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2914 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2915 VDEV_AUX_CORRUPT_DATA); 2916 } 2917 2918 if (vd->vdev_parent) 2919 vdev_propagate_state(vd->vdev_parent); 2920 } 2921 2922 /* 2923 * Set a vdev's state. If this is during an open, we don't update the parent 2924 * state, because we're in the process of opening children depth-first. 2925 * Otherwise, we propagate the change to the parent. 2926 * 2927 * If this routine places a device in a faulted state, an appropriate ereport is 2928 * generated. 2929 */ 2930 void 2931 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2932 { 2933 uint64_t save_state; 2934 spa_t *spa = vd->vdev_spa; 2935 2936 if (state == vd->vdev_state) { 2937 vd->vdev_stat.vs_aux = aux; 2938 return; 2939 } 2940 2941 save_state = vd->vdev_state; 2942 2943 vd->vdev_state = state; 2944 vd->vdev_stat.vs_aux = aux; 2945 2946 /* 2947 * If we are setting the vdev state to anything but an open state, then 2948 * always close the underlying device unless the device has requested 2949 * a delayed close (i.e. we're about to remove or fault the device). 2950 * Otherwise, we keep accessible but invalid devices open forever. 2951 * We don't call vdev_close() itself, because that implies some extra 2952 * checks (offline, etc) that we don't want here. This is limited to 2953 * leaf devices, because otherwise closing the device will affect other 2954 * children. 2955 */ 2956 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 2957 vd->vdev_ops->vdev_op_leaf) 2958 vd->vdev_ops->vdev_op_close(vd); 2959 2960 /* 2961 * If we have brought this vdev back into service, we need 2962 * to notify fmd so that it can gracefully repair any outstanding 2963 * cases due to a missing device. We do this in all cases, even those 2964 * that probably don't correlate to a repaired fault. This is sure to 2965 * catch all cases, and we let the zfs-retire agent sort it out. If 2966 * this is a transient state it's OK, as the retire agent will 2967 * double-check the state of the vdev before repairing it. 2968 */ 2969 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 2970 vd->vdev_prevstate != state) 2971 zfs_post_state_change(spa, vd); 2972 2973 if (vd->vdev_removed && 2974 state == VDEV_STATE_CANT_OPEN && 2975 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2976 /* 2977 * If the previous state is set to VDEV_STATE_REMOVED, then this 2978 * device was previously marked removed and someone attempted to 2979 * reopen it. If this failed due to a nonexistent device, then 2980 * keep the device in the REMOVED state. We also let this be if 2981 * it is one of our special test online cases, which is only 2982 * attempting to online the device and shouldn't generate an FMA 2983 * fault. 2984 */ 2985 vd->vdev_state = VDEV_STATE_REMOVED; 2986 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2987 } else if (state == VDEV_STATE_REMOVED) { 2988 vd->vdev_removed = B_TRUE; 2989 } else if (state == VDEV_STATE_CANT_OPEN) { 2990 /* 2991 * If we fail to open a vdev during an import or recovery, we 2992 * mark it as "not available", which signifies that it was 2993 * never there to begin with. Failure to open such a device 2994 * is not considered an error. 2995 */ 2996 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 2997 spa_load_state(spa) == SPA_LOAD_RECOVER) && 2998 vd->vdev_ops->vdev_op_leaf) 2999 vd->vdev_not_present = 1; 3000 3001 /* 3002 * Post the appropriate ereport. If the 'prevstate' field is 3003 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3004 * that this is part of a vdev_reopen(). In this case, we don't 3005 * want to post the ereport if the device was already in the 3006 * CANT_OPEN state beforehand. 3007 * 3008 * If the 'checkremove' flag is set, then this is an attempt to 3009 * online the device in response to an insertion event. If we 3010 * hit this case, then we have detected an insertion event for a 3011 * faulted or offline device that wasn't in the removed state. 3012 * In this scenario, we don't post an ereport because we are 3013 * about to replace the device, or attempt an online with 3014 * vdev_forcefault, which will generate the fault for us. 3015 */ 3016 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3017 !vd->vdev_not_present && !vd->vdev_checkremove && 3018 vd != spa->spa_root_vdev) { 3019 const char *class; 3020 3021 switch (aux) { 3022 case VDEV_AUX_OPEN_FAILED: 3023 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3024 break; 3025 case VDEV_AUX_CORRUPT_DATA: 3026 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3027 break; 3028 case VDEV_AUX_NO_REPLICAS: 3029 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3030 break; 3031 case VDEV_AUX_BAD_GUID_SUM: 3032 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3033 break; 3034 case VDEV_AUX_TOO_SMALL: 3035 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3036 break; 3037 case VDEV_AUX_BAD_LABEL: 3038 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3039 break; 3040 default: 3041 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3042 } 3043 3044 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3045 } 3046 3047 /* Erase any notion of persistent removed state */ 3048 vd->vdev_removed = B_FALSE; 3049 } else { 3050 vd->vdev_removed = B_FALSE; 3051 } 3052 3053 if (!isopen && vd->vdev_parent) 3054 vdev_propagate_state(vd->vdev_parent); 3055 } 3056 3057 /* 3058 * Check the vdev configuration to ensure that it's capable of supporting 3059 * a root pool. Currently, we do not support RAID-Z or partial configuration. 3060 * In addition, only a single top-level vdev is allowed and none of the leaves 3061 * can be wholedisks. 3062 */ 3063 boolean_t 3064 vdev_is_bootable(vdev_t *vd) 3065 { 3066 if (!vd->vdev_ops->vdev_op_leaf) { 3067 char *vdev_type = vd->vdev_ops->vdev_op_type; 3068 3069 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3070 vd->vdev_children > 1) { 3071 return (B_FALSE); 3072 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 3073 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3074 return (B_FALSE); 3075 } 3076 } else if (vd->vdev_wholedisk == 1) { 3077 return (B_FALSE); 3078 } 3079 3080 for (int c = 0; c < vd->vdev_children; c++) { 3081 if (!vdev_is_bootable(vd->vdev_child[c])) 3082 return (B_FALSE); 3083 } 3084 return (B_TRUE); 3085 } 3086 3087 /* 3088 * Load the state from the original vdev tree (ovd) which 3089 * we've retrieved from the MOS config object. If the original 3090 * vdev was offline or faulted then we transfer that state to the 3091 * device in the current vdev tree (nvd). 3092 */ 3093 void 3094 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3095 { 3096 spa_t *spa = nvd->vdev_spa; 3097 3098 ASSERT(nvd->vdev_top->vdev_islog); 3099 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3100 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3101 3102 for (int c = 0; c < nvd->vdev_children; c++) 3103 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3104 3105 if (nvd->vdev_ops->vdev_op_leaf) { 3106 /* 3107 * Restore the persistent vdev state 3108 */ 3109 nvd->vdev_offline = ovd->vdev_offline; 3110 nvd->vdev_faulted = ovd->vdev_faulted; 3111 nvd->vdev_degraded = ovd->vdev_degraded; 3112 nvd->vdev_removed = ovd->vdev_removed; 3113 } 3114 } 3115 3116 /* 3117 * Determine if a log device has valid content. If the vdev was 3118 * removed or faulted in the MOS config then we know that 3119 * the content on the log device has already been written to the pool. 3120 */ 3121 boolean_t 3122 vdev_log_state_valid(vdev_t *vd) 3123 { 3124 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3125 !vd->vdev_removed) 3126 return (B_TRUE); 3127 3128 for (int c = 0; c < vd->vdev_children; c++) 3129 if (vdev_log_state_valid(vd->vdev_child[c])) 3130 return (B_TRUE); 3131 3132 return (B_FALSE); 3133 } 3134 3135 /* 3136 * Expand a vdev if possible. 3137 */ 3138 void 3139 vdev_expand(vdev_t *vd, uint64_t txg) 3140 { 3141 ASSERT(vd->vdev_top == vd); 3142 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3143 3144 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3145 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3146 vdev_config_dirty(vd); 3147 } 3148 } 3149 3150 /* 3151 * Split a vdev. 3152 */ 3153 void 3154 vdev_split(vdev_t *vd) 3155 { 3156 vdev_t *cvd, *pvd = vd->vdev_parent; 3157 3158 vdev_remove_child(pvd, vd); 3159 vdev_compact_children(pvd); 3160 3161 cvd = pvd->vdev_child[0]; 3162 if (pvd->vdev_children == 1) { 3163 vdev_remove_parent(cvd); 3164 cvd->vdev_splitting = B_TRUE; 3165 } 3166 vdev_propagate_state(cvd); 3167 } 3168 3169 void 3170 vdev_deadman(vdev_t *vd) 3171 { 3172 for (int c = 0; c < vd->vdev_children; c++) { 3173 vdev_t *cvd = vd->vdev_child[c]; 3174 3175 vdev_deadman(cvd); 3176 } 3177 3178 if (vd->vdev_ops->vdev_op_leaf) { 3179 vdev_queue_t *vq = &vd->vdev_queue; 3180 3181 mutex_enter(&vq->vq_lock); 3182 if (avl_numnodes(&vq->vq_pending_tree) > 0) { 3183 spa_t *spa = vd->vdev_spa; 3184 zio_t *fio; 3185 uint64_t delta; 3186 3187 /* 3188 * Look at the head of all the pending queues, 3189 * if any I/O has been outstanding for longer than 3190 * the spa_deadman_synctime we panic the system. 3191 */ 3192 fio = avl_first(&vq->vq_pending_tree); 3193 delta = gethrtime() - fio->io_timestamp; 3194 if (delta > spa_deadman_synctime(spa)) { 3195 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3196 "delta %lluns, last io %lluns", 3197 fio->io_timestamp, delta, 3198 vq->vq_io_complete_ts); 3199 fm_panic("I/O to pool '%s' appears to be " 3200 "hung.", spa_name(spa)); 3201 } 3202 } 3203 mutex_exit(&vq->vq_lock); 3204 } 3205 }