Print this page
NFS4 data corruption (#3508)
If async calls are disabled, nfs4_async_putapage is supposed to do its
work synchronously. Due to a bug, it sometimes just does nothing, leaving
the page for later.
Unfortunately the caller has already reset the R4DIRTY flag.
Without R4DIRTY, nfs4_attrcache_va can't see that there are still
outstanding writes and accepts the file size from the server, which is
too low.
When the dirty page finally gets written back, the page size is truncated
to the file size, leaving some bytes unwritten.
Reviewed by: Marcel Telka <marcel@telka.sk>
Reviewed by: Robert Gordon <rbg@openrbg.com>
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/nfs/nfs4_client.c
+++ new/usr/src/uts/common/fs/nfs/nfs4_client.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23 23 */
24 24
25 25 /*
26 26 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
27 27 * All Rights Reserved
28 28 */
29 29
30 30 #include <sys/param.h>
31 31 #include <sys/types.h>
32 32 #include <sys/systm.h>
33 33 #include <sys/thread.h>
34 34 #include <sys/t_lock.h>
35 35 #include <sys/time.h>
36 36 #include <sys/vnode.h>
37 37 #include <sys/vfs.h>
38 38 #include <sys/errno.h>
39 39 #include <sys/buf.h>
40 40 #include <sys/stat.h>
41 41 #include <sys/cred.h>
42 42 #include <sys/kmem.h>
43 43 #include <sys/debug.h>
44 44 #include <sys/dnlc.h>
45 45 #include <sys/vmsystm.h>
46 46 #include <sys/flock.h>
47 47 #include <sys/share.h>
48 48 #include <sys/cmn_err.h>
49 49 #include <sys/tiuser.h>
50 50 #include <sys/sysmacros.h>
51 51 #include <sys/callb.h>
52 52 #include <sys/acl.h>
53 53 #include <sys/kstat.h>
54 54 #include <sys/signal.h>
55 55 #include <sys/disp.h>
56 56 #include <sys/atomic.h>
57 57 #include <sys/list.h>
58 58 #include <sys/sdt.h>
59 59
60 60 #include <rpc/types.h>
61 61 #include <rpc/xdr.h>
62 62 #include <rpc/auth.h>
63 63 #include <rpc/clnt.h>
64 64
65 65 #include <nfs/nfs.h>
66 66 #include <nfs/nfs_clnt.h>
67 67 #include <nfs/nfs_acl.h>
68 68
69 69 #include <nfs/nfs4.h>
70 70 #include <nfs/rnode4.h>
71 71 #include <nfs/nfs4_clnt.h>
72 72
73 73 #include <vm/hat.h>
74 74 #include <vm/as.h>
75 75 #include <vm/page.h>
76 76 #include <vm/pvn.h>
77 77 #include <vm/seg.h>
78 78 #include <vm/seg_map.h>
79 79 #include <vm/seg_vn.h>
80 80
81 81 #include <sys/ddi.h>
82 82
83 83 /*
84 84 * Arguments to page-flush thread.
85 85 */
86 86 typedef struct {
87 87 vnode_t *vp;
88 88 cred_t *cr;
89 89 } pgflush_t;
90 90
91 91 #ifdef DEBUG
92 92 int nfs4_client_lease_debug;
93 93 int nfs4_sharedfh_debug;
94 94 int nfs4_fname_debug;
95 95
96 96 /* temporary: panic if v_type is inconsistent with r_attr va_type */
97 97 int nfs4_vtype_debug;
98 98
99 99 uint_t nfs4_tsd_key;
100 100 #endif
101 101
102 102 static time_t nfs4_client_resumed = 0;
103 103 static callb_id_t cid = 0;
104 104
105 105 static int nfs4renew(nfs4_server_t *);
106 106 static void nfs4_attrcache_va(vnode_t *, nfs4_ga_res_t *, int);
107 107 static void nfs4_pgflush_thread(pgflush_t *);
108 108
109 109 static boolean_t nfs4_client_cpr_callb(void *, int);
110 110
111 111 struct mi4_globals {
112 112 kmutex_t mig_lock; /* lock protecting mig_list */
113 113 list_t mig_list; /* list of NFS v4 mounts in zone */
114 114 boolean_t mig_destructor_called;
115 115 };
116 116
117 117 static zone_key_t mi4_list_key;
118 118
119 119 /*
120 120 * Attributes caching:
121 121 *
122 122 * Attributes are cached in the rnode in struct vattr form.
123 123 * There is a time associated with the cached attributes (r_time_attr_inval)
124 124 * which tells whether the attributes are valid. The time is initialized
125 125 * to the difference between current time and the modify time of the vnode
126 126 * when new attributes are cached. This allows the attributes for
127 127 * files that have changed recently to be timed out sooner than for files
128 128 * that have not changed for a long time. There are minimum and maximum
129 129 * timeout values that can be set per mount point.
130 130 */
131 131
132 132 /*
133 133 * If a cache purge is in progress, wait for it to finish.
134 134 *
135 135 * The current thread must not be in the middle of an
136 136 * nfs4_start_op/nfs4_end_op region. Otherwise, there could be a deadlock
137 137 * between this thread, a recovery thread, and the page flush thread.
138 138 */
139 139 int
140 140 nfs4_waitfor_purge_complete(vnode_t *vp)
141 141 {
142 142 rnode4_t *rp;
143 143 k_sigset_t smask;
144 144
145 145 rp = VTOR4(vp);
146 146 if ((rp->r_serial != NULL && rp->r_serial != curthread) ||
147 147 ((rp->r_flags & R4PGFLUSH) && rp->r_pgflush != curthread)) {
148 148 mutex_enter(&rp->r_statelock);
149 149 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT);
150 150 while ((rp->r_serial != NULL && rp->r_serial != curthread) ||
151 151 ((rp->r_flags & R4PGFLUSH) &&
152 152 rp->r_pgflush != curthread)) {
153 153 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
154 154 sigunintr(&smask);
155 155 mutex_exit(&rp->r_statelock);
156 156 return (EINTR);
157 157 }
158 158 }
159 159 sigunintr(&smask);
160 160 mutex_exit(&rp->r_statelock);
161 161 }
162 162 return (0);
163 163 }
164 164
165 165 /*
166 166 * Validate caches by checking cached attributes. If they have timed out,
167 167 * then get new attributes from the server. As a side effect, cache
168 168 * invalidation is done if the attributes have changed.
169 169 *
170 170 * If the attributes have not timed out and if there is a cache
171 171 * invalidation being done by some other thread, then wait until that
172 172 * thread has completed the cache invalidation.
173 173 */
174 174 int
175 175 nfs4_validate_caches(vnode_t *vp, cred_t *cr)
176 176 {
177 177 int error;
178 178 nfs4_ga_res_t gar;
179 179
180 180 if (ATTRCACHE4_VALID(vp)) {
181 181 error = nfs4_waitfor_purge_complete(vp);
182 182 if (error)
183 183 return (error);
184 184 return (0);
185 185 }
186 186
187 187 gar.n4g_va.va_mask = AT_ALL;
188 188 return (nfs4_getattr_otw(vp, &gar, cr, 0));
189 189 }
190 190
191 191 /*
192 192 * Fill in attribute from the cache.
193 193 * If valid, then return 0 to indicate that no error occurred,
194 194 * otherwise return 1 to indicate that an error occurred.
195 195 */
196 196 static int
197 197 nfs4_getattr_cache(vnode_t *vp, struct vattr *vap)
198 198 {
199 199 rnode4_t *rp;
200 200
201 201 rp = VTOR4(vp);
202 202 mutex_enter(&rp->r_statelock);
203 203 mutex_enter(&rp->r_statev4_lock);
204 204 if (ATTRCACHE4_VALID(vp)) {
205 205 mutex_exit(&rp->r_statev4_lock);
206 206 /*
207 207 * Cached attributes are valid
208 208 */
209 209 *vap = rp->r_attr;
210 210 mutex_exit(&rp->r_statelock);
211 211 return (0);
212 212 }
213 213 mutex_exit(&rp->r_statev4_lock);
214 214 mutex_exit(&rp->r_statelock);
215 215 return (1);
216 216 }
217 217
218 218
219 219 /*
220 220 * If returned error is ESTALE flush all caches. The nfs4_purge_caches()
221 221 * call is synchronous because all the pages were invalidated by the
222 222 * nfs4_invalidate_pages() call.
223 223 */
224 224 void
225 225 nfs4_purge_stale_fh(int errno, vnode_t *vp, cred_t *cr)
226 226 {
227 227 struct rnode4 *rp = VTOR4(vp);
228 228
229 229 /* Ensure that the ..._end_op() call has been done */
230 230 ASSERT(tsd_get(nfs4_tsd_key) == NULL);
231 231
232 232 if (errno != ESTALE)
233 233 return;
234 234
235 235 mutex_enter(&rp->r_statelock);
236 236 rp->r_flags |= R4STALE;
237 237 if (!rp->r_error)
238 238 rp->r_error = errno;
239 239 mutex_exit(&rp->r_statelock);
240 240 if (nfs4_has_pages(vp))
241 241 nfs4_invalidate_pages(vp, (u_offset_t)0, cr);
242 242 nfs4_purge_caches(vp, NFS4_PURGE_DNLC, cr, FALSE);
243 243 }
244 244
245 245 /*
246 246 * Purge all of the various NFS `data' caches. If "asyncpg" is TRUE, the
247 247 * page purge is done asynchronously.
248 248 */
249 249 void
250 250 nfs4_purge_caches(vnode_t *vp, int purge_dnlc, cred_t *cr, int asyncpg)
251 251 {
252 252 rnode4_t *rp;
253 253 char *contents;
254 254 vnode_t *xattr;
255 255 int size;
256 256 int pgflush; /* are we the page flush thread? */
257 257
258 258 /*
259 259 * Purge the DNLC for any entries which refer to this file.
260 260 */
261 261 if (vp->v_count > 1 &&
262 262 (vp->v_type == VDIR || purge_dnlc == NFS4_PURGE_DNLC))
263 263 dnlc_purge_vp(vp);
264 264
265 265 /*
266 266 * Clear any readdir state bits and purge the readlink response cache.
267 267 */
268 268 rp = VTOR4(vp);
269 269 mutex_enter(&rp->r_statelock);
270 270 rp->r_flags &= ~R4LOOKUP;
271 271 contents = rp->r_symlink.contents;
272 272 size = rp->r_symlink.size;
273 273 rp->r_symlink.contents = NULL;
274 274
275 275 xattr = rp->r_xattr_dir;
276 276 rp->r_xattr_dir = NULL;
277 277
278 278 /*
279 279 * Purge pathconf cache too.
280 280 */
281 281 rp->r_pathconf.pc4_xattr_valid = 0;
282 282 rp->r_pathconf.pc4_cache_valid = 0;
283 283
284 284 pgflush = (curthread == rp->r_pgflush);
285 285 mutex_exit(&rp->r_statelock);
286 286
287 287 if (contents != NULL) {
288 288
289 289 kmem_free((void *)contents, size);
290 290 }
291 291
292 292 if (xattr != NULL)
293 293 VN_RELE(xattr);
294 294
295 295 /*
296 296 * Flush the page cache. If the current thread is the page flush
297 297 * thread, don't initiate a new page flush. There's no need for
298 298 * it, and doing it correctly is hard.
299 299 */
300 300 if (nfs4_has_pages(vp) && !pgflush) {
301 301 if (!asyncpg) {
302 302 (void) nfs4_waitfor_purge_complete(vp);
303 303 nfs4_flush_pages(vp, cr);
304 304 } else {
305 305 pgflush_t *args;
306 306
307 307 /*
308 308 * We don't hold r_statelock while creating the
309 309 * thread, in case the call blocks. So we use a
310 310 * flag to indicate that a page flush thread is
311 311 * active.
312 312 */
313 313 mutex_enter(&rp->r_statelock);
314 314 if (rp->r_flags & R4PGFLUSH) {
315 315 mutex_exit(&rp->r_statelock);
316 316 } else {
317 317 rp->r_flags |= R4PGFLUSH;
318 318 mutex_exit(&rp->r_statelock);
319 319
320 320 args = kmem_alloc(sizeof (pgflush_t),
321 321 KM_SLEEP);
322 322 args->vp = vp;
323 323 VN_HOLD(args->vp);
324 324 args->cr = cr;
325 325 crhold(args->cr);
326 326 (void) zthread_create(NULL, 0,
327 327 nfs4_pgflush_thread, args, 0,
328 328 minclsyspri);
329 329 }
330 330 }
331 331 }
332 332
333 333 /*
334 334 * Flush the readdir response cache.
335 335 */
336 336 nfs4_purge_rddir_cache(vp);
337 337 }
338 338
339 339 /*
340 340 * Invalidate all pages for the given file, after writing back the dirty
341 341 * ones.
342 342 */
343 343
344 344 void
345 345 nfs4_flush_pages(vnode_t *vp, cred_t *cr)
346 346 {
347 347 int error;
348 348 rnode4_t *rp = VTOR4(vp);
349 349
350 350 error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_INVAL, cr, NULL);
351 351 if (error == ENOSPC || error == EDQUOT) {
352 352 mutex_enter(&rp->r_statelock);
353 353 if (!rp->r_error)
354 354 rp->r_error = error;
355 355 mutex_exit(&rp->r_statelock);
356 356 }
357 357 }
358 358
359 359 /*
360 360 * Page flush thread.
361 361 */
362 362
363 363 static void
364 364 nfs4_pgflush_thread(pgflush_t *args)
365 365 {
366 366 rnode4_t *rp = VTOR4(args->vp);
367 367
368 368 /* remember which thread we are, so we don't deadlock ourselves */
369 369 mutex_enter(&rp->r_statelock);
370 370 ASSERT(rp->r_pgflush == NULL);
371 371 rp->r_pgflush = curthread;
372 372 mutex_exit(&rp->r_statelock);
373 373
374 374 nfs4_flush_pages(args->vp, args->cr);
375 375
376 376 mutex_enter(&rp->r_statelock);
377 377 rp->r_pgflush = NULL;
378 378 rp->r_flags &= ~R4PGFLUSH;
379 379 cv_broadcast(&rp->r_cv);
380 380 mutex_exit(&rp->r_statelock);
381 381
382 382 VN_RELE(args->vp);
383 383 crfree(args->cr);
384 384 kmem_free(args, sizeof (pgflush_t));
385 385 zthread_exit();
386 386 }
387 387
388 388 /*
389 389 * Purge the readdir cache of all entries which are not currently
390 390 * being filled.
391 391 */
392 392 void
393 393 nfs4_purge_rddir_cache(vnode_t *vp)
394 394 {
395 395 rnode4_t *rp;
396 396
397 397 rp = VTOR4(vp);
398 398
399 399 mutex_enter(&rp->r_statelock);
400 400 rp->r_direof = NULL;
401 401 rp->r_flags &= ~R4LOOKUP;
402 402 rp->r_flags |= R4READDIRWATTR;
403 403 rddir4_cache_purge(rp);
404 404 mutex_exit(&rp->r_statelock);
405 405 }
406 406
407 407 /*
408 408 * Set attributes cache for given vnode using virtual attributes. There is
409 409 * no cache validation, but if the attributes are deemed to be stale, they
410 410 * are ignored. This corresponds to nfs3_attrcache().
411 411 *
412 412 * Set the timeout value on the attribute cache and fill it
413 413 * with the passed in attributes.
414 414 */
415 415 void
416 416 nfs4_attrcache_noinval(vnode_t *vp, nfs4_ga_res_t *garp, hrtime_t t)
417 417 {
418 418 rnode4_t *rp = VTOR4(vp);
419 419
420 420 mutex_enter(&rp->r_statelock);
421 421 if (rp->r_time_attr_saved <= t)
422 422 nfs4_attrcache_va(vp, garp, FALSE);
423 423 mutex_exit(&rp->r_statelock);
424 424 }
425 425
426 426 /*
427 427 * Use the passed in virtual attributes to check to see whether the
428 428 * data and metadata caches are valid, cache the new attributes, and
429 429 * then do the cache invalidation if required.
430 430 *
431 431 * The cache validation and caching of the new attributes is done
432 432 * atomically via the use of the mutex, r_statelock. If required,
433 433 * the cache invalidation is done atomically w.r.t. the cache
434 434 * validation and caching of the attributes via the pseudo lock,
435 435 * r_serial.
436 436 *
437 437 * This routine is used to do cache validation and attributes caching
438 438 * for operations with a single set of post operation attributes.
439 439 */
440 440
441 441 void
442 442 nfs4_attr_cache(vnode_t *vp, nfs4_ga_res_t *garp,
443 443 hrtime_t t, cred_t *cr, int async,
444 444 change_info4 *cinfo)
445 445 {
446 446 rnode4_t *rp;
447 447 int mtime_changed = 0;
448 448 int ctime_changed = 0;
449 449 vsecattr_t *vsp;
450 450 int was_serial, set_time_cache_inval, recov;
451 451 vattr_t *vap = &garp->n4g_va;
452 452 mntinfo4_t *mi = VTOMI4(vp);
453 453 len_t preattr_rsize;
454 454 boolean_t writemodify_set = B_FALSE;
455 455 boolean_t cachepurge_set = B_FALSE;
456 456
457 457 ASSERT(mi->mi_vfsp->vfs_dev == garp->n4g_va.va_fsid);
458 458
459 459 /* Is curthread the recovery thread? */
460 460 mutex_enter(&mi->mi_lock);
461 461 recov = (VTOMI4(vp)->mi_recovthread == curthread);
462 462 mutex_exit(&mi->mi_lock);
463 463
464 464 rp = VTOR4(vp);
465 465 mutex_enter(&rp->r_statelock);
466 466 was_serial = (rp->r_serial == curthread);
467 467 if (rp->r_serial && !was_serial) {
468 468 klwp_t *lwp = ttolwp(curthread);
469 469
470 470 /*
471 471 * If we're the recovery thread, then purge current attrs
472 472 * and bail out to avoid potential deadlock between another
473 473 * thread caching attrs (r_serial thread), recov thread,
474 474 * and an async writer thread.
475 475 */
476 476 if (recov) {
477 477 PURGE_ATTRCACHE4_LOCKED(rp);
478 478 mutex_exit(&rp->r_statelock);
479 479 return;
480 480 }
481 481
482 482 if (lwp != NULL)
483 483 lwp->lwp_nostop++;
484 484 while (rp->r_serial != NULL) {
485 485 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
486 486 mutex_exit(&rp->r_statelock);
487 487 if (lwp != NULL)
488 488 lwp->lwp_nostop--;
489 489 return;
490 490 }
491 491 }
492 492 if (lwp != NULL)
493 493 lwp->lwp_nostop--;
494 494 }
495 495
496 496 /*
497 497 * If there is a page flush thread, the current thread needs to
498 498 * bail out, to prevent a possible deadlock between the current
499 499 * thread (which might be in a start_op/end_op region), the
500 500 * recovery thread, and the page flush thread. Expire the
501 501 * attribute cache, so that any attributes the current thread was
502 502 * going to set are not lost.
503 503 */
504 504 if ((rp->r_flags & R4PGFLUSH) && rp->r_pgflush != curthread) {
505 505 PURGE_ATTRCACHE4_LOCKED(rp);
506 506 mutex_exit(&rp->r_statelock);
507 507 return;
508 508 }
509 509
510 510 if (rp->r_time_attr_saved > t) {
511 511 /*
512 512 * Attributes have been cached since these attributes were
513 513 * probably made. If there is an inconsistency in what is
514 514 * cached, mark them invalid. If not, don't act on them.
515 515 */
516 516 if (!CACHE4_VALID(rp, vap->va_mtime, vap->va_size))
517 517 PURGE_ATTRCACHE4_LOCKED(rp);
518 518 mutex_exit(&rp->r_statelock);
519 519 return;
520 520 }
521 521 set_time_cache_inval = 0;
522 522 if (cinfo) {
523 523 /*
524 524 * Only directory modifying callers pass non-NULL cinfo.
525 525 */
526 526 ASSERT(vp->v_type == VDIR);
527 527 /*
528 528 * If the cache timeout either doesn't exist or hasn't expired,
529 529 * and dir didn't changed on server before dirmod op
530 530 * and dir didn't change after dirmod op but before getattr
531 531 * then there's a chance that the client's cached data for
532 532 * this object is current (not stale). No immediate cache
533 533 * flush is required.
534 534 *
535 535 */
536 536 if ((! rp->r_time_cache_inval || t < rp->r_time_cache_inval) &&
537 537 cinfo->before == rp->r_change &&
538 538 (garp->n4g_change_valid &&
539 539 cinfo->after == garp->n4g_change)) {
540 540
541 541 /*
542 542 * If atomic isn't set, then the before/after info
543 543 * cannot be blindly trusted. For this case, we tell
544 544 * nfs4_attrcache_va to cache the attrs but also
545 545 * establish an absolute maximum cache timeout. When
546 546 * the timeout is reached, caches will be flushed.
547 547 */
548 548 if (! cinfo->atomic)
549 549 set_time_cache_inval = 1;
550 550 } else {
551 551
552 552 /*
553 553 * We're not sure exactly what changed, but we know
554 554 * what to do. flush all caches for dir. remove the
555 555 * attr timeout.
556 556 *
557 557 * a) timeout expired. flush all caches.
558 558 * b) r_change != cinfo.before. flush all caches.
559 559 * c) r_change == cinfo.before, but cinfo.after !=
560 560 * post-op getattr(change). flush all caches.
561 561 * d) post-op getattr(change) not provided by server.
562 562 * flush all caches.
563 563 */
564 564 mtime_changed = 1;
565 565 ctime_changed = 1;
566 566 rp->r_time_cache_inval = 0;
567 567 }
568 568 } else {
569 569 /*
570 570 * Write thread after writing data to file on remote server,
571 571 * will always set R4WRITEMODIFIED to indicate that file on
572 572 * remote server was modified with a WRITE operation and would
573 573 * have marked attribute cache as timed out. If R4WRITEMODIFIED
574 574 * is set, then do not check for mtime and ctime change.
575 575 */
576 576 if (!(rp->r_flags & R4WRITEMODIFIED)) {
577 577 if (!CACHE4_VALID(rp, vap->va_mtime, vap->va_size))
578 578 mtime_changed = 1;
579 579
580 580 if (rp->r_attr.va_ctime.tv_sec !=
581 581 vap->va_ctime.tv_sec ||
582 582 rp->r_attr.va_ctime.tv_nsec !=
583 583 vap->va_ctime.tv_nsec)
584 584 ctime_changed = 1;
585 585 } else {
586 586 writemodify_set = B_TRUE;
587 587 }
588 588 }
589 589
590 590 preattr_rsize = rp->r_size;
591 591
592 592 nfs4_attrcache_va(vp, garp, set_time_cache_inval);
593 593
594 594 /*
595 595 * If we have updated filesize in nfs4_attrcache_va, as soon as we
596 596 * drop statelock we will be in transition of purging all
597 597 * our caches and updating them. It is possible for another
598 598 * thread to pick this new file size and read in zeroed data.
599 599 * stall other threads till cache purge is complete.
600 600 */
601 601 if ((!cinfo) && (rp->r_size != preattr_rsize)) {
602 602 /*
603 603 * If R4WRITEMODIFIED was set and we have updated the file
604 604 * size, Server's returned file size need not necessarily
605 605 * be because of this Client's WRITE. We need to purge
606 606 * all caches.
607 607 */
608 608 if (writemodify_set)
609 609 mtime_changed = 1;
610 610
611 611 if (mtime_changed && !(rp->r_flags & R4INCACHEPURGE)) {
612 612 rp->r_flags |= R4INCACHEPURGE;
613 613 cachepurge_set = B_TRUE;
614 614 }
615 615 }
616 616
617 617 if (!mtime_changed && !ctime_changed) {
618 618 mutex_exit(&rp->r_statelock);
619 619 return;
620 620 }
621 621
622 622 rp->r_serial = curthread;
623 623
624 624 mutex_exit(&rp->r_statelock);
625 625
626 626 /*
627 627 * If we're the recov thread, then force async nfs4_purge_caches
628 628 * to avoid potential deadlock.
629 629 */
630 630 if (mtime_changed)
631 631 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, recov ? 1 : async);
632 632
633 633 if ((rp->r_flags & R4INCACHEPURGE) && cachepurge_set) {
634 634 mutex_enter(&rp->r_statelock);
635 635 rp->r_flags &= ~R4INCACHEPURGE;
636 636 cv_broadcast(&rp->r_cv);
637 637 mutex_exit(&rp->r_statelock);
638 638 cachepurge_set = B_FALSE;
639 639 }
640 640
641 641 if (ctime_changed) {
642 642 (void) nfs4_access_purge_rp(rp);
643 643 if (rp->r_secattr != NULL) {
644 644 mutex_enter(&rp->r_statelock);
645 645 vsp = rp->r_secattr;
646 646 rp->r_secattr = NULL;
647 647 mutex_exit(&rp->r_statelock);
648 648 if (vsp != NULL)
649 649 nfs4_acl_free_cache(vsp);
650 650 }
651 651 }
652 652
653 653 if (!was_serial) {
654 654 mutex_enter(&rp->r_statelock);
655 655 rp->r_serial = NULL;
656 656 cv_broadcast(&rp->r_cv);
657 657 mutex_exit(&rp->r_statelock);
658 658 }
659 659 }
660 660
661 661 /*
662 662 * Set attributes cache for given vnode using virtual attributes.
663 663 *
664 664 * Set the timeout value on the attribute cache and fill it
665 665 * with the passed in attributes.
666 666 *
667 667 * The caller must be holding r_statelock.
668 668 */
669 669 static void
670 670 nfs4_attrcache_va(vnode_t *vp, nfs4_ga_res_t *garp, int set_cache_timeout)
671 671 {
672 672 rnode4_t *rp;
673 673 mntinfo4_t *mi;
674 674 hrtime_t delta;
675 675 hrtime_t now;
676 676 vattr_t *vap = &garp->n4g_va;
677 677
678 678 rp = VTOR4(vp);
679 679
680 680 ASSERT(MUTEX_HELD(&rp->r_statelock));
681 681 ASSERT(vap->va_mask == AT_ALL);
682 682
683 683 /* Switch to master before checking v_flag */
684 684 if (IS_SHADOW(vp, rp))
685 685 vp = RTOV4(rp);
686 686
687 687 now = gethrtime();
688 688
689 689 mi = VTOMI4(vp);
690 690
691 691 /*
692 692 * Only establish a new cache timeout (if requested). Never
693 693 * extend a timeout. Never clear a timeout. Clearing a timeout
694 694 * is done by nfs4_update_dircaches (ancestor in our call chain)
695 695 */
696 696 if (set_cache_timeout && ! rp->r_time_cache_inval)
697 697 rp->r_time_cache_inval = now + mi->mi_acdirmax;
698 698
699 699 /*
700 700 * Delta is the number of nanoseconds that we will
701 701 * cache the attributes of the file. It is based on
702 702 * the number of nanoseconds since the last time that
703 703 * we detected a change. The assumption is that files
704 704 * that changed recently are likely to change again.
705 705 * There is a minimum and a maximum for regular files
706 706 * and for directories which is enforced though.
707 707 *
708 708 * Using the time since last change was detected
709 709 * eliminates direct comparison or calculation
710 710 * using mixed client and server times. NFS does
711 711 * not make any assumptions regarding the client
712 712 * and server clocks being synchronized.
713 713 */
714 714 if (vap->va_mtime.tv_sec != rp->r_attr.va_mtime.tv_sec ||
715 715 vap->va_mtime.tv_nsec != rp->r_attr.va_mtime.tv_nsec ||
716 716 vap->va_size != rp->r_attr.va_size) {
717 717 rp->r_time_attr_saved = now;
718 718 }
719 719
720 720 if ((mi->mi_flags & MI4_NOAC) || (vp->v_flag & VNOCACHE))
721 721 delta = 0;
722 722 else {
723 723 delta = now - rp->r_time_attr_saved;
724 724 if (vp->v_type == VDIR) {
725 725 if (delta < mi->mi_acdirmin)
726 726 delta = mi->mi_acdirmin;
727 727 else if (delta > mi->mi_acdirmax)
728 728 delta = mi->mi_acdirmax;
729 729 } else {
730 730 if (delta < mi->mi_acregmin)
731 731 delta = mi->mi_acregmin;
732 732 else if (delta > mi->mi_acregmax)
733 733 delta = mi->mi_acregmax;
734 734 }
735 735 }
736 736 rp->r_time_attr_inval = now + delta;
737 737
738 738 rp->r_attr = *vap;
739 739 if (garp->n4g_change_valid)
740 740 rp->r_change = garp->n4g_change;
741 741
742 742 /*
743 743 * The attributes that were returned may be valid and can
744 744 * be used, but they may not be allowed to be cached.
745 745 * Reset the timers to cause immediate invalidation and
746 746 * clear r_change so no VERIFY operations will suceed
747 747 */
748 748 if (garp->n4g_attrwhy == NFS4_GETATTR_NOCACHE_OK) {
749 749 rp->r_time_attr_inval = now;
750 750 rp->r_time_attr_saved = now;
751 751 rp->r_change = 0;
752 752 }
753 753
754 754 /*
755 755 * If mounted_on_fileid returned AND the object is a stub,
756 756 * then set object's va_nodeid to the mounted over fid
757 757 * returned by server.
758 758 *
759 759 * If mounted_on_fileid not provided/supported, then
760 760 * just set it to 0 for now. Eventually it would be
761 761 * better to set it to a hashed version of FH. This
762 762 * would probably be good enough to provide a unique
763 763 * fid/d_ino within a dir.
764 764 *
765 765 * We don't need to carry mounted_on_fileid in the
766 766 * rnode as long as the client never requests fileid
767 767 * without also requesting mounted_on_fileid. For
768 768 * now, it stays.
769 769 */
770 770 if (garp->n4g_mon_fid_valid) {
771 771 rp->r_mntd_fid = garp->n4g_mon_fid;
772 772
773 773 if (RP_ISSTUB(rp))
774 774 rp->r_attr.va_nodeid = rp->r_mntd_fid;
775 775 }
776 776
777 777 /*
778 778 * Check to see if there are valid pathconf bits to
779 779 * cache in the rnode.
780 780 */
781 781 if (garp->n4g_ext_res) {
782 782 if (garp->n4g_ext_res->n4g_pc4.pc4_cache_valid) {
783 783 rp->r_pathconf = garp->n4g_ext_res->n4g_pc4;
784 784 } else {
785 785 if (garp->n4g_ext_res->n4g_pc4.pc4_xattr_valid) {
786 786 rp->r_pathconf.pc4_xattr_valid = TRUE;
787 787 rp->r_pathconf.pc4_xattr_exists =
788 788 garp->n4g_ext_res->n4g_pc4.pc4_xattr_exists;
789 789 }
790 790 }
791 791 }
792 792 /*
793 793 * Update the size of the file if there is no cached data or if
794 794 * the cached data is clean and there is no data being written
795 795 * out.
796 796 */
797 797 if (rp->r_size != vap->va_size &&
798 798 (!vn_has_cached_data(vp) ||
799 799 (!(rp->r_flags & R4DIRTY) && rp->r_count == 0))) {
800 800 rp->r_size = vap->va_size;
801 801 }
802 802 nfs_setswaplike(vp, vap);
803 803 rp->r_flags &= ~R4WRITEMODIFIED;
804 804 }
805 805
806 806 /*
807 807 * Get attributes over-the-wire and update attributes cache
808 808 * if no error occurred in the over-the-wire operation.
809 809 * Return 0 if successful, otherwise error.
810 810 */
811 811 int
812 812 nfs4_getattr_otw(vnode_t *vp, nfs4_ga_res_t *garp, cred_t *cr, int get_acl)
813 813 {
814 814 mntinfo4_t *mi = VTOMI4(vp);
815 815 hrtime_t t;
816 816 nfs4_recov_state_t recov_state;
817 817 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
818 818
819 819 recov_state.rs_flags = 0;
820 820 recov_state.rs_num_retry_despite_err = 0;
821 821
822 822 /* Save the original mount point security flavor */
823 823 (void) save_mnt_secinfo(mi->mi_curr_serv);
824 824
825 825 recov_retry:
826 826
827 827 if ((e.error = nfs4_start_fop(mi, vp, NULL, OH_GETATTR,
828 828 &recov_state, NULL))) {
829 829 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
830 830 return (e.error);
831 831 }
832 832
833 833 t = gethrtime();
834 834
835 835 nfs4_getattr_otw_norecovery(vp, garp, &e, cr, get_acl);
836 836
837 837 if (nfs4_needs_recovery(&e, FALSE, vp->v_vfsp)) {
838 838 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
839 839 NULL, OP_GETATTR, NULL, NULL, NULL) == FALSE) {
840 840 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR,
841 841 &recov_state, 1);
842 842 goto recov_retry;
843 843 }
844 844 }
845 845
846 846 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state, 0);
847 847
848 848 if (!e.error) {
849 849 if (e.stat == NFS4_OK) {
850 850 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL);
851 851 } else {
852 852 e.error = geterrno4(e.stat);
853 853
854 854 nfs4_purge_stale_fh(e.error, vp, cr);
855 855 }
856 856 }
857 857
858 858 /*
859 859 * If getattr a node that is a stub for a crossed
860 860 * mount point, keep the original secinfo flavor for
861 861 * the current file system, not the crossed one.
862 862 */
863 863 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
864 864
865 865 return (e.error);
866 866 }
867 867
868 868 /*
869 869 * Generate a compound to get attributes over-the-wire.
870 870 */
871 871 void
872 872 nfs4_getattr_otw_norecovery(vnode_t *vp, nfs4_ga_res_t *garp,
873 873 nfs4_error_t *ep, cred_t *cr, int get_acl)
874 874 {
875 875 COMPOUND4args_clnt args;
876 876 COMPOUND4res_clnt res;
877 877 int doqueue;
878 878 rnode4_t *rp = VTOR4(vp);
879 879 nfs_argop4 argop[2];
880 880
881 881 args.ctag = TAG_GETATTR;
882 882
883 883 args.array_len = 2;
884 884 args.array = argop;
885 885
886 886 /* putfh */
887 887 argop[0].argop = OP_CPUTFH;
888 888 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
889 889
890 890 /* getattr */
891 891 /*
892 892 * Unlike nfs version 2 and 3, where getattr returns all the
893 893 * attributes, nfs version 4 returns only the ones explicitly
894 894 * asked for. This creates problems, as some system functions
895 895 * (e.g. cache check) require certain attributes and if the
896 896 * cached node lacks some attributes such as uid/gid, it can
897 897 * affect system utilities (e.g. "ls") that rely on the information
898 898 * to be there. This can lead to anything from system crashes to
899 899 * corrupted information processed by user apps.
900 900 * So to ensure that all bases are covered, request at least
901 901 * the AT_ALL attribute mask.
902 902 */
903 903 argop[1].argop = OP_GETATTR;
904 904 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
905 905 if (get_acl)
906 906 argop[1].nfs_argop4_u.opgetattr.attr_request |= FATTR4_ACL_MASK;
907 907 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
908 908
909 909 doqueue = 1;
910 910
911 911 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, ep);
912 912
913 913 if (ep->error)
914 914 return;
915 915
916 916 if (res.status != NFS4_OK) {
917 917 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
918 918 return;
919 919 }
920 920
921 921 *garp = res.array[1].nfs_resop4_u.opgetattr.ga_res;
922 922
923 923 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
924 924 }
925 925
926 926 /*
927 927 * Return either cached or remote attributes. If get remote attr
928 928 * use them to check and invalidate caches, then cache the new attributes.
929 929 */
930 930 int
931 931 nfs4getattr(vnode_t *vp, vattr_t *vap, cred_t *cr)
932 932 {
933 933 int error;
934 934 rnode4_t *rp;
935 935 nfs4_ga_res_t gar;
936 936
937 937 ASSERT(nfs4_consistent_type(vp));
938 938
939 939 /*
940 940 * If we've got cached attributes, we're done, otherwise go
941 941 * to the server to get attributes, which will update the cache
942 942 * in the process. Either way, use the cached attributes for
943 943 * the caller's vattr_t.
944 944 *
945 945 * Note that we ignore the gar set by the OTW call: the attr caching
946 946 * code may make adjustments when storing to the rnode, and we want
947 947 * to see those changes here.
948 948 */
949 949 rp = VTOR4(vp);
950 950 error = 0;
951 951 mutex_enter(&rp->r_statelock);
952 952 if (!ATTRCACHE4_VALID(vp)) {
953 953 mutex_exit(&rp->r_statelock);
954 954 error = nfs4_getattr_otw(vp, &gar, cr, 0);
955 955 mutex_enter(&rp->r_statelock);
956 956 }
957 957
958 958 if (!error)
959 959 *vap = rp->r_attr;
960 960
961 961 /* Return the client's view of file size */
962 962 vap->va_size = rp->r_size;
963 963
964 964 mutex_exit(&rp->r_statelock);
965 965
966 966 ASSERT(nfs4_consistent_type(vp));
967 967
968 968 return (error);
969 969 }
970 970
971 971 int
972 972 nfs4_attr_otw(vnode_t *vp, nfs4_tag_type_t tag_type,
973 973 nfs4_ga_res_t *garp, bitmap4 reqbitmap, cred_t *cr)
974 974 {
975 975 COMPOUND4args_clnt args;
976 976 COMPOUND4res_clnt res;
977 977 int doqueue;
978 978 nfs_argop4 argop[2];
979 979 mntinfo4_t *mi = VTOMI4(vp);
980 980 bool_t needrecov = FALSE;
981 981 nfs4_recov_state_t recov_state;
982 982 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
983 983 nfs4_ga_ext_res_t *gerp;
984 984
985 985 recov_state.rs_flags = 0;
986 986 recov_state.rs_num_retry_despite_err = 0;
987 987
988 988 recov_retry:
989 989 args.ctag = tag_type;
990 990
991 991 args.array_len = 2;
992 992 args.array = argop;
993 993
994 994 e.error = nfs4_start_fop(mi, vp, NULL, OH_GETATTR, &recov_state, NULL);
995 995 if (e.error)
996 996 return (e.error);
997 997
998 998 /* putfh */
999 999 argop[0].argop = OP_CPUTFH;
1000 1000 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
1001 1001
1002 1002 /* getattr */
1003 1003 argop[1].argop = OP_GETATTR;
1004 1004 argop[1].nfs_argop4_u.opgetattr.attr_request = reqbitmap;
1005 1005 argop[1].nfs_argop4_u.opgetattr.mi = mi;
1006 1006
1007 1007 doqueue = 1;
1008 1008
1009 1009 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
1010 1010 "nfs4_attr_otw: %s call, rp %s", needrecov ? "recov" : "first",
1011 1011 rnode4info(VTOR4(vp))));
1012 1012
1013 1013 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
1014 1014
1015 1015 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
1016 1016 if (!needrecov && e.error) {
1017 1017 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state,
1018 1018 needrecov);
1019 1019 return (e.error);
1020 1020 }
1021 1021
1022 1022 if (needrecov) {
1023 1023 bool_t abort;
1024 1024
1025 1025 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1026 1026 "nfs4_attr_otw: initiating recovery\n"));
1027 1027
1028 1028 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
1029 1029 NULL, OP_GETATTR, NULL, NULL, NULL);
1030 1030 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state,
1031 1031 needrecov);
1032 1032 if (!e.error) {
1033 1033 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1034 1034 e.error = geterrno4(res.status);
1035 1035 }
1036 1036 if (abort == FALSE)
1037 1037 goto recov_retry;
1038 1038 return (e.error);
1039 1039 }
1040 1040
1041 1041 if (res.status) {
1042 1042 e.error = geterrno4(res.status);
1043 1043 } else {
1044 1044 gerp = garp->n4g_ext_res;
1045 1045 bcopy(&res.array[1].nfs_resop4_u.opgetattr.ga_res,
1046 1046 garp, sizeof (nfs4_ga_res_t));
1047 1047 garp->n4g_ext_res = gerp;
1048 1048 if (garp->n4g_ext_res &&
1049 1049 res.array[1].nfs_resop4_u.opgetattr.ga_res.n4g_ext_res)
1050 1050 bcopy(res.array[1].nfs_resop4_u.opgetattr.
1051 1051 ga_res.n4g_ext_res,
1052 1052 garp->n4g_ext_res, sizeof (nfs4_ga_ext_res_t));
1053 1053 }
1054 1054 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1055 1055 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state,
1056 1056 needrecov);
1057 1057 return (e.error);
1058 1058 }
1059 1059
1060 1060 /*
1061 1061 * Asynchronous I/O parameters. nfs_async_threads is the high-water mark
1062 1062 * for the demand-based allocation of async threads per-mount. The
1063 1063 * nfs_async_timeout is the amount of time a thread will live after it
1064 1064 * becomes idle, unless new I/O requests are received before the thread
1065 1065 * dies. See nfs4_async_putpage and nfs4_async_start.
1066 1066 */
1067 1067
1068 1068 static void nfs4_async_start(struct vfs *);
1069 1069 static void nfs4_async_pgops_start(struct vfs *);
1070 1070 static void nfs4_async_common_start(struct vfs *, int);
1071 1071
1072 1072 static void
1073 1073 free_async_args4(struct nfs4_async_reqs *args)
1074 1074 {
1075 1075 rnode4_t *rp;
1076 1076
1077 1077 if (args->a_io != NFS4_INACTIVE) {
1078 1078 rp = VTOR4(args->a_vp);
1079 1079 mutex_enter(&rp->r_statelock);
1080 1080 rp->r_count--;
1081 1081 if (args->a_io == NFS4_PUTAPAGE ||
1082 1082 args->a_io == NFS4_PAGEIO)
1083 1083 rp->r_awcount--;
1084 1084 cv_broadcast(&rp->r_cv);
1085 1085 mutex_exit(&rp->r_statelock);
1086 1086 VN_RELE(args->a_vp);
1087 1087 }
1088 1088 crfree(args->a_cred);
1089 1089 kmem_free(args, sizeof (*args));
1090 1090 }
1091 1091
1092 1092 /*
1093 1093 * Cross-zone thread creation and NFS access is disallowed, yet fsflush() and
1094 1094 * pageout(), running in the global zone, have legitimate reasons to do
1095 1095 * VOP_PUTPAGE(B_ASYNC) on other zones' NFS mounts. We avoid the problem by
1096 1096 * use of a a per-mount "asynchronous requests manager thread" which is
1097 1097 * signaled by the various asynchronous work routines when there is
1098 1098 * asynchronous work to be done. It is responsible for creating new
1099 1099 * worker threads if necessary, and notifying existing worker threads
1100 1100 * that there is work to be done.
1101 1101 *
1102 1102 * In other words, it will "take the specifications from the customers and
1103 1103 * give them to the engineers."
1104 1104 *
1105 1105 * Worker threads die off of their own accord if they are no longer
1106 1106 * needed.
1107 1107 *
1108 1108 * This thread is killed when the zone is going away or the filesystem
1109 1109 * is being unmounted.
1110 1110 */
1111 1111 void
1112 1112 nfs4_async_manager(vfs_t *vfsp)
1113 1113 {
1114 1114 callb_cpr_t cprinfo;
1115 1115 mntinfo4_t *mi;
1116 1116 uint_t max_threads;
1117 1117
1118 1118 mi = VFTOMI4(vfsp);
1119 1119
1120 1120 CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr,
1121 1121 "nfs4_async_manager");
1122 1122
1123 1123 mutex_enter(&mi->mi_async_lock);
1124 1124 /*
1125 1125 * We want to stash the max number of threads that this mount was
1126 1126 * allowed so we can use it later when the variable is set to zero as
1127 1127 * part of the zone/mount going away.
1128 1128 *
1129 1129 * We want to be able to create at least one thread to handle
1130 1130 * asynchronous inactive calls.
1131 1131 */
1132 1132 max_threads = MAX(mi->mi_max_threads, 1);
1133 1133 /*
1134 1134 * We don't want to wait for mi_max_threads to go to zero, since that
1135 1135 * happens as part of a failed unmount, but this thread should only
1136 1136 * exit when the mount is really going away.
1137 1137 *
1138 1138 * Once MI4_ASYNC_MGR_STOP is set, no more async operations will be
1139 1139 * attempted: the various _async_*() functions know to do things
1140 1140 * inline if mi_max_threads == 0. Henceforth we just drain out the
1141 1141 * outstanding requests.
1142 1142 *
1143 1143 * Note that we still create zthreads even if we notice the zone is
1144 1144 * shutting down (MI4_ASYNC_MGR_STOP is set); this may cause the zone
1145 1145 * shutdown sequence to take slightly longer in some cases, but
1146 1146 * doesn't violate the protocol, as all threads will exit as soon as
1147 1147 * they're done processing the remaining requests.
1148 1148 */
1149 1149 for (;;) {
1150 1150 while (mi->mi_async_req_count > 0) {
1151 1151 /*
1152 1152 * Paranoia: If the mount started out having
1153 1153 * (mi->mi_max_threads == 0), and the value was
1154 1154 * later changed (via a debugger or somesuch),
1155 1155 * we could be confused since we will think we
1156 1156 * can't create any threads, and the calling
1157 1157 * code (which looks at the current value of
1158 1158 * mi->mi_max_threads, now non-zero) thinks we
1159 1159 * can.
1160 1160 *
1161 1161 * So, because we're paranoid, we create threads
1162 1162 * up to the maximum of the original and the
1163 1163 * current value. This means that future
1164 1164 * (debugger-induced) alterations of
1165 1165 * mi->mi_max_threads are ignored for our
1166 1166 * purposes, but who told them they could change
1167 1167 * random values on a live kernel anyhow?
1168 1168 */
1169 1169 if (mi->mi_threads[NFS4_ASYNC_QUEUE] <
1170 1170 MAX(mi->mi_max_threads, max_threads)) {
1171 1171 mi->mi_threads[NFS4_ASYNC_QUEUE]++;
1172 1172 mutex_exit(&mi->mi_async_lock);
1173 1173 MI4_HOLD(mi);
1174 1174 VFS_HOLD(vfsp); /* hold for new thread */
1175 1175 (void) zthread_create(NULL, 0, nfs4_async_start,
1176 1176 vfsp, 0, minclsyspri);
1177 1177 mutex_enter(&mi->mi_async_lock);
1178 1178 } else if (mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] <
1179 1179 NUM_ASYNC_PGOPS_THREADS) {
1180 1180 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE]++;
1181 1181 mutex_exit(&mi->mi_async_lock);
1182 1182 MI4_HOLD(mi);
1183 1183 VFS_HOLD(vfsp); /* hold for new thread */
1184 1184 (void) zthread_create(NULL, 0,
1185 1185 nfs4_async_pgops_start, vfsp, 0,
1186 1186 minclsyspri);
1187 1187 mutex_enter(&mi->mi_async_lock);
1188 1188 }
1189 1189 NFS4_WAKE_ASYNC_WORKER(mi->mi_async_work_cv);
1190 1190 ASSERT(mi->mi_async_req_count != 0);
1191 1191 mi->mi_async_req_count--;
1192 1192 }
1193 1193
1194 1194 mutex_enter(&mi->mi_lock);
1195 1195 if (mi->mi_flags & MI4_ASYNC_MGR_STOP) {
1196 1196 mutex_exit(&mi->mi_lock);
1197 1197 break;
1198 1198 }
1199 1199 mutex_exit(&mi->mi_lock);
1200 1200
1201 1201 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1202 1202 cv_wait(&mi->mi_async_reqs_cv, &mi->mi_async_lock);
1203 1203 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1204 1204 }
1205 1205
1206 1206 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
1207 1207 "nfs4_async_manager exiting for vfs %p\n", (void *)mi->mi_vfsp));
1208 1208 /*
1209 1209 * Let everyone know we're done.
1210 1210 */
1211 1211 mi->mi_manager_thread = NULL;
1212 1212 /*
1213 1213 * Wake up the inactive thread.
1214 1214 */
1215 1215 cv_broadcast(&mi->mi_inact_req_cv);
1216 1216 /*
1217 1217 * Wake up anyone sitting in nfs4_async_manager_stop()
1218 1218 */
1219 1219 cv_broadcast(&mi->mi_async_cv);
1220 1220 /*
1221 1221 * There is no explicit call to mutex_exit(&mi->mi_async_lock)
1222 1222 * since CALLB_CPR_EXIT is actually responsible for releasing
1223 1223 * 'mi_async_lock'.
1224 1224 */
1225 1225 CALLB_CPR_EXIT(&cprinfo);
1226 1226 VFS_RELE(vfsp); /* release thread's hold */
1227 1227 MI4_RELE(mi);
1228 1228 zthread_exit();
1229 1229 }
1230 1230
1231 1231 /*
1232 1232 * Signal (and wait for) the async manager thread to clean up and go away.
1233 1233 */
1234 1234 void
1235 1235 nfs4_async_manager_stop(vfs_t *vfsp)
1236 1236 {
1237 1237 mntinfo4_t *mi = VFTOMI4(vfsp);
1238 1238
1239 1239 mutex_enter(&mi->mi_async_lock);
1240 1240 mutex_enter(&mi->mi_lock);
1241 1241 mi->mi_flags |= MI4_ASYNC_MGR_STOP;
1242 1242 mutex_exit(&mi->mi_lock);
1243 1243 cv_broadcast(&mi->mi_async_reqs_cv);
1244 1244 /*
1245 1245 * Wait for the async manager thread to die.
1246 1246 */
1247 1247 while (mi->mi_manager_thread != NULL)
1248 1248 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1249 1249 mutex_exit(&mi->mi_async_lock);
1250 1250 }
1251 1251
1252 1252 int
1253 1253 nfs4_async_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr,
1254 1254 struct seg *seg, cred_t *cr, void (*readahead)(vnode_t *,
1255 1255 u_offset_t, caddr_t, struct seg *, cred_t *))
1256 1256 {
1257 1257 rnode4_t *rp;
1258 1258 mntinfo4_t *mi;
1259 1259 struct nfs4_async_reqs *args;
1260 1260
1261 1261 rp = VTOR4(vp);
1262 1262 ASSERT(rp->r_freef == NULL);
1263 1263
1264 1264 mi = VTOMI4(vp);
1265 1265
1266 1266 /*
1267 1267 * If addr falls in a different segment, don't bother doing readahead.
1268 1268 */
1269 1269 if (addr >= seg->s_base + seg->s_size)
1270 1270 return (-1);
1271 1271
1272 1272 /*
1273 1273 * If we can't allocate a request structure, punt on the readahead.
1274 1274 */
1275 1275 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1276 1276 return (-1);
1277 1277
1278 1278 /*
1279 1279 * If a lock operation is pending, don't initiate any new
1280 1280 * readaheads. Otherwise, bump r_count to indicate the new
1281 1281 * asynchronous I/O.
1282 1282 */
1283 1283 if (!nfs_rw_tryenter(&rp->r_lkserlock, RW_READER)) {
1284 1284 kmem_free(args, sizeof (*args));
1285 1285 return (-1);
1286 1286 }
1287 1287 mutex_enter(&rp->r_statelock);
1288 1288 rp->r_count++;
1289 1289 mutex_exit(&rp->r_statelock);
1290 1290 nfs_rw_exit(&rp->r_lkserlock);
1291 1291
1292 1292 args->a_next = NULL;
1293 1293 #ifdef DEBUG
1294 1294 args->a_queuer = curthread;
1295 1295 #endif
1296 1296 VN_HOLD(vp);
1297 1297 args->a_vp = vp;
1298 1298 ASSERT(cr != NULL);
1299 1299 crhold(cr);
1300 1300 args->a_cred = cr;
1301 1301 args->a_io = NFS4_READ_AHEAD;
1302 1302 args->a_nfs4_readahead = readahead;
1303 1303 args->a_nfs4_blkoff = blkoff;
1304 1304 args->a_nfs4_seg = seg;
1305 1305 args->a_nfs4_addr = addr;
1306 1306
1307 1307 mutex_enter(&mi->mi_async_lock);
1308 1308
1309 1309 /*
1310 1310 * If asyncio has been disabled, don't bother readahead.
1311 1311 */
1312 1312 if (mi->mi_max_threads == 0) {
1313 1313 mutex_exit(&mi->mi_async_lock);
1314 1314 goto noasync;
1315 1315 }
1316 1316
1317 1317 /*
1318 1318 * Link request structure into the async list and
1319 1319 * wakeup async thread to do the i/o.
1320 1320 */
1321 1321 if (mi->mi_async_reqs[NFS4_READ_AHEAD] == NULL) {
1322 1322 mi->mi_async_reqs[NFS4_READ_AHEAD] = args;
1323 1323 mi->mi_async_tail[NFS4_READ_AHEAD] = args;
1324 1324 } else {
1325 1325 mi->mi_async_tail[NFS4_READ_AHEAD]->a_next = args;
1326 1326 mi->mi_async_tail[NFS4_READ_AHEAD] = args;
1327 1327 }
1328 1328
1329 1329 if (mi->mi_io_kstats) {
1330 1330 mutex_enter(&mi->mi_lock);
1331 1331 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1332 1332 mutex_exit(&mi->mi_lock);
1333 1333 }
1334 1334
1335 1335 mi->mi_async_req_count++;
1336 1336 ASSERT(mi->mi_async_req_count != 0);
1337 1337 cv_signal(&mi->mi_async_reqs_cv);
1338 1338 mutex_exit(&mi->mi_async_lock);
1339 1339 return (0);
1340 1340
1341 1341 noasync:
1342 1342 mutex_enter(&rp->r_statelock);
1343 1343 rp->r_count--;
1344 1344 cv_broadcast(&rp->r_cv);
1345 1345 mutex_exit(&rp->r_statelock);
1346 1346 VN_RELE(vp);
1347 1347 crfree(cr);
1348 1348 kmem_free(args, sizeof (*args));
1349 1349 return (-1);
1350 1350 }
1351 1351
1352 1352 static void
1353 1353 nfs4_async_start(struct vfs *vfsp)
1354 1354 {
1355 1355 nfs4_async_common_start(vfsp, NFS4_ASYNC_QUEUE);
1356 1356 }
1357 1357
1358 1358 static void
1359 1359 nfs4_async_pgops_start(struct vfs *vfsp)
1360 1360 {
1361 1361 nfs4_async_common_start(vfsp, NFS4_ASYNC_PGOPS_QUEUE);
1362 1362 }
1363 1363
1364 1364 /*
1365 1365 * The async queues for each mounted file system are arranged as a
1366 1366 * set of queues, one for each async i/o type. Requests are taken
1367 1367 * from the queues in a round-robin fashion. A number of consecutive
1368 1368 * requests are taken from each queue before moving on to the next
1369 1369 * queue. This functionality may allow the NFS Version 2 server to do
1370 1370 * write clustering, even if the client is mixing writes and reads
1371 1371 * because it will take multiple write requests from the queue
1372 1372 * before processing any of the other async i/o types.
1373 1373 *
1374 1374 * XXX The nfs4_async_common_start thread is unsafe in the light of the present
1375 1375 * model defined by cpr to suspend the system. Specifically over the
1376 1376 * wire calls are cpr-unsafe. The thread should be reevaluated in
1377 1377 * case of future updates to the cpr model.
1378 1378 */
1379 1379 static void
1380 1380 nfs4_async_common_start(struct vfs *vfsp, int async_queue)
1381 1381 {
1382 1382 struct nfs4_async_reqs *args;
1383 1383 mntinfo4_t *mi = VFTOMI4(vfsp);
1384 1384 clock_t time_left = 1;
1385 1385 callb_cpr_t cprinfo;
1386 1386 int i;
1387 1387 extern int nfs_async_timeout;
1388 1388 int async_types;
1389 1389 kcondvar_t *async_work_cv;
1390 1390
1391 1391 if (async_queue == NFS4_ASYNC_QUEUE) {
1392 1392 async_types = NFS4_ASYNC_TYPES;
1393 1393 async_work_cv = &mi->mi_async_work_cv[NFS4_ASYNC_QUEUE];
1394 1394 } else {
1395 1395 async_types = NFS4_ASYNC_PGOPS_TYPES;
1396 1396 async_work_cv = &mi->mi_async_work_cv[NFS4_ASYNC_PGOPS_QUEUE];
1397 1397 }
1398 1398
1399 1399 /*
1400 1400 * Dynamic initialization of nfs_async_timeout to allow nfs to be
1401 1401 * built in an implementation independent manner.
1402 1402 */
1403 1403 if (nfs_async_timeout == -1)
1404 1404 nfs_async_timeout = NFS_ASYNC_TIMEOUT;
1405 1405
1406 1406 CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, "nas");
1407 1407
1408 1408 mutex_enter(&mi->mi_async_lock);
1409 1409 for (;;) {
1410 1410 /*
1411 1411 * Find the next queue containing an entry. We start
1412 1412 * at the current queue pointer and then round robin
1413 1413 * through all of them until we either find a non-empty
1414 1414 * queue or have looked through all of them.
1415 1415 */
1416 1416 for (i = 0; i < async_types; i++) {
1417 1417 args = *mi->mi_async_curr[async_queue];
1418 1418 if (args != NULL)
1419 1419 break;
1420 1420 mi->mi_async_curr[async_queue]++;
1421 1421 if (mi->mi_async_curr[async_queue] ==
1422 1422 &mi->mi_async_reqs[async_types]) {
1423 1423 mi->mi_async_curr[async_queue] =
1424 1424 &mi->mi_async_reqs[0];
1425 1425 }
1426 1426 }
1427 1427 /*
1428 1428 * If we didn't find a entry, then block until woken up
1429 1429 * again and then look through the queues again.
1430 1430 */
1431 1431 if (args == NULL) {
1432 1432 /*
1433 1433 * Exiting is considered to be safe for CPR as well
1434 1434 */
1435 1435 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1436 1436
1437 1437 /*
1438 1438 * Wakeup thread waiting to unmount the file
1439 1439 * system only if all async threads are inactive.
1440 1440 *
1441 1441 * If we've timed-out and there's nothing to do,
1442 1442 * then get rid of this thread.
1443 1443 */
1444 1444 if (mi->mi_max_threads == 0 || time_left <= 0) {
1445 1445 --mi->mi_threads[async_queue];
1446 1446
1447 1447 if (mi->mi_threads[NFS4_ASYNC_QUEUE] == 0 &&
1448 1448 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] == 0)
1449 1449 cv_signal(&mi->mi_async_cv);
1450 1450 CALLB_CPR_EXIT(&cprinfo);
1451 1451 VFS_RELE(vfsp); /* release thread's hold */
1452 1452 MI4_RELE(mi);
1453 1453 zthread_exit();
1454 1454 /* NOTREACHED */
1455 1455 }
1456 1456 time_left = cv_reltimedwait(async_work_cv,
1457 1457 &mi->mi_async_lock, nfs_async_timeout,
1458 1458 TR_CLOCK_TICK);
1459 1459
1460 1460 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1461 1461
1462 1462 continue;
1463 1463 } else {
1464 1464 time_left = 1;
1465 1465 }
1466 1466
1467 1467 /*
1468 1468 * Remove the request from the async queue and then
1469 1469 * update the current async request queue pointer. If
1470 1470 * the current queue is empty or we have removed enough
1471 1471 * consecutive entries from it, then reset the counter
1472 1472 * for this queue and then move the current pointer to
1473 1473 * the next queue.
1474 1474 */
1475 1475 *mi->mi_async_curr[async_queue] = args->a_next;
1476 1476 if (*mi->mi_async_curr[async_queue] == NULL ||
1477 1477 --mi->mi_async_clusters[args->a_io] == 0) {
1478 1478 mi->mi_async_clusters[args->a_io] =
1479 1479 mi->mi_async_init_clusters;
1480 1480 mi->mi_async_curr[async_queue]++;
1481 1481 if (mi->mi_async_curr[async_queue] ==
1482 1482 &mi->mi_async_reqs[async_types]) {
1483 1483 mi->mi_async_curr[async_queue] =
1484 1484 &mi->mi_async_reqs[0];
1485 1485 }
1486 1486 }
1487 1487
1488 1488 if (args->a_io != NFS4_INACTIVE && mi->mi_io_kstats) {
1489 1489 mutex_enter(&mi->mi_lock);
1490 1490 kstat_waitq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1491 1491 mutex_exit(&mi->mi_lock);
1492 1492 }
1493 1493
1494 1494 mutex_exit(&mi->mi_async_lock);
1495 1495
1496 1496 /*
1497 1497 * Obtain arguments from the async request structure.
1498 1498 */
1499 1499 if (args->a_io == NFS4_READ_AHEAD && mi->mi_max_threads > 0) {
1500 1500 (*args->a_nfs4_readahead)(args->a_vp,
1501 1501 args->a_nfs4_blkoff, args->a_nfs4_addr,
1502 1502 args->a_nfs4_seg, args->a_cred);
1503 1503 } else if (args->a_io == NFS4_PUTAPAGE) {
1504 1504 (void) (*args->a_nfs4_putapage)(args->a_vp,
1505 1505 args->a_nfs4_pp, args->a_nfs4_off,
1506 1506 args->a_nfs4_len, args->a_nfs4_flags,
1507 1507 args->a_cred);
1508 1508 } else if (args->a_io == NFS4_PAGEIO) {
1509 1509 (void) (*args->a_nfs4_pageio)(args->a_vp,
1510 1510 args->a_nfs4_pp, args->a_nfs4_off,
1511 1511 args->a_nfs4_len, args->a_nfs4_flags,
1512 1512 args->a_cred);
1513 1513 } else if (args->a_io == NFS4_READDIR) {
1514 1514 (void) ((*args->a_nfs4_readdir)(args->a_vp,
1515 1515 args->a_nfs4_rdc, args->a_cred));
1516 1516 } else if (args->a_io == NFS4_COMMIT) {
1517 1517 (*args->a_nfs4_commit)(args->a_vp, args->a_nfs4_plist,
1518 1518 args->a_nfs4_offset, args->a_nfs4_count,
1519 1519 args->a_cred);
1520 1520 } else if (args->a_io == NFS4_INACTIVE) {
1521 1521 nfs4_inactive_otw(args->a_vp, args->a_cred);
1522 1522 }
1523 1523
1524 1524 /*
1525 1525 * Now, release the vnode and free the credentials
1526 1526 * structure.
1527 1527 */
1528 1528 free_async_args4(args);
1529 1529 /*
1530 1530 * Reacquire the mutex because it will be needed above.
1531 1531 */
1532 1532 mutex_enter(&mi->mi_async_lock);
1533 1533 }
1534 1534 }
1535 1535
1536 1536 /*
1537 1537 * nfs4_inactive_thread - look for vnodes that need over-the-wire calls as
1538 1538 * part of VOP_INACTIVE.
1539 1539 */
1540 1540
1541 1541 void
1542 1542 nfs4_inactive_thread(mntinfo4_t *mi)
1543 1543 {
1544 1544 struct nfs4_async_reqs *args;
1545 1545 callb_cpr_t cprinfo;
1546 1546 vfs_t *vfsp = mi->mi_vfsp;
1547 1547
1548 1548 CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr,
1549 1549 "nfs4_inactive_thread");
1550 1550
1551 1551 for (;;) {
1552 1552 mutex_enter(&mi->mi_async_lock);
1553 1553 args = mi->mi_async_reqs[NFS4_INACTIVE];
1554 1554 if (args == NULL) {
1555 1555 mutex_enter(&mi->mi_lock);
1556 1556 /*
1557 1557 * We don't want to exit until the async manager is done
1558 1558 * with its work; hence the check for mi_manager_thread
1559 1559 * being NULL.
1560 1560 *
1561 1561 * The async manager thread will cv_broadcast() on
1562 1562 * mi_inact_req_cv when it's done, at which point we'll
1563 1563 * wake up and exit.
1564 1564 */
1565 1565 if (mi->mi_manager_thread == NULL)
1566 1566 goto die;
1567 1567 mi->mi_flags |= MI4_INACTIVE_IDLE;
1568 1568 mutex_exit(&mi->mi_lock);
1569 1569 cv_signal(&mi->mi_async_cv);
1570 1570 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1571 1571 cv_wait(&mi->mi_inact_req_cv, &mi->mi_async_lock);
1572 1572 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1573 1573 mutex_exit(&mi->mi_async_lock);
1574 1574 } else {
1575 1575 mutex_enter(&mi->mi_lock);
1576 1576 mi->mi_flags &= ~MI4_INACTIVE_IDLE;
1577 1577 mutex_exit(&mi->mi_lock);
1578 1578 mi->mi_async_reqs[NFS4_INACTIVE] = args->a_next;
1579 1579 mutex_exit(&mi->mi_async_lock);
1580 1580 nfs4_inactive_otw(args->a_vp, args->a_cred);
1581 1581 crfree(args->a_cred);
1582 1582 kmem_free(args, sizeof (*args));
1583 1583 }
1584 1584 }
1585 1585 die:
1586 1586 mutex_exit(&mi->mi_lock);
1587 1587 mi->mi_inactive_thread = NULL;
1588 1588 cv_signal(&mi->mi_async_cv);
1589 1589
1590 1590 /*
1591 1591 * There is no explicit call to mutex_exit(&mi->mi_async_lock) since
1592 1592 * CALLB_CPR_EXIT is actually responsible for releasing 'mi_async_lock'.
1593 1593 */
1594 1594 CALLB_CPR_EXIT(&cprinfo);
1595 1595
1596 1596 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
1597 1597 "nfs4_inactive_thread exiting for vfs %p\n", (void *)vfsp));
1598 1598
1599 1599 MI4_RELE(mi);
1600 1600 zthread_exit();
1601 1601 /* NOTREACHED */
1602 1602 }
1603 1603
1604 1604 /*
1605 1605 * nfs_async_stop:
1606 1606 * Wait for all outstanding putpage operations and the inactive thread to
1607 1607 * complete; nfs4_async_stop_sig() without interruptibility.
1608 1608 */
1609 1609 void
1610 1610 nfs4_async_stop(struct vfs *vfsp)
1611 1611 {
1612 1612 mntinfo4_t *mi = VFTOMI4(vfsp);
1613 1613
1614 1614 /*
1615 1615 * Wait for all outstanding async operations to complete and for
1616 1616 * worker threads to exit.
1617 1617 */
1618 1618 mutex_enter(&mi->mi_async_lock);
1619 1619 mi->mi_max_threads = 0;
1620 1620 NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
1621 1621 while (mi->mi_threads[NFS4_ASYNC_QUEUE] != 0 ||
1622 1622 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] != 0)
1623 1623 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1624 1624
1625 1625 /*
1626 1626 * Wait for the inactive thread to finish doing what it's doing. It
1627 1627 * won't exit until the last reference to the vfs_t goes away.
1628 1628 */
1629 1629 if (mi->mi_inactive_thread != NULL) {
1630 1630 mutex_enter(&mi->mi_lock);
1631 1631 while (!(mi->mi_flags & MI4_INACTIVE_IDLE) ||
1632 1632 (mi->mi_async_reqs[NFS4_INACTIVE] != NULL)) {
1633 1633 mutex_exit(&mi->mi_lock);
1634 1634 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1635 1635 mutex_enter(&mi->mi_lock);
1636 1636 }
1637 1637 mutex_exit(&mi->mi_lock);
1638 1638 }
1639 1639 mutex_exit(&mi->mi_async_lock);
1640 1640 }
1641 1641
1642 1642 /*
1643 1643 * nfs_async_stop_sig:
1644 1644 * Wait for all outstanding putpage operations and the inactive thread to
1645 1645 * complete. If a signal is delivered we will abort and return non-zero;
1646 1646 * otherwise return 0. Since this routine is called from nfs4_unmount, we
1647 1647 * need to make it interruptible.
1648 1648 */
1649 1649 int
1650 1650 nfs4_async_stop_sig(struct vfs *vfsp)
1651 1651 {
1652 1652 mntinfo4_t *mi = VFTOMI4(vfsp);
1653 1653 ushort_t omax;
1654 1654 bool_t intr = FALSE;
1655 1655
1656 1656 /*
1657 1657 * Wait for all outstanding putpage operations to complete and for
1658 1658 * worker threads to exit.
1659 1659 */
1660 1660 mutex_enter(&mi->mi_async_lock);
1661 1661 omax = mi->mi_max_threads;
1662 1662 mi->mi_max_threads = 0;
1663 1663 NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
1664 1664 while (mi->mi_threads[NFS4_ASYNC_QUEUE] != 0 ||
1665 1665 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] != 0) {
1666 1666 if (!cv_wait_sig(&mi->mi_async_cv, &mi->mi_async_lock)) {
1667 1667 intr = TRUE;
1668 1668 goto interrupted;
1669 1669 }
1670 1670 }
1671 1671
1672 1672 /*
1673 1673 * Wait for the inactive thread to finish doing what it's doing. It
1674 1674 * won't exit until the a last reference to the vfs_t goes away.
1675 1675 */
1676 1676 if (mi->mi_inactive_thread != NULL) {
1677 1677 mutex_enter(&mi->mi_lock);
1678 1678 while (!(mi->mi_flags & MI4_INACTIVE_IDLE) ||
1679 1679 (mi->mi_async_reqs[NFS4_INACTIVE] != NULL)) {
1680 1680 mutex_exit(&mi->mi_lock);
1681 1681 if (!cv_wait_sig(&mi->mi_async_cv,
1682 1682 &mi->mi_async_lock)) {
1683 1683 intr = TRUE;
1684 1684 goto interrupted;
1685 1685 }
1686 1686 mutex_enter(&mi->mi_lock);
1687 1687 }
1688 1688 mutex_exit(&mi->mi_lock);
1689 1689 }
1690 1690 interrupted:
1691 1691 if (intr)
1692 1692 mi->mi_max_threads = omax;
1693 1693 mutex_exit(&mi->mi_async_lock);
1694 1694
1695 1695 return (intr);
1696 1696 }
1697 1697
1698 1698 int
1699 1699 nfs4_async_putapage(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
1700 1700 int flags, cred_t *cr, int (*putapage)(vnode_t *, page_t *,
1701 1701 u_offset_t, size_t, int, cred_t *))
1702 1702 {
1703 1703 rnode4_t *rp;
1704 1704 mntinfo4_t *mi;
1705 1705 struct nfs4_async_reqs *args;
1706 1706
1707 1707 ASSERT(flags & B_ASYNC);
1708 1708 ASSERT(vp->v_vfsp != NULL);
1709 1709
1710 1710 rp = VTOR4(vp);
1711 1711 ASSERT(rp->r_count > 0);
1712 1712
1713 1713 mi = VTOMI4(vp);
1714 1714
1715 1715 /*
1716 1716 * If we can't allocate a request structure, do the putpage
1717 1717 * operation synchronously in this thread's context.
1718 1718 */
1719 1719 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1720 1720 goto noasync;
1721 1721
1722 1722 args->a_next = NULL;
1723 1723 #ifdef DEBUG
1724 1724 args->a_queuer = curthread;
1725 1725 #endif
1726 1726 VN_HOLD(vp);
1727 1727 args->a_vp = vp;
1728 1728 ASSERT(cr != NULL);
1729 1729 crhold(cr);
1730 1730 args->a_cred = cr;
1731 1731 args->a_io = NFS4_PUTAPAGE;
1732 1732 args->a_nfs4_putapage = putapage;
1733 1733 args->a_nfs4_pp = pp;
1734 1734 args->a_nfs4_off = off;
1735 1735 args->a_nfs4_len = (uint_t)len;
1736 1736 args->a_nfs4_flags = flags;
1737 1737
1738 1738 mutex_enter(&mi->mi_async_lock);
1739 1739
1740 1740 /*
1741 1741 * If asyncio has been disabled, then make a synchronous request.
1742 1742 * This check is done a second time in case async io was diabled
1743 1743 * while this thread was blocked waiting for memory pressure to
1744 1744 * reduce or for the queue to drain.
1745 1745 */
1746 1746 if (mi->mi_max_threads == 0) {
1747 1747 mutex_exit(&mi->mi_async_lock);
1748 1748
1749 1749 VN_RELE(vp);
1750 1750 crfree(cr);
1751 1751 kmem_free(args, sizeof (*args));
1752 1752 goto noasync;
1753 1753 }
1754 1754
1755 1755 /*
1756 1756 * Link request structure into the async list and
1757 1757 * wakeup async thread to do the i/o.
1758 1758 */
1759 1759 if (mi->mi_async_reqs[NFS4_PUTAPAGE] == NULL) {
1760 1760 mi->mi_async_reqs[NFS4_PUTAPAGE] = args;
1761 1761 mi->mi_async_tail[NFS4_PUTAPAGE] = args;
1762 1762 } else {
1763 1763 mi->mi_async_tail[NFS4_PUTAPAGE]->a_next = args;
1764 1764 mi->mi_async_tail[NFS4_PUTAPAGE] = args;
1765 1765 }
1766 1766
1767 1767 mutex_enter(&rp->r_statelock);
1768 1768 rp->r_count++;
1769 1769 rp->r_awcount++;
1770 1770 mutex_exit(&rp->r_statelock);
1771 1771
1772 1772 if (mi->mi_io_kstats) {
1773 1773 mutex_enter(&mi->mi_lock);
1774 1774 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1775 1775 mutex_exit(&mi->mi_lock);
↓ open down ↓ |
1775 lines elided |
↑ open up ↑ |
1776 1776 }
1777 1777
1778 1778 mi->mi_async_req_count++;
1779 1779 ASSERT(mi->mi_async_req_count != 0);
1780 1780 cv_signal(&mi->mi_async_reqs_cv);
1781 1781 mutex_exit(&mi->mi_async_lock);
1782 1782 return (0);
1783 1783
1784 1784 noasync:
1785 1785
1786 - if (curproc == proc_pageout || curproc == proc_fsflush ||
1787 - nfs_zone() == mi->mi_zone) {
1786 + if (curproc == proc_pageout || curproc == proc_fsflush) {
1788 1787 /*
1789 1788 * If we get here in the context of the pageout/fsflush,
1790 1789 * or we have run out of memory or we're attempting to
1791 1790 * unmount we refuse to do a sync write, because this may
1792 1791 * hang pageout/fsflush and the machine. In this case,
1793 1792 * we just re-mark the page as dirty and punt on the page.
1794 1793 *
1795 1794 * Make sure B_FORCE isn't set. We can re-mark the
1796 1795 * pages as dirty and unlock the pages in one swoop by
1797 1796 * passing in B_ERROR to pvn_write_done(). However,
1798 1797 * we should make sure B_FORCE isn't set - we don't
1799 1798 * want the page tossed before it gets written out.
1800 1799 */
1801 1800 if (flags & B_FORCE)
1802 1801 flags &= ~(B_INVAL | B_FORCE);
1803 1802 pvn_write_done(pp, flags | B_ERROR);
1804 1803 return (0);
1805 1804 }
1806 1805
1807 - /*
1808 - * We'll get here only if (nfs_zone() != mi->mi_zone)
1809 - * which means that this was a cross-zone sync putpage.
1810 - *
1811 - * We pass in B_ERROR to pvn_write_done() to re-mark the pages
1812 - * as dirty and unlock them.
1813 - *
1814 - * We don't want to clear B_FORCE here as the caller presumably
1815 - * knows what they're doing if they set it.
1816 - */
1817 - pvn_write_done(pp, flags | B_ERROR);
1818 - return (EPERM);
1806 + if (nfs_zone() != mi->mi_zone) {
1807 + /*
1808 + * So this was a cross-zone sync putpage.
1809 + *
1810 + * We pass in B_ERROR to pvn_write_done() to re-mark the pages
1811 + * as dirty and unlock them.
1812 + *
1813 + * We don't want to clear B_FORCE here as the caller presumably
1814 + * knows what they're doing if they set it.
1815 + */
1816 + pvn_write_done(pp, flags | B_ERROR);
1817 + return (EPERM);
1818 + }
1819 + return ((*putapage)(vp, pp, off, len, flags, cr));
1819 1820 }
1820 1821
1821 1822 int
1822 1823 nfs4_async_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
1823 1824 int flags, cred_t *cr, int (*pageio)(vnode_t *, page_t *, u_offset_t,
1824 1825 size_t, int, cred_t *))
1825 1826 {
1826 1827 rnode4_t *rp;
1827 1828 mntinfo4_t *mi;
1828 1829 struct nfs4_async_reqs *args;
1829 1830
1830 1831 ASSERT(flags & B_ASYNC);
1831 1832 ASSERT(vp->v_vfsp != NULL);
1832 1833
1833 1834 rp = VTOR4(vp);
1834 1835 ASSERT(rp->r_count > 0);
1835 1836
1836 1837 mi = VTOMI4(vp);
1837 1838
1838 1839 /*
1839 1840 * If we can't allocate a request structure, do the pageio
1840 1841 * request synchronously in this thread's context.
1841 1842 */
1842 1843 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1843 1844 goto noasync;
1844 1845
1845 1846 args->a_next = NULL;
1846 1847 #ifdef DEBUG
1847 1848 args->a_queuer = curthread;
1848 1849 #endif
1849 1850 VN_HOLD(vp);
1850 1851 args->a_vp = vp;
1851 1852 ASSERT(cr != NULL);
1852 1853 crhold(cr);
1853 1854 args->a_cred = cr;
1854 1855 args->a_io = NFS4_PAGEIO;
1855 1856 args->a_nfs4_pageio = pageio;
1856 1857 args->a_nfs4_pp = pp;
1857 1858 args->a_nfs4_off = io_off;
1858 1859 args->a_nfs4_len = (uint_t)io_len;
1859 1860 args->a_nfs4_flags = flags;
1860 1861
1861 1862 mutex_enter(&mi->mi_async_lock);
1862 1863
1863 1864 /*
1864 1865 * If asyncio has been disabled, then make a synchronous request.
1865 1866 * This check is done a second time in case async io was diabled
1866 1867 * while this thread was blocked waiting for memory pressure to
1867 1868 * reduce or for the queue to drain.
1868 1869 */
1869 1870 if (mi->mi_max_threads == 0) {
1870 1871 mutex_exit(&mi->mi_async_lock);
1871 1872
1872 1873 VN_RELE(vp);
1873 1874 crfree(cr);
1874 1875 kmem_free(args, sizeof (*args));
1875 1876 goto noasync;
1876 1877 }
1877 1878
1878 1879 /*
1879 1880 * Link request structure into the async list and
1880 1881 * wakeup async thread to do the i/o.
1881 1882 */
1882 1883 if (mi->mi_async_reqs[NFS4_PAGEIO] == NULL) {
1883 1884 mi->mi_async_reqs[NFS4_PAGEIO] = args;
1884 1885 mi->mi_async_tail[NFS4_PAGEIO] = args;
1885 1886 } else {
1886 1887 mi->mi_async_tail[NFS4_PAGEIO]->a_next = args;
1887 1888 mi->mi_async_tail[NFS4_PAGEIO] = args;
1888 1889 }
1889 1890
1890 1891 mutex_enter(&rp->r_statelock);
1891 1892 rp->r_count++;
1892 1893 rp->r_awcount++;
1893 1894 mutex_exit(&rp->r_statelock);
1894 1895
1895 1896 if (mi->mi_io_kstats) {
1896 1897 mutex_enter(&mi->mi_lock);
1897 1898 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1898 1899 mutex_exit(&mi->mi_lock);
1899 1900 }
1900 1901
1901 1902 mi->mi_async_req_count++;
1902 1903 ASSERT(mi->mi_async_req_count != 0);
1903 1904 cv_signal(&mi->mi_async_reqs_cv);
1904 1905 mutex_exit(&mi->mi_async_lock);
1905 1906 return (0);
1906 1907
1907 1908 noasync:
1908 1909 /*
1909 1910 * If we can't do it ASYNC, for reads we do nothing (but cleanup
1910 1911 * the page list), for writes we do it synchronously, except for
1911 1912 * proc_pageout/proc_fsflush as described below.
1912 1913 */
1913 1914 if (flags & B_READ) {
1914 1915 pvn_read_done(pp, flags | B_ERROR);
1915 1916 return (0);
1916 1917 }
1917 1918
1918 1919 if (curproc == proc_pageout || curproc == proc_fsflush) {
1919 1920 /*
1920 1921 * If we get here in the context of the pageout/fsflush,
1921 1922 * we refuse to do a sync write, because this may hang
1922 1923 * pageout/fsflush (and the machine). In this case, we just
1923 1924 * re-mark the page as dirty and punt on the page.
1924 1925 *
1925 1926 * Make sure B_FORCE isn't set. We can re-mark the
1926 1927 * pages as dirty and unlock the pages in one swoop by
1927 1928 * passing in B_ERROR to pvn_write_done(). However,
1928 1929 * we should make sure B_FORCE isn't set - we don't
1929 1930 * want the page tossed before it gets written out.
1930 1931 */
1931 1932 if (flags & B_FORCE)
1932 1933 flags &= ~(B_INVAL | B_FORCE);
1933 1934 pvn_write_done(pp, flags | B_ERROR);
1934 1935 return (0);
1935 1936 }
1936 1937
1937 1938 if (nfs_zone() != mi->mi_zone) {
1938 1939 /*
1939 1940 * So this was a cross-zone sync pageio. We pass in B_ERROR
1940 1941 * to pvn_write_done() to re-mark the pages as dirty and unlock
1941 1942 * them.
1942 1943 *
1943 1944 * We don't want to clear B_FORCE here as the caller presumably
1944 1945 * knows what they're doing if they set it.
1945 1946 */
1946 1947 pvn_write_done(pp, flags | B_ERROR);
1947 1948 return (EPERM);
1948 1949 }
1949 1950 return ((*pageio)(vp, pp, io_off, io_len, flags, cr));
1950 1951 }
1951 1952
1952 1953 void
1953 1954 nfs4_async_readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr,
1954 1955 int (*readdir)(vnode_t *, rddir4_cache *, cred_t *))
1955 1956 {
1956 1957 rnode4_t *rp;
1957 1958 mntinfo4_t *mi;
1958 1959 struct nfs4_async_reqs *args;
1959 1960
1960 1961 rp = VTOR4(vp);
1961 1962 ASSERT(rp->r_freef == NULL);
1962 1963
1963 1964 mi = VTOMI4(vp);
1964 1965
1965 1966 /*
1966 1967 * If we can't allocate a request structure, skip the readdir.
1967 1968 */
1968 1969 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1969 1970 goto noasync;
1970 1971
1971 1972 args->a_next = NULL;
1972 1973 #ifdef DEBUG
1973 1974 args->a_queuer = curthread;
1974 1975 #endif
1975 1976 VN_HOLD(vp);
1976 1977 args->a_vp = vp;
1977 1978 ASSERT(cr != NULL);
1978 1979 crhold(cr);
1979 1980 args->a_cred = cr;
1980 1981 args->a_io = NFS4_READDIR;
1981 1982 args->a_nfs4_readdir = readdir;
1982 1983 args->a_nfs4_rdc = rdc;
1983 1984
1984 1985 mutex_enter(&mi->mi_async_lock);
1985 1986
1986 1987 /*
1987 1988 * If asyncio has been disabled, then skip this request
1988 1989 */
1989 1990 if (mi->mi_max_threads == 0) {
1990 1991 mutex_exit(&mi->mi_async_lock);
1991 1992
1992 1993 VN_RELE(vp);
1993 1994 crfree(cr);
1994 1995 kmem_free(args, sizeof (*args));
1995 1996 goto noasync;
1996 1997 }
1997 1998
1998 1999 /*
1999 2000 * Link request structure into the async list and
2000 2001 * wakeup async thread to do the i/o.
2001 2002 */
2002 2003 if (mi->mi_async_reqs[NFS4_READDIR] == NULL) {
2003 2004 mi->mi_async_reqs[NFS4_READDIR] = args;
2004 2005 mi->mi_async_tail[NFS4_READDIR] = args;
2005 2006 } else {
2006 2007 mi->mi_async_tail[NFS4_READDIR]->a_next = args;
2007 2008 mi->mi_async_tail[NFS4_READDIR] = args;
2008 2009 }
2009 2010
2010 2011 mutex_enter(&rp->r_statelock);
2011 2012 rp->r_count++;
2012 2013 mutex_exit(&rp->r_statelock);
2013 2014
2014 2015 if (mi->mi_io_kstats) {
2015 2016 mutex_enter(&mi->mi_lock);
2016 2017 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
2017 2018 mutex_exit(&mi->mi_lock);
2018 2019 }
2019 2020
2020 2021 mi->mi_async_req_count++;
2021 2022 ASSERT(mi->mi_async_req_count != 0);
2022 2023 cv_signal(&mi->mi_async_reqs_cv);
2023 2024 mutex_exit(&mi->mi_async_lock);
2024 2025 return;
2025 2026
2026 2027 noasync:
2027 2028 mutex_enter(&rp->r_statelock);
2028 2029 rdc->entries = NULL;
2029 2030 /*
2030 2031 * Indicate that no one is trying to fill this entry and
2031 2032 * it still needs to be filled.
2032 2033 */
2033 2034 rdc->flags &= ~RDDIR;
2034 2035 rdc->flags |= RDDIRREQ;
2035 2036 rddir4_cache_rele(rp, rdc);
2036 2037 mutex_exit(&rp->r_statelock);
2037 2038 }
2038 2039
2039 2040 void
2040 2041 nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
2041 2042 cred_t *cr, void (*commit)(vnode_t *, page_t *, offset3, count3,
2042 2043 cred_t *))
2043 2044 {
2044 2045 rnode4_t *rp;
2045 2046 mntinfo4_t *mi;
2046 2047 struct nfs4_async_reqs *args;
2047 2048 page_t *pp;
2048 2049
2049 2050 rp = VTOR4(vp);
2050 2051 mi = VTOMI4(vp);
2051 2052
2052 2053 /*
2053 2054 * If we can't allocate a request structure, do the commit
2054 2055 * operation synchronously in this thread's context.
2055 2056 */
2056 2057 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
2057 2058 goto noasync;
2058 2059
2059 2060 args->a_next = NULL;
2060 2061 #ifdef DEBUG
2061 2062 args->a_queuer = curthread;
2062 2063 #endif
2063 2064 VN_HOLD(vp);
2064 2065 args->a_vp = vp;
2065 2066 ASSERT(cr != NULL);
2066 2067 crhold(cr);
2067 2068 args->a_cred = cr;
2068 2069 args->a_io = NFS4_COMMIT;
2069 2070 args->a_nfs4_commit = commit;
2070 2071 args->a_nfs4_plist = plist;
2071 2072 args->a_nfs4_offset = offset;
2072 2073 args->a_nfs4_count = count;
2073 2074
2074 2075 mutex_enter(&mi->mi_async_lock);
2075 2076
2076 2077 /*
2077 2078 * If asyncio has been disabled, then make a synchronous request.
2078 2079 * This check is done a second time in case async io was diabled
2079 2080 * while this thread was blocked waiting for memory pressure to
2080 2081 * reduce or for the queue to drain.
2081 2082 */
2082 2083 if (mi->mi_max_threads == 0) {
2083 2084 mutex_exit(&mi->mi_async_lock);
2084 2085
2085 2086 VN_RELE(vp);
2086 2087 crfree(cr);
2087 2088 kmem_free(args, sizeof (*args));
2088 2089 goto noasync;
2089 2090 }
2090 2091
2091 2092 /*
2092 2093 * Link request structure into the async list and
2093 2094 * wakeup async thread to do the i/o.
2094 2095 */
2095 2096 if (mi->mi_async_reqs[NFS4_COMMIT] == NULL) {
2096 2097 mi->mi_async_reqs[NFS4_COMMIT] = args;
2097 2098 mi->mi_async_tail[NFS4_COMMIT] = args;
2098 2099 } else {
2099 2100 mi->mi_async_tail[NFS4_COMMIT]->a_next = args;
2100 2101 mi->mi_async_tail[NFS4_COMMIT] = args;
2101 2102 }
2102 2103
2103 2104 mutex_enter(&rp->r_statelock);
2104 2105 rp->r_count++;
2105 2106 mutex_exit(&rp->r_statelock);
2106 2107
2107 2108 if (mi->mi_io_kstats) {
2108 2109 mutex_enter(&mi->mi_lock);
2109 2110 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
2110 2111 mutex_exit(&mi->mi_lock);
2111 2112 }
2112 2113
2113 2114 mi->mi_async_req_count++;
2114 2115 ASSERT(mi->mi_async_req_count != 0);
2115 2116 cv_signal(&mi->mi_async_reqs_cv);
2116 2117 mutex_exit(&mi->mi_async_lock);
2117 2118 return;
2118 2119
2119 2120 noasync:
2120 2121 if (curproc == proc_pageout || curproc == proc_fsflush ||
2121 2122 nfs_zone() != mi->mi_zone) {
2122 2123 while (plist != NULL) {
2123 2124 pp = plist;
2124 2125 page_sub(&plist, pp);
2125 2126 pp->p_fsdata = C_COMMIT;
2126 2127 page_unlock(pp);
2127 2128 }
2128 2129 return;
2129 2130 }
2130 2131 (*commit)(vp, plist, offset, count, cr);
2131 2132 }
2132 2133
2133 2134 /*
2134 2135 * nfs4_async_inactive - hand off a VOP_INACTIVE call to a thread. The
2135 2136 * reference to the vnode is handed over to the thread; the caller should
2136 2137 * no longer refer to the vnode.
2137 2138 *
2138 2139 * Unlike most of the async routines, this handoff is needed for
2139 2140 * correctness reasons, not just performance. So doing operations in the
2140 2141 * context of the current thread is not an option.
2141 2142 */
2142 2143 void
2143 2144 nfs4_async_inactive(vnode_t *vp, cred_t *cr)
2144 2145 {
2145 2146 mntinfo4_t *mi;
2146 2147 struct nfs4_async_reqs *args;
2147 2148 boolean_t signal_inactive_thread = B_FALSE;
2148 2149
2149 2150 mi = VTOMI4(vp);
2150 2151
2151 2152 args = kmem_alloc(sizeof (*args), KM_SLEEP);
2152 2153 args->a_next = NULL;
2153 2154 #ifdef DEBUG
2154 2155 args->a_queuer = curthread;
2155 2156 #endif
2156 2157 args->a_vp = vp;
2157 2158 ASSERT(cr != NULL);
2158 2159 crhold(cr);
2159 2160 args->a_cred = cr;
2160 2161 args->a_io = NFS4_INACTIVE;
2161 2162
2162 2163 /*
2163 2164 * Note that we don't check mi->mi_max_threads here, since we
2164 2165 * *need* to get rid of this vnode regardless of whether someone
2165 2166 * set nfs4_max_threads to zero in /etc/system.
2166 2167 *
2167 2168 * The manager thread knows about this and is willing to create
2168 2169 * at least one thread to accommodate us.
2169 2170 */
2170 2171 mutex_enter(&mi->mi_async_lock);
2171 2172 if (mi->mi_inactive_thread == NULL) {
2172 2173 rnode4_t *rp;
2173 2174 vnode_t *unldvp = NULL;
2174 2175 char *unlname;
2175 2176 cred_t *unlcred;
2176 2177
2177 2178 mutex_exit(&mi->mi_async_lock);
2178 2179 /*
2179 2180 * We just need to free up the memory associated with the
2180 2181 * vnode, which can be safely done from within the current
2181 2182 * context.
2182 2183 */
2183 2184 crfree(cr); /* drop our reference */
2184 2185 kmem_free(args, sizeof (*args));
2185 2186 rp = VTOR4(vp);
2186 2187 mutex_enter(&rp->r_statelock);
2187 2188 if (rp->r_unldvp != NULL) {
2188 2189 unldvp = rp->r_unldvp;
2189 2190 rp->r_unldvp = NULL;
2190 2191 unlname = rp->r_unlname;
2191 2192 rp->r_unlname = NULL;
2192 2193 unlcred = rp->r_unlcred;
2193 2194 rp->r_unlcred = NULL;
2194 2195 }
2195 2196 mutex_exit(&rp->r_statelock);
2196 2197 /*
2197 2198 * No need to explicitly throw away any cached pages. The
2198 2199 * eventual r4inactive() will attempt a synchronous
2199 2200 * VOP_PUTPAGE() which will immediately fail since the request
2200 2201 * is coming from the wrong zone, and then will proceed to call
2201 2202 * nfs4_invalidate_pages() which will clean things up for us.
2202 2203 *
2203 2204 * Throw away the delegation here so rp4_addfree()'s attempt to
2204 2205 * return any existing delegations becomes a no-op.
2205 2206 */
2206 2207 if (rp->r_deleg_type != OPEN_DELEGATE_NONE) {
2207 2208 (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER,
2208 2209 FALSE);
2209 2210 (void) nfs4delegreturn(rp, NFS4_DR_DISCARD);
2210 2211 nfs_rw_exit(&mi->mi_recovlock);
2211 2212 }
2212 2213 nfs4_clear_open_streams(rp);
2213 2214
2214 2215 rp4_addfree(rp, cr);
2215 2216 if (unldvp != NULL) {
2216 2217 kmem_free(unlname, MAXNAMELEN);
2217 2218 VN_RELE(unldvp);
2218 2219 crfree(unlcred);
2219 2220 }
2220 2221 return;
2221 2222 }
2222 2223
2223 2224 if (mi->mi_manager_thread == NULL) {
2224 2225 /*
2225 2226 * We want to talk to the inactive thread.
2226 2227 */
2227 2228 signal_inactive_thread = B_TRUE;
2228 2229 }
2229 2230
2230 2231 /*
2231 2232 * Enqueue the vnode and wake up either the special thread (empty
2232 2233 * list) or an async thread.
2233 2234 */
2234 2235 if (mi->mi_async_reqs[NFS4_INACTIVE] == NULL) {
2235 2236 mi->mi_async_reqs[NFS4_INACTIVE] = args;
2236 2237 mi->mi_async_tail[NFS4_INACTIVE] = args;
2237 2238 signal_inactive_thread = B_TRUE;
2238 2239 } else {
2239 2240 mi->mi_async_tail[NFS4_INACTIVE]->a_next = args;
2240 2241 mi->mi_async_tail[NFS4_INACTIVE] = args;
2241 2242 }
2242 2243 if (signal_inactive_thread) {
2243 2244 cv_signal(&mi->mi_inact_req_cv);
2244 2245 } else {
2245 2246 mi->mi_async_req_count++;
2246 2247 ASSERT(mi->mi_async_req_count != 0);
2247 2248 cv_signal(&mi->mi_async_reqs_cv);
2248 2249 }
2249 2250
2250 2251 mutex_exit(&mi->mi_async_lock);
2251 2252 }
2252 2253
2253 2254 int
2254 2255 writerp4(rnode4_t *rp, caddr_t base, int tcount, struct uio *uio, int pgcreated)
2255 2256 {
2256 2257 int pagecreate;
2257 2258 int n;
2258 2259 int saved_n;
2259 2260 caddr_t saved_base;
2260 2261 u_offset_t offset;
2261 2262 int error;
2262 2263 int sm_error;
2263 2264 vnode_t *vp = RTOV(rp);
2264 2265
2265 2266 ASSERT(tcount <= MAXBSIZE && tcount <= uio->uio_resid);
2266 2267 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_WRITER));
2267 2268 if (!vpm_enable) {
2268 2269 ASSERT(((uintptr_t)base & MAXBOFFSET) + tcount <= MAXBSIZE);
2269 2270 }
2270 2271
2271 2272 /*
2272 2273 * Move bytes in at most PAGESIZE chunks. We must avoid
2273 2274 * spanning pages in uiomove() because page faults may cause
2274 2275 * the cache to be invalidated out from under us. The r_size is not
2275 2276 * updated until after the uiomove. If we push the last page of a
2276 2277 * file before r_size is correct, we will lose the data written past
2277 2278 * the current (and invalid) r_size.
2278 2279 */
2279 2280 do {
2280 2281 offset = uio->uio_loffset;
2281 2282 pagecreate = 0;
2282 2283
2283 2284 /*
2284 2285 * n is the number of bytes required to satisfy the request
2285 2286 * or the number of bytes to fill out the page.
2286 2287 */
2287 2288 n = (int)MIN((PAGESIZE - (offset & PAGEOFFSET)), tcount);
2288 2289
2289 2290 /*
2290 2291 * Check to see if we can skip reading in the page
2291 2292 * and just allocate the memory. We can do this
2292 2293 * if we are going to rewrite the entire mapping
2293 2294 * or if we are going to write to or beyond the current
2294 2295 * end of file from the beginning of the mapping.
2295 2296 *
2296 2297 * The read of r_size is now protected by r_statelock.
2297 2298 */
2298 2299 mutex_enter(&rp->r_statelock);
2299 2300 /*
2300 2301 * When pgcreated is nonzero the caller has already done
2301 2302 * a segmap_getmapflt with forcefault 0 and S_WRITE. With
2302 2303 * segkpm this means we already have at least one page
2303 2304 * created and mapped at base.
2304 2305 */
2305 2306 pagecreate = pgcreated ||
2306 2307 ((offset & PAGEOFFSET) == 0 &&
2307 2308 (n == PAGESIZE || ((offset + n) >= rp->r_size)));
2308 2309
2309 2310 mutex_exit(&rp->r_statelock);
2310 2311
2311 2312 if (!vpm_enable && pagecreate) {
2312 2313 /*
2313 2314 * The last argument tells segmap_pagecreate() to
2314 2315 * always lock the page, as opposed to sometimes
2315 2316 * returning with the page locked. This way we avoid a
2316 2317 * fault on the ensuing uiomove(), but also
2317 2318 * more importantly (to fix bug 1094402) we can
2318 2319 * call segmap_fault() to unlock the page in all
2319 2320 * cases. An alternative would be to modify
2320 2321 * segmap_pagecreate() to tell us when it is
2321 2322 * locking a page, but that's a fairly major
2322 2323 * interface change.
2323 2324 */
2324 2325 if (pgcreated == 0)
2325 2326 (void) segmap_pagecreate(segkmap, base,
2326 2327 (uint_t)n, 1);
2327 2328 saved_base = base;
2328 2329 saved_n = n;
2329 2330 }
2330 2331
2331 2332 /*
2332 2333 * The number of bytes of data in the last page can not
2333 2334 * be accurately be determined while page is being
2334 2335 * uiomove'd to and the size of the file being updated.
2335 2336 * Thus, inform threads which need to know accurately
2336 2337 * how much data is in the last page of the file. They
2337 2338 * will not do the i/o immediately, but will arrange for
2338 2339 * the i/o to happen later when this modify operation
2339 2340 * will have finished.
2340 2341 */
2341 2342 ASSERT(!(rp->r_flags & R4MODINPROGRESS));
2342 2343 mutex_enter(&rp->r_statelock);
2343 2344 rp->r_flags |= R4MODINPROGRESS;
2344 2345 rp->r_modaddr = (offset & MAXBMASK);
2345 2346 mutex_exit(&rp->r_statelock);
2346 2347
2347 2348 if (vpm_enable) {
2348 2349 /*
2349 2350 * Copy data. If new pages are created, part of
2350 2351 * the page that is not written will be initizliazed
2351 2352 * with zeros.
2352 2353 */
2353 2354 error = vpm_data_copy(vp, offset, n, uio,
2354 2355 !pagecreate, NULL, 0, S_WRITE);
2355 2356 } else {
2356 2357 error = uiomove(base, n, UIO_WRITE, uio);
2357 2358 }
2358 2359
2359 2360 /*
2360 2361 * r_size is the maximum number of
2361 2362 * bytes known to be in the file.
2362 2363 * Make sure it is at least as high as the
2363 2364 * first unwritten byte pointed to by uio_loffset.
2364 2365 */
2365 2366 mutex_enter(&rp->r_statelock);
2366 2367 if (rp->r_size < uio->uio_loffset)
2367 2368 rp->r_size = uio->uio_loffset;
2368 2369 rp->r_flags &= ~R4MODINPROGRESS;
2369 2370 rp->r_flags |= R4DIRTY;
2370 2371 mutex_exit(&rp->r_statelock);
2371 2372
2372 2373 /* n = # of bytes written */
2373 2374 n = (int)(uio->uio_loffset - offset);
2374 2375
2375 2376 if (!vpm_enable) {
2376 2377 base += n;
2377 2378 }
2378 2379
2379 2380 tcount -= n;
2380 2381 /*
2381 2382 * If we created pages w/o initializing them completely,
2382 2383 * we need to zero the part that wasn't set up.
2383 2384 * This happens on a most EOF write cases and if
2384 2385 * we had some sort of error during the uiomove.
2385 2386 */
2386 2387 if (!vpm_enable && pagecreate) {
2387 2388 if ((uio->uio_loffset & PAGEOFFSET) || n == 0)
2388 2389 (void) kzero(base, PAGESIZE - n);
2389 2390
2390 2391 if (pgcreated) {
2391 2392 /*
2392 2393 * Caller is responsible for this page,
2393 2394 * it was not created in this loop.
2394 2395 */
2395 2396 pgcreated = 0;
2396 2397 } else {
2397 2398 /*
2398 2399 * For bug 1094402: segmap_pagecreate locks
2399 2400 * page. Unlock it. This also unlocks the
2400 2401 * pages allocated by page_create_va() in
2401 2402 * segmap_pagecreate().
2402 2403 */
2403 2404 sm_error = segmap_fault(kas.a_hat, segkmap,
2404 2405 saved_base, saved_n,
2405 2406 F_SOFTUNLOCK, S_WRITE);
2406 2407 if (error == 0)
2407 2408 error = sm_error;
2408 2409 }
2409 2410 }
2410 2411 } while (tcount > 0 && error == 0);
2411 2412
2412 2413 return (error);
2413 2414 }
2414 2415
2415 2416 int
2416 2417 nfs4_putpages(vnode_t *vp, u_offset_t off, size_t len, int flags, cred_t *cr)
2417 2418 {
2418 2419 rnode4_t *rp;
2419 2420 page_t *pp;
2420 2421 u_offset_t eoff;
2421 2422 u_offset_t io_off;
2422 2423 size_t io_len;
2423 2424 int error;
2424 2425 int rdirty;
2425 2426 int err;
2426 2427
2427 2428 rp = VTOR4(vp);
2428 2429 ASSERT(rp->r_count > 0);
2429 2430
2430 2431 if (!nfs4_has_pages(vp))
2431 2432 return (0);
2432 2433
2433 2434 ASSERT(vp->v_type != VCHR);
2434 2435
2435 2436 /*
2436 2437 * If R4OUTOFSPACE is set, then all writes turn into B_INVAL
2437 2438 * writes. B_FORCE is set to force the VM system to actually
2438 2439 * invalidate the pages, even if the i/o failed. The pages
2439 2440 * need to get invalidated because they can't be written out
2440 2441 * because there isn't any space left on either the server's
2441 2442 * file system or in the user's disk quota. The B_FREE bit
2442 2443 * is cleared to avoid confusion as to whether this is a
2443 2444 * request to place the page on the freelist or to destroy
2444 2445 * it.
2445 2446 */
2446 2447 if ((rp->r_flags & R4OUTOFSPACE) ||
2447 2448 (vp->v_vfsp->vfs_flag & VFS_UNMOUNTED))
2448 2449 flags = (flags & ~B_FREE) | B_INVAL | B_FORCE;
2449 2450
2450 2451 if (len == 0) {
2451 2452 /*
2452 2453 * If doing a full file synchronous operation, then clear
2453 2454 * the R4DIRTY bit. If a page gets dirtied while the flush
2454 2455 * is happening, then R4DIRTY will get set again. The
2455 2456 * R4DIRTY bit must get cleared before the flush so that
2456 2457 * we don't lose this information.
2457 2458 *
2458 2459 * If there are no full file async write operations
2459 2460 * pending and RDIRTY bit is set, clear it.
2460 2461 */
2461 2462 if (off == (u_offset_t)0 &&
2462 2463 !(flags & B_ASYNC) &&
2463 2464 (rp->r_flags & R4DIRTY)) {
2464 2465 mutex_enter(&rp->r_statelock);
2465 2466 rdirty = (rp->r_flags & R4DIRTY);
2466 2467 rp->r_flags &= ~R4DIRTY;
2467 2468 mutex_exit(&rp->r_statelock);
2468 2469 } else if (flags & B_ASYNC && off == (u_offset_t)0) {
2469 2470 mutex_enter(&rp->r_statelock);
2470 2471 if (rp->r_flags & R4DIRTY && rp->r_awcount == 0) {
2471 2472 rdirty = (rp->r_flags & R4DIRTY);
2472 2473 rp->r_flags &= ~R4DIRTY;
2473 2474 }
2474 2475 mutex_exit(&rp->r_statelock);
2475 2476 } else
2476 2477 rdirty = 0;
2477 2478
2478 2479 /*
2479 2480 * Search the entire vp list for pages >= off, and flush
2480 2481 * the dirty pages.
2481 2482 */
2482 2483 error = pvn_vplist_dirty(vp, off, rp->r_putapage,
2483 2484 flags, cr);
2484 2485
2485 2486 /*
2486 2487 * If an error occurred and the file was marked as dirty
2487 2488 * before and we aren't forcibly invalidating pages, then
2488 2489 * reset the R4DIRTY flag.
2489 2490 */
2490 2491 if (error && rdirty &&
2491 2492 (flags & (B_INVAL | B_FORCE)) != (B_INVAL | B_FORCE)) {
2492 2493 mutex_enter(&rp->r_statelock);
2493 2494 rp->r_flags |= R4DIRTY;
2494 2495 mutex_exit(&rp->r_statelock);
2495 2496 }
2496 2497 } else {
2497 2498 /*
2498 2499 * Do a range from [off...off + len) looking for pages
2499 2500 * to deal with.
2500 2501 */
2501 2502 error = 0;
2502 2503 io_len = 0;
2503 2504 eoff = off + len;
2504 2505 mutex_enter(&rp->r_statelock);
2505 2506 for (io_off = off; io_off < eoff && io_off < rp->r_size;
2506 2507 io_off += io_len) {
2507 2508 mutex_exit(&rp->r_statelock);
2508 2509 /*
2509 2510 * If we are not invalidating, synchronously
2510 2511 * freeing or writing pages use the routine
2511 2512 * page_lookup_nowait() to prevent reclaiming
2512 2513 * them from the free list.
2513 2514 */
2514 2515 if ((flags & B_INVAL) || !(flags & B_ASYNC)) {
2515 2516 pp = page_lookup(vp, io_off,
2516 2517 (flags & (B_INVAL | B_FREE)) ?
2517 2518 SE_EXCL : SE_SHARED);
2518 2519 } else {
2519 2520 pp = page_lookup_nowait(vp, io_off,
2520 2521 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
2521 2522 }
2522 2523
2523 2524 if (pp == NULL || !pvn_getdirty(pp, flags))
2524 2525 io_len = PAGESIZE;
2525 2526 else {
2526 2527 err = (*rp->r_putapage)(vp, pp, &io_off,
2527 2528 &io_len, flags, cr);
2528 2529 if (!error)
2529 2530 error = err;
2530 2531 /*
2531 2532 * "io_off" and "io_len" are returned as
2532 2533 * the range of pages we actually wrote.
2533 2534 * This allows us to skip ahead more quickly
2534 2535 * since several pages may've been dealt
2535 2536 * with by this iteration of the loop.
2536 2537 */
2537 2538 }
2538 2539 mutex_enter(&rp->r_statelock);
2539 2540 }
2540 2541 mutex_exit(&rp->r_statelock);
2541 2542 }
2542 2543
2543 2544 return (error);
2544 2545 }
2545 2546
2546 2547 void
2547 2548 nfs4_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr)
2548 2549 {
2549 2550 rnode4_t *rp;
2550 2551
2551 2552 rp = VTOR4(vp);
2552 2553 if (IS_SHADOW(vp, rp))
2553 2554 vp = RTOV4(rp);
2554 2555 mutex_enter(&rp->r_statelock);
2555 2556 while (rp->r_flags & R4TRUNCATE)
2556 2557 cv_wait(&rp->r_cv, &rp->r_statelock);
2557 2558 rp->r_flags |= R4TRUNCATE;
2558 2559 if (off == (u_offset_t)0) {
2559 2560 rp->r_flags &= ~R4DIRTY;
2560 2561 if (!(rp->r_flags & R4STALE))
2561 2562 rp->r_error = 0;
2562 2563 }
2563 2564 rp->r_truncaddr = off;
2564 2565 mutex_exit(&rp->r_statelock);
2565 2566 (void) pvn_vplist_dirty(vp, off, rp->r_putapage,
2566 2567 B_INVAL | B_TRUNC, cr);
2567 2568 mutex_enter(&rp->r_statelock);
2568 2569 rp->r_flags &= ~R4TRUNCATE;
2569 2570 cv_broadcast(&rp->r_cv);
2570 2571 mutex_exit(&rp->r_statelock);
2571 2572 }
2572 2573
2573 2574 static int
2574 2575 nfs4_mnt_kstat_update(kstat_t *ksp, int rw)
2575 2576 {
2576 2577 mntinfo4_t *mi;
2577 2578 struct mntinfo_kstat *mik;
2578 2579 vfs_t *vfsp;
2579 2580
2580 2581 /* this is a read-only kstat. Bail out on a write */
2581 2582 if (rw == KSTAT_WRITE)
2582 2583 return (EACCES);
2583 2584
2584 2585
2585 2586 /*
2586 2587 * We don't want to wait here as kstat_chain_lock could be held by
2587 2588 * dounmount(). dounmount() takes vfs_reflock before the chain lock
2588 2589 * and thus could lead to a deadlock.
2589 2590 */
2590 2591 vfsp = (struct vfs *)ksp->ks_private;
2591 2592
2592 2593 mi = VFTOMI4(vfsp);
2593 2594 mik = (struct mntinfo_kstat *)ksp->ks_data;
2594 2595
2595 2596 (void) strcpy(mik->mik_proto, mi->mi_curr_serv->sv_knconf->knc_proto);
2596 2597
2597 2598 mik->mik_vers = (uint32_t)mi->mi_vers;
2598 2599 mik->mik_flags = mi->mi_flags;
2599 2600 /*
2600 2601 * The sv_secdata holds the flavor the client specifies.
2601 2602 * If the client uses default and a security negotiation
2602 2603 * occurs, sv_currsec will point to the current flavor
2603 2604 * selected from the server flavor list.
2604 2605 * sv_currsec is NULL if no security negotiation takes place.
2605 2606 */
2606 2607 mik->mik_secmod = mi->mi_curr_serv->sv_currsec ?
2607 2608 mi->mi_curr_serv->sv_currsec->secmod :
2608 2609 mi->mi_curr_serv->sv_secdata->secmod;
2609 2610 mik->mik_curread = (uint32_t)mi->mi_curread;
2610 2611 mik->mik_curwrite = (uint32_t)mi->mi_curwrite;
2611 2612 mik->mik_retrans = mi->mi_retrans;
2612 2613 mik->mik_timeo = mi->mi_timeo;
2613 2614 mik->mik_acregmin = HR2SEC(mi->mi_acregmin);
2614 2615 mik->mik_acregmax = HR2SEC(mi->mi_acregmax);
2615 2616 mik->mik_acdirmin = HR2SEC(mi->mi_acdirmin);
2616 2617 mik->mik_acdirmax = HR2SEC(mi->mi_acdirmax);
2617 2618 mik->mik_noresponse = (uint32_t)mi->mi_noresponse;
2618 2619 mik->mik_failover = (uint32_t)mi->mi_failover;
2619 2620 mik->mik_remap = (uint32_t)mi->mi_remap;
2620 2621
2621 2622 (void) strcpy(mik->mik_curserver, mi->mi_curr_serv->sv_hostname);
2622 2623
2623 2624 return (0);
2624 2625 }
2625 2626
2626 2627 void
2627 2628 nfs4_mnt_kstat_init(struct vfs *vfsp)
2628 2629 {
2629 2630 mntinfo4_t *mi = VFTOMI4(vfsp);
2630 2631
2631 2632 /*
2632 2633 * PSARC 2001/697 Contract Private Interface
2633 2634 * All nfs kstats are under SunMC contract
2634 2635 * Please refer to the PSARC listed above and contact
2635 2636 * SunMC before making any changes!
2636 2637 *
2637 2638 * Changes must be reviewed by Solaris File Sharing
2638 2639 * Changes must be communicated to contract-2001-697@sun.com
2639 2640 *
2640 2641 */
2641 2642
2642 2643 mi->mi_io_kstats = kstat_create_zone("nfs", getminor(vfsp->vfs_dev),
2643 2644 NULL, "nfs", KSTAT_TYPE_IO, 1, 0, mi->mi_zone->zone_id);
2644 2645 if (mi->mi_io_kstats) {
2645 2646 if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
2646 2647 kstat_zone_add(mi->mi_io_kstats, GLOBAL_ZONEID);
2647 2648 mi->mi_io_kstats->ks_lock = &mi->mi_lock;
2648 2649 kstat_install(mi->mi_io_kstats);
2649 2650 }
2650 2651
2651 2652 if ((mi->mi_ro_kstats = kstat_create_zone("nfs",
2652 2653 getminor(vfsp->vfs_dev), "mntinfo", "misc", KSTAT_TYPE_RAW,
2653 2654 sizeof (struct mntinfo_kstat), 0, mi->mi_zone->zone_id)) != NULL) {
2654 2655 if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
2655 2656 kstat_zone_add(mi->mi_ro_kstats, GLOBAL_ZONEID);
2656 2657 mi->mi_ro_kstats->ks_update = nfs4_mnt_kstat_update;
2657 2658 mi->mi_ro_kstats->ks_private = (void *)vfsp;
2658 2659 kstat_install(mi->mi_ro_kstats);
2659 2660 }
2660 2661
2661 2662 nfs4_mnt_recov_kstat_init(vfsp);
2662 2663 }
2663 2664
2664 2665 void
2665 2666 nfs4_write_error(vnode_t *vp, int error, cred_t *cr)
2666 2667 {
2667 2668 mntinfo4_t *mi;
2668 2669 clock_t now = ddi_get_lbolt();
2669 2670
2670 2671 mi = VTOMI4(vp);
2671 2672 /*
2672 2673 * In case of forced unmount, do not print any messages
2673 2674 * since it can flood the console with error messages.
2674 2675 */
2675 2676 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED)
2676 2677 return;
2677 2678
2678 2679 /*
2679 2680 * If the mount point is dead, not recoverable, do not
2680 2681 * print error messages that can flood the console.
2681 2682 */
2682 2683 if (mi->mi_flags & MI4_RECOV_FAIL)
2683 2684 return;
2684 2685
2685 2686 /*
2686 2687 * No use in flooding the console with ENOSPC
2687 2688 * messages from the same file system.
2688 2689 */
2689 2690 if ((error != ENOSPC && error != EDQUOT) ||
2690 2691 now - mi->mi_printftime > 0) {
2691 2692 zoneid_t zoneid = mi->mi_zone->zone_id;
2692 2693
2693 2694 #ifdef DEBUG
2694 2695 nfs_perror(error, "NFS%ld write error on host %s: %m.\n",
2695 2696 mi->mi_vers, VTOR4(vp)->r_server->sv_hostname, NULL);
2696 2697 #else
2697 2698 nfs_perror(error, "NFS write error on host %s: %m.\n",
2698 2699 VTOR4(vp)->r_server->sv_hostname, NULL);
2699 2700 #endif
2700 2701 if (error == ENOSPC || error == EDQUOT) {
2701 2702 zcmn_err(zoneid, CE_CONT,
2702 2703 "^File: userid=%d, groupid=%d\n",
2703 2704 crgetuid(cr), crgetgid(cr));
2704 2705 if (crgetuid(curthread->t_cred) != crgetuid(cr) ||
2705 2706 crgetgid(curthread->t_cred) != crgetgid(cr)) {
2706 2707 zcmn_err(zoneid, CE_CONT,
2707 2708 "^User: userid=%d, groupid=%d\n",
2708 2709 crgetuid(curthread->t_cred),
2709 2710 crgetgid(curthread->t_cred));
2710 2711 }
2711 2712 mi->mi_printftime = now +
2712 2713 nfs_write_error_interval * hz;
2713 2714 }
2714 2715 sfh4_printfhandle(VTOR4(vp)->r_fh);
2715 2716 #ifdef DEBUG
2716 2717 if (error == EACCES) {
2717 2718 zcmn_err(zoneid, CE_CONT,
2718 2719 "nfs_bio: cred is%s kcred\n",
2719 2720 cr == kcred ? "" : " not");
2720 2721 }
2721 2722 #endif
2722 2723 }
2723 2724 }
2724 2725
2725 2726 /*
2726 2727 * Return non-zero if the given file can be safely memory mapped. Locks
2727 2728 * are safe if whole-file (length and offset are both zero).
2728 2729 */
2729 2730
2730 2731 #define SAFE_LOCK(flk) ((flk).l_start == 0 && (flk).l_len == 0)
2731 2732
2732 2733 static int
2733 2734 nfs4_safemap(const vnode_t *vp)
2734 2735 {
2735 2736 locklist_t *llp, *next_llp;
2736 2737 int safe = 1;
2737 2738 rnode4_t *rp = VTOR4(vp);
2738 2739
2739 2740 ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));
2740 2741
2741 2742 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, "nfs4_safemap: "
2742 2743 "vp = %p", (void *)vp));
2743 2744
2744 2745 /*
2745 2746 * Review all the locks for the vnode, both ones that have been
2746 2747 * acquired and ones that are pending. We assume that
2747 2748 * flk_active_locks_for_vp() has merged any locks that can be
2748 2749 * merged (so that if a process has the entire file locked, it is
2749 2750 * represented as a single lock).
2750 2751 *
2751 2752 * Note that we can't bail out of the loop if we find a non-safe
2752 2753 * lock, because we have to free all the elements in the llp list.
2753 2754 * We might be able to speed up this code slightly by not looking
2754 2755 * at each lock's l_start and l_len fields once we've found a
2755 2756 * non-safe lock.
2756 2757 */
2757 2758
2758 2759 llp = flk_active_locks_for_vp(vp);
2759 2760 while (llp) {
2760 2761 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE,
2761 2762 "nfs4_safemap: active lock (%" PRId64 ", %" PRId64 ")",
2762 2763 llp->ll_flock.l_start, llp->ll_flock.l_len));
2763 2764 if (!SAFE_LOCK(llp->ll_flock)) {
2764 2765 safe = 0;
2765 2766 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE,
2766 2767 "nfs4_safemap: unsafe active lock (%" PRId64
2767 2768 ", %" PRId64 ")", llp->ll_flock.l_start,
2768 2769 llp->ll_flock.l_len));
2769 2770 }
2770 2771 next_llp = llp->ll_next;
2771 2772 VN_RELE(llp->ll_vp);
2772 2773 kmem_free(llp, sizeof (*llp));
2773 2774 llp = next_llp;
2774 2775 }
2775 2776
2776 2777 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, "nfs4_safemap: %s",
2777 2778 safe ? "safe" : "unsafe"));
2778 2779 return (safe);
2779 2780 }
2780 2781
2781 2782 /*
2782 2783 * Return whether there is a lost LOCK or LOCKU queued up for the given
2783 2784 * file that would make an mmap request unsafe. cf. nfs4_safemap().
2784 2785 */
2785 2786
2786 2787 bool_t
2787 2788 nfs4_map_lost_lock_conflict(vnode_t *vp)
2788 2789 {
2789 2790 bool_t conflict = FALSE;
2790 2791 nfs4_lost_rqst_t *lrp;
2791 2792 mntinfo4_t *mi = VTOMI4(vp);
2792 2793
2793 2794 mutex_enter(&mi->mi_lock);
2794 2795 for (lrp = list_head(&mi->mi_lost_state); lrp != NULL;
2795 2796 lrp = list_next(&mi->mi_lost_state, lrp)) {
2796 2797 if (lrp->lr_op != OP_LOCK && lrp->lr_op != OP_LOCKU)
2797 2798 continue;
2798 2799 ASSERT(lrp->lr_vp != NULL);
2799 2800 if (!VOP_CMP(lrp->lr_vp, vp, NULL))
2800 2801 continue; /* different file */
2801 2802 if (!SAFE_LOCK(*lrp->lr_flk)) {
2802 2803 conflict = TRUE;
2803 2804 break;
2804 2805 }
2805 2806 }
2806 2807
2807 2808 mutex_exit(&mi->mi_lock);
2808 2809 return (conflict);
2809 2810 }
2810 2811
2811 2812 /*
2812 2813 * nfs_lockcompletion:
2813 2814 *
2814 2815 * If the vnode has a lock that makes it unsafe to cache the file, mark it
2815 2816 * as non cachable (set VNOCACHE bit).
2816 2817 */
2817 2818
2818 2819 void
2819 2820 nfs4_lockcompletion(vnode_t *vp, int cmd)
2820 2821 {
2821 2822 rnode4_t *rp = VTOR4(vp);
2822 2823
2823 2824 ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));
2824 2825 ASSERT(!IS_SHADOW(vp, rp));
2825 2826
2826 2827 if (cmd == F_SETLK || cmd == F_SETLKW) {
2827 2828
2828 2829 if (!nfs4_safemap(vp)) {
2829 2830 mutex_enter(&vp->v_lock);
2830 2831 vp->v_flag |= VNOCACHE;
2831 2832 mutex_exit(&vp->v_lock);
2832 2833 } else {
2833 2834 mutex_enter(&vp->v_lock);
2834 2835 vp->v_flag &= ~VNOCACHE;
2835 2836 mutex_exit(&vp->v_lock);
2836 2837 }
2837 2838 }
2838 2839 /*
2839 2840 * The cached attributes of the file are stale after acquiring
2840 2841 * the lock on the file. They were updated when the file was
2841 2842 * opened, but not updated when the lock was acquired. Therefore the
2842 2843 * cached attributes are invalidated after the lock is obtained.
2843 2844 */
2844 2845 PURGE_ATTRCACHE4(vp);
2845 2846 }
2846 2847
2847 2848 /* ARGSUSED */
2848 2849 static void *
2849 2850 nfs4_mi_init(zoneid_t zoneid)
2850 2851 {
2851 2852 struct mi4_globals *mig;
2852 2853
2853 2854 mig = kmem_alloc(sizeof (*mig), KM_SLEEP);
2854 2855 mutex_init(&mig->mig_lock, NULL, MUTEX_DEFAULT, NULL);
2855 2856 list_create(&mig->mig_list, sizeof (mntinfo4_t),
2856 2857 offsetof(mntinfo4_t, mi_zone_node));
2857 2858 mig->mig_destructor_called = B_FALSE;
2858 2859 return (mig);
2859 2860 }
2860 2861
2861 2862 /*
2862 2863 * Callback routine to tell all NFSv4 mounts in the zone to start tearing down
2863 2864 * state and killing off threads.
2864 2865 */
2865 2866 /* ARGSUSED */
2866 2867 static void
2867 2868 nfs4_mi_shutdown(zoneid_t zoneid, void *data)
2868 2869 {
2869 2870 struct mi4_globals *mig = data;
2870 2871 mntinfo4_t *mi;
2871 2872 nfs4_server_t *np;
2872 2873
2873 2874 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2874 2875 "nfs4_mi_shutdown zone %d\n", zoneid));
2875 2876 ASSERT(mig != NULL);
2876 2877 for (;;) {
2877 2878 mutex_enter(&mig->mig_lock);
2878 2879 mi = list_head(&mig->mig_list);
2879 2880 if (mi == NULL) {
2880 2881 mutex_exit(&mig->mig_lock);
2881 2882 break;
2882 2883 }
2883 2884
2884 2885 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2885 2886 "nfs4_mi_shutdown stopping vfs %p\n", (void *)mi->mi_vfsp));
2886 2887 /*
2887 2888 * purge the DNLC for this filesystem
2888 2889 */
2889 2890 (void) dnlc_purge_vfsp(mi->mi_vfsp, 0);
2890 2891 /*
2891 2892 * Tell existing async worker threads to exit.
2892 2893 */
2893 2894 mutex_enter(&mi->mi_async_lock);
2894 2895 mi->mi_max_threads = 0;
2895 2896 NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
2896 2897 /*
2897 2898 * Set the appropriate flags, signal and wait for both the
2898 2899 * async manager and the inactive thread to exit when they're
2899 2900 * done with their current work.
2900 2901 */
2901 2902 mutex_enter(&mi->mi_lock);
2902 2903 mi->mi_flags |= (MI4_ASYNC_MGR_STOP|MI4_DEAD);
2903 2904 mutex_exit(&mi->mi_lock);
2904 2905 mutex_exit(&mi->mi_async_lock);
2905 2906 if (mi->mi_manager_thread) {
2906 2907 nfs4_async_manager_stop(mi->mi_vfsp);
2907 2908 }
2908 2909 if (mi->mi_inactive_thread) {
2909 2910 mutex_enter(&mi->mi_async_lock);
2910 2911 cv_signal(&mi->mi_inact_req_cv);
2911 2912 /*
2912 2913 * Wait for the inactive thread to exit.
2913 2914 */
2914 2915 while (mi->mi_inactive_thread != NULL) {
2915 2916 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
2916 2917 }
2917 2918 mutex_exit(&mi->mi_async_lock);
2918 2919 }
2919 2920 /*
2920 2921 * Wait for the recovery thread to complete, that is, it will
2921 2922 * signal when it is done using the "mi" structure and about
2922 2923 * to exit
2923 2924 */
2924 2925 mutex_enter(&mi->mi_lock);
2925 2926 while (mi->mi_in_recovery > 0)
2926 2927 cv_wait(&mi->mi_cv_in_recov, &mi->mi_lock);
2927 2928 mutex_exit(&mi->mi_lock);
2928 2929 /*
2929 2930 * We're done when every mi has been done or the list is empty.
2930 2931 * This one is done, remove it from the list.
2931 2932 */
2932 2933 list_remove(&mig->mig_list, mi);
2933 2934 mutex_exit(&mig->mig_lock);
2934 2935 zone_rele_ref(&mi->mi_zone_ref, ZONE_REF_NFSV4);
2935 2936
2936 2937 /*
2937 2938 * Release hold on vfs and mi done to prevent race with zone
2938 2939 * shutdown. This releases the hold in nfs4_mi_zonelist_add.
2939 2940 */
2940 2941 VFS_RELE(mi->mi_vfsp);
2941 2942 MI4_RELE(mi);
2942 2943 }
2943 2944 /*
2944 2945 * Tell each renew thread in the zone to exit
2945 2946 */
2946 2947 mutex_enter(&nfs4_server_lst_lock);
2947 2948 for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) {
2948 2949 mutex_enter(&np->s_lock);
2949 2950 if (np->zoneid == zoneid) {
2950 2951 /*
2951 2952 * We add another hold onto the nfs4_server_t
2952 2953 * because this will make sure tha the nfs4_server_t
2953 2954 * stays around until nfs4_callback_fini_zone destroys
2954 2955 * the zone. This way, the renew thread can
2955 2956 * unconditionally release its holds on the
2956 2957 * nfs4_server_t.
2957 2958 */
2958 2959 np->s_refcnt++;
2959 2960 nfs4_mark_srv_dead(np);
2960 2961 }
2961 2962 mutex_exit(&np->s_lock);
2962 2963 }
2963 2964 mutex_exit(&nfs4_server_lst_lock);
2964 2965 }
2965 2966
2966 2967 static void
2967 2968 nfs4_mi_free_globals(struct mi4_globals *mig)
2968 2969 {
2969 2970 list_destroy(&mig->mig_list); /* makes sure the list is empty */
2970 2971 mutex_destroy(&mig->mig_lock);
2971 2972 kmem_free(mig, sizeof (*mig));
2972 2973 }
2973 2974
2974 2975 /* ARGSUSED */
2975 2976 static void
2976 2977 nfs4_mi_destroy(zoneid_t zoneid, void *data)
2977 2978 {
2978 2979 struct mi4_globals *mig = data;
2979 2980
2980 2981 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2981 2982 "nfs4_mi_destroy zone %d\n", zoneid));
2982 2983 ASSERT(mig != NULL);
2983 2984 mutex_enter(&mig->mig_lock);
2984 2985 if (list_head(&mig->mig_list) != NULL) {
2985 2986 /* Still waiting for VFS_FREEVFS() */
2986 2987 mig->mig_destructor_called = B_TRUE;
2987 2988 mutex_exit(&mig->mig_lock);
2988 2989 return;
2989 2990 }
2990 2991 nfs4_mi_free_globals(mig);
2991 2992 }
2992 2993
2993 2994 /*
2994 2995 * Add an NFS mount to the per-zone list of NFS mounts.
2995 2996 */
2996 2997 void
2997 2998 nfs4_mi_zonelist_add(mntinfo4_t *mi)
2998 2999 {
2999 3000 struct mi4_globals *mig;
3000 3001
3001 3002 mig = zone_getspecific(mi4_list_key, mi->mi_zone);
3002 3003 mutex_enter(&mig->mig_lock);
3003 3004 list_insert_head(&mig->mig_list, mi);
3004 3005 /*
3005 3006 * hold added to eliminate race with zone shutdown -this will be
3006 3007 * released in mi_shutdown
3007 3008 */
3008 3009 MI4_HOLD(mi);
3009 3010 VFS_HOLD(mi->mi_vfsp);
3010 3011 mutex_exit(&mig->mig_lock);
3011 3012 }
3012 3013
3013 3014 /*
3014 3015 * Remove an NFS mount from the per-zone list of NFS mounts.
3015 3016 */
3016 3017 int
3017 3018 nfs4_mi_zonelist_remove(mntinfo4_t *mi)
3018 3019 {
3019 3020 struct mi4_globals *mig;
3020 3021 int ret = 0;
3021 3022
3022 3023 mig = zone_getspecific(mi4_list_key, mi->mi_zone);
3023 3024 mutex_enter(&mig->mig_lock);
3024 3025 mutex_enter(&mi->mi_lock);
3025 3026 /* if this mi is marked dead, then the zone already released it */
3026 3027 if (!(mi->mi_flags & MI4_DEAD)) {
3027 3028 list_remove(&mig->mig_list, mi);
3028 3029 mutex_exit(&mi->mi_lock);
3029 3030
3030 3031 /* release the holds put on in zonelist_add(). */
3031 3032 VFS_RELE(mi->mi_vfsp);
3032 3033 MI4_RELE(mi);
3033 3034 ret = 1;
3034 3035 } else {
3035 3036 mutex_exit(&mi->mi_lock);
3036 3037 }
3037 3038
3038 3039 /*
3039 3040 * We can be called asynchronously by VFS_FREEVFS() after the zone
3040 3041 * shutdown/destroy callbacks have executed; if so, clean up the zone's
3041 3042 * mi globals.
3042 3043 */
3043 3044 if (list_head(&mig->mig_list) == NULL &&
3044 3045 mig->mig_destructor_called == B_TRUE) {
3045 3046 nfs4_mi_free_globals(mig);
3046 3047 return (ret);
3047 3048 }
3048 3049 mutex_exit(&mig->mig_lock);
3049 3050 return (ret);
3050 3051 }
3051 3052
3052 3053 void
3053 3054 nfs_free_mi4(mntinfo4_t *mi)
3054 3055 {
3055 3056 nfs4_open_owner_t *foop;
3056 3057 nfs4_oo_hash_bucket_t *bucketp;
3057 3058 nfs4_debug_msg_t *msgp;
3058 3059 int i;
3059 3060 servinfo4_t *svp;
3060 3061
3061 3062 /*
3062 3063 * Code introduced here should be carefully evaluated to make
3063 3064 * sure none of the freed resources are accessed either directly
3064 3065 * or indirectly after freeing them. For eg: Introducing calls to
3065 3066 * NFS4_DEBUG that use mntinfo4_t structure member after freeing
3066 3067 * the structure members or other routines calling back into NFS
3067 3068 * accessing freed mntinfo4_t structure member.
3068 3069 */
3069 3070 mutex_enter(&mi->mi_lock);
3070 3071 ASSERT(mi->mi_recovthread == NULL);
3071 3072 ASSERT(mi->mi_flags & MI4_ASYNC_MGR_STOP);
3072 3073 mutex_exit(&mi->mi_lock);
3073 3074 mutex_enter(&mi->mi_async_lock);
3074 3075 ASSERT(mi->mi_threads[NFS4_ASYNC_QUEUE] == 0 &&
3075 3076 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] == 0);
3076 3077 ASSERT(mi->mi_manager_thread == NULL);
3077 3078 mutex_exit(&mi->mi_async_lock);
3078 3079 if (mi->mi_io_kstats) {
3079 3080 kstat_delete(mi->mi_io_kstats);
3080 3081 mi->mi_io_kstats = NULL;
3081 3082 }
3082 3083 if (mi->mi_ro_kstats) {
3083 3084 kstat_delete(mi->mi_ro_kstats);
3084 3085 mi->mi_ro_kstats = NULL;
3085 3086 }
3086 3087 if (mi->mi_recov_ksp) {
3087 3088 kstat_delete(mi->mi_recov_ksp);
3088 3089 mi->mi_recov_ksp = NULL;
3089 3090 }
3090 3091 mutex_enter(&mi->mi_msg_list_lock);
3091 3092 while (msgp = list_head(&mi->mi_msg_list)) {
3092 3093 list_remove(&mi->mi_msg_list, msgp);
3093 3094 nfs4_free_msg(msgp);
3094 3095 }
3095 3096 mutex_exit(&mi->mi_msg_list_lock);
3096 3097 list_destroy(&mi->mi_msg_list);
3097 3098 if (mi->mi_fname != NULL)
3098 3099 fn_rele(&mi->mi_fname);
3099 3100 if (mi->mi_rootfh != NULL)
3100 3101 sfh4_rele(&mi->mi_rootfh);
3101 3102 if (mi->mi_srvparentfh != NULL)
3102 3103 sfh4_rele(&mi->mi_srvparentfh);
3103 3104 svp = mi->mi_servers;
3104 3105 sv4_free(svp);
3105 3106 mutex_destroy(&mi->mi_lock);
3106 3107 mutex_destroy(&mi->mi_async_lock);
3107 3108 mutex_destroy(&mi->mi_msg_list_lock);
3108 3109 nfs_rw_destroy(&mi->mi_recovlock);
3109 3110 nfs_rw_destroy(&mi->mi_rename_lock);
3110 3111 nfs_rw_destroy(&mi->mi_fh_lock);
3111 3112 cv_destroy(&mi->mi_failover_cv);
3112 3113 cv_destroy(&mi->mi_async_reqs_cv);
3113 3114 cv_destroy(&mi->mi_async_work_cv[NFS4_ASYNC_QUEUE]);
3114 3115 cv_destroy(&mi->mi_async_work_cv[NFS4_ASYNC_PGOPS_QUEUE]);
3115 3116 cv_destroy(&mi->mi_async_cv);
3116 3117 cv_destroy(&mi->mi_inact_req_cv);
3117 3118 /*
3118 3119 * Destroy the oo hash lists and mutexes for the cred hash table.
3119 3120 */
3120 3121 for (i = 0; i < NFS4_NUM_OO_BUCKETS; i++) {
3121 3122 bucketp = &(mi->mi_oo_list[i]);
3122 3123 /* Destroy any remaining open owners on the list */
3123 3124 foop = list_head(&bucketp->b_oo_hash_list);
3124 3125 while (foop != NULL) {
3125 3126 list_remove(&bucketp->b_oo_hash_list, foop);
3126 3127 nfs4_destroy_open_owner(foop);
3127 3128 foop = list_head(&bucketp->b_oo_hash_list);
3128 3129 }
3129 3130 list_destroy(&bucketp->b_oo_hash_list);
3130 3131 mutex_destroy(&bucketp->b_lock);
3131 3132 }
3132 3133 /*
3133 3134 * Empty and destroy the freed open owner list.
3134 3135 */
3135 3136 foop = list_head(&mi->mi_foo_list);
3136 3137 while (foop != NULL) {
3137 3138 list_remove(&mi->mi_foo_list, foop);
3138 3139 nfs4_destroy_open_owner(foop);
3139 3140 foop = list_head(&mi->mi_foo_list);
3140 3141 }
3141 3142 list_destroy(&mi->mi_foo_list);
3142 3143 list_destroy(&mi->mi_bseqid_list);
3143 3144 list_destroy(&mi->mi_lost_state);
3144 3145 avl_destroy(&mi->mi_filehandles);
3145 3146 kmem_free(mi, sizeof (*mi));
3146 3147 }
3147 3148 void
3148 3149 mi_hold(mntinfo4_t *mi)
3149 3150 {
3150 3151 atomic_add_32(&mi->mi_count, 1);
3151 3152 ASSERT(mi->mi_count != 0);
3152 3153 }
3153 3154
3154 3155 void
3155 3156 mi_rele(mntinfo4_t *mi)
3156 3157 {
3157 3158 ASSERT(mi->mi_count != 0);
3158 3159 if (atomic_add_32_nv(&mi->mi_count, -1) == 0) {
3159 3160 nfs_free_mi4(mi);
3160 3161 }
3161 3162 }
3162 3163
3163 3164 vnode_t nfs4_xattr_notsupp_vnode;
3164 3165
3165 3166 void
3166 3167 nfs4_clnt_init(void)
3167 3168 {
3168 3169 nfs4_vnops_init();
3169 3170 (void) nfs4_rnode_init();
3170 3171 (void) nfs4_shadow_init();
3171 3172 (void) nfs4_acache_init();
3172 3173 (void) nfs4_subr_init();
3173 3174 nfs4_acl_init();
3174 3175 nfs_idmap_init();
3175 3176 nfs4_callback_init();
3176 3177 nfs4_secinfo_init();
3177 3178 #ifdef DEBUG
3178 3179 tsd_create(&nfs4_tsd_key, NULL);
3179 3180 #endif
3180 3181
3181 3182 /*
3182 3183 * Add a CPR callback so that we can update client
3183 3184 * lease after a suspend and resume.
3184 3185 */
3185 3186 cid = callb_add(nfs4_client_cpr_callb, 0, CB_CL_CPR_RPC, "nfs4");
3186 3187
3187 3188 zone_key_create(&mi4_list_key, nfs4_mi_init, nfs4_mi_shutdown,
3188 3189 nfs4_mi_destroy);
3189 3190
3190 3191 /*
3191 3192 * Initialise the reference count of the notsupp xattr cache vnode to 1
3192 3193 * so that it never goes away (VOP_INACTIVE isn't called on it).
3193 3194 */
3194 3195 nfs4_xattr_notsupp_vnode.v_count = 1;
3195 3196 }
3196 3197
3197 3198 void
3198 3199 nfs4_clnt_fini(void)
3199 3200 {
3200 3201 (void) zone_key_delete(mi4_list_key);
3201 3202 nfs4_vnops_fini();
3202 3203 (void) nfs4_rnode_fini();
3203 3204 (void) nfs4_shadow_fini();
3204 3205 (void) nfs4_acache_fini();
3205 3206 (void) nfs4_subr_fini();
3206 3207 nfs_idmap_fini();
3207 3208 nfs4_callback_fini();
3208 3209 nfs4_secinfo_fini();
3209 3210 #ifdef DEBUG
3210 3211 tsd_destroy(&nfs4_tsd_key);
3211 3212 #endif
3212 3213 if (cid)
3213 3214 (void) callb_delete(cid);
3214 3215 }
3215 3216
3216 3217 /*ARGSUSED*/
3217 3218 static boolean_t
3218 3219 nfs4_client_cpr_callb(void *arg, int code)
3219 3220 {
3220 3221 /*
3221 3222 * We get called for Suspend and Resume events.
3222 3223 * For the suspend case we simply don't care!
3223 3224 */
3224 3225 if (code == CB_CODE_CPR_CHKPT) {
3225 3226 return (B_TRUE);
3226 3227 }
3227 3228
3228 3229 /*
3229 3230 * When we get to here we are in the process of
3230 3231 * resuming the system from a previous suspend.
3231 3232 */
3232 3233 nfs4_client_resumed = gethrestime_sec();
3233 3234 return (B_TRUE);
3234 3235 }
3235 3236
3236 3237 void
3237 3238 nfs4_renew_lease_thread(nfs4_server_t *sp)
3238 3239 {
3239 3240 int error = 0;
3240 3241 time_t tmp_last_renewal_time, tmp_time, tmp_now_time, kip_secs;
3241 3242 clock_t tick_delay = 0;
3242 3243 clock_t time_left = 0;
3243 3244 callb_cpr_t cpr_info;
3244 3245 kmutex_t cpr_lock;
3245 3246
3246 3247 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3247 3248 "nfs4_renew_lease_thread: acting on sp 0x%p", (void*)sp));
3248 3249 mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL);
3249 3250 CALLB_CPR_INIT(&cpr_info, &cpr_lock, callb_generic_cpr, "nfsv4Lease");
3250 3251
3251 3252 mutex_enter(&sp->s_lock);
3252 3253 /* sp->s_lease_time is set via a GETATTR */
3253 3254 sp->last_renewal_time = gethrestime_sec();
3254 3255 sp->lease_valid = NFS4_LEASE_UNINITIALIZED;
3255 3256 ASSERT(sp->s_refcnt >= 1);
3256 3257
3257 3258 for (;;) {
3258 3259 if (!sp->state_ref_count ||
3259 3260 sp->lease_valid != NFS4_LEASE_VALID) {
3260 3261
3261 3262 kip_secs = MAX((sp->s_lease_time >> 1) -
3262 3263 (3 * sp->propagation_delay.tv_sec), 1);
3263 3264
3264 3265 tick_delay = SEC_TO_TICK(kip_secs);
3265 3266
3266 3267 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3267 3268 "nfs4_renew_lease_thread: no renew : thread "
3268 3269 "wait %ld secs", kip_secs));
3269 3270
3270 3271 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3271 3272 "nfs4_renew_lease_thread: no renew : "
3272 3273 "state_ref_count %d, lease_valid %d",
3273 3274 sp->state_ref_count, sp->lease_valid));
3274 3275
3275 3276 mutex_enter(&cpr_lock);
3276 3277 CALLB_CPR_SAFE_BEGIN(&cpr_info);
3277 3278 mutex_exit(&cpr_lock);
3278 3279 time_left = cv_reltimedwait(&sp->cv_thread_exit,
3279 3280 &sp->s_lock, tick_delay, TR_CLOCK_TICK);
3280 3281 mutex_enter(&cpr_lock);
3281 3282 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3282 3283 mutex_exit(&cpr_lock);
3283 3284
3284 3285 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3285 3286 "nfs4_renew_lease_thread: no renew: "
3286 3287 "time left %ld", time_left));
3287 3288
3288 3289 if (sp->s_thread_exit == NFS4_THREAD_EXIT)
3289 3290 goto die;
3290 3291 continue;
3291 3292 }
3292 3293
3293 3294 tmp_last_renewal_time = sp->last_renewal_time;
3294 3295
3295 3296 tmp_time = gethrestime_sec() - sp->last_renewal_time +
3296 3297 (3 * sp->propagation_delay.tv_sec);
3297 3298
3298 3299 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3299 3300 "nfs4_renew_lease_thread: tmp_time %ld, "
3300 3301 "sp->last_renewal_time %ld", tmp_time,
3301 3302 sp->last_renewal_time));
3302 3303
3303 3304 kip_secs = MAX((sp->s_lease_time >> 1) - tmp_time, 1);
3304 3305
3305 3306 tick_delay = SEC_TO_TICK(kip_secs);
3306 3307
3307 3308 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3308 3309 "nfs4_renew_lease_thread: valid lease: sleep for %ld "
3309 3310 "secs", kip_secs));
3310 3311
3311 3312 mutex_enter(&cpr_lock);
3312 3313 CALLB_CPR_SAFE_BEGIN(&cpr_info);
3313 3314 mutex_exit(&cpr_lock);
3314 3315 time_left = cv_reltimedwait(&sp->cv_thread_exit, &sp->s_lock,
3315 3316 tick_delay, TR_CLOCK_TICK);
3316 3317 mutex_enter(&cpr_lock);
3317 3318 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3318 3319 mutex_exit(&cpr_lock);
3319 3320
3320 3321 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3321 3322 "nfs4_renew_lease_thread: valid lease: time left %ld :"
3322 3323 "sp last_renewal_time %ld, nfs4_client_resumed %ld, "
3323 3324 "tmp_last_renewal_time %ld", time_left,
3324 3325 sp->last_renewal_time, nfs4_client_resumed,
3325 3326 tmp_last_renewal_time));
3326 3327
3327 3328 if (sp->s_thread_exit == NFS4_THREAD_EXIT)
3328 3329 goto die;
3329 3330
3330 3331 if (tmp_last_renewal_time == sp->last_renewal_time ||
3331 3332 (nfs4_client_resumed != 0 &&
3332 3333 nfs4_client_resumed > sp->last_renewal_time)) {
3333 3334 /*
3334 3335 * Issue RENEW op since we haven't renewed the lease
3335 3336 * since we slept.
3336 3337 */
3337 3338 tmp_now_time = gethrestime_sec();
3338 3339 error = nfs4renew(sp);
3339 3340 /*
3340 3341 * Need to re-acquire sp's lock, nfs4renew()
3341 3342 * relinqueshes it.
3342 3343 */
3343 3344 mutex_enter(&sp->s_lock);
3344 3345
3345 3346 /*
3346 3347 * See if someone changed s_thread_exit while we gave
3347 3348 * up s_lock.
3348 3349 */
3349 3350 if (sp->s_thread_exit == NFS4_THREAD_EXIT)
3350 3351 goto die;
3351 3352
3352 3353 if (!error) {
3353 3354 /*
3354 3355 * check to see if we implicitly renewed while
3355 3356 * we waited for a reply for our RENEW call.
3356 3357 */
3357 3358 if (tmp_last_renewal_time ==
3358 3359 sp->last_renewal_time) {
3359 3360 /* no implicit renew came */
3360 3361 sp->last_renewal_time = tmp_now_time;
3361 3362 } else {
3362 3363 NFS4_DEBUG(nfs4_client_lease_debug,
3363 3364 (CE_NOTE, "renew_thread: did "
3364 3365 "implicit renewal before reply "
3365 3366 "from server for RENEW"));
3366 3367 }
3367 3368 } else {
3368 3369 /* figure out error */
3369 3370 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3370 3371 "renew_thread: nfs4renew returned error"
3371 3372 " %d", error));
3372 3373 }
3373 3374
3374 3375 }
3375 3376 }
3376 3377
3377 3378 die:
3378 3379 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3379 3380 "nfs4_renew_lease_thread: thread exiting"));
3380 3381
3381 3382 while (sp->s_otw_call_count != 0) {
3382 3383 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3383 3384 "nfs4_renew_lease_thread: waiting for outstanding "
3384 3385 "otw calls to finish for sp 0x%p, current "
3385 3386 "s_otw_call_count %d", (void *)sp,
3386 3387 sp->s_otw_call_count));
3387 3388 mutex_enter(&cpr_lock);
3388 3389 CALLB_CPR_SAFE_BEGIN(&cpr_info);
3389 3390 mutex_exit(&cpr_lock);
3390 3391 cv_wait(&sp->s_cv_otw_count, &sp->s_lock);
3391 3392 mutex_enter(&cpr_lock);
3392 3393 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3393 3394 mutex_exit(&cpr_lock);
3394 3395 }
3395 3396 mutex_exit(&sp->s_lock);
3396 3397
3397 3398 nfs4_server_rele(sp); /* free the thread's reference */
3398 3399 nfs4_server_rele(sp); /* free the list's reference */
3399 3400 sp = NULL;
3400 3401
3401 3402 done:
3402 3403 mutex_enter(&cpr_lock);
3403 3404 CALLB_CPR_EXIT(&cpr_info); /* drops cpr_lock */
3404 3405 mutex_destroy(&cpr_lock);
3405 3406
3406 3407 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3407 3408 "nfs4_renew_lease_thread: renew thread exit officially"));
3408 3409
3409 3410 zthread_exit();
3410 3411 /* NOT REACHED */
3411 3412 }
3412 3413
3413 3414 /*
3414 3415 * Send out a RENEW op to the server.
3415 3416 * Assumes sp is locked down.
3416 3417 */
3417 3418 static int
3418 3419 nfs4renew(nfs4_server_t *sp)
3419 3420 {
3420 3421 COMPOUND4args_clnt args;
3421 3422 COMPOUND4res_clnt res;
3422 3423 nfs_argop4 argop[1];
3423 3424 int doqueue = 1;
3424 3425 int rpc_error;
3425 3426 cred_t *cr;
3426 3427 mntinfo4_t *mi;
3427 3428 timespec_t prop_time, after_time;
3428 3429 int needrecov = FALSE;
3429 3430 nfs4_recov_state_t recov_state;
3430 3431 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3431 3432
3432 3433 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4renew"));
3433 3434
3434 3435 recov_state.rs_flags = 0;
3435 3436 recov_state.rs_num_retry_despite_err = 0;
3436 3437
3437 3438 recov_retry:
3438 3439 mi = sp->mntinfo4_list;
3439 3440 VFS_HOLD(mi->mi_vfsp);
3440 3441 mutex_exit(&sp->s_lock);
3441 3442 ASSERT(mi != NULL);
3442 3443
3443 3444 e.error = nfs4_start_op(mi, NULL, NULL, &recov_state);
3444 3445 if (e.error) {
3445 3446 VFS_RELE(mi->mi_vfsp);
3446 3447 return (e.error);
3447 3448 }
3448 3449
3449 3450 /* Check to see if we're dealing with a marked-dead sp */
3450 3451 mutex_enter(&sp->s_lock);
3451 3452 if (sp->s_thread_exit == NFS4_THREAD_EXIT) {
3452 3453 mutex_exit(&sp->s_lock);
3453 3454 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3454 3455 VFS_RELE(mi->mi_vfsp);
3455 3456 return (0);
3456 3457 }
3457 3458
3458 3459 /* Make sure mi hasn't changed on us */
3459 3460 if (mi != sp->mntinfo4_list) {
3460 3461 /* Must drop sp's lock to avoid a recursive mutex enter */
3461 3462 mutex_exit(&sp->s_lock);
3462 3463 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3463 3464 VFS_RELE(mi->mi_vfsp);
3464 3465 mutex_enter(&sp->s_lock);
3465 3466 goto recov_retry;
3466 3467 }
3467 3468 mutex_exit(&sp->s_lock);
3468 3469
3469 3470 args.ctag = TAG_RENEW;
3470 3471
3471 3472 args.array_len = 1;
3472 3473 args.array = argop;
3473 3474
3474 3475 argop[0].argop = OP_RENEW;
3475 3476
3476 3477 mutex_enter(&sp->s_lock);
3477 3478 argop[0].nfs_argop4_u.oprenew.clientid = sp->clientid;
3478 3479 cr = sp->s_cred;
3479 3480 crhold(cr);
3480 3481 mutex_exit(&sp->s_lock);
3481 3482
3482 3483 ASSERT(cr != NULL);
3483 3484
3484 3485 /* used to figure out RTT for sp */
3485 3486 gethrestime(&prop_time);
3486 3487
3487 3488 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
3488 3489 "nfs4renew: %s call, sp 0x%p", needrecov ? "recov" : "first",
3489 3490 (void*)sp));
3490 3491 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "before: %ld s %ld ns ",
3491 3492 prop_time.tv_sec, prop_time.tv_nsec));
3492 3493
3493 3494 DTRACE_PROBE2(nfs4__renew__start, nfs4_server_t *, sp,
3494 3495 mntinfo4_t *, mi);
3495 3496
3496 3497 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
3497 3498 crfree(cr);
3498 3499
3499 3500 DTRACE_PROBE2(nfs4__renew__end, nfs4_server_t *, sp,
3500 3501 mntinfo4_t *, mi);
3501 3502
3502 3503 gethrestime(&after_time);
3503 3504
3504 3505 mutex_enter(&sp->s_lock);
3505 3506 sp->propagation_delay.tv_sec =
3506 3507 MAX(1, after_time.tv_sec - prop_time.tv_sec);
3507 3508 mutex_exit(&sp->s_lock);
3508 3509
3509 3510 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "after : %ld s %ld ns ",
3510 3511 after_time.tv_sec, after_time.tv_nsec));
3511 3512
3512 3513 if (e.error == 0 && res.status == NFS4ERR_CB_PATH_DOWN) {
3513 3514 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3514 3515 nfs4_delegreturn_all(sp);
3515 3516 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3516 3517 VFS_RELE(mi->mi_vfsp);
3517 3518 /*
3518 3519 * If the server returns CB_PATH_DOWN, it has renewed
3519 3520 * the lease and informed us that the callback path is
3520 3521 * down. Since the lease is renewed, just return 0 and
3521 3522 * let the renew thread proceed as normal.
3522 3523 */
3523 3524 return (0);
3524 3525 }
3525 3526
3526 3527 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
3527 3528 if (!needrecov && e.error) {
3528 3529 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3529 3530 VFS_RELE(mi->mi_vfsp);
3530 3531 return (e.error);
3531 3532 }
3532 3533
3533 3534 rpc_error = e.error;
3534 3535
3535 3536 if (needrecov) {
3536 3537 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
3537 3538 "nfs4renew: initiating recovery\n"));
3538 3539
3539 3540 if (nfs4_start_recovery(&e, mi, NULL, NULL, NULL, NULL,
3540 3541 OP_RENEW, NULL, NULL, NULL) == FALSE) {
3541 3542 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3542 3543 VFS_RELE(mi->mi_vfsp);
3543 3544 if (!e.error)
3544 3545 (void) xdr_free(xdr_COMPOUND4res_clnt,
3545 3546 (caddr_t)&res);
3546 3547 mutex_enter(&sp->s_lock);
3547 3548 goto recov_retry;
3548 3549 }
3549 3550 /* fall through for res.status case */
3550 3551 }
3551 3552
3552 3553 if (res.status) {
3553 3554 if (res.status == NFS4ERR_LEASE_MOVED) {
3554 3555 /*EMPTY*/
3555 3556 /*
3556 3557 * XXX need to try every mntinfo4 in sp->mntinfo4_list
3557 3558 * to renew the lease on that server
3558 3559 */
3559 3560 }
3560 3561 e.error = geterrno4(res.status);
3561 3562 }
3562 3563
3563 3564 if (!rpc_error)
3564 3565 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3565 3566
3566 3567 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3567 3568
3568 3569 VFS_RELE(mi->mi_vfsp);
3569 3570
3570 3571 return (e.error);
3571 3572 }
3572 3573
3573 3574 void
3574 3575 nfs4_inc_state_ref_count(mntinfo4_t *mi)
3575 3576 {
3576 3577 nfs4_server_t *sp;
3577 3578
3578 3579 /* this locks down sp if it is found */
3579 3580 sp = find_nfs4_server(mi);
3580 3581
3581 3582 if (sp != NULL) {
3582 3583 nfs4_inc_state_ref_count_nolock(sp, mi);
3583 3584 mutex_exit(&sp->s_lock);
3584 3585 nfs4_server_rele(sp);
3585 3586 }
3586 3587 }
3587 3588
3588 3589 /*
3589 3590 * Bump the number of OPEN files (ie: those with state) so we know if this
3590 3591 * nfs4_server has any state to maintain a lease for or not.
3591 3592 *
3592 3593 * Also, marks the nfs4_server's lease valid if it hasn't been done so already.
3593 3594 */
3594 3595 void
3595 3596 nfs4_inc_state_ref_count_nolock(nfs4_server_t *sp, mntinfo4_t *mi)
3596 3597 {
3597 3598 ASSERT(mutex_owned(&sp->s_lock));
3598 3599
3599 3600 sp->state_ref_count++;
3600 3601 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3601 3602 "nfs4_inc_state_ref_count: state_ref_count now %d",
3602 3603 sp->state_ref_count));
3603 3604
3604 3605 if (sp->lease_valid == NFS4_LEASE_UNINITIALIZED)
3605 3606 sp->lease_valid = NFS4_LEASE_VALID;
3606 3607
3607 3608 /*
3608 3609 * If this call caused the lease to be marked valid and/or
3609 3610 * took the state_ref_count from 0 to 1, then start the time
3610 3611 * on lease renewal.
3611 3612 */
3612 3613 if (sp->lease_valid == NFS4_LEASE_VALID && sp->state_ref_count == 1)
3613 3614 sp->last_renewal_time = gethrestime_sec();
3614 3615
3615 3616 /* update the number of open files for mi */
3616 3617 mi->mi_open_files++;
3617 3618 }
3618 3619
3619 3620 void
3620 3621 nfs4_dec_state_ref_count(mntinfo4_t *mi)
3621 3622 {
3622 3623 nfs4_server_t *sp;
3623 3624
3624 3625 /* this locks down sp if it is found */
3625 3626 sp = find_nfs4_server_all(mi, 1);
3626 3627
3627 3628 if (sp != NULL) {
3628 3629 nfs4_dec_state_ref_count_nolock(sp, mi);
3629 3630 mutex_exit(&sp->s_lock);
3630 3631 nfs4_server_rele(sp);
3631 3632 }
3632 3633 }
3633 3634
3634 3635 /*
3635 3636 * Decrement the number of OPEN files (ie: those with state) so we know if
3636 3637 * this nfs4_server has any state to maintain a lease for or not.
3637 3638 */
3638 3639 void
3639 3640 nfs4_dec_state_ref_count_nolock(nfs4_server_t *sp, mntinfo4_t *mi)
3640 3641 {
3641 3642 ASSERT(mutex_owned(&sp->s_lock));
3642 3643 ASSERT(sp->state_ref_count != 0);
3643 3644 sp->state_ref_count--;
3644 3645
3645 3646 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3646 3647 "nfs4_dec_state_ref_count: state ref count now %d",
3647 3648 sp->state_ref_count));
3648 3649
3649 3650 mi->mi_open_files--;
3650 3651 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3651 3652 "nfs4_dec_state_ref_count: mi open files %d, v4 flags 0x%x",
3652 3653 mi->mi_open_files, mi->mi_flags));
3653 3654
3654 3655 /* We don't have to hold the mi_lock to test mi_flags */
3655 3656 if (mi->mi_open_files == 0 &&
3656 3657 (mi->mi_flags & MI4_REMOVE_ON_LAST_CLOSE)) {
3657 3658 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3658 3659 "nfs4_dec_state_ref_count: remove mntinfo4 %p since "
3659 3660 "we have closed the last open file", (void*)mi));
3660 3661 nfs4_remove_mi_from_server(mi, sp);
3661 3662 }
3662 3663 }
3663 3664
3664 3665 bool_t
3665 3666 inlease(nfs4_server_t *sp)
3666 3667 {
3667 3668 bool_t result;
3668 3669
3669 3670 ASSERT(mutex_owned(&sp->s_lock));
3670 3671
3671 3672 if (sp->lease_valid == NFS4_LEASE_VALID &&
3672 3673 gethrestime_sec() < sp->last_renewal_time + sp->s_lease_time)
3673 3674 result = TRUE;
3674 3675 else
3675 3676 result = FALSE;
3676 3677
3677 3678 return (result);
3678 3679 }
3679 3680
3680 3681
3681 3682 /*
3682 3683 * Return non-zero if the given nfs4_server_t is going through recovery.
3683 3684 */
3684 3685
3685 3686 int
3686 3687 nfs4_server_in_recovery(nfs4_server_t *sp)
3687 3688 {
3688 3689 return (nfs_rw_lock_held(&sp->s_recovlock, RW_WRITER));
3689 3690 }
3690 3691
3691 3692 /*
3692 3693 * Compare two shared filehandle objects. Returns -1, 0, or +1, if the
3693 3694 * first is less than, equal to, or greater than the second.
3694 3695 */
3695 3696
3696 3697 int
3697 3698 sfh4cmp(const void *p1, const void *p2)
3698 3699 {
3699 3700 const nfs4_sharedfh_t *sfh1 = (const nfs4_sharedfh_t *)p1;
3700 3701 const nfs4_sharedfh_t *sfh2 = (const nfs4_sharedfh_t *)p2;
3701 3702
3702 3703 return (nfs4cmpfh(&sfh1->sfh_fh, &sfh2->sfh_fh));
3703 3704 }
3704 3705
3705 3706 /*
3706 3707 * Create a table for shared filehandle objects.
3707 3708 */
3708 3709
3709 3710 void
3710 3711 sfh4_createtab(avl_tree_t *tab)
3711 3712 {
3712 3713 avl_create(tab, sfh4cmp, sizeof (nfs4_sharedfh_t),
3713 3714 offsetof(nfs4_sharedfh_t, sfh_tree));
3714 3715 }
3715 3716
3716 3717 /*
3717 3718 * Return a shared filehandle object for the given filehandle. The caller
3718 3719 * is responsible for eventually calling sfh4_rele().
3719 3720 */
3720 3721
3721 3722 nfs4_sharedfh_t *
3722 3723 sfh4_put(const nfs_fh4 *fh, mntinfo4_t *mi, nfs4_sharedfh_t *key)
3723 3724 {
3724 3725 nfs4_sharedfh_t *sfh, *nsfh;
3725 3726 avl_index_t where;
3726 3727 nfs4_sharedfh_t skey;
3727 3728
3728 3729 if (!key) {
3729 3730 skey.sfh_fh = *fh;
3730 3731 key = &skey;
3731 3732 }
3732 3733
3733 3734 nsfh = kmem_alloc(sizeof (nfs4_sharedfh_t), KM_SLEEP);
3734 3735 nsfh->sfh_fh.nfs_fh4_len = fh->nfs_fh4_len;
3735 3736 /*
3736 3737 * We allocate the largest possible filehandle size because it's
3737 3738 * not that big, and it saves us from possibly having to resize the
3738 3739 * buffer later.
3739 3740 */
3740 3741 nsfh->sfh_fh.nfs_fh4_val = kmem_alloc(NFS4_FHSIZE, KM_SLEEP);
3741 3742 bcopy(fh->nfs_fh4_val, nsfh->sfh_fh.nfs_fh4_val, fh->nfs_fh4_len);
3742 3743 mutex_init(&nsfh->sfh_lock, NULL, MUTEX_DEFAULT, NULL);
3743 3744 nsfh->sfh_refcnt = 1;
3744 3745 nsfh->sfh_flags = SFH4_IN_TREE;
3745 3746 nsfh->sfh_mi = mi;
3746 3747 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, "sfh4_get: new object (%p)",
3747 3748 (void *)nsfh));
3748 3749
3749 3750 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
3750 3751 sfh = avl_find(&mi->mi_filehandles, key, &where);
3751 3752 if (sfh != NULL) {
3752 3753 mutex_enter(&sfh->sfh_lock);
3753 3754 sfh->sfh_refcnt++;
3754 3755 mutex_exit(&sfh->sfh_lock);
3755 3756 nfs_rw_exit(&mi->mi_fh_lock);
3756 3757 /* free our speculative allocs */
3757 3758 kmem_free(nsfh->sfh_fh.nfs_fh4_val, NFS4_FHSIZE);
3758 3759 kmem_free(nsfh, sizeof (nfs4_sharedfh_t));
3759 3760 return (sfh);
3760 3761 }
3761 3762
3762 3763 avl_insert(&mi->mi_filehandles, nsfh, where);
3763 3764 nfs_rw_exit(&mi->mi_fh_lock);
3764 3765
3765 3766 return (nsfh);
3766 3767 }
3767 3768
3768 3769 /*
3769 3770 * Return a shared filehandle object for the given filehandle. The caller
3770 3771 * is responsible for eventually calling sfh4_rele().
3771 3772 */
3772 3773
3773 3774 nfs4_sharedfh_t *
3774 3775 sfh4_get(const nfs_fh4 *fh, mntinfo4_t *mi)
3775 3776 {
3776 3777 nfs4_sharedfh_t *sfh;
3777 3778 nfs4_sharedfh_t key;
3778 3779
3779 3780 ASSERT(fh->nfs_fh4_len <= NFS4_FHSIZE);
3780 3781
3781 3782 #ifdef DEBUG
3782 3783 if (nfs4_sharedfh_debug) {
3783 3784 nfs4_fhandle_t fhandle;
3784 3785
3785 3786 fhandle.fh_len = fh->nfs_fh4_len;
3786 3787 bcopy(fh->nfs_fh4_val, fhandle.fh_buf, fhandle.fh_len);
3787 3788 zcmn_err(mi->mi_zone->zone_id, CE_NOTE, "sfh4_get:");
3788 3789 nfs4_printfhandle(&fhandle);
3789 3790 }
3790 3791 #endif
3791 3792
3792 3793 /*
3793 3794 * If there's already an object for the given filehandle, bump the
3794 3795 * reference count and return it. Otherwise, create a new object
3795 3796 * and add it to the AVL tree.
3796 3797 */
3797 3798
3798 3799 key.sfh_fh = *fh;
3799 3800
3800 3801 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
3801 3802 sfh = avl_find(&mi->mi_filehandles, &key, NULL);
3802 3803 if (sfh != NULL) {
3803 3804 mutex_enter(&sfh->sfh_lock);
3804 3805 sfh->sfh_refcnt++;
3805 3806 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3806 3807 "sfh4_get: found existing %p, new refcnt=%d",
3807 3808 (void *)sfh, sfh->sfh_refcnt));
3808 3809 mutex_exit(&sfh->sfh_lock);
3809 3810 nfs_rw_exit(&mi->mi_fh_lock);
3810 3811 return (sfh);
3811 3812 }
3812 3813 nfs_rw_exit(&mi->mi_fh_lock);
3813 3814
3814 3815 return (sfh4_put(fh, mi, &key));
3815 3816 }
3816 3817
3817 3818 /*
3818 3819 * Get a reference to the given shared filehandle object.
3819 3820 */
3820 3821
3821 3822 void
3822 3823 sfh4_hold(nfs4_sharedfh_t *sfh)
3823 3824 {
3824 3825 ASSERT(sfh->sfh_refcnt > 0);
3825 3826
3826 3827 mutex_enter(&sfh->sfh_lock);
3827 3828 sfh->sfh_refcnt++;
3828 3829 NFS4_DEBUG(nfs4_sharedfh_debug,
3829 3830 (CE_NOTE, "sfh4_hold %p, new refcnt=%d",
3830 3831 (void *)sfh, sfh->sfh_refcnt));
3831 3832 mutex_exit(&sfh->sfh_lock);
3832 3833 }
3833 3834
3834 3835 /*
3835 3836 * Release a reference to the given shared filehandle object and null out
3836 3837 * the given pointer.
3837 3838 */
3838 3839
3839 3840 void
3840 3841 sfh4_rele(nfs4_sharedfh_t **sfhpp)
3841 3842 {
3842 3843 mntinfo4_t *mi;
3843 3844 nfs4_sharedfh_t *sfh = *sfhpp;
3844 3845
3845 3846 ASSERT(sfh->sfh_refcnt > 0);
3846 3847
3847 3848 mutex_enter(&sfh->sfh_lock);
3848 3849 if (sfh->sfh_refcnt > 1) {
3849 3850 sfh->sfh_refcnt--;
3850 3851 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3851 3852 "sfh4_rele %p, new refcnt=%d",
3852 3853 (void *)sfh, sfh->sfh_refcnt));
3853 3854 mutex_exit(&sfh->sfh_lock);
3854 3855 goto finish;
3855 3856 }
3856 3857 mutex_exit(&sfh->sfh_lock);
3857 3858
3858 3859 /*
3859 3860 * Possibly the last reference, so get the lock for the table in
3860 3861 * case it's time to remove the object from the table.
3861 3862 */
3862 3863 mi = sfh->sfh_mi;
3863 3864 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
3864 3865 mutex_enter(&sfh->sfh_lock);
3865 3866 sfh->sfh_refcnt--;
3866 3867 if (sfh->sfh_refcnt > 0) {
3867 3868 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3868 3869 "sfh4_rele %p, new refcnt=%d",
3869 3870 (void *)sfh, sfh->sfh_refcnt));
3870 3871 mutex_exit(&sfh->sfh_lock);
3871 3872 nfs_rw_exit(&mi->mi_fh_lock);
3872 3873 goto finish;
3873 3874 }
3874 3875
3875 3876 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3876 3877 "sfh4_rele %p, last ref", (void *)sfh));
3877 3878 if (sfh->sfh_flags & SFH4_IN_TREE) {
3878 3879 avl_remove(&mi->mi_filehandles, sfh);
3879 3880 sfh->sfh_flags &= ~SFH4_IN_TREE;
3880 3881 }
3881 3882 mutex_exit(&sfh->sfh_lock);
3882 3883 nfs_rw_exit(&mi->mi_fh_lock);
3883 3884 mutex_destroy(&sfh->sfh_lock);
3884 3885 kmem_free(sfh->sfh_fh.nfs_fh4_val, NFS4_FHSIZE);
3885 3886 kmem_free(sfh, sizeof (nfs4_sharedfh_t));
3886 3887
3887 3888 finish:
3888 3889 *sfhpp = NULL;
3889 3890 }
3890 3891
3891 3892 /*
3892 3893 * Update the filehandle for the given shared filehandle object.
3893 3894 */
3894 3895
3895 3896 int nfs4_warn_dupfh = 0; /* if set, always warn about dup fhs below */
3896 3897
3897 3898 void
3898 3899 sfh4_update(nfs4_sharedfh_t *sfh, const nfs_fh4 *newfh)
3899 3900 {
3900 3901 mntinfo4_t *mi = sfh->sfh_mi;
3901 3902 nfs4_sharedfh_t *dupsfh;
3902 3903 avl_index_t where;
3903 3904 nfs4_sharedfh_t key;
3904 3905
3905 3906 #ifdef DEBUG
3906 3907 mutex_enter(&sfh->sfh_lock);
3907 3908 ASSERT(sfh->sfh_refcnt > 0);
3908 3909 mutex_exit(&sfh->sfh_lock);
3909 3910 #endif
3910 3911 ASSERT(newfh->nfs_fh4_len <= NFS4_FHSIZE);
3911 3912
3912 3913 /*
3913 3914 * The basic plan is to remove the shared filehandle object from
3914 3915 * the table, update it to have the new filehandle, then reinsert
3915 3916 * it.
3916 3917 */
3917 3918
3918 3919 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
3919 3920 mutex_enter(&sfh->sfh_lock);
3920 3921 if (sfh->sfh_flags & SFH4_IN_TREE) {
3921 3922 avl_remove(&mi->mi_filehandles, sfh);
3922 3923 sfh->sfh_flags &= ~SFH4_IN_TREE;
3923 3924 }
3924 3925 mutex_exit(&sfh->sfh_lock);
3925 3926 sfh->sfh_fh.nfs_fh4_len = newfh->nfs_fh4_len;
3926 3927 bcopy(newfh->nfs_fh4_val, sfh->sfh_fh.nfs_fh4_val,
3927 3928 sfh->sfh_fh.nfs_fh4_len);
3928 3929
3929 3930 /*
3930 3931 * XXX If there is already a shared filehandle object with the new
3931 3932 * filehandle, we're in trouble, because the rnode code assumes
3932 3933 * that there is only one shared filehandle object for a given
3933 3934 * filehandle. So issue a warning (for read-write mounts only)
3934 3935 * and don't try to re-insert the given object into the table.
3935 3936 * Hopefully the given object will quickly go away and everyone
3936 3937 * will use the new object.
3937 3938 */
3938 3939 key.sfh_fh = *newfh;
3939 3940 dupsfh = avl_find(&mi->mi_filehandles, &key, &where);
3940 3941 if (dupsfh != NULL) {
3941 3942 if (!(mi->mi_vfsp->vfs_flag & VFS_RDONLY) || nfs4_warn_dupfh) {
3942 3943 zcmn_err(mi->mi_zone->zone_id, CE_WARN, "sfh4_update: "
3943 3944 "duplicate filehandle detected");
3944 3945 sfh4_printfhandle(dupsfh);
3945 3946 }
3946 3947 } else {
3947 3948 avl_insert(&mi->mi_filehandles, sfh, where);
3948 3949 mutex_enter(&sfh->sfh_lock);
3949 3950 sfh->sfh_flags |= SFH4_IN_TREE;
3950 3951 mutex_exit(&sfh->sfh_lock);
3951 3952 }
3952 3953 nfs_rw_exit(&mi->mi_fh_lock);
3953 3954 }
3954 3955
3955 3956 /*
3956 3957 * Copy out the current filehandle for the given shared filehandle object.
3957 3958 */
3958 3959
3959 3960 void
3960 3961 sfh4_copyval(const nfs4_sharedfh_t *sfh, nfs4_fhandle_t *fhp)
3961 3962 {
3962 3963 mntinfo4_t *mi = sfh->sfh_mi;
3963 3964
3964 3965 ASSERT(sfh->sfh_refcnt > 0);
3965 3966
3966 3967 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
3967 3968 fhp->fh_len = sfh->sfh_fh.nfs_fh4_len;
3968 3969 ASSERT(fhp->fh_len <= NFS4_FHSIZE);
3969 3970 bcopy(sfh->sfh_fh.nfs_fh4_val, fhp->fh_buf, fhp->fh_len);
3970 3971 nfs_rw_exit(&mi->mi_fh_lock);
3971 3972 }
3972 3973
3973 3974 /*
3974 3975 * Print out the filehandle for the given shared filehandle object.
3975 3976 */
3976 3977
3977 3978 void
3978 3979 sfh4_printfhandle(const nfs4_sharedfh_t *sfh)
3979 3980 {
3980 3981 nfs4_fhandle_t fhandle;
3981 3982
3982 3983 sfh4_copyval(sfh, &fhandle);
3983 3984 nfs4_printfhandle(&fhandle);
3984 3985 }
3985 3986
3986 3987 /*
3987 3988 * Compare 2 fnames. Returns -1 if the first is "less" than the second, 0
3988 3989 * if they're the same, +1 if the first is "greater" than the second. The
3989 3990 * caller (or whoever's calling the AVL package) is responsible for
3990 3991 * handling locking issues.
3991 3992 */
3992 3993
3993 3994 static int
3994 3995 fncmp(const void *p1, const void *p2)
3995 3996 {
3996 3997 const nfs4_fname_t *f1 = p1;
3997 3998 const nfs4_fname_t *f2 = p2;
3998 3999 int res;
3999 4000
4000 4001 res = strcmp(f1->fn_name, f2->fn_name);
4001 4002 /*
4002 4003 * The AVL package wants +/-1, not arbitrary positive or negative
4003 4004 * integers.
4004 4005 */
4005 4006 if (res > 0)
4006 4007 res = 1;
4007 4008 else if (res < 0)
4008 4009 res = -1;
4009 4010 return (res);
4010 4011 }
4011 4012
4012 4013 /*
4013 4014 * Get or create an fname with the given name, as a child of the given
4014 4015 * fname. The caller is responsible for eventually releasing the reference
4015 4016 * (fn_rele()). parent may be NULL.
4016 4017 */
4017 4018
4018 4019 nfs4_fname_t *
4019 4020 fn_get(nfs4_fname_t *parent, char *name, nfs4_sharedfh_t *sfh)
4020 4021 {
4021 4022 nfs4_fname_t key;
4022 4023 nfs4_fname_t *fnp;
4023 4024 avl_index_t where;
4024 4025
4025 4026 key.fn_name = name;
4026 4027
4027 4028 /*
4028 4029 * If there's already an fname registered with the given name, bump
4029 4030 * its reference count and return it. Otherwise, create a new one
4030 4031 * and add it to the parent's AVL tree.
4031 4032 *
4032 4033 * fname entries we are looking for should match both name
4033 4034 * and sfh stored in the fname.
4034 4035 */
4035 4036 again:
4036 4037 if (parent != NULL) {
4037 4038 mutex_enter(&parent->fn_lock);
4038 4039 fnp = avl_find(&parent->fn_children, &key, &where);
4039 4040 if (fnp != NULL) {
4040 4041 /*
4041 4042 * This hold on fnp is released below later,
4042 4043 * in case this is not the fnp we want.
4043 4044 */
4044 4045 fn_hold(fnp);
4045 4046
4046 4047 if (fnp->fn_sfh == sfh) {
4047 4048 /*
4048 4049 * We have found our entry.
4049 4050 * put an hold and return it.
4050 4051 */
4051 4052 mutex_exit(&parent->fn_lock);
4052 4053 return (fnp);
4053 4054 }
4054 4055
4055 4056 /*
4056 4057 * We have found an entry that has a mismatching
4057 4058 * fn_sfh. This could be a stale entry due to
4058 4059 * server side rename. We will remove this entry
4059 4060 * and make sure no such entries exist.
4060 4061 */
4061 4062 mutex_exit(&parent->fn_lock);
4062 4063 mutex_enter(&fnp->fn_lock);
4063 4064 if (fnp->fn_parent == parent) {
4064 4065 /*
4065 4066 * Remove ourselves from parent's
4066 4067 * fn_children tree.
4067 4068 */
4068 4069 mutex_enter(&parent->fn_lock);
4069 4070 avl_remove(&parent->fn_children, fnp);
4070 4071 mutex_exit(&parent->fn_lock);
4071 4072 fn_rele(&fnp->fn_parent);
4072 4073 }
4073 4074 mutex_exit(&fnp->fn_lock);
4074 4075 fn_rele(&fnp);
4075 4076 goto again;
4076 4077 }
4077 4078 }
4078 4079
4079 4080 fnp = kmem_alloc(sizeof (nfs4_fname_t), KM_SLEEP);
4080 4081 mutex_init(&fnp->fn_lock, NULL, MUTEX_DEFAULT, NULL);
4081 4082 fnp->fn_parent = parent;
4082 4083 if (parent != NULL)
4083 4084 fn_hold(parent);
4084 4085 fnp->fn_len = strlen(name);
4085 4086 ASSERT(fnp->fn_len < MAXNAMELEN);
4086 4087 fnp->fn_name = kmem_alloc(fnp->fn_len + 1, KM_SLEEP);
4087 4088 (void) strcpy(fnp->fn_name, name);
4088 4089 fnp->fn_refcnt = 1;
4089 4090
4090 4091 /*
4091 4092 * This hold on sfh is later released
4092 4093 * when we do the final fn_rele() on this fname.
4093 4094 */
4094 4095 sfh4_hold(sfh);
4095 4096 fnp->fn_sfh = sfh;
4096 4097
4097 4098 avl_create(&fnp->fn_children, fncmp, sizeof (nfs4_fname_t),
4098 4099 offsetof(nfs4_fname_t, fn_tree));
4099 4100 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
4100 4101 "fn_get %p:%s, a new nfs4_fname_t!",
4101 4102 (void *)fnp, fnp->fn_name));
4102 4103 if (parent != NULL) {
4103 4104 avl_insert(&parent->fn_children, fnp, where);
4104 4105 mutex_exit(&parent->fn_lock);
4105 4106 }
4106 4107
4107 4108 return (fnp);
4108 4109 }
4109 4110
4110 4111 void
4111 4112 fn_hold(nfs4_fname_t *fnp)
4112 4113 {
4113 4114 atomic_add_32(&fnp->fn_refcnt, 1);
4114 4115 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
4115 4116 "fn_hold %p:%s, new refcnt=%d",
4116 4117 (void *)fnp, fnp->fn_name, fnp->fn_refcnt));
4117 4118 }
4118 4119
4119 4120 /*
4120 4121 * Decrement the reference count of the given fname, and destroy it if its
4121 4122 * reference count goes to zero. Nulls out the given pointer.
4122 4123 */
4123 4124
4124 4125 void
4125 4126 fn_rele(nfs4_fname_t **fnpp)
4126 4127 {
4127 4128 nfs4_fname_t *parent;
4128 4129 uint32_t newref;
4129 4130 nfs4_fname_t *fnp;
4130 4131
4131 4132 recur:
4132 4133 fnp = *fnpp;
4133 4134 *fnpp = NULL;
4134 4135
4135 4136 mutex_enter(&fnp->fn_lock);
4136 4137 parent = fnp->fn_parent;
4137 4138 if (parent != NULL)
4138 4139 mutex_enter(&parent->fn_lock); /* prevent new references */
4139 4140 newref = atomic_add_32_nv(&fnp->fn_refcnt, -1);
4140 4141 if (newref > 0) {
4141 4142 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
4142 4143 "fn_rele %p:%s, new refcnt=%d",
4143 4144 (void *)fnp, fnp->fn_name, fnp->fn_refcnt));
4144 4145 if (parent != NULL)
4145 4146 mutex_exit(&parent->fn_lock);
4146 4147 mutex_exit(&fnp->fn_lock);
4147 4148 return;
4148 4149 }
4149 4150
4150 4151 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
4151 4152 "fn_rele %p:%s, last reference, deleting...",
4152 4153 (void *)fnp, fnp->fn_name));
4153 4154 if (parent != NULL) {
4154 4155 avl_remove(&parent->fn_children, fnp);
4155 4156 mutex_exit(&parent->fn_lock);
4156 4157 }
4157 4158 kmem_free(fnp->fn_name, fnp->fn_len + 1);
4158 4159 sfh4_rele(&fnp->fn_sfh);
4159 4160 mutex_destroy(&fnp->fn_lock);
4160 4161 avl_destroy(&fnp->fn_children);
4161 4162 kmem_free(fnp, sizeof (nfs4_fname_t));
4162 4163 /*
4163 4164 * Recursivly fn_rele the parent.
4164 4165 * Use goto instead of a recursive call to avoid stack overflow.
4165 4166 */
4166 4167 if (parent != NULL) {
4167 4168 fnpp = &parent;
4168 4169 goto recur;
4169 4170 }
4170 4171 }
4171 4172
4172 4173 /*
4173 4174 * Returns the single component name of the given fname, in a MAXNAMELEN
4174 4175 * string buffer, which the caller is responsible for freeing. Note that
4175 4176 * the name may become invalid as a result of fn_move().
4176 4177 */
4177 4178
4178 4179 char *
4179 4180 fn_name(nfs4_fname_t *fnp)
4180 4181 {
4181 4182 char *name;
4182 4183
4183 4184 ASSERT(fnp->fn_len < MAXNAMELEN);
4184 4185 name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
4185 4186 mutex_enter(&fnp->fn_lock);
4186 4187 (void) strcpy(name, fnp->fn_name);
4187 4188 mutex_exit(&fnp->fn_lock);
4188 4189
4189 4190 return (name);
4190 4191 }
4191 4192
4192 4193
4193 4194 /*
4194 4195 * fn_path_realloc
4195 4196 *
4196 4197 * This function, used only by fn_path, constructs
4197 4198 * a new string which looks like "prepend" + "/" + "current".
4198 4199 * by allocating a new string and freeing the old one.
4199 4200 */
4200 4201 static void
4201 4202 fn_path_realloc(char **curses, char *prepend)
4202 4203 {
4203 4204 int len, curlen = 0;
4204 4205 char *news;
4205 4206
4206 4207 if (*curses == NULL) {
4207 4208 /*
4208 4209 * Prime the pump, allocate just the
4209 4210 * space for prepend and return that.
4210 4211 */
4211 4212 len = strlen(prepend) + 1;
4212 4213 news = kmem_alloc(len, KM_SLEEP);
4213 4214 (void) strncpy(news, prepend, len);
4214 4215 } else {
4215 4216 /*
4216 4217 * Allocate the space for a new string
4217 4218 * +1 +1 is for the "/" and the NULL
4218 4219 * byte at the end of it all.
4219 4220 */
4220 4221 curlen = strlen(*curses);
4221 4222 len = curlen + strlen(prepend) + 1 + 1;
4222 4223 news = kmem_alloc(len, KM_SLEEP);
4223 4224 (void) strncpy(news, prepend, len);
4224 4225 (void) strcat(news, "/");
4225 4226 (void) strcat(news, *curses);
4226 4227 kmem_free(*curses, curlen + 1);
4227 4228 }
4228 4229 *curses = news;
4229 4230 }
4230 4231
4231 4232 /*
4232 4233 * Returns the path name (starting from the fs root) for the given fname.
4233 4234 * The caller is responsible for freeing. Note that the path may be or
4234 4235 * become invalid as a result of fn_move().
4235 4236 */
4236 4237
4237 4238 char *
4238 4239 fn_path(nfs4_fname_t *fnp)
4239 4240 {
4240 4241 char *path;
4241 4242 nfs4_fname_t *nextfnp;
4242 4243
4243 4244 if (fnp == NULL)
4244 4245 return (NULL);
4245 4246
4246 4247 path = NULL;
4247 4248
4248 4249 /* walk up the tree constructing the pathname. */
4249 4250
4250 4251 fn_hold(fnp); /* adjust for later rele */
4251 4252 do {
4252 4253 mutex_enter(&fnp->fn_lock);
4253 4254 /*
4254 4255 * Add fn_name in front of the current path
4255 4256 */
4256 4257 fn_path_realloc(&path, fnp->fn_name);
4257 4258 nextfnp = fnp->fn_parent;
4258 4259 if (nextfnp != NULL)
4259 4260 fn_hold(nextfnp);
4260 4261 mutex_exit(&fnp->fn_lock);
4261 4262 fn_rele(&fnp);
4262 4263 fnp = nextfnp;
4263 4264 } while (fnp != NULL);
4264 4265
4265 4266 return (path);
4266 4267 }
4267 4268
4268 4269 /*
4269 4270 * Return a reference to the parent of the given fname, which the caller is
4270 4271 * responsible for eventually releasing.
4271 4272 */
4272 4273
4273 4274 nfs4_fname_t *
4274 4275 fn_parent(nfs4_fname_t *fnp)
4275 4276 {
4276 4277 nfs4_fname_t *parent;
4277 4278
4278 4279 mutex_enter(&fnp->fn_lock);
4279 4280 parent = fnp->fn_parent;
4280 4281 if (parent != NULL)
4281 4282 fn_hold(parent);
4282 4283 mutex_exit(&fnp->fn_lock);
4283 4284
4284 4285 return (parent);
4285 4286 }
4286 4287
4287 4288 /*
4288 4289 * Update fnp so that its parent is newparent and its name is newname.
4289 4290 */
4290 4291
4291 4292 void
4292 4293 fn_move(nfs4_fname_t *fnp, nfs4_fname_t *newparent, char *newname)
4293 4294 {
4294 4295 nfs4_fname_t *parent, *tmpfnp;
4295 4296 ssize_t newlen;
4296 4297 nfs4_fname_t key;
4297 4298 avl_index_t where;
4298 4299
4299 4300 /*
4300 4301 * This assert exists to catch the client trying to rename
4301 4302 * a dir to be a child of itself. This happened at a recent
4302 4303 * bakeoff against a 3rd party (broken) server which allowed
4303 4304 * the rename to succeed. If it trips it means that:
4304 4305 * a) the code in nfs4rename that detects this case is broken
4305 4306 * b) the server is broken (since it allowed the bogus rename)
4306 4307 *
4307 4308 * For non-DEBUG kernels, prepare for a recursive mutex_enter
4308 4309 * panic below from: mutex_enter(&newparent->fn_lock);
4309 4310 */
4310 4311 ASSERT(fnp != newparent);
4311 4312
4312 4313 /*
4313 4314 * Remove fnp from its current parent, change its name, then add it
4314 4315 * to newparent. It might happen that fnp was replaced by another
4315 4316 * nfs4_fname_t with the same fn_name in parent->fn_children.
4316 4317 * In such case, fnp->fn_parent is NULL and we skip the removal
4317 4318 * of fnp from its current parent.
4318 4319 */
4319 4320 mutex_enter(&fnp->fn_lock);
4320 4321 parent = fnp->fn_parent;
4321 4322 if (parent != NULL) {
4322 4323 mutex_enter(&parent->fn_lock);
4323 4324 avl_remove(&parent->fn_children, fnp);
4324 4325 mutex_exit(&parent->fn_lock);
4325 4326 fn_rele(&fnp->fn_parent);
4326 4327 }
4327 4328
4328 4329 newlen = strlen(newname);
4329 4330 if (newlen != fnp->fn_len) {
4330 4331 ASSERT(newlen < MAXNAMELEN);
4331 4332 kmem_free(fnp->fn_name, fnp->fn_len + 1);
4332 4333 fnp->fn_name = kmem_alloc(newlen + 1, KM_SLEEP);
4333 4334 fnp->fn_len = newlen;
4334 4335 }
4335 4336 (void) strcpy(fnp->fn_name, newname);
4336 4337
4337 4338 again:
4338 4339 mutex_enter(&newparent->fn_lock);
4339 4340 key.fn_name = fnp->fn_name;
4340 4341 tmpfnp = avl_find(&newparent->fn_children, &key, &where);
4341 4342 if (tmpfnp != NULL) {
4342 4343 /*
4343 4344 * This could be due to a file that was unlinked while
4344 4345 * open, or perhaps the rnode is in the free list. Remove
4345 4346 * it from newparent and let it go away on its own. The
4346 4347 * contorted code is to deal with lock order issues and
4347 4348 * race conditions.
4348 4349 */
4349 4350 fn_hold(tmpfnp);
4350 4351 mutex_exit(&newparent->fn_lock);
4351 4352 mutex_enter(&tmpfnp->fn_lock);
4352 4353 if (tmpfnp->fn_parent == newparent) {
4353 4354 mutex_enter(&newparent->fn_lock);
4354 4355 avl_remove(&newparent->fn_children, tmpfnp);
4355 4356 mutex_exit(&newparent->fn_lock);
4356 4357 fn_rele(&tmpfnp->fn_parent);
4357 4358 }
4358 4359 mutex_exit(&tmpfnp->fn_lock);
4359 4360 fn_rele(&tmpfnp);
4360 4361 goto again;
4361 4362 }
4362 4363 fnp->fn_parent = newparent;
4363 4364 fn_hold(newparent);
4364 4365 avl_insert(&newparent->fn_children, fnp, where);
4365 4366 mutex_exit(&newparent->fn_lock);
4366 4367 mutex_exit(&fnp->fn_lock);
4367 4368 }
4368 4369
4369 4370 #ifdef DEBUG
4370 4371 /*
4371 4372 * Return non-zero if the type information makes sense for the given vnode.
4372 4373 * Otherwise panic.
4373 4374 */
4374 4375 int
4375 4376 nfs4_consistent_type(vnode_t *vp)
4376 4377 {
4377 4378 rnode4_t *rp = VTOR4(vp);
4378 4379
4379 4380 if (nfs4_vtype_debug && vp->v_type != VNON &&
4380 4381 rp->r_attr.va_type != VNON && vp->v_type != rp->r_attr.va_type) {
4381 4382 cmn_err(CE_PANIC, "vnode %p type mismatch; v_type=%d, "
4382 4383 "rnode attr type=%d", (void *)vp, vp->v_type,
4383 4384 rp->r_attr.va_type);
4384 4385 }
4385 4386
4386 4387 return (1);
4387 4388 }
4388 4389 #endif /* DEBUG */
↓ open down ↓ |
2560 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX