1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 by Delphix. All rights reserved. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/uberblock_impl.h> 36 #include <sys/metaslab.h> 37 #include <sys/metaslab_impl.h> 38 #include <sys/space_map.h> 39 #include <sys/space_reftree.h> 40 #include <sys/zio.h> 41 #include <sys/zap.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/arc.h> 44 #include <sys/zil.h> 45 #include <sys/dsl_scan.h> 46 47 /* 48 * Virtual device management. 49 */ 50 51 static vdev_ops_t *vdev_ops_table[] = { 52 &vdev_root_ops, 53 &vdev_raidz_ops, 54 &vdev_mirror_ops, 55 &vdev_replacing_ops, 56 &vdev_spare_ops, 57 &vdev_disk_ops, 58 &vdev_file_ops, 59 &vdev_missing_ops, 60 &vdev_hole_ops, 61 NULL 62 }; 63 64 /* maximum scrub/resilver I/O queue per leaf vdev */ 65 int zfs_scrub_limit = 10; 66 67 /* 68 * Given a vdev type, return the appropriate ops vector. 69 */ 70 static vdev_ops_t * 71 vdev_getops(const char *type) 72 { 73 vdev_ops_t *ops, **opspp; 74 75 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 76 if (strcmp(ops->vdev_op_type, type) == 0) 77 break; 78 79 return (ops); 80 } 81 82 /* 83 * Default asize function: return the MAX of psize with the asize of 84 * all children. This is what's used by anything other than RAID-Z. 85 */ 86 uint64_t 87 vdev_default_asize(vdev_t *vd, uint64_t psize) 88 { 89 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 90 uint64_t csize; 91 92 for (int c = 0; c < vd->vdev_children; c++) { 93 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 94 asize = MAX(asize, csize); 95 } 96 97 return (asize); 98 } 99 100 /* 101 * Get the minimum allocatable size. We define the allocatable size as 102 * the vdev's asize rounded to the nearest metaslab. This allows us to 103 * replace or attach devices which don't have the same physical size but 104 * can still satisfy the same number of allocations. 105 */ 106 uint64_t 107 vdev_get_min_asize(vdev_t *vd) 108 { 109 vdev_t *pvd = vd->vdev_parent; 110 111 /* 112 * If our parent is NULL (inactive spare or cache) or is the root, 113 * just return our own asize. 114 */ 115 if (pvd == NULL) 116 return (vd->vdev_asize); 117 118 /* 119 * The top-level vdev just returns the allocatable size rounded 120 * to the nearest metaslab. 121 */ 122 if (vd == vd->vdev_top) 123 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 124 125 /* 126 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 127 * so each child must provide at least 1/Nth of its asize. 128 */ 129 if (pvd->vdev_ops == &vdev_raidz_ops) 130 return (pvd->vdev_min_asize / pvd->vdev_children); 131 132 return (pvd->vdev_min_asize); 133 } 134 135 void 136 vdev_set_min_asize(vdev_t *vd) 137 { 138 vd->vdev_min_asize = vdev_get_min_asize(vd); 139 140 for (int c = 0; c < vd->vdev_children; c++) 141 vdev_set_min_asize(vd->vdev_child[c]); 142 } 143 144 vdev_t * 145 vdev_lookup_top(spa_t *spa, uint64_t vdev) 146 { 147 vdev_t *rvd = spa->spa_root_vdev; 148 149 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 150 151 if (vdev < rvd->vdev_children) { 152 ASSERT(rvd->vdev_child[vdev] != NULL); 153 return (rvd->vdev_child[vdev]); 154 } 155 156 return (NULL); 157 } 158 159 vdev_t * 160 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 161 { 162 vdev_t *mvd; 163 164 if (vd->vdev_guid == guid) 165 return (vd); 166 167 for (int c = 0; c < vd->vdev_children; c++) 168 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 169 NULL) 170 return (mvd); 171 172 return (NULL); 173 } 174 175 void 176 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 177 { 178 size_t oldsize, newsize; 179 uint64_t id = cvd->vdev_id; 180 vdev_t **newchild; 181 182 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 183 ASSERT(cvd->vdev_parent == NULL); 184 185 cvd->vdev_parent = pvd; 186 187 if (pvd == NULL) 188 return; 189 190 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 191 192 oldsize = pvd->vdev_children * sizeof (vdev_t *); 193 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 194 newsize = pvd->vdev_children * sizeof (vdev_t *); 195 196 newchild = kmem_zalloc(newsize, KM_SLEEP); 197 if (pvd->vdev_child != NULL) { 198 bcopy(pvd->vdev_child, newchild, oldsize); 199 kmem_free(pvd->vdev_child, oldsize); 200 } 201 202 pvd->vdev_child = newchild; 203 pvd->vdev_child[id] = cvd; 204 205 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 206 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 207 208 /* 209 * Walk up all ancestors to update guid sum. 210 */ 211 for (; pvd != NULL; pvd = pvd->vdev_parent) 212 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 213 } 214 215 void 216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 217 { 218 int c; 219 uint_t id = cvd->vdev_id; 220 221 ASSERT(cvd->vdev_parent == pvd); 222 223 if (pvd == NULL) 224 return; 225 226 ASSERT(id < pvd->vdev_children); 227 ASSERT(pvd->vdev_child[id] == cvd); 228 229 pvd->vdev_child[id] = NULL; 230 cvd->vdev_parent = NULL; 231 232 for (c = 0; c < pvd->vdev_children; c++) 233 if (pvd->vdev_child[c]) 234 break; 235 236 if (c == pvd->vdev_children) { 237 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 238 pvd->vdev_child = NULL; 239 pvd->vdev_children = 0; 240 } 241 242 /* 243 * Walk up all ancestors to update guid sum. 244 */ 245 for (; pvd != NULL; pvd = pvd->vdev_parent) 246 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 247 } 248 249 /* 250 * Remove any holes in the child array. 251 */ 252 void 253 vdev_compact_children(vdev_t *pvd) 254 { 255 vdev_t **newchild, *cvd; 256 int oldc = pvd->vdev_children; 257 int newc; 258 259 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 260 261 for (int c = newc = 0; c < oldc; c++) 262 if (pvd->vdev_child[c]) 263 newc++; 264 265 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 266 267 for (int c = newc = 0; c < oldc; c++) { 268 if ((cvd = pvd->vdev_child[c]) != NULL) { 269 newchild[newc] = cvd; 270 cvd->vdev_id = newc++; 271 } 272 } 273 274 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 275 pvd->vdev_child = newchild; 276 pvd->vdev_children = newc; 277 } 278 279 /* 280 * Allocate and minimally initialize a vdev_t. 281 */ 282 vdev_t * 283 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 284 { 285 vdev_t *vd; 286 287 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 288 289 if (spa->spa_root_vdev == NULL) { 290 ASSERT(ops == &vdev_root_ops); 291 spa->spa_root_vdev = vd; 292 spa->spa_load_guid = spa_generate_guid(NULL); 293 } 294 295 if (guid == 0 && ops != &vdev_hole_ops) { 296 if (spa->spa_root_vdev == vd) { 297 /* 298 * The root vdev's guid will also be the pool guid, 299 * which must be unique among all pools. 300 */ 301 guid = spa_generate_guid(NULL); 302 } else { 303 /* 304 * Any other vdev's guid must be unique within the pool. 305 */ 306 guid = spa_generate_guid(spa); 307 } 308 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 309 } 310 311 vd->vdev_spa = spa; 312 vd->vdev_id = id; 313 vd->vdev_guid = guid; 314 vd->vdev_guid_sum = guid; 315 vd->vdev_ops = ops; 316 vd->vdev_state = VDEV_STATE_CLOSED; 317 vd->vdev_ishole = (ops == &vdev_hole_ops); 318 319 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 320 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 321 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 322 for (int t = 0; t < DTL_TYPES; t++) { 323 vd->vdev_dtl[t] = range_tree_create(NULL, NULL, 324 &vd->vdev_dtl_lock); 325 } 326 txg_list_create(&vd->vdev_ms_list, 327 offsetof(struct metaslab, ms_txg_node)); 328 txg_list_create(&vd->vdev_dtl_list, 329 offsetof(struct vdev, vdev_dtl_node)); 330 vd->vdev_stat.vs_timestamp = gethrtime(); 331 vdev_queue_init(vd); 332 vdev_cache_init(vd); 333 334 return (vd); 335 } 336 337 /* 338 * Allocate a new vdev. The 'alloctype' is used to control whether we are 339 * creating a new vdev or loading an existing one - the behavior is slightly 340 * different for each case. 341 */ 342 int 343 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 344 int alloctype) 345 { 346 vdev_ops_t *ops; 347 char *type; 348 uint64_t guid = 0, islog, nparity; 349 vdev_t *vd; 350 351 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 352 353 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 354 return (SET_ERROR(EINVAL)); 355 356 if ((ops = vdev_getops(type)) == NULL) 357 return (SET_ERROR(EINVAL)); 358 359 /* 360 * If this is a load, get the vdev guid from the nvlist. 361 * Otherwise, vdev_alloc_common() will generate one for us. 362 */ 363 if (alloctype == VDEV_ALLOC_LOAD) { 364 uint64_t label_id; 365 366 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 367 label_id != id) 368 return (SET_ERROR(EINVAL)); 369 370 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 371 return (SET_ERROR(EINVAL)); 372 } else if (alloctype == VDEV_ALLOC_SPARE) { 373 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 374 return (SET_ERROR(EINVAL)); 375 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 376 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 377 return (SET_ERROR(EINVAL)); 378 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 379 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 380 return (SET_ERROR(EINVAL)); 381 } 382 383 /* 384 * The first allocated vdev must be of type 'root'. 385 */ 386 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 387 return (SET_ERROR(EINVAL)); 388 389 /* 390 * Determine whether we're a log vdev. 391 */ 392 islog = 0; 393 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 394 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 395 return (SET_ERROR(ENOTSUP)); 396 397 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 398 return (SET_ERROR(ENOTSUP)); 399 400 /* 401 * Set the nparity property for RAID-Z vdevs. 402 */ 403 nparity = -1ULL; 404 if (ops == &vdev_raidz_ops) { 405 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 406 &nparity) == 0) { 407 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 408 return (SET_ERROR(EINVAL)); 409 /* 410 * Previous versions could only support 1 or 2 parity 411 * device. 412 */ 413 if (nparity > 1 && 414 spa_version(spa) < SPA_VERSION_RAIDZ2) 415 return (SET_ERROR(ENOTSUP)); 416 if (nparity > 2 && 417 spa_version(spa) < SPA_VERSION_RAIDZ3) 418 return (SET_ERROR(ENOTSUP)); 419 } else { 420 /* 421 * We require the parity to be specified for SPAs that 422 * support multiple parity levels. 423 */ 424 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 425 return (SET_ERROR(EINVAL)); 426 /* 427 * Otherwise, we default to 1 parity device for RAID-Z. 428 */ 429 nparity = 1; 430 } 431 } else { 432 nparity = 0; 433 } 434 ASSERT(nparity != -1ULL); 435 436 vd = vdev_alloc_common(spa, id, guid, ops); 437 438 vd->vdev_islog = islog; 439 vd->vdev_nparity = nparity; 440 441 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 442 vd->vdev_path = spa_strdup(vd->vdev_path); 443 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 444 vd->vdev_devid = spa_strdup(vd->vdev_devid); 445 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 446 &vd->vdev_physpath) == 0) 447 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 448 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 449 vd->vdev_fru = spa_strdup(vd->vdev_fru); 450 451 /* 452 * Set the whole_disk property. If it's not specified, leave the value 453 * as -1. 454 */ 455 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 456 &vd->vdev_wholedisk) != 0) 457 vd->vdev_wholedisk = -1ULL; 458 459 /* 460 * Look for the 'not present' flag. This will only be set if the device 461 * was not present at the time of import. 462 */ 463 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 464 &vd->vdev_not_present); 465 466 /* 467 * Get the alignment requirement. 468 */ 469 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 470 471 /* 472 * Retrieve the vdev creation time. 473 */ 474 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 475 &vd->vdev_crtxg); 476 477 /* 478 * If we're a top-level vdev, try to load the allocation parameters. 479 */ 480 if (parent && !parent->vdev_parent && 481 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 482 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 483 &vd->vdev_ms_array); 484 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 485 &vd->vdev_ms_shift); 486 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 487 &vd->vdev_asize); 488 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 489 &vd->vdev_removing); 490 } 491 492 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 493 ASSERT(alloctype == VDEV_ALLOC_LOAD || 494 alloctype == VDEV_ALLOC_ADD || 495 alloctype == VDEV_ALLOC_SPLIT || 496 alloctype == VDEV_ALLOC_ROOTPOOL); 497 vd->vdev_mg = metaslab_group_create(islog ? 498 spa_log_class(spa) : spa_normal_class(spa), vd); 499 } 500 501 /* 502 * If we're a leaf vdev, try to load the DTL object and other state. 503 */ 504 if (vd->vdev_ops->vdev_op_leaf && 505 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 506 alloctype == VDEV_ALLOC_ROOTPOOL)) { 507 if (alloctype == VDEV_ALLOC_LOAD) { 508 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 509 &vd->vdev_dtl_object); 510 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 511 &vd->vdev_unspare); 512 } 513 514 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 515 uint64_t spare = 0; 516 517 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 518 &spare) == 0 && spare) 519 spa_spare_add(vd); 520 } 521 522 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 523 &vd->vdev_offline); 524 525 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 526 &vd->vdev_resilver_txg); 527 528 /* 529 * When importing a pool, we want to ignore the persistent fault 530 * state, as the diagnosis made on another system may not be 531 * valid in the current context. Local vdevs will 532 * remain in the faulted state. 533 */ 534 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 535 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 536 &vd->vdev_faulted); 537 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 538 &vd->vdev_degraded); 539 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 540 &vd->vdev_removed); 541 542 if (vd->vdev_faulted || vd->vdev_degraded) { 543 char *aux; 544 545 vd->vdev_label_aux = 546 VDEV_AUX_ERR_EXCEEDED; 547 if (nvlist_lookup_string(nv, 548 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 549 strcmp(aux, "external") == 0) 550 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 551 } 552 } 553 } 554 555 /* 556 * Add ourselves to the parent's list of children. 557 */ 558 vdev_add_child(parent, vd); 559 560 *vdp = vd; 561 562 return (0); 563 } 564 565 void 566 vdev_free(vdev_t *vd) 567 { 568 spa_t *spa = vd->vdev_spa; 569 570 /* 571 * vdev_free() implies closing the vdev first. This is simpler than 572 * trying to ensure complicated semantics for all callers. 573 */ 574 vdev_close(vd); 575 576 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 577 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 578 579 /* 580 * Free all children. 581 */ 582 for (int c = 0; c < vd->vdev_children; c++) 583 vdev_free(vd->vdev_child[c]); 584 585 ASSERT(vd->vdev_child == NULL); 586 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 587 588 /* 589 * Discard allocation state. 590 */ 591 if (vd->vdev_mg != NULL) { 592 vdev_metaslab_fini(vd); 593 metaslab_group_destroy(vd->vdev_mg); 594 } 595 596 ASSERT0(vd->vdev_stat.vs_space); 597 ASSERT0(vd->vdev_stat.vs_dspace); 598 ASSERT0(vd->vdev_stat.vs_alloc); 599 600 /* 601 * Remove this vdev from its parent's child list. 602 */ 603 vdev_remove_child(vd->vdev_parent, vd); 604 605 ASSERT(vd->vdev_parent == NULL); 606 607 /* 608 * Clean up vdev structure. 609 */ 610 vdev_queue_fini(vd); 611 vdev_cache_fini(vd); 612 613 if (vd->vdev_path) 614 spa_strfree(vd->vdev_path); 615 if (vd->vdev_devid) 616 spa_strfree(vd->vdev_devid); 617 if (vd->vdev_physpath) 618 spa_strfree(vd->vdev_physpath); 619 if (vd->vdev_fru) 620 spa_strfree(vd->vdev_fru); 621 622 if (vd->vdev_isspare) 623 spa_spare_remove(vd); 624 if (vd->vdev_isl2cache) 625 spa_l2cache_remove(vd); 626 627 txg_list_destroy(&vd->vdev_ms_list); 628 txg_list_destroy(&vd->vdev_dtl_list); 629 630 mutex_enter(&vd->vdev_dtl_lock); 631 space_map_close(vd->vdev_dtl_sm); 632 for (int t = 0; t < DTL_TYPES; t++) { 633 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 634 range_tree_destroy(vd->vdev_dtl[t]); 635 } 636 mutex_exit(&vd->vdev_dtl_lock); 637 638 mutex_destroy(&vd->vdev_dtl_lock); 639 mutex_destroy(&vd->vdev_stat_lock); 640 mutex_destroy(&vd->vdev_probe_lock); 641 642 if (vd == spa->spa_root_vdev) 643 spa->spa_root_vdev = NULL; 644 645 kmem_free(vd, sizeof (vdev_t)); 646 } 647 648 /* 649 * Transfer top-level vdev state from svd to tvd. 650 */ 651 static void 652 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 653 { 654 spa_t *spa = svd->vdev_spa; 655 metaslab_t *msp; 656 vdev_t *vd; 657 int t; 658 659 ASSERT(tvd == tvd->vdev_top); 660 661 tvd->vdev_ms_array = svd->vdev_ms_array; 662 tvd->vdev_ms_shift = svd->vdev_ms_shift; 663 tvd->vdev_ms_count = svd->vdev_ms_count; 664 665 svd->vdev_ms_array = 0; 666 svd->vdev_ms_shift = 0; 667 svd->vdev_ms_count = 0; 668 669 if (tvd->vdev_mg) 670 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 671 tvd->vdev_mg = svd->vdev_mg; 672 tvd->vdev_ms = svd->vdev_ms; 673 674 svd->vdev_mg = NULL; 675 svd->vdev_ms = NULL; 676 677 if (tvd->vdev_mg != NULL) 678 tvd->vdev_mg->mg_vd = tvd; 679 680 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 681 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 682 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 683 684 svd->vdev_stat.vs_alloc = 0; 685 svd->vdev_stat.vs_space = 0; 686 svd->vdev_stat.vs_dspace = 0; 687 688 for (t = 0; t < TXG_SIZE; t++) { 689 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 690 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 691 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 692 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 693 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 694 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 695 } 696 697 if (list_link_active(&svd->vdev_config_dirty_node)) { 698 vdev_config_clean(svd); 699 vdev_config_dirty(tvd); 700 } 701 702 if (list_link_active(&svd->vdev_state_dirty_node)) { 703 vdev_state_clean(svd); 704 vdev_state_dirty(tvd); 705 } 706 707 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 708 svd->vdev_deflate_ratio = 0; 709 710 tvd->vdev_islog = svd->vdev_islog; 711 svd->vdev_islog = 0; 712 } 713 714 static void 715 vdev_top_update(vdev_t *tvd, vdev_t *vd) 716 { 717 if (vd == NULL) 718 return; 719 720 vd->vdev_top = tvd; 721 722 for (int c = 0; c < vd->vdev_children; c++) 723 vdev_top_update(tvd, vd->vdev_child[c]); 724 } 725 726 /* 727 * Add a mirror/replacing vdev above an existing vdev. 728 */ 729 vdev_t * 730 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 731 { 732 spa_t *spa = cvd->vdev_spa; 733 vdev_t *pvd = cvd->vdev_parent; 734 vdev_t *mvd; 735 736 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 737 738 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 739 740 mvd->vdev_asize = cvd->vdev_asize; 741 mvd->vdev_min_asize = cvd->vdev_min_asize; 742 mvd->vdev_max_asize = cvd->vdev_max_asize; 743 mvd->vdev_ashift = cvd->vdev_ashift; 744 mvd->vdev_state = cvd->vdev_state; 745 mvd->vdev_crtxg = cvd->vdev_crtxg; 746 747 vdev_remove_child(pvd, cvd); 748 vdev_add_child(pvd, mvd); 749 cvd->vdev_id = mvd->vdev_children; 750 vdev_add_child(mvd, cvd); 751 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 752 753 if (mvd == mvd->vdev_top) 754 vdev_top_transfer(cvd, mvd); 755 756 return (mvd); 757 } 758 759 /* 760 * Remove a 1-way mirror/replacing vdev from the tree. 761 */ 762 void 763 vdev_remove_parent(vdev_t *cvd) 764 { 765 vdev_t *mvd = cvd->vdev_parent; 766 vdev_t *pvd = mvd->vdev_parent; 767 768 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 769 770 ASSERT(mvd->vdev_children == 1); 771 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 772 mvd->vdev_ops == &vdev_replacing_ops || 773 mvd->vdev_ops == &vdev_spare_ops); 774 cvd->vdev_ashift = mvd->vdev_ashift; 775 776 vdev_remove_child(mvd, cvd); 777 vdev_remove_child(pvd, mvd); 778 779 /* 780 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 781 * Otherwise, we could have detached an offline device, and when we 782 * go to import the pool we'll think we have two top-level vdevs, 783 * instead of a different version of the same top-level vdev. 784 */ 785 if (mvd->vdev_top == mvd) { 786 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 787 cvd->vdev_orig_guid = cvd->vdev_guid; 788 cvd->vdev_guid += guid_delta; 789 cvd->vdev_guid_sum += guid_delta; 790 } 791 cvd->vdev_id = mvd->vdev_id; 792 vdev_add_child(pvd, cvd); 793 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 794 795 if (cvd == cvd->vdev_top) 796 vdev_top_transfer(mvd, cvd); 797 798 ASSERT(mvd->vdev_children == 0); 799 vdev_free(mvd); 800 } 801 802 int 803 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 804 { 805 spa_t *spa = vd->vdev_spa; 806 objset_t *mos = spa->spa_meta_objset; 807 uint64_t m; 808 uint64_t oldc = vd->vdev_ms_count; 809 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 810 metaslab_t **mspp; 811 int error; 812 813 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 814 815 /* 816 * This vdev is not being allocated from yet or is a hole. 817 */ 818 if (vd->vdev_ms_shift == 0) 819 return (0); 820 821 ASSERT(!vd->vdev_ishole); 822 823 /* 824 * Compute the raidz-deflation ratio. Note, we hard-code 825 * in 128k (1 << 17) because it is the current "typical" blocksize. 826 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, 827 * or we will inconsistently account for existing bp's. 828 */ 829 vd->vdev_deflate_ratio = (1 << 17) / 830 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 831 832 ASSERT(oldc <= newc); 833 834 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 835 836 if (oldc != 0) { 837 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 838 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 839 } 840 841 vd->vdev_ms = mspp; 842 vd->vdev_ms_count = newc; 843 844 for (m = oldc; m < newc; m++) { 845 uint64_t object = 0; 846 847 if (txg == 0) { 848 error = dmu_read(mos, vd->vdev_ms_array, 849 m * sizeof (uint64_t), sizeof (uint64_t), &object, 850 DMU_READ_PREFETCH); 851 if (error) 852 return (error); 853 } 854 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, m, object, txg); 855 } 856 857 if (txg == 0) 858 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 859 860 /* 861 * If the vdev is being removed we don't activate 862 * the metaslabs since we want to ensure that no new 863 * allocations are performed on this device. 864 */ 865 if (oldc == 0 && !vd->vdev_removing) 866 metaslab_group_activate(vd->vdev_mg); 867 868 if (txg == 0) 869 spa_config_exit(spa, SCL_ALLOC, FTAG); 870 871 return (0); 872 } 873 874 void 875 vdev_metaslab_fini(vdev_t *vd) 876 { 877 uint64_t m; 878 uint64_t count = vd->vdev_ms_count; 879 880 if (vd->vdev_ms != NULL) { 881 metaslab_group_passivate(vd->vdev_mg); 882 for (m = 0; m < count; m++) { 883 metaslab_t *msp = vd->vdev_ms[m]; 884 885 if (msp != NULL) 886 metaslab_fini(msp); 887 } 888 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 889 vd->vdev_ms = NULL; 890 } 891 } 892 893 typedef struct vdev_probe_stats { 894 boolean_t vps_readable; 895 boolean_t vps_writeable; 896 int vps_flags; 897 } vdev_probe_stats_t; 898 899 static void 900 vdev_probe_done(zio_t *zio) 901 { 902 spa_t *spa = zio->io_spa; 903 vdev_t *vd = zio->io_vd; 904 vdev_probe_stats_t *vps = zio->io_private; 905 906 ASSERT(vd->vdev_probe_zio != NULL); 907 908 if (zio->io_type == ZIO_TYPE_READ) { 909 if (zio->io_error == 0) 910 vps->vps_readable = 1; 911 if (zio->io_error == 0 && spa_writeable(spa)) { 912 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 913 zio->io_offset, zio->io_size, zio->io_data, 914 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 915 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 916 } else { 917 zio_buf_free(zio->io_data, zio->io_size); 918 } 919 } else if (zio->io_type == ZIO_TYPE_WRITE) { 920 if (zio->io_error == 0) 921 vps->vps_writeable = 1; 922 zio_buf_free(zio->io_data, zio->io_size); 923 } else if (zio->io_type == ZIO_TYPE_NULL) { 924 zio_t *pio; 925 926 vd->vdev_cant_read |= !vps->vps_readable; 927 vd->vdev_cant_write |= !vps->vps_writeable; 928 929 if (vdev_readable(vd) && 930 (vdev_writeable(vd) || !spa_writeable(spa))) { 931 zio->io_error = 0; 932 } else { 933 ASSERT(zio->io_error != 0); 934 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 935 spa, vd, NULL, 0, 0); 936 zio->io_error = SET_ERROR(ENXIO); 937 } 938 939 mutex_enter(&vd->vdev_probe_lock); 940 ASSERT(vd->vdev_probe_zio == zio); 941 vd->vdev_probe_zio = NULL; 942 mutex_exit(&vd->vdev_probe_lock); 943 944 while ((pio = zio_walk_parents(zio)) != NULL) 945 if (!vdev_accessible(vd, pio)) 946 pio->io_error = SET_ERROR(ENXIO); 947 948 kmem_free(vps, sizeof (*vps)); 949 } 950 } 951 952 /* 953 * Determine whether this device is accessible. 954 * 955 * Read and write to several known locations: the pad regions of each 956 * vdev label but the first, which we leave alone in case it contains 957 * a VTOC. 958 */ 959 zio_t * 960 vdev_probe(vdev_t *vd, zio_t *zio) 961 { 962 spa_t *spa = vd->vdev_spa; 963 vdev_probe_stats_t *vps = NULL; 964 zio_t *pio; 965 966 ASSERT(vd->vdev_ops->vdev_op_leaf); 967 968 /* 969 * Don't probe the probe. 970 */ 971 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 972 return (NULL); 973 974 /* 975 * To prevent 'probe storms' when a device fails, we create 976 * just one probe i/o at a time. All zios that want to probe 977 * this vdev will become parents of the probe io. 978 */ 979 mutex_enter(&vd->vdev_probe_lock); 980 981 if ((pio = vd->vdev_probe_zio) == NULL) { 982 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 983 984 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 985 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 986 ZIO_FLAG_TRYHARD; 987 988 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 989 /* 990 * vdev_cant_read and vdev_cant_write can only 991 * transition from TRUE to FALSE when we have the 992 * SCL_ZIO lock as writer; otherwise they can only 993 * transition from FALSE to TRUE. This ensures that 994 * any zio looking at these values can assume that 995 * failures persist for the life of the I/O. That's 996 * important because when a device has intermittent 997 * connectivity problems, we want to ensure that 998 * they're ascribed to the device (ENXIO) and not 999 * the zio (EIO). 1000 * 1001 * Since we hold SCL_ZIO as writer here, clear both 1002 * values so the probe can reevaluate from first 1003 * principles. 1004 */ 1005 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1006 vd->vdev_cant_read = B_FALSE; 1007 vd->vdev_cant_write = B_FALSE; 1008 } 1009 1010 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1011 vdev_probe_done, vps, 1012 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1013 1014 /* 1015 * We can't change the vdev state in this context, so we 1016 * kick off an async task to do it on our behalf. 1017 */ 1018 if (zio != NULL) { 1019 vd->vdev_probe_wanted = B_TRUE; 1020 spa_async_request(spa, SPA_ASYNC_PROBE); 1021 } 1022 } 1023 1024 if (zio != NULL) 1025 zio_add_child(zio, pio); 1026 1027 mutex_exit(&vd->vdev_probe_lock); 1028 1029 if (vps == NULL) { 1030 ASSERT(zio != NULL); 1031 return (NULL); 1032 } 1033 1034 for (int l = 1; l < VDEV_LABELS; l++) { 1035 zio_nowait(zio_read_phys(pio, vd, 1036 vdev_label_offset(vd->vdev_psize, l, 1037 offsetof(vdev_label_t, vl_pad2)), 1038 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1039 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1040 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1041 } 1042 1043 if (zio == NULL) 1044 return (pio); 1045 1046 zio_nowait(pio); 1047 return (NULL); 1048 } 1049 1050 static void 1051 vdev_open_child(void *arg) 1052 { 1053 vdev_t *vd = arg; 1054 1055 vd->vdev_open_thread = curthread; 1056 vd->vdev_open_error = vdev_open(vd); 1057 vd->vdev_open_thread = NULL; 1058 } 1059 1060 boolean_t 1061 vdev_uses_zvols(vdev_t *vd) 1062 { 1063 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1064 strlen(ZVOL_DIR)) == 0) 1065 return (B_TRUE); 1066 for (int c = 0; c < vd->vdev_children; c++) 1067 if (vdev_uses_zvols(vd->vdev_child[c])) 1068 return (B_TRUE); 1069 return (B_FALSE); 1070 } 1071 1072 void 1073 vdev_open_children(vdev_t *vd) 1074 { 1075 taskq_t *tq; 1076 int children = vd->vdev_children; 1077 1078 /* 1079 * in order to handle pools on top of zvols, do the opens 1080 * in a single thread so that the same thread holds the 1081 * spa_namespace_lock 1082 */ 1083 if (vdev_uses_zvols(vd)) { 1084 for (int c = 0; c < children; c++) 1085 vd->vdev_child[c]->vdev_open_error = 1086 vdev_open(vd->vdev_child[c]); 1087 return; 1088 } 1089 tq = taskq_create("vdev_open", children, minclsyspri, 1090 children, children, TASKQ_PREPOPULATE); 1091 1092 for (int c = 0; c < children; c++) 1093 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1094 TQ_SLEEP) != NULL); 1095 1096 taskq_destroy(tq); 1097 } 1098 1099 /* 1100 * Prepare a virtual device for access. 1101 */ 1102 int 1103 vdev_open(vdev_t *vd) 1104 { 1105 spa_t *spa = vd->vdev_spa; 1106 int error; 1107 uint64_t osize = 0; 1108 uint64_t max_osize = 0; 1109 uint64_t asize, max_asize, psize; 1110 uint64_t ashift = 0; 1111 1112 ASSERT(vd->vdev_open_thread == curthread || 1113 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1114 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1115 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1116 vd->vdev_state == VDEV_STATE_OFFLINE); 1117 1118 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1119 vd->vdev_cant_read = B_FALSE; 1120 vd->vdev_cant_write = B_FALSE; 1121 vd->vdev_min_asize = vdev_get_min_asize(vd); 1122 1123 /* 1124 * If this vdev is not removed, check its fault status. If it's 1125 * faulted, bail out of the open. 1126 */ 1127 if (!vd->vdev_removed && vd->vdev_faulted) { 1128 ASSERT(vd->vdev_children == 0); 1129 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1130 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1131 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1132 vd->vdev_label_aux); 1133 return (SET_ERROR(ENXIO)); 1134 } else if (vd->vdev_offline) { 1135 ASSERT(vd->vdev_children == 0); 1136 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1137 return (SET_ERROR(ENXIO)); 1138 } 1139 1140 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1141 1142 /* 1143 * Reset the vdev_reopening flag so that we actually close 1144 * the vdev on error. 1145 */ 1146 vd->vdev_reopening = B_FALSE; 1147 if (zio_injection_enabled && error == 0) 1148 error = zio_handle_device_injection(vd, NULL, ENXIO); 1149 1150 if (error) { 1151 if (vd->vdev_removed && 1152 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1153 vd->vdev_removed = B_FALSE; 1154 1155 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1156 vd->vdev_stat.vs_aux); 1157 return (error); 1158 } 1159 1160 vd->vdev_removed = B_FALSE; 1161 1162 /* 1163 * Recheck the faulted flag now that we have confirmed that 1164 * the vdev is accessible. If we're faulted, bail. 1165 */ 1166 if (vd->vdev_faulted) { 1167 ASSERT(vd->vdev_children == 0); 1168 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1169 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1170 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1171 vd->vdev_label_aux); 1172 return (SET_ERROR(ENXIO)); 1173 } 1174 1175 if (vd->vdev_degraded) { 1176 ASSERT(vd->vdev_children == 0); 1177 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1178 VDEV_AUX_ERR_EXCEEDED); 1179 } else { 1180 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1181 } 1182 1183 /* 1184 * For hole or missing vdevs we just return success. 1185 */ 1186 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1187 return (0); 1188 1189 for (int c = 0; c < vd->vdev_children; c++) { 1190 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1191 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1192 VDEV_AUX_NONE); 1193 break; 1194 } 1195 } 1196 1197 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1198 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1199 1200 if (vd->vdev_children == 0) { 1201 if (osize < SPA_MINDEVSIZE) { 1202 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1203 VDEV_AUX_TOO_SMALL); 1204 return (SET_ERROR(EOVERFLOW)); 1205 } 1206 psize = osize; 1207 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1208 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1209 VDEV_LABEL_END_SIZE); 1210 } else { 1211 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1212 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1213 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1214 VDEV_AUX_TOO_SMALL); 1215 return (SET_ERROR(EOVERFLOW)); 1216 } 1217 psize = 0; 1218 asize = osize; 1219 max_asize = max_osize; 1220 } 1221 1222 vd->vdev_psize = psize; 1223 1224 /* 1225 * Make sure the allocatable size hasn't shrunk. 1226 */ 1227 if (asize < vd->vdev_min_asize) { 1228 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1229 VDEV_AUX_BAD_LABEL); 1230 return (SET_ERROR(EINVAL)); 1231 } 1232 1233 if (vd->vdev_asize == 0) { 1234 /* 1235 * This is the first-ever open, so use the computed values. 1236 * For testing purposes, a higher ashift can be requested. 1237 */ 1238 vd->vdev_asize = asize; 1239 vd->vdev_max_asize = max_asize; 1240 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1241 } else { 1242 /* 1243 * Detect if the alignment requirement has increased. 1244 * We don't want to make the pool unavailable, just 1245 * issue a warning instead. 1246 */ 1247 if (ashift > vd->vdev_top->vdev_ashift && 1248 vd->vdev_ops->vdev_op_leaf) { 1249 cmn_err(CE_WARN, 1250 "Disk, '%s', has a block alignment that is " 1251 "larger than the pool's alignment\n", 1252 vd->vdev_path); 1253 } 1254 vd->vdev_max_asize = max_asize; 1255 } 1256 1257 /* 1258 * If all children are healthy and the asize has increased, 1259 * then we've experienced dynamic LUN growth. If automatic 1260 * expansion is enabled then use the additional space. 1261 */ 1262 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1263 (vd->vdev_expanding || spa->spa_autoexpand)) 1264 vd->vdev_asize = asize; 1265 1266 vdev_set_min_asize(vd); 1267 1268 /* 1269 * Ensure we can issue some IO before declaring the 1270 * vdev open for business. 1271 */ 1272 if (vd->vdev_ops->vdev_op_leaf && 1273 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1274 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1275 VDEV_AUX_ERR_EXCEEDED); 1276 return (error); 1277 } 1278 1279 /* 1280 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1281 * resilver. But don't do this if we are doing a reopen for a scrub, 1282 * since this would just restart the scrub we are already doing. 1283 */ 1284 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1285 vdev_resilver_needed(vd, NULL, NULL)) 1286 spa_async_request(spa, SPA_ASYNC_RESILVER); 1287 1288 return (0); 1289 } 1290 1291 /* 1292 * Called once the vdevs are all opened, this routine validates the label 1293 * contents. This needs to be done before vdev_load() so that we don't 1294 * inadvertently do repair I/Os to the wrong device. 1295 * 1296 * If 'strict' is false ignore the spa guid check. This is necessary because 1297 * if the machine crashed during a re-guid the new guid might have been written 1298 * to all of the vdev labels, but not the cached config. The strict check 1299 * will be performed when the pool is opened again using the mos config. 1300 * 1301 * This function will only return failure if one of the vdevs indicates that it 1302 * has since been destroyed or exported. This is only possible if 1303 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1304 * will be updated but the function will return 0. 1305 */ 1306 int 1307 vdev_validate(vdev_t *vd, boolean_t strict) 1308 { 1309 spa_t *spa = vd->vdev_spa; 1310 nvlist_t *label; 1311 uint64_t guid = 0, top_guid; 1312 uint64_t state; 1313 1314 for (int c = 0; c < vd->vdev_children; c++) 1315 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1316 return (SET_ERROR(EBADF)); 1317 1318 /* 1319 * If the device has already failed, or was marked offline, don't do 1320 * any further validation. Otherwise, label I/O will fail and we will 1321 * overwrite the previous state. 1322 */ 1323 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1324 uint64_t aux_guid = 0; 1325 nvlist_t *nvl; 1326 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1327 spa_last_synced_txg(spa) : -1ULL; 1328 1329 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1330 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1331 VDEV_AUX_BAD_LABEL); 1332 return (0); 1333 } 1334 1335 /* 1336 * Determine if this vdev has been split off into another 1337 * pool. If so, then refuse to open it. 1338 */ 1339 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1340 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1341 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1342 VDEV_AUX_SPLIT_POOL); 1343 nvlist_free(label); 1344 return (0); 1345 } 1346 1347 if (strict && (nvlist_lookup_uint64(label, 1348 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1349 guid != spa_guid(spa))) { 1350 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1351 VDEV_AUX_CORRUPT_DATA); 1352 nvlist_free(label); 1353 return (0); 1354 } 1355 1356 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1357 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1358 &aux_guid) != 0) 1359 aux_guid = 0; 1360 1361 /* 1362 * If this vdev just became a top-level vdev because its 1363 * sibling was detached, it will have adopted the parent's 1364 * vdev guid -- but the label may or may not be on disk yet. 1365 * Fortunately, either version of the label will have the 1366 * same top guid, so if we're a top-level vdev, we can 1367 * safely compare to that instead. 1368 * 1369 * If we split this vdev off instead, then we also check the 1370 * original pool's guid. We don't want to consider the vdev 1371 * corrupt if it is partway through a split operation. 1372 */ 1373 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1374 &guid) != 0 || 1375 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1376 &top_guid) != 0 || 1377 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1378 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1379 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1380 VDEV_AUX_CORRUPT_DATA); 1381 nvlist_free(label); 1382 return (0); 1383 } 1384 1385 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1386 &state) != 0) { 1387 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1388 VDEV_AUX_CORRUPT_DATA); 1389 nvlist_free(label); 1390 return (0); 1391 } 1392 1393 nvlist_free(label); 1394 1395 /* 1396 * If this is a verbatim import, no need to check the 1397 * state of the pool. 1398 */ 1399 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1400 spa_load_state(spa) == SPA_LOAD_OPEN && 1401 state != POOL_STATE_ACTIVE) 1402 return (SET_ERROR(EBADF)); 1403 1404 /* 1405 * If we were able to open and validate a vdev that was 1406 * previously marked permanently unavailable, clear that state 1407 * now. 1408 */ 1409 if (vd->vdev_not_present) 1410 vd->vdev_not_present = 0; 1411 } 1412 1413 return (0); 1414 } 1415 1416 /* 1417 * Close a virtual device. 1418 */ 1419 void 1420 vdev_close(vdev_t *vd) 1421 { 1422 spa_t *spa = vd->vdev_spa; 1423 vdev_t *pvd = vd->vdev_parent; 1424 1425 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1426 1427 /* 1428 * If our parent is reopening, then we are as well, unless we are 1429 * going offline. 1430 */ 1431 if (pvd != NULL && pvd->vdev_reopening) 1432 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1433 1434 vd->vdev_ops->vdev_op_close(vd); 1435 1436 vdev_cache_purge(vd); 1437 1438 /* 1439 * We record the previous state before we close it, so that if we are 1440 * doing a reopen(), we don't generate FMA ereports if we notice that 1441 * it's still faulted. 1442 */ 1443 vd->vdev_prevstate = vd->vdev_state; 1444 1445 if (vd->vdev_offline) 1446 vd->vdev_state = VDEV_STATE_OFFLINE; 1447 else 1448 vd->vdev_state = VDEV_STATE_CLOSED; 1449 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1450 } 1451 1452 void 1453 vdev_hold(vdev_t *vd) 1454 { 1455 spa_t *spa = vd->vdev_spa; 1456 1457 ASSERT(spa_is_root(spa)); 1458 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1459 return; 1460 1461 for (int c = 0; c < vd->vdev_children; c++) 1462 vdev_hold(vd->vdev_child[c]); 1463 1464 if (vd->vdev_ops->vdev_op_leaf) 1465 vd->vdev_ops->vdev_op_hold(vd); 1466 } 1467 1468 void 1469 vdev_rele(vdev_t *vd) 1470 { 1471 spa_t *spa = vd->vdev_spa; 1472 1473 ASSERT(spa_is_root(spa)); 1474 for (int c = 0; c < vd->vdev_children; c++) 1475 vdev_rele(vd->vdev_child[c]); 1476 1477 if (vd->vdev_ops->vdev_op_leaf) 1478 vd->vdev_ops->vdev_op_rele(vd); 1479 } 1480 1481 /* 1482 * Reopen all interior vdevs and any unopened leaves. We don't actually 1483 * reopen leaf vdevs which had previously been opened as they might deadlock 1484 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1485 * If the leaf has never been opened then open it, as usual. 1486 */ 1487 void 1488 vdev_reopen(vdev_t *vd) 1489 { 1490 spa_t *spa = vd->vdev_spa; 1491 1492 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1493 1494 /* set the reopening flag unless we're taking the vdev offline */ 1495 vd->vdev_reopening = !vd->vdev_offline; 1496 vdev_close(vd); 1497 (void) vdev_open(vd); 1498 1499 /* 1500 * Call vdev_validate() here to make sure we have the same device. 1501 * Otherwise, a device with an invalid label could be successfully 1502 * opened in response to vdev_reopen(). 1503 */ 1504 if (vd->vdev_aux) { 1505 (void) vdev_validate_aux(vd); 1506 if (vdev_readable(vd) && vdev_writeable(vd) && 1507 vd->vdev_aux == &spa->spa_l2cache && 1508 !l2arc_vdev_present(vd)) { 1509 /* 1510 * When reopening we can assume persistent L2ARC is 1511 * supported, since we've already opened the device 1512 * in the past and prepended an L2ARC uberblock. 1513 */ 1514 l2arc_add_vdev(spa, vd, B_TRUE); 1515 } 1516 } else { 1517 (void) vdev_validate(vd, B_TRUE); 1518 } 1519 1520 /* 1521 * Reassess parent vdev's health. 1522 */ 1523 vdev_propagate_state(vd); 1524 } 1525 1526 int 1527 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1528 { 1529 int error; 1530 1531 /* 1532 * Normally, partial opens (e.g. of a mirror) are allowed. 1533 * For a create, however, we want to fail the request if 1534 * there are any components we can't open. 1535 */ 1536 error = vdev_open(vd); 1537 1538 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1539 vdev_close(vd); 1540 return (error ? error : ENXIO); 1541 } 1542 1543 /* 1544 * Recursively load DTLs and initialize all labels. 1545 */ 1546 if ((error = vdev_dtl_load(vd)) != 0 || 1547 (error = vdev_label_init(vd, txg, isreplacing ? 1548 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1549 vdev_close(vd); 1550 return (error); 1551 } 1552 1553 return (0); 1554 } 1555 1556 void 1557 vdev_metaslab_set_size(vdev_t *vd) 1558 { 1559 /* 1560 * Aim for roughly 200 metaslabs per vdev. 1561 */ 1562 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1563 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1564 } 1565 1566 void 1567 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1568 { 1569 ASSERT(vd == vd->vdev_top); 1570 ASSERT(!vd->vdev_ishole); 1571 ASSERT(ISP2(flags)); 1572 ASSERT(spa_writeable(vd->vdev_spa)); 1573 1574 if (flags & VDD_METASLAB) 1575 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1576 1577 if (flags & VDD_DTL) 1578 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1579 1580 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1581 } 1582 1583 void 1584 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 1585 { 1586 for (int c = 0; c < vd->vdev_children; c++) 1587 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 1588 1589 if (vd->vdev_ops->vdev_op_leaf) 1590 vdev_dirty(vd->vdev_top, flags, vd, txg); 1591 } 1592 1593 /* 1594 * DTLs. 1595 * 1596 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1597 * the vdev has less than perfect replication. There are four kinds of DTL: 1598 * 1599 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1600 * 1601 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1602 * 1603 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1604 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1605 * txgs that was scrubbed. 1606 * 1607 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1608 * persistent errors or just some device being offline. 1609 * Unlike the other three, the DTL_OUTAGE map is not generally 1610 * maintained; it's only computed when needed, typically to 1611 * determine whether a device can be detached. 1612 * 1613 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1614 * either has the data or it doesn't. 1615 * 1616 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1617 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1618 * if any child is less than fully replicated, then so is its parent. 1619 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1620 * comprising only those txgs which appear in 'maxfaults' or more children; 1621 * those are the txgs we don't have enough replication to read. For example, 1622 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1623 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1624 * two child DTL_MISSING maps. 1625 * 1626 * It should be clear from the above that to compute the DTLs and outage maps 1627 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1628 * Therefore, that is all we keep on disk. When loading the pool, or after 1629 * a configuration change, we generate all other DTLs from first principles. 1630 */ 1631 void 1632 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1633 { 1634 range_tree_t *rt = vd->vdev_dtl[t]; 1635 1636 ASSERT(t < DTL_TYPES); 1637 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1638 ASSERT(spa_writeable(vd->vdev_spa)); 1639 1640 mutex_enter(rt->rt_lock); 1641 if (!range_tree_contains(rt, txg, size)) 1642 range_tree_add(rt, txg, size); 1643 mutex_exit(rt->rt_lock); 1644 } 1645 1646 boolean_t 1647 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1648 { 1649 range_tree_t *rt = vd->vdev_dtl[t]; 1650 boolean_t dirty = B_FALSE; 1651 1652 ASSERT(t < DTL_TYPES); 1653 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1654 1655 mutex_enter(rt->rt_lock); 1656 if (range_tree_space(rt) != 0) 1657 dirty = range_tree_contains(rt, txg, size); 1658 mutex_exit(rt->rt_lock); 1659 1660 return (dirty); 1661 } 1662 1663 boolean_t 1664 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1665 { 1666 range_tree_t *rt = vd->vdev_dtl[t]; 1667 boolean_t empty; 1668 1669 mutex_enter(rt->rt_lock); 1670 empty = (range_tree_space(rt) == 0); 1671 mutex_exit(rt->rt_lock); 1672 1673 return (empty); 1674 } 1675 1676 /* 1677 * Returns the lowest txg in the DTL range. 1678 */ 1679 static uint64_t 1680 vdev_dtl_min(vdev_t *vd) 1681 { 1682 range_seg_t *rs; 1683 1684 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1685 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1686 ASSERT0(vd->vdev_children); 1687 1688 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1689 return (rs->rs_start - 1); 1690 } 1691 1692 /* 1693 * Returns the highest txg in the DTL. 1694 */ 1695 static uint64_t 1696 vdev_dtl_max(vdev_t *vd) 1697 { 1698 range_seg_t *rs; 1699 1700 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1701 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1702 ASSERT0(vd->vdev_children); 1703 1704 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1705 return (rs->rs_end); 1706 } 1707 1708 /* 1709 * Determine if a resilvering vdev should remove any DTL entries from 1710 * its range. If the vdev was resilvering for the entire duration of the 1711 * scan then it should excise that range from its DTLs. Otherwise, this 1712 * vdev is considered partially resilvered and should leave its DTL 1713 * entries intact. The comment in vdev_dtl_reassess() describes how we 1714 * excise the DTLs. 1715 */ 1716 static boolean_t 1717 vdev_dtl_should_excise(vdev_t *vd) 1718 { 1719 spa_t *spa = vd->vdev_spa; 1720 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1721 1722 ASSERT0(scn->scn_phys.scn_errors); 1723 ASSERT0(vd->vdev_children); 1724 1725 if (vd->vdev_resilver_txg == 0 || 1726 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) 1727 return (B_TRUE); 1728 1729 /* 1730 * When a resilver is initiated the scan will assign the scn_max_txg 1731 * value to the highest txg value that exists in all DTLs. If this 1732 * device's max DTL is not part of this scan (i.e. it is not in 1733 * the range (scn_min_txg, scn_max_txg] then it is not eligible 1734 * for excision. 1735 */ 1736 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 1737 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 1738 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 1739 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 1740 return (B_TRUE); 1741 } 1742 return (B_FALSE); 1743 } 1744 1745 /* 1746 * Reassess DTLs after a config change or scrub completion. 1747 */ 1748 void 1749 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1750 { 1751 spa_t *spa = vd->vdev_spa; 1752 avl_tree_t reftree; 1753 int minref; 1754 1755 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1756 1757 for (int c = 0; c < vd->vdev_children; c++) 1758 vdev_dtl_reassess(vd->vdev_child[c], txg, 1759 scrub_txg, scrub_done); 1760 1761 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1762 return; 1763 1764 if (vd->vdev_ops->vdev_op_leaf) { 1765 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1766 1767 mutex_enter(&vd->vdev_dtl_lock); 1768 1769 /* 1770 * If we've completed a scan cleanly then determine 1771 * if this vdev should remove any DTLs. We only want to 1772 * excise regions on vdevs that were available during 1773 * the entire duration of this scan. 1774 */ 1775 if (scrub_txg != 0 && 1776 (spa->spa_scrub_started || 1777 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 1778 vdev_dtl_should_excise(vd)) { 1779 /* 1780 * We completed a scrub up to scrub_txg. If we 1781 * did it without rebooting, then the scrub dtl 1782 * will be valid, so excise the old region and 1783 * fold in the scrub dtl. Otherwise, leave the 1784 * dtl as-is if there was an error. 1785 * 1786 * There's little trick here: to excise the beginning 1787 * of the DTL_MISSING map, we put it into a reference 1788 * tree and then add a segment with refcnt -1 that 1789 * covers the range [0, scrub_txg). This means 1790 * that each txg in that range has refcnt -1 or 0. 1791 * We then add DTL_SCRUB with a refcnt of 2, so that 1792 * entries in the range [0, scrub_txg) will have a 1793 * positive refcnt -- either 1 or 2. We then convert 1794 * the reference tree into the new DTL_MISSING map. 1795 */ 1796 space_reftree_create(&reftree); 1797 space_reftree_add_map(&reftree, 1798 vd->vdev_dtl[DTL_MISSING], 1); 1799 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 1800 space_reftree_add_map(&reftree, 1801 vd->vdev_dtl[DTL_SCRUB], 2); 1802 space_reftree_generate_map(&reftree, 1803 vd->vdev_dtl[DTL_MISSING], 1); 1804 space_reftree_destroy(&reftree); 1805 } 1806 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1807 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1808 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 1809 if (scrub_done) 1810 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1811 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1812 if (!vdev_readable(vd)) 1813 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1814 else 1815 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1816 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 1817 1818 /* 1819 * If the vdev was resilvering and no longer has any 1820 * DTLs then reset its resilvering flag. 1821 */ 1822 if (vd->vdev_resilver_txg != 0 && 1823 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && 1824 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) 1825 vd->vdev_resilver_txg = 0; 1826 1827 mutex_exit(&vd->vdev_dtl_lock); 1828 1829 if (txg != 0) 1830 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1831 return; 1832 } 1833 1834 mutex_enter(&vd->vdev_dtl_lock); 1835 for (int t = 0; t < DTL_TYPES; t++) { 1836 /* account for child's outage in parent's missing map */ 1837 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1838 if (t == DTL_SCRUB) 1839 continue; /* leaf vdevs only */ 1840 if (t == DTL_PARTIAL) 1841 minref = 1; /* i.e. non-zero */ 1842 else if (vd->vdev_nparity != 0) 1843 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1844 else 1845 minref = vd->vdev_children; /* any kind of mirror */ 1846 space_reftree_create(&reftree); 1847 for (int c = 0; c < vd->vdev_children; c++) { 1848 vdev_t *cvd = vd->vdev_child[c]; 1849 mutex_enter(&cvd->vdev_dtl_lock); 1850 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 1851 mutex_exit(&cvd->vdev_dtl_lock); 1852 } 1853 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 1854 space_reftree_destroy(&reftree); 1855 } 1856 mutex_exit(&vd->vdev_dtl_lock); 1857 } 1858 1859 int 1860 vdev_dtl_load(vdev_t *vd) 1861 { 1862 spa_t *spa = vd->vdev_spa; 1863 objset_t *mos = spa->spa_meta_objset; 1864 int error = 0; 1865 1866 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 1867 ASSERT(!vd->vdev_ishole); 1868 1869 error = space_map_open(&vd->vdev_dtl_sm, mos, 1870 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock); 1871 if (error) 1872 return (error); 1873 ASSERT(vd->vdev_dtl_sm != NULL); 1874 1875 mutex_enter(&vd->vdev_dtl_lock); 1876 1877 /* 1878 * Now that we've opened the space_map we need to update 1879 * the in-core DTL. 1880 */ 1881 space_map_update(vd->vdev_dtl_sm); 1882 1883 error = space_map_load(vd->vdev_dtl_sm, 1884 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 1885 mutex_exit(&vd->vdev_dtl_lock); 1886 1887 return (error); 1888 } 1889 1890 for (int c = 0; c < vd->vdev_children; c++) { 1891 error = vdev_dtl_load(vd->vdev_child[c]); 1892 if (error != 0) 1893 break; 1894 } 1895 1896 return (error); 1897 } 1898 1899 void 1900 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1901 { 1902 spa_t *spa = vd->vdev_spa; 1903 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 1904 objset_t *mos = spa->spa_meta_objset; 1905 range_tree_t *rtsync; 1906 kmutex_t rtlock; 1907 dmu_tx_t *tx; 1908 uint64_t object = space_map_object(vd->vdev_dtl_sm); 1909 1910 ASSERT(!vd->vdev_ishole); 1911 ASSERT(vd->vdev_ops->vdev_op_leaf); 1912 1913 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1914 1915 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 1916 mutex_enter(&vd->vdev_dtl_lock); 1917 space_map_free(vd->vdev_dtl_sm, tx); 1918 space_map_close(vd->vdev_dtl_sm); 1919 vd->vdev_dtl_sm = NULL; 1920 mutex_exit(&vd->vdev_dtl_lock); 1921 dmu_tx_commit(tx); 1922 return; 1923 } 1924 1925 if (vd->vdev_dtl_sm == NULL) { 1926 uint64_t new_object; 1927 1928 new_object = space_map_alloc(mos, tx); 1929 VERIFY3U(new_object, !=, 0); 1930 1931 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 1932 0, -1ULL, 0, &vd->vdev_dtl_lock)); 1933 ASSERT(vd->vdev_dtl_sm != NULL); 1934 } 1935 1936 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL); 1937 1938 rtsync = range_tree_create(NULL, NULL, &rtlock); 1939 1940 mutex_enter(&rtlock); 1941 1942 mutex_enter(&vd->vdev_dtl_lock); 1943 range_tree_walk(rt, range_tree_add, rtsync); 1944 mutex_exit(&vd->vdev_dtl_lock); 1945 1946 space_map_truncate(vd->vdev_dtl_sm, tx); 1947 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); 1948 range_tree_vacate(rtsync, NULL, NULL); 1949 1950 range_tree_destroy(rtsync); 1951 1952 mutex_exit(&rtlock); 1953 mutex_destroy(&rtlock); 1954 1955 /* 1956 * If the object for the space map has changed then dirty 1957 * the top level so that we update the config. 1958 */ 1959 if (object != space_map_object(vd->vdev_dtl_sm)) { 1960 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, " 1961 "new object %llu", txg, spa_name(spa), object, 1962 space_map_object(vd->vdev_dtl_sm)); 1963 vdev_config_dirty(vd->vdev_top); 1964 } 1965 1966 dmu_tx_commit(tx); 1967 1968 mutex_enter(&vd->vdev_dtl_lock); 1969 space_map_update(vd->vdev_dtl_sm); 1970 mutex_exit(&vd->vdev_dtl_lock); 1971 } 1972 1973 /* 1974 * Determine whether the specified vdev can be offlined/detached/removed 1975 * without losing data. 1976 */ 1977 boolean_t 1978 vdev_dtl_required(vdev_t *vd) 1979 { 1980 spa_t *spa = vd->vdev_spa; 1981 vdev_t *tvd = vd->vdev_top; 1982 uint8_t cant_read = vd->vdev_cant_read; 1983 boolean_t required; 1984 1985 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1986 1987 if (vd == spa->spa_root_vdev || vd == tvd) 1988 return (B_TRUE); 1989 1990 /* 1991 * Temporarily mark the device as unreadable, and then determine 1992 * whether this results in any DTL outages in the top-level vdev. 1993 * If not, we can safely offline/detach/remove the device. 1994 */ 1995 vd->vdev_cant_read = B_TRUE; 1996 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1997 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 1998 vd->vdev_cant_read = cant_read; 1999 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2000 2001 if (!required && zio_injection_enabled) 2002 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2003 2004 return (required); 2005 } 2006 2007 /* 2008 * Determine if resilver is needed, and if so the txg range. 2009 */ 2010 boolean_t 2011 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2012 { 2013 boolean_t needed = B_FALSE; 2014 uint64_t thismin = UINT64_MAX; 2015 uint64_t thismax = 0; 2016 2017 if (vd->vdev_children == 0) { 2018 mutex_enter(&vd->vdev_dtl_lock); 2019 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && 2020 vdev_writeable(vd)) { 2021 2022 thismin = vdev_dtl_min(vd); 2023 thismax = vdev_dtl_max(vd); 2024 needed = B_TRUE; 2025 } 2026 mutex_exit(&vd->vdev_dtl_lock); 2027 } else { 2028 for (int c = 0; c < vd->vdev_children; c++) { 2029 vdev_t *cvd = vd->vdev_child[c]; 2030 uint64_t cmin, cmax; 2031 2032 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2033 thismin = MIN(thismin, cmin); 2034 thismax = MAX(thismax, cmax); 2035 needed = B_TRUE; 2036 } 2037 } 2038 } 2039 2040 if (needed && minp) { 2041 *minp = thismin; 2042 *maxp = thismax; 2043 } 2044 return (needed); 2045 } 2046 2047 void 2048 vdev_load(vdev_t *vd) 2049 { 2050 /* 2051 * Recursively load all children. 2052 */ 2053 for (int c = 0; c < vd->vdev_children; c++) 2054 vdev_load(vd->vdev_child[c]); 2055 2056 /* 2057 * If this is a top-level vdev, initialize its metaslabs. 2058 */ 2059 if (vd == vd->vdev_top && !vd->vdev_ishole && 2060 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 2061 vdev_metaslab_init(vd, 0) != 0)) 2062 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2063 VDEV_AUX_CORRUPT_DATA); 2064 2065 /* 2066 * If this is a leaf vdev, load its DTL. 2067 */ 2068 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 2069 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2070 VDEV_AUX_CORRUPT_DATA); 2071 } 2072 2073 /* 2074 * The special vdev case is used for hot spares and l2cache devices. Its 2075 * sole purpose it to set the vdev state for the associated vdev. To do this, 2076 * we make sure that we can open the underlying device, then try to read the 2077 * label, and make sure that the label is sane and that it hasn't been 2078 * repurposed to another pool. 2079 */ 2080 int 2081 vdev_validate_aux(vdev_t *vd) 2082 { 2083 nvlist_t *label; 2084 uint64_t guid, version; 2085 uint64_t state; 2086 2087 if (!vdev_readable(vd)) 2088 return (0); 2089 2090 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2091 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2092 VDEV_AUX_CORRUPT_DATA); 2093 return (-1); 2094 } 2095 2096 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2097 !SPA_VERSION_IS_SUPPORTED(version) || 2098 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2099 guid != vd->vdev_guid || 2100 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2101 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2102 VDEV_AUX_CORRUPT_DATA); 2103 nvlist_free(label); 2104 return (-1); 2105 } 2106 2107 /* 2108 * We don't actually check the pool state here. If it's in fact in 2109 * use by another pool, we update this fact on the fly when requested. 2110 */ 2111 nvlist_free(label); 2112 return (0); 2113 } 2114 2115 void 2116 vdev_remove(vdev_t *vd, uint64_t txg) 2117 { 2118 spa_t *spa = vd->vdev_spa; 2119 objset_t *mos = spa->spa_meta_objset; 2120 dmu_tx_t *tx; 2121 2122 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2123 2124 if (vd->vdev_ms != NULL) { 2125 for (int m = 0; m < vd->vdev_ms_count; m++) { 2126 metaslab_t *msp = vd->vdev_ms[m]; 2127 2128 if (msp == NULL || msp->ms_sm == NULL) 2129 continue; 2130 2131 mutex_enter(&msp->ms_lock); 2132 VERIFY0(space_map_allocated(msp->ms_sm)); 2133 space_map_free(msp->ms_sm, tx); 2134 space_map_close(msp->ms_sm); 2135 msp->ms_sm = NULL; 2136 mutex_exit(&msp->ms_lock); 2137 } 2138 } 2139 2140 if (vd->vdev_ms_array) { 2141 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2142 vd->vdev_ms_array = 0; 2143 } 2144 dmu_tx_commit(tx); 2145 } 2146 2147 void 2148 vdev_sync_done(vdev_t *vd, uint64_t txg) 2149 { 2150 metaslab_t *msp; 2151 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2152 2153 ASSERT(!vd->vdev_ishole); 2154 2155 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2156 metaslab_sync_done(msp, txg); 2157 2158 if (reassess) 2159 metaslab_sync_reassess(vd->vdev_mg); 2160 } 2161 2162 void 2163 vdev_sync(vdev_t *vd, uint64_t txg) 2164 { 2165 spa_t *spa = vd->vdev_spa; 2166 vdev_t *lvd; 2167 metaslab_t *msp; 2168 dmu_tx_t *tx; 2169 2170 ASSERT(!vd->vdev_ishole); 2171 2172 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2173 ASSERT(vd == vd->vdev_top); 2174 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2175 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2176 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2177 ASSERT(vd->vdev_ms_array != 0); 2178 vdev_config_dirty(vd); 2179 dmu_tx_commit(tx); 2180 } 2181 2182 /* 2183 * Remove the metadata associated with this vdev once it's empty. 2184 */ 2185 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2186 vdev_remove(vd, txg); 2187 2188 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2189 metaslab_sync(msp, txg); 2190 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2191 } 2192 2193 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2194 vdev_dtl_sync(lvd, txg); 2195 2196 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2197 } 2198 2199 uint64_t 2200 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2201 { 2202 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2203 } 2204 2205 /* 2206 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2207 * not be opened, and no I/O is attempted. 2208 */ 2209 int 2210 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2211 { 2212 vdev_t *vd, *tvd; 2213 2214 spa_vdev_state_enter(spa, SCL_NONE); 2215 2216 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2217 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2218 2219 if (!vd->vdev_ops->vdev_op_leaf) 2220 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2221 2222 tvd = vd->vdev_top; 2223 2224 /* 2225 * We don't directly use the aux state here, but if we do a 2226 * vdev_reopen(), we need this value to be present to remember why we 2227 * were faulted. 2228 */ 2229 vd->vdev_label_aux = aux; 2230 2231 /* 2232 * Faulted state takes precedence over degraded. 2233 */ 2234 vd->vdev_delayed_close = B_FALSE; 2235 vd->vdev_faulted = 1ULL; 2236 vd->vdev_degraded = 0ULL; 2237 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2238 2239 /* 2240 * If this device has the only valid copy of the data, then 2241 * back off and simply mark the vdev as degraded instead. 2242 */ 2243 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2244 vd->vdev_degraded = 1ULL; 2245 vd->vdev_faulted = 0ULL; 2246 2247 /* 2248 * If we reopen the device and it's not dead, only then do we 2249 * mark it degraded. 2250 */ 2251 vdev_reopen(tvd); 2252 2253 if (vdev_readable(vd)) 2254 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2255 } 2256 2257 return (spa_vdev_state_exit(spa, vd, 0)); 2258 } 2259 2260 /* 2261 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2262 * user that something is wrong. The vdev continues to operate as normal as far 2263 * as I/O is concerned. 2264 */ 2265 int 2266 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2267 { 2268 vdev_t *vd; 2269 2270 spa_vdev_state_enter(spa, SCL_NONE); 2271 2272 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2273 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2274 2275 if (!vd->vdev_ops->vdev_op_leaf) 2276 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2277 2278 /* 2279 * If the vdev is already faulted, then don't do anything. 2280 */ 2281 if (vd->vdev_faulted || vd->vdev_degraded) 2282 return (spa_vdev_state_exit(spa, NULL, 0)); 2283 2284 vd->vdev_degraded = 1ULL; 2285 if (!vdev_is_dead(vd)) 2286 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2287 aux); 2288 2289 return (spa_vdev_state_exit(spa, vd, 0)); 2290 } 2291 2292 /* 2293 * Online the given vdev. 2294 * 2295 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2296 * spare device should be detached when the device finishes resilvering. 2297 * Second, the online should be treated like a 'test' online case, so no FMA 2298 * events are generated if the device fails to open. 2299 */ 2300 int 2301 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2302 { 2303 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2304 2305 spa_vdev_state_enter(spa, SCL_NONE); 2306 2307 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2308 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2309 2310 if (!vd->vdev_ops->vdev_op_leaf) 2311 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2312 2313 tvd = vd->vdev_top; 2314 vd->vdev_offline = B_FALSE; 2315 vd->vdev_tmpoffline = B_FALSE; 2316 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2317 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2318 2319 /* XXX - L2ARC 1.0 does not support expansion */ 2320 if (!vd->vdev_aux) { 2321 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2322 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2323 } 2324 2325 vdev_reopen(tvd); 2326 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2327 2328 if (!vd->vdev_aux) { 2329 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2330 pvd->vdev_expanding = B_FALSE; 2331 } 2332 2333 if (newstate) 2334 *newstate = vd->vdev_state; 2335 if ((flags & ZFS_ONLINE_UNSPARE) && 2336 !vdev_is_dead(vd) && vd->vdev_parent && 2337 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2338 vd->vdev_parent->vdev_child[0] == vd) 2339 vd->vdev_unspare = B_TRUE; 2340 2341 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2342 2343 /* XXX - L2ARC 1.0 does not support expansion */ 2344 if (vd->vdev_aux) 2345 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2346 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2347 } 2348 return (spa_vdev_state_exit(spa, vd, 0)); 2349 } 2350 2351 static int 2352 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2353 { 2354 vdev_t *vd, *tvd; 2355 int error = 0; 2356 uint64_t generation; 2357 metaslab_group_t *mg; 2358 2359 top: 2360 spa_vdev_state_enter(spa, SCL_ALLOC); 2361 2362 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2363 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2364 2365 if (!vd->vdev_ops->vdev_op_leaf) 2366 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2367 2368 tvd = vd->vdev_top; 2369 mg = tvd->vdev_mg; 2370 generation = spa->spa_config_generation + 1; 2371 2372 /* 2373 * If the device isn't already offline, try to offline it. 2374 */ 2375 if (!vd->vdev_offline) { 2376 /* 2377 * If this device has the only valid copy of some data, 2378 * don't allow it to be offlined. Log devices are always 2379 * expendable. 2380 */ 2381 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2382 vdev_dtl_required(vd)) 2383 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2384 2385 /* 2386 * If the top-level is a slog and it has had allocations 2387 * then proceed. We check that the vdev's metaslab group 2388 * is not NULL since it's possible that we may have just 2389 * added this vdev but not yet initialized its metaslabs. 2390 */ 2391 if (tvd->vdev_islog && mg != NULL) { 2392 /* 2393 * Prevent any future allocations. 2394 */ 2395 metaslab_group_passivate(mg); 2396 (void) spa_vdev_state_exit(spa, vd, 0); 2397 2398 error = spa_offline_log(spa); 2399 2400 spa_vdev_state_enter(spa, SCL_ALLOC); 2401 2402 /* 2403 * Check to see if the config has changed. 2404 */ 2405 if (error || generation != spa->spa_config_generation) { 2406 metaslab_group_activate(mg); 2407 if (error) 2408 return (spa_vdev_state_exit(spa, 2409 vd, error)); 2410 (void) spa_vdev_state_exit(spa, vd, 0); 2411 goto top; 2412 } 2413 ASSERT0(tvd->vdev_stat.vs_alloc); 2414 } 2415 2416 /* 2417 * Offline this device and reopen its top-level vdev. 2418 * If the top-level vdev is a log device then just offline 2419 * it. Otherwise, if this action results in the top-level 2420 * vdev becoming unusable, undo it and fail the request. 2421 */ 2422 vd->vdev_offline = B_TRUE; 2423 vdev_reopen(tvd); 2424 2425 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2426 vdev_is_dead(tvd)) { 2427 vd->vdev_offline = B_FALSE; 2428 vdev_reopen(tvd); 2429 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2430 } 2431 2432 /* 2433 * Add the device back into the metaslab rotor so that 2434 * once we online the device it's open for business. 2435 */ 2436 if (tvd->vdev_islog && mg != NULL) 2437 metaslab_group_activate(mg); 2438 } 2439 2440 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2441 2442 return (spa_vdev_state_exit(spa, vd, 0)); 2443 } 2444 2445 int 2446 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2447 { 2448 int error; 2449 2450 mutex_enter(&spa->spa_vdev_top_lock); 2451 error = vdev_offline_locked(spa, guid, flags); 2452 mutex_exit(&spa->spa_vdev_top_lock); 2453 2454 return (error); 2455 } 2456 2457 /* 2458 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2459 * vdev_offline(), we assume the spa config is locked. We also clear all 2460 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2461 */ 2462 void 2463 vdev_clear(spa_t *spa, vdev_t *vd) 2464 { 2465 vdev_t *rvd = spa->spa_root_vdev; 2466 2467 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2468 2469 if (vd == NULL) 2470 vd = rvd; 2471 2472 vd->vdev_stat.vs_read_errors = 0; 2473 vd->vdev_stat.vs_write_errors = 0; 2474 vd->vdev_stat.vs_checksum_errors = 0; 2475 2476 for (int c = 0; c < vd->vdev_children; c++) 2477 vdev_clear(spa, vd->vdev_child[c]); 2478 2479 /* 2480 * If we're in the FAULTED state or have experienced failed I/O, then 2481 * clear the persistent state and attempt to reopen the device. We 2482 * also mark the vdev config dirty, so that the new faulted state is 2483 * written out to disk. 2484 */ 2485 if (vd->vdev_faulted || vd->vdev_degraded || 2486 !vdev_readable(vd) || !vdev_writeable(vd)) { 2487 2488 /* 2489 * When reopening in reponse to a clear event, it may be due to 2490 * a fmadm repair request. In this case, if the device is 2491 * still broken, we want to still post the ereport again. 2492 */ 2493 vd->vdev_forcefault = B_TRUE; 2494 2495 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2496 vd->vdev_cant_read = B_FALSE; 2497 vd->vdev_cant_write = B_FALSE; 2498 2499 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2500 2501 vd->vdev_forcefault = B_FALSE; 2502 2503 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2504 vdev_state_dirty(vd->vdev_top); 2505 2506 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2507 spa_async_request(spa, SPA_ASYNC_RESILVER); 2508 2509 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2510 } 2511 2512 /* 2513 * When clearing a FMA-diagnosed fault, we always want to 2514 * unspare the device, as we assume that the original spare was 2515 * done in response to the FMA fault. 2516 */ 2517 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2518 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2519 vd->vdev_parent->vdev_child[0] == vd) 2520 vd->vdev_unspare = B_TRUE; 2521 } 2522 2523 boolean_t 2524 vdev_is_dead(vdev_t *vd) 2525 { 2526 /* 2527 * Holes and missing devices are always considered "dead". 2528 * This simplifies the code since we don't have to check for 2529 * these types of devices in the various code paths. 2530 * Instead we rely on the fact that we skip over dead devices 2531 * before issuing I/O to them. 2532 */ 2533 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2534 vd->vdev_ops == &vdev_missing_ops); 2535 } 2536 2537 boolean_t 2538 vdev_readable(vdev_t *vd) 2539 { 2540 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2541 } 2542 2543 boolean_t 2544 vdev_writeable(vdev_t *vd) 2545 { 2546 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2547 } 2548 2549 boolean_t 2550 vdev_allocatable(vdev_t *vd) 2551 { 2552 uint64_t state = vd->vdev_state; 2553 2554 /* 2555 * We currently allow allocations from vdevs which may be in the 2556 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2557 * fails to reopen then we'll catch it later when we're holding 2558 * the proper locks. Note that we have to get the vdev state 2559 * in a local variable because although it changes atomically, 2560 * we're asking two separate questions about it. 2561 */ 2562 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2563 !vd->vdev_cant_write && !vd->vdev_ishole); 2564 } 2565 2566 boolean_t 2567 vdev_accessible(vdev_t *vd, zio_t *zio) 2568 { 2569 ASSERT(zio->io_vd == vd); 2570 2571 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2572 return (B_FALSE); 2573 2574 if (zio->io_type == ZIO_TYPE_READ) 2575 return (!vd->vdev_cant_read); 2576 2577 if (zio->io_type == ZIO_TYPE_WRITE) 2578 return (!vd->vdev_cant_write); 2579 2580 return (B_TRUE); 2581 } 2582 2583 /* 2584 * Get statistics for the given vdev. 2585 */ 2586 void 2587 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2588 { 2589 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2590 2591 mutex_enter(&vd->vdev_stat_lock); 2592 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2593 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2594 vs->vs_state = vd->vdev_state; 2595 vs->vs_rsize = vdev_get_min_asize(vd); 2596 if (vd->vdev_ops->vdev_op_leaf) 2597 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2598 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize; 2599 mutex_exit(&vd->vdev_stat_lock); 2600 2601 /* 2602 * If we're getting stats on the root vdev, aggregate the I/O counts 2603 * over all top-level vdevs (i.e. the direct children of the root). 2604 */ 2605 if (vd == rvd) { 2606 for (int c = 0; c < rvd->vdev_children; c++) { 2607 vdev_t *cvd = rvd->vdev_child[c]; 2608 vdev_stat_t *cvs = &cvd->vdev_stat; 2609 2610 mutex_enter(&vd->vdev_stat_lock); 2611 for (int t = 0; t < ZIO_TYPES; t++) { 2612 vs->vs_ops[t] += cvs->vs_ops[t]; 2613 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2614 } 2615 cvs->vs_scan_removing = cvd->vdev_removing; 2616 mutex_exit(&vd->vdev_stat_lock); 2617 } 2618 } 2619 } 2620 2621 void 2622 vdev_clear_stats(vdev_t *vd) 2623 { 2624 mutex_enter(&vd->vdev_stat_lock); 2625 vd->vdev_stat.vs_space = 0; 2626 vd->vdev_stat.vs_dspace = 0; 2627 vd->vdev_stat.vs_alloc = 0; 2628 mutex_exit(&vd->vdev_stat_lock); 2629 } 2630 2631 void 2632 vdev_scan_stat_init(vdev_t *vd) 2633 { 2634 vdev_stat_t *vs = &vd->vdev_stat; 2635 2636 for (int c = 0; c < vd->vdev_children; c++) 2637 vdev_scan_stat_init(vd->vdev_child[c]); 2638 2639 mutex_enter(&vd->vdev_stat_lock); 2640 vs->vs_scan_processed = 0; 2641 mutex_exit(&vd->vdev_stat_lock); 2642 } 2643 2644 void 2645 vdev_stat_update(zio_t *zio, uint64_t psize) 2646 { 2647 spa_t *spa = zio->io_spa; 2648 vdev_t *rvd = spa->spa_root_vdev; 2649 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2650 vdev_t *pvd; 2651 uint64_t txg = zio->io_txg; 2652 vdev_stat_t *vs = &vd->vdev_stat; 2653 zio_type_t type = zio->io_type; 2654 int flags = zio->io_flags; 2655 2656 /* 2657 * If this i/o is a gang leader, it didn't do any actual work. 2658 */ 2659 if (zio->io_gang_tree) 2660 return; 2661 2662 if (zio->io_error == 0) { 2663 /* 2664 * If this is a root i/o, don't count it -- we've already 2665 * counted the top-level vdevs, and vdev_get_stats() will 2666 * aggregate them when asked. This reduces contention on 2667 * the root vdev_stat_lock and implicitly handles blocks 2668 * that compress away to holes, for which there is no i/o. 2669 * (Holes never create vdev children, so all the counters 2670 * remain zero, which is what we want.) 2671 * 2672 * Note: this only applies to successful i/o (io_error == 0) 2673 * because unlike i/o counts, errors are not additive. 2674 * When reading a ditto block, for example, failure of 2675 * one top-level vdev does not imply a root-level error. 2676 */ 2677 if (vd == rvd) 2678 return; 2679 2680 ASSERT(vd == zio->io_vd); 2681 2682 if (flags & ZIO_FLAG_IO_BYPASS) 2683 return; 2684 2685 mutex_enter(&vd->vdev_stat_lock); 2686 2687 if (flags & ZIO_FLAG_IO_REPAIR) { 2688 if (flags & ZIO_FLAG_SCAN_THREAD) { 2689 dsl_scan_phys_t *scn_phys = 2690 &spa->spa_dsl_pool->dp_scan->scn_phys; 2691 uint64_t *processed = &scn_phys->scn_processed; 2692 2693 /* XXX cleanup? */ 2694 if (vd->vdev_ops->vdev_op_leaf) 2695 atomic_add_64(processed, psize); 2696 vs->vs_scan_processed += psize; 2697 } 2698 2699 if (flags & ZIO_FLAG_SELF_HEAL) 2700 vs->vs_self_healed += psize; 2701 } 2702 2703 vs->vs_ops[type]++; 2704 vs->vs_bytes[type] += psize; 2705 2706 mutex_exit(&vd->vdev_stat_lock); 2707 return; 2708 } 2709 2710 if (flags & ZIO_FLAG_SPECULATIVE) 2711 return; 2712 2713 /* 2714 * If this is an I/O error that is going to be retried, then ignore the 2715 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2716 * hard errors, when in reality they can happen for any number of 2717 * innocuous reasons (bus resets, MPxIO link failure, etc). 2718 */ 2719 if (zio->io_error == EIO && 2720 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2721 return; 2722 2723 /* 2724 * Intent logs writes won't propagate their error to the root 2725 * I/O so don't mark these types of failures as pool-level 2726 * errors. 2727 */ 2728 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2729 return; 2730 2731 mutex_enter(&vd->vdev_stat_lock); 2732 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2733 if (zio->io_error == ECKSUM) 2734 vs->vs_checksum_errors++; 2735 else 2736 vs->vs_read_errors++; 2737 } 2738 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2739 vs->vs_write_errors++; 2740 mutex_exit(&vd->vdev_stat_lock); 2741 2742 if (type == ZIO_TYPE_WRITE && txg != 0 && 2743 (!(flags & ZIO_FLAG_IO_REPAIR) || 2744 (flags & ZIO_FLAG_SCAN_THREAD) || 2745 spa->spa_claiming)) { 2746 /* 2747 * This is either a normal write (not a repair), or it's 2748 * a repair induced by the scrub thread, or it's a repair 2749 * made by zil_claim() during spa_load() in the first txg. 2750 * In the normal case, we commit the DTL change in the same 2751 * txg as the block was born. In the scrub-induced repair 2752 * case, we know that scrubs run in first-pass syncing context, 2753 * so we commit the DTL change in spa_syncing_txg(spa). 2754 * In the zil_claim() case, we commit in spa_first_txg(spa). 2755 * 2756 * We currently do not make DTL entries for failed spontaneous 2757 * self-healing writes triggered by normal (non-scrubbing) 2758 * reads, because we have no transactional context in which to 2759 * do so -- and it's not clear that it'd be desirable anyway. 2760 */ 2761 if (vd->vdev_ops->vdev_op_leaf) { 2762 uint64_t commit_txg = txg; 2763 if (flags & ZIO_FLAG_SCAN_THREAD) { 2764 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2765 ASSERT(spa_sync_pass(spa) == 1); 2766 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2767 commit_txg = spa_syncing_txg(spa); 2768 } else if (spa->spa_claiming) { 2769 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2770 commit_txg = spa_first_txg(spa); 2771 } 2772 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2773 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2774 return; 2775 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2776 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2777 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2778 } 2779 if (vd != rvd) 2780 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2781 } 2782 } 2783 2784 /* 2785 * Update the in-core space usage stats for this vdev, its metaslab class, 2786 * and the root vdev. 2787 */ 2788 void 2789 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2790 int64_t space_delta) 2791 { 2792 int64_t dspace_delta = space_delta; 2793 spa_t *spa = vd->vdev_spa; 2794 vdev_t *rvd = spa->spa_root_vdev; 2795 metaslab_group_t *mg = vd->vdev_mg; 2796 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2797 2798 ASSERT(vd == vd->vdev_top); 2799 2800 /* 2801 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2802 * factor. We must calculate this here and not at the root vdev 2803 * because the root vdev's psize-to-asize is simply the max of its 2804 * childrens', thus not accurate enough for us. 2805 */ 2806 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2807 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2808 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2809 vd->vdev_deflate_ratio; 2810 2811 mutex_enter(&vd->vdev_stat_lock); 2812 vd->vdev_stat.vs_alloc += alloc_delta; 2813 vd->vdev_stat.vs_space += space_delta; 2814 vd->vdev_stat.vs_dspace += dspace_delta; 2815 mutex_exit(&vd->vdev_stat_lock); 2816 2817 if (mc == spa_normal_class(spa)) { 2818 mutex_enter(&rvd->vdev_stat_lock); 2819 rvd->vdev_stat.vs_alloc += alloc_delta; 2820 rvd->vdev_stat.vs_space += space_delta; 2821 rvd->vdev_stat.vs_dspace += dspace_delta; 2822 mutex_exit(&rvd->vdev_stat_lock); 2823 } 2824 2825 if (mc != NULL) { 2826 ASSERT(rvd == vd->vdev_parent); 2827 ASSERT(vd->vdev_ms_count != 0); 2828 2829 metaslab_class_space_update(mc, 2830 alloc_delta, defer_delta, space_delta, dspace_delta); 2831 } 2832 } 2833 2834 /* 2835 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2836 * so that it will be written out next time the vdev configuration is synced. 2837 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2838 */ 2839 void 2840 vdev_config_dirty(vdev_t *vd) 2841 { 2842 spa_t *spa = vd->vdev_spa; 2843 vdev_t *rvd = spa->spa_root_vdev; 2844 int c; 2845 2846 ASSERT(spa_writeable(spa)); 2847 2848 /* 2849 * If this is an aux vdev (as with l2cache and spare devices), then we 2850 * update the vdev config manually and set the sync flag. 2851 */ 2852 if (vd->vdev_aux != NULL) { 2853 spa_aux_vdev_t *sav = vd->vdev_aux; 2854 nvlist_t **aux; 2855 uint_t naux; 2856 2857 for (c = 0; c < sav->sav_count; c++) { 2858 if (sav->sav_vdevs[c] == vd) 2859 break; 2860 } 2861 2862 if (c == sav->sav_count) { 2863 /* 2864 * We're being removed. There's nothing more to do. 2865 */ 2866 ASSERT(sav->sav_sync == B_TRUE); 2867 return; 2868 } 2869 2870 sav->sav_sync = B_TRUE; 2871 2872 if (nvlist_lookup_nvlist_array(sav->sav_config, 2873 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2874 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2875 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2876 } 2877 2878 ASSERT(c < naux); 2879 2880 /* 2881 * Setting the nvlist in the middle if the array is a little 2882 * sketchy, but it will work. 2883 */ 2884 nvlist_free(aux[c]); 2885 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 2886 2887 return; 2888 } 2889 2890 /* 2891 * The dirty list is protected by the SCL_CONFIG lock. The caller 2892 * must either hold SCL_CONFIG as writer, or must be the sync thread 2893 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2894 * so this is sufficient to ensure mutual exclusion. 2895 */ 2896 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2897 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2898 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2899 2900 if (vd == rvd) { 2901 for (c = 0; c < rvd->vdev_children; c++) 2902 vdev_config_dirty(rvd->vdev_child[c]); 2903 } else { 2904 ASSERT(vd == vd->vdev_top); 2905 2906 if (!list_link_active(&vd->vdev_config_dirty_node) && 2907 !vd->vdev_ishole) 2908 list_insert_head(&spa->spa_config_dirty_list, vd); 2909 } 2910 } 2911 2912 void 2913 vdev_config_clean(vdev_t *vd) 2914 { 2915 spa_t *spa = vd->vdev_spa; 2916 2917 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2918 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2919 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2920 2921 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2922 list_remove(&spa->spa_config_dirty_list, vd); 2923 } 2924 2925 /* 2926 * Mark a top-level vdev's state as dirty, so that the next pass of 2927 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2928 * the state changes from larger config changes because they require 2929 * much less locking, and are often needed for administrative actions. 2930 */ 2931 void 2932 vdev_state_dirty(vdev_t *vd) 2933 { 2934 spa_t *spa = vd->vdev_spa; 2935 2936 ASSERT(spa_writeable(spa)); 2937 ASSERT(vd == vd->vdev_top); 2938 2939 /* 2940 * The state list is protected by the SCL_STATE lock. The caller 2941 * must either hold SCL_STATE as writer, or must be the sync thread 2942 * (which holds SCL_STATE as reader). There's only one sync thread, 2943 * so this is sufficient to ensure mutual exclusion. 2944 */ 2945 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2946 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2947 spa_config_held(spa, SCL_STATE, RW_READER))); 2948 2949 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 2950 list_insert_head(&spa->spa_state_dirty_list, vd); 2951 } 2952 2953 void 2954 vdev_state_clean(vdev_t *vd) 2955 { 2956 spa_t *spa = vd->vdev_spa; 2957 2958 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2959 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2960 spa_config_held(spa, SCL_STATE, RW_READER))); 2961 2962 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2963 list_remove(&spa->spa_state_dirty_list, vd); 2964 } 2965 2966 /* 2967 * Propagate vdev state up from children to parent. 2968 */ 2969 void 2970 vdev_propagate_state(vdev_t *vd) 2971 { 2972 spa_t *spa = vd->vdev_spa; 2973 vdev_t *rvd = spa->spa_root_vdev; 2974 int degraded = 0, faulted = 0; 2975 int corrupted = 0; 2976 vdev_t *child; 2977 2978 if (vd->vdev_children > 0) { 2979 for (int c = 0; c < vd->vdev_children; c++) { 2980 child = vd->vdev_child[c]; 2981 2982 /* 2983 * Don't factor holes into the decision. 2984 */ 2985 if (child->vdev_ishole) 2986 continue; 2987 2988 if (!vdev_readable(child) || 2989 (!vdev_writeable(child) && spa_writeable(spa))) { 2990 /* 2991 * Root special: if there is a top-level log 2992 * device, treat the root vdev as if it were 2993 * degraded. 2994 */ 2995 if (child->vdev_islog && vd == rvd) 2996 degraded++; 2997 else 2998 faulted++; 2999 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 3000 degraded++; 3001 } 3002 3003 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 3004 corrupted++; 3005 } 3006 3007 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 3008 3009 /* 3010 * Root special: if there is a top-level vdev that cannot be 3011 * opened due to corrupted metadata, then propagate the root 3012 * vdev's aux state as 'corrupt' rather than 'insufficient 3013 * replicas'. 3014 */ 3015 if (corrupted && vd == rvd && 3016 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 3017 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 3018 VDEV_AUX_CORRUPT_DATA); 3019 } 3020 3021 if (vd->vdev_parent) 3022 vdev_propagate_state(vd->vdev_parent); 3023 } 3024 3025 /* 3026 * Set a vdev's state. If this is during an open, we don't update the parent 3027 * state, because we're in the process of opening children depth-first. 3028 * Otherwise, we propagate the change to the parent. 3029 * 3030 * If this routine places a device in a faulted state, an appropriate ereport is 3031 * generated. 3032 */ 3033 void 3034 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 3035 { 3036 uint64_t save_state; 3037 spa_t *spa = vd->vdev_spa; 3038 3039 if (state == vd->vdev_state) { 3040 vd->vdev_stat.vs_aux = aux; 3041 return; 3042 } 3043 3044 save_state = vd->vdev_state; 3045 3046 vd->vdev_state = state; 3047 vd->vdev_stat.vs_aux = aux; 3048 3049 /* 3050 * If we are setting the vdev state to anything but an open state, then 3051 * always close the underlying device unless the device has requested 3052 * a delayed close (i.e. we're about to remove or fault the device). 3053 * Otherwise, we keep accessible but invalid devices open forever. 3054 * We don't call vdev_close() itself, because that implies some extra 3055 * checks (offline, etc) that we don't want here. This is limited to 3056 * leaf devices, because otherwise closing the device will affect other 3057 * children. 3058 */ 3059 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 3060 vd->vdev_ops->vdev_op_leaf) 3061 vd->vdev_ops->vdev_op_close(vd); 3062 3063 /* 3064 * If we have brought this vdev back into service, we need 3065 * to notify fmd so that it can gracefully repair any outstanding 3066 * cases due to a missing device. We do this in all cases, even those 3067 * that probably don't correlate to a repaired fault. This is sure to 3068 * catch all cases, and we let the zfs-retire agent sort it out. If 3069 * this is a transient state it's OK, as the retire agent will 3070 * double-check the state of the vdev before repairing it. 3071 */ 3072 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 3073 vd->vdev_prevstate != state) 3074 zfs_post_state_change(spa, vd); 3075 3076 if (vd->vdev_removed && 3077 state == VDEV_STATE_CANT_OPEN && 3078 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 3079 /* 3080 * If the previous state is set to VDEV_STATE_REMOVED, then this 3081 * device was previously marked removed and someone attempted to 3082 * reopen it. If this failed due to a nonexistent device, then 3083 * keep the device in the REMOVED state. We also let this be if 3084 * it is one of our special test online cases, which is only 3085 * attempting to online the device and shouldn't generate an FMA 3086 * fault. 3087 */ 3088 vd->vdev_state = VDEV_STATE_REMOVED; 3089 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 3090 } else if (state == VDEV_STATE_REMOVED) { 3091 vd->vdev_removed = B_TRUE; 3092 } else if (state == VDEV_STATE_CANT_OPEN) { 3093 /* 3094 * If we fail to open a vdev during an import or recovery, we 3095 * mark it as "not available", which signifies that it was 3096 * never there to begin with. Failure to open such a device 3097 * is not considered an error. 3098 */ 3099 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 3100 spa_load_state(spa) == SPA_LOAD_RECOVER) && 3101 vd->vdev_ops->vdev_op_leaf) 3102 vd->vdev_not_present = 1; 3103 3104 /* 3105 * Post the appropriate ereport. If the 'prevstate' field is 3106 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3107 * that this is part of a vdev_reopen(). In this case, we don't 3108 * want to post the ereport if the device was already in the 3109 * CANT_OPEN state beforehand. 3110 * 3111 * If the 'checkremove' flag is set, then this is an attempt to 3112 * online the device in response to an insertion event. If we 3113 * hit this case, then we have detected an insertion event for a 3114 * faulted or offline device that wasn't in the removed state. 3115 * In this scenario, we don't post an ereport because we are 3116 * about to replace the device, or attempt an online with 3117 * vdev_forcefault, which will generate the fault for us. 3118 */ 3119 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3120 !vd->vdev_not_present && !vd->vdev_checkremove && 3121 vd != spa->spa_root_vdev) { 3122 const char *class; 3123 3124 switch (aux) { 3125 case VDEV_AUX_OPEN_FAILED: 3126 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3127 break; 3128 case VDEV_AUX_CORRUPT_DATA: 3129 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3130 break; 3131 case VDEV_AUX_NO_REPLICAS: 3132 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3133 break; 3134 case VDEV_AUX_BAD_GUID_SUM: 3135 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3136 break; 3137 case VDEV_AUX_TOO_SMALL: 3138 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3139 break; 3140 case VDEV_AUX_BAD_LABEL: 3141 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3142 break; 3143 default: 3144 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3145 } 3146 3147 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3148 } 3149 3150 /* Erase any notion of persistent removed state */ 3151 vd->vdev_removed = B_FALSE; 3152 } else { 3153 vd->vdev_removed = B_FALSE; 3154 } 3155 3156 if (!isopen && vd->vdev_parent) 3157 vdev_propagate_state(vd->vdev_parent); 3158 } 3159 3160 /* 3161 * Check the vdev configuration to ensure that it's capable of supporting 3162 * a root pool. Currently, we do not support RAID-Z or partial configuration. 3163 * In addition, only a single top-level vdev is allowed and none of the leaves 3164 * can be wholedisks. 3165 */ 3166 boolean_t 3167 vdev_is_bootable(vdev_t *vd) 3168 { 3169 if (!vd->vdev_ops->vdev_op_leaf) { 3170 char *vdev_type = vd->vdev_ops->vdev_op_type; 3171 3172 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3173 vd->vdev_children > 1) { 3174 return (B_FALSE); 3175 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 3176 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3177 return (B_FALSE); 3178 } 3179 } else if (vd->vdev_wholedisk == 1) { 3180 return (B_FALSE); 3181 } 3182 3183 for (int c = 0; c < vd->vdev_children; c++) { 3184 if (!vdev_is_bootable(vd->vdev_child[c])) 3185 return (B_FALSE); 3186 } 3187 return (B_TRUE); 3188 } 3189 3190 /* 3191 * Load the state from the original vdev tree (ovd) which 3192 * we've retrieved from the MOS config object. If the original 3193 * vdev was offline or faulted then we transfer that state to the 3194 * device in the current vdev tree (nvd). 3195 */ 3196 void 3197 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3198 { 3199 spa_t *spa = nvd->vdev_spa; 3200 3201 ASSERT(nvd->vdev_top->vdev_islog); 3202 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3203 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3204 3205 for (int c = 0; c < nvd->vdev_children; c++) 3206 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3207 3208 if (nvd->vdev_ops->vdev_op_leaf) { 3209 /* 3210 * Restore the persistent vdev state 3211 */ 3212 nvd->vdev_offline = ovd->vdev_offline; 3213 nvd->vdev_faulted = ovd->vdev_faulted; 3214 nvd->vdev_degraded = ovd->vdev_degraded; 3215 nvd->vdev_removed = ovd->vdev_removed; 3216 } 3217 } 3218 3219 /* 3220 * Determine if a log device has valid content. If the vdev was 3221 * removed or faulted in the MOS config then we know that 3222 * the content on the log device has already been written to the pool. 3223 */ 3224 boolean_t 3225 vdev_log_state_valid(vdev_t *vd) 3226 { 3227 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3228 !vd->vdev_removed) 3229 return (B_TRUE); 3230 3231 for (int c = 0; c < vd->vdev_children; c++) 3232 if (vdev_log_state_valid(vd->vdev_child[c])) 3233 return (B_TRUE); 3234 3235 return (B_FALSE); 3236 } 3237 3238 /* 3239 * Expand a vdev if possible. 3240 */ 3241 void 3242 vdev_expand(vdev_t *vd, uint64_t txg) 3243 { 3244 ASSERT(vd->vdev_top == vd); 3245 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3246 3247 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3248 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3249 vdev_config_dirty(vd); 3250 } 3251 } 3252 3253 /* 3254 * Split a vdev. 3255 */ 3256 void 3257 vdev_split(vdev_t *vd) 3258 { 3259 vdev_t *cvd, *pvd = vd->vdev_parent; 3260 3261 vdev_remove_child(pvd, vd); 3262 vdev_compact_children(pvd); 3263 3264 cvd = pvd->vdev_child[0]; 3265 if (pvd->vdev_children == 1) { 3266 vdev_remove_parent(cvd); 3267 cvd->vdev_splitting = B_TRUE; 3268 } 3269 vdev_propagate_state(cvd); 3270 } 3271 3272 void 3273 vdev_deadman(vdev_t *vd) 3274 { 3275 for (int c = 0; c < vd->vdev_children; c++) { 3276 vdev_t *cvd = vd->vdev_child[c]; 3277 3278 vdev_deadman(cvd); 3279 } 3280 3281 if (vd->vdev_ops->vdev_op_leaf) { 3282 vdev_queue_t *vq = &vd->vdev_queue; 3283 3284 mutex_enter(&vq->vq_lock); 3285 if (avl_numnodes(&vq->vq_active_tree) > 0) { 3286 spa_t *spa = vd->vdev_spa; 3287 zio_t *fio; 3288 uint64_t delta; 3289 3290 /* 3291 * Look at the head of all the pending queues, 3292 * if any I/O has been outstanding for longer than 3293 * the spa_deadman_synctime we panic the system. 3294 */ 3295 fio = avl_first(&vq->vq_active_tree); 3296 delta = gethrtime() - fio->io_timestamp; 3297 if (delta > spa_deadman_synctime(spa)) { 3298 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3299 "delta %lluns, last io %lluns", 3300 fio->io_timestamp, delta, 3301 vq->vq_io_complete_ts); 3302 fm_panic("I/O to pool '%s' appears to be " 3303 "hung.", spa_name(spa)); 3304 } 3305 } 3306 mutex_exit(&vq->vq_lock); 3307 } 3308 }