
new/usr/src/uts/common/fs/nfs/nfs4_client.c 1

**
 116613 Thu Jan 31 10:01:31 2013
new/usr/src/uts/common/fs/nfs/nfs4_client.c
NFS4 data corruption (#3508)
If async calls are disabled, nfs4_async_putapage is supposed to do its
work synchronously. Due to a bug, it sometimes just does nothing, leaving
the page for later.
Unfortunately the caller has already reset the R4DIRTY flag.
Without R4DIRTY, nfs4_attrcache_va can’t see that there are still
outstanding writes and accepts the file size from the server, which is
too low.
When the dirty page finally gets written back, the page size is truncated
to the file size, leaving some bytes unwritten.
Reviewed by: Marcel Telka <marcel@telka.sk>
Reviewed by: Robert Gordon <rbg@openrbg.com>
**
______unchanged_portion_omitted_

1698 int
1699 nfs4_async_putapage(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
1700 int flags, cred_t *cr, int (*putapage)(vnode_t *, page_t *,
1701 u_offset_t, size_t, int, cred_t *))
1702 {
1703 rnode4_t *rp;
1704 mntinfo4_t *mi;
1705 struct nfs4_async_reqs *args;

1707 ASSERT(flags & B_ASYNC);
1708 ASSERT(vp->v_vfsp != NULL);

1710 rp = VTOR4(vp);
1711 ASSERT(rp->r_count > 0);

1713 mi = VTOMI4(vp);

1715 /*
1716 * If we can’t allocate a request structure, do the putpage
1717 * operation synchronously in this thread’s context.
1718 */
1719 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1720 goto noasync;

1722 args->a_next = NULL;
1723 #ifdef DEBUG
1724 args->a_queuer = curthread;
1725 #endif
1726 VN_HOLD(vp);
1727 args->a_vp = vp;
1728 ASSERT(cr != NULL);
1729 crhold(cr);
1730 args->a_cred = cr;
1731 args->a_io = NFS4_PUTAPAGE;
1732 args->a_nfs4_putapage = putapage;
1733 args->a_nfs4_pp = pp;
1734 args->a_nfs4_off = off;
1735 args->a_nfs4_len = (uint_t)len;
1736 args->a_nfs4_flags = flags;

1738 mutex_enter(&mi->mi_async_lock);

1740 /*
1741 * If asyncio has been disabled, then make a synchronous request.
1742 * This check is done a second time in case async io was diabled
1743 * while this thread was blocked waiting for memory pressure to
1744 * reduce or for the queue to drain.
1745 */

new/usr/src/uts/common/fs/nfs/nfs4_client.c 2

1746 if (mi->mi_max_threads == 0) {
1747 mutex_exit(&mi->mi_async_lock);

1749 VN_RELE(vp);
1750 crfree(cr);
1751 kmem_free(args, sizeof (*args));
1752 goto noasync;
1753 }

1755 /*
1756 * Link request structure into the async list and
1757 * wakeup async thread to do the i/o.
1758 */
1759 if (mi->mi_async_reqs[NFS4_PUTAPAGE] == NULL) {
1760 mi->mi_async_reqs[NFS4_PUTAPAGE] = args;
1761 mi->mi_async_tail[NFS4_PUTAPAGE] = args;
1762 } else {
1763 mi->mi_async_tail[NFS4_PUTAPAGE]->a_next = args;
1764 mi->mi_async_tail[NFS4_PUTAPAGE] = args;
1765 }

1767 mutex_enter(&rp->r_statelock);
1768 rp->r_count++;
1769 rp->r_awcount++;
1770 mutex_exit(&rp->r_statelock);

1772 if (mi->mi_io_kstats) {
1773 mutex_enter(&mi->mi_lock);
1774 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1775 mutex_exit(&mi->mi_lock);
1776 }

1778 mi->mi_async_req_count++;
1779 ASSERT(mi->mi_async_req_count != 0);
1780 cv_signal(&mi->mi_async_reqs_cv);
1781 mutex_exit(&mi->mi_async_lock);
1782 return (0);

1784 noasync:

1786 if (curproc == proc_pageout || curproc == proc_fsflush) {
1786 if (curproc == proc_pageout || curproc == proc_fsflush ||
1787 nfs_zone() == mi->mi_zone) {
1787 /*
1788 * If we get here in the context of the pageout/fsflush,
1789 * or we have run out of memory or we’re attempting to
1790 * unmount we refuse to do a sync write, because this may
1791 * hang pageout/fsflush and the machine. In this case,
1792 * we just re-mark the page as dirty and punt on the page.
1793 *
1794 * Make sure B_FORCE isn’t set. We can re-mark the
1795 * pages as dirty and unlock the pages in one swoop by
1796 * passing in B_ERROR to pvn_write_done(). However,
1797 * we should make sure B_FORCE isn’t set - we don’t
1798 * want the page tossed before it gets written out.
1799 */
1800 if (flags & B_FORCE)
1801 flags &= ~(B_INVAL | B_FORCE);
1802 pvn_write_done(pp, flags | B_ERROR);
1803 return (0);
1804 }

1806 if (nfs_zone() != mi->mi_zone) {
1807 #endif /* ! codereview */
1808 /*
1809 * So this was a cross-zone sync putpage.

new/usr/src/uts/common/fs/nfs/nfs4_client.c 3

1807 * We’ll get here only if (nfs_zone() != mi->mi_zone)
1808 * which means that this was a cross-zone sync putpage.
1810 *
1811 * We pass in B_ERROR to pvn_write_done() to re-mark the pages
1812 * as dirty and unlock them.
1813 *
1814 * We don’t want to clear B_FORCE here as the caller presumably
1815 * knows what they’re doing if they set it.
1816 */
1817 pvn_write_done(pp, flags | B_ERROR);
1818 return (EPERM);
1819 }
1820 return ((*putapage)(vp, pp, off, len, flags, cr));
1821 #endif /* ! codereview */
1822 }

1824 int
1825 nfs4_async_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
1826 int flags, cred_t *cr, int (*pageio)(vnode_t *, page_t *, u_offset_t,
1827 size_t, int, cred_t *))
1828 {
1829 rnode4_t *rp;
1830 mntinfo4_t *mi;
1831 struct nfs4_async_reqs *args;

1833 ASSERT(flags & B_ASYNC);
1834 ASSERT(vp->v_vfsp != NULL);

1836 rp = VTOR4(vp);
1837 ASSERT(rp->r_count > 0);

1839 mi = VTOMI4(vp);

1841 /*
1842 * If we can’t allocate a request structure, do the pageio
1843 * request synchronously in this thread’s context.
1844 */
1845 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1846 goto noasync;

1848 args->a_next = NULL;
1849 #ifdef DEBUG
1850 args->a_queuer = curthread;
1851 #endif
1852 VN_HOLD(vp);
1853 args->a_vp = vp;
1854 ASSERT(cr != NULL);
1855 crhold(cr);
1856 args->a_cred = cr;
1857 args->a_io = NFS4_PAGEIO;
1858 args->a_nfs4_pageio = pageio;
1859 args->a_nfs4_pp = pp;
1860 args->a_nfs4_off = io_off;
1861 args->a_nfs4_len = (uint_t)io_len;
1862 args->a_nfs4_flags = flags;

1864 mutex_enter(&mi->mi_async_lock);

1866 /*
1867 * If asyncio has been disabled, then make a synchronous request.
1868 * This check is done a second time in case async io was diabled
1869 * while this thread was blocked waiting for memory pressure to
1870 * reduce or for the queue to drain.
1871 */
1872 if (mi->mi_max_threads == 0) {
1873 mutex_exit(&mi->mi_async_lock);

new/usr/src/uts/common/fs/nfs/nfs4_client.c 4

1875 VN_RELE(vp);
1876 crfree(cr);
1877 kmem_free(args, sizeof (*args));
1878 goto noasync;
1879 }

1881 /*
1882 * Link request structure into the async list and
1883 * wakeup async thread to do the i/o.
1884 */
1885 if (mi->mi_async_reqs[NFS4_PAGEIO] == NULL) {
1886 mi->mi_async_reqs[NFS4_PAGEIO] = args;
1887 mi->mi_async_tail[NFS4_PAGEIO] = args;
1888 } else {
1889 mi->mi_async_tail[NFS4_PAGEIO]->a_next = args;
1890 mi->mi_async_tail[NFS4_PAGEIO] = args;
1891 }

1893 mutex_enter(&rp->r_statelock);
1894 rp->r_count++;
1895 rp->r_awcount++;
1896 mutex_exit(&rp->r_statelock);

1898 if (mi->mi_io_kstats) {
1899 mutex_enter(&mi->mi_lock);
1900 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1901 mutex_exit(&mi->mi_lock);
1902 }

1904 mi->mi_async_req_count++;
1905 ASSERT(mi->mi_async_req_count != 0);
1906 cv_signal(&mi->mi_async_reqs_cv);
1907 mutex_exit(&mi->mi_async_lock);
1908 return (0);

1910 noasync:
1911 /*
1912 * If we can’t do it ASYNC, for reads we do nothing (but cleanup
1913 * the page list), for writes we do it synchronously, except for
1914 * proc_pageout/proc_fsflush as described below.
1915 */
1916 if (flags & B_READ) {
1917 pvn_read_done(pp, flags | B_ERROR);
1918 return (0);
1919 }

1921 if (curproc == proc_pageout || curproc == proc_fsflush) {
1922 /*
1923 * If we get here in the context of the pageout/fsflush,
1924 * we refuse to do a sync write, because this may hang
1925 * pageout/fsflush (and the machine). In this case, we just
1926 * re-mark the page as dirty and punt on the page.
1927 *
1928 * Make sure B_FORCE isn’t set. We can re-mark the
1929 * pages as dirty and unlock the pages in one swoop by
1930 * passing in B_ERROR to pvn_write_done(). However,
1931 * we should make sure B_FORCE isn’t set - we don’t
1932 * want the page tossed before it gets written out.
1933 */
1934 if (flags & B_FORCE)
1935 flags &= ~(B_INVAL | B_FORCE);
1936 pvn_write_done(pp, flags | B_ERROR);
1937 return (0);
1938 }

new/usr/src/uts/common/fs/nfs/nfs4_client.c 5

1940 if (nfs_zone() != mi->mi_zone) {
1941 /*
1942 * So this was a cross-zone sync pageio. We pass in B_ERROR
1943 * to pvn_write_done() to re-mark the pages as dirty and unlock
1944 * them.
1945 *
1946 * We don’t want to clear B_FORCE here as the caller presumably
1947 * knows what they’re doing if they set it.
1948 */
1949 pvn_write_done(pp, flags | B_ERROR);
1950 return (EPERM);
1951 }
1952 return ((*pageio)(vp, pp, io_off, io_len, flags, cr));
1953 }

1955 void
1956 nfs4_async_readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr,
1957 int (*readdir)(vnode_t *, rddir4_cache *, cred_t *))
1958 {
1959 rnode4_t *rp;
1960 mntinfo4_t *mi;
1961 struct nfs4_async_reqs *args;

1963 rp = VTOR4(vp);
1964 ASSERT(rp->r_freef == NULL);

1966 mi = VTOMI4(vp);

1968 /*
1969 * If we can’t allocate a request structure, skip the readdir.
1970 */
1971 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1972 goto noasync;

1974 args->a_next = NULL;
1975 #ifdef DEBUG
1976 args->a_queuer = curthread;
1977 #endif
1978 VN_HOLD(vp);
1979 args->a_vp = vp;
1980 ASSERT(cr != NULL);
1981 crhold(cr);
1982 args->a_cred = cr;
1983 args->a_io = NFS4_READDIR;
1984 args->a_nfs4_readdir = readdir;
1985 args->a_nfs4_rdc = rdc;

1987 mutex_enter(&mi->mi_async_lock);

1989 /*
1990 * If asyncio has been disabled, then skip this request
1991 */
1992 if (mi->mi_max_threads == 0) {
1993 mutex_exit(&mi->mi_async_lock);

1995 VN_RELE(vp);
1996 crfree(cr);
1997 kmem_free(args, sizeof (*args));
1998 goto noasync;
1999 }

2001 /*
2002 * Link request structure into the async list and
2003 * wakeup async thread to do the i/o.
2004 */
2005 if (mi->mi_async_reqs[NFS4_READDIR] == NULL) {

new/usr/src/uts/common/fs/nfs/nfs4_client.c 6

2006 mi->mi_async_reqs[NFS4_READDIR] = args;
2007 mi->mi_async_tail[NFS4_READDIR] = args;
2008 } else {
2009 mi->mi_async_tail[NFS4_READDIR]->a_next = args;
2010 mi->mi_async_tail[NFS4_READDIR] = args;
2011 }

2013 mutex_enter(&rp->r_statelock);
2014 rp->r_count++;
2015 mutex_exit(&rp->r_statelock);

2017 if (mi->mi_io_kstats) {
2018 mutex_enter(&mi->mi_lock);
2019 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
2020 mutex_exit(&mi->mi_lock);
2021 }

2023 mi->mi_async_req_count++;
2024 ASSERT(mi->mi_async_req_count != 0);
2025 cv_signal(&mi->mi_async_reqs_cv);
2026 mutex_exit(&mi->mi_async_lock);
2027 return;

2029 noasync:
2030 mutex_enter(&rp->r_statelock);
2031 rdc->entries = NULL;
2032 /*
2033 * Indicate that no one is trying to fill this entry and
2034 * it still needs to be filled.
2035 */
2036 rdc->flags &= ~RDDIR;
2037 rdc->flags |= RDDIRREQ;
2038 rddir4_cache_rele(rp, rdc);
2039 mutex_exit(&rp->r_statelock);
2040 }

2042 void
2043 nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
2044 cred_t *cr, void (*commit)(vnode_t *, page_t *, offset3, count3,
2045 cred_t *))
2046 {
2047 rnode4_t *rp;
2048 mntinfo4_t *mi;
2049 struct nfs4_async_reqs *args;
2050 page_t *pp;

2052 rp = VTOR4(vp);
2053 mi = VTOMI4(vp);

2055 /*
2056 * If we can’t allocate a request structure, do the commit
2057 * operation synchronously in this thread’s context.
2058 */
2059 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
2060 goto noasync;

2062 args->a_next = NULL;
2063 #ifdef DEBUG
2064 args->a_queuer = curthread;
2065 #endif
2066 VN_HOLD(vp);
2067 args->a_vp = vp;
2068 ASSERT(cr != NULL);
2069 crhold(cr);
2070 args->a_cred = cr;
2071 args->a_io = NFS4_COMMIT;

new/usr/src/uts/common/fs/nfs/nfs4_client.c 7

2072 args->a_nfs4_commit = commit;
2073 args->a_nfs4_plist = plist;
2074 args->a_nfs4_offset = offset;
2075 args->a_nfs4_count = count;

2077 mutex_enter(&mi->mi_async_lock);

2079 /*
2080 * If asyncio has been disabled, then make a synchronous request.
2081 * This check is done a second time in case async io was diabled
2082 * while this thread was blocked waiting for memory pressure to
2083 * reduce or for the queue to drain.
2084 */
2085 if (mi->mi_max_threads == 0) {
2086 mutex_exit(&mi->mi_async_lock);

2088 VN_RELE(vp);
2089 crfree(cr);
2090 kmem_free(args, sizeof (*args));
2091 goto noasync;
2092 }

2094 /*
2095 * Link request structure into the async list and
2096 * wakeup async thread to do the i/o.
2097 */
2098 if (mi->mi_async_reqs[NFS4_COMMIT] == NULL) {
2099 mi->mi_async_reqs[NFS4_COMMIT] = args;
2100 mi->mi_async_tail[NFS4_COMMIT] = args;
2101 } else {
2102 mi->mi_async_tail[NFS4_COMMIT]->a_next = args;
2103 mi->mi_async_tail[NFS4_COMMIT] = args;
2104 }

2106 mutex_enter(&rp->r_statelock);
2107 rp->r_count++;
2108 mutex_exit(&rp->r_statelock);

2110 if (mi->mi_io_kstats) {
2111 mutex_enter(&mi->mi_lock);
2112 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
2113 mutex_exit(&mi->mi_lock);
2114 }

2116 mi->mi_async_req_count++;
2117 ASSERT(mi->mi_async_req_count != 0);
2118 cv_signal(&mi->mi_async_reqs_cv);
2119 mutex_exit(&mi->mi_async_lock);
2120 return;

2122 noasync:
2123 if (curproc == proc_pageout || curproc == proc_fsflush ||
2124 nfs_zone() != mi->mi_zone) {
2125 while (plist != NULL) {
2126 pp = plist;
2127 page_sub(&plist, pp);
2128 pp->p_fsdata = C_COMMIT;
2129 page_unlock(pp);
2130 }
2131 return;
2132 }
2133 (*commit)(vp, plist, offset, count, cr);
2134 }

2136 /*
2137 * nfs4_async_inactive - hand off a VOP_INACTIVE call to a thread. The

new/usr/src/uts/common/fs/nfs/nfs4_client.c 8

2138 * reference to the vnode is handed over to the thread; the caller should
2139 * no longer refer to the vnode.
2140 *
2141 * Unlike most of the async routines, this handoff is needed for
2142 * correctness reasons, not just performance. So doing operations in the
2143 * context of the current thread is not an option.
2144 */
2145 void
2146 nfs4_async_inactive(vnode_t *vp, cred_t *cr)
2147 {
2148 mntinfo4_t *mi;
2149 struct nfs4_async_reqs *args;
2150 boolean_t signal_inactive_thread = B_FALSE;

2152 mi = VTOMI4(vp);

2154 args = kmem_alloc(sizeof (*args), KM_SLEEP);
2155 args->a_next = NULL;
2156 #ifdef DEBUG
2157 args->a_queuer = curthread;
2158 #endif
2159 args->a_vp = vp;
2160 ASSERT(cr != NULL);
2161 crhold(cr);
2162 args->a_cred = cr;
2163 args->a_io = NFS4_INACTIVE;

2165 /*
2166 * Note that we don’t check mi->mi_max_threads here, since we
2167 * *need* to get rid of this vnode regardless of whether someone
2168 * set nfs4_max_threads to zero in /etc/system.
2169 *
2170 * The manager thread knows about this and is willing to create
2171 * at least one thread to accommodate us.
2172 */
2173 mutex_enter(&mi->mi_async_lock);
2174 if (mi->mi_inactive_thread == NULL) {
2175 rnode4_t *rp;
2176 vnode_t *unldvp = NULL;
2177 char *unlname;
2178 cred_t *unlcred;

2180 mutex_exit(&mi->mi_async_lock);
2181 /*
2182 * We just need to free up the memory associated with the
2183 * vnode, which can be safely done from within the current
2184 * context.
2185 */
2186 crfree(cr); /* drop our reference */
2187 kmem_free(args, sizeof (*args));
2188 rp = VTOR4(vp);
2189 mutex_enter(&rp->r_statelock);
2190 if (rp->r_unldvp != NULL) {
2191 unldvp = rp->r_unldvp;
2192 rp->r_unldvp = NULL;
2193 unlname = rp->r_unlname;
2194 rp->r_unlname = NULL;
2195 unlcred = rp->r_unlcred;
2196 rp->r_unlcred = NULL;
2197 }
2198 mutex_exit(&rp->r_statelock);
2199 /*
2200 * No need to explicitly throw away any cached pages. The
2201 * eventual r4inactive() will attempt a synchronous
2202 * VOP_PUTPAGE() which will immediately fail since the request
2203 * is coming from the wrong zone, and then will proceed to call

new/usr/src/uts/common/fs/nfs/nfs4_client.c 9

2204 * nfs4_invalidate_pages() which will clean things up for us.
2205 *
2206 * Throw away the delegation here so rp4_addfree()’s attempt to
2207 * return any existing delegations becomes a no-op.
2208 */
2209 if (rp->r_deleg_type != OPEN_DELEGATE_NONE) {
2210 (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER,
2211 FALSE);
2212 (void) nfs4delegreturn(rp, NFS4_DR_DISCARD);
2213 nfs_rw_exit(&mi->mi_recovlock);
2214 }
2215 nfs4_clear_open_streams(rp);

2217 rp4_addfree(rp, cr);
2218 if (unldvp != NULL) {
2219 kmem_free(unlname, MAXNAMELEN);
2220 VN_RELE(unldvp);
2221 crfree(unlcred);
2222 }
2223 return;
2224 }

2226 if (mi->mi_manager_thread == NULL) {
2227 /*
2228 * We want to talk to the inactive thread.
2229 */
2230 signal_inactive_thread = B_TRUE;
2231 }

2233 /*
2234 * Enqueue the vnode and wake up either the special thread (empty
2235 * list) or an async thread.
2236 */
2237 if (mi->mi_async_reqs[NFS4_INACTIVE] == NULL) {
2238 mi->mi_async_reqs[NFS4_INACTIVE] = args;
2239 mi->mi_async_tail[NFS4_INACTIVE] = args;
2240 signal_inactive_thread = B_TRUE;
2241 } else {
2242 mi->mi_async_tail[NFS4_INACTIVE]->a_next = args;
2243 mi->mi_async_tail[NFS4_INACTIVE] = args;
2244 }
2245 if (signal_inactive_thread) {
2246 cv_signal(&mi->mi_inact_req_cv);
2247 } else {
2248 mi->mi_async_req_count++;
2249 ASSERT(mi->mi_async_req_count != 0);
2250 cv_signal(&mi->mi_async_reqs_cv);
2251 }

2253 mutex_exit(&mi->mi_async_lock);
2254 }

2256 int
2257 writerp4(rnode4_t *rp, caddr_t base, int tcount, struct uio *uio, int pgcreated)
2258 {
2259 int pagecreate;
2260 int n;
2261 int saved_n;
2262 caddr_t saved_base;
2263 u_offset_t offset;
2264 int error;
2265 int sm_error;
2266 vnode_t *vp = RTOV(rp);

2268 ASSERT(tcount <= MAXBSIZE && tcount <= uio->uio_resid);
2269 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_WRITER));

new/usr/src/uts/common/fs/nfs/nfs4_client.c 10

2270 if (!vpm_enable) {
2271 ASSERT(((uintptr_t)base & MAXBOFFSET) + tcount <= MAXBSIZE);
2272 }

2274 /*
2275 * Move bytes in at most PAGESIZE chunks. We must avoid
2276 * spanning pages in uiomove() because page faults may cause
2277 * the cache to be invalidated out from under us. The r_size is not
2278 * updated until after the uiomove. If we push the last page of a
2279 * file before r_size is correct, we will lose the data written past
2280 * the current (and invalid) r_size.
2281 */
2282 do {
2283 offset = uio->uio_loffset;
2284 pagecreate = 0;

2286 /*
2287 * n is the number of bytes required to satisfy the request
2288 * or the number of bytes to fill out the page.
2289 */
2290 n = (int)MIN((PAGESIZE - (offset & PAGEOFFSET)), tcount);

2292 /*
2293 * Check to see if we can skip reading in the page
2294 * and just allocate the memory. We can do this
2295 * if we are going to rewrite the entire mapping
2296 * or if we are going to write to or beyond the current
2297 * end of file from the beginning of the mapping.
2298 *
2299 * The read of r_size is now protected by r_statelock.
2300 */
2301 mutex_enter(&rp->r_statelock);
2302 /*
2303 * When pgcreated is nonzero the caller has already done
2304 * a segmap_getmapflt with forcefault 0 and S_WRITE. With
2305 * segkpm this means we already have at least one page
2306 * created and mapped at base.
2307 */
2308 pagecreate = pgcreated ||
2309 ((offset & PAGEOFFSET) == 0 &&
2310 (n == PAGESIZE || ((offset + n) >= rp->r_size)));

2312 mutex_exit(&rp->r_statelock);

2314 if (!vpm_enable && pagecreate) {
2315 /*
2316 * The last argument tells segmap_pagecreate() to
2317 * always lock the page, as opposed to sometimes
2318 * returning with the page locked. This way we avoid a
2319 * fault on the ensuing uiomove(), but also
2320 * more importantly (to fix bug 1094402) we can
2321 * call segmap_fault() to unlock the page in all
2322 * cases. An alternative would be to modify
2323 * segmap_pagecreate() to tell us when it is
2324 * locking a page, but that’s a fairly major
2325 * interface change.
2326 */
2327 if (pgcreated == 0)
2328 (void) segmap_pagecreate(segkmap, base,
2329 (uint_t)n, 1);
2330 saved_base = base;
2331 saved_n = n;
2332 }

2334 /*
2335 * The number of bytes of data in the last page can not

new/usr/src/uts/common/fs/nfs/nfs4_client.c 11

2336 * be accurately be determined while page is being
2337 * uiomove’d to and the size of the file being updated.
2338 * Thus, inform threads which need to know accurately
2339 * how much data is in the last page of the file. They
2340 * will not do the i/o immediately, but will arrange for
2341 * the i/o to happen later when this modify operation
2342 * will have finished.
2343 */
2344 ASSERT(!(rp->r_flags & R4MODINPROGRESS));
2345 mutex_enter(&rp->r_statelock);
2346 rp->r_flags |= R4MODINPROGRESS;
2347 rp->r_modaddr = (offset & MAXBMASK);
2348 mutex_exit(&rp->r_statelock);

2350 if (vpm_enable) {
2351 /*
2352 * Copy data. If new pages are created, part of
2353 * the page that is not written will be initizliazed
2354 * with zeros.
2355 */
2356 error = vpm_data_copy(vp, offset, n, uio,
2357 !pagecreate, NULL, 0, S_WRITE);
2358 } else {
2359 error = uiomove(base, n, UIO_WRITE, uio);
2360 }

2362 /*
2363 * r_size is the maximum number of
2364 * bytes known to be in the file.
2365 * Make sure it is at least as high as the
2366 * first unwritten byte pointed to by uio_loffset.
2367 */
2368 mutex_enter(&rp->r_statelock);
2369 if (rp->r_size < uio->uio_loffset)
2370 rp->r_size = uio->uio_loffset;
2371 rp->r_flags &= ~R4MODINPROGRESS;
2372 rp->r_flags |= R4DIRTY;
2373 mutex_exit(&rp->r_statelock);

2375 /* n = # of bytes written */
2376 n = (int)(uio->uio_loffset - offset);

2378 if (!vpm_enable) {
2379 base += n;
2380 }

2382 tcount -= n;
2383 /*
2384 * If we created pages w/o initializing them completely,
2385 * we need to zero the part that wasn’t set up.
2386 * This happens on a most EOF write cases and if
2387 * we had some sort of error during the uiomove.
2388 */
2389 if (!vpm_enable && pagecreate) {
2390 if ((uio->uio_loffset & PAGEOFFSET) || n == 0)
2391 (void) kzero(base, PAGESIZE - n);

2393 if (pgcreated) {
2394 /*
2395 * Caller is responsible for this page,
2396 * it was not created in this loop.
2397 */
2398 pgcreated = 0;
2399 } else {
2400 /*
2401 * For bug 1094402: segmap_pagecreate locks

new/usr/src/uts/common/fs/nfs/nfs4_client.c 12

2402 * page. Unlock it. This also unlocks the
2403 * pages allocated by page_create_va() in
2404 * segmap_pagecreate().
2405 */
2406 sm_error = segmap_fault(kas.a_hat, segkmap,
2407 saved_base, saved_n,
2408 F_SOFTUNLOCK, S_WRITE);
2409 if (error == 0)
2410 error = sm_error;
2411 }
2412 }
2413 } while (tcount > 0 && error == 0);

2415 return (error);
2416 }

2418 int
2419 nfs4_putpages(vnode_t *vp, u_offset_t off, size_t len, int flags, cred_t *cr)
2420 {
2421 rnode4_t *rp;
2422 page_t *pp;
2423 u_offset_t eoff;
2424 u_offset_t io_off;
2425 size_t io_len;
2426 int error;
2427 int rdirty;
2428 int err;

2430 rp = VTOR4(vp);
2431 ASSERT(rp->r_count > 0);

2433 if (!nfs4_has_pages(vp))
2434 return (0);

2436 ASSERT(vp->v_type != VCHR);

2438 /*
2439 * If R4OUTOFSPACE is set, then all writes turn into B_INVAL
2440 * writes. B_FORCE is set to force the VM system to actually
2441 * invalidate the pages, even if the i/o failed. The pages
2442 * need to get invalidated because they can’t be written out
2443 * because there isn’t any space left on either the server’s
2444 * file system or in the user’s disk quota. The B_FREE bit
2445 * is cleared to avoid confusion as to whether this is a
2446 * request to place the page on the freelist or to destroy
2447 * it.
2448 */
2449 if ((rp->r_flags & R4OUTOFSPACE) ||
2450 (vp->v_vfsp->vfs_flag & VFS_UNMOUNTED))
2451 flags = (flags & ~B_FREE) | B_INVAL | B_FORCE;

2453 if (len == 0) {
2454 /*
2455 * If doing a full file synchronous operation, then clear
2456 * the R4DIRTY bit. If a page gets dirtied while the flush
2457 * is happening, then R4DIRTY will get set again. The
2458 * R4DIRTY bit must get cleared before the flush so that
2459 * we don’t lose this information.
2460 *
2461 * If there are no full file async write operations
2462 * pending and RDIRTY bit is set, clear it.
2463 */
2464 if (off == (u_offset_t)0 &&
2465 !(flags & B_ASYNC) &&
2466 (rp->r_flags & R4DIRTY)) {
2467 mutex_enter(&rp->r_statelock);

new/usr/src/uts/common/fs/nfs/nfs4_client.c 13

2468 rdirty = (rp->r_flags & R4DIRTY);
2469 rp->r_flags &= ~R4DIRTY;
2470 mutex_exit(&rp->r_statelock);
2471 } else if (flags & B_ASYNC && off == (u_offset_t)0) {
2472 mutex_enter(&rp->r_statelock);
2473 if (rp->r_flags & R4DIRTY && rp->r_awcount == 0) {
2474 rdirty = (rp->r_flags & R4DIRTY);
2475 rp->r_flags &= ~R4DIRTY;
2476 }
2477 mutex_exit(&rp->r_statelock);
2478 } else
2479 rdirty = 0;

2481 /*
2482 * Search the entire vp list for pages >= off, and flush
2483 * the dirty pages.
2484 */
2485 error = pvn_vplist_dirty(vp, off, rp->r_putapage,
2486 flags, cr);

2488 /*
2489 * If an error occurred and the file was marked as dirty
2490 * before and we aren’t forcibly invalidating pages, then
2491 * reset the R4DIRTY flag.
2492 */
2493 if (error && rdirty &&
2494 (flags & (B_INVAL | B_FORCE)) != (B_INVAL | B_FORCE)) {
2495 mutex_enter(&rp->r_statelock);
2496 rp->r_flags |= R4DIRTY;
2497 mutex_exit(&rp->r_statelock);
2498 }
2499 } else {
2500 /*
2501 * Do a range from [off...off + len) looking for pages
2502 * to deal with.
2503 */
2504 error = 0;
2505 io_len = 0;
2506 eoff = off + len;
2507 mutex_enter(&rp->r_statelock);
2508 for (io_off = off; io_off < eoff && io_off < rp->r_size;
2509 io_off += io_len) {
2510 mutex_exit(&rp->r_statelock);
2511 /*
2512 * If we are not invalidating, synchronously
2513 * freeing or writing pages use the routine
2514 * page_lookup_nowait() to prevent reclaiming
2515 * them from the free list.
2516 */
2517 if ((flags & B_INVAL) || !(flags & B_ASYNC)) {
2518 pp = page_lookup(vp, io_off,
2519 (flags & (B_INVAL | B_FREE)) ?
2520 SE_EXCL : SE_SHARED);
2521 } else {
2522 pp = page_lookup_nowait(vp, io_off,
2523 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
2524 }

2526 if (pp == NULL || !pvn_getdirty(pp, flags))
2527 io_len = PAGESIZE;
2528 else {
2529 err = (*rp->r_putapage)(vp, pp, &io_off,
2530 &io_len, flags, cr);
2531 if (!error)
2532 error = err;
2533 /*

new/usr/src/uts/common/fs/nfs/nfs4_client.c 14

2534 * "io_off" and "io_len" are returned as
2535 * the range of pages we actually wrote.
2536 * This allows us to skip ahead more quickly
2537 * since several pages may’ve been dealt
2538 * with by this iteration of the loop.
2539 */
2540 }
2541 mutex_enter(&rp->r_statelock);
2542 }
2543 mutex_exit(&rp->r_statelock);
2544 }

2546 return (error);
2547 }

2549 void
2550 nfs4_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr)
2551 {
2552 rnode4_t *rp;

2554 rp = VTOR4(vp);
2555 if (IS_SHADOW(vp, rp))
2556 vp = RTOV4(rp);
2557 mutex_enter(&rp->r_statelock);
2558 while (rp->r_flags & R4TRUNCATE)
2559 cv_wait(&rp->r_cv, &rp->r_statelock);
2560 rp->r_flags |= R4TRUNCATE;
2561 if (off == (u_offset_t)0) {
2562 rp->r_flags &= ~R4DIRTY;
2563 if (!(rp->r_flags & R4STALE))
2564 rp->r_error = 0;
2565 }
2566 rp->r_truncaddr = off;
2567 mutex_exit(&rp->r_statelock);
2568 (void) pvn_vplist_dirty(vp, off, rp->r_putapage,
2569 B_INVAL | B_TRUNC, cr);
2570 mutex_enter(&rp->r_statelock);
2571 rp->r_flags &= ~R4TRUNCATE;
2572 cv_broadcast(&rp->r_cv);
2573 mutex_exit(&rp->r_statelock);
2574 }

2576 static int
2577 nfs4_mnt_kstat_update(kstat_t *ksp, int rw)
2578 {
2579 mntinfo4_t *mi;
2580 struct mntinfo_kstat *mik;
2581 vfs_t *vfsp;

2583 /* this is a read-only kstat. Bail out on a write */
2584 if (rw == KSTAT_WRITE)
2585 return (EACCES);

2588 /*
2589 * We don’t want to wait here as kstat_chain_lock could be held by
2590 * dounmount(). dounmount() takes vfs_reflock before the chain lock
2591 * and thus could lead to a deadlock.
2592 */
2593 vfsp = (struct vfs *)ksp->ks_private;

2595 mi = VFTOMI4(vfsp);
2596 mik = (struct mntinfo_kstat *)ksp->ks_data;

2598 (void) strcpy(mik->mik_proto, mi->mi_curr_serv->sv_knconf->knc_proto);

new/usr/src/uts/common/fs/nfs/nfs4_client.c 15

2600 mik->mik_vers = (uint32_t)mi->mi_vers;
2601 mik->mik_flags = mi->mi_flags;
2602 /*
2603 * The sv_secdata holds the flavor the client specifies.
2604 * If the client uses default and a security negotiation
2605 * occurs, sv_currsec will point to the current flavor
2606 * selected from the server flavor list.
2607 * sv_currsec is NULL if no security negotiation takes place.
2608 */
2609 mik->mik_secmod = mi->mi_curr_serv->sv_currsec ?
2610 mi->mi_curr_serv->sv_currsec->secmod :
2611 mi->mi_curr_serv->sv_secdata->secmod;
2612 mik->mik_curread = (uint32_t)mi->mi_curread;
2613 mik->mik_curwrite = (uint32_t)mi->mi_curwrite;
2614 mik->mik_retrans = mi->mi_retrans;
2615 mik->mik_timeo = mi->mi_timeo;
2616 mik->mik_acregmin = HR2SEC(mi->mi_acregmin);
2617 mik->mik_acregmax = HR2SEC(mi->mi_acregmax);
2618 mik->mik_acdirmin = HR2SEC(mi->mi_acdirmin);
2619 mik->mik_acdirmax = HR2SEC(mi->mi_acdirmax);
2620 mik->mik_noresponse = (uint32_t)mi->mi_noresponse;
2621 mik->mik_failover = (uint32_t)mi->mi_failover;
2622 mik->mik_remap = (uint32_t)mi->mi_remap;

2624 (void) strcpy(mik->mik_curserver, mi->mi_curr_serv->sv_hostname);

2626 return (0);
2627 }

2629 void
2630 nfs4_mnt_kstat_init(struct vfs *vfsp)
2631 {
2632 mntinfo4_t *mi = VFTOMI4(vfsp);

2634 /*
2635 * PSARC 2001/697 Contract Private Interface
2636 * All nfs kstats are under SunMC contract
2637 * Please refer to the PSARC listed above and contact
2638 * SunMC before making any changes!
2639 *
2640 * Changes must be reviewed by Solaris File Sharing
2641 * Changes must be communicated to contract-2001-697@sun.com
2642 *
2643 */

2645 mi->mi_io_kstats = kstat_create_zone("nfs", getminor(vfsp->vfs_dev),
2646 NULL, "nfs", KSTAT_TYPE_IO, 1, 0, mi->mi_zone->zone_id);
2647 if (mi->mi_io_kstats) {
2648 if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
2649 kstat_zone_add(mi->mi_io_kstats, GLOBAL_ZONEID);
2650 mi->mi_io_kstats->ks_lock = &mi->mi_lock;
2651 kstat_install(mi->mi_io_kstats);
2652 }

2654 if ((mi->mi_ro_kstats = kstat_create_zone("nfs",
2655 getminor(vfsp->vfs_dev), "mntinfo", "misc", KSTAT_TYPE_RAW,
2656 sizeof (struct mntinfo_kstat), 0, mi->mi_zone->zone_id)) != NULL) {
2657 if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
2658 kstat_zone_add(mi->mi_ro_kstats, GLOBAL_ZONEID);
2659 mi->mi_ro_kstats->ks_update = nfs4_mnt_kstat_update;
2660 mi->mi_ro_kstats->ks_private = (void *)vfsp;
2661 kstat_install(mi->mi_ro_kstats);
2662 }

2664 nfs4_mnt_recov_kstat_init(vfsp);
2665 }

new/usr/src/uts/common/fs/nfs/nfs4_client.c 16

2667 void
2668 nfs4_write_error(vnode_t *vp, int error, cred_t *cr)
2669 {
2670 mntinfo4_t *mi;
2671 clock_t now = ddi_get_lbolt();

2673 mi = VTOMI4(vp);
2674 /*
2675 * In case of forced unmount, do not print any messages
2676 * since it can flood the console with error messages.
2677 */
2678 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED)
2679 return;

2681 /*
2682 * If the mount point is dead, not recoverable, do not
2683 * print error messages that can flood the console.
2684 */
2685 if (mi->mi_flags & MI4_RECOV_FAIL)
2686 return;

2688 /*
2689 * No use in flooding the console with ENOSPC
2690 * messages from the same file system.
2691 */
2692 if ((error != ENOSPC && error != EDQUOT) ||
2693 now - mi->mi_printftime > 0) {
2694 zoneid_t zoneid = mi->mi_zone->zone_id;

2696 #ifdef DEBUG
2697 nfs_perror(error, "NFS%ld write error on host %s: %m.\n",
2698 mi->mi_vers, VTOR4(vp)->r_server->sv_hostname, NULL);
2699 #else
2700 nfs_perror(error, "NFS write error on host %s: %m.\n",
2701 VTOR4(vp)->r_server->sv_hostname, NULL);
2702 #endif
2703 if (error == ENOSPC || error == EDQUOT) {
2704 zcmn_err(zoneid, CE_CONT,
2705 "^File: userid=%d, groupid=%d\n",
2706 crgetuid(cr), crgetgid(cr));
2707 if (crgetuid(curthread->t_cred) != crgetuid(cr) ||
2708 crgetgid(curthread->t_cred) != crgetgid(cr)) {
2709 zcmn_err(zoneid, CE_CONT,
2710 "^User: userid=%d, groupid=%d\n",
2711 crgetuid(curthread->t_cred),
2712 crgetgid(curthread->t_cred));
2713 }
2714 mi->mi_printftime = now +
2715 nfs_write_error_interval * hz;
2716 }
2717 sfh4_printfhandle(VTOR4(vp)->r_fh);
2718 #ifdef DEBUG
2719 if (error == EACCES) {
2720 zcmn_err(zoneid, CE_CONT,
2721 "nfs_bio: cred is%s kcred\n",
2722 cr == kcred ? "" : " not");
2723 }
2724 #endif
2725 }
2726 }

2728 /*
2729 * Return non-zero if the given file can be safely memory mapped. Locks
2730 * are safe if whole-file (length and offset are both zero).
2731 */

new/usr/src/uts/common/fs/nfs/nfs4_client.c 17

2733 #define SAFE_LOCK(flk) ((flk).l_start == 0 && (flk).l_len == 0)

2735 static int
2736 nfs4_safemap(const vnode_t *vp)
2737 {
2738 locklist_t *llp, *next_llp;
2739 int safe = 1;
2740 rnode4_t *rp = VTOR4(vp);

2742 ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));

2744 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, "nfs4_safemap: "
2745 "vp = %p", (void *)vp));

2747 /*
2748 * Review all the locks for the vnode, both ones that have been
2749 * acquired and ones that are pending. We assume that
2750 * flk_active_locks_for_vp() has merged any locks that can be
2751 * merged (so that if a process has the entire file locked, it is
2752 * represented as a single lock).
2753 *
2754 * Note that we can’t bail out of the loop if we find a non-safe
2755 * lock, because we have to free all the elements in the llp list.
2756 * We might be able to speed up this code slightly by not looking
2757 * at each lock’s l_start and l_len fields once we’ve found a
2758 * non-safe lock.
2759 */

2761 llp = flk_active_locks_for_vp(vp);
2762 while (llp) {
2763 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE,
2764 "nfs4_safemap: active lock (%" PRId64 ", %" PRId64 ")",
2765 llp->ll_flock.l_start, llp->ll_flock.l_len));
2766 if (!SAFE_LOCK(llp->ll_flock)) {
2767 safe = 0;
2768 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE,
2769 "nfs4_safemap: unsafe active lock (%" PRId64
2770 ", %" PRId64 ")", llp->ll_flock.l_start,
2771 llp->ll_flock.l_len));
2772 }
2773 next_llp = llp->ll_next;
2774 VN_RELE(llp->ll_vp);
2775 kmem_free(llp, sizeof (*llp));
2776 llp = next_llp;
2777 }

2779 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, "nfs4_safemap: %s",
2780 safe ? "safe" : "unsafe"));
2781 return (safe);
2782 }

2784 /*
2785 * Return whether there is a lost LOCK or LOCKU queued up for the given
2786 * file that would make an mmap request unsafe. cf. nfs4_safemap().
2787 */

2789 bool_t
2790 nfs4_map_lost_lock_conflict(vnode_t *vp)
2791 {
2792 bool_t conflict = FALSE;
2793 nfs4_lost_rqst_t *lrp;
2794 mntinfo4_t *mi = VTOMI4(vp);

2796 mutex_enter(&mi->mi_lock);
2797 for (lrp = list_head(&mi->mi_lost_state); lrp != NULL;

new/usr/src/uts/common/fs/nfs/nfs4_client.c 18

2798 lrp = list_next(&mi->mi_lost_state, lrp)) {
2799 if (lrp->lr_op != OP_LOCK && lrp->lr_op != OP_LOCKU)
2800 continue;
2801 ASSERT(lrp->lr_vp != NULL);
2802 if (!VOP_CMP(lrp->lr_vp, vp, NULL))
2803 continue; /* different file */
2804 if (!SAFE_LOCK(*lrp->lr_flk)) {
2805 conflict = TRUE;
2806 break;
2807 }
2808 }

2810 mutex_exit(&mi->mi_lock);
2811 return (conflict);
2812 }

2814 /*
2815 * nfs_lockcompletion:
2816 *
2817 * If the vnode has a lock that makes it unsafe to cache the file, mark it
2818 * as non cachable (set VNOCACHE bit).
2819 */

2821 void
2822 nfs4_lockcompletion(vnode_t *vp, int cmd)
2823 {
2824 rnode4_t *rp = VTOR4(vp);

2826 ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));
2827 ASSERT(!IS_SHADOW(vp, rp));

2829 if (cmd == F_SETLK || cmd == F_SETLKW) {

2831 if (!nfs4_safemap(vp)) {
2832 mutex_enter(&vp->v_lock);
2833 vp->v_flag |= VNOCACHE;
2834 mutex_exit(&vp->v_lock);
2835 } else {
2836 mutex_enter(&vp->v_lock);
2837 vp->v_flag &= ~VNOCACHE;
2838 mutex_exit(&vp->v_lock);
2839 }
2840 }
2841 /*
2842 * The cached attributes of the file are stale after acquiring
2843 * the lock on the file. They were updated when the file was
2844 * opened, but not updated when the lock was acquired. Therefore the
2845 * cached attributes are invalidated after the lock is obtained.
2846 */
2847 PURGE_ATTRCACHE4(vp);
2848 }

2850 /* ARGSUSED */
2851 static void *
2852 nfs4_mi_init(zoneid_t zoneid)
2853 {
2854 struct mi4_globals *mig;

2856 mig = kmem_alloc(sizeof (*mig), KM_SLEEP);
2857 mutex_init(&mig->mig_lock, NULL, MUTEX_DEFAULT, NULL);
2858 list_create(&mig->mig_list, sizeof (mntinfo4_t),
2859 offsetof(mntinfo4_t, mi_zone_node));
2860 mig->mig_destructor_called = B_FALSE;
2861 return (mig);
2862 }

new/usr/src/uts/common/fs/nfs/nfs4_client.c 19

2864 /*
2865 * Callback routine to tell all NFSv4 mounts in the zone to start tearing down
2866 * state and killing off threads.
2867 */
2868 /* ARGSUSED */
2869 static void
2870 nfs4_mi_shutdown(zoneid_t zoneid, void *data)
2871 {
2872 struct mi4_globals *mig = data;
2873 mntinfo4_t *mi;
2874 nfs4_server_t *np;

2876 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2877 "nfs4_mi_shutdown zone %d\n", zoneid));
2878 ASSERT(mig != NULL);
2879 for (;;) {
2880 mutex_enter(&mig->mig_lock);
2881 mi = list_head(&mig->mig_list);
2882 if (mi == NULL) {
2883 mutex_exit(&mig->mig_lock);
2884 break;
2885 }

2887 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2888 "nfs4_mi_shutdown stopping vfs %p\n", (void *)mi->mi_vfsp));
2889 /*
2890 * purge the DNLC for this filesystem
2891 */
2892 (void) dnlc_purge_vfsp(mi->mi_vfsp, 0);
2893 /*
2894 * Tell existing async worker threads to exit.
2895 */
2896 mutex_enter(&mi->mi_async_lock);
2897 mi->mi_max_threads = 0;
2898 NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
2899 /*
2900 * Set the appropriate flags, signal and wait for both the
2901 * async manager and the inactive thread to exit when they’re
2902 * done with their current work.
2903 */
2904 mutex_enter(&mi->mi_lock);
2905 mi->mi_flags |= (MI4_ASYNC_MGR_STOP|MI4_DEAD);
2906 mutex_exit(&mi->mi_lock);
2907 mutex_exit(&mi->mi_async_lock);
2908 if (mi->mi_manager_thread) {
2909 nfs4_async_manager_stop(mi->mi_vfsp);
2910 }
2911 if (mi->mi_inactive_thread) {
2912 mutex_enter(&mi->mi_async_lock);
2913 cv_signal(&mi->mi_inact_req_cv);
2914 /*
2915 * Wait for the inactive thread to exit.
2916 */
2917 while (mi->mi_inactive_thread != NULL) {
2918 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
2919 }
2920 mutex_exit(&mi->mi_async_lock);
2921 }
2922 /*
2923 * Wait for the recovery thread to complete, that is, it will
2924 * signal when it is done using the "mi" structure and about
2925 * to exit
2926 */
2927 mutex_enter(&mi->mi_lock);
2928 while (mi->mi_in_recovery > 0)
2929 cv_wait(&mi->mi_cv_in_recov, &mi->mi_lock);

new/usr/src/uts/common/fs/nfs/nfs4_client.c 20

2930 mutex_exit(&mi->mi_lock);
2931 /*
2932 * We’re done when every mi has been done or the list is empty.
2933 * This one is done, remove it from the list.
2934 */
2935 list_remove(&mig->mig_list, mi);
2936 mutex_exit(&mig->mig_lock);
2937 zone_rele_ref(&mi->mi_zone_ref, ZONE_REF_NFSV4);

2939 /*
2940 * Release hold on vfs and mi done to prevent race with zone
2941 * shutdown. This releases the hold in nfs4_mi_zonelist_add.
2942 */
2943 VFS_RELE(mi->mi_vfsp);
2944 MI4_RELE(mi);
2945 }
2946 /*
2947 * Tell each renew thread in the zone to exit
2948 */
2949 mutex_enter(&nfs4_server_lst_lock);
2950 for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) {
2951 mutex_enter(&np->s_lock);
2952 if (np->zoneid == zoneid) {
2953 /*
2954 * We add another hold onto the nfs4_server_t
2955 * because this will make sure tha the nfs4_server_t
2956 * stays around until nfs4_callback_fini_zone destroys
2957 * the zone. This way, the renew thread can
2958 * unconditionally release its holds on the
2959 * nfs4_server_t.
2960 */
2961 np->s_refcnt++;
2962 nfs4_mark_srv_dead(np);
2963 }
2964 mutex_exit(&np->s_lock);
2965 }
2966 mutex_exit(&nfs4_server_lst_lock);
2967 }

2969 static void
2970 nfs4_mi_free_globals(struct mi4_globals *mig)
2971 {
2972 list_destroy(&mig->mig_list); /* makes sure the list is empty */
2973 mutex_destroy(&mig->mig_lock);
2974 kmem_free(mig, sizeof (*mig));
2975 }

2977 /* ARGSUSED */
2978 static void
2979 nfs4_mi_destroy(zoneid_t zoneid, void *data)
2980 {
2981 struct mi4_globals *mig = data;

2983 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2984 "nfs4_mi_destroy zone %d\n", zoneid));
2985 ASSERT(mig != NULL);
2986 mutex_enter(&mig->mig_lock);
2987 if (list_head(&mig->mig_list) != NULL) {
2988 /* Still waiting for VFS_FREEVFS() */
2989 mig->mig_destructor_called = B_TRUE;
2990 mutex_exit(&mig->mig_lock);
2991 return;
2992 }
2993 nfs4_mi_free_globals(mig);
2994 }

new/usr/src/uts/common/fs/nfs/nfs4_client.c 21

2996 /*
2997 * Add an NFS mount to the per-zone list of NFS mounts.
2998 */
2999 void
3000 nfs4_mi_zonelist_add(mntinfo4_t *mi)
3001 {
3002 struct mi4_globals *mig;

3004 mig = zone_getspecific(mi4_list_key, mi->mi_zone);
3005 mutex_enter(&mig->mig_lock);
3006 list_insert_head(&mig->mig_list, mi);
3007 /*
3008 * hold added to eliminate race with zone shutdown -this will be
3009 * released in mi_shutdown
3010 */
3011 MI4_HOLD(mi);
3012 VFS_HOLD(mi->mi_vfsp);
3013 mutex_exit(&mig->mig_lock);
3014 }

3016 /*
3017 * Remove an NFS mount from the per-zone list of NFS mounts.
3018 */
3019 int
3020 nfs4_mi_zonelist_remove(mntinfo4_t *mi)
3021 {
3022 struct mi4_globals *mig;
3023 int ret = 0;

3025 mig = zone_getspecific(mi4_list_key, mi->mi_zone);
3026 mutex_enter(&mig->mig_lock);
3027 mutex_enter(&mi->mi_lock);
3028 /* if this mi is marked dead, then the zone already released it */
3029 if (!(mi->mi_flags & MI4_DEAD)) {
3030 list_remove(&mig->mig_list, mi);
3031 mutex_exit(&mi->mi_lock);

3033 /* release the holds put on in zonelist_add(). */
3034 VFS_RELE(mi->mi_vfsp);
3035 MI4_RELE(mi);
3036 ret = 1;
3037 } else {
3038 mutex_exit(&mi->mi_lock);
3039 }

3041 /*
3042 * We can be called asynchronously by VFS_FREEVFS() after the zone
3043 * shutdown/destroy callbacks have executed; if so, clean up the zone’s
3044 * mi globals.
3045 */
3046 if (list_head(&mig->mig_list) == NULL &&
3047 mig->mig_destructor_called == B_TRUE) {
3048 nfs4_mi_free_globals(mig);
3049 return (ret);
3050 }
3051 mutex_exit(&mig->mig_lock);
3052 return (ret);
3053 }

3055 void
3056 nfs_free_mi4(mntinfo4_t *mi)
3057 {
3058 nfs4_open_owner_t *foop;
3059 nfs4_oo_hash_bucket_t *bucketp;
3060 nfs4_debug_msg_t *msgp;
3061 int i;

new/usr/src/uts/common/fs/nfs/nfs4_client.c 22

3062 servinfo4_t *svp;

3064 /*
3065 * Code introduced here should be carefully evaluated to make
3066 * sure none of the freed resources are accessed either directly
3067 * or indirectly after freeing them. For eg: Introducing calls to
3068 * NFS4_DEBUG that use mntinfo4_t structure member after freeing
3069 * the structure members or other routines calling back into NFS
3070 * accessing freed mntinfo4_t structure member.
3071 */
3072 mutex_enter(&mi->mi_lock);
3073 ASSERT(mi->mi_recovthread == NULL);
3074 ASSERT(mi->mi_flags & MI4_ASYNC_MGR_STOP);
3075 mutex_exit(&mi->mi_lock);
3076 mutex_enter(&mi->mi_async_lock);
3077 ASSERT(mi->mi_threads[NFS4_ASYNC_QUEUE] == 0 &&
3078 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] == 0);
3079 ASSERT(mi->mi_manager_thread == NULL);
3080 mutex_exit(&mi->mi_async_lock);
3081 if (mi->mi_io_kstats) {
3082 kstat_delete(mi->mi_io_kstats);
3083 mi->mi_io_kstats = NULL;
3084 }
3085 if (mi->mi_ro_kstats) {
3086 kstat_delete(mi->mi_ro_kstats);
3087 mi->mi_ro_kstats = NULL;
3088 }
3089 if (mi->mi_recov_ksp) {
3090 kstat_delete(mi->mi_recov_ksp);
3091 mi->mi_recov_ksp = NULL;
3092 }
3093 mutex_enter(&mi->mi_msg_list_lock);
3094 while (msgp = list_head(&mi->mi_msg_list)) {
3095 list_remove(&mi->mi_msg_list, msgp);
3096 nfs4_free_msg(msgp);
3097 }
3098 mutex_exit(&mi->mi_msg_list_lock);
3099 list_destroy(&mi->mi_msg_list);
3100 if (mi->mi_fname != NULL)
3101 fn_rele(&mi->mi_fname);
3102 if (mi->mi_rootfh != NULL)
3103 sfh4_rele(&mi->mi_rootfh);
3104 if (mi->mi_srvparentfh != NULL)
3105 sfh4_rele(&mi->mi_srvparentfh);
3106 svp = mi->mi_servers;
3107 sv4_free(svp);
3108 mutex_destroy(&mi->mi_lock);
3109 mutex_destroy(&mi->mi_async_lock);
3110 mutex_destroy(&mi->mi_msg_list_lock);
3111 nfs_rw_destroy(&mi->mi_recovlock);
3112 nfs_rw_destroy(&mi->mi_rename_lock);
3113 nfs_rw_destroy(&mi->mi_fh_lock);
3114 cv_destroy(&mi->mi_failover_cv);
3115 cv_destroy(&mi->mi_async_reqs_cv);
3116 cv_destroy(&mi->mi_async_work_cv[NFS4_ASYNC_QUEUE]);
3117 cv_destroy(&mi->mi_async_work_cv[NFS4_ASYNC_PGOPS_QUEUE]);
3118 cv_destroy(&mi->mi_async_cv);
3119 cv_destroy(&mi->mi_inact_req_cv);
3120 /*
3121 * Destroy the oo hash lists and mutexes for the cred hash table.
3122 */
3123 for (i = 0; i < NFS4_NUM_OO_BUCKETS; i++) {
3124 bucketp = &(mi->mi_oo_list[i]);
3125 /* Destroy any remaining open owners on the list */
3126 foop = list_head(&bucketp->b_oo_hash_list);
3127 while (foop != NULL) {

new/usr/src/uts/common/fs/nfs/nfs4_client.c 23

3128 list_remove(&bucketp->b_oo_hash_list, foop);
3129 nfs4_destroy_open_owner(foop);
3130 foop = list_head(&bucketp->b_oo_hash_list);
3131 }
3132 list_destroy(&bucketp->b_oo_hash_list);
3133 mutex_destroy(&bucketp->b_lock);
3134 }
3135 /*
3136 * Empty and destroy the freed open owner list.
3137 */
3138 foop = list_head(&mi->mi_foo_list);
3139 while (foop != NULL) {
3140 list_remove(&mi->mi_foo_list, foop);
3141 nfs4_destroy_open_owner(foop);
3142 foop = list_head(&mi->mi_foo_list);
3143 }
3144 list_destroy(&mi->mi_foo_list);
3145 list_destroy(&mi->mi_bseqid_list);
3146 list_destroy(&mi->mi_lost_state);
3147 avl_destroy(&mi->mi_filehandles);
3148 kmem_free(mi, sizeof (*mi));
3149 }
3150 void
3151 mi_hold(mntinfo4_t *mi)
3152 {
3153 atomic_add_32(&mi->mi_count, 1);
3154 ASSERT(mi->mi_count != 0);
3155 }

3157 void
3158 mi_rele(mntinfo4_t *mi)
3159 {
3160 ASSERT(mi->mi_count != 0);
3161 if (atomic_add_32_nv(&mi->mi_count, -1) == 0) {
3162 nfs_free_mi4(mi);
3163 }
3164 }

3166 vnode_t nfs4_xattr_notsupp_vnode;

3168 void
3169 nfs4_clnt_init(void)
3170 {
3171 nfs4_vnops_init();
3172 (void) nfs4_rnode_init();
3173 (void) nfs4_shadow_init();
3174 (void) nfs4_acache_init();
3175 (void) nfs4_subr_init();
3176 nfs4_acl_init();
3177 nfs_idmap_init();
3178 nfs4_callback_init();
3179 nfs4_secinfo_init();
3180 #ifdef DEBUG
3181 tsd_create(&nfs4_tsd_key, NULL);
3182 #endif

3184 /*
3185 * Add a CPR callback so that we can update client
3186 * lease after a suspend and resume.
3187 */
3188 cid = callb_add(nfs4_client_cpr_callb, 0, CB_CL_CPR_RPC, "nfs4");

3190 zone_key_create(&mi4_list_key, nfs4_mi_init, nfs4_mi_shutdown,
3191 nfs4_mi_destroy);

3193 /*

new/usr/src/uts/common/fs/nfs/nfs4_client.c 24

3194 * Initialise the reference count of the notsupp xattr cache vnode to 1
3195 * so that it never goes away (VOP_INACTIVE isn’t called on it).
3196 */
3197 nfs4_xattr_notsupp_vnode.v_count = 1;
3198 }

3200 void
3201 nfs4_clnt_fini(void)
3202 {
3203 (void) zone_key_delete(mi4_list_key);
3204 nfs4_vnops_fini();
3205 (void) nfs4_rnode_fini();
3206 (void) nfs4_shadow_fini();
3207 (void) nfs4_acache_fini();
3208 (void) nfs4_subr_fini();
3209 nfs_idmap_fini();
3210 nfs4_callback_fini();
3211 nfs4_secinfo_fini();
3212 #ifdef DEBUG
3213 tsd_destroy(&nfs4_tsd_key);
3214 #endif
3215 if (cid)
3216 (void) callb_delete(cid);
3217 }

3219 /*ARGSUSED*/
3220 static boolean_t
3221 nfs4_client_cpr_callb(void *arg, int code)
3222 {
3223 /*
3224 * We get called for Suspend and Resume events.
3225 * For the suspend case we simply don’t care!
3226 */
3227 if (code == CB_CODE_CPR_CHKPT) {
3228 return (B_TRUE);
3229 }

3231 /*
3232 * When we get to here we are in the process of
3233 * resuming the system from a previous suspend.
3234 */
3235 nfs4_client_resumed = gethrestime_sec();
3236 return (B_TRUE);
3237 }

3239 void
3240 nfs4_renew_lease_thread(nfs4_server_t *sp)
3241 {
3242 int error = 0;
3243 time_t tmp_last_renewal_time, tmp_time, tmp_now_time, kip_secs;
3244 clock_t tick_delay = 0;
3245 clock_t time_left = 0;
3246 callb_cpr_t cpr_info;
3247 kmutex_t cpr_lock;

3249 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3250 "nfs4_renew_lease_thread: acting on sp 0x%p", (void*)sp));
3251 mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL);
3252 CALLB_CPR_INIT(&cpr_info, &cpr_lock, callb_generic_cpr, "nfsv4Lease");

3254 mutex_enter(&sp->s_lock);
3255 /* sp->s_lease_time is set via a GETATTR */
3256 sp->last_renewal_time = gethrestime_sec();
3257 sp->lease_valid = NFS4_LEASE_UNINITIALIZED;
3258 ASSERT(sp->s_refcnt >= 1);

new/usr/src/uts/common/fs/nfs/nfs4_client.c 25

3260 for (;;) {
3261 if (!sp->state_ref_count ||
3262 sp->lease_valid != NFS4_LEASE_VALID) {

3264 kip_secs = MAX((sp->s_lease_time >> 1) -
3265 (3 * sp->propagation_delay.tv_sec), 1);

3267 tick_delay = SEC_TO_TICK(kip_secs);

3269 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3270 "nfs4_renew_lease_thread: no renew : thread "
3271 "wait %ld secs", kip_secs));

3273 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3274 "nfs4_renew_lease_thread: no renew : "
3275 "state_ref_count %d, lease_valid %d",
3276 sp->state_ref_count, sp->lease_valid));

3278 mutex_enter(&cpr_lock);
3279 CALLB_CPR_SAFE_BEGIN(&cpr_info);
3280 mutex_exit(&cpr_lock);
3281 time_left = cv_reltimedwait(&sp->cv_thread_exit,
3282 &sp->s_lock, tick_delay, TR_CLOCK_TICK);
3283 mutex_enter(&cpr_lock);
3284 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3285 mutex_exit(&cpr_lock);

3287 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3288 "nfs4_renew_lease_thread: no renew: "
3289 "time left %ld", time_left));

3291 if (sp->s_thread_exit == NFS4_THREAD_EXIT)
3292 goto die;
3293 continue;
3294 }

3296 tmp_last_renewal_time = sp->last_renewal_time;

3298 tmp_time = gethrestime_sec() - sp->last_renewal_time +
3299 (3 * sp->propagation_delay.tv_sec);

3301 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3302 "nfs4_renew_lease_thread: tmp_time %ld, "
3303 "sp->last_renewal_time %ld", tmp_time,
3304 sp->last_renewal_time));

3306 kip_secs = MAX((sp->s_lease_time >> 1) - tmp_time, 1);

3308 tick_delay = SEC_TO_TICK(kip_secs);

3310 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3311 "nfs4_renew_lease_thread: valid lease: sleep for %ld "
3312 "secs", kip_secs));

3314 mutex_enter(&cpr_lock);
3315 CALLB_CPR_SAFE_BEGIN(&cpr_info);
3316 mutex_exit(&cpr_lock);
3317 time_left = cv_reltimedwait(&sp->cv_thread_exit, &sp->s_lock,
3318 tick_delay, TR_CLOCK_TICK);
3319 mutex_enter(&cpr_lock);
3320 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3321 mutex_exit(&cpr_lock);

3323 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3324 "nfs4_renew_lease_thread: valid lease: time left %ld :"
3325 "sp last_renewal_time %ld, nfs4_client_resumed %ld, "

new/usr/src/uts/common/fs/nfs/nfs4_client.c 26

3326 "tmp_last_renewal_time %ld", time_left,
3327 sp->last_renewal_time, nfs4_client_resumed,
3328 tmp_last_renewal_time));

3330 if (sp->s_thread_exit == NFS4_THREAD_EXIT)
3331 goto die;

3333 if (tmp_last_renewal_time == sp->last_renewal_time ||
3334 (nfs4_client_resumed != 0 &&
3335 nfs4_client_resumed > sp->last_renewal_time)) {
3336 /*
3337 * Issue RENEW op since we haven’t renewed the lease
3338 * since we slept.
3339 */
3340 tmp_now_time = gethrestime_sec();
3341 error = nfs4renew(sp);
3342 /*
3343 * Need to re-acquire sp’s lock, nfs4renew()
3344 * relinqueshes it.
3345 */
3346 mutex_enter(&sp->s_lock);

3348 /*
3349 * See if someone changed s_thread_exit while we gave
3350 * up s_lock.
3351 */
3352 if (sp->s_thread_exit == NFS4_THREAD_EXIT)
3353 goto die;

3355 if (!error) {
3356 /*
3357 * check to see if we implicitly renewed while
3358 * we waited for a reply for our RENEW call.
3359 */
3360 if (tmp_last_renewal_time ==
3361 sp->last_renewal_time) {
3362 /* no implicit renew came */
3363 sp->last_renewal_time = tmp_now_time;
3364 } else {
3365 NFS4_DEBUG(nfs4_client_lease_debug,
3366 (CE_NOTE, "renew_thread: did "
3367 "implicit renewal before reply "
3368 "from server for RENEW"));
3369 }
3370 } else {
3371 /* figure out error */
3372 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3373 "renew_thread: nfs4renew returned error"
3374 " %d", error));
3375 }

3377 }
3378 }

3380 die:
3381 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3382 "nfs4_renew_lease_thread: thread exiting"));

3384 while (sp->s_otw_call_count != 0) {
3385 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3386 "nfs4_renew_lease_thread: waiting for outstanding "
3387 "otw calls to finish for sp 0x%p, current "
3388 "s_otw_call_count %d", (void *)sp,
3389 sp->s_otw_call_count));
3390 mutex_enter(&cpr_lock);
3391 CALLB_CPR_SAFE_BEGIN(&cpr_info);

new/usr/src/uts/common/fs/nfs/nfs4_client.c 27

3392 mutex_exit(&cpr_lock);
3393 cv_wait(&sp->s_cv_otw_count, &sp->s_lock);
3394 mutex_enter(&cpr_lock);
3395 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3396 mutex_exit(&cpr_lock);
3397 }
3398 mutex_exit(&sp->s_lock);

3400 nfs4_server_rele(sp); /* free the thread’s reference */
3401 nfs4_server_rele(sp); /* free the list’s reference */
3402 sp = NULL;

3404 done:
3405 mutex_enter(&cpr_lock);
3406 CALLB_CPR_EXIT(&cpr_info); /* drops cpr_lock */
3407 mutex_destroy(&cpr_lock);

3409 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3410 "nfs4_renew_lease_thread: renew thread exit officially"));

3412 zthread_exit();
3413 /* NOT REACHED */
3414 }

3416 /*
3417 * Send out a RENEW op to the server.
3418 * Assumes sp is locked down.
3419 */
3420 static int
3421 nfs4renew(nfs4_server_t *sp)
3422 {
3423 COMPOUND4args_clnt args;
3424 COMPOUND4res_clnt res;
3425 nfs_argop4 argop[1];
3426 int doqueue = 1;
3427 int rpc_error;
3428 cred_t *cr;
3429 mntinfo4_t *mi;
3430 timespec_t prop_time, after_time;
3431 int needrecov = FALSE;
3432 nfs4_recov_state_t recov_state;
3433 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };

3435 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4renew"));

3437 recov_state.rs_flags = 0;
3438 recov_state.rs_num_retry_despite_err = 0;

3440 recov_retry:
3441 mi = sp->mntinfo4_list;
3442 VFS_HOLD(mi->mi_vfsp);
3443 mutex_exit(&sp->s_lock);
3444 ASSERT(mi != NULL);

3446 e.error = nfs4_start_op(mi, NULL, NULL, &recov_state);
3447 if (e.error) {
3448 VFS_RELE(mi->mi_vfsp);
3449 return (e.error);
3450 }

3452 /* Check to see if we’re dealing with a marked-dead sp */
3453 mutex_enter(&sp->s_lock);
3454 if (sp->s_thread_exit == NFS4_THREAD_EXIT) {
3455 mutex_exit(&sp->s_lock);
3456 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3457 VFS_RELE(mi->mi_vfsp);

new/usr/src/uts/common/fs/nfs/nfs4_client.c 28

3458 return (0);
3459 }

3461 /* Make sure mi hasn’t changed on us */
3462 if (mi != sp->mntinfo4_list) {
3463 /* Must drop sp’s lock to avoid a recursive mutex enter */
3464 mutex_exit(&sp->s_lock);
3465 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3466 VFS_RELE(mi->mi_vfsp);
3467 mutex_enter(&sp->s_lock);
3468 goto recov_retry;
3469 }
3470 mutex_exit(&sp->s_lock);

3472 args.ctag = TAG_RENEW;

3474 args.array_len = 1;
3475 args.array = argop;

3477 argop[0].argop = OP_RENEW;

3479 mutex_enter(&sp->s_lock);
3480 argop[0].nfs_argop4_u.oprenew.clientid = sp->clientid;
3481 cr = sp->s_cred;
3482 crhold(cr);
3483 mutex_exit(&sp->s_lock);

3485 ASSERT(cr != NULL);

3487 /* used to figure out RTT for sp */
3488 gethrestime(&prop_time);

3490 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
3491 "nfs4renew: %s call, sp 0x%p", needrecov ? "recov" : "first",
3492 (void*)sp));
3493 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "before: %ld s %ld ns ",
3494 prop_time.tv_sec, prop_time.tv_nsec));

3496 DTRACE_PROBE2(nfs4__renew__start, nfs4_server_t *, sp,
3497 mntinfo4_t *, mi);

3499 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
3500 crfree(cr);

3502 DTRACE_PROBE2(nfs4__renew__end, nfs4_server_t *, sp,
3503 mntinfo4_t *, mi);

3505 gethrestime(&after_time);

3507 mutex_enter(&sp->s_lock);
3508 sp->propagation_delay.tv_sec =
3509 MAX(1, after_time.tv_sec - prop_time.tv_sec);
3510 mutex_exit(&sp->s_lock);

3512 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "after : %ld s %ld ns ",
3513 after_time.tv_sec, after_time.tv_nsec));

3515 if (e.error == 0 && res.status == NFS4ERR_CB_PATH_DOWN) {
3516 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3517 nfs4_delegreturn_all(sp);
3518 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3519 VFS_RELE(mi->mi_vfsp);
3520 /*
3521 * If the server returns CB_PATH_DOWN, it has renewed
3522 * the lease and informed us that the callback path is
3523 * down. Since the lease is renewed, just return 0 and

new/usr/src/uts/common/fs/nfs/nfs4_client.c 29

3524 * let the renew thread proceed as normal.
3525 */
3526 return (0);
3527 }

3529 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
3530 if (!needrecov && e.error) {
3531 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3532 VFS_RELE(mi->mi_vfsp);
3533 return (e.error);
3534 }

3536 rpc_error = e.error;

3538 if (needrecov) {
3539 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
3540 "nfs4renew: initiating recovery\n"));

3542 if (nfs4_start_recovery(&e, mi, NULL, NULL, NULL, NULL,
3543 OP_RENEW, NULL, NULL, NULL) == FALSE) {
3544 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3545 VFS_RELE(mi->mi_vfsp);
3546 if (!e.error)
3547 (void) xdr_free(xdr_COMPOUND4res_clnt,
3548 (caddr_t)&res);
3549 mutex_enter(&sp->s_lock);
3550 goto recov_retry;
3551 }
3552 /* fall through for res.status case */
3553 }

3555 if (res.status) {
3556 if (res.status == NFS4ERR_LEASE_MOVED) {
3557 /*EMPTY*/
3558 /*
3559 * XXX need to try every mntinfo4 in sp->mntinfo4_list
3560 * to renew the lease on that server
3561 */
3562 }
3563 e.error = geterrno4(res.status);
3564 }

3566 if (!rpc_error)
3567 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);

3569 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);

3571 VFS_RELE(mi->mi_vfsp);

3573 return (e.error);
3574 }

3576 void
3577 nfs4_inc_state_ref_count(mntinfo4_t *mi)
3578 {
3579 nfs4_server_t *sp;

3581 /* this locks down sp if it is found */
3582 sp = find_nfs4_server(mi);

3584 if (sp != NULL) {
3585 nfs4_inc_state_ref_count_nolock(sp, mi);
3586 mutex_exit(&sp->s_lock);
3587 nfs4_server_rele(sp);
3588 }
3589 }

new/usr/src/uts/common/fs/nfs/nfs4_client.c 30

3591 /*
3592 * Bump the number of OPEN files (ie: those with state) so we know if this
3593 * nfs4_server has any state to maintain a lease for or not.
3594 *
3595 * Also, marks the nfs4_server’s lease valid if it hasn’t been done so already.
3596 */
3597 void
3598 nfs4_inc_state_ref_count_nolock(nfs4_server_t *sp, mntinfo4_t *mi)
3599 {
3600 ASSERT(mutex_owned(&sp->s_lock));

3602 sp->state_ref_count++;
3603 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3604 "nfs4_inc_state_ref_count: state_ref_count now %d",
3605 sp->state_ref_count));

3607 if (sp->lease_valid == NFS4_LEASE_UNINITIALIZED)
3608 sp->lease_valid = NFS4_LEASE_VALID;

3610 /*
3611 * If this call caused the lease to be marked valid and/or
3612 * took the state_ref_count from 0 to 1, then start the time
3613 * on lease renewal.
3614 */
3615 if (sp->lease_valid == NFS4_LEASE_VALID && sp->state_ref_count == 1)
3616 sp->last_renewal_time = gethrestime_sec();

3618 /* update the number of open files for mi */
3619 mi->mi_open_files++;
3620 }

3622 void
3623 nfs4_dec_state_ref_count(mntinfo4_t *mi)
3624 {
3625 nfs4_server_t *sp;

3627 /* this locks down sp if it is found */
3628 sp = find_nfs4_server_all(mi, 1);

3630 if (sp != NULL) {
3631 nfs4_dec_state_ref_count_nolock(sp, mi);
3632 mutex_exit(&sp->s_lock);
3633 nfs4_server_rele(sp);
3634 }
3635 }

3637 /*
3638 * Decrement the number of OPEN files (ie: those with state) so we know if
3639 * this nfs4_server has any state to maintain a lease for or not.
3640 */
3641 void
3642 nfs4_dec_state_ref_count_nolock(nfs4_server_t *sp, mntinfo4_t *mi)
3643 {
3644 ASSERT(mutex_owned(&sp->s_lock));
3645 ASSERT(sp->state_ref_count != 0);
3646 sp->state_ref_count--;

3648 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3649 "nfs4_dec_state_ref_count: state ref count now %d",
3650 sp->state_ref_count));

3652 mi->mi_open_files--;
3653 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3654 "nfs4_dec_state_ref_count: mi open files %d, v4 flags 0x%x",
3655 mi->mi_open_files, mi->mi_flags));

new/usr/src/uts/common/fs/nfs/nfs4_client.c 31

3657 /* We don’t have to hold the mi_lock to test mi_flags */
3658 if (mi->mi_open_files == 0 &&
3659 (mi->mi_flags & MI4_REMOVE_ON_LAST_CLOSE)) {
3660 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3661 "nfs4_dec_state_ref_count: remove mntinfo4 %p since "
3662 "we have closed the last open file", (void*)mi));
3663 nfs4_remove_mi_from_server(mi, sp);
3664 }
3665 }

3667 bool_t
3668 inlease(nfs4_server_t *sp)
3669 {
3670 bool_t result;

3672 ASSERT(mutex_owned(&sp->s_lock));

3674 if (sp->lease_valid == NFS4_LEASE_VALID &&
3675 gethrestime_sec() < sp->last_renewal_time + sp->s_lease_time)
3676 result = TRUE;
3677 else
3678 result = FALSE;

3680 return (result);
3681 }

3684 /*
3685 * Return non-zero if the given nfs4_server_t is going through recovery.
3686 */

3688 int
3689 nfs4_server_in_recovery(nfs4_server_t *sp)
3690 {
3691 return (nfs_rw_lock_held(&sp->s_recovlock, RW_WRITER));
3692 }

3694 /*
3695 * Compare two shared filehandle objects. Returns -1, 0, or +1, if the
3696 * first is less than, equal to, or greater than the second.
3697 */

3699 int
3700 sfh4cmp(const void *p1, const void *p2)
3701 {
3702 const nfs4_sharedfh_t *sfh1 = (const nfs4_sharedfh_t *)p1;
3703 const nfs4_sharedfh_t *sfh2 = (const nfs4_sharedfh_t *)p2;

3705 return (nfs4cmpfh(&sfh1->sfh_fh, &sfh2->sfh_fh));
3706 }

3708 /*
3709 * Create a table for shared filehandle objects.
3710 */

3712 void
3713 sfh4_createtab(avl_tree_t *tab)
3714 {
3715 avl_create(tab, sfh4cmp, sizeof (nfs4_sharedfh_t),
3716 offsetof(nfs4_sharedfh_t, sfh_tree));
3717 }

3719 /*
3720 * Return a shared filehandle object for the given filehandle. The caller
3721 * is responsible for eventually calling sfh4_rele().

new/usr/src/uts/common/fs/nfs/nfs4_client.c 32

3722 */

3724 nfs4_sharedfh_t *
3725 sfh4_put(const nfs_fh4 *fh, mntinfo4_t *mi, nfs4_sharedfh_t *key)
3726 {
3727 nfs4_sharedfh_t *sfh, *nsfh;
3728 avl_index_t where;
3729 nfs4_sharedfh_t skey;

3731 if (!key) {
3732 skey.sfh_fh = *fh;
3733 key = &skey;
3734 }

3736 nsfh = kmem_alloc(sizeof (nfs4_sharedfh_t), KM_SLEEP);
3737 nsfh->sfh_fh.nfs_fh4_len = fh->nfs_fh4_len;
3738 /*
3739 * We allocate the largest possible filehandle size because it’s
3740 * not that big, and it saves us from possibly having to resize the
3741 * buffer later.
3742 */
3743 nsfh->sfh_fh.nfs_fh4_val = kmem_alloc(NFS4_FHSIZE, KM_SLEEP);
3744 bcopy(fh->nfs_fh4_val, nsfh->sfh_fh.nfs_fh4_val, fh->nfs_fh4_len);
3745 mutex_init(&nsfh->sfh_lock, NULL, MUTEX_DEFAULT, NULL);
3746 nsfh->sfh_refcnt = 1;
3747 nsfh->sfh_flags = SFH4_IN_TREE;
3748 nsfh->sfh_mi = mi;
3749 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, "sfh4_get: new object (%p)",
3750 (void *)nsfh));

3752 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
3753 sfh = avl_find(&mi->mi_filehandles, key, &where);
3754 if (sfh != NULL) {
3755 mutex_enter(&sfh->sfh_lock);
3756 sfh->sfh_refcnt++;
3757 mutex_exit(&sfh->sfh_lock);
3758 nfs_rw_exit(&mi->mi_fh_lock);
3759 /* free our speculative allocs */
3760 kmem_free(nsfh->sfh_fh.nfs_fh4_val, NFS4_FHSIZE);
3761 kmem_free(nsfh, sizeof (nfs4_sharedfh_t));
3762 return (sfh);
3763 }

3765 avl_insert(&mi->mi_filehandles, nsfh, where);
3766 nfs_rw_exit(&mi->mi_fh_lock);

3768 return (nsfh);
3769 }

3771 /*
3772 * Return a shared filehandle object for the given filehandle. The caller
3773 * is responsible for eventually calling sfh4_rele().
3774 */

3776 nfs4_sharedfh_t *
3777 sfh4_get(const nfs_fh4 *fh, mntinfo4_t *mi)
3778 {
3779 nfs4_sharedfh_t *sfh;
3780 nfs4_sharedfh_t key;

3782 ASSERT(fh->nfs_fh4_len <= NFS4_FHSIZE);

3784 #ifdef DEBUG
3785 if (nfs4_sharedfh_debug) {
3786 nfs4_fhandle_t fhandle;

new/usr/src/uts/common/fs/nfs/nfs4_client.c 33

3788 fhandle.fh_len = fh->nfs_fh4_len;
3789 bcopy(fh->nfs_fh4_val, fhandle.fh_buf, fhandle.fh_len);
3790 zcmn_err(mi->mi_zone->zone_id, CE_NOTE, "sfh4_get:");
3791 nfs4_printfhandle(&fhandle);
3792 }
3793 #endif

3795 /*
3796 * If there’s already an object for the given filehandle, bump the
3797 * reference count and return it. Otherwise, create a new object
3798 * and add it to the AVL tree.
3799 */

3801 key.sfh_fh = *fh;

3803 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
3804 sfh = avl_find(&mi->mi_filehandles, &key, NULL);
3805 if (sfh != NULL) {
3806 mutex_enter(&sfh->sfh_lock);
3807 sfh->sfh_refcnt++;
3808 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3809 "sfh4_get: found existing %p, new refcnt=%d",
3810 (void *)sfh, sfh->sfh_refcnt));
3811 mutex_exit(&sfh->sfh_lock);
3812 nfs_rw_exit(&mi->mi_fh_lock);
3813 return (sfh);
3814 }
3815 nfs_rw_exit(&mi->mi_fh_lock);

3817 return (sfh4_put(fh, mi, &key));
3818 }

3820 /*
3821 * Get a reference to the given shared filehandle object.
3822 */

3824 void
3825 sfh4_hold(nfs4_sharedfh_t *sfh)
3826 {
3827 ASSERT(sfh->sfh_refcnt > 0);

3829 mutex_enter(&sfh->sfh_lock);
3830 sfh->sfh_refcnt++;
3831 NFS4_DEBUG(nfs4_sharedfh_debug,
3832 (CE_NOTE, "sfh4_hold %p, new refcnt=%d",
3833 (void *)sfh, sfh->sfh_refcnt));
3834 mutex_exit(&sfh->sfh_lock);
3835 }

3837 /*
3838 * Release a reference to the given shared filehandle object and null out
3839 * the given pointer.
3840 */

3842 void
3843 sfh4_rele(nfs4_sharedfh_t **sfhpp)
3844 {
3845 mntinfo4_t *mi;
3846 nfs4_sharedfh_t *sfh = *sfhpp;

3848 ASSERT(sfh->sfh_refcnt > 0);

3850 mutex_enter(&sfh->sfh_lock);
3851 if (sfh->sfh_refcnt > 1) {
3852 sfh->sfh_refcnt--;
3853 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,

new/usr/src/uts/common/fs/nfs/nfs4_client.c 34

3854 "sfh4_rele %p, new refcnt=%d",
3855 (void *)sfh, sfh->sfh_refcnt));
3856 mutex_exit(&sfh->sfh_lock);
3857 goto finish;
3858 }
3859 mutex_exit(&sfh->sfh_lock);

3861 /*
3862 * Possibly the last reference, so get the lock for the table in
3863 * case it’s time to remove the object from the table.
3864 */
3865 mi = sfh->sfh_mi;
3866 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
3867 mutex_enter(&sfh->sfh_lock);
3868 sfh->sfh_refcnt--;
3869 if (sfh->sfh_refcnt > 0) {
3870 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3871 "sfh4_rele %p, new refcnt=%d",
3872 (void *)sfh, sfh->sfh_refcnt));
3873 mutex_exit(&sfh->sfh_lock);
3874 nfs_rw_exit(&mi->mi_fh_lock);
3875 goto finish;
3876 }

3878 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3879 "sfh4_rele %p, last ref", (void *)sfh));
3880 if (sfh->sfh_flags & SFH4_IN_TREE) {
3881 avl_remove(&mi->mi_filehandles, sfh);
3882 sfh->sfh_flags &= ~SFH4_IN_TREE;
3883 }
3884 mutex_exit(&sfh->sfh_lock);
3885 nfs_rw_exit(&mi->mi_fh_lock);
3886 mutex_destroy(&sfh->sfh_lock);
3887 kmem_free(sfh->sfh_fh.nfs_fh4_val, NFS4_FHSIZE);
3888 kmem_free(sfh, sizeof (nfs4_sharedfh_t));

3890 finish:
3891 *sfhpp = NULL;
3892 }

3894 /*
3895 * Update the filehandle for the given shared filehandle object.
3896 */

3898 int nfs4_warn_dupfh = 0; /* if set, always warn about dup fhs below */

3900 void
3901 sfh4_update(nfs4_sharedfh_t *sfh, const nfs_fh4 *newfh)
3902 {
3903 mntinfo4_t *mi = sfh->sfh_mi;
3904 nfs4_sharedfh_t *dupsfh;
3905 avl_index_t where;
3906 nfs4_sharedfh_t key;

3908 #ifdef DEBUG
3909 mutex_enter(&sfh->sfh_lock);
3910 ASSERT(sfh->sfh_refcnt > 0);
3911 mutex_exit(&sfh->sfh_lock);
3912 #endif
3913 ASSERT(newfh->nfs_fh4_len <= NFS4_FHSIZE);

3915 /*
3916 * The basic plan is to remove the shared filehandle object from
3917 * the table, update it to have the new filehandle, then reinsert
3918 * it.
3919 */

new/usr/src/uts/common/fs/nfs/nfs4_client.c 35

3921 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
3922 mutex_enter(&sfh->sfh_lock);
3923 if (sfh->sfh_flags & SFH4_IN_TREE) {
3924 avl_remove(&mi->mi_filehandles, sfh);
3925 sfh->sfh_flags &= ~SFH4_IN_TREE;
3926 }
3927 mutex_exit(&sfh->sfh_lock);
3928 sfh->sfh_fh.nfs_fh4_len = newfh->nfs_fh4_len;
3929 bcopy(newfh->nfs_fh4_val, sfh->sfh_fh.nfs_fh4_val,
3930 sfh->sfh_fh.nfs_fh4_len);

3932 /*
3933 * XXX If there is already a shared filehandle object with the new
3934 * filehandle, we’re in trouble, because the rnode code assumes
3935 * that there is only one shared filehandle object for a given
3936 * filehandle. So issue a warning (for read-write mounts only)
3937 * and don’t try to re-insert the given object into the table.
3938 * Hopefully the given object will quickly go away and everyone
3939 * will use the new object.
3940 */
3941 key.sfh_fh = *newfh;
3942 dupsfh = avl_find(&mi->mi_filehandles, &key, &where);
3943 if (dupsfh != NULL) {
3944 if (!(mi->mi_vfsp->vfs_flag & VFS_RDONLY) || nfs4_warn_dupfh) {
3945 zcmn_err(mi->mi_zone->zone_id, CE_WARN, "sfh4_update: "
3946 "duplicate filehandle detected");
3947 sfh4_printfhandle(dupsfh);
3948 }
3949 } else {
3950 avl_insert(&mi->mi_filehandles, sfh, where);
3951 mutex_enter(&sfh->sfh_lock);
3952 sfh->sfh_flags |= SFH4_IN_TREE;
3953 mutex_exit(&sfh->sfh_lock);
3954 }
3955 nfs_rw_exit(&mi->mi_fh_lock);
3956 }

3958 /*
3959 * Copy out the current filehandle for the given shared filehandle object.
3960 */

3962 void
3963 sfh4_copyval(const nfs4_sharedfh_t *sfh, nfs4_fhandle_t *fhp)
3964 {
3965 mntinfo4_t *mi = sfh->sfh_mi;

3967 ASSERT(sfh->sfh_refcnt > 0);

3969 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
3970 fhp->fh_len = sfh->sfh_fh.nfs_fh4_len;
3971 ASSERT(fhp->fh_len <= NFS4_FHSIZE);
3972 bcopy(sfh->sfh_fh.nfs_fh4_val, fhp->fh_buf, fhp->fh_len);
3973 nfs_rw_exit(&mi->mi_fh_lock);
3974 }

3976 /*
3977 * Print out the filehandle for the given shared filehandle object.
3978 */

3980 void
3981 sfh4_printfhandle(const nfs4_sharedfh_t *sfh)
3982 {
3983 nfs4_fhandle_t fhandle;

3985 sfh4_copyval(sfh, &fhandle);

new/usr/src/uts/common/fs/nfs/nfs4_client.c 36

3986 nfs4_printfhandle(&fhandle);
3987 }

3989 /*
3990 * Compare 2 fnames. Returns -1 if the first is "less" than the second, 0
3991 * if they’re the same, +1 if the first is "greater" than the second. The
3992 * caller (or whoever’s calling the AVL package) is responsible for
3993 * handling locking issues.
3994 */

3996 static int
3997 fncmp(const void *p1, const void *p2)
3998 {
3999 const nfs4_fname_t *f1 = p1;
4000 const nfs4_fname_t *f2 = p2;
4001 int res;

4003 res = strcmp(f1->fn_name, f2->fn_name);
4004 /*
4005 * The AVL package wants +/-1, not arbitrary positive or negative
4006 * integers.
4007 */
4008 if (res > 0)
4009 res = 1;
4010 else if (res < 0)
4011 res = -1;
4012 return (res);
4013 }

4015 /*
4016 * Get or create an fname with the given name, as a child of the given
4017 * fname. The caller is responsible for eventually releasing the reference
4018 * (fn_rele()). parent may be NULL.
4019 */

4021 nfs4_fname_t *
4022 fn_get(nfs4_fname_t *parent, char *name, nfs4_sharedfh_t *sfh)
4023 {
4024 nfs4_fname_t key;
4025 nfs4_fname_t *fnp;
4026 avl_index_t where;

4028 key.fn_name = name;

4030 /*
4031 * If there’s already an fname registered with the given name, bump
4032 * its reference count and return it. Otherwise, create a new one
4033 * and add it to the parent’s AVL tree.
4034 *
4035 * fname entries we are looking for should match both name
4036 * and sfh stored in the fname.
4037 */
4038 again:
4039 if (parent != NULL) {
4040 mutex_enter(&parent->fn_lock);
4041 fnp = avl_find(&parent->fn_children, &key, &where);
4042 if (fnp != NULL) {
4043 /*
4044 * This hold on fnp is released below later,
4045 * in case this is not the fnp we want.
4046 */
4047 fn_hold(fnp);

4049 if (fnp->fn_sfh == sfh) {
4050 /*
4051 * We have found our entry.

new/usr/src/uts/common/fs/nfs/nfs4_client.c 37

4052 * put an hold and return it.
4053 */
4054 mutex_exit(&parent->fn_lock);
4055 return (fnp);
4056 }

4058 /*
4059 * We have found an entry that has a mismatching
4060 * fn_sfh. This could be a stale entry due to
4061 * server side rename. We will remove this entry
4062 * and make sure no such entries exist.
4063 */
4064 mutex_exit(&parent->fn_lock);
4065 mutex_enter(&fnp->fn_lock);
4066 if (fnp->fn_parent == parent) {
4067 /*
4068 * Remove ourselves from parent’s
4069 * fn_children tree.
4070 */
4071 mutex_enter(&parent->fn_lock);
4072 avl_remove(&parent->fn_children, fnp);
4073 mutex_exit(&parent->fn_lock);
4074 fn_rele(&fnp->fn_parent);
4075 }
4076 mutex_exit(&fnp->fn_lock);
4077 fn_rele(&fnp);
4078 goto again;
4079 }
4080 }

4082 fnp = kmem_alloc(sizeof (nfs4_fname_t), KM_SLEEP);
4083 mutex_init(&fnp->fn_lock, NULL, MUTEX_DEFAULT, NULL);
4084 fnp->fn_parent = parent;
4085 if (parent != NULL)
4086 fn_hold(parent);
4087 fnp->fn_len = strlen(name);
4088 ASSERT(fnp->fn_len < MAXNAMELEN);
4089 fnp->fn_name = kmem_alloc(fnp->fn_len + 1, KM_SLEEP);
4090 (void) strcpy(fnp->fn_name, name);
4091 fnp->fn_refcnt = 1;

4093 /*
4094 * This hold on sfh is later released
4095 * when we do the final fn_rele() on this fname.
4096 */
4097 sfh4_hold(sfh);
4098 fnp->fn_sfh = sfh;

4100 avl_create(&fnp->fn_children, fncmp, sizeof (nfs4_fname_t),
4101 offsetof(nfs4_fname_t, fn_tree));
4102 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
4103 "fn_get %p:%s, a new nfs4_fname_t!",
4104 (void *)fnp, fnp->fn_name));
4105 if (parent != NULL) {
4106 avl_insert(&parent->fn_children, fnp, where);
4107 mutex_exit(&parent->fn_lock);
4108 }

4110 return (fnp);
4111 }

4113 void
4114 fn_hold(nfs4_fname_t *fnp)
4115 {
4116 atomic_add_32(&fnp->fn_refcnt, 1);
4117 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,

new/usr/src/uts/common/fs/nfs/nfs4_client.c 38

4118 "fn_hold %p:%s, new refcnt=%d",
4119 (void *)fnp, fnp->fn_name, fnp->fn_refcnt));
4120 }

4122 /*
4123 * Decrement the reference count of the given fname, and destroy it if its
4124 * reference count goes to zero. Nulls out the given pointer.
4125 */

4127 void
4128 fn_rele(nfs4_fname_t **fnpp)
4129 {
4130 nfs4_fname_t *parent;
4131 uint32_t newref;
4132 nfs4_fname_t *fnp;

4134 recur:
4135 fnp = *fnpp;
4136 *fnpp = NULL;

4138 mutex_enter(&fnp->fn_lock);
4139 parent = fnp->fn_parent;
4140 if (parent != NULL)
4141 mutex_enter(&parent->fn_lock); /* prevent new references */
4142 newref = atomic_add_32_nv(&fnp->fn_refcnt, -1);
4143 if (newref > 0) {
4144 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
4145 "fn_rele %p:%s, new refcnt=%d",
4146 (void *)fnp, fnp->fn_name, fnp->fn_refcnt));
4147 if (parent != NULL)
4148 mutex_exit(&parent->fn_lock);
4149 mutex_exit(&fnp->fn_lock);
4150 return;
4151 }

4153 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
4154 "fn_rele %p:%s, last reference, deleting...",
4155 (void *)fnp, fnp->fn_name));
4156 if (parent != NULL) {
4157 avl_remove(&parent->fn_children, fnp);
4158 mutex_exit(&parent->fn_lock);
4159 }
4160 kmem_free(fnp->fn_name, fnp->fn_len + 1);
4161 sfh4_rele(&fnp->fn_sfh);
4162 mutex_destroy(&fnp->fn_lock);
4163 avl_destroy(&fnp->fn_children);
4164 kmem_free(fnp, sizeof (nfs4_fname_t));
4165 /*
4166 * Recursivly fn_rele the parent.
4167 * Use goto instead of a recursive call to avoid stack overflow.
4168 */
4169 if (parent != NULL) {
4170 fnpp = &parent;
4171 goto recur;
4172 }
4173 }

4175 /*
4176 * Returns the single component name of the given fname, in a MAXNAMELEN
4177 * string buffer, which the caller is responsible for freeing. Note that
4178 * the name may become invalid as a result of fn_move().
4179 */

4181 char *
4182 fn_name(nfs4_fname_t *fnp)
4183 {

new/usr/src/uts/common/fs/nfs/nfs4_client.c 39

4184 char *name;

4186 ASSERT(fnp->fn_len < MAXNAMELEN);
4187 name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
4188 mutex_enter(&fnp->fn_lock);
4189 (void) strcpy(name, fnp->fn_name);
4190 mutex_exit(&fnp->fn_lock);

4192 return (name);
4193 }

4196 /*
4197 * fn_path_realloc
4198 *
4199 * This function, used only by fn_path, constructs
4200 * a new string which looks like "prepend" + "/" + "current".
4201 * by allocating a new string and freeing the old one.
4202 */
4203 static void
4204 fn_path_realloc(char **curses, char *prepend)
4205 {
4206 int len, curlen = 0;
4207 char *news;

4209 if (*curses == NULL) {
4210 /*
4211 * Prime the pump, allocate just the
4212 * space for prepend and return that.
4213 */
4214 len = strlen(prepend) + 1;
4215 news = kmem_alloc(len, KM_SLEEP);
4216 (void) strncpy(news, prepend, len);
4217 } else {
4218 /*
4219 * Allocate the space for a new string
4220 * +1 +1 is for the "/" and the NULL
4221 * byte at the end of it all.
4222 */
4223 curlen = strlen(*curses);
4224 len = curlen + strlen(prepend) + 1 + 1;
4225 news = kmem_alloc(len, KM_SLEEP);
4226 (void) strncpy(news, prepend, len);
4227 (void) strcat(news, "/");
4228 (void) strcat(news, *curses);
4229 kmem_free(*curses, curlen + 1);
4230 }
4231 *curses = news;
4232 }

4234 /*
4235 * Returns the path name (starting from the fs root) for the given fname.
4236 * The caller is responsible for freeing. Note that the path may be or
4237 * become invalid as a result of fn_move().
4238 */

4240 char *
4241 fn_path(nfs4_fname_t *fnp)
4242 {
4243 char *path;
4244 nfs4_fname_t *nextfnp;

4246 if (fnp == NULL)
4247 return (NULL);

4249 path = NULL;

new/usr/src/uts/common/fs/nfs/nfs4_client.c 40

4251 /* walk up the tree constructing the pathname. */

4253 fn_hold(fnp); /* adjust for later rele */
4254 do {
4255 mutex_enter(&fnp->fn_lock);
4256 /*
4257 * Add fn_name in front of the current path
4258 */
4259 fn_path_realloc(&path, fnp->fn_name);
4260 nextfnp = fnp->fn_parent;
4261 if (nextfnp != NULL)
4262 fn_hold(nextfnp);
4263 mutex_exit(&fnp->fn_lock);
4264 fn_rele(&fnp);
4265 fnp = nextfnp;
4266 } while (fnp != NULL);

4268 return (path);
4269 }

4271 /*
4272 * Return a reference to the parent of the given fname, which the caller is
4273 * responsible for eventually releasing.
4274 */

4276 nfs4_fname_t *
4277 fn_parent(nfs4_fname_t *fnp)
4278 {
4279 nfs4_fname_t *parent;

4281 mutex_enter(&fnp->fn_lock);
4282 parent = fnp->fn_parent;
4283 if (parent != NULL)
4284 fn_hold(parent);
4285 mutex_exit(&fnp->fn_lock);

4287 return (parent);
4288 }

4290 /*
4291 * Update fnp so that its parent is newparent and its name is newname.
4292 */

4294 void
4295 fn_move(nfs4_fname_t *fnp, nfs4_fname_t *newparent, char *newname)
4296 {
4297 nfs4_fname_t *parent, *tmpfnp;
4298 ssize_t newlen;
4299 nfs4_fname_t key;
4300 avl_index_t where;

4302 /*
4303 * This assert exists to catch the client trying to rename
4304 * a dir to be a child of itself. This happened at a recent
4305 * bakeoff against a 3rd party (broken) server which allowed
4306 * the rename to succeed. If it trips it means that:
4307 * a) the code in nfs4rename that detects this case is broken
4308 * b) the server is broken (since it allowed the bogus rename)
4309 *
4310 * For non-DEBUG kernels, prepare for a recursive mutex_enter
4311 * panic below from: mutex_enter(&newparent->fn_lock);
4312 */
4313 ASSERT(fnp != newparent);

4315 /*

new/usr/src/uts/common/fs/nfs/nfs4_client.c 41

4316 * Remove fnp from its current parent, change its name, then add it
4317 * to newparent. It might happen that fnp was replaced by another
4318 * nfs4_fname_t with the same fn_name in parent->fn_children.
4319 * In such case, fnp->fn_parent is NULL and we skip the removal
4320 * of fnp from its current parent.
4321 */
4322 mutex_enter(&fnp->fn_lock);
4323 parent = fnp->fn_parent;
4324 if (parent != NULL) {
4325 mutex_enter(&parent->fn_lock);
4326 avl_remove(&parent->fn_children, fnp);
4327 mutex_exit(&parent->fn_lock);
4328 fn_rele(&fnp->fn_parent);
4329 }

4331 newlen = strlen(newname);
4332 if (newlen != fnp->fn_len) {
4333 ASSERT(newlen < MAXNAMELEN);
4334 kmem_free(fnp->fn_name, fnp->fn_len + 1);
4335 fnp->fn_name = kmem_alloc(newlen + 1, KM_SLEEP);
4336 fnp->fn_len = newlen;
4337 }
4338 (void) strcpy(fnp->fn_name, newname);

4340 again:
4341 mutex_enter(&newparent->fn_lock);
4342 key.fn_name = fnp->fn_name;
4343 tmpfnp = avl_find(&newparent->fn_children, &key, &where);
4344 if (tmpfnp != NULL) {
4345 /*
4346 * This could be due to a file that was unlinked while
4347 * open, or perhaps the rnode is in the free list. Remove
4348 * it from newparent and let it go away on its own. The
4349 * contorted code is to deal with lock order issues and
4350 * race conditions.
4351 */
4352 fn_hold(tmpfnp);
4353 mutex_exit(&newparent->fn_lock);
4354 mutex_enter(&tmpfnp->fn_lock);
4355 if (tmpfnp->fn_parent == newparent) {
4356 mutex_enter(&newparent->fn_lock);
4357 avl_remove(&newparent->fn_children, tmpfnp);
4358 mutex_exit(&newparent->fn_lock);
4359 fn_rele(&tmpfnp->fn_parent);
4360 }
4361 mutex_exit(&tmpfnp->fn_lock);
4362 fn_rele(&tmpfnp);
4363 goto again;
4364 }
4365 fnp->fn_parent = newparent;
4366 fn_hold(newparent);
4367 avl_insert(&newparent->fn_children, fnp, where);
4368 mutex_exit(&newparent->fn_lock);
4369 mutex_exit(&fnp->fn_lock);
4370 }

4372 #ifdef DEBUG
4373 /*
4374 * Return non-zero if the type information makes sense for the given vnode.
4375 * Otherwise panic.
4376 */
4377 int
4378 nfs4_consistent_type(vnode_t *vp)
4379 {
4380 rnode4_t *rp = VTOR4(vp);

new/usr/src/uts/common/fs/nfs/nfs4_client.c 42

4382 if (nfs4_vtype_debug && vp->v_type != VNON &&
4383 rp->r_attr.va_type != VNON && vp->v_type != rp->r_attr.va_type) {
4384 cmn_err(CE_PANIC, "vnode %p type mismatch; v_type=%d, "
4385 "rnode attr type=%d", (void *)vp, vp->v_type,
4386 rp->r_attr.va_type);
4387 }

4389 return (1);
4390 }
4391 #endif /* DEBUG */

