1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 */ 26 27 /* 28 * Virtual Device Labels 29 * --------------------- 30 * 31 * The vdev label serves several distinct purposes: 32 * 33 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 34 * identity within the pool. 35 * 36 * 2. Verify that all the devices given in a configuration are present 37 * within the pool. 38 * 39 * 3. Determine the uberblock for the pool. 40 * 41 * 4. In case of an import operation, determine the configuration of the 42 * toplevel vdev of which it is a part. 43 * 44 * 5. If an import operation cannot find all the devices in the pool, 45 * provide enough information to the administrator to determine which 46 * devices are missing. 47 * 48 * It is important to note that while the kernel is responsible for writing the 49 * label, it only consumes the information in the first three cases. The 50 * latter information is only consumed in userland when determining the 51 * configuration to import a pool. 52 * 53 * 54 * Label Organization 55 * ------------------ 56 * 57 * Before describing the contents of the label, it's important to understand how 58 * the labels are written and updated with respect to the uberblock. 59 * 60 * When the pool configuration is altered, either because it was newly created 61 * or a device was added, we want to update all the labels such that we can deal 62 * with fatal failure at any point. To this end, each disk has two labels which 63 * are updated before and after the uberblock is synced. Assuming we have 64 * labels and an uberblock with the following transaction groups: 65 * 66 * L1 UB L2 67 * +------+ +------+ +------+ 68 * | | | | | | 69 * | t10 | | t10 | | t10 | 70 * | | | | | | 71 * +------+ +------+ +------+ 72 * 73 * In this stable state, the labels and the uberblock were all updated within 74 * the same transaction group (10). Each label is mirrored and checksummed, so 75 * that we can detect when we fail partway through writing the label. 76 * 77 * In order to identify which labels are valid, the labels are written in the 78 * following manner: 79 * 80 * 1. For each vdev, update 'L1' to the new label 81 * 2. Update the uberblock 82 * 3. For each vdev, update 'L2' to the new label 83 * 84 * Given arbitrary failure, we can determine the correct label to use based on 85 * the transaction group. If we fail after updating L1 but before updating the 86 * UB, we will notice that L1's transaction group is greater than the uberblock, 87 * so L2 must be valid. If we fail after writing the uberblock but before 88 * writing L2, we will notice that L2's transaction group is less than L1, and 89 * therefore L1 is valid. 90 * 91 * Another added complexity is that not every label is updated when the config 92 * is synced. If we add a single device, we do not want to have to re-write 93 * every label for every device in the pool. This means that both L1 and L2 may 94 * be older than the pool uberblock, because the necessary information is stored 95 * on another vdev. 96 * 97 * 98 * On-disk Format 99 * -------------- 100 * 101 * The vdev label consists of two distinct parts, and is wrapped within the 102 * vdev_label_t structure. The label includes 8k of padding to permit legacy 103 * VTOC disk labels, but is otherwise ignored. 104 * 105 * The first half of the label is a packed nvlist which contains pool wide 106 * properties, per-vdev properties, and configuration information. It is 107 * described in more detail below. 108 * 109 * The latter half of the label consists of a redundant array of uberblocks. 110 * These uberblocks are updated whenever a transaction group is committed, 111 * or when the configuration is updated. When a pool is loaded, we scan each 112 * vdev for the 'best' uberblock. 113 * 114 * 115 * Configuration Information 116 * ------------------------- 117 * 118 * The nvlist describing the pool and vdev contains the following elements: 119 * 120 * version ZFS on-disk version 121 * name Pool name 122 * state Pool state 123 * txg Transaction group in which this label was written 124 * pool_guid Unique identifier for this pool 125 * vdev_tree An nvlist describing vdev tree. 126 * features_for_read 127 * An nvlist of the features necessary for reading the MOS. 128 * 129 * Each leaf device label also contains the following: 130 * 131 * top_guid Unique ID for top-level vdev in which this is contained 132 * guid Unique ID for the leaf vdev 133 * 134 * The 'vs' configuration follows the format described in 'spa_config.c'. 135 */ 136 137 #include <sys/zfs_context.h> 138 #include <sys/spa.h> 139 #include <sys/spa_impl.h> 140 #include <sys/dmu.h> 141 #include <sys/zap.h> 142 #include <sys/vdev.h> 143 #include <sys/vdev_impl.h> 144 #include <sys/uberblock_impl.h> 145 #include <sys/metaslab.h> 146 #include <sys/zio.h> 147 #include <sys/dsl_scan.h> 148 #include <sys/fs/zfs.h> 149 150 /* 151 * Basic routines to read and write from a vdev label. 152 * Used throughout the rest of this file. 153 */ 154 uint64_t 155 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 156 { 157 ASSERT(offset < sizeof (vdev_label_t)); 158 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 159 160 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 161 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 162 } 163 164 /* 165 * Returns back the vdev label associated with the passed in offset. 166 */ 167 int 168 vdev_label_number(uint64_t psize, uint64_t offset) 169 { 170 int l; 171 172 if (offset >= psize - VDEV_LABEL_END_SIZE) { 173 offset -= psize - VDEV_LABEL_END_SIZE; 174 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 175 } 176 l = offset / sizeof (vdev_label_t); 177 return (l < VDEV_LABELS ? l : -1); 178 } 179 180 static void 181 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 182 uint64_t size, zio_done_func_t *done, void *private, int flags) 183 { 184 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) == 185 SCL_STATE_ALL); 186 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 187 188 zio_nowait(zio_read_phys(zio, vd, 189 vdev_label_offset(vd->vdev_psize, l, offset), 190 size, buf, ZIO_CHECKSUM_LABEL, done, private, 191 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 192 } 193 194 static void 195 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 196 uint64_t size, zio_done_func_t *done, void *private, int flags) 197 { 198 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL || 199 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) == 200 (SCL_CONFIG | SCL_STATE) && 201 dsl_pool_sync_context(spa_get_dsl(zio->io_spa)))); 202 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 203 204 zio_nowait(zio_write_phys(zio, vd, 205 vdev_label_offset(vd->vdev_psize, l, offset), 206 size, buf, ZIO_CHECKSUM_LABEL, done, private, 207 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 208 } 209 210 /* 211 * Generate the nvlist representing this vdev's config. 212 */ 213 nvlist_t * 214 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 215 vdev_config_flag_t flags) 216 { 217 nvlist_t *nv = NULL; 218 219 nv = fnvlist_alloc(); 220 221 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type); 222 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 223 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id); 224 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid); 225 226 if (vd->vdev_path != NULL) 227 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path); 228 229 if (vd->vdev_devid != NULL) 230 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 231 232 if (vd->vdev_physpath != NULL) 233 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 234 vd->vdev_physpath); 235 236 if (vd->vdev_fru != NULL) 237 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru); 238 239 if (vd->vdev_nparity != 0) { 240 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 241 VDEV_TYPE_RAIDZ) == 0); 242 243 /* 244 * Make sure someone hasn't managed to sneak a fancy new vdev 245 * into a crufty old storage pool. 246 */ 247 ASSERT(vd->vdev_nparity == 1 || 248 (vd->vdev_nparity <= 2 && 249 spa_version(spa) >= SPA_VERSION_RAIDZ2) || 250 (vd->vdev_nparity <= 3 && 251 spa_version(spa) >= SPA_VERSION_RAIDZ3)); 252 253 /* 254 * Note that we'll add the nparity tag even on storage pools 255 * that only support a single parity device -- older software 256 * will just ignore it. 257 */ 258 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity); 259 } 260 261 if (vd->vdev_wholedisk != -1ULL) 262 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 263 vd->vdev_wholedisk); 264 265 if (vd->vdev_not_present) 266 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1); 267 268 if (vd->vdev_isspare) 269 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); 270 271 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 272 vd == vd->vdev_top) { 273 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 274 vd->vdev_ms_array); 275 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 276 vd->vdev_ms_shift); 277 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 278 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 279 vd->vdev_asize); 280 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog); 281 if (vd->vdev_removing) 282 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 283 vd->vdev_removing); 284 } 285 286 if (flags & VDEV_CONFIG_L2CACHE) 287 /* indicate that we support L2ARC persistency */ 288 VERIFY(nvlist_add_boolean_value(nv, 289 ZPOOL_CONFIG_L2CACHE_PERSISTENT, B_TRUE) == 0); 290 291 if (vd->vdev_dtl_sm != NULL) { 292 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 293 space_map_object(vd->vdev_dtl_sm)); 294 } 295 296 if (vd->vdev_crtxg) 297 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); 298 299 if (getstats) { 300 vdev_stat_t vs; 301 pool_scan_stat_t ps; 302 303 vdev_get_stats(vd, &vs); 304 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 305 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)); 306 307 /* provide either current or previous scan information */ 308 if (spa_scan_get_stats(spa, &ps) == 0) { 309 fnvlist_add_uint64_array(nv, 310 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 311 sizeof (pool_scan_stat_t) / sizeof (uint64_t)); 312 } 313 } 314 315 if (!vd->vdev_ops->vdev_op_leaf) { 316 nvlist_t **child; 317 int c, idx; 318 319 ASSERT(!vd->vdev_ishole); 320 321 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 322 KM_SLEEP); 323 324 for (c = 0, idx = 0; c < vd->vdev_children; c++) { 325 vdev_t *cvd = vd->vdev_child[c]; 326 327 /* 328 * If we're generating an nvlist of removing 329 * vdevs then skip over any device which is 330 * not being removed. 331 */ 332 if ((flags & VDEV_CONFIG_REMOVING) && 333 !cvd->vdev_removing) 334 continue; 335 336 child[idx++] = vdev_config_generate(spa, cvd, 337 getstats, flags); 338 } 339 340 if (idx) { 341 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 342 child, idx); 343 } 344 345 for (c = 0; c < idx; c++) 346 nvlist_free(child[c]); 347 348 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 349 350 } else { 351 const char *aux = NULL; 352 353 if (vd->vdev_offline && !vd->vdev_tmpoffline) 354 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE); 355 if (vd->vdev_resilver_txg != 0) 356 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 357 vd->vdev_resilver_txg); 358 if (vd->vdev_faulted) 359 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE); 360 if (vd->vdev_degraded) 361 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE); 362 if (vd->vdev_removed) 363 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE); 364 if (vd->vdev_unspare) 365 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE); 366 if (vd->vdev_ishole) 367 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE); 368 369 switch (vd->vdev_stat.vs_aux) { 370 case VDEV_AUX_ERR_EXCEEDED: 371 aux = "err_exceeded"; 372 break; 373 374 case VDEV_AUX_EXTERNAL: 375 aux = "external"; 376 break; 377 } 378 379 if (aux != NULL) 380 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux); 381 382 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 383 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 384 vd->vdev_orig_guid); 385 } 386 } 387 388 return (nv); 389 } 390 391 /* 392 * Generate a view of the top-level vdevs. If we currently have holes 393 * in the namespace, then generate an array which contains a list of holey 394 * vdevs. Additionally, add the number of top-level children that currently 395 * exist. 396 */ 397 void 398 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 399 { 400 vdev_t *rvd = spa->spa_root_vdev; 401 uint64_t *array; 402 uint_t c, idx; 403 404 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 405 406 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 407 vdev_t *tvd = rvd->vdev_child[c]; 408 409 if (tvd->vdev_ishole) 410 array[idx++] = c; 411 } 412 413 if (idx) { 414 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 415 array, idx) == 0); 416 } 417 418 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 419 rvd->vdev_children) == 0); 420 421 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 422 } 423 424 /* 425 * Returns the configuration from the label of the given vdev. For vdevs 426 * which don't have a txg value stored on their label (i.e. spares/cache) 427 * or have not been completely initialized (txg = 0) just return 428 * the configuration from the first valid label we find. Otherwise, 429 * find the most up-to-date label that does not exceed the specified 430 * 'txg' value. 431 */ 432 nvlist_t * 433 vdev_label_read_config(vdev_t *vd, uint64_t txg) 434 { 435 spa_t *spa = vd->vdev_spa; 436 nvlist_t *config = NULL; 437 vdev_phys_t *vp; 438 zio_t *zio; 439 uint64_t best_txg = 0; 440 int error = 0; 441 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 442 ZIO_FLAG_SPECULATIVE; 443 444 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 445 446 if (!vdev_readable(vd)) 447 return (NULL); 448 449 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 450 451 retry: 452 for (int l = 0; l < VDEV_LABELS; l++) { 453 nvlist_t *label = NULL; 454 455 zio = zio_root(spa, NULL, NULL, flags); 456 457 vdev_label_read(zio, vd, l, vp, 458 offsetof(vdev_label_t, vl_vdev_phys), 459 sizeof (vdev_phys_t), NULL, NULL, flags); 460 461 if (zio_wait(zio) == 0 && 462 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 463 &label, 0) == 0) { 464 uint64_t label_txg = 0; 465 466 /* 467 * Auxiliary vdevs won't have txg values in their 468 * labels and newly added vdevs may not have been 469 * completely initialized so just return the 470 * configuration from the first valid label we 471 * encounter. 472 */ 473 error = nvlist_lookup_uint64(label, 474 ZPOOL_CONFIG_POOL_TXG, &label_txg); 475 if ((error || label_txg == 0) && !config) { 476 config = label; 477 break; 478 } else if (label_txg <= txg && label_txg > best_txg) { 479 best_txg = label_txg; 480 nvlist_free(config); 481 config = fnvlist_dup(label); 482 } 483 } 484 485 if (label != NULL) { 486 nvlist_free(label); 487 label = NULL; 488 } 489 } 490 491 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 492 flags |= ZIO_FLAG_TRYHARD; 493 goto retry; 494 } 495 496 zio_buf_free(vp, sizeof (vdev_phys_t)); 497 498 return (config); 499 } 500 501 /* 502 * Determine if a device is in use. The 'spare_guid' parameter will be filled 503 * in with the device guid if this spare is active elsewhere on the system. 504 */ 505 static boolean_t 506 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 507 uint64_t *spare_guid, uint64_t *l2cache_guid) 508 { 509 spa_t *spa = vd->vdev_spa; 510 uint64_t state, pool_guid, device_guid, txg, spare_pool; 511 uint64_t vdtxg = 0; 512 nvlist_t *label; 513 514 if (spare_guid) 515 *spare_guid = 0ULL; 516 if (l2cache_guid) 517 *l2cache_guid = 0ULL; 518 519 /* 520 * Read the label, if any, and perform some basic sanity checks. 521 */ 522 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 523 return (B_FALSE); 524 525 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 526 &vdtxg); 527 528 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 529 &state) != 0 || 530 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 531 &device_guid) != 0) { 532 nvlist_free(label); 533 return (B_FALSE); 534 } 535 536 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 537 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 538 &pool_guid) != 0 || 539 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 540 &txg) != 0)) { 541 nvlist_free(label); 542 return (B_FALSE); 543 } 544 545 nvlist_free(label); 546 547 /* 548 * Check to see if this device indeed belongs to the pool it claims to 549 * be a part of. The only way this is allowed is if the device is a hot 550 * spare (which we check for later on). 551 */ 552 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 553 !spa_guid_exists(pool_guid, device_guid) && 554 !spa_spare_exists(device_guid, NULL, NULL) && 555 !spa_l2cache_exists(device_guid, NULL)) 556 return (B_FALSE); 557 558 /* 559 * If the transaction group is zero, then this an initialized (but 560 * unused) label. This is only an error if the create transaction 561 * on-disk is the same as the one we're using now, in which case the 562 * user has attempted to add the same vdev multiple times in the same 563 * transaction. 564 */ 565 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 566 txg == 0 && vdtxg == crtxg) 567 return (B_TRUE); 568 569 /* 570 * Check to see if this is a spare device. We do an explicit check for 571 * spa_has_spare() here because it may be on our pending list of spares 572 * to add. We also check if it is an l2cache device. 573 */ 574 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 575 spa_has_spare(spa, device_guid)) { 576 if (spare_guid) 577 *spare_guid = device_guid; 578 579 switch (reason) { 580 case VDEV_LABEL_CREATE: 581 case VDEV_LABEL_L2CACHE: 582 return (B_TRUE); 583 584 case VDEV_LABEL_REPLACE: 585 return (!spa_has_spare(spa, device_guid) || 586 spare_pool != 0ULL); 587 588 case VDEV_LABEL_SPARE: 589 return (spa_has_spare(spa, device_guid)); 590 } 591 } 592 593 /* 594 * Check to see if this is an l2cache device. 595 */ 596 if (spa_l2cache_exists(device_guid, NULL)) 597 return (B_TRUE); 598 599 /* 600 * We can't rely on a pool's state if it's been imported 601 * read-only. Instead we look to see if the pools is marked 602 * read-only in the namespace and set the state to active. 603 */ 604 if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL && 605 spa_mode(spa) == FREAD) 606 state = POOL_STATE_ACTIVE; 607 608 /* 609 * If the device is marked ACTIVE, then this device is in use by another 610 * pool on the system. 611 */ 612 return (state == POOL_STATE_ACTIVE); 613 } 614 615 /* 616 * Initialize a vdev label. We check to make sure each leaf device is not in 617 * use, and writable. We put down an initial label which we will later 618 * overwrite with a complete label. Note that it's important to do this 619 * sequentially, not in parallel, so that we catch cases of multiple use of the 620 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 621 * itself. 622 */ 623 int 624 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 625 { 626 spa_t *spa = vd->vdev_spa; 627 nvlist_t *label; 628 vdev_phys_t *vp; 629 char *pad2; 630 uberblock_t *ub; 631 zio_t *zio; 632 char *buf; 633 size_t buflen; 634 int error; 635 uint64_t spare_guid, l2cache_guid; 636 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 637 638 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 639 640 for (int c = 0; c < vd->vdev_children; c++) 641 if ((error = vdev_label_init(vd->vdev_child[c], 642 crtxg, reason)) != 0) 643 return (error); 644 645 /* Track the creation time for this vdev */ 646 vd->vdev_crtxg = crtxg; 647 648 if (!vd->vdev_ops->vdev_op_leaf) 649 return (0); 650 651 /* 652 * Dead vdevs cannot be initialized. 653 */ 654 if (vdev_is_dead(vd)) 655 return (SET_ERROR(EIO)); 656 657 /* 658 * Determine if the vdev is in use. 659 */ 660 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 661 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 662 return (SET_ERROR(EBUSY)); 663 664 /* 665 * If this is a request to add or replace a spare or l2cache device 666 * that is in use elsewhere on the system, then we must update the 667 * guid (which was initialized to a random value) to reflect the 668 * actual GUID (which is shared between multiple pools). 669 */ 670 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 671 spare_guid != 0ULL) { 672 uint64_t guid_delta = spare_guid - vd->vdev_guid; 673 674 vd->vdev_guid += guid_delta; 675 676 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 677 pvd->vdev_guid_sum += guid_delta; 678 679 /* 680 * If this is a replacement, then we want to fallthrough to the 681 * rest of the code. If we're adding a spare, then it's already 682 * labeled appropriately and we can just return. 683 */ 684 if (reason == VDEV_LABEL_SPARE) 685 return (0); 686 ASSERT(reason == VDEV_LABEL_REPLACE || 687 reason == VDEV_LABEL_SPLIT); 688 } 689 690 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 691 l2cache_guid != 0ULL) { 692 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 693 694 vd->vdev_guid += guid_delta; 695 696 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 697 pvd->vdev_guid_sum += guid_delta; 698 699 /* 700 * If this is a replacement, then we want to fallthrough to the 701 * rest of the code. If we're adding an l2cache, then it's 702 * already labeled appropriately and we can just return. 703 */ 704 if (reason == VDEV_LABEL_L2CACHE) 705 return (0); 706 ASSERT(reason == VDEV_LABEL_REPLACE); 707 } 708 709 /* 710 * Initialize its label. 711 */ 712 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 713 bzero(vp, sizeof (vdev_phys_t)); 714 715 /* 716 * Generate a label describing the pool and our top-level vdev. 717 * We mark it as being from txg 0 to indicate that it's not 718 * really part of an active pool just yet. The labels will 719 * be written again with a meaningful txg by spa_sync(). 720 */ 721 if (reason == VDEV_LABEL_SPARE || 722 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 723 /* 724 * For inactive hot spares, we generate a special label that 725 * identifies as a mutually shared hot spare. We write the 726 * label if we are adding a hot spare, or if we are removing an 727 * active hot spare (in which case we want to revert the 728 * labels). 729 */ 730 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 731 732 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 733 spa_version(spa)) == 0); 734 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 735 POOL_STATE_SPARE) == 0); 736 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 737 vd->vdev_guid) == 0); 738 } else if (reason == VDEV_LABEL_L2CACHE || 739 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 740 /* 741 * For level 2 ARC devices, add a special label. 742 */ 743 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 744 745 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 746 spa_version(spa)) == 0); 747 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 748 POOL_STATE_L2CACHE) == 0); 749 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 750 vd->vdev_guid) == 0); 751 } else { 752 uint64_t txg = 0ULL; 753 754 if (reason == VDEV_LABEL_SPLIT) 755 txg = spa->spa_uberblock.ub_txg; 756 label = spa_config_generate(spa, vd, txg, B_FALSE); 757 758 /* 759 * Add our creation time. This allows us to detect multiple 760 * vdev uses as described above, and automatically expires if we 761 * fail. 762 */ 763 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 764 crtxg) == 0); 765 } 766 767 buf = vp->vp_nvlist; 768 buflen = sizeof (vp->vp_nvlist); 769 770 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 771 if (error != 0) { 772 nvlist_free(label); 773 zio_buf_free(vp, sizeof (vdev_phys_t)); 774 /* EFAULT means nvlist_pack ran out of room */ 775 return (error == EFAULT ? ENAMETOOLONG : EINVAL); 776 } 777 778 /* 779 * Initialize uberblock template. 780 */ 781 ub = zio_buf_alloc(VDEV_UBERBLOCK_RING); 782 bzero(ub, VDEV_UBERBLOCK_RING); 783 *ub = spa->spa_uberblock; 784 ub->ub_txg = 0; 785 786 /* Initialize the 2nd padding area. */ 787 pad2 = zio_buf_alloc(VDEV_PAD_SIZE); 788 bzero(pad2, VDEV_PAD_SIZE); 789 790 /* 791 * Write everything in parallel. 792 */ 793 retry: 794 zio = zio_root(spa, NULL, NULL, flags); 795 796 for (int l = 0; l < VDEV_LABELS; l++) { 797 798 vdev_label_write(zio, vd, l, vp, 799 offsetof(vdev_label_t, vl_vdev_phys), 800 sizeof (vdev_phys_t), NULL, NULL, flags); 801 802 /* 803 * Skip the 1st padding area. 804 * Zero out the 2nd padding area where it might have 805 * left over data from previous filesystem format. 806 */ 807 vdev_label_write(zio, vd, l, pad2, 808 offsetof(vdev_label_t, vl_pad2), 809 VDEV_PAD_SIZE, NULL, NULL, flags); 810 811 vdev_label_write(zio, vd, l, ub, 812 offsetof(vdev_label_t, vl_uberblock), 813 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 814 } 815 816 error = zio_wait(zio); 817 818 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 819 flags |= ZIO_FLAG_TRYHARD; 820 goto retry; 821 } 822 823 nvlist_free(label); 824 zio_buf_free(pad2, VDEV_PAD_SIZE); 825 zio_buf_free(ub, VDEV_UBERBLOCK_RING); 826 zio_buf_free(vp, sizeof (vdev_phys_t)); 827 828 /* 829 * If this vdev hasn't been previously identified as a spare, then we 830 * mark it as such only if a) we are labeling it as a spare, or b) it 831 * exists as a spare elsewhere in the system. Do the same for 832 * level 2 ARC devices. 833 */ 834 if (error == 0 && !vd->vdev_isspare && 835 (reason == VDEV_LABEL_SPARE || 836 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 837 spa_spare_add(vd); 838 839 if (error == 0 && !vd->vdev_isl2cache && 840 (reason == VDEV_LABEL_L2CACHE || 841 spa_l2cache_exists(vd->vdev_guid, NULL))) 842 spa_l2cache_add(vd); 843 844 return (error); 845 } 846 847 /* 848 * ========================================================================== 849 * uberblock load/sync 850 * ========================================================================== 851 */ 852 853 /* 854 * Consider the following situation: txg is safely synced to disk. We've 855 * written the first uberblock for txg + 1, and then we lose power. When we 856 * come back up, we fail to see the uberblock for txg + 1 because, say, 857 * it was on a mirrored device and the replica to which we wrote txg + 1 858 * is now offline. If we then make some changes and sync txg + 1, and then 859 * the missing replica comes back, then for a few seconds we'll have two 860 * conflicting uberblocks on disk with the same txg. The solution is simple: 861 * among uberblocks with equal txg, choose the one with the latest timestamp. 862 */ 863 static int 864 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 865 { 866 if (ub1->ub_txg < ub2->ub_txg) 867 return (-1); 868 if (ub1->ub_txg > ub2->ub_txg) 869 return (1); 870 871 if (ub1->ub_timestamp < ub2->ub_timestamp) 872 return (-1); 873 if (ub1->ub_timestamp > ub2->ub_timestamp) 874 return (1); 875 876 return (0); 877 } 878 879 struct ubl_cbdata { 880 uberblock_t *ubl_ubbest; /* Best uberblock */ 881 vdev_t *ubl_vd; /* vdev associated with the above */ 882 }; 883 884 static void 885 vdev_uberblock_load_done(zio_t *zio) 886 { 887 vdev_t *vd = zio->io_vd; 888 spa_t *spa = zio->io_spa; 889 zio_t *rio = zio->io_private; 890 uberblock_t *ub = zio->io_data; 891 struct ubl_cbdata *cbp = rio->io_private; 892 893 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 894 895 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 896 mutex_enter(&rio->io_lock); 897 if (ub->ub_txg <= spa->spa_load_max_txg && 898 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 899 /* 900 * Keep track of the vdev in which this uberblock 901 * was found. We will use this information later 902 * to obtain the config nvlist associated with 903 * this uberblock. 904 */ 905 *cbp->ubl_ubbest = *ub; 906 cbp->ubl_vd = vd; 907 } 908 mutex_exit(&rio->io_lock); 909 } 910 911 zio_buf_free(zio->io_data, zio->io_size); 912 } 913 914 static void 915 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 916 struct ubl_cbdata *cbp) 917 { 918 for (int c = 0; c < vd->vdev_children; c++) 919 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 920 921 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 922 for (int l = 0; l < VDEV_LABELS; l++) { 923 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 924 vdev_label_read(zio, vd, l, 925 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), 926 VDEV_UBERBLOCK_OFFSET(vd, n), 927 VDEV_UBERBLOCK_SIZE(vd), 928 vdev_uberblock_load_done, zio, flags); 929 } 930 } 931 } 932 } 933 934 /* 935 * Reads the 'best' uberblock from disk along with its associated 936 * configuration. First, we read the uberblock array of each label of each 937 * vdev, keeping track of the uberblock with the highest txg in each array. 938 * Then, we read the configuration from the same vdev as the best uberblock. 939 */ 940 void 941 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 942 { 943 zio_t *zio; 944 spa_t *spa = rvd->vdev_spa; 945 struct ubl_cbdata cb; 946 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 947 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 948 949 ASSERT(ub); 950 ASSERT(config); 951 952 bzero(ub, sizeof (uberblock_t)); 953 *config = NULL; 954 955 cb.ubl_ubbest = ub; 956 cb.ubl_vd = NULL; 957 958 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 959 zio = zio_root(spa, NULL, &cb, flags); 960 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 961 (void) zio_wait(zio); 962 963 /* 964 * It's possible that the best uberblock was discovered on a label 965 * that has a configuration which was written in a future txg. 966 * Search all labels on this vdev to find the configuration that 967 * matches the txg for our uberblock. 968 */ 969 if (cb.ubl_vd != NULL) 970 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 971 spa_config_exit(spa, SCL_ALL, FTAG); 972 } 973 974 /* 975 * On success, increment root zio's count of good writes. 976 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 977 */ 978 static void 979 vdev_uberblock_sync_done(zio_t *zio) 980 { 981 uint64_t *good_writes = zio->io_private; 982 983 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 984 atomic_add_64(good_writes, 1); 985 } 986 987 /* 988 * Write the uberblock to all labels of all leaves of the specified vdev. 989 */ 990 static void 991 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags) 992 { 993 uberblock_t *ubbuf; 994 int n; 995 996 for (int c = 0; c < vd->vdev_children; c++) 997 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags); 998 999 if (!vd->vdev_ops->vdev_op_leaf) 1000 return; 1001 1002 if (!vdev_writeable(vd)) 1003 return; 1004 1005 n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 1006 1007 ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 1008 bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 1009 *ubbuf = *ub; 1010 1011 for (int l = 0; l < VDEV_LABELS; l++) 1012 vdev_label_write(zio, vd, l, ubbuf, 1013 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1014 vdev_uberblock_sync_done, zio->io_private, 1015 flags | ZIO_FLAG_DONT_PROPAGATE); 1016 1017 zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 1018 } 1019 1020 /* Sync the uberblocks to all vdevs in svd[] */ 1021 int 1022 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1023 { 1024 spa_t *spa = svd[0]->vdev_spa; 1025 zio_t *zio; 1026 uint64_t good_writes = 0; 1027 1028 zio = zio_root(spa, NULL, &good_writes, flags); 1029 1030 for (int v = 0; v < svdcount; v++) 1031 vdev_uberblock_sync(zio, ub, svd[v], flags); 1032 1033 (void) zio_wait(zio); 1034 1035 /* 1036 * Flush the uberblocks to disk. This ensures that the odd labels 1037 * are no longer needed (because the new uberblocks and the even 1038 * labels are safely on disk), so it is safe to overwrite them. 1039 */ 1040 zio = zio_root(spa, NULL, NULL, flags); 1041 1042 for (int v = 0; v < svdcount; v++) 1043 zio_flush(zio, svd[v]); 1044 1045 (void) zio_wait(zio); 1046 1047 return (good_writes >= 1 ? 0 : EIO); 1048 } 1049 1050 /* 1051 * On success, increment the count of good writes for our top-level vdev. 1052 */ 1053 static void 1054 vdev_label_sync_done(zio_t *zio) 1055 { 1056 uint64_t *good_writes = zio->io_private; 1057 1058 if (zio->io_error == 0) 1059 atomic_add_64(good_writes, 1); 1060 } 1061 1062 /* 1063 * If there weren't enough good writes, indicate failure to the parent. 1064 */ 1065 static void 1066 vdev_label_sync_top_done(zio_t *zio) 1067 { 1068 uint64_t *good_writes = zio->io_private; 1069 1070 if (*good_writes == 0) 1071 zio->io_error = SET_ERROR(EIO); 1072 1073 kmem_free(good_writes, sizeof (uint64_t)); 1074 } 1075 1076 /* 1077 * We ignore errors for log and cache devices, simply free the private data. 1078 */ 1079 static void 1080 vdev_label_sync_ignore_done(zio_t *zio) 1081 { 1082 kmem_free(zio->io_private, sizeof (uint64_t)); 1083 } 1084 1085 /* 1086 * Write all even or odd labels to all leaves of the specified vdev. 1087 */ 1088 static void 1089 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags) 1090 { 1091 nvlist_t *label; 1092 vdev_phys_t *vp; 1093 char *buf; 1094 size_t buflen; 1095 1096 for (int c = 0; c < vd->vdev_children; c++) 1097 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags); 1098 1099 if (!vd->vdev_ops->vdev_op_leaf) 1100 return; 1101 1102 if (!vdev_writeable(vd)) 1103 return; 1104 1105 /* 1106 * Generate a label describing the top-level config to which we belong. 1107 */ 1108 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1109 1110 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 1111 bzero(vp, sizeof (vdev_phys_t)); 1112 1113 buf = vp->vp_nvlist; 1114 buflen = sizeof (vp->vp_nvlist); 1115 1116 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { 1117 for (; l < VDEV_LABELS; l += 2) { 1118 vdev_label_write(zio, vd, l, vp, 1119 offsetof(vdev_label_t, vl_vdev_phys), 1120 sizeof (vdev_phys_t), 1121 vdev_label_sync_done, zio->io_private, 1122 flags | ZIO_FLAG_DONT_PROPAGATE); 1123 } 1124 } 1125 1126 zio_buf_free(vp, sizeof (vdev_phys_t)); 1127 nvlist_free(label); 1128 } 1129 1130 int 1131 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1132 { 1133 list_t *dl = &spa->spa_config_dirty_list; 1134 vdev_t *vd; 1135 zio_t *zio; 1136 int error; 1137 1138 /* 1139 * Write the new labels to disk. 1140 */ 1141 zio = zio_root(spa, NULL, NULL, flags); 1142 1143 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1144 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), 1145 KM_SLEEP); 1146 1147 ASSERT(!vd->vdev_ishole); 1148 1149 zio_t *vio = zio_null(zio, spa, NULL, 1150 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1151 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1152 good_writes, flags); 1153 vdev_label_sync(vio, vd, l, txg, flags); 1154 zio_nowait(vio); 1155 } 1156 1157 error = zio_wait(zio); 1158 1159 /* 1160 * Flush the new labels to disk. 1161 */ 1162 zio = zio_root(spa, NULL, NULL, flags); 1163 1164 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 1165 zio_flush(zio, vd); 1166 1167 (void) zio_wait(zio); 1168 1169 return (error); 1170 } 1171 1172 /* 1173 * Sync the uberblock and any changes to the vdev configuration. 1174 * 1175 * The order of operations is carefully crafted to ensure that 1176 * if the system panics or loses power at any time, the state on disk 1177 * is still transactionally consistent. The in-line comments below 1178 * describe the failure semantics at each stage. 1179 * 1180 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1181 * at any time, you can just call it again, and it will resume its work. 1182 */ 1183 int 1184 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard) 1185 { 1186 spa_t *spa = svd[0]->vdev_spa; 1187 uberblock_t *ub = &spa->spa_uberblock; 1188 vdev_t *vd; 1189 zio_t *zio; 1190 int error; 1191 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1192 1193 /* 1194 * Normally, we don't want to try too hard to write every label and 1195 * uberblock. If there is a flaky disk, we don't want the rest of the 1196 * sync process to block while we retry. But if we can't write a 1197 * single label out, we should retry with ZIO_FLAG_TRYHARD before 1198 * bailing out and declaring the pool faulted. 1199 */ 1200 if (tryhard) 1201 flags |= ZIO_FLAG_TRYHARD; 1202 1203 ASSERT(ub->ub_txg <= txg); 1204 1205 /* 1206 * If this isn't a resync due to I/O errors, 1207 * and nothing changed in this transaction group, 1208 * and the vdev configuration hasn't changed, 1209 * then there's nothing to do. 1210 */ 1211 if (ub->ub_txg < txg && 1212 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && 1213 list_is_empty(&spa->spa_config_dirty_list)) 1214 return (0); 1215 1216 if (txg > spa_freeze_txg(spa)) 1217 return (0); 1218 1219 ASSERT(txg <= spa->spa_final_txg); 1220 1221 /* 1222 * Flush the write cache of every disk that's been written to 1223 * in this transaction group. This ensures that all blocks 1224 * written in this txg will be committed to stable storage 1225 * before any uberblock that references them. 1226 */ 1227 zio = zio_root(spa, NULL, NULL, flags); 1228 1229 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 1230 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1231 zio_flush(zio, vd); 1232 1233 (void) zio_wait(zio); 1234 1235 /* 1236 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1237 * system dies in the middle of this process, that's OK: all of the 1238 * even labels that made it to disk will be newer than any uberblock, 1239 * and will therefore be considered invalid. The odd labels (L1, L3), 1240 * which have not yet been touched, will still be valid. We flush 1241 * the new labels to disk to ensure that all even-label updates 1242 * are committed to stable storage before the uberblock update. 1243 */ 1244 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) 1245 return (error); 1246 1247 /* 1248 * Sync the uberblocks to all vdevs in svd[]. 1249 * If the system dies in the middle of this step, there are two cases 1250 * to consider, and the on-disk state is consistent either way: 1251 * 1252 * (1) If none of the new uberblocks made it to disk, then the 1253 * previous uberblock will be the newest, and the odd labels 1254 * (which had not yet been touched) will be valid with respect 1255 * to that uberblock. 1256 * 1257 * (2) If one or more new uberblocks made it to disk, then they 1258 * will be the newest, and the even labels (which had all 1259 * been successfully committed) will be valid with respect 1260 * to the new uberblocks. 1261 */ 1262 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) 1263 return (error); 1264 1265 /* 1266 * Sync out odd labels for every dirty vdev. If the system dies 1267 * in the middle of this process, the even labels and the new 1268 * uberblocks will suffice to open the pool. The next time 1269 * the pool is opened, the first thing we'll do -- before any 1270 * user data is modified -- is mark every vdev dirty so that 1271 * all labels will be brought up to date. We flush the new labels 1272 * to disk to ensure that all odd-label updates are committed to 1273 * stable storage before the next transaction group begins. 1274 */ 1275 return (vdev_label_sync_list(spa, 1, txg, flags)); 1276 }