new usr/src/uts/comon/fs/nfs/nfs4_client.c

R R R R

116613 Thu Jan 31 10:01:31 2013

new usr/src/uts/comon/fs/nfs/nfs4_client.c

NFS4 data corruption (#3508)

If async calls are disabled, nfs4_async_putapage is supposed to do its
wor k synchronously. Due to a bug, it sonmetimes just does nothing, |eaving

the page for

later.

Unfortunately the caller has already reset the R4DI RTY flag.

W t hout

RADI RTY, nfs4_attrcache_va can’t see that there are still

outstanding wites and accepts the file size fromthe server, which is
too | ow
Wien the dirty page finally gets witten back, the page size is truncated
to the file size, |eaving some bytes unwitten.

Revi ewed by: Marcel Tel ka <marcel @el ka. sk>

Revi ewed by: Robert GCordon <rbg@penrbg. con>

hkkkkkkkhkkkkkkkkhkkhkkhkkhkkhkhkhkhkkkkkkkkkkkkkkkkkkk Kk k ok k k%

1698

1699 nfs4_async_put apage(vnode_t *vp, page_t *pp, u_offset_t off,

1700 int flags, cred_t *cr, int (* putapage)(vnodet *, page_t *,
1701 u_offset_t, size_t, |nt, cred_t *))

1702 {

1703 rnode4_t *rp;

1704 mtinfod_t *m;

1705 struct nfs4_async_reqs *args;

1707 ASSERT(fl ags & B_ASYNC) ;

1708 ASSERT(vp->v_vfsp !'= NULL);

1710 rp = VIOR4(vp);

1711 ASSERT(r p->r_count > 0);

1713 m = VIOM 4(vp);

1715 /*

1716 * |If we can't allocate a request structure, do the putpage
1717 * operation synchronously in this thread' s context.

1718 */

1719 if ((args = kmem al | oc(sizeof (*args), KM NOSLEEP)) == NULL)
1720 got 0 noasync;

1722 args->a_next = NULL;

1723 #if def DEBUG

1724 args->a_queuer = curthread;

1725 #endi f

1726 VN_HOLD(vp) ;

1727 args->a_vp = vp;

1728 ASSERT(cr != NULL)

1729 crhold(cr);

1730 ar gs->a_| cred = cr;

1731 args->a_i 0 = NFS4_PUTAPAGE;

1732 ar gs- >a_nf s4_put apage = put apage;

1733 args->a_nfs4_pp = pp;

1734 args->a_nfs4_off = off;

1735 args->a_nfs4_len = (ui nt_t)len;

1736 args->a_nfs4 _flags = flags;

1738 mut ex_ent er (&m ->m _async_| ock) ;

1740 I*

1741 * |f asyncio has been disabled, then nmake a synchronous request.
1742 * This check is done a second tine in case async io was diabl ed
1743 * while this thread was bl ocked waiting for menory pressure to
1744 * reduce or for the queue to drain.

1745 */

int

__unchanged_portion_omtted_

size_t len,

new usr/src/uts/comon/fs/nfs/nfs4_client.c

1746
1747

1749
1750
1751
1752
1753

1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765

1767
1768
1769
1770

1772
1773
1774
1775
1776

1778
1779
1780
1781
1782

1784

1786
1786
1787
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804

1806
1807
1808
1809

if (m->m_max_threads == 0) {
mut ex_exit (& ->mi _async_| ock);
VN_RELE(vp);
crfree(cr);
kmem free(args, sizeof (*args));
got 0 noasync;
}
/*
* Link request structure into the async list and
* wakeup async thread to do the i/o.
*
if (m->m _async_reqs[NFS4_PUTAPACE] == NULL) {
m ->m _async_r eqs[NFS4_PUTAPACGE] = args;
m ->m _async_t ai | [NFS4_PUTAPAGE] = args;
} else {
m ->m _async_tai | [NFS4_PUTAPACE] - >a_next = args;
m ->m _async_tai | [NFS4_PUTAPACE] = args;
}
mut ex_ent er (& p->r_stat el ock);
rp->r_count ++;
rp->r_awcount ++;
mut ex_exi t (& p->r_st at el ock);
if (m->m_io_kstats)
mut ex _enter (&m ->m _| ock);
kst at _wai t q_ent er(KSTAT 10) PTR(mi ->mi _i o_kstats));
nut ex_exi t (& ->m _| ock);
}
m - > _async_req_count ++;
ASSERT(mi - >mi _async_reqg_count != 0);
cv_signal (& ->m _async_reqs_cv);
mut ex_exi t (& ->m _async_l ock);
return (0);
noasync:
if (curproc == proc_pageout || curproc == proc_fsflush) {
if (curproc == proc_pageout || curproc == proc_fsflush ||
nfs_zone() == m->nm _zone) {
/*
* |f we get here in the context of the pageout/fsflush,
* or we have run out of nenory or we're attenpting to
* unmount we refuse to do a sync wite, because this may
* hang pageout/fsflush and the nachine. In this case,
* we just re-mark the page as dirty and punt on the page.
*
* Make sure B_FORCE isn't set. W can re-mark the
* pages as di rty and unl ock the pages in one swoop by
* passing in B_ERROR to pvn_wite_done(). However,
* we shoul d nake sure B_FORCE isn't set - we don’t
* want the page tossed before it gets witten out.
*/
f (flags & B_F(RCE)
flags & ~(B_INVAL | B_FORCE);
pvn_write_done(pp, fTags | B_ERROR);
return (0);
}
if (nfs_zone() != mi->m _zone) {

#endi f /* | codereview */
/*

* So this was a cross-zone sync putpage.

new usr/src/uts/comon/fs/nfs/nfs4_client.c

1807
1808
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821

1824
1825

* W' || get here only if (nfs_zone() != m->nm _zone)
* which neans that this was a cross-zone sync putpage.

as dirty and unlock them

knows what they’'re doing if they set it.

* Ok ok k% k%
-

pvn_wite_done(pp, flags | B_ERROR);
return (EPERM ;

}
return ((* putapage)(vp, pp, off, len, flags, cr));

#endi f /* | codereview *
1822 }

int

nfs4_async_pagei o(vnode_t *vp, page_t

*pp, u_offset_t io_off,

1826 int flags, cred_t *cr, int (*pageio)(vnode_t *, page_t *, u_offset_t,
1827 size_t, int, cred_t *))

1828 {

1829 rnode4_t *rp;

1830 mtinfod4_t *m;

1831 struct nfs4_async_reqgs *args;

1833 ASSERT(fl ags & B_ASYNC) ;

1834 ASSERT(vp->v_vfsp !'= NULL);

1836 rp = VIOR4(vp);

1837 ASSERT(r p->r_count > 0);

1839 m = VIOM 4(vp);

1841 /*

1842 * If we can’t allocate a request structure, do the pageio
1843 * request synchronously in this thread s context.

1844 *

1845 if ((args = kmem al | oc(si zeof (*args), KM NOSLEEP)) == NULL)
1846 got o noasync;

1848 args->a_next = NULL;

1849 #ifdef DEBUG

1850 ar gs->a_queuer = curthread;

1851 #endi f

1852 VN_HOLD(vp) ;.

1853 args->a_vp = vp;

1854 ASSERT(cr !'= NULL);

1855 crhold(cr);

1856 ar gs->a_| cred = cr;

1857 args->a_i 0 = NFS4_PAGEI O,

1858 args->a_nf s4_pagei o = pagei o;

1859 args->a_nfs4_pp = ;

1860 args->a_nfs4_off =1 _off

1861 args->a_nfs4_len = (u |nt_t)io_|en

1862 args->a_nfs4_flags = flags;

1864 mut ex_ent er (& - >nmi _async_| ock) ;

1866 /*

1867 If asyncio has been disabled, then make a synchronous request.
1868 * This check is done a second tine in case async i o was di abl ed
1869 * while this thread was bl ocked waiting for nmenory pressure to
1870 * reduce or for the queue to drain.

1871 */

1872 if (m->m_max_threads == 0) {

1873 mut ex_exi t (&m ->m _async_| ock);

We pass in B ERROR to pvn_wite_done() to re-nark the pages

We don’t want to clear B_FORCE here as the caller presumably

size_t io_len,

new usr/src/uts/comon/fs/nfs/nfs4_client.c

1875
1876
1877
1878
1879

1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891

1893
1894
1895
1896

1898
1899
1900
1901
1902

1904
1905
1906
1907
1908

1910
1911
1912
1913
1914
1915
1916
1917
1918
1919

1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938

noasync:

VN_RELE(vp) ;
crfree(cr);
kmem free(args,
got 0 noasync;

sizeof (*args));
}

/*

* Link request structure into the async |ist and
* wakeup async thread to do the i/o.

*/

if (m->m _async_reqs[NFS4_PAGEI O == NULL) {
m ->m _async_reqs[NFS4_| PAGEIq = args;
m ->m _async_tail [NFS4_PACEI Q = args;

} else {
m ->mi _async_tail [NFS4_PAGEl Q - >a_next = args;

m ->m _async_tail [NFS4_PAGEI Q = args;

}

mut ex_ent er (& p- >r_st at el ock);
rp->r_count ++;

r p->r_awcount ++;

mut ex_exi t (& p->r_stat el ock);

if (m->m_io_kstats)
mut ex _enter (&m ->mi _| ock);
kstat _wai t g_ent er(KSTAT 10) PTR(m ->m _i o_kstats));
mut ex_exi t (&m ->m _| ock);

}
m - >m _async_req_count ++;
ASSERT(ni - >mi _async_req_count != 0);

cv_signal (&nmi ->m _async_reqs_cv);
mut ex_exi t (& ->m _async_| ock) ;
return (0);

*
* If we can’t do it ASYNC, for reads we do nothing (but cleanup
* the page list), for wites we do it synchronously, except for
*/proc_pageout/proc_f sflush as described bel ow.
*
if (flags & B_READ)

pvn_read_done(pp, flags | B_ERROR);

return (0);

}
if (curproc == proc_pageout || curproc == proc_fsflush) {
/*

If we get here in the context of the pageout/fsflush,
we refuse to do a sync wite, because this may hang

pageout/fsflush (and the machine).
re-mark the page as dirty and punt on the page.

*

*

*

*

*

* Make sure B_FORCE isn't set. W can re-mark the
* pages as di rty and unl ock the pages in one swoop by
* passing in B_.ERROR to pvn_wite_done(). However,
* we should make sure B_FORCE isn't set - we don't
* want the page tossed before it gets witten out.
*

f

/
(flags & B F(RCE)
flags & ~(B_ AL | B_FORCE);
pvn_write_done(pp, fTags | B_ERROR);
return (0);

In this case, we just

new usr/src/uts/comon/fs/nfs/nfs4_client.c

B_ERROR
and unl ock

presumabl y

1940 if (nfs_zone() !'= m->m _zone) {

1941 /*

1942 * So this was a cross-zone sync pageio. W pass in
1943 * to pvn_wite_done() to re-mark the pages as dirty
1944 * them

1945 *

1946 * W don’t want to clear B_FORCE here as the caller
1947 * knows what they’'re doing if they set it.
1948 */

1949 pvn_wite_done(pp, flags | B_ERROR);

1950 return (EPERM ;

1951 }

1952 return ((*pageio)(vp, pp, io_off, io_len, flags, cr));
1953 }

1955 voi d

1956 nfs4_async_readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr,
1957 int (*readdir)(vnode_t *, rddir4_cache *, cred_t *))

1958 {

1959 rnode4_t *rp;

1960 mtinfod_t *m;

1961 struct nfs4_async_reqs *args;

1963 rp = VIOR4(vp);

1964 ASSERT(r p- >r freef == NULL);

1966 m = VIOM 4(vp);

1968 *

1969 * |f we can't allocate a request structure, skip the readdir.
1970 */

1971 if ((args = kmem al |l oc(sizeof (*args), KM NOSLEEP)) == NULL)
1972 got 0 noasync;

1974 args->a_next = NULL;

1975 #ifdef DEBUG

1976 ar gs->a_queuer = curthread;

1977 #endi f

1978 VN_HOLD(vp) ;

1979 args->a_vp = vp;

1980 ASSERT(cr !'= NULL);

1981 crhold(cr);

1982 ar gs->a_| cred = cr;

1983 args->a_i o = NFS4 READDI R

1984 args->a_nfs4 readdir = readdir;

1985 args->a_nfs4_rdc = rdc;

1987 mut ex_ent er (&m ->nmi _async_| ock) ;

1989 /*

1990 * |f asyncio has been disabled, then skip this request
1991 *

1992 if (m->m _max_threads == 0) {

1993 mut ex_exi t (&m ->m _async_| ock);

1995 VN_RELE(vp) ;

1996 crfree(cr);

1997 kmem free(args, sizeof (*args));

1998 got o noasync;

1999 }

2001 /*

2002 * Link request structure into the async |ist and

2003 * wakeup async thread to do the i/o.

2004 */

2005 if (m->m _async_reqs[NFS4_READDI R == NULL) {

new usr/src/uts/comon/fs/nfs/nfs4_client.c

2006 m ->m _async_| req [NFS4_READDI R] = args;

2007 m ->m _async_tai | [NFS4_READDI R] = args;

2008 } else {

2009 m ->m _async_tai |l [NFS4_READDI R] - >a_next = args;
2010 m ->m _async_tail [NFS4_READDIR] = args;

2011 }

2013 nut ex_ent er (& p- >r _st at el ock) ;

2014 rp->r_count ++;

2015 mut ex e><|t(&rp >r_statel ock);

2017 if (m->m _io_kstats)

2018 mut ex _enter (&m ->m _| ock

2019 kstat _wai t g_ent er(KSTAT IO) PTR(m ->m _i o_kstats));
2020 mut ex_exi t (&m ->m _| ock);

2021 }

2023 m - >m _async_req_count ++;

2024 ASSERT(ni - >m _async_reqg_count != 0);

2025 cv_signal (&nmi ->m _async_reqs_cv);

2026 mut ex_exi t (&nmi ->m _async_| ock) ;

2027 return;

2029 noasync:

2030 mut ex_ent er(&rp >r_statel ock);

2031 rdc->entries = NULL;

2032 /*

2033 * Indicate that no one is trying to fill this entry and
2034 * it still needs to be filled.

2035 */

2036 rdc->flags & ~RDDIR;

2037 rdc->fl ags | = RDDI RREQ

2038 rddir4_cache_rele(rp, rdc);

2039 mut ex_exi t (& p->r_st at el ock);

2040 }

2042 void

2043 nfs4_async_conmit (vnode_t *vp, page_t *plist, offset3 offset, count3 count,
2044 cred_t *cr, void (*commit)(vnode_t *, page_t *, offset3, count3,
2045 cred_t *))

2046 {

2047 rnoded_t *rp;

2048 mtinfod4_t *m;

2049 struct nfs4_async_reqgs *args;

2050 page_t *pp;

2052 rp = VIOR4(vp);

2053 m = VIOM 4(vp);

2055 /*

2056 * |f we can't allocate a request structure, do the commt
2057 * operation synchronously in this thread s context.
2058 *

2059 if ((args = knem al | oc(si zeof (*args), KM NOSLEEP)) == NULL)
2060 got o noasync;

2062 args->a_next = NULL

2063 #i f def DEBUG

2064 args->a_queuer = curthread;

2065 #endi f

2066 VN_HOLD(vp) ;

2067 args->a_vp = vp;

2068 ASSERT(cr !'= NULL);

2069 crhol d(cr);

2070 args—>a_cred = cCr;

2071 args->a_i o = NFS4_COW T;

new usr/src/uts/comon/fs/nfs/nfs4_client.c 7 new usr/src/uts/comon/fs/nfs/nfs4_client.c
2072 args->a_nfs4_commit = conmmit; 2138 * reference to the vnode is handed over to the thread; the caller should
2073 args->a_nfs4_plist = plist; 2139 * no longer refer to the vnode.
2074 args->a_nfs4_of fset = of fset; 2140 *
2075 args->a_nfs4_count = count; 2141 * Unlike nobst of the async routines, this handoff is needed for
2142 * correctness reasons, not just performance. So doing operations in the
2077 mut ex_ent er (&m ->mi _async_| ock) ; 2143 * context of the current thread is not an option.
2144 x|
2079 /* 2145 void
2080 * |If asyncio has been disabled, then make a synchronous request. 2146 nfs4_async_i nactive(vnode_t *vp, cred_t *cr)
2081 * This check is done a second tinme in case async i o was di abl ed 2147 {
2082 * while this thread was bl ocked waiting for menory pressure to 2148 mtinfod4_t *m;
2083 * reduce or for the queue to drain. 2149 struct nfs4 async reqs *args;
2084 */ 2150 bool ean_t signal _i nactive_ thread = B_FALSE;
2085 if (m->m_max_threads == 0) {
2086 mut ex_exit (& ->mi _async_| ock); 2152 m = VIOM 4(vp);
2088 VN_RELE(vp); 2154 args = kmem. aI | oc(sizeof (*args), KM SLEEP);
2089 crfree(cr); 2155 args->a_next = NULL;
2090 kmem free(args, sizeof (*args)); 2156 #ifdef DEBUG
2091 got 0 noasync; 2157 args->a_queuer = curthread;
2092 } 2158 #endi f
2159 args->a_vp = vp;
2094 I* 2160 ASSERT(cr != NULL);
2095 * Link request structure into the async |ist and 2161 crhold(cr);
2096 * wakeup async thread to do the i/o. 2162 args->a_cred = cr;
2097 */ 2163 args->a_i 0 = NFS4_| NACTI VE;
2098 if (m->m _async_reqs[NFS4_COW T] == NULL) {
2099 m ->m _async_reqs[NFS4_COW T] = args; 2165 I*
2100 m ->m _async_tail [NFS4_COW T] = args; 2166 * Note that we don’t check m ->nmi _max_threads here, since we
2101 } else { 2167 * *need* to get rid of this vnode regardl ess of whether soneone
2102 m ->mi _async_tail [NFS4_COMM T] - >a_next = args; 2168 * set nfs4_max_threads to zero in /etc/system
2103 m ->m _async_tail [NFS4_COW T] = args; 2169 *
2104 } 2170 * The manager thread knows about this and is willing to create
2171 * at |east one thread to accommpdate us.
2106 mut ex_ent er (& p->r_st at el ock); 2172 */
2107 rp->r_count ++; 2173 mut ex_ent er (&ni - >ni _async_| Iock)
2108 mut ex eX|t(&rp >r_statel ock); 2174 if (m->ni _inactive_thread == NULL) {
2175 rnode4_t *rp;
2110 if (m->m_io_kstats) { 2176 vnode_t *unl dvp = NULL;
2111 mut ex enter(&m >m _| ock); 2177 char *unl nane;
2112 kstat _wai t g_ent er(KSTAT 10) PTR(mi ->mi _i o_kstats)); 2178 cred_t *unlcred;
2113 mut ex_exi t (&m ->m _| ock);
2114 } 2180 mut ex_exi t (&m ->m _async_| ock);
2181 /*
2116 m - >m _async_req_count ++; 2182 * W just need to free up the nenory associated with the
2117 ASSERT(mi - >mi _async_req_ count != 0); 2183 * vnode, which can be safely done fromw thin the current
2118 cv_signal (&m ->m _async_reqs_cv); 2184 * cont ext.
2119 mut ex_exi t (& ->m _async_| ock); 2185 */
2120 return; 2186 crfree(cr); /* drop our reference */
2187 kmem free(args, sizeof (*args));
2122 noasync: 2188 rp = VIOR4(vp);
2123 if (curproc == proc_pageout || curproc == proc_fsflush || 2189 mut ex_ent er (& p->r _st at el ock) ;
2124 nfs_zone() != m->m _zone) { 2190 if (rp->r_unldvp !'= NULL) {
2125 while (plist !'= NULL) { 2191 unl dvp = rp->r_unl dvp;
2126 pp = plist; 2192 rp->r_unldvp = NULL;
2127 page_sub(&plist, pp); 2193 unl name = rp->r_unl nane;
2128 pp->p_fsdata = © > COWM T; 2194 rp->r_unl name = NULL;
2129 page_unl ock(pp); 2195 unl cred = rp->r_unl cred,
2130 } 2196 rp->r_unlcred = NULL;
2131 return; 2197 }
2132 } 2198 mut ex_exi t (& p->r_stat el ock);
2133 (*commt)(vp, plist, offset, count, cr); 2199 =
2134 } 2200 * No need to explicitly throw away any cached pages. The
2201 * eventual rdinactive() will attenpt a synchronous
2136 /* 2202 * VOP_PUTPACGE() which will immediately fail since the request
2137 * nfs4_async_inactive - hand off a VOP_INACTIVE call to a thread. The 2203 * is coming fromthe wong zone, and then will proceed to call

new usr/src/uts/comon/fs/nfs/nfs4_client.c

2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215

2217
2218
2219
2220
2221
2222
2223
2224

2226
2227
2228
2229
2230
2231

2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251

2253
2254

2256
2257

2259
2260
2261
2262
2263
2264
2265
2266

2268
2269

}

i nt

* nfs4_invalidate_pages() which will clean things up for us.

*

* Throw away the del egation here so rp4_addfree()’'s attenpt to
* return any existing del egati ons beconmes a no-op.

*

if (rp->r_deleg_type != OPEN_DELEGATE_NONE) {
(void) nfs_rw enter_sig(&n->nm _recovl ock, RW READER
FALSE) ;
(void) nf s4del egreturn(rp, NFS4_DR_DI SCARD);
nfs_rw exit(&m->m _recovl ock);

}
nfs4_cl ear _open_streans(rp);

rp4_addfree(rp, cr);

if (unldvp !'= NULL) {
kmem f ree(unl nane, MAXNAMELEN) ;
VN_RELE(unl dvp) ;
crfree(unl cred);

return;

}
if (m->m _manager_thread == NULL) {
/*

* W want to talk to the inactive thread.
*/
signal _inactive_thread = B_TRUE;
}

/*
* Enqueue the vnode and wake up either the special thread (enpty
* list) or an async thread.
*
if (m->m _async_reqs[NFS4_I NACTI VE] == NULL) {
m ->m _async_reqs[NFS4_I NACTI VE] = args;
m ->m _async_tail [NFS4_ INACTIVE] = args;
signal _inactive_thread = B_TRUE;
} else {
m ->m _async_t ai | [NFS4_| NACTI VE] - >a_next = args;
m ->m _async_tai | [NFS4_I NACTI VE] = args;

}
if (signal_inactive_thread) {
cv_signal (&m ->mi _I nact _req_cv);
} else {
m - >ni _async_req_count ++;
ASSERT(mi - >m _async_req_ count != 0);
cv_signal (&m ->m _async_reqs_cv);

}

mut ex_exi t (& ->m _async_| ock);

writerp4(rnoded4_t *rp, caddr_t base, int tcount, struct uio *uio, int pgcreated)
2258 {

int pagecreate;

int n;

int saved_n;

caddr _t saved_base;
u_offset_t offset;

int error;

int smerror;

vnode_t *vp = RTOV(rp);

ASSERT(t count <= MAXBSI ZE && tcount <= ui 0->uio_resid);
ASSERT(nfs_rw_| ock_hel d(& p->r_rw ock, RWWRI TER)) ;

new usr/src/uts/comon/fs/nfs/nfs4_client.c

2270
2271
2272

2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284

2286
2287
2288
2289
2290

2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310

2312

2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332

2334
2335

if (!vpmenable) {
ASSERT(((uintptr_t)base & MAXBOFFSET) + tcount <= MAXBSI ZE);

}

/*

* Move bytes in at npbst PAGESI ZE chunks. We nust avoid

* spanning pages in uionpbve() because page faults nay cause

* the cache to be invalidated out fromunder us. The r_size is not
* updated until after the uiompve. |If we push the | ast page of a

* file before r_size is correct, we will |lose the data witten past
* the current (and invalid) r_S|ze

*/

do {

of fset = ui o->uio_|offset;
pagecreate = 0;

/*
* nis the nunber of bytes required to satisfy the request
* or the nunber of bytes to fill out the page.

*

= (int)MN((PAGESI ZE - (offset & PAGEOFFSET)), tcount);

=]

-
*

Check to see if we can skip reading in the page

and just allocate the nenory. W can do this

if we are going to rewite the entire mapping

or if we are going to wite to or beyond the current
end of file fromthe beginning of the mapping.

The read of r_size is now protected by r_statel ock.

éx-x»x»x-x-af»x-

/
tex_enter (& p->r_statel ock);

-

* Ok ok k% ok
-

When pgcreated is nonzero the caller has al ready done
a segmap_getmapflt with forcefault 0 and S WRITE. Wth
segkpm this neans we already have at |east one page
created and mapped at base.

pagecreate = pgcreated ||
((of fset & PAGECFFSET) == 0 &&
(n == PAGESIZE || ((offset + n) >= rp->r_size)));

mut ex_exi t (& p->r_stat el ock);
if (!vpm_enabl e && pagecreate) {
/*

The | ast argunent tells segmap_pagecreate() to

al ways | ock the page, as opposed to sonetines
returning with the page | ocked. This way we avoid a
fault on the ensuing uionove(), but also

nmore inmportantly (to fix bug 1094402) we can

call segmap_fault() to unlock the page in all

cases. An alternative would be to nodify
segnmap_pagecreate() to tell us when it is

| ocking a page, but that's a fairly ngjor

interface change.

* Ok Ok ok % Ok % ok ok ok 3k

if (pgcreated == 0)
(voi d) segmap pagecr eat e(segkmap, base,
(uint_t)n, 1);
saved_base = base;
saved_n = n;

}

/*
* The nunber of bytes of data in the | ast page can not

new usr/src/uts/comon/fs/nfs/nfs4_client.c 11 new usr/src/uts/comon/fs/nfs/nfs4_client.c 12
2336 * be accurately be determ ned while page is being 2402 * page. Unlock it. This also unlocks the
2337 * uionove'd to and the size of the file being updated. 2403 * pages allocated by page_create_va() in
2338 * Thus, informthreads which need to know accurately 2404 * segnmap_pagecreate().
2339 * how nuch data is in the |ast page of the file. They 2405 */
2340 * will not do the i/o imediately, but will arrange for 2406 smerror = segmap_faul t (kas.a_hat, segkmap,
2341 * the i/o to happen later when this nodify operation 2407 saved_base, saved_n,
2342 * will have finished. 2408 F_SOFTUNLOCK, S_WRITE);
2343 */ 2409 if (error ==
2344 ASSERT(! (rp->r_flags & R4AMODI NPROGRESS)) ; 2410 error = smerror;
2345 mut ex_ent er (& p- >r _st at el ock) ; 2411 }
2346 rp->r _flags | = R4ANMODI NPROGRESS; 2412 }
2347 rp->r_nodaddr = (offset & MAXBMASK); 2413 } while (tcount > 0 && error == 0);
2348 mut ex_exi t (& p->r_statel ock);
2415 return (error);
2350 if (vpmenable) { 2416 }
2351 /*
2352 * Copy data. If new pages are created, part of 2418 int
2353 * the page that is not witten will be initizliazed 2419 nfs4_put pages(vnode_t *vp, u_offset_t off, size_t len, int flags, cred_t *cr)
2354 * with zeros. 2420 {
2355 */ 2421 rnode4 _t *rp;
2356 error = vpmdata_copy(vp, offset, n, uio, 2422 page_t *pp;
2357 | pagecreate, NULL, 0, S WRITE); 2423 u of fset t eoff;
2358 } else { 2424 u_offset_t |o_off;
2359 error = uionove(base, n, U O WITE, uio); 2425 size_t io_len;
2360 } 2426 int error;
2427 int rdirty;
2362 /% 2428 int err;
2363 * r_size is the maxi num nunber of
2364 * bytes known to be in the file. 2430 rp = VIOR4(vp);
2365 * Make sure it is at |least as high as the 2431 ASSERT(r p->r_count > 0);
2366 * first unwitten byte pointed to by uio_|loffset.
2367 */ 2433 if (!nfs4_has_pages(vp))
2368 nmut ex_ent er (& p->r_st at el ock) ; 2434 return (0);
2369 if (rp—>r size < uio->uio_|loffset)
2370 rp->r_size = uio->uio_|offset; 2436 ASSERT(vp->v_type != VCHR);
2371 rp->r_flags & ~R4N[D| NPROGRESS;
2372 rp->r_flags | = R4DI RTY; 2438 /*
2373 mut ex_exit(&rp—>r_state| ock) ; 2439 * | f RAOUTOFSPACE is set, then all wites turn into B_I NVAL
2440 * wites. B _FORCE is set to force the VM systemto actual ly
2375 /* n =# of bytes witten */ 2441 * invalidate the pages, even if the i/o failed. The pages
2376 n = (int)(uio->uio_loffset - offset); 2442 * need to get invalidated because they can’t be witten out
2443 * because there isn't any space left on either the server’s
2378 if (!vpmenable) { 2444 * file systemor in the user’s disk quota. The B_FREE bit
2379 base += n; 2445 * is cleared to avoid confusion as to whether this is a
2380 } 2446 * request to place the page on the freelist or to destroy
2447 * it
2382 tcount -= n; 2448 2
2383 /> 2449 if ((rp->r_flags & RAOUTOFSPACE) | |
2384 * |f we created pages wo initializing themconpletely, 2450 (vp->v vfsp >vfs_flag & VFS_UNMOUNTED))
2385 * we need to zero the part that wasn't set up. 2451 flags = (flags & ~B_FREE) | B_INVAL | B_FORCE;
2386 * This happens on a npst EOF wite cases and if
2387 * we had sone sort of error during the uionove. 2453 if (len == 0) {
2388 */ 2454 /*
2389 if (!vpmenable & pagecreate) { 2455 * |f doing a full file synchronous operation, then clear
2390 if ((uio->uio_|offset & PAGECFFSET) || n == 0) 2456 * the RADIRTY bit. |If a page gets dirtied while the flush
2391 (void) kzero(base, PAGESIZE - n); 2457 * is happening, then R4ADI RTY will get set again. The
2458 * RADI RTY bit nust get cleared before the flush so that
2393 if (pgcreated) { 2459 * we don’t lose this information.
2394 /* 2460 *
2395 * Caller is responsible for this page, 2461 * |f there are no full file async write operations
2396 * it was not created in this |oop. 2462 * pending and RDIRTY bit is set, clear it
2397 */ 2463 */
2398 pgcreated = 0; 2464 if (off == (u_offset_t)0 &&
2399 } else { 2465 I(flags & B_ASYNC) &&
2400 /* 2466 (rp->r_flags & R4DIRTY))
2401 * For bug 1094402: segnap_pagecreate | ocks 2467 nmut ex_ent er (& p- >r_st at el ock);

new usr/src/uts/comon/fs/nfs/nfs4_client.c 13 new usr/src/uts/comon/fs/nfs/nfs4_client.c 14

2468 rdirty = (rp->r_flags & R4DI RTY); 2534 * "jo_off" and "io_len" are returned as

2469 rp->r_flags & ~R4DI RTY; 2535 * the range of pages we actually wote.

2470 mut ex_exi t (& p->r_st at el ock) ; 2536 * This allows us to skip ahead nore quickly

2471 } else if (flags & B_ASYNC && off == (u_offset_t)0) { 2537 * since several pages may’ve been dealt

2472 nut ex_ent er (& p- >r _st at el ock); 2538 * with by this iteration of the | oop.

2473 if (rp->r_flags & R4DIRTY && rp->r_awcount == 0) { 2539 */

2474 rdirty = (rp->r_flags & R4DI RTY); 2540 }

2475 rp->r_flags & ~R4DI RTY; 2541 nut ex_ent er (& p- >r _st at el ock);

2476 } 2542 }

2477 mut ex_exit (& p->r_stat el ock); 2543 mut ex_exi t (& p->r_stat el ock);

2478 } else 2544 1

2479 rdirty = 0;
2546 return (error);

2481 /* 2547 }

2482 * Search the entire vp list for pages >= off, and flush

2483 * the dirty pages. 2549 void

2484 =[] 2550 nfs4_inval i date_pages(vnode_t *vp, u_offset_t off, cred_t *cr)

2485 error = pvn_vplist_dirty(vp, off, rp->r_putapage, 2551 {

2486 flags, cr); 2552 rnode4_t *rp;

2488 /* 2554 rp = VIOR4(vp);

2489 * If an error occurred and the file was marked as dirty 2555 if (IS SHADO/\(vp, rp))

2490 * before and we aren’t forcibly invalidating pages, then 2556 vp = RTOV4A(rp);

2491 * reset the R4ADI RTY fl ag. 2557 mut ex_ent er (& p->r_st at el ock) ;

2492 */ 2558 while (rp->r_flags & RATRUNCATE)

2493 if (error & rdirty && 2559 cv_wait (& p->r_cv, & p->r_statel ock);

2494 (flags & (B_INVAL | B FORCE)) != (B_INVAL | B_FORCE)) { 2560 rp->r fl ags | = R4TRUNCATE:

2495 mut ex_ent er (& p->r_stat el ock) 2561 if (off (u_offset_t)0) {

2496 rp->r_flags | = RADIRTY; 2562 rp->r_flags & ~R4DI RTY;

2497 mut ex_exi t (& p->r_st at el ock) ; 2563 if (!(rp->r_flags & R4STALE))

2498 } 2564 rp->r_error = 0;

2499 } else { 2565 1

2500 /* 2566 rp->r_truncaddr = off;

2501 * Do a range from[off...off + len) |ooking for pages 2567 mut ex_exi t (& p->r statel ock);

2502 * to deal with. 2568 (void) pvn_vplist_dirty(vp, off, r p- >r _put apage,

2503 */ 2569 B INVAL | B_TRUNC, cr);

2504 error = 0; 2570 mut ex_ent er (& p- >r _st at el ock)

2505 io_len = 0; 2571 rp->r_flags & ~RATRUNCATE;

2506 eoff = off + len; 2572 cv_broadcast (& p->r_cv);

2507 mut ex enter(&rp >r_statel ock); 2573 mut ex_exit (& p->r_stat el ock);

2508 for (io_off = off; io_off < eoff &% io_off < rp->r_size; 2574 }

2509 io_off += |o_| en) {

2510 mut ex_exit (& p->r_stat el ock); 2576 static int

2511 /* 2577 nfs4_mmt _kstat _update(kstat_t *ksp, int rw)

2512 * |If we are not invalidating, synchronously 2578 {

2513 * freeing or witing pages use the routine 2579 mtinfod4_t *m;

2514 * page_| ookup_nowait() to prevent reclaimng 2580 struct mmtinfo_kstat *mk;

2515 * themfromthe free list. 2581 vfs_t *vfsp;

2516 *

2517 if ((flags & B.INVAL) || !(flags & B_ASYNO)) { 2583 /* this is a read-only kstat. Bail out on a wite */

2518 pp = page_| ookup(vp, io_off, 2584 if (rw == KSTAT_WRI TE)

2519 (flags & (B_INVAL | B_FREE)) ? 2585 return (EACCES);

2520 SE_EXCL : SE_SHARED);

2521 } else {

2522 pp = page_| ookup_nowai t (vp, io_off, 2588 /*

2523 (flags & B_FREE) ? SE _EXCL : SE_SHARED); 2589 * W don't want to wait here as kstat_chain_|l ock coul d be held by

2524 } 2590 * dounnount (). dounnount () takes vfs_reflock before the chain | ock
2591 * and thus could |l ead to a deadl ock.

2526 if (pp == NULL || Ipvn getdl rty(pp, flags)) 2592 */

2527 io_len = PAGESI 2593 vfsp = (struct vfs *)ksp->ks_private;

2528 el se {

2529 err = (*rp->r_putapage)(vp, pp, & o_off, 2595 m = VFTOM 4(vfsp);

2530 & o_len, flags, cr); 2596 m k = (struct mmtinfo_kstat *)ksp->ks_dat a;

2531 if (lerror)

2532 error = err; 2598 (void) strcpy(mk->m k_proto, m->m _curr_serv->sv_knconf->knc_proto);

2533 /*

new usr/src/uts/comon/fs/nfs/nfs4_client.c 15 new usr/src/uts/comon/fs/nfs/nfs4_client.c 16
2600 m k->ni k_vers = (uint32_t)m ->mi _vers;
2601 m k->m k_flags = m->m _fl ags; 2667 void
2602 /* 2668 nfs4_wite_error(vnode_t *vp, int error, cred_t *cr)
2603 * The sv_secdata holds the flavor the client specifies. 2669 {
2604 * |f the client uses default and a security negotiation 2670 mtinfo4_t *m;
2605 * occurs, sv_currsec will point to the current flavor 2671 clock_t now = ddi _get | bolt();
2606 * selected fromthe server flavor |ist.
2607 * sv_currsec is NULL if no security negotiation takes place. 2673 m = VIOM 4(vp);
2608 */ 2674 /*
2609 m k->m k_secnod = m ->m _curr_serv->sv_currsec ? 2675 * In case of forced unnobunt, do not print any nessages
2610 m ->m _curr_serv->sv_currsec->secnod : 2676 * since it can flood the console with error nessages.
2611 m ->m _curr_serv->sv_secdat a- >secnod; 2677 *
2612 m k->ni k_curread = (uint32_t)m->m curread 2678 if (m->m _vfsp->vfs_flag & VFS_UNMOUNTED)
2613 m k- >m k curwrltez(umt32t)m >m _curwite; 2679 return;
2614 m k->mi k_retrans = m->ni_retrans;
2615 m k- >mkt|mao:m->m'_timao; 2681 i
2616 m k->m k_acregnmin = HR2SEC(mi - >mi _acregm n); 2682 * |f the mount point is dead, not recoverable, do not
2617 m k->mi k_acregnmax = HR2SEC(mi - >ni _acr egnax) ; 2683 * print error nessages that can flood the console.
2618 m k->m k_acdi rmin = HR2SEC(mi ->m _acdi rmn); 2684 */
2619 m k->ni k_acdi rmax = HRZSEC(mi - >ni _acdi r max) ; 2685 if (m->m_flags & M 4_RECOV_FAIL)
2620 m k- >ni k_nor esponse = (uint32_t)ni->ni _noresponse; 2686 return;
2621 m k->ni k_failover = (uint32_t)m->ni _failover;
2622 m k->ni k_remap = (uint32_t)m->ni _renap; 2688 /*
2689 * No use in flooding the console w th ENOSPC
2624 (void) strcpy(m k->m k_curserver, m->m _curr_serv->sv_hostnane); 2690 */ nessages fromthe sane file system
2691 *
2626 return (0); 2692 if ((error !'= ENOSPC && error !|= EDQUQT) ||
2627 } 2693 now - m->m prlntftln'e>0)
2694 zonei d_t zoneid = m ->m _zone->zone_i d;
2629 void
2630 nfs4_mt_kstat _init(struct vfs *vfsp) 2696 #ifdef DEBUG
2631 { 2697 nfs_perror(error, "NFS%d wite error on host %: %n\n",
2632 mtinfod4_t *m = VFTOM 4(vfsp); 2698 | m ->m _vers, VTOR4(vp)->r_server->sv_hostnane, NULL);
2699 t#el se
2634 /* 2700 nfs_perror(error, "NFS wite error on host %: %n\n",
2635 * PSARC 2001/ 697 Contract Private Interface 2701 VTOR4(vp) - >r _server->sv_host name, NULL);
2636 * Al nfs kstats are under SunMC contract 2702 #endi f
2637 * Please refer to the PSARC |isted above and contact 2703 if (error == ENOSPC || error == EDQUOT) {
2638 * SunMC before nmaki ng any changes! 2704 zem, _err(zonei d, CE_CONT,
2639 * 2705 "AFile: userid=%l, groupid=%l\n"
2640 * Changes nust be reviewed by Solaris File Sharing 2706 crgetuid(cr), crgetgl d(cr));
2641 * Changes nust be conmunicated to contract-2001-697@un. com 2707 if (crgetui d(curthread— >t _cred) != crgetuid(cr) ||
2642 * 2708 crgetgid(curthread->t _cred) != crgetgid(cr)) {
2643 */ 2709 zcmm_err (zonei d, CE_CONT,
2710 "AUser: userid=%l, groupid=%l\n",
2645 m->m _i o_kst ats = kstat _create_zone("nfs", getm nor(vfsp->vfs_dev), 2711 crgetuid(curt hr ead- >t _cred),
2646 NULL, "nfs", KSTAT_TYPE IO, 1, 0, mi->m _zone->zone_id); 2712 crgetgid(curthread->t_cred));
2647 if (mM->m_io kstats) { 2713 }
2648 if (m->ni _zone->zone_id ! = GLOBAL_ZONEI D) 2714 m->m _printftine = now +
2649 kstat _zone_add(mi ->mi _i o_kstats, GLOBAL_ZONEID); 2715 nfs_wite_error_interval * hz;
2650 m->n _io_kstats->ks_lock = &mi ->mi _| ock; 2716 }
2651 kstat _install (m->ni_io_kstats); 2717 sfh4_print f handl e(VTOR4(vp) - >r _fh);
2652 } 2718 #ifdef DEBUG
2719 if (error == EACCES) {
2654 if ((m->m_ro_kstats = kstat_create_zone(nfs 2720 zcm. _err(zoneid, CE_CONT,
2655 get mi nor (vfsp->vfs_dev), "mtinfo", "nisc" KSTAT TYPE_RAW 2721 "nf s_bi o: cred 1s% kcred\ n
2656 sizeof (struct mtinfo_ kst at), 0, m->m _zone- >zone id)) !'= NULL) { 2722 cr == kcred ? "" : " not"
2657 if (mi->nm_zone->zone_id = G_(BAL_ZCNEI D) 2723 }
2658 kstat_zone_add(m ->m _ro_kstats, GLOBAL_ZONEID); 2724 #endif
2659 m ->m _ro_kstats->ks_update = nfs4_mmt _kst at _update; 2725
2660 m ->m _ro_kstats->ks_private = (void *)vfsp; 2726 }
2661 kstat _install (m->m _ro_kstats);
2662 } 2728 [*
2729 * Return non-zero if the given file can be safely menory mapped. Locks
2664 nfs4_mt _recov_kstat _init(vfsp); 2730 * are safe if whole-file (length and offset are both zero).
2665 } 2731 */

new usr/src/uts/comon/fs/nfs/nfs4_client.c 17 new usr/src/uts/comon/fs/nfs/nfs4_client.c
2798 Irp = list_next(&m->m _|lost_state, Irp)) {
2733 #define SAFE_LOCK(flk) ((flk).l_start == 0 & (flk).l_len == 0) 2799 if (Irp->lr_op !'= OP_LOCK && Irp->Ir_op !'= OP_LOCKU)
2800 conti nue;
2735 static int 2801 ASSERT(| rp->lr_vp != NULL);
2736 nfs4_saf emap(const vnode_t *vp) 2802 if ('VOP_CWP(Irp->Ir_vp, vp, NULL))
2737 { 2803 conti nue; * different file */
2738 | ocklist_t *I'1p, *next_IIp; 2804 if (lSAFE_LOCK(*Irp >Ir_f|k)) {
2739 int safe = 1; 2805 conflict = TRUE
2740 rnode4_t *rp = VIOR4A(vp); 2806 br eak;
2807 }
2742 ASSERT(nfs_rw_| ock_hel d(& p->r_I kserl ock, RWWRI TER)) ; 2808 }
2744 NFS4_DEBUG nf s4_cl i ent _map_debug, (CE_NOTE, "nfs4_safemap: " 2810 mut ex_exi t (& ->m _| ock);
2745 Tvp = %", (void *)vp)); 2811 return (conflict);
2812 }
2747 /*
2748 * Review all the locks for the vnode, both ones that have been 2814 [*
2749 * acquired and ones that are pending. W assune that 2815 * nfs_| ockconpl etion:
2750 * flk_active_l ocks_for_vp() has nmerged any | ocks that can be 2816 *
2751 * merged (so that if a process has the entire file locked, it is 2817 * |f the vnode has a lock that nekes it unsafe to cache the file, mark it
2752 * represented as a single |ock). 2818 * as non cachable (set VNOCACHE bit)
2753 * 2819 */
2754 * Note that we can't bail out of the loop if we find a non-safe
2755 * |l ock, because we have to free all the elenents in the Ilp |ist. 2821 void
2756 * We might be able to speed up this code slightly by not |ooking 2822 nfs4_| ockconpl etion(vnode_t *vp, int cnd)
2757 * at each lock’s | _start and | _len fields once we’ve found a 2823 {
2758 * non-safe |ock. 2824 rnode4_t *rp = VIOR4(vp);
2759 */
2826 ASSERT(nfs_rw_| ock_hel d(& p->r_| kserl ock, RWWRI TER)) ;
2761 Il'p = flk_active_l ocks_for_vp(vp); 2827 ASSERT(! | S_SHADON vp, rp));
2762 while (I'1p) {
2763 NFS4_DEBUG(nf s4 client map_debug, (CE NOTE, 2829 if (cnd == F_SETLK || cmd == F_SETLKW {
2764 "nfs4_safenmap: active lock (% PRId64 ", % PRId64 ")",
2765 Ilp->T1 _flock.l_start, Ilp->1_flock.l_len)); 2831 if (!nfs4_safemap(vp)) {
2766 if (!SAFE LOCK(I I p->11_fl ock)) { 2832 mut ex_ent er (&p- >v_| ock) ;
2767 safe = 0; 2833 vp->v_flag | = VNOCACHE;
2768 NFS4 DEBUG(nfs4_client_map_debug, (CE_NOTE, 2834 mut ex_exi t (&vp->v Iock)
2769 "nfs4_saf emap: unsafe active |ock (% PRI d64 2835 } else {
2770 ", % PRId64 ")", Ilp->II_flock.l_start, 2836 nmut ex_ent er (&p->v_| ock) ;
2771 I'lp->1_flock.l_len)); 2837 vp->v_flag & ~VNOCACHE;
2772 } 2838 mut ex_exi t (&vp->v_| ock) ;
2773 next _|lp = I1lp->1_next; 2839 }
2774 VN_RELE(I | p->I'1 _vp); 2840 }
2775 kmem free(llp, si zeof (*1'lp)); 2841 I *
2776 Ilp = next_l1p; 2842 * The cached attributes of the file are stale after acquiring
2777 } 2843 * the lock on the file. They were updated when the file was
2844 * opened, but not updated when the |ock was acquired. Therefore the
2779 NFS4_DEBUG(nf s4_cl i ent rmp debug, (CE_NOTE, "nfs4_safemap: %", 2845 * cached attributes are invalidated after the lock is obtained.
2780 safe ? "safe" : "unsafe")); 2846 *
2781 return (safe); 2847 PURGE_ATTRCACHE4(vp) ;
2782 } 2848 }
2784 | * 2850 /* ARGSUSED */
2785 * Return whether there is a lost LOCK or LOCKU queued up for the given 2851 static void *
2786 * file that would neke an mmap request unsafe. cf. nfs4_safemap(). 2852 nfs4_mi _init(zoneid_t zoneid)
2787 */ 2853 {
2854 struct m 4_globals *m g;
2789 bool _t
2790 nfs4_map_l ost _| ock_conflict(vnode_t *vp) 2856 m g = knem al | oc(si zeof (*m g), KM SLEEP);
2791 { 2857 mut ex_i ni t (& g->mi g_| ock, NULL, MUTEX DEFAULT, NULL);
2792 bool _t conflict = FALSE; 2858 list_create(&mg->mg_li st si zeof (mti nf o4 t)
2793 nfs4_lost_rqgst_t *lrp; 2859 of fsetof (mtinfo4_t, m _zone_node));
2794 mtinfo4_t *m = VIOM 4(vp); 2860 m g- >ni g_dest ruct or _cal ied = B_FALSE;
2861 return (mg);
2796 mut ex_ent er(&m >m _| ock); 2862 }
2797 for (I'rp = list_head(&ni->m _|ost_state); Ilrp != NULL;

new usr/src/uts/comon/fs/nfs/nfs4_client.c

2864 [*

2865 * Callback routine to tell all NFSv4 mounts in the zone to start tearing down
2866 * state and killing off threads.

2867

2868 /*
2869 static void

2870 nfs4_mi _shutdown(zonei d_t zoneid, void *data)

2871 {
2872
2873
2874

2876
2877
2878
2879
2880
2881
2882
2883
2884
2885

2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929

struct m4_globals *m g = data;
mtinfod4_t *m;
nfs4_server _t *np;

NFS4_DEBUQ(nf s4_cl i ent _zone_debug, (CE_NOTE,
"nfs4_m _shutdown zone %\ n", zoneid));

ASSERT(nig !'= NULL)

i) o

mut ex_ent er (&ni g->mi g_| ock) ;

m = |ist_head(&m g->mg_| Ilst)

if (m == NULL) {
nutex_exn(&m' g->m g_| ock) ;
br eak;

}

NFS4 _DEBUG(nf s4_cl i ent _zone_debug, (CE_NOTE,
"nf s4_mi _shut down stopping vis %\n", (v0| d *)m->m _vfsp));
/*
* purge the DNLC for this filesystem
*/

/(voi d) dnlc_purge_vfsp(m->m _vfsp, 0);
*

* Tell existing async worker threads to exit.

*/
mut ex_ent er (& - >m _async_| I ock) ;
m ->m _nmax_threads = 0;
NFS4_WAKEALL_ASYNC WORKERS(mi - >ni _async_work_cv) ;
/*

* Set the appropriate flags, signal and wait for both the
* async manager and the inactive thread to exit when they're
* done with their current work.

*/
mut ex_ent er (& ->m _| ock) ;
m->ni_flags |= (M4_ ASYNC MGR_STOP| M 4_DEAD) ;
mut ex_exi t (&m ->m _| ock);
mut ex_exi t (&ni ->m _async_l ock);
if (m->m _manager_thread) {

nfs4_async_manager _stop(m ->m _vfsp);

1f (m->m _inactive_thread)
mut ex_ent er (& - >m _async_| ock);
cv_signal (&m ->m _inact_req_cv);
/*
* Wait for the inactive thread to exit.
*
while (m->m _inactive_thread !'= NULL)
cv_wait (&m ->m _async_cv, &m ->m _async_| ock);

}
nut ex_exi t (&m ->nmi _async_| ock);

}

/*
* Wit for the recovery thread to conplete that is, it will
* signal when it is done using the "m" structure and about
* to exit

*/
nmut ex_ent er (&ni ->mi _| ock) ;
while (m->ni_in_recovery > 0)
cv_wait(&m->ni _cv_in_recov, &nm->m _|ock);

19

new usr/src/uts/comon/fs/nfs/nfs4_client.c

2930
2931
2932
2933
2934
2935
2936
2937

2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967 }

mut ex_exi t (&m ->m _| ock);
/*

* We're done when every m has been done or t
* This one is done, renpve it fromthe |ist.
*/

list_renmove(&mg->mg_list, m);

mut ex_exi t (&m g->mi g_I ock);

20

he list is enpty.

zone_rel e_ref (&m ->m _zone_ref, ZONE_REF_NFSV4);

/*

* Rel ease hold on vfs and m done to prevent
* shutdown. This releases the hold in nfs4_m
*/

VFS_RELE(m ->m _vfsp);

M 4_RELE(m) ;
}
/*
* Tell each renew thread in the zone to exit
*/
mut ex_ent er (&nf s4_server_| st _| ock);
for (np = nfs4_server_|lst.forw, np != &fs4_server_|st;
mut ex_ent er (&p- >s_| ock) ;
if (np->zoneid == zoneid) {
/*

race with zone

_zonel i st _add.

np = np->forw) {

We add anot her hold onto the nfs4_server_t
because this will make sure tha the nfs4_server_t

stays around until nfs4_call back_fi

ni _zone destroys

unconditionally rel ease its holds on the

*
*
*
* the zone. This way, the renew thread can
*
*

nfs4_server_t.
*/
np->s_refcnt ++;
nfs4_mark_srv_dead(np);

mut ex_exi t (&p->s_| ock) ;

}
mut ex_exi t (&nfs4_server_| st _| ock);

2969 static void
2970 nfs4_m _free_gl obal s(struct m 4_gl obals *ni g)

2971 {
2972
2973
2974
2975 }

2977 | *

l'ist_destroy(&m g->mg_list) /* makes sure the |ist
mut ex_destroy(&m g->m g_| ock);
9));

kmem free(m g, sizeof (*m

ARGSUSED */

2978 static void
2979 nfs4_mi _destroy(zoneid_t zoneid, void *data)

2980 {
2981

2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994 }

struct m4_globals *nig = data;

NFS4 _DEBUG(nfs4_client_zone debug, (CE_NOTE,
"nfs4_m _destroy zone %\ n", zoneid));
ASSERT(nig !'= NULL);
mut ex_ent er (&m g- >m g_l ock);
if (list_head(&mg->mg_list) !'= NULL)
/* Still waiting for VFS_FREEVFS()
m g->m g_destructor_cal l ed = B_TRUE;
mut ex_exi t (&m g->m g_| ock);
return;

}
nfs4_m _free_gl obal s(mg);

is empty */

new usr/src/uts/comon/fs/nfs/nfs4_client.c 21

2996 /*

2997 * Add an NFS nount to the per-zone |ist of NFS nounts.

2998 */
2999 void

3000 nfs4_m _zonelist_add(mtinfod4_t *m)

3001 {
3002

3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014 }

3016 /*

struct m4_globals *mg;

m g = zone_getspecific(m4_list_key, m->m _zone);

mut ex_ent er (&m g->m g_| ock) ;

list_insert_head(&mg->mig_list, m);

/*
* hold added to elimnate race with zone shutdown -this will be

* released in m _shutdown

M4_HOLD(m);
VFS_HOLD(mi - >mi _visp);
mut ex_exi t (&m g->m g_| Iock)

3017 * Renove an NFS nount fromthe per-zone |ist of NFS nounts.

3018 */
3019 int

3020 nfs4_mi _zonelist_renove(mtinfo4_t *m)

3021 {
3022
3023

3025
3026
3027
3028
3029
3030
3031

3033
3034
3035
3036
3037
3038
3039

3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053 }

3055 void

struct m 4_globals *nig;
int ret = 0;

m g = zone_getspecific(m4_list_key, m->m _zone);
mut ex_ent er (&m g->m g_| ock);
mut ex_ent er (&m ->m _| ock);
/* if this m is marked dead, then the zone already released it */
if (!(m->m_flags & M 4_DEAD))
list_remove(&mg->mg_list, m);
mut ex_exi t (&m ->m _| ock);

/* release the holds put on in zonelist_add(). */
VFS_RELE(m ->m _vfsp);

M 4 RELE(m)

ret = 1;
} else {

mut ex_exi t (&m ->m _| ock);
}
/*

* We can be called asynchronously by VFS_FREEVFS() after the zone
* shut down/ destroy cal | backs have executed; if so, clean up the zone's
* m gl obals.

/

if (list_head(&mg->mg_list) == NULL &&
m g->m g_destructor_call ed == B_TRUE) {
nfs4_nm free_global s(nig);
return (ret);

}
mut ex_exi t (&m g->m g_| ock) ;
return (ret);

3056 nfs_free_m 4(mtinfo4_t *m)

3057 {
3058
3059
3060
3061

nfs4_open_owner _t *f oop;

nf s4_oo_hash_| bucket _t *bucket p;
nfs4_debug_nsg_t *msgp;
int i;

new usr/src/uts/comon/fs/nfs/nfs4_client.c 22
3062 servinfo4_t *svp;

3064 /*

3065 * Code introduced here should be carefully evaluated to nake
3066 * sure none of the freed resources are accessed either directly
3067 * or indirectly after freeing them For eg: Introducing calls to
3068 * NFS4_DEBUG that use mtinfo4_t structure nenber after freeing
3069 * the structure nmenbers or other routines calling back into NFS
3070 * accessing freed mtinfo4_t structure nenber.

3071 */

3072 mut ex_ent er (&m - >m _| ock) ;

3073 ASSERT(mi - >ni _recovthread == NULL);

3074 ASSERT(ni->m _flags & M 4_ASYNC | MER _STCP) ;

3075 mut ex_exi t (& ->m _| ock) ;

3076 mut ex_ent er (&m - >m _async_l ock) ;

3077 ASSERT(mi ->m _t hr eads[NFS4_ASYNC QUEUE] == 0 &&

3078 m - >mi _t hr eads[NFS4_ASYNC_PGOPS_QUEUE] == 0);

3079 ASSERT(m ->m _manager _t hread == NULL);

3080 mut ex_exi t (& ->nmi _async_l ock);

3081 if (m->m _io_kstats)

3082 kstat _del ete(m ->m _i o_kstats);

3083 m ->m _io_kstats = NULL;

3084 1

3085 if (m->m _ro_kstats)

3086 kstat _del ete(m ->m _ro_kstats);

3087 m->m _ro_kstats = NULL;

3088 }

3089 if (m->m _recov_ksp)

3090 kstat _delete(m ->ni _recov_ksp);

3091 m ->m _recov_ksp = NULL;

3092 }

3093 mut ex_ent er (&ni ->ni _nmsg_l i st_| ock);

3094 while (nmsgp = list head(&m >mi rngIlst)) {

3095 list_remove(&n ->m _nsg_list, nmsgp);

3096 nfs4_free_nmsg(nsgp);

3097 1

3098 mut ex_exi t (& ->m _nmsg_l i st_| ock);

3099 l'ist_destroy(&m->m _nsg_list);

3100 if (m->m _fname !'= NULL)

3101 fn_rel e(&nm ->m _fname);

3102 if (m->m rootfh !'= NULL)

3103 sfh4_rel e(&ni->ni _rootfh);

3104 if (m->m _srvparentfh !="NULL)

3105 sfh4_rel e(&m ->m _srvparentfh);

3106 SVp = m->m _servers;

3107 sv4_free(svp);

3108 mut ex_destroy(&m ->m _| ock);

3109 mut ex_destroy(&m ->m _async_| ock);

3110 mut ex_destroy(&m ->m _nmsg_list_| ock);

3111 nfs_rw destroy(&m ->m _recovl ock);

3112 nfs_rw destroy(&m ->m _renane_| ock);

3113 nfs_rw /_destroy(&n ->ni “fh_l ock);

3114 cv_destroy(&m ->ni _failover_cv);

3115 cv_destroy(&m ->m _async_reqs_ cv)

3116 cv_destroy(&m ->m _async_wor k cv[NFS4 ASYNC_QUEUE]) ;

3117 cv_destroy(&m ->m _async_wor k_cv[NFS4_ASYNC_PGOPS QJEUE])
3118 cv_destroy(&m ->ni _async_cv);

3119 cv_destroy(&m ->m _inact _r eq_cv) ;

3120 /*

3121 * Destroy the oo hash lists and mutexes for the cred hash table.
3122 */

3123 for (i = 0; i < NFS4_NUM OO BUCKETS; i++) {

3124 bucketp = & m->m _oo_list[i]);

3125 /* Destroy any remai ni ng open owners on the list */
3126 foop = list_head(&bucketp->b_oo_hash_list);

3127 while (foop !'= NULL) {

new usr/src/uts/comon/fs/nfs/nfs4_client.c

3128 |'i st _renpve(&bucket p->b_oo_hash_list, foop);
3129 nf s4_dest roy_open_owner (f oop);
3130) foop = list_head(&bucket p->b_oo_hash_list);
3131

3132 i st_destroy(&bucketp->b_oo_hash_list);
3133 mut ex_dest r oy(&ucket p->b_I ock) ;

3134 }

3135 /*

3136 * Enpty and destroy the freed open owner |ist.
3137 */

3138 foop = list_head(&m ->m _foo_list);

3139 while (foop !'= NULL) {

3140 list_remve(&n->m _foo_list, foop);
3141 nf s4_destroy_open_owner (foop) ;

3142 foop = list_head(&m ->m _foo_list);
3143 }

3144 I'ist_destroy(&m->m _foo_list);

3145 |ist_destroy(&n ->ni _bseqid_|i st) ;

3146 list_destroy(&m->ni _|ost_state);

3147 avl _destroy(&m ->ni _fil ehandl es);

3148 kmem free(m, sizeof (*m));

3149 }

3150 void

3151 m _hold(mtinfo4_t *m)

3152 {

3153 atom c_add_32(&m ->mi _count, 1);

3154 ASSERT(m ->m _count != 0);

3155 }

3157 void

3158 mi _rele(mtinfo4_t *m)

3159 {

3160 ASSERT(m ->m _count != 0);

3161 if (atom c_add_32_nv(&m ->m _count, -1) == 0) {
3162 nfs_free_m4(m);

3163 1

3164 }

3166 vnode_t nfs4_xattr_not supp_vnode;

3168 void

3169 nfs4_clnt_init(void)

3170 {

3171 nfs4_vnops_init();

3172 (void) nfs4_rnode_init();

3173 (void) nfs4_shadow init();

3174 (void) nfs4_acache_init();

3175 (void) nfs4_subr_init();

3176 nfs4_acl _init();

3177 nfs_i dmap_ini t(),

3178 nfs4_cal | back_init();

3179 nfs4_secinfo_init();

3180 #ifdef DEBUG

3181 tsd_create(&nfs4_tsd_key, NULL);

3182 #endi f

3184 I*

3185 * Add a CPR cal | back so that we can update client
3186 * | ease after a suspend and resune.

3187 */

3188 cid = call b_add(nfs4_client_cpr_callb, 0, CB_.CL_CPR RPC, "nfs4");
3190 zone_key_create(&m 4_list_key, nfs4_mi _init, nfs4_m _shutdown,
3191 nfs4_m _destroy);

3193

/*

new usr/src/uts/comon/fs/nfs/nfs4_client.c

24

3194 * Initialise the reference count of the notsupp xattr cache vnode to 1
3195 * so that it never goes away (VOP_INACTIVE isn't called on it).
3196 */

3197 nfs4_xattr_notsupp_vnode.v_count = 1;

3198 }

3200 void

3201 nfs4_clnt_fini(void)

3202 {

3203 (void) zone_key_del ete(m 4_list_key);

3204 nfs4_vnops_fini();

3205 (void) nfs4_rnode_fini();

3206 (voi d) nfs4_shadow fini();

3207 (void) nfs4_acache fini();

3208 (void) nfs4_subr_fini();

3209 nfs_i dmap flnl(),

3210 nfs4_cal I back_fini();

3211 nfs4_secinfo_fini();

3212 #ifdef DEBUG

3213 tsd_destroy(&nfs4_tsd_key);

3214 #endif

3215 if (cid)

3216 (void) callb_delete(cid);

3217 }

3219 /* ARGSUSED*/

3220 static bool ean_t

3221 nfs4_client_cpr_callb(void *arg, int code)

3222 {

3223 /*

3224 * W get called for Suspend and Resune events.
3225 * For the suspend case we sinply don’t care!
3226 *

3227 if (code == CB_CODE_CPR _CHKPT) {

3228 return (B_TRUE);

3229 1

3231 /*

3232 * When we get to here we are in the process of
3233 * resuming the system from a previous suspend.
3234 td

3235 nfs4_client_resumed = gethrestinme_sec();

3236 return (B_TRUE);

3237 }

3239 void

3240 nfs4_renew | ease_thread(nfs4_server_t *sp)

3241 {

3242 int error = 0;

3243 time_t tnp_last_renewal _tinme, tnp_tinme, tnp_now_tine, kip_secs;
3244 clock_t tick_delay = 0;

3245 clock_t tine_left = O;

3246 callb_cpr_t cpr_info;

3247 knmut ex_t cpr_I ock;

3249 NFS4 _DEBUG(nfs4_client_| ease_debug, (CE_NOTE,
3250 "nfs4_renew | ease_thread: acting on sp Ox%) , (void*)sp));
3251 mut ex_i ni t (&pr_| ock, NULL, MUTEX_DEFAULT, NULL);
3252 CALLB_CPR_I NI T(&cprJ nfo, &cprJ ock, call bigeneri c_cpr, "nfsvdlLease");
3254 mut ex_ent er (&sp- >s_| ock) ;

3255 /* sp->s_lease_tinme is set via a GETATTR */

3256 sp->l ast _renewal _tine = gethrestime_sec();

3257 sp->l ease_valid = NFS4 LEASE_UNI NI Tl ALI ZED;

3258 ASSERT(sp->s_r efcnt >=1);

new usr/src/uts/comon/fs/nfs/nfs4_client.c 25

3260
3261
3262

3264
3265

3267

3269
3270
3271

3273
3274
3275
3276

3278
3279
3280
3281
3282
3283
3284
3285

3287
3288
3289

3291
3292
3293
3294

3296

3298
3299

3301
3302
3303
3304

3306
3308

3310
3311
3312

3314
3315
3316
3317
3318
3319
3320
3321

3323
3324
3325

for (1)
if (!sp->state_ref_count ||
sp->l ease_valid ! = NFS4_LEASE_VALID) {

ki p_secs = MAX((sp->s_| ease_tinme >> 1)
(3 * sp->propagation_del ay.tv_sec), 1);

tick_delay = SEC TO TI CK(ki p_secs);

NFS4_DEBUG(nf s4_cl i ent _| ease_debug, (CE_NOTE,
"nfs4_renew_ | ease_thread: no renew : thread "
"wait %d secs", kip_secs));

NFS4_DEBUG(nf s4_cl i ent _| ease_debug, (CE_NOTE,
"nfs4_renew_ | ease_thread: no renew : "
"state_ref_count %, |ease_valid %",
sp->state_ref_count, sp->lease_valid));

mut ex_ent er (&cpr_| ock);

CALLB_CPR_SAFE BEG N(&cpr_info);

mut ex_exi t (&pr_| ock) ;

tine_left = cv_relti medV\ait(&sp— >cv_thread_exit,
&sp->s_l ock, tick_delay, TR CLOCK TICK);

mut ex_ent er(&cpr _lock);

CALLB_CPR_SAFE_END(&cpr _i nfo, &cpr_l ock);

nut ex_exi t (&cpr _| ock);

NFS4_DEBUG(nf s4_cl i ent _| ease_debug, (CE_NOTE,
"nfs4_renew_ | ease_thread: no renew. "
"time left %d", time_left));

if (sp->s_thread_exit == NFS4_THREAD EXI T)
goto die;
conti nue;

}
tnp_l ast _renewal _tine = sp->last_renewal _tine;

tnp_tinme = gethrestine_sec() - sp->last_renewal _tinme +
(3 * sp->propagation_del ay.tv_sec);

NFS4_DEBUG(nf s4_cl i ent _| ease_debug, (CE_NOTE,
"nfs4_renew_| ease_thread: tnp_tine %d, "
"sp->l ast_renewal _tine %d", tnp_tine,
sp->l ast _renewal _tine));

ki p_secs = MAX((sp->s_lease_tinme >> 1) tnp_tine, 1);

tick_delay = SEC TO TI CK(ki p_secs);

NFS4_DEBUG(nf s4_cl i ent _| ease_debug, (CE_NOTE,
"nfs4_renew | ease_thread: valid | ease: sleep for %d "
"secs", kip_secs));

mut ex_ent er (&cpr _| ock);

CALLB_CPR_SAFE_BEG N(&cpr info);

mut ex_exi t (&pr_| ock);

time_left = cv_relti nedwai t (&sp->cv_thread_exit, &sp->s_|ock,
tick_delay, TR _CLOCK_TI CK);

mut ex_ent er (&cpr _| ock);

CALLB_CPR_SAFE_END(&cpr _i nfo, &cpr_I ock);

mut ex_exi t (&pr_l ock);

NFS4_DEBUG nfs4_cli ent _| ease_debug, (CE_NOTE,
"nfs4_renew | ease_thread: valid | ease: time left %d :"
"sp last_renewal _time %d, nfs4_client_resuned %d, "

new usr/src/uts/comon/fs/nfs/nfs4_client.c 26

3326
3327
3328

3330
3331

3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346

3348
3349
3350
3351
3352
3353

3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375

3377
3378

3380
3381
3382

3384
3385
3386
3387
3388
3389
3390
3391

die:

“tnp_l ast _renewal _tine %d", time_left,
sp->l ast_renewal _tine, nf 34 client_resuned,
tnp_l ast _renewal _ti n‘e))

if (sp->s_thread_exit == NFS4_THREAD EXI T)
goto die;

if (tnp_last_renewal _tine == sp->last_renewal _tine ||
(nfs4_client_resuned !'= 0 &&
nfs4_client_resumed > sp->last_renewal _tinme)) {
/*
* | ssue RENEWop since we haven't renewed the | ease
* since we slept.
*/

tnp_now_ tine = gethrestine_sec();
error = nfsdrenew(sp);
*

* Need to re-acquire sp’s |lock, nfs4drenew()
* relinqueshes it.
*/

nut ex_ent er (&sp->s_| ock) ;

/*

* See if soneone changed s_thread_exit while we gave
* up s_| ock.

*/

if (sp->s_thread_exit == NFS4_THREAD EXI T)
goto die;

if (!error) {

* check to see if we inplicitly renewed while
* we waited for a reply for our RENEWcall.
*/

if (tnp_last_renewal _time ==
sp->l ast _renewal _tine) {
/* no inplicit renew cane */
sp->l ast_renewal _tinme = tnp_now_tine;
} else {
NFS4_DEBUG(nf s4_cl i ent _| ease_debug,
(CE_NOTE, "renew_thread: did "
"implicit renewal before reply "
"fromserver for RENEW));

} else {
/* figure out error */
NFS4 _DEBUG(nfs4_client_| ease_debug, (CE_| NOTE
“renew_t hread: nfs4renew returned error"
" 9", error));

NFS4_DEBUG(nf s4_cl i ent _| ease_debug, (CE_NOTE,
"nfs4_renew | ease_thread: thread exiting"));

while (sp->s_otw call_count !'= 0)

NFS4 _DEBUG(nfs4_client_| ease_debug, (CE_NOTE,
"nfs4_renew | ease_thread: waiting for out st andi ng '
"otwcalls to finish for sp Ox%, current "
"s_otw_call _count %", (void *)sp,
sp->s_otw_cal | _count));

nmut ex_ent er (&pr _| ock) ;

CALLB_CPR_SAFE_BEG N(&cpr info);

new usr/src/uts/comon/fs/nfs/nfs4_client.c

3392 mut ex_exi t (&pr_I ock);

3393 cv_wai t (&p->s_cv_otw _count, &sp->s_| ock);

3394 nmut ex_ent er (&cpr _| ock);

3395 CALLB_CPR_SAFE_END(&cpr info, &cpr_Iock);

3396 mut ex_exi t (&pr_| ock) ;

3397 }

3398 mut ex_exi t (&sp->s_l ock);

3400 nfs4_server_rel e(sp); /* free the thread' s reference */
3401 nfs4_server_rel e(sp); /* free the list’'s reference */
3402 sp = NULL;

3404 done:

3405 mut ex_ent er (&cpr_| ock) ;

3406 CALLB_CPR_EXI T(&cpr _| i nf 0); /* drops cpr_|lock */

3407 mut ex_destroy(&pr_Tock);

3409 NFS4_DEBUG(nf s4_cl i ent _| ease_debug, (CE_NOTE,

3410 "nfs4_renew | ease_thread: renew thread exit officially"));
3412 zthread_exit();

3413 /* NOT REACHED */

3414 }

3416 /*

3417 * Send out a RENEWop to the server.

3418 * Assunes sp is |ocked down.

3419 */

3420 static int

3421 nf s4renew(nfs4_server_t *sp)

3422 {

3423 COVPOUND4ar gs_cl nt args;

3424 COVPOUNDAr es_cl nt res;

3425 nfs_argop4 argop[1];

3426 int doqueue = 1;

3427 int rpc_error;

3428 cred_t *cr;

3429 mtinfod4_t *m;

3430 timespec_t prop_tinme, after_tinme;

3431 int needrecov = FALSE;

3432 nfs4_recov_state_t recov_state

3433 nfs4_error_t e = { 0, NFS4_ CK RPC > SUCCESS };

3435 NFS4_DEBUG(nf s4_cl i ent _| ease_debug, (CE_NOTE, "nfs4renew'));
3437 recov_state.rs_flags = O;

3438 recov_state.rs_numretry_despite_err = 0;

3440 recov retry

3441 m = sp->mtinfod_list;

3442 VFS_HOLD(mi ->ni _vfsp);

3443 mut ex_exit (&sp->s_| ock) ;

3444 ASSERT(m != NULL)

3446 e.error = nfs4_start_op(m, NULL, NULL, & ecov_state);
3447 if (e.error) {

3448 VFS_RELE(ni ->ni _vfsp);

3449 return (e.error)

3450 }

3452 /* Check to see if we're dealing with a marked-dead sp */
3453 mut ex_ent er (&sp->s_| ock) ;

3454 if (sp->s_thread_exit == NFS4_THREAD EXIT) {

3455 mit ex_exi t (&sp->s_l ock);

3456 nfs4_end_op(m, NULL, NULL & ecov_state, needrecov);
3457 VFS_RELE(m - >m _vf sp)

new usr/src/uts/comon/fs/nfs/nfs4_client.c

3458
3459

3461
3462
3463
3464
3465
3466
3467
3468
3469
3470

3472

3474
3475

3477

3479
3480
3481
3482
3483

3485

3487
3488

3490
3491
3492
3493
3494

3496
3497

3499
3500

3502
3503

3505

3507
3508
3509
3510

3512
3513

3515
3516
3517
3518
3519
3520
3521
3522
3523

return (0);
}
/* Make sure m hasn’t changed on us */
if (m != sp->mtinfo4 Ilst)

/* Must drop sp’s lock to avoid a recursive nmutex enter */
mut ex_exi t (&sp->s_| ock) ;

nfs4_end_op(m, NULL, NULL, &recov_state, needrecov);
VFS_RELE(m ->m _vfsp);

mut ex_ent er (&sp->s_| ock) ;

goto recov_retry;

}
mut ex_exi t (&sp->s_| ock);
args. ctag = TAG RENEW

args.array_len = 1;
args.array = argop;

argop[0] . argop = OP_RENEW

mut ex_ent er (&sp->s_| ock) ;

argop[0] . nfs_ar gop4_u. oprenew. clientid = sp->clientid;
cr = sp->s_cred;

crhold(cr);

mut ex_exi t (&sp->s_| ock);

ASSERT(cr != NULL)

/* used to figure out RTT for sp */
get hresti nme(&prop_tine);

NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
'nfs4renew. % call, sp Ox%", needrecov ? "recov" : "first"
(voi d*)sp));

NFS4_DEBUG(nf s4_cl i ent _| ease_debug, (CE_NOTE, "before: %d s %d ns ",
prop_tinme.tv_sec, prop_tine.tv_nsec));

DTRACE_PROBE2(nfs4__renew__start, nfs4_server_t *, sp,
mtinfod t *, m);

rfsdcall (m, &args, &es, cr, &oqueue, 0, &e);
crfree(cr);

DTRACE_PROBE2(nfs4__renew__end, nfs4_server_t *, sp,
mtinfod_t *, m);

gethrestinme(&after_tine);

nmut ex_ent er (&sp->s_| ock);
sp- >pr opagat i on_del ay. tv_sec =

MAX(1, after_time.tv_sec - prop_tine.tv_sec);
mut ex_exi t (&sp->s_l ock);

NFS4_DEBUG(nf s4_cl i ent _| ease_debug, (CE_NOTE, "after : %d s %d ns ",
after_tine.tv_sec, after_tine.tv_nsec));

if (e.error == 0 & res.status == NFS4ERR _CB_PATH DOMWN) {
(voi d) xdr_free(xdr_COVPOUND4res_cl nt, (caddr_t)&res);
nfs4_del egreturn_all (sp);
nfs4_end_op(m, NULL, NULL, & ecov_state, needrecov);
VFS_RELE(m ->mi _vfsp);
/*
* |f the server returns CB_PATH DOMWN, it has renewed
* the | ease and informed us that the call back path is
* down. Since the lease is renewed, just return 0 and

new usr/src/uts/comon/fs/nfs/nfs4_client.c 29 new usr/src/uts/comon/fs/nfs/nfs4_client.c
3524 * |let the renew thread proceed as nornal .
3525 */ 3591 /*
3526 return (0); 3592 * Bunp the nunmber of OPEN files (ie: those with state) so we know if this
3527 } 3593 * nfs4_server has any state to naeintain a |lease for or not.
3594 *
3529 needrecov = nfs4_needs_recovery(&e, FALSE, m ->nm _vfsp); 3595 * Also, nmarks the nfs4_server’s lease valid if it hasn't been done so already.
3530 if (!needrecov & e.error) { 3596 */
3531 nfs4_end_op(m, NULL, NULL, &recov_state, needrecov); 3597 void
3532 VFS _RELE(m ->m vfsp) 3598 nfs4_inc_state_ref_count_nol ock(nfs4_server_t *sp, mtinfo4_t *m)
3533 return (e.error); 3599 {
3534 } 3600 ASSERT(nut ex_owned(&sp->s_I ock));
3536 rpc_error = e.error; 3602 sp- >st at e_r ef _count ++;
3603 NFS4_DEBUG(nf s4_cl i ent _| ease_debug, (CE_NOTE,
3538 if (needrecov) { 3604 "nfs4_inc_state_ref_count: state_ref_count now %d",
3539 NFS4 _DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3605 sp->state_ref_count));
3540 "nfs4renew. initiating recovery\n"));
3607 if (sp->lease valid == NFS4_LEASE_UNI NI Tl ALI ZED)
3542 if (nfsd4_start_recovery(&e, m, NULL, NULL, NULL, NULL, 3608 sp->l ease_valid = NFS4_LEASE VALI D,
3543 OP_RENEW NULL, NULL, NULL) == FALSE)
3544 nfs4_end_op(m, NULL, NULL, &recov_state, needrecov); 3610 /*
3545 VFS _RELE(m ->m _vfsp); 3611 * If this call caused the | ease to be marked valid and/or
3546 if (le.error) 3612 * took the state_ref_count fromO to 1, then start the tine
3547 (void) xdr_free(xdr_COVWOUND4res_cl nt, 3613 * on | ease renewal .
3548 (caddr_t) &res); 3614 *
3549 nut ex_ent er (&sp->s_| ock) ; 3615 if (sp->lease_valid == NFS4_LEASE VALID && sp->state_ref_count == 1)
3550 goto recov_retry; 3616 sp->l ast _renewal _tine = gethrestime_sec();
3551 }
3552 /* fall through for res.status case */ 3618 /* update the number of open files for m */
3553 } 3619 m ->m _open_fil es++;
3620 }
3555 if (res.status) {
3556 if (res.status == NFS4ERR_LEASE_MOVED) { 3622 void
3557 | *EMPTY*/ 3623 nfs4_dec_state_ref_count(mtinfo4_t *m)
3558 /* 3624 {
3559 * XXX need to try every mtinfo4 in sp->mtinfod_list 3625 nfs4_server _t *sp;
3560 * to renew the | ease on that server
3561 */ 3627 /* this | ocks down sp if it is found */
3562 } 3628 sp = find_nfs4_server_all(m, 1);
3563 e.error = geterrno4(res. status);
3564 } 3630 if (sp != NULL) {
3631 nfs4_dec_state_ref_count_nol ock(sp, m);
3566 if (!rpc_error) 3632 mut ex_exi t (&sp->s_I ock);
3567 (voi d) xdr_free(xdr_COVPOUND4Ares_clnt, (caddr_t)&res); 3633 nfs4_server_rel e(sp);
3634 }
3569 nfs4_end_op(m, NULL, NULL, &recov_state, needrecov); 3635 }
3571 VFS_RELE(ni ->ni _vfsp); 3637 /*
3638 * Decrenent the nunber of OPEN files (ie: those with state) so we know if
3573 return (e.error); 3639 * this nfs4_server has any state to naintain a | ease for or not.
3574 } 3640 */
3641 void
3576 void 3642 nfs4_dec_state_ref_count_nol ock(nfs4_server_t *sp, mtinfo4_t *m)
3577 nfs4_inc_state_ref_count(mtinfo4_t *m) 3643 {
3578 { 3644 ASSERT(mut ex_owned(&p- >s_| ock)) ;
3579 nfs4_server_t *sp; 3645 ASSERT(sp->state_ref_count != O),
3646 sp->state_ref_count--;
3581 /* this |ocks down sp if it is found */
3582 sp = find_nfs4_server(m); 3648 NFS4 _DEBUG(nfs4_client_| ease_debug, (CE_NOTE,
3649 "nfs4_dec_state_ref_count: state ref count now %"
3584 if (sp !'= NULL) { 3650 sp->state_ref_count));
3585 nfs4_inc_state_ref_count_nol ock(sp, m);
3586 mut ex_exi t (&sp->s_| ock); 3652 m ->m _open_files--;
3587 nfs4_server_rel e(sp); 3653 NFS4 _DEBUG(nf s4_cl i ent _| ease_debug, (CE_NOTE,
3588 } 3654 "nfs4_dec_state_ref _count: ni open files %, v4 flags Ox%",
3589 } 3655 m->m _open_files, m->ni_flags));

new usr/src/uts/comon/fs/nfs/nfs4_client.c 31 new usr/src/uts/comon/fs/nfs/nfs4_client.c 32
3722 */
3657 /* We don’t have to hold the m _lock to test m _flags */
3658 if (m->m _open_files == && 3724 nfs4_sharedfh_t *
3659 (m->m _flags & M4_REMOVE_ON_LAST_CLCSE)) { 3725 sfh4_put(const nfs_fh4 *fh, mtinfo4_t *m, nfs4_sharedfh_t *key)
3660 NFS4 _DEBUG(nfs4_client_| ease_debug, (CE_NOTE, 3726 {
3661 "nfs4_dec_state_ref_count: renove rmtl nfod4 % since " 3727 nfs4_sharedf h_t *sfh, *nsfh;
3662 "we have closed the last open file", (void*)m)); 3728 avl _i ndex_t where;
3663) nfs4_renove_m _fromserver(m, sp); 3729 nfs4_sharedf h_t skey;
3664
3665 } 3731 if (!key) {
3732 skey.sfh_fh = *fh;
3667 bool _t 3733 key = &skey;
3668 inl ease(nfs4_server_t *sp) 3734 }
3669 {
3670 bool _t result; 3736 nsfh = kmem al | oc(si zeof (nf s4_sharedfh_t), KM SLEEP);
3737 nsfh->sfh_fh.nfs_fh4_len fh->nfs_fh4_len;
3672 ASSERT(nut ex_owned(&p- >s_| ock)); 3738 /*
3739 * W allocate the | argest possible filehandl e size because it's
3674 if (sp->lease_valid == NFS4_LEASE VALID && 3740 * not that big, and it saves us from possibly having to resize the
3675 gethrestine_sec() < sp->last_renewal _tinme + sp->s_|ease_tine) 3741 * buffer later.
3676 result = TRUE; 3742 */
3677 el se 3743 nsfh->sfh_fh.nfs_fh4_val = kmem al | oc(NFS4_FHSI ZE, KM SLEEP);
3678 result = FALSE; 3744 bcopy(f h- >nfs_fh4d_val, nsfh->sfh_fh.nfs_fh4 val, fh->nfs _fhd_len);
3745 mut ex_i ni t (&nsf h- >sfh_| ock, NULL, I\/UTEX_DEFAULT, NULL) ;
3680 return (result); 3746 nsfh->sfh_refcnt = 1;
3681 } 3747 nsfh->sfh_flags = SFH4_I N_TREE;
3748 nsfh->sfh_m = m'
3749 NFS4_DEBUG(nf s4 shar edf h _debug, (CE_NOTE, "sfh4_get: new object (%)",
3684 /* 3750 (void *)nsfh));
3685 * Return non-zero if the given nfs4_server_t is going through recovery.
3686 */ 3752 (void) nfs_rw enter_sig(&m->m _fh_l ock, RWWR TER, 0);
3753 sfh = avl _find(&nr->ni _filehandles, key, &nhere) ;
3688 int 3754 if (sfh 1= NULL)
3689 nfs4_server_in_recovery(nfs4_server_t *sp) 3755 mut ex_ent er (&sf h->sf h_| ock) ;
3690 { 3756 sfh->sfh_refcnt ++
3691 return (nfs_rw_| ock_hel d(&p->s_recovl ock, RWWRI TER)); 3757 nmut ex_exi t (&sf h- >sf h_l ock);
3692 } 3758 nfs_rw exit(&m->m _fh_| ock);
3759 /* free our specul ative allocs */
3694 /* 3760 kmem free(nsfh->sfh_fh.nfs_fh4_val, NFS4_FHSI ZE);
3695 * Conpare two shared filehandl e objects. Returns -1, 0, or +1, if the 3761 kmem free(nsfh, sizeof (nfs4_shar edf h _t));
3696 * first is less than, equal to, or greater than the second. 3762 return (sfh);
3697 */ 3763 }
3699 int 3765 avl _insert(&m ->m _fil ehandl es, nsfh, where);
3700 {sf h4crmp(const void *pl, const void *p2) 3766 nfs_rw exit(&m->m _fh_| ock);
3701
3702 const nfs4_sharedfh_t *sfhl = (const nfs4_sharedfh_t *)pl; 3768 return (nsfh);
3703 const nfs4_sharedfh_t *sfh2 = (const nfs4_sharedfh_t *)p2; 3769 }
3705 return (nfsdcnpfh(&sfhl->sfh_fh, &sfh2->sfh_fh)); 3771 | *
3706 } 3772 * Return a shared fil ehandl e object for the given filehandle. The caller
3773 * is responsible for eventually calling sfhd4_rele().
3708 /* 3774 */
3709 * Create a table for shared filehandl e objects.
3710 */ 3776 nfs4_sharedfh_t *
3777 sfh4_get (const nfs_fh4 *fh, mtinfod_t *ni)
3712 void 3778 {
3713 sfh4_createtab(avl _tree_t *tab) 3779 nfs4_sharedfh_t *sfh;
3714 { 3780 nfs4_sharedf h_t key;
3715 avl _create(tab, sfh4cnp, sizeof (nfs4_sharedfh_t),
3716 of f set of (nfs4_sharedfh_t, sfh_tree)); 3782 ASSERT(f h->nfs_fh4_|l en <= NFS4_FHSI ZE) ;
3717 }
3784 #ifdef DEBUG
3719 /* 3785 if (nfs4_sharedfh_debug) {
3720 * Return a shared filehandl e object for the given filehandle. The caller 3786 nfs4_fhandl e_t fhandle;
3721 * is responsible for eventually calling sfh4_rele().

new usr/src/uts/comon/fs/nfs/nfs4_client.c 33 new usr/src/uts/comon/fs/nfs/nfs4_client.c
3788 fhandle.fh_len = fh->nfs_fh4_len; 3854 "sfhd_rele %, new refcnt=0%d"
3789 bcopy(fh->nfs_fh4_val, fhandle. fh buf, fhandle.fh_len); 3855 (void *)sfh, sfh->sfh refcnt))
3790 zcnm_err (- > _zone- >zone id, CE_ NOTE "sfh4_get:"); 3856 mut ex_exi t (&sf h->sfh_| ock) ;
3791 nfs4_print f handl e(& handl e) ; 3857 goto finish;
3792 } 3858
3793 #endi f 3859 mut ex_exi t (&sf h->sfh_| ock);
3795 /* 3861 /*
3796 * |f there's already an object for the given fil ehandl e, bunp the 3862 * Possi bly the last reference, so get the lock for the table in
3797 * reference count and return it. Oherw se, create a new obj ect 3863 * case it’s tine to renpve the object fromthe table.
3798 * and add it to the AVL tree. 3864 */
3799 */ 3865 m = sfh->sfh_ni;
3866 (void) nfs_rw enter_sig(&m->m _fh_|lock, RWWRI TER, 0);
3801 key.sfh_fh = *fh; 3867 mut ex_ent er (&sf h->sfh_lock);
3868 sfh->sfh_refcnt--;
3803 (voi d) nfs_rw enter_sig(&r->m _fh_|lock, RWREADER, 0); 3869 if (sfh->sfh_refcnt > 0) {
3804 sfh = avl _find(&n->ni _fil ehandles, &key, NULL) ; 3870 NFS4 _DEBUG(nf s4_shar edf h_debug, (CE_NOTE,
3805 if (sfh 1= NULL) { 3871 "sfh4_rele Y%, new refcnt=od",
3806 mut ex_ent er (&sf h->sfh_| ock) ; 3872 (void *)sfh, sfh->sfh refcnt));
3807 sfh->sfh_refcnt ++; 3873 mut ex_exi t (&sf h->sfh_| ock);
3808 NFS4_DEBUG(nf s4_shar edf h_debug, (CE_NOTE, 3874 nfs_rw exit(&m->m _fh_|lock);
3809 "sfh4_get: found existing %, new refcnt=%d" 3875 goto finish;
3810 (void *)sfh, sfh->sfh_refcnt)); 3876 }
3811 mut ex_exi t (&sf h->sfh_| ock);
3812 nfs_rw exit(&m->m _fh_|ock); 3878 NFS4 _DEBUGQ(nf s4_shar edf h debug, (CE_NOTE,
3813 return (sfh); 3879 "sfh4_rele %, last ref", (void *)sfh))
3814 } 3880 if (sfh->sfh_flags & SFH4_| N _TREE)
3815 nfs_rw exit(&m->m _fh_| ock); 3881 avl _renove(&ni->ni _filehandles, sfh);
3882 sfh->sfh_flags & ~SFH4_I N TREE;
3817 return (sfh4_put(fh, m, &key)); 3883 }
3818 } 3884 mut ex_exi t (&sf h->sfh_| ock);
3885 nfs_rwexit(&i->m _fh Iock)
3820 /* 3886 mut ex_dest r oy(&sf h->sfh Iock)
3821 * Get a reference to the given shared fil ehandl e object. 3887 kmem free(sfh->sfh_fh.nfs_fh4 _val, NFS4_FHSI ZE);
3822 */ 3888 kmem free(sfh, sizeof (nfs4_ shar edf h t));
3824 void 3890 fi nish:
3825 sfh4_hol d(nfs4_sharedfh_t *sfh) 3891 *sfhpp = NULL;
3826 { 3892 }
3827 ASSERT(sf h->sfh_refcnt > 0);
3894 /*
3829 nmut ex_ent er (&sf h->sf h_| ock); 3895 * Update the filehandle for the given shared fil ehandl e object.
3830 sf h->sf h_refcnt ++; 3896 */
3831 NFS4_DEBUG nf s4_shar edf h_debug,
3832 (CE_NOTE, "sfh4_hold %, new refcnt=0d", 3898 int nfs4_warn_dupfh = 0; /* if set, always warn about dup fhs bel ow */
3833 (void *)sfh, sfh->sfh_refcnt));
3834 mut ex_exi t (&sf h->sfh_| ock); 3900 void
3835 } 3901 sfh4_update(nfs4_sharedfh_t *sfh, const nfs_fh4 *new h)
3902 {
3837 /* 3903 mtinfo4_t *m = sfh->sfh_m;
3838 * Release a reference to the given shared filehandl e object and null out 3904 nfs4_sharedf h_t *dupsfh;
3839 * the given pointer. 3905 avl _i ndex_t where;
3840 * 3906 nf s4_sharedfh_t key;
3842 void 3908 #ifdef DEBUG
3843 sfh4_rel e(nfs4_sharedfh_t **sfhpp) 3909 mut ex_ent er (&sf h->sf h_| ock);
3844 { 3910 ASSERT(sfh >sfh_refcnt > 0);
3845 mtinfod_t *m; 3911 mut ex_exi t (&sf h->sfh_l ock);
3846 nfs4_sharedfh_t *sfh = *sfhpp; 3912 #endi f
3913 ASSERT(newf h->nfs_fh4_| en <= NFS4_FHSI ZE) ;
3848 ASSERT(sf h->sfh_refcnt > 0);
3915 /*
3850 mut ex_ent er (&sf h->sf h_| ock); 3916 * The basic plan is to renpve the shared fil ehandl e object from
3851 if (sfh->sfh_refcnt > 1) { 3917 * the table, update it to have the new fil ehandl e, then reinsert
3852 sfh->sfh_refcnt--; 3918 *it.
3853 NFS4_DEBUG(nf s4_ shar edf h _debug, (CE_NOTE, 3919 */

new usr/src/uts/comon/fs/nfs/nfs4_client.c 35 new usr/src/uts/comon/fs/nfs/nfs4_client.c 36
3986 nfs4_printfhandl e(& handl e);
3921 (void) nfs_rw enter_sig(&m->nm _fh_l ock, RWWR TER, 0); 3987 }
3922 mut ex_ent er (&sf h->sfh_i ock);
3923 if (sfh->sfh_flags & SFH4_I N_TREE) { 3989 /*
3924 avl _renmove(&m ->m _fil ehandl es, sfh); 3990 * Conpare 2 fnames. Returns -1 if the first is "less" than the second, 0
3925 sfh->sfh_flags & ~SFH4_| N_TREE; 3991 * if they're the sane, +1 if the first is "greater" than the second. The
3926 } 3992 * caller (or whoever’s calling the AVL package) is responsible for
3927 nut ex_exi t (&sf h->sfh_| ock); 3993 * handling |ocking issues.
3928 sfh->sfh_fh.nfs_fh4_Ten = new h- >nfs_fh4_l en; 3994 */
3929 bcopy(newf h->nfs_fh4 val, sfh->sfh_fh.nfs fh4 _val,
3930 sfh->sfh_fh. nfsfh4|en) 3996 static int
3997 fncnp(const void *pl, const void *p2)
3932 /* 3998 {
3933 * XXX If there is already a shared fil ehandl e object with the new 3999 const nfs4_fnane_t *fl = pl;
3934 * filehandle, we’'re in trouble, because the rnode code assunes 4000 const nfs4_fname_t *f2 = p2;
3935 * that there is only one shar ed fil ehandl e obj ect for a given 4001 int res;
3936 * filehandle. So issue a warning (for read-wite nounts only)
3937 * and don’t try to re-insert the given object into the table. 4003 res = strcenmp(f1->fn_nanme, f2->fn_nane);
3938 * Hopefully the given object will quickly go away and everyone 4004 /*
3939 * will use the new object. 4005 * The AVL package wants +/-1, not arbitrary positive or negative
3940 */ 4006 * integers.
3941 key.sfh_fh = *new h; 4007 */
3942 dupsfh = avl _fi nd(&m >m _fil ehandl es, &key, &where); 4008 if (res > O)
3943 if (dupsfh I'= NULL) { 4009 res 1;
3944 if (!(m->m _vfsp->vfs_flag & VFS_RDONLY) || nfs4 _war n_dupf h) { 4010 else if (res < O)
3945 zcm. _err(m->m _zone->zone_id, CE_WARN, sfh4_update: " 4011 res = -1;
3946 “duplicate filehandl e det ected"); 4012 return (res);
3947 sfh4_print f handl e(dupsfh); 4013 }
3948
3949 } else { 4015 /*
3950 avl _insert(&m ->m _fil ehandl es, sfh, where); 4016 * Cet or create an fnane with the given nanme, as a child of the given
3951 mut ex_ent er (&sf h->sfh_I ock) ; 4017 * fnane. The caller is responsible for eventually releasing the reference
3952 sfh->sfh_flags | = SFH4_I N_TREE; 4018 * (fn_rele()). parent may be NULL.
3953 mut ex_exi t (&sf h->sfh_| ock); 4019 */
3954 }
3955 nfs_rw exit(&m->m _fh_| ock); 4021 nfs4_fname_t *
3956 } 4022 {n_get(nfs4_fnams_t *parent, char *nane, nfs4_sharedfh_t *sfh)
4023
3958 /* 4024 nfs4_fname_t key;
3959 * Copy out the current filehandl e for the given shared fil ehandl e object. 4025 nfs4_fname_t *fnp;
3960 */ 4026 avl _i ndex_t where;
3962 void 4028 key. fn_name = nane;
3963 sfh4_copyval (const nfs4_sharedfh_t *sfh, nfs4_fhandle_t *fhp)
3964 { 4030 /*
3965 mtinfo4_t *m = sfh->sfh_m; 4031 * |f there’'s already an fname registered with the given nane, bunp
4032 * its reference count and return it. Qherw se, create a new one
3967 ASSERT(sf h->sfh_refcnt > 0); 4033 * and add it to the parent’s AVL tree.
4034 *
3969 (void) nfs_rw enter_sig(&m->m _fh_|ock, RWREADER, 0); 4035 * fnane entries we are |ooking for should match both name
3970 fhp->fh_len = sfh->sfh_fh.nfs_fh4_len; 4036 * and sfh stored in the fnane.
3971 ASSERT(fhp->fh_| en <= NFS4_FHSI ZE); 4037 2
3972 bcopy(sfh->sfh_fh.nfs_fh4_val, fhp->fh_buf, fhp->fh_len); 4038 agai n:
3973 nfs_rw exit(&nm ->ni _fh_| ock); 4039 if (parent !'= NULL) {
3974 } 4040 mut ex_ent er (&par ent - >f n_| ock) ;
4041 fnp = avl _find(&parent->fn chlldren &ey, &where);
3976 /* 4042 if (fnp 'S NULL) {
3977 * Print out the filehandl e for the given shared fil ehandl e object. 4043 /*
3978 */ 4044 * This hold on fnp is rel eased bel ow | ater,
4045 * in case this is not the fnp we want.
3980 void 4046 */
3981 sfh4_printfhandl e(const nfs4_sharedfh_t *sfh) 4047 fn_hol d(fnp);
3982 {
3983 nfs4_fhandl e_t fhandle; 4049 if (fnp->fn_sfh == sfh) {
4050 /*
3985 sfh4_copyval (sfh, &f handle); 4051 * W have found our entry.

new usr/src/uts/comon/fs/nfs/nfs4_client.c 37 new usr/src/uts/comon/fs/nfs/nfs4_client.c
4052 * put an hold and return it. 4118 "fn_hold %: %, new refcnt=%",
4053 */ 4119 (void *)fnp, fnp->fn_name, fnp->fn_refcnt));
4054 mut ex_exi t (&parent - >f n_| ock); 4120 }
4055 return (fnp);
4056 } 4122 [*
4123 * Decrenent the reference count of the given fname, and destroy it if its
4058 /* 4124 * reference count goes to zero. Nulls out the given pointer.
4059 * W& have found an entry that has a m smatching 4125 */
4060 * fn_sfh. This could be a stale entry due to
4061 * server side renane. We will renove this entry 4127 void
4062 * and nmake sure no such entries exist. 4128 fn_rel e(nfs4_fnane_t **fnpp)
4063 */ 4129 {
4064 nut ex_exi t (&parent - >f n_| ock) ; 4130 nfs4_fnane_t *parent;
4065 mut ex_ent er (&f np- >f n_| ock) ; 4131 uint32_t new ef;
4066 if (fnp->fn_parent == parent) { 4132 nfs4_fnane_t *fnp;
4067 /*
4068 * Renpve ourselves fromparent’'s 4134 recur:
4069 * fn_children tree. 4135 fnp = *fnpp;
4070 */ 4136 *fnpp = NULL;
4071 mut ex_ent er (&par ent - >f n_| ock) ;
4072 avl _remove(&parent ->f n_children, fnp); 4138 nmut ex_ent er (& np->f n_| ock) ;
4073 mut ex_exi t (&ar ent - >f n_| ock) ; 4139 parent = fnp->fn_parent;
4074 fn_rele(& np->fn_parent); 4140 1 f (parent = NULL)
4075 } 4141 nut ex_enter(&parent->fn_lock); /* prevent new references */
4076 nut ex_exi t (& np->f n_| ock) ; 4142 new ef = atom c_add_32_nv(&f np->fn_ refcnt -1);
4077 fn_rel e(& np); 4143 if (newef > 0) {
4078 goto agai n; 4144 NFS4_DEBUG(nf s4_f name_debug, (CE_NOTE,
4079 } 4145 " f n_rel e Y%: %, new refcnt=%",
4080 } 4146 (void *)fnp, fnp- >fn_name, fnp->fn_refcnt));
4147 if (parent !'= NULL)
4082 fnp = knem al | oc(si zeof (nfs4_fnanme_t), KM SLEEP); 4148 mut ex_exi t (&parent - >f n_| ock) ;
4083 mut ex_i ni t (&f np-. >fn_l ock, NULL, MUTEX_ DEFAULT NULL) 4149 mut ex_exi t (& np->f n_I ock) ;
4084 fnp->fn_parent = parent; 4150 return;
4085 if (parent != NULL) 4151 }
4086 fn hol d(parent);
4087 fnp->fn_len = strl en(narre) 4153 NFS4_DEBUQE nf s4_f name_debug, (CE_NOTE,
4088 ASSERT(fnp- >fn len < MAXNANELEN) 4154 "fnrele %: %, last reference, deleting..."
4089 fnp->fn_name = kmem al | oc(f np->f n_I en + 1, KM SLEEP); 4155 (void *)fnp, fnp— >fn_nane));
4090 (void) strcpy(fnp->fn_nane, name); 4156 if (parent != NULL)
4091 fnp->fn_refcnt = 1; 4157 avl _renove(&parent->fn_children, fnp);
4158 mut ex_exi t (&par ent - >f n_| ock) ;
4093 /* 4159
4094 * This hold on sfh is later rel eased 4160 kmem free(fnp->fn_name, fnp->fn_len + 1);
4095 * when we do the final fn_rele() on this fnane. 4161 sfh4_rel e(& np->fn_sfh);
4096 */ 4162 mut ex_destroy(& np->fn_| ock);
4097 sfh4_hol d(sfh); 4163 avl _destroy(& np->fn_children);
4098 fnp->fn_sfh = sfh; 4164 kmem free(fnp, sizeof (nfs4_fname_t));
4165 I*
4100 avl _create(& np->fn_children, fncnp, sizeof (nfs4_fname_t), 4166 * Recursivly fn_rele the parent.
4101 of fsetof (nfs4_fnane_t, fn_tree)); 4167 * Use goto instead of a recursive call to avoid stack overfl ow
4102 NFS4 _DEBUGQ(nf s4_f name debug (CE_ NOTE 4168 */
4103 “fn_get %:%, a new nfs4_fnanme_t!" 4169 if (parent !'= NULL) {
4104 (void *)fnp, fnp >f n_nane)) ; 4170 fnpp = &parent;
4105 if (parent = NULL) { 4171 goto recur;
4106 avl _insert(&arent->fn_children, fnp, where); 4172
4107 mut ex_exi t (&par ent - >f n_| ock) ; 4173 }
4108 1
4175 | *
4110 return (fnp); 4176 * Returns the single conponent name of the given fname, in a MAXNAMELEN
4111 } 4177 * string buffer, which the caller is responsible for freeing. Note that
4178 * the nane nay becone invalid as a result of fn_nove().
4113 void 4179 */
4114 fn_hol d(nfs4_fname_t *fnp)
4115 { 4181 char *
4116 atom c_add_32(& np->fn_refcnt, 1); 4182 fn_nane(nfs4_fname_t *fnp)
4117 NFS4_DEBUG nf s4_f name_debug, (CE_NOTE, 4183 {

new usr/src/uts/comon/fs/nfs/nfs4_client.c

39

“current"

Note that the path may be or

4184 char *nane;

4186 ASSERT(f np->fn_l en < MAXNAMELEN) ;

4187 nane = knmem al | oc(MAXNAMELEN, KM SLEEP) ;
4188 mut ex_ent er (& np->f n_| ock) ;

4189 (void) strcpy(nanme, fnp->fn_nane);

4190 mut ex_exi t (& np->fn_| ock);

4192 return (name);

4193 }

4196 /*

4197 * fn_path_realloc

4198 *

4199 * This function, used only by fn_path, constructs
4200 * a new string whi ch | ooks |ike "prepend” + "/" +
4201 * by allocating a new string and freeing the old one.
4202 */

4203 static void

4204 fn_path_reall oc(char **curses, char *prepend)

4205 {

4206 int len, curlen = 0;

4207 char *news;

4209 if (*curses == NULL) {

4210 /*

4211 * Prime the punp, allocate just the
4212 * space for prepend and return that.
4213 */

4214 len = strlen(prepend) + 1;

4215 news = knmem al |l oc(l en, KM SLEEP);
4216 (void) strncpy(news, prepend, |en);
4217 } else {

4218 /*

4219 * Allocate the space for a new string
4220 * +1 +1 is for the "/" and the NULL
4221 * pbyte at the end of it all.

4222 */

4223 curlen = strlen(*curses);

4224 len = curlen + strlen(prepend) + 1 + 1;
4225 news = knem al |l oc(l en, KM SLEEP);
4226 (voi d) strncpy(news, prepend I en);
4227 (voi d) strcat(news,

4228 (voi d) strcat(news, *curses),

4229 kmem free(*curses, curlen + 1);

4230

4231 *curses = news;

4232 }

4234 [*

4235 * Returns the path nane (starting fromthe fs root) for the given fnane.
4236 * The caller is responsible for freeing.

4237 * becone invalid as a result of fn_nove().

4238 */

4240 char *

4241 fn_path(nfs4_fname_t *fnp)

4242 {

4243 char *path;

4244 nfs4_fnanme_t *nextfnp;

4246 if (fnp == NULL)

4247 return (NULL);

4249 path = NULL;

new usr/src/uts/comon/fs/nfs/nfs4_client.c

/* adjust for later rele */

is newparent and its name i s newnane.

char *newnane)

prepare for a recursive nutex_enter

a recent

4251 /* walk up the tree constructing the pathname. */

4253 fn_hol d(fnp);

4254 do {

4255 mut ex_ent er (& np->f n_| ock) ;

4256 /*

4257 * Add fn_nane in front of the current path
4258 *

4259 fn_path_real | oc(&path, fnp->fn_nane);

4260 nextfnp = fnp->fn_parent;

4261 if (nextfnp !'= NULL)

4262 fn_hol d(next fnp);

4263 mut ex_exi t (& np->f n_| ock) ;

4264 fn rel e(& np);

4265 np = nextfnp;

4266 } while (fnp I'= NULL);

4268 return (path);

4269 }

4271 | *

4272 * Return a reference to the parent of the given fname, which the caller
4273 * responsible for eventually rel easing.

4274 *]/

4276 nfs4_fnane_t *

4277 fn_parent(nfs4_fnane_t *fnp)

4278 {

4279 nfs4_fnanme_t *parent;

4281 mut ex_ent er (&f np->f n_| ock) ;

4282 parent = fnp->fn_parent;

4283 i1 f (parent !'= NULL)

4284 fn_hol d(parent);

4285 mut ex_exi t (& np->fn Iock)

4287 return (parent);

4288 }

4290 /*

4291 * Update fnp so that its parent

4292 */

4294 void

4295 fn_nove(nfs4_fname_t *fnp, nfs4_fname_t *newparent,

4296 {

4297 nfs4_fname_t *parent, *tnpfnp;

4298 ssize_t new en;

4299 nfs4_fnane_t key;

4300 avl _i ndex_t where;

4302 /*

4303 * This assert exists to catch the client trying to rename
4304 * adir to be a child of itself. This happened at
4305 * bakeof f against a 3rd party (broken) server which allowed
4306 * the renane to succeed. |If it trips it nmeans that:
4307 * a) the code in nfs4renane that detects this case is broken
4308 * b) the server is broken (since it allowed the bogus renane)
4309 *

4310 * For non- DEBUG ker nel s,

4311 * panic below from nutex_enter(&ewparent->fn_| ock);
4312 *

4313 ASSERT(fnp != newparent);

4315 /*

new usr/src/uts/comon/fs/nfs/nfs4_client.c 41 new usr/src/uts/comon/fs/nfs/nfs4_client.c
4316 * Renpve fnp fromits current parent, change its nanme, then add it 4382 if (nfs4_vtype_debug & vp->v_type != VNON &&
4317 * to newparent. It night happen that fnp was replaced by anot her 4383 rp->r_attr.va_type != VNCN && vp->v_type != rp->r_attr.va type) {
4318 * nfs4_fnane_t with the sane fn_name in parent->fn_children. 4384 cm err(CE PANI C, "vnode % type m smatch; v_type=%l,
4319 * In such case, fnp->fn_parent is NULL and we skip the renoval 4385 "rnode attr type=%l", (void *)vp, vp->v_type,
4320 * of fnp fromits current parent. 4386 rp- >r_attr.va_type);
4321 */ 4387 }

4322 mut ex_ent er (& np->f n_I ock) ;

4323 parent = fnp->fn_parent; 4389 return (1);
4324 i f (parent !'= NULL) { 4390 }

4325 mut ex_ent er (&par ent - >f n_| ock) ; 4391 #endif /* DEBUG */
4326 avl _renove(&parent->fn chlldren fnp);

4327 mut ex_exi t (&par ent - >f n_| ock) ;

4328 fn_rel e(& np->fn_parent);

4329 }

4331 new en = strlen(newnane);

4332 if (newen !'= fnp->fn_|len)

4333 ASSERT(newl en < MAXNANMELEN) ;

4334 kmem free(fnp->fn_nanme, fnp->fn_len + 1);

4335 fnp->fn_nane = knem. al |l oc(new en + 1, KM SLEEP);

4336 fnp->fn_len = new en;

4337 }

4338 (void) strcpy(fnp->fn_name, newnane);

4340 agai n:

4341 mut ex_ent er (&newpar ent - >f n_| ock) ;

4342 key. fn_name = fnp->fn_nane;

4343 tmpfnp = avl _find(&ewparent->fn_children, &key, &where);

4344 if (tnpfnp !'= NULL) {

4345 /*

4346 * This could be due to a file that was unlinked while

4347 * open, or perhaps the rnode is in the free list. Renove

4348 * it fromnewparent and let it go away on its own. The

4349 * contorted code is to deal with |ock order issues and

4350 * race conditions.

4351 */

4352 fn_hol d(t npf np);

4353 mut ex_exi t (&ewpar ent - >f n_| ock) ;

4354 mut ex_ent er (& npf np->f n_I ock) ;

4355 if (tnpfnp->fn_parent == newparent) {

4356 mut ex_ent er(&nev\parent >f n_| ock) ;

4357 avl reane(&newpar ent - >f n_chi | dren t mpf np) ;

4358 mut ex_exi t (&ewpar ent - >f n_| ock) ;

4359 fn_rel e(& npfnp->fn_parent);

4360 }

4361 nmut ex_exi t (& nmpf np- >f n_I ock);

4362 fn_rel e(& npfnp);

4363 got o agai n;

4364 }

4365 fnp->fn_parent = newparent;

4366 fn_hol d(newparent);

4367 avl _i nsert (&newparent ->fn_chil dren, fnp, where);

4368 mut ex_exi t (&ewpar ent - >f n_| ock) ;

4369 nut ex_exi t (& np->fn_| ock);

4370 }

4372 #ifdef DEBUG

4373 [*

4374 * Return non-zero if the type information nmakes sense for the given vnode.

4375 * Ot herwi se panic.

4376 */

4377 int

4378 nfs4_consi stent _type(vnode_t *vp)

4379 {

4380 rnoded4_t *rp = VIOR4(vp);

