1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 /* 29 * SPA: Storage Pool Allocator 30 * 31 * This file contains all the routines used when modifying on-disk SPA state. 32 * This includes opening, importing, destroying, exporting a pool, and syncing a 33 * pool. 34 */ 35 36 #include <sys/zfs_context.h> 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/spa_impl.h> 39 #include <sys/zio.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/zap.h> 44 #include <sys/zil.h> 45 #include <sys/ddt.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/uberblock_impl.h> 50 #include <sys/txg.h> 51 #include <sys/avl.h> 52 #include <sys/dmu_traverse.h> 53 #include <sys/dmu_objset.h> 54 #include <sys/unique.h> 55 #include <sys/dsl_pool.h> 56 #include <sys/dsl_dataset.h> 57 #include <sys/dsl_dir.h> 58 #include <sys/dsl_prop.h> 59 #include <sys/dsl_synctask.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/arc.h> 62 #include <sys/callb.h> 63 #include <sys/systeminfo.h> 64 #include <sys/spa_boot.h> 65 #include <sys/zfs_ioctl.h> 66 #include <sys/dsl_scan.h> 67 #include <sys/zfeature.h> 68 #include <sys/dsl_destroy.h> 69 70 #ifdef _KERNEL 71 #include <sys/bootprops.h> 72 #include <sys/callb.h> 73 #include <sys/cpupart.h> 74 #include <sys/pool.h> 75 #include <sys/sysdc.h> 76 #include <sys/zone.h> 77 #endif /* _KERNEL */ 78 79 #include "zfs_prop.h" 80 #include "zfs_comutil.h" 81 82 /* 83 * The interval, in seconds, at which failed configuration cache file writes 84 * should be retried. 85 */ 86 static int zfs_ccw_retry_interval = 300; 87 88 typedef enum zti_modes { 89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 90 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 91 ZTI_MODE_NULL, /* don't create a taskq */ 92 ZTI_NMODES 93 } zti_modes_t; 94 95 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 96 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 97 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 98 99 #define ZTI_N(n) ZTI_P(n, 1) 100 #define ZTI_ONE ZTI_N(1) 101 102 typedef struct zio_taskq_info { 103 zti_modes_t zti_mode; 104 uint_t zti_value; 105 uint_t zti_count; 106 } zio_taskq_info_t; 107 108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 109 "issue", "issue_high", "intr", "intr_high" 110 }; 111 112 /* 113 * This table defines the taskq settings for each ZFS I/O type. When 114 * initializing a pool, we use this table to create an appropriately sized 115 * taskq. Some operations are low volume and therefore have a small, static 116 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 117 * macros. Other operations process a large amount of data; the ZTI_BATCH 118 * macro causes us to create a taskq oriented for throughput. Some operations 119 * are so high frequency and short-lived that the taskq itself can become a a 120 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 121 * additional degree of parallelism specified by the number of threads per- 122 * taskq and the number of taskqs; when dispatching an event in this case, the 123 * particular taskq is chosen at random. 124 * 125 * The different taskq priorities are to handle the different contexts (issue 126 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 127 * need to be handled with minimum delay. 128 */ 129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 130 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 132 { ZTI_N(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, /* READ */ 133 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 134 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 137 }; 138 139 static void spa_sync_version(void *arg, dmu_tx_t *tx); 140 static void spa_sync_props(void *arg, dmu_tx_t *tx); 141 static boolean_t spa_has_active_shared_spare(spa_t *spa); 142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 144 char **ereport); 145 static void spa_vdev_resilver_done(spa_t *spa); 146 147 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 148 id_t zio_taskq_psrset_bind = PS_NONE; 149 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 150 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 151 152 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 153 extern int zfs_sync_pass_deferred_free; 154 155 /* 156 * This (illegal) pool name is used when temporarily importing a spa_t in order 157 * to get the vdev stats associated with the imported devices. 158 */ 159 #define TRYIMPORT_NAME "$import" 160 161 /* 162 * ========================================================================== 163 * SPA properties routines 164 * ========================================================================== 165 */ 166 167 /* 168 * Add a (source=src, propname=propval) list to an nvlist. 169 */ 170 static void 171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 172 uint64_t intval, zprop_source_t src) 173 { 174 const char *propname = zpool_prop_to_name(prop); 175 nvlist_t *propval; 176 177 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 178 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 179 180 if (strval != NULL) 181 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 182 else 183 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 184 185 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 186 nvlist_free(propval); 187 } 188 189 /* 190 * Get property values from the spa configuration. 191 */ 192 static void 193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 194 { 195 vdev_t *rvd = spa->spa_root_vdev; 196 dsl_pool_t *pool = spa->spa_dsl_pool; 197 uint64_t size; 198 uint64_t alloc; 199 uint64_t space; 200 uint64_t cap, version; 201 zprop_source_t src = ZPROP_SRC_NONE; 202 spa_config_dirent_t *dp; 203 204 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 205 206 if (rvd != NULL) { 207 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 208 size = metaslab_class_get_space(spa_normal_class(spa)); 209 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 210 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 211 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 212 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 213 size - alloc, src); 214 215 space = 0; 216 for (int c = 0; c < rvd->vdev_children; c++) { 217 vdev_t *tvd = rvd->vdev_child[c]; 218 space += tvd->vdev_max_asize - tvd->vdev_asize; 219 } 220 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space, 221 src); 222 223 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 224 (spa_mode(spa) == FREAD), src); 225 226 cap = (size == 0) ? 0 : (alloc * 100 / size); 227 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 228 229 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 230 ddt_get_pool_dedup_ratio(spa), src); 231 232 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 233 rvd->vdev_state, src); 234 235 version = spa_version(spa); 236 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 237 src = ZPROP_SRC_DEFAULT; 238 else 239 src = ZPROP_SRC_LOCAL; 240 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 241 } 242 243 if (pool != NULL) { 244 dsl_dir_t *freedir = pool->dp_free_dir; 245 246 /* 247 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 248 * when opening pools before this version freedir will be NULL. 249 */ 250 if (freedir != NULL) { 251 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 252 freedir->dd_phys->dd_used_bytes, src); 253 } else { 254 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 255 NULL, 0, src); 256 } 257 } 258 259 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 260 261 if (spa->spa_comment != NULL) { 262 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 263 0, ZPROP_SRC_LOCAL); 264 } 265 266 if (spa->spa_root != NULL) 267 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 268 0, ZPROP_SRC_LOCAL); 269 270 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 271 if (dp->scd_path == NULL) { 272 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 273 "none", 0, ZPROP_SRC_LOCAL); 274 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 275 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 276 dp->scd_path, 0, ZPROP_SRC_LOCAL); 277 } 278 } 279 } 280 281 /* 282 * Get zpool property values. 283 */ 284 int 285 spa_prop_get(spa_t *spa, nvlist_t **nvp) 286 { 287 objset_t *mos = spa->spa_meta_objset; 288 zap_cursor_t zc; 289 zap_attribute_t za; 290 int err; 291 292 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 293 294 mutex_enter(&spa->spa_props_lock); 295 296 /* 297 * Get properties from the spa config. 298 */ 299 spa_prop_get_config(spa, nvp); 300 301 /* If no pool property object, no more prop to get. */ 302 if (mos == NULL || spa->spa_pool_props_object == 0) { 303 mutex_exit(&spa->spa_props_lock); 304 return (0); 305 } 306 307 /* 308 * Get properties from the MOS pool property object. 309 */ 310 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 311 (err = zap_cursor_retrieve(&zc, &za)) == 0; 312 zap_cursor_advance(&zc)) { 313 uint64_t intval = 0; 314 char *strval = NULL; 315 zprop_source_t src = ZPROP_SRC_DEFAULT; 316 zpool_prop_t prop; 317 318 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 319 continue; 320 321 switch (za.za_integer_length) { 322 case 8: 323 /* integer property */ 324 if (za.za_first_integer != 325 zpool_prop_default_numeric(prop)) 326 src = ZPROP_SRC_LOCAL; 327 328 if (prop == ZPOOL_PROP_BOOTFS) { 329 dsl_pool_t *dp; 330 dsl_dataset_t *ds = NULL; 331 332 dp = spa_get_dsl(spa); 333 dsl_pool_config_enter(dp, FTAG); 334 if (err = dsl_dataset_hold_obj(dp, 335 za.za_first_integer, FTAG, &ds)) { 336 dsl_pool_config_exit(dp, FTAG); 337 break; 338 } 339 340 strval = kmem_alloc( 341 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 342 KM_SLEEP); 343 dsl_dataset_name(ds, strval); 344 dsl_dataset_rele(ds, FTAG); 345 dsl_pool_config_exit(dp, FTAG); 346 } else { 347 strval = NULL; 348 intval = za.za_first_integer; 349 } 350 351 spa_prop_add_list(*nvp, prop, strval, intval, src); 352 353 if (strval != NULL) 354 kmem_free(strval, 355 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 356 357 break; 358 359 case 1: 360 /* string property */ 361 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 362 err = zap_lookup(mos, spa->spa_pool_props_object, 363 za.za_name, 1, za.za_num_integers, strval); 364 if (err) { 365 kmem_free(strval, za.za_num_integers); 366 break; 367 } 368 spa_prop_add_list(*nvp, prop, strval, 0, src); 369 kmem_free(strval, za.za_num_integers); 370 break; 371 372 default: 373 break; 374 } 375 } 376 zap_cursor_fini(&zc); 377 mutex_exit(&spa->spa_props_lock); 378 out: 379 if (err && err != ENOENT) { 380 nvlist_free(*nvp); 381 *nvp = NULL; 382 return (err); 383 } 384 385 return (0); 386 } 387 388 /* 389 * Validate the given pool properties nvlist and modify the list 390 * for the property values to be set. 391 */ 392 static int 393 spa_prop_validate(spa_t *spa, nvlist_t *props) 394 { 395 nvpair_t *elem; 396 int error = 0, reset_bootfs = 0; 397 uint64_t objnum = 0; 398 boolean_t has_feature = B_FALSE; 399 400 elem = NULL; 401 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 402 uint64_t intval; 403 char *strval, *slash, *check, *fname; 404 const char *propname = nvpair_name(elem); 405 zpool_prop_t prop = zpool_name_to_prop(propname); 406 407 switch (prop) { 408 case ZPROP_INVAL: 409 if (!zpool_prop_feature(propname)) { 410 error = SET_ERROR(EINVAL); 411 break; 412 } 413 414 /* 415 * Sanitize the input. 416 */ 417 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 418 error = SET_ERROR(EINVAL); 419 break; 420 } 421 422 if (nvpair_value_uint64(elem, &intval) != 0) { 423 error = SET_ERROR(EINVAL); 424 break; 425 } 426 427 if (intval != 0) { 428 error = SET_ERROR(EINVAL); 429 break; 430 } 431 432 fname = strchr(propname, '@') + 1; 433 if (zfeature_lookup_name(fname, NULL) != 0) { 434 error = SET_ERROR(EINVAL); 435 break; 436 } 437 438 has_feature = B_TRUE; 439 break; 440 441 case ZPOOL_PROP_VERSION: 442 error = nvpair_value_uint64(elem, &intval); 443 if (!error && 444 (intval < spa_version(spa) || 445 intval > SPA_VERSION_BEFORE_FEATURES || 446 has_feature)) 447 error = SET_ERROR(EINVAL); 448 break; 449 450 case ZPOOL_PROP_DELEGATION: 451 case ZPOOL_PROP_AUTOREPLACE: 452 case ZPOOL_PROP_LISTSNAPS: 453 case ZPOOL_PROP_AUTOEXPAND: 454 error = nvpair_value_uint64(elem, &intval); 455 if (!error && intval > 1) 456 error = SET_ERROR(EINVAL); 457 break; 458 459 case ZPOOL_PROP_BOOTFS: 460 /* 461 * If the pool version is less than SPA_VERSION_BOOTFS, 462 * or the pool is still being created (version == 0), 463 * the bootfs property cannot be set. 464 */ 465 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 466 error = SET_ERROR(ENOTSUP); 467 break; 468 } 469 470 /* 471 * Make sure the vdev config is bootable 472 */ 473 if (!vdev_is_bootable(spa->spa_root_vdev)) { 474 error = SET_ERROR(ENOTSUP); 475 break; 476 } 477 478 reset_bootfs = 1; 479 480 error = nvpair_value_string(elem, &strval); 481 482 if (!error) { 483 objset_t *os; 484 uint64_t compress; 485 486 if (strval == NULL || strval[0] == '\0') { 487 objnum = zpool_prop_default_numeric( 488 ZPOOL_PROP_BOOTFS); 489 break; 490 } 491 492 if (error = dmu_objset_hold(strval, FTAG, &os)) 493 break; 494 495 /* Must be ZPL and not gzip compressed. */ 496 497 if (dmu_objset_type(os) != DMU_OST_ZFS) { 498 error = SET_ERROR(ENOTSUP); 499 } else if ((error = 500 dsl_prop_get_int_ds(dmu_objset_ds(os), 501 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 502 &compress)) == 0 && 503 !BOOTFS_COMPRESS_VALID(compress)) { 504 error = SET_ERROR(ENOTSUP); 505 } else { 506 objnum = dmu_objset_id(os); 507 } 508 dmu_objset_rele(os, FTAG); 509 } 510 break; 511 512 case ZPOOL_PROP_FAILUREMODE: 513 error = nvpair_value_uint64(elem, &intval); 514 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 515 intval > ZIO_FAILURE_MODE_PANIC)) 516 error = SET_ERROR(EINVAL); 517 518 /* 519 * This is a special case which only occurs when 520 * the pool has completely failed. This allows 521 * the user to change the in-core failmode property 522 * without syncing it out to disk (I/Os might 523 * currently be blocked). We do this by returning 524 * EIO to the caller (spa_prop_set) to trick it 525 * into thinking we encountered a property validation 526 * error. 527 */ 528 if (!error && spa_suspended(spa)) { 529 spa->spa_failmode = intval; 530 error = SET_ERROR(EIO); 531 } 532 break; 533 534 case ZPOOL_PROP_CACHEFILE: 535 if ((error = nvpair_value_string(elem, &strval)) != 0) 536 break; 537 538 if (strval[0] == '\0') 539 break; 540 541 if (strcmp(strval, "none") == 0) 542 break; 543 544 if (strval[0] != '/') { 545 error = SET_ERROR(EINVAL); 546 break; 547 } 548 549 slash = strrchr(strval, '/'); 550 ASSERT(slash != NULL); 551 552 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 553 strcmp(slash, "/..") == 0) 554 error = SET_ERROR(EINVAL); 555 break; 556 557 case ZPOOL_PROP_COMMENT: 558 if ((error = nvpair_value_string(elem, &strval)) != 0) 559 break; 560 for (check = strval; *check != '\0'; check++) { 561 /* 562 * The kernel doesn't have an easy isprint() 563 * check. For this kernel check, we merely 564 * check ASCII apart from DEL. Fix this if 565 * there is an easy-to-use kernel isprint(). 566 */ 567 if (*check >= 0x7f) { 568 error = SET_ERROR(EINVAL); 569 break; 570 } 571 check++; 572 } 573 if (strlen(strval) > ZPROP_MAX_COMMENT) 574 error = E2BIG; 575 break; 576 577 case ZPOOL_PROP_DEDUPDITTO: 578 if (spa_version(spa) < SPA_VERSION_DEDUP) 579 error = SET_ERROR(ENOTSUP); 580 else 581 error = nvpair_value_uint64(elem, &intval); 582 if (error == 0 && 583 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 584 error = SET_ERROR(EINVAL); 585 break; 586 } 587 588 if (error) 589 break; 590 } 591 592 if (!error && reset_bootfs) { 593 error = nvlist_remove(props, 594 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 595 596 if (!error) { 597 error = nvlist_add_uint64(props, 598 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 599 } 600 } 601 602 return (error); 603 } 604 605 void 606 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 607 { 608 char *cachefile; 609 spa_config_dirent_t *dp; 610 611 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 612 &cachefile) != 0) 613 return; 614 615 dp = kmem_alloc(sizeof (spa_config_dirent_t), 616 KM_SLEEP); 617 618 if (cachefile[0] == '\0') 619 dp->scd_path = spa_strdup(spa_config_path); 620 else if (strcmp(cachefile, "none") == 0) 621 dp->scd_path = NULL; 622 else 623 dp->scd_path = spa_strdup(cachefile); 624 625 list_insert_head(&spa->spa_config_list, dp); 626 if (need_sync) 627 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 628 } 629 630 int 631 spa_prop_set(spa_t *spa, nvlist_t *nvp) 632 { 633 int error; 634 nvpair_t *elem = NULL; 635 boolean_t need_sync = B_FALSE; 636 637 if ((error = spa_prop_validate(spa, nvp)) != 0) 638 return (error); 639 640 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 641 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 642 643 if (prop == ZPOOL_PROP_CACHEFILE || 644 prop == ZPOOL_PROP_ALTROOT || 645 prop == ZPOOL_PROP_READONLY) 646 continue; 647 648 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 649 uint64_t ver; 650 651 if (prop == ZPOOL_PROP_VERSION) { 652 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 653 } else { 654 ASSERT(zpool_prop_feature(nvpair_name(elem))); 655 ver = SPA_VERSION_FEATURES; 656 need_sync = B_TRUE; 657 } 658 659 /* Save time if the version is already set. */ 660 if (ver == spa_version(spa)) 661 continue; 662 663 /* 664 * In addition to the pool directory object, we might 665 * create the pool properties object, the features for 666 * read object, the features for write object, or the 667 * feature descriptions object. 668 */ 669 error = dsl_sync_task(spa->spa_name, NULL, 670 spa_sync_version, &ver, 6); 671 if (error) 672 return (error); 673 continue; 674 } 675 676 need_sync = B_TRUE; 677 break; 678 } 679 680 if (need_sync) { 681 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 682 nvp, 6)); 683 } 684 685 return (0); 686 } 687 688 /* 689 * If the bootfs property value is dsobj, clear it. 690 */ 691 void 692 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 693 { 694 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 695 VERIFY(zap_remove(spa->spa_meta_objset, 696 spa->spa_pool_props_object, 697 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 698 spa->spa_bootfs = 0; 699 } 700 } 701 702 /*ARGSUSED*/ 703 static int 704 spa_change_guid_check(void *arg, dmu_tx_t *tx) 705 { 706 uint64_t *newguid = arg; 707 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 708 vdev_t *rvd = spa->spa_root_vdev; 709 uint64_t vdev_state; 710 711 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 712 vdev_state = rvd->vdev_state; 713 spa_config_exit(spa, SCL_STATE, FTAG); 714 715 if (vdev_state != VDEV_STATE_HEALTHY) 716 return (SET_ERROR(ENXIO)); 717 718 ASSERT3U(spa_guid(spa), !=, *newguid); 719 720 return (0); 721 } 722 723 static void 724 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 725 { 726 uint64_t *newguid = arg; 727 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 728 uint64_t oldguid; 729 vdev_t *rvd = spa->spa_root_vdev; 730 731 oldguid = spa_guid(spa); 732 733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 734 rvd->vdev_guid = *newguid; 735 rvd->vdev_guid_sum += (*newguid - oldguid); 736 vdev_config_dirty(rvd); 737 spa_config_exit(spa, SCL_STATE, FTAG); 738 739 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 740 oldguid, *newguid); 741 } 742 743 /* 744 * Change the GUID for the pool. This is done so that we can later 745 * re-import a pool built from a clone of our own vdevs. We will modify 746 * the root vdev's guid, our own pool guid, and then mark all of our 747 * vdevs dirty. Note that we must make sure that all our vdevs are 748 * online when we do this, or else any vdevs that weren't present 749 * would be orphaned from our pool. We are also going to issue a 750 * sysevent to update any watchers. 751 */ 752 int 753 spa_change_guid(spa_t *spa) 754 { 755 int error; 756 uint64_t guid; 757 758 mutex_enter(&spa->spa_vdev_top_lock); 759 mutex_enter(&spa_namespace_lock); 760 guid = spa_generate_guid(NULL); 761 762 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 763 spa_change_guid_sync, &guid, 5); 764 765 if (error == 0) { 766 spa_config_sync(spa, B_FALSE, B_TRUE); 767 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 768 } 769 770 mutex_exit(&spa_namespace_lock); 771 mutex_exit(&spa->spa_vdev_top_lock); 772 773 return (error); 774 } 775 776 /* 777 * ========================================================================== 778 * SPA state manipulation (open/create/destroy/import/export) 779 * ========================================================================== 780 */ 781 782 static int 783 spa_error_entry_compare(const void *a, const void *b) 784 { 785 spa_error_entry_t *sa = (spa_error_entry_t *)a; 786 spa_error_entry_t *sb = (spa_error_entry_t *)b; 787 int ret; 788 789 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 790 sizeof (zbookmark_t)); 791 792 if (ret < 0) 793 return (-1); 794 else if (ret > 0) 795 return (1); 796 else 797 return (0); 798 } 799 800 /* 801 * Utility function which retrieves copies of the current logs and 802 * re-initializes them in the process. 803 */ 804 void 805 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 806 { 807 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 808 809 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 810 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 811 812 avl_create(&spa->spa_errlist_scrub, 813 spa_error_entry_compare, sizeof (spa_error_entry_t), 814 offsetof(spa_error_entry_t, se_avl)); 815 avl_create(&spa->spa_errlist_last, 816 spa_error_entry_compare, sizeof (spa_error_entry_t), 817 offsetof(spa_error_entry_t, se_avl)); 818 } 819 820 static void 821 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 822 { 823 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 824 enum zti_modes mode = ztip->zti_mode; 825 uint_t value = ztip->zti_value; 826 uint_t count = ztip->zti_count; 827 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 828 char name[32]; 829 uint_t flags = 0; 830 boolean_t batch = B_FALSE; 831 832 if (mode == ZTI_MODE_NULL) { 833 tqs->stqs_count = 0; 834 tqs->stqs_taskq = NULL; 835 return; 836 } 837 838 ASSERT3U(count, >, 0); 839 840 tqs->stqs_count = count; 841 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 842 843 switch (mode) { 844 case ZTI_MODE_FIXED: 845 ASSERT3U(value, >=, 1); 846 value = MAX(value, 1); 847 break; 848 849 case ZTI_MODE_BATCH: 850 batch = B_TRUE; 851 flags |= TASKQ_THREADS_CPU_PCT; 852 value = zio_taskq_batch_pct; 853 break; 854 855 default: 856 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 857 "spa_activate()", 858 zio_type_name[t], zio_taskq_types[q], mode, value); 859 break; 860 } 861 862 for (uint_t i = 0; i < count; i++) { 863 taskq_t *tq; 864 865 if (count > 1) { 866 (void) snprintf(name, sizeof (name), "%s_%s_%u", 867 zio_type_name[t], zio_taskq_types[q], i); 868 } else { 869 (void) snprintf(name, sizeof (name), "%s_%s", 870 zio_type_name[t], zio_taskq_types[q]); 871 } 872 873 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 874 if (batch) 875 flags |= TASKQ_DC_BATCH; 876 877 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 878 spa->spa_proc, zio_taskq_basedc, flags); 879 } else { 880 pri_t pri = maxclsyspri; 881 /* 882 * The write issue taskq can be extremely CPU 883 * intensive. Run it at slightly lower priority 884 * than the other taskqs. 885 */ 886 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 887 pri--; 888 889 tq = taskq_create_proc(name, value, pri, 50, 890 INT_MAX, spa->spa_proc, flags); 891 } 892 893 tqs->stqs_taskq[i] = tq; 894 } 895 } 896 897 static void 898 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 899 { 900 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 901 902 if (tqs->stqs_taskq == NULL) { 903 ASSERT0(tqs->stqs_count); 904 return; 905 } 906 907 for (uint_t i = 0; i < tqs->stqs_count; i++) { 908 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 909 taskq_destroy(tqs->stqs_taskq[i]); 910 } 911 912 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 913 tqs->stqs_taskq = NULL; 914 } 915 916 /* 917 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 918 * Note that a type may have multiple discrete taskqs to avoid lock contention 919 * on the taskq itself. In that case we choose which taskq at random by using 920 * the low bits of gethrtime(). 921 */ 922 void 923 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 924 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 925 { 926 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 927 taskq_t *tq; 928 929 ASSERT3P(tqs->stqs_taskq, !=, NULL); 930 ASSERT3U(tqs->stqs_count, !=, 0); 931 932 if (tqs->stqs_count == 1) { 933 tq = tqs->stqs_taskq[0]; 934 } else { 935 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 936 } 937 938 taskq_dispatch_ent(tq, func, arg, flags, ent); 939 } 940 941 static void 942 spa_create_zio_taskqs(spa_t *spa) 943 { 944 for (int t = 0; t < ZIO_TYPES; t++) { 945 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 946 spa_taskqs_init(spa, t, q); 947 } 948 } 949 } 950 951 #ifdef _KERNEL 952 static void 953 spa_thread(void *arg) 954 { 955 callb_cpr_t cprinfo; 956 957 spa_t *spa = arg; 958 user_t *pu = PTOU(curproc); 959 960 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 961 spa->spa_name); 962 963 ASSERT(curproc != &p0); 964 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 965 "zpool-%s", spa->spa_name); 966 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 967 968 /* bind this thread to the requested psrset */ 969 if (zio_taskq_psrset_bind != PS_NONE) { 970 pool_lock(); 971 mutex_enter(&cpu_lock); 972 mutex_enter(&pidlock); 973 mutex_enter(&curproc->p_lock); 974 975 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 976 0, NULL, NULL) == 0) { 977 curthread->t_bind_pset = zio_taskq_psrset_bind; 978 } else { 979 cmn_err(CE_WARN, 980 "Couldn't bind process for zfs pool \"%s\" to " 981 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 982 } 983 984 mutex_exit(&curproc->p_lock); 985 mutex_exit(&pidlock); 986 mutex_exit(&cpu_lock); 987 pool_unlock(); 988 } 989 990 if (zio_taskq_sysdc) { 991 sysdc_thread_enter(curthread, 100, 0); 992 } 993 994 spa->spa_proc = curproc; 995 spa->spa_did = curthread->t_did; 996 997 spa_create_zio_taskqs(spa); 998 999 mutex_enter(&spa->spa_proc_lock); 1000 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1001 1002 spa->spa_proc_state = SPA_PROC_ACTIVE; 1003 cv_broadcast(&spa->spa_proc_cv); 1004 1005 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1006 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1007 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1008 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1009 1010 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1011 spa->spa_proc_state = SPA_PROC_GONE; 1012 spa->spa_proc = &p0; 1013 cv_broadcast(&spa->spa_proc_cv); 1014 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1015 1016 mutex_enter(&curproc->p_lock); 1017 lwp_exit(); 1018 } 1019 #endif 1020 1021 /* 1022 * Activate an uninitialized pool. 1023 */ 1024 static void 1025 spa_activate(spa_t *spa, int mode) 1026 { 1027 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1028 1029 spa->spa_state = POOL_STATE_ACTIVE; 1030 spa->spa_mode = mode; 1031 1032 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1033 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1034 1035 /* Try to create a covering process */ 1036 mutex_enter(&spa->spa_proc_lock); 1037 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1038 ASSERT(spa->spa_proc == &p0); 1039 spa->spa_did = 0; 1040 1041 /* Only create a process if we're going to be around a while. */ 1042 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1043 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1044 NULL, 0) == 0) { 1045 spa->spa_proc_state = SPA_PROC_CREATED; 1046 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1047 cv_wait(&spa->spa_proc_cv, 1048 &spa->spa_proc_lock); 1049 } 1050 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1051 ASSERT(spa->spa_proc != &p0); 1052 ASSERT(spa->spa_did != 0); 1053 } else { 1054 #ifdef _KERNEL 1055 cmn_err(CE_WARN, 1056 "Couldn't create process for zfs pool \"%s\"\n", 1057 spa->spa_name); 1058 #endif 1059 } 1060 } 1061 mutex_exit(&spa->spa_proc_lock); 1062 1063 /* If we didn't create a process, we need to create our taskqs. */ 1064 if (spa->spa_proc == &p0) { 1065 spa_create_zio_taskqs(spa); 1066 } 1067 1068 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1069 offsetof(vdev_t, vdev_config_dirty_node)); 1070 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1071 offsetof(vdev_t, vdev_state_dirty_node)); 1072 1073 txg_list_create(&spa->spa_vdev_txg_list, 1074 offsetof(struct vdev, vdev_txg_node)); 1075 1076 avl_create(&spa->spa_errlist_scrub, 1077 spa_error_entry_compare, sizeof (spa_error_entry_t), 1078 offsetof(spa_error_entry_t, se_avl)); 1079 avl_create(&spa->spa_errlist_last, 1080 spa_error_entry_compare, sizeof (spa_error_entry_t), 1081 offsetof(spa_error_entry_t, se_avl)); 1082 } 1083 1084 /* 1085 * Opposite of spa_activate(). 1086 */ 1087 static void 1088 spa_deactivate(spa_t *spa) 1089 { 1090 ASSERT(spa->spa_sync_on == B_FALSE); 1091 ASSERT(spa->spa_dsl_pool == NULL); 1092 ASSERT(spa->spa_root_vdev == NULL); 1093 ASSERT(spa->spa_async_zio_root == NULL); 1094 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1095 1096 txg_list_destroy(&spa->spa_vdev_txg_list); 1097 1098 list_destroy(&spa->spa_config_dirty_list); 1099 list_destroy(&spa->spa_state_dirty_list); 1100 1101 for (int t = 0; t < ZIO_TYPES; t++) { 1102 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1103 spa_taskqs_fini(spa, t, q); 1104 } 1105 } 1106 1107 metaslab_class_destroy(spa->spa_normal_class); 1108 spa->spa_normal_class = NULL; 1109 1110 metaslab_class_destroy(spa->spa_log_class); 1111 spa->spa_log_class = NULL; 1112 1113 /* 1114 * If this was part of an import or the open otherwise failed, we may 1115 * still have errors left in the queues. Empty them just in case. 1116 */ 1117 spa_errlog_drain(spa); 1118 1119 avl_destroy(&spa->spa_errlist_scrub); 1120 avl_destroy(&spa->spa_errlist_last); 1121 1122 spa->spa_state = POOL_STATE_UNINITIALIZED; 1123 1124 mutex_enter(&spa->spa_proc_lock); 1125 if (spa->spa_proc_state != SPA_PROC_NONE) { 1126 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1127 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1128 cv_broadcast(&spa->spa_proc_cv); 1129 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1130 ASSERT(spa->spa_proc != &p0); 1131 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1132 } 1133 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1134 spa->spa_proc_state = SPA_PROC_NONE; 1135 } 1136 ASSERT(spa->spa_proc == &p0); 1137 mutex_exit(&spa->spa_proc_lock); 1138 1139 /* 1140 * We want to make sure spa_thread() has actually exited the ZFS 1141 * module, so that the module can't be unloaded out from underneath 1142 * it. 1143 */ 1144 if (spa->spa_did != 0) { 1145 thread_join(spa->spa_did); 1146 spa->spa_did = 0; 1147 } 1148 } 1149 1150 /* 1151 * Verify a pool configuration, and construct the vdev tree appropriately. This 1152 * will create all the necessary vdevs in the appropriate layout, with each vdev 1153 * in the CLOSED state. This will prep the pool before open/creation/import. 1154 * All vdev validation is done by the vdev_alloc() routine. 1155 */ 1156 static int 1157 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1158 uint_t id, int atype) 1159 { 1160 nvlist_t **child; 1161 uint_t children; 1162 int error; 1163 1164 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1165 return (error); 1166 1167 if ((*vdp)->vdev_ops->vdev_op_leaf) 1168 return (0); 1169 1170 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1171 &child, &children); 1172 1173 if (error == ENOENT) 1174 return (0); 1175 1176 if (error) { 1177 vdev_free(*vdp); 1178 *vdp = NULL; 1179 return (SET_ERROR(EINVAL)); 1180 } 1181 1182 for (int c = 0; c < children; c++) { 1183 vdev_t *vd; 1184 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1185 atype)) != 0) { 1186 vdev_free(*vdp); 1187 *vdp = NULL; 1188 return (error); 1189 } 1190 } 1191 1192 ASSERT(*vdp != NULL); 1193 1194 return (0); 1195 } 1196 1197 /* 1198 * Opposite of spa_load(). 1199 */ 1200 static void 1201 spa_unload(spa_t *spa) 1202 { 1203 int i; 1204 1205 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1206 1207 /* 1208 * Stop async tasks. 1209 */ 1210 spa_async_suspend(spa); 1211 1212 /* 1213 * Stop syncing. 1214 */ 1215 if (spa->spa_sync_on) { 1216 txg_sync_stop(spa->spa_dsl_pool); 1217 spa->spa_sync_on = B_FALSE; 1218 } 1219 1220 /* 1221 * Wait for any outstanding async I/O to complete. 1222 */ 1223 if (spa->spa_async_zio_root != NULL) { 1224 (void) zio_wait(spa->spa_async_zio_root); 1225 spa->spa_async_zio_root = NULL; 1226 } 1227 1228 bpobj_close(&spa->spa_deferred_bpobj); 1229 1230 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1231 1232 /* 1233 * Close all vdevs. 1234 */ 1235 if (spa->spa_root_vdev) 1236 vdev_free(spa->spa_root_vdev); 1237 ASSERT(spa->spa_root_vdev == NULL); 1238 1239 /* 1240 * Close the dsl pool. 1241 */ 1242 if (spa->spa_dsl_pool) { 1243 dsl_pool_close(spa->spa_dsl_pool); 1244 spa->spa_dsl_pool = NULL; 1245 spa->spa_meta_objset = NULL; 1246 } 1247 1248 ddt_unload(spa); 1249 1250 1251 /* 1252 * Drop and purge level 2 cache 1253 */ 1254 spa_l2cache_drop(spa); 1255 1256 for (i = 0; i < spa->spa_spares.sav_count; i++) 1257 vdev_free(spa->spa_spares.sav_vdevs[i]); 1258 if (spa->spa_spares.sav_vdevs) { 1259 kmem_free(spa->spa_spares.sav_vdevs, 1260 spa->spa_spares.sav_count * sizeof (void *)); 1261 spa->spa_spares.sav_vdevs = NULL; 1262 } 1263 if (spa->spa_spares.sav_config) { 1264 nvlist_free(spa->spa_spares.sav_config); 1265 spa->spa_spares.sav_config = NULL; 1266 } 1267 spa->spa_spares.sav_count = 0; 1268 1269 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1270 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1271 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1272 } 1273 if (spa->spa_l2cache.sav_vdevs) { 1274 kmem_free(spa->spa_l2cache.sav_vdevs, 1275 spa->spa_l2cache.sav_count * sizeof (void *)); 1276 spa->spa_l2cache.sav_vdevs = NULL; 1277 } 1278 if (spa->spa_l2cache.sav_config) { 1279 nvlist_free(spa->spa_l2cache.sav_config); 1280 spa->spa_l2cache.sav_config = NULL; 1281 } 1282 spa->spa_l2cache.sav_count = 0; 1283 1284 spa->spa_async_suspended = 0; 1285 1286 if (spa->spa_comment != NULL) { 1287 spa_strfree(spa->spa_comment); 1288 spa->spa_comment = NULL; 1289 } 1290 1291 spa_config_exit(spa, SCL_ALL, FTAG); 1292 } 1293 1294 /* 1295 * Load (or re-load) the current list of vdevs describing the active spares for 1296 * this pool. When this is called, we have some form of basic information in 1297 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1298 * then re-generate a more complete list including status information. 1299 */ 1300 static void 1301 spa_load_spares(spa_t *spa) 1302 { 1303 nvlist_t **spares; 1304 uint_t nspares; 1305 int i; 1306 vdev_t *vd, *tvd; 1307 1308 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1309 1310 /* 1311 * First, close and free any existing spare vdevs. 1312 */ 1313 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1314 vd = spa->spa_spares.sav_vdevs[i]; 1315 1316 /* Undo the call to spa_activate() below */ 1317 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1318 B_FALSE)) != NULL && tvd->vdev_isspare) 1319 spa_spare_remove(tvd); 1320 vdev_close(vd); 1321 vdev_free(vd); 1322 } 1323 1324 if (spa->spa_spares.sav_vdevs) 1325 kmem_free(spa->spa_spares.sav_vdevs, 1326 spa->spa_spares.sav_count * sizeof (void *)); 1327 1328 if (spa->spa_spares.sav_config == NULL) 1329 nspares = 0; 1330 else 1331 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1332 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1333 1334 spa->spa_spares.sav_count = (int)nspares; 1335 spa->spa_spares.sav_vdevs = NULL; 1336 1337 if (nspares == 0) 1338 return; 1339 1340 /* 1341 * Construct the array of vdevs, opening them to get status in the 1342 * process. For each spare, there is potentially two different vdev_t 1343 * structures associated with it: one in the list of spares (used only 1344 * for basic validation purposes) and one in the active vdev 1345 * configuration (if it's spared in). During this phase we open and 1346 * validate each vdev on the spare list. If the vdev also exists in the 1347 * active configuration, then we also mark this vdev as an active spare. 1348 */ 1349 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1350 KM_SLEEP); 1351 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1352 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1353 VDEV_ALLOC_SPARE) == 0); 1354 ASSERT(vd != NULL); 1355 1356 spa->spa_spares.sav_vdevs[i] = vd; 1357 1358 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1359 B_FALSE)) != NULL) { 1360 if (!tvd->vdev_isspare) 1361 spa_spare_add(tvd); 1362 1363 /* 1364 * We only mark the spare active if we were successfully 1365 * able to load the vdev. Otherwise, importing a pool 1366 * with a bad active spare would result in strange 1367 * behavior, because multiple pool would think the spare 1368 * is actively in use. 1369 * 1370 * There is a vulnerability here to an equally bizarre 1371 * circumstance, where a dead active spare is later 1372 * brought back to life (onlined or otherwise). Given 1373 * the rarity of this scenario, and the extra complexity 1374 * it adds, we ignore the possibility. 1375 */ 1376 if (!vdev_is_dead(tvd)) 1377 spa_spare_activate(tvd); 1378 } 1379 1380 vd->vdev_top = vd; 1381 vd->vdev_aux = &spa->spa_spares; 1382 1383 if (vdev_open(vd) != 0) 1384 continue; 1385 1386 if (vdev_validate_aux(vd) == 0) 1387 spa_spare_add(vd); 1388 } 1389 1390 /* 1391 * Recompute the stashed list of spares, with status information 1392 * this time. 1393 */ 1394 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1395 DATA_TYPE_NVLIST_ARRAY) == 0); 1396 1397 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1398 KM_SLEEP); 1399 for (i = 0; i < spa->spa_spares.sav_count; i++) 1400 spares[i] = vdev_config_generate(spa, 1401 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1402 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1403 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1404 for (i = 0; i < spa->spa_spares.sav_count; i++) 1405 nvlist_free(spares[i]); 1406 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1407 } 1408 1409 /* 1410 * Load (or re-load) the current list of vdevs describing the active l2cache for 1411 * this pool. When this is called, we have some form of basic information in 1412 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1413 * then re-generate a more complete list including status information. 1414 * Devices which are already active have their details maintained, and are 1415 * not re-opened. 1416 */ 1417 static void 1418 spa_load_l2cache(spa_t *spa) 1419 { 1420 nvlist_t **l2cache; 1421 uint_t nl2cache; 1422 int i, j, oldnvdevs; 1423 uint64_t guid; 1424 vdev_t *vd, **oldvdevs, **newvdevs; 1425 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1426 1427 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1428 1429 if (sav->sav_config != NULL) { 1430 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1431 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1432 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1433 } else { 1434 nl2cache = 0; 1435 newvdevs = NULL; 1436 } 1437 1438 oldvdevs = sav->sav_vdevs; 1439 oldnvdevs = sav->sav_count; 1440 sav->sav_vdevs = NULL; 1441 sav->sav_count = 0; 1442 1443 /* 1444 * Process new nvlist of vdevs. 1445 */ 1446 for (i = 0; i < nl2cache; i++) { 1447 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1448 &guid) == 0); 1449 1450 newvdevs[i] = NULL; 1451 for (j = 0; j < oldnvdevs; j++) { 1452 vd = oldvdevs[j]; 1453 if (vd != NULL && guid == vd->vdev_guid) { 1454 /* 1455 * Retain previous vdev for add/remove ops. 1456 */ 1457 newvdevs[i] = vd; 1458 oldvdevs[j] = NULL; 1459 break; 1460 } 1461 } 1462 1463 if (newvdevs[i] == NULL) { 1464 /* 1465 * Create new vdev 1466 */ 1467 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1468 VDEV_ALLOC_L2CACHE) == 0); 1469 ASSERT(vd != NULL); 1470 newvdevs[i] = vd; 1471 1472 /* 1473 * Commit this vdev as an l2cache device, 1474 * even if it fails to open. 1475 */ 1476 spa_l2cache_add(vd); 1477 1478 vd->vdev_top = vd; 1479 vd->vdev_aux = sav; 1480 1481 spa_l2cache_activate(vd); 1482 1483 if (vdev_open(vd) != 0) 1484 continue; 1485 1486 (void) vdev_validate_aux(vd); 1487 1488 if (!vdev_is_dead(vd)) { 1489 boolean_t do_rebuild = B_FALSE; 1490 1491 (void) nvlist_lookup_boolean_value(l2cache[i], 1492 ZPOOL_CONFIG_L2CACHE_PERSISTENT, 1493 &do_rebuild); 1494 l2arc_add_vdev(spa, vd, do_rebuild); 1495 } 1496 } 1497 } 1498 1499 /* 1500 * Purge vdevs that were dropped 1501 */ 1502 for (i = 0; i < oldnvdevs; i++) { 1503 uint64_t pool; 1504 1505 vd = oldvdevs[i]; 1506 if (vd != NULL) { 1507 ASSERT(vd->vdev_isl2cache); 1508 1509 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1510 pool != 0ULL && l2arc_vdev_present(vd)) 1511 l2arc_remove_vdev(vd); 1512 vdev_clear_stats(vd); 1513 vdev_free(vd); 1514 } 1515 } 1516 1517 if (oldvdevs) 1518 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1519 1520 if (sav->sav_config == NULL) 1521 goto out; 1522 1523 sav->sav_vdevs = newvdevs; 1524 sav->sav_count = (int)nl2cache; 1525 1526 /* 1527 * Recompute the stashed list of l2cache devices, with status 1528 * information this time. 1529 */ 1530 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1531 DATA_TYPE_NVLIST_ARRAY) == 0); 1532 1533 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1534 for (i = 0; i < sav->sav_count; i++) 1535 l2cache[i] = vdev_config_generate(spa, 1536 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1537 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1538 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1539 out: 1540 for (i = 0; i < sav->sav_count; i++) 1541 nvlist_free(l2cache[i]); 1542 if (sav->sav_count) 1543 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1544 } 1545 1546 static int 1547 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1548 { 1549 dmu_buf_t *db; 1550 char *packed = NULL; 1551 size_t nvsize = 0; 1552 int error; 1553 *value = NULL; 1554 1555 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1556 nvsize = *(uint64_t *)db->db_data; 1557 dmu_buf_rele(db, FTAG); 1558 1559 packed = kmem_alloc(nvsize, KM_SLEEP); 1560 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1561 DMU_READ_PREFETCH); 1562 if (error == 0) 1563 error = nvlist_unpack(packed, nvsize, value, 0); 1564 kmem_free(packed, nvsize); 1565 1566 return (error); 1567 } 1568 1569 /* 1570 * Checks to see if the given vdev could not be opened, in which case we post a 1571 * sysevent to notify the autoreplace code that the device has been removed. 1572 */ 1573 static void 1574 spa_check_removed(vdev_t *vd) 1575 { 1576 for (int c = 0; c < vd->vdev_children; c++) 1577 spa_check_removed(vd->vdev_child[c]); 1578 1579 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1580 !vd->vdev_ishole) { 1581 zfs_post_autoreplace(vd->vdev_spa, vd); 1582 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1583 } 1584 } 1585 1586 /* 1587 * Validate the current config against the MOS config 1588 */ 1589 static boolean_t 1590 spa_config_valid(spa_t *spa, nvlist_t *config) 1591 { 1592 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1593 nvlist_t *nv; 1594 1595 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1596 1597 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1598 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1599 1600 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1601 1602 /* 1603 * If we're doing a normal import, then build up any additional 1604 * diagnostic information about missing devices in this config. 1605 * We'll pass this up to the user for further processing. 1606 */ 1607 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1608 nvlist_t **child, *nv; 1609 uint64_t idx = 0; 1610 1611 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1612 KM_SLEEP); 1613 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1614 1615 for (int c = 0; c < rvd->vdev_children; c++) { 1616 vdev_t *tvd = rvd->vdev_child[c]; 1617 vdev_t *mtvd = mrvd->vdev_child[c]; 1618 1619 if (tvd->vdev_ops == &vdev_missing_ops && 1620 mtvd->vdev_ops != &vdev_missing_ops && 1621 mtvd->vdev_islog) 1622 child[idx++] = vdev_config_generate(spa, mtvd, 1623 B_FALSE, 0); 1624 } 1625 1626 if (idx) { 1627 VERIFY(nvlist_add_nvlist_array(nv, 1628 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1629 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1630 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1631 1632 for (int i = 0; i < idx; i++) 1633 nvlist_free(child[i]); 1634 } 1635 nvlist_free(nv); 1636 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1637 } 1638 1639 /* 1640 * Compare the root vdev tree with the information we have 1641 * from the MOS config (mrvd). Check each top-level vdev 1642 * with the corresponding MOS config top-level (mtvd). 1643 */ 1644 for (int c = 0; c < rvd->vdev_children; c++) { 1645 vdev_t *tvd = rvd->vdev_child[c]; 1646 vdev_t *mtvd = mrvd->vdev_child[c]; 1647 1648 /* 1649 * Resolve any "missing" vdevs in the current configuration. 1650 * If we find that the MOS config has more accurate information 1651 * about the top-level vdev then use that vdev instead. 1652 */ 1653 if (tvd->vdev_ops == &vdev_missing_ops && 1654 mtvd->vdev_ops != &vdev_missing_ops) { 1655 1656 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1657 continue; 1658 1659 /* 1660 * Device specific actions. 1661 */ 1662 if (mtvd->vdev_islog) { 1663 spa_set_log_state(spa, SPA_LOG_CLEAR); 1664 } else { 1665 /* 1666 * XXX - once we have 'readonly' pool 1667 * support we should be able to handle 1668 * missing data devices by transitioning 1669 * the pool to readonly. 1670 */ 1671 continue; 1672 } 1673 1674 /* 1675 * Swap the missing vdev with the data we were 1676 * able to obtain from the MOS config. 1677 */ 1678 vdev_remove_child(rvd, tvd); 1679 vdev_remove_child(mrvd, mtvd); 1680 1681 vdev_add_child(rvd, mtvd); 1682 vdev_add_child(mrvd, tvd); 1683 1684 spa_config_exit(spa, SCL_ALL, FTAG); 1685 vdev_load(mtvd); 1686 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1687 1688 vdev_reopen(rvd); 1689 } else if (mtvd->vdev_islog) { 1690 /* 1691 * Load the slog device's state from the MOS config 1692 * since it's possible that the label does not 1693 * contain the most up-to-date information. 1694 */ 1695 vdev_load_log_state(tvd, mtvd); 1696 vdev_reopen(tvd); 1697 } 1698 } 1699 vdev_free(mrvd); 1700 spa_config_exit(spa, SCL_ALL, FTAG); 1701 1702 /* 1703 * Ensure we were able to validate the config. 1704 */ 1705 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1706 } 1707 1708 /* 1709 * Check for missing log devices 1710 */ 1711 static boolean_t 1712 spa_check_logs(spa_t *spa) 1713 { 1714 boolean_t rv = B_FALSE; 1715 1716 switch (spa->spa_log_state) { 1717 case SPA_LOG_MISSING: 1718 /* need to recheck in case slog has been restored */ 1719 case SPA_LOG_UNKNOWN: 1720 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain, 1721 NULL, DS_FIND_CHILDREN) != 0); 1722 if (rv) 1723 spa_set_log_state(spa, SPA_LOG_MISSING); 1724 break; 1725 } 1726 return (rv); 1727 } 1728 1729 static boolean_t 1730 spa_passivate_log(spa_t *spa) 1731 { 1732 vdev_t *rvd = spa->spa_root_vdev; 1733 boolean_t slog_found = B_FALSE; 1734 1735 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1736 1737 if (!spa_has_slogs(spa)) 1738 return (B_FALSE); 1739 1740 for (int c = 0; c < rvd->vdev_children; c++) { 1741 vdev_t *tvd = rvd->vdev_child[c]; 1742 metaslab_group_t *mg = tvd->vdev_mg; 1743 1744 if (tvd->vdev_islog) { 1745 metaslab_group_passivate(mg); 1746 slog_found = B_TRUE; 1747 } 1748 } 1749 1750 return (slog_found); 1751 } 1752 1753 static void 1754 spa_activate_log(spa_t *spa) 1755 { 1756 vdev_t *rvd = spa->spa_root_vdev; 1757 1758 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1759 1760 for (int c = 0; c < rvd->vdev_children; c++) { 1761 vdev_t *tvd = rvd->vdev_child[c]; 1762 metaslab_group_t *mg = tvd->vdev_mg; 1763 1764 if (tvd->vdev_islog) 1765 metaslab_group_activate(mg); 1766 } 1767 } 1768 1769 int 1770 spa_offline_log(spa_t *spa) 1771 { 1772 int error; 1773 1774 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1775 NULL, DS_FIND_CHILDREN); 1776 if (error == 0) { 1777 /* 1778 * We successfully offlined the log device, sync out the 1779 * current txg so that the "stubby" block can be removed 1780 * by zil_sync(). 1781 */ 1782 txg_wait_synced(spa->spa_dsl_pool, 0); 1783 } 1784 return (error); 1785 } 1786 1787 static void 1788 spa_aux_check_removed(spa_aux_vdev_t *sav) 1789 { 1790 for (int i = 0; i < sav->sav_count; i++) 1791 spa_check_removed(sav->sav_vdevs[i]); 1792 } 1793 1794 void 1795 spa_claim_notify(zio_t *zio) 1796 { 1797 spa_t *spa = zio->io_spa; 1798 1799 if (zio->io_error) 1800 return; 1801 1802 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1803 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1804 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1805 mutex_exit(&spa->spa_props_lock); 1806 } 1807 1808 typedef struct spa_load_error { 1809 uint64_t sle_meta_count; 1810 uint64_t sle_data_count; 1811 } spa_load_error_t; 1812 1813 static void 1814 spa_load_verify_done(zio_t *zio) 1815 { 1816 blkptr_t *bp = zio->io_bp; 1817 spa_load_error_t *sle = zio->io_private; 1818 dmu_object_type_t type = BP_GET_TYPE(bp); 1819 int error = zio->io_error; 1820 1821 if (error) { 1822 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1823 type != DMU_OT_INTENT_LOG) 1824 atomic_add_64(&sle->sle_meta_count, 1); 1825 else 1826 atomic_add_64(&sle->sle_data_count, 1); 1827 } 1828 zio_data_buf_free(zio->io_data, zio->io_size); 1829 } 1830 1831 /*ARGSUSED*/ 1832 static int 1833 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1834 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1835 { 1836 if (bp != NULL) { 1837 zio_t *rio = arg; 1838 size_t size = BP_GET_PSIZE(bp); 1839 void *data = zio_data_buf_alloc(size); 1840 1841 zio_nowait(zio_read(rio, spa, bp, data, size, 1842 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1843 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1844 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1845 } 1846 return (0); 1847 } 1848 1849 static int 1850 spa_load_verify(spa_t *spa) 1851 { 1852 zio_t *rio; 1853 spa_load_error_t sle = { 0 }; 1854 zpool_rewind_policy_t policy; 1855 boolean_t verify_ok = B_FALSE; 1856 int error; 1857 1858 zpool_get_rewind_policy(spa->spa_config, &policy); 1859 1860 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1861 return (0); 1862 1863 rio = zio_root(spa, NULL, &sle, 1864 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1865 1866 error = traverse_pool(spa, spa->spa_verify_min_txg, 1867 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1868 1869 (void) zio_wait(rio); 1870 1871 spa->spa_load_meta_errors = sle.sle_meta_count; 1872 spa->spa_load_data_errors = sle.sle_data_count; 1873 1874 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1875 sle.sle_data_count <= policy.zrp_maxdata) { 1876 int64_t loss = 0; 1877 1878 verify_ok = B_TRUE; 1879 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1880 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1881 1882 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1883 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1884 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1885 VERIFY(nvlist_add_int64(spa->spa_load_info, 1886 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1887 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1888 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1889 } else { 1890 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1891 } 1892 1893 if (error) { 1894 if (error != ENXIO && error != EIO) 1895 error = SET_ERROR(EIO); 1896 return (error); 1897 } 1898 1899 return (verify_ok ? 0 : EIO); 1900 } 1901 1902 /* 1903 * Find a value in the pool props object. 1904 */ 1905 static void 1906 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1907 { 1908 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1909 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1910 } 1911 1912 /* 1913 * Find a value in the pool directory object. 1914 */ 1915 static int 1916 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1917 { 1918 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1919 name, sizeof (uint64_t), 1, val)); 1920 } 1921 1922 static int 1923 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1924 { 1925 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1926 return (err); 1927 } 1928 1929 /* 1930 * Fix up config after a partly-completed split. This is done with the 1931 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1932 * pool have that entry in their config, but only the splitting one contains 1933 * a list of all the guids of the vdevs that are being split off. 1934 * 1935 * This function determines what to do with that list: either rejoin 1936 * all the disks to the pool, or complete the splitting process. To attempt 1937 * the rejoin, each disk that is offlined is marked online again, and 1938 * we do a reopen() call. If the vdev label for every disk that was 1939 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1940 * then we call vdev_split() on each disk, and complete the split. 1941 * 1942 * Otherwise we leave the config alone, with all the vdevs in place in 1943 * the original pool. 1944 */ 1945 static void 1946 spa_try_repair(spa_t *spa, nvlist_t *config) 1947 { 1948 uint_t extracted; 1949 uint64_t *glist; 1950 uint_t i, gcount; 1951 nvlist_t *nvl; 1952 vdev_t **vd; 1953 boolean_t attempt_reopen; 1954 1955 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1956 return; 1957 1958 /* check that the config is complete */ 1959 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1960 &glist, &gcount) != 0) 1961 return; 1962 1963 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1964 1965 /* attempt to online all the vdevs & validate */ 1966 attempt_reopen = B_TRUE; 1967 for (i = 0; i < gcount; i++) { 1968 if (glist[i] == 0) /* vdev is hole */ 1969 continue; 1970 1971 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1972 if (vd[i] == NULL) { 1973 /* 1974 * Don't bother attempting to reopen the disks; 1975 * just do the split. 1976 */ 1977 attempt_reopen = B_FALSE; 1978 } else { 1979 /* attempt to re-online it */ 1980 vd[i]->vdev_offline = B_FALSE; 1981 } 1982 } 1983 1984 if (attempt_reopen) { 1985 vdev_reopen(spa->spa_root_vdev); 1986 1987 /* check each device to see what state it's in */ 1988 for (extracted = 0, i = 0; i < gcount; i++) { 1989 if (vd[i] != NULL && 1990 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1991 break; 1992 ++extracted; 1993 } 1994 } 1995 1996 /* 1997 * If every disk has been moved to the new pool, or if we never 1998 * even attempted to look at them, then we split them off for 1999 * good. 2000 */ 2001 if (!attempt_reopen || gcount == extracted) { 2002 for (i = 0; i < gcount; i++) 2003 if (vd[i] != NULL) 2004 vdev_split(vd[i]); 2005 vdev_reopen(spa->spa_root_vdev); 2006 } 2007 2008 kmem_free(vd, gcount * sizeof (vdev_t *)); 2009 } 2010 2011 static int 2012 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2013 boolean_t mosconfig) 2014 { 2015 nvlist_t *config = spa->spa_config; 2016 char *ereport = FM_EREPORT_ZFS_POOL; 2017 char *comment; 2018 int error; 2019 uint64_t pool_guid; 2020 nvlist_t *nvl; 2021 2022 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2023 return (SET_ERROR(EINVAL)); 2024 2025 ASSERT(spa->spa_comment == NULL); 2026 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2027 spa->spa_comment = spa_strdup(comment); 2028 2029 /* 2030 * Versioning wasn't explicitly added to the label until later, so if 2031 * it's not present treat it as the initial version. 2032 */ 2033 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2034 &spa->spa_ubsync.ub_version) != 0) 2035 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2036 2037 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2038 &spa->spa_config_txg); 2039 2040 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2041 spa_guid_exists(pool_guid, 0)) { 2042 error = SET_ERROR(EEXIST); 2043 } else { 2044 spa->spa_config_guid = pool_guid; 2045 2046 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2047 &nvl) == 0) { 2048 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2049 KM_SLEEP) == 0); 2050 } 2051 2052 nvlist_free(spa->spa_load_info); 2053 spa->spa_load_info = fnvlist_alloc(); 2054 2055 gethrestime(&spa->spa_loaded_ts); 2056 error = spa_load_impl(spa, pool_guid, config, state, type, 2057 mosconfig, &ereport); 2058 } 2059 2060 spa->spa_minref = refcount_count(&spa->spa_refcount); 2061 if (error) { 2062 if (error != EEXIST) { 2063 spa->spa_loaded_ts.tv_sec = 0; 2064 spa->spa_loaded_ts.tv_nsec = 0; 2065 } 2066 if (error != EBADF) { 2067 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2068 } 2069 } 2070 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2071 spa->spa_ena = 0; 2072 2073 return (error); 2074 } 2075 2076 /* 2077 * Load an existing storage pool, using the pool's builtin spa_config as a 2078 * source of configuration information. 2079 */ 2080 static int 2081 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2082 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2083 char **ereport) 2084 { 2085 int error = 0; 2086 nvlist_t *nvroot = NULL; 2087 nvlist_t *label; 2088 vdev_t *rvd; 2089 uberblock_t *ub = &spa->spa_uberblock; 2090 uint64_t children, config_cache_txg = spa->spa_config_txg; 2091 int orig_mode = spa->spa_mode; 2092 int parse; 2093 uint64_t obj; 2094 boolean_t missing_feat_write = B_FALSE; 2095 2096 /* 2097 * If this is an untrusted config, access the pool in read-only mode. 2098 * This prevents things like resilvering recently removed devices. 2099 */ 2100 if (!mosconfig) 2101 spa->spa_mode = FREAD; 2102 2103 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2104 2105 spa->spa_load_state = state; 2106 2107 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2108 return (SET_ERROR(EINVAL)); 2109 2110 parse = (type == SPA_IMPORT_EXISTING ? 2111 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2112 2113 /* 2114 * Create "The Godfather" zio to hold all async IOs 2115 */ 2116 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2117 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2118 2119 /* 2120 * Parse the configuration into a vdev tree. We explicitly set the 2121 * value that will be returned by spa_version() since parsing the 2122 * configuration requires knowing the version number. 2123 */ 2124 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2125 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2126 spa_config_exit(spa, SCL_ALL, FTAG); 2127 2128 if (error != 0) 2129 return (error); 2130 2131 ASSERT(spa->spa_root_vdev == rvd); 2132 2133 if (type != SPA_IMPORT_ASSEMBLE) { 2134 ASSERT(spa_guid(spa) == pool_guid); 2135 } 2136 2137 /* 2138 * Try to open all vdevs, loading each label in the process. 2139 */ 2140 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2141 error = vdev_open(rvd); 2142 spa_config_exit(spa, SCL_ALL, FTAG); 2143 if (error != 0) 2144 return (error); 2145 2146 /* 2147 * We need to validate the vdev labels against the configuration that 2148 * we have in hand, which is dependent on the setting of mosconfig. If 2149 * mosconfig is true then we're validating the vdev labels based on 2150 * that config. Otherwise, we're validating against the cached config 2151 * (zpool.cache) that was read when we loaded the zfs module, and then 2152 * later we will recursively call spa_load() and validate against 2153 * the vdev config. 2154 * 2155 * If we're assembling a new pool that's been split off from an 2156 * existing pool, the labels haven't yet been updated so we skip 2157 * validation for now. 2158 */ 2159 if (type != SPA_IMPORT_ASSEMBLE) { 2160 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2161 error = vdev_validate(rvd, mosconfig); 2162 spa_config_exit(spa, SCL_ALL, FTAG); 2163 2164 if (error != 0) 2165 return (error); 2166 2167 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2168 return (SET_ERROR(ENXIO)); 2169 } 2170 2171 /* 2172 * Find the best uberblock. 2173 */ 2174 vdev_uberblock_load(rvd, ub, &label); 2175 2176 /* 2177 * If we weren't able to find a single valid uberblock, return failure. 2178 */ 2179 if (ub->ub_txg == 0) { 2180 nvlist_free(label); 2181 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2182 } 2183 2184 /* 2185 * If the pool has an unsupported version we can't open it. 2186 */ 2187 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2188 nvlist_free(label); 2189 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2190 } 2191 2192 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2193 nvlist_t *features; 2194 2195 /* 2196 * If we weren't able to find what's necessary for reading the 2197 * MOS in the label, return failure. 2198 */ 2199 if (label == NULL || nvlist_lookup_nvlist(label, 2200 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2201 nvlist_free(label); 2202 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2203 ENXIO)); 2204 } 2205 2206 /* 2207 * Update our in-core representation with the definitive values 2208 * from the label. 2209 */ 2210 nvlist_free(spa->spa_label_features); 2211 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2212 } 2213 2214 nvlist_free(label); 2215 2216 /* 2217 * Look through entries in the label nvlist's features_for_read. If 2218 * there is a feature listed there which we don't understand then we 2219 * cannot open a pool. 2220 */ 2221 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2222 nvlist_t *unsup_feat; 2223 2224 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2225 0); 2226 2227 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2228 NULL); nvp != NULL; 2229 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2230 if (!zfeature_is_supported(nvpair_name(nvp))) { 2231 VERIFY(nvlist_add_string(unsup_feat, 2232 nvpair_name(nvp), "") == 0); 2233 } 2234 } 2235 2236 if (!nvlist_empty(unsup_feat)) { 2237 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2238 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2239 nvlist_free(unsup_feat); 2240 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2241 ENOTSUP)); 2242 } 2243 2244 nvlist_free(unsup_feat); 2245 } 2246 2247 /* 2248 * If the vdev guid sum doesn't match the uberblock, we have an 2249 * incomplete configuration. We first check to see if the pool 2250 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2251 * If it is, defer the vdev_guid_sum check till later so we 2252 * can handle missing vdevs. 2253 */ 2254 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2255 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2256 rvd->vdev_guid_sum != ub->ub_guid_sum) 2257 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2258 2259 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2260 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2261 spa_try_repair(spa, config); 2262 spa_config_exit(spa, SCL_ALL, FTAG); 2263 nvlist_free(spa->spa_config_splitting); 2264 spa->spa_config_splitting = NULL; 2265 } 2266 2267 /* 2268 * Initialize internal SPA structures. 2269 */ 2270 spa->spa_state = POOL_STATE_ACTIVE; 2271 spa->spa_ubsync = spa->spa_uberblock; 2272 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2273 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2274 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2275 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2276 spa->spa_claim_max_txg = spa->spa_first_txg; 2277 spa->spa_prev_software_version = ub->ub_software_version; 2278 2279 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2280 if (error) 2281 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2282 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2283 2284 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2285 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2286 2287 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2288 boolean_t missing_feat_read = B_FALSE; 2289 nvlist_t *unsup_feat, *enabled_feat; 2290 2291 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2292 &spa->spa_feat_for_read_obj) != 0) { 2293 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2294 } 2295 2296 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2297 &spa->spa_feat_for_write_obj) != 0) { 2298 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2299 } 2300 2301 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2302 &spa->spa_feat_desc_obj) != 0) { 2303 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2304 } 2305 2306 enabled_feat = fnvlist_alloc(); 2307 unsup_feat = fnvlist_alloc(); 2308 2309 if (!spa_features_check(spa, B_FALSE, 2310 unsup_feat, enabled_feat)) 2311 missing_feat_read = B_TRUE; 2312 2313 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2314 if (!spa_features_check(spa, B_TRUE, 2315 unsup_feat, enabled_feat)) { 2316 missing_feat_write = B_TRUE; 2317 } 2318 } 2319 2320 fnvlist_add_nvlist(spa->spa_load_info, 2321 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2322 2323 if (!nvlist_empty(unsup_feat)) { 2324 fnvlist_add_nvlist(spa->spa_load_info, 2325 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2326 } 2327 2328 fnvlist_free(enabled_feat); 2329 fnvlist_free(unsup_feat); 2330 2331 if (!missing_feat_read) { 2332 fnvlist_add_boolean(spa->spa_load_info, 2333 ZPOOL_CONFIG_CAN_RDONLY); 2334 } 2335 2336 /* 2337 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2338 * twofold: to determine whether the pool is available for 2339 * import in read-write mode and (if it is not) whether the 2340 * pool is available for import in read-only mode. If the pool 2341 * is available for import in read-write mode, it is displayed 2342 * as available in userland; if it is not available for import 2343 * in read-only mode, it is displayed as unavailable in 2344 * userland. If the pool is available for import in read-only 2345 * mode but not read-write mode, it is displayed as unavailable 2346 * in userland with a special note that the pool is actually 2347 * available for open in read-only mode. 2348 * 2349 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2350 * missing a feature for write, we must first determine whether 2351 * the pool can be opened read-only before returning to 2352 * userland in order to know whether to display the 2353 * abovementioned note. 2354 */ 2355 if (missing_feat_read || (missing_feat_write && 2356 spa_writeable(spa))) { 2357 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2358 ENOTSUP)); 2359 } 2360 } 2361 2362 spa->spa_is_initializing = B_TRUE; 2363 error = dsl_pool_open(spa->spa_dsl_pool); 2364 spa->spa_is_initializing = B_FALSE; 2365 if (error != 0) 2366 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2367 2368 if (!mosconfig) { 2369 uint64_t hostid; 2370 nvlist_t *policy = NULL, *nvconfig; 2371 2372 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2373 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2374 2375 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2376 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2377 char *hostname; 2378 unsigned long myhostid = 0; 2379 2380 VERIFY(nvlist_lookup_string(nvconfig, 2381 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2382 2383 #ifdef _KERNEL 2384 myhostid = zone_get_hostid(NULL); 2385 #else /* _KERNEL */ 2386 /* 2387 * We're emulating the system's hostid in userland, so 2388 * we can't use zone_get_hostid(). 2389 */ 2390 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2391 #endif /* _KERNEL */ 2392 if (hostid != 0 && myhostid != 0 && 2393 hostid != myhostid) { 2394 nvlist_free(nvconfig); 2395 cmn_err(CE_WARN, "pool '%s' could not be " 2396 "loaded as it was last accessed by " 2397 "another system (host: %s hostid: 0x%lx). " 2398 "See: http://illumos.org/msg/ZFS-8000-EY", 2399 spa_name(spa), hostname, 2400 (unsigned long)hostid); 2401 return (SET_ERROR(EBADF)); 2402 } 2403 } 2404 if (nvlist_lookup_nvlist(spa->spa_config, 2405 ZPOOL_REWIND_POLICY, &policy) == 0) 2406 VERIFY(nvlist_add_nvlist(nvconfig, 2407 ZPOOL_REWIND_POLICY, policy) == 0); 2408 2409 spa_config_set(spa, nvconfig); 2410 spa_unload(spa); 2411 spa_deactivate(spa); 2412 spa_activate(spa, orig_mode); 2413 2414 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2415 } 2416 2417 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2418 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2419 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2420 if (error != 0) 2421 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2422 2423 /* 2424 * Load the bit that tells us to use the new accounting function 2425 * (raid-z deflation). If we have an older pool, this will not 2426 * be present. 2427 */ 2428 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2429 if (error != 0 && error != ENOENT) 2430 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2431 2432 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2433 &spa->spa_creation_version); 2434 if (error != 0 && error != ENOENT) 2435 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2436 2437 /* 2438 * Load the persistent error log. If we have an older pool, this will 2439 * not be present. 2440 */ 2441 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2442 if (error != 0 && error != ENOENT) 2443 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2444 2445 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2446 &spa->spa_errlog_scrub); 2447 if (error != 0 && error != ENOENT) 2448 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2449 2450 /* 2451 * Load the history object. If we have an older pool, this 2452 * will not be present. 2453 */ 2454 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2455 if (error != 0 && error != ENOENT) 2456 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2457 2458 /* 2459 * If we're assembling the pool from the split-off vdevs of 2460 * an existing pool, we don't want to attach the spares & cache 2461 * devices. 2462 */ 2463 2464 /* 2465 * Load any hot spares for this pool. 2466 */ 2467 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2468 if (error != 0 && error != ENOENT) 2469 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2470 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2471 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2472 if (load_nvlist(spa, spa->spa_spares.sav_object, 2473 &spa->spa_spares.sav_config) != 0) 2474 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2475 2476 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2477 spa_load_spares(spa); 2478 spa_config_exit(spa, SCL_ALL, FTAG); 2479 } else if (error == 0) { 2480 spa->spa_spares.sav_sync = B_TRUE; 2481 } 2482 2483 /* 2484 * Load any level 2 ARC devices for this pool. 2485 */ 2486 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2487 &spa->spa_l2cache.sav_object); 2488 if (error != 0 && error != ENOENT) 2489 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2490 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2491 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2492 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2493 &spa->spa_l2cache.sav_config) != 0) 2494 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2495 2496 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2497 spa_load_l2cache(spa); 2498 spa_config_exit(spa, SCL_ALL, FTAG); 2499 } else if (error == 0) { 2500 spa->spa_l2cache.sav_sync = B_TRUE; 2501 } 2502 2503 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2504 2505 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2506 if (error && error != ENOENT) 2507 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2508 2509 if (error == 0) { 2510 uint64_t autoreplace; 2511 2512 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2513 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2514 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2515 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2516 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2517 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2518 &spa->spa_dedup_ditto); 2519 2520 spa->spa_autoreplace = (autoreplace != 0); 2521 } 2522 2523 /* 2524 * If the 'autoreplace' property is set, then post a resource notifying 2525 * the ZFS DE that it should not issue any faults for unopenable 2526 * devices. We also iterate over the vdevs, and post a sysevent for any 2527 * unopenable vdevs so that the normal autoreplace handler can take 2528 * over. 2529 */ 2530 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2531 spa_check_removed(spa->spa_root_vdev); 2532 /* 2533 * For the import case, this is done in spa_import(), because 2534 * at this point we're using the spare definitions from 2535 * the MOS config, not necessarily from the userland config. 2536 */ 2537 if (state != SPA_LOAD_IMPORT) { 2538 spa_aux_check_removed(&spa->spa_spares); 2539 spa_aux_check_removed(&spa->spa_l2cache); 2540 } 2541 } 2542 2543 /* 2544 * Load the vdev state for all toplevel vdevs. 2545 */ 2546 vdev_load(rvd); 2547 2548 /* 2549 * Propagate the leaf DTLs we just loaded all the way up the tree. 2550 */ 2551 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2552 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2553 spa_config_exit(spa, SCL_ALL, FTAG); 2554 2555 /* 2556 * Load the DDTs (dedup tables). 2557 */ 2558 error = ddt_load(spa); 2559 if (error != 0) 2560 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2561 2562 spa_update_dspace(spa); 2563 2564 /* 2565 * Validate the config, using the MOS config to fill in any 2566 * information which might be missing. If we fail to validate 2567 * the config then declare the pool unfit for use. If we're 2568 * assembling a pool from a split, the log is not transferred 2569 * over. 2570 */ 2571 if (type != SPA_IMPORT_ASSEMBLE) { 2572 nvlist_t *nvconfig; 2573 2574 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2575 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2576 2577 if (!spa_config_valid(spa, nvconfig)) { 2578 nvlist_free(nvconfig); 2579 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2580 ENXIO)); 2581 } 2582 nvlist_free(nvconfig); 2583 2584 /* 2585 * Now that we've validated the config, check the state of the 2586 * root vdev. If it can't be opened, it indicates one or 2587 * more toplevel vdevs are faulted. 2588 */ 2589 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2590 return (SET_ERROR(ENXIO)); 2591 2592 if (spa_check_logs(spa)) { 2593 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2594 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2595 } 2596 } 2597 2598 if (missing_feat_write) { 2599 ASSERT(state == SPA_LOAD_TRYIMPORT); 2600 2601 /* 2602 * At this point, we know that we can open the pool in 2603 * read-only mode but not read-write mode. We now have enough 2604 * information and can return to userland. 2605 */ 2606 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2607 } 2608 2609 /* 2610 * We've successfully opened the pool, verify that we're ready 2611 * to start pushing transactions. 2612 */ 2613 if (state != SPA_LOAD_TRYIMPORT) { 2614 if (error = spa_load_verify(spa)) 2615 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2616 error)); 2617 } 2618 2619 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2620 spa->spa_load_max_txg == UINT64_MAX)) { 2621 dmu_tx_t *tx; 2622 int need_update = B_FALSE; 2623 2624 ASSERT(state != SPA_LOAD_TRYIMPORT); 2625 2626 /* 2627 * Claim log blocks that haven't been committed yet. 2628 * This must all happen in a single txg. 2629 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2630 * invoked from zil_claim_log_block()'s i/o done callback. 2631 * Price of rollback is that we abandon the log. 2632 */ 2633 spa->spa_claiming = B_TRUE; 2634 2635 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2636 spa_first_txg(spa)); 2637 (void) dmu_objset_find(spa_name(spa), 2638 zil_claim, tx, DS_FIND_CHILDREN); 2639 dmu_tx_commit(tx); 2640 2641 spa->spa_claiming = B_FALSE; 2642 2643 spa_set_log_state(spa, SPA_LOG_GOOD); 2644 spa->spa_sync_on = B_TRUE; 2645 txg_sync_start(spa->spa_dsl_pool); 2646 2647 /* 2648 * Wait for all claims to sync. We sync up to the highest 2649 * claimed log block birth time so that claimed log blocks 2650 * don't appear to be from the future. spa_claim_max_txg 2651 * will have been set for us by either zil_check_log_chain() 2652 * (invoked from spa_check_logs()) or zil_claim() above. 2653 */ 2654 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2655 2656 /* 2657 * If the config cache is stale, or we have uninitialized 2658 * metaslabs (see spa_vdev_add()), then update the config. 2659 * 2660 * If this is a verbatim import, trust the current 2661 * in-core spa_config and update the disk labels. 2662 */ 2663 if (config_cache_txg != spa->spa_config_txg || 2664 state == SPA_LOAD_IMPORT || 2665 state == SPA_LOAD_RECOVER || 2666 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2667 need_update = B_TRUE; 2668 2669 for (int c = 0; c < rvd->vdev_children; c++) 2670 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2671 need_update = B_TRUE; 2672 2673 /* 2674 * Update the config cache asychronously in case we're the 2675 * root pool, in which case the config cache isn't writable yet. 2676 */ 2677 if (need_update) 2678 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2679 2680 /* 2681 * Check all DTLs to see if anything needs resilvering. 2682 */ 2683 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2684 vdev_resilver_needed(rvd, NULL, NULL)) 2685 spa_async_request(spa, SPA_ASYNC_RESILVER); 2686 2687 /* 2688 * Log the fact that we booted up (so that we can detect if 2689 * we rebooted in the middle of an operation). 2690 */ 2691 spa_history_log_version(spa, "open"); 2692 2693 /* 2694 * Delete any inconsistent datasets. 2695 */ 2696 (void) dmu_objset_find(spa_name(spa), 2697 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2698 2699 /* 2700 * Clean up any stale temporary dataset userrefs. 2701 */ 2702 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2703 } 2704 2705 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2706 2707 return (0); 2708 } 2709 2710 static int 2711 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2712 { 2713 int mode = spa->spa_mode; 2714 2715 spa_unload(spa); 2716 spa_deactivate(spa); 2717 2718 spa->spa_load_max_txg--; 2719 2720 spa_activate(spa, mode); 2721 spa_async_suspend(spa); 2722 2723 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2724 } 2725 2726 /* 2727 * If spa_load() fails this function will try loading prior txg's. If 2728 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2729 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2730 * function will not rewind the pool and will return the same error as 2731 * spa_load(). 2732 */ 2733 static int 2734 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2735 uint64_t max_request, int rewind_flags) 2736 { 2737 nvlist_t *loadinfo = NULL; 2738 nvlist_t *config = NULL; 2739 int load_error, rewind_error; 2740 uint64_t safe_rewind_txg; 2741 uint64_t min_txg; 2742 2743 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2744 spa->spa_load_max_txg = spa->spa_load_txg; 2745 spa_set_log_state(spa, SPA_LOG_CLEAR); 2746 } else { 2747 spa->spa_load_max_txg = max_request; 2748 } 2749 2750 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2751 mosconfig); 2752 if (load_error == 0) 2753 return (0); 2754 2755 if (spa->spa_root_vdev != NULL) 2756 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2757 2758 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2759 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2760 2761 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2762 nvlist_free(config); 2763 return (load_error); 2764 } 2765 2766 if (state == SPA_LOAD_RECOVER) { 2767 /* Price of rolling back is discarding txgs, including log */ 2768 spa_set_log_state(spa, SPA_LOG_CLEAR); 2769 } else { 2770 /* 2771 * If we aren't rolling back save the load info from our first 2772 * import attempt so that we can restore it after attempting 2773 * to rewind. 2774 */ 2775 loadinfo = spa->spa_load_info; 2776 spa->spa_load_info = fnvlist_alloc(); 2777 } 2778 2779 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2780 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2781 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2782 TXG_INITIAL : safe_rewind_txg; 2783 2784 /* 2785 * Continue as long as we're finding errors, we're still within 2786 * the acceptable rewind range, and we're still finding uberblocks 2787 */ 2788 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2789 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2790 if (spa->spa_load_max_txg < safe_rewind_txg) 2791 spa->spa_extreme_rewind = B_TRUE; 2792 rewind_error = spa_load_retry(spa, state, mosconfig); 2793 } 2794 2795 spa->spa_extreme_rewind = B_FALSE; 2796 spa->spa_load_max_txg = UINT64_MAX; 2797 2798 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2799 spa_config_set(spa, config); 2800 2801 if (state == SPA_LOAD_RECOVER) { 2802 ASSERT3P(loadinfo, ==, NULL); 2803 return (rewind_error); 2804 } else { 2805 /* Store the rewind info as part of the initial load info */ 2806 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2807 spa->spa_load_info); 2808 2809 /* Restore the initial load info */ 2810 fnvlist_free(spa->spa_load_info); 2811 spa->spa_load_info = loadinfo; 2812 2813 return (load_error); 2814 } 2815 } 2816 2817 /* 2818 * Pool Open/Import 2819 * 2820 * The import case is identical to an open except that the configuration is sent 2821 * down from userland, instead of grabbed from the configuration cache. For the 2822 * case of an open, the pool configuration will exist in the 2823 * POOL_STATE_UNINITIALIZED state. 2824 * 2825 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2826 * the same time open the pool, without having to keep around the spa_t in some 2827 * ambiguous state. 2828 */ 2829 static int 2830 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2831 nvlist_t **config) 2832 { 2833 spa_t *spa; 2834 spa_load_state_t state = SPA_LOAD_OPEN; 2835 int error; 2836 int locked = B_FALSE; 2837 2838 *spapp = NULL; 2839 2840 /* 2841 * As disgusting as this is, we need to support recursive calls to this 2842 * function because dsl_dir_open() is called during spa_load(), and ends 2843 * up calling spa_open() again. The real fix is to figure out how to 2844 * avoid dsl_dir_open() calling this in the first place. 2845 */ 2846 if (mutex_owner(&spa_namespace_lock) != curthread) { 2847 mutex_enter(&spa_namespace_lock); 2848 locked = B_TRUE; 2849 } 2850 2851 if ((spa = spa_lookup(pool)) == NULL) { 2852 if (locked) 2853 mutex_exit(&spa_namespace_lock); 2854 return (SET_ERROR(ENOENT)); 2855 } 2856 2857 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2858 zpool_rewind_policy_t policy; 2859 2860 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2861 &policy); 2862 if (policy.zrp_request & ZPOOL_DO_REWIND) 2863 state = SPA_LOAD_RECOVER; 2864 2865 spa_activate(spa, spa_mode_global); 2866 2867 if (state != SPA_LOAD_RECOVER) 2868 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2869 2870 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2871 policy.zrp_request); 2872 2873 if (error == EBADF) { 2874 /* 2875 * If vdev_validate() returns failure (indicated by 2876 * EBADF), it indicates that one of the vdevs indicates 2877 * that the pool has been exported or destroyed. If 2878 * this is the case, the config cache is out of sync and 2879 * we should remove the pool from the namespace. 2880 */ 2881 spa_unload(spa); 2882 spa_deactivate(spa); 2883 spa_config_sync(spa, B_TRUE, B_TRUE); 2884 spa_remove(spa); 2885 if (locked) 2886 mutex_exit(&spa_namespace_lock); 2887 return (SET_ERROR(ENOENT)); 2888 } 2889 2890 if (error) { 2891 /* 2892 * We can't open the pool, but we still have useful 2893 * information: the state of each vdev after the 2894 * attempted vdev_open(). Return this to the user. 2895 */ 2896 if (config != NULL && spa->spa_config) { 2897 VERIFY(nvlist_dup(spa->spa_config, config, 2898 KM_SLEEP) == 0); 2899 VERIFY(nvlist_add_nvlist(*config, 2900 ZPOOL_CONFIG_LOAD_INFO, 2901 spa->spa_load_info) == 0); 2902 } 2903 spa_unload(spa); 2904 spa_deactivate(spa); 2905 spa->spa_last_open_failed = error; 2906 if (locked) 2907 mutex_exit(&spa_namespace_lock); 2908 *spapp = NULL; 2909 return (error); 2910 } 2911 } 2912 2913 spa_open_ref(spa, tag); 2914 2915 if (config != NULL) 2916 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2917 2918 /* 2919 * If we've recovered the pool, pass back any information we 2920 * gathered while doing the load. 2921 */ 2922 if (state == SPA_LOAD_RECOVER) { 2923 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2924 spa->spa_load_info) == 0); 2925 } 2926 2927 if (locked) { 2928 spa->spa_last_open_failed = 0; 2929 spa->spa_last_ubsync_txg = 0; 2930 spa->spa_load_txg = 0; 2931 mutex_exit(&spa_namespace_lock); 2932 } 2933 2934 *spapp = spa; 2935 2936 return (0); 2937 } 2938 2939 int 2940 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2941 nvlist_t **config) 2942 { 2943 return (spa_open_common(name, spapp, tag, policy, config)); 2944 } 2945 2946 int 2947 spa_open(const char *name, spa_t **spapp, void *tag) 2948 { 2949 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2950 } 2951 2952 /* 2953 * Lookup the given spa_t, incrementing the inject count in the process, 2954 * preventing it from being exported or destroyed. 2955 */ 2956 spa_t * 2957 spa_inject_addref(char *name) 2958 { 2959 spa_t *spa; 2960 2961 mutex_enter(&spa_namespace_lock); 2962 if ((spa = spa_lookup(name)) == NULL) { 2963 mutex_exit(&spa_namespace_lock); 2964 return (NULL); 2965 } 2966 spa->spa_inject_ref++; 2967 mutex_exit(&spa_namespace_lock); 2968 2969 return (spa); 2970 } 2971 2972 void 2973 spa_inject_delref(spa_t *spa) 2974 { 2975 mutex_enter(&spa_namespace_lock); 2976 spa->spa_inject_ref--; 2977 mutex_exit(&spa_namespace_lock); 2978 } 2979 2980 /* 2981 * Add spares device information to the nvlist. 2982 */ 2983 static void 2984 spa_add_spares(spa_t *spa, nvlist_t *config) 2985 { 2986 nvlist_t **spares; 2987 uint_t i, nspares; 2988 nvlist_t *nvroot; 2989 uint64_t guid; 2990 vdev_stat_t *vs; 2991 uint_t vsc; 2992 uint64_t pool; 2993 2994 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2995 2996 if (spa->spa_spares.sav_count == 0) 2997 return; 2998 2999 VERIFY(nvlist_lookup_nvlist(config, 3000 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3001 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3002 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3003 if (nspares != 0) { 3004 VERIFY(nvlist_add_nvlist_array(nvroot, 3005 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3006 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3007 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3008 3009 /* 3010 * Go through and find any spares which have since been 3011 * repurposed as an active spare. If this is the case, update 3012 * their status appropriately. 3013 */ 3014 for (i = 0; i < nspares; i++) { 3015 VERIFY(nvlist_lookup_uint64(spares[i], 3016 ZPOOL_CONFIG_GUID, &guid) == 0); 3017 if (spa_spare_exists(guid, &pool, NULL) && 3018 pool != 0ULL) { 3019 VERIFY(nvlist_lookup_uint64_array( 3020 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3021 (uint64_t **)&vs, &vsc) == 0); 3022 vs->vs_state = VDEV_STATE_CANT_OPEN; 3023 vs->vs_aux = VDEV_AUX_SPARED; 3024 } 3025 } 3026 } 3027 } 3028 3029 /* 3030 * Add l2cache device information to the nvlist, including vdev stats. 3031 */ 3032 static void 3033 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3034 { 3035 nvlist_t **l2cache; 3036 uint_t i, j, nl2cache; 3037 nvlist_t *nvroot; 3038 uint64_t guid; 3039 vdev_t *vd; 3040 vdev_stat_t *vs; 3041 uint_t vsc; 3042 3043 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3044 3045 if (spa->spa_l2cache.sav_count == 0) 3046 return; 3047 3048 VERIFY(nvlist_lookup_nvlist(config, 3049 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3050 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3051 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3052 if (nl2cache != 0) { 3053 VERIFY(nvlist_add_nvlist_array(nvroot, 3054 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3055 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3056 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3057 3058 /* 3059 * Update level 2 cache device stats. 3060 */ 3061 3062 for (i = 0; i < nl2cache; i++) { 3063 VERIFY(nvlist_lookup_uint64(l2cache[i], 3064 ZPOOL_CONFIG_GUID, &guid) == 0); 3065 3066 vd = NULL; 3067 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3068 if (guid == 3069 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3070 vd = spa->spa_l2cache.sav_vdevs[j]; 3071 break; 3072 } 3073 } 3074 ASSERT(vd != NULL); 3075 3076 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3077 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3078 == 0); 3079 vdev_get_stats(vd, vs); 3080 } 3081 } 3082 } 3083 3084 static void 3085 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3086 { 3087 nvlist_t *features; 3088 zap_cursor_t zc; 3089 zap_attribute_t za; 3090 3091 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3092 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3093 3094 if (spa->spa_feat_for_read_obj != 0) { 3095 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3096 spa->spa_feat_for_read_obj); 3097 zap_cursor_retrieve(&zc, &za) == 0; 3098 zap_cursor_advance(&zc)) { 3099 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3100 za.za_num_integers == 1); 3101 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3102 za.za_first_integer)); 3103 } 3104 zap_cursor_fini(&zc); 3105 } 3106 3107 if (spa->spa_feat_for_write_obj != 0) { 3108 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3109 spa->spa_feat_for_write_obj); 3110 zap_cursor_retrieve(&zc, &za) == 0; 3111 zap_cursor_advance(&zc)) { 3112 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3113 za.za_num_integers == 1); 3114 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3115 za.za_first_integer)); 3116 } 3117 zap_cursor_fini(&zc); 3118 } 3119 3120 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3121 features) == 0); 3122 nvlist_free(features); 3123 } 3124 3125 int 3126 spa_get_stats(const char *name, nvlist_t **config, 3127 char *altroot, size_t buflen) 3128 { 3129 int error; 3130 spa_t *spa; 3131 3132 *config = NULL; 3133 error = spa_open_common(name, &spa, FTAG, NULL, config); 3134 3135 if (spa != NULL) { 3136 /* 3137 * This still leaves a window of inconsistency where the spares 3138 * or l2cache devices could change and the config would be 3139 * self-inconsistent. 3140 */ 3141 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3142 3143 if (*config != NULL) { 3144 uint64_t loadtimes[2]; 3145 3146 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3147 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3148 VERIFY(nvlist_add_uint64_array(*config, 3149 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3150 3151 VERIFY(nvlist_add_uint64(*config, 3152 ZPOOL_CONFIG_ERRCOUNT, 3153 spa_get_errlog_size(spa)) == 0); 3154 3155 if (spa_suspended(spa)) 3156 VERIFY(nvlist_add_uint64(*config, 3157 ZPOOL_CONFIG_SUSPENDED, 3158 spa->spa_failmode) == 0); 3159 3160 spa_add_spares(spa, *config); 3161 spa_add_l2cache(spa, *config); 3162 spa_add_feature_stats(spa, *config); 3163 } 3164 } 3165 3166 /* 3167 * We want to get the alternate root even for faulted pools, so we cheat 3168 * and call spa_lookup() directly. 3169 */ 3170 if (altroot) { 3171 if (spa == NULL) { 3172 mutex_enter(&spa_namespace_lock); 3173 spa = spa_lookup(name); 3174 if (spa) 3175 spa_altroot(spa, altroot, buflen); 3176 else 3177 altroot[0] = '\0'; 3178 spa = NULL; 3179 mutex_exit(&spa_namespace_lock); 3180 } else { 3181 spa_altroot(spa, altroot, buflen); 3182 } 3183 } 3184 3185 if (spa != NULL) { 3186 spa_config_exit(spa, SCL_CONFIG, FTAG); 3187 spa_close(spa, FTAG); 3188 } 3189 3190 return (error); 3191 } 3192 3193 /* 3194 * Validate that the auxiliary device array is well formed. We must have an 3195 * array of nvlists, each which describes a valid leaf vdev. If this is an 3196 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3197 * specified, as long as they are well-formed. 3198 */ 3199 static int 3200 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3201 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3202 vdev_labeltype_t label) 3203 { 3204 nvlist_t **dev; 3205 uint_t i, ndev; 3206 vdev_t *vd; 3207 int error; 3208 3209 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3210 3211 /* 3212 * It's acceptable to have no devs specified. 3213 */ 3214 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3215 return (0); 3216 3217 if (ndev == 0) 3218 return (SET_ERROR(EINVAL)); 3219 3220 /* 3221 * Make sure the pool is formatted with a version that supports this 3222 * device type. 3223 */ 3224 if (spa_version(spa) < version) 3225 return (SET_ERROR(ENOTSUP)); 3226 3227 /* 3228 * Set the pending device list so we correctly handle device in-use 3229 * checking. 3230 */ 3231 sav->sav_pending = dev; 3232 sav->sav_npending = ndev; 3233 3234 for (i = 0; i < ndev; i++) { 3235 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3236 mode)) != 0) 3237 goto out; 3238 3239 if (!vd->vdev_ops->vdev_op_leaf) { 3240 vdev_free(vd); 3241 error = SET_ERROR(EINVAL); 3242 goto out; 3243 } 3244 3245 /* 3246 * The L2ARC currently only supports disk devices in 3247 * kernel context. For user-level testing, we allow it. 3248 */ 3249 #ifdef _KERNEL 3250 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3251 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3252 error = SET_ERROR(ENOTBLK); 3253 vdev_free(vd); 3254 goto out; 3255 } 3256 #endif 3257 vd->vdev_top = vd; 3258 3259 if ((error = vdev_open(vd)) == 0 && 3260 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3261 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3262 vd->vdev_guid) == 0); 3263 } 3264 3265 vdev_free(vd); 3266 3267 if (error && 3268 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3269 goto out; 3270 else 3271 error = 0; 3272 } 3273 3274 out: 3275 sav->sav_pending = NULL; 3276 sav->sav_npending = 0; 3277 return (error); 3278 } 3279 3280 static int 3281 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3282 { 3283 int error; 3284 3285 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3286 3287 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3288 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3289 VDEV_LABEL_SPARE)) != 0) { 3290 return (error); 3291 } 3292 3293 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3294 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3295 VDEV_LABEL_L2CACHE)); 3296 } 3297 3298 static void 3299 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3300 const char *config) 3301 { 3302 int i; 3303 3304 if (sav->sav_config != NULL) { 3305 nvlist_t **olddevs; 3306 uint_t oldndevs; 3307 nvlist_t **newdevs; 3308 3309 /* 3310 * Generate new dev list by concatentating with the 3311 * current dev list. 3312 */ 3313 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3314 &olddevs, &oldndevs) == 0); 3315 3316 newdevs = kmem_alloc(sizeof (void *) * 3317 (ndevs + oldndevs), KM_SLEEP); 3318 for (i = 0; i < oldndevs; i++) 3319 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3320 KM_SLEEP) == 0); 3321 for (i = 0; i < ndevs; i++) 3322 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3323 KM_SLEEP) == 0); 3324 3325 VERIFY(nvlist_remove(sav->sav_config, config, 3326 DATA_TYPE_NVLIST_ARRAY) == 0); 3327 3328 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3329 config, newdevs, ndevs + oldndevs) == 0); 3330 for (i = 0; i < oldndevs + ndevs; i++) 3331 nvlist_free(newdevs[i]); 3332 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3333 } else { 3334 /* 3335 * Generate a new dev list. 3336 */ 3337 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3338 KM_SLEEP) == 0); 3339 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3340 devs, ndevs) == 0); 3341 } 3342 } 3343 3344 /* 3345 * Stop and drop level 2 ARC devices 3346 */ 3347 void 3348 spa_l2cache_drop(spa_t *spa) 3349 { 3350 vdev_t *vd; 3351 int i; 3352 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3353 3354 for (i = 0; i < sav->sav_count; i++) { 3355 uint64_t pool; 3356 3357 vd = sav->sav_vdevs[i]; 3358 ASSERT(vd != NULL); 3359 3360 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3361 pool != 0ULL && l2arc_vdev_present(vd)) 3362 l2arc_remove_vdev(vd); 3363 } 3364 } 3365 3366 /* 3367 * Pool Creation 3368 */ 3369 int 3370 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3371 nvlist_t *zplprops) 3372 { 3373 spa_t *spa; 3374 char *altroot = NULL; 3375 vdev_t *rvd; 3376 dsl_pool_t *dp; 3377 dmu_tx_t *tx; 3378 int error = 0; 3379 uint64_t txg = TXG_INITIAL; 3380 nvlist_t **spares, **l2cache; 3381 uint_t nspares, nl2cache; 3382 uint64_t version, obj; 3383 boolean_t has_features; 3384 3385 /* 3386 * If this pool already exists, return failure. 3387 */ 3388 mutex_enter(&spa_namespace_lock); 3389 if (spa_lookup(pool) != NULL) { 3390 mutex_exit(&spa_namespace_lock); 3391 return (SET_ERROR(EEXIST)); 3392 } 3393 3394 /* 3395 * Allocate a new spa_t structure. 3396 */ 3397 (void) nvlist_lookup_string(props, 3398 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3399 spa = spa_add(pool, NULL, altroot); 3400 spa_activate(spa, spa_mode_global); 3401 3402 if (props && (error = spa_prop_validate(spa, props))) { 3403 spa_deactivate(spa); 3404 spa_remove(spa); 3405 mutex_exit(&spa_namespace_lock); 3406 return (error); 3407 } 3408 3409 has_features = B_FALSE; 3410 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3411 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3412 if (zpool_prop_feature(nvpair_name(elem))) 3413 has_features = B_TRUE; 3414 } 3415 3416 if (has_features || nvlist_lookup_uint64(props, 3417 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3418 version = SPA_VERSION; 3419 } 3420 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3421 3422 spa->spa_first_txg = txg; 3423 spa->spa_uberblock.ub_txg = txg - 1; 3424 spa->spa_uberblock.ub_version = version; 3425 spa->spa_ubsync = spa->spa_uberblock; 3426 3427 /* 3428 * Create "The Godfather" zio to hold all async IOs 3429 */ 3430 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 3431 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 3432 3433 /* 3434 * Create the root vdev. 3435 */ 3436 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3437 3438 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3439 3440 ASSERT(error != 0 || rvd != NULL); 3441 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3442 3443 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3444 error = SET_ERROR(EINVAL); 3445 3446 if (error == 0 && 3447 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3448 (error = spa_validate_aux(spa, nvroot, txg, 3449 VDEV_ALLOC_ADD)) == 0) { 3450 for (int c = 0; c < rvd->vdev_children; c++) { 3451 vdev_metaslab_set_size(rvd->vdev_child[c]); 3452 vdev_expand(rvd->vdev_child[c], txg); 3453 } 3454 } 3455 3456 spa_config_exit(spa, SCL_ALL, FTAG); 3457 3458 if (error != 0) { 3459 spa_unload(spa); 3460 spa_deactivate(spa); 3461 spa_remove(spa); 3462 mutex_exit(&spa_namespace_lock); 3463 return (error); 3464 } 3465 3466 /* 3467 * Get the list of spares, if specified. 3468 */ 3469 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3470 &spares, &nspares) == 0) { 3471 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3472 KM_SLEEP) == 0); 3473 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3474 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3475 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3476 spa_load_spares(spa); 3477 spa_config_exit(spa, SCL_ALL, FTAG); 3478 spa->spa_spares.sav_sync = B_TRUE; 3479 } 3480 3481 /* 3482 * Get the list of level 2 cache devices, if specified. 3483 */ 3484 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3485 &l2cache, &nl2cache) == 0) { 3486 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3487 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3488 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3489 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3490 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3491 spa_load_l2cache(spa); 3492 spa_config_exit(spa, SCL_ALL, FTAG); 3493 spa->spa_l2cache.sav_sync = B_TRUE; 3494 } 3495 3496 spa->spa_is_initializing = B_TRUE; 3497 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3498 spa->spa_meta_objset = dp->dp_meta_objset; 3499 spa->spa_is_initializing = B_FALSE; 3500 3501 /* 3502 * Create DDTs (dedup tables). 3503 */ 3504 ddt_create(spa); 3505 3506 spa_update_dspace(spa); 3507 3508 tx = dmu_tx_create_assigned(dp, txg); 3509 3510 /* 3511 * Create the pool config object. 3512 */ 3513 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3514 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3515 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3516 3517 if (zap_add(spa->spa_meta_objset, 3518 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3519 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3520 cmn_err(CE_PANIC, "failed to add pool config"); 3521 } 3522 3523 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3524 spa_feature_create_zap_objects(spa, tx); 3525 3526 if (zap_add(spa->spa_meta_objset, 3527 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3528 sizeof (uint64_t), 1, &version, tx) != 0) { 3529 cmn_err(CE_PANIC, "failed to add pool version"); 3530 } 3531 3532 /* Newly created pools with the right version are always deflated. */ 3533 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3534 spa->spa_deflate = TRUE; 3535 if (zap_add(spa->spa_meta_objset, 3536 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3537 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3538 cmn_err(CE_PANIC, "failed to add deflate"); 3539 } 3540 } 3541 3542 /* 3543 * Create the deferred-free bpobj. Turn off compression 3544 * because sync-to-convergence takes longer if the blocksize 3545 * keeps changing. 3546 */ 3547 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3548 dmu_object_set_compress(spa->spa_meta_objset, obj, 3549 ZIO_COMPRESS_OFF, tx); 3550 if (zap_add(spa->spa_meta_objset, 3551 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3552 sizeof (uint64_t), 1, &obj, tx) != 0) { 3553 cmn_err(CE_PANIC, "failed to add bpobj"); 3554 } 3555 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3556 spa->spa_meta_objset, obj)); 3557 3558 /* 3559 * Create the pool's history object. 3560 */ 3561 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3562 spa_history_create_obj(spa, tx); 3563 3564 /* 3565 * Set pool properties. 3566 */ 3567 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3568 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3569 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3570 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3571 3572 if (props != NULL) { 3573 spa_configfile_set(spa, props, B_FALSE); 3574 spa_sync_props(props, tx); 3575 } 3576 3577 dmu_tx_commit(tx); 3578 3579 spa->spa_sync_on = B_TRUE; 3580 txg_sync_start(spa->spa_dsl_pool); 3581 3582 /* 3583 * We explicitly wait for the first transaction to complete so that our 3584 * bean counters are appropriately updated. 3585 */ 3586 txg_wait_synced(spa->spa_dsl_pool, txg); 3587 3588 spa_config_sync(spa, B_FALSE, B_TRUE); 3589 3590 spa_history_log_version(spa, "create"); 3591 3592 spa->spa_minref = refcount_count(&spa->spa_refcount); 3593 3594 mutex_exit(&spa_namespace_lock); 3595 3596 return (0); 3597 } 3598 3599 #ifdef _KERNEL 3600 /* 3601 * Get the root pool information from the root disk, then import the root pool 3602 * during the system boot up time. 3603 */ 3604 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3605 3606 static nvlist_t * 3607 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3608 { 3609 nvlist_t *config; 3610 nvlist_t *nvtop, *nvroot; 3611 uint64_t pgid; 3612 3613 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3614 return (NULL); 3615 3616 /* 3617 * Add this top-level vdev to the child array. 3618 */ 3619 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3620 &nvtop) == 0); 3621 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3622 &pgid) == 0); 3623 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3624 3625 /* 3626 * Put this pool's top-level vdevs into a root vdev. 3627 */ 3628 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3629 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3630 VDEV_TYPE_ROOT) == 0); 3631 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3632 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3633 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3634 &nvtop, 1) == 0); 3635 3636 /* 3637 * Replace the existing vdev_tree with the new root vdev in 3638 * this pool's configuration (remove the old, add the new). 3639 */ 3640 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3641 nvlist_free(nvroot); 3642 return (config); 3643 } 3644 3645 /* 3646 * Walk the vdev tree and see if we can find a device with "better" 3647 * configuration. A configuration is "better" if the label on that 3648 * device has a more recent txg. 3649 */ 3650 static void 3651 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3652 { 3653 for (int c = 0; c < vd->vdev_children; c++) 3654 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3655 3656 if (vd->vdev_ops->vdev_op_leaf) { 3657 nvlist_t *label; 3658 uint64_t label_txg; 3659 3660 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3661 &label) != 0) 3662 return; 3663 3664 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3665 &label_txg) == 0); 3666 3667 /* 3668 * Do we have a better boot device? 3669 */ 3670 if (label_txg > *txg) { 3671 *txg = label_txg; 3672 *avd = vd; 3673 } 3674 nvlist_free(label); 3675 } 3676 } 3677 3678 /* 3679 * Import a root pool. 3680 * 3681 * For x86. devpath_list will consist of devid and/or physpath name of 3682 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3683 * The GRUB "findroot" command will return the vdev we should boot. 3684 * 3685 * For Sparc, devpath_list consists the physpath name of the booting device 3686 * no matter the rootpool is a single device pool or a mirrored pool. 3687 * e.g. 3688 * "/pci@1f,0/ide@d/disk@0,0:a" 3689 */ 3690 int 3691 spa_import_rootpool(char *devpath, char *devid) 3692 { 3693 spa_t *spa; 3694 vdev_t *rvd, *bvd, *avd = NULL; 3695 nvlist_t *config, *nvtop; 3696 uint64_t guid, txg; 3697 char *pname; 3698 int error; 3699 3700 /* 3701 * Read the label from the boot device and generate a configuration. 3702 */ 3703 config = spa_generate_rootconf(devpath, devid, &guid); 3704 #if defined(_OBP) && defined(_KERNEL) 3705 if (config == NULL) { 3706 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3707 /* iscsi boot */ 3708 get_iscsi_bootpath_phy(devpath); 3709 config = spa_generate_rootconf(devpath, devid, &guid); 3710 } 3711 } 3712 #endif 3713 if (config == NULL) { 3714 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3715 devpath); 3716 return (SET_ERROR(EIO)); 3717 } 3718 3719 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3720 &pname) == 0); 3721 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3722 3723 mutex_enter(&spa_namespace_lock); 3724 if ((spa = spa_lookup(pname)) != NULL) { 3725 /* 3726 * Remove the existing root pool from the namespace so that we 3727 * can replace it with the correct config we just read in. 3728 */ 3729 spa_remove(spa); 3730 } 3731 3732 spa = spa_add(pname, config, NULL); 3733 spa->spa_is_root = B_TRUE; 3734 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3735 3736 /* 3737 * Build up a vdev tree based on the boot device's label config. 3738 */ 3739 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3740 &nvtop) == 0); 3741 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3742 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3743 VDEV_ALLOC_ROOTPOOL); 3744 spa_config_exit(spa, SCL_ALL, FTAG); 3745 if (error) { 3746 mutex_exit(&spa_namespace_lock); 3747 nvlist_free(config); 3748 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3749 pname); 3750 return (error); 3751 } 3752 3753 /* 3754 * Get the boot vdev. 3755 */ 3756 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3757 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3758 (u_longlong_t)guid); 3759 error = SET_ERROR(ENOENT); 3760 goto out; 3761 } 3762 3763 /* 3764 * Determine if there is a better boot device. 3765 */ 3766 avd = bvd; 3767 spa_alt_rootvdev(rvd, &avd, &txg); 3768 if (avd != bvd) { 3769 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3770 "try booting from '%s'", avd->vdev_path); 3771 error = SET_ERROR(EINVAL); 3772 goto out; 3773 } 3774 3775 /* 3776 * If the boot device is part of a spare vdev then ensure that 3777 * we're booting off the active spare. 3778 */ 3779 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3780 !bvd->vdev_isspare) { 3781 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3782 "try booting from '%s'", 3783 bvd->vdev_parent-> 3784 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3785 error = SET_ERROR(EINVAL); 3786 goto out; 3787 } 3788 3789 error = 0; 3790 out: 3791 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3792 vdev_free(rvd); 3793 spa_config_exit(spa, SCL_ALL, FTAG); 3794 mutex_exit(&spa_namespace_lock); 3795 3796 nvlist_free(config); 3797 return (error); 3798 } 3799 3800 #endif 3801 3802 /* 3803 * Import a non-root pool into the system. 3804 */ 3805 int 3806 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3807 { 3808 spa_t *spa; 3809 char *altroot = NULL; 3810 spa_load_state_t state = SPA_LOAD_IMPORT; 3811 zpool_rewind_policy_t policy; 3812 uint64_t mode = spa_mode_global; 3813 uint64_t readonly = B_FALSE; 3814 int error; 3815 nvlist_t *nvroot; 3816 nvlist_t **spares, **l2cache; 3817 uint_t nspares, nl2cache; 3818 3819 /* 3820 * If a pool with this name exists, return failure. 3821 */ 3822 mutex_enter(&spa_namespace_lock); 3823 if (spa_lookup(pool) != NULL) { 3824 mutex_exit(&spa_namespace_lock); 3825 return (SET_ERROR(EEXIST)); 3826 } 3827 3828 /* 3829 * Create and initialize the spa structure. 3830 */ 3831 (void) nvlist_lookup_string(props, 3832 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3833 (void) nvlist_lookup_uint64(props, 3834 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3835 if (readonly) 3836 mode = FREAD; 3837 spa = spa_add(pool, config, altroot); 3838 spa->spa_import_flags = flags; 3839 3840 /* 3841 * Verbatim import - Take a pool and insert it into the namespace 3842 * as if it had been loaded at boot. 3843 */ 3844 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3845 if (props != NULL) 3846 spa_configfile_set(spa, props, B_FALSE); 3847 3848 spa_config_sync(spa, B_FALSE, B_TRUE); 3849 3850 mutex_exit(&spa_namespace_lock); 3851 return (0); 3852 } 3853 3854 spa_activate(spa, mode); 3855 3856 /* 3857 * Don't start async tasks until we know everything is healthy. 3858 */ 3859 spa_async_suspend(spa); 3860 3861 zpool_get_rewind_policy(config, &policy); 3862 if (policy.zrp_request & ZPOOL_DO_REWIND) 3863 state = SPA_LOAD_RECOVER; 3864 3865 /* 3866 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3867 * because the user-supplied config is actually the one to trust when 3868 * doing an import. 3869 */ 3870 if (state != SPA_LOAD_RECOVER) 3871 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3872 3873 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3874 policy.zrp_request); 3875 3876 /* 3877 * Propagate anything learned while loading the pool and pass it 3878 * back to caller (i.e. rewind info, missing devices, etc). 3879 */ 3880 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3881 spa->spa_load_info) == 0); 3882 3883 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3884 /* 3885 * Toss any existing sparelist, as it doesn't have any validity 3886 * anymore, and conflicts with spa_has_spare(). 3887 */ 3888 if (spa->spa_spares.sav_config) { 3889 nvlist_free(spa->spa_spares.sav_config); 3890 spa->spa_spares.sav_config = NULL; 3891 spa_load_spares(spa); 3892 } 3893 if (spa->spa_l2cache.sav_config) { 3894 nvlist_free(spa->spa_l2cache.sav_config); 3895 spa->spa_l2cache.sav_config = NULL; 3896 spa_load_l2cache(spa); 3897 } 3898 3899 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3900 &nvroot) == 0); 3901 if (error == 0) 3902 error = spa_validate_aux(spa, nvroot, -1ULL, 3903 VDEV_ALLOC_SPARE); 3904 if (error == 0) 3905 error = spa_validate_aux(spa, nvroot, -1ULL, 3906 VDEV_ALLOC_L2CACHE); 3907 spa_config_exit(spa, SCL_ALL, FTAG); 3908 3909 if (props != NULL) 3910 spa_configfile_set(spa, props, B_FALSE); 3911 3912 if (error != 0 || (props && spa_writeable(spa) && 3913 (error = spa_prop_set(spa, props)))) { 3914 spa_unload(spa); 3915 spa_deactivate(spa); 3916 spa_remove(spa); 3917 mutex_exit(&spa_namespace_lock); 3918 return (error); 3919 } 3920 3921 spa_async_resume(spa); 3922 3923 /* 3924 * Override any spares and level 2 cache devices as specified by 3925 * the user, as these may have correct device names/devids, etc. 3926 */ 3927 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3928 &spares, &nspares) == 0) { 3929 if (spa->spa_spares.sav_config) 3930 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3931 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3932 else 3933 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3934 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3935 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3936 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3937 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3938 spa_load_spares(spa); 3939 spa_config_exit(spa, SCL_ALL, FTAG); 3940 spa->spa_spares.sav_sync = B_TRUE; 3941 } 3942 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3943 &l2cache, &nl2cache) == 0) { 3944 if (spa->spa_l2cache.sav_config) 3945 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3946 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3947 else 3948 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3949 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3950 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3951 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3952 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3953 spa_load_l2cache(spa); 3954 spa_config_exit(spa, SCL_ALL, FTAG); 3955 spa->spa_l2cache.sav_sync = B_TRUE; 3956 } 3957 3958 /* 3959 * Check for any removed devices. 3960 */ 3961 if (spa->spa_autoreplace) { 3962 spa_aux_check_removed(&spa->spa_spares); 3963 spa_aux_check_removed(&spa->spa_l2cache); 3964 } 3965 3966 if (spa_writeable(spa)) { 3967 /* 3968 * Update the config cache to include the newly-imported pool. 3969 */ 3970 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3971 } 3972 3973 /* 3974 * It's possible that the pool was expanded while it was exported. 3975 * We kick off an async task to handle this for us. 3976 */ 3977 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3978 3979 mutex_exit(&spa_namespace_lock); 3980 spa_history_log_version(spa, "import"); 3981 3982 return (0); 3983 } 3984 3985 nvlist_t * 3986 spa_tryimport(nvlist_t *tryconfig) 3987 { 3988 nvlist_t *config = NULL; 3989 char *poolname; 3990 spa_t *spa; 3991 uint64_t state; 3992 int error; 3993 3994 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3995 return (NULL); 3996 3997 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3998 return (NULL); 3999 4000 /* 4001 * Create and initialize the spa structure. 4002 */ 4003 mutex_enter(&spa_namespace_lock); 4004 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4005 spa_activate(spa, FREAD); 4006 4007 /* 4008 * Pass off the heavy lifting to spa_load(). 4009 * Pass TRUE for mosconfig because the user-supplied config 4010 * is actually the one to trust when doing an import. 4011 */ 4012 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4013 4014 /* 4015 * If 'tryconfig' was at least parsable, return the current config. 4016 */ 4017 if (spa->spa_root_vdev != NULL) { 4018 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4019 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4020 poolname) == 0); 4021 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4022 state) == 0); 4023 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4024 spa->spa_uberblock.ub_timestamp) == 0); 4025 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4026 spa->spa_load_info) == 0); 4027 4028 /* 4029 * If the bootfs property exists on this pool then we 4030 * copy it out so that external consumers can tell which 4031 * pools are bootable. 4032 */ 4033 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4034 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4035 4036 /* 4037 * We have to play games with the name since the 4038 * pool was opened as TRYIMPORT_NAME. 4039 */ 4040 if (dsl_dsobj_to_dsname(spa_name(spa), 4041 spa->spa_bootfs, tmpname) == 0) { 4042 char *cp; 4043 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4044 4045 cp = strchr(tmpname, '/'); 4046 if (cp == NULL) { 4047 (void) strlcpy(dsname, tmpname, 4048 MAXPATHLEN); 4049 } else { 4050 (void) snprintf(dsname, MAXPATHLEN, 4051 "%s/%s", poolname, ++cp); 4052 } 4053 VERIFY(nvlist_add_string(config, 4054 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4055 kmem_free(dsname, MAXPATHLEN); 4056 } 4057 kmem_free(tmpname, MAXPATHLEN); 4058 } 4059 4060 /* 4061 * Add the list of hot spares and level 2 cache devices. 4062 */ 4063 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4064 spa_add_spares(spa, config); 4065 spa_add_l2cache(spa, config); 4066 spa_config_exit(spa, SCL_CONFIG, FTAG); 4067 } 4068 4069 spa_unload(spa); 4070 spa_deactivate(spa); 4071 spa_remove(spa); 4072 mutex_exit(&spa_namespace_lock); 4073 4074 return (config); 4075 } 4076 4077 /* 4078 * Pool export/destroy 4079 * 4080 * The act of destroying or exporting a pool is very simple. We make sure there 4081 * is no more pending I/O and any references to the pool are gone. Then, we 4082 * update the pool state and sync all the labels to disk, removing the 4083 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4084 * we don't sync the labels or remove the configuration cache. 4085 */ 4086 static int 4087 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4088 boolean_t force, boolean_t hardforce) 4089 { 4090 spa_t *spa; 4091 4092 if (oldconfig) 4093 *oldconfig = NULL; 4094 4095 if (!(spa_mode_global & FWRITE)) 4096 return (SET_ERROR(EROFS)); 4097 4098 mutex_enter(&spa_namespace_lock); 4099 if ((spa = spa_lookup(pool)) == NULL) { 4100 mutex_exit(&spa_namespace_lock); 4101 return (SET_ERROR(ENOENT)); 4102 } 4103 4104 /* 4105 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4106 * reacquire the namespace lock, and see if we can export. 4107 */ 4108 spa_open_ref(spa, FTAG); 4109 mutex_exit(&spa_namespace_lock); 4110 spa_async_suspend(spa); 4111 mutex_enter(&spa_namespace_lock); 4112 spa_close(spa, FTAG); 4113 4114 /* 4115 * The pool will be in core if it's openable, 4116 * in which case we can modify its state. 4117 */ 4118 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4119 /* 4120 * Objsets may be open only because they're dirty, so we 4121 * have to force it to sync before checking spa_refcnt. 4122 */ 4123 txg_wait_synced(spa->spa_dsl_pool, 0); 4124 4125 /* 4126 * A pool cannot be exported or destroyed if there are active 4127 * references. If we are resetting a pool, allow references by 4128 * fault injection handlers. 4129 */ 4130 if (!spa_refcount_zero(spa) || 4131 (spa->spa_inject_ref != 0 && 4132 new_state != POOL_STATE_UNINITIALIZED)) { 4133 spa_async_resume(spa); 4134 mutex_exit(&spa_namespace_lock); 4135 return (SET_ERROR(EBUSY)); 4136 } 4137 4138 /* 4139 * A pool cannot be exported if it has an active shared spare. 4140 * This is to prevent other pools stealing the active spare 4141 * from an exported pool. At user's own will, such pool can 4142 * be forcedly exported. 4143 */ 4144 if (!force && new_state == POOL_STATE_EXPORTED && 4145 spa_has_active_shared_spare(spa)) { 4146 spa_async_resume(spa); 4147 mutex_exit(&spa_namespace_lock); 4148 return (SET_ERROR(EXDEV)); 4149 } 4150 4151 /* 4152 * We want this to be reflected on every label, 4153 * so mark them all dirty. spa_unload() will do the 4154 * final sync that pushes these changes out. 4155 */ 4156 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4157 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4158 spa->spa_state = new_state; 4159 spa->spa_final_txg = spa_last_synced_txg(spa) + 4160 TXG_DEFER_SIZE + 1; 4161 vdev_config_dirty(spa->spa_root_vdev); 4162 spa_config_exit(spa, SCL_ALL, FTAG); 4163 } 4164 } 4165 4166 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4167 4168 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4169 spa_unload(spa); 4170 spa_deactivate(spa); 4171 } 4172 4173 if (oldconfig && spa->spa_config) 4174 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4175 4176 if (new_state != POOL_STATE_UNINITIALIZED) { 4177 if (!hardforce) 4178 spa_config_sync(spa, B_TRUE, B_TRUE); 4179 spa_remove(spa); 4180 } 4181 mutex_exit(&spa_namespace_lock); 4182 4183 return (0); 4184 } 4185 4186 /* 4187 * Destroy a storage pool. 4188 */ 4189 int 4190 spa_destroy(char *pool) 4191 { 4192 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4193 B_FALSE, B_FALSE)); 4194 } 4195 4196 /* 4197 * Export a storage pool. 4198 */ 4199 int 4200 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4201 boolean_t hardforce) 4202 { 4203 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4204 force, hardforce)); 4205 } 4206 4207 /* 4208 * Similar to spa_export(), this unloads the spa_t without actually removing it 4209 * from the namespace in any way. 4210 */ 4211 int 4212 spa_reset(char *pool) 4213 { 4214 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4215 B_FALSE, B_FALSE)); 4216 } 4217 4218 /* 4219 * ========================================================================== 4220 * Device manipulation 4221 * ========================================================================== 4222 */ 4223 4224 /* 4225 * Add a device to a storage pool. 4226 */ 4227 int 4228 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4229 { 4230 uint64_t txg, id; 4231 int error; 4232 vdev_t *rvd = spa->spa_root_vdev; 4233 vdev_t *vd, *tvd; 4234 nvlist_t **spares, **l2cache; 4235 uint_t nspares, nl2cache; 4236 4237 ASSERT(spa_writeable(spa)); 4238 4239 txg = spa_vdev_enter(spa); 4240 4241 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4242 VDEV_ALLOC_ADD)) != 0) 4243 return (spa_vdev_exit(spa, NULL, txg, error)); 4244 4245 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4246 4247 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4248 &nspares) != 0) 4249 nspares = 0; 4250 4251 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4252 &nl2cache) != 0) 4253 nl2cache = 0; 4254 4255 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4256 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4257 4258 if (vd->vdev_children != 0 && 4259 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4260 return (spa_vdev_exit(spa, vd, txg, error)); 4261 4262 /* 4263 * We must validate the spares and l2cache devices after checking the 4264 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4265 */ 4266 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4267 return (spa_vdev_exit(spa, vd, txg, error)); 4268 4269 /* 4270 * Transfer each new top-level vdev from vd to rvd. 4271 */ 4272 for (int c = 0; c < vd->vdev_children; c++) { 4273 4274 /* 4275 * Set the vdev id to the first hole, if one exists. 4276 */ 4277 for (id = 0; id < rvd->vdev_children; id++) { 4278 if (rvd->vdev_child[id]->vdev_ishole) { 4279 vdev_free(rvd->vdev_child[id]); 4280 break; 4281 } 4282 } 4283 tvd = vd->vdev_child[c]; 4284 vdev_remove_child(vd, tvd); 4285 tvd->vdev_id = id; 4286 vdev_add_child(rvd, tvd); 4287 vdev_config_dirty(tvd); 4288 } 4289 4290 if (nspares != 0) { 4291 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4292 ZPOOL_CONFIG_SPARES); 4293 spa_load_spares(spa); 4294 spa->spa_spares.sav_sync = B_TRUE; 4295 } 4296 4297 if (nl2cache != 0) { 4298 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4299 ZPOOL_CONFIG_L2CACHE); 4300 spa_load_l2cache(spa); 4301 spa->spa_l2cache.sav_sync = B_TRUE; 4302 } 4303 4304 /* 4305 * We have to be careful when adding new vdevs to an existing pool. 4306 * If other threads start allocating from these vdevs before we 4307 * sync the config cache, and we lose power, then upon reboot we may 4308 * fail to open the pool because there are DVAs that the config cache 4309 * can't translate. Therefore, we first add the vdevs without 4310 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4311 * and then let spa_config_update() initialize the new metaslabs. 4312 * 4313 * spa_load() checks for added-but-not-initialized vdevs, so that 4314 * if we lose power at any point in this sequence, the remaining 4315 * steps will be completed the next time we load the pool. 4316 */ 4317 (void) spa_vdev_exit(spa, vd, txg, 0); 4318 4319 mutex_enter(&spa_namespace_lock); 4320 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4321 mutex_exit(&spa_namespace_lock); 4322 4323 return (0); 4324 } 4325 4326 /* 4327 * Attach a device to a mirror. The arguments are the path to any device 4328 * in the mirror, and the nvroot for the new device. If the path specifies 4329 * a device that is not mirrored, we automatically insert the mirror vdev. 4330 * 4331 * If 'replacing' is specified, the new device is intended to replace the 4332 * existing device; in this case the two devices are made into their own 4333 * mirror using the 'replacing' vdev, which is functionally identical to 4334 * the mirror vdev (it actually reuses all the same ops) but has a few 4335 * extra rules: you can't attach to it after it's been created, and upon 4336 * completion of resilvering, the first disk (the one being replaced) 4337 * is automatically detached. 4338 */ 4339 int 4340 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4341 { 4342 uint64_t txg, dtl_max_txg; 4343 vdev_t *rvd = spa->spa_root_vdev; 4344 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4345 vdev_ops_t *pvops; 4346 char *oldvdpath, *newvdpath; 4347 int newvd_isspare; 4348 int error; 4349 4350 ASSERT(spa_writeable(spa)); 4351 4352 txg = spa_vdev_enter(spa); 4353 4354 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4355 4356 if (oldvd == NULL) 4357 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4358 4359 if (!oldvd->vdev_ops->vdev_op_leaf) 4360 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4361 4362 pvd = oldvd->vdev_parent; 4363 4364 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4365 VDEV_ALLOC_ATTACH)) != 0) 4366 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4367 4368 if (newrootvd->vdev_children != 1) 4369 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4370 4371 newvd = newrootvd->vdev_child[0]; 4372 4373 if (!newvd->vdev_ops->vdev_op_leaf) 4374 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4375 4376 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4377 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4378 4379 /* 4380 * Spares can't replace logs 4381 */ 4382 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4383 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4384 4385 if (!replacing) { 4386 /* 4387 * For attach, the only allowable parent is a mirror or the root 4388 * vdev. 4389 */ 4390 if (pvd->vdev_ops != &vdev_mirror_ops && 4391 pvd->vdev_ops != &vdev_root_ops) 4392 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4393 4394 pvops = &vdev_mirror_ops; 4395 } else { 4396 /* 4397 * Active hot spares can only be replaced by inactive hot 4398 * spares. 4399 */ 4400 if (pvd->vdev_ops == &vdev_spare_ops && 4401 oldvd->vdev_isspare && 4402 !spa_has_spare(spa, newvd->vdev_guid)) 4403 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4404 4405 /* 4406 * If the source is a hot spare, and the parent isn't already a 4407 * spare, then we want to create a new hot spare. Otherwise, we 4408 * want to create a replacing vdev. The user is not allowed to 4409 * attach to a spared vdev child unless the 'isspare' state is 4410 * the same (spare replaces spare, non-spare replaces 4411 * non-spare). 4412 */ 4413 if (pvd->vdev_ops == &vdev_replacing_ops && 4414 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4415 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4416 } else if (pvd->vdev_ops == &vdev_spare_ops && 4417 newvd->vdev_isspare != oldvd->vdev_isspare) { 4418 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4419 } 4420 4421 if (newvd->vdev_isspare) 4422 pvops = &vdev_spare_ops; 4423 else 4424 pvops = &vdev_replacing_ops; 4425 } 4426 4427 /* 4428 * Make sure the new device is big enough. 4429 */ 4430 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4431 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4432 4433 /* 4434 * The new device cannot have a higher alignment requirement 4435 * than the top-level vdev. 4436 */ 4437 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4438 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4439 4440 /* 4441 * If this is an in-place replacement, update oldvd's path and devid 4442 * to make it distinguishable from newvd, and unopenable from now on. 4443 */ 4444 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4445 spa_strfree(oldvd->vdev_path); 4446 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4447 KM_SLEEP); 4448 (void) sprintf(oldvd->vdev_path, "%s/%s", 4449 newvd->vdev_path, "old"); 4450 if (oldvd->vdev_devid != NULL) { 4451 spa_strfree(oldvd->vdev_devid); 4452 oldvd->vdev_devid = NULL; 4453 } 4454 } 4455 4456 /* mark the device being resilvered */ 4457 newvd->vdev_resilver_txg = txg; 4458 4459 /* 4460 * If the parent is not a mirror, or if we're replacing, insert the new 4461 * mirror/replacing/spare vdev above oldvd. 4462 */ 4463 if (pvd->vdev_ops != pvops) 4464 pvd = vdev_add_parent(oldvd, pvops); 4465 4466 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4467 ASSERT(pvd->vdev_ops == pvops); 4468 ASSERT(oldvd->vdev_parent == pvd); 4469 4470 /* 4471 * Extract the new device from its root and add it to pvd. 4472 */ 4473 vdev_remove_child(newrootvd, newvd); 4474 newvd->vdev_id = pvd->vdev_children; 4475 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4476 vdev_add_child(pvd, newvd); 4477 4478 tvd = newvd->vdev_top; 4479 ASSERT(pvd->vdev_top == tvd); 4480 ASSERT(tvd->vdev_parent == rvd); 4481 4482 vdev_config_dirty(tvd); 4483 4484 /* 4485 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4486 * for any dmu_sync-ed blocks. It will propagate upward when 4487 * spa_vdev_exit() calls vdev_dtl_reassess(). 4488 */ 4489 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4490 4491 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4492 dtl_max_txg - TXG_INITIAL); 4493 4494 if (newvd->vdev_isspare) { 4495 spa_spare_activate(newvd); 4496 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4497 } 4498 4499 oldvdpath = spa_strdup(oldvd->vdev_path); 4500 newvdpath = spa_strdup(newvd->vdev_path); 4501 newvd_isspare = newvd->vdev_isspare; 4502 4503 /* 4504 * Mark newvd's DTL dirty in this txg. 4505 */ 4506 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4507 4508 /* 4509 * Schedule the resilver to restart in the future. We do this to 4510 * ensure that dmu_sync-ed blocks have been stitched into the 4511 * respective datasets. 4512 */ 4513 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4514 4515 /* 4516 * Commit the config 4517 */ 4518 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4519 4520 spa_history_log_internal(spa, "vdev attach", NULL, 4521 "%s vdev=%s %s vdev=%s", 4522 replacing && newvd_isspare ? "spare in" : 4523 replacing ? "replace" : "attach", newvdpath, 4524 replacing ? "for" : "to", oldvdpath); 4525 4526 spa_strfree(oldvdpath); 4527 spa_strfree(newvdpath); 4528 4529 if (spa->spa_bootfs) 4530 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4531 4532 return (0); 4533 } 4534 4535 /* 4536 * Detach a device from a mirror or replacing vdev. 4537 * 4538 * If 'replace_done' is specified, only detach if the parent 4539 * is a replacing vdev. 4540 */ 4541 int 4542 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4543 { 4544 uint64_t txg; 4545 int error; 4546 vdev_t *rvd = spa->spa_root_vdev; 4547 vdev_t *vd, *pvd, *cvd, *tvd; 4548 boolean_t unspare = B_FALSE; 4549 uint64_t unspare_guid = 0; 4550 char *vdpath; 4551 4552 ASSERT(spa_writeable(spa)); 4553 4554 txg = spa_vdev_enter(spa); 4555 4556 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4557 4558 if (vd == NULL) 4559 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4560 4561 if (!vd->vdev_ops->vdev_op_leaf) 4562 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4563 4564 pvd = vd->vdev_parent; 4565 4566 /* 4567 * If the parent/child relationship is not as expected, don't do it. 4568 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4569 * vdev that's replacing B with C. The user's intent in replacing 4570 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4571 * the replace by detaching C, the expected behavior is to end up 4572 * M(A,B). But suppose that right after deciding to detach C, 4573 * the replacement of B completes. We would have M(A,C), and then 4574 * ask to detach C, which would leave us with just A -- not what 4575 * the user wanted. To prevent this, we make sure that the 4576 * parent/child relationship hasn't changed -- in this example, 4577 * that C's parent is still the replacing vdev R. 4578 */ 4579 if (pvd->vdev_guid != pguid && pguid != 0) 4580 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4581 4582 /* 4583 * Only 'replacing' or 'spare' vdevs can be replaced. 4584 */ 4585 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4586 pvd->vdev_ops != &vdev_spare_ops) 4587 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4588 4589 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4590 spa_version(spa) >= SPA_VERSION_SPARES); 4591 4592 /* 4593 * Only mirror, replacing, and spare vdevs support detach. 4594 */ 4595 if (pvd->vdev_ops != &vdev_replacing_ops && 4596 pvd->vdev_ops != &vdev_mirror_ops && 4597 pvd->vdev_ops != &vdev_spare_ops) 4598 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4599 4600 /* 4601 * If this device has the only valid copy of some data, 4602 * we cannot safely detach it. 4603 */ 4604 if (vdev_dtl_required(vd)) 4605 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4606 4607 ASSERT(pvd->vdev_children >= 2); 4608 4609 /* 4610 * If we are detaching the second disk from a replacing vdev, then 4611 * check to see if we changed the original vdev's path to have "/old" 4612 * at the end in spa_vdev_attach(). If so, undo that change now. 4613 */ 4614 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4615 vd->vdev_path != NULL) { 4616 size_t len = strlen(vd->vdev_path); 4617 4618 for (int c = 0; c < pvd->vdev_children; c++) { 4619 cvd = pvd->vdev_child[c]; 4620 4621 if (cvd == vd || cvd->vdev_path == NULL) 4622 continue; 4623 4624 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4625 strcmp(cvd->vdev_path + len, "/old") == 0) { 4626 spa_strfree(cvd->vdev_path); 4627 cvd->vdev_path = spa_strdup(vd->vdev_path); 4628 break; 4629 } 4630 } 4631 } 4632 4633 /* 4634 * If we are detaching the original disk from a spare, then it implies 4635 * that the spare should become a real disk, and be removed from the 4636 * active spare list for the pool. 4637 */ 4638 if (pvd->vdev_ops == &vdev_spare_ops && 4639 vd->vdev_id == 0 && 4640 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4641 unspare = B_TRUE; 4642 4643 /* 4644 * Erase the disk labels so the disk can be used for other things. 4645 * This must be done after all other error cases are handled, 4646 * but before we disembowel vd (so we can still do I/O to it). 4647 * But if we can't do it, don't treat the error as fatal -- 4648 * it may be that the unwritability of the disk is the reason 4649 * it's being detached! 4650 */ 4651 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4652 4653 /* 4654 * Remove vd from its parent and compact the parent's children. 4655 */ 4656 vdev_remove_child(pvd, vd); 4657 vdev_compact_children(pvd); 4658 4659 /* 4660 * Remember one of the remaining children so we can get tvd below. 4661 */ 4662 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4663 4664 /* 4665 * If we need to remove the remaining child from the list of hot spares, 4666 * do it now, marking the vdev as no longer a spare in the process. 4667 * We must do this before vdev_remove_parent(), because that can 4668 * change the GUID if it creates a new toplevel GUID. For a similar 4669 * reason, we must remove the spare now, in the same txg as the detach; 4670 * otherwise someone could attach a new sibling, change the GUID, and 4671 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4672 */ 4673 if (unspare) { 4674 ASSERT(cvd->vdev_isspare); 4675 spa_spare_remove(cvd); 4676 unspare_guid = cvd->vdev_guid; 4677 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4678 cvd->vdev_unspare = B_TRUE; 4679 } 4680 4681 /* 4682 * If the parent mirror/replacing vdev only has one child, 4683 * the parent is no longer needed. Remove it from the tree. 4684 */ 4685 if (pvd->vdev_children == 1) { 4686 if (pvd->vdev_ops == &vdev_spare_ops) 4687 cvd->vdev_unspare = B_FALSE; 4688 vdev_remove_parent(cvd); 4689 } 4690 4691 4692 /* 4693 * We don't set tvd until now because the parent we just removed 4694 * may have been the previous top-level vdev. 4695 */ 4696 tvd = cvd->vdev_top; 4697 ASSERT(tvd->vdev_parent == rvd); 4698 4699 /* 4700 * Reevaluate the parent vdev state. 4701 */ 4702 vdev_propagate_state(cvd); 4703 4704 /* 4705 * If the 'autoexpand' property is set on the pool then automatically 4706 * try to expand the size of the pool. For example if the device we 4707 * just detached was smaller than the others, it may be possible to 4708 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4709 * first so that we can obtain the updated sizes of the leaf vdevs. 4710 */ 4711 if (spa->spa_autoexpand) { 4712 vdev_reopen(tvd); 4713 vdev_expand(tvd, txg); 4714 } 4715 4716 vdev_config_dirty(tvd); 4717 4718 /* 4719 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4720 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4721 * But first make sure we're not on any *other* txg's DTL list, to 4722 * prevent vd from being accessed after it's freed. 4723 */ 4724 vdpath = spa_strdup(vd->vdev_path); 4725 for (int t = 0; t < TXG_SIZE; t++) 4726 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4727 vd->vdev_detached = B_TRUE; 4728 vdev_dirty(tvd, VDD_DTL, vd, txg); 4729 4730 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4731 4732 /* hang on to the spa before we release the lock */ 4733 spa_open_ref(spa, FTAG); 4734 4735 error = spa_vdev_exit(spa, vd, txg, 0); 4736 4737 spa_history_log_internal(spa, "detach", NULL, 4738 "vdev=%s", vdpath); 4739 spa_strfree(vdpath); 4740 4741 /* 4742 * If this was the removal of the original device in a hot spare vdev, 4743 * then we want to go through and remove the device from the hot spare 4744 * list of every other pool. 4745 */ 4746 if (unspare) { 4747 spa_t *altspa = NULL; 4748 4749 mutex_enter(&spa_namespace_lock); 4750 while ((altspa = spa_next(altspa)) != NULL) { 4751 if (altspa->spa_state != POOL_STATE_ACTIVE || 4752 altspa == spa) 4753 continue; 4754 4755 spa_open_ref(altspa, FTAG); 4756 mutex_exit(&spa_namespace_lock); 4757 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4758 mutex_enter(&spa_namespace_lock); 4759 spa_close(altspa, FTAG); 4760 } 4761 mutex_exit(&spa_namespace_lock); 4762 4763 /* search the rest of the vdevs for spares to remove */ 4764 spa_vdev_resilver_done(spa); 4765 } 4766 4767 /* all done with the spa; OK to release */ 4768 mutex_enter(&spa_namespace_lock); 4769 spa_close(spa, FTAG); 4770 mutex_exit(&spa_namespace_lock); 4771 4772 return (error); 4773 } 4774 4775 /* 4776 * Split a set of devices from their mirrors, and create a new pool from them. 4777 */ 4778 int 4779 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4780 nvlist_t *props, boolean_t exp) 4781 { 4782 int error = 0; 4783 uint64_t txg, *glist; 4784 spa_t *newspa; 4785 uint_t c, children, lastlog; 4786 nvlist_t **child, *nvl, *tmp; 4787 dmu_tx_t *tx; 4788 char *altroot = NULL; 4789 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4790 boolean_t activate_slog; 4791 4792 ASSERT(spa_writeable(spa)); 4793 4794 txg = spa_vdev_enter(spa); 4795 4796 /* clear the log and flush everything up to now */ 4797 activate_slog = spa_passivate_log(spa); 4798 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4799 error = spa_offline_log(spa); 4800 txg = spa_vdev_config_enter(spa); 4801 4802 if (activate_slog) 4803 spa_activate_log(spa); 4804 4805 if (error != 0) 4806 return (spa_vdev_exit(spa, NULL, txg, error)); 4807 4808 /* check new spa name before going any further */ 4809 if (spa_lookup(newname) != NULL) 4810 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4811 4812 /* 4813 * scan through all the children to ensure they're all mirrors 4814 */ 4815 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4816 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4817 &children) != 0) 4818 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4819 4820 /* first, check to ensure we've got the right child count */ 4821 rvd = spa->spa_root_vdev; 4822 lastlog = 0; 4823 for (c = 0; c < rvd->vdev_children; c++) { 4824 vdev_t *vd = rvd->vdev_child[c]; 4825 4826 /* don't count the holes & logs as children */ 4827 if (vd->vdev_islog || vd->vdev_ishole) { 4828 if (lastlog == 0) 4829 lastlog = c; 4830 continue; 4831 } 4832 4833 lastlog = 0; 4834 } 4835 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4836 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4837 4838 /* next, ensure no spare or cache devices are part of the split */ 4839 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4840 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4841 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4842 4843 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4844 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4845 4846 /* then, loop over each vdev and validate it */ 4847 for (c = 0; c < children; c++) { 4848 uint64_t is_hole = 0; 4849 4850 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4851 &is_hole); 4852 4853 if (is_hole != 0) { 4854 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4855 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4856 continue; 4857 } else { 4858 error = SET_ERROR(EINVAL); 4859 break; 4860 } 4861 } 4862 4863 /* which disk is going to be split? */ 4864 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4865 &glist[c]) != 0) { 4866 error = SET_ERROR(EINVAL); 4867 break; 4868 } 4869 4870 /* look it up in the spa */ 4871 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4872 if (vml[c] == NULL) { 4873 error = SET_ERROR(ENODEV); 4874 break; 4875 } 4876 4877 /* make sure there's nothing stopping the split */ 4878 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4879 vml[c]->vdev_islog || 4880 vml[c]->vdev_ishole || 4881 vml[c]->vdev_isspare || 4882 vml[c]->vdev_isl2cache || 4883 !vdev_writeable(vml[c]) || 4884 vml[c]->vdev_children != 0 || 4885 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4886 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4887 error = SET_ERROR(EINVAL); 4888 break; 4889 } 4890 4891 if (vdev_dtl_required(vml[c])) { 4892 error = SET_ERROR(EBUSY); 4893 break; 4894 } 4895 4896 /* we need certain info from the top level */ 4897 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4898 vml[c]->vdev_top->vdev_ms_array) == 0); 4899 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4900 vml[c]->vdev_top->vdev_ms_shift) == 0); 4901 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4902 vml[c]->vdev_top->vdev_asize) == 0); 4903 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4904 vml[c]->vdev_top->vdev_ashift) == 0); 4905 } 4906 4907 if (error != 0) { 4908 kmem_free(vml, children * sizeof (vdev_t *)); 4909 kmem_free(glist, children * sizeof (uint64_t)); 4910 return (spa_vdev_exit(spa, NULL, txg, error)); 4911 } 4912 4913 /* stop writers from using the disks */ 4914 for (c = 0; c < children; c++) { 4915 if (vml[c] != NULL) 4916 vml[c]->vdev_offline = B_TRUE; 4917 } 4918 vdev_reopen(spa->spa_root_vdev); 4919 4920 /* 4921 * Temporarily record the splitting vdevs in the spa config. This 4922 * will disappear once the config is regenerated. 4923 */ 4924 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4925 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4926 glist, children) == 0); 4927 kmem_free(glist, children * sizeof (uint64_t)); 4928 4929 mutex_enter(&spa->spa_props_lock); 4930 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4931 nvl) == 0); 4932 mutex_exit(&spa->spa_props_lock); 4933 spa->spa_config_splitting = nvl; 4934 vdev_config_dirty(spa->spa_root_vdev); 4935 4936 /* configure and create the new pool */ 4937 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4938 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4939 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4940 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4941 spa_version(spa)) == 0); 4942 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4943 spa->spa_config_txg) == 0); 4944 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4945 spa_generate_guid(NULL)) == 0); 4946 (void) nvlist_lookup_string(props, 4947 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4948 4949 /* add the new pool to the namespace */ 4950 newspa = spa_add(newname, config, altroot); 4951 newspa->spa_config_txg = spa->spa_config_txg; 4952 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4953 4954 /* release the spa config lock, retaining the namespace lock */ 4955 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4956 4957 if (zio_injection_enabled) 4958 zio_handle_panic_injection(spa, FTAG, 1); 4959 4960 spa_activate(newspa, spa_mode_global); 4961 spa_async_suspend(newspa); 4962 4963 /* create the new pool from the disks of the original pool */ 4964 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4965 if (error) 4966 goto out; 4967 4968 /* if that worked, generate a real config for the new pool */ 4969 if (newspa->spa_root_vdev != NULL) { 4970 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4971 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4972 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4973 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4974 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4975 B_TRUE)); 4976 } 4977 4978 /* set the props */ 4979 if (props != NULL) { 4980 spa_configfile_set(newspa, props, B_FALSE); 4981 error = spa_prop_set(newspa, props); 4982 if (error) 4983 goto out; 4984 } 4985 4986 /* flush everything */ 4987 txg = spa_vdev_config_enter(newspa); 4988 vdev_config_dirty(newspa->spa_root_vdev); 4989 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4990 4991 if (zio_injection_enabled) 4992 zio_handle_panic_injection(spa, FTAG, 2); 4993 4994 spa_async_resume(newspa); 4995 4996 /* finally, update the original pool's config */ 4997 txg = spa_vdev_config_enter(spa); 4998 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4999 error = dmu_tx_assign(tx, TXG_WAIT); 5000 if (error != 0) 5001 dmu_tx_abort(tx); 5002 for (c = 0; c < children; c++) { 5003 if (vml[c] != NULL) { 5004 vdev_split(vml[c]); 5005 if (error == 0) 5006 spa_history_log_internal(spa, "detach", tx, 5007 "vdev=%s", vml[c]->vdev_path); 5008 vdev_free(vml[c]); 5009 } 5010 } 5011 vdev_config_dirty(spa->spa_root_vdev); 5012 spa->spa_config_splitting = NULL; 5013 nvlist_free(nvl); 5014 if (error == 0) 5015 dmu_tx_commit(tx); 5016 (void) spa_vdev_exit(spa, NULL, txg, 0); 5017 5018 if (zio_injection_enabled) 5019 zio_handle_panic_injection(spa, FTAG, 3); 5020 5021 /* split is complete; log a history record */ 5022 spa_history_log_internal(newspa, "split", NULL, 5023 "from pool %s", spa_name(spa)); 5024 5025 kmem_free(vml, children * sizeof (vdev_t *)); 5026 5027 /* if we're not going to mount the filesystems in userland, export */ 5028 if (exp) 5029 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5030 B_FALSE, B_FALSE); 5031 5032 return (error); 5033 5034 out: 5035 spa_unload(newspa); 5036 spa_deactivate(newspa); 5037 spa_remove(newspa); 5038 5039 txg = spa_vdev_config_enter(spa); 5040 5041 /* re-online all offlined disks */ 5042 for (c = 0; c < children; c++) { 5043 if (vml[c] != NULL) 5044 vml[c]->vdev_offline = B_FALSE; 5045 } 5046 vdev_reopen(spa->spa_root_vdev); 5047 5048 nvlist_free(spa->spa_config_splitting); 5049 spa->spa_config_splitting = NULL; 5050 (void) spa_vdev_exit(spa, NULL, txg, error); 5051 5052 kmem_free(vml, children * sizeof (vdev_t *)); 5053 return (error); 5054 } 5055 5056 static nvlist_t * 5057 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5058 { 5059 for (int i = 0; i < count; i++) { 5060 uint64_t guid; 5061 5062 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5063 &guid) == 0); 5064 5065 if (guid == target_guid) 5066 return (nvpp[i]); 5067 } 5068 5069 return (NULL); 5070 } 5071 5072 static void 5073 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5074 nvlist_t *dev_to_remove) 5075 { 5076 nvlist_t **newdev = NULL; 5077 5078 if (count > 1) 5079 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5080 5081 for (int i = 0, j = 0; i < count; i++) { 5082 if (dev[i] == dev_to_remove) 5083 continue; 5084 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5085 } 5086 5087 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5088 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5089 5090 for (int i = 0; i < count - 1; i++) 5091 nvlist_free(newdev[i]); 5092 5093 if (count > 1) 5094 kmem_free(newdev, (count - 1) * sizeof (void *)); 5095 } 5096 5097 /* 5098 * Evacuate the device. 5099 */ 5100 static int 5101 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5102 { 5103 uint64_t txg; 5104 int error = 0; 5105 5106 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5107 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5108 ASSERT(vd == vd->vdev_top); 5109 5110 /* 5111 * Evacuate the device. We don't hold the config lock as writer 5112 * since we need to do I/O but we do keep the 5113 * spa_namespace_lock held. Once this completes the device 5114 * should no longer have any blocks allocated on it. 5115 */ 5116 if (vd->vdev_islog) { 5117 if (vd->vdev_stat.vs_alloc != 0) 5118 error = spa_offline_log(spa); 5119 } else { 5120 error = SET_ERROR(ENOTSUP); 5121 } 5122 5123 if (error) 5124 return (error); 5125 5126 /* 5127 * The evacuation succeeded. Remove any remaining MOS metadata 5128 * associated with this vdev, and wait for these changes to sync. 5129 */ 5130 ASSERT0(vd->vdev_stat.vs_alloc); 5131 txg = spa_vdev_config_enter(spa); 5132 vd->vdev_removing = B_TRUE; 5133 vdev_dirty_leaves(vd, VDD_DTL, txg); 5134 vdev_config_dirty(vd); 5135 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5136 5137 return (0); 5138 } 5139 5140 /* 5141 * Complete the removal by cleaning up the namespace. 5142 */ 5143 static void 5144 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5145 { 5146 vdev_t *rvd = spa->spa_root_vdev; 5147 uint64_t id = vd->vdev_id; 5148 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5149 5150 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5151 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5152 ASSERT(vd == vd->vdev_top); 5153 5154 /* 5155 * Only remove any devices which are empty. 5156 */ 5157 if (vd->vdev_stat.vs_alloc != 0) 5158 return; 5159 5160 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5161 5162 if (list_link_active(&vd->vdev_state_dirty_node)) 5163 vdev_state_clean(vd); 5164 if (list_link_active(&vd->vdev_config_dirty_node)) 5165 vdev_config_clean(vd); 5166 5167 vdev_free(vd); 5168 5169 if (last_vdev) { 5170 vdev_compact_children(rvd); 5171 } else { 5172 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5173 vdev_add_child(rvd, vd); 5174 } 5175 vdev_config_dirty(rvd); 5176 5177 /* 5178 * Reassess the health of our root vdev. 5179 */ 5180 vdev_reopen(rvd); 5181 } 5182 5183 /* 5184 * Remove a device from the pool - 5185 * 5186 * Removing a device from the vdev namespace requires several steps 5187 * and can take a significant amount of time. As a result we use 5188 * the spa_vdev_config_[enter/exit] functions which allow us to 5189 * grab and release the spa_config_lock while still holding the namespace 5190 * lock. During each step the configuration is synced out. 5191 * 5192 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5193 * devices. 5194 */ 5195 int 5196 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5197 { 5198 vdev_t *vd; 5199 metaslab_group_t *mg; 5200 nvlist_t **spares, **l2cache, *nv; 5201 uint64_t txg = 0; 5202 uint_t nspares, nl2cache; 5203 int error = 0; 5204 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5205 5206 ASSERT(spa_writeable(spa)); 5207 5208 if (!locked) 5209 txg = spa_vdev_enter(spa); 5210 5211 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5212 5213 if (spa->spa_spares.sav_vdevs != NULL && 5214 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5215 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5216 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5217 /* 5218 * Only remove the hot spare if it's not currently in use 5219 * in this pool. 5220 */ 5221 if (vd == NULL || unspare) { 5222 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5223 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5224 spa_load_spares(spa); 5225 spa->spa_spares.sav_sync = B_TRUE; 5226 } else { 5227 error = SET_ERROR(EBUSY); 5228 } 5229 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5230 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5231 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5232 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5233 /* 5234 * Cache devices can always be removed. 5235 */ 5236 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5237 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5238 spa_load_l2cache(spa); 5239 spa->spa_l2cache.sav_sync = B_TRUE; 5240 } else if (vd != NULL && vd->vdev_islog) { 5241 ASSERT(!locked); 5242 ASSERT(vd == vd->vdev_top); 5243 5244 /* 5245 * XXX - Once we have bp-rewrite this should 5246 * become the common case. 5247 */ 5248 5249 mg = vd->vdev_mg; 5250 5251 /* 5252 * Stop allocating from this vdev. 5253 */ 5254 metaslab_group_passivate(mg); 5255 5256 /* 5257 * Wait for the youngest allocations and frees to sync, 5258 * and then wait for the deferral of those frees to finish. 5259 */ 5260 spa_vdev_config_exit(spa, NULL, 5261 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5262 5263 /* 5264 * Attempt to evacuate the vdev. 5265 */ 5266 error = spa_vdev_remove_evacuate(spa, vd); 5267 5268 txg = spa_vdev_config_enter(spa); 5269 5270 /* 5271 * If we couldn't evacuate the vdev, unwind. 5272 */ 5273 if (error) { 5274 metaslab_group_activate(mg); 5275 return (spa_vdev_exit(spa, NULL, txg, error)); 5276 } 5277 5278 /* 5279 * Clean up the vdev namespace. 5280 */ 5281 spa_vdev_remove_from_namespace(spa, vd); 5282 5283 } else if (vd != NULL) { 5284 /* 5285 * Normal vdevs cannot be removed (yet). 5286 */ 5287 error = SET_ERROR(ENOTSUP); 5288 } else { 5289 /* 5290 * There is no vdev of any kind with the specified guid. 5291 */ 5292 error = SET_ERROR(ENOENT); 5293 } 5294 5295 if (!locked) 5296 return (spa_vdev_exit(spa, NULL, txg, error)); 5297 5298 return (error); 5299 } 5300 5301 /* 5302 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5303 * currently spared, so we can detach it. 5304 */ 5305 static vdev_t * 5306 spa_vdev_resilver_done_hunt(vdev_t *vd) 5307 { 5308 vdev_t *newvd, *oldvd; 5309 5310 for (int c = 0; c < vd->vdev_children; c++) { 5311 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5312 if (oldvd != NULL) 5313 return (oldvd); 5314 } 5315 5316 /* 5317 * Check for a completed replacement. We always consider the first 5318 * vdev in the list to be the oldest vdev, and the last one to be 5319 * the newest (see spa_vdev_attach() for how that works). In 5320 * the case where the newest vdev is faulted, we will not automatically 5321 * remove it after a resilver completes. This is OK as it will require 5322 * user intervention to determine which disk the admin wishes to keep. 5323 */ 5324 if (vd->vdev_ops == &vdev_replacing_ops) { 5325 ASSERT(vd->vdev_children > 1); 5326 5327 newvd = vd->vdev_child[vd->vdev_children - 1]; 5328 oldvd = vd->vdev_child[0]; 5329 5330 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5331 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5332 !vdev_dtl_required(oldvd)) 5333 return (oldvd); 5334 } 5335 5336 /* 5337 * Check for a completed resilver with the 'unspare' flag set. 5338 */ 5339 if (vd->vdev_ops == &vdev_spare_ops) { 5340 vdev_t *first = vd->vdev_child[0]; 5341 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5342 5343 if (last->vdev_unspare) { 5344 oldvd = first; 5345 newvd = last; 5346 } else if (first->vdev_unspare) { 5347 oldvd = last; 5348 newvd = first; 5349 } else { 5350 oldvd = NULL; 5351 } 5352 5353 if (oldvd != NULL && 5354 vdev_dtl_empty(newvd, DTL_MISSING) && 5355 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5356 !vdev_dtl_required(oldvd)) 5357 return (oldvd); 5358 5359 /* 5360 * If there are more than two spares attached to a disk, 5361 * and those spares are not required, then we want to 5362 * attempt to free them up now so that they can be used 5363 * by other pools. Once we're back down to a single 5364 * disk+spare, we stop removing them. 5365 */ 5366 if (vd->vdev_children > 2) { 5367 newvd = vd->vdev_child[1]; 5368 5369 if (newvd->vdev_isspare && last->vdev_isspare && 5370 vdev_dtl_empty(last, DTL_MISSING) && 5371 vdev_dtl_empty(last, DTL_OUTAGE) && 5372 !vdev_dtl_required(newvd)) 5373 return (newvd); 5374 } 5375 } 5376 5377 return (NULL); 5378 } 5379 5380 static void 5381 spa_vdev_resilver_done(spa_t *spa) 5382 { 5383 vdev_t *vd, *pvd, *ppvd; 5384 uint64_t guid, sguid, pguid, ppguid; 5385 5386 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5387 5388 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5389 pvd = vd->vdev_parent; 5390 ppvd = pvd->vdev_parent; 5391 guid = vd->vdev_guid; 5392 pguid = pvd->vdev_guid; 5393 ppguid = ppvd->vdev_guid; 5394 sguid = 0; 5395 /* 5396 * If we have just finished replacing a hot spared device, then 5397 * we need to detach the parent's first child (the original hot 5398 * spare) as well. 5399 */ 5400 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5401 ppvd->vdev_children == 2) { 5402 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5403 sguid = ppvd->vdev_child[1]->vdev_guid; 5404 } 5405 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5406 5407 spa_config_exit(spa, SCL_ALL, FTAG); 5408 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5409 return; 5410 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5411 return; 5412 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5413 } 5414 5415 spa_config_exit(spa, SCL_ALL, FTAG); 5416 } 5417 5418 /* 5419 * Update the stored path or FRU for this vdev. 5420 */ 5421 int 5422 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5423 boolean_t ispath) 5424 { 5425 vdev_t *vd; 5426 boolean_t sync = B_FALSE; 5427 5428 ASSERT(spa_writeable(spa)); 5429 5430 spa_vdev_state_enter(spa, SCL_ALL); 5431 5432 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5433 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5434 5435 if (!vd->vdev_ops->vdev_op_leaf) 5436 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5437 5438 if (ispath) { 5439 if (strcmp(value, vd->vdev_path) != 0) { 5440 spa_strfree(vd->vdev_path); 5441 vd->vdev_path = spa_strdup(value); 5442 sync = B_TRUE; 5443 } 5444 } else { 5445 if (vd->vdev_fru == NULL) { 5446 vd->vdev_fru = spa_strdup(value); 5447 sync = B_TRUE; 5448 } else if (strcmp(value, vd->vdev_fru) != 0) { 5449 spa_strfree(vd->vdev_fru); 5450 vd->vdev_fru = spa_strdup(value); 5451 sync = B_TRUE; 5452 } 5453 } 5454 5455 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5456 } 5457 5458 int 5459 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5460 { 5461 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5462 } 5463 5464 int 5465 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5466 { 5467 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5468 } 5469 5470 /* 5471 * ========================================================================== 5472 * SPA Scanning 5473 * ========================================================================== 5474 */ 5475 5476 int 5477 spa_scan_stop(spa_t *spa) 5478 { 5479 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5480 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5481 return (SET_ERROR(EBUSY)); 5482 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5483 } 5484 5485 int 5486 spa_scan(spa_t *spa, pool_scan_func_t func) 5487 { 5488 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5489 5490 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5491 return (SET_ERROR(ENOTSUP)); 5492 5493 /* 5494 * If a resilver was requested, but there is no DTL on a 5495 * writeable leaf device, we have nothing to do. 5496 */ 5497 if (func == POOL_SCAN_RESILVER && 5498 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5499 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5500 return (0); 5501 } 5502 5503 return (dsl_scan(spa->spa_dsl_pool, func)); 5504 } 5505 5506 /* 5507 * ========================================================================== 5508 * SPA async task processing 5509 * ========================================================================== 5510 */ 5511 5512 static void 5513 spa_async_remove(spa_t *spa, vdev_t *vd) 5514 { 5515 if (vd->vdev_remove_wanted) { 5516 vd->vdev_remove_wanted = B_FALSE; 5517 vd->vdev_delayed_close = B_FALSE; 5518 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5519 5520 /* 5521 * We want to clear the stats, but we don't want to do a full 5522 * vdev_clear() as that will cause us to throw away 5523 * degraded/faulted state as well as attempt to reopen the 5524 * device, all of which is a waste. 5525 */ 5526 vd->vdev_stat.vs_read_errors = 0; 5527 vd->vdev_stat.vs_write_errors = 0; 5528 vd->vdev_stat.vs_checksum_errors = 0; 5529 5530 vdev_state_dirty(vd->vdev_top); 5531 } 5532 5533 for (int c = 0; c < vd->vdev_children; c++) 5534 spa_async_remove(spa, vd->vdev_child[c]); 5535 } 5536 5537 static void 5538 spa_async_probe(spa_t *spa, vdev_t *vd) 5539 { 5540 if (vd->vdev_probe_wanted) { 5541 vd->vdev_probe_wanted = B_FALSE; 5542 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5543 } 5544 5545 for (int c = 0; c < vd->vdev_children; c++) 5546 spa_async_probe(spa, vd->vdev_child[c]); 5547 } 5548 5549 static void 5550 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5551 { 5552 sysevent_id_t eid; 5553 nvlist_t *attr; 5554 char *physpath; 5555 5556 if (!spa->spa_autoexpand) 5557 return; 5558 5559 for (int c = 0; c < vd->vdev_children; c++) { 5560 vdev_t *cvd = vd->vdev_child[c]; 5561 spa_async_autoexpand(spa, cvd); 5562 } 5563 5564 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5565 return; 5566 5567 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5568 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5569 5570 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5571 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5572 5573 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5574 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5575 5576 nvlist_free(attr); 5577 kmem_free(physpath, MAXPATHLEN); 5578 } 5579 5580 static void 5581 spa_async_thread(spa_t *spa) 5582 { 5583 int tasks; 5584 5585 ASSERT(spa->spa_sync_on); 5586 5587 mutex_enter(&spa->spa_async_lock); 5588 tasks = spa->spa_async_tasks; 5589 spa->spa_async_tasks = 0; 5590 mutex_exit(&spa->spa_async_lock); 5591 5592 /* 5593 * See if the config needs to be updated. 5594 */ 5595 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5596 uint64_t old_space, new_space; 5597 5598 mutex_enter(&spa_namespace_lock); 5599 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5600 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5601 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5602 mutex_exit(&spa_namespace_lock); 5603 5604 /* 5605 * If the pool grew as a result of the config update, 5606 * then log an internal history event. 5607 */ 5608 if (new_space != old_space) { 5609 spa_history_log_internal(spa, "vdev online", NULL, 5610 "pool '%s' size: %llu(+%llu)", 5611 spa_name(spa), new_space, new_space - old_space); 5612 } 5613 } 5614 5615 /* 5616 * See if any devices need to be marked REMOVED. 5617 */ 5618 if (tasks & SPA_ASYNC_REMOVE) { 5619 spa_vdev_state_enter(spa, SCL_NONE); 5620 spa_async_remove(spa, spa->spa_root_vdev); 5621 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5622 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5623 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5624 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5625 (void) spa_vdev_state_exit(spa, NULL, 0); 5626 } 5627 5628 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5629 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5630 spa_async_autoexpand(spa, spa->spa_root_vdev); 5631 spa_config_exit(spa, SCL_CONFIG, FTAG); 5632 } 5633 5634 /* 5635 * See if any devices need to be probed. 5636 */ 5637 if (tasks & SPA_ASYNC_PROBE) { 5638 spa_vdev_state_enter(spa, SCL_NONE); 5639 spa_async_probe(spa, spa->spa_root_vdev); 5640 (void) spa_vdev_state_exit(spa, NULL, 0); 5641 } 5642 5643 /* 5644 * If any devices are done replacing, detach them. 5645 */ 5646 if (tasks & SPA_ASYNC_RESILVER_DONE) 5647 spa_vdev_resilver_done(spa); 5648 5649 /* 5650 * Kick off a resilver. 5651 */ 5652 if (tasks & SPA_ASYNC_RESILVER) 5653 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5654 5655 /* 5656 * Kick off L2 cache rebuilding. 5657 */ 5658 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) 5659 l2arc_spa_rebuild_start(spa); 5660 5661 /* 5662 * Let the world know that we're done. 5663 */ 5664 mutex_enter(&spa->spa_async_lock); 5665 spa->spa_async_thread = NULL; 5666 cv_broadcast(&spa->spa_async_cv); 5667 mutex_exit(&spa->spa_async_lock); 5668 thread_exit(); 5669 } 5670 5671 void 5672 spa_async_suspend(spa_t *spa) 5673 { 5674 mutex_enter(&spa->spa_async_lock); 5675 spa->spa_async_suspended++; 5676 while (spa->spa_async_thread != NULL) 5677 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5678 mutex_exit(&spa->spa_async_lock); 5679 } 5680 5681 void 5682 spa_async_resume(spa_t *spa) 5683 { 5684 mutex_enter(&spa->spa_async_lock); 5685 ASSERT(spa->spa_async_suspended != 0); 5686 spa->spa_async_suspended--; 5687 mutex_exit(&spa->spa_async_lock); 5688 } 5689 5690 static boolean_t 5691 spa_async_tasks_pending(spa_t *spa) 5692 { 5693 uint_t non_config_tasks; 5694 uint_t config_task; 5695 boolean_t config_task_suspended; 5696 5697 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5698 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5699 if (spa->spa_ccw_fail_time == 0) { 5700 config_task_suspended = B_FALSE; 5701 } else { 5702 config_task_suspended = 5703 (gethrtime() - spa->spa_ccw_fail_time) < 5704 (zfs_ccw_retry_interval * NANOSEC); 5705 } 5706 5707 return (non_config_tasks || (config_task && !config_task_suspended)); 5708 } 5709 5710 static void 5711 spa_async_dispatch(spa_t *spa) 5712 { 5713 mutex_enter(&spa->spa_async_lock); 5714 if (spa_async_tasks_pending(spa) && 5715 !spa->spa_async_suspended && 5716 spa->spa_async_thread == NULL && 5717 rootdir != NULL) 5718 spa->spa_async_thread = thread_create(NULL, 0, 5719 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5720 mutex_exit(&spa->spa_async_lock); 5721 } 5722 5723 void 5724 spa_async_request(spa_t *spa, int task) 5725 { 5726 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5727 mutex_enter(&spa->spa_async_lock); 5728 spa->spa_async_tasks |= task; 5729 mutex_exit(&spa->spa_async_lock); 5730 } 5731 5732 /* 5733 * ========================================================================== 5734 * SPA syncing routines 5735 * ========================================================================== 5736 */ 5737 5738 static int 5739 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5740 { 5741 bpobj_t *bpo = arg; 5742 bpobj_enqueue(bpo, bp, tx); 5743 return (0); 5744 } 5745 5746 static int 5747 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5748 { 5749 zio_t *zio = arg; 5750 5751 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5752 zio->io_flags)); 5753 return (0); 5754 } 5755 5756 /* 5757 * Note: this simple function is not inlined to make it easier to dtrace the 5758 * amount of time spent syncing frees. 5759 */ 5760 static void 5761 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 5762 { 5763 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5764 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 5765 VERIFY(zio_wait(zio) == 0); 5766 } 5767 5768 /* 5769 * Note: this simple function is not inlined to make it easier to dtrace the 5770 * amount of time spent syncing deferred frees. 5771 */ 5772 static void 5773 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 5774 { 5775 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5776 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 5777 spa_free_sync_cb, zio, tx), ==, 0); 5778 VERIFY0(zio_wait(zio)); 5779 } 5780 5781 5782 static void 5783 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5784 { 5785 char *packed = NULL; 5786 size_t bufsize; 5787 size_t nvsize = 0; 5788 dmu_buf_t *db; 5789 5790 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5791 5792 /* 5793 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5794 * information. This avoids the dbuf_will_dirty() path and 5795 * saves us a pre-read to get data we don't actually care about. 5796 */ 5797 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5798 packed = kmem_alloc(bufsize, KM_SLEEP); 5799 5800 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5801 KM_SLEEP) == 0); 5802 bzero(packed + nvsize, bufsize - nvsize); 5803 5804 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5805 5806 kmem_free(packed, bufsize); 5807 5808 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5809 dmu_buf_will_dirty(db, tx); 5810 *(uint64_t *)db->db_data = nvsize; 5811 dmu_buf_rele(db, FTAG); 5812 } 5813 5814 static void 5815 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5816 const char *config, const char *entry) 5817 { 5818 nvlist_t *nvroot; 5819 nvlist_t **list; 5820 int i; 5821 5822 if (!sav->sav_sync) 5823 return; 5824 5825 /* 5826 * Update the MOS nvlist describing the list of available devices. 5827 * spa_validate_aux() will have already made sure this nvlist is 5828 * valid and the vdevs are labeled appropriately. 5829 */ 5830 if (sav->sav_object == 0) { 5831 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5832 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5833 sizeof (uint64_t), tx); 5834 VERIFY(zap_update(spa->spa_meta_objset, 5835 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5836 &sav->sav_object, tx) == 0); 5837 } 5838 5839 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5840 if (sav->sav_count == 0) { 5841 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5842 } else { 5843 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5844 for (i = 0; i < sav->sav_count; i++) 5845 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5846 B_FALSE, VDEV_CONFIG_L2CACHE); 5847 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5848 sav->sav_count) == 0); 5849 for (i = 0; i < sav->sav_count; i++) 5850 nvlist_free(list[i]); 5851 kmem_free(list, sav->sav_count * sizeof (void *)); 5852 } 5853 5854 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5855 nvlist_free(nvroot); 5856 5857 sav->sav_sync = B_FALSE; 5858 } 5859 5860 static void 5861 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5862 { 5863 nvlist_t *config; 5864 5865 if (list_is_empty(&spa->spa_config_dirty_list)) 5866 return; 5867 5868 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5869 5870 config = spa_config_generate(spa, spa->spa_root_vdev, 5871 dmu_tx_get_txg(tx), B_FALSE); 5872 5873 /* 5874 * If we're upgrading the spa version then make sure that 5875 * the config object gets updated with the correct version. 5876 */ 5877 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5878 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5879 spa->spa_uberblock.ub_version); 5880 5881 spa_config_exit(spa, SCL_STATE, FTAG); 5882 5883 if (spa->spa_config_syncing) 5884 nvlist_free(spa->spa_config_syncing); 5885 spa->spa_config_syncing = config; 5886 5887 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5888 } 5889 5890 static void 5891 spa_sync_version(void *arg, dmu_tx_t *tx) 5892 { 5893 uint64_t *versionp = arg; 5894 uint64_t version = *versionp; 5895 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5896 5897 /* 5898 * Setting the version is special cased when first creating the pool. 5899 */ 5900 ASSERT(tx->tx_txg != TXG_INITIAL); 5901 5902 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5903 ASSERT(version >= spa_version(spa)); 5904 5905 spa->spa_uberblock.ub_version = version; 5906 vdev_config_dirty(spa->spa_root_vdev); 5907 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 5908 } 5909 5910 /* 5911 * Set zpool properties. 5912 */ 5913 static void 5914 spa_sync_props(void *arg, dmu_tx_t *tx) 5915 { 5916 nvlist_t *nvp = arg; 5917 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5918 objset_t *mos = spa->spa_meta_objset; 5919 nvpair_t *elem = NULL; 5920 5921 mutex_enter(&spa->spa_props_lock); 5922 5923 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5924 uint64_t intval; 5925 char *strval, *fname; 5926 zpool_prop_t prop; 5927 const char *propname; 5928 zprop_type_t proptype; 5929 spa_feature_t fid; 5930 5931 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5932 case ZPROP_INVAL: 5933 /* 5934 * We checked this earlier in spa_prop_validate(). 5935 */ 5936 ASSERT(zpool_prop_feature(nvpair_name(elem))); 5937 5938 fname = strchr(nvpair_name(elem), '@') + 1; 5939 VERIFY0(zfeature_lookup_name(fname, &fid)); 5940 5941 spa_feature_enable(spa, fid, tx); 5942 spa_history_log_internal(spa, "set", tx, 5943 "%s=enabled", nvpair_name(elem)); 5944 break; 5945 5946 case ZPOOL_PROP_VERSION: 5947 intval = fnvpair_value_uint64(elem); 5948 /* 5949 * The version is synced seperatly before other 5950 * properties and should be correct by now. 5951 */ 5952 ASSERT3U(spa_version(spa), >=, intval); 5953 break; 5954 5955 case ZPOOL_PROP_ALTROOT: 5956 /* 5957 * 'altroot' is a non-persistent property. It should 5958 * have been set temporarily at creation or import time. 5959 */ 5960 ASSERT(spa->spa_root != NULL); 5961 break; 5962 5963 case ZPOOL_PROP_READONLY: 5964 case ZPOOL_PROP_CACHEFILE: 5965 /* 5966 * 'readonly' and 'cachefile' are also non-persisitent 5967 * properties. 5968 */ 5969 break; 5970 case ZPOOL_PROP_COMMENT: 5971 strval = fnvpair_value_string(elem); 5972 if (spa->spa_comment != NULL) 5973 spa_strfree(spa->spa_comment); 5974 spa->spa_comment = spa_strdup(strval); 5975 /* 5976 * We need to dirty the configuration on all the vdevs 5977 * so that their labels get updated. It's unnecessary 5978 * to do this for pool creation since the vdev's 5979 * configuratoin has already been dirtied. 5980 */ 5981 if (tx->tx_txg != TXG_INITIAL) 5982 vdev_config_dirty(spa->spa_root_vdev); 5983 spa_history_log_internal(spa, "set", tx, 5984 "%s=%s", nvpair_name(elem), strval); 5985 break; 5986 default: 5987 /* 5988 * Set pool property values in the poolprops mos object. 5989 */ 5990 if (spa->spa_pool_props_object == 0) { 5991 spa->spa_pool_props_object = 5992 zap_create_link(mos, DMU_OT_POOL_PROPS, 5993 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5994 tx); 5995 } 5996 5997 /* normalize the property name */ 5998 propname = zpool_prop_to_name(prop); 5999 proptype = zpool_prop_get_type(prop); 6000 6001 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6002 ASSERT(proptype == PROP_TYPE_STRING); 6003 strval = fnvpair_value_string(elem); 6004 VERIFY0(zap_update(mos, 6005 spa->spa_pool_props_object, propname, 6006 1, strlen(strval) + 1, strval, tx)); 6007 spa_history_log_internal(spa, "set", tx, 6008 "%s=%s", nvpair_name(elem), strval); 6009 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6010 intval = fnvpair_value_uint64(elem); 6011 6012 if (proptype == PROP_TYPE_INDEX) { 6013 const char *unused; 6014 VERIFY0(zpool_prop_index_to_string( 6015 prop, intval, &unused)); 6016 } 6017 VERIFY0(zap_update(mos, 6018 spa->spa_pool_props_object, propname, 6019 8, 1, &intval, tx)); 6020 spa_history_log_internal(spa, "set", tx, 6021 "%s=%lld", nvpair_name(elem), intval); 6022 } else { 6023 ASSERT(0); /* not allowed */ 6024 } 6025 6026 switch (prop) { 6027 case ZPOOL_PROP_DELEGATION: 6028 spa->spa_delegation = intval; 6029 break; 6030 case ZPOOL_PROP_BOOTFS: 6031 spa->spa_bootfs = intval; 6032 break; 6033 case ZPOOL_PROP_FAILUREMODE: 6034 spa->spa_failmode = intval; 6035 break; 6036 case ZPOOL_PROP_AUTOEXPAND: 6037 spa->spa_autoexpand = intval; 6038 if (tx->tx_txg != TXG_INITIAL) 6039 spa_async_request(spa, 6040 SPA_ASYNC_AUTOEXPAND); 6041 break; 6042 case ZPOOL_PROP_DEDUPDITTO: 6043 spa->spa_dedup_ditto = intval; 6044 break; 6045 default: 6046 break; 6047 } 6048 } 6049 6050 } 6051 6052 mutex_exit(&spa->spa_props_lock); 6053 } 6054 6055 /* 6056 * Perform one-time upgrade on-disk changes. spa_version() does not 6057 * reflect the new version this txg, so there must be no changes this 6058 * txg to anything that the upgrade code depends on after it executes. 6059 * Therefore this must be called after dsl_pool_sync() does the sync 6060 * tasks. 6061 */ 6062 static void 6063 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6064 { 6065 dsl_pool_t *dp = spa->spa_dsl_pool; 6066 6067 ASSERT(spa->spa_sync_pass == 1); 6068 6069 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6070 6071 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6072 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6073 dsl_pool_create_origin(dp, tx); 6074 6075 /* Keeping the origin open increases spa_minref */ 6076 spa->spa_minref += 3; 6077 } 6078 6079 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6080 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6081 dsl_pool_upgrade_clones(dp, tx); 6082 } 6083 6084 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6085 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6086 dsl_pool_upgrade_dir_clones(dp, tx); 6087 6088 /* Keeping the freedir open increases spa_minref */ 6089 spa->spa_minref += 3; 6090 } 6091 6092 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6093 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6094 spa_feature_create_zap_objects(spa, tx); 6095 } 6096 rrw_exit(&dp->dp_config_rwlock, FTAG); 6097 } 6098 6099 /* 6100 * Sync the specified transaction group. New blocks may be dirtied as 6101 * part of the process, so we iterate until it converges. 6102 */ 6103 void 6104 spa_sync(spa_t *spa, uint64_t txg) 6105 { 6106 dsl_pool_t *dp = spa->spa_dsl_pool; 6107 objset_t *mos = spa->spa_meta_objset; 6108 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6109 vdev_t *rvd = spa->spa_root_vdev; 6110 vdev_t *vd; 6111 dmu_tx_t *tx; 6112 int error; 6113 6114 VERIFY(spa_writeable(spa)); 6115 6116 /* 6117 * Lock out configuration changes. 6118 */ 6119 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6120 6121 spa->spa_syncing_txg = txg; 6122 spa->spa_sync_pass = 0; 6123 6124 /* 6125 * If there are any pending vdev state changes, convert them 6126 * into config changes that go out with this transaction group. 6127 */ 6128 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6129 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6130 /* 6131 * We need the write lock here because, for aux vdevs, 6132 * calling vdev_config_dirty() modifies sav_config. 6133 * This is ugly and will become unnecessary when we 6134 * eliminate the aux vdev wart by integrating all vdevs 6135 * into the root vdev tree. 6136 */ 6137 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6138 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6139 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6140 vdev_state_clean(vd); 6141 vdev_config_dirty(vd); 6142 } 6143 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6144 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6145 } 6146 spa_config_exit(spa, SCL_STATE, FTAG); 6147 6148 tx = dmu_tx_create_assigned(dp, txg); 6149 6150 spa->spa_sync_starttime = gethrtime(); 6151 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6152 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6153 6154 /* 6155 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6156 * set spa_deflate if we have no raid-z vdevs. 6157 */ 6158 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6159 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6160 int i; 6161 6162 for (i = 0; i < rvd->vdev_children; i++) { 6163 vd = rvd->vdev_child[i]; 6164 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6165 break; 6166 } 6167 if (i == rvd->vdev_children) { 6168 spa->spa_deflate = TRUE; 6169 VERIFY(0 == zap_add(spa->spa_meta_objset, 6170 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6171 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6172 } 6173 } 6174 6175 /* 6176 * If anything has changed in this txg, or if someone is waiting 6177 * for this txg to sync (eg, spa_vdev_remove()), push the 6178 * deferred frees from the previous txg. If not, leave them 6179 * alone so that we don't generate work on an otherwise idle 6180 * system. 6181 */ 6182 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 6183 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 6184 !txg_list_empty(&dp->dp_sync_tasks, txg) || 6185 ((dsl_scan_active(dp->dp_scan) || 6186 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 6187 spa_sync_deferred_frees(spa, tx); 6188 } 6189 6190 /* 6191 * Iterate to convergence. 6192 */ 6193 do { 6194 int pass = ++spa->spa_sync_pass; 6195 6196 spa_sync_config_object(spa, tx); 6197 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6198 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6199 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6200 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6201 spa_errlog_sync(spa, txg); 6202 dsl_pool_sync(dp, txg); 6203 6204 if (pass < zfs_sync_pass_deferred_free) { 6205 spa_sync_frees(spa, free_bpl, tx); 6206 } else { 6207 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6208 &spa->spa_deferred_bpobj, tx); 6209 } 6210 6211 ddt_sync(spa, txg); 6212 dsl_scan_sync(dp, tx); 6213 6214 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6215 vdev_sync(vd, txg); 6216 6217 if (pass == 1) 6218 spa_sync_upgrades(spa, tx); 6219 6220 } while (dmu_objset_is_dirty(mos, txg)); 6221 6222 /* 6223 * Rewrite the vdev configuration (which includes the uberblock) 6224 * to commit the transaction group. 6225 * 6226 * If there are no dirty vdevs, we sync the uberblock to a few 6227 * random top-level vdevs that are known to be visible in the 6228 * config cache (see spa_vdev_add() for a complete description). 6229 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6230 */ 6231 for (;;) { 6232 /* 6233 * We hold SCL_STATE to prevent vdev open/close/etc. 6234 * while we're attempting to write the vdev labels. 6235 */ 6236 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6237 6238 if (list_is_empty(&spa->spa_config_dirty_list)) { 6239 vdev_t *svd[SPA_DVAS_PER_BP]; 6240 int svdcount = 0; 6241 int children = rvd->vdev_children; 6242 int c0 = spa_get_random(children); 6243 6244 for (int c = 0; c < children; c++) { 6245 vd = rvd->vdev_child[(c0 + c) % children]; 6246 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6247 continue; 6248 svd[svdcount++] = vd; 6249 if (svdcount == SPA_DVAS_PER_BP) 6250 break; 6251 } 6252 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6253 if (error != 0) 6254 error = vdev_config_sync(svd, svdcount, txg, 6255 B_TRUE); 6256 } else { 6257 error = vdev_config_sync(rvd->vdev_child, 6258 rvd->vdev_children, txg, B_FALSE); 6259 if (error != 0) 6260 error = vdev_config_sync(rvd->vdev_child, 6261 rvd->vdev_children, txg, B_TRUE); 6262 } 6263 6264 if (error == 0) 6265 spa->spa_last_synced_guid = rvd->vdev_guid; 6266 6267 spa_config_exit(spa, SCL_STATE, FTAG); 6268 6269 if (error == 0) 6270 break; 6271 zio_suspend(spa, NULL); 6272 zio_resume_wait(spa); 6273 } 6274 dmu_tx_commit(tx); 6275 6276 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6277 6278 /* 6279 * Clear the dirty config list. 6280 */ 6281 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6282 vdev_config_clean(vd); 6283 6284 /* 6285 * Now that the new config has synced transactionally, 6286 * let it become visible to the config cache. 6287 */ 6288 if (spa->spa_config_syncing != NULL) { 6289 spa_config_set(spa, spa->spa_config_syncing); 6290 spa->spa_config_txg = txg; 6291 spa->spa_config_syncing = NULL; 6292 } 6293 6294 spa->spa_ubsync = spa->spa_uberblock; 6295 6296 dsl_pool_sync_done(dp, txg); 6297 6298 /* 6299 * Update usable space statistics. 6300 */ 6301 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6302 vdev_sync_done(vd, txg); 6303 6304 spa_update_dspace(spa); 6305 6306 /* 6307 * It had better be the case that we didn't dirty anything 6308 * since vdev_config_sync(). 6309 */ 6310 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6311 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6312 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6313 6314 spa->spa_sync_pass = 0; 6315 6316 spa_config_exit(spa, SCL_CONFIG, FTAG); 6317 6318 spa_handle_ignored_writes(spa); 6319 6320 /* 6321 * If any async tasks have been requested, kick them off. 6322 */ 6323 spa_async_dispatch(spa); 6324 } 6325 6326 /* 6327 * Sync all pools. We don't want to hold the namespace lock across these 6328 * operations, so we take a reference on the spa_t and drop the lock during the 6329 * sync. 6330 */ 6331 void 6332 spa_sync_allpools(void) 6333 { 6334 spa_t *spa = NULL; 6335 mutex_enter(&spa_namespace_lock); 6336 while ((spa = spa_next(spa)) != NULL) { 6337 if (spa_state(spa) != POOL_STATE_ACTIVE || 6338 !spa_writeable(spa) || spa_suspended(spa)) 6339 continue; 6340 spa_open_ref(spa, FTAG); 6341 mutex_exit(&spa_namespace_lock); 6342 txg_wait_synced(spa_get_dsl(spa), 0); 6343 mutex_enter(&spa_namespace_lock); 6344 spa_close(spa, FTAG); 6345 } 6346 mutex_exit(&spa_namespace_lock); 6347 } 6348 6349 /* 6350 * ========================================================================== 6351 * Miscellaneous routines 6352 * ========================================================================== 6353 */ 6354 6355 /* 6356 * Remove all pools in the system. 6357 */ 6358 void 6359 spa_evict_all(void) 6360 { 6361 spa_t *spa; 6362 6363 /* 6364 * Remove all cached state. All pools should be closed now, 6365 * so every spa in the AVL tree should be unreferenced. 6366 */ 6367 mutex_enter(&spa_namespace_lock); 6368 while ((spa = spa_next(NULL)) != NULL) { 6369 /* 6370 * Stop async tasks. The async thread may need to detach 6371 * a device that's been replaced, which requires grabbing 6372 * spa_namespace_lock, so we must drop it here. 6373 */ 6374 spa_open_ref(spa, FTAG); 6375 mutex_exit(&spa_namespace_lock); 6376 spa_async_suspend(spa); 6377 mutex_enter(&spa_namespace_lock); 6378 spa_close(spa, FTAG); 6379 6380 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6381 spa_unload(spa); 6382 spa_deactivate(spa); 6383 } 6384 spa_remove(spa); 6385 } 6386 mutex_exit(&spa_namespace_lock); 6387 } 6388 6389 vdev_t * 6390 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6391 { 6392 vdev_t *vd; 6393 int i; 6394 6395 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6396 return (vd); 6397 6398 if (aux) { 6399 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6400 vd = spa->spa_l2cache.sav_vdevs[i]; 6401 if (vd->vdev_guid == guid) 6402 return (vd); 6403 } 6404 6405 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6406 vd = spa->spa_spares.sav_vdevs[i]; 6407 if (vd->vdev_guid == guid) 6408 return (vd); 6409 } 6410 } 6411 6412 return (NULL); 6413 } 6414 6415 void 6416 spa_upgrade(spa_t *spa, uint64_t version) 6417 { 6418 ASSERT(spa_writeable(spa)); 6419 6420 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6421 6422 /* 6423 * This should only be called for a non-faulted pool, and since a 6424 * future version would result in an unopenable pool, this shouldn't be 6425 * possible. 6426 */ 6427 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6428 ASSERT(version >= spa->spa_uberblock.ub_version); 6429 6430 spa->spa_uberblock.ub_version = version; 6431 vdev_config_dirty(spa->spa_root_vdev); 6432 6433 spa_config_exit(spa, SCL_ALL, FTAG); 6434 6435 txg_wait_synced(spa_get_dsl(spa), 0); 6436 } 6437 6438 boolean_t 6439 spa_has_spare(spa_t *spa, uint64_t guid) 6440 { 6441 int i; 6442 uint64_t spareguid; 6443 spa_aux_vdev_t *sav = &spa->spa_spares; 6444 6445 for (i = 0; i < sav->sav_count; i++) 6446 if (sav->sav_vdevs[i]->vdev_guid == guid) 6447 return (B_TRUE); 6448 6449 for (i = 0; i < sav->sav_npending; i++) { 6450 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6451 &spareguid) == 0 && spareguid == guid) 6452 return (B_TRUE); 6453 } 6454 6455 return (B_FALSE); 6456 } 6457 6458 /* 6459 * Check if a pool has an active shared spare device. 6460 * Note: reference count of an active spare is 2, as a spare and as a replace 6461 */ 6462 static boolean_t 6463 spa_has_active_shared_spare(spa_t *spa) 6464 { 6465 int i, refcnt; 6466 uint64_t pool; 6467 spa_aux_vdev_t *sav = &spa->spa_spares; 6468 6469 for (i = 0; i < sav->sav_count; i++) { 6470 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6471 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6472 refcnt > 2) 6473 return (B_TRUE); 6474 } 6475 6476 return (B_FALSE); 6477 } 6478 6479 /* 6480 * Post a sysevent corresponding to the given event. The 'name' must be one of 6481 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6482 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6483 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6484 * or zdb as real changes. 6485 */ 6486 void 6487 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6488 { 6489 #ifdef _KERNEL 6490 sysevent_t *ev; 6491 sysevent_attr_list_t *attr = NULL; 6492 sysevent_value_t value; 6493 sysevent_id_t eid; 6494 6495 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6496 SE_SLEEP); 6497 6498 value.value_type = SE_DATA_TYPE_STRING; 6499 value.value.sv_string = spa_name(spa); 6500 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6501 goto done; 6502 6503 value.value_type = SE_DATA_TYPE_UINT64; 6504 value.value.sv_uint64 = spa_guid(spa); 6505 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6506 goto done; 6507 6508 if (vd) { 6509 value.value_type = SE_DATA_TYPE_UINT64; 6510 value.value.sv_uint64 = vd->vdev_guid; 6511 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6512 SE_SLEEP) != 0) 6513 goto done; 6514 6515 if (vd->vdev_path) { 6516 value.value_type = SE_DATA_TYPE_STRING; 6517 value.value.sv_string = vd->vdev_path; 6518 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6519 &value, SE_SLEEP) != 0) 6520 goto done; 6521 } 6522 } 6523 6524 if (sysevent_attach_attributes(ev, attr) != 0) 6525 goto done; 6526 attr = NULL; 6527 6528 (void) log_sysevent(ev, SE_SLEEP, &eid); 6529 6530 done: 6531 if (attr) 6532 sysevent_free_attr(attr); 6533 sysevent_free(ev); 6534 #endif 6535 }