
new/usr/src/cmd/truss/codes.c 1

**
 77917 Wed Oct 17 21:48:36 2012
new/usr/src/cmd/truss/codes.c
FITS: generating send-streams in portable format
This commit adds the command ’zfs fits-send’, analogous to zfs send. The
generated send stream is compatible with the stream generated with that
from ’btrfs send’ and can in principle easily be received to any filesystem.
**
______unchanged_portion_omitted_
331 { (uint_t)TCGETA, "TCGETA", NULL },
332 { (uint_t)TCSETA, "TCSETA", NULL },
333 { (uint_t)TCSETAW, "TCSETAW", NULL },
334 { (uint_t)TCSETAF, "TCSETAF", NULL },
335 { (uint_t)TCFLSH, "TCFLSH", NULL },
336 { (uint_t)TIOCKBON, "TIOCKBON", NULL },
337 { (uint_t)TIOCKBOF, "TIOCKBOF", NULL },
338 { (uint_t)KBENABLED, "KBENABLED", NULL },
339 { (uint_t)TCGETS, "TCGETS", NULL },
340 { (uint_t)TCSETS, "TCSETS", NULL },
341 { (uint_t)TCSETSW, "TCSETSW", NULL },
342 { (uint_t)TCSETSF, "TCSETSF", NULL },
343 { (uint_t)TCXONC, "TCXONC", NULL },
344 { (uint_t)TCSBRK, "TCSBRK", NULL },
345 { (uint_t)TCDSET, "TCDSET", NULL },
346 { (uint_t)RTS_TOG, "RTS_TOG", NULL },
347 { (uint_t)TIOCSWINSZ, "TIOCSWINSZ", NULL },
348 { (uint_t)TIOCGWINSZ, "TIOCGWINSZ", NULL },
349 { (uint_t)TIOCGETD, "TIOCGETD", NULL },
350 { (uint_t)TIOCSETD, "TIOCSETD", NULL },
351 { (uint_t)TIOCHPCL, "TIOCHPCL", NULL },
352 { (uint_t)TIOCGETP, "TIOCGETP", NULL },
353 { (uint_t)TIOCSETP, "TIOCSETP", NULL },
354 { (uint_t)TIOCSETN, "TIOCSETN", NULL },
355 { (uint_t)TIOCEXCL, "TIOCEXCL", NULL },
356 { (uint_t)TIOCNXCL, "TIOCNXCL", NULL },
357 { (uint_t)TIOCFLUSH, "TIOCFLUSH", NULL },
358 { (uint_t)TIOCSETC, "TIOCSETC", NULL },
359 { (uint_t)TIOCGETC, "TIOCGETC", NULL },
360 { (uint_t)TIOCGPGRP, "TIOCGPGRP", NULL },
361 { (uint_t)TIOCSPGRP, "TIOCSPGRP", NULL },
362 { (uint_t)TIOCGSID, "TIOCGSID", NULL },
363 { (uint_t)TIOCSTI, "TIOCSTI", NULL },
364 { (uint_t)TIOCMSET, "TIOCMSET", NULL },
365 { (uint_t)TIOCMBIS, "TIOCMBIS", NULL },
366 { (uint_t)TIOCMBIC, "TIOCMBIC", NULL },
367 { (uint_t)TIOCMGET, "TIOCMGET", NULL },
368 { (uint_t)TIOCREMOTE, "TIOCREMOTE", NULL },
369 { (uint_t)TIOCSIGNAL, "TIOCSIGNAL", NULL },
370 { (uint_t)TIOCSTART, "TIOCSTART", NULL },
371 { (uint_t)TIOCSTOP, "TIOCSTOP", NULL },
372 { (uint_t)TIOCNOTTY, "TIOCNOTTY", NULL },
373 { (uint_t)TIOCSCTTY, "TIOCSCTTY", NULL },
374 { (uint_t)TIOCOUTQ, "TIOCOUTQ", NULL },
375 { (uint_t)TIOCGLTC, "TIOCGLTC", NULL },
376 { (uint_t)TIOCSLTC, "TIOCSLTC", NULL },
377 { (uint_t)TIOCCDTR, "TIOCCDTR", NULL },
378 { (uint_t)TIOCSDTR, "TIOCSDTR", NULL },
379 { (uint_t)TIOCCBRK, "TIOCCBRK", NULL },
380 { (uint_t)TIOCSBRK, "TIOCSBRK", NULL },
381 { (uint_t)TIOCLGET, "TIOCLGET", NULL },
382 { (uint_t)TIOCLSET, "TIOCLSET", NULL },
383 { (uint_t)TIOCLBIC, "TIOCLBIC", NULL },
384 { (uint_t)TIOCLBIS, "TIOCLBIS", NULL },

386 { (uint_t)TIOCSILOOP, "TIOCSILOOP", NULL },
387 { (uint_t)TIOCCILOOP, "TIOCSILOOP", NULL },

new/usr/src/cmd/truss/codes.c 2

389 { (uint_t)TIOCGPPS, "TIOCGPPS", NULL },
390 { (uint_t)TIOCSPPS, "TIOCSPPS", NULL },
391 { (uint_t)TIOCGPPSEV, "TIOCGPPSEV", NULL },

393 { (uint_t)TIOCPKT, "TIOCPKT", NULL }, /* ptyvar.h */
394 { (uint_t)TIOCUCNTL, "TIOCUCNTL", NULL },
395 { (uint_t)TIOCTCNTL, "TIOCTCNTL", NULL },
396 { (uint_t)TIOCISPACE, "TIOCISPACE", NULL },
397 { (uint_t)TIOCISIZE, "TIOCISIZE", NULL },
398 { (uint_t)TIOCSSIZE, "TIOCSSIZE", "ttysize" },
399 { (uint_t)TIOCGSIZE, "TIOCGSIZE", "ttysize" },

401 /*
402 * Unfortunately, the DLIOC and LDIOC codes overlap. Since the LDIOC
403 * ioctls (for xenix compatibility) are far less likely to be used, we
404 * give preference to DLIOC.
405 */
406 { (uint_t)DLIOCRAW, "DLIOCRAW", NULL },
407 { (uint_t)DLIOCNATIVE, "DLIOCNATIVE", NULL },
408 { (uint_t)DLIOCIPNETINFO, "DLIOCIPNETINFO", NULL},
409 { (uint_t)DLIOCLOWLINK, "DLIOCLOWLINK", NULL },

411 { (uint_t)LDOPEN, "LDOPEN", NULL },
412 { (uint_t)LDCLOSE, "LDCLOSE", NULL },
413 { (uint_t)LDCHG, "LDCHG", NULL },
414 { (uint_t)LDGETT, "LDGETT", NULL },
415 { (uint_t)LDSETT, "LDSETT", NULL },
416 { (uint_t)LDSMAP, "LDSMAP", NULL },
417 { (uint_t)LDGMAP, "LDGMAP", NULL },
418 { (uint_t)LDNMAP, "LDNMAP", NULL },
419 { (uint_t)TCGETX, "TCGETX", NULL },
420 { (uint_t)TCSETX, "TCSETX", NULL },
421 { (uint_t)TCSETXW, "TCSETXW", NULL },
422 { (uint_t)TCSETXF, "TCSETXF", NULL },
423 { (uint_t)FIORDCHK, "FIORDCHK", NULL },
424 { (uint_t)FIOCLEX, "FIOCLEX", NULL },
425 { (uint_t)FIONCLEX, "FIONCLEX", NULL },
426 { (uint_t)FIONREAD, "FIONREAD", NULL },
427 { (uint_t)FIONBIO, "FIONBIO", NULL },
428 { (uint_t)FIOASYNC, "FIOASYNC", NULL },
429 { (uint_t)FIOSETOWN, "FIOSETOWN", NULL },
430 { (uint_t)FIOGETOWN, "FIOGETOWN", NULL },
431 #ifdef DIOCGETP
432 { (uint_t)DIOCGETP, "DIOCGETP", NULL },
433 { (uint_t)DIOCSETP, "DIOCSETP", NULL },
434 #endif
435 #ifdef DIOCGETC
436 { (uint_t)DIOCGETC, "DIOCGETC", NULL },
437 { (uint_t)DIOCGETB, "DIOCGETB", NULL },
438 { (uint_t)DIOCSETE, "DIOCSETE", NULL },
439 #endif
440 #ifdef IFFORMAT
441 { (uint_t)IFFORMAT, "IFFORMAT", NULL },
442 { (uint_t)IFBCHECK, "IFBCHECK", NULL },
443 { (uint_t)IFCONFIRM, "IFCONFIRM", NULL },
444 #endif
445 #ifdef LIOCGETP
446 { (uint_t)LIOCGETP, "LIOCGETP", NULL },
447 { (uint_t)LIOCSETP, "LIOCSETP", NULL },
448 { (uint_t)LIOCGETS, "LIOCGETS", NULL },
449 { (uint_t)LIOCSETS, "LIOCSETS", NULL },
450 #endif
451 #ifdef JBOOT
452 { (uint_t)JBOOT, "JBOOT", NULL },
453 { (uint_t)JTERM, "JTERM", NULL },

new/usr/src/cmd/truss/codes.c 3

454 { (uint_t)JMPX, "JMPX", NULL },
455 #ifdef JTIMO
456 { (uint_t)JTIMO, "JTIMO", NULL },
457 #endif
458 { (uint_t)JWINSIZE, "JWINSIZE", NULL },
459 { (uint_t)JTIMOM, "JTIMOM", NULL },
460 { (uint_t)JZOMBOOT, "JZOMBOOT", NULL },
461 { (uint_t)JAGENT, "JAGENT", NULL },
462 { (uint_t)JTRUN, "JTRUN", NULL },
463 { (uint_t)JXTPROTO, "JXTPROTO", NULL },
464 #endif
465 { (uint_t)KSTAT_IOC_CHAIN_ID, "KSTAT_IOC_CHAIN_ID", NULL },
466 { (uint_t)KSTAT_IOC_READ, "KSTAT_IOC_READ", NULL },
467 { (uint_t)KSTAT_IOC_WRITE, "KSTAT_IOC_WRITE", NULL },
468 { (uint_t)STGET, "STGET", NULL },
469 { (uint_t)STSET, "STSET", NULL },
470 { (uint_t)STTHROW, "STTHROW", NULL },
471 { (uint_t)STWLINE, "STWLINE", NULL },
472 { (uint_t)STTSV, "STTSV", NULL },
473 { (uint_t)I_NREAD, "I_NREAD", NULL },
474 { (uint_t)I_PUSH, "I_PUSH", NULL },
475 { (uint_t)I_POP, "I_POP", NULL },
476 { (uint_t)I_LOOK, "I_LOOK", NULL },
477 { (uint_t)I_FLUSH, "I_FLUSH", NULL },
478 { (uint_t)I_SRDOPT, "I_SRDOPT", NULL },
479 { (uint_t)I_GRDOPT, "I_GRDOPT", NULL },
480 { (uint_t)I_STR, "I_STR", NULL },
481 { (uint_t)I_SETSIG, "I_SETSIG", NULL },
482 { (uint_t)I_GETSIG, "I_GETSIG", NULL },
483 { (uint_t)I_FIND, "I_FIND", NULL },
484 { (uint_t)I_LINK, "I_LINK", NULL },
485 { (uint_t)I_UNLINK, "I_UNLINK", NULL },
486 { (uint_t)I_PEEK, "I_PEEK", NULL },
487 { (uint_t)I_FDINSERT, "I_FDINSERT", NULL },
488 { (uint_t)I_SENDFD, "I_SENDFD", NULL },
489 { (uint_t)I_RECVFD, "I_RECVFD", NULL },
490 { (uint_t)I_SWROPT, "I_SWROPT", NULL },
491 { (uint_t)I_GWROPT, "I_GWROPT", NULL },
492 { (uint_t)I_LIST, "I_LIST", NULL },
493 { (uint_t)I_PLINK, "I_PLINK", NULL },
494 { (uint_t)I_PUNLINK, "I_PUNLINK", NULL },
495 { (uint_t)I_FLUSHBAND, "I_FLUSHBAND", NULL },
496 { (uint_t)I_CKBAND, "I_CKBAND", NULL },
497 { (uint_t)I_GETBAND, "I_GETBAND", NULL },
498 { (uint_t)I_ATMARK, "I_ATMARK", NULL },
499 { (uint_t)I_SETCLTIME, "I_SETCLTIME", NULL },
500 { (uint_t)I_GETCLTIME, "I_GETCLTIME", NULL },
501 { (uint_t)I_CANPUT, "I_CANPUT", NULL },
502 { (uint_t)I_ANCHOR, "I_ANCHOR", NULL },
503 { (uint_t)_I_CMD, "_I_CMD", NULL },
504 #ifdef TI_GETINFO
505 { (uint_t)TI_GETINFO, "TI_GETINFO", NULL },
506 { (uint_t)TI_OPTMGMT, "TI_OPTMGMT", NULL },
507 { (uint_t)TI_BIND, "TI_BIND", NULL },
508 { (uint_t)TI_UNBIND, "TI_UNBIND", NULL },
509 #endif
510 #ifdef TI_CAPABILITY
511 { (uint_t)TI_CAPABILITY, "TI_CAPABILITY", NULL },
512 #endif
513 #ifdef TI_GETMYNAME
514 { (uint_t)TI_GETMYNAME, "TI_GETMYNAME", NULL },
515 { (uint_t)TI_GETPEERNAME, "TI_GETPEERNAME", NULL },
516 { (uint_t)TI_SETMYNAME, "TI_SETMYNAME", NULL },
517 { (uint_t)TI_SETPEERNAME, "TI_SETPEERNAME", NULL },
518 #endif
519 #ifdef V_PREAD

new/usr/src/cmd/truss/codes.c 4

520 { (uint_t)V_PREAD, "V_PREAD", NULL },
521 { (uint_t)V_PWRITE, "V_PWRITE", NULL },
522 { (uint_t)V_PDREAD, "V_PDREAD", NULL },
523 { (uint_t)V_PDWRITE, "V_PDWRITE", NULL },
524 #if !defined(__i386) && !defined(__amd64)
525 { (uint_t)V_GETSSZ, "V_GETSSZ", NULL },
526 #endif /* !__i386 */
527 #endif
528 /* audio */
529 { (uint_t)AUDIO_GETINFO, "AUDIO_GETINFO", NULL },
530 { (uint_t)AUDIO_SETINFO, "AUDIO_SETINFO", NULL },
531 { (uint_t)AUDIO_DRAIN, "AUDIO_DRAIN", NULL },
532 { (uint_t)AUDIO_GETDEV, "AUDIO_GETDEV", NULL },
533 { (uint_t)AUDIO_DIAG_LOOPBACK, "AUDIO_DIAG_LOOPBACK", NULL },
534 { (uint_t)AUDIO_GET_CH_NUMBER, "AUDIO_GET_CH_NUMBER", NULL },
535 { (uint_t)AUDIO_GET_CH_TYPE, "AUDIO_GET_CH_TYPE", NULL },
536 { (uint_t)AUDIO_GET_NUM_CHS, "AUDIO_GET_NUM_CHS", NULL },
537 { (uint_t)AUDIO_GET_AD_DEV, "AUDIO_GET_AD_DEV", NULL },
538 { (uint_t)AUDIO_GET_APM_DEV, "AUDIO_GET_APM_DEV", NULL },
539 { (uint_t)AUDIO_GET_AS_DEV, "AUDIO_GET_AS_DEV", NULL },
540 { (uint_t)AUDIO_MIXER_MULTIPLE_OPEN, "AUDIO_MIXER_MULTIPLE_OPEN",
541 NULL },
542 { (uint_t)AUDIO_MIXER_SINGLE_OPEN, "AUDIO_MIXER_SINGLE_OPEN",
543 NULL },
544 { (uint_t)AUDIO_MIXER_GET_SAMPLE_RATES, "AUDIO_MIXER_GET_SAMPLE_RATES",
545 NULL },
546 { (uint_t)AUDIO_MIXERCTL_GETINFO, "AUDIO_MIXERCTL_GETINFO",
547 NULL },
548 { (uint_t)AUDIO_MIXERCTL_SETINFO, "AUDIO_MIXERCTL_SETINFO",
549 NULL },
550 { (uint_t)AUDIO_MIXERCTL_GET_CHINFO, "AUDIO_MIXERCTL_GET_CHINFO",
551 NULL },
552 { (uint_t)AUDIO_MIXERCTL_SET_CHINFO, "AUDIO_MIXERCTL_SET_CHINFO",
553 NULL },
554 { (uint_t)AUDIO_MIXERCTL_GET_MODE, "AUDIO_MIXERCTL_GET_MODE",
555 NULL },
556 { (uint_t)AUDIO_MIXERCTL_SET_MODE, "AUDIO_MIXERCTL_SET_MODE",
557 NULL },
558 /* new style Boomer (OSS) ioctls */
559 { (uint_t)SNDCTL_SYSINFO, "SNDCTL_SYSINFO", NULL },
560 { (uint_t)SNDCTL_AUDIOINFO, "SNDCTL_AUDIOINFO", NULL },
561 { (uint_t)SNDCTL_AUDIOINFO_EX, "SNDCTL_AUDIOINFO_EX", NULL },
562 { (uint_t)SNDCTL_MIXERINFO, "SNDCTL_MIXERINFO", NULL },
563 { (uint_t)SNDCTL_CARDINFO, "SNDCTL_CARDINFO", NULL },
564 { (uint_t)SNDCTL_ENGINEINFO, "SNDCTL_ENGINEINFO", NULL },
565 { (uint_t)SNDCTL_MIX_NRMIX, "SNDCTL_MIX_NRMIX", NULL },
566 { (uint_t)SNDCTL_MIX_NREXT, "SNDCTL_MIX_NREXT", NULL },
567 { (uint_t)SNDCTL_MIX_EXTINFO, "SNDCTL_MIX_EXTINFO", NULL },
568 { (uint_t)SNDCTL_MIX_READ, "SNDCTL_MIX_READ", NULL },
569 { (uint_t)SNDCTL_MIX_WRITE, "SNDCTL_MIX_WRITE", NULL },
570 { (uint_t)SNDCTL_MIX_ENUMINFO, "SNDCTL_MIX_ENUMINFO", NULL },
571 { (uint_t)SNDCTL_MIX_DESCRIPTION, "SNDCTL_MIX_DESCRIPTION",
572 NULL },
573 { (uint_t)SNDCTL_SETSONG, "SNDCTL_SETSONG", NULL },
574 { (uint_t)SNDCTL_GETSONG, "SNDCTL_GETSONG", NULL },
575 { (uint_t)SNDCTL_SETNAME, "SNDCTL_SETNAME", NULL },
576 { (uint_t)SNDCTL_SETLABEL, "SNDCTL_SETLABEL", NULL },
577 { (uint_t)SNDCTL_GETLABEL, "SNDCTL_GETLABEL", NULL },
578 { (uint_t)SNDCTL_DSP_HALT, "SNDCTL_DSP_HALT", NULL },
579 { (uint_t)SNDCTL_DSP_RESET, "SNDCTL_DSP_RESET", NULL },
580 { (uint_t)SNDCTL_DSP_SYNC, "SNDCTL_DSP_SYNC", NULL },
581 { (uint_t)SNDCTL_DSP_SPEED, "SNDCTL_DSP_SPEED", NULL },
582 { (uint_t)SNDCTL_DSP_STEREO, "SNDCTL_DSP_STEREO", NULL },
583 { (uint_t)SNDCTL_DSP_GETBLKSIZE, "SNDCTL_DSP_GETBLKSIZE",
584 NULL },
585 { (uint_t)SNDCTL_DSP_SAMPLESIZE, "SNDCTL_DSP_SAMPLESIZE",

new/usr/src/cmd/truss/codes.c 5

586 NULL },
587 { (uint_t)SNDCTL_DSP_CHANNELS, "SNDCTL_DSP_CHANNELS", NULL },
588 { (uint_t)SNDCTL_DSP_POST, "SNDCTL_DSP_POST", NULL },
589 { (uint_t)SNDCTL_DSP_SUBDIVIDE, "SNDCTL_DSP_SUBDIVIDE", NULL },
590 { (uint_t)SNDCTL_DSP_SETFRAGMENT, "SNDCTL_DSP_SETFRAGMENT",
591 NULL },
592 { (uint_t)SNDCTL_DSP_GETFMTS, "SNDCTL_DSP_GETFMTS", NULL },
593 { (uint_t)SNDCTL_DSP_SETFMT, "SNDCTL_DSP_SETFMT", NULL },
594 { (uint_t)SNDCTL_DSP_GETOSPACE, "SNDCTL_DSP_GETOSPACE", NULL },
595 { (uint_t)SNDCTL_DSP_GETISPACE, "SNDCTL_DSP_GETISPACE", NULL },
596 { (uint_t)SNDCTL_DSP_GETCAPS, "SNDCTL_DSP_CAPS", NULL },
597 { (uint_t)SNDCTL_DSP_GETTRIGGER, "SNDCTL_DSP_GETTRIGGER",
598 NULL },
599 { (uint_t)SNDCTL_DSP_SETTRIGGER, "SNDCTL_DSP_SETTRIGGER",
600 NULL },
601 { (uint_t)SNDCTL_DSP_GETIPTR, "SNDCTL_DSP_GETIPTR", NULL },
602 { (uint_t)SNDCTL_DSP_GETOPTR, "SNDCTL_DSP_GETOPTR", NULL },
603 { (uint_t)SNDCTL_DSP_SETSYNCRO, "SNDCTL_DSP_SETSYNCRO", NULL },
604 { (uint_t)SNDCTL_DSP_SETDUPLEX, "SNDCTL_DSP_SETDUPLEX", NULL },
605 { (uint_t)SNDCTL_DSP_PROFILE, "SNDCTL_DSP_PROFILE", NULL },
606 { (uint_t)SNDCTL_DSP_GETODELAY, "SNDCTL_DSP_GETODELAY", NULL },
607 { (uint_t)SNDCTL_DSP_GETPLAYVOL, "SNDCTL_DSP_GETPLAYVOL",
608 NULL },
609 { (uint_t)SNDCTL_DSP_SETPLAYVOL, "SNDCTL_DSP_SETPLAYVOL",
610 NULL },
611 { (uint_t)SNDCTL_DSP_GETERROR, "SNDCTL_DSP_GETERROR", NULL },
612 { (uint_t)SNDCTL_DSP_READCTL, "SNDCTL_DSP_READCTL", NULL },
613 { (uint_t)SNDCTL_DSP_WRITECTL, "SNDCTL_DSP_WRITECTL", NULL },
614 { (uint_t)SNDCTL_DSP_SYNCGROUP, "SNDCTL_DSP_SYNCGROUP", NULL },
615 { (uint_t)SNDCTL_DSP_SYNCSTART, "SNDCTL_DSP_SYNCSTART", NULL },
616 { (uint_t)SNDCTL_DSP_COOKEDMODE, "SNDCTL_DSP_COOKEDMODE",
617 NULL },
618 { (uint_t)SNDCTL_DSP_SILENCE, "SNDCTL_DSP_SILENCE", NULL },
619 { (uint_t)SNDCTL_DSP_SKIP, "SNDCTL_DSP_SKIP", NULL },
620 { (uint_t)SNDCTL_DSP_HALT_INPUT, "SNDCTL_DSP_HALT_INPUT",
621 NULL },
622 { (uint_t)SNDCTL_DSP_HALT_OUTPUT, "SNDCTL_DSP_HALT_OUTPUT",
623 NULL },
624 { (uint_t)SNDCTL_DSP_LOW_WATER, "SNDCTL_DSP_LOW_WATER", NULL },
625 { (uint_t)SNDCTL_DSP_CURRENT_OPTR, "SNDCTL_DSP_CURRENT_OPTR",
626 NULL },
627 { (uint_t)SNDCTL_DSP_CURRENT_IPTR, "SNDCTL_DSP_CURRENT_IPTR",
628 NULL },
629 { (uint_t)SNDCTL_DSP_GET_RECSRC_NAMES, "SNDCTL_DSP_GET_RECSRC_NAMES",
630 NULL },
631 { (uint_t)SNDCTL_DSP_GET_RECSRC, "SNDCTL_DSP_GET_RECSRC",
632 NULL },
633 { (uint_t)SNDCTL_DSP_SET_RECSRC, "SNDCTL_DSP_SET_RECSRC",
634 NULL },
635 { (uint_t)SNDCTL_DSP_GET_PLAYTGT_NAMES, "SNDCTL_DSP_GET_PLAYTGT_NAMES",
636 NULL },
637 { (uint_t)SNDCTL_DSP_GET_PLAYTGT, "SNDCTL_DSP_GET_PLAYTGT",
638 NULL },
639 { (uint_t)SNDCTL_DSP_SET_PLAYTGT, "SNDCTL_DSP_SET_PLAYTGT",
640 NULL },
641 { (uint_t)SNDCTL_DSP_GETRECVOL, "SNDCTL_DSP_GETRECVOL",
642 NULL },
643 { (uint_t)SNDCTL_DSP_SETRECVOL, "SNDCTL_DSP_SETRECVOL",
644 NULL },
645 { (uint_t)SNDCTL_DSP_GET_CHNORDER, "SNDCTL_DSP_GET_CHNORDER",
646 NULL },
647 { (uint_t)SNDCTL_DSP_SET_CHNORDER, "SNDCTL_DSP_SET_CHNORDER",
648 NULL },
649 { (uint_t)SNDCTL_DSP_GETIPEAKS, "SNDCTL_DSP_GETIPEAKS", NULL },
650 { (uint_t)SNDCTL_DSP_GETOPEAKS, "SNDCTL_DSP_GETOPEAKS", NULL },
651 { (uint_t)SNDCTL_DSP_POLICY, "SNDCTL_DSP_POLICY", NULL },

new/usr/src/cmd/truss/codes.c 6

652 { (uint_t)SNDCTL_DSP_GETCHANNELMASK, "SNDCTL_DSP_GETCHANNELMASK",
653 NULL },
654 { (uint_t)SNDCTL_DSP_BIND_CHANNEL, "SNDCTL_DSP_BIND_CHANNEL",
655 NULL },
656 { (uint_t)SOUND_MIXER_READ_VOLUME, "SOUND_MIXER_READ_VOLUME",
657 NULL },
658 { (uint_t)SOUND_MIXER_READ_OGAIN, "SOUND_MIXER_READ_OGAIN",
659 NULL },
660 { (uint_t)SOUND_MIXER_READ_PCM, "SOUND_MIXER_READ_PCM", NULL },
661 { (uint_t)SOUND_MIXER_READ_IGAIN, "SOUND_MIXER_READ_IGAIN",
662 NULL },
663 { (uint_t)SOUND_MIXER_READ_RECLEV, "SOUND_MIXER_READ_RECLEV",
664 NULL },
665 { (uint_t)SOUND_MIXER_READ_RECSRC, "SOUND_MIXER_READ_RECSRC",
666 NULL },
667 { (uint_t)SOUND_MIXER_READ_DEVMASK, "SOUND_MIXER_READ_DEVMASK",
668 NULL },
669 { (uint_t)SOUND_MIXER_READ_RECMASK, "SOUND_MIXER_READ_RECMASK",
670 NULL },
671 { (uint_t)SOUND_MIXER_READ_CAPS, "SOUND_MIXER_READ_CAPS",
672 NULL },
673 { (uint_t)SOUND_MIXER_READ_STEREODEVS, "SOUND_MIXER_READ_STEREODEVS",
674 NULL },
675 { (uint_t)SOUND_MIXER_READ_RECGAIN, "SOUND_MIXER_READ_RECGAIN",
676 NULL },
677 { (uint_t)SOUND_MIXER_READ_MONGAIN, "SOUND_MIXER_READ_MONGAIN",
678 NULL },
679 { (uint_t)SOUND_MIXER_WRITE_VOLUME, "SOUND_MIXER_WRITE_VOLUME",
680 NULL },
681 { (uint_t)SOUND_MIXER_WRITE_OGAIN, "SOUND_MIXER_WRITE_OGAIN",
682 NULL },
683 { (uint_t)SOUND_MIXER_WRITE_PCM, "SOUND_MIXER_WRITE_PCM",
684 NULL },
685 { (uint_t)SOUND_MIXER_WRITE_IGAIN, "SOUND_MIXER_WRITE_IGAIN",
686 NULL },
687 { (uint_t)SOUND_MIXER_WRITE_RECLEV, "SOUND_MIXER_WRITE_RECLEV",
688 NULL },
689 { (uint_t)SOUND_MIXER_WRITE_RECSRC, "SOUND_MIXER_WRITE_RECSRC",
690 NULL },
691 { (uint_t)SOUND_MIXER_WRITE_RECGAIN, "SOUND_MIXER_WRITE_RECGAIN",
692 NULL },
693 { (uint_t)SOUND_MIXER_WRITE_MONGAIN, "SOUND_MIXER_WRITE_MONGAIN",
694 NULL },

696 /* STREAMS redirection ioctls */
697 { (uint_t)SRIOCSREDIR, "SRIOCSREDIR", NULL },
698 { (uint_t)SRIOCISREDIR, "SRIOCISREDIR", NULL },
699 { (uint_t)CPCIO_BIND, "CPCIO_BIND", NULL },
700 { (uint_t)CPCIO_SAMPLE, "CPCIO_SAMPLE", NULL },
701 { (uint_t)CPCIO_RELE, "CPCIO_RELE", NULL },
702 /* /dev/poll ioctl() control codes */
703 { (uint_t)DP_POLL, "DP_POLL", NULL },
704 { (uint_t)DP_ISPOLLED, "DP_ISPOLLED", NULL },
705 /* the old /proc ioctl() control codes */
706 #define PIOC (’q’<<8)
707 { (uint_t)(PIOC|1), "PIOCSTATUS", NULL },
708 { (uint_t)(PIOC|2), "PIOCSTOP", NULL },
709 { (uint_t)(PIOC|3), "PIOCWSTOP", NULL },
710 { (uint_t)(PIOC|4), "PIOCRUN", NULL },
711 { (uint_t)(PIOC|5), "PIOCGTRACE", NULL },
712 { (uint_t)(PIOC|6), "PIOCSTRACE", NULL },
713 { (uint_t)(PIOC|7), "PIOCSSIG", NULL },
714 { (uint_t)(PIOC|8), "PIOCKILL", NULL },
715 { (uint_t)(PIOC|9), "PIOCUNKILL", NULL },
716 { (uint_t)(PIOC|10), "PIOCGHOLD", NULL },
717 { (uint_t)(PIOC|11), "PIOCSHOLD", NULL },

new/usr/src/cmd/truss/codes.c 7

718 { (uint_t)(PIOC|12), "PIOCMAXSIG", NULL },
719 { (uint_t)(PIOC|13), "PIOCACTION", NULL },
720 { (uint_t)(PIOC|14), "PIOCGFAULT", NULL },
721 { (uint_t)(PIOC|15), "PIOCSFAULT", NULL },
722 { (uint_t)(PIOC|16), "PIOCCFAULT", NULL },
723 { (uint_t)(PIOC|17), "PIOCGENTRY", NULL },
724 { (uint_t)(PIOC|18), "PIOCSENTRY", NULL },
725 { (uint_t)(PIOC|19), "PIOCGEXIT", NULL },
726 { (uint_t)(PIOC|20), "PIOCSEXIT", NULL },
727 { (uint_t)(PIOC|21), "PIOCSFORK", NULL },
728 { (uint_t)(PIOC|22), "PIOCRFORK", NULL },
729 { (uint_t)(PIOC|23), "PIOCSRLC", NULL },
730 { (uint_t)(PIOC|24), "PIOCRRLC", NULL },
731 { (uint_t)(PIOC|25), "PIOCGREG", NULL },
732 { (uint_t)(PIOC|26), "PIOCSREG", NULL },
733 { (uint_t)(PIOC|27), "PIOCGFPREG", NULL },
734 { (uint_t)(PIOC|28), "PIOCSFPREG", NULL },
735 { (uint_t)(PIOC|29), "PIOCNICE", NULL },
736 { (uint_t)(PIOC|30), "PIOCPSINFO", NULL },
737 { (uint_t)(PIOC|31), "PIOCNMAP", NULL },
738 { (uint_t)(PIOC|32), "PIOCMAP", NULL },
739 { (uint_t)(PIOC|33), "PIOCOPENM", NULL },
740 { (uint_t)(PIOC|34), "PIOCCRED", NULL },
741 { (uint_t)(PIOC|35), "PIOCGROUPS", NULL },
742 { (uint_t)(PIOC|36), "PIOCGETPR", NULL },
743 { (uint_t)(PIOC|37), "PIOCGETU", NULL },
744 { (uint_t)(PIOC|38), "PIOCSET", NULL },
745 { (uint_t)(PIOC|39), "PIOCRESET", NULL },
746 { (uint_t)(PIOC|43), "PIOCUSAGE", NULL },
747 { (uint_t)(PIOC|44), "PIOCOPENPD", NULL },
748 { (uint_t)(PIOC|45), "PIOCLWPIDS", NULL },
749 { (uint_t)(PIOC|46), "PIOCOPENLWP", NULL },
750 { (uint_t)(PIOC|47), "PIOCLSTATUS", NULL },
751 { (uint_t)(PIOC|48), "PIOCLUSAGE", NULL },
752 { (uint_t)(PIOC|49), "PIOCNAUXV", NULL },
753 { (uint_t)(PIOC|50), "PIOCAUXV", NULL },
754 { (uint_t)(PIOC|51), "PIOCGXREGSIZE", NULL },
755 { (uint_t)(PIOC|52), "PIOCGXREG", NULL },
756 { (uint_t)(PIOC|53), "PIOCSXREG", NULL },
757 { (uint_t)(PIOC|101), "PIOCGWIN", NULL },
758 { (uint_t)(PIOC|103), "PIOCNLDT", NULL },
759 { (uint_t)(PIOC|104), "PIOCLDT", NULL },

761 /* ioctl’s applicable on sockets */
762 { (uint_t)SIOCSHIWAT, "SIOCSHIWAT", NULL },
763 { (uint_t)SIOCGHIWAT, "SIOCGHIWAT", NULL },
764 { (uint_t)SIOCSLOWAT, "SIOCSLOWAT", NULL },
765 { (uint_t)SIOCGLOWAT, "SIOCGLOWAT", NULL },
766 { (uint_t)SIOCATMARK, "SIOCATMARK", NULL },
767 { (uint_t)SIOCSPGRP, "SIOCSPGRP", NULL },
768 { (uint_t)SIOCGPGRP, "SIOCGPGRP", NULL },
769 { (uint_t)SIOCADDRT, "SIOCADDRT", "rtentry" },
770 { (uint_t)SIOCDELRT, "SIOCDELRT", "rtentry" },
771 { (uint_t)SIOCGETVIFCNT, "SIOCGETVIFCNT", "sioc_vif_req" },
772 { (uint_t)SIOCGETSGCNT, "SIOCGETSGCNT", "sioc_sg_req" },
773 { (uint_t)SIOCGETLSGCNT, "SIOCGETLSGCNT", "sioc_lsg_req" },
774 { (uint_t)SIOCSIFADDR, "SIOCSIFADDR", "ifreq" },
775 { (uint_t)SIOCGIFADDR, "SIOCGIFADDR", "ifreq" },
776 { (uint_t)SIOCSIFDSTADDR, "SIOCSIFDSTADDR", "ifreq" },
777 { (uint_t)SIOCGIFDSTADDR, "SIOCGIFDSTADDR", "ifreq" },
778 { (uint_t)SIOCSIFFLAGS, "SIOCSIFFLAGS", "ifreq" },
779 { (uint_t)SIOCGIFFLAGS, "SIOCGIFFLAGS", "ifreq" },
780 { (uint_t)SIOCSIFMEM, "SIOCSIFMEM", "ifreq" },
781 { (uint_t)SIOCGIFMEM, "SIOCGIFMEM", "ifreq" },
782 { (uint_t)SIOCGIFCONF, "SIOCGIFCONF", "ifconf" },
783 { (uint_t)SIOCSIFMTU, "SIOCSIFMTU", "ifreq" },

new/usr/src/cmd/truss/codes.c 8

784 { (uint_t)SIOCGIFMTU, "SIOCGIFMTU", "ifreq" },
785 { (uint_t)SIOCGIFBRDADDR, "SIOCGIFBRDADDR", "ifreq" },
786 { (uint_t)SIOCSIFBRDADDR, "SIOCSIFBRDADDR", "ifreq" },
787 { (uint_t)SIOCGIFNETMASK, "SIOCGIFNETMASK", "ifreq" },
788 { (uint_t)SIOCSIFNETMASK, "SIOCSIFNETMASK", "ifreq" },
789 { (uint_t)SIOCGIFMETRIC, "SIOCGIFMETRIC", "ifreq" },
790 { (uint_t)SIOCSIFMETRIC, "SIOCSIFMETRIC", "ifreq" },
791 { (uint_t)SIOCSARP, "SIOCSARP", "arpreq" },
792 { (uint_t)SIOCGARP, "SIOCGARP", "arpreq" },
793 { (uint_t)SIOCDARP, "SIOCDARP", "arpreq" },
794 { (uint_t)SIOCUPPER, "SIOCUPPER", "ifreq" },
795 { (uint_t)SIOCLOWER, "SIOCLOWER", "ifreq" },
796 { (uint_t)SIOCSETSYNC, "SIOCSETSYNC", "ifreq" },
797 { (uint_t)SIOCGETSYNC, "SIOCGETSYNC", "ifreq" },
798 { (uint_t)SIOCSSDSTATS, "SIOCSSDSTATS", "ifreq" },
799 { (uint_t)SIOCSSESTATS, "SIOCSSESTATS", "ifreq" },
800 { (uint_t)SIOCSPROMISC, "SIOCSPROMISC", NULL },
801 { (uint_t)SIOCADDMULTI, "SIOCADDMULTI", "ifreq" },
802 { (uint_t)SIOCDELMULTI, "SIOCDELMULTI", "ifreq" },
803 { (uint_t)SIOCGETNAME, "SIOCGETNAME", "sockaddr" },
804 { (uint_t)SIOCGETPEER, "SIOCGETPEER", "sockaddr" },
805 { (uint_t)IF_UNITSEL, "IF_UNITSEL", NULL },
806 { (uint_t)SIOCXPROTO, "SIOCXPROTO", NULL },
807 { (uint_t)SIOCIFDETACH, "SIOCIFDETACH", "ifreq" },
808 { (uint_t)SIOCGENPSTATS, "SIOCGENPSTATS", "ifreq" },
809 { (uint_t)SIOCX25XMT, "SIOCX25XMT", "ifreq" },
810 { (uint_t)SIOCX25RCV, "SIOCX25RCV", "ifreq" },
811 { (uint_t)SIOCX25TBL, "SIOCX25TBL", "ifreq" },
812 { (uint_t)SIOCSLGETREQ, "SIOCSLGETREQ", "ifreq" },
813 { (uint_t)SIOCSLSTAT, "SIOCSLSTAT", "ifreq" },
814 { (uint_t)SIOCSIFNAME, "SIOCSIFNAME", "ifreq" },
815 { (uint_t)SIOCGENADDR, "SIOCGENADDR", "ifreq" },
816 { (uint_t)SIOCGIFNUM, "SIOCGIFNUM", NULL },
817 { (uint_t)SIOCGIFMUXID, "SIOCGIFMUXID", "ifreq" },
818 { (uint_t)SIOCSIFMUXID, "SIOCSIFMUXID", "ifreq" },
819 { (uint_t)SIOCGIFINDEX, "SIOCGIFINDEX", "ifreq" },
820 { (uint_t)SIOCSIFINDEX, "SIOCSIFINDEX", "ifreq" },
821 { (uint_t)SIOCLIFREMOVEIF, "SIOCLIFREMOVEIF", "lifreq" },
822 { (uint_t)SIOCLIFADDIF, "SIOCLIFADDIF", "lifreq" },
823 { (uint_t)SIOCSLIFADDR, "SIOCSLIFADDR", "lifreq" },
824 { (uint_t)SIOCGLIFADDR, "SIOCGLIFADDR", "lifreq" },
825 { (uint_t)SIOCSLIFDSTADDR, "SIOCSLIFDSTADDR", "lifreq" },
826 { (uint_t)SIOCGLIFDSTADDR, "SIOCGLIFDSTADDR", "lifreq" },
827 { (uint_t)SIOCSLIFFLAGS, "SIOCSLIFFLAGS", "lifreq" },
828 { (uint_t)SIOCGLIFFLAGS, "SIOCGLIFFLAGS", "lifreq" },
829 { (uint_t)SIOCGLIFCONF, "SIOCGLIFCONF", "lifconf" },
830 { (uint_t)SIOCSLIFMTU, "SIOCSLIFMTU", "lifreq" },
831 { (uint_t)SIOCGLIFMTU, "SIOCGLIFMTU", "lifreq" },
832 { (uint_t)SIOCGLIFBRDADDR, "SIOCGLIFBRDADDR", "lifreq" },
833 { (uint_t)SIOCSLIFBRDADDR, "SIOCSLIFBRDADDR", "lifreq" },
834 { (uint_t)SIOCGLIFNETMASK, "SIOCGLIFNETMASK", "lifreq" },
835 { (uint_t)SIOCSLIFNETMASK, "SIOCSLIFNETMASK", "lifreq" },
836 { (uint_t)SIOCGLIFMETRIC, "SIOCGLIFMETRIC", "lifreq" },
837 { (uint_t)SIOCSLIFMETRIC, "SIOCSLIFMETRIC", "lifreq" },
838 { (uint_t)SIOCSLIFNAME, "SIOCSLIFNAME", "lifreq" },
839 { (uint_t)SIOCGLIFNUM, "SIOCGLIFNUM", "lifnum" },
840 { (uint_t)SIOCGLIFMUXID, "SIOCGLIFMUXID", "lifreq" },
841 { (uint_t)SIOCSLIFMUXID, "SIOCSLIFMUXID", "lifreq" },
842 { (uint_t)SIOCGLIFINDEX, "SIOCGLIFINDEX", "lifreq" },
843 { (uint_t)SIOCSLIFINDEX, "SIOCSLIFINDEX", "lifreq" },
844 { (uint_t)SIOCSLIFTOKEN, "SIOCSLIFTOKEN", "lifreq" },
845 { (uint_t)SIOCGLIFTOKEN, "SIOCGLIFTOKEN", "lifreq" },
846 { (uint_t)SIOCSLIFSUBNET, "SIOCSLIFSUBNET", "lifreq" },
847 { (uint_t)SIOCGLIFSUBNET, "SIOCGLIFSUBNET", "lifreq" },
848 { (uint_t)SIOCSLIFLNKINFO, "SIOCSLIFLNKINFO", "lifreq" },
849 { (uint_t)SIOCGLIFLNKINFO, "SIOCGLIFLNKINFO", "lifreq" },

new/usr/src/cmd/truss/codes.c 9

850 { (uint_t)SIOCLIFDELND, "SIOCLIFDELND", "lifreq" },
851 { (uint_t)SIOCLIFGETND, "SIOCLIFGETND", "lifreq" },
852 { (uint_t)SIOCLIFSETND, "SIOCLIFSETND", "lifreq" },
853 { (uint_t)SIOCTMYADDR, "SIOCTMYADDR", "sioc_addrreq" },
854 { (uint_t)SIOCTONLINK, "SIOCTONLINK", "sioc_addrreq" },
855 { (uint_t)SIOCTMYSITE, "SIOCTMYSITE", "sioc_addrreq" },
856 { (uint_t)SIOCFIPSECONFIG, "SIOCFIPSECONFIG", NULL },
857 { (uint_t)SIOCSIPSECONFIG, "SIOCSIPSECONFIG", NULL },
858 { (uint_t)SIOCDIPSECONFIG, "SIOCDIPSECONFIG", NULL },
859 { (uint_t)SIOCLIPSECONFIG, "SIOCLIPSECONFIG", NULL },
860 { (uint_t)SIOCGLIFBINDING, "SIOCGLIFBINDING", "lifreq" },
861 { (uint_t)SIOCSLIFGROUPNAME, "SIOCSLIFGROUPNAME", "lifreq" },
862 { (uint_t)SIOCGLIFGROUPNAME, "SIOCGLIFGROUPNAME", "lifreq" },
863 { (uint_t)SIOCGLIFGROUPINFO, "SIOCGLIFGROUPINFO", "lifgroupinfo" },
864 { (uint_t)SIOCGDSTINFO, "SIOCGDSTINFO", NULL },
865 { (uint_t)SIOCGIP6ADDRPOLICY, "SIOCGIP6ADDRPOLICY", NULL },
866 { (uint_t)SIOCSIP6ADDRPOLICY, "SIOCSIP6ADDRPOLICY", NULL },
867 { (uint_t)SIOCSXARP, "SIOCSXARP", "xarpreq" },
868 { (uint_t)SIOCGXARP, "SIOCGXARP", "xarpreq" },
869 { (uint_t)SIOCDXARP, "SIOCDXARP", "xarpreq" },
870 { (uint_t)SIOCGLIFZONE, "SIOCGLIFZONE", "lifreq" },
871 { (uint_t)SIOCSLIFZONE, "SIOCSLIFZONE", "lifreq" },
872 { (uint_t)SIOCSCTPSOPT, "SIOCSCTPSOPT", NULL },
873 { (uint_t)SIOCSCTPGOPT, "SIOCSCTPGOPT", NULL },
874 { (uint_t)SIOCSCTPPEELOFF, "SIOPCSCTPPEELOFF", "int" },
875 { (uint_t)SIOCGLIFUSESRC, "SIOCGLIFUSESRC", "lifreq" },
876 { (uint_t)SIOCSLIFUSESRC, "SIOCSLIFUSESRC", "lifreq" },
877 { (uint_t)SIOCGLIFSRCOF, "SIOCGLIFSRCOF", "lifsrcof" },
878 { (uint_t)SIOCGMSFILTER, "SIOCGMSFILTER", "group_filter" },
879 { (uint_t)SIOCSMSFILTER, "SIOCSMSFILTER", "group_filter" },
880 { (uint_t)SIOCGIPMSFILTER, "SIOCGIPMSFILTER", "ip_msfilter" },
881 { (uint_t)SIOCSIPMSFILTER, "SIOCSIPMSFILTER", "ip_msfilter" },
882 { (uint_t)SIOCGLIFDADSTATE, "SIOCGLIFDADSTATE", "lifreq" },
883 { (uint_t)SIOCSLIFPREFIX, "SIOCSLIFPREFIX", "lifreq" },
884 { (uint_t)SIOCGSTAMP, "SIOCGSTAMP", "timeval" },
885 { (uint_t)SIOCGIFHWADDR, "SIOCGIFHWADDR", "ifreq" },
886 { (uint_t)SIOCGLIFHWADDR, "SIOCGLIFHWADDR", "lifreq" },

888 /* DES encryption */
889 { (uint_t)DESIOCBLOCK, "DESIOCBLOCK", "desparams" },
890 { (uint_t)DESIOCQUICK, "DESIOCQUICK", "desparams" },

892 /* Printing system */
893 { (uint_t)PRNIOC_GET_IFCAP, "PRNIOC_GET_IFCAP", NULL },
894 { (uint_t)PRNIOC_SET_IFCAP, "PRNIOC_SET_IFCAP", NULL },
895 { (uint_t)PRNIOC_GET_IFINFO, "PRNIOC_GET_IFINFO",
896 "prn_interface_info" },
897 { (uint_t)PRNIOC_GET_STATUS, "PRNIOC_GET_STATUS", NULL },
898 { (uint_t)PRNIOC_GET_1284_DEVID, "PRNIOC_GET_1284_DEVID",
899 "prn_1284_device_id" },
900 { (uint_t)PRNIOC_GET_1284_STATUS,
901 "PRNIOC_GET_IFCANIOC_GET_1284_STATUS", NULL },
902 { (uint_t)PRNIOC_GET_TIMEOUTS, "PRNIOC_GET_TIMEOUTS",
903 "prn_timeouts" },
904 { (uint_t)PRNIOC_SET_TIMEOUTS, "PRNIOC_SET_TIMEOUTS",
905 "prn_timeouts" },
906 { (uint_t)PRNIOC_RESET, "PRNIOC_RESET", NULL },

908 /* DTrace */
909 { (uint_t)DTRACEIOC_PROVIDER, "DTRACEIOC_PROVIDER", NULL },
910 { (uint_t)DTRACEIOC_PROBES, "DTRACEIOC_PROBES", NULL },
911 { (uint_t)DTRACEIOC_BUFSNAP, "DTRACEIOC_BUFSNAP", NULL },
912 { (uint_t)DTRACEIOC_PROBEMATCH, "DTRACEIOC_PROBEMATCH", NULL },
913 { (uint_t)DTRACEIOC_ENABLE, "DTRACEIOC_ENABLE", NULL },
914 { (uint_t)DTRACEIOC_AGGSNAP, "DTRACEIOC_AGGSNAP", NULL },
915 { (uint_t)DTRACEIOC_EPROBE, "DTRACEIOC_EPROBE", NULL },

new/usr/src/cmd/truss/codes.c 10

916 { (uint_t)DTRACEIOC_PROBEARG, "DTRACEIOC_PROBEARG", NULL },
917 { (uint_t)DTRACEIOC_CONF, "DTRACEIOC_CONF", NULL },
918 { (uint_t)DTRACEIOC_STATUS, "DTRACEIOC_STATUS", NULL },
919 { (uint_t)DTRACEIOC_GO, "DTRACEIOC_GO", NULL },
920 { (uint_t)DTRACEIOC_STOP, "DTRACEIOC_STOP", NULL },
921 { (uint_t)DTRACEIOC_AGGDESC, "DTRACEIOC_AGGDESC", NULL },
922 { (uint_t)DTRACEIOC_FORMAT, "DTRACEIOC_FORMAT", NULL },
923 { (uint_t)DTRACEIOC_DOFGET, "DTRACEIOC_DOFGET", NULL },
924 { (uint_t)DTRACEIOC_REPLICATE, "DTRACEIOC_REPLICATE", NULL },

926 { (uint_t)DTRACEHIOC_ADD, "DTRACEHIOC_ADD", NULL },
927 { (uint_t)DTRACEHIOC_REMOVE, "DTRACEHIOC_REMOVE", NULL },
928 { (uint_t)DTRACEHIOC_ADDDOF, "DTRACEHIOC_ADDDOF", NULL },

930 /* /dev/cryptoadm ioctl() control codes */
931 { (uint_t)CRYPTO_GET_VERSION, "CRYPTO_GET_VERSION", NULL },
932 { (uint_t)CRYPTO_GET_DEV_LIST, "CRYPTO_GET_DEV_LIST", NULL },
933 { (uint_t)CRYPTO_GET_SOFT_LIST, "CRYPTO_GET_SOFT_LIST", NULL },
934 { (uint_t)CRYPTO_GET_DEV_INFO, "CRYPTO_GET_DEV_INFO", NULL },
935 { (uint_t)CRYPTO_GET_SOFT_INFO, "CRYPTO_GET_SOFT_INFO", NULL },
936 { (uint_t)CRYPTO_LOAD_DEV_DISABLED, "CRYPTO_LOAD_DEV_DISABLED",
937 NULL },
938 { (uint_t)CRYPTO_LOAD_SOFT_DISABLED, "CRYPTO_LOAD_SOFT_DISABLED",
939 NULL },
940 { (uint_t)CRYPTO_UNLOAD_SOFT_MODULE, "CRYPTO_UNLOAD_SOFT_MODULE",
941 NULL },
942 { (uint_t)CRYPTO_LOAD_SOFT_CONFIG, "CRYPTO_LOAD_SOFT_CONFIG",
943 NULL },
944 { (uint_t)CRYPTO_POOL_CREATE, "CRYPTO_POOL_CREATE", NULL },
945 { (uint_t)CRYPTO_POOL_WAIT, "CRYPTO_POOL_WAIT", NULL },
946 { (uint_t)CRYPTO_POOL_RUN, "CRYPTO_POOL_RUN", NULL },
947 { (uint_t)CRYPTO_LOAD_DOOR, "CRYPTO_LOAD_DOOR", NULL },

949 /* /dev/crypto ioctl() control codes */
950 { (uint_t)CRYPTO_GET_FUNCTION_LIST, "CRYPTO_GET_FUNCTION_LIST",
951 NULL },
952 { (uint_t)CRYPTO_GET_MECHANISM_NUMBER, "CRYPTO_GET_MECHANISM_NUMBER",
953 NULL },
954 { (uint_t)CRYPTO_OPEN_SESSION, "CRYPTO_OPEN_SESSION", NULL },
955 { (uint_t)CRYPTO_CLOSE_SESSION, "CRYPTO_CLOSE_SESSION", NULL },
956 { (uint_t)CRYPTO_CLOSE_ALL_SESSIONS, "CRYPTO_CLOSE_ALL_SESSIONS",
957 NULL },
958 { (uint_t)CRYPTO_LOGIN, "CRYPTO_LOGIN", NULL },
959 { (uint_t)CRYPTO_LOGOUT, "CRYPTO_LOGOUT", NULL },
960 { (uint_t)CRYPTO_ENCRYPT, "CRYPTO_ENCRYPT", NULL },
961 { (uint_t)CRYPTO_ENCRYPT_INIT, "CRYPTO_ENCRYPT_INIT", NULL },
962 { (uint_t)CRYPTO_ENCRYPT_UPDATE, "CRYPTO_ENCRYPT_UPDATE",
963 NULL },
964 { (uint_t)CRYPTO_ENCRYPT_FINAL, "CRYPTO_ENCRYPT_FINAL", NULL },
965 { (uint_t)CRYPTO_DECRYPT, "CRYPTO_DECRYPT", NULL },
966 { (uint_t)CRYPTO_DECRYPT_INIT, "CRYPTO_DECRYPT_INIT", NULL },
967 { (uint_t)CRYPTO_DECRYPT_UPDATE, "CRYPTO_DECRYPT_UPDATE",
968 NULL },
969 { (uint_t)CRYPTO_DECRYPT_FINAL, "CRYPTO_DECRYPT_FINAL", NULL },
970 { (uint_t)CRYPTO_DIGEST, "CRYPTO_DIGEST", NULL },
971 { (uint_t)CRYPTO_DIGEST_INIT, "CRYPTO_DIGEST_INIT", NULL },
972 { (uint_t)CRYPTO_DIGEST_UPDATE, "CRYPTO_DIGEST_UPDATE", NULL },
973 { (uint_t)CRYPTO_DIGEST_KEY, "CRYPTO_DIGEST_KEY", NULL },
974 { (uint_t)CRYPTO_DIGEST_FINAL, "CRYPTO_DIGEST_FINAL", NULL },
975 { (uint_t)CRYPTO_MAC, "CRYPTO_MAC", NULL },
976 { (uint_t)CRYPTO_MAC_INIT, "CRYPTO_MAC_INIT", NULL },
977 { (uint_t)CRYPTO_MAC_UPDATE, "CRYPTO_MAC_UPDATE", NULL },
978 { (uint_t)CRYPTO_MAC_FINAL, "CRYPTO_MAC_FINAL", NULL },
979 { (uint_t)CRYPTO_SIGN, "CRYPTO_SIGN", NULL },
980 { (uint_t)CRYPTO_SIGN_INIT, "CRYPTO_SIGN_INIT", NULL },
981 { (uint_t)CRYPTO_SIGN_UPDATE, "CRYPTO_SIGN_UPDATE", NULL },

new/usr/src/cmd/truss/codes.c 11

982 { (uint_t)CRYPTO_SIGN_FINAL, "CRYPTO_SIGN_FINAL", NULL },
983 { (uint_t)CRYPTO_SIGN_RECOVER_INIT, "CRYPTO_SIGN_RECOVER_INIT",
984 NULL },
985 { (uint_t)CRYPTO_SIGN_RECOVER, "CRYPTO_SIGN_RECOVER", NULL },
986 { (uint_t)CRYPTO_VERIFY, "CRYPTO_VERIFY", NULL },
987 { (uint_t)CRYPTO_VERIFY_INIT, "CRYPTO_VERIFY_INIT", NULL },
988 { (uint_t)CRYPTO_VERIFY_UPDATE, "CRYPTO_VERIFY_UPDATE", NULL },
989 { (uint_t)CRYPTO_VERIFY_FINAL, "CRYPTO_VERIFY_FINAL", NULL },
990 { (uint_t)CRYPTO_VERIFY_RECOVER_INIT, "CRYPTO_VERIFY_RECOVER_INIT",
991 NULL },
992 { (uint_t)CRYPTO_VERIFY_RECOVER, "CRYPTO_VERIFY_RECOVER",
993 NULL },
994 { (uint_t)CRYPTO_DIGEST_ENCRYPT_UPDATE, "CRYPTO_DIGEST_ENCRYPT_UPDATE",
995 NULL },
996 { (uint_t)CRYPTO_DECRYPT_DIGEST_UPDATE, "CRYPTO_DECRYPT_DIGEST_UPDATE",
997 NULL },
998 { (uint_t)CRYPTO_SIGN_ENCRYPT_UPDATE, "CRYPTO_SIGN_ENCRYPT_UPDATE",
999 NULL },

1000 { (uint_t)CRYPTO_DECRYPT_VERIFY_UPDATE, "CRYPTO_DECRYPT_VERIFY_UPDATE",
1001 NULL },
1002 { (uint_t)CRYPTO_SEED_RANDOM, "CRYPTO_SEED_RANDOM", NULL },
1003 { (uint_t)CRYPTO_GENERATE_RANDOM, "CRYPTO_GENERATE_RANDOM",
1004 NULL },
1005 { (uint_t)CRYPTO_OBJECT_CREATE, "CRYPTO_OBJECT_CREATE", NULL },
1006 { (uint_t)CRYPTO_OBJECT_COPY, "CRYPTO_OBJECT_COPY", NULL },
1007 { (uint_t)CRYPTO_OBJECT_DESTROY, "CRYPTO_OBJECT_DESTROY",
1008 NULL },
1009 { (uint_t)CRYPTO_OBJECT_GET_ATTRIBUTE_VALUE,
1010 "CRYPTO_OBJECT_GET_ATTRIBUTE_VALUE", NULL },
1011 { (uint_t)CRYPTO_OBJECT_GET_SIZE, "CRYPTO_OBJECT_GET_SIZE", NULL },
1012 { (uint_t)CRYPTO_OBJECT_SET_ATTRIBUTE_VALUE,
1013 "CRYPTO_OBJECT_SET_ATTRIBUTE_VALUE", NULL },
1014 { (uint_t)CRYPTO_OBJECT_FIND_INIT, "CRYPTO_OBJECT_FIND_INIT",
1015 NULL },
1016 { (uint_t)CRYPTO_OBJECT_FIND_UPDATE, "CRYPTO_OBJECT_FIND_UPDATE",
1017 NULL },
1018 { (uint_t)CRYPTO_OBJECT_FIND_FINAL, "CRYPTO_OBJECT_FIND_FINAL",
1019 NULL },
1020 { (uint_t)CRYPTO_GENERATE_KEY, "CRYPTO_GENERATE_KEY", NULL },
1021 { (uint_t)CRYPTO_GENERATE_KEY_PAIR, "CRYPTO_GENERATE_KEY_PAIR",
1022 NULL },
1023 { (uint_t)CRYPTO_WRAP_KEY, "CRYPTO_WRAP_KEY", NULL },
1024 { (uint_t)CRYPTO_UNWRAP_KEY, "CRYPTO_UNWRAP_KEY", NULL },
1025 { (uint_t)CRYPTO_DERIVE_KEY, "CRYPTO_DERIVE_KEY", NULL },
1026 { (uint_t)CRYPTO_GET_PROVIDER_LIST, "CRYPTO_GET_PROVIDER_LIST",
1027 NULL },
1028 { (uint_t)CRYPTO_GET_PROVIDER_INFO, "CRYPTO_GET_PROVIDER_INFO",
1029 NULL },
1030 { (uint_t)CRYPTO_GET_PROVIDER_MECHANISMS,
1031 "CRYPTO_GET_PROVIDER_MECHANISMS", NULL },
1032 { (uint_t)CRYPTO_GET_PROVIDER_MECHANISM_INFO,
1033 "CRYPTO_GET_PROVIDER_MECHANISM_INFO", NULL },
1034 { (uint_t)CRYPTO_INIT_TOKEN, "CRYPTO_INIT_TOKEN", NULL },
1035 { (uint_t)CRYPTO_INIT_PIN, "CRYPTO_INIT_PIN", NULL },
1036 { (uint_t)CRYPTO_SET_PIN, "CRYPTO_SET_PIN", NULL },
1037 { (uint_t)CRYPTO_NOSTORE_GENERATE_KEY,
1038 "CRYPTO_NOSTORE_GENERATE_KEY", NULL },
1039 { (uint_t)CRYPTO_NOSTORE_GENERATE_KEY_PAIR,
1040 "CRYPTO_NOSTORE_GENERATE_KEY_PAIR", NULL },
1041 { (uint_t)CRYPTO_NOSTORE_DERIVE_KEY,
1042 "CRYPTO_NOSTORE_DERIVE_KEY", NULL },
1043 { (uint_t)CRYPTO_FIPS140_STATUS, "CRYPTO_FIPS140_STATUS", NULL },
1044 { (uint_t)CRYPTO_FIPS140_SET, "CRYPTO_FIPS140_SET", NULL },

1046 /* kbio ioctls */
1047 { (uint_t)KIOCTRANS, "KIOCTRANS", NULL },

new/usr/src/cmd/truss/codes.c 12

1048 { (uint_t)KIOCGTRANS, "KIOCGTRANS", NULL },
1049 { (uint_t)KIOCTRANSABLE, "KIOCTRANSABLE", NULL },
1050 { (uint_t)KIOCGTRANSABLE, "KIOCGTRANSABLE", NULL },
1051 { (uint_t)KIOCSETKEY, "KIOCSETKEY", NULL },
1052 { (uint_t)KIOCGETKEY, "KIOCGETKEY", NULL },
1053 { (uint_t)KIOCCMD, "KIOCCMD", NULL },
1054 { (uint_t)KIOCTYPE, "KIOCTYPE", NULL },
1055 { (uint_t)KIOCSDIRECT, "KIOCSDIRECT", NULL },
1056 { (uint_t)KIOCGDIRECT, "KIOCGDIRECT", NULL },
1057 { (uint_t)KIOCSKEY, "KIOCSKEY", NULL },
1058 { (uint_t)KIOCGKEY, "KIOCGKEY", NULL },
1059 { (uint_t)KIOCSLED, "KIOCSLED", NULL },
1060 { (uint_t)KIOCGLED, "KIOCGLED", NULL },
1061 { (uint_t)KIOCSCOMPAT, "KIOCSCOMPAT", NULL },
1062 { (uint_t)KIOCGCOMPAT, "KIOCGCOMPAT", NULL },
1063 { (uint_t)KIOCSLAYOUT, "KIOCSLAYOUT", NULL },
1064 { (uint_t)KIOCLAYOUT, "KIOCLAYOUT", NULL },
1065 { (uint_t)KIOCSKABORTEN, "KIOCSKABORTEN", NULL },
1066 { (uint_t)KIOCGRPTDELAY, "KIOCGRPTDELAY", NULL },
1067 { (uint_t)KIOCSRPTDELAY, "KIOCSRPTDELAY", NULL },
1068 { (uint_t)KIOCGRPTRATE, "KIOCGRPTRATE", NULL },
1069 { (uint_t)KIOCSRPTRATE, "KIOCSRPTRATE", NULL },
1070 { (uint_t)KIOCSETFREQ, "KIOCSETFREQ", NULL },
1071 { (uint_t)KIOCMKTONE, "KIOCMKTONE", NULL },

1073 /* ptm/pts driver I_STR ioctls */
1074 { (uint_t)ISPTM, "ISPTM", NULL},
1075 { (uint_t)UNLKPT, "UNLKPT", NULL},
1076 { (uint_t)PTSSTTY, "PTSSTTY", NULL},
1077 { (uint_t)ZONEPT, "ZONEPT", NULL},
1078 { (uint_t)OWNERPT, "OWNERPT", NULL},

1080 /* aggr link aggregation pseudo driver ioctls */
1081 { (uint_t)LAIOC_CREATE, "LAIOC_CREATE", "laioc_create"},
1082 { (uint_t)LAIOC_DELETE, "LAIOC_DELETE", "laioc_delete"},
1083 { (uint_t)LAIOC_INFO, "LAIOC_INFO", "laioc_info"},
1084 { (uint_t)LAIOC_ADD, "LAIOC_ADD",
1085 "laioc_add_rem"},
1086 { (uint_t)LAIOC_REMOVE, "LAIOC_REMOVE",
1087 "laioc_add_rem"},
1088 { (uint_t)LAIOC_MODIFY, "LAIOC_MODIFY", "laioc_modify"},

1090 /* dld data-link ioctls */
1091 { (uint_t)DLDIOC_ATTR, "DLDIOC_ATTR", "dld_ioc_attr"},
1092 { (uint_t)DLDIOC_PHYS_ATTR, "DLDIOC_PHYS_ATTR",
1093 "dld_ioc_phys_attr"},
1094 { (uint_t)DLDIOC_DOORSERVER, "DLDIOC_DOORSERVER", "dld_ioc_door"},
1095 { (uint_t)DLDIOC_RENAME, "DLDIOC_RENAME", "dld_ioc_rename"},
1096 { (uint_t)DLDIOC_SECOBJ_GET, "DLDIOC_SECOBJ_GET",
1097 "dld_ioc_secobj_get"},
1098 { (uint_t)DLDIOC_SECOBJ_SET, "DLDIOC_SECOBJ_SET",
1099 "dld_ioc_secobj_set"},
1100 { (uint_t)DLDIOC_SECOBJ_UNSET, "DLDIOC_SECOBJ_UNSET",
1101 "dld_ioc_secobj_unset"},
1102 { (uint_t)DLDIOC_MACADDRGET, "DLDIOC_MACADDRGET",
1103 "dld_ioc_macaddrget"},
1104 { (uint_t)DLDIOC_SETMACPROP, "DLDIOC_SETMACPROP",
1105 "dld_ioc_macprop_s"},
1106 { (uint_t)DLDIOC_GETMACPROP, "DLDIOC_GETMACPROP",
1107 "dld_ioc_macprop_s"},
1108 { (uint_t)DLDIOC_ADDFLOW, "DLDIOC_ADDFLOW",
1109 "dld_ioc_addflow"},
1110 { (uint_t)DLDIOC_REMOVEFLOW, "DLDIOC_REMOVEFLOW",
1111 "dld_ioc_removeflow"},
1112 { (uint_t)DLDIOC_MODIFYFLOW, "DLDIOC_MODIFYFLOW",
1113 "dld_ioc_modifyflow"},

new/usr/src/cmd/truss/codes.c 13

1114 { (uint_t)DLDIOC_WALKFLOW, "DLDIOC_WALKFLOW",
1115 "dld_ioc_walkflow"},
1116 { (uint_t)DLDIOC_USAGELOG, "DLDIOC_USAGELOG",
1117 "dld_ioc_usagelog"},

1119 /* simnet ioctls */
1120 { (uint_t)SIMNET_IOC_CREATE, "SIMNET_IOC_CREATE",
1121 "simnet_ioc_create"},
1122 { (uint_t)SIMNET_IOC_DELETE, "SIMNET_IOC_DELETE",
1123 "simnet_ioc_delete"},
1124 { (uint_t)SIMNET_IOC_INFO, "SIMNET_IOC_INFO",
1125 "simnet_ioc_info"},
1126 { (uint_t)SIMNET_IOC_MODIFY, "SIMNET_IOC_MODIFY",
1127 "simnet_ioc_info"},

1129 /* vnic ioctls */
1130 { (uint_t)VNIC_IOC_CREATE, "VNIC_IOC_CREATE",
1131 "vnic_ioc_create"},
1132 { (uint_t)VNIC_IOC_DELETE, "VNIC_IOC_DELETE",
1133 "vnic_ioc_delete"},
1134 { (uint_t)VNIC_IOC_INFO, "VNIC_IOC_INFO",
1135 "vnic_ioc_info"},

1137 /* ZFS ioctls */
1138 { (uint_t)ZFS_IOC_POOL_CREATE, "ZFS_IOC_POOL_CREATE",
1139 "zfs_cmd_t" },
1140 { (uint_t)ZFS_IOC_POOL_DESTROY, "ZFS_IOC_POOL_DESTROY",
1141 "zfs_cmd_t" },
1142 { (uint_t)ZFS_IOC_POOL_IMPORT, "ZFS_IOC_POOL_IMPORT",
1143 "zfs_cmd_t" },
1144 { (uint_t)ZFS_IOC_POOL_EXPORT, "ZFS_IOC_POOL_EXPORT",
1145 "zfs_cmd_t" },
1146 { (uint_t)ZFS_IOC_POOL_CONFIGS, "ZFS_IOC_POOL_CONFIGS",
1147 "zfs_cmd_t" },
1148 { (uint_t)ZFS_IOC_POOL_STATS, "ZFS_IOC_POOL_STATS",
1149 "zfs_cmd_t" },
1150 { (uint_t)ZFS_IOC_POOL_TRYIMPORT, "ZFS_IOC_POOL_TRYIMPORT",
1151 "zfs_cmd_t" },
1152 { (uint_t)ZFS_IOC_POOL_SCAN, "ZFS_IOC_POOL_SCAN",
1153 "zfs_cmd_t" },
1154 { (uint_t)ZFS_IOC_POOL_FREEZE, "ZFS_IOC_POOL_FREEZE",
1155 "zfs_cmd_t" },
1156 { (uint_t)ZFS_IOC_POOL_UPGRADE, "ZFS_IOC_POOL_UPGRADE",
1157 "zfs_cmd_t" },
1158 { (uint_t)ZFS_IOC_POOL_GET_HISTORY, "ZFS_IOC_POOL_GET_HISTORY",
1159 "zfs_cmd_t" },
1160 { (uint_t)ZFS_IOC_VDEV_ADD, "ZFS_IOC_VDEV_ADD",
1161 "zfs_cmd_t" },
1162 { (uint_t)ZFS_IOC_VDEV_REMOVE, "ZFS_IOC_VDEV_REMOVE",
1163 "zfs_cmd_t" },
1164 { (uint_t)ZFS_IOC_VDEV_SET_STATE, "ZFS_IOC_VDEV_SET_STATE",
1165 "zfs_cmd_t" },
1166 { (uint_t)ZFS_IOC_VDEV_ATTACH, "ZFS_IOC_VDEV_ATTACH",
1167 "zfs_cmd_t" },
1168 { (uint_t)ZFS_IOC_VDEV_DETACH, "ZFS_IOC_VDEV_DETACH",
1169 "zfs_cmd_t" },
1170 { (uint_t)ZFS_IOC_VDEV_SETPATH, "ZFS_IOC_VDEV_SETPATH",
1171 "zfs_cmd_t" },
1172 { (uint_t)ZFS_IOC_VDEV_SETFRU, "ZFS_IOC_VDEV_SETFRU",
1173 "zfs_cmd_t" },
1174 { (uint_t)ZFS_IOC_OBJSET_STATS, "ZFS_IOC_OBJSET_STATS",
1175 "zfs_cmd_t" },
1176 { (uint_t)ZFS_IOC_OBJSET_ZPLPROPS, "ZFS_IOC_OBJSET_ZPLPROPS",
1177 "zfs_cmd_t" },
1178 { (uint_t)ZFS_IOC_DATASET_LIST_NEXT, "ZFS_IOC_DATASET_LIST_NEXT",
1179 "zfs_cmd_t" },

new/usr/src/cmd/truss/codes.c 14

1180 { (uint_t)ZFS_IOC_SNAPSHOT_LIST_NEXT, "ZFS_IOC_SNAPSHOT_LIST_NEXT",
1181 "zfs_cmd_t" },
1182 { (uint_t)ZFS_IOC_SET_PROP, "ZFS_IOC_SET_PROP",
1183 "zfs_cmd_t" },
1184 { (uint_t)ZFS_IOC_CREATE, "ZFS_IOC_CREATE",
1185 "zfs_cmd_t" },
1186 { (uint_t)ZFS_IOC_DESTROY, "ZFS_IOC_DESTROY",
1187 "zfs_cmd_t" },
1188 { (uint_t)ZFS_IOC_ROLLBACK, "ZFS_IOC_ROLLBACK",
1189 "zfs_cmd_t" },
1190 { (uint_t)ZFS_IOC_RENAME, "ZFS_IOC_RENAME",
1191 "zfs_cmd_t" },
1192 { (uint_t)ZFS_IOC_RECV, "ZFS_IOC_RECV",
1193 "zfs_cmd_t" },
1194 { (uint_t)ZFS_IOC_SEND, "ZFS_IOC_SEND",
1195 "zfs_cmd_t" },
1196 { (uint_t)ZFS_IOC_FITS_SEND, "ZFS_IOC_FITS_SEND",
1197 "zfs_cmd_t" },
1198 #endif /* ! codereview */
1199 { (uint_t)ZFS_IOC_INJECT_FAULT, "ZFS_IOC_INJECT_FAULT",
1200 "zfs_cmd_t" },
1201 { (uint_t)ZFS_IOC_CLEAR_FAULT, "ZFS_IOC_CLEAR_FAULT",
1202 "zfs_cmd_t" },
1203 { (uint_t)ZFS_IOC_INJECT_LIST_NEXT, "ZFS_IOC_INJECT_LIST_NEXT",
1204 "zfs_cmd_t" },
1205 { (uint_t)ZFS_IOC_ERROR_LOG, "ZFS_IOC_ERROR_LOG",
1206 "zfs_cmd_t" },
1207 { (uint_t)ZFS_IOC_CLEAR, "ZFS_IOC_CLEAR",
1208 "zfs_cmd_t" },
1209 { (uint_t)ZFS_IOC_PROMOTE, "ZFS_IOC_PROMOTE",
1210 "zfs_cmd_t" },
1211 { (uint_t)ZFS_IOC_SNAPSHOT, "ZFS_IOC_SNAPSHOT",
1212 "zfs_cmd_t" },
1213 { (uint_t)ZFS_IOC_DSOBJ_TO_DSNAME, "ZFS_IOC_DSOBJ_TO_DSNAME",
1214 "zfs_cmd_t" },
1215 { (uint_t)ZFS_IOC_OBJ_TO_PATH, "ZFS_IOC_OBJ_TO_PATH",
1216 "zfs_cmd_t" },
1217 { (uint_t)ZFS_IOC_POOL_SET_PROPS, "ZFS_IOC_POOL_SET_PROPS",
1218 "zfs_cmd_t" },
1219 { (uint_t)ZFS_IOC_POOL_GET_PROPS, "ZFS_IOC_POOL_GET_PROPS",
1220 "zfs_cmd_t" },
1221 { (uint_t)ZFS_IOC_SET_FSACL, "ZFS_IOC_SET_FSACL",
1222 "zfs_cmd_t" },
1223 { (uint_t)ZFS_IOC_GET_FSACL, "ZFS_IOC_GET_FSACL",
1224 "zfs_cmd_t" },
1225 { (uint_t)ZFS_IOC_SHARE, "ZFS_IOC_SHARE",
1226 "zfs_cmd_t" },
1227 { (uint_t)ZFS_IOC_INHERIT_PROP, "ZFS_IOC_INHERIT_PROP",
1228 "zfs_cmd_t" },
1229 { (uint_t)ZFS_IOC_SMB_ACL, "ZFS_IOC_SMB_ACL",
1230 "zfs_cmd_t" },
1231 { (uint_t)ZFS_IOC_USERSPACE_ONE, "ZFS_IOC_USERSPACE_ONE",
1232 "zfs_cmd_t" },
1233 { (uint_t)ZFS_IOC_USERSPACE_MANY, "ZFS_IOC_USERSPACE_MANY",
1234 "zfs_cmd_t" },
1235 { (uint_t)ZFS_IOC_USERSPACE_UPGRADE, "ZFS_IOC_USERSPACE_UPGRADE",
1236 "zfs_cmd_t" },
1237 { (uint_t)ZFS_IOC_HOLD, "ZFS_IOC_HOLD",
1238 "zfs_cmd_t" },
1239 { (uint_t)ZFS_IOC_RELEASE, "ZFS_IOC_RELEASE",
1240 "zfs_cmd_t" },
1241 { (uint_t)ZFS_IOC_GET_HOLDS, "ZFS_IOC_GET_HOLDS",
1242 "zfs_cmd_t" },
1243 { (uint_t)ZFS_IOC_OBJSET_RECVD_PROPS, "ZFS_IOC_OBJSET_RECVD_PROPS",
1244 "zfs_cmd_t" },
1245 { (uint_t)ZFS_IOC_VDEV_SPLIT, "ZFS_IOC_VDEV_SPLIT",

new/usr/src/cmd/truss/codes.c 15

1246 "zfs_cmd_t" },
1247 { (uint_t)ZFS_IOC_NEXT_OBJ, "ZFS_IOC_NEXT_OBJ",
1248 "zfs_cmd_t" },
1249 { (uint_t)ZFS_IOC_DIFF, "ZFS_IOC_DIFF",
1250 "zfs_cmd_t" },
1251 { (uint_t)ZFS_IOC_TMP_SNAPSHOT, "ZFS_IOC_TMP_SNAPSHOT",
1252 "zfs_cmd_t" },
1253 { (uint_t)ZFS_IOC_OBJ_TO_STATS, "ZFS_IOC_OBJ_TO_STATS",
1254 "zfs_cmd_t" },
1255 { (uint_t)ZFS_IOC_SPACE_WRITTEN, "ZFS_IOC_SPACE_WRITTEN",
1256 "zfs_cmd_t" },
1257 { (uint_t)ZFS_IOC_DESTROY_SNAPS, "ZFS_IOC_DESTROY_SNAPS",
1258 "zfs_cmd_t" },
1259 { (uint_t)ZFS_IOC_POOL_REGUID, "ZFS_IOC_POOL_REGUID",
1260 "zfs_cmd_t" },
1261 { (uint_t)ZFS_IOC_POOL_REOPEN, "ZFS_IOC_POOL_REOPEN",
1262 "zfs_cmd_t" },
1263 { (uint_t)ZFS_IOC_SEND_PROGRESS, "ZFS_IOC_SEND_PROGRESS",
1264 "zfs_cmd_t" },
1265 { (uint_t)ZFS_IOC_LOG_HISTORY, "ZFS_IOC_LOG_HISTORY",
1266 "zfs_cmd_t" },
1267 { (uint_t)ZFS_IOC_SEND_NEW, "ZFS_IOC_SEND_NEW",
1268 "zfs_cmd_t" },
1269 { (uint_t)ZFS_IOC_SEND_SPACE, "ZFS_IOC_SEND_SPACE",
1270 "zfs_cmd_t" },
1271 { (uint_t)ZFS_IOC_CLONE, "ZFS_IOC_CLONE",
1272 "zfs_cmd_t" },

1274 /* kssl ioctls */
1275 { (uint_t)KSSL_ADD_ENTRY, "KSSL_ADD_ENTRY",
1276 "kssl_params_t"},
1277 { (uint_t)KSSL_DELETE_ENTRY, "KSSL_DELETE_ENTRY",
1278 "sockaddr_in"},

1280 /* disk ioctls - (0x04 << 8) - dkio.h */
1281 { (uint_t)DKIOCGGEOM, "DKIOCGGEOM",
1282 "struct dk_geom"},
1283 { (uint_t)DKIOCINFO, "DKIOCINFO",
1284 "struct dk_info"},
1285 { (uint_t)DKIOCEJECT, "DKIOCEJECT",
1286 NULL},
1287 { (uint_t)DKIOCGVTOC, "DKIOCGVTOC",
1288 "struct vtoc"},
1289 { (uint_t)DKIOCSVTOC, "DKIOCSVTOC",
1290 "struct vtoc"},
1291 { (uint_t)DKIOCGEXTVTOC, "DKIOCGEXTVTOC",
1292 "struct extvtoc"},
1293 { (uint_t)DKIOCSEXTVTOC, "DKIOCSEXTVTOC",
1294 "struct extvtoc"},
1295 { (uint_t)DKIOCFLUSHWRITECACHE, "DKIOCFLUSHWRITECACHE",
1296 NULL},
1297 { (uint_t)DKIOCGETWCE, "DKIOCGETWCE",
1298 NULL},
1299 { (uint_t)DKIOCSETWCE, "DKIOCSETWCE",
1300 NULL},
1301 { (uint_t)DKIOCSGEOM, "DKIOCSGEOM",
1302 "struct dk_geom"},
1303 { (uint_t)DKIOCSAPART, "DKIOCSAPART",
1304 "struct dk_allmap"},
1305 { (uint_t)DKIOCGAPART, "DKIOCGAPART",
1306 "struct dk_allmap"},
1307 { (uint_t)DKIOCG_PHYGEOM, "DKIOCG_PHYGEOM",
1308 "struct dk_geom"},
1309 { (uint_t)DKIOCG_VIRTGEOM, "DKIOCG_VIRTGEOM",
1310 "struct dk_geom"},
1311 { (uint_t)DKIOCLOCK, "DKIOCLOCK",

new/usr/src/cmd/truss/codes.c 16

1312 NULL},
1313 { (uint_t)DKIOCUNLOCK, "DKIOCUNLOCK",
1314 NULL},
1315 { (uint_t)DKIOCSTATE, "DKIOCSTATE",
1316 NULL},
1317 { (uint_t)DKIOCREMOVABLE, "DKIOCREMOVABLE",
1318 NULL},
1319 { (uint_t)DKIOCHOTPLUGGABLE, "DKIOCHOTPLUGGABLE",
1320 NULL},
1321 { (uint_t)DKIOCADDBAD, "DKIOCADDBAD",
1322 NULL},
1323 { (uint_t)DKIOCGETDEF, "DKIOCGETDEF",
1324 NULL},
1325 { (uint_t)DKIOCPARTINFO, "DKIOCPARTINFO",
1326 "struct part_info"},
1327 { (uint_t)DKIOCEXTPARTINFO, "DKIOCEXTPARTINFO",
1328 "struct extpart_info"},
1329 { (uint_t)DKIOCGMEDIAINFO, "DKIOCGMEDIAINFO",
1330 "struct dk_minfo"},
1331 { (uint_t)DKIOCGMBOOT, "DKIOCGMBOOT",
1332 NULL},
1333 { (uint_t)DKIOCSMBOOT, "DKIOCSMBOOT",
1334 NULL},
1335 { (uint_t)DKIOCSETEFI, "DKIOCSETEFI",
1336 "struct dk_efi"},
1337 { (uint_t)DKIOCGETEFI, "DKIOCGETEFI",
1338 "struct dk_efi"},
1339 { (uint_t)DKIOCPARTITION, "DKIOCPARTITION",
1340 "struct partition64"},
1341 { (uint_t)DKIOCGETVOLCAP, "DKIOCGETVOLCAP",
1342 "struct volcap_t"},
1343 { (uint_t)DKIOCSETVOLCAP, "DKIOCSETVOLCAP",
1344 "struct volcap_t"},
1345 { (uint_t)DKIOCDMR, "DKIOCDMR",
1346 "struct vol_directed_rd"},
1347 { (uint_t)DKIOCDUMPINIT, "DKIOCDUMPINIT",
1348 NULL},
1349 { (uint_t)DKIOCDUMPFINI, "DKIOCDUMPFINI",
1350 NULL},
1351 { (uint_t)DKIOCREADONLY, "DKIOCREADONLY",
1352 NULL},

1354 /* disk ioctls - (0x04 << 8) - fdio.h */
1355 { (uint_t)FDIOGCHAR, "FDIOGCHAR",
1356 "struct fd_char"},
1357 { (uint_t)FDIOSCHAR, "FDIOSCHAR",
1358 "struct fd_char"},
1359 { (uint_t)FDEJECT, "FDEJECT",
1360 NULL},
1361 { (uint_t)FDGETCHANGE, "FDGETCHANGE",
1362 NULL},
1363 { (uint_t)FDGETDRIVECHAR, "FDGETDRIVECHAR",
1364 "struct fd_drive"},
1365 { (uint_t)FDSETDRIVECHAR, "FDSETDRIVECHAR",
1366 "struct fd_drive"},
1367 { (uint_t)FDGETSEARCH, "FDGETSEARCH",
1368 NULL},
1369 { (uint_t)FDSETSEARCH, "FDSETSEARCH",
1370 NULL},
1371 { (uint_t)FDIOCMD, "FDIOCMD",
1372 "struct fd_cmd"},
1373 { (uint_t)FDRAW, "FDRAW",
1374 "struct fd_raw"},
1375 { (uint_t)FDDEFGEOCHAR, "FDDEFGEOCHAR",
1376 NULL},

new/usr/src/cmd/truss/codes.c 17

1378 /* disk ioctls - (0x04 << 8) - cdio.h */
1379 { (uint_t)CDROMPAUSE, "CDROMPAUSE",
1380 NULL},
1381 { (uint_t)CDROMRESUME, "CDROMRESUME",
1382 NULL},
1383 { (uint_t)CDROMPLAYMSF, "CDROMPLAYMSF",
1384 "struct cdrom_msf"},
1385 { (uint_t)CDROMPLAYTRKIND, "CDROMPLAYTRKIND",
1386 "struct cdrom_ti"},
1387 { (uint_t)CDROMREADTOCHDR, "CDROMREADTOCHDR",
1388 "struct cdrom_tochdr"},
1389 { (uint_t)CDROMREADTOCENTRY, "CDROMREADTOCENTRY",
1390 "struct cdrom_tocentry"},
1391 { (uint_t)CDROMSTOP, "CDROMSTOP",
1392 NULL},
1393 { (uint_t)CDROMSTART, "CDROMSTART",
1394 NULL},
1395 { (uint_t)CDROMEJECT, "CDROMEJECT",
1396 NULL},
1397 { (uint_t)CDROMVOLCTRL, "CDROMVOLCTRL",
1398 "struct cdrom_volctrl"},
1399 { (uint_t)CDROMSUBCHNL, "CDROMSUBCHNL",
1400 "struct cdrom_subchnl"},
1401 { (uint_t)CDROMREADMODE2, "CDROMREADMODE2",
1402 "struct cdrom_read"},
1403 { (uint_t)CDROMREADMODE1, "CDROMREADMODE1",
1404 "struct cdrom_read"},
1405 { (uint_t)CDROMREADOFFSET, "CDROMREADOFFSET",
1406 NULL},
1407 { (uint_t)CDROMGBLKMODE, "CDROMGBLKMODE",
1408 NULL},
1409 { (uint_t)CDROMSBLKMODE, "CDROMSBLKMODE",
1410 NULL},
1411 { (uint_t)CDROMCDDA, "CDROMCDDA",
1412 "struct cdrom_cdda"},
1413 { (uint_t)CDROMCDXA, "CDROMCDXA",
1414 "struct cdrom_cdxa"},
1415 { (uint_t)CDROMSUBCODE, "CDROMSUBCODE",
1416 "struct cdrom_subcode"},
1417 { (uint_t)CDROMGDRVSPEED, "CDROMGDRVSPEED",
1418 NULL},
1419 { (uint_t)CDROMSDRVSPEED, "CDROMSDRVSPEED",
1420 NULL},
1421 { (uint_t)CDROMCLOSETRAY, "CDROMCLOSETRAY",
1422 NULL},

1424 /* disk ioctls - (0x04 << 8) - uscsi.h */
1425 { (uint_t)USCSICMD, "USCSICMD",
1426 "struct uscsi_cmd"},

1428 /* dumpadm ioctls - (0xdd << 8) */
1429 { (uint_t)DIOCGETDEV, "DIOCGETDEV",
1430 NULL},

1432 /* mntio ioctls - (’m’ << 8) */
1433 { (uint_t)MNTIOC_NMNTS, "MNTIOC_NMNTS",
1434 NULL},
1435 { (uint_t)MNTIOC_GETDEVLIST, "MNTIOC_GETDEVLIST",
1436 NULL},
1437 { (uint_t)MNTIOC_SETTAG, "MNTIOC_SETTAG",
1438 "struct mnttagdesc"},
1439 { (uint_t)MNTIOC_CLRTAG, "MNTIOC_CLRTAG",
1440 "struct mnttagdesc"},
1441 { (uint_t)MNTIOC_SHOWHIDDEN, "MNTIOC_SHOWHIDDEN",
1442 NULL},
1443 { (uint_t)MNTIOC_GETMNTENT, "MNTIOC_GETMNTENT",

new/usr/src/cmd/truss/codes.c 18

1444 "struct mnttab"},
1445 { (uint_t)MNTIOC_GETEXTMNTENT, "MNTIOC_GETEXTMNTENT",
1446 "struct extmnttab"},
1447 { (uint_t)MNTIOC_GETMNTANY, "MNTIOC_GETMNTANY",
1448 "struct mnttab"},

1450 /* devinfo ioctls - (’df’ << 8) - devinfo_impl.h */
1451 { (uint_t)DINFOUSRLD, "DINFOUSRLD",
1452 NULL},
1453 { (uint_t)DINFOLODRV, "DINFOLODRV",
1454 NULL},
1455 { (uint_t)DINFOIDENT, "DINFOIDENT",
1456 NULL},

1458 { (uint_t)IPTUN_CREATE, "IPTUN_CREATE", "iptun_kparams_t"},
1459 { (uint_t)IPTUN_DELETE, "IPTUN_DELETE", "datalink_id_t"},
1460 { (uint_t)IPTUN_MODIFY, "IPTUN_MODIFY", "iptun_kparams_t"},
1461 { (uint_t)IPTUN_INFO, "IPTUN_INFO", NULL},
1462 { (uint_t)IPTUN_SET_6TO4RELAY, "IPTUN_SET_6TO4RELAY", NULL},
1463 { (uint_t)IPTUN_GET_6TO4RELAY, "IPTUN_GET_6TO4RELAY", NULL},

1465 /* zcons ioctls */
1466 { (uint_t)ZC_HOLDSLAVE, "ZC_HOLDSLAVE", NULL },
1467 { (uint_t)ZC_RELEASESLAVE, "ZC_RELEASESLAVE", NULL },

1469 /* hid ioctls - (’h’ << 8) - hid.h */
1470 { (uint_t)HIDIOCKMGDIRECT, "HIDIOCKMGDIRECT", NULL },
1471 { (uint_t)HIDIOCKMSDIRECT, "HIDIOCKMSDIRECT", NULL },

1473 /* pm ioctls */
1474 { (uint_t)PM_SCHEDULE, "PM_SCHEDULE", NULL },
1475 { (uint_t)PM_GET_IDLE_TIME, "PM_GET_IDLE_TIME", NULL },
1476 { (uint_t)PM_GET_NUM_CMPTS, "PM_GET_NUM_CMPTS", NULL },
1477 { (uint_t)PM_GET_THRESHOLD, "PM_GET_THRESHOLD", NULL },
1478 { (uint_t)PM_SET_THRESHOLD, "PM_SET_THRESHOLD", NULL },
1479 { (uint_t)PM_GET_NORM_PWR, "PM_GET_NORM_PWR", NULL },
1480 { (uint_t)PM_SET_CUR_PWR, "PM_SET_CUR_PWR", NULL },
1481 { (uint_t)PM_GET_CUR_PWR, "PM_GET_CUR_PWR", NULL },
1482 { (uint_t)PM_GET_NUM_DEPS, "PM_GET_NUM_DEPS", NULL },
1483 { (uint_t)PM_GET_DEP, "PM_GET_DEP", NULL },
1484 { (uint_t)PM_ADD_DEP, "PM_ADD_DEP", NULL },
1485 { (uint_t)PM_REM_DEP, "PM_REM_DEP", NULL },
1486 { (uint_t)PM_REM_DEVICE, "PM_REM_DEVICE", NULL },
1487 { (uint_t)PM_REM_DEVICES, "PM_REM_DEVICES", NULL },
1488 { (uint_t)PM_DISABLE_AUTOPM, "PM_DISABLE_AUTOPM", NULL },
1489 { (uint_t)PM_REENABLE_AUTOPM, "PM_REENABLE_AUTOPM", NULL },
1490 { (uint_t)PM_SET_NORM_PWR, "PM_SET_NORM_PWR", NULL },
1491 { (uint_t)PM_GET_SYSTEM_THRESHOLD, "PM_GET_SYSTEM_THRESHOLD",
1492 NULL },
1493 { (uint_t)PM_GET_DEFAULT_SYSTEM_THRESHOLD,
1494 "PM_GET_DEFAULT_SYSTEM_THRESHOLD", NULL },
1495 { (uint_t)PM_SET_SYSTEM_THRESHOLD, "PM_SET_SYSTEM_THRESHOLD",
1496 NULL },
1497 { (uint_t)PM_START_PM, "PM_START_PM", NULL },
1498 { (uint_t)PM_STOP_PM, "PM_STOP_PM", NULL },
1499 { (uint_t)PM_RESET_PM, "PM_RESET_PM", NULL },
1500 { (uint_t)PM_GET_PM_STATE, "PM_GET_PM_STATE", NULL },
1501 { (uint_t)PM_GET_AUTOS3_STATE, "PM_GET_AUTOS3_STATE", NULL },
1502 { (uint_t)PM_GET_S3_SUPPORT_STATE, "PM_GET_S3_SUPPORT_STATE",
1503 NULL },
1504 { (uint_t)PM_IDLE_DOWN, "PM_IDLE_DOWN", NULL },
1505 { (uint_t)PM_START_CPUPM, "PM_START_CPUPM", NULL },
1506 { (uint_t)PM_START_CPUPM_EV, "PM_START_CPUPM_EV", NULL },
1507 { (uint_t)PM_START_CPUPM_POLL, "PM_START_CPUPM_POLL", NULL },
1508 { (uint_t)PM_STOP_CPUPM, "PM_STOP_CPUPM", NULL },
1509 { (uint_t)PM_GET_CPU_THRESHOLD, "PM_GET_CPU_THRESHOLD", NULL },

new/usr/src/cmd/truss/codes.c 19

1510 { (uint_t)PM_SET_CPU_THRESHOLD, "PM_SET_CPU_THRESHOLD", NULL },
1511 { (uint_t)PM_GET_CPUPM_STATE, "PM_GET_CPUPM_STATE", NULL },
1512 { (uint_t)PM_START_AUTOS3, "PM_START_AUTOS3", NULL },
1513 { (uint_t)PM_STOP_AUTOS3, "PM_STOP_AUTOS3", NULL },
1514 { (uint_t)PM_ENABLE_S3, "PM_ENABLE_S3", NULL },
1515 { (uint_t)PM_DISABLE_S3, "PM_DISABLE_S3", NULL },
1516 { (uint_t)PM_ENTER_S3, "PM_ENTER_S3", NULL },
1517 { (uint_t)PM_DISABLE_CPU_DEEP_IDLE, "PM_DISABLE_CPU_DEEP_IDLE",
1518 NULL },
1519 { (uint_t)PM_ENABLE_CPU_DEEP_IDLE, "PM_START_CPU_DEEP_IDLE",
1520 NULL },
1521 { (uint_t)PM_DEFAULT_CPU_DEEP_IDLE, "PM_DFLT_CPU_DEEP_IDLE",
1522 NULL },
1523 #ifdef _SYSCALL32
1524 { (uint_t)PM_GET_STATE_CHANGE, "PM_GET_STATE_CHANGE",
1525 "pm_state_change32_t" },
1526 { (uint_t)PM_GET_STATE_CHANGE_WAIT, "PM_GET_STATE_CHANGE_WAIT",
1527 "pm_state_change32_t" },
1528 { (uint_t)PM_DIRECT_NOTIFY, "PM_DIRECT_NOTIFY",
1529 "pm_state_change32_t" },
1530 { (uint_t)PM_DIRECT_NOTIFY_WAIT, "PM_DIRECT_NOTIFY_WAIT",
1531 "pm_state_change32_t" },
1532 { (uint_t)PM_REPARSE_PM_PROPS, "PM_REPARSE_PM_PROPS",
1533 "pm_req32_t" },
1534 { (uint_t)PM_SET_DEVICE_THRESHOLD, "PM_SET_DEVICE_THRESHOLD",
1535 "pm_req32_t" },
1536 { (uint_t)PM_GET_STATS, "PM_GET_STATS",
1537 "pm_req32_t" },
1538 { (uint_t)PM_GET_DEVICE_THRESHOLD, "PM_GET_DEVICE_THRESHOLD",
1539 "pm_req32_t" },
1540 { (uint_t)PM_GET_POWER_NAME, "PM_GET_POWER_NAME",
1541 "pm_req32_t" },
1542 { (uint_t)PM_GET_POWER_LEVELS, "PM_GET_POWER_LEVELS",
1543 "pm_req32_t" },
1544 { (uint_t)PM_GET_NUM_COMPONENTS, "PM_GET_NUM_COMPONENTS",
1545 "pm_req32_t" },
1546 { (uint_t)PM_GET_COMPONENT_NAME, "PM_GET_COMPONENT_NAME",
1547 "pm_req32_t" },
1548 { (uint_t)PM_GET_NUM_POWER_LEVELS, "PM_GET_NUM_POWER_LEVELS",
1549 "pm_req32_t" },
1550 { (uint_t)PM_DIRECT_PM, "PM_DIRECT_PM",
1551 "pm_req32_t" },
1552 { (uint_t)PM_RELEASE_DIRECT_PM, "PM_RELEASE_DIRECT_PM",
1553 "pm_req32_t" },
1554 { (uint_t)PM_RESET_DEVICE_THRESHOLD, "PM_RESET_DEVICE_THRESHOLD",
1555 "pm_req32_t" },
1556 { (uint_t)PM_GET_DEVICE_TYPE, "PM_GET_DEVICE_TYPE",
1557 "pm_req32_t" },
1558 { (uint_t)PM_SET_COMPONENT_THRESHOLDS, "PM_SET_COMPONENT_THRESHOLDS",
1559 "pm_req32_t" },
1560 { (uint_t)PM_GET_COMPONENT_THRESHOLDS, "PM_GET_COMPONENT_THRESHOLDS",
1561 "pm_req32_t" },
1562 { (uint_t)PM_GET_DEVICE_THRESHOLD_BASIS,
1563 "PM_GET_DEVICE_THRESHOLD_BASIS", "pm_req32_t" },
1564 { (uint_t)PM_SET_CURRENT_POWER, "PM_SET_CURRENT_POWER",
1565 "pm_req32_t" },
1566 { (uint_t)PM_GET_CURRENT_POWER, "PM_GET_CURRENT_POWER",
1567 "pm_req32_t" },
1568 { (uint_t)PM_GET_FULL_POWER, "PM_GET_FULL_POWER",
1569 "pm_req32_t" },
1570 { (uint_t)PM_ADD_DEPENDENT, "PM_ADD_DEPENDENT",
1571 "pm_req32_t" },
1572 { (uint_t)PM_GET_TIME_IDLE, "PM_GET_TIME_IDLE",
1573 "pm_req32_t" },
1574 { (uint_t)PM_ADD_DEPENDENT_PROPERTY, "PM_ADD_DEPENDENT_PROPERTY",
1575 "pm_req32_t" },

new/usr/src/cmd/truss/codes.c 20

1576 { (uint_t)PM_GET_CMD_NAME, "PM_GET_CMD_NAME",
1577 "pm_req32_t" },
1578 { (uint_t)PM_SEARCH_LIST, "PM_SEARCH_LIST",
1579 "pm_searchargs32_t" },
1580 #else /* _SYSCALL32 */
1581 { (uint_t)PM_GET_STATE_CHANGE, "PM_GET_STATE_CHANGE",
1582 "pm_state_change_t" },
1583 { (uint_t)PM_GET_STATE_CHANGE_WAIT, "PM_GET_STATE_CHANGE_WAIT",
1584 "pm_state_change_t" },
1585 { (uint_t)PM_DIRECT_NOTIFY, "PM_DIRECT_NOTIFY",
1586 "pm_state_change_t" },
1587 { (uint_t)PM_DIRECT_NOTIFY_WAIT, "PM_DIRECT_NOTIFY_WAIT",
1588 "pm_state_change_t" },
1589 { (uint_t)PM_REPARSE_PM_PROPS, "PM_REPARSE_PM_PROPS",
1590 "pm_req_t" },
1591 { (uint_t)PM_SET_DEVICE_THRESHOLD, "PM_SET_DEVICE_THRESHOLD",
1592 "pm_req_t" },
1593 { (uint_t)PM_GET_STATS, "PM_GET_STATS",
1594 "pm_req_t" },
1595 { (uint_t)PM_GET_DEVICE_THRESHOLD, "PM_GET_DEVICE_THRESHOLD",
1596 "pm_req_t" },
1597 { (uint_t)PM_GET_POWER_NAME, "PM_GET_POWER_NAME",
1598 "pm_req_t" },
1599 { (uint_t)PM_GET_POWER_LEVELS, "PM_GET_POWER_LEVELS",
1600 "pm_req_t" },
1601 { (uint_t)PM_GET_NUM_COMPONENTS, "PM_GET_NUM_COMPONENTS",
1602 "pm_req_t" },
1603 { (uint_t)PM_GET_COMPONENT_NAME, "PM_GET_COMPONENT_NAME",
1604 "pm_req_t" },
1605 { (uint_t)PM_GET_NUM_POWER_LEVELS, "PM_GET_NUM_POWER_LEVELS",
1606 "pm_req_t" },
1607 { (uint_t)PM_DIRECT_PM, "PM_DIRECT_PM",
1608 "pm_req_t" },
1609 { (uint_t)PM_RELEASE_DIRECT_PM, "PM_RELEASE_DIRECT_PM",
1610 "pm_req_t" },
1611 { (uint_t)PM_RESET_DEVICE_THRESHOLD, "PM_RESET_DEVICE_THRESHOLD",
1612 "pm_req_t" },
1613 { (uint_t)PM_GET_DEVICE_TYPE, "PM_GET_DEVICE_TYPE",
1614 "pm_req_t" },
1615 { (uint_t)PM_SET_COMPONENT_THRESHOLDS, "PM_SET_COMPONENT_THRESHOLDS",
1616 "pm_req_t" },
1617 { (uint_t)PM_GET_COMPONENT_THRESHOLDS, "PM_GET_COMPONENT_THRESHOLDS",
1618 "pm_req_t" },
1619 { (uint_t)PM_GET_DEVICE_THRESHOLD_BASIS,
1620 "PM_GET_DEVICE_THRESHOLD_BASIS", "pm_req_t" },
1621 { (uint_t)PM_SET_CURRENT_POWER, "PM_SET_CURRENT_POWER",
1622 "pm_req_t" },
1623 { (uint_t)PM_GET_CURRENT_POWER, "PM_GET_CURRENT_POWER",
1624 "pm_req_t" },
1625 { (uint_t)PM_GET_FULL_POWER, "PM_GET_FULL_POWER",
1626 "pm_req_t" },
1627 { (uint_t)PM_ADD_DEPENDENT, "PM_ADD_DEPENDENT",
1628 "pm_req_t" },
1629 { (uint_t)PM_GET_TIME_IDLE, "PM_GET_TIME_IDLE",
1630 "pm_req_t" },
1631 { (uint_t)PM_ADD_DEPENDENT_PROPERTY, "PM_ADD_DEPENDENT_PROPERTY",
1632 "pm_req_t" },
1633 { (uint_t)PM_GET_CMD_NAME, "PM_GET_CMD_NAME",
1634 "pm_req_t" },
1635 { (uint_t)PM_SEARCH_LIST, "PM_SEARCH_LIST",
1636 "pm_searchargs_t" },
1637 #endif /* _SYSCALL */

1639 { (uint_t)0, NULL, NULL }
1640 };

new/usr/src/cmd/truss/codes.c 21

1642 void
1643 ioctl_ioccom(char *buf, size_t size, uint_t code, int nbytes, int x, int y)
1644 {
1645 const char *inoutstr;

1647 if (code & IOC_VOID)
1648 inoutstr = "";
1649 else if ((code & IOC_INOUT) == IOC_INOUT)
1650 inoutstr = "WR";
1651 else
1652 inoutstr = code & IOC_IN ? "W" : "R";

1654 if (isascii(x) && isprint(x))
1655 (void) snprintf(buf, size, "_IO%sN(’%c’, %d, %d)", inoutstr,
1656 x, y, nbytes);
1657 else
1658 (void) snprintf(buf, size, "_IO%sN(0x%x, %d, %d)", inoutstr,
1659 x, y, nbytes);
1660 }

1663 const char *
1664 ioctlname(private_t *pri, uint_t code)
1665 {
1666 const struct ioc *ip;
1667 const char *str = NULL;

1669 for (ip = &ioc[0]; ip->name; ip++) {
1670 if (code == ip->code) {
1671 str = ip->name;
1672 break;
1673 }
1674 }

1676 /*
1677 * Developers hide ascii ioctl names in the ioctl subcode; for example
1678 * 0x445210 should be printed ’D’<<16|’R’<<8|10. We allow for all
1679 * three high order bytes (called hi, mid and lo) to contain ascii
1680 * characters.
1681 */
1682 if (str == NULL) {
1683 int c_hi = code >> 24;
1684 int c_mid = (code >> 16) & 0xff;
1685 int c_mid_nm = (code >> 16);
1686 int c_lo = (code >> 8) & 0xff;
1687 int c_lo_nm = code >> 8;

1689 if (isascii(c_lo) && isprint(c_lo) &&
1690 isascii(c_mid) && isprint(c_mid) &&
1691 isascii(c_hi) && isprint(c_hi))
1692 (void) sprintf(pri->code_buf,
1693 "((’%c’<<24)|(’%c’<<16)|(’%c’<<8)|%d)",
1694 c_hi, c_mid, c_lo, code & 0xff);
1695 else if (isascii(c_lo) && isprint(c_lo) &&
1696 isascii(c_mid_nm) && isprint(c_mid_nm))
1697 (void) sprintf(pri->code_buf,
1698 "((’%c’<<16)|(’%c’<<8)|%d)", c_mid, c_lo,
1699 code & 0xff);
1700 else if (isascii(c_lo_nm) && isprint(c_lo_nm))
1701 (void) sprintf(pri->code_buf, "((’%c’<<8)|%d)",
1702 c_lo_nm, code & 0xff);
1703 else if (code & (IOC_VOID|IOC_INOUT))
1704 ioctl_ioccom(pri->code_buf, sizeof (pri->code_buf),
1705 code, c_mid, c_lo, code & 0xff);
1706 else
1707 (void) sprintf(pri->code_buf, "0x%.4X", code);

new/usr/src/cmd/truss/codes.c 22

1708 str = (const char *)pri->code_buf;
1709 }

1711 return (str);
1712 }

1715 const char *
1716 ioctldatastruct(uint_t code)
1717 {
1718 const struct ioc *ip;
1719 const char *str = NULL;

1721 for (ip = &ioc[0]; ip->name != NULL; ip++) {
1722 if (code == ip->code) {
1723 str = ip->datastruct;
1724 break;
1725 }
1726 }
1727 return (str);
1728 }

1731 const char *
1732 fcntlname(int code)
1733 {
1734 const char *str = NULL;

1736 if (code >= FCNTLMIN && code <= FCNTLMAX)
1737 str = FCNTLname[code-FCNTLMIN];
1738 return (str);
1739 }

1741 const char *
1742 sfsname(int code)
1743 {
1744 const char *str = NULL;

1746 if (code >= SYSFSMIN && code <= SYSFSMAX)
1747 str = SYSFSname[code-SYSFSMIN];
1748 return (str);
1749 }

1751 /* ARGSUSED */
1752 const char *
1753 si86name(int code)
1754 {
1755 const char *str = NULL;

1757 #if defined(__i386) || defined(__amd64)
1758 switch (code) {
1759 case SI86SWPI: str = "SI86SWPI"; break;
1760 case SI86SYM: str = "SI86SYM"; break;
1761 case SI86CONF: str = "SI86CONF"; break;
1762 case SI86BOOT: str = "SI86BOOT"; break;
1763 case SI86AUTO: str = "SI86AUTO"; break;
1764 case SI86EDT: str = "SI86EDT"; break;
1765 case SI86SWAP: str = "SI86SWAP"; break;
1766 case SI86FPHW: str = "SI86FPHW"; break;
1767 case SI86FPSTART: str = "SI86FPSTART"; break;
1768 case GRNON: str = "GRNON"; break;
1769 case GRNFLASH: str = "GRNFLASH"; break;
1770 case STIME: str = "STIME"; break;
1771 case SETNAME: str = "SETNAME"; break;
1772 case RNVR: str = "RNVR"; break;
1773 case WNVR: str = "WNVR"; break;

new/usr/src/cmd/truss/codes.c 23

1774 case RTODC: str = "RTODC"; break;
1775 case CHKSER: str = "CHKSER"; break;
1776 case SI86NVPRT: str = "SI86NVPRT"; break;
1777 case SANUPD: str = "SANUPD"; break;
1778 case SI86KSTR: str = "SI86KSTR"; break;
1779 case SI86MEM: str = "SI86MEM"; break;
1780 case SI86TODEMON: str = "SI86TODEMON"; break;
1781 case SI86CCDEMON: str = "SI86CCDEMON"; break;
1782 case SI86CACHE: str = "SI86CACHE"; break;
1783 case SI86DELMEM: str = "SI86DELMEM"; break;
1784 case SI86ADDMEM: str = "SI86ADDMEM"; break;
1785 /* 71 through 74 reserved for VPIX */
1786 case SI86V86: str = "SI86V86"; break;
1787 case SI86SLTIME: str = "SI86SLTIME"; break;
1788 case SI86DSCR: str = "SI86DSCR"; break;
1789 case RDUBLK: str = "RDUBLK"; break;
1790 /* NFA entry point */
1791 case SI86NFA: str = "SI86NFA"; break;
1792 case SI86VM86: str = "SI86VM86"; break;
1793 case SI86VMENABLE: str = "SI86VMENABLE"; break;
1794 case SI86LIMUSER: str = "SI86LIMUSER"; break;
1795 case SI86RDID: str = "SI86RDID"; break;
1796 case SI86RDBOOT: str = "SI86RDBOOT"; break;
1797 /* Merged Product defines */
1798 case SI86SHFIL: str = "SI86SHFIL"; break;
1799 case SI86PCHRGN: str = "SI86PCHRGN"; break;
1800 case SI86BADVISE: str = "SI86BADVISE"; break;
1801 case SI86SHRGN: str = "SI86SHRGN"; break;
1802 case SI86CHIDT: str = "SI86CHIDT"; break;
1803 case SI86EMULRDA: str = "SI86EMULRDA"; break;
1804 /* RTC commands */
1805 case WTODC: str = "WTODC"; break;
1806 case SGMTL: str = "SGMTL"; break;
1807 case GGMTL: str = "GGMTL"; break;
1808 case RTCSYNC: str = "RTCSYNC"; break;
1809 }
1810 #endif /* __i386 */

1812 return (str);
1813 }

1815 const char *
1816 utscode(int code)
1817 {
1818 const char *str = NULL;

1820 switch (code) {
1821 case UTS_UNAME: str = "UNAME"; break;
1822 case UTS_USTAT: str = "USTAT"; break;
1823 case UTS_FUSERS: str = "FUSERS"; break;
1824 }

1826 return (str);
1827 }

1829 const char *
1830 rctlsyscode(int code)
1831 {
1832 const char *str = NULL;
1833 switch (code) {
1834 case 0: str = "GETRCTL"; break;
1835 case 1: str = "SETRCTL"; break;
1836 case 2: str = "RCTLSYS_LST"; break;
1837 case 3: str = "RCTLSYS_CTL"; break;
1838 case 4: str = "RCTLSYS_SETPROJ"; break;
1839 default: str = "UNKNOWN"; break;

new/usr/src/cmd/truss/codes.c 24

1840 }
1841 return (str);
1842 }

1844 const char *
1845 rctl_local_action(private_t *pri, uint_t val)
1846 {
1847 uint_t action = val & (~RCTL_LOCAL_ACTION_MASK);

1849 char *s = pri->code_buf;

1851 *s = ’\0’;

1853 if (action & RCTL_LOCAL_NOACTION) {
1854 action ^= RCTL_LOCAL_NOACTION;
1855 (void) strlcat(s, "|RCTL_LOCAL_NOACTION",
1856 sizeof (pri->code_buf));
1857 }
1858 if (action & RCTL_LOCAL_SIGNAL) {
1859 action ^= RCTL_LOCAL_SIGNAL;
1860 (void) strlcat(s, "|RCTL_LOCAL_SIGNAL",
1861 sizeof (pri->code_buf));
1862 }
1863 if (action & RCTL_LOCAL_DENY) {
1864 action ^= RCTL_LOCAL_DENY;
1865 (void) strlcat(s, "|RCTL_LOCAL_DENY",
1866 sizeof (pri->code_buf));
1867 }

1869 if ((action & (~RCTL_LOCAL_ACTION_MASK)) != 0)
1870 return (NULL);
1871 else if (*s != ’\0’)
1872 return (s+1);
1873 else
1874 return (NULL);
1875 }

1878 const char *
1879 rctl_local_flags(private_t *pri, uint_t val)
1880 {
1881 uint_t pval = val & RCTL_LOCAL_ACTION_MASK;
1882 char *s = pri->code_buf;

1884 *s = ’\0’;

1886 if (pval & RCTL_LOCAL_MAXIMAL) {
1887 pval ^= RCTL_LOCAL_MAXIMAL;
1888 (void) strlcat(s, "|RCTL_LOCAL_MAXIMAL",
1889 sizeof (pri->code_buf));
1890 }

1892 if ((pval & RCTL_LOCAL_ACTION_MASK) != 0)
1893 return (NULL);
1894 else if (*s != ’\0’)
1895 return (s+1);
1896 else
1897 return (NULL);
1898 }

1901 const char *
1902 sconfname(int code)
1903 {
1904 const char *str = NULL;

new/usr/src/cmd/truss/codes.c 25

1906 if (code >= SCONFMIN && code <= SCONFMAX)
1907 str = SCONFname[code-SCONFMIN];
1908 return (str);
1909 }

1911 const char *
1912 pathconfname(int code)
1913 {
1914 const char *str = NULL;

1916 if (code >= PATHCONFMIN && code <= PATHCONFMAX)
1917 str = PATHCONFname[code-PATHCONFMIN];
1918 return (str);
1919 }

1921 #define ALL_O_FLAGS \
1922 (O_NDELAY|O_APPEND|O_SYNC|O_DSYNC|O_NONBLOCK|O_CREAT|O_TRUNC\
1923 |O_EXCL|O_NOCTTY|O_LARGEFILE|O_RSYNC|O_XATTR|O_NOFOLLOW|O_NOLINKS\
1924 |FXATTRDIROPEN)

1926 const char *
1927 openarg(private_t *pri, int arg)
1928 {
1929 char *str = pri->code_buf;

1931 if ((arg & ~(O_ACCMODE | ALL_O_FLAGS)) != 0)
1932 return (NULL);

1934 switch (arg & O_ACCMODE) {
1935 default:
1936 return (NULL);
1937 case O_RDONLY:
1938 (void) strcpy(str, "O_RDONLY");
1939 break;
1940 case O_WRONLY:
1941 (void) strcpy(str, "O_WRONLY");
1942 break;
1943 case O_RDWR:
1944 (void) strcpy(str, "O_RDWR");
1945 break;
1946 case O_SEARCH:
1947 (void) strcpy(str, "O_SEARCH");
1948 break;
1949 case O_EXEC:
1950 (void) strcpy(str, "O_EXEC");
1951 break;
1952 }

1954 if (arg & O_NDELAY)
1955 (void) strlcat(str, "|O_NDELAY", sizeof (pri->code_buf));
1956 if (arg & O_APPEND)
1957 (void) strlcat(str, "|O_APPEND", sizeof (pri->code_buf));
1958 if (arg & O_SYNC)
1959 (void) strlcat(str, "|O_SYNC", sizeof (pri->code_buf));
1960 if (arg & O_DSYNC)
1961 (void) strlcat(str, "|O_DSYNC", sizeof (pri->code_buf));
1962 if (arg & O_NONBLOCK)
1963 (void) strlcat(str, "|O_NONBLOCK", sizeof (pri->code_buf));
1964 if (arg & O_CREAT)
1965 (void) strlcat(str, "|O_CREAT", sizeof (pri->code_buf));
1966 if (arg & O_TRUNC)
1967 (void) strlcat(str, "|O_TRUNC", sizeof (pri->code_buf));
1968 if (arg & O_EXCL)
1969 (void) strlcat(str, "|O_EXCL", sizeof (pri->code_buf));
1970 if (arg & O_NOCTTY)
1971 (void) strlcat(str, "|O_NOCTTY", sizeof (pri->code_buf));

new/usr/src/cmd/truss/codes.c 26

1972 if (arg & O_LARGEFILE)
1973 (void) strlcat(str, "|O_LARGEFILE", sizeof (pri->code_buf));
1974 if (arg & O_RSYNC)
1975 (void) strlcat(str, "|O_RSYNC", sizeof (pri->code_buf));
1976 if (arg & O_XATTR)
1977 (void) strlcat(str, "|O_XATTR", sizeof (pri->code_buf));
1978 if (arg & O_NOFOLLOW)
1979 (void) strlcat(str, "|O_NOFOLLOW", sizeof (pri->code_buf));
1980 if (arg & O_NOLINKS)
1981 (void) strlcat(str, "|O_NOLINKS", sizeof (pri->code_buf));
1982 if (arg & FXATTRDIROPEN)
1983 (void) strlcat(str, "|FXATTRDIROPEN", sizeof (pri->code_buf));

1985 return ((const char *)str);
1986 }

1988 const char *
1989 whencearg(int arg)
1990 {
1991 const char *str = NULL;

1993 switch (arg) {
1994 case SEEK_SET: str = "SEEK_SET"; break;
1995 case SEEK_CUR: str = "SEEK_CUR"; break;
1996 case SEEK_END: str = "SEEK_END"; break;
1997 case SEEK_DATA: str = "SEEK_DATA"; break;
1998 case SEEK_HOLE: str = "SEEK_HOLE"; break;
1999 }

2001 return (str);
2002 }

2004 #define IPC_FLAGS (IPC_ALLOC|IPC_CREAT|IPC_EXCL|IPC_NOWAIT)

2006 char *
2007 ipcflags(private_t *pri, int arg)
2008 {
2009 char *str = pri->code_buf;

2011 if (arg & 0777)
2012 (void) sprintf(str, "0%.3o", arg&0777);
2013 else
2014 *str = ’\0’;

2016 if (arg & IPC_ALLOC)
2017 (void) strcat(str, "|IPC_ALLOC");
2018 if (arg & IPC_CREAT)
2019 (void) strcat(str, "|IPC_CREAT");
2020 if (arg & IPC_EXCL)
2021 (void) strcat(str, "|IPC_EXCL");
2022 if (arg & IPC_NOWAIT)
2023 (void) strcat(str, "|IPC_NOWAIT");

2025 return (str);
2026 }

2028 const char *
2029 msgflags(private_t *pri, int arg)
2030 {
2031 char *str;

2033 if (arg == 0 || (arg & ~(IPC_FLAGS|MSG_NOERROR|0777)) != 0)
2034 return ((char *)NULL);

2036 str = ipcflags(pri, arg);

new/usr/src/cmd/truss/codes.c 27

2038 if (arg & MSG_NOERROR)
2039 (void) strcat(str, "|MSG_NOERROR");

2041 if (*str == ’|’)
2042 str++;
2043 return ((const char *)str);
2044 }

2046 const char *
2047 semflags(private_t *pri, int arg)
2048 {
2049 char *str;

2051 if (arg == 0 || (arg & ~(IPC_FLAGS|SEM_UNDO|0777)) != 0)
2052 return ((char *)NULL);

2054 str = ipcflags(pri, arg);

2056 if (arg & SEM_UNDO)
2057 (void) strcat(str, "|SEM_UNDO");

2059 if (*str == ’|’)
2060 str++;
2061 return ((const char *)str);
2062 }

2064 const char *
2065 shmflags(private_t *pri, int arg)
2066 {
2067 char *str;

2069 if (arg == 0 || (arg & ~(IPC_FLAGS|SHM_RDONLY|SHM_RND|0777)) != 0)
2070 return ((char *)NULL);

2072 str = ipcflags(pri, arg);

2074 if (arg & SHM_RDONLY)
2075 (void) strcat(str, "|SHM_RDONLY");
2076 if (arg & SHM_RND)
2077 (void) strcat(str, "|SHM_RND");

2079 if (*str == ’|’)
2080 str++;
2081 return ((const char *)str);
2082 }

2084 #define MSGCMDMIN 0
2085 #define MSGCMDMAX IPC_STAT64
2086 const char *const MSGCMDname[MSGCMDMAX+1] = {
2087 NULL, NULL, NULL, NULL, NULL,
2088 NULL, NULL, NULL, NULL, NULL,
2089 "IPC_RMID", /* 10 */
2090 "IPC_SET", /* 11 */
2091 "IPC_STAT", /* 12 */
2092 "IPC_SET64", /* 13 */
2093 "IPC_STAT64", /* 14 */
2094 };

2096 #define SEMCMDMIN 0
2097 #define SEMCMDMAX IPC_STAT64
2098 const char *const SEMCMDname[SEMCMDMAX+1] = {
2099 NULL, /* 0 */
2100 NULL, /* 1 */
2101 NULL, /* 2 */
2102 "GETNCNT", /* 3 */
2103 "GETPID", /* 4 */

new/usr/src/cmd/truss/codes.c 28

2104 "GETVAL", /* 5 */
2105 "GETALL", /* 6 */
2106 "GETZCNT", /* 7 */
2107 "SETVAL", /* 8 */
2108 "SETALL", /* 9 */
2109 "IPC_RMID", /* 10 */
2110 "IPC_SET", /* 11 */
2111 "IPC_STAT", /* 12 */
2112 "IPC_SET64", /* 13 */
2113 "IPC_STAT64", /* 14 */
2114 };

2116 #define SHMCMDMIN 0
2117 #define SHMCMDMAX IPC_STAT64
2118 const char *const SHMCMDname[SHMCMDMAX+1] = {
2119 NULL, /* 0 */
2120 NULL, /* 1 */
2121 NULL, /* 2 */
2122 "SHM_LOCK", /* 3 */
2123 "SHM_UNLOCK", /* 4 */
2124 NULL, NULL, NULL, NULL, NULL, /* 5 NULLs */
2125 "IPC_RMID", /* 10 */
2126 "IPC_SET", /* 11 */
2127 "IPC_STAT", /* 12 */
2128 "IPC_SET64", /* 13 */
2129 "IPC_STAT64", /* 14 */
2130 };

2132 const char *
2133 msgcmd(int arg)
2134 {
2135 const char *str = NULL;

2137 if (arg >= MSGCMDMIN && arg <= MSGCMDMAX)
2138 str = MSGCMDname[arg-MSGCMDMIN];
2139 return (str);
2140 }

2142 const char *
2143 semcmd(int arg)
2144 {
2145 const char *str = NULL;

2147 if (arg >= SEMCMDMIN && arg <= SEMCMDMAX)
2148 str = SEMCMDname[arg-SEMCMDMIN];
2149 return (str);
2150 }

2152 const char *
2153 shmcmd(int arg)
2154 {
2155 const char *str = NULL;

2157 if (arg >= SHMCMDMIN && arg <= SHMCMDMAX)
2158 str = SHMCMDname[arg-SHMCMDMIN];
2159 return (str);
2160 }

2162 const char *
2163 strrdopt(int arg) /* streams read option (I_SRDOPT I_GRDOPT) */
2164 {
2165 const char *str = NULL;

2167 switch (arg) {
2168 case RNORM: str = "RNORM"; break;
2169 case RMSGD: str = "RMSGD"; break;

new/usr/src/cmd/truss/codes.c 29

2170 case RMSGN: str = "RMSGN"; break;
2171 }

2173 return (str);
2174 }

2176 /* bit map of streams events (I_SETSIG & I_GETSIG) */
2177 const char *
2178 strevents(private_t *pri, int arg)
2179 {
2180 char *str = pri->code_buf;

2182 if (arg & ~(S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP))
2183 return ((char *)NULL);

2185 *str = ’\0’;
2186 if (arg & S_INPUT)
2187 (void) strcat(str, "|S_INPUT");
2188 if (arg & S_HIPRI)
2189 (void) strcat(str, "|S_HIPRI");
2190 if (arg & S_OUTPUT)
2191 (void) strcat(str, "|S_OUTPUT");
2192 if (arg & S_MSG)
2193 (void) strcat(str, "|S_MSG");
2194 if (arg & S_ERROR)
2195 (void) strcat(str, "|S_ERROR");
2196 if (arg & S_HANGUP)
2197 (void) strcat(str, "|S_HANGUP");

2199 return ((const char *)(str+1));
2200 }

2202 const char *
2203 tiocflush(private_t *pri, int arg) /* bit map passsed by TIOCFLUSH */
2204 {
2205 char *str = pri->code_buf;

2207 if (arg & ~(FREAD|FWRITE))
2208 return ((char *)NULL);

2210 *str = ’\0’;
2211 if (arg & FREAD)
2212 (void) strcat(str, "|FREAD");
2213 if (arg & FWRITE)
2214 (void) strcat(str, "|FWRITE");

2216 return ((const char *)(str+1));
2217 }

2219 const char *
2220 strflush(int arg) /* streams flush option (I_FLUSH) */
2221 {
2222 const char *str = NULL;

2224 switch (arg) {
2225 case FLUSHR: str = "FLUSHR"; break;
2226 case FLUSHW: str = "FLUSHW"; break;
2227 case FLUSHRW: str = "FLUSHRW"; break;
2228 }

2230 return (str);
2231 }

2233 #define ALL_MOUNT_FLAGS (MS_RDONLY|MS_FSS|MS_DATA|MS_NOSUID|MS_REMOUNT| \
2234 MS_NOTRUNC|MS_OVERLAY|MS_OPTIONSTR|MS_GLOBAL|MS_FORCE|MS_NOMNTTAB)

new/usr/src/cmd/truss/codes.c 30

2236 const char *
2237 mountflags(private_t *pri, int arg) /* bit map of mount syscall flags */
2238 {
2239 char *str = pri->code_buf;
2240 size_t used = 0;

2242 if (arg & ~ALL_MOUNT_FLAGS)
2243 return ((char *)NULL);

2245 *str = ’\0’;
2246 if (arg & MS_RDONLY)
2247 used = strlcat(str, "|MS_RDONLY", sizeof (pri->code_buf));
2248 if (arg & MS_FSS)
2249 used = strlcat(str, "|MS_FSS", sizeof (pri->code_buf));
2250 if (arg & MS_DATA)
2251 used = strlcat(str, "|MS_DATA", sizeof (pri->code_buf));
2252 if (arg & MS_NOSUID)
2253 used = strlcat(str, "|MS_NOSUID", sizeof (pri->code_buf));
2254 if (arg & MS_REMOUNT)
2255 used = strlcat(str, "|MS_REMOUNT", sizeof (pri->code_buf));
2256 if (arg & MS_NOTRUNC)
2257 used = strlcat(str, "|MS_NOTRUNC", sizeof (pri->code_buf));
2258 if (arg & MS_OVERLAY)
2259 used = strlcat(str, "|MS_OVERLAY", sizeof (pri->code_buf));
2260 if (arg & MS_OPTIONSTR)
2261 used = strlcat(str, "|MS_OPTIONSTR", sizeof (pri->code_buf));
2262 if (arg & MS_GLOBAL)
2263 used = strlcat(str, "|MS_GLOBAL", sizeof (pri->code_buf));
2264 if (arg & MS_FORCE)
2265 used = strlcat(str, "|MS_FORCE", sizeof (pri->code_buf));
2266 if (arg & MS_NOMNTTAB)
2267 used = strlcat(str, "|MS_NOMNTTAB", sizeof (pri->code_buf));

2269 if (used == 0 || used >= sizeof (pri->code_buf))
2270 return ((char *)NULL); /* use prt_hex() */

2272 return ((const char *)(str+1));
2273 }

2275 const char *
2276 svfsflags(private_t *pri, ulong_t arg) /* bit map of statvfs syscall flags */
2277 {
2278 char *str = pri->code_buf;

2280 if (arg & ~(ST_RDONLY|ST_NOSUID|ST_NOTRUNC)) {
2281 (void) sprintf(str, "0x%lx", arg);
2282 return (str);
2283 }
2284 *str = ’\0’;
2285 if (arg & ST_RDONLY)
2286 (void) strcat(str, "|ST_RDONLY");
2287 if (arg & ST_NOSUID)
2288 (void) strcat(str, "|ST_NOSUID");
2289 if (arg & ST_NOTRUNC)
2290 (void) strcat(str, "|ST_NOTRUNC");
2291 if (*str == ’\0’)
2292 (void) strcat(str, "|0");
2293 return ((const char *)(str+1));
2294 }

2296 const char *
2297 fuiname(int arg) /* fusers() input argument */
2298 {
2299 const char *str = NULL;

2301 switch (arg) {

new/usr/src/cmd/truss/codes.c 31

2302 case F_FILE_ONLY: str = "F_FILE_ONLY"; break;
2303 case F_CONTAINED: str = "F_CONTAINED"; break;
2304 }

2306 return (str);
2307 }

2309 const char *
2310 fuflags(private_t *pri, int arg) /* fusers() output flags */
2311 {
2312 char *str = pri->code_buf;

2314 if (arg & ~(F_CDIR|F_RDIR|F_TEXT|F_MAP|F_OPEN|F_TRACE|F_TTY)) {
2315 (void) sprintf(str, "0x%x", arg);
2316 return (str);
2317 }
2318 *str = ’\0’;
2319 if (arg & F_CDIR)
2320 (void) strcat(str, "|F_CDIR");
2321 if (arg & F_RDIR)
2322 (void) strcat(str, "|F_RDIR");
2323 if (arg & F_TEXT)
2324 (void) strcat(str, "|F_TEXT");
2325 if (arg & F_MAP)
2326 (void) strcat(str, "|F_MAP");
2327 if (arg & F_OPEN)
2328 (void) strcat(str, "|F_OPEN");
2329 if (arg & F_TRACE)
2330 (void) strcat(str, "|F_TRACE");
2331 if (arg & F_TTY)
2332 (void) strcat(str, "|F_TTY");
2333 if (*str == ’\0’)
2334 (void) strcat(str, "|0");
2335 return ((const char *)(str+1));
2336 }

2339 const char *
2340 ipprotos(int arg) /* IP protocols cf. netinet/in.h */
2341 {
2342 switch (arg) {
2343 case IPPROTO_IP: return ("IPPROTO_IP");
2344 case IPPROTO_ICMP: return ("IPPROTO_ICMP");
2345 case IPPROTO_IGMP: return ("IPPROTO_IGMP");
2346 case IPPROTO_GGP: return ("IPPROTO_GGP");
2347 case IPPROTO_ENCAP: return ("IPPROTO_ENCAP");
2348 case IPPROTO_TCP: return ("IPPROTO_TCP");
2349 case IPPROTO_EGP: return ("IPPROTO_EGP");
2350 case IPPROTO_PUP: return ("IPPROTO_PUP");
2351 case IPPROTO_UDP: return ("IPPROTO_UDP");
2352 case IPPROTO_IDP: return ("IPPROTO_IDP");
2353 case IPPROTO_IPV6: return ("IPPROTO_IPV6");
2354 case IPPROTO_ROUTING: return ("IPPROTO_ROUTING");
2355 case IPPROTO_FRAGMENT: return ("IPPROTO_FRAGMENT");
2356 case IPPROTO_RSVP: return ("IPPROTO_RSVP");
2357 case IPPROTO_ESP: return ("IPPROTO_ESP");
2358 case IPPROTO_AH: return ("IPPROTO_AH");
2359 case IPPROTO_ICMPV6: return ("IPPROTO_ICMPV6");
2360 case IPPROTO_NONE: return ("IPPROTO_NONE");
2361 case IPPROTO_DSTOPTS: return ("IPPROTO_DSTOPTS");
2362 case IPPROTO_HELLO: return ("IPPROTO_HELLO");
2363 case IPPROTO_ND: return ("IPPROTO_ND");
2364 case IPPROTO_EON: return ("IPPROTO_EON");
2365 case IPPROTO_PIM: return ("IPPROTO_PIM");
2366 case IPPROTO_SCTP: return ("IPPROTO_SCTP");
2367 case IPPROTO_RAW: return ("IPPROTO_RAW");

new/usr/src/cmd/truss/codes.c 32

2368 default: return (NULL);
2369 }
2370 }

new/usr/src/cmd/zfs/zfs_main.c 1

**
 163475 Wed Oct 17 21:48:36 2012
new/usr/src/cmd/zfs/zfs_main.c
FITS: generating send-streams in portable format
This commit adds the command ’zfs fits-send’, analogous to zfs send. The
generated send stream is compatible with the stream generated with that
from ’btrfs send’ and can in principle easily be received to any filesystem.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2012 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 * Copyright 2012 Milan Jurik. All rights reserved.
27 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
28 */

30 #include <assert.h>
31 #include <ctype.h>
32 #include <errno.h>
33 #include <libgen.h>
34 #include <libintl.h>
35 #include <libuutil.h>
36 #include <libnvpair.h>
37 #include <locale.h>
38 #include <stddef.h>
39 #include <stdio.h>
40 #include <stdlib.h>
41 #include <strings.h>
42 #include <unistd.h>
43 #include <fcntl.h>
44 #include <zone.h>
45 #include <grp.h>
46 #include <pwd.h>
47 #include <signal.h>
48 #include <sys/list.h>
49 #include <sys/mkdev.h>
50 #include <sys/mntent.h>
51 #include <sys/mnttab.h>
52 #include <sys/mount.h>
53 #include <sys/stat.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/types.h>
56 #include <time.h>

58 #include <libzfs.h>

new/usr/src/cmd/zfs/zfs_main.c 2

59 #include <libzfs_core.h>
60 #include <zfs_prop.h>
61 #include <zfs_deleg.h>
62 #include <libuutil.h>
63 #include <aclutils.h>
64 #include <directory.h>

66 #include "zfs_iter.h"
67 #include "zfs_util.h"
68 #include "zfs_comutil.h"

70 libzfs_handle_t *g_zfs;

72 static FILE *mnttab_file;
73 static char history_str[HIS_MAX_RECORD_LEN];
74 static boolean_t log_history = B_TRUE;

76 static int zfs_do_clone(int argc, char **argv);
77 static int zfs_do_create(int argc, char **argv);
78 static int zfs_do_destroy(int argc, char **argv);
79 static int zfs_do_get(int argc, char **argv);
80 static int zfs_do_inherit(int argc, char **argv);
81 static int zfs_do_list(int argc, char **argv);
82 static int zfs_do_mount(int argc, char **argv);
83 static int zfs_do_rename(int argc, char **argv);
84 static int zfs_do_rollback(int argc, char **argv);
85 static int zfs_do_set(int argc, char **argv);
86 static int zfs_do_upgrade(int argc, char **argv);
87 static int zfs_do_snapshot(int argc, char **argv);
88 static int zfs_do_unmount(int argc, char **argv);
89 static int zfs_do_share(int argc, char **argv);
90 static int zfs_do_unshare(int argc, char **argv);
91 static int zfs_do_send(int argc, char **argv);
92 static int zfs_do_fits_send(int argc, char **argv);
93 #endif /* ! codereview */
94 static int zfs_do_receive(int argc, char **argv);
95 static int zfs_do_promote(int argc, char **argv);
96 static int zfs_do_userspace(int argc, char **argv);
97 static int zfs_do_allow(int argc, char **argv);
98 static int zfs_do_unallow(int argc, char **argv);
99 static int zfs_do_hold(int argc, char **argv);
100 static int zfs_do_holds(int argc, char **argv);
101 static int zfs_do_release(int argc, char **argv);
102 static int zfs_do_diff(int argc, char **argv);

104 /*
105 * Enable a reasonable set of defaults for libumem debugging on DEBUG builds.
106 */

108 #ifdef DEBUG
109 const char *
110 _umem_debug_init(void)
111 {
112 return ("default,verbose"); /* $UMEM_DEBUG setting */
113 }

115 const char *
116 _umem_logging_init(void)
117 {
118 return ("fail,contents"); /* $UMEM_LOGGING setting */
119 }
120 #endif

122 typedef enum {
123 HELP_CLONE,
124 HELP_CREATE,

new/usr/src/cmd/zfs/zfs_main.c 3

125 HELP_DESTROY,
126 HELP_GET,
127 HELP_INHERIT,
128 HELP_UPGRADE,
129 HELP_LIST,
130 HELP_MOUNT,
131 HELP_PROMOTE,
132 HELP_RECEIVE,
133 HELP_RENAME,
134 HELP_ROLLBACK,
135 HELP_SEND,
136 HELP_FITS_SEND,
137 #endif /* ! codereview */
138 HELP_SET,
139 HELP_SHARE,
140 HELP_SNAPSHOT,
141 HELP_UNMOUNT,
142 HELP_UNSHARE,
143 HELP_ALLOW,
144 HELP_UNALLOW,
145 HELP_USERSPACE,
146 HELP_GROUPSPACE,
147 HELP_HOLD,
148 HELP_HOLDS,
149 HELP_RELEASE,
150 HELP_DIFF,
151 } zfs_help_t;

153 typedef struct zfs_command {
154 const char *name;
155 int (*func)(int argc, char **argv);
156 zfs_help_t usage;
157 } zfs_command_t;

159 /*
160 * Master command table. Each ZFS command has a name, associated function, and
161 * usage message. The usage messages need to be internationalized, so we have
162 * to have a function to return the usage message based on a command index.
163 *
164 * These commands are organized according to how they are displayed in the usage
165 * message. An empty command (one with a NULL name) indicates an empty line in
166 * the generic usage message.
167 */
168 static zfs_command_t command_table[] = {
169 { "create", zfs_do_create, HELP_CREATE },
170 { "destroy", zfs_do_destroy, HELP_DESTROY },
171 { NULL },
172 { "snapshot", zfs_do_snapshot, HELP_SNAPSHOT },
173 { "rollback", zfs_do_rollback, HELP_ROLLBACK },
174 { "clone", zfs_do_clone, HELP_CLONE },
175 { "promote", zfs_do_promote, HELP_PROMOTE },
176 { "rename", zfs_do_rename, HELP_RENAME },
177 { NULL },
178 { "list", zfs_do_list, HELP_LIST },
179 { NULL },
180 { "set", zfs_do_set, HELP_SET },
181 { "get", zfs_do_get, HELP_GET },
182 { "inherit", zfs_do_inherit, HELP_INHERIT },
183 { "upgrade", zfs_do_upgrade, HELP_UPGRADE },
184 { "userspace", zfs_do_userspace, HELP_USERSPACE },
185 { "groupspace", zfs_do_userspace, HELP_GROUPSPACE },
186 { NULL },
187 { "mount", zfs_do_mount, HELP_MOUNT },
188 { "unmount", zfs_do_unmount, HELP_UNMOUNT },
189 { "share", zfs_do_share, HELP_SHARE },
190 { "unshare", zfs_do_unshare, HELP_UNSHARE },

new/usr/src/cmd/zfs/zfs_main.c 4

191 { NULL },
192 { "send", zfs_do_send, HELP_SEND },
193 { "receive", zfs_do_receive, HELP_RECEIVE },
194 { NULL },
195 { "fits-send", zfs_do_fits_send, HELP_FITS_SEND },
196 { NULL },
197 #endif /* ! codereview */
198 { "allow", zfs_do_allow, HELP_ALLOW },
199 { NULL },
200 { "unallow", zfs_do_unallow, HELP_UNALLOW },
201 { NULL },
202 { "hold", zfs_do_hold, HELP_HOLD },
203 { "holds", zfs_do_holds, HELP_HOLDS },
204 { "release", zfs_do_release, HELP_RELEASE },
205 { "diff", zfs_do_diff, HELP_DIFF },
206 };

208 #define NCOMMAND (sizeof (command_table) / sizeof (command_table[0]))

210 zfs_command_t *current_command;

212 static const char *
213 get_usage(zfs_help_t idx)
214 {
215 switch (idx) {
216 case HELP_CLONE:
217 return (gettext("\tclone [-p] [-o property=value] ... "
218 "<snapshot> <filesystem|volume>\n"));
219 case HELP_CREATE:
220 return (gettext("\tcreate [-p] [-o property=value] ... "
221 "<filesystem>\n"
222 "\tcreate [-ps] [-b blocksize] [-o property=value] ... "
223 "-V <size> <volume>\n"));
224 case HELP_DESTROY:
225 return (gettext("\tdestroy [-fnpRrv] <filesystem|volume>\n"
226 "\tdestroy [-dnpRrv] "
227 "<filesystem|volume>@<snap>[%<snap>][,...]\n"));
228 case HELP_GET:
229 return (gettext("\tget [-rHp] [-d max] "
230 "[-o \"all\" | field[,...]] [-t type[,...]] "
231 "[-s source[,...]]\n"
232 "\t <\"all\" | property[,...]> "
233 "[filesystem|volume|snapshot] ...\n"));
234 case HELP_INHERIT:
235 return (gettext("\tinherit [-rS] <property> "
236 "<filesystem|volume|snapshot> ...\n"));
237 case HELP_UPGRADE:
238 return (gettext("\tupgrade [-v]\n"
239 "\tupgrade [-r] [-V version] <-a | filesystem ...>\n"));
240 case HELP_LIST:
241 return (gettext("\tlist [-rH][-d max] "
242 "[-o property[,...]] [-t type[,...]] [-s property] ...\n"
243 "\t [-S property] ... "
244 "[filesystem|volume|snapshot] ...\n"));
245 case HELP_MOUNT:
246 return (gettext("\tmount\n"
247 "\tmount [-vO] [-o opts] <-a | filesystem>\n"));
248 case HELP_PROMOTE:
249 return (gettext("\tpromote <clone-filesystem>\n"));
250 case HELP_RECEIVE:
251 return (gettext("\treceive [-vnFu] <filesystem|volume|"
252 "snapshot>\n"
253 "\treceive [-vnFu] [-d | -e] <filesystem>\n"));
254 case HELP_RENAME:
255 return (gettext("\trename [-f] <filesystem|volume|snapshot> "
256 "<filesystem|volume|snapshot>\n"

new/usr/src/cmd/zfs/zfs_main.c 5

257 "\trename [-f] -p <filesystem|volume> <filesystem|volume>\n"
258 "\trename -r <snapshot> <snapshot>"));
259 case HELP_ROLLBACK:
260 return (gettext("\trollback [-rRf] <snapshot>\n"));
261 case HELP_SEND:
262 return (gettext("\tsend [-DnPpRv] [-[iI] snapshot] "
263 "<snapshot>\n"));
264 case HELP_FITS_SEND:
265 return (gettext("\tfits-send [-v] [-i snapshot] "
266 "<snapshot>\n"));
267 #endif /* ! codereview */
268 case HELP_SET:
269 return (gettext("\tset <property=value> "
270 "<filesystem|volume|snapshot> ...\n"));
271 case HELP_SHARE:
272 return (gettext("\tshare <-a | filesystem>\n"));
273 case HELP_SNAPSHOT:
274 return (gettext("\tsnapshot [-r] [-o property=value] ... "
275 "<filesystem@snapname|volume@snapname> ...\n"));
276 case HELP_UNMOUNT:
277 return (gettext("\tunmount [-f] "
278 "<-a | filesystem|mountpoint>\n"));
279 case HELP_UNSHARE:
280 return (gettext("\tunshare "
281 "<-a | filesystem|mountpoint>\n"));
282 case HELP_ALLOW:
283 return (gettext("\tallow <filesystem|volume>\n"
284 "\tallow [-ldug] "
285 "<\"everyone\"|user|group>[,...] <perm|@setname>[,...]\n"
286 "\t <filesystem|volume>\n"
287 "\tallow [-ld] -e <perm|@setname>[,...] "
288 "<filesystem|volume>\n"
289 "\tallow -c <perm|@setname>[,...] <filesystem|volume>\n"
290 "\tallow -s @setname <perm|@setname>[,...] "
291 "<filesystem|volume>\n"));
292 case HELP_UNALLOW:
293 return (gettext("\tunallow [-rldug] "
294 "<\"everyone\"|user|group>[,...]\n"
295 "\t [<perm|@setname>[,...]] <filesystem|volume>\n"
296 "\tunallow [-rld] -e [<perm|@setname>[,...]] "
297 "<filesystem|volume>\n"
298 "\tunallow [-r] -c [<perm|@setname>[,...]] "
299 "<filesystem|volume>\n"
300 "\tunallow [-r] -s @setname [<perm|@setname>[,...]] "
301 "<filesystem|volume>\n"));
302 case HELP_USERSPACE:
303 return (gettext("\tuserspace [-Hinp] [-o field[,...]] "
304 "[-s field] ...\n\t[-S field] ... "
305 "[-t type[,...]] <filesystem|snapshot>\n"));
306 case HELP_GROUPSPACE:
307 return (gettext("\tgroupspace [-Hinp] [-o field[,...]] "
308 "[-s field] ...\n\t[-S field] ... "
309 "[-t type[,...]] <filesystem|snapshot>\n"));
310 case HELP_HOLD:
311 return (gettext("\thold [-r] <tag> <snapshot> ...\n"));
312 case HELP_HOLDS:
313 return (gettext("\tholds [-r] <snapshot> ...\n"));
314 case HELP_RELEASE:
315 return (gettext("\trelease [-r] <tag> <snapshot> ...\n"));
316 case HELP_DIFF:
317 return (gettext("\tdiff [-FHt] <snapshot> "
318 "[snapshot|filesystem]\n"));
319 }

321 abort();
322 /* NOTREACHED */

new/usr/src/cmd/zfs/zfs_main.c 6

323 }

325 void
326 nomem(void)
327 {
328 (void) fprintf(stderr, gettext("internal error: out of memory\n"));
329 exit(1);
330 }

332 /*
333 * Utility function to guarantee malloc() success.
334 */

336 void *
337 safe_malloc(size_t size)
338 {
339 void *data;

341 if ((data = calloc(1, size)) == NULL)
342 nomem();

344 return (data);
345 }

347 static char *
348 safe_strdup(char *str)
349 {
350 char *dupstr = strdup(str);

352 if (dupstr == NULL)
353 nomem();

355 return (dupstr);
356 }

358 /*
359 * Callback routine that will print out information for each of
360 * the properties.
361 */
362 static int
363 usage_prop_cb(int prop, void *cb)
364 {
365 FILE *fp = cb;

367 (void) fprintf(fp, "\t%-15s ", zfs_prop_to_name(prop));

369 if (zfs_prop_readonly(prop))
370 (void) fprintf(fp, " NO ");
371 else
372 (void) fprintf(fp, "YES ");

374 if (zfs_prop_inheritable(prop))
375 (void) fprintf(fp, " YES ");
376 else
377 (void) fprintf(fp, " NO ");

379 if (zfs_prop_values(prop) == NULL)
380 (void) fprintf(fp, "-\n");
381 else
382 (void) fprintf(fp, "%s\n", zfs_prop_values(prop));

384 return (ZPROP_CONT);
385 }

387 /*
388 * Display usage message. If we’re inside a command, display only the usage for

new/usr/src/cmd/zfs/zfs_main.c 7

389 * that command. Otherwise, iterate over the entire command table and display
390 * a complete usage message.
391 */
392 static void
393 usage(boolean_t requested)
394 {
395 int i;
396 boolean_t show_properties = B_FALSE;
397 FILE *fp = requested ? stdout : stderr;

399 if (current_command == NULL) {

401 (void) fprintf(fp, gettext("usage: zfs command args ...\n"));
402 (void) fprintf(fp,
403 gettext("where ’command’ is one of the following:\n\n"));

405 for (i = 0; i < NCOMMAND; i++) {
406 if (command_table[i].name == NULL)
407 (void) fprintf(fp, "\n");
408 else
409 (void) fprintf(fp, "%s",
410 get_usage(command_table[i].usage));
411 }

413 (void) fprintf(fp, gettext("\nEach dataset is of the form: "
414 "pool/[dataset/]*dataset[@name]\n"));
415 } else {
416 (void) fprintf(fp, gettext("usage:\n"));
417 (void) fprintf(fp, "%s", get_usage(current_command->usage));
418 }

420 if (current_command != NULL &&
421 (strcmp(current_command->name, "set") == 0 ||
422 strcmp(current_command->name, "get") == 0 ||
423 strcmp(current_command->name, "inherit") == 0 ||
424 strcmp(current_command->name, "list") == 0))
425 show_properties = B_TRUE;

427 if (show_properties) {
428 (void) fprintf(fp,
429 gettext("\nThe following properties are supported:\n"));

431 (void) fprintf(fp, "\n\t%-14s %s %s %s\n\n",
432 "PROPERTY", "EDIT", "INHERIT", "VALUES");

434 /* Iterate over all properties */
435 (void) zprop_iter(usage_prop_cb, fp, B_FALSE, B_TRUE,
436 ZFS_TYPE_DATASET);

438 (void) fprintf(fp, "\t%-15s ", "userused@...");
439 (void) fprintf(fp, " NO NO <size>\n");
440 (void) fprintf(fp, "\t%-15s ", "groupused@...");
441 (void) fprintf(fp, " NO NO <size>\n");
442 (void) fprintf(fp, "\t%-15s ", "userquota@...");
443 (void) fprintf(fp, "YES NO <size> | none\n");
444 (void) fprintf(fp, "\t%-15s ", "groupquota@...");
445 (void) fprintf(fp, "YES NO <size> | none\n");
446 (void) fprintf(fp, "\t%-15s ", "written@<snap>");
447 (void) fprintf(fp, " NO NO <size>\n");

449 (void) fprintf(fp, gettext("\nSizes are specified in bytes "
450 "with standard units such as K, M, G, etc.\n"));
451 (void) fprintf(fp, gettext("\nUser-defined properties can "
452 "be specified by using a name containing a colon (:).\n"));
453 (void) fprintf(fp, gettext("\nThe {user|group}{used|quota}@ "
454 "properties must be appended with\n"

new/usr/src/cmd/zfs/zfs_main.c 8

455 "a user or group specifier of one of these forms:\n"
456 " POSIX name (eg: \"matt\")\n"
457 " POSIX id (eg: \"126829\")\n"
458 " SMB name@domain (eg: \"matt@sun\")\n"
459 " SMB SID (eg: \"S-1-234-567-89\")\n"));
460 } else {
461 (void) fprintf(fp,
462 gettext("\nFor the property list, run: %s\n"),
463 "zfs set|get");
464 (void) fprintf(fp,
465 gettext("\nFor the delegated permission list, run: %s\n"),
466 "zfs allow|unallow");
467 }

469 /*
470 * See comments at end of main().
471 */
472 if (getenv("ZFS_ABORT") != NULL) {
473 (void) printf("dumping core by request\n");
474 abort();
475 }

477 exit(requested ? 0 : 2);
478 }

480 static int
481 parseprop(nvlist_t *props)
482 {
483 char *propname = optarg;
484 char *propval, *strval;

486 if ((propval = strchr(propname, ’=’)) == NULL) {
487 (void) fprintf(stderr, gettext("missing "
488 "’=’ for -o option\n"));
489 return (-1);
490 }
491 *propval = ’\0’;
492 propval++;
493 if (nvlist_lookup_string(props, propname, &strval) == 0) {
494 (void) fprintf(stderr, gettext("property ’%s’ "
495 "specified multiple times\n"), propname);
496 return (-1);
497 }
498 if (nvlist_add_string(props, propname, propval) != 0)
499 nomem();
500 return (0);
501 }

503 static int
504 parse_depth(char *opt, int *flags)
505 {
506 char *tmp;
507 int depth;

509 depth = (int)strtol(opt, &tmp, 0);
510 if (*tmp) {
511 (void) fprintf(stderr,
512 gettext("%s is not an integer\n"), optarg);
513 usage(B_FALSE);
514 }
515 if (depth < 0) {
516 (void) fprintf(stderr,
517 gettext("Depth can not be negative.\n"));
518 usage(B_FALSE);
519 }
520 *flags |= (ZFS_ITER_DEPTH_LIMIT|ZFS_ITER_RECURSE);

new/usr/src/cmd/zfs/zfs_main.c 9

521 return (depth);
522 }

524 #define PROGRESS_DELAY 2 /* seconds */

526 static char *pt_reverse = "\b";
527 static time_t pt_begin;
528 static char *pt_header = NULL;
529 static boolean_t pt_shown;

531 static void
532 start_progress_timer(void)
533 {
534 pt_begin = time(NULL) + PROGRESS_DELAY;
535 pt_shown = B_FALSE;
536 }

538 static void
539 set_progress_header(char *header)
540 {
541 assert(pt_header == NULL);
542 pt_header = safe_strdup(header);
543 if (pt_shown) {
544 (void) printf("%s: ", header);
545 (void) fflush(stdout);
546 }
547 }

549 static void
550 update_progress(char *update)
551 {
552 if (!pt_shown && time(NULL) > pt_begin) {
553 int len = strlen(update);

555 (void) printf("%s: %s%*.*s", pt_header, update, len, len,
556 pt_reverse);
557 (void) fflush(stdout);
558 pt_shown = B_TRUE;
559 } else if (pt_shown) {
560 int len = strlen(update);

562 (void) printf("%s%*.*s", update, len, len, pt_reverse);
563 (void) fflush(stdout);
564 }
565 }

567 static void
568 finish_progress(char *done)
569 {
570 if (pt_shown) {
571 (void) printf("%s\n", done);
572 (void) fflush(stdout);
573 }
574 free(pt_header);
575 pt_header = NULL;
576 }
577 /*
578 * zfs clone [-p] [-o prop=value] ... <snap> <fs | vol>
579 *
580 * Given an existing dataset, create a writable copy whose initial contents
581 * are the same as the source. The newly created dataset maintains a
582 * dependency on the original; the original cannot be destroyed so long as
583 * the clone exists.
584 *
585 * The ’-p’ flag creates all the non-existing ancestors of the target first.
586 */

new/usr/src/cmd/zfs/zfs_main.c 10

587 static int
588 zfs_do_clone(int argc, char **argv)
589 {
590 zfs_handle_t *zhp = NULL;
591 boolean_t parents = B_FALSE;
592 nvlist_t *props;
593 int ret = 0;
594 int c;

596 if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0)
597 nomem();

599 /* check options */
600 while ((c = getopt(argc, argv, "o:p")) != -1) {
601 switch (c) {
602 case ’o’:
603 if (parseprop(props))
604 return (1);
605 break;
606 case ’p’:
607 parents = B_TRUE;
608 break;
609 case ’?’:
610 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
611 optopt);
612 goto usage;
613 }
614 }

616 argc -= optind;
617 argv += optind;

619 /* check number of arguments */
620 if (argc < 1) {
621 (void) fprintf(stderr, gettext("missing source dataset "
622 "argument\n"));
623 goto usage;
624 }
625 if (argc < 2) {
626 (void) fprintf(stderr, gettext("missing target dataset "
627 "argument\n"));
628 goto usage;
629 }
630 if (argc > 2) {
631 (void) fprintf(stderr, gettext("too many arguments\n"));
632 goto usage;
633 }

635 /* open the source dataset */
636 if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_SNAPSHOT)) == NULL)
637 return (1);

639 if (parents && zfs_name_valid(argv[1], ZFS_TYPE_FILESYSTEM |
640 ZFS_TYPE_VOLUME)) {
641 /*
642 * Now create the ancestors of the target dataset. If the
643 * target already exists and ’-p’ option was used we should not
644 * complain.
645 */
646 if (zfs_dataset_exists(g_zfs, argv[1], ZFS_TYPE_FILESYSTEM |
647 ZFS_TYPE_VOLUME))
648 return (0);
649 if (zfs_create_ancestors(g_zfs, argv[1]) != 0)
650 return (1);
651 }

new/usr/src/cmd/zfs/zfs_main.c 11

653 /* pass to libzfs */
654 ret = zfs_clone(zhp, argv[1], props);

656 /* create the mountpoint if necessary */
657 if (ret == 0) {
658 zfs_handle_t *clone;

660 clone = zfs_open(g_zfs, argv[1], ZFS_TYPE_DATASET);
661 if (clone != NULL) {
662 if (zfs_get_type(clone) != ZFS_TYPE_VOLUME)
663 if ((ret = zfs_mount(clone, NULL, 0)) == 0)
664 ret = zfs_share(clone);
665 zfs_close(clone);
666 }
667 }

669 zfs_close(zhp);
670 nvlist_free(props);

672 return (!!ret);

674 usage:
675 if (zhp)
676 zfs_close(zhp);
677 nvlist_free(props);
678 usage(B_FALSE);
679 return (-1);
680 }

682 /*
683 * zfs create [-p] [-o prop=value] ... fs
684 * zfs create [-ps] [-b blocksize] [-o prop=value] ... -V vol size
685 *
686 * Create a new dataset. This command can be used to create filesystems
687 * and volumes. Snapshot creation is handled by ’zfs snapshot’.
688 * For volumes, the user must specify a size to be used.
689 *
690 * The ’-s’ flag applies only to volumes, and indicates that we should not try
691 * to set the reservation for this volume. By default we set a reservation
692 * equal to the size for any volume. For pools with SPA_VERSION >=
693 * SPA_VERSION_REFRESERVATION, we set a refreservation instead.
694 *
695 * The ’-p’ flag creates all the non-existing ancestors of the target first.
696 */
697 static int
698 zfs_do_create(int argc, char **argv)
699 {
700 zfs_type_t type = ZFS_TYPE_FILESYSTEM;
701 zfs_handle_t *zhp = NULL;
702 uint64_t volsize;
703 int c;
704 boolean_t noreserve = B_FALSE;
705 boolean_t bflag = B_FALSE;
706 boolean_t parents = B_FALSE;
707 int ret = 1;
708 nvlist_t *props;
709 uint64_t intval;
710 int canmount = ZFS_CANMOUNT_OFF;

712 if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0)
713 nomem();

715 /* check options */
716 while ((c = getopt(argc, argv, ":V:b:so:p")) != -1) {
717 switch (c) {
718 case ’V’:

new/usr/src/cmd/zfs/zfs_main.c 12

719 type = ZFS_TYPE_VOLUME;
720 if (zfs_nicestrtonum(g_zfs, optarg, &intval) != 0) {
721 (void) fprintf(stderr, gettext("bad volume "
722 "size ’%s’: %s\n"), optarg,
723 libzfs_error_description(g_zfs));
724 goto error;
725 }

727 if (nvlist_add_uint64(props,
728 zfs_prop_to_name(ZFS_PROP_VOLSIZE), intval) != 0)
729 nomem();
730 volsize = intval;
731 break;
732 case ’p’:
733 parents = B_TRUE;
734 break;
735 case ’b’:
736 bflag = B_TRUE;
737 if (zfs_nicestrtonum(g_zfs, optarg, &intval) != 0) {
738 (void) fprintf(stderr, gettext("bad volume "
739 "block size ’%s’: %s\n"), optarg,
740 libzfs_error_description(g_zfs));
741 goto error;
742 }

744 if (nvlist_add_uint64(props,
745 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
746 intval) != 0)
747 nomem();
748 break;
749 case ’o’:
750 if (parseprop(props))
751 goto error;
752 break;
753 case ’s’:
754 noreserve = B_TRUE;
755 break;
756 case ’:’:
757 (void) fprintf(stderr, gettext("missing size "
758 "argument\n"));
759 goto badusage;
760 case ’?’:
761 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
762 optopt);
763 goto badusage;
764 }
765 }

767 if ((bflag || noreserve) && type != ZFS_TYPE_VOLUME) {
768 (void) fprintf(stderr, gettext("’-s’ and ’-b’ can only be "
769 "used when creating a volume\n"));
770 goto badusage;
771 }

773 argc -= optind;
774 argv += optind;

776 /* check number of arguments */
777 if (argc == 0) {
778 (void) fprintf(stderr, gettext("missing %s argument\n"),
779 zfs_type_to_name(type));
780 goto badusage;
781 }
782 if (argc > 1) {
783 (void) fprintf(stderr, gettext("too many arguments\n"));
784 goto badusage;

new/usr/src/cmd/zfs/zfs_main.c 13

785 }

787 if (type == ZFS_TYPE_VOLUME && !noreserve) {
788 zpool_handle_t *zpool_handle;
789 uint64_t spa_version;
790 char *p;
791 zfs_prop_t resv_prop;
792 char *strval;

794 if (p = strchr(argv[0], ’/’))
795 *p = ’\0’;
796 zpool_handle = zpool_open(g_zfs, argv[0]);
797 if (p != NULL)
798 *p = ’/’;
799 if (zpool_handle == NULL)
800 goto error;
801 spa_version = zpool_get_prop_int(zpool_handle,
802 ZPOOL_PROP_VERSION, NULL);
803 zpool_close(zpool_handle);
804 if (spa_version >= SPA_VERSION_REFRESERVATION)
805 resv_prop = ZFS_PROP_REFRESERVATION;
806 else
807 resv_prop = ZFS_PROP_RESERVATION;
808 volsize = zvol_volsize_to_reservation(volsize, props);

810 if (nvlist_lookup_string(props, zfs_prop_to_name(resv_prop),
811 &strval) != 0) {
812 if (nvlist_add_uint64(props,
813 zfs_prop_to_name(resv_prop), volsize) != 0) {
814 nvlist_free(props);
815 nomem();
816 }
817 }
818 }

820 if (parents && zfs_name_valid(argv[0], type)) {
821 /*
822 * Now create the ancestors of target dataset. If the target
823 * already exists and ’-p’ option was used we should not
824 * complain.
825 */
826 if (zfs_dataset_exists(g_zfs, argv[0], type)) {
827 ret = 0;
828 goto error;
829 }
830 if (zfs_create_ancestors(g_zfs, argv[0]) != 0)
831 goto error;
832 }

834 /* pass to libzfs */
835 if (zfs_create(g_zfs, argv[0], type, props) != 0)
836 goto error;

838 if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_DATASET)) == NULL)
839 goto error;

841 ret = 0;
842 /*
843 * if the user doesn’t want the dataset automatically mounted,
844 * then skip the mount/share step
845 */
846 if (zfs_prop_valid_for_type(ZFS_PROP_CANMOUNT, type))
847 canmount = zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT);

849 /*
850 * Mount and/or share the new filesystem as appropriate. We provide a

new/usr/src/cmd/zfs/zfs_main.c 14

851 * verbose error message to let the user know that their filesystem was
852 * in fact created, even if we failed to mount or share it.
853 */
854 if (canmount == ZFS_CANMOUNT_ON) {
855 if (zfs_mount(zhp, NULL, 0) != 0) {
856 (void) fprintf(stderr, gettext("filesystem "
857 "successfully created, but not mounted\n"));
858 ret = 1;
859 } else if (zfs_share(zhp) != 0) {
860 (void) fprintf(stderr, gettext("filesystem "
861 "successfully created, but not shared\n"));
862 ret = 1;
863 }
864 }

866 error:
867 if (zhp)
868 zfs_close(zhp);
869 nvlist_free(props);
870 return (ret);
871 badusage:
872 nvlist_free(props);
873 usage(B_FALSE);
874 return (2);
875 }

877 /*
878 * zfs destroy [-rRf] <fs, vol>
879 * zfs destroy [-rRd] <snap>
880 *
881 * -r Recursively destroy all children
882 * -R Recursively destroy all dependents, including clones
883 * -f Force unmounting of any dependents
884 * -d If we can’t destroy now, mark for deferred destruction
885 *
886 * Destroys the given dataset. By default, it will unmount any filesystems,
887 * and refuse to destroy a dataset that has any dependents. A dependent can
888 * either be a child, or a clone of a child.
889 */
890 typedef struct destroy_cbdata {
891 boolean_t cb_first;
892 boolean_t cb_force;
893 boolean_t cb_recurse;
894 boolean_t cb_error;
895 boolean_t cb_doclones;
896 zfs_handle_t *cb_target;
897 boolean_t cb_defer_destroy;
898 boolean_t cb_verbose;
899 boolean_t cb_parsable;
900 boolean_t cb_dryrun;
901 nvlist_t *cb_nvl;

903 /* first snap in contiguous run */
904 char *cb_firstsnap;
905 /* previous snap in contiguous run */
906 char *cb_prevsnap;
907 int64_t cb_snapused;
908 char *cb_snapspec;
909 } destroy_cbdata_t;

911 /*
912 * Check for any dependents based on the ’-r’ or ’-R’ flags.
913 */
914 static int
915 destroy_check_dependent(zfs_handle_t *zhp, void *data)
916 {

new/usr/src/cmd/zfs/zfs_main.c 15

917 destroy_cbdata_t *cbp = data;
918 const char *tname = zfs_get_name(cbp->cb_target);
919 const char *name = zfs_get_name(zhp);

921 if (strncmp(tname, name, strlen(tname)) == 0 &&
922 (name[strlen(tname)] == ’/’ || name[strlen(tname)] == ’@’)) {
923 /*
924 * This is a direct descendant, not a clone somewhere else in
925 * the hierarchy.
926 */
927 if (cbp->cb_recurse)
928 goto out;

930 if (cbp->cb_first) {
931 (void) fprintf(stderr, gettext("cannot destroy ’%s’: "
932 "%s has children\n"),
933 zfs_get_name(cbp->cb_target),
934 zfs_type_to_name(zfs_get_type(cbp->cb_target)));
935 (void) fprintf(stderr, gettext("use ’-r’ to destroy "
936 "the following datasets:\n"));
937 cbp->cb_first = B_FALSE;
938 cbp->cb_error = B_TRUE;
939 }

941 (void) fprintf(stderr, "%s\n", zfs_get_name(zhp));
942 } else {
943 /*
944 * This is a clone. We only want to report this if the ’-r’
945 * wasn’t specified, or the target is a snapshot.
946 */
947 if (!cbp->cb_recurse &&
948 zfs_get_type(cbp->cb_target) != ZFS_TYPE_SNAPSHOT)
949 goto out;

951 if (cbp->cb_first) {
952 (void) fprintf(stderr, gettext("cannot destroy ’%s’: "
953 "%s has dependent clones\n"),
954 zfs_get_name(cbp->cb_target),
955 zfs_type_to_name(zfs_get_type(cbp->cb_target)));
956 (void) fprintf(stderr, gettext("use ’-R’ to destroy "
957 "the following datasets:\n"));
958 cbp->cb_first = B_FALSE;
959 cbp->cb_error = B_TRUE;
960 cbp->cb_dryrun = B_TRUE;
961 }

963 (void) fprintf(stderr, "%s\n", zfs_get_name(zhp));
964 }

966 out:
967 zfs_close(zhp);
968 return (0);
969 }

971 static int
972 destroy_callback(zfs_handle_t *zhp, void *data)
973 {
974 destroy_cbdata_t *cb = data;
975 const char *name = zfs_get_name(zhp);

977 if (cb->cb_verbose) {
978 if (cb->cb_parsable) {
979 (void) printf("destroy\t%s\n", name);
980 } else if (cb->cb_dryrun) {
981 (void) printf(gettext("would destroy %s\n"),
982 name);

new/usr/src/cmd/zfs/zfs_main.c 16

983 } else {
984 (void) printf(gettext("will destroy %s\n"),
985 name);
986 }
987 }

989 /*
990 * Ignore pools (which we’ve already flagged as an error before getting
991 * here).
992 */
993 if (strchr(zfs_get_name(zhp), ’/’) == NULL &&
994 zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) {
995 zfs_close(zhp);
996 return (0);
997 }

999 if (!cb->cb_dryrun) {
1000 if (zfs_unmount(zhp, NULL, cb->cb_force ? MS_FORCE : 0) != 0 ||
1001 zfs_destroy(zhp, cb->cb_defer_destroy) != 0) {
1002 zfs_close(zhp);
1003 return (-1);
1004 }
1005 }

1007 zfs_close(zhp);
1008 return (0);
1009 }

1011 static int
1012 destroy_print_cb(zfs_handle_t *zhp, void *arg)
1013 {
1014 destroy_cbdata_t *cb = arg;
1015 const char *name = zfs_get_name(zhp);
1016 int err = 0;

1018 if (nvlist_exists(cb->cb_nvl, name)) {
1019 if (cb->cb_firstsnap == NULL)
1020 cb->cb_firstsnap = strdup(name);
1021 if (cb->cb_prevsnap != NULL)
1022 free(cb->cb_prevsnap);
1023 /* this snap continues the current range */
1024 cb->cb_prevsnap = strdup(name);
1025 if (cb->cb_firstsnap == NULL || cb->cb_prevsnap == NULL)
1026 nomem();
1027 if (cb->cb_verbose) {
1028 if (cb->cb_parsable) {
1029 (void) printf("destroy\t%s\n", name);
1030 } else if (cb->cb_dryrun) {
1031 (void) printf(gettext("would destroy %s\n"),
1032 name);
1033 } else {
1034 (void) printf(gettext("will destroy %s\n"),
1035 name);
1036 }
1037 }
1038 } else if (cb->cb_firstsnap != NULL) {
1039 /* end of this range */
1040 uint64_t used = 0;
1041 err = lzc_snaprange_space(cb->cb_firstsnap,
1042 cb->cb_prevsnap, &used);
1043 cb->cb_snapused += used;
1044 free(cb->cb_firstsnap);
1045 cb->cb_firstsnap = NULL;
1046 free(cb->cb_prevsnap);
1047 cb->cb_prevsnap = NULL;
1048 }

new/usr/src/cmd/zfs/zfs_main.c 17

1049 zfs_close(zhp);
1050 return (err);
1051 }

1053 static int
1054 destroy_print_snapshots(zfs_handle_t *fs_zhp, destroy_cbdata_t *cb)
1055 {
1056 int err = 0;
1057 assert(cb->cb_firstsnap == NULL);
1058 assert(cb->cb_prevsnap == NULL);
1059 err = zfs_iter_snapshots_sorted(fs_zhp, destroy_print_cb, cb);
1060 if (cb->cb_firstsnap != NULL) {
1061 uint64_t used = 0;
1062 if (err == 0) {
1063 err = lzc_snaprange_space(cb->cb_firstsnap,
1064 cb->cb_prevsnap, &used);
1065 }
1066 cb->cb_snapused += used;
1067 free(cb->cb_firstsnap);
1068 cb->cb_firstsnap = NULL;
1069 free(cb->cb_prevsnap);
1070 cb->cb_prevsnap = NULL;
1071 }
1072 return (err);
1073 }

1075 static int
1076 snapshot_to_nvl_cb(zfs_handle_t *zhp, void *arg)
1077 {
1078 destroy_cbdata_t *cb = arg;
1079 int err = 0;

1081 /* Check for clones. */
1082 if (!cb->cb_doclones && !cb->cb_defer_destroy) {
1083 cb->cb_target = zhp;
1084 cb->cb_first = B_TRUE;
1085 err = zfs_iter_dependents(zhp, B_TRUE,
1086 destroy_check_dependent, cb);
1087 }

1089 if (err == 0) {
1090 if (nvlist_add_boolean(cb->cb_nvl, zfs_get_name(zhp)))
1091 nomem();
1092 }
1093 zfs_close(zhp);
1094 return (err);
1095 }

1097 static int
1098 gather_snapshots(zfs_handle_t *zhp, void *arg)
1099 {
1100 destroy_cbdata_t *cb = arg;
1101 int err = 0;

1103 err = zfs_iter_snapspec(zhp, cb->cb_snapspec, snapshot_to_nvl_cb, cb);
1104 if (err == ENOENT)
1105 err = 0;
1106 if (err != 0)
1107 goto out;

1109 if (cb->cb_verbose) {
1110 err = destroy_print_snapshots(zhp, cb);
1111 if (err != 0)
1112 goto out;
1113 }

new/usr/src/cmd/zfs/zfs_main.c 18

1115 if (cb->cb_recurse)
1116 err = zfs_iter_filesystems(zhp, gather_snapshots, cb);

1118 out:
1119 zfs_close(zhp);
1120 return (err);
1121 }

1123 static int
1124 destroy_clones(destroy_cbdata_t *cb)
1125 {
1126 nvpair_t *pair;
1127 for (pair = nvlist_next_nvpair(cb->cb_nvl, NULL);
1128 pair != NULL;
1129 pair = nvlist_next_nvpair(cb->cb_nvl, pair)) {
1130 zfs_handle_t *zhp = zfs_open(g_zfs, nvpair_name(pair),
1131 ZFS_TYPE_SNAPSHOT);
1132 if (zhp != NULL) {
1133 boolean_t defer = cb->cb_defer_destroy;
1134 int err = 0;

1136 /*
1137 * We can’t defer destroy non-snapshots, so set it to
1138 * false while destroying the clones.
1139 */
1140 cb->cb_defer_destroy = B_FALSE;
1141 err = zfs_iter_dependents(zhp, B_FALSE,
1142 destroy_callback, cb);
1143 cb->cb_defer_destroy = defer;
1144 zfs_close(zhp);
1145 if (err != 0)
1146 return (err);
1147 }
1148 }
1149 return (0);
1150 }

1152 static int
1153 zfs_do_destroy(int argc, char **argv)
1154 {
1155 destroy_cbdata_t cb = { 0 };
1156 int c;
1157 zfs_handle_t *zhp;
1158 char *at;
1159 zfs_type_t type = ZFS_TYPE_DATASET;

1161 /* check options */
1162 while ((c = getopt(argc, argv, "vpndfrR")) != -1) {
1163 switch (c) {
1164 case ’v’:
1165 cb.cb_verbose = B_TRUE;
1166 break;
1167 case ’p’:
1168 cb.cb_verbose = B_TRUE;
1169 cb.cb_parsable = B_TRUE;
1170 break;
1171 case ’n’:
1172 cb.cb_dryrun = B_TRUE;
1173 break;
1174 case ’d’:
1175 cb.cb_defer_destroy = B_TRUE;
1176 type = ZFS_TYPE_SNAPSHOT;
1177 break;
1178 case ’f’:
1179 cb.cb_force = B_TRUE;
1180 break;

new/usr/src/cmd/zfs/zfs_main.c 19

1181 case ’r’:
1182 cb.cb_recurse = B_TRUE;
1183 break;
1184 case ’R’:
1185 cb.cb_recurse = B_TRUE;
1186 cb.cb_doclones = B_TRUE;
1187 break;
1188 case ’?’:
1189 default:
1190 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
1191 optopt);
1192 usage(B_FALSE);
1193 }
1194 }

1196 argc -= optind;
1197 argv += optind;

1199 /* check number of arguments */
1200 if (argc == 0) {
1201 (void) fprintf(stderr, gettext("missing dataset argument\n"));
1202 usage(B_FALSE);
1203 }
1204 if (argc > 1) {
1205 (void) fprintf(stderr, gettext("too many arguments\n"));
1206 usage(B_FALSE);
1207 }

1209 at = strchr(argv[0], ’@’);
1210 if (at != NULL) {
1211 int err = 0;

1213 /* Build the list of snaps to destroy in cb_nvl. */
1214 if (nvlist_alloc(&cb.cb_nvl, NV_UNIQUE_NAME, 0) != 0)
1215 nomem();

1217 *at = ’\0’;
1218 zhp = zfs_open(g_zfs, argv[0],
1219 ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
1220 if (zhp == NULL)
1221 return (1);

1223 cb.cb_snapspec = at + 1;
1224 if (gather_snapshots(zfs_handle_dup(zhp), &cb) != 0 ||
1225 cb.cb_error) {
1226 zfs_close(zhp);
1227 nvlist_free(cb.cb_nvl);
1228 return (1);
1229 }

1231 if (nvlist_empty(cb.cb_nvl)) {
1232 (void) fprintf(stderr, gettext("could not find any "
1233 "snapshots to destroy; check snapshot names.\n"));
1234 zfs_close(zhp);
1235 nvlist_free(cb.cb_nvl);
1236 return (1);
1237 }

1239 if (cb.cb_verbose) {
1240 char buf[16];
1241 zfs_nicenum(cb.cb_snapused, buf, sizeof (buf));
1242 if (cb.cb_parsable) {
1243 (void) printf("reclaim\t%llu\n",
1244 cb.cb_snapused);
1245 } else if (cb.cb_dryrun) {
1246 (void) printf(gettext("would reclaim %s\n"),

new/usr/src/cmd/zfs/zfs_main.c 20

1247 buf);
1248 } else {
1249 (void) printf(gettext("will reclaim %s\n"),
1250 buf);
1251 }
1252 }

1254 if (!cb.cb_dryrun) {
1255 if (cb.cb_doclones)
1256 err = destroy_clones(&cb);
1257 if (err == 0) {
1258 err = zfs_destroy_snaps_nvl(zhp, cb.cb_nvl,
1259 cb.cb_defer_destroy);
1260 }
1261 }

1263 zfs_close(zhp);
1264 nvlist_free(cb.cb_nvl);
1265 if (err != 0)
1266 return (1);
1267 } else {
1268 /* Open the given dataset */
1269 if ((zhp = zfs_open(g_zfs, argv[0], type)) == NULL)
1270 return (1);

1272 cb.cb_target = zhp;

1274 /*
1275 * Perform an explicit check for pools before going any further.
1276 */
1277 if (!cb.cb_recurse && strchr(zfs_get_name(zhp), ’/’) == NULL &&
1278 zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) {
1279 (void) fprintf(stderr, gettext("cannot destroy ’%s’: "
1280 "operation does not apply to pools\n"),
1281 zfs_get_name(zhp));
1282 (void) fprintf(stderr, gettext("use ’zfs destroy -r "
1283 "%s’ to destroy all datasets in the pool\n"),
1284 zfs_get_name(zhp));
1285 (void) fprintf(stderr, gettext("use ’zpool destroy %s’ "
1286 "to destroy the pool itself\n"), zfs_get_name(zhp));
1287 zfs_close(zhp);
1288 return (1);
1289 }

1291 /*
1292 * Check for any dependents and/or clones.
1293 */
1294 cb.cb_first = B_TRUE;
1295 if (!cb.cb_doclones &&
1296 zfs_iter_dependents(zhp, B_TRUE, destroy_check_dependent,
1297 &cb) != 0) {
1298 zfs_close(zhp);
1299 return (1);
1300 }

1302 if (cb.cb_error) {
1303 zfs_close(zhp);
1304 return (1);
1305 }

1307 if (zfs_iter_dependents(zhp, B_FALSE, destroy_callback,
1308 &cb) != 0) {
1309 zfs_close(zhp);
1310 return (1);
1311 }

new/usr/src/cmd/zfs/zfs_main.c 21

1313 /*
1314 * Do the real thing. The callback will close the
1315 * handle regardless of whether it succeeds or not.
1316 */
1317 if (destroy_callback(zhp, &cb) != 0)
1318 return (1);
1319 }

1321 return (0);
1322 }

1324 static boolean_t
1325 is_recvd_column(zprop_get_cbdata_t *cbp)
1326 {
1327 int i;
1328 zfs_get_column_t col;

1330 for (i = 0; i < ZFS_GET_NCOLS &&
1331 (col = cbp->cb_columns[i]) != GET_COL_NONE; i++)
1332 if (col == GET_COL_RECVD)
1333 return (B_TRUE);
1334 return (B_FALSE);
1335 }

1337 /*
1338 * zfs get [-rHp] [-o all | field[,field]...] [-s source[,source]...]
1339 * < all | property[,property]... > < fs | snap | vol > ...
1340 *
1341 * -r recurse over any child datasets
1342 * -H scripted mode. Headers are stripped, and fields are separated
1343 * by tabs instead of spaces.
1344 * -o Set of fields to display. One of "name,property,value,
1345 * received,source". Default is "name,property,value,source".
1346 * "all" is an alias for all five.
1347 * -s Set of sources to allow. One of
1348 * "local,default,inherited,received,temporary,none". Default is
1349 * all six.
1350 * -p Display values in parsable (literal) format.
1351 *
1352 * Prints properties for the given datasets. The user can control which
1353 * columns to display as well as which property types to allow.
1354 */

1356 /*
1357 * Invoked to display the properties for a single dataset.
1358 */
1359 static int
1360 get_callback(zfs_handle_t *zhp, void *data)
1361 {
1362 char buf[ZFS_MAXPROPLEN];
1363 char rbuf[ZFS_MAXPROPLEN];
1364 zprop_source_t sourcetype;
1365 char source[ZFS_MAXNAMELEN];
1366 zprop_get_cbdata_t *cbp = data;
1367 nvlist_t *user_props = zfs_get_user_props(zhp);
1368 zprop_list_t *pl = cbp->cb_proplist;
1369 nvlist_t *propval;
1370 char *strval;
1371 char *sourceval;
1372 boolean_t received = is_recvd_column(cbp);

1374 for (; pl != NULL; pl = pl->pl_next) {
1375 char *recvdval = NULL;
1376 /*
1377 * Skip the special fake placeholder. This will also skip over
1378 * the name property when ’all’ is specified.

new/usr/src/cmd/zfs/zfs_main.c 22

1379 */
1380 if (pl->pl_prop == ZFS_PROP_NAME &&
1381 pl == cbp->cb_proplist)
1382 continue;

1384 if (pl->pl_prop != ZPROP_INVAL) {
1385 if (zfs_prop_get(zhp, pl->pl_prop, buf,
1386 sizeof (buf), &sourcetype, source,
1387 sizeof (source),
1388 cbp->cb_literal) != 0) {
1389 if (pl->pl_all)
1390 continue;
1391 if (!zfs_prop_valid_for_type(pl->pl_prop,
1392 ZFS_TYPE_DATASET)) {
1393 (void) fprintf(stderr,
1394 gettext("No such property ’%s’\n"),
1395 zfs_prop_to_name(pl->pl_prop));
1396 continue;
1397 }
1398 sourcetype = ZPROP_SRC_NONE;
1399 (void) strlcpy(buf, "-", sizeof (buf));
1400 }

1402 if (received && (zfs_prop_get_recvd(zhp,
1403 zfs_prop_to_name(pl->pl_prop), rbuf, sizeof (rbuf),
1404 cbp->cb_literal) == 0))
1405 recvdval = rbuf;

1407 zprop_print_one_property(zfs_get_name(zhp), cbp,
1408 zfs_prop_to_name(pl->pl_prop),
1409 buf, sourcetype, source, recvdval);
1410 } else if (zfs_prop_userquota(pl->pl_user_prop)) {
1411 sourcetype = ZPROP_SRC_LOCAL;

1413 if (zfs_prop_get_userquota(zhp, pl->pl_user_prop,
1414 buf, sizeof (buf), cbp->cb_literal) != 0) {
1415 sourcetype = ZPROP_SRC_NONE;
1416 (void) strlcpy(buf, "-", sizeof (buf));
1417 }

1419 zprop_print_one_property(zfs_get_name(zhp), cbp,
1420 pl->pl_user_prop, buf, sourcetype, source, NULL);
1421 } else if (zfs_prop_written(pl->pl_user_prop)) {
1422 sourcetype = ZPROP_SRC_LOCAL;

1424 if (zfs_prop_get_written(zhp, pl->pl_user_prop,
1425 buf, sizeof (buf), cbp->cb_literal) != 0) {
1426 sourcetype = ZPROP_SRC_NONE;
1427 (void) strlcpy(buf, "-", sizeof (buf));
1428 }

1430 zprop_print_one_property(zfs_get_name(zhp), cbp,
1431 pl->pl_user_prop, buf, sourcetype, source, NULL);
1432 } else {
1433 if (nvlist_lookup_nvlist(user_props,
1434 pl->pl_user_prop, &propval) != 0) {
1435 if (pl->pl_all)
1436 continue;
1437 sourcetype = ZPROP_SRC_NONE;
1438 strval = "-";
1439 } else {
1440 verify(nvlist_lookup_string(propval,
1441 ZPROP_VALUE, &strval) == 0);
1442 verify(nvlist_lookup_string(propval,
1443 ZPROP_SOURCE, &sourceval) == 0);

new/usr/src/cmd/zfs/zfs_main.c 23

1445 if (strcmp(sourceval,
1446 zfs_get_name(zhp)) == 0) {
1447 sourcetype = ZPROP_SRC_LOCAL;
1448 } else if (strcmp(sourceval,
1449 ZPROP_SOURCE_VAL_RECVD) == 0) {
1450 sourcetype = ZPROP_SRC_RECEIVED;
1451 } else {
1452 sourcetype = ZPROP_SRC_INHERITED;
1453 (void) strlcpy(source,
1454 sourceval, sizeof (source));
1455 }
1456 }

1458 if (received && (zfs_prop_get_recvd(zhp,
1459 pl->pl_user_prop, rbuf, sizeof (rbuf),
1460 cbp->cb_literal) == 0))
1461 recvdval = rbuf;

1463 zprop_print_one_property(zfs_get_name(zhp), cbp,
1464 pl->pl_user_prop, strval, sourcetype,
1465 source, recvdval);
1466 }
1467 }

1469 return (0);
1470 }

1472 static int
1473 zfs_do_get(int argc, char **argv)
1474 {
1475 zprop_get_cbdata_t cb = { 0 };
1476 int i, c, flags = ZFS_ITER_ARGS_CAN_BE_PATHS;
1477 int types = ZFS_TYPE_DATASET;
1478 char *value, *fields;
1479 int ret = 0;
1480 int limit = 0;
1481 zprop_list_t fake_name = { 0 };

1483 /*
1484 * Set up default columns and sources.
1485 */
1486 cb.cb_sources = ZPROP_SRC_ALL;
1487 cb.cb_columns[0] = GET_COL_NAME;
1488 cb.cb_columns[1] = GET_COL_PROPERTY;
1489 cb.cb_columns[2] = GET_COL_VALUE;
1490 cb.cb_columns[3] = GET_COL_SOURCE;
1491 cb.cb_type = ZFS_TYPE_DATASET;

1493 /* check options */
1494 while ((c = getopt(argc, argv, ":d:o:s:rt:Hp")) != -1) {
1495 switch (c) {
1496 case ’p’:
1497 cb.cb_literal = B_TRUE;
1498 break;
1499 case ’d’:
1500 limit = parse_depth(optarg, &flags);
1501 break;
1502 case ’r’:
1503 flags |= ZFS_ITER_RECURSE;
1504 break;
1505 case ’H’:
1506 cb.cb_scripted = B_TRUE;
1507 break;
1508 case ’:’:
1509 (void) fprintf(stderr, gettext("missing argument for "
1510 "’%c’ option\n"), optopt);

new/usr/src/cmd/zfs/zfs_main.c 24

1511 usage(B_FALSE);
1512 break;
1513 case ’o’:
1514 /*
1515 * Process the set of columns to display. We zero out
1516 * the structure to give us a blank slate.
1517 */
1518 bzero(&cb.cb_columns, sizeof (cb.cb_columns));
1519 i = 0;
1520 while (*optarg != ’\0’) {
1521 static char *col_subopts[] =
1522 { "name", "property", "value", "received",
1523 "source", "all", NULL };

1525 if (i == ZFS_GET_NCOLS) {
1526 (void) fprintf(stderr, gettext("too "
1527 "many fields given to -o "
1528 "option\n"));
1529 usage(B_FALSE);
1530 }

1532 switch (getsubopt(&optarg, col_subopts,
1533 &value)) {
1534 case 0:
1535 cb.cb_columns[i++] = GET_COL_NAME;
1536 break;
1537 case 1:
1538 cb.cb_columns[i++] = GET_COL_PROPERTY;
1539 break;
1540 case 2:
1541 cb.cb_columns[i++] = GET_COL_VALUE;
1542 break;
1543 case 3:
1544 cb.cb_columns[i++] = GET_COL_RECVD;
1545 flags |= ZFS_ITER_RECVD_PROPS;
1546 break;
1547 case 4:
1548 cb.cb_columns[i++] = GET_COL_SOURCE;
1549 break;
1550 case 5:
1551 if (i > 0) {
1552 (void) fprintf(stderr,
1553 gettext("\"all\" conflicts "
1554 "with specific fields "
1555 "given to -o option\n"));
1556 usage(B_FALSE);
1557 }
1558 cb.cb_columns[0] = GET_COL_NAME;
1559 cb.cb_columns[1] = GET_COL_PROPERTY;
1560 cb.cb_columns[2] = GET_COL_VALUE;
1561 cb.cb_columns[3] = GET_COL_RECVD;
1562 cb.cb_columns[4] = GET_COL_SOURCE;
1563 flags |= ZFS_ITER_RECVD_PROPS;
1564 i = ZFS_GET_NCOLS;
1565 break;
1566 default:
1567 (void) fprintf(stderr,
1568 gettext("invalid column name "
1569 "’%s’\n"), value);
1570 usage(B_FALSE);
1571 }
1572 }
1573 break;

1575 case ’s’:
1576 cb.cb_sources = 0;

new/usr/src/cmd/zfs/zfs_main.c 25

1577 while (*optarg != ’\0’) {
1578 static char *source_subopts[] = {
1579 "local", "default", "inherited",
1580 "received", "temporary", "none",
1581 NULL };

1583 switch (getsubopt(&optarg, source_subopts,
1584 &value)) {
1585 case 0:
1586 cb.cb_sources |= ZPROP_SRC_LOCAL;
1587 break;
1588 case 1:
1589 cb.cb_sources |= ZPROP_SRC_DEFAULT;
1590 break;
1591 case 2:
1592 cb.cb_sources |= ZPROP_SRC_INHERITED;
1593 break;
1594 case 3:
1595 cb.cb_sources |= ZPROP_SRC_RECEIVED;
1596 break;
1597 case 4:
1598 cb.cb_sources |= ZPROP_SRC_TEMPORARY;
1599 break;
1600 case 5:
1601 cb.cb_sources |= ZPROP_SRC_NONE;
1602 break;
1603 default:
1604 (void) fprintf(stderr,
1605 gettext("invalid source "
1606 "’%s’\n"), value);
1607 usage(B_FALSE);
1608 }
1609 }
1610 break;

1612 case ’t’:
1613 types = 0;
1614 flags &= ~ZFS_ITER_PROP_LISTSNAPS;
1615 while (*optarg != ’\0’) {
1616 static char *type_subopts[] = { "filesystem",
1617 "volume", "snapshot", "all", NULL };

1619 switch (getsubopt(&optarg, type_subopts,
1620 &value)) {
1621 case 0:
1622 types |= ZFS_TYPE_FILESYSTEM;
1623 break;
1624 case 1:
1625 types |= ZFS_TYPE_VOLUME;
1626 break;
1627 case 2:
1628 types |= ZFS_TYPE_SNAPSHOT;
1629 break;
1630 case 3:
1631 types = ZFS_TYPE_DATASET;
1632 break;

1634 default:
1635 (void) fprintf(stderr,
1636 gettext("invalid type ’%s’\n"),
1637 value);
1638 usage(B_FALSE);
1639 }
1640 }
1641 break;

new/usr/src/cmd/zfs/zfs_main.c 26

1643 case ’?’:
1644 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
1645 optopt);
1646 usage(B_FALSE);
1647 }
1648 }

1650 argc -= optind;
1651 argv += optind;

1653 if (argc < 1) {
1654 (void) fprintf(stderr, gettext("missing property "
1655 "argument\n"));
1656 usage(B_FALSE);
1657 }

1659 fields = argv[0];

1661 if (zprop_get_list(g_zfs, fields, &cb.cb_proplist, ZFS_TYPE_DATASET)
1662 != 0)
1663 usage(B_FALSE);

1665 argc--;
1666 argv++;

1668 /*
1669 * As part of zfs_expand_proplist(), we keep track of the maximum column
1670 * width for each property. For the ’NAME’ (and ’SOURCE’) columns, we
1671 * need to know the maximum name length. However, the user likely did
1672 * not specify ’name’ as one of the properties to fetch, so we need to
1673 * make sure we always include at least this property for
1674 * print_get_headers() to work properly.
1675 */
1676 if (cb.cb_proplist != NULL) {
1677 fake_name.pl_prop = ZFS_PROP_NAME;
1678 fake_name.pl_width = strlen(gettext("NAME"));
1679 fake_name.pl_next = cb.cb_proplist;
1680 cb.cb_proplist = &fake_name;
1681 }

1683 cb.cb_first = B_TRUE;

1685 /* run for each object */
1686 ret = zfs_for_each(argc, argv, flags, types, NULL,
1687 &cb.cb_proplist, limit, get_callback, &cb);

1689 if (cb.cb_proplist == &fake_name)
1690 zprop_free_list(fake_name.pl_next);
1691 else
1692 zprop_free_list(cb.cb_proplist);

1694 return (ret);
1695 }

1697 /*
1698 * inherit [-rS] <property> <fs|vol> ...
1699 *
1700 * -r Recurse over all children
1701 * -S Revert to received value, if any
1702 *
1703 * For each dataset specified on the command line, inherit the given property
1704 * from its parent. Inheriting a property at the pool level will cause it to
1705 * use the default value. The ’-r’ flag will recurse over all children, and is
1706 * useful for setting a property on a hierarchy-wide basis, regardless of any
1707 * local modifications for each dataset.
1708 */

new/usr/src/cmd/zfs/zfs_main.c 27

1710 typedef struct inherit_cbdata {
1711 const char *cb_propname;
1712 boolean_t cb_received;
1713 } inherit_cbdata_t;

1715 static int
1716 inherit_recurse_cb(zfs_handle_t *zhp, void *data)
1717 {
1718 inherit_cbdata_t *cb = data;
1719 zfs_prop_t prop = zfs_name_to_prop(cb->cb_propname);

1721 /*
1722 * If we’re doing it recursively, then ignore properties that
1723 * are not valid for this type of dataset.
1724 */
1725 if (prop != ZPROP_INVAL &&
1726 !zfs_prop_valid_for_type(prop, zfs_get_type(zhp)))
1727 return (0);

1729 return (zfs_prop_inherit(zhp, cb->cb_propname, cb->cb_received) != 0);
1730 }

1732 static int
1733 inherit_cb(zfs_handle_t *zhp, void *data)
1734 {
1735 inherit_cbdata_t *cb = data;

1737 return (zfs_prop_inherit(zhp, cb->cb_propname, cb->cb_received) != 0);
1738 }

1740 static int
1741 zfs_do_inherit(int argc, char **argv)
1742 {
1743 int c;
1744 zfs_prop_t prop;
1745 inherit_cbdata_t cb = { 0 };
1746 char *propname;
1747 int ret = 0;
1748 int flags = 0;
1749 boolean_t received = B_FALSE;

1751 /* check options */
1752 while ((c = getopt(argc, argv, "rS")) != -1) {
1753 switch (c) {
1754 case ’r’:
1755 flags |= ZFS_ITER_RECURSE;
1756 break;
1757 case ’S’:
1758 received = B_TRUE;
1759 break;
1760 case ’?’:
1761 default:
1762 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
1763 optopt);
1764 usage(B_FALSE);
1765 }
1766 }

1768 argc -= optind;
1769 argv += optind;

1771 /* check number of arguments */
1772 if (argc < 1) {
1773 (void) fprintf(stderr, gettext("missing property argument\n"));
1774 usage(B_FALSE);

new/usr/src/cmd/zfs/zfs_main.c 28

1775 }
1776 if (argc < 2) {
1777 (void) fprintf(stderr, gettext("missing dataset argument\n"));
1778 usage(B_FALSE);
1779 }

1781 propname = argv[0];
1782 argc--;
1783 argv++;

1785 if ((prop = zfs_name_to_prop(propname)) != ZPROP_INVAL) {
1786 if (zfs_prop_readonly(prop)) {
1787 (void) fprintf(stderr, gettext(
1788 "%s property is read-only\n"),
1789 propname);
1790 return (1);
1791 }
1792 if (!zfs_prop_inheritable(prop) && !received) {
1793 (void) fprintf(stderr, gettext("’%s’ property cannot "
1794 "be inherited\n"), propname);
1795 if (prop == ZFS_PROP_QUOTA ||
1796 prop == ZFS_PROP_RESERVATION ||
1797 prop == ZFS_PROP_REFQUOTA ||
1798 prop == ZFS_PROP_REFRESERVATION)
1799 (void) fprintf(stderr, gettext("use ’zfs set "
1800 "%s=none’ to clear\n"), propname);
1801 return (1);
1802 }
1803 if (received && (prop == ZFS_PROP_VOLSIZE ||
1804 prop == ZFS_PROP_VERSION)) {
1805 (void) fprintf(stderr, gettext("’%s’ property cannot "
1806 "be reverted to a received value\n"), propname);
1807 return (1);
1808 }
1809 } else if (!zfs_prop_user(propname)) {
1810 (void) fprintf(stderr, gettext("invalid property ’%s’\n"),
1811 propname);
1812 usage(B_FALSE);
1813 }

1815 cb.cb_propname = propname;
1816 cb.cb_received = received;

1818 if (flags & ZFS_ITER_RECURSE) {
1819 ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_DATASET,
1820 NULL, NULL, 0, inherit_recurse_cb, &cb);
1821 } else {
1822 ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_DATASET,
1823 NULL, NULL, 0, inherit_cb, &cb);
1824 }

1826 return (ret);
1827 }

1829 typedef struct upgrade_cbdata {
1830 uint64_t cb_numupgraded;
1831 uint64_t cb_numsamegraded;
1832 uint64_t cb_numfailed;
1833 uint64_t cb_version;
1834 boolean_t cb_newer;
1835 boolean_t cb_foundone;
1836 char cb_lastfs[ZFS_MAXNAMELEN];
1837 } upgrade_cbdata_t;

1839 static int
1840 same_pool(zfs_handle_t *zhp, const char *name)

new/usr/src/cmd/zfs/zfs_main.c 29

1841 {
1842 int len1 = strcspn(name, "/@");
1843 const char *zhname = zfs_get_name(zhp);
1844 int len2 = strcspn(zhname, "/@");

1846 if (len1 != len2)
1847 return (B_FALSE);
1848 return (strncmp(name, zhname, len1) == 0);
1849 }

1851 static int
1852 upgrade_list_callback(zfs_handle_t *zhp, void *data)
1853 {
1854 upgrade_cbdata_t *cb = data;
1855 int version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION);

1857 /* list if it’s old/new */
1858 if ((!cb->cb_newer && version < ZPL_VERSION) ||
1859 (cb->cb_newer && version > ZPL_VERSION)) {
1860 char *str;
1861 if (cb->cb_newer) {
1862 str = gettext("The following filesystems are "
1863 "formatted using a newer software version and\n"
1864 "cannot be accessed on the current system.\n\n");
1865 } else {
1866 str = gettext("The following filesystems are "
1867 "out of date, and can be upgraded. After being\n"
1868 "upgraded, these filesystems (and any ’zfs send’ "
1869 "streams generated from\n"
1870 "subsequent snapshots) will no longer be "
1871 "accessible by older software versions.\n\n");
1872 }

1874 if (!cb->cb_foundone) {
1875 (void) puts(str);
1876 (void) printf(gettext("VER FILESYSTEM\n"));
1877 (void) printf(gettext("--- ------------\n"));
1878 cb->cb_foundone = B_TRUE;
1879 }

1881 (void) printf("%2u %s\n", version, zfs_get_name(zhp));
1882 }

1884 return (0);
1885 }

1887 static int
1888 upgrade_set_callback(zfs_handle_t *zhp, void *data)
1889 {
1890 upgrade_cbdata_t *cb = data;
1891 int version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION);
1892 int needed_spa_version;
1893 int spa_version;

1895 if (zfs_spa_version(zhp, &spa_version) < 0)
1896 return (-1);

1898 needed_spa_version = zfs_spa_version_map(cb->cb_version);

1900 if (needed_spa_version < 0)
1901 return (-1);

1903 if (spa_version < needed_spa_version) {
1904 /* can’t upgrade */
1905 (void) printf(gettext("%s: can not be "
1906 "upgraded; the pool version needs to first "

new/usr/src/cmd/zfs/zfs_main.c 30

1907 "be upgraded\nto version %d\n\n"),
1908 zfs_get_name(zhp), needed_spa_version);
1909 cb->cb_numfailed++;
1910 return (0);
1911 }

1913 /* upgrade */
1914 if (version < cb->cb_version) {
1915 char verstr[16];
1916 (void) snprintf(verstr, sizeof (verstr),
1917 "%llu", cb->cb_version);
1918 if (cb->cb_lastfs[0] && !same_pool(zhp, cb->cb_lastfs)) {
1919 /*
1920 * If they did "zfs upgrade -a", then we could
1921 * be doing ioctls to different pools. We need
1922 * to log this history once to each pool, and bypass
1923 * the normal history logging that happens in main().
1924 */
1925 (void) zpool_log_history(g_zfs, history_str);
1926 log_history = B_FALSE;
1927 }
1928 if (zfs_prop_set(zhp, "version", verstr) == 0)
1929 cb->cb_numupgraded++;
1930 else
1931 cb->cb_numfailed++;
1932 (void) strcpy(cb->cb_lastfs, zfs_get_name(zhp));
1933 } else if (version > cb->cb_version) {
1934 /* can’t downgrade */
1935 (void) printf(gettext("%s: can not be downgraded; "
1936 "it is already at version %u\n"),
1937 zfs_get_name(zhp), version);
1938 cb->cb_numfailed++;
1939 } else {
1940 cb->cb_numsamegraded++;
1941 }
1942 return (0);
1943 }

1945 /*
1946 * zfs upgrade
1947 * zfs upgrade -v
1948 * zfs upgrade [-r] [-V <version>] <-a | filesystem>
1949 */
1950 static int
1951 zfs_do_upgrade(int argc, char **argv)
1952 {
1953 boolean_t all = B_FALSE;
1954 boolean_t showversions = B_FALSE;
1955 int ret = 0;
1956 upgrade_cbdata_t cb = { 0 };
1957 char c;
1958 int flags = ZFS_ITER_ARGS_CAN_BE_PATHS;

1960 /* check options */
1961 while ((c = getopt(argc, argv, "rvV:a")) != -1) {
1962 switch (c) {
1963 case ’r’:
1964 flags |= ZFS_ITER_RECURSE;
1965 break;
1966 case ’v’:
1967 showversions = B_TRUE;
1968 break;
1969 case ’V’:
1970 if (zfs_prop_string_to_index(ZFS_PROP_VERSION,
1971 optarg, &cb.cb_version) != 0) {
1972 (void) fprintf(stderr,

new/usr/src/cmd/zfs/zfs_main.c 31

1973 gettext("invalid version %s\n"), optarg);
1974 usage(B_FALSE);
1975 }
1976 break;
1977 case ’a’:
1978 all = B_TRUE;
1979 break;
1980 case ’?’:
1981 default:
1982 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
1983 optopt);
1984 usage(B_FALSE);
1985 }
1986 }

1988 argc -= optind;
1989 argv += optind;

1991 if ((!all && !argc) && ((flags & ZFS_ITER_RECURSE) | cb.cb_version))
1992 usage(B_FALSE);
1993 if (showversions && (flags & ZFS_ITER_RECURSE || all ||
1994 cb.cb_version || argc))
1995 usage(B_FALSE);
1996 if ((all || argc) && (showversions))
1997 usage(B_FALSE);
1998 if (all && argc)
1999 usage(B_FALSE);

2001 if (showversions) {
2002 /* Show info on available versions. */
2003 (void) printf(gettext("The following filesystem versions are "
2004 "supported:\n\n"));
2005 (void) printf(gettext("VER DESCRIPTION\n"));
2006 (void) printf("--- ---"
2007 "---------------\n");
2008 (void) printf(gettext(" 1 Initial ZFS filesystem version\n"));
2009 (void) printf(gettext(" 2 Enhanced directory entries\n"));
2010 (void) printf(gettext(" 3 Case insensitive and filesystem "
2011 "user identifier (FUID)\n"));
2012 (void) printf(gettext(" 4 userquota, groupquota "
2013 "properties\n"));
2014 (void) printf(gettext(" 5 System attributes\n"));
2015 (void) printf(gettext("\nFor more information on a particular "
2016 "version, including supported releases,\n"));
2017 (void) printf("see the ZFS Administration Guide.\n\n");
2018 ret = 0;
2019 } else if (argc || all) {
2020 /* Upgrade filesystems */
2021 if (cb.cb_version == 0)
2022 cb.cb_version = ZPL_VERSION;
2023 ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_FILESYSTEM,
2024 NULL, NULL, 0, upgrade_set_callback, &cb);
2025 (void) printf(gettext("%llu filesystems upgraded\n"),
2026 cb.cb_numupgraded);
2027 if (cb.cb_numsamegraded) {
2028 (void) printf(gettext("%llu filesystems already at "
2029 "this version\n"),
2030 cb.cb_numsamegraded);
2031 }
2032 if (cb.cb_numfailed != 0)
2033 ret = 1;
2034 } else {
2035 /* List old-version filesytems */
2036 boolean_t found;
2037 (void) printf(gettext("This system is currently running "
2038 "ZFS filesystem version %llu.\n\n"), ZPL_VERSION);

new/usr/src/cmd/zfs/zfs_main.c 32

2040 flags |= ZFS_ITER_RECURSE;
2041 ret = zfs_for_each(0, NULL, flags, ZFS_TYPE_FILESYSTEM,
2042 NULL, NULL, 0, upgrade_list_callback, &cb);

2044 found = cb.cb_foundone;
2045 cb.cb_foundone = B_FALSE;
2046 cb.cb_newer = B_TRUE;

2048 ret = zfs_for_each(0, NULL, flags, ZFS_TYPE_FILESYSTEM,
2049 NULL, NULL, 0, upgrade_list_callback, &cb);

2051 if (!cb.cb_foundone && !found) {
2052 (void) printf(gettext("All filesystems are "
2053 "formatted with the current version.\n"));
2054 }
2055 }

2057 return (ret);
2058 }

2060 /*
2061 * zfs userspace [-Hinp] [-o field[,...]] [-s field [-s field]...]
2062 * [-S field [-S field]...] [-t type[,...]] filesystem | snapshot
2063 * zfs groupspace [-Hinp] [-o field[,...]] [-s field [-s field]...]
2064 * [-S field [-S field]...] [-t type[,...]] filesystem | snapshot
2065 *
2066 * -H Scripted mode; elide headers and separate columns by tabs.
2067 * -i Translate SID to POSIX ID.
2068 * -n Print numeric ID instead of user/group name.
2069 * -o Control which fields to display.
2070 * -p Use exact (parseable) numeric output.
2071 * -s Specify sort columns, descending order.
2072 * -S Specify sort columns, ascending order.
2073 * -t Control which object types to display.
2074 *
2075 * Displays space consumed by, and quotas on, each user in the specified
2076 * filesystem or snapshot.
2077 */

2079 /* us_field_types, us_field_hdr and us_field_names should be kept in sync */
2080 enum us_field_types {
2081 USFIELD_TYPE,
2082 USFIELD_NAME,
2083 USFIELD_USED,
2084 USFIELD_QUOTA
2085 };
2086 static char *us_field_hdr[] = { "TYPE", "NAME", "USED", "QUOTA" };
2087 static char *us_field_names[] = { "type", "name", "used", "quota" };
2088 #define USFIELD_LAST (sizeof (us_field_names) / sizeof (char *))

2090 #define USTYPE_PSX_GRP (1 << 0)
2091 #define USTYPE_PSX_USR (1 << 1)
2092 #define USTYPE_SMB_GRP (1 << 2)
2093 #define USTYPE_SMB_USR (1 << 3)
2094 #define USTYPE_ALL \
2095 (USTYPE_PSX_GRP | USTYPE_PSX_USR | USTYPE_SMB_GRP | USTYPE_SMB_USR)

2097 static int us_type_bits[] = {
2098 USTYPE_PSX_GRP,
2099 USTYPE_PSX_USR,
2100 USTYPE_SMB_GRP,
2101 USTYPE_SMB_USR,
2102 USTYPE_ALL
2103 };
2104 static char *us_type_names[] = { "posixgroup", "posxiuser", "smbgroup",

new/usr/src/cmd/zfs/zfs_main.c 33

2105 "smbuser", "all" };

2107 typedef struct us_node {
2108 nvlist_t *usn_nvl;
2109 uu_avl_node_t usn_avlnode;
2110 uu_list_node_t usn_listnode;
2111 } us_node_t;

2113 typedef struct us_cbdata {
2114 nvlist_t **cb_nvlp;
2115 uu_avl_pool_t *cb_avl_pool;
2116 uu_avl_t *cb_avl;
2117 boolean_t cb_numname;
2118 boolean_t cb_nicenum;
2119 boolean_t cb_sid2posix;
2120 zfs_userquota_prop_t cb_prop;
2121 zfs_sort_column_t *cb_sortcol;
2122 size_t cb_width[USFIELD_LAST];
2123 } us_cbdata_t;

2125 static boolean_t us_populated = B_FALSE;

2127 typedef struct {
2128 zfs_sort_column_t *si_sortcol;
2129 boolean_t si_numname;
2130 } us_sort_info_t;

2132 static int
2133 us_field_index(char *field)
2134 {
2135 int i;

2137 for (i = 0; i < USFIELD_LAST; i++) {
2138 if (strcmp(field, us_field_names[i]) == 0)
2139 return (i);
2140 }

2142 return (-1);
2143 }

2145 static int
2146 us_compare(const void *larg, const void *rarg, void *unused)
2147 {
2148 const us_node_t *l = larg;
2149 const us_node_t *r = rarg;
2150 us_sort_info_t *si = (us_sort_info_t *)unused;
2151 zfs_sort_column_t *sortcol = si->si_sortcol;
2152 boolean_t numname = si->si_numname;
2153 nvlist_t *lnvl = l->usn_nvl;
2154 nvlist_t *rnvl = r->usn_nvl;
2155 int rc = 0;
2156 boolean_t lvb, rvb;

2158 for (; sortcol != NULL; sortcol = sortcol->sc_next) {
2159 char *lvstr = "";
2160 char *rvstr = "";
2161 uint32_t lv32 = 0;
2162 uint32_t rv32 = 0;
2163 uint64_t lv64 = 0;
2164 uint64_t rv64 = 0;
2165 zfs_prop_t prop = sortcol->sc_prop;
2166 const char *propname = NULL;
2167 boolean_t reverse = sortcol->sc_reverse;

2169 switch (prop) {
2170 case ZFS_PROP_TYPE:

new/usr/src/cmd/zfs/zfs_main.c 34

2171 propname = "type";
2172 (void) nvlist_lookup_uint32(lnvl, propname, &lv32);
2173 (void) nvlist_lookup_uint32(rnvl, propname, &rv32);
2174 if (rv32 != lv32)
2175 rc = (rv32 < lv32) ? 1 : -1;
2176 break;
2177 case ZFS_PROP_NAME:
2178 propname = "name";
2179 if (numname) {
2180 (void) nvlist_lookup_uint64(lnvl, propname,
2181 &lv64);
2182 (void) nvlist_lookup_uint64(rnvl, propname,
2183 &rv64);
2184 if (rv64 != lv64)
2185 rc = (rv64 < lv64) ? 1 : -1;
2186 } else {
2187 (void) nvlist_lookup_string(lnvl, propname,
2188 &lvstr);
2189 (void) nvlist_lookup_string(rnvl, propname,
2190 &rvstr);
2191 rc = strcmp(lvstr, rvstr);
2192 }
2193 break;
2194 case ZFS_PROP_USED:
2195 case ZFS_PROP_QUOTA:
2196 if (!us_populated)
2197 break;
2198 if (prop == ZFS_PROP_USED)
2199 propname = "used";
2200 else
2201 propname = "quota";
2202 (void) nvlist_lookup_uint64(lnvl, propname, &lv64);
2203 (void) nvlist_lookup_uint64(rnvl, propname, &rv64);
2204 if (rv64 != lv64)
2205 rc = (rv64 < lv64) ? 1 : -1;
2206 break;
2207 }

2209 if (rc != 0) {
2210 if (rc < 0)
2211 return (reverse ? 1 : -1);
2212 else
2213 return (reverse ? -1 : 1);
2214 }
2215 }

2217 /*
2218 * If entries still seem to be the same, check if they are of the same
2219 * type (smbentity is added only if we are doing SID to POSIX ID
2220 * translation where we can have duplicate type/name combinations).
2221 */
2222 if (nvlist_lookup_boolean_value(lnvl, "smbentity", &lvb) == 0 &&
2223 nvlist_lookup_boolean_value(rnvl, "smbentity", &rvb) == 0 &&
2224 lvb != rvb)
2225 return (lvb < rvb ? -1 : 1);

2227 return (0);
2228 }

2230 static inline const char *
2231 us_type2str(unsigned field_type)
2232 {
2233 switch (field_type) {
2234 case USTYPE_PSX_USR:
2235 return ("POSIX User");
2236 case USTYPE_PSX_GRP:

new/usr/src/cmd/zfs/zfs_main.c 35

2237 return ("POSIX Group");
2238 case USTYPE_SMB_USR:
2239 return ("SMB User");
2240 case USTYPE_SMB_GRP:
2241 return ("SMB Group");
2242 default:
2243 return ("Undefined");
2244 }
2245 }

2247 static int
2248 userspace_cb(void *arg, const char *domain, uid_t rid, uint64_t space)
2249 {
2250 us_cbdata_t *cb = (us_cbdata_t *)arg;
2251 zfs_userquota_prop_t prop = cb->cb_prop;
2252 char *name = NULL;
2253 char *propname;
2254 char sizebuf[32];
2255 us_node_t *node;
2256 uu_avl_pool_t *avl_pool = cb->cb_avl_pool;
2257 uu_avl_t *avl = cb->cb_avl;
2258 uu_avl_index_t idx;
2259 nvlist_t *props;
2260 us_node_t *n;
2261 zfs_sort_column_t *sortcol = cb->cb_sortcol;
2262 unsigned type;
2263 const char *typestr;
2264 size_t namelen;
2265 size_t typelen;
2266 size_t sizelen;
2267 int typeidx, nameidx, sizeidx;
2268 us_sort_info_t sortinfo = { sortcol, cb->cb_numname };
2269 boolean_t smbentity = B_FALSE;

2271 if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0)
2272 nomem();
2273 node = safe_malloc(sizeof (us_node_t));
2274 uu_avl_node_init(node, &node->usn_avlnode, avl_pool);
2275 node->usn_nvl = props;

2277 if (domain != NULL && domain[0] != ’\0’) {
2278 /* SMB */
2279 char sid[ZFS_MAXNAMELEN + 32];
2280 uid_t id;
2281 uint64_t classes;
2282 int err;
2283 directory_error_t e;

2285 smbentity = B_TRUE;

2287 (void) snprintf(sid, sizeof (sid), "%s-%u", domain, rid);

2289 if (prop == ZFS_PROP_GROUPUSED || prop == ZFS_PROP_GROUPQUOTA) {
2290 type = USTYPE_SMB_GRP;
2291 err = sid_to_id(sid, B_FALSE, &id);
2292 } else {
2293 type = USTYPE_SMB_USR;
2294 err = sid_to_id(sid, B_TRUE, &id);
2295 }

2297 if (err == 0) {
2298 rid = id;
2299 if (!cb->cb_sid2posix) {
2300 e = directory_name_from_sid(NULL, sid, &name,
2301 &classes);
2302 if (e != NULL)

new/usr/src/cmd/zfs/zfs_main.c 36

2303 directory_error_free(e);
2304 if (name == NULL)
2305 name = sid;
2306 }
2307 }
2308 }

2310 if (cb->cb_sid2posix || domain == NULL || domain[0] == ’\0’) {
2311 /* POSIX or -i */
2312 if (prop == ZFS_PROP_GROUPUSED || prop == ZFS_PROP_GROUPQUOTA) {
2313 type = USTYPE_PSX_GRP;
2314 if (!cb->cb_numname) {
2315 struct group *g;

2317 if ((g = getgrgid(rid)) != NULL)
2318 name = g->gr_name;
2319 }
2320 } else {
2321 type = USTYPE_PSX_USR;
2322 if (!cb->cb_numname) {
2323 struct passwd *p;

2325 if ((p = getpwuid(rid)) != NULL)
2326 name = p->pw_name;
2327 }
2328 }
2329 }

2331 /*
2332 * Make sure that the type/name combination is unique when doing
2333 * SID to POSIX ID translation (hence changing the type from SMB to
2334 * POSIX).
2335 */
2336 if (cb->cb_sid2posix &&
2337 nvlist_add_boolean_value(props, "smbentity", smbentity) != 0)
2338 nomem();

2340 /* Calculate/update width of TYPE field */
2341 typestr = us_type2str(type);
2342 typelen = strlen(gettext(typestr));
2343 typeidx = us_field_index("type");
2344 if (typelen > cb->cb_width[typeidx])
2345 cb->cb_width[typeidx] = typelen;
2346 if (nvlist_add_uint32(props, "type", type) != 0)
2347 nomem();

2349 /* Calculate/update width of NAME field */
2350 if ((cb->cb_numname && cb->cb_sid2posix) || name == NULL) {
2351 if (nvlist_add_uint64(props, "name", rid) != 0)
2352 nomem();
2353 namelen = snprintf(NULL, 0, "%u", rid);
2354 } else {
2355 if (nvlist_add_string(props, "name", name) != 0)
2356 nomem();
2357 namelen = strlen(name);
2358 }
2359 nameidx = us_field_index("name");
2360 if (namelen > cb->cb_width[nameidx])
2361 cb->cb_width[nameidx] = namelen;

2363 /*
2364 * Check if this type/name combination is in the list and update it;
2365 * otherwise add new node to the list.
2366 */
2367 if ((n = uu_avl_find(avl, node, &sortinfo, &idx)) == NULL) {
2368 uu_avl_insert(avl, node, idx);

new/usr/src/cmd/zfs/zfs_main.c 37

2369 } else {
2370 nvlist_free(props);
2371 free(node);
2372 node = n;
2373 props = node->usn_nvl;
2374 }

2376 /* Calculate/update width of USED/QUOTA fields */
2377 if (cb->cb_nicenum)
2378 zfs_nicenum(space, sizebuf, sizeof (sizebuf));
2379 else
2380 (void) snprintf(sizebuf, sizeof (sizebuf), "%llu", space);
2381 sizelen = strlen(sizebuf);
2382 if (prop == ZFS_PROP_USERUSED || prop == ZFS_PROP_GROUPUSED) {
2383 propname = "used";
2384 if (!nvlist_exists(props, "quota"))
2385 (void) nvlist_add_uint64(props, "quota", 0);
2386 } else {
2387 propname = "quota";
2388 if (!nvlist_exists(props, "used"))
2389 (void) nvlist_add_uint64(props, "used", 0);
2390 }
2391 sizeidx = us_field_index(propname);
2392 if (sizelen > cb->cb_width[sizeidx])
2393 cb->cb_width[sizeidx] = sizelen;

2395 if (nvlist_add_uint64(props, propname, space) != 0)
2396 nomem();

2398 return (0);
2399 }

2401 static void
2402 print_us_node(boolean_t scripted, boolean_t parsable, int *fields, int types,
2403 size_t *width, us_node_t *node)
2404 {
2405 nvlist_t *nvl = node->usn_nvl;
2406 char valstr[ZFS_MAXNAMELEN];
2407 boolean_t first = B_TRUE;
2408 int cfield = 0;
2409 int field;
2410 uint32_t ustype;

2412 /* Check type */
2413 (void) nvlist_lookup_uint32(nvl, "type", &ustype);
2414 if (!(ustype & types))
2415 return;

2417 while ((field = fields[cfield]) != USFIELD_LAST) {
2418 nvpair_t *nvp = NULL;
2419 data_type_t type;
2420 uint32_t val32;
2421 uint64_t val64;
2422 char *strval = NULL;

2424 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
2425 if (strcmp(nvpair_name(nvp),
2426 us_field_names[field]) == 0)
2427 break;
2428 }

2430 type = nvpair_type(nvp);
2431 switch (type) {
2432 case DATA_TYPE_UINT32:
2433 (void) nvpair_value_uint32(nvp, &val32);
2434 break;

new/usr/src/cmd/zfs/zfs_main.c 38

2435 case DATA_TYPE_UINT64:
2436 (void) nvpair_value_uint64(nvp, &val64);
2437 break;
2438 case DATA_TYPE_STRING:
2439 (void) nvpair_value_string(nvp, &strval);
2440 break;
2441 default:
2442 (void) fprintf(stderr, "invalid data type\n");
2443 }

2445 switch (field) {
2446 case USFIELD_TYPE:
2447 strval = (char *)us_type2str(val32);
2448 break;
2449 case USFIELD_NAME:
2450 if (type == DATA_TYPE_UINT64) {
2451 (void) sprintf(valstr, "%llu", val64);
2452 strval = valstr;
2453 }
2454 break;
2455 case USFIELD_USED:
2456 case USFIELD_QUOTA:
2457 if (type == DATA_TYPE_UINT64) {
2458 if (parsable) {
2459 (void) sprintf(valstr, "%llu", val64);
2460 } else {
2461 zfs_nicenum(val64, valstr,
2462 sizeof (valstr));
2463 }
2464 if (field == USFIELD_QUOTA &&
2465 strcmp(valstr, "0") == 0)
2466 strval = "none";
2467 else
2468 strval = valstr;
2469 }
2470 break;
2471 }

2473 if (!first) {
2474 if (scripted)
2475 (void) printf("\t");
2476 else
2477 (void) printf(" ");
2478 }
2479 if (scripted)
2480 (void) printf("%s", strval);
2481 else if (field == USFIELD_TYPE || field == USFIELD_NAME)
2482 (void) printf("%-*s", width[field], strval);
2483 else
2484 (void) printf("%*s", width[field], strval);

2486 first = B_FALSE;
2487 cfield++;
2488 }

2490 (void) printf("\n");
2491 }

2493 static void
2494 print_us(boolean_t scripted, boolean_t parsable, int *fields, int types,
2495 size_t *width, boolean_t rmnode, uu_avl_t *avl)
2496 {
2497 us_node_t *node;
2498 const char *col;
2499 int cfield = 0;
2500 int field;

new/usr/src/cmd/zfs/zfs_main.c 39

2502 if (!scripted) {
2503 boolean_t first = B_TRUE;

2505 while ((field = fields[cfield]) != USFIELD_LAST) {
2506 col = gettext(us_field_hdr[field]);
2507 if (field == USFIELD_TYPE || field == USFIELD_NAME) {
2508 (void) printf(first ? "%-*s" : " %-*s",
2509 width[field], col);
2510 } else {
2511 (void) printf(first ? "%*s" : " %*s",
2512 width[field], col);
2513 }
2514 first = B_FALSE;
2515 cfield++;
2516 }
2517 (void) printf("\n");
2518 }

2520 for (node = uu_avl_first(avl); node; node = uu_avl_next(avl, node)) {
2521 print_us_node(scripted, parsable, fields, types, width, node);
2522 if (rmnode)
2523 nvlist_free(node->usn_nvl);
2524 }
2525 }

2527 static int
2528 zfs_do_userspace(int argc, char **argv)
2529 {
2530 zfs_handle_t *zhp;
2531 zfs_userquota_prop_t p;
2532 uu_avl_pool_t *avl_pool;
2533 uu_avl_t *avl_tree;
2534 uu_avl_walk_t *walk;
2535 char *delim;
2536 char deffields[] = "type,name,used,quota";
2537 char *ofield = NULL;
2538 char *tfield = NULL;
2539 int cfield = 0;
2540 int fields[256];
2541 int i;
2542 boolean_t scripted = B_FALSE;
2543 boolean_t prtnum = B_FALSE;
2544 boolean_t parsable = B_FALSE;
2545 boolean_t sid2posix = B_FALSE;
2546 int ret = 0;
2547 int c;
2548 zfs_sort_column_t *sortcol = NULL;
2549 int types = USTYPE_PSX_USR | USTYPE_SMB_USR;
2550 us_cbdata_t cb;
2551 us_node_t *node;
2552 us_node_t *rmnode;
2553 uu_list_pool_t *listpool;
2554 uu_list_t *list;
2555 uu_avl_index_t idx = 0;
2556 uu_list_index_t idx2 = 0;

2558 if (argc < 2)
2559 usage(B_FALSE);

2561 if (strcmp(argv[0], "groupspace") == 0)
2562 /* Toggle default group types */
2563 types = USTYPE_PSX_GRP | USTYPE_SMB_GRP;

2565 while ((c = getopt(argc, argv, "nHpo:s:S:t:i")) != -1) {
2566 switch (c) {

new/usr/src/cmd/zfs/zfs_main.c 40

2567 case ’n’:
2568 prtnum = B_TRUE;
2569 break;
2570 case ’H’:
2571 scripted = B_TRUE;
2572 break;
2573 case ’p’:
2574 parsable = B_TRUE;
2575 break;
2576 case ’o’:
2577 ofield = optarg;
2578 break;
2579 case ’s’:
2580 case ’S’:
2581 if (zfs_add_sort_column(&sortcol, optarg,
2582 c == ’s’ ? B_FALSE : B_TRUE) != 0) {
2583 (void) fprintf(stderr,
2584 gettext("invalid field ’%s’\n"), optarg);
2585 usage(B_FALSE);
2586 }
2587 break;
2588 case ’t’:
2589 tfield = optarg;
2590 break;
2591 case ’i’:
2592 sid2posix = B_TRUE;
2593 break;
2594 case ’:’:
2595 (void) fprintf(stderr, gettext("missing argument for "
2596 "’%c’ option\n"), optopt);
2597 usage(B_FALSE);
2598 break;
2599 case ’?’:
2600 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
2601 optopt);
2602 usage(B_FALSE);
2603 }
2604 }

2606 argc -= optind;
2607 argv += optind;

2609 if (argc < 1) {
2610 (void) fprintf(stderr, gettext("missing dataset name\n"));
2611 usage(B_FALSE);
2612 }
2613 if (argc > 1) {
2614 (void) fprintf(stderr, gettext("too many arguments\n"));
2615 usage(B_FALSE);
2616 }

2618 /* Use default output fields if not specified using -o */
2619 if (ofield == NULL)
2620 ofield = deffields;
2621 do {
2622 if ((delim = strchr(ofield, ’,’)) != NULL)
2623 *delim = ’\0’;
2624 if ((fields[cfield++] = us_field_index(ofield)) == -1) {
2625 (void) fprintf(stderr, gettext("invalid type ’%s’ "
2626 "for -o option\n"), ofield);
2627 return (-1);
2628 }
2629 if (delim != NULL)
2630 ofield = delim + 1;
2631 } while (delim != NULL);
2632 fields[cfield] = USFIELD_LAST;

new/usr/src/cmd/zfs/zfs_main.c 41

2634 /* Override output types (-t option) */
2635 if (tfield != NULL) {
2636 types = 0;

2638 do {
2639 boolean_t found = B_FALSE;

2641 if ((delim = strchr(tfield, ’,’)) != NULL)
2642 *delim = ’\0’;
2643 for (i = 0; i < sizeof (us_type_bits) / sizeof (int);
2644 i++) {
2645 if (strcmp(tfield, us_type_names[i]) == 0) {
2646 found = B_TRUE;
2647 types |= us_type_bits[i];
2648 break;
2649 }
2650 }
2651 if (!found) {
2652 (void) fprintf(stderr, gettext("invalid type "
2653 "’%s’ for -t option\n"), tfield);
2654 return (-1);
2655 }
2656 if (delim != NULL)
2657 tfield = delim + 1;
2658 } while (delim != NULL);
2659 }

2661 if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_DATASET)) == NULL)
2662 return (1);

2664 if ((avl_pool = uu_avl_pool_create("us_avl_pool", sizeof (us_node_t),
2665 offsetof(us_node_t, usn_avlnode), us_compare, UU_DEFAULT)) == NULL)
2666 nomem();
2667 if ((avl_tree = uu_avl_create(avl_pool, NULL, UU_DEFAULT)) == NULL)
2668 nomem();

2670 /* Always add default sorting columns */
2671 (void) zfs_add_sort_column(&sortcol, "type", B_FALSE);
2672 (void) zfs_add_sort_column(&sortcol, "name", B_FALSE);

2674 cb.cb_sortcol = sortcol;
2675 cb.cb_numname = prtnum;
2676 cb.cb_nicenum = !parsable;
2677 cb.cb_avl_pool = avl_pool;
2678 cb.cb_avl = avl_tree;
2679 cb.cb_sid2posix = sid2posix;

2681 for (i = 0; i < USFIELD_LAST; i++)
2682 cb.cb_width[i] = strlen(gettext(us_field_hdr[i]));

2684 for (p = 0; p < ZFS_NUM_USERQUOTA_PROPS; p++) {
2685 if (((p == ZFS_PROP_USERUSED || p == ZFS_PROP_USERQUOTA) &&
2686 !(types & (USTYPE_PSX_USR | USTYPE_SMB_USR))) ||
2687 ((p == ZFS_PROP_GROUPUSED || p == ZFS_PROP_GROUPQUOTA) &&
2688 !(types & (USTYPE_PSX_GRP | USTYPE_SMB_GRP))))
2689 continue;
2690 cb.cb_prop = p;
2691 if ((ret = zfs_userspace(zhp, p, userspace_cb, &cb)) != 0)
2692 return (ret);
2693 }

2695 /* Sort the list */
2696 if ((node = uu_avl_first(avl_tree)) == NULL)
2697 return (0);

new/usr/src/cmd/zfs/zfs_main.c 42

2699 us_populated = B_TRUE;

2701 listpool = uu_list_pool_create("tmplist", sizeof (us_node_t),
2702 offsetof(us_node_t, usn_listnode), NULL, UU_DEFAULT);
2703 list = uu_list_create(listpool, NULL, UU_DEFAULT);
2704 uu_list_node_init(node, &node->usn_listnode, listpool);

2706 while (node != NULL) {
2707 rmnode = node;
2708 node = uu_avl_next(avl_tree, node);
2709 uu_avl_remove(avl_tree, rmnode);
2710 if (uu_list_find(list, rmnode, NULL, &idx2) == NULL)
2711 uu_list_insert(list, rmnode, idx2);
2712 }

2714 for (node = uu_list_first(list); node != NULL;
2715 node = uu_list_next(list, node)) {
2716 us_sort_info_t sortinfo = { sortcol, cb.cb_numname };

2718 if (uu_avl_find(avl_tree, node, &sortinfo, &idx) == NULL)
2719 uu_avl_insert(avl_tree, node, idx);
2720 }

2722 uu_list_destroy(list);
2723 uu_list_pool_destroy(listpool);

2725 /* Print and free node nvlist memory */
2726 print_us(scripted, parsable, fields, types, cb.cb_width, B_TRUE,
2727 cb.cb_avl);

2729 zfs_free_sort_columns(sortcol);

2731 /* Clean up the AVL tree */
2732 if ((walk = uu_avl_walk_start(cb.cb_avl, UU_WALK_ROBUST)) == NULL)
2733 nomem();

2735 while ((node = uu_avl_walk_next(walk)) != NULL) {
2736 uu_avl_remove(cb.cb_avl, node);
2737 free(node);
2738 }

2740 uu_avl_walk_end(walk);
2741 uu_avl_destroy(avl_tree);
2742 uu_avl_pool_destroy(avl_pool);

2744 return (ret);
2745 }

2747 /*
2748 * list [-r][-d max] [-H] [-o property[,property]...] [-t type[,type]...]
2749 * [-s property [-s property]...] [-S property [-S property]...]
2750 * <dataset> ...
2751 *
2752 * -r Recurse over all children
2753 * -d Limit recursion by depth.
2754 * -H Scripted mode; elide headers and separate columns by tabs
2755 * -o Control which fields to display.
2756 * -t Control which object types to display.
2757 * -s Specify sort columns, descending order.
2758 * -S Specify sort columns, ascending order.
2759 *
2760 * When given no arguments, lists all filesystems in the system.
2761 * Otherwise, list the specified datasets, optionally recursing down them if
2762 * ’-r’ is specified.
2763 */
2764 typedef struct list_cbdata {

new/usr/src/cmd/zfs/zfs_main.c 43

2765 boolean_t cb_first;
2766 boolean_t cb_scripted;
2767 zprop_list_t *cb_proplist;
2768 } list_cbdata_t;

2770 /*
2771 * Given a list of columns to display, output appropriate headers for each one.
2772 */
2773 static void
2774 print_header(zprop_list_t *pl)
2775 {
2776 char headerbuf[ZFS_MAXPROPLEN];
2777 const char *header;
2778 int i;
2779 boolean_t first = B_TRUE;
2780 boolean_t right_justify;

2782 for (; pl != NULL; pl = pl->pl_next) {
2783 if (!first) {
2784 (void) printf(" ");
2785 } else {
2786 first = B_FALSE;
2787 }

2789 right_justify = B_FALSE;
2790 if (pl->pl_prop != ZPROP_INVAL) {
2791 header = zfs_prop_column_name(pl->pl_prop);
2792 right_justify = zfs_prop_align_right(pl->pl_prop);
2793 } else {
2794 for (i = 0; pl->pl_user_prop[i] != ’\0’; i++)
2795 headerbuf[i] = toupper(pl->pl_user_prop[i]);
2796 headerbuf[i] = ’\0’;
2797 header = headerbuf;
2798 }

2800 if (pl->pl_next == NULL && !right_justify)
2801 (void) printf("%s", header);
2802 else if (right_justify)
2803 (void) printf("%*s", pl->pl_width, header);
2804 else
2805 (void) printf("%-*s", pl->pl_width, header);
2806 }

2808 (void) printf("\n");
2809 }

2811 /*
2812 * Given a dataset and a list of fields, print out all the properties according
2813 * to the described layout.
2814 */
2815 static void
2816 print_dataset(zfs_handle_t *zhp, zprop_list_t *pl, boolean_t scripted)
2817 {
2818 boolean_t first = B_TRUE;
2819 char property[ZFS_MAXPROPLEN];
2820 nvlist_t *userprops = zfs_get_user_props(zhp);
2821 nvlist_t *propval;
2822 char *propstr;
2823 boolean_t right_justify;
2824 int width;

2826 for (; pl != NULL; pl = pl->pl_next) {
2827 if (!first) {
2828 if (scripted)
2829 (void) printf("\t");
2830 else

new/usr/src/cmd/zfs/zfs_main.c 44

2831 (void) printf(" ");
2832 } else {
2833 first = B_FALSE;
2834 }

2836 if (pl->pl_prop != ZPROP_INVAL) {
2837 if (zfs_prop_get(zhp, pl->pl_prop, property,
2838 sizeof (property), NULL, NULL, 0, B_FALSE) != 0)
2839 propstr = "-";
2840 else
2841 propstr = property;

2843 right_justify = zfs_prop_align_right(pl->pl_prop);
2844 } else if (zfs_prop_userquota(pl->pl_user_prop)) {
2845 if (zfs_prop_get_userquota(zhp, pl->pl_user_prop,
2846 property, sizeof (property), B_FALSE) != 0)
2847 propstr = "-";
2848 else
2849 propstr = property;
2850 right_justify = B_TRUE;
2851 } else if (zfs_prop_written(pl->pl_user_prop)) {
2852 if (zfs_prop_get_written(zhp, pl->pl_user_prop,
2853 property, sizeof (property), B_FALSE) != 0)
2854 propstr = "-";
2855 else
2856 propstr = property;
2857 right_justify = B_TRUE;
2858 } else {
2859 if (nvlist_lookup_nvlist(userprops,
2860 pl->pl_user_prop, &propval) != 0)
2861 propstr = "-";
2862 else
2863 verify(nvlist_lookup_string(propval,
2864 ZPROP_VALUE, &propstr) == 0);
2865 right_justify = B_FALSE;
2866 }

2868 width = pl->pl_width;

2870 /*
2871 * If this is being called in scripted mode, or if this is the
2872 * last column and it is left-justified, don’t include a width
2873 * format specifier.
2874 */
2875 if (scripted || (pl->pl_next == NULL && !right_justify))
2876 (void) printf("%s", propstr);
2877 else if (right_justify)
2878 (void) printf("%*s", width, propstr);
2879 else
2880 (void) printf("%-*s", width, propstr);
2881 }

2883 (void) printf("\n");
2884 }

2886 /*
2887 * Generic callback function to list a dataset or snapshot.
2888 */
2889 static int
2890 list_callback(zfs_handle_t *zhp, void *data)
2891 {
2892 list_cbdata_t *cbp = data;

2894 if (cbp->cb_first) {
2895 if (!cbp->cb_scripted)
2896 print_header(cbp->cb_proplist);

new/usr/src/cmd/zfs/zfs_main.c 45

2897 cbp->cb_first = B_FALSE;
2898 }

2900 print_dataset(zhp, cbp->cb_proplist, cbp->cb_scripted);

2902 return (0);
2903 }

2905 static int
2906 zfs_do_list(int argc, char **argv)
2907 {
2908 int c;
2909 boolean_t scripted = B_FALSE;
2910 static char default_fields[] =
2911 "name,used,available,referenced,mountpoint";
2912 int types = ZFS_TYPE_DATASET;
2913 boolean_t types_specified = B_FALSE;
2914 char *fields = NULL;
2915 list_cbdata_t cb = { 0 };
2916 char *value;
2917 int limit = 0;
2918 int ret = 0;
2919 zfs_sort_column_t *sortcol = NULL;
2920 int flags = ZFS_ITER_PROP_LISTSNAPS | ZFS_ITER_ARGS_CAN_BE_PATHS;

2922 /* check options */
2923 while ((c = getopt(argc, argv, ":d:o:rt:Hs:S:")) != -1) {
2924 switch (c) {
2925 case ’o’:
2926 fields = optarg;
2927 break;
2928 case ’d’:
2929 limit = parse_depth(optarg, &flags);
2930 break;
2931 case ’r’:
2932 flags |= ZFS_ITER_RECURSE;
2933 break;
2934 case ’H’:
2935 scripted = B_TRUE;
2936 break;
2937 case ’s’:
2938 if (zfs_add_sort_column(&sortcol, optarg,
2939 B_FALSE) != 0) {
2940 (void) fprintf(stderr,
2941 gettext("invalid property ’%s’\n"), optarg);
2942 usage(B_FALSE);
2943 }
2944 break;
2945 case ’S’:
2946 if (zfs_add_sort_column(&sortcol, optarg,
2947 B_TRUE) != 0) {
2948 (void) fprintf(stderr,
2949 gettext("invalid property ’%s’\n"), optarg);
2950 usage(B_FALSE);
2951 }
2952 break;
2953 case ’t’:
2954 types = 0;
2955 types_specified = B_TRUE;
2956 flags &= ~ZFS_ITER_PROP_LISTSNAPS;
2957 while (*optarg != ’\0’) {
2958 static char *type_subopts[] = { "filesystem",
2959 "volume", "snapshot", "all", NULL };

2961 switch (getsubopt(&optarg, type_subopts,
2962 &value)) {

new/usr/src/cmd/zfs/zfs_main.c 46

2963 case 0:
2964 types |= ZFS_TYPE_FILESYSTEM;
2965 break;
2966 case 1:
2967 types |= ZFS_TYPE_VOLUME;
2968 break;
2969 case 2:
2970 types |= ZFS_TYPE_SNAPSHOT;
2971 break;
2972 case 3:
2973 types = ZFS_TYPE_DATASET;
2974 break;

2976 default:
2977 (void) fprintf(stderr,
2978 gettext("invalid type ’%s’\n"),
2979 value);
2980 usage(B_FALSE);
2981 }
2982 }
2983 break;
2984 case ’:’:
2985 (void) fprintf(stderr, gettext("missing argument for "
2986 "’%c’ option\n"), optopt);
2987 usage(B_FALSE);
2988 break;
2989 case ’?’:
2990 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
2991 optopt);
2992 usage(B_FALSE);
2993 }
2994 }

2996 argc -= optind;
2997 argv += optind;

2999 if (fields == NULL)
3000 fields = default_fields;

3002 /*
3003 * If "-o space" and no types were specified, don’t display snapshots.
3004 */
3005 if (strcmp(fields, "space") == 0 && types_specified == B_FALSE)
3006 types &= ~ZFS_TYPE_SNAPSHOT;

3008 /*
3009 * If the user specifies ’-o all’, the zprop_get_list() doesn’t
3010 * normally include the name of the dataset. For ’zfs list’, we always
3011 * want this property to be first.
3012 */
3013 if (zprop_get_list(g_zfs, fields, &cb.cb_proplist, ZFS_TYPE_DATASET)
3014 != 0)
3015 usage(B_FALSE);

3017 cb.cb_scripted = scripted;
3018 cb.cb_first = B_TRUE;

3020 ret = zfs_for_each(argc, argv, flags, types, sortcol, &cb.cb_proplist,
3021 limit, list_callback, &cb);

3023 zprop_free_list(cb.cb_proplist);
3024 zfs_free_sort_columns(sortcol);

3026 if (ret == 0 && cb.cb_first && !cb.cb_scripted)
3027 (void) printf(gettext("no datasets available\n"));

new/usr/src/cmd/zfs/zfs_main.c 47

3029 return (ret);
3030 }

3032 /*
3033 * zfs rename [-f] <fs | snap | vol> <fs | snap | vol>
3034 * zfs rename [-f] -p <fs | vol> <fs | vol>
3035 * zfs rename -r <snap> <snap>
3036 *
3037 * Renames the given dataset to another of the same type.
3038 *
3039 * The ’-p’ flag creates all the non-existing ancestors of the target first.
3040 */
3041 /* ARGSUSED */
3042 static int
3043 zfs_do_rename(int argc, char **argv)
3044 {
3045 zfs_handle_t *zhp;
3046 int c;
3047 int ret = 0;
3048 boolean_t recurse = B_FALSE;
3049 boolean_t parents = B_FALSE;
3050 boolean_t force_unmount = B_FALSE;

3052 /* check options */
3053 while ((c = getopt(argc, argv, "prf")) != -1) {
3054 switch (c) {
3055 case ’p’:
3056 parents = B_TRUE;
3057 break;
3058 case ’r’:
3059 recurse = B_TRUE;
3060 break;
3061 case ’f’:
3062 force_unmount = B_TRUE;
3063 break;
3064 case ’?’:
3065 default:
3066 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
3067 optopt);
3068 usage(B_FALSE);
3069 }
3070 }

3072 argc -= optind;
3073 argv += optind;

3075 /* check number of arguments */
3076 if (argc < 1) {
3077 (void) fprintf(stderr, gettext("missing source dataset "
3078 "argument\n"));
3079 usage(B_FALSE);
3080 }
3081 if (argc < 2) {
3082 (void) fprintf(stderr, gettext("missing target dataset "
3083 "argument\n"));
3084 usage(B_FALSE);
3085 }
3086 if (argc > 2) {
3087 (void) fprintf(stderr, gettext("too many arguments\n"));
3088 usage(B_FALSE);
3089 }

3091 if (recurse && parents) {
3092 (void) fprintf(stderr, gettext("-p and -r options are mutually "
3093 "exclusive\n"));
3094 usage(B_FALSE);

new/usr/src/cmd/zfs/zfs_main.c 48

3095 }

3097 if (recurse && strchr(argv[0], ’@’) == 0) {
3098 (void) fprintf(stderr, gettext("source dataset for recursive "
3099 "rename must be a snapshot\n"));
3100 usage(B_FALSE);
3101 }

3103 if ((zhp = zfs_open(g_zfs, argv[0], parents ? ZFS_TYPE_FILESYSTEM |
3104 ZFS_TYPE_VOLUME : ZFS_TYPE_DATASET)) == NULL)
3105 return (1);

3107 /* If we were asked and the name looks good, try to create ancestors. */
3108 if (parents && zfs_name_valid(argv[1], zfs_get_type(zhp)) &&
3109 zfs_create_ancestors(g_zfs, argv[1]) != 0) {
3110 zfs_close(zhp);
3111 return (1);
3112 }

3114 ret = (zfs_rename(zhp, argv[1], recurse, force_unmount) != 0);

3116 zfs_close(zhp);
3117 return (ret);
3118 }

3120 /*
3121 * zfs promote <fs>
3122 *
3123 * Promotes the given clone fs to be the parent
3124 */
3125 /* ARGSUSED */
3126 static int
3127 zfs_do_promote(int argc, char **argv)
3128 {
3129 zfs_handle_t *zhp;
3130 int ret = 0;

3132 /* check options */
3133 if (argc > 1 && argv[1][0] == ’-’) {
3134 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
3135 argv[1][1]);
3136 usage(B_FALSE);
3137 }

3139 /* check number of arguments */
3140 if (argc < 2) {
3141 (void) fprintf(stderr, gettext("missing clone filesystem"
3142 " argument\n"));
3143 usage(B_FALSE);
3144 }
3145 if (argc > 2) {
3146 (void) fprintf(stderr, gettext("too many arguments\n"));
3147 usage(B_FALSE);
3148 }

3150 zhp = zfs_open(g_zfs, argv[1], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
3151 if (zhp == NULL)
3152 return (1);

3154 ret = (zfs_promote(zhp) != 0);

3157 zfs_close(zhp);
3158 return (ret);
3159 }

new/usr/src/cmd/zfs/zfs_main.c 49

3161 /*
3162 * zfs rollback [-rRf] <snapshot>
3163 *
3164 * -r Delete any intervening snapshots before doing rollback
3165 * -R Delete any snapshots and their clones
3166 * -f ignored for backwards compatability
3167 *
3168 * Given a filesystem, rollback to a specific snapshot, discarding any changes
3169 * since then and making it the active dataset. If more recent snapshots exist,
3170 * the command will complain unless the ’-r’ flag is given.
3171 */
3172 typedef struct rollback_cbdata {
3173 uint64_t cb_create;
3174 boolean_t cb_first;
3175 int cb_doclones;
3176 char *cb_target;
3177 int cb_error;
3178 boolean_t cb_recurse;
3179 boolean_t cb_dependent;
3180 } rollback_cbdata_t;

3182 /*
3183 * Report any snapshots more recent than the one specified. Used when ’-r’ is
3184 * not specified. We reuse this same callback for the snapshot dependents - if
3185 * ’cb_dependent’ is set, then this is a dependent and we should report it
3186 * without checking the transaction group.
3187 */
3188 static int
3189 rollback_check(zfs_handle_t *zhp, void *data)
3190 {
3191 rollback_cbdata_t *cbp = data;

3193 if (cbp->cb_doclones) {
3194 zfs_close(zhp);
3195 return (0);
3196 }

3198 if (!cbp->cb_dependent) {
3199 if (strcmp(zfs_get_name(zhp), cbp->cb_target) != 0 &&
3200 zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT &&
3201 zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG) >
3202 cbp->cb_create) {

3204 if (cbp->cb_first && !cbp->cb_recurse) {
3205 (void) fprintf(stderr, gettext("cannot "
3206 "rollback to ’%s’: more recent snapshots "
3207 "exist\n"),
3208 cbp->cb_target);
3209 (void) fprintf(stderr, gettext("use ’-r’ to "
3210 "force deletion of the following "
3211 "snapshots:\n"));
3212 cbp->cb_first = 0;
3213 cbp->cb_error = 1;
3214 }

3216 if (cbp->cb_recurse) {
3217 cbp->cb_dependent = B_TRUE;
3218 if (zfs_iter_dependents(zhp, B_TRUE,
3219 rollback_check, cbp) != 0) {
3220 zfs_close(zhp);
3221 return (-1);
3222 }
3223 cbp->cb_dependent = B_FALSE;
3224 } else {
3225 (void) fprintf(stderr, "%s\n",
3226 zfs_get_name(zhp));

new/usr/src/cmd/zfs/zfs_main.c 50

3227 }
3228 }
3229 } else {
3230 if (cbp->cb_first && cbp->cb_recurse) {
3231 (void) fprintf(stderr, gettext("cannot rollback to "
3232 "’%s’: clones of previous snapshots exist\n"),
3233 cbp->cb_target);
3234 (void) fprintf(stderr, gettext("use ’-R’ to "
3235 "force deletion of the following clones and "
3236 "dependents:\n"));
3237 cbp->cb_first = 0;
3238 cbp->cb_error = 1;
3239 }

3241 (void) fprintf(stderr, "%s\n", zfs_get_name(zhp));
3242 }

3244 zfs_close(zhp);
3245 return (0);
3246 }

3248 static int
3249 zfs_do_rollback(int argc, char **argv)
3250 {
3251 int ret = 0;
3252 int c;
3253 boolean_t force = B_FALSE;
3254 rollback_cbdata_t cb = { 0 };
3255 zfs_handle_t *zhp, *snap;
3256 char parentname[ZFS_MAXNAMELEN];
3257 char *delim;

3259 /* check options */
3260 while ((c = getopt(argc, argv, "rRf")) != -1) {
3261 switch (c) {
3262 case ’r’:
3263 cb.cb_recurse = 1;
3264 break;
3265 case ’R’:
3266 cb.cb_recurse = 1;
3267 cb.cb_doclones = 1;
3268 break;
3269 case ’f’:
3270 force = B_TRUE;
3271 break;
3272 case ’?’:
3273 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
3274 optopt);
3275 usage(B_FALSE);
3276 }
3277 }

3279 argc -= optind;
3280 argv += optind;

3282 /* check number of arguments */
3283 if (argc < 1) {
3284 (void) fprintf(stderr, gettext("missing dataset argument\n"));
3285 usage(B_FALSE);
3286 }
3287 if (argc > 1) {
3288 (void) fprintf(stderr, gettext("too many arguments\n"));
3289 usage(B_FALSE);
3290 }

3292 /* open the snapshot */

new/usr/src/cmd/zfs/zfs_main.c 51

3293 if ((snap = zfs_open(g_zfs, argv[0], ZFS_TYPE_SNAPSHOT)) == NULL)
3294 return (1);

3296 /* open the parent dataset */
3297 (void) strlcpy(parentname, argv[0], sizeof (parentname));
3298 verify((delim = strrchr(parentname, ’@’)) != NULL);
3299 *delim = ’\0’;
3300 if ((zhp = zfs_open(g_zfs, parentname, ZFS_TYPE_DATASET)) == NULL) {
3301 zfs_close(snap);
3302 return (1);
3303 }

3305 /*
3306 * Check for more recent snapshots and/or clones based on the presence
3307 * of ’-r’ and ’-R’.
3308 */
3309 cb.cb_target = argv[0];
3310 cb.cb_create = zfs_prop_get_int(snap, ZFS_PROP_CREATETXG);
3311 cb.cb_first = B_TRUE;
3312 cb.cb_error = 0;
3313 if ((ret = zfs_iter_children(zhp, rollback_check, &cb)) != 0)
3314 goto out;

3316 if ((ret = cb.cb_error) != 0)
3317 goto out;

3319 /*
3320 * Rollback parent to the given snapshot.
3321 */
3322 ret = zfs_rollback(zhp, snap, force);

3324 out:
3325 zfs_close(snap);
3326 zfs_close(zhp);

3328 if (ret == 0)
3329 return (0);
3330 else
3331 return (1);
3332 }

3334 /*
3335 * zfs set property=value { fs | snap | vol } ...
3336 *
3337 * Sets the given property for all datasets specified on the command line.
3338 */
3339 typedef struct set_cbdata {
3340 char *cb_propname;
3341 char *cb_value;
3342 } set_cbdata_t;

3344 static int
3345 set_callback(zfs_handle_t *zhp, void *data)
3346 {
3347 set_cbdata_t *cbp = data;

3349 if (zfs_prop_set(zhp, cbp->cb_propname, cbp->cb_value) != 0) {
3350 switch (libzfs_errno(g_zfs)) {
3351 case EZFS_MOUNTFAILED:
3352 (void) fprintf(stderr, gettext("property may be set "
3353 "but unable to remount filesystem\n"));
3354 break;
3355 case EZFS_SHARENFSFAILED:
3356 (void) fprintf(stderr, gettext("property may be set "
3357 "but unable to reshare filesystem\n"));
3358 break;

new/usr/src/cmd/zfs/zfs_main.c 52

3359 }
3360 return (1);
3361 }
3362 return (0);
3363 }

3365 static int
3366 zfs_do_set(int argc, char **argv)
3367 {
3368 set_cbdata_t cb;
3369 int ret = 0;

3371 /* check for options */
3372 if (argc > 1 && argv[1][0] == ’-’) {
3373 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
3374 argv[1][1]);
3375 usage(B_FALSE);
3376 }

3378 /* check number of arguments */
3379 if (argc < 2) {
3380 (void) fprintf(stderr, gettext("missing property=value "
3381 "argument\n"));
3382 usage(B_FALSE);
3383 }
3384 if (argc < 3) {
3385 (void) fprintf(stderr, gettext("missing dataset name\n"));
3386 usage(B_FALSE);
3387 }

3389 /* validate property=value argument */
3390 cb.cb_propname = argv[1];
3391 if (((cb.cb_value = strchr(cb.cb_propname, ’=’)) == NULL) ||
3392 (cb.cb_value[1] == ’\0’)) {
3393 (void) fprintf(stderr, gettext("missing value in "
3394 "property=value argument\n"));
3395 usage(B_FALSE);
3396 }

3398 *cb.cb_value = ’\0’;
3399 cb.cb_value++;

3401 if (*cb.cb_propname == ’\0’) {
3402 (void) fprintf(stderr,
3403 gettext("missing property in property=value argument\n"));
3404 usage(B_FALSE);
3405 }

3407 ret = zfs_for_each(argc - 2, argv + 2, NULL,
3408 ZFS_TYPE_DATASET, NULL, NULL, 0, set_callback, &cb);

3410 return (ret);
3411 }

3413 typedef struct snap_cbdata {
3414 nvlist_t *sd_nvl;
3415 boolean_t sd_recursive;
3416 const char *sd_snapname;
3417 } snap_cbdata_t;

3419 static int
3420 zfs_snapshot_cb(zfs_handle_t *zhp, void *arg)
3421 {
3422 snap_cbdata_t *sd = arg;
3423 char *name;
3424 int rv = 0;

new/usr/src/cmd/zfs/zfs_main.c 53

3425 int error;

3427 error = asprintf(&name, "%s@%s", zfs_get_name(zhp), sd->sd_snapname);
3428 if (error == -1)
3429 nomem();
3430 fnvlist_add_boolean(sd->sd_nvl, name);
3431 free(name);

3433 if (sd->sd_recursive)
3434 rv = zfs_iter_filesystems(zhp, zfs_snapshot_cb, sd);
3435 zfs_close(zhp);
3436 return (rv);
3437 }

3439 /*
3440 * zfs snapshot [-r] [-o prop=value] ... <fs@snap>
3441 *
3442 * Creates a snapshot with the given name. While functionally equivalent to
3443 * ’zfs create’, it is a separate command to differentiate intent.
3444 */
3445 static int
3446 zfs_do_snapshot(int argc, char **argv)
3447 {
3448 int ret = 0;
3449 char c;
3450 nvlist_t *props;
3451 snap_cbdata_t sd = { 0 };
3452 boolean_t multiple_snaps = B_FALSE;

3454 if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0)
3455 nomem();
3456 if (nvlist_alloc(&sd.sd_nvl, NV_UNIQUE_NAME, 0) != 0)
3457 nomem();

3459 /* check options */
3460 while ((c = getopt(argc, argv, "ro:")) != -1) {
3461 switch (c) {
3462 case ’o’:
3463 if (parseprop(props))
3464 return (1);
3465 break;
3466 case ’r’:
3467 sd.sd_recursive = B_TRUE;
3468 multiple_snaps = B_TRUE;
3469 break;
3470 case ’?’:
3471 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
3472 optopt);
3473 goto usage;
3474 }
3475 }

3477 argc -= optind;
3478 argv += optind;

3480 /* check number of arguments */
3481 if (argc < 1) {
3482 (void) fprintf(stderr, gettext("missing snapshot argument\n"));
3483 goto usage;
3484 }

3486 if (argc > 1)
3487 multiple_snaps = B_TRUE;
3488 for (; argc > 0; argc--, argv++) {
3489 char *atp;
3490 zfs_handle_t *zhp;

new/usr/src/cmd/zfs/zfs_main.c 54

3492 atp = strchr(argv[0], ’@’);
3493 if (atp == NULL)
3494 goto usage;
3495 *atp = ’\0’;
3496 sd.sd_snapname = atp + 1;
3497 zhp = zfs_open(g_zfs, argv[0],
3498 ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
3499 if (zhp == NULL)
3500 goto usage;
3501 if (zfs_snapshot_cb(zhp, &sd) != 0)
3502 goto usage;
3503 }

3505 ret = zfs_snapshot_nvl(g_zfs, sd.sd_nvl, props);
3506 nvlist_free(sd.sd_nvl);
3507 nvlist_free(props);
3508 if (ret != 0 && multiple_snaps)
3509 (void) fprintf(stderr, gettext("no snapshots were created\n"));
3510 return (ret != 0);

3512 usage:
3513 nvlist_free(sd.sd_nvl);
3514 nvlist_free(props);
3515 usage(B_FALSE);
3516 return (-1);
3517 }

3519 /*
3520 * Send a backup stream to stdout.
3521 */
3522 static int
3523 zfs_do_send(int argc, char **argv)
3524 {
3525 char *fromname = NULL;
3526 char *toname = NULL;
3527 char *cp;
3528 zfs_handle_t *zhp;
3529 sendflags_t flags = { 0 };
3530 int c, err;
3531 nvlist_t *dbgnv = NULL;
3532 boolean_t extraverbose = B_FALSE;

3534 /* check options */
3535 while ((c = getopt(argc, argv, ":i:I:RDpvnP")) != -1) {
3536 switch (c) {
3537 case ’i’:
3538 if (fromname)
3539 usage(B_FALSE);
3540 fromname = optarg;
3541 break;
3542 case ’I’:
3543 if (fromname)
3544 usage(B_FALSE);
3545 fromname = optarg;
3546 flags.doall = B_TRUE;
3547 break;
3548 case ’R’:
3549 flags.replicate = B_TRUE;
3550 break;
3551 case ’p’:
3552 flags.props = B_TRUE;
3553 break;
3554 case ’P’:
3555 flags.parsable = B_TRUE;
3556 flags.verbose = B_TRUE;

new/usr/src/cmd/zfs/zfs_main.c 55

3557 break;
3558 case ’v’:
3559 if (flags.verbose)
3560 extraverbose = B_TRUE;
3561 flags.verbose = B_TRUE;
3562 flags.progress = B_TRUE;
3563 break;
3564 case ’D’:
3565 flags.dedup = B_TRUE;
3566 break;
3567 case ’n’:
3568 flags.dryrun = B_TRUE;
3569 break;
3570 case ’:’:
3571 (void) fprintf(stderr, gettext("missing argument for "
3572 "’%c’ option\n"), optopt);
3573 usage(B_FALSE);
3574 break;
3575 case ’?’:
3576 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
3577 optopt);
3578 usage(B_FALSE);
3579 }
3580 }

3582 argc -= optind;
3583 argv += optind;

3585 /* check number of arguments */
3586 if (argc < 1) {
3587 (void) fprintf(stderr, gettext("missing snapshot argument\n"));
3588 usage(B_FALSE);
3589 }
3590 if (argc > 1) {
3591 (void) fprintf(stderr, gettext("too many arguments\n"));
3592 usage(B_FALSE);
3593 }

3595 if (!flags.dryrun && isatty(STDOUT_FILENO)) {
3596 (void) fprintf(stderr,
3597 gettext("Error: Stream can not be written to a terminal.\n"
3598 "You must redirect standard output.\n"));
3599 return (1);
3600 }

3602 cp = strchr(argv[0], ’@’);
3603 if (cp == NULL) {
3604 (void) fprintf(stderr,
3605 gettext("argument must be a snapshot\n"));
3606 usage(B_FALSE);
3607 }
3608 *cp = ’\0’;
3609 toname = cp + 1;
3610 zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
3611 if (zhp == NULL)
3612 return (1);

3614 /*
3615 * If they specified the full path to the snapshot, chop off
3616 * everything except the short name of the snapshot, but special
3617 * case if they specify the origin.
3618 */
3619 if (fromname && (cp = strchr(fromname, ’@’)) != NULL) {
3620 char origin[ZFS_MAXNAMELEN];
3621 zprop_source_t src;

new/usr/src/cmd/zfs/zfs_main.c 56

3623 (void) zfs_prop_get(zhp, ZFS_PROP_ORIGIN,
3624 origin, sizeof (origin), &src, NULL, 0, B_FALSE);

3626 if (strcmp(origin, fromname) == 0) {
3627 fromname = NULL;
3628 flags.fromorigin = B_TRUE;
3629 } else {
3630 *cp = ’\0’;
3631 if (cp != fromname && strcmp(argv[0], fromname)) {
3632 (void) fprintf(stderr,
3633 gettext("incremental source must be "
3634 "in same filesystem\n"));
3635 usage(B_FALSE);
3636 }
3637 fromname = cp + 1;
3638 if (strchr(fromname, ’@’) || strchr(fromname, ’/’)) {
3639 (void) fprintf(stderr,
3640 gettext("invalid incremental source\n"));
3641 usage(B_FALSE);
3642 }
3643 }
3644 }

3646 if (flags.replicate && fromname == NULL)
3647 flags.doall = B_TRUE;

3649 err = zfs_send(zhp, fromname, toname, &flags, STDOUT_FILENO, NULL, 0,
3650 extraverbose ? &dbgnv : NULL);

3652 if (extraverbose && dbgnv != NULL) {
3653 /*
3654 * dump_nvlist prints to stdout, but that’s been
3655 * redirected to a file. Make it print to stderr
3656 * instead.
3657 */
3658 (void) dup2(STDERR_FILENO, STDOUT_FILENO);
3659 dump_nvlist(dbgnv, 0);
3660 nvlist_free(dbgnv);
3661 }
3662 zfs_close(zhp);

3664 return (err != 0);
3665 }

3667 /*
3668 * zfs receive [-vnFu] [-d | -e] <fs@snap>
3669 *
3670 * Restore a backup stream from stdin.
3671 */
3672 static int
3673 zfs_do_receive(int argc, char **argv)
3674 {
3675 int c, err;
3676 recvflags_t flags = { 0 };

3678 /* check options */
3679 while ((c = getopt(argc, argv, ":denuvF")) != -1) {
3680 switch (c) {
3681 case ’d’:
3682 flags.isprefix = B_TRUE;
3683 break;
3684 case ’e’:
3685 flags.isprefix = B_TRUE;
3686 flags.istail = B_TRUE;
3687 break;
3688 case ’n’:

new/usr/src/cmd/zfs/zfs_main.c 57

3689 flags.dryrun = B_TRUE;
3690 break;
3691 case ’u’:
3692 flags.nomount = B_TRUE;
3693 break;
3694 case ’v’:
3695 flags.verbose = B_TRUE;
3696 break;
3697 case ’F’:
3698 flags.force = B_TRUE;
3699 break;
3700 case ’:’:
3701 (void) fprintf(stderr, gettext("missing argument for "
3702 "’%c’ option\n"), optopt);
3703 usage(B_FALSE);
3704 break;
3705 case ’?’:
3706 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
3707 optopt);
3708 usage(B_FALSE);
3709 }
3710 }

3712 argc -= optind;
3713 argv += optind;

3715 /* check number of arguments */
3716 if (argc < 1) {
3717 (void) fprintf(stderr, gettext("missing snapshot argument\n"));
3718 usage(B_FALSE);
3719 }
3720 if (argc > 1) {
3721 (void) fprintf(stderr, gettext("too many arguments\n"));
3722 usage(B_FALSE);
3723 }

3725 if (isatty(STDIN_FILENO)) {
3726 (void) fprintf(stderr,
3727 gettext("Error: Backup stream can not be read "
3728 "from a terminal.\n"
3729 "You must redirect standard input.\n"));
3730 return (1);
3731 }

3733 err = zfs_receive(g_zfs, argv[0], &flags, STDIN_FILENO, NULL);

3735 return (err != 0);
3736 }

3738 /*
3739 * Send a backup stream to stdout in fits format.
3740 */
3741 static int
3742 zfs_do_fits_send(int argc, char **argv)
3743 {
3744 char *fromname = NULL;
3745 char *toname = NULL;
3746 char *cp;
3747 zfs_handle_t *zhp;
3748 sendflags_t flags = { 0 };
3749 int c, err;

3751 /* check options */
3752 while ((c = getopt(argc, argv, ":i:v")) != -1) {
3753 switch (c) {
3754 case ’i’:

new/usr/src/cmd/zfs/zfs_main.c 58

3755 if (fromname)
3756 usage(B_FALSE);
3757 fromname = optarg;
3758 break;
3759 case ’v’:
3760 flags.verbose = B_TRUE;
3761 break;
3762 case ’:’:
3763 (void) fprintf(stderr, gettext("missing argument for "
3764 "’%c’ option\n"), optopt);
3765 usage(B_FALSE);
3766 break;
3767 case ’?’:
3768 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
3769 optopt);
3770 usage(B_FALSE);
3771 }
3772 }

3774 argc -= optind;
3775 argv += optind;

3777 /* check number of arguments */
3778 if (argc < 1) {
3779 (void) fprintf(stderr, gettext("missing snapshot argument\n"));
3780 usage(B_FALSE);
3781 }
3782 if (argc > 1) {
3783 (void) fprintf(stderr, gettext("too many arguments\n"));
3784 usage(B_FALSE);
3785 }

3787 if (isatty(STDOUT_FILENO)) {
3788 (void) fprintf(stderr,
3789 gettext("Error: Stream can not be written to a terminal.\n"
3790 "You must redirect standard output.\n"));
3791 return (1);
3792 }

3794 cp = strchr(argv[0], ’@’);
3795 if (cp == NULL) {
3796 (void) fprintf(stderr,
3797 gettext("argument must be a snapshot\n"));
3798 usage(B_FALSE);
3799 }
3800 *cp = ’\0’;
3801 toname = cp + 1;
3802 zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_FILESYSTEM);
3803 if (zhp == NULL)
3804 return (1);

3806 /*
3807 * If they specified the full path to the snapshot, chop off
3808 * everything except the short name of the snapshot, but special
3809 * case if they specify the origin.
3810 */
3811 if (fromname && (cp = strchr(fromname, ’@’)) != NULL) {
3812 char origin[ZFS_MAXNAMELEN];
3813 zprop_source_t src;

3815 (void) zfs_prop_get(zhp, ZFS_PROP_ORIGIN,
3816 origin, sizeof (origin), &src, NULL, 0, B_FALSE);

3818 if (strcmp(origin, fromname) == 0) {
3819 fromname = NULL;
3820 flags.fromorigin = B_TRUE;

new/usr/src/cmd/zfs/zfs_main.c 59

3821 } else {
3822 *cp = ’\0’;
3823 if (cp != fromname && strcmp(argv[0], fromname)) {
3824 (void) fprintf(stderr,
3825 gettext("incremental source must be "
3826 "in same filesystem\n"));
3827 usage(B_FALSE);
3828 }
3829 fromname = cp + 1;
3830 if (strchr(fromname, ’@’) || strchr(fromname, ’/’)) {
3831 (void) fprintf(stderr,
3832 gettext("invalid incremental source\n"));
3833 usage(B_FALSE);
3834 }
3835 }
3836 }

3838 err = zfs_fits_send(zhp, fromname, toname, &flags, STDOUT_FILENO,
3839 NULL, 0);

3841 zfs_close(zhp);

3843 return (err != 0);
3844 }

3846 /*
3847 #endif /* ! codereview */
3848 * allow/unallow stuff
3849 */
3850 /* copied from zfs/sys/dsl_deleg.h */
3851 #define ZFS_DELEG_PERM_CREATE "create"
3852 #define ZFS_DELEG_PERM_DESTROY "destroy"
3853 #define ZFS_DELEG_PERM_SNAPSHOT "snapshot"
3854 #define ZFS_DELEG_PERM_ROLLBACK "rollback"
3855 #define ZFS_DELEG_PERM_CLONE "clone"
3856 #define ZFS_DELEG_PERM_PROMOTE "promote"
3857 #define ZFS_DELEG_PERM_RENAME "rename"
3858 #define ZFS_DELEG_PERM_MOUNT "mount"
3859 #define ZFS_DELEG_PERM_SHARE "share"
3860 #define ZFS_DELEG_PERM_SEND "send"
3861 #define ZFS_DELEG_PERM_RECEIVE "receive"
3862 #define ZFS_DELEG_PERM_ALLOW "allow"
3863 #define ZFS_DELEG_PERM_USERPROP "userprop"
3864 #define ZFS_DELEG_PERM_VSCAN "vscan" /* ??? */
3865 #define ZFS_DELEG_PERM_USERQUOTA "userquota"
3866 #define ZFS_DELEG_PERM_GROUPQUOTA "groupquota"
3867 #define ZFS_DELEG_PERM_USERUSED "userused"
3868 #define ZFS_DELEG_PERM_GROUPUSED "groupused"
3869 #define ZFS_DELEG_PERM_HOLD "hold"
3870 #define ZFS_DELEG_PERM_RELEASE "release"
3871 #define ZFS_DELEG_PERM_DIFF "diff"

3873 #define ZFS_NUM_DELEG_NOTES ZFS_DELEG_NOTE_NONE

3875 static zfs_deleg_perm_tab_t zfs_deleg_perm_tbl[] = {
3876 { ZFS_DELEG_PERM_ALLOW, ZFS_DELEG_NOTE_ALLOW },
3877 { ZFS_DELEG_PERM_CLONE, ZFS_DELEG_NOTE_CLONE },
3878 { ZFS_DELEG_PERM_CREATE, ZFS_DELEG_NOTE_CREATE },
3879 { ZFS_DELEG_PERM_DESTROY, ZFS_DELEG_NOTE_DESTROY },
3880 { ZFS_DELEG_PERM_DIFF, ZFS_DELEG_NOTE_DIFF},
3881 { ZFS_DELEG_PERM_HOLD, ZFS_DELEG_NOTE_HOLD },
3882 { ZFS_DELEG_PERM_MOUNT, ZFS_DELEG_NOTE_MOUNT },
3883 { ZFS_DELEG_PERM_PROMOTE, ZFS_DELEG_NOTE_PROMOTE },
3884 { ZFS_DELEG_PERM_RECEIVE, ZFS_DELEG_NOTE_RECEIVE },
3885 { ZFS_DELEG_PERM_RELEASE, ZFS_DELEG_NOTE_RELEASE },
3886 { ZFS_DELEG_PERM_RENAME, ZFS_DELEG_NOTE_RENAME },

new/usr/src/cmd/zfs/zfs_main.c 60

3887 { ZFS_DELEG_PERM_ROLLBACK, ZFS_DELEG_NOTE_ROLLBACK },
3888 { ZFS_DELEG_PERM_SEND, ZFS_DELEG_NOTE_SEND },
3889 { ZFS_DELEG_PERM_SHARE, ZFS_DELEG_NOTE_SHARE },
3890 { ZFS_DELEG_PERM_SNAPSHOT, ZFS_DELEG_NOTE_SNAPSHOT },

3892 { ZFS_DELEG_PERM_GROUPQUOTA, ZFS_DELEG_NOTE_GROUPQUOTA },
3893 { ZFS_DELEG_PERM_GROUPUSED, ZFS_DELEG_NOTE_GROUPUSED },
3894 { ZFS_DELEG_PERM_USERPROP, ZFS_DELEG_NOTE_USERPROP },
3895 { ZFS_DELEG_PERM_USERQUOTA, ZFS_DELEG_NOTE_USERQUOTA },
3896 { ZFS_DELEG_PERM_USERUSED, ZFS_DELEG_NOTE_USERUSED },
3897 { NULL, ZFS_DELEG_NOTE_NONE }
3898 };

3900 /* permission structure */
3901 typedef struct deleg_perm {
3902 zfs_deleg_who_type_t dp_who_type;
3903 const char *dp_name;
3904 boolean_t dp_local;
3905 boolean_t dp_descend;
3906 } deleg_perm_t;

3908 /* */
3909 typedef struct deleg_perm_node {
3910 deleg_perm_t dpn_perm;

3912 uu_avl_node_t dpn_avl_node;
3913 } deleg_perm_node_t;

3915 typedef struct fs_perm fs_perm_t;

3917 /* permissions set */
3918 typedef struct who_perm {
3919 zfs_deleg_who_type_t who_type;
3920 const char *who_name; /* id */
3921 char who_ug_name[256]; /* user/group name */
3922 fs_perm_t *who_fsperm; /* uplink */

3924 uu_avl_t *who_deleg_perm_avl; /* permissions */
3925 } who_perm_t;

3927 /* */
3928 typedef struct who_perm_node {
3929 who_perm_t who_perm;
3930 uu_avl_node_t who_avl_node;
3931 } who_perm_node_t;

3933 typedef struct fs_perm_set fs_perm_set_t;
3934 /* fs permissions */
3935 struct fs_perm {
3936 const char *fsp_name;

3938 uu_avl_t *fsp_sc_avl; /* sets,create */
3939 uu_avl_t *fsp_uge_avl; /* user,group,everyone */

3941 fs_perm_set_t *fsp_set; /* uplink */
3942 };

3944 /* */
3945 typedef struct fs_perm_node {
3946 fs_perm_t fspn_fsperm;
3947 uu_avl_t *fspn_avl;

3949 uu_list_node_t fspn_list_node;
3950 } fs_perm_node_t;

3952 /* top level structure */

new/usr/src/cmd/zfs/zfs_main.c 61

3953 struct fs_perm_set {
3954 uu_list_pool_t *fsps_list_pool;
3955 uu_list_t *fsps_list; /* list of fs_perms */

3957 uu_avl_pool_t *fsps_named_set_avl_pool;
3958 uu_avl_pool_t *fsps_who_perm_avl_pool;
3959 uu_avl_pool_t *fsps_deleg_perm_avl_pool;
3960 };

3962 static inline const char *
3963 deleg_perm_type(zfs_deleg_note_t note)
3964 {
3965 /* subcommands */
3966 switch (note) {
3967 /* SUBCOMMANDS */
3968 /* OTHER */
3969 case ZFS_DELEG_NOTE_GROUPQUOTA:
3970 case ZFS_DELEG_NOTE_GROUPUSED:
3971 case ZFS_DELEG_NOTE_USERPROP:
3972 case ZFS_DELEG_NOTE_USERQUOTA:
3973 case ZFS_DELEG_NOTE_USERUSED:
3974 /* other */
3975 return (gettext("other"));
3976 default:
3977 return (gettext("subcommand"));
3978 }
3979 }

3981 static int inline
3982 who_type2weight(zfs_deleg_who_type_t who_type)
3983 {
3984 int res;
3985 switch (who_type) {
3986 case ZFS_DELEG_NAMED_SET_SETS:
3987 case ZFS_DELEG_NAMED_SET:
3988 res = 0;
3989 break;
3990 case ZFS_DELEG_CREATE_SETS:
3991 case ZFS_DELEG_CREATE:
3992 res = 1;
3993 break;
3994 case ZFS_DELEG_USER_SETS:
3995 case ZFS_DELEG_USER:
3996 res = 2;
3997 break;
3998 case ZFS_DELEG_GROUP_SETS:
3999 case ZFS_DELEG_GROUP:
4000 res = 3;
4001 break;
4002 case ZFS_DELEG_EVERYONE_SETS:
4003 case ZFS_DELEG_EVERYONE:
4004 res = 4;
4005 break;
4006 default:
4007 res = -1;
4008 }

4010 return (res);
4011 }

4013 /* ARGSUSED */
4014 static int
4015 who_perm_compare(const void *larg, const void *rarg, void *unused)
4016 {
4017 const who_perm_node_t *l = larg;
4018 const who_perm_node_t *r = rarg;

new/usr/src/cmd/zfs/zfs_main.c 62

4019 zfs_deleg_who_type_t ltype = l->who_perm.who_type;
4020 zfs_deleg_who_type_t rtype = r->who_perm.who_type;
4021 int lweight = who_type2weight(ltype);
4022 int rweight = who_type2weight(rtype);
4023 int res = lweight - rweight;
4024 if (res == 0)
4025 res = strncmp(l->who_perm.who_name, r->who_perm.who_name,
4026 ZFS_MAX_DELEG_NAME-1);

4028 if (res == 0)
4029 return (0);
4030 if (res > 0)
4031 return (1);
4032 else
4033 return (-1);
4034 }

4036 /* ARGSUSED */
4037 static int
4038 deleg_perm_compare(const void *larg, const void *rarg, void *unused)
4039 {
4040 const deleg_perm_node_t *l = larg;
4041 const deleg_perm_node_t *r = rarg;
4042 int res = strncmp(l->dpn_perm.dp_name, r->dpn_perm.dp_name,
4043 ZFS_MAX_DELEG_NAME-1);

4045 if (res == 0)
4046 return (0);

4048 if (res > 0)
4049 return (1);
4050 else
4051 return (-1);
4052 }

4054 static inline void
4055 fs_perm_set_init(fs_perm_set_t *fspset)
4056 {
4057 bzero(fspset, sizeof (fs_perm_set_t));

4059 if ((fspset->fsps_list_pool = uu_list_pool_create("fsps_list_pool",
4060 sizeof (fs_perm_node_t), offsetof(fs_perm_node_t, fspn_list_node),
4061 NULL, UU_DEFAULT)) == NULL)
4062 nomem();
4063 if ((fspset->fsps_list = uu_list_create(fspset->fsps_list_pool, NULL,
4064 UU_DEFAULT)) == NULL)
4065 nomem();

4067 if ((fspset->fsps_named_set_avl_pool = uu_avl_pool_create(
4068 "named_set_avl_pool", sizeof (who_perm_node_t), offsetof(
4069 who_perm_node_t, who_avl_node), who_perm_compare,
4070 UU_DEFAULT)) == NULL)
4071 nomem();

4073 if ((fspset->fsps_who_perm_avl_pool = uu_avl_pool_create(
4074 "who_perm_avl_pool", sizeof (who_perm_node_t), offsetof(
4075 who_perm_node_t, who_avl_node), who_perm_compare,
4076 UU_DEFAULT)) == NULL)
4077 nomem();

4079 if ((fspset->fsps_deleg_perm_avl_pool = uu_avl_pool_create(
4080 "deleg_perm_avl_pool", sizeof (deleg_perm_node_t), offsetof(
4081 deleg_perm_node_t, dpn_avl_node), deleg_perm_compare, UU_DEFAULT))
4082 == NULL)
4083 nomem();
4084 }

new/usr/src/cmd/zfs/zfs_main.c 63

4086 static inline void fs_perm_fini(fs_perm_t *);
4087 static inline void who_perm_fini(who_perm_t *);

4089 static inline void
4090 fs_perm_set_fini(fs_perm_set_t *fspset)
4091 {
4092 fs_perm_node_t *node = uu_list_first(fspset->fsps_list);

4094 while (node != NULL) {
4095 fs_perm_node_t *next_node =
4096 uu_list_next(fspset->fsps_list, node);
4097 fs_perm_t *fsperm = &node->fspn_fsperm;
4098 fs_perm_fini(fsperm);
4099 uu_list_remove(fspset->fsps_list, node);
4100 free(node);
4101 node = next_node;
4102 }

4104 uu_avl_pool_destroy(fspset->fsps_named_set_avl_pool);
4105 uu_avl_pool_destroy(fspset->fsps_who_perm_avl_pool);
4106 uu_avl_pool_destroy(fspset->fsps_deleg_perm_avl_pool);
4107 }

4109 static inline void
4110 deleg_perm_init(deleg_perm_t *deleg_perm, zfs_deleg_who_type_t type,
4111 const char *name)
4112 {
4113 deleg_perm->dp_who_type = type;
4114 deleg_perm->dp_name = name;
4115 }

4117 static inline void
4118 who_perm_init(who_perm_t *who_perm, fs_perm_t *fsperm,
4119 zfs_deleg_who_type_t type, const char *name)
4120 {
4121 uu_avl_pool_t *pool;
4122 pool = fsperm->fsp_set->fsps_deleg_perm_avl_pool;

4124 bzero(who_perm, sizeof (who_perm_t));

4126 if ((who_perm->who_deleg_perm_avl = uu_avl_create(pool, NULL,
4127 UU_DEFAULT)) == NULL)
4128 nomem();

4130 who_perm->who_type = type;
4131 who_perm->who_name = name;
4132 who_perm->who_fsperm = fsperm;
4133 }

4135 static inline void
4136 who_perm_fini(who_perm_t *who_perm)
4137 {
4138 deleg_perm_node_t *node = uu_avl_first(who_perm->who_deleg_perm_avl);

4140 while (node != NULL) {
4141 deleg_perm_node_t *next_node =
4142 uu_avl_next(who_perm->who_deleg_perm_avl, node);

4144 uu_avl_remove(who_perm->who_deleg_perm_avl, node);
4145 free(node);
4146 node = next_node;
4147 }

4149 uu_avl_destroy(who_perm->who_deleg_perm_avl);
4150 }

new/usr/src/cmd/zfs/zfs_main.c 64

4152 static inline void
4153 fs_perm_init(fs_perm_t *fsperm, fs_perm_set_t *fspset, const char *fsname)
4154 {
4155 uu_avl_pool_t *nset_pool = fspset->fsps_named_set_avl_pool;
4156 uu_avl_pool_t *who_pool = fspset->fsps_who_perm_avl_pool;

4158 bzero(fsperm, sizeof (fs_perm_t));

4160 if ((fsperm->fsp_sc_avl = uu_avl_create(nset_pool, NULL, UU_DEFAULT))
4161 == NULL)
4162 nomem();

4164 if ((fsperm->fsp_uge_avl = uu_avl_create(who_pool, NULL, UU_DEFAULT))
4165 == NULL)
4166 nomem();

4168 fsperm->fsp_set = fspset;
4169 fsperm->fsp_name = fsname;
4170 }

4172 static inline void
4173 fs_perm_fini(fs_perm_t *fsperm)
4174 {
4175 who_perm_node_t *node = uu_avl_first(fsperm->fsp_sc_avl);
4176 while (node != NULL) {
4177 who_perm_node_t *next_node = uu_avl_next(fsperm->fsp_sc_avl,
4178 node);
4179 who_perm_t *who_perm = &node->who_perm;
4180 who_perm_fini(who_perm);
4181 uu_avl_remove(fsperm->fsp_sc_avl, node);
4182 free(node);
4183 node = next_node;
4184 }

4186 node = uu_avl_first(fsperm->fsp_uge_avl);
4187 while (node != NULL) {
4188 who_perm_node_t *next_node = uu_avl_next(fsperm->fsp_uge_avl,
4189 node);
4190 who_perm_t *who_perm = &node->who_perm;
4191 who_perm_fini(who_perm);
4192 uu_avl_remove(fsperm->fsp_uge_avl, node);
4193 free(node);
4194 node = next_node;
4195 }

4197 uu_avl_destroy(fsperm->fsp_sc_avl);
4198 uu_avl_destroy(fsperm->fsp_uge_avl);
4199 }

4201 static void inline
4202 set_deleg_perm_node(uu_avl_t *avl, deleg_perm_node_t *node,
4203 zfs_deleg_who_type_t who_type, const char *name, char locality)
4204 {
4205 uu_avl_index_t idx = 0;

4207 deleg_perm_node_t *found_node = NULL;
4208 deleg_perm_t *deleg_perm = &node->dpn_perm;

4210 deleg_perm_init(deleg_perm, who_type, name);

4212 if ((found_node = uu_avl_find(avl, node, NULL, &idx))
4213 == NULL)
4214 uu_avl_insert(avl, node, idx);
4215 else {
4216 node = found_node;

new/usr/src/cmd/zfs/zfs_main.c 65

4217 deleg_perm = &node->dpn_perm;
4218 }

4221 switch (locality) {
4222 case ZFS_DELEG_LOCAL:
4223 deleg_perm->dp_local = B_TRUE;
4224 break;
4225 case ZFS_DELEG_DESCENDENT:
4226 deleg_perm->dp_descend = B_TRUE;
4227 break;
4228 case ZFS_DELEG_NA:
4229 break;
4230 default:
4231 assert(B_FALSE); /* invalid locality */
4232 }
4233 }

4235 static inline int
4236 parse_who_perm(who_perm_t *who_perm, nvlist_t *nvl, char locality)
4237 {
4238 nvpair_t *nvp = NULL;
4239 fs_perm_set_t *fspset = who_perm->who_fsperm->fsp_set;
4240 uu_avl_t *avl = who_perm->who_deleg_perm_avl;
4241 zfs_deleg_who_type_t who_type = who_perm->who_type;

4243 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4244 const char *name = nvpair_name(nvp);
4245 data_type_t type = nvpair_type(nvp);
4246 uu_avl_pool_t *avl_pool = fspset->fsps_deleg_perm_avl_pool;
4247 deleg_perm_node_t *node =
4248 safe_malloc(sizeof (deleg_perm_node_t));

4250 assert(type == DATA_TYPE_BOOLEAN);

4252 uu_avl_node_init(node, &node->dpn_avl_node, avl_pool);
4253 set_deleg_perm_node(avl, node, who_type, name, locality);
4254 }

4256 return (0);
4257 }

4259 static inline int
4260 parse_fs_perm(fs_perm_t *fsperm, nvlist_t *nvl)
4261 {
4262 nvpair_t *nvp = NULL;
4263 fs_perm_set_t *fspset = fsperm->fsp_set;

4265 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4266 nvlist_t *nvl2 = NULL;
4267 const char *name = nvpair_name(nvp);
4268 uu_avl_t *avl = NULL;
4269 uu_avl_pool_t *avl_pool;
4270 zfs_deleg_who_type_t perm_type = name[0];
4271 char perm_locality = name[1];
4272 const char *perm_name = name + 3;
4273 boolean_t is_set = B_TRUE;
4274 who_perm_t *who_perm = NULL;

4276 assert(’$’ == name[2]);

4278 if (nvpair_value_nvlist(nvp, &nvl2) != 0)
4279 return (-1);

4281 switch (perm_type) {
4282 case ZFS_DELEG_CREATE:

new/usr/src/cmd/zfs/zfs_main.c 66

4283 case ZFS_DELEG_CREATE_SETS:
4284 case ZFS_DELEG_NAMED_SET:
4285 case ZFS_DELEG_NAMED_SET_SETS:
4286 avl_pool = fspset->fsps_named_set_avl_pool;
4287 avl = fsperm->fsp_sc_avl;
4288 break;
4289 case ZFS_DELEG_USER:
4290 case ZFS_DELEG_USER_SETS:
4291 case ZFS_DELEG_GROUP:
4292 case ZFS_DELEG_GROUP_SETS:
4293 case ZFS_DELEG_EVERYONE:
4294 case ZFS_DELEG_EVERYONE_SETS:
4295 avl_pool = fspset->fsps_who_perm_avl_pool;
4296 avl = fsperm->fsp_uge_avl;
4297 break;
4298 }

4300 if (is_set) {
4301 who_perm_node_t *found_node = NULL;
4302 who_perm_node_t *node = safe_malloc(
4303 sizeof (who_perm_node_t));
4304 who_perm = &node->who_perm;
4305 uu_avl_index_t idx = 0;

4307 uu_avl_node_init(node, &node->who_avl_node, avl_pool);
4308 who_perm_init(who_perm, fsperm, perm_type, perm_name);

4310 if ((found_node = uu_avl_find(avl, node, NULL, &idx))
4311 == NULL) {
4312 if (avl == fsperm->fsp_uge_avl) {
4313 uid_t rid = 0;
4314 struct passwd *p = NULL;
4315 struct group *g = NULL;
4316 const char *nice_name = NULL;

4318 switch (perm_type) {
4319 case ZFS_DELEG_USER_SETS:
4320 case ZFS_DELEG_USER:
4321 rid = atoi(perm_name);
4322 p = getpwuid(rid);
4323 if (p)
4324 nice_name = p->pw_name;
4325 break;
4326 case ZFS_DELEG_GROUP_SETS:
4327 case ZFS_DELEG_GROUP:
4328 rid = atoi(perm_name);
4329 g = getgrgid(rid);
4330 if (g)
4331 nice_name = g->gr_name;
4332 break;
4333 }

4335 if (nice_name != NULL)
4336 (void) strlcpy(
4337 node->who_perm.who_ug_name,
4338 nice_name, 256);
4339 }

4341 uu_avl_insert(avl, node, idx);
4342 } else {
4343 node = found_node;
4344 who_perm = &node->who_perm;
4345 }
4346 }

4348 (void) parse_who_perm(who_perm, nvl2, perm_locality);

new/usr/src/cmd/zfs/zfs_main.c 67

4349 }

4351 return (0);
4352 }

4354 static inline int
4355 parse_fs_perm_set(fs_perm_set_t *fspset, nvlist_t *nvl)
4356 {
4357 nvpair_t *nvp = NULL;
4358 uu_avl_index_t idx = 0;

4360 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4361 nvlist_t *nvl2 = NULL;
4362 const char *fsname = nvpair_name(nvp);
4363 data_type_t type = nvpair_type(nvp);
4364 fs_perm_t *fsperm = NULL;
4365 fs_perm_node_t *node = safe_malloc(sizeof (fs_perm_node_t));
4366 if (node == NULL)
4367 nomem();

4369 fsperm = &node->fspn_fsperm;

4371 assert(DATA_TYPE_NVLIST == type);

4373 uu_list_node_init(node, &node->fspn_list_node,
4374 fspset->fsps_list_pool);

4376 idx = uu_list_numnodes(fspset->fsps_list);
4377 fs_perm_init(fsperm, fspset, fsname);

4379 if (nvpair_value_nvlist(nvp, &nvl2) != 0)
4380 return (-1);

4382 (void) parse_fs_perm(fsperm, nvl2);

4384 uu_list_insert(fspset->fsps_list, node, idx);
4385 }

4387 return (0);
4388 }

4390 static inline const char *
4391 deleg_perm_comment(zfs_deleg_note_t note)
4392 {
4393 const char *str = "";

4395 /* subcommands */
4396 switch (note) {
4397 /* SUBCOMMANDS */
4398 case ZFS_DELEG_NOTE_ALLOW:
4399 str = gettext("Must also have the permission that is being"
4400 "\n\t\t\t\tallowed");
4401 break;
4402 case ZFS_DELEG_NOTE_CLONE:
4403 str = gettext("Must also have the ’create’ ability and ’mount’"
4404 "\n\t\t\t\tability in the origin file system");
4405 break;
4406 case ZFS_DELEG_NOTE_CREATE:
4407 str = gettext("Must also have the ’mount’ ability");
4408 break;
4409 case ZFS_DELEG_NOTE_DESTROY:
4410 str = gettext("Must also have the ’mount’ ability");
4411 break;
4412 case ZFS_DELEG_NOTE_DIFF:
4413 str = gettext("Allows lookup of paths within a dataset;"
4414 "\n\t\t\t\tgiven an object number. Ordinary users need this"

new/usr/src/cmd/zfs/zfs_main.c 68

4415 "\n\t\t\t\tin order to use zfs diff");
4416 break;
4417 case ZFS_DELEG_NOTE_HOLD:
4418 str = gettext("Allows adding a user hold to a snapshot");
4419 break;
4420 case ZFS_DELEG_NOTE_MOUNT:
4421 str = gettext("Allows mount/umount of ZFS datasets");
4422 break;
4423 case ZFS_DELEG_NOTE_PROMOTE:
4424 str = gettext("Must also have the ’mount’\n\t\t\t\tand"
4425 " ’promote’ ability in the origin file system");
4426 break;
4427 case ZFS_DELEG_NOTE_RECEIVE:
4428 str = gettext("Must also have the ’mount’ and ’create’"
4429 " ability");
4430 break;
4431 case ZFS_DELEG_NOTE_RELEASE:
4432 str = gettext("Allows releasing a user hold which\n\t\t\t\t"
4433 "might destroy the snapshot");
4434 break;
4435 case ZFS_DELEG_NOTE_RENAME:
4436 str = gettext("Must also have the ’mount’ and ’create’"
4437 "\n\t\t\t\tability in the new parent");
4438 break;
4439 case ZFS_DELEG_NOTE_ROLLBACK:
4440 str = gettext("");
4441 break;
4442 case ZFS_DELEG_NOTE_SEND:
4443 str = gettext("");
4444 break;
4445 case ZFS_DELEG_NOTE_SHARE:
4446 str = gettext("Allows sharing file systems over NFS or SMB"
4447 "\n\t\t\t\tprotocols");
4448 break;
4449 case ZFS_DELEG_NOTE_SNAPSHOT:
4450 str = gettext("");
4451 break;
4452 /*
4453 * case ZFS_DELEG_NOTE_VSCAN:
4454 * str = gettext("");
4455 * break;
4456 */
4457 /* OTHER */
4458 case ZFS_DELEG_NOTE_GROUPQUOTA:
4459 str = gettext("Allows accessing any groupquota@... property");
4460 break;
4461 case ZFS_DELEG_NOTE_GROUPUSED:
4462 str = gettext("Allows reading any groupused@... property");
4463 break;
4464 case ZFS_DELEG_NOTE_USERPROP:
4465 str = gettext("Allows changing any user property");
4466 break;
4467 case ZFS_DELEG_NOTE_USERQUOTA:
4468 str = gettext("Allows accessing any userquota@... property");
4469 break;
4470 case ZFS_DELEG_NOTE_USERUSED:
4471 str = gettext("Allows reading any userused@... property");
4472 break;
4473 /* other */
4474 default:
4475 str = "";
4476 }

4478 return (str);
4479 }

new/usr/src/cmd/zfs/zfs_main.c 69

4481 struct allow_opts {
4482 boolean_t local;
4483 boolean_t descend;
4484 boolean_t user;
4485 boolean_t group;
4486 boolean_t everyone;
4487 boolean_t create;
4488 boolean_t set;
4489 boolean_t recursive; /* unallow only */
4490 boolean_t prt_usage;

4492 boolean_t prt_perms;
4493 char *who;
4494 char *perms;
4495 const char *dataset;
4496 };

4498 static inline int
4499 prop_cmp(const void *a, const void *b)
4500 {
4501 const char *str1 = *(const char **)a;
4502 const char *str2 = *(const char **)b;
4503 return (strcmp(str1, str2));
4504 }

4506 static void
4507 allow_usage(boolean_t un, boolean_t requested, const char *msg)
4508 {
4509 const char *opt_desc[] = {
4510 "-h", gettext("show this help message and exit"),
4511 "-l", gettext("set permission locally"),
4512 "-d", gettext("set permission for descents"),
4513 "-u", gettext("set permission for user"),
4514 "-g", gettext("set permission for group"),
4515 "-e", gettext("set permission for everyone"),
4516 "-c", gettext("set create time permission"),
4517 "-s", gettext("define permission set"),
4518 /* unallow only */
4519 "-r", gettext("remove permissions recursively"),
4520 };
4521 size_t unallow_size = sizeof (opt_desc) / sizeof (char *);
4522 size_t allow_size = unallow_size - 2;
4523 const char *props[ZFS_NUM_PROPS];
4524 int i;
4525 size_t count = 0;
4526 FILE *fp = requested ? stdout : stderr;
4527 zprop_desc_t *pdtbl = zfs_prop_get_table();
4528 const char *fmt = gettext("%-16s %-14s\t%s\n");

4530 (void) fprintf(fp, gettext("Usage: %s\n"), get_usage(un ? HELP_UNALLOW :
4531 HELP_ALLOW));
4532 (void) fprintf(fp, gettext("Options:\n"));
4533 for (int i = 0; i < (un ? unallow_size : allow_size); i++) {
4534 const char *opt = opt_desc[i++];
4535 const char *optdsc = opt_desc[i];
4536 (void) fprintf(fp, gettext(" %-10s %s\n"), opt, optdsc);
4537 }

4539 (void) fprintf(fp, gettext("\nThe following permissions are "
4540 "supported:\n\n"));
4541 (void) fprintf(fp, fmt, gettext("NAME"), gettext("TYPE"),
4542 gettext("NOTES"));
4543 for (i = 0; i < ZFS_NUM_DELEG_NOTES; i++) {
4544 const char *perm_name = zfs_deleg_perm_tbl[i].z_perm;
4545 zfs_deleg_note_t perm_note = zfs_deleg_perm_tbl[i].z_note;
4546 const char *perm_type = deleg_perm_type(perm_note);

new/usr/src/cmd/zfs/zfs_main.c 70

4547 const char *perm_comment = deleg_perm_comment(perm_note);
4548 (void) fprintf(fp, fmt, perm_name, perm_type, perm_comment);
4549 }

4551 for (i = 0; i < ZFS_NUM_PROPS; i++) {
4552 zprop_desc_t *pd = &pdtbl[i];
4553 if (pd->pd_visible != B_TRUE)
4554 continue;

4556 if (pd->pd_attr == PROP_READONLY)
4557 continue;

4559 props[count++] = pd->pd_name;
4560 }
4561 props[count] = NULL;

4563 qsort(props, count, sizeof (char *), prop_cmp);

4565 for (i = 0; i < count; i++)
4566 (void) fprintf(fp, fmt, props[i], gettext("property"), "");

4568 if (msg != NULL)
4569 (void) fprintf(fp, gettext("\nzfs: error: %s"), msg);

4571 exit(requested ? 0 : 2);
4572 }

4574 static inline const char *
4575 munge_args(int argc, char **argv, boolean_t un, size_t expected_argc,
4576 char **permsp)
4577 {
4578 if (un && argc == expected_argc - 1)
4579 *permsp = NULL;
4580 else if (argc == expected_argc)
4581 *permsp = argv[argc - 2];
4582 else
4583 allow_usage(un, B_FALSE,
4584 gettext("wrong number of parameters\n"));

4586 return (argv[argc - 1]);
4587 }

4589 static void
4590 parse_allow_args(int argc, char **argv, boolean_t un, struct allow_opts *opts)
4591 {
4592 int uge_sum = opts->user + opts->group + opts->everyone;
4593 int csuge_sum = opts->create + opts->set + uge_sum;
4594 int ldcsuge_sum = csuge_sum + opts->local + opts->descend;
4595 int all_sum = un ? ldcsuge_sum + opts->recursive : ldcsuge_sum;

4597 if (uge_sum > 1)
4598 allow_usage(un, B_FALSE,
4599 gettext("-u, -g, and -e are mutually exclusive\n"));

4601 if (opts->prt_usage)
4602 if (argc == 0 && all_sum == 0)
4603 allow_usage(un, B_TRUE, NULL);
4604 else
4605 usage(B_FALSE);

4607 if (opts->set) {
4608 if (csuge_sum > 1)
4609 allow_usage(un, B_FALSE,
4610 gettext("invalid options combined with -s\n"));

4612 opts->dataset = munge_args(argc, argv, un, 3, &opts->perms);

new/usr/src/cmd/zfs/zfs_main.c 71

4613 if (argv[0][0] != ’@’)
4614 allow_usage(un, B_FALSE,
4615 gettext("invalid set name: missing ’@’ prefix\n"));
4616 opts->who = argv[0];
4617 } else if (opts->create) {
4618 if (ldcsuge_sum > 1)
4619 allow_usage(un, B_FALSE,
4620 gettext("invalid options combined with -c\n"));
4621 opts->dataset = munge_args(argc, argv, un, 2, &opts->perms);
4622 } else if (opts->everyone) {
4623 if (csuge_sum > 1)
4624 allow_usage(un, B_FALSE,
4625 gettext("invalid options combined with -e\n"));
4626 opts->dataset = munge_args(argc, argv, un, 2, &opts->perms);
4627 } else if (uge_sum == 0 && argc > 0 && strcmp(argv[0], "everyone")
4628 == 0) {
4629 opts->everyone = B_TRUE;
4630 argc--;
4631 argv++;
4632 opts->dataset = munge_args(argc, argv, un, 2, &opts->perms);
4633 } else if (argc == 1 && !un) {
4634 opts->prt_perms = B_TRUE;
4635 opts->dataset = argv[argc-1];
4636 } else {
4637 opts->dataset = munge_args(argc, argv, un, 3, &opts->perms);
4638 opts->who = argv[0];
4639 }

4641 if (!opts->local && !opts->descend) {
4642 opts->local = B_TRUE;
4643 opts->descend = B_TRUE;
4644 }
4645 }

4647 static void
4648 store_allow_perm(zfs_deleg_who_type_t type, boolean_t local, boolean_t descend,
4649 const char *who, char *perms, nvlist_t *top_nvl)
4650 {
4651 int i;
4652 char ld[2] = { ’\0’, ’\0’ };
4653 char who_buf[ZFS_MAXNAMELEN+32];
4654 char base_type;
4655 char set_type;
4656 nvlist_t *base_nvl = NULL;
4657 nvlist_t *set_nvl = NULL;
4658 nvlist_t *nvl;

4660 if (nvlist_alloc(&base_nvl, NV_UNIQUE_NAME, 0) != 0)
4661 nomem();
4662 if (nvlist_alloc(&set_nvl, NV_UNIQUE_NAME, 0) != 0)
4663 nomem();

4665 switch (type) {
4666 case ZFS_DELEG_NAMED_SET_SETS:
4667 case ZFS_DELEG_NAMED_SET:
4668 set_type = ZFS_DELEG_NAMED_SET_SETS;
4669 base_type = ZFS_DELEG_NAMED_SET;
4670 ld[0] = ZFS_DELEG_NA;
4671 break;
4672 case ZFS_DELEG_CREATE_SETS:
4673 case ZFS_DELEG_CREATE:
4674 set_type = ZFS_DELEG_CREATE_SETS;
4675 base_type = ZFS_DELEG_CREATE;
4676 ld[0] = ZFS_DELEG_NA;
4677 break;
4678 case ZFS_DELEG_USER_SETS:

new/usr/src/cmd/zfs/zfs_main.c 72

4679 case ZFS_DELEG_USER:
4680 set_type = ZFS_DELEG_USER_SETS;
4681 base_type = ZFS_DELEG_USER;
4682 if (local)
4683 ld[0] = ZFS_DELEG_LOCAL;
4684 if (descend)
4685 ld[1] = ZFS_DELEG_DESCENDENT;
4686 break;
4687 case ZFS_DELEG_GROUP_SETS:
4688 case ZFS_DELEG_GROUP:
4689 set_type = ZFS_DELEG_GROUP_SETS;
4690 base_type = ZFS_DELEG_GROUP;
4691 if (local)
4692 ld[0] = ZFS_DELEG_LOCAL;
4693 if (descend)
4694 ld[1] = ZFS_DELEG_DESCENDENT;
4695 break;
4696 case ZFS_DELEG_EVERYONE_SETS:
4697 case ZFS_DELEG_EVERYONE:
4698 set_type = ZFS_DELEG_EVERYONE_SETS;
4699 base_type = ZFS_DELEG_EVERYONE;
4700 if (local)
4701 ld[0] = ZFS_DELEG_LOCAL;
4702 if (descend)
4703 ld[1] = ZFS_DELEG_DESCENDENT;
4704 }

4706 if (perms != NULL) {
4707 char *curr = perms;
4708 char *end = curr + strlen(perms);

4710 while (curr < end) {
4711 char *delim = strchr(curr, ’,’);
4712 if (delim == NULL)
4713 delim = end;
4714 else
4715 *delim = ’\0’;

4717 if (curr[0] == ’@’)
4718 nvl = set_nvl;
4719 else
4720 nvl = base_nvl;

4722 (void) nvlist_add_boolean(nvl, curr);
4723 if (delim != end)
4724 *delim = ’,’;
4725 curr = delim + 1;
4726 }

4728 for (i = 0; i < 2; i++) {
4729 char locality = ld[i];
4730 if (locality == 0)
4731 continue;

4733 if (!nvlist_empty(base_nvl)) {
4734 if (who != NULL)
4735 (void) snprintf(who_buf,
4736 sizeof (who_buf), "%c%c$%s",
4737 base_type, locality, who);
4738 else
4739 (void) snprintf(who_buf,
4740 sizeof (who_buf), "%c%c$",
4741 base_type, locality);

4743 (void) nvlist_add_nvlist(top_nvl, who_buf,
4744 base_nvl);

new/usr/src/cmd/zfs/zfs_main.c 73

4745 }

4748 if (!nvlist_empty(set_nvl)) {
4749 if (who != NULL)
4750 (void) snprintf(who_buf,
4751 sizeof (who_buf), "%c%c$%s",
4752 set_type, locality, who);
4753 else
4754 (void) snprintf(who_buf,
4755 sizeof (who_buf), "%c%c$",
4756 set_type, locality);

4758 (void) nvlist_add_nvlist(top_nvl, who_buf,
4759 set_nvl);
4760 }
4761 }
4762 } else {
4763 for (i = 0; i < 2; i++) {
4764 char locality = ld[i];
4765 if (locality == 0)
4766 continue;

4768 if (who != NULL)
4769 (void) snprintf(who_buf, sizeof (who_buf),
4770 "%c%c$%s", base_type, locality, who);
4771 else
4772 (void) snprintf(who_buf, sizeof (who_buf),
4773 "%c%c$", base_type, locality);
4774 (void) nvlist_add_boolean(top_nvl, who_buf);

4776 if (who != NULL)
4777 (void) snprintf(who_buf, sizeof (who_buf),
4778 "%c%c$%s", set_type, locality, who);
4779 else
4780 (void) snprintf(who_buf, sizeof (who_buf),
4781 "%c%c$", set_type, locality);
4782 (void) nvlist_add_boolean(top_nvl, who_buf);
4783 }
4784 }
4785 }

4787 static int
4788 construct_fsacl_list(boolean_t un, struct allow_opts *opts, nvlist_t **nvlp)
4789 {
4790 if (nvlist_alloc(nvlp, NV_UNIQUE_NAME, 0) != 0)
4791 nomem();

4793 if (opts->set) {
4794 store_allow_perm(ZFS_DELEG_NAMED_SET, opts->local,
4795 opts->descend, opts->who, opts->perms, *nvlp);
4796 } else if (opts->create) {
4797 store_allow_perm(ZFS_DELEG_CREATE, opts->local,
4798 opts->descend, NULL, opts->perms, *nvlp);
4799 } else if (opts->everyone) {
4800 store_allow_perm(ZFS_DELEG_EVERYONE, opts->local,
4801 opts->descend, NULL, opts->perms, *nvlp);
4802 } else {
4803 char *curr = opts->who;
4804 char *end = curr + strlen(curr);

4806 while (curr < end) {
4807 const char *who;
4808 zfs_deleg_who_type_t who_type;
4809 char *endch;
4810 char *delim = strchr(curr, ’,’);

new/usr/src/cmd/zfs/zfs_main.c 74

4811 char errbuf[256];
4812 char id[64];
4813 struct passwd *p = NULL;
4814 struct group *g = NULL;

4816 uid_t rid;
4817 if (delim == NULL)
4818 delim = end;
4819 else
4820 *delim = ’\0’;

4822 rid = (uid_t)strtol(curr, &endch, 0);
4823 if (opts->user) {
4824 who_type = ZFS_DELEG_USER;
4825 if (*endch != ’\0’)
4826 p = getpwnam(curr);
4827 else
4828 p = getpwuid(rid);

4830 if (p != NULL)
4831 rid = p->pw_uid;
4832 else {
4833 (void) snprintf(errbuf, 256, gettext(
4834 "invalid user %s"), curr);
4835 allow_usage(un, B_TRUE, errbuf);
4836 }
4837 } else if (opts->group) {
4838 who_type = ZFS_DELEG_GROUP;
4839 if (*endch != ’\0’)
4840 g = getgrnam(curr);
4841 else
4842 g = getgrgid(rid);

4844 if (g != NULL)
4845 rid = g->gr_gid;
4846 else {
4847 (void) snprintf(errbuf, 256, gettext(
4848 "invalid group %s"), curr);
4849 allow_usage(un, B_TRUE, errbuf);
4850 }
4851 } else {
4852 if (*endch != ’\0’) {
4853 p = getpwnam(curr);
4854 } else {
4855 p = getpwuid(rid);
4856 }

4858 if (p == NULL)
4859 if (*endch != ’\0’) {
4860 g = getgrnam(curr);
4861 } else {
4862 g = getgrgid(rid);
4863 }

4865 if (p != NULL) {
4866 who_type = ZFS_DELEG_USER;
4867 rid = p->pw_uid;
4868 } else if (g != NULL) {
4869 who_type = ZFS_DELEG_GROUP;
4870 rid = g->gr_gid;
4871 } else {
4872 (void) snprintf(errbuf, 256, gettext(
4873 "invalid user/group %s"), curr);
4874 allow_usage(un, B_TRUE, errbuf);
4875 }
4876 }

new/usr/src/cmd/zfs/zfs_main.c 75

4878 (void) sprintf(id, "%u", rid);
4879 who = id;

4881 store_allow_perm(who_type, opts->local,
4882 opts->descend, who, opts->perms, *nvlp);
4883 curr = delim + 1;
4884 }
4885 }

4887 return (0);
4888 }

4890 static void
4891 print_set_creat_perms(uu_avl_t *who_avl)
4892 {
4893 const char *sc_title[] = {
4894 gettext("Permission sets:\n"),
4895 gettext("Create time permissions:\n"),
4896 NULL
4897 };
4898 const char **title_ptr = sc_title;
4899 who_perm_node_t *who_node = NULL;
4900 int prev_weight = -1;

4902 for (who_node = uu_avl_first(who_avl); who_node != NULL;
4903 who_node = uu_avl_next(who_avl, who_node)) {
4904 uu_avl_t *avl = who_node->who_perm.who_deleg_perm_avl;
4905 zfs_deleg_who_type_t who_type = who_node->who_perm.who_type;
4906 const char *who_name = who_node->who_perm.who_name;
4907 int weight = who_type2weight(who_type);
4908 boolean_t first = B_TRUE;
4909 deleg_perm_node_t *deleg_node;

4911 if (prev_weight != weight) {
4912 (void) printf(*title_ptr++);
4913 prev_weight = weight;
4914 }

4916 if (who_name == NULL || strnlen(who_name, 1) == 0)
4917 (void) printf("\t");
4918 else
4919 (void) printf("\t%s ", who_name);

4921 for (deleg_node = uu_avl_first(avl); deleg_node != NULL;
4922 deleg_node = uu_avl_next(avl, deleg_node)) {
4923 if (first) {
4924 (void) printf("%s",
4925 deleg_node->dpn_perm.dp_name);
4926 first = B_FALSE;
4927 } else
4928 (void) printf(",%s",
4929 deleg_node->dpn_perm.dp_name);
4930 }

4932 (void) printf("\n");
4933 }
4934 }

4936 static void inline
4937 print_uge_deleg_perms(uu_avl_t *who_avl, boolean_t local, boolean_t descend,
4938 const char *title)
4939 {
4940 who_perm_node_t *who_node = NULL;
4941 boolean_t prt_title = B_TRUE;
4942 uu_avl_walk_t *walk;

new/usr/src/cmd/zfs/zfs_main.c 76

4944 if ((walk = uu_avl_walk_start(who_avl, UU_WALK_ROBUST)) == NULL)
4945 nomem();

4947 while ((who_node = uu_avl_walk_next(walk)) != NULL) {
4948 const char *who_name = who_node->who_perm.who_name;
4949 const char *nice_who_name = who_node->who_perm.who_ug_name;
4950 uu_avl_t *avl = who_node->who_perm.who_deleg_perm_avl;
4951 zfs_deleg_who_type_t who_type = who_node->who_perm.who_type;
4952 char delim = ’ ’;
4953 deleg_perm_node_t *deleg_node;
4954 boolean_t prt_who = B_TRUE;

4956 for (deleg_node = uu_avl_first(avl);
4957 deleg_node != NULL;
4958 deleg_node = uu_avl_next(avl, deleg_node)) {
4959 if (local != deleg_node->dpn_perm.dp_local ||
4960 descend != deleg_node->dpn_perm.dp_descend)
4961 continue;

4963 if (prt_who) {
4964 const char *who = NULL;
4965 if (prt_title) {
4966 prt_title = B_FALSE;
4967 (void) printf(title);
4968 }

4970 switch (who_type) {
4971 case ZFS_DELEG_USER_SETS:
4972 case ZFS_DELEG_USER:
4973 who = gettext("user");
4974 if (nice_who_name)
4975 who_name = nice_who_name;
4976 break;
4977 case ZFS_DELEG_GROUP_SETS:
4978 case ZFS_DELEG_GROUP:
4979 who = gettext("group");
4980 if (nice_who_name)
4981 who_name = nice_who_name;
4982 break;
4983 case ZFS_DELEG_EVERYONE_SETS:
4984 case ZFS_DELEG_EVERYONE:
4985 who = gettext("everyone");
4986 who_name = NULL;
4987 }

4989 prt_who = B_FALSE;
4990 if (who_name == NULL)
4991 (void) printf("\t%s", who);
4992 else
4993 (void) printf("\t%s %s", who, who_name);
4994 }

4996 (void) printf("%c%s", delim,
4997 deleg_node->dpn_perm.dp_name);
4998 delim = ’,’;
4999 }

5001 if (!prt_who)
5002 (void) printf("\n");
5003 }

5005 uu_avl_walk_end(walk);
5006 }

5008 static void

new/usr/src/cmd/zfs/zfs_main.c 77

5009 print_fs_perms(fs_perm_set_t *fspset)
5010 {
5011 fs_perm_node_t *node = NULL;
5012 char buf[ZFS_MAXNAMELEN+32];
5013 const char *dsname = buf;

5015 for (node = uu_list_first(fspset->fsps_list); node != NULL;
5016 node = uu_list_next(fspset->fsps_list, node)) {
5017 uu_avl_t *sc_avl = node->fspn_fsperm.fsp_sc_avl;
5018 uu_avl_t *uge_avl = node->fspn_fsperm.fsp_uge_avl;
5019 int left = 0;

5021 (void) snprintf(buf, ZFS_MAXNAMELEN+32,
5022 gettext("---- Permissions on %s "),
5023 node->fspn_fsperm.fsp_name);
5024 (void) printf(dsname);
5025 left = 70 - strlen(buf);
5026 while (left-- > 0)
5027 (void) printf("-");
5028 (void) printf("\n");

5030 print_set_creat_perms(sc_avl);
5031 print_uge_deleg_perms(uge_avl, B_TRUE, B_FALSE,
5032 gettext("Local permissions:\n"));
5033 print_uge_deleg_perms(uge_avl, B_FALSE, B_TRUE,
5034 gettext("Descendent permissions:\n"));
5035 print_uge_deleg_perms(uge_avl, B_TRUE, B_TRUE,
5036 gettext("Local+Descendent permissions:\n"));
5037 }
5038 }

5040 static fs_perm_set_t fs_perm_set = { NULL, NULL, NULL, NULL };

5042 struct deleg_perms {
5043 boolean_t un;
5044 nvlist_t *nvl;
5045 };

5047 static int
5048 set_deleg_perms(zfs_handle_t *zhp, void *data)
5049 {
5050 struct deleg_perms *perms = (struct deleg_perms *)data;
5051 zfs_type_t zfs_type = zfs_get_type(zhp);

5053 if (zfs_type != ZFS_TYPE_FILESYSTEM && zfs_type != ZFS_TYPE_VOLUME)
5054 return (0);

5056 return (zfs_set_fsacl(zhp, perms->un, perms->nvl));
5057 }

5059 static int
5060 zfs_do_allow_unallow_impl(int argc, char **argv, boolean_t un)
5061 {
5062 zfs_handle_t *zhp;
5063 nvlist_t *perm_nvl = NULL;
5064 nvlist_t *update_perm_nvl = NULL;
5065 int error = 1;
5066 int c;
5067 struct allow_opts opts = { 0 };

5069 const char *optstr = un ? "ldugecsrh" : "ldugecsh";

5071 /* check opts */
5072 while ((c = getopt(argc, argv, optstr)) != -1) {
5073 switch (c) {
5074 case ’l’:

new/usr/src/cmd/zfs/zfs_main.c 78

5075 opts.local = B_TRUE;
5076 break;
5077 case ’d’:
5078 opts.descend = B_TRUE;
5079 break;
5080 case ’u’:
5081 opts.user = B_TRUE;
5082 break;
5083 case ’g’:
5084 opts.group = B_TRUE;
5085 break;
5086 case ’e’:
5087 opts.everyone = B_TRUE;
5088 break;
5089 case ’s’:
5090 opts.set = B_TRUE;
5091 break;
5092 case ’c’:
5093 opts.create = B_TRUE;
5094 break;
5095 case ’r’:
5096 opts.recursive = B_TRUE;
5097 break;
5098 case ’:’:
5099 (void) fprintf(stderr, gettext("missing argument for "
5100 "’%c’ option\n"), optopt);
5101 usage(B_FALSE);
5102 break;
5103 case ’h’:
5104 opts.prt_usage = B_TRUE;
5105 break;
5106 case ’?’:
5107 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
5108 optopt);
5109 usage(B_FALSE);
5110 }
5111 }

5113 argc -= optind;
5114 argv += optind;

5116 /* check arguments */
5117 parse_allow_args(argc, argv, un, &opts);

5119 /* try to open the dataset */
5120 if ((zhp = zfs_open(g_zfs, opts.dataset, ZFS_TYPE_FILESYSTEM |
5121 ZFS_TYPE_VOLUME)) == NULL) {
5122 (void) fprintf(stderr, "Failed to open dataset: %s\n",
5123 opts.dataset);
5124 return (-1);
5125 }

5127 if (zfs_get_fsacl(zhp, &perm_nvl) != 0)
5128 goto cleanup2;

5130 fs_perm_set_init(&fs_perm_set);
5131 if (parse_fs_perm_set(&fs_perm_set, perm_nvl) != 0) {
5132 (void) fprintf(stderr, "Failed to parse fsacl permissions\n");
5133 goto cleanup1;
5134 }

5136 if (opts.prt_perms)
5137 print_fs_perms(&fs_perm_set);
5138 else {
5139 (void) construct_fsacl_list(un, &opts, &update_perm_nvl);
5140 if (zfs_set_fsacl(zhp, un, update_perm_nvl) != 0)

new/usr/src/cmd/zfs/zfs_main.c 79

5141 goto cleanup0;

5143 if (un && opts.recursive) {
5144 struct deleg_perms data = { un, update_perm_nvl };
5145 if (zfs_iter_filesystems(zhp, set_deleg_perms,
5146 &data) != 0)
5147 goto cleanup0;
5148 }
5149 }

5151 error = 0;

5153 cleanup0:
5154 nvlist_free(perm_nvl);
5155 if (update_perm_nvl != NULL)
5156 nvlist_free(update_perm_nvl);
5157 cleanup1:
5158 fs_perm_set_fini(&fs_perm_set);
5159 cleanup2:
5160 zfs_close(zhp);

5162 return (error);
5163 }

5165 /*
5166 * zfs allow [-r] [-t] <tag> <snap> ...
5167 *
5168 * -r Recursively hold
5169 * -t Temporary hold (hidden option)
5170 *
5171 * Apply a user-hold with the given tag to the list of snapshots.
5172 */
5173 static int
5174 zfs_do_allow(int argc, char **argv)
5175 {
5176 return (zfs_do_allow_unallow_impl(argc, argv, B_FALSE));
5177 }

5179 /*
5180 * zfs unallow [-r] [-t] <tag> <snap> ...
5181 *
5182 * -r Recursively hold
5183 * -t Temporary hold (hidden option)
5184 *
5185 * Apply a user-hold with the given tag to the list of snapshots.
5186 */
5187 static int
5188 zfs_do_unallow(int argc, char **argv)
5189 {
5190 return (zfs_do_allow_unallow_impl(argc, argv, B_TRUE));
5191 }

5193 static int
5194 zfs_do_hold_rele_impl(int argc, char **argv, boolean_t holding)
5195 {
5196 int errors = 0;
5197 int i;
5198 const char *tag;
5199 boolean_t recursive = B_FALSE;
5200 boolean_t temphold = B_FALSE;
5201 const char *opts = holding ? "rt" : "r";
5202 int c;

5204 /* check options */
5205 while ((c = getopt(argc, argv, opts)) != -1) {
5206 switch (c) {

new/usr/src/cmd/zfs/zfs_main.c 80

5207 case ’r’:
5208 recursive = B_TRUE;
5209 break;
5210 case ’t’:
5211 temphold = B_TRUE;
5212 break;
5213 case ’?’:
5214 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
5215 optopt);
5216 usage(B_FALSE);
5217 }
5218 }

5220 argc -= optind;
5221 argv += optind;

5223 /* check number of arguments */
5224 if (argc < 2)
5225 usage(B_FALSE);

5227 tag = argv[0];
5228 --argc;
5229 ++argv;

5231 if (holding && tag[0] == ’.’) {
5232 /* tags starting with ’.’ are reserved for libzfs */
5233 (void) fprintf(stderr, gettext("tag may not start with ’.’\n"));
5234 usage(B_FALSE);
5235 }

5237 for (i = 0; i < argc; ++i) {
5238 zfs_handle_t *zhp;
5239 char parent[ZFS_MAXNAMELEN];
5240 const char *delim;
5241 char *path = argv[i];

5243 delim = strchr(path, ’@’);
5244 if (delim == NULL) {
5245 (void) fprintf(stderr,
5246 gettext("’%s’ is not a snapshot\n"), path);
5247 ++errors;
5248 continue;
5249 }
5250 (void) strncpy(parent, path, delim - path);
5251 parent[delim - path] = ’\0’;

5253 zhp = zfs_open(g_zfs, parent,
5254 ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
5255 if (zhp == NULL) {
5256 ++errors;
5257 continue;
5258 }
5259 if (holding) {
5260 if (zfs_hold(zhp, delim+1, tag, recursive,
5261 temphold, B_FALSE, -1, 0, 0) != 0)
5262 ++errors;
5263 } else {
5264 if (zfs_release(zhp, delim+1, tag, recursive) != 0)
5265 ++errors;
5266 }
5267 zfs_close(zhp);
5268 }

5270 return (errors != 0);
5271 }

new/usr/src/cmd/zfs/zfs_main.c 81

5273 /*
5274 * zfs hold [-r] [-t] <tag> <snap> ...
5275 *
5276 * -r Recursively hold
5277 * -t Temporary hold (hidden option)
5278 *
5279 * Apply a user-hold with the given tag to the list of snapshots.
5280 */
5281 static int
5282 zfs_do_hold(int argc, char **argv)
5283 {
5284 return (zfs_do_hold_rele_impl(argc, argv, B_TRUE));
5285 }

5287 /*
5288 * zfs release [-r] <tag> <snap> ...
5289 *
5290 * -r Recursively release
5291 *
5292 * Release a user-hold with the given tag from the list of snapshots.
5293 */
5294 static int
5295 zfs_do_release(int argc, char **argv)
5296 {
5297 return (zfs_do_hold_rele_impl(argc, argv, B_FALSE));
5298 }

5300 typedef struct holds_cbdata {
5301 boolean_t cb_recursive;
5302 const char *cb_snapname;
5303 nvlist_t **cb_nvlp;
5304 size_t cb_max_namelen;
5305 size_t cb_max_taglen;
5306 } holds_cbdata_t;

5308 #define STRFTIME_FMT_STR "%a %b %e %k:%M %Y"
5309 #define DATETIME_BUF_LEN (32)
5310 /*
5311 *
5312 */
5313 static void
5314 print_holds(boolean_t scripted, size_t nwidth, size_t tagwidth, nvlist_t *nvl)
5315 {
5316 int i;
5317 nvpair_t *nvp = NULL;
5318 char *hdr_cols[] = { "NAME", "TAG", "TIMESTAMP" };
5319 const char *col;

5321 if (!scripted) {
5322 for (i = 0; i < 3; i++) {
5323 col = gettext(hdr_cols[i]);
5324 if (i < 2)
5325 (void) printf("%-*s ", i ? tagwidth : nwidth,
5326 col);
5327 else
5328 (void) printf("%s\n", col);
5329 }
5330 }

5332 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
5333 char *zname = nvpair_name(nvp);
5334 nvlist_t *nvl2;
5335 nvpair_t *nvp2 = NULL;
5336 (void) nvpair_value_nvlist(nvp, &nvl2);
5337 while ((nvp2 = nvlist_next_nvpair(nvl2, nvp2)) != NULL) {
5338 char tsbuf[DATETIME_BUF_LEN];

new/usr/src/cmd/zfs/zfs_main.c 82

5339 char *tagname = nvpair_name(nvp2);
5340 uint64_t val = 0;
5341 time_t time;
5342 struct tm t;
5343 char sep = scripted ? ’\t’ : ’ ’;
5344 size_t sepnum = scripted ? 1 : 2;

5346 (void) nvpair_value_uint64(nvp2, &val);
5347 time = (time_t)val;
5348 (void) localtime_r(&time, &t);
5349 (void) strftime(tsbuf, DATETIME_BUF_LEN,
5350 gettext(STRFTIME_FMT_STR), &t);

5352 (void) printf("%-*s%*c%-*s%*c%s\n", nwidth, zname,
5353 sepnum, sep, tagwidth, tagname, sepnum, sep, tsbuf);
5354 }
5355 }
5356 }

5358 /*
5359 * Generic callback function to list a dataset or snapshot.
5360 */
5361 static int
5362 holds_callback(zfs_handle_t *zhp, void *data)
5363 {
5364 holds_cbdata_t *cbp = data;
5365 nvlist_t *top_nvl = *cbp->cb_nvlp;
5366 nvlist_t *nvl = NULL;
5367 nvpair_t *nvp = NULL;
5368 const char *zname = zfs_get_name(zhp);
5369 size_t znamelen = strnlen(zname, ZFS_MAXNAMELEN);

5371 if (cbp->cb_recursive) {
5372 const char *snapname;
5373 char *delim = strchr(zname, ’@’);
5374 if (delim == NULL)
5375 return (0);

5377 snapname = delim + 1;
5378 if (strcmp(cbp->cb_snapname, snapname))
5379 return (0);
5380 }

5382 if (zfs_get_holds(zhp, &nvl) != 0)
5383 return (-1);

5385 if (znamelen > cbp->cb_max_namelen)
5386 cbp->cb_max_namelen = znamelen;

5388 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
5389 const char *tag = nvpair_name(nvp);
5390 size_t taglen = strnlen(tag, MAXNAMELEN);
5391 if (taglen > cbp->cb_max_taglen)
5392 cbp->cb_max_taglen = taglen;
5393 }

5395 return (nvlist_add_nvlist(top_nvl, zname, nvl));
5396 }

5398 /*
5399 * zfs holds [-r] <snap> ...
5400 *
5401 * -r Recursively hold
5402 */
5403 static int
5404 zfs_do_holds(int argc, char **argv)

new/usr/src/cmd/zfs/zfs_main.c 83

5405 {
5406 int errors = 0;
5407 int c;
5408 int i;
5409 boolean_t scripted = B_FALSE;
5410 boolean_t recursive = B_FALSE;
5411 const char *opts = "rH";
5412 nvlist_t *nvl;

5414 int types = ZFS_TYPE_SNAPSHOT;
5415 holds_cbdata_t cb = { 0 };

5417 int limit = 0;
5418 int ret = 0;
5419 int flags = 0;

5421 /* check options */
5422 while ((c = getopt(argc, argv, opts)) != -1) {
5423 switch (c) {
5424 case ’r’:
5425 recursive = B_TRUE;
5426 break;
5427 case ’H’:
5428 scripted = B_TRUE;
5429 break;
5430 case ’?’:
5431 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
5432 optopt);
5433 usage(B_FALSE);
5434 }
5435 }

5437 if (recursive) {
5438 types |= ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME;
5439 flags |= ZFS_ITER_RECURSE;
5440 }

5442 argc -= optind;
5443 argv += optind;

5445 /* check number of arguments */
5446 if (argc < 1)
5447 usage(B_FALSE);

5449 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0)
5450 nomem();

5452 for (i = 0; i < argc; ++i) {
5453 char *snapshot = argv[i];
5454 const char *delim;
5455 const char *snapname;

5457 delim = strchr(snapshot, ’@’);
5458 if (delim == NULL) {
5459 (void) fprintf(stderr,
5460 gettext("’%s’ is not a snapshot\n"), snapshot);
5461 ++errors;
5462 continue;
5463 }
5464 snapname = delim + 1;
5465 if (recursive)
5466 snapshot[delim - snapshot] = ’\0’;

5468 cb.cb_recursive = recursive;
5469 cb.cb_snapname = snapname;
5470 cb.cb_nvlp = &nvl;

new/usr/src/cmd/zfs/zfs_main.c 84

5472 /*
5473 * 1. collect holds data, set format options
5474 */
5475 ret = zfs_for_each(argc, argv, flags, types, NULL, NULL, limit,
5476 holds_callback, &cb);
5477 if (ret != 0)
5478 ++errors;
5479 }

5481 /*
5482 * 2. print holds data
5483 */
5484 print_holds(scripted, cb.cb_max_namelen, cb.cb_max_taglen, nvl);

5486 if (nvlist_empty(nvl))
5487 (void) printf(gettext("no datasets available\n"));

5489 nvlist_free(nvl);

5491 return (0 != errors);
5492 }

5494 #define CHECK_SPINNER 30
5495 #define SPINNER_TIME 3 /* seconds */
5496 #define MOUNT_TIME 5 /* seconds */

5498 static int
5499 get_one_dataset(zfs_handle_t *zhp, void *data)
5500 {
5501 static char *spin[] = { "-", "\\", "|", "/" };
5502 static int spinval = 0;
5503 static int spincheck = 0;
5504 static time_t last_spin_time = (time_t)0;
5505 get_all_cb_t *cbp = data;
5506 zfs_type_t type = zfs_get_type(zhp);

5508 if (cbp->cb_verbose) {
5509 if (--spincheck < 0) {
5510 time_t now = time(NULL);
5511 if (last_spin_time + SPINNER_TIME < now) {
5512 update_progress(spin[spinval++ % 4]);
5513 last_spin_time = now;
5514 }
5515 spincheck = CHECK_SPINNER;
5516 }
5517 }

5519 /*
5520 * Interate over any nested datasets.
5521 */
5522 if (zfs_iter_filesystems(zhp, get_one_dataset, data) != 0) {
5523 zfs_close(zhp);
5524 return (1);
5525 }

5527 /*
5528 * Skip any datasets whose type does not match.
5529 */
5530 if ((type & ZFS_TYPE_FILESYSTEM) == 0) {
5531 zfs_close(zhp);
5532 return (0);
5533 }
5534 libzfs_add_handle(cbp, zhp);
5535 assert(cbp->cb_used <= cbp->cb_alloc);

new/usr/src/cmd/zfs/zfs_main.c 85

5537 return (0);
5538 }

5540 static void
5541 get_all_datasets(zfs_handle_t ***dslist, size_t *count, boolean_t verbose)
5542 {
5543 get_all_cb_t cb = { 0 };
5544 cb.cb_verbose = verbose;
5545 cb.cb_getone = get_one_dataset;

5547 if (verbose)
5548 set_progress_header(gettext("Reading ZFS config"));
5549 (void) zfs_iter_root(g_zfs, get_one_dataset, &cb);

5551 *dslist = cb.cb_handles;
5552 *count = cb.cb_used;

5554 if (verbose)
5555 finish_progress(gettext("done."));
5556 }

5558 /*
5559 * Generic callback for sharing or mounting filesystems. Because the code is so
5560 * similar, we have a common function with an extra parameter to determine which
5561 * mode we are using.
5562 */
5563 #define OP_SHARE 0x1
5564 #define OP_MOUNT 0x2

5566 /*
5567 * Share or mount a dataset.
5568 */
5569 static int
5570 share_mount_one(zfs_handle_t *zhp, int op, int flags, char *protocol,
5571 boolean_t explicit, const char *options)
5572 {
5573 char mountpoint[ZFS_MAXPROPLEN];
5574 char shareopts[ZFS_MAXPROPLEN];
5575 char smbshareopts[ZFS_MAXPROPLEN];
5576 const char *cmdname = op == OP_SHARE ? "share" : "mount";
5577 struct mnttab mnt;
5578 uint64_t zoned, canmount;
5579 boolean_t shared_nfs, shared_smb;

5581 assert(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM);

5583 /*
5584 * Check to make sure we can mount/share this dataset. If we
5585 * are in the global zone and the filesystem is exported to a
5586 * local zone, or if we are in a local zone and the
5587 * filesystem is not exported, then it is an error.
5588 */
5589 zoned = zfs_prop_get_int(zhp, ZFS_PROP_ZONED);

5591 if (zoned && getzoneid() == GLOBAL_ZONEID) {
5592 if (!explicit)
5593 return (0);

5595 (void) fprintf(stderr, gettext("cannot %s ’%s’: "
5596 "dataset is exported to a local zone\n"), cmdname,
5597 zfs_get_name(zhp));
5598 return (1);

5600 } else if (!zoned && getzoneid() != GLOBAL_ZONEID) {
5601 if (!explicit)
5602 return (0);

new/usr/src/cmd/zfs/zfs_main.c 86

5604 (void) fprintf(stderr, gettext("cannot %s ’%s’: "
5605 "permission denied\n"), cmdname,
5606 zfs_get_name(zhp));
5607 return (1);
5608 }

5610 /*
5611 * Ignore any filesystems which don’t apply to us. This
5612 * includes those with a legacy mountpoint, or those with
5613 * legacy share options.
5614 */
5615 verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, mountpoint,
5616 sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0);
5617 verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS, shareopts,
5618 sizeof (shareopts), NULL, NULL, 0, B_FALSE) == 0);
5619 verify(zfs_prop_get(zhp, ZFS_PROP_SHARESMB, smbshareopts,
5620 sizeof (smbshareopts), NULL, NULL, 0, B_FALSE) == 0);

5622 if (op == OP_SHARE && strcmp(shareopts, "off") == 0 &&
5623 strcmp(smbshareopts, "off") == 0) {
5624 if (!explicit)
5625 return (0);

5627 (void) fprintf(stderr, gettext("cannot share ’%s’: "
5628 "legacy share\n"), zfs_get_name(zhp));
5629 (void) fprintf(stderr, gettext("use share(1M) to "
5630 "share this filesystem, or set "
5631 "sharenfs property on\n"));
5632 return (1);
5633 }

5635 /*
5636 * We cannot share or mount legacy filesystems. If the
5637 * shareopts is non-legacy but the mountpoint is legacy, we
5638 * treat it as a legacy share.
5639 */
5640 if (strcmp(mountpoint, "legacy") == 0) {
5641 if (!explicit)
5642 return (0);

5644 (void) fprintf(stderr, gettext("cannot %s ’%s’: "
5645 "legacy mountpoint\n"), cmdname, zfs_get_name(zhp));
5646 (void) fprintf(stderr, gettext("use %s(1M) to "
5647 "%s this filesystem\n"), cmdname, cmdname);
5648 return (1);
5649 }

5651 if (strcmp(mountpoint, "none") == 0) {
5652 if (!explicit)
5653 return (0);

5655 (void) fprintf(stderr, gettext("cannot %s ’%s’: no "
5656 "mountpoint set\n"), cmdname, zfs_get_name(zhp));
5657 return (1);
5658 }

5660 /*
5661 * canmount explicit outcome
5662 * on no pass through
5663 * on yes pass through
5664 * off no return 0
5665 * off yes display error, return 1
5666 * noauto no return 0
5667 * noauto yes pass through
5668 */

new/usr/src/cmd/zfs/zfs_main.c 87

5669 canmount = zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT);
5670 if (canmount == ZFS_CANMOUNT_OFF) {
5671 if (!explicit)
5672 return (0);

5674 (void) fprintf(stderr, gettext("cannot %s ’%s’: "
5675 "’canmount’ property is set to ’off’\n"), cmdname,
5676 zfs_get_name(zhp));
5677 return (1);
5678 } else if (canmount == ZFS_CANMOUNT_NOAUTO && !explicit) {
5679 return (0);
5680 }

5682 /*
5683 * At this point, we have verified that the mountpoint and/or
5684 * shareopts are appropriate for auto management. If the
5685 * filesystem is already mounted or shared, return (failing
5686 * for explicit requests); otherwise mount or share the
5687 * filesystem.
5688 */
5689 switch (op) {
5690 case OP_SHARE:

5692 shared_nfs = zfs_is_shared_nfs(zhp, NULL);
5693 shared_smb = zfs_is_shared_smb(zhp, NULL);

5695 if (shared_nfs && shared_smb ||
5696 (shared_nfs && strcmp(shareopts, "on") == 0 &&
5697 strcmp(smbshareopts, "off") == 0) ||
5698 (shared_smb && strcmp(smbshareopts, "on") == 0 &&
5699 strcmp(shareopts, "off") == 0)) {
5700 if (!explicit)
5701 return (0);

5703 (void) fprintf(stderr, gettext("cannot share "
5704 "’%s’: filesystem already shared\n"),
5705 zfs_get_name(zhp));
5706 return (1);
5707 }

5709 if (!zfs_is_mounted(zhp, NULL) &&
5710 zfs_mount(zhp, NULL, 0) != 0)
5711 return (1);

5713 if (protocol == NULL) {
5714 if (zfs_shareall(zhp) != 0)
5715 return (1);
5716 } else if (strcmp(protocol, "nfs") == 0) {
5717 if (zfs_share_nfs(zhp))
5718 return (1);
5719 } else if (strcmp(protocol, "smb") == 0) {
5720 if (zfs_share_smb(zhp))
5721 return (1);
5722 } else {
5723 (void) fprintf(stderr, gettext("cannot share "
5724 "’%s’: invalid share type ’%s’ "
5725 "specified\n"),
5726 zfs_get_name(zhp), protocol);
5727 return (1);
5728 }

5730 break;

5732 case OP_MOUNT:
5733 if (options == NULL)
5734 mnt.mnt_mntopts = "";

new/usr/src/cmd/zfs/zfs_main.c 88

5735 else
5736 mnt.mnt_mntopts = (char *)options;

5738 if (!hasmntopt(&mnt, MNTOPT_REMOUNT) &&
5739 zfs_is_mounted(zhp, NULL)) {
5740 if (!explicit)
5741 return (0);

5743 (void) fprintf(stderr, gettext("cannot mount "
5744 "’%s’: filesystem already mounted\n"),
5745 zfs_get_name(zhp));
5746 return (1);
5747 }

5749 if (zfs_mount(zhp, options, flags) != 0)
5750 return (1);
5751 break;
5752 }

5754 return (0);
5755 }

5757 /*
5758 * Reports progress in the form "(current/total)". Not thread-safe.
5759 */
5760 static void
5761 report_mount_progress(int current, int total)
5762 {
5763 static time_t last_progress_time = 0;
5764 time_t now = time(NULL);
5765 char info[32];

5767 /* report 1..n instead of 0..n-1 */
5768 ++current;

5770 /* display header if we’re here for the first time */
5771 if (current == 1) {
5772 set_progress_header(gettext("Mounting ZFS filesystems"));
5773 } else if (current != total && last_progress_time + MOUNT_TIME >= now) {
5774 /* too soon to report again */
5775 return;
5776 }

5778 last_progress_time = now;

5780 (void) sprintf(info, "(%d/%d)", current, total);

5782 if (current == total)
5783 finish_progress(info);
5784 else
5785 update_progress(info);
5786 }

5788 static void
5789 append_options(char *mntopts, char *newopts)
5790 {
5791 int len = strlen(mntopts);

5793 /* original length plus new string to append plus 1 for the comma */
5794 if (len + 1 + strlen(newopts) >= MNT_LINE_MAX) {
5795 (void) fprintf(stderr, gettext("the opts argument for "
5796 "’%c’ option is too long (more than %d chars)\n"),
5797 "-o", MNT_LINE_MAX);
5798 usage(B_FALSE);
5799 }

new/usr/src/cmd/zfs/zfs_main.c 89

5801 if (*mntopts)
5802 mntopts[len++] = ’,’;

5804 (void) strcpy(&mntopts[len], newopts);
5805 }

5807 static int
5808 share_mount(int op, int argc, char **argv)
5809 {
5810 int do_all = 0;
5811 boolean_t verbose = B_FALSE;
5812 int c, ret = 0;
5813 char *options = NULL;
5814 int flags = 0;

5816 /* check options */
5817 while ((c = getopt(argc, argv, op == OP_MOUNT ? ":avo:O" : "a"))
5818 != -1) {
5819 switch (c) {
5820 case ’a’:
5821 do_all = 1;
5822 break;
5823 case ’v’:
5824 verbose = B_TRUE;
5825 break;
5826 case ’o’:
5827 if (*optarg == ’\0’) {
5828 (void) fprintf(stderr, gettext("empty mount "
5829 "options (-o) specified\n"));
5830 usage(B_FALSE);
5831 }

5833 if (options == NULL)
5834 options = safe_malloc(MNT_LINE_MAX + 1);

5836 /* option validation is done later */
5837 append_options(options, optarg);
5838 break;

5840 case ’O’:
5841 flags |= MS_OVERLAY;
5842 break;
5843 case ’:’:
5844 (void) fprintf(stderr, gettext("missing argument for "
5845 "’%c’ option\n"), optopt);
5846 usage(B_FALSE);
5847 break;
5848 case ’?’:
5849 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
5850 optopt);
5851 usage(B_FALSE);
5852 }
5853 }

5855 argc -= optind;
5856 argv += optind;

5858 /* check number of arguments */
5859 if (do_all) {
5860 zfs_handle_t **dslist = NULL;
5861 size_t i, count = 0;
5862 char *protocol = NULL;

5864 if (op == OP_SHARE && argc > 0) {
5865 if (strcmp(argv[0], "nfs") != 0 &&
5866 strcmp(argv[0], "smb") != 0) {

new/usr/src/cmd/zfs/zfs_main.c 90

5867 (void) fprintf(stderr, gettext("share type "
5868 "must be ’nfs’ or ’smb’\n"));
5869 usage(B_FALSE);
5870 }
5871 protocol = argv[0];
5872 argc--;
5873 argv++;
5874 }

5876 if (argc != 0) {
5877 (void) fprintf(stderr, gettext("too many arguments\n"));
5878 usage(B_FALSE);
5879 }

5881 start_progress_timer();
5882 get_all_datasets(&dslist, &count, verbose);

5884 if (count == 0)
5885 return (0);

5887 qsort(dslist, count, sizeof (void *), libzfs_dataset_cmp);

5889 for (i = 0; i < count; i++) {
5890 if (verbose)
5891 report_mount_progress(i, count);

5893 if (share_mount_one(dslist[i], op, flags, protocol,
5894 B_FALSE, options) != 0)
5895 ret = 1;
5896 zfs_close(dslist[i]);
5897 }

5899 free(dslist);
5900 } else if (argc == 0) {
5901 struct mnttab entry;

5903 if ((op == OP_SHARE) || (options != NULL)) {
5904 (void) fprintf(stderr, gettext("missing filesystem "
5905 "argument (specify -a for all)\n"));
5906 usage(B_FALSE);
5907 }

5909 /*
5910 * When mount is given no arguments, go through /etc/mnttab and
5911 * display any active ZFS mounts. We hide any snapshots, since
5912 * they are controlled automatically.
5913 */
5914 rewind(mnttab_file);
5915 while (getmntent(mnttab_file, &entry) == 0) {
5916 if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0 ||
5917 strchr(entry.mnt_special, ’@’) != NULL)
5918 continue;

5920 (void) printf("%-30s %s\n", entry.mnt_special,
5921 entry.mnt_mountp);
5922 }

5924 } else {
5925 zfs_handle_t *zhp;

5927 if (argc > 1) {
5928 (void) fprintf(stderr,
5929 gettext("too many arguments\n"));
5930 usage(B_FALSE);
5931 }

new/usr/src/cmd/zfs/zfs_main.c 91

5933 if ((zhp = zfs_open(g_zfs, argv[0],
5934 ZFS_TYPE_FILESYSTEM)) == NULL) {
5935 ret = 1;
5936 } else {
5937 ret = share_mount_one(zhp, op, flags, NULL, B_TRUE,
5938 options);
5939 zfs_close(zhp);
5940 }
5941 }

5943 return (ret);
5944 }

5946 /*
5947 * zfs mount -a [nfs]
5948 * zfs mount filesystem
5949 *
5950 * Mount all filesystems, or mount the given filesystem.
5951 */
5952 static int
5953 zfs_do_mount(int argc, char **argv)
5954 {
5955 return (share_mount(OP_MOUNT, argc, argv));
5956 }

5958 /*
5959 * zfs share -a [nfs | smb]
5960 * zfs share filesystem
5961 *
5962 * Share all filesystems, or share the given filesystem.
5963 */
5964 static int
5965 zfs_do_share(int argc, char **argv)
5966 {
5967 return (share_mount(OP_SHARE, argc, argv));
5968 }

5970 typedef struct unshare_unmount_node {
5971 zfs_handle_t *un_zhp;
5972 char *un_mountp;
5973 uu_avl_node_t un_avlnode;
5974 } unshare_unmount_node_t;

5976 /* ARGSUSED */
5977 static int
5978 unshare_unmount_compare(const void *larg, const void *rarg, void *unused)
5979 {
5980 const unshare_unmount_node_t *l = larg;
5981 const unshare_unmount_node_t *r = rarg;

5983 return (strcmp(l->un_mountp, r->un_mountp));
5984 }

5986 /*
5987 * Convenience routine used by zfs_do_umount() and manual_unmount(). Given an
5988 * absolute path, find the entry /etc/mnttab, verify that its a ZFS filesystem,
5989 * and unmount it appropriately.
5990 */
5991 static int
5992 unshare_unmount_path(int op, char *path, int flags, boolean_t is_manual)
5993 {
5994 zfs_handle_t *zhp;
5995 int ret = 0;
5996 struct stat64 statbuf;
5997 struct extmnttab entry;
5998 const char *cmdname = (op == OP_SHARE) ? "unshare" : "unmount";

new/usr/src/cmd/zfs/zfs_main.c 92

5999 ino_t path_inode;

6001 /*
6002 * Search for the path in /etc/mnttab. Rather than looking for the
6003 * specific path, which can be fooled by non-standard paths (i.e. ".."
6004 * or "//"), we stat() the path and search for the corresponding
6005 * (major,minor) device pair.
6006 */
6007 if (stat64(path, &statbuf) != 0) {
6008 (void) fprintf(stderr, gettext("cannot %s ’%s’: %s\n"),
6009 cmdname, path, strerror(errno));
6010 return (1);
6011 }
6012 path_inode = statbuf.st_ino;

6014 /*
6015 * Search for the given (major,minor) pair in the mount table.
6016 */
6017 rewind(mnttab_file);
6018 while ((ret = getextmntent(mnttab_file, &entry, 0)) == 0) {
6019 if (entry.mnt_major == major(statbuf.st_dev) &&
6020 entry.mnt_minor == minor(statbuf.st_dev))
6021 break;
6022 }
6023 if (ret != 0) {
6024 if (op == OP_SHARE) {
6025 (void) fprintf(stderr, gettext("cannot %s ’%s’: not "
6026 "currently mounted\n"), cmdname, path);
6027 return (1);
6028 }
6029 (void) fprintf(stderr, gettext("warning: %s not in mnttab\n"),
6030 path);
6031 if ((ret = umount2(path, flags)) != 0)
6032 (void) fprintf(stderr, gettext("%s: %s\n"), path,
6033 strerror(errno));
6034 return (ret != 0);
6035 }

6037 if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) {
6038 (void) fprintf(stderr, gettext("cannot %s ’%s’: not a ZFS "
6039 "filesystem\n"), cmdname, path);
6040 return (1);
6041 }

6043 if ((zhp = zfs_open(g_zfs, entry.mnt_special,
6044 ZFS_TYPE_FILESYSTEM)) == NULL)
6045 return (1);

6047 ret = 1;
6048 if (stat64(entry.mnt_mountp, &statbuf) != 0) {
6049 (void) fprintf(stderr, gettext("cannot %s ’%s’: %s\n"),
6050 cmdname, path, strerror(errno));
6051 goto out;
6052 } else if (statbuf.st_ino != path_inode) {
6053 (void) fprintf(stderr, gettext("cannot "
6054 "%s ’%s’: not a mountpoint\n"), cmdname, path);
6055 goto out;
6056 }

6058 if (op == OP_SHARE) {
6059 char nfs_mnt_prop[ZFS_MAXPROPLEN];
6060 char smbshare_prop[ZFS_MAXPROPLEN];

6062 verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS, nfs_mnt_prop,
6063 sizeof (nfs_mnt_prop), NULL, NULL, 0, B_FALSE) == 0);
6064 verify(zfs_prop_get(zhp, ZFS_PROP_SHARESMB, smbshare_prop,

new/usr/src/cmd/zfs/zfs_main.c 93

6065 sizeof (smbshare_prop), NULL, NULL, 0, B_FALSE) == 0);

6067 if (strcmp(nfs_mnt_prop, "off") == 0 &&
6068 strcmp(smbshare_prop, "off") == 0) {
6069 (void) fprintf(stderr, gettext("cannot unshare "
6070 "’%s’: legacy share\n"), path);
6071 (void) fprintf(stderr, gettext("use "
6072 "unshare(1M) to unshare this filesystem\n"));
6073 } else if (!zfs_is_shared(zhp)) {
6074 (void) fprintf(stderr, gettext("cannot unshare ’%s’: "
6075 "not currently shared\n"), path);
6076 } else {
6077 ret = zfs_unshareall_bypath(zhp, path);
6078 }
6079 } else {
6080 char mtpt_prop[ZFS_MAXPROPLEN];

6082 verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, mtpt_prop,
6083 sizeof (mtpt_prop), NULL, NULL, 0, B_FALSE) == 0);

6085 if (is_manual) {
6086 ret = zfs_unmount(zhp, NULL, flags);
6087 } else if (strcmp(mtpt_prop, "legacy") == 0) {
6088 (void) fprintf(stderr, gettext("cannot unmount "
6089 "’%s’: legacy mountpoint\n"),
6090 zfs_get_name(zhp));
6091 (void) fprintf(stderr, gettext("use umount(1M) "
6092 "to unmount this filesystem\n"));
6093 } else {
6094 ret = zfs_unmountall(zhp, flags);
6095 }
6096 }

6098 out:
6099 zfs_close(zhp);

6101 return (ret != 0);
6102 }

6104 /*
6105 * Generic callback for unsharing or unmounting a filesystem.
6106 */
6107 static int
6108 unshare_unmount(int op, int argc, char **argv)
6109 {
6110 int do_all = 0;
6111 int flags = 0;
6112 int ret = 0;
6113 int c;
6114 zfs_handle_t *zhp;
6115 char nfs_mnt_prop[ZFS_MAXPROPLEN];
6116 char sharesmb[ZFS_MAXPROPLEN];

6118 /* check options */
6119 while ((c = getopt(argc, argv, op == OP_SHARE ? "a" : "af")) != -1) {
6120 switch (c) {
6121 case ’a’:
6122 do_all = 1;
6123 break;
6124 case ’f’:
6125 flags = MS_FORCE;
6126 break;
6127 case ’?’:
6128 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
6129 optopt);
6130 usage(B_FALSE);

new/usr/src/cmd/zfs/zfs_main.c 94

6131 }
6132 }

6134 argc -= optind;
6135 argv += optind;

6137 if (do_all) {
6138 /*
6139 * We could make use of zfs_for_each() to walk all datasets in
6140 * the system, but this would be very inefficient, especially
6141 * since we would have to linearly search /etc/mnttab for each
6142 * one. Instead, do one pass through /etc/mnttab looking for
6143 * zfs entries and call zfs_unmount() for each one.
6144 *
6145 * Things get a little tricky if the administrator has created
6146 * mountpoints beneath other ZFS filesystems. In this case, we
6147 * have to unmount the deepest filesystems first. To accomplish
6148 * this, we place all the mountpoints in an AVL tree sorted by
6149 * the special type (dataset name), and walk the result in
6150 * reverse to make sure to get any snapshots first.
6151 */
6152 struct mnttab entry;
6153 uu_avl_pool_t *pool;
6154 uu_avl_t *tree;
6155 unshare_unmount_node_t *node;
6156 uu_avl_index_t idx;
6157 uu_avl_walk_t *walk;

6159 if (argc != 0) {
6160 (void) fprintf(stderr, gettext("too many arguments\n"));
6161 usage(B_FALSE);
6162 }

6164 if (((pool = uu_avl_pool_create("unmount_pool",
6165 sizeof (unshare_unmount_node_t),
6166 offsetof(unshare_unmount_node_t, un_avlnode),
6167 unshare_unmount_compare, UU_DEFAULT)) == NULL) ||
6168 ((tree = uu_avl_create(pool, NULL, UU_DEFAULT)) == NULL))
6169 nomem();

6171 rewind(mnttab_file);
6172 while (getmntent(mnttab_file, &entry) == 0) {

6174 /* ignore non-ZFS entries */
6175 if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
6176 continue;

6178 /* ignore snapshots */
6179 if (strchr(entry.mnt_special, ’@’) != NULL)
6180 continue;

6182 if ((zhp = zfs_open(g_zfs, entry.mnt_special,
6183 ZFS_TYPE_FILESYSTEM)) == NULL) {
6184 ret = 1;
6185 continue;
6186 }

6188 switch (op) {
6189 case OP_SHARE:
6190 verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS,
6191 nfs_mnt_prop,
6192 sizeof (nfs_mnt_prop),
6193 NULL, NULL, 0, B_FALSE) == 0);
6194 if (strcmp(nfs_mnt_prop, "off") != 0)
6195 break;
6196 verify(zfs_prop_get(zhp, ZFS_PROP_SHARESMB,

new/usr/src/cmd/zfs/zfs_main.c 95

6197 nfs_mnt_prop,
6198 sizeof (nfs_mnt_prop),
6199 NULL, NULL, 0, B_FALSE) == 0);
6200 if (strcmp(nfs_mnt_prop, "off") == 0)
6201 continue;
6202 break;
6203 case OP_MOUNT:
6204 /* Ignore legacy mounts */
6205 verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT,
6206 nfs_mnt_prop,
6207 sizeof (nfs_mnt_prop),
6208 NULL, NULL, 0, B_FALSE) == 0);
6209 if (strcmp(nfs_mnt_prop, "legacy") == 0)
6210 continue;
6211 /* Ignore canmount=noauto mounts */
6212 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) ==
6213 ZFS_CANMOUNT_NOAUTO)
6214 continue;
6215 default:
6216 break;
6217 }

6219 node = safe_malloc(sizeof (unshare_unmount_node_t));
6220 node->un_zhp = zhp;
6221 node->un_mountp = safe_strdup(entry.mnt_mountp);

6223 uu_avl_node_init(node, &node->un_avlnode, pool);

6225 if (uu_avl_find(tree, node, NULL, &idx) == NULL) {
6226 uu_avl_insert(tree, node, idx);
6227 } else {
6228 zfs_close(node->un_zhp);
6229 free(node->un_mountp);
6230 free(node);
6231 }
6232 }

6234 /*
6235 * Walk the AVL tree in reverse, unmounting each filesystem and
6236 * removing it from the AVL tree in the process.
6237 */
6238 if ((walk = uu_avl_walk_start(tree,
6239 UU_WALK_REVERSE | UU_WALK_ROBUST)) == NULL)
6240 nomem();

6242 while ((node = uu_avl_walk_next(walk)) != NULL) {
6243 uu_avl_remove(tree, node);

6245 switch (op) {
6246 case OP_SHARE:
6247 if (zfs_unshareall_bypath(node->un_zhp,
6248 node->un_mountp) != 0)
6249 ret = 1;
6250 break;

6252 case OP_MOUNT:
6253 if (zfs_unmount(node->un_zhp,
6254 node->un_mountp, flags) != 0)
6255 ret = 1;
6256 break;
6257 }

6259 zfs_close(node->un_zhp);
6260 free(node->un_mountp);
6261 free(node);
6262 }

new/usr/src/cmd/zfs/zfs_main.c 96

6264 uu_avl_walk_end(walk);
6265 uu_avl_destroy(tree);
6266 uu_avl_pool_destroy(pool);

6268 } else {
6269 if (argc != 1) {
6270 if (argc == 0)
6271 (void) fprintf(stderr,
6272 gettext("missing filesystem argument\n"));
6273 else
6274 (void) fprintf(stderr,
6275 gettext("too many arguments\n"));
6276 usage(B_FALSE);
6277 }

6279 /*
6280 * We have an argument, but it may be a full path or a ZFS
6281 * filesystem. Pass full paths off to unmount_path() (shared by
6282 * manual_unmount), otherwise open the filesystem and pass to
6283 * zfs_unmount().
6284 */
6285 if (argv[0][0] == ’/’)
6286 return (unshare_unmount_path(op, argv[0],
6287 flags, B_FALSE));

6289 if ((zhp = zfs_open(g_zfs, argv[0],
6290 ZFS_TYPE_FILESYSTEM)) == NULL)
6291 return (1);

6293 verify(zfs_prop_get(zhp, op == OP_SHARE ?
6294 ZFS_PROP_SHARENFS : ZFS_PROP_MOUNTPOINT,
6295 nfs_mnt_prop, sizeof (nfs_mnt_prop), NULL,
6296 NULL, 0, B_FALSE) == 0);

6298 switch (op) {
6299 case OP_SHARE:
6300 verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS,
6301 nfs_mnt_prop,
6302 sizeof (nfs_mnt_prop),
6303 NULL, NULL, 0, B_FALSE) == 0);
6304 verify(zfs_prop_get(zhp, ZFS_PROP_SHARESMB,
6305 sharesmb, sizeof (sharesmb), NULL, NULL,
6306 0, B_FALSE) == 0);

6308 if (strcmp(nfs_mnt_prop, "off") == 0 &&
6309 strcmp(sharesmb, "off") == 0) {
6310 (void) fprintf(stderr, gettext("cannot "
6311 "unshare ’%s’: legacy share\n"),
6312 zfs_get_name(zhp));
6313 (void) fprintf(stderr, gettext("use "
6314 "unshare(1M) to unshare this "
6315 "filesystem\n"));
6316 ret = 1;
6317 } else if (!zfs_is_shared(zhp)) {
6318 (void) fprintf(stderr, gettext("cannot "
6319 "unshare ’%s’: not currently "
6320 "shared\n"), zfs_get_name(zhp));
6321 ret = 1;
6322 } else if (zfs_unshareall(zhp) != 0) {
6323 ret = 1;
6324 }
6325 break;

6327 case OP_MOUNT:
6328 if (strcmp(nfs_mnt_prop, "legacy") == 0) {

new/usr/src/cmd/zfs/zfs_main.c 97

6329 (void) fprintf(stderr, gettext("cannot "
6330 "unmount ’%s’: legacy "
6331 "mountpoint\n"), zfs_get_name(zhp));
6332 (void) fprintf(stderr, gettext("use "
6333 "umount(1M) to unmount this "
6334 "filesystem\n"));
6335 ret = 1;
6336 } else if (!zfs_is_mounted(zhp, NULL)) {
6337 (void) fprintf(stderr, gettext("cannot "
6338 "unmount ’%s’: not currently "
6339 "mounted\n"),
6340 zfs_get_name(zhp));
6341 ret = 1;
6342 } else if (zfs_unmountall(zhp, flags) != 0) {
6343 ret = 1;
6344 }
6345 break;
6346 }

6348 zfs_close(zhp);
6349 }

6351 return (ret);
6352 }

6354 /*
6355 * zfs unmount -a
6356 * zfs unmount filesystem
6357 *
6358 * Unmount all filesystems, or a specific ZFS filesystem.
6359 */
6360 static int
6361 zfs_do_unmount(int argc, char **argv)
6362 {
6363 return (unshare_unmount(OP_MOUNT, argc, argv));
6364 }

6366 /*
6367 * zfs unshare -a
6368 * zfs unshare filesystem
6369 *
6370 * Unshare all filesystems, or a specific ZFS filesystem.
6371 */
6372 static int
6373 zfs_do_unshare(int argc, char **argv)
6374 {
6375 return (unshare_unmount(OP_SHARE, argc, argv));
6376 }

6378 /*
6379 * Called when invoked as /etc/fs/zfs/mount. Do the mount if the mountpoint is
6380 * ’legacy’. Otherwise, complain that use should be using ’zfs mount’.
6381 */
6382 static int
6383 manual_mount(int argc, char **argv)
6384 {
6385 zfs_handle_t *zhp;
6386 char mountpoint[ZFS_MAXPROPLEN];
6387 char mntopts[MNT_LINE_MAX] = { ’\0’ };
6388 int ret = 0;
6389 int c;
6390 int flags = 0;
6391 char *dataset, *path;

6393 /* check options */
6394 while ((c = getopt(argc, argv, ":mo:O")) != -1) {

new/usr/src/cmd/zfs/zfs_main.c 98

6395 switch (c) {
6396 case ’o’:
6397 (void) strlcpy(mntopts, optarg, sizeof (mntopts));
6398 break;
6399 case ’O’:
6400 flags |= MS_OVERLAY;
6401 break;
6402 case ’m’:
6403 flags |= MS_NOMNTTAB;
6404 break;
6405 case ’:’:
6406 (void) fprintf(stderr, gettext("missing argument for "
6407 "’%c’ option\n"), optopt);
6408 usage(B_FALSE);
6409 break;
6410 case ’?’:
6411 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
6412 optopt);
6413 (void) fprintf(stderr, gettext("usage: mount [-o opts] "
6414 "<path>\n"));
6415 return (2);
6416 }
6417 }

6419 argc -= optind;
6420 argv += optind;

6422 /* check that we only have two arguments */
6423 if (argc != 2) {
6424 if (argc == 0)
6425 (void) fprintf(stderr, gettext("missing dataset "
6426 "argument\n"));
6427 else if (argc == 1)
6428 (void) fprintf(stderr,
6429 gettext("missing mountpoint argument\n"));
6430 else
6431 (void) fprintf(stderr, gettext("too many arguments\n"));
6432 (void) fprintf(stderr, "usage: mount <dataset> <mountpoint>\n");
6433 return (2);
6434 }

6436 dataset = argv[0];
6437 path = argv[1];

6439 /* try to open the dataset */
6440 if ((zhp = zfs_open(g_zfs, dataset, ZFS_TYPE_FILESYSTEM)) == NULL)
6441 return (1);

6443 (void) zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, mountpoint,
6444 sizeof (mountpoint), NULL, NULL, 0, B_FALSE);

6446 /* check for legacy mountpoint and complain appropriately */
6447 ret = 0;
6448 if (strcmp(mountpoint, ZFS_MOUNTPOINT_LEGACY) == 0) {
6449 if (mount(dataset, path, MS_OPTIONSTR | flags, MNTTYPE_ZFS,
6450 NULL, 0, mntopts, sizeof (mntopts)) != 0) {
6451 (void) fprintf(stderr, gettext("mount failed: %s\n"),
6452 strerror(errno));
6453 ret = 1;
6454 }
6455 } else {
6456 (void) fprintf(stderr, gettext("filesystem ’%s’ cannot be "
6457 "mounted using ’mount -F zfs’\n"), dataset);
6458 (void) fprintf(stderr, gettext("Use ’zfs set mountpoint=%s’ "
6459 "instead.\n"), path);
6460 (void) fprintf(stderr, gettext("If you must use ’mount -F zfs’ "

new/usr/src/cmd/zfs/zfs_main.c 99

6461 "or /etc/vfstab, use ’zfs set mountpoint=legacy’.\n"));
6462 (void) fprintf(stderr, gettext("See zfs(1M) for more "
6463 "information.\n"));
6464 ret = 1;
6465 }

6467 return (ret);
6468 }

6470 /*
6471 * Called when invoked as /etc/fs/zfs/umount. Unlike a manual mount, we allow
6472 * unmounts of non-legacy filesystems, as this is the dominant administrative
6473 * interface.
6474 */
6475 static int
6476 manual_unmount(int argc, char **argv)
6477 {
6478 int flags = 0;
6479 int c;

6481 /* check options */
6482 while ((c = getopt(argc, argv, "f")) != -1) {
6483 switch (c) {
6484 case ’f’:
6485 flags = MS_FORCE;
6486 break;
6487 case ’?’:
6488 (void) fprintf(stderr, gettext("invalid option ’%c’\n"),
6489 optopt);
6490 (void) fprintf(stderr, gettext("usage: unmount [-f] "
6491 "<path>\n"));
6492 return (2);
6493 }
6494 }

6496 argc -= optind;
6497 argv += optind;

6499 /* check arguments */
6500 if (argc != 1) {
6501 if (argc == 0)
6502 (void) fprintf(stderr, gettext("missing path "
6503 "argument\n"));
6504 else
6505 (void) fprintf(stderr, gettext("too many arguments\n"));
6506 (void) fprintf(stderr, gettext("usage: unmount [-f] <path>\n"));
6507 return (2);
6508 }

6510 return (unshare_unmount_path(OP_MOUNT, argv[0], flags, B_TRUE));
6511 }

6513 static int
6514 find_command_idx(char *command, int *idx)
6515 {
6516 int i;

6518 for (i = 0; i < NCOMMAND; i++) {
6519 if (command_table[i].name == NULL)
6520 continue;

6522 if (strcmp(command, command_table[i].name) == 0) {
6523 *idx = i;
6524 return (0);
6525 }
6526 }

new/usr/src/cmd/zfs/zfs_main.c 100

6527 return (1);
6528 }

6530 static int
6531 zfs_do_diff(int argc, char **argv)
6532 {
6533 zfs_handle_t *zhp;
6534 int flags = 0;
6535 char *tosnap = NULL;
6536 char *fromsnap = NULL;
6537 char *atp, *copy;
6538 int err = 0;
6539 int c;

6541 while ((c = getopt(argc, argv, "FHt")) != -1) {
6542 switch (c) {
6543 case ’F’:
6544 flags |= ZFS_DIFF_CLASSIFY;
6545 break;
6546 case ’H’:
6547 flags |= ZFS_DIFF_PARSEABLE;
6548 break;
6549 case ’t’:
6550 flags |= ZFS_DIFF_TIMESTAMP;
6551 break;
6552 default:
6553 (void) fprintf(stderr,
6554 gettext("invalid option ’%c’\n"), optopt);
6555 usage(B_FALSE);
6556 }
6557 }

6559 argc -= optind;
6560 argv += optind;

6562 if (argc < 1) {
6563 (void) fprintf(stderr,
6564 gettext("must provide at least one snapshot name\n"));
6565 usage(B_FALSE);
6566 }

6568 if (argc > 2) {
6569 (void) fprintf(stderr, gettext("too many arguments\n"));
6570 usage(B_FALSE);
6571 }

6573 fromsnap = argv[0];
6574 tosnap = (argc == 2) ? argv[1] : NULL;

6576 copy = NULL;
6577 if (*fromsnap != ’@’)
6578 copy = strdup(fromsnap);
6579 else if (tosnap)
6580 copy = strdup(tosnap);
6581 if (copy == NULL)
6582 usage(B_FALSE);

6584 if (atp = strchr(copy, ’@’))
6585 *atp = ’\0’;

6587 if ((zhp = zfs_open(g_zfs, copy, ZFS_TYPE_FILESYSTEM)) == NULL)
6588 return (1);

6590 free(copy);

6592 /*

new/usr/src/cmd/zfs/zfs_main.c 101

6593 * Ignore SIGPIPE so that the library can give us
6594 * information on any failure
6595 */
6596 (void) sigignore(SIGPIPE);

6598 err = zfs_show_diffs(zhp, STDOUT_FILENO, fromsnap, tosnap, flags);

6600 zfs_close(zhp);

6602 return (err != 0);
6603 }

6605 int
6606 main(int argc, char **argv)
6607 {
6608 int ret = 0;
6609 int i;
6610 char *progname;
6611 char *cmdname;

6613 (void) setlocale(LC_ALL, "");
6614 (void) textdomain(TEXT_DOMAIN);

6616 opterr = 0;

6618 if ((g_zfs = libzfs_init()) == NULL) {
6619 (void) fprintf(stderr, gettext("internal error: failed to "
6620 "initialize ZFS library\n"));
6621 return (1);
6622 }

6624 zfs_save_arguments(argc, argv, history_str, sizeof (history_str));

6626 libzfs_print_on_error(g_zfs, B_TRUE);

6628 if ((mnttab_file = fopen(MNTTAB, "r")) == NULL) {
6629 (void) fprintf(stderr, gettext("internal error: unable to "
6630 "open %s\n"), MNTTAB);
6631 return (1);
6632 }

6634 /*
6635 * This command also doubles as the /etc/fs mount and unmount program.
6636 * Determine if we should take this behavior based on argv[0].
6637 */
6638 progname = basename(argv[0]);
6639 if (strcmp(progname, "mount") == 0) {
6640 ret = manual_mount(argc, argv);
6641 } else if (strcmp(progname, "umount") == 0) {
6642 ret = manual_unmount(argc, argv);
6643 } else {
6644 /*
6645 * Make sure the user has specified some command.
6646 */
6647 if (argc < 2) {
6648 (void) fprintf(stderr, gettext("missing command\n"));
6649 usage(B_FALSE);
6650 }

6652 cmdname = argv[1];

6654 /*
6655 * The ’umount’ command is an alias for ’unmount’
6656 */
6657 if (strcmp(cmdname, "umount") == 0)
6658 cmdname = "unmount";

new/usr/src/cmd/zfs/zfs_main.c 102

6660 /*
6661 * The ’recv’ command is an alias for ’receive’
6662 */
6663 if (strcmp(cmdname, "recv") == 0)
6664 cmdname = "receive";

6666 /*
6667 * Special case ’-?’
6668 */
6669 if (strcmp(cmdname, "-?") == 0)
6670 usage(B_TRUE);

6672 /*
6673 * Run the appropriate command.
6674 */
6675 libzfs_mnttab_cache(g_zfs, B_TRUE);
6676 if (find_command_idx(cmdname, &i) == 0) {
6677 current_command = &command_table[i];
6678 ret = command_table[i].func(argc - 1, argv + 1);
6679 } else if (strchr(cmdname, ’=’) != NULL) {
6680 verify(find_command_idx("set", &i) == 0);
6681 current_command = &command_table[i];
6682 ret = command_table[i].func(argc, argv);
6683 } else {
6684 (void) fprintf(stderr, gettext("unrecognized "
6685 "command ’%s’\n"), cmdname);
6686 usage(B_FALSE);
6687 }
6688 libzfs_mnttab_cache(g_zfs, B_FALSE);
6689 }

6691 (void) fclose(mnttab_file);

6693 if (ret == 0 && log_history)
6694 (void) zpool_log_history(g_zfs, history_str);

6696 libzfs_fini(g_zfs);

6698 /*
6699 * The ’ZFS_ABORT’ environment variable causes us to dump core on exit
6700 * for the purposes of running ::findleaks.
6701 */
6702 if (getenv("ZFS_ABORT") != NULL) {
6703 (void) printf("dumping core by request\n");
6704 abort();
6705 }

6707 return (ret);
6708 }

new/usr/src/lib/libzfs/common/libzfs.h 1

**
 27018 Wed Oct 17 21:48:37 2012
new/usr/src/lib/libzfs/common/libzfs.h
FITS: generating send-streams in portable format
This commit adds the command ’zfs fits-send’, analogous to zfs send. The
generated send stream is compatible with the stream generated with that
from ’btrfs send’ and can in principle easily be received to any filesystem.
**
______unchanged_portion_omitted_

590 typedef boolean_t (snapfilter_cb_t)(zfs_handle_t *, void *);

592 extern int zfs_send(zfs_handle_t *, const char *, const char *,
593 sendflags_t *, int, snapfilter_cb_t, void *, nvlist_t **);
594 extern int zfs_fits_send(zfs_handle_t *, const char *, const char *,
595 sendflags_t *, int, snapfilter_cb_t, void *);
596 #endif /* ! codereview */

598 extern int zfs_promote(zfs_handle_t *);
599 extern int zfs_hold(zfs_handle_t *, const char *, const char *, boolean_t,
600 boolean_t, boolean_t, int, uint64_t, uint64_t);
601 extern int zfs_release(zfs_handle_t *, const char *, const char *, boolean_t);
602 extern int zfs_get_holds(zfs_handle_t *, nvlist_t **);
603 extern uint64_t zvol_volsize_to_reservation(uint64_t, nvlist_t *);

605 typedef int (*zfs_userspace_cb_t)(void *arg, const char *domain,
606 uid_t rid, uint64_t space);

608 extern int zfs_userspace(zfs_handle_t *, zfs_userquota_prop_t,
609 zfs_userspace_cb_t, void *);

611 extern int zfs_get_fsacl(zfs_handle_t *, nvlist_t **);
612 extern int zfs_set_fsacl(zfs_handle_t *, boolean_t, nvlist_t *);

614 typedef struct recvflags {
615 /* print informational messages (ie, -v was specified) */
616 boolean_t verbose;

618 /* the destination is a prefix, not the exact fs (ie, -d) */
619 boolean_t isprefix;

621 /*
622 * Only the tail of the sent snapshot path is appended to the
623 * destination to determine the received snapshot name (ie, -e).
624 */
625 boolean_t istail;

627 /* do not actually do the recv, just check if it would work (ie, -n) */
628 boolean_t dryrun;

630 /* rollback/destroy filesystems as necessary (eg, -F) */
631 boolean_t force;

633 /* set "canmount=off" on all modified filesystems */
634 boolean_t canmountoff;

636 /* byteswap flag is used internally; callers need not specify */
637 boolean_t byteswap;

639 /* do not mount file systems as they are extracted (private) */
640 boolean_t nomount;
641 } recvflags_t;

643 extern int zfs_receive(libzfs_handle_t *, const char *, recvflags_t *,
644 int, avl_tree_t *);

new/usr/src/lib/libzfs/common/libzfs.h 2

646 typedef enum diff_flags {
647 ZFS_DIFF_PARSEABLE = 0x1,
648 ZFS_DIFF_TIMESTAMP = 0x2,
649 ZFS_DIFF_CLASSIFY = 0x4
650 } diff_flags_t;

652 extern int zfs_show_diffs(zfs_handle_t *, int, const char *, const char *,
653 int);

655 /*
656 * Miscellaneous functions.
657 */
658 extern const char *zfs_type_to_name(zfs_type_t);
659 extern void zfs_refresh_properties(zfs_handle_t *);
660 extern int zfs_name_valid(const char *, zfs_type_t);
661 extern zfs_handle_t *zfs_path_to_zhandle(libzfs_handle_t *, char *, zfs_type_t);
662 extern boolean_t zfs_dataset_exists(libzfs_handle_t *, const char *,
663 zfs_type_t);
664 extern int zfs_spa_version(zfs_handle_t *, int *);

666 /*
667 * Mount support functions.
668 */
669 extern boolean_t is_mounted(libzfs_handle_t *, const char *special, char **);
670 extern boolean_t zfs_is_mounted(zfs_handle_t *, char **);
671 extern int zfs_mount(zfs_handle_t *, const char *, int);
672 extern int zfs_unmount(zfs_handle_t *, const char *, int);
673 extern int zfs_unmountall(zfs_handle_t *, int);

675 /*
676 * Share support functions.
677 */
678 extern boolean_t zfs_is_shared(zfs_handle_t *);
679 extern int zfs_share(zfs_handle_t *);
680 extern int zfs_unshare(zfs_handle_t *);

682 /*
683 * Protocol-specific share support functions.
684 */
685 extern boolean_t zfs_is_shared_nfs(zfs_handle_t *, char **);
686 extern boolean_t zfs_is_shared_smb(zfs_handle_t *, char **);
687 extern int zfs_share_nfs(zfs_handle_t *);
688 extern int zfs_share_smb(zfs_handle_t *);
689 extern int zfs_shareall(zfs_handle_t *);
690 extern int zfs_unshare_nfs(zfs_handle_t *, const char *);
691 extern int zfs_unshare_smb(zfs_handle_t *, const char *);
692 extern int zfs_unshareall_nfs(zfs_handle_t *);
693 extern int zfs_unshareall_smb(zfs_handle_t *);
694 extern int zfs_unshareall_bypath(zfs_handle_t *, const char *);
695 extern int zfs_unshareall(zfs_handle_t *);
696 extern int zfs_deleg_share_nfs(libzfs_handle_t *, char *, char *, char *,
697 void *, void *, int, zfs_share_op_t);

699 /*
700 * When dealing with nvlists, verify() is extremely useful
701 */
702 #ifdef NDEBUG
703 #define verify(EX) ((void)(EX))
704 #else
705 #define verify(EX) assert(EX)
706 #endif

708 /*
709 * Utility function to convert a number to a human-readable form.
710 */
711 extern void zfs_nicenum(uint64_t, char *, size_t);

new/usr/src/lib/libzfs/common/libzfs.h 3

712 extern int zfs_nicestrtonum(libzfs_handle_t *, const char *, uint64_t *);

714 /*
715 * Given a device or file, determine if it is part of a pool.
716 */
717 extern int zpool_in_use(libzfs_handle_t *, int, pool_state_t *, char **,
718 boolean_t *);

720 /*
721 * Label manipulation.
722 */
723 extern int zpool_read_label(int, nvlist_t **);
724 extern int zpool_clear_label(int);

726 /* is this zvol valid for use as a dump device? */
727 extern int zvol_check_dump_config(char *);

729 /*
730 * Management interfaces for SMB ACL files
731 */

733 int zfs_smb_acl_add(libzfs_handle_t *, char *, char *, char *);
734 int zfs_smb_acl_remove(libzfs_handle_t *, char *, char *, char *);
735 int zfs_smb_acl_purge(libzfs_handle_t *, char *, char *);
736 int zfs_smb_acl_rename(libzfs_handle_t *, char *, char *, char *, char *);

738 /*
739 * Enable and disable datasets within a pool by mounting/unmounting and
740 * sharing/unsharing them.
741 */
742 extern int zpool_enable_datasets(zpool_handle_t *, const char *, int);
743 extern int zpool_disable_datasets(zpool_handle_t *, boolean_t);

745 /*
746 * Mappings between vdev and FRU.
747 */
748 extern void libzfs_fru_refresh(libzfs_handle_t *);
749 extern const char *libzfs_fru_lookup(libzfs_handle_t *, const char *);
750 extern const char *libzfs_fru_devpath(libzfs_handle_t *, const char *);
751 extern boolean_t libzfs_fru_compare(libzfs_handle_t *, const char *,
752 const char *);
753 extern boolean_t libzfs_fru_notself(libzfs_handle_t *, const char *);
754 extern int zpool_fru_set(zpool_handle_t *, uint64_t, const char *);

756 #ifdef __cplusplus
757 }
758 #endif

760 #endif /* _LIBZFS_H */

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 1

**
 87476 Wed Oct 17 21:48:37 2012
new/usr/src/lib/libzfs/common/libzfs_sendrecv.c
FITS: generating send-streams in portable format
This commit adds the command ’zfs fits-send’, analogous to zfs send. The
generated send stream is compatible with the stream generated with that
from ’btrfs send’ and can in principle easily be received to any filesystem.
**
______unchanged_portion_omitted_

3201 /*
3202 * Generate a fits stream for the dataset identified by the argument zhp.
3203 *
3204 * The content of the send stream is the snapshot identified by
3205 * ’tosnap’. Incremental streams are requested from the snapshot identified
3206 * by "fromsnap" (if non-null)
3207 * Currently no recursive send is implemented
3208 */
3209 int
3210 zfs_fits_send(zfs_handle_t *zhp, const char *fromsnap, const char *tosnap,
3211 sendflags_t *flags, int outfd, snapfilter_cb_t filter_func,
3212 void *cb_arg)
3213 {
3214 char errbuf[1024];
3215 char name[MAXPATHLEN];
3216 zfs_cmd_t zc = { 0 };
3217 libzfs_handle_t *hdl = zhp->zfs_hdl;
3218 zfs_handle_t *thdl;

3220 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
3221 "cannot send ’%s’"), zhp->zfs_name);

3223 if (fromsnap && fromsnap[0] == ’\0’) {
3224 zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
3225 "zero-length incremental source"));
3226 return (zfs_error(zhp->zfs_hdl, EZFS_NOENT, errbuf));
3227 }

3229 (void) snprintf(name, sizeof (name), "%s@%s", zhp->zfs_name, tosnap);
3230 if ((thdl = zfs_open(hdl, name, ZFS_TYPE_SNAPSHOT)) == NULL) {
3231 (void) fprintf(stderr, dgettext(TEXT_DOMAIN,
3232 "WARNING: could not send %s@%s: does not exist\n"),
3233 zhp->zfs_name, tosnap);
3234 return (B_TRUE);
3235 }
3236 zc.zc_sendobj = zfs_prop_get_int(thdl, ZFS_PROP_OBJSETID);
3237 zfs_close(thdl);

3239 if (fromsnap) {
3240 (void) snprintf(name, sizeof (name), "%s@%s",
3241 zhp->zfs_name, fromsnap);
3242 if ((thdl = zfs_open(hdl, name, ZFS_TYPE_SNAPSHOT)) == NULL) {
3243 (void) fprintf(stderr, dgettext(TEXT_DOMAIN,
3244 "WARNING: could not send %s@%s:\n"
3245 "incremental source (%s@%s) does not exist\n"),
3246 zhp->zfs_name, tosnap,
3247 zhp->zfs_name, fromsnap);
3248 return (B_TRUE);
3249 }
3250 zc.zc_fromobj = zfs_prop_get_int(thdl, ZFS_PROP_OBJSETID);
3251 zfs_close(thdl);
3252 }

3254 assert(zhp->zfs_type == ZFS_TYPE_FILESYSTEM);

3256 (void) snprintf(zc.zc_name, sizeof (zc.zc_name), "%s@%s",

new/usr/src/lib/libzfs/common/libzfs_sendrecv.c 2

3257 zhp->zfs_name, tosnap);
3258 zc.zc_cookie = outfd;
3259 zc.zc_obj = 0;

3261 if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_FITS_SEND, &zc) != 0) {
3262 char errbuf[1024];
3263 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
3264 "warning: cannot send ’%s’"), zhp->zfs_name);

3266 switch (errno) {
3267 case EXDEV:
3268 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
3269 "not an earlier snapshot from the same fs"));
3270 return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf));
3271 case ENOENT:
3272 if (zfs_dataset_exists(hdl, zc.zc_name,
3273 ZFS_TYPE_SNAPSHOT)) {
3274 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
3275 "incremental source (@%s) does not exist"),
3276 zc.zc_value);
3277 }
3278 return (zfs_error(hdl, EZFS_NOENT, errbuf));
3279 case EDQUOT:
3280 case EFBIG:
3281 case EIO:
3282 case ENOLINK:
3283 case ENOSPC:
3284 case ENOSTR:
3285 case ENXIO:
3286 case EPIPE:
3287 case ERANGE:
3288 case EFAULT:
3289 case EROFS:
3290 zfs_error_aux(hdl, strerror(errno));
3291 return (zfs_error(hdl, EZFS_BADBACKUP, errbuf));
3292 default:
3293 return (zfs_standard_error(hdl, errno, errbuf));
3294 }
3295 }

3297 return (0);
3298 }
3299 #endif /* ! codereview */

new/usr/src/lib/libzfs/common/mapfile-vers 1

**
 5399 Wed Oct 17 21:48:37 2012
new/usr/src/lib/libzfs/common/mapfile-vers
FITS: generating send-streams in portable format
This commit adds the command ’zfs fits-send’, analogous to zfs send. The
generated send stream is compatible with the stream generated with that
from ’btrfs send’ and can in principle easily be received to any filesystem.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
22 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 # Copyright (c) 2012 by Delphix. All rights reserved.
24 #
25 # MAPFILE HEADER START
26 #
27 # WARNING: STOP NOW. DO NOT MODIFY THIS FILE.
28 # Object versioning must comply with the rules detailed in
29 #
30 # usr/src/lib/README.mapfiles
31 #
32 # You should not be making modifications here until you’ve read the most current
33 # copy of that file. If you need help, contact a gatekeeper for guidance.
34 #
35 # MAPFILE HEADER END
36 #

38 $mapfile_version 2

40 SYMBOL_VERSION SUNWprivate_1.1 {
41 global:
42 fletcher_2_native;
43 fletcher_2_byteswap;
44 fletcher_4_native;
45 fletcher_4_byteswap;
46 fletcher_4_incremental_native;
47 fletcher_4_incremental_byteswap;
48 libzfs_add_handle;
49 libzfs_dataset_cmp;
50 libzfs_errno;
51 libzfs_error_action;
52 libzfs_error_description;
53 libzfs_fini;
54 libzfs_fru_compare;
55 libzfs_fru_devpath;
56 libzfs_fru_lookup;
57 libzfs_fru_notself;
58 libzfs_fru_refresh;

new/usr/src/lib/libzfs/common/mapfile-vers 2

59 libzfs_init;
60 libzfs_mnttab_cache;
61 libzfs_print_on_error;
62 spa_feature_table;
63 zfs_allocatable_devs;
64 zfs_asprintf;
65 zfs_clone;
66 zfs_close;
67 zfs_create;
68 zfs_create_ancestors;
69 zfs_dataset_exists;
70 zfs_deleg_share_nfs;
71 zfs_destroy;
72 zfs_destroy_snaps;
73 zfs_destroy_snaps_nvl;
74 zfs_expand_proplist;
75 zfs_fits_send;
76 #endif /* ! codereview */
77 zfs_get_handle;
78 zfs_get_holds;
79 zfs_get_name;
80 zfs_get_pool_handle;
81 zfs_get_user_props;
82 zfs_get_type;
83 zfs_handle_dup;
84 zfs_history_event_names;
85 zfs_hold;
86 zfs_is_mounted;
87 zfs_is_shared;
88 zfs_is_shared_nfs;
89 zfs_is_shared_smb;
90 zfs_iter_children;
91 zfs_iter_dependents;
92 zfs_iter_filesystems;
93 zfs_iter_root;
94 zfs_iter_snapshots;
95 zfs_iter_snapshots_sorted;
96 zfs_iter_snapspec;
97 zfs_mount;
98 zfs_name_to_prop;
99 zfs_name_valid;
100 zfs_nicenum;
101 zfs_nicestrtonum;
102 zfs_open;
103 zfs_path_to_zhandle;
104 zfs_promote;
105 zfs_prop_align_right;
106 zfs_prop_column_name;
107 zfs_prop_default_numeric;
108 zfs_prop_default_string;
109 zfs_prop_get;
110 zfs_prop_get_int;
111 zfs_prop_get_numeric;
112 zfs_prop_get_recvd;
113 zfs_prop_get_table;
114 zfs_prop_get_userquota_int;
115 zfs_prop_get_userquota;
116 zfs_prop_get_written_int;
117 zfs_prop_get_written;
118 zfs_prop_inherit;
119 zfs_prop_inheritable;
120 zfs_prop_init;
121 zfs_prop_is_string;
122 zfs_prop_readonly;
123 zfs_prop_set;
124 zfs_prop_string_to_index;

new/usr/src/lib/libzfs/common/mapfile-vers 3

125 zfs_prop_to_name;
126 zfs_prop_user;
127 zfs_prop_userquota;
128 zfs_prop_valid_for_type;
129 zfs_prop_values;
130 zfs_prop_written;
131 zfs_prune_proplist;
132 zfs_receive;
133 zfs_refresh_properties;
134 zfs_release;
135 zfs_rename;
136 zfs_rollback;
137 zfs_save_arguments;
138 zfs_send;
139 zfs_share;
140 zfs_shareall;
141 zfs_share_nfs;
142 zfs_share_smb;
143 zfs_show_diffs;
144 zfs_smb_acl_add;
145 zfs_smb_acl_purge;
146 zfs_smb_acl_remove;
147 zfs_smb_acl_rename;
148 zfs_snapshot;
149 zfs_snapshot_nvl;
150 zfs_spa_version;
151 zfs_spa_version_map;
152 zfs_type_to_name;
153 zfs_unmount;
154 zfs_unmountall;
155 zfs_unshare;
156 zfs_unshare_nfs;
157 zfs_unshare_smb;
158 zfs_unshareall;
159 zfs_unshareall_bypath;
160 zfs_unshareall_nfs;
161 zfs_unshareall_smb;
162 zfs_userspace;
163 zfs_get_fsacl;
164 zfs_set_fsacl;
165 zfs_userquota_prop_prefixes;
166 zfs_zpl_version_map;
167 zpool_add;
168 zpool_clear;
169 zpool_clear_label;
170 zpool_close;
171 zpool_create;
172 zpool_destroy;
173 zpool_disable_datasets;
174 zpool_dump_ddt;
175 zpool_enable_datasets;
176 zpool_expand_proplist;
177 zpool_explain_recover;
178 zpool_export;
179 zpool_export_force;
180 zpool_find_import;
181 zpool_find_import_cached;
182 zpool_find_vdev;
183 zpool_find_vdev_by_physpath;
184 zpool_fru_set;
185 zpool_get_config;
186 zpool_get_errlog;
187 zpool_get_features;
188 zpool_get_handle;
189 zpool_get_history;
190 zpool_get_name;

new/usr/src/lib/libzfs/common/mapfile-vers 4

191 zpool_get_physpath;
192 zpool_get_prop;
193 zpool_get_prop_int;
194 zpool_get_state;
195 zpool_get_status;
196 zpool_history_unpack;
197 zpool_import;
198 zpool_import_props;
199 zpool_import_status;
200 zpool_in_use;
201 zpool_is_bootable;
202 zpool_iter;
203 zpool_label_disk;
204 zpool_log_history;
205 zpool_mount_datasets;
206 zpool_name_to_prop;
207 zpool_obj_to_path;
208 zpool_open;
209 zpool_open_canfail;
210 zpool_print_unsup_feat;
211 zpool_prop_align_right;
212 zpool_prop_column_name;
213 zpool_prop_feature;
214 zpool_prop_get_feature;
215 zpool_prop_readonly;
216 zpool_prop_to_name;
217 zpool_prop_unsupported;
218 zpool_prop_values;
219 zpool_read_label;
220 zpool_refresh_stats;
221 zpool_reguid;
222 zpool_reopen;
223 zpool_scan;
224 zpool_search_import;
225 zpool_set_prop;
226 zpool_state_to_name;
227 zpool_unmount_datasets;
228 zpool_upgrade;
229 zpool_vdev_attach;
230 zpool_vdev_clear;
231 zpool_vdev_degrade;
232 zpool_vdev_detach;
233 zpool_vdev_fault;
234 zpool_vdev_name;
235 zpool_vdev_offline;
236 zpool_vdev_online;
237 zpool_vdev_remove;
238 zpool_vdev_split;
239 zprop_free_list;
240 zprop_get_list;
241 zprop_iter;
242 zprop_print_one_property;
243 zprop_width;
244 zvol_check_dump_config;
245 zvol_volsize_to_reservation;
246 local:
247 *;
248 };

new/usr/src/uts/common/Makefile.files 1

**
 42960 Wed Oct 17 21:48:38 2012
new/usr/src/uts/common/Makefile.files
FITS: generating send-streams in portable format
This commit adds the command ’zfs fits-send’, analogous to zfs send. The
generated send stream is compatible with the stream generated with that
from ’btrfs send’ and can in principle easily be received to any filesystem.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 # Copyright (c) 2012 by Delphix. All rights reserved.
26 #

28 #
29 # This Makefile defines all file modules for the directory uts/common
30 # and its children. These are the source files which may be considered
31 # common to all SunOS systems.

33 i386_CORE_OBJS += \
34 atomic.o \
35 avintr.o \
36 pic.o

38 sparc_CORE_OBJS +=

40 COMMON_CORE_OBJS += \
41 beep.o \
42 bitset.o \
43 bp_map.o \
44 brand.o \
45 cpucaps.o \
46 cmt.o \
47 cmt_policy.o \
48 cpu.o \
49 cpu_event.o \
50 cpu_intr.o \
51 cpu_pm.o \
52 cpupart.o \
53 cap_util.o \
54 disp.o \
55 group.o \
56 kstat_fr.o \
57 iscsiboot_prop.o \
58 lgrp.o \

new/usr/src/uts/common/Makefile.files 2

59 lgrp_topo.o \
60 mmapobj.o \
61 mutex.o \
62 page_lock.o \
63 page_retire.o \
64 panic.o \
65 param.o \
66 pg.o \
67 pghw.o \
68 putnext.o \
69 rctl_proc.o \
70 rwlock.o \
71 seg_kmem.o \
72 softint.o \
73 string.o \
74 strtol.o \
75 strtoul.o \
76 strtoll.o \
77 strtoull.o \
78 thread_intr.o \
79 vm_page.o \
80 vm_pagelist.o \
81 zlib_obj.o \
82 clock_tick.o

84 CORE_OBJS += $(COMMON_CORE_OBJS) $($(MACH)_CORE_OBJS)

86 ZLIB_OBJS = zutil.o zmod.o zmod_subr.o \
87 adler32.o crc32.o deflate.o inffast.o \
88 inflate.o inftrees.o trees.o

90 GENUNIX_OBJS += \
91 access.o \
92 acl.o \
93 acl_common.o \
94 adjtime.o \
95 alarm.o \
96 aio_subr.o \
97 auditsys.o \
98 audit_core.o \
99 audit_zone.o \
100 audit_memory.o \
101 autoconf.o \
102 avl.o \
103 bdev_dsort.o \
104 bio.o \
105 bitmap.o \
106 blabel.o \
107 brandsys.o \
108 bz2blocksort.o \
109 bz2compress.o \
110 bz2decompress.o \
111 bz2randtable.o \
112 bz2bzlib.o \
113 bz2crctable.o \
114 bz2huffman.o \
115 callb.o \
116 callout.o \
117 chdir.o \
118 chmod.o \
119 chown.o \
120 cladm.o \
121 class.o \
122 clock.o \
123 clock_highres.o \
124 clock_realtime.o\

new/usr/src/uts/common/Makefile.files 3

125 close.o \
126 compress.o \
127 condvar.o \
128 conf.o \
129 console.o \
130 contract.o \
131 copyops.o \
132 core.o \
133 corectl.o \
134 cred.o \
135 cs_stubs.o \
136 dacf.o \
137 dacf_clnt.o \
138 damap.o \
139 cyclic.o \
140 ddi.o \
141 ddifm.o \
142 ddi_hp_impl.o \
143 ddi_hp_ndi.o \
144 ddi_intr.o \
145 ddi_intr_impl.o \
146 ddi_intr_irm.o \
147 ddi_nodeid.o \
148 ddi_timer.o \
149 devcfg.o \
150 devcache.o \
151 device.o \
152 devid.o \
153 devid_cache.o \
154 devid_scsi.o \
155 devid_smp.o \
156 devpolicy.o \
157 disp_lock.o \
158 dnlc.o \
159 driver.o \
160 dumpsubr.o \
161 driver_lyr.o \
162 dtrace_subr.o \
163 errorq.o \
164 etheraddr.o \
165 evchannels.o \
166 exacct.o \
167 exacct_core.o \
168 exec.o \
169 exit.o \
170 fbio.o \
171 fcntl.o \
172 fdbuffer.o \
173 fdsync.o \
174 fem.o \
175 ffs.o \
176 fio.o \
177 flock.o \
178 fm.o \
179 fork.o \
180 vpm.o \
181 fs_reparse.o \
182 fs_subr.o \
183 fsflush.o \
184 ftrace.o \
185 getcwd.o \
186 getdents.o \
187 getloadavg.o \
188 getpagesizes.o \
189 getpid.o \
190 gfs.o \

new/usr/src/uts/common/Makefile.files 4

191 rusagesys.o \
192 gid.o \
193 groups.o \
194 grow.o \
195 hat_refmod.o \
196 id32.o \
197 id_space.o \
198 inet_ntop.o \
199 instance.o \
200 ioctl.o \
201 ip_cksum.o \
202 issetugid.o \
203 ippconf.o \
204 kcpc.o \
205 kdi.o \
206 kiconv.o \
207 klpd.o \
208 kmem.o \
209 ksyms_snapshot.o \
210 l_strplumb.o \
211 labelsys.o \
212 link.o \
213 list.o \
214 lockstat_subr.o \
215 log_sysevent.o \
216 logsubr.o \
217 lookup.o \
218 lseek.o \
219 ltos.o \
220 lwp.o \
221 lwp_create.o \
222 lwp_info.o \
223 lwp_self.o \
224 lwp_sobj.o \
225 lwp_timer.o \
226 lwpsys.o \
227 main.o \
228 mmapobjsys.o \
229 memcntl.o \
230 memstr.o \
231 lgrpsys.o \
232 mkdir.o \
233 mknod.o \
234 mount.o \
235 move.o \
236 msacct.o \
237 multidata.o \
238 nbmlock.o \
239 ndifm.o \
240 nice.o \
241 netstack.o \
242 ntptime.o \
243 nvpair.o \
244 nvpair_alloc_system.o \
245 nvpair_alloc_fixed.o \
246 fnvpair.o \
247 octet.o \
248 open.o \
249 p_online.o \
250 pathconf.o \
251 pathname.o \
252 pause.o \
253 serializer.o \
254 pci_intr_lib.o \
255 pci_cap.o \
256 pcifm.o \

new/usr/src/uts/common/Makefile.files 5

257 pgrp.o \
258 pgrpsys.o \
259 pid.o \
260 pkp_hash.o \
261 policy.o \
262 poll.o \
263 pool.o \
264 pool_pset.o \
265 port_subr.o \
266 ppriv.o \
267 printf.o \
268 priocntl.o \
269 priv.o \
270 priv_const.o \
271 proc.o \
272 procset.o \
273 processor_bind.o \
274 processor_info.o \
275 profil.o \
276 project.o \
277 qsort.o \
278 rctl.o \
279 rctlsys.o \
280 readlink.o \
281 refstr.o \
282 rename.o \
283 resolvepath.o \
284 retire_store.o \
285 process.o \
286 rlimit.o \
287 rmap.o \
288 rw.o \
289 rwstlock.o \
290 sad_conf.o \
291 sid.o \
292 sidsys.o \
293 sched.o \
294 schedctl.o \
295 sctp_crc32.o \
296 seg_dev.o \
297 seg_kp.o \
298 seg_kpm.o \
299 seg_map.o \
300 seg_vn.o \
301 seg_spt.o \
302 semaphore.o \
303 sendfile.o \
304 session.o \
305 share.o \
306 shuttle.o \
307 sig.o \
308 sigaction.o \
309 sigaltstack.o \
310 signotify.o \
311 sigpending.o \
312 sigprocmask.o \
313 sigqueue.o \
314 sigsendset.o \
315 sigsuspend.o \
316 sigtimedwait.o \
317 sleepq.o \
318 sock_conf.o \
319 space.o \
320 sscanf.o \
321 stat.o \
322 statfs.o \

new/usr/src/uts/common/Makefile.files 6

323 statvfs.o \
324 stol.o \
325 str_conf.o \
326 strcalls.o \
327 stream.o \
328 streamio.o \
329 strext.o \
330 strsubr.o \
331 strsun.o \
332 subr.o \
333 sunddi.o \
334 sunmdi.o \
335 sunndi.o \
336 sunpci.o \
337 sunpm.o \
338 sundlpi.o \
339 suntpi.o \
340 swap_subr.o \
341 swap_vnops.o \
342 symlink.o \
343 sync.o \
344 sysclass.o \
345 sysconfig.o \
346 sysent.o \
347 sysfs.o \
348 systeminfo.o \
349 task.o \
350 taskq.o \
351 tasksys.o \
352 time.o \
353 timer.o \
354 times.o \
355 timers.o \
356 thread.o \
357 tlabel.o \
358 tnf_res.o \
359 turnstile.o \
360 tty_common.o \
361 u8_textprep.o \
362 uadmin.o \
363 uconv.o \
364 ucredsys.o \
365 uid.o \
366 umask.o \
367 umount.o \
368 uname.o \
369 unix_bb.o \
370 unlink.o \
371 urw.o \
372 utime.o \
373 utssys.o \
374 uucopy.o \
375 vfs.o \
376 vfs_conf.o \
377 vmem.o \
378 vm_anon.o \
379 vm_as.o \
380 vm_meter.o \
381 vm_pageout.o \
382 vm_pvn.o \
383 vm_rm.o \
384 vm_seg.o \
385 vm_subr.o \
386 vm_swap.o \
387 vm_usage.o \
388 vnode.o \

new/usr/src/uts/common/Makefile.files 7

389 vuid_queue.o \
390 vuid_store.o \
391 waitq.o \
392 watchpoint.o \
393 yield.o \
394 scsi_confdata.o \
395 xattr.o \
396 xattr_common.o \
397 xdr_mblk.o \
398 xdr_mem.o \
399 xdr.o \
400 xdr_array.o \
401 xdr_refer.o \
402 xhat.o \
403 zone.o

405 #
406 # Stubs for the stand-alone linker/loader
407 #
408 sparc_GENSTUBS_OBJS = \
409 kobj_stubs.o

411 i386_GENSTUBS_OBJS =

413 COMMON_GENSTUBS_OBJS =

415 GENSTUBS_OBJS += $(COMMON_GENSTUBS_OBJS) $($(MACH)_GENSTUBS_OBJS)

417 #
418 # DTrace and DTrace Providers
419 #
420 DTRACE_OBJS += dtrace.o dtrace_isa.o dtrace_asm.o

422 SDT_OBJS += sdt_subr.o

424 PROFILE_OBJS += profile.o

426 SYSTRACE_OBJS += systrace.o

428 LOCKSTAT_OBJS += lockstat.o

430 FASTTRAP_OBJS += fasttrap.o fasttrap_isa.o

432 DCPC_OBJS += dcpc.o

434 #
435 # Driver (pseudo-driver) Modules
436 #
437 IPP_OBJS += ippctl.o

439 AUDIO_OBJS += audio_client.o audio_ddi.o audio_engine.o \
440 audio_fltdata.o audio_format.o audio_ctrl.o \
441 audio_grc3.o audio_output.o audio_input.o \
442 audio_oss.o audio_sun.o

444 AUDIOEMU10K_OBJS += audioemu10k.o

446 AUDIOENS_OBJS += audioens.o

448 AUDIOVIA823X_OBJS += audiovia823x.o

450 AUDIOVIA97_OBJS += audiovia97.o

452 AUDIO1575_OBJS += audio1575.o

454 AUDIO810_OBJS += audio810.o

new/usr/src/uts/common/Makefile.files 8

456 AUDIOCMI_OBJS += audiocmi.o

458 AUDIOCMIHD_OBJS += audiocmihd.o

460 AUDIOHD_OBJS += audiohd.o

462 AUDIOIXP_OBJS += audioixp.o

464 AUDIOLS_OBJS += audiols.o

466 AUDIOP16X_OBJS += audiop16x.o

468 AUDIOPCI_OBJS += audiopci.o

470 AUDIOSOLO_OBJS += audiosolo.o

472 AUDIOTS_OBJS += audiots.o

474 AC97_OBJS += ac97.o ac97_ad.o ac97_alc.o ac97_cmi.o

476 BLKDEV_OBJS += blkdev.o

478 CARDBUS_OBJS += cardbus.o cardbus_hp.o cardbus_cfg.o

480 CONSKBD_OBJS += conskbd.o

482 CONSMS_OBJS += consms.o

484 OLDPTY_OBJS += tty_ptyconf.o

486 PTC_OBJS += tty_pty.o

488 PTSL_OBJS += tty_pts.o

490 PTM_OBJS += ptm.o

492 MII_OBJS += mii.o mii_cicada.o mii_natsemi.o mii_intel.o mii_qualsemi.o \
493 mii_marvell.o mii_realtek.o mii_other.o

495 PTS_OBJS += pts.o

497 PTY_OBJS += ptms_conf.o

499 SAD_OBJS += sad.o

501 MD4_OBJS += md4.o md4_mod.o

503 MD5_OBJS += md5.o md5_mod.o

505 SHA1_OBJS += sha1.o sha1_mod.o

507 SHA2_OBJS += sha2.o sha2_mod.o

509 IPGPC_OBJS += classifierddi.o classifier.o filters.o trie.o table.o \
510 ba_table.o

512 DSCPMK_OBJS += dscpmk.o dscpmkddi.o

514 DLCOSMK_OBJS += dlcosmk.o dlcosmkddi.o

516 FLOWACCT_OBJS += flowacctddi.o flowacct.o

518 TOKENMT_OBJS += tokenmt.o tokenmtddi.o

520 TSWTCL_OBJS += tswtcl.o tswtclddi.o

new/usr/src/uts/common/Makefile.files 9

522 ARP_OBJS += arpddi.o

524 ICMP_OBJS += icmpddi.o

526 ICMP6_OBJS += icmp6ddi.o

528 RTS_OBJS += rtsddi.o

530 IP_ICMP_OBJS = icmp.o icmp_opt_data.o
531 IP_RTS_OBJS = rts.o rts_opt_data.o
532 IP_TCP_OBJS = tcp.o tcp_fusion.o tcp_opt_data.o tcp_sack.o tcp_stats.o \
533 tcp_misc.o tcp_timers.o tcp_time_wait.o tcp_tpi.o tcp_output.o \
534 tcp_input.o tcp_socket.o tcp_bind.o tcp_cluster.o tcp_tunables.o
535 IP_UDP_OBJS = udp.o udp_opt_data.o udp_tunables.o udp_stats.o
536 IP_SCTP_OBJS = sctp.o sctp_opt_data.o sctp_output.o \
537 sctp_init.o sctp_input.o sctp_cookie.o \
538 sctp_conn.o sctp_error.o sctp_snmp.o \
539 sctp_tunables.o sctp_shutdown.o sctp_common.o \
540 sctp_timer.o sctp_heartbeat.o sctp_hash.o \
541 sctp_bind.o sctp_notify.o sctp_asconf.o \
542 sctp_addr.o tn_ipopt.o tnet.o ip_netinfo.o \
543 sctp_misc.o
544 IP_ILB_OBJS = ilb.o ilb_nat.o ilb_conn.o ilb_alg_hash.o ilb_alg_rr.o

546 IP_OBJS += igmp.o ipmp.o ip.o ip6.o ip6_asp.o ip6_if.o ip6_ire.o \
547 ip6_rts.o ip_if.o ip_ire.o ip_listutils.o ip_mroute.o \
548 ip_multi.o ip2mac.o ip_ndp.o ip_rts.o ip_srcid.o \
549 ipddi.o ipdrop.o mi.o nd.o tunables.o optcom.o snmpcom.o \
550 ipsec_loader.o spd.o ipclassifier.o inet_common.o ip_squeue.o \
551 squeue.o ip_sadb.o ip_ftable.o proto_set.o radix.o ip_dummy.o \
552 ip_helper_stream.o ip_tunables.o \
553 ip_output.o ip_input.o ip6_input.o ip6_output.o ip_arp.o \
554 conn_opt.o ip_attr.o ip_dce.o \
555 $(IP_ICMP_OBJS) \
556 $(IP_RTS_OBJS) \
557 $(IP_TCP_OBJS) \
558 $(IP_UDP_OBJS) \
559 $(IP_SCTP_OBJS) \
560 $(IP_ILB_OBJS)

562 IP6_OBJS += ip6ddi.o

564 HOOK_OBJS += hook.o

566 NETI_OBJS += neti_impl.o neti_mod.o neti_stack.o

568 KEYSOCK_OBJS += keysockddi.o keysock.o keysock_opt_data.o

570 IPNET_OBJS += ipnet.o ipnet_bpf.o

572 SPDSOCK_OBJS += spdsockddi.o spdsock.o spdsock_opt_data.o

574 IPSECESP_OBJS += ipsecespddi.o ipsecesp.o

576 IPSECAH_OBJS += ipsecahddi.o ipsecah.o sadb.o

578 SPPP_OBJS += sppp.o sppp_dlpi.o sppp_mod.o s_common.o

580 SPPPTUN_OBJS += sppptun.o sppptun_mod.o

582 SPPPASYN_OBJS += spppasyn.o spppasyn_mod.o

584 SPPPCOMP_OBJS += spppcomp.o spppcomp_mod.o deflate.o bsd-comp.o vjcompress.o \
585 zlib.o

new/usr/src/uts/common/Makefile.files 10

587 TCP_OBJS += tcpddi.o

589 TCP6_OBJS += tcp6ddi.o

591 NCA_OBJS += ncaddi.o

593 SDP_SOCK_MOD_OBJS += sockmod_sdp.o socksdp.o socksdpsubr.o

595 SCTP_SOCK_MOD_OBJS += sockmod_sctp.o socksctp.o socksctpsubr.o

597 PFP_SOCK_MOD_OBJS += sockmod_pfp.o

599 RDS_SOCK_MOD_OBJS += sockmod_rds.o

601 RDS_OBJS += rdsddi.o rdssubr.o rds_opt.o rds_ioctl.o

603 RDSIB_OBJS += rdsib.o rdsib_ib.o rdsib_cm.o rdsib_ep.o rdsib_buf.o \
604 rdsib_debug.o rdsib_sc.o

606 RDSV3_OBJS += af_rds.o rdsv3_ddi.o bind.o loop.o threads.o connection.o \
607 transport.o cong.o sysctl.o message.o rds_recv.o send.o \
608 stats.o info.o page.o rdma_transport.o ib_ring.o ib_rdma.o \
609 ib_recv.o ib.o ib_send.o ib_sysctl.o ib_stats.o ib_cm.o \
610 rdsv3_sc.o rdsv3_debug.o rdsv3_impl.o rdma.o rdsv3_af_thr.o

612 ISER_OBJS += iser.o iser_cm.o iser_cq.o iser_ib.o iser_idm.o \
613 iser_resource.o iser_xfer.o

615 UDP_OBJS += udpddi.o

617 UDP6_OBJS += udp6ddi.o

619 SY_OBJS += gentty.o

621 TCO_OBJS += ticots.o

623 TCOO_OBJS += ticotsord.o

625 TCL_OBJS += ticlts.o

627 TL_OBJS += tl.o

629 DUMP_OBJS += dump.o

631 BPF_OBJS += bpf.o bpf_filter.o bpf_mod.o bpf_dlt.o bpf_mac.o

633 CLONE_OBJS += clone.o

635 CN_OBJS += cons.o

637 DLD_OBJS += dld_drv.o dld_proto.o dld_str.o dld_flow.o

639 DLS_OBJS += dls.o dls_link.o dls_mod.o dls_stat.o dls_mgmt.o

641 GLD_OBJS += gld.o gldutil.o

643 MAC_OBJS += mac.o mac_bcast.o mac_client.o mac_datapath_setup.o mac_flow.o
644 mac_hio.o mac_mod.o mac_ndd.o mac_provider.o mac_sched.o \
645 mac_protect.o mac_soft_ring.o mac_stat.o mac_util.o

647 MAC_6TO4_OBJS += mac_6to4.o

649 MAC_ETHER_OBJS += mac_ether.o

651 MAC_IPV4_OBJS += mac_ipv4.o

new/usr/src/uts/common/Makefile.files 11

653 MAC_IPV6_OBJS += mac_ipv6.o

655 MAC_WIFI_OBJS += mac_wifi.o

657 MAC_IB_OBJS += mac_ib.o

659 IPTUN_OBJS += iptun_dev.o iptun_ctl.o iptun.o

661 AGGR_OBJS += aggr_dev.o aggr_ctl.o aggr_grp.o aggr_port.o \
662 aggr_send.o aggr_recv.o aggr_lacp.o

664 SOFTMAC_OBJS += softmac_main.o softmac_ctl.o softmac_capab.o \
665 softmac_dev.o softmac_stat.o softmac_pkt.o softmac_fp.o

667 NET80211_OBJS += net80211.o net80211_proto.o net80211_input.o \
668 net80211_output.o net80211_node.o net80211_crypto.o \
669 net80211_crypto_none.o net80211_crypto_wep.o net80211_ioctl.o \
670 net80211_crypto_tkip.o net80211_crypto_ccmp.o \
671 net80211_ht.o

673 VNIC_OBJS += vnic_ctl.o vnic_dev.o

675 SIMNET_OBJS += simnet.o

677 IB_OBJS += ibnex.o ibnex_ioctl.o ibnex_hca.o

679 IBCM_OBJS += ibcm_impl.o ibcm_sm.o ibcm_ti.o ibcm_utils.o ibcm_path.o \
680 ibcm_arp.o ibcm_arp_link.o

682 IBDM_OBJS += ibdm.o

684 IBDMA_OBJS += ibdma.o

686 IBMF_OBJS += ibmf.o ibmf_impl.o ibmf_dr.o ibmf_wqe.o ibmf_ud_dest.o ibmf_mod.
687 ibmf_send.o ibmf_recv.o ibmf_handlers.o ibmf_trans.o \
688 ibmf_timers.o ibmf_msg.o ibmf_utils.o ibmf_rmpp.o \
689 ibmf_saa.o ibmf_saa_impl.o ibmf_saa_utils.o ibmf_saa_events.o

691 IBTL_OBJS += ibtl_impl.o ibtl_util.o ibtl_mem.o ibtl_handlers.o ibtl_qp.o \
692 ibtl_cq.o ibtl_wr.o ibtl_hca.o ibtl_chan.o ibtl_cm.o \
693 ibtl_mcg.o ibtl_ibnex.o ibtl_srq.o ibtl_part.o

695 TAVOR_OBJS += tavor.o tavor_agents.o tavor_cfg.o tavor_ci.o tavor_cmd.o \
696 tavor_cq.o tavor_event.o tavor_ioctl.o tavor_misc.o \
697 tavor_mr.o tavor_qp.o tavor_qpmod.o tavor_rsrc.o \
698 tavor_srq.o tavor_stats.o tavor_umap.o tavor_wr.o

700 HERMON_OBJS += hermon.o hermon_agents.o hermon_cfg.o hermon_ci.o hermon_cmd.o \
701 hermon_cq.o hermon_event.o hermon_ioctl.o hermon_misc.o \
702 hermon_mr.o hermon_qp.o hermon_qpmod.o hermon_rsrc.o \
703 hermon_srq.o hermon_stats.o hermon_umap.o hermon_wr.o \
704 hermon_fcoib.o hermon_fm.o

706 DAPLT_OBJS += daplt.o

708 SOL_OFS_OBJS += sol_cma.o sol_ib_cma.o sol_uobj.o \
709 sol_ofs_debug_util.o sol_ofs_gen_util.o \
710 sol_kverbs.o

712 SOL_UCMA_OBJS += sol_ucma.o

714 SOL_UVERBS_OBJS += sol_uverbs.o sol_uverbs_comp.o sol_uverbs_event.o \
715 sol_uverbs_hca.o sol_uverbs_qp.o

717 SOL_UMAD_OBJS += sol_umad.o

new/usr/src/uts/common/Makefile.files 12

719 KSTAT_OBJS += kstat.o

721 KSYMS_OBJS += ksyms.o

723 INSTANCE_OBJS += inst_sync.o

725 IWSCN_OBJS += iwscons.o

727 LOFI_OBJS += lofi.o LzmaDec.o

729 FSSNAP_OBJS += fssnap.o

731 FSSNAPIF_OBJS += fssnap_if.o

733 MM_OBJS += mem.o

735 PHYSMEM_OBJS += physmem.o

737 OPTIONS_OBJS += options.o

739 WINLOCK_OBJS += winlockio.o

741 PM_OBJS += pm.o
742 SRN_OBJS += srn.o

744 PSEUDO_OBJS += pseudonex.o

746 RAMDISK_OBJS += ramdisk.o

748 LLC1_OBJS += llc1.o

750 USBKBM_OBJS += usbkbm.o

752 USBWCM_OBJS += usbwcm.o

754 BOFI_OBJS += bofi.o

756 HID_OBJS += hid.o

758 HWA_RC_OBJS += hwarc.o

760 USBSKEL_OBJS += usbskel.o

762 USBVC_OBJS += usbvc.o usbvc_v4l2.o

764 HIDPARSER_OBJS += hidparser.o

766 USB_AC_OBJS += usb_ac.o

768 USB_AS_OBJS += usb_as.o

770 USB_AH_OBJS += usb_ah.o

772 USBMS_OBJS += usbms.o

774 USBPRN_OBJS += usbprn.o

776 UGEN_OBJS += ugen.o

778 USBSER_OBJS += usbser.o usbser_rseq.o

780 USBSACM_OBJS += usbsacm.o

782 USBSER_KEYSPAN_OBJS += usbser_keyspan.o keyspan_dsd.o keyspan_pipe.o

784 USBS49_FW_OBJS += keyspan_49fw.o

new/usr/src/uts/common/Makefile.files 13

786 USBSPRL_OBJS += usbser_pl2303.o pl2303_dsd.o

788 WUSB_CA_OBJS += wusb_ca.o

790 USBFTDI_OBJS += usbser_uftdi.o uftdi_dsd.o

792 USBECM_OBJS += usbecm.o

794 WC_OBJS += wscons.o vcons.o

796 VCONS_CONF_OBJS += vcons_conf.o

798 SCSI_OBJS += scsi_capabilities.o scsi_confsubr.o scsi_control.o \
799 scsi_data.o scsi_fm.o scsi_hba.o scsi_reset_notify.o \
800 scsi_resource.o scsi_subr.o scsi_transport.o scsi_watch.o \
801 smp_transport.o

803 SCSI_VHCI_OBJS += scsi_vhci.o mpapi_impl.o scsi_vhci_tpgs.o

805 SCSI_VHCI_F_SYM_OBJS += sym.o

807 SCSI_VHCI_F_TPGS_OBJS += tpgs.o

809 SCSI_VHCI_F_ASYM_SUN_OBJS += asym_sun.o

811 SCSI_VHCI_F_SYM_HDS_OBJS += sym_hds.o

813 SCSI_VHCI_F_TAPE_OBJS += tape.o

815 SCSI_VHCI_F_TPGS_TAPE_OBJS += tpgs_tape.o

817 SGEN_OBJS += sgen.o

819 SMP_OBJS += smp.o

821 SATA_OBJS += sata.o

823 USBA_OBJS += hcdi.o usba.o usbai.o hubdi.o parser.o genconsole.o \
824 usbai_pipe_mgmt.o usbai_req.o usbai_util.o usbai_register.o \
825 usba_devdb.o usba10_calls.o usba_ugen.o whcdi.o wa.o
826 USBA_WITHOUT_WUSB_OBJS += hcdi.o usba.o usbai.o hubdi.o parser.o gencons
827 usbai_pipe_mgmt.o usbai_req.o usbai_util.o usbai_register.o \
828 usba_devdb.o usba10_calls.o usba_ugen.o

830 USBA10_OBJS += usba10.o

832 RSM_OBJS += rsm.o rsmka_pathmanager.o rsmka_util.o

834 RSMOPS_OBJS += rsmops.o

836 S1394_OBJS += t1394.o t1394_errmsg.o s1394.o s1394_addr.o s1394_asynch.o \
837 s1394_bus_reset.o s1394_cmp.o s1394_csr.o s1394_dev_disc.o \
838 s1394_fa.o s1394_fcp.o \
839 s1394_hotplug.o s1394_isoch.o s1394_misc.o h1394.o nx1394.o

841 HCI1394_OBJS += hci1394.o hci1394_async.o hci1394_attach.o hci1394_buf.o \
842 hci1394_csr.o hci1394_detach.o hci1394_extern.o \
843 hci1394_ioctl.o hci1394_isoch.o hci1394_isr.o \
844 hci1394_ixl_comp.o hci1394_ixl_isr.o hci1394_ixl_misc.o \
845 hci1394_ixl_update.o hci1394_misc.o hci1394_ohci.o \
846 hci1394_q.o hci1394_s1394if.o hci1394_tlabel.o \
847 hci1394_tlist.o hci1394_vendor.o

849 AV1394_OBJS += av1394.o av1394_as.o av1394_async.o av1394_cfgrom.o \
850 av1394_cmp.o av1394_fcp.o av1394_isoch.o av1394_isoch_chan.o \

new/usr/src/uts/common/Makefile.files 14

851 av1394_isoch_recv.o av1394_isoch_xmit.o av1394_list.o \
852 av1394_queue.o

854 DCAM1394_OBJS += dcam.o dcam_frame.o dcam_param.o dcam_reg.o \
855 dcam_ring_buff.o

857 SCSA1394_OBJS += hba.o sbp2_driver.o sbp2_bus.o

859 SBP2_OBJS += cfgrom.o sbp2.o

861 PMODEM_OBJS += pmodem.o pmodem_cis.o cis.o cis_callout.o cis_handlers.o cis_para

863 DSW_OBJS += dsw.o dsw_dev.o ii_tree.o

865 NCALL_OBJS += ncall.o \
866 ncall_stub.o

868 RDC_OBJS += rdc.o \
869 rdc_dev.o \
870 rdc_io.o \
871 rdc_clnt.o \
872 rdc_prot_xdr.o \
873 rdc_svc.o \
874 rdc_bitmap.o \
875 rdc_health.o \
876 rdc_subr.o \
877 rdc_diskq.o

879 RDCSRV_OBJS += rdcsrv.o

881 RDCSTUB_OBJS += rdc_stub.o

883 SDBC_OBJS += sd_bcache.o \
884 sd_bio.o \
885 sd_conf.o \
886 sd_ft.o \
887 sd_hash.o \
888 sd_io.o \
889 sd_misc.o \
890 sd_pcu.o \
891 sd_tdaemon.o \
892 sd_trace.o \
893 sd_iob_impl0.o \
894 sd_iob_impl1.o \
895 sd_iob_impl2.o \
896 sd_iob_impl3.o \
897 sd_iob_impl4.o \
898 sd_iob_impl5.o \
899 sd_iob_impl6.o \
900 sd_iob_impl7.o \
901 safestore.o \
902 safestore_ram.o

904 NSCTL_OBJS += nsctl.o \
905 nsc_cache.o \
906 nsc_disk.o \
907 nsc_dev.o \
908 nsc_freeze.o \
909 nsc_gen.o \
910 nsc_mem.o \
911 nsc_ncallio.o \
912 nsc_power.o \
913 nsc_resv.o \
914 nsc_rmspin.o \
915 nsc_solaris.o \
916 nsc_trap.o \

new/usr/src/uts/common/Makefile.files 15

917 nsc_list.o
918 UNISTAT_OBJS += spuni.o \
919 spcs_s_k.o

921 NSKERN_OBJS += nsc_ddi.o \
922 nsc_proc.o \
923 nsc_raw.o \
924 nsc_thread.o \
925 nskernd.o

927 SV_OBJS += sv.o

929 PMCS_OBJS += pmcs_attach.o pmcs_ds.o pmcs_intr.o pmcs_nvram.o pmcs_sata.o \
930 pmcs_scsa.o pmcs_smhba.o pmcs_subr.o pmcs_fwlog.o

932 PMCS8001FW_C_OBJS += pmcs_fw_hdr.o
933 PMCS8001FW_OBJS += $(PMCS8001FW_C_OBJS) SPCBoot.o ila.o firmware.o

935 #
936 # Build up defines and paths.

938 ST_OBJS += st.o st_conf.o

940 EMLXS_OBJS += emlxs_clock.o emlxs_dfc.o emlxs_dhchap.o emlxs_diag.o \
941 emlxs_download.o emlxs_dump.o emlxs_els.o emlxs_event.o \
942 emlxs_fcf.o emlxs_fcp.o emlxs_fct.o emlxs_hba.o emlxs_ip.o \
943 emlxs_mbox.o emlxs_mem.o emlxs_msg.o emlxs_node.o \
944 emlxs_pkt.o emlxs_sli3.o emlxs_sli4.o emlxs_solaris.o \
945 emlxs_thread.o

947 EMLXS_FW_OBJS += emlxs_fw.o

949 OCE_OBJS += oce_buf.o oce_fm.o oce_gld.o oce_hw.o oce_intr.o oce_main.o \
950 oce_mbx.o oce_mq.o oce_queue.o oce_rx.o oce_stat.o oce_tx.o \
951 oce_utils.o

953 FCT_OBJS += discovery.o fct.o

955 QLT_OBJS += 2400.o 2500.o 8100.o qlt.o qlt_dma.o

957 SRPT_OBJS += srpt_mod.o srpt_ch.o srpt_cm.o srpt_ioc.o srpt_stp.o

959 FCOE_OBJS += fcoe.o fcoe_eth.o fcoe_fc.o

961 FCOET_OBJS += fcoet.o fcoet_eth.o fcoet_fc.o

963 FCOEI_OBJS += fcoei.o fcoei_eth.o fcoei_lv.o

965 ISCSIT_SHARED_OBJS += \
966 iscsit_common.o

968 ISCSIT_OBJS += $(ISCSIT_SHARED_OBJS) \
969 iscsit.o iscsit_tgt.o iscsit_sess.o iscsit_login.o \
970 iscsit_text.o iscsit_isns.o iscsit_radiusauth.o \
971 iscsit_radiuspacket.o iscsit_auth.o iscsit_authclient.o

973 PPPT_OBJS += alua_ic_if.o pppt.o pppt_msg.o pppt_tgt.o

975 STMF_OBJS += lun_map.o stmf.o

977 STMF_SBD_OBJS += sbd.o sbd_scsi.o sbd_pgr.o sbd_zvol.o

979 SYSMSG_OBJS += sysmsg.o

981 SES_OBJS += ses.o ses_sen.o ses_safte.o ses_ses.o

new/usr/src/uts/common/Makefile.files 16

983 TNF_OBJS += tnf_buf.o tnf_trace.o tnf_writer.o trace_init.o \
984 trace_funcs.o tnf_probe.o tnf.o

986 LOGINDMUX_OBJS += logindmux.o

988 DEVINFO_OBJS += devinfo.o

990 DEVPOLL_OBJS += devpoll.o

992 DEVPOOL_OBJS += devpool.o

994 I8042_OBJS += i8042.o

996 KB8042_OBJS += \
997 at_keyprocess.o \
998 kb8042.o \
999 kb8042_keytables.o

1001 MOUSE8042_OBJS += mouse8042.o

1003 FDC_OBJS += fdc.o

1005 ASY_OBJS += asy.o

1007 ECPP_OBJS += ecpp.o

1009 VUIDM3P_OBJS += vuidmice.o vuidm3p.o

1011 VUIDM4P_OBJS += vuidmice.o vuidm4p.o

1013 VUIDM5P_OBJS += vuidmice.o vuidm5p.o

1015 VUIDPS2_OBJS += vuidmice.o vuidps2.o

1017 HPCSVC_OBJS += hpcsvc.o

1019 PCIE_MISC_OBJS += pcie.o pcie_fault.o pcie_hp.o pciehpc.o pcishpc.o pcie_pwr.o p

1021 PCIHPNEXUS_OBJS += pcihp.o

1023 OPENEEPR_OBJS += openprom.o

1025 RANDOM_OBJS += random.o

1027 PSHOT_OBJS += pshot.o

1029 GEN_DRV_OBJS += gen_drv.o

1031 TCLIENT_OBJS += tclient.o

1033 TPHCI_OBJS += tphci.o

1035 TVHCI_OBJS += tvhci.o

1037 EMUL64_OBJS += emul64.o emul64_bsd.o

1039 FCP_OBJS += fcp.o

1041 FCIP_OBJS += fcip.o

1043 FCSM_OBJS += fcsm.o

1045 FCTL_OBJS += fctl.o

1047 FP_OBJS += fp.o

new/usr/src/uts/common/Makefile.files 17

1049 QLC_OBJS += ql_api.o ql_debug.o ql_hba_fru.o ql_init.o ql_iocb.o ql_ioctl.o \
1050 ql_isr.o ql_mbx.o ql_nx.o ql_xioctl.o ql_fw_table.o

1052 QLC_FW_2200_OBJS += ql_fw_2200.o

1054 QLC_FW_2300_OBJS += ql_fw_2300.o

1056 QLC_FW_2400_OBJS += ql_fw_2400.o

1058 QLC_FW_2500_OBJS += ql_fw_2500.o

1060 QLC_FW_6322_OBJS += ql_fw_6322.o

1062 QLC_FW_8100_OBJS += ql_fw_8100.o

1064 QLGE_OBJS += qlge.o qlge_dbg.o qlge_flash.o qlge_fm.o qlge_gld.o qlge_mpi.o

1066 ZCONS_OBJS += zcons.o

1068 NV_SATA_OBJS += nv_sata.o

1070 SI3124_OBJS += si3124.o

1072 AHCI_OBJS += ahci.o

1074 PCIIDE_OBJS += pci-ide.o

1076 PCEPP_OBJS += pcepp.o

1078 CPC_OBJS += cpc.o

1080 CPUID_OBJS += cpuid_drv.o

1082 SYSEVENT_OBJS += sysevent.o

1084 BL_OBJS += bl.o

1086 DRM_OBJS += drm_sunmod.o drm_kstat.o drm_agpsupport.o \
1087 drm_auth.o drm_bufs.o drm_context.o drm_dma.o \
1088 drm_drawable.o drm_drv.o drm_fops.o drm_ioctl.o drm_irq.o \
1089 drm_lock.o drm_memory.o drm_msg.o drm_pci.o drm_scatter.o \
1090 drm_cache.o drm_gem.o drm_mm.o ati_pcigart.o

1092 FM_OBJS += devfm.o devfm_machdep.o

1094 RTLS_OBJS += rtls.o

1096 #
1097 # exec modules
1098 #
1099 AOUTEXEC_OBJS +=aout.o

1101 ELFEXEC_OBJS += elf.o elf_notes.o old_notes.o

1103 INTPEXEC_OBJS +=intp.o

1105 SHBINEXEC_OBJS +=shbin.o

1107 JAVAEXEC_OBJS +=java.o

1109 #
1110 # file system modules
1111 #
1112 AUTOFS_OBJS += auto_vfsops.o auto_vnops.o auto_subr.o auto_xdr.o auto_sys.o

1114 CACHEFS_OBJS += cachefs_cnode.o cachefs_cod.o \

new/usr/src/uts/common/Makefile.files 18

1115 cachefs_dir.o cachefs_dlog.o cachefs_filegrp.o \
1116 cachefs_fscache.o cachefs_ioctl.o cachefs_log.o \
1117 cachefs_module.o \
1118 cachefs_noopc.o cachefs_resource.o \
1119 cachefs_strict.o \
1120 cachefs_subr.o cachefs_vfsops.o \
1121 cachefs_vnops.o

1123 DCFS_OBJS += dc_vnops.o

1125 DEVFS_OBJS += devfs_subr.o devfs_vfsops.o devfs_vnops.o

1127 DEV_OBJS += sdev_subr.o sdev_vfsops.o sdev_vnops.o \
1128 sdev_ptsops.o sdev_zvolops.o sdev_comm.o \
1129 sdev_profile.o sdev_ncache.o sdev_netops.o \
1130 sdev_ipnetops.o \
1131 sdev_vtops.o

1133 CTFS_OBJS += ctfs_all.o ctfs_cdir.o ctfs_ctl.o ctfs_event.o \
1134 ctfs_latest.o ctfs_root.o ctfs_sym.o ctfs_tdir.o ctfs_tmpl.o

1136 OBJFS_OBJS += objfs_vfs.o objfs_root.o objfs_common.o \
1137 objfs_odir.o objfs_data.o

1139 FDFS_OBJS += fdops.o

1141 FIFO_OBJS += fifosubr.o fifovnops.o

1143 PIPE_OBJS += pipe.o

1145 HSFS_OBJS += hsfs_node.o hsfs_subr.o hsfs_vfsops.o hsfs_vnops.o \
1146 hsfs_susp.o hsfs_rrip.o hsfs_susp_subr.o

1148 LOFS_OBJS += lofs_subr.o lofs_vfsops.o lofs_vnops.o

1150 NAMEFS_OBJS += namevfs.o namevno.o

1152 NFS_OBJS += nfs_client.o nfs_common.o nfs_dump.o \
1153 nfs_subr.o nfs_vfsops.o nfs_vnops.o \
1154 nfs_xdr.o nfs_sys.o nfs_strerror.o \
1155 nfs3_vfsops.o nfs3_vnops.o nfs3_xdr.o \
1156 nfs_acl_vnops.o nfs_acl_xdr.o nfs4_vfsops.o \
1157 nfs4_vnops.o nfs4_xdr.o nfs4_idmap.o \
1158 nfs4_shadow.o nfs4_subr.o \
1159 nfs4_attr.o nfs4_rnode.o nfs4_client.o \
1160 nfs4_acache.o nfs4_common.o nfs4_client_state.o \
1161 nfs4_callback.o nfs4_recovery.o nfs4_client_secinfo.o \
1162 nfs4_client_debug.o nfs_stats.o \
1163 nfs4_acl.o nfs4_stub_vnops.o nfs_cmd.o

1165 NFSSRV_OBJS += nfs_server.o nfs_srv.o nfs3_srv.o \
1166 nfs_acl_srv.o nfs_auth.o nfs_auth_xdr.o \
1167 nfs_export.o nfs_log.o nfs_log_xdr.o \
1168 nfs4_srv.o nfs4_state.o nfs4_srv_attr.o \
1169 nfs4_srv_ns.o nfs4_db.o nfs4_srv_deleg.o \
1170 nfs4_deleg_ops.o nfs4_srv_readdir.o nfs4_dispatch.o

1172 SMBSRV_SHARED_OBJS += \
1173 smb_inet.o \
1174 smb_match.o \
1175 smb_msgbuf.o \
1176 smb_oem.o \
1177 smb_string.o \
1178 smb_utf8.o \
1179 smb_door_legacy.o \
1180 smb_xdr.o \

new/usr/src/uts/common/Makefile.files 19

1181 smb_token.o \
1182 smb_token_xdr.o \
1183 smb_sid.o \
1184 smb_native.o \
1185 smb_netbios_util.o

1187 SMBSRV_OBJS += $(SMBSRV_SHARED_OBJS) \
1188 smb_acl.o \
1189 smb_alloc.o \
1190 smb_close.o \
1191 smb_common_open.o \
1192 smb_common_transact.o \
1193 smb_create.o \
1194 smb_delete.o \
1195 smb_directory.o \
1196 smb_dispatch.o \
1197 smb_echo.o \
1198 smb_fem.o \
1199 smb_find.o \
1200 smb_flush.o \
1201 smb_fsinfo.o \
1202 smb_fsops.o \
1203 smb_init.o \
1204 smb_kdoor.o \
1205 smb_kshare.o \
1206 smb_kutil.o \
1207 smb_lock.o \
1208 smb_lock_byte_range.o \
1209 smb_locking_andx.o \
1210 smb_logoff_andx.o \
1211 smb_mangle_name.o \
1212 smb_mbuf_marshaling.o \
1213 smb_mbuf_util.o \
1214 smb_negotiate.o \
1215 smb_net.o \
1216 smb_node.o \
1217 smb_nt_cancel.o \
1218 smb_nt_create_andx.o \
1219 smb_nt_transact_create.o \
1220 smb_nt_transact_ioctl.o \
1221 smb_nt_transact_notify_change.o \
1222 smb_nt_transact_quota.o \
1223 smb_nt_transact_security.o \
1224 smb_odir.o \
1225 smb_ofile.o \
1226 smb_open_andx.o \
1227 smb_opipe.o \
1228 smb_oplock.o \
1229 smb_pathname.o \
1230 smb_print.o \
1231 smb_process_exit.o \
1232 smb_query_fileinfo.o \
1233 smb_read.o \
1234 smb_rename.o \
1235 smb_sd.o \
1236 smb_seek.o \
1237 smb_server.o \
1238 smb_session.o \
1239 smb_session_setup_andx.o \
1240 smb_set_fileinfo.o \
1241 smb_signing.o \
1242 smb_tree.o \
1243 smb_trans2_create_directory.o \
1244 smb_trans2_dfs.o \
1245 smb_trans2_find.o \
1246 smb_tree_connect.o \

new/usr/src/uts/common/Makefile.files 20

1247 smb_unlock_byte_range.o \
1248 smb_user.o \
1249 smb_vfs.o \
1250 smb_vops.o \
1251 smb_vss.o \
1252 smb_write.o \
1253 smb_write_raw.o

1255 PCFS_OBJS += pc_alloc.o pc_dir.o pc_node.o pc_subr.o \
1256 pc_vfsops.o pc_vnops.o

1258 PROC_OBJS += prcontrol.o prioctl.o prsubr.o prusrio.o \
1259 prvfsops.o prvnops.o

1261 MNTFS_OBJS += mntvfsops.o mntvnops.o

1263 SHAREFS_OBJS += sharetab.o sharefs_vfsops.o sharefs_vnops.o

1265 SPEC_OBJS += specsubr.o specvfsops.o specvnops.o

1267 SOCK_OBJS += socksubr.o sockvfsops.o sockparams.o \
1268 socksyscalls.o socktpi.o sockstr.o \
1269 sockcommon_vnops.o sockcommon_subr.o \
1270 sockcommon_sops.o sockcommon.o \
1271 sock_notsupp.o socknotify.o \
1272 nl7c.o nl7curi.o nl7chttp.o nl7clogd.o \
1273 nl7cnca.o sodirect.o sockfilter.o

1275 TMPFS_OBJS += tmp_dir.o tmp_subr.o tmp_tnode.o tmp_vfsops.o \
1276 tmp_vnops.o

1278 UDFS_OBJS += udf_alloc.o udf_bmap.o udf_dir.o \
1279 udf_inode.o udf_subr.o udf_vfsops.o \
1280 udf_vnops.o

1282 UFS_OBJS += ufs_alloc.o ufs_bmap.o ufs_dir.o ufs_xattr.o \
1283 ufs_inode.o ufs_subr.o ufs_tables.o ufs_vfsops.o \
1284 ufs_vnops.o quota.o quotacalls.o quota_ufs.o \
1285 ufs_filio.o ufs_lockfs.o ufs_thread.o ufs_trans.o \
1286 ufs_acl.o ufs_panic.o ufs_directio.o ufs_log.o \
1287 ufs_extvnops.o ufs_snap.o lufs.o lufs_thread.o \
1288 lufs_log.o lufs_map.o lufs_top.o lufs_debug.o
1289 VSCAN_OBJS += vscan_drv.o vscan_svc.o vscan_door.o

1291 NSMB_OBJS += smb_conn.o smb_dev.o smb_iod.o smb_pass.o \
1292 smb_rq.o smb_sign.o smb_smb.o smb_subrs.o \
1293 smb_time.o smb_tran.o smb_trantcp.o smb_usr.o \
1294 subr_mchain.o

1296 SMBFS_COMMON_OBJS += smbfs_ntacl.o
1297 SMBFS_OBJS += smbfs_vfsops.o smbfs_vnops.o smbfs_node.o \
1298 smbfs_acl.o smbfs_client.o smbfs_smb.o \
1299 smbfs_subr.o smbfs_subr2.o \
1300 smbfs_rwlock.o smbfs_xattr.o \
1301 $(SMBFS_COMMON_OBJS)

1304 #
1305 # LVM modules
1306 #
1307 MD_OBJS += md.o md_error.o md_ioctl.o md_mddb.o md_names.o \
1308 md_med.o md_rename.o md_subr.o

1310 MD_COMMON_OBJS = md_convert.o md_crc.o md_revchk.o

1312 MD_DERIVED_OBJS = metamed_xdr.o meta_basic_xdr.o

new/usr/src/uts/common/Makefile.files 21

1314 SOFTPART_OBJS += sp.o sp_ioctl.o

1316 STRIPE_OBJS += stripe.o stripe_ioctl.o

1318 HOTSPARES_OBJS += hotspares.o

1320 RAID_OBJS += raid.o raid_ioctl.o raid_replay.o raid_resync.o raid_hotspare.o

1322 MIRROR_OBJS += mirror.o mirror_ioctl.o mirror_resync.o

1324 NOTIFY_OBJS += md_notify.o

1326 TRANS_OBJS += mdtrans.o trans_ioctl.o trans_log.o

1328 ZFS_COMMON_OBJS += \
1329 arc.o \
1330 bplist.o \
1331 bpobj.o \
1332 bptree.o \
1333 dbuf.o \
1334 ddt.o \
1335 ddt_zap.o \
1336 dmu.o \
1337 dmu_diff.o \
1338 dmu_send.o \
1339 dmu_object.o \
1340 dmu_objset.o \
1341 dmu_traverse.o \
1342 dmu_tx.o \
1343 fits.o \
1344 fits_pass1.o \
1345 fits_pass2.o \
1346 fits_send.o \
1347 fits_crc32c.o \
1348 fits_count.o \
1349 #endif /* ! codereview */
1350 dnode.o \
1351 dnode_sync.o \
1352 dsl_dir.o \
1353 dsl_dataset.o \
1354 dsl_deadlist.o \
1355 dsl_pool.o \
1356 dsl_synctask.o \
1357 dmu_zfetch.o \
1358 dsl_deleg.o \
1359 dsl_prop.o \
1360 dsl_scan.o \
1361 zfeature.o \
1362 gzip.o \
1363 lzjb.o \
1364 metaslab.o \
1365 refcount.o \
1366 sa.o \
1367 sha256.o \
1368 spa.o \
1369 spa_config.o \
1370 spa_errlog.o \
1371 spa_history.o \
1372 spa_misc.o \
1373 space_map.o \
1374 txg.o \
1375 uberblock.o \
1376 unique.o \
1377 vdev.o \
1378 vdev_cache.o \

new/usr/src/uts/common/Makefile.files 22

1379 vdev_file.o \
1380 vdev_label.o \
1381 vdev_mirror.o \
1382 vdev_missing.o \
1383 vdev_queue.o \
1384 vdev_raidz.o \
1385 vdev_root.o \
1386 zap.o \
1387 zap_leaf.o \
1388 zap_micro.o \
1389 zfs_byteswap.o \
1390 zfs_debug.o \
1391 zfs_fm.o \
1392 zfs_fuid.o \
1393 zfs_sa.o \
1394 zfs_znode.o \
1395 zil.o \
1396 zio.o \
1397 zio_checksum.o \
1398 zio_compress.o \
1399 zio_inject.o \
1400 zle.o \
1401 zrlock.o

1403 ZFS_SHARED_OBJS += \
1404 zfeature_common.o \
1405 zfs_comutil.o \
1406 zfs_deleg.o \
1407 zfs_fletcher.o \
1408 zfs_namecheck.o \
1409 zfs_prop.o \
1410 zpool_prop.o \
1411 zprop_common.o

1413 ZFS_OBJS += \
1414 $(ZFS_COMMON_OBJS) \
1415 $(ZFS_SHARED_OBJS) \
1416 vdev_disk.o \
1417 zfs_acl.o \
1418 zfs_ctldir.o \
1419 zfs_dir.o \
1420 zfs_ioctl.o \
1421 zfs_log.o \
1422 zfs_onexit.o \
1423 zfs_replay.o \
1424 zfs_rlock.o \
1425 rrwlock.o \
1426 zfs_vfsops.o \
1427 zfs_vnops.o \
1428 zvol.o

1430 ZUT_OBJS += \
1431 zut.o

1433 #
1434 # streams modules
1435 #
1436 BUFMOD_OBJS += bufmod.o

1438 CONNLD_OBJS += connld.o

1440 DEDUMP_OBJS += dedump.o

1442 DRCOMPAT_OBJS += drcompat.o

1444 LDLINUX_OBJS += ldlinux.o

new/usr/src/uts/common/Makefile.files 23

1446 LDTERM_OBJS += ldterm.o uwidth.o

1448 PCKT_OBJS += pckt.o

1450 PFMOD_OBJS += pfmod.o

1452 PTEM_OBJS += ptem.o

1454 REDIRMOD_OBJS += strredirm.o

1456 TIMOD_OBJS += timod.o

1458 TIRDWR_OBJS += tirdwr.o

1460 TTCOMPAT_OBJS +=ttcompat.o

1462 LOG_OBJS += log.o

1464 PIPEMOD_OBJS += pipemod.o

1466 RPCMOD_OBJS += rpcmod.o clnt_cots.o clnt_clts.o \
1467 clnt_gen.o clnt_perr.o mt_rpcinit.o rpc_calmsg.o \
1468 rpc_prot.o rpc_sztypes.o rpc_subr.o rpcb_prot.o \
1469 svc.o svc_clts.o svc_gen.o svc_cots.o \
1470 rpcsys.o xdr_sizeof.o clnt_rdma.o svc_rdma.o \
1471 xdr_rdma.o rdma_subr.o xdrrdma_sizeof.o

1473 TLIMOD_OBJS += tlimod.o t_kalloc.o t_kbind.o t_kclose.o \
1474 t_kconnect.o t_kfree.o t_kgtstate.o t_kopen.o \
1475 t_krcvudat.o t_ksndudat.o t_kspoll.o t_kunbind.o \
1476 t_kutil.o

1478 RLMOD_OBJS += rlmod.o

1480 TELMOD_OBJS += telmod.o

1482 CRYPTMOD_OBJS += cryptmod.o

1484 KB_OBJS += kbd.o keytables.o

1486 #
1487 # ID mapping module
1488 #
1489 IDMAP_OBJS += idmap_mod.o idmap_kapi.o idmap_xdr.o idmap_cache.o

1491 #
1492 # scheduling class modules
1493 #
1494 SDC_OBJS += sysdc.o

1496 RT_OBJS += rt.o
1497 RT_DPTBL_OBJS += rt_dptbl.o

1499 TS_OBJS += ts.o
1500 TS_DPTBL_OBJS += ts_dptbl.o

1502 IA_OBJS += ia.o

1504 FSS_OBJS += fss.o

1506 FX_OBJS += fx.o
1507 FX_DPTBL_OBJS += fx_dptbl.o

1509 #
1510 # Inter-Process Communication (IPC) modules

new/usr/src/uts/common/Makefile.files 24

1511 #
1512 IPC_OBJS += ipc.o

1514 IPCMSG_OBJS += msg.o

1516 IPCSEM_OBJS += sem.o

1518 IPCSHM_OBJS += shm.o

1520 #
1521 # bignum module
1522 #
1523 COMMON_BIGNUM_OBJS += bignum_mod.o bignumimpl.o

1525 BIGNUM_OBJS += $(COMMON_BIGNUM_OBJS) $(BIGNUM_PSR_OBJS)

1527 #
1528 # kernel cryptographic framework
1529 #
1530 KCF_OBJS += kcf.o kcf_callprov.o kcf_cbufcall.o kcf_cipher.o kcf_crypto.o \
1531 kcf_cryptoadm.o kcf_ctxops.o kcf_digest.o kcf_dual.o \
1532 kcf_keys.o kcf_mac.o kcf_mech_tabs.o kcf_miscapi.o \
1533 kcf_object.o kcf_policy.o kcf_prov_lib.o kcf_prov_tabs.o \
1534 kcf_sched.o kcf_session.o kcf_sign.o kcf_spi.o kcf_verify.o \
1535 kcf_random.o modes.o ecb.o cbc.o ctr.o ccm.o gcm.o \
1536 fips_random.o

1538 CRYPTOADM_OBJS += cryptoadm.o

1540 CRYPTO_OBJS += crypto.o

1542 DPROV_OBJS += dprov.o

1544 DCA_OBJS += dca.o dca_3des.o dca_debug.o dca_dsa.o dca_kstat.o dca_rng.o \
1545 dca_rsa.o

1547 AESPROV_OBJS += aes.o aes_impl.o aes_modes.o

1549 ARCFOURPROV_OBJS += arcfour.o arcfour_crypt.o

1551 BLOWFISHPROV_OBJS += blowfish.o blowfish_impl.o

1553 ECCPROV_OBJS += ecc.o ec.o ec2_163.o ec2_mont.o ecdecode.o ecl_mult.o \
1554 ecp_384.o ecp_jac.o ec2_193.o ecl.o ecp_192.o ecp_521.o \
1555 ecp_jm.o ec2_233.o ecl_curve.o ecp_224.o ecp_aff.o \
1556 ecp_mont.o ec2_aff.o ec_naf.o ecl_gf.o ecp_256.o mp_gf2m.o \
1557 mpi.o mplogic.o mpmontg.o mpprime.o oid.o \
1558 secitem.o ec2_test.o ecp_test.o

1560 RSAPROV_OBJS += rsa.o rsa_impl.o pkcs1.o

1562 SWRANDPROV_OBJS += swrand.o

1564 #
1565 # kernel SSL
1566 #
1567 KSSL_OBJS += kssl.o ksslioctl.o

1569 KSSL_SOCKFIL_MOD_OBJS += ksslfilter.o ksslapi.o ksslrec.o

1571 #
1572 # misc. modules
1573 #

1575 C2AUDIT_OBJS += adr.o audit.o audit_event.o audit_io.o \
1576 audit_path.o audit_start.o audit_syscalls.o audit_token.o \

new/usr/src/uts/common/Makefile.files 25

1577 audit_mem.o

1579 PCIC_OBJS += pcic.o

1581 RPCSEC_OBJS += secmod.o sec_clnt.o sec_svc.o sec_gen.o \
1582 auth_des.o auth_kern.o auth_none.o auth_loopb.o\
1583 authdesprt.o authdesubr.o authu_prot.o \
1584 key_call.o key_prot.o svc_authu.o svcauthdes.o

1586 RPCSEC_GSS_OBJS += rpcsec_gssmod.o rpcsec_gss.o rpcsec_gss_misc.o \
1587 rpcsec_gss_utils.o svc_rpcsec_gss.o

1589 CONSCONFIG_OBJS += consconfig.o

1591 CONSCONFIG_DACF_OBJS += consconfig_dacf.o consplat.o

1593 TEM_OBJS += tem.o tem_safe.o 6x10.o 7x14.o 12x22.o

1595 KBTRANS_OBJS += \
1596 kbtrans.o \
1597 kbtrans_keytables.o \
1598 kbtrans_polled.o \
1599 kbtrans_streams.o \
1600 usb_keytables.o

1602 KGSSD_OBJS += gssd_clnt_stubs.o gssd_handle.o gssd_prot.o \
1603 gss_display_name.o gss_release_name.o gss_import_name.o \
1604 gss_release_buffer.o gss_release_oid_set.o gen_oids.o gssdmod.o

1606 KGSSD_DERIVED_OBJS = gssd_xdr.o

1608 KGSS_DUMMY_OBJS += dmech.o

1610 KSOCKET_OBJS += ksocket.o ksocket_mod.o

1612 CRYPTO= cksumtypes.o decrypt.o encrypt.o encrypt_length.o etypes.o \
1613 nfold.o verify_checksum.o prng.o block_size.o make_checksum.o\
1614 checksum_length.o hmac.o default_state.o mandatory_sumtype.o

1616 # crypto/des
1617 CRYPTO_DES= f_cbc.o f_cksum.o f_parity.o weak_key.o d3_cbc.o ef_crypto.o

1619 CRYPTO_DK= checksum.o derive.o dk_decrypt.o dk_encrypt.o

1621 CRYPTO_ARCFOUR= k5_arcfour.o

1623 # crypto/enc_provider
1624 CRYPTO_ENC= des.o des3.o arcfour_provider.o aes_provider.o

1626 # crypto/hash_provider
1627 CRYPTO_HASH= hash_kef_generic.o hash_kmd5.o hash_crc32.o hash_ksha1.o

1629 # crypto/keyhash_provider
1630 CRYPTO_KEYHASH= descbc.o k5_kmd5des.o k_hmac_md5.o

1632 # crypto/crc32
1633 CRYPTO_CRC32= crc32.o

1635 # crypto/old
1636 CRYPTO_OLD= old_decrypt.o old_encrypt.o

1638 # crypto/raw
1639 CRYPTO_RAW= raw_decrypt.o raw_encrypt.o

1641 K5_KRB= kfree.o copy_key.o \
1642 parse.o init_ctx.o \

new/usr/src/uts/common/Makefile.files 26

1643 ser_adata.o ser_addr.o \
1644 ser_auth.o ser_cksum.o \
1645 ser_key.o ser_princ.o \
1646 serialize.o unparse.o \
1647 ser_actx.o

1649 K5_OS= timeofday.o toffset.o \
1650 init_os_ctx.o c_ustime.o

1652 SEAL=
1653 # EXPORT DELETE START
1654 SEAL= seal.o unseal.o
1655 # EXPORT DELETE END

1657 MECH= delete_sec_context.o \
1658 import_sec_context.o \
1659 gssapi_krb5.o \
1660 k5seal.o k5unseal.o k5sealv3.o \
1661 ser_sctx.o \
1662 sign.o \
1663 util_crypt.o \
1664 util_validate.o util_ordering.o \
1665 util_seqnum.o util_set.o util_seed.o \
1666 wrap_size_limit.o verify.o

1670 MECH_GEN= util_token.o

1673 KGSS_KRB5_OBJS += krb5mech.o \
1674 $(MECH) $(SEAL) $(MECH_GEN) \
1675 $(CRYPTO) $(CRYPTO_DES) $(CRYPTO_DK) $(CRYPTO_ARCFOUR) \
1676 $(CRYPTO_ENC) $(CRYPTO_HASH) \
1677 $(CRYPTO_KEYHASH) $(CRYPTO_CRC32) \
1678 $(CRYPTO_OLD) \
1679 $(CRYPTO_RAW) $(K5_KRB) $(K5_OS)

1681 DES_OBJS += des_crypt.o des_impl.o des_ks.o des_soft.o

1683 DLBOOT_OBJS += bootparam_xdr.o nfs_dlinet.o scan.o

1685 KRTLD_OBJS += kobj_bootflags.o getoptstr.o \
1686 kobj.o kobj_kdi.o kobj_lm.o kobj_subr.o

1688 MOD_OBJS += modctl.o modsubr.o modsysfile.o modconf.o modhash.o

1690 STRPLUMB_OBJS += strplumb.o

1692 CPR_OBJS += cpr_driver.o cpr_dump.o \
1693 cpr_main.o cpr_misc.o cpr_mod.o cpr_stat.o \
1694 cpr_uthread.o

1696 PROF_OBJS += prf.o

1698 SE_OBJS += se_driver.o

1700 SYSACCT_OBJS += acct.o

1702 ACCTCTL_OBJS += acctctl.o

1704 EXACCTSYS_OBJS += exacctsys.o

1706 KAIO_OBJS += aio.o

1708 PCMCIA_OBJS += pcmcia.o cs.o cis.o cis_callout.o cis_handlers.o cis_params.o

new/usr/src/uts/common/Makefile.files 27

1710 BUSRA_OBJS += busra.o

1712 PCS_OBJS += pcs.o

1714 PCAN_OBJS += pcan.o

1716 PCATA_OBJS += pcide.o pcdisk.o pclabel.o pcata.o

1718 PCSER_OBJS += pcser.o pcser_cis.o

1720 PCWL_OBJS += pcwl.o

1722 PSET_OBJS += pset.o

1724 OHCI_OBJS += ohci.o ohci_hub.o ohci_polled.o

1726 UHCI_OBJS += uhci.o uhciutil.o uhcitgt.o uhcihub.o uhcipolled.o

1728 EHCI_OBJS += ehci.o ehci_hub.o ehci_xfer.o ehci_intr.o ehci_util.o ehci_polled.o

1730 HUBD_OBJS += hubd.o

1732 USB_MID_OBJS += usb_mid.o

1734 USB_IA_OBJS += usb_ia.o

1736 UWBA_OBJS += uwba.o uwbai.o

1738 SCSA2USB_OBJS += scsa2usb.o usb_ms_bulkonly.o usb_ms_cbi.o

1740 HWAHC_OBJS += hwahc.o hwahc_util.o

1742 WUSB_DF_OBJS += wusb_df.o
1743 WUSB_FWMOD_OBJS += wusb_fwmod.o

1745 IPF_OBJS += ip_fil_solaris.o fil.o solaris.o ip_state.o ip_frag.o ip_nat.o \
1746 ip_proxy.o ip_auth.o ip_pool.o ip_htable.o ip_lookup.o \
1747 ip_log.o misc.o ip_compat.o ip_nat6.o drand48.o

1749 IBD_OBJS += ibd.o ibd_cm.o

1751 EIBNX_OBJS += enx_main.o enx_hdlrs.o enx_ibt.o enx_log.o enx_fip.o \
1752 enx_misc.o enx_q.o enx_ctl.o

1754 EOIB_OBJS += eib_adm.o eib_chan.o eib_cmn.o eib_ctl.o eib_data.o \
1755 eib_fip.o eib_ibt.o eib_log.o eib_mac.o eib_main.o \
1756 eib_rsrc.o eib_svc.o eib_vnic.o

1758 DLPISTUB_OBJS += dlpistub.o

1760 SDP_OBJS += sdpddi.o

1762 TRILL_OBJS += trill.o

1764 CTF_OBJS += ctf_create.o ctf_decl.o ctf_error.o ctf_hash.o ctf_labels.o \
1765 ctf_lookup.o ctf_open.o ctf_types.o ctf_util.o ctf_subr.o ctf_mod.o

1767 SMBIOS_OBJS += smb_error.o smb_info.o smb_open.o smb_subr.o smb_dev.o

1769 RPCIB_OBJS += rpcib.o

1771 KMDB_OBJS += kdrv.o

1773 AFE_OBJS += afe.o

new/usr/src/uts/common/Makefile.files 28

1775 BGE_OBJS += bge_main2.o bge_chip2.o bge_kstats.o bge_log.o bge_ndd.o \
1776 bge_atomic.o bge_mii.o bge_send.o bge_recv2.o bge_mii_5906.o

1778 DMFE_OBJS += dmfe_log.o dmfe_main.o dmfe_mii.o

1780 EFE_OBJS += efe.o

1782 ELXL_OBJS += elxl.o

1784 HME_OBJS += hme.o

1786 IXGB_OBJS += ixgb.o ixgb_atomic.o ixgb_chip.o ixgb_gld.o ixgb_kstats.o \
1787 ixgb_log.o ixgb_ndd.o ixgb_rx.o ixgb_tx.o ixgb_xmii.o

1789 NGE_OBJS += nge_main.o nge_atomic.o nge_chip.o nge_ndd.o nge_kstats.o \
1790 nge_log.o nge_rx.o nge_tx.o nge_xmii.o

1792 PCN_OBJS += pcn.o

1794 RGE_OBJS += rge_main.o rge_chip.o rge_ndd.o rge_kstats.o rge_log.o rge_rxtx.o

1796 URTW_OBJS += urtw.o

1798 ARN_OBJS += arn_hw.o arn_eeprom.o arn_mac.o arn_calib.o arn_ani.o arn_phy.o arn_
1799 arn_main.o arn_recv.o arn_xmit.o arn_rc.o

1801 ATH_OBJS += ath_aux.o ath_main.o ath_osdep.o ath_rate.o

1803 ATU_OBJS += atu.o

1805 IPW_OBJS += ipw2100_hw.o ipw2100.o

1807 IWI_OBJS += ipw2200_hw.o ipw2200.o

1809 IWH_OBJS += iwh.o

1811 IWK_OBJS += iwk2.o

1813 IWP_OBJS += iwp.o

1815 MWL_OBJS += mwl.o

1817 MWLFW_OBJS += mwlfw_mode.o

1819 WPI_OBJS += wpi.o

1821 RAL_OBJS += rt2560.o ral_rate.o

1823 RUM_OBJS += rum.o

1825 RWD_OBJS += rt2661.o

1827 RWN_OBJS += rt2860.o

1829 UATH_OBJS += uath.o

1831 UATHFW_OBJS += uathfw_mod.o

1833 URAL_OBJS += ural.o

1835 RTW_OBJS += rtw.o smc93cx6.o rtwphy.o rtwphyio.o

1837 ZYD_OBJS += zyd.o zyd_usb.o zyd_hw.o zyd_fw.o

1839 MXFE_OBJS += mxfe.o

new/usr/src/uts/common/Makefile.files 29

1841 MPTSAS_OBJS += mptsas.o mptsas_impl.o mptsas_init.o mptsas_raid.o mptsas_smhba.o

1843 SFE_OBJS += sfe.o sfe_util.o

1845 BFE_OBJS += bfe.o

1847 BRIDGE_OBJS += bridge.o

1849 IDM_SHARED_OBJS += base64.o

1851 IDM_OBJS += $(IDM_SHARED_OBJS) \
1852 idm.o idm_impl.o idm_text.o idm_conn_sm.o idm_so.o

1854 VR_OBJS += vr.o

1856 ATGE_OBJS += atge_main.o atge_l1e.o atge_mii.o atge_l1.o atge_l1c.o

1858 YGE_OBJS = yge.o

1860 #
1861 # Build up defines and paths.
1862 #
1863 LINT_DEFS += -Dunix

1865 #
1866 # This duality can be removed when the native and target compilers
1867 # are the same (or at least recognize the same command line syntax!)
1868 # It is a bug in the current compilation system that the assember
1869 # can’t process the -Y I, flag.
1870 #
1871 NATIVE_INC_PATH += $(INC_PATH) $(CCYFLAG)$(UTSBASE)/common
1872 AS_INC_PATH += $(INC_PATH) -I$(UTSBASE)/common
1873 INCLUDE_PATH += $(INC_PATH) $(CCYFLAG)$(UTSBASE)/common

1875 PCIEB_OBJS += pcieb.o

1877 # Chelsio N110 10G NIC driver module
1878 #
1879 CH_OBJS = ch.o glue.o pe.o sge.o

1881 CH_COM_OBJS = ch_mac.o ch_subr.o cspi.o espi.o ixf1010.o mc3.o mc4.o mc5.o \
1882 mv88e1xxx.o mv88x201x.o my3126.o pm3393.o tp.o ulp.o \
1883 vsc7321.o vsc7326.o xpak.o

1885 #
1886 # PCI strings file
1887 #
1888 PCI_STRING_OBJS = pci_strings.o

1890 NET_DACF_OBJS += net_dacf.o

1892 #
1893 # Xframe 10G NIC driver module
1894 #
1895 XGE_OBJS = xge.o xgell.o

1897 XGE_HAL_OBJS = xgehal-channel.o xgehal-fifo.o xgehal-ring.o xgehal-config.o \
1898 xgehal-driver.o xgehal-mm.o xgehal-stats.o xgehal-device.o \
1899 xge-queue.o xgehal-mgmt.o xgehal-mgmtaux.o

1901 #
1902 # e1000g module
1903 #
1904 E1000G_OBJS += e1000_80003es2lan.o e1000_82540.o e1000_82541.o e1000_82542.o \
1905 e1000_82543.o e1000_82571.o e1000_api.o e1000_ich8lan.o \
1906 e1000_mac.o e1000_manage.o e1000_nvm.o e1000_osdep.o \

new/usr/src/uts/common/Makefile.files 30

1907 e1000_phy.o e1000g_debug.o e1000g_main.o e1000g_alloc.o \
1908 e1000g_tx.o e1000g_rx.o e1000g_stat.o

1910 #
1911 # Intel 82575 1G NIC driver module
1912 #
1913 IGB_OBJS = igb_82575.o igb_api.o igb_mac.o igb_manage.o \
1914 igb_nvm.o igb_osdep.o igb_phy.o igb_buf.o \
1915 igb_debug.o igb_gld.o igb_log.o igb_main.o \
1916 igb_rx.o igb_stat.o igb_tx.o

1918 #
1919 # Intel Pro/100 NIC driver module
1920 #
1921 IPRB_OBJS = iprb.o

1923 #
1924 # Intel 10GbE PCIE NIC driver module
1925 #
1926 IXGBE_OBJS = ixgbe_82598.o ixgbe_82599.o ixgbe_api.o \
1927 ixgbe_common.o ixgbe_phy.o \
1928 ixgbe_buf.o ixgbe_debug.o ixgbe_gld.o \
1929 ixgbe_log.o ixgbe_main.o \
1930 ixgbe_osdep.o ixgbe_rx.o ixgbe_stat.o \
1931 ixgbe_tx.o ixgbe_x540.o ixgbe_mbx.o

1933 #
1934 # NIU 10G/1G driver module
1935 #
1936 NXGE_OBJS = nxge_mac.o nxge_ipp.o nxge_rxdma.o \
1937 nxge_txdma.o nxge_txc.o nxge_main.o \
1938 nxge_hw.o nxge_fzc.o nxge_virtual.o \
1939 nxge_send.o nxge_classify.o nxge_fflp.o \
1940 nxge_fflp_hash.o nxge_ndd.o nxge_kstats.o \
1941 nxge_zcp.o nxge_fm.o nxge_espc.o nxge_hv.o \
1942 nxge_hio.o nxge_hio_guest.o nxge_intr.o

1944 NXGE_NPI_OBJS = \
1945 npi.o npi_mac.o npi_ipp.o \
1946 npi_txdma.o npi_rxdma.o npi_txc.o \
1947 npi_zcp.o npi_espc.o npi_fflp.o \
1948 npi_vir.o

1950 NXGE_HCALL_OBJS = \
1951 nxge_hcall.o

1953 #
1954 # kiconv modules
1955 #
1956 KICONV_EMEA_OBJS += kiconv_emea.o

1958 KICONV_JA_OBJS += kiconv_ja.o

1960 KICONV_KO_OBJS += kiconv_cck_common.o kiconv_ko.o

1962 KICONV_SC_OBJS += kiconv_cck_common.o kiconv_sc.o

1964 KICONV_TC_OBJS += kiconv_cck_common.o kiconv_tc.o

1966 #
1967 # AAC module
1968 #
1969 AAC_OBJS = aac.o aac_ioctl.o

1971 #
1972 # sdcard modules

new/usr/src/uts/common/Makefile.files 31

1973 #
1974 SDA_OBJS = sda_cmd.o sda_host.o sda_init.o sda_mem.o sda_mod.o sda_slot.o
1975 SDHOST_OBJS = sdhost.o

1977 #
1978 # hxge 10G driver module
1979 #
1980 HXGE_OBJS = hxge_main.o hxge_vmac.o hxge_send.o \
1981 hxge_txdma.o hxge_rxdma.o hxge_virtual.o \
1982 hxge_fm.o hxge_fzc.o hxge_hw.o hxge_kstats.o \
1983 hxge_ndd.o hxge_pfc.o \
1984 hpi.o hpi_vmac.o hpi_rxdma.o hpi_txdma.o \
1985 hpi_vir.o hpi_pfc.o

1987 #
1988 # MEGARAID_SAS module
1989 #
1990 MEGA_SAS_OBJS = megaraid_sas.o

1992 #
1993 # MR_SAS module
1994 #
1995 MR_SAS_OBJS = mr_sas.o

1997 #
1998 # ISCSI_INITIATOR module
1999 #
2000 ISCSI_INITIATOR_OBJS = chap.o iscsi_io.o iscsi_thread.o \
2001 iscsi_ioctl.o iscsid.o iscsi.o \
2002 iscsi_login.o isns_client.o iscsiAuthClient.o \
2003 iscsi_lun.o iscsiAuthClientGlue.o \
2004 iscsi_net.o nvfile.o iscsi_cmd.o \
2005 iscsi_queue.o persistent.o iscsi_conn.o \
2006 iscsi_sess.o radius_auth.o iscsi_crc.o \
2007 iscsi_stats.o radius_packet.o iscsi_doorclt.o \
2008 iscsi_targetparam.o utils.o kifconf.o

2010 #
2011 # ntxn 10Gb/1Gb NIC driver module
2012 #
2013 NTXN_OBJS = unm_nic_init.o unm_gem.o unm_nic_hw.o unm_ndd.o \
2014 unm_nic_main.o unm_nic_isr.o unm_nic_ctx.o niu.o

2016 #
2017 # Myricom 10Gb NIC driver module
2018 #
2019 MYRI10GE_OBJS = myri10ge.o myri10ge_lro.o

2021 # nulldriver module
2022 #
2023 NULLDRIVER_OBJS = nulldriver.o

2025 TPM_OBJS = tpm.o tpm_hcall.o

new/usr/src/uts/common/fs/zfs/dsl_dataset.c 1

**
 117504 Wed Oct 17 21:48:38 2012
new/usr/src/uts/common/fs/zfs/dsl_dataset.c
FITS: generating send-streams in portable format
This commit adds the command ’zfs fits-send’, analogous to zfs send. The
generated send stream is compatible with the stream generated with that
from ’btrfs send’ and can in principle easily be received to any filesystem.
**
______unchanged_portion_omitted_

683 int
683 static int
684 dsl_dataset_namelen(dsl_dataset_t *ds)
685 {
686 int result;

688 if (ds == NULL) {
689 result = 3; /* "mos" */
690 } else {
691 result = dsl_dir_namelen(ds->ds_dir);
692 VERIFY(0 == dsl_dataset_get_snapname(ds));
693 if (ds->ds_snapname[0]) {
694 ++result; /* adding one for the @-sign */
695 if (!MUTEX_HELD(&ds->ds_lock)) {
696 mutex_enter(&ds->ds_lock);
697 result += strlen(ds->ds_snapname);
698 mutex_exit(&ds->ds_lock);
699 } else {
700 result += strlen(ds->ds_snapname);
701 }
702 }
703 }

705 return (result);
706 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/fits.c 1

**
 30408 Wed Oct 17 21:48:38 2012
new/usr/src/uts/common/fs/zfs/fits.c
FITS: generating send-streams in portable format
This commit adds the command ’zfs fits-send’, analogous to zfs send. The
generated send stream is compatible with the stream generated with that
from ’btrfs send’ and can in principle easily be received to any filesystem.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2012 STRATO AG. All rights reserved.
23 */
24 #include <sys/zfs_context.h>
25 #include <sys/stat.h>
26 #include <sys/errno.h>
27 #include <sys/mkdev.h>
28 #include <sys/debug.h>
29 #include <sys/open.h>
30 #include <sys/zfs_ioctl.h>
31 #include <zfs_namecheck.h>
32 #include <sys/policy.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dsl_prop.h>
35 #include <sys/zvol.h>
36 #include <sys/zap.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dmu_traverse.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/arc.h>
41 #include <sys/spa.h>
42 #include <sys/spa_impl.h>
43 #include <sys/sa.h>
44 #include <sys/sa_impl.h>
45 #include <sys/zfs_acl.h>
46 #include <sys/zfs_sa.h>
47 #include <sys/zfs_znode.h>
48 #include <sys/dbuf.h>
49 #include <sys/fits.h>
50 #include <sys/fits_impl.h>

52 /*
53 * fits_send generates a stream of filesystem data analogous to dmu_send.
54 * The main difference is that the fits-stream does not contain zfs-specific
55 * data and can be replayed on any filesystem. It just contains commands like
56 * MKDIR, CHMOD, RENAME etc.
57 * The stream is generated in two passes. The first pass, PASS_LINK basically
58 * creates all new files/directories and links, while the second pass,

new/usr/src/uts/common/fs/zfs/fits.c 2

59 * PASS_UNLINK, does all the removal of old stuff.
60 * Each pass enumerates all objects in inode order.
61 * There are some corner cases:
62 * Files / directories can only be created if the parent already exists or
63 * already has been created. If an object is encountered which parent does not
64 * satisfy this condition, it is put back and its creation will be trigger
65 * by the creation of the parent.
66 * A similar case applies on deletion. A directory can only be removed after
67 * the last contained object has been removed. If a directory is not empty,
68 * it is put back and the deletion of the last object in it triggers the
69 * deletion.
70 * If an objects gets deleted, and a new object is created under the same
71 * name, pass1 cannot create the object directly. So it is created under a
72 * temporary name and gets renamed in pass2.
73 * If an object is deleted and a new object (of possibly diffent type)
74 * created under the same inode and the same name, this change cannot be
75 * detected by enumerating the containing directory (as name + inode are
76 * unchanged). It is detected by a change of the inode generation number and
77 * a flag is set for pass2. Creation is postponed. In pass2, all enumerated
78 * directories are checked for this inode (although the entry is unchanged,
79 * the directory has a bumped txg). If it is encountered, delete + create
80 * happen both in pass2.
81 *
82 * There are lots of TODOs left:
83 * - add XATTR support
84 * - add path-caching
85 * - add a cache for brute-force parent search
86 * - add a cache for inode-search in a directory
87 * - use a hash instead of the linear list in fits_count
88 */
89 static int
90 fits_dnode_changed(spa_t *spa, fits_t *f, uint64_t dnobj,
91 dnode_phys_t *from, arc_buf_t *frombuf, dnode_phys_t *to, arc_buf_t *tobuf);

93 /* copied from zfs_znode.c */
94 static int
95 fits_sa_setup(objset_t *osp, sa_attr_type_t **sa_table)
96 {
97 uint64_t sa_obj = 0;
98 int error;

100 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj);
101 if (error != 0 && error != ENOENT)
102 return (error);

104 error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table);
105 return (error);
106 }

108 static int
109 fits_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp,
110 dmu_buf_t **db, void *tag)
111 {
112 dmu_object_info_t doi;
113 int error;

115 if ((error = sa_buf_hold(osp, obj, tag, db)) != 0)
116 return (error);

118 dmu_object_info_from_db(*db, &doi);
119 if ((doi.doi_bonus_type != DMU_OT_SA &&
120 doi.doi_bonus_type != DMU_OT_ZNODE) ||
121 (doi.doi_bonus_type == DMU_OT_ZNODE &&
122 doi.doi_bonus_size < sizeof (znode_phys_t))) {
123 sa_buf_rele(*db, tag);
124 return (ENOTSUP);

new/usr/src/uts/common/fs/zfs/fits.c 3

125 }

127 error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp);
128 if (error != 0) {
129 sa_buf_rele(*db, tag);
130 return (error);
131 }

133 return (0);
134 }

136 static void
137 fits_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag)
138 {
139 sa_handle_destroy(hdl);
140 sa_buf_rele(db, tag);
141 }

143 static int
144 fits_find_from_bp(spa_t *spa, dnode_phys_t *dnp, blklevel_t *bl,
145 const zbookmark_t *zb, blkptr_t **bpp, arc_buf_t **pbuf)
146 {
147 uint32_t flags;
148 int epbs = dnp->dn_indblkshift - SPA_BLKPTRSHIFT;
149 int epbmask = (1 << epbs) - 1;
150 int level;
151 int slot;
152 uint64_t blkid;
153 uint64_t blk;
154 blklevel_t *blp;
155 zbookmark_t czb;
156 int i;

158 *bpp = NULL;
159 for (level = dnp->dn_nlevels - 1; level >= zb->zb_level; --level) {
160 blkid = zb->zb_blkid >> (epbs * (level - zb->zb_level));
161 blk = blkid >> epbs;
162 slot = blk & epbmask;
163 blp = bl + level;

165 if (blp->bl_blk == blk)
166 continue;

168 for (i = 0; i <= level; ++i) {
169 blklevel_t *b = bl + i;

171 if (b->bl_buf)
172 arc_buf_remove_ref(b->bl_buf, &b->bl_buf);
173 b->bl_bp = NULL;
174 b->bl_buf = NULL;
175 b->bl_blk = -1;
176 }
177 ASSERT(slot < blp[1].bl_nslots);
178 if (BP_IS_HOLE(blp[1].bl_bp + slot)) {
179 *bpp = NULL;
180 return (0);
181 }
182 /*
183 * load indblk
184 */
185 flags = ARC_WAIT;
186 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, level, blkid);
187 if (dsl_read(NULL, spa, blp[1].bl_bp + slot, blp[1].bl_buf,
188 arc_getbuf_func, &blp->bl_buf, ZIO_PRIORITY_ASYNC_READ,
189 ZIO_FLAG_CANFAIL, &flags, &czb) != 0)
190 return (EIO);

new/usr/src/uts/common/fs/zfs/fits.c 4

191 blp->bl_bp = blp->bl_buf->b_data;
192 blp->bl_nslots = 1 << epbs;
193 blp->bl_blk = blk;
194 }
195 slot = zb->zb_blkid & epbmask;
196 blp = bl + zb->zb_level;
197 ASSERT(slot < blp->bl_nslots);
198 *bpp = blp->bl_bp + slot;
199 *pbuf = blp->bl_buf;
200 if (BP_IS_HOLE(*bpp))
201 *bpp = NULL;

203 return (0);
204 }

206 static int
207 fits_file_cb(spa_t *spa, fits_t *f, zbookmark_t *zb,
208 blkptr_t *bp, arc_buf_t *pbuf, void *ctx)
209 {
210 int err = 0;
211 blkptr_t *fbp;

213 if (issig(JUSTLOOKING) && issig(FORREAL))
214 return (EINTR);

216 if (f->f_fromds && zb->zb_objset == f->f_fromds->ds_object)
217 return (0);

219 if (bp == NULL) {
220 arc_buf_t *fpbuf = NULL;
221 zbookmark_t czb;

223 ASSERT(f->f_fromds);
224 SET_BOOKMARK(&czb, f->f_fromds->ds_object, zb->zb_object,
225 zb->zb_level, zb->zb_blkid);
226 err = fits_find_from_bp(spa, f->f_dnp, f->f_filebl,
227 &czb, &fbp, &fpbuf);
228 if (err)
229 return (err);
230 if (fbp) {
231 #if 0
232 /* XXX TODO callback for newly created hole */
233 err = fits_enum_bp(spa, da, &czb, fbp, fpbuf);
234 if (err)
235 return (err);
236 #endif
237 }
238 } else if (zb->zb_level == 0) {
239 arc_buf_t *tbuf;
240 uint32_t tflags = ARC_WAIT;
241 int blksz = BP_GET_LSIZE(bp);

243 if (dsl_read(NULL, spa, bp, pbuf,
244 arc_getbuf_func, &tbuf, ZIO_PRIORITY_ASYNC_READ,
245 ZIO_FLAG_CANFAIL, &tflags, zb) != 0)
246 return (EIO);

248 if (f->f_ops->fits_file_data)
249 err = f->f_ops->fits_file_data(ctx, tbuf->b_data,
250 zb->zb_blkid * blksz, blksz);

252 (void) arc_buf_remove_ref(tbuf, &tbuf);
253 }
254 return (err);
255 }

new/usr/src/uts/common/fs/zfs/fits.c 5

257 static int
258 fits_enum_bp(spa_t *spa, fits_t *da, zbookmark_t *zb,
259 blkptr_t *bp, arc_buf_t *pbuf, uint64_t min_txg, void *ctx)
260 {
261 int err = 0;
262 arc_buf_t *buf = NULL;
263 uint32_t flags = ARC_WAIT;

265 if (BP_IS_HOLE(bp))
266 return (0);

268 if (bp->blk_birth <= min_txg)
269 return (0);

271 if (BP_GET_LEVEL(bp) > 0) {
272 int i;
273 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
274 blkptr_t *cbp;
275 zbookmark_t czb;

277 if (dsl_read(NULL, spa, bp, pbuf, arc_getbuf_func, &buf,
278 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb) != 0)
279 return (EIO);
280 cbp = buf->b_data;
281 for (i = 0; i < epb; ++i, ++cbp) {
282 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
283 zb->zb_level - 1, zb->zb_blkid * epb + i);
284 err = fits_enum_bp(spa, da, &czb, cbp, buf, min_txg,
285 ctx);
286 if (err)
287 goto out;
288 }
289 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
290 int i;
291 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
292 dnode_phys_t *dnp;

294 if (dsl_read(NULL, spa, bp, pbuf, arc_getbuf_func, &buf,
295 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
296 &flags, zb) != 0) {
297 err = EIO;
298 goto out;
299 }
300 dnp = buf->b_data;
301 for (i = 0; i < epb; ++i, ++dnp) {
302 uint64_t dnobj = zb->zb_blkid * epb + i;
303 if (dnp->dn_type == DMU_OT_NONE)
304 continue;
305 err = fits_dnode_changed(spa, da, dnobj, dnp, buf,
306 NULL, NULL);
307 if (err)
308 goto out;
309 }
310 } else {
311 err = fits_file_cb(spa, da, zb, bp, pbuf, ctx);
312 }
313 out:
314 if (buf)
315 (void) arc_buf_remove_ref(buf, &buf);

317 return (err);
318 }

320 static int
321 fits_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, arc_buf_t *pbuf,
322 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)

new/usr/src/uts/common/fs/zfs/fits.c 6

323 {
324 int err = 0;
325 fits_t *f = arg;
326 blkptr_t *fbp = NULL;
327 zbookmark_t czb;

329 if (issig(JUSTLOOKING) && issig(FORREAL))
330 return (EINTR);

332 if (f->f_fromds)
333 SET_BOOKMARK(&czb, f->f_fromds->ds_object, zb->zb_object,
334 zb->zb_level, zb->zb_blkid);

336 if (zb->zb_object != DMU_META_DNODE_OBJECT)
337 return (0);

339 if (bp == NULL) {
340 arc_buf_t *fpbuf = NULL;

342 if (!f->f_fromds)
343 return (0);

345 err = fits_find_from_bp(spa, f->f_dnp, f->f_bl,
346 &czb, &fbp, &fpbuf);
347 if (err)
348 return (EIO);
349 if (fbp) {
350 err = fits_enum_bp(spa, f, &czb, fbp, fpbuf, 0, NULL);
351 if (err)
352 return (EIO);
353 }
354 return (0);
355 } else if (zb->zb_level == 0) {
356 dnode_phys_t *tblk;
357 dnode_phys_t *fblk = NULL;
358 arc_buf_t *tbuf;
359 arc_buf_t *fbuf = NULL;
360 arc_buf_t *fpbuf = NULL;
361 uint32_t fflags = ARC_WAIT;
362 uint32_t tflags = ARC_WAIT;
363 int blksz = BP_GET_LSIZE(bp);
364 int i;

366 if (dsl_read(NULL, spa, bp, pbuf,
367 arc_getbuf_func, &tbuf, ZIO_PRIORITY_ASYNC_READ,
368 ZIO_FLAG_CANFAIL, &tflags, zb) != 0)
369 return (EIO);
370 tblk = tbuf->b_data;

372 if (f->f_fromds) {
373 err = fits_find_from_bp(spa, f->f_dnp, f->f_bl, zb,
374 &fbp, &fpbuf);
375 if (err)
376 return (EIO);
377 }
378 if (fbp) {
379 if (dsl_read(NULL, spa, fbp, fpbuf,
380 arc_getbuf_func, &fbuf, ZIO_PRIORITY_ASYNC_READ,
381 ZIO_FLAG_CANFAIL, &fflags, &czb) != 0) {
382 (void) arc_buf_remove_ref(tbuf, &tbuf);
383 return (EIO);
384 }
385 fblk = fbuf->b_data;
386 if (blksz != BP_GET_LSIZE(fbp))
387 return (EIO);
388 }

new/usr/src/uts/common/fs/zfs/fits.c 7

389 for (i = 0; i < blksz >> DNODE_SHIFT; i++) {
390 uint64_t dnobj = (zb->zb_blkid <<
391 (DNODE_BLOCK_SHIFT - DNODE_SHIFT)) + i;
392 err = 0;
393 if (fbuf && (tblk[i].dn_type == DMU_OT_NONE) &&
394 fblk[i].dn_type != DMU_OT_NONE) {
395 err = fits_dnode_changed(spa, f, dnobj,
396 fblk + i, fbuf, NULL, NULL);
397 } else if (fbuf) {
398 if (memcmp(tblk + i, fblk + i, sizeof (*tblk)))
399 err = fits_dnode_changed(spa, f,
400 dnobj, fblk + i, fbuf, tblk + i,
401 tbuf);
402 } else {
403 if (tblk[i].dn_type != DMU_OT_NONE)
404 err = fits_dnode_changed(spa, f,
405 dnobj, NULL, NULL, tblk + i, tbuf);
406 }
407 if (err)
408 break;
409 }
410 (void) arc_buf_remove_ref(tbuf, &tbuf);
411 if (fbuf)
412 (void) arc_buf_remove_ref(fbuf, &fbuf);

414 if (err)
415 return (EIO);
416 /* Don’t care about the data blocks */
417 return (TRAVERSE_VISIT_NO_CHILDREN);
418 }
419 return (0);
420 }

422 #define DIR_FROM 1
423 #define DIR_TO 2
424 static int
425 fits_diff_dir(fits_t *f, uint64_t dnobj, int dir, void *ctx)
426 {
427 zap_cursor_t zc;
428 zap_attribute_t *za;
429 int err;
430 objset_t *os1;
431 objset_t *os2;
432 uint64_t mask = ZFS_DIRENT_OBJ(-1ULL);
433 uint64_t num;
434 uint64_t ix = 0;

436 if (dir == DIR_FROM) {
437 os1 = f->f_fromsnap;
438 os2 = f->f_tosnap;
439 } else {
440 os1 = f->f_tosnap;
441 os2 = f->f_fromsnap;
442 }

444 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
445 for (zap_cursor_init(&zc, os1, dnobj);
446 (err = zap_cursor_retrieve(&zc, za)) == 0;
447 zap_cursor_advance(&zc), ++ix) {
448 err = zap_lookup(os2, dnobj, za->za_name, sizeof (num), 1,
449 &num);
450 if (err && err != ENOENT)
451 break;
452 if (err == ENOENT) {
453 if (dir == DIR_FROM) {
454 if (f->f_ops->fits_dirent_del) {

new/usr/src/uts/common/fs/zfs/fits.c 8

455 err = f->f_ops->fits_dirent_del(ctx,
456 za->za_name,
457 za->za_first_integer & mask);
458 if (err)
459 goto out;
460 }
461 } else {
462 if (f->f_ops->fits_dirent_add) {
463 err = f->f_ops->fits_dirent_add(ctx,
464 za->za_name,
465 za->za_first_integer & mask);
466 if (err)
467 goto out;
468 }
469 }
470 } else if ((za->za_first_integer & mask) != (num & mask)) {
471 if (dir == DIR_TO) {
472 /* report only once */
473 if (f->f_ops->fits_dirent_mod) {
474 err = f->f_ops->fits_dirent_mod(ctx,
475 za->za_name, num & mask,
476 za->za_first_integer & mask);
477 if (err)
478 goto out;
479 }
480 }
481 } else {
482 if (dir == DIR_TO) {
483 /* report only once */
484 if (f->f_ops->fits_dirent_unmod) {
485 err = f->f_ops->fits_dirent_unmod(ctx,
486 za->za_name, num & mask);
487 if (err)
488 goto out;
489 }
490 }
491 }
492 }
493 err = 0;
494 out:
495 zap_cursor_fini(&zc);
496 kmem_free(za, sizeof (zap_attribute_t));

498 return (err);
499 }
500 static int
501 fits_enum_dir(fits_t *f, uint64_t dnobj, int dir, void *ctx)
502 {
503 zap_cursor_t zc;
504 zap_attribute_t *za;
505 int err;
506 objset_t *os;
507 uint64_t mask = ZFS_DIRENT_OBJ(-1ULL);

509 if (dir == DIR_FROM)
510 os = f->f_fromsnap;
511 else
512 os = f->f_tosnap;

514 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
515 for (zap_cursor_init(&zc, os, dnobj);
516 (err = zap_cursor_retrieve(&zc, za)) == 0;
517 zap_cursor_advance(&zc)) {
518 if (dir == DIR_FROM) {
519 if (f->f_ops->fits_dirent_del) {
520 err = f->f_ops->fits_dirent_del(ctx,

new/usr/src/uts/common/fs/zfs/fits.c 9

521 za->za_name, za->za_first_integer & mask);
522 if (err)
523 break;
524 }
525 } else {
526 if (f->f_ops->fits_dirent_add) {
527 err = f->f_ops->fits_dirent_add(ctx,
528 za->za_name, za->za_first_integer & mask);
529 if (err)
530 break;
531 }
532 }
533 }
534 if (err == ENOENT)
535 err = 0;

537 zap_cursor_fini(&zc);
538 kmem_free(za, sizeof (zap_attribute_t));

540 return (err);
541 }

543 static int
544 fits_dnode_changed(spa_t *spa, fits_t *f, uint64_t dnobj,
545 dnode_phys_t *from, arc_buf_t *frombuf, dnode_phys_t *to, arc_buf_t *tobuf)
546 {
547 int err = 0;
548 int type = 0;
549 fits_info_t si;

551 if (dnobj == f->f_shares_dir)
552 return (0);

554 if (to && to->dn_type != DMU_OT_PLAIN_FILE_CONTENTS &&
555 to->dn_type != DMU_OT_DIRECTORY_CONTENTS) {
556 to = NULL;
557 }
558 if (from && from->dn_type != DMU_OT_PLAIN_FILE_CONTENTS &&
559 from->dn_type != DMU_OT_DIRECTORY_CONTENTS) {
560 from = NULL;
561 }

563 if (from) {
564 err = fits_get_info(f, dnobj, FITS_OLD, &si, FI_ATTR_LINKS);
565 if (err)
566 return (err);
567 if (si.si_nlinks == 0)
568 from = NULL;
569 }
570 if (to) {
571 err = fits_get_info(f, dnobj, FITS_NEW, &si, FI_ATTR_LINKS);
572 if (err)
573 return (err);
574 if (si.si_nlinks == 0)
575 to = NULL;
576 }

578 if (!to && !from)
579 return (0);

581 if (from) {
582 if (from->dn_bonustype != DMU_OT_SA &&
583 from->dn_bonustype != DMU_OT_ZNODE)
584 return (EINVAL);
585 }
586 if (to) {

new/usr/src/uts/common/fs/zfs/fits.c 10

587 if (to->dn_bonustype != DMU_OT_SA &&
588 to->dn_bonustype != DMU_OT_ZNODE)
589 return (EINVAL);
590 }

592 if (from)
593 type = from->dn_type;
594 else if (to)
595 type = to->dn_type;

597 err = 0;
598 if (type == DMU_OT_DIRECTORY_CONTENTS) {
599 if (from && to) {
600 if (f->f_ops->fits_dir_mod)
601 err = f->f_ops->fits_dir_mod(f, dnobj);
602 } else if (from) {
603 if (f->f_ops->fits_dir_del)
604 err = f->f_ops->fits_dir_del(f, dnobj);
605 } else if (to) {
606 if (f->f_ops->fits_dir_add)
607 err = f->f_ops->fits_dir_add(f, dnobj);
608 }
609 } else if (type == DMU_OT_PLAIN_FILE_CONTENTS) {
610 if (from && to) {
611 if (f->f_ops->fits_file_mod)
612 err = f->f_ops->fits_file_mod(f, dnobj);
613 } else if (from) {
614 if (f->f_ops->fits_file_del)
615 err = f->f_ops->fits_file_del(f, dnobj);
616 } else if (to) {
617 if (f->f_ops->fits_file_add)
618 err = f->f_ops->fits_file_add(f, dnobj);
619 }
620 } else {
621 /* TODO other types, symlinks? */
622 err = 0;
623 }
624 return (err);
625 }

627 typedef struct _fits_search {
628 fits_t *zs_f;
629 uint64_t zs_dnobj;
630 uint64_t zs_parent;
631 objset_t *zs_osp;
632 } fits_search_t;

634 static int
635 search_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, arc_buf_t *pbuf,
636 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
637 {
638 fits_search_t *zs = arg;
639 fits_t *f = zs->zs_f;
640 arc_buf_t *buf;
641 uint32_t flags = ARC_WAIT;
642 int ebp;
643 int i;
644 int ret;

646 if (issig(JUSTLOOKING) && issig(FORREAL))
647 return (EINTR);

649 if (zb->zb_object != DMU_META_DNODE_OBJECT)
650 return (0);

652 if (zb->zb_level != 0)

new/usr/src/uts/common/fs/zfs/fits.c 11

653 return (0);

655 if (!bp || BP_IS_HOLE(bp))
656 return (0);

658 if (BP_GET_TYPE(bp) != DMU_OT_DNODE)
659 return (0);

661 ebp = BP_GET_LSIZE(bp) >> DNODE_SHIFT;

663 if (dsl_read(NULL, spa, bp, pbuf,
664 arc_getbuf_func, &buf, ZIO_PRIORITY_ASYNC_READ,
665 ZIO_FLAG_CANFAIL, &flags, zb) != 0)
666 return (EIO);
667 dnp = buf->b_data;

669 for (i = 0; i < ebp; ++i) {
670 zap_cursor_t zc;
671 zap_attribute_t *za;
672 uint64_t mask = ZFS_DIRENT_OBJ(-1ULL);
673 uint64_t ix = 0;
674 uint64_t dnobj = (zb->zb_blkid <<
675 (DNODE_BLOCK_SHIFT - DNODE_SHIFT)) + i;

677 if (dnp[i].dn_type != DMU_OT_DIRECTORY_CONTENTS)
678 continue;
679 if (dnobj == f->f_shares_dir)
680 continue;

682 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
683 for (zap_cursor_init(&zc, zs->zs_osp, dnobj);
684 (ret = zap_cursor_retrieve(&zc, za)) == 0;
685 zap_cursor_advance(&zc), ++ix) {
686 if ((za->za_first_integer & mask) ==
687 (zs->zs_dnobj & mask)) {
688 zs->zs_parent = dnobj;
689 break;
690 }
691 }
692 zap_cursor_fini(&zc);
693 kmem_free(za, sizeof (zap_attribute_t));
694 }

696 (void) arc_buf_remove_ref(buf, &buf);

698 if (zs->zs_parent)
699 return (EIO); /* abort search */

701 return (TRAVERSE_VISIT_NO_CHILDREN);
702 }

704 static int
705 fits_search_parent(fits_t *f, uint64_t dnobj, fits_which_t which,
706 uint64_t *parent)
707 {
708 dsl_dataset_t *ds;
709 fits_search_t zs;
710 int ret;

712 if (which == FITS_OLD) {
713 ds = f->f_fromds;
714 zs.zs_osp = f->f_fromsnap;
715 } else {
716 ds = f->f_tods;
717 zs.zs_osp = f->f_tosnap;
718 }

new/usr/src/uts/common/fs/zfs/fits.c 12

720 zs.zs_f = f;
721 zs.zs_dnobj = dnobj;
722 zs.zs_parent = 0;
723 ret = traverse_dataset(ds, 0, TRAVERSE_PRE, search_cb, &zs);
724 if (zs.zs_parent) {
725 *parent = zs.zs_parent;
726 return (0);
727 }

729 return (ret ? ret : ENOENT);
730 }

732 int
733 fits_get_info(fits_t *f, uint64_t dnobj, fits_which_t which,
734 fits_info_t *sp, uint64_t flags)
735 {
736 int ret;
737 sa_handle_t *hdl = NULL;
738 dmu_buf_t *db;
739 objset_t *osp;
740 sa_bulk_attr_t bulk[13];
741 int count = 0;
742 sa_attr_type_t *sa_table;

744 if (which == FITS_OLD) {
745 osp = f->f_fromsnap;
746 if (!osp)
747 return (ENOENT);
748 sa_table = f->f_from_sa_table;
749 } else if (which == FITS_NEW) {
750 osp = f->f_tosnap;
751 sa_table = f->f_to_sa_table;
752 } else {
753 return (EINVAL);
754 }

756 ret = fits_grab_sa_handle(osp, dnobj, &hdl, &db, FTAG);
757 if (ret)
758 return (ret);

760 if (flags & FI_ATTR_ATIME) {
761 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_ATIME], NULL,
762 &sp->si_atime, sizeof (sp->si_atime));
763 }
764 if (flags & FI_ATTR_MTIME) {
765 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MTIME], NULL,
766 &sp->si_mtime, sizeof (sp->si_mtime));
767 }
768 if (flags & FI_ATTR_CTIME) {
769 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL,
770 &sp->si_ctime, sizeof (sp->si_ctime));
771 }
772 if (flags & FI_ATTR_OTIME) {
773 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CRTIME], NULL,
774 &sp->si_otime, sizeof (sp->si_otime));
775 }
776 if (flags & FI_ATTR_MODE) {
777 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
778 &sp->si_mode, sizeof (sp->si_mode));
779 }
780 if (flags & FI_ATTR_SIZE) {
781 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_SIZE], NULL,
782 &sp->si_size, sizeof (sp->si_size));
783 }
784 if (flags & FI_ATTR_PARENT) {

new/usr/src/uts/common/fs/zfs/fits.c 13

785 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL,
786 &sp->si_parent, sizeof (sp->si_parent));
787 }
788 if (flags & FI_ATTR_LINKS) {
789 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL,
790 &sp->si_nlinks, sizeof (sp->si_nlinks));
791 }
792 if (flags & FI_ATTR_RDEV) {
793 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_RDEV], NULL,
794 &sp->si_rdev, sizeof (sp->si_rdev));
795 }
796 if (flags & FI_ATTR_UID) {
797 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_UID], NULL,
798 &sp->si_uid, sizeof (sp->si_uid));
799 }
800 if (flags & FI_ATTR_GID) {
801 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GID], NULL,
802 &sp->si_gid, sizeof (sp->si_gid));
803 }
804 if (flags & FI_ATTR_GEN) {
805 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL,
806 &sp->si_gen, sizeof (sp->si_gen));
807 }
808 /* XXX if you add things, also bump the size of bulk */
809 /* XXX XATTR */

811 /* XXX TODO get flags to check for xattrdir */
812 if (count) {
813 ret = sa_bulk_lookup(hdl, bulk, count);
814 if (ret)
815 goto out;
816 }

818 if ((flags & FI_ATTR_PARENT) && sp->si_parent != dnobj) {
819 fits_info_t si;
820 int good = 0;
821 /*
822 * verify parent. this is very expensive and only a workaround
823 */
824 ret = fits_get_info(f, sp->si_parent, which, &si, FI_ATTR_MODE);
825 if (ret && ret != ENOENT)
826 goto out;
827 if (ret == 0 && S_ISDIR(si.si_mode)) {
828 ret = fits_find_entry(f, sp->si_parent, dnobj, which,
829 NULL);
830 if (ret && ret != ENOENT)
831 goto out;
832 if (ret == 0)
833 good = 1;
834 }
835 if (!good) {
836 uint64_t parent;

838 cmn_err(CE_NOTE, "parent wrong, do a brute force "
839 "search for ino %"PRIu64"\n", dnobj);
840 ret = fits_search_parent(f, dnobj, which, &parent);
841 if (ret == ENOENT) {
842 cmn_err(CE_NOTE, "no parent found\n");
843 ret = EINVAL;
844 goto out;
845 }
846 if (ret)
847 goto out;
848 sp->si_parent = parent;
849 cmn_err(CE_NOTE, "parent found, use %"PRIu64"\n",
850 parent);

new/usr/src/uts/common/fs/zfs/fits.c 14

851 /*
852 * TODO add a bad parent cache to prevent additional
853 * lookup in pass 2
854 */
855 }
856 }

858 out:
859 fits_release_sa_handle(hdl, db, FTAG);
860 return (ret);
861 }

863 int
864 fits_file_contents(fits_t *f, uint64_t dnobj, void *ctx)
865 {
866 dnode_t *from = NULL;
867 dnode_t *to = NULL;
868 int err;
869 int i;
870 zbookmark_t czb;
871 spa_t *spa = f->f_tods->ds_dir->dd_pool->dp_spa;

873 if (f->f_fromds) {
874 err = dnode_hold(f->f_fromsnap, dnobj, FTAG, &from);
875 if (err && err != ENOENT)
876 return (err);
877 }
878 if (from && from->dn_type != DMU_OT_PLAIN_FILE_CONTENTS) {
879 dnode_rele(from, FTAG);
880 from = NULL;
881 }
882 err = dnode_hold(f->f_tosnap, dnobj, FTAG, &to);
883 if (err)
884 goto out;
885 if (to->dn_type != DMU_OT_PLAIN_FILE_CONTENTS) {
886 err = EINVAL;
887 goto out;
888 }
889 if (from) {
890 f->f_filebl = kmem_zalloc(sizeof (blklevel_t)*from->dn_nlevels,
891 KM_SLEEP);
892 for (i = 0; i < from->dn_nlevels; ++i)
893 f->f_filebl[i].bl_blk = -1;
894 i = from->dn_nlevels - 1;
895 f->f_filebl[i].bl_nslots = from->dn_nblkptr;
896 f->f_filebl[i].bl_bp = &from->dn_phys->dn_blkptr[0];
897 f->f_filebl[i].bl_blk = 0;
898 f->f_filebl[i].bl_buf = from->dn_dbuf->db_parent->db_buf;
899 }
900 for (i = 0; i < to->dn_nblkptr; ++i) {
901 SET_BOOKMARK(&czb, f->f_tods->ds_object, dnobj,
902 to->dn_nlevels - 1, i);
903 err = fits_enum_bp(spa, f, &czb, to->dn_phys->dn_blkptr + i,
904 NULL, f->f_fromtxg, ctx);
905 if (err)
906 goto out;
907 }
908 out:
909 if (f->f_filebl) {
910 kmem_free(f->f_filebl, sizeof (blklevel_t) * from->dn_nlevels);
911 f->f_filebl = NULL;
912 }
913 if (from)
914 dnode_rele(from, FTAG);
915 if (to)
916 dnode_rele(to, FTAG);

new/usr/src/uts/common/fs/zfs/fits.c 15

918 return (err);
919 }

921 int
922 fits_dir_contents(fits_t *f, uint64_t dnobj, void *ctx)
923 {
924 dnode_t *from = NULL;
925 dnode_t *to = NULL;
926 int err;

928 if (f->f_fromds) {
929 err = dnode_hold(f->f_fromsnap, dnobj, FTAG, &from);
930 if (err && err != ENOENT)
931 return (err);
932 }
933 if (from && from->dn_type != DMU_OT_DIRECTORY_CONTENTS) {
934 dnode_rele(from, FTAG);
935 from = NULL;
936 }
937 err = dnode_hold(f->f_tosnap, dnobj, FTAG, &to);
938 if (err && err != ENOENT)
939 return (err);
940 if (to && to->dn_type != DMU_OT_DIRECTORY_CONTENTS) {
941 dnode_rele(to, FTAG);
942 to = NULL;
943 }

945 if (to && from) {
946 err = fits_diff_dir(f, dnobj, DIR_TO, ctx);
947 if (err)
948 goto out;
949 err = fits_diff_dir(f, dnobj, DIR_FROM, ctx);
950 } else if (to) {
951 err = fits_enum_dir(f, dnobj, DIR_TO, ctx);
952 } else if (from) {
953 err = fits_enum_dir(f, dnobj, DIR_FROM, ctx);
954 }
955 out:
956 if (from)
957 dnode_rele(from, FTAG);
958 if (to)
959 dnode_rele(to, FTAG);

961 return (err);
962 }

964 int
965 fits_find_entry(fits_t *f, uint64_t dirobj, uint64_t dnobj,
966 fits_which_t which, char **name)
967 {
968 zap_cursor_t zc;
969 zap_attribute_t *za;
970 int err;
971 uint64_t mask = ZFS_DIRENT_OBJ(-1ULL);
972 struct objset *os;

974 if (which == FITS_OLD) {
975 os = f->f_fromsnap;
976 if (!os)
977 return (ENOENT);
978 } else if (which == FITS_NEW) {
979 os = f->f_tosnap;
980 } else {
981 return (EINVAL);
982 }

new/usr/src/uts/common/fs/zfs/fits.c 16

985 if (name)
986 *name = NULL;
987 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
988 for (zap_cursor_init(&zc, os, dirobj);
989 (err = zap_cursor_retrieve(&zc, za)) == 0;
990 zap_cursor_advance(&zc)) {
991 if ((za->za_first_integer & mask) == (dnobj & mask)) {
992 if (name)
993 *name = za->za_name;
994 break;
995 }
996 }
997 zap_cursor_fini(&zc);
998 return (err);
999 }

1001 void
1002 fits_free_name(char *name)
1003 {
1004 zap_attribute_t *za;

1006 if (!name)
1007 return;

1009 za = (zap_attribute_t *)(name - offsetof(zap_attribute_t, za_name));
1010 kmem_free(za, sizeof (*za));
1011 }

1013 int
1014 fits_lookup_entry(fits_t *f, uint64_t dirobj, char *name,
1015 fits_which_t which, uint64_t *dnobj)
1016 {
1017 struct objset *osp;
1018 int ret;

1020 if (which == FITS_OLD) {
1021 osp = f->f_fromsnap;
1022 if (!osp)
1023 return (ENOENT);
1024 } else if (which == FITS_NEW) {
1025 osp = f->f_tosnap;
1026 } else {
1027 return (EINVAL);
1028 }

1030 ret = zap_lookup(osp, dirobj, name, sizeof (*dnobj), 1, dnobj);
1031 if (ret)
1032 return (ret);
1033 *dnobj = ZFS_DIRENT_OBJ(*dnobj);

1035 return (0);
1036 }

1038 int
1039 fits_write(fits_t *f, const uint8_t *data, int len)
1040 {
1041 ssize_t resid; /* have to get resid to get detailed errno */
1042 int err;

1044 err = vn_rdwr(UIO_WRITE, f->f_vp, (caddr_t)data,
1045 len, 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid);
1046 *f->f_offp += len;

1048 return (err);

new/usr/src/uts/common/fs/zfs/fits.c 17

1049 }

1051 int
1052 fits_get_uuid(fits_t *f, fits_which_t which, uint8_t data[16])
1053 {
1054 if (which == FITS_OLD && !f->f_fromds)
1055 return (ENOENT);

1057 LE_OUT64(data, f->f_tods->ds_dir->dd_pool->dp_spa->spa_config_guid);
1058 if (which == FITS_OLD) {
1059 LE_OUT64(data + 8, f->f_fromds->ds_phys->ds_guid);
1060 } else {
1061 LE_OUT64(data + 8, f->f_tods->ds_phys->ds_guid);
1062 }
1063 return (0);
1064 }

1066 int
1067 fits_get_ctransid(fits_t *f, fits_which_t which, uint64_t *ctransid)
1068 {
1069 if (which == FITS_OLD && !f->f_fromds)
1070 return (ENOENT);

1072 if (which == FITS_OLD)
1073 *ctransid = f->f_fromds->ds_phys->ds_creation_txg;
1074 else
1075 *ctransid = f->f_tods->ds_phys->ds_creation_txg;
1076 return (0);
1077 }

1079 int
1080 fits_get_snapname(fits_t *f, fits_which_t which,
1081 char **name, int *len)
1082 {
1083 dsl_dataset_t *ds;

1085 if (which == FITS_OLD && !f->f_fromds)
1086 return (ENOENT);

1088 if (which == FITS_OLD)
1089 ds = f->f_fromds;
1090 else
1091 ds = f->f_tods;

1093 *len = dsl_dataset_namelen(ds) + 1;
1094 *name = kmem_alloc(*len, KM_SLEEP);
1095 dsl_dataset_name(ds, *name);
1096 return (0);
1097 }

1099 int
1100 fits_read_symlink(fits_t *f, uint64_t dnobj, fits_which_t which,
1101 char **target, int *plen)
1102 {
1103 int err;
1104 int ret;
1105 sa_handle_t *hdl = NULL;
1106 dmu_buf_t *db;
1107 objset_t *osp;
1108 dmu_object_info_t doi;
1109 sa_attr_type_t *sa_table;

1111 if (which == FITS_OLD) {
1112 osp = f->f_fromsnap;
1113 if (!osp)
1114 return (EINVAL);

new/usr/src/uts/common/fs/zfs/fits.c 18

1115 sa_table = f->f_from_sa_table;
1116 } else if (which == FITS_NEW) {
1117 osp = f->f_tosnap;
1118 sa_table = f->f_to_sa_table;
1119 } else {
1120 return (EINVAL);
1121 }

1123 err = fits_grab_sa_handle(osp, dnobj, &hdl, &db, FTAG);
1124 if (err)
1125 return (err);

1127 dmu_object_info_from_db(db, &doi);
1128 if (doi.doi_bonus_type == DMU_OT_SA) {
1129 int len;

1131 ret = sa_size(hdl, sa_table[ZPL_SYMLINK], &len);
1132 if (ret)
1133 goto out;
1134 *target = kmem_alloc(len + 1, KM_SLEEP);
1135 *plen = len;
1136 (*target)[len] = 0;
1137 ret = sa_lookup(hdl, sa_table[ZPL_SYMLINK], *target, len + 1);
1138 if (ret)
1139 kmem_free(*target, len + 1);
1140 } else {
1141 /*
1142 * TODO read target from file data, the old way
1143 * see zfs_readlink
1144 */
1145 ret = EINVAL;
1146 }

1148 out:
1149 fits_release_sa_handle(hdl, db, FTAG);

1151 return (ret);
1152 }

1154 int
1155 fits_send(objset_t *tosnap, objset_t *fromsnap, int outfd, vnode_t *vp,
1156 offset_t *off)
1157 {
1158 dsl_dataset_t *ds;
1159 dsl_dataset_t *fromds = NULL;
1160 int err = 0;
1161 fits_t f;
1162 arc_buf_t *buf = NULL;
1163 uint32_t flags;
1164 objset_phys_t *osp;
1165 int i;
1166 zbookmark_t zb;

1168 memset(&f, 0, sizeof (f));
1169 ds = tosnap->os_dsl_dataset;
1170 if (fromsnap)
1171 fromds = fromsnap->os_dsl_dataset;

1173 /* make certain we are looking at snapshots */
1174 if (!dsl_dataset_is_snapshot(ds) ||
1175 (fromds && !dsl_dataset_is_snapshot(fromds)))
1176 return (EINVAL);

1178 /* fromsnap must be earlier and from the same lineage as tosnap */
1179 if (fromds) {
1180 if (fromds->ds_phys->ds_creation_txg >=

new/usr/src/uts/common/fs/zfs/fits.c 19

1181 ds->ds_phys->ds_creation_txg)
1182 return (EXDEV);

1184 if (fromds->ds_dir != ds->ds_dir)
1185 return (EXDEV);

1187 /*
1188 * read root dnode from from-dataset
1189 */
1190 flags = ARC_WAIT;
1191 SET_BOOKMARK(&zb, fromds->ds_object, ZB_ROOT_OBJECT,
1192 ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
1193 err = dsl_read_nolock(NULL, fromds->ds_dir->dd_pool->dp_spa,
1194 &fromds->ds_phys->ds_bp, arc_getbuf_func, &buf,
1195 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, &zb);
1196 if (err)
1197 return (err);
1198 osp = buf->b_data;
1199 f.f_dnp = &osp->os_meta_dnode;
1200 }
1201 f.f_vp = vp;
1202 f.f_offp = off;
1203 f.f_err = 0;
1204 f.f_fromds = fromds;
1205 f.f_tods = ds;
1206 f.f_fromsnap = fromsnap;
1207 f.f_tosnap = tosnap;
1208 if (fromds) {
1209 f.f_fromtxg = fromds->ds_phys->ds_creation_txg;
1210 f.f_bl = kmem_zalloc(sizeof (blklevel_t) *
1211 f.f_dnp->dn_nlevels, KM_SLEEP);
1212 for (i = 0; i < f.f_dnp->dn_nlevels; ++i)
1213 f.f_bl[i].bl_blk = -1;
1214 i = f.f_dnp->dn_nlevels - 1;
1215 f.f_bl[i].bl_nslots = f.f_dnp->dn_nblkptr;
1216 f.f_bl[i].bl_bp = &f.f_dnp->dn_blkptr[0];
1217 f.f_bl[i].bl_blk = 0;

1219 err = fits_sa_setup(fromsnap, &f.f_from_sa_table);
1220 if (err)
1221 goto out;
1222 }
1223 err = fits_sa_setup(tosnap, &f.f_to_sa_table);
1224 if (err)
1225 goto out;

1227 err = zap_lookup(tosnap, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
1228 &f.f_shares_dir);
1229 if (err && err != ENOENT)
1230 goto out;

1232 err = fits_start(&f, &f.f_ops);
1233 if (err)
1234 goto out;

1236 err = traverse_dataset(ds, f.f_fromtxg,
1237 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, fits_cb, &f);
1238 if (err) {
1239 fits_abort(&f);
1240 goto out;
1241 }
1242 err = fits_start2(&f, &f.f_ops);
1243 if (err) {
1244 goto out;
1245 }
1246 err = traverse_dataset(ds, f.f_fromtxg,

new/usr/src/uts/common/fs/zfs/fits.c 20

1247 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, fits_cb, &f);
1248 if (err) {
1249 fits_abort(&f);
1250 goto out;
1251 }

1253 err = fits_end(&f);
1254 if (err)
1255 goto out;

1257 out:
1258 if (fromds) {
1259 for (i = 0; i < f.f_dnp->dn_nlevels - 1; ++i) {
1260 blklevel_t *b = f.f_bl + i;
1261 if (b->bl_buf)
1262 arc_buf_remove_ref(b->bl_buf, &b->bl_buf);
1263 }
1264 kmem_free(f.f_bl, sizeof (blklevel_t) * f.f_dnp->dn_nlevels);
1265 }

1267 if (buf)
1268 arc_buf_remove_ref(buf, &buf);

1270 return (err);
1271 }
1272 #endif /* ! codereview */

new/usr/src/uts/common/fs/zfs/fits_count.c 1

**
 2798 Wed Oct 17 21:48:38 2012
new/usr/src/uts/common/fs/zfs/fits_count.c
FITS: generating send-streams in portable format
This commit adds the command ’zfs fits-send’, analogous to zfs send. The
generated send stream is compatible with the stream generated with that
from ’btrfs send’ and can in principle easily be received to any filesystem.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2012 STRATO AG. All rights reserved.
23 */
24 #include <sys/zfs_context.h>
25 #include <sys/errno.h>
26 #include <sys/fits_impl.h>

28 int
29 fits_add_count(fits_counter_t *fc, uint64_t ino, uint64_t inc,
30 uint64_t aux, uint64_t *new_count, uint64_t *old_aux)
31 {
32 fits_count_elem_t *fce = fc->fc_head;

34 while (fce && fce->fce_ino != ino)
35 fce = fce->fce_next;

37 if (!fce) {
38 fce = kmem_alloc(sizeof(*fce), KM_SLEEP);
39 fce->fce_ino = ino;
40 fce->fce_count = 0;
41 fce->fce_next = fc->fc_head;
42 fc->fc_head = fce;
43 }

45 if (old_aux) {
46 *old_aux = fce->fce_aux;
47 fce->fce_aux = aux;
48 }
49 fce->fce_count += inc;

51 if (new_count)
52 *new_count = fce->fce_count;

54 return 0;
55 }

57 int
58 fits_get_count(fits_counter_t *fc, uint64_t ino, uint64_t *new_count,

new/usr/src/uts/common/fs/zfs/fits_count.c 2

59 uint64_t *old_aux)
60 {
61 fits_count_elem_t *fce = fc->fc_head;

63 while (fce && fce->fce_ino != ino)
64 fce = fce->fce_next;

66 if (!fce) {
67 if (new_count)
68 *new_count = 0;
69 if (old_aux)
70 *old_aux = 0;
71 return ENOENT;
72 } else {
73 if (new_count)
74 *new_count = fce->fce_count;
75 if (old_aux)
76 *old_aux = fce->fce_aux;
77 }

79 return 0;
80 }

82 void
83 fits_free_count(fits_counter_t *fc, uint64_t ino)
84 {
85 fits_count_elem_t *fce = fc->fc_head;
86 fits_count_elem_t *prev = NULL;

88 while (fce && fce->fce_ino != ino) {
89 prev = fce;
90 fce = fce->fce_next;
91 }

93 if (!fce)
94 return;

96 if (prev)
97 prev->fce_next = fce->fce_next;
98 else
99 fc->fc_head = fce->fce_next;

101 kmem_free(fce, sizeof(*fce));
102 }

104 int
105 fits_assert_count_empty(fits_counter_t *fc)
106 {
107 fits_count_elem_t *fce = fc->fc_head;
108 int ret = 0;

110 while (fce) {
111 printf("!fits_assert_count_empty: %s ino %"PRIu64" count %"PRIu6
112 fc->fc_name, fce->fce_ino, fce->fce_count);
113 if (fce->fce_count != 0)
114 ++ret;
115 fce = fce->fce_next;
116 /* XXX TODO free count */
117 /* XXX known leftover: if a file had > 1 links and be replaced
118 * by a file with > 1 link, but no same_name replacements, the
119 * link_add_cnt leaks with being 0
120 */
121 }

123 return ret;
124 }

new/usr/src/uts/common/fs/zfs/fits_count.c 3

125 #endif /* ! codereview */

new/usr/src/uts/common/fs/zfs/fits_crc32c.c 1

**
 3894 Wed Oct 17 21:48:38 2012
new/usr/src/uts/common/fs/zfs/fits_crc32c.c
FITS: generating send-streams in portable format
This commit adds the command ’zfs fits-send’, analogous to zfs send. The
generated send stream is compatible with the stream generated with that
from ’btrfs send’ and can in principle easily be received to any filesystem.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * The crc32c algorithms are taken from sctp_crc32 implementation
23 * common/inet/sctp_crc32.{c,h}, which in turn were taken from nxge_fflp_hash.c
24 */

26 #include <sys/zfs_context.h>
27 #include <sys/fits_crc32c.h>

29 static void fits_crc32c_word(uint32_t *crcptr, const uint32_t *buf, int len);

31 /*
32 * Fast CRC32C calculation algorithm. The basic idea is to look at it
33 * four bytes (one word) at a time, using four tables. The
34 * standard algorithm in RFC 3309 uses one table.
35 */

37 #define CRC_32C_POLY 0x1EDC6F41L

39 /* The four CRC32c tables. */
40 static uint32_t crc32c_tab[4][256];
41 static int initialized;

44 static uint32_t
45 reflect_32(uint32_t b)
46 {
47 int i;
48 uint32_t rw = 0;

50 for (i = 0; i < 32; i++) {
51 if (b & 1) {
52 rw |= 1 << (31 - i);
53 }
54 b >>= 1;
55 }
56 return (rw);
57 }

new/usr/src/uts/common/fs/zfs/fits_crc32c.c 2

59 #ifdef _BIG_ENDIAN
60 static uint32_t
61 flip32(uint32_t w)
62 {
63 return (((w >> 24) | ((w >> 8) & 0xff00) |
64 ((w << 8) & 0xff0000) | (w << 24)));
65 }
66 #endif

68 /*
69 * Initialize the crc32c tables.
70 */

72 void
73 fits_crc32c_init(void)
74 {
75 uint32_t index, bit, byte, crc;

77 for (index = 0; index < 256; index++) {
78 crc = reflect_32(index);
79 for (byte = 0; byte < 4; byte++) {
80 for (bit = 0; bit < 8; bit++) {
81 crc = (crc & 0x80000000) ?
82 (crc << 1) ^ CRC_32C_POLY : crc << 1;
83 }
84 #ifdef _BIG_ENDIAN
85 crc32c_tab[3 - byte][index] = flip32(reflect_32(crc));
86 #else
87 crc32c_tab[byte][index] = reflect_32(crc);
88 #endif
89 }
90 }
91 }

93 /*
94 * Lookup the crc32c for a byte stream
95 */
96 static void
97 fits_crc32c_byte(uint32_t *crcptr, const uint8_t *buf, int len)
98 {
99 uint32_t crc;
100 int i;

102 crc = *crcptr;
103 for (i = 0; i < len; i++) {
104 #ifdef _BIG_ENDIAN
105 crc = (crc << 8) ^ crc32c_tab[3][buf[i] ^ (crc >> 24)];
106 #else
107 crc = (crc >> 8) ^ crc32c_tab[0][buf[i] ^ (crc & 0xff)];
108 #endif
109 }
110 *crcptr = crc;
111 }

113 /*
114 * Lookup the crc32c for a 32 bit word stream
115 * Lookup is done fro the 4 bytes in parallel
116 * from the tables computed earlier
117 *
118 */
119 static void
120 fits_crc32c_word(uint32_t *crcptr, const uint32_t *buf, int len)
121 {
122 uint32_t w, crc;
123 int i;

new/usr/src/uts/common/fs/zfs/fits_crc32c.c 3

125 crc = *crcptr;
126 for (i = 0; i < len; i++) {
127 w = crc ^ buf[i];
128 crc = crc32c_tab[0][w >> 24] ^
129 crc32c_tab[1][(w >> 16) & 0xff] ^
130 crc32c_tab[2][(w >> 8) & 0xff] ^
131 crc32c_tab[3][w & 0xff];
132 }
133 *crcptr = crc;
134 }

136 /*
137 * Lookup the crc32c for a stream of bytes
138 *
139 * Tries to lookup the CRC on 4 byte words
140 * If the buffer is not 4 byte aligned, first compute
141 * with byte lookup until aligned. Then compute crc
142 * for each 4 bytes. If there are bytes left at the end of
143 * the buffer, then perform a byte lookup for the remaining bytes
144 *
145 *
146 */
147 uint32_t
148 fits_crc32c(uint32_t crc32, const uint8_t *buf, int len)
149 {
150 int rem;

152 if (!initialized) {
153 fits_crc32c_init();
154 initialized = 1;
155 }

157 rem = 4 - (((uintptr_t)buf) & 3);
158 if (rem != 0) {
159 if (len < rem) {
160 rem = len;
161 }
162 fits_crc32c_byte(&crc32, buf, rem);
163 buf = buf + rem;
164 len = len - rem;
165 }
166 if (len > 3) {
167 fits_crc32c_word(&crc32, (const uint32_t *) buf, len / 4);
168 }
169 rem = len & 3;
170 if (rem != 0) {
171 fits_crc32c_byte(&crc32, buf + len - rem, rem);
172 }
173 return (crc32);
174 }
175 #endif /* ! codereview */

new/usr/src/uts/common/fs/zfs/fits_pass1.c 1

**
 11533 Wed Oct 17 21:48:39 2012
new/usr/src/uts/common/fs/zfs/fits_pass1.c
FITS: generating send-streams in portable format
This commit adds the command ’zfs fits-send’, analogous to zfs send. The
generated send stream is compatible with the stream generated with that
from ’btrfs send’ and can in principle easily be received to any filesystem.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2012 STRATO AG. All rights reserved.
23 */
24 #include <sys/zfs_context.h>
25 #include <sys/errno.h>
26 #include <sys/stat.h>
27 #include <sys/fits.h>
28 #include <sys/fits_impl.h>

30 struct fits_enum {
31 fits_t *fe_fits;
32 uint64_t fe_parent_ino;
33 fits_dirent_t *fe_dirent_chain;
34 };

36 struct fits_file {
37 fits_t *ff_fits;
38 uint64_t ff_len;
39 uint64_t ff_last_byte;
40 uint64_t ff_ino;
41 fits_path_t *ff_path;
42 fits_dirent_t *ff_dirent;
43 };

45 static int fits_file_data_pass1(void *fits_filep, void *data, uint64_t off,
46 uint64_t len);
47 static int fits_dirent_add_pass1(void *fits_enump, char *name, uint64_t ino);
48 static int fits_dirent_mod_pass1(void *fits_enump, char *name,
49 uint64_t ino_old, uint64_t ino_new);
50 static int fits_dir_add_pass1(fits_t *f, uint64_t ino);
51 static int fits_mod_pass1(fits_t *f, uint64_t ino);

53 static fits_ops_t _ops = {
54 .fits_dir_add = fits_dir_add_pass1,
55 .fits_dir_mod = fits_mod_pass1,
56 .fits_dirent_add = fits_dirent_add_pass1,
57 .fits_dirent_mod = fits_dirent_mod_pass1,
58 .fits_file_mod = fits_mod_pass1,

new/usr/src/uts/common/fs/zfs/fits_pass1.c 2

59 .fits_file_data = fits_file_data_pass1
60 };

62 static int fits_file_add_genchange(fits_t *f, uint64_t ino);

64 int
65 fits_start(fits_t *f, fits_ops_t **ops)
66 {
67 int ret;

69 f->f_pass = PASS_LINK;
70 f->f_link_add_cnt.fc_head = NULL;
71 f->f_link_add_cnt.fc_name = "link_add_cnt";
72 f->f_del_dir_cnt.fc_head = NULL;
73 f->f_del_dir_cnt.fc_name = "del_dir_cnt";
74 f->f_put_back_cnt.fc_head = NULL;
75 f->f_put_back_cnt.fc_name = "put_back_cnt";
76 fits_send_init(f);

78 *ops = &_ops;

80 ret = fits_send_start(f);
81 if (ret) {
82 fits_abort(f);
83 return (ret);
84 }

86 return (0);
87 }

89 static int
90 enum_dir(fits_t *f, uint64_t ino, fits_dirent_t *chain)
91 {
92 struct fits_enum fe = {
93 .fe_fits = f,
94 .fe_parent_ino = ino,
95 .fe_dirent_chain = chain
96 };

98 return (fits_dir_contents(f, ino, &fe));
99 }

101 static int
102 fits_file_data_pass1(void *fits_filep, void *data, uint64_t off, uint64_t len)
103 {
104 struct fits_file *ff = fits_filep;

106 if (off + len > ff->ff_len)
107 len = ff->ff_len - off;

109 ff->ff_last_byte = off + len;

111 return fits_send_file_data(ff->ff_fits, &ff->ff_path,
112 ff->ff_dirent, ff->ff_ino, off, len, data);
113 }

115 static int
116 dirent_add_dir(fits_t *f, fits_dirent_t *dirent, uint64_t ino, int exists)
117 {
118 fits_info_t si_old;
119 fits_info_t si_new;
120 int ret;

122 ret = fits_get_info(f, ino, FITS_OLD, &si_old,
123 FI_ATTR_PARENT | FI_ATTR_GEN | FI_ATTR_MODE);
124 if (ret && ret != ENOENT)

new/usr/src/uts/common/fs/zfs/fits_pass1.c 3

125 return (ret);

127 if (ret == 0) {
128 ret = fits_get_info(f, ino, FITS_NEW, &si_new,
129 FI_ATTR_GEN | FI_ATTR_MODE);
130 if (ret)
131 return (ret);

133 if (si_old.si_gen == si_new.si_gen ||
134 (S_ISDIR(si_new.si_mode) && S_ISDIR(si_old.si_mode)))
135 return fits_send_rename(f, dirent, ino,
136 si_old.si_parent, exists);
137 return (0);
138 }

140 if (ino > f->f_current_ino)
141 return (0);

143 /* dir is new */
144 ret = fits_send_mkdir(f, dirent, ino, exists);
145 if (ret)
146 return (ret);

148 return (enum_dir(f, ino, dirent));
149 }

151 int
152 fits_dirent_add_file(fits_t *f, fits_dirent_t *dirent,
153 uint64_t ino, uint64_t mode, int exists)
154 {
155 fits_info_t si_old;
156 fits_info_t si_new;
157 int ret;
158 fits_path_t *fits_path;
159 uint64_t new_count;
160 uint64_t old_aux;

162 ret = fits_get_info(f, ino, FITS_OLD, &si_old,
163 FI_ATTR_GEN | FI_ATTR_PARENT);
164 if (ret && ret != ENOENT)
165 return (ret);

167 if (ret == 0) {
168 ret = fits_get_info(f, ino, FITS_NEW, &si_new,
169 FI_ATTR_GEN);
170 if (ret)
171 return (ret);

173 if (si_old.si_gen == si_new.si_gen)
174 return fits_send_link(f, dirent, ino, si_old.si_parent,
175 FITS_OLD, exists);
176 }

178 /* file is new */
179 ret = fits_add_count(&f->f_link_add_cnt, ino, 1, dirent->fd_parent_ino,
180 &new_count, &old_aux);
181 if (ret)
182 return (ret);

184 if (new_count == 1)
185 ret = fits_send_create_file(f, dirent, ino,
186 exists, &fits_path);
187 else
188 ret = fits_send_link(f, dirent, ino, old_aux, FITS_NEW, exists);
189 if (ret)
190 return (ret);

new/usr/src/uts/common/fs/zfs/fits_pass1.c 4

192 ret = fits_get_info(f, ino, FITS_NEW, &si_new,
193 FI_ATTR_SIZE | FI_ATTR_LINKS);
194 ASSERT(ret == 0);
195 if (new_count == 1 && S_ISREG(mode)) {
196 struct fits_file ff;

198 ff.ff_ino = ino;
199 ff.ff_len = si_new.si_size;
200 ff.ff_fits = f;
201 ff.ff_path = fits_path;
202 ff.ff_dirent = dirent;
203 ff.ff_last_byte = 0;
204 ret = fits_file_contents(f, ino, &ff);
205 fits_path_free(ff.ff_path);
206 if (ret)
207 return (ret);
208 if (ff.ff_last_byte != si_new.si_size) {
209 /* sparse end */
210 ret = fits_send_truncate(f, NULL, ino, si_new.si_size);
211 if (ret)
212 return (ret);
213 }
214 }
215 if (new_count == si_new.si_nlinks)
216 fits_free_count(&f->f_link_add_cnt, ino);

218 return (0);
219 }

221 static int
222 dirent_add(fits_t *f, fits_dirent_t *dirent, uint64_t ino, int exists)
223 {
224 fits_info_t si;
225 int ret;

227 ret = fits_get_info(f, ino, FITS_NEW, &si, FI_ATTR_MODE);
228 if (ret)
229 return (ret);

231 if (S_ISDIR(si.si_mode)) {
232 return (dirent_add_dir(f, dirent, ino, exists));
233 } else {
234 return (fits_dirent_add_file(f, dirent, ino, si.si_mode,
235 exists));
236 }
237 }

239 static int
240 fits_dirent_add_pass1(void *fits_enump, char *name, uint64_t ino)
241 {
242 struct fits_enum *fe = fits_enump;
243 fits_dirent_t dirent = {
244 .fd_name = name,
245 .fd_parent_ino = fe->fe_parent_ino,
246 .fd_prev = fe->fe_dirent_chain,
247 };

249 return (dirent_add(fe->fe_fits, &dirent, ino, 0));
250 }

252 static int
253 fits_dirent_mod_pass1(void *fits_enump, char *name,
254 uint64_t ino_old, uint64_t ino_new)
255 {
256 struct fits_enum *fe = fits_enump;

new/usr/src/uts/common/fs/zfs/fits_pass1.c 5

257 fits_dirent_t dirent = {
258 .fd_name = name,
259 .fd_parent_ino = fe->fe_parent_ino,
260 .fd_prev = fe->fe_dirent_chain,
261 };

263 return (dirent_add(fe->fe_fits, &dirent, ino_new, 1));
264 }

266 static int
267 fits_file_add_genchange(fits_t *f, uint64_t ino)
268 {
269 int ret;
270 char *name = NULL;

272 f->f_current_ino = ino;
273 f->f_current_path = NULL;

275 /*
276 * only called when generation has changed. TODO: move to own
277 * function
278 */
279 fits_info_t si_old;
280 fits_info_t si_new;
281 int same_name = 0;

283 ret = fits_get_info(f, ino, FITS_OLD, &si_old, FI_ATTR_MODE |
284 FI_ATTR_LINKS | FI_ATTR_PARENT);
285 if (ret)
286 return (ret);
287 ret = fits_get_info(f, ino, FITS_NEW, &si_new, FI_ATTR_MODE |
288 FI_ATTR_LINKS | FI_ATTR_PARENT);
289 if (ret)
290 return (ret);

292 if (si_old.si_nlinks > 1 && si_new.si_nlinks > 1)
293 return fits_add_count(&f->f_link_add_cnt, ino, 0, 0, NULL,
294 NULL);

296 if (S_ISDIR(si_old.si_mode))
297 return (0);

299 fits_which_t from;
300 fits_which_t to;
301 uint64_t new_ino;
302 uint64_t parent = si_new.si_parent;

304 if (si_old.si_nlinks == 1) {
305 from = FITS_OLD;
306 to = FITS_NEW;
307 parent = si_old.si_parent;
308 } else if (si_old.si_nlinks > 1 && si_new.si_nlinks == 1) {
309 from = FITS_NEW;
310 to = FITS_OLD;
311 parent = si_new.si_parent;
312 } else {
313 return (EINVAL);
314 }

316 ret = fits_find_entry(f, parent, ino, from, &name);
317 if (ret)
318 return (ret);

320 ret = fits_lookup_entry(f, parent, name, to, &new_ino);
321 if (ret && ret != ENOENT)
322 goto out;

new/usr/src/uts/common/fs/zfs/fits_pass1.c 6

323 if (ret == 0 && new_ino == ino)
324 same_name = 1;

326 if ((si_old.si_nlinks == 1 || si_new.si_nlinks == 1) && !same_name) {
327 ret = 0;
328 goto out;
329 }

331 fits_dirent_t dirent = {
332 .fd_parent_ino = parent,
333 .fd_name = name,
334 .fd_prev = NULL
335 };

337 ret = fits_send_unlink(f, &dirent, ino);
338 if (ret)
339 goto out;
340 ret = fits_dirent_add_file(f, &dirent, ino, si_new.si_mode, 0);

342 out:
343 fits_free_name(name);
344 return (ret);
345 }

347 static int
348 fits_dir_add_pass1(fits_t *f, uint64_t ino)
349 {
350 int ret;
351 uint64_t parent;
352 uint64_t first_parent = FITS_NO_INO;
353 fits_info_t si;
354 fits_dirent_t dirent;
355 int same_name = 0;
356 char *name = NULL;

358 f->f_current_ino = ino;
359 f->f_current_path = NULL;

361 parent = ino;
362 while (1) {
363 /* the new parent must exist, otherwise the fs is wrong */
364 ret = fits_get_info(f, parent, FITS_NEW, &si,
365 FI_ATTR_PARENT);
366 if (ret)
367 return (ret);
368 if (first_parent == FITS_NO_INO)
369 first_parent = si.si_parent;

371 ret = fits_get_info(f, parent, FITS_OLD, &si, 0);
372 if (ret && ret != ENOENT)
373 return (ret);
374 if (ret != ENOENT)
375 break;

377 /*
378 * this check is only needed for a full send, on all
379 * incrementals the parent already exists and it breaks out
380 * above
381 */
382 if (parent == si.si_parent) {
383 first_parent = FITS_NO_INO;
384 break;
385 }
386 parent = si.si_parent;

388 if (parent > ino)

new/usr/src/uts/common/fs/zfs/fits_pass1.c 7

389 return (0);
390 }

392 /*
393 * check for same-name
394 */
395 if (first_parent != FITS_NO_INO) {
396 ret = fits_get_info(f, first_parent, FITS_OLD, &si,
397 FI_ATTR_MODE);
398 if (ret && ret != ENOENT)
399 return (ret);
400 if (ret == 0 && S_ISDIR(si.si_mode)) {
401 uint64_t old_ino;

403 ret = fits_find_entry(f, first_parent, ino,
404 FITS_NEW, &name);
405 if (ret)
406 return (ret);

408 ret = fits_lookup_entry(f, first_parent, name,
409 FITS_OLD, &old_ino);
410 if (ret && ret != ENOENT) {
411 goto out;
412 }
413 if (ret == 0) {
414 same_name = 1;
415 dirent.fd_name = name;
416 dirent.fd_parent_ino = first_parent;
417 dirent.fd_prev = NULL;
418 if (old_ino == ino) {
419 ret = fits_add_count(&f->f_link_add_cnt,
420 ino, 0, 0, NULL, NULL);
421 if (ret)
422 goto out;
423 }
424 }
425 }
426 }
427 /* dir is new */
428 ret = fits_send_mkdir(f, same_name ? &dirent : NULL, ino, same_name);
429 if (ret)
430 goto out;

432 ret = enum_dir(f, ino, NULL);

434 out:
435 fits_free_name(name);
436 return (ret);
437 }

439 static int
440 fits_mod_pass1(fits_t *f, uint64_t ino)
441 {
442 fits_info_t si_old;
443 fits_info_t si_new;
444 int ret;

446 f->f_current_ino = ino;
447 f->f_current_path = NULL;

449 ret = fits_get_info(f, ino, FITS_NEW, &si_new, FI_ATTR_SIZE |
450 FI_ATTR_MODE | FI_ATTR_GEN | FI_ATTR_UID |
451 FI_ATTR_GID | FI_ATTR_SIZE);
452 if (ret)
453 return (ret);
454 ret = fits_get_info(f, ino, FITS_OLD, &si_old, FI_ATTR_GEN |

new/usr/src/uts/common/fs/zfs/fits_pass1.c 8

455 FI_ATTR_MODE | FI_ATTR_UID |
456 FI_ATTR_GID | FI_ATTR_SIZE);
457 if (ret)
458 return (ret);

460 if (!(S_ISDIR(si_old.si_mode) && S_ISDIR(si_new.si_mode)) &&
461 si_new.si_gen != si_old.si_gen) {
462 if (S_ISDIR(si_new.si_mode))
463 return (fits_dir_add_pass1(f, ino));
464 else
465 return (fits_file_add_genchange(f, ino));
466 }

468 if (S_ISDIR(si_new.si_mode)) {
469 ret = enum_dir(f, ino, NULL);
470 if (ret)
471 return (ret);
472 }

474 if (S_ISREG(si_new.si_mode)) {
475 struct fits_file ff;
476 ff.ff_ino = ino;
477 ff.ff_len = si_new.si_size;
478 ff.ff_fits = f;
479 ff.ff_path = NULL;
480 ff.ff_dirent = NULL;
481 ff.ff_last_byte = 0;

483 ret = fits_file_contents(f, ino, &ff);
484 fits_path_free(ff.ff_path);
485 if (ret)
486 return (ret);
487 if (si_new.si_size < si_old.si_size ||
488 (si_new.si_size != si_old.si_size &&
489 si_new.si_size != ff.ff_last_byte)) {
490 ret = fits_send_truncate(f, NULL, ino, si_new.si_size);
491 if (ret)
492 return (ret);
493 }
494 }

496 if (si_old.si_uid != si_new.si_uid || si_old.si_gid != si_new.si_gid) {
497 ret = fits_send_chown(f, NULL, ino, si_new.si_uid,
498 si_new.si_gid);
499 if (ret)
500 return (ret);
501 }
502 if (si_old.si_mode != si_new.si_mode) {
503 ret = fits_send_chmod(f, NULL, ino, si_new.si_mode);
504 if (ret)
505 return (ret);
506 }

508 return (ret);
509 }
510 #endif /* ! codereview */

new/usr/src/uts/common/fs/zfs/fits_pass2.c 1

**
 11719 Wed Oct 17 21:48:39 2012
new/usr/src/uts/common/fs/zfs/fits_pass2.c
FITS: generating send-streams in portable format
This commit adds the command ’zfs fits-send’, analogous to zfs send. The
generated send stream is compatible with the stream generated with that
from ’btrfs send’ and can in principle easily be received to any filesystem.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2012 STRATO AG. All rights reserved.
23 */
24 #include <sys/zfs_context.h>
25 #include <sys/errno.h>
26 #include <sys/stat.h>
27 #include <sys/fits.h>
28 #include <sys/fits_impl.h>

30 struct fits_enum {
31 fits_t *fe_fits;
32 uint64_t fe_parent_ino;
33 uint64_t fe_del_dir_cnt;
34 uint64_t fe_put_back_cnt;
35 fits_dirent_t *fe_dirent_chain;
36 };

38 struct fits_file {
39 fits_t *ff_fits;
40 uint64_t ff_len;
41 uint64_t ff_last_byte;
42 uint64_t ff_ino;
43 fits_path_t *ff_path;
44 fits_dirent_t *ff_dirent;
45 };

47 static int fits_dirent_del_pass2(void *fits_enump, char *name, uint64_t ino);
48 static int fits_dirent_mod_pass2(void *fits_enump, char *name,
49 uint64_t ino_old, uint64_t ino_new);
50 static int fits_dirent_unmod_pass2(void *fits_enump, char *name, uint64_t ino);
51 static int fits_dir_del_pass2(fits_t *f, uint64_t ino);
52 static int fits_add_pass2(fits_t *f, uint64_t ino);
53 static int fits_mod_pass2(fits_t *f, uint64_t ino);

55 fits_ops_t _ops = {
56 .fits_dirent_del = fits_dirent_del_pass2,
57 .fits_dirent_mod = fits_dirent_mod_pass2,
58 .fits_dirent_unmod = fits_dirent_unmod_pass2,

new/usr/src/uts/common/fs/zfs/fits_pass2.c 2

59 .fits_file_add = fits_add_pass2,
60 .fits_file_mod = fits_mod_pass2,
61 .fits_dir_add = fits_add_pass2,
62 .fits_dir_del = fits_dir_del_pass2,
63 .fits_dir_mod = fits_mod_pass2
64 };

66 int
67 fits_start2(fits_t *f, fits_ops_t **ops)
68 {
69 f->f_pass = PASS_UNLINK;
70 *ops = &_ops;

72 return (0);
73 }

75 int
76 fits_abort(fits_t *f)
77 {
78 fits_send_fini(f);

80 return (0);
81 }

83 int
84 fits_end(fits_t *f)
85 {
86 int ret;
87 int ret2;

89 fits_send_end(f);

91 ret = fits_assert_count_empty(&f->f_link_add_cnt);
92 ret += fits_assert_count_empty(&f->f_del_dir_cnt);
93 ret += fits_assert_count_empty(&f->f_put_back_cnt);

95 printf("!fits: fits_end calling fits_abort\n");
96 ret2 = fits_abort(f);

98 return (ret ? ret : ret2);
99 }

101 static int
102 dir_del(fits_t *f, uint64_t ino, uint64_t removed_entries)
103 {
104 fits_info_t si;
105 uint64_t parent;
106 int ret;
107 int exists;
108 uint64_t new_count;
109 uint64_t left;

111 while (1) {
112 ret = fits_get_info(f, ino, FITS_OLD, &si, FI_ATTR_GEN |
113 FI_ATTR_PARENT | FI_ATTR_NENTRIES);
114 if (ret)
115 return (ret);

117 if (si.si_parent > f->f_current_ino)
118 return (0);

120 if (removed_entries + 2 < si.si_nentries) /* ’.’ and ’..’ */
121 return (0);

123 fits_free_count(&f->f_del_dir_cnt, ino);
124 ret = fits_send_rmdir(f, NULL, ino);

new/usr/src/uts/common/fs/zfs/fits_pass2.c 3

125 if (ret)
126 return (ret);

128 parent = si.si_parent;
129 exists = fits_get_info(f, parent, FITS_NEW, &si,
130 FI_ATTR_MODE);
131 if (exists && exists != ENOENT)
132 return (exists);

134 ret = fits_get_count(&f->f_put_back_cnt, parent, &left, NULL);
135 if (ret && ret != ENOENT)
136 return (ret);
137 if (left > 0) {
138 ret = fits_add_count(&f->f_put_back_cnt, parent, -1, 0,
139 &left, NULL);
140 if (ret)
141 return (ret);
142 }
143 if ((int64_t)left < 0)
144 return (EINVAL);

146 if (exists == 0 && S_ISDIR(si.si_mode)) {
147 char *name;
148 uint64_t new_ino;
149 fits_info_t si_new;
150 int new;

152 new = fits_get_info(f, ino, FITS_NEW, &si_new,
153 FI_ATTR_MODE);
154 if (new && new != ENOENT)
155 return (new);
156 ret = fits_find_entry(f, parent, ino, FITS_OLD, &name);
157 if (ret)
158 return (ret);

160 ret = fits_lookup_entry(f, parent, name,
161 FITS_NEW, &new_ino);
162 if (ret && ret != ENOENT) {
163 fits_free_name(name);
164 return (ret);
165 }
166 if (ret == 0 && new_ino != ino) {
167 fits_dirent_t dirent = {
168 .fd_name = name,
169 .fd_parent_ino = parent
170 };

172 ret = fits_send_rename_from_tempname(f, &dirent,
173 ino, new_ino);
174 if (ret) {
175 fits_free_name(name);
176 return (ret);
177 }
178 } else if (ret == 0 && new_ino == ino &&
179 !S_ISDIR(si_new.si_mode)) {
180 fits_dirent_t dirent = {
181 .fd_name = name,
182 .fd_parent_ino = parent
183 };

185 ret = fits_dirent_add_file(f, &dirent, ino,
186 si_new.si_mode, 0);
187 if (ret) {
188 fits_free_name(name);
189 return (ret);
190 }

new/usr/src/uts/common/fs/zfs/fits_pass2.c 4

191 }
192 fits_free_name(name);
193 }

195 if (left == 0) {
196 fits_free_count(&f->f_put_back_cnt, parent);
197 if (exists == 0 && S_ISDIR(si.si_mode)) {
198 ret = fits_send_mtime_update(f, NULL, parent);
199 if (ret)
200 return (ret);
201 }
202 }

204 if (exists == 0 && S_ISDIR(si.si_mode))
205 return (0);

207 /* propagate deletion */
208 ret = fits_add_count(&f->f_del_dir_cnt, parent, 1, 0,
209 &new_count, NULL);
210 if (ret)
211 return (ret);

213 ino = parent;
214 removed_entries = new_count;
215 }
216 }

218 static int
219 enum_dir(fits_t *f, uint64_t ino, uint64_t *pput_back_cnt,
220 uint64_t *pdel_dir_cnt)
221 {
222 int ret;
223 struct fits_enum fe = {
224 .fe_fits = f,
225 .fe_parent_ino = ino,
226 .fe_del_dir_cnt = 0,
227 .fe_put_back_cnt = 0
228 };

230 ret = fits_dir_contents(f, ino, &fe);
231 if (ret)
232 return (ret);

234 if (pput_back_cnt)
235 *pput_back_cnt = fe.fe_put_back_cnt;
236 if (pdel_dir_cnt)
237 *pdel_dir_cnt = fe.fe_del_dir_cnt;

239 if (fe.fe_put_back_cnt) {
240 ret = fits_add_count(&f->f_put_back_cnt, ino,
241 fe.fe_put_back_cnt, 0, NULL, NULL);
242 if (ret)
243 return (ret);
244 }

246 return (0);
247 }

249 static int
250 dirent_del_file(struct fits_enum *fe, fits_dirent_t *dirent,
251 uint64_t ino, uint64_t remains)
252 {
253 int ret;

255 ret = fits_send_unlink(fe->fe_fits, dirent, ino);
256 if (ret)

new/usr/src/uts/common/fs/zfs/fits_pass2.c 5

257 return (ret);

259 if (remains != FITS_NO_INO) {
260 ret = fits_send_rename_from_tempname(fe->fe_fits, dirent,
261 ino, remains);
262 if (ret)
263 return (ret);
264 }

266 fe->fe_del_dir_cnt++;

268 return (0);
269 }

271 static int
272 dirent_del_dir(struct fits_enum *fe, fits_dirent_t *dirent, uint64_t ino,
273 uint64_t remains)
274 {
275 int ret;
276 fits_info_t si;
277 fits_info_t si_old;
278 int new;
279 int old;
280 fits_t *f = fe->fe_fits;

282 new = fits_get_info(f, ino, FITS_NEW, &si, FI_ATTR_GEN |
283 FI_ATTR_MODE);
284 if (new && new != ENOENT)
285 return (new);
286 old = fits_get_info(f, ino, FITS_OLD, &si_old,
287 FI_ATTR_NENTRIES | FI_ATTR_GEN |
288 FI_ATTR_PARENT);
289 if (old)
290 return (old);

292 /* new == 0 means the dir was renamed, which happened during pass 1 */
293 if (new == ENOENT ||
294 (si.si_gen != si_old.si_gen && !S_ISDIR(si.si_mode))) {
295 uint64_t cnt;

297 if (ino > f->f_current_ino) {
298 ++fe->fe_put_back_cnt;
299 return (0);
300 }

302 ret = fits_get_count(&f->f_del_dir_cnt, ino, &cnt,
303 NULL);
304 if (ret && ret != ENOENT)
305 return (ret);
306 /* 2 for ’.’ and ’..’ */
307 if (cnt + 2 < si_old.si_nentries) {
308 ++fe->fe_put_back_cnt;
309 return (0);
310 }

312 fits_free_count(&f->f_del_dir_cnt, ino);
313 ret = fits_send_rmdir(f, dirent, ino);
314 if (ret)
315 return (ret);
316 }
317 if (remains != FITS_NO_INO) {
318 ret = fits_send_rename_from_tempname(f, dirent, ino, remains);
319 if (ret)
320 return (ret);
321 }
322 fe->fe_del_dir_cnt++;

new/usr/src/uts/common/fs/zfs/fits_pass2.c 6

323 if (new == 0 && si.si_gen != si_old.si_gen && !S_ISDIR(si.si_mode) &&
324 si_old.si_parent == dirent->fd_parent_ino) {
325 uint64_t parent = si_old.si_parent;
326 fits_info_t sip;
327 char *name = NULL;

329 ret = fits_get_info(f, parent, FITS_OLD, &sip,
330 FI_ATTR_MODE);
331 if (ret && ret != ENOENT)
332 return (ret);
333 if (ret == 0 && S_ISDIR(sip.si_mode)) {
334 uint64_t old_ino;

336 ret = fits_find_entry(f, parent, ino, FITS_OLD, &name);
337 if (ret)
338 return (ret);

340 ret = fits_lookup_entry(f, parent, name,
341 FITS_NEW, &old_ino);
342 if (ret && ret != ENOENT) {
343 fits_free_name(name);
344 return (ret);
345 }
346 if (ret == 0) {
347 ret = fits_dirent_add_file(f, dirent, ino,
348 si.si_mode, 0);
349 if (ret)
350 return (ret);
351 }
352 }
353 }

355 return (0);
356 }

358 static int
359 dirent_del(struct fits_enum *fe, fits_dirent_t *dirent,
360 uint64_t ino, uint64_t remains)
361 {
362 fits_info_t si;
363 int ret;

365 ret = fits_get_info(fe->fe_fits, ino, FITS_OLD, &si, FI_ATTR_MODE);
366 if (ret)
367 return (ret);

369 if (S_ISDIR(si.si_mode)) {
370 return (dirent_del_dir(fe, dirent, ino, remains));
371 } else {
372 return (dirent_del_file(fe, dirent, ino, remains));
373 }
374 }

376 static int
377 fits_dirent_del_pass2(void *fits_enump, char *name, uint64_t ino)
378 {
379 struct fits_enum *fe = fits_enump;
380 fits_dirent_t dirent = {
381 .fd_name = name,
382 .fd_parent_ino = fe->fe_parent_ino,
383 .fd_prev = fe->fe_dirent_chain,
384 };

386 return (dirent_del(fe, &dirent, ino, FITS_NO_INO));
387 }

new/usr/src/uts/common/fs/zfs/fits_pass2.c 7

389 static int
390 fits_dirent_mod_pass2(void *fits_enump, char *name,
391 uint64_t ino_old, uint64_t ino_new)
392 {
393 struct fits_enum *fe = fits_enump;
394 fits_dirent_t dirent = {
395 .fd_name = name,
396 .fd_parent_ino = fe->fe_parent_ino,
397 .fd_prev = fe->fe_dirent_chain,
398 };

400 return (dirent_del(fe, &dirent, ino_old, ino_new));
401 }

403 static int
404 fits_dirent_unmod_pass2(void *fits_enump, char *name, uint64_t ino)
405 {
406 struct fits_enum *fe = fits_enump;
407 fits_t *f = fe->fe_fits;
408 int ret;
409 uint64_t cnt;
410 fits_info_t si_old;
411 fits_info_t si_new;
412 fits_dirent_t dirent = {
413 .fd_name = name,
414 .fd_parent_ino = fe->fe_parent_ino,
415 .fd_prev = fe->fe_dirent_chain,
416 };

418 ret = fits_get_count(&f->f_link_add_cnt, ino, &cnt, NULL);
419 if (ret)
420 return (ret == ENOENT ? 0 : ret);

422 ret = fits_get_info(f, ino, FITS_OLD, &si_old, FI_ATTR_MODE);
423 if (ret)
424 return (ret);

426 if (S_ISDIR(si_old.si_mode)) {
427 return (dirent_del_dir(fe, &dirent, ino, 0));
428 }

430 ret = fits_get_info(f, ino, FITS_NEW, &si_new, FI_ATTR_MODE);
431 if (ret)
432 return (ret);
433 ret = fits_send_unlink(f, &dirent, ino);
434 if (ret)
435 return (ret);
436 if (S_ISDIR(si_new.si_mode)) {
437 fits_free_count(&f->f_link_add_cnt, ino);
438 ret = fits_send_rename_from_tempname(f, &dirent, ino, ino);
439 if (ret)
440 return (ret);
441 ret = fits_send_mtime_update(f, &dirent, ino);
442 } else {
443 ret = fits_dirent_add_file(f, &dirent, ino, si_new.si_mode, 0);
444 }

446 return (ret);
447 }

449 static int
450 fits_add_pass2(fits_t *f, uint64_t ino)
451 {
452 f->f_current_ino = ino;
453 f->f_current_path = NULL;

new/usr/src/uts/common/fs/zfs/fits_pass2.c 8

455 return (fits_send_mtime_update(f, NULL, ino));
456 }

458 static int
459 fits_dir_del_pass2(fits_t *f, uint64_t ino)
460 {
461 uint64_t put_back_cnt;
462 uint64_t del_dir_cnt;
463 uint64_t new_count;
464 int ret;

466 f->f_current_ino = ino;
467 f->f_current_path = NULL;

469 ret = enum_dir(f, ino, &put_back_cnt, &del_dir_cnt);
470 if (ret)
471 return (ret);

473 ret = fits_add_count(&f->f_del_dir_cnt, ino, del_dir_cnt,
474 0, &new_count, NULL);
475 if (ret)
476 return (ret);

478 if (put_back_cnt == 0) {
479 ret = dir_del(f, ino, new_count);
480 if (ret)
481 return (ret);
482 }

484 return (0);
485 }

487 static int
488 fits_mod_pass2(fits_t *f, uint64_t ino)
489 {
490 fits_info_t si_old;
491 fits_info_t si_new;
492 int ret;
493 uint64_t put_back_cnt = 0;

495 f->f_current_ino = ino;
496 f->f_current_path = NULL;

498 ret = fits_get_info(f, ino, FITS_NEW, &si_new, FI_ATTR_SIZE |
499 FI_ATTR_MODE | FI_ATTR_GEN | FI_ATTR_UID |
500 FI_ATTR_GID | FI_ATTR_SIZE);
501 if (ret)
502 return (ret);
503 ret = fits_get_info(f, ino, FITS_OLD, &si_old, FI_ATTR_GEN |
504 FI_ATTR_MODE | FI_ATTR_UID |
505 FI_ATTR_GID | FI_ATTR_SIZE);
506 if (ret)
507 return (ret);

509 if (!(S_ISDIR(si_old.si_mode) && S_ISDIR(si_new.si_mode)) &&
510 si_new.si_gen != si_old.si_gen) {
511 if (S_ISDIR(si_old.si_mode)) {
512 ret = fits_dir_del_pass2(f, ino);
513 if (ret)
514 return (ret);
515 }
516 return (fits_add_pass2(f, ino));
517 }

519 if (S_ISDIR(si_new.si_mode)) {
520 ret = enum_dir(f, ino, &put_back_cnt, NULL);

new/usr/src/uts/common/fs/zfs/fits_pass2.c 9

521 if (ret)
522 return (ret);
523 }

525 if (put_back_cnt)
526 return (0);

528 return (fits_send_mtime_update(f, NULL, ino));
529 }
530 #endif /* ! codereview */

new/usr/src/uts/common/fs/zfs/fits_send.c 1

**
 21228 Wed Oct 17 21:48:39 2012
new/usr/src/uts/common/fs/zfs/fits_send.c
FITS: generating send-streams in portable format
This commit adds the command ’zfs fits-send’, analogous to zfs send. The
generated send stream is compatible with the stream generated with that
from ’btrfs send’ and can in principle easily be received to any filesystem.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2012 STRATO AG. All rights reserved.
23 */
24 #include <sys/zfs_context.h>
25 #include <sys/stat.h>
26 #include <sys/mkdev.h>
27 #include <sys/errno.h>
28 #include <sys/types.h>
29 #include <sys/fits.h>
30 #include <sys/fits_impl.h>
31 #include <sys/fits_crc32c.h>

33 #define TEMPNAME_PREFIX "fits-tempname-"
34 /* 2^128 needs 39 digits in decimal */
35 #define TEMPNAME_SIZE (sizeof (TEMPNAME_PREFIX) + 39)

37 void
38 fits_send_init(fits_t *f)
39 {
40 f->f_alloc_len = FITS_SEND_BUF_SIZE;
41 f->f_buf = kmem_alloc(f->f_alloc_len, KM_SLEEP);
42 f->f_size = 0;
43 }

45 void
46 fits_send_fini(fits_t *f)
47 {
48 kmem_free(f->f_buf, f->f_alloc_len);
49 }

51 static int
52 fits_send_reserve(fits_t *f, void **buf, int len)
53 {
54 int res = f->f_alloc_len - f->f_size;
55 if (len > res)
56 return (-E2BIG);
57 *buf = f->f_buf + f->f_size;
58 f->f_size += len;

new/usr/src/uts/common/fs/zfs/fits_send.c 2

60 return (0);
61 }

63 static int
64 fits_send_put(fits_t *f, void *buf, int len)
65 {
66 int ret;
67 void *p;

69 ret = fits_send_reserve(f, &p, len);
70 if (ret)
71 return (ret);

73 memcpy(p, buf, len);

75 return (0);
76 }

78 static int
79 fits_send_put_attr(fits_t *f, uint16_t attr, void *buf, int len)
80 {
81 fits_attr_header_t hdr;
82 int ret;

84 LE_OUT16(&hdr.fa_type, attr);
85 LE_OUT16(&hdr.fa_len, len);

87 ret = fits_send_put(f, &hdr, sizeof (hdr));
88 if (ret)
89 return (ret);
90 return (fits_send_put(f, buf, len));
91 }

93 static int
94 fits_send_reserve_attr(fits_t *f, uint16_t attr, void **buf, int len)
95 {
96 fits_attr_header_t hdr;
97 int ret;

99 LE_OUT16(&hdr.fa_type, attr);
100 LE_OUT16(&hdr.fa_len, len);

102 ret = fits_send_put(f, &hdr, sizeof (hdr));
103 if (ret)
104 return (ret);
105 return (fits_send_reserve(f, buf, len));
106 }

108 static int
109 fits_send_put_u64(fits_t *f, uint16_t attr, uint64_t val)
110 {
111 uint64_t v;

113 LE_OUT64(&v, val);
114 return (fits_send_put_attr(f, attr, &v, sizeof (v)));
115 }

117 static int
118 fits_send_put_time(fits_t *f, uint16_t attr, fits_time_t *t)
119 {
120 char buf[12];

122 LE_OUT64(buf, t->st_sec);
123 LE_OUT32(buf + 8, t->st_nsec);

new/usr/src/uts/common/fs/zfs/fits_send.c 3

125 return (fits_send_put_attr(f, attr, buf, sizeof (buf)));
126 }

128 static int
129 fits_cmd_start(fits_t *f, uint16_t cmd)
130 {
131 fits_cmd_header_t ch;

133 memset(&ch, 0, sizeof (ch));
134 LE_OUT16(&ch.fc_cmd, cmd);
135 f->f_size = 0;
136 return (fits_send_put(f, &ch, sizeof (ch)));
137 }

139 static int
140 fits_cmd_send(fits_t *f)
141 {
142 fits_cmd_header_t *ch;
143 uint32_t crc;
144 int ret;

146 ch = (fits_cmd_header_t *)f->f_buf;
147 LE_OUT32(&ch->fc_len, f->f_size - sizeof (*ch));
148 ch->fc_crc = 0;

150 crc = fits_crc32c(0, f->f_buf, f->f_size);
151 LE_OUT32(&ch->fc_crc, crc);

153 ret = fits_write(f, f->f_buf, f->f_size);
154 f->f_size = 0;

156 return (ret);
157 }

159 static int
160 fits_send_stream_header(fits_t *f)
161 {
162 fits_stream_header_t header;

164 strcpy(header.fs_magic, FITS_SEND_STREAM_MAGIC);
165 LE_OUT32(&header.fs_version, FITS_SEND_STREAM_VERSION);

167 return (fits_write(f, (uint8_t *)&header, sizeof (header)));
168 }

170 static void
171 tempname(uint64_t ino, char *buf, int maxlen)
172 {
173 int l = sizeof (TEMPNAME_PREFIX) - 1;
174 memcpy(buf, TEMPNAME_PREFIX, MIN(maxlen, l));
175 snprintf(buf + l, maxlen - l, "%llu", (long long)ino);
176 }

178 static void
179 path_add_name(fits_path_t **fp, char *name, int namelen)
180 {
181 fits_path_t *new;

183 new = kmem_alloc(sizeof (*new) + namelen + 1, KM_SLEEP);
184 new->fp_next = *fp;
185 new->fp_len = namelen + 1;
186 new->fp_total_len = namelen + 1;
187 if (*fp)
188 new->fp_total_len += (*fp)->fp_total_len;
189 memcpy(new->fp_buf, name, namelen);
190 new->fp_buf[namelen] = ’\0’;

new/usr/src/uts/common/fs/zfs/fits_send.c 4

191 *fp = new;
192 }

194 static void
195 path_copy(fits_path_t *fp, char *b)
196 {
197 fits_path_t *cur;

199 for (cur = fp; cur; cur = cur->fp_next) {
200 *b = ’/’;
201 memcpy(b + 1, cur->fp_buf, cur->fp_len - 1);
202 b += cur->fp_len;
203 }
204 }

206 static void
207 path2buf(fits_path_t *fp, char **buf, int *buf_len)
208 {
209 char *b;

211 *buf_len = fp->fp_total_len + 1; /* one for the trailing 0-byte */
212 *buf = b = kmem_alloc(*buf_len, KM_SLEEP);

214 path_copy(fp, b);

216 b[*buf_len - 1] = ’\0’;
217 }

219 static int
220 put_path(fits_t *f, uint16_t attr, fits_path_t *fp)
221 {
222 int ret;
223 void *p;

225 ret = fits_send_reserve_attr(f, attr, &p, fp->fp_total_len);
226 if (ret)
227 return (ret);
228 path_copy(fp, p);

230 return (0);
231 }

233 void
234 fits_path_free(fits_path_t *fp)
235 {
236 fits_path_t *next;
237 while (fp) {
238 next = fp->fp_next;
239 kmem_free(fp, fp->fp_len + sizeof (*fp));
240 fp = next;
241 }
242 }

244 static int
245 is_ino_run(fits_t *f, uint64_t ino)
246 {
247 int ret;
248 fits_info_t si;

250 while (1) {
251 if (ino > f->f_current_ino)
252 return (0);
253 ret = fits_get_info(f, ino, FITS_OLD, &si, 0);
254 if (ret && ret != ENOENT)
255 return (ret);
256 if (ret != ENOENT)

new/usr/src/uts/common/fs/zfs/fits_send.c 5

257 break;
258 ret = fits_get_info(f, ino, FITS_NEW, &si, FI_ATTR_PARENT);
259 if (ret && ret != ENOENT)
260 return (ret);
261 if (ret)
262 return (0); /* ignore for now */
263 ino = si.si_parent;
264 }
265 return (1);
266 }

268 static int
269 build_path(fits_t *f, fits_dirent_t *dirent, uint64_t ino,
270 int devise_tempname, fits_which_t which_in, fits_path_t **fp)
271 {
272 int ret = 0;
273 fits_dirent_t *de;
274 fits_info_t si;
275 fits_which_t which;
276 fits_dirent_t temp_dirent;
277 char temp_buf[TEMPNAME_SIZE];

279 if (devise_tempname) {
280 if (!dirent)
281 return (EINVAL);
282 temp_dirent = *dirent;
283 tempname(ino, temp_buf, sizeof (temp_buf));
284 temp_dirent.fd_name = temp_buf;
285 dirent = &temp_dirent;
286 }

288 *fp = NULL;

290 for (de = dirent; de; de = de->fd_prev) {
291 path_add_name(fp, de->fd_name, strlen(de->fd_name));
292 ino = de->fd_parent_ino;
293 }

295 /*
296 * XXX TODO check if f->f_current_path is set. if yes, use it instead.
297 * otherwise save result of loop below to f_current_path
298 */
299 while (1) {
300 int namebuflen;
301 char *name;
302 char *t_name;
303 uint64_t old_parent;
304 uint64_t new_parent;
305 uint64_t old_gen = 0;
306 uint64_t new_gen = 0;
307 uint64_t parent;
308 int check_tempname;
309 uint64_t old_mode = 0;

311 old_parent = 0;
312 new_parent = 0;
313 check_tempname = 0;
314 ret = fits_get_info(f, ino, FITS_OLD, &si, FI_ATTR_PARENT |
315 FI_ATTR_GEN | FI_ATTR_MODE);
316 if (ret && ret != ENOENT)
317 return (ret);
318 if (ret == 0) {
319 old_parent = si.si_parent;
320 old_gen = si.si_gen;
321 old_mode = si.si_mode;
322 }

new/usr/src/uts/common/fs/zfs/fits_send.c 6

323 ret = fits_get_info(f, ino, FITS_NEW, &si, FI_ATTR_PARENT |
324 FI_ATTR_GEN | FI_ATTR_MODE);
325 if (ret && ret != ENOENT)
326 return (ret);
327 if (ret == 0) {
328 new_parent = si.si_parent;
329 new_gen = si.si_gen;
330 }
331 if (old_parent && new_parent && old_gen != new_gen &&
332 !(S_ISDIR(old_mode) && S_ISDIR(si.si_mode))) {
333 if (which_in == FITS_OLD) {
334 new_parent = 0;
335 } else if (which_in == FITS_NEW) {
336 old_parent = 0;
337 if (S_ISDIR(si.si_mode))
338 check_tempname = 1;
339 }
340 }

342 if (f->f_pass == PASS_LINK) {
343 if (old_parent && !new_parent) {
344 which = FITS_OLD;
345 } else if (!old_parent && new_parent) {
346 which = FITS_NEW;
347 } else if (is_ino_run(f, new_parent)) {
348 check_tempname = 1;
349 which = FITS_NEW;
350 } else {
351 which = FITS_OLD;
352 }
353 } else {
354 if (old_parent && !new_parent) {
355 which = FITS_OLD;
356 } else {
357 check_tempname = 1;
358 which = FITS_NEW;
359 }
360 }
361 if (which == FITS_OLD)
362 parent = old_parent;
363 else
364 parent = new_parent;
365 if (parent == ino)
366 break;
367 ret = fits_find_entry(f, parent, ino, which, &t_name);
368 if (ret)
369 return (ret);
370 name = strdup(t_name);
371 fits_free_name(t_name);
372 namebuflen = strlen(name) + 1;
373 if (check_tempname) {
374 fits_info_t si_old;
375 fits_info_t si_new;

377 ret = fits_get_info(f, parent, FITS_OLD,
378 &si_old, FI_ATTR_GEN);
379 if (ret && ret != ENOENT)
380 return (ret);
381 if (ret == 0) {
382 ret = fits_get_info(f, parent, FITS_NEW,
383 &si_new, FI_ATTR_GEN);
384 if (ret)
385 return (ret);
386 if (si_old.si_gen != si_new.si_gen)
387 check_tempname = 0;
388 } else {

new/usr/src/uts/common/fs/zfs/fits_send.c 7

389 check_tempname = 0;
390 }
391 }
392 if (check_tempname) {
393 uint64_t old_ino;

395 ret = fits_lookup_entry(f, parent, name,
396 FITS_OLD, &old_ino);
397 if (ret && ret != ENOENT) {
398 fits_free_name(name);
399 return (ret);
400 }
401 if ((ret == 0 && old_ino != ino) ||
402 (ret == 0 && S_ISDIR(si.si_mode) &&
403 !S_ISDIR(old_mode) && old_ino == ino)) {
404 int ret;
405 uint64_t cnt = 1;

407 if (f->f_pass == PASS_UNLINK &&
408 new_parent < f->f_current_ino) {
409 ret = fits_get_count(&f->f_put_back_cnt,
410 old_ino, &cnt, NULL);
411 if (ret && ret != ENOENT)
412 return (ret);
413 }
414 if (cnt) {
415 kmem_free(name, namebuflen);
416 namebuflen = TEMPNAME_SIZE;
417 name = kmem_alloc(namebuflen, KM_SLEEP);
418 tempname(ino, name, namebuflen);
419 }
420 }
421 }
422 ino = parent;
423 path_add_name(fp, name, strlen(name));
424 kmem_free(name, namebuflen);
425 }
426 if (*fp == NULL)
427 path_add_name(fp, "", 0);

429 return (0);
430 }

432 int
433 fits_send_start(fits_t *f)
434 {
435 int ret;
436 uint8_t o_uuid[16];
437 uint8_t n_uuid[16];
438 uint64_t o_ctrans;
439 uint64_t n_ctrans;
440 char *path = NULL;
441 int len;
442 char *p;
443 int cmd = FITS_CMD_SUBVOL;

445 ret = fits_send_stream_header(f);
446 if (ret) {
447 fits_abort(f);
448 return (ret);
449 }

451 if ((ret = fits_get_uuid(f, FITS_NEW, n_uuid)) ||
452 (ret = fits_get_ctransid(f, FITS_NEW, &n_ctrans)) ||
453 (ret = fits_get_snapname(f, FITS_NEW, &path, &len)))
454 goto out;

new/usr/src/uts/common/fs/zfs/fits_send.c 8

455 /* for now, strip the pool name */
456 if ((p = strchr(path, ’/’)))
457 ++p;
458 else
459 p = path;
460 ret = fits_get_uuid(f, FITS_OLD, o_uuid);
461 if (ret && ret != ENOENT)
462 goto out;
463 if (ret == 0) {
464 ret = fits_get_ctransid(f, FITS_OLD, &o_ctrans);
465 if (ret)
466 goto out;
467 cmd = FITS_CMD_SNAPSHOT;
468 }
469 if ((ret = fits_cmd_start(f, cmd)) ||
470 (ret = fits_send_put_attr(f, FITS_ATTR_PATH, p, strlen(p))) ||
471 (ret = fits_send_put_u64(f, FITS_ATTR_CTRANSID, n_ctrans)) ||
472 (ret = fits_send_put_attr(f, FITS_ATTR_UUID, n_uuid, 16)))
473 goto out;
474 if (cmd == FITS_CMD_SNAPSHOT) {
475 if ((ret = fits_send_put_u64(f, FITS_ATTR_CLONE_CTRANSID,
476 o_ctrans)) ||
477 (ret = fits_send_put_attr(f, FITS_ATTR_CLONE_UUID,
478 o_uuid, 16)))
479 goto out;
480 }
481 ret = fits_cmd_send(f);

483 out:
484 kmem_free(path, len);

486 return (ret);
487 }

489 int
490 fits_send_create_file(fits_t *f, fits_dirent_t *dirent, uint64_t ino,
491 int devise_tempname, fits_path_t **path_ret)
492 {
493 fits_path_t *path = NULL;
494 fits_info_t si;
495 int ret;
496 int send_rdev = 0;
497 int cmd;
498 uint64_t rdev = 0;
499 char *symlink = NULL;
500 int symlen = 0;

502 ret = build_path(f, dirent, ino, devise_tempname, FITS_NEW, &path);
503 if (ret)
504 goto out;

506 ret = fits_get_info(f, ino, FITS_NEW, &si,
507 FI_ATTR_MODE | FI_ATTR_UID | FI_ATTR_GID);
508 if (ret)
509 goto out;

511 if (S_ISREG(si.si_mode)) {
512 cmd = FITS_CMD_MKFILE;
513 } else if (S_ISDIR(si.si_mode)) {
514 cmd = FITS_CMD_MKDIR;
515 } else if (S_ISLNK(si.si_mode)) {
516 cmd = FITS_CMD_SYMLINK;
517 ret = fits_read_symlink(f, ino, FITS_NEW, &symlink, &symlen);
518 if (ret)
519 goto out;
520 } else if (S_ISCHR(si.si_mode) || S_ISBLK(si.si_mode)) {

new/usr/src/uts/common/fs/zfs/fits_send.c 9

521 cmd = FITS_CMD_MKNOD;
522 send_rdev = 1;
523 } else if (S_ISFIFO(si.si_mode)) {
524 cmd = FITS_CMD_MKFIFO;
525 } else if (S_ISSOCK(si.si_mode)) {
526 cmd = FITS_CMD_MKSOCK;
527 } else {
528 /* unknown file type, ignore for now */
529 printf("!send_create_file: ignore file with mode 0%lo\n",
530 (unsigned long)si.si_mode);
531 return (0);
532 }

534 if (send_rdev) {
535 fits_info_t sirdev;
536 uint64_t r_major;
537 uint64_t r_minor;
538 ret = fits_get_info(f, ino, FITS_NEW, &sirdev, FI_ATTR_RDEV);
539 if (ret)
540 goto out;
541 rdev = sirdev.si_rdev;

543 /* XXX hardcodedly transform rdev to linux form */
544 r_major = rdev >> 32;
545 r_minor = rdev & 0xffffffful;
546 rdev = ((r_minor & 0xff) | ((r_major & 0xfff) << 8) |
547 ((r_minor >> 8) << 20) | ((r_major >> 12) << 44));
548 }
549 /* send MKFILE */
550 if ((ret = fits_cmd_start(f, cmd)) ||
551 (ret = put_path(f, FITS_ATTR_PATH, path)) ||
552 (ret = fits_send_put_u64(f, FITS_ATTR_INO, ino)))
553 goto out;
554 if (send_rdev) {
555 ret = fits_send_put_u64(f, FITS_ATTR_RDEV, rdev);
556 if (ret)
557 goto out;
558 ret = fits_send_put_u64(f, FITS_ATTR_MODE, si.si_mode);
559 if (ret)
560 goto out;
561 }
562 if (S_ISLNK(si.si_mode)) {
563 ret = fits_send_put_attr(f, FITS_ATTR_PATH_LINK,
564 symlink, strlen(symlink));
565 if (ret)
566 goto out;
567 }
568 if ((ret = fits_cmd_send(f)))
569 goto out;

571 /* send CHOWN */
572 if ((ret = fits_cmd_start(f, FITS_CMD_CHOWN)) ||
573 (ret = put_path(f, FITS_ATTR_PATH, path)) ||
574 (ret = fits_send_put_u64(f, FITS_ATTR_UID, si.si_uid)) ||
575 (ret = fits_send_put_u64(f, FITS_ATTR_GID, si.si_gid)) ||
576 (ret = fits_cmd_send(f)))
577 goto out;

579 /* send CHMOD */
580 if ((ret = fits_cmd_start(f, FITS_CMD_CHMOD)) ||
581 (ret = put_path(f, FITS_ATTR_PATH, path)) ||
582 (ret = fits_send_put_u64(f, FITS_ATTR_MODE,
583 si.si_mode & 0xfff)) ||
584 (ret = fits_cmd_send(f)))
585 goto out;

new/usr/src/uts/common/fs/zfs/fits_send.c 10

587 out:
588 if (ret == 0 && path_ret)
589 *path_ret = path;
590 else
591 fits_path_free(path);
592 if (symlink)
593 kmem_free(symlink, symlen);
594 return (ret);
595 }

597 int
598 fits_send_link(fits_t *f, fits_dirent_t *new_dirent, uint64_t ino,
599 uint64_t old_parent_ino, fits_which_t which, int devise_tempname)
600 {
601 fits_path_t *new_path = NULL;
602 fits_path_t *old_path = NULL;
603 int ret;
604 fits_dirent_t old_dirent = {
605 .fd_name = NULL,
606 .fd_parent_ino = old_parent_ino,
607 .fd_prev = NULL,
608 };

610 ret = fits_find_entry(f, old_parent_ino, ino, which,
611 &old_dirent.fd_name);
612 if (ret)
613 return (ret);
614 ret = build_path(f, &old_dirent, ino, 0, FITS_OLD, &old_path);
615 if (ret)
616 goto out;

618 ret = build_path(f, new_dirent, ino, devise_tempname, FITS_NEW,
619 &new_path);
620 if (ret)
621 goto out;

623 if ((ret = fits_cmd_start(f, FITS_CMD_LINK)) ||
624 (ret = put_path(f, FITS_ATTR_PATH_LINK, old_path)) ||
625 (ret = put_path(f, FITS_ATTR_PATH, new_path)) ||
626 (ret = fits_cmd_send(f)))
627 goto out;

629 if (f->f_pass == PASS_UNLINK)
630 ret = fits_send_mtime_update(f, new_dirent, ino);
631 out:
632 if (old_dirent.fd_name)
633 kmem_free(old_dirent.fd_name, strlen(old_dirent.fd_name) + 1);
634 fits_path_free(old_path);
635 fits_path_free(new_path);
636 return (ret);
637 }

639 int
640 fits_send_mkdir(fits_t *f, fits_dirent_t *dirent,
641 uint64_t ino, int devise_tempname)
642 {
643 fits_path_t *path = NULL;
644 fits_info_t si;
645 int ret;

647 ret = build_path(f, dirent, ino, devise_tempname, FITS_NEW, &path);
648 if (ret)
649 goto out;

651 ret = fits_get_info(f, ino, FITS_NEW, &si,
652 FI_ATTR_UID | FI_ATTR_GID | FI_ATTR_MODE);

new/usr/src/uts/common/fs/zfs/fits_send.c 11

653 if (ret)
654 goto out;

656 if (path->fp_total_len != 1) {
657 /* don’t send an mkdir for the root, but send chown/chmod */
658 if ((ret = fits_cmd_start(f, FITS_CMD_MKDIR)) ||
659 (ret = put_path(f, FITS_ATTR_PATH, path)) ||
660 (ret = fits_send_put_u64(f, FITS_ATTR_INO, ino)) ||
661 (ret = fits_cmd_send(f)))
662 goto out;
663 }

665 /* send CHOWN */
666 if ((ret = fits_cmd_start(f, FITS_CMD_CHOWN)) ||
667 (ret = put_path(f, FITS_ATTR_PATH, path)) ||
668 (ret = fits_send_put_u64(f, FITS_ATTR_UID, si.si_uid)) ||
669 (ret = fits_send_put_u64(f, FITS_ATTR_GID, si.si_gid)) ||
670 (ret = fits_cmd_send(f)))
671 goto out;

673 /* send CHMOD */
674 if ((ret = fits_cmd_start(f, FITS_CMD_CHMOD)) ||
675 (ret = put_path(f, FITS_ATTR_PATH, path)) ||
676 (ret = fits_send_put_u64(f, FITS_ATTR_MODE,
677 si.si_mode & 0xfff)) ||
678 (ret = fits_cmd_send(f)))
679 goto out;

681 out:
682 fits_path_free(path);
683 return (ret);
684 }

686 /* this one is only used for directory renames */
687 int
688 fits_send_rename(fits_t *f, fits_dirent_t *new_dirent, uint64_t ino,
689 uint64_t old_parent_ino, int devise_tempname)
690 {
691 fits_path_t *new_path = NULL;
692 fits_path_t *old_path = NULL;
693 int ret;
694 fits_dirent_t old_dirent = {
695 .fd_name = NULL,
696 .fd_parent_ino = old_parent_ino,
697 .fd_prev = NULL,
698 };

700 ret = fits_find_entry(f, old_parent_ino, ino, FITS_OLD,
701 &old_dirent.fd_name);
702 if (ret)
703 return (ret);
704 ret = build_path(f, &old_dirent, ino, 0, FITS_OLD, &old_path);
705 if (ret)
706 goto out;

708 ret = build_path(f, new_dirent, ino, devise_tempname, FITS_NEW,
709 &new_path);
710 if (ret)
711 goto out;

713 if ((ret = fits_cmd_start(f, FITS_CMD_RENAME)) ||
714 (ret = put_path(f, FITS_ATTR_PATH, old_path)) ||
715 (ret = put_path(f, FITS_ATTR_PATH_TO, new_path)) ||
716 (ret = fits_cmd_send(f)))
717 goto out;
718 out:

new/usr/src/uts/common/fs/zfs/fits_send.c 12

719 fits_path_free(old_path);
720 fits_path_free(new_path);
721 return (ret);
722 }

724 int
725 fits_send_rename_from_tempname(fits_t *f, fits_dirent_t *dirent,
726 uint64_t ino, uint64_t old)
727 {
728 char buf[TEMPNAME_SIZE];
729 fits_path_t *new_path = NULL;
730 fits_path_t *old_path = NULL;
731 int ret;
732 fits_dirent_t old_dirent;

734 tempname(old, buf, sizeof (buf));
735 old_dirent = *dirent;
736 old_dirent.fd_name = buf;

738 ret = build_path(f, &old_dirent, old, 0, FITS_OLD, &old_path);
739 if (ret)
740 goto out;
741 ret = build_path(f, dirent, ino, 0, FITS_NEW, &new_path);
742 if (ret)
743 goto out;

745 if ((ret = fits_cmd_start(f, FITS_CMD_RENAME)) ||
746 (ret = put_path(f, FITS_ATTR_PATH, old_path)) ||
747 (ret = put_path(f, FITS_ATTR_PATH_TO, new_path)) ||
748 (ret = fits_cmd_send(f)))
749 goto out;

751 ret = fits_send_mtime_update(f, dirent, old);

753 out:
754 fits_path_free(old_path);
755 fits_path_free(new_path);
756 return (ret);
757 }

759 int
760 fits_send_unlink(fits_t *f, fits_dirent_t *dirent, uint64_t ino)
761 {
762 fits_path_t *path = NULL;
763 int ret;

765 ret = build_path(f, dirent, ino, 0, FITS_OLD, &path);
766 if (ret)
767 goto out;

769 if ((ret = fits_cmd_start(f, FITS_CMD_UNLINK)) ||
770 (ret = put_path(f, FITS_ATTR_PATH, path)) ||
771 (ret = fits_cmd_send(f)))
772 goto out;

774 out:
775 fits_path_free(path);
776 return (ret);
777 }

779 int
780 fits_send_rmdir(fits_t *f, fits_dirent_t *dirent, uint64_t ino)
781 {
782 fits_path_t *path;
783 int ret;

new/usr/src/uts/common/fs/zfs/fits_send.c 13

785 ret = build_path(f, dirent, ino, 0, FITS_OLD, &path);
786 if (ret)
787 goto out;

789 if ((ret = fits_cmd_start(f, FITS_CMD_RMDIR)) ||
790 (ret = put_path(f, FITS_ATTR_PATH, path)) ||
791 (ret = fits_cmd_send(f)))
792 goto out;

794 out:
795 fits_path_free(path);
796 return (ret);
797 }

799 int
800 fits_send_file_data(fits_t *f, fits_path_t **path_p,
801 fits_dirent_t *dirent, uint64_t ino,
802 uint64_t off, uint64_t len, void *data)
803 {
804 int ret = 0;

806 if (!*path_p) {
807 ret = build_path(f, dirent, ino, 0, FITS_NEW, path_p);
808 if (ret)
809 return (ret);
810 }

812 while (len) {
813 uint64_t l = MIN(len, FITS_SEND_READ_SIZE);

815 if ((ret = fits_cmd_start(f, FITS_CMD_WRITE)) ||
816 (ret = put_path(f, FITS_ATTR_PATH, *path_p)) ||
817 (ret = fits_send_put_u64(f, FITS_ATTR_FILE_OFFSET, off))||
818 (ret = fits_send_put_attr(f, FITS_ATTR_DATA, data, l)) ||
819 (ret = fits_cmd_send(f)))
820 goto out;
821 data += l;
822 off += l;
823 len -= l;
824 }

826 out:
827 return (ret);
828 }

830 int
831 fits_send_mtime_update(fits_t *f, fits_dirent_t *dirent, uint64_t ino)
832 {
833 fits_path_t *path = NULL;
834 int ret;
835 fits_info_t si;

837 ret = fits_get_info(f, ino, FITS_NEW, &si,
838 FI_ATTR_ATIME | FI_ATTR_MTIME |
839 FI_ATTR_CTIME | FI_ATTR_OTIME);
840 if (ret) {
841 if (ret == ENOENT)
842 ret = 0;
843 goto out;
844 }

846 ret = build_path(f, dirent, ino, 0, FITS_NEW, &path);
847 if (ret)
848 goto out;

850 if ((ret = fits_cmd_start(f, FITS_CMD_UTIMES)) ||

new/usr/src/uts/common/fs/zfs/fits_send.c 14

851 (ret = put_path(f, FITS_ATTR_PATH, path)) ||
852 (ret = fits_send_put_time(f, FITS_ATTR_ATIME, &si.si_atime)) ||
853 (ret = fits_send_put_time(f, FITS_ATTR_MTIME, &si.si_mtime)) ||
854 (ret = fits_send_put_time(f, FITS_ATTR_CTIME, &si.si_ctime)) ||
855 (ret = fits_send_put_time(f, FITS_ATTR_OTIME, &si.si_otime)) ||
856 (ret = fits_cmd_send(f)))
857 goto out;

859 out:
860 fits_path_free(path);
861 return (ret);
862 }

864 int
865 fits_send_truncate(fits_t *f, fits_dirent_t *dirent, uint64_t ino,
866 uint64_t new_size)
867 {
868 fits_path_t *path = NULL;
869 int ret;

871 ret = build_path(f, dirent, ino, 0, FITS_NEW, &path);
872 if (ret)
873 return (ret);

875 if ((ret = fits_cmd_start(f, FITS_CMD_TRUNCATE)) ||
876 (ret = put_path(f, FITS_ATTR_PATH, path)) ||
877 (ret = fits_send_put_u64(f, FITS_ATTR_SIZE, new_size)) ||
878 (ret = fits_cmd_send(f)))
879 goto out;

881 out:
882 fits_path_free(path);
883 return (ret);
884 }

886 int
887 fits_send_chown(fits_t *f, fits_dirent_t *dirent, uint64_t ino,
888 uint64_t new_uid, uint64_t new_gid)
889 {
890 fits_path_t *path = NULL;
891 int ret;

893 ret = build_path(f, dirent, ino, 0, FITS_NEW, &path);
894 if (ret)
895 return (ret);

897 if ((ret = fits_cmd_start(f, FITS_CMD_CHOWN)) ||
898 (ret = put_path(f, FITS_ATTR_PATH, path)) ||
899 (ret = fits_send_put_u64(f, FITS_ATTR_UID, new_uid)) ||
900 (ret = fits_send_put_u64(f, FITS_ATTR_GID, new_gid)) ||
901 (ret = fits_cmd_send(f)))
902 goto out;

904 out:
905 fits_path_free(path);
906 return (ret);
907 }

909 int
910 fits_send_chmod(fits_t *f, fits_dirent_t *dirent, uint64_t ino,
911 uint64_t new_mode)
912 {
913 fits_path_t *path = NULL;
914 int ret;

916 ret = build_path(f, dirent, ino, 0, FITS_NEW, &path);

new/usr/src/uts/common/fs/zfs/fits_send.c 15

917 if (ret)
918 return (ret);

920 if ((ret = fits_cmd_start(f, FITS_CMD_CHMOD)) ||
921 (ret = put_path(f, FITS_ATTR_PATH, path)) ||
922 (ret = fits_send_put_u64(f, FITS_ATTR_MODE, new_mode)) ||
923 (ret = fits_cmd_send(f)))
924 goto out;

926 out:
927 fits_path_free(path);
928 return (ret);
929 }

931 int
932 fits_send_end(fits_t *f)
933 {
934 int ret;

936 if ((ret = fits_cmd_start(f, FITS_CMD_END)) ||
937 (ret = fits_cmd_send(f)))
938 goto out;

940 out:
941 return (ret);
942 }
943 #endif /* ! codereview */

new/usr/src/uts/common/fs/zfs/sys/dsl_dataset.h 1

**
 10469 Wed Oct 17 21:48:39 2012
new/usr/src/uts/common/fs/zfs/sys/dsl_dataset.h
FITS: generating send-streams in portable format
This commit adds the command ’zfs fits-send’, analogous to zfs send. The
generated send stream is compatible with the stream generated with that
from ’btrfs send’ and can in principle easily be received to any filesystem.
**
______unchanged_portion_omitted_

191 #define dsl_dataset_is_snapshot(ds) \
192 ((ds)->ds_phys->ds_num_children != 0)

194 #define DS_UNIQUE_IS_ACCURATE(ds) \
195 (((ds)->ds_phys->ds_flags & DS_FLAG_UNIQUE_ACCURATE) != 0)

197 int dsl_dataset_hold(const char *name, void *tag, dsl_dataset_t **dsp);
198 int dsl_dataset_hold_obj(struct dsl_pool *dp, uint64_t dsobj,
199 void *tag, dsl_dataset_t **);
200 int dsl_dataset_own(const char *name, boolean_t inconsistentok,
201 void *tag, dsl_dataset_t **dsp);
202 int dsl_dataset_own_obj(struct dsl_pool *dp, uint64_t dsobj,
203 boolean_t inconsistentok, void *tag, dsl_dataset_t **dsp);
204 void dsl_dataset_name(dsl_dataset_t *ds, char *name);
205 int dsl_dataset_namelen(dsl_dataset_t *ds);
206 #endif /* ! codereview */
207 void dsl_dataset_rele(dsl_dataset_t *ds, void *tag);
208 void dsl_dataset_disown(dsl_dataset_t *ds, void *tag);
209 void dsl_dataset_drop_ref(dsl_dataset_t *ds, void *tag);
210 boolean_t dsl_dataset_tryown(dsl_dataset_t *ds, boolean_t inconsistentok,
211 void *tag);
212 void dsl_dataset_make_exclusive(dsl_dataset_t *ds, void *tag);
213 void dsl_register_onexit_hold_cleanup(dsl_dataset_t *ds, const char *htag,
214 minor_t minor);
215 uint64_t dsl_dataset_create_sync(dsl_dir_t *pds, const char *lastname,
216 dsl_dataset_t *origin, uint64_t flags, cred_t *, dmu_tx_t *);
217 uint64_t dsl_dataset_create_sync_dd(dsl_dir_t *dd, dsl_dataset_t *origin,
218 uint64_t flags, dmu_tx_t *tx);
219 int dsl_dataset_destroy(dsl_dataset_t *ds, void *tag, boolean_t defer);
220 dsl_checkfunc_t dsl_dataset_destroy_check;
221 dsl_syncfunc_t dsl_dataset_destroy_sync;
222 dsl_syncfunc_t dsl_dataset_user_hold_sync;
223 int dsl_dataset_snapshot_check(dsl_dataset_t *ds, const char *, dmu_tx_t *tx);
224 void dsl_dataset_snapshot_sync(dsl_dataset_t *ds, const char *, dmu_tx_t *tx);
225 int dsl_dataset_rename(char *name, const char *newname, boolean_t recursive);
226 int dsl_dataset_promote(const char *name, char *conflsnap);
227 int dsl_dataset_clone_swap(dsl_dataset_t *clone, dsl_dataset_t *origin_head,
228 boolean_t force);
229 int dsl_dataset_user_hold(char *dsname, char *snapname, char *htag,
230 boolean_t recursive, boolean_t temphold, int cleanup_fd);
231 int dsl_dataset_user_hold_for_send(dsl_dataset_t *ds, char *htag,
232 boolean_t temphold);
233 int dsl_dataset_user_release(char *dsname, char *snapname, char *htag,
234 boolean_t recursive);
235 int dsl_dataset_user_release_tmp(struct dsl_pool *dp, uint64_t dsobj,
236 char *htag, boolean_t retry);
237 int dsl_dataset_get_holds(const char *dsname, nvlist_t **nvp);

239 blkptr_t *dsl_dataset_get_blkptr(dsl_dataset_t *ds);
240 void dsl_dataset_set_blkptr(dsl_dataset_t *ds, blkptr_t *bp, dmu_tx_t *tx);

242 spa_t *dsl_dataset_get_spa(dsl_dataset_t *ds);

244 boolean_t dsl_dataset_modified_since_lastsnap(dsl_dataset_t *ds);

246 void dsl_dataset_sync(dsl_dataset_t *os, zio_t *zio, dmu_tx_t *tx);

new/usr/src/uts/common/fs/zfs/sys/dsl_dataset.h 2

248 void dsl_dataset_block_born(dsl_dataset_t *ds, const blkptr_t *bp,
249 dmu_tx_t *tx);
250 int dsl_dataset_block_kill(dsl_dataset_t *ds, const blkptr_t *bp,
251 dmu_tx_t *tx, boolean_t async);
252 boolean_t dsl_dataset_block_freeable(dsl_dataset_t *ds, const blkptr_t *bp,
253 uint64_t blk_birth);
254 uint64_t dsl_dataset_prev_snap_txg(dsl_dataset_t *ds);

256 void dsl_dataset_dirty(dsl_dataset_t *ds, dmu_tx_t *tx);
257 void dsl_dataset_stats(dsl_dataset_t *os, nvlist_t *nv);
258 void dsl_dataset_fast_stat(dsl_dataset_t *ds, dmu_objset_stats_t *stat);
259 void dsl_dataset_space(dsl_dataset_t *ds,
260 uint64_t *refdbytesp, uint64_t *availbytesp,
261 uint64_t *usedobjsp, uint64_t *availobjsp);
262 uint64_t dsl_dataset_fsid_guid(dsl_dataset_t *ds);
263 int dsl_dataset_space_written(dsl_dataset_t *oldsnap, dsl_dataset_t *new,
264 uint64_t *usedp, uint64_t *compp, uint64_t *uncompp);
265 int dsl_dataset_space_wouldfree(dsl_dataset_t *firstsnap, dsl_dataset_t *last,
266 uint64_t *usedp, uint64_t *compp, uint64_t *uncompp);
267 boolean_t dsl_dataset_is_dirty(dsl_dataset_t *ds);

269 int dsl_dsobj_to_dsname(char *pname, uint64_t obj, char *buf);

271 int dsl_dataset_check_quota(dsl_dataset_t *ds, boolean_t check_quota,
272 uint64_t asize, uint64_t inflight, uint64_t *used,
273 uint64_t *ref_rsrv);
274 int dsl_dataset_set_quota(const char *dsname, zprop_source_t source,
275 uint64_t quota);
276 dsl_syncfunc_t dsl_dataset_set_quota_sync;
277 int dsl_dataset_set_reservation(const char *dsname, zprop_source_t source,
278 uint64_t reservation);

280 int dsl_destroy_inconsistent(const char *dsname, void *arg);

282 #ifdef ZFS_DEBUG
283 #define dprintf_ds(ds, fmt, ...) do { \
284 if (zfs_flags & ZFS_DEBUG_DPRINTF) { \
285 char *__ds_name = kmem_alloc(MAXNAMELEN, KM_SLEEP); \
286 dsl_dataset_name(ds, __ds_name); \
287 dprintf("ds=%s " fmt, __ds_name, __VA_ARGS__); \
288 kmem_free(__ds_name, MAXNAMELEN); \
289 } \
290 _NOTE(CONSTCOND) } while (0)
291 #else
292 #define dprintf_ds(dd, fmt, ...)
293 #endif

295 #ifdef __cplusplus
296 }
297 #endif

299 #endif /* _SYS_DSL_DATASET_H */

new/usr/src/uts/common/fs/zfs/sys/fits.h 1

**
 3383 Wed Oct 17 21:48:39 2012
new/usr/src/uts/common/fs/zfs/sys/fits.h
FITS: generating send-streams in portable format
This commit adds the command ’zfs fits-send’, analogous to zfs send. The
generated send stream is compatible with the stream generated with that
from ’btrfs send’ and can in principle easily be received to any filesystem.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2012 Alexander Block. All rights reserved.
24 * Copyright (c) 2012 STRATO AG. All rights reserved.
25 */

27 #ifndef _SYS_FITS_H
28 #define _SYS_FITS_H

30 #include <sys/inttypes.h>
31 #include <sys/types.h>
32 #include <sys/dmu.h>
33 #include <sys/vnode.h>

35 #ifdef __cplusplus
36 extern "C" {
37 #endif

39 #define FITS_SEND_STREAM_MAGIC "btrfs-stream"
40 #define FITS_SEND_STREAM_VERSION 1

42 #define FITS_SEND_BUF_SIZE 65536
43 #define FITS_SEND_READ_SIZE 49152

45 typedef struct _fits_stream_header {
46 char fs_magic[sizeof (FITS_SEND_STREAM_MAGIC)];
47 uint32_t fs_version;
48 } __attribute__((__packed__)) fits_stream_header_t;

50 typedef struct _fits_cmd_header {
51 /* len of the payload, not including header */
52 uint32_t fc_len;
53 uint16_t fc_cmd;
54 /* the crc includes the header, but with fc_crc assumed as 0 */
55 uint32_t fc_crc;
56 } __attribute__((__packed__)) fits_cmd_header_t;

58 typedef struct _fits_attr_header {

new/usr/src/uts/common/fs/zfs/sys/fits.h 2

59 uint16_t fa_type;
60 /* len of the payload, not including header */
61 uint16_t fa_len;
62 } __attribute__((__packed__)) fits_attr_header_t;

64 /* commands */
65 #define FITS_CMD_SUBVOL 1
66 #define FITS_CMD_SNAPSHOT 2
67 #define FITS_CMD_MKFILE 3
68 #define FITS_CMD_MKDIR 4
69 #define FITS_CMD_MKNOD 5
70 #define FITS_CMD_MKFIFO 6
71 #define FITS_CMD_MKSOCK 7
72 #define FITS_CMD_SYMLINK 8
73 #define FITS_CMD_RENAME 9
74 #define FITS_CMD_LINK 10
75 #define FITS_CMD_UNLINK 11
76 #define FITS_CMD_RMDIR 12
77 #define FITS_CMD_SET_XATTR 13
78 #define FITS_CMD_REMOVE_XATTR 14
79 #define FITS_CMD_WRITE 15
80 #define FITS_CMD_CLONE 16
81 #define FITS_CMD_TRUNCATE 17
82 #define FITS_CMD_CHMOD 18
83 #define FITS_CMD_CHOWN 19
84 #define FITS_CMD_UTIMES 20
85 #define FITS_CMD_END 21
86 #define FITS_CMD_MAX 21

88 /* attributes */
89 #define FITS_ATTR_UUID 1
90 #define FITS_ATTR_CTRANSID 2
91 #define FITS_ATTR_INO 3
92 #define FITS_ATTR_SIZE 4
93 #define FITS_ATTR_MODE 5
94 #define FITS_ATTR_UID 6
95 #define FITS_ATTR_GID 7
96 #define FITS_ATTR_RDEV 8
97 #define FITS_ATTR_CTIME 9
98 #define FITS_ATTR_MTIME 10
99 #define FITS_ATTR_ATIME 11
100 #define FITS_ATTR_OTIME 12
101 #define FITS_ATTR_XATTR_NAME 13
102 #define FITS_ATTR_XATTR_DATA 14
103 #define FITS_ATTR_PATH 15
104 #define FITS_ATTR_PATH_TO 16
105 #define FITS_ATTR_PATH_LINK 17
106 #define FITS_ATTR_FILE_OFFSET 18
107 #define FITS_ATTR_DATA 19
108 #define FITS_ATTR_CLONE_UUID 20
109 #define FITS_ATTR_CLONE_CTRANSID 21
110 #define FITS_ATTR_CLONE_PATH 22
111 #define FITS_ATTR_CLONE_OFFSET 23
112 #define FITS_ATTR_CLONE_LEN 24
113 #define FITS_ATTR_MAX 24

115 int fits_send(objset_t *tosnap, objset_t *fromsnap, int outfd, vnode_t *vp,
116 offset_t *off);

118 #ifdef __cplusplus
119 }
120 #endif

122 #endif /* _SYS_FITS_H */
123 #endif /* ! codereview */

new/usr/src/uts/common/fs/zfs/sys/fits_crc32c.h 1

**
 1026 Wed Oct 17 21:48:39 2012
new/usr/src/uts/common/fs/zfs/sys/fits_crc32c.h
FITS: generating send-streams in portable format
This commit adds the command ’zfs fits-send’, analogous to zfs send. The
generated send stream is compatible with the stream generated with that
from ’btrfs send’ and can in principle easily be received to any filesystem.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 #ifndef _SYS_FITS_CRC32C_H
23 #define _SYS_FITS_CRC32C_H

25 #include <sys/inttypes.h>
26 #include <sys/types.h>

28 uint32_t fits_crc32c(uint32_t seed, const uint8_t *data, int len);

30 #endif /* _SYS_FITS_CRC32C_H */
31 #endif /* ! codereview */

new/usr/src/uts/common/fs/zfs/sys/fits_impl.h 1

**
 7223 Wed Oct 17 21:48:39 2012
new/usr/src/uts/common/fs/zfs/sys/fits_impl.h
FITS: generating send-streams in portable format
This commit adds the command ’zfs fits-send’, analogous to zfs send. The
generated send stream is compatible with the stream generated with that
from ’btrfs send’ and can in principle easily be received to any filesystem.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2012 STRATO AG. All rights reserved.
24 */

26 #ifndef _SYS_FITS_IMPL_H
27 #define _SYS_FITS_IMPL_H

29 #include <sys/inttypes.h>
30 #include <sys/types.h>
31 #include <sys/cmn_err.h>
32 #include <sys/spa.h>
33 #include <sys/arc.h>
34 #include <sys/dsl_dataset.h>
35 #include <sys/dnode.h>
36 #include <sys/sa.h>

38 #define FITS_NO_INO 0

40 enum pass {
41 PASS_LINK,
42 PASS_UNLINK
43 };

45 typedef struct _fits_count_elem {
46 struct _fits_count_elem *fce_next;
47 uint64_t fce_ino;
48 uint64_t fce_count;
49 uint64_t fce_aux;
50 } fits_count_elem_t;

52 typedef struct _fits_counter {
53 fits_count_elem_t *fc_head;
54 const char *fc_name;
55 } fits_counter_t;

57 typedef struct blklevel {
58 uint64_t bl_blk;

new/usr/src/uts/common/fs/zfs/sys/fits_impl.h 2

59 int bl_nslots;
60 blkptr_t *bl_bp;
61 arc_buf_t *bl_buf;
62 } blklevel_t;

64 typedef struct _fits {
65 enum pass f_pass;
66 struct _fits_ops *f_ops;
67 fits_counter_t f_del_dir_cnt;
68 fits_counter_t f_put_back_cnt;
69 fits_counter_t f_link_add_cnt;
70 uint64_t f_current_ino;
71 struct _fits_path *f_current_path;
72 int f_alloc_len;
73 uint8_t *f_buf;
74 int f_size;
75 struct vnode *f_vp; /* file to which we are reporting */
76 offset_t *f_offp;
77 int f_err; /* error that stopped diff search */
78 dsl_dataset_t *f_fromds;
79 dsl_dataset_t *f_tods;
80 objset_t *f_fromsnap;
81 objset_t *f_tosnap;
82 dnode_phys_t *f_dnp;
83 blklevel_t *f_bl;
84 blklevel_t *f_filebl;
85 uint64_t f_fromtxg;
86 sa_attr_type_t *f_from_sa_table;
87 sa_attr_type_t *f_to_sa_table;
88 uint64_t f_shares_dir;
89 } fits_t;

91 typedef struct _fits_ops {
92 int (*fits_dir_add)(fits_t *f, uint64_t ino);
93 int (*fits_dir_del)(fits_t *f, uint64_t ino);
94 int (*fits_dir_mod)(fits_t *f, uint64_t ino);
95 int (*fits_dirent_add)(void *fits_enump, char *name, uint64_t ino);
96 int (*fits_dirent_del)(void *fits_enump, char *name, uint64_t ino);
97 int (*fits_dirent_mod)(void *fits_enump, char *name,
98 uint64_t ino_old, uint64_t ino_new);
99 int (*fits_dirent_unmod)(void *fits_enump, char *name, uint64_t ino);
100 int (*fits_file_add)(fits_t *f, uint64_t ino);
101 int (*fits_file_del)(fits_t *f, uint64_t ino);
102 int (*fits_file_mod)(fits_t *f, uint64_t ino);
103 int (*fits_file_data)(void *fits_filep, void *data, uint64_t off,
104 uint64_t len);
105 } fits_ops_t;

107 typedef struct _fits_path {
108 struct _fits_path *fp_next;
109 int fp_len;
110 int fp_total_len;
111 char fp_buf[0];
112 } fits_path_t;

114 typedef struct _fits_dirent {
115 char *fd_name;
116 uint64_t fd_parent_ino;
117 struct _fits_dirent *fd_prev;
118 } fits_dirent_t;

120 typedef enum _fits_which {
121 FITS_UNDEF,
122 FITS_OLD,
123 FITS_NEW
124 } fits_which_t;

new/usr/src/uts/common/fs/zfs/sys/fits_impl.h 3

126 typedef struct _fits_time {
127 uint64_t st_sec;
128 uint64_t st_nsec;
129 } fits_time_t;

131 #define FI_ATTR_ATIME (1 << 0)
132 #define FI_ATTR_MTIME (1 << 1)
133 #define FI_ATTR_CTIME (1 << 2)
134 #define FI_ATTR_OTIME (1 << 3)
135 #define FI_ATTR_MODE (1 << 4)
136 #define FI_ATTR_SIZE (1 << 5)
137 #define FI_ATTR_NENTRIES (1 << 5)
138 #define FI_ATTR_PARENT (1 << 6)
139 #define FI_ATTR_LINKS (1 << 7)
140 #define FI_ATTR_RDEV (1 << 8)
141 #define FI_ATTR_UID (1 << 9)
142 #define FI_ATTR_GID (1 << 10)
143 #define FI_ATTR_GEN (1 << 11)
144 /* XXX TODO xattr, acl, dacl */

146 #undef si_uid /* XXX defined in siginfo.h */
147 #undef si_gid /* XXX defined in siginfo.h */
148 typedef struct _fits_info {
149 uint64_t si_nlinks;
150 uint64_t si_parent;
151 union {
152 uint64_t si_nentries;
153 uint64_t si_size;
154 };
155 fits_time_t si_atime;
156 fits_time_t si_mtime;
157 fits_time_t si_ctime;
158 fits_time_t si_otime;
159 uint64_t si_mode;
160 /* XXX TODO xattr */
161 uint64_t si_rdev;
162 uint64_t si_uid;
163 uint64_t si_gid;
164 uint64_t si_gen;
165 } fits_info_t;

167 int fits_start(fits_t *f, fits_ops_t **);
168 int fits_start2(fits_t *f, fits_ops_t **);
169 int fits_abort(fits_t *f);
170 int fits_end(fits_t *f);

172 int fits_dirent_add_file(fits_t *f, fits_dirent_t *dirent,
173 uint64_t ino, uint64_t mode, int exists);
174 void fits_path_free(fits_path_t *fp);

176 int fits_get_info(fits_t *f, uint64_t dnobj, fits_which_t which,
177 fits_info_t *sp, uint64_t flags);

179 typedef int (*fits_file_cb_t)(void *ctx, void *data, int len);
180 int fits_file_contents(fits_t *f, uint64_t dnobj, void *ctx);
181 int fits_dir_contents(fits_t *f, uint64_t dnobj, void *ctx);
182 int fits_find_entry(fits_t *f, uint64_t dirobj, uint64_t dnobj,
183 fits_which_t which, char **name);
184 void fits_free_name(char *name);
185 int fits_lookup_entry(fits_t *f, uint64_t dirobj, char *name,
186 fits_which_t which, uint64_t *dnobj);
187 int fits_write(fits_t *f, const uint8_t *data, int len);
188 int fits_get_uuid(fits_t *f, fits_which_t which, uint8_t data[16]);
189 int fits_get_ctransid(fits_t *f, fits_which_t which,
190 uint64_t *ctransid);

new/usr/src/uts/common/fs/zfs/sys/fits_impl.h 4

191 int fits_get_snapname(fits_t *f, fits_which_t which,
192 char **name, int *len);
193 int fits_read_symlink(fits_t *f, uint64_t dnobj, fits_which_t which,
194 char **target, int *plen);

196 int fits_send_start(fits_t *f);
197 int fits_send_create_file(fits_t *f, fits_dirent_t *dirent, uint64_t ino,
198 int devise_tempname, fits_path_t **path_ret);
199 int fits_send_link(fits_t *f, fits_dirent_t *new_dirent, uint64_t ino,
200 uint64_t old_parent_ino, fits_which_t which,
201 int devise_tempname);
202 int fits_send_mkdir(fits_t *f, fits_dirent_t *dirent, uint64_t ino,
203 int devise_tempname);
204 int fits_send_rename(fits_t *f, fits_dirent_t *dirent, uint64_t ino,
205 uint64_t old_parent_ino, int devise_tempname);
206 int fits_send_rename_from_tempname(fits_t *f, fits_dirent_t *dirent,
207 uint64_t ino, uint64_t old);
208 int fits_send_unlink(fits_t *f, fits_dirent_t *dirent, uint64_t ino);
209 int fits_send_rmdir(fits_t *f, fits_dirent_t *dirent, uint64_t ino);
210 /* TODO: make **path *path or do we really still alloc it? */
211 int fits_send_file_data(fits_t *f,
212 fits_path_t **path, fits_dirent_t *dirent,
213 uint64_t ino, uint64_t off, uint64_t len, void *data);
214 int fits_send_mtime_update(fits_t *f, fits_dirent_t *dirent, uint64_t ino);
215 int fits_send_truncate(fits_t *f, fits_dirent_t *dirent, uint64_t ino,
216 uint64_t new_size);
217 int fits_send_chown(fits_t *f, fits_dirent_t *dirent, uint64_t ino,
218 uint64_t new_uid, uint64_t new_gid);
219 int fits_send_chmod(fits_t *f, fits_dirent_t *dirent, uint64_t ino,
220 uint64_t new_mode);
221 int fits_send_end(fits_t *f);
222 int fits_add_count(fits_counter_t *fc, uint64_t ino, uint64_t inc,
223 uint64_t aux, uint64_t *new_count, uint64_t *old_aux);
224 void fits_free_count(fits_counter_t *fc, uint64_t ino);
225 int fits_get_count(fits_counter_t *fc, uint64_t ino, uint64_t *new_count,
226 uint64_t *old_aux);
227 int fits_assert_count_empty(fits_counter_t *fc);

229 void fits_send_init(fits_t *f);
230 void fits_send_fini(fits_t *f);

232 #endif /* _SYS_FITS_IMPL_H */
233 #endif /* ! codereview */

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 1

**
 145361 Wed Oct 17 21:48:39 2012
new/usr/src/uts/common/fs/zfs/zfs_ioctl.c
FITS: generating send-streams in portable format
This commit adds the command ’zfs fits-send’, analogous to zfs send. The
generated send stream is compatible with the stream generated with that
from ’btrfs send’ and can in principle easily be received to any filesystem.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Portions Copyright 2011 Martin Matuska
25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2012 by Delphix. All rights reserved.
28 */

30 /*
31 * ZFS ioctls.
32 *
33 * This file handles the ioctls to /dev/zfs, used for configuring ZFS storage
34 * pools and filesystems, e.g. with /sbin/zfs and /sbin/zpool.
35 *
36 * There are two ways that we handle ioctls: the legacy way where almost
37 * all of the logic is in the ioctl callback, and the new way where most
38 * of the marshalling is handled in the common entry point, zfsdev_ioctl().
39 *
40 * Non-legacy ioctls should be registered by calling
41 * zfs_ioctl_register() from zfs_ioctl_init(). The ioctl is invoked
42 * from userland by lzc_ioctl().
43 *
44 * The registration arguments are as follows:
45 *
46 * const char *name
47 * The name of the ioctl. This is used for history logging. If the
48 * ioctl returns successfully (the callback returns 0), and allow_log
49 * is true, then a history log entry will be recorded with the input &
50 * output nvlists. The log entry can be printed with "zpool history -i".
51 *
52 * zfs_ioc_t ioc
53 * The ioctl request number, which userland will pass to ioctl(2).
54 * The ioctl numbers can change from release to release, because
55 * the caller (libzfs) must be matched to the kernel.
56 *
57 * zfs_secpolicy_func_t *secpolicy
58 * This function will be called before the zfs_ioc_func_t, to

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 2

59 * determine if this operation is permitted. It should return EPERM
60 * on failure, and 0 on success. Checks include determining if the
61 * dataset is visible in this zone, and if the user has either all
62 * zfs privileges in the zone (SYS_MOUNT), or has been granted permission
63 * to do this operation on this dataset with "zfs allow".
64 *
65 * zfs_ioc_namecheck_t namecheck
66 * This specifies what to expect in the zfs_cmd_t:zc_name -- a pool
67 * name, a dataset name, or nothing. If the name is not well-formed,
68 * the ioctl will fail and the callback will not be called.
69 * Therefore, the callback can assume that the name is well-formed
70 * (e.g. is null-terminated, doesn’t have more than one ’@’ character,
71 * doesn’t have invalid characters).
72 *
73 * zfs_ioc_poolcheck_t pool_check
74 * This specifies requirements on the pool state. If the pool does
75 * not meet them (is suspended or is readonly), the ioctl will fail
76 * and the callback will not be called. If any checks are specified
77 * (i.e. it is not POOL_CHECK_NONE), namecheck must not be NO_NAME.
78 * Multiple checks can be or-ed together (e.g. POOL_CHECK_SUSPENDED |
79 * POOL_CHECK_READONLY).
80 *
81 * boolean_t smush_outnvlist
82 * If smush_outnvlist is true, then the output is presumed to be a
83 * list of errors, and it will be "smushed" down to fit into the
84 * caller’s buffer, by removing some entries and replacing them with a
85 * single "N_MORE_ERRORS" entry indicating how many were removed. See
86 * nvlist_smush() for details. If smush_outnvlist is false, and the
87 * outnvlist does not fit into the userland-provided buffer, then the
88 * ioctl will fail with ENOMEM.
89 *
90 * zfs_ioc_func_t *func
91 * The callback function that will perform the operation.
92 *
93 * The callback should return 0 on success, or an error number on
94 * failure. If the function fails, the userland ioctl will return -1,
95 * and errno will be set to the callback’s return value. The callback
96 * will be called with the following arguments:
97 *
98 * const char *name
99 * The name of the pool or dataset to operate on, from
100 * zfs_cmd_t:zc_name. The ’namecheck’ argument specifies the
101 * expected type (pool, dataset, or none).
102 *
103 * nvlist_t *innvl
104 * The input nvlist, deserialized from zfs_cmd_t:zc_nvlist_src. Or
105 * NULL if no input nvlist was provided. Changes to this nvlist are
106 * ignored. If the input nvlist could not be deserialized, the
107 * ioctl will fail and the callback will not be called.
108 *
109 * nvlist_t *outnvl
110 * The output nvlist, initially empty. The callback can fill it in,
111 * and it will be returned to userland by serializing it into
112 * zfs_cmd_t:zc_nvlist_dst. If it is non-empty, and serialization
113 * fails (e.g. because the caller didn’t supply a large enough
114 * buffer), then the overall ioctl will fail. See the
115 * ’smush_nvlist’ argument above for additional behaviors.
116 *
117 * There are two typical uses of the output nvlist:
118 * - To return state, e.g. property values. In this case,
119 * smush_outnvlist should be false. If the buffer was not large
120 * enough, the caller will reallocate a larger buffer and try
121 * the ioctl again.
122 *
123 * - To return multiple errors from an ioctl which makes on-disk
124 * changes. In this case, smush_outnvlist should be true.

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 3

125 * Ioctls which make on-disk modifications should generally not
126 * use the outnvl if they succeed, because the caller can not
127 * distinguish between the operation failing, and
128 * deserialization failing.
129 */

131 #include <sys/types.h>
132 #include <sys/param.h>
133 #include <sys/errno.h>
134 #include <sys/uio.h>
135 #include <sys/buf.h>
136 #include <sys/modctl.h>
137 #include <sys/open.h>
138 #include <sys/file.h>
139 #include <sys/kmem.h>
140 #include <sys/conf.h>
141 #include <sys/cmn_err.h>
142 #include <sys/stat.h>
143 #include <sys/zfs_ioctl.h>
144 #include <sys/zfs_vfsops.h>
145 #include <sys/zfs_znode.h>
146 #include <sys/zap.h>
147 #include <sys/spa.h>
148 #include <sys/spa_impl.h>
149 #include <sys/vdev.h>
150 #include <sys/priv_impl.h>
151 #include <sys/dmu.h>
152 #include <sys/dsl_dir.h>
153 #include <sys/dsl_dataset.h>
154 #include <sys/dsl_prop.h>
155 #include <sys/dsl_deleg.h>
156 #include <sys/dmu_objset.h>
157 #include <sys/dmu_impl.h>
158 #include <sys/ddi.h>
159 #include <sys/sunddi.h>
160 #include <sys/sunldi.h>
161 #include <sys/policy.h>
162 #include <sys/zone.h>
163 #include <sys/nvpair.h>
164 #include <sys/pathname.h>
165 #include <sys/mount.h>
166 #include <sys/sdt.h>
167 #include <sys/fs/zfs.h>
168 #include <sys/zfs_ctldir.h>
169 #include <sys/zfs_dir.h>
170 #include <sys/zfs_onexit.h>
171 #include <sys/zvol.h>
172 #include <sys/dsl_scan.h>
173 #include <sharefs/share.h>
174 #include <sys/dmu_objset.h>
175 #include <sys/fits.h>
176 #endif /* ! codereview */

178 #include "zfs_namecheck.h"
179 #include "zfs_prop.h"
180 #include "zfs_deleg.h"
181 #include "zfs_comutil.h"

183 extern struct modlfs zfs_modlfs;

185 extern void zfs_init(void);
186 extern void zfs_fini(void);

188 ldi_ident_t zfs_li = NULL;
189 dev_info_t *zfs_dip;

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 4

191 uint_t zfs_fsyncer_key;
192 extern uint_t rrw_tsd_key;
193 static uint_t zfs_allow_log_key;

195 typedef int zfs_ioc_legacy_func_t(zfs_cmd_t *);
196 typedef int zfs_ioc_func_t(const char *, nvlist_t *, nvlist_t *);
197 typedef int zfs_secpolicy_func_t(zfs_cmd_t *, nvlist_t *, cred_t *);

199 typedef enum {
200 NO_NAME,
201 POOL_NAME,
202 DATASET_NAME
203 } zfs_ioc_namecheck_t;

205 typedef enum {
206 POOL_CHECK_NONE = 1 << 0,
207 POOL_CHECK_SUSPENDED = 1 << 1,
208 POOL_CHECK_READONLY = 1 << 2,
209 } zfs_ioc_poolcheck_t;

211 typedef struct zfs_ioc_vec {
212 zfs_ioc_legacy_func_t *zvec_legacy_func;
213 zfs_ioc_func_t *zvec_func;
214 zfs_secpolicy_func_t *zvec_secpolicy;
215 zfs_ioc_namecheck_t zvec_namecheck;
216 boolean_t zvec_allow_log;
217 zfs_ioc_poolcheck_t zvec_pool_check;
218 boolean_t zvec_smush_outnvlist;
219 const char *zvec_name;
220 } zfs_ioc_vec_t;

222 /* This array is indexed by zfs_userquota_prop_t */
223 static const char *userquota_perms[] = {
224 ZFS_DELEG_PERM_USERUSED,
225 ZFS_DELEG_PERM_USERQUOTA,
226 ZFS_DELEG_PERM_GROUPUSED,
227 ZFS_DELEG_PERM_GROUPQUOTA,
228 };

230 static int zfs_ioc_userspace_upgrade(zfs_cmd_t *zc);
231 static int zfs_check_settable(const char *name, nvpair_t *property,
232 cred_t *cr);
233 static int zfs_check_clearable(char *dataset, nvlist_t *props,
234 nvlist_t **errors);
235 static int zfs_fill_zplprops_root(uint64_t, nvlist_t *, nvlist_t *,
236 boolean_t *);
237 int zfs_set_prop_nvlist(const char *, zprop_source_t, nvlist_t *, nvlist_t *);
238 static int get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp);

240 /* _NOTE(PRINTFLIKE(4)) - this is printf-like, but lint is too whiney */
241 void
242 __dprintf(const char *file, const char *func, int line, const char *fmt, ...)
243 {
244 const char *newfile;
245 char buf[512];
246 va_list adx;

248 /*
249 * Get rid of annoying "../common/" prefix to filename.
250 */
251 newfile = strrchr(file, ’/’);
252 if (newfile != NULL) {
253 newfile = newfile + 1; /* Get rid of leading / */
254 } else {
255 newfile = file;
256 }

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 5

258 va_start(adx, fmt);
259 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
260 va_end(adx);

262 /*
263 * To get this data, use the zfs-dprintf probe as so:
264 * dtrace -q -n ’zfs-dprintf \
265 * /stringof(arg0) == "dbuf.c"/ \
266 * {printf("%s: %s", stringof(arg1), stringof(arg3))}’
267 * arg0 = file name
268 * arg1 = function name
269 * arg2 = line number
270 * arg3 = message
271 */
272 DTRACE_PROBE4(zfs__dprintf,
273 char *, newfile, char *, func, int, line, char *, buf);
274 }

276 static void
277 history_str_free(char *buf)
278 {
279 kmem_free(buf, HIS_MAX_RECORD_LEN);
280 }

282 static char *
283 history_str_get(zfs_cmd_t *zc)
284 {
285 char *buf;

287 if (zc->zc_history == NULL)
288 return (NULL);

290 buf = kmem_alloc(HIS_MAX_RECORD_LEN, KM_SLEEP);
291 if (copyinstr((void *)(uintptr_t)zc->zc_history,
292 buf, HIS_MAX_RECORD_LEN, NULL) != 0) {
293 history_str_free(buf);
294 return (NULL);
295 }

297 buf[HIS_MAX_RECORD_LEN -1] = ’\0’;

299 return (buf);
300 }

302 /*
303 * Check to see if the named dataset is currently defined as bootable
304 */
305 static boolean_t
306 zfs_is_bootfs(const char *name)
307 {
308 objset_t *os;

310 if (dmu_objset_hold(name, FTAG, &os) == 0) {
311 boolean_t ret;
312 ret = (dmu_objset_id(os) == spa_bootfs(dmu_objset_spa(os)));
313 dmu_objset_rele(os, FTAG);
314 return (ret);
315 }
316 return (B_FALSE);
317 }

319 /*
320 * zfs_earlier_version
321 *
322 * Return non-zero if the spa version is less than requested version.

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 6

323 */
324 static int
325 zfs_earlier_version(const char *name, int version)
326 {
327 spa_t *spa;

329 if (spa_open(name, &spa, FTAG) == 0) {
330 if (spa_version(spa) < version) {
331 spa_close(spa, FTAG);
332 return (1);
333 }
334 spa_close(spa, FTAG);
335 }
336 return (0);
337 }

339 /*
340 * zpl_earlier_version
341 *
342 * Return TRUE if the ZPL version is less than requested version.
343 */
344 static boolean_t
345 zpl_earlier_version(const char *name, int version)
346 {
347 objset_t *os;
348 boolean_t rc = B_TRUE;

350 if (dmu_objset_hold(name, FTAG, &os) == 0) {
351 uint64_t zplversion;

353 if (dmu_objset_type(os) != DMU_OST_ZFS) {
354 dmu_objset_rele(os, FTAG);
355 return (B_TRUE);
356 }
357 /* XXX reading from non-owned objset */
358 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &zplversion) == 0)
359 rc = zplversion < version;
360 dmu_objset_rele(os, FTAG);
361 }
362 return (rc);
363 }

365 static void
366 zfs_log_history(zfs_cmd_t *zc)
367 {
368 spa_t *spa;
369 char *buf;

371 if ((buf = history_str_get(zc)) == NULL)
372 return;

374 if (spa_open(zc->zc_name, &spa, FTAG) == 0) {
375 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY)
376 (void) spa_history_log(spa, buf);
377 spa_close(spa, FTAG);
378 }
379 history_str_free(buf);
380 }

382 /*
383 * Policy for top-level read operations (list pools). Requires no privileges,
384 * and can be used in the local zone, as there is no associated dataset.
385 */
386 /* ARGSUSED */
387 static int
388 zfs_secpolicy_none(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 7

389 {
390 return (0);
391 }

393 /*
394 * Policy for dataset read operations (list children, get statistics). Requires
395 * no privileges, but must be visible in the local zone.
396 */
397 /* ARGSUSED */
398 static int
399 zfs_secpolicy_read(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
400 {
401 if (INGLOBALZONE(curproc) ||
402 zone_dataset_visible(zc->zc_name, NULL))
403 return (0);

405 return (ENOENT);
406 }

408 static int
409 zfs_dozonecheck_impl(const char *dataset, uint64_t zoned, cred_t *cr)
410 {
411 int writable = 1;

413 /*
414 * The dataset must be visible by this zone -- check this first
415 * so they don’t see EPERM on something they shouldn’t know about.
416 */
417 if (!INGLOBALZONE(curproc) &&
418 !zone_dataset_visible(dataset, &writable))
419 return (ENOENT);

421 if (INGLOBALZONE(curproc)) {
422 /*
423 * If the fs is zoned, only root can access it from the
424 * global zone.
425 */
426 if (secpolicy_zfs(cr) && zoned)
427 return (EPERM);
428 } else {
429 /*
430 * If we are in a local zone, the ’zoned’ property must be set.
431 */
432 if (!zoned)
433 return (EPERM);

435 /* must be writable by this zone */
436 if (!writable)
437 return (EPERM);
438 }
439 return (0);
440 }

442 static int
443 zfs_dozonecheck(const char *dataset, cred_t *cr)
444 {
445 uint64_t zoned;

447 if (dsl_prop_get_integer(dataset, "zoned", &zoned, NULL))
448 return (ENOENT);

450 return (zfs_dozonecheck_impl(dataset, zoned, cr));
451 }

453 static int
454 zfs_dozonecheck_ds(const char *dataset, dsl_dataset_t *ds, cred_t *cr)

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 8

455 {
456 uint64_t zoned;

458 rw_enter(&ds->ds_dir->dd_pool->dp_config_rwlock, RW_READER);
459 if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL)) {
460 rw_exit(&ds->ds_dir->dd_pool->dp_config_rwlock);
461 return (ENOENT);
462 }
463 rw_exit(&ds->ds_dir->dd_pool->dp_config_rwlock);

465 return (zfs_dozonecheck_impl(dataset, zoned, cr));
466 }

468 static int
469 zfs_secpolicy_write_perms(const char *name, const char *perm, cred_t *cr)
470 {
471 int error;
472 dsl_dataset_t *ds;

474 error = dsl_dataset_hold(name, FTAG, &ds);
475 if (error != 0)
476 return (error);

478 error = zfs_dozonecheck_ds(name, ds, cr);
479 if (error == 0) {
480 error = secpolicy_zfs(cr);
481 if (error)
482 error = dsl_deleg_access_impl(ds, perm, cr);
483 }

485 dsl_dataset_rele(ds, FTAG);
486 return (error);
487 }

489 static int
490 zfs_secpolicy_write_perms_ds(const char *name, dsl_dataset_t *ds,
491 const char *perm, cred_t *cr)
492 {
493 int error;

495 error = zfs_dozonecheck_ds(name, ds, cr);
496 if (error == 0) {
497 error = secpolicy_zfs(cr);
498 if (error)
499 error = dsl_deleg_access_impl(ds, perm, cr);
500 }
501 return (error);
502 }

504 /*
505 * Policy for setting the security label property.
506 *
507 * Returns 0 for success, non-zero for access and other errors.
508 */
509 static int
510 zfs_set_slabel_policy(const char *name, char *strval, cred_t *cr)
511 {
512 char ds_hexsl[MAXNAMELEN];
513 bslabel_t ds_sl, new_sl;
514 boolean_t new_default = FALSE;
515 uint64_t zoned;
516 int needed_priv = -1;
517 int error;

519 /* First get the existing dataset label. */
520 error = dsl_prop_get(name, zfs_prop_to_name(ZFS_PROP_MLSLABEL),

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 9

521 1, sizeof (ds_hexsl), &ds_hexsl, NULL);
522 if (error)
523 return (EPERM);

525 if (strcasecmp(strval, ZFS_MLSLABEL_DEFAULT) == 0)
526 new_default = TRUE;

528 /* The label must be translatable */
529 if (!new_default && (hexstr_to_label(strval, &new_sl) != 0))
530 return (EINVAL);

532 /*
533 * In a non-global zone, disallow attempts to set a label that
534 * doesn’t match that of the zone; otherwise no other checks
535 * are needed.
536 */
537 if (!INGLOBALZONE(curproc)) {
538 if (new_default || !blequal(&new_sl, CR_SL(CRED())))
539 return (EPERM);
540 return (0);
541 }

543 /*
544 * For global-zone datasets (i.e., those whose zoned property is
545 * "off", verify that the specified new label is valid for the
546 * global zone.
547 */
548 if (dsl_prop_get_integer(name,
549 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
550 return (EPERM);
551 if (!zoned) {
552 if (zfs_check_global_label(name, strval) != 0)
553 return (EPERM);
554 }

556 /*
557 * If the existing dataset label is nondefault, check if the
558 * dataset is mounted (label cannot be changed while mounted).
559 * Get the zfsvfs; if there isn’t one, then the dataset isn’t
560 * mounted (or isn’t a dataset, doesn’t exist, ...).
561 */
562 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) != 0) {
563 objset_t *os;
564 static char *setsl_tag = "setsl_tag";

566 /*
567 * Try to own the dataset; abort if there is any error,
568 * (e.g., already mounted, in use, or other error).
569 */
570 error = dmu_objset_own(name, DMU_OST_ZFS, B_TRUE,
571 setsl_tag, &os);
572 if (error)
573 return (EPERM);

575 dmu_objset_disown(os, setsl_tag);

577 if (new_default) {
578 needed_priv = PRIV_FILE_DOWNGRADE_SL;
579 goto out_check;
580 }

582 if (hexstr_to_label(strval, &new_sl) != 0)
583 return (EPERM);

585 if (blstrictdom(&ds_sl, &new_sl))
586 needed_priv = PRIV_FILE_DOWNGRADE_SL;

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 10

587 else if (blstrictdom(&new_sl, &ds_sl))
588 needed_priv = PRIV_FILE_UPGRADE_SL;
589 } else {
590 /* dataset currently has a default label */
591 if (!new_default)
592 needed_priv = PRIV_FILE_UPGRADE_SL;
593 }

595 out_check:
596 if (needed_priv != -1)
597 return (PRIV_POLICY(cr, needed_priv, B_FALSE, EPERM, NULL));
598 return (0);
599 }

601 static int
602 zfs_secpolicy_setprop(const char *dsname, zfs_prop_t prop, nvpair_t *propval,
603 cred_t *cr)
604 {
605 char *strval;

607 /*
608 * Check permissions for special properties.
609 */
610 switch (prop) {
611 case ZFS_PROP_ZONED:
612 /*
613 * Disallow setting of ’zoned’ from within a local zone.
614 */
615 if (!INGLOBALZONE(curproc))
616 return (EPERM);
617 break;

619 case ZFS_PROP_QUOTA:
620 if (!INGLOBALZONE(curproc)) {
621 uint64_t zoned;
622 char setpoint[MAXNAMELEN];
623 /*
624 * Unprivileged users are allowed to modify the
625 * quota on things *under* (ie. contained by)
626 * the thing they own.
627 */
628 if (dsl_prop_get_integer(dsname, "zoned", &zoned,
629 setpoint))
630 return (EPERM);
631 if (!zoned || strlen(dsname) <= strlen(setpoint))
632 return (EPERM);
633 }
634 break;

636 case ZFS_PROP_MLSLABEL:
637 if (!is_system_labeled())
638 return (EPERM);

640 if (nvpair_value_string(propval, &strval) == 0) {
641 int err;

643 err = zfs_set_slabel_policy(dsname, strval, CRED());
644 if (err != 0)
645 return (err);
646 }
647 break;
648 }

650 return (zfs_secpolicy_write_perms(dsname, zfs_prop_to_name(prop), cr));
651 }

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 11

653 /* ARGSUSED */
654 static int
655 zfs_secpolicy_set_fsacl(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
656 {
657 int error;

659 error = zfs_dozonecheck(zc->zc_name, cr);
660 if (error)
661 return (error);

663 /*
664 * permission to set permissions will be evaluated later in
665 * dsl_deleg_can_allow()
666 */
667 return (0);
668 }

670 /* ARGSUSED */
671 static int
672 zfs_secpolicy_rollback(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
673 {
674 return (zfs_secpolicy_write_perms(zc->zc_name,
675 ZFS_DELEG_PERM_ROLLBACK, cr));
676 }

678 /* ARGSUSED */
679 static int
680 zfs_secpolicy_send(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
681 {
682 spa_t *spa;
683 dsl_pool_t *dp;
684 dsl_dataset_t *ds;
685 char *cp;
686 int error;

688 /*
689 * Generate the current snapshot name from the given objsetid, then
690 * use that name for the secpolicy/zone checks.
691 */
692 cp = strchr(zc->zc_name, ’@’);
693 if (cp == NULL)
694 return (EINVAL);
695 error = spa_open(zc->zc_name, &spa, FTAG);
696 if (error)
697 return (error);

699 dp = spa_get_dsl(spa);
700 rw_enter(&dp->dp_config_rwlock, RW_READER);
701 error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &ds);
702 rw_exit(&dp->dp_config_rwlock);
703 spa_close(spa, FTAG);
704 if (error)
705 return (error);

707 dsl_dataset_name(ds, zc->zc_name);

709 error = zfs_secpolicy_write_perms_ds(zc->zc_name, ds,
710 ZFS_DELEG_PERM_SEND, cr);
711 dsl_dataset_rele(ds, FTAG);

713 return (error);
714 }

716 /* ARGSUSED */
717 static int
718 zfs_secpolicy_send_new(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 12

719 {
720 return (zfs_secpolicy_write_perms(zc->zc_name,
721 ZFS_DELEG_PERM_SEND, cr));
722 }

724 /* ARGSUSED */
725 static int
726 zfs_secpolicy_deleg_share(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
727 {
728 vnode_t *vp;
729 int error;

731 if ((error = lookupname(zc->zc_value, UIO_SYSSPACE,
732 NO_FOLLOW, NULL, &vp)) != 0)
733 return (error);

735 /* Now make sure mntpnt and dataset are ZFS */

737 if (vp->v_vfsp->vfs_fstype != zfsfstype ||
738 (strcmp((char *)refstr_value(vp->v_vfsp->vfs_resource),
739 zc->zc_name) != 0)) {
740 VN_RELE(vp);
741 return (EPERM);
742 }

744 VN_RELE(vp);
745 return (dsl_deleg_access(zc->zc_name,
746 ZFS_DELEG_PERM_SHARE, cr));
747 }

749 int
750 zfs_secpolicy_share(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
751 {
752 if (!INGLOBALZONE(curproc))
753 return (EPERM);

755 if (secpolicy_nfs(cr) == 0) {
756 return (0);
757 } else {
758 return (zfs_secpolicy_deleg_share(zc, innvl, cr));
759 }
760 }

762 int
763 zfs_secpolicy_smb_acl(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
764 {
765 if (!INGLOBALZONE(curproc))
766 return (EPERM);

768 if (secpolicy_smb(cr) == 0) {
769 return (0);
770 } else {
771 return (zfs_secpolicy_deleg_share(zc, innvl, cr));
772 }
773 }

775 static int
776 zfs_get_parent(const char *datasetname, char *parent, int parentsize)
777 {
778 char *cp;

780 /*
781 * Remove the @bla or /bla from the end of the name to get the parent.
782 */
783 (void) strncpy(parent, datasetname, parentsize);
784 cp = strrchr(parent, ’@’);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 13

785 if (cp != NULL) {
786 cp[0] = ’\0’;
787 } else {
788 cp = strrchr(parent, ’/’);
789 if (cp == NULL)
790 return (ENOENT);
791 cp[0] = ’\0’;
792 }

794 return (0);
795 }

797 int
798 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
799 {
800 int error;

802 if ((error = zfs_secpolicy_write_perms(name,
803 ZFS_DELEG_PERM_MOUNT, cr)) != 0)
804 return (error);

806 return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_DESTROY, cr));
807 }

809 /* ARGSUSED */
810 static int
811 zfs_secpolicy_destroy(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
812 {
813 return (zfs_secpolicy_destroy_perms(zc->zc_name, cr));
814 }

816 /*
817 * Destroying snapshots with delegated permissions requires
818 * descendant mount and destroy permissions.
819 */
820 /* ARGSUSED */
821 static int
822 zfs_secpolicy_destroy_snaps(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
823 {
824 nvlist_t *snaps;
825 nvpair_t *pair, *nextpair;
826 int error = 0;

828 if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0)
829 return (EINVAL);
830 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
831 pair = nextpair) {
832 dsl_dataset_t *ds;

834 nextpair = nvlist_next_nvpair(snaps, pair);
835 error = dsl_dataset_hold(nvpair_name(pair), FTAG, &ds);
836 if (error == 0) {
837 dsl_dataset_rele(ds, FTAG);
838 } else if (error == ENOENT) {
839 /*
840 * Ignore any snapshots that don’t exist (we consider
841 * them "already destroyed"). Remove the name from the
842 * nvl here in case the snapshot is created between
843 * now and when we try to destroy it (in which case
844 * we don’t want to destroy it since we haven’t
845 * checked for permission).
846 */
847 fnvlist_remove_nvpair(snaps, pair);
848 error = 0;
849 continue;
850 } else {

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 14

851 break;
852 }
853 error = zfs_secpolicy_destroy_perms(nvpair_name(pair), cr);
854 if (error != 0)
855 break;
856 }

858 return (error);
859 }

861 int
862 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
863 {
864 char parentname[MAXNAMELEN];
865 int error;

867 if ((error = zfs_secpolicy_write_perms(from,
868 ZFS_DELEG_PERM_RENAME, cr)) != 0)
869 return (error);

871 if ((error = zfs_secpolicy_write_perms(from,
872 ZFS_DELEG_PERM_MOUNT, cr)) != 0)
873 return (error);

875 if ((error = zfs_get_parent(to, parentname,
876 sizeof (parentname))) != 0)
877 return (error);

879 if ((error = zfs_secpolicy_write_perms(parentname,
880 ZFS_DELEG_PERM_CREATE, cr)) != 0)
881 return (error);

883 if ((error = zfs_secpolicy_write_perms(parentname,
884 ZFS_DELEG_PERM_MOUNT, cr)) != 0)
885 return (error);

887 return (error);
888 }

890 /* ARGSUSED */
891 static int
892 zfs_secpolicy_rename(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
893 {
894 return (zfs_secpolicy_rename_perms(zc->zc_name, zc->zc_value, cr));
895 }

897 /* ARGSUSED */
898 static int
899 zfs_secpolicy_promote(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
900 {
901 char parentname[MAXNAMELEN];
902 objset_t *clone;
903 int error;

905 error = zfs_secpolicy_write_perms(zc->zc_name,
906 ZFS_DELEG_PERM_PROMOTE, cr);
907 if (error)
908 return (error);

910 error = dmu_objset_hold(zc->zc_name, FTAG, &clone);

912 if (error == 0) {
913 dsl_dataset_t *pclone = NULL;
914 dsl_dir_t *dd;
915 dd = clone->os_dsl_dataset->ds_dir;

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 15

917 rw_enter(&dd->dd_pool->dp_config_rwlock, RW_READER);
918 error = dsl_dataset_hold_obj(dd->dd_pool,
919 dd->dd_phys->dd_origin_obj, FTAG, &pclone);
920 rw_exit(&dd->dd_pool->dp_config_rwlock);
921 if (error) {
922 dmu_objset_rele(clone, FTAG);
923 return (error);
924 }

926 error = zfs_secpolicy_write_perms(zc->zc_name,
927 ZFS_DELEG_PERM_MOUNT, cr);

929 dsl_dataset_name(pclone, parentname);
930 dmu_objset_rele(clone, FTAG);
931 dsl_dataset_rele(pclone, FTAG);
932 if (error == 0)
933 error = zfs_secpolicy_write_perms(parentname,
934 ZFS_DELEG_PERM_PROMOTE, cr);
935 }
936 return (error);
937 }

939 /* ARGSUSED */
940 static int
941 zfs_secpolicy_recv(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
942 {
943 int error;

945 if ((error = zfs_secpolicy_write_perms(zc->zc_name,
946 ZFS_DELEG_PERM_RECEIVE, cr)) != 0)
947 return (error);

949 if ((error = zfs_secpolicy_write_perms(zc->zc_name,
950 ZFS_DELEG_PERM_MOUNT, cr)) != 0)
951 return (error);

953 return (zfs_secpolicy_write_perms(zc->zc_name,
954 ZFS_DELEG_PERM_CREATE, cr));
955 }

957 int
958 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
959 {
960 return (zfs_secpolicy_write_perms(name,
961 ZFS_DELEG_PERM_SNAPSHOT, cr));
962 }

964 /*
965 * Check for permission to create each snapshot in the nvlist.
966 */
967 /* ARGSUSED */
968 static int
969 zfs_secpolicy_snapshot(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
970 {
971 nvlist_t *snaps;
972 int error;
973 nvpair_t *pair;

975 if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0)
976 return (EINVAL);
977 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
978 pair = nvlist_next_nvpair(snaps, pair)) {
979 char *name = nvpair_name(pair);
980 char *atp = strchr(name, ’@’);

982 if (atp == NULL) {

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 16

983 error = EINVAL;
984 break;
985 }
986 *atp = ’\0’;
987 error = zfs_secpolicy_snapshot_perms(name, cr);
988 *atp = ’@’;
989 if (error != 0)
990 break;
991 }
992 return (error);
993 }

995 /* ARGSUSED */
996 static int
997 zfs_secpolicy_log_history(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
998 {
999 /*

1000 * Even root must have a proper TSD so that we know what pool
1001 * to log to.
1002 */
1003 if (tsd_get(zfs_allow_log_key) == NULL)
1004 return (EPERM);
1005 return (0);
1006 }

1008 static int
1009 zfs_secpolicy_create_clone(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1010 {
1011 char parentname[MAXNAMELEN];
1012 int error;
1013 char *origin;

1015 if ((error = zfs_get_parent(zc->zc_name, parentname,
1016 sizeof (parentname))) != 0)
1017 return (error);

1019 if (nvlist_lookup_string(innvl, "origin", &origin) == 0 &&
1020 (error = zfs_secpolicy_write_perms(origin,
1021 ZFS_DELEG_PERM_CLONE, cr)) != 0)
1022 return (error);

1024 if ((error = zfs_secpolicy_write_perms(parentname,
1025 ZFS_DELEG_PERM_CREATE, cr)) != 0)
1026 return (error);

1028 return (zfs_secpolicy_write_perms(parentname,
1029 ZFS_DELEG_PERM_MOUNT, cr));
1030 }

1032 /*
1033 * Policy for pool operations - create/destroy pools, add vdevs, etc. Requires
1034 * SYS_CONFIG privilege, which is not available in a local zone.
1035 */
1036 /* ARGSUSED */
1037 static int
1038 zfs_secpolicy_config(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1039 {
1040 if (secpolicy_sys_config(cr, B_FALSE) != 0)
1041 return (EPERM);

1043 return (0);
1044 }

1046 /*
1047 * Policy for object to name lookups.
1048 */

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 17

1049 /* ARGSUSED */
1050 static int
1051 zfs_secpolicy_diff(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1052 {
1053 int error;

1055 if ((error = secpolicy_sys_config(cr, B_FALSE)) == 0)
1056 return (0);

1058 error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_DIFF, cr);
1059 return (error);
1060 }

1062 /*
1063 * Policy for fault injection. Requires all privileges.
1064 */
1065 /* ARGSUSED */
1066 static int
1067 zfs_secpolicy_inject(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1068 {
1069 return (secpolicy_zinject(cr));
1070 }

1072 /* ARGSUSED */
1073 static int
1074 zfs_secpolicy_inherit_prop(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1075 {
1076 zfs_prop_t prop = zfs_name_to_prop(zc->zc_value);

1078 if (prop == ZPROP_INVAL) {
1079 if (!zfs_prop_user(zc->zc_value))
1080 return (EINVAL);
1081 return (zfs_secpolicy_write_perms(zc->zc_name,
1082 ZFS_DELEG_PERM_USERPROP, cr));
1083 } else {
1084 return (zfs_secpolicy_setprop(zc->zc_name, prop,
1085 NULL, cr));
1086 }
1087 }

1089 static int
1090 zfs_secpolicy_userspace_one(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1091 {
1092 int err = zfs_secpolicy_read(zc, innvl, cr);
1093 if (err)
1094 return (err);

1096 if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS)
1097 return (EINVAL);

1099 if (zc->zc_value[0] == 0) {
1100 /*
1101 * They are asking about a posix uid/gid. If it’s
1102 * themself, allow it.
1103 */
1104 if (zc->zc_objset_type == ZFS_PROP_USERUSED ||
1105 zc->zc_objset_type == ZFS_PROP_USERQUOTA) {
1106 if (zc->zc_guid == crgetuid(cr))
1107 return (0);
1108 } else {
1109 if (groupmember(zc->zc_guid, cr))
1110 return (0);
1111 }
1112 }

1114 return (zfs_secpolicy_write_perms(zc->zc_name,

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 18

1115 userquota_perms[zc->zc_objset_type], cr));
1116 }

1118 static int
1119 zfs_secpolicy_userspace_many(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1120 {
1121 int err = zfs_secpolicy_read(zc, innvl, cr);
1122 if (err)
1123 return (err);

1125 if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS)
1126 return (EINVAL);

1128 return (zfs_secpolicy_write_perms(zc->zc_name,
1129 userquota_perms[zc->zc_objset_type], cr));
1130 }

1132 /* ARGSUSED */
1133 static int
1134 zfs_secpolicy_userspace_upgrade(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1135 {
1136 return (zfs_secpolicy_setprop(zc->zc_name, ZFS_PROP_VERSION,
1137 NULL, cr));
1138 }

1140 /* ARGSUSED */
1141 static int
1142 zfs_secpolicy_hold(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1143 {
1144 return (zfs_secpolicy_write_perms(zc->zc_name,
1145 ZFS_DELEG_PERM_HOLD, cr));
1146 }

1148 /* ARGSUSED */
1149 static int
1150 zfs_secpolicy_release(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1151 {
1152 return (zfs_secpolicy_write_perms(zc->zc_name,
1153 ZFS_DELEG_PERM_RELEASE, cr));
1154 }

1156 /*
1157 * Policy for allowing temporary snapshots to be taken or released
1158 */
1159 static int
1160 zfs_secpolicy_tmp_snapshot(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
1161 {
1162 /*
1163 * A temporary snapshot is the same as a snapshot,
1164 * hold, destroy and release all rolled into one.
1165 * Delegated diff alone is sufficient that we allow this.
1166 */
1167 int error;

1169 if ((error = zfs_secpolicy_write_perms(zc->zc_name,
1170 ZFS_DELEG_PERM_DIFF, cr)) == 0)
1171 return (0);

1173 error = zfs_secpolicy_snapshot_perms(zc->zc_name, cr);
1174 if (!error)
1175 error = zfs_secpolicy_hold(zc, innvl, cr);
1176 if (!error)
1177 error = zfs_secpolicy_release(zc, innvl, cr);
1178 if (!error)
1179 error = zfs_secpolicy_destroy(zc, innvl, cr);
1180 return (error);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 19

1181 }

1183 /*
1184 * Returns the nvlist as specified by the user in the zfs_cmd_t.
1185 */
1186 static int
1187 get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp)
1188 {
1189 char *packed;
1190 int error;
1191 nvlist_t *list = NULL;

1193 /*
1194 * Read in and unpack the user-supplied nvlist.
1195 */
1196 if (size == 0)
1197 return (EINVAL);

1199 packed = kmem_alloc(size, KM_SLEEP);

1201 if ((error = ddi_copyin((void *)(uintptr_t)nvl, packed, size,
1202 iflag)) != 0) {
1203 kmem_free(packed, size);
1204 return (error);
1205 }

1207 if ((error = nvlist_unpack(packed, size, &list, 0)) != 0) {
1208 kmem_free(packed, size);
1209 return (error);
1210 }

1212 kmem_free(packed, size);

1214 *nvp = list;
1215 return (0);
1216 }

1218 /*
1219 * Reduce the size of this nvlist until it can be serialized in ’max’ bytes.
1220 * Entries will be removed from the end of the nvlist, and one int32 entry
1221 * named "N_MORE_ERRORS" will be added indicating how many entries were
1222 * removed.
1223 */
1224 static int
1225 nvlist_smush(nvlist_t *errors, size_t max)
1226 {
1227 size_t size;

1229 size = fnvlist_size(errors);

1231 if (size > max) {
1232 nvpair_t *more_errors;
1233 int n = 0;

1235 if (max < 1024)
1236 return (ENOMEM);

1238 fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, 0);
1239 more_errors = nvlist_prev_nvpair(errors, NULL);

1241 do {
1242 nvpair_t *pair = nvlist_prev_nvpair(errors,
1243 more_errors);
1244 fnvlist_remove_nvpair(errors, pair);
1245 n++;
1246 size = fnvlist_size(errors);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 20

1247 } while (size > max);

1249 fnvlist_remove_nvpair(errors, more_errors);
1250 fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, n);
1251 ASSERT3U(fnvlist_size(errors), <=, max);
1252 }

1254 return (0);
1255 }

1257 static int
1258 put_nvlist(zfs_cmd_t *zc, nvlist_t *nvl)
1259 {
1260 char *packed = NULL;
1261 int error = 0;
1262 size_t size;

1264 size = fnvlist_size(nvl);

1266 if (size > zc->zc_nvlist_dst_size) {
1267 error = ENOMEM;
1268 } else {
1269 packed = fnvlist_pack(nvl, &size);
1270 if (ddi_copyout(packed, (void *)(uintptr_t)zc->zc_nvlist_dst,
1271 size, zc->zc_iflags) != 0)
1272 error = EFAULT;
1273 fnvlist_pack_free(packed, size);
1274 }

1276 zc->zc_nvlist_dst_size = size;
1277 zc->zc_nvlist_dst_filled = B_TRUE;
1278 return (error);
1279 }

1281 static int
1282 getzfsvfs(const char *dsname, zfsvfs_t **zfvp)
1283 {
1284 objset_t *os;
1285 int error;

1287 error = dmu_objset_hold(dsname, FTAG, &os);
1288 if (error)
1289 return (error);
1290 if (dmu_objset_type(os) != DMU_OST_ZFS) {
1291 dmu_objset_rele(os, FTAG);
1292 return (EINVAL);
1293 }

1295 mutex_enter(&os->os_user_ptr_lock);
1296 *zfvp = dmu_objset_get_user(os);
1297 if (*zfvp) {
1298 VFS_HOLD((*zfvp)->z_vfs);
1299 } else {
1300 error = ESRCH;
1301 }
1302 mutex_exit(&os->os_user_ptr_lock);
1303 dmu_objset_rele(os, FTAG);
1304 return (error);
1305 }

1307 /*
1308 * Find a zfsvfs_t for a mounted filesystem, or create our own, in which
1309 * case its z_vfs will be NULL, and it will be opened as the owner.
1310 * If ’writer’ is set, the z_teardown_lock will be held for RW_WRITER,
1311 * which prevents all vnode ops from running.
1312 */

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 21

1313 static int
1314 zfsvfs_hold(const char *name, void *tag, zfsvfs_t **zfvp, boolean_t writer)
1315 {
1316 int error = 0;

1318 if (getzfsvfs(name, zfvp) != 0)
1319 error = zfsvfs_create(name, zfvp);
1320 if (error == 0) {
1321 rrw_enter(&(*zfvp)->z_teardown_lock, (writer) ? RW_WRITER :
1322 RW_READER, tag);
1323 if ((*zfvp)->z_unmounted) {
1324 /*
1325 * XXX we could probably try again, since the unmounting
1326 * thread should be just about to disassociate the
1327 * objset from the zfsvfs.
1328 */
1329 rrw_exit(&(*zfvp)->z_teardown_lock, tag);
1330 return (EBUSY);
1331 }
1332 }
1333 return (error);
1334 }

1336 static void
1337 zfsvfs_rele(zfsvfs_t *zfsvfs, void *tag)
1338 {
1339 rrw_exit(&zfsvfs->z_teardown_lock, tag);

1341 if (zfsvfs->z_vfs) {
1342 VFS_RELE(zfsvfs->z_vfs);
1343 } else {
1344 dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1345 zfsvfs_free(zfsvfs);
1346 }
1347 }

1349 static int
1350 zfs_ioc_pool_create(zfs_cmd_t *zc)
1351 {
1352 int error;
1353 nvlist_t *config, *props = NULL;
1354 nvlist_t *rootprops = NULL;
1355 nvlist_t *zplprops = NULL;

1357 if (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1358 zc->zc_iflags, &config))
1359 return (error);

1361 if (zc->zc_nvlist_src_size != 0 && (error =
1362 get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
1363 zc->zc_iflags, &props))) {
1364 nvlist_free(config);
1365 return (error);
1366 }

1368 if (props) {
1369 nvlist_t *nvl = NULL;
1370 uint64_t version = SPA_VERSION;

1372 (void) nvlist_lookup_uint64(props,
1373 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version);
1374 if (!SPA_VERSION_IS_SUPPORTED(version)) {
1375 error = EINVAL;
1376 goto pool_props_bad;
1377 }
1378 (void) nvlist_lookup_nvlist(props, ZPOOL_ROOTFS_PROPS, &nvl);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 22

1379 if (nvl) {
1380 error = nvlist_dup(nvl, &rootprops, KM_SLEEP);
1381 if (error != 0) {
1382 nvlist_free(config);
1383 nvlist_free(props);
1384 return (error);
1385 }
1386 (void) nvlist_remove_all(props, ZPOOL_ROOTFS_PROPS);
1387 }
1388 VERIFY(nvlist_alloc(&zplprops, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1389 error = zfs_fill_zplprops_root(version, rootprops,
1390 zplprops, NULL);
1391 if (error)
1392 goto pool_props_bad;
1393 }

1395 error = spa_create(zc->zc_name, config, props, zplprops);

1397 /*
1398 * Set the remaining root properties
1399 */
1400 if (!error && (error = zfs_set_prop_nvlist(zc->zc_name,
1401 ZPROP_SRC_LOCAL, rootprops, NULL)) != 0)
1402 (void) spa_destroy(zc->zc_name);

1404 pool_props_bad:
1405 nvlist_free(rootprops);
1406 nvlist_free(zplprops);
1407 nvlist_free(config);
1408 nvlist_free(props);

1410 return (error);
1411 }

1413 static int
1414 zfs_ioc_pool_destroy(zfs_cmd_t *zc)
1415 {
1416 int error;
1417 zfs_log_history(zc);
1418 error = spa_destroy(zc->zc_name);
1419 if (error == 0)
1420 zvol_remove_minors(zc->zc_name);
1421 return (error);
1422 }

1424 static int
1425 zfs_ioc_pool_import(zfs_cmd_t *zc)
1426 {
1427 nvlist_t *config, *props = NULL;
1428 uint64_t guid;
1429 int error;

1431 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1432 zc->zc_iflags, &config)) != 0)
1433 return (error);

1435 if (zc->zc_nvlist_src_size != 0 && (error =
1436 get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
1437 zc->zc_iflags, &props))) {
1438 nvlist_free(config);
1439 return (error);
1440 }

1442 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1443 guid != zc->zc_guid)
1444 error = EINVAL;

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 23

1445 else
1446 error = spa_import(zc->zc_name, config, props, zc->zc_cookie);

1448 if (zc->zc_nvlist_dst != 0) {
1449 int err;

1451 if ((err = put_nvlist(zc, config)) != 0)
1452 error = err;
1453 }

1455 nvlist_free(config);

1457 if (props)
1458 nvlist_free(props);

1460 return (error);
1461 }

1463 static int
1464 zfs_ioc_pool_export(zfs_cmd_t *zc)
1465 {
1466 int error;
1467 boolean_t force = (boolean_t)zc->zc_cookie;
1468 boolean_t hardforce = (boolean_t)zc->zc_guid;

1470 zfs_log_history(zc);
1471 error = spa_export(zc->zc_name, NULL, force, hardforce);
1472 if (error == 0)
1473 zvol_remove_minors(zc->zc_name);
1474 return (error);
1475 }

1477 static int
1478 zfs_ioc_pool_configs(zfs_cmd_t *zc)
1479 {
1480 nvlist_t *configs;
1481 int error;

1483 if ((configs = spa_all_configs(&zc->zc_cookie)) == NULL)
1484 return (EEXIST);

1486 error = put_nvlist(zc, configs);

1488 nvlist_free(configs);

1490 return (error);
1491 }

1493 /*
1494 * inputs:
1495 * zc_name name of the pool
1496 *
1497 * outputs:
1498 * zc_cookie real errno
1499 * zc_nvlist_dst config nvlist
1500 * zc_nvlist_dst_size size of config nvlist
1501 */
1502 static int
1503 zfs_ioc_pool_stats(zfs_cmd_t *zc)
1504 {
1505 nvlist_t *config;
1506 int error;
1507 int ret = 0;

1509 error = spa_get_stats(zc->zc_name, &config, zc->zc_value,
1510 sizeof (zc->zc_value));

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 24

1512 if (config != NULL) {
1513 ret = put_nvlist(zc, config);
1514 nvlist_free(config);

1516 /*
1517 * The config may be present even if ’error’ is non-zero.
1518 * In this case we return success, and preserve the real errno
1519 * in ’zc_cookie’.
1520 */
1521 zc->zc_cookie = error;
1522 } else {
1523 ret = error;
1524 }

1526 return (ret);
1527 }

1529 /*
1530 * Try to import the given pool, returning pool stats as appropriate so that
1531 * user land knows which devices are available and overall pool health.
1532 */
1533 static int
1534 zfs_ioc_pool_tryimport(zfs_cmd_t *zc)
1535 {
1536 nvlist_t *tryconfig, *config;
1537 int error;

1539 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1540 zc->zc_iflags, &tryconfig)) != 0)
1541 return (error);

1543 config = spa_tryimport(tryconfig);

1545 nvlist_free(tryconfig);

1547 if (config == NULL)
1548 return (EINVAL);

1550 error = put_nvlist(zc, config);
1551 nvlist_free(config);

1553 return (error);
1554 }

1556 /*
1557 * inputs:
1558 * zc_name name of the pool
1559 * zc_cookie scan func (pool_scan_func_t)
1560 */
1561 static int
1562 zfs_ioc_pool_scan(zfs_cmd_t *zc)
1563 {
1564 spa_t *spa;
1565 int error;

1567 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
1568 return (error);

1570 if (zc->zc_cookie == POOL_SCAN_NONE)
1571 error = spa_scan_stop(spa);
1572 else
1573 error = spa_scan(spa, zc->zc_cookie);

1575 spa_close(spa, FTAG);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 25

1577 return (error);
1578 }

1580 static int
1581 zfs_ioc_pool_freeze(zfs_cmd_t *zc)
1582 {
1583 spa_t *spa;
1584 int error;

1586 error = spa_open(zc->zc_name, &spa, FTAG);
1587 if (error == 0) {
1588 spa_freeze(spa);
1589 spa_close(spa, FTAG);
1590 }
1591 return (error);
1592 }

1594 static int
1595 zfs_ioc_pool_upgrade(zfs_cmd_t *zc)
1596 {
1597 spa_t *spa;
1598 int error;

1600 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
1601 return (error);

1603 if (zc->zc_cookie < spa_version(spa) ||
1604 !SPA_VERSION_IS_SUPPORTED(zc->zc_cookie)) {
1605 spa_close(spa, FTAG);
1606 return (EINVAL);
1607 }

1609 spa_upgrade(spa, zc->zc_cookie);
1610 spa_close(spa, FTAG);

1612 return (error);
1613 }

1615 static int
1616 zfs_ioc_pool_get_history(zfs_cmd_t *zc)
1617 {
1618 spa_t *spa;
1619 char *hist_buf;
1620 uint64_t size;
1621 int error;

1623 if ((size = zc->zc_history_len) == 0)
1624 return (EINVAL);

1626 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
1627 return (error);

1629 if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) {
1630 spa_close(spa, FTAG);
1631 return (ENOTSUP);
1632 }

1634 hist_buf = kmem_alloc(size, KM_SLEEP);
1635 if ((error = spa_history_get(spa, &zc->zc_history_offset,
1636 &zc->zc_history_len, hist_buf)) == 0) {
1637 error = ddi_copyout(hist_buf,
1638 (void *)(uintptr_t)zc->zc_history,
1639 zc->zc_history_len, zc->zc_iflags);
1640 }

1642 spa_close(spa, FTAG);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 26

1643 kmem_free(hist_buf, size);
1644 return (error);
1645 }

1647 static int
1648 zfs_ioc_pool_reguid(zfs_cmd_t *zc)
1649 {
1650 spa_t *spa;
1651 int error;

1653 error = spa_open(zc->zc_name, &spa, FTAG);
1654 if (error == 0) {
1655 error = spa_change_guid(spa);
1656 spa_close(spa, FTAG);
1657 }
1658 return (error);
1659 }

1661 static int
1662 zfs_ioc_dsobj_to_dsname(zfs_cmd_t *zc)
1663 {
1664 int error;

1666 if (error = dsl_dsobj_to_dsname(zc->zc_name, zc->zc_obj, zc->zc_value))
1667 return (error);

1669 return (0);
1670 }

1672 /*
1673 * inputs:
1674 * zc_name name of filesystem
1675 * zc_obj object to find
1676 *
1677 * outputs:
1678 * zc_value name of object
1679 */
1680 static int
1681 zfs_ioc_obj_to_path(zfs_cmd_t *zc)
1682 {
1683 objset_t *os;
1684 int error;

1686 /* XXX reading from objset not owned */
1687 if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os)) != 0)
1688 return (error);
1689 if (dmu_objset_type(os) != DMU_OST_ZFS) {
1690 dmu_objset_rele(os, FTAG);
1691 return (EINVAL);
1692 }
1693 error = zfs_obj_to_path(os, zc->zc_obj, zc->zc_value,
1694 sizeof (zc->zc_value));
1695 dmu_objset_rele(os, FTAG);

1697 return (error);
1698 }

1700 /*
1701 * inputs:
1702 * zc_name name of filesystem
1703 * zc_obj object to find
1704 *
1705 * outputs:
1706 * zc_stat stats on object
1707 * zc_value path to object
1708 */

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 27

1709 static int
1710 zfs_ioc_obj_to_stats(zfs_cmd_t *zc)
1711 {
1712 objset_t *os;
1713 int error;

1715 /* XXX reading from objset not owned */
1716 if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os)) != 0)
1717 return (error);
1718 if (dmu_objset_type(os) != DMU_OST_ZFS) {
1719 dmu_objset_rele(os, FTAG);
1720 return (EINVAL);
1721 }
1722 error = zfs_obj_to_stats(os, zc->zc_obj, &zc->zc_stat, zc->zc_value,
1723 sizeof (zc->zc_value));
1724 dmu_objset_rele(os, FTAG);

1726 return (error);
1727 }

1729 static int
1730 zfs_ioc_vdev_add(zfs_cmd_t *zc)
1731 {
1732 spa_t *spa;
1733 int error;
1734 nvlist_t *config, **l2cache, **spares;
1735 uint_t nl2cache = 0, nspares = 0;

1737 error = spa_open(zc->zc_name, &spa, FTAG);
1738 if (error != 0)
1739 return (error);

1741 error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1742 zc->zc_iflags, &config);
1743 (void) nvlist_lookup_nvlist_array(config, ZPOOL_CONFIG_L2CACHE,
1744 &l2cache, &nl2cache);

1746 (void) nvlist_lookup_nvlist_array(config, ZPOOL_CONFIG_SPARES,
1747 &spares, &nspares);

1749 /*
1750 * A root pool with concatenated devices is not supported.
1751 * Thus, can not add a device to a root pool.
1752 *
1753 * Intent log device can not be added to a rootpool because
1754 * during mountroot, zil is replayed, a seperated log device
1755 * can not be accessed during the mountroot time.
1756 *
1757 * l2cache and spare devices are ok to be added to a rootpool.
1758 */
1759 if (spa_bootfs(spa) != 0 && nl2cache == 0 && nspares == 0) {
1760 nvlist_free(config);
1761 spa_close(spa, FTAG);
1762 return (EDOM);
1763 }

1765 if (error == 0) {
1766 error = spa_vdev_add(spa, config);
1767 nvlist_free(config);
1768 }
1769 spa_close(spa, FTAG);
1770 return (error);
1771 }

1773 /*
1774 * inputs:

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 28

1775 * zc_name name of the pool
1776 * zc_nvlist_conf nvlist of devices to remove
1777 * zc_cookie to stop the remove?
1778 */
1779 static int
1780 zfs_ioc_vdev_remove(zfs_cmd_t *zc)
1781 {
1782 spa_t *spa;
1783 int error;

1785 error = spa_open(zc->zc_name, &spa, FTAG);
1786 if (error != 0)
1787 return (error);
1788 error = spa_vdev_remove(spa, zc->zc_guid, B_FALSE);
1789 spa_close(spa, FTAG);
1790 return (error);
1791 }

1793 static int
1794 zfs_ioc_vdev_set_state(zfs_cmd_t *zc)
1795 {
1796 spa_t *spa;
1797 int error;
1798 vdev_state_t newstate = VDEV_STATE_UNKNOWN;

1800 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
1801 return (error);
1802 switch (zc->zc_cookie) {
1803 case VDEV_STATE_ONLINE:
1804 error = vdev_online(spa, zc->zc_guid, zc->zc_obj, &newstate);
1805 break;

1807 case VDEV_STATE_OFFLINE:
1808 error = vdev_offline(spa, zc->zc_guid, zc->zc_obj);
1809 break;

1811 case VDEV_STATE_FAULTED:
1812 if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED &&
1813 zc->zc_obj != VDEV_AUX_EXTERNAL)
1814 zc->zc_obj = VDEV_AUX_ERR_EXCEEDED;

1816 error = vdev_fault(spa, zc->zc_guid, zc->zc_obj);
1817 break;

1819 case VDEV_STATE_DEGRADED:
1820 if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED &&
1821 zc->zc_obj != VDEV_AUX_EXTERNAL)
1822 zc->zc_obj = VDEV_AUX_ERR_EXCEEDED;

1824 error = vdev_degrade(spa, zc->zc_guid, zc->zc_obj);
1825 break;

1827 default:
1828 error = EINVAL;
1829 }
1830 zc->zc_cookie = newstate;
1831 spa_close(spa, FTAG);
1832 return (error);
1833 }

1835 static int
1836 zfs_ioc_vdev_attach(zfs_cmd_t *zc)
1837 {
1838 spa_t *spa;
1839 int replacing = zc->zc_cookie;
1840 nvlist_t *config;

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 29

1841 int error;

1843 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
1844 return (error);

1846 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1847 zc->zc_iflags, &config)) == 0) {
1848 error = spa_vdev_attach(spa, zc->zc_guid, config, replacing);
1849 nvlist_free(config);
1850 }

1852 spa_close(spa, FTAG);
1853 return (error);
1854 }

1856 static int
1857 zfs_ioc_vdev_detach(zfs_cmd_t *zc)
1858 {
1859 spa_t *spa;
1860 int error;

1862 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
1863 return (error);

1865 error = spa_vdev_detach(spa, zc->zc_guid, 0, B_FALSE);

1867 spa_close(spa, FTAG);
1868 return (error);
1869 }

1871 static int
1872 zfs_ioc_vdev_split(zfs_cmd_t *zc)
1873 {
1874 spa_t *spa;
1875 nvlist_t *config, *props = NULL;
1876 int error;
1877 boolean_t exp = !!(zc->zc_cookie & ZPOOL_EXPORT_AFTER_SPLIT);

1879 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
1880 return (error);

1882 if (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1883 zc->zc_iflags, &config)) {
1884 spa_close(spa, FTAG);
1885 return (error);
1886 }

1888 if (zc->zc_nvlist_src_size != 0 && (error =
1889 get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
1890 zc->zc_iflags, &props))) {
1891 spa_close(spa, FTAG);
1892 nvlist_free(config);
1893 return (error);
1894 }

1896 error = spa_vdev_split_mirror(spa, zc->zc_string, config, props, exp);

1898 spa_close(spa, FTAG);

1900 nvlist_free(config);
1901 nvlist_free(props);

1903 return (error);
1904 }

1906 static int

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 30

1907 zfs_ioc_vdev_setpath(zfs_cmd_t *zc)
1908 {
1909 spa_t *spa;
1910 char *path = zc->zc_value;
1911 uint64_t guid = zc->zc_guid;
1912 int error;

1914 error = spa_open(zc->zc_name, &spa, FTAG);
1915 if (error != 0)
1916 return (error);

1918 error = spa_vdev_setpath(spa, guid, path);
1919 spa_close(spa, FTAG);
1920 return (error);
1921 }

1923 static int
1924 zfs_ioc_vdev_setfru(zfs_cmd_t *zc)
1925 {
1926 spa_t *spa;
1927 char *fru = zc->zc_value;
1928 uint64_t guid = zc->zc_guid;
1929 int error;

1931 error = spa_open(zc->zc_name, &spa, FTAG);
1932 if (error != 0)
1933 return (error);

1935 error = spa_vdev_setfru(spa, guid, fru);
1936 spa_close(spa, FTAG);
1937 return (error);
1938 }

1940 static int
1941 zfs_ioc_objset_stats_impl(zfs_cmd_t *zc, objset_t *os)
1942 {
1943 int error = 0;
1944 nvlist_t *nv;

1946 dmu_objset_fast_stat(os, &zc->zc_objset_stats);

1948 if (zc->zc_nvlist_dst != 0 &&
1949 (error = dsl_prop_get_all(os, &nv)) == 0) {
1950 dmu_objset_stats(os, nv);
1951 /*
1952 * NB: zvol_get_stats() will read the objset contents,
1953 * which we aren’t supposed to do with a
1954 * DS_MODE_USER hold, because it could be
1955 * inconsistent. So this is a bit of a workaround...
1956 * XXX reading with out owning
1957 */
1958 if (!zc->zc_objset_stats.dds_inconsistent &&
1959 dmu_objset_type(os) == DMU_OST_ZVOL) {
1960 error = zvol_get_stats(os, nv);
1961 if (error == EIO)
1962 return (error);
1963 VERIFY0(error);
1964 }
1965 error = put_nvlist(zc, nv);
1966 nvlist_free(nv);
1967 }

1969 return (error);
1970 }

1972 /*

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 31

1973 * inputs:
1974 * zc_name name of filesystem
1975 * zc_nvlist_dst_size size of buffer for property nvlist
1976 *
1977 * outputs:
1978 * zc_objset_stats stats
1979 * zc_nvlist_dst property nvlist
1980 * zc_nvlist_dst_size size of property nvlist
1981 */
1982 static int
1983 zfs_ioc_objset_stats(zfs_cmd_t *zc)
1984 {
1985 objset_t *os = NULL;
1986 int error;

1988 if (error = dmu_objset_hold(zc->zc_name, FTAG, &os))
1989 return (error);

1991 error = zfs_ioc_objset_stats_impl(zc, os);

1993 dmu_objset_rele(os, FTAG);

1995 return (error);
1996 }

1998 /*
1999 * inputs:
2000 * zc_name name of filesystem
2001 * zc_nvlist_dst_size size of buffer for property nvlist
2002 *
2003 * outputs:
2004 * zc_nvlist_dst received property nvlist
2005 * zc_nvlist_dst_size size of received property nvlist
2006 *
2007 * Gets received properties (distinct from local properties on or after
2008 * SPA_VERSION_RECVD_PROPS) for callers who want to differentiate received from
2009 * local property values.
2010 */
2011 static int
2012 zfs_ioc_objset_recvd_props(zfs_cmd_t *zc)
2013 {
2014 objset_t *os = NULL;
2015 int error;
2016 nvlist_t *nv;

2018 if (error = dmu_objset_hold(zc->zc_name, FTAG, &os))
2019 return (error);

2021 /*
2022 * Without this check, we would return local property values if the
2023 * caller has not already received properties on or after
2024 * SPA_VERSION_RECVD_PROPS.
2025 */
2026 if (!dsl_prop_get_hasrecvd(os)) {
2027 dmu_objset_rele(os, FTAG);
2028 return (ENOTSUP);
2029 }

2031 if (zc->zc_nvlist_dst != 0 &&
2032 (error = dsl_prop_get_received(os, &nv)) == 0) {
2033 error = put_nvlist(zc, nv);
2034 nvlist_free(nv);
2035 }

2037 dmu_objset_rele(os, FTAG);
2038 return (error);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 32

2039 }

2041 static int
2042 nvl_add_zplprop(objset_t *os, nvlist_t *props, zfs_prop_t prop)
2043 {
2044 uint64_t value;
2045 int error;

2047 /*
2048 * zfs_get_zplprop() will either find a value or give us
2049 * the default value (if there is one).
2050 */
2051 if ((error = zfs_get_zplprop(os, prop, &value)) != 0)
2052 return (error);
2053 VERIFY(nvlist_add_uint64(props, zfs_prop_to_name(prop), value) == 0);
2054 return (0);
2055 }

2057 /*
2058 * inputs:
2059 * zc_name name of filesystem
2060 * zc_nvlist_dst_size size of buffer for zpl property nvlist
2061 *
2062 * outputs:
2063 * zc_nvlist_dst zpl property nvlist
2064 * zc_nvlist_dst_size size of zpl property nvlist
2065 */
2066 static int
2067 zfs_ioc_objset_zplprops(zfs_cmd_t *zc)
2068 {
2069 objset_t *os;
2070 int err;

2072 /* XXX reading without owning */
2073 if (err = dmu_objset_hold(zc->zc_name, FTAG, &os))
2074 return (err);

2076 dmu_objset_fast_stat(os, &zc->zc_objset_stats);

2078 /*
2079 * NB: nvl_add_zplprop() will read the objset contents,
2080 * which we aren’t supposed to do with a DS_MODE_USER
2081 * hold, because it could be inconsistent.
2082 */
2083 if (zc->zc_nvlist_dst != NULL &&
2084 !zc->zc_objset_stats.dds_inconsistent &&
2085 dmu_objset_type(os) == DMU_OST_ZFS) {
2086 nvlist_t *nv;

2088 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2089 if ((err = nvl_add_zplprop(os, nv, ZFS_PROP_VERSION)) == 0 &&
2090 (err = nvl_add_zplprop(os, nv, ZFS_PROP_NORMALIZE)) == 0 &&
2091 (err = nvl_add_zplprop(os, nv, ZFS_PROP_UTF8ONLY)) == 0 &&
2092 (err = nvl_add_zplprop(os, nv, ZFS_PROP_CASE)) == 0)
2093 err = put_nvlist(zc, nv);
2094 nvlist_free(nv);
2095 } else {
2096 err = ENOENT;
2097 }
2098 dmu_objset_rele(os, FTAG);
2099 return (err);
2100 }

2102 static boolean_t
2103 dataset_name_hidden(const char *name)
2104 {

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 33

2105 /*
2106 * Skip over datasets that are not visible in this zone,
2107 * internal datasets (which have a $ in their name), and
2108 * temporary datasets (which have a % in their name).
2109 */
2110 if (strchr(name, ’$’) != NULL)
2111 return (B_TRUE);
2112 if (strchr(name, ’%’) != NULL)
2113 return (B_TRUE);
2114 if (!INGLOBALZONE(curproc) && !zone_dataset_visible(name, NULL))
2115 return (B_TRUE);
2116 return (B_FALSE);
2117 }

2119 /*
2120 * inputs:
2121 * zc_name name of filesystem
2122 * zc_cookie zap cursor
2123 * zc_nvlist_dst_size size of buffer for property nvlist
2124 *
2125 * outputs:
2126 * zc_name name of next filesystem
2127 * zc_cookie zap cursor
2128 * zc_objset_stats stats
2129 * zc_nvlist_dst property nvlist
2130 * zc_nvlist_dst_size size of property nvlist
2131 */
2132 static int
2133 zfs_ioc_dataset_list_next(zfs_cmd_t *zc)
2134 {
2135 objset_t *os;
2136 int error;
2137 char *p;
2138 size_t orig_len = strlen(zc->zc_name);

2140 top:
2141 if (error = dmu_objset_hold(zc->zc_name, FTAG, &os)) {
2142 if (error == ENOENT)
2143 error = ESRCH;
2144 return (error);
2145 }

2147 p = strrchr(zc->zc_name, ’/’);
2148 if (p == NULL || p[1] != ’\0’)
2149 (void) strlcat(zc->zc_name, "/", sizeof (zc->zc_name));
2150 p = zc->zc_name + strlen(zc->zc_name);

2152 /*
2153 * Pre-fetch the datasets. dmu_objset_prefetch() always returns 0
2154 * but is not declared void because its called by dmu_objset_find().
2155 */
2156 if (zc->zc_cookie == 0) {
2157 uint64_t cookie = 0;
2158 int len = sizeof (zc->zc_name) - (p - zc->zc_name);

2160 while (dmu_dir_list_next(os, len, p, NULL, &cookie) == 0) {
2161 if (!dataset_name_hidden(zc->zc_name))
2162 (void) dmu_objset_prefetch(zc->zc_name, NULL);
2163 }
2164 }

2166 do {
2167 error = dmu_dir_list_next(os,
2168 sizeof (zc->zc_name) - (p - zc->zc_name), p,
2169 NULL, &zc->zc_cookie);
2170 if (error == ENOENT)

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 34

2171 error = ESRCH;
2172 } while (error == 0 && dataset_name_hidden(zc->zc_name));
2173 dmu_objset_rele(os, FTAG);

2175 /*
2176 * If it’s an internal dataset (ie. with a ’$’ in its name),
2177 * don’t try to get stats for it, otherwise we’ll return ENOENT.
2178 */
2179 if (error == 0 && strchr(zc->zc_name, ’$’) == NULL) {
2180 error = zfs_ioc_objset_stats(zc); /* fill in the stats */
2181 if (error == ENOENT) {
2182 /* We lost a race with destroy, get the next one. */
2183 zc->zc_name[orig_len] = ’\0’;
2184 goto top;
2185 }
2186 }
2187 return (error);
2188 }

2190 /*
2191 * inputs:
2192 * zc_name name of filesystem
2193 * zc_cookie zap cursor
2194 * zc_nvlist_dst_size size of buffer for property nvlist
2195 *
2196 * outputs:
2197 * zc_name name of next snapshot
2198 * zc_objset_stats stats
2199 * zc_nvlist_dst property nvlist
2200 * zc_nvlist_dst_size size of property nvlist
2201 */
2202 static int
2203 zfs_ioc_snapshot_list_next(zfs_cmd_t *zc)
2204 {
2205 objset_t *os;
2206 int error;

2208 top:
2209 if (zc->zc_cookie == 0)
2210 (void) dmu_objset_find(zc->zc_name, dmu_objset_prefetch,
2211 NULL, DS_FIND_SNAPSHOTS);

2213 error = dmu_objset_hold(zc->zc_name, FTAG, &os);
2214 if (error)
2215 return (error == ENOENT ? ESRCH : error);

2217 /*
2218 * A dataset name of maximum length cannot have any snapshots,
2219 * so exit immediately.
2220 */
2221 if (strlcat(zc->zc_name, "@", sizeof (zc->zc_name)) >= MAXNAMELEN) {
2222 dmu_objset_rele(os, FTAG);
2223 return (ESRCH);
2224 }

2226 error = dmu_snapshot_list_next(os,
2227 sizeof (zc->zc_name) - strlen(zc->zc_name),
2228 zc->zc_name + strlen(zc->zc_name), &zc->zc_obj, &zc->zc_cookie,
2229 NULL);

2231 if (error == 0) {
2232 dsl_dataset_t *ds;
2233 dsl_pool_t *dp = os->os_dsl_dataset->ds_dir->dd_pool;

2235 /*
2236 * Since we probably don’t have a hold on this snapshot,

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 35

2237 * it’s possible that the objsetid could have been destroyed
2238 * and reused for a new objset. It’s OK if this happens during
2239 * a zfs send operation, since the new createtxg will be
2240 * beyond the range we’re interested in.
2241 */
2242 rw_enter(&dp->dp_config_rwlock, RW_READER);
2243 error = dsl_dataset_hold_obj(dp, zc->zc_obj, FTAG, &ds);
2244 rw_exit(&dp->dp_config_rwlock);
2245 if (error) {
2246 if (error == ENOENT) {
2247 /* Racing with destroy, get the next one. */
2248 *strchr(zc->zc_name, ’@’) = ’\0’;
2249 dmu_objset_rele(os, FTAG);
2250 goto top;
2251 }
2252 } else {
2253 objset_t *ossnap;

2255 error = dmu_objset_from_ds(ds, &ossnap);
2256 if (error == 0)
2257 error = zfs_ioc_objset_stats_impl(zc, ossnap);
2258 dsl_dataset_rele(ds, FTAG);
2259 }
2260 } else if (error == ENOENT) {
2261 error = ESRCH;
2262 }

2264 dmu_objset_rele(os, FTAG);
2265 /* if we failed, undo the @ that we tacked on to zc_name */
2266 if (error)
2267 *strchr(zc->zc_name, ’@’) = ’\0’;
2268 return (error);
2269 }

2271 static int
2272 zfs_prop_set_userquota(const char *dsname, nvpair_t *pair)
2273 {
2274 const char *propname = nvpair_name(pair);
2275 uint64_t *valary;
2276 unsigned int vallen;
2277 const char *domain;
2278 char *dash;
2279 zfs_userquota_prop_t type;
2280 uint64_t rid;
2281 uint64_t quota;
2282 zfsvfs_t *zfsvfs;
2283 int err;

2285 if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
2286 nvlist_t *attrs;
2287 VERIFY(nvpair_value_nvlist(pair, &attrs) == 0);
2288 if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
2289 &pair) != 0)
2290 return (EINVAL);
2291 }

2293 /*
2294 * A correctly constructed propname is encoded as
2295 * userquota@<rid>-<domain>.
2296 */
2297 if ((dash = strchr(propname, ’-’)) == NULL ||
2298 nvpair_value_uint64_array(pair, &valary, &vallen) != 0 ||
2299 vallen != 3)
2300 return (EINVAL);

2302 domain = dash + 1;

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 36

2303 type = valary[0];
2304 rid = valary[1];
2305 quota = valary[2];

2307 err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_FALSE);
2308 if (err == 0) {
2309 err = zfs_set_userquota(zfsvfs, type, domain, rid, quota);
2310 zfsvfs_rele(zfsvfs, FTAG);
2311 }

2313 return (err);
2314 }

2316 /*
2317 * If the named property is one that has a special function to set its value,
2318 * return 0 on success and a positive error code on failure; otherwise if it is
2319 * not one of the special properties handled by this function, return -1.
2320 *
2321 * XXX: It would be better for callers of the property interface if we handled
2322 * these special cases in dsl_prop.c (in the dsl layer).
2323 */
2324 static int
2325 zfs_prop_set_special(const char *dsname, zprop_source_t source,
2326 nvpair_t *pair)
2327 {
2328 const char *propname = nvpair_name(pair);
2329 zfs_prop_t prop = zfs_name_to_prop(propname);
2330 uint64_t intval;
2331 int err;

2333 if (prop == ZPROP_INVAL) {
2334 if (zfs_prop_userquota(propname))
2335 return (zfs_prop_set_userquota(dsname, pair));
2336 return (-1);
2337 }

2339 if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
2340 nvlist_t *attrs;
2341 VERIFY(nvpair_value_nvlist(pair, &attrs) == 0);
2342 VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
2343 &pair) == 0);
2344 }

2346 if (zfs_prop_get_type(prop) == PROP_TYPE_STRING)
2347 return (-1);

2349 VERIFY(0 == nvpair_value_uint64(pair, &intval));

2351 switch (prop) {
2352 case ZFS_PROP_QUOTA:
2353 err = dsl_dir_set_quota(dsname, source, intval);
2354 break;
2355 case ZFS_PROP_REFQUOTA:
2356 err = dsl_dataset_set_quota(dsname, source, intval);
2357 break;
2358 case ZFS_PROP_RESERVATION:
2359 err = dsl_dir_set_reservation(dsname, source, intval);
2360 break;
2361 case ZFS_PROP_REFRESERVATION:
2362 err = dsl_dataset_set_reservation(dsname, source, intval);
2363 break;
2364 case ZFS_PROP_VOLSIZE:
2365 err = zvol_set_volsize(dsname, ddi_driver_major(zfs_dip),
2366 intval);
2367 break;
2368 case ZFS_PROP_VERSION:

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 37

2369 {
2370 zfsvfs_t *zfsvfs;

2372 if ((err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_TRUE)) != 0)
2373 break;

2375 err = zfs_set_version(zfsvfs, intval);
2376 zfsvfs_rele(zfsvfs, FTAG);

2378 if (err == 0 && intval >= ZPL_VERSION_USERSPACE) {
2379 zfs_cmd_t *zc;

2381 zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP);
2382 (void) strcpy(zc->zc_name, dsname);
2383 (void) zfs_ioc_userspace_upgrade(zc);
2384 kmem_free(zc, sizeof (zfs_cmd_t));
2385 }
2386 break;
2387 }

2389 default:
2390 err = -1;
2391 }

2393 return (err);
2394 }

2396 /*
2397 * This function is best effort. If it fails to set any of the given properties,
2398 * it continues to set as many as it can and returns the last error
2399 * encountered. If the caller provides a non-NULL errlist, it will be filled in
2400 * with the list of names of all the properties that failed along with the
2401 * corresponding error numbers.
2402 *
2403 * If every property is set successfully, zero is returned and errlist is not
2404 * modified.
2405 */
2406 int
2407 zfs_set_prop_nvlist(const char *dsname, zprop_source_t source, nvlist_t *nvl,
2408 nvlist_t *errlist)
2409 {
2410 nvpair_t *pair;
2411 nvpair_t *propval;
2412 int rv = 0;
2413 uint64_t intval;
2414 char *strval;
2415 nvlist_t *genericnvl = fnvlist_alloc();
2416 nvlist_t *retrynvl = fnvlist_alloc();

2418 retry:
2419 pair = NULL;
2420 while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) {
2421 const char *propname = nvpair_name(pair);
2422 zfs_prop_t prop = zfs_name_to_prop(propname);
2423 int err = 0;

2425 /* decode the property value */
2426 propval = pair;
2427 if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
2428 nvlist_t *attrs;
2429 attrs = fnvpair_value_nvlist(pair);
2430 if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
2431 &propval) != 0)
2432 err = EINVAL;
2433 }

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 38

2435 /* Validate value type */
2436 if (err == 0 && prop == ZPROP_INVAL) {
2437 if (zfs_prop_user(propname)) {
2438 if (nvpair_type(propval) != DATA_TYPE_STRING)
2439 err = EINVAL;
2440 } else if (zfs_prop_userquota(propname)) {
2441 if (nvpair_type(propval) !=
2442 DATA_TYPE_UINT64_ARRAY)
2443 err = EINVAL;
2444 } else {
2445 err = EINVAL;
2446 }
2447 } else if (err == 0) {
2448 if (nvpair_type(propval) == DATA_TYPE_STRING) {
2449 if (zfs_prop_get_type(prop) != PROP_TYPE_STRING)
2450 err = EINVAL;
2451 } else if (nvpair_type(propval) == DATA_TYPE_UINT64) {
2452 const char *unused;

2454 intval = fnvpair_value_uint64(propval);

2456 switch (zfs_prop_get_type(prop)) {
2457 case PROP_TYPE_NUMBER:
2458 break;
2459 case PROP_TYPE_STRING:
2460 err = EINVAL;
2461 break;
2462 case PROP_TYPE_INDEX:
2463 if (zfs_prop_index_to_string(prop,
2464 intval, &unused) != 0)
2465 err = EINVAL;
2466 break;
2467 default:
2468 cmn_err(CE_PANIC,
2469 "unknown property type");
2470 }
2471 } else {
2472 err = EINVAL;
2473 }
2474 }

2476 /* Validate permissions */
2477 if (err == 0)
2478 err = zfs_check_settable(dsname, pair, CRED());

2480 if (err == 0) {
2481 err = zfs_prop_set_special(dsname, source, pair);
2482 if (err == -1) {
2483 /*
2484 * For better performance we build up a list of
2485 * properties to set in a single transaction.
2486 */
2487 err = nvlist_add_nvpair(genericnvl, pair);
2488 } else if (err != 0 && nvl != retrynvl) {
2489 /*
2490 * This may be a spurious error caused by
2491 * receiving quota and reservation out of order.
2492 * Try again in a second pass.
2493 */
2494 err = nvlist_add_nvpair(retrynvl, pair);
2495 }
2496 }

2498 if (err != 0) {
2499 if (errlist != NULL)
2500 fnvlist_add_int32(errlist, propname, err);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 39

2501 rv = err;
2502 }
2503 }

2505 if (nvl != retrynvl && !nvlist_empty(retrynvl)) {
2506 nvl = retrynvl;
2507 goto retry;
2508 }

2510 if (!nvlist_empty(genericnvl) &&
2511 dsl_props_set(dsname, source, genericnvl) != 0) {
2512 /*
2513 * If this fails, we still want to set as many properties as we
2514 * can, so try setting them individually.
2515 */
2516 pair = NULL;
2517 while ((pair = nvlist_next_nvpair(genericnvl, pair)) != NULL) {
2518 const char *propname = nvpair_name(pair);
2519 int err = 0;

2521 propval = pair;
2522 if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
2523 nvlist_t *attrs;
2524 attrs = fnvpair_value_nvlist(pair);
2525 propval = fnvlist_lookup_nvpair(attrs,
2526 ZPROP_VALUE);
2527 }

2529 if (nvpair_type(propval) == DATA_TYPE_STRING) {
2530 strval = fnvpair_value_string(propval);
2531 err = dsl_prop_set(dsname, propname, source, 1,
2532 strlen(strval) + 1, strval);
2533 } else {
2534 intval = fnvpair_value_uint64(propval);
2535 err = dsl_prop_set(dsname, propname, source, 8,
2536 1, &intval);
2537 }

2539 if (err != 0) {
2540 if (errlist != NULL) {
2541 fnvlist_add_int32(errlist, propname,
2542 err);
2543 }
2544 rv = err;
2545 }
2546 }
2547 }
2548 nvlist_free(genericnvl);
2549 nvlist_free(retrynvl);

2551 return (rv);
2552 }

2554 /*
2555 * Check that all the properties are valid user properties.
2556 */
2557 static int
2558 zfs_check_userprops(const char *fsname, nvlist_t *nvl)
2559 {
2560 nvpair_t *pair = NULL;
2561 int error = 0;

2563 while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) {
2564 const char *propname = nvpair_name(pair);
2565 char *valstr;

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 40

2567 if (!zfs_prop_user(propname) ||
2568 nvpair_type(pair) != DATA_TYPE_STRING)
2569 return (EINVAL);

2571 if (error = zfs_secpolicy_write_perms(fsname,
2572 ZFS_DELEG_PERM_USERPROP, CRED()))
2573 return (error);

2575 if (strlen(propname) >= ZAP_MAXNAMELEN)
2576 return (ENAMETOOLONG);

2578 VERIFY(nvpair_value_string(pair, &valstr) == 0);
2579 if (strlen(valstr) >= ZAP_MAXVALUELEN)
2580 return (E2BIG);
2581 }
2582 return (0);
2583 }

2585 static void
2586 props_skip(nvlist_t *props, nvlist_t *skipped, nvlist_t **newprops)
2587 {
2588 nvpair_t *pair;

2590 VERIFY(nvlist_alloc(newprops, NV_UNIQUE_NAME, KM_SLEEP) == 0);

2592 pair = NULL;
2593 while ((pair = nvlist_next_nvpair(props, pair)) != NULL) {
2594 if (nvlist_exists(skipped, nvpair_name(pair)))
2595 continue;

2597 VERIFY(nvlist_add_nvpair(*newprops, pair) == 0);
2598 }
2599 }

2601 static int
2602 clear_received_props(objset_t *os, const char *fs, nvlist_t *props,
2603 nvlist_t *skipped)
2604 {
2605 int err = 0;
2606 nvlist_t *cleared_props = NULL;
2607 props_skip(props, skipped, &cleared_props);
2608 if (!nvlist_empty(cleared_props)) {
2609 /*
2610 * Acts on local properties until the dataset has received
2611 * properties at least once on or after SPA_VERSION_RECVD_PROPS.
2612 */
2613 zprop_source_t flags = (ZPROP_SRC_NONE |
2614 (dsl_prop_get_hasrecvd(os) ? ZPROP_SRC_RECEIVED : 0));
2615 err = zfs_set_prop_nvlist(fs, flags, cleared_props, NULL);
2616 }
2617 nvlist_free(cleared_props);
2618 return (err);
2619 }

2621 /*
2622 * inputs:
2623 * zc_name name of filesystem
2624 * zc_value name of property to set
2625 * zc_nvlist_src{_size} nvlist of properties to apply
2626 * zc_cookie received properties flag
2627 *
2628 * outputs:
2629 * zc_nvlist_dst{_size} error for each unapplied received property
2630 */
2631 static int
2632 zfs_ioc_set_prop(zfs_cmd_t *zc)

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 41

2633 {
2634 nvlist_t *nvl;
2635 boolean_t received = zc->zc_cookie;
2636 zprop_source_t source = (received ? ZPROP_SRC_RECEIVED :
2637 ZPROP_SRC_LOCAL);
2638 nvlist_t *errors;
2639 int error;

2641 if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
2642 zc->zc_iflags, &nvl)) != 0)
2643 return (error);

2645 if (received) {
2646 nvlist_t *origprops;
2647 objset_t *os;

2649 if (dmu_objset_hold(zc->zc_name, FTAG, &os) == 0) {
2650 if (dsl_prop_get_received(os, &origprops) == 0) {
2651 (void) clear_received_props(os,
2652 zc->zc_name, origprops, nvl);
2653 nvlist_free(origprops);
2654 }

2656 dsl_prop_set_hasrecvd(os);
2657 dmu_objset_rele(os, FTAG);
2658 }
2659 }

2661 errors = fnvlist_alloc();
2662 error = zfs_set_prop_nvlist(zc->zc_name, source, nvl, errors);

2664 if (zc->zc_nvlist_dst != NULL && errors != NULL) {
2665 (void) put_nvlist(zc, errors);
2666 }

2668 nvlist_free(errors);
2669 nvlist_free(nvl);
2670 return (error);
2671 }

2673 /*
2674 * inputs:
2675 * zc_name name of filesystem
2676 * zc_value name of property to inherit
2677 * zc_cookie revert to received value if TRUE
2678 *
2679 * outputs: none
2680 */
2681 static int
2682 zfs_ioc_inherit_prop(zfs_cmd_t *zc)
2683 {
2684 const char *propname = zc->zc_value;
2685 zfs_prop_t prop = zfs_name_to_prop(propname);
2686 boolean_t received = zc->zc_cookie;
2687 zprop_source_t source = (received
2688 ? ZPROP_SRC_NONE /* revert to received value, if any */
2689 : ZPROP_SRC_INHERITED); /* explicitly inherit */

2691 if (received) {
2692 nvlist_t *dummy;
2693 nvpair_t *pair;
2694 zprop_type_t type;
2695 int err;

2697 /*
2698 * zfs_prop_set_special() expects properties in the form of an

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 42

2699 * nvpair with type info.
2700 */
2701 if (prop == ZPROP_INVAL) {
2702 if (!zfs_prop_user(propname))
2703 return (EINVAL);

2705 type = PROP_TYPE_STRING;
2706 } else if (prop == ZFS_PROP_VOLSIZE ||
2707 prop == ZFS_PROP_VERSION) {
2708 return (EINVAL);
2709 } else {
2710 type = zfs_prop_get_type(prop);
2711 }

2713 VERIFY(nvlist_alloc(&dummy, NV_UNIQUE_NAME, KM_SLEEP) == 0);

2715 switch (type) {
2716 case PROP_TYPE_STRING:
2717 VERIFY(0 == nvlist_add_string(dummy, propname, ""));
2718 break;
2719 case PROP_TYPE_NUMBER:
2720 case PROP_TYPE_INDEX:
2721 VERIFY(0 == nvlist_add_uint64(dummy, propname, 0));
2722 break;
2723 default:
2724 nvlist_free(dummy);
2725 return (EINVAL);
2726 }

2728 pair = nvlist_next_nvpair(dummy, NULL);
2729 err = zfs_prop_set_special(zc->zc_name, source, pair);
2730 nvlist_free(dummy);
2731 if (err != -1)
2732 return (err); /* special property already handled */
2733 } else {
2734 /*
2735 * Only check this in the non-received case. We want to allow
2736 * ’inherit -S’ to revert non-inheritable properties like quota
2737 * and reservation to the received or default values even though
2738 * they are not considered inheritable.
2739 */
2740 if (prop != ZPROP_INVAL && !zfs_prop_inheritable(prop))
2741 return (EINVAL);
2742 }

2744 /* property name has been validated by zfs_secpolicy_inherit_prop() */
2745 return (dsl_prop_set(zc->zc_name, zc->zc_value, source, 0, 0, NULL));
2746 }

2748 static int
2749 zfs_ioc_pool_set_props(zfs_cmd_t *zc)
2750 {
2751 nvlist_t *props;
2752 spa_t *spa;
2753 int error;
2754 nvpair_t *pair;

2756 if (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
2757 zc->zc_iflags, &props))
2758 return (error);

2760 /*
2761 * If the only property is the configfile, then just do a spa_lookup()
2762 * to handle the faulted case.
2763 */
2764 pair = nvlist_next_nvpair(props, NULL);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 43

2765 if (pair != NULL && strcmp(nvpair_name(pair),
2766 zpool_prop_to_name(ZPOOL_PROP_CACHEFILE)) == 0 &&
2767 nvlist_next_nvpair(props, pair) == NULL) {
2768 mutex_enter(&spa_namespace_lock);
2769 if ((spa = spa_lookup(zc->zc_name)) != NULL) {
2770 spa_configfile_set(spa, props, B_FALSE);
2771 spa_config_sync(spa, B_FALSE, B_TRUE);
2772 }
2773 mutex_exit(&spa_namespace_lock);
2774 if (spa != NULL) {
2775 nvlist_free(props);
2776 return (0);
2777 }
2778 }

2780 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) {
2781 nvlist_free(props);
2782 return (error);
2783 }

2785 error = spa_prop_set(spa, props);

2787 nvlist_free(props);
2788 spa_close(spa, FTAG);

2790 return (error);
2791 }

2793 static int
2794 zfs_ioc_pool_get_props(zfs_cmd_t *zc)
2795 {
2796 spa_t *spa;
2797 int error;
2798 nvlist_t *nvp = NULL;

2800 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) {
2801 /*
2802 * If the pool is faulted, there may be properties we can still
2803 * get (such as altroot and cachefile), so attempt to get them
2804 * anyway.
2805 */
2806 mutex_enter(&spa_namespace_lock);
2807 if ((spa = spa_lookup(zc->zc_name)) != NULL)
2808 error = spa_prop_get(spa, &nvp);
2809 mutex_exit(&spa_namespace_lock);
2810 } else {
2811 error = spa_prop_get(spa, &nvp);
2812 spa_close(spa, FTAG);
2813 }

2815 if (error == 0 && zc->zc_nvlist_dst != NULL)
2816 error = put_nvlist(zc, nvp);
2817 else
2818 error = EFAULT;

2820 nvlist_free(nvp);
2821 return (error);
2822 }

2824 /*
2825 * inputs:
2826 * zc_name name of filesystem
2827 * zc_nvlist_src{_size} nvlist of delegated permissions
2828 * zc_perm_action allow/unallow flag
2829 *
2830 * outputs: none

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 44

2831 */
2832 static int
2833 zfs_ioc_set_fsacl(zfs_cmd_t *zc)
2834 {
2835 int error;
2836 nvlist_t *fsaclnv = NULL;

2838 if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
2839 zc->zc_iflags, &fsaclnv)) != 0)
2840 return (error);

2842 /*
2843 * Verify nvlist is constructed correctly
2844 */
2845 if ((error = zfs_deleg_verify_nvlist(fsaclnv)) != 0) {
2846 nvlist_free(fsaclnv);
2847 return (EINVAL);
2848 }

2850 /*
2851 * If we don’t have PRIV_SYS_MOUNT, then validate
2852 * that user is allowed to hand out each permission in
2853 * the nvlist(s)
2854 */

2856 error = secpolicy_zfs(CRED());
2857 if (error) {
2858 if (zc->zc_perm_action == B_FALSE) {
2859 error = dsl_deleg_can_allow(zc->zc_name,
2860 fsaclnv, CRED());
2861 } else {
2862 error = dsl_deleg_can_unallow(zc->zc_name,
2863 fsaclnv, CRED());
2864 }
2865 }

2867 if (error == 0)
2868 error = dsl_deleg_set(zc->zc_name, fsaclnv, zc->zc_perm_action);

2870 nvlist_free(fsaclnv);
2871 return (error);
2872 }

2874 /*
2875 * inputs:
2876 * zc_name name of filesystem
2877 *
2878 * outputs:
2879 * zc_nvlist_src{_size} nvlist of delegated permissions
2880 */
2881 static int
2882 zfs_ioc_get_fsacl(zfs_cmd_t *zc)
2883 {
2884 nvlist_t *nvp;
2885 int error;

2887 if ((error = dsl_deleg_get(zc->zc_name, &nvp)) == 0) {
2888 error = put_nvlist(zc, nvp);
2889 nvlist_free(nvp);
2890 }

2892 return (error);
2893 }

2895 /*
2896 * Search the vfs list for a specified resource. Returns a pointer to it

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 45

2897 * or NULL if no suitable entry is found. The caller of this routine
2898 * is responsible for releasing the returned vfs pointer.
2899 */
2900 static vfs_t *
2901 zfs_get_vfs(const char *resource)
2902 {
2903 struct vfs *vfsp;
2904 struct vfs *vfs_found = NULL;

2906 vfs_list_read_lock();
2907 vfsp = rootvfs;
2908 do {
2909 if (strcmp(refstr_value(vfsp->vfs_resource), resource) == 0) {
2910 VFS_HOLD(vfsp);
2911 vfs_found = vfsp;
2912 break;
2913 }
2914 vfsp = vfsp->vfs_next;
2915 } while (vfsp != rootvfs);
2916 vfs_list_unlock();
2917 return (vfs_found);
2918 }

2920 /* ARGSUSED */
2921 static void
2922 zfs_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
2923 {
2924 zfs_creat_t *zct = arg;

2926 zfs_create_fs(os, cr, zct->zct_zplprops, tx);
2927 }

2929 #define ZFS_PROP_UNDEFINED ((uint64_t)-1)

2931 /*
2932 * inputs:
2933 * createprops list of properties requested by creator
2934 * default_zplver zpl version to use if unspecified in createprops
2935 * fuids_ok fuids allowed in this version of the spa?
2936 * os parent objset pointer (NULL if root fs)
2937 *
2938 * outputs:
2939 * zplprops values for the zplprops we attach to the master node object
2940 * is_ci true if requested file system will be purely case-insensitive
2941 *
2942 * Determine the settings for utf8only, normalization and
2943 * casesensitivity. Specific values may have been requested by the
2944 * creator and/or we can inherit values from the parent dataset. If
2945 * the file system is of too early a vintage, a creator can not
2946 * request settings for these properties, even if the requested
2947 * setting is the default value. We don’t actually want to create dsl
2948 * properties for these, so remove them from the source nvlist after
2949 * processing.
2950 */
2951 static int
2952 zfs_fill_zplprops_impl(objset_t *os, uint64_t zplver,
2953 boolean_t fuids_ok, boolean_t sa_ok, nvlist_t *createprops,
2954 nvlist_t *zplprops, boolean_t *is_ci)
2955 {
2956 uint64_t sense = ZFS_PROP_UNDEFINED;
2957 uint64_t norm = ZFS_PROP_UNDEFINED;
2958 uint64_t u8 = ZFS_PROP_UNDEFINED;

2960 ASSERT(zplprops != NULL);

2962 /*

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 46

2963 * Pull out creator prop choices, if any.
2964 */
2965 if (createprops) {
2966 (void) nvlist_lookup_uint64(createprops,
2967 zfs_prop_to_name(ZFS_PROP_VERSION), &zplver);
2968 (void) nvlist_lookup_uint64(createprops,
2969 zfs_prop_to_name(ZFS_PROP_NORMALIZE), &norm);
2970 (void) nvlist_remove_all(createprops,
2971 zfs_prop_to_name(ZFS_PROP_NORMALIZE));
2972 (void) nvlist_lookup_uint64(createprops,
2973 zfs_prop_to_name(ZFS_PROP_UTF8ONLY), &u8);
2974 (void) nvlist_remove_all(createprops,
2975 zfs_prop_to_name(ZFS_PROP_UTF8ONLY));
2976 (void) nvlist_lookup_uint64(createprops,
2977 zfs_prop_to_name(ZFS_PROP_CASE), &sense);
2978 (void) nvlist_remove_all(createprops,
2979 zfs_prop_to_name(ZFS_PROP_CASE));
2980 }

2982 /*
2983 * If the zpl version requested is whacky or the file system
2984 * or pool is version is too "young" to support normalization
2985 * and the creator tried to set a value for one of the props,
2986 * error out.
2987 */
2988 if ((zplver < ZPL_VERSION_INITIAL || zplver > ZPL_VERSION) ||
2989 (zplver >= ZPL_VERSION_FUID && !fuids_ok) ||
2990 (zplver >= ZPL_VERSION_SA && !sa_ok) ||
2991 (zplver < ZPL_VERSION_NORMALIZATION &&
2992 (norm != ZFS_PROP_UNDEFINED || u8 != ZFS_PROP_UNDEFINED ||
2993 sense != ZFS_PROP_UNDEFINED)))
2994 return (ENOTSUP);

2996 /*
2997 * Put the version in the zplprops
2998 */
2999 VERIFY(nvlist_add_uint64(zplprops,
3000 zfs_prop_to_name(ZFS_PROP_VERSION), zplver) == 0);

3002 if (norm == ZFS_PROP_UNDEFINED)
3003 VERIFY(zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &norm) == 0);
3004 VERIFY(nvlist_add_uint64(zplprops,
3005 zfs_prop_to_name(ZFS_PROP_NORMALIZE), norm) == 0);

3007 /*
3008 * If we’re normalizing, names must always be valid UTF-8 strings.
3009 */
3010 if (norm)
3011 u8 = 1;
3012 if (u8 == ZFS_PROP_UNDEFINED)
3013 VERIFY(zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &u8) == 0);
3014 VERIFY(nvlist_add_uint64(zplprops,
3015 zfs_prop_to_name(ZFS_PROP_UTF8ONLY), u8) == 0);

3017 if (sense == ZFS_PROP_UNDEFINED)
3018 VERIFY(zfs_get_zplprop(os, ZFS_PROP_CASE, &sense) == 0);
3019 VERIFY(nvlist_add_uint64(zplprops,
3020 zfs_prop_to_name(ZFS_PROP_CASE), sense) == 0);

3022 if (is_ci)
3023 *is_ci = (sense == ZFS_CASE_INSENSITIVE);

3025 return (0);
3026 }

3028 static int

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 47

3029 zfs_fill_zplprops(const char *dataset, nvlist_t *createprops,
3030 nvlist_t *zplprops, boolean_t *is_ci)
3031 {
3032 boolean_t fuids_ok, sa_ok;
3033 uint64_t zplver = ZPL_VERSION;
3034 objset_t *os = NULL;
3035 char parentname[MAXNAMELEN];
3036 char *cp;
3037 spa_t *spa;
3038 uint64_t spa_vers;
3039 int error;

3041 (void) strlcpy(parentname, dataset, sizeof (parentname));
3042 cp = strrchr(parentname, ’/’);
3043 ASSERT(cp != NULL);
3044 cp[0] = ’\0’;

3046 if ((error = spa_open(dataset, &spa, FTAG)) != 0)
3047 return (error);

3049 spa_vers = spa_version(spa);
3050 spa_close(spa, FTAG);

3052 zplver = zfs_zpl_version_map(spa_vers);
3053 fuids_ok = (zplver >= ZPL_VERSION_FUID);
3054 sa_ok = (zplver >= ZPL_VERSION_SA);

3056 /*
3057 * Open parent object set so we can inherit zplprop values.
3058 */
3059 if ((error = dmu_objset_hold(parentname, FTAG, &os)) != 0)
3060 return (error);

3062 error = zfs_fill_zplprops_impl(os, zplver, fuids_ok, sa_ok, createprops,
3063 zplprops, is_ci);
3064 dmu_objset_rele(os, FTAG);
3065 return (error);
3066 }

3068 static int
3069 zfs_fill_zplprops_root(uint64_t spa_vers, nvlist_t *createprops,
3070 nvlist_t *zplprops, boolean_t *is_ci)
3071 {
3072 boolean_t fuids_ok;
3073 boolean_t sa_ok;
3074 uint64_t zplver = ZPL_VERSION;
3075 int error;

3077 zplver = zfs_zpl_version_map(spa_vers);
3078 fuids_ok = (zplver >= ZPL_VERSION_FUID);
3079 sa_ok = (zplver >= ZPL_VERSION_SA);

3081 error = zfs_fill_zplprops_impl(NULL, zplver, fuids_ok, sa_ok,
3082 createprops, zplprops, is_ci);
3083 return (error);
3084 }

3086 /*
3087 * innvl: {
3088 * "type" -> dmu_objset_type_t (int32)
3089 * (optional) "props" -> { prop -> value }
3090 * }
3091 *
3092 * outnvl: propname -> error code (int32)
3093 */
3094 static int

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 48

3095 zfs_ioc_create(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl)
3096 {
3097 int error = 0;
3098 zfs_creat_t zct = { 0 };
3099 nvlist_t *nvprops = NULL;
3100 void (*cbfunc)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx);
3101 int32_t type32;
3102 dmu_objset_type_t type;
3103 boolean_t is_insensitive = B_FALSE;

3105 if (nvlist_lookup_int32(innvl, "type", &type32) != 0)
3106 return (EINVAL);
3107 type = type32;
3108 (void) nvlist_lookup_nvlist(innvl, "props", &nvprops);

3110 switch (type) {
3111 case DMU_OST_ZFS:
3112 cbfunc = zfs_create_cb;
3113 break;

3115 case DMU_OST_ZVOL:
3116 cbfunc = zvol_create_cb;
3117 break;

3119 default:
3120 cbfunc = NULL;
3121 break;
3122 }
3123 if (strchr(fsname, ’@’) ||
3124 strchr(fsname, ’%’))
3125 return (EINVAL);

3127 zct.zct_props = nvprops;

3129 if (cbfunc == NULL)
3130 return (EINVAL);

3132 if (type == DMU_OST_ZVOL) {
3133 uint64_t volsize, volblocksize;

3135 if (nvprops == NULL)
3136 return (EINVAL);
3137 if (nvlist_lookup_uint64(nvprops,
3138 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) != 0)
3139 return (EINVAL);

3141 if ((error = nvlist_lookup_uint64(nvprops,
3142 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
3143 &volblocksize)) != 0 && error != ENOENT)
3144 return (EINVAL);

3146 if (error != 0)
3147 volblocksize = zfs_prop_default_numeric(
3148 ZFS_PROP_VOLBLOCKSIZE);

3150 if ((error = zvol_check_volblocksize(
3151 volblocksize)) != 0 ||
3152 (error = zvol_check_volsize(volsize,
3153 volblocksize)) != 0)
3154 return (error);
3155 } else if (type == DMU_OST_ZFS) {
3156 int error;

3158 /*
3159 * We have to have normalization and
3160 * case-folding flags correct when we do the

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 49

3161 * file system creation, so go figure them out
3162 * now.
3163 */
3164 VERIFY(nvlist_alloc(&zct.zct_zplprops,
3165 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3166 error = zfs_fill_zplprops(fsname, nvprops,
3167 zct.zct_zplprops, &is_insensitive);
3168 if (error != 0) {
3169 nvlist_free(zct.zct_zplprops);
3170 return (error);
3171 }
3172 }

3174 error = dmu_objset_create(fsname, type,
3175 is_insensitive ? DS_FLAG_CI_DATASET : 0, cbfunc, &zct);
3176 nvlist_free(zct.zct_zplprops);

3178 /*
3179 * It would be nice to do this atomically.
3180 */
3181 if (error == 0) {
3182 error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL,
3183 nvprops, outnvl);
3184 if (error != 0)
3185 (void) dmu_objset_destroy(fsname, B_FALSE);
3186 }
3187 return (error);
3188 }

3190 /*
3191 * innvl: {
3192 * "origin" -> name of origin snapshot
3193 * (optional) "props" -> { prop -> value }
3194 * }
3195 *
3196 * outnvl: propname -> error code (int32)
3197 */
3198 static int
3199 zfs_ioc_clone(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl)
3200 {
3201 int error = 0;
3202 nvlist_t *nvprops = NULL;
3203 char *origin_name;
3204 dsl_dataset_t *origin;

3206 if (nvlist_lookup_string(innvl, "origin", &origin_name) != 0)
3207 return (EINVAL);
3208 (void) nvlist_lookup_nvlist(innvl, "props", &nvprops);

3210 if (strchr(fsname, ’@’) ||
3211 strchr(fsname, ’%’))
3212 return (EINVAL);

3214 if (dataset_namecheck(origin_name, NULL, NULL) != 0)
3215 return (EINVAL);

3217 error = dsl_dataset_hold(origin_name, FTAG, &origin);
3218 if (error)
3219 return (error);

3221 error = dmu_objset_clone(fsname, origin, 0);
3222 dsl_dataset_rele(origin, FTAG);
3223 if (error)
3224 return (error);

3226 /*

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 50

3227 * It would be nice to do this atomically.
3228 */
3229 if (error == 0) {
3230 error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL,
3231 nvprops, outnvl);
3232 if (error != 0)
3233 (void) dmu_objset_destroy(fsname, B_FALSE);
3234 }
3235 return (error);
3236 }

3238 /*
3239 * innvl: {
3240 * "snaps" -> { snapshot1, snapshot2 }
3241 * (optional) "props" -> { prop -> value (string) }
3242 * }
3243 *
3244 * outnvl: snapshot -> error code (int32)
3245 *
3246 */
3247 static int
3248 zfs_ioc_snapshot(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl)
3249 {
3250 nvlist_t *snaps;
3251 nvlist_t *props = NULL;
3252 int error, poollen;
3253 nvpair_t *pair;

3255 (void) nvlist_lookup_nvlist(innvl, "props", &props);
3256 if ((error = zfs_check_userprops(poolname, props)) != 0)
3257 return (error);

3259 if (!nvlist_empty(props) &&
3260 zfs_earlier_version(poolname, SPA_VERSION_SNAP_PROPS))
3261 return (ENOTSUP);

3263 if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0)
3264 return (EINVAL);
3265 poollen = strlen(poolname);
3266 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
3267 pair = nvlist_next_nvpair(snaps, pair)) {
3268 const char *name = nvpair_name(pair);
3269 const char *cp = strchr(name, ’@’);

3271 /*
3272 * The snap name must contain an @, and the part after it must
3273 * contain only valid characters.
3274 */
3275 if (cp == NULL || snapshot_namecheck(cp + 1, NULL, NULL) != 0)
3276 return (EINVAL);

3278 /*
3279 * The snap must be in the specified pool.
3280 */
3281 if (strncmp(name, poolname, poollen) != 0 ||
3282 (name[poollen] != ’/’ && name[poollen] != ’@’))
3283 return (EXDEV);

3285 /* This must be the only snap of this fs. */
3286 for (nvpair_t *pair2 = nvlist_next_nvpair(snaps, pair);
3287 pair2 != NULL; pair2 = nvlist_next_nvpair(snaps, pair2)) {
3288 if (strncmp(name, nvpair_name(pair2), cp - name + 1)
3289 == 0) {
3290 return (EXDEV);
3291 }
3292 }

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 51

3293 }

3295 error = dmu_objset_snapshot(snaps, props, outnvl);
3296 return (error);
3297 }

3299 /*
3300 * innvl: "message" -> string
3301 */
3302 /* ARGSUSED */
3303 static int
3304 zfs_ioc_log_history(const char *unused, nvlist_t *innvl, nvlist_t *outnvl)
3305 {
3306 char *message;
3307 spa_t *spa;
3308 int error;
3309 char *poolname;

3311 /*
3312 * The poolname in the ioctl is not set, we get it from the TSD,
3313 * which was set at the end of the last successful ioctl that allows
3314 * logging. The secpolicy func already checked that it is set.
3315 * Only one log ioctl is allowed after each successful ioctl, so
3316 * we clear the TSD here.
3317 */
3318 poolname = tsd_get(zfs_allow_log_key);
3319 (void) tsd_set(zfs_allow_log_key, NULL);
3320 error = spa_open(poolname, &spa, FTAG);
3321 strfree(poolname);
3322 if (error != 0)
3323 return (error);

3325 if (nvlist_lookup_string(innvl, "message", &message) != 0) {
3326 spa_close(spa, FTAG);
3327 return (EINVAL);
3328 }

3330 if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) {
3331 spa_close(spa, FTAG);
3332 return (ENOTSUP);
3333 }

3335 error = spa_history_log(spa, message);
3336 spa_close(spa, FTAG);
3337 return (error);
3338 }

3340 /* ARGSUSED */
3341 int
3342 zfs_unmount_snap(const char *name, void *arg)
3343 {
3344 vfs_t *vfsp;
3345 int err;

3347 if (strchr(name, ’@’) == NULL)
3348 return (0);

3350 vfsp = zfs_get_vfs(name);
3351 if (vfsp == NULL)
3352 return (0);

3354 if ((err = vn_vfswlock(vfsp->vfs_vnodecovered)) != 0) {
3355 VFS_RELE(vfsp);
3356 return (err);
3357 }
3358 VFS_RELE(vfsp);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 52

3360 /*
3361 * Always force the unmount for snapshots.
3362 */
3363 return (dounmount(vfsp, MS_FORCE, kcred));
3364 }

3366 /*
3367 * innvl: {
3368 * "snaps" -> { snapshot1, snapshot2 }
3369 * (optional boolean) "defer"
3370 * }
3371 *
3372 * outnvl: snapshot -> error code (int32)
3373 *
3374 */
3375 static int
3376 zfs_ioc_destroy_snaps(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl)
3377 {
3378 int poollen;
3379 nvlist_t *snaps;
3380 nvpair_t *pair;
3381 boolean_t defer;

3383 if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0)
3384 return (EINVAL);
3385 defer = nvlist_exists(innvl, "defer");

3387 poollen = strlen(poolname);
3388 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
3389 pair = nvlist_next_nvpair(snaps, pair)) {
3390 const char *name = nvpair_name(pair);

3392 /*
3393 * The snap must be in the specified pool.
3394 */
3395 if (strncmp(name, poolname, poollen) != 0 ||
3396 (name[poollen] != ’/’ && name[poollen] != ’@’))
3397 return (EXDEV);

3399 /*
3400 * Ignore failures to unmount; dmu_snapshots_destroy_nvl()
3401 * will deal with this gracefully (by filling in outnvl).
3402 */
3403 (void) zfs_unmount_snap(name, NULL);
3404 }

3406 return (dmu_snapshots_destroy_nvl(snaps, defer, outnvl));
3407 }

3409 /*
3410 * inputs:
3411 * zc_name name of dataset to destroy
3412 * zc_objset_type type of objset
3413 * zc_defer_destroy mark for deferred destroy
3414 *
3415 * outputs: none
3416 */
3417 static int
3418 zfs_ioc_destroy(zfs_cmd_t *zc)
3419 {
3420 int err;
3421 if (strchr(zc->zc_name, ’@’) && zc->zc_objset_type == DMU_OST_ZFS) {
3422 err = zfs_unmount_snap(zc->zc_name, NULL);
3423 if (err)
3424 return (err);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 53

3425 }

3427 err = dmu_objset_destroy(zc->zc_name, zc->zc_defer_destroy);
3428 if (zc->zc_objset_type == DMU_OST_ZVOL && err == 0)
3429 (void) zvol_remove_minor(zc->zc_name);
3430 return (err);
3431 }

3433 /*
3434 * inputs:
3435 * zc_name name of dataset to rollback (to most recent snapshot)
3436 *
3437 * outputs: none
3438 */
3439 static int
3440 zfs_ioc_rollback(zfs_cmd_t *zc)
3441 {
3442 dsl_dataset_t *ds, *clone;
3443 int error;
3444 zfsvfs_t *zfsvfs;
3445 char *clone_name;

3447 error = dsl_dataset_hold(zc->zc_name, FTAG, &ds);
3448 if (error)
3449 return (error);

3451 /* must not be a snapshot */
3452 if (dsl_dataset_is_snapshot(ds)) {
3453 dsl_dataset_rele(ds, FTAG);
3454 return (EINVAL);
3455 }

3457 /* must have a most recent snapshot */
3458 if (ds->ds_phys->ds_prev_snap_txg < TXG_INITIAL) {
3459 dsl_dataset_rele(ds, FTAG);
3460 return (EINVAL);
3461 }

3463 /*
3464 * Create clone of most recent snapshot.
3465 */
3466 clone_name = kmem_asprintf("%s/%%rollback", zc->zc_name);
3467 error = dmu_objset_clone(clone_name, ds->ds_prev, DS_FLAG_INCONSISTENT);
3468 if (error)
3469 goto out;

3471 error = dsl_dataset_own(clone_name, B_TRUE, FTAG, &clone);
3472 if (error)
3473 goto out;

3475 /*
3476 * Do clone swap.
3477 */
3478 if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) {
3479 error = zfs_suspend_fs(zfsvfs);
3480 if (error == 0) {
3481 int resume_err;

3483 if (dsl_dataset_tryown(ds, B_FALSE, FTAG)) {
3484 error = dsl_dataset_clone_swap(clone, ds,
3485 B_TRUE);
3486 dsl_dataset_disown(ds, FTAG);
3487 ds = NULL;
3488 } else {
3489 error = EBUSY;
3490 }

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 54

3491 resume_err = zfs_resume_fs(zfsvfs, zc->zc_name);
3492 error = error ? error : resume_err;
3493 }
3494 VFS_RELE(zfsvfs->z_vfs);
3495 } else {
3496 if (dsl_dataset_tryown(ds, B_FALSE, FTAG)) {
3497 error = dsl_dataset_clone_swap(clone, ds, B_TRUE);
3498 dsl_dataset_disown(ds, FTAG);
3499 ds = NULL;
3500 } else {
3501 error = EBUSY;
3502 }
3503 }

3505 /*
3506 * Destroy clone (which also closes it).
3507 */
3508 (void) dsl_dataset_destroy(clone, FTAG, B_FALSE);

3510 out:
3511 strfree(clone_name);
3512 if (ds)
3513 dsl_dataset_rele(ds, FTAG);
3514 return (error);
3515 }

3517 /*
3518 * inputs:
3519 * zc_name old name of dataset
3520 * zc_value new name of dataset
3521 * zc_cookie recursive flag (only valid for snapshots)
3522 *
3523 * outputs: none
3524 */
3525 static int
3526 zfs_ioc_rename(zfs_cmd_t *zc)
3527 {
3528 boolean_t recursive = zc->zc_cookie & 1;

3530 zc->zc_value[sizeof (zc->zc_value) - 1] = ’\0’;
3531 if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 ||
3532 strchr(zc->zc_value, ’%’))
3533 return (EINVAL);

3535 /*
3536 * Unmount snapshot unless we’re doing a recursive rename,
3537 * in which case the dataset code figures out which snapshots
3538 * to unmount.
3539 */
3540 if (!recursive && strchr(zc->zc_name, ’@’) != NULL &&
3541 zc->zc_objset_type == DMU_OST_ZFS) {
3542 int err = zfs_unmount_snap(zc->zc_name, NULL);
3543 if (err)
3544 return (err);
3545 }
3546 if (zc->zc_objset_type == DMU_OST_ZVOL)
3547 (void) zvol_remove_minor(zc->zc_name);
3548 return (dmu_objset_rename(zc->zc_name, zc->zc_value, recursive));
3549 }

3551 static int
3552 zfs_check_settable(const char *dsname, nvpair_t *pair, cred_t *cr)
3553 {
3554 const char *propname = nvpair_name(pair);
3555 boolean_t issnap = (strchr(dsname, ’@’) != NULL);
3556 zfs_prop_t prop = zfs_name_to_prop(propname);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 55

3557 uint64_t intval;
3558 int err;

3560 if (prop == ZPROP_INVAL) {
3561 if (zfs_prop_user(propname)) {
3562 if (err = zfs_secpolicy_write_perms(dsname,
3563 ZFS_DELEG_PERM_USERPROP, cr))
3564 return (err);
3565 return (0);
3566 }

3568 if (!issnap && zfs_prop_userquota(propname)) {
3569 const char *perm = NULL;
3570 const char *uq_prefix =
3571 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA];
3572 const char *gq_prefix =
3573 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA];

3575 if (strncmp(propname, uq_prefix,
3576 strlen(uq_prefix)) == 0) {
3577 perm = ZFS_DELEG_PERM_USERQUOTA;
3578 } else if (strncmp(propname, gq_prefix,
3579 strlen(gq_prefix)) == 0) {
3580 perm = ZFS_DELEG_PERM_GROUPQUOTA;
3581 } else {
3582 /* USERUSED and GROUPUSED are read-only */
3583 return (EINVAL);
3584 }

3586 if (err = zfs_secpolicy_write_perms(dsname, perm, cr))
3587 return (err);
3588 return (0);
3589 }

3591 return (EINVAL);
3592 }

3594 if (issnap)
3595 return (EINVAL);

3597 if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
3598 /*
3599 * dsl_prop_get_all_impl() returns properties in this
3600 * format.
3601 */
3602 nvlist_t *attrs;
3603 VERIFY(nvpair_value_nvlist(pair, &attrs) == 0);
3604 VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
3605 &pair) == 0);
3606 }

3608 /*
3609 * Check that this value is valid for this pool version
3610 */
3611 switch (prop) {
3612 case ZFS_PROP_COMPRESSION:
3613 /*
3614 * If the user specified gzip compression, make sure
3615 * the SPA supports it. We ignore any errors here since
3616 * we’ll catch them later.
3617 */
3618 if (nvpair_type(pair) == DATA_TYPE_UINT64 &&
3619 nvpair_value_uint64(pair, &intval) == 0) {
3620 if (intval >= ZIO_COMPRESS_GZIP_1 &&
3621 intval <= ZIO_COMPRESS_GZIP_9 &&
3622 zfs_earlier_version(dsname,

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 56

3623 SPA_VERSION_GZIP_COMPRESSION)) {
3624 return (ENOTSUP);
3625 }

3627 if (intval == ZIO_COMPRESS_ZLE &&
3628 zfs_earlier_version(dsname,
3629 SPA_VERSION_ZLE_COMPRESSION))
3630 return (ENOTSUP);

3632 /*
3633 * If this is a bootable dataset then
3634 * verify that the compression algorithm
3635 * is supported for booting. We must return
3636 * something other than ENOTSUP since it
3637 * implies a downrev pool version.
3638 */
3639 if (zfs_is_bootfs(dsname) &&
3640 !BOOTFS_COMPRESS_VALID(intval)) {
3641 return (ERANGE);
3642 }
3643 }
3644 break;

3646 case ZFS_PROP_COPIES:
3647 if (zfs_earlier_version(dsname, SPA_VERSION_DITTO_BLOCKS))
3648 return (ENOTSUP);
3649 break;

3651 case ZFS_PROP_DEDUP:
3652 if (zfs_earlier_version(dsname, SPA_VERSION_DEDUP))
3653 return (ENOTSUP);
3654 break;

3656 case ZFS_PROP_SHARESMB:
3657 if (zpl_earlier_version(dsname, ZPL_VERSION_FUID))
3658 return (ENOTSUP);
3659 break;

3661 case ZFS_PROP_ACLINHERIT:
3662 if (nvpair_type(pair) == DATA_TYPE_UINT64 &&
3663 nvpair_value_uint64(pair, &intval) == 0) {
3664 if (intval == ZFS_ACL_PASSTHROUGH_X &&
3665 zfs_earlier_version(dsname,
3666 SPA_VERSION_PASSTHROUGH_X))
3667 return (ENOTSUP);
3668 }
3669 break;
3670 }

3672 return (zfs_secpolicy_setprop(dsname, prop, pair, CRED()));
3673 }

3675 /*
3676 * Removes properties from the given props list that fail permission checks
3677 * needed to clear them and to restore them in case of a receive error. For each
3678 * property, make sure we have both set and inherit permissions.
3679 *
3680 * Returns the first error encountered if any permission checks fail. If the
3681 * caller provides a non-NULL errlist, it also gives the complete list of names
3682 * of all the properties that failed a permission check along with the
3683 * corresponding error numbers. The caller is responsible for freeing the
3684 * returned errlist.
3685 *
3686 * If every property checks out successfully, zero is returned and the list
3687 * pointed at by errlist is NULL.
3688 */

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 57

3689 static int
3690 zfs_check_clearable(char *dataset, nvlist_t *props, nvlist_t **errlist)
3691 {
3692 zfs_cmd_t *zc;
3693 nvpair_t *pair, *next_pair;
3694 nvlist_t *errors;
3695 int err, rv = 0;

3697 if (props == NULL)
3698 return (0);

3700 VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0);

3702 zc = kmem_alloc(sizeof (zfs_cmd_t), KM_SLEEP);
3703 (void) strcpy(zc->zc_name, dataset);
3704 pair = nvlist_next_nvpair(props, NULL);
3705 while (pair != NULL) {
3706 next_pair = nvlist_next_nvpair(props, pair);

3708 (void) strcpy(zc->zc_value, nvpair_name(pair));
3709 if ((err = zfs_check_settable(dataset, pair, CRED())) != 0 ||
3710 (err = zfs_secpolicy_inherit_prop(zc, NULL, CRED())) != 0) {
3711 VERIFY(nvlist_remove_nvpair(props, pair) == 0);
3712 VERIFY(nvlist_add_int32(errors,
3713 zc->zc_value, err) == 0);
3714 }
3715 pair = next_pair;
3716 }
3717 kmem_free(zc, sizeof (zfs_cmd_t));

3719 if ((pair = nvlist_next_nvpair(errors, NULL)) == NULL) {
3720 nvlist_free(errors);
3721 errors = NULL;
3722 } else {
3723 VERIFY(nvpair_value_int32(pair, &rv) == 0);
3724 }

3726 if (errlist == NULL)
3727 nvlist_free(errors);
3728 else
3729 *errlist = errors;

3731 return (rv);
3732 }

3734 static boolean_t
3735 propval_equals(nvpair_t *p1, nvpair_t *p2)
3736 {
3737 if (nvpair_type(p1) == DATA_TYPE_NVLIST) {
3738 /* dsl_prop_get_all_impl() format */
3739 nvlist_t *attrs;
3740 VERIFY(nvpair_value_nvlist(p1, &attrs) == 0);
3741 VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
3742 &p1) == 0);
3743 }

3745 if (nvpair_type(p2) == DATA_TYPE_NVLIST) {
3746 nvlist_t *attrs;
3747 VERIFY(nvpair_value_nvlist(p2, &attrs) == 0);
3748 VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
3749 &p2) == 0);
3750 }

3752 if (nvpair_type(p1) != nvpair_type(p2))
3753 return (B_FALSE);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 58

3755 if (nvpair_type(p1) == DATA_TYPE_STRING) {
3756 char *valstr1, *valstr2;

3758 VERIFY(nvpair_value_string(p1, (char **)&valstr1) == 0);
3759 VERIFY(nvpair_value_string(p2, (char **)&valstr2) == 0);
3760 return (strcmp(valstr1, valstr2) == 0);
3761 } else {
3762 uint64_t intval1, intval2;

3764 VERIFY(nvpair_value_uint64(p1, &intval1) == 0);
3765 VERIFY(nvpair_value_uint64(p2, &intval2) == 0);
3766 return (intval1 == intval2);
3767 }
3768 }

3770 /*
3771 * Remove properties from props if they are not going to change (as determined
3772 * by comparison with origprops). Remove them from origprops as well, since we
3773 * do not need to clear or restore properties that won’t change.
3774 */
3775 static void
3776 props_reduce(nvlist_t *props, nvlist_t *origprops)
3777 {
3778 nvpair_t *pair, *next_pair;

3780 if (origprops == NULL)
3781 return; /* all props need to be received */

3783 pair = nvlist_next_nvpair(props, NULL);
3784 while (pair != NULL) {
3785 const char *propname = nvpair_name(pair);
3786 nvpair_t *match;

3788 next_pair = nvlist_next_nvpair(props, pair);

3790 if ((nvlist_lookup_nvpair(origprops, propname,
3791 &match) != 0) || !propval_equals(pair, match))
3792 goto next; /* need to set received value */

3794 /* don’t clear the existing received value */
3795 (void) nvlist_remove_nvpair(origprops, match);
3796 /* don’t bother receiving the property */
3797 (void) nvlist_remove_nvpair(props, pair);
3798 next:
3799 pair = next_pair;
3800 }
3801 }

3803 #ifdef DEBUG
3804 static boolean_t zfs_ioc_recv_inject_err;
3805 #endif

3807 /*
3808 * inputs:
3809 * zc_name name of containing filesystem
3810 * zc_nvlist_src{_size} nvlist of properties to apply
3811 * zc_value name of snapshot to create
3812 * zc_string name of clone origin (if DRR_FLAG_CLONE)
3813 * zc_cookie file descriptor to recv from
3814 * zc_begin_record the BEGIN record of the stream (not byteswapped)
3815 * zc_guid force flag
3816 * zc_cleanup_fd cleanup-on-exit file descriptor
3817 * zc_action_handle handle for this guid/ds mapping (or zero on first call)
3818 *
3819 * outputs:
3820 * zc_cookie number of bytes read

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 59

3821 * zc_nvlist_dst{_size} error for each unapplied received property
3822 * zc_obj zprop_errflags_t
3823 * zc_action_handle handle for this guid/ds mapping
3824 */
3825 static int
3826 zfs_ioc_recv(zfs_cmd_t *zc)
3827 {
3828 file_t *fp;
3829 objset_t *os;
3830 dmu_recv_cookie_t drc;
3831 boolean_t force = (boolean_t)zc->zc_guid;
3832 int fd;
3833 int error = 0;
3834 int props_error = 0;
3835 nvlist_t *errors;
3836 offset_t off;
3837 nvlist_t *props = NULL; /* sent properties */
3838 nvlist_t *origprops = NULL; /* existing properties */
3839 objset_t *origin = NULL;
3840 char *tosnap;
3841 char tofs[ZFS_MAXNAMELEN];
3842 boolean_t first_recvd_props = B_FALSE;

3844 if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 ||
3845 strchr(zc->zc_value, ’@’) == NULL ||
3846 strchr(zc->zc_value, ’%’))
3847 return (EINVAL);

3849 (void) strcpy(tofs, zc->zc_value);
3850 tosnap = strchr(tofs, ’@’);
3851 *tosnap++ = ’\0’;

3853 if (zc->zc_nvlist_src != NULL &&
3854 (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
3855 zc->zc_iflags, &props)) != 0)
3856 return (error);

3858 fd = zc->zc_cookie;
3859 fp = getf(fd);
3860 if (fp == NULL) {
3861 nvlist_free(props);
3862 return (EBADF);
3863 }

3865 VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0);

3867 if (props && dmu_objset_hold(tofs, FTAG, &os) == 0) {
3868 if ((spa_version(os->os_spa) >= SPA_VERSION_RECVD_PROPS) &&
3869 !dsl_prop_get_hasrecvd(os)) {
3870 first_recvd_props = B_TRUE;
3871 }

3873 /*
3874 * If new received properties are supplied, they are to
3875 * completely replace the existing received properties, so stash
3876 * away the existing ones.
3877 */
3878 if (dsl_prop_get_received(os, &origprops) == 0) {
3879 nvlist_t *errlist = NULL;
3880 /*
3881 * Don’t bother writing a property if its value won’t
3882 * change (and avoid the unnecessary security checks).
3883 *
3884 * The first receive after SPA_VERSION_RECVD_PROPS is a
3885 * special case where we blow away all local properties
3886 * regardless.

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 60

3887 */
3888 if (!first_recvd_props)
3889 props_reduce(props, origprops);
3890 if (zfs_check_clearable(tofs, origprops,
3891 &errlist) != 0)
3892 (void) nvlist_merge(errors, errlist, 0);
3893 nvlist_free(errlist);
3894 }

3896 dmu_objset_rele(os, FTAG);
3897 }

3899 if (zc->zc_string[0]) {
3900 error = dmu_objset_hold(zc->zc_string, FTAG, &origin);
3901 if (error)
3902 goto out;
3903 }

3905 error = dmu_recv_begin(tofs, tosnap, zc->zc_top_ds,
3906 &zc->zc_begin_record, force, origin, &drc);
3907 if (origin)
3908 dmu_objset_rele(origin, FTAG);
3909 if (error)
3910 goto out;

3912 /*
3913 * Set properties before we receive the stream so that they are applied
3914 * to the new data. Note that we must call dmu_recv_stream() if
3915 * dmu_recv_begin() succeeds.
3916 */
3917 if (props) {
3918 if (dmu_objset_from_ds(drc.drc_logical_ds, &os) == 0) {
3919 if (drc.drc_newfs) {
3920 if (spa_version(os->os_spa) >=
3921 SPA_VERSION_RECVD_PROPS)
3922 first_recvd_props = B_TRUE;
3923 } else if (origprops != NULL) {
3924 if (clear_received_props(os, tofs, origprops,
3925 first_recvd_props ? NULL : props) != 0)
3926 zc->zc_obj |= ZPROP_ERR_NOCLEAR;
3927 } else {
3928 zc->zc_obj |= ZPROP_ERR_NOCLEAR;
3929 }
3930 dsl_prop_set_hasrecvd(os);
3931 } else if (!drc.drc_newfs) {
3932 zc->zc_obj |= ZPROP_ERR_NOCLEAR;
3933 }

3935 (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEIVED,
3936 props, errors);
3937 }

3939 if (zc->zc_nvlist_dst_size != 0 &&
3940 (nvlist_smush(errors, zc->zc_nvlist_dst_size) != 0 ||
3941 put_nvlist(zc, errors) != 0)) {
3942 /*
3943 * Caller made zc->zc_nvlist_dst less than the minimum expected
3944 * size or supplied an invalid address.
3945 */
3946 props_error = EINVAL;
3947 }

3949 off = fp->f_offset;
3950 error = dmu_recv_stream(&drc, fp->f_vnode, &off, zc->zc_cleanup_fd,
3951 &zc->zc_action_handle);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 61

3953 if (error == 0) {
3954 zfsvfs_t *zfsvfs = NULL;

3956 if (getzfsvfs(tofs, &zfsvfs) == 0) {
3957 /* online recv */
3958 int end_err;

3960 error = zfs_suspend_fs(zfsvfs);
3961 /*
3962 * If the suspend fails, then the recv_end will
3963 * likely also fail, and clean up after itself.
3964 */
3965 end_err = dmu_recv_end(&drc);
3966 if (error == 0)
3967 error = zfs_resume_fs(zfsvfs, tofs);
3968 error = error ? error : end_err;
3969 VFS_RELE(zfsvfs->z_vfs);
3970 } else {
3971 error = dmu_recv_end(&drc);
3972 }
3973 }

3975 zc->zc_cookie = off - fp->f_offset;
3976 if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0)
3977 fp->f_offset = off;

3979 #ifdef DEBUG
3980 if (zfs_ioc_recv_inject_err) {
3981 zfs_ioc_recv_inject_err = B_FALSE;
3982 error = 1;
3983 }
3984 #endif
3985 /*
3986 * On error, restore the original props.
3987 */
3988 if (error && props) {
3989 if (dmu_objset_hold(tofs, FTAG, &os) == 0) {
3990 if (clear_received_props(os, tofs, props, NULL) != 0) {
3991 /*
3992 * We failed to clear the received properties.
3993 * Since we may have left a $recvd value on the
3994 * system, we can’t clear the $hasrecvd flag.
3995 */
3996 zc->zc_obj |= ZPROP_ERR_NORESTORE;
3997 } else if (first_recvd_props) {
3998 dsl_prop_unset_hasrecvd(os);
3999 }
4000 dmu_objset_rele(os, FTAG);
4001 } else if (!drc.drc_newfs) {
4002 /* We failed to clear the received properties. */
4003 zc->zc_obj |= ZPROP_ERR_NORESTORE;
4004 }

4006 if (origprops == NULL && !drc.drc_newfs) {
4007 /* We failed to stash the original properties. */
4008 zc->zc_obj |= ZPROP_ERR_NORESTORE;
4009 }

4011 /*
4012 * dsl_props_set() will not convert RECEIVED to LOCAL on or
4013 * after SPA_VERSION_RECVD_PROPS, so we need to specify LOCAL
4014 * explictly if we’re restoring local properties cleared in the
4015 * first new-style receive.
4016 */
4017 if (origprops != NULL &&
4018 zfs_set_prop_nvlist(tofs, (first_recvd_props ?

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 62

4019 ZPROP_SRC_LOCAL : ZPROP_SRC_RECEIVED),
4020 origprops, NULL) != 0) {
4021 /*
4022 * We stashed the original properties but failed to
4023 * restore them.
4024 */
4025 zc->zc_obj |= ZPROP_ERR_NORESTORE;
4026 }
4027 }
4028 out:
4029 nvlist_free(props);
4030 nvlist_free(origprops);
4031 nvlist_free(errors);
4032 releasef(fd);

4034 if (error == 0)
4035 error = props_error;

4037 return (error);
4038 }

4040 /*
4041 * inputs:
4042 * zc_name name of snapshot to send
4043 * zc_cookie file descriptor to send stream to
4044 * zc_obj fromorigin flag (mutually exclusive with zc_fromobj)
4045 * zc_sendobj objsetid of snapshot to send
4046 * zc_fromobj objsetid of incremental fromsnap (may be zero)
4047 * zc_guid if set, estimate size of stream only. zc_cookie is ignored.
4048 * output size in zc_objset_type.
4049 *
4050 * outputs: none
4051 */
4052 static int
4053 zfs_ioc_send(zfs_cmd_t *zc)
4054 {
4055 objset_t *fromsnap = NULL;
4056 objset_t *tosnap;
4057 int error;
4058 offset_t off;
4059 dsl_dataset_t *ds;
4060 dsl_dataset_t *dsfrom = NULL;
4061 spa_t *spa;
4062 dsl_pool_t *dp;
4063 boolean_t estimate = (zc->zc_guid != 0);

4065 error = spa_open(zc->zc_name, &spa, FTAG);
4066 if (error)
4067 return (error);

4069 dp = spa_get_dsl(spa);
4070 rw_enter(&dp->dp_config_rwlock, RW_READER);
4071 error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &ds);
4072 rw_exit(&dp->dp_config_rwlock);
4073 spa_close(spa, FTAG);
4074 if (error)
4075 return (error);

4077 error = dmu_objset_from_ds(ds, &tosnap);
4078 if (error) {
4079 dsl_dataset_rele(ds, FTAG);
4080 return (error);
4081 }

4083 if (zc->zc_fromobj != 0) {
4084 rw_enter(&dp->dp_config_rwlock, RW_READER);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 63

4085 error = dsl_dataset_hold_obj(dp, zc->zc_fromobj, FTAG, &dsfrom);
4086 rw_exit(&dp->dp_config_rwlock);
4087 if (error) {
4088 dsl_dataset_rele(ds, FTAG);
4089 return (error);
4090 }
4091 error = dmu_objset_from_ds(dsfrom, &fromsnap);
4092 if (error) {
4093 dsl_dataset_rele(dsfrom, FTAG);
4094 dsl_dataset_rele(ds, FTAG);
4095 return (error);
4096 }
4097 }

4099 if (zc->zc_obj) {
4100 dsl_pool_t *dp = ds->ds_dir->dd_pool;

4102 if (fromsnap != NULL) {
4103 dsl_dataset_rele(dsfrom, FTAG);
4104 dsl_dataset_rele(ds, FTAG);
4105 return (EINVAL);
4106 }

4108 if (dsl_dir_is_clone(ds->ds_dir)) {
4109 rw_enter(&dp->dp_config_rwlock, RW_READER);
4110 error = dsl_dataset_hold_obj(dp,
4111 ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &dsfrom);
4112 rw_exit(&dp->dp_config_rwlock);
4113 if (error) {
4114 dsl_dataset_rele(ds, FTAG);
4115 return (error);
4116 }
4117 error = dmu_objset_from_ds(dsfrom, &fromsnap);
4118 if (error) {
4119 dsl_dataset_rele(dsfrom, FTAG);
4120 dsl_dataset_rele(ds, FTAG);
4121 return (error);
4122 }
4123 }
4124 }

4126 if (estimate) {
4127 error = dmu_send_estimate(tosnap, fromsnap,
4128 &zc->zc_objset_type);
4129 } else {
4130 file_t *fp = getf(zc->zc_cookie);
4131 if (fp == NULL) {
4132 dsl_dataset_rele(ds, FTAG);
4133 if (dsfrom)
4134 dsl_dataset_rele(dsfrom, FTAG);
4135 return (EBADF);
4136 }

4138 off = fp->f_offset;
4139 error = dmu_send(tosnap, fromsnap,
4140 zc->zc_cookie, fp->f_vnode, &off);

4142 if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0)
4143 fp->f_offset = off;
4144 releasef(zc->zc_cookie);
4145 }
4146 if (dsfrom)
4147 dsl_dataset_rele(dsfrom, FTAG);
4148 dsl_dataset_rele(ds, FTAG);
4149 return (error);
4150 }

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 64

4152 /*
4153 * inputs:
4154 * zc_name name of snapshot on which to report progress
4155 * zc_cookie file descriptor of send stream
4156 *
4157 * outputs:
4158 * zc_cookie number of bytes written in send stream thus far
4159 */
4160 static int
4161 zfs_ioc_send_progress(zfs_cmd_t *zc)
4162 {
4163 dsl_dataset_t *ds;
4164 dmu_sendarg_t *dsp = NULL;
4165 int error;

4167 if ((error = dsl_dataset_hold(zc->zc_name, FTAG, &ds)) != 0)
4168 return (error);

4170 mutex_enter(&ds->ds_sendstream_lock);

4172 /*
4173 * Iterate over all the send streams currently active on this dataset.
4174 * If there’s one which matches the specified file descriptor _and_ the
4175 * stream was started by the current process, return the progress of
4176 * that stream.
4177 */
4178 for (dsp = list_head(&ds->ds_sendstreams); dsp != NULL;
4179 dsp = list_next(&ds->ds_sendstreams, dsp)) {
4180 if (dsp->dsa_outfd == zc->zc_cookie &&
4181 dsp->dsa_proc == curproc)
4182 break;
4183 }

4185 if (dsp != NULL)
4186 zc->zc_cookie = *(dsp->dsa_off);
4187 else
4188 error = ENOENT;

4190 mutex_exit(&ds->ds_sendstream_lock);
4191 dsl_dataset_rele(ds, FTAG);
4192 return (error);
4193 }

4195 static int
4196 zfs_ioc_inject_fault(zfs_cmd_t *zc)
4197 {
4198 int id, error;

4200 error = zio_inject_fault(zc->zc_name, (int)zc->zc_guid, &id,
4201 &zc->zc_inject_record);

4203 if (error == 0)
4204 zc->zc_guid = (uint64_t)id;

4206 return (error);
4207 }

4209 static int
4210 zfs_ioc_clear_fault(zfs_cmd_t *zc)
4211 {
4212 return (zio_clear_fault((int)zc->zc_guid));
4213 }

4215 static int
4216 zfs_ioc_inject_list_next(zfs_cmd_t *zc)

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 65

4217 {
4218 int id = (int)zc->zc_guid;
4219 int error;

4221 error = zio_inject_list_next(&id, zc->zc_name, sizeof (zc->zc_name),
4222 &zc->zc_inject_record);

4224 zc->zc_guid = id;

4226 return (error);
4227 }

4229 static int
4230 zfs_ioc_error_log(zfs_cmd_t *zc)
4231 {
4232 spa_t *spa;
4233 int error;
4234 size_t count = (size_t)zc->zc_nvlist_dst_size;

4236 if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
4237 return (error);

4239 error = spa_get_errlog(spa, (void *)(uintptr_t)zc->zc_nvlist_dst,
4240 &count);
4241 if (error == 0)
4242 zc->zc_nvlist_dst_size = count;
4243 else
4244 zc->zc_nvlist_dst_size = spa_get_errlog_size(spa);

4246 spa_close(spa, FTAG);

4248 return (error);
4249 }

4251 static int
4252 zfs_ioc_clear(zfs_cmd_t *zc)
4253 {
4254 spa_t *spa;
4255 vdev_t *vd;
4256 int error;

4258 /*
4259 * On zpool clear we also fix up missing slogs
4260 */
4261 mutex_enter(&spa_namespace_lock);
4262 spa = spa_lookup(zc->zc_name);
4263 if (spa == NULL) {
4264 mutex_exit(&spa_namespace_lock);
4265 return (EIO);
4266 }
4267 if (spa_get_log_state(spa) == SPA_LOG_MISSING) {
4268 /* we need to let spa_open/spa_load clear the chains */
4269 spa_set_log_state(spa, SPA_LOG_CLEAR);
4270 }
4271 spa->spa_last_open_failed = 0;
4272 mutex_exit(&spa_namespace_lock);

4274 if (zc->zc_cookie & ZPOOL_NO_REWIND) {
4275 error = spa_open(zc->zc_name, &spa, FTAG);
4276 } else {
4277 nvlist_t *policy;
4278 nvlist_t *config = NULL;

4280 if (zc->zc_nvlist_src == NULL)
4281 return (EINVAL);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 66

4283 if ((error = get_nvlist(zc->zc_nvlist_src,
4284 zc->zc_nvlist_src_size, zc->zc_iflags, &policy)) == 0) {
4285 error = spa_open_rewind(zc->zc_name, &spa, FTAG,
4286 policy, &config);
4287 if (config != NULL) {
4288 int err;

4290 if ((err = put_nvlist(zc, config)) != 0)
4291 error = err;
4292 nvlist_free(config);
4293 }
4294 nvlist_free(policy);
4295 }
4296 }

4298 if (error)
4299 return (error);

4301 spa_vdev_state_enter(spa, SCL_NONE);

4303 if (zc->zc_guid == 0) {
4304 vd = NULL;
4305 } else {
4306 vd = spa_lookup_by_guid(spa, zc->zc_guid, B_TRUE);
4307 if (vd == NULL) {
4308 (void) spa_vdev_state_exit(spa, NULL, ENODEV);
4309 spa_close(spa, FTAG);
4310 return (ENODEV);
4311 }
4312 }

4314 vdev_clear(spa, vd);

4316 (void) spa_vdev_state_exit(spa, NULL, 0);

4318 /*
4319 * Resume any suspended I/Os.
4320 */
4321 if (zio_resume(spa) != 0)
4322 error = EIO;

4324 spa_close(spa, FTAG);

4326 return (error);
4327 }

4329 static int
4330 zfs_ioc_pool_reopen(zfs_cmd_t *zc)
4331 {
4332 spa_t *spa;
4333 int error;

4335 error = spa_open(zc->zc_name, &spa, FTAG);
4336 if (error)
4337 return (error);

4339 spa_vdev_state_enter(spa, SCL_NONE);

4341 /*
4342 * If a resilver is already in progress then set the
4343 * spa_scrub_reopen flag to B_TRUE so that we don’t restart
4344 * the scan as a side effect of the reopen. Otherwise, let
4345 * vdev_open() decided if a resilver is required.
4346 */
4347 spa->spa_scrub_reopen = dsl_scan_resilvering(spa->spa_dsl_pool);
4348 vdev_reopen(spa->spa_root_vdev);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 67

4349 spa->spa_scrub_reopen = B_FALSE;

4351 (void) spa_vdev_state_exit(spa, NULL, 0);
4352 spa_close(spa, FTAG);
4353 return (0);
4354 }
4355 /*
4356 * inputs:
4357 * zc_name name of filesystem
4358 * zc_value name of origin snapshot
4359 *
4360 * outputs:
4361 * zc_string name of conflicting snapshot, if there is one
4362 */
4363 static int
4364 zfs_ioc_promote(zfs_cmd_t *zc)
4365 {
4366 char *cp;

4368 /*
4369 * We don’t need to unmount *all* the origin fs’s snapshots, but
4370 * it’s easier.
4371 */
4372 cp = strchr(zc->zc_value, ’@’);
4373 if (cp)
4374 *cp = ’\0’;
4375 (void) dmu_objset_find(zc->zc_value,
4376 zfs_unmount_snap, NULL, DS_FIND_SNAPSHOTS);
4377 return (dsl_dataset_promote(zc->zc_name, zc->zc_string));
4378 }

4380 /*
4381 * Retrieve a single {user|group}{used|quota}@... property.
4382 *
4383 * inputs:
4384 * zc_name name of filesystem
4385 * zc_objset_type zfs_userquota_prop_t
4386 * zc_value domain name (eg. "S-1-234-567-89")
4387 * zc_guid RID/UID/GID
4388 *
4389 * outputs:
4390 * zc_cookie property value
4391 */
4392 static int
4393 zfs_ioc_userspace_one(zfs_cmd_t *zc)
4394 {
4395 zfsvfs_t *zfsvfs;
4396 int error;

4398 if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS)
4399 return (EINVAL);

4401 error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE);
4402 if (error)
4403 return (error);

4405 error = zfs_userspace_one(zfsvfs,
4406 zc->zc_objset_type, zc->zc_value, zc->zc_guid, &zc->zc_cookie);
4407 zfsvfs_rele(zfsvfs, FTAG);

4409 return (error);
4410 }

4412 /*
4413 * inputs:
4414 * zc_name name of filesystem

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 68

4415 * zc_cookie zap cursor
4416 * zc_objset_type zfs_userquota_prop_t
4417 * zc_nvlist_dst[_size] buffer to fill (not really an nvlist)
4418 *
4419 * outputs:
4420 * zc_nvlist_dst[_size] data buffer (array of zfs_useracct_t)
4421 * zc_cookie zap cursor
4422 */
4423 static int
4424 zfs_ioc_userspace_many(zfs_cmd_t *zc)
4425 {
4426 zfsvfs_t *zfsvfs;
4427 int bufsize = zc->zc_nvlist_dst_size;

4429 if (bufsize <= 0)
4430 return (ENOMEM);

4432 int error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE);
4433 if (error)
4434 return (error);

4436 void *buf = kmem_alloc(bufsize, KM_SLEEP);

4438 error = zfs_userspace_many(zfsvfs, zc->zc_objset_type, &zc->zc_cookie,
4439 buf, &zc->zc_nvlist_dst_size);

4441 if (error == 0) {
4442 error = xcopyout(buf,
4443 (void *)(uintptr_t)zc->zc_nvlist_dst,
4444 zc->zc_nvlist_dst_size);
4445 }
4446 kmem_free(buf, bufsize);
4447 zfsvfs_rele(zfsvfs, FTAG);

4449 return (error);
4450 }

4452 /*
4453 * inputs:
4454 * zc_name name of filesystem
4455 *
4456 * outputs:
4457 * none
4458 */
4459 static int
4460 zfs_ioc_userspace_upgrade(zfs_cmd_t *zc)
4461 {
4462 objset_t *os;
4463 int error = 0;
4464 zfsvfs_t *zfsvfs;

4466 if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) {
4467 if (!dmu_objset_userused_enabled(zfsvfs->z_os)) {
4468 /*
4469 * If userused is not enabled, it may be because the
4470 * objset needs to be closed & reopened (to grow the
4471 * objset_phys_t). Suspend/resume the fs will do that.
4472 */
4473 error = zfs_suspend_fs(zfsvfs);
4474 if (error == 0)
4475 error = zfs_resume_fs(zfsvfs, zc->zc_name);
4476 }
4477 if (error == 0)
4478 error = dmu_objset_userspace_upgrade(zfsvfs->z_os);
4479 VFS_RELE(zfsvfs->z_vfs);
4480 } else {

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 69

4481 /* XXX kind of reading contents without owning */
4482 error = dmu_objset_hold(zc->zc_name, FTAG, &os);
4483 if (error)
4484 return (error);

4486 error = dmu_objset_userspace_upgrade(os);
4487 dmu_objset_rele(os, FTAG);
4488 }

4490 return (error);
4491 }

4493 /*
4494 * We don’t want to have a hard dependency
4495 * against some special symbols in sharefs
4496 * nfs, and smbsrv. Determine them if needed when
4497 * the first file system is shared.
4498 * Neither sharefs, nfs or smbsrv are unloadable modules.
4499 */
4500 int (*znfsexport_fs)(void *arg);
4501 int (*zshare_fs)(enum sharefs_sys_op, share_t *, uint32_t);
4502 int (*zsmbexport_fs)(void *arg, boolean_t add_share);

4504 int zfs_nfsshare_inited;
4505 int zfs_smbshare_inited;

4507 ddi_modhandle_t nfs_mod;
4508 ddi_modhandle_t sharefs_mod;
4509 ddi_modhandle_t smbsrv_mod;
4510 kmutex_t zfs_share_lock;

4512 static int
4513 zfs_init_sharefs()
4514 {
4515 int error;

4517 ASSERT(MUTEX_HELD(&zfs_share_lock));
4518 /* Both NFS and SMB shares also require sharetab support. */
4519 if (sharefs_mod == NULL && ((sharefs_mod =
4520 ddi_modopen("fs/sharefs",
4521 KRTLD_MODE_FIRST, &error)) == NULL)) {
4522 return (ENOSYS);
4523 }
4524 if (zshare_fs == NULL && ((zshare_fs =
4525 (int (*)(enum sharefs_sys_op, share_t *, uint32_t))
4526 ddi_modsym(sharefs_mod, "sharefs_impl", &error)) == NULL)) {
4527 return (ENOSYS);
4528 }
4529 return (0);
4530 }

4532 static int
4533 zfs_ioc_share(zfs_cmd_t *zc)
4534 {
4535 int error;
4536 int opcode;

4538 switch (zc->zc_share.z_sharetype) {
4539 case ZFS_SHARE_NFS:
4540 case ZFS_UNSHARE_NFS:
4541 if (zfs_nfsshare_inited == 0) {
4542 mutex_enter(&zfs_share_lock);
4543 if (nfs_mod == NULL && ((nfs_mod = ddi_modopen("fs/nfs",
4544 KRTLD_MODE_FIRST, &error)) == NULL)) {
4545 mutex_exit(&zfs_share_lock);
4546 return (ENOSYS);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 70

4547 }
4548 if (znfsexport_fs == NULL &&
4549 ((znfsexport_fs = (int (*)(void *))
4550 ddi_modsym(nfs_mod,
4551 "nfs_export", &error)) == NULL)) {
4552 mutex_exit(&zfs_share_lock);
4553 return (ENOSYS);
4554 }
4555 error = zfs_init_sharefs();
4556 if (error) {
4557 mutex_exit(&zfs_share_lock);
4558 return (ENOSYS);
4559 }
4560 zfs_nfsshare_inited = 1;
4561 mutex_exit(&zfs_share_lock);
4562 }
4563 break;
4564 case ZFS_SHARE_SMB:
4565 case ZFS_UNSHARE_SMB:
4566 if (zfs_smbshare_inited == 0) {
4567 mutex_enter(&zfs_share_lock);
4568 if (smbsrv_mod == NULL && ((smbsrv_mod =
4569 ddi_modopen("drv/smbsrv",
4570 KRTLD_MODE_FIRST, &error)) == NULL)) {
4571 mutex_exit(&zfs_share_lock);
4572 return (ENOSYS);
4573 }
4574 if (zsmbexport_fs == NULL && ((zsmbexport_fs =
4575 (int (*)(void *, boolean_t))ddi_modsym(smbsrv_mod,
4576 "smb_server_share", &error)) == NULL)) {
4577 mutex_exit(&zfs_share_lock);
4578 return (ENOSYS);
4579 }
4580 error = zfs_init_sharefs();
4581 if (error) {
4582 mutex_exit(&zfs_share_lock);
4583 return (ENOSYS);
4584 }
4585 zfs_smbshare_inited = 1;
4586 mutex_exit(&zfs_share_lock);
4587 }
4588 break;
4589 default:
4590 return (EINVAL);
4591 }

4593 switch (zc->zc_share.z_sharetype) {
4594 case ZFS_SHARE_NFS:
4595 case ZFS_UNSHARE_NFS:
4596 if (error =
4597 znfsexport_fs((void *)
4598 (uintptr_t)zc->zc_share.z_exportdata))
4599 return (error);
4600 break;
4601 case ZFS_SHARE_SMB:
4602 case ZFS_UNSHARE_SMB:
4603 if (error = zsmbexport_fs((void *)
4604 (uintptr_t)zc->zc_share.z_exportdata,
4605 zc->zc_share.z_sharetype == ZFS_SHARE_SMB ?
4606 B_TRUE: B_FALSE)) {
4607 return (error);
4608 }
4609 break;
4610 }

4612 opcode = (zc->zc_share.z_sharetype == ZFS_SHARE_NFS ||

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 71

4613 zc->zc_share.z_sharetype == ZFS_SHARE_SMB) ?
4614 SHAREFS_ADD : SHAREFS_REMOVE;

4616 /*
4617 * Add or remove share from sharetab
4618 */
4619 error = zshare_fs(opcode,
4620 (void *)(uintptr_t)zc->zc_share.z_sharedata,
4621 zc->zc_share.z_sharemax);

4623 return (error);

4625 }

4627 ace_t full_access[] = {
4628 {(uid_t)-1, ACE_ALL_PERMS, ACE_EVERYONE, 0}
4629 };

4631 /*
4632 * inputs:
4633 * zc_name name of containing filesystem
4634 * zc_obj object # beyond which we want next in-use object #
4635 *
4636 * outputs:
4637 * zc_obj next in-use object #
4638 */
4639 static int
4640 zfs_ioc_next_obj(zfs_cmd_t *zc)
4641 {
4642 objset_t *os = NULL;
4643 int error;

4645 error = dmu_objset_hold(zc->zc_name, FTAG, &os);
4646 if (error)
4647 return (error);

4649 error = dmu_object_next(os, &zc->zc_obj, B_FALSE,
4650 os->os_dsl_dataset->ds_phys->ds_prev_snap_txg);

4652 dmu_objset_rele(os, FTAG);
4653 return (error);
4654 }

4656 /*
4657 * inputs:
4658 * zc_name name of filesystem
4659 * zc_value prefix name for snapshot
4660 * zc_cleanup_fd cleanup-on-exit file descriptor for calling process
4661 *
4662 * outputs:
4663 * zc_value short name of new snapshot
4664 */
4665 static int
4666 zfs_ioc_tmp_snapshot(zfs_cmd_t *zc)
4667 {
4668 char *snap_name;
4669 int error;

4671 snap_name = kmem_asprintf("%s@%s-%016llx", zc->zc_name, zc->zc_value,
4672 (u_longlong_t)ddi_get_lbolt64());

4674 if (strlen(snap_name) >= MAXPATHLEN) {
4675 strfree(snap_name);
4676 return (E2BIG);
4677 }

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 72

4679 error = dmu_objset_snapshot_tmp(snap_name, "%temp", zc->zc_cleanup_fd);
4680 if (error != 0) {
4681 strfree(snap_name);
4682 return (error);
4683 }

4685 (void) strcpy(zc->zc_value, strchr(snap_name, ’@’) + 1);
4686 strfree(snap_name);
4687 return (0);
4688 }

4690 /*
4691 * inputs:
4692 * zc_name name of "to" snapshot
4693 * zc_value name of "from" snapshot
4694 * zc_cookie file descriptor to write diff data on
4695 *
4696 * outputs:
4697 * dmu_diff_record_t’s to the file descriptor
4698 */
4699 static int
4700 zfs_ioc_diff(zfs_cmd_t *zc)
4701 {
4702 objset_t *fromsnap;
4703 objset_t *tosnap;
4704 file_t *fp;
4705 offset_t off;
4706 int error;

4708 error = dmu_objset_hold(zc->zc_name, FTAG, &tosnap);
4709 if (error)
4710 return (error);

4712 error = dmu_objset_hold(zc->zc_value, FTAG, &fromsnap);
4713 if (error) {
4714 dmu_objset_rele(tosnap, FTAG);
4715 return (error);
4716 }

4718 fp = getf(zc->zc_cookie);
4719 if (fp == NULL) {
4720 dmu_objset_rele(fromsnap, FTAG);
4721 dmu_objset_rele(tosnap, FTAG);
4722 return (EBADF);
4723 }

4725 off = fp->f_offset;

4727 error = dmu_diff(tosnap, fromsnap, fp->f_vnode, &off);

4729 if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0)
4730 fp->f_offset = off;
4731 releasef(zc->zc_cookie);

4733 dmu_objset_rele(fromsnap, FTAG);
4734 dmu_objset_rele(tosnap, FTAG);
4735 return (error);
4736 }

4738 /*
4739 * Remove all ACL files in shares dir
4740 */
4741 static int
4742 zfs_smb_acl_purge(znode_t *dzp)
4743 {
4744 zap_cursor_t zc;

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 73

4745 zap_attribute_t zap;
4746 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
4747 int error;

4749 for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id);
4750 (error = zap_cursor_retrieve(&zc, &zap)) == 0;
4751 zap_cursor_advance(&zc)) {
4752 if ((error = VOP_REMOVE(ZTOV(dzp), zap.za_name, kcred,
4753 NULL, 0)) != 0)
4754 break;
4755 }
4756 zap_cursor_fini(&zc);
4757 return (error);
4758 }

4760 static int
4761 zfs_ioc_smb_acl(zfs_cmd_t *zc)
4762 {
4763 vnode_t *vp;
4764 znode_t *dzp;
4765 vnode_t *resourcevp = NULL;
4766 znode_t *sharedir;
4767 zfsvfs_t *zfsvfs;
4768 nvlist_t *nvlist;
4769 char *src, *target;
4770 vattr_t vattr;
4771 vsecattr_t vsec;
4772 int error = 0;

4774 if ((error = lookupname(zc->zc_value, UIO_SYSSPACE,
4775 NO_FOLLOW, NULL, &vp)) != 0)
4776 return (error);

4778 /* Now make sure mntpnt and dataset are ZFS */

4780 if (vp->v_vfsp->vfs_fstype != zfsfstype ||
4781 (strcmp((char *)refstr_value(vp->v_vfsp->vfs_resource),
4782 zc->zc_name) != 0)) {
4783 VN_RELE(vp);
4784 return (EINVAL);
4785 }

4787 dzp = VTOZ(vp);
4788 zfsvfs = dzp->z_zfsvfs;
4789 ZFS_ENTER(zfsvfs);

4791 /*
4792 * Create share dir if its missing.
4793 */
4794 mutex_enter(&zfsvfs->z_lock);
4795 if (zfsvfs->z_shares_dir == 0) {
4796 dmu_tx_t *tx;

4798 tx = dmu_tx_create(zfsvfs->z_os);
4799 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, TRUE,
4800 ZFS_SHARES_DIR);
4801 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
4802 error = dmu_tx_assign(tx, TXG_WAIT);
4803 if (error) {
4804 dmu_tx_abort(tx);
4805 } else {
4806 error = zfs_create_share_dir(zfsvfs, tx);
4807 dmu_tx_commit(tx);
4808 }
4809 if (error) {
4810 mutex_exit(&zfsvfs->z_lock);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 74

4811 VN_RELE(vp);
4812 ZFS_EXIT(zfsvfs);
4813 return (error);
4814 }
4815 }
4816 mutex_exit(&zfsvfs->z_lock);

4818 ASSERT(zfsvfs->z_shares_dir);
4819 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &sharedir)) != 0) {
4820 VN_RELE(vp);
4821 ZFS_EXIT(zfsvfs);
4822 return (error);
4823 }

4825 switch (zc->zc_cookie) {
4826 case ZFS_SMB_ACL_ADD:
4827 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
4828 vattr.va_type = VREG;
4829 vattr.va_mode = S_IFREG|0777;
4830 vattr.va_uid = 0;
4831 vattr.va_gid = 0;

4833 vsec.vsa_mask = VSA_ACE;
4834 vsec.vsa_aclentp = &full_access;
4835 vsec.vsa_aclentsz = sizeof (full_access);
4836 vsec.vsa_aclcnt = 1;

4838 error = VOP_CREATE(ZTOV(sharedir), zc->zc_string,
4839 &vattr, EXCL, 0, &resourcevp, kcred, 0, NULL, &vsec);
4840 if (resourcevp)
4841 VN_RELE(resourcevp);
4842 break;

4844 case ZFS_SMB_ACL_REMOVE:
4845 error = VOP_REMOVE(ZTOV(sharedir), zc->zc_string, kcred,
4846 NULL, 0);
4847 break;

4849 case ZFS_SMB_ACL_RENAME:
4850 if ((error = get_nvlist(zc->zc_nvlist_src,
4851 zc->zc_nvlist_src_size, zc->zc_iflags, &nvlist)) != 0) {
4852 VN_RELE(vp);
4853 ZFS_EXIT(zfsvfs);
4854 return (error);
4855 }
4856 if (nvlist_lookup_string(nvlist, ZFS_SMB_ACL_SRC, &src) ||
4857 nvlist_lookup_string(nvlist, ZFS_SMB_ACL_TARGET,
4858 &target)) {
4859 VN_RELE(vp);
4860 VN_RELE(ZTOV(sharedir));
4861 ZFS_EXIT(zfsvfs);
4862 nvlist_free(nvlist);
4863 return (error);
4864 }
4865 error = VOP_RENAME(ZTOV(sharedir), src, ZTOV(sharedir), target,
4866 kcred, NULL, 0);
4867 nvlist_free(nvlist);
4868 break;

4870 case ZFS_SMB_ACL_PURGE:
4871 error = zfs_smb_acl_purge(sharedir);
4872 break;

4874 default:
4875 error = EINVAL;
4876 break;

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 75

4877 }

4879 VN_RELE(vp);
4880 VN_RELE(ZTOV(sharedir));

4882 ZFS_EXIT(zfsvfs);

4884 return (error);
4885 }

4887 /*
4888 * inputs:
4889 * zc_name name of filesystem
4890 * zc_value short name of snap
4891 * zc_string user-supplied tag for this hold
4892 * zc_cookie recursive flag
4893 * zc_temphold set if hold is temporary
4894 * zc_cleanup_fd cleanup-on-exit file descriptor for calling process
4895 * zc_sendobj if non-zero, the objid for zc_name@zc_value
4896 * zc_createtxg if zc_sendobj is non-zero, snap must have zc_createtxg
4897 *
4898 * outputs: none
4899 */
4900 static int
4901 zfs_ioc_hold(zfs_cmd_t *zc)
4902 {
4903 boolean_t recursive = zc->zc_cookie;
4904 spa_t *spa;
4905 dsl_pool_t *dp;
4906 dsl_dataset_t *ds;
4907 int error;
4908 minor_t minor = 0;

4910 if (snapshot_namecheck(zc->zc_value, NULL, NULL) != 0)
4911 return (EINVAL);

4913 if (zc->zc_sendobj == 0) {
4914 return (dsl_dataset_user_hold(zc->zc_name, zc->zc_value,
4915 zc->zc_string, recursive, zc->zc_temphold,
4916 zc->zc_cleanup_fd));
4917 }

4919 if (recursive)
4920 return (EINVAL);

4922 error = spa_open(zc->zc_name, &spa, FTAG);
4923 if (error)
4924 return (error);

4926 dp = spa_get_dsl(spa);
4927 rw_enter(&dp->dp_config_rwlock, RW_READER);
4928 error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &ds);
4929 rw_exit(&dp->dp_config_rwlock);
4930 spa_close(spa, FTAG);
4931 if (error)
4932 return (error);

4934 /*
4935 * Until we have a hold on this snapshot, it’s possible that
4936 * zc_sendobj could’ve been destroyed and reused as part
4937 * of a later txg. Make sure we’re looking at the right object.
4938 */
4939 if (zc->zc_createtxg != ds->ds_phys->ds_creation_txg) {
4940 dsl_dataset_rele(ds, FTAG);
4941 return (ENOENT);
4942 }

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 76

4944 if (zc->zc_cleanup_fd != -1 && zc->zc_temphold) {
4945 error = zfs_onexit_fd_hold(zc->zc_cleanup_fd, &minor);
4946 if (error) {
4947 dsl_dataset_rele(ds, FTAG);
4948 return (error);
4949 }
4950 }

4952 error = dsl_dataset_user_hold_for_send(ds, zc->zc_string,
4953 zc->zc_temphold);
4954 if (minor != 0) {
4955 if (error == 0) {
4956 dsl_register_onexit_hold_cleanup(ds, zc->zc_string,
4957 minor);
4958 }
4959 zfs_onexit_fd_rele(zc->zc_cleanup_fd);
4960 }
4961 dsl_dataset_rele(ds, FTAG);

4963 return (error);
4964 }

4966 /*
4967 * inputs:
4968 * zc_name name of dataset from which we’re releasing a user hold
4969 * zc_value short name of snap
4970 * zc_string user-supplied tag for this hold
4971 * zc_cookie recursive flag
4972 *
4973 * outputs: none
4974 */
4975 static int
4976 zfs_ioc_release(zfs_cmd_t *zc)
4977 {
4978 boolean_t recursive = zc->zc_cookie;

4980 if (snapshot_namecheck(zc->zc_value, NULL, NULL) != 0)
4981 return (EINVAL);

4983 return (dsl_dataset_user_release(zc->zc_name, zc->zc_value,
4984 zc->zc_string, recursive));
4985 }

4987 /*
4988 * inputs:
4989 * zc_name name of filesystem
4990 *
4991 * outputs:
4992 * zc_nvlist_src{_size} nvlist of snapshot holds
4993 */
4994 static int
4995 zfs_ioc_get_holds(zfs_cmd_t *zc)
4996 {
4997 nvlist_t *nvp;
4998 int error;

5000 if ((error = dsl_dataset_get_holds(zc->zc_name, &nvp)) == 0) {
5001 error = put_nvlist(zc, nvp);
5002 nvlist_free(nvp);
5003 }

5005 return (error);
5006 }

5008 /*

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 77

5009 * inputs:
5010 * zc_name name of new filesystem or snapshot
5011 * zc_value full name of old snapshot
5012 *
5013 * outputs:
5014 * zc_cookie space in bytes
5015 * zc_objset_type compressed space in bytes
5016 * zc_perm_action uncompressed space in bytes
5017 */
5018 static int
5019 zfs_ioc_space_written(zfs_cmd_t *zc)
5020 {
5021 int error;
5022 dsl_dataset_t *new, *old;

5024 error = dsl_dataset_hold(zc->zc_name, FTAG, &new);
5025 if (error != 0)
5026 return (error);
5027 error = dsl_dataset_hold(zc->zc_value, FTAG, &old);
5028 if (error != 0) {
5029 dsl_dataset_rele(new, FTAG);
5030 return (error);
5031 }

5033 error = dsl_dataset_space_written(old, new, &zc->zc_cookie,
5034 &zc->zc_objset_type, &zc->zc_perm_action);
5035 dsl_dataset_rele(old, FTAG);
5036 dsl_dataset_rele(new, FTAG);
5037 return (error);
5038 }
5039 /*
5040 * innvl: {
5041 * "firstsnap" -> snapshot name
5042 * }
5043 *
5044 * outnvl: {
5045 * "used" -> space in bytes
5046 * "compressed" -> compressed space in bytes
5047 * "uncompressed" -> uncompressed space in bytes
5048 * }
5049 */
5050 static int
5051 zfs_ioc_space_snaps(const char *lastsnap, nvlist_t *innvl, nvlist_t *outnvl)
5052 {
5053 int error;
5054 dsl_dataset_t *new, *old;
5055 char *firstsnap;
5056 uint64_t used, comp, uncomp;

5058 if (nvlist_lookup_string(innvl, "firstsnap", &firstsnap) != 0)
5059 return (EINVAL);

5061 error = dsl_dataset_hold(lastsnap, FTAG, &new);
5062 if (error != 0)
5063 return (error);
5064 error = dsl_dataset_hold(firstsnap, FTAG, &old);
5065 if (error != 0) {
5066 dsl_dataset_rele(new, FTAG);
5067 return (error);
5068 }

5070 error = dsl_dataset_space_wouldfree(old, new, &used, &comp, &uncomp);
5071 dsl_dataset_rele(old, FTAG);
5072 dsl_dataset_rele(new, FTAG);
5073 fnvlist_add_uint64(outnvl, "used", used);
5074 fnvlist_add_uint64(outnvl, "compressed", comp);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 78

5075 fnvlist_add_uint64(outnvl, "uncompressed", uncomp);
5076 return (error);
5077 }

5079 /*
5080 * innvl: {
5081 * "fd" -> file descriptor to write stream to (int32)
5082 * (optional) "fromsnap" -> full snap name to send an incremental from
5083 * }
5084 *
5085 * outnvl is unused
5086 */
5087 /* ARGSUSED */
5088 static int
5089 zfs_ioc_send_new(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl)
5090 {
5091 objset_t *fromsnap = NULL;
5092 objset_t *tosnap;
5093 int error;
5094 offset_t off;
5095 char *fromname;
5096 int fd;

5098 error = nvlist_lookup_int32(innvl, "fd", &fd);
5099 if (error != 0)
5100 return (EINVAL);

5102 error = dmu_objset_hold(snapname, FTAG, &tosnap);
5103 if (error)
5104 return (error);

5106 error = nvlist_lookup_string(innvl, "fromsnap", &fromname);
5107 if (error == 0) {
5108 error = dmu_objset_hold(fromname, FTAG, &fromsnap);
5109 if (error) {
5110 dmu_objset_rele(tosnap, FTAG);
5111 return (error);
5112 }
5113 }

5115 file_t *fp = getf(fd);
5116 if (fp == NULL) {
5117 dmu_objset_rele(tosnap, FTAG);
5118 if (fromsnap != NULL)
5119 dmu_objset_rele(fromsnap, FTAG);
5120 return (EBADF);
5121 }

5123 off = fp->f_offset;
5124 error = dmu_send(tosnap, fromsnap, fd, fp->f_vnode, &off);

5126 if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0)
5127 fp->f_offset = off;
5128 releasef(fd);
5129 if (fromsnap != NULL)
5130 dmu_objset_rele(fromsnap, FTAG);
5131 dmu_objset_rele(tosnap, FTAG);
5132 return (error);
5133 }

5135 /*
5136 * inputs:
5137 * zc_name name of snapshot to send
5138 * zc_cookie file descriptor to send stream to
5139 * zc_obj fromorigin flag (mutually exclusive with zc_fromobj)
5140 * zc_sendobj objsetid of snapshot to send

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 79

5141 * zc_fromobj objsetid of incremental fromsnap (may be zero)
5142 * zc_guid if set, estimate size of stream only. zc_cookie is ignored.
5143 * output size in zc_objset_type.
5144 *
5145 * outputs: none
5146 */
5147 static int
5148 zfs_ioc_fits_send(zfs_cmd_t *zc)
5149 {
5150 objset_t *fromsnap = NULL;
5151 objset_t *tosnap;
5152 int error;
5153 offset_t off;
5154 dsl_dataset_t *ds;
5155 dsl_dataset_t *dsfrom = NULL;
5156 spa_t *spa;
5157 file_t *fp;
5158 dsl_pool_t *dp;
5159 boolean_t estimate = (zc->zc_guid != 0);

5161 error = spa_open(zc->zc_name, &spa, FTAG);
5162 if (error)
5163 return (error);

5165 dp = spa_get_dsl(spa);
5166 rw_enter(&dp->dp_config_rwlock, RW_READER);
5167 error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &ds);
5168 rw_exit(&dp->dp_config_rwlock);
5169 spa_close(spa, FTAG);
5170 if (error)
5171 return (error);

5173 error = dmu_objset_from_ds(ds, &tosnap);
5174 if (error) {
5175 dsl_dataset_rele(ds, FTAG);
5176 return (error);
5177 }

5179 if (zc->zc_fromobj != 0) {
5180 rw_enter(&dp->dp_config_rwlock, RW_READER);
5181 error = dsl_dataset_hold_obj(dp, zc->zc_fromobj, FTAG, &dsfrom);
5182 rw_exit(&dp->dp_config_rwlock);
5183 if (error) {
5184 dsl_dataset_rele(ds, FTAG);
5185 return (error);
5186 }
5187 error = dmu_objset_from_ds(dsfrom, &fromsnap);
5188 if (error) {
5189 dsl_dataset_rele(dsfrom, FTAG);
5190 dsl_dataset_rele(ds, FTAG);
5191 return (error);
5192 }
5193 }

5195 if (zc->zc_obj) {
5196 dsl_pool_t *dp = ds->ds_dir->dd_pool;

5198 if (fromsnap != NULL) {
5199 dsl_dataset_rele(dsfrom, FTAG);
5200 dsl_dataset_rele(ds, FTAG);
5201 return (EINVAL);
5202 }

5204 if (dsl_dir_is_clone(ds->ds_dir)) {
5205 rw_enter(&dp->dp_config_rwlock, RW_READER);
5206 error = dsl_dataset_hold_obj(dp,

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 80

5207 ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &dsfrom);
5208 rw_exit(&dp->dp_config_rwlock);
5209 if (error) {
5210 dsl_dataset_rele(ds, FTAG);
5211 return (error);
5212 }
5213 error = dmu_objset_from_ds(dsfrom, &fromsnap);
5214 if (error) {
5215 dsl_dataset_rele(dsfrom, FTAG);
5216 dsl_dataset_rele(ds, FTAG);
5217 return (error);
5218 }
5219 }
5220 }

5222 fp = getf(zc->zc_cookie);
5223 if (fp == NULL) {
5224 dsl_dataset_rele(ds, FTAG);
5225 if (dsfrom)
5226 dsl_dataset_rele(dsfrom, FTAG);
5227 return (EBADF);
5228 }

5230 off = fp->f_offset;
5231 error = fits_send(tosnap, fromsnap, zc->zc_cookie, fp->f_vnode, &off);

5233 if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0)
5234 fp->f_offset = off;
5235 releasef(zc->zc_cookie);

5237 if (dsfrom)
5238 dsl_dataset_rele(dsfrom, FTAG);
5239 dsl_dataset_rele(ds, FTAG);
5240 return (error);
5241 }

5243 /*
5244 #endif /* ! codereview */
5245 * Determine approximately how large a zfs send stream will be -- the number
5246 * of bytes that will be written to the fd supplied to zfs_ioc_send_new().
5247 *
5248 * innvl: {
5249 * (optional) "fromsnap" -> full snap name to send an incremental from
5250 * }
5251 *
5252 * outnvl: {
5253 * "space" -> bytes of space (uint64)
5254 * }
5255 */
5256 static int
5257 zfs_ioc_send_space(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl)
5258 {
5259 objset_t *fromsnap = NULL;
5260 objset_t *tosnap;
5261 int error;
5262 char *fromname;
5263 uint64_t space;

5265 error = dmu_objset_hold(snapname, FTAG, &tosnap);
5266 if (error)
5267 return (error);

5269 error = nvlist_lookup_string(innvl, "fromsnap", &fromname);
5270 if (error == 0) {
5271 error = dmu_objset_hold(fromname, FTAG, &fromsnap);
5272 if (error) {

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 81

5273 dmu_objset_rele(tosnap, FTAG);
5274 return (error);
5275 }
5276 }

5278 error = dmu_send_estimate(tosnap, fromsnap, &space);
5279 fnvlist_add_uint64(outnvl, "space", space);

5281 if (fromsnap != NULL)
5282 dmu_objset_rele(fromsnap, FTAG);
5283 dmu_objset_rele(tosnap, FTAG);
5284 return (error);
5285 }

5288 static zfs_ioc_vec_t zfs_ioc_vec[ZFS_IOC_LAST - ZFS_IOC_FIRST];

5290 static void
5291 zfs_ioctl_register_legacy(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func,
5292 zfs_secpolicy_func_t *secpolicy, zfs_ioc_namecheck_t namecheck,
5293 boolean_t log_history, zfs_ioc_poolcheck_t pool_check)
5294 {
5295 zfs_ioc_vec_t *vec = &zfs_ioc_vec[ioc - ZFS_IOC_FIRST];

5297 ASSERT3U(ioc, >=, ZFS_IOC_FIRST);
5298 ASSERT3U(ioc, <, ZFS_IOC_LAST);
5299 ASSERT3P(vec->zvec_legacy_func, ==, NULL);
5300 ASSERT3P(vec->zvec_func, ==, NULL);

5302 vec->zvec_legacy_func = func;
5303 vec->zvec_secpolicy = secpolicy;
5304 vec->zvec_namecheck = namecheck;
5305 vec->zvec_allow_log = log_history;
5306 vec->zvec_pool_check = pool_check;
5307 }

5309 /*
5310 * See the block comment at the beginning of this file for details on
5311 * each argument to this function.
5312 */
5313 static void
5314 zfs_ioctl_register(const char *name, zfs_ioc_t ioc, zfs_ioc_func_t *func,
5315 zfs_secpolicy_func_t *secpolicy, zfs_ioc_namecheck_t namecheck,
5316 zfs_ioc_poolcheck_t pool_check, boolean_t smush_outnvlist,
5317 boolean_t allow_log)
5318 {
5319 zfs_ioc_vec_t *vec = &zfs_ioc_vec[ioc - ZFS_IOC_FIRST];

5321 ASSERT3U(ioc, >=, ZFS_IOC_FIRST);
5322 ASSERT3U(ioc, <, ZFS_IOC_LAST);
5323 ASSERT3P(vec->zvec_legacy_func, ==, NULL);
5324 ASSERT3P(vec->zvec_func, ==, NULL);

5326 /* if we are logging, the name must be valid */
5327 ASSERT(!allow_log || namecheck != NO_NAME);

5329 vec->zvec_name = name;
5330 vec->zvec_func = func;
5331 vec->zvec_secpolicy = secpolicy;
5332 vec->zvec_namecheck = namecheck;
5333 vec->zvec_pool_check = pool_check;
5334 vec->zvec_smush_outnvlist = smush_outnvlist;
5335 vec->zvec_allow_log = allow_log;
5336 }

5338 static void

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 82

5339 zfs_ioctl_register_pool(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func,
5340 zfs_secpolicy_func_t *secpolicy, boolean_t log_history,
5341 zfs_ioc_poolcheck_t pool_check)
5342 {
5343 zfs_ioctl_register_legacy(ioc, func, secpolicy,
5344 POOL_NAME, log_history, pool_check);
5345 }

5347 static void
5348 zfs_ioctl_register_dataset_nolog(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func,
5349 zfs_secpolicy_func_t *secpolicy, zfs_ioc_poolcheck_t pool_check)
5350 {
5351 zfs_ioctl_register_legacy(ioc, func, secpolicy,
5352 DATASET_NAME, B_FALSE, pool_check);
5353 }

5355 static void
5356 zfs_ioctl_register_pool_modify(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func)
5357 {
5358 zfs_ioctl_register_legacy(ioc, func, zfs_secpolicy_config,
5359 POOL_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY);
5360 }

5362 static void
5363 zfs_ioctl_register_pool_meta(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func,
5364 zfs_secpolicy_func_t *secpolicy)
5365 {
5366 zfs_ioctl_register_legacy(ioc, func, secpolicy,
5367 NO_NAME, B_FALSE, POOL_CHECK_NONE);
5368 }

5370 static void
5371 zfs_ioctl_register_dataset_read_secpolicy(zfs_ioc_t ioc,
5372 zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy)
5373 {
5374 zfs_ioctl_register_legacy(ioc, func, secpolicy,
5375 DATASET_NAME, B_FALSE, POOL_CHECK_SUSPENDED);
5376 }

5378 static void
5379 zfs_ioctl_register_dataset_read(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func)
5380 {
5381 zfs_ioctl_register_dataset_read_secpolicy(ioc, func,
5382 zfs_secpolicy_read);
5383 }

5385 static void
5386 zfs_ioctl_register_dataset_modify(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func,
5387 zfs_secpolicy_func_t *secpolicy)
5388 {
5389 zfs_ioctl_register_legacy(ioc, func, secpolicy,
5390 DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY);
5391 }

5393 static void
5394 zfs_ioctl_init(void)
5395 {
5396 zfs_ioctl_register("snapshot", ZFS_IOC_SNAPSHOT,
5397 zfs_ioc_snapshot, zfs_secpolicy_snapshot, POOL_NAME,
5398 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE);

5400 zfs_ioctl_register("log_history", ZFS_IOC_LOG_HISTORY,
5401 zfs_ioc_log_history, zfs_secpolicy_log_history, NO_NAME,
5402 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE);

5404 zfs_ioctl_register("space_snaps", ZFS_IOC_SPACE_SNAPS,

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 83

5405 zfs_ioc_space_snaps, zfs_secpolicy_read, DATASET_NAME,
5406 POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE);

5408 zfs_ioctl_register("send", ZFS_IOC_SEND_NEW,
5409 zfs_ioc_send_new, zfs_secpolicy_send_new, DATASET_NAME,
5410 POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE);

5412 zfs_ioctl_register("send_space", ZFS_IOC_SEND_SPACE,
5413 zfs_ioc_send_space, zfs_secpolicy_read, DATASET_NAME,
5414 POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE);

5416 zfs_ioctl_register("create", ZFS_IOC_CREATE,
5417 zfs_ioc_create, zfs_secpolicy_create_clone, DATASET_NAME,
5418 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE);

5420 zfs_ioctl_register("clone", ZFS_IOC_CLONE,
5421 zfs_ioc_clone, zfs_secpolicy_create_clone, DATASET_NAME,
5422 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE);

5424 zfs_ioctl_register("destroy_snaps", ZFS_IOC_DESTROY_SNAPS,
5425 zfs_ioc_destroy_snaps, zfs_secpolicy_destroy_snaps, POOL_NAME,
5426 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE);

5428 /* IOCTLS that use the legacy function signature */

5430 zfs_ioctl_register_legacy(ZFS_IOC_POOL_FREEZE, zfs_ioc_pool_freeze,
5431 zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_READONLY);

5433 zfs_ioctl_register_pool(ZFS_IOC_POOL_CREATE, zfs_ioc_pool_create,
5434 zfs_secpolicy_config, B_TRUE, POOL_CHECK_NONE);
5435 zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_SCAN,
5436 zfs_ioc_pool_scan);
5437 zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_UPGRADE,
5438 zfs_ioc_pool_upgrade);
5439 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_ADD,
5440 zfs_ioc_vdev_add);
5441 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_REMOVE,
5442 zfs_ioc_vdev_remove);
5443 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SET_STATE,
5444 zfs_ioc_vdev_set_state);
5445 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_ATTACH,
5446 zfs_ioc_vdev_attach);
5447 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_DETACH,
5448 zfs_ioc_vdev_detach);
5449 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SETPATH,
5450 zfs_ioc_vdev_setpath);
5451 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SETFRU,
5452 zfs_ioc_vdev_setfru);
5453 zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_SET_PROPS,
5454 zfs_ioc_pool_set_props);
5455 zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SPLIT,
5456 zfs_ioc_vdev_split);
5457 zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_REGUID,
5458 zfs_ioc_pool_reguid);

5460 zfs_ioctl_register_pool_meta(ZFS_IOC_POOL_CONFIGS,
5461 zfs_ioc_pool_configs, zfs_secpolicy_none);
5462 zfs_ioctl_register_pool_meta(ZFS_IOC_POOL_TRYIMPORT,
5463 zfs_ioc_pool_tryimport, zfs_secpolicy_config);
5464 zfs_ioctl_register_pool_meta(ZFS_IOC_INJECT_FAULT,
5465 zfs_ioc_inject_fault, zfs_secpolicy_inject);
5466 zfs_ioctl_register_pool_meta(ZFS_IOC_CLEAR_FAULT,
5467 zfs_ioc_clear_fault, zfs_secpolicy_inject);
5468 zfs_ioctl_register_pool_meta(ZFS_IOC_INJECT_LIST_NEXT,
5469 zfs_ioc_inject_list_next, zfs_secpolicy_inject);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 84

5471 /*
5472 * pool destroy, and export don’t log the history as part of
5473 * zfsdev_ioctl, but rather zfs_ioc_pool_export
5474 * does the logging of those commands.
5475 */
5476 zfs_ioctl_register_pool(ZFS_IOC_POOL_DESTROY, zfs_ioc_pool_destroy,
5477 zfs_secpolicy_config, B_FALSE, POOL_CHECK_NONE);
5478 zfs_ioctl_register_pool(ZFS_IOC_POOL_EXPORT, zfs_ioc_pool_export,
5479 zfs_secpolicy_config, B_FALSE, POOL_CHECK_NONE);

5481 zfs_ioctl_register_pool(ZFS_IOC_POOL_STATS, zfs_ioc_pool_stats,
5482 zfs_secpolicy_read, B_FALSE, POOL_CHECK_NONE);
5483 zfs_ioctl_register_pool(ZFS_IOC_POOL_GET_PROPS, zfs_ioc_pool_get_props,
5484 zfs_secpolicy_read, B_FALSE, POOL_CHECK_NONE);

5486 zfs_ioctl_register_pool(ZFS_IOC_ERROR_LOG, zfs_ioc_error_log,
5487 zfs_secpolicy_inject, B_FALSE, POOL_CHECK_SUSPENDED);
5488 zfs_ioctl_register_pool(ZFS_IOC_DSOBJ_TO_DSNAME,
5489 zfs_ioc_dsobj_to_dsname,
5490 zfs_secpolicy_diff, B_FALSE, POOL_CHECK_SUSPENDED);
5491 zfs_ioctl_register_pool(ZFS_IOC_POOL_GET_HISTORY,
5492 zfs_ioc_pool_get_history,
5493 zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED);

5495 zfs_ioctl_register_pool(ZFS_IOC_POOL_IMPORT, zfs_ioc_pool_import,
5496 zfs_secpolicy_config, B_TRUE, POOL_CHECK_NONE);

5498 zfs_ioctl_register_pool(ZFS_IOC_CLEAR, zfs_ioc_clear,
5499 zfs_secpolicy_config, B_TRUE, POOL_CHECK_SUSPENDED);
5500 zfs_ioctl_register_pool(ZFS_IOC_POOL_REOPEN, zfs_ioc_pool_reopen,
5501 zfs_secpolicy_config, B_TRUE, POOL_CHECK_SUSPENDED);

5503 zfs_ioctl_register_dataset_read(ZFS_IOC_SPACE_WRITTEN,
5504 zfs_ioc_space_written);
5505 zfs_ioctl_register_dataset_read(ZFS_IOC_GET_HOLDS,
5506 zfs_ioc_get_holds);
5507 zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_RECVD_PROPS,
5508 zfs_ioc_objset_recvd_props);
5509 zfs_ioctl_register_dataset_read(ZFS_IOC_NEXT_OBJ,
5510 zfs_ioc_next_obj);
5511 zfs_ioctl_register_dataset_read(ZFS_IOC_GET_FSACL,
5512 zfs_ioc_get_fsacl);
5513 zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_STATS,
5514 zfs_ioc_objset_stats);
5515 zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_ZPLPROPS,
5516 zfs_ioc_objset_zplprops);
5517 zfs_ioctl_register_dataset_read(ZFS_IOC_DATASET_LIST_NEXT,
5518 zfs_ioc_dataset_list_next);
5519 zfs_ioctl_register_dataset_read(ZFS_IOC_SNAPSHOT_LIST_NEXT,
5520 zfs_ioc_snapshot_list_next);
5521 zfs_ioctl_register_dataset_read(ZFS_IOC_SEND_PROGRESS,
5522 zfs_ioc_send_progress);

5524 zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_DIFF,
5525 zfs_ioc_diff, zfs_secpolicy_diff);
5526 zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_OBJ_TO_STATS,
5527 zfs_ioc_obj_to_stats, zfs_secpolicy_diff);
5528 zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_OBJ_TO_PATH,
5529 zfs_ioc_obj_to_path, zfs_secpolicy_diff);
5530 zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_USERSPACE_ONE,
5531 zfs_ioc_userspace_one, zfs_secpolicy_userspace_one);
5532 zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_USERSPACE_MANY,
5533 zfs_ioc_userspace_many, zfs_secpolicy_userspace_many);
5534 zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_SEND,
5535 zfs_ioc_send, zfs_secpolicy_send);
5536 zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_FITS_SEND,

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 85

5537 zfs_ioc_fits_send, zfs_secpolicy_send);
5538 #endif /* ! codereview */

5540 zfs_ioctl_register_dataset_modify(ZFS_IOC_SET_PROP, zfs_ioc_set_prop,
5541 zfs_secpolicy_none);
5542 zfs_ioctl_register_dataset_modify(ZFS_IOC_DESTROY, zfs_ioc_destroy,
5543 zfs_secpolicy_destroy);
5544 zfs_ioctl_register_dataset_modify(ZFS_IOC_ROLLBACK, zfs_ioc_rollback,
5545 zfs_secpolicy_rollback);
5546 zfs_ioctl_register_dataset_modify(ZFS_IOC_RENAME, zfs_ioc_rename,
5547 zfs_secpolicy_rename);
5548 zfs_ioctl_register_dataset_modify(ZFS_IOC_RECV, zfs_ioc_recv,
5549 zfs_secpolicy_recv);
5550 zfs_ioctl_register_dataset_modify(ZFS_IOC_PROMOTE, zfs_ioc_promote,
5551 zfs_secpolicy_promote);
5552 zfs_ioctl_register_dataset_modify(ZFS_IOC_HOLD, zfs_ioc_hold,
5553 zfs_secpolicy_hold);
5554 zfs_ioctl_register_dataset_modify(ZFS_IOC_RELEASE, zfs_ioc_release,
5555 zfs_secpolicy_release);
5556 zfs_ioctl_register_dataset_modify(ZFS_IOC_INHERIT_PROP,
5557 zfs_ioc_inherit_prop, zfs_secpolicy_inherit_prop);
5558 zfs_ioctl_register_dataset_modify(ZFS_IOC_SET_FSACL, zfs_ioc_set_fsacl,
5559 zfs_secpolicy_set_fsacl);

5561 zfs_ioctl_register_dataset_nolog(ZFS_IOC_SHARE, zfs_ioc_share,
5562 zfs_secpolicy_share, POOL_CHECK_NONE);
5563 zfs_ioctl_register_dataset_nolog(ZFS_IOC_SMB_ACL, zfs_ioc_smb_acl,
5564 zfs_secpolicy_smb_acl, POOL_CHECK_NONE);
5565 zfs_ioctl_register_dataset_nolog(ZFS_IOC_USERSPACE_UPGRADE,
5566 zfs_ioc_userspace_upgrade, zfs_secpolicy_userspace_upgrade,
5567 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY);
5568 zfs_ioctl_register_dataset_nolog(ZFS_IOC_TMP_SNAPSHOT,
5569 zfs_ioc_tmp_snapshot, zfs_secpolicy_tmp_snapshot,
5570 POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY);
5571 }

5573 int
5574 pool_status_check(const char *name, zfs_ioc_namecheck_t type,
5575 zfs_ioc_poolcheck_t check)
5576 {
5577 spa_t *spa;
5578 int error;

5580 ASSERT(type == POOL_NAME || type == DATASET_NAME);

5582 if (check & POOL_CHECK_NONE)
5583 return (0);

5585 error = spa_open(name, &spa, FTAG);
5586 if (error == 0) {
5587 if ((check & POOL_CHECK_SUSPENDED) && spa_suspended(spa))
5588 error = EAGAIN;
5589 else if ((check & POOL_CHECK_READONLY) && !spa_writeable(spa))
5590 error = EROFS;
5591 spa_close(spa, FTAG);
5592 }
5593 return (error);
5594 }

5596 /*
5597 * Find a free minor number.
5598 */
5599 minor_t
5600 zfsdev_minor_alloc(void)
5601 {
5602 static minor_t last_minor;

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 86

5603 minor_t m;

5605 ASSERT(MUTEX_HELD(&zfsdev_state_lock));

5607 for (m = last_minor + 1; m != last_minor; m++) {
5608 if (m > ZFSDEV_MAX_MINOR)
5609 m = 1;
5610 if (ddi_get_soft_state(zfsdev_state, m) == NULL) {
5611 last_minor = m;
5612 return (m);
5613 }
5614 }

5616 return (0);
5617 }

5619 static int
5620 zfs_ctldev_init(dev_t *devp)
5621 {
5622 minor_t minor;
5623 zfs_soft_state_t *zs;

5625 ASSERT(MUTEX_HELD(&zfsdev_state_lock));
5626 ASSERT(getminor(*devp) == 0);

5628 minor = zfsdev_minor_alloc();
5629 if (minor == 0)
5630 return (ENXIO);

5632 if (ddi_soft_state_zalloc(zfsdev_state, minor) != DDI_SUCCESS)
5633 return (EAGAIN);

5635 *devp = makedevice(getemajor(*devp), minor);

5637 zs = ddi_get_soft_state(zfsdev_state, minor);
5638 zs->zss_type = ZSST_CTLDEV;
5639 zfs_onexit_init((zfs_onexit_t **)&zs->zss_data);

5641 return (0);
5642 }

5644 static void
5645 zfs_ctldev_destroy(zfs_onexit_t *zo, minor_t minor)
5646 {
5647 ASSERT(MUTEX_HELD(&zfsdev_state_lock));

5649 zfs_onexit_destroy(zo);
5650 ddi_soft_state_free(zfsdev_state, minor);
5651 }

5653 void *
5654 zfsdev_get_soft_state(minor_t minor, enum zfs_soft_state_type which)
5655 {
5656 zfs_soft_state_t *zp;

5658 zp = ddi_get_soft_state(zfsdev_state, minor);
5659 if (zp == NULL || zp->zss_type != which)
5660 return (NULL);

5662 return (zp->zss_data);
5663 }

5665 static int
5666 zfsdev_open(dev_t *devp, int flag, int otyp, cred_t *cr)
5667 {
5668 int error = 0;

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 87

5670 if (getminor(*devp) != 0)
5671 return (zvol_open(devp, flag, otyp, cr));

5673 /* This is the control device. Allocate a new minor if requested. */
5674 if (flag & FEXCL) {
5675 mutex_enter(&zfsdev_state_lock);
5676 error = zfs_ctldev_init(devp);
5677 mutex_exit(&zfsdev_state_lock);
5678 }

5680 return (error);
5681 }

5683 static int
5684 zfsdev_close(dev_t dev, int flag, int otyp, cred_t *cr)
5685 {
5686 zfs_onexit_t *zo;
5687 minor_t minor = getminor(dev);

5689 if (minor == 0)
5690 return (0);

5692 mutex_enter(&zfsdev_state_lock);
5693 zo = zfsdev_get_soft_state(minor, ZSST_CTLDEV);
5694 if (zo == NULL) {
5695 mutex_exit(&zfsdev_state_lock);
5696 return (zvol_close(dev, flag, otyp, cr));
5697 }
5698 zfs_ctldev_destroy(zo, minor);
5699 mutex_exit(&zfsdev_state_lock);

5701 return (0);
5702 }

5704 static int
5705 zfsdev_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp)
5706 {
5707 zfs_cmd_t *zc;
5708 uint_t vecnum;
5709 int error, rc, len;
5710 minor_t minor = getminor(dev);
5711 const zfs_ioc_vec_t *vec;
5712 char *saved_poolname = NULL;
5713 nvlist_t *innvl = NULL;

5715 if (minor != 0 &&
5716 zfsdev_get_soft_state(minor, ZSST_CTLDEV) == NULL)
5717 return (zvol_ioctl(dev, cmd, arg, flag, cr, rvalp));

5719 vecnum = cmd - ZFS_IOC_FIRST;
5720 ASSERT3U(getmajor(dev), ==, ddi_driver_major(zfs_dip));

5722 if (vecnum >= sizeof (zfs_ioc_vec) / sizeof (zfs_ioc_vec[0]))
5723 return (EINVAL);
5724 vec = &zfs_ioc_vec[vecnum];

5726 zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP);

5728 error = ddi_copyin((void *)arg, zc, sizeof (zfs_cmd_t), flag);
5729 if (error != 0) {
5730 error = EFAULT;
5731 goto out;
5732 }

5734 zc->zc_iflags = flag & FKIOCTL;

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 88

5735 if (zc->zc_nvlist_src_size != 0) {
5736 error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
5737 zc->zc_iflags, &innvl);
5738 if (error != 0)
5739 goto out;
5740 }

5742 /*
5743 * Ensure that all pool/dataset names are valid before we pass down to
5744 * the lower layers.
5745 */
5746 zc->zc_name[sizeof (zc->zc_name) - 1] = ’\0’;
5747 switch (vec->zvec_namecheck) {
5748 case POOL_NAME:
5749 if (pool_namecheck(zc->zc_name, NULL, NULL) != 0)
5750 error = EINVAL;
5751 else
5752 error = pool_status_check(zc->zc_name,
5753 vec->zvec_namecheck, vec->zvec_pool_check);
5754 break;

5756 case DATASET_NAME:
5757 if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0)
5758 error = EINVAL;
5759 else
5760 error = pool_status_check(zc->zc_name,
5761 vec->zvec_namecheck, vec->zvec_pool_check);
5762 break;

5764 case NO_NAME:
5765 break;
5766 }

5769 if (error == 0 && !(flag & FKIOCTL))
5770 error = vec->zvec_secpolicy(zc, innvl, cr);

5772 if (error != 0)
5773 goto out;

5775 /* legacy ioctls can modify zc_name */
5776 len = strcspn(zc->zc_name, "/@") + 1;
5777 saved_poolname = kmem_alloc(len, KM_SLEEP);
5778 (void) strlcpy(saved_poolname, zc->zc_name, len);

5780 if (vec->zvec_func != NULL) {
5781 nvlist_t *outnvl;
5782 int puterror = 0;
5783 spa_t *spa;
5784 nvlist_t *lognv = NULL;

5786 ASSERT(vec->zvec_legacy_func == NULL);

5788 /*
5789 * Add the innvl to the lognv before calling the func,
5790 * in case the func changes the innvl.
5791 */
5792 if (vec->zvec_allow_log) {
5793 lognv = fnvlist_alloc();
5794 fnvlist_add_string(lognv, ZPOOL_HIST_IOCTL,
5795 vec->zvec_name);
5796 if (!nvlist_empty(innvl)) {
5797 fnvlist_add_nvlist(lognv, ZPOOL_HIST_INPUT_NVL,
5798 innvl);
5799 }
5800 }

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 89

5802 outnvl = fnvlist_alloc();
5803 error = vec->zvec_func(zc->zc_name, innvl, outnvl);

5805 if (error == 0 && vec->zvec_allow_log &&
5806 spa_open(zc->zc_name, &spa, FTAG) == 0) {
5807 if (!nvlist_empty(outnvl)) {
5808 fnvlist_add_nvlist(lognv, ZPOOL_HIST_OUTPUT_NVL,
5809 outnvl);
5810 }
5811 (void) spa_history_log_nvl(spa, lognv);
5812 spa_close(spa, FTAG);
5813 }
5814 fnvlist_free(lognv);

5816 if (!nvlist_empty(outnvl) || zc->zc_nvlist_dst_size != 0) {
5817 int smusherror = 0;
5818 if (vec->zvec_smush_outnvlist) {
5819 smusherror = nvlist_smush(outnvl,
5820 zc->zc_nvlist_dst_size);
5821 }
5822 if (smusherror == 0)
5823 puterror = put_nvlist(zc, outnvl);
5824 }

5826 if (puterror != 0)
5827 error = puterror;

5829 nvlist_free(outnvl);
5830 } else {
5831 error = vec->zvec_legacy_func(zc);
5832 }

5834 out:
5835 nvlist_free(innvl);
5836 rc = ddi_copyout(zc, (void *)arg, sizeof (zfs_cmd_t), flag);
5837 if (error == 0 && rc != 0)
5838 error = EFAULT;
5839 if (error == 0 && vec->zvec_allow_log) {
5840 char *s = tsd_get(zfs_allow_log_key);
5841 if (s != NULL)
5842 strfree(s);
5843 (void) tsd_set(zfs_allow_log_key, saved_poolname);
5844 } else {
5845 if (saved_poolname != NULL)
5846 strfree(saved_poolname);
5847 }

5849 kmem_free(zc, sizeof (zfs_cmd_t));
5850 return (error);
5851 }

5853 static int
5854 zfs_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
5855 {
5856 if (cmd != DDI_ATTACH)
5857 return (DDI_FAILURE);

5859 if (ddi_create_minor_node(dip, "zfs", S_IFCHR, 0,
5860 DDI_PSEUDO, 0) == DDI_FAILURE)
5861 return (DDI_FAILURE);

5863 zfs_dip = dip;

5865 ddi_report_dev(dip);

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 90

5867 return (DDI_SUCCESS);
5868 }

5870 static int
5871 zfs_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
5872 {
5873 if (spa_busy() || zfs_busy() || zvol_busy())
5874 return (DDI_FAILURE);

5876 if (cmd != DDI_DETACH)
5877 return (DDI_FAILURE);

5879 zfs_dip = NULL;

5881 ddi_prop_remove_all(dip);
5882 ddi_remove_minor_node(dip, NULL);

5884 return (DDI_SUCCESS);
5885 }

5887 /*ARGSUSED*/
5888 static int
5889 zfs_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
5890 {
5891 switch (infocmd) {
5892 case DDI_INFO_DEVT2DEVINFO:
5893 *result = zfs_dip;
5894 return (DDI_SUCCESS);

5896 case DDI_INFO_DEVT2INSTANCE:
5897 *result = (void *)0;
5898 return (DDI_SUCCESS);
5899 }

5901 return (DDI_FAILURE);
5902 }

5904 /*
5905 * OK, so this is a little weird.
5906 *
5907 * /dev/zfs is the control node, i.e. minor 0.
5908 * /dev/zvol/[r]dsk/pool/dataset are the zvols, minor > 0.
5909 *
5910 * /dev/zfs has basically nothing to do except serve up ioctls,
5911 * so most of the standard driver entry points are in zvol.c.
5912 */
5913 static struct cb_ops zfs_cb_ops = {
5914 zfsdev_open, /* open */
5915 zfsdev_close, /* close */
5916 zvol_strategy, /* strategy */
5917 nodev, /* print */
5918 zvol_dump, /* dump */
5919 zvol_read, /* read */
5920 zvol_write, /* write */
5921 zfsdev_ioctl, /* ioctl */
5922 nodev, /* devmap */
5923 nodev, /* mmap */
5924 nodev, /* segmap */
5925 nochpoll, /* poll */
5926 ddi_prop_op, /* prop_op */
5927 NULL, /* streamtab */
5928 D_NEW | D_MP | D_64BIT, /* Driver compatibility flag */
5929 CB_REV, /* version */
5930 nodev, /* async read */
5931 nodev, /* async write */
5932 };

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 91

5934 static struct dev_ops zfs_dev_ops = {
5935 DEVO_REV, /* version */
5936 0, /* refcnt */
5937 zfs_info, /* info */
5938 nulldev, /* identify */
5939 nulldev, /* probe */
5940 zfs_attach, /* attach */
5941 zfs_detach, /* detach */
5942 nodev, /* reset */
5943 &zfs_cb_ops, /* driver operations */
5944 NULL, /* no bus operations */
5945 NULL, /* power */
5946 ddi_quiesce_not_needed, /* quiesce */
5947 };

5949 static struct modldrv zfs_modldrv = {
5950 &mod_driverops,
5951 "ZFS storage pool",
5952 &zfs_dev_ops
5953 };

5955 static struct modlinkage modlinkage = {
5956 MODREV_1,
5957 (void *)&zfs_modlfs,
5958 (void *)&zfs_modldrv,
5959 NULL
5960 };

5962 static void
5963 zfs_allow_log_destroy(void *arg)
5964 {
5965 char *poolname = arg;
5966 strfree(poolname);
5967 }

5969 int
5970 _init(void)
5971 {
5972 int error;

5974 spa_init(FREAD | FWRITE);
5975 zfs_init();
5976 zvol_init();
5977 zfs_ioctl_init();

5979 if ((error = mod_install(&modlinkage)) != 0) {
5980 zvol_fini();
5981 zfs_fini();
5982 spa_fini();
5983 return (error);
5984 }

5986 tsd_create(&zfs_fsyncer_key, NULL);
5987 tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
5988 tsd_create(&zfs_allow_log_key, zfs_allow_log_destroy);

5990 error = ldi_ident_from_mod(&modlinkage, &zfs_li);
5991 ASSERT(error == 0);
5992 mutex_init(&zfs_share_lock, NULL, MUTEX_DEFAULT, NULL);

5994 return (0);
5995 }

5997 int
5998 _fini(void)

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 92

5999 {
6000 int error;

6002 if (spa_busy() || zfs_busy() || zvol_busy() || zio_injection_enabled)
6003 return (EBUSY);

6005 if ((error = mod_remove(&modlinkage)) != 0)
6006 return (error);

6008 zvol_fini();
6009 zfs_fini();
6010 spa_fini();
6011 if (zfs_nfsshare_inited)
6012 (void) ddi_modclose(nfs_mod);
6013 if (zfs_smbshare_inited)
6014 (void) ddi_modclose(smbsrv_mod);
6015 if (zfs_nfsshare_inited || zfs_smbshare_inited)
6016 (void) ddi_modclose(sharefs_mod);

6018 tsd_destroy(&zfs_fsyncer_key);
6019 ldi_ident_release(zfs_li);
6020 zfs_li = NULL;
6021 mutex_destroy(&zfs_share_lock);

6023 return (error);
6024 }

6026 int
6027 _info(struct modinfo *modinfop)
6028 {
6029 return (mod_info(&modlinkage, modinfop));
6030 }

new/usr/src/uts/common/sys/fs/zfs.h 1

**
 28824 Wed Oct 17 21:48:40 2012
new/usr/src/uts/common/sys/fs/zfs.h
FITS: generating send-streams in portable format
This commit adds the command ’zfs fits-send’, analogous to zfs send. The
generated send stream is compatible with the stream generated with that
from ’btrfs send’ and can in principle easily be received to any filesystem.
**
______unchanged_portion_omitted_

740 #define ZVOL_DRIVER "zvol"
741 #define ZFS_DRIVER "zfs"
742 #define ZFS_DEV "/dev/zfs"

744 /* general zvol path */
745 #define ZVOL_DIR "/dev/zvol"
746 /* expansion */
747 #define ZVOL_PSEUDO_DEV "/devices/pseudo/zfs@0:"
748 /* for dump and swap */
749 #define ZVOL_FULL_DEV_DIR ZVOL_DIR "/dsk/"
750 #define ZVOL_FULL_RDEV_DIR ZVOL_DIR "/rdsk/"

752 #define ZVOL_PROP_NAME "name"
753 #define ZVOL_DEFAULT_BLOCKSIZE 8192

755 /*
756 * /dev/zfs ioctl numbers.
757 */
758 typedef enum zfs_ioc {
759 ZFS_IOC_FIRST = (’Z’ << 8),
760 ZFS_IOC = ZFS_IOC_FIRST,
761 ZFS_IOC_POOL_CREATE = ZFS_IOC_FIRST,
762 ZFS_IOC_POOL_DESTROY,
763 ZFS_IOC_POOL_IMPORT,
764 ZFS_IOC_POOL_EXPORT,
765 ZFS_IOC_POOL_CONFIGS,
766 ZFS_IOC_POOL_STATS,
767 ZFS_IOC_POOL_TRYIMPORT,
768 ZFS_IOC_POOL_SCAN,
769 ZFS_IOC_POOL_FREEZE,
770 ZFS_IOC_POOL_UPGRADE,
771 ZFS_IOC_POOL_GET_HISTORY,
772 ZFS_IOC_VDEV_ADD,
773 ZFS_IOC_VDEV_REMOVE,
774 ZFS_IOC_VDEV_SET_STATE,
775 ZFS_IOC_VDEV_ATTACH,
776 ZFS_IOC_VDEV_DETACH,
777 ZFS_IOC_VDEV_SETPATH,
778 ZFS_IOC_VDEV_SETFRU,
779 ZFS_IOC_OBJSET_STATS,
780 ZFS_IOC_OBJSET_ZPLPROPS,
781 ZFS_IOC_DATASET_LIST_NEXT,
782 ZFS_IOC_SNAPSHOT_LIST_NEXT,
783 ZFS_IOC_SET_PROP,
784 ZFS_IOC_CREATE,
785 ZFS_IOC_DESTROY,
786 ZFS_IOC_ROLLBACK,
787 ZFS_IOC_RENAME,
788 ZFS_IOC_RECV,
789 ZFS_IOC_SEND,
790 ZFS_IOC_INJECT_FAULT,
791 ZFS_IOC_CLEAR_FAULT,
792 ZFS_IOC_INJECT_LIST_NEXT,
793 ZFS_IOC_ERROR_LOG,
794 ZFS_IOC_CLEAR,
795 ZFS_IOC_PROMOTE,

new/usr/src/uts/common/sys/fs/zfs.h 2

796 ZFS_IOC_SNAPSHOT,
797 ZFS_IOC_DSOBJ_TO_DSNAME,
798 ZFS_IOC_OBJ_TO_PATH,
799 ZFS_IOC_POOL_SET_PROPS,
800 ZFS_IOC_POOL_GET_PROPS,
801 ZFS_IOC_SET_FSACL,
802 ZFS_IOC_GET_FSACL,
803 ZFS_IOC_SHARE,
804 ZFS_IOC_INHERIT_PROP,
805 ZFS_IOC_SMB_ACL,
806 ZFS_IOC_USERSPACE_ONE,
807 ZFS_IOC_USERSPACE_MANY,
808 ZFS_IOC_USERSPACE_UPGRADE,
809 ZFS_IOC_HOLD,
810 ZFS_IOC_RELEASE,
811 ZFS_IOC_GET_HOLDS,
812 ZFS_IOC_OBJSET_RECVD_PROPS,
813 ZFS_IOC_VDEV_SPLIT,
814 ZFS_IOC_NEXT_OBJ,
815 ZFS_IOC_DIFF,
816 ZFS_IOC_TMP_SNAPSHOT,
817 ZFS_IOC_OBJ_TO_STATS,
818 ZFS_IOC_SPACE_WRITTEN,
819 ZFS_IOC_SPACE_SNAPS,
820 ZFS_IOC_DESTROY_SNAPS,
821 ZFS_IOC_POOL_REGUID,
822 ZFS_IOC_POOL_REOPEN,
823 ZFS_IOC_SEND_PROGRESS,
824 ZFS_IOC_LOG_HISTORY,
825 ZFS_IOC_SEND_NEW,
826 ZFS_IOC_SEND_SPACE,
827 ZFS_IOC_CLONE,
828 ZFS_IOC_FITS_SEND,
829 #endif /* ! codereview */
830 ZFS_IOC_LAST
831 } zfs_ioc_t;

833 /*
834 * Internal SPA load state. Used by FMA diagnosis engine.
835 */
836 typedef enum {
837 SPA_LOAD_NONE, /* no load in progress */
838 SPA_LOAD_OPEN, /* normal open */
839 SPA_LOAD_IMPORT, /* import in progress */
840 SPA_LOAD_TRYIMPORT, /* tryimport in progress */
841 SPA_LOAD_RECOVER, /* recovery requested */
842 SPA_LOAD_ERROR /* load failed */
843 } spa_load_state_t;

845 /*
846 * Bookmark name values.
847 */
848 #define ZPOOL_ERR_LIST "error list"
849 #define ZPOOL_ERR_DATASET "dataset"
850 #define ZPOOL_ERR_OBJECT "object"

852 #define HIS_MAX_RECORD_LEN (MAXPATHLEN + MAXPATHLEN + 1)

854 /*
855 * The following are names used in the nvlist describing
856 * the pool’s history log.
857 */
858 #define ZPOOL_HIST_RECORD "history record"
859 #define ZPOOL_HIST_TIME "history time"
860 #define ZPOOL_HIST_CMD "history command"
861 #define ZPOOL_HIST_WHO "history who"

new/usr/src/uts/common/sys/fs/zfs.h 3

862 #define ZPOOL_HIST_ZONE "history zone"
863 #define ZPOOL_HIST_HOST "history hostname"
864 #define ZPOOL_HIST_TXG "history txg"
865 #define ZPOOL_HIST_INT_EVENT "history internal event"
866 #define ZPOOL_HIST_INT_STR "history internal str"
867 #define ZPOOL_HIST_INT_NAME "internal_name"
868 #define ZPOOL_HIST_IOCTL "ioctl"
869 #define ZPOOL_HIST_INPUT_NVL "in_nvl"
870 #define ZPOOL_HIST_OUTPUT_NVL "out_nvl"
871 #define ZPOOL_HIST_DSNAME "dsname"
872 #define ZPOOL_HIST_DSID "dsid"

874 /*
875 * Flags for ZFS_IOC_VDEV_SET_STATE
876 */
877 #define ZFS_ONLINE_CHECKREMOVE 0x1
878 #define ZFS_ONLINE_UNSPARE 0x2
879 #define ZFS_ONLINE_FORCEFAULT 0x4
880 #define ZFS_ONLINE_EXPAND 0x8
881 #define ZFS_OFFLINE_TEMPORARY 0x1

883 /*
884 * Flags for ZFS_IOC_POOL_IMPORT
885 */
886 #define ZFS_IMPORT_NORMAL 0x0
887 #define ZFS_IMPORT_VERBATIM 0x1
888 #define ZFS_IMPORT_ANY_HOST 0x2
889 #define ZFS_IMPORT_MISSING_LOG 0x4
890 #define ZFS_IMPORT_ONLY 0x8

892 /*
893 * Sysevent payload members. ZFS will generate the following sysevents with the
894 * given payloads:
895 *
896 * ESC_ZFS_RESILVER_START
897 * ESC_ZFS_RESILVER_END
898 * ESC_ZFS_POOL_DESTROY
899 * ESC_ZFS_POOL_REGUID
900 *
901 * ZFS_EV_POOL_NAME DATA_TYPE_STRING
902 * ZFS_EV_POOL_GUID DATA_TYPE_UINT64
903 *
904 * ESC_ZFS_VDEV_REMOVE
905 * ESC_ZFS_VDEV_CLEAR
906 * ESC_ZFS_VDEV_CHECK
907 *
908 * ZFS_EV_POOL_NAME DATA_TYPE_STRING
909 * ZFS_EV_POOL_GUID DATA_TYPE_UINT64
910 * ZFS_EV_VDEV_PATH DATA_TYPE_STRING (optional)
911 * ZFS_EV_VDEV_GUID DATA_TYPE_UINT64
912 */
913 #define ZFS_EV_POOL_NAME "pool_name"
914 #define ZFS_EV_POOL_GUID "pool_guid"
915 #define ZFS_EV_VDEV_PATH "vdev_path"
916 #define ZFS_EV_VDEV_GUID "vdev_guid"

918 #ifdef __cplusplus
919 }
920 #endif

922 #endif /* _SYS_FS_ZFS_H */

