NFS4 data corruption (#3508)
If async calls are disabled, nfs4_async_putapage is supposed to do its
work synchronously. Due to a bug, it sometimes just does nothing, leaving
the page for later.
Unfortunately the caller has already reset the R4DIRTY flag.
Without R4DIRTY, nfs4_attrcache_va can't see that there are still
outstanding writes and accepts the file size from the server, which is
too low.
When the dirty page finally gets written back, the page size is truncated
to the file size, leaving some bytes unwritten.
Reviewed by: Marcel Telka <marcel@telka.sk>
Reviewed by: Robert Gordon <rbg@openrbg.com>
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /*
26 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
27 * All Rights Reserved
28 */
29
30 #include <sys/param.h>
31 #include <sys/types.h>
32 #include <sys/systm.h>
33 #include <sys/thread.h>
34 #include <sys/t_lock.h>
35 #include <sys/time.h>
36 #include <sys/vnode.h>
37 #include <sys/vfs.h>
38 #include <sys/errno.h>
39 #include <sys/buf.h>
40 #include <sys/stat.h>
41 #include <sys/cred.h>
42 #include <sys/kmem.h>
43 #include <sys/debug.h>
44 #include <sys/dnlc.h>
45 #include <sys/vmsystm.h>
46 #include <sys/flock.h>
47 #include <sys/share.h>
48 #include <sys/cmn_err.h>
49 #include <sys/tiuser.h>
50 #include <sys/sysmacros.h>
51 #include <sys/callb.h>
52 #include <sys/acl.h>
53 #include <sys/kstat.h>
54 #include <sys/signal.h>
55 #include <sys/disp.h>
56 #include <sys/atomic.h>
57 #include <sys/list.h>
58 #include <sys/sdt.h>
59
60 #include <rpc/types.h>
61 #include <rpc/xdr.h>
62 #include <rpc/auth.h>
63 #include <rpc/clnt.h>
64
65 #include <nfs/nfs.h>
66 #include <nfs/nfs_clnt.h>
67 #include <nfs/nfs_acl.h>
68
69 #include <nfs/nfs4.h>
70 #include <nfs/rnode4.h>
71 #include <nfs/nfs4_clnt.h>
72
73 #include <vm/hat.h>
74 #include <vm/as.h>
75 #include <vm/page.h>
76 #include <vm/pvn.h>
77 #include <vm/seg.h>
78 #include <vm/seg_map.h>
79 #include <vm/seg_vn.h>
80
81 #include <sys/ddi.h>
82
83 /*
84 * Arguments to page-flush thread.
85 */
86 typedef struct {
87 vnode_t *vp;
88 cred_t *cr;
89 } pgflush_t;
90
91 #ifdef DEBUG
92 int nfs4_client_lease_debug;
93 int nfs4_sharedfh_debug;
94 int nfs4_fname_debug;
95
96 /* temporary: panic if v_type is inconsistent with r_attr va_type */
97 int nfs4_vtype_debug;
98
99 uint_t nfs4_tsd_key;
100 #endif
101
102 static time_t nfs4_client_resumed = 0;
103 static callb_id_t cid = 0;
104
105 static int nfs4renew(nfs4_server_t *);
106 static void nfs4_attrcache_va(vnode_t *, nfs4_ga_res_t *, int);
107 static void nfs4_pgflush_thread(pgflush_t *);
108
109 static boolean_t nfs4_client_cpr_callb(void *, int);
110
111 struct mi4_globals {
112 kmutex_t mig_lock; /* lock protecting mig_list */
113 list_t mig_list; /* list of NFS v4 mounts in zone */
114 boolean_t mig_destructor_called;
115 };
116
117 static zone_key_t mi4_list_key;
118
119 /*
120 * Attributes caching:
121 *
122 * Attributes are cached in the rnode in struct vattr form.
123 * There is a time associated with the cached attributes (r_time_attr_inval)
124 * which tells whether the attributes are valid. The time is initialized
125 * to the difference between current time and the modify time of the vnode
126 * when new attributes are cached. This allows the attributes for
127 * files that have changed recently to be timed out sooner than for files
128 * that have not changed for a long time. There are minimum and maximum
129 * timeout values that can be set per mount point.
130 */
131
132 /*
133 * If a cache purge is in progress, wait for it to finish.
134 *
135 * The current thread must not be in the middle of an
136 * nfs4_start_op/nfs4_end_op region. Otherwise, there could be a deadlock
137 * between this thread, a recovery thread, and the page flush thread.
138 */
139 int
140 nfs4_waitfor_purge_complete(vnode_t *vp)
141 {
142 rnode4_t *rp;
143 k_sigset_t smask;
144
145 rp = VTOR4(vp);
146 if ((rp->r_serial != NULL && rp->r_serial != curthread) ||
147 ((rp->r_flags & R4PGFLUSH) && rp->r_pgflush != curthread)) {
148 mutex_enter(&rp->r_statelock);
149 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT);
150 while ((rp->r_serial != NULL && rp->r_serial != curthread) ||
151 ((rp->r_flags & R4PGFLUSH) &&
152 rp->r_pgflush != curthread)) {
153 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
154 sigunintr(&smask);
155 mutex_exit(&rp->r_statelock);
156 return (EINTR);
157 }
158 }
159 sigunintr(&smask);
160 mutex_exit(&rp->r_statelock);
161 }
162 return (0);
163 }
164
165 /*
166 * Validate caches by checking cached attributes. If they have timed out,
167 * then get new attributes from the server. As a side effect, cache
168 * invalidation is done if the attributes have changed.
169 *
170 * If the attributes have not timed out and if there is a cache
171 * invalidation being done by some other thread, then wait until that
172 * thread has completed the cache invalidation.
173 */
174 int
175 nfs4_validate_caches(vnode_t *vp, cred_t *cr)
176 {
177 int error;
178 nfs4_ga_res_t gar;
179
180 if (ATTRCACHE4_VALID(vp)) {
181 error = nfs4_waitfor_purge_complete(vp);
182 if (error)
183 return (error);
184 return (0);
185 }
186
187 gar.n4g_va.va_mask = AT_ALL;
188 return (nfs4_getattr_otw(vp, &gar, cr, 0));
189 }
190
191 /*
192 * Fill in attribute from the cache.
193 * If valid, then return 0 to indicate that no error occurred,
194 * otherwise return 1 to indicate that an error occurred.
195 */
196 static int
197 nfs4_getattr_cache(vnode_t *vp, struct vattr *vap)
198 {
199 rnode4_t *rp;
200
201 rp = VTOR4(vp);
202 mutex_enter(&rp->r_statelock);
203 mutex_enter(&rp->r_statev4_lock);
204 if (ATTRCACHE4_VALID(vp)) {
205 mutex_exit(&rp->r_statev4_lock);
206 /*
207 * Cached attributes are valid
208 */
209 *vap = rp->r_attr;
210 mutex_exit(&rp->r_statelock);
211 return (0);
212 }
213 mutex_exit(&rp->r_statev4_lock);
214 mutex_exit(&rp->r_statelock);
215 return (1);
216 }
217
218
219 /*
220 * If returned error is ESTALE flush all caches. The nfs4_purge_caches()
221 * call is synchronous because all the pages were invalidated by the
222 * nfs4_invalidate_pages() call.
223 */
224 void
225 nfs4_purge_stale_fh(int errno, vnode_t *vp, cred_t *cr)
226 {
227 struct rnode4 *rp = VTOR4(vp);
228
229 /* Ensure that the ..._end_op() call has been done */
230 ASSERT(tsd_get(nfs4_tsd_key) == NULL);
231
232 if (errno != ESTALE)
233 return;
234
235 mutex_enter(&rp->r_statelock);
236 rp->r_flags |= R4STALE;
237 if (!rp->r_error)
238 rp->r_error = errno;
239 mutex_exit(&rp->r_statelock);
240 if (nfs4_has_pages(vp))
241 nfs4_invalidate_pages(vp, (u_offset_t)0, cr);
242 nfs4_purge_caches(vp, NFS4_PURGE_DNLC, cr, FALSE);
243 }
244
245 /*
246 * Purge all of the various NFS `data' caches. If "asyncpg" is TRUE, the
247 * page purge is done asynchronously.
248 */
249 void
250 nfs4_purge_caches(vnode_t *vp, int purge_dnlc, cred_t *cr, int asyncpg)
251 {
252 rnode4_t *rp;
253 char *contents;
254 vnode_t *xattr;
255 int size;
256 int pgflush; /* are we the page flush thread? */
257
258 /*
259 * Purge the DNLC for any entries which refer to this file.
260 */
261 if (vp->v_count > 1 &&
262 (vp->v_type == VDIR || purge_dnlc == NFS4_PURGE_DNLC))
263 dnlc_purge_vp(vp);
264
265 /*
266 * Clear any readdir state bits and purge the readlink response cache.
267 */
268 rp = VTOR4(vp);
269 mutex_enter(&rp->r_statelock);
270 rp->r_flags &= ~R4LOOKUP;
271 contents = rp->r_symlink.contents;
272 size = rp->r_symlink.size;
273 rp->r_symlink.contents = NULL;
274
275 xattr = rp->r_xattr_dir;
276 rp->r_xattr_dir = NULL;
277
278 /*
279 * Purge pathconf cache too.
280 */
281 rp->r_pathconf.pc4_xattr_valid = 0;
282 rp->r_pathconf.pc4_cache_valid = 0;
283
284 pgflush = (curthread == rp->r_pgflush);
285 mutex_exit(&rp->r_statelock);
286
287 if (contents != NULL) {
288
289 kmem_free((void *)contents, size);
290 }
291
292 if (xattr != NULL)
293 VN_RELE(xattr);
294
295 /*
296 * Flush the page cache. If the current thread is the page flush
297 * thread, don't initiate a new page flush. There's no need for
298 * it, and doing it correctly is hard.
299 */
300 if (nfs4_has_pages(vp) && !pgflush) {
301 if (!asyncpg) {
302 (void) nfs4_waitfor_purge_complete(vp);
303 nfs4_flush_pages(vp, cr);
304 } else {
305 pgflush_t *args;
306
307 /*
308 * We don't hold r_statelock while creating the
309 * thread, in case the call blocks. So we use a
310 * flag to indicate that a page flush thread is
311 * active.
312 */
313 mutex_enter(&rp->r_statelock);
314 if (rp->r_flags & R4PGFLUSH) {
315 mutex_exit(&rp->r_statelock);
316 } else {
317 rp->r_flags |= R4PGFLUSH;
318 mutex_exit(&rp->r_statelock);
319
320 args = kmem_alloc(sizeof (pgflush_t),
321 KM_SLEEP);
322 args->vp = vp;
323 VN_HOLD(args->vp);
324 args->cr = cr;
325 crhold(args->cr);
326 (void) zthread_create(NULL, 0,
327 nfs4_pgflush_thread, args, 0,
328 minclsyspri);
329 }
330 }
331 }
332
333 /*
334 * Flush the readdir response cache.
335 */
336 nfs4_purge_rddir_cache(vp);
337 }
338
339 /*
340 * Invalidate all pages for the given file, after writing back the dirty
341 * ones.
342 */
343
344 void
345 nfs4_flush_pages(vnode_t *vp, cred_t *cr)
346 {
347 int error;
348 rnode4_t *rp = VTOR4(vp);
349
350 error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_INVAL, cr, NULL);
351 if (error == ENOSPC || error == EDQUOT) {
352 mutex_enter(&rp->r_statelock);
353 if (!rp->r_error)
354 rp->r_error = error;
355 mutex_exit(&rp->r_statelock);
356 }
357 }
358
359 /*
360 * Page flush thread.
361 */
362
363 static void
364 nfs4_pgflush_thread(pgflush_t *args)
365 {
366 rnode4_t *rp = VTOR4(args->vp);
367
368 /* remember which thread we are, so we don't deadlock ourselves */
369 mutex_enter(&rp->r_statelock);
370 ASSERT(rp->r_pgflush == NULL);
371 rp->r_pgflush = curthread;
372 mutex_exit(&rp->r_statelock);
373
374 nfs4_flush_pages(args->vp, args->cr);
375
376 mutex_enter(&rp->r_statelock);
377 rp->r_pgflush = NULL;
378 rp->r_flags &= ~R4PGFLUSH;
379 cv_broadcast(&rp->r_cv);
380 mutex_exit(&rp->r_statelock);
381
382 VN_RELE(args->vp);
383 crfree(args->cr);
384 kmem_free(args, sizeof (pgflush_t));
385 zthread_exit();
386 }
387
388 /*
389 * Purge the readdir cache of all entries which are not currently
390 * being filled.
391 */
392 void
393 nfs4_purge_rddir_cache(vnode_t *vp)
394 {
395 rnode4_t *rp;
396
397 rp = VTOR4(vp);
398
399 mutex_enter(&rp->r_statelock);
400 rp->r_direof = NULL;
401 rp->r_flags &= ~R4LOOKUP;
402 rp->r_flags |= R4READDIRWATTR;
403 rddir4_cache_purge(rp);
404 mutex_exit(&rp->r_statelock);
405 }
406
407 /*
408 * Set attributes cache for given vnode using virtual attributes. There is
409 * no cache validation, but if the attributes are deemed to be stale, they
410 * are ignored. This corresponds to nfs3_attrcache().
411 *
412 * Set the timeout value on the attribute cache and fill it
413 * with the passed in attributes.
414 */
415 void
416 nfs4_attrcache_noinval(vnode_t *vp, nfs4_ga_res_t *garp, hrtime_t t)
417 {
418 rnode4_t *rp = VTOR4(vp);
419
420 mutex_enter(&rp->r_statelock);
421 if (rp->r_time_attr_saved <= t)
422 nfs4_attrcache_va(vp, garp, FALSE);
423 mutex_exit(&rp->r_statelock);
424 }
425
426 /*
427 * Use the passed in virtual attributes to check to see whether the
428 * data and metadata caches are valid, cache the new attributes, and
429 * then do the cache invalidation if required.
430 *
431 * The cache validation and caching of the new attributes is done
432 * atomically via the use of the mutex, r_statelock. If required,
433 * the cache invalidation is done atomically w.r.t. the cache
434 * validation and caching of the attributes via the pseudo lock,
435 * r_serial.
436 *
437 * This routine is used to do cache validation and attributes caching
438 * for operations with a single set of post operation attributes.
439 */
440
441 void
442 nfs4_attr_cache(vnode_t *vp, nfs4_ga_res_t *garp,
443 hrtime_t t, cred_t *cr, int async,
444 change_info4 *cinfo)
445 {
446 rnode4_t *rp;
447 int mtime_changed = 0;
448 int ctime_changed = 0;
449 vsecattr_t *vsp;
450 int was_serial, set_time_cache_inval, recov;
451 vattr_t *vap = &garp->n4g_va;
452 mntinfo4_t *mi = VTOMI4(vp);
453 len_t preattr_rsize;
454 boolean_t writemodify_set = B_FALSE;
455 boolean_t cachepurge_set = B_FALSE;
456
457 ASSERT(mi->mi_vfsp->vfs_dev == garp->n4g_va.va_fsid);
458
459 /* Is curthread the recovery thread? */
460 mutex_enter(&mi->mi_lock);
461 recov = (VTOMI4(vp)->mi_recovthread == curthread);
462 mutex_exit(&mi->mi_lock);
463
464 rp = VTOR4(vp);
465 mutex_enter(&rp->r_statelock);
466 was_serial = (rp->r_serial == curthread);
467 if (rp->r_serial && !was_serial) {
468 klwp_t *lwp = ttolwp(curthread);
469
470 /*
471 * If we're the recovery thread, then purge current attrs
472 * and bail out to avoid potential deadlock between another
473 * thread caching attrs (r_serial thread), recov thread,
474 * and an async writer thread.
475 */
476 if (recov) {
477 PURGE_ATTRCACHE4_LOCKED(rp);
478 mutex_exit(&rp->r_statelock);
479 return;
480 }
481
482 if (lwp != NULL)
483 lwp->lwp_nostop++;
484 while (rp->r_serial != NULL) {
485 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
486 mutex_exit(&rp->r_statelock);
487 if (lwp != NULL)
488 lwp->lwp_nostop--;
489 return;
490 }
491 }
492 if (lwp != NULL)
493 lwp->lwp_nostop--;
494 }
495
496 /*
497 * If there is a page flush thread, the current thread needs to
498 * bail out, to prevent a possible deadlock between the current
499 * thread (which might be in a start_op/end_op region), the
500 * recovery thread, and the page flush thread. Expire the
501 * attribute cache, so that any attributes the current thread was
502 * going to set are not lost.
503 */
504 if ((rp->r_flags & R4PGFLUSH) && rp->r_pgflush != curthread) {
505 PURGE_ATTRCACHE4_LOCKED(rp);
506 mutex_exit(&rp->r_statelock);
507 return;
508 }
509
510 if (rp->r_time_attr_saved > t) {
511 /*
512 * Attributes have been cached since these attributes were
513 * probably made. If there is an inconsistency in what is
514 * cached, mark them invalid. If not, don't act on them.
515 */
516 if (!CACHE4_VALID(rp, vap->va_mtime, vap->va_size))
517 PURGE_ATTRCACHE4_LOCKED(rp);
518 mutex_exit(&rp->r_statelock);
519 return;
520 }
521 set_time_cache_inval = 0;
522 if (cinfo) {
523 /*
524 * Only directory modifying callers pass non-NULL cinfo.
525 */
526 ASSERT(vp->v_type == VDIR);
527 /*
528 * If the cache timeout either doesn't exist or hasn't expired,
529 * and dir didn't changed on server before dirmod op
530 * and dir didn't change after dirmod op but before getattr
531 * then there's a chance that the client's cached data for
532 * this object is current (not stale). No immediate cache
533 * flush is required.
534 *
535 */
536 if ((! rp->r_time_cache_inval || t < rp->r_time_cache_inval) &&
537 cinfo->before == rp->r_change &&
538 (garp->n4g_change_valid &&
539 cinfo->after == garp->n4g_change)) {
540
541 /*
542 * If atomic isn't set, then the before/after info
543 * cannot be blindly trusted. For this case, we tell
544 * nfs4_attrcache_va to cache the attrs but also
545 * establish an absolute maximum cache timeout. When
546 * the timeout is reached, caches will be flushed.
547 */
548 if (! cinfo->atomic)
549 set_time_cache_inval = 1;
550 } else {
551
552 /*
553 * We're not sure exactly what changed, but we know
554 * what to do. flush all caches for dir. remove the
555 * attr timeout.
556 *
557 * a) timeout expired. flush all caches.
558 * b) r_change != cinfo.before. flush all caches.
559 * c) r_change == cinfo.before, but cinfo.after !=
560 * post-op getattr(change). flush all caches.
561 * d) post-op getattr(change) not provided by server.
562 * flush all caches.
563 */
564 mtime_changed = 1;
565 ctime_changed = 1;
566 rp->r_time_cache_inval = 0;
567 }
568 } else {
569 /*
570 * Write thread after writing data to file on remote server,
571 * will always set R4WRITEMODIFIED to indicate that file on
572 * remote server was modified with a WRITE operation and would
573 * have marked attribute cache as timed out. If R4WRITEMODIFIED
574 * is set, then do not check for mtime and ctime change.
575 */
576 if (!(rp->r_flags & R4WRITEMODIFIED)) {
577 if (!CACHE4_VALID(rp, vap->va_mtime, vap->va_size))
578 mtime_changed = 1;
579
580 if (rp->r_attr.va_ctime.tv_sec !=
581 vap->va_ctime.tv_sec ||
582 rp->r_attr.va_ctime.tv_nsec !=
583 vap->va_ctime.tv_nsec)
584 ctime_changed = 1;
585 } else {
586 writemodify_set = B_TRUE;
587 }
588 }
589
590 preattr_rsize = rp->r_size;
591
592 nfs4_attrcache_va(vp, garp, set_time_cache_inval);
593
594 /*
595 * If we have updated filesize in nfs4_attrcache_va, as soon as we
596 * drop statelock we will be in transition of purging all
597 * our caches and updating them. It is possible for another
598 * thread to pick this new file size and read in zeroed data.
599 * stall other threads till cache purge is complete.
600 */
601 if ((!cinfo) && (rp->r_size != preattr_rsize)) {
602 /*
603 * If R4WRITEMODIFIED was set and we have updated the file
604 * size, Server's returned file size need not necessarily
605 * be because of this Client's WRITE. We need to purge
606 * all caches.
607 */
608 if (writemodify_set)
609 mtime_changed = 1;
610
611 if (mtime_changed && !(rp->r_flags & R4INCACHEPURGE)) {
612 rp->r_flags |= R4INCACHEPURGE;
613 cachepurge_set = B_TRUE;
614 }
615 }
616
617 if (!mtime_changed && !ctime_changed) {
618 mutex_exit(&rp->r_statelock);
619 return;
620 }
621
622 rp->r_serial = curthread;
623
624 mutex_exit(&rp->r_statelock);
625
626 /*
627 * If we're the recov thread, then force async nfs4_purge_caches
628 * to avoid potential deadlock.
629 */
630 if (mtime_changed)
631 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, recov ? 1 : async);
632
633 if ((rp->r_flags & R4INCACHEPURGE) && cachepurge_set) {
634 mutex_enter(&rp->r_statelock);
635 rp->r_flags &= ~R4INCACHEPURGE;
636 cv_broadcast(&rp->r_cv);
637 mutex_exit(&rp->r_statelock);
638 cachepurge_set = B_FALSE;
639 }
640
641 if (ctime_changed) {
642 (void) nfs4_access_purge_rp(rp);
643 if (rp->r_secattr != NULL) {
644 mutex_enter(&rp->r_statelock);
645 vsp = rp->r_secattr;
646 rp->r_secattr = NULL;
647 mutex_exit(&rp->r_statelock);
648 if (vsp != NULL)
649 nfs4_acl_free_cache(vsp);
650 }
651 }
652
653 if (!was_serial) {
654 mutex_enter(&rp->r_statelock);
655 rp->r_serial = NULL;
656 cv_broadcast(&rp->r_cv);
657 mutex_exit(&rp->r_statelock);
658 }
659 }
660
661 /*
662 * Set attributes cache for given vnode using virtual attributes.
663 *
664 * Set the timeout value on the attribute cache and fill it
665 * with the passed in attributes.
666 *
667 * The caller must be holding r_statelock.
668 */
669 static void
670 nfs4_attrcache_va(vnode_t *vp, nfs4_ga_res_t *garp, int set_cache_timeout)
671 {
672 rnode4_t *rp;
673 mntinfo4_t *mi;
674 hrtime_t delta;
675 hrtime_t now;
676 vattr_t *vap = &garp->n4g_va;
677
678 rp = VTOR4(vp);
679
680 ASSERT(MUTEX_HELD(&rp->r_statelock));
681 ASSERT(vap->va_mask == AT_ALL);
682
683 /* Switch to master before checking v_flag */
684 if (IS_SHADOW(vp, rp))
685 vp = RTOV4(rp);
686
687 now = gethrtime();
688
689 mi = VTOMI4(vp);
690
691 /*
692 * Only establish a new cache timeout (if requested). Never
693 * extend a timeout. Never clear a timeout. Clearing a timeout
694 * is done by nfs4_update_dircaches (ancestor in our call chain)
695 */
696 if (set_cache_timeout && ! rp->r_time_cache_inval)
697 rp->r_time_cache_inval = now + mi->mi_acdirmax;
698
699 /*
700 * Delta is the number of nanoseconds that we will
701 * cache the attributes of the file. It is based on
702 * the number of nanoseconds since the last time that
703 * we detected a change. The assumption is that files
704 * that changed recently are likely to change again.
705 * There is a minimum and a maximum for regular files
706 * and for directories which is enforced though.
707 *
708 * Using the time since last change was detected
709 * eliminates direct comparison or calculation
710 * using mixed client and server times. NFS does
711 * not make any assumptions regarding the client
712 * and server clocks being synchronized.
713 */
714 if (vap->va_mtime.tv_sec != rp->r_attr.va_mtime.tv_sec ||
715 vap->va_mtime.tv_nsec != rp->r_attr.va_mtime.tv_nsec ||
716 vap->va_size != rp->r_attr.va_size) {
717 rp->r_time_attr_saved = now;
718 }
719
720 if ((mi->mi_flags & MI4_NOAC) || (vp->v_flag & VNOCACHE))
721 delta = 0;
722 else {
723 delta = now - rp->r_time_attr_saved;
724 if (vp->v_type == VDIR) {
725 if (delta < mi->mi_acdirmin)
726 delta = mi->mi_acdirmin;
727 else if (delta > mi->mi_acdirmax)
728 delta = mi->mi_acdirmax;
729 } else {
730 if (delta < mi->mi_acregmin)
731 delta = mi->mi_acregmin;
732 else if (delta > mi->mi_acregmax)
733 delta = mi->mi_acregmax;
734 }
735 }
736 rp->r_time_attr_inval = now + delta;
737
738 rp->r_attr = *vap;
739 if (garp->n4g_change_valid)
740 rp->r_change = garp->n4g_change;
741
742 /*
743 * The attributes that were returned may be valid and can
744 * be used, but they may not be allowed to be cached.
745 * Reset the timers to cause immediate invalidation and
746 * clear r_change so no VERIFY operations will suceed
747 */
748 if (garp->n4g_attrwhy == NFS4_GETATTR_NOCACHE_OK) {
749 rp->r_time_attr_inval = now;
750 rp->r_time_attr_saved = now;
751 rp->r_change = 0;
752 }
753
754 /*
755 * If mounted_on_fileid returned AND the object is a stub,
756 * then set object's va_nodeid to the mounted over fid
757 * returned by server.
758 *
759 * If mounted_on_fileid not provided/supported, then
760 * just set it to 0 for now. Eventually it would be
761 * better to set it to a hashed version of FH. This
762 * would probably be good enough to provide a unique
763 * fid/d_ino within a dir.
764 *
765 * We don't need to carry mounted_on_fileid in the
766 * rnode as long as the client never requests fileid
767 * without also requesting mounted_on_fileid. For
768 * now, it stays.
769 */
770 if (garp->n4g_mon_fid_valid) {
771 rp->r_mntd_fid = garp->n4g_mon_fid;
772
773 if (RP_ISSTUB(rp))
774 rp->r_attr.va_nodeid = rp->r_mntd_fid;
775 }
776
777 /*
778 * Check to see if there are valid pathconf bits to
779 * cache in the rnode.
780 */
781 if (garp->n4g_ext_res) {
782 if (garp->n4g_ext_res->n4g_pc4.pc4_cache_valid) {
783 rp->r_pathconf = garp->n4g_ext_res->n4g_pc4;
784 } else {
785 if (garp->n4g_ext_res->n4g_pc4.pc4_xattr_valid) {
786 rp->r_pathconf.pc4_xattr_valid = TRUE;
787 rp->r_pathconf.pc4_xattr_exists =
788 garp->n4g_ext_res->n4g_pc4.pc4_xattr_exists;
789 }
790 }
791 }
792 /*
793 * Update the size of the file if there is no cached data or if
794 * the cached data is clean and there is no data being written
795 * out.
796 */
797 if (rp->r_size != vap->va_size &&
798 (!vn_has_cached_data(vp) ||
799 (!(rp->r_flags & R4DIRTY) && rp->r_count == 0))) {
800 rp->r_size = vap->va_size;
801 }
802 nfs_setswaplike(vp, vap);
803 rp->r_flags &= ~R4WRITEMODIFIED;
804 }
805
806 /*
807 * Get attributes over-the-wire and update attributes cache
808 * if no error occurred in the over-the-wire operation.
809 * Return 0 if successful, otherwise error.
810 */
811 int
812 nfs4_getattr_otw(vnode_t *vp, nfs4_ga_res_t *garp, cred_t *cr, int get_acl)
813 {
814 mntinfo4_t *mi = VTOMI4(vp);
815 hrtime_t t;
816 nfs4_recov_state_t recov_state;
817 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
818
819 recov_state.rs_flags = 0;
820 recov_state.rs_num_retry_despite_err = 0;
821
822 /* Save the original mount point security flavor */
823 (void) save_mnt_secinfo(mi->mi_curr_serv);
824
825 recov_retry:
826
827 if ((e.error = nfs4_start_fop(mi, vp, NULL, OH_GETATTR,
828 &recov_state, NULL))) {
829 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
830 return (e.error);
831 }
832
833 t = gethrtime();
834
835 nfs4_getattr_otw_norecovery(vp, garp, &e, cr, get_acl);
836
837 if (nfs4_needs_recovery(&e, FALSE, vp->v_vfsp)) {
838 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
839 NULL, OP_GETATTR, NULL, NULL, NULL) == FALSE) {
840 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR,
841 &recov_state, 1);
842 goto recov_retry;
843 }
844 }
845
846 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state, 0);
847
848 if (!e.error) {
849 if (e.stat == NFS4_OK) {
850 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL);
851 } else {
852 e.error = geterrno4(e.stat);
853
854 nfs4_purge_stale_fh(e.error, vp, cr);
855 }
856 }
857
858 /*
859 * If getattr a node that is a stub for a crossed
860 * mount point, keep the original secinfo flavor for
861 * the current file system, not the crossed one.
862 */
863 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
864
865 return (e.error);
866 }
867
868 /*
869 * Generate a compound to get attributes over-the-wire.
870 */
871 void
872 nfs4_getattr_otw_norecovery(vnode_t *vp, nfs4_ga_res_t *garp,
873 nfs4_error_t *ep, cred_t *cr, int get_acl)
874 {
875 COMPOUND4args_clnt args;
876 COMPOUND4res_clnt res;
877 int doqueue;
878 rnode4_t *rp = VTOR4(vp);
879 nfs_argop4 argop[2];
880
881 args.ctag = TAG_GETATTR;
882
883 args.array_len = 2;
884 args.array = argop;
885
886 /* putfh */
887 argop[0].argop = OP_CPUTFH;
888 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
889
890 /* getattr */
891 /*
892 * Unlike nfs version 2 and 3, where getattr returns all the
893 * attributes, nfs version 4 returns only the ones explicitly
894 * asked for. This creates problems, as some system functions
895 * (e.g. cache check) require certain attributes and if the
896 * cached node lacks some attributes such as uid/gid, it can
897 * affect system utilities (e.g. "ls") that rely on the information
898 * to be there. This can lead to anything from system crashes to
899 * corrupted information processed by user apps.
900 * So to ensure that all bases are covered, request at least
901 * the AT_ALL attribute mask.
902 */
903 argop[1].argop = OP_GETATTR;
904 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
905 if (get_acl)
906 argop[1].nfs_argop4_u.opgetattr.attr_request |= FATTR4_ACL_MASK;
907 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
908
909 doqueue = 1;
910
911 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, ep);
912
913 if (ep->error)
914 return;
915
916 if (res.status != NFS4_OK) {
917 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
918 return;
919 }
920
921 *garp = res.array[1].nfs_resop4_u.opgetattr.ga_res;
922
923 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
924 }
925
926 /*
927 * Return either cached or remote attributes. If get remote attr
928 * use them to check and invalidate caches, then cache the new attributes.
929 */
930 int
931 nfs4getattr(vnode_t *vp, vattr_t *vap, cred_t *cr)
932 {
933 int error;
934 rnode4_t *rp;
935 nfs4_ga_res_t gar;
936
937 ASSERT(nfs4_consistent_type(vp));
938
939 /*
940 * If we've got cached attributes, we're done, otherwise go
941 * to the server to get attributes, which will update the cache
942 * in the process. Either way, use the cached attributes for
943 * the caller's vattr_t.
944 *
945 * Note that we ignore the gar set by the OTW call: the attr caching
946 * code may make adjustments when storing to the rnode, and we want
947 * to see those changes here.
948 */
949 rp = VTOR4(vp);
950 error = 0;
951 mutex_enter(&rp->r_statelock);
952 if (!ATTRCACHE4_VALID(vp)) {
953 mutex_exit(&rp->r_statelock);
954 error = nfs4_getattr_otw(vp, &gar, cr, 0);
955 mutex_enter(&rp->r_statelock);
956 }
957
958 if (!error)
959 *vap = rp->r_attr;
960
961 /* Return the client's view of file size */
962 vap->va_size = rp->r_size;
963
964 mutex_exit(&rp->r_statelock);
965
966 ASSERT(nfs4_consistent_type(vp));
967
968 return (error);
969 }
970
971 int
972 nfs4_attr_otw(vnode_t *vp, nfs4_tag_type_t tag_type,
973 nfs4_ga_res_t *garp, bitmap4 reqbitmap, cred_t *cr)
974 {
975 COMPOUND4args_clnt args;
976 COMPOUND4res_clnt res;
977 int doqueue;
978 nfs_argop4 argop[2];
979 mntinfo4_t *mi = VTOMI4(vp);
980 bool_t needrecov = FALSE;
981 nfs4_recov_state_t recov_state;
982 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
983 nfs4_ga_ext_res_t *gerp;
984
985 recov_state.rs_flags = 0;
986 recov_state.rs_num_retry_despite_err = 0;
987
988 recov_retry:
989 args.ctag = tag_type;
990
991 args.array_len = 2;
992 args.array = argop;
993
994 e.error = nfs4_start_fop(mi, vp, NULL, OH_GETATTR, &recov_state, NULL);
995 if (e.error)
996 return (e.error);
997
998 /* putfh */
999 argop[0].argop = OP_CPUTFH;
1000 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
1001
1002 /* getattr */
1003 argop[1].argop = OP_GETATTR;
1004 argop[1].nfs_argop4_u.opgetattr.attr_request = reqbitmap;
1005 argop[1].nfs_argop4_u.opgetattr.mi = mi;
1006
1007 doqueue = 1;
1008
1009 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
1010 "nfs4_attr_otw: %s call, rp %s", needrecov ? "recov" : "first",
1011 rnode4info(VTOR4(vp))));
1012
1013 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
1014
1015 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
1016 if (!needrecov && e.error) {
1017 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state,
1018 needrecov);
1019 return (e.error);
1020 }
1021
1022 if (needrecov) {
1023 bool_t abort;
1024
1025 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1026 "nfs4_attr_otw: initiating recovery\n"));
1027
1028 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
1029 NULL, OP_GETATTR, NULL, NULL, NULL);
1030 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state,
1031 needrecov);
1032 if (!e.error) {
1033 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1034 e.error = geterrno4(res.status);
1035 }
1036 if (abort == FALSE)
1037 goto recov_retry;
1038 return (e.error);
1039 }
1040
1041 if (res.status) {
1042 e.error = geterrno4(res.status);
1043 } else {
1044 gerp = garp->n4g_ext_res;
1045 bcopy(&res.array[1].nfs_resop4_u.opgetattr.ga_res,
1046 garp, sizeof (nfs4_ga_res_t));
1047 garp->n4g_ext_res = gerp;
1048 if (garp->n4g_ext_res &&
1049 res.array[1].nfs_resop4_u.opgetattr.ga_res.n4g_ext_res)
1050 bcopy(res.array[1].nfs_resop4_u.opgetattr.
1051 ga_res.n4g_ext_res,
1052 garp->n4g_ext_res, sizeof (nfs4_ga_ext_res_t));
1053 }
1054 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1055 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state,
1056 needrecov);
1057 return (e.error);
1058 }
1059
1060 /*
1061 * Asynchronous I/O parameters. nfs_async_threads is the high-water mark
1062 * for the demand-based allocation of async threads per-mount. The
1063 * nfs_async_timeout is the amount of time a thread will live after it
1064 * becomes idle, unless new I/O requests are received before the thread
1065 * dies. See nfs4_async_putpage and nfs4_async_start.
1066 */
1067
1068 static void nfs4_async_start(struct vfs *);
1069 static void nfs4_async_pgops_start(struct vfs *);
1070 static void nfs4_async_common_start(struct vfs *, int);
1071
1072 static void
1073 free_async_args4(struct nfs4_async_reqs *args)
1074 {
1075 rnode4_t *rp;
1076
1077 if (args->a_io != NFS4_INACTIVE) {
1078 rp = VTOR4(args->a_vp);
1079 mutex_enter(&rp->r_statelock);
1080 rp->r_count--;
1081 if (args->a_io == NFS4_PUTAPAGE ||
1082 args->a_io == NFS4_PAGEIO)
1083 rp->r_awcount--;
1084 cv_broadcast(&rp->r_cv);
1085 mutex_exit(&rp->r_statelock);
1086 VN_RELE(args->a_vp);
1087 }
1088 crfree(args->a_cred);
1089 kmem_free(args, sizeof (*args));
1090 }
1091
1092 /*
1093 * Cross-zone thread creation and NFS access is disallowed, yet fsflush() and
1094 * pageout(), running in the global zone, have legitimate reasons to do
1095 * VOP_PUTPAGE(B_ASYNC) on other zones' NFS mounts. We avoid the problem by
1096 * use of a a per-mount "asynchronous requests manager thread" which is
1097 * signaled by the various asynchronous work routines when there is
1098 * asynchronous work to be done. It is responsible for creating new
1099 * worker threads if necessary, and notifying existing worker threads
1100 * that there is work to be done.
1101 *
1102 * In other words, it will "take the specifications from the customers and
1103 * give them to the engineers."
1104 *
1105 * Worker threads die off of their own accord if they are no longer
1106 * needed.
1107 *
1108 * This thread is killed when the zone is going away or the filesystem
1109 * is being unmounted.
1110 */
1111 void
1112 nfs4_async_manager(vfs_t *vfsp)
1113 {
1114 callb_cpr_t cprinfo;
1115 mntinfo4_t *mi;
1116 uint_t max_threads;
1117
1118 mi = VFTOMI4(vfsp);
1119
1120 CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr,
1121 "nfs4_async_manager");
1122
1123 mutex_enter(&mi->mi_async_lock);
1124 /*
1125 * We want to stash the max number of threads that this mount was
1126 * allowed so we can use it later when the variable is set to zero as
1127 * part of the zone/mount going away.
1128 *
1129 * We want to be able to create at least one thread to handle
1130 * asynchronous inactive calls.
1131 */
1132 max_threads = MAX(mi->mi_max_threads, 1);
1133 /*
1134 * We don't want to wait for mi_max_threads to go to zero, since that
1135 * happens as part of a failed unmount, but this thread should only
1136 * exit when the mount is really going away.
1137 *
1138 * Once MI4_ASYNC_MGR_STOP is set, no more async operations will be
1139 * attempted: the various _async_*() functions know to do things
1140 * inline if mi_max_threads == 0. Henceforth we just drain out the
1141 * outstanding requests.
1142 *
1143 * Note that we still create zthreads even if we notice the zone is
1144 * shutting down (MI4_ASYNC_MGR_STOP is set); this may cause the zone
1145 * shutdown sequence to take slightly longer in some cases, but
1146 * doesn't violate the protocol, as all threads will exit as soon as
1147 * they're done processing the remaining requests.
1148 */
1149 for (;;) {
1150 while (mi->mi_async_req_count > 0) {
1151 /*
1152 * Paranoia: If the mount started out having
1153 * (mi->mi_max_threads == 0), and the value was
1154 * later changed (via a debugger or somesuch),
1155 * we could be confused since we will think we
1156 * can't create any threads, and the calling
1157 * code (which looks at the current value of
1158 * mi->mi_max_threads, now non-zero) thinks we
1159 * can.
1160 *
1161 * So, because we're paranoid, we create threads
1162 * up to the maximum of the original and the
1163 * current value. This means that future
1164 * (debugger-induced) alterations of
1165 * mi->mi_max_threads are ignored for our
1166 * purposes, but who told them they could change
1167 * random values on a live kernel anyhow?
1168 */
1169 if (mi->mi_threads[NFS4_ASYNC_QUEUE] <
1170 MAX(mi->mi_max_threads, max_threads)) {
1171 mi->mi_threads[NFS4_ASYNC_QUEUE]++;
1172 mutex_exit(&mi->mi_async_lock);
1173 MI4_HOLD(mi);
1174 VFS_HOLD(vfsp); /* hold for new thread */
1175 (void) zthread_create(NULL, 0, nfs4_async_start,
1176 vfsp, 0, minclsyspri);
1177 mutex_enter(&mi->mi_async_lock);
1178 } else if (mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] <
1179 NUM_ASYNC_PGOPS_THREADS) {
1180 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE]++;
1181 mutex_exit(&mi->mi_async_lock);
1182 MI4_HOLD(mi);
1183 VFS_HOLD(vfsp); /* hold for new thread */
1184 (void) zthread_create(NULL, 0,
1185 nfs4_async_pgops_start, vfsp, 0,
1186 minclsyspri);
1187 mutex_enter(&mi->mi_async_lock);
1188 }
1189 NFS4_WAKE_ASYNC_WORKER(mi->mi_async_work_cv);
1190 ASSERT(mi->mi_async_req_count != 0);
1191 mi->mi_async_req_count--;
1192 }
1193
1194 mutex_enter(&mi->mi_lock);
1195 if (mi->mi_flags & MI4_ASYNC_MGR_STOP) {
1196 mutex_exit(&mi->mi_lock);
1197 break;
1198 }
1199 mutex_exit(&mi->mi_lock);
1200
1201 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1202 cv_wait(&mi->mi_async_reqs_cv, &mi->mi_async_lock);
1203 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1204 }
1205
1206 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
1207 "nfs4_async_manager exiting for vfs %p\n", (void *)mi->mi_vfsp));
1208 /*
1209 * Let everyone know we're done.
1210 */
1211 mi->mi_manager_thread = NULL;
1212 /*
1213 * Wake up the inactive thread.
1214 */
1215 cv_broadcast(&mi->mi_inact_req_cv);
1216 /*
1217 * Wake up anyone sitting in nfs4_async_manager_stop()
1218 */
1219 cv_broadcast(&mi->mi_async_cv);
1220 /*
1221 * There is no explicit call to mutex_exit(&mi->mi_async_lock)
1222 * since CALLB_CPR_EXIT is actually responsible for releasing
1223 * 'mi_async_lock'.
1224 */
1225 CALLB_CPR_EXIT(&cprinfo);
1226 VFS_RELE(vfsp); /* release thread's hold */
1227 MI4_RELE(mi);
1228 zthread_exit();
1229 }
1230
1231 /*
1232 * Signal (and wait for) the async manager thread to clean up and go away.
1233 */
1234 void
1235 nfs4_async_manager_stop(vfs_t *vfsp)
1236 {
1237 mntinfo4_t *mi = VFTOMI4(vfsp);
1238
1239 mutex_enter(&mi->mi_async_lock);
1240 mutex_enter(&mi->mi_lock);
1241 mi->mi_flags |= MI4_ASYNC_MGR_STOP;
1242 mutex_exit(&mi->mi_lock);
1243 cv_broadcast(&mi->mi_async_reqs_cv);
1244 /*
1245 * Wait for the async manager thread to die.
1246 */
1247 while (mi->mi_manager_thread != NULL)
1248 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1249 mutex_exit(&mi->mi_async_lock);
1250 }
1251
1252 int
1253 nfs4_async_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr,
1254 struct seg *seg, cred_t *cr, void (*readahead)(vnode_t *,
1255 u_offset_t, caddr_t, struct seg *, cred_t *))
1256 {
1257 rnode4_t *rp;
1258 mntinfo4_t *mi;
1259 struct nfs4_async_reqs *args;
1260
1261 rp = VTOR4(vp);
1262 ASSERT(rp->r_freef == NULL);
1263
1264 mi = VTOMI4(vp);
1265
1266 /*
1267 * If addr falls in a different segment, don't bother doing readahead.
1268 */
1269 if (addr >= seg->s_base + seg->s_size)
1270 return (-1);
1271
1272 /*
1273 * If we can't allocate a request structure, punt on the readahead.
1274 */
1275 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1276 return (-1);
1277
1278 /*
1279 * If a lock operation is pending, don't initiate any new
1280 * readaheads. Otherwise, bump r_count to indicate the new
1281 * asynchronous I/O.
1282 */
1283 if (!nfs_rw_tryenter(&rp->r_lkserlock, RW_READER)) {
1284 kmem_free(args, sizeof (*args));
1285 return (-1);
1286 }
1287 mutex_enter(&rp->r_statelock);
1288 rp->r_count++;
1289 mutex_exit(&rp->r_statelock);
1290 nfs_rw_exit(&rp->r_lkserlock);
1291
1292 args->a_next = NULL;
1293 #ifdef DEBUG
1294 args->a_queuer = curthread;
1295 #endif
1296 VN_HOLD(vp);
1297 args->a_vp = vp;
1298 ASSERT(cr != NULL);
1299 crhold(cr);
1300 args->a_cred = cr;
1301 args->a_io = NFS4_READ_AHEAD;
1302 args->a_nfs4_readahead = readahead;
1303 args->a_nfs4_blkoff = blkoff;
1304 args->a_nfs4_seg = seg;
1305 args->a_nfs4_addr = addr;
1306
1307 mutex_enter(&mi->mi_async_lock);
1308
1309 /*
1310 * If asyncio has been disabled, don't bother readahead.
1311 */
1312 if (mi->mi_max_threads == 0) {
1313 mutex_exit(&mi->mi_async_lock);
1314 goto noasync;
1315 }
1316
1317 /*
1318 * Link request structure into the async list and
1319 * wakeup async thread to do the i/o.
1320 */
1321 if (mi->mi_async_reqs[NFS4_READ_AHEAD] == NULL) {
1322 mi->mi_async_reqs[NFS4_READ_AHEAD] = args;
1323 mi->mi_async_tail[NFS4_READ_AHEAD] = args;
1324 } else {
1325 mi->mi_async_tail[NFS4_READ_AHEAD]->a_next = args;
1326 mi->mi_async_tail[NFS4_READ_AHEAD] = args;
1327 }
1328
1329 if (mi->mi_io_kstats) {
1330 mutex_enter(&mi->mi_lock);
1331 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1332 mutex_exit(&mi->mi_lock);
1333 }
1334
1335 mi->mi_async_req_count++;
1336 ASSERT(mi->mi_async_req_count != 0);
1337 cv_signal(&mi->mi_async_reqs_cv);
1338 mutex_exit(&mi->mi_async_lock);
1339 return (0);
1340
1341 noasync:
1342 mutex_enter(&rp->r_statelock);
1343 rp->r_count--;
1344 cv_broadcast(&rp->r_cv);
1345 mutex_exit(&rp->r_statelock);
1346 VN_RELE(vp);
1347 crfree(cr);
1348 kmem_free(args, sizeof (*args));
1349 return (-1);
1350 }
1351
1352 static void
1353 nfs4_async_start(struct vfs *vfsp)
1354 {
1355 nfs4_async_common_start(vfsp, NFS4_ASYNC_QUEUE);
1356 }
1357
1358 static void
1359 nfs4_async_pgops_start(struct vfs *vfsp)
1360 {
1361 nfs4_async_common_start(vfsp, NFS4_ASYNC_PGOPS_QUEUE);
1362 }
1363
1364 /*
1365 * The async queues for each mounted file system are arranged as a
1366 * set of queues, one for each async i/o type. Requests are taken
1367 * from the queues in a round-robin fashion. A number of consecutive
1368 * requests are taken from each queue before moving on to the next
1369 * queue. This functionality may allow the NFS Version 2 server to do
1370 * write clustering, even if the client is mixing writes and reads
1371 * because it will take multiple write requests from the queue
1372 * before processing any of the other async i/o types.
1373 *
1374 * XXX The nfs4_async_common_start thread is unsafe in the light of the present
1375 * model defined by cpr to suspend the system. Specifically over the
1376 * wire calls are cpr-unsafe. The thread should be reevaluated in
1377 * case of future updates to the cpr model.
1378 */
1379 static void
1380 nfs4_async_common_start(struct vfs *vfsp, int async_queue)
1381 {
1382 struct nfs4_async_reqs *args;
1383 mntinfo4_t *mi = VFTOMI4(vfsp);
1384 clock_t time_left = 1;
1385 callb_cpr_t cprinfo;
1386 int i;
1387 extern int nfs_async_timeout;
1388 int async_types;
1389 kcondvar_t *async_work_cv;
1390
1391 if (async_queue == NFS4_ASYNC_QUEUE) {
1392 async_types = NFS4_ASYNC_TYPES;
1393 async_work_cv = &mi->mi_async_work_cv[NFS4_ASYNC_QUEUE];
1394 } else {
1395 async_types = NFS4_ASYNC_PGOPS_TYPES;
1396 async_work_cv = &mi->mi_async_work_cv[NFS4_ASYNC_PGOPS_QUEUE];
1397 }
1398
1399 /*
1400 * Dynamic initialization of nfs_async_timeout to allow nfs to be
1401 * built in an implementation independent manner.
1402 */
1403 if (nfs_async_timeout == -1)
1404 nfs_async_timeout = NFS_ASYNC_TIMEOUT;
1405
1406 CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, "nas");
1407
1408 mutex_enter(&mi->mi_async_lock);
1409 for (;;) {
1410 /*
1411 * Find the next queue containing an entry. We start
1412 * at the current queue pointer and then round robin
1413 * through all of them until we either find a non-empty
1414 * queue or have looked through all of them.
1415 */
1416 for (i = 0; i < async_types; i++) {
1417 args = *mi->mi_async_curr[async_queue];
1418 if (args != NULL)
1419 break;
1420 mi->mi_async_curr[async_queue]++;
1421 if (mi->mi_async_curr[async_queue] ==
1422 &mi->mi_async_reqs[async_types]) {
1423 mi->mi_async_curr[async_queue] =
1424 &mi->mi_async_reqs[0];
1425 }
1426 }
1427 /*
1428 * If we didn't find a entry, then block until woken up
1429 * again and then look through the queues again.
1430 */
1431 if (args == NULL) {
1432 /*
1433 * Exiting is considered to be safe for CPR as well
1434 */
1435 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1436
1437 /*
1438 * Wakeup thread waiting to unmount the file
1439 * system only if all async threads are inactive.
1440 *
1441 * If we've timed-out and there's nothing to do,
1442 * then get rid of this thread.
1443 */
1444 if (mi->mi_max_threads == 0 || time_left <= 0) {
1445 --mi->mi_threads[async_queue];
1446
1447 if (mi->mi_threads[NFS4_ASYNC_QUEUE] == 0 &&
1448 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] == 0)
1449 cv_signal(&mi->mi_async_cv);
1450 CALLB_CPR_EXIT(&cprinfo);
1451 VFS_RELE(vfsp); /* release thread's hold */
1452 MI4_RELE(mi);
1453 zthread_exit();
1454 /* NOTREACHED */
1455 }
1456 time_left = cv_reltimedwait(async_work_cv,
1457 &mi->mi_async_lock, nfs_async_timeout,
1458 TR_CLOCK_TICK);
1459
1460 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1461
1462 continue;
1463 } else {
1464 time_left = 1;
1465 }
1466
1467 /*
1468 * Remove the request from the async queue and then
1469 * update the current async request queue pointer. If
1470 * the current queue is empty or we have removed enough
1471 * consecutive entries from it, then reset the counter
1472 * for this queue and then move the current pointer to
1473 * the next queue.
1474 */
1475 *mi->mi_async_curr[async_queue] = args->a_next;
1476 if (*mi->mi_async_curr[async_queue] == NULL ||
1477 --mi->mi_async_clusters[args->a_io] == 0) {
1478 mi->mi_async_clusters[args->a_io] =
1479 mi->mi_async_init_clusters;
1480 mi->mi_async_curr[async_queue]++;
1481 if (mi->mi_async_curr[async_queue] ==
1482 &mi->mi_async_reqs[async_types]) {
1483 mi->mi_async_curr[async_queue] =
1484 &mi->mi_async_reqs[0];
1485 }
1486 }
1487
1488 if (args->a_io != NFS4_INACTIVE && mi->mi_io_kstats) {
1489 mutex_enter(&mi->mi_lock);
1490 kstat_waitq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1491 mutex_exit(&mi->mi_lock);
1492 }
1493
1494 mutex_exit(&mi->mi_async_lock);
1495
1496 /*
1497 * Obtain arguments from the async request structure.
1498 */
1499 if (args->a_io == NFS4_READ_AHEAD && mi->mi_max_threads > 0) {
1500 (*args->a_nfs4_readahead)(args->a_vp,
1501 args->a_nfs4_blkoff, args->a_nfs4_addr,
1502 args->a_nfs4_seg, args->a_cred);
1503 } else if (args->a_io == NFS4_PUTAPAGE) {
1504 (void) (*args->a_nfs4_putapage)(args->a_vp,
1505 args->a_nfs4_pp, args->a_nfs4_off,
1506 args->a_nfs4_len, args->a_nfs4_flags,
1507 args->a_cred);
1508 } else if (args->a_io == NFS4_PAGEIO) {
1509 (void) (*args->a_nfs4_pageio)(args->a_vp,
1510 args->a_nfs4_pp, args->a_nfs4_off,
1511 args->a_nfs4_len, args->a_nfs4_flags,
1512 args->a_cred);
1513 } else if (args->a_io == NFS4_READDIR) {
1514 (void) ((*args->a_nfs4_readdir)(args->a_vp,
1515 args->a_nfs4_rdc, args->a_cred));
1516 } else if (args->a_io == NFS4_COMMIT) {
1517 (*args->a_nfs4_commit)(args->a_vp, args->a_nfs4_plist,
1518 args->a_nfs4_offset, args->a_nfs4_count,
1519 args->a_cred);
1520 } else if (args->a_io == NFS4_INACTIVE) {
1521 nfs4_inactive_otw(args->a_vp, args->a_cred);
1522 }
1523
1524 /*
1525 * Now, release the vnode and free the credentials
1526 * structure.
1527 */
1528 free_async_args4(args);
1529 /*
1530 * Reacquire the mutex because it will be needed above.
1531 */
1532 mutex_enter(&mi->mi_async_lock);
1533 }
1534 }
1535
1536 /*
1537 * nfs4_inactive_thread - look for vnodes that need over-the-wire calls as
1538 * part of VOP_INACTIVE.
1539 */
1540
1541 void
1542 nfs4_inactive_thread(mntinfo4_t *mi)
1543 {
1544 struct nfs4_async_reqs *args;
1545 callb_cpr_t cprinfo;
1546 vfs_t *vfsp = mi->mi_vfsp;
1547
1548 CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr,
1549 "nfs4_inactive_thread");
1550
1551 for (;;) {
1552 mutex_enter(&mi->mi_async_lock);
1553 args = mi->mi_async_reqs[NFS4_INACTIVE];
1554 if (args == NULL) {
1555 mutex_enter(&mi->mi_lock);
1556 /*
1557 * We don't want to exit until the async manager is done
1558 * with its work; hence the check for mi_manager_thread
1559 * being NULL.
1560 *
1561 * The async manager thread will cv_broadcast() on
1562 * mi_inact_req_cv when it's done, at which point we'll
1563 * wake up and exit.
1564 */
1565 if (mi->mi_manager_thread == NULL)
1566 goto die;
1567 mi->mi_flags |= MI4_INACTIVE_IDLE;
1568 mutex_exit(&mi->mi_lock);
1569 cv_signal(&mi->mi_async_cv);
1570 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1571 cv_wait(&mi->mi_inact_req_cv, &mi->mi_async_lock);
1572 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1573 mutex_exit(&mi->mi_async_lock);
1574 } else {
1575 mutex_enter(&mi->mi_lock);
1576 mi->mi_flags &= ~MI4_INACTIVE_IDLE;
1577 mutex_exit(&mi->mi_lock);
1578 mi->mi_async_reqs[NFS4_INACTIVE] = args->a_next;
1579 mutex_exit(&mi->mi_async_lock);
1580 nfs4_inactive_otw(args->a_vp, args->a_cred);
1581 crfree(args->a_cred);
1582 kmem_free(args, sizeof (*args));
1583 }
1584 }
1585 die:
1586 mutex_exit(&mi->mi_lock);
1587 mi->mi_inactive_thread = NULL;
1588 cv_signal(&mi->mi_async_cv);
1589
1590 /*
1591 * There is no explicit call to mutex_exit(&mi->mi_async_lock) since
1592 * CALLB_CPR_EXIT is actually responsible for releasing 'mi_async_lock'.
1593 */
1594 CALLB_CPR_EXIT(&cprinfo);
1595
1596 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
1597 "nfs4_inactive_thread exiting for vfs %p\n", (void *)vfsp));
1598
1599 MI4_RELE(mi);
1600 zthread_exit();
1601 /* NOTREACHED */
1602 }
1603
1604 /*
1605 * nfs_async_stop:
1606 * Wait for all outstanding putpage operations and the inactive thread to
1607 * complete; nfs4_async_stop_sig() without interruptibility.
1608 */
1609 void
1610 nfs4_async_stop(struct vfs *vfsp)
1611 {
1612 mntinfo4_t *mi = VFTOMI4(vfsp);
1613
1614 /*
1615 * Wait for all outstanding async operations to complete and for
1616 * worker threads to exit.
1617 */
1618 mutex_enter(&mi->mi_async_lock);
1619 mi->mi_max_threads = 0;
1620 NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
1621 while (mi->mi_threads[NFS4_ASYNC_QUEUE] != 0 ||
1622 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] != 0)
1623 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1624
1625 /*
1626 * Wait for the inactive thread to finish doing what it's doing. It
1627 * won't exit until the last reference to the vfs_t goes away.
1628 */
1629 if (mi->mi_inactive_thread != NULL) {
1630 mutex_enter(&mi->mi_lock);
1631 while (!(mi->mi_flags & MI4_INACTIVE_IDLE) ||
1632 (mi->mi_async_reqs[NFS4_INACTIVE] != NULL)) {
1633 mutex_exit(&mi->mi_lock);
1634 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1635 mutex_enter(&mi->mi_lock);
1636 }
1637 mutex_exit(&mi->mi_lock);
1638 }
1639 mutex_exit(&mi->mi_async_lock);
1640 }
1641
1642 /*
1643 * nfs_async_stop_sig:
1644 * Wait for all outstanding putpage operations and the inactive thread to
1645 * complete. If a signal is delivered we will abort and return non-zero;
1646 * otherwise return 0. Since this routine is called from nfs4_unmount, we
1647 * need to make it interruptible.
1648 */
1649 int
1650 nfs4_async_stop_sig(struct vfs *vfsp)
1651 {
1652 mntinfo4_t *mi = VFTOMI4(vfsp);
1653 ushort_t omax;
1654 bool_t intr = FALSE;
1655
1656 /*
1657 * Wait for all outstanding putpage operations to complete and for
1658 * worker threads to exit.
1659 */
1660 mutex_enter(&mi->mi_async_lock);
1661 omax = mi->mi_max_threads;
1662 mi->mi_max_threads = 0;
1663 NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
1664 while (mi->mi_threads[NFS4_ASYNC_QUEUE] != 0 ||
1665 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] != 0) {
1666 if (!cv_wait_sig(&mi->mi_async_cv, &mi->mi_async_lock)) {
1667 intr = TRUE;
1668 goto interrupted;
1669 }
1670 }
1671
1672 /*
1673 * Wait for the inactive thread to finish doing what it's doing. It
1674 * won't exit until the a last reference to the vfs_t goes away.
1675 */
1676 if (mi->mi_inactive_thread != NULL) {
1677 mutex_enter(&mi->mi_lock);
1678 while (!(mi->mi_flags & MI4_INACTIVE_IDLE) ||
1679 (mi->mi_async_reqs[NFS4_INACTIVE] != NULL)) {
1680 mutex_exit(&mi->mi_lock);
1681 if (!cv_wait_sig(&mi->mi_async_cv,
1682 &mi->mi_async_lock)) {
1683 intr = TRUE;
1684 goto interrupted;
1685 }
1686 mutex_enter(&mi->mi_lock);
1687 }
1688 mutex_exit(&mi->mi_lock);
1689 }
1690 interrupted:
1691 if (intr)
1692 mi->mi_max_threads = omax;
1693 mutex_exit(&mi->mi_async_lock);
1694
1695 return (intr);
1696 }
1697
1698 int
1699 nfs4_async_putapage(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
1700 int flags, cred_t *cr, int (*putapage)(vnode_t *, page_t *,
1701 u_offset_t, size_t, int, cred_t *))
1702 {
1703 rnode4_t *rp;
1704 mntinfo4_t *mi;
1705 struct nfs4_async_reqs *args;
1706
1707 ASSERT(flags & B_ASYNC);
1708 ASSERT(vp->v_vfsp != NULL);
1709
1710 rp = VTOR4(vp);
1711 ASSERT(rp->r_count > 0);
1712
1713 mi = VTOMI4(vp);
1714
1715 /*
1716 * If we can't allocate a request structure, do the putpage
1717 * operation synchronously in this thread's context.
1718 */
1719 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1720 goto noasync;
1721
1722 args->a_next = NULL;
1723 #ifdef DEBUG
1724 args->a_queuer = curthread;
1725 #endif
1726 VN_HOLD(vp);
1727 args->a_vp = vp;
1728 ASSERT(cr != NULL);
1729 crhold(cr);
1730 args->a_cred = cr;
1731 args->a_io = NFS4_PUTAPAGE;
1732 args->a_nfs4_putapage = putapage;
1733 args->a_nfs4_pp = pp;
1734 args->a_nfs4_off = off;
1735 args->a_nfs4_len = (uint_t)len;
1736 args->a_nfs4_flags = flags;
1737
1738 mutex_enter(&mi->mi_async_lock);
1739
1740 /*
1741 * If asyncio has been disabled, then make a synchronous request.
1742 * This check is done a second time in case async io was diabled
1743 * while this thread was blocked waiting for memory pressure to
1744 * reduce or for the queue to drain.
1745 */
1746 if (mi->mi_max_threads == 0) {
1747 mutex_exit(&mi->mi_async_lock);
1748
1749 VN_RELE(vp);
1750 crfree(cr);
1751 kmem_free(args, sizeof (*args));
1752 goto noasync;
1753 }
1754
1755 /*
1756 * Link request structure into the async list and
1757 * wakeup async thread to do the i/o.
1758 */
1759 if (mi->mi_async_reqs[NFS4_PUTAPAGE] == NULL) {
1760 mi->mi_async_reqs[NFS4_PUTAPAGE] = args;
1761 mi->mi_async_tail[NFS4_PUTAPAGE] = args;
1762 } else {
1763 mi->mi_async_tail[NFS4_PUTAPAGE]->a_next = args;
1764 mi->mi_async_tail[NFS4_PUTAPAGE] = args;
1765 }
1766
1767 mutex_enter(&rp->r_statelock);
1768 rp->r_count++;
1769 rp->r_awcount++;
1770 mutex_exit(&rp->r_statelock);
1771
1772 if (mi->mi_io_kstats) {
1773 mutex_enter(&mi->mi_lock);
1774 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1775 mutex_exit(&mi->mi_lock);
1776 }
1777
1778 mi->mi_async_req_count++;
1779 ASSERT(mi->mi_async_req_count != 0);
1780 cv_signal(&mi->mi_async_reqs_cv);
1781 mutex_exit(&mi->mi_async_lock);
1782 return (0);
1783
1784 noasync:
1785
1786 if (curproc == proc_pageout || curproc == proc_fsflush) {
1787 /*
1788 * If we get here in the context of the pageout/fsflush,
1789 * or we have run out of memory or we're attempting to
1790 * unmount we refuse to do a sync write, because this may
1791 * hang pageout/fsflush and the machine. In this case,
1792 * we just re-mark the page as dirty and punt on the page.
1793 *
1794 * Make sure B_FORCE isn't set. We can re-mark the
1795 * pages as dirty and unlock the pages in one swoop by
1796 * passing in B_ERROR to pvn_write_done(). However,
1797 * we should make sure B_FORCE isn't set - we don't
1798 * want the page tossed before it gets written out.
1799 */
1800 if (flags & B_FORCE)
1801 flags &= ~(B_INVAL | B_FORCE);
1802 pvn_write_done(pp, flags | B_ERROR);
1803 return (0);
1804 }
1805
1806 if (nfs_zone() != mi->mi_zone) {
1807 /*
1808 * So this was a cross-zone sync putpage.
1809 *
1810 * We pass in B_ERROR to pvn_write_done() to re-mark the pages
1811 * as dirty and unlock them.
1812 *
1813 * We don't want to clear B_FORCE here as the caller presumably
1814 * knows what they're doing if they set it.
1815 */
1816 pvn_write_done(pp, flags | B_ERROR);
1817 return (EPERM);
1818 }
1819 return ((*putapage)(vp, pp, off, len, flags, cr));
1820 }
1821
1822 int
1823 nfs4_async_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
1824 int flags, cred_t *cr, int (*pageio)(vnode_t *, page_t *, u_offset_t,
1825 size_t, int, cred_t *))
1826 {
1827 rnode4_t *rp;
1828 mntinfo4_t *mi;
1829 struct nfs4_async_reqs *args;
1830
1831 ASSERT(flags & B_ASYNC);
1832 ASSERT(vp->v_vfsp != NULL);
1833
1834 rp = VTOR4(vp);
1835 ASSERT(rp->r_count > 0);
1836
1837 mi = VTOMI4(vp);
1838
1839 /*
1840 * If we can't allocate a request structure, do the pageio
1841 * request synchronously in this thread's context.
1842 */
1843 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1844 goto noasync;
1845
1846 args->a_next = NULL;
1847 #ifdef DEBUG
1848 args->a_queuer = curthread;
1849 #endif
1850 VN_HOLD(vp);
1851 args->a_vp = vp;
1852 ASSERT(cr != NULL);
1853 crhold(cr);
1854 args->a_cred = cr;
1855 args->a_io = NFS4_PAGEIO;
1856 args->a_nfs4_pageio = pageio;
1857 args->a_nfs4_pp = pp;
1858 args->a_nfs4_off = io_off;
1859 args->a_nfs4_len = (uint_t)io_len;
1860 args->a_nfs4_flags = flags;
1861
1862 mutex_enter(&mi->mi_async_lock);
1863
1864 /*
1865 * If asyncio has been disabled, then make a synchronous request.
1866 * This check is done a second time in case async io was diabled
1867 * while this thread was blocked waiting for memory pressure to
1868 * reduce or for the queue to drain.
1869 */
1870 if (mi->mi_max_threads == 0) {
1871 mutex_exit(&mi->mi_async_lock);
1872
1873 VN_RELE(vp);
1874 crfree(cr);
1875 kmem_free(args, sizeof (*args));
1876 goto noasync;
1877 }
1878
1879 /*
1880 * Link request structure into the async list and
1881 * wakeup async thread to do the i/o.
1882 */
1883 if (mi->mi_async_reqs[NFS4_PAGEIO] == NULL) {
1884 mi->mi_async_reqs[NFS4_PAGEIO] = args;
1885 mi->mi_async_tail[NFS4_PAGEIO] = args;
1886 } else {
1887 mi->mi_async_tail[NFS4_PAGEIO]->a_next = args;
1888 mi->mi_async_tail[NFS4_PAGEIO] = args;
1889 }
1890
1891 mutex_enter(&rp->r_statelock);
1892 rp->r_count++;
1893 rp->r_awcount++;
1894 mutex_exit(&rp->r_statelock);
1895
1896 if (mi->mi_io_kstats) {
1897 mutex_enter(&mi->mi_lock);
1898 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1899 mutex_exit(&mi->mi_lock);
1900 }
1901
1902 mi->mi_async_req_count++;
1903 ASSERT(mi->mi_async_req_count != 0);
1904 cv_signal(&mi->mi_async_reqs_cv);
1905 mutex_exit(&mi->mi_async_lock);
1906 return (0);
1907
1908 noasync:
1909 /*
1910 * If we can't do it ASYNC, for reads we do nothing (but cleanup
1911 * the page list), for writes we do it synchronously, except for
1912 * proc_pageout/proc_fsflush as described below.
1913 */
1914 if (flags & B_READ) {
1915 pvn_read_done(pp, flags | B_ERROR);
1916 return (0);
1917 }
1918
1919 if (curproc == proc_pageout || curproc == proc_fsflush) {
1920 /*
1921 * If we get here in the context of the pageout/fsflush,
1922 * we refuse to do a sync write, because this may hang
1923 * pageout/fsflush (and the machine). In this case, we just
1924 * re-mark the page as dirty and punt on the page.
1925 *
1926 * Make sure B_FORCE isn't set. We can re-mark the
1927 * pages as dirty and unlock the pages in one swoop by
1928 * passing in B_ERROR to pvn_write_done(). However,
1929 * we should make sure B_FORCE isn't set - we don't
1930 * want the page tossed before it gets written out.
1931 */
1932 if (flags & B_FORCE)
1933 flags &= ~(B_INVAL | B_FORCE);
1934 pvn_write_done(pp, flags | B_ERROR);
1935 return (0);
1936 }
1937
1938 if (nfs_zone() != mi->mi_zone) {
1939 /*
1940 * So this was a cross-zone sync pageio. We pass in B_ERROR
1941 * to pvn_write_done() to re-mark the pages as dirty and unlock
1942 * them.
1943 *
1944 * We don't want to clear B_FORCE here as the caller presumably
1945 * knows what they're doing if they set it.
1946 */
1947 pvn_write_done(pp, flags | B_ERROR);
1948 return (EPERM);
1949 }
1950 return ((*pageio)(vp, pp, io_off, io_len, flags, cr));
1951 }
1952
1953 void
1954 nfs4_async_readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr,
1955 int (*readdir)(vnode_t *, rddir4_cache *, cred_t *))
1956 {
1957 rnode4_t *rp;
1958 mntinfo4_t *mi;
1959 struct nfs4_async_reqs *args;
1960
1961 rp = VTOR4(vp);
1962 ASSERT(rp->r_freef == NULL);
1963
1964 mi = VTOMI4(vp);
1965
1966 /*
1967 * If we can't allocate a request structure, skip the readdir.
1968 */
1969 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1970 goto noasync;
1971
1972 args->a_next = NULL;
1973 #ifdef DEBUG
1974 args->a_queuer = curthread;
1975 #endif
1976 VN_HOLD(vp);
1977 args->a_vp = vp;
1978 ASSERT(cr != NULL);
1979 crhold(cr);
1980 args->a_cred = cr;
1981 args->a_io = NFS4_READDIR;
1982 args->a_nfs4_readdir = readdir;
1983 args->a_nfs4_rdc = rdc;
1984
1985 mutex_enter(&mi->mi_async_lock);
1986
1987 /*
1988 * If asyncio has been disabled, then skip this request
1989 */
1990 if (mi->mi_max_threads == 0) {
1991 mutex_exit(&mi->mi_async_lock);
1992
1993 VN_RELE(vp);
1994 crfree(cr);
1995 kmem_free(args, sizeof (*args));
1996 goto noasync;
1997 }
1998
1999 /*
2000 * Link request structure into the async list and
2001 * wakeup async thread to do the i/o.
2002 */
2003 if (mi->mi_async_reqs[NFS4_READDIR] == NULL) {
2004 mi->mi_async_reqs[NFS4_READDIR] = args;
2005 mi->mi_async_tail[NFS4_READDIR] = args;
2006 } else {
2007 mi->mi_async_tail[NFS4_READDIR]->a_next = args;
2008 mi->mi_async_tail[NFS4_READDIR] = args;
2009 }
2010
2011 mutex_enter(&rp->r_statelock);
2012 rp->r_count++;
2013 mutex_exit(&rp->r_statelock);
2014
2015 if (mi->mi_io_kstats) {
2016 mutex_enter(&mi->mi_lock);
2017 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
2018 mutex_exit(&mi->mi_lock);
2019 }
2020
2021 mi->mi_async_req_count++;
2022 ASSERT(mi->mi_async_req_count != 0);
2023 cv_signal(&mi->mi_async_reqs_cv);
2024 mutex_exit(&mi->mi_async_lock);
2025 return;
2026
2027 noasync:
2028 mutex_enter(&rp->r_statelock);
2029 rdc->entries = NULL;
2030 /*
2031 * Indicate that no one is trying to fill this entry and
2032 * it still needs to be filled.
2033 */
2034 rdc->flags &= ~RDDIR;
2035 rdc->flags |= RDDIRREQ;
2036 rddir4_cache_rele(rp, rdc);
2037 mutex_exit(&rp->r_statelock);
2038 }
2039
2040 void
2041 nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
2042 cred_t *cr, void (*commit)(vnode_t *, page_t *, offset3, count3,
2043 cred_t *))
2044 {
2045 rnode4_t *rp;
2046 mntinfo4_t *mi;
2047 struct nfs4_async_reqs *args;
2048 page_t *pp;
2049
2050 rp = VTOR4(vp);
2051 mi = VTOMI4(vp);
2052
2053 /*
2054 * If we can't allocate a request structure, do the commit
2055 * operation synchronously in this thread's context.
2056 */
2057 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
2058 goto noasync;
2059
2060 args->a_next = NULL;
2061 #ifdef DEBUG
2062 args->a_queuer = curthread;
2063 #endif
2064 VN_HOLD(vp);
2065 args->a_vp = vp;
2066 ASSERT(cr != NULL);
2067 crhold(cr);
2068 args->a_cred = cr;
2069 args->a_io = NFS4_COMMIT;
2070 args->a_nfs4_commit = commit;
2071 args->a_nfs4_plist = plist;
2072 args->a_nfs4_offset = offset;
2073 args->a_nfs4_count = count;
2074
2075 mutex_enter(&mi->mi_async_lock);
2076
2077 /*
2078 * If asyncio has been disabled, then make a synchronous request.
2079 * This check is done a second time in case async io was diabled
2080 * while this thread was blocked waiting for memory pressure to
2081 * reduce or for the queue to drain.
2082 */
2083 if (mi->mi_max_threads == 0) {
2084 mutex_exit(&mi->mi_async_lock);
2085
2086 VN_RELE(vp);
2087 crfree(cr);
2088 kmem_free(args, sizeof (*args));
2089 goto noasync;
2090 }
2091
2092 /*
2093 * Link request structure into the async list and
2094 * wakeup async thread to do the i/o.
2095 */
2096 if (mi->mi_async_reqs[NFS4_COMMIT] == NULL) {
2097 mi->mi_async_reqs[NFS4_COMMIT] = args;
2098 mi->mi_async_tail[NFS4_COMMIT] = args;
2099 } else {
2100 mi->mi_async_tail[NFS4_COMMIT]->a_next = args;
2101 mi->mi_async_tail[NFS4_COMMIT] = args;
2102 }
2103
2104 mutex_enter(&rp->r_statelock);
2105 rp->r_count++;
2106 mutex_exit(&rp->r_statelock);
2107
2108 if (mi->mi_io_kstats) {
2109 mutex_enter(&mi->mi_lock);
2110 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
2111 mutex_exit(&mi->mi_lock);
2112 }
2113
2114 mi->mi_async_req_count++;
2115 ASSERT(mi->mi_async_req_count != 0);
2116 cv_signal(&mi->mi_async_reqs_cv);
2117 mutex_exit(&mi->mi_async_lock);
2118 return;
2119
2120 noasync:
2121 if (curproc == proc_pageout || curproc == proc_fsflush ||
2122 nfs_zone() != mi->mi_zone) {
2123 while (plist != NULL) {
2124 pp = plist;
2125 page_sub(&plist, pp);
2126 pp->p_fsdata = C_COMMIT;
2127 page_unlock(pp);
2128 }
2129 return;
2130 }
2131 (*commit)(vp, plist, offset, count, cr);
2132 }
2133
2134 /*
2135 * nfs4_async_inactive - hand off a VOP_INACTIVE call to a thread. The
2136 * reference to the vnode is handed over to the thread; the caller should
2137 * no longer refer to the vnode.
2138 *
2139 * Unlike most of the async routines, this handoff is needed for
2140 * correctness reasons, not just performance. So doing operations in the
2141 * context of the current thread is not an option.
2142 */
2143 void
2144 nfs4_async_inactive(vnode_t *vp, cred_t *cr)
2145 {
2146 mntinfo4_t *mi;
2147 struct nfs4_async_reqs *args;
2148 boolean_t signal_inactive_thread = B_FALSE;
2149
2150 mi = VTOMI4(vp);
2151
2152 args = kmem_alloc(sizeof (*args), KM_SLEEP);
2153 args->a_next = NULL;
2154 #ifdef DEBUG
2155 args->a_queuer = curthread;
2156 #endif
2157 args->a_vp = vp;
2158 ASSERT(cr != NULL);
2159 crhold(cr);
2160 args->a_cred = cr;
2161 args->a_io = NFS4_INACTIVE;
2162
2163 /*
2164 * Note that we don't check mi->mi_max_threads here, since we
2165 * *need* to get rid of this vnode regardless of whether someone
2166 * set nfs4_max_threads to zero in /etc/system.
2167 *
2168 * The manager thread knows about this and is willing to create
2169 * at least one thread to accommodate us.
2170 */
2171 mutex_enter(&mi->mi_async_lock);
2172 if (mi->mi_inactive_thread == NULL) {
2173 rnode4_t *rp;
2174 vnode_t *unldvp = NULL;
2175 char *unlname;
2176 cred_t *unlcred;
2177
2178 mutex_exit(&mi->mi_async_lock);
2179 /*
2180 * We just need to free up the memory associated with the
2181 * vnode, which can be safely done from within the current
2182 * context.
2183 */
2184 crfree(cr); /* drop our reference */
2185 kmem_free(args, sizeof (*args));
2186 rp = VTOR4(vp);
2187 mutex_enter(&rp->r_statelock);
2188 if (rp->r_unldvp != NULL) {
2189 unldvp = rp->r_unldvp;
2190 rp->r_unldvp = NULL;
2191 unlname = rp->r_unlname;
2192 rp->r_unlname = NULL;
2193 unlcred = rp->r_unlcred;
2194 rp->r_unlcred = NULL;
2195 }
2196 mutex_exit(&rp->r_statelock);
2197 /*
2198 * No need to explicitly throw away any cached pages. The
2199 * eventual r4inactive() will attempt a synchronous
2200 * VOP_PUTPAGE() which will immediately fail since the request
2201 * is coming from the wrong zone, and then will proceed to call
2202 * nfs4_invalidate_pages() which will clean things up for us.
2203 *
2204 * Throw away the delegation here so rp4_addfree()'s attempt to
2205 * return any existing delegations becomes a no-op.
2206 */
2207 if (rp->r_deleg_type != OPEN_DELEGATE_NONE) {
2208 (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER,
2209 FALSE);
2210 (void) nfs4delegreturn(rp, NFS4_DR_DISCARD);
2211 nfs_rw_exit(&mi->mi_recovlock);
2212 }
2213 nfs4_clear_open_streams(rp);
2214
2215 rp4_addfree(rp, cr);
2216 if (unldvp != NULL) {
2217 kmem_free(unlname, MAXNAMELEN);
2218 VN_RELE(unldvp);
2219 crfree(unlcred);
2220 }
2221 return;
2222 }
2223
2224 if (mi->mi_manager_thread == NULL) {
2225 /*
2226 * We want to talk to the inactive thread.
2227 */
2228 signal_inactive_thread = B_TRUE;
2229 }
2230
2231 /*
2232 * Enqueue the vnode and wake up either the special thread (empty
2233 * list) or an async thread.
2234 */
2235 if (mi->mi_async_reqs[NFS4_INACTIVE] == NULL) {
2236 mi->mi_async_reqs[NFS4_INACTIVE] = args;
2237 mi->mi_async_tail[NFS4_INACTIVE] = args;
2238 signal_inactive_thread = B_TRUE;
2239 } else {
2240 mi->mi_async_tail[NFS4_INACTIVE]->a_next = args;
2241 mi->mi_async_tail[NFS4_INACTIVE] = args;
2242 }
2243 if (signal_inactive_thread) {
2244 cv_signal(&mi->mi_inact_req_cv);
2245 } else {
2246 mi->mi_async_req_count++;
2247 ASSERT(mi->mi_async_req_count != 0);
2248 cv_signal(&mi->mi_async_reqs_cv);
2249 }
2250
2251 mutex_exit(&mi->mi_async_lock);
2252 }
2253
2254 int
2255 writerp4(rnode4_t *rp, caddr_t base, int tcount, struct uio *uio, int pgcreated)
2256 {
2257 int pagecreate;
2258 int n;
2259 int saved_n;
2260 caddr_t saved_base;
2261 u_offset_t offset;
2262 int error;
2263 int sm_error;
2264 vnode_t *vp = RTOV(rp);
2265
2266 ASSERT(tcount <= MAXBSIZE && tcount <= uio->uio_resid);
2267 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_WRITER));
2268 if (!vpm_enable) {
2269 ASSERT(((uintptr_t)base & MAXBOFFSET) + tcount <= MAXBSIZE);
2270 }
2271
2272 /*
2273 * Move bytes in at most PAGESIZE chunks. We must avoid
2274 * spanning pages in uiomove() because page faults may cause
2275 * the cache to be invalidated out from under us. The r_size is not
2276 * updated until after the uiomove. If we push the last page of a
2277 * file before r_size is correct, we will lose the data written past
2278 * the current (and invalid) r_size.
2279 */
2280 do {
2281 offset = uio->uio_loffset;
2282 pagecreate = 0;
2283
2284 /*
2285 * n is the number of bytes required to satisfy the request
2286 * or the number of bytes to fill out the page.
2287 */
2288 n = (int)MIN((PAGESIZE - (offset & PAGEOFFSET)), tcount);
2289
2290 /*
2291 * Check to see if we can skip reading in the page
2292 * and just allocate the memory. We can do this
2293 * if we are going to rewrite the entire mapping
2294 * or if we are going to write to or beyond the current
2295 * end of file from the beginning of the mapping.
2296 *
2297 * The read of r_size is now protected by r_statelock.
2298 */
2299 mutex_enter(&rp->r_statelock);
2300 /*
2301 * When pgcreated is nonzero the caller has already done
2302 * a segmap_getmapflt with forcefault 0 and S_WRITE. With
2303 * segkpm this means we already have at least one page
2304 * created and mapped at base.
2305 */
2306 pagecreate = pgcreated ||
2307 ((offset & PAGEOFFSET) == 0 &&
2308 (n == PAGESIZE || ((offset + n) >= rp->r_size)));
2309
2310 mutex_exit(&rp->r_statelock);
2311
2312 if (!vpm_enable && pagecreate) {
2313 /*
2314 * The last argument tells segmap_pagecreate() to
2315 * always lock the page, as opposed to sometimes
2316 * returning with the page locked. This way we avoid a
2317 * fault on the ensuing uiomove(), but also
2318 * more importantly (to fix bug 1094402) we can
2319 * call segmap_fault() to unlock the page in all
2320 * cases. An alternative would be to modify
2321 * segmap_pagecreate() to tell us when it is
2322 * locking a page, but that's a fairly major
2323 * interface change.
2324 */
2325 if (pgcreated == 0)
2326 (void) segmap_pagecreate(segkmap, base,
2327 (uint_t)n, 1);
2328 saved_base = base;
2329 saved_n = n;
2330 }
2331
2332 /*
2333 * The number of bytes of data in the last page can not
2334 * be accurately be determined while page is being
2335 * uiomove'd to and the size of the file being updated.
2336 * Thus, inform threads which need to know accurately
2337 * how much data is in the last page of the file. They
2338 * will not do the i/o immediately, but will arrange for
2339 * the i/o to happen later when this modify operation
2340 * will have finished.
2341 */
2342 ASSERT(!(rp->r_flags & R4MODINPROGRESS));
2343 mutex_enter(&rp->r_statelock);
2344 rp->r_flags |= R4MODINPROGRESS;
2345 rp->r_modaddr = (offset & MAXBMASK);
2346 mutex_exit(&rp->r_statelock);
2347
2348 if (vpm_enable) {
2349 /*
2350 * Copy data. If new pages are created, part of
2351 * the page that is not written will be initizliazed
2352 * with zeros.
2353 */
2354 error = vpm_data_copy(vp, offset, n, uio,
2355 !pagecreate, NULL, 0, S_WRITE);
2356 } else {
2357 error = uiomove(base, n, UIO_WRITE, uio);
2358 }
2359
2360 /*
2361 * r_size is the maximum number of
2362 * bytes known to be in the file.
2363 * Make sure it is at least as high as the
2364 * first unwritten byte pointed to by uio_loffset.
2365 */
2366 mutex_enter(&rp->r_statelock);
2367 if (rp->r_size < uio->uio_loffset)
2368 rp->r_size = uio->uio_loffset;
2369 rp->r_flags &= ~R4MODINPROGRESS;
2370 rp->r_flags |= R4DIRTY;
2371 mutex_exit(&rp->r_statelock);
2372
2373 /* n = # of bytes written */
2374 n = (int)(uio->uio_loffset - offset);
2375
2376 if (!vpm_enable) {
2377 base += n;
2378 }
2379
2380 tcount -= n;
2381 /*
2382 * If we created pages w/o initializing them completely,
2383 * we need to zero the part that wasn't set up.
2384 * This happens on a most EOF write cases and if
2385 * we had some sort of error during the uiomove.
2386 */
2387 if (!vpm_enable && pagecreate) {
2388 if ((uio->uio_loffset & PAGEOFFSET) || n == 0)
2389 (void) kzero(base, PAGESIZE - n);
2390
2391 if (pgcreated) {
2392 /*
2393 * Caller is responsible for this page,
2394 * it was not created in this loop.
2395 */
2396 pgcreated = 0;
2397 } else {
2398 /*
2399 * For bug 1094402: segmap_pagecreate locks
2400 * page. Unlock it. This also unlocks the
2401 * pages allocated by page_create_va() in
2402 * segmap_pagecreate().
2403 */
2404 sm_error = segmap_fault(kas.a_hat, segkmap,
2405 saved_base, saved_n,
2406 F_SOFTUNLOCK, S_WRITE);
2407 if (error == 0)
2408 error = sm_error;
2409 }
2410 }
2411 } while (tcount > 0 && error == 0);
2412
2413 return (error);
2414 }
2415
2416 int
2417 nfs4_putpages(vnode_t *vp, u_offset_t off, size_t len, int flags, cred_t *cr)
2418 {
2419 rnode4_t *rp;
2420 page_t *pp;
2421 u_offset_t eoff;
2422 u_offset_t io_off;
2423 size_t io_len;
2424 int error;
2425 int rdirty;
2426 int err;
2427
2428 rp = VTOR4(vp);
2429 ASSERT(rp->r_count > 0);
2430
2431 if (!nfs4_has_pages(vp))
2432 return (0);
2433
2434 ASSERT(vp->v_type != VCHR);
2435
2436 /*
2437 * If R4OUTOFSPACE is set, then all writes turn into B_INVAL
2438 * writes. B_FORCE is set to force the VM system to actually
2439 * invalidate the pages, even if the i/o failed. The pages
2440 * need to get invalidated because they can't be written out
2441 * because there isn't any space left on either the server's
2442 * file system or in the user's disk quota. The B_FREE bit
2443 * is cleared to avoid confusion as to whether this is a
2444 * request to place the page on the freelist or to destroy
2445 * it.
2446 */
2447 if ((rp->r_flags & R4OUTOFSPACE) ||
2448 (vp->v_vfsp->vfs_flag & VFS_UNMOUNTED))
2449 flags = (flags & ~B_FREE) | B_INVAL | B_FORCE;
2450
2451 if (len == 0) {
2452 /*
2453 * If doing a full file synchronous operation, then clear
2454 * the R4DIRTY bit. If a page gets dirtied while the flush
2455 * is happening, then R4DIRTY will get set again. The
2456 * R4DIRTY bit must get cleared before the flush so that
2457 * we don't lose this information.
2458 *
2459 * If there are no full file async write operations
2460 * pending and RDIRTY bit is set, clear it.
2461 */
2462 if (off == (u_offset_t)0 &&
2463 !(flags & B_ASYNC) &&
2464 (rp->r_flags & R4DIRTY)) {
2465 mutex_enter(&rp->r_statelock);
2466 rdirty = (rp->r_flags & R4DIRTY);
2467 rp->r_flags &= ~R4DIRTY;
2468 mutex_exit(&rp->r_statelock);
2469 } else if (flags & B_ASYNC && off == (u_offset_t)0) {
2470 mutex_enter(&rp->r_statelock);
2471 if (rp->r_flags & R4DIRTY && rp->r_awcount == 0) {
2472 rdirty = (rp->r_flags & R4DIRTY);
2473 rp->r_flags &= ~R4DIRTY;
2474 }
2475 mutex_exit(&rp->r_statelock);
2476 } else
2477 rdirty = 0;
2478
2479 /*
2480 * Search the entire vp list for pages >= off, and flush
2481 * the dirty pages.
2482 */
2483 error = pvn_vplist_dirty(vp, off, rp->r_putapage,
2484 flags, cr);
2485
2486 /*
2487 * If an error occurred and the file was marked as dirty
2488 * before and we aren't forcibly invalidating pages, then
2489 * reset the R4DIRTY flag.
2490 */
2491 if (error && rdirty &&
2492 (flags & (B_INVAL | B_FORCE)) != (B_INVAL | B_FORCE)) {
2493 mutex_enter(&rp->r_statelock);
2494 rp->r_flags |= R4DIRTY;
2495 mutex_exit(&rp->r_statelock);
2496 }
2497 } else {
2498 /*
2499 * Do a range from [off...off + len) looking for pages
2500 * to deal with.
2501 */
2502 error = 0;
2503 io_len = 0;
2504 eoff = off + len;
2505 mutex_enter(&rp->r_statelock);
2506 for (io_off = off; io_off < eoff && io_off < rp->r_size;
2507 io_off += io_len) {
2508 mutex_exit(&rp->r_statelock);
2509 /*
2510 * If we are not invalidating, synchronously
2511 * freeing or writing pages use the routine
2512 * page_lookup_nowait() to prevent reclaiming
2513 * them from the free list.
2514 */
2515 if ((flags & B_INVAL) || !(flags & B_ASYNC)) {
2516 pp = page_lookup(vp, io_off,
2517 (flags & (B_INVAL | B_FREE)) ?
2518 SE_EXCL : SE_SHARED);
2519 } else {
2520 pp = page_lookup_nowait(vp, io_off,
2521 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
2522 }
2523
2524 if (pp == NULL || !pvn_getdirty(pp, flags))
2525 io_len = PAGESIZE;
2526 else {
2527 err = (*rp->r_putapage)(vp, pp, &io_off,
2528 &io_len, flags, cr);
2529 if (!error)
2530 error = err;
2531 /*
2532 * "io_off" and "io_len" are returned as
2533 * the range of pages we actually wrote.
2534 * This allows us to skip ahead more quickly
2535 * since several pages may've been dealt
2536 * with by this iteration of the loop.
2537 */
2538 }
2539 mutex_enter(&rp->r_statelock);
2540 }
2541 mutex_exit(&rp->r_statelock);
2542 }
2543
2544 return (error);
2545 }
2546
2547 void
2548 nfs4_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr)
2549 {
2550 rnode4_t *rp;
2551
2552 rp = VTOR4(vp);
2553 if (IS_SHADOW(vp, rp))
2554 vp = RTOV4(rp);
2555 mutex_enter(&rp->r_statelock);
2556 while (rp->r_flags & R4TRUNCATE)
2557 cv_wait(&rp->r_cv, &rp->r_statelock);
2558 rp->r_flags |= R4TRUNCATE;
2559 if (off == (u_offset_t)0) {
2560 rp->r_flags &= ~R4DIRTY;
2561 if (!(rp->r_flags & R4STALE))
2562 rp->r_error = 0;
2563 }
2564 rp->r_truncaddr = off;
2565 mutex_exit(&rp->r_statelock);
2566 (void) pvn_vplist_dirty(vp, off, rp->r_putapage,
2567 B_INVAL | B_TRUNC, cr);
2568 mutex_enter(&rp->r_statelock);
2569 rp->r_flags &= ~R4TRUNCATE;
2570 cv_broadcast(&rp->r_cv);
2571 mutex_exit(&rp->r_statelock);
2572 }
2573
2574 static int
2575 nfs4_mnt_kstat_update(kstat_t *ksp, int rw)
2576 {
2577 mntinfo4_t *mi;
2578 struct mntinfo_kstat *mik;
2579 vfs_t *vfsp;
2580
2581 /* this is a read-only kstat. Bail out on a write */
2582 if (rw == KSTAT_WRITE)
2583 return (EACCES);
2584
2585
2586 /*
2587 * We don't want to wait here as kstat_chain_lock could be held by
2588 * dounmount(). dounmount() takes vfs_reflock before the chain lock
2589 * and thus could lead to a deadlock.
2590 */
2591 vfsp = (struct vfs *)ksp->ks_private;
2592
2593 mi = VFTOMI4(vfsp);
2594 mik = (struct mntinfo_kstat *)ksp->ks_data;
2595
2596 (void) strcpy(mik->mik_proto, mi->mi_curr_serv->sv_knconf->knc_proto);
2597
2598 mik->mik_vers = (uint32_t)mi->mi_vers;
2599 mik->mik_flags = mi->mi_flags;
2600 /*
2601 * The sv_secdata holds the flavor the client specifies.
2602 * If the client uses default and a security negotiation
2603 * occurs, sv_currsec will point to the current flavor
2604 * selected from the server flavor list.
2605 * sv_currsec is NULL if no security negotiation takes place.
2606 */
2607 mik->mik_secmod = mi->mi_curr_serv->sv_currsec ?
2608 mi->mi_curr_serv->sv_currsec->secmod :
2609 mi->mi_curr_serv->sv_secdata->secmod;
2610 mik->mik_curread = (uint32_t)mi->mi_curread;
2611 mik->mik_curwrite = (uint32_t)mi->mi_curwrite;
2612 mik->mik_retrans = mi->mi_retrans;
2613 mik->mik_timeo = mi->mi_timeo;
2614 mik->mik_acregmin = HR2SEC(mi->mi_acregmin);
2615 mik->mik_acregmax = HR2SEC(mi->mi_acregmax);
2616 mik->mik_acdirmin = HR2SEC(mi->mi_acdirmin);
2617 mik->mik_acdirmax = HR2SEC(mi->mi_acdirmax);
2618 mik->mik_noresponse = (uint32_t)mi->mi_noresponse;
2619 mik->mik_failover = (uint32_t)mi->mi_failover;
2620 mik->mik_remap = (uint32_t)mi->mi_remap;
2621
2622 (void) strcpy(mik->mik_curserver, mi->mi_curr_serv->sv_hostname);
2623
2624 return (0);
2625 }
2626
2627 void
2628 nfs4_mnt_kstat_init(struct vfs *vfsp)
2629 {
2630 mntinfo4_t *mi = VFTOMI4(vfsp);
2631
2632 /*
2633 * PSARC 2001/697 Contract Private Interface
2634 * All nfs kstats are under SunMC contract
2635 * Please refer to the PSARC listed above and contact
2636 * SunMC before making any changes!
2637 *
2638 * Changes must be reviewed by Solaris File Sharing
2639 * Changes must be communicated to contract-2001-697@sun.com
2640 *
2641 */
2642
2643 mi->mi_io_kstats = kstat_create_zone("nfs", getminor(vfsp->vfs_dev),
2644 NULL, "nfs", KSTAT_TYPE_IO, 1, 0, mi->mi_zone->zone_id);
2645 if (mi->mi_io_kstats) {
2646 if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
2647 kstat_zone_add(mi->mi_io_kstats, GLOBAL_ZONEID);
2648 mi->mi_io_kstats->ks_lock = &mi->mi_lock;
2649 kstat_install(mi->mi_io_kstats);
2650 }
2651
2652 if ((mi->mi_ro_kstats = kstat_create_zone("nfs",
2653 getminor(vfsp->vfs_dev), "mntinfo", "misc", KSTAT_TYPE_RAW,
2654 sizeof (struct mntinfo_kstat), 0, mi->mi_zone->zone_id)) != NULL) {
2655 if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
2656 kstat_zone_add(mi->mi_ro_kstats, GLOBAL_ZONEID);
2657 mi->mi_ro_kstats->ks_update = nfs4_mnt_kstat_update;
2658 mi->mi_ro_kstats->ks_private = (void *)vfsp;
2659 kstat_install(mi->mi_ro_kstats);
2660 }
2661
2662 nfs4_mnt_recov_kstat_init(vfsp);
2663 }
2664
2665 void
2666 nfs4_write_error(vnode_t *vp, int error, cred_t *cr)
2667 {
2668 mntinfo4_t *mi;
2669 clock_t now = ddi_get_lbolt();
2670
2671 mi = VTOMI4(vp);
2672 /*
2673 * In case of forced unmount, do not print any messages
2674 * since it can flood the console with error messages.
2675 */
2676 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED)
2677 return;
2678
2679 /*
2680 * If the mount point is dead, not recoverable, do not
2681 * print error messages that can flood the console.
2682 */
2683 if (mi->mi_flags & MI4_RECOV_FAIL)
2684 return;
2685
2686 /*
2687 * No use in flooding the console with ENOSPC
2688 * messages from the same file system.
2689 */
2690 if ((error != ENOSPC && error != EDQUOT) ||
2691 now - mi->mi_printftime > 0) {
2692 zoneid_t zoneid = mi->mi_zone->zone_id;
2693
2694 #ifdef DEBUG
2695 nfs_perror(error, "NFS%ld write error on host %s: %m.\n",
2696 mi->mi_vers, VTOR4(vp)->r_server->sv_hostname, NULL);
2697 #else
2698 nfs_perror(error, "NFS write error on host %s: %m.\n",
2699 VTOR4(vp)->r_server->sv_hostname, NULL);
2700 #endif
2701 if (error == ENOSPC || error == EDQUOT) {
2702 zcmn_err(zoneid, CE_CONT,
2703 "^File: userid=%d, groupid=%d\n",
2704 crgetuid(cr), crgetgid(cr));
2705 if (crgetuid(curthread->t_cred) != crgetuid(cr) ||
2706 crgetgid(curthread->t_cred) != crgetgid(cr)) {
2707 zcmn_err(zoneid, CE_CONT,
2708 "^User: userid=%d, groupid=%d\n",
2709 crgetuid(curthread->t_cred),
2710 crgetgid(curthread->t_cred));
2711 }
2712 mi->mi_printftime = now +
2713 nfs_write_error_interval * hz;
2714 }
2715 sfh4_printfhandle(VTOR4(vp)->r_fh);
2716 #ifdef DEBUG
2717 if (error == EACCES) {
2718 zcmn_err(zoneid, CE_CONT,
2719 "nfs_bio: cred is%s kcred\n",
2720 cr == kcred ? "" : " not");
2721 }
2722 #endif
2723 }
2724 }
2725
2726 /*
2727 * Return non-zero if the given file can be safely memory mapped. Locks
2728 * are safe if whole-file (length and offset are both zero).
2729 */
2730
2731 #define SAFE_LOCK(flk) ((flk).l_start == 0 && (flk).l_len == 0)
2732
2733 static int
2734 nfs4_safemap(const vnode_t *vp)
2735 {
2736 locklist_t *llp, *next_llp;
2737 int safe = 1;
2738 rnode4_t *rp = VTOR4(vp);
2739
2740 ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));
2741
2742 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, "nfs4_safemap: "
2743 "vp = %p", (void *)vp));
2744
2745 /*
2746 * Review all the locks for the vnode, both ones that have been
2747 * acquired and ones that are pending. We assume that
2748 * flk_active_locks_for_vp() has merged any locks that can be
2749 * merged (so that if a process has the entire file locked, it is
2750 * represented as a single lock).
2751 *
2752 * Note that we can't bail out of the loop if we find a non-safe
2753 * lock, because we have to free all the elements in the llp list.
2754 * We might be able to speed up this code slightly by not looking
2755 * at each lock's l_start and l_len fields once we've found a
2756 * non-safe lock.
2757 */
2758
2759 llp = flk_active_locks_for_vp(vp);
2760 while (llp) {
2761 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE,
2762 "nfs4_safemap: active lock (%" PRId64 ", %" PRId64 ")",
2763 llp->ll_flock.l_start, llp->ll_flock.l_len));
2764 if (!SAFE_LOCK(llp->ll_flock)) {
2765 safe = 0;
2766 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE,
2767 "nfs4_safemap: unsafe active lock (%" PRId64
2768 ", %" PRId64 ")", llp->ll_flock.l_start,
2769 llp->ll_flock.l_len));
2770 }
2771 next_llp = llp->ll_next;
2772 VN_RELE(llp->ll_vp);
2773 kmem_free(llp, sizeof (*llp));
2774 llp = next_llp;
2775 }
2776
2777 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, "nfs4_safemap: %s",
2778 safe ? "safe" : "unsafe"));
2779 return (safe);
2780 }
2781
2782 /*
2783 * Return whether there is a lost LOCK or LOCKU queued up for the given
2784 * file that would make an mmap request unsafe. cf. nfs4_safemap().
2785 */
2786
2787 bool_t
2788 nfs4_map_lost_lock_conflict(vnode_t *vp)
2789 {
2790 bool_t conflict = FALSE;
2791 nfs4_lost_rqst_t *lrp;
2792 mntinfo4_t *mi = VTOMI4(vp);
2793
2794 mutex_enter(&mi->mi_lock);
2795 for (lrp = list_head(&mi->mi_lost_state); lrp != NULL;
2796 lrp = list_next(&mi->mi_lost_state, lrp)) {
2797 if (lrp->lr_op != OP_LOCK && lrp->lr_op != OP_LOCKU)
2798 continue;
2799 ASSERT(lrp->lr_vp != NULL);
2800 if (!VOP_CMP(lrp->lr_vp, vp, NULL))
2801 continue; /* different file */
2802 if (!SAFE_LOCK(*lrp->lr_flk)) {
2803 conflict = TRUE;
2804 break;
2805 }
2806 }
2807
2808 mutex_exit(&mi->mi_lock);
2809 return (conflict);
2810 }
2811
2812 /*
2813 * nfs_lockcompletion:
2814 *
2815 * If the vnode has a lock that makes it unsafe to cache the file, mark it
2816 * as non cachable (set VNOCACHE bit).
2817 */
2818
2819 void
2820 nfs4_lockcompletion(vnode_t *vp, int cmd)
2821 {
2822 rnode4_t *rp = VTOR4(vp);
2823
2824 ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));
2825 ASSERT(!IS_SHADOW(vp, rp));
2826
2827 if (cmd == F_SETLK || cmd == F_SETLKW) {
2828
2829 if (!nfs4_safemap(vp)) {
2830 mutex_enter(&vp->v_lock);
2831 vp->v_flag |= VNOCACHE;
2832 mutex_exit(&vp->v_lock);
2833 } else {
2834 mutex_enter(&vp->v_lock);
2835 vp->v_flag &= ~VNOCACHE;
2836 mutex_exit(&vp->v_lock);
2837 }
2838 }
2839 /*
2840 * The cached attributes of the file are stale after acquiring
2841 * the lock on the file. They were updated when the file was
2842 * opened, but not updated when the lock was acquired. Therefore the
2843 * cached attributes are invalidated after the lock is obtained.
2844 */
2845 PURGE_ATTRCACHE4(vp);
2846 }
2847
2848 /* ARGSUSED */
2849 static void *
2850 nfs4_mi_init(zoneid_t zoneid)
2851 {
2852 struct mi4_globals *mig;
2853
2854 mig = kmem_alloc(sizeof (*mig), KM_SLEEP);
2855 mutex_init(&mig->mig_lock, NULL, MUTEX_DEFAULT, NULL);
2856 list_create(&mig->mig_list, sizeof (mntinfo4_t),
2857 offsetof(mntinfo4_t, mi_zone_node));
2858 mig->mig_destructor_called = B_FALSE;
2859 return (mig);
2860 }
2861
2862 /*
2863 * Callback routine to tell all NFSv4 mounts in the zone to start tearing down
2864 * state and killing off threads.
2865 */
2866 /* ARGSUSED */
2867 static void
2868 nfs4_mi_shutdown(zoneid_t zoneid, void *data)
2869 {
2870 struct mi4_globals *mig = data;
2871 mntinfo4_t *mi;
2872 nfs4_server_t *np;
2873
2874 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2875 "nfs4_mi_shutdown zone %d\n", zoneid));
2876 ASSERT(mig != NULL);
2877 for (;;) {
2878 mutex_enter(&mig->mig_lock);
2879 mi = list_head(&mig->mig_list);
2880 if (mi == NULL) {
2881 mutex_exit(&mig->mig_lock);
2882 break;
2883 }
2884
2885 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2886 "nfs4_mi_shutdown stopping vfs %p\n", (void *)mi->mi_vfsp));
2887 /*
2888 * purge the DNLC for this filesystem
2889 */
2890 (void) dnlc_purge_vfsp(mi->mi_vfsp, 0);
2891 /*
2892 * Tell existing async worker threads to exit.
2893 */
2894 mutex_enter(&mi->mi_async_lock);
2895 mi->mi_max_threads = 0;
2896 NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
2897 /*
2898 * Set the appropriate flags, signal and wait for both the
2899 * async manager and the inactive thread to exit when they're
2900 * done with their current work.
2901 */
2902 mutex_enter(&mi->mi_lock);
2903 mi->mi_flags |= (MI4_ASYNC_MGR_STOP|MI4_DEAD);
2904 mutex_exit(&mi->mi_lock);
2905 mutex_exit(&mi->mi_async_lock);
2906 if (mi->mi_manager_thread) {
2907 nfs4_async_manager_stop(mi->mi_vfsp);
2908 }
2909 if (mi->mi_inactive_thread) {
2910 mutex_enter(&mi->mi_async_lock);
2911 cv_signal(&mi->mi_inact_req_cv);
2912 /*
2913 * Wait for the inactive thread to exit.
2914 */
2915 while (mi->mi_inactive_thread != NULL) {
2916 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
2917 }
2918 mutex_exit(&mi->mi_async_lock);
2919 }
2920 /*
2921 * Wait for the recovery thread to complete, that is, it will
2922 * signal when it is done using the "mi" structure and about
2923 * to exit
2924 */
2925 mutex_enter(&mi->mi_lock);
2926 while (mi->mi_in_recovery > 0)
2927 cv_wait(&mi->mi_cv_in_recov, &mi->mi_lock);
2928 mutex_exit(&mi->mi_lock);
2929 /*
2930 * We're done when every mi has been done or the list is empty.
2931 * This one is done, remove it from the list.
2932 */
2933 list_remove(&mig->mig_list, mi);
2934 mutex_exit(&mig->mig_lock);
2935 zone_rele_ref(&mi->mi_zone_ref, ZONE_REF_NFSV4);
2936
2937 /*
2938 * Release hold on vfs and mi done to prevent race with zone
2939 * shutdown. This releases the hold in nfs4_mi_zonelist_add.
2940 */
2941 VFS_RELE(mi->mi_vfsp);
2942 MI4_RELE(mi);
2943 }
2944 /*
2945 * Tell each renew thread in the zone to exit
2946 */
2947 mutex_enter(&nfs4_server_lst_lock);
2948 for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) {
2949 mutex_enter(&np->s_lock);
2950 if (np->zoneid == zoneid) {
2951 /*
2952 * We add another hold onto the nfs4_server_t
2953 * because this will make sure tha the nfs4_server_t
2954 * stays around until nfs4_callback_fini_zone destroys
2955 * the zone. This way, the renew thread can
2956 * unconditionally release its holds on the
2957 * nfs4_server_t.
2958 */
2959 np->s_refcnt++;
2960 nfs4_mark_srv_dead(np);
2961 }
2962 mutex_exit(&np->s_lock);
2963 }
2964 mutex_exit(&nfs4_server_lst_lock);
2965 }
2966
2967 static void
2968 nfs4_mi_free_globals(struct mi4_globals *mig)
2969 {
2970 list_destroy(&mig->mig_list); /* makes sure the list is empty */
2971 mutex_destroy(&mig->mig_lock);
2972 kmem_free(mig, sizeof (*mig));
2973 }
2974
2975 /* ARGSUSED */
2976 static void
2977 nfs4_mi_destroy(zoneid_t zoneid, void *data)
2978 {
2979 struct mi4_globals *mig = data;
2980
2981 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2982 "nfs4_mi_destroy zone %d\n", zoneid));
2983 ASSERT(mig != NULL);
2984 mutex_enter(&mig->mig_lock);
2985 if (list_head(&mig->mig_list) != NULL) {
2986 /* Still waiting for VFS_FREEVFS() */
2987 mig->mig_destructor_called = B_TRUE;
2988 mutex_exit(&mig->mig_lock);
2989 return;
2990 }
2991 nfs4_mi_free_globals(mig);
2992 }
2993
2994 /*
2995 * Add an NFS mount to the per-zone list of NFS mounts.
2996 */
2997 void
2998 nfs4_mi_zonelist_add(mntinfo4_t *mi)
2999 {
3000 struct mi4_globals *mig;
3001
3002 mig = zone_getspecific(mi4_list_key, mi->mi_zone);
3003 mutex_enter(&mig->mig_lock);
3004 list_insert_head(&mig->mig_list, mi);
3005 /*
3006 * hold added to eliminate race with zone shutdown -this will be
3007 * released in mi_shutdown
3008 */
3009 MI4_HOLD(mi);
3010 VFS_HOLD(mi->mi_vfsp);
3011 mutex_exit(&mig->mig_lock);
3012 }
3013
3014 /*
3015 * Remove an NFS mount from the per-zone list of NFS mounts.
3016 */
3017 int
3018 nfs4_mi_zonelist_remove(mntinfo4_t *mi)
3019 {
3020 struct mi4_globals *mig;
3021 int ret = 0;
3022
3023 mig = zone_getspecific(mi4_list_key, mi->mi_zone);
3024 mutex_enter(&mig->mig_lock);
3025 mutex_enter(&mi->mi_lock);
3026 /* if this mi is marked dead, then the zone already released it */
3027 if (!(mi->mi_flags & MI4_DEAD)) {
3028 list_remove(&mig->mig_list, mi);
3029 mutex_exit(&mi->mi_lock);
3030
3031 /* release the holds put on in zonelist_add(). */
3032 VFS_RELE(mi->mi_vfsp);
3033 MI4_RELE(mi);
3034 ret = 1;
3035 } else {
3036 mutex_exit(&mi->mi_lock);
3037 }
3038
3039 /*
3040 * We can be called asynchronously by VFS_FREEVFS() after the zone
3041 * shutdown/destroy callbacks have executed; if so, clean up the zone's
3042 * mi globals.
3043 */
3044 if (list_head(&mig->mig_list) == NULL &&
3045 mig->mig_destructor_called == B_TRUE) {
3046 nfs4_mi_free_globals(mig);
3047 return (ret);
3048 }
3049 mutex_exit(&mig->mig_lock);
3050 return (ret);
3051 }
3052
3053 void
3054 nfs_free_mi4(mntinfo4_t *mi)
3055 {
3056 nfs4_open_owner_t *foop;
3057 nfs4_oo_hash_bucket_t *bucketp;
3058 nfs4_debug_msg_t *msgp;
3059 int i;
3060 servinfo4_t *svp;
3061
3062 /*
3063 * Code introduced here should be carefully evaluated to make
3064 * sure none of the freed resources are accessed either directly
3065 * or indirectly after freeing them. For eg: Introducing calls to
3066 * NFS4_DEBUG that use mntinfo4_t structure member after freeing
3067 * the structure members or other routines calling back into NFS
3068 * accessing freed mntinfo4_t structure member.
3069 */
3070 mutex_enter(&mi->mi_lock);
3071 ASSERT(mi->mi_recovthread == NULL);
3072 ASSERT(mi->mi_flags & MI4_ASYNC_MGR_STOP);
3073 mutex_exit(&mi->mi_lock);
3074 mutex_enter(&mi->mi_async_lock);
3075 ASSERT(mi->mi_threads[NFS4_ASYNC_QUEUE] == 0 &&
3076 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] == 0);
3077 ASSERT(mi->mi_manager_thread == NULL);
3078 mutex_exit(&mi->mi_async_lock);
3079 if (mi->mi_io_kstats) {
3080 kstat_delete(mi->mi_io_kstats);
3081 mi->mi_io_kstats = NULL;
3082 }
3083 if (mi->mi_ro_kstats) {
3084 kstat_delete(mi->mi_ro_kstats);
3085 mi->mi_ro_kstats = NULL;
3086 }
3087 if (mi->mi_recov_ksp) {
3088 kstat_delete(mi->mi_recov_ksp);
3089 mi->mi_recov_ksp = NULL;
3090 }
3091 mutex_enter(&mi->mi_msg_list_lock);
3092 while (msgp = list_head(&mi->mi_msg_list)) {
3093 list_remove(&mi->mi_msg_list, msgp);
3094 nfs4_free_msg(msgp);
3095 }
3096 mutex_exit(&mi->mi_msg_list_lock);
3097 list_destroy(&mi->mi_msg_list);
3098 if (mi->mi_fname != NULL)
3099 fn_rele(&mi->mi_fname);
3100 if (mi->mi_rootfh != NULL)
3101 sfh4_rele(&mi->mi_rootfh);
3102 if (mi->mi_srvparentfh != NULL)
3103 sfh4_rele(&mi->mi_srvparentfh);
3104 svp = mi->mi_servers;
3105 sv4_free(svp);
3106 mutex_destroy(&mi->mi_lock);
3107 mutex_destroy(&mi->mi_async_lock);
3108 mutex_destroy(&mi->mi_msg_list_lock);
3109 nfs_rw_destroy(&mi->mi_recovlock);
3110 nfs_rw_destroy(&mi->mi_rename_lock);
3111 nfs_rw_destroy(&mi->mi_fh_lock);
3112 cv_destroy(&mi->mi_failover_cv);
3113 cv_destroy(&mi->mi_async_reqs_cv);
3114 cv_destroy(&mi->mi_async_work_cv[NFS4_ASYNC_QUEUE]);
3115 cv_destroy(&mi->mi_async_work_cv[NFS4_ASYNC_PGOPS_QUEUE]);
3116 cv_destroy(&mi->mi_async_cv);
3117 cv_destroy(&mi->mi_inact_req_cv);
3118 /*
3119 * Destroy the oo hash lists and mutexes for the cred hash table.
3120 */
3121 for (i = 0; i < NFS4_NUM_OO_BUCKETS; i++) {
3122 bucketp = &(mi->mi_oo_list[i]);
3123 /* Destroy any remaining open owners on the list */
3124 foop = list_head(&bucketp->b_oo_hash_list);
3125 while (foop != NULL) {
3126 list_remove(&bucketp->b_oo_hash_list, foop);
3127 nfs4_destroy_open_owner(foop);
3128 foop = list_head(&bucketp->b_oo_hash_list);
3129 }
3130 list_destroy(&bucketp->b_oo_hash_list);
3131 mutex_destroy(&bucketp->b_lock);
3132 }
3133 /*
3134 * Empty and destroy the freed open owner list.
3135 */
3136 foop = list_head(&mi->mi_foo_list);
3137 while (foop != NULL) {
3138 list_remove(&mi->mi_foo_list, foop);
3139 nfs4_destroy_open_owner(foop);
3140 foop = list_head(&mi->mi_foo_list);
3141 }
3142 list_destroy(&mi->mi_foo_list);
3143 list_destroy(&mi->mi_bseqid_list);
3144 list_destroy(&mi->mi_lost_state);
3145 avl_destroy(&mi->mi_filehandles);
3146 kmem_free(mi, sizeof (*mi));
3147 }
3148 void
3149 mi_hold(mntinfo4_t *mi)
3150 {
3151 atomic_add_32(&mi->mi_count, 1);
3152 ASSERT(mi->mi_count != 0);
3153 }
3154
3155 void
3156 mi_rele(mntinfo4_t *mi)
3157 {
3158 ASSERT(mi->mi_count != 0);
3159 if (atomic_add_32_nv(&mi->mi_count, -1) == 0) {
3160 nfs_free_mi4(mi);
3161 }
3162 }
3163
3164 vnode_t nfs4_xattr_notsupp_vnode;
3165
3166 void
3167 nfs4_clnt_init(void)
3168 {
3169 nfs4_vnops_init();
3170 (void) nfs4_rnode_init();
3171 (void) nfs4_shadow_init();
3172 (void) nfs4_acache_init();
3173 (void) nfs4_subr_init();
3174 nfs4_acl_init();
3175 nfs_idmap_init();
3176 nfs4_callback_init();
3177 nfs4_secinfo_init();
3178 #ifdef DEBUG
3179 tsd_create(&nfs4_tsd_key, NULL);
3180 #endif
3181
3182 /*
3183 * Add a CPR callback so that we can update client
3184 * lease after a suspend and resume.
3185 */
3186 cid = callb_add(nfs4_client_cpr_callb, 0, CB_CL_CPR_RPC, "nfs4");
3187
3188 zone_key_create(&mi4_list_key, nfs4_mi_init, nfs4_mi_shutdown,
3189 nfs4_mi_destroy);
3190
3191 /*
3192 * Initialise the reference count of the notsupp xattr cache vnode to 1
3193 * so that it never goes away (VOP_INACTIVE isn't called on it).
3194 */
3195 nfs4_xattr_notsupp_vnode.v_count = 1;
3196 }
3197
3198 void
3199 nfs4_clnt_fini(void)
3200 {
3201 (void) zone_key_delete(mi4_list_key);
3202 nfs4_vnops_fini();
3203 (void) nfs4_rnode_fini();
3204 (void) nfs4_shadow_fini();
3205 (void) nfs4_acache_fini();
3206 (void) nfs4_subr_fini();
3207 nfs_idmap_fini();
3208 nfs4_callback_fini();
3209 nfs4_secinfo_fini();
3210 #ifdef DEBUG
3211 tsd_destroy(&nfs4_tsd_key);
3212 #endif
3213 if (cid)
3214 (void) callb_delete(cid);
3215 }
3216
3217 /*ARGSUSED*/
3218 static boolean_t
3219 nfs4_client_cpr_callb(void *arg, int code)
3220 {
3221 /*
3222 * We get called for Suspend and Resume events.
3223 * For the suspend case we simply don't care!
3224 */
3225 if (code == CB_CODE_CPR_CHKPT) {
3226 return (B_TRUE);
3227 }
3228
3229 /*
3230 * When we get to here we are in the process of
3231 * resuming the system from a previous suspend.
3232 */
3233 nfs4_client_resumed = gethrestime_sec();
3234 return (B_TRUE);
3235 }
3236
3237 void
3238 nfs4_renew_lease_thread(nfs4_server_t *sp)
3239 {
3240 int error = 0;
3241 time_t tmp_last_renewal_time, tmp_time, tmp_now_time, kip_secs;
3242 clock_t tick_delay = 0;
3243 clock_t time_left = 0;
3244 callb_cpr_t cpr_info;
3245 kmutex_t cpr_lock;
3246
3247 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3248 "nfs4_renew_lease_thread: acting on sp 0x%p", (void*)sp));
3249 mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL);
3250 CALLB_CPR_INIT(&cpr_info, &cpr_lock, callb_generic_cpr, "nfsv4Lease");
3251
3252 mutex_enter(&sp->s_lock);
3253 /* sp->s_lease_time is set via a GETATTR */
3254 sp->last_renewal_time = gethrestime_sec();
3255 sp->lease_valid = NFS4_LEASE_UNINITIALIZED;
3256 ASSERT(sp->s_refcnt >= 1);
3257
3258 for (;;) {
3259 if (!sp->state_ref_count ||
3260 sp->lease_valid != NFS4_LEASE_VALID) {
3261
3262 kip_secs = MAX((sp->s_lease_time >> 1) -
3263 (3 * sp->propagation_delay.tv_sec), 1);
3264
3265 tick_delay = SEC_TO_TICK(kip_secs);
3266
3267 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3268 "nfs4_renew_lease_thread: no renew : thread "
3269 "wait %ld secs", kip_secs));
3270
3271 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3272 "nfs4_renew_lease_thread: no renew : "
3273 "state_ref_count %d, lease_valid %d",
3274 sp->state_ref_count, sp->lease_valid));
3275
3276 mutex_enter(&cpr_lock);
3277 CALLB_CPR_SAFE_BEGIN(&cpr_info);
3278 mutex_exit(&cpr_lock);
3279 time_left = cv_reltimedwait(&sp->cv_thread_exit,
3280 &sp->s_lock, tick_delay, TR_CLOCK_TICK);
3281 mutex_enter(&cpr_lock);
3282 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3283 mutex_exit(&cpr_lock);
3284
3285 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3286 "nfs4_renew_lease_thread: no renew: "
3287 "time left %ld", time_left));
3288
3289 if (sp->s_thread_exit == NFS4_THREAD_EXIT)
3290 goto die;
3291 continue;
3292 }
3293
3294 tmp_last_renewal_time = sp->last_renewal_time;
3295
3296 tmp_time = gethrestime_sec() - sp->last_renewal_time +
3297 (3 * sp->propagation_delay.tv_sec);
3298
3299 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3300 "nfs4_renew_lease_thread: tmp_time %ld, "
3301 "sp->last_renewal_time %ld", tmp_time,
3302 sp->last_renewal_time));
3303
3304 kip_secs = MAX((sp->s_lease_time >> 1) - tmp_time, 1);
3305
3306 tick_delay = SEC_TO_TICK(kip_secs);
3307
3308 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3309 "nfs4_renew_lease_thread: valid lease: sleep for %ld "
3310 "secs", kip_secs));
3311
3312 mutex_enter(&cpr_lock);
3313 CALLB_CPR_SAFE_BEGIN(&cpr_info);
3314 mutex_exit(&cpr_lock);
3315 time_left = cv_reltimedwait(&sp->cv_thread_exit, &sp->s_lock,
3316 tick_delay, TR_CLOCK_TICK);
3317 mutex_enter(&cpr_lock);
3318 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3319 mutex_exit(&cpr_lock);
3320
3321 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3322 "nfs4_renew_lease_thread: valid lease: time left %ld :"
3323 "sp last_renewal_time %ld, nfs4_client_resumed %ld, "
3324 "tmp_last_renewal_time %ld", time_left,
3325 sp->last_renewal_time, nfs4_client_resumed,
3326 tmp_last_renewal_time));
3327
3328 if (sp->s_thread_exit == NFS4_THREAD_EXIT)
3329 goto die;
3330
3331 if (tmp_last_renewal_time == sp->last_renewal_time ||
3332 (nfs4_client_resumed != 0 &&
3333 nfs4_client_resumed > sp->last_renewal_time)) {
3334 /*
3335 * Issue RENEW op since we haven't renewed the lease
3336 * since we slept.
3337 */
3338 tmp_now_time = gethrestime_sec();
3339 error = nfs4renew(sp);
3340 /*
3341 * Need to re-acquire sp's lock, nfs4renew()
3342 * relinqueshes it.
3343 */
3344 mutex_enter(&sp->s_lock);
3345
3346 /*
3347 * See if someone changed s_thread_exit while we gave
3348 * up s_lock.
3349 */
3350 if (sp->s_thread_exit == NFS4_THREAD_EXIT)
3351 goto die;
3352
3353 if (!error) {
3354 /*
3355 * check to see if we implicitly renewed while
3356 * we waited for a reply for our RENEW call.
3357 */
3358 if (tmp_last_renewal_time ==
3359 sp->last_renewal_time) {
3360 /* no implicit renew came */
3361 sp->last_renewal_time = tmp_now_time;
3362 } else {
3363 NFS4_DEBUG(nfs4_client_lease_debug,
3364 (CE_NOTE, "renew_thread: did "
3365 "implicit renewal before reply "
3366 "from server for RENEW"));
3367 }
3368 } else {
3369 /* figure out error */
3370 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3371 "renew_thread: nfs4renew returned error"
3372 " %d", error));
3373 }
3374
3375 }
3376 }
3377
3378 die:
3379 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3380 "nfs4_renew_lease_thread: thread exiting"));
3381
3382 while (sp->s_otw_call_count != 0) {
3383 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3384 "nfs4_renew_lease_thread: waiting for outstanding "
3385 "otw calls to finish for sp 0x%p, current "
3386 "s_otw_call_count %d", (void *)sp,
3387 sp->s_otw_call_count));
3388 mutex_enter(&cpr_lock);
3389 CALLB_CPR_SAFE_BEGIN(&cpr_info);
3390 mutex_exit(&cpr_lock);
3391 cv_wait(&sp->s_cv_otw_count, &sp->s_lock);
3392 mutex_enter(&cpr_lock);
3393 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3394 mutex_exit(&cpr_lock);
3395 }
3396 mutex_exit(&sp->s_lock);
3397
3398 nfs4_server_rele(sp); /* free the thread's reference */
3399 nfs4_server_rele(sp); /* free the list's reference */
3400 sp = NULL;
3401
3402 done:
3403 mutex_enter(&cpr_lock);
3404 CALLB_CPR_EXIT(&cpr_info); /* drops cpr_lock */
3405 mutex_destroy(&cpr_lock);
3406
3407 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3408 "nfs4_renew_lease_thread: renew thread exit officially"));
3409
3410 zthread_exit();
3411 /* NOT REACHED */
3412 }
3413
3414 /*
3415 * Send out a RENEW op to the server.
3416 * Assumes sp is locked down.
3417 */
3418 static int
3419 nfs4renew(nfs4_server_t *sp)
3420 {
3421 COMPOUND4args_clnt args;
3422 COMPOUND4res_clnt res;
3423 nfs_argop4 argop[1];
3424 int doqueue = 1;
3425 int rpc_error;
3426 cred_t *cr;
3427 mntinfo4_t *mi;
3428 timespec_t prop_time, after_time;
3429 int needrecov = FALSE;
3430 nfs4_recov_state_t recov_state;
3431 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3432
3433 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4renew"));
3434
3435 recov_state.rs_flags = 0;
3436 recov_state.rs_num_retry_despite_err = 0;
3437
3438 recov_retry:
3439 mi = sp->mntinfo4_list;
3440 VFS_HOLD(mi->mi_vfsp);
3441 mutex_exit(&sp->s_lock);
3442 ASSERT(mi != NULL);
3443
3444 e.error = nfs4_start_op(mi, NULL, NULL, &recov_state);
3445 if (e.error) {
3446 VFS_RELE(mi->mi_vfsp);
3447 return (e.error);
3448 }
3449
3450 /* Check to see if we're dealing with a marked-dead sp */
3451 mutex_enter(&sp->s_lock);
3452 if (sp->s_thread_exit == NFS4_THREAD_EXIT) {
3453 mutex_exit(&sp->s_lock);
3454 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3455 VFS_RELE(mi->mi_vfsp);
3456 return (0);
3457 }
3458
3459 /* Make sure mi hasn't changed on us */
3460 if (mi != sp->mntinfo4_list) {
3461 /* Must drop sp's lock to avoid a recursive mutex enter */
3462 mutex_exit(&sp->s_lock);
3463 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3464 VFS_RELE(mi->mi_vfsp);
3465 mutex_enter(&sp->s_lock);
3466 goto recov_retry;
3467 }
3468 mutex_exit(&sp->s_lock);
3469
3470 args.ctag = TAG_RENEW;
3471
3472 args.array_len = 1;
3473 args.array = argop;
3474
3475 argop[0].argop = OP_RENEW;
3476
3477 mutex_enter(&sp->s_lock);
3478 argop[0].nfs_argop4_u.oprenew.clientid = sp->clientid;
3479 cr = sp->s_cred;
3480 crhold(cr);
3481 mutex_exit(&sp->s_lock);
3482
3483 ASSERT(cr != NULL);
3484
3485 /* used to figure out RTT for sp */
3486 gethrestime(&prop_time);
3487
3488 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
3489 "nfs4renew: %s call, sp 0x%p", needrecov ? "recov" : "first",
3490 (void*)sp));
3491 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "before: %ld s %ld ns ",
3492 prop_time.tv_sec, prop_time.tv_nsec));
3493
3494 DTRACE_PROBE2(nfs4__renew__start, nfs4_server_t *, sp,
3495 mntinfo4_t *, mi);
3496
3497 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
3498 crfree(cr);
3499
3500 DTRACE_PROBE2(nfs4__renew__end, nfs4_server_t *, sp,
3501 mntinfo4_t *, mi);
3502
3503 gethrestime(&after_time);
3504
3505 mutex_enter(&sp->s_lock);
3506 sp->propagation_delay.tv_sec =
3507 MAX(1, after_time.tv_sec - prop_time.tv_sec);
3508 mutex_exit(&sp->s_lock);
3509
3510 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "after : %ld s %ld ns ",
3511 after_time.tv_sec, after_time.tv_nsec));
3512
3513 if (e.error == 0 && res.status == NFS4ERR_CB_PATH_DOWN) {
3514 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3515 nfs4_delegreturn_all(sp);
3516 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3517 VFS_RELE(mi->mi_vfsp);
3518 /*
3519 * If the server returns CB_PATH_DOWN, it has renewed
3520 * the lease and informed us that the callback path is
3521 * down. Since the lease is renewed, just return 0 and
3522 * let the renew thread proceed as normal.
3523 */
3524 return (0);
3525 }
3526
3527 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
3528 if (!needrecov && e.error) {
3529 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3530 VFS_RELE(mi->mi_vfsp);
3531 return (e.error);
3532 }
3533
3534 rpc_error = e.error;
3535
3536 if (needrecov) {
3537 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
3538 "nfs4renew: initiating recovery\n"));
3539
3540 if (nfs4_start_recovery(&e, mi, NULL, NULL, NULL, NULL,
3541 OP_RENEW, NULL, NULL, NULL) == FALSE) {
3542 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3543 VFS_RELE(mi->mi_vfsp);
3544 if (!e.error)
3545 (void) xdr_free(xdr_COMPOUND4res_clnt,
3546 (caddr_t)&res);
3547 mutex_enter(&sp->s_lock);
3548 goto recov_retry;
3549 }
3550 /* fall through for res.status case */
3551 }
3552
3553 if (res.status) {
3554 if (res.status == NFS4ERR_LEASE_MOVED) {
3555 /*EMPTY*/
3556 /*
3557 * XXX need to try every mntinfo4 in sp->mntinfo4_list
3558 * to renew the lease on that server
3559 */
3560 }
3561 e.error = geterrno4(res.status);
3562 }
3563
3564 if (!rpc_error)
3565 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3566
3567 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3568
3569 VFS_RELE(mi->mi_vfsp);
3570
3571 return (e.error);
3572 }
3573
3574 void
3575 nfs4_inc_state_ref_count(mntinfo4_t *mi)
3576 {
3577 nfs4_server_t *sp;
3578
3579 /* this locks down sp if it is found */
3580 sp = find_nfs4_server(mi);
3581
3582 if (sp != NULL) {
3583 nfs4_inc_state_ref_count_nolock(sp, mi);
3584 mutex_exit(&sp->s_lock);
3585 nfs4_server_rele(sp);
3586 }
3587 }
3588
3589 /*
3590 * Bump the number of OPEN files (ie: those with state) so we know if this
3591 * nfs4_server has any state to maintain a lease for or not.
3592 *
3593 * Also, marks the nfs4_server's lease valid if it hasn't been done so already.
3594 */
3595 void
3596 nfs4_inc_state_ref_count_nolock(nfs4_server_t *sp, mntinfo4_t *mi)
3597 {
3598 ASSERT(mutex_owned(&sp->s_lock));
3599
3600 sp->state_ref_count++;
3601 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3602 "nfs4_inc_state_ref_count: state_ref_count now %d",
3603 sp->state_ref_count));
3604
3605 if (sp->lease_valid == NFS4_LEASE_UNINITIALIZED)
3606 sp->lease_valid = NFS4_LEASE_VALID;
3607
3608 /*
3609 * If this call caused the lease to be marked valid and/or
3610 * took the state_ref_count from 0 to 1, then start the time
3611 * on lease renewal.
3612 */
3613 if (sp->lease_valid == NFS4_LEASE_VALID && sp->state_ref_count == 1)
3614 sp->last_renewal_time = gethrestime_sec();
3615
3616 /* update the number of open files for mi */
3617 mi->mi_open_files++;
3618 }
3619
3620 void
3621 nfs4_dec_state_ref_count(mntinfo4_t *mi)
3622 {
3623 nfs4_server_t *sp;
3624
3625 /* this locks down sp if it is found */
3626 sp = find_nfs4_server_all(mi, 1);
3627
3628 if (sp != NULL) {
3629 nfs4_dec_state_ref_count_nolock(sp, mi);
3630 mutex_exit(&sp->s_lock);
3631 nfs4_server_rele(sp);
3632 }
3633 }
3634
3635 /*
3636 * Decrement the number of OPEN files (ie: those with state) so we know if
3637 * this nfs4_server has any state to maintain a lease for or not.
3638 */
3639 void
3640 nfs4_dec_state_ref_count_nolock(nfs4_server_t *sp, mntinfo4_t *mi)
3641 {
3642 ASSERT(mutex_owned(&sp->s_lock));
3643 ASSERT(sp->state_ref_count != 0);
3644 sp->state_ref_count--;
3645
3646 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3647 "nfs4_dec_state_ref_count: state ref count now %d",
3648 sp->state_ref_count));
3649
3650 mi->mi_open_files--;
3651 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3652 "nfs4_dec_state_ref_count: mi open files %d, v4 flags 0x%x",
3653 mi->mi_open_files, mi->mi_flags));
3654
3655 /* We don't have to hold the mi_lock to test mi_flags */
3656 if (mi->mi_open_files == 0 &&
3657 (mi->mi_flags & MI4_REMOVE_ON_LAST_CLOSE)) {
3658 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3659 "nfs4_dec_state_ref_count: remove mntinfo4 %p since "
3660 "we have closed the last open file", (void*)mi));
3661 nfs4_remove_mi_from_server(mi, sp);
3662 }
3663 }
3664
3665 bool_t
3666 inlease(nfs4_server_t *sp)
3667 {
3668 bool_t result;
3669
3670 ASSERT(mutex_owned(&sp->s_lock));
3671
3672 if (sp->lease_valid == NFS4_LEASE_VALID &&
3673 gethrestime_sec() < sp->last_renewal_time + sp->s_lease_time)
3674 result = TRUE;
3675 else
3676 result = FALSE;
3677
3678 return (result);
3679 }
3680
3681
3682 /*
3683 * Return non-zero if the given nfs4_server_t is going through recovery.
3684 */
3685
3686 int
3687 nfs4_server_in_recovery(nfs4_server_t *sp)
3688 {
3689 return (nfs_rw_lock_held(&sp->s_recovlock, RW_WRITER));
3690 }
3691
3692 /*
3693 * Compare two shared filehandle objects. Returns -1, 0, or +1, if the
3694 * first is less than, equal to, or greater than the second.
3695 */
3696
3697 int
3698 sfh4cmp(const void *p1, const void *p2)
3699 {
3700 const nfs4_sharedfh_t *sfh1 = (const nfs4_sharedfh_t *)p1;
3701 const nfs4_sharedfh_t *sfh2 = (const nfs4_sharedfh_t *)p2;
3702
3703 return (nfs4cmpfh(&sfh1->sfh_fh, &sfh2->sfh_fh));
3704 }
3705
3706 /*
3707 * Create a table for shared filehandle objects.
3708 */
3709
3710 void
3711 sfh4_createtab(avl_tree_t *tab)
3712 {
3713 avl_create(tab, sfh4cmp, sizeof (nfs4_sharedfh_t),
3714 offsetof(nfs4_sharedfh_t, sfh_tree));
3715 }
3716
3717 /*
3718 * Return a shared filehandle object for the given filehandle. The caller
3719 * is responsible for eventually calling sfh4_rele().
3720 */
3721
3722 nfs4_sharedfh_t *
3723 sfh4_put(const nfs_fh4 *fh, mntinfo4_t *mi, nfs4_sharedfh_t *key)
3724 {
3725 nfs4_sharedfh_t *sfh, *nsfh;
3726 avl_index_t where;
3727 nfs4_sharedfh_t skey;
3728
3729 if (!key) {
3730 skey.sfh_fh = *fh;
3731 key = &skey;
3732 }
3733
3734 nsfh = kmem_alloc(sizeof (nfs4_sharedfh_t), KM_SLEEP);
3735 nsfh->sfh_fh.nfs_fh4_len = fh->nfs_fh4_len;
3736 /*
3737 * We allocate the largest possible filehandle size because it's
3738 * not that big, and it saves us from possibly having to resize the
3739 * buffer later.
3740 */
3741 nsfh->sfh_fh.nfs_fh4_val = kmem_alloc(NFS4_FHSIZE, KM_SLEEP);
3742 bcopy(fh->nfs_fh4_val, nsfh->sfh_fh.nfs_fh4_val, fh->nfs_fh4_len);
3743 mutex_init(&nsfh->sfh_lock, NULL, MUTEX_DEFAULT, NULL);
3744 nsfh->sfh_refcnt = 1;
3745 nsfh->sfh_flags = SFH4_IN_TREE;
3746 nsfh->sfh_mi = mi;
3747 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, "sfh4_get: new object (%p)",
3748 (void *)nsfh));
3749
3750 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
3751 sfh = avl_find(&mi->mi_filehandles, key, &where);
3752 if (sfh != NULL) {
3753 mutex_enter(&sfh->sfh_lock);
3754 sfh->sfh_refcnt++;
3755 mutex_exit(&sfh->sfh_lock);
3756 nfs_rw_exit(&mi->mi_fh_lock);
3757 /* free our speculative allocs */
3758 kmem_free(nsfh->sfh_fh.nfs_fh4_val, NFS4_FHSIZE);
3759 kmem_free(nsfh, sizeof (nfs4_sharedfh_t));
3760 return (sfh);
3761 }
3762
3763 avl_insert(&mi->mi_filehandles, nsfh, where);
3764 nfs_rw_exit(&mi->mi_fh_lock);
3765
3766 return (nsfh);
3767 }
3768
3769 /*
3770 * Return a shared filehandle object for the given filehandle. The caller
3771 * is responsible for eventually calling sfh4_rele().
3772 */
3773
3774 nfs4_sharedfh_t *
3775 sfh4_get(const nfs_fh4 *fh, mntinfo4_t *mi)
3776 {
3777 nfs4_sharedfh_t *sfh;
3778 nfs4_sharedfh_t key;
3779
3780 ASSERT(fh->nfs_fh4_len <= NFS4_FHSIZE);
3781
3782 #ifdef DEBUG
3783 if (nfs4_sharedfh_debug) {
3784 nfs4_fhandle_t fhandle;
3785
3786 fhandle.fh_len = fh->nfs_fh4_len;
3787 bcopy(fh->nfs_fh4_val, fhandle.fh_buf, fhandle.fh_len);
3788 zcmn_err(mi->mi_zone->zone_id, CE_NOTE, "sfh4_get:");
3789 nfs4_printfhandle(&fhandle);
3790 }
3791 #endif
3792
3793 /*
3794 * If there's already an object for the given filehandle, bump the
3795 * reference count and return it. Otherwise, create a new object
3796 * and add it to the AVL tree.
3797 */
3798
3799 key.sfh_fh = *fh;
3800
3801 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
3802 sfh = avl_find(&mi->mi_filehandles, &key, NULL);
3803 if (sfh != NULL) {
3804 mutex_enter(&sfh->sfh_lock);
3805 sfh->sfh_refcnt++;
3806 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3807 "sfh4_get: found existing %p, new refcnt=%d",
3808 (void *)sfh, sfh->sfh_refcnt));
3809 mutex_exit(&sfh->sfh_lock);
3810 nfs_rw_exit(&mi->mi_fh_lock);
3811 return (sfh);
3812 }
3813 nfs_rw_exit(&mi->mi_fh_lock);
3814
3815 return (sfh4_put(fh, mi, &key));
3816 }
3817
3818 /*
3819 * Get a reference to the given shared filehandle object.
3820 */
3821
3822 void
3823 sfh4_hold(nfs4_sharedfh_t *sfh)
3824 {
3825 ASSERT(sfh->sfh_refcnt > 0);
3826
3827 mutex_enter(&sfh->sfh_lock);
3828 sfh->sfh_refcnt++;
3829 NFS4_DEBUG(nfs4_sharedfh_debug,
3830 (CE_NOTE, "sfh4_hold %p, new refcnt=%d",
3831 (void *)sfh, sfh->sfh_refcnt));
3832 mutex_exit(&sfh->sfh_lock);
3833 }
3834
3835 /*
3836 * Release a reference to the given shared filehandle object and null out
3837 * the given pointer.
3838 */
3839
3840 void
3841 sfh4_rele(nfs4_sharedfh_t **sfhpp)
3842 {
3843 mntinfo4_t *mi;
3844 nfs4_sharedfh_t *sfh = *sfhpp;
3845
3846 ASSERT(sfh->sfh_refcnt > 0);
3847
3848 mutex_enter(&sfh->sfh_lock);
3849 if (sfh->sfh_refcnt > 1) {
3850 sfh->sfh_refcnt--;
3851 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3852 "sfh4_rele %p, new refcnt=%d",
3853 (void *)sfh, sfh->sfh_refcnt));
3854 mutex_exit(&sfh->sfh_lock);
3855 goto finish;
3856 }
3857 mutex_exit(&sfh->sfh_lock);
3858
3859 /*
3860 * Possibly the last reference, so get the lock for the table in
3861 * case it's time to remove the object from the table.
3862 */
3863 mi = sfh->sfh_mi;
3864 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
3865 mutex_enter(&sfh->sfh_lock);
3866 sfh->sfh_refcnt--;
3867 if (sfh->sfh_refcnt > 0) {
3868 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3869 "sfh4_rele %p, new refcnt=%d",
3870 (void *)sfh, sfh->sfh_refcnt));
3871 mutex_exit(&sfh->sfh_lock);
3872 nfs_rw_exit(&mi->mi_fh_lock);
3873 goto finish;
3874 }
3875
3876 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3877 "sfh4_rele %p, last ref", (void *)sfh));
3878 if (sfh->sfh_flags & SFH4_IN_TREE) {
3879 avl_remove(&mi->mi_filehandles, sfh);
3880 sfh->sfh_flags &= ~SFH4_IN_TREE;
3881 }
3882 mutex_exit(&sfh->sfh_lock);
3883 nfs_rw_exit(&mi->mi_fh_lock);
3884 mutex_destroy(&sfh->sfh_lock);
3885 kmem_free(sfh->sfh_fh.nfs_fh4_val, NFS4_FHSIZE);
3886 kmem_free(sfh, sizeof (nfs4_sharedfh_t));
3887
3888 finish:
3889 *sfhpp = NULL;
3890 }
3891
3892 /*
3893 * Update the filehandle for the given shared filehandle object.
3894 */
3895
3896 int nfs4_warn_dupfh = 0; /* if set, always warn about dup fhs below */
3897
3898 void
3899 sfh4_update(nfs4_sharedfh_t *sfh, const nfs_fh4 *newfh)
3900 {
3901 mntinfo4_t *mi = sfh->sfh_mi;
3902 nfs4_sharedfh_t *dupsfh;
3903 avl_index_t where;
3904 nfs4_sharedfh_t key;
3905
3906 #ifdef DEBUG
3907 mutex_enter(&sfh->sfh_lock);
3908 ASSERT(sfh->sfh_refcnt > 0);
3909 mutex_exit(&sfh->sfh_lock);
3910 #endif
3911 ASSERT(newfh->nfs_fh4_len <= NFS4_FHSIZE);
3912
3913 /*
3914 * The basic plan is to remove the shared filehandle object from
3915 * the table, update it to have the new filehandle, then reinsert
3916 * it.
3917 */
3918
3919 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
3920 mutex_enter(&sfh->sfh_lock);
3921 if (sfh->sfh_flags & SFH4_IN_TREE) {
3922 avl_remove(&mi->mi_filehandles, sfh);
3923 sfh->sfh_flags &= ~SFH4_IN_TREE;
3924 }
3925 mutex_exit(&sfh->sfh_lock);
3926 sfh->sfh_fh.nfs_fh4_len = newfh->nfs_fh4_len;
3927 bcopy(newfh->nfs_fh4_val, sfh->sfh_fh.nfs_fh4_val,
3928 sfh->sfh_fh.nfs_fh4_len);
3929
3930 /*
3931 * XXX If there is already a shared filehandle object with the new
3932 * filehandle, we're in trouble, because the rnode code assumes
3933 * that there is only one shared filehandle object for a given
3934 * filehandle. So issue a warning (for read-write mounts only)
3935 * and don't try to re-insert the given object into the table.
3936 * Hopefully the given object will quickly go away and everyone
3937 * will use the new object.
3938 */
3939 key.sfh_fh = *newfh;
3940 dupsfh = avl_find(&mi->mi_filehandles, &key, &where);
3941 if (dupsfh != NULL) {
3942 if (!(mi->mi_vfsp->vfs_flag & VFS_RDONLY) || nfs4_warn_dupfh) {
3943 zcmn_err(mi->mi_zone->zone_id, CE_WARN, "sfh4_update: "
3944 "duplicate filehandle detected");
3945 sfh4_printfhandle(dupsfh);
3946 }
3947 } else {
3948 avl_insert(&mi->mi_filehandles, sfh, where);
3949 mutex_enter(&sfh->sfh_lock);
3950 sfh->sfh_flags |= SFH4_IN_TREE;
3951 mutex_exit(&sfh->sfh_lock);
3952 }
3953 nfs_rw_exit(&mi->mi_fh_lock);
3954 }
3955
3956 /*
3957 * Copy out the current filehandle for the given shared filehandle object.
3958 */
3959
3960 void
3961 sfh4_copyval(const nfs4_sharedfh_t *sfh, nfs4_fhandle_t *fhp)
3962 {
3963 mntinfo4_t *mi = sfh->sfh_mi;
3964
3965 ASSERT(sfh->sfh_refcnt > 0);
3966
3967 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
3968 fhp->fh_len = sfh->sfh_fh.nfs_fh4_len;
3969 ASSERT(fhp->fh_len <= NFS4_FHSIZE);
3970 bcopy(sfh->sfh_fh.nfs_fh4_val, fhp->fh_buf, fhp->fh_len);
3971 nfs_rw_exit(&mi->mi_fh_lock);
3972 }
3973
3974 /*
3975 * Print out the filehandle for the given shared filehandle object.
3976 */
3977
3978 void
3979 sfh4_printfhandle(const nfs4_sharedfh_t *sfh)
3980 {
3981 nfs4_fhandle_t fhandle;
3982
3983 sfh4_copyval(sfh, &fhandle);
3984 nfs4_printfhandle(&fhandle);
3985 }
3986
3987 /*
3988 * Compare 2 fnames. Returns -1 if the first is "less" than the second, 0
3989 * if they're the same, +1 if the first is "greater" than the second. The
3990 * caller (or whoever's calling the AVL package) is responsible for
3991 * handling locking issues.
3992 */
3993
3994 static int
3995 fncmp(const void *p1, const void *p2)
3996 {
3997 const nfs4_fname_t *f1 = p1;
3998 const nfs4_fname_t *f2 = p2;
3999 int res;
4000
4001 res = strcmp(f1->fn_name, f2->fn_name);
4002 /*
4003 * The AVL package wants +/-1, not arbitrary positive or negative
4004 * integers.
4005 */
4006 if (res > 0)
4007 res = 1;
4008 else if (res < 0)
4009 res = -1;
4010 return (res);
4011 }
4012
4013 /*
4014 * Get or create an fname with the given name, as a child of the given
4015 * fname. The caller is responsible for eventually releasing the reference
4016 * (fn_rele()). parent may be NULL.
4017 */
4018
4019 nfs4_fname_t *
4020 fn_get(nfs4_fname_t *parent, char *name, nfs4_sharedfh_t *sfh)
4021 {
4022 nfs4_fname_t key;
4023 nfs4_fname_t *fnp;
4024 avl_index_t where;
4025
4026 key.fn_name = name;
4027
4028 /*
4029 * If there's already an fname registered with the given name, bump
4030 * its reference count and return it. Otherwise, create a new one
4031 * and add it to the parent's AVL tree.
4032 *
4033 * fname entries we are looking for should match both name
4034 * and sfh stored in the fname.
4035 */
4036 again:
4037 if (parent != NULL) {
4038 mutex_enter(&parent->fn_lock);
4039 fnp = avl_find(&parent->fn_children, &key, &where);
4040 if (fnp != NULL) {
4041 /*
4042 * This hold on fnp is released below later,
4043 * in case this is not the fnp we want.
4044 */
4045 fn_hold(fnp);
4046
4047 if (fnp->fn_sfh == sfh) {
4048 /*
4049 * We have found our entry.
4050 * put an hold and return it.
4051 */
4052 mutex_exit(&parent->fn_lock);
4053 return (fnp);
4054 }
4055
4056 /*
4057 * We have found an entry that has a mismatching
4058 * fn_sfh. This could be a stale entry due to
4059 * server side rename. We will remove this entry
4060 * and make sure no such entries exist.
4061 */
4062 mutex_exit(&parent->fn_lock);
4063 mutex_enter(&fnp->fn_lock);
4064 if (fnp->fn_parent == parent) {
4065 /*
4066 * Remove ourselves from parent's
4067 * fn_children tree.
4068 */
4069 mutex_enter(&parent->fn_lock);
4070 avl_remove(&parent->fn_children, fnp);
4071 mutex_exit(&parent->fn_lock);
4072 fn_rele(&fnp->fn_parent);
4073 }
4074 mutex_exit(&fnp->fn_lock);
4075 fn_rele(&fnp);
4076 goto again;
4077 }
4078 }
4079
4080 fnp = kmem_alloc(sizeof (nfs4_fname_t), KM_SLEEP);
4081 mutex_init(&fnp->fn_lock, NULL, MUTEX_DEFAULT, NULL);
4082 fnp->fn_parent = parent;
4083 if (parent != NULL)
4084 fn_hold(parent);
4085 fnp->fn_len = strlen(name);
4086 ASSERT(fnp->fn_len < MAXNAMELEN);
4087 fnp->fn_name = kmem_alloc(fnp->fn_len + 1, KM_SLEEP);
4088 (void) strcpy(fnp->fn_name, name);
4089 fnp->fn_refcnt = 1;
4090
4091 /*
4092 * This hold on sfh is later released
4093 * when we do the final fn_rele() on this fname.
4094 */
4095 sfh4_hold(sfh);
4096 fnp->fn_sfh = sfh;
4097
4098 avl_create(&fnp->fn_children, fncmp, sizeof (nfs4_fname_t),
4099 offsetof(nfs4_fname_t, fn_tree));
4100 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
4101 "fn_get %p:%s, a new nfs4_fname_t!",
4102 (void *)fnp, fnp->fn_name));
4103 if (parent != NULL) {
4104 avl_insert(&parent->fn_children, fnp, where);
4105 mutex_exit(&parent->fn_lock);
4106 }
4107
4108 return (fnp);
4109 }
4110
4111 void
4112 fn_hold(nfs4_fname_t *fnp)
4113 {
4114 atomic_add_32(&fnp->fn_refcnt, 1);
4115 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
4116 "fn_hold %p:%s, new refcnt=%d",
4117 (void *)fnp, fnp->fn_name, fnp->fn_refcnt));
4118 }
4119
4120 /*
4121 * Decrement the reference count of the given fname, and destroy it if its
4122 * reference count goes to zero. Nulls out the given pointer.
4123 */
4124
4125 void
4126 fn_rele(nfs4_fname_t **fnpp)
4127 {
4128 nfs4_fname_t *parent;
4129 uint32_t newref;
4130 nfs4_fname_t *fnp;
4131
4132 recur:
4133 fnp = *fnpp;
4134 *fnpp = NULL;
4135
4136 mutex_enter(&fnp->fn_lock);
4137 parent = fnp->fn_parent;
4138 if (parent != NULL)
4139 mutex_enter(&parent->fn_lock); /* prevent new references */
4140 newref = atomic_add_32_nv(&fnp->fn_refcnt, -1);
4141 if (newref > 0) {
4142 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
4143 "fn_rele %p:%s, new refcnt=%d",
4144 (void *)fnp, fnp->fn_name, fnp->fn_refcnt));
4145 if (parent != NULL)
4146 mutex_exit(&parent->fn_lock);
4147 mutex_exit(&fnp->fn_lock);
4148 return;
4149 }
4150
4151 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
4152 "fn_rele %p:%s, last reference, deleting...",
4153 (void *)fnp, fnp->fn_name));
4154 if (parent != NULL) {
4155 avl_remove(&parent->fn_children, fnp);
4156 mutex_exit(&parent->fn_lock);
4157 }
4158 kmem_free(fnp->fn_name, fnp->fn_len + 1);
4159 sfh4_rele(&fnp->fn_sfh);
4160 mutex_destroy(&fnp->fn_lock);
4161 avl_destroy(&fnp->fn_children);
4162 kmem_free(fnp, sizeof (nfs4_fname_t));
4163 /*
4164 * Recursivly fn_rele the parent.
4165 * Use goto instead of a recursive call to avoid stack overflow.
4166 */
4167 if (parent != NULL) {
4168 fnpp = &parent;
4169 goto recur;
4170 }
4171 }
4172
4173 /*
4174 * Returns the single component name of the given fname, in a MAXNAMELEN
4175 * string buffer, which the caller is responsible for freeing. Note that
4176 * the name may become invalid as a result of fn_move().
4177 */
4178
4179 char *
4180 fn_name(nfs4_fname_t *fnp)
4181 {
4182 char *name;
4183
4184 ASSERT(fnp->fn_len < MAXNAMELEN);
4185 name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
4186 mutex_enter(&fnp->fn_lock);
4187 (void) strcpy(name, fnp->fn_name);
4188 mutex_exit(&fnp->fn_lock);
4189
4190 return (name);
4191 }
4192
4193
4194 /*
4195 * fn_path_realloc
4196 *
4197 * This function, used only by fn_path, constructs
4198 * a new string which looks like "prepend" + "/" + "current".
4199 * by allocating a new string and freeing the old one.
4200 */
4201 static void
4202 fn_path_realloc(char **curses, char *prepend)
4203 {
4204 int len, curlen = 0;
4205 char *news;
4206
4207 if (*curses == NULL) {
4208 /*
4209 * Prime the pump, allocate just the
4210 * space for prepend and return that.
4211 */
4212 len = strlen(prepend) + 1;
4213 news = kmem_alloc(len, KM_SLEEP);
4214 (void) strncpy(news, prepend, len);
4215 } else {
4216 /*
4217 * Allocate the space for a new string
4218 * +1 +1 is for the "/" and the NULL
4219 * byte at the end of it all.
4220 */
4221 curlen = strlen(*curses);
4222 len = curlen + strlen(prepend) + 1 + 1;
4223 news = kmem_alloc(len, KM_SLEEP);
4224 (void) strncpy(news, prepend, len);
4225 (void) strcat(news, "/");
4226 (void) strcat(news, *curses);
4227 kmem_free(*curses, curlen + 1);
4228 }
4229 *curses = news;
4230 }
4231
4232 /*
4233 * Returns the path name (starting from the fs root) for the given fname.
4234 * The caller is responsible for freeing. Note that the path may be or
4235 * become invalid as a result of fn_move().
4236 */
4237
4238 char *
4239 fn_path(nfs4_fname_t *fnp)
4240 {
4241 char *path;
4242 nfs4_fname_t *nextfnp;
4243
4244 if (fnp == NULL)
4245 return (NULL);
4246
4247 path = NULL;
4248
4249 /* walk up the tree constructing the pathname. */
4250
4251 fn_hold(fnp); /* adjust for later rele */
4252 do {
4253 mutex_enter(&fnp->fn_lock);
4254 /*
4255 * Add fn_name in front of the current path
4256 */
4257 fn_path_realloc(&path, fnp->fn_name);
4258 nextfnp = fnp->fn_parent;
4259 if (nextfnp != NULL)
4260 fn_hold(nextfnp);
4261 mutex_exit(&fnp->fn_lock);
4262 fn_rele(&fnp);
4263 fnp = nextfnp;
4264 } while (fnp != NULL);
4265
4266 return (path);
4267 }
4268
4269 /*
4270 * Return a reference to the parent of the given fname, which the caller is
4271 * responsible for eventually releasing.
4272 */
4273
4274 nfs4_fname_t *
4275 fn_parent(nfs4_fname_t *fnp)
4276 {
4277 nfs4_fname_t *parent;
4278
4279 mutex_enter(&fnp->fn_lock);
4280 parent = fnp->fn_parent;
4281 if (parent != NULL)
4282 fn_hold(parent);
4283 mutex_exit(&fnp->fn_lock);
4284
4285 return (parent);
4286 }
4287
4288 /*
4289 * Update fnp so that its parent is newparent and its name is newname.
4290 */
4291
4292 void
4293 fn_move(nfs4_fname_t *fnp, nfs4_fname_t *newparent, char *newname)
4294 {
4295 nfs4_fname_t *parent, *tmpfnp;
4296 ssize_t newlen;
4297 nfs4_fname_t key;
4298 avl_index_t where;
4299
4300 /*
4301 * This assert exists to catch the client trying to rename
4302 * a dir to be a child of itself. This happened at a recent
4303 * bakeoff against a 3rd party (broken) server which allowed
4304 * the rename to succeed. If it trips it means that:
4305 * a) the code in nfs4rename that detects this case is broken
4306 * b) the server is broken (since it allowed the bogus rename)
4307 *
4308 * For non-DEBUG kernels, prepare for a recursive mutex_enter
4309 * panic below from: mutex_enter(&newparent->fn_lock);
4310 */
4311 ASSERT(fnp != newparent);
4312
4313 /*
4314 * Remove fnp from its current parent, change its name, then add it
4315 * to newparent. It might happen that fnp was replaced by another
4316 * nfs4_fname_t with the same fn_name in parent->fn_children.
4317 * In such case, fnp->fn_parent is NULL and we skip the removal
4318 * of fnp from its current parent.
4319 */
4320 mutex_enter(&fnp->fn_lock);
4321 parent = fnp->fn_parent;
4322 if (parent != NULL) {
4323 mutex_enter(&parent->fn_lock);
4324 avl_remove(&parent->fn_children, fnp);
4325 mutex_exit(&parent->fn_lock);
4326 fn_rele(&fnp->fn_parent);
4327 }
4328
4329 newlen = strlen(newname);
4330 if (newlen != fnp->fn_len) {
4331 ASSERT(newlen < MAXNAMELEN);
4332 kmem_free(fnp->fn_name, fnp->fn_len + 1);
4333 fnp->fn_name = kmem_alloc(newlen + 1, KM_SLEEP);
4334 fnp->fn_len = newlen;
4335 }
4336 (void) strcpy(fnp->fn_name, newname);
4337
4338 again:
4339 mutex_enter(&newparent->fn_lock);
4340 key.fn_name = fnp->fn_name;
4341 tmpfnp = avl_find(&newparent->fn_children, &key, &where);
4342 if (tmpfnp != NULL) {
4343 /*
4344 * This could be due to a file that was unlinked while
4345 * open, or perhaps the rnode is in the free list. Remove
4346 * it from newparent and let it go away on its own. The
4347 * contorted code is to deal with lock order issues and
4348 * race conditions.
4349 */
4350 fn_hold(tmpfnp);
4351 mutex_exit(&newparent->fn_lock);
4352 mutex_enter(&tmpfnp->fn_lock);
4353 if (tmpfnp->fn_parent == newparent) {
4354 mutex_enter(&newparent->fn_lock);
4355 avl_remove(&newparent->fn_children, tmpfnp);
4356 mutex_exit(&newparent->fn_lock);
4357 fn_rele(&tmpfnp->fn_parent);
4358 }
4359 mutex_exit(&tmpfnp->fn_lock);
4360 fn_rele(&tmpfnp);
4361 goto again;
4362 }
4363 fnp->fn_parent = newparent;
4364 fn_hold(newparent);
4365 avl_insert(&newparent->fn_children, fnp, where);
4366 mutex_exit(&newparent->fn_lock);
4367 mutex_exit(&fnp->fn_lock);
4368 }
4369
4370 #ifdef DEBUG
4371 /*
4372 * Return non-zero if the type information makes sense for the given vnode.
4373 * Otherwise panic.
4374 */
4375 int
4376 nfs4_consistent_type(vnode_t *vp)
4377 {
4378 rnode4_t *rp = VTOR4(vp);
4379
4380 if (nfs4_vtype_debug && vp->v_type != VNON &&
4381 rp->r_attr.va_type != VNON && vp->v_type != rp->r_attr.va_type) {
4382 cmn_err(CE_PANIC, "vnode %p type mismatch; v_type=%d, "
4383 "rnode attr type=%d", (void *)vp, vp->v_type,
4384 rp->r_attr.va_type);
4385 }
4386
4387 return (1);
4388 }
4389 #endif /* DEBUG */
--- EOF ---