1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 /* 29 * SPA: Storage Pool Allocator 30 * 31 * This file contains all the routines used when modifying on-disk SPA state. 32 * This includes opening, importing, destroying, exporting a pool, and syncing a 33 * pool. 34 */ 35 36 #include <sys/zfs_context.h> 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/spa_impl.h> 39 #include <sys/zio.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/zap.h> 44 #include <sys/zil.h> 45 #include <sys/ddt.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/uberblock_impl.h> 50 #include <sys/txg.h> 51 #include <sys/avl.h> 52 #include <sys/dmu_traverse.h> 53 #include <sys/dmu_objset.h> 54 #include <sys/unique.h> 55 #include <sys/dsl_pool.h> 56 #include <sys/dsl_dataset.h> 57 #include <sys/dsl_dir.h> 58 #include <sys/dsl_prop.h> 59 #include <sys/dsl_synctask.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/arc.h> 62 #include <sys/callb.h> 63 #include <sys/systeminfo.h> 64 #include <sys/spa_boot.h> 65 #include <sys/zfs_ioctl.h> 66 #include <sys/dsl_scan.h> 67 #include <sys/zfeature.h> 68 #include <sys/dsl_destroy.h> 69 70 #ifdef _KERNEL 71 #include <sys/bootprops.h> 72 #include <sys/callb.h> 73 #include <sys/cpupart.h> 74 #include <sys/pool.h> 75 #include <sys/sysdc.h> 76 #include <sys/zone.h> 77 #endif /* _KERNEL */ 78 79 #include "zfs_prop.h" 80 #include "zfs_comutil.h" 81 82 /* 83 * The interval, in seconds, at which failed configuration cache file writes 84 * should be retried. 85 */ 86 static int zfs_ccw_retry_interval = 300; 87 88 typedef enum zti_modes { 89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 90 ZTI_MODE_ONLINE_PERCENT, /* value is % of online CPUs */ 91 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 92 ZTI_MODE_NULL, /* don't create a taskq */ 93 ZTI_NMODES 94 } zti_modes_t; 95 96 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 97 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 } 98 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 99 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 100 101 #define ZTI_N(n) ZTI_P(n, 1) 102 #define ZTI_ONE ZTI_N(1) 103 104 typedef struct zio_taskq_info { 105 zti_modes_t zti_mode; 106 uint_t zti_value; 107 uint_t zti_count; 108 } zio_taskq_info_t; 109 110 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 111 "issue", "issue_high", "intr", "intr_high" 112 }; 113 114 /* 115 * This table defines the taskq settings for each ZFS I/O type. When 116 * initializing a pool, we use this table to create an appropriately sized 117 * taskq. Some operations are low volume and therefore have a small, static 118 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 119 * macros. Other operations process a large amount of data; the ZTI_BATCH 120 * macro causes us to create a taskq oriented for throughput. Some operations 121 * are so high frequency and short-lived that the taskq itself can become a a 122 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 123 * additional degree of parallelism specified by the number of threads per- 124 * taskq and the number of taskqs; when dispatching an event in this case, the 125 * particular taskq is chosen at random. 126 * 127 * The different taskq priorities are to handle the different contexts (issue 128 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 129 * need to be handled with minimum delay. 130 */ 131 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 132 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 133 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 134 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */ 135 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 136 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 137 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 138 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 139 }; 140 141 static void spa_sync_version(void *arg, dmu_tx_t *tx); 142 static void spa_sync_props(void *arg, dmu_tx_t *tx); 143 static boolean_t spa_has_active_shared_spare(spa_t *spa); 144 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 145 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 146 char **ereport); 147 static void spa_vdev_resilver_done(spa_t *spa); 148 149 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */ 150 id_t zio_taskq_psrset_bind = PS_NONE; 151 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 152 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 153 154 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 155 extern int zfs_sync_pass_deferred_free; 156 157 /* 158 * This (illegal) pool name is used when temporarily importing a spa_t in order 159 * to get the vdev stats associated with the imported devices. 160 */ 161 #define TRYIMPORT_NAME "$import" 162 163 /* 164 * ========================================================================== 165 * SPA properties routines 166 * ========================================================================== 167 */ 168 169 /* 170 * Add a (source=src, propname=propval) list to an nvlist. 171 */ 172 static void 173 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 174 uint64_t intval, zprop_source_t src) 175 { 176 const char *propname = zpool_prop_to_name(prop); 177 nvlist_t *propval; 178 179 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 180 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 181 182 if (strval != NULL) 183 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 184 else 185 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 186 187 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 188 nvlist_free(propval); 189 } 190 191 /* 192 * Get property values from the spa configuration. 193 */ 194 static void 195 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 196 { 197 vdev_t *rvd = spa->spa_root_vdev; 198 dsl_pool_t *pool = spa->spa_dsl_pool; 199 uint64_t size; 200 uint64_t alloc; 201 uint64_t space; 202 uint64_t cap, version; 203 zprop_source_t src = ZPROP_SRC_NONE; 204 spa_config_dirent_t *dp; 205 206 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 207 208 if (rvd != NULL) { 209 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 210 size = metaslab_class_get_space(spa_normal_class(spa)); 211 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 212 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 213 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 214 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 215 size - alloc, src); 216 217 space = 0; 218 for (int c = 0; c < rvd->vdev_children; c++) { 219 vdev_t *tvd = rvd->vdev_child[c]; 220 space += tvd->vdev_max_asize - tvd->vdev_asize; 221 } 222 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space, 223 src); 224 225 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 226 (spa_mode(spa) == FREAD), src); 227 228 cap = (size == 0) ? 0 : (alloc * 100 / size); 229 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 230 231 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 232 ddt_get_pool_dedup_ratio(spa), src); 233 234 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 235 rvd->vdev_state, src); 236 237 version = spa_version(spa); 238 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 239 src = ZPROP_SRC_DEFAULT; 240 else 241 src = ZPROP_SRC_LOCAL; 242 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 243 } 244 245 if (pool != NULL) { 246 dsl_dir_t *freedir = pool->dp_free_dir; 247 248 /* 249 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 250 * when opening pools before this version freedir will be NULL. 251 */ 252 if (freedir != NULL) { 253 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 254 freedir->dd_phys->dd_used_bytes, src); 255 } else { 256 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 257 NULL, 0, src); 258 } 259 } 260 261 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 262 263 if (spa->spa_comment != NULL) { 264 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 265 0, ZPROP_SRC_LOCAL); 266 } 267 268 if (spa->spa_root != NULL) 269 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 270 0, ZPROP_SRC_LOCAL); 271 272 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 273 if (dp->scd_path == NULL) { 274 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 275 "none", 0, ZPROP_SRC_LOCAL); 276 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 277 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 278 dp->scd_path, 0, ZPROP_SRC_LOCAL); 279 } 280 } 281 } 282 283 /* 284 * Get zpool property values. 285 */ 286 int 287 spa_prop_get(spa_t *spa, nvlist_t **nvp) 288 { 289 objset_t *mos = spa->spa_meta_objset; 290 zap_cursor_t zc; 291 zap_attribute_t za; 292 int err; 293 294 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 295 296 mutex_enter(&spa->spa_props_lock); 297 298 /* 299 * Get properties from the spa config. 300 */ 301 spa_prop_get_config(spa, nvp); 302 303 /* If no pool property object, no more prop to get. */ 304 if (mos == NULL || spa->spa_pool_props_object == 0) { 305 mutex_exit(&spa->spa_props_lock); 306 return (0); 307 } 308 309 /* 310 * Get properties from the MOS pool property object. 311 */ 312 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 313 (err = zap_cursor_retrieve(&zc, &za)) == 0; 314 zap_cursor_advance(&zc)) { 315 uint64_t intval = 0; 316 char *strval = NULL; 317 zprop_source_t src = ZPROP_SRC_DEFAULT; 318 zpool_prop_t prop; 319 320 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 321 continue; 322 323 switch (za.za_integer_length) { 324 case 8: 325 /* integer property */ 326 if (za.za_first_integer != 327 zpool_prop_default_numeric(prop)) 328 src = ZPROP_SRC_LOCAL; 329 330 if (prop == ZPOOL_PROP_BOOTFS) { 331 dsl_pool_t *dp; 332 dsl_dataset_t *ds = NULL; 333 334 dp = spa_get_dsl(spa); 335 dsl_pool_config_enter(dp, FTAG); 336 if (err = dsl_dataset_hold_obj(dp, 337 za.za_first_integer, FTAG, &ds)) { 338 dsl_pool_config_exit(dp, FTAG); 339 break; 340 } 341 342 strval = kmem_alloc( 343 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 344 KM_SLEEP); 345 dsl_dataset_name(ds, strval); 346 dsl_dataset_rele(ds, FTAG); 347 dsl_pool_config_exit(dp, FTAG); 348 } else { 349 strval = NULL; 350 intval = za.za_first_integer; 351 } 352 353 spa_prop_add_list(*nvp, prop, strval, intval, src); 354 355 if (strval != NULL) 356 kmem_free(strval, 357 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 358 359 break; 360 361 case 1: 362 /* string property */ 363 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 364 err = zap_lookup(mos, spa->spa_pool_props_object, 365 za.za_name, 1, za.za_num_integers, strval); 366 if (err) { 367 kmem_free(strval, za.za_num_integers); 368 break; 369 } 370 spa_prop_add_list(*nvp, prop, strval, 0, src); 371 kmem_free(strval, za.za_num_integers); 372 break; 373 374 default: 375 break; 376 } 377 } 378 zap_cursor_fini(&zc); 379 mutex_exit(&spa->spa_props_lock); 380 out: 381 if (err && err != ENOENT) { 382 nvlist_free(*nvp); 383 *nvp = NULL; 384 return (err); 385 } 386 387 return (0); 388 } 389 390 /* 391 * Validate the given pool properties nvlist and modify the list 392 * for the property values to be set. 393 */ 394 static int 395 spa_prop_validate(spa_t *spa, nvlist_t *props) 396 { 397 nvpair_t *elem; 398 int error = 0, reset_bootfs = 0; 399 uint64_t objnum = 0; 400 boolean_t has_feature = B_FALSE; 401 402 elem = NULL; 403 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 404 uint64_t intval; 405 char *strval, *slash, *check, *fname; 406 const char *propname = nvpair_name(elem); 407 zpool_prop_t prop = zpool_name_to_prop(propname); 408 409 switch (prop) { 410 case ZPROP_INVAL: 411 if (!zpool_prop_feature(propname)) { 412 error = SET_ERROR(EINVAL); 413 break; 414 } 415 416 /* 417 * Sanitize the input. 418 */ 419 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 420 error = SET_ERROR(EINVAL); 421 break; 422 } 423 424 if (nvpair_value_uint64(elem, &intval) != 0) { 425 error = SET_ERROR(EINVAL); 426 break; 427 } 428 429 if (intval != 0) { 430 error = SET_ERROR(EINVAL); 431 break; 432 } 433 434 fname = strchr(propname, '@') + 1; 435 if (zfeature_lookup_name(fname, NULL) != 0) { 436 error = SET_ERROR(EINVAL); 437 break; 438 } 439 440 has_feature = B_TRUE; 441 break; 442 443 case ZPOOL_PROP_VERSION: 444 error = nvpair_value_uint64(elem, &intval); 445 if (!error && 446 (intval < spa_version(spa) || 447 intval > SPA_VERSION_BEFORE_FEATURES || 448 has_feature)) 449 error = SET_ERROR(EINVAL); 450 break; 451 452 case ZPOOL_PROP_DELEGATION: 453 case ZPOOL_PROP_AUTOREPLACE: 454 case ZPOOL_PROP_LISTSNAPS: 455 case ZPOOL_PROP_AUTOEXPAND: 456 error = nvpair_value_uint64(elem, &intval); 457 if (!error && intval > 1) 458 error = SET_ERROR(EINVAL); 459 break; 460 461 case ZPOOL_PROP_BOOTFS: 462 /* 463 * If the pool version is less than SPA_VERSION_BOOTFS, 464 * or the pool is still being created (version == 0), 465 * the bootfs property cannot be set. 466 */ 467 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 468 error = SET_ERROR(ENOTSUP); 469 break; 470 } 471 472 /* 473 * Make sure the vdev config is bootable 474 */ 475 if (!vdev_is_bootable(spa->spa_root_vdev)) { 476 error = SET_ERROR(ENOTSUP); 477 break; 478 } 479 480 reset_bootfs = 1; 481 482 error = nvpair_value_string(elem, &strval); 483 484 if (!error) { 485 objset_t *os; 486 uint64_t compress; 487 488 if (strval == NULL || strval[0] == '\0') { 489 objnum = zpool_prop_default_numeric( 490 ZPOOL_PROP_BOOTFS); 491 break; 492 } 493 494 if (error = dmu_objset_hold(strval, FTAG, &os)) 495 break; 496 497 /* Must be ZPL and not gzip compressed. */ 498 499 if (dmu_objset_type(os) != DMU_OST_ZFS) { 500 error = SET_ERROR(ENOTSUP); 501 } else if ((error = 502 dsl_prop_get_int_ds(dmu_objset_ds(os), 503 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 504 &compress)) == 0 && 505 !BOOTFS_COMPRESS_VALID(compress)) { 506 error = SET_ERROR(ENOTSUP); 507 } else { 508 objnum = dmu_objset_id(os); 509 } 510 dmu_objset_rele(os, FTAG); 511 } 512 break; 513 514 case ZPOOL_PROP_FAILUREMODE: 515 error = nvpair_value_uint64(elem, &intval); 516 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 517 intval > ZIO_FAILURE_MODE_PANIC)) 518 error = SET_ERROR(EINVAL); 519 520 /* 521 * This is a special case which only occurs when 522 * the pool has completely failed. This allows 523 * the user to change the in-core failmode property 524 * without syncing it out to disk (I/Os might 525 * currently be blocked). We do this by returning 526 * EIO to the caller (spa_prop_set) to trick it 527 * into thinking we encountered a property validation 528 * error. 529 */ 530 if (!error && spa_suspended(spa)) { 531 spa->spa_failmode = intval; 532 error = SET_ERROR(EIO); 533 } 534 break; 535 536 case ZPOOL_PROP_CACHEFILE: 537 if ((error = nvpair_value_string(elem, &strval)) != 0) 538 break; 539 540 if (strval[0] == '\0') 541 break; 542 543 if (strcmp(strval, "none") == 0) 544 break; 545 546 if (strval[0] != '/') { 547 error = SET_ERROR(EINVAL); 548 break; 549 } 550 551 slash = strrchr(strval, '/'); 552 ASSERT(slash != NULL); 553 554 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 555 strcmp(slash, "/..") == 0) 556 error = SET_ERROR(EINVAL); 557 break; 558 559 case ZPOOL_PROP_COMMENT: 560 if ((error = nvpair_value_string(elem, &strval)) != 0) 561 break; 562 for (check = strval; *check != '\0'; check++) { 563 /* 564 * The kernel doesn't have an easy isprint() 565 * check. For this kernel check, we merely 566 * check ASCII apart from DEL. Fix this if 567 * there is an easy-to-use kernel isprint(). 568 */ 569 if (*check >= 0x7f) { 570 error = SET_ERROR(EINVAL); 571 break; 572 } 573 check++; 574 } 575 if (strlen(strval) > ZPROP_MAX_COMMENT) 576 error = E2BIG; 577 break; 578 579 case ZPOOL_PROP_DEDUPDITTO: 580 if (spa_version(spa) < SPA_VERSION_DEDUP) 581 error = SET_ERROR(ENOTSUP); 582 else 583 error = nvpair_value_uint64(elem, &intval); 584 if (error == 0 && 585 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 586 error = SET_ERROR(EINVAL); 587 break; 588 } 589 590 if (error) 591 break; 592 } 593 594 if (!error && reset_bootfs) { 595 error = nvlist_remove(props, 596 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 597 598 if (!error) { 599 error = nvlist_add_uint64(props, 600 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 601 } 602 } 603 604 return (error); 605 } 606 607 void 608 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 609 { 610 char *cachefile; 611 spa_config_dirent_t *dp; 612 613 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 614 &cachefile) != 0) 615 return; 616 617 dp = kmem_alloc(sizeof (spa_config_dirent_t), 618 KM_SLEEP); 619 620 if (cachefile[0] == '\0') 621 dp->scd_path = spa_strdup(spa_config_path); 622 else if (strcmp(cachefile, "none") == 0) 623 dp->scd_path = NULL; 624 else 625 dp->scd_path = spa_strdup(cachefile); 626 627 list_insert_head(&spa->spa_config_list, dp); 628 if (need_sync) 629 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 630 } 631 632 int 633 spa_prop_set(spa_t *spa, nvlist_t *nvp) 634 { 635 int error; 636 nvpair_t *elem = NULL; 637 boolean_t need_sync = B_FALSE; 638 639 if ((error = spa_prop_validate(spa, nvp)) != 0) 640 return (error); 641 642 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 643 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 644 645 if (prop == ZPOOL_PROP_CACHEFILE || 646 prop == ZPOOL_PROP_ALTROOT || 647 prop == ZPOOL_PROP_READONLY) 648 continue; 649 650 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 651 uint64_t ver; 652 653 if (prop == ZPOOL_PROP_VERSION) { 654 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 655 } else { 656 ASSERT(zpool_prop_feature(nvpair_name(elem))); 657 ver = SPA_VERSION_FEATURES; 658 need_sync = B_TRUE; 659 } 660 661 /* Save time if the version is already set. */ 662 if (ver == spa_version(spa)) 663 continue; 664 665 /* 666 * In addition to the pool directory object, we might 667 * create the pool properties object, the features for 668 * read object, the features for write object, or the 669 * feature descriptions object. 670 */ 671 error = dsl_sync_task(spa->spa_name, NULL, 672 spa_sync_version, &ver, 6); 673 if (error) 674 return (error); 675 continue; 676 } 677 678 need_sync = B_TRUE; 679 break; 680 } 681 682 if (need_sync) { 683 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 684 nvp, 6)); 685 } 686 687 return (0); 688 } 689 690 /* 691 * If the bootfs property value is dsobj, clear it. 692 */ 693 void 694 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 695 { 696 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 697 VERIFY(zap_remove(spa->spa_meta_objset, 698 spa->spa_pool_props_object, 699 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 700 spa->spa_bootfs = 0; 701 } 702 } 703 704 /*ARGSUSED*/ 705 static int 706 spa_change_guid_check(void *arg, dmu_tx_t *tx) 707 { 708 uint64_t *newguid = arg; 709 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 710 vdev_t *rvd = spa->spa_root_vdev; 711 uint64_t vdev_state; 712 713 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 714 vdev_state = rvd->vdev_state; 715 spa_config_exit(spa, SCL_STATE, FTAG); 716 717 if (vdev_state != VDEV_STATE_HEALTHY) 718 return (SET_ERROR(ENXIO)); 719 720 ASSERT3U(spa_guid(spa), !=, *newguid); 721 722 return (0); 723 } 724 725 static void 726 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 727 { 728 uint64_t *newguid = arg; 729 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 730 uint64_t oldguid; 731 vdev_t *rvd = spa->spa_root_vdev; 732 733 oldguid = spa_guid(spa); 734 735 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 736 rvd->vdev_guid = *newguid; 737 rvd->vdev_guid_sum += (*newguid - oldguid); 738 vdev_config_dirty(rvd); 739 spa_config_exit(spa, SCL_STATE, FTAG); 740 741 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 742 oldguid, *newguid); 743 } 744 745 /* 746 * Change the GUID for the pool. This is done so that we can later 747 * re-import a pool built from a clone of our own vdevs. We will modify 748 * the root vdev's guid, our own pool guid, and then mark all of our 749 * vdevs dirty. Note that we must make sure that all our vdevs are 750 * online when we do this, or else any vdevs that weren't present 751 * would be orphaned from our pool. We are also going to issue a 752 * sysevent to update any watchers. 753 */ 754 int 755 spa_change_guid(spa_t *spa) 756 { 757 int error; 758 uint64_t guid; 759 760 mutex_enter(&spa_namespace_lock); 761 guid = spa_generate_guid(NULL); 762 763 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 764 spa_change_guid_sync, &guid, 5); 765 766 if (error == 0) { 767 spa_config_sync(spa, B_FALSE, B_TRUE); 768 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 769 } 770 771 mutex_exit(&spa_namespace_lock); 772 773 return (error); 774 } 775 776 /* 777 * ========================================================================== 778 * SPA state manipulation (open/create/destroy/import/export) 779 * ========================================================================== 780 */ 781 782 static int 783 spa_error_entry_compare(const void *a, const void *b) 784 { 785 spa_error_entry_t *sa = (spa_error_entry_t *)a; 786 spa_error_entry_t *sb = (spa_error_entry_t *)b; 787 int ret; 788 789 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 790 sizeof (zbookmark_t)); 791 792 if (ret < 0) 793 return (-1); 794 else if (ret > 0) 795 return (1); 796 else 797 return (0); 798 } 799 800 /* 801 * Utility function which retrieves copies of the current logs and 802 * re-initializes them in the process. 803 */ 804 void 805 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 806 { 807 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 808 809 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 810 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 811 812 avl_create(&spa->spa_errlist_scrub, 813 spa_error_entry_compare, sizeof (spa_error_entry_t), 814 offsetof(spa_error_entry_t, se_avl)); 815 avl_create(&spa->spa_errlist_last, 816 spa_error_entry_compare, sizeof (spa_error_entry_t), 817 offsetof(spa_error_entry_t, se_avl)); 818 } 819 820 static void 821 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 822 { 823 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 824 enum zti_modes mode = ztip->zti_mode; 825 uint_t value = ztip->zti_value; 826 uint_t count = ztip->zti_count; 827 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 828 char name[32]; 829 uint_t flags = 0; 830 boolean_t batch = B_FALSE; 831 832 if (mode == ZTI_MODE_NULL) { 833 tqs->stqs_count = 0; 834 tqs->stqs_taskq = NULL; 835 return; 836 } 837 838 ASSERT3U(count, >, 0); 839 840 tqs->stqs_count = count; 841 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 842 843 for (uint_t i = 0; i < count; i++) { 844 taskq_t *tq; 845 846 switch (mode) { 847 case ZTI_MODE_FIXED: 848 ASSERT3U(value, >=, 1); 849 value = MAX(value, 1); 850 break; 851 852 case ZTI_MODE_BATCH: 853 batch = B_TRUE; 854 flags |= TASKQ_THREADS_CPU_PCT; 855 value = zio_taskq_batch_pct; 856 break; 857 858 case ZTI_MODE_ONLINE_PERCENT: 859 flags |= TASKQ_THREADS_CPU_PCT; 860 break; 861 862 default: 863 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 864 "spa_activate()", 865 zio_type_name[t], zio_taskq_types[q], mode, value); 866 break; 867 } 868 869 if (count > 1) { 870 (void) snprintf(name, sizeof (name), "%s_%s_%u", 871 zio_type_name[t], zio_taskq_types[q], i); 872 } else { 873 (void) snprintf(name, sizeof (name), "%s_%s", 874 zio_type_name[t], zio_taskq_types[q]); 875 } 876 877 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 878 if (batch) 879 flags |= TASKQ_DC_BATCH; 880 881 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 882 spa->spa_proc, zio_taskq_basedc, flags); 883 } else { 884 tq = taskq_create_proc(name, value, maxclsyspri, 50, 885 INT_MAX, spa->spa_proc, flags); 886 } 887 888 tqs->stqs_taskq[i] = tq; 889 } 890 } 891 892 static void 893 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 894 { 895 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 896 897 if (tqs->stqs_taskq == NULL) { 898 ASSERT0(tqs->stqs_count); 899 return; 900 } 901 902 for (uint_t i = 0; i < tqs->stqs_count; i++) { 903 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 904 taskq_destroy(tqs->stqs_taskq[i]); 905 } 906 907 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 908 tqs->stqs_taskq = NULL; 909 } 910 911 /* 912 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 913 * Note that a type may have multiple discrete taskqs to avoid lock contention 914 * on the taskq itself. In that case we choose which taskq at random by using 915 * the low bits of gethrtime(). 916 */ 917 void 918 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 919 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 920 { 921 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 922 taskq_t *tq; 923 924 ASSERT3P(tqs->stqs_taskq, !=, NULL); 925 ASSERT3U(tqs->stqs_count, !=, 0); 926 927 if (tqs->stqs_count == 1) { 928 tq = tqs->stqs_taskq[0]; 929 } else { 930 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 931 } 932 933 taskq_dispatch_ent(tq, func, arg, flags, ent); 934 } 935 936 static void 937 spa_create_zio_taskqs(spa_t *spa) 938 { 939 for (int t = 0; t < ZIO_TYPES; t++) { 940 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 941 spa_taskqs_init(spa, t, q); 942 } 943 } 944 } 945 946 #ifdef _KERNEL 947 static void 948 spa_thread(void *arg) 949 { 950 callb_cpr_t cprinfo; 951 952 spa_t *spa = arg; 953 user_t *pu = PTOU(curproc); 954 955 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 956 spa->spa_name); 957 958 ASSERT(curproc != &p0); 959 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 960 "zpool-%s", spa->spa_name); 961 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 962 963 /* bind this thread to the requested psrset */ 964 if (zio_taskq_psrset_bind != PS_NONE) { 965 pool_lock(); 966 mutex_enter(&cpu_lock); 967 mutex_enter(&pidlock); 968 mutex_enter(&curproc->p_lock); 969 970 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 971 0, NULL, NULL) == 0) { 972 curthread->t_bind_pset = zio_taskq_psrset_bind; 973 } else { 974 cmn_err(CE_WARN, 975 "Couldn't bind process for zfs pool \"%s\" to " 976 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 977 } 978 979 mutex_exit(&curproc->p_lock); 980 mutex_exit(&pidlock); 981 mutex_exit(&cpu_lock); 982 pool_unlock(); 983 } 984 985 if (zio_taskq_sysdc) { 986 sysdc_thread_enter(curthread, 100, 0); 987 } 988 989 spa->spa_proc = curproc; 990 spa->spa_did = curthread->t_did; 991 992 spa_create_zio_taskqs(spa); 993 994 mutex_enter(&spa->spa_proc_lock); 995 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 996 997 spa->spa_proc_state = SPA_PROC_ACTIVE; 998 cv_broadcast(&spa->spa_proc_cv); 999 1000 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1001 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1002 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1003 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1004 1005 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1006 spa->spa_proc_state = SPA_PROC_GONE; 1007 spa->spa_proc = &p0; 1008 cv_broadcast(&spa->spa_proc_cv); 1009 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1010 1011 mutex_enter(&curproc->p_lock); 1012 lwp_exit(); 1013 } 1014 #endif 1015 1016 /* 1017 * Activate an uninitialized pool. 1018 */ 1019 static void 1020 spa_activate(spa_t *spa, int mode) 1021 { 1022 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1023 1024 spa->spa_state = POOL_STATE_ACTIVE; 1025 spa->spa_mode = mode; 1026 1027 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1028 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1029 1030 /* Try to create a covering process */ 1031 mutex_enter(&spa->spa_proc_lock); 1032 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1033 ASSERT(spa->spa_proc == &p0); 1034 spa->spa_did = 0; 1035 1036 /* Only create a process if we're going to be around a while. */ 1037 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1038 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1039 NULL, 0) == 0) { 1040 spa->spa_proc_state = SPA_PROC_CREATED; 1041 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1042 cv_wait(&spa->spa_proc_cv, 1043 &spa->spa_proc_lock); 1044 } 1045 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1046 ASSERT(spa->spa_proc != &p0); 1047 ASSERT(spa->spa_did != 0); 1048 } else { 1049 #ifdef _KERNEL 1050 cmn_err(CE_WARN, 1051 "Couldn't create process for zfs pool \"%s\"\n", 1052 spa->spa_name); 1053 #endif 1054 } 1055 } 1056 mutex_exit(&spa->spa_proc_lock); 1057 1058 /* If we didn't create a process, we need to create our taskqs. */ 1059 if (spa->spa_proc == &p0) { 1060 spa_create_zio_taskqs(spa); 1061 } 1062 1063 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1064 offsetof(vdev_t, vdev_config_dirty_node)); 1065 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1066 offsetof(vdev_t, vdev_state_dirty_node)); 1067 1068 txg_list_create(&spa->spa_vdev_txg_list, 1069 offsetof(struct vdev, vdev_txg_node)); 1070 1071 avl_create(&spa->spa_errlist_scrub, 1072 spa_error_entry_compare, sizeof (spa_error_entry_t), 1073 offsetof(spa_error_entry_t, se_avl)); 1074 avl_create(&spa->spa_errlist_last, 1075 spa_error_entry_compare, sizeof (spa_error_entry_t), 1076 offsetof(spa_error_entry_t, se_avl)); 1077 } 1078 1079 /* 1080 * Opposite of spa_activate(). 1081 */ 1082 static void 1083 spa_deactivate(spa_t *spa) 1084 { 1085 ASSERT(spa->spa_sync_on == B_FALSE); 1086 ASSERT(spa->spa_dsl_pool == NULL); 1087 ASSERT(spa->spa_root_vdev == NULL); 1088 ASSERT(spa->spa_async_zio_root == NULL); 1089 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1090 1091 txg_list_destroy(&spa->spa_vdev_txg_list); 1092 1093 list_destroy(&spa->spa_config_dirty_list); 1094 list_destroy(&spa->spa_state_dirty_list); 1095 1096 for (int t = 0; t < ZIO_TYPES; t++) { 1097 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1098 spa_taskqs_fini(spa, t, q); 1099 } 1100 } 1101 1102 metaslab_class_destroy(spa->spa_normal_class); 1103 spa->spa_normal_class = NULL; 1104 1105 metaslab_class_destroy(spa->spa_log_class); 1106 spa->spa_log_class = NULL; 1107 1108 /* 1109 * If this was part of an import or the open otherwise failed, we may 1110 * still have errors left in the queues. Empty them just in case. 1111 */ 1112 spa_errlog_drain(spa); 1113 1114 avl_destroy(&spa->spa_errlist_scrub); 1115 avl_destroy(&spa->spa_errlist_last); 1116 1117 spa->spa_state = POOL_STATE_UNINITIALIZED; 1118 1119 mutex_enter(&spa->spa_proc_lock); 1120 if (spa->spa_proc_state != SPA_PROC_NONE) { 1121 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1122 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1123 cv_broadcast(&spa->spa_proc_cv); 1124 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1125 ASSERT(spa->spa_proc != &p0); 1126 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1127 } 1128 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1129 spa->spa_proc_state = SPA_PROC_NONE; 1130 } 1131 ASSERT(spa->spa_proc == &p0); 1132 mutex_exit(&spa->spa_proc_lock); 1133 1134 /* 1135 * We want to make sure spa_thread() has actually exited the ZFS 1136 * module, so that the module can't be unloaded out from underneath 1137 * it. 1138 */ 1139 if (spa->spa_did != 0) { 1140 thread_join(spa->spa_did); 1141 spa->spa_did = 0; 1142 } 1143 } 1144 1145 /* 1146 * Verify a pool configuration, and construct the vdev tree appropriately. This 1147 * will create all the necessary vdevs in the appropriate layout, with each vdev 1148 * in the CLOSED state. This will prep the pool before open/creation/import. 1149 * All vdev validation is done by the vdev_alloc() routine. 1150 */ 1151 static int 1152 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1153 uint_t id, int atype) 1154 { 1155 nvlist_t **child; 1156 uint_t children; 1157 int error; 1158 1159 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1160 return (error); 1161 1162 if ((*vdp)->vdev_ops->vdev_op_leaf) 1163 return (0); 1164 1165 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1166 &child, &children); 1167 1168 if (error == ENOENT) 1169 return (0); 1170 1171 if (error) { 1172 vdev_free(*vdp); 1173 *vdp = NULL; 1174 return (SET_ERROR(EINVAL)); 1175 } 1176 1177 for (int c = 0; c < children; c++) { 1178 vdev_t *vd; 1179 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1180 atype)) != 0) { 1181 vdev_free(*vdp); 1182 *vdp = NULL; 1183 return (error); 1184 } 1185 } 1186 1187 ASSERT(*vdp != NULL); 1188 1189 return (0); 1190 } 1191 1192 /* 1193 * Opposite of spa_load(). 1194 */ 1195 static void 1196 spa_unload(spa_t *spa) 1197 { 1198 int i; 1199 1200 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1201 1202 /* 1203 * Stop async tasks. 1204 */ 1205 spa_async_suspend(spa); 1206 1207 /* 1208 * Stop syncing. 1209 */ 1210 if (spa->spa_sync_on) { 1211 txg_sync_stop(spa->spa_dsl_pool); 1212 spa->spa_sync_on = B_FALSE; 1213 } 1214 1215 /* 1216 * Wait for any outstanding async I/O to complete. 1217 */ 1218 if (spa->spa_async_zio_root != NULL) { 1219 (void) zio_wait(spa->spa_async_zio_root); 1220 spa->spa_async_zio_root = NULL; 1221 } 1222 1223 bpobj_close(&spa->spa_deferred_bpobj); 1224 1225 /* 1226 * Close the dsl pool. 1227 */ 1228 if (spa->spa_dsl_pool) { 1229 dsl_pool_close(spa->spa_dsl_pool); 1230 spa->spa_dsl_pool = NULL; 1231 spa->spa_meta_objset = NULL; 1232 } 1233 1234 ddt_unload(spa); 1235 1236 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1237 1238 /* 1239 * Drop and purge level 2 cache 1240 */ 1241 spa_l2cache_drop(spa); 1242 1243 /* 1244 * Close all vdevs. 1245 */ 1246 if (spa->spa_root_vdev) 1247 vdev_free(spa->spa_root_vdev); 1248 ASSERT(spa->spa_root_vdev == NULL); 1249 1250 for (i = 0; i < spa->spa_spares.sav_count; i++) 1251 vdev_free(spa->spa_spares.sav_vdevs[i]); 1252 if (spa->spa_spares.sav_vdevs) { 1253 kmem_free(spa->spa_spares.sav_vdevs, 1254 spa->spa_spares.sav_count * sizeof (void *)); 1255 spa->spa_spares.sav_vdevs = NULL; 1256 } 1257 if (spa->spa_spares.sav_config) { 1258 nvlist_free(spa->spa_spares.sav_config); 1259 spa->spa_spares.sav_config = NULL; 1260 } 1261 spa->spa_spares.sav_count = 0; 1262 1263 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1264 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1265 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1266 } 1267 if (spa->spa_l2cache.sav_vdevs) { 1268 kmem_free(spa->spa_l2cache.sav_vdevs, 1269 spa->spa_l2cache.sav_count * sizeof (void *)); 1270 spa->spa_l2cache.sav_vdevs = NULL; 1271 } 1272 if (spa->spa_l2cache.sav_config) { 1273 nvlist_free(spa->spa_l2cache.sav_config); 1274 spa->spa_l2cache.sav_config = NULL; 1275 } 1276 spa->spa_l2cache.sav_count = 0; 1277 1278 spa->spa_async_suspended = 0; 1279 1280 if (spa->spa_comment != NULL) { 1281 spa_strfree(spa->spa_comment); 1282 spa->spa_comment = NULL; 1283 } 1284 1285 spa_config_exit(spa, SCL_ALL, FTAG); 1286 } 1287 1288 /* 1289 * Load (or re-load) the current list of vdevs describing the active spares for 1290 * this pool. When this is called, we have some form of basic information in 1291 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1292 * then re-generate a more complete list including status information. 1293 */ 1294 static void 1295 spa_load_spares(spa_t *spa) 1296 { 1297 nvlist_t **spares; 1298 uint_t nspares; 1299 int i; 1300 vdev_t *vd, *tvd; 1301 1302 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1303 1304 /* 1305 * First, close and free any existing spare vdevs. 1306 */ 1307 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1308 vd = spa->spa_spares.sav_vdevs[i]; 1309 1310 /* Undo the call to spa_activate() below */ 1311 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1312 B_FALSE)) != NULL && tvd->vdev_isspare) 1313 spa_spare_remove(tvd); 1314 vdev_close(vd); 1315 vdev_free(vd); 1316 } 1317 1318 if (spa->spa_spares.sav_vdevs) 1319 kmem_free(spa->spa_spares.sav_vdevs, 1320 spa->spa_spares.sav_count * sizeof (void *)); 1321 1322 if (spa->spa_spares.sav_config == NULL) 1323 nspares = 0; 1324 else 1325 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1326 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1327 1328 spa->spa_spares.sav_count = (int)nspares; 1329 spa->spa_spares.sav_vdevs = NULL; 1330 1331 if (nspares == 0) 1332 return; 1333 1334 /* 1335 * Construct the array of vdevs, opening them to get status in the 1336 * process. For each spare, there is potentially two different vdev_t 1337 * structures associated with it: one in the list of spares (used only 1338 * for basic validation purposes) and one in the active vdev 1339 * configuration (if it's spared in). During this phase we open and 1340 * validate each vdev on the spare list. If the vdev also exists in the 1341 * active configuration, then we also mark this vdev as an active spare. 1342 */ 1343 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1344 KM_SLEEP); 1345 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1346 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1347 VDEV_ALLOC_SPARE) == 0); 1348 ASSERT(vd != NULL); 1349 1350 spa->spa_spares.sav_vdevs[i] = vd; 1351 1352 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1353 B_FALSE)) != NULL) { 1354 if (!tvd->vdev_isspare) 1355 spa_spare_add(tvd); 1356 1357 /* 1358 * We only mark the spare active if we were successfully 1359 * able to load the vdev. Otherwise, importing a pool 1360 * with a bad active spare would result in strange 1361 * behavior, because multiple pool would think the spare 1362 * is actively in use. 1363 * 1364 * There is a vulnerability here to an equally bizarre 1365 * circumstance, where a dead active spare is later 1366 * brought back to life (onlined or otherwise). Given 1367 * the rarity of this scenario, and the extra complexity 1368 * it adds, we ignore the possibility. 1369 */ 1370 if (!vdev_is_dead(tvd)) 1371 spa_spare_activate(tvd); 1372 } 1373 1374 vd->vdev_top = vd; 1375 vd->vdev_aux = &spa->spa_spares; 1376 1377 if (vdev_open(vd) != 0) 1378 continue; 1379 1380 if (vdev_validate_aux(vd) == 0) 1381 spa_spare_add(vd); 1382 } 1383 1384 /* 1385 * Recompute the stashed list of spares, with status information 1386 * this time. 1387 */ 1388 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1389 DATA_TYPE_NVLIST_ARRAY) == 0); 1390 1391 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1392 KM_SLEEP); 1393 for (i = 0; i < spa->spa_spares.sav_count; i++) 1394 spares[i] = vdev_config_generate(spa, 1395 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1396 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1397 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1398 for (i = 0; i < spa->spa_spares.sav_count; i++) 1399 nvlist_free(spares[i]); 1400 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1401 } 1402 1403 /* 1404 * Load (or re-load) the current list of vdevs describing the active l2cache for 1405 * this pool. When this is called, we have some form of basic information in 1406 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1407 * then re-generate a more complete list including status information. 1408 * Devices which are already active have their details maintained, and are 1409 * not re-opened. 1410 */ 1411 static void 1412 spa_load_l2cache(spa_t *spa) 1413 { 1414 nvlist_t **l2cache; 1415 uint_t nl2cache; 1416 int i, j, oldnvdevs; 1417 uint64_t guid; 1418 vdev_t *vd, **oldvdevs, **newvdevs; 1419 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1420 1421 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1422 1423 if (sav->sav_config != NULL) { 1424 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1425 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1426 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1427 } else { 1428 nl2cache = 0; 1429 newvdevs = NULL; 1430 } 1431 1432 oldvdevs = sav->sav_vdevs; 1433 oldnvdevs = sav->sav_count; 1434 sav->sav_vdevs = NULL; 1435 sav->sav_count = 0; 1436 1437 /* 1438 * Process new nvlist of vdevs. 1439 */ 1440 for (i = 0; i < nl2cache; i++) { 1441 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1442 &guid) == 0); 1443 1444 newvdevs[i] = NULL; 1445 for (j = 0; j < oldnvdevs; j++) { 1446 vd = oldvdevs[j]; 1447 if (vd != NULL && guid == vd->vdev_guid) { 1448 /* 1449 * Retain previous vdev for add/remove ops. 1450 */ 1451 newvdevs[i] = vd; 1452 oldvdevs[j] = NULL; 1453 break; 1454 } 1455 } 1456 1457 if (newvdevs[i] == NULL) { 1458 /* 1459 * Create new vdev 1460 */ 1461 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1462 VDEV_ALLOC_L2CACHE) == 0); 1463 ASSERT(vd != NULL); 1464 newvdevs[i] = vd; 1465 1466 /* 1467 * Commit this vdev as an l2cache device, 1468 * even if it fails to open. 1469 */ 1470 spa_l2cache_add(vd); 1471 1472 vd->vdev_top = vd; 1473 vd->vdev_aux = sav; 1474 1475 spa_l2cache_activate(vd); 1476 1477 if (vdev_open(vd) != 0) 1478 continue; 1479 1480 (void) vdev_validate_aux(vd); 1481 1482 if (!vdev_is_dead(vd)) { 1483 boolean_t persist = B_FALSE; 1484 1485 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 1486 /* 1487 * Only allow to do the L2ARC rebuild 1488 * when not doing a spa try-load. 1489 */ 1490 (void) nvlist_lookup_boolean_value( 1491 l2cache[i], 1492 ZPOOL_CONFIG_L2CACHE_PERSISTENT, 1493 &persist); 1494 } 1495 l2arc_add_vdev(spa, vd, persist); 1496 } 1497 } 1498 } 1499 1500 /* 1501 * Purge vdevs that were dropped 1502 */ 1503 for (i = 0; i < oldnvdevs; i++) { 1504 uint64_t pool; 1505 1506 vd = oldvdevs[i]; 1507 if (vd != NULL) { 1508 ASSERT(vd->vdev_isl2cache); 1509 1510 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1511 pool != 0ULL && l2arc_vdev_present(vd)) 1512 l2arc_remove_vdev(vd); 1513 vdev_clear_stats(vd); 1514 vdev_free(vd); 1515 } 1516 } 1517 1518 if (oldvdevs) 1519 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1520 1521 if (sav->sav_config == NULL) 1522 goto out; 1523 1524 sav->sav_vdevs = newvdevs; 1525 sav->sav_count = (int)nl2cache; 1526 1527 /* 1528 * Recompute the stashed list of l2cache devices, with status 1529 * information this time. 1530 */ 1531 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1532 DATA_TYPE_NVLIST_ARRAY) == 0); 1533 1534 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1535 for (i = 0; i < sav->sav_count; i++) 1536 l2cache[i] = vdev_config_generate(spa, 1537 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1538 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1539 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1540 out: 1541 for (i = 0; i < sav->sav_count; i++) 1542 nvlist_free(l2cache[i]); 1543 if (sav->sav_count) 1544 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1545 } 1546 1547 static int 1548 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1549 { 1550 dmu_buf_t *db; 1551 char *packed = NULL; 1552 size_t nvsize = 0; 1553 int error; 1554 *value = NULL; 1555 1556 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1557 nvsize = *(uint64_t *)db->db_data; 1558 dmu_buf_rele(db, FTAG); 1559 1560 packed = kmem_alloc(nvsize, KM_SLEEP); 1561 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1562 DMU_READ_PREFETCH); 1563 if (error == 0) 1564 error = nvlist_unpack(packed, nvsize, value, 0); 1565 kmem_free(packed, nvsize); 1566 1567 return (error); 1568 } 1569 1570 /* 1571 * Checks to see if the given vdev could not be opened, in which case we post a 1572 * sysevent to notify the autoreplace code that the device has been removed. 1573 */ 1574 static void 1575 spa_check_removed(vdev_t *vd) 1576 { 1577 for (int c = 0; c < vd->vdev_children; c++) 1578 spa_check_removed(vd->vdev_child[c]); 1579 1580 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1581 !vd->vdev_ishole) { 1582 zfs_post_autoreplace(vd->vdev_spa, vd); 1583 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1584 } 1585 } 1586 1587 /* 1588 * Validate the current config against the MOS config 1589 */ 1590 static boolean_t 1591 spa_config_valid(spa_t *spa, nvlist_t *config) 1592 { 1593 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1594 nvlist_t *nv; 1595 1596 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1597 1598 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1599 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1600 1601 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1602 1603 /* 1604 * If we're doing a normal import, then build up any additional 1605 * diagnostic information about missing devices in this config. 1606 * We'll pass this up to the user for further processing. 1607 */ 1608 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1609 nvlist_t **child, *nv; 1610 uint64_t idx = 0; 1611 1612 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1613 KM_SLEEP); 1614 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1615 1616 for (int c = 0; c < rvd->vdev_children; c++) { 1617 vdev_t *tvd = rvd->vdev_child[c]; 1618 vdev_t *mtvd = mrvd->vdev_child[c]; 1619 1620 if (tvd->vdev_ops == &vdev_missing_ops && 1621 mtvd->vdev_ops != &vdev_missing_ops && 1622 mtvd->vdev_islog) 1623 child[idx++] = vdev_config_generate(spa, mtvd, 1624 B_FALSE, 0); 1625 } 1626 1627 if (idx) { 1628 VERIFY(nvlist_add_nvlist_array(nv, 1629 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1630 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1631 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1632 1633 for (int i = 0; i < idx; i++) 1634 nvlist_free(child[i]); 1635 } 1636 nvlist_free(nv); 1637 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1638 } 1639 1640 /* 1641 * Compare the root vdev tree with the information we have 1642 * from the MOS config (mrvd). Check each top-level vdev 1643 * with the corresponding MOS config top-level (mtvd). 1644 */ 1645 for (int c = 0; c < rvd->vdev_children; c++) { 1646 vdev_t *tvd = rvd->vdev_child[c]; 1647 vdev_t *mtvd = mrvd->vdev_child[c]; 1648 1649 /* 1650 * Resolve any "missing" vdevs in the current configuration. 1651 * If we find that the MOS config has more accurate information 1652 * about the top-level vdev then use that vdev instead. 1653 */ 1654 if (tvd->vdev_ops == &vdev_missing_ops && 1655 mtvd->vdev_ops != &vdev_missing_ops) { 1656 1657 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1658 continue; 1659 1660 /* 1661 * Device specific actions. 1662 */ 1663 if (mtvd->vdev_islog) { 1664 spa_set_log_state(spa, SPA_LOG_CLEAR); 1665 } else { 1666 /* 1667 * XXX - once we have 'readonly' pool 1668 * support we should be able to handle 1669 * missing data devices by transitioning 1670 * the pool to readonly. 1671 */ 1672 continue; 1673 } 1674 1675 /* 1676 * Swap the missing vdev with the data we were 1677 * able to obtain from the MOS config. 1678 */ 1679 vdev_remove_child(rvd, tvd); 1680 vdev_remove_child(mrvd, mtvd); 1681 1682 vdev_add_child(rvd, mtvd); 1683 vdev_add_child(mrvd, tvd); 1684 1685 spa_config_exit(spa, SCL_ALL, FTAG); 1686 vdev_load(mtvd); 1687 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1688 1689 vdev_reopen(rvd); 1690 } else if (mtvd->vdev_islog) { 1691 /* 1692 * Load the slog device's state from the MOS config 1693 * since it's possible that the label does not 1694 * contain the most up-to-date information. 1695 */ 1696 vdev_load_log_state(tvd, mtvd); 1697 vdev_reopen(tvd); 1698 } 1699 } 1700 vdev_free(mrvd); 1701 spa_config_exit(spa, SCL_ALL, FTAG); 1702 1703 /* 1704 * Ensure we were able to validate the config. 1705 */ 1706 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1707 } 1708 1709 /* 1710 * Check for missing log devices 1711 */ 1712 static boolean_t 1713 spa_check_logs(spa_t *spa) 1714 { 1715 boolean_t rv = B_FALSE; 1716 1717 switch (spa->spa_log_state) { 1718 case SPA_LOG_MISSING: 1719 /* need to recheck in case slog has been restored */ 1720 case SPA_LOG_UNKNOWN: 1721 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain, 1722 NULL, DS_FIND_CHILDREN) != 0); 1723 if (rv) 1724 spa_set_log_state(spa, SPA_LOG_MISSING); 1725 break; 1726 } 1727 return (rv); 1728 } 1729 1730 static boolean_t 1731 spa_passivate_log(spa_t *spa) 1732 { 1733 vdev_t *rvd = spa->spa_root_vdev; 1734 boolean_t slog_found = B_FALSE; 1735 1736 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1737 1738 if (!spa_has_slogs(spa)) 1739 return (B_FALSE); 1740 1741 for (int c = 0; c < rvd->vdev_children; c++) { 1742 vdev_t *tvd = rvd->vdev_child[c]; 1743 metaslab_group_t *mg = tvd->vdev_mg; 1744 1745 if (tvd->vdev_islog) { 1746 metaslab_group_passivate(mg); 1747 slog_found = B_TRUE; 1748 } 1749 } 1750 1751 return (slog_found); 1752 } 1753 1754 static void 1755 spa_activate_log(spa_t *spa) 1756 { 1757 vdev_t *rvd = spa->spa_root_vdev; 1758 1759 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1760 1761 for (int c = 0; c < rvd->vdev_children; c++) { 1762 vdev_t *tvd = rvd->vdev_child[c]; 1763 metaslab_group_t *mg = tvd->vdev_mg; 1764 1765 if (tvd->vdev_islog) 1766 metaslab_group_activate(mg); 1767 } 1768 } 1769 1770 int 1771 spa_offline_log(spa_t *spa) 1772 { 1773 int error; 1774 1775 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1776 NULL, DS_FIND_CHILDREN); 1777 if (error == 0) { 1778 /* 1779 * We successfully offlined the log device, sync out the 1780 * current txg so that the "stubby" block can be removed 1781 * by zil_sync(). 1782 */ 1783 txg_wait_synced(spa->spa_dsl_pool, 0); 1784 } 1785 return (error); 1786 } 1787 1788 static void 1789 spa_aux_check_removed(spa_aux_vdev_t *sav) 1790 { 1791 for (int i = 0; i < sav->sav_count; i++) 1792 spa_check_removed(sav->sav_vdevs[i]); 1793 } 1794 1795 void 1796 spa_claim_notify(zio_t *zio) 1797 { 1798 spa_t *spa = zio->io_spa; 1799 1800 if (zio->io_error) 1801 return; 1802 1803 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1804 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1805 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1806 mutex_exit(&spa->spa_props_lock); 1807 } 1808 1809 typedef struct spa_load_error { 1810 uint64_t sle_meta_count; 1811 uint64_t sle_data_count; 1812 } spa_load_error_t; 1813 1814 static void 1815 spa_load_verify_done(zio_t *zio) 1816 { 1817 blkptr_t *bp = zio->io_bp; 1818 spa_load_error_t *sle = zio->io_private; 1819 dmu_object_type_t type = BP_GET_TYPE(bp); 1820 int error = zio->io_error; 1821 1822 if (error) { 1823 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1824 type != DMU_OT_INTENT_LOG) 1825 atomic_add_64(&sle->sle_meta_count, 1); 1826 else 1827 atomic_add_64(&sle->sle_data_count, 1); 1828 } 1829 zio_data_buf_free(zio->io_data, zio->io_size); 1830 } 1831 1832 /*ARGSUSED*/ 1833 static int 1834 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1835 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1836 { 1837 if (bp != NULL) { 1838 zio_t *rio = arg; 1839 size_t size = BP_GET_PSIZE(bp); 1840 void *data = zio_data_buf_alloc(size); 1841 1842 zio_nowait(zio_read(rio, spa, bp, data, size, 1843 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1844 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1845 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1846 } 1847 return (0); 1848 } 1849 1850 static int 1851 spa_load_verify(spa_t *spa) 1852 { 1853 zio_t *rio; 1854 spa_load_error_t sle = { 0 }; 1855 zpool_rewind_policy_t policy; 1856 boolean_t verify_ok = B_FALSE; 1857 int error; 1858 1859 zpool_get_rewind_policy(spa->spa_config, &policy); 1860 1861 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1862 return (0); 1863 1864 rio = zio_root(spa, NULL, &sle, 1865 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1866 1867 error = traverse_pool(spa, spa->spa_verify_min_txg, 1868 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1869 1870 (void) zio_wait(rio); 1871 1872 spa->spa_load_meta_errors = sle.sle_meta_count; 1873 spa->spa_load_data_errors = sle.sle_data_count; 1874 1875 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1876 sle.sle_data_count <= policy.zrp_maxdata) { 1877 int64_t loss = 0; 1878 1879 verify_ok = B_TRUE; 1880 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1881 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1882 1883 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1884 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1885 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1886 VERIFY(nvlist_add_int64(spa->spa_load_info, 1887 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1888 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1889 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1890 } else { 1891 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1892 } 1893 1894 if (error) { 1895 if (error != ENXIO && error != EIO) 1896 error = SET_ERROR(EIO); 1897 return (error); 1898 } 1899 1900 return (verify_ok ? 0 : EIO); 1901 } 1902 1903 /* 1904 * Find a value in the pool props object. 1905 */ 1906 static void 1907 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1908 { 1909 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1910 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1911 } 1912 1913 /* 1914 * Find a value in the pool directory object. 1915 */ 1916 static int 1917 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1918 { 1919 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1920 name, sizeof (uint64_t), 1, val)); 1921 } 1922 1923 static int 1924 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1925 { 1926 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1927 return (err); 1928 } 1929 1930 /* 1931 * Fix up config after a partly-completed split. This is done with the 1932 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1933 * pool have that entry in their config, but only the splitting one contains 1934 * a list of all the guids of the vdevs that are being split off. 1935 * 1936 * This function determines what to do with that list: either rejoin 1937 * all the disks to the pool, or complete the splitting process. To attempt 1938 * the rejoin, each disk that is offlined is marked online again, and 1939 * we do a reopen() call. If the vdev label for every disk that was 1940 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1941 * then we call vdev_split() on each disk, and complete the split. 1942 * 1943 * Otherwise we leave the config alone, with all the vdevs in place in 1944 * the original pool. 1945 */ 1946 static void 1947 spa_try_repair(spa_t *spa, nvlist_t *config) 1948 { 1949 uint_t extracted; 1950 uint64_t *glist; 1951 uint_t i, gcount; 1952 nvlist_t *nvl; 1953 vdev_t **vd; 1954 boolean_t attempt_reopen; 1955 1956 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1957 return; 1958 1959 /* check that the config is complete */ 1960 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1961 &glist, &gcount) != 0) 1962 return; 1963 1964 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1965 1966 /* attempt to online all the vdevs & validate */ 1967 attempt_reopen = B_TRUE; 1968 for (i = 0; i < gcount; i++) { 1969 if (glist[i] == 0) /* vdev is hole */ 1970 continue; 1971 1972 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1973 if (vd[i] == NULL) { 1974 /* 1975 * Don't bother attempting to reopen the disks; 1976 * just do the split. 1977 */ 1978 attempt_reopen = B_FALSE; 1979 } else { 1980 /* attempt to re-online it */ 1981 vd[i]->vdev_offline = B_FALSE; 1982 } 1983 } 1984 1985 if (attempt_reopen) { 1986 vdev_reopen(spa->spa_root_vdev); 1987 1988 /* check each device to see what state it's in */ 1989 for (extracted = 0, i = 0; i < gcount; i++) { 1990 if (vd[i] != NULL && 1991 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1992 break; 1993 ++extracted; 1994 } 1995 } 1996 1997 /* 1998 * If every disk has been moved to the new pool, or if we never 1999 * even attempted to look at them, then we split them off for 2000 * good. 2001 */ 2002 if (!attempt_reopen || gcount == extracted) { 2003 for (i = 0; i < gcount; i++) 2004 if (vd[i] != NULL) 2005 vdev_split(vd[i]); 2006 vdev_reopen(spa->spa_root_vdev); 2007 } 2008 2009 kmem_free(vd, gcount * sizeof (vdev_t *)); 2010 } 2011 2012 static int 2013 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2014 boolean_t mosconfig) 2015 { 2016 nvlist_t *config = spa->spa_config; 2017 char *ereport = FM_EREPORT_ZFS_POOL; 2018 char *comment; 2019 int error; 2020 uint64_t pool_guid; 2021 nvlist_t *nvl; 2022 2023 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2024 return (SET_ERROR(EINVAL)); 2025 2026 ASSERT(spa->spa_comment == NULL); 2027 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2028 spa->spa_comment = spa_strdup(comment); 2029 2030 /* 2031 * Versioning wasn't explicitly added to the label until later, so if 2032 * it's not present treat it as the initial version. 2033 */ 2034 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2035 &spa->spa_ubsync.ub_version) != 0) 2036 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2037 2038 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2039 &spa->spa_config_txg); 2040 2041 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2042 spa_guid_exists(pool_guid, 0)) { 2043 error = SET_ERROR(EEXIST); 2044 } else { 2045 spa->spa_config_guid = pool_guid; 2046 2047 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2048 &nvl) == 0) { 2049 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2050 KM_SLEEP) == 0); 2051 } 2052 2053 nvlist_free(spa->spa_load_info); 2054 spa->spa_load_info = fnvlist_alloc(); 2055 2056 gethrestime(&spa->spa_loaded_ts); 2057 error = spa_load_impl(spa, pool_guid, config, state, type, 2058 mosconfig, &ereport); 2059 } 2060 2061 spa->spa_minref = refcount_count(&spa->spa_refcount); 2062 if (error) { 2063 if (error != EEXIST) { 2064 spa->spa_loaded_ts.tv_sec = 0; 2065 spa->spa_loaded_ts.tv_nsec = 0; 2066 } 2067 if (error != EBADF) { 2068 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2069 } 2070 } 2071 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2072 spa->spa_ena = 0; 2073 2074 return (error); 2075 } 2076 2077 /* 2078 * Load an existing storage pool, using the pool's builtin spa_config as a 2079 * source of configuration information. 2080 */ 2081 static int 2082 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2083 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2084 char **ereport) 2085 { 2086 int error = 0; 2087 nvlist_t *nvroot = NULL; 2088 nvlist_t *label; 2089 vdev_t *rvd; 2090 uberblock_t *ub = &spa->spa_uberblock; 2091 uint64_t children, config_cache_txg = spa->spa_config_txg; 2092 int orig_mode = spa->spa_mode; 2093 int parse; 2094 uint64_t obj; 2095 boolean_t missing_feat_write = B_FALSE; 2096 2097 /* 2098 * If this is an untrusted config, access the pool in read-only mode. 2099 * This prevents things like resilvering recently removed devices. 2100 */ 2101 if (!mosconfig) 2102 spa->spa_mode = FREAD; 2103 2104 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2105 2106 spa->spa_load_state = state; 2107 2108 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2109 return (SET_ERROR(EINVAL)); 2110 2111 parse = (type == SPA_IMPORT_EXISTING ? 2112 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2113 2114 /* 2115 * Create "The Godfather" zio to hold all async IOs 2116 */ 2117 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2118 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2119 2120 /* 2121 * Parse the configuration into a vdev tree. We explicitly set the 2122 * value that will be returned by spa_version() since parsing the 2123 * configuration requires knowing the version number. 2124 */ 2125 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2126 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2127 spa_config_exit(spa, SCL_ALL, FTAG); 2128 2129 if (error != 0) 2130 return (error); 2131 2132 ASSERT(spa->spa_root_vdev == rvd); 2133 2134 if (type != SPA_IMPORT_ASSEMBLE) { 2135 ASSERT(spa_guid(spa) == pool_guid); 2136 } 2137 2138 /* 2139 * Try to open all vdevs, loading each label in the process. 2140 */ 2141 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2142 error = vdev_open(rvd); 2143 spa_config_exit(spa, SCL_ALL, FTAG); 2144 if (error != 0) 2145 return (error); 2146 2147 /* 2148 * We need to validate the vdev labels against the configuration that 2149 * we have in hand, which is dependent on the setting of mosconfig. If 2150 * mosconfig is true then we're validating the vdev labels based on 2151 * that config. Otherwise, we're validating against the cached config 2152 * (zpool.cache) that was read when we loaded the zfs module, and then 2153 * later we will recursively call spa_load() and validate against 2154 * the vdev config. 2155 * 2156 * If we're assembling a new pool that's been split off from an 2157 * existing pool, the labels haven't yet been updated so we skip 2158 * validation for now. 2159 */ 2160 if (type != SPA_IMPORT_ASSEMBLE) { 2161 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2162 error = vdev_validate(rvd, mosconfig); 2163 spa_config_exit(spa, SCL_ALL, FTAG); 2164 2165 if (error != 0) 2166 return (error); 2167 2168 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2169 return (SET_ERROR(ENXIO)); 2170 } 2171 2172 /* 2173 * Find the best uberblock. 2174 */ 2175 vdev_uberblock_load(rvd, ub, &label); 2176 2177 /* 2178 * If we weren't able to find a single valid uberblock, return failure. 2179 */ 2180 if (ub->ub_txg == 0) { 2181 nvlist_free(label); 2182 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2183 } 2184 2185 /* 2186 * If the pool has an unsupported version we can't open it. 2187 */ 2188 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2189 nvlist_free(label); 2190 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2191 } 2192 2193 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2194 nvlist_t *features; 2195 2196 /* 2197 * If we weren't able to find what's necessary for reading the 2198 * MOS in the label, return failure. 2199 */ 2200 if (label == NULL || nvlist_lookup_nvlist(label, 2201 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2202 nvlist_free(label); 2203 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2204 ENXIO)); 2205 } 2206 2207 /* 2208 * Update our in-core representation with the definitive values 2209 * from the label. 2210 */ 2211 nvlist_free(spa->spa_label_features); 2212 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2213 } 2214 2215 nvlist_free(label); 2216 2217 /* 2218 * Look through entries in the label nvlist's features_for_read. If 2219 * there is a feature listed there which we don't understand then we 2220 * cannot open a pool. 2221 */ 2222 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2223 nvlist_t *unsup_feat; 2224 2225 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2226 0); 2227 2228 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2229 NULL); nvp != NULL; 2230 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2231 if (!zfeature_is_supported(nvpair_name(nvp))) { 2232 VERIFY(nvlist_add_string(unsup_feat, 2233 nvpair_name(nvp), "") == 0); 2234 } 2235 } 2236 2237 if (!nvlist_empty(unsup_feat)) { 2238 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2239 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2240 nvlist_free(unsup_feat); 2241 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2242 ENOTSUP)); 2243 } 2244 2245 nvlist_free(unsup_feat); 2246 } 2247 2248 /* 2249 * If the vdev guid sum doesn't match the uberblock, we have an 2250 * incomplete configuration. We first check to see if the pool 2251 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2252 * If it is, defer the vdev_guid_sum check till later so we 2253 * can handle missing vdevs. 2254 */ 2255 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2256 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2257 rvd->vdev_guid_sum != ub->ub_guid_sum) 2258 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2259 2260 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2261 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2262 spa_try_repair(spa, config); 2263 spa_config_exit(spa, SCL_ALL, FTAG); 2264 nvlist_free(spa->spa_config_splitting); 2265 spa->spa_config_splitting = NULL; 2266 } 2267 2268 /* 2269 * Initialize internal SPA structures. 2270 */ 2271 spa->spa_state = POOL_STATE_ACTIVE; 2272 spa->spa_ubsync = spa->spa_uberblock; 2273 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2274 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2275 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2276 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2277 spa->spa_claim_max_txg = spa->spa_first_txg; 2278 spa->spa_prev_software_version = ub->ub_software_version; 2279 2280 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2281 if (error) 2282 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2283 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2284 2285 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2286 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2287 2288 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2289 boolean_t missing_feat_read = B_FALSE; 2290 nvlist_t *unsup_feat, *enabled_feat; 2291 2292 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2293 &spa->spa_feat_for_read_obj) != 0) { 2294 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2295 } 2296 2297 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2298 &spa->spa_feat_for_write_obj) != 0) { 2299 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2300 } 2301 2302 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2303 &spa->spa_feat_desc_obj) != 0) { 2304 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2305 } 2306 2307 enabled_feat = fnvlist_alloc(); 2308 unsup_feat = fnvlist_alloc(); 2309 2310 if (!feature_is_supported(spa->spa_meta_objset, 2311 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj, 2312 unsup_feat, enabled_feat)) 2313 missing_feat_read = B_TRUE; 2314 2315 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2316 if (!feature_is_supported(spa->spa_meta_objset, 2317 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj, 2318 unsup_feat, enabled_feat)) { 2319 missing_feat_write = B_TRUE; 2320 } 2321 } 2322 2323 fnvlist_add_nvlist(spa->spa_load_info, 2324 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2325 2326 if (!nvlist_empty(unsup_feat)) { 2327 fnvlist_add_nvlist(spa->spa_load_info, 2328 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2329 } 2330 2331 fnvlist_free(enabled_feat); 2332 fnvlist_free(unsup_feat); 2333 2334 if (!missing_feat_read) { 2335 fnvlist_add_boolean(spa->spa_load_info, 2336 ZPOOL_CONFIG_CAN_RDONLY); 2337 } 2338 2339 /* 2340 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2341 * twofold: to determine whether the pool is available for 2342 * import in read-write mode and (if it is not) whether the 2343 * pool is available for import in read-only mode. If the pool 2344 * is available for import in read-write mode, it is displayed 2345 * as available in userland; if it is not available for import 2346 * in read-only mode, it is displayed as unavailable in 2347 * userland. If the pool is available for import in read-only 2348 * mode but not read-write mode, it is displayed as unavailable 2349 * in userland with a special note that the pool is actually 2350 * available for open in read-only mode. 2351 * 2352 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2353 * missing a feature for write, we must first determine whether 2354 * the pool can be opened read-only before returning to 2355 * userland in order to know whether to display the 2356 * abovementioned note. 2357 */ 2358 if (missing_feat_read || (missing_feat_write && 2359 spa_writeable(spa))) { 2360 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2361 ENOTSUP)); 2362 } 2363 } 2364 2365 spa->spa_is_initializing = B_TRUE; 2366 error = dsl_pool_open(spa->spa_dsl_pool); 2367 spa->spa_is_initializing = B_FALSE; 2368 if (error != 0) 2369 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2370 2371 if (!mosconfig) { 2372 uint64_t hostid; 2373 nvlist_t *policy = NULL, *nvconfig; 2374 2375 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2376 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2377 2378 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2379 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2380 char *hostname; 2381 unsigned long myhostid = 0; 2382 2383 VERIFY(nvlist_lookup_string(nvconfig, 2384 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2385 2386 #ifdef _KERNEL 2387 myhostid = zone_get_hostid(NULL); 2388 #else /* _KERNEL */ 2389 /* 2390 * We're emulating the system's hostid in userland, so 2391 * we can't use zone_get_hostid(). 2392 */ 2393 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2394 #endif /* _KERNEL */ 2395 if (hostid != 0 && myhostid != 0 && 2396 hostid != myhostid) { 2397 nvlist_free(nvconfig); 2398 cmn_err(CE_WARN, "pool '%s' could not be " 2399 "loaded as it was last accessed by " 2400 "another system (host: %s hostid: 0x%lx). " 2401 "See: http://illumos.org/msg/ZFS-8000-EY", 2402 spa_name(spa), hostname, 2403 (unsigned long)hostid); 2404 return (SET_ERROR(EBADF)); 2405 } 2406 } 2407 if (nvlist_lookup_nvlist(spa->spa_config, 2408 ZPOOL_REWIND_POLICY, &policy) == 0) 2409 VERIFY(nvlist_add_nvlist(nvconfig, 2410 ZPOOL_REWIND_POLICY, policy) == 0); 2411 2412 spa_config_set(spa, nvconfig); 2413 spa_unload(spa); 2414 spa_deactivate(spa); 2415 spa_activate(spa, orig_mode); 2416 2417 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2418 } 2419 2420 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2421 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2422 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2423 if (error != 0) 2424 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2425 2426 /* 2427 * Load the bit that tells us to use the new accounting function 2428 * (raid-z deflation). If we have an older pool, this will not 2429 * be present. 2430 */ 2431 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2432 if (error != 0 && error != ENOENT) 2433 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2434 2435 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2436 &spa->spa_creation_version); 2437 if (error != 0 && error != ENOENT) 2438 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2439 2440 /* 2441 * Load the persistent error log. If we have an older pool, this will 2442 * not be present. 2443 */ 2444 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2445 if (error != 0 && error != ENOENT) 2446 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2447 2448 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2449 &spa->spa_errlog_scrub); 2450 if (error != 0 && error != ENOENT) 2451 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2452 2453 /* 2454 * Load the history object. If we have an older pool, this 2455 * will not be present. 2456 */ 2457 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2458 if (error != 0 && error != ENOENT) 2459 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2460 2461 /* 2462 * If we're assembling the pool from the split-off vdevs of 2463 * an existing pool, we don't want to attach the spares & cache 2464 * devices. 2465 */ 2466 2467 /* 2468 * Load any hot spares for this pool. 2469 */ 2470 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2471 if (error != 0 && error != ENOENT) 2472 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2473 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2474 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2475 if (load_nvlist(spa, spa->spa_spares.sav_object, 2476 &spa->spa_spares.sav_config) != 0) 2477 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2478 2479 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2480 spa_load_spares(spa); 2481 spa_config_exit(spa, SCL_ALL, FTAG); 2482 } else if (error == 0) { 2483 spa->spa_spares.sav_sync = B_TRUE; 2484 } 2485 2486 /* 2487 * Load any level 2 ARC devices for this pool. 2488 */ 2489 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2490 &spa->spa_l2cache.sav_object); 2491 if (error != 0 && error != ENOENT) 2492 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2493 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2494 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2495 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2496 &spa->spa_l2cache.sav_config) != 0) 2497 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2498 2499 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2500 spa_load_l2cache(spa); 2501 spa_config_exit(spa, SCL_ALL, FTAG); 2502 } else if (error == 0) { 2503 spa->spa_l2cache.sav_sync = B_TRUE; 2504 } 2505 2506 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2507 2508 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2509 if (error && error != ENOENT) 2510 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2511 2512 if (error == 0) { 2513 uint64_t autoreplace; 2514 2515 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2516 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2517 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2518 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2519 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2520 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2521 &spa->spa_dedup_ditto); 2522 2523 spa->spa_autoreplace = (autoreplace != 0); 2524 } 2525 2526 /* 2527 * If the 'autoreplace' property is set, then post a resource notifying 2528 * the ZFS DE that it should not issue any faults for unopenable 2529 * devices. We also iterate over the vdevs, and post a sysevent for any 2530 * unopenable vdevs so that the normal autoreplace handler can take 2531 * over. 2532 */ 2533 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2534 spa_check_removed(spa->spa_root_vdev); 2535 /* 2536 * For the import case, this is done in spa_import(), because 2537 * at this point we're using the spare definitions from 2538 * the MOS config, not necessarily from the userland config. 2539 */ 2540 if (state != SPA_LOAD_IMPORT) { 2541 spa_aux_check_removed(&spa->spa_spares); 2542 spa_aux_check_removed(&spa->spa_l2cache); 2543 } 2544 } 2545 2546 /* 2547 * Load the vdev state for all toplevel vdevs. 2548 */ 2549 vdev_load(rvd); 2550 2551 /* 2552 * Propagate the leaf DTLs we just loaded all the way up the tree. 2553 */ 2554 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2555 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2556 spa_config_exit(spa, SCL_ALL, FTAG); 2557 2558 /* 2559 * Load the DDTs (dedup tables). 2560 */ 2561 error = ddt_load(spa); 2562 if (error != 0) 2563 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2564 2565 spa_update_dspace(spa); 2566 2567 /* 2568 * Validate the config, using the MOS config to fill in any 2569 * information which might be missing. If we fail to validate 2570 * the config then declare the pool unfit for use. If we're 2571 * assembling a pool from a split, the log is not transferred 2572 * over. 2573 */ 2574 if (type != SPA_IMPORT_ASSEMBLE) { 2575 nvlist_t *nvconfig; 2576 2577 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2578 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2579 2580 if (!spa_config_valid(spa, nvconfig)) { 2581 nvlist_free(nvconfig); 2582 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2583 ENXIO)); 2584 } 2585 nvlist_free(nvconfig); 2586 2587 /* 2588 * Now that we've validated the config, check the state of the 2589 * root vdev. If it can't be opened, it indicates one or 2590 * more toplevel vdevs are faulted. 2591 */ 2592 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2593 return (SET_ERROR(ENXIO)); 2594 2595 if (spa_check_logs(spa)) { 2596 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2597 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2598 } 2599 } 2600 2601 if (missing_feat_write) { 2602 ASSERT(state == SPA_LOAD_TRYIMPORT); 2603 2604 /* 2605 * At this point, we know that we can open the pool in 2606 * read-only mode but not read-write mode. We now have enough 2607 * information and can return to userland. 2608 */ 2609 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2610 } 2611 2612 /* 2613 * We've successfully opened the pool, verify that we're ready 2614 * to start pushing transactions. 2615 */ 2616 if (state != SPA_LOAD_TRYIMPORT) { 2617 if (error = spa_load_verify(spa)) 2618 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2619 error)); 2620 } 2621 2622 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2623 spa->spa_load_max_txg == UINT64_MAX)) { 2624 dmu_tx_t *tx; 2625 int need_update = B_FALSE; 2626 2627 ASSERT(state != SPA_LOAD_TRYIMPORT); 2628 2629 /* 2630 * Claim log blocks that haven't been committed yet. 2631 * This must all happen in a single txg. 2632 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2633 * invoked from zil_claim_log_block()'s i/o done callback. 2634 * Price of rollback is that we abandon the log. 2635 */ 2636 spa->spa_claiming = B_TRUE; 2637 2638 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2639 spa_first_txg(spa)); 2640 (void) dmu_objset_find(spa_name(spa), 2641 zil_claim, tx, DS_FIND_CHILDREN); 2642 dmu_tx_commit(tx); 2643 2644 spa->spa_claiming = B_FALSE; 2645 2646 spa_set_log_state(spa, SPA_LOG_GOOD); 2647 spa->spa_sync_on = B_TRUE; 2648 txg_sync_start(spa->spa_dsl_pool); 2649 2650 /* 2651 * Wait for all claims to sync. We sync up to the highest 2652 * claimed log block birth time so that claimed log blocks 2653 * don't appear to be from the future. spa_claim_max_txg 2654 * will have been set for us by either zil_check_log_chain() 2655 * (invoked from spa_check_logs()) or zil_claim() above. 2656 */ 2657 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2658 2659 /* 2660 * If the config cache is stale, or we have uninitialized 2661 * metaslabs (see spa_vdev_add()), then update the config. 2662 * 2663 * If this is a verbatim import, trust the current 2664 * in-core spa_config and update the disk labels. 2665 */ 2666 if (config_cache_txg != spa->spa_config_txg || 2667 state == SPA_LOAD_IMPORT || 2668 state == SPA_LOAD_RECOVER || 2669 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2670 need_update = B_TRUE; 2671 2672 for (int c = 0; c < rvd->vdev_children; c++) 2673 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2674 need_update = B_TRUE; 2675 2676 /* 2677 * Update the config cache asychronously in case we're the 2678 * root pool, in which case the config cache isn't writable yet. 2679 */ 2680 if (need_update) 2681 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2682 2683 /* 2684 * Check all DTLs to see if anything needs resilvering. 2685 */ 2686 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2687 vdev_resilver_needed(rvd, NULL, NULL)) 2688 spa_async_request(spa, SPA_ASYNC_RESILVER); 2689 2690 /* 2691 * Log the fact that we booted up (so that we can detect if 2692 * we rebooted in the middle of an operation). 2693 */ 2694 spa_history_log_version(spa, "open"); 2695 2696 /* 2697 * Delete any inconsistent datasets. 2698 */ 2699 (void) dmu_objset_find(spa_name(spa), 2700 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2701 2702 /* 2703 * Clean up any stale temporary dataset userrefs. 2704 */ 2705 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2706 } 2707 2708 return (0); 2709 } 2710 2711 static int 2712 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2713 { 2714 int mode = spa->spa_mode; 2715 2716 spa_unload(spa); 2717 spa_deactivate(spa); 2718 2719 spa->spa_load_max_txg--; 2720 2721 spa_activate(spa, mode); 2722 spa_async_suspend(spa); 2723 2724 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2725 } 2726 2727 /* 2728 * If spa_load() fails this function will try loading prior txg's. If 2729 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2730 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2731 * function will not rewind the pool and will return the same error as 2732 * spa_load(). 2733 */ 2734 static int 2735 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2736 uint64_t max_request, int rewind_flags) 2737 { 2738 nvlist_t *loadinfo = NULL; 2739 nvlist_t *config = NULL; 2740 int load_error, rewind_error; 2741 uint64_t safe_rewind_txg; 2742 uint64_t min_txg; 2743 2744 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2745 spa->spa_load_max_txg = spa->spa_load_txg; 2746 spa_set_log_state(spa, SPA_LOG_CLEAR); 2747 } else { 2748 spa->spa_load_max_txg = max_request; 2749 } 2750 2751 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2752 mosconfig); 2753 if (load_error == 0) 2754 return (0); 2755 2756 if (spa->spa_root_vdev != NULL) 2757 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2758 2759 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2760 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2761 2762 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2763 nvlist_free(config); 2764 return (load_error); 2765 } 2766 2767 if (state == SPA_LOAD_RECOVER) { 2768 /* Price of rolling back is discarding txgs, including log */ 2769 spa_set_log_state(spa, SPA_LOG_CLEAR); 2770 } else { 2771 /* 2772 * If we aren't rolling back save the load info from our first 2773 * import attempt so that we can restore it after attempting 2774 * to rewind. 2775 */ 2776 loadinfo = spa->spa_load_info; 2777 spa->spa_load_info = fnvlist_alloc(); 2778 } 2779 2780 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2781 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2782 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2783 TXG_INITIAL : safe_rewind_txg; 2784 2785 /* 2786 * Continue as long as we're finding errors, we're still within 2787 * the acceptable rewind range, and we're still finding uberblocks 2788 */ 2789 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2790 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2791 if (spa->spa_load_max_txg < safe_rewind_txg) 2792 spa->spa_extreme_rewind = B_TRUE; 2793 rewind_error = spa_load_retry(spa, state, mosconfig); 2794 } 2795 2796 spa->spa_extreme_rewind = B_FALSE; 2797 spa->spa_load_max_txg = UINT64_MAX; 2798 2799 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2800 spa_config_set(spa, config); 2801 2802 if (state == SPA_LOAD_RECOVER) { 2803 ASSERT3P(loadinfo, ==, NULL); 2804 return (rewind_error); 2805 } else { 2806 /* Store the rewind info as part of the initial load info */ 2807 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2808 spa->spa_load_info); 2809 2810 /* Restore the initial load info */ 2811 fnvlist_free(spa->spa_load_info); 2812 spa->spa_load_info = loadinfo; 2813 2814 return (load_error); 2815 } 2816 } 2817 2818 /* 2819 * Pool Open/Import 2820 * 2821 * The import case is identical to an open except that the configuration is sent 2822 * down from userland, instead of grabbed from the configuration cache. For the 2823 * case of an open, the pool configuration will exist in the 2824 * POOL_STATE_UNINITIALIZED state. 2825 * 2826 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2827 * the same time open the pool, without having to keep around the spa_t in some 2828 * ambiguous state. 2829 */ 2830 static int 2831 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2832 nvlist_t **config) 2833 { 2834 spa_t *spa; 2835 spa_load_state_t state = SPA_LOAD_OPEN; 2836 int error; 2837 int locked = B_FALSE; 2838 2839 *spapp = NULL; 2840 2841 /* 2842 * As disgusting as this is, we need to support recursive calls to this 2843 * function because dsl_dir_open() is called during spa_load(), and ends 2844 * up calling spa_open() again. The real fix is to figure out how to 2845 * avoid dsl_dir_open() calling this in the first place. 2846 */ 2847 if (mutex_owner(&spa_namespace_lock) != curthread) { 2848 mutex_enter(&spa_namespace_lock); 2849 locked = B_TRUE; 2850 } 2851 2852 if ((spa = spa_lookup(pool)) == NULL) { 2853 if (locked) 2854 mutex_exit(&spa_namespace_lock); 2855 return (SET_ERROR(ENOENT)); 2856 } 2857 2858 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2859 zpool_rewind_policy_t policy; 2860 2861 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2862 &policy); 2863 if (policy.zrp_request & ZPOOL_DO_REWIND) 2864 state = SPA_LOAD_RECOVER; 2865 2866 spa_activate(spa, spa_mode_global); 2867 2868 if (state != SPA_LOAD_RECOVER) 2869 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2870 2871 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2872 policy.zrp_request); 2873 2874 if (error == EBADF) { 2875 /* 2876 * If vdev_validate() returns failure (indicated by 2877 * EBADF), it indicates that one of the vdevs indicates 2878 * that the pool has been exported or destroyed. If 2879 * this is the case, the config cache is out of sync and 2880 * we should remove the pool from the namespace. 2881 */ 2882 spa_unload(spa); 2883 spa_deactivate(spa); 2884 spa_config_sync(spa, B_TRUE, B_TRUE); 2885 spa_remove(spa); 2886 if (locked) 2887 mutex_exit(&spa_namespace_lock); 2888 return (SET_ERROR(ENOENT)); 2889 } 2890 2891 if (error) { 2892 /* 2893 * We can't open the pool, but we still have useful 2894 * information: the state of each vdev after the 2895 * attempted vdev_open(). Return this to the user. 2896 */ 2897 if (config != NULL && spa->spa_config) { 2898 VERIFY(nvlist_dup(spa->spa_config, config, 2899 KM_SLEEP) == 0); 2900 VERIFY(nvlist_add_nvlist(*config, 2901 ZPOOL_CONFIG_LOAD_INFO, 2902 spa->spa_load_info) == 0); 2903 } 2904 spa_unload(spa); 2905 spa_deactivate(spa); 2906 spa->spa_last_open_failed = error; 2907 if (locked) 2908 mutex_exit(&spa_namespace_lock); 2909 *spapp = NULL; 2910 return (error); 2911 } 2912 } 2913 2914 spa_open_ref(spa, tag); 2915 2916 if (config != NULL) 2917 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2918 2919 /* 2920 * If we've recovered the pool, pass back any information we 2921 * gathered while doing the load. 2922 */ 2923 if (state == SPA_LOAD_RECOVER) { 2924 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2925 spa->spa_load_info) == 0); 2926 } 2927 2928 if (locked) { 2929 spa->spa_last_open_failed = 0; 2930 spa->spa_last_ubsync_txg = 0; 2931 spa->spa_load_txg = 0; 2932 mutex_exit(&spa_namespace_lock); 2933 } 2934 2935 *spapp = spa; 2936 2937 return (0); 2938 } 2939 2940 int 2941 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2942 nvlist_t **config) 2943 { 2944 return (spa_open_common(name, spapp, tag, policy, config)); 2945 } 2946 2947 int 2948 spa_open(const char *name, spa_t **spapp, void *tag) 2949 { 2950 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2951 } 2952 2953 /* 2954 * Lookup the given spa_t, incrementing the inject count in the process, 2955 * preventing it from being exported or destroyed. 2956 */ 2957 spa_t * 2958 spa_inject_addref(char *name) 2959 { 2960 spa_t *spa; 2961 2962 mutex_enter(&spa_namespace_lock); 2963 if ((spa = spa_lookup(name)) == NULL) { 2964 mutex_exit(&spa_namespace_lock); 2965 return (NULL); 2966 } 2967 spa->spa_inject_ref++; 2968 mutex_exit(&spa_namespace_lock); 2969 2970 return (spa); 2971 } 2972 2973 void 2974 spa_inject_delref(spa_t *spa) 2975 { 2976 mutex_enter(&spa_namespace_lock); 2977 spa->spa_inject_ref--; 2978 mutex_exit(&spa_namespace_lock); 2979 } 2980 2981 /* 2982 * Add spares device information to the nvlist. 2983 */ 2984 static void 2985 spa_add_spares(spa_t *spa, nvlist_t *config) 2986 { 2987 nvlist_t **spares; 2988 uint_t i, nspares; 2989 nvlist_t *nvroot; 2990 uint64_t guid; 2991 vdev_stat_t *vs; 2992 uint_t vsc; 2993 uint64_t pool; 2994 2995 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2996 2997 if (spa->spa_spares.sav_count == 0) 2998 return; 2999 3000 VERIFY(nvlist_lookup_nvlist(config, 3001 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3002 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3003 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3004 if (nspares != 0) { 3005 VERIFY(nvlist_add_nvlist_array(nvroot, 3006 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3007 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3008 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3009 3010 /* 3011 * Go through and find any spares which have since been 3012 * repurposed as an active spare. If this is the case, update 3013 * their status appropriately. 3014 */ 3015 for (i = 0; i < nspares; i++) { 3016 VERIFY(nvlist_lookup_uint64(spares[i], 3017 ZPOOL_CONFIG_GUID, &guid) == 0); 3018 if (spa_spare_exists(guid, &pool, NULL) && 3019 pool != 0ULL) { 3020 VERIFY(nvlist_lookup_uint64_array( 3021 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3022 (uint64_t **)&vs, &vsc) == 0); 3023 vs->vs_state = VDEV_STATE_CANT_OPEN; 3024 vs->vs_aux = VDEV_AUX_SPARED; 3025 } 3026 } 3027 } 3028 } 3029 3030 /* 3031 * Add l2cache device information to the nvlist, including vdev stats. 3032 */ 3033 static void 3034 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3035 { 3036 nvlist_t **l2cache; 3037 uint_t i, j, nl2cache; 3038 nvlist_t *nvroot; 3039 uint64_t guid; 3040 vdev_t *vd; 3041 vdev_stat_t *vs; 3042 uint_t vsc; 3043 3044 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3045 3046 if (spa->spa_l2cache.sav_count == 0) 3047 return; 3048 3049 VERIFY(nvlist_lookup_nvlist(config, 3050 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3051 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3052 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3053 if (nl2cache != 0) { 3054 VERIFY(nvlist_add_nvlist_array(nvroot, 3055 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3056 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3057 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3058 3059 /* 3060 * Update level 2 cache device stats. 3061 */ 3062 3063 for (i = 0; i < nl2cache; i++) { 3064 VERIFY(nvlist_lookup_uint64(l2cache[i], 3065 ZPOOL_CONFIG_GUID, &guid) == 0); 3066 3067 vd = NULL; 3068 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3069 if (guid == 3070 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3071 vd = spa->spa_l2cache.sav_vdevs[j]; 3072 break; 3073 } 3074 } 3075 ASSERT(vd != NULL); 3076 3077 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3078 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3079 == 0); 3080 vdev_get_stats(vd, vs); 3081 } 3082 } 3083 } 3084 3085 static void 3086 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3087 { 3088 nvlist_t *features; 3089 zap_cursor_t zc; 3090 zap_attribute_t za; 3091 3092 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3093 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3094 3095 if (spa->spa_feat_for_read_obj != 0) { 3096 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3097 spa->spa_feat_for_read_obj); 3098 zap_cursor_retrieve(&zc, &za) == 0; 3099 zap_cursor_advance(&zc)) { 3100 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3101 za.za_num_integers == 1); 3102 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3103 za.za_first_integer)); 3104 } 3105 zap_cursor_fini(&zc); 3106 } 3107 3108 if (spa->spa_feat_for_write_obj != 0) { 3109 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3110 spa->spa_feat_for_write_obj); 3111 zap_cursor_retrieve(&zc, &za) == 0; 3112 zap_cursor_advance(&zc)) { 3113 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3114 za.za_num_integers == 1); 3115 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3116 za.za_first_integer)); 3117 } 3118 zap_cursor_fini(&zc); 3119 } 3120 3121 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3122 features) == 0); 3123 nvlist_free(features); 3124 } 3125 3126 int 3127 spa_get_stats(const char *name, nvlist_t **config, 3128 char *altroot, size_t buflen) 3129 { 3130 int error; 3131 spa_t *spa; 3132 3133 *config = NULL; 3134 error = spa_open_common(name, &spa, FTAG, NULL, config); 3135 3136 if (spa != NULL) { 3137 /* 3138 * This still leaves a window of inconsistency where the spares 3139 * or l2cache devices could change and the config would be 3140 * self-inconsistent. 3141 */ 3142 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3143 3144 if (*config != NULL) { 3145 uint64_t loadtimes[2]; 3146 3147 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3148 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3149 VERIFY(nvlist_add_uint64_array(*config, 3150 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3151 3152 VERIFY(nvlist_add_uint64(*config, 3153 ZPOOL_CONFIG_ERRCOUNT, 3154 spa_get_errlog_size(spa)) == 0); 3155 3156 if (spa_suspended(spa)) 3157 VERIFY(nvlist_add_uint64(*config, 3158 ZPOOL_CONFIG_SUSPENDED, 3159 spa->spa_failmode) == 0); 3160 3161 spa_add_spares(spa, *config); 3162 spa_add_l2cache(spa, *config); 3163 spa_add_feature_stats(spa, *config); 3164 } 3165 } 3166 3167 /* 3168 * We want to get the alternate root even for faulted pools, so we cheat 3169 * and call spa_lookup() directly. 3170 */ 3171 if (altroot) { 3172 if (spa == NULL) { 3173 mutex_enter(&spa_namespace_lock); 3174 spa = spa_lookup(name); 3175 if (spa) 3176 spa_altroot(spa, altroot, buflen); 3177 else 3178 altroot[0] = '\0'; 3179 spa = NULL; 3180 mutex_exit(&spa_namespace_lock); 3181 } else { 3182 spa_altroot(spa, altroot, buflen); 3183 } 3184 } 3185 3186 if (spa != NULL) { 3187 spa_config_exit(spa, SCL_CONFIG, FTAG); 3188 spa_close(spa, FTAG); 3189 } 3190 3191 return (error); 3192 } 3193 3194 /* 3195 * Validate that the auxiliary device array is well formed. We must have an 3196 * array of nvlists, each which describes a valid leaf vdev. If this is an 3197 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3198 * specified, as long as they are well-formed. 3199 */ 3200 static int 3201 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3202 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3203 vdev_labeltype_t label) 3204 { 3205 nvlist_t **dev; 3206 uint_t i, ndev; 3207 vdev_t *vd; 3208 int error; 3209 3210 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3211 3212 /* 3213 * It's acceptable to have no devs specified. 3214 */ 3215 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3216 return (0); 3217 3218 if (ndev == 0) 3219 return (SET_ERROR(EINVAL)); 3220 3221 /* 3222 * Make sure the pool is formatted with a version that supports this 3223 * device type. 3224 */ 3225 if (spa_version(spa) < version) 3226 return (SET_ERROR(ENOTSUP)); 3227 3228 /* 3229 * Set the pending device list so we correctly handle device in-use 3230 * checking. 3231 */ 3232 sav->sav_pending = dev; 3233 sav->sav_npending = ndev; 3234 3235 for (i = 0; i < ndev; i++) { 3236 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3237 mode)) != 0) 3238 goto out; 3239 3240 if (!vd->vdev_ops->vdev_op_leaf) { 3241 vdev_free(vd); 3242 error = SET_ERROR(EINVAL); 3243 goto out; 3244 } 3245 3246 /* 3247 * The L2ARC currently only supports disk devices in 3248 * kernel context. For user-level testing, we allow it. 3249 */ 3250 #ifdef _KERNEL 3251 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3252 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3253 error = SET_ERROR(ENOTBLK); 3254 vdev_free(vd); 3255 goto out; 3256 } 3257 #endif 3258 vd->vdev_top = vd; 3259 3260 if ((error = vdev_open(vd)) == 0 && 3261 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3262 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3263 vd->vdev_guid) == 0); 3264 } 3265 3266 vdev_free(vd); 3267 3268 if (error && 3269 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3270 goto out; 3271 else 3272 error = 0; 3273 } 3274 3275 out: 3276 sav->sav_pending = NULL; 3277 sav->sav_npending = 0; 3278 return (error); 3279 } 3280 3281 static int 3282 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3283 { 3284 int error; 3285 3286 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3287 3288 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3289 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3290 VDEV_LABEL_SPARE)) != 0) { 3291 return (error); 3292 } 3293 3294 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3295 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3296 VDEV_LABEL_L2CACHE)); 3297 } 3298 3299 static void 3300 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3301 const char *config) 3302 { 3303 int i; 3304 3305 if (sav->sav_config != NULL) { 3306 nvlist_t **olddevs; 3307 uint_t oldndevs; 3308 nvlist_t **newdevs; 3309 3310 /* 3311 * Generate new dev list by concatentating with the 3312 * current dev list. 3313 */ 3314 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3315 &olddevs, &oldndevs) == 0); 3316 3317 newdevs = kmem_alloc(sizeof (void *) * 3318 (ndevs + oldndevs), KM_SLEEP); 3319 for (i = 0; i < oldndevs; i++) 3320 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3321 KM_SLEEP) == 0); 3322 for (i = 0; i < ndevs; i++) 3323 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3324 KM_SLEEP) == 0); 3325 3326 VERIFY(nvlist_remove(sav->sav_config, config, 3327 DATA_TYPE_NVLIST_ARRAY) == 0); 3328 3329 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3330 config, newdevs, ndevs + oldndevs) == 0); 3331 for (i = 0; i < oldndevs + ndevs; i++) 3332 nvlist_free(newdevs[i]); 3333 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3334 } else { 3335 /* 3336 * Generate a new dev list. 3337 */ 3338 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3339 KM_SLEEP) == 0); 3340 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3341 devs, ndevs) == 0); 3342 } 3343 } 3344 3345 /* 3346 * Stop and drop level 2 ARC devices 3347 */ 3348 void 3349 spa_l2cache_drop(spa_t *spa) 3350 { 3351 vdev_t *vd; 3352 int i; 3353 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3354 3355 for (i = 0; i < sav->sav_count; i++) { 3356 uint64_t pool; 3357 3358 vd = sav->sav_vdevs[i]; 3359 ASSERT(vd != NULL); 3360 3361 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3362 pool != 0ULL && l2arc_vdev_present(vd)) 3363 l2arc_remove_vdev(vd); 3364 } 3365 } 3366 3367 /* 3368 * Pool Creation 3369 */ 3370 int 3371 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3372 nvlist_t *zplprops) 3373 { 3374 spa_t *spa; 3375 char *altroot = NULL; 3376 vdev_t *rvd; 3377 dsl_pool_t *dp; 3378 dmu_tx_t *tx; 3379 int error = 0; 3380 uint64_t txg = TXG_INITIAL; 3381 nvlist_t **spares, **l2cache; 3382 uint_t nspares, nl2cache; 3383 uint64_t version, obj; 3384 boolean_t has_features; 3385 3386 /* 3387 * If this pool already exists, return failure. 3388 */ 3389 mutex_enter(&spa_namespace_lock); 3390 if (spa_lookup(pool) != NULL) { 3391 mutex_exit(&spa_namespace_lock); 3392 return (SET_ERROR(EEXIST)); 3393 } 3394 3395 /* 3396 * Allocate a new spa_t structure. 3397 */ 3398 (void) nvlist_lookup_string(props, 3399 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3400 spa = spa_add(pool, NULL, altroot); 3401 spa_activate(spa, spa_mode_global); 3402 3403 if (props && (error = spa_prop_validate(spa, props))) { 3404 spa_deactivate(spa); 3405 spa_remove(spa); 3406 mutex_exit(&spa_namespace_lock); 3407 return (error); 3408 } 3409 3410 has_features = B_FALSE; 3411 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3412 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3413 if (zpool_prop_feature(nvpair_name(elem))) 3414 has_features = B_TRUE; 3415 } 3416 3417 if (has_features || nvlist_lookup_uint64(props, 3418 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3419 version = SPA_VERSION; 3420 } 3421 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3422 3423 spa->spa_first_txg = txg; 3424 spa->spa_uberblock.ub_txg = txg - 1; 3425 spa->spa_uberblock.ub_version = version; 3426 spa->spa_ubsync = spa->spa_uberblock; 3427 3428 /* 3429 * Create "The Godfather" zio to hold all async IOs 3430 */ 3431 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 3432 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 3433 3434 /* 3435 * Create the root vdev. 3436 */ 3437 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3438 3439 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3440 3441 ASSERT(error != 0 || rvd != NULL); 3442 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3443 3444 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3445 error = SET_ERROR(EINVAL); 3446 3447 if (error == 0 && 3448 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3449 (error = spa_validate_aux(spa, nvroot, txg, 3450 VDEV_ALLOC_ADD)) == 0) { 3451 for (int c = 0; c < rvd->vdev_children; c++) { 3452 vdev_metaslab_set_size(rvd->vdev_child[c]); 3453 vdev_expand(rvd->vdev_child[c], txg); 3454 } 3455 } 3456 3457 spa_config_exit(spa, SCL_ALL, FTAG); 3458 3459 if (error != 0) { 3460 spa_unload(spa); 3461 spa_deactivate(spa); 3462 spa_remove(spa); 3463 mutex_exit(&spa_namespace_lock); 3464 return (error); 3465 } 3466 3467 /* 3468 * Get the list of spares, if specified. 3469 */ 3470 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3471 &spares, &nspares) == 0) { 3472 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3473 KM_SLEEP) == 0); 3474 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3475 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3476 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3477 spa_load_spares(spa); 3478 spa_config_exit(spa, SCL_ALL, FTAG); 3479 spa->spa_spares.sav_sync = B_TRUE; 3480 } 3481 3482 /* 3483 * Get the list of level 2 cache devices, if specified. 3484 */ 3485 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3486 &l2cache, &nl2cache) == 0) { 3487 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3488 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3489 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3490 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3491 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3492 spa_load_l2cache(spa); 3493 spa_config_exit(spa, SCL_ALL, FTAG); 3494 spa->spa_l2cache.sav_sync = B_TRUE; 3495 } 3496 3497 spa->spa_is_initializing = B_TRUE; 3498 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3499 spa->spa_meta_objset = dp->dp_meta_objset; 3500 spa->spa_is_initializing = B_FALSE; 3501 3502 /* 3503 * Create DDTs (dedup tables). 3504 */ 3505 ddt_create(spa); 3506 3507 spa_update_dspace(spa); 3508 3509 tx = dmu_tx_create_assigned(dp, txg); 3510 3511 /* 3512 * Create the pool config object. 3513 */ 3514 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3515 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3516 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3517 3518 if (zap_add(spa->spa_meta_objset, 3519 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3520 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3521 cmn_err(CE_PANIC, "failed to add pool config"); 3522 } 3523 3524 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3525 spa_feature_create_zap_objects(spa, tx); 3526 3527 if (zap_add(spa->spa_meta_objset, 3528 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3529 sizeof (uint64_t), 1, &version, tx) != 0) { 3530 cmn_err(CE_PANIC, "failed to add pool version"); 3531 } 3532 3533 /* Newly created pools with the right version are always deflated. */ 3534 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3535 spa->spa_deflate = TRUE; 3536 if (zap_add(spa->spa_meta_objset, 3537 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3538 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3539 cmn_err(CE_PANIC, "failed to add deflate"); 3540 } 3541 } 3542 3543 /* 3544 * Create the deferred-free bpobj. Turn off compression 3545 * because sync-to-convergence takes longer if the blocksize 3546 * keeps changing. 3547 */ 3548 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3549 dmu_object_set_compress(spa->spa_meta_objset, obj, 3550 ZIO_COMPRESS_OFF, tx); 3551 if (zap_add(spa->spa_meta_objset, 3552 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3553 sizeof (uint64_t), 1, &obj, tx) != 0) { 3554 cmn_err(CE_PANIC, "failed to add bpobj"); 3555 } 3556 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3557 spa->spa_meta_objset, obj)); 3558 3559 /* 3560 * Create the pool's history object. 3561 */ 3562 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3563 spa_history_create_obj(spa, tx); 3564 3565 /* 3566 * Set pool properties. 3567 */ 3568 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3569 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3570 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3571 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3572 3573 if (props != NULL) { 3574 spa_configfile_set(spa, props, B_FALSE); 3575 spa_sync_props(props, tx); 3576 } 3577 3578 dmu_tx_commit(tx); 3579 3580 spa->spa_sync_on = B_TRUE; 3581 txg_sync_start(spa->spa_dsl_pool); 3582 3583 /* 3584 * We explicitly wait for the first transaction to complete so that our 3585 * bean counters are appropriately updated. 3586 */ 3587 txg_wait_synced(spa->spa_dsl_pool, txg); 3588 3589 spa_config_sync(spa, B_FALSE, B_TRUE); 3590 3591 spa_history_log_version(spa, "create"); 3592 3593 spa->spa_minref = refcount_count(&spa->spa_refcount); 3594 3595 mutex_exit(&spa_namespace_lock); 3596 3597 return (0); 3598 } 3599 3600 #ifdef _KERNEL 3601 /* 3602 * Get the root pool information from the root disk, then import the root pool 3603 * during the system boot up time. 3604 */ 3605 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3606 3607 static nvlist_t * 3608 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3609 { 3610 nvlist_t *config; 3611 nvlist_t *nvtop, *nvroot; 3612 uint64_t pgid; 3613 3614 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3615 return (NULL); 3616 3617 /* 3618 * Add this top-level vdev to the child array. 3619 */ 3620 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3621 &nvtop) == 0); 3622 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3623 &pgid) == 0); 3624 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3625 3626 /* 3627 * Put this pool's top-level vdevs into a root vdev. 3628 */ 3629 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3630 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3631 VDEV_TYPE_ROOT) == 0); 3632 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3633 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3634 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3635 &nvtop, 1) == 0); 3636 3637 /* 3638 * Replace the existing vdev_tree with the new root vdev in 3639 * this pool's configuration (remove the old, add the new). 3640 */ 3641 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3642 nvlist_free(nvroot); 3643 return (config); 3644 } 3645 3646 /* 3647 * Walk the vdev tree and see if we can find a device with "better" 3648 * configuration. A configuration is "better" if the label on that 3649 * device has a more recent txg. 3650 */ 3651 static void 3652 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3653 { 3654 for (int c = 0; c < vd->vdev_children; c++) 3655 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3656 3657 if (vd->vdev_ops->vdev_op_leaf) { 3658 nvlist_t *label; 3659 uint64_t label_txg; 3660 3661 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3662 &label) != 0) 3663 return; 3664 3665 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3666 &label_txg) == 0); 3667 3668 /* 3669 * Do we have a better boot device? 3670 */ 3671 if (label_txg > *txg) { 3672 *txg = label_txg; 3673 *avd = vd; 3674 } 3675 nvlist_free(label); 3676 } 3677 } 3678 3679 /* 3680 * Import a root pool. 3681 * 3682 * For x86. devpath_list will consist of devid and/or physpath name of 3683 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3684 * The GRUB "findroot" command will return the vdev we should boot. 3685 * 3686 * For Sparc, devpath_list consists the physpath name of the booting device 3687 * no matter the rootpool is a single device pool or a mirrored pool. 3688 * e.g. 3689 * "/pci@1f,0/ide@d/disk@0,0:a" 3690 */ 3691 int 3692 spa_import_rootpool(char *devpath, char *devid) 3693 { 3694 spa_t *spa; 3695 vdev_t *rvd, *bvd, *avd = NULL; 3696 nvlist_t *config, *nvtop; 3697 uint64_t guid, txg; 3698 char *pname; 3699 int error; 3700 3701 /* 3702 * Read the label from the boot device and generate a configuration. 3703 */ 3704 config = spa_generate_rootconf(devpath, devid, &guid); 3705 #if defined(_OBP) && defined(_KERNEL) 3706 if (config == NULL) { 3707 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3708 /* iscsi boot */ 3709 get_iscsi_bootpath_phy(devpath); 3710 config = spa_generate_rootconf(devpath, devid, &guid); 3711 } 3712 } 3713 #endif 3714 if (config == NULL) { 3715 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3716 devpath); 3717 return (SET_ERROR(EIO)); 3718 } 3719 3720 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3721 &pname) == 0); 3722 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3723 3724 mutex_enter(&spa_namespace_lock); 3725 if ((spa = spa_lookup(pname)) != NULL) { 3726 /* 3727 * Remove the existing root pool from the namespace so that we 3728 * can replace it with the correct config we just read in. 3729 */ 3730 spa_remove(spa); 3731 } 3732 3733 spa = spa_add(pname, config, NULL); 3734 spa->spa_is_root = B_TRUE; 3735 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3736 3737 /* 3738 * Build up a vdev tree based on the boot device's label config. 3739 */ 3740 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3741 &nvtop) == 0); 3742 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3743 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3744 VDEV_ALLOC_ROOTPOOL); 3745 spa_config_exit(spa, SCL_ALL, FTAG); 3746 if (error) { 3747 mutex_exit(&spa_namespace_lock); 3748 nvlist_free(config); 3749 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3750 pname); 3751 return (error); 3752 } 3753 3754 /* 3755 * Get the boot vdev. 3756 */ 3757 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3758 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3759 (u_longlong_t)guid); 3760 error = SET_ERROR(ENOENT); 3761 goto out; 3762 } 3763 3764 /* 3765 * Determine if there is a better boot device. 3766 */ 3767 avd = bvd; 3768 spa_alt_rootvdev(rvd, &avd, &txg); 3769 if (avd != bvd) { 3770 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3771 "try booting from '%s'", avd->vdev_path); 3772 error = SET_ERROR(EINVAL); 3773 goto out; 3774 } 3775 3776 /* 3777 * If the boot device is part of a spare vdev then ensure that 3778 * we're booting off the active spare. 3779 */ 3780 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3781 !bvd->vdev_isspare) { 3782 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3783 "try booting from '%s'", 3784 bvd->vdev_parent-> 3785 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3786 error = SET_ERROR(EINVAL); 3787 goto out; 3788 } 3789 3790 error = 0; 3791 out: 3792 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3793 vdev_free(rvd); 3794 spa_config_exit(spa, SCL_ALL, FTAG); 3795 mutex_exit(&spa_namespace_lock); 3796 3797 nvlist_free(config); 3798 return (error); 3799 } 3800 3801 #endif 3802 3803 /* 3804 * Import a non-root pool into the system. 3805 */ 3806 int 3807 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3808 { 3809 spa_t *spa; 3810 char *altroot = NULL; 3811 spa_load_state_t state = SPA_LOAD_IMPORT; 3812 zpool_rewind_policy_t policy; 3813 uint64_t mode = spa_mode_global; 3814 uint64_t readonly = B_FALSE; 3815 int error; 3816 nvlist_t *nvroot; 3817 nvlist_t **spares, **l2cache; 3818 uint_t nspares, nl2cache; 3819 3820 /* 3821 * If a pool with this name exists, return failure. 3822 */ 3823 mutex_enter(&spa_namespace_lock); 3824 if (spa_lookup(pool) != NULL) { 3825 mutex_exit(&spa_namespace_lock); 3826 return (SET_ERROR(EEXIST)); 3827 } 3828 3829 /* 3830 * Create and initialize the spa structure. 3831 */ 3832 (void) nvlist_lookup_string(props, 3833 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3834 (void) nvlist_lookup_uint64(props, 3835 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3836 if (readonly) 3837 mode = FREAD; 3838 spa = spa_add(pool, config, altroot); 3839 spa->spa_import_flags = flags; 3840 3841 /* 3842 * Verbatim import - Take a pool and insert it into the namespace 3843 * as if it had been loaded at boot. 3844 */ 3845 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3846 if (props != NULL) 3847 spa_configfile_set(spa, props, B_FALSE); 3848 3849 spa_config_sync(spa, B_FALSE, B_TRUE); 3850 3851 mutex_exit(&spa_namespace_lock); 3852 spa_history_log_version(spa, "import"); 3853 3854 return (0); 3855 } 3856 3857 spa_activate(spa, mode); 3858 3859 /* 3860 * Don't start async tasks until we know everything is healthy. 3861 */ 3862 spa_async_suspend(spa); 3863 3864 zpool_get_rewind_policy(config, &policy); 3865 if (policy.zrp_request & ZPOOL_DO_REWIND) 3866 state = SPA_LOAD_RECOVER; 3867 3868 /* 3869 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3870 * because the user-supplied config is actually the one to trust when 3871 * doing an import. 3872 */ 3873 if (state != SPA_LOAD_RECOVER) 3874 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3875 3876 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3877 policy.zrp_request); 3878 3879 /* 3880 * Propagate anything learned while loading the pool and pass it 3881 * back to caller (i.e. rewind info, missing devices, etc). 3882 */ 3883 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3884 spa->spa_load_info) == 0); 3885 3886 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3887 /* 3888 * Toss any existing sparelist, as it doesn't have any validity 3889 * anymore, and conflicts with spa_has_spare(). 3890 */ 3891 if (spa->spa_spares.sav_config) { 3892 nvlist_free(spa->spa_spares.sav_config); 3893 spa->spa_spares.sav_config = NULL; 3894 spa_load_spares(spa); 3895 } 3896 3897 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3898 &nvroot) == 0); 3899 if (error == 0) 3900 error = spa_validate_aux(spa, nvroot, -1ULL, 3901 VDEV_ALLOC_SPARE); 3902 if (error == 0) 3903 error = spa_validate_aux(spa, nvroot, -1ULL, 3904 VDEV_ALLOC_L2CACHE); 3905 spa_config_exit(spa, SCL_ALL, FTAG); 3906 3907 if (props != NULL) 3908 spa_configfile_set(spa, props, B_FALSE); 3909 3910 if (error != 0 || (props && spa_writeable(spa) && 3911 (error = spa_prop_set(spa, props)))) { 3912 spa_unload(spa); 3913 spa_deactivate(spa); 3914 spa_remove(spa); 3915 mutex_exit(&spa_namespace_lock); 3916 return (error); 3917 } 3918 3919 spa_async_resume(spa); 3920 3921 /* 3922 * Override any spares and level 2 cache devices as specified by 3923 * the user, as these may have correct device names/devids, etc. 3924 */ 3925 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3926 &spares, &nspares) == 0) { 3927 if (spa->spa_spares.sav_config) 3928 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3929 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3930 else 3931 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3932 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3933 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3934 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3935 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3936 spa_load_spares(spa); 3937 spa_config_exit(spa, SCL_ALL, FTAG); 3938 spa->spa_spares.sav_sync = B_TRUE; 3939 } 3940 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3941 &l2cache, &nl2cache) == 0) { 3942 if (spa->spa_l2cache.sav_config) 3943 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3944 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3945 else 3946 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3947 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3948 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3949 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3950 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3951 spa_load_l2cache(spa); 3952 spa_config_exit(spa, SCL_ALL, FTAG); 3953 spa->spa_l2cache.sav_sync = B_TRUE; 3954 } 3955 3956 /* 3957 * Check for any removed devices. 3958 */ 3959 if (spa->spa_autoreplace) { 3960 spa_aux_check_removed(&spa->spa_spares); 3961 spa_aux_check_removed(&spa->spa_l2cache); 3962 } 3963 3964 if (spa_writeable(spa)) { 3965 /* 3966 * Update the config cache to include the newly-imported pool. 3967 */ 3968 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3969 } 3970 3971 /* 3972 * It's possible that the pool was expanded while it was exported. 3973 * We kick off an async task to handle this for us. 3974 */ 3975 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3976 3977 mutex_exit(&spa_namespace_lock); 3978 spa_history_log_version(spa, "import"); 3979 3980 return (0); 3981 } 3982 3983 nvlist_t * 3984 spa_tryimport(nvlist_t *tryconfig) 3985 { 3986 nvlist_t *config = NULL; 3987 char *poolname; 3988 spa_t *spa; 3989 uint64_t state; 3990 int error; 3991 3992 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3993 return (NULL); 3994 3995 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3996 return (NULL); 3997 3998 /* 3999 * Create and initialize the spa structure. 4000 */ 4001 mutex_enter(&spa_namespace_lock); 4002 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4003 spa_activate(spa, FREAD); 4004 4005 /* 4006 * Pass off the heavy lifting to spa_load(). 4007 * Pass TRUE for mosconfig because the user-supplied config 4008 * is actually the one to trust when doing an import. 4009 */ 4010 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4011 4012 /* 4013 * If 'tryconfig' was at least parsable, return the current config. 4014 */ 4015 if (spa->spa_root_vdev != NULL) { 4016 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4017 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4018 poolname) == 0); 4019 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4020 state) == 0); 4021 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4022 spa->spa_uberblock.ub_timestamp) == 0); 4023 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4024 spa->spa_load_info) == 0); 4025 4026 /* 4027 * If the bootfs property exists on this pool then we 4028 * copy it out so that external consumers can tell which 4029 * pools are bootable. 4030 */ 4031 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4032 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4033 4034 /* 4035 * We have to play games with the name since the 4036 * pool was opened as TRYIMPORT_NAME. 4037 */ 4038 if (dsl_dsobj_to_dsname(spa_name(spa), 4039 spa->spa_bootfs, tmpname) == 0) { 4040 char *cp; 4041 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4042 4043 cp = strchr(tmpname, '/'); 4044 if (cp == NULL) { 4045 (void) strlcpy(dsname, tmpname, 4046 MAXPATHLEN); 4047 } else { 4048 (void) snprintf(dsname, MAXPATHLEN, 4049 "%s/%s", poolname, ++cp); 4050 } 4051 VERIFY(nvlist_add_string(config, 4052 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4053 kmem_free(dsname, MAXPATHLEN); 4054 } 4055 kmem_free(tmpname, MAXPATHLEN); 4056 } 4057 4058 /* 4059 * Add the list of hot spares and level 2 cache devices. 4060 */ 4061 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4062 spa_add_spares(spa, config); 4063 spa_add_l2cache(spa, config); 4064 spa_config_exit(spa, SCL_CONFIG, FTAG); 4065 } 4066 4067 spa_unload(spa); 4068 spa_deactivate(spa); 4069 spa_remove(spa); 4070 mutex_exit(&spa_namespace_lock); 4071 4072 return (config); 4073 } 4074 4075 /* 4076 * Pool export/destroy 4077 * 4078 * The act of destroying or exporting a pool is very simple. We make sure there 4079 * is no more pending I/O and any references to the pool are gone. Then, we 4080 * update the pool state and sync all the labels to disk, removing the 4081 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4082 * we don't sync the labels or remove the configuration cache. 4083 */ 4084 static int 4085 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4086 boolean_t force, boolean_t hardforce) 4087 { 4088 spa_t *spa; 4089 4090 if (oldconfig) 4091 *oldconfig = NULL; 4092 4093 if (!(spa_mode_global & FWRITE)) 4094 return (SET_ERROR(EROFS)); 4095 4096 mutex_enter(&spa_namespace_lock); 4097 if ((spa = spa_lookup(pool)) == NULL) { 4098 mutex_exit(&spa_namespace_lock); 4099 return (SET_ERROR(ENOENT)); 4100 } 4101 4102 /* 4103 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4104 * reacquire the namespace lock, and see if we can export. 4105 */ 4106 spa_open_ref(spa, FTAG); 4107 mutex_exit(&spa_namespace_lock); 4108 spa_async_suspend(spa); 4109 mutex_enter(&spa_namespace_lock); 4110 spa_close(spa, FTAG); 4111 4112 /* 4113 * The pool will be in core if it's openable, 4114 * in which case we can modify its state. 4115 */ 4116 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4117 /* 4118 * Objsets may be open only because they're dirty, so we 4119 * have to force it to sync before checking spa_refcnt. 4120 */ 4121 txg_wait_synced(spa->spa_dsl_pool, 0); 4122 4123 /* 4124 * A pool cannot be exported or destroyed if there are active 4125 * references. If we are resetting a pool, allow references by 4126 * fault injection handlers. 4127 */ 4128 if (!spa_refcount_zero(spa) || 4129 (spa->spa_inject_ref != 0 && 4130 new_state != POOL_STATE_UNINITIALIZED)) { 4131 spa_async_resume(spa); 4132 mutex_exit(&spa_namespace_lock); 4133 return (SET_ERROR(EBUSY)); 4134 } 4135 4136 /* 4137 * A pool cannot be exported if it has an active shared spare. 4138 * This is to prevent other pools stealing the active spare 4139 * from an exported pool. At user's own will, such pool can 4140 * be forcedly exported. 4141 */ 4142 if (!force && new_state == POOL_STATE_EXPORTED && 4143 spa_has_active_shared_spare(spa)) { 4144 spa_async_resume(spa); 4145 mutex_exit(&spa_namespace_lock); 4146 return (SET_ERROR(EXDEV)); 4147 } 4148 4149 /* 4150 * We want this to be reflected on every label, 4151 * so mark them all dirty. spa_unload() will do the 4152 * final sync that pushes these changes out. 4153 */ 4154 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4155 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4156 spa->spa_state = new_state; 4157 spa->spa_final_txg = spa_last_synced_txg(spa) + 4158 TXG_DEFER_SIZE + 1; 4159 vdev_config_dirty(spa->spa_root_vdev); 4160 spa_config_exit(spa, SCL_ALL, FTAG); 4161 } 4162 } 4163 4164 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4165 4166 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4167 spa_unload(spa); 4168 spa_deactivate(spa); 4169 } 4170 4171 if (oldconfig && spa->spa_config) 4172 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4173 4174 if (new_state != POOL_STATE_UNINITIALIZED) { 4175 if (!hardforce) 4176 spa_config_sync(spa, B_TRUE, B_TRUE); 4177 spa_remove(spa); 4178 } 4179 mutex_exit(&spa_namespace_lock); 4180 4181 return (0); 4182 } 4183 4184 /* 4185 * Destroy a storage pool. 4186 */ 4187 int 4188 spa_destroy(char *pool) 4189 { 4190 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4191 B_FALSE, B_FALSE)); 4192 } 4193 4194 /* 4195 * Export a storage pool. 4196 */ 4197 int 4198 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4199 boolean_t hardforce) 4200 { 4201 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4202 force, hardforce)); 4203 } 4204 4205 /* 4206 * Similar to spa_export(), this unloads the spa_t without actually removing it 4207 * from the namespace in any way. 4208 */ 4209 int 4210 spa_reset(char *pool) 4211 { 4212 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4213 B_FALSE, B_FALSE)); 4214 } 4215 4216 /* 4217 * ========================================================================== 4218 * Device manipulation 4219 * ========================================================================== 4220 */ 4221 4222 /* 4223 * Add a device to a storage pool. 4224 */ 4225 int 4226 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4227 { 4228 uint64_t txg, id; 4229 int error; 4230 vdev_t *rvd = spa->spa_root_vdev; 4231 vdev_t *vd, *tvd; 4232 nvlist_t **spares, **l2cache; 4233 uint_t nspares, nl2cache; 4234 4235 ASSERT(spa_writeable(spa)); 4236 4237 txg = spa_vdev_enter(spa); 4238 4239 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4240 VDEV_ALLOC_ADD)) != 0) 4241 return (spa_vdev_exit(spa, NULL, txg, error)); 4242 4243 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4244 4245 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4246 &nspares) != 0) 4247 nspares = 0; 4248 4249 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4250 &nl2cache) != 0) 4251 nl2cache = 0; 4252 4253 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4254 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4255 4256 if (vd->vdev_children != 0 && 4257 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4258 return (spa_vdev_exit(spa, vd, txg, error)); 4259 4260 /* 4261 * We must validate the spares and l2cache devices after checking the 4262 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4263 */ 4264 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4265 return (spa_vdev_exit(spa, vd, txg, error)); 4266 4267 /* 4268 * Transfer each new top-level vdev from vd to rvd. 4269 */ 4270 for (int c = 0; c < vd->vdev_children; c++) { 4271 4272 /* 4273 * Set the vdev id to the first hole, if one exists. 4274 */ 4275 for (id = 0; id < rvd->vdev_children; id++) { 4276 if (rvd->vdev_child[id]->vdev_ishole) { 4277 vdev_free(rvd->vdev_child[id]); 4278 break; 4279 } 4280 } 4281 tvd = vd->vdev_child[c]; 4282 vdev_remove_child(vd, tvd); 4283 tvd->vdev_id = id; 4284 vdev_add_child(rvd, tvd); 4285 vdev_config_dirty(tvd); 4286 } 4287 4288 if (nspares != 0) { 4289 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4290 ZPOOL_CONFIG_SPARES); 4291 spa_load_spares(spa); 4292 spa->spa_spares.sav_sync = B_TRUE; 4293 } 4294 4295 if (nl2cache != 0) { 4296 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4297 ZPOOL_CONFIG_L2CACHE); 4298 spa_load_l2cache(spa); 4299 spa->spa_l2cache.sav_sync = B_TRUE; 4300 } 4301 4302 /* 4303 * We have to be careful when adding new vdevs to an existing pool. 4304 * If other threads start allocating from these vdevs before we 4305 * sync the config cache, and we lose power, then upon reboot we may 4306 * fail to open the pool because there are DVAs that the config cache 4307 * can't translate. Therefore, we first add the vdevs without 4308 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4309 * and then let spa_config_update() initialize the new metaslabs. 4310 * 4311 * spa_load() checks for added-but-not-initialized vdevs, so that 4312 * if we lose power at any point in this sequence, the remaining 4313 * steps will be completed the next time we load the pool. 4314 */ 4315 (void) spa_vdev_exit(spa, vd, txg, 0); 4316 4317 mutex_enter(&spa_namespace_lock); 4318 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4319 mutex_exit(&spa_namespace_lock); 4320 4321 return (0); 4322 } 4323 4324 /* 4325 * Attach a device to a mirror. The arguments are the path to any device 4326 * in the mirror, and the nvroot for the new device. If the path specifies 4327 * a device that is not mirrored, we automatically insert the mirror vdev. 4328 * 4329 * If 'replacing' is specified, the new device is intended to replace the 4330 * existing device; in this case the two devices are made into their own 4331 * mirror using the 'replacing' vdev, which is functionally identical to 4332 * the mirror vdev (it actually reuses all the same ops) but has a few 4333 * extra rules: you can't attach to it after it's been created, and upon 4334 * completion of resilvering, the first disk (the one being replaced) 4335 * is automatically detached. 4336 */ 4337 int 4338 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4339 { 4340 uint64_t txg, dtl_max_txg; 4341 vdev_t *rvd = spa->spa_root_vdev; 4342 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4343 vdev_ops_t *pvops; 4344 char *oldvdpath, *newvdpath; 4345 int newvd_isspare; 4346 int error; 4347 4348 ASSERT(spa_writeable(spa)); 4349 4350 txg = spa_vdev_enter(spa); 4351 4352 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4353 4354 if (oldvd == NULL) 4355 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4356 4357 if (!oldvd->vdev_ops->vdev_op_leaf) 4358 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4359 4360 pvd = oldvd->vdev_parent; 4361 4362 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4363 VDEV_ALLOC_ATTACH)) != 0) 4364 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4365 4366 if (newrootvd->vdev_children != 1) 4367 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4368 4369 newvd = newrootvd->vdev_child[0]; 4370 4371 if (!newvd->vdev_ops->vdev_op_leaf) 4372 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4373 4374 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4375 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4376 4377 /* 4378 * Spares can't replace logs 4379 */ 4380 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4381 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4382 4383 if (!replacing) { 4384 /* 4385 * For attach, the only allowable parent is a mirror or the root 4386 * vdev. 4387 */ 4388 if (pvd->vdev_ops != &vdev_mirror_ops && 4389 pvd->vdev_ops != &vdev_root_ops) 4390 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4391 4392 pvops = &vdev_mirror_ops; 4393 } else { 4394 /* 4395 * Active hot spares can only be replaced by inactive hot 4396 * spares. 4397 */ 4398 if (pvd->vdev_ops == &vdev_spare_ops && 4399 oldvd->vdev_isspare && 4400 !spa_has_spare(spa, newvd->vdev_guid)) 4401 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4402 4403 /* 4404 * If the source is a hot spare, and the parent isn't already a 4405 * spare, then we want to create a new hot spare. Otherwise, we 4406 * want to create a replacing vdev. The user is not allowed to 4407 * attach to a spared vdev child unless the 'isspare' state is 4408 * the same (spare replaces spare, non-spare replaces 4409 * non-spare). 4410 */ 4411 if (pvd->vdev_ops == &vdev_replacing_ops && 4412 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4413 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4414 } else if (pvd->vdev_ops == &vdev_spare_ops && 4415 newvd->vdev_isspare != oldvd->vdev_isspare) { 4416 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4417 } 4418 4419 if (newvd->vdev_isspare) 4420 pvops = &vdev_spare_ops; 4421 else 4422 pvops = &vdev_replacing_ops; 4423 } 4424 4425 /* 4426 * Make sure the new device is big enough. 4427 */ 4428 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4429 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4430 4431 /* 4432 * The new device cannot have a higher alignment requirement 4433 * than the top-level vdev. 4434 */ 4435 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4436 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4437 4438 /* 4439 * If this is an in-place replacement, update oldvd's path and devid 4440 * to make it distinguishable from newvd, and unopenable from now on. 4441 */ 4442 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4443 spa_strfree(oldvd->vdev_path); 4444 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4445 KM_SLEEP); 4446 (void) sprintf(oldvd->vdev_path, "%s/%s", 4447 newvd->vdev_path, "old"); 4448 if (oldvd->vdev_devid != NULL) { 4449 spa_strfree(oldvd->vdev_devid); 4450 oldvd->vdev_devid = NULL; 4451 } 4452 } 4453 4454 /* mark the device being resilvered */ 4455 newvd->vdev_resilvering = B_TRUE; 4456 4457 /* 4458 * If the parent is not a mirror, or if we're replacing, insert the new 4459 * mirror/replacing/spare vdev above oldvd. 4460 */ 4461 if (pvd->vdev_ops != pvops) 4462 pvd = vdev_add_parent(oldvd, pvops); 4463 4464 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4465 ASSERT(pvd->vdev_ops == pvops); 4466 ASSERT(oldvd->vdev_parent == pvd); 4467 4468 /* 4469 * Extract the new device from its root and add it to pvd. 4470 */ 4471 vdev_remove_child(newrootvd, newvd); 4472 newvd->vdev_id = pvd->vdev_children; 4473 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4474 vdev_add_child(pvd, newvd); 4475 4476 tvd = newvd->vdev_top; 4477 ASSERT(pvd->vdev_top == tvd); 4478 ASSERT(tvd->vdev_parent == rvd); 4479 4480 vdev_config_dirty(tvd); 4481 4482 /* 4483 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4484 * for any dmu_sync-ed blocks. It will propagate upward when 4485 * spa_vdev_exit() calls vdev_dtl_reassess(). 4486 */ 4487 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4488 4489 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4490 dtl_max_txg - TXG_INITIAL); 4491 4492 if (newvd->vdev_isspare) { 4493 spa_spare_activate(newvd); 4494 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4495 } 4496 4497 oldvdpath = spa_strdup(oldvd->vdev_path); 4498 newvdpath = spa_strdup(newvd->vdev_path); 4499 newvd_isspare = newvd->vdev_isspare; 4500 4501 /* 4502 * Mark newvd's DTL dirty in this txg. 4503 */ 4504 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4505 4506 /* 4507 * Restart the resilver 4508 */ 4509 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4510 4511 /* 4512 * Commit the config 4513 */ 4514 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4515 4516 spa_history_log_internal(spa, "vdev attach", NULL, 4517 "%s vdev=%s %s vdev=%s", 4518 replacing && newvd_isspare ? "spare in" : 4519 replacing ? "replace" : "attach", newvdpath, 4520 replacing ? "for" : "to", oldvdpath); 4521 4522 spa_strfree(oldvdpath); 4523 spa_strfree(newvdpath); 4524 4525 if (spa->spa_bootfs) 4526 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4527 4528 return (0); 4529 } 4530 4531 /* 4532 * Detach a device from a mirror or replacing vdev. 4533 * 4534 * If 'replace_done' is specified, only detach if the parent 4535 * is a replacing vdev. 4536 */ 4537 int 4538 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4539 { 4540 uint64_t txg; 4541 int error; 4542 vdev_t *rvd = spa->spa_root_vdev; 4543 vdev_t *vd, *pvd, *cvd, *tvd; 4544 boolean_t unspare = B_FALSE; 4545 uint64_t unspare_guid = 0; 4546 char *vdpath; 4547 4548 ASSERT(spa_writeable(spa)); 4549 4550 txg = spa_vdev_enter(spa); 4551 4552 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4553 4554 if (vd == NULL) 4555 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4556 4557 if (!vd->vdev_ops->vdev_op_leaf) 4558 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4559 4560 pvd = vd->vdev_parent; 4561 4562 /* 4563 * If the parent/child relationship is not as expected, don't do it. 4564 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4565 * vdev that's replacing B with C. The user's intent in replacing 4566 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4567 * the replace by detaching C, the expected behavior is to end up 4568 * M(A,B). But suppose that right after deciding to detach C, 4569 * the replacement of B completes. We would have M(A,C), and then 4570 * ask to detach C, which would leave us with just A -- not what 4571 * the user wanted. To prevent this, we make sure that the 4572 * parent/child relationship hasn't changed -- in this example, 4573 * that C's parent is still the replacing vdev R. 4574 */ 4575 if (pvd->vdev_guid != pguid && pguid != 0) 4576 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4577 4578 /* 4579 * Only 'replacing' or 'spare' vdevs can be replaced. 4580 */ 4581 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4582 pvd->vdev_ops != &vdev_spare_ops) 4583 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4584 4585 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4586 spa_version(spa) >= SPA_VERSION_SPARES); 4587 4588 /* 4589 * Only mirror, replacing, and spare vdevs support detach. 4590 */ 4591 if (pvd->vdev_ops != &vdev_replacing_ops && 4592 pvd->vdev_ops != &vdev_mirror_ops && 4593 pvd->vdev_ops != &vdev_spare_ops) 4594 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4595 4596 /* 4597 * If this device has the only valid copy of some data, 4598 * we cannot safely detach it. 4599 */ 4600 if (vdev_dtl_required(vd)) 4601 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4602 4603 ASSERT(pvd->vdev_children >= 2); 4604 4605 /* 4606 * If we are detaching the second disk from a replacing vdev, then 4607 * check to see if we changed the original vdev's path to have "/old" 4608 * at the end in spa_vdev_attach(). If so, undo that change now. 4609 */ 4610 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4611 vd->vdev_path != NULL) { 4612 size_t len = strlen(vd->vdev_path); 4613 4614 for (int c = 0; c < pvd->vdev_children; c++) { 4615 cvd = pvd->vdev_child[c]; 4616 4617 if (cvd == vd || cvd->vdev_path == NULL) 4618 continue; 4619 4620 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4621 strcmp(cvd->vdev_path + len, "/old") == 0) { 4622 spa_strfree(cvd->vdev_path); 4623 cvd->vdev_path = spa_strdup(vd->vdev_path); 4624 break; 4625 } 4626 } 4627 } 4628 4629 /* 4630 * If we are detaching the original disk from a spare, then it implies 4631 * that the spare should become a real disk, and be removed from the 4632 * active spare list for the pool. 4633 */ 4634 if (pvd->vdev_ops == &vdev_spare_ops && 4635 vd->vdev_id == 0 && 4636 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4637 unspare = B_TRUE; 4638 4639 /* 4640 * Erase the disk labels so the disk can be used for other things. 4641 * This must be done after all other error cases are handled, 4642 * but before we disembowel vd (so we can still do I/O to it). 4643 * But if we can't do it, don't treat the error as fatal -- 4644 * it may be that the unwritability of the disk is the reason 4645 * it's being detached! 4646 */ 4647 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4648 4649 /* 4650 * Remove vd from its parent and compact the parent's children. 4651 */ 4652 vdev_remove_child(pvd, vd); 4653 vdev_compact_children(pvd); 4654 4655 /* 4656 * Remember one of the remaining children so we can get tvd below. 4657 */ 4658 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4659 4660 /* 4661 * If we need to remove the remaining child from the list of hot spares, 4662 * do it now, marking the vdev as no longer a spare in the process. 4663 * We must do this before vdev_remove_parent(), because that can 4664 * change the GUID if it creates a new toplevel GUID. For a similar 4665 * reason, we must remove the spare now, in the same txg as the detach; 4666 * otherwise someone could attach a new sibling, change the GUID, and 4667 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4668 */ 4669 if (unspare) { 4670 ASSERT(cvd->vdev_isspare); 4671 spa_spare_remove(cvd); 4672 unspare_guid = cvd->vdev_guid; 4673 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4674 cvd->vdev_unspare = B_TRUE; 4675 } 4676 4677 /* 4678 * If the parent mirror/replacing vdev only has one child, 4679 * the parent is no longer needed. Remove it from the tree. 4680 */ 4681 if (pvd->vdev_children == 1) { 4682 if (pvd->vdev_ops == &vdev_spare_ops) 4683 cvd->vdev_unspare = B_FALSE; 4684 vdev_remove_parent(cvd); 4685 cvd->vdev_resilvering = B_FALSE; 4686 } 4687 4688 4689 /* 4690 * We don't set tvd until now because the parent we just removed 4691 * may have been the previous top-level vdev. 4692 */ 4693 tvd = cvd->vdev_top; 4694 ASSERT(tvd->vdev_parent == rvd); 4695 4696 /* 4697 * Reevaluate the parent vdev state. 4698 */ 4699 vdev_propagate_state(cvd); 4700 4701 /* 4702 * If the 'autoexpand' property is set on the pool then automatically 4703 * try to expand the size of the pool. For example if the device we 4704 * just detached was smaller than the others, it may be possible to 4705 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4706 * first so that we can obtain the updated sizes of the leaf vdevs. 4707 */ 4708 if (spa->spa_autoexpand) { 4709 vdev_reopen(tvd); 4710 vdev_expand(tvd, txg); 4711 } 4712 4713 vdev_config_dirty(tvd); 4714 4715 /* 4716 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4717 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4718 * But first make sure we're not on any *other* txg's DTL list, to 4719 * prevent vd from being accessed after it's freed. 4720 */ 4721 vdpath = spa_strdup(vd->vdev_path); 4722 for (int t = 0; t < TXG_SIZE; t++) 4723 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4724 vd->vdev_detached = B_TRUE; 4725 vdev_dirty(tvd, VDD_DTL, vd, txg); 4726 4727 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4728 4729 /* hang on to the spa before we release the lock */ 4730 spa_open_ref(spa, FTAG); 4731 4732 error = spa_vdev_exit(spa, vd, txg, 0); 4733 4734 spa_history_log_internal(spa, "detach", NULL, 4735 "vdev=%s", vdpath); 4736 spa_strfree(vdpath); 4737 4738 /* 4739 * If this was the removal of the original device in a hot spare vdev, 4740 * then we want to go through and remove the device from the hot spare 4741 * list of every other pool. 4742 */ 4743 if (unspare) { 4744 spa_t *altspa = NULL; 4745 4746 mutex_enter(&spa_namespace_lock); 4747 while ((altspa = spa_next(altspa)) != NULL) { 4748 if (altspa->spa_state != POOL_STATE_ACTIVE || 4749 altspa == spa) 4750 continue; 4751 4752 spa_open_ref(altspa, FTAG); 4753 mutex_exit(&spa_namespace_lock); 4754 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4755 mutex_enter(&spa_namespace_lock); 4756 spa_close(altspa, FTAG); 4757 } 4758 mutex_exit(&spa_namespace_lock); 4759 4760 /* search the rest of the vdevs for spares to remove */ 4761 spa_vdev_resilver_done(spa); 4762 } 4763 4764 /* all done with the spa; OK to release */ 4765 mutex_enter(&spa_namespace_lock); 4766 spa_close(spa, FTAG); 4767 mutex_exit(&spa_namespace_lock); 4768 4769 return (error); 4770 } 4771 4772 /* 4773 * Split a set of devices from their mirrors, and create a new pool from them. 4774 */ 4775 int 4776 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4777 nvlist_t *props, boolean_t exp) 4778 { 4779 int error = 0; 4780 uint64_t txg, *glist; 4781 spa_t *newspa; 4782 uint_t c, children, lastlog; 4783 nvlist_t **child, *nvl, *tmp; 4784 dmu_tx_t *tx; 4785 char *altroot = NULL; 4786 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4787 boolean_t activate_slog; 4788 4789 ASSERT(spa_writeable(spa)); 4790 4791 txg = spa_vdev_enter(spa); 4792 4793 /* clear the log and flush everything up to now */ 4794 activate_slog = spa_passivate_log(spa); 4795 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4796 error = spa_offline_log(spa); 4797 txg = spa_vdev_config_enter(spa); 4798 4799 if (activate_slog) 4800 spa_activate_log(spa); 4801 4802 if (error != 0) 4803 return (spa_vdev_exit(spa, NULL, txg, error)); 4804 4805 /* check new spa name before going any further */ 4806 if (spa_lookup(newname) != NULL) 4807 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4808 4809 /* 4810 * scan through all the children to ensure they're all mirrors 4811 */ 4812 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4813 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4814 &children) != 0) 4815 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4816 4817 /* first, check to ensure we've got the right child count */ 4818 rvd = spa->spa_root_vdev; 4819 lastlog = 0; 4820 for (c = 0; c < rvd->vdev_children; c++) { 4821 vdev_t *vd = rvd->vdev_child[c]; 4822 4823 /* don't count the holes & logs as children */ 4824 if (vd->vdev_islog || vd->vdev_ishole) { 4825 if (lastlog == 0) 4826 lastlog = c; 4827 continue; 4828 } 4829 4830 lastlog = 0; 4831 } 4832 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4833 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4834 4835 /* next, ensure no spare or cache devices are part of the split */ 4836 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4837 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4838 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4839 4840 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4841 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4842 4843 /* then, loop over each vdev and validate it */ 4844 for (c = 0; c < children; c++) { 4845 uint64_t is_hole = 0; 4846 4847 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4848 &is_hole); 4849 4850 if (is_hole != 0) { 4851 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4852 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4853 continue; 4854 } else { 4855 error = SET_ERROR(EINVAL); 4856 break; 4857 } 4858 } 4859 4860 /* which disk is going to be split? */ 4861 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4862 &glist[c]) != 0) { 4863 error = SET_ERROR(EINVAL); 4864 break; 4865 } 4866 4867 /* look it up in the spa */ 4868 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4869 if (vml[c] == NULL) { 4870 error = SET_ERROR(ENODEV); 4871 break; 4872 } 4873 4874 /* make sure there's nothing stopping the split */ 4875 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4876 vml[c]->vdev_islog || 4877 vml[c]->vdev_ishole || 4878 vml[c]->vdev_isspare || 4879 vml[c]->vdev_isl2cache || 4880 !vdev_writeable(vml[c]) || 4881 vml[c]->vdev_children != 0 || 4882 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4883 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4884 error = SET_ERROR(EINVAL); 4885 break; 4886 } 4887 4888 if (vdev_dtl_required(vml[c])) { 4889 error = SET_ERROR(EBUSY); 4890 break; 4891 } 4892 4893 /* we need certain info from the top level */ 4894 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4895 vml[c]->vdev_top->vdev_ms_array) == 0); 4896 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4897 vml[c]->vdev_top->vdev_ms_shift) == 0); 4898 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4899 vml[c]->vdev_top->vdev_asize) == 0); 4900 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4901 vml[c]->vdev_top->vdev_ashift) == 0); 4902 } 4903 4904 if (error != 0) { 4905 kmem_free(vml, children * sizeof (vdev_t *)); 4906 kmem_free(glist, children * sizeof (uint64_t)); 4907 return (spa_vdev_exit(spa, NULL, txg, error)); 4908 } 4909 4910 /* stop writers from using the disks */ 4911 for (c = 0; c < children; c++) { 4912 if (vml[c] != NULL) 4913 vml[c]->vdev_offline = B_TRUE; 4914 } 4915 vdev_reopen(spa->spa_root_vdev); 4916 4917 /* 4918 * Temporarily record the splitting vdevs in the spa config. This 4919 * will disappear once the config is regenerated. 4920 */ 4921 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4922 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4923 glist, children) == 0); 4924 kmem_free(glist, children * sizeof (uint64_t)); 4925 4926 mutex_enter(&spa->spa_props_lock); 4927 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4928 nvl) == 0); 4929 mutex_exit(&spa->spa_props_lock); 4930 spa->spa_config_splitting = nvl; 4931 vdev_config_dirty(spa->spa_root_vdev); 4932 4933 /* configure and create the new pool */ 4934 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4935 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4936 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4937 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4938 spa_version(spa)) == 0); 4939 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4940 spa->spa_config_txg) == 0); 4941 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4942 spa_generate_guid(NULL)) == 0); 4943 (void) nvlist_lookup_string(props, 4944 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4945 4946 /* add the new pool to the namespace */ 4947 newspa = spa_add(newname, config, altroot); 4948 newspa->spa_config_txg = spa->spa_config_txg; 4949 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4950 4951 /* release the spa config lock, retaining the namespace lock */ 4952 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4953 4954 if (zio_injection_enabled) 4955 zio_handle_panic_injection(spa, FTAG, 1); 4956 4957 spa_activate(newspa, spa_mode_global); 4958 spa_async_suspend(newspa); 4959 4960 /* create the new pool from the disks of the original pool */ 4961 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4962 if (error) 4963 goto out; 4964 4965 /* if that worked, generate a real config for the new pool */ 4966 if (newspa->spa_root_vdev != NULL) { 4967 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4968 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4969 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4970 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4971 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4972 B_TRUE)); 4973 } 4974 4975 /* set the props */ 4976 if (props != NULL) { 4977 spa_configfile_set(newspa, props, B_FALSE); 4978 error = spa_prop_set(newspa, props); 4979 if (error) 4980 goto out; 4981 } 4982 4983 /* flush everything */ 4984 txg = spa_vdev_config_enter(newspa); 4985 vdev_config_dirty(newspa->spa_root_vdev); 4986 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4987 4988 if (zio_injection_enabled) 4989 zio_handle_panic_injection(spa, FTAG, 2); 4990 4991 spa_async_resume(newspa); 4992 4993 /* finally, update the original pool's config */ 4994 txg = spa_vdev_config_enter(spa); 4995 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4996 error = dmu_tx_assign(tx, TXG_WAIT); 4997 if (error != 0) 4998 dmu_tx_abort(tx); 4999 for (c = 0; c < children; c++) { 5000 if (vml[c] != NULL) { 5001 vdev_split(vml[c]); 5002 if (error == 0) 5003 spa_history_log_internal(spa, "detach", tx, 5004 "vdev=%s", vml[c]->vdev_path); 5005 vdev_free(vml[c]); 5006 } 5007 } 5008 vdev_config_dirty(spa->spa_root_vdev); 5009 spa->spa_config_splitting = NULL; 5010 nvlist_free(nvl); 5011 if (error == 0) 5012 dmu_tx_commit(tx); 5013 (void) spa_vdev_exit(spa, NULL, txg, 0); 5014 5015 if (zio_injection_enabled) 5016 zio_handle_panic_injection(spa, FTAG, 3); 5017 5018 /* split is complete; log a history record */ 5019 spa_history_log_internal(newspa, "split", NULL, 5020 "from pool %s", spa_name(spa)); 5021 5022 kmem_free(vml, children * sizeof (vdev_t *)); 5023 5024 /* if we're not going to mount the filesystems in userland, export */ 5025 if (exp) 5026 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5027 B_FALSE, B_FALSE); 5028 5029 return (error); 5030 5031 out: 5032 spa_unload(newspa); 5033 spa_deactivate(newspa); 5034 spa_remove(newspa); 5035 5036 txg = spa_vdev_config_enter(spa); 5037 5038 /* re-online all offlined disks */ 5039 for (c = 0; c < children; c++) { 5040 if (vml[c] != NULL) 5041 vml[c]->vdev_offline = B_FALSE; 5042 } 5043 vdev_reopen(spa->spa_root_vdev); 5044 5045 nvlist_free(spa->spa_config_splitting); 5046 spa->spa_config_splitting = NULL; 5047 (void) spa_vdev_exit(spa, NULL, txg, error); 5048 5049 kmem_free(vml, children * sizeof (vdev_t *)); 5050 return (error); 5051 } 5052 5053 static nvlist_t * 5054 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5055 { 5056 for (int i = 0; i < count; i++) { 5057 uint64_t guid; 5058 5059 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5060 &guid) == 0); 5061 5062 if (guid == target_guid) 5063 return (nvpp[i]); 5064 } 5065 5066 return (NULL); 5067 } 5068 5069 static void 5070 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5071 nvlist_t *dev_to_remove) 5072 { 5073 nvlist_t **newdev = NULL; 5074 5075 if (count > 1) 5076 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5077 5078 for (int i = 0, j = 0; i < count; i++) { 5079 if (dev[i] == dev_to_remove) 5080 continue; 5081 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5082 } 5083 5084 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5085 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5086 5087 for (int i = 0; i < count - 1; i++) 5088 nvlist_free(newdev[i]); 5089 5090 if (count > 1) 5091 kmem_free(newdev, (count - 1) * sizeof (void *)); 5092 } 5093 5094 /* 5095 * Evacuate the device. 5096 */ 5097 static int 5098 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5099 { 5100 uint64_t txg; 5101 int error = 0; 5102 5103 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5104 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5105 ASSERT(vd == vd->vdev_top); 5106 5107 /* 5108 * Evacuate the device. We don't hold the config lock as writer 5109 * since we need to do I/O but we do keep the 5110 * spa_namespace_lock held. Once this completes the device 5111 * should no longer have any blocks allocated on it. 5112 */ 5113 if (vd->vdev_islog) { 5114 if (vd->vdev_stat.vs_alloc != 0) 5115 error = spa_offline_log(spa); 5116 } else { 5117 error = SET_ERROR(ENOTSUP); 5118 } 5119 5120 if (error) 5121 return (error); 5122 5123 /* 5124 * The evacuation succeeded. Remove any remaining MOS metadata 5125 * associated with this vdev, and wait for these changes to sync. 5126 */ 5127 ASSERT0(vd->vdev_stat.vs_alloc); 5128 txg = spa_vdev_config_enter(spa); 5129 vd->vdev_removing = B_TRUE; 5130 vdev_dirty(vd, 0, NULL, txg); 5131 vdev_config_dirty(vd); 5132 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5133 5134 return (0); 5135 } 5136 5137 /* 5138 * Complete the removal by cleaning up the namespace. 5139 */ 5140 static void 5141 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5142 { 5143 vdev_t *rvd = spa->spa_root_vdev; 5144 uint64_t id = vd->vdev_id; 5145 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5146 5147 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5148 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5149 ASSERT(vd == vd->vdev_top); 5150 5151 /* 5152 * Only remove any devices which are empty. 5153 */ 5154 if (vd->vdev_stat.vs_alloc != 0) 5155 return; 5156 5157 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5158 5159 if (list_link_active(&vd->vdev_state_dirty_node)) 5160 vdev_state_clean(vd); 5161 if (list_link_active(&vd->vdev_config_dirty_node)) 5162 vdev_config_clean(vd); 5163 5164 vdev_free(vd); 5165 5166 if (last_vdev) { 5167 vdev_compact_children(rvd); 5168 } else { 5169 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5170 vdev_add_child(rvd, vd); 5171 } 5172 vdev_config_dirty(rvd); 5173 5174 /* 5175 * Reassess the health of our root vdev. 5176 */ 5177 vdev_reopen(rvd); 5178 } 5179 5180 /* 5181 * Remove a device from the pool - 5182 * 5183 * Removing a device from the vdev namespace requires several steps 5184 * and can take a significant amount of time. As a result we use 5185 * the spa_vdev_config_[enter/exit] functions which allow us to 5186 * grab and release the spa_config_lock while still holding the namespace 5187 * lock. During each step the configuration is synced out. 5188 * 5189 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5190 * devices. 5191 */ 5192 int 5193 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5194 { 5195 vdev_t *vd; 5196 metaslab_group_t *mg; 5197 nvlist_t **spares, **l2cache, *nv; 5198 uint64_t txg = 0; 5199 uint_t nspares, nl2cache; 5200 int error = 0; 5201 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5202 5203 ASSERT(spa_writeable(spa)); 5204 5205 if (!locked) 5206 txg = spa_vdev_enter(spa); 5207 5208 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5209 5210 if (spa->spa_spares.sav_vdevs != NULL && 5211 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5212 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5213 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5214 /* 5215 * Only remove the hot spare if it's not currently in use 5216 * in this pool. 5217 */ 5218 if (vd == NULL || unspare) { 5219 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5220 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5221 spa_load_spares(spa); 5222 spa->spa_spares.sav_sync = B_TRUE; 5223 } else { 5224 error = SET_ERROR(EBUSY); 5225 } 5226 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5227 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5228 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5229 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5230 /* 5231 * Cache devices can always be removed. 5232 */ 5233 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5234 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5235 spa_load_l2cache(spa); 5236 spa->spa_l2cache.sav_sync = B_TRUE; 5237 } else if (vd != NULL && vd->vdev_islog) { 5238 ASSERT(!locked); 5239 ASSERT(vd == vd->vdev_top); 5240 5241 /* 5242 * XXX - Once we have bp-rewrite this should 5243 * become the common case. 5244 */ 5245 5246 mg = vd->vdev_mg; 5247 5248 /* 5249 * Stop allocating from this vdev. 5250 */ 5251 metaslab_group_passivate(mg); 5252 5253 /* 5254 * Wait for the youngest allocations and frees to sync, 5255 * and then wait for the deferral of those frees to finish. 5256 */ 5257 spa_vdev_config_exit(spa, NULL, 5258 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5259 5260 /* 5261 * Attempt to evacuate the vdev. 5262 */ 5263 error = spa_vdev_remove_evacuate(spa, vd); 5264 5265 txg = spa_vdev_config_enter(spa); 5266 5267 /* 5268 * If we couldn't evacuate the vdev, unwind. 5269 */ 5270 if (error) { 5271 metaslab_group_activate(mg); 5272 return (spa_vdev_exit(spa, NULL, txg, error)); 5273 } 5274 5275 /* 5276 * Clean up the vdev namespace. 5277 */ 5278 spa_vdev_remove_from_namespace(spa, vd); 5279 5280 } else if (vd != NULL) { 5281 /* 5282 * Normal vdevs cannot be removed (yet). 5283 */ 5284 error = SET_ERROR(ENOTSUP); 5285 } else { 5286 /* 5287 * There is no vdev of any kind with the specified guid. 5288 */ 5289 error = SET_ERROR(ENOENT); 5290 } 5291 5292 if (!locked) 5293 return (spa_vdev_exit(spa, NULL, txg, error)); 5294 5295 return (error); 5296 } 5297 5298 /* 5299 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5300 * currently spared, so we can detach it. 5301 */ 5302 static vdev_t * 5303 spa_vdev_resilver_done_hunt(vdev_t *vd) 5304 { 5305 vdev_t *newvd, *oldvd; 5306 5307 for (int c = 0; c < vd->vdev_children; c++) { 5308 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5309 if (oldvd != NULL) 5310 return (oldvd); 5311 } 5312 5313 /* 5314 * Check for a completed replacement. We always consider the first 5315 * vdev in the list to be the oldest vdev, and the last one to be 5316 * the newest (see spa_vdev_attach() for how that works). In 5317 * the case where the newest vdev is faulted, we will not automatically 5318 * remove it after a resilver completes. This is OK as it will require 5319 * user intervention to determine which disk the admin wishes to keep. 5320 */ 5321 if (vd->vdev_ops == &vdev_replacing_ops) { 5322 ASSERT(vd->vdev_children > 1); 5323 5324 newvd = vd->vdev_child[vd->vdev_children - 1]; 5325 oldvd = vd->vdev_child[0]; 5326 5327 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5328 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5329 !vdev_dtl_required(oldvd)) 5330 return (oldvd); 5331 } 5332 5333 /* 5334 * Check for a completed resilver with the 'unspare' flag set. 5335 */ 5336 if (vd->vdev_ops == &vdev_spare_ops) { 5337 vdev_t *first = vd->vdev_child[0]; 5338 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5339 5340 if (last->vdev_unspare) { 5341 oldvd = first; 5342 newvd = last; 5343 } else if (first->vdev_unspare) { 5344 oldvd = last; 5345 newvd = first; 5346 } else { 5347 oldvd = NULL; 5348 } 5349 5350 if (oldvd != NULL && 5351 vdev_dtl_empty(newvd, DTL_MISSING) && 5352 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5353 !vdev_dtl_required(oldvd)) 5354 return (oldvd); 5355 5356 /* 5357 * If there are more than two spares attached to a disk, 5358 * and those spares are not required, then we want to 5359 * attempt to free them up now so that they can be used 5360 * by other pools. Once we're back down to a single 5361 * disk+spare, we stop removing them. 5362 */ 5363 if (vd->vdev_children > 2) { 5364 newvd = vd->vdev_child[1]; 5365 5366 if (newvd->vdev_isspare && last->vdev_isspare && 5367 vdev_dtl_empty(last, DTL_MISSING) && 5368 vdev_dtl_empty(last, DTL_OUTAGE) && 5369 !vdev_dtl_required(newvd)) 5370 return (newvd); 5371 } 5372 } 5373 5374 return (NULL); 5375 } 5376 5377 static void 5378 spa_vdev_resilver_done(spa_t *spa) 5379 { 5380 vdev_t *vd, *pvd, *ppvd; 5381 uint64_t guid, sguid, pguid, ppguid; 5382 5383 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5384 5385 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5386 pvd = vd->vdev_parent; 5387 ppvd = pvd->vdev_parent; 5388 guid = vd->vdev_guid; 5389 pguid = pvd->vdev_guid; 5390 ppguid = ppvd->vdev_guid; 5391 sguid = 0; 5392 /* 5393 * If we have just finished replacing a hot spared device, then 5394 * we need to detach the parent's first child (the original hot 5395 * spare) as well. 5396 */ 5397 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5398 ppvd->vdev_children == 2) { 5399 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5400 sguid = ppvd->vdev_child[1]->vdev_guid; 5401 } 5402 spa_config_exit(spa, SCL_ALL, FTAG); 5403 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5404 return; 5405 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5406 return; 5407 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5408 } 5409 5410 spa_config_exit(spa, SCL_ALL, FTAG); 5411 } 5412 5413 /* 5414 * Update the stored path or FRU for this vdev. 5415 */ 5416 int 5417 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5418 boolean_t ispath) 5419 { 5420 vdev_t *vd; 5421 boolean_t sync = B_FALSE; 5422 5423 ASSERT(spa_writeable(spa)); 5424 5425 spa_vdev_state_enter(spa, SCL_ALL); 5426 5427 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5428 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5429 5430 if (!vd->vdev_ops->vdev_op_leaf) 5431 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5432 5433 if (ispath) { 5434 if (strcmp(value, vd->vdev_path) != 0) { 5435 spa_strfree(vd->vdev_path); 5436 vd->vdev_path = spa_strdup(value); 5437 sync = B_TRUE; 5438 } 5439 } else { 5440 if (vd->vdev_fru == NULL) { 5441 vd->vdev_fru = spa_strdup(value); 5442 sync = B_TRUE; 5443 } else if (strcmp(value, vd->vdev_fru) != 0) { 5444 spa_strfree(vd->vdev_fru); 5445 vd->vdev_fru = spa_strdup(value); 5446 sync = B_TRUE; 5447 } 5448 } 5449 5450 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5451 } 5452 5453 int 5454 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5455 { 5456 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5457 } 5458 5459 int 5460 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5461 { 5462 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5463 } 5464 5465 /* 5466 * ========================================================================== 5467 * SPA Scanning 5468 * ========================================================================== 5469 */ 5470 5471 int 5472 spa_scan_stop(spa_t *spa) 5473 { 5474 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5475 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5476 return (SET_ERROR(EBUSY)); 5477 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5478 } 5479 5480 int 5481 spa_scan(spa_t *spa, pool_scan_func_t func) 5482 { 5483 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5484 5485 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5486 return (SET_ERROR(ENOTSUP)); 5487 5488 /* 5489 * If a resilver was requested, but there is no DTL on a 5490 * writeable leaf device, we have nothing to do. 5491 */ 5492 if (func == POOL_SCAN_RESILVER && 5493 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5494 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5495 return (0); 5496 } 5497 5498 return (dsl_scan(spa->spa_dsl_pool, func)); 5499 } 5500 5501 /* 5502 * ========================================================================== 5503 * SPA async task processing 5504 * ========================================================================== 5505 */ 5506 5507 static void 5508 spa_async_remove(spa_t *spa, vdev_t *vd) 5509 { 5510 if (vd->vdev_remove_wanted) { 5511 vd->vdev_remove_wanted = B_FALSE; 5512 vd->vdev_delayed_close = B_FALSE; 5513 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5514 5515 /* 5516 * We want to clear the stats, but we don't want to do a full 5517 * vdev_clear() as that will cause us to throw away 5518 * degraded/faulted state as well as attempt to reopen the 5519 * device, all of which is a waste. 5520 */ 5521 vd->vdev_stat.vs_read_errors = 0; 5522 vd->vdev_stat.vs_write_errors = 0; 5523 vd->vdev_stat.vs_checksum_errors = 0; 5524 5525 vdev_state_dirty(vd->vdev_top); 5526 } 5527 5528 for (int c = 0; c < vd->vdev_children; c++) 5529 spa_async_remove(spa, vd->vdev_child[c]); 5530 } 5531 5532 static void 5533 spa_async_probe(spa_t *spa, vdev_t *vd) 5534 { 5535 if (vd->vdev_probe_wanted) { 5536 vd->vdev_probe_wanted = B_FALSE; 5537 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5538 } 5539 5540 for (int c = 0; c < vd->vdev_children; c++) 5541 spa_async_probe(spa, vd->vdev_child[c]); 5542 } 5543 5544 static void 5545 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5546 { 5547 sysevent_id_t eid; 5548 nvlist_t *attr; 5549 char *physpath; 5550 5551 if (!spa->spa_autoexpand) 5552 return; 5553 5554 for (int c = 0; c < vd->vdev_children; c++) { 5555 vdev_t *cvd = vd->vdev_child[c]; 5556 spa_async_autoexpand(spa, cvd); 5557 } 5558 5559 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5560 return; 5561 5562 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5563 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5564 5565 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5566 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5567 5568 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5569 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5570 5571 nvlist_free(attr); 5572 kmem_free(physpath, MAXPATHLEN); 5573 } 5574 5575 static void 5576 spa_async_thread(spa_t *spa) 5577 { 5578 int tasks; 5579 5580 ASSERT(spa->spa_sync_on); 5581 5582 mutex_enter(&spa->spa_async_lock); 5583 tasks = spa->spa_async_tasks; 5584 spa->spa_async_tasks = 0; 5585 mutex_exit(&spa->spa_async_lock); 5586 5587 /* 5588 * See if the config needs to be updated. 5589 */ 5590 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5591 uint64_t old_space, new_space; 5592 5593 mutex_enter(&spa_namespace_lock); 5594 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5595 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5596 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5597 mutex_exit(&spa_namespace_lock); 5598 5599 /* 5600 * If the pool grew as a result of the config update, 5601 * then log an internal history event. 5602 */ 5603 if (new_space != old_space) { 5604 spa_history_log_internal(spa, "vdev online", NULL, 5605 "pool '%s' size: %llu(+%llu)", 5606 spa_name(spa), new_space, new_space - old_space); 5607 } 5608 } 5609 5610 /* 5611 * See if any devices need to be marked REMOVED. 5612 */ 5613 if (tasks & SPA_ASYNC_REMOVE) { 5614 spa_vdev_state_enter(spa, SCL_NONE); 5615 spa_async_remove(spa, spa->spa_root_vdev); 5616 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5617 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5618 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5619 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5620 (void) spa_vdev_state_exit(spa, NULL, 0); 5621 } 5622 5623 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5624 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5625 spa_async_autoexpand(spa, spa->spa_root_vdev); 5626 spa_config_exit(spa, SCL_CONFIG, FTAG); 5627 } 5628 5629 /* 5630 * See if any devices need to be probed. 5631 */ 5632 if (tasks & SPA_ASYNC_PROBE) { 5633 spa_vdev_state_enter(spa, SCL_NONE); 5634 spa_async_probe(spa, spa->spa_root_vdev); 5635 (void) spa_vdev_state_exit(spa, NULL, 0); 5636 } 5637 5638 /* 5639 * If any devices are done replacing, detach them. 5640 */ 5641 if (tasks & SPA_ASYNC_RESILVER_DONE) 5642 spa_vdev_resilver_done(spa); 5643 5644 /* 5645 * Kick off a resilver. 5646 */ 5647 if (tasks & SPA_ASYNC_RESILVER) 5648 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5649 5650 /* 5651 * Let the world know that we're done. 5652 */ 5653 mutex_enter(&spa->spa_async_lock); 5654 spa->spa_async_thread = NULL; 5655 cv_broadcast(&spa->spa_async_cv); 5656 mutex_exit(&spa->spa_async_lock); 5657 thread_exit(); 5658 } 5659 5660 void 5661 spa_async_suspend(spa_t *spa) 5662 { 5663 mutex_enter(&spa->spa_async_lock); 5664 spa->spa_async_suspended++; 5665 while (spa->spa_async_thread != NULL) 5666 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5667 mutex_exit(&spa->spa_async_lock); 5668 } 5669 5670 void 5671 spa_async_resume(spa_t *spa) 5672 { 5673 mutex_enter(&spa->spa_async_lock); 5674 ASSERT(spa->spa_async_suspended != 0); 5675 spa->spa_async_suspended--; 5676 mutex_exit(&spa->spa_async_lock); 5677 } 5678 5679 static boolean_t 5680 spa_async_tasks_pending(spa_t *spa) 5681 { 5682 uint_t non_config_tasks; 5683 uint_t config_task; 5684 boolean_t config_task_suspended; 5685 5686 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5687 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5688 if (spa->spa_ccw_fail_time == 0) { 5689 config_task_suspended = B_FALSE; 5690 } else { 5691 config_task_suspended = 5692 (gethrtime() - spa->spa_ccw_fail_time) < 5693 (zfs_ccw_retry_interval * NANOSEC); 5694 } 5695 5696 return (non_config_tasks || (config_task && !config_task_suspended)); 5697 } 5698 5699 static void 5700 spa_async_dispatch(spa_t *spa) 5701 { 5702 mutex_enter(&spa->spa_async_lock); 5703 if (spa_async_tasks_pending(spa) && 5704 !spa->spa_async_suspended && 5705 spa->spa_async_thread == NULL && 5706 rootdir != NULL) 5707 spa->spa_async_thread = thread_create(NULL, 0, 5708 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5709 mutex_exit(&spa->spa_async_lock); 5710 } 5711 5712 void 5713 spa_async_request(spa_t *spa, int task) 5714 { 5715 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5716 mutex_enter(&spa->spa_async_lock); 5717 spa->spa_async_tasks |= task; 5718 mutex_exit(&spa->spa_async_lock); 5719 } 5720 5721 /* 5722 * ========================================================================== 5723 * SPA syncing routines 5724 * ========================================================================== 5725 */ 5726 5727 static int 5728 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5729 { 5730 bpobj_t *bpo = arg; 5731 bpobj_enqueue(bpo, bp, tx); 5732 return (0); 5733 } 5734 5735 static int 5736 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5737 { 5738 zio_t *zio = arg; 5739 5740 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5741 zio->io_flags)); 5742 return (0); 5743 } 5744 5745 static void 5746 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5747 { 5748 char *packed = NULL; 5749 size_t bufsize; 5750 size_t nvsize = 0; 5751 dmu_buf_t *db; 5752 5753 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5754 5755 /* 5756 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5757 * information. This avoids the dbuf_will_dirty() path and 5758 * saves us a pre-read to get data we don't actually care about. 5759 */ 5760 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5761 packed = kmem_alloc(bufsize, KM_SLEEP); 5762 5763 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5764 KM_SLEEP) == 0); 5765 bzero(packed + nvsize, bufsize - nvsize); 5766 5767 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5768 5769 kmem_free(packed, bufsize); 5770 5771 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5772 dmu_buf_will_dirty(db, tx); 5773 *(uint64_t *)db->db_data = nvsize; 5774 dmu_buf_rele(db, FTAG); 5775 } 5776 5777 static void 5778 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5779 const char *config, const char *entry) 5780 { 5781 nvlist_t *nvroot; 5782 nvlist_t **list; 5783 int i; 5784 5785 if (!sav->sav_sync) 5786 return; 5787 5788 /* 5789 * Update the MOS nvlist describing the list of available devices. 5790 * spa_validate_aux() will have already made sure this nvlist is 5791 * valid and the vdevs are labeled appropriately. 5792 */ 5793 if (sav->sav_object == 0) { 5794 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5795 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5796 sizeof (uint64_t), tx); 5797 VERIFY(zap_update(spa->spa_meta_objset, 5798 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5799 &sav->sav_object, tx) == 0); 5800 } 5801 5802 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5803 if (sav->sav_count == 0) { 5804 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5805 } else { 5806 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5807 for (i = 0; i < sav->sav_count; i++) 5808 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5809 B_FALSE, VDEV_CONFIG_L2CACHE); 5810 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5811 sav->sav_count) == 0); 5812 for (i = 0; i < sav->sav_count; i++) 5813 nvlist_free(list[i]); 5814 kmem_free(list, sav->sav_count * sizeof (void *)); 5815 } 5816 5817 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5818 nvlist_free(nvroot); 5819 5820 sav->sav_sync = B_FALSE; 5821 } 5822 5823 static void 5824 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5825 { 5826 nvlist_t *config; 5827 5828 if (list_is_empty(&spa->spa_config_dirty_list)) 5829 return; 5830 5831 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5832 5833 config = spa_config_generate(spa, spa->spa_root_vdev, 5834 dmu_tx_get_txg(tx), B_FALSE); 5835 5836 /* 5837 * If we're upgrading the spa version then make sure that 5838 * the config object gets updated with the correct version. 5839 */ 5840 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5841 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5842 spa->spa_uberblock.ub_version); 5843 5844 spa_config_exit(spa, SCL_STATE, FTAG); 5845 5846 if (spa->spa_config_syncing) 5847 nvlist_free(spa->spa_config_syncing); 5848 spa->spa_config_syncing = config; 5849 5850 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5851 } 5852 5853 static void 5854 spa_sync_version(void *arg, dmu_tx_t *tx) 5855 { 5856 uint64_t *versionp = arg; 5857 uint64_t version = *versionp; 5858 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5859 5860 /* 5861 * Setting the version is special cased when first creating the pool. 5862 */ 5863 ASSERT(tx->tx_txg != TXG_INITIAL); 5864 5865 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5866 ASSERT(version >= spa_version(spa)); 5867 5868 spa->spa_uberblock.ub_version = version; 5869 vdev_config_dirty(spa->spa_root_vdev); 5870 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 5871 } 5872 5873 /* 5874 * Set zpool properties. 5875 */ 5876 static void 5877 spa_sync_props(void *arg, dmu_tx_t *tx) 5878 { 5879 nvlist_t *nvp = arg; 5880 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5881 objset_t *mos = spa->spa_meta_objset; 5882 nvpair_t *elem = NULL; 5883 5884 mutex_enter(&spa->spa_props_lock); 5885 5886 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5887 uint64_t intval; 5888 char *strval, *fname; 5889 zpool_prop_t prop; 5890 const char *propname; 5891 zprop_type_t proptype; 5892 zfeature_info_t *feature; 5893 5894 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5895 case ZPROP_INVAL: 5896 /* 5897 * We checked this earlier in spa_prop_validate(). 5898 */ 5899 ASSERT(zpool_prop_feature(nvpair_name(elem))); 5900 5901 fname = strchr(nvpair_name(elem), '@') + 1; 5902 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature)); 5903 5904 spa_feature_enable(spa, feature, tx); 5905 spa_history_log_internal(spa, "set", tx, 5906 "%s=enabled", nvpair_name(elem)); 5907 break; 5908 5909 case ZPOOL_PROP_VERSION: 5910 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5911 /* 5912 * The version is synced seperatly before other 5913 * properties and should be correct by now. 5914 */ 5915 ASSERT3U(spa_version(spa), >=, intval); 5916 break; 5917 5918 case ZPOOL_PROP_ALTROOT: 5919 /* 5920 * 'altroot' is a non-persistent property. It should 5921 * have been set temporarily at creation or import time. 5922 */ 5923 ASSERT(spa->spa_root != NULL); 5924 break; 5925 5926 case ZPOOL_PROP_READONLY: 5927 case ZPOOL_PROP_CACHEFILE: 5928 /* 5929 * 'readonly' and 'cachefile' are also non-persisitent 5930 * properties. 5931 */ 5932 break; 5933 case ZPOOL_PROP_COMMENT: 5934 VERIFY(nvpair_value_string(elem, &strval) == 0); 5935 if (spa->spa_comment != NULL) 5936 spa_strfree(spa->spa_comment); 5937 spa->spa_comment = spa_strdup(strval); 5938 /* 5939 * We need to dirty the configuration on all the vdevs 5940 * so that their labels get updated. It's unnecessary 5941 * to do this for pool creation since the vdev's 5942 * configuratoin has already been dirtied. 5943 */ 5944 if (tx->tx_txg != TXG_INITIAL) 5945 vdev_config_dirty(spa->spa_root_vdev); 5946 spa_history_log_internal(spa, "set", tx, 5947 "%s=%s", nvpair_name(elem), strval); 5948 break; 5949 default: 5950 /* 5951 * Set pool property values in the poolprops mos object. 5952 */ 5953 if (spa->spa_pool_props_object == 0) { 5954 spa->spa_pool_props_object = 5955 zap_create_link(mos, DMU_OT_POOL_PROPS, 5956 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5957 tx); 5958 } 5959 5960 /* normalize the property name */ 5961 propname = zpool_prop_to_name(prop); 5962 proptype = zpool_prop_get_type(prop); 5963 5964 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5965 ASSERT(proptype == PROP_TYPE_STRING); 5966 VERIFY(nvpair_value_string(elem, &strval) == 0); 5967 VERIFY(zap_update(mos, 5968 spa->spa_pool_props_object, propname, 5969 1, strlen(strval) + 1, strval, tx) == 0); 5970 spa_history_log_internal(spa, "set", tx, 5971 "%s=%s", nvpair_name(elem), strval); 5972 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5973 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5974 5975 if (proptype == PROP_TYPE_INDEX) { 5976 const char *unused; 5977 VERIFY(zpool_prop_index_to_string( 5978 prop, intval, &unused) == 0); 5979 } 5980 VERIFY(zap_update(mos, 5981 spa->spa_pool_props_object, propname, 5982 8, 1, &intval, tx) == 0); 5983 spa_history_log_internal(spa, "set", tx, 5984 "%s=%lld", nvpair_name(elem), intval); 5985 } else { 5986 ASSERT(0); /* not allowed */ 5987 } 5988 5989 switch (prop) { 5990 case ZPOOL_PROP_DELEGATION: 5991 spa->spa_delegation = intval; 5992 break; 5993 case ZPOOL_PROP_BOOTFS: 5994 spa->spa_bootfs = intval; 5995 break; 5996 case ZPOOL_PROP_FAILUREMODE: 5997 spa->spa_failmode = intval; 5998 break; 5999 case ZPOOL_PROP_AUTOEXPAND: 6000 spa->spa_autoexpand = intval; 6001 if (tx->tx_txg != TXG_INITIAL) 6002 spa_async_request(spa, 6003 SPA_ASYNC_AUTOEXPAND); 6004 break; 6005 case ZPOOL_PROP_DEDUPDITTO: 6006 spa->spa_dedup_ditto = intval; 6007 break; 6008 default: 6009 break; 6010 } 6011 } 6012 6013 } 6014 6015 mutex_exit(&spa->spa_props_lock); 6016 } 6017 6018 /* 6019 * Perform one-time upgrade on-disk changes. spa_version() does not 6020 * reflect the new version this txg, so there must be no changes this 6021 * txg to anything that the upgrade code depends on after it executes. 6022 * Therefore this must be called after dsl_pool_sync() does the sync 6023 * tasks. 6024 */ 6025 static void 6026 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6027 { 6028 dsl_pool_t *dp = spa->spa_dsl_pool; 6029 6030 ASSERT(spa->spa_sync_pass == 1); 6031 6032 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6033 6034 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6035 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6036 dsl_pool_create_origin(dp, tx); 6037 6038 /* Keeping the origin open increases spa_minref */ 6039 spa->spa_minref += 3; 6040 } 6041 6042 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6043 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6044 dsl_pool_upgrade_clones(dp, tx); 6045 } 6046 6047 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6048 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6049 dsl_pool_upgrade_dir_clones(dp, tx); 6050 6051 /* Keeping the freedir open increases spa_minref */ 6052 spa->spa_minref += 3; 6053 } 6054 6055 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6056 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6057 spa_feature_create_zap_objects(spa, tx); 6058 } 6059 rrw_exit(&dp->dp_config_rwlock, FTAG); 6060 } 6061 6062 /* 6063 * Sync the specified transaction group. New blocks may be dirtied as 6064 * part of the process, so we iterate until it converges. 6065 */ 6066 void 6067 spa_sync(spa_t *spa, uint64_t txg) 6068 { 6069 dsl_pool_t *dp = spa->spa_dsl_pool; 6070 objset_t *mos = spa->spa_meta_objset; 6071 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj; 6072 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6073 vdev_t *rvd = spa->spa_root_vdev; 6074 vdev_t *vd; 6075 dmu_tx_t *tx; 6076 int error; 6077 6078 VERIFY(spa_writeable(spa)); 6079 6080 /* 6081 * Lock out configuration changes. 6082 */ 6083 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6084 6085 spa->spa_syncing_txg = txg; 6086 spa->spa_sync_pass = 0; 6087 6088 /* 6089 * If there are any pending vdev state changes, convert them 6090 * into config changes that go out with this transaction group. 6091 */ 6092 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6093 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6094 /* 6095 * We need the write lock here because, for aux vdevs, 6096 * calling vdev_config_dirty() modifies sav_config. 6097 * This is ugly and will become unnecessary when we 6098 * eliminate the aux vdev wart by integrating all vdevs 6099 * into the root vdev tree. 6100 */ 6101 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6102 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6103 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6104 vdev_state_clean(vd); 6105 vdev_config_dirty(vd); 6106 } 6107 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6108 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6109 } 6110 spa_config_exit(spa, SCL_STATE, FTAG); 6111 6112 tx = dmu_tx_create_assigned(dp, txg); 6113 6114 spa->spa_sync_starttime = gethrtime(); 6115 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6116 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6117 6118 /* 6119 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6120 * set spa_deflate if we have no raid-z vdevs. 6121 */ 6122 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6123 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6124 int i; 6125 6126 for (i = 0; i < rvd->vdev_children; i++) { 6127 vd = rvd->vdev_child[i]; 6128 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6129 break; 6130 } 6131 if (i == rvd->vdev_children) { 6132 spa->spa_deflate = TRUE; 6133 VERIFY(0 == zap_add(spa->spa_meta_objset, 6134 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6135 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6136 } 6137 } 6138 6139 /* 6140 * If anything has changed in this txg, or if someone is waiting 6141 * for this txg to sync (eg, spa_vdev_remove()), push the 6142 * deferred frees from the previous txg. If not, leave them 6143 * alone so that we don't generate work on an otherwise idle 6144 * system. 6145 */ 6146 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 6147 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 6148 !txg_list_empty(&dp->dp_sync_tasks, txg) || 6149 ((dsl_scan_active(dp->dp_scan) || 6150 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 6151 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6152 VERIFY3U(bpobj_iterate(defer_bpo, 6153 spa_free_sync_cb, zio, tx), ==, 0); 6154 VERIFY0(zio_wait(zio)); 6155 } 6156 6157 /* 6158 * Iterate to convergence. 6159 */ 6160 do { 6161 int pass = ++spa->spa_sync_pass; 6162 6163 spa_sync_config_object(spa, tx); 6164 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6165 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6166 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6167 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6168 spa_errlog_sync(spa, txg); 6169 dsl_pool_sync(dp, txg); 6170 6171 if (pass < zfs_sync_pass_deferred_free) { 6172 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6173 bplist_iterate(free_bpl, spa_free_sync_cb, 6174 zio, tx); 6175 VERIFY(zio_wait(zio) == 0); 6176 } else { 6177 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6178 defer_bpo, tx); 6179 } 6180 6181 ddt_sync(spa, txg); 6182 dsl_scan_sync(dp, tx); 6183 6184 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6185 vdev_sync(vd, txg); 6186 6187 if (pass == 1) 6188 spa_sync_upgrades(spa, tx); 6189 6190 } while (dmu_objset_is_dirty(mos, txg)); 6191 6192 /* 6193 * Rewrite the vdev configuration (which includes the uberblock) 6194 * to commit the transaction group. 6195 * 6196 * If there are no dirty vdevs, we sync the uberblock to a few 6197 * random top-level vdevs that are known to be visible in the 6198 * config cache (see spa_vdev_add() for a complete description). 6199 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6200 */ 6201 for (;;) { 6202 /* 6203 * We hold SCL_STATE to prevent vdev open/close/etc. 6204 * while we're attempting to write the vdev labels. 6205 */ 6206 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6207 6208 if (list_is_empty(&spa->spa_config_dirty_list)) { 6209 vdev_t *svd[SPA_DVAS_PER_BP]; 6210 int svdcount = 0; 6211 int children = rvd->vdev_children; 6212 int c0 = spa_get_random(children); 6213 6214 for (int c = 0; c < children; c++) { 6215 vd = rvd->vdev_child[(c0 + c) % children]; 6216 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6217 continue; 6218 svd[svdcount++] = vd; 6219 if (svdcount == SPA_DVAS_PER_BP) 6220 break; 6221 } 6222 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6223 if (error != 0) 6224 error = vdev_config_sync(svd, svdcount, txg, 6225 B_TRUE); 6226 } else { 6227 error = vdev_config_sync(rvd->vdev_child, 6228 rvd->vdev_children, txg, B_FALSE); 6229 if (error != 0) 6230 error = vdev_config_sync(rvd->vdev_child, 6231 rvd->vdev_children, txg, B_TRUE); 6232 } 6233 6234 if (error == 0) 6235 spa->spa_last_synced_guid = rvd->vdev_guid; 6236 6237 spa_config_exit(spa, SCL_STATE, FTAG); 6238 6239 if (error == 0) 6240 break; 6241 zio_suspend(spa, NULL); 6242 zio_resume_wait(spa); 6243 } 6244 dmu_tx_commit(tx); 6245 6246 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6247 6248 /* 6249 * Clear the dirty config list. 6250 */ 6251 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6252 vdev_config_clean(vd); 6253 6254 /* 6255 * Now that the new config has synced transactionally, 6256 * let it become visible to the config cache. 6257 */ 6258 if (spa->spa_config_syncing != NULL) { 6259 spa_config_set(spa, spa->spa_config_syncing); 6260 spa->spa_config_txg = txg; 6261 spa->spa_config_syncing = NULL; 6262 } 6263 6264 spa->spa_ubsync = spa->spa_uberblock; 6265 6266 dsl_pool_sync_done(dp, txg); 6267 6268 /* 6269 * Update usable space statistics. 6270 */ 6271 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6272 vdev_sync_done(vd, txg); 6273 6274 spa_update_dspace(spa); 6275 6276 /* 6277 * It had better be the case that we didn't dirty anything 6278 * since vdev_config_sync(). 6279 */ 6280 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6281 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6282 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6283 6284 spa->spa_sync_pass = 0; 6285 6286 spa_config_exit(spa, SCL_CONFIG, FTAG); 6287 6288 spa_handle_ignored_writes(spa); 6289 6290 /* 6291 * If any async tasks have been requested, kick them off. 6292 */ 6293 spa_async_dispatch(spa); 6294 } 6295 6296 /* 6297 * Sync all pools. We don't want to hold the namespace lock across these 6298 * operations, so we take a reference on the spa_t and drop the lock during the 6299 * sync. 6300 */ 6301 void 6302 spa_sync_allpools(void) 6303 { 6304 spa_t *spa = NULL; 6305 mutex_enter(&spa_namespace_lock); 6306 while ((spa = spa_next(spa)) != NULL) { 6307 if (spa_state(spa) != POOL_STATE_ACTIVE || 6308 !spa_writeable(spa) || spa_suspended(spa)) 6309 continue; 6310 spa_open_ref(spa, FTAG); 6311 mutex_exit(&spa_namespace_lock); 6312 txg_wait_synced(spa_get_dsl(spa), 0); 6313 mutex_enter(&spa_namespace_lock); 6314 spa_close(spa, FTAG); 6315 } 6316 mutex_exit(&spa_namespace_lock); 6317 } 6318 6319 /* 6320 * ========================================================================== 6321 * Miscellaneous routines 6322 * ========================================================================== 6323 */ 6324 6325 /* 6326 * Remove all pools in the system. 6327 */ 6328 void 6329 spa_evict_all(void) 6330 { 6331 spa_t *spa; 6332 6333 /* 6334 * Remove all cached state. All pools should be closed now, 6335 * so every spa in the AVL tree should be unreferenced. 6336 */ 6337 mutex_enter(&spa_namespace_lock); 6338 while ((spa = spa_next(NULL)) != NULL) { 6339 /* 6340 * Stop async tasks. The async thread may need to detach 6341 * a device that's been replaced, which requires grabbing 6342 * spa_namespace_lock, so we must drop it here. 6343 */ 6344 spa_open_ref(spa, FTAG); 6345 mutex_exit(&spa_namespace_lock); 6346 spa_async_suspend(spa); 6347 mutex_enter(&spa_namespace_lock); 6348 spa_close(spa, FTAG); 6349 6350 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6351 spa_unload(spa); 6352 spa_deactivate(spa); 6353 } 6354 spa_remove(spa); 6355 } 6356 mutex_exit(&spa_namespace_lock); 6357 } 6358 6359 vdev_t * 6360 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6361 { 6362 vdev_t *vd; 6363 int i; 6364 6365 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6366 return (vd); 6367 6368 if (aux) { 6369 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6370 vd = spa->spa_l2cache.sav_vdevs[i]; 6371 if (vd->vdev_guid == guid) 6372 return (vd); 6373 } 6374 6375 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6376 vd = spa->spa_spares.sav_vdevs[i]; 6377 if (vd->vdev_guid == guid) 6378 return (vd); 6379 } 6380 } 6381 6382 return (NULL); 6383 } 6384 6385 void 6386 spa_upgrade(spa_t *spa, uint64_t version) 6387 { 6388 ASSERT(spa_writeable(spa)); 6389 6390 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6391 6392 /* 6393 * This should only be called for a non-faulted pool, and since a 6394 * future version would result in an unopenable pool, this shouldn't be 6395 * possible. 6396 */ 6397 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6398 ASSERT(version >= spa->spa_uberblock.ub_version); 6399 6400 spa->spa_uberblock.ub_version = version; 6401 vdev_config_dirty(spa->spa_root_vdev); 6402 6403 spa_config_exit(spa, SCL_ALL, FTAG); 6404 6405 txg_wait_synced(spa_get_dsl(spa), 0); 6406 } 6407 6408 boolean_t 6409 spa_has_spare(spa_t *spa, uint64_t guid) 6410 { 6411 int i; 6412 uint64_t spareguid; 6413 spa_aux_vdev_t *sav = &spa->spa_spares; 6414 6415 for (i = 0; i < sav->sav_count; i++) 6416 if (sav->sav_vdevs[i]->vdev_guid == guid) 6417 return (B_TRUE); 6418 6419 for (i = 0; i < sav->sav_npending; i++) { 6420 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6421 &spareguid) == 0 && spareguid == guid) 6422 return (B_TRUE); 6423 } 6424 6425 return (B_FALSE); 6426 } 6427 6428 /* 6429 * Check if a pool has an active shared spare device. 6430 * Note: reference count of an active spare is 2, as a spare and as a replace 6431 */ 6432 static boolean_t 6433 spa_has_active_shared_spare(spa_t *spa) 6434 { 6435 int i, refcnt; 6436 uint64_t pool; 6437 spa_aux_vdev_t *sav = &spa->spa_spares; 6438 6439 for (i = 0; i < sav->sav_count; i++) { 6440 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6441 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6442 refcnt > 2) 6443 return (B_TRUE); 6444 } 6445 6446 return (B_FALSE); 6447 } 6448 6449 /* 6450 * Post a sysevent corresponding to the given event. The 'name' must be one of 6451 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6452 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6453 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6454 * or zdb as real changes. 6455 */ 6456 void 6457 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6458 { 6459 #ifdef _KERNEL 6460 sysevent_t *ev; 6461 sysevent_attr_list_t *attr = NULL; 6462 sysevent_value_t value; 6463 sysevent_id_t eid; 6464 6465 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6466 SE_SLEEP); 6467 6468 value.value_type = SE_DATA_TYPE_STRING; 6469 value.value.sv_string = spa_name(spa); 6470 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6471 goto done; 6472 6473 value.value_type = SE_DATA_TYPE_UINT64; 6474 value.value.sv_uint64 = spa_guid(spa); 6475 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6476 goto done; 6477 6478 if (vd) { 6479 value.value_type = SE_DATA_TYPE_UINT64; 6480 value.value.sv_uint64 = vd->vdev_guid; 6481 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6482 SE_SLEEP) != 0) 6483 goto done; 6484 6485 if (vd->vdev_path) { 6486 value.value_type = SE_DATA_TYPE_STRING; 6487 value.value.sv_string = vd->vdev_path; 6488 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6489 &value, SE_SLEEP) != 0) 6490 goto done; 6491 } 6492 } 6493 6494 if (sysevent_attach_attributes(ev, attr) != 0) 6495 goto done; 6496 attr = NULL; 6497 6498 (void) log_sysevent(ev, SE_SLEEP, &eid); 6499 6500 done: 6501 if (attr) 6502 sysevent_free_attr(attr); 6503 sysevent_free(ev); 6504 #endif 6505 }