1 /*
   2  *  GRUB  --  GRand Unified Bootloader
   3  *  Copyright (C) 1999,2000,2001,2002,2003,2004  Free Software Foundation, Inc.
   4  *
   5  *  This program is free software; you can redistribute it and/or modify
   6  *  it under the terms of the GNU General Public License as published by
   7  *  the Free Software Foundation; either version 2 of the License, or
   8  *  (at your option) any later version.
   9  *
  10  *  This program is distributed in the hope that it will be useful,
  11  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  12  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13  *  GNU General Public License for more details.
  14  *
  15  *  You should have received a copy of the GNU General Public License
  16  *  along with this program; if not, write to the Free Software
  17  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18  */
  19 
  20 /*
  21  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
  22  * Use is subject to license terms.
  23  */
  24 
  25 /*
  26  * Copyright (c) 2012 by Delphix. All rights reserved.
  27  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
  28  */
  29 
  30 /*
  31  * The zfs plug-in routines for GRUB are:
  32  *
  33  * zfs_mount() - locates a valid uberblock of the root pool and reads
  34  *              in its MOS at the memory address MOS.
  35  *
  36  * zfs_open() - locates a plain file object by following the MOS
  37  *              and places its dnode at the memory address DNODE.
  38  *
  39  * zfs_read() - read in the data blocks pointed by the DNODE.
  40  *
  41  * ZFS_SCRATCH is used as a working area.
  42  *
  43  * (memory addr)   MOS      DNODE       ZFS_SCRATCH
  44  *                  |         |          |
  45  *          +-------V---------V----------V---------------+
  46  *   memory |       | dnode   | dnode    |  scratch      |
  47  *          |       | 512B    | 512B     |  area         |
  48  *          +--------------------------------------------+
  49  */
  50 
  51 #ifdef  FSYS_ZFS
  52 
  53 #include "shared.h"
  54 #include "filesys.h"
  55 #include "fsys_zfs.h"
  56 
  57 /* cache for a file block of the currently zfs_open()-ed file */
  58 static void *file_buf = NULL;
  59 static uint64_t file_start = 0;
  60 static uint64_t file_end = 0;
  61 
  62 /* cache for a dnode block */
  63 static dnode_phys_t *dnode_buf = NULL;
  64 static dnode_phys_t *dnode_mdn = NULL;
  65 static uint64_t dnode_start = 0;
  66 static uint64_t dnode_end = 0;
  67 
  68 static uint64_t pool_guid = 0;
  69 static uberblock_t current_uberblock;
  70 static char *stackbase;
  71 
  72 decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] =
  73 {
  74         {"inherit", 0},                 /* ZIO_COMPRESS_INHERIT */
  75         {"on", lzjb_decompress},        /* ZIO_COMPRESS_ON */
  76         {"off", 0},                     /* ZIO_COMPRESS_OFF */
  77         {"lzjb", lzjb_decompress},      /* ZIO_COMPRESS_LZJB */
  78         {"empty", 0},                   /* ZIO_COMPRESS_EMPTY */
  79         {"gzip-1", 0},                  /* ZIO_COMPRESS_GZIP_1 */
  80         {"gzip-2", 0},                  /* ZIO_COMPRESS_GZIP_2 */
  81         {"gzip-3", 0},                  /* ZIO_COMPRESS_GZIP_3 */
  82         {"gzip-4", 0},                  /* ZIO_COMPRESS_GZIP_4 */
  83         {"gzip-5", 0},                  /* ZIO_COMPRESS_GZIP_5 */
  84         {"gzip-6", 0},                  /* ZIO_COMPRESS_GZIP_6 */
  85         {"gzip-7", 0},                  /* ZIO_COMPRESS_GZIP_7 */
  86         {"gzip-8", 0},                  /* ZIO_COMPRESS_GZIP_8 */
  87         {"gzip-9", 0},                  /* ZIO_COMPRESS_GZIP_9 */
  88         {"zle", 0},                     /* ZIO_COMPRESS_ZLE */
  89         {"lz4", lz4_decompress}         /* ZIO_COMPRESS_LZ4 */
  90 };
  91 
  92 static int zio_read_data(blkptr_t *bp, void *buf, char *stack);
  93 
  94 /*
  95  * Our own version of bcmp().
  96  */
  97 static int
  98 zfs_bcmp(const void *s1, const void *s2, size_t n)
  99 {
 100         const uchar_t *ps1 = s1;
 101         const uchar_t *ps2 = s2;
 102 
 103         if (s1 != s2 && n != 0) {
 104                 do {
 105                         if (*ps1++ != *ps2++)
 106                                 return (1);
 107                 } while (--n != 0);
 108         }
 109 
 110         return (0);
 111 }
 112 
 113 /*
 114  * Our own version of log2().  Same thing as highbit()-1.
 115  */
 116 static int
 117 zfs_log2(uint64_t num)
 118 {
 119         int i = 0;
 120 
 121         while (num > 1) {
 122                 i++;
 123                 num = num >> 1;
 124         }
 125 
 126         return (i);
 127 }
 128 
 129 /* Checksum Functions */
 130 static void
 131 zio_checksum_off(const void *buf, uint64_t size, zio_cksum_t *zcp)
 132 {
 133         ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
 134 }
 135 
 136 /* Checksum Table and Values */
 137 zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
 138         {{NULL,                 NULL},                  0, 0,   "inherit"},
 139         {{NULL,                 NULL},                  0, 0,   "on"},
 140         {{zio_checksum_off,     zio_checksum_off},      0, 0,   "off"},
 141         {{zio_checksum_SHA256,  zio_checksum_SHA256},   1, 1,   "label"},
 142         {{zio_checksum_SHA256,  zio_checksum_SHA256},   1, 1,   "gang_header"},
 143         {{NULL,                 NULL},                  0, 0,   "zilog"},
 144         {{fletcher_2_native,    fletcher_2_byteswap},   0, 0,   "fletcher2"},
 145         {{fletcher_4_native,    fletcher_4_byteswap},   1, 0,   "fletcher4"},
 146         {{zio_checksum_SHA256,  zio_checksum_SHA256},   1, 0,   "SHA256"},
 147         {{NULL,                 NULL},                  0, 0,   "zilog2"},
 148 };
 149 
 150 /*
 151  * zio_checksum_verify: Provides support for checksum verification.
 152  *
 153  * Fletcher2, Fletcher4, and SHA256 are supported.
 154  *
 155  * Return:
 156  *      -1 = Failure
 157  *       0 = Success
 158  */
 159 static int
 160 zio_checksum_verify(blkptr_t *bp, char *data, int size)
 161 {
 162         zio_cksum_t zc = bp->blk_cksum;
 163         uint32_t checksum = BP_GET_CHECKSUM(bp);
 164         int byteswap = BP_SHOULD_BYTESWAP(bp);
 165         zio_eck_t *zec = (zio_eck_t *)(data + size) - 1;
 166         zio_checksum_info_t *ci = &zio_checksum_table[checksum];
 167         zio_cksum_t actual_cksum, expected_cksum;
 168 
 169         /* byteswap is not supported */
 170         if (byteswap)
 171                 return (-1);
 172 
 173         if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func[0] == NULL)
 174                 return (-1);
 175 
 176         if (ci->ci_eck) {
 177                 expected_cksum = zec->zec_cksum;
 178                 zec->zec_cksum = zc;
 179                 ci->ci_func[0](data, size, &actual_cksum);
 180                 zec->zec_cksum = expected_cksum;
 181                 zc = expected_cksum;
 182 
 183         } else {
 184                 ci->ci_func[byteswap](data, size, &actual_cksum);
 185         }
 186 
 187         if ((actual_cksum.zc_word[0] - zc.zc_word[0]) |
 188             (actual_cksum.zc_word[1] - zc.zc_word[1]) |
 189             (actual_cksum.zc_word[2] - zc.zc_word[2]) |
 190             (actual_cksum.zc_word[3] - zc.zc_word[3]))
 191                 return (-1);
 192 
 193         return (0);
 194 }
 195 
 196 /*
 197  * vdev_label_start returns the physical disk offset (in bytes) of
 198  * label "l".
 199  */
 200 static uint64_t
 201 vdev_label_start(uint64_t psize, int l)
 202 {
 203         return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
 204             0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
 205 }
 206 
 207 /*
 208  * vdev_uberblock_compare takes two uberblock structures and returns an integer
 209  * indicating the more recent of the two.
 210  *      Return Value = 1 if ub2 is more recent
 211  *      Return Value = -1 if ub1 is more recent
 212  * The most recent uberblock is determined using its transaction number and
 213  * timestamp.  The uberblock with the highest transaction number is
 214  * considered "newer".  If the transaction numbers of the two blocks match, the
 215  * timestamps are compared to determine the "newer" of the two.
 216  */
 217 static int
 218 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
 219 {
 220         if (ub1->ub_txg < ub2->ub_txg)
 221                 return (-1);
 222         if (ub1->ub_txg > ub2->ub_txg)
 223                 return (1);
 224 
 225         if (ub1->ub_timestamp < ub2->ub_timestamp)
 226                 return (-1);
 227         if (ub1->ub_timestamp > ub2->ub_timestamp)
 228                 return (1);
 229 
 230         return (0);
 231 }
 232 
 233 /*
 234  * Three pieces of information are needed to verify an uberblock: the magic
 235  * number, the version number, and the checksum.
 236  *
 237  * Return:
 238  *     0 - Success
 239  *    -1 - Failure
 240  */
 241 static int
 242 uberblock_verify(uberblock_t *uber, uint64_t ub_size, uint64_t offset)
 243 {
 244         blkptr_t bp;
 245 
 246         BP_ZERO(&bp);
 247         BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
 248         BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
 249         ZIO_SET_CHECKSUM(&bp.blk_cksum, offset, 0, 0, 0);
 250 
 251         if (zio_checksum_verify(&bp, (char *)uber, ub_size) != 0)
 252                 return (-1);
 253 
 254         if (uber->ub_magic == UBERBLOCK_MAGIC &&
 255             SPA_VERSION_IS_SUPPORTED(uber->ub_version))
 256                 return (0);
 257 
 258         return (-1);
 259 }
 260 
 261 /*
 262  * Find the best uberblock.
 263  * Return:
 264  *    Success - Pointer to the best uberblock.
 265  *    Failure - NULL
 266  */
 267 static uberblock_t *
 268 find_bestub(char *ub_array, uint64_t ashift, uint64_t sector)
 269 {
 270         uberblock_t *ubbest = NULL;
 271         uberblock_t *ubnext;
 272         uint64_t offset, ub_size;
 273         int i;
 274 
 275         ub_size = VDEV_UBERBLOCK_SIZE(ashift);
 276 
 277         for (i = 0; i < VDEV_UBERBLOCK_COUNT(ashift); i++) {
 278                 ubnext = (uberblock_t *)ub_array;
 279                 ub_array += ub_size;
 280                 offset = (sector << SPA_MINBLOCKSHIFT) +
 281                     VDEV_UBERBLOCK_OFFSET(ashift, i);
 282 
 283                 if (uberblock_verify(ubnext, ub_size, offset) != 0)
 284                         continue;
 285 
 286                 if (ubbest == NULL ||
 287                     vdev_uberblock_compare(ubnext, ubbest) > 0)
 288                         ubbest = ubnext;
 289         }
 290 
 291         return (ubbest);
 292 }
 293 
 294 /*
 295  * Read a block of data based on the gang block address dva,
 296  * and put its data in buf.
 297  *
 298  * Return:
 299  *      0 - success
 300  *      1 - failure
 301  */
 302 static int
 303 zio_read_gang(blkptr_t *bp, dva_t *dva, void *buf, char *stack)
 304 {
 305         zio_gbh_phys_t *zio_gb;
 306         uint64_t offset, sector;
 307         blkptr_t tmpbp;
 308         int i;
 309 
 310         zio_gb = (zio_gbh_phys_t *)stack;
 311         stack += SPA_GANGBLOCKSIZE;
 312         offset = DVA_GET_OFFSET(dva);
 313         sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
 314 
 315         /* read in the gang block header */
 316         if (devread(sector, 0, SPA_GANGBLOCKSIZE, (char *)zio_gb) == 0) {
 317                 grub_printf("failed to read in a gang block header\n");
 318                 return (1);
 319         }
 320 
 321         /* self checksuming the gang block header */
 322         BP_ZERO(&tmpbp);
 323         BP_SET_CHECKSUM(&tmpbp, ZIO_CHECKSUM_GANG_HEADER);
 324         BP_SET_BYTEORDER(&tmpbp, ZFS_HOST_BYTEORDER);
 325         ZIO_SET_CHECKSUM(&tmpbp.blk_cksum, DVA_GET_VDEV(dva),
 326             DVA_GET_OFFSET(dva), bp->blk_birth, 0);
 327         if (zio_checksum_verify(&tmpbp, (char *)zio_gb, SPA_GANGBLOCKSIZE)) {
 328                 grub_printf("failed to checksum a gang block header\n");
 329                 return (1);
 330         }
 331 
 332         for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
 333                 if (zio_gb->zg_blkptr[i].blk_birth == 0)
 334                         continue;
 335 
 336                 if (zio_read_data(&zio_gb->zg_blkptr[i], buf, stack))
 337                         return (1);
 338                 buf += BP_GET_PSIZE(&zio_gb->zg_blkptr[i]);
 339         }
 340 
 341         return (0);
 342 }
 343 
 344 /*
 345  * Read in a block of raw data to buf.
 346  *
 347  * Return:
 348  *      0 - success
 349  *      1 - failure
 350  */
 351 static int
 352 zio_read_data(blkptr_t *bp, void *buf, char *stack)
 353 {
 354         int i, psize;
 355 
 356         psize = BP_GET_PSIZE(bp);
 357 
 358         /* pick a good dva from the block pointer */
 359         for (i = 0; i < SPA_DVAS_PER_BP; i++) {
 360                 uint64_t offset, sector;
 361 
 362                 if (bp->blk_dva[i].dva_word[0] == 0 &&
 363                     bp->blk_dva[i].dva_word[1] == 0)
 364                         continue;
 365 
 366                 if (DVA_GET_GANG(&bp->blk_dva[i])) {
 367                         if (zio_read_gang(bp, &bp->blk_dva[i], buf, stack) == 0)
 368                                 return (0);
 369                 } else {
 370                         /* read in a data block */
 371                         offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
 372                         sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
 373                         if (devread(sector, 0, psize, buf) != 0)
 374                                 return (0);
 375                 }
 376         }
 377 
 378         return (1);
 379 }
 380 
 381 /*
 382  * Read in a block of data, verify its checksum, decompress if needed,
 383  * and put the uncompressed data in buf.
 384  *
 385  * Return:
 386  *      0 - success
 387  *      errnum - failure
 388  */
 389 static int
 390 zio_read(blkptr_t *bp, void *buf, char *stack)
 391 {
 392         int lsize, psize, comp;
 393         char *retbuf;
 394 
 395         comp = BP_GET_COMPRESS(bp);
 396         lsize = BP_GET_LSIZE(bp);
 397         psize = BP_GET_PSIZE(bp);
 398 
 399         if ((unsigned int)comp >= ZIO_COMPRESS_FUNCTIONS ||
 400             (comp != ZIO_COMPRESS_OFF &&
 401             decomp_table[comp].decomp_func == NULL)) {
 402                 grub_printf("compression algorithm not supported\n");
 403                 return (ERR_FSYS_CORRUPT);
 404         }
 405 
 406         if ((char *)buf < stack && ((char *)buf) + lsize > stack) {
 407                 grub_printf("not enough memory allocated\n");
 408                 return (ERR_WONT_FIT);
 409         }
 410 
 411         retbuf = buf;
 412         if (comp != ZIO_COMPRESS_OFF) {
 413                 buf = stack;
 414                 stack += psize;
 415         }
 416 
 417         if (zio_read_data(bp, buf, stack) != 0) {
 418                 grub_printf("zio_read_data failed\n");
 419                 return (ERR_FSYS_CORRUPT);
 420         }
 421 
 422         if (zio_checksum_verify(bp, buf, psize) != 0) {
 423                 grub_printf("checksum verification failed\n");
 424                 return (ERR_FSYS_CORRUPT);
 425         }
 426 
 427         if (comp != ZIO_COMPRESS_OFF) {
 428                 if (decomp_table[comp].decomp_func(buf, retbuf, psize,
 429                     lsize) != 0) {
 430                         grub_printf("zio_read decompression failed\n");
 431                         return (ERR_FSYS_CORRUPT);
 432                 }
 433         }
 434 
 435         return (0);
 436 }
 437 
 438 /*
 439  * Get the block from a block id.
 440  * push the block onto the stack.
 441  *
 442  * Return:
 443  *      0 - success
 444  *      errnum - failure
 445  */
 446 static int
 447 dmu_read(dnode_phys_t *dn, uint64_t blkid, void *buf, char *stack)
 448 {
 449         int idx, level;
 450         blkptr_t *bp_array = dn->dn_blkptr;
 451         int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
 452         blkptr_t *bp, *tmpbuf;
 453 
 454         bp = (blkptr_t *)stack;
 455         stack += sizeof (blkptr_t);
 456 
 457         tmpbuf = (blkptr_t *)stack;
 458         stack += 1<<dn->dn_indblkshift;
 459 
 460         for (level = dn->dn_nlevels - 1; level >= 0; level--) {
 461                 idx = (blkid >> (epbs * level)) & ((1<<epbs)-1);
 462                 *bp = bp_array[idx];
 463                 if (level == 0)
 464                         tmpbuf = buf;
 465                 if (BP_IS_HOLE(bp)) {
 466                         grub_memset(buf, 0,
 467                             dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
 468                         break;
 469                 } else if (errnum = zio_read(bp, tmpbuf, stack)) {
 470                         return (errnum);
 471                 }
 472 
 473                 bp_array = tmpbuf;
 474         }
 475 
 476         return (0);
 477 }
 478 
 479 /*
 480  * mzap_lookup: Looks up property described by "name" and returns the value
 481  * in "value".
 482  *
 483  * Return:
 484  *      0 - success
 485  *      errnum - failure
 486  */
 487 static int
 488 mzap_lookup(mzap_phys_t *zapobj, int objsize, const char *name,
 489         uint64_t *value)
 490 {
 491         int i, chunks;
 492         mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
 493 
 494         chunks = objsize / MZAP_ENT_LEN - 1;
 495         for (i = 0; i < chunks; i++) {
 496                 if (grub_strcmp(mzap_ent[i].mze_name, name) == 0) {
 497                         *value = mzap_ent[i].mze_value;
 498                         return (0);
 499                 }
 500         }
 501 
 502         return (ERR_FSYS_CORRUPT);
 503 }
 504 
 505 static uint64_t
 506 zap_hash(uint64_t salt, const char *name)
 507 {
 508         static uint64_t table[256];
 509         const uint8_t *cp;
 510         uint8_t c;
 511         uint64_t crc = salt;
 512 
 513         if (table[128] == 0) {
 514                 uint64_t *ct;
 515                 int i, j;
 516                 for (i = 0; i < 256; i++) {
 517                         for (ct = table + i, *ct = i, j = 8; j > 0; j--)
 518                                 *ct = (*ct >> 1) ^ (-(*ct & 1) &
 519                                     ZFS_CRC64_POLY);
 520                 }
 521         }
 522 
 523         if (crc == 0 || table[128] != ZFS_CRC64_POLY) {
 524                 errnum = ERR_FSYS_CORRUPT;
 525                 return (0);
 526         }
 527 
 528         for (cp = (const uint8_t *)name; (c = *cp) != '\0'; cp++)
 529                 crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF];
 530 
 531         /*
 532          * Only use 28 bits, since we need 4 bits in the cookie for the
 533          * collision differentiator.  We MUST use the high bits, since
 534          * those are the ones that we first pay attention to when
 535          * choosing the bucket.
 536          */
 537         crc &= ~((1ULL << (64 - 28)) - 1);
 538 
 539         return (crc);
 540 }
 541 
 542 /*
 543  * Only to be used on 8-bit arrays.
 544  * array_len is actual len in bytes (not encoded le_value_length).
 545  * buf is null-terminated.
 546  */
 547 static int
 548 zap_leaf_array_equal(zap_leaf_phys_t *l, int blksft, int chunk,
 549     int array_len, const char *buf)
 550 {
 551         int bseen = 0;
 552 
 553         while (bseen < array_len) {
 554                 struct zap_leaf_array *la =
 555                     &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
 556                 int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
 557 
 558                 if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
 559                         return (0);
 560 
 561                 if (zfs_bcmp(la->la_array, buf + bseen, toread) != 0)
 562                         break;
 563                 chunk = la->la_next;
 564                 bseen += toread;
 565         }
 566         return (bseen == array_len);
 567 }
 568 
 569 /*
 570  * Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the
 571  * value for the property "name".
 572  *
 573  * Return:
 574  *      0 - success
 575  *      errnum - failure
 576  */
 577 static int
 578 zap_leaf_lookup(zap_leaf_phys_t *l, int blksft, uint64_t h,
 579     const char *name, uint64_t *value)
 580 {
 581         uint16_t chunk;
 582         struct zap_leaf_entry *le;
 583 
 584         /* Verify if this is a valid leaf block */
 585         if (l->l_hdr.lh_block_type != ZBT_LEAF)
 586                 return (ERR_FSYS_CORRUPT);
 587         if (l->l_hdr.lh_magic != ZAP_LEAF_MAGIC)
 588                 return (ERR_FSYS_CORRUPT);
 589 
 590         for (chunk = l->l_hash[LEAF_HASH(blksft, h)];
 591             chunk != CHAIN_END; chunk = le->le_next) {
 592 
 593                 if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
 594                         return (ERR_FSYS_CORRUPT);
 595 
 596                 le = ZAP_LEAF_ENTRY(l, blksft, chunk);
 597 
 598                 /* Verify the chunk entry */
 599                 if (le->le_type != ZAP_CHUNK_ENTRY)
 600                         return (ERR_FSYS_CORRUPT);
 601 
 602                 if (le->le_hash != h)
 603                         continue;
 604 
 605                 if (zap_leaf_array_equal(l, blksft, le->le_name_chunk,
 606                     le->le_name_length, name)) {
 607 
 608                         struct zap_leaf_array *la;
 609                         uint8_t *ip;
 610 
 611                         if (le->le_int_size != 8 || le->le_value_length != 1)
 612                                 return (ERR_FSYS_CORRUPT);
 613 
 614                         /* get the uint64_t property value */
 615                         la = &ZAP_LEAF_CHUNK(l, blksft,
 616                             le->le_value_chunk).l_array;
 617                         ip = la->la_array;
 618 
 619                         *value = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
 620                             (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
 621                             (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
 622                             (uint64_t)ip[6] << 8 | (uint64_t)ip[7];
 623 
 624                         return (0);
 625                 }
 626         }
 627 
 628         return (ERR_FSYS_CORRUPT);
 629 }
 630 
 631 /*
 632  * Fat ZAP lookup
 633  *
 634  * Return:
 635  *      0 - success
 636  *      errnum - failure
 637  */
 638 static int
 639 fzap_lookup(dnode_phys_t *zap_dnode, zap_phys_t *zap,
 640     const char *name, uint64_t *value, char *stack)
 641 {
 642         zap_leaf_phys_t *l;
 643         uint64_t hash, idx, blkid;
 644         int blksft = zfs_log2(zap_dnode->dn_datablkszsec << DNODE_SHIFT);
 645 
 646         /* Verify if this is a fat zap header block */
 647         if (zap->zap_magic != (uint64_t)ZAP_MAGIC ||
 648             zap->zap_flags != 0)
 649                 return (ERR_FSYS_CORRUPT);
 650 
 651         hash = zap_hash(zap->zap_salt, name);
 652         if (errnum)
 653                 return (errnum);
 654 
 655         /* get block id from index */
 656         if (zap->zap_ptrtbl.zt_numblks != 0) {
 657                 /* external pointer tables not supported */
 658                 return (ERR_FSYS_CORRUPT);
 659         }
 660         idx = ZAP_HASH_IDX(hash, zap->zap_ptrtbl.zt_shift);
 661         blkid = ((uint64_t *)zap)[idx + (1<<(blksft-3-1))];
 662 
 663         /* Get the leaf block */
 664         l = (zap_leaf_phys_t *)stack;
 665         stack += 1<<blksft;
 666         if ((1<<blksft) < sizeof (zap_leaf_phys_t))
 667                 return (ERR_FSYS_CORRUPT);
 668         if (errnum = dmu_read(zap_dnode, blkid, l, stack))
 669                 return (errnum);
 670 
 671         return (zap_leaf_lookup(l, blksft, hash, name, value));
 672 }
 673 
 674 /*
 675  * Read in the data of a zap object and find the value for a matching
 676  * property name.
 677  *
 678  * Return:
 679  *      0 - success
 680  *      errnum - failure
 681  */
 682 static int
 683 zap_lookup(dnode_phys_t *zap_dnode, const char *name, uint64_t *val,
 684     char *stack)
 685 {
 686         uint64_t block_type;
 687         int size;
 688         void *zapbuf;
 689 
 690         /* Read in the first block of the zap object data. */
 691         zapbuf = stack;
 692         size = zap_dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
 693         stack += size;
 694 
 695         if ((errnum = dmu_read(zap_dnode, 0, zapbuf, stack)) != 0)
 696                 return (errnum);
 697 
 698         block_type = *((uint64_t *)zapbuf);
 699 
 700         if (block_type == ZBT_MICRO) {
 701                 return (mzap_lookup(zapbuf, size, name, val));
 702         } else if (block_type == ZBT_HEADER) {
 703                 /* this is a fat zap */
 704                 return (fzap_lookup(zap_dnode, zapbuf, name,
 705                     val, stack));
 706         }
 707 
 708         return (ERR_FSYS_CORRUPT);
 709 }
 710 
 711 typedef struct zap_attribute {
 712         int za_integer_length;
 713         uint64_t za_num_integers;
 714         uint64_t za_first_integer;
 715         char *za_name;
 716 } zap_attribute_t;
 717 
 718 typedef int (zap_cb_t)(zap_attribute_t *za, void *arg, char *stack);
 719 
 720 static int
 721 zap_iterate(dnode_phys_t *zap_dnode, zap_cb_t *cb, void *arg, char *stack)
 722 {
 723         uint32_t size = zap_dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
 724         zap_attribute_t za;
 725         int i;
 726         mzap_phys_t *mzp = (mzap_phys_t *)stack;
 727         stack += size;
 728 
 729         if ((errnum = dmu_read(zap_dnode, 0, mzp, stack)) != 0)
 730                 return (errnum);
 731 
 732         /*
 733          * Iteration over fatzap objects has not yet been implemented.
 734          * If we encounter a pool in which there are more features for
 735          * read than can fit inside a microzap (i.e., more than 2048
 736          * features for read), we can add support for fatzap iteration.
 737          * For now, fail.
 738          */
 739         if (mzp->mz_block_type != ZBT_MICRO) {
 740                 grub_printf("feature information stored in fatzap, pool "
 741                     "version not supported\n");
 742                 return (1);
 743         }
 744 
 745         za.za_integer_length = 8;
 746         za.za_num_integers = 1;
 747         for (i = 0; i < size / MZAP_ENT_LEN - 1; i++) {
 748                 mzap_ent_phys_t *mzep = &mzp->mz_chunk[i];
 749                 int err;
 750 
 751                 za.za_first_integer = mzep->mze_value;
 752                 za.za_name = mzep->mze_name;
 753                 err = cb(&za, arg, stack);
 754                 if (err != 0)
 755                         return (err);
 756         }
 757 
 758         return (0);
 759 }
 760 
 761 /*
 762  * Get the dnode of an object number from the metadnode of an object set.
 763  *
 764  * Input
 765  *      mdn - metadnode to get the object dnode
 766  *      objnum - object number for the object dnode
 767  *      buf - data buffer that holds the returning dnode
 768  *      stack - scratch area
 769  *
 770  * Return:
 771  *      0 - success
 772  *      errnum - failure
 773  */
 774 static int
 775 dnode_get(dnode_phys_t *mdn, uint64_t objnum, uint8_t type, dnode_phys_t *buf,
 776         char *stack)
 777 {
 778         uint64_t blkid, blksz; /* the block id this object dnode is in */
 779         int epbs; /* shift of number of dnodes in a block */
 780         int idx; /* index within a block */
 781         dnode_phys_t *dnbuf;
 782 
 783         blksz = mdn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
 784         epbs = zfs_log2(blksz) - DNODE_SHIFT;
 785         blkid = objnum >> epbs;
 786         idx = objnum & ((1<<epbs)-1);
 787 
 788         if (dnode_buf != NULL && dnode_mdn == mdn &&
 789             objnum >= dnode_start && objnum < dnode_end) {
 790                 grub_memmove(buf, &dnode_buf[idx], DNODE_SIZE);
 791                 VERIFY_DN_TYPE(buf, type);
 792                 return (0);
 793         }
 794 
 795         if (dnode_buf && blksz == 1<<DNODE_BLOCK_SHIFT) {
 796                 dnbuf = dnode_buf;
 797                 dnode_mdn = mdn;
 798                 dnode_start = blkid << epbs;
 799                 dnode_end = (blkid + 1) << epbs;
 800         } else {
 801                 dnbuf = (dnode_phys_t *)stack;
 802                 stack += blksz;
 803         }
 804 
 805         if (errnum = dmu_read(mdn, blkid, (char *)dnbuf, stack))
 806                 return (errnum);
 807 
 808         grub_memmove(buf, &dnbuf[idx], DNODE_SIZE);
 809         VERIFY_DN_TYPE(buf, type);
 810 
 811         return (0);
 812 }
 813 
 814 /*
 815  * Check if this is a special file that resides at the top
 816  * dataset of the pool. Currently this is the GRUB menu,
 817  * boot signature and boot signature backup.
 818  * str starts with '/'.
 819  */
 820 static int
 821 is_top_dataset_file(char *str)
 822 {
 823         char *tptr;
 824 
 825         if ((tptr = grub_strstr(str, "menu.lst")) &&
 826             (tptr[8] == '\0' || tptr[8] == ' ') &&
 827             *(tptr-1) == '/')
 828                 return (1);
 829 
 830         if (grub_strncmp(str, BOOTSIGN_DIR"/",
 831             grub_strlen(BOOTSIGN_DIR) + 1) == 0)
 832                 return (1);
 833 
 834         if (grub_strcmp(str, BOOTSIGN_BACKUP) == 0)
 835                 return (1);
 836 
 837         return (0);
 838 }
 839 
 840 static int
 841 check_feature(zap_attribute_t *za, void *arg, char *stack)
 842 {
 843         const char **names = arg;
 844         int i;
 845 
 846         if (za->za_first_integer == 0)
 847                 return (0);
 848 
 849         for (i = 0; names[i] != NULL; i++) {
 850                 if (grub_strcmp(za->za_name, names[i]) == 0) {
 851                         return (0);
 852                 }
 853         }
 854         grub_printf("missing feature for read '%s'\n", za->za_name);
 855         return (ERR_NEWER_VERSION);
 856 }
 857 
 858 /*
 859  * Get the file dnode for a given file name where mdn is the meta dnode
 860  * for this ZFS object set. When found, place the file dnode in dn.
 861  * The 'path' argument will be mangled.
 862  *
 863  * Return:
 864  *      0 - success
 865  *      errnum - failure
 866  */
 867 static int
 868 dnode_get_path(dnode_phys_t *mdn, char *path, dnode_phys_t *dn,
 869     char *stack)
 870 {
 871         uint64_t objnum, version;
 872         char *cname, ch;
 873 
 874         if (errnum = dnode_get(mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
 875             dn, stack))
 876                 return (errnum);
 877 
 878         if (errnum = zap_lookup(dn, ZPL_VERSION_STR, &version, stack))
 879                 return (errnum);
 880         if (version > ZPL_VERSION)
 881                 return (-1);
 882 
 883         if (errnum = zap_lookup(dn, ZFS_ROOT_OBJ, &objnum, stack))
 884                 return (errnum);
 885 
 886         if (errnum = dnode_get(mdn, objnum, DMU_OT_DIRECTORY_CONTENTS,
 887             dn, stack))
 888                 return (errnum);
 889 
 890         /* skip leading slashes */
 891         while (*path == '/')
 892                 path++;
 893 
 894         while (*path && !grub_isspace(*path)) {
 895 
 896                 /* get the next component name */
 897                 cname = path;
 898                 while (*path && !grub_isspace(*path) && *path != '/')
 899                         path++;
 900                 ch = *path;
 901                 *path = 0;   /* ensure null termination */
 902 
 903                 if (errnum = zap_lookup(dn, cname, &objnum, stack))
 904                         return (errnum);
 905 
 906                 objnum = ZFS_DIRENT_OBJ(objnum);
 907                 if (errnum = dnode_get(mdn, objnum, 0, dn, stack))
 908                         return (errnum);
 909 
 910                 *path = ch;
 911                 while (*path == '/')
 912                         path++;
 913         }
 914 
 915         /* We found the dnode for this file. Verify if it is a plain file. */
 916         VERIFY_DN_TYPE(dn, DMU_OT_PLAIN_FILE_CONTENTS);
 917 
 918         return (0);
 919 }
 920 
 921 /*
 922  * Get the default 'bootfs' property value from the rootpool.
 923  *
 924  * Return:
 925  *      0 - success
 926  *      errnum -failure
 927  */
 928 static int
 929 get_default_bootfsobj(dnode_phys_t *mosmdn, uint64_t *obj, char *stack)
 930 {
 931         uint64_t objnum = 0;
 932         dnode_phys_t *dn = (dnode_phys_t *)stack;
 933         stack += DNODE_SIZE;
 934 
 935         if (errnum = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT,
 936             DMU_OT_OBJECT_DIRECTORY, dn, stack))
 937                 return (errnum);
 938 
 939         /*
 940          * find the object number for 'pool_props', and get the dnode
 941          * of the 'pool_props'.
 942          */
 943         if (zap_lookup(dn, DMU_POOL_PROPS, &objnum, stack))
 944                 return (ERR_FILESYSTEM_NOT_FOUND);
 945 
 946         if (errnum = dnode_get(mosmdn, objnum, DMU_OT_POOL_PROPS, dn, stack))
 947                 return (errnum);
 948 
 949         if (zap_lookup(dn, ZPOOL_PROP_BOOTFS, &objnum, stack))
 950                 return (ERR_FILESYSTEM_NOT_FOUND);
 951 
 952         if (!objnum)
 953                 return (ERR_FILESYSTEM_NOT_FOUND);
 954 
 955         *obj = objnum;
 956         return (0);
 957 }
 958 
 959 /*
 960  * List of pool features that the grub implementation of ZFS supports for
 961  * read. Note that features that are only required for write do not need
 962  * to be listed here since grub opens pools in read-only mode.
 963  */
 964 static const char *spa_feature_names[] = {
 965         "org.illumos:lz4_compress",
 966         NULL
 967 };
 968 
 969 /*
 970  * Checks whether the MOS features that are active are supported by this
 971  * (GRUB's) implementation of ZFS.
 972  *
 973  * Return:
 974  *      0: Success.
 975  *      errnum: Failure.
 976  */
 977 static int
 978 check_mos_features(dnode_phys_t *mosmdn, char *stack)
 979 {
 980         uint64_t objnum;
 981         dnode_phys_t *dn;
 982         uint8_t error = 0;
 983 
 984         dn = (dnode_phys_t *)stack;
 985         stack += DNODE_SIZE;
 986 
 987         if ((errnum = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT,
 988             DMU_OT_OBJECT_DIRECTORY, dn, stack)) != 0)
 989                 return (errnum);
 990 
 991         /*
 992          * Find the object number for 'features_for_read' and retrieve its
 993          * corresponding dnode. Note that we don't check features_for_write
 994          * because GRUB is not opening the pool for write.
 995          */
 996         if ((errnum = zap_lookup(dn, DMU_POOL_FEATURES_FOR_READ, &objnum,
 997             stack)) != 0)
 998                 return (errnum);
 999 
1000         if ((errnum = dnode_get(mosmdn, objnum, DMU_OTN_ZAP_METADATA,
1001             dn, stack)) != 0)
1002                 return (errnum);
1003 
1004         return (zap_iterate(dn, check_feature, spa_feature_names, stack));
1005 }
1006 
1007 /*
1008  * Given a MOS metadnode, get the metadnode of a given filesystem name (fsname),
1009  * e.g. pool/rootfs, or a given object number (obj), e.g. the object number
1010  * of pool/rootfs.
1011  *
1012  * If no fsname and no obj are given, return the DSL_DIR metadnode.
1013  * If fsname is given, return its metadnode and its matching object number.
1014  * If only obj is given, return the metadnode for this object number.
1015  *
1016  * Return:
1017  *      0 - success
1018  *      errnum - failure
1019  */
1020 static int
1021 get_objset_mdn(dnode_phys_t *mosmdn, char *fsname, uint64_t *obj,
1022     dnode_phys_t *mdn, char *stack)
1023 {
1024         uint64_t objnum, headobj;
1025         char *cname, ch;
1026         blkptr_t *bp;
1027         objset_phys_t *osp;
1028         int issnapshot = 0;
1029         char *snapname;
1030 
1031         if (fsname == NULL && obj) {
1032                 headobj = *obj;
1033                 goto skip;
1034         }
1035 
1036         if (errnum = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT,
1037             DMU_OT_OBJECT_DIRECTORY, mdn, stack))
1038                 return (errnum);
1039 
1040         if (errnum = zap_lookup(mdn, DMU_POOL_ROOT_DATASET, &objnum,
1041             stack))
1042                 return (errnum);
1043 
1044         if (errnum = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, stack))
1045                 return (errnum);
1046 
1047         if (fsname == NULL) {
1048                 headobj =
1049                     ((dsl_dir_phys_t *)DN_BONUS(mdn))->dd_head_dataset_obj;
1050                 goto skip;
1051         }
1052 
1053         /* take out the pool name */
1054         while (*fsname && !grub_isspace(*fsname) && *fsname != '/')
1055                 fsname++;
1056 
1057         while (*fsname && !grub_isspace(*fsname)) {
1058                 uint64_t childobj;
1059 
1060                 while (*fsname == '/')
1061                         fsname++;
1062 
1063                 cname = fsname;
1064                 while (*fsname && !grub_isspace(*fsname) && *fsname != '/')
1065                         fsname++;
1066                 ch = *fsname;
1067                 *fsname = 0;
1068 
1069                 snapname = cname;
1070                 while (*snapname && !grub_isspace(*snapname) && *snapname !=
1071                     '@')
1072                         snapname++;
1073                 if (*snapname == '@') {
1074                         issnapshot = 1;
1075                         *snapname = 0;
1076                 }
1077                 childobj =
1078                     ((dsl_dir_phys_t *)DN_BONUS(mdn))->dd_child_dir_zapobj;
1079                 if (errnum = dnode_get(mosmdn, childobj,
1080                     DMU_OT_DSL_DIR_CHILD_MAP, mdn, stack))
1081                         return (errnum);
1082 
1083                 if (zap_lookup(mdn, cname, &objnum, stack))
1084                         return (ERR_FILESYSTEM_NOT_FOUND);
1085 
1086                 if (errnum = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR,
1087                     mdn, stack))
1088                         return (errnum);
1089 
1090                 *fsname = ch;
1091                 if (issnapshot)
1092                         *snapname = '@';
1093         }
1094         headobj = ((dsl_dir_phys_t *)DN_BONUS(mdn))->dd_head_dataset_obj;
1095         if (obj)
1096                 *obj = headobj;
1097 
1098 skip:
1099         if (errnum = dnode_get(mosmdn, headobj, DMU_OT_DSL_DATASET, mdn, stack))
1100                 return (errnum);
1101         if (issnapshot) {
1102                 uint64_t snapobj;
1103 
1104                 snapobj = ((dsl_dataset_phys_t *)DN_BONUS(mdn))->
1105                     ds_snapnames_zapobj;
1106 
1107                 if (errnum = dnode_get(mosmdn, snapobj,
1108                     DMU_OT_DSL_DS_SNAP_MAP, mdn, stack))
1109                         return (errnum);
1110                 if (zap_lookup(mdn, snapname + 1, &headobj, stack))
1111                         return (ERR_FILESYSTEM_NOT_FOUND);
1112                 if (errnum = dnode_get(mosmdn, headobj,
1113                     DMU_OT_DSL_DATASET, mdn, stack))
1114                         return (errnum);
1115                 if (obj)
1116                         *obj = headobj;
1117         }
1118 
1119         bp = &((dsl_dataset_phys_t *)DN_BONUS(mdn))->ds_bp;
1120         osp = (objset_phys_t *)stack;
1121         stack += sizeof (objset_phys_t);
1122         if (errnum = zio_read(bp, osp, stack))
1123                 return (errnum);
1124 
1125         grub_memmove((char *)mdn, (char *)&osp->os_meta_dnode, DNODE_SIZE);
1126 
1127         return (0);
1128 }
1129 
1130 /*
1131  * For a given XDR packed nvlist, verify the first 4 bytes and move on.
1132  *
1133  * An XDR packed nvlist is encoded as (comments from nvs_xdr_create) :
1134  *
1135  *      encoding method/host endian     (4 bytes)
1136  *      nvl_version                     (4 bytes)
1137  *      nvl_nvflag                      (4 bytes)
1138  *      encoded nvpairs:
1139  *              encoded size of the nvpair      (4 bytes)
1140  *              decoded size of the nvpair      (4 bytes)
1141  *              name string size                (4 bytes)
1142  *              name string data                (sizeof(NV_ALIGN4(string))
1143  *              data type                       (4 bytes)
1144  *              # of elements in the nvpair     (4 bytes)
1145  *              data
1146  *      2 zero's for the last nvpair
1147  *              (end of the entire list)        (8 bytes)
1148  *
1149  * Return:
1150  *      0 - success
1151  *      1 - failure
1152  */
1153 static int
1154 nvlist_unpack(char *nvlist, char **out)
1155 {
1156         /* Verify if the 1st and 2nd byte in the nvlist are valid. */
1157         if (nvlist[0] != NV_ENCODE_XDR || nvlist[1] != HOST_ENDIAN)
1158                 return (1);
1159 
1160         *out = nvlist + 4;
1161         return (0);
1162 }
1163 
1164 static char *
1165 nvlist_array(char *nvlist, int index)
1166 {
1167         int i, encode_size;
1168 
1169         for (i = 0; i < index; i++) {
1170                 /* skip the header, nvl_version, and nvl_nvflag */
1171                 nvlist = nvlist + 4 * 2;
1172 
1173                 while (encode_size = BSWAP_32(*(uint32_t *)nvlist))
1174                         nvlist += encode_size; /* goto the next nvpair */
1175 
1176                 nvlist = nvlist + 4 * 2; /* skip the ending 2 zeros - 8 bytes */
1177         }
1178 
1179         return (nvlist);
1180 }
1181 
1182 /*
1183  * The nvlist_next_nvpair() function returns a handle to the next nvpair in the
1184  * list following nvpair. If nvpair is NULL, the first pair is returned. If
1185  * nvpair is the last pair in the nvlist, NULL is returned.
1186  */
1187 static char *
1188 nvlist_next_nvpair(char *nvl, char *nvpair)
1189 {
1190         char *cur, *prev;
1191         int encode_size;
1192 
1193         if (nvl == NULL)
1194                 return (NULL);
1195 
1196         if (nvpair == NULL) {
1197                 /* skip over nvl_version and nvl_nvflag */
1198                 nvpair = nvl + 4 * 2;
1199         } else {
1200                 /* skip to the next nvpair */
1201                 encode_size = BSWAP_32(*(uint32_t *)nvpair);
1202                 nvpair += encode_size;
1203         }
1204 
1205         /* 8 bytes of 0 marks the end of the list */
1206         if (*(uint64_t *)nvpair == 0)
1207                 return (NULL);
1208 
1209         return (nvpair);
1210 }
1211 
1212 /*
1213  * This function returns 0 on success and 1 on failure. On success, a string
1214  * containing the name of nvpair is saved in buf.
1215  */
1216 static int
1217 nvpair_name(char *nvp, char *buf, int buflen)
1218 {
1219         int len;
1220 
1221         /* skip over encode/decode size */
1222         nvp += 4 * 2;
1223 
1224         len = BSWAP_32(*(uint32_t *)nvp);
1225         if (buflen < len + 1)
1226                 return (1);
1227 
1228         grub_memmove(buf, nvp + 4, len);
1229         buf[len] = '\0';
1230 
1231         return (0);
1232 }
1233 
1234 /*
1235  * This function retrieves the value of the nvpair in the form of enumerated
1236  * type data_type_t. This is used to determine the appropriate type to pass to
1237  * nvpair_value().
1238  */
1239 static int
1240 nvpair_type(char *nvp)
1241 {
1242         int name_len, type;
1243 
1244         /* skip over encode/decode size */
1245         nvp += 4 * 2;
1246 
1247         /* skip over name_len */
1248         name_len = BSWAP_32(*(uint32_t *)nvp);
1249         nvp += 4;
1250 
1251         /* skip over name */
1252         nvp = nvp + ((name_len + 3) & ~3); /* align */
1253 
1254         type = BSWAP_32(*(uint32_t *)nvp);
1255 
1256         return (type);
1257 }
1258 
1259 static int
1260 nvpair_value(char *nvp, void *val, int valtype, int *nelmp)
1261 {
1262         int name_len, type, slen;
1263         char *strval = val;
1264         uint64_t *intval = val;
1265 
1266         /* skip over encode/decode size */
1267         nvp += 4 * 2;
1268 
1269         /* skip over name_len */
1270         name_len = BSWAP_32(*(uint32_t *)nvp);
1271         nvp += 4;
1272 
1273         /* skip over name */
1274         nvp = nvp + ((name_len + 3) & ~3); /* align */
1275 
1276         /* skip over type */
1277         type = BSWAP_32(*(uint32_t *)nvp);
1278         nvp += 4;
1279 
1280         if (type == valtype) {
1281                 int nelm;
1282 
1283                 nelm = BSWAP_32(*(uint32_t *)nvp);
1284                 if (valtype != DATA_TYPE_BOOLEAN && nelm < 1)
1285                         return (1);
1286                 nvp += 4;
1287 
1288                 switch (valtype) {
1289                 case DATA_TYPE_BOOLEAN:
1290                         return (0);
1291 
1292                 case DATA_TYPE_STRING:
1293                         slen = BSWAP_32(*(uint32_t *)nvp);
1294                         nvp += 4;
1295                         grub_memmove(strval, nvp, slen);
1296                         strval[slen] = '\0';
1297                         return (0);
1298 
1299                 case DATA_TYPE_UINT64:
1300                         *intval = BSWAP_64(*(uint64_t *)nvp);
1301                         return (0);
1302 
1303                 case DATA_TYPE_NVLIST:
1304                         *(void **)val = (void *)nvp;
1305                         return (0);
1306 
1307                 case DATA_TYPE_NVLIST_ARRAY:
1308                         *(void **)val = (void *)nvp;
1309                         if (nelmp)
1310                                 *nelmp = nelm;
1311                         return (0);
1312                 }
1313         }
1314 
1315         return (1);
1316 }
1317 
1318 static int
1319 nvlist_lookup_value(char *nvlist, char *name, void *val, int valtype,
1320     int *nelmp)
1321 {
1322         char *nvpair;
1323 
1324         for (nvpair = nvlist_next_nvpair(nvlist, NULL);
1325             nvpair != NULL;
1326             nvpair = nvlist_next_nvpair(nvlist, nvpair)) {
1327                 int name_len = BSWAP_32(*(uint32_t *)(nvpair + 4 * 2));
1328                 char *nvp_name = nvpair + 4 * 3;
1329 
1330                 if ((grub_strncmp(nvp_name, name, name_len) == 0) &&
1331                     nvpair_type(nvpair) == valtype) {
1332                         return (nvpair_value(nvpair, val, valtype, nelmp));
1333                 }
1334         }
1335         return (1);
1336 }
1337 
1338 /*
1339  * Check if this vdev is online and is in a good state.
1340  */
1341 static int
1342 vdev_validate(char *nv)
1343 {
1344         uint64_t ival;
1345 
1346         if (nvlist_lookup_value(nv, ZPOOL_CONFIG_OFFLINE, &ival,
1347             DATA_TYPE_UINT64, NULL) == 0 ||
1348             nvlist_lookup_value(nv, ZPOOL_CONFIG_FAULTED, &ival,
1349             DATA_TYPE_UINT64, NULL) == 0 ||
1350             nvlist_lookup_value(nv, ZPOOL_CONFIG_REMOVED, &ival,
1351             DATA_TYPE_UINT64, NULL) == 0)
1352                 return (ERR_DEV_VALUES);
1353 
1354         return (0);
1355 }
1356 
1357 /*
1358  * Get a valid vdev pathname/devid from the boot device.
1359  * The caller should already allocate MAXPATHLEN memory for bootpath and devid.
1360  */
1361 static int
1362 vdev_get_bootpath(char *nv, uint64_t inguid, char *devid, char *bootpath,
1363     int is_spare)
1364 {
1365         char type[16];
1366 
1367         if (nvlist_lookup_value(nv, ZPOOL_CONFIG_TYPE, &type, DATA_TYPE_STRING,
1368             NULL))
1369                 return (ERR_FSYS_CORRUPT);
1370 
1371         if (grub_strcmp(type, VDEV_TYPE_DISK) == 0) {
1372                 uint64_t guid;
1373 
1374                 if (vdev_validate(nv) != 0)
1375                         return (ERR_NO_BOOTPATH);
1376 
1377                 if (nvlist_lookup_value(nv, ZPOOL_CONFIG_GUID,
1378                     &guid, DATA_TYPE_UINT64, NULL) != 0)
1379                         return (ERR_NO_BOOTPATH);
1380 
1381                 if (guid != inguid)
1382                         return (ERR_NO_BOOTPATH);
1383 
1384                 /* for a spare vdev, pick the disk labeled with "is_spare" */
1385                 if (is_spare) {
1386                         uint64_t spare = 0;
1387                         (void) nvlist_lookup_value(nv, ZPOOL_CONFIG_IS_SPARE,
1388                             &spare, DATA_TYPE_UINT64, NULL);
1389                         if (!spare)
1390                                 return (ERR_NO_BOOTPATH);
1391                 }
1392 
1393                 if (nvlist_lookup_value(nv, ZPOOL_CONFIG_PHYS_PATH,
1394                     bootpath, DATA_TYPE_STRING, NULL) != 0)
1395                         bootpath[0] = '\0';
1396 
1397                 if (nvlist_lookup_value(nv, ZPOOL_CONFIG_DEVID,
1398                     devid, DATA_TYPE_STRING, NULL) != 0)
1399                         devid[0] = '\0';
1400 
1401                 if (grub_strlen(bootpath) >= MAXPATHLEN ||
1402                     grub_strlen(devid) >= MAXPATHLEN)
1403                         return (ERR_WONT_FIT);
1404 
1405                 return (0);
1406 
1407         } else if (grub_strcmp(type, VDEV_TYPE_MIRROR) == 0 ||
1408             grub_strcmp(type, VDEV_TYPE_REPLACING) == 0 ||
1409             (is_spare = (grub_strcmp(type, VDEV_TYPE_SPARE) == 0))) {
1410                 int nelm, i;
1411                 char *child;
1412 
1413                 if (nvlist_lookup_value(nv, ZPOOL_CONFIG_CHILDREN, &child,
1414                     DATA_TYPE_NVLIST_ARRAY, &nelm))
1415                         return (ERR_FSYS_CORRUPT);
1416 
1417                 for (i = 0; i < nelm; i++) {
1418                         char *child_i;
1419 
1420                         child_i = nvlist_array(child, i);
1421                         if (vdev_get_bootpath(child_i, inguid, devid,
1422                             bootpath, is_spare) == 0)
1423                                 return (0);
1424                 }
1425         }
1426 
1427         return (ERR_NO_BOOTPATH);
1428 }
1429 
1430 /*
1431  * Check the disk label information and retrieve needed vdev name-value pairs.
1432  *
1433  * Return:
1434  *      0 - success
1435  *      ERR_* - failure
1436  */
1437 static int
1438 check_pool_label(uint64_t sector, char *stack, char *outdevid,
1439     char *outpath, uint64_t *outguid, uint64_t *outashift, uint64_t *outversion)
1440 {
1441         vdev_phys_t *vdev;
1442         uint64_t pool_state, txg = 0;
1443         char *nvlist, *nv, *features;
1444         uint64_t diskguid;
1445 
1446         sector += (VDEV_SKIP_SIZE >> SPA_MINBLOCKSHIFT);
1447 
1448         /* Read in the vdev name-value pair list (112K). */
1449         if (devread(sector, 0, VDEV_PHYS_SIZE, stack) == 0)
1450                 return (ERR_READ);
1451 
1452         vdev = (vdev_phys_t *)stack;
1453         stack += sizeof (vdev_phys_t);
1454 
1455         if (nvlist_unpack(vdev->vp_nvlist, &nvlist))
1456                 return (ERR_FSYS_CORRUPT);
1457 
1458         if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_POOL_STATE, &pool_state,
1459             DATA_TYPE_UINT64, NULL))
1460                 return (ERR_FSYS_CORRUPT);
1461 
1462         if (pool_state == POOL_STATE_DESTROYED)
1463                 return (ERR_FILESYSTEM_NOT_FOUND);
1464 
1465         if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_POOL_NAME,
1466             current_rootpool, DATA_TYPE_STRING, NULL))
1467                 return (ERR_FSYS_CORRUPT);
1468 
1469         if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_POOL_TXG, &txg,
1470             DATA_TYPE_UINT64, NULL))
1471                 return (ERR_FSYS_CORRUPT);
1472 
1473         /* not an active device */
1474         if (txg == 0)
1475                 return (ERR_NO_BOOTPATH);
1476 
1477         if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_VERSION, outversion,
1478             DATA_TYPE_UINT64, NULL))
1479                 return (ERR_FSYS_CORRUPT);
1480         if (!SPA_VERSION_IS_SUPPORTED(*outversion))
1481                 return (ERR_NEWER_VERSION);
1482         if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_VDEV_TREE, &nv,
1483             DATA_TYPE_NVLIST, NULL))
1484                 return (ERR_FSYS_CORRUPT);
1485         if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_GUID, &diskguid,
1486             DATA_TYPE_UINT64, NULL))
1487                 return (ERR_FSYS_CORRUPT);
1488         if (nvlist_lookup_value(nv, ZPOOL_CONFIG_ASHIFT, outashift,
1489             DATA_TYPE_UINT64, NULL) != 0)
1490                 return (ERR_FSYS_CORRUPT);
1491         if (vdev_get_bootpath(nv, diskguid, outdevid, outpath, 0))
1492                 return (ERR_NO_BOOTPATH);
1493         if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_POOL_GUID, outguid,
1494             DATA_TYPE_UINT64, NULL))
1495                 return (ERR_FSYS_CORRUPT);
1496 
1497         if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_FEATURES_FOR_READ,
1498             &features, DATA_TYPE_NVLIST, NULL) == 0) {
1499                 char *nvp;
1500                 char *name = stack;
1501                 stack += MAXNAMELEN;
1502 
1503                 for (nvp = nvlist_next_nvpair(features, NULL);
1504                     nvp != NULL;
1505                     nvp = nvlist_next_nvpair(features, nvp)) {
1506                         zap_attribute_t za;
1507 
1508                         if (nvpair_name(nvp, name, MAXNAMELEN) != 0)
1509                                 return (ERR_FSYS_CORRUPT);
1510 
1511                         za.za_integer_length = 8;
1512                         za.za_num_integers = 1;
1513                         za.za_first_integer = 1;
1514                         za.za_name = name;
1515                         if (check_feature(&za, spa_feature_names, stack) != 0)
1516                                 return (ERR_NEWER_VERSION);
1517                 }
1518         }
1519 
1520         return (0);
1521 }
1522 
1523 /*
1524  * zfs_mount() locates a valid uberblock of the root pool and read in its MOS
1525  * to the memory address MOS.
1526  *
1527  * Return:
1528  *      1 - success
1529  *      0 - failure
1530  */
1531 int
1532 zfs_mount(void)
1533 {
1534         char *stack, *ub_array;
1535         int label = 0;
1536         uberblock_t *ubbest;
1537         objset_phys_t *osp;
1538         char tmp_bootpath[MAXNAMELEN];
1539         char tmp_devid[MAXNAMELEN];
1540         uint64_t tmp_guid, ashift, version;
1541         uint64_t adjpl = (uint64_t)part_length << SPA_MINBLOCKSHIFT;
1542         int err = errnum; /* preserve previous errnum state */
1543 
1544         /* if it's our first time here, zero the best uberblock out */
1545         if (best_drive == 0 && best_part == 0 && find_best_root) {
1546                 grub_memset(&current_uberblock, 0, sizeof (uberblock_t));
1547                 pool_guid = 0;
1548         }
1549 
1550         stackbase = ZFS_SCRATCH;
1551         stack = stackbase;
1552         ub_array = stack;
1553         stack += VDEV_UBERBLOCK_RING;
1554 
1555         osp = (objset_phys_t *)stack;
1556         stack += sizeof (objset_phys_t);
1557         adjpl = P2ALIGN(adjpl, (uint64_t)sizeof (vdev_label_t));
1558 
1559         for (label = 0; label < VDEV_LABELS; label++) {
1560 
1561                 /*
1562                  * some eltorito stacks don't give us a size and
1563                  * we end up setting the size to MAXUINT, further
1564                  * some of these devices stop working once a single
1565                  * read past the end has been issued. Checking
1566                  * for a maximum part_length and skipping the backup
1567                  * labels at the end of the slice/partition/device
1568                  * avoids breaking down on such devices.
1569                  */
1570                 if (part_length == MAXUINT && label == 2)
1571                         break;
1572 
1573                 uint64_t sector = vdev_label_start(adjpl,
1574                     label) >> SPA_MINBLOCKSHIFT;
1575 
1576                 /* Read in the uberblock ring (128K). */
1577                 if (devread(sector  +
1578                     ((VDEV_SKIP_SIZE + VDEV_PHYS_SIZE) >> SPA_MINBLOCKSHIFT),
1579                     0, VDEV_UBERBLOCK_RING, ub_array) == 0)
1580                         continue;
1581 
1582                 if (check_pool_label(sector, stack, tmp_devid,
1583                     tmp_bootpath, &tmp_guid, &ashift, &version))
1584                         continue;
1585 
1586                 if (pool_guid == 0)
1587                         pool_guid = tmp_guid;
1588 
1589                 if ((ubbest = find_bestub(ub_array, ashift, sector)) == NULL ||
1590                     zio_read(&ubbest->ub_rootbp, osp, stack) != 0)
1591                         continue;
1592 
1593                 VERIFY_OS_TYPE(osp, DMU_OST_META);
1594 
1595                 if (version >= SPA_VERSION_FEATURES &&
1596                     check_mos_features(&osp->os_meta_dnode, stack) != 0)
1597                         continue;
1598 
1599                 if (find_best_root && ((pool_guid != tmp_guid) ||
1600                     vdev_uberblock_compare(ubbest, &(current_uberblock)) <= 0))
1601                         continue;
1602 
1603                 /* Got the MOS. Save it at the memory addr MOS. */
1604                 grub_memmove(MOS, &osp->os_meta_dnode, DNODE_SIZE);
1605                 grub_memmove(&current_uberblock, ubbest, sizeof (uberblock_t));
1606                 grub_memmove(current_bootpath, tmp_bootpath, MAXNAMELEN);
1607                 grub_memmove(current_devid, tmp_devid, grub_strlen(tmp_devid));
1608                 is_zfs_mount = 1;
1609                 return (1);
1610         }
1611 
1612         /*
1613          * While some fs impls. (tftp) rely on setting and keeping
1614          * global errnums set, others won't reset it and will break
1615          * when issuing rawreads. The goal here is to simply not
1616          * have zfs mount attempts impact the previous state.
1617          */
1618         errnum = err;
1619         return (0);
1620 }
1621 
1622 /*
1623  * zfs_open() locates a file in the rootpool by following the
1624  * MOS and places the dnode of the file in the memory address DNODE.
1625  *
1626  * Return:
1627  *      1 - success
1628  *      0 - failure
1629  */
1630 int
1631 zfs_open(char *filename)
1632 {
1633         char *stack;
1634         dnode_phys_t *mdn;
1635 
1636         file_buf = NULL;
1637         stackbase = ZFS_SCRATCH;
1638         stack = stackbase;
1639 
1640         mdn = (dnode_phys_t *)stack;
1641         stack += sizeof (dnode_phys_t);
1642 
1643         dnode_mdn = NULL;
1644         dnode_buf = (dnode_phys_t *)stack;
1645         stack += 1<<DNODE_BLOCK_SHIFT;
1646 
1647         /*
1648          * menu.lst is placed at the root pool filesystem level,
1649          * do not goto 'current_bootfs'.
1650          */
1651         if (is_top_dataset_file(filename)) {
1652                 if (errnum = get_objset_mdn(MOS, NULL, NULL, mdn, stack))
1653                         return (0);
1654 
1655                 current_bootfs_obj = 0;
1656         } else {
1657                 if (current_bootfs[0] == '\0') {
1658                         /* Get the default root filesystem object number */
1659                         if (errnum = get_default_bootfsobj(MOS,
1660                             &current_bootfs_obj, stack))
1661                                 return (0);
1662 
1663                         if (errnum = get_objset_mdn(MOS, NULL,
1664                             &current_bootfs_obj, mdn, stack))
1665                                 return (0);
1666                 } else {
1667                         if (errnum = get_objset_mdn(MOS, current_bootfs,
1668                             &current_bootfs_obj, mdn, stack)) {
1669                                 grub_memset(current_bootfs, 0, MAXNAMELEN);
1670                                 return (0);
1671                         }
1672                 }
1673         }
1674 
1675         if (dnode_get_path(mdn, filename, DNODE, stack)) {
1676                 errnum = ERR_FILE_NOT_FOUND;
1677                 return (0);
1678         }
1679 
1680         /* get the file size and set the file position to 0 */
1681 
1682         /*
1683          * For DMU_OT_SA we will need to locate the SIZE attribute
1684          * attribute, which could be either in the bonus buffer
1685          * or the "spill" block.
1686          */
1687         if (DNODE->dn_bonustype == DMU_OT_SA) {
1688                 sa_hdr_phys_t *sahdrp;
1689                 int hdrsize;
1690 
1691                 if (DNODE->dn_bonuslen != 0) {
1692                         sahdrp = (sa_hdr_phys_t *)DN_BONUS(DNODE);
1693                 } else {
1694                         if (DNODE->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1695                                 blkptr_t *bp = &DNODE->dn_spill;
1696                                 void *buf;
1697 
1698                                 buf = (void *)stack;
1699                                 stack += BP_GET_LSIZE(bp);
1700 
1701                                 /* reset errnum to rawread() failure */
1702                                 errnum = 0;
1703                                 if (zio_read(bp, buf, stack) != 0) {
1704                                         return (0);
1705                                 }
1706                                 sahdrp = buf;
1707                         } else {
1708                                 errnum = ERR_FSYS_CORRUPT;
1709                                 return (0);
1710                         }
1711                 }
1712                 hdrsize = SA_HDR_SIZE(sahdrp);
1713                 filemax = *(uint64_t *)((char *)sahdrp + hdrsize +
1714                     SA_SIZE_OFFSET);
1715         } else {
1716                 filemax = ((znode_phys_t *)DN_BONUS(DNODE))->zp_size;
1717         }
1718         filepos = 0;
1719 
1720         dnode_buf = NULL;
1721         return (1);
1722 }
1723 
1724 /*
1725  * zfs_read reads in the data blocks pointed by the DNODE.
1726  *
1727  * Return:
1728  *      len - the length successfully read in to the buffer
1729  *      0   - failure
1730  */
1731 int
1732 zfs_read(char *buf, int len)
1733 {
1734         char *stack;
1735         int blksz, length, movesize;
1736 
1737         if (file_buf == NULL) {
1738                 file_buf = stackbase;
1739                 stackbase += SPA_MAXBLOCKSIZE;
1740                 file_start = file_end = 0;
1741         }
1742         stack = stackbase;
1743 
1744         /*
1745          * If offset is in memory, move it into the buffer provided and return.
1746          */
1747         if (filepos >= file_start && filepos+len <= file_end) {
1748                 grub_memmove(buf, file_buf + filepos - file_start, len);
1749                 filepos += len;
1750                 return (len);
1751         }
1752 
1753         blksz = DNODE->dn_datablkszsec << SPA_MINBLOCKSHIFT;
1754 
1755         /*
1756          * Entire Dnode is too big to fit into the space available.  We
1757          * will need to read it in chunks.  This could be optimized to
1758          * read in as large a chunk as there is space available, but for
1759          * now, this only reads in one data block at a time.
1760          */
1761         length = len;
1762         while (length) {
1763                 /*
1764                  * Find requested blkid and the offset within that block.
1765                  */
1766                 uint64_t blkid = filepos / blksz;
1767 
1768                 if (errnum = dmu_read(DNODE, blkid, file_buf, stack))
1769                         return (0);
1770 
1771                 file_start = blkid * blksz;
1772                 file_end = file_start + blksz;
1773 
1774                 movesize = MIN(length, file_end - filepos);
1775 
1776                 grub_memmove(buf, file_buf + filepos - file_start,
1777                     movesize);
1778                 buf += movesize;
1779                 length -= movesize;
1780                 filepos += movesize;
1781         }
1782 
1783         return (len);
1784 }
1785 
1786 /*
1787  * No-Op
1788  */
1789 int
1790 zfs_embed(int *start_sector, int needed_sectors)
1791 {
1792         return (1);
1793 }
1794 
1795 #endif /* FSYS_ZFS */