new usr/src/cnd/ truss/codes. c new usr/src/cnd/ truss/ codes. c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]

77917 Wed COct 17 21:48:36 2012 389 (uint_t)TI OCGPPS, " Tl OCGPPS", NULL },
new usr/src/cnd/ truss/codes. c 390 (ui nt_t) TI OCSPPS, " Tl OCSPPS", NULL },
FITS: generating send-streans in portable format 391 (ui nt_t) TI OCGPPSEV, " TI OCGPPSEV", NULL },
This commit adds the command 'zfs fits-send’, anal ogous to zfs send. The
generated send streamis conpatible with the stream generated with that 393 (uint_t)TI OCPKT, " TI OCPKT", NULL }, /* ptyvar.h */
from’btrfs send” and can in principle easily be received to any fil esystem 394 (ui nt_t) TI OCUCNTL, " TI OCUCNTL", NULL },
IR R R R R R R R SRR RS R SRR RS E R E RS R R R RREREREREEEEEEE] 395 (UI nt t)TI m‘l’c'\rrl_ "TI wO\ITL"’ NULL }’
_____unchanged_portion_omtted_ 396 (ui nt_t) TI OClI SPACE, " Tl OCl SPACE", NULL },

331 (ui nt _t) TCGETA, " TCCETA", NULL }, 397 (uint_t)TIOC SI ZE, "TI OCl SI ZE", NULL
332 (ui nt _t) TCSETA, " TCSETA", NULL }, 398 (ui nt _t) Tl OCSSI ZE, " TI OCSSI ZE", ttyS| ze" },
333 (ui nt _t) TCSETAW " TCSETAW , NULL }, 399 (uint _t) TI OCGSI ZE, " Tl OCGSI ZE", "ttysize" },
334 (ui nt _t) TCSETAF, " TCSETAF", NULL },
335 (ui nt _t) TCFLSH, " TCFLSH", NULL }, 401 /*
336 (uint_t) TI OCKBON, " TI OCKBON', NULL }, 402 * Unfortunately, the DLIOC and LDl OC codes overlap. Since the LD CC
337 (uint_t) TI OCKBOF, " TI OCKBOF", NULL }, 403 * joctls (for xenix conpatibility) are far less likely to be used, we
338 (ui nt t)KBENABLED " KBENABLED" , NULL }, 404 * give preference to DLICOC
339 (ui nt _t) TCGETS, " TCGETS", NULL }, 405 */
340 (uint_t) TCSETS, " TCSETS", NULL }, 406 (uint_t)DLI OCRAW " DLI OCRAW , NULL },
341 (ui nt _t) TCSETSW " TCSETSW , NULL }, 407 (uint_t)DLI OCNATI VE, "DLI OCNATIVE", NULL },
342 (uint _t) TCSETSF, " TCSETSF", NULL }, 408 (uint_t)DLI OCl PNETI NFO, "DLI OCl PNETI NFO', NULL},
343 (ui nt _t) TCXONC, " TCXONC", NULL }, 409 (uint _t)DLI OCLOWLI NK, "DLI OCLOW.I NK", NULL },
344 (uint_t) TCSBRK, " TCSBRK", NULL },
345 (ui nt_t) TCDSET, " TCDSET", NULL }, 411 (ui nt _t) LDOPEN, " LDOPEN', NULL },
346 (uint_t)RTS_TOG "RTS_TOG', NULL }, 412 (uint _t) LDCLGSE, " LDCLOSE" , NULL },
347 (uint_t)TIOCSWNSZ, "TI OCSW NSZ", NULL }, 413 (ui nt_t) LDCHG, " LDCHG', NULL },
348 (uint_t) Tl OCGN NSZ, " TI OCGN NSZ", NULL }, 414 (uint_t)LDGETT, " LDCGETT", NULL },
349 (ui nt_t) TI OCGETD, "TI OCCETD", NULL }, 415 (uint_t)LDSETT, "LDSETT", NULL },
350 (uint_t)TI OCSETD, " Tl OCSETD", NULL }, 416 (ui nt _t) LDSVAP, " LDSVAP" NULL },
351 (uint_t)TI OCHPCL, " Tl OCHPCL" , NULL }, 417 (ui nt _t) LDGVAP, " LDGVAP", NULL },
352 (uint_t)TI OCGETP, " TI OCCETP", NULL }, 418 (ui nt _t) LDNVAP, " LDNVAP" , NULL },
353 (uint_t)TI OCSETP, " Tl OCSETP", NULL }, 419 (uint_t) TCGETX, " TCGETX", NULL },
354 (ui nt_t) TI OCSETN, "TI OCSETN", NULL }, 420 (ui nt _t) TCSETX, " TCSETX", NULL },
355 (ui nt_t) TI OCEXCL, " Tl OCEXCL", NULL }, 421 (ui nt _t) TCSETXW " TCSETXW , NULL },
356 (uint_t) TI OCNXCL, " TI OCNXCL", NULL }, 422 (ui nt_t) TCSETXF, " TCSETXF", NULL },
357 (uint_t)Tl (I:FLUSH " Tl OCFLUSH' , NULL }, 423 (uint_t)Fl ORDCHK, " FlI ORDCHK" , NULL },
358 (ui nt _t) Tl OCSETC, " TI OCSETC", NULL }, 424 (ui nt _t) Fl OCLEX, " FI OCLEX", NULL },
359 (uint_t)TI OCGETC, " Tl OCCETC", NULL }, 425 (ui nt _t) FI ONCLEX, " FI ONCLEX", NULL },
360 (uint_t) TI OCGPGRP, " TI OCGPCRP" , NULL }, 426 (ui nt_t) Fl ONREAD, " FI ONREAD", NULL },
361 (ui nt _t) TI OCSPGRP, " Tl OCSPGRP", NULL }, 427 (uint_t)FI ONBI O "FlI ONBI O, NULL },
362 (uint_t)TI OCGSI D, "TI OCCSI D', NULL }, 428 (ui nt _t) FI CASYNC, " FI CASYNC', NULL },
363 (uint_t)TIOCSTI, "TI OCSTI ", NULL }, 429 (uint_t)FI OSETOMW, " FI CSETOWN', NULL },
364 (ui nt "t) TI COVBET, " TI OCMBET", NULL }, 430 (ui nt _t) FI OGETOWN, " FI OGETOWN', NULL },
365 (uint_t)TIOCMVBIS, "TIOCMBI S", NULL }, 431 #ifdef DI OCGETP
366 (uint_t) TIOOMBI C, "TI OCMBI C", NULL }, 432 { (uint_t) DI OCGETP, " DI OCGETP", NULL },
367 (uint_t) TI OCMCGET, " Tl OCMGET", NULL }, 433 { (uint_t) DI OCSETP, " DI OCSETP", NULL },
368 (ui nt _t) TI OCREMOTE, " Tl OCCREMOTE" , NULL }, 434 #endif
369 (uint_t)TI OCSI GNAL, TI OCSI GNAL", NULL }, 435 #ifdef DI OCGETC
370 (uint_t) TI OCSTART, " TI OCSTART" , NULL }, 436 (ui nt_t) DI OCGETC, " DI OCCETC", NULL },
371 (uint_t)TI OCSTCP, " Tl OCSTOP", NULL }, 437 (uint _t) DI OCGETB, " DI OCCETB", NULL },
372 (ui nt_t) TI OCNOTTY, “TI OCCNOTTY", NULL }, 438 (ui nt _t) DI OCSETE, " DI OCSETE", NULL },
373 (uint_t)TIOCSCTTY, "TI OCSCTTY", NULL }, 439 #endi f
374 (uint_t)TI OCOUTQ, "TI OCQUTQ', NULL }, 440 #ifdef | FFORVAT
375 (uint_t)TI OCATC, "TI OCGLTC", NULL }, 441 (uint_t) | FFORVAT, "1 FFORVAT", NULL },
376 (uint_t)TIOCSLTC, "TI OCSLTC", NULL }, 442 (ui nt _t) | FBCHECK, "1 FBCHECK" , NULL },
377 (uint_t) Tl OCCDTR, "TI OCCDTR", NULL }, 443 (uint_t)I| FCONFI RM " | FCONFI RM', NULL },
378 (uint_t) Tl OCSDTR, " Tl OCSDTR', NULL }, 444 #endi f
379 (ui nt _t) TI OCCBRK, " TI OCCBRK" , NULL }, 445 #ifdef LI OCGETP
380 (uint_t) TI OCSBRK, " Tl OCSBRK", NULL }, 446 (uint_t) LI OCGETP, " LI OCCETP", NULL },
381 (uint_t)TI OCLGET, "TI OCLCGET", NULL }, 447 (uint_t)LI OCSETP, " LI OCSETP", NULL },
382 (uint_t)TI OCLSET, " Tl OCLSET", NULL }, 448 (uint_t)LI OCGETS, "Ll OCCETS", NULL },
383 (uint_t)TIOCLBIC, "TI OCLBI C', NULL }, 449 (uint _t) LI OCSETS, "Ll OCSETS", NULL },
384 (uint_t)TIOCLBIS "TIOCLBI S, NULL }, 450 #endi f

451 #ifdef JBOOT
386 { (uint_t)TIOCSILOOP, "TIQCSILOOP", NULL }, 452 { (uint_t)JBOOT, " JBOOT", NULL },
387 { (uint_t)TIOCClI LOOP, " Tl OCSI LOOP", NULL }, 453 { (uint_t)JTERM "JTERM', NULL },

new usr/src/cnd/ truss/codes. c 3 new usr/src/cnd/ truss/codes. c
454 { (uint_t)JIMPX, "JMPX', NULL }, 520 { (uint_t)V_PREAD, "V_PREAD', NULL },
455 #ifdef JTIMO 521 { (uint_t)V_PWRITE, "V_PWRI TE", NULL },
456 { (uint_t)JTI MO, "JTI MO, NULL }, 522 { (uint_t)V_PDREAD, "V_PDREAD', NULL },
457 #endi f 523 { (uint_t)V_PDWRI TE, "V_PDWRI TE", NULL },
458 (uint_t)JWNSI ZE, " JW NSI ZE", NULL }, 524 #if !defined(__i386) && !defi ned(and64)
459 (uint_t)JTI MOV " JTI MOM', NULL }, 525 { (uint_t)V GETSSZ, GETSSZ", NULL },
460 (uint_t)JZOVBOOT, "JZOovBOOoT", NULL }, 526 #endif /* I __i386 */
461 (ui nt _t) JAGENT, " JAGENT", NULL }, 527 #endif
462 (uint_t)JTRUN, "JTRUN", NULL }, 528 /* audio */
463 (uint_t)JIXTPROTO, " IXTPROTO', NULL }, 529 (uint_t)AUDI O_GETI NFO, " AUDI O_CGETI NFO', NULL },
464 #endi f 530 (ui nt _t) AUDI O_SETI NFO, " AUDI O_SETI NFO', NULL },
465 (uint_t)KSTAT_| OC_CHAI N_I D, "KSTAT_I OC_CHAIN_I D", NULL }, 531 (ui nt_t) AUDI O_DRAI N, " AUDI O_DRAI N', NULL },
466 (ui nt _t) KSTAT_| OC_READ, " KSTAT_| OC_READ", NULL }, 532 (ui nt _t)AUDI O_GETDEV, " AUDI O_GETDEV", NULL },
467 (ui nt _t) KSTAT_| OC_WRI TE, "KSTAT_| OC_WRI TE", NULL }, 533 (uint_t)AUD O DI AG LOOPBACK, "AUDI O DI AG LOOPBACK', NULL },
468 (uint_t)STCET, " STGET", NULL }, 534 (uint_t)AUDI O GET_CH NUMBER, "AUDI O GET_CH NUMBER', NULL },
469 (ui nt _t) STSET, " STSET" NULL }, 535 (uint_t)AUDI O GET_CH_TYPE, " AUDI O_GET_CH_TYPE", NULL },
470 (ui nt _t) STTHROW " STTHROW , NULL }, 536 (ui nt_t)AUDI O_GET_NUM CHS, " AUDI O_GET_NUM CHS", NULL },
471 (ui nt _t) STW.I NE, " STWLI NE", NULL }, 537 (uint_t)AUDI O GET_AD DEV, " AUDI O_GET_AD DEV", NULL },
472 (uint_t)STTSV, "STTSV', NULL }, 538 (ui nt_t) AUDI O_GET_APM DEV, " AUDI O_GET_APM DEV", NULL },
473 (ui nt _t) 1 _NREAD, "| _NREAD", NULL }, 539 (ui nt_t)AUDI O_GET_AS_DEV, " AUDI O_GET_AS_DEV', NULL },
474 (uint_t)l_| PUSH "| _PUSH', NULL }, 540 (uint_t)AUDI O M XER MULTI PLE_OPEN, " AUDI O_M XER_MULTI PLE_OPEN",
475 (uint_t)1_ " _POP", NULL }, 541 NULL },
476 (uint_t)l LCD(, "l _LOOK", NULL }, 542 { (uint t)AUDI O_M XER_SI NGLE_OPEN, "AUDI O_M XER_SI NGLE_COPEN',
477 (uint_t)!l_FLUSH, | _FLUSH', NULL }, 543 NULL }
478 (ui nt_t) 1 _SRDOPT, "1 _SRDOPT", NULL }, 544 { (uint_t) AUDI O M XER_GET_SAMPLE_RATES, "AUDI O M XER_GET_SAMPLE_RATES",
479 (ui nt_t) 1 _GRDOPT, " | _GRDOPT", NULL }, 545 NULL },
480 (uint_t)1_STR, | _STR', NULL }, 546 { (uint_t)AUDI O M XERCTL_GETI NFO, " AUDI O M XERCTL_GETI NFO',
481 (uint_t)1_SETSI G | _SETSI G', NULL 1}, 547 NULL }
482 (uint_t)l_CETSIG "l _GETSIG', NULL }, 548 { (uint t)AUDI O_M XERCTL_SETI NFQ, " AUDI O_M XERCTL_SETI NFO',
483 (uint_t)!l _FIND, "1 _FIND", NULL }, 549 NULL
484 (uint _t)1_LINK, I LI NK", NULL }, 550 { (uint_t)AUDI O M XERCTL_GET_CHI NFOQ, " AUDI O M XERCTL_GET_CHI NFO',
485 (uint _t) 1 _UNLI NK, I UNLI NK", NULL }, 551 NULL }
486 (uint_t)l_PEEK, "1 _PEEK", NULL }, 552 { (uint_t) AUDI O_M XERCTL_SET_CHI NFO, " AUDI O_M XERCTL_SET_CHI NFO',
487 (uint_t)!_FDI NSERT, "| _FDI NSERT", NULL }, 553 NULL
488 (ui nt _t) 1 _SENDFD, | _SENDFD", NULL }, 554 { (uint_t)AUDI O M XERCTL_GET_MODE, " AUDI O M XERCTL_GET_MODE",
489 (ui nt _t) 1 _RECVFD, "| _RECVFD', NULL }, 555 NULL },
490 (ui nt_t) 1 _SWROPT, "| _SWROPT", NULL }, 556 { (uint_t)AUD O M XERCTL_SET_MODE, " AUDI O M XERCTL_SET_MODE",
491 (uint_t)l_GAROPT, "1 _GAROPT", NULL }, 557 NULL },
492 (uint_t)l_LIST, | _LI ST, NULL }, 558 /* new style Boonmer (OSS) ioctls */
493 (uint_t)l_PLINK | _PLINK", NULL }, 559 (ui nt_t) SNDCTL_SYSI NFO, " SNDCTL_SYSI NFO', NULL },
494 (uint_t)l_PUNLI NK, "1 _PUNLI NK", NULL }, 560 (ui nt _t) SNDCTL_AUDI O NFQ, " SNDCTL_AUDI O NFO', NULL },
495 (uint_t)I _FLUSHBAND, "I_FLUSHBAND', NULL }, 561 (ui nt _t) SNDCTL_AUDI O NFO_EX, " SNDCTL_AUDI O NFO_ EX" NULL },
496 (ui nt _t) 1 _CKBAND, | _CKBAND", NULL }, 562 (ui nt _t) SNDCTL_M XERI NFO, " SNDCTL_M XERI NFQ", NULL },
497 (uint_t)l_GETBAND, | _CGETBAND", NULL }, 563 (ui nt _t) SNDCTL_CARDI NFQO, " SNDCTL_CARDI NFO', NULL },
498 (uint_t)l_ATMARK, "1 _ATMARK", NULL }, 564 (ui nt _t) SNDCTL_ENG NEI NFQ, " SNDCTL_ENG NEI NFO' s NULL },
499 (uint_t)!l_SETCLTIME, "I_SETCLTIME", NULL }, 565 (ui nt _t) SNDCTL_M X_NRM X, "SNDCTL_M X_NRM X", NULL },
500 (uint_t)l _GETCLTI ME | _GETCLTIME", NULL }, 566 (ui nt _t) SNDCTL_M X_NREXT, " SNDCTL_M X_NREXT", NULL },
501 (ui nt _t) 1 _CANPUT, | _CANPUT", NULL }, 567 (ui nt _t) SNDCTL_M X_EXTI NFQ, " SNDCTL_M X_EXTI NFO', NULL },
502 (ui nt _t) 1 _ANCHOR, | _ANCHCOR", NULL }, 568 (ui nt _t) SNDCTL_M X_READ, " SNDCTL_M X_READ", NULL },
503 (uint_t)_I_CMD, "_l_CcvD', NULL }, 569 (ui nt_t) SNDCTL_M X_WRI TE, "SNDCTL_M X_WRI TE", NULL },
504 #ifdef TI_GETI NFO 570 (uint_t)SNDCTL_M X ENUM NFQ, SNDCTL M X_ENUM NFO NULL },
505 (ui nt _t) Tl _GETI NFQ, "TI _GETI NFO', NULL }, 571 (ui nt _t) SNDCTL_M X_DESCRI PTI ON, “SNDCTL_M X_DESCRI PTI ON',
506 (ui nt _t) TI _OPTMGM, " TI _OPTMGMI™ NULL }, 572 NULL },
507 (uint_t)TI_BIND, "TI _BIND", NULL }, 573 (ui nt _t) SNDCTL_SETSONG, " SNDCTL_SETSONG', NULL },
508 (uint_t)TI_UNBI ND, "TI _UNBI ND*, NULL }, 574 (ui nt _t) SNDCTL_GETSONG, " SNDCTL_GETSONG', NULL },
509 #endif 575 (ui nt _t) SNDCTL_SETNAME, " SNDCTL_SETNAME" , NULL },
510 #ifdef TI_CAPABILITY 576 (uint_t)SNDCTL_SETLABEL, " SNDCTL_SETLABEL", NULL },
511 { (uint_t)TlI_CAPABILITY, "TI _CAPABI LI TY", NULL }, 577 (ui nt "t) SNDCTL_GETLABEL, " SNDCTL_GETLABEL", NULL },
512 #endi f 578 (uint_t)SNDCTL_DSP_HALT, " SNDCTL_DSP_HALT", NULL },
513 #ifdef TI_CGETMYNAME 579 (uint_t) SNDCTL_DSP_RESET, " SNDCTL_DSP_RESET", NULL },
514 {"(uint_t) Tl _GETMYNAME, "TI _GETMYNAME", NULL }, 580 (ui nt _t) SNDCTL_DSP_SYNC, " SNDCTL_DSP_SYNC', NULL },
515 { (uint_t)TlI_GETPEERNAMNE, " Tl _GETPEERNAME", NULL }, 581 (ui nt _t) SNDCTL_DSP_SPEED, " SNDCTL_DSP_ SPEED' NULL },
516 { (uint_t) Tl _SETMYNAME, "TI _SETMYNAME", NULL }, 582 (ui nt _t) SNDCTL_DSP_STEREO, " SNDCTL_ DSP STEREO' NULL },
517 { (uint_t)TI_SETPEERNAME, " TI _SETPEERNAME" , NULL }, 583 (ui nt _t) SNDCTL_DSP_GETBLKSI ZE, " SNDCTL_DSP_GETBLKSI ZE"
518 #endi f 584 NULL 1},
519 #ifdef V_PREAD 585 { (uint_t)SNDCTL_DSP_SAMPLESI ZE, " SNDCTL_DSP_SAMPLESI ZE" ,

new usr/src/cnd/ truss/codes. c

586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651

{

{

e i e T e e e T e T e T e T o T e NP e

NULL },
(uint_t)SNDCTL_DSP_CHANNELS,
(ui nt "t) SNDCTL_DSP_PCST,

(ui nt _t) SNDCTL_DSP_SUBDI VI DE,

(ui nt _t) SNDCTL_DSP_SETFRAGVENT,

NULL },
(ui nt_t) SNDCTL_DSP_GETFMTS,
(ui nt "t) SNDCTL_DSP_SETFMT,
(ui nt _t) SNDCTL_DSP_GETOSPACE,
(ui nt _t) SNDCTL_DSP_GETI SPACE,
(ui nt _t) SNDCTL_DSP_GETCAPS,
(ui nt t) SNDCTL_DSP_GETTRI GGER,

NULL },
(uint_t)SNDCTL_DSP_SETTRI GGER,
NULL

(uint_t)SNDCTL_DSP_GETI PTR,
(ui nt _t) SNDCTL_DSP_GETOPTR,
(ui nt _t) SNDCTL_DSP_SETSYNCRO,
(ui nt _t) SNDCTL_DSP_SETDUPLEX,
(ui nt _t) SNDCTL_DSP_PROFI LE,
(ui nt _t) SNDCTL_DSP_GETCDELAY,
(ui nt _t) SNDCTL_DSP_GETPLAYVOL,
NULL 3,
(uint_t)SNDCTL_DSP_SETPLAYVOL,
NULT

(uint _t) SNDCTL_DSP_GETERROR,

(ui nt _t) SNDCTL_DSP_READCTL,

(ui nt "t) SNDCTL_DSP_WRI TECTL,

(ui nt _t) SNDCTL_DSP_SYNCGROUP,

(ui nt _t) SNDCTL_DSP_SYNCSTART,

(ui nt "t) SNDCTL_DSP_COOKEDMODE,
NULL 3,

(uint _t) SNDCTL_DSP_SI LENCE,

(ui nt _t) SNDCTL_DSP_SKI P,

(ui nt _t) SNDCTL_DSP_HALT | NPUT,
NULL 3,

(uint _t) SNDCTL_DSP_HALT_OUTPUT,
NULT

(uint_t) SNDCTL_DSP_LOW WATER,

(ui nt _t) SNDCTL_DSP_CURRENT_OPT
NULL },

(ui nt _t) SNDCTL_DSP_CURRENT_| PT|
NULT

(uint_t)SNDCTL_DSP_GET RECSRC_
NULL },

(uint_t)SNDCTL_DSP_GET_RECSRC,
NULT

(uint_t)SNDCTL_DSP_SET_RECSRC,
NULL

(uint_t) SNDCTL_DSP_GET_PLAYTGT_
NULT 3,

(uint_t)SNDCTL_DSP_GET_PLAYTGT,
NULL 3,

(uint_t)SNDCTL_DSP_SET_PLAYTGT,
NULT

I
(uint_t)SNDCTL_DSP_GETRECVOL,
NULL
(ui nt _t) SNDCTL_DSP_SETRECVCL,
NULL },
(uint_t)SNDCTL_DSP_GET_CHNORDEI
NULL

(uint_t)SNDCTL_DSP_SET_CHNORDE
NULL },

(ui nt_t) SNDCTL_DSP_GETI PEAKS,

(ui nt "t) SNDCTL_DSP_GETCOPEAKS,

(ui nt "t) SNDCTL_DSP_PCQLI CY,

"SNDCTL_DSP_CHANNELS", NULL },
" SNDCTL_DSP_POST", NULL },
" SNDCTL_DSP_SUBDI VI DE", NULL },
" SNDCTL_DSP_SETFRAGVENT" ,

" SNDCTL_DSP_GETFMIS", NULL },
" SNDCTL_DSP_SETFMI™, NULL },
" SNDCTL_DSP_ GETOSPACE" NULL },

" SNDCTL_DSP_GETI SPACE", NULL },

" SNDCTL_DSP_CAPS", NULL },

" SNDCTL_ DSP GETTRI GGER',

" SNDCTL_DSP_SETTRI GGER",

“SNDCTL_DSP_GETI PTR', NULL
" SNDCTL_DSP_GETOPTR', NULL
* SNDCTL_DSP_SETSYNCRO', NULL
" SNDCTL_DSP_SETDUPLEX", NULL
" SNDCTL_DSP_PROFI LE", ~ NULL
" SNDCTL_DSP_GETCDELAY", NULL
" SNDCTL_DSP_GETPLAYVOL" ,

" SNDCTL_DSP_SETPLAYVOL",

" SNDCTL_DSP_GETERROR', NULL

" SNDCTL_DSP_READCTL" NULL

" SNDCTL_DSP_WRI TECTL", NULL

" SNDCTL_DSP_SYNCGROUP*, NULL

" SNDCTL_DSP_SYNCSTART", NULL
" SNDCTL_DSP_COOKEDVOD!

m

"SNDCTL_DSP_SI LENCE", NULL },
" SNDCTL_DSP_SKI P", NULL },
" SNDCTL_DSP_HALT_| NPUT"

" SNDCTL_DSP_HALT_QUTPUT",

" SNDCTL_DSP_LOW WATER', NULL },
R " SNDCTL_DSP_CURRENT_CPTR'
R, " SNDCTL_DSP_CURRENT_| PTR"

NAMES, " SNDCTL_DSP_GET_RECSRC NAMES',
" SNDCTL_DSP_GET_RECSRC',
“ SNDCTL_DSP_SET_RECSRC',

NAMES, " SNDCTL_DSP_GET_PLAYTGT_NANES'
“ SNDCTL_DSP_GET_PLAYTGT"
" SNDCTL_DSP_SET_PLAYTGT",
“ SNDCTL_DSP_GETRECVOL"
" SNDCTL_DSP_SETRECVOL",

R, “ SNDCTL_DSP_GET_CHNORDER' ,

R, " SNDCTL_DSP_SET_CHNORDER'
" SNDCTL_DSP_GETI PEAKS", NULL 1},
" SNDCTL_DSP_GETOPEAKS", NULL 1},
" SNDCTL_DSP_POLI CY", NULL },

new usr/src/cnd/ truss/codes. c

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694

696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

e e e e e T e T e T N e e e e e e e e

/

{

{
/

#define Pl OC

(ui nt _t) SNDCTL_DSP_GETCHANNELMASK,
NULT 3,

(uint_t)SNDCTL_DSP_BI ND_CHANNEL,
NULT 3,

(uint_t) SOUND_M XER_READ_VOLUME,
NULT

(uint t)SClND M XER_READ OGAI N,
NULL

(ui nt_t) SOUND_M XER_READ PCM " SOUND_M XER_READ PCM',

(ui nt _t) SOUND_M XER_READ | GAI N,
NULL },

(uint_t)SOUND M XER READ_RECLEV,
NUL

ULC
(uint_t) SOUND_M XER_READ RECSRC,
NULL },
(ui nt_t) SOUND_M XER_READ DEVMASK,
NUL

ULL },
(ui nt_t)SOUND_M XER_READ_RECMASK,
NULL },
(ui nt_t) SOUND_M XER_READ _CAPS,
NUL

ULL },
(ui nt_t)SOUND_M XER_READ_STERECDEVS,

NULL },
(ui nt_t) SOUND_M XER_READ RECGAI N,
NUL

ULL },

(ui nt_t) SOUND_M XER_READ_MONGAI N,
NULT 3,

(uint_t) SOUND_M XER VIRl TE_VOLUME,
NULT },

(ui nt_t) SOUND_M XER WRI TE_OGAI N,
NULT 3,

(uint_t) SOUND_M XER VR TE_PCM
NULL 3,

(uint_t) SOUND_M XER WRI TE_| GAI N,
NULT §,

(uint_t) SOUND_M XER VRl TE_RECLEV,
NULL 3,

(ui nt_t) SOUND_M XER VR TE_RECSRC,
NULT 3,

(uint_t) SOUND_M XER WRI TE_RECGAI N,
NULT 3,

(ui nt_t) SOUND_M XER WRI TE_MONGAI N,
NULT

* STREAMS redirection ioctls */

* SNDCTL_DSP_GETCHANNELMASK'"
“ SNDCTL_DSP_BI ND_CHANNEL" ,

" SOUND_M XER_READ_VOLUME"

" SOUND_M XER READ OGAI N',

NULL },
" SOUND_M XER_READ_| GAI N',

" SOUND_M XER_READ RECLEV",
“ SOUND_M XER_READ_RECSRC',
" SOUND_M XER_READ_DEVMASK"
" SOUND_M XER_READ_RECMASK",
" SOUND_M XER_READ CAPS",

" SOUND_M XER READ_STERECDEVS',
" SOUND_M XER_READ_RECGAI N',
" SOUND_M XER_READ_MONGAI N',
" SOUND_M XER VRl TE_VOLUNVE",
" SOUND_M XER WRI TE_OGAI N,

" SOUND_M XER WRI TE_PCM',

" SOUND_M XER WRI TE_| GAI N,

" SOUND_M XER WRI TE_RECLEV",
" SOUND_M XER WRI TE_RECSRC',
" SOUND_M XER W\RI TE_RECGAI N,
" SOUND_M XER WRI TE_MONGAI N,

(ui nt _t) SRI OCSREDI R, "SRI OCSREDI R', NULL },

(ui nt _t) SRI OCl SREDI R, "SRI OCl SREDI R', NULL },

(ui nt _t) CPCI O_BI ND, "CPCI O BIND', NULL },
(ui nt _t) CPCl O_SANVPLE, " CPCl O_SAMPLE", NULL },
(ui nt_t) CPCl O_RELE, "CPCl O_RELE", NULL },

* [dev/poll ioctl() cont roI codes */
(uint_t)DP_POLL, POLL" NULL },
(uint "t)DP I SPOLLED, " DP_I SPOLLED", NULL },
* the old /proc ioctl() control codes */
('q <<8

(uint_t)(PIod1), "PI OCSTATUS", NULL },

(uint_t)(PI O] 2), " Pl OCSTOP", NULL },

(uint_t)(PIOC 3), " Pl OCOWBTOP", NULL },
(uint_t)(PIOC 4), " Pl OCRUN', NULL },

(uint_t)(PIOC 5), " Pl OCGTRACE" , NULL },

(uint_t) (Pl O] 6), "PI OCSTRACE", NULL },
(uint_t)(PIOQ 7)), " Pl OCSSI G', NULL },
(uint_t)(PIQC 8), " Pl OCKI LL", NULL },
(uint_t)(PIOJ9), “PIOCUNKI LL", NULL },

(ui nt “t)(PIOC 10), " Pl OCGHOLD', NULL },

(uint_t)(PIOC 11), " Pl OCSHOLD", NULL },

new usr/src/cnd/ truss/codes. c

718 (uint_t)(PICC " Pl CCVAXSI G'
719 (uint_t)(PICC " Pl OCACTI ON
720 (uint_t)(PIOC " Pl OCGFAULT"
721 (uint_t)(PICC " Pl OCSFAULT"
722 (uint_t)(PICC " Pl OCCFAULT"
723 (uint_t)(PICC " Pl OCGENTRY"
724 (uint_t)(PIOC " Pl OCSENTRY"
725 (uint_t)(PIOC " Pl OCCGEXI T",
726 (uint_t)(PICC " Pl OCSEXI T",
727 (uint_t)(PICC " Pl OCSFORK" ,
728 (uint_t)(PICC " Pl OCRFORK" ,
729 (uint_t)(PIOC " Pl OCSRLC",
730 (uint_t)(PICC " Pl OCRRLC",
731 (uint_t)(PICC " Pl OCCREG',
732 (uint_t)(PICC " Pl OCSREG',
733 (uint_t)(PICC " Pl OCGFPREG',
734 (uint_t)(PICC " Pl OCSFPREG',
735 (uint_t)(PICC " Pl OCNI CE",
736 (uint_t)(PICC " Pl OCPSI NFO'
737 (uint_t)(PIOC " Pl OCNVAP"
738 (uint_t)(PICC " Pl OCVAP",

739 (uint_t)(PICC " PI OCOPENM',
740 (uint_t)(PICC " Pl OCCRED",
741 (uint_t)(PIOC " Pl OCCGROUPS"
742 (uint_t)(PICC " Pl OCGETPR",
743 (uint_t)(PICC " Pl OCCETU",
744 (uint_t)(PICC " Pl OCSET",

745 (uint_t)(PIOC " Pl OCRESET" ,
746 (uint_t)(PICC " Pl OCUSAGE"
747 (uint_t)(PICC " Pl OCOPENPD" ,
748 (uint_t)(PICC " Pl OCLWPI DS",
749 (uint_t)(PICC " Pl OCOPENLWP" ,
750 (uint_t)(PICC " Pl OCLSTATUS",
751 (uint_t)(PICC " Pl OCLUSAGE" ,
752 (uint_t)(PICC " Pl CCNAUXV"
753 (uint_t)(PICC " Pl OCAUXV" ,
754 (uint_t)(PIOC " Pl OCGXREGSI ZE",
755 (uint_t)(PICC " Pl OCGXREG' ,
756 (uint_t)(PICC " Pl OCSXREG',
757 (uint_t)(PICC " Pl OCON N,
758 (uint_t)(PIOC " Pl OCNLDT",
759 (uint_t)(PICC "PlI OCLDT",

761 /* ioctl’s applicable on sockets */
762 (ui nt _t) SI OCSHI WAT, " S| OCSHI WAT"
763 (ui nt _t) SI OCGHI WAT, "SI OCGHI WAT"
764 (ui nt _t) SI OCSLONAT, " S| OCSLOWAT",
765 (ui nt _t) SI OCGLONAT, " S| OCGLOWAT"
766 (ui nt _t) SI OCATVARK, " S| OCATMARK"
767 (ui nt _t) SI OCSPGRP, "SI OCSPGRP"
768 (ui nt _t) SI OCGPCRP, " S| OCGPGRP"
769 (ui nt _t) SI OCADDRT, " S| OCADDRT",
770 (ui nt _t) SI OCDELRT, " S| OCDELRT",
771 (ui nt_t) SI OCGETVI FCNT,

772 (ui nt _t) SI OCGETSGCNT, "SICCGETSGCNT
773 (uint _t) SI OCGETLSGCNT,

774 (uint_t)SI OCSI FADDR, "SI OCSI FADDR",
775 (uint_t)SIOCG FADDR, "SI OCd FADDR',
776 (ui nt _t) SI OCSI FDSTADDR,

777 (uint_t)SI OCG FDSTADDR,

778 (uint_t)SI OCSI FFLAGS, "SI OCSI FFLAGS"
779 (uint_t)SIOCGE FFLAGS, "SI OCd FFLAGS",
780 (ui nt _t) SI OCSI FMEM " S| OCSI FMEM',
781 (uint_t)SI OCA FNVEM " S| OCA FMEM',
782 (uint_t)SI OCA FCONF, "SI OCG FCONF",
783 (ui nt _t) SI OCSI FMTU, " Sl OCSI FMTU",

NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

NULL
NULL
NULL
NULL
NULL

NULL
NULL
NULL
NULL
NULL
NULL
NULL

“rtentry
"rtentry"
"SICEEETVIFCNT
"sioc sg req
SICCEETLSGCNT
"ifreq"
"ifreq"
"SI OCS| FDSTADDR"
"SI OCG FDSTADDR'
"ifreq"
"ifreq"
"ifreq"
"ifreq"
"ifconf"
"ifreq"

'sioc Isg req" },

new usr/src/cnd/ truss/codes. c

784 (uint_t)SI OCGE FMIU, " Sl OCd FMIuU', "ifreq" },
785 (uint_t) Sl OCG FBRDADDR, "SI OCG FBRDADDR',
786 (ui nt _t) SI OCSI FBRDADDR, " S| OCS| FBRDADDR" ,
787 (uint _t) SI OCG FNETMASK, "SI OCE FNETMASK" ,
788 (ui nt _t) SI OCSI FNETMASK, "SI OCSI FNETMASK" ,
789 (uint_t)SI OCA FMETRI C, "SI OCA FMETRI C
790 (uint_t)SICCSI FMETRI C, " S| OCSI FMETRI C'
791 (ui nt _t) SI OCSARP, " S| OCSARP", "arpreq" },
792 (ui nt _t) SI OCGARP, " S| CCGARP", "arpreq" },
793 (uint_t) SI OCDARP, " SI OCDARP" , "arpreq" },
794 (uint t)SICCUPPER " S| OCUPPER" , "ifreq" }
795 (uint _t) SI OCLOVER, "SI CCLOAER', "ifreq" },
796 (uint_t)SIOCSETSYNC, "SI OCSETSYNC', “ifreq" },
797 (uint_t)SI OCGETSYNC, "SI OCGETSYNC', “ifreq" },
798 (ui nt _t) SI OCSSDSTATS, "SI OCSSDSTATS", "ifreq" }
799 (ui nt_t) SI OCSSESTATS, "SI OCSSESTATS", "ifreq" },
800 (uint_t)SI OCSPROM SC, "SI OCSPROM SC', NULL }
801 (uint_t)SI OCCADDMULTI, "SI OCADDMULTI", “ifreq" },
802 (uint_t)SI OCDELMULTI, "SI OCDELMULTI", “ifreq" },
803 (uint_t)SIOCGETNAME, "SI OCGETNAME", "sockaddr" }
804 (uint_t)SI OCGETPEER, "SI OCGETPEER', "sockaddr"
805 (uint_t)IF_UNI TSEL, "1 F_UNI TSEL", NULL },
806 (uint_t)SICCXPROTO, " S| OCXPROTO', NULL }

807 (uint_t)SIOCl FDETACH, "SI OCl FDETACH', "ifreq"
808 (ui nt _t) SI OCGENPSTATS, " S| OCGENPSTATS"
809 (ui nt _t) SI OCX25XMT, " S| OCX25XMT™ , "ifreq" },
810 (ui nt _t) SI OCX25RCV, " S| OCX25RCV", "ifreq" },
811 (uint_t)SI OCX25TBL, " S| OCX25TBL", "ifreq"
812 (uint_t)SIOCSLGETREQ "SI OCSLGETREQ', "ifreq"
813 (ui nt _t) SI OCSLSTAT, " S| OCSLSTAT", “ifreq"
814 (uint_t)SIOCSI FNAMVE, "SI OCSI FNAME", “ifreq" },
815 (uint_t)SI OCGENADDR, "SI OCGENADDR', "ifreq"
816 (uint_t)SI OCGE FNUM "SI OCA FNUM', NULL },
817 (uint_t)SIOCE FMUXI D, "SI OCCA FMUXI D', "ifreq"
818 (uint_t)SIOCSI FMUXI D, "SI OCSI FMUXID', “ifreq" },
819 (uint_t)SIOCA FI NDEX, "SI OCG FI NDEX', "ifreq" },
820 (uint_t)SICCSI FI NDEX, "SI OCSIFI NDEX", "ifreq"
821 (uint _t)SI OCLI FREMOVEI F, "SI OCLI FREMOVEI F"
822 (uint_t)SIOCLI FADDI F, "SI OCLI FADDI F",
823 (uint _t) SI OCSLI FADDR, "SI OCSLI FADDR'
824 (uint_t)SI OCG.l FADDR, " S| OCGL| FADDR'
825 (uint_t)SI OCSLI FDSTADDR, "SI OCSLI FDSTADDR"
826 (uint_t)SI OCGLI FDSTADDR, "SI OCGLI FDSTADDR",
827 (uint _t) SI OCSLI FFLAGS, "SI OCSLI FFLAGS"
828 (uint _t)SI OCG.I FFLAGS, " S| OCGLI FFLAGS"
829 (uint _t)SI OCGLI FCONF, "SI OCGLI FCONF"
830 (uint_t)SI OCSLI FMTU, "SI OCSLI FMTU" ,

831 (uint_t)SI OCGI FMTU, "SI OCGLI FMTU',

832 (uint_t)SI OCG.I FBRDADDR, " S| OCGLI FBRDADDR" ,
833 (uint _t) SI OCSLI FBRDADDR, "SI OCSLI FBRDADDR"
834 (uint_t)SI OCGLI FNETMASK, "SI OCGLI FNETMASK"
835 (uint _t) SI OCSLI FNETMASK, "SI OCSLI FNETMASK"
836 (uint_t)SIOCG.I FMETRI C, "SI OCGLI FMETRI C*
837 (uint_t)SIOCSLI FMETRI C, " Sl OCSLI FMETRI C',
838 (ui nt _t) SI OCSLI FNAME, "SI OCSLI FNAME"
839 (uint_t) SI OCGLI FNUM "SI OCGLI FNUM',

840 (uint _t) SI OCGLI FMUXI D, "SI OCGLI FMUXI D",
841 (uint_t)SIOCSLI FMUXI D, " Sl OCSLI FMUXI D",
842 (uint _t) SI OCGLI FI NDEX, "SI OCGLI FI NDEX"
843 (uint _t) SI OCSLI FI NDEX, "SI OCSLI FI NDEX"
844 (uint _t) SI OCSLI FTOKEN, "SI OCSLI FTOKEN'
845 (uint_t)SIOCG.I FTOKEN, " S| OCGLI FTOKEN'
846 (uint _t) SI OCSLI FSUBNET, "SI OCSLI FSUBNET" ,
847 (uint_t)SI OCGLI FSUBNET, "SI OCGLI FSUBNET" ,
848 (uint _t) SI OCSLI FLNKI NFQ, "SI OCSLI FLNKI NFO'
849 (ui nt_t) SI OCGLI FLNKI NFO, "SI OCGLI FLNKI NFO'

"ifreq" },

W e e e e e e m e m e m e m e m e w e e e e e e e

new usr/src/cnd/ truss/codes. c

850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886

888
889
890

892
893
894
895
896
897
898
899
900
901
902
903
904
905
906

908
909
910
911
912
913
914
915

"prn_1284_device_id" T,
{ (ui nt _T) PRNIOC_GET_1284_STATUS,
RNl OC_GET_IT FCANI OC_GET_ 1284 STATUS",
{ (ui nt _t) PRNI OC_GET_TI MEQUTS, "PRNI OC_
"prn_timeouts”

{ (u| nt _t) PRNI OC_ SET TI MEQUTS, "PRNI OC_
"prn_timeouts" },

{ (uint_t)PRNI OC_RESET, "PRNI OC_RESET",

/* DTrace */

{ (uint_t)DTRACEI OC_PROVI DER, " DTRACEI

{ (uint_t)DTRACEI OC_PROBES, " DTRACEI
{ (uint_t)DTRACEI OC_BUFSNAP, " DTRACEI
{ (uint_t)DTRACEI OC_PROBEMATCH, " DTRACEI
{ (uint_t)DTRACEI OC_ENABLE, " DTRACEI
{ (uint_t)DTRACEI OC_AGGSNAP, " DTRACEI
{ (uint_t)DTRACEI OC_EPROBE, " DTRACEI

NULL },

GET_TI MEQUTS",
SET_TI MEQUTS",

NULL },
OC_PROVIDER', NULL },
OC_PROBES", NULL },
OC_BUFSNAP" NULL },
OC_PROBEMATCH', NULL },
OC_ENABLE", NULL },
OC_AGGSNAP" | NULL },
OC_EPROBE", NULL },

(uint_t)SI OCLI FDELND, "SI OCLI FDELND", lifreg" },
(uint_t)SI OCLI FGETND, "SI OCLI FGETND", lifreg" },
(uint_t)SIOCLI FSETND, "SI OCLI FSETND", "lifregq" },
(ui nt _t) SI OCTMYADDR, "SI OCTMYADDR', "sioc_addrreq" },
(ui nt_t) SI OCTONLI NK, "SI OCTONLI NK", "sioc_addrreq" },
(uint_t)SI OCTMYSI TE, "SI OCTMYSI TE", "sioc_addrreq" },
(ui nt _t) SI OCFl PSECONFI G, " S| OCFlI PSECONFI G', NULL },
(ui nt _t) SI OCSI PSECONFI G, " S| OCSI PSECONFI G', NULL },
(uint _t) SI OCDI PSECONFI G, " SI OCDI PSECONFI G', NULL },
(uint_t) SI OCLI PSECONFI G, "SI OCLI PSECONFI G, NULL
(uint _t) SI OCGLI FBI NDI NG, "SI OCGLI FBI NDI NG', "lifregq" },
(ui nt _t) SI OCSLI FGROUPNAME, " S| OCSLI FGROUPNAME" , "lifregq" },
(ui nt _t) SI OCGLI FGROUPNAME, "SI OCGLI FGROUPNAME" , "lifreq" },
(uint_t) Sl OCGLI FGROUPI NFO, "SI OCGLI FGROUPI NFO', "l f groupi nfo" },
(ui nt _t) SI OCGDSTI NFQ, "SI OCGDSTI NFO', NULL },
(uint_t)SI OCG P6ADDRPOLI CY, "SI OCG P6ADDRPOLI CY", NULL },
(uint _t) SI OCSI PEADDRPCLI CY, "SI OCS| PEADDRPCLI CY", NULL },
(ui nt_t) SI OCSXARP, " S| OCSXARP" , "xarpreq" },
(ui nt _t) SI OCGXARP, " SI OCGXARP" , "xarpreq" },
(ui nt _t) SI OCDXARP, " S| OCDXARP" , "xarpreq" },
(ui nt_t) SI OCGLI FZONE, "SI OCGLI FZONE", "lifreq" },
(uint_t) SI OCSLI FZONE, "SI OCSLI FZONE", "lifreg" },
(ui nt _t) SI OCSCTPSOPT, " SI OCSCTPSOPT" , NULL },
(ui nt _t) SI OCSCTPGOPT, "SI OCSCTPGOPT", NULL },
(ui nt _t) SI OCSCTPPEELCFF, " SI OPCSCTPPEELCOFF", "int" },
(uint _t) SI OCGLI FUSESRC, "SI OCGLI FUSESRC', "lifreg" },
(uint _t) SI OCSLI FUSESRC, "SI OCSLI FUSESRC", "lifregq" }
(uint_t)SI OCG.l FSRCOF, "SI OCGLI FSRCOF" , "lifsrcof" },
(ui nt _t) SI OCGVBFI LTER, " SI OCGVBFI LTER', "group_filter" },
(ui nt _t) SI OCSMSFI LTER, "SI OCSMSFI LTER', "group_filter" },
(uint_t)SI OCA PVSFI LTER, "SI OCE PMSFI LTER', “ip_msfilter” },
(ui nt _t) SI OCSI PMSFI LTER, "SI OCSI PMSFI LTER', "ip_msfilter" },
(ui nt_t) SI OCGLI FDADSTATE, " S| OCGLI FDADSTATE", "lifreq" },
(ui nt _t) SI OCSLI FPREFI X, "SI OCSLI FPREFI X", "lifreq" },
(uint _t) SI OCGSTAMP, " SI OCGSTAMP" , “timeval " },
(uint _t) SI OCG FHWADDR, "SI OCG FHWADDR' , "ifreq" },
(uint _t) SI OCG.I FHWADDR, "SI OCGLI FHWADDR" , "lifreg" },

/* DES encryption */

{ (uint_t)DESI OCBLOCK, "DESIOCBLOCK", "desparams" },

{ (uint_t)DESIOCQU CK, "DESIOCQU CK', "desparams" },

/* Printing system*/

{ (uint_t)PRNI OC_GET_| FCAP, "PRNI OC_GET_| FCAP", NULL },

{ (uint_t)PRNI OC_SET_| FCAP, "PRNI OC_SET_| FCAP", NULL },

{ (UI nt _t) PRNI OC_GET_| FI NFQ, "PRNI OC_GET_| FI NFO'

‘prn_interface_info" },
{ (uint_t)PRNI OC_GET_STATUS, "PRNI OC_GET_STATUS", NULL },
{ (uint_t)PRNI OC_GET_1284_DEVI D, "PRNI OC_GET_1284_DEVI D",

new usr/src/cnd/ truss/codes. c

916
917
918
919
920
921
922
923
924

926
927
928

930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947

949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981

(ui nt_t) DTRACEl OC_REPLI CATE,

(ui nt_t) CRYPTO GET_VERSI ON,
(ui nt t) CRYPTO_GET_DEV_LI ST,
(ui nt "t) CRYPTO_GET_SOFT_LI ST,
(ui nt "t) CRYPTO_GET_DEV_TNFO,

(ui nt _t) CRYPTO_LOAD_DEV_DI SABLED,
NULL },

(uint_t)CRYPTO LOAD SOFT_ DI SABLED,
NUL

L}

(uint_t) CRYPTO_UNLOAD_SOFT_MODULE,
NULT 3,

(ui nt_t) CRYPTO_LOAD_SOFT_CONFI G,

{
{
{
NULT 3,
% (ui nt _t) CRYPTO_POOL_CREATE,
{

{

(ui nt_t)DTRACEI OC_PROBEARG, " DTRACEI OC_PROBEARG', NULL },
(ui nt _t) DTRACEI OC_CONF, " DTRACEI OC_CONF", NULL },
(ui nt _t) DTRACEI OC_STATUS, " DTRACEI OC_STATUS", NULL }.
(ui nt _t) DTRACEI OC_GO, " DTRACEI OC_GO', NULL 3,
(ui nt "t) DTRACEI OC_STOP, " DTRACEI OC_STOP", NULL 3,
(ui nt _t) DTRACEI OC_AGGDESC, " DTRACE| OC_AGGDESC", NULL },
(ui nt _t) DTRACEI OC_FORMAT, " DTRACEI OC_FORMAT" , NULL }.
(ui nt _t) DTRACEI OC_DOFGET, " DTRACE| OC_DOFGET", NULL }.

" DTRACEl OC_REPLI CATE", NULL

(ui nt _t) DTRACEHI OC_ADD, " DTRACEH OC_ADD', NULL },
(ui nt _t) DTRACEH OC_REMOVE, " DTRACEHI OC_REMOVE", NULL },
(ui nt _t) DTRACEH OC_ADDDCF, " DTRACEHI OC_ADDDCF" , NULL },

/* [dev/cryptoadmioctl () control codes */

" CRYPTO GET_VERSI ON', NULL },
" CRYPTO_GET_DEV_LI ST" NULL },
* CRYPTO_GET_SOFT_LI ST NULL },
"CRYPTO GET_DEV_TNFO', NULL },

(uint_t)CRYPTO GET_SOFT_I NFO, "CRYPTO GET_SOFT | INFO‘ NULL },

" CRYPTO_LOAD_DEV_DI SABLED',
“ CRYPTO LOAD SOFT DI SABLED",
" CRYPTO_UNLOAD_SOFT_MODULE",
“ CRYPTO_LOAD_SOFT_CONFI G',

" CRYPTO POOL_CREATE", NULL },
(ui nt_t) CRYPTO_POOL_WAI T, " CRYPTO_POOL_WAI T" NULL },
(ui nt _t) CRYPTO_POOL_RUN, " CRYPTO_POOL_RUN', NULL 3,
(ui nt _t) CRYPTO_LOAD_DOCR, " CRYPTO_LOAD_DOCR' NULL 3},

/* I dev/crypto ioctl() control codes */
{ (uint_t)CRYPTO GET_FUNCTI ON LI ST,
L

NULL 3,

{ (uint_t)CRYPTO GET_MECHANI SM NUVBER,
NULL 3,

(ui nt _t) CRYPTO CPEN_SESSI ON,

(uint _t) CRYPTO_CLOSE_ALL_SESSI ONS,
NULL },

(ui nt _t) CRYPTO_ENCRYPT I NI T,

(ui nt _t) CRYPTO_ENCRYPT_UPDATE,
NULL },

(uint_t) CRYPTO ENCRYPT_FI NAL,

(ui nt _t) CRYPTO_DECRYPT,

(ui nt _t) CRYPTO DECRYPT_I NI T,

(ui nt _t) CRYPTO_DECRYPT_UPDATE,
NULL },

(uint_t) CRYPTO DECRYPT_FI NAL,

" CRYPTO_OPEN_SESSI ON',
(uint_t)CRYPTO CLOSE_SESSI ON, "CRYPTO CLOSE_SESSI O\I' NULL },

(ui nt_t) CRYPTO_LOGI N, " CRYPTO LOG N, NULL },
(ui nt _t) CRYPTO_LOGOUT, " CRYPTO_LOGOUT" NULL },
(ui nt _t) CRYPTO_ENCRYPT, " CRYPTO_ENCRYPT" , NULL },

"CRYPTO_ENCRYPT_INIT", NULL

" CRYPTO_ENCRYPT_FI NAL", NULL
" CRYPTO_DECRYPT", NULL },
CRYPTO_DECRYPT_I NET", NULL

" CRYPTO_DECRYPT_FI NAL", NULL

(ui nt "t) CRYPTO DI GEST, " CRYPTO DI GEST"] NULL },
(uint t)CRYPTO DIGEST INIT, "CRYPTO DI GEST NI T" NULL }.
(ui nt _t) CRYPTO_DI GEST_UPDATE, "CRYPTO DI GEST_UPDATE", NULL }.
(ui nt _t) CRYPTO DI GEST_KEY, " CRYPTO DI GEST_KEY", NULL 3},
(uint "t) CRYPTO DI GEST_FI NAL, " CRYPTO DI GEST_FINAL", NULL }.
(ui nt "t) CRYPTO_MAC, " CRYPTO_MAC", NULL }.
(ui nt "t) CRYPTO_MAC INIT, " CRYPTO_MAC_| NI T", NULL }.
(ui nt "t) CRYPTO_MAC_UPDATE, " CRYPTO_MAC_UPDATE" NULL },
(ui nt "t) CRYPTO_MAC _FI NAL, " CRYPTO_MAC_FI NAL", NULL },
(ui nt "t) CRYPTO_SI GN, “ CRYPTO _SI GN', NULL }.
(uint t) CRYPTO SIGN INI T, " CRYPTO_SI GN_I NI T", NULL },
(ui nt _t) CRYPTO S| GN_UPDATE, "CRYPTO SI GN_UPDATE", NULL },

" CRYPTO_GET_FUNCTI ON_LI ST",

" CRYPTO_GET_MECHANI SM_NUMBER' ,

NULL },
“"CRYPTO CLOSE ALL_SESSI ONS',

" CRYPTO_ENCRYPT_UPDATE",

" CRYPTO_DECRYPT_UPDATE",

10

new usr/src/cnd/ truss/codes. c

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

1046
1047

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
/
{

(ui nt_t) CRYPTO S| GN_FI NAL,
(ui nt "t) CRYPTO_SI GN_RECOVER I NI T,
NULT 3,
(ui nt _t) CRYPTO_SI GN_RECOVER,
(ui nt _t) CRYPTO VERI EY,
(uint "t) CRYPTO VERIFY_INIT,
(ui nt _t) CRYPTO_VERI FY_UPDATE,
(ui nt _t) CRYPTO_VERI FY_FI NAL,
(ui nt _t) CRYPTO_VERI FY_RECOVER | NI T,
NULT 3,
(uint_t) CRYPTO VERI FY_RECOVER,
NUL

" CRYPTO_SI GN_FI NAL",

" CRYPTO_VERI FY",

"CRYPTCLVERIFY;INITH
" CRYPTO_VERI FY_UPDATE",
" CRYPTO_VERI FY_FI NAL",

L}

(uint_t) CRYPTO DI GEST_ENCRYPT_UPDATE,
NULL },

(ui nt_t) CRYPTO_DECRYPT_DI GEST_UPDATE,
NULL },

(ui nt_t) CRYPTO_SI GN_ENCRYPT_UPDATE,
NULT

(ui nt_t) CRYPTO DECRYPT VERI FY_UPDATE,
NULL },

(ui nt_t) CRYPTO_SEED_RANDOV

(ui nt _t) CRYPTO_GENERATE_RANDOM
NULL },

(ui nt _t) CRYPTO OBJECT_CREATE,

(ui nt_t) CRYPTO_OBJECT_COPY,

(ui nt _t) CRYPTO_OBJECT_DESTROY,
NULL },

(ui nt t)CRYPTO OBJECT_GET_ATTRI BUTE_VALUE,
" CRYPTO_OBJECT_GET_ATTRI BUTE VALUE",

(ui nt _t) CRYPTO OBJECT_GET_SI ZE,

(ulnt "t) CRYPTO_OBJECT_SET_ATTRI BUTE_VALLUE,
' CRYPTO_OBJECT_SET_ATTRI BUTE_VALUE", NULL

(uint_t)CRYPTO OBJECT_FIND INIT,
NULL

" CRYPTO_SEED RANDOM,

" CRYPTO_OBJECT_COPY"

(uint_t)CRYPTO OBJECT FI ND_UPDATE,
NULL },

(ui nt_t) CRYPTO OBJECT_FI ND_FI NAL,
NULL },

(ui nt_t) CRYPTO_GENERATE_KEY,

(ui nt _t) CRYPTO_GENERATE_KEY_PAI R,
NULL },

(ui nt _t) CRYPTO VIRAP_KEY,

(ui nt _t) CRYPTO_UNVRAP_KEY,

(ui nt _t) CRYPTO_DERI VE_KEY,

(ui nt _t) CRYPTO_GET_PROVI DER LI ST,
NULL },

(ui nt_t) CRYPTO_GET_PROVI DER_| NFQ,
NUL

" CRYPTO_ GENERATE KEY",

" CRYPTO_WRAP_KEY",
* CRYPTO_UNWRAP_ KEY
" CRYPTO_DERI VE_KEY",

(uint t)CRYPTO GET_PROVI DER_MECHANI SM5

" CRYPTO_GET_PROVI DER_MECHANI SMS", NULL 1},
(UInt _t) CRYPTO_GET_PROVI DER MECHANI SM I NFO,

' CRYPTO_GET_PROVI DER NECHANISM I NFO',
(ui nt_t) CRYPTO_| NI T_TOKEN, " CRYPTO_ INIT TOKEN',
(uint_t)CRYPTOINIT_PIN, "CRYPTO_INIT_PIN',
(ui nt_t) CRYPTO_SET_PI N, " CRYPTO_SET_PI N',
(UInt —t) CRYPTO_NOSTORE_GENERATE_KEY,

' CRYPTO_NOSTORE_GENERATE_KEY", NULL },
(ui nt _t) CRYPTO_NOSTORE_ GENERATE KEY_PAI R,

" CRYPTO_NOSTORE_GENERATE_KEY_PAI R", NULL }
(UI nt _t) CRYPTO NOSTORE_DERI VE_KEY,
' CRYPTO_NOSTORE_DERI VE_KEY" | NULL },

(ui nt_t) CRYPTO_FI PSl40_STATUS
(ui nt _t) CRYPTO_FI PS140_SET, " CRYPTO_FI PS140_SET",
kbio ioctls */

(ui nt _t) KI OCTRANS, " KI OCTRANS"

" CRYPTQO_SI GN_RECOVER"

“ CRYPTO_OBJECT_CREATE",

NULL },
" CRYPTO_OBJECT_GET_SI ZE",

NULL },

" CRYPTO_FI PS140_STATUS",

NULL },

11

NULL },

" CRYPTO_SI GN_RECOVER_INI T",

NULL },
NULL 3,
NULL 1,
NULL 3,
NULL },

" CRYPTO_VERI FY_RECOVER | NI T",
" CRYPTO VERI FY_RECOVER',

“ CRYPTO_DI GEST_ENCRYPT_UPDATE" ,
“ CRYPTO DECRYPT DI GEST_UPDATE"
“ CRYPTO_SI GN_ENCRYPT_UPDATE" ,

“ CRYPTO DECRYPT_VER! FY_UPDATE"

NULL },

" CRYPTO_GENERATE_RANDOM',

NULL },
NULL 3,

“'CRYPTO_OBJECT_DESTROY"

NULL },

I
" CRYPTO_OBJECT FIND_INIT",
" CRYPTO_OBJECT_FI ND_UPDATE"
" CRYPTO_OBJECT_FI ND_FI NAL",

NULL },

CRYPTCLGENERATE_KEY;PAIR'

NULL },
NULL 3,
NULL 1,

~"CRYPTO GET _PROVI DER LI ST",
" CRYPTO_GET_PROVI DER_| NFO',

NULL },
NULL },
NULL 3,

NULL },

NULL },

new usr/src/cnd/ truss/codes. c

1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071

1073
1074
1075
1076
1077
1078

1080
1081
1082
1083
1084
1085
1086
1087
1088

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113

{

/* dld dat

{

{
{
%
{
{
{
{
{
{
{
{

(ui nt _t) KI OCGTRANS,

(ui nt _t) KI OCTRANSABLE,
(ui nt _t) KI OCCGTRANSABLE,
(ui nt _t) KI OCSETKEY,
(ui nt _t) KI OCGETKEY,

(ui nt _t) KI OCCVD,

(ui nt _t) KI OCTYPE,

(ui nt _t) KI OCSDI RECT,
(uint t)KI@GDIRECT,

c

3
VVVVVCVVVVV
AARRBRRBRARSR

(uint_t

| OCSKEY,
OCGKEY,
OCSLED,
OCGLED,
OCSCOVPAT,
OCGCOVPAT,
OCSLAYQUT,
OCLAYQUT,
OCSKABORTEN,
OCGRPTDELAY,
OCSRPTDELAY,
OCGRPTRATE,

(ui nt _t) KI OCSRPTRATE,
(ui nt _t) KI OCSETFREQ
(ui nt "t) KI OCMKTONE,

/* ptmipts driver |

(uint_t)I SPTM
(ui nt _t) UNLKPT,

(ui nt_t)PTSSTTY,

(ui nt _t) ZONEPT,

(ui nt _t) OANERPT,

/* aggr |ink aggregation pseudo
(uint_t)LAI OC_CREATE,

(ui nt _t) LAl OC_DELETE,
(ui nt _t) LAl OC_I NFQ,
(uint_t)LAI OC_ADD,
"l ai oc_add_ren'},
{ (ui nt _t) LAl OC_REMOVE,
"l ai oc_add_reni'},
(uint t)LAICXZNCDIFY

a-1ink
(uint_t)DLDI
DLD

CC_.
(uint_t) G:

UI

(uint_t)DL
(uint_t)DLDI OC

(uint_t)DLDI OC_

"dld_ioc
(uint_t)DLD OC_
"dl d_i oc
(uint_t)DLDI OC_
"dld_ioc
(uint_t)DLD OC_
"dl d_i oc
(uint_t)DLDI OC_
"dld_ioc
(uint_t)DLD I OC_

(uint_t)DLDI OC_
"dld_ioc
(uint_t)DLD OC_
"dl d_i oc
(uint_t)DLDI OC_
"dld_ioc_

|oc:

ioctls */
ATTR,
PHYS_ATTR,
phys_attr"},
DOORSERVER
RENANME,
SECOBJ_CET
“secobj _get"},
SECOBJ SET
“secobj _set"},
SECOBJ_UNSET,

—secobj _unset"},

NACADDRGET
“macaddrget "},
SETNACPROR

_macprop_s"},

> ADDFLOW
addf | ow'},
REMOVEFLOW
renmovef | ow'},
MODI FYFLOW
“modi fyflow'},

" KI OCGTRANS"

" KI OCTRANSABLE" ,

NULL },

" KI OCGTRANSABLE"

" KI OCSETKEY",
" KI OCGETKEY"

" Kl ocevD'

" KI OCTYPE",

" KI OCSDI RECT",
" KI OCGDI RECT",
" KI OCSKEY" ,

" KI OCGKEY",

" KI OCSLED",

" KI OCGLED",

" KI OCSCOVPAT" ,
" KI OCGCOVPAT" ,
" KI OCSLAYQUT" ,
" KI OCLAYOUT"

" KI OCSKABORTEN" ,
" KI OCGRPTDELAY",
" KI OCSRPTDELAY" ,

" KI OCGRPTRATE"
" KI OCSRPTRATE"
" KI OCSETFREQ',
" KI OCMKTONE"

_STRioctls */

"1 SPTM',

" UNLKPT",
"PTSSTTY",
" ZONEPT" ,
" OWNERPT",

driver ioctls */

" LAl OC_CREATE"
" LAl OC_DELETE"
"LAI OC_I NFO'
"LAI CC_ADD",

" LAl OC_REMOVE",

"LAI CC_MODI FY",

"DLDI OC_ATTR',

NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

NULL
NULL
NULL
NULL

"DLDI OC_PHYS_ATTR',

" DLDI OC_DOORSERVER'
" DLDI OC_RENAME"

12

NULL },
NULL },

NULL },
NULL },
NULL }.

NULL},
NULL}
NULL},
NULL},
NULL}

| ai oc_create"},
"l ai oc_del ete"},
laioc_info"},

"l ai oc_nodi fy"},

"dld_ioc_attr"},

"dl d_i oc_door"},

"dl d_i oc_renane"},
" DLDI OC_SECOBJ_GET",

"DLDI OC_SECOBJ_SET",

" DLDI OC_SECOBJ_UNSET",

" DLDI OC_MACADDRGET"

" DLDI OC_SETMACPRCP"

" DLDI OC_GETMACPROP"

" DLDI OC_ADDFLOW ,

" DLDI OC_REMOVEFLOW ,

" DLDI OC_MDI FYFLOW ,

new usr/src/cnd/ truss/codes. c

1114
1115
1116
1117

1119
1120
1121
1122
1123
1124
1125
1126
1127

1129
1130
1131
1132
1133
1134
1135

1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179

{ (uint_t)DLDI OC_WALKFLOW
"dl d_i oc_wal kfl ow'},

{ (uint_t)DLD OC_ USAGELCG
"dl d_i oc_usagel 0g"},

/* simmet ioctls */

{ (uint_t)SI MNET_| OC_CREATE,
"simet_ioc_create"},

{ (uint_t)SI MNET_I OC_DELETE,
"simet_ioc_del ete"},

{ (ui nt_t)SI MNET_I OC_I NFQ,
'si met _ioc_info"},

{ (uint t)SI M\ET_I OC_MDI FY,
'si met _ioc_info"},

*

/

| OC_CREATE,
oc_create"},
|

o]

/* vnic ioctls
{ (uint_t)VNIC_
"vnic_lI
{ (uint_t)VNIC I CC DELETE,
"vnic_ioc_delete"},
{ (uint t)VNICICCINFO
"vnic_ioc_info"},

/* ZFS ioctls */

{ (uint t)ZFSIOCPOO_ CREATE,
"zfs_cmd

{ (uint t)ZFS IOC_POO_ DESTROY,
'zfs crrd_t 1.

{ (uint t)ZF | OC_PCOL_| MPORT,
“zfs_cnd_t" },

{ (uint_t)ZFS_ | OC_POOL_EXPORT,

,-r

_t"],
{ (uint_t)ZFS | OC_POOL_CONFI GS,
{ (uint_t)ZzFS | GC_POOL_STATS,

_t" 1,

{ (uint_t)ZFS | OC_POOL_TRYI MPORT,
"zfs_cnd_t "},

{ (uint_t)ZFS_| OC_POOL_SCAN,
"zfs crrd_t' 1,

{ (uint_t)ZFS_| OC_POOL_FREEZE,
"zfs_c "

{ (uint_t)ZzF
"zfs_c

{ (uint_t)ZF
"zfs_c

{ (uint_t)ZFS_|
"zfs_cmd_ ,

{ (uint_t)ZFS_| OC_VDEV_REMOVE,
"zfs_cmd_t"

{ (uint_t)zF |oc_VDEv SET_STATE,
"zfs_cmd_t" },

{ (uint_t)ZFS_| OC_VDEV_ATTACH,

8%

PCCL UPGRADE,

83

VDEV_ADD,

HBE

{ (uint_t)ZFS | OC_VDEV_DETACH,

1
{ (uint_t)ZFS | OC_VDEV_SETPATH,
"zfs_cmd_t" },
{ (uint t)ZFSIOCVDEV SETFRU,
"zfs_cnd_t" },
{ (uint_t)ZFS | OC_OBJSET_STATS,
"zfs_cmd_t"

3,
{ (uint_t)ZFS_| OC_OBJSET_ZPLPROPS,

"zfs_cmd_t"

T
{ (uint_t)ZFS | OC_DATASET_LI ST_NEXT,

"zfs_cmd_t" },

i
> POOL_GET_HI STCRY,

“DLDI OC_WALKFLOW ,
“DLDI OC_USAGELOG',

"SI MNET_| OC_CREATE",
“ S| MNET_| OC_DELETE",
"SI MNET_| OC_I NFO',

“SI MNET_| OC_MODI FY"

"VNI C_I OC_CREATE"
"VNI C_I OC_DELETE"
"VNI C_I OC_I NFO',

"ZFS_| OC_POOL_CREATE",
"ZFS_| OC_POOL_DESTROY",
"ZFS_| OC_POOL_| MPORT"
"ZFS_| OC_POOL_EXPORT"
"ZFS_| OC_POOL_CONFI GS',
"ZFS_| OC_POOL_STATS',
"ZFS_| OC_POOL_TRYI MPORT"
"ZFS_| OC_POOL_SCAN',
"ZFS_| OC_POOL_FREEZE",
"ZFS_| OC_POOL_UPGRADE"

"ZFS | OC_POOL_GET_Hi STORY",

“ZFS_| OC_VDEV_ADD',

" ZFS_| OC_VDEV_REMOVE",
“ZFS_| OC_VDEV_SET_STATE",
"ZFS_| OC_VDEV_ATTACH',

" ZFS_| OC_VDEV_DETACH',
"ZFS_| OC_VDEV_SETPATH',
"ZFS_| OC_VDEV_SETFRU',
"ZFS_| OC_OBJSET_STATS',
"ZFS_| OC_OBJSET_ZPLPROPS',

"ZFS_| OC_DATASET LI ST_NEXT",

13

new usr/src/cnd/ truss/codes. c

1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245

e e e e T e T e T

#endi f /

e e e T T s T T e e e T e e e T e T e T e

(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui

(ui

nt t)ZFS | OC_SNAPSHOT_LI ST_NEXT,
"zfs_cmd_t"
nt_t)ZFS | OC_ SET PROP,

I
nt t)ZFS | OC_FI TS_SEND,
‘zfs_cnd_t" },

I codereview */

(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui

(ui

nt t)ZFS 1 OC_ IhUECT FAULT,
"zfs_cmd_t"

nt_t)ZFS_ |oc_CLEAR FAULT,
"zfs crrd t"

},

nt _t)ZFS | OC_SNAPSHOT,
"zfs_cnd_t" },

nt t)ZFSIOCDSCBJ TO_DSNAME,
‘zfs_cnd_t" },

nt_t)ZFS | OC_OBJ_TO PATH,
"zfs_cnd_t"

nt t)ZFS IOC_POCL SET_PROPS,

gl
9@8

nt_t)ZFS_| OC_OBJSET RECVD PROPS,
"zfs_cmd_t" },
nt_t)ZzFS | OC_VDEV_SPLIT,

14
“ZFS_| OC_SNAPSHOT LI ST_NEXT",
“ZFS_| OC_SET_PROP",

"ZFS_| OC_CREATE",

"ZFS_| OC_DESTROY",

"ZFS_| OC_ROLLBACK"

"ZFS_| OC_RENAME",

“ZFS_| OC_RECV",

"ZFS_| OC_SEND',

“ZFS_| OC_FI TS_SEND',

"ZFS | OC_| NJECT_FAULT",
"ZFS | OC_CLEAR FAULT",
"ZFS | OC_| NJECT_LI ST_NEXT",
"ZFS_| OC_ERROR_LOG',

"ZFS | OC_CLEAR',

"ZFS_| OC_PROMOTE",

"ZFS_| OC_SNAPSHOT"

"ZFS_| OC_DSOBJ_TO DSNAME",
"ZFS | OC_OBJ_TO PATH',
"ZFS_| OC_POOL_SET_PROPS",
"ZFS | OC_POOL_GET_PROPS',
"ZFS_| OC_SET_FSACL",

"ZFS | OC_GET_FSACL",

"ZFS_| OC_SHARE",

"ZFS_| OC_| NHERI T_PROP",
"ZFS_| OC_SMB_ACL",

"ZFS_| OC_USERSPACE_ONE",
"ZFS_| OC_USERSPACE_MANY",
"ZFS_| OC_USERSPACE_UPGRADE"
"ZFS | OC_HOLD',

"ZFS_| OC_RELEASE",

"ZFS_| OC_GET_HOLDS',

"ZFS_| OC_OBJSET_RECVD_PROPS',
"ZFS_| OC_VDEV_SPLI T",

new usr/src/cnd/ truss/ codes.

1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272

1274
1275
1276
1277
1278

1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311

{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui

c
s_cnd_t" },
FS | OC_NEXT_OBJ,
zfs_cmd_t" },

nt _t)ZFS_|I OC_DI FF,

"ot S

" zf
nt_t) Zl

ol
2

S_| OC_TMP_SNAPSHOT,

"zfs_cmd_t" },

nt_t)ZFS_| OC_ CBJ _TO_STATS,
"zfs chd t"

nt_t)ZFS |
"zfs_crrd t" o},

nt_t)ZzF DESTROY SNAPS,
"zfs_c || ,

nt_t)ZFS | OC_POOL_REGUI D,

"zfs_cmd_t" },

nt_t) ZFS_| OC_POOL_RECPEN,

8|

SPACE WRI TTEN,

§8|

nt t)ZF 1 CC SEND PROGRESS,
_t" 3,
nt t)ZF 1 OC_| L(IS HI STORY,

nt t)ZFS | OC SEND) NEW
"zfs_cmd_t" },

nt t)ZFS | OC_SEND_SPACE,
"zfs_cmd_t"

nt t)ZFSImCLO\JE
"zfs_cnd_t" },

,-r

/* kssl ioctls */

{ (ui
{ (ui
[* di
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui

nt t)KSSL ADD_ENTRY,
"kssl _paranms_t"},

nt t)KSSL DELETE_ENTRY,
"sockaddr _in"},

“ZFS_| OC_NEXT_OBJ",
"ZFS_| OC_DI FF",

“ZFS_| OC_TMP_SNAPSHOT" ,
"ZFS_| OC_OBJ_TO STATS',

“ZFS_| OC_SPACE_WRI TTEN',
"ZFS_| OC_DESTROY_SNAPS',

"ZFS_| OC_POOL_REGUI D',
"ZFS_| OC_POOL_RECPEN',

"ZFS_| OC_SEND PROGRESS',

"ZFS | OC_LOG HI STORY",
"ZFS_| OC_SEND_NEW,
"ZFS_| OC_SEND_SPACE",
"ZFS_| OC_CLONE",

" KSSL_ADD_ENTRY",
" KSSL_DELETE_ENTRY",

sk ioctls - (0x04 << 8) - dkio.h */

nt _t) DKI OCGGEOM
"struct dk_geoni'},
nt t) DKI OCl NFO,
"struct dk_info"},
nt _t) DKI OCEJECT,
NULL},
nt _t) DKI OCGVTCC,
"struct vtoc"},
nt _t) DKI OCSVTCC,
"struct vtoc"},
nt _t) DKI OCGEXTVTCC,
"struct extvtoc"},
nt t)EKICESEXTVTCC
"struct extvtoc"},
nt t)DKICCFLUSHMRITECACHE
NULL}

nt_t) DKl CESGECM
"struct dk_geoni'},
nt _t) DKI OCSAPART,
"struct dk_al |l map"},
nt _t) DKI OCGAPART,
"struct dk_all map"},
nt _t) DKI OCG_PHYGEOM
"struct dk_geont'},
nt _t) DKI OCG_VI RTGEQM
"struct dk_geoni'},
nt _t) DKI OCLOCK,

" DKI OCGGEQVI',

" DKI CCI NFO',

" DKI OCEJECT"

" DKI OCGVTCC',

" DKI OCSVTOC',

" DKI OCGEXTVTOC!

" DKI OCSEXTVTCC' ,
" DKI OCFLUSHWRI TECACHE" ,
" DKI OCGETWCE",

" DKI OCSETWCE" ,

" DKI OCSGEOM',

" DKI OCSAPART" ,

" DKI OCGAPART" ,

" DKI OCG_PHYGEQM',
" DKI OCG_VI RTGEQM'
" DKI OCLOCK" ,

new usr/src/cnd/ truss/codes. c

1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352

1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376

{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
[* di
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui
{ (ui

ULL},
nt_t) DKI OCUNLOCK,
NU
nt_t) DKI OCSTATE,

ULL},

nt t) DKI OCREMOVABLE,
NULL},

nt _t) DKI OCHOTPLUGGABLE,
TNULL},

nt _t) DKI OCADDBAD,
NULL},

nt _t) DKI OCGETDEF,
NULL},

nt _t) DKI OCPARTI NFO,
"struct part_info"},

nt _t) DKI OCEXTPARTI NFOQ,
"struct extpart_info"},

nt _t) DKI OCGVEDI Al NFO,
"struct dk_m nfo"},

nt _t ') DKI OCGVBOOT,
NULL},

nt _t ') DKI OCSMVBOOCT,
NULL},

nt _t) DKI OCSETEFI ,
"struct dk_efi"},

nt _t) DKI OCGETEFI ,
"struct dk_efi"},

nt _t) DKI OCPARTI Tl ON,
"struct partition64"},

nt _t) DKI OCGETVOLCAP,
"struct volcap_t"},

nt _t) DKI OCSETVOLCAP,
"struct volcap_t"},

nt _t) DKI OCDVR,

"struct vol _directed_rd"

nt_t) DKI OCDUVPT NI T,
NULL},

nt _t) DKI OCDUVPFI NI,
NULL},

nt _t) DKI OCREADONLY,
NULL},

16

" DKI OCUNLOCK" ,
" DKI OCSTATE"

" DKI OCREMOVABLE" ,

" DKI OCHOTPLUGGABLE" ,
" DKI OCADDBAD" ,

" DKI OCGETDEF"

" DKI OCPARTI NFO"

" DKI QCEXTPARTI NFO'
" DKI OCGVEDI Al NFO!',

" DKI OCGVBOOT™ ,

" DKI OCSMBOOT™ ,

" DKI OCSETEFI ",

" DKI OCGETEFI ",

" DKI OCPARTI TI ON',

" DKI OCGETVOLCAP" ,

" DKI OCSETVOLCAP" ,

" DKI OCDVR'

1bK| OCDUMPI NI T,
" DKI OCDUMPFI NI ™,
" DKI OCREADONLY"

sk ioctls - (0x04 << 8) - fdio.h */

nt_t) FDI OGCHAR,
"struct fd_char"},
nt _t) FDI OSCHAR,
"struct fd_char"},
nt _t)FDEJECT,
NULL},
nt _t) FDGETCHANGE,
NULL},
nt t)FEEETDRIVECHAR
"struct fd_drive"},
nt t)FDSETDRIVECHAR
"struct fd_drive"},
nt _t) FDGETSEARCH,
NULL},
nt _t) FDSETSEARCH,
NULL},
nt _t) FDI OC\VD,
"struct fd_cnd"},
nt _t) FDRAW
"struct fd_raw'},
nt _t) FDDEFGEOCHAR,
NULL},

" FDI OGCHAR" ,

" FDI OSCHAR",

" FDEJECT",

" FDGETCHANGE" ,

" FDGETDRI VECHAR" ,
" FDSETDRI VECHAR"
" FDGETSEARCH' ,

" FDSETSEARCH' ,

" FDI OCMVD'

" FDRAW ,

" FDDEFGECCHAR',

new usr/src/cnd/ truss/codes. c 17
1378 /* disk ioctls - (0x04 << 8) - cdio.h */

1379 { (uint_t) CODROMPAUSE, " CDROVPAUSE" ,

1380 TNULL},

1381 { (uint t)CDRO\/RESUNE " CDROVRESUME" ,
1382 NULL},

1383 { (uint_t) CDROMPLAYNGSF, " CDROVPLAYMSF"
1384 "struct cdrommsf"},

1385 { (uint t) CDROVPLAYTRKI ND, " CDROVPLAYTRKI ND' ,
1386 "struct cdromti"},

1387 { (uint_t) CDROVREADTOCHDR, " CDROVREADTOCHDR'"
1388 "struct cdromtochdr"},

1389 { (uint_t) CDROVREADTOCENTRY, " CDROVREADTOCENTRY" ,
1390 "struct cdromtocentry"},

1391 { (uint_t)CDROVSTCP, " CDROVSTOP" ,

1392 NULL},

1393 { (uint t)CDRCMSTART " CDROVSTART" ,

1394 NULL},

1395 { (uint_t)CDROVEJECT, " CDROVEJECT",

1396 NULL},

1397 { (uint _t) CDROMWOLCTRL " CDROWOLCTRL",
1398 "struct cdrom vol ctrl "1,

1399 { (uint_t) COROVBUBCHNL " CDROVSUBCHNL"
1400 "struct cdr om_subchnl "

1401 { (uint _t) CDROVREADMODEZ, " CDROVREADMODE2" ,
1402 "struct cdromread"},

1403 { (uint_t) COROVMREADMODEL, " CDROVREADMODEL"
1404 "struct cdromread"},

1405 { (uint_t) CDROVREADOFFSET, " CDROVREADOFFSET" ,
1406 TNULL},

1407 { (uint t)CDRO\/GBLKMJDE " CDROMGBLKMODE" ,
1408 NULL},

1409 { (uint_t) CDROVSBL KMODE, " CDROVSBLKMODE" ,
1410 NULL},

1411 { (ui nt_t)CDRO\/CDDA " CDROMCDDA" ,

1412 "struct cdrom.cdda"},

1413 { (uint t) CDROMCDXA, " CDROVCDXA" ,

1414 "struct cdromcdxa"},

1415 { (uint t)CDROVSU CODE, " CDROVSUBCODE" ,
1416 "struct cdrom subcode"},

1417 { (uint_t) CDROVGDRVSPEED, " CDROMCGDRVSPEED',
1418 TNULL}Y,

1419 { (uint t)CDROVSDRVSPEED " CDROVSDRVSPEED" ,
1420 NULL},

1421 { (uint_t) COROMCLOSETRAY, " CDROMCLOSETRAY",
1422 NULL},

1424 /* disk ioctls - (0x04 << 8) uscsi . h */

1425 { (uint_t)USCSI CMVD, " USCSI CVD'

1426 "struct uscsi_cmd"},

1428 /* dunpadmioctls - (Oxdd << 8) */

1429 { (uint_t)D OCGETDEV, "D OCGETDEV",

1430 NULL},

1432 /* mtio ioctls - ('m << 8)

1433 { (uint_t) MNTI OC_NWNTS, " MNTI OC_NWNTS",
1434 NULL},

1435 { (uint_t)MTIOC _GETDEVLI ST, " MNTI OC_GETDEVLI ST",
1436 NULL},

1437 { (uint_t)MNTI OC_SETTAG "MNTI OC_SETTAG',
1438 "struct mmttagdesc"},

1439 { (uint_t)MTIOC CLRTAG " MNTI OC_CLRTAG',
1440 "struct mmttagdesc"},

1441 { (uint_t) MNTI OC_SHOWAI DDEN, " MNTI OC_SHOAHI DDEN",
1442 NULL},

1443 { (uint_t)MNTI OC_GETMNTENT,

" MNTI OC_GETMNTENT",

new usr/src/cnd/ truss/codes. c

1444 "struct mmttab"},

1445 { (uint_t)MNTI OC_GETEXTMNTENT, " MNTI OC_GETEXTMNTENT"

1446 "struct extmmttab"},

1447 { (uint t) MNTI OC_GETMNTANY, " MNTI OC_GETMNTANY",

1448 "struct mttab"},

1450 /* devinfo ioctls - ('df’ << 8) - devinfo_inpl.h */

1451 { (uint_t)Dl NFOUSRLD, "Dl NFOUSRLD' ,

1452 NULL},

1453 { (uint_t)DI NFOLODRV, " DI NFOLODRV",

1454 NULL},

1455 { (uint_t)D NFO DENT, " DI NFO DENT",

1456 NULL},

1458 { (uint_t)IPTUN CREATE, "|PTUN CREATE", "iptun_kparans t"},
1459 { (uint_t)I PTUN_DELETE, "|PTUN_DELETE", "datalink_id_t™},

1460 { (uint_t)IPTUN_MODI FY, "I PTUN_MODI FY", "iptun_kparans_t"},
1461 { (uintZt)IPTUNCINFO, "I PTUNLI NFO', NULL},

1462 { (uint_t)IPTUN_SET_6TO4RELAY, "|PTUN SET 6TO4RELAY", NULL},
1463 { (uint_t)I PTUN_GET_6TO4RELAY, "I|PTUN_GET_6TO4RELAY", NULL},
1465 /* zcons ioctls */

1466 { (uint_t)ZC HOLDSLAVE, " ZC_HOLDSLAVE", NULL },
1467 { (uint_t)ZC RELEASESLAVE, " ZC_RELEASESLAVE", NULL },
1469 /* hidioctls - ("h” << 8) - hid.h */

1470 { (uint_t)H DI OCKMGDI RECT, " HI DI OCKMGDI RECT", NULL },
1471 { (uint_t)H D OCKVMSDI RECT, " H DI OCKMsDI RECT", NULL },
1473 /* pmioctls */

1474 (ui nt_t)PM SCHEDULE, " PM_SCHEDULE", NULL },
1475 (uint_t)PM GET_I DLE_TI ME, "PM GET_I DLE_TI ME", NULL },
1476 (uint_t)PM GET_NUM CVPTS, "PM_GET_NUM_CWPTS", NULL },
1477 (ui nt _t) PM_GET_THRESHOLD, "PM_GET_THRESHOLD", NULL },
1478 (ui nt_t)PM SET_THRESHOLD, "PM_SET_THRESHOLD', NULL },
1479 (ui nt _t) PM_GET_NORM PVR, " PM_GET_NORM PWR', NULL },
1480 (ui nt_t)PM SET_CUR PWR, "PM_SET_CUR_PWR', NULL },
1481 (ui nt_t)PM GET_CUR_PVR, " PM_GET_CUR_PWR', NULL },
1482 (uint_t)PM GET NUM DEPS, ' Pl CEl' NUM DEPS NULL },
1483 (uint_t)PM GET_DEP, "PM_GET_DEP", NULL },
1484 (ui nt _t) PM_ADD_DEP, "P ADD_DEP", NULL },
1485 (ui nt _t) PM_REM DEP, "PM_REM _DEP", NULL },
1486 (ui nt _t) PM_REM DEVI CE, " PM_REM DEVI CE", NULL },
1487 (ui nt _t) PM_REM DEVI CES, 'PM_REM DEVI CES", NULL },
1488 (ui nt _t) PM_DI SABLE_AUTOPM "PM_DI SABLE_AUTOPM', NULL },
1489 (ui nt _t) PM_REENABLE_AUTOPM " PM_REENABLE_AUTOPM', NULL },
1490 (ui nt_t)PM SET_NORM PWR, "P SI:_l' NO?M PVR", NULL },
1491 (ui nt_t)PM GET_SYSTEM THRESHOLD, "PM GET_ SYSTEM A THRESHOLD",
1492 NULL ™},

1493 { (uint t)PM GET_DEFAULT_SYSTEM THRESHOLD,

1494 'PM_GET DEFAULT_SYSTEM THRESHO_D' NULL },

1495 { (uint_t)PM SET_SYSTEM THRESHOLD, PM SET_SYSTEM THRESHOLD",
1496 NULL ™},

1497 (uint_t)PM START_PM "PM_START_PM', NULL },
1498 (uint_t)PM STOP_PM "PM_STOP_PM', NULL },
1499 (ui nt_t)PM RESET_PM " PM_RESET _ PM NULL },
1500 (ui nt_t) PM_GET_PM STATE, "PM_GET_PM_ STATE NULL },
1501 (uint_t)PM GET_AUTOS3_STATE, " PM_GET_AUTOS3 STATE" NULL
1502 (ui nt_t) PM GET_S3_SUPPORT_STATE, "PM_GET_S3_ SUPPCRT STATE"
1503 NULL },

1504 (uint t)PMIDLEDO/\N "PM_| DLE_DOMWN", NULL },
1505 (uint_t)PM START_CPUPM " PM_START _ CPUPM' NULL },
1506 (ui nt_t) PM_START_CPUPM EV, " PM_START_CPUPM_ E\/ NULL },
1507 (uint_t)PM. START_ CPUPM_PO_L, "P START CPUPM PQL NULL },
1508 (uint_t)PM STOP_CPUPM " PM_STOP_CPUPM', NULL },
1509 (uint_t)PM GET_CPU THRESHOLD, "P _G:—I'_CPU_THRESI-O_D', NULL },

18

new usr/src/cnd/ truss/codes. c

1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575

#i f def

T e e e e
—~
o

(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui

(ui

e e e T T s T e T e T = S e N e e e e T e T e T s T e TS

(ui

int_t)PM SET_CPU THRESHOLD, "PM SET_CPU THRESHOLD', NULL },
i nt _t) PM_GET_CPUPM STATE, "PM GET_CPUPM STATE", NULL },
i nt _t) PM_START_AUTOS3, " PM_START _AUTOS3" NULL }.
i nt _t) PM_STOP_AUTCS3, " PM_STOP_AUTCS3" NULL 3,
i nt _t) PM ENABLE_S3, " PM_ENABLE_S3", NULL 3,
i nt "t) PM_DI SABLE_S3, " PM DI SABLE_S3" NULL },
i nt _t) PM_ENTER S3, " PM_ENTER_S3" NULL }.

i nt_t)PM DI SABLE_CPU_DEEP_| DLE,

NULL },
(uint_t)PM ENABLE_CPU DEEP_| DLE,
NULL },
(uint_t)PM DEFAULT CPU DEEP_| DLE,
NULL },
_SYSCALL32
{ (uint_t)PM GET_STATE_CHANGE,

'pm state_change32_t" },
nt t)PM GET_STATE_CHANGE_WAI T,
"pm st ate_change32_t" },
nt t)PM DI RECT_NOTI FY,
"pm st ate_change32_t" },
nt t)PM DI RECT_NOTI FY_WAI T
"pm st ate_change32_t" }
nt t)PM REPARSE PM_PROPS,
"pmreq32_t" },
nt _t) PM_SET_DEVI CE_THRESHOLD,
"pmreq32_t" },
nt _t)PM GET_STATS,
" eq32_t"

=)

=

=
3
-

3
i
3

Tlgr
e
|w)

=}
=
—_

==,
(0] (9]
282
N N
I Tl
RS
z
5

S S
o =
| |
= = = - 2 = = = z
Uv-cvuv-cvtv-cv-Uv-cv-cv-cv-cv-cv-cv-cv-cv-cv-cv-cv-cv-c
~

>
2l
fi
:
Py
—
e
m
w

=

ll
® 1)
e} o)
w—w
NN
=

> S

=

— |r—+
|

e
A82A2A
ﬁz% 'é
"‘9?‘ T"l
e]
% m
i

T_NUM POVER LEVELS,
32.t" },
RECT_PM

35 =}
= =
il |
do
23,
[0
o)

22,
A3 2
w
I\)

LEASE | DIRECT PM
g32_t" "},
ESET_DEVI CE_THRESHOLD,

> S

=

— |r—+
|
(0]

il
—:|§I
@ 0

Ne)
w
N
-

22 =2
Ly
Cei
8-q
g3
—| m
3
9]
g
8

=l
ﬁj
%
a
_'
2
n
e
8

=} 35

= =~
|

[
=]
O
w
N
-

T _DEVI dz THRESHOLD_BASI S,
DEVI CE_THRESHOLD BASI S |
OJRRENT PO/ER,

2
HT

B

—qzl

af
=l

I\JI

=} 3
- o~
- ,—+
o)

3
CURRENT POVER,
Y,

FULL PCMER

22 =2
ﬂﬂﬂﬁm

=1
w—Hw
NI
~

=]

-~ =

P ‘,—«
|

e
Ra S
=g
s
=

=]
o
o
w
N

2 2
— Ir—r
3333JT3IJ3IJ3IJ3IJKZIV3ITJV3TY3TJY3TY3TY3TY3TY3TV3 T3 T3 T3
;I
o)
w
N

—:|§|
g >
20
iy~
i
g
E
'U
g
4
=<

“PM DI SABLE_CPU_DEEP_| DLE",
" PM_START_CPU_DEEP_| DLE",
"PM_DFLT_CPU_DEEP_| DLE",

" PM_GET_STATE_CHANGE"
" PM_GET_STATE_CHANGE_WAI T",
“PM_DI RECT_NOTI FY" ,

" PM_DI RECT_NOTI FY_WAI T",

" PM_REPARSE_PM PRCPS',

" PM_SET_DEVI CE_THRESHOLD',
“PM_GET_STATS",

" PM_GET_DEVI CE_THRESHOLD',
“PM_GET_POMER_NAME",

"PM _GET_POWER LEVELS',

“ PM_GET_NUM COVPONENTS" ,

" PM_GET_COMPONENT_NAME" ,
“PM_GET_NUM POVWER LEVELS',

" PM_DI RECT_PM,

" PM_RELEASE_DI RECT_PM,

" PM_RESET_DEVI CE_THRESHOLD'
“PM_GET_DEVI CE_TYPE",

“ PM_SET_COMPONENT _THRESHOLDS'
“ PM_GET_COVPONENT_THRESHOLDS' ,

"pmreq32_t" },
" PM_SET_CURRENT_POVER',

" PM_GET_CURRENT_POVER'
“PM_GET_FULL_POAER',

* PM_ADD_DEPENDENT" ,
“PM_GET_TI ME_I DLE",

" PM_ADD_DEPENDENT_PROPERTY" ,

new usr/src/cnd/ truss/codes. c

1576
1577
1578
1579

1580 #el se

1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636

{

{
/

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

1637 #endif /*

1639

1640 };

{

(ui

(ui

ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui
(ui

(ui

(ui

nt t)PM GET_CMD_NAME,
"pmreq32_t" },

nt t)PM SEARCH LI ST,
"pm searchargs32_t" },

_SYSCALL32 */
(u

nt t)PM GET_STATE_CHANGE,
"pm st ate_change_t" },

nt t)PM GET_STATE_CHANGE_WAI T,
'pm state_change_t" },

nt t)PM DI RECT_NOTI FY,
"pm st ate_change t" },

nt t)PM DI RECT_NOTI FY_WAI T,
"pm st ate_change_t™ },

nt t)PM REPARSE_PM PROPS,
‘pmreq t” },

nt _t)PM SET_DEVI CE_THRESHOLD,
"pmreq_t" },

nt_t)PM GET_STATS,

_,
(0]
-

23
f
B.
IFR
3
o
)

=}
3
il
B
27
(]
o]

_t g
GET_POAER_NAME,

=}
=3
-

=l
f
g

T
-
g
uf
[

=l
f
g
=
2
fi
3
%

:
8
5
5
3
é

23,
FRS

e
_NUM POAER_LEVELS,

35
=3
—

=}
2
J i i
- - I b -
S5l slalslalo el el Cala
23,
0]
o)
A
-
o
=

£

LEASE DI RECT_PM
1,
SET DEVI CE_THRESHOLD,

35

3

n

23,
@
20

pcll
[

=}
=
>

|
—:|§|
FHS A A

2l

T DEVICE TYPE,

qt" },
ET CIWPCNENT THRESHOLDS,

=} 35
2 2

— Ir—r

27
@ N D

Kol
—

!
GET CCWPCNENT THRESHOLDS,

- |ZI
(]
.Q

S =
= =

|
- s
2l

},
T DEVI CE_ THRESHOLD BASI S,
DEVI CE_THRESHOLD BASI S",
ET CURRENT POVER,

|
3333J3IJ3IJ3TJ3IJ3 V3 IJZIY3IJY3IJ3JY3TY3TY3TV3TV3TV3T3T3T3
=1

ﬁ

nt t)

ﬂ|g|
®

=l
fiigh
&,
&
5
%

nt _!

==
mﬂ)
el
=
-
o
=
é
A

nt _

2 2
Py :l,—.. :;—«
== 23
>
HT 5 G HE
e
m-
=
o
e

eq_t"
ADD DEPENDENT PROPERTY,
e

> 35

2 =2

Py |,—..
SES

'D —~ T —T—0T—0T—0T—0T _/-c

=l
A2

C%C
%
Ao

eq t" },
| SEARCH LI ST,
searchargs_t" },

=]
=
=
<

_SYSCALL]

nt_t)0, NULL, NULL }

“ PM_GET_CMD_NANE"
" PM_SEARCH LI ST",

" PM_GET_STATE_CHANGE",

"PM_GET_STATE_CHANGE_WAI T",

" PM DI RECT_NOTI FY",

" PM_DI RECT_NOTI FY_WAI T",

" PM_REPARSE_PM PROPS",

"PM_SET_DEVI CE_THRESHOLD',

" PM_GET_STATS",

"PM_GET_DEVI CE_THRESHOLD',

"PM_GET_POMER_NAME",

" PM_GET_POWER _LEVELS",

" PM_GET_NUM COVPONENTS",

" PM_GET_COVPONENT_NAME",

" PM_GET_NUM POWER_LEVELS",

"PM DI RECT_PM',

" PM_RELEASE_DI RECT_PM',

" PM_RESET_DEVI CE_THRESHOLD",

" PM_GET_DEVI CE_TYPE",

" PM_SET_COVPONENT_THRESHOLDS",

" PM_GET_COMPONENT_THRESHOLDS" ,
mreq_t"

" PM_SET_CURRENT_| POVER',

" PM_GET_CURRENT POVER',

"PM_GET_FULL_POER",

" PM_ADD_DEPENDENT" ,

"PM_GET_TI ME_I DLE",

" PM_ADD_DEPENDENT PROPERTY",

" PM_GET_CVD_NAME",

" PM_SEARCH_LI ST",

new usr/src/cnd/ truss/codes. c 21

1642 void
1643 ioctl
1644 {
1645

1647
1648
1649
1650
1651
1652

1654
1655
1656
1657
1658
1659
1660 }

_ioccon(char *buf,

size_t size, uint_t code, int nbytes, int x, int y)

const char *inoutstr;

if (code & | OC_VO D)
inoutstr = ""

else if ((code & ICCINOJT) == | OC_| NOUT)
inoutstr = "WR';

el se
inoutstr = code & ICCIN? "W : "R';

if (|sascn(x) && i sprint(x))
(void) snprintf(buf, size,
x, y, nbytes)

_1O6N" %', %, %l)", inoutstr,
el se

(void) snprintf(buf, size, "_IOBNOx%, %, %l)", inoutstr,
X, y, nbytes);

1663 const char *
1664 ioctlname(private_t *pri, uint_t code)

1665 {
1666
1667

1669
1670
1671
1672
1673
1674

1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687

1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707

const struct ioc *ip;
const char *str = NULL;
for (ip = &JOC[O] i p->nane; ip++) {
if (code == 1p- >c0de) {
str = ip->nane;
break;

}

/*

* Devel opers hide ascii ioctl names in the ioctl subcode; for exanple
* 0x445210 shoul d be printed 'D <<16|’' R <<8|10. W allow for all

* three high order bytes (called hi, nmid and o) to contain ascii

* characters.

*/
if (str == NULL) {
int c_hi = code >> 24;
int c_md = (code >> 16) & Oxff;
int c_md_nm= (code >> 16);
int c_lo = (code > 8) & Oxff;
int c_lo_nm= code >> 8§;
if (isascii(c_lo) & isprint(c_lo) &&
isascii(c_md) & isprint(c_md) &&
isascii(c_hi) & isprint(c_hi))
(voi d) sprl ntf(pr|—>code buf ,
(% <<24)| (" %’ <<16)|(%’ <<8)| %d) "
c_hi, c_md, c_lo, code & Oxff);
else if (isascii(c_ To) &&lsprlnt(c_lo) &&
isascii(c_md_nm && isprint(c_md_nm)

(voi d) sprintf(pri->code_buf,
"((%’ <<16) | (* %’ <<8) | O/d)
code & Oxff);
else if (isascii(c_lo nn') && |spr|nt(c lo_nm)
(void) sprintf(pri->code_| buf (% <<8)| %) "
c_lo_nm code & Oxff
else if (code & (10C_ VO D/IOC I NOJT))
ioctl_ioccon(pri->code_buf, sizeof (pri->code_buf),
code, c_md, c_lo, code & Oxff);

c_md, c_lo,

el se

(void) sprintf(pri->code_buf, "0x% 4X"', code);

new usr/src/cnd/ truss/codes. c

1708 str = (const char *)pri->code_buf;
1709 1

1711 return (str);

1712 }

1715 const char *

1716 ioctl datastruct (uint_t code)

1717 {

1718 const struct ioc *ip;

1719 const char *str = NULL;

1721 for (ip = & oc[0]; ip->name != NULL; ip++) {
1722 if (code == 1p->code) {

1723 str = ip->datastruct;
1724 br eak;

1725 }

1726 1

1727 return (str);

1728 }

1731 const char *

1732 fcntl name(int code)

1733 {

1734 const char *str = NULL;

1736 if (code >= FCNTLM N && code <= FCNTLMAX)
1737 str = FCNTLnarme[code- FCNTLM N ;
1738 return (str);

1739 }

1741 const char *

1742 sfsnanme(int code)

1743 {

1744 const char *str = NULL;

1746 if (code >= SYSFSM N && code <= SYSFSMAX)
1747 str = SYSFSnane[code- SYSFSM N ;
1748 return (str);

1749 }

1751 /* ARGSUSED */

1752 const char *

1753 si 86nane(i nt code)

1754 {

1755 const char *str = NULL;

1757 #if defined(__i386) || defined(__and64)

1758 switch (code)

1759 case S| 86SWPI : str = "SI 86SWPI ";
1760 case S| 86SYM str = "SI 86SYM';
1761 case S| 86CONF: str = "S| 86CONF";
1762 case S| 86BOOT: str = "SI 86BOOT";
1763 case S| 86AUTO str = "SI 86AUTO';
1764 case S| 86EDT: str = "SI 86EDT"
1765 case S| 86SWAP: str = "S| 86SWAP";
1766 case S| 86FPHW str = "SI 86FPHW ;
1767 case S| 86FPSTART: str = "SI 86FPSTART";
1768 case GRNON: str = "GRNON';
1769 case CGRNFLASH: str = " GRNFLASH'
1770 case STI ME: str = "STI ME";
1771 case SETNAME: str = "SETNAME";
1772 case RNVR str = "RNVR';
1773 case WNVR: str = "WAVR";

br eak;
br eak;
br eak;
br eak;
br eak;
br eak;
br eak;
br eak;
br eak;
br eak;
br eak;
br eak;
br eak;
br eak;
br eak;

new usr/src/cnd/ truss/codes. c 23
1774 case RTODC: str = "RTODC'; br eak;
1775 case CHKSER: str = "CHKSER'; br eak;
1776 case S| 86NVPRT: str = "SI 86NVPRT"; br eak;
1777 case SANUPD: str = "SANUPD'; br eak;
1778 case S| 86KSTR: str = " S| 86KSTR'; br eak;
1779 case S| 86MVEM str = "SI 86MVEM'; br eak;
1780 case S| 86 TODEMON: str = "SI 86 TODEMON'; br eak;
1781 case S| 86CCDEMON: str = " S| 86CCDEMON" ; br eak;
1782 case S| 86CACHE: str = " S| 86CACHE"; br eak;
1783 case S| 86DELMVEM str = "SI 86DELMVEM'; br eak;
1784 case S| 86 ADDVEM str = "SI 86ADDMVEM' ; br eak;
1785 /* 71 through 74 reserved for VPI X */

1786 case S| 86V86: str = "SI 86V86"; br eak
1787 case Sl 86SLTI MVE: str = "SI 86SLTI ME"; br eak
1788 case Sl 86DSCR: str = "SI 86DSCR'; br eak;
1789 case RDUBLK: str = "RDUBLK"; br eak;
1790 /* NFA entry point */

1791 case Sl 86NFA: str = "SI 86NFA"; br eak
1792 case Sl 86VMB6: str = "SI 86VMB6"; br eak
1793 case S| 86VMENABLE: str = "S|I 86VMENABLE"; br eak
1794 case S| 86LI MUSER: str = "SI 86LI MUSER"; br eak
1795 case Sl 86RDI D: str = "SI 86RDI D'; br eak;
1796 case S| 86RDBOOT: str = "SI 86RDBOOT" ; br eak
1797 /* Merged Product defines */

1798 case S| 86SHFI L: str = "SI 86SHFI L"; br eak
1799 case Sl 86PCHRG\: str = "SI 86PCHRGN"; br eak;
1800 case Sl 86BADVI SE: str = "SI 86BADVI SE'; br eak
1801 case S| 86SHRG\: str = "S| 86SHRGN'; br eak
1802 case S| 86CHI DT: str = "S| 86CH DT"; br eak;
1803 case S| 86EMULRDA: str = "SI 86EMJLRDA"; br eak
1804 /* RTC conmands */

1805 case WIODC: str = "WIQpC'; br eak;
1806 case SGMIL: str = "SGMIL"; br eak;
1807 case GGMIL: str = "GGAMTL"; br eak;
1808 case RTCSYNC: str = "RTCSYNC'; br eak;
1809 1

1810 #endif /* __i386 */

1812 return (str);

1813 }

1815 const char *

1816 utscode(int code)

1817 {

1818 const char *str = NULL

1820 switch (code) {

1821 case UTS_UNAME: str = "UNAME"; break;

1822 case UTS_USTAT: str = "USTAT"; break;

1823 case UTS_FUSERS: str = "FUSERS"; break;

1824 }

1826 return (str);

1827 }

1829 const char *

1830 rctl syscode(int code)

1831 {

1832 const char *str = NULL

1833 switch (code) {

1834 case 0: str = "GETRCTL"; break;

1835 case 1: str = "SETRCTL"; br eak

1836 case 2: str = "RCTLSYS_LST"; br eak

1837 case 3: str = "RCTLSYS_CTL"; br eak

1838 case 4. str = "RCTLSYS_SETPRQJ"; br eak
1839 defaul t: str = " UNKNOMW'; br eak;

new usr/src/cnd/ truss/codes. c 24
1840 }

1841 return (str);

1842

1844 const char *

1845 rctl _l ocal _action(private_t *pri, uint_t val)

1846 {

1847 uint_t action = val & (~RCTL_LOCAL_ACTI ON_MASK) ;
1849 char *s = pri->code_buf;

1851 *s =\0

1853 if (action & RCTL_LOCAL_NOACTI ON) {

1854 action "= RCTL_LOCAL_NQACTI ON,

1855 (void) strlcat(s, "|RCTL_LOCAL_NOACTI ON',
1856 si zeof (pri->code_buf))

1857 }

1858 if (action & RCTL_LOCAL_SI GNAL) {

1859 action A= RCTL_LOCAL_SI GNAL

1860 (void) stricat(s, "|RCTL_LOCAL_SI GNAL",
1861 si zeof (pri->code_buf))

1862 1

1863 if (action & RCTL_LOCAL_DENY)

1864 action ~= RCTL_LOCAL_DENY

1865 (void) strlcat(s, "|RCTL_LOCAL_DENY",
1866 si zeof (pri->code_buf))

1867 }

1869 if ((action & (~RCTL_LOCAL_ACTI ON_MASK)) != 0)
1870 return (NULL)

1871 else if (*s 1="\0")

1872 return (s+1);

1873 el se

1874 return (NULL)

1875

1878 const char *

1879 rctl _local _flags(private_t *pri, uint_t val)

1880 {

1881 uint_t pval = val & RCTL_LOCAL_ACTI ON_MASK;
1882 char *s = pri->code_buf;

1884 *s =\0

1886 if (pval & RCTL_LOCAL_MAXI MAL) {

1887 pval ~= RCTL_LOCAL_ MAXI NAL

1888 (void) strlcat(s, "|RCTL_LOCAL_MAXI MAL"
1889 si zeof (pri->code_buf))

1890 }

1892 if ((pval & RCTL_LOCAL_ACTI ON_MASK) != 0)

1893 return (NULL)

1894 else if (*s !="\0")

1895 return (s+1)

1896 el se

1897 return (NULL)

1898

1901 const char *

1902 sconfnanme(int code)

1903 {

1904 const char *str = NULL

new usr/src/cnd/ truss/codes. c 25

1906

if (code >= SCONFM N && code <= SCONFMAX)

1907 str = SCONFnane[code- SCONFM N ;

1908 return (str);

1909 }

1911 const char *

1912 pat hconf nane(int code)

1913 {

1914 const char *str = NULL;

1916 if (code >= PATHCONFM N && code <= PATHCONFNMAX)

1917 str = PATHCONFnane[code- PATHCONFM N ;

1918 return (str);

1919 }

1921 #define ALL_O FLAGS \

1922 (O_NDELAY| O_APPEND| O_SYNC| O_DSYNC| O_NONBLOCK| O_CREAT| O_TRUNC\
1923 | O EXCL| O_NOCTTY| O_LARCEFI LE| O_RSYNC| O_XATTR| O_NOFOLLOW O_NOLI NKS\
1924 | FXATTRDI ROPEN)

1926 const char *

1927 openarg(private_t *pri, int arg)

1928 {

1929 char *str = pri->code_buf;

1931 if ((arg & ~(O_ ACCMOXDE | ALL_O FLAGS)) != 0)

1932 return (NULL);

1934 switch (arg & O ACCMDE) {

1935 defaul t:

1936 return (NULL);

1937 case O _RDONLY:

1938 (void) strcpy(str, "O RDONLY");

1939 br eak;

1940 case O WRONLY:

1941 (void) strcpy(str, "O WRONLY");

1942 br eak;

1943 case O RDWR

1944 (void) strcpy(str, "O RDWR');

1945 br eak;

1946 case O SEARCH:

1947 (void) strcpy(str, "O SEARCH');

1948 br eak;

1949 case O EXEC:

1950 (void) strcpy(str, "OEXEC');

1951 br eak;

1952 }

1954 if (arg & O NDELAY)

1955 (void) strlcat(str, "|O NDELAY", sizeof (pri->code_buf));
1956 if (arg & O APPEND)

1957 (void) strlcat(str, "| O APPEND', sizeof (pri->code_buf));
1958 if (arg & O SYNOQ)

1959 (void) strlcat(str, "| O SYNC', sizeof (pri->code_buf));
1960 if (arg & O_DSYNC)

1961 (void) strlcat(str, "|ODSYNC', sizeof (pri->code_buf));
1962 if (arg & O NONBLOCK)

1963 (void) strlcat(str, "| O NONBLOCK', sizeof (pri->code_buf));
1964 if (arg & O _CREAT)

1965 (void) strlcat(str, "|O CREAT", sizeof (pri->code_buf));
1966 if (arg & O TRUNC)

1967 (void) strlicat(str, "|O TRUNC', sizeof (pri->code_buf));
1968 if (arg & O _EXCL)

1969 (void) strlcat(str, "|OEXCL", sizeof (pri->code_buf));
1970 if (arg & O NOCTTY)

1971 (void) stricat(str, "|ONOCTTY", sizeof (pri->code_buf));

new usr/src/cnd/ truss/codes. c

1972 if (arg & O LARGEFI LE)

1973 (void) strlcat(str, "|O_LARCGEFILE", sizeof (pri->code_buf));
1974 if (arg & O_RSYNO)

1975 (void) strlicat(str, "|ORSYNC', sizeof (pri->code_buf));
1976 if (arg & O XATTR)

1977 (void) strlcat(str, "| O XATTR', sizeof (pri->code_buf));
1978 if (arg & O NOFOLLOW

1979 (void) strlicat(str, "| O NOFOLLOWN, sizeof (pri->code_buf));
1980 if (arg & O_NOLI NKS)

1981 (void) strlcat(str, "|O_NOLINKS", sizeof (pri->code_buf));
1982 if (arg & FXATTRDI ROPEN)

1983 (void) strlcat(str, "|FXATTRDI ROPEN', sizeof (pri->code_buf));
1985 return ((const char *)str);

1986 }

1988 const char *

1989 whencearg(int arg)

1990 {

1991 const char *str = NULL;

1993 switch (arg) {

1994 case SEEK_SET: str = "SEEK SET"; break;

1995 case SEEK CUR: str = "SEEK CUR'; br eak;

1996 case SEEK END: str = "SEEK END'; br eak;

1997 case SEEK _DATA: str = "SEEK DATA"; br eak;

1998 case SEEK HOLE: str = "SEEK HOLE"; break;

1999 }

2001 return (str);

2002 }

2004 #define | PC_FLAGS (1 PC_ALLOC| | PC_CREAT| | PC_EXCL| | PC_NOWAI T)

2006 char *

2007 ipcflags(private_t *pri, int arg)

2008 {

2009 char *str = pri->code_buf;

2011 if (arg & 0777)

2012 (void) sprintf(str, "0% 30", arg&0777);

2013 el se

2014 *str = '\0";

2016 if (arg & | PC_ALLOO)

2017 (void) strcat(str, "|IPC_ALLOC");

2018 if (arg & | PC_CREAT)

2019 (void) strcat(str, "|IPC_CREAT");

2020 if (arg & | PC_EXCL)

2021 (void) strcat(str, "|IPC_EXCL");

2022 if (arg & | PC_NOWAIT)

2023 (void) strcat(str, "|IPC_NOMIT");

2025 return (str);

2026 }

2028 const char *

2029 msgflags(private_t *pri, int arg)

2030 {

2031 char *str;

2033 if (arg == 0 || (arg & ~(|1PC_FLAGS| MSG_NOERROR| 0777)) != 0)
2034 return ((char *)NULL);

2036 str = ipcflags(pri, arg);

new usr/src/cnd/ truss/codes. c 27

2038 if (arg & MSG_NOERROR)

2039 (void) strcat(str, "| MG NOERRCR');
2041 if (*str =="1")

2042 Sstr++;

2043 return ((const char *)str);

2044 }

2046 const char *

2047 senflags(private_t *pri, int arg)

2048 {

2049 char *str;

2051 if (arg == 0 || (arg & ~(|PC_FLAGS| SEM UNDQ 0777)) != 0)
2052 return ((char *)NULL);

2054 str = ipcflags(pri, arg);

2056 if (arg & SEM UNDO)

2057 (void) strcat(str, "|SEM UNDO');
2059 if (*str =="1")

2060 Str++;

2061 return ((const char *)str);

2062 }

2064 const char *
2065 shnflags(private_t *pri, int arg)

2066 {

2067 char *str;

2069 if (arg 0 || (arg & ~(1PC_FLAGS| SHM RDONLY| SHM RND| 0777)) != 0)
2070 turn ((char *)NULL);

2072 str = ipcflags(pri, arg);

2074 if (arg & SHM RDONLY)

2075 (void) strcat(str, "|SHM RDONLY");
2076 if (arg & SHM RND)

2077 (void) strcat(str, "|SHVIL. RND');
2079 if (*str =="1")

2080 Sstr++;

2081 return ((const char *)str);

2082 }

2084 #define MSGCVDM N
2085 #defi ne MSGCVDMAX
2086 const char *const MSGCMVDnane[

0
| PC_STAT64
MSGCMDMVAX+1] = {

2087 NULL, NULL, NULL, NULL, NULL,
2088 NULL, NULL, NULL, NULL, NULL,
2089 "IPC_ RM D', I* 10 */
2090 "| PC_SET", I* 11 */
2091 "| PC_STAT", 1* 12 */
2092 "| PC_SET64", [* 13 */
2093 "| PC_STAT64", [* 14 */
2094 };

2096 #define SEMCVDM N 0
2097 #defi ne SEMCVDVAX | PC_STAT64
2098 const char *const SEI\/CNDnane[SEI\/CNDNAXﬂ] = {

2099 NULL, /[* 0 *

2100 NULL, /[* 1 */
2101 NULL, [* 2 *
2102 " GETNCNT", /* 3 */
2103 "GETPI D', [* 4 *

new usr/src/cnd/ truss/codes. c

2104 " GETVAL", [* 5 %]
2105 "GETALL" I* 6 */
2106 " GETZCNT" [* 7 %]
2107 " SETVAL", [* 8 *]
2108 "SETALL", [* 9 */
2109 "I'PC_RM D', [* 10 */
2110 "| PC_SET", I* 11 */
2111 "| PC_STAT", I* 12 */
2112 "| PC_SET64", [* 13 */
2113 "| PC_STAT64", [* 14 */
2114 };

2116 #define SHVCVDM N 0

2117 #define SHVCOVDVAX | PC_STAT64

2118 const char *const SHMCVDnane[SHVCMDMAX+1] = {

/* 5 NULLs */

2119 NULL, /* 0 */

2120 NULL, [* 1 *

2121 NULL, [* 2 *

2122 " SHM _LOCK", /* 3 %/

2123 " SHM_UNLOCK" , /* 4 %

2124 NULL, NULL, NULL, NULL, NULL

2125 "I PC_RM D", /* 10 */

2126 "1 PC_SET", /* 11 */

2127 "1 PC_STAT", [* 12 *]

2128 "1 PC_SET64", [* 13 */

2129 "| PC_STAT64", /* 14 */

2130 };

2132 const char *

2133 msgend(int arg)

2134 {

2135 const char *str = NULL;

2137 if (arg >= MSGCMDM N && arg <= NMSGCVDVAX)
2138 str = MSGCMVDnane[ar g- MSGCVDM N ;
2139 return (str);

2140 }

2142 const char *

2143 senctnd(int arg)

2144 {

2145 const char *str = NULL;

2147 if (arg >= SEMCMDM N && arg <= SE

2148 str = SEMCMDnane[ar g- SEMCVMDM N ;
2149 return (str);

2150 }

2152 const char *
2153 shnend(int arg)

2154 {

2155 const char *str = NULL

2157 if (arg >= SHMCMDM N && arg <= SHI

2158 str = SHVCMVDnane[ar g- SHMCVMDM N ;
2159 return (str)

2160 }

2162 const char *
2163 strrdopt(int arg)

2164 {

2165 const char *str = NULL;

2167 switch (arg) {

2168 case RNORM str = "RNORM;
2169 case RVBGD: str = "RVBCD';

/* streans read option (|_SRDOPT |

br eak;
br eak;

_GRDOPT)

*/

28

new usr/src/cnd/ truss/codes. c 29

2170
2171

2173
2174

2176
2177
2178
2179
2180

2182
2183

2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197

2199
2200

2202
2203

}

/* bit

case RVBG\: str = "RVBSGN'; br eak;
}
return (str);

map of streams events (I_SETSIG & | _CETSIG */

const char *
strevents(private_t *pri, int arg)
{

}

char *str = pri->code_buf;

if (arg & ~(S_INPUT| S_HI PRI | S_ QUTPUT| S_M5@F S_ERROR| S_HANGUP))
return ((char *)NULL);

*str = '\0";
if (arg & S_I NPUT)

(void) strcat(str, "|S_INPUT");
if (arg & S HPRI)

(void) strcat(str, "|S HPR");
if (arg & S_QUTPUT)

(void) strcat(str, "|S_OUTPUT");
if (arg & S_MSQ

(void) strcat(str, "|S_MSG');
if (arg & S_ERROR)

(void) strcat(str, "|S_ERROR');
if (arg & S _HANGUP)

(void) strcat(str, "|S_HANGUP");

return ((const char *)(str+1));

const char *

tiocflush(private_t *pri, int arg)

2204 {

2205

2207
2208

2210
2211
2212
2213
2214

2216
2217

2219
2220

}

/* bit map passsed by TI OCFLUSH */
char *str = pri->code_buf;

if (arg & ~(FREAD| FWRI TE))
return ((char *)NULL);

*str ='\0;
if (arg & FREAD)
(void) strcat(str, "|FREAD");

if (arg & FWRI TE)
(void) strcat(str, "|FWRITE");

return ((const char *)(str+1));

const char *

strflush(int arg)

2221 {

2222

2224
2225
2226
2227
2228

2230
2231

2233
2234

}

/* streanms flush option (I_FLUSH) */
const char *str = NULL;

switch (arg) {

case FLUSHR: str = "FLUSHR'; br eak;
case FLUSHW str = "FLUSHW ; break;
case FLUSHRW str = "FLUSHRW ; br eak;

}

return (str);

#define ALL_MOUNT_FLAGS (MS_RDONLY| MS_FSS| MS_DATA| M5_NOSUI D| MS_REMOUNT]| \

M5_NOTRUNC| M5_OVERLAY| M5_OPT| ONSTR| M5_GLOBAL[M5_FORCE| M5_NOWNTTAB)

new usr/src/cnd/ truss/codes. c

2236 const char *

2237 mountflags(private_t *pri, int arg) /* bit map of nount syscall flags */
2238 {

2239 char *str = pri->code_buf;

2240 size_t used = 0;

2242 if (arg & ~ALL_MOUNT_FLAGS)

2243 return ((char *)NULL);

2245 *str = '\0";

2246 if (arg & MS_RDONLY)

2247 used = strlcat(str, "|MS_RDONLY", sizeof (pri->code_buf));
2248 if (arg & MS_FSS)

2249 used = strlcat(str, "|MS_FSS"', sizeof (pri->code_buf));
2250 if (arg & MS_DATA)

2251 used = strlcat(str, "| MS_DATA", sizeof (pri->code_buf));
2252 if (arg & MS_NOSUI D)

2253 used = strlcat(str, "| MS_NOSUI D', sizeof (pri->code_buf));
2254 if (arg & MS_REMOUNT)

2255 used = strlcat(str, "| MS_REMOUNT", sizeof (pri->code_buf));
2256 if (arg & M5_NOTRUNC

2257 used = strlcat(str, "| MS_NOTRUNC', sizeof (pri->code_buf));
2258 if (arg & MS5_OVERLAY)

2259 used = strlcat(str, "|MS_OVERLAY", sizeof (pri->code_buf));
2260 if (arg & MS_OPTI ONSTR)

2261 used = strlcat(str, "|MS_OPTIONSTR', sizeof (pri->code_buf));
2262 if (arg & MS_GLOBAL)

2263 used = strlcat(str, "|MS_GLOBAL", sizeof (pri->code_buf));
2264 if (arg & MS_F

2265 used = strlcat(str, "|MS_FORCE", sizeof (pri->code_buf));
2266 if (arg & MS_NOWNTTAB)

2267 used = strlcat(str, "| MS_NOWTTAB", sizeof (pri->code_buf));
2269 if (used == 0 || used >= sizeof (pri->code_buf))

2270 return ((char *)NULL); /* use prt_hex() */
2272 return ((const char *)(str+1));

2273 }

2275 const char *

2276 {svfsflags(privat et *pri, ulong_t arg) /* bit map of statvfs syscall flags */
2277

2278 char *str = pri->code_buf;

2280 if (arg & ~(ST_RDONLY| ST_NOSUI D] ST_NOTRUNC)) {

2281 (void) sprintf(str, "Ox%x", arg);

2282 return (str);

2283 1

2284 *str ='\0;

2285 if (arg & ST_RDONLY)

2286 (void) strcat(str, "|ST_RDONLY");

2287 if (arg & ST_NOSUI D)

2288 (void) strcat(str, "|ST_NOSUID');

2289 if (arg & ST_NOTRUNC)

2290 (void) strcat(str, "|ST_NOTRUNC');

2291 if (*str =="'\0

2292 (void) strcat(str, "|0");

2293 return ((const char *)(str+1));

2294 }

2296 const char *

2297 fuiname(int arg) /* fusers() input argunent */

2298 {

2299 const char *str = NULL;

2301 switch (arg) {

new usr/src/cnd/ truss/codes. c 31

2302
2303
2304

2306
2307

2309
2310
2311
2312

2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336

2339
2340

}

case F_FILE_ONLY: str
case F_CONTAI NED: str
}

1nn
TI
|T|
9
=
.{

br eak;
"F_ OO\ITAI NED‘ br eak;

return (str);

const char *

fuflags(private_t *pri, int arg)
{

/* fusers() output flags */
char *str = pri->code_buf;
if (arg & ~(F_CDI R F_RDI Rl F_TEXT| F_MAP| F_OPEN| F_TRACE| F_TTY)) {

(void) sprintf(str, "Ox%", arg);
return (str);

str ='\0;
if (arg & F_CDR)
(void) strcat(str, "|F_CDR");

if (arg & F_RDIR

(void) strcat(str, "|F_RDIR");
if (arg & F_TEXT)

(void) strcat(str, "|F_TEXT");
if (arg & F_MAP)

(void) strcat(str, "|F_MAP");
if (arg & F_OPEN)

(void) strcat(str, "|F_OPEN");
if (arg & F_TRACE)

(void) strcat(str, "|F_TRACE");
if (arg & F_TTY)

(void) strcat(str, "|F_TTY");
if (*str =="'\0

(void) strcat(str, "|O"
return ((const char *)(str+1));

const char *

i pprotos(int arg)

2341 {

2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367

/* 1P protocols cf. netinet/in.h */

switch (arg) {

case | PPROTO I P: return "IPPROTOIP")'

case | PPROTO_SCTP: return

) | PPROTO_SCTP")
case | PPROTO_RAW return

" | PPROTO_RAW) ;

(
case | PPROTO_| C\VP: return ("I PPROTO_| CMP");
case | PPROTO | GWP: return ("I PPROTO | GW");
case | PPROTO_GGP: return ("1PPROTO GGP");
case | PPROTO_ENCAP: return ("I PPROTO_ENCAP") ;
case | PPROTO TCP: return ("1 PPROTO TCP");
case | PPROTO _EGP: return ("I PPROTO EGP");
case | PPROTO_PUP: return ("1 PPROTO PUP");
case | PPROTO_UDP: return ("I PPROTO_UDP") ;
case | PPROTO | DP: return (" IPPROTOIDP)
case | PPROTO | PV6: return ("I PPROTO_|I PV6")
case | PPROTO_ROUTI NG: return ("I PPROTO _ROUTI NG')
case | PPROTO FRAGVENT: return ("1 PPROTO_ FRAGIVENT") ;
case | PPROTO_RSVP: return ("I PPROTO_RSVP") ;
case | PPROTO_ESP: return ("I PPROTO ESP");
case | PPROTO_AH: return ("I PPROTO AH');
case | PPROTO_| CVPV6: rHUHIUIWRIOIdPMU
case | PPROTO_NONE: return ("I PPROTO_NONE") ;
case | PPROTO DSTOPTS: return ("I PPROTO_ DSTOPTS")
case | PPROTO HELLGC return ("I PPROTO HELLO');
case | PPROTO_ND: return ("I PPROTO ND');
case | PPROTO_EON: return ("I PPROTO_EON')
case | PPROTO_PI M return ("1 PPROTO PIM);

("

(

new usr/src/cnd/ truss/codes. c

2368 defaul t:
2369
2370 }

return (NULL);

32

new usr/src/cmd/ zf s/ zfs_main. c

R R R R

163475 Wed Cct

17 21:48: 36

2012

new usr/src/cmd/ zfs/ zfs_main. c

FITS: generating send-streans in portable format

This commit adds the command ' zfs fits-send

1/*

*

* Ok ok ok E ok Ok O % Ok Ok % k%

NRERRRERRRER R
COONOUITARWNROOO~NOUTDSWN

30 #i
31 #i
32 #i
33 #i
34 #i
35 #i
36 #i
37 #i
38 #i
39 #i
40 #i
41 #i
42 #i
43 #i
44 #i
45 #i
46 #i
47 #i
48 #i
49 #i
50 #i
51 #i
52 #i
53 #i
54 #i
55 #i
56 #i

58 #i

N
(5
A
~

CDDL HEADER START

anal ogous to zfs send. The
generated send streamis conpatible with the stream generated with that
from’btrfs send” and can in principle easily be received to any fil esystem

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkkkkkkkkkkkkkkhkkFkhkkkkkk ok kk k k&

The contents of this file are subject to the terms of the

Conmmon Devel opnent and Distribution License (the "License")

You may not use this file except

in conpliance with the License

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing
See the License for the specific | anguage governi ng perm ssions
and limtations under the License

When distributing Covered Code
file and include the License file at

If applicable

information:

CDDL HEADER END

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

ncl ude

Copyri ght
Copyri ght
Copyri ght
Copyri ght
Copyri ght

(c) 2012,

<assert. h>
<ctype. h>
<errno. h>

<li bgen. h>
<libintl.h>
<l'ibuutil.h>
<l ibnvpair.h>
<l ocal e. h>
<stddef. h>
<stdio. h>
<stdlib. h>
<strings. h>
<uni std. h>
<fcntl.h>
<zone. h>
<grp. h>
<pwd. h>

<si gnal . h>
<sys/list.h>
<sys/ nkdev. h>
<sys/mtent. h>
<sys/mttab. h>
<sys/ mount . h>
<sys/stat.h>
<sys/fs/zfs. h>
<sys/types. h>
<tine.h>

<libzfs. h>

De

Joyent,

phi x.

Portions Copyri ght

I nc.

All

i nclude this CDDL HEADER in each
usr/ src/ OPENSCLARI S. LI CENSE.

add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]"

replaced with your own identifying

[yyyyl

I nc.

(c) 2005, 2010, Oracle and/or
2012 Nexenta Systems,
(c) 2012 by
2012 Mlan Jurik. Al

All

its affiliates

Al

rights reserved

rights reserved

rights reserved.
rights reserved

Al

[name of copyright owner]

rights reserved

new usr/src/cmd/ zf s/ zfs_main. c

59 #include <libzfs_core. h>

60 #include <zfs_prop. h>

61 #include <zfs_del eg. h>

62 #include <libuutil.h>

63 #include <aclutils.h>

64 #include <directory. h>

66 #include "zfs_iter.h"

67 #include "zfs_util.h"

68 #include "zfs_comutil.h"

70 libzfs_handle_t *g_zfs

72 static FILE *mttab_file

73 static char history_str[H S_MAX_RECORD LEN]

74 static boolean_t |og_history = B_TRUE

76 static int zfs_do_clone(int argc, char **argv)

77 static int zfs_do_create(int argc, char **argv)
78 static int zfs_do_destroy(int argc, char **argv)
79 static int zfs_do_get(int argc, char **argv)

80 static int zfs_do_inherit(int argc, char **argv)
81 static int zfs_do_list(int argc, char **argv)

82 static int zfs_do_mount(int argc, char **argv)

83 static int zfs_do_rename(int argc, char **argv)
84 static int zfs_do_roll back(int argc, char **argv)
85 static int zfs_do_set(int argc, char **argv)

86 static int zfs_do_upgrade(int argc, char **argv)
87 static int zfs_do_snapshot(int argc, char **argv)
88 static int zfs_do_unnount(int argc, char **argv)
89 static int zfs_do_share(int argc, char **argv)

90 static int zfs_do_unshare(int argc, char **argv)
91 static int zfs_do_send(int argc, char **argv)

92 static int zfs_do_fits_send(int argc, char **argv)
93 #endif /* | codereview */

94 static int zfs_do_receive(int argc, char **argv)
95 static int zfs_do_pronote(int argc, char **argv)
96 static int zfs_do_userspace(int argc, char **argv)
97 static int zfs_do_allow(int argc, char **argv)

98 static int zfs_do_unallow(int argc, char **argv)
99 static int zfs_do_hold(int argc, char **argv)

100 static int zfs_do_holds(int argc, char **argv)
101 static int zfs_do_rel ease(int argc, char **argv)
102 static int zfs_do_diff(int argc, char **argv)

104 /*

105 * Enable a reasonable set of defaults for |ibumem debuggi ng on DEBUG bui | ds
106 */

108 #i fdef DEBUG

109 const char *

110 _unmem debug_init(voi d)

111

112 return ("default, verbose"); /* $UMEM DEBUG setting */
113 }

115 const char *

116 _unem | oggi ng_i nit (voi d)

117 {

118 return ("fail,contents"); /* $UVEM LOGA NG setting */
119 }

120 #endif

122 typedef enum {

123 HELP_CLONE,

124 HELP_CREATE,

new usr/src/cmd/ zf s/ zfs_main. c

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

153
154
155
156
157

159
160
161
162
163
164
165
166
167
168

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

HELP_DESTROY,
HELP_GET,
HELP_| NHERI T,
HEL P~ UPGRADE,
HELP_LI ST,

HEL P_MOUNT,
HELP_PROVOTE,
HELP_RECEI VE,
HEL P~ RENAME,
HELP_ROLLBACK,
HELP_SEND,
HELP_FI TS_SEND,

#endif /* ! codereview */

HELP_SET,
HELP_SHARE,
HELP_SNAPSHOT,
HEL P_ UNVOUNT,
HEL P_UNSHARE,
HELP_ALLOW
HELP_UNALLOW
HEL P~ USERSPACE,
HEL P~ GROUPSPACE,
HELP_HOLD,
HELP_HOLDS,

HEL P_REL EASE,
HELP_DI FF,

} zfs_help_t;

typedef struct zfs_command {

const char *nare;

int (*func) (int argc,
zfs_hel p_t usage;

} zfs_command_t;

/

*
*
*
*
*
*
*
*
*
t

static zfs_command_t command_t abl e[]
zfs_do_create,
zfs_do_destroy,

nessage.

Mast er conmand tabl e.
usage nessage.

"create",
"destroy",
NULL },
"snapshot ",
"rol | back",

" pronote",
"renane",
NULL },

NULL }

" nherit",
"upgrade",
"user space",
" groupspace”,
NULL },

"unnmount ",

"unshare",

Each ZFS command has a nane,
The usage nessages need to be internationalized,
to have a function to return the usage nessage based on a command i ndex.

zfs_do_snapshot,
zfs_do_rol | back,
"cl one", zfs_do_cl one,
zfs_do_pronot e,
zfs_do_renane,

"list"” zfs_do_list,

"set" zfs_do_set,

get" zfs_do_get,
zfs_do_inherit,
zfs_do_upgrade,
zfs_do_userspace,
zfs_do_userspace,

"mount ", zfs_do_nount,
zfs_do_unnount,
"share", zfs_do_share,
zfs_do_ unshare

char **argv);

HELP_CREATE
HELP_DESTROY

HELP_SNAPSHOT
HELP_ROLLBACK
HELP_CLONE
HELP_PROVOTE
HELP_RENAMVE

HELP_LI ST

HELP_SET
HELP_GET

HELP_| NHERI T
HEL P~ UPGRADE
HELP_USERSPACE
HELP_GROUPSPACE

HELP_MOUNT
HELP_UNMOUNT
HELP_SHARE
HELP_UNSHARE

associ ated function,

SO we

D el

and

have

These conmands are organi zed according to how they are displayed in the usage
An enpty command (one with a NULL nane)
the generic usage nessage.

/

indicates an enpty line in

new usr/src/cmd/ zf s/ zfs_main.c

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

256

#endi f /

bs

#def i ne NCOMVAND

zfs_command_t

NULL },

"send", zfs _do_send, HELP_SEND },
"receive", zfs_do_recei ve, HELP_RECEI VE 1,
NULL },

"fits-send", zfs_do_fits_send, HELP_FI TS_SEND 1,
NULL },

! codereview */

"al l ow', zfs_do_al | ow, HELP_ALLOW 1,
NULL 1},

"unal | ow", zfs_do_unal | ow, HELP_UNALLOW },
NULL },

"hol d", zfs_do_hol d, HELP_HOLD 1.
"hol ds", zfs_do_hol ds, HELP_HOLDS 1,
"rel ease", zfs_do_rel ease, HELP_RELEASE },
"diff", zfs_do_diff, HELP_DI FF },

(sizeof (command_table) / sizeof (command_table[0]))

*current _comand;

static const char *
get _usage(zfs_hel p_t idx)
{

switch (idx) {

case

case

case

case

case

case

case

case

case

case

case

HELP_CLONE:
return (gettext("\tclone [-p] [-0 property =val ue]
"<snapshot > <fil esystenjvolune>\n"));
HELP_CREATE:
return (gettext("\tcreate [-p] [-0 property=val ue]
"<fil esystenm\n"
"\tcreate [-ps] [-b bI ocksi ze] [-o property=val ue]
"-V <size> <volune>\n"));
HELP_DESTROY:
return (gettext (" \tdestroy [-fnpRrv] <filesysten]vol ume>\n"
"\tdestroy [-dnpRrv]

"<fil esysten vol une>@snap>[%<snap>][,...]\n"));
HELP_GET:
return (gettext(\t get [—er] [-d max] "
"[-o \"all\" |f|eld[11 [-t type[,...1]
[-s source[,...]]\n"
"\t <\"all\" | propertyl[, ...] "
"[fil esysten]vol ume|snapsho] .o.\n"));
HELP_I NHERI T:
return (gettext("\tinherit [-r§] <pr0perty> "
"<fil esysten vol une| snapshot> ...\n"));
HELP_UPGRADE:
return (gettext("\tupgrade [-v]\n"
"\tupgrade [-r] [-V version] <-a | filesystem...>\n"));
HELP_LI ST:

return (gettext("\tlist [-rH[-d max]

"[-o property[,...]] [-t type[,...]] [-s property] ...\n"
"\t [- Sproperty] ..
"[fil esysten] vol une| snapshot] oo\n"));

HELP_MOUNT:

return (gettext ("\tmunt\n"
"\trmount [-vQ [-0 opts] <-a | filesystenr\n"));
HELP_PROMOTE:
return (gettext(\tpronote <clone-filesysten»\n"));
HELP_RECEI VI
return (gettext(\treceive [-vnFu] <filesystenivolune|"
"snapshot >\ n"
"\treceive [-vnFu] [-d | -e] <filesystenr\n"));
HELP_RENANE:
return (gettext("\trename [-f] <filesystenjvol une|snapshot> "
"<filesysten vol une| snapshot >\ n"

new usr/src/cmd/ zf s/ zfs_main. c

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

321
322

5

“\trename [-f] -p <filesystenvolunme> <filesystenjvol une>\n"

"\trename -r <snapshot> <snapshot>"));
case HELP_ROLLBACK:
return (gettext("\trollback [-rRf] <snapshot>\n"));
case HELP_SEND:
return (gettext("\tsend [-DnPpRv] [-[il] snapshot]
"<snapshot>\n"));
case HELP_FI TS_SEND:
return (gettext("\tflts send [-v] [-i snapshot]
"<snapshot>\n"));

#endif /* | codereview */

case HELP_SET:
return (gettext("\tset <property=val ue>
"<fil esysten vol unme| snapshot> ...\n"));
case HELP_SHARE:
return (gettext("\tshare <-a | filesystemp\n"));
case HELP_SNAPSHOT:
return (gettext("\tsnapshot [-r] [-0 property =val ue]
"<fil esystem@napnane| vol ume@napnane> ...\n"));
case HELP_UNMOUNT:
return (gettext("\tunnount [-f]
"<-a | filesysten] mountpoint>\n"));
case HELP_UNSHARE:
return (gettext("\tunshare "
"<-a | filesysten]nmountpoint>\n"));
case HELP_ALLOW
return (gettext("\tallow <fil esystenivol une>\n"
"\tall ow [-1 dug]
"<\ "everyone\"|user| group>[,
"\t <fil esysten|vol une>\n
“\tallow [-1d] -e <pern] @etnanme>[,...]
"<fil esysten vol ume>\n"
"\tallow -c <pern] @etname>[,...] <fil esyst err1 vol une>\ n"
"\taI low -s @etnanme <pern1 @et narre>[N
"<fil esysten]vol ume>\n"));
case HELP_UNALLOW
return (gettext("\tunallow [-rldug]
"<\ "everyone\"|user|group>[,...]\n"
"\t [<pernm @etname>[,...]] <fil esyst en1 voI ume>\ n"
"\tunallow [-rld] -e [<perrr1 @et name>[,
"<filesysten] vol une>\n"
“\tunallow [-r] -c [<pern| @etname>[,...]] "
"<fil esysten vol ume>\ n"
"\tunallow [-r] -s @etnane [<pern] @etnane>[,...]]
"<filesysten]volume>\n"));
case HELP_USERSPACE:
return (gettext (" \tuserspace [- Hinp] [—o field[,...]]
[sfleld] An\t[-S field] .
"[-t type[]] <filesysteni snapshot >\n"));
case HELP_GROUPSPACE:
return (gettext(\tgroupspace [-Hinp] [—o field[,...]]
"[-s field] An\t[-S field]
"[-t type[,]] <filesysteni snapshot>\n));
case HELP_HOLD:
return (gettext("\thold [-r] <tag> <snapshot> ...\n"));
case HELP_HOLDS:

.] <pern| @etname>[,...]\n"

return (gettext(\tholds [-r] <snapshot> ...\n"));
case HELP_RELEASE:
return (gettext(\trelease [-r] <tag> <snapshot> ...\n"));

case HELP_DI FF:
return (gettext("\tdiff [-FHt] <snapshot> "
"[snapshot | fil esystenj\n"));
}

abort();
/* NOTREACHED */

new usr/src/cmd/ zf s/ zfs_main.c

323 }

325 void

326 nonen{voi d)

327 {

328 (void) fprintf(stderr, gettext("internal error: out of nenory\n"));
329 exit(1);

330 }

332 /*

333 * Wility function to guarantee nalloc() success.
334 */

336 void *

337 safe_mal |l oc(size_t size)

338 {

339 voi d *dat a;

341 if ((data = calloc(1, size)) == NULL)

342 nonmemn() ;

344 return (data);

345 }

347 static char *

348 safe_strdup(char *str)

349 {

350 char *dupstr = strdup(str);

352 if (dupstr == NULL)

353 nomen() ;

355 return (dupstr);

356 }

358 /*

359 * Callback routine that will print out information for each of
360 * the properties.

361 */

362 static int

363 usage_prop_ch(int prop, void *cb)

364 {

365 FILE *fp =

367 (void) fprintf(fp, "\t%15s ", zfs_prop_to_nane(prop));
369 if (zfs_prop_readonl y(prop))

370 (void) fprintf(fp, NO ")
371 el se

372 (void) fprintf(fp, "YES "),
374 if (zfs_prop_| |nher|tab|e(prop))

375 (void) fprintf(fp, YES ");
376 el se

377 (void) fprintf(fp, " NO ");
379 if (zfs_prop_val ues(prop) == NULL)

380 (void) fprintf(fp, "-\n");

381 el se

382 (void) fprintf(fp, "%\n", zfs_prop_val ues(prop));
384 return (ZPROP_CONT);

385 }

387 /*

388 * Display usage nessage. If we're inside a command, display only the usage for

new usr/src/cmd/ zf s/ zfs_main. c

389
390
391

* that coonmand. Oherwise, iterate over the entire command table and display
* a conpl ete usage nessage.
*/

392 static void
393 usage(bool ean_t request ed)
394 {

395
396
397

399

401
402
403

405
406
407
408
409
410
411

413
414
415
416
417
418

420
421
422
423
424
425

427
428
429

431
432

434
435
436

438
439
440
441
442
443
444
445
446
447

449
450
451
452
453
454

int i;
bool ean_t show properties = B_FALSE;
FILE *fp = requested ? stdout : stderr;

if (current_command == NULL) {
(void) fprintf(fp, gettext("usage: zfs conmand args ...\n"));
(void) fprint f(fp,
gettext("where 'command’ is one of the followi ng:\n\n"));

for (i = 0; i < NCOWAND; i ++)
if (command_table[i].name == NULL)
(void) fprintf(fp, "\n");
el se
(void) fprintf(fp, "%",
get _usage(command_ t abl e[i].usage));

}

(void) fprintf(fp, gettext("\nEach dataset is of the form
"pool /[dat aset/] *dat aset [@ane]\n"));

} else {
(void) fprintf(fp, gettext("usage:\n"));
(void) fprintf(fp, "%", get_usage(current_command->usage));

}

if (current_command != NULL &&
(strcnp(current _comand->nanme, "set") == 0 ||
strcnp(current _conmand- >nane, "get") == 0 ||
strcnp(current _command- >name, "inherit") == 0 ||
strenp(current _comand- >nanme, "list") == 0))

show_properties = B_TRUE;

if (show properties) {
(void) fprintf(fp,
gettext("\nThe foll owing properties are supported:\n"));

(v0|d) fprlntf(fp "\n\t% 14s % Y% %\ n\n",
"PROPERTY", "EDIT", "INHERI T, "VALUES");

/* lterate over all properties */
(void) zprop_iter(usage_prop_cbh, fp, B_FALSE, B_TRUE,
ZFS_TYPE_DATASET) ;

(void) fprintf(fp, "\t%15s ", "userused@..");
(void) fprintf(fp, " NO NO <size>\n");

(void) fprintf(fp, "\t%15s ", "groupused@..");
(void) fprintf(fp, " NO NO <S|ze>\n)

(void) fprintf(fp, "\t%15s ", "userquota@..");
(void) fprintf(fp, "YES NO <size> | none\n")
(void) fprintf(fp, "\t%15s ", "groupquota@ .

(void) fprintf(fp, "YES NO <size> | none\ n”)
(void) fprintf(fp, "\t%15s ", "witten@snap>");
(void) fprintf(fp, " NO NO <size>\n");

(void) fprintf(fp, gettext("\nSizes are specified in bytes "
"with standard units such as K, M G etc.\n"));
(void) fprintf(fp, gettext("\nUser-defined properties can

"be specified by using a nane containing a colon (:).\n"));
(void) fprintf(fp, gettext("\nThe {user|group}{used|quota}@"
"properties nust be appended wi th\n"

new usr/src/cnd/ zf s/ zfs_main. c

455
456
457
458
459
460
461
462
463
464
465
466
467

469
470
471
472
473
474
475

477
478

480
481
482

483
484

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

503
504
505

506
507

509
510
511
512
513
514
515
516
517
518
519
520

"a user or group specifier of one of these forms:\n"

PCSI X nane (eg: \"matt\")\n"
PCSI X i d (eg: \"126829\")\n"
" SMB nane@lomain (eg: \"matt@un\")\n"

2 SMB SI D (eg: \"S 1-234-567-89\")\n"));

} else {
(void) fprintf(fp,

gettext ("\nFor the property list, run: %\n"),

"zfs set|get");
(void) fprintf(fp,

gettext("\nFor the del egated perm ssion list,

"zfs allow unallow);

}

/*
* See comments at end of nmin().
*

if (getenv("ZFS_ABORT") != NULL) {
(void) printf("dunmping core by request\n");

abort();
}
exit(requested ? 0 : 2);
}
static int

parseprop(nvlist_t *props)
{

char *propname = optarg;
char *propval, *strval;

if ((propval = strchr(propnane, '=")) == NULL) {
(vo |d) fprintf(stderr, gettext(m ssi ng
=" for -0 option\n"));
return (-1);

}
*propval = '\0";
propval ++;
1f (nvlist_|ookup_stri
(void) fprintf
"specified
return (-1);

g(props propnane, &strval) ==
st de gettext("property ' 9%’
mul t |pIe tinmes\n"), propnane);

n
(

}
if (nvlist_add_string(props, propnane, propval) != 0)
nonmen();
return (0);
}
static int
parse_depth(char *opt, int *flags)
{
char *tnp;
int depth;

depth = (int)strtol (opt, & np, 0);
if (*tnmp)
(void) fprintf(stderr,

gettext("% is not an integer\n"), optarg);

usage(B_FALSE);

}
if (depth < 0)
(void) fprintf(stderr,
gettext ("Depth can not be negative.\n"));
usage(B_FALSE) ;

}
*flags |= (ZFS_| TER DEPTH LI M T| ZFS_I TER_RECURSE) ;

run:

9%s\n"),

new usr/src/cmd/ zf s/ zfs_main. c

521 return (depth);

522 }

524 #defi ne PROGRESS_DELAY 2 /* seconds */

526 static char *pt_reverse = "\b\b\b\b\b\b\b\b\b\b\b\b\ b\ b\ b\ b\ b\ b\ b\ b\ b\ b\ b\ b\ b";

527 static time_t pt_begin;

528 static char *pt_header = NULL;

529 static boolean_t pt_shown;

531 static void

532 start_progress_tiner(void)

533 {

534 pt_begin = time(NULL) + PROGRESS_DELAY;

535 pt _shown = B_FALSE;

536 }

538 static void

539 set_progress_header (char *header)

540 {

541 assert (pt_header == NULL);

542 pt _header = safe strdup(header)

543 1f (pt shovm) {

544 (voi d) p ntf("%: ", header);

545 (void) fflush(stdout);

546 }

547 }

549 static void

550 updat e_progress(char *update)

551 {

552 if (!pt_shown &% time(NULL) > pt_begin) {

553 int len = strlen(update);

555 (void) printf("%: %%.*s", pt_header, update, len, |en,

556 pt_reverse);

557 (void) ffl ush(st dout)

558 pt _shown = B_TR

559 } else if (pt_shown) {

560 int len = strlen(update);

562 (void) printf("%%.*s", update, len, |len, pt_reverse);

563 (void) fflush(stdout);

564 1

565 }

567 static void

568 finish_progress(char *done)

569

570 if (pt_shown) {

571 (void) printf("%\n", done);

572 (void) ff ush(stdout)

573 }

574 free(pt_header);

575 pt _header = NULL;

576 }

577 |*

578 * zfs clone [-p] [-0 prop=value] ... <snap> <fs | vol >

579 *

580 * G ven an existing dataset, create a witable copy whose initial contents

581 * are the sane as the source. The newy created dataset maintains a

582 * dependency on the original; the original cannot be destroyed so |ong as

583 * the clone exists.

584 *

585 * e '-p’ flag creates all the non-existing ancestors of the target first.
*

586

new usr/src/cnmd/ zf s/ zfs_main. c

587 static int
588 zfs_do_cl one(int argc, char **argv)

589 {
590
591
592
593
594

596
597

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614

616
617

619
620
621
622
623
624
625
626
627
628
629
630
631
632
633

635
636
637

639
640
641
642
643
644
645
646
647
648
649
650
651

NULL;
B_FALSE;

zfs_handle_t *zhp
bool ean_t parents
nvlist_t *props;
int ret = 0;

int c;

if (nvlist_alloc(&rops, NV_UNI QUE_NAME, 0) != 0)
nomen() ;

/* check options */
while ((c = getopt(argc, argv, "o:p")) !=-1) {
switch (c) {
case '0:
if (parseprop(props))
return (1);
break;
p:
parents = B _TRUE;
break;
case '?':
(void) fprintf(stderr, gettext("invalid option %’ \n"),
optopt);
got o usage;

case

}

argc -= optind;
argv += optind;

/* check nunber of arguments */
if (argc < 1) {
(void) fprintf(stderr, gettext("m ssing source dataset
"argunment\n"));
got o usage;

}
i1f (argc < 2) {
(void) fprintf(
"argument\ n
got o usage;

stderr, gettext("m ssing target dataset
"))
}
if (argc > 2) {
(void) fprintf(stderr, gettext("too many argunents\n"));
got o usage;

}

/* open the source dataset */
if ((zhp = zfs_open(g_zfs, argv[0], ZFS TYPE_SNAPSHOT)) == NULL)
return (1);

if (parents && zfs_nane_valid(argv[1l], ZFS_TYPE_FI LESYSTEM |
ZFS _TYPE_VOLUME)) {
/*
* Now create the ancestors of the target dataset. |f the
* target already exists and '-p’ option was used we shoul d not
* conpl ai n.
*/
if (zfs_dataset_exists(g_zfs, argv[1l], ZFS_TYPE_FI LESYSTEM |
ZFS_TYPE_VOLUME))
return (0);
if (zfs_create_ancestors(g_zfs, argv[1l]) != 0)
return (1);

10

new usr/src/cmd/ zf s/ zfs_main. c

653 /* pass to libzfs */

654 ret = zfs_clone(zhp, argv[1], props);

656 /* create the nmountpoint if necessary */

657 if (ret == 0)

658 zfs_handl e_t *cl one;

660 clone = zfs_open(g_zfs, argv[1l], ZFS_TYPE_DATASET);
661 if (clone !'= NULL)

662 if (zfs_get_type(clone) != ZFS TYPE_VOLUME)
663 if ((ret = zfs_mount(clone, NULL, 0))
664 ret = zfs_share(clone);

665 zfs_cl ose(cl one);

666 }

667 }

669 zfs_cl ose(zhp);

670 nvlist_free(props);

672 return (!!ret);

674 usage:

675 if (zhp)

676 zfs_cl ose(zhp);

677 nvlist_free(props);

678 usage(B_FALSE);

679 return (-1);

680 }

682 /*

683 * zfs create [-p] [-0 prop=value] ... fs

684 * zfs create [-ps] [-b blocksize] [-o0 prop=value] ... -V vol size
685 *

686 * Create a new dataset. This command can be used to create filesystens
687 * and volunmes. Snapshot creation is handled by ’'zfs snapshot’

688 * For volunes, the user nust specify a size to be used.

689 *

690 * The '-s’ flag applies only to volunes, and indicates that we should not try
691 * to set the reservation for this volunme. By default we set a reservation
692 * equal to the size for any volune. For pools with SPA VERSI ON >=
693 * SPA VERSI ON_REFRESERVATI ON, we set a refreservation instead.

694 *

695 * The '-p’ flag creates all the non-existing ancestors of the target first.

696 */
697 static int
698 zfs_do_create(int argc, char **argv)

699 {

700 zfs_type_t type = ZFS TYPE_FI LESYSTEM

701 zfs_handl e_t *zhp NULL;

702 uint64_t vol si ze;

703 int c;

704 bool ean_t noreserve = B_FALSE;

705 bool ean_t bflag = B_ FALSE

706 bool ean_t parents = B_FALSE;

707 int ret =1;

708 nvlist_t *props;

709 uint64_t intval;

710 int canmount = ZFS_CANMOUNT_OFF;

712 if (nvlist_alloc(&rops, NV_UNI QUE_NAME, 0) != 0)
713 nonen() ;

715 /* check options */

716 while ((c = getopt(argc argv, ":V:b:so:p")) !=-1) {
717 switch (c) {

718 case 'V :

11

new usr/src/cnd/ zf s/ zfs_main. c 12
719 type = ZFS_TYPE_VOLUME;
720 if (zfs_nicestrtonum(g_zfs, optarg, & ntval) != 0)
721 (voi d) fpri ntf(st derr, gettext("bad volunme "
722 'size "9 U\ n") optarg
723 i bzfs error descrlptlon(g zfs));
724 goto error;
725 }
727 if (nvlist_add_uint64(props
728 zfs_prop_t o_name(ZFS_ PRCP VOLSI ZE), intval)
729 nomen() ;
730 vol size =i ntval ;
731 br eak;
732 case 'p’:
733 parents = B TRUE;
734 br eak;
735 case 'b’:
736 bflag = B_TRUE;
737 if (zfs_nicestrtonun(g_zfs, optarg, & ntval) !=
738 (void) fprintf(stderr, gettext("bad volune '
739 "block size "%’ : %\n"), optarg,
740 I'i bzfs_error_description(g_zfs));
741 goto error;
742 }
744 if (nvlist_add_uint64(props,
745 zfs_prop_t o_nane(ZFS_PROP_VOLBLOCKSI ZE) ,
746 intval) 1= 0)
747 nonmemn() ;
748 br eak;
749 case '0:
750 if (parseprop(props))
751 goto error;
752 br eak;
753 case 's’:
754 noreserve = B_TRUE;
755 br eak;
756 case ':’:
757 (void) fprintf(stderr, gettext("m ssing size "
758 "argument\n"));
759 got o badusage;
760 case ' ?':
761 (void) fprintf(stderr, gettext("invalid option ’'%’'\n"),
762 optopt);
763 got o badusage;
764 }
765 }
767 if ((bflag || noreserve) && type != ZFS TYPE_VOLUME) {
768 (void) fprintf(stderr, gettext(" -s’ and '-b’ can only be "
769 "used when creating a volunme\n"));
770 got o badusage;
771 1
773 argc -= optind;
774 argv += optind;
776 /* check nunber of arguments */
777 if (argc == 0) {
778 (voi d) fprintf(stderr, gettext("m ssing % argunent\n"),
779 zfs_type_to narre(type))
780 got o badusage;
781 }
782 if (argc > 1) {
783 (void) fprintf(stderr, gettext("too nmany argunents\n"));

784 got o badusage;

new usr/src/cmd/ zf s/ zfs_main. c

785

787
788
789
790
791
792

794
795
796
797
798
799
800
801
802
803
804
805
806
807
808

810
811
812
813
814
815
816
817
818

820
821
822
823
824
825
826
827
828
829
830
831
832

834
835
836

838
839

841
842
843
844
845
846
847

849
850

}

if (type == ZFS_TYPE_VOLUMVE && ! noreserve) {
zpool _handl e_t *zpool _handl e;
uint64_t spa_version;
char *p;
zfs_prop_t resv_prop;
char *strval;

if (p=strchr(argv[0], /"))
*p ='\0;

zpool _handl e = zpbol _open(g_zfs, argv[O0]);
if (p != NULL)
* - /

if (zpool _handl e == NULL)
goto error;

spa_version = zpool _get_prop_int(zpool _handl e,

ZPOOL_PROP_VERSI ON, NULL);

zpool _cl ose(zpool _handl e) ;

if (spa_version >= SPA_VERSI ON_REFRESERVATI ON)
resv_prop = ZFS_PROP_REFRESERVATI ON;

el se
resv_prop = ZFS PROP_RESERVATI ON;

vol size = zvol _vol size_to_reservation(vol size, props);

if (nvlist_|lookup_string(props, zfs_prop_to_nanme(resv_prop),
&strval) =0
if (nvlist_add_uint64(props,
zfs_prop_to_name(resv_prop), volsize) !=0) {
nvlist_free(props);
nomend() ;

}
if (parents &R zfs_name_valid(argv[0], type)) {
/*

* Now create the ancestors of target dataset. |f the target
* already exists and '-p’ option was used we shoul d not

* conpl ai n.

*

if (zfs_dataset_exists(g_zfs, argv[0], type)) {
ret = 0;
goto error;

if (zfs_create_ancestors(g_zfs, argv[0]) != 0)
goto error;

}

/* pass to libzfs */
if (zfs_create(g_zfs, argv[0], type, props) != 0)
goto error;

if ((zhp = zfs_open(g_zfs, argv[0], ZFS _TYPE_DATASET)) == NULL)
goto error;

ret = 0;

/*

* if the user doesn’t want the dataset autonatically nounted,

* then skip the nount/share step

*

/

if (zfs_prop_valid_for_type(ZFS_PROP_CANMOUNT, type))
canmount = zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) ;

/*
* Mount and/or share the new fil esystem as appropriate.

We provide a

13

new usr/src/cmd/ zf s/ zfs_main.c

851
852
853
854
855
856
857
858
859
860
861
862
863
864

866 error:
867
868
869
870

14

* verbose error nessage to let the user know that their filesystem was

* in fact created, even if we failed to nmount or share it.
*
/
if (cannobunt == ZFS CANMOUNT_ON) {
if (zfs_nount(zhp, NULL, 0) !'= 0) {
(void) fprintf(stderr, gettext("filesystem"
"successfully created, but not nounted\n"));

ret = 1;
} else if (zfs_share(zhp) !'=0) {
(void) fprintf(stderr, gettext("filesystem"
"successfully created, but not shared\n"));
ret = 1;

if (zhp)

zfs_cl ose(zhp);
nvlist_free(props);
return (ret);

871 badusage:

872
873
874
875 }
877 /*
878 *
879 *
880 *
881 *
882 *
883 *
884 *
885 *
886 *
887 *
888 *
889

Destroys the given dataset.

and refuse to destroy a dataset that has any dependents.
either be a child, or a clone of a child.

*/

nvlist_free(props);
usage(B_FALSE) ;
return (2);

zfs destroy [-rRf] <fs, vol >
zfs destroy [-rRd] <snap>

-r Recursively destroy all children
-R Recursively destroy all dependents, including clones
-f Force unnmounting of any dependents

-d If we can’t destroy now, mark for deferred destruction

By default, it will unnmount any fil esystens,
A dependent can

890 typedef struct destroy_chdata {

891
892
893
894
895
896
897
898
899
900
901

903
904
905
906
907
908

bool ean_t cb_first;

bool ean_t cb_force;

bool ean_t cb_recurse;

bool ean_t cb_error;

bool ean_t cb_docl ones;
zfs_handl e_t *cb_target;

bool ean_t cb_def er _destroy;
bool ean_t cb_verbose;

bool ean_t cb_parsabl e;

bool ean_t cb_dryrun;
nvlist_t *cb_nvl;

/* first snap in contiguous run */
char *cb_firstsnap;

/* previous snap in contiguous run */
char *cb_prevsnap;
int64_t cb_snapused;

char *cb_snapspec;

909 } destroy_cbdata_t;

911 /*

912 * Check for any dependents based on the

913 */

‘-1’ or '-R flags.

914 static int
915 destroy_check_dependent (zfs_handl e_t *zhp, void *data)

916 {

new usr/src/cmd/ zf s/ zfs_main. c

917 destroy_chdata_t *cbp = data;

918 const char *tnane = zfs_get _nane(cbp->cb_target);

919 const char *name = zfs_get_nane(zhp);

921 if (strncnp(tnanme, nane, strl en(tname)) =0 &

922 (nanme[strlen(tname)] == "/" || narre[strlen(tnarm)] ='@)) {
923 /*

924 * This is a direct descendant, not a clone somewhere else in
925 * the hierarchy.

926 */

927 if (cbp->cb_recurse)

928 goto out;

930 if (cbp->cb_first) {

931 (void) fprintf(stderr, gettext("cannot destroy '%’:
932 "% has children\n"),

933 zfs_get _nane(cbp->cb_target),

934 zfs_type_to_nane(zfs_get type(cbp >ch_target)));
935 (void) fprintf(stderr, gettext("use '-r’ to destroy "
936 "the follow ng datasets:\n"));

937 cbp->cb_first = B_FALSE;

938 cbp->cb_error = B_TRUE;

939 }

941 (void) fprintf(stderr, "%\n", zfs_get_nane(zhp));

942 } else {

943

944 * This is a clone. W only want to report this if the '-r’
945 * wasn't specified, or the target is a snapshot.

946 */

947 if (!cbp->cb_recurse &&

948 zfs_get _type(cbp->cb_target) != ZFS_TYPE_SNAPSHOT)

949 goto out;

951 if (cbp->cb_first) {

952 (void) fprintf(stderr, gettext("cannot destroy '%’:
953 "% has dependent clones\n")

954 zfs_get _nane(cbp->cb_target),

955 zfs_type_to_nane(zfs_get type(cbp >ch_target)));
956 (voi d) fprintf(stderr, gettext("use '-R to destroy "
957 the follow ng dat aset s: \n"));

958 chp- >cb _first = B_FALSE;

959 cbp->cbh_error = B_TRUE;

960 cbp->cb_dryrun = B_TRUE;

961 }

963 (void) fprintf(stderr, "%\n", zfs_get_nane(zhp));

964 1

966 out:

967 zfs_cl ose(zhp);

968 return (0);

969 }

971 static int

972 destroy_cal | back(zfs_handl e_t *zhp, void *dat a)

973 {

974 destroy_chdata_t *cb = data;

975 const char *nanme = zfs_get_nane(zhp);

977 if (cb->cb_verbose) {

978 if (cb->cb_parsable) {

979 (void) printf("destroy\t%\n", nane);

980 } else if (cb->cb_dryrun) {

981 (void) printf(gettext("would destroy %\n"),

982 nane) ;

15

new usr/src/cmd/ zf s/ zfs_main. c

16

1=0 |]

983 } else {

984 (void) printf(gettext("will destroy %\n"),
985 nane) ;

986 }

987 }

989 /*

990 * | gnore pools (which we've already flagged as an error before getting
991 * here).

992 */

993 if (strchr(zfs_get_name(zhp), '/’) == NULL &&

994 zfs_get _type(zhp) == ZFS_TYPE_FI LESYSTEM {

995 zfs_cl ose(zhp);

996 return (0);

997 1

999 if (!chb- >cb _dryrun) {

1000 if (zfs_unmount (zhp, NULL, cb->cb_force ? M5_FORCE : 0)
1001 zfs_destroy(zhp, cb- >cb defer_destroy) !'= 0) {
1002 zfs_cl ose(zhp);

1003 return (-1);

1004 }

1005 1

1007 zfs_cl ose(zhp);

1008 return (0);

1009 }

1011 static int

1012 destroy_print_cb(zfs_handl e_t *zhp, void *arg)

1013 {

1014 destroy_cbdata_t *cb = arg;

1015 const char *nane = zfs_get_name(zhp);

1016 int err = 0;

1018 if (nvlist_exists(cb->cb_nvl, narre)) {

1019 if (cb->cb_fi rstsnap == NULL)

1020 cb->cb_firstsnap = strdup(nane);

1021 if (cb->cb_prevsnap != NULL)

1022 free(cb->cb_prevsnap);

1023 /* this snap continues the current range */

1024 cb->cb_prevsnap = strdup(nane);

1025 if (cb->cb_firstsnap == NULL || cb->cb_prevsnap == NULL)
1026 nonmen() ;

1027 if (cb->cb_verbose) {

1028 if (cb->cb_parsable)

1029 (void) printf("destroy\t%\n", nane);
1030 } else if (cb->cb_dryrun) {

1031 (void) printf(gettext("would destroy %\n"),
1032 nane) ;

1033 } else {

1034 (void) printf(gettext("will destroy %\n"),
1035 nane) ;

1036 }

1037 }

1038 } else if (cb->cb_firstsnap != NULL) {

1039 /* end of this range */

1040 uint64_t used =

1041 err = | zc_snaprange_space(ch->cb_firstsnap,

1042 ch->cb_prevsnap, &used);

1043 cb->cb_snapused += used;

1044 free(cb->cb_firstsnap);

1045 cb->cb_firstsnap = NULL;

1046 free(cb->cb_prevsnap);

1047 ch->cb_prevsnap = NULL;

1048 }

new usr/src/cmd/ zf s/ zfs_main. c

1049 zfs_cl ose(zhp);

1050 return (err);

1051 }

1053 static int

1054 destroy_print_snapshots(zfs_handle_t *fs_zhp, destroy_cbhdata_t *cb)
1055 {

1056 int err = 0;

1057 assert(ch->cb_firstsnap == NULL);

1058 assert (cb->cb_prevsnap == NULL);

1059 err = zfs_iter_snapshots_sorted(fs_zhp, destroy_print_ch, ch);
1060 if (cb->cb_firstsnap != NULL) {

1061 uint64_t used = O;

1062 if (err == 0) {

1063 err = | zc_snaprange_space(cb->cb_firstsnap,
1064 cb->cb_prevsnap, &used);
1065

1066 ch->cb_snapused += used;

1067 free(cb->cb_firstsnap);

1068 cb->cb_firstsnap = NULL;

1069 free(cb->cb_prevsnap);

1070 cb->cb_prevsnap = NULL;

1071 1

1072 return (err);

1073 }

1075 static int

1076 snapshot _to_nvl _cb(zfs_handle_t *zhp, void *arg)

1077 {

1078 destroy_chdata_t *cb = arg;

1079 int err = 0;

1081 /* Check for clones. */

1082 if (!cb->cb_doclones && !ch->cb_defer_destroy) {
1083 ch->ch_target = zhp;

1084 cb->cb_first = B_TRUE;

1085 err = zfs_iter_dependents(zhp, B_TRUE,
1086 destroy_check_dependent, cb);

1087 }

1089 if (err == 0) {

1090 if (nvlist_add_bool ean(cb->cb_nvl, zfs_get_nanme(zhp)))
1091 nomen() ;

1092 1

1093 zfs_cl ose(zhp);

1094 return (err);

1095 }

1097 static int

1098 ?at her _snapshot s(zfs_handl e_t *zhp, void *arg)

1099

1100 destroy_cbdata_t *cb = arg;

1101 int err = 0;

1103 err = zfs_iter_snapspec(zhp, cb->cb_snapspec, snapshot_to_nvl_cb, cb);
1104 if (err == ENCENT)

1105 err = 0;

1106 if (err 1=0)

1107 goto out;

1109 if (cb->cb_verbose) {

1110 err = destroy_print_snapshots(zhp, cb);
1111 if (err 1=0)

1112 goto out;

1113 1

new usr/src/cmd/ zf s/ zfs_main. c

1115 if (cb->cb_recurse)

1116 err = zfs_iter_fil esystens(zhp, gather_snapshots, cb);
1118 out:

1119 zfs_cl ose(zhp);

1120 return (err);

1121 }

1123 static int

1124 destroy_cl ones(destroy_chdata_t *cb)

1125 {

1126 nvpair_t *pair;

1127 for (pair = nvlist_next_nvpair(cb->cb_nvl, NULL);
1128 pair != NULL;

1129 pair = nvlist_next_nvpair(cb->cb_nvl, pair)) {
1130 zfs_handle_t *zhp = zfs_open(g_zfs, nvpair_name(pair),
1131 ZFS_TYPE_SNAPSHOT) ;

1132 if (zhp !'= NULL) {

1133 bool ean_t defer = cbh->ch_defer_destroy;
1134 int err = 0;

1136 /*

1137 * W can’'t defer destroy non-snapshots, so set
1138 * fal se while destroying the clones.
1139 *

1140 cb->cb_defer_destroy = B_FALSE;

1141 err = zfs_iter_dependents(zhp, B_FALSE,
1142 destroy_cal | back, cb);

1143 cb->cb_defer_destroy = defer;

1144 zfs_cl ose(zhp);

1145 if (err 1= 0)

1146 return (err);

1147 }

1148

1149 return (0);

1150 }

1152 static int

1153 zfs_do_destroy(int argc, char **argv)

1154 {

1155 destroy_cbhdata_t cb = { 0 };

1156 int c;

1157 zfs_handl e_t *zhp;

1158 char *at;

1159 zfs_type_t type = ZFS TYPE_DATASET;

1161 /* check options */

1162 while ((c = getopt(argc, argv, "vpndfrR')) I=-1) {
1163 switch (c) {

1164 case 'V’

1165 ch. cb_verbose = B_TRUE;

1166 break;

1167 case 'p’:

1168 cb. cb_verbose = B_TRUE;

1169 ch. cb_parsabl e = B_TRUE;

1170 break;

1171 case 'n’':

1172 cb.cb_dryrun = B_TRUE;

1173 br eak;

1174 case 'd:

1175 ch. cb_defer_destroy = B_TRUE;

1176 type = ZFS TYPE_SNAPSHOT;

1177 br eak;

1178 case 'f’:

1179 ch.cb_force = B_TRUE;

1180

br eak;

new usr/src/cnd/ zf s/ zfs_main. c 19

1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194

1196
1197

1199
1200
1201
1202
1203
1204
1205
1206
1207

1209
1210
1211

1213
1214
1215

1217
1218
1219
1220
1221

1223
1224
1225
1226
1227
1228
1229

1231
1232
1233
1234
1235
1236
1237

1239
1240
1241
1242
1243
1244
1245
1246

}

argc -=
argv +=

/* chec
if (arg

}
if (arg

}

at = st
if (at

case 'r’:
ch. cb_recurse = B_TRUE;
br eak;

case 'R :
ch.cb_recurse = B_TRUE;
ch. cb_docl ones = B_TRUE;
br eak;

case '?:

defaul t:
(void) fprintf(stderr, gettext("invalid option ’'%’'\n"),

optopt);

usage(B_FALSE) ;

optind;
optind;

k nunber of argunents */

c =0 {

(voi d) fprintf(stderr, gettext("m ssing dataset argument\n"));
usage(B_FALSE) ;

c >
(voi d) fprlntf(stderr gettext("too many argunents\n"));
usage(B_FALSE);

rchr(argv[0], '@);
1= NULL) {
int err = 0;

/* Build the |ist of snaps to destroy in cb_nvl. */
if (nvlist_alloc(&hb.cbh_nvl, NV_UNI QUE NAME, 0) != 0)
nomeny() ;

*at = '\0’;
zhp = zfs open(g zfs, argv[O],
ZFS_TYPE_FI LESYSTEM | ZFS_TYPE_VOLUME) ;
if (zhp == NULL)
return (1);

ch. cb_snapspec = at + 1;
if (gather_snapshots(zfs_handl e_dup(zhp), &cb) !'= 0 ||
ch.cb_error) {
zfs_cl ose(zhp);
nvlist_free(ch.cb_nvl);
return (1);

}

if (nvlist_enpty(ch.cb_nvl))
(void) fprintf(stderr, gettext("could not find any "
"snapshots to destroy; check snapshot nanes.\n"));
zfs_cl ose(zhp);
nvlist_free(ch.cb_nvl);
return (1);

}

if (cb.cb_verbose) {
char buf[16];
zfs_ni cenum(cb. cb_snapused, buf, sizeof (buf));
if (cb.cb_parsable) {
(void) printf("reclaimt%]|u\n",
cb. cb_snapused) ;
} else if (cb.cb_dryrun)
(void) printf(gettext("would reclaim%\n"),

new usr/src/cnd/ zf s/ zfs_main. c 20
1247 buf);

1248 } else {

1249 (void) printf(gettext("wll reclaim%\n"),
1250 buf);

1251 }

1252 }

1254 if ('cb.cb_dryrun) {

1255 if (cb.cb_i docl ones)

1256 err = destroy_cl ones(&ch);

1257 if (err == 0)

1258 err = zfs_destroy_snaps_nvl (zhp, cb.cb_nvl,
1259 ch. cb_def er _destroy);

1260 }

1261 }

1263 zfs_cl ose(zhp);

1264 nvlist_free(ch.cb_nvl);

1265 if (err 1=0)

1266 return (1);

1267

1268 /* Open the given dataset */

1269 if ((zhp = zfs_open(g_zfs, argv[0], type)) == NULL)

1270 return (1);

1272 cb.cb_target = zhp;

1274 /*

1275 */Perform an explicit check for pools before going any further.
1276 *

1277 if (!cb.cb_recurse && strchr(zfs get _nanme(zhp), '/’) == NULL &&
1278 zfs_get type(zhp) == ZFS TYPE FI LESYSTEM

1279 (void) fprintf(stderr, gettext("cannot destroy '%’ : "
1280 "operation does not apply to pools\n"),

1281 zf s_get _name(zhp));

1282 (voi d) fprintf(stderr, gettext("use ’'zfs destroy -r "
1283 "8’ to destroy al | datasets in the pool\n"),
1284 zfs_get _nane(zhp));

1285 (void) fprintf(stderr, gettext("use ’'zpool destroy 9%’
1286 "to destroy the pool itself\n"), zfs_get_name(zhp));
1287 zfs_cl ose(zhp);

1288 return (1);

1289 }

1291 *

1292 * Check for any dependents and/or clones.

1293 */

1294 cb.cb_first = B TRUE,

1295 if (!cb.cb_doclones &&

1296 zfs_iter_dependents(zhp, B _TRUE, destroy_check_dependent,
1297 &b) = 0)

1298 zfs_cl ose(zhp);

1299 return (1);

1300 }

1302 if (cb.cb_error) {

1303 zfs_cl ose(zhp);

1304 return (1);

1305 }

1307 if (zfs_iter_dependents(zhp, B_FALSE, destroy_call back,

1308 &ch) = 0)

1309 zfs_cl ose(zhp);

1310 return (1);

1311 }

new usr/src/cnd/ zf s/ zfs_main. c 21

1313 /*

1314 * Do the real thing. The callback will close the
1315 * handl e regardl ess of whether it succeeds or not.
1316 */

1317 if (destroy_call back(zhp, &cb) !'= 0)

1318 return (1);

1319 }

1321 return (0);

1322 }

1324 static bool ean_t

1325 is_recvd_col um(zprop_get_chdata_t *cbp)

1326 {

1327 int i;

1328 zfs_get _colum_t col;

1330 for (i =0; i < ZFS_GET_NCOLS &&

1331 (col = chp- >cb colums[i]) !'= GET_COL_NONE; i ++)

1332 if (col == GET_COL_RECVD)

1333 return (B_TRUE);

1334 return (B_FALSE);

1335 }

1337 /*

1338 * zfs get [-rHp] [-o all | field[,field]...] [-s source[,source]...]
1339 * < all | property[,property]... > < fs | snap | vol > ...

1340 *

1341 * -r recurse over any child datasets

1342 * -H scripted nbde. Headers are stripped, and fields are separated
1343 * by tabs instead of spaces.

1344 * -0 Set of fields to display. One of "nane, property, val ue,
1345 * received, source". Default is "name, property, val ue, source".
1346 * "all" is an alias for all five.

1347 * -s Set of sources to allow. One of

1348 * "l ocal , defaul t,inherited,received, tenporary, none". Default is
1349 * all six.

1350 * -p Di splay values in parsable (literal) fornat.

1351 *

1352 * Prints properties for the given datasets. The user can control which
1353 * colums to display as well as which property types to allow.

1354 *

1356 /*

1357 * Invoked to display the properties for a single dataset.

1358 */

1359 static int

1360 get_cal |l back(zfs_handl e_t *zhp, void *data)

1361 {

1362 char buf [ZFS_MAXPROPLEN] ;

1363 char rbuf [ZFS_MAXPROPLEN ;

1364 zprop_source_t sourcetype;

1365 char source[ZFS_MAXNAMVELEN] ;

1366 zprop_get _cbdata_t *cbp = data;

1367 nvlist_t *user_props = zfs_get_user_props(zhp);

1368 zprop_list_t *pl = cbp->cb_proplist;

1369 nvlist_t *propval;

1370 char *strval;

1371 char *sourceval ;

1372 bool ean_t received = is_recvd_col um(cbp);

1374 for (; pl !'= NULL; pl = pI >pl _next) {

1375 char *recvdval = NULL;

1376 /*

1377 * Skip the special fake placeholder. This will also skip over
1378 * the nane property when "all’ is specified.

new usr/src/cnd/ zf s/ zfs_main. c 22
1379 */

1380 if (pl->pl_prop == ZFS PROP_NAME &&

1381 pl == cbp->cb_proplist)

1382 cont i nue;

1384 if (pl->pl _prop !'= ZPROP_I NVAL) {

1385 if (zfs_prop_get(zhp, pl->pl_prop, buf,

1386 si zeof (buf), &sourcetype, source,

1387 si zeof (source),

1388 cbp->cb_literal) !'=0) {

1389 if (pl->pl_all)

1390 conti nue;

1391 if (!zfs_prop_valid_for_type(pl->pl_prop,
1392 ZFS_TYPE_DATASET)) {

1393 “(void) fpri ntf(st derr,

1394 gettext ("No such property "%’'\n"),
1395 zfs_prop_to_nanme(pl->pl _prop));
1396 conti nue;

1397 }

1398 sourcetype = ZPROP_SRC_NONE;

1399 (void) strlcpy(buf, "-", si zeof (buf));
1400 }

1402 if (received & (zfs_prop_get_recvd(zhp,

1403 zfs_prop_to_name(pl->pl _prop), rbuf, sizeof (rbuf),
1404 cbp->cb_literal) == 0))

1405 recvdval = rbuf;

1407 zprop_print_one_property(zfs_get_nane(zhp), cbp,
1408 zfs_prop_to_name(pl->pl_prop),

1409 buf, sourcetype, source, recvdval);

1410 } else if (zfs_prop_userquota(pl - >p| user_prop)) {

1411 sour cetype = ZPROP_SRC_LOCAL;

1413 if (zfs_prop_get_userquota(zhp, pl->pl_user_prop,
1414 buf, sizeof (buf) cbp->cb Ilteral) 1=0) {
1415 sourcetype = ZPR(JD > SRC_NONE;

1416 (void) strlcpy(buf, "-", si zeof (buf));
1417 }

1419 zprop_print_one_property(zfs_get_nane(zhp), cbp,
1420 pl ->pl _user_prop, buf, sourcetype, source, NULL);
1421 } else if (zfs_prop_witten(pl- >p| user_prop)) {

1422 sourcetype = ZPROP_SRC LOCAL;

1424 if (zfs_prop_get_witten(zhp, pl->pl_user_prop,
1425 buf, si zeof (buf) cbp->cb_literal) !'= 0) {
1426 sour cet ype = ZPROP _SRC_NONE;

1427 (void) strlcpy(buf, "-", sizeof (buf));
1428 }

1430 zprop_print_one_property(zfs_get_nane(zhp), cbp,
1431 pl - >pl _user_prop, buf, sourcetype, source, NULL);
1432 } else {

1433 if (nvlist_lookup_nvlist(user_props,

1434 pl ->pl _user_prop, &propval) !=0) {

1435 if (pl->pl_all)

1436 conti nue;

1437 sourcetype = ZPROD SRC_NONE;

1438 strval ="-";

1439 } else {

1440 verify(nvlist_| ookup_stri ng(propval

1441 ZPROP_VALUE, &strval) == 0);

1442 verify(nvlist_| ookup_stri ng(propval

1443 ZPROP_SOURCE, &sourceval) == 0),

new usr/src/cmd/ zf s/ zfs_main. c

1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

1458
1459
1460
1461

1463
1464
1465
1466
1467

1469
1470

1472
1473

if (strcnp(sourceval,
zfs_get nama(zhp)) == 0) {
sour cetype = ZPRCP SRC_LOCAL;
} else if (strcnp(sourceval,
ZPROP_SOURCE_VAL_RECVD) == 0) {
sour cet ype = ZPROP_SRC_RECEI VED;
} else {

sour cetype = ZPROP_SRC_| NHERI TED,

(void) strlcpy(source,
sour ceval , sizeof (source));

}

if (received & (zfs_prop_get_recvd(zhp,
pl - >pl _user_prop, rbuf, sizeof (rbuf),
cbp->cb_literal) == 0))
recvdval = rbuf;

zprop_print_one_property(zfs_get_nane(zhp), cbp,

pl ->pl _user_prop, strval, sourcetype,
source, recvdval)

}
return (0);

}

static int
zfs_do_get (int argc, char **argv)

1474 {

1475
1476
1477
1478
1479
1480
1481

1483
1484
1485
1486
1487
1488
1489
1490
1491

1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510

zprop_get _cbhdata_t cb = { 0 };

int 1, c, flags = ZFS_| TER_ARGS_CAN_BE_PATHS;
int types = ZFS TYPE DATASET;

char *vaI ue, *fields;

int ret =0;

int limt = 0;

zprop_list_t fake_nane = { 0 };

/*
* Set up default columms and sources.
*/

cb. cb_sources = ZPROP_SRC ALL;

cb. cb_col ums[0] GET_COL_NAME;

cb. cb_col ums[1] GET_COL_PROPERTY;
cb. cb_col ums| 2] GET_COL_VALUE;
ch. cb_col umms| 3] GET_COL_SOURCE;
ch.cb_type = ZFS TYPE _DATASET;

/* check options */
while ((c = getopt(argc, argv,
switch (c) {
case 'p':
cb.cb_literal = B_TRUE;
br eak;
case 'd’:
limt = parse_depth(optarg, &flags);
break;
flags | = ZFS_| TER_RECURSE;
break;
case 'H:
cb.cb_scripted =
br eak;
case ':':
(void) fprintf(stderr,
"'o¢’ option\n"),

"rdiorsirtiHp')) !'=-1) {

case 'r

B_TRUE

gettext ("m ssing argunent
opt opt);

for

23

new usr/src/cnd/ zf s/ zfs_main. c 24
1511 usage(B_FALSE);

1512 break;

1513 case '0:

1514 /*

1515 * Process the set of colums to display. W zero out
1516 * the structure to give us a blank slate.

1517 */

1518 bzer o(&cb. cb_col ums, sizeof (cb.cb_colums));

1519 0;

1520 Wmle(optarg !'="\0") {

1521 static char *col _subopts[] =

1522 "nanme", "property", "value", "received",
1523 "source", "all", NULL };

1525 if (i == ZFS_GET_NCOLS)

1526 (v0|d) fprintf(stderr, gettext(too "
1527 "many fields given to -o

1528 "option\n"));

1529 usage(B_FALSE) ;

1530 }

1532 switch (getsubopt (&optarg, col _subopts,

1533 &val ue)) {

1534 case 0:

1535 ch. cb_col ums[i ++] = GET_COL_NAME;
1536 br eak;

1537 case 1:

1538 cb. cb_col ums[i ++] = GET_COL_PROPERTY;
1539 br eak;

1540 case 2:

1541 ch. cb_col ums[i ++] = GET_COL_VALUE;
1542 br eak;

1543 case 3:

1544 cb. cb_col ums[i ++] = GET_COL_RECVD;
1545 flags | = ZFS_| TER_RECVD PROPS;

1546 br eak;

1547 case 4:

1548 cb. cb_col ums[i ++] = GET_COL_SOURCE;
1549 br eak;

1550 case 5:

1551 if (i >0) {

1552 (void) fprintf(stderr,

1553 gettext("\"all\" conflicts "
1554 "W th specific fields "
1555 "given to -0 option\n"));
1556 usage(B_FALSE);

1557 }

1558 ch. cb_col ums[0] = GET_COL_NAME;

1559 cb. cb_col ums[1] = GET_COL_PROPERTY;
1560 cb. cb_col ums[2] = GET_COL_VALUE;
1561 cb. cb_col ums[3] = GET_COL_RECVD;
1562 cb. cb_col ums[4] = GET_COL_SOURCE;
1563 flags “| = ZFS_| TER_RECVD PROPS;

1564 i ZFS_GET_NCOLS;

1565 br eak;

1566 defaul t:

1567 (void) fprintf(stderr,

1568 gettext("invalid colum name "
1569 " os’\n"), value);

1570 usage(B_FALSE) ;

1571 }

1572

1573 br eak;

1575 case 's':

1576 cb. cb_sources = 0;

new usr/src/cmd/ zf s/ zfs_main. c

1577
1578
1579
1580
1581

1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610

1612
1613
1614
1615
1616
1617

1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632

1634
1635
1636
1637
1638
1639
1640
1641

while (*optarg !'="\0")

static char *source_subopts[] = {
"local", "default", "inherited",
"recei ved", "tenporary", "none",
NULL };

switch (getsubopt (&optarg, source_subopts,

&val
case O:

case 1:

case 2:

case 3:

case 4:

case 5:

defaul t:

ue))

ch. cb_sources | = ZPROP_SRC_LOCAL;
br eak;

cb. cb_sources | = ZPROP_SRC DEFAULT;
br eak;

cb. cb_sources | = ZPROP_SRC_| NHERI TED;
br eak;

ch. cb_sources | = ZPROP_SRC_RECEI VED;
br eak;

ch. cb_sources | = ZPROP_SRC_TEMPCRARY;
br eak;

ch. cb_sources | = ZPROP_SRC_NONE;
br eak;

(void) fprintf(stderr,
gettext("invalid source
" os'\n"), value);

usage(B_FALSE) ;

br eak
case 't':
types = 0;
flags & ~ZFS_| TER_PROP_LI STSNAPS;
while (*optarg !'= "\0")
static char *type_subopts[] = { "filesysteni,
"vol ume", "snapshot", "all", NULL };
switch (getsubopt (&optarg, type_subopts,
&val ue))
case O:
types | = ZFS_TYPE_FI LESYSTEM
br eak;
case 1:
types | = ZFS_TYPE_VOLUME;
br eak;
case 2:
types | = ZFS_TYPE_SNAPSHOT;
br eak;
case 3:
types = ZFS_TYPE_DATASET,;
br eak;
defaul t:

(void) fprintf(stderr,
gettext("invalid type '%’\n"),
val ue) ;

) usage(B_FALSE) ;
}
break;

25

new usr/src/cnd/ zf s/ zfs_main. c 26
1643 case ' ?':
1644 (void) fprintf(stderr, gettext("invalid option ’'%’\n"),
1645 optopt);
1646 usage(B_FALSE);
1647 }
1648 }
1650 argc -= optind,
1651 argv += optind;
1653 if (argc < 1)
1654 (void) fprintf(stderr, gettext("m ssing property "
1655 "argument\n"));
1656 usage(B_FALSE) ;
1657 }
1659 fields = argv[O0];
1661 if (zprop_get_list(g_zfs, fields, &cb.cb_proplist, ZFS TYPE DATASET)
1662 =0
1663 usage(B_FALSE) ;
1665 argc--;
1666 ar gv++;
1668 /*
1669 * As part of zfs_expand_proplist(), we keep track of the maxi num col um
1670 * width for each property. For the 'NAME (and ' SOURCE') colums, we
1671 * need to know the maxi mum nane | ength. However, the user likely did
1672 * not specify 'nane’ as one of the properties to fetch, so we need to
1673 * make sure we always include at |east this property for
1674 * print_get_headers() to work properly.
1675 *
1676 if (cb.cb_proplist !'= NULL) {
1677 fake_nane. pl _prop = ZFS_PROP_NAME;
1678 fake_nane.pl _width = strlen(gettext("NAVE"));
1679 fake_nane. pl _next = cb.cb_proplist;
1680 cb.cb_proplist = & ake_nane;
1681 }
1683 cb.cb_first = B_TRUE;
1685 /* run for each object */
1686 ret = zfs_for_each(argc, argv, flags, types, NULL,
1687 &cb.cb_proplist, limt, get_callback, &cb);
1689 if (cb.cb_proplist == &f ake_nane)
1690 zprop_free_list(fake_nane. pl _next);
1691 el se
1692 zprop_free_list(cb.cb_proplist);
1694 return (ret);
1695 }
1697 /*
1698 * inherit [-rS] <property> <fs|vol> ...
1699 *
1700 * -r Recurse over all children
1701 * -S Revert to received value, if any
1702 *
1703 * For each dataset specified on the conmand line, inherit the given property
1704 * fromits parent. Inheriting a property at the pool level will cause it to
1705 * use the default value. The '-r’ flag will recurse over all children, and is
1706 * useful for setting a property on a hierarchy-w de basis, regardl ess of any
1707 * local nodifications for each dataset.
*

1708

new usr/src/cnd/ zf s/ zfs_main. c 27

1710 typedef struct

inherit_chdata {

1711 const char *cb_propnaneg;

1712 bool ean_t cb_recei ved;

1713 } inherit_cbdata_t;

1715 static int

1716 i{nherit_r ecurse_cbh(zfs_handl e_t *zhp, void *data)

1717

1718 inherit_chdata_t *cb = data;

1719 zfs_prop_t prop = zfs_nane_to_prop(cb->cb_propnane);
1721 /*

1722 * |If we're doing it recursively, then ignore properties that
1723 * are not valid for this type of dataset.

1724 */

1725 if (prop !'= ZPROP_I NVAL &&

1726 1zfs_prop_valid_for_type(prop, zfs_get_type(zhp)))
1727 return (0);

1729 return (zfs_prop_inherit(zhp, cb->cb_propnanme, cb->cb_received) != 0);
1730 }

1732 static int

1733 inherit_cb(zfs_handl e_t *zhp, void *data)

1734 {

1735 inherit_chdata_t *cb = data;

1737 return (zfs_prop_inherit(zhp, cb->cb_propnanme, cb->cb_received) != 0);
1738 }

1740 static int

1741 zfs_do_inherit(int argc, char **argv)

1742 {

1743 int c;

1744 zfs_prop_t prop;

1745 inherit_cbdata_t cb = { 0 };

1746 char *propnane;

1747 int ret = 0;

1748 int flags = 0;

1749 bool ean_t received = B_FALSE;

1751 /* check optlons */

1752 while ((c = getopt(argc argv, "rS")) I=-1) {

1753 switch (c) {

1754 case 'r’:

1755 flags | = ZFS_| TER RECURSE

1756 break;

1757 case 'S':

1758 recei ved = B_TRUE;

1759 br eak;

1760 case ' ?:

1761 defaul t:

1762 (void) fprintf(stderr, gettext("invalid option '%’\n"),
1763 optopt);

1764 usage(B_FALSE);

1765 }

1766 }

1768 argc -= optind;

1769 argv += optind;

1771 /* check nunber of argunments */

1772 if (argc < 1) {

1773 (void) fprintf(stderr, gettext("m ssing property argunent\n"));
1774 usage(B_FALSE) ;

new usr/src/cnd/ zf s/ zfs_main. c

"zfs set

propnane) ;

\n"),

1775 }

1776 if (argc < 2) {

1777 (void) fprintf(stderr, gettext("m ssing dataset

1778 usage(B_FALSE) ;

1779 }

1781 propnanme = argv[O0];

1782 argc--;

1783 ar gv++;

1785 if ((prop = zfs_name_to_prop(propnane)) != ZPROP_I NVAL) {
1786 1f (zfs_prop_readonly(prop)) {

1787 (voi d) fprintf(stderr, gettext(

1788 " property is read-only\n"),

1789 propnane) ;

1790 return (1);

1791 }

1792 1f (!zfs_prop_inheritabl e(prop) &% !received) {

1793 (void) fpri ntf(stderr, gettext ("' %’ property cannot
1794 "be i nherl ted\n"), propnane);

1795 if (prop == ZFS_PROP_ A

1796 prop == ZFS_PROP_RESERVATI ON |

1797 prop == ZFS_PROP_REFQUOTA |

1798 prop == ZFS_PROP_ REFRESERVATIOW

1799 (voi d) fpri ntf(st derr, gettext("use
1800 "¥s=none’ to clear\ n"), propnane);
1801 return (1);

1802 }

1803 if (received & (prop == ZFS PROP_VOLSI ZE ||

1804 prop == ZFS_PRCP. VERSI) {

1805 (v0| d) fprintf(stderr, gettext("' %’ property cannot
1806 "be reverted to a received value\n"),

1807 return (1);

1808 }

1809 } else if (!zfs_prop_user(propnane)) {

1810 (void) fprintf(stderr, gettext("invalid property ' %’
1811 propnane) ;

1812 usage(B_FALSE) ;

1813 }

1815 cb. cb_propnane = propnang;

1816 ch. cb_received = received;

1818 if (flags & ZFS_| TER RECURSE)

1819 ret = zfs_for_each(argc, argv, flags, ZFS TYPE DATASET,
1820 NULL, NULL, O, inherit_recurse_ch, &cb);

1821 } else {

1822 ret = zfs_for_each(argc, argv, flags, ZFS TYPE_DATASET,
1823 NULL, NULL, O, inherit_ch, &cb);

1824 }

1826 return (ret);

1827 }

1829 typedef struct upgrade_cbdata {
1830 ui nt 64_t cb_nunupgr aded;

1831 uint64_t cb _nunsanmegr aded;

1832 uint64_t cb_nunf ail ed;

1833 uint64_t ch_version;

1834 bool ean_t cb_newer;

1835 bool ean_t cb foundone

1836 char cb_| astfs[ZFS_ NAXMNELEI\U;

1837 } upgrade_cbdata_t;

1839 static int

1840 sane_pool (zfs_handl e_t *zhp, const char *nane)

argunment\n"));

new usr/src/cmd/ zf s/ zfs_main. c 29 new usr/src/cnd/ zf s/ zfs_main. c 30
1841 { 1907 "be upgraded\nto version %\n\n"),
1842 int lenl = strcspn(nanme, "/ @); 1908 zfs_get _nanme(zhp), needed_spa_version);
1843 const char *zhnane = zfs_get name(zhp) 1909 cb->cb_nunf ai | ed++;
1844 int len2 = strcspn(zhnane, "7T@); 1910) return (0);
1911
1846 if (lenl !'= 1en2)
1847 return (B_FALSE); 1913 /* upgrade */
1848 return (strncnp(name, zhnane, lenl) == 0); 1914 if (version < cb->cbh_version) {
1849 } 1915 char verstr[16];
1916 (voi d) snpri ntf(ver str, sizeof (verstr),
1851 static int 1917 "% 1 u", cb->cb_version);
1852 ?pgr ade_l i st_cal | back(zfs_handle_t *zhp, void *data) 1918 if (cb- >/cb_| astfs[0] && 'sama_pool (zhp, cb->cb_lastfs)) {
1853 1919 *
1854 upgrade_chdata_t *cb = data; 1920 * If they did "zfs upgrade -a", then we coul d
1855 int version = zfs_prop_get_int(zhp, ZFS_PROP_VERSI ON); 1921 * be doing ioctls to different pools. W need
1922 * to log this history once to each pool, and bypass
1857 /* list if it's old/ new */ 1923 * the normal history |ogging that happens in main().
1858 if ((!'cb->cb_newer && version < ZPL_VERSION) || 1924 */
1859 (cb->cb_newer && version > ZPL_VERSION)) { 1925 (void) zpool _log_history(g_zfs, history_str);
1860 char *str; 1926 I og_history = B_FALSE;
1861 if (cb- >cb_newsr) { 1927 }
1862 str = gettext("The following filesystens are " 1928 1 f (zfs_prop_set(zhp, "version", verstr) == 0)
1863 "formatted using a newer software version and\n" 1929 cb->cb_nunmupgr aded++;
1864 "cannot be accessed on the current system\n\n"); 1930 el se
1865 } else { 1931 cb->cb_nunf ai | ed++;
1866 str = gettext("The following filesystens are " 1932 (void) strcpy(cbh->cb_|lastfs, zfs_get_name(zhp));
1867 "out of date, and can be upgraded. After being\n" 1933 } elseif (versi on > ch->cb_version) {
1868 "upgraded, these filesystens (and any 'zfs send " 1934 /* can’t downgrade */
1869 "streanms generated fromn" 1935 (voi d) printf(gettext("%: can not be downgraded; "
1870 "subsequent snapshots) will no | onger be " 1936 is already at version %\n"),
1871 "accessi bl e by ol der software versions.\n\n"); 1937 zf s_get _nane(zhp), version);
1872 } 1938 cb->cb_nunf ai | ed++;
1939 } else
1874 if (!cb->cb_foundone) { 1940 cb->cb_nunsanegr aded++;
1875 (void) puts(str); 1941 }
1876 (void) printf(gettext("VER FILESYSTEM n')) 1942 return (0);
1877 (void) prlntf(gettext(R \n)); 1943 }
1878 cb->cb_foundone = B_TRUE;
1879 } 1945 /*
1946 * zfs upgrade
1881 (void) printf("%u %\ n", version, zfs_get_nane(zhp)); 1947 * zfs upgrade -v
1882 } 1948 * zfs upgrade [-r] [-V <version>] <-a | filesysten»
1949 */
1884 return (0); 1950 static int
1885 } 1951 {zfs_do upgrade(int argc, char **argv)
1952
1887 static int 1953 bool ean_t all = B_FALSE;
1888 upgrade_set_cal | back(zfs_handl e_t *zhp, void *data) 1954 bool ean_t showersi ons = B_FALSE;
1889 { 1955 int ret =0;
1890 upgr ade_cbdata_t *cb = data; 1956 upgr ade_cbdata_t cb = { 0 };
1891 int version = zfs_prop_get_int(zhp, ZFS_PROP_VERSI ON); 1957 char c;
1892 int needed_spa_version; 1958 int flags = ZFS_| TER_ARGS_CAN_BE_PATHS;
1893 int spa_version;
1960 /* check options */
1895 if (zfs_spa_version(zhp, &spa_version) < 0) 1961 while ((c = getopt(ar gc, argv, "rvv:a")) !=-1) {
1896 return (-1); 1962 switch (c)
1963 case 'r’:
1898 needed_spa_version = zfs_spa_version_map(cb->cb_version); 1964 [)I agﬁ | = ZFS_I TER_RECURSE;
1965 reak;
1900 if (needed_spa_version < 0) 1966 case 'V':
1901 return (-1); 1967 shower si ons = B_TRUE;
1968 br eak;
1903 if (spa_version < needed_spa_version) { 1969 case 'V :
1904 /* can’t upgrade */ 1970 if (zfs_prop_string_to_index(ZFS_PROP_VERSI ON,
1905 (void) printf(gettext("%: can not be " 1971 optarg, &cb.cb_version) !'= 0) {
1906 "upgraded; the pool version needs to first " 1972 (void) fprintf(stderr,

new usr/src/cnd/ zf s/ zfs_main. c 31
1973 gettext("invalid version %\n"), optarg);
1974 usage(B_FALSE) ;

1975

1976 br eak;

1977 case 'a’:

1978 all = B TRUE

1979 br eak;

1980 case ' ?':

1981 defaul t:

1982 (void) fprintf(stderr, gettext("invalid option ’'%’'\n"),
1983 optopt);

1984 usage(B_FALSE) ;

1985 }

1986 }

1988 argc -= optind;

1989 argv += optind;

1991 if ((tall & largc) && ((flags & ZFS_| TER RECURSE) | cb.cb_version))
1992 usage(B_FALSE) ;

1993 if (showersions && (fI ags & ZFS_ | TER RECURSE || all ||

1994 cb.cb_version || argc))

1995 usage(B_FALSE) ;

1996 if ((all || argc) && (showersions))

1997 usage(B_FALSE) ;

1998 if (all && argc)

1999 usage(B_FALSE) ;

2001 if (showersions) {

2002 /* Show info on avail abl e versions. */

2003 (voi d) pri ntf(gettext(The following fil esystemversions are "
2004 "supported:\n\n"));

2005 (void) printf (get text ("VER DESCRI PTI OM\ n"));

2006 (void) printf(M--- @ commmii o "
2007 B \n");

2008 (void) printf(gettext(" 1 Initial ZFS filesystemversion\n"));
2009 (void) printf(gettext(" 2 Enhanced directory entries\n"));
2010 (void) printf(gettext(" 3 Case insensitive and filesystem"
2011 "user identifier (FUD\n"));

2012 (void) printf(gettext(" 4 userquota, groupquota "

2013 "properties\n"));

2014 (voi d) printf(gettext(" 5 Systemattributes\n"));

2015 (voi d) printf(gettext("\nFor nmore information on a particular "
2016 ‘version, including supported releases,\n"));

2017 (void) printf("see the ZFS Adm ni stration Qui de. \ n\ n");

2018 ret = 0;

2019 } else if (argc || all)

2020 /* Upgrade fil esystens */

2021 if (cb.cb_version == 0)

2022 cb. cb_versi on = ZPL_VERSI ON,

2023 ret = zfs_for_each(argc, argv, flags, ZFS TYPE_FI LESYSTEM
2024 NULL, NULL, O, upgrade_set_call back, &cb);

2025 (void) printf(gettext("%Ilu filesystens upgraded\n"),

2026 cb. cb_nunupgr aded) ;

2027 if (cb.cb_nunsamegraded) {

2028 (voi d) pri ntf(gettext(%lu filesystens already at
2029 this version\n"),

2030 cb cb_nunsanegr aded)

2031 }

2032 1f (cb.cb_nunfailed !'= 0)

2033 ret = 1;

2034 } else {

2035 /* List old-version filesytems */

2036 bool ean_t found;

2037 (void) printf(gettext("This systemis currently running "
2038 "ZFS filesystemversion %lu.\n\n"), ZPL_VERSION);

new usr/src/cnd/ zf s/ zfs_main. c 32

2040 fl ags | = ZFS_| TER_RECURSE;

2041 ret = zfs_for_each(0, NULL, flags, ZFS TYPE_FI LESYSTEM
2042 NULL, NULL, O, upgrade_list_callback, &cb);

2044 found = cb. cb_f oundone;

2045 ch. cb_f oundone = B_FALSE;

2046 cb. cb_newer = B_TRUE;

2048 ret = zfs_for_each(0, NULL, flags, ZFS_TYPE_FI LESYSTEM
2049 NULL, "NULL, 0, upgrade_list_callback, &cb);

2051 if (!cb.cb_foundone && !found) {

2052 (void) printf(gettext("Al filesystens are "

2053 "formatted with the current version.\n"));
2054 }

2055 }

2057 return (ret);

2058 }

2060 /*

2061 * zfs userspace [-Hnp] [-o field[,...]] [-s field [-s field].

2062 * [-Sfield [-Sfield]...] [-t type[,...]] fllesysteml snapshot
2063 * zfs groupspace [-Hnp] [-o field[,...]] [-s field [s field

2064 * [-Sfield [-Sfield]...] [-t type[,...]] f||esystem| snapshot
2065 *

2066 * -H Scripted node; elide headers and separate columms by tabs.
2067 * -i Translate SID to POSI X | D.

2068 * -n Print numeric ID instead of user/group nane.

2069 * -0 Control which fields to display.

2070 * -p Use exact (parseable) nuneric output.

2071 * -s Speci fy sort colums, descending order.

2072 * -S Speci fy sort colums, ascendi ng order.

2073 * -t Control which object types to display.

2074 *

2075 * Di spl ays space consuned by, and quotas on, each user in the specified
2076 * filesystemor snapshot.

2077 */

2079 /* us_field_types, us_field_hdr and us_field_nanmes should be kept in sync */
2080 enumus_field_types {

2081 USFI ELD_TYPE,

2082 USFI ELD_NAME,

2083 USFI ELD_USED,

2084 USFI ELD_QUOTA

2085 };

2086 static char *us_field_hdr[] = { ' YPE NANE USED "QJOTA' }

2087 static char *us_field_nanes[] = { type "nane”, "used" "quot a"

2088 #define USFI ELD_LAST (sizeof (us_fiel d namas) I sizeof (char *))

2090 #define USTYPE_PSX GRP (1 << 0)

2091 #define USTYPE_PSX_USR (1 << 1)

2092 #define USTYPE_SMB GRP (1 << 2)

2093 #define USTYPE_SMB_USR (1 << 3)

2094 #define USTYPE_ALL \

2095 (USTYPE_PSX_GRP | USTYPE _PSX USR | USTYPE_SMB GRP | USTYPE SMB_USR)
2097 static int us_type_bits[] = {

2098 USTYPE_PSX_GRP,

2099 USTYPE_PSX_USR,

2100 USTYPE_SMB_GRP,

2101 USTYPE_SMB_USR,

2102 USTYPE_ALL

2103 };

2104 static char *us_type_nanes[] = { "posixgroup", "posxiuser", "snmbgroup",

new usr/src/cmd/ zf s/ zfs_main. c

2105 "snbuser", "all" };

2107 typedef struct us_node {

2108 nvlist_t *usn_nvl ;

2109 uu_avl _node_t usn_avl node;

2110 uu_list_node_t usn_listnode;

2111 } us_node_t;

2113 typedef struct us_cbdata {

2114 nvlist_t **cb_nvl p;

2115 uu_avl _pool _t *cb_avl _pool ;

2116 uu_avl _t *cb_avl;

2117 bool ean_t cb_numarne;

2118 bool ean_t cb_ni cenum

2119 bool ean_t cb_si d2posi x;

2120 zfs_userquota_prop_t cb_prop;

2121 zfs_sort_colum_t *cb_sortcol;

2122 size_t cb_wi dt h[USFI ELD_LAST] ;

2123 } us_cbdata_t;

2125 static boolean_t us_popul ated = B_FALSE;

2127 typedef struct {

2128 zfs_sort_colum_t *si_sortcol;

2129 bool ean_t si _numane;

2130 } us_sort_info_t;

2132 static int

2133 us_field_index(char *field)

2134 {

2135 int i;

2137 for (i = 0; i < USFIELD LAST; i++) {

2138 if (strenp(field, us_field_nanmes[i]) == 0)
2139 return (i);

2140 1

2142 return (-1);

2143 }

2145 static int

2146 us_conpare(const void *larg, const void *rarg, void *unused)
2147 {

2148 const us_node_t *I = larg;

2149 const us_node_t *r = rarg;

2150 us_sort_info_t *si = (us_sort_info_t *)unused;
2151 zfs_sort_colum_t *sortcol = si->si_sortcol;
2152 bool ean_t numane = si->si _numane;

2153 nvlist_t *Invl =1->usn_nvl;

2154 nvlist_t *rnvl = r->usn_nvl;

2155 int rc =0;

2156 bool ean_t |vb, rvb;

2158 for (; sortcol !'= NULL; sortcol = sortcol->sc_next) {
2159 char *lvstr ="";

2160 char *rvstr = ;

2161 uint32_t 1v32 =0

2162 uint32_t rv32 = 0;

2163 uint64_t lve4 = 0;

2164 uint64_t rve4 = O;

2165 zfs_prop_t prop = sortcol->sc_prop;
2166 const char *propnanme = NULL;

2167 bool ean_t reverse = sortcol ->sc_reverse;
2169 switch (prop)

2170

{
case ZFS_PROP_TYPE:

new usr/src/cnd/ zf s/ zfs_main. c

2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207

2209
2210
2211
2212
2213
2214
2215

2217
2218
2219
2220
2221
2222
2223
2224
2225

2227
2228

2230
2231

2233
2234
2235
2236

}

propnane = "type";
(void) nvlist_lookup_uint32(lnvl, propnanme, & v32);
(void) nvlist_|ookup_uint32(rnvl, propnane, & v32);
if (rv32 I=1v32)

rc = (rv32 <1v32) 2 1: -1;

break;
case ZFS _PROP_NANE:
propnane = "nane";
i f (numane) {
(void) nvlist_l ookup_uint64(lnvl, propnane,
&l v64);
(void) nvlist_|ookup_uint64(rnvl, propnane,
&rv64);
if (rved !=1v64)
rc = (rved <1lved4) ? 1 : -1;
} else {
(void) nvlist_|lookup_string(lnvl, propnang,
& vstr);
(void) nvlist_lookup_string(rnvl, propnang,
&rvstr);
rc = strenp(lvstr, rvstr);
}
break;

case ZFS_PROP_USED:
case ZFS_PROP_QUOTA:
if (!us_popul at ed)

break;
if (prop == ZFS_PROP_USED)
propnanme = "used";
el se
propnane = "quota";

(void) nvlist_lookup_uint64(lnvl, propnanme, & v64);
(void) nvlist_|ookup_uint64(rnvl, propnane, & v64);
if (rve4 !=1v64)

rc = (rved4 <1lved4) ? 1 : -1;

break;
}
if (rc!=0) {
if (rc <0)
return (reverse ? 1 : -1);
el se
return (reverse ? -1 : 1);
}
}
/*
* If entries still seemto be the same, check if they are of the sane
* type (snmbentity is added only if we are doing SIDto PCSIX | D
* translation where we can have duplicate type/ name conbi nations).
*/
if (nvlist_|lookup_bool ean_val ue(l nvl, "snbentity", & vb) == 0 &&
nvlist_| ookup_bool ean_val ue(rnvl, "snbentity", &vb) == 0 &&
Ivb 1= rvb)
return (Ivb <rvb 2 -1 : 1);
return (0);

static inline const char *
us_type2str(unsigned field_type)
2232 {

switch (field_type) {
case USTYPE_PSX_USR:

return ("POSI X User");
case USTYPE_PSX_GRP:

new usr/src/cnd/ zf s/ zfs_main. c 35 new usr/src/cnd/ zf s/ zfs_main. c 36
2237 return ("POSI X Goup"); 2303 directory_error_free(e);
2238 case USTYPE_SMB USR 2304 if (name == NULL)
2239 return ("SMB User"); 2305 name = sid;
2240 case USTYPE_SMB_GRP: 2306 }
2241 return ("SMB G oup"); 2307 }
2242 defaul t: 2308 }
2243 return ("Undefined");
2244 } 2310 if (cb->cb_sid2posix || domain == NULL || domain[0] == "'\0") {
2245 } 2311 /*~POSI X or -1/
2312 if (prop == ZFS_PROP_GROUPUSED || prop == ZFS_PROP_GROUPQUOTA) {
2247 static int 2313 type = USTYPE_PSX_GRP;
2248 userspace_cb(void *arg, const char *domain, uid_t rid, uint64_t space) 2314 if (!cb->cb_numane)
2249 { 2315 struct group *g;
2250 us_chdata_t *cb = (us_chdata_t *)arg;
2251 zf's_userquota_prop_t prop = ch->cb_prop; 2317 if ((g = getgrgid(rid)) !'= NULL)
2252 char *name = NULL; 2318 name = g->gr_naneg;
2253 char *propnane; 2319 }
2254 char si zebuf[32]; 2320 } else {
2255 us_node_t *node; 2321 type = USTYPE_PSX USR;
2256 uu_avl _pool _t *avl _pool = cb->cb_avl _pool ; 2322 if (!cb->cb_numane)
2257 uu_avl _t *avl = cb->cb_avl; 2323 struct passwd *p;
2258 uu_avl |ndex _toidx;
2259 nvlist_t *props; 2325 if ((p= get pwu| d(rid)) !'= NULL)
2260 us_node_t *n; 2326 p- >pw_nane;
2261 zfs_sort_colum_t *sortcol = cb->cb_sortcol; 2327 }
2262 unsi gned type; 2328 }
2263 const char *typestr; 2329 }
2264 si ze_t nanel en;
2265 size_t typelen; 2331 /*
2266 size_t sizelen; 2332 * Make sure that the type/name conbination is unique when doi ng
2267 int typeidx, nameidx, sizeidx; 2333 * SIDto POSIX ID translation (hence changing the type from SMB to
2268 us_sort |nfo t sortinfo = { sortcol cb->cb_numane }; 2334 * PCSI X) .
2269 bool ean_t snbentity = B _FALSE; 2335 */
2336 if (cb->cb_sid2posix &&
2271 if (nvlist_alloc(&rops, NV_UNI QUE_NAME, 0) != 0) 2337 nvl i st_add_bool ean_val ue(props, "snbentity", snbentity) != 0)
2272 nomen() ; 2338 nonen() ;
2273 node = safe_mal i oc(si zeof (us_node_t));
2274 uu_avl _node_i nit (node, &node->usn_avl node, avl _pool); 2340 /* Cal cul ate/update wi dth of TYPE field */
2275 node- >usn_nvl = props; 2341 typestr = us_type2str(type);
2342 typelen = strlen(gettext(typestr)
2277 if (domain !'= NULL & domain[0] !="\0") { 2343 typeidx = us_field_index("type");
2278 /* SMB */ 2344 if (typelen > cb->cb_width[typeidx])
2279 char sid[ZFS_MAXNAMELEN + 32]; 2345 cb->cb_wi dt h[typei dx] = typel en;
2280 uid_t id; 2346 if (nvlist_add_uint32(props, "type", type) != 0)
2281 uint64_t classes; 2347 nomen() ;
2282 int err;
2283 directory_error_t e; 2349 /* Cal cul ate/update wi dth of NAME field */
2350 if ((cb->cb_numane && cb->cb_sid2posix) || name == NULL) {
2285 snbentity = B_TRUE; 2351 if (nvlist_add_uint64(props, "name", rid) != 0)
2352 nomen()
2287 (void) snprintf(sid, sizeof (sid), "%-%", domain, rid); 2353 nanel en = snpri ntf(l\ULL 0, "ow", rid);
2354 } else {
2289 if (prop == ZFS_PROP_CGROUPUSED || prop == ZFS_PROP_GROUPQUOTA) { 2355 if (nvlist_add_string(props, "nane", nane) != 0)
2290 type = USTYPE_SMB_GRP; 2356 nomeny();
2291 err = sid_to_id(sid, B_FALSE, & d); 2357 nanel en = strl en(nane) ;
2292 } else { 2358 }
2293 type = USTYPE_SMB_USR; 2359 nanmei dx = us_fiel d_i ndex("nane");
2294 err = sid_to_id(sid, B TRUE, &d); 2360 if (nanelen > cb->cb_w dt h[nanei dx])
2295 } 2361 cb->cb_wi dt h[nanei dx] = nanel en;
2297 if (err == 0) { 2363 /*
2298 rid =id; 2364 * Check if this type/nane conbination is in the list and update it;
2299 if (!chb- >cb si d2posi x) { 2365 * otherw se add new node to the list.
2300 e = directory name_fromsid(NULL, sid, &nane, 2366 */
2301 &cl asses) ; 2367 if ((n =uu_avl_find(avl, node, &sortinfo, & dx)) == NULL) {
2302 if (e !'= NULL) 2368 uu_avl _insert(avl, node, idx);

new usr/src/cmd/ zf s/ zfs_main. c 37 new usr/src/cmd/ zf s/ zfs_main.c 38
2369 } else { 2435 case DATA TYPE_ U NT64:
2370 nvlist_free(props); 2436 (voi d) nvpair_val ue_ui nt64(nvp, &val 64);
2371 free(node); 2437 br eak;
2372 node = n; 2438 case DATA TYPE_STRI NG
2373 props = node- >usn_nvl ; 2439 (void) nvpair_val ue_string(nvp, &strval);
2374 } 2440 break;
2441 defaul t:
2376 /* Cal cul at e/ update wi dth of USED/ QUOTA fields */ 2442 (void) fprintf(stderr, "invalid data type\n");
2377 if (cb->cb_nicenum 2443 }
2378 zfs_ni cenun(space, sizebuf, sizeof (sizebuf));
2379 el se 2445 switch (field) {
2380 (v0| d) snprintf(sizebuf, sizeof (sizebuf), "%Iu", space); 2446 case USFI ELD TYPE:
2381 sizelen = strl en(si zebuf); 2447 strval = (char *)us_type2str(val 32);
2382 if (prop == ZFS | PRCP USERUSED || prop == ZFS_PROP_GROUPUSED) { 2448 br eak;
2383 pr opnarre = "used" 2449 case USFI ELD NAME:
2384 1f (!'nvlist_exist s(props, "quota")) 2450 if (type == DATA_TYPE_UI NT64) {
2385 (void) nvlist_add_uint64(props, "quota", 0); 2451 (void) sprintf(valstr, "%Ilu", val64);
2386 } else { 2452 strval = valstr;
2387 propnane = "quota"; 2453 }
2388 if (!'nvlist_exi sts(props "used")) 2454 br eak;
2389 (void) nvlist_add_uint64(props, "used", 0); 2455 case USFI ELD_USED:
2390 } 2456 case USFI ELD_QUOTA:
2391 si zeidx = us_fiel d_i ndex(propnane); 2457 if (type == DATA TYPE Ul NT64) {
2392 if (si zel en > cb->cb_wi dt h[si zel dx]) 2458 if (parsable) {
2393 cb->cb_wi dt h[si zei dx] = si zel en; 2459 (void) sprintf(valstr, "%Ilu", val 64);
2460 } else {
2395 if (nvlist_add_uint64(props, propnane, space) != 0) 2461 zf s_ni cenum(val 64, valstr,
2396 nonmen(); 2462 si zeof (valstr));
2463 }
2398 return (0); 2464 if (field == USFI ELD_QUOTA &&
2399 } 2465 strcnp(val str, "0") == 0)
2466 strval = "none";
2401 static void 2467 el se
2402 print_us_node(bool ean_t scripted, boolean_t parsable, int *fields, int types, 2468 strval = valstr;
2403 size_t *width, us_node_t *node) 2469 }
2404 { 2470 br eak;
2405 nvlist_t *nvl = node->usn_nvl; 2471 }
2406 char val str[ZFS_MAXNAMVELEN] ;
2407 bool ean_t first = B_TRUE; 2473 if (Mfirst) {
2408 int cfield = 0; 2474 if (scripted)
2409 int field; 2475 (void) printf("\t");
2410 ui nt32_t ustype; 2476 el se
2477 (void) printf(" ");
2412 /* Check type */ 2478 1
2413 (void) nvlist_lookup_uint32(nvl, "type", &ustype); 2479 if (scripted)
2414 if (!(ustype & types)) 2480 (void) printf("%", strval);
2415 return; 2481 else if (field == USFIELD_TYPE || field == USFI ELD_NAVE)
2482 (void) printf("%*s", wdth[field], strval);
2417 while ((field = fiel ds[cfield]) !'= USFIELD_LAST) { 2483 el se
2418 nvpair_t *nvp = NULL; 2484 (void) printf("%s", width[field], strval);
2419 data_type_t type;
2420 uint32_t val 32; 2486 first = B_FALSE;
2421 uint64_t val 64; 2487 cfiel d++;
2422 char *strval = NULL; 2488 }
2424 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 2490 (void) printf("\n");
2425 if (strcnp(nvpair _nane(nvp), 2491 }
2426 us_field_names[field]) == 0)
2427 br eak; 2493 static void
2428 } 2494 print_us(bool ean_t scripted, boolean_t parsable, int *fields, int types,
2495 size_t *width, bool ean_ t rmode, uu_avl _t *avl)
2430 type = nvpair_type(nvp); 2496 {
2431 swtch (type) { 2497 us_node_t *node;
2432 case DATA _TYPE_UI NT32: 2498 const char *col;
2433 (voi d) nvpair_val ue_uint32(nvp, &val 32); 2499 int cfield = 0;
2434 br eak; 2500 int field;

new usr/src/cmd/ zf s/ zfs_main. c

2502 if (!scripted) {

2503 bool ean_t first = B_TRUE;

2505 while ((field = fields[cfield]) != USFIELD_LAST) {
2506 col = gettext(us_field_hdr[field]);

2507 if (field == USFTELD_TYPE || field == USFIELDNANE) {
2508 (v0|d) prln f(first 2 "%*s" : " %
2509 dth[field col);

2510 } else {

2511 (void) printf(first ? "%s" %s",
2512 width[eld], col);

2513 }

2514 first = B_FALSE;

2515 cfiel d++;

2516 }

2517 (void) printf("\n");

2518 }

2520 for (node = uu_avl _first(avl); node; node = uu_avl _next(avl, node)) {
2521 print_us_node(scripted, parsable, fields, types, w dt h, node);
2522 1 f (rmode)

2523 nvlist_free(node->usn_nvl);

2524 }

2525 }

2527 static int

2528 zfs_do_userspace(int argc, char **argv)

2529 {

2530 zfs_handl e_t *zhp;

2531 zfs_userquota_prop_t p;

2532 uu_avl _pool _t *avl _pool ;

2533 uu_avl _t *avl _tree;

2534 uu_avl _wal k_t *wal k;

2535 char *delim

2536 char deffiel ds[] = type, nane, used, quot a";

2537 char *ofield =

2538 char *tfield = ULL;

2539 int cfield = 0;

2540 int fields[256];

2541 int i;

2542 bool ean_t scripted = B_FALSE;

2543 bool ean_t prtnum = B_FALSE;

2544 bool ean_t parsabl e = B_FALSE;

2545 bool ean_t si d2posi x = B_FALSE

2546 int ret = 0;

2547 int c;

2548 zfs_sort_colum_t *sortcol = NULL;

2549 int types = USTYPE_PSX USR | USTYPE_SMB_USR

2550 us_chdata_t cb;

2551 us_node_t *node;

2552 us_node_t *rmode;

2553 uu_list_pool _t *listpool;

2554 uu_list_t *list;

2555 uu_avl _index_t idx = 0;

2556 uu_list_index_t idx2 = 0;

2558 if (argc < 2)

2559 usage(B_FALSE);

2561 if (strcnp(argv[0], "groupspace") == 0)

2562 /* Toggl e default group types */

2563 types = USTYPE_PSX GRP | USTYPE_SMB_GRP;

2565 while ((c = getopt(argc, argv, "nHpo:s:S:t:i")) I=-1) {
2566 switch (c) {

39

new usr/src/cnd/ zf s/ zfs_main. c

2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604

2606
2607

2609
2610
2611
2612
2613
2614
2615
2616

2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632

}

40

case 'n’:
prtnum = B_TRUE;
br eak;
case 'H:
scripted = B_TRUE;
break;
case 'p':
parsabl e = B_TRUE;
br eak;
case '0':
ofield = optarg;
br eak;
case 's’:
case 'S :
if (zfs_ add sort_col urm(&sortcol optarg,
c=='s" ? BFALSE: B TRUE) != 0) {
(void) fpri ntf(stderr
gettext("invalid field '%’\n"), optarg);
usage(B_FALSE) ;
}
br eak;
case 't’:
tfield = optarg;
br eak;
case 'i’:
si d2posi x = B_TRUE;
br eak;
case ':’
(v0| d) fprlntf(stderr gettext("m ssing argunment for "
%’ option\n"), optopt);
usage(B_FALSE) ;
break;
case ' ?:
(void) fprintf(stderr, gettext("invalid option "%’ \n"),
optopt);
usage(B_FALSE) ;
}

argc -= optind;
argv += optind;

if (argc < 1) {

(void) fprintf(stderr,
usage(B_FALSE) ;

i}f (argc > 1) {

}

(void) fprintf(stderr,
usage(B_FALSE) ;

gettext("m ssing dataset nane\n"));

gettext("too many argunents\n"));

/* Use default output fields if not specified using -o */
if (ofield == NULL)

do {

}
f

ofield = deffields;

if ((dellm—strchr(ofleld ',7)) !'= NULL)
*delim="

if ((f|e|ds[cf|e|d++] = us_field_index(ofield)) == -1) {
(void) fprintf(stderr, gettext("invalid type "%’ "

"for -0 option\n"),
return (-1);

ofield);

}
if (delim!= NULL)
ofield = delim+ 1;
le (dellm'— NULL) ;
ds[cfield] USFI ELD LAST;

new usr/src/cnd/ zf s/ zfs_main. c 41

2634
2635
2636

2638
2639

2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659

2661
2662

2664
2665
2666
2667
2668

2670
2671
2672

2674
2675
2676
2677
2678
2679

2681
2682

2684
2685
2686
2687
2688
2689
2690
2691
2692
2693

2695
2696
2697

/* Override output types (-t option) */
if (tfield !'= NULL) {

types = O;
do {
bool ean_t found = B_FALSE;
if ((del | m = strchr(tflel d, ',’)) !'= NULL)
delim
for (i =0; i < S|ze0f (us_type_bits) / sizeof (int);
i ++)
if (strcnp(tfleld us_type_nanes[i]) == 0) {
found = B_TRUE;
types |— us_type_bits[i];
br eak;
}
if (!found)

{
(v0|d) fprintf(stderr, gettext("i
"o’ for -t optlon\n") tfie
return (-1);

nvaI id type
el d);

}
if (delim!= NULL)
tfield = delim+ 1;
} while (dellm'- NULL) ;

}

if ((zhp = zfs_open(g_zfs, argv[0], ZFS TYPE_DATASET)) == NULL)
return (1);

if ((avl_pool = uu_avl_pool _create("us_avl_pool", sizeof (us_node_t),

of f set of (us_node_t, usn_avlnode), us_conpare, UU DEFAULT)) == NULL)

nonmemn() ;

if ((avl_tree = uu_avl _create(avl _pool, NULL, UU DEFAULT)) == NULL)
nomen() ;

/* Always add default sorting colums */

(void) zfs_add_sort_colum(&sortcol, "type", B_FALSE);

(void) zfs_add_sort_colum(&sortcol, "nane", B_FALSE);

cb.cb_sortcol = sortcol;

cb. cb_numane = prtnum

cb. cb_ni cenum = ! par sabl e;
cb. cb_avl _pool = avl _pool;
cb.cb_avl = avl _tree;

ch. cb_si d2posi x = si d2posi x;

for (i = 0; i < USFIELD LAST; i++)
cb.cb_width[i] = strlen(gettext(us_field_hdr[i]));
for (p = 0; p < ZFS_NUM USERQUOTA PROPS; p++) {
if (((p == ZFS_PROP_USERUSED || p == ZFS_PROP_USERQUOTA) &&
I(types & (USTYPE PSX_USR | USTYPE SMB_USR))) ||
((p == ZFS_PROP_GROUPUSED || p == ZFS PROP_GROUPQUOTA) &&
I (types & (USTYPE_PSX_GRP | USTYPE_SMB_GRP))))
conti nue;
ch. cb_prop =p;
if ((ret = zfs_userspace(zhp, p, userspace_ch, &cb)) != 0)
return (ret);
}
/* Sort the list */
if ((node = uu_avl _first(avl_tree)) == NULL)
return (0);

new usr/src/cmd/ zf s/ zfs_main. c

2699

2701
2702
2703
2704

2706
2707
2708
2709
2710
2711
2712

2714
2715
2716

2718
2719
2720

2722
2723

2725
2726
2727

2729

2731
2732
2733

2735
2736
2737
2738

2740
2741
2742

2744
2745

2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763

* Ok Sk ok % b % Ok Ok ok k% k¥ %

list

When given no argunents,
Q herwi se,

op

us_popul ated = B_TRUE;

listpool = uu_list_pool_create("tnplist", sizeof (us_node_t),
of fsetof (us_node_t, usn_listnode), NULL, UU DEFAULT);

list = uu_list_create(listpool, NULL, UU DEFAULT);

uu_list_node_init(node, &node->usn_|istnode, |istpool);

while (node != NULL) {
rmode = node;

node = uu_avl _next(avl _tree, node);
uu_avl _renove(avl _tree, rmode);
if (uu_list_find(list, rmode, NULL, & dx2) == NULL)

uu_list_insert(list, rmmode, idx2);

}

for (node = uu_list _first(list); node != NULL;
node = uu_list_next(list, node))

us_sort_info_t sortinfo = { sortcol, cb.cb_numane };

if (uu_avl_find(avl _tree, node, &sortinfo,

uu_avl _insert(avl _tree, node, i dx)

& dx) == NULL)
}

uu_list_destroy(list)
uu_l i st _pool _dest roy(I i stpool);

/* Print and free node nvlist menmory */
print us(scn pted, parsable, fields, types,
cb.cb_avl);

cb.cb_wi dth, B_TRUE,

zfs_free_sort_col ums(sortcol);

/* Clean up the AVL tree */
if ((walk = uu_avl _wal k_start(ch.cb_avl,
nonen() ;

UU_WALK_ROBUST)) == NULL)

while ((node = uu_avl _wal k_next (wal k)) != NULL) {
uu_avl _renove(cb.cb_avl, node);
free(node);

}

uu_avl _wal k_end(wal k) ;

uu_avl _destroy(avl _tree);

uu_avl _pool _destroy(avl _pool);

return (ret);

[-r][-d max] [-H [-o property[,property]...] [-t type[,type]...]
[-s property [-s property]...] [-S property [-S property]...]

<dat aset> ...

-r Recurse over all children

-d Limt recursion by depth.

-H Scripted node; elide headers and separate columms by tabs
-0 Control which fields to display.

-t Control which object types to display.

-s Speci fy sort colums, descending order.

-S Specify sort colums, ascending order.

lists all filesystenms in the system

list the specified datasets, optionally recursing down themif
is specified.

2764 typedef struct |ist_chdata {

42

43

g

new usr/src/cmd/ zf s/ zfs_main. c

2765 bool ean_t ch_first;

2766 bool ean_t cb_scripted;

2767 zprop_list_t *cb_proplist;

2768 } list_chdata_t;

2770 [*

2771 * Gven a list of colums to display, output appropriate headers for each one.
2772 */

2773 static void

2774 print_header(zprop_list_t *pl)

2775 {

2776 char header buf [ZFS_MAXPROPLEN ;

2777 const char *header;

2778 int i;

2779 bool ean_t first = B _TRUE;

2780 bool ean_t right_justify;

2782 for (; pl !'= NULL; pl = pl->pl_next) {

2783 if (Mfirst) {

2784 (void) printf(" ");

2785 } else {

2786 first = B_FALSE;

2787 }

2789 right_justify = B_FALSE;

2790 if (pl->pl_prop != ZPROP_I NVAL) {

2791 header = zfs_prop_col um_nane(pl - >pl _prop);
2792 right_justify = zfs_prop_align_right(pl->pl_prop);
2793 } else {

2794 (i = 0; pl->pl _user_prop[i] !'="\0"; i++)
2795 header buf [i] = toupper (pl ->pl _user_prop[i]);
2796 headerbuf[i] = "\0O’

2797 header = header buf;

2798 }

2800 if (pl->pl_next == NULL && !right_justify)

2801 (void) printf("%", header);

2802 else if (right_justify)

2803 (void) printf("%s", pl->pl_w dth, header);
2804 el se

2805 (void) printf("%*s", pl->pl_w dth, header);
2806 }

2808 (void) printf("\n");

2809 }

2811 /*

2812 * Gven a dataset and a list of fields, print out all the properties accordin
2813 * to the described | ayout.

2814 */

2815 static void

2816 print_dataset(zfs_handl e_t *zhp, zprop_list_t *pl, boolean_t scripted)
2817 {

2818 bool ean_t first = B _TRUE;

2819 char property[ZFS ,_MAXPROPLEN ;

2820 nvlist_t *userprops = zfs_get_user_props(zhp);

2821 nvlist_t *propval ;

2822 char *propstr;

2823 bool ean_t right_justify;

2824 int wdth;

2826 for (; pl !'= NULL; pl = pl->pl_next) {

2827 if (Mfirst) {

2828 if (scripted)

2829 (void) printf("\t");

2830 el se

new usr/src/cmd/ zf s/ zfs_main.c

2831 (void) printf(" ");

2832 } else {

2833 first = B_FALSE;

2834 }

2836 if (pl->pl_prop !'= ZPROP_I NVAL) {

2837 i1 f (zfs_prop_get(zhp, pl->pl_prop, property,
2838 si zeof (property) NULL, NULL, 0, B_FALSE) != 0)
2839 propstr = "-'

2840 el se

2841 propstr = property;

2843 right_justify = zfs_prop_align_| rlght(pl >pl _prop);
2844 } else if (zfs_prop_userquota(pl->pl_user_prop)) {

2845 if (zfs_prop_get_userquota(zhp, pl->pl_user_prop,
2846 property, S|zeof (property) B FALSE) != 0)
2847 propstr ="

2848 el se

2849 propstr = property;

2850 right_justify = B_TRUE;

2851 } else if (zfs_prop_witten(pl->pl_user_prop)) {

2852 if (zfs_prop_get_witten(zhp, pl->pl_user_prop,
2853 property, S|zeof (property) B FALSE) = 0)
2854 propstr = "-";

2855 el se

2856 propstr = property;

2857 right_justify = B TRUE;

2858 } else {

2859 if (nvlist_lookup_nvlist(userprops,

2860 pl - >pl _user prop| &propval) 1= 0)

2861 propstr = "-

2862 el se

2863 verify(nvlist_| ookup_stri ng(pr opval ,

2864 ZPROP_VALUE, &propstr) == 0);

2865 right _justify = B_FALSE;

2866 }

2868 width = pl->pl _width;

2870 /*

2871 * |f this is being called in scripted node, or if this is the
2872 * last colum and it is left-justified, don't include a width
2873 * format specifier.

2874 */

2875 if (scripted || (pl->pl_next == NULL && !right_justify))
2876 (void) printf("9%", propstr);

2877 else if (right_justify)

2878 (void) printf("%s", width, propstr);

2879 el se

2880 (void) printf("%*s", width, propstr);

2881 }

2883 (void) printf("\n");

2884 }

2886 /*

2887 * Ceneric callback function to |ist a dataset or snapshot.

2888 */

2889 static int

2890 |ist_call back(zfs_handle_t *zhp, void *data)

2891 {

2892 list_chdata_t *cbp = data;

2894 if (cbp- >cb first)

2895 (! cbp->cb_scri pt ed)

2896 print_header (cbp->cb_proplist);

new usr/src/cnd/ zf s/ zfs_main. c 45

2897
2898

2900

2902
2903

2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920

2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959

2961
2962

}
static i
zfs_do_l|
{

cbp->cb_first = B_FALSE;

print_dataset (zhp, cbp->cb_proplist, cbp->cb_scripted);

return (0);

nt
ist(int argc, char **argv)

int c;
bool ean_t scripted = B_FALSE;
static char default_fields[] =
"nane, used, avai |l abl e, ref er enced, nount poi nt";
int types = ZFS TYPE_DATASET;
bool ean_t types_specified = B_FALSE;
char *fields = NULL;
list_chdata_t cb ={ 0 };
char *val ue;
int limt =0;
int ret = 0;
zfs_sort_colum_t *sortcol = NULL;
int flags = ZFS_| TER PROP_LI STSNAPS | ZFS_|I TER_ARGS_CAN_BE_PATHS;

/* check options */

while ((c = getopt(argc, argv, ":d:o:rt:Hs:S:")) I=-1) {
switch (c) {
case '0:
fields = optarg;
break;
case 'd:
limt = parse_depth(optarg, &flags);
br eak;
case 'r’:
flags | = ZFS | TER RECURSE;
br eak;
case 'H:
scripted = B_TRUE;
break;
case 's’:
if (zfs_add_sort_colum(&sortcol, optarg,
B FALSE) != 0)
(void) fprintf(stderr,
gettext("invalid property '%’\n"), optarg);
usage(B_FALSE);
break;
case 'S :
if (zfs_add_sort_colum(&sortcol, optarg,
B TRUE) != 0)
(void) fprintf(stderr,
gettext("invalid property '%’\n"), optarg);
usage(B_FALSE);
break;
case 't':
types = 0;

types_specified = B_TRUE;
flags & ~ZFS | TER PROP_L| STSNAPS;

while (*optarg !'="\0") {
static char *type_subopts[] = { "filesystent,
"vol ume", "snapshot", "all", NULL };

swi tch (getsubopt (&optarg, type_subopts,
&val ue))

new usr/src/cnd/ zf s/ zfs_main. c 46

2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974

2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994

2996
2997

2999
3000

3002
3003
3004
3005
3006

3008
3009
3010
3011
3012
3013
3014
3015

3017
3018

3020
3021

3023
3024

3026
3027

case O:
types | = ZFS TYPE_FI LESYSTEM
br eak;

case 1:
types | = ZFS_TYPE_VOLUVE;
br eak;

case 2:
types | = ZFS_TYPE_SNAPSHOT;
br eak;

case 3:
types = ZFS TYPE_ DATASET;
br eak;

defaul t:

(void) fprintf(stderr,
gettext("invalid type "%’\n"),
val ue) ;

usage(B_FALSE) ;

}
br eak;
case ':':
(void) fprintf(stderr, gettext("m ssing argunent for "
"'o¢’ option\n"), optopt);
usage(B_FALSE);
br eak;
case ' ?:
(void) fprintf(stderr, gettext("invalid option %’ \n"),

optopt);
usage(B_FALSE);
}

argc -= optind;
argv += optind;

if (fields == NULL)
fields = default_fields;

/*
* |f "-o0 space" and no types were specified, don’t display snapshots.
*/
if (strcnp(fields, "space") == 0 && types_specified == B_FALSE)
types & ~ZFS TYPE SNAPSHOT;

If the user specifies '-o all’, the zprop_get_list() doesn't
normal Iy include the name of the dataset. For ’'zfs list’, we always
want this property to be first.

R

*/
if (zprop_get_list(g_zfs, fields, &cb.cb_proplist, ZFS_TYPE_DATASET)
=0

usage(B_FALSE) ;

ch.cb_scripted = scripted;
ch.cb_first = B_TRUE;

ret = zfs_for_each(argc, argv, flags, types, sortcol, &cbh.cb_proplist,
limt, list_callback, &cb);

zprop_free_list(cb.cb_proplist);
zfs_free_sort_col ums(sortcol);

if (ret == 0 & ch.cb_first && !cb.cb_scripted)
(void) printf(gettext("no datasets available\n"));

new usr/src/cmd/ zf s/ zfs_main. c

47

3029 return (ret);

3030 }

3032 /*

3033 * zfs renane [-f] <fs | snap | vol> <fs | snap | vol >
3034 * zfs renane [-f] -p <fs | vol> <fs | vol >

3035 * zfs renane -r <snap> <snap>

3036 *

3037 * Renanes the given dataset to another of the same type.
3038 *

3039 * e '-p’ flag creates all the non-existing ancestors of the target first.
3040 */

3041 /* ARGSUSED */

3042 static int

3043 zfs_do_renane(int argc, char **argv)

3044 {

3045 zfs_handl e_t *zhp;

3046 int c;

3047 int ret = 0;

3048 bool ean_t recurse = B_FALSE;

3049 bool ean_t parents = B_FALSE;

3050 bool ean_t force_unmount = B_FALSE;

3052 /* check optlons */

3053 while ((c = getopt(argc, argv, "prf")) !'=-1) {
3054 switch (c) {

3055 case 'p’:

3056 parents = B_TRUE;

3057 br eak;

3058 case 'r’:

3059 recurse = B _TRUE;

3060 break;

3061 case 'f’:

3062 force_unmount = B_TRUE;

3063 break;

3064 case ' ?':

3065 defaul t:

3066 (void) fprintf(stderr, gettext("invalid option %’ \n"),
3067 optopt);

3068 usage(B_FALSE) ;

3069 }

3070 }

3072 argc -= optind;

3073 argv += optind;

3075 /* check nunber of argunments */

3076 if (argc < 1) {

3077 (void) fprintf(stderr, gettext("m ssing source dataset
3078 "argument\n"));

3079 usage(B_FALSE) ;

3080 }

3081 if (argc < 2)

3082 (voi d) fprlntf(stderr, gettext("m ssing target dataset "
3083 "argument\n"));

3084 usage(B_FALSE) ;

3085 1

3086 if (argc > 2) {

3087 (void) fprintf(stderr, gettext("too many argunments\n"));
3088 usage(B_FALSE) ;

3089 1

3091 if (recurse && parents)

3092 (voi d) fprlntf(stderr gettext("-p and -r options are nutual ly "
3093 "excl usive\n"));

3094 usage(B_FALSE) ;

new usr/src/cnd/ zf s/ zfs_main. c

) {
gettext("source dataset for recursive

parents ? ZFS TYPE_F| LESYSTEM |

try to create ancestors.
zfs_get _type(zhp)) &&
0 {

1= 0);

invalid option '%’\n"),

gettext("m ssing clone fil esystent

gettext("too many argunents\n"));

3095 }

3097 if (recurse & strchr(argv[0], '@) ==
3098 (void) fprintf(stderr,

3099 "rename nust be a snapshot\n"));
3100 usage(B_FALSE) ;

3101 }

3103 if ((zhp = zfs_open(g_zfs, argv[O0],

3104 ZFS TYPE_VOLUMVE : ZFS TYPE DATASET)) == NULL)
3105 return (1);

3107 /* If we were asked and the nanme | ooks good,
3108 if (parents && zfs_name_valid(argv[1],

3109 zfs_create_ancestors(g_zfs, argv[l]) 1=
3110 zfs_cl ose(zhp);

3111 return (1);

3112 }

3114 ret = (zfs_renanme(zhp, argv[1l], recurse, force_unnount)
3116 zfs_cl ose(zhp);

3117 return (ret);

3118 }

3120 /*

3121 * zfs pronote <fs>

3122 *

3123 * Pronptes the given clone fs to be the parent
3124 *

3125 /* ARGSUSED */

3126 static int

3127 zfs_do_pronpte(int argc, char **argv)

3128 {

3129 zfs_handl e_t *zhp;

3130 int ret = 0;

3132 /* check options */

3133 if (argc > 1 & argv[1][0] == "-") {

3134 (void) fprintf(stderr, gettext("
3135 argv[1][1]);

3136 usage(B_FALSE) ;

3137 }

3139 /* check nunber of argunents */

3140 if (argc < 2) {

3141 (void) fprintf(stderr,

3142 " argument\n"));

3143 usage(B_FALSE) ;

3144 }

3145 if (argc > 2) {

3146 (void) fprintf(stderr,

3147 usage(B_FALSE) ;

3148 }

3150 zhp = zfs open(g zfs, argv[1l], ZFS_TYPE_FILESYSTEM |
3151 if (zhp == NULL)

3152 return (1);

3154 ret = (zfs_pronmote(zhp) != 0);

3157 zfs_cl ose(zhp);

3158 return (ret);

3159 }

ZFS TYPE_VOLUME) ;

48

*/

new usr/src/cnd/ zf s/ zfs_main. c 49

3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180

3182
3183
3184
3185
3186
3187
3188
3189
3190
3191

3193
3194
3195
3196

3198
3199
3200
3201
3202

3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214

3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226

/

t

}

zfs roll back [-rRf] <snapshot>

*

*

*

* -r Del ete any intervening snapshots before doing roll back
* -R Del ete any snapshots and their clones

* -f ignored for backwards conpatability

*
*
*
*

Gven a filesystem rollback to a specific snapshot,

since then and making it the active dataset.

the command will conplain unless the '-r’
*/

di scardi ng any changes
If nore recent snapshots exist,
flag is given.

ypedef struct rollback_cbhdata {

ui nt64_t cb_create;
bool ean_t cb_first;
int cb_docl ones;
char *cb_target;
int cb_error;
bool ean_t cb_recurse;
bool ean_t cb_dependent ;
rol | back_chdata_t;
*
* Report any snapshots nore recent than the one specified. Used when '-r’ is
* not specified. W reuse this sane callback for the snapshot dependents - if
* 'cb_dependent’ is set, then this is a dependent and we should report it
* wi thout checking the transaction group.
*/
tatic int
ol | back_check(zfs_handl e_t *zhp, void *data)

rol | back_chdata_t *cbp = data;
if (cbp->cb_docl ones) {

zfs_cl ose(zhp);

return (0);

}

if (!cbp->cb_dependent) {
if (strcnp(zfs_get_nanme(zhp), cbp->cb_target) !'= 0 &&
zfs_get _type(zhp) == ZFS_TYPE_SNAPSHOT &&
zfs_prop_get _int(zhp, ZFS_PROP_CREATETXG >
cbp->cb_create) {

if (cbp->cb_first & !cbp->cb_recurse) {

(void) fprintf(stderr, gettext("cannot
"rollback to "%’: nore recent snapshots
"exist\n"),
cbp->cb_target);

(void) fprintf(stderr, gettext("use '-r’ to "
"force deletion of the followi ng "
"snapshots:\n"));

cbp->cb_first 0;

cbp->cb_error 1;

}

if (cbp->cb_recurse) {
cbp->cb_dependent = B_TRUE;
if (zfs_iter_dependents(zhp, B_TRUE,
rol I back_check, cbp) !'= 0) {
zfs_cl ose(zhp)
return (-

}
cbp->cb_dependent
} else {
(void) fprintf(stderr, "%\n",
zfs_get _nane(zhp));

= B _FALSE

new usr/src/cmd/ zf s/ zfs_main.c

3227 }

3228

3229 } else {

3230 if (cbp->cb_first && cbp->cb_recurse) {

3231 (voi d) fprl ntf(stderr, gettext (“cannot rollback to "
3232 "o’ : clones of previous snapshots exist\n"),
3233 chp- >ch _target);

3234 (voi d) fprlntf(stderr gettext("use '-R to "
3235 force deletion of the fol | owi ng clones and "
3236 "dependent s: \n));

3237 cbp->cb_first = 0;

3238 cbp->cb_error = 1;

3239 }

3241 (void) fprintf(stderr, "%\n", zfs_get_nane(zhp));

3242 }

3244 zfs_cl ose(zhp);

3245 return (0);

3246 }

3248 static int

3249 zfs_do_rol | back(int argc, char **argv)

3250 {

3251 int ret = 0;

3252 int c;

3253 bool ean_t force = B_FALSE;

3254 rol | back_chdata t cb = { 0 };

3255 zfs_handle_t *zhp, *snap;

3256 char parent name[ZFS_MAXNAMELEN] ;

3257 char *delim

3259 /* check options */

3260 while ((c = getopt(argc, argv, "rRf")) !'=-1) {

3261 switch (c) {

3262 case 'r’:

3263 cb.cb_recurse = 1;

3264 br eak;

3265 case 'R :

3266 ch.cb_recurse = 1;

3267 cb. cb_docl ones = 1;

3268 br eak;

3269 case 'f’:

3270 force = B_TRUE;

3271 br eak;

3272 case ' ?:

3273 (void) fprintf(stderr, gettext("invalid option "%’ \n"),
3274 optopt);

3275 usage(B_FALSE) ;

3276 }

3277 }

3279 argc -= optind;

3280 argv += optind;

3282 /* check nunber of argunents */

3283 if (argc < 1) {

3284 (void) fprintf(stderr, gettext("m ssing dataset argument\n"));
3285 usage(B_FALSE);

3286 }

3287 if (argc > 1) {

3288 (void) fprintf(stderr, gettext("too many argunents\n"));
3289 usage(B_FALSE);

3290 }

3292 /* open the snapshot */

50

new usr/src/cmd/ zf s/ zfs_main. c

3293 if ((snap = zfs_open(g_zfs, argv[0], ZFS _TYPE SNAPSHOT)) == NULL)
3294 return (1);

3296 /* open the parent dataset */

3297 (void) strlcpy(parentnanme, argv[O0], SI zeof (parentnane));

3298 verify((delim= strrchr(parentnane, ' @)) != NULL);

3299 *delim="\0";

3300 if ((zhp = zfs_open(g_zfs, parentnane, ZFS_TYPE _DATASET)) == NULL) {
3301 zfs_cl ose(snap);

3302 return (1);

3303 1

3305 *

3306 * Check for nore recent snapshots and/or clones based on the presence
3307 * of '-r’ and ’ -

3308 */

3309 cb.cb_target = argv[O0];

3310 cb.cb_create = zfs_prop_get_int(snap, ZFS_PROP_CREATETXQO) ;

3311 cb.cb_first = B TRUE;

3312 cb.cb_error = 0;

3313 if ((ret = zfs_iter_children(zhp, rollback_check, &cb)) != 0)
3314 goto out;

3316 if ((ret = cb.cb_error) = 0)

3317 goto out;

3319 /*

3320 * Rol | back parent to the given snapshot.

3321 */

3322 ret = zfs_rollback(zhp, snap, force);

3324 out:

3325 zfs_cl ose(snap);

3326 zfs_cl ose(zhp);

3328 if (ret == 0)

3329 return (0);

3330 el se

3331 return (1);

3332 }

3334 /*

3335 * zfs set property=value { fs | snap | vol }

3336 *

3337 * Sets the given property for all datasets specified on the command |ine.
3338 *

3339 typedef struct set_chdata {

3340 char *cb_pr opnane;

3341 char *cb_val ue;

3342 } set_chdata_t;

3344 static int

3345 set_cal | back(zfs_handl e_t *zhp, void *data)

3346 {

3347 set _cbdata_t *cbp = data;

3349 if (zfs_prop_set(zhp, cbp->cb_propnane, cbp->cb_value) !'= 0) {
3350 switch (libzfs_errno(g_zfs)) {

3351 case EZFS_MOUNTFAI LED:

3352 (voi d) fprintf(stderr, gettext(" property may be set
3353 but unable to remount filesystemn"));

3354 br eak;

3355 case EZFS_ SHARENFSFAI LED:

3356 (voi d) fprintf(stderr, gettext(" property may be set
3357 but unable to reshare fil esystemn"));

3358

br eak;

new usr/src/cnd/ zf s/ zfs_main. c 52
3359 }

3360 return (1);

3361 }

3362 return (0);

3363 }

3365 static int

3366 zfs_do_set(int argc, char **argv)

3367 {

3368 set _cbdata_t cb;

3369 int ret = 0;

3371 /* check for options */

3372 if (argc > 1 & argv[1][0] == "-") {

3373 (void) fprintf(stderr, gettext("invalid option "%’ \n"),
3374 argv[1][1]);

3375 usage(B_FALSE) ;

3376 }

3378 /* check nunber of argunents */

3379 if (argc < 2)

3380 (void) fprintf(stderr, gettext("mi ssing property=value "
3381 "argunment\n"));

3382 usage(B_FALSE) ;

3383 }

3384 if (argc < 3) {

3385 (void) fprintf(stderr, gettext("mi ssing dataset nane\n"));
3386 usage(B_FALSE) ;

3387 }

3389 /* validate property=val ue argunment */

3390 cb. cb_propnane = argv[1];

3391 if (((cb.cb_value = strchr(cb.cb_propname, '=")) == NULL) ||
3392 (cb.cb_value[1l] == "\0"))

3393 (void) fprintf(stderr, gettext("mi ssing value in "
3394 "property=val ue argunent\n"));

3395 usage(B_FALSE) ;

3396 }

3398 *cb.cb_value = "\0";

3399 cb. cb_val ue++;

3401 if (*cb.cb_propname == '\0") {

3402 (void) fprintf(stderr,

3403 gettext("m ssing property in property=val ue argunent\n"));
3404 usage(B_FALSE) ;

3405 }

3407 ret = zfs_for_each(argc - 2, argv + 2, NULL

3408 ZFS_TYPE_DATASET, NULL, NULL, 0, set cal | back, &cb);
3410 return (ret);

3411 }

3413 typedef struct snap_chdata {

3414 nvlist_t *sd_nvl;

3415 bool ean_t sd_recursive;

3416 const char *sd_snapnane;

3417 } snap_chdata_t;

3419 static int

3420 zfs_snapshot _cb(zfs_handl e_t *zhp, void *arg)

3421 {

3422 snap_cbdata_t *sd = arg;

3423 char *nane;

3424 int rv =0;

new usr/src/cmd/ zf s/ zfs_main. c

3425 int error;

3427 error = asprintf(&ane, "%@s", zfs_get_nanme(zhp), sd->sd_snapnane);
3428 if (error == -1)

3429 nen() ;

3430 fnvli st_add_bool ean(sd->sd_nvl, nane);

3431 free(nane);

3433 if (sd->sd_recursive)

3434 rv = zfs_iter_fil esystens(zhp, zfs_snapshot_cb, sd);
3435 zfs_cl ose(zhp);

3436 return (rv);

3437 }

3439 /*

3440 * zfs snapshot [-r] [-o0 prop=val ue] <f s@nap>

3441 *

3442 * Creates a snapshot with the given name. Wile functionally equivalent to
3443 * 'zfs create’, it is a separate conmand to differentiate intent.
3444 *

3445 static int

3446 zfs_do_snapshot (i nt argc, char **argv)

3447 {

3448 int ret =0;

3449 char c;

3450 nvlist_t *props;

3451 snap_chdata_t sd = { 0 };

3452 bool ean_t mul tiple_snaps = B_FALSE;

3454 if (nvlist_all oc(&pr ops, NV_UNIQUE_NAME, 0) !'= 0)

3455 none

3456 if (nvlist_all oc(&sd sd_nvl, NV_UNI QUE_NAME, 0) != 0)
3457 nomen() ;

3459 /* check options */

3460 while ((c = getopt(argc argv, "ro:")) I=-1) {

3461 switch (c) {

3462 case '0:

3463 i f (parseprop(props))

3464 return (1);

3465 br eak;

3466 case 'r’:

3467 sd. sd_recursive = B_TRUE;

3468 mul ti pl e_snaps = B_TRUE;

3469 br eak;

3470 case ' ?:

3471 (void) fprintf(stderr, gettext("invalid option %’ \n"),
3472 optopt);

3473 got o usage;

3474 }

3475 }

3477 argc -= optind;

3478 argv += optind;

3480 /* check nunber of argunents */

3481 if (argc < 1)

3482 (void) fprintf(stderr, gettext("m ssing snapshot argunment\n"));
3483 got o usage;

3484 }

3486 if (argc > 1)

3487 mul tipl e_snaps = B_TRUE;

3488 for (; argc > 0; argc--, argv++) {

3489 char *atp;

3490 zfs_handl e_t *zhp;

53

new usr/src/cnd/ zf s/ zfs_main. c

gettext ("no snapshots were created\n"));

1= -1) {

3492 atp = strchr(argv[0], '@);
3493 if (atp == NULL)

3494 got o usage;

3495 *atp = '\0";

3496 sd. sd_snapnane = atp + 1;

3497 zhp = zfs_open(g_zfs, argv[o]
3498 ZFS_TYPE_FI LESYSTEM | ZFS_TYPE_VOLUME) ;
3499 if (zhp == NULL)

3500 got o usage;

3501 if (zfs_snapshot_cb(zhp, &sd) != 0)
3502 got o usage;

3503 }

3505 ret = zfs_snapshot_nvl (g_zfs, sd.sd_nvl, props);
3506 nvlist_free(sd.sd_nvl);

3507 nvlist_free(props);

3508 if (ret 1=0 && mui ti i pl e_snaps)

3509 (void) fprintf(stderr,

3510 return (ret !'= 0);

3512 usage:

3513 nvlist_free(sd.sd_nvl);

3514 nvlist_free(props);

3515 usage(B_FALSE);

3516 return (-1);

3517 }

3519 /*

3520 * Send a backup streamto stdout.

3521 */

3522 static int

3523 zfs_do_send(int argc, char **argv)

3524 {

3525 char *frommanme = NULL;

3526 char *tonarre = NULL;

3527 char *c

3528 zfs handI e t *zhp;

3529 sendflags_t flags = { 0 };

3530 int c, err;

3531 nvlist_t *dbgnv = NULL

3532 bool ean_t extraver bose = B_FALSE;

3534 /* check options */

3535 while ((c = getopt(argc, argv, ":i:l:RDpvnP"))
3536 switch (c) {

3537 case 'i':

3538 if (fromane)

3539 usage(B_FALSE);
3540 fromane = optarg;
3541 br eak;

3542 case I’

3543 i f (fromane)

3544 usage(B_FALSE);
3545 fromane = optarg;

3546 flags. doall = B_TRUE;
3547 break;

3548 case 'R :

3549 flags.replicate = B_TRUE;
3550 break;

3551 case 'p’:

3552 fl ags. props = B_TRUE;
3553 br eak;

3554 case 'P':

3555 fl ags. parsabl e = B_TRUE;
3556 flags. verbose = B_TRUE;

new usr/src/cnd/ zf s/ zfs_main. c 55

3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580

3582
3583

3585
3586
3587
3588
3589
3590
3591
3592
3593

3595
3596
3597
3598
3599
3600

3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612

3614
3615
3616
3617
3618
3619
3620
3621

br eak;
case 'Vv':
if (flags.verbose)
extraverbose = B_TRUE;
fl ags. verbose = B_TRUE;
fl ags. progress = B_TRUE;

br eak;
case 'D:
flags. dedup = B_TRUE;
br eak;
case 'n’':
flags.dryrun = B_TRUE
br eak;
case ':':

(void) fprintf(stderr, gettext("m ssing argunent for "
"'o¢’ option\n"), optopt);
usage(B_FALSE);
br eak;
case '?':
(voi d) fpri ntf(stderr gettext("invalid option '%’'\n"),

opt
usage(B FALSE)
}

argc -= optind;
argv += optind;

/* check nunber of arguments */

if (argc < 1) {
(void) fprintf(stderr, gettext("m ssing snapshot argunent\n"));
usage(B_FALSE) ;

}

if (argc > 1) {
(void) fprintf(stderr, gettext("too many argunents\n"));
usage(B_FALSE) ;

}

if (!flags.dryrun & isatty(STDOUT_FILENO) ({
(void) fprintf(stderr,
gettext("Error: Streamcan not be witten to a ternmnal.\n"
"You nust redirect standard output.\n"));
return (1);

}

cp = strchr(argv[0], " @);
if (cp == NULL)
(void) fprintf(stderr,
gettext("argunment nust be a snapshot\n"));
usage(B_FALSE) ;

}
*cp = \O
toname = cp + 1;
zhp = zfs open(g zfs, argv[0], ZFS TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
if (zhp == NULL
return (1);

If they specified the full path to the snapshot, chop off
everything except the short nane of the snapshot, but speci al
case if they specify the origin.

Y
-~

if (fromame && (cp = strchr(fromanme, *@)) '= NULL) {
char ori gi n[ZFS_VAXNAMELEN] ;
zprop_source_t src;

new usr/src/cnd/ zf s/ zfs_main. c 56

3623
3624

3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644

3646
3647

3649
3650

3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662

3664
3665

3667
3668
3669
3670
3671
3672
3673
3674
3675
3676

3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688

}

/*
* zfs receive [-vnFu] [-d | -e] <fs@nap>

(void) zfs_prop_get(zhp, ZFS_PROP_ORIG N,
origin, sizeof (origin), &rc, NULL, 0, B _FALSE);

if (strcnp(origin, frommanme) == 0) {
fromane = NULL;
flags. fronorigin = B_TRUE;
} else {
*cp = "\0";
if (cp !=fromanme && strcnp(argv[0], fromane)) {
(void) fprintf(stderr,
gettext("increnental source nust be "
"in same filesystemn"));
usage(B_FALSE);

=cp + 1,
r(fromame, ' @) ||
void) fprintf(stder
gettext("invalid
usage(B_FALSE) ;

strchr(fromane, '/')) {
r,
incremental source\n"));

}

if (flags.replicate & fromanme == NULL)
flags.doall = B_TRUE;

err = zfs_send(zhp, fromane, tonane, &flags, STDOUT_FILENO, NULL, O,
extraverbose ? &lbgnv : NULL);

if (extraverbose &% dbgnv != NULL) {
/*

* dunp_nvlist prints to stdout, but that’s been
* redirected to a file. Make it print to stderr
* instead.

*/

(voi d) dup2(STDERR FI LENO, STDOUT_FI LENO);
dunp_nvl i st (dbgnv, 0);

nvlist_free(dbgnv);

}
zfs_cl ose(zhp);

return (err !'= 0);

* Restore a backup stream from stdin.
*/

static int
zfs_do_receive(int argc, char **argv)

{

int c, err;
recvflags_t flags = { 0 };

/* check options */
while ((c = getopt(argc, argv, ":denuvF"')) I=-1) {
switch (c) {
case 'd:
flags.isprefix = B_TRUE;
break;
@ g
flags.isprefix = B_TRUE;
flags.istail = B_TRUE;
break;

n:

case

case

new usr/src/cnd/ zf s/ zfs_main. c 57

3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710

3712
3713

3715
3716
3717
3718
3719
3720
3721
3722
3723

3725
3726
3727
3728
3729
3730
3731

3733

3735
3736

3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749

3751
3752
3753
3754

}
| *

flags.dryrun = B_TRUE;

br eak;
case ‘U’ :
flags. nomount = B_TRUE;
br eak;
case 'v':
flags. verbose = B_TRUE;
br eak;
case 'F :
flags.force = B_TRUE;
br eak;
case ’
(v0| d) fprlntf(stderr gettext("m ssing argunment for "
%’ option\n"), optopt);
usage(B_FALSE) ;
br eak;
case ' ?:
(void) fprintf(stderr, gettext("invalid option ’'%’\n"),
optopt);
) usage(B_FALSE) ;

}

argc -= optind;
argv += optind;

/* check nunber of arguments */

if (argc < 1)
(voi d) fprlntf(stderr gettext ("m ssing snapshot argunent\n"));
usage(B_FALSE);

}

if (argc >

(voi d) fprl ntf(stderr, gettext("too many argunents\n"));
usage(B_FALSE);
}

if (isatty(STDI N FILENO)) {
(void) fprintf(stderr,
gettext("Error: Backup stream can not be read "
"froma termnal.\n"
"You nust redirect standard input.\n"));
return (1);

}
err = zfs_receive(g_zfs, argv[0], & lags, STDI N FILENO NULL)

return (err !'= 0);

* Send a backup streamto stdout in fits format.
=Y

static int
zfs_do_fits_send(int argc, char **argv)

{

char *frommanme = NULL;
char *toname = NULL;

char *cp;

zfs_handl e_t *zhp;
sendflags_t flags = { 0 };
int c, err;

/* check options */

while ((c = getopt(argc argv, ":i:v")) I=-1) {
switch (c) {
case

new usr/src/cnd/ zf s/ zfs_main. c

3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772

3774
3775

3777
3778
3779
3780
3781
3782
3783
3784
3785

3787
3788
3789
3790
3791
3792

3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804

3806
3807
3808
3809
3810
3811
3812
3813

3815
3816

3818
3819
3820

if (frommane)
usage(B_FALSE) ;
fromane = optarg;
br eak;
case 'V’
fl ags. verbose = B_TRUE;
br eak;
case ':’
(v0| d) fprlntf(stderr gettext("m ssing argunent for "
%’ option\n"), optopt);
usage(B_FALSE);
br eak;
case ' ?':
(void) fprintf(stderr, gettext("invalid option ’'%’\n"),
optopt);
) usage(B_FALSE) ;

}

argc -= optind;
argv += optind;

/* check nunber of arguments */

if (argc < 1) {
(void) fprintf(stderr, gettext("m ssing snapshot argunment\n"));
usage(B_FALSE);

}

if (argc >
(v 0|d) fprlntf(stderr gettext("too many argunents\n"));
usage(B_FALSE) ;

}

if (isatty(STDOUT_FILENO) {
(void) fprintf(stderr,
gettext("Error: Streamcan not be witten to a termnal.\n"
"You nust redirect standard output.\n"));

return (1);
}
cp = strchr(argv[0], '@);
if (cp == NULL)
(void) fprintf(stderr,
gettext ("argument nust be a snapshot\n"));
usage(B_FALSE) ;
}
*cp = '\0';

toname = cp + 1;
zhp = zfs open(g zfs, argv[0], ZFS TYPE_FILESYSTEM ;
if (zhp == NULL)

return (1);

*

* |f they specified the full path to the snapshot, chop off
* everything except the short name of the snapshot, but speci al
* case if they specify the origin.
S
if (fromame & (cp = strchr(fromanme, ' @)) != NULL) {
char ori gi n[ZFS_MAXNAMELEN] ;
zprop_source_t src;

(void) zfs_prop_get(zhp, ZFS_PROP_ORI G N,
origin, sizeof (origin), &rc, NULL, 0, B FALSE);

if (strcnp(orlgln fromane) == 0) {
fromanme = NULL;
flags.fronorigin = B_TRUE;

58

new usr/src/cmd/ zf s/ zfs_main. c

3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836

3838
3839

3841

3843
3844

3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871

3873

3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886

} else {
*cp = "\0";

if (cp != fromanme && strcnp(argv[0],

(void) fprintf(stderr,
gettext("increnental

usage(B_FALSE);
}
fromane = cp + 1;
if (strchr(fror’man‘e @) ||
(void) fprintf(stderr,
gettext("invalid i
usage(B_FALSE);

}
}
}
err = zfs_fits_send(zhp, frommane, tonane, &flags,
NULL, 0);

zfs_cl ose(zhp);

return (err !'= 0);
}
/*
#endif /* | codereview */

* all ow unal | ow stuff
*/

/* copied from zfs/sys/dsl _deleg.h */
#define ZFS_DELEG PERM CREATE "create"
#defi ne ZFS_DELEG_PERM DESTROY "destroy"
#def i ne ZFS_DELEG_PERM SNAPSHOT "snapshot "
#def i ne ZFS_DELEG_PERM ROLLBACK "rol | back"
#defi ne ZFS_DELEG PERM CLONE "cl one"
#def i ne ZFS_DELEG PERM PROMOTE " pronot e"
#defi ne ZFS_DELEG PERM RENAVE "renane"
#defi ne ZFS_DELEG PERM MOUNT "mount "
#defi ne ZFS_DELEG PERM SHARE "share"
#def i ne ZFS_DELEG PERM SEND "send"
#def i ne ZFS_DELEG PERM RECEI VE "receive"
#defi ne ZFS_DELEG PERM ALLOW "al | ow'
#def i ne ZFS_DELEG_PERM USERPROP "user prop"
#def i ne ZFS_DELEG_PERM VSCAN "vscan" [* 2?22 */
#def i ne ZFS_DELEG_PERM USERQUCTA "user quot a"
#def i ne ZFS_DELEG_PERM_GROUPQUOTA " groupquot a"
#def i ne ZFS_DELEG PERM USERUSED "userused"
#def i ne ZFS_DELEG_PERM GROUPUSED "groupused"
#defi ne ZFS_DELEG_PERM HOLD "hol d"
#defi ne ZFS_DELEG_PERM RELEASE "rel ease"
#defi ne ZFS_DELEG PERM DI FF tdiffr
#define ZFS_NUM DELEG NOTES ZFS_DELEG NOTE_NONE

static zfs_deleg_permtab_t zfs_deleg_permthbl[] = {

ZFS DELEG PERM ALLOW ~ZFS DELEG NOTE ALLOW},
ZFS DELEG PERM CLONE, ZFS DELEG NOTE_CLONE },
ZFS_DELEG PERM CREATE, ZFS DELEG NOTE CREATE },
ZFS DELEG PERM DESTROY, ZFS DELEG NOTE DESTROY },
ZFS_DELEG PERM DI FF, ZFS _DELEG NOTE DI FF},
ZFS_DELEG PERM HOLD, ZFS DELEG NOTE_HOLD },
ZFS_DELEG PERM MOUNT, ZFS_DELEG NOTE MOUNT },
ZFS_DELEG PERM PROMOTE, ZFS_DELEG NOTE_PROVOTE },
ZFS_DELEG PERM RECEI VE, ZFS_DELEG NOTE_RECEI VE } .
ZFS_DELEG PERM RELEASE, ZFS_DELEG NOTE_RELEASE } .
ZFS_DELEG PER

| RENAVE, ZFS_DELEG NOTE_RENAME },

sour ce nust
"in same filesystemn"));

strchr(fromane,

i ncrenent al

fromane)) {

be "

A

source\n"));

STDOUT_FI LENO,

new usr/src/cmd/ zf s/ zfs_main.c

3887
3888
3889
3890

3892
3893
3894
3895
3896
3897
3898

3900
3901
3902
3903
3904
3905
3906

3908
3909
3910

3912
3913

3915

3917
3918
3919
3920
3921
3922

3924
3925

3927
3928
3929
3930
3931

3933
3934
3935
3936

3938
3939

3941
3942

3944
3945
3946
3947

3949
3950

3952

ZFS_DELEG PERM ROLLBACK, ZFS_DELEG NOTE_ROLLBACK },
ZFS_DELEG PERM SEND, ZFS_DELEG NOTE_SEND },
ZFS_DELEG_PERM SHARE, ZFS_DELEG NOTE SHARE}
ZFS_DELEG_PERM SNAPSHOT, ZFS_DELEG NOTE_SNAPSHOT },

ZFS _DELEG PERM GROUPQUOTA, ZFS DELEG NOTE GROUPQUOTA },

ZFS_DELEG_PERM GROUPUSED, ZFS_DELEG NOTE_GROUPUSED 1},
ZFS_DELEG PERM USERPROP, ZFS_DELEG NOTE_USERPRCP },
ZFS_DELEG PERM USERQUOTA, ZFS_DELEG NOTE_USERQUOTA },
ZFS_DELEG PERM USERUSED, ZFS DELEG NOTE_USERUSED },

NULL, ZFS DELEG NOTE_NONE }
%

/* perm ssion structure */
typedef struct del eg_perm{

zfs_del eg_who_t ype_t dp who_t ype;
const char *dp_nane;
bool ean_t dp_l ocal ;
bool ean_t dp_descend;

} deleg_permt;

[* *]

typedef struct del eg_perm node {

del eg_perm t dpn_perm
uu_avl _node_t dpn_avl _node;
} del eg_perm node_t;
typedef struct fs_permfs_permt;
/* perm ssions set */
typedef struct who_perm {
zfs_del eg_who_type_t who_t ype;
const char *who_nane; /*
char who_ug_nane[256] ; l*
fs_permt *who_f sperm /*
uu_avl _t *who_del eg_perm avl ; g
} who_permt;
[* *]
typedef struct who_perm node {
who_perm t who_perm
uu_avl _node_t who_avl _node;
} who_perm node_t ;

typedef struct fs_permset fs_permset_t;
/* fs perm ssions */
struct fs_perm {

id*/
user/group nanme */
uplink */

perm ssions */

const char *f sp_nane;
uu_avl _t *fsp_sc_avl; /* sets,create */
uu_avl _t *fsp_uge_avl ; /* user, group, everyone */
fs_permset_t *fsp_set; /* uplink */
e
[* */
typedef struct fs_perm node {
fs_permt fspn_fsperm
uu_avl _t *fspn_avl ;
uu_list_node_t fspn_list_node;
} fs_permnnode_t;

/* top level structure */

new usr/src/cmd/ zf s/ zfs_main. c

voi d *unused)

3953 struct fs_permset {

3954 uu_list_pool _t *fsps_list_pool;

3955 uu_list_t *fsps_list; /* list of fs_perms */
3957 uu_avl _pool _t *f sps_naned_set _avl _pool ;
3958 uu_avl _pool _t *fsps_who_perm avl _pool ;
3959 uu_avl _pool _t *fsps_del eg_perm avl _pool ;
3960 };

3962 static inline const char *

3963 del eg_perm type(zfs_del eg_note_t note)

3964 {

3965 /* subcommands */

3966 switch (note) {

3967 /* SUBCOMVANDS */

3968 /* OTHER */

3969 case ZFS_DELEG NOTE_GROUPQUOTA:

3970 case ZFS_DELEG NOTE_GROUPUSED:

3971 case ZFS DELEG NOTE_USERPROP:

3972 case ZFS_DELEG NOTE_USERQUOTA:

3973 case ZFS_DELEG NOTE_USERUSED:

3974 [* other */

3975 return (gettext("other"));
3976 defaul t:

3977 return (gettext("subcommand"));
3978 }

3979 }

3981 static int inline

3982 who_t ype2wei ght (zfs_del eg_who_type_t who_type)
3983 {

3984 int res;

3985 switch (Wno type) {

3986 case ZFS_DELEG NAMED SET_SETS:
3987 case ZFS_ DELEG NAVED_SET:

3988 res = 0,

3989 br eak;

3990 case ZFS_DELEG CREATE_SETS:
3991 case ZFS_DELEG_CREATE:

3992 res =1,

3993 bre

3994 case ZFS_ DELEG USER_SETS:

3995 case ZFS DELEG USER~

3996 res = 2

3997 br eak;

3998 case ZFS_DELEG GROUP_SETS:
3999 case ZFS_DELEG_GQQJP:

4000 res = 3;

4001 bre

4002 case ZFS_ DELEG EVERYONE_SETS:
4003 case ZFS DELEG EVERYONE:

4004 res = 4,

4005 br eak;

4006 defaul t:

4007 res = -1,

4008 }

4010 return (res);

4011 }

4013 /* ARGSUSED */

4014 static int

4015 who_per m conpar e(const void *larg, const void *rarg,
4016 {

4017 const who_permnode_t *|I = larg;

4018 const who_permnode_t *r = rarg;

61

new usr/src/cnd/ zf s/ zf s_main. c 62
4019 zfs_del eg_who_type_t |type = |->who_perm who_type;

4020 zfs_del eg_\/\ho_type_t rtype = r->who_perm who_type;

4021 int |weight who_t ype2wei ght (1 type);

4022 int rwei ght = who_type2wei ght(rtype)

4023 int res = Iwel ght - rweight;

4024 if (res == 0)

4025 res = strncnp(l->who_per m who_nane, r->who_perm who_nang,
4026 ZFS_MAX_DELEG NAME-1);

4028 if (res == 0

4029 return (0);

4030 if (res > 0)

4031 return (1);

4032 el se

4033 return (-1);

4034 }

4036 /* ARGSUSED */

4037 static int
4038 del eg_per m conpar e(const void *larg, const void *rarg, void *unused)

4039 {
4040
4041
4042
4043

4045
4046

4048
4049
4050
4051
4052 }

const del eg_permnode_t *I = larg;
const del l'eg_perm. node_t *r = rarg;
int res = strncnp(l->dpn_perm dp_nane, r->dpn_perm dp_nane,

ZFS_NAX_DELEG NAME-1);

if (res == 0)
return (0);

if (res > 0)

return (1);
el se

return (-1);

4054 static inline void
4055 fs_permset _init(fs_permset_t *fspset)

4056 {
4057

4059
4060
4061
4062
4063
4064
4065

4067
4068
4069
4070
4071

4073
4074
4075
4076
4077

4079
4080
4081
4082
4083
4084 }

bzero(fspset, sizeof (fs_permset_t));

if ((fspset->fsps_list_pool = uu_list_pool _create("fsps_|ist_pool"
sizeof (fs_permnode_t), offsetof(fs_permnode_t, fspn_|Ii st_node),
NULL UU_DEFAULT)) == NULL)

nomen() ;
if ((fspset->f sps_l ist = uu_list_create(fspset->fsps_list_pool, NULL,
UU_DEFAULT)) == NULL)

nomen() ;
if ((fspset->fsps_named_set_avl_pool = uu_avl _pool _create(
"naned_set _avl _pool ", sizeof (who_permnode_t), offsetof(

who_perm | node _t, who_avl _node), who_perm conpare,
UU DEFAULT)) == NULL)
nonmemn() ;

if ((fspset ->f sps_who_perm avl _pool = uu_avl _pool _creat e(
"who_perm avl _pool ", sizeof (who_permnode_t), offsetof(
who_perm node_t, who_avl _node), who_perm conpare,
UU DEFAULT)) == NULL)

nonmemn() ;
if ((fspset->fsps_del eg_permavl_pool = uu_avl _pool _create(
"del eg_perm avl _pool ", sizeof (deleg_permnode_t), offsetof(
del eg_perm node_t, dpn_avl _node), del eg_perm conpare, UU DEFAULT))
== NULL)
nonen() ;

new usr/src/cnd/ zf s/ zfs_main. c 63

4086 static inline void fs_permfini(fs_permt *);

4087 static inline void who_permfini(who_permt *);

4089 static inline void

4090 fs_permset _fini(fs_permset_t *fspset)

4091 {

4092 fs_permnode_t *node = uu_list_first(fspset->fsps_list);
4094 while (node != NULL) {

4095 fs_permnode_t *next_node =

4096 uu_Tist_next(fspset->fsps_list, node);

4097 fs_permt *fsperm = &node- >f spn_ fsperm

4098 fs_permfini(fsperm;

4099 uu_li st_rem)ve(fspset ->fsps_list, node);

4100 free(node);

4101 node = next_node;

4102 }

4104 uu_avl _pool _destroy(fspset->fsps_naned_set _avl _pool);
4105 uu_avl _pool _destroy(fspset->fsps_who_perm avl _pool);
4106 uu_avl _pool _destroy(fspset->fsps_del eg_perm avl _pool);
4107 }

4109 static inline void

4110 del eg_perm.init(del eg_permt *del eg_perm zfs_del eg_who_type_t type,
4111 const char *nane)

4112 {

4113 del eg_per m >dp_who type = type

4114 del eg_per m >dp_nane = nane

4115 }

4117 static inline void

4118 who_perm.init(who_permt *who_perm fs_permt *fsperm

4119 zfs_del eg_who_type_t type, const char *nane)

4120 {

4121 uu_avl _pool _t *pool ;

4122 pool = fsperm >fsp_set->fsps_del eg_perm avl _pool ;

4124 bzer o(who_perm sizeof (who_permt));

4126 if ((who_perm >who_del eg_perm avl = uu_avl _create(pool, NULL,
4127 UU_DEFAULT)) == NULL)

4128 nomemn() ;

4130 who_per m >who_type = type;

4131 who_per m >who_nane = nane;

4132 who_per m >who_f sperm = fsperm

4133 }

4135 static inline void

4136 who_perm fini (who_permt *who_perm

4137 {

4138 del eg_perm node_t *node = uu_avl _first(who_perm >who_del eg_perm avl);
4140 whil e (node != NULL)

4141 del eg_perm node_t *next_node =

4142 uu_avl _next (who_per m >who_del eg_perm avl, node);
4144 uu_avl _renmove(who_per m >who_del eg_perm avl, node);
4145 free(node);

4146 node = next_node;

4147 }

4149 uu_avl _destroy(who_perm >who_del eg_perm avl);

4150 }

new usr/src/cnmd/ zf s/ zfs_main. c

4152 static inli
4153 fs_perm.i

ne void
nit(fs_permt

*fsperm fs_permset_t *fspset,

const char *fsnane)

4154 {

4155 uu_avl _pool _t *nset _pool = fspset->fsps_nanmed_set_avl _pool;
4156 uu_avl _pool _t *who_pool = fspset->fsps_who_perm avl _pool ;
4158 bzero(fsperm sizeof (fs_permt));

4160 if ((fsperm>fsp_sc_avl = uu_avl _create(nset_pool, NULL, UU DEFAULT))
4161 ==

4162 nonen() ;

4164 if ((fsperm>fsp_uge_avl = uu_avl _create(who_pool, NULL, UU DEFAULT))
4165 == NULL)

4166 nonen()

4168 fsperm >fsp_set = fspset;

4169 fsperm >f sp_nane = fsnane;

4170 }

4172 static inline void

4173 fs_permfini(fs_permt *fsperm

4174 {

4175 who_perm node_t *node = uu_avl _first(fsperm>fsp_sc_avl);
4176 while (node != NULL)

4177 who_per m node_t *next _node = uu_avl _next (fsperm >fsp_sc_avl,
4178 node) ;

4179 who_permt *who_perm = &node- >who_perm

4180 who_perm fi ni (who_pern;

4181 uu_avl _renove(fsperm >fsp_sc_avl, node);

4182 free(node);

4183 node = next_node;

4184 }

4186 node = uu_avl _first(fsperm>fsp_uge_avl);

4187 while (node !'= NULL) {

4188 who_per m node_t *next _node = uu_avl _next (fsperm >fsp_uge_avl,
4189 node) ;

4190 who_permt *who_perm = &node- >who_perm

4191 who_perm fini (who_perm;

4192 uu_avl _renove(fsperm >fsp_uge_avl, node);

4193 free(node);

4194 node = next_node;

4195 }

4197 uu_avl _destroy(fsperm>fsp_sc_avl);

4198 uu_avl _destroy(fsperm >fsp_uge_avl);

4199 }

4201 static void inline

4202 set_del eg_perm node(uu_avl _t *avl, del eg_permnode_t *node,

4203 zfs_del eg_who_type_t who_type, const char *nanme, char locality)
4204 {

4205 uu_avl _index_t idx = 0;

4207 del eg_perm node_t *found_node = NULL;

4208 del eg_permt *del eg_perm = &node- >dpn_perm

4210 del eg_perm.init(del eg_perm who_type, nane);

4212 if ((found node = uu_avl _find(avl, node, NULL, & dx))

4213 == NULL

4214 uu_avl _insert(avl, node, idx);

4215 el se {

4216 node = found_node;

new usr/src/cmd/ zf s/ zfs_main. c

4217
4218

4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233

4235
4236

4238
4239
4240
4241

4243
4244
4245
4246
4247
4248

4250

4252
4253
4254

4256
4257

4259
4260

4262
4263

4265
4266
4267
4268
4269
4270
4271
4272
4273
4274

4276

4278
4279

4281
4282

}

del eg_perm = &node- >dpn_perm

switch (locality) {

case ZFS_DELEG LOCAL:
del eg perm >dp_| ocal = B_TRUE;
br eak

case ZFS DELEG DESCENDENT:
del eg_perm >dp_descend = B_TRUE;
br eak;

case ZFS_DELEG NA:
br eak;

defaul t:

}

assert (B_FALSE); /* invalid locality */

static inline int
par se_who_perm(who_permt *who_perm nvlist_t *nvl, char locality)
4237 {

}

nvpair_t *nvp = NULL;

fs_permset _t *fspset = who_per m >who_f sper m >f sp_set ;
uu_avl _t *avl who perm>who del eg_perm avl ;

zf's_del eg_who type t who_type = who perm>V\,ho type;

while ((nvp = nvlist_next_nvpair(nvl, nvp)) !'= NULL) {
const char *name = nvpair_nane(nvp);
data_type_t type = nvpair_type(nvp);

uu_avl _pool _t *avl _pool = fspset->fsps_del eg_perm avl _pool ;

del eg_perm node_t *node =
safe_mal | oc(si zeof (del eg_perm node_t));

assert (type == DATA TYPE_BOOLEAN);

uu_avl _node_i ni t (node, &node->dpn_avl _node, avl _pool);
set _del eg_perm node(avl, node, who_type, nane, locality);

}

return (0);

static inline int
parse_fs_perm(fs_permt *fsperm nvlist_t *nvl)
4261 {

nvpair_t *nvp = NULL;
fs_permset_t *fspset = fsperm >fsp_set;

while ((nvp = nvlist next _nvpair(nvl, nvp)) != NULL) {
nvlist_t *nvi2 = NULL;
const char *nane = nvpai r_name(nvp);
uu_avl _t *avl = NULL;
uu_avl _pool _t *avl _pool ;
zfs_del eg_who_type_t permtype = nane[O0];
char permlocality = nanme[1];
const char *perm.nanme = nane + 3;
bool ean_t is_set = B_TRUE;
who_permt *who_perm = NULL

assert('$ == name[2]);

if (nvpair_value_nvlist(nvp, &nvl2) != 0)
return (-1);

switch (permtype) {
case ZFS_DELEG CREATE:

65

new usr/src/cnd/ zf s/ zfs_main. c

4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298

4300
4301
4302
4303
4304
4305

4307
4308

4310
4311
4312
4313
4314
4315
4316

4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333

4335
4336
4337
4338
4339

4341
4342
4343
4344
4345
4346

4348

case ZFS DELEG CREATE_SETS:
case ZFS_DELEG NAMED SET:
case ZFS_DELEG NAMED SET_SETS:

avl _pool = fspset->fsps_nanmed_set_avl _pool;
avl = fsperm >fsp_sc_avl;
br eak;

case ZFS_ DELEG USER:

case ZFS_DELEG USER SETS:
case ZFS_DELEG GROUP:

case ZFS DELEG GROUP_SETS:
case ZFS DELEG EVERYONE:

case ZFS DELEG_ EVERYCNE SETS:

avl _pool = fspset->fsps_who_perm avl _pool ;
avl = fsperm >fsp_uge_avl;
br eak;
}
if (is_set) {
who_per m node_t *found_node = NULL;
who_per m_ node_t *node = safe_mall oc(
si zeof (who_perm node_t));
who_perm = &node- >who_per m
uu_avl _index_t idx = 0;
uu_avl _node_i ni t (node, &node->who_avl _node, avl _pool);
who_perm.init(who_perm fsperm permtype, permnane);
if ((found_node = uu_avl _find(avl, node, NULL, & dx))
== NULL) {
if (avl == fsperm>fsp_uge_avl) {
ui d _t rid = 0;
struct passwd *p = NULL;
struct group *g = NULL;
const char *nice_name = NULL;
switch (permtype) {
case ZFS_DELEG USER _SETS:
case ZFS_DELEG USER:
rid = atoi(permnane);
p get pwui d(rid);
if (p)
ni ce_nane = p->pw_nane;
br eak;
case ZFS_ DELEG CROUP_SETS:
case ZFS_DELEG GROUP:
rid = atoi (permnane);
g = getgrgid(rid);
ifo(g)
ni ce_nanme = g->gr_nane;
br eak;
}
if (nice_name != NULL)
(void) strlcpy(
node- >who_per m who_ug_nane,
ni ce_nane, 256);
}
uu_avl _insert(avl, node, idx);
} else {
node = found_node;
who_perm = &node- >who_per m
}
}

(voi d) parse_who_pern(who_perm nvl2, permlocality);

new usr/src/cnd/ zf s/ zfs_main. c 67

4349 }

4351 return (0);

4352 }

4354 static inline int

4355 parse_fs_perm set(fs_permset_t *fspset, nvlist_t *nvl)

4356 {

4357 nvpair_t *nvp = NULL;

4358 uu_avl _index_t idx = 0;

4360 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {

4361 nvlist_t *nvl2 = NULL;

4362 const char *fsname = nvpair_nane(nvp);

4363 data_type_t type = nvpair_type(nvp);

4364 fs_permt *fsperm = NULL;

4365 fs_permnode_t *node = safe_malloc(sizeof (fs_permnode_t));
4366 if (node == NULL)

4367 nonemn() ;

4369 f sperm = &node- >f spn_f sperm

4371 assert (DATA _TYPE_NVLI ST == type);

4373 uu_l i st_node_i ni t (node, &node->fspn_I|ist_node,

4374 fspset->fsps_|ist_pool);

4376 idx = uu_list_numodes(fspset->fsps_list);

4377 fs_perminit(fsperm fspset, fsname);

4379 if (nvpair_value_nvlist(nvp, &vl2) != 0)

4380 return (-1);

4382 (void) parse_fs_pern(fsperm nvl2);

4384 uu_list_insert(fspset->fsps_list, node, idx);

4385 }

4387 return (0);

4388 }

4390 static inline const char *

4391 del eg_perm comment (zfs_del eg_note_t note)

4392 {

4393 const char *str ="";

4395 /* subcommands */

4396 switch (note) {

4397 /* SUBCOWANDS */

4398 case ZFS_DELEG NOTE_ALLOW

4399 str = gettext("Mist al so have the permission that is being"
4400 "\n\t\t\t\tall owed");

4401 br eak;

4402 case ZFS_DELEG NOTE_CLONE:

4403 str = gettext("Mist al so have the 'create’ ability and 'nount’"
4404 "\n\t\t\t\tability in the origin file systent);
4405 br eak;

4406 case ZFS_DELEG NOTE_CREATE

4407 str = gettext("Mist al so have the 'mount’ ability");
4408 br eak;

4409 case ZFS_DELEG NOTE_DESTROY:

4410 str = gettext("Mst also have the 'mount’ ability");
4411 br eak;

4412 case ZFS_DELEG NOTE_DI FF:

4413 str = gettext("Allows | ookup of paths within a dataset;"
4414 "\n\t\t\t\tgiven an object nunber. Odinary users need this"

new usr/src/cnd/ zf s/ zfs_main. c

4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452 |
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476

4478
4479 }

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

"\n\t\t\t\tin order to use zfs diff");
br eak;
ZFS_DELEG NOTE_HOLD:
gtr E gettext ("All ows adding a user hold to a snapshot");
r eak;
ZFS_DELEG NOTE_MOUNT
str = gettext("Allows nount/unmpunt of ZFS datasets");
br eak;
ZFS_DELEG _NOTE_PROMOTE:
str = gettext("Mst also have the 'mount’\n\t\t\t\tand"
"pronote’ ability in the origin file systeni);
br eak;
ZFS_DELEG _NOTE_RECEI VE:
str = gettext("Mst also have the 'nmount’ and 'create’"
ability");
br eak;
ZFS_DELEG _NOTE_RELEASE:
str = gettext("Allows releasing a user hold which\n\t\t\t\t"
"m ght destroy the snapshot");
br eak;
ZFS_DELEG_NOTE_RENAME:
str = gettext("Mst also have the 'mount’ and ’'create’"
"\'n\t\t\t\tability in the new parent");
br eak;
ZFS_DELEG _NOTE_ROLLBACK:
str = gettext("");
br eak;
ZFS_DELEG NOTE_SEND:
str = gettext("");
br eak;
ZFS_DELEG NOTE_SHARE
str = gettext("Allows sharing file systens over NFS or SMB"
"\n\t\t\t\tprotocol s");
br eak;
ZFS_DELEG NOTE_SNAPSHOT!
str = gettext("");
br eak;

ZFS_DELEG NOTE_VSCAN:
str = gettext("");
br eak;

/* OTHER */

ZFS_DELEG NOTE_GROUPQUOTA
str = gettext("Allows accessing any groupquota@.. property");
br eak;

ZFS_DELEG NOTE_GROUPUSED:
str = gettext("Allows reading any groupused@. .
br eak;

ZFS_DELEG_NOTE_USERPROP:
str = gettext("Allows changing any user property");
br eak;

ZFS_DELEG NOTE_USERQUOTA:

property");

str = gettext("All ows accessing any userquota@.. property");
br eak;

ZFS_DELEG NOTE_USERUSED:
str = gettext("Al |l ows reading any userused@.. property");

br eak;
/* other */

defaul t:

}

str = "";

return (str);

new usr/src/cmd/ zf s/ zfs_main. c

69

4481 struct allow opts {

4482 bool ean_t | ocal ;

4483 bool ean_t descend;

4484 bool ean_t user;

4485 bool ean_t group;

4486 bool ean_t everyone;

4487 bool ean_t create;

4488 bool ean_t set;

4489 bool ean_t recursive; /* unallow only */

4490 bool ean_t prt_usage;

4492 bool ean_t prt_perms;

4493 char *who;

4494 char *perns;

4495 const char *dat aset;

4496 };

4498 static inline int

4499 prop_cnp(const void *a, const void *b)

4500 {

4501 const char *strl = *(const char **)a;

4502 const char *str2 = *(const char **)b;

4503 return (strcnp(strl, str2));

4504 }

4506 static void

4507 al | ow_usage(bool ean_t un, bool ean_t requested, const char *nsg)
4508 {

4509 const char *opt _desc[] ={

4510 -h", gettext("show this hel p nessage and exit"),
4511 "-1", gettext("set permission locally"),

4512 "-d", gettext("set perm ssion for descents"),

4513 "-u", gettext("set permission for user"),

4514 "-g", gettext("set permission for group"),

4515 "-e", gettext("set permi ssion for everyone"),

4516 "-c", gettext("set create tine permssion"),

4517 "-s", gettext("define perm ssion set"),

4518 /* unallow only */

4519 "-r", gettext("renove pernissions recursively"),
4520 ;

4521 size_t unal | ow_si ze = si zeof (opt desc) | sizeof (char *);
4522 size_t all ow_ size = unal |l ow_si ze -

4523 const char *props[ZFS_NUM PROPS] ;

4524 int i;

4525 size_t count = 0;

4526 FILE *fp = requested ? stdout stderr;

4527 zprop_desc_t *pdtbhl = zfs_prop_get_table();

4528 const char *fnmt = gettext("% 16s % 14s\t%\n");

4530 (void) fprintf(fp, gettext("Usage: ¥%\n"), get_usage(un ? HELP_UNALLOW:
4531 HELP_ALLOW) ;

4532 (voi d) fprlntf(fp, gettext("Options:\n"));

4533 for (int i =0; 1 < (un ? unallow size : al | ow, | size); i++) {
4534 const char *opt = opt_desc[i++];

4535 const char *optdsc = opt desc[l]

4536 (void) fprintf(fp, gettext(% 10s %%\ n"), opt, optdsc);
4537 1

4539 (void) fprintf(fp, gettext("\nThe foll owing perm ssions are "
4540 "supported:\n\n")

4541 (void) fprintf(fp, fm gettext ("NAME"), gettext("TYPE"),
4542 gettext ("NOTES"));

4543 for (i = 0; i < ZFS_NUM DELEG NOTES; i ++)

4544 const char *permname = zfs_del eg_permtbl[i].z perm
4545 zfs_del eg_note_t permnote = zfs_deleg_permtbl[i].z_note;
4546 const char *permtype = del eg_permtype(permnote);

new usr/src/cnd/ zf s/ zfs_main. c

4547
4548
4549

4551
4552
4553
4554

4556
4557

4559
4560
4561

4563

4565
4566

4568
4569

4571
4572

4574
4575
4576

}

const char *perm.comment = del eg_perm comment (perm.note);
(void) fprintf(f fm, perm name, permtype, permcomment);
}
for (i =0; i < ZFS_NUM PROPS; i ++)
zprop_desc_t *pd = &pdtbl[i];
if (pd->pd_visible != B TRU I3
conti nue;

if (pd->pd_attr == PROP_READONLY)
cont i nue;

props[count ++] = pd- >pd_nane;
props[count] = NULL;
gsort(props, count, sizeof (char *), prop_cnp);

for (i = 0; i < count; i++)
(void) fprintf(fp, fnt, props[i], gettext("property"), "");

if (msg != NULL)
(void) fprintf(fp, gettext("\nzfs: error: 9%"), nsg);

exit(requested ? 0 : 2);

static inline const char *
nunge_args(int argc, char **argv, boolean_t un, size_t expected_argc,

4577 {

4578
4579
4580
4581
4582
4583
4584

4586
4587

4589
4590

4592
4593
4594
4595

4597
4598
4599

4601
4602
4603
4604
4605

4607
4608
4609
4610

4612

}

char **pernsp)

if (un &% argc == expected_argc - 1)
*pernmsp = NULL;
else if (argc == expected_argc)
*pernmsp = argv[argc - 2];
el se
al | ow_usage(un, B_FALSE,
gettext ("wong nunber of paraneters\n"));

return (argvfargc - 1]);

static void
parse_al l ow args(int argc, char **argv, boolean_t un, struct allow opts *opts)
4591 {

int uge_sum = opts->user + opts->group + opts->everyone;

int csuge_sum = opts->create + opts->set + uge_sum

int ldcsuge_sum = csuge_sum + opts->local + opts->descend;

int all_sum= un ? |ldcsuge_sum + opts->recursive : |dcsuge_sum

if (uge_sum > 1)
al | ow_usage(un, B_FALSE,
gettext("-u, -g, and -e are nutually exclusive\n"));

if (opts->prt_usage)
if (argc == 0 & al | _sum == 0)
al | ow usage(un, B _TRUE, NULL);
el se
usage(B_FALSE);

if (opts->set) {
if (csuge_sum> 1)
al | ow_usage(un, B_FALSE,
gettext("invalid options conbined with -s\n"));

opt s- >dat aset = nunge_args(argc, argv, un, 3, &opts->perns);

new usr/src/cnd/ zf s/ zfs_main. c 71

4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639

4641
4642
4643
4644
4645

4647
4648
4649

4650 {

4651
4652
4653
4654
4655
4656
4657
4658

4660
4661
4662
4663

4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678

if (argv[0][0] '="@)
Il ow_usage(un, B_FALSE,
gettext("invalid set nane: missing '@ prefix\n"));
opts->who = argv[O0];
} else if (opts->create) {
if (ldcsuge_sum > 1)
al | ow_usage(un, B_FALSE,
gettext("invalid options combined with -c\n"));
opt s- >dat aset = nunge_args(argc, argv, un, 2, &opts->perns);
} else if (opts->everyone) {
if (csuge_sum> 1)
al | ow_usage(un, B_FALSE,
gettext("invalid options combined with -e\n"));
opt s- >dat aset = nunge_args(argc, argv, un, 2, &opts->perns);
} else if (uge_sum== 0 && argc > 0 && strcnp(argv[0], "everyone")
== 0)
opt s- >everyone = B_TRUE;
arge--;
ar gv++;
opt s- >dat aset = nunge_args(argc, argv, un, 2, &opts->perns);
} else if (argc == 1 && 'un) {
opts->prt_perns = B_TRUE;
opt s- >dat aset = argv[argc-1];
} else {
opt s- >dat aset = nunge_args(argc, argv, un, 3, &opts->perns);
opts->who = argv[O0];

[
a

}

if (!opts->local & !opts->descend) {
opts->l ocal = B_TRUE;
opt s- >descend = B_TRUE;

}

static void
store_al | ow_pern(zfs_del eg_who_type_t type, boolean_t |ocal, boolean_t descend,
const char *who, char *perms, nvlist_t *top_nvl)

int i;

char 1d[2] ={ '\0", '"\O' };
char who_buf [ZFS_MAXNAMVELEN+32] ;
char base_type;

char set_type;

nvlist_t *base_nvl = NULL;
nvlist_t *set_nvl = NULL;
nvlist_t *nvl;

if (nvlist_alloc(&ase_nvl, NV_UN QUE_NAME, 0) != 0)

nome ;
if (nvlist_alloc(&et_nvl, NV_UNIQUE_NAME, 0) != 0)
nonmemn() ;

switch (type) {

case ZFS_DELEG NAMED SET_SETS:

case ZFS_DELEG NAMED SET:
set _type = ZFS_DELEG NAMED SET_SETS;
base_type = ZFS_DELEG NAMED SET;
1d[0] = ZFS_DELEG NA;
br eak;

case ZFS_DELEG CREATE_SETS:

case ZFS_DELEG CREATE:
set _type = ZFS_DELEG CREATE_SETS;
base_type = ZFS _DELEG CREATE;
1d[0] = ZFS_DELEG NA;
br eak;

case ZFS_DELEG USER SETS:

new usr/src/cmd/ zf s/ zfs_main.c

4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704

4706
4707
4708

4710
4711
4712
4713
4714
4715

4717
4718
4719
4720

4722
4723
4724
4725
4726

4728
4729
4730
4731

4733
4734
4735
4736
4737
4738
4739
4740
4741

4743
4744

case

case
case

case
case

}

ZFS_DELEG USER
set_type = ZFS DELEG USER SETS;
base_type = ZFS_DELEG USER;
if (local)
I d[0] = ZFS_DELEG LOCAL;
if (descend)
I d[1] = ZFS_DELEG DESCENDENT;
br eak;
ZFS_DELEG GROUP_SETS:
ZFS_DELEG_GROUP
set _type = ZFS DELEG GROUP_SETS;
base_type = ZFS_DELEG GROUP;
if (local)
I d[0] = ZFS DELEG LOCAL;
if (descend)
I d[1] = ZFS_DELEG DESCENDENT;
br eak;
ZFS_DELEG EVERYONE_SETS
ZFS_DELEG _EVERYONE!
set_type = ZFS DELEG EVERYONE SETS;
base_type = ZFS _DELEG EVERYONE;
if (local)
Id[0] = ZFS DELEG LOCAL;
if (descend)
I d[1] = ZFS_DELEG DESCENDENT;

if (pernms !'= NULL) {

char *curr = perns;
char *end = curr + strlen(perns);

while (curr < end)
char *delim= strchr(curr, ',");
if (delim== NULL)
delim = end;

el se
*delim="\0";
if (curr[0] =="@)
nvl = set_nvl;
el se
nvl = base_nvl;
(void) nvlist_add_bool ean(nvl, curr);
if (delim!= end)

*delim
+

curr = delim+ 1;

for (i =0; i <2; i++) {
char locality = Id[i];

if (locality == 0)

conti nue;

if (!'nvlist_enpty(base_nvl)) {
if (who 1= NULL
(voi d) snprintf(who_buf,
si zeof (who_buf), "%%$%",
base_type, locality, who);
el se
(voi d) snprintf(who_buf,
si zeof (who_buf), "%%$",
base_type, locality);

(void) nvlist_add_nvlist(top_nvl, who_buf,
base_nvl);

new usr/src/cmd/ zf s/ zfs_main. c

4745 }

4748 if (!'nvlist_enpty(set_nvl)) {

4749 if (who !'= NULL

4750 (voi d) snprintf(who_buf,

4751 si zeof (who_buf), "%%3$%",
4752 set _type, locality, who);

4753 el se

4754 (voi d) snprintf(who_buf,

4755 si zeof (who_buf), "%%$",
4756 set _type, locality);

4758 (void) nvlist_add_nvlist(top_nvl, who_buf,
4759 set_nvl);

4760 }

4761

4762 } else {

4763 for (i =0; i <2; i++) {

4764 char locality = Id[i];

4765 if (locality == 0)

4766 conti nue;

4768 if (who !'= NULL)

4769 (void) snprintf(who_buf, sizeof (who_buf),
4770 "%e%$%", base_type, locality, who);
4771 el se

4772 (void) snprintf(who_buf, sizeof (who_buf),
4773 "% %$", base_type, locality);

4774 (void) nvlist_add_bool ean(top_nvl, who_buf);

4776 if (who !'= NULL)

4777 (void) snprintf(who_buf, sizeof (who_buf),
4778 "% % $Ys", set_type, locality, who);
4779 el se

4780 (void) snprintf(who_buf, sizeof (who_buf),
4781 "%%$", set_type, locality);

4782 (void) nvlist_add_bool ean(top_nvl, who_buf);

4783 }

4784 }

4785 }

4787 static int

4788 construct _fsacl _|ist(boolean_t un, struct allow opts *opts, nvlist_t **nvlp)
4789 {

4790 if (nvlist_alloc(nvlp, NV_UNIQUE NAME, 0) != 0)

4791 nomemn() ;

4793 if (opts->set) {

4794 store_al | ow_per m(ZFS_DELEG NAMED_SET, opts->l ocal,

4795 opt s- >descend, opts->who, opts->perns, *nvlp);

4796 } else if (opts->create) {

4797 store_al | ow_per n{ ZFS_DELEG CREATE, opts->| ocal,

4798 opt s- >descend, NULL, opts->perns, *nvlp);

4799 } else if (opts->everyone) {

4800 store_al | ow_per n{ ZFS_DELEG EVERYONE, opts->| ocal,

4801 opts->descend, NULL, opts->perns, *nvlp);

4802 } else {

4803 char *curr = opts->who;

4804 char *end = curr + strlen(curr);

4806 while (curr < end) {

4807 const char *who;

4808 zfs_del eg_who_type_t who_type;

4809 char *endch;

4810 char *delim= strchr(curr, ',’);

new usr/src/cmd/ zf s/ zfs_main.c

4811
4812
4813
4814

4816
4817
4818
4819
4820

4822
4823
4824
4825
4826
4827
4828

4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842

4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856

4858
4859
4860
4861
4862
4863

4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876

char errbuf[256];
char id[64];

struct passwd *p = NULL;
struct group *g = NULL;

uid_t ri
if (deli

el se

rid = (uid_t)strtol (curr,

d;

m == NULL)
delim= end;
*delim="\0";

if (opts->user)
who_type = ZFS DELEG USER;
if (*endch !'="\0")
p = getpwnan(curr);

} else i

} else {

el se

&endch, 0);

p = getpwuiid(rid);

if (p!= NULL)

el se {

}
f (opts-

rid = p->pw_uid;

(void) snprintf(errbuf, 256, gettext(
"invalid user %"), curr);

al | ow_usage(un,

>group) {

B _TRUE, errbuf);

who_type = ZFS_DELEG GROUP;
if (*endch I'="\10")
g = getgrnam(curr);

(void) snprintf(errbuf, 256, gettext(
"invalid group %"), curr);

B_TRUE, errbuf);

g = getgrnan(curr);

g = getgrgid(rid);

(void) snprintf(errbuf, 256, gettext(
"invalid user/group %"), curr);

B_TRUE, errbuf);

el se
g = getgrgid(rid);

if (g !'= NULL)
rid = g->gr_gid;

el se {
al | ow_usage(un,

if (*endch !'="\0") {

p = getpwnan(curr);

} else {

) p = getpwiid(rid);

if (p == NULL)
if (*endch I'="\0")
} else {

}

if (p!= NULL)
who_type = ZFS_DELEG USER,
rid = p->pw_uid;

} else if (g !'= NULL) {
who_type = ZFS_DELEG GROUP;
rid = g->gr_gid;

} else {
al | ow_usage(un,

}

new usr/src/cmd/ zf s/ zfs_main. c 75 new usr/src/cmd/ zf s/ zfs_main.c 76
4878 (void) sprintf(id, "%", rid); 4944 if ((walk = uu_avl _wal k_start(who_avl, UU WALK_ROBUST)) == NULL)
4879 who = id; 4945 nomemn() ;
4881 store_al | ow_per n{who_type, opts->local, 4947 whil e ((who_node = uu_avl _wal k_next (wal k)) != NULL) {
4882 opt s- >descend, who, opts->perns, *nvlp); 4948 const char *who_nane = V\ho_node— >who_per m who_nane;
4883 curr = delim+ 1; 4949 const char *ni ce who_nane who_node- >who_per m who_ug_nane;
4884 } 4950 uu_avl _t *avl = who_node- >V\In0 perm\AIno del eg_perm avl ;
4885 } 4951 zfs_del eg_ V\.ho _type_ t who_type = who_node- >who permV\/no type;
4952 char delim =
4887 return (0); 4953 del eg_per m node t *del eg_node;
4888 } 4954 bool ean_t prt_who = B_TRUE;
4890 static void 4956 for (deleg_node = uu_avl _first(avl);
4891 print_set_creat_perns(uu_avl _t *who_avl) 4957 del eg_node != NULL;
4892 { 4958 del eg_node = uu avl _next (avl, del eg_node)) {
4893 const char *sc_title[] = { 4959 if (local != deleg_node- >dpn perm dp_| ocal ||
4894 gettext("Perm ssion sets:\n"), 4960 descend ! = del eg_node->dpn_per m dp_descend)
4895 gettext("Create tinme perm ssions:\n"), 4961 conti nue;
4896 NULL
4897 1 4963 if (prt_who) {
4898 const char **title_ptr = sc_title; 4964 const char *who = NULL;
4899 who_per m node_t *who_node = NULL; 4965 if (prt_title) {
4900 int prev_weight = -1; 4966 prt_title = B_FALSE;
4967 (void) printf(title);
4902 for (who_node = uu_avl _first(who_avl); who_node != NULL; 4968 }
4903 who_node = uu_avl _next (who_avl, who_node)) {
4904 uu_avl _t *avl = who_node- >V\Ino_perm who_del eg_perm avl ; 4970 switch (who_type) {
4905 zfs_del eg_who_type_t V\,ho _type = who_node- >who_per m who_t ype; 4971 case ZFS DELEG USER SETS:
4906 const char *V\lno name = who_node- >who_per m who_nane; 4972 case ZFS DELEG USER:
4907 int weight who typeZ\Ael ght (who_t ype); 4973 who = gettext("user");
4908 bool ean_t f| rst = B_TRUE; 4974 if (nice_who_nane)
4909 del eg_per m node_t *del eg_node; 4975 who_nane = ni ce_who_nane;
4976 br eak;
4911 if (prev_weight !'= weight) { 4977 case ZFS_DELEG GROUP_SETS:
4912 (voi d) printf (*t itle_ptr++); 4978 case ZFS_DELEG GROUP:
4913 prev_wei ght = weight; 4979 who = gettext("group");
4914 } 4980 if (nice_who_nane)
4981 who_nane = ni ce_who_nane;
4916 if (who_name == NULL || strnlen(who_nane, 1) == 0) 4982 br eak;
4917 (void) printf("\t"); 4983 case ZFS DELEG EVERYONE SETS:
4918 el se 4984 case ZFS_DELEG EVERYONE.
4919 (void) printf("\t% ", who_nane); 4985 who = gettext("everyone");
4986 who_nane = NULL;
4921 for (del eg_node = uu_avl _first(avl); deleg_node != NULL; 4987 }
4922 del eg_node = uu_avl _next(avl, del eg_node)) {
4923 if (first) { 4989 prt_who = B_| FALSE
4924 (void) printf("%", 4990 i f (who_name == NULL)
4925 del eg_node- >dpn_per m dp_nan®) ; 4991 (void) printf("\t%", who);
4926 first = B_FALSE; 4992 el se
4927 } else 4993 (void) printf("\t% %", who, who_nane);
4928 (void) printf(", %", 4994 }
4929 del eg_node- >dpn_per m dp_nan®) ;
4930 } 4996 (void) printf("%%", delim
4997 del eg_ node >dpn_per m dp_nane) ;
4932 (void) printf("\n"); 4998 delim=",";
4933 1 4999 }
4934 }
5001 if (!prt_who)
4936 static void inline 5002 (void) printf("\n");
4937 print_uge_del eg_perns(uu_avl _t *who_avl, bool ean_t |ocal, bool ean_t descend, 5003 }
4938 const char *title)
4939 { 5005 uu_avl _wal k_end(wal k) ;
4940 who_per m node_t *who_node = NULL; 5006 }
4941 bool ean_t prt_title = B_TRUE;
4942 uu_avl _wal k_t *wal k; 5008 static void

new usr/src/cmd/ zf s/ zfs_main. c

5009 print_fs_perns(fs_permset_t *fspset)

5010 {

5011 fs_permnode_t *node = NULL;

5012 char buf [ZFS_MAXNAMELEN+32] ;

5013 const char *dsname = buf;

5015 for (node = uu_list_first(fspset->fsps_list); node != NULL;
5016 node = uu_list_next(fspset->fsps_list, node)) {

5017 uu_avl _t *sc_avl = node->fspn_fspermfsp_sc_avl;
5018 uu_avl _t *uge_avl = node->fspn_fspermfsp_uge_avl;
5019 int left = 0O;

5021 (void) snprintf(buf, ZFS_MAXNAMELEN+32,

5022 gettext("---- Pernissions on % "),

5023 node- >f spn_f sperm f sp_nane) ;

5024 (void) printf(dsnane);

5025 left = 70 - strlen(buf);

5026 while (left-- > 0)

5027 (void) printf("-");

5028 (void) printf("\n");

5030 print_set_creat_pernms(sc_avl);

5031 print_uge_del eg_perms(uge_avl, B_TRUE, B_FALSE,
5032 gettext("Local perm ssi ons: \ n"));

5033 print_uge_del eg_perns(uge_avl, B_ FALSE B TRUE,
5034 gettext ("Descendent perm ssions: \n")

5035 print_uge_del eg_perns(uge_avl, B TRUE, B_ TRUE
5036 gettext ("Local +Descendent perm ssions:\n")) ;
5037 }

5038 }

5040 static fs_permset_t fs_permset = { NULL, NULL, NULL, NULL };

5042 struct del eg_perns {

5043 bool ean_t un;
5044 nvlist_t *nvl;
5045 };

5047 static int
5048 set_del eg_perns(zfs_handl e_t *zhp, void *data)

5049 {

5050 struct del eg_perns *perns = (struct del eg_perns *)data

5051 zfs_type_t zfs_type = zfs_get_type(zhp)

5053 if (zfs_type != ZFS_TYPE_FI LESYSTEM &8 zfs_type != ZFS TYPE_VOLUME)
5054 return (0)

5056 return (zfs_set_fsacl (zhp, perns->un, perns->nvl))

5057 }

5059 static int
5060 zfs_do_al |l ow_unal | ow_i npl (i nt argc, char **argv, bool ean_t un)
5061 {

5062 zfs_handl e_t *zhp;

5063 nvlist_t *permnvl = NULL;

5064 nvlist_t *update_permnvl = NULL;

5065 int error = 1;

5066 int c;

5067 struct allow opts opts = { 0 };

5069 const char *optstr = un ? "|dugecsrh" "] dugecsh";
5071 /* check opts */

5072 while ((c -getopt(argc argv, optstr)) !'=-1) {
5073 switc () {

5074 case 'l ’:

7

new usr/src/cnd/ zf s/ zfs_main. c

5075 opts.local = B _TRUE;
5076 break;

5077 case 'd:

5078 opts. descend = B_TRUE;
5079 br eak;

5080 case 'u’:

5081 opts.user = B_TRUE;
5082 br eak;

5083 case 'g':

5084 opts. group = B_TRUE;
5085 br eak;

5086 case 'e’:

5087 opts everyone = B_TRUE;
5088 br eak;

5089 case 's’:

5090 opts.set = B_TRUE;

5091 br eak;

5092 case 'c’:

5093 opts.create = B TRUE;
5094 br eak;

5095 case 'r’:

5096 opts.recursive = B_TRUE;
5097 br eak;

5098 case ':’

5099 (v0| d) fprlntf(stderr
5100 %’ option\n"), optopt);
5101 usage(B_FALSE);

5102 br eak;

5103 case 'h':

5104 opts. prt_usage = B_TRUE;
5105 break;

5106 case ' ?':

5107 (void) fprintf(stderr,
5108 optopt);

5109 usage(B_FALSE);

5110 }

5111 }

5113 argc -= optind;

5114 argv += optind;

5116 /* check argunents */

5117 parse_al | ow_args(argc, argv, un, &opts);
5119 /* try to open the dataset */

5120 if ((zhp = zfs_open(g_zfs, opts.dataset,
5121 ZFS_TYPE_VOLUME)) == NULL)

5122 (void) fprintf(stderr,

5123 opts. dat aset) ;

5124 return (-1);

5125 }

5127 if (zfs_get_fsacl(zhp, &ermnvl) != 0)
5128 got o cl eanup2;

5130 fs_permset_init(& s_permset);

5131 if (parse_fs_permset (& s_permset, permnvl)
5132 (void) fprintf(stderr,

5133 goto cl eanupl;

5134 }

5136 if (opts.prt_perns)

5137 print_fs_pernms(& s_permset);
5138 el se {

5139 (void) construct_fsacl _list(un, &opts,

gettext("m ssing argunment for

ZFS_TYPE_FI LESYSTEM |

"Failed to open dataset: %\n",

1= 0) {

“Failed to parse fsacl perm ssions\n");

&updat e_perm nvl);
0)

5140 if (zfs_set_fsacl(zhp, un, update_permnvl) I=

78

gettext("invalid option '%’\n"),

new usr/src/cmd/ zf s/ zfs_main. c

5141 goto cl eanupO;

5143 if (un & opts.recursive) {

5144 struct deleg_perns data = { un, update_permnvl };
5145 if (zfs_iter_filesystens(zhp, set_del eg_perns,
5146 &data) !'= 0)

5147 goto cl eanupO;

5148 }

5149 }

5151 error = 0;

5153 cl eanupO:

5154 nvlist_free(permnvl);

5155 if (update_permnvl = NULL)

5156 nvlist_free(update_permnvl);

5157 cl eanupl:

5158 fs_permset_fini (& s_permset);

5159 cl eanup2:

5160 zfs_cl ose(zhp);

5162 return (error);

5163 }

5165 /*

5166 * zfs allow [-r] [-t] <tag> <snap> ...

5167 *

5168 * -r Recursi vely hold

5169 * -t Tenmporary hol d (hidden option)

5170 *

5171 * Apply a user-hold with the given tag to the list of snapshots.
5172 */

5173 static int

5174 zfs_do_al l ow(int argc, char **argv)

5175 {

5176 return (zfs_do_all ow unall ow_ i npl (argc, argv, B _FALSE));
5177 }

5179 /*

5180 * zfs unallow [-r] [-t] <tag> <snap> ...

5181 *

5182 * -r Recursively hold

5183 * -t Tenporary hol d (hidden option)

5184 *

5185 * Apply a user-hold with the given tag to the list of snapshots.
5186 *

5187 static int

5188 zfs_do_unal l ow(int argc, char **argv)

5189 {

5190 return (zfs_do_all ow unal l ow_ i npl (argc, argv, B TRUE));
5191 }

5193 static int

5194 {zf s_do_hold_rele_inpl (int argc, char **argv, bool ean_t hol ding)
5195

5196 int errors = 0;

5197 int i;

5198 const char *tag;

5199 bool ean_t recursive = B _FALSE;

5200 bool ean_t tenphol d = B_FALSE;

5201 const char *opts = holding ? "rt" : "r";

5202 int c;

5204 /* check options */

5205 while ((c = getopt(argc, argv, opts)) !=-1) {

5206 switch (c) {

new usr/src/cnd/ zf s/ zfs_main. c

5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218

5220
5221

5223
5224
5225

5227
5228
5229

5231
5232
5233
5234
5235

5237
5238
5239
5240
5241

5243
5244
5245
5246
5247
5248
5249
5250
5251

5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268

5270
5271 }

case 'r’:
recursive = B _TRUE;
br eak;

case 't’:
tenmphol d = B_TRUE;
break;

case ' ?:
(voi d) fpri ntf(stderr

opt
usage(B FALSE)
}

argc -= optind;
argv += optind;

/* check nunber of argunments */
if (argc < 2)
usage(B_FALSE) ;

tag = argv[O0];
--argc;
++argv;

if (holdlng &% tag[0] ==".")
/* tags starting with

80

gettext("invalid option "%’ \n"),

are reserved for libzfs */

(void) fprintf(stderr, gettext("tag may not start with '.’\n"));

) usage(B_FALSE) ;

for (i =0; i < argc; ++i) {
zfs_handl e_t *zhp;
char parent[ZFS_MAXNAMELEN] ;
const char *delim
char *path = argv[i];

delim= strchr(path, ' @);
if (delim== NULL)

(void) fprintf(stderr,

gettext(" 9%’ is
++errors;
conti nue;

}
(void) strncpy(parent pat h,
parent[delim- path] = '\0";

zhp = zfs_open(g_zfs, parent

not a snapshot\n"), path);

delim- path);

ZFS TYPE FI LESYSTEM | ZFS TYPE VOLUME)

if (zhp == NULL) {
++errors;
conti nue;

}
if (holding) {
if (zfs_hol d(zhp, del

imtl, tag, recursive,

tenphol d, B FALSE, -1, 0, 0) != 0)

++errors;
} else {
if (zfs_rel ease(zhp,
++errors;

}
zfs_cl ose(zhp);

}

return (errors !'= 0);

del i m+1l, tag, recursive) != 0)

new usr/src/cmd/ zf s/ zfs_main. c

5273
5274
5275
5276
5277
5278
5279
5280
5281
5282

/
zfs hold [-r] [-t] <tag> <snap> ...

* -r Recursively hold
* -t Tenmporary hol d (hidden option)

Apply a user-hold with the given tag to the list of snapshots.
*
/

static int

zfs_do_hol d(int argc, char **argv)

5283 {

5284
5285

5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298

5300
5301
5302
5303
5304
5305
5306

5308
5309

return (zfs_do_hold_rele_inpl(argc, argv, B_TRUE));
zfs release [-r] <tag> <snap> ...
-r Recursi vely rel ease

Rel ease a user-hold with the given tag fromthe list of snapshots.

A
-~

static int
zfs_do_rel ease(int argc,

{

}

typedef struct holds_chdata {
bool ean_t cb_recursive;
const char *cb_snapnane;
nvlist_t **cb_nvl p;
size_t cb_max_nanel en;
size_t cb_nmax_t agl en;
} holds_chdata_t;

#def i ne STRFTIME_FMI_STR "% % % k: 9% %"
#def i ne DATETI ME_BUF_LEN (32)

char **argv)

return (zfs_do_hold_rele_inpl(argc, argv, B_FALSE));

5310 /*

5311
5312
5313
5314

*
&/
static void
print_hol ds(bool ean_t scripted, size_t nwidth,

size_t tagwidth, nvlist_t *nvl)

5315 {

5316
5317
5318
5319

5321
5322
5323
5324
5325
5326
5327
5328
5329
5330

5332
5333
5334
5335
5336
5337
5338

int i;

nvpair_t
char *hdr_col s[]
const char *col;

*nvp = NULL;

= { "NAME", "TAG', "TIMESTAMP" };

if (!scripted) {
for (I =0; i < 3; i++)
I = gettext(hdr _cols[i]);
(i <2
(void) printf("%*s ", i
col);

0;
co
if
? tagwidth : nw dth,
el se

(void) printf("%\n", col);

}

whi | e ((nvp nvlist_next_nvpair(nvl,
char *zname = nvpair
nvli st_t *nvl 2;
nvpair_t *nvp2 = NULL;
(voi d) nvpair_val ue_nvlist(nvp, &nvl2);
while ((nvp2 = nvlist_next_nvpair(nvl2,
char tsbuf [DATETI ME_BUF_LEN] ;

nvp)) != NULL) {

_nhane(nvp);

nvp2)) !'= NULL) {

81

new usr/src/cmd/ zf s/ zfs_main.c

5339 char *tagname = nvpair_name(nvp2);
5340 uint64_t val = 0;

5341 tine_t tine;

5342 struct tmt;

5343 char sep = scripted ? "\t' : ' ';
5344 size_t sepnum = scripted ? 1 : 2;
5346 (v0|d) nvpai r _val ue_ui nt 64(nvp2, &val);
5347 time = (time_t)val;

5348 (void) localtime r(&tlma &t);

5349 (void) strftime(tsbuf, DATETI ME_BUF_LEN,
5350 get t ext (STRFTI ME_FMT_STR), &t);
5352 (void) printf("%*s%c%*s%c%\n", nwdth,
5353 sepnum sep, tagw dth, tagnane, sepnum
5354 }

5355 }

5356 }

5358 /*

5359 * Generic callback function to list a dataset or snapshot.
5360 */

5361 static int

5362 hol ds_cal | back(zfs_handl e_t *zhp, void *data)

5363 {

5364 hol ds_cbdata_t *cbp = data;

5365 nvlist_t *top_nvl = *cbp->cb_nvlp;

5366 nvlist_t *nvl = NULL;

5367 nvpair_t *nvp = NULL;

5368 const char *zname = zfs_get_nanme(zhp);

5369 size_t znanel en = strnl en(znane, ZFS_MAXNAMELEN) ;
5371 if (cbp->cb_recursive) {

5372 const char *snapnane;

5373 char *delim = strchr(znane, '@);

5374 if (delim== NULL)

5375 return (0);

5377 snapnanme = delim+ 1;

5378 if (strcnp(cbp->cb_snapnane, snapnane))
5379 return (0);

5380 }

5382 if (zfs_get_holds(zhp, &nvl) != 0)

5383 return (-1);

5385 if (znanel en > cbp->cb_max_nanel en)

5386 cbp->cb_max_nanel en = znanel en;

5388 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
5389 const char *tag = nvpair_nane(nvp);

5390 size_t taglen = strnlen(tag, MAXNAMELEN);
5391 if (taglen > cbp->cb_nax_tagl en)

5392 cbp->cb_max_taglen = taglen;

5393 }

5395 return (nvlist_add_nvlist(top_nvl, znane, nvl));
5396 }

5398 /*

5399 * zfs holds [-r] <snap> ...

5400 *

5401 * -r Recursively hold

5402 */

5403 static int

5404 zfs_do_hol ds(int argc, char **argv)

82

znane,

sep,

t sbuf);

new usr/src/cmd/ zf s/ zfs_main. c

5405 {
5406
5407
5408
5409
5410
5411
5412

5414
5415

5417
5418
5419

5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435

5437
5438
5439
5440

5442
5443

5445
5446
5447

5449
5450

5452
5453
5454
5455

5457
5458
5459
5460
5461
5462
5463
5464
5465
5466

5468
5469
5470

int errors = 0;

int c;
int i;
bool ean_t scripted = B_FALSE;
bool ean_t recursive = B_FALSE;

const char *opts = "rH';
nvlist_t *nvl;

int types = ZFS_TYPE_SNAPSHOT;
hol ds_chdata_t cb = { 0 };

int limt
int ret =
int flags

nouu

0;
0

/* check options */

while ((c = getopt(f{argc, argv, opts)) !=-1) {

switch (c)

case 'r
recursive = B_TRUE;
break;

case 'H:

scripted =
br eak;
case ' ?':
(void) fprintf(stderr,
optopt);
usage(B_FALSE);

B_TRUE;

}

if (recursive)

{
types | = ZFS TYPE_FI LESYSTEM | ZFS_TYPE_VOLUVE

flags | = ZFS_| TER_RECURSE;
}

argc -= optind;
argv += optind;

/* check nunber of argunents */
if (argc < 1)
usage(B_FALSE) ;

if (nvlist_alloc(&vl,
nonmen() ;

NV_UNI QUE_NAME, 0)

for (i =0; i < argc; ++i) {
char *snapshot = argv[i];
const char *delim
const char *snapnane;

delim = strchr(snapshot, '@);
if (delim== NULL)
(void) fprintf(stderr,

gettext("' %’ is not a snapshot\n"),

++errors;
cont i nue;

snapnanme = delim+ 1;
if (recursive)
snapshot[deli m- snapshot]

cb.cb _recursive = recursive;
ch. ch_: snapnama = snapnane;
cb.cb_nvlp = &nvl;

gettext ("

1= 0)

= @

83

invalid option '%’\n"),

snapshot) ;

new usr/src/cnd/ zf s/ zfs_main. c

5472 /*

5473 * 1. collect holds data, set format options
5474 */

5475 ret = zfs_for_each(argc, argv, flags, types, NULL, NULL,
5476 hol ds_cal Thack, &cb);

5477 if (ret 1= 0)

5478 ++errors;

5479 }

5481 I*

5482 * 2. print holds data

5483 *

5484 print_hol ds(scripted, cb.cb_max_nanel en, cb.cb_nmax_taglen, nvl);
5486 if (nvlist_enpty(nvl)

5487 (void) pri ntf(gettext(no datasets available\n"));
5489 nvlist_free(nvl);

5491 return (0 != errors);

5492 }

5494 #defi ne CHECK_SPI NNER 30

5495 #define SPINNER _TI ME 3 /* seconds */

5496 #define MOUNT_TIME 5 /* seconds */

5498 static int

5499 get_one_dat aset (zfs_handl e_t *zhp, void *data)

5500 {

5501 static char *spin[] = { "-", "\\", "|", "/" };

5502 static int spinval = O;

5503 static int spincheck = 0;

5504 static tine_t last_spin_time = (time_t)O0;

5505 get_all _cb_t *cbp = data;

5506 zfs_type_t type = zfs_get_type(zhp);

5508 if (cbp->cb_verbose) {

5509 if (--spincheck < 0) {

5510 tinme t now = tinme(NULL);

5511 if (Tast_spin_time + SPI NNER_TI ME < now) {
5512 updat e_pro gress(spl n[spi nval ++ % 4]);
5513 last_spin_time = now,

5514 }

5515 spi ncheck = CHECK_SPI NNER;

5516 }

5517 }

5519 /*

5520 * |Interate over any nested datasets.

5521 */

5522 if (zfs_iter_filesystens(zhp, get_one_dataset, data) != 0) {
5523 zfs_cl ose(zhp);

5524 return (1);

5525 }

5527 I*

5528 * Skip any datasets whose type does not match.

5529 */

5530 if ((type & ZFS TYPE FI LESYSTEM == 0) {

5531 zfs_cl ose(zhp);

5532 return (0);

5533 }

5534 i bzf s_add_handl e(cbp, zhp);

5535 assert (cbp->cb_used <= cbp- >cb alloc);

limt,

new usr/src/cmd/ zf s/ zfs_main. c

5537 return (0);

5538 }

5540 static void

5541 get_al | _datasets(zfs_handle_t ***dslist, size_t *count, bool ean_t verbose)
5542 {

5543 get_all_cb_t cb = { 0 };

5544 cb. cb_verbose = verbose;

5545 ch. cb_getone = get_one_dat aset;

5547 if (verbose)

5548 set _progress_header (gettext ("Readi ng ZFS config"));

5549 (void) zfs_iter_root(g_zfs, get_one_dataset, &cb);

5551 *dslist = cb.cb_handl es;

5552 *count = cb.cb_used;

5554 if (verbose)

5555 finish_progress(gettext("done."));

5556 }

5558 /*

5559 * Ceneric callback for sharing or mounting filesystems. Because the code
5560 * similar, we have a commobn function with an extra paraneter to deternine
5561 * npde we are using.

5562 */

5563 #defi ne OP_SHARE 0x1

5564 #defi ne OP_MOUNT 0x2

5566 /*

5567 * Share or nount a dataset.

5568 */

5569 static int
5570 share_nount _one(zfs_handl e_t *zhp, int op, int flags, char *protocol,

5571
5572
5573
5574
5575
5576
5577
5578
5579

5581

5583
5584
5585
5586
5587
5588
5589

5591
5592
5593

5595
5596
5597
5598

5600
5601
5602

{

bool ean_t explicit, const char *options)

char nount poi nt [ZFS_MAXPROPLEN ;

char shareopt s[ZFS_MAXPROPLEN ;

char snbshar eopt s[ZFS_MAXPROPLEN ;

const char *cndnane = op == OP_SHARE ? "share" : "nmount";
struct mttab mt;

uint64_t zoned, cannount;

bool ean_t shared_nfs, shared_snb;

assert(zfs_get _type(zhp) & ZFS _TYPE_FI LESYSTEM) ;

/
Check to make sure we can nount/share this dataset. |f we
are in the global zone and the filesystemis exported to a
| ocal zone, or if we are in a |ocal zone and the
filesystemis not exported, then it is an error.

* ok kb F ok

zoned = zfs_prop_get_int(zhp, ZFS_PROP_ZONED);

if (zoned & getzoneid() == GLOBAL_ZONEI D) {

if (lexplicit)

return (0);

(void) fprintf(stderr, gettext("cannot % '%’': "
"dataset is exported to a local zone\n"), cndnane,
zf s_get _nane(zhp));

return (1);

} else if (!zoned && getzoneid() != GLOBAL_ZONEID) {
if (lexplicit)
return (0);

85

is so
whi ch

new usr/src/cmd/ zf s/ zfs_main.c

5604
5605
5606
5607
5608

5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620

5622
5623
5624
5625

5627
5628
5629
5630
5631
5632
5633

5635
5636
5637
5638
5639
5640
5641
5642

5644
5645
5646
5647
5648
5649

5651
5652
5653

5655
5656
5657
5658

5660
5661
5662
5663
5664
5665
5666
5667
5668

(voi d) fprintf(stderr, gettext("cannot % ’'%’:
"per m ssion denied\n"), cndnane,
zfs get _nane(zhp));
return (1);
}
/*
* lgnore any filesystems which don’t apply to us. This

i ncludes those wth a | egacy nmountpoint, or those with
Iegacy share options.

verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPO NT, nount point,
sizeof (mountpoint), NULL, NUCL, 0, B FALSE) == 0);
verify(zfs_prop_get(zhp, ZFS | PR(]3 SHARENFS shar eopt s,
si zeof (shareopts), NULL, NULL, 0, B FALSE) == 0);
verify(zfs_prop_ get(zhp, ZFS_PROP_SHARESMB, sm)shareopts
si zeof (snbshareopts), NULL, NULL, 0, B FALSE) == 0);

if (op == OP_SHARE && strcnp(shareopts, "off") == 0 &&
strcnp(snbshareopts "off") == 0) {
it (lexplicit)
return (0);

(void) fprintf(stderr, gettext("cannot share ' %’ :
"l egacy share\n"), zfs_get_nane(zhp));

(void) fprintf(stderr, gettext("use share(1M to "
"share this filesystem or set "
"sharenfs property on\n"));

return (1);
}
/*
* We cannot share or nount |egacy filesystens. If the
* shareopts is non-legacy but the nmountpoint is |egacy, we
* treat It as a | egacy share.
*
/
if (strcnp(rmountpoint, "legacy") == 0) {
if (lexplicit)
return (0);
(void) fprintf(stderr, gettext("cannot % U "
"l egacy nountpoint\n"), cndnane, zfs get nama(zhp))
(void) fprintf(stderr, gettext(use %(1M t
"% this filesystemn"), cndnane, cndnarre)
return (1);
}
if (strcnp(rountpoint, "none") == 0) {
if (lexplicit)
return (0);
(void) fprintf(stderr, gettext("cannot % '%’: no "
"mount poi nt set\n"), cmdnane, zfs_get_nane(zhp));
return (1);
}
/*
* cannount explicit out come
* on no pass through
* on yes pass through
* of f no return 0
* of f yes display error, return 1
* noaut o no return 0
* noaut o yes pass through
*

86

new usr/src/cmd/ zf s/ zfs_main. c 87 new usr/src/cmd/ zf s/ zfs_main.c 88
5669 cannount = zfs _Prop_ get _i nt (zhp, ZFS_PROP_CANMOUNT) ; 5735 el se
5670 if (canmount == ZFS_CANMOUNT_OFF) { 5736 mt. mt_mtopts = (char *)options;
5671 if (lexplicit)
5672 return (0); 5738 if (!hasmtopt (&mt, MNTOPT_REMOUNT) &&
5739 zfs_is_mount ed(zhp, NULL)) {
5674 (voi d) fpri ntf(st derr, gettext("cannot % '%’': " 5740 if (lexplicit)
5675 ‘cannmount’ property is set to 'off’\n"), cndnane, 5741 return (0);
5676 zfs get _nane(zhp));
5677 return (1); 5743 (voi d) fprlntf(stderr gettext("cannot nount "
5678 } elseif (canrmunt == ZFS_CANMOUNT_NQAUTO && !explicit) { 5744 | esystem al ready nounted\n"),
5679 return (0); 5745 zfs_get narre(zhp))
5680 } 5746 return (1);
5747 }
5682 /*
5683 * At this point, we have verified that the nountpoint and/or 5749 if (zfs_nmount(zhp, options, flags) != 0)
5684 * shareopts are appropriate for auto nanagenent. If the 5750 return (1);
5685 * filesystemis already nounted or shared, return (failing 5751 br eak;
5686 * for explicit requests); otherw se nmount or share the 5752 }
5687 * filesystem
5688 */ 5754 return (0);
5689 switch (op) { 5755 }
5690 case OP_SHARI
5757 | *
5692 shared_nfs = zfs_is_shared_nfs(zhp, NULL); 5758 * Reports progress in the form"(current/total)". Not thread-safe.
5693 shared_snmb = zfs_is_shared_snmb(zhp, NULL); 5759 */
5760 static void
5695 if (shared_nfs && shared_snb || 5761 report_nount _progress(int current, int total)
5696 (shared_nfs && strcnrp(shareopts "on") == 0 && 5762 {
5697 strcnp(snbshareopts, "off") == 0) || 5763 static tine_t |ast progress time = 0;
5698 (shared_snb && strcnp(srrbshareopts, "on") == 0 && 5764 time_t now = time(NULL);
5699 strcnp(shareopts, "off") == 0)) { 5765 char i nfo[32];
5700 if (lexplicit)
5701 return (0); 5767 /* report 1..n instead of 0..n-1 */
5768 ++current;
5703 (voi d) fprintf(stderr, gettext("cannot share "
5704 "o’ : filesystem already shared\n"), 5770 /* display header if we're here for the first tine */
5705 zfs_get _nane(zhp)); 5771 if (current == 1) {
5706 return (1); 5772 set _progress_header (gettext("Munting ZFS fil esystens"));
5707 } 5773 } else if (current != total &% last_progress_time + MOUNT_TI ME >= now) {
5774 /* too soon to report again */
5709 if (!zfs_is_nmounted(zhp, NULL) && 5775 return;
5710 zfs_mount (zhp, NULL, 0) != 0) 5776 }
5711 return (1);
5778 | ast _progress_tinme = now,
5713 if (protocol == NULL) {
5714 if (zfs_shareall (zhp) != 0) 5780 (void) sprintf(info, "(%l/%l)", current, total);
5715 return (1);
5716 } else if (strcnp(protocol, "nfs") == 0) { 5782 if (current == total)
5717 if (zfs_share nfs(zhp)) 5783 finish_progress(info);
5718 return (1); 5784 el se
5719 } else if (strcmp(protocol, "snb") == 0) { 5785 updat e_progress(info);
5720 if (zfs_share snb(zhp)) 5786 }
5721 return (1);
5722 } else { 5788 static void
5723 (voi d) fprintf(stderr, gettext(" cannot share " 5789 append_options(char *mtopts, char *newopts)
5724 %’': invalid share type ' %’ 5790 {
5725 "specified\n"), 5791 int len = strlen(mtopts);
5726 zf s_get _name(zhp) , protocol);
5727 return (1); 5793 /* original length plus new string to append plus 1 for the comma */
5728 } 5794 if (len + 1 + strlen(newopts) >= MNT_LI NE_MAX) {
5795 (void) fprintf(stderr, gettext("the opts argunent for "
5730 br eak; 5796 "' 9%’ option is too long (nmore than % chars)\n"),
5797 "-0", MNT_LINE_MAX);
5732 case OP_MOUNT: 5798 usage(B_FALSE) ;
5733 if (options == NULL) 5799 }
5734 mt. mt_mtopts = "";

new usr/src/cmd/ zf s/ zfs_main. c

89

5801 if (*mtopts)

5802 mtopts[lent++] =",";

5804 (void) strcpy(&mtopts[len], newopts);

5805

5807 static int

5808 share_nount (int op, int argc, char **argv)

5809 {

5810 int do_all = 0;

5811 bool ean_t verbose = B_FALSE;

5812 int c, ret =0;

5813 char *options = NULL;

5814 int flags = 0;

5816 /* check options */

5817 whil e ((c = getopt(argc, argv, op == OP_MOUNT ? ":avo: O' : "a"))
5818 1=-1) {

5819 swtch (c) {

5820 case 'a’:

5821 do_all = 1;

5822 break;

5823 case 'v':

5824 verbose = B_TRUE;

5825 br eak;

5826 case '0:

5827 if (*optarg == 0) {

5828 (voi d) fprlntf(st derr, gettext(enpty nount
5829 "options (-0) speC|f| ed\n"));
5830 usage(B_FALSE);

5831 }

5833 if (options == NULL)

5834 options = safe_mall oc(MNT_LI NE_MAX + 1);
5836 /* option validation is done |ater */
5837 append_opti ons(options, optarg);

5838 br eak;

5840 case 'O :

5841 flags | = M5S_OVERLAY;

5842 br eak;

5843 case ':’:

5844 (void) fprintf(stderr, gettext("m ssing argunent
5845 "'o¢’ option\n"), optopt);

5846 usage(B_FALSE);

5847 br eak;

5848 case ' ?’

5849 (void) fprintf(stderr, gettext("invalid option "%’ \n"),
5850 optopt);

5851 usage(B_FALSE);

5852 }

5853 }

5855 argc -= optind;

5856 argv += optind;

5858 /* check nunber of arguments */

5859 if (do_all) {

5860 zfs_handl e_t **dslist = NULL;

5861 size_t i, count = O;

5862 char *protocol = NULL;

5864 if (op == OP_SHARE && argc > 0) {

5865 |f (strcnp(argv[0], "nfs") != 0 &&

5866 strcnp(argv[0], "snmb") !'= 0) {

new usr/src/cmd/ zf s/ zfs_main.c

5867
5868
5869
5870
5871
5872
5873
5874

5876
5877
5878
5879

5881
5882

5884
5885

5887

5889
5890
5891

5893
5894
5895
5896
5897

5899
5900
5901

5903
5904
5905
5906
5907

5909
5910
5911
5912
5913
5914
5915
5916
5917
5918

5920
5921
5922

5924
5925

5927
5928
5929
5930
5931

} else i

} else {

90

(voi d) fprlntf(stderr gettext("share type "

must be 'nfs’ or 'snb’\n"));
usage(B_FALSE) ;

}
protocol = argv[O0];

argc--;
ar gv++;

}

if (argc !'=0) {
(void) fprintf(stderr, gettext("too many argunents
usage(B_FALSE);

}

start_progress_tinmer();
get _al | _dat asets(&dslist, &count, verbose);

if (count == 0)

return (0);
gsort(dslist, count, sizeof (void *), |ibzfs_dataset_cnp);
for (i =0; i < count; i++) {

if (verbose)
report_nount_progress(i, count);

\n"));

if (share_mount_one(dslist[i], op, flags, protocol,

B_ FALSE optl ons) !=0)

1;
zfs_cl ose(dsllst[l])

}

free(dslist);
f (argc == 0)
struct mttab entry;

if ((op == OP_SHARE) || (options != NULL)) {
(v0|d) fprintf(stderr, gettext("m
"argunent (specify -a for aII)\ "))
usage(B_FALSE) ;
}

| *

| ng filesystem"

* When nount is given no argunents, go through /etc/mttab and

* display any active ZFS nmounts. W hide any snapshots,
* they are controlled automatically.
*

/
rew nd(mttab_file);

e
while (getmtent(mttab_file, &entry) == 0) {
if (strcnp(entry. mt_fstype, MNTTYPE_ZFS) != 0 ||
strchr(entry. mt_special, @) != NULL)
cont i nue;

(void) printf("%30s %\n", entry.mt_special,
entry. mt_nountp);

}

zfs_handl e_t *zhp;

if (argc > 1) {
(void) fprintf(stderr,
gettext("too many argunents\n"));
usage(B_FALSE) ;

since

new usr/src/cnd/ zf s/ zfs_main. c 91

5933 if ((zhp = zfs_open(g_zfs, argv[O0],

5934 ZFS TYPE_FTLESYSTEM) == NULL) {

5935 ret = 1;

5936 } else {

5937 ret = share_nount_one(zhp, op, flags, NULL, B_TRUE,
5938 options);

5939 zfs_cl ose(zhp);

5940 }

5941 }

5943 return (ret);

5944 }

5946 /*

5947 * zfs nount -a [nfs]

5948 * zfs mount filesystem

5949 *

5950 * Mount all filesystens, or nount the given filesystem

5951 *

5952 static int

5953 zfs_do_mount (int argc, char **argv)

5954 {

5955 return (share_nount (OP_MOUNT, argc, argv));

5956 }

5958 /*

5959 * zfs share -a [nfs | snb]

5960 * zfs share filesystem

5961 *

5962 * Share all filesystens, or share the given fil esystem

5963 *

5964 static int

5965 zfs_do_share(int argc, char **argv)

5966 {

5967 return (share_nount (OP_SHARE, argc, argv));

5968 }

5970 typedef struct unshare_unnount_node {

5971 zfs_handl e_t *un_zhp;

5972 char *un_nount p;

5973 uu_avl _node_t un_avl node;

5974 } unshare_unnount _node_t;

5976 /* ARGSUSED */

5977 static int

5978 ?nshare_unnt)unt_con’par e(const void *larg, const void *rarg, void *unused)
5979

5980 const unshare_unnount _node_t *I = larg;

5981 const unshare_unnount _node_t *r = rarg;

5983 return (strcenmp(l->un_nountp, r->un_nountp));

5984 }

5986 /*

5987 * Convenience routine used by zfs_do_unount() and manual _unmount(). G ven an
5988 * absolute path, find the entry /etc/mttab, verify that its a ZFS fil esystem
5989 * and unnount it appropriately.

5990 */

5991 static int

5992 unshar e_unnount _pat h(int op, char *path, int flags, boolean_t is_nanual)
5993 {

5994 zfs_handl e_t *zhp

5995 int ret =0;

5996 struct stat64 statbuf;

5997 struct extmttab entry,

5998 const char *cndnane = (op == OP_SHARE) ? "unshare" "unmount ";

new usr/src/cmd/ zf s/ zfs_main.c

5999

6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012

6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035

6037
6038
6039
6040
6041

6043
6044
6045

6047
6048
6049
6050
6051
6052
6053
6054
6055
6056

6058
6059
6060

6062
6063
6064

ino_t path_inode;

/
Search for the path in /etc/ mttab.
spemflc path, which can be fool ed by non-standard paths (i.

“//"), we stat() the path and search for the correspondi ng
(rra] or,mnor) device pair.

Rat her than | ooking for the

* ok ok ok ¥

*

if (stat64(path, &statbuf) != 0)
(voird) fprintf(stderr, gettext("cannot % '%’:
cndnane, path, strerror(errno));
return (1);

%s\n"),

}
pat h_i node = statbuf.st_ino;
*

* Search for the given (nmgjor,mnor) pair in the nmount table.
*|

rew (rmttab file);
while ((ret = getextnntent(nnttab file, &ntry, 0)) == 0) {
if (entry.mt_mgjor == rrajor(statbuf st _dev) &&
entry. mt_m nor == mi nor(statbuf.st_dev))
break;
}
if (ret 1= 0)

{
if (op == OP_SHARE) {
(voi d) fprintf(stderr, gettext("cannot % '%’ : not
‘currently m)unted\n"), cmdnane, path);
return (1);

}
(void) fprintf(stderr,

pat h) ;.
if ((ret = unount 2(path, flags)) != 0)
(void) fprintf(stderr, gettext("%: %\n"), path,
strerror(errno));
return (ret !'= 0);

}
if (strcrp(entry. mt_fstype, MNTTYPE_ZFS) != 0)

(void) fprintf(stderr, gettext("cannot % '%': not a ZFS "
"filesystemn"), cndnane, path);
return (1);
}
if ((zhp = zfs_open(g_zfs, entry. mt_special,
ZFS_TYPE_FI LESYSTEM)) == NULL)
return (1);
ret = 1;
if (stat64(entry. mt_nountp, &statbuf) != 0) {
(void) fprintf(stderr, gettext("cannot % '%’': %\n"),

cndnane, path, strerror(errno));
goto out;
} else if (statbuf.st_ino != path_i node) {
(voi d) fprlntf(stderr get t ext (" cannot
% '%’': not a nountpoint\n"), cndnane, path);
goto out;

}

if (op == OP_SHARE) {
char nfs_mt _prop[ZFS_MAXPROPLEN] ;
char snbshare_prop[ZFS MAXPR(PLEN]

verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS, nfs_mmt_prop,
si zeof (nfs_mmt_prop), NULL, NULL, 0, B FALSE) == 0);
verify(zfs_prop_get(zhp, ZFS_PRCP_SHARESNB, snbshar e_pr op,

gettext("warning: % not in mttab\n"),

new usr/src/cmd/ zf s/ zfs_main. c

6065 si zeof (smbshare_prop), NULL, NULL, 0, B_FALSE) == 0);
6067 if (strenmp(nfs_mt_prop, "off") == 0 &&

6068 strcnp(snbshare_prop, "off") == 0) {

6069 (void) fprintf(stderr, gettext("cannot unshare "
6070 "'’ : |legacy share\n"), path);

6071 (void) fprintf(stderr, gettext("use "

6072 "unshare(1M to unshare this filesystemn"));
6073 } else if (!zfs_is_shared(zhp))

6074 (void) fprintf(stderr, gettext("cannot unshare ' %’ :
6075 "not currently shared\n"), path);

6076 } else {

6077 ret = zfs_unshareal | _bypath(zhp, path);

6078

6079 } else {

6080 char nt pt _prop[ZFS_MAXPROPLEN ;

6082 verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPO NT, ntpt_prop,
6083 si zeof (mtpt_prop), NULL, NULL, 0, B FALSE) == 0);
6085 if (is_manual)

6086 ret = zfs_unmount (zhp, NULL, flags);

6087 } else if (strcnp(ntpt_prop, "legacy") == 0) {

6088 (voi d) fprintf(stderr, gettext ("cannot unnount
6089 "9’ : legacy nmountpoint\n"),

6090 zfs get _nane(zhp));

6091 (voi d) fprintf(stderr, gettext("use unmount (1M
6092 "to unmount this fil esystemn"));

6093 } else {

6094 ret = zfs_unmountal | (zhp, flags);

6095 }

6096 1

6098 out:

6099 zfs_cl ose(zhp);

6101 return (ret !'= 0);

6102 }

6104 /*

6105 * Ceneric callback for unsharing or unnmounting a fil esystem

6106 */

6107 static int

6108 unshare_unnount (i nt op, int argc, char **argv)

6109 {

6110 int do_all = 0;

6111 int flags = 0;

6112 int ret = 0;

6113 int c;

6114 zfs_handl e_t *zhp;

6115 char nfs_mmt _prop[ZFS_MAXPROPLEN] ;

6116 char sharesnb[ZFS_MAXPROPLEN ;

6118 /* check options */

6119 while ((c = getopt(argc argv, op == OP_SHARE ? "a" : "af")) !=-1) {
6120 switch (c)

6121 case 'a':

6122 do_all = 1;

6123 br eak;

6124 case 'f’:

6125 flags = MS_FORCE;

6126 br eak;

6127 case ' ?':

6128 (void) fprintf(stderr, gettext("invalid option ’'%’\n"),
6129 optopt);

6130 usage(B_FALSE) ;

93

new usr/src/cnd/ zf s/ zfs_main. c 94
6131 }

6132 1

6134 argc -= optind;

6135 argv += optind;

6137 if (do_all) {

6138 /*

6139 * We could nmeke use of zfs_for_each() to walk all datasets in
6140 * the system but this would be very inefficient, especially
6141 * since we would have to linearly search /etc/mttab for each
6142 * one. Instead, do one pass through /etc/mttab | ooking for
6143 * zfs entries and call zfs_unnount() for each one.

6144 *

6145 * Things get a little tricky if the administrator has created
6146 * nmount poi nts beneath other ZFS filesystens. In this case, we
6147 * have to unnmount the deepest filesystens first. To acconplish
6148 * this, we place all the nountpoints in an AVL tree sorted by
6149 * the special type (dataset nane), and walk the result in
6150 * reverse to nake sure to get any snapshots first.

6151 */

6152 struct mttab entry;

6153 uu_avl _pool _t *pool ;

6154 uu_avl _t *tree;

6155 unshar e_unnount _node_t *node;

6156 uu_avl _i ndex_t idx;

6157 uu_avl _wal k_t *wal k;

6159 if (argc !'=0) {

6160 (void) fprintf(stderr, gettext("too many argunments\n"));
6161 usage(B_FALSE);

6162 }

6164 if (((pool = uu_avl_pool _create("unnmount_pool ",

6165 si zeof (unshare_unnount _node_t),

6166 of f set of (unshare_unnmount _node_t, un_avl node),

6167 unshar e_unnount _conpare, UU DEFAULT)) == NULL) ||

6168 ((tree = uu_avl _create(pool, NULL, UU DEFAULT)) == NULL))
6169 nomen() ;

6171 rewind(mttab_file);

6172 while (getmtent(mttab_file, &entry) == 0) {

6174 /* ignore non-ZFS entries */

6175 if (strcnp(entry. mt_fstype, MNTTYPE_ZFS) != 0)

6176 conti nue;

6178 /* ignore snapshots */

6179 if (strchr(entry.mt_special, '@) != NULL)

6180 continue;

6182 if ((zhp = zfs_open(g_zfs, entry.mt_special,

6183 ZFS TYPE_FTLESYSTEM) == NULL) {

6184 ret = 1;

6185 conti nue;

6186 }

6188 switch (op) {

6189 case OP_SHARE:

6190 veri fy(zfs prop_get (zhp, ZFS_PROP_SHARENFS,
6191 nfs_mt _prop,

6192 si zeof (nfs_mt_prop),

6193 NULL, NULL, O, B FALSE) == 0);

6194 if (strcnp(nfs mt _prop, "off") 1= 0)

6195 br eak;

6196 verify(zf s_prop_get(zhp, ZFS_PROP_SHARESMB,

new usr/src/cnd/ zf s/ zfs_main. c 95

6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217

6219
6220
6221

6223

6225
6226
6227
6228
6229
6230
6231
6232

6234
6235
6236
6237
6238
6239
6240

6242
6243

6245
6246
6247
6248
6249
6250

6252
6253
6254
6255
6256
6257

6259
6260
6261
6262

}

/*
* Walk the AVL tree in reverse, unnounting each filesystem and
* renmoving it fromthe AVL tree in the process.

nfs_mt _prop,
si zeof (nfs_mt_prop),
NULL, NULL, 0, B FALSE) == 0);
if (strcnp(nfs mt _prop, "off") == 0)
conti nue;
br eak;
case OP_MOUNT:
/* lgnore |egacy mounts */
veri fy(zfs prop_get (zhp, ZFS_PROP_MOUNTPO NT,
nf s_mmt _prop,
si zeof (nfs_mt_prop),
NULL, NULL, 0, B FALSE) ==
if (strcnp(nfs mt _prop, "Iegacy") == 0)
conti nue;
/* 1gnore cannount =noauto nmounts */
if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) ==
ZFS_CANMOUNT_NOAUTO)
conti nue;
defaul t:
br eak;
}

node = safe_mall oc(sizeof (unshare_unnount_node_t));
node- >un_zhp = zhp;
node- >un_nountp = safe_strdup(entry. mt_nountp);

uu_avl _node_i ni t (node, &node->un_avl node, pool);

if (uu_avl _find(tree, node, NULL, & dx) == NULL) {
uu_avl _insert(tree, node, idx);

} else {
zf s_cl ose(node->un_zhp);
free(node->un_nountp);
free(node);

|f ((wal k = uu_avl _wal k_start(tree,

UU_WALK_REVERSE | UU_WALK_ROBUST)) == NULL)

nomemn() ;

while ((node = uu_avl _wal k_next (wal k)) != NULL) {

uu_avl _renove(tree, node);

switch (op) {

case OP_SHARE
if (zfs unshar eal | _bypat h(node->un_zhp,
node- >un_nountp) != 0)
ret = 1;
br eak;

case OP_MOUNT:
if (zfs_unnmount (node->un_zhp,
node->un_nountp, flags) != 0)
ret = 1;
br eak;

}

zfs_cl ose(node->un_zhp);
free(node->un_nount p) ;
free(node);

new usr/src/cnd/ zf s/ zfs_main. c 96
6264 uu_avl _wal k_end(wal k) ;

6265 uu_avl _destroy(tree);

6266 uu_avl _pool _dest r oy(pool)

6268 } else {

6269 if (argc !'=1) {

6270 if (argc == 0)

6271 (v0| d) fprlntf(stderr

6272 gettext("m ssing filesystem argunent\n"));
6273 el se

6274 (void) fprintf(stderr,

6275 gettext("too many argunents\n"));
6276 usage(B_FALSE);

6277 }

6279 /*

6280 * W have an argunent, but it may be a full path or a ZFS
6281 * filesystem Pass full paths off to unmount_path() (shared by
6282 * manual _unnount), otherw se open the filesystem and pass to
6283 * zfs_unmount ().

6284 */

6285 if (argv[O][0] =="/")

6286 return (unshare_unnmount _pat h(op, argv[0],

6287 flags, B _FALSE));

6289 if ((zhp = zfs_open(g_zfs, argv[O0],

6290 ZFS_TYPE_FI LESYSTEM) == NULL)

6291 return (1);

6293 verify(zfs_prop_ get(zhp op == OP_SHARE ?

6294 ZFS_PROP_SHARENFS : ZFS PROP_MOUNTPO NT,

6295 nfs_mmt _prop, si zeof (nfs_mt_prop), NULL,

6296 NULL, 0, B FALSE) == 0);

6298 switch (op) {

6299 case OP_SHARE:

6300 verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS,
6301 nfs_mmt _prop,

6302 si zeof (nfs_mt_prop),

6303 NULL, NULL, 0, B FALSE) == 0);

6304 veri fy(zfs prop_ get(zhp ZFS_PROP_SHARESMB,
6305 sharesnb, sizeof (sharesnb), NULL, NULL,
6306 0, B_FALSE) == 0):

6308 if (strenp(nfs_mt_prop, "off") == 0 &&

6309 strcnp(sharesnmb, "off") == 0) {

6310 (void) fprintf(stderr, gettext("cannot
6311 "unshare "%’ : |egacy share\n"),
6312 zfs_get _nane(zhp));

6313 (void) fprintf(stderr, gettext("use "
6314 "unshare(1M to unshare this "
6315 "filesystemn"));

6316 ret = 1;

6317 } else if (!'zfs_is_shared(zhp))

6318 (void) fprintf(stderr, gettext("cannot
6319 "unshare '%’: not currently "
6320 "shared\ n"), zfs_get_name(zhp));
6321 ret = 1,

6322 } else if (zfs_ unshar eal | (zhp) '=0) {

6323 ret = 1;

6324

6325 br eak;

6327 case OP_MOUNT:

6328 if (strcnmp(nfs_mt_prop, "legacy") == 0) {

new usr/src/cmd/ zf s/ zfs_main. c

6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346

6348
6349

6351
6352

6354
6355
6356
6357
6358
6359
6360
6361

(void) fprintf(stderr, gettext("cannot
"unmount '%’: |egacy "
"nmount poi nt\n"), zfs_get_nane(zhp));
(void) fprintf(stderr, gettext("use "
"umount (1M to unnmount this "
"filesystemn"));
ret = 1;
} else if (!zfs_is_nounted(zhp, NULL)) {
(void) fprintf(stderr, gettext("cannot
"unmount ' %’: not currently "
"mount ed\ n"),
zfs_get _nane(zhp));
ret = 1,
} else if (zfs_ unm)untall(zhp, flags) '= 0) {
ret = 1;

}
br eak;

}

zfs_cl ose(zhp);

}

return (ret);
}
/*
* zfs unmount -a
* zfs unnmount filesystem
*
* Unnount all filesystens, or a specific ZFS fil esystem
*/

static int
zfs_do_unnount (i nt argc, char **argv)

6362 {

6363
6364

6366
6367
6368
6369
6370
6371
6372
6373

return (unshare_unnmount (OP_MOUNT, argc, argv));
}
/*
* zfs unshare -a
* zfs unshare filesystem
*
* Unshare all filesystens, or a specific ZFS fil esystem
*/

static int
zfs_do_unshare(int argc, char **argv)

6374 {

6375
6376

6378
6379
6380
6381
6382
6383

return (unshare_unnmount (OP_SHARE, argc, argv));
}
/*
* I | ed when invoked as /etc/fs/zfs/munt.
* egacy’
*/

static int
manual _nount (i nt argc, char **argv)

Do the nount |f t he nount poi nt
O herwi se, conplain that use should be using ’'zfs nount’

6384 {

6385
6386
6387
6388
6389
6390
6391

6393
6394

zfs_handl e_t *zhp;

char nount poi nt [ZFS_MAXPROPLEN ;

char mtopts[MNT_LINE_ MAX] = { "\0" };
int ret = 0;

int c;

int fi ags = 0;

char *dataset, *path;

/* check options */

while ((c = getopt(argc, argv, ":nmo: Q")) I=-1) {

97

is

new usr/src/cnd/ zf s/ zf s_main. c 98
6395 swtch (c) {

6396 case '0’

6397 (v0| d) strlcpy(mtopts, optarg, sizeof (mmtopts));
6398 br eak;

6399 case 'O :

6400 flags | = M5_OVERLAY;

6401 br eak;

6402 case 'm:

6403 flags | = M5S_NOWTTAB;

6404 break;

6405 case ':':

6406 (void) fprintf(stderr, gettext("m ssing argunent for "
6407 "9’ option\n"), optopt);

6408 usage(B_FALSE);

6409 break;

6410 case ' ?':

6411 (void) fprintf(stderr, gettext("invalid option '%’\n"),
6412 optopt);

6413 (void) fprintf(stderr, gettext("usage: nount [-0 opts]
6414 "<path>\n"));

6415 return (2);

6416 }

6417 1

6419 argc -= optind;

6420 argv += optind;

6422 /* check that we only have two argunents */

6423 if (argc !'= 2)

6424 if (argc == 0)

6425 (void) fprintf (stderr gettext ("m ssing dataset

6426 "argument\n"));

6427 else if (argc == 1)

6428 (void) fprintf(stderr,

6429 gettext ("m ssing nountpoint argunent\n"));

6430 el se

6431 (void) fprintf(stderr, gettext("too many argunents\n"));
6432 (void) fprintf(stderr, "usage: nount <dataset> <nountpoint>\n");
6433 return (2);

6434 }

6436 dataset = argv[O0];

6437 path = argv[1];

6439 /* try to open the dataset */

6440 if ((zhp = zfs_open(g_zfs, dataset, ZFS TYPE_FI LESYSTEM)) == NULL)
6441 return (1);

6443 (void) zfs_prop_get(zhp, ZFS_PROP_MOUNTPO NT, nountpoint,

6444 si zeof (nmountpoint), NULL, NULL, 0, B FALSE)

6446 /* check for |egacy nountpoint and conplain appropriately */

6447 ret = 0;

6448 if (st rcrrp(nount poi nt, ZFS_MOUNTPO NT_LEGACY) = {

6449 if (rount(dat aset path, Ms_OPTI ONSTR | flags, MNTTYPE_ZFS,
6450 NULL, O, rmtopts si zeof (mtopts)) != 0)

6451 (void) fprintf(stderr, gettext("mount failed: %\n"),
6452 strerror(errno));

6453 ret = 1,

6454

6455 } else {

6456 (voi d) fprintf(st derr, gettext("filesystem’' %’ cannot be "
6457 "mount ed using 'mount -F zfs’'\n"), dataset)

6458 (voi d) fpri ntf(st derr, gettext("Use 'zfs set nountpoint=%’
6459 instead.\n"), path);

6460 (void) fprintf(stderr, gettext("If you nust use 'nount -F zfs’ "

new usr/src/cnd/ zf s/ zfs_main. c 99

6461
6462
6463
6464
6465

6467
6468

6470
6471
6472
6473
6474
6475
6476

6478
6479

6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494

6496
6497

6499
6500
6501
6502
6503
6504
6505
6506
6507
6508

6510
6511

6513
6514

6516

6518
6519
6520

6522
6523
6524
6525
6526

}

/*

* Call ed when invoked as /etc/fs/zfs/unmount. Unlike a manual nount, we allow
* unnmounts of non-legacy filesystens, as this is the dom nant admi nistrative
* interface.

*/

"or /etc/vfstab, use 'zfs set nountpoint=legacy .\n"));
(void) fprintf(stderr, gettext("See zfs(1M for nore "
"information.\n"));
ret = 1;

}

return (ret);

static int
manual _unmount (i nt argc, char **argv)
6477 {

}

int flags = 0;
int c;

/* check options */
while ((c = getopt(argc, argv, "f")) I'=-1) {
switch (c) {
case 'f’:
flags = MS_FORCE;
br eak;
case ' ?:
(void) fprintf(stderr, gettext("invalid option %’ \n"),
opt opt) ;
(void) fprintf(stderr, gettext("usage: unmount [-f] "
"<path>\n"));
return (2);

}

argc -= optind;
argv += optind;

/* check argunents */
if (argc = 1)
if (argc == 0)
(void) fprintf(stderr, gettext("m ssing path "
"argument\n"));
el se
(void) fprintf(stderr, gettext("too many argunents\n"));
(void) fprintf(stderr, gettext("usage: unnount [-f] <path>\n"));
return (2);

}
return (unshare_unnmount _pat h(OP_MOUNT, argv[0], flags, B_TRUE));

static int
find_command_i dx(char *conmmand, int *idx)
6515 {

int i;

for (i =0; i < NCOWAND; i++) {
if (command_table[i].name == NULL)
conti nue;

if (strcr'rpgconmand, comand_t abl e[i].nane) == 0) {
*1dx = i;
return (0);

new usr/src/cnd/ zf s/ zf s_main. c 100
6527 return (1);

6528

6530 static int

6531 zfs_do_diff(int argc, char **argv)

6532 {

6533 zfs_handl e_t *zhp;

6534 int flags = 0;

6535 char *tosnap = NULL;

6536 char *fronmsnap = NULL;

6537 char *atp, *copy;

6538 int err = 0;

6539 int c;

6541 while ((c = getopt(argc, argv, "FH")) !=-1) {
6542 switch (c) {

6543 case 'F :

6544 flags | = ZFS DI FF_CLASSI FY;
6545 break;

6546 case 'H:

6547 flags | = ZFS_DI FF_PARSEABLE;
6548 break;

6549 case 't':

6550 flags | = ZFS_DI FF_TI MESTAWP,
6551 br eak;

6552 defaul t:

6553 (void) fprintf(stderr,

6554 gettext("invalid option "%’ \n"), optopt);
6555 usage(B_FALSE);

6556 }

6557 }

6559 argc -= optind;

6560 argv += optind;

6562 if (argc < 1) {

6563 (void) fprintf(stderr,

6564 gettext("nust provide at |east one snapshot nanme\n"));
6565 usage(B_FALSE) ;

6566 }

6568 if (argc > 2) {

6569 (void) fprintf(stderr, gettext("too nmany argunents\n"));
6570 usage(B_FALSE) ;

6571 }

6573 fromsnap = argv[O0];

6574 tosnap = (argc == 2) ? argv[1] : NULL;

6576 copy = NULL;

6577 if (*fromsnap !'="'@

6578 copy = strdup(fronmsnap);

6579 else if (tosnap)

6580 copy = strdup(tosnap);

6581 if (copy == NULL)

6582 usage(B_FALSE) ;

6584 if (atp = strchr(copy, '@))

6585 *atp = '\0";

6587 if ((zhp = zfs_open(g_zfs, copy, ZFS_TYPE_FILESYSTEM) == NULL)
6588 return (1);

6590 free(copy);

6592 /*

new usr/src/cnd/ zf s/ zfs_main. c 101

6593 * |gnore SIGPIPE so that the library can give us

6594 * information on any failure

6595 */

6596 (voi d) sigignore(Sl GPlPE);

6598 err = zfs_show_ di ffs(zhp, STDOUT_FILENO, fromsnap, tosnap, flags);
6600 zfs_cl ose(zhp);

6602 return (err !'= 0);

6603 }

6605 int

6606 main(int argc, char **argv)

6607 {

6608 int ret = 0;

6609 int i;

6610 char *prognaneg;

6611 char *cndnane;

6613 (void) setlocal e(LC ALL, "");

6614 (voi d) textdomai n(TEXT_DOVAIN);

6616 opterr = 0;

6618 if ((g_zfs = libzfs_init()) == NULL) {

6619 (void) fprintf(stderr, gettext("internal error: failed to "
6620 "initialize ZFS library\n"));

6621 return (1);

6622 }

6624 zfs_save_argunents(argc, argv, history_str, sizeof (history_str));
6626 l'ibzfs_print_on_error(g_zfs, B_TRUE);

6628 if ((mttab_file = fopen(MNTTAB, "r")) == NULL) {

6629 (void) fprintf(stderr, gettext("internal error: unable to "
6630 "open %\n"), MNTTAB);

6631 return (1);

6632 }

6634 /*

6635 * This command al so doubl es as the /etc/fs nmount and unnmount program
6636 * Determine if we should take this behavior based on argv[O0].
6637 */

6638 prognane = basenane(argv[O0]);

6639 i f (strcnp(progname, "nmount") == 0) {

6640 ret = manual _nmount (argc, argv);

6641 } else if (strcnp(prognanme, "umount”) == 0) {

6642 ret = manual _unnount (argc, argv);

6643 } else {

6644 /*

6645 * Make sure the user has specified some conmand.

6646 */

6647 if (argc < 2) {

6648 (void) fprintf(stderr, gettext("m ssing command\n"));
6649 usage(B_FALSE) ;

6650 }

6652 cmdnanme = argv[1];

6654 /*

6655 * The 'unount’ command is an alias for 'unnount’

6656 */

6657 if (strcnp(cnmdnanme, "umount") == 0)

6658

cndnarme = "unnmount”;

new usr/src/cmd/ zf s/ zfs_main.c

6660
6661
6662
6663
6664

6666
6667
6668
6669
6670

6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689

6691

6693
6694

6696

6698
6699
6700
6701
6702
6703
6704
6705

6707
6708 }

/*
* The 'recv’ command is an alias for 'receive’
*/
if (strcnp(cnmdnane, “"recv") == 0)
cndnanme = "receive";
/*

* Special case '-?’
)

if (strcnp(cndnanme, "-?") == 0)
usage(B_TRUE) ;

/*
* Run the appropriate command.
/
libzfs_mttab_cache(g_zfs, B _TRUE);
if (find_command_i dx(cmdnanme, &) == 0) {
current _comrand = &omand_t abl e[i];
ret = command_table[i].func(argc - 1, argv + 1);
} else if (strchr(cndnane, '=") != NULL) {
verify(find_command_i dx("set", &) == 0);
current _comrand = &omand_t abl e[i];
ret = command_table[i].func(argc, argv);
} else {
(void) fprintf(stderr, gettext("unrecognized "
"comrand ' %’'\n"), cndnane);
usage(B_FALSE) ;

*
i
f

}
libzfs_mttab_cache(g_zfs, B_FALSE);
}

(void) fclose(mttab_file);

if (ret == 0 & | og_history)
(void) zpool _l og_history(g_zfs, history_str);

libzfs_fini(g_zfs);

/*
* The ' ZFS_ABORT' environnent variable causes us to dunp core on exit
* for the purposes of running ::findleaks.
*
/
if (getenv("ZFS ABORT") != NULL) {
(void) printf("dunmping core by request\n");
abort();
}

return (ret);

new usr/src/lib/libzfs/comon/libzfs.h

R R R R

27018 Wed Oct 17 21:48:37 2012
new usr/src/lib/libzfs/comon/libzfs.h
FITS: generating send-streans in portable format
This commit adds the command 'zfs fits-send’, anal ogous to zfs send. The
generated send streamis conpatible with the stream generated with that
from’btrfs send” and can in principle easily be received to any fil esystem

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkkkkkkkkkkkkkkhkkFkhkkkkkk ok kk k k&

__unchanged_portion_om tted_
590 typedef boolean_t (snapfilter_cb_t)(zfs_handle_t *, void *);

592 extern int zfs_send(zfs_handle_t *, const char *, const char *,

593 sendflags_t *, int, snapfilter_cb t, void *, nvlist_t **);
594 extern int zfs_fit s_send(zf s_handl e_t *, const char *, const char *,
595 sendflags_t *, int, snapfilter_cb_t, void *);

596 #endif /* ! codereview */

598 extern int zfs_pronote(zfs_handle_t *);

599 extern int zfs_hold(zfs_handle_t *, const char *, const char *, bool ean_t,
600 bool ean_t, boolean_t, int, uint64_t, uint64_t);

601 extern int zfs _rel ease(zfs handle t *, const char *, const char *, boolean_t);
602 extern int zfs_get_hol ds(zfs_ handle_t *, nvlist_t **);

603 extern uint64_t zvol vol size to_reservation(uint64_t, nvlist_t *);

605 typedef int (*zfs_userspace_cb_t)(void *arg, const char *domain,
606 uid_t rid, uint64_t space);

608 extern int zfs_userspace(zfs_handle_t *, zfs_userquota_prop_t,
609 zfs_userspace_ch_t, void *);

611 extern int zfs_get_fsacl (zfs_handle_t *, nvlist_t **);
612 extern int zfs_set_fsacl (zfs_handle_t *, boolean_t, nvlist_t *);

614 typedef struct recvflags {

615 /* print informational nmessages (ie, -v was specified) */

616 bool ean_t verbose;

618 /* the destination is a prefix, not the exact fs (ie, -d)

619 bool ean_t isprefix;

621 /*

622 * Only the tail of the sent snapshot path is appended to the
623 * destination to determ ne the received snapshot nanme (ie, -e).
624 ki

625 bool ean_t istail;

627 /* do not actually do the recv, just check if it would work (ie, -n) */
628 bool ean_t dryrun;

630 /* roll back/destroy fil esystenms as necessary (eg, -F)

631 bool ean_t force;

633 /* set "canmount=off" on all nodified filesystens */

634 bool ean_t cannount of f;

636 /* byteswap flag is used internally; callers need not specify */
637 bool ean_t byt eswap;

639 /* do not nount file systems as they are extracted (private) */
640 bool ean_t nonount;

641 } recvflags_t;

643 extern int zfs_receive(libzfs_handle_t *, const char *, recvflags_t *,
644 int, avl _tree_t *);

new usr/src/lib/libzfs/comon/libzfs.h

646 typedef enumdiff_flags {

647 ZFS_DI FF_PARSEABLE = 0x1,
648 ZFS_DI FF_TI MESTAMP = 0x2,
649 ZFS_DI FF_CLASSI FY = 0x4

650 } diff_flags_t;

652 extern int zfs_show diffs(zfs_handle_t *, int, const char *, const char *,
653 int);

655 /*
656 * M scel |l aneous functions.
657 */

658 extern const char *zfs_type_to_name(zfs_type_t);
659 extern void zfs_refresh_properties(zfs_handle_t *);
660 extern int zfs_name_valid(const char *, zfs type t);

661 extern zfs_handle_t *zfs_path_to_zhandl e(li bzfs_handl et *, char *, zfs_type_t);

662 extern boolean_t zfs_dataset_exists(libzfs_handle_t *, const char *,
663 zfs_type_t);
664 extern int zfs_spa_version(zfs_handle_t *, int *);

666 /*
667 * Mount support functions.
668 */

669 extern boolean_t is_nounted(libzfs_handle_t *, const char *special, char **);

670 extern boolean_t zfs_is_nounted(zfs_handle_t *, char **);
671 extern int zfs_mount(zfs_handle_t *, const char *, int);
672 extern int zfs_unmount (zfs_handle_t *, const char *, int);
673 extern int zfs_unnmountall (zfs_handle_t *, int);

675 /[*
676 * Share support functions.
677 */

678 extern boolean_t zfs_is_shared(zfs_handle_t *);
679 extern int zfs_share(zfs_handle_t *);
680 extern int zfs_unshare(zfs_handle_t *);

682 /*
683 * Protocol -specific share support functions.
684 */

685 extern boolean_t zfs_is_shared_nfs(zfs_handle_t *, char **);
686 extern bool ean_t zfs_is_shared_snb(zfs_handle_t *, char **);
687 extern int zfs_share_nfs(zfs_handle_t *);

688 extern int zfs share_smb(zfs handle_t *);
689 extern int zfs_shareall (zfs_handle_t *);
690 extern int zfs_unshare_nfs(zfs_handle_t *, const char *);
691 extern int zfs_unshare_snb(zfs_handle_t *, const char *);

i
i
i
i
i
692 extern int zfs_unshareal |l _nfs(zfs_handl e_t *)'
i
i
i
i

693 extern int zfs_unshareal | _snb(zfs_handle_t *);

694 extern int zfs_unshareal | _bypath(zfs_handl e_t *, const char *);

695 extern int zfs_unshareal | (zfs_handle_t *);

696 extern int zfs_del eg_share_nfs(libzfs_handl et *, char *, char *, char *,
697 void *, void *, int, zfs_share_op_t);

699 /*

700 * \WWen dealing with nvlists, verify() is extremely useful
701 */
702 #ifdef NDEBUG

703 #define verify(EX) ((void) (EX))
704 #el se

705 #define verify(EX) assert (EX)
706 #endi f

708 [*

709 * Wility function to convert a nunber to a human-readable form
710 */
711 extern void zfs_nicenun(uint64_t, char *, size_t);

new usr/src/lib/libzfs/comon/libzfs.h

712 extern int zfs_nicestrtonun(libzfs_handle_t *, const char *, uint64_t *);

714 | *

715 * Gven a device or file, determine if it is part of a pool.

716 */

717 extern int zpool _in_use(libzfs_handle_t *, int, pool_state_t *, char
718 bool ean_t *);

720 [*
721 * Label manipul ation.
722 */

723 extern int zpool _read_| abel (int, nvlist_t **);
724 extern int zpool _clear_|abel (int);

726 /* is this zvol valid for use as a dunp device? */
727 extern int zvol _check_dunp_config(char *);

729 [*
730 * Managenent interfaces for SMB ACL files
731 */

733 int zfs_snmb_acl _add(libzfs_handle_t *, char *, char *, char *);
734 int zfs_snb_acl _renove(libzfs_handle_t *, char *, char *, char *);
735 int zfs_snb_acl _purge(libzfs_handle_t *, char *, char *);

736 int zfs_snmb_acl _renanme(libzfs_handle_t *, char *, char *, char *, char *);

738 [*

739 * Enable and di sable datasets within a pool by mounting/unnmounting and

740 * sharing/unsharing them
741 */

742 extern int zpool _enabl e_dat aset s(zpool _handle_t *, const char *, int);
743 extern int zpool _di sabl e_dat aset s(zpool _handl e_t *, bool ean_t);

745 [*
746 * Mappi ngs between vdev and FRU.
747 x|

748 extern void libzfs_fru_refresh(libzfs_handle_t *);
749 extern const char *libzfs_fru_l ookup(libzfs_handle_t *, const char *);
750 extern const char *libzfs_fru_devpath(libzfs_handle_t *, const char *);
751 extern boolean_t libzfs_fru_conpare(libzfs_handle_t *, const char *,
752 const char *);

753 extern boolean_t |ibzfs_fru_notself(libzfs_handle_
754 extern int zpool _fru_set(zpool _handle_t *, uint64_

*, const char *);
, const char *);

-

756 #ifdef _ cplusplus
757 }
758 #endi f

760 #endif /* _LIBZFS_H */

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

R R R R

87476 Wed COct 17 21:48:37 2012
new usr/src/lib/libzfs/comon/libzfs_sendrecv.c
FITS: generating send-streans in portable format
This commit adds the command 'zfs fits-send’, anal ogous to zfs send. The
generated send streamis conpatible with the stream generated with that
from’btrfs send” and can in principle easily be received to any fil esystem

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkkkkkkkkkkkkkkhkkFkhkkkkkk ok kk k k&

__unchanged_portion_omtted_

3201 /*
3202 * Generate a fits streamfor the dataset identified by the argunent zhp.
3203

*
3204 * The content of the send streamis the snapshot identified by
3205 * 'tosnap’. Increnental streans are requested fromthe snapshot identified
3206 * by "fronmsnap" (if non-null)
3207 * Currently no recursive send is inplenented
3208 */
3209 int
3210 zfs_fits_send(zfs_handl e_t *zhp, const char *fronmsnap, const char *tosnap,
3211 “sendflags_t *flags, int outfd, snapfilter_cb_t filter_func,
3212 void *cb_arg)
3213 {
3214 char errbuf[1024];
3215 char name[MAXPATHLEN]
3216 zfs_cmd_t zc = { O

3217 l'i bzfs_nandl e_t *hdl = zhp->zfs_hdl ;

3218 zfs_handl e_t *thdl;

3220 (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOVAI N,
3221 "cannot send '%’"), zhp->zfs_nane);

3223 if (fronsnap && fromsnap[0] == '\0") {

3224 zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOVAI N,

3225 "zero-length incremental source"));

3226 return (zfs_error(zhp->zfs_hdl, EZFS _NCENT, errbuf));
3227 }

3229 (void) snprintf(name, sizeof (nanme), "%@s", zhp->zfs_nane, tosnap);
3230 if ((thdl = zfs open(hdl, name, ZFS TYPE_SNAPSHOT)) == =TNULL) {
3231 (voi d) fprintf(st derr, dgettext(TEXT_DOVAI N,

3232 WARNI NG coul d not send % @6&: does not exist\n"),

3233 zhp- >zf s_nane, tosnap);

3234 return (B_TRUE);

3235

3236 zc. zc_sendobj = zfs_prop_get_int(thdl, ZFS PROP_OBJSETID);
3237 zfs_close(thdl);

3239 if (fromsnap) {

3240 (void) snprintf(name, sizeof (name), "%@s",

3241 zhp->zf s_nane, fromsnap)

3242 if ((thdl = zfs_open(hdl, name, ZFS TYPE SNAPSHOT)) == NULL) {

3243 (voi d) fpri ntf(stderr dget t ext (TEXT_DOVAI N

3244 WARNI NG coul d not send %@s:\n"

3245 "incremental source (% @) does not exist\n"),
3246 zhp->zf s_nane, tosnap,

3247 zhp->zfs_nane, fromsnap);

3248 return (B_TRUE);

3249

3250 zc.zc_fromobj = zfs_prop_get_int(thdl, ZFS_PROP_OBJSETID);
3251 zfs_close(thdl);

3252 }

3254 assert (zhp->zfs_type == ZFS_TYPE_FI LESYSTEM ;

3256 (void) snprintf(zc.zc_nanme, sizeof (zc.zc_nane), "%@s",

new usr/src/lib/libzfs/comon/libzfs_sendrecv.c

3257 zhp->zfs_nanme, tosnap);

3258 zc.zc_cookie = outfd;

3259 zc.zc_obj = 0;

3261 if (zfs_ioctl(zhp->zfs_hdl, ZFS_|OC FITS SEND, &zc) != 0) {
3262 char errbuf[1024]

3263 (void) snpri ntf(errbuf, si zeof (errbuf), dgettext(TEXT_DOVAIN,
3264 "warni ng: cannot send '%’'"), zhp->zfs_nane);

3266 switch (errno) {

3267 case EXDEV:

3268 zfs _error _aux(hdl, dgettext(TEXT_DOVAI N,

3269 "not an earlier snapshot fromthe sane fs"));
3270 return (zfs_error(hdl, EZFS_CROSSTARCET, errbuf)),
3271 case ENCENT:

3272 if (zfs_dataset_exists(hdl, zc.zc_nane,

3273 ZFS_TYPE_SNAPSHQT))

3274 zfs_error_aux(hdl, dgettext(TEXT_DOVAI N,
3275 "increnental source (@s) does not exist"),
3276 zc. zc_val ue);

3277

3278 return (zfs_error(hdl, EZFS_NCENT, errbuf));
3279 case :

3280 case EFBI G

3281 case EIC

3282 case ENOLI NK:

3283 case ENGCSPC:

3284 case ENOSTR:

3285 case ENXI O

3286 case EPI PE:

3287 case ERANCE:

3288 case EFAULT:

3289 case EROFS:

3290 zfs_error_aux(hdl, strerror(errno));

3291 return (zfs_error(hdl, EZFS | BADBACKUP errbuf));
3292 defaul t:

3293 return (zfs_standard_error(hdl, errno, errbuf));
3294 }

3295 }

3297 return (0);

3298 }

3299 #endif /*

coder evi ew */

new usr/src/lib/libzfs/comon/ mapfil e-vers

R R R R

5399 Wed Cct

17 21:48:37 2012

new usr/src/lib/libzfs/comon/ mapfile-vers
FITS: generating send-streans in portable format

Thi s

conmit adds the command 'zfs fits-send’, anal ogous to zfs send. The

generated send streamis conpatible with the stream generated with that

from’btrfs send

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkkkkkkkkkkkkkkhkkFkhkkkkkk ok kk k k&

H*

CDDL HEADER START

The contents of this file are subject to the ternms of the
Conmon Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governi ng perm ssions

and |limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]
CDDL HEADER END

Copyright (c) 2006, 2010, Oracle and/or its affiliates. Al
Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
Copyright (c) 2012 by Del phix. Al rights reserved.

MAPFI LE HEADER START

WARNI NG STOP NOW DO NOT MODI FY THI' S FI LE.
bj ect versioning nust conply with the rules detailed in

usr/src/li b/ README. mapfil es

You shoul d not be nmaking nodifications here until
copy of that file. If you need hel p,

MAPFI LE HEADER END

HEHEHHHHHHHHH R E R F TR

$mapfile_version 2
SYMBOL_VERSI ON SUNVprivate 1.1 {
I

etcher_2_nati ve;

et cher _2_byt eswap;
etcher_4_nati ve;
et cher _4_byt eswap;
etcher_4_increnental native;
et cher_4_i ncrenent al _byt eswap;
bzfs_add_handl e;
bzfs_dat aset _cnp;
bzfs_errno;
bzfs_error_action;
bzfs_error_description;
bzfs_fini;
bzfs_fru_conpare;
bzfs_fru_devpat h;

b
b
b

f
f
f
f
f
f
|
|
|
|
|
|
|
|
I'i bzfs_fru_l ookup;
|

|

zfs_fru_notsel f;
zfs_fru_refresh;

and can in principle easily be received to any filesystem

you’ ve read the nost
contact a gatekeeper for guidance.

rights reserved.

current

new usr/src/lib/libzfs/comon/ mapfile-vers

#endi f /

l'ibzfs_init;
Iibzfs_mttab_cache;

i bzfs_print_on_error;
spa_feature_table;
zfs_al | ocat abl e_devs;
zfs_asprintf;

zfs_cl one;

zfs_cl ose;

zfs_create;
zfs_create_ancestors;

zf s_dat aset _exi sts;
zfs_del eg_share_nfs;
zfs_destroy;

zf s_destroy_snaps;
zfs_destroy_snaps_nvl ;
zfs_expand_propli st;
zfs_fits_send;

* | codereview */
zfs_get _handl e;

zfs_get _hol ds;

zf s_get _nane;

zf s_get _pool _handl e;

zf s_get _user _props;
zfs_get _type;

zf s_handl e_dup;

zfs_hi story_event _nanes;
zfs_hol d;

zfs_i s_mount ed;

zfs_i s_shared;
zfs_is_shared_nfs;

zfs_i s_shared_snb;
zfs_iter_children;
zfs_iter_dependents;
zfs_iter_filesystens;
zfs_iter_root;
zfs_iter_snapshots;
zfs_iter_snapshots_sorted;
zfs_i ter_snapspec;

zf s_nount ;

zfs_name_t o_prop;
zfs_name_val i d;

zf s_ni cenum

zf s_ni cestrtonum

zf s_open;

zfs_pat h_t o_zhandl e;
zfs_pronote;
zfs_prop_align_right;

zf s_prop_col um_nane;
zfs_prop_defaul t _nuneric;
zfs_prop_defaul t _string;
zfs_prop_get;
zfs_prop_get_int;
zfs_prop_get _nuneric;
zfs_prop_get _recvd;
zfs_prop_get_table;
zfs_prop_get _userquota_int;
zf s_prop_get _user quot a;
zfs_prop_get_witten_int;
zfs_prop_get_witten;
zfs_prop_i nherit;
zfs_prop_i nheritable;
zfs_prop_init;
zfs_prop_is_string;
zfs_prop_readonly;
zfs_prop_set;
zfs_prop_string_to_index;

new usr/src/lib/libzfs/comon/ mapfil e-vers

125 zfs_prop_t o_nane;

126 zfs_prop_user;

127 zf s_prop_userquot a;
128 zfs_prop_valid_for_type;
129 zfs_prop_val ues;

130 zfs_prop_witten;

131 zfs_prune_proplist;
132 zf s_receive;

133 zfs_refresh_properties;
134 zfs_rel ease;

135 zf s_renane;

136 zfs_rol | back;

137 zfs_save_argunents;
138 zf s_send;

139 zfs_share;

140 zfs_shareal | ;

141 zfs_share_nfs;

142 zfs_share_snb;

143 zfs_show diffs;

144 zfs_snb_acl _add;

145 zfs_snb_acl _purge;

146 zfs_snmb_acl _renove;
147 zfs_snb_acl _renane;
148 zf s_snapshot ;

149 zf s_snapshot _nvl ;

150 zfs_spa_version;

151 zf s_spa_versi on_nap;
152 zfs_type_to_nane;

153 zf s_unnount ;

154 zfs_unmountal | ;

155 zf s_unshare;

156 zfs_unshare_nfs;

157 zf s_unshar e_snb;

158 zfs_unshareal | ;

159 zf s_unshareal | _bypat h;
160 zfs_unshareal | _nfs;
161 zfs_unshareal | _snb;
162 zf s_user space;

163 zfs_get _fsacl;

164 zfs_set _fsacl;

165 zfs_userquot a_prop_prefi xes;
166 zfs_zpl _versi on_nap;
167 zpool _add;

168 zpool _cl ear;

169 zpool _cl ear _| abel ;

170 zpool _cl ose;

171 zpool _create;

172 zpool _destroy;

173 zpool _di sabl e_dat aset s;
174 zpool _dunp_ddt ;

175 zpool _enabl e_dat aset s;
176 zpool _expand_propl i st;
177 zpool _expl ai n_recover;
178 zpool _export;

179 zpool _export_force;
180 zpool _find_inport;

181 zpool _find_i nport _cached;
182 zpool _find_vdev;

183 zpool _find_vdev_by_physpat h;
184 zpool _fru_set;

185 zpool _get _confi g;

186 zpool _get _errl og;

187 zpool _get _features;
188 zpool _get _handl e;

189 zpool _get _hi story;

190 zpool _get _nane;

new usr/src/lib/libzfs/comon/ mapfile-vers

191 zpool _get _physpat h;

192 zpool _get _prop;

193 zpool _get _prop_int;

194 zpool _get _state;

195 zpool _get _st at us;

196 zpool _hi st ory_unpack;
197 zpool _i nmport;

198 zpool _i nport _props;

199 zpool _i nport _st at us;
200 zpool _i n_use;

201 zpool _i s_boot abl e;

202 zpool _iter;

203 zpool _| abel _di sk;

204 zpool _| og_hi story;

205 zpool _nmount _dat aset s;
206 zpool _nane_t o_pr op;

207 zpool _obj _to_path;

208 zpool _open;

209 zpool _open_canfail ;

210 zpool _print_unsup_feat;
211 zpool _prop_align_right;
212 zpool _prop_col unm_nane;
213 zpool _prop_feature;

214 zpool _prop_get _feature;
215 zpool _prop_readonly;
216 zpool _prop_to_naneg;

217 zpool _prop_unsupport ed;
218 zpool _prop_val ues;

219 zpool _read_| abel ;

220 zpool _refresh_stats;
221 zpool _regui d;

222 zpool _r eopen;

223 zpool _scan;

224 zpool _search_i nport;
225 zpool _set _prop;

226 zpool _state_t o_naneg;
227 zpool _unnount _dat aset s;
228 zpool _upgr ade;

229 zpool _vdev_att ach;

230 zpool _vdev_cl ear;

231 zpool _vdev_degr ade;

232 zpool _vdev_det ach;

233 zpool _vdev_faul t;

234 zpool _vdev_nane;

235 zpool _vdev_of fli ne;

236 zpool _vdev_onl i ne;

237 zpool _vdev_renove;

238 zpool _vdev_split;

239 zprop_free_list;

240 zprop_get _list;

241 zprop_iter;

242 zprop_print_one_property;
243 zprop_w dth;

244 zvol _check_dunp_confi g;
245 zvol _vol si ze_to_reservation;
246 | ocal :

247 *;

248 };

new usr/src/uts/comon/ Makefile.files

R R R R

42960 Wed Oct 17 21:48:38 2012
new usr/src/uts/comon/ Makefile.files
FITS: generating send-streans in portable format
This commit adds the command 'zfs fits-send’, anal ogous to zfs send. The
generated send streamis conpatible with the stream generated with that
from’btrfs send” and can in principle easily be received to any fil esystem

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkkkkkkkkkkkkkkhkkFkhkkkkkk ok kk k k&

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel oprent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.

7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww.opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perm ssions

11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each

14 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 # If applicable, add the followi ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [nane of copyright owner]

18 #

19 # CDDL HEADER END

20 #

22 #

23 # Copyright (c) 1991, 2010, Oracle and/or its affiliates. Al rights reserved.
24 # Copyright 2011 Nexenta Systens, Inc. All rights reserved.

25 # Copyright (c) 2012 by Del phix. Al rights reserved.

26 #

28 #

29 # This Makefile defines all file nodules for the directory uts/commn
30 # and its children. These are the source files which nay be considered
31 # common to all SunOS systens.

33 i 386_CORE_OBJS += \

34 atomc.o \

35 avintr.o \

36 pic.o

38 sparc_CORE_OBJS +=

40 COMMON_CORE_OBJS += \
41 beep. o \
42 bitset.o \
43 bp_map. o \
44 brand. o \
45 cpucaps. o \
46 cnt.o \
a7 cnt _policy.o \
48 cpu. o \
49 cpu_event.o \
50 cpu_intr.o \
51 cpu_pm o \
52 cpupart.o \
53 cap_util.o \
54 di sp.o \
55 group. o \
56 kstat_fr.o \
57 i scsi boot_prop.o \

58 lgrp.o \

new usr/src/uts/comon/ Makefile.files

59 I grp_topo.o \

60 mmapobj . o \

61 nmt ex. o \

62 page_| ock. o \

63 page_retire.o \

64 panic.o \

65 param o \

66 pg. o \

67 pghw. o \

68 putnext.o \

69 rctl_proc.o \

70 rw ock. o \

71 seg_knmem o \

72 softint.o \

73 string.o \

74 strtol.o \

75 strtoul .o \

76 strtoll.o \

77 strtoull.o \

78 thread_intr.o \

79 vm page. o \

80 vm pagel i st. o \

81 zlib_obj.o \

82 clock_tick.o

84 CORE_OBJS += $(COMMON_CORE_OBJS) $($(MACH) _CORE_OBJS)
86 ZLIB_OBJS = zutil.o znod. o znod_subr.o \
87 adl er32.0 crc32.0 deflate.o inffast.o \
88 inflate.o inftrees.o trees.o

90 GENUNI X_OBJS += \

91 access. 0 \
92 acl .o \
93 acl _common. o \
94 adjtinme.o \
95 alarmo \
96 ai o_subr.o \
97 audi tsys. o \
98 audit_core.o \
99 audi t _zone. o \
100 audit _menory.o \
101 aut oconf. o \
102 avl .o \
103 bdev_dsort.o \
104 bi 0.0 \
105 bi t map. o \
106 bl abel . o \
107 brandsys. o \
108 bz2bl ocksort.o \
109 bz2conmpress.o \
110 bz2deconpress. o \
111 bz2randtable.o \
112 bz2bzlib.o \
113 bz2crctable.o \
114 bz2huf f man. o \
115 callb.o \
116 callout.o \
117 chdir.o \
118 chnod. o \
119 chown. o \
120 cladm o \
121 class. o \
122 cl ock. o \
123 cl ock_highres.o \
124 cl ock_real tine. o\

new usr/src/uts/comon/ Makefile.files

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

cl ose. o

conpr ess. o
condvar. o
conf.o
consol e. o
contract.o
copyops. 0
core.o
corectl.o
cred.o
cs_stubs.o
dacf. o
dacf_clnt.o
damap. o \
cyclic.o
ddi . o

ddifmo

ddi _hp_inpl.o
ddi _hp_ndi .o
ddi _intr.o
ddi _intr_inpl.o
ddi _intr_irmo
ddi _nodei d. o
ddi _timer.o
devcfg. o
devcache. o
devi ce. 0
devid. o

devi d_cache. o
devi d_scsi.o
devi d_snp. o
devpolicy.o
di sp_l ock. o
dnlc.o
driver.o
dunpsubr. o
driver_lyr.o
dtrace_subr.o
errorg. o

et heraddr. o
evchannel s. o
exacct. o
exacct_core. o
exec. o

exit.o

fbio.o
fentl.o
fdbuffer.o

fs_reparse.o
fs_subr.o
fsflush.o
ftrace.o
getcwd. o
getdents. o

get | oadavg. o
get pagesi zes. o
getpid.o

gfs.o

P)

o e e e e e e e e e e e e e e e e e o e e e o o o o o e e e e

new usr/src/uts/comon/ Makefile.files

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

rusagesys. o
gid.o
groups. o
grow. o

hat _ref nod. o
id32.0
id_space.o
inet_ntop.o
i nstance. o
ioctl.o

i p_cksum o

i ssetugid.o
i ppconf. o
kcpe. o

kdi . o

ki conv. o

kl pd. o
kmem o

ksyms_snapshot . o

| _strplunb.o
| abel sys. o
link.o

ist.o
ockstat _subr.o
0og_sysevent. o
ogsubr. o
o]
s
t

mapobj sys. o
mentntl. o
nemstr. o

| grpsys. o
nkdir.o
mknod. o
nount . o
nove. o
nsacct. o

mul tidata.o
nbnm ock. o
ndifmo
nice.o

net stack. o
ntptinme.o
nvpair. o
nvpair_all oc
nvpair_al | oc
fnvpair.o
octet.o
open. o
p_online.o
pat hconf. o
pat hnane. o
pause. o
serializer.o
pci_intr_lib.o
pci _cap.o
pcifmo

S)

et e e

new usr/src/uts/comon/ Makefile.files

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

pgrp. o

pgr psys. o
pid.o
pkp_hash. o
policy.o
poll.o

pool . o

pool _pset.o
port_subr.o
ppriv.o
printf.o
priocntl.o
priv.o
priv_const.o
proc.o
procset.o
processor _bi nd. o
processor_info.o
profil.o
project.o
gsort.o
rctl.o
rctlsys.o
readl i nk.o
refstr.o
renane. o
resol vepath. o
retire_store.o
process. o
rlimt.o
rmap. o

rw. o

rwstl ock. o
sad_conf. o
sid.o

si dsys. o
sched. o
schedct!. o
sctp_crc32.0

P e

seg_spt.o
semaphore. o
sendfile.o
session.o
share. o
shuttle.o
sig.o
sigaction.o
sigal tstack.o
signotify.o
si gpendi ng. o
si gpr ocnask. o
si gqueue. o

si gsendset. o
si gsuspend. o
sigtinedwait. o
sl eepg. o
sock_conf.o
space. 0
sscanf. o
stat.o
statfs.o

%]
o
«
x
©
o
o e o e e e e e e e e e e e e

new usr/src/uts/comon/ Makefile.files

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

statvfs.o
stol.o
str_conf.o
strcalls.o
stream o
streamio.0
strext.o
strsubr.o
strsun.
subr. o
sunddi
sunndi
sunndi
sunpci
sunpm o
sundl pi . o
suntpi.o
swap_subr. o
swap_vnops. o
symink.o
sync. o

syscl ass. o
sysconfig.o
sysent. o
sysfs.o
system nfo.o
task. o
taskq. o
tasksys. o
time.o
tiner.o
tines.o
timers.o
thread. o
tlabel .o
tnf_res.o
turnstile.o
tty_common. o
u8_textprep.o
uadm n. o
uconv. o

ucr edsys. o
uid.o
umask. o
unount . o
unane. o

uni x_bb. o
unlink.o
urw. o
utine.o

ut ssys. o
uucopy. o
vfs.o
vfs_conf.o
vmem o

vm anon. o

vm as. o

vm neter.o
vm _pageout . 0
vm pvn. o
vmrmo

vm seg. o

vm subr. o

vm swap. o

vm usage. o
vnode. o

o

[eNeloNe]

o e e e e e e e e e e e e e e e e e o e e e o o e o o o e o o o o o o o o o o e e e e

new usr/src/uts/comon/ Makefile.files

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

405
406
407
408
409
411
413
415
417
418
419
420
422
424
426
428
430
432
434
435
436
437
439
440
441
442
444
446
448
450
452

454

vui d_queue. o
vuid_store.o
waitqg.o

wat chpoi nt. o
yield.o

scsi _confdata. o
xattr.o
xattr_conmon. o
xdr _nbl k. o

xdr _nmem o
xdr. o
xdr_array. o
xdr _refer.o
xhat . o

zone. o

e —

z Stubs for the stand-al one |inker/l|oader
gparc_GENSTUBS_CBJS = \
kobj _stubs. o
i 386_GENSTUBS_OBJS =
COVMON_GENSTUBS_OBJS =
GENSTUBS_OBJS += $(COVMON_GENSTUBS_OBJS) $($(MACH) _GENSTUBS_OBJS)
#
DTrace and DTrace Providers
gTRACE_CBJS += dtrace.o dtrace_isa.o dtrace_asm o
SDT_OBJS += sdt_subr.o
PROFI LE_OBJS += profile.o
SYSTRACE_OBJS += systrace.o
LOCKSTAT_OBJS += | ockstat.o
FASTTRAP_OBJS += fasttrap.o fasttrap_isa.o

DCPC_0OBJS += dcpc. o

#

Driver (pseudo-driver) Mdules
#

| PP_OBJS += ippctl.o

AUDI O_OBJS += audi o_client.o audio_ddi.o audi o_engine.o \
audi o_fltdata.o audio_format.o audio_ctrl.o \
audi o_grc3. 0 audi o_output.o audio_input.o \
audi o_oss. o audi o_sun. o

AUDI CEMJ10K_0OBJS += audi oenul0k. o

AUDI CENS_OBJS += audi oens. o

AUDI OVl AB23X_0BJS += audi ovi a823x. 0

AUDI OVI A97_0OBJS += audi ovi a97. o

AUDI O1575_0BJS += audi 01575. 0

AUDI 0810_0OBJS += audi 0810. 0

new usr/src/uts/comon/ Makefile.files

456
458
460
462
464
466
468
470
472
474
476
478
480
482
484
486
488
490

492
493

495
497
499
501
503
505
507

509
510

512
514
516
518
520

AUDI OCM _OBJS +=
AUDI OCM HD_0OBJS
AUDI OHD_OBJS +=
AUDI O XP_OBJS +=
AUDI OLS_OBJS +=
AUDI OP16X_OBJS +
AUDI OPCI _OBJS +=
AUDI GSOLO_OBJS +
AUDI OTS_OBJS +=
AC97_0OBJS += ac9
BLKDEV_OBJS += b
CARDBUS_OBJS +=
CONSKBD_OBJS +=
CONSM5_OBJS +=
OLDPTY_OBJS +=
PTC_OBJS +=
PTSL_OBJS +=
PTM OBJS +=

M1 _OBIS +=

PTS_OBIS +=
PTY_OBJS +=
SAD_OBJS +=
MD4_OBJS +=
MD5_OBIS +=
SHAL_OBJS +=
SHA2_OBJS +=

| PGPC_OBJS +=

DSCPMK_CBJS +=
DLCOSMK_OBJS +=
FLOMACCT_OBJS +=
TOKENMI_OBJS +=
TSWICL_OBIS +=

audi ocm . o

+= audi ocmi hd. o

audi ohd. o

audi 0i xp. 0

audiol s. o

= audi op16x. 0

audi opci . o

= audi osol 0.0

audiots. o

7.0 ac97_ad.o ac97_alc.o ac97_cm .o
| kdev. o

cardbus. o cardbus_hp. o cardbus_cfg.o
conskbd. o

consns. 0

tty_ptyconf.o

tty_pty.o

tty_pts.o

ptmo

mi.o mi_cicada.o nmii_natsem.o mi_intel.o nii_qualsem.o \
mi_marvell.o nmii_realtek.o nii_other.o

pts.o

ptms_conf. o

sad. o

md4. o md4_nod. o
md5. o nmd5_nod. o
shal. o shal_nod. o
sha2. 0 sha2_nod. o

classifierddi.o classifier.o filters.o trie.o table.o \
ba_table.o

dscprk. o dscpnkddi . o
dl cosnk. o dl cosnkddi . o

fl owacctddi.o flowacct.o
tokennt. o tokenntddi.o

tswicl.o tswclddi.o

new usr/src/uts/common/ Makefile.files 9

522
524
526
528

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

562
564
566
568
570
572
574
576
578
580
582

584
585

ARP_OBJS +=
| CMP_OBJS +=

| CMP6_OBJIS +=
RTS_OBJS +=

| P_I CMP_OBJS

| P_RTS OBJS =
| P_TCP_OBJS =

I P_UDP_OBJS =
| P_SCTP_OBJS

IP_ILB_OBJS =
I P_OBIS +=

1 P6_OBJS +=
HOOK_OBJS +=
NETI _OBJS +=
KEYSOCK_0BJS

| PNET_OBJS +=
SPDSOCK_0BJS

arpddi . o
i cnpddi . o
i cnp6ddi . o
rtsddi.o

= icnp.o icnp_opt_data.o
rts.o rts_opt_data.o
tcp.o tcp_fusion.o tcp_opt_data.o tcp_sack.o tcp_stats.o \
tcp_misc.o tcp_tiners.o tcp_tine_wait.o tcp_tpi.o tcp_output.o \
tcp_input.o tcp_socket.o tcp_bind.o tcp_cluster.o tcp_tunables.o
udp. o udp_opt _data.o udp_tunabl es.o udp_stats.o
= sctp.o sctp_opt_data.o sctp_output.o \
sctp_init.o sctp_input.o sctp_cookie.o \
sctp_conn.o sctp_error.o sctp_snnmp.o \
sctp_tunabl es. o sctp_shutdown.o sctp_conmon. o \
sctp_tinmer.o sctp_heartbeat.o sctp_hash.o \
sctp_bind. o sctp_notify.o sctp_asconf.o \
sctp_addr.o tn_ipopt.o tnet.o ip_netinfo.o \
sctp_misc.o
ilb.oilb_nat.o ilb_conn.o ilb_alg_hash.o ilb_alg_rr.o

s.olp_if.oip_ire.oip_listutils.o ip_nroute.o \

np.o ipnp.o ip.o ip6.o ip6_asp.o ip6_if.o ip6_ire.o\
6_rt
|

ddi .o ipdrop.o nmi.o nd.o tunables.o optcomo snnpcomo \
sec_| oader.o spd.o ipclassifier.o inet_comon.o | p_squeue.o \
squeue. o0 ip_sadb.o ip_ftable.o proto_set.o radix.o | p_dumy.o \
i p_hel per_streamo ip_tunables.o \

ip_output.o ip_input.o ip6_input.o ip6_output.o ip_arp.o \
conn_opt.o ip_attr.o ip_dce.o \

g

1 p6_

ip_multi.o ip2mac.o ip_ndp.o ip_rts.o ip_srcid.o\
p

p

neti_inpl.o neti_nod.o neti_stack.o
+= keysockddi .o keysock.o keysock_opt _data.o
ipnet.o ipnet_bpf.o

+= spdsockddi .o spdsock.o spdsock_opt _data. o

| PSECESP_OBJS += i psecespddi .o i psecesp. o

| PSECAH_OBJS
SPPP_OBJS +=
SPPPTUN_OBJS

+= i psecahddi .o i psecah. o sadb.o
sppp. 0 sppp_dl pi .o sppp_nod. o s_conmon. o

+= sppptun. o sppptun_nod. o

SPPPASYN_OBJS += spppasyn. o spppasyn_nod. o

SPPPCOWP_COBJS += spppconp. o spppconp_nod. o defl ate. o bsd-conp.o vjconpress.o \
zlib.o

new usr/src/uts/comon/ Makefile.files

587
589
591
593
595
597
599
601

603
604

606
607
608
609
610

612
613

615
617
619
621
623
625
627
629
631
633
635
637
639
641
643
644
645
647
649
651

TCP_OBJS += tcpddi. o

TCP6_OBJS += t cp6ddi . o

NCA_OBJS += ncaddi . o

SDP_SOCK_MOD_0BJS += socknpd_sdp. o socksdp. o socksdpsubr. o

SCTP_SOCK_MOD_OBJS += socknpd_sctp. o socksctp. o socksctpsubr.o
PFP_SOCK_MOD_0OBJS += socknod_pfp. o
RDS_SOCK_MOD _0OBJS += socknod_rds. o

10

RDS_OBJS += rdsddi .o rdssubr.o rds_opt.o rds_ioctl.o

RDSI B_OBJS += rdsib.o rdsib_ib.o rdsib_cmo rdsib_ep.o rdsib_buf.o \
rdsi b_debug. o rdsib_sc.o

RDSV3_0OBJS += af_rds.o rdsv3_ddi.o bind.o | oop.o threads.o connection.o \
transport.o cong.o sysctl.o nmessage.o rds_recv.o send.o \
stats.o info.o page.o rdma_transport.o ib_ring.o ib_rdma.o \
ib_recv.o ib.o ib_send.o ib_sysctl.o ib_stats.o ib_cmo \
rdsv3_sc.o rdsv3_debug.o rdsv3_inpl.o rdma.o rdsv3_af_thr.o

| SER_OBJS += iser.o iser_cmo iser_cq.o iser_ib.o iser_idmo \
iser_resource.o iser_xfer.o

UDP_OBJS += udpddi . o

UDP6_OBJS += udp6ddi . o

SY_OBJS += gentty.o

TCO _OBJIS += ticots.o

TCOO OBJIS += ticotsord.o

TCL_OBJS += ticlts.o

TL_OBJS += tl.o

DUMP_OBJS += dunp. o

BPF_OBJS += bpf.o bpf_filter.o bpf_nod.o bpf_dlit.o bpf_nac.o

CLONE_OBJS += clone.o

CN_OBJS += cons. o

DLD_OBJS += dld_drv.o dld_proto.o dld_str.o dld_flow o

DLS OBJS += dls.o dls_link.o dls_nod.o dls_stat.o dls_ngnt.o

GLD OBJS += gld.o gldutil.o

MAC_OBJS += mac. o nmac_bcast.o mac_client.o nac_datapath_setup.o mac_fl ow o
mac_hi 0.0 mac_nod. o mac_ndd. o mac_provi der.o mac_sched.o \
mac_protect.o mac_soft_ring.o mac_stat.o nmac_util.o

MAC 6TO4 OBJS += mac_6t 04. o

MAC_ETHER OBJS += mac_et her. o

MAC_| PV4_0OBJS += mac_i pv4. o

new usr/src/uts/comon/ Makefile.files 11

653
655
657
659

661
662

664
665

667
668
669
670
671

673
675
677

679
680

682
684

686
687
688
689

691
692
693

695
696
697
698

700
701
702
703
704

708
709
710

714
715

717

MAC_I PV6_OBJS += mac_i pv6. o

MAC_W FI _0OBJS += mac_wfi.o

MAC_I B_OBJS += mac_i b. o

I PTUN_OBJS += iptun_dev.o iptun_ctl.o iptun.o

AGGR_OBJS += aggr _dev. o aggr_ctl.o aggr grp 0 aggr_port.o \

aggr_send. o aggr_recv.o aggr_| acp. o

SOFTMAC_OBJS += softmac_nmin.o softmac_ctl.o softmac_capab.o \
softmac_dev. o softnmac_stat.o softmac_pkt.o softmac_fp.o

NET80211_0OBJS += net80211. 0 net80211_proto.o net80211_i nput.
net 80211_out put. o net 80211_node. o net 80211 crypto o\
net 80211_crypt o_none. o net80211_crypto_wep. o net 80211 ioctl.o \
net 80211 crypto tkip.o net80211_crypto_ccnmp.o \
net 80211_ht.

VNI C_OBJS += vnic_ctl.o vnic_dev.o
SIMNET_OBJS += simet.o

| B_OBJS += ibnex.o ibnex_ioctl.o ibnex_hca.o

| BCM_OBJS += ibcminpl.o ibcmsmo ibcmti.o ibcmutils.o ibcmpath.o \
ibcmarp.o ibcmarp_link.o

| BDM_OBJS += ibdm o

| BDVA_OBJS += i bdma. o

| BMF_OBJS += ibnf.o ibnf_inmpl.o ibnf_dr.o ibnf_wge.o ibnf_ud_dest.o ibnf_nod.
i bnf_send. o ibnf_recv.o ibnf_handlers.o ibnf_trans.o \
ibnf _timers.o ibnf_nsg.o ibnf_utils.o ibnf_rnpp.o \
ibnf _saa.o ibnf_saa_inpl.o ibnf_saa_utils.o ibnf_saa_events.o

| BTL_OBJS += ibtl_inmpl.o ibtl_util.o ibtl_nemo ibtl_handlers.o ibtl_gp.o \
ibtl cqg.o ibtl_w.o ibtl _hca.o ibtl _chan.o ibtl _cmo \
ibtl_ncg.o ibtl_ibnex.o ibtl_srqg.o ibtl_part.o

TAVOR _OBJS += tavor.o tavor_agents.o tavor_cfg.o tavor_ci.o tavor_cnd.o \

tavor_cq.o tavor_event.o tavor_ioctl.o tavor_msc.o \
tavor_nr.o tavor_gp.o tavor_gpnod.o tavor_rsrc.o \
tavor_srqg.o tavor_stats.o tavor_umap.o tavor_w.o

HERMON_OBJS += hernon. o hernon_agents. o hernon_cfg.o hernon_ci.o hernmon_cnd.o \
hermon_cq. o hermon_event. o hermon_ioctl.o hermon_misc.o \
hermon_nr. o hernon_gp.o hernon_gpnod. o hernon_rsrc.o \
hernmon_srqg. o hernon_stats.o hernon_umap. o hermon_wr.o \
her mon_f coi b. o hermon_fm o

DAPLT_OBJS += daplt.o

SOL_OFS_OBJS += sol _cna. o sol _ib_cma. o sol _uobj.
sol _of s_debug_util.o sol _ofs_gen_ ut|| o\
sol _kverbs. o

SOL_UCVA_OBJS += sol _ucma. o

SOL_UVERBS_OBJS += sol _uverbs. o sol _uverbs_conp. o sol _uverbs_event.o \
sol _uverbs_hca. o sol _uverbs_gp.o

SOL_UMAD_OBJS += sol _unad. o

new usr/src/uts/comon/ Makefile.files

KSTAT_OBJS += kstat.o
KSYMS_OBJS += ksyms. o

| NSTANCE_OBJS += inst_sync.o

I WBCN_OBJS += iwscons. o

LOFI _OBJS += lofi.o LznmaDec. o
FSSNAP_OBJS += fssnap.o

FSSNAPI F_OBJS += fssnap_if.o

MV OBJS +=

mem o

PHYSMEM OBJS += physnem o
OPTI ONS_COBJS += options.o
W NLOCK_OBJS += wi nl ocki 0.0

PM OBJS += pm o
SRN_OBJS += srn.o
PSEUDO OBJS += pseudonex. o

RAMDI SK_OBJS += randi sk. o

LLC1_OBJS +=Ilcl.0

USBKBM OBJS += usbkbm o

USBWCM _OBJS += usbwcm o

BOFI _OBJS += bofi.o

H D_OBJS += hid.o

HWA_RC OBJS += hwarc. o

USBSKEL_OBJS += usbskel . 0

USBVC_OBJS += ushvc. o ushvc_v4l 2.0

HI DPARSER_OBJS += hi dparser. o

USB_AC OBJS += ush_ac. o

USB_AS OBJS += usb_as. o

USB_AH OBJS += ushb_ah. o

USBMS_OBJS += usbns. o

USBPRN_OBJS += ushprn. o

UGEN_OBJS += ugen. o

USBSER _OBJS += ushser. o usbser_rseq. o
USBSACM OBJS += usbsacm o
USBSER_KEYSPAN _OBJS += ushser_keyspan. o keyspan_dsd. o keyspan_pi pe. o
USBS49_FW OBJS += keyspan_49f w. o

12

new usr/src/uts/common/ Makefile.files 13

786
788
790

801

817
819
821

823
824
825
826
827
828

830
832
834

836
837
838
839

841
842
843
844
845
846
847

849
850

USBSPRL_OBJS +=
WUSB_CA OBJS +=
USBFTDI _OBJS +=

ushser_pl 2303. o pl 2303_dsd. o
wush_ca. o

ushser_uftdi.o uftdi_dsd.o

USBECM OBJS += usbhecm o

WC_OBJS += wscONsS. 0 vCONns. 0

VCONS_CONF_OBJS += vcons_conf. o

SCSI_OBJS +=

SCSI_VHCI _OBJS +=
SCSI _VHCI _F_SYM OBJS +=
SCSI_VHOI _F_TPGS_OBJS +=

SCSI _VHCI _F_ASYM SUN_OBJS +=
SCSI_VHCI _F_SYM HDS_OBJS +=
SCSI _VHC _F_TAPE_CBJS +=
SCSI_VHCI _F_TPGS_TAPE_OBJS +=

SGEN_OBJS +=
SMP_OBJS +=

SATA_OBJS +=
USBA CBJS +=

USBA W THOUT WUSB_OBJS +=

USBAL0_OBJS +=
RSM OBJS +=

RSMOPS_OBJS +=
S1394_OBJS +=

HCl 1394_0BJS +=

AV1394_0BIS +=

scsi_capabilities.o scsi_confsubr.o scsi_control.o \
scsi_data.o scsi_fmo scsi_hba.o scsi_reset_notify.o \
scsi_resource. o scsi_subr.o scsi_transport.o scsi_watch.o \
snp_transport.o

scsi _vhci. o npapi _i npl .o scsi_vhci _tpgs.o
sym o

tpgs. o

asym.sun. o

sym hds. o
tape. o
t pgs_t ape. o
sgen. o
snp. o
sata.o
hcdi.o usba.o usbai.o hubdi.o parser.o genconsole.o \
usbai _pi pe_ngnt. o usbai _req.o usbai _util.o usbai _register.o \

usba_devdb. o usbalO_calls. o usba_ugen.o whcdi.o wa.o

hcdi.o wusba.o wusbai.o hubdi.o parser.o gencons
usbai _pi pe_nmgnt. o usbai _req.o usbai _util.o usbai _register.o \
usba_devdb. o usbalO_cal I s. o usba_ugen. o

usbal0. o

rsmo rsmka_pat hmanager. o rsmka_util.o

r smops. o

t1394.0 t1394_errnsg. o0 s1394.0 s1394_addr.o s1394_asynch.o \
s1394_bus_reset.o s1394_cnp.o s1394_csr.o s1394_dev_disc.o0 \
s1394_fa.o0 s1394_fcp.o \

s1394_hot pl ug. o s1394_isoch. 0 s1394_m sc. 0 h1394.0 nx1394.0

hci 1394. 0 hci 1394_async. o hci 1394_attach. o hci 1394_buf.o \
hci 1394_csr. o hci 1394_detach. o hci 1394_extern.o \

hci 1394_ioctl.o hci 1394 _isoch.o hci 1394 _isr.o \

hci 1394 _i x| _conp. o hci 1394_i x| _isr.o hci 1394_i x| _m sc.o \
hci 1394_i x| _update. o hci 1394_m sc. o hci 1394_ohci .o \

hci 1394_q. 0 hci 1394_s1394i f. 0 hci 1394_t| abel. 0 \

hci 1394 _tlist.o hci 1394_vendor. o

av1394. 0 av1394_as.o av1394_async.o av1394_cfgromo \
av1394_cnp.o av1394 fcp.o avl394_isoch. o av1394_i soch_chan.o \

new usr/src/uts/ common/ Makefile.files 14
851 av1394 isoch_recv.o av1394 isoch_xmt.o avl394 |list.o \
852 av1394_queue. 0
854 DCAML394_OBJS += dcam o dcam frane. o dcam param o dcamreg.o \
855 dcamring_buff.o
857 SCSA1394_(OBJS += hba.o sbp2_driver.o sbp2_bus.o
859 SBP2_OBJS += cfgromo shp2.o0
861 PMODEM OBJS += pnodem o pnpdemcis.o cis.o cis_callout.o cis_handlers.o cis_para
863 DSW OBJIS += dsw. o dsw dev.o ii_tree.o
865 NCALL_OBJS += ncall.o \

866 ncal | _stub. o

868 RDC_OBJS += rdc.o \

869 rdc_dev.o \

870 rdc_io.o \

871 rdc_clnt.o \

872 rdc_prot_xdr.o \
873 rdc_svc.o \

874 rdc_bitmap.o \
875 rdc_health.o \
876 rdc_subr.o \

877 rdc_di skqg. o

879 RDCSRV_OBJS += rdcsrv.o

881 RDCSTUB_OBJS += rdc_stub. o

883 SDBC _OBIJS += sd_bcache.o \
884 sd_bio.o \

885 sd_conf.o \

886 sd_ft.o \

887 sd_hash.o \

888 sd_io.o\

889 sd_misc.o \

890 sd_pcu.o \

891 sd_t daenon. o \
892 sd_trace.o \

893 sd_iob_inpl 0.0 \
894 sd_iob_inpl 1.0\
895 sd_iob_inmpl 2.0 \
896 sd_iob_inmpl 3.0\
897 sd_iob_inmpl 4.0\
898 sd_iob_inpl 5.0 \
899 sd_iob_inpl 6.0 \
900 sd_iob_inmpl 7.0\
901 safestore.o \
902 saf estore_ramo
904 NSCTL_OBIJS += nsctl.o \

905 nsc_cache.o \
906 nsc_di sk.o \

907 nsc_dev.o \

908 nsc_freeze.o \
909 nsc_gen.o \

910 nsc_nmemo \

911 nsc_ncallio.o \
912 nsc_power.o \
913 nsc_resv.o \

914 nsc_rmspin.o \
915 nsc_solaris.o \
916 nsc_trap.o \

new usr/src/uts/common/ Makefile.files 15

917 nsc_list.o
918 UNI STAT_OBJS += spuni.o \

919 spcs_s_k.o
921 NSKERN_OBJS += nsc_ddi.o \
922 nsc_proc.o \
923 nsc_raw. o \
924 nsc_thread.o \
925 nskernd. o

927 SV_0OBJS += SV. 0

929 PMCS_OBJS += pnts_attach.o pnts_ds.o pnts_intr.o pnts_nvram o pnts_sata.o \
930 pnts_scsa. o pncs_snmhba. o pnts_subr.o pnts_fw og. o

932 PMCS8001FW C OBJS +=
933 PMCS8001FW OBJS +=

pnts_fw_hdr. o
$(PMCS8001FW C_0OBJS) SPCBoot.o ila.o firmmare. o

935 #

936 # Buil d up defines and paths.

938 ST_OBJS += st.o st_conf.o

940 EMLXS_OBIJS += em xs_cl ock. o em xs_dfc. o enl xs_dhchap. o enml xs_di ag.o \

941 enm xs_downl oad. o em xs_dunp.o em xs_els. o enl xs_event.o \
942 em xs_fcf.o em xs_fcp.o em xs_fct.o em xs_hba. o enl xs_ip.o \
943 em xs_nbox. o em xs_mem o enl xs_nsg. o enl xs_node. o \

944 em xs_pkt.o em xs_sli3.o0 em xs_sli4.0 enl xs_solaris.o \

945 enm xs_t hread. o

947 EMLXS_FW OBJS += em xs_fw. o

949 OCE_OBIJS += oce_buf.o oce_fmo oce_gld.o oce_hw. o oce_intr.o oce_main.o \
950 oce_nbx. 0 oce_ny.o oce_queue.0 oce_rx.o oce_stat.o oce_tx.o \
951 oce_utils.o

953 FCT_OBJS += discovery.o fct.o

955 QLT_OBJS += 2400.0 2500.0 8100.0 glt.o glt_dma.o

957 SRPT_OBJS += srpt_nod.o srpt_ch.o srpt_cmo srpt_ioc.o srpt_stp.o
959 FCOE_OBJS += fcoe.o fcoe_eth.o fcoe_fc.o

961 FCOET_OBJS += fcoet.o fcoet_eth.o fcoet_fc.o

963 FCOElI _OBJS += fcoei.o fcoei_eth.o fcoei_lv.o

965 | SCSI T_SHARED OBJS += \

966 i scsit_common. o

968 | SCSI T_OBJS += $(|SCSI T_SHARED OBJS) \

969 iscsit.o iscsit_tgt.o iscsit_sess.o iscsit_login.o\
970 iscsit_text.o iscsit_isns.o iscsit_radiusauth.o \

971 i scsit_radiuspacket.o iscsit_auth.o iscsit_authclient.o

973 PPPT_OBJS += alua_ic_if.o pppt.o pppt_nsg.o pppt_tgt.o
975 STMF_OBJS += lun_nap.o stnf.o

977 STMF_SBD_OBJS += sbd.o sbd_scsi.o sbd_pgr.o shd_zvol.o
979 SYSMSG OBJS += sysnsg. o0

981 SES (OBJS += ses.0 ses_sen.o ses_safte.o ses_ses.o

new usr/src/uts/common/ Makefile.files 16
983 TNF_OBJS += tnf_buf.o tnf_trace.o tnf_witer.o trace_init.o \
984 trace_funcs.o tnf _probe. o tnf.o
986 LOG NDMUX_OBJS += | ogi ndnux. o
988 DEVI NFO_OBJS += devinfo.o
990 DEVPOLL_OBJS += devpoll.o
992 DEVPOOL_OBJS += devpool . o
994 |8042_0OBJS += i8042.0
996 KB8042_0BJS += \

997 at _keyprocess.o \
998 kb8042. o \
999 kb8042_keyt abl es. o

1001 MOUSE8042_0OBJS += npuse8042. 0

1003 FDC_OBJS += fdc.o

1005 ASY OBJS += asy. o

1007 ECPP_OBJS += ecpp. o

1009 VU DMBP_OBJS += vui dmi ce. o vui dnBp. o

1011
1013
1015
1017
1019
1021
1023
1025
1027
1029
1031
1033
1035
1037
1039
1041
1043
1045
1047

VUl DMAP_OBJS += vui dmi ce. o vui dmidp. o
VUl DMBP_OBJS += vui dmi ce. o vui dnbp. o
VUl DPS2_0BJS += vui dm ce.o vuidps2.0
HPCSVC_0OBJS += hpcsvce. o

PCl E_M SC _OBJS += pcie.o pcie_fault.o pcie_hp.o pciehpc.o pcishpc.o pcie_pw.o p
PCl HPNEXUS_OBJS += pci hp. o
OPENEEPR_OBJS += openprom o

RANDOM OBJS += random o

PSHOT_OBJS += pshot. o

GEN_DRV_OBJS += gen_drv.o

TCLI ENT_OBJS += tclient.o

TPHCI _OBJS += tphci.o

TVHCI _OBJS += tvhci.o

EMUL64_OBJS += enul 64. 0 emul 64_bsd. o
FCP_OBJS += fcp.o

FCI P_OBJS += fcip.o

FCSM_OBJS += fcsmo

FCTL_OBJS += fctl.o

FP_OBJS += fp.o

new usr/src/uts/comon/ Makefile.files

1049
1050

1052
1054
1056
1058
1060
1062
1064
1066
1068
1070
1072
1074
1076
1078
1080
1082
1084
1086
1087
1088
1089
1090
1092
1094
1096
1097
1098
1099
1101
1103
1105
1107
1109
1110
1111
1112

1114

Q.C OBIS += (I apl o qI _debug.o gl _hba_fru.o gl _init qI ioctl.o\

gl _isr.o gl _nbx_o gl _nx.o gl _xioctl.o gl _fw table
QLC_FW 2200_0BJS += gl _fw_2200.0

|ocb o gl _

QLC_FW 2300_OBJS += gl _fw 2300. 0

QLC_FW 2400_0BJS += gl _fw_2400.0
QLC_FW 2500_0BJS += gl _fw 2500. 0
QLC FW 6322 _OBJS += gl _fw 6322.0
Q.C_FW 8100_0BJS += gl _fw 8100.0
QLGE_OBJS += qglge.o qlge_dbg.o glge_flash.o glge_fmo glge_gld.o glge_npi.o
ZCONS_OBJS += zcons. o
NV_SATA OBJS += nv_sata.o
Sl 3124_0BJS += si3124.0
AHCI _OBJS += ahci.o
PCl | DE_OBJS += pci-ide.o
PCEPP_OBJS += pcepp. 0
CPC_OBJS += cpc. o
CPUI D_OBJS += cpuid_drv.o
SYSEVENT_OBJS += sysevent.o
BL_OBJS += bl.o
DRM OBJS += drm sunnod. o drm kstat.o drm agpsupport.o \
drmauth.o drmbufs.o drmcontext.o drmdma. o \
drmdravxableodrmdrvodrmfopsodrmloctl odrmirg.o \
drm| ock.o drmnenory.o drmmnsg.o drmpci.o drmscatter.o \
drm cache.o drmgemo drmmmo ati_pcigart.o
FM_ OBJS += devfm o devfm machdep. o
RTLS OBJS += rtls.o
#
exec modul es
i&JTEXEC_OBJS +=aout. o
ELFEXEC OBJS += elf.o0 el f_notes.o old_notes.o
| NTPEXEC_OBJS +=i ntp. o
SHBI NEXEC_OBJS +=shbin. o
JAVAEXEC OBJS +=j ava. o
#
file system nodul es

#

AUTOFS_OBJS += auto_vfsops.o auto_vnops.o auto_subr.o auto_xdr.o auto_sys.o

CACHEFS_OBJS += cachefs_cnode. o cachefs_cod.o \

17

new usr/src/uts/comon/ Makefile.files

1115
1116
1117
1118
1119
1120
1121

1123
1125

1127
1128
1129
1130
1131

1133
1134

1136
1137

1139
1141
1143

1145
1146

1148
1150

1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163

1165
1166
1167
1168
1169
1170

1172
1173
1174
1175
1176
1177
1178
1179
1180

cachefs_dir.o cachefs_dlog. o cachefs_fil egrp o\
cachefs_fscache. o cachefs_ioctl.o cachefs_l og. o
cachefs_nodule.o \
cachef s_noopc. o cachefs_resource.o \
cachefs_strict.o \
cachefs_subr.o cachefs_vfsops.o \
cachefs_vnops. o

DCFS_OBJS += dc_vnops. o

DEVFS_OBJS += devfs_subr.o devfs_vfsops.o devfs_vnops.o

DEV_OBJS += sdev_subr.o sdev_vfsops. o sdev_vnops. 0 \
sdev_pt sops. o sdev_zvol ops. 0 sdev_conm o \
sdev_profile.o sdev_ncache.o sdev_netops. o \
sdev_i pnetops.o \
sdev_vtops.o

CTFS_OBJS += ctfs_all.o ctfs_cdir.o ctfs_ctl.o ctfs_event.o \
ctfs_latest.o ctfs_root.o ctfs_symo ctfs_tdir.o ctfs_tnpl.o

OBJFS_OBJS += objfs_vfs.o objfs_root.o obj fs_comon.o \
objfs_odir.o obj fs_data. o

FDFS_OBJS += fdops. o

FI FO_OBJS += fifosubr.o fifovnops.o

PI PE_OBJS += pi pe. o

HSFS_OBJS += hsfs_node. o hsfs_subr.o hsfs_vfsops. o hsfs_vnops.o \
hsfs_susp. o hsfs_rrip.o hsfs_susp_subr.o

LOFS_OBJS += | of s_subr.o | of s_vfsops.o | of s_vnops. o

NAVEFS_OBJS += nanevfs.o namevno. o

NFS_0OBJS += nfs_client.o nfs_commmon. o nfs_dunp.o \
nfs_subr.o nfs_vfsops. o nfs_vnops.o \
nfs_xdr.o nfs_sys.o nfs_strerror.o \
nfs3_vfsops. o nfs3_vnops. o nfs3_xdr.o \
nfs_acl _vnops.o nfs_acl _xdr.o nfs4_vfsops.o \
nfs4_vnops. o nfs4_xdr.o nfs4_idmap.o \
nf s4_shadow. o nfs4_subr.o \
nfs4_attr.o nfs4_rnode. o nfs4_client.o \
nfs4_acache. o nf s4_conmon. o nfs4_client_state.o \
nfs4_cal | back. o nfs4_recovery.o nfs4_client_secinfo.o \
nfs4_client_debug. o nfs_stats.o \
nfs4_acl.o nfs4_stub_vnops. o nfs_cnd. o

NFSSRV_OBJS += nfs_server.o nfs_srv.o nfs3_srv.o \
nfs_acl _srv.o nfs_auth.o nfs_auth_xdr.o \
nfs_export.o nfs_l og.o nfs_log_xdr.o \
nfs4_srv.o nfs4_state.o nfs4_srv_attr.o \
nfs4_srv_ns.o nfs4_db. o nfs4_srv_del eg.o \

nfs4_del eg_ops. 0 nfs4_srv_readdir.o nfs4_dispatch.o

SMBSRV_SHARED OBJS += \
snb_inet.o \
snb_match.o \
snb_msgbuf. o \
snb_oemo \
smb_string.o \

snb_utf8.0 \
smb_door _| egacy. o \
smb_xdr.o \

new usr/src/uts/comon/ Makefile.files

1181
1182
1183
1184
1185

1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246

SVBSRV_OBJS +=

snb_t oken. o \

snb_t oken_xdr.o \
snb_sid.o \
snb_native.o \
snmb_netbios_util.o

$(SMBSRV_SHARED_OBJS)
snb_acl .o
snb_al l oc. o

snb_cl ose. o
snb_conmmon_open. o
smb_conmmon_transact. o
snb_create.o

snb_del ete. o
snb_directory. o
snb_di spatch. o
snb_echo. o

snb_fem o

snb_find.o
snb_flush.o
snb_fsinfo.o

snb_f sops. o
snb_init.o
snb_kdoor . o
snb_kshare. o
smb_kutil.o

snb_| ock. o

snb_| ock_byt e_range. o
smb_| ocki ng_andx. o
snmb_| ogof f _andx. o
snb_nangl e_nane. o
snb_nbuf _mar shal i ng. o
snb_nbuf _util.o
snmb_negoti ate. o
snb_net. o

snb_node. o

snb_nt _cancel . o
snb_nt _create_andx. o

snb_nt _transact_create. o

snb_nt _transact _ioctl.o

snb_nt _transact _notify_change. o
snb_nt _transact _quota. o

snb_nt _transact _security.o

snb_odir.o
snb_ofile.o
smb_open_andx. o
snb_opi pe. o
snb_opl ock. o
snb_pat hnane. o
snb_print.o
smb_process_exit.o
snb_query_fileinfo.o
snb_read. o
snb_renane. o
snmb_sd. o
snb_seek. o
snb_server.o
snb_session. o

snmb_sessi on_set up_andx. o

snb_set _fileinfo.o
snb_si gni ng. o
snb_tree.o

snb_trans2_create_directory.o

snb_trans2_dfs.o
snb_trans2_find. o
snb_tree_connect. o

o e e e e e e e e e e e o e o e e

19

new usr/src/uts/comon/ Makefile.files

1247
1248
1249
1250
1251
1252
1253

1255
1256

1258
1259

1261
1263
1265

1267
1268
1269
1270
1271
1272
1273

1275
1276

1278
1279
1280

1282
1283
1284
1285
1286
1287
1288
1289

1291
1292
1293
1294

1296
1297
1298
1299
1300
1301

1304
1305
1306
1307
1308

PCFS_OBJS +=

PROC OBJS +=

MNTFS_OBJS +=
SHAREFS OBJS +=
SPEC_OBJS +=
SOCK_OBJS +=

TMPFS _OBJS +=

UDFS_OBJS +=

UFS_OBJS +=

VSCAN_OBJS +=
NSVB_OBJS +=

smb_unl ock_byte_

snb_user. o
snb_vfs.o
smb_vops. o
snmb_vss. o
snb_wite.o
snb_wite_raw o

pc_alloc.o
pc_vfsops. o

prcontrol .o
prvfsops.o

mt vf sops. o
sharetab. o
specsubr. o

socksubr. o
socksyscal I s. o

sockcomon_vnops. o
sockconmmon_sops

sock_not supp. o
nl 7c. o
nl 7cnca. o

tmp_dir.o
t mp_vnops. o

udf _al | oc.
udf _i node
udf _vnops.

ooo

ufs_all oc.
uf s_i node
uf s_vnops.
ufs_filio.
ufs_acl .o
uf s_extvnops. o
lufs_log.o

vscan_drv. o

(o]
(o]
(o]
(o]

snb_conn. o
smb_rq.o
snb_tine.o
subr _nthain. o

range. o

pc_dir.o
pc_vnops. o

prioctl.o
prvnops. o

mt vnops. o
sharef s_vfsops. o
specvfsops. o

sockvfsops. o
sockt pi . o

20

——— - ——

pc_node. o pc_subr.o \

prsubr. o prusrio.o \

sharef s_vnops. o
specvnops. o

sockpar ans. o \
sockstr.o \

sockcomon_subr. o \

o} sockconmon. o \

socknotify.o \

nl 7curi.o nl 7chttp. o nl 7cl ogd. o \
sodirect.o sockfilter.o

tnp_subr. o tmp_t node. o tnp_vfsops.o \
udf _bmap. o udf _dir.o \

udf _subr. o udf _vfsops. o \

uf s_bmap. o ufs_dir.o ufs_xattr.o \
ufs_subr.o ufs_tables.o ufs_vfsops.o \
quota. o quotacal I's. o quota_ufs.o \
ufs_l ockfs.o ufs_thread. o ufs_trans.o \
ufs_panic.o ufs_directio.o ufs_log.o \
ufs_snap. o lufs.o lufs_thread. o \
lufs_map. o lufs_top.o | uf s_debug. o
vscan_svc. o vscan_door. o

snb_dev. o snb_i od. o snb_pass. o \
smb_sign.o snb_snb. o snb_subrs. o \

smb_tran. o

SMBFS_COWDON_OBJS += snbfs_ntacl.o

SMBFS_OBJS +=

#
#
#

snmbf s_vfsops. o
snbfs_acl .o
snbfs_subr. o
snbfs_rw ock. o

snmbfs_vnops. o
smbfs_client.o
snbf s_subr2. o
smbfs_xattr.o

$(SMBFS_COMMON_OBJ S)

LVM nodul es

smb_trantcp. o snb_usr.o \

snbf s_node. o \
snbf s_snb. o \

\

MD_OBJS += nd.o nd_error.o nd_ioctl.o nd_nddb. o nd_nanes.o \
md_med. o nd_renane. o nd_subr. o

1310 MD_COMMON _OBJS = nd_convert.o nd_crc.o nd_revchk. o

1312

MD_DERI VED OBJS = netaned_xdr.o nmeta_basic_xdr.o

new usr/src/uts/comon/ Makefile.files

1314
1316
1318
1320
1322
1324
1326

1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378

SOFTPART_OBJS += sp.o sp_ioctl.o

STRIPE_OBJS += stripe.o stripe_ioctl.o

HOTSPARES_OBJS += hot spares. o

RAID_OBJS += raid.o raid_ioctl.o raid_replay.o raid_resync.o rai d_hotspare.o
M RROR OBJS += mirror.o mrror_ioctl.o mirror_resync.o

NOTI FY_OBJS += nd_notify.o

TRANS_OBJS += ndtrans.o trans_ioctl.o trans_|l og.o

ZFS_COWDON_OBJS +=
arc.o
bplist.o
bpobj . o
bptree. o
dbuf. o
ddt.o
ddt _zap. o
dmu. o
dmu_diff.o
dmu_send. o
drmu_obj ect. o
dmu_obj set. o
dmu_traverse. o

ts_passl.o
ts_pass2.0
t
t

its_crc32c.o
its_count.o
! codereview */
dnode. o
dnode_sync. o
dsl _dir.o
dsl _dat aset. o
dsl _deadlist.o
dsl _pool . 0
dsl _synct ask. o
dmu_zfetch. o
dsl _del eg. o
dsl _prop.o
dsl _scan. o
zfeature.o
gzip.o
l'zjb.o
met asl ab. o
refcount.o
sa. o
sha256. o
spa. o
spa_config.o
spa_errlog.o
spa_history.o
spa_mi sc. 0
space_map. o
txg.o
uber bl ock. o
uni que. o
vdev. o
vdev_cache. o

e e e e e —

#endi f /

e o e e e e

21

new usr/src/uts/comon/ Makefile.files

1379 vdev_file.o
1380 vdev_| abel . o
1381 vdev_nmirror.o
1382 vdev_nmi ssing. o
1383 vdev_queue. 0
1384 vdev_rai dz. o
1385 vdev_root. o
1386 zap. o

1387 zap_l eaf.o
1388 zap_micro. o
1389 zf s_byt eswap. o
1390 zfs_debug. o
1391 zfs_fmo

1392 zfs_fuid.o
1393 zfs_sa.o

1394 zfs_znode. o
1395 zil.o

1396 zi0.0

1397 zi o_checksum o
1398 zi o_conpress. 0
1399 zio_inject.o
1400 zle.o

1401 zrlock. o

1403 ZFS_SHARED_OBJS +=
1404 zf eat ur e_common. o
1405 zfs_conutil.o
1406 zfs_del eg. o
1407 zfs_fletcher.o
1408 zf s_nanmecheck. o
1409 zfs_prop.o
1410 zpool _prop. o
1411 Zprop_conmon. o
1413 ZFS OBJS +=

1414 $(ZFS_COVVON_CBJS)
1415 $(ZFS_SHARED OBJS)
1416 vdev_di sk. o
1417 zfs_acl .o

1418 zfs_ctldir.o
1419 zfs_dir.o

1420 zfs_ioctl.o
1421 zfs_l og. o

1422 zfs_onexit.o
1423 zfs_replay.o
1424 zfs_rlock.o
1425 rrw ock. o

1426 zfs_vfsops. o
1427 zfs_vnops. o
1428 zvol . o

1430 ZUT_OBJS +=

1431 zut.o

1433 #

1434 #

1435 #

1436 BUFMOD_OBJS += buf nod. o

streanms nodul es

1438 CONNLD_OBJS += connld.o

1440 DEDUMP_OBJS += dedunp. o

1442 DRCOWPAT_OBIJS +=

1444 LDLINUX_OBJS += |dlinux.o

)

e e

e

drconpat. o

new usr/src/uts/comon/ Makefile.files

1446 LDTERM OBJS += |ldtermo uwidth.o

1448 PCKT_OBJS += pckt. o
1450 PFMOD_OBJS += pfrnod. o
1452 PTEM OBJS += ptemo

1454 REDI RMOD_OBJS += strredirmo
1456 TI MOD _OBJS += tinod. o
1458 TIRDWR_OBJS += tirdw.o
1460 TTCOMPAT_OBJS +=ttconpat.o
1462 LOG OBJS += | 0g. 0

1464 Pl PEMOD_OBJS += pi perod. o
1466 RPCMOD_OBJS += rpcnod. 0

clnt_cots.o clnt_clts.o \

1467 clnt_gen.o clnt_perr.o nt_rpcinit.o rpc_cal msg. o \
1468 rpc_prot.o rpc_sztypes.o rpc_subr.o rpcb_prot.o \
1469 svc. 0 svc_clts.o svc_gen. o svc_cots.o \
1470 rpcsys. o xdr _si zeof . 0 clnt_rdma. o svc_rdma. o \
1471 xdr _rdna. o rdma_subr. o xdrrdnme_si zeof . o

1473 TLIMOD_OBJS += tlinod.o t_kalloc.o t _kbind. o t _kclose.o \
1474 t _kconnect. o t_kfree.o t_kgtstate.o t _kopen.o \
1475 t _krcvudat. o t _ksndudat . o t _kspoll.o t _kunbind.o \
1476 t kutil.o

1478 RLMOD_OBJS += rlnod. o

1480 TELMOD OBJS += tel nod. o

1482 CRYPTMOD_OBJS += cryptnod. o

1484 KB_OBJS += kbd. o keyt abl es. o

1486 #

1487 # | D mappi ng nodul e

1488 #

1489 | DMAP_OBJS += i dmap_nod. o i dmap_kapi . o i dmap_xdr. o i dmap_cache. o
1491 #

1492 # schedul i ng cl ass nodul es

1493 #

1494 SDC_OBJS += sysdc. o

1496 RT_OBJS += rt.o

1497 RT_DPTBL_OBJS += rt_dpthbl.o

1499 TS OBJS += ts.o

1500 TS_DPTBL_OBJS += ts_dpthl.o

1502 | A_OBJIS += ia.o

1504 FSS_OBJS += fss.o

1506 FX_OBJS += fx.o

1507 FX_DPTBL_OBJS += fx_dptbl.o

1509 #

1510 # I nter-Process Conmunication (IPC) nodul es

23

new usr/src/uts/common/ Makefile.files 24
1511 #
1512 | PC_OBJS += ipc.o

1514 | PCMSG_OBJS += nsg.0
1516 | PCSEM OBJS += sem o
1518 | PCSHM OBJS += shmo
1520 #
1521 #

1522 #
1523 COVMON_BI GNUM OBJS += bi gnum nod. o bi gnumni npl . o

bi gnum nodul e

1525 Bl GNUM OBJS += $(COMMON_BI GNUM OBJS) $(Bl GNUM PSR OBJS)

1527 #

1528 # kernel cryptographic framework

1529 #

1530 KCF_OBJS += kcf. o kcf_call prov. o kcf_cbufcall.o kcf_cipher.o kcf_crypto.o \
1531 kcf _cryptoadm o kcf_ctxops. o kcf_digest.o kcf_dual.o \

1532 kcf _keys. o kcf _mac. o kcf _nmech_tabs. o kcf_mi scapi.o \

1533 kcf _obj ect.o kcf_policy.o kcf_prov_lib.o kcf_prov_tabs.o \

1534 kcf _sched. o kcf_session. o kcf_sign.o kcf_spi.o kcf_verify.o \
1535 kcf _random o nodes. o ecb.o cbc.o ctr.o ccmo gcmo \

1536 fips_random o

1538 CRYPTOADM OBJS += crypt oadm o
1540 CRYPTO OBJS += crypto.o
1542 DPROV_OBJS += dprov. o

1544 DCA_OBJS += dca. o dca_3des. o dca_debug. o dca_dsa.o dca_kstat.o dca_rng.o \
1545 dca_rsa.o

1547 AESPROV_OBJS += aes. o0 aes_inpl.o aes_nodes. o

1549 ARCFOURPROV_OBJS += arcfour.o arcfour_crypt.o

1551 BLOWFI SHPROV_OBJS += bl owfi sh. o bl owfish_inpl.o

1553 ECCPROV_OBJS += ecc.0 ec.0 ec2_163.0 ec2_nont.o ecdecode.o ecl_mult.o \

1554 ecp_384.0 ecp_jac.o ec2_193.0 ecl.o ecp_192.0 ecp_521.0 \
1555 ecp_jmo ec2_233.0 ecl_curve.o ecp_224.0 ecp_aff.o \

1556 ecp_nont.o ec2_aff.o ec_naf.o ecl_gf.o ecp_256.0 np_gf2mo \
1557 nmpi . o npl ogic.o npnontg.o npprinme.o oid.o \

1558 secitemo ec2_test.o ecp_test.o

1560 RSAPROV_OBJS += rsa.o rsa_i npl.o pkcsl.o
1562 SWRANDPROV_OBJS += swrand. o

1564 #
1565 #
1566 #
1567 KSSL_OBJS +=

kernel SSL
kssl .o ksslioctl.o
1569 KSSL_SOCKFI L_MOD OBJS += ksslfilter.o ksslapi.o ksslrec.o
1571 #
1572 # m sc. nodul es
1573 #

1575 C2AUDI T_OBJS += adr.o audit.o audit_event.o audit_io.o \
1576 audit _path.o audit_start.o audit_syscalls.o audit_token.o \

new usr/src/uts/comon/ Makefile.files 25

1577
1579
1581
1582
1583
1584

1586
1587

1589
1591
1593
1595
1596
1597
1598
1599
1600
1602
1603
1604
1606
1608
1610
1612
1613
1614

1616
1617

1619
1621

1623
1624

1626
1627

1629
1630

1632
1633

1635
1636

1638
1639

1641
1642

audi t _mem o

PCI C_OBJS += pcic.o

RPCSEC_OBJS += sec_svc. 0 sec_gen.o \
aut h_none. o aut h_| oopb. o\
authu_prot.o \
svc_aut hu. o

secnod. o

aut h_des. o
aut hdesprt.o
key_call.o

sec_clnt.o

aut h_kern. o

aut hdesubr. o

key_prot.o svcaut hdes. o

RPCSEC_GSS_OBJS += rpcsec_gssnod. 0 rpcsec_gss. 0 rpcsec_gss_m sc.o \
rpcsec_gss_utils.o svc_rpcsec_gss. o

CONSCONFI G_OBJS += consconfig.o
CONSCONFI G_DACF_OBJS += consconfi g_dacf.o consplat.o
TEM OBJS += tem o tem safe. o 6x10.0 7x14.0 12x22.0

KBTRANS_OBJS +=
kbtrans. o
kbt rans_keyt abl es. o
kbtrans_pol | ed. o
kbtrans_streans. o
usb_keyt abl es. o

——— — —

KGSSD OBJS += gssd_clnt_stubs.o gssd_handl e.o gssd_prot.o \

gss_di spl ay_nane. o gss_rel ease_nane. o gss_i nport_nane.o \
gss_rel ease_buffer.o gss_rel ease_oi d_set.o gen_oi ds. o gssdnod. o
KGSSD_DERI VED_OBJS = gssd_xdr. o
KGSS_DUMW_OBJS += dnech. o
KSOCKET_OBJS += ksocket. o ksocket _nod. o
CRYPTO= cksuntypes.o decrypt.o encrypt.o encrypt_length.o etypes.o \
nfold.o verify_checksum o prng.o bl ock_size. o make_checksum o\
checksum | ength. o hmac. o defaul t _state. o mandat ory_suntype. o

cryptol/ des
CRYPTO DES= f_cbc.o f_cksumo f_parity.o weak_key.o d3_chc.o ef _crypto.o

CRYPTO_DK= checksum o derive.o dk_decrypt.o dk_encrypt.o
CRYPTO_ARCFQOUR= k5_arcfour.o

crypto/ enc_provider
CRYPTO _ENC= des. o des3.0 arcfour_provider.o aes_provider.o

crypto/ hash_provider
CRYPTO_HASH= hash_kef _generic.o hash_knd5. 0 hash_crc32. 0 hash_kshal. o

crypt o/ keyhash_provi der
CRYPTO_KEYHASH= descbc. o k5_knd5des. o k_hmac_nd5. o

crypto/crc32
CRYPTO_CRC32= crc32.0

crypto/old
CRYPTO_OLD= ol d_decrypt.o ol d_encrypt.o

crypto/raw
CRYPTO_RAW raw decrypt.o raw_encrypt.o

K5_KRB= kfree.o copy_key.o \
parse.o init_ctx.o \

new usr/src/uts/comon/ Makefile.files

1643
1644
1645
1646
1647

1649
1650

1652
1653
1654
1655

1657
1658
1659
1660
1661
1662
1663
1664
1665
1666

1670

1673
1674
1675
1676
1677
1678
1679
1681
1683

1685
1686

1688
1690
1692
1693
1694
1696
1698
1700
1702
1704
1706

1708

ser_adata.o ser_addr.o \
ser_auth.o ser_cksumo \
ser_key.o ser_princ.o \
serialize.o unparse.o \
ser_actx.o
K5_0S= tineofday.o toffset.o \
init_os_ctx.o c_ustine.o

SEAL=

EXPORT DELETE START
SEAL= seal .o unseal .o
EXPORT DELETE END
MECH= del ete_sec_context.o \

i mport_sec_context.o \

gssapi _krb5.0 \

k5seal . 0 k5unseal . 0o kb5seal v3.0 \
ser_sctx.o \

sign.o \

util_crypt.o \

util_validate.o wutil_ordering.o \
util_segnumo util_set.o util_seed.o \
wap_size_limt.o verify.o

MECH_GEN= util _token.o

KGSS_KRB5_0OBJS += krb5mech. o \
$(MECH) $(SEAL) $(MECH GEN) \
$(CRYPTO $(CRYPTO DES) $(CRYPTO DK) $(CRYPTO ARCFOUR) \
$(CRYPTO_ENC) $(CRYPTO HASH) \
$(CRYPTO_KEYHASH) $(CRYPTO_CRC32) \
$(CRYPTO OLD) \
$(CRYPTO_RAW $(K5_KRB) $(K5_0S)

DES _OBJS += des_crypt.o des_inpl.o des_ks.o des_soft.o

DLBOOT_OBJS += bootparamxdr.o nfs_dlinet.o scan.o

KRTLD _OBJS += kobj _bootfl ags. o getoptstr.o \

kobj . o kobj _kdi .o kobj _I mo kobj_subr.o
MOD_OBJS += nodct| . o nodsubr.o nodsysfile.o nmodconf.o nodhash. o
STRPLUMB_OBJS += strplunb. o

CPR_OBJS += cpr_driver.o cpr_dunp.o \
cpr_main.o cpr_misc.o cpr_nod.o cpr_stat.o \
cpr_uthread. o

PROF_OBJS += prf.o

SE_OBJS += se_driver.o

SYSACCT_OBJS += acct.o
ACCTCTL_OBJS += acctctl.o
EXACCTSYS_OBJS += exacctsys. o
KAl O _OBJS += aio.o0

PCMCI A_OBJS += pcntia.o cs.o cis.o cis_callout.o cis_handlers.o cis_parans.o

26

new usr/src/uts/comon/ Makefile.files 27

1710
1712
1714
1716
1718
1720
1722
1724
1726
1728
1730
1732
1734
1736
1738
1740

1742
1743

1745
1746
1747
1749

1751
1752

1754
1755
1756
1758
1760
1762

1764
1765

1767
1769
1771
1773

BUSRA _OBJS += busra.o

PCS_0OBJS += pcs. o

PCAN_OBJS += pcan. o

PCATA _OBJS += pci de. o pcdi sk.o pclabel.o pcata.o
PCSER_OBJS += pcser. 0 pcser_cis.o

PCW._OBJS += pcw .0

PSET_OBJS += pset.o

OHCl _OBJS += ohci .o ohci _hub.o ohci_polled.o

UHCI _OBJS += uhci.o uhciutil.o uhcitgt.o uhcihub.o uhcipolled.o

EHCI _OBJS += ehci .o ehci _hub.o ehci_xfer.o ehci_intr.o ehci_util.o ehci_polled.o
HUBD_OBJS += hubd. o

USB_M D OBJS += usb_mid.o

USB_I A OBJS += usb_ia.o

UMBA_OBJS += uwba. 0 uwbai.o

SCSA2USB_OBJS += scsa2usb. o usb_mns_bul konly. o usb_ns_chi .o

HWAHC_OBJS += hwahc. o hwahc_util.o

WUSB_DF_OBJS += wusb_df. o
WJSB_FWMOD_OBJS += wusb_fwnod. o

I PF_OBJS += ip_fil_solaris.o fil.o solaris.o ip_state.o ip_frag.o ip_nat.o \
i p_proxy.o ip_ a th.o ip_pool.o ip_htable.o ip_lookup.o \
ip_log.o msc.o ip_conpat.o ip_nat6.o drand48.o

| BD_OBJS += ibd.o ibd_cmo

El BNX_OBJS += enx_main.o enx_hdlrs.o enx_ibt.o enx_log.o enx_fip.o \

enx_m sc. 0 enx_(g.0 enx_ctl.o

EQ B_OBJS += eib_admo eib_chan.o eib_cm.o eib_ctl.o eib_data.o \

eib_fip.o eib_ibt.o eib_log.o eib_nac.o eib_main.o \
eib_rsrc.o eib_svc.o eib_vnic.o
DLPI STUB_OBJS += dI pi stub. o
SDP_OBJS += sdpddi . o
TRILL_OBJS += trill.o

CTF_OBJS += ctf_create.o ctf_decl.o ctf_error.o ctf_hash.o ctf_|labels.o \
ctf_l ookup.o ctf_open.o ctf_types.o ctf _util.o ctf_subr.o ctf_nod.o

SMBI OS_OBJS += snb_error.o snb_info.o snb_open. o snb_subr.o snb_dev. o
RPCI B_OBJS += rpcib.o

KVMDB_OBJS += kdrv. o

AFE_OBJS += afe.o

new usr/src/uts/comon/ Makefile.files

1775
1776

1778
1780
1782
1784

1786
1787

1789
1790

1792
1794
1796

1798
1799

1801
1803
1805
1807
1809
1811
1813
1815
1817
1819
1821
1823
1825
1827
1829
1831
1833
1835
1837
1839

28

BGE_OBJS += hge_| mal n2. 0 bge_chi p2. o0 bge_kstats.o bge_|l og. o bge_ndd.o \
bge_atom c. o0 bge_nmii.o bge_send.o bge_recv2.0 bge_nmii_5906. 0

DMFE_OBJS += dnfe_log.o dnfe_main.o dnfe_mii.o
EFE_OBJS += efe.o0

ELXL_OBJS += el xl .o

HVE_OBJS += hne. o

| XGB_OBJS += ixgh.o ixgb_atomc.o ixgb_chip.o ixgb_gld.o ixgh kstats.o \
ixgb_l 0og. o ixgb_ndd.o ixgb_rx.o ixgb_tx.o ixgb_xmi.o

NGE_OBJS += nge_nmmi n. 0 nge_atom c. 0 nge_chi p.o nge_ndd.o nge_kstats.o \
nge_l 0g. 0 nge_rx.o nge_tx.o0 nge_xmi.o

PCN_OBJS += pcn. o
RGE_OBJS += rge_nmmin.o rge_chip.o rge_ndd.o rge_kstats.o rge_|l 0g.o rge_rxtx.o
URTW OBJS += urtw. o

ARN_OBJS += arn_hw. o arn_eepromo arn_nmac.o arn_calib.o arn_ani.o arn_phy.o arn_
arn_main.o arn_recv.o arn_xmt.o arn_rc.o

ATH OBJS += ath_aux.o ath_main.o ath_osdep.o ath_rate.o
ATU_OBJS += atu.o

| PWOBJS += i pw2100_hw. o i pw2100. 0

I W_OBJS += i pw2200_hw. 0 i pw2200. o

IWH_OBJS += iwh.o

I WK_OBJS += iwk2.0

| WP_OBJS += iwp. o0

MAL_OBJS += mwl . o

MALFW OBJS += mm fw_node. o

WPl _OBJS += wpi .o

RAL_OBJS += rt2560.0 ral _rate.o

RUM OBJS += rum o

RWD_OBJS += rt2661.0

RWN_OBJS += rt2860. 0

UATH_OBJS += uath.o

UATHFW OBJS += uat hf w_nod. o

URAL_OBJS += ural .o

RTW OBJS += rtw. 0 snt93cx6. 0 rtwphy. o rtwphyio.o
ZYD _OBJS += zyd.o zyd_usb.o zyd_hw o zyd_fw. o
MXFE_OBJS += nxfe.o

new usr/src/uts/comon/ Makefile.files 29

1841 MPTSAS_OBJS += nptsas.o nptsas_inpl.o nptsas_init.o nptsas_raid.o nptsas_snhba. o
1843 SFE_OBJS += sfe.o sfe_util.o

1845 BFE_OBJS += bfe.o

1847 BRI DGE_OBJS += bridge. o

1849 | DM SHARED_OBJS += base64. 0

1851 | DM OBJS += $(1 DM_SHARED_OBJS) \

1852 idmo idminpl.o idmtext.o idmconn_smo idmso.o

1854 VR _OBJS += vr.o

1856 ATGE_OBJS += atge_mmin.o atge_| le.o0 atge_nmii.o atge_| 1.0 atge_l1lc.o

1858 YGE_OBJS = yge. o0

1860 #

1861 # Buil d up defines and paths.

1862 #

1863 LI NT_DEFS = - Duni x

1865 #

1866 # This duality can be renpved when the native and target conpilers

1867 # are the sane (or at |east recognize the same conmand |ine syntax!)
1868 # It is a bug in the current conpilation systemthat the assenber

1869 # can't process the -Y |, flag.

1870 #

1871 NATI VE_I NC PATH += $(I NC_PATH) $(CCYFLAG) $(UTSBASE) / conmon

1872 AS | NC_PATH += $(1 NC_PATH) -1 $(UTSBASE)/ cormon

1873 | NCLUDE_PATH += $(1 NC_PATH) $(CCYFLAG) $(UTSBASE) / commpn

1875 PCI EB_OBJS += pcieb. o

1877 # Chel sio N110 10G NI C driver nodul e

1878 #

1879 CH OBJS = ch.o glue.o pe.o sge.o

1881 CH COM OBJS = ch_mac.o ch_subr.o cspi.o espi.o ixf1010.0 nt3.0 nt4.0 nc5.0 \
1882 mv88elxxx. o0 mv88x201x.0 nmy3126.0 pnB393.0 tp.o ulp.o \

1883 vsc7321. 0 vsc7326.0 xpak.o

1885 #

1886 # PCl strings file

1887 #

1888 PCl _STRI NG OBJS = pci _strings.o

1890 NET_DACF_OBJS += net_dacf.o

1892 #

1893 # Xframe 10G NI C driver nodul e

1894 #

1895 XGE_OBJS = xge.o xgell.o

1897 XGE_HAL_OBJS = xgehal -channel .o xgehal -fifo.o xgehal -ring.o xgehal-config.o \
1898 xgehal -driver.o xgehal -nm o xgehal -stats.o xgehal -device.o \
1899 xge- queue. o xgehal - mgnt . o xgehal - ngnt aux. o

1901 #

1902 # e1000g nodul e

1903 #

1904 E1000G OBJS += e1000_80003es2l an.o e1000_82540. 0 e1000_82541. 0 e1000_82542.0 \
1905 €1000_82543. 0 e1000_82571. 0 e1000_api .o e1000_ich8l an. o \
1906 €1000_mac. o €1000_nanage. o €1000_nvm o e1000_osdep. o \

new usr/src/uts/comon/ Makefile.files

1907 e1000_phy. o e1000g_debug. o €1000g_nwmi n. o €1000g_all oc.0 \
1908 €1000g_tX. 0 e1000g_rx.o el000g_stat.o

1910 #

1911 # Intel 82575 1G NI C driver nodul e

1912 #

1913 1 GB_OBIJS = igb_82575.0 igb_api.o igb_nac.o igb_nanage.o \
1914 igb_nvmo igb_osdep.o igb_phy.o igb_buf.o\

1915 igb_debug.o igh_gld.o igb_log.o igb_nmain.o \

1916 igb_rx.o igb_stat.o igb_tx.o

1918 #

1919 # Intel Pro/100 NIC driver nodul e

1920 #

1921 | PRB_OBJS = i prb. o

1923 #

1924 # Intel 10GE PCIE NIC driver nodul e

1925 #

1926 | XGBE_OBJS = i xgbe_82598. 0 i xgbe_82599. o i xgbhe_api . \
1927 i xgbe_conmon. o i xgbe_phy. o \
1928 i xgbe_buf. o i xgbe_debug. o ixgbe_gl d. o \
1929 i xgbe_l 0og. o i xgbe_main. o \
1930 i xgbe_osdep. o i xgbe_rx. o ixgbe_stat.o \
1931 i xgbe_tx. o ixgbe_x540.0 ixgbe_nbx.o

1933 #

1934 # NIU 10G 1G driver nodul e

1935 #

1936 NXGE_OBJS = nxge_mac. 0 nxge_i pp. 0 nxge_r xdma. o \
1937 nxge_t xdma. 0 nxge_t xc. o nxge_nai n. o \
1938 nxge_hw. o nxge_fzc.o nxge_virtual .o \
1939 nxge_send. o nxge_cl assify.o nxge_fflp.o \
1940 nxge_f fl p_hash. o nxge_ndd. o nxge_kstats. o \
1941 nxge_zcp. 0 nxge_fm o nxge_espc. o nxge_hv. o \
1942 nxge_hi 0. 0 nxge_hi o_guest.o nxge_intr.o

1944 NXGE_NPI _OBJS =\

1945 npi . o npi _mac. o npi_i pp. o \
1946 npi _t xdma. o npi _rxdnma. o npi _txc.o \
1947 npi _zcp. o npi_espc.o npi_fflp.o \
1948 npi _vir.o

1950 NXGE_HCALL_OBIJS = \

1951 nxge_hcal | . o

1953 #

1954 # ki conv nodul es

1955 #

1956 KI CONV_EMEA OBJS += ki conv_enea. 0

1958 KI CONV_JA OBJS += kiconv_ja.o

1960 Kl CONV_KO OBJS += ki conv_cck_conmmon. o ki conv_ko. o

1962 Kl CONV_SC OBJS += ki conv_cck_comon. o ki conv_sc. o

1964 KI CONV_TC OBJS += ki conv_cck_comon. o kiconv_tc.o

1966 #

1967 # AAC nodul e

1968 #

1969 AAC OBJS = aac.0 aac_ioctl.o

1971 #

1972 # sdcard nodul es

new usr/src/uts/comon/ Makefile.files

1973 #

1974 SDA OBJS = sda_cnd. o sda_host.o sda_init.o sda_nmem o sda_nod. o sda_sl ot.
1975 SDHOST_OBJS = sdhost. o

1977 #

1978 # hxge 10G driver nodul e

1979 #

1980 HXGE_OBJS = hxge_mai n. o hxge_vmac. o hxge_send. o \
1981 hxge_t xdnma. o hxge_r xdna. o hxge_virtual .o \
1982 hxge_fm o hxge_fzc.o hxge_hw. o hxge_kstats.o \
1983 hxge_ndd. o hxge_pfc.o \
1984 hpi .o hpi _vmac. o hpi _rxdma. o hpi _txdna. o \
1985 hpi _vir.o hpi_pfc.o

1987 #

1988 # MEGARAI D_SAS nodul e

1989 #

1990 MEGA_SAS_OBJS = negarai d_sas. o

1992 #

1993 # MR_SAS nodul e

1994 #

1995 MR SAS OBJS = nr_sas. 0

1997 #

1998 # I SCSI _I NI TI ATOR nodul e

1999 #

2000 | SCSI _I NI TI ATOR_OBJS = chap.o iscsi_io.o iscsi_thread.o \
®

2001 iscsi_ioctl.o iscsid.o iscsi.o \

2002 iscsi_login.o isns_client.o iscsiAuthCient.o \
2003 iscsi_lun.o iscsiAuthCientd ue.o \

2004 iscsi_net.o nvfile.o iscsi_cnd.o \

2005 i scsi_queue. 0 persistent.o iscsi_conn.o \

2006 i scsi_sess.o radius_auth.o iscsi_crc.o \

2007 i scsi_stats.o radi us_packet.o iscsi_doorclt.o \
2008 iscsi_targetparamo utils.o kifconf.o

2010 #

2011 # ntxn 10Gb/1Go NI C driver nodul e

2012 #

2013 NTXN_OBJS = unmnic_init.o unmgemo unmnic_hw. o unmndd.o \

2014 unmnic_main.o unmnic_isr.o unmnic_ctx.o niu.o
2016 #

2017 # Myricom 10G NI C driver nodul e

2018 #

2019 MYRI 10GE_OBJS = nyri 10ge.o nyri 10ge_lro. o0

2021 # nul I driver nodul e
2022 #
2023 NULLDRI VER OBJS = nul I driver.o

2025 TPM OBIS = tpmo tpmhcall.o

31

o

new usr/src/uts/comon/fs/zfs/dsl _dataset.c

R R R R

117504 Wed COct 17 21:48:38 2012
new usr/src/uts/comon/ fs/zfs/dsl _dataset.c
FITS: generating send-streans in portable format
This commit adds the command 'zfs fits-send’, anal ogous to zfs send. The
generated send streamis conpatible with the stream generated with that
from’btrfs send” and can in principle easily be received to any fil esystem

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkkkkkkkkkkkkkkhkkFkhkkkkkk ok kk k k&

__unchanged_portion_omtted_

683 int
683 static int
684 dsl _dat aset _nanel en(dsl _dataset _t *ds)

685 {

686 int result;

688 if (ds == NULL) {

689 result = 3; /* "pmos" */

690 } else {

691 result = dsl_dir_nanel en(ds->ds_dir);

692 VERI FY(0 == dsl _dat aset_get_snapnanme(ds));

693 if (ds->ds_snapnanme[0]) {

694 ++resul t; /* adding one for the @sign */
695 if (! MUTEX_HELD(&ds->ds_I ock))

696 nmut ex_ent er (&ds->ds_| ock) ;

697 result += strlen(ds->ds_snapnane);
698 mut ex_exi t (&ds->ds_| ock) ;

699 } else {

700 result += strlen(ds->ds_snapnane);
701 }

702 }

703 1

705 return (result);

706 }

____unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/fits.c 1

R R R R

30408 Wed COct 17 21:48:38 2012
new usr/src/uts/comon/fs/zfs/fits.c
FITS: generating send-streans in portable format
This commit adds the command 'zfs fits-send’, anal ogous to zfs send. The
generated send streamis conpatible with the stream generated with that
from’btrfs send” and can in principle easily be received to any fil esystem
IR R R R R R R R SRR RS R SRR RS E R E RS R R R RREREREREEEEEEE]

1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww:.opensolaris.org/os/licensing.

See the License for the specific |anguage governi ng perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the foll ow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

B I I
-

NRERRRERRRER R
COONOUITAWNROOO~NOUTDWN

21/
22 * Copyright (c) 2012 STRATO AG All rights reserved.
=Y

24 #include <sys/zfs_context.h>
25 #include <sys/stat.h>

26 #include <sys/errno. h>

27 #include <sys/nkdev. h>

28 #incl ude <sys/debug. h>

29 #include <sys/open. h>

30 #include <sys/zfs_ioctl.h>
31 #include <zfs_nanecheck. h>
32 #include <sys/policy.h>

33 #include <sys/dnu_obj set. h>
34 #include <sys/dsl _prop. h>

35 #include <sys/zvol . h>

36 #include <sys/zap. h>

37 #include <sys/dsl _dataset. h>
38 #include <sys/dnu_traverse. h>
39 #include <sys/dsl_dir.h>

40 #include <sys/arc. h>

41 #include <sys/spa. h>

42 #incl ude <sys/spa_inpl.h>

43 #incl ude <sys/sa.h>

44 #include <sys/sa_inpl.h>

45 #incl ude <sys/zfs_acl.h>

46 #include <sys/zfs_sa. h>

47 #include <sys/zfs_znode. h>
48 #i ncl ude <sys/dbuf. h>

49 #include <sys/fits.h>

50 #include <sys/fits_inpl.h>

52 /*

53 * fits_send generates a stream of filesystem data anal ogous to dnu_send.

54 * The nain difference is that the fits-stream does not contain zfs-specific
55 * data and can be replayed on any filesystem It just contains conmands |ike
56 * MKDIR, CHMOD, RENAME etc.

57 * The streamis generated in two passes. The first pass, PASS_LINK basically
58 * creates all new files/directories and |inks, while the second pass,

new usr/src/uts/comon/fs/zfs/fits.c

59 * PASS_UNLINK, does all the renmpbval of old stuff.

60 * Each pass enunerates all objects in inode order.

61 * There are some corner cases:

62 * Files / directories can only be created if the parent already exists or
63 * already has been created. |f an object is encountered which parent does not
64 * satisfy this condition, it is put back and its creation will be trigger
65 * by the creation of the parent.

66 * A similar case applies on deletion. A directory can only be renoved after
67 * the |ast contained object has been renoved. If a directory is not enpty,
68 * it is put back and the deletion of the last object in it triggers the

69 * deletion.

70 * If an objects gets deleted, and a new object is created under the sane
71 * nane, passl cannot create the object directly. So it is created under a
72 * tenporary name and gets renamed in pass2.

73 * If an object is deleted and a new obj ect (of possibly diffent type)

74 * created under the sane inode and the sane nane, this change cannot be

75 * detected by enunerating the containing directory (as nane + inode are

76 * unchanged). It is detected by a change of the inode generation nunmber and
77 * a flag is set for pass2. Creation is postponed. In pass2, all enunerated
78 * directories are checked for this inode (although the entry is unchanged,
79 * the directory has a burrped txg). If it is encountered, delete + create
80 * happen both in pass2

81 *

82 * There are lots of TODGs |eft:

83 * add XATTR support

84 * - add path-caching

85 * - add a cache for brute-force parent search

86 * - add a cache for inode-search in a directory

87 */ - use a hash instead of the linear list in fits_count

88 *

89 static int
90 fits_dnode_changed(spa_t *spa, fits_t *f, uint64_t dnobj,

91 dnode_phys_t *from arc_buf_t *frorrbuf dnode_phys_t *to, arc_buf_t *tobuf);

93 /* copied fromzfs_znode.c */
94 static int
95 fits_sa_setup(objset_t *osp, sa_ attr_type_t **sa_table)

97 uint64_t sa_obj = 0;

98 int error;

100 error = zap_| ookup(osp, MASTER NODE OBJ, ZFS_SA ATTRS, 8, 1, &sa_obj);
101 if (error 1= 0 &% error != ENCENT)

102 return (error);

104 error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table);

105 return (error);

106 }

108 static int
109 fits_grab_sa_handl e(objset_t *osp, uint64_t obj, sa_handle_t **hdlp,
110 dmu_buf _t **db, void *tag)

{

111

112 dmu_obj ect _info_t doi;

113 int error;

115 if ((error = sa_buf_hold(osp, obj, tag, db)) != 0)
116 return (error);

118 drmu_obj ect _i nfo_from db(*db, &doi);

119 if ((doi.doi bonustype'—DNUOTSA&&

120 doi . doi _bonus_type != DNU OT_ZNCDE) | |

121 (doi . doi _bonus _type == DMJ_OT_ZNODE &&

122 doi . doi _bonus_si ze < sizeof (znode_phys_t))) {
123 sa_buf _rele(*db, tag);

124 return (ENOISUP);

new usr/src/uts/comon/fs/zfs/fits.c

125 }

127 error = sa_handl e_get (osp, obj, NULL, SA HDL_PRI VATE, hdlp);
128 if (error I'=0)

129 sa_buf _rele(*db, tag);

130 return (error);

131 }

133 return (0);

134 }

136 static void
137 fits_rel ease_sa_handl e(sa_handl e_t *hdl, dnu_buf_t *db, void *tag)

138 {

139 sa_handl e_destroy(hdl);
140 sa_buf _rele(db, tag);
141 }

143 static int
144 fits_find_frombp(spa_t *spa, dnode_phys_t *dnp, blklevel t *bl,

145 const zbookmark_t *zb, blkptr_t **bpp, arc_buf_t **pbuf)

146 {

147 uint32_t flags;

148 int epbs = dnp->dn_i ndbl kshi ft - SPA_BLKPTRSHI FT;

149 int epbrrask = (1 << epbs) -

150 int level;

151 int slot;

152 uint64_t bl kid;

153 uint64_t bl k;

154 bl kl evel _t *bl p;

155 zbooknmark_t czb;

156 int i;

158 *bpp = NULL;

159 for (level dnp >dn_nl evels - 1; level >= zb->zb_level; --level) {
160 bl k|d = zb->zb_blkid >> (epbs * (level - zb->zb_level));
161 bl k = bI ki d >> epbs;

162 slot = bl k & epbmask;

163 blp = bl + level;

165 if (blp->bl_blk == blk)

166 conti nue;

168 for (i =0; i <=1level; ++i) {

169 bl kl evel _t *b = bl + I;

171 i f (b->bl _buf)

172 arc_buf _renove_ref (b->bl _buf, &b->bl_
173 b->bl _bp = NULL;

174 b->bl _buf = NULL;

175 b->bl _blk = -1;

176 }

177 ASSERT(sl ot < bl p[1].bl_nslots);

178 if (BP_IS HOLE(blp[1].bl_bp + slot)) {

179 *bpp = NULL;

180 return (0);

181 }

182 /*

183 * I oad i ndbl k

184

185 flags = ARC_ WAIT;

186 SET_BOOKIVARK(&czb zb->zb_obj set, zb->zb_object, |evel,
187 if (dsl_read(NULL, spa, blp[1].bl _bp + slot, blp[1].bl_|
188 ar c_get buf _func, &bl p->bl _buf, ZI O PRI ORI TY_ASYNC_READ,
189 ZI O FLAG CANFAI L, &flags, &czb) != 0)

190 “return (EIO;

new usr/src/uts/comon/fs/zfs/fits.c

191 bl p->bl _bp = bl p- >bl _buf - >b_dat a;
192 bl p->bl “nslots = 1 << epbs;
193 bl p->bl bl k = bl k;

194 }

195 sl ot = zb->zb_bl kid & epbmask;

196 blp = bl + zb->zb_| evel ;

197 ASSERT(sI ot < bl p->bl _nslots);

198 *bpp = bl p->bl _bp + slot;

199 *pbuf = bl p->bl_buf;

200 if (BPIS HG_E(*bpp))

201 bpp = NULL;

203 return (0);

204 }

206 static int
207 fits_file_cb(spa_t *spa, fits_t *f, zbookmark_t *zb,

208 bl kptr_t *bp, arc_buf_t *pbuf, void *ctx)

209 {

210 int err = 0;

211 bl kptr_t *fbp;

213 if (issig(JUSTLOOKING) && issig(FORREAL))

214 return (EINTR);

216 if (f->f_fromds && zb->zb_objset == f->f_fronds->ds_object)
217 return (0);

219 if (bp == NULL) {

220 arc_buf _t *fpbuf = NULL;

221 zbookmark_t czb;

223 ASSERT(f->f _fronds);

224 SET_BOOKMARK(&czb, f->f fronds->ds_object, zb->zb_object,
225 zb >zb_l evel , zb->zb_bl ki d);

226 err = fits_find from 1 bp(spa, f->f _dnp, f->f filebl,
227 &czb, &f bp, & pbuf);

228 if (err)

229 return (err);

230 if (fbp) {

231 #if O

232 /* XXX TODO cal | back for newy created hole */
233 err = fits_enum bp(spa, da, &czb, fbp, fpbuf);
234 if (err)

235 return (err);

236 #endi f

237 }

238 } else if (zb->zb_level == 0) {

239 arc_buf _t *tbuf;

240 uint32_t thags—ARCV\AIT

241 int blksz = BP_GET_LSIZE(bp);

243 if (dsl_read(NULL, spa, bp, pbuf,

244 arc_get buf _func, & buf, ZI O PRI ORI TY_ASYNC READ,
245 ZI O_FLAG CANFAI L, &tflags, zb) !'= 0)

246 return (ElIO);

248 if (f->f _ops-. >fits_file_data)

249 err = f->f_ops->fits_file_data(ctx, tbuf->b_data,
250 zb->zb_bl kid * blksz, bl ksz);

252 (void) arc_buf_renove_ref (tbuf, &tbuf);

253 }

254 return (err);

255 }

new usr/src/uts/comon/fs/zfs/fits.c 5
257 static int

258 fits_enumbp(spa_t *spa, fits_t *da, zbookmark_t *zb,

259 bl kptr_t *bp, arc_buf_t *pbuf, uint64_t min_txg, void *ctx)

260 {

261 int err = 0;

262 arc_buf _t *buf = NULL;

263 uint32_t flags = ARC WAIT;

265 if (BP_IS_HOLE(bp))

266 return (0);

268 if (bp->blk_birth <= mn_txg)

269 return (0);

271 if (BP_GET_LEVEL(bp) > 0) {

272 int i;

273 int epb = BP_GET_LSI ZE(bp) >> SPA _BLKPTRSHI FT;

274 bl kptr_t *cbp;

275 zbookmark_t czb;

277 if (dsl_read(NULL, spa, bp, pbuf, arc_getbuf_func, &buf,
278 ZI O_PRI ORI TY_ASYNC READ, ZI O FLAG CANFAIL, &flags, zb) != 0)
279 return (ElIO);

280 chp = buf >b_dat a;

281 for (i =0; i < epb ++i, ++cbp) {

282 SI:_F_BOO<I\/ARK(&czb, zb->zb_objset, zb->zb_object,
283 zb >zb_level - 1, zb->zb_bl kid * epb +1);
284 err flts “enum bp(spa, da, &czb, cbp, buf, mn_txg,
285 t

286 if (err)

287 goto out;

288 }

289 } else if (BP_GET_TYPE(bp) == DMJ_OT_DNCDE) {

290 int i;

291 int epb = BP_CGET_LSI ZE(bp) >> DNODE_SHI FT;

292 dnode_phys_t *dnp;

294 if (dsl_read(NULL, spa, bp, pbuf, arc_getbuf_func, &buf,
295 ZI O_PRI ORI TY_ASYNC_READ, ZI O FLAG CANFAI L,

296 & lags, zb) I'=10) {

297 err = EIQ

298 goto out;

299 }

300 dnp = buf >b_dat a;

301 for (i =0; 1 < epb ++i, ++dnp) {

302 uint64_t dnobj = zb->zb_blkid * epb + i;

303 i f (dnp->dn_type == DMJ_OT_NONE)

304 conti nue;

305 err = fits_dnode_changed(spa, da, dnobj, dnp, buf,
306 NULL, NULL);

307 if (err)

308 goto out;

309 }

310 } else {

311 err = fits_file_cb(spa, da, zb, bp, pbuf, ctx);

312 }

313 out:

314 if (buf)

315 (void) arc_buf_renove_ref(buf, &buf);

317 return (err);

318 }

320 static int

321 fits_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, arc_buf_t *pbuf,

322 const zbookmark_t *zb, const dnode_phys_t

*dnp, void *arg)

new usr/src/uts/comon/fs/zfs/fits.c

323 {
324
325
326
327

329
330

332
333
334

336
337

339
340

342
343

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

366
367
368
369
370

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

int err = 0;

fits_t *f = ar 9;

bl kptr_t *fbp = NULL;
zbookmark_t czb;

if (issig(JUSTLOOKING) && issig(FORREAL))
return (EINTR);

if (f->f_fromds)
SET_BOOKMARK(&czb, f->f _fronds->ds_object, zb->zb_object,
zb->zb_l evel , zb->zb_bl ki d);

if (zb->zb_object != DMJ_META DNODE_OBJECT)
return (0);

if (bp == NULL) {
arc_buf _t *fpbuf = NULL;

if (!f->f_fromds)
return (0);

err = fits_find_frombp(spa, f->f_dnp, f->f_bl,
&czb, &fbp, &f pbuf);
if (err)
return (E1O;
if (fbp) {
err = fits_enumbp(spa, f, &zb, fbp, fpbuf, 0, NULL);
if (err)
return (EIO;

return (0);

} else if (zb->zb_level == 0) {
dnode_phys_t *tbl k;
dnode_phys_t *fblk = NULL;
arc_buf _t *tbuf;
arc_buf _t *fbuf = NULL;
arc_buf _t *fpbuf = NULL;
uint32_t fflags = ARC_ WAIT;
ui nt 32"t tflags = ARC WAI T;
int blksz = BP_GET_LSI ZE(bp)
int i;

if (dsl_read(NULL, spa, bp, pbuf,
arc_get buf _func, &t buf, ZI O PRI ORI TY_ASYNC READ,
ZI O_FLAG_CANFAI L & flags, zb) !'= 0)
return (E1O;
tbl k = tbuf->b_dat a;

if (f->f_fromds) {
err = fits_find_frombp(spa, f->f_dnp, f->f_bl, zb,
&f bp, &f pbuf);
if (err)
return (EIO;

}
if (fbp) {
if (dsl_read(NULL, spa, fbp, fpbuf,
arc_get buf _func, & buf, ZIO_ PRI ORI TY ASYNC_READ,
ZI O FLAG CANFAI L, &fflags, &zb) != 0)
(void) arc_buf_renove_ref(tbuf, &t buf);
return (ElIO;

bl k = fbuf->b_dat a;
if (blksz !'= BP_GET_LSI ZE(fbp))
return (EIO;

o e

new usr/src/uts/comon/fs/zfs/fits.c 7 new usr/src/uts/ comon/fs/zfs/fits.c

389 for (i =0; i < blksz >> DNODE_SHI FT; i++) { 455 err = f->f_ops->fits_dirent_del (ctx,
390 uint64_t dnobj = (zb->zb_bl kid << 456 za- >za_hane,
391 (DNODE_BLOCK_SHI FT - DNODE_SHI FT)) + i; 457 za->za_first_integer & mask);
392 err = 0; 458 if (err)
393 if (fbuf && (tblk[i]. dn type == DMJ_OT_NONE) && 459 goto out;
394 fblk[i].dn_type ! NONE) ~{ 460 }
395 err = fits dnode changed(spa f, dnobj, 461 } else {
396 fblk + i, fbuf, NULL, NULL); 462 if (f->f_ops->fits_dirent_add) {
397 } else if (fbuf) { 463 err = f->f_ops->fits_dirent_add(ctx,
398 if (memcp(tblk + i, fblk + i, sizeof (*tblk))) 464 za- >za_nhane,
399 err = fits_dnode_changed(spa, f, 465 za->za_first_integer & mask);
400 dnobj, fblk + i, fbuf, thlk + i, 466 if (err)
401 tbuf); 467 goto out;
402 } else { 468 }
403 if (tbik[i].dn type != DMJ OT_NONE) 469 }
404 err = fits_dnode_changed(spa, 470 } else if ((za->za_first_integer & mask) != (num & mask)) {
405 dnobj , “NULL, NULL, tblk + | tbuf); 471 if (dir == DIR_TO
406 } 472 /* report only once */
407 if (err) 473 if (f->f_ops->fits_dirent_nod) {
408 br eak; 474 err = f->f_ops->fits_dirent_nod(ctx,
409 } 475 za->za_nane, num & nask,
410 (void) arc_buf_renove_ref(tbuf, &tbuf); 476 za->za_first_integer & mask);
411 if (fbuf) 477 if (err)
412 (void) arc_buf_renove_ref (fbuf, &fbuf); 478) goto out;
479
414 if (err) 480 }
415 return (ElIO); 481 } else {
416 /* Don’t care about the data bl ocks */ 482 if (dir == DR.TO
417 return (TRAVERSE_VI S| T_NO_CHI LDREN); 483 /* report only once */
418 } 484 if (f->f _ops-. >fits_dirent_unnod) {
419 return (0); 485 err = f->f_ops->fits_dirent_unnod(ctx,
420 } 486 za->za_name, num & mask);
487 if (err)
422 #define DI R_FROM 1 488 goto out;
423 #define DIR TO 2 489 }
424 static int 490 }
425 fits_diff_dir(fits_t *f, uint64_t dnobj, int dir, void *ctx) 491 }
426 { 492 }
427 zap_cursor_t zc; 493 err = 0;
428 zap_attribute_t *za; 494 out:
429 int err; 495 zap_cursor _fini (&zc);
430 obj set _t *os1; 496 kmem free(za, sizeof (zap_attribute_t));
431 obj set _t *o0s2;
432 uint64_t mask = ZFS DI RENT_OBJ(-1ULL); 498 return (err);
433 uint64_t num 499 }
434 uint64_t ix = 0; 500 static int
501 fits_enumdir(fits_t *f, uint64_t dnobj, int dir, void *ctx)
436 if (dir == DIR_ FROW { 502 {
437 osl = f->f_fronsnap; 503 zap_cursor_t zc;
438 0s2 = f->f_tosnap; 504 zap_attri bute_t *za;
439 } else { 505 int err;
440 osl = f->f _tosnap; 506 obj set_t *0s;
441 0s2 = f->f_fronmsnap; 507 uint64_t mask = ZFS DI RENT_OBJ(-1ULL);
442 }
509 if (dir == DIR_FROV
444 za = kmem al | oc(sizeof (zap_attribute_t), KM SLEEP); 510 os = f->f_fromsnap;
445 for (zap cursor_init(&c, osl, dnobj); 511 el se
446 (err = zap_cursor_retri eve(&zc za)) == 0; 512 os = f->f_tosnap;
447 zap_cursor_advance(&zc), ++ix)
448 err = zap_| ookup(052 dnobj, za->za_nane, sizeof (num), 1, 514 za = kmem al | oc(sizeof (zap_attribute_t), KM SLEEP);
449 &n un ; 515 for (zap_cursor_init(&c, os, dnobj);
450 if (err &% err 1= ENOCENT) 516 (err = zap_cursor_retri eve(&zc, za)) == 0;
451 br eak; 517 zap_cursor_advance(&zc)) {
452 if (err == ENOENT) { 518 if (dir == DIR_FROM
453 if (dir == DR_FROV { 519 if (f->f _ops- >fits_dirent_del) {

454 if (f->f_ops->fits_dirent_del) { 520 err = f->f_ops->fits_dirent_del (ctx,

new usr/src/uts/comon/fs/zfs/fits.c

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

537
538

540
541

543
544
545

}

za->za_nane, za->za_first_integer & nask);

if (err)
br eak;

}
} else {
if (f->f_ops->fits_dirent_add) {
err = f->f_ops->fits_dirent_add(ctx,

za- >za_nane, za->za_first_integer & nask);

if (err)
br eak;

}

i1 f (err == ENCENT)
err = 0;

zap_cursor _fini(&zc);
kmem free(za, sizeof (zap_attribute_t));

return (err);

static int
fits_dnode_changed(spa_t *spa, fits_t *f, uint64_t dnobj,

546 {

547
548
549

551
552

554
555
556
557
558
559
560
561

563
564
565
566
567
568
569
570
571
572
573
574
5145]
576

578
579

581
582
583
584
585
586

dnode_phys_t *from arc_buf_t *fronbuf, dnode_phys_t *to, arc_buf_t *tobuf)

int err = 0;
int type = 0;
fits_info_t si;

if (dnobj == f->f_shares_dir)
return (0);

if (to & to->dn_type != DMJ_OT_PLAI N_FI LE_CONTENTS &&
to->dn_type !'= DMJ_OT_DI RECTORY_CONTENTS) {
to = NULL;

}
if (from&& from>dn_type != J OT_PLAI N_FI LE_CONTENTS &&
from>dn_type != DMJ_OT_DI RECTORY_CONTENTS) {
from= NULL;

if (from {
err = fits_get_info(f, dnobj, FITS OLD, &si, FI_ATTR LINKS);
if (err)
return (err);
if (si.si_nlinks == 0)
from= NULL;

}
if (to) {
err = fits_get_info(f, dnobj, FITS NEW &si,
if (err)
return (err);
if (si.si_nlinks == 0)
to = NULL;

FI _ATTR_LI NKS) ;

if ('to & !from
return (0);

if (from {
if (from >dn_bonustype !
from >dn_bonust ype !
return (ElINVAL);

9
8

}
if (to) {

new usr/src/uts/comon/fs/zfs/fits.c 10
587 if (to->dn_bonustype != DMJ OT_SA &&

588 t o- >dn_bonust ype ! = DMJ_OT_ZNODE)

589 return (EINVAL);

590 }

592 if (from

593 type = from >dn_type;

594 else if (to)

595 type = to->dn_type;

597 err = 0;

598 if (type == DMJ_OT_DI RECTORY_CONTENTS) {

599 if (from&& to)

600 if (f->f_ops->fits_dir_nod)

601 err = f->f _ops->fits_dir_nod(f, dnobj);
602 } elseif (from {

603 if (f->f_ops->fits_dir_del)

604 err = f->f _ops->fits_dir_del (f, dnobj);
605 } elseif (to) {

606 if (f->f_ops->fits_dir_add)

607 err = f->f_ops->fits_dir_add(f, dnobj);
608 }

609 } else if (type == DMJ OT_PLAI N FI LE_CONTENTS) {

610 if (from&:& to) {

611 if (f->f_ops->fits_file_nod)

612 err = f->f_ops->fits_file_nmod(f, dnobj);
613 } elseif (from {

614 if (f->f_ops->fits_file_del)

615 err = f->f_ops->fits_file_del (f, dnobj);
616 } elseif (to)

617 if (f->f_ops->fits_file_add)

618 err = f->f_ops->fits_file_add(f, dnobj);
619 }

620 } else {

621 /* TODO ot her types, syminks? */

622 err = 0;

623

624 return (err);

625 }

627 typedef struct _fits_search {

628 fits_t *zs_f;

629 uint64_t zs_dnobj;

630 uint64_t zs_parent;

631 obj set _t *zs_osp;

632 } fits_search_t;

634 static int

635 search_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, arc_buf_t *pbuf,
636 (const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)

637

638 fits_search_t *zs = arg;

639 fits_t *f = zs->zs_f;

640 arc_buf _t *buf;

641 uint32_t flags = ARC WAIT;

642 int ebp;

643 int i;

644 int ret;

646 if (issig(JUSTLOKING && issig(FORREAL))

647 return (EINTR);

649 if (zb->zb_object != DMJ_META DNODE_OBJECT)

650 return (0);

652 if (zb->zb_level != 0)

new usr/src/uts/comon/fs/zfs/fits.c 11 new usr/src/uts/comon/fs/zfs/fits.c 12
653 return (0);
720 zs.zs_f = f;
655 if (!bp || BP_IS_HOLE(bp)) 721 zs. zs_dnobj = dnobj;
656 return (0); 722 zs.zs_parent = 0;
723 ret = traverse_dataset(ds, 0, TRAVERSE PRE, search_ch, &zs);
658 if (BP_GET_TYPE(bp) != DMJ_OT_DNODE) 724 if (zs.zs_parent) {
659 return (0); 725 *parent = zs.zs_parent;
726 return (0);
661 ebp = BP_GET_LSI ZE(bp) >> DNODE_SHI FT; 727 }
663 if (dsl_read(NULL, spa, bp, pbuf, 729 return (ret ? ret : ENCENT);
664 arc_get buf _func, &buf, ZIO_ PRI ORI TY_ASYNC_READ, 730 }
665 ZI O_FLAG_CANFAI L & lags, zb) !'= 0)
666 return (ElIO; 732 int
667 dnp = buf->b_dat a; 733 fits_get_info(fits_t *f, uint64_t dnobj, fits_which_t which,
734 fits_info_t *sp, uint64_t flags)
669 for (i =0; i < ebp; ++i) { 735 {
670 zap_cursor_t zc; 736 int ret;
671 zap_attribute_t *za; 737 sa_handl e_t *hdl = NULL;
672 ui nt 64_t mask = ZFS_DI RENT_OBJ(- 1ULL); 738 dnu_buf _t *db;
673 uintéd t ix = 0 739 obj set _t *osp;
674 uint64_t dnobj = (zb->zb_blkid << 740 sa_bulk_attr_t bul k[13];
675 (DNODE_| BL(I:K SHIFT - DNODE_SHIFT)) + i; 741 int count = O;
742 sa_attr_type_t *sa_table;
677 if (dnp[i].dn_type != DMJ_OT_DI RECTORY_CONTENTS)
678 conti nue; 744 if (which == FITS_OLD) {
679 if (dnobj == f- >f _shares_dir) 745 osp = f->f_fronmsnap;
680 cont i nue; 746 if (losp)
747 return (ENCENT) ;
682 za = kmem al | oc(si zeof (zap_attribute_t), KM SLEEP); 748 sa_table = f->f_fromsa_table;
683 for (zap_cursor_init(&c, zs->zs_osp, anbj) 749 } elseif (V\,hl ch == FITS_ NEW {
684 (ret = zap_cursor retrleve(&zc za)) == O, 750 osp = f- >f tosnap
685 zap_cur sor advance(&zc) ++ix) { 751 sa_table = f->f_to_sa_table;
686 if ((za->za_first_integer & mask) == 752 } else {
687 (zs->zs_dnobj & nask)) { 753 return (EINVAL);
688 zs->zs_parent dnobj ; 754 }
689 br eak;
690 } 756 ret = fits_grab_sa_handl e(osp, dnobj, &hdl, &db, FTAG;
691 } 757 if (ret)
692 zap_cursor_fini(&zc); 758 return (ret);
693 kmem free(za, sizeof (zap_attribute_t));
694 } 760 if (flags & FI _ATTR _ATI ME) {
761 SA_ADD BULK_ _ATTR(bul k, count, sa_tabl e[ZPL_ATI ME], NULL,
696 (void) arc_buf_renove_ref (buf, &buf); 762 &sp->si_atine, si zeof (sp->si_atinme));
763 }
698 if (zs->zs_parent) 764 if (flags & FI _ATTR_MTI ME) {
699 return (EIO; /* abort search */ 765 SA_ADD BULK_ATTR(bul k, count, sa_tabl e[ZPL_MrI ME], NULL,
766 &sp->si_ntinme, si zeof (sp->si_ntinme));
701 return (TRAVERSE VI SI T_NO CHI LDREN) ; 767 1
702 } 768 if (flags & FI _ATTR CTI ME) {
769 SA ADD BULK_ATTR(bul k, count, sa_tabl e[ZPL_CTI ME], NULL,
704 static int 770 &sp->si_ctime, sizeof (sp->si_ctinme));
705 fits_search_parent(fits_t *f, uint64_t dnobj, fits_which_t which, 771 }
706 uint64_t *parent) 772 if (flags & FI _ATTR OTI ME) {
707 { 773 SA_ADD BULK_ATTR(bul k, count, sa_tabl e[ZPL_CRTI ME], NULL,
708 dsl _dat aset _t *ds; 774 &sp->si_otine, si zeof (sp->si_otine));
709 fits_search_t zs; 775 }
710 int ret; 776 if (flags & FI _ATTR _MODE) {
777 SA_ADD BULK_ATTR(bul k, count, sa_tabl e[ZPL_MODE], NULL,
712 if (which == FITS_OLD) { 778 &sp->si _node, sizeof (sp->si_node));
713 ds = f->f_fronds; 779 }
714 zs.zs_osp = f->f_fronmsnap; 780 if (flags & FI _ATTR_SI ZE)
715 } else { 781 SA_ADD BULK_ _ATTR(bul k, count, sa_table[ZPL_SIZE], NULL,
716 ds = f->f_tods; 782 &sp->si_size, sizeof (sp->si_size));
717 zs.zs_osp = f->f_tosnap; 783 }
718 } 784 if (flags & FI _ATTR_PARENT) {

new usr/src/uts/comon/fs/zfs/fits.c 13
785 SA ADD BULK_ATTR(bul k, count, sa_tabl e[ZPL_PARENT], NULL,
786 &sp- >si _parent, si zeof (sp >si_parent));

787 1

788 if (flags & FI _ATTR LI NKS) {

789 SA_ADD_BULK_. _ATTR(bul k, count, sa_table[ZPL_LI NKS], NULL,
790 &sp->si _nlinks, sizeof (sp->si_nlinks));

791 1

792 if (flags & FI_ATTR RDEV) {

793 SA_ADD BULK_ATTR(bul k, count, sa_tabl e[ZPL_RDEV], NULL,
794 &sp->si _rdev, sizeof (sp->si_rdev));

795 1

796 if (flags & FI_ATTR U D) {

797 SA_ ADD BULK_. _ATTR(bul k, count, sa_table[ZPL_UI D], NULL,
798 &sp->si _uid, sizeof (sp->si_uid));

799 1

800 if (flags & FI_ATTR G D) {

801 SA_ADD_BULK_ATTR(bul k, count, sa_table[ZPL_G D], NULL,
802 &sp->si _gid, si zeof (sp->si_gid));

803 1

804 if (flags & FI _ATTR GEN) {

805 SA_ADD BULK_ATTR(bul k, count, sa_table[ZPL_GEN], NULL,
806 &sp->si _gen, si zeof (sp->si_gen));

807 1

808 /* XXX if you add things, also bunp the size of bulk */

809 [* XXX XATTR */

811 /* XXX TODO get flags to check for xattrdir */

812 if (count) {

813 ret = sa_bul k_| ookup(hdl, bulk, count);

814 if (ret)

815 goto out;

816 1

818 if ((flags & FI_ATTR PARENT) && sp->si_parent != dnobj) {

819 fits_info_t si;

820 int good = O;

821 /*

822 * verify parent. this is very expensive and only a workaround
823 */

824 ret = fits_get_info(f, sp->si_parent, which, &si, FI_ATTR MODE);
825 if (ret & ret !'= ENCENT)

826 goto out;

827 if (ret == 0 && S_I SDI R(si . si _node))

828 ret = fits_find_entry(f, sp->si_parent, dnobj, which,
829 NULL) ;

830 if (ret & ret != ENCENT)

831 goto out ;

832 if (ret == 0)

833 good = 1;

834 }

835 if (!good) {

836 uint64_t parent;

838 cmm_err (CE_NOTE, "parent wong, do a brute force "
839 "search for ino % PRl u64"\n", dnobj);

840 ret = fits_search_parent(f, dnobj, which, &parent);
841 if (ret == ENCENT) {

842 cmm_err (CE_NOTE, "no parent found\n");
843 ret = EINVAL;

844 goto out;

845

846 if (ret)

847 goto out;

848 sp->si _parent = parent;

849 cmm_err (CE_NOTE, "parent found, use % PRI u64"\n",
850 parent);

14

new usr/src/uts/comon/fs/zfs/fits.c
851 /*
852 * TODO add a bad parent cache to prevent additional
853 * | ookup in pass 2
854 */
855 }
856 }
858 out:
859 fits_rel ease_sa_handl e(hdl, db, FTAG;
860 return (ret);
861 }
863 int
864 fits_file_contents(fits_t *f, uint64_t dnobj, void *ctx)
865 {
866 dnode_t *from = NULL;
867 dnode_t *to = NULL;
868 int err;
869 int i;
870 zbookmark_t czb;
871 spa_t *spa = f->f_tods->ds_dir->dd_pool - >dp_spa;
873 if (f->f_fromds)
874 err = dnode_hol d(f->f _fronsnap, dnobj, FTAG &fron);
875 if (err & err != ENCENT)
876 return (err);
877 }
878 if (from&& from>dn_type != DMJ OT_PLAI N_FI LE_CONTENTS) {
879 dnode_| reI e(from FTAG ;
880 from=
881
882 err = dnode_hol d(f->f _tosnap, dnobj, FTAG &to);
883 if (err)
884 goto out;
885 if (to->dn_type !'= DMJ OT_PLAIN FI LE CONTENTS) {
886 err = EINVAL;
887 goto out;
888 }
889 if (from {
890 f->f_filebl = kmem zalloc(sizeof (blklevel_t)*from>dn_nlevels,
891 KM_SLEEP) ;
892 for (i =0; i < from>dn_nlevels; ++i)
893 f->f _filebl[i]. bl _blk = -1;
894 i = from>dn_nlevels -
895 f- >f _filebl[i].bl nslots—fr0m>dn nbl kptr;
896 f->f filebl[i].bl _bp = &from>dn _phys- >dn bi kptr[O];
897 f->f filebl[i].bl _blk =
898 f->f _filebl[i].bl _buf = from >dn_dbuf - >db_par ent - >db_buf ;
899 }
900 for (i =0; i < to->dn_nblkptr; ++i)
901 SET_BOOKMARK(&czb, f- >f _tods->ds_object, dnobj,
902 to >dn_nlevels - 1, i);
903 err = fits_enumbp(spa, f, &czb, to->dn_phys->dn_blkptr + i,
904 NULL, F->f_fromtxg, ctx);
905 if (err)
906 goto out;
907 1
908 out :
909 if (f->f_filebl) {
910 kmem free(f->f _filebl, sizeof (blklevel_t) * from >dn_nlevels);
911 f->f_filebl = NULL;
912 }
913 if (from
914 dnode_rel e(from FTAQ;
915 if (to)
916 dnode_rel e(to, FTAG;

new usr/src/uts/comon/fs/zfs/fits.c

918 return (err);

919 }

921 int

922 fits_dir_contents(fits_t *f, uint64_t dnobj, void *ctx)

923 {

924 dnode_t *from = NULL;

925 dnode_t *to = NULL;

926 int err;

928 if (f->f frorrd) {

929 err = dnode_hol d(f->f_fromsnap, dnobj, FTAG &from;
930 if (err & err != ENCENT)

931 return (err);

932 }

933 if (from&& from>dn_type != DMJ OT_DI RECTORY_CONTENTS) {
934 dnode_rel e(from FTAQ;

935 from= NULL;

936 }

937 err = dnode_hol d(f->f_tosnap, dnobj, FTAG &to);
938 if (err &% err != ENCENT)

939 return (err);

940 if (to & to- >dntype'—DNUOTDIRECTCRYOO\lTENTS) {
941 dnode rele(to, FTAG;

942 to = NULL;

943 }

945 if (to & from {

946 err = fits_diff_dir(f, dnobj, DIR.TO ctx);
947 if (err)

948 goto out;

949 err = fits_diff d|r(f dnobj, DIR_FROM ctx);
950 } else if (to) {

951 err = fits_enumdir(f, dnobj, DIR TO, ctx);
952 }elseif(frn){

953 err = fits_enumdir(f, dnobj, DIR FROM ctx);
954 }

955 out:

956 if (from

957 dnode_rel e(from FTAG;

958 if (to)

959 dnode_rel e(to, FTAQ;

961 return (err);

962 }

964 int

965 fits_find_entry(fits_t *f, uint64_t dirobj, uint64_t dnobj,
966 fits_which_t which, char **nane)

967 {

968 zap_cursor_t zc;

969 zap_attribute_t *za;

970 int err;

971 ui nt 64 t mask = ZFS_DI RENT_OBJ(- 1ULL);

972 struct obj set *os;

974 if (which == FITS_ OLD) {

975 os = f->f_fronmsnap;

976 if (!os)

977 return (ENCENT);

978 } else if (which == FITS NEW {

979 os = f->f_tosnap;

980 } else {

981 return (EINVAL);

982 }

15

new usr/src/uts/comon/fs/zfs/fits.c

985 if (nane)

986 *name = NULL;

987 za = kmem al | oc(si zeof (zap_attribute_t), KM SLEEP);
988 for (zap_cursor_init(&c, os, dirobj);

989 (err = zap_cursor retrleve(&zc za)) == 0;

990 zap_cur sor_advance(&zc)) {

991 if ((za->za_first_integer & mask) == (dnobj & mask)) {
992 if (nane)

993 *name = za->za_nane;

994 br eak;

995 }

996

997 zap_cursor _fini (&zc);

998 return (err);

999 }

1001 void

1002 fits_free_name(char *nane)

1003 {

1004 zap_attribute_t *za;

1006 if (!'nane)

1007 return;

1009 = (zap_attribute_t *)(nane - offsetof(zap_attribute_t, za_nane));
1010 knmem free(za, sizeof (*za));

1011 }

1013 int

1014 fits_l ookup_entry(fits_t *f, uint64_t dirobj, char *nane,
1015 fits_which_t which, uint64_t *dnobj)

1016 {

1017 struct objset *osp;

1018 int ret;

1020 if (which == FITS_OLD) {

1021 osp = f->f_fronmsnap;

1022 if (losp)

1023 return (ENCENT);

1024 } else if (which == FITS_ NEW {

1025 osp = f->f_tosnap;

1026 } else {

1027 return (EINVAL);

1028 }

1030 ret = zap_l ookup(osp, dirobj, nane, sizeof (*dnobj), 1, dnobj);
1031 if (ret)

1032 return (ret);

1033 *dnobj = ZFS_DI RENT_OBJ(*dnobj);

1035 return (0);

1036 }

1038 i nt

1039 fits_wite(fits_t *f, const uint8_t *data, int |en)

1040 {

1041 ssize_t resid; /* have to get resid to get detailed errno */
1042 int err;

1044 err = vn_rdw (U OWITE, f->f vp, (caddr_t)data,
1045 I en, 0, U O SYSSPACE, FAPPEND, RLIM4_INFINITY, CRED(), &resid);
1046 *f—>f_offp += len;

1048 return (err);

16

new usr/src/uts/comon/fs/zfs/fits.c

1049 }

1051 int

1052 {i ts_get_uuid(fits_t *f, fits_which_t which, uint8_t data[16])
1053

1054 if (which == FITS_OLD && !f->f_fromds)

1055 return (ENCENT);

1057 LE_QUT64(data, f->f_tods->ds_dir->dd_pool - >dp_spa- >spa_config_guid);
1058 if (which == FITS OLD)

1059 LE_OUT64(data + 8, f->f_fronds->ds_phys->ds_guid);
1060 } else {

1061 LE_QUT64(data + 8, f->f_tods->ds_phys->ds_guid);
1062 }

1063 return (0);

1064 }

1066 i nt

1067 fits_get_ctransid(fits_t *f, fits_which_t which, uint64_t *ctransid)
1068 {

1069 if (which == FITS OLD && !f->f_fromds)

1070 return (ENCENT);

1072 if (which == FITS CLD

1073 *ctransid = f->f_fronds->ds_phys->ds_creation_txg;
1074 el se

1075 *ctransid = f->f_tods->ds_phys->ds_creation_txg;
1076 return (0);

1077 }

1079 int

1080 fits_get_snapnanme(fits_t *f, fits_which_t which,

1081 char **name, int *len)

1082 {

1083 dsl _dat aset _t *ds;

1085 if (which == FITS OLD && !f->f_fromds)

1086 return (ENCENT);

1088 if (which == FITS OLD)

1089 ds f >f _fromds;

1090 el se

1091 ds = f->f_tods;

1093 *| en = dsl _dat aset _nanel en(ds) + 1;

1094 *nane = knem.al | oc(*l en, KM SLEEP);

1095 dsl _dat aset _nane(ds, *nane);

1096 return (0);

1097 }

1099 int

1100 fits_read_symink(fits_t *f, uint64_t dnobj, fits_which_t which,
1101 char **target, int *plen)

1102 {

1103 int err;

1104 int ret;

1105 sa handl e t *hdl = NULL;

1106 drmu_buf _t *db;

1107 obj set _t *osp;

1108 drmu_obj ect _info_t doi;

1109 sa_attr_type_t *sa_table;

1111 if (which == FITS_OLD) {

1112 osp = f->f_fromsnap;

1113 if (losp)

1114 return (EI NVAL);

new usr/src/uts/comon/fs/zfs/fits.c

1115
1116
1117
1118
1119
1120
1121

1123
1124
1125

1127
1128
1129

1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146

1148
1149

1151
1152

1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

1168
1169
1170
1171

1173
1174
1175
1176

1178
1179
1180

out :

}

i nt

sa_table = f >f _fromsa_table;
} elseif (V\,hlch == FITS_NEW {

osp = f->f_tosnap;

sa_table = f->f _to_sa_table;
} else {

return (EINVAL);
}

err = fits_grab_sa_handl e(osp, dnobj, &hdl,
if (err)
return (err);

dmu_obj ect _i nf o_from db(db, &d0|)

&db, FTAG);

i f (doi.doi bonus_type == DMJ_OT_SA) {
int len;
ret = sa_size(hdl, sa_table[ZPL_SYM.INK], &l en);
if (ret)
goto out;
*target = knem.alloc(len + 1, KM SLEEP);
*plen = len;

(*target)[len] = O;
ret = sa_l ookup(hdl,
if (ret)

sa_tabl e[ZPL_SYM.I NK], *target, len + 1);

kmem free(*target, len + 1);

} else {
/*

* TODO read target fromfile data, the old way
* see zfs_readlink
&/

ret = EINVAL

fits_rel ease_sa_handl e(hdl, db, FTAQ;

return (ret);

fits_send(objset_t *tosnap, objset_t *fromsnap, int outfd, vnode_t *vp,

{

of fset _t *off)

dsl _dat aset _t *ds;

dsl _dat aset _t *fromds = NULL;
int err = 0;

fits_t f;

ar c_buf t *pbuf = NULL;
uint32_t flags;

obj set _phys_t *osp;

int i;

zbookmark_t zb;

nenmset (&, 0, sizeof (f));
ds = tosnap->os_dsl _dataset;
if (fromsnap)
fronds = fronsnap->os_ds| _dat aset;
/* make certain we are |ooking at snapshots */
if (!dsl_dataset_is_snapshot(ds) ||
(fromds && !dsl_dataset _is_snapshot (fronds)))
return (EINVAL);

/* fromsnap nmust be earlier and fromthe same |ineage as tosnap */
if (fromds) {
if (fromds->ds_phys->ds_creation_txg >=

new usr/src/uts/comon/fs/zfs/fits.c

1181
1182

1184
1185

1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

1219
1220
1221
1222
1223
1224
1225

1227
1228
1229
1230

1232
1233
1234

1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246

ds- >ds_phys->ds_creati on_t xg)
return (EXDEV);

if (fromds->ds_dir != ds->ds_dir)
return (EXDEV);

/*

* read root dnode from from dataset

*/

flags = ARC WAIT;

SET BOCKMARK(&zb. fronds- >ds_obj ect, ZB ROOT_OBJECT,
ZB ROOT_LEVEL, ZB ROOT_BLKI D) ;

err = dsl_read_nol ock(NULL, frontds->ds_dir->dd_pool - >dp_spa,

&f ronds- >ds_phys->ds_bp, arc_getbuf_func, &buf,

Z1 O_PRI ORI TY_ASYNC_READ, ZI O FLAG_ CANFAIL &flags &zb)

if (err)
return (err);
osp = buf->b_data;
f.f_dnp = &osp->os_neta_dnode;

}

f.f_vp = vp;

f.f_offp = off;

f.f_err = 0;

f.f_from:is = fronds;

f.f_tods = ds;

f.f_fronmsnap = fromsnap;

f.f_tosnap = tosnap;

if (fronmds) {
f.f_fromxg = fronds- >ds_phys->ds_creation_txg;
f.f_bl = kmem zal | oc(sizeof (blklevel t) *

“f.f_dnp->dn_nl evel s, KM SLEEP);

for (i =0; i <f.f_dnp->dn nlevels ++i)

f.f_bl[i].bl _blk = -1;

dnp->dn_nl evel s - 1;

i].bl _nsTots = f.f_dnp->dn_nbl kptr;
].bl “bp = & .f_dnp->dn_bl kptr[0];
].bl _blk = 0;

ts_sa_setup(fronsnap, & .f_fromsa_table);
goto out;
err = fits_sa_setup(tosnap, & .f_to_sa_table);
if (err)
goto out;
err = zap_| ookup(tosnap, MASTER NODE_OBJ, ZFS _SHARES DIR 8, 1,

& .f_shares_dir);
if (err &% err 1= ENCENT)

goto out;
err = fits_start(&, & .f_ops);
if (err)

goto out;

err = traverse_dataset(ds, f.f_frontxg,
TRAVERSE_PRE | TRAVERSE PREFETCH _METADATA, fits_ch, &f)
if (err) {
fits_abort(&f);
goto out;

}
err = fits_start2(&, & .f_ops);
if (err) {

goto out;

err = traverse_dataset(ds, f.f_frontxg,

new usr/src/uts/comon/fs/zfs/fits.c

1247
1248
1249
1250
1251

1253
1254
1255

1257 out:
1258
1259
1260
1261
1262
1263
1264
1265

1267
1268

1270
1271 }
1272 #endif

TRAVERSE_PRE | TRAVERSE PREFETCH METADATA, fits_ch, &f);
if (err) {
fits_abort(&f);
goto out;

}
err = fits_end(&f);
if (err)

goto out;

if (fromds) {
for (i

= 0; i<ffdnp>dnn|evels—1; ++i) {
bl kl evel _t *b = f.f_bl + i;
i f (b->bl_buf)

arc_buf _renove_ref (b->bl _buf, &b->bl_buf);

}
kmem free(f.f_bl, sizeof (blklevel _t) * f.f_dnp->dn_nlevels);

}

if (buf)
ar c_buf _renove_ref (buf, &buf);

return (err);

/* ! codereview */

new usr/src/uts/comon/fs/zfs/fits_count.c 1

R R R R

2798 Wed Cct 17 21:48:38 2012
new usr/src/uts/comon/fs/zfs/fits_count.c
FITS: generating send-streans in portable format
This commit adds the command 'zfs fits-send’, anal ogous to zfs send. The
generated send streamis conpatible with the stream generated with that
from’btrfs send” and can in principle easily be received to any fil esystem
IR R R R R R R R SRR RS R SRR RS E R E RS R R R RREREREREEEEEEE]

1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governi ng perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the foll ow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

B I I
-

NRERRRERRRER R
COONOUITAWNROOO~NOUTDWN

21/
22 * Copyright (c) 2012 STRATO AG All rights reserved.
=Y

24 #include <sys/zfs_context.h>
25 #include <sys/errno. h>
26 #include <sys/fits_inpl.h>

28 int

29 fits_add_count(fits_counter_t *fc, uint64_t ino, uint64_t inc,
30 uint64_t aux, uint64_t *new_count, uint64_t *ol d_aux)
31 {

32 fits_count_elemt *fce = fc->fc_head;

34 while (fce & fce->fce_ino !=ino)

B85 fce = fce->fce_next;

37 if (1fce) {

38 fce = kmem al | oc(sizeof (*fce), KM SLEEP);
39 fce->fce_ino = ino;

40 fce->fce_count = O;

41 fce->fce_next = fc->fc_head;

42 fc->fc_head = fce;

43 }

45 if (old_aux) {

46 *ol d_aux = fce->fce_aux;

47 fce->fce_aux = aux;

48 }

49 fce->fce_count += inc;

51 if (new_count)

52 *new_count = fce->fce_count;

54 return O;

55 }

57 int

58 fits_get_count(fits_counter_t *fc, uint64_t ino, uint64_t *new_count,

new usr/src/uts/comon/fs/zfs/fits_count.c

59 uint64_t *ol d_aux)

60 {

61 fits_count_elemt *fce = fc->fc_head;

63 while (fce & fce->fce_ino !=ino)

64 fce = fce->fce_next;

66 if (1fce) {

67 i f (new_count)

68 *new_count = O;

69 if (ol d_aux)

70 *ol d_aux = 0;

71 return ENCENT;

72 } else {

73 if (new_count)

74 *new_count = fce->fce_count;
75 if (ol d_aux)

76 *ol d_aux = fce->fce_aux;
77 1

79 return O;

80 }

82 void

83 fits_free_count(fits_counter_t *fc, uint64_t ino)

85 fits_count_elemt *fce = fc->fc_head;
fi

86 its_count_elemt *prev = NULL;

88 while (fce & fce->fce_ino !'=ino) {
89 prev = fce;

90 fce = fce->fce_next;

91 }

93 if (!fce)

94 return;

96 if (prev)

97 prev->fce_next = fce->fce_next;
98 el se

99 fc->fc_head = fce->fce_next;
101 kmem free(fce, sizeof(*fce));

102 }

104 int

105 fits_assert_count _enpty(fits_counter_t *fc)

106 {

107 fits_count_elemt *fce = fc->fc_head;
108 int ret =0

110 while (fce)

111 printf("!fits_assert_count_enpty: % ino % PRl u64"
112 fc->fc_nanme, fce->fce_ino, fce->fce_count);
113 if (fce->fce_count != 0)

114 ++ret;

115 fce = fce->fce_next;

116 [* XXX TODO free count */

117 /*

118 *

119 * |ink_add_cnt leaks with being 0
120 */

121 }

123 return ret;

124 }

count % PRI u6

XXX known leftover: if a file had > 1 links and be repl aced
by a file with > 1 |link, but no sane_nane repl acenents, the
|

new usr/src/uts/comon/fs/zfs/fits_count.c

125 #endif /* ! codereview */

new usr/src/uts/comon/fs/zfs/fits_crc32c.c

R R R R

3894 Wed COct 17 21:48:38 2012
new usr/src/uts/comon/fs/zfs/fits_crc32c.c
FITS: generating send-streans in portable format
This commit adds the command 'zfs fits-send’, anal ogous to zfs send. The
generated send streamis conpatible with the stream generated with that
from’btrfs send” and can in principle easily be received to any fil esystem

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkkkkkkkkkkkkkkhkkFkhkkkkkk ok kk k k&

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww:.opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.

12 *

13 * \Wen distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |If applicable, add the followi ng below this CDDL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [nane of copyright owner]
18 =

19 * CDDL HEADER END
20 */
21 /*

22 * The crc32c algorithms are taken from sctp_crc32 inplenmentation

26 #include <sys/zfs_context.h>
27 #include <sys/fits_crc32c. h>

29 static void fits_crc32c_word(uint32_t *crcptr, const uint32_t *buf, int

31 /*

32 * Fast CRC32C calcul ation algorithm The basic idea is to look at it
33 * four bytes (one word) at a tinme, using four tables. The

34 * standard algorithmin RFC 3309 uses one table.

35 */

37 #define CRC_32C POLY Ox1EDC6F41L
39 /* The four CRC32c tables. */

40 static uint32_t crc32c_tab[4][256];
41 static int initialized;

44 static uint32_t
45 reflect_32(uint32_t b)
{

47 int i;
48 uint32_t rw = 0;

50 for (i =0;
if

54 b >>= 1;
}
56 return (rw;

23 * common/inet/sctp_crc32.{c,h}, which in turn were taken from nxge_ffl p_hash.c
*
/

I en);

new usr/src/uts/comon/fs/zfs/fits_crc32c.c

123

#i fdef _BI G_ENDI AN
static uint32_t
flip32(uint32_t w)
{

return (((w>> 24) | ((w >> 8) & 0xff00) |
((w << 8) & 0xff0000) | (w << 24)));

}
#endi f
/*

* Initialize the crc32c tables.

*

/
voi d
fits_crc32c_init(void)

uint32_t index, bit, byte, crc;

for (index = 0; index < 256; index++) {

crc = refl ect_32(index);

for (byte = 0; byte < 4; byte++) {
for (bit = 0; bit < 8; bit++)

crc = (crc & 0x80000000) ?
(crc << 1) ~ CRC_32C POLY : crc << 1;
}
#i f def _BlI G_ENDI AN

crc32c_tab[3 - byte][index] = flip32(reflect_32(crc));
#el se
crc32c_tab[byte][index] = reflect_32(crc);
#endi f
}
}
}
/*
* Lookup the crc32c for a byte stream
*
/
static void
fits_crc32c_byte(uint32_t *crcptr, const uint8_t *buf, int len)
uint32_t crc;
int i;
crc = *creptr;
for (i =0; i <len; i++) {
#i fdef _BI G_ENDI AN
crc = (crc << 8) ” crc32c_tab[3][buf[i] ~ (crc >> 24)];
#el se
crc = (crc >> 8) ” crc32c_tab[O][buf[i] ~ (crc & Oxff)];
#endi f
*creptr = crc;
}
/*
* Lookup the crc32c for a 32 bit word stream
* Lookup is done fro the 4 bytes in parallel
* fromthe tables conputed earlier
*
*/
static void

fits_crc32c_word(uint32_t *crcptr, const uint32_t *buf, int len)

uint32_t w, crc;
int i;

new usr/src/uts/comon/fs/zfs/fits_crc32c.c

125 crc = *creptr;

126 for (i =0; i <len; i++) {

127 w=crc ™ buf[i];

128 crc = crc32c_tab[0] [w >> 24] ~

129 crc32c_tab[1][(w >> 16) & Oxff] ~
130 crc32c_tab[2][(w >> 8) & Oxff] ~
131 crc32c_tab[3][w & Oxff];

132 }

133 *creptr = crc;

134 }

136 /*

137 * Lookup the crc32c for a stream of bytes

138 *

139 * Tries to |lookup the CRC on 4 byte words

140 * If the buffer is not 4 byte aligned, first conpute
141 * with byte |l ookup until aligned. Then conpute crc

142 * for each 4 bytes. If there are bytes left at the end of
143 * the buffer, then performa byte | ookup for the renmaining bytes
144 ~*

145 *

146 */

147 uint32_t

148 Eits_crc32c(ui nt32_t crc32, const uint8_t *buf, int Ien)
149

150 int rem

152 if (linitialized) {

153 fits_crc32c |n|t()

154 initialized =1

155 }

157 rem=4 - (((uintptr_t)buf) & 3);

158 if (r m!=0) {

159 if (len <rem {

160 rem= len;

161 }

162 fits_crc32c_byte(&rc32, buf, rem;

163 buf = buf + rem

164 len = len - rem

165 }

166 if (len > 3) {

167 fits_crc32c_word(&crc32, (const uint32_t *) buf, len / 4);
168 1

169 rem=len & 3;

170 if (rem!=0) {

171 fits_crc32c_byte(&rc32, buf + len - rem rem;
172 1

173 return (crc32);

174 }

175 #endif /* ! codereview */

new usr/src/uts/ comon/fs/zfs/fits_passl.c 1

R R R R

11533 Wed COct 17 21:48:39 2012
new usr/src/uts/comon/fs/zfs/fits_passl.c
FITS: generating send-streans in portable format
This commit adds the command 'zfs fits-send’, anal ogous to zfs send. The
generated send streamis conpatible with the stream generated with that
from’btrfs send” and can in principle easily be received to any fil esystem
IR R R R R R R R SRR RS R SRR RS E R E RS R R R RREREREREEEEEEE]

1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governi ng perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the foll ow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

B I I
-

NRERRRERRRER R
COONOUITAWNROOO~NOUTDWN

21/
22 * Copyright (c) 2012 STRATO AG All rights reserved.
=Y

24 #include <sys/zfs_context.h>
25 #include <sys/errno. h>

26 #include <sys/stat.h>

27 #include <sys/fits.h>

28 #include <sys/fits_inpl.h>

30 struct fits_enum{

31 fits_t *fe_fits;

32 uint64_t fe_parent_ino;

33 fits_dirent_t *fe_dirent_chain;

34 };

36 struct fits_file {

37 its_t *ff _fits;

38 uint64_t ff_len;

39 uint64_t ff_last_byte;

40 uint64_t ff_ino;

41 fits_path_t *ff_path;

42 fits_dirent_t *ff_dirent;

43 }

45 static int fits_file_data_passi(void *fits_filep, void *data, uint64_t off,
46 uint64_t len);

47 static int fits_dirent_add_passi(void *fits_enunp, char *nane, uint64_t ino);
48 static int fits_dirent_nod_passl(void *fits_enunp, char *nane,

49 uint64_t ino_old, uint64_t ino_new);

50 static int fits_dir_add_passl(fits_t *f, uint64_t ino);

51 static int fits_nod_passl(fits_t *f, uint64_t ino);

53 static fits_ops_t _ops = {

54 .fits_dir_add = fits_dir_add_passi,

55 .fits_dir_mpd = fits_nod_passl,

56 .fits_dirent_add = fits_dirent_add_passi,
57 .fits_dirent_nod = fits_dirent_nod_passi,

58 .fits file_nod = fits_nod_pass1,

new usr/src/uts/comon/fs/zfs/fits_passl.c

59 .fits_file_data = fits_file_data_passl

60 };

62 static int fits_file_add_genchange(fits_t *f,

uint64_t ino);

64 int

65 fits_start(fits_t *f, fits_ops_t **ops)

66 {

67 int ret;

69 f->f _pass = PASS LI NK;

70 f->f_link_add_cnt.fc_head = NULL;

71 f->f _link_add _cnt.fc_name = "link_add_cnt";
72 f->f_del _dir_cnt.fc_head = NULL;

73 f->f_del _dir_cnt.fc_name = "del _dir_cnt";
74 f->f_put _back_cnt.fc_head = NULL;

75 f->f_put_back_cnt.fc_name = "put_back_cnt";
76 fits_send_init(f);

78 *ops = & ops;

80 ret = fits_send_start(f);

81 if (ret) {

82 fits_abort(f);

83 return (ret);

84 }

86 return (0);

87 }

89 static int

90 enumdir(fits_t *f, uint64_t ino, fits_dirent_t *chain)

91

92 struct fits_enumfe = {

93 fe_fits = f,

94 .fe_parent_ino = ino,

95 .fe_dirent_chain = chain

96 }s

98 return (fits_dir_contents(f, ino, &e));
99 }

101 static int

102 fits_file_data_passi(void *fits_filep, void *data, uint64_t off, uint64_t
{

103

104 struct fits_file *ff = fits_filep;

106 if (off +len > ff->ff_len)

107 len = ff->ff_len - off;

109 ff->ff_last_byte = off + len;

111 return fits_send_file_data(ff->ff_fits, & f->ff_path,
112 ff->ff

113 }

115 static int

dirent, ff->ff_ino, off, len, data);

116 dirent_add_dir(fits_t *f, fits_dirent_t *dirent, uint64_t ino, int exists)

117 {

118 fits_info_t si_old;

119 fits_info_t si_new

120 int ret;

122 ret = fits_get_info(f, ino, FITS_OLD,
123 FI _ATTR_PARENT |
124 if (ret & ret != ENCENT)

&si _ol d,
FI_ATTR GEN | FI _ATTR MODE);

I en)

new usr/src/uts/comon/fs/zfs/fits_passl.c

125 return (ret);

127 if (ret == 0) {

128 ret = fits_get_info(f, ino, FITS NEW &si_new,
129 FI_ATTR GEN | FI _ATTR_MODE) ;
130 if (ret)

131 return (ret);

133 if (si_old.si_gen == si_new si_gen ||

134 (S_ISDIR(si_new. si _node) & S | SDIR(si_ol d.si_|
135 return fits_send_renane(f, dirent, ino,
136 si_ol d. si _parent,
137 return (0);

138 }

140 if (ino > f->f_current_ino)

141 return (0);

143 /* dir is new */

144 ret = fits_send_nkdir(f, dirent, ino, exists);

145 if (ret)

146 return (ret);

148 return (enumdir(f, ino, dirent));

149 }

151 int

152 fits_dirent_add_file(fits_t *f, fits_dirent_t *dirent,

153 uint64_t ino, uint64_t rmde int exists)

154 {

155 fits_info_t si_old;

156 fits_info_t si_new

157 int ret;

158 fits patht *fits_path;

159 ui nt 64_t new count;

160 uint64_t ol d_aux;

162 ret = fits_get_info(f, ino, FITS OLD, &si_old,

163 FI_ATTR GEN [FI _ATTR_PARENT);

164 if (ret & ret != ENCENT)

165 return (ret);

167 if (ret == 0) {

168 ret = fits_get_info(f, ino, FITS_ NEW &si_new,
169 FI _ATTR GEN);

170 if (ret)

171 return (ret);

173 if (si_old.si_gen == si_new si_gen)

174 return fits_send_link(f, dirent, ino, si_
175 FITS_OLD, exists);

176 }

178 /* file is new */

179 ret = fits_add_count (& ->f_link_add_cnt, ino, 1, dirent->fd_parent_
180 &new_count, &ol d_aux);

181 if (ret)

182 return (ret);

184 if (new_count == 1)

185 ret = fits_send_create_file(f, dirent, ino,

186 exi sts, & its_path);
187 el se

188 ret = fits_send_link(f, dirent, ino, old_aux, FITS NEW exists);
189 if (ret)

190 return (ret);

new usr/src/uts/comon/fs/zfs/fits_passl.c

192 ret = fits_get_info(f, ino, FITS_NEW &si_new,

193 FI _ATTR_SI ZE | FI _ATTR_LI NKS);
194 ASSERT(ret == 0);

195 if (new_count == 1 & S_| SREGQ node)) {

196 struct fltsflleff,

198
199
200
201
202
203
204
205 S_|
206 (r
207 return (ret);

208 if (ff.ff_last_byte != si_new si_size) {
209 /* sparse end */

= ino;
= si _hew. si _Slze;

flts_path;
= dirent;

f
f
f_ =
£ =
f nt
f _byte = 0;
= _fi
fre

D —h—h = —h —h —h

le_contents(f, ino, &f);
e(ff.ff_path);

t
t

— —h = —h —h —h —h —h —h

210 ret = fits_send_truncate(f, NULL, ino, si

211 if (ret)

212 return (ret);

213 }

214 1

215 if (new_count == si_new. si_nlinks)

216 fits_free_count (& ->f_link_add_cnt, ino);

218 return (0);
219 }

221 static int

222 dirent_add(fits_t *f, fits_dirent_t *dirent, uint64_t ino, int

223 {
224 fits_info_t si;
225 int ret;

227 ret = fits_get_info(f, ino, FITS NEW &si, FI_ATTR MODE);

228 if (ret)
229 return (ret);

231 if (S_ISDR(si.si_node))

{
232 return (dirent_add_dir(f, dirent, ino, exists));

233 } else {

234 return (fits_dirent_add_file(f, dirent, ino,
235 exists));

236 }

237 }

239 static int

240 {i ts_dirent_add_passl(void *fits_enunp, char *nane, uint64_t
241

242 struct fits_enum *fe
243 fits_dirent_t dirent
244 .fd_nane = nane,

245 Lfd_ parent ino = fe->fe_parent_ino,
246 .fd_prev = fe- >fe dirent _chain,

247 };

fits_enunp;
{

249 return (dirent_add(fe->fe_fits, &irent, ino, 0));
250 }

252 static int

253 fits_dirent_nod_passl(void *fits_enunp, char *nane,
254 uint64_t ino_old, uint64_t ino_new)

255 {

256 struct fits_enum*fe = fits_enunp;

si.si

i no)

_new. si _:

exi sts)

_node,

new usr/src/uts/comon/fs/zfs/fits_passl.c

257 fits_dirent_t dirent = {

258 .fd_nane = nane,

259 .fd_parent_ino = fe->fe_parent_ino,

260 .fd_prev = fe->fe_dirent_chain,

261 s

263 return (dirent_add(fe->fe_fits, &dirent, ino_new, 1));
264 }

266 static int
267 fits_file_add_genchange(fits_t *f, uint64_t ino)

268 {

269 int ret;

270 char *name = NULL;

272 f->f_current_ino = ino;

273 f->f _current_path = NULL;

275 /*

276 * only called when generation has changed. TODO npbve to own
277 * function

278 */

279 fits_info_t si_old;

280 fits_info_t si_new

281 int same_nane = 0;

283 ret = fits_get_info(f, ino, FITS_OLD, &si_old, FI_ATTR MODE |
284 FI _ATTR_LINKS | FI _ATTR_PARENT);

285 if (ret)

286 return (ret);

287 ret = fits_get_info(f, ino, FITS_NEW &si_new, FI_ATTR MODE |
288 FI_ATTR LINKS | FI_ATTR PARENT);

289 if (ret)

290 return (ret);

292 if (si_old.si_nlinks > 1 && si_new. si_nlinks > 1)

293 return fits_add_count (& ->f link_add_cnt, ino, 0, 0, NULL,
294 NULL) ;

296 if (S_ISDIR(si_old.si_node))

297 return (0);

299 fits_which_t from

300 fits_which_t to;

301 ui nt64_t new_i no;

302 uint64_t parent = si_new. si_parent;

304 if (si_old.si_nlinks == 1) {

305 from= FITS_OLD;

306 to = FI TS_NEW

307 parent = si_old.si_parent;

308 } else if (si_old.si_nlinks > 1 && si_new.si_nlinks == 1) {
309 from= FI TS_NEW

310 to = FITS OLD;

311 parent = si_new. si_parent;

312 } else {

313 return (EINVAL);

314 }

316 ret = fits_find_entry(f, parent, ino, from &nane);

317 if (ret)

318 return (ret);

320 ret parent, name, to, &iew_ino);

= fits_| ookup_entry(f,
321 if (ret && ret 1= ENCENT)
322 goto out;

new usr/src/uts/comon/fs/zfs/fits_passl.c

323 if (ret == 0 && new_ino == ino)

324 same_nane = 1;

326 if ((si_old.si_nlinks == 1 || si_new.si_nlinks == 1) && !sane_nane) {
327 ret = 0;

328 goto out;

329 }

331 fits_dirent_t dirent = {

332 .fd_parent_ino = parent,

333 .fd_nane = nane,

334 .fd_prev = NULL

335 s

337 ret = fits_send_unlink(f, &dirent, ino);

338 if (ret)

339 goto out;

340 ret = fits_dirent_add_file(f, &dirent, ino, si_new si_node, 0);
342 out:

343 fits_free_nane(nane);

344 return (ret);

345 }

347 static int
348 fits_dir_add_passi(fits_t *f, uint64_t ino)

349 {

350 int ret;

351 ui nt64_t parent;

352 uint64_t first_parent = FITS_NO_|I NG

353 fits_info_t si;

354 fits_dirent_t dlrent

355 int same_name = O;

356 char *name = NULL;

358 f->f _current_ino = ino;

359 f->f _current_path = NULL;

361 parent = ino;

362 while (1) {

363 /* the new parent nust exist,

364 ret = fits_get_info(f, parent, FITS NEW &si,
365 FI _ATTR_PARENT);

366 if (ret)

367 return (ret);

368 if (first_parent == FITS_NO_ | NO

369 first_parent = si.si_parent;

371 ret = fits_get_info(f, parent, FITS OLD, &si,
372 if (ret & ret != ENCENT)

373 return (ret);

374 if (ret != ENCENT)

375 br eak;

377 /*

378 * this check is only needed for a full send,
379 * incrementals the parent already exists and it breaks out
380 * above

381 */

382 if (parent == si.si_parent) {

383 first_parent = FITS_NO_I NG

384 br eak;

385 }

386 parent = si.si_parent;

388 if (parent > ino)

0);

on all

otherwise the fs is wong */

new usr/src/uts/comon/fs/zfs/fits_passl.c

389
390

392
393
394
395
396
397
398
399
400
401

403
404
405
406

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

432

434
435
436
437

439
440

442
443
444

446
447

449
450
451
452
453
454

out :

}

return (0);
}

*

* check for same-nane
S

if (first_parent !'= FITS_NO INO {
ret = fits_get_info(f, fir
FI _ATTR_MCDE) ;
if (ret & ret !'= ENCENT)
return (ret);
if (ret == 0 & S | SDIR(si.si_node)) {
uint64_t ol d_ino;

st_parent, FITS OLD, &si,

ret = fits_find_entry(f, first_parent, ino,
FI TS NEW &nane);
if (ret)
return (ret);

ret = fits_lookup_entry(f, first_parent, nane,
FITS_O.D, &old_ino);
if (ret & ret != ENCENT) {
goto out;

}
if (ret == 0)
same_nane = 1;
dirent.fd_nane = nane;
dirent.fd_parent_ino = first_parent;
dirent.fd_prev = NULL;
if (old_ino == ino) {
ret = fits_add_count (& ->f_link_add_cnt,
ino, 0, O, NULL, NULL);
if (ret)
goto out;

}

/* dir is new */
ret = fits_send_nkdir(f, same_nanme ? &irent : NULL, ino, sane_nane);
if (ret)

goto out;

ret = enumdir(f, ino, NULL);

fits_free_nane(nane);
return (ret);

static int
fits_nod_passl(fits_t *f, uint64_t ino)
441 {

fits_info_t si_old;
fits_info_t si_new
int ret;

f->f_current_ino = ino;
f->f _current_path = NULL;

ret = fits_get_info(f, ino, FITS_NEW &si_new, FI_ATTR SIZE |
FI _ATTR MODE | FI_ATTR GEN | FI_ATTR U D |
FI_ATTR G D | FI_ATTR SI ZE);
if (ret)
return (ret);
ret = fits_get_info(f, ino, FITS OLD, &si_old, FI_ATTR CGEN |

new usr/src/uts/comon/fs/zfs/fits_passl.c

455
456
457
458

460
461
462
463
464
465
466

468
469
470
471
472

474
475
476
477
478
479
480
481

483
484
485
486
487
488
489
490
491
492
493
494

496
497
498
499
500
501
502
503
504
505
506

508

509 }

FI_ATTR MODE | FI_ATTR UID |
FI_ATTR G D | FI_ATTR SI ZE);
if (ret)
return (ret);

if (!(S_ISDR(si_old.si_node) & S_| SDI R(si _new. si _npde)) &&
si_new.si _gen != si_old.si_gen) {
if (S_ISDIR(si_new. si_node))
return (fits_dir_add_passi(f, ino));
el se
return (fits_file_add_genchange(f, ino));

}

if (S_ISDIR(si_new. si_node)) {
ret = enumdir(f, ino, NULL);
if (ret)
return (ret);

}

if (S_ISREGsi_new. si_node)) {
struct fits_file ff;

ff.ff_ino = ino;

ff.ff_len = si_new. si_size;
ff.ff_fits =f;

ff.ff_path = NULL;

ff.ff_dirent = NULL;

ff.ff_last_byte = O;

ret = fits_file_contents(f, ino, &ff);
fits_path_free(ff.ff_path);

if (ret)

return (ret);
if (si_newsi_size < si_old.si_size ||

(si_new si_size != si_old.si_size &&
si_new.si_size != ff.ff_last_byte)) {
ret = fits_send_truncate(f, NULL, ino, si_new. si_size);
if (ret)
return (ret);
}
}
if (si_old.si_uid !=si_newsi_uid || si_old.si_gid != si_newsi_gid) {
ret = fits_send_chown(f, NULL, ino, si_new si_uid,
si_new.si_gid);
if (ret)
) return (ret);
if (si_old.si_node != si_new. si_node)
ret = fits_send_chnmod(f, NULL, ino, si_new. si_node);
if (ret)
return (ret);
}

return (ret);

510 #endif /* | codereview */

new usr/src/uts/comon/fs/zfs/fits_pass2.c 1 new usr/src/uts/comon/fs/zfs/fits_pass2.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 59 fIIS flle add = flts add paSSZ,
11719 Wed Cct 17 21:48:39 2012 60 .fits_file_nmod = fits_nod_pass2,
new usr/src/uts/ comon/fs/zfs/fits_pass2.c 61 .fits_dir_add = fits_add_pass2,
FITS: generating send-streans in portable format 62 fits_dir_del = fits_dir_del _pass2,
This commit adds the command 'zfs fits-send’, anal ogous to zfs send. The 63 fits_dir_mpd = fits_nod_pass2
generated send streamis conpatible with the stream generated with that 64 };
from’btrfs send” and can in principle easily be received to any fil esystem
IR R R R R R R R SRR RS R SRR RS E R E RS R R R RREREREREEEEEEE] 66 |nt
1/* 67 fits_start2(fits_t *f, fits_ops_t **ops)
2 * CDDL HEADER START 68 {
3 = 69 f->f pass = PASS UNLI NK;
4 * The contents of this file are subject to the terms of the 70 *ops = & ops;
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License. 72 return (0);
7 = 73}
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww:.opensol aris.org/os/licensing. 75 int
10 * See the License for the specific |anguage governi ng perm ssions 76 fits_abort(fits_t *f)
11 * and limtations under the License. 77 {
12 * 78 fits_send_fini(f);
13 * \Wen distributing Covered Code, include this CDDL HEADER i n each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 80 return (0);
15 * |If applicable, add the followi ng below this CDDL HEADER, wth the 81 }
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [nane of copyright owner] 83 int
18 * 84 fits_end(fits_t *f)
19 * CDDL HEADER END 85 {
20 */ 86 int ret;
21 /* 87 int ret2;
22 * Copyright (c) 2012 STRATO AG All rights reserved.
23 */ 89 fits_send_end(f);
24 #include <sys/zfs_context.h>
25 #include <sys/errno. h> 91 ret = fits_assert_count_enpty(& ->f_|ink_add_cnt);
26 #include <sys/stat.h> 92 ret += fits_assert_count_enpty(& ->f_del _dir_cnt);
27 #include <sys/fits.h> 93 ret += fits_assert_count_enpty(& ->f_put_back_cnt);
28 #include <sys/fits_inpl.h>
95 printf("!fits: fits_end calling fits_abort\n");
30 struct fits_enum{ 96 ret2 = fits_abort(f);
31 fits_t *fe_fits;
32 uint64_t fe_parent_ino; 98 return (ret ? ret : ret2);
33 uint64_t fe_del _dir_cnt; 99 }
34 uint64_t fe_put_back_cnt;
35 fits_dirent_t *fe_dirent_chain; 101 static int
36 }; 102 dir_del (fits_t *f, uint64_t ino, uint64_t renoved_entries)
103 {
38 struct fits_file { 104 fits_info_t si;
39 fits_t *ff_fits; 105 ui nt64_t parent;
40 uint6d_t ff_len; 106 int ret;
41 uint64_t ff_last_byte; 107 int exists;
42 uint64_t ff_ino; 108 ui nt 64_t new _count;
43 fits_path_t *ff_path; 109 uint6d_t left;
44 fits_dirent_t *ff_dirent;
45 }; 111 while (1) {
112 ret = fits_get_info(f, ino, FITS OLD, &si, FI_ATTR GEN |
47 static int fits_dirent_del _pass2(void *fits_enunp, char *nane, uint64_t ino); 113 FI _ATTR_PARENT | FI _ATTR_NENTRI ES);
48 static int fits_dirent_nod_pass2(void *fits_enunp, char *nane, 114 if (ret)
49 uint64_t ino_old, uint64_t ino_new; 115 return (ret);
50 static int fits_dirent_unnmbd_pass2(void *fits_enunp, char *nane, uint64_t ino);
51 static int fits_dir_del _pass2(fits_t *f, uint64_t 1no); 117 if (si.si_parent > f->f_current_ino)
52 static int fits_add_pass2(fits_t *f, uint64_t ino); 118 return (0);
53 static int fits_nod_pass2(fits_t *f, uint64_t ino);
120 if (removed_entries + 2 < si.si_nentries) /* ’." and '.." */
55 fits_ops_t _ops = { 121 return (0);
56 .fits_dirent_del = fits_dirent_del _pass2,
57 .fits_dirent_nod = fits_dirent_nod_pass2, 123 fits_free_count (& ->f_del _dir_cnt, ino);
58 .fits_dirent_unnod = fits_dirent_unnod_pass2, 124 ret = fits_send_rndir(f, NULL, ino);

new usr/src/uts/comon/fs/zfs/fits_pass2.c 3 new usr/src/uts/comon/fs/zfs/fits_pass2.c
125 if (ret) 191
126 return (ret); 192 fits_free_nane(nane);
193 }
128 parent = si.si_parent;
129 exists = fits_get_info(f, parent, FITS_NEW &si, 195 if (left == 0)
130 FI _ATTR_MODE) ; 196 fits_free_count (& ->f_put_back_cnt, parent);
131 if (exists &% exists != ENCENT) 197 if (exists == 0 & S I SDIR(si.si_node)) {
132 return (exists); 198 ret = fits_send_ntime_update(f, NULL, parent);
199 if (ret)
134 ret = fits_get_count (& ->f _put_back_cnt, parent, & eft, NULL); 200 return (ret);
135 if (ret & ret != ENCENT) 201 }
136 return (ret); 202 }
137 if (left > 0)
138 ret = fits_add_count (&f ->f_put_back_cnt, parent, -1, O, 204 if (exists == 0 & S_| SDI R(si . si _node))
139 & eft, NULL); 205 return (0);
140 if (ret)
141 return (ret); 207 /* propagate deletion */
142 } 208 ret = fits_add_count (& ->f_del _dir_cnt, parent, 1, O,
143 1f ((int64_t)left <0) 209 &new_count, NULL);
144 return (EI NVAL); 210 if (ret)
211 return (ret);
146 if (exists == 0 & & S_| SDI R(si.si_node)) {
147 char *nane; 213 ino = parent;
148 ui nt 64_t new_i no; 214 renoved_entries = new _count;
149 fits_info_t si_new 215 }
150 int new 216 }
152 new = fits_get_info(f, ino, FITS NEW &si_new, 218 static int
153 FI _ATTR_MCDE) ; 219 enumdir(fits_t *f, uint64_t ino, uint64_t *pput_back_cnt,
154 if (new && new ! = ENOCENT) 220 uint64_t *pdel _dir_cnt)
155 return (new); 221 {
156 ret = fits_find_entry(f, parent, ino, FITS_OLD, &nane); 222 int ret;
157 if (ret) 223 struct fits_enumfe = {
158 return (ret); 224 fe_fits = f,
225 .fe_parent_ino = ino,
160 ret = fits_|lookup_entry(f, parent, nane, 226 .fe_del _dir_cnt =0,
161 FI TS NEW &new_ i no); 227 .fe_put_back_cnt =0
162 if (ret & ret != ENCENT) { 228 };
163 fits_free_nane(nane);
164 return (ret); 230 ret = fits_dir_contents(f, ino, &e);
165 } 231 if (ret)
166 if (ret == 0 & new_ino !=ino) { 232 return (ret);
167 fits_dirent_t dirent = {
168 .fd_nane = nane, 234 if (pput_back_cnt)
169 .fd_parent_ino = parent 235 *pput _back_cnt = fe.fe_put_back_cnt;
170 }; 236 if (pdel _dir_cnt)
237 *pdel _dir_cnt = fe.fe_del _dir_cnt;
172 ret = fits_send_renanme_fromtenpnane(f, &dirent,
173 ino, new.ino); 239 if (fe.fe_put_back_cnt)
174 if (ret) { 240 ret = fits_add_count (& ->f_put_back_cnt, ino,
175 fits_free_nane(nane); 241 fe.fe_put_back_cnt, 0, NULL, NULL);
176 return (ret); 242 if (ret)
177 } 243 return (ret);
178 } else if (ret == 0 & new_ino == ino && 244 }
179 'S | SDI R(si _new. si _node)) {
180 fits_dirent_t dirent = { 246 return (0);
181 .fd_nane = nane, 247 }
182 .fd_parent_ino = parent
183 }; 249 static int
250 dirent_del _file(struct fits_enum*fe, fits_dirent_t *dirent,
185 ret = fits_dirent_add_file(f, &dirent, ino, 251 uint64_t ino, uint64_t remains)
186 si _new. si _node, 0); 252 {
187 if (ret) { 253 int ret;
188 fits_free_nane(nane);
189 return (ret); 255 ret = fits_send_unlink(fe->fe_fits, dirent, ino);
190 } 256 if (ret)

new usr/src/uts/comon/fs/zfs/fits_pass2.c

257 return (ret);

259 if (remains != FITS_NO | NO

260 ret = fits_send_renanme_fromtenpnane(fe->fe_fits, dirent,
261 ino, remains);

262 if (ret)

263 return (ret);

264 }

266 fe->fe_del _dir_cnt++;

268 return (0);

269 }

271 static int

272 dirent _del _dir(struct fits_enum=*fe, fits_dirent_t *dirent, uint64_t ino,
273 uint64_t remains)

274 {

275 int ret;

276 fits_info_t si;

277 fits_info_t si_old;

278 int new,

279 int old;

280 fits_t *f = fe->fe_fits;

282 new = fits_get_info(f, ino, FITS NEW &si, FI_ATTR GEN |
283 FI _ATTR_MODE) ;

284 if (new &% new ! = ENOCENT)

285 return (new;

286 old = fits_get_info(f, ino, FITS OLD, &si_old,

287 FI_ATTR NENTRI ES | FI _ATTR GEN |

288 FI _ATTR_PARENT) ;

289 if (old)

290 return (old);

292 /* new == 0 neans the dir was renaned, which happened during pass 1 */
293 if (new == ENCENT ||

294 (si.si_gen !'=si_old.si_gen & !'S | SDIR(si.si_nmode))) {
295 uint64_t cnt;

297 if (ino > f->f_current_ino) {

298 ++f e- >f e_put _back_cnt;

299 return (0);

300 }

302 ret = fits_get_count (& ->f_del _dir_cnt, ino, &cnt,
303 NULL) ;

304 if (ret & ret !'= ENCENT)

305 return (ret);

306 [* 2 for ’.” and '..’ */

307 if (cnt + 2 < si_old.si_nentries) {

308 ++f e- >f e_put _back_cnt;

309 return (0);

310 }

312 fits_free_count (& ->f_del _dir_cnt, ino);

313 ret = fits_send_rndir(f, dirent, ino);

314 if (ret)

315 return (ret);

316 }

317 if (remains != FITS_NO | NO

318 ret = fits_send_renane_fromtenpnane(f, dirent, ino, remins);
319 if (ret)

320 return (ret);

321

322

fe->fe_del _dir_cnt++;

new usr/src/uts/comon/fs/zfs/fits_pass2.c

323
324
325
326
327

329
330
331
332
333
334

336
337
338

340
341
342
343
344
345
346
347
348
349
350
351
352
353

355
356 }

if (new==0 && si.si_gen != si_old.si_gen & !S_ | SDI R(si.si_node) &&
si_old.si_parent == dirent->fd_parent_ino) {
uint64_t parent = si_old.si_parent;
fits_info_t sip;
char *name = NULL;

ret = fits_get_info(f, parent, FITS OLD, &sip,
FI _ATTR_MODE) ;
if (ret & ret != ENCENT)
return (ret);
if (ret == 0 & S | SDI R(si p.si_node)) {
uint64_t ol d_ino;

ret = fits_find_entry(f, parent, ino, FITS_OLD, &nane);
if (ret)
return (ret);

ret = fits_|l ookup_entry(f, parent, nane,
FI TS NEW &ol d_i no);
if (ret & ret !'= ENCENT) {
fits_free_nane(nane);
return (ret);

}
if (ret == 0) {
ret = fits_dirent_add_file(f, dirent, ino,
si.si_node, 0);
if (ret)
return (ret);
}
}
}
return (0);

358 static int
359 dirent_del (struct fits_enum*fe, fits_dirent_t *dirent,

360
361 {
362
363

365
366
367

369
370
371
372
373
374 }

uint64_t ino, uint64_t remains)

fits_info_t si;
int ret;

ret = fits_get_info(fe->fe_fits, ino, FITS OLD, &si, FI_ATTR MODE);
if (ret)
return (ret);

if (S_ISDR(si.si_node)) {

return (dirent_del _dir(fe, dirent, ino, remains));
} else {
) return (dirent_del _file(fe, dirent, ino, remains));

376 static int
377 fits_dirent_del _pass2(void *fits_enunp, char *nanme, uint64_t ino)

378 {
379
380
381
382
383
384

386
387 }

struct fits_enum *fe
fits_dirent_t dirent
.fd_nane = nane,
.fd_parent_ino = fe->fe_parent_ino,
.fd_prev = fe->fe_dirent_chain,

fits_enunp;

I
return (dirent_del (fe, &irent, ino, FITS_NO INO);

new usr/src/uts/comon/fs/zfs/fits_pass2.c

389 static int
390 fits_dirent_nod_pass2(void *fits_enunp, char *nane,

391 uint64_t ino_old, uint64_t ino_new

392 {

393 struct fits_enum*fe = fits_enunp;

394 fits_dirent_t dirent =

395 .fd_nane = nane,

396 .fd_parent_ino = fe->fe_parent_ino,

397 .fd_prev = fe->fe_dirent_chain,

398 }s

400 return (dirent_del (fe, &irent, ino_old, ino_new);

401 }

403 static int

404 {i ts_dirent_unnod_pass2(void *fits_enunp, char *nane, uint64_t ino)
405

406 struct fits_enum*fe = fits_enunp;

407 fits_t *f = fe->fe_fits;

408 int ret;

409 uint64_t cnt;

410 fits_info_t si_old;

411 fits_info_t si_new

412 fits_dirent_t dirent = {

413 d_nanme = nane,

414 .fd_parent_ino = fe->fe_parent_ino,

415 .fd_prev = fe->fe_dirent_chain,

416 };

418 ret = fits_get_count (& ->f_link_add_cnt, ino, &cnt, NULL);
419 if (ret)

420 return (ret == ENCENT ? 0 : ret);

422 ret = fits_get_info(f, ino, FITS OLD, &si_old, FI_ATTR MODE);
423 if (ret)

424 return (ret);

426 if (S_ISDR(si_old.si_node))

427 return (dirent_del _dir(fe, &irent, ino, 0));

428 }

430 ret = fits_get_info(f, ino, FITS NEW &si_new, FI_ATTR MODE);
431 if (ret)

432 return (ret);

433 ret = fits_send_unlink(f, &dirent, ino);

434 if (ret)

435 return (ret);

436 if (S_ISDIR(si_new. si_node)) {

437 fits_free_count (& ->f _|ink_add_cnt, ino);

438 ret = fits_send_rename_fromtenpnane(f, &dirent, ino, ino);
439 if (ret)

440 return (ret);

441 ret = fits_send_ntime_update(f, &dirent, ino);

442 } else {

443 ret = fits_dirent_add_file(f, &irent, ino, si_new si_node, 0);
444 }

446 return (ret);

447 }

449 static int

450 fits_add_pass2(fits_t *f, uint64_t ino)

451 {

452 f->f _current_ino = ino;

453 f->f _current_path = NULL;

new usr/src/uts/comon/fs/zfs/fits_pass2.c

455 return (fits_send_ntinme_update(f, NULL, ino));

456 }

458 static int

459 fits_dir_del _pass2(fits_t *f, uint64_t ino)

460 {

461 ui nt64_t put_back_cnt;

462 uint64_t del _dir_cnt;

463 ui nt64_t new_count;

464 int ret;

466 f->f_current_ino = ino;

467 f->f _current_path = NULL;

469 ret = enumdir(f, ino, &ut_back_cnt, &del _dir_cnt);
470 if (ret)

471 return (ret);

473 ret = fits_add_count (& ->f_del _dir_cnt, ino, del _dir_cnt,
474 0, &new_count, NULL);

475 if (ret)

476 return (ret);

478 if (put_back_cnt == 0) {

479 ret = dir_del (f, ino, new_count);

480 if (ret)

481 return (ret);

482 }

484 return (0);

485 }

487 static int

488 fits_mpd_pass2(fits_t *f, uint64_t ino)

489 {

490 fits_info_t si_old;

491 fits_info_t si_new

492 int ret;

493 uint64_t put_back_cnt = O;

495 f->f_current_ino = ino;

496 f->f _current_path = NULL;

498 ret = fits_get_info(f, ino, FITS_NEW &si_new, FI_ATTR SIZE |
499 FI _ATTR MODE | FI_ATTR_ GEN | FI_ATTR UID |
500 FI_ATTR G D | FI_ATTR SI ZE);

501 if (ret)

502 return (ret);

503 ret = fits_get_info(f, ino, FITS OLD, &si_old, FI_ATTR CGEN |
504 FI _ATTR MODE | FI _ATTR UID |

505 FI_ATTR G D | FI_ATTR SI ZE);

506 if (ret)

507 return (ret);

509 if (!(S_ISDIR(si_old.si_npde) & S | SDI R(si_new. si_node)) &&
510 si_new.si _gen != si_old.si_gen) {

511 if (S_ISDIR(si_old.si_node))

512 ret = fits_dir_del _pass2(f, ino);
513 if (ret)

514 return (ret);

515

516 return (fits_add_pass2(f, ino));

517 }

519 if (S_ISDIR(si_new. si_node)) {

520 ret = enumdir(f, ino, &put_back_cnt, NULL);

new usr/src/uts/comon/fs/zfs/fits_pass2.c

521 if (ret)

522 return (ret);

523 }

525 if (put_back_cnt)

526 return (0);

528 return (fits_send_ntine_update(f, NULL, ino));
529

}
530 #endif /* | codereview */

new usr/src/uts/comon/fs/zfs/fits_send.c

R R R R

21228 Wed Oct 17 21:48:39 2012
new usr/src/uts/comon/fs/zfs/fits_send.c
FITS: generating send-streans in portable format
This commit adds the command 'zfs fits-send’, anal ogous to zfs send. The
generated send streamis conpatible with the stream generated with that
from’btrfs send” and can in principle easily be received to any fil esystem
IR R R R R R R R SRR RS R SRR RS E R E RS R R R RREREREREEEEEEE]

1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governi ng perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the foll ow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

B I I
-

NRERRRERRRER R
COONOUITAWNROOO~NOUTDWN

21/
22 * Copyright (c) 2012 STRATO AG All rights reserved.
=Y

24 #include <sys/zfs_context.h>
25 #include <sys/stat.h>

26 #incl ude <sys/nkdev. h>

27 #include <sys/errno.h>

28 #include <sys/types. h>

29 #include <sys/fits.h>

30 #include <sys/fits_inpl.h>
31 #include <sys/fits_crc32c. h>

33 #defi ne TEMPNAME_PREFI X "fits-tenpnane-"
34 /* 27128 needs 39 digits in decimal */
35 #define TEMPNAME_SI ZE (sizeof (TEMPNAME_PREFI X) + 39)

37 void

38 fits_send_init(fits_t *f)

39 {

40 f->f alloc_|en = FITS SEND BUF_SI ZE;
41 f->f_buf = knem.alloc(f->f_alloc_len, KMSLEEP);
42 f->f _size = 0;

43 }

45 void

46 fits_send_fini(fits_t *f)

47 {

48 kmem free(f->f_buf, f->f_alloc_len);
49 }

51 static int
52 fits_send_reserve(fits_t *f, void **buf, int |en)

53

54 int res = f->_alloc_len - f->f_size;
55 if (len > res)

56 return (-E2BIQ;

57 *puf = f->f_buf + f->f_size;

58 f->f_size += len;

new usr/src/uts/comon/fs/zfs/fits_send.c
60 return (0);
61 }

63 static int
64 fits_send_put(fits_t *f, void *buf, int |en)

66 int ret;

67 void *p

69 ret = fits_send_reserve(f, &, len);
70 if (ret)

71 return (ret);

73 mencpy(p, buf, len);

75 return (0);

76 }

78 static int
79 fits_send_put _attr(fits_t *f, uintl6_t attr,
{

81 fits_attr_header_t hdr;

82 int ret;

84 LE_QUT16(&hdr.fa_type, attr);

85 LE QUT16(&hdr.fa_len, len);

87 ret = fits_send_put(f, &hdr, sizeof
88 if (ret)

89 return (ret);

90 return (fits_send_put(f, buf, len));
91 }

93 static int

voi d *buf, int

(hdr));

94 fits_send_reserve_attr(fits_t *f, uintl6_t attr, void **buf,

95

96 fits_attr_header_t hdr;

97 int ret;

99 LE QUT16(&hdr.fa_type, attr);

100 LE_QUT16(&hdr.fa_len, len);

102 ret = fits_send_put(f, &hdr, sizeof (hdr));
103 if (ret)

104 return (ret);

105 return (fits_send_reserve(f, buf, len));
106 }

108 static int
109 fits_send_put_u64(fits_t *f, uintl6_t attr,

uint64_t val)

I en)

int

110 {

111 uint64_t v;

113 LE_QUT64(&, val);

114 return (fits_send_put_attr(f, attr, &, sizeof (v)));
115 }

117 static int
118 fits_send_put_time(fits_t *f, uintl6_t attr,

119 {

120 char buf[12];

122 LE QUT64(buf, t->st_sec);

123 LE QUT32(buf + 8, t->st_nsec);

fits_time_t *t)

| en)

new usr/src/uts/comon/fs/zfs/fits_send.c

125 return (fits_send_put_attr(f, attr, buf, sizeof (buf)));

126 }

128 static int
129 fits_cnd_start(fits_t *f, uintl6_t cnd)

130 {

131 fits_cnd_header_t ch;

133 nenset (&h, 0, sizeof (ch));

134 LE QJTl6(&ch fc_cnd, cnd);

135 f->f_size = 0;

136} return (fits_ send_put(f, &ch, sizeof (ch)));
137

139 static int
140 fits_cnmd_send(fits_t *f)

141 {

142 fits_cnd_header_t *ch;

143 uint32_t crc;

144 int ret;

146 ch = (fits_cnd_header _t *)f->f_buf;

147 LE_QUT32(&ch->fc_len, f->f_size - si zeof (*ch));
148 ch->fc_crc = 0;

150 crc = fits_crc32c(0, f->f_buf, f->f_size);
151 LE QUT32(&ch->fc_crc, crc);

153 ret = fits_wite(f, f->f_buf, f->f_size);
154 f->f_size = 0;

156 return (ret);

157 }

159 static int
160 fits_send_stream header(fits_t *f)

161 {

162 fits_stream header_t header;

164 strcpy(header. fs_nagic, FITS SEND STREAM MAG C);

165 LE_QUT32(&header . fs_version, FI TS_SEND STREAM VERSI oN);

167 return (fits_wite(f, (uint8_t *)&header, sizeof (header)));
168 }

170 static void
171 tenpnane(uint64_t ino, char *buf, int maxlen)

172 {

173 int | = sizeof (TEMPNAME_PREFIX) - 1;

174 nmencpy(buf, TEMPNAME_PREFI X, M N(maxl en, 1));

175 snprintf(buf + 1, mxlen - |, "9%Ilu" (Ionglong)ino);
176 }

178 static void
179 path_add_nanme(fits_path_t **fp, char *name, int nanel en)

180 {

181 fits_path_t *new

183 new = knem al | oc(si zeof (*new) + nanelen + 1, KM SLEEP);
184 new >f p_next = *fp;

185 new >fp_len = nanelen + 1;

186 new >fp_total _|en = nanelen + 1;

187 if (*fp)

188 new>fp_total _len += (*fp)->fp_total _|en;

189 mencpy(new >f p_buf, nane, nanel en);

190 new >f p_buf [nanelen] = "\0’;

new usr/src/uts/comon/fs/zfs/fits_send.c

191 *fp = new,
192 }

194 static void
195 path_copy(fits_path_t *fp, char *b)

196 {

197 fits_path_t *cur;

199 (cur = fp cur; cur = cur->fp_next) {

200 '

201 rrem:py(b + 1, cur->fp_buf, cur->fp_len - 1);
202 b += cur->fp_len;

203 }

204 }

206 static void
207 path2buf (fits_path_t *fp, char **buf, i

208 {

209 char *b;

211 *buf _len = fp->fp_total len + 1;
212 *puf = b = kmem al | oc(*buf _I en,
214 pat h_copy(fp, b);

216 b[*buf _len - 1] ='\0";

217 }

219 static int

220 put_path(fits_t *f, uint1l6_t attr, fits_|

221 {

222 int ret;

223 voi d *p;

225 ret = fits_send_reserve_attr(f,
226 if (ret)

227 return (ret);

228 pat h_copy(fp, p);

230 return (0);

231 }

233 void

234 fits_path_free(fits_path_t *fp)
235 {

236 fit _path t *next;

237 while (fp) {

238 next = fp->fp_next;

239 kmem free(fp, fp->fp_le
240 fp = next;

241 }

242 }

244 static int
245 is_ino_run(fits_t *f, uint64_t ino)

nt *buf_| en)

/* one for the trailing O-byte */
KM _SLEEP) ;

path_t *fp)

attr, &p, fp->fp_total _len);

n + sizeof (*fp));

246 {

247 int ret;

248 fits_info_t si;

250 while (1) {

251 if (ino > f->f_current_ino)

252 return (0);

253 ret = fits_get_i nfo(f, ino, FITS OD, &si, 0);
254 if (ret & ret != ENCENT)

255 return (ret);

256 if (ret !'= ENCENT)

new usr/src/uts/comon/fs/zfs/fits_send.c

257 br eak;

258 ret = fits_get_info(f, ino, FITS_NEW &si, FI_ATTR PARENT);
259 if (ret & ret != ENOCENT)

260 return (ret);

261 if (ret)

262 return (0); /* ignore for now */

263 ino = si.si_parent;

264 }

265 return (1);

266 }

268 static int
269 build_path(fits_t *f, fits_dirent_t *dirent, uint64_t ino,

270 int devise_tenpnanme, fits_which_t which_in, fits_path_t **fp)
271 {

272 int ret = 0;

273 fits_dirent_t *de;

274 fits_info_t si;

275 fits_which_t vx/mch

276 fits_dirent_t tenp_di rent;

277 char tenp_buf [TEMPNAVE_SI ZE] ;

279 if (devise_tenpnane) {

280 if (!dirent)

281 return (EI NVAL);

282 temp_dirent = *dirent;

283 t enpnane(i no, tenp_buf, sizeof (tenp_buf));

284 tenp_dirent.fd_nane = tenp_buf;

285 dirent = & enp_dirent;

286 }

288 *fp = NULL;

290 for (de = dirent; de; de = de->fd_prev) {

291 pat h_add_nane(fp, de->fd_nane, strlen(de->fd_nane));
292 1no = de->fd_parent_ino;

293 }

295 /*

296 * XXX TODO check if f->f _current_path is set. if yes, use it instead.
297 */ ot herwi se save result of |oop belowto f_current_path
298 *

299 while (1) {

300 i nt nanebufl en;

301 char *nare;

302 char *t_nane;

303 uint64_t ol d_parent;

304 uint 64_t new_parent;

305 uint64_t ol d_gen = 0;

306 uint64_t new_gen = O;

307 uint64_t parent;

308 int check_t enpnane;

309 uint64_t ol d_node = O;

311 ol d_parent = 0;

312 new_parent = 0;

313 check _tenpnane = 0;

314 ret = fits_get_i fo(f ino, FITS OLD, &si, FI_ATTR PARENT |
315 FI_ATTR GEN | FI 7ATTRJ\/DDE);

316 if (ret & ret !'= ENCENT)

317 return (ret);

318 if (ret ==0) {

319 ol d_parent = si.si_parent;

320 ol d_gen = si.si_gen;

321 ol d_node = si.si_node;

322 }

new usr/src/uts/comon/fs/zfs/fits_send.c

323 ret = fits_get_info(f, ino, FITS NEW &si, FI_ATTR PARENT |
324 FI_ATTR GEN | FI _ATTR MODE);

325 if (ret & ret != ENCENT)

326 return (ret);

327 if (ret == 0)

328 new_parent = si.si_parent;

329 new_gen = si.si_gen;

330 }

331 if (ol d_parent &% new parent && old_gen != new gen &&
332 1 (S_I SDIR(ol d_| rmde) &% S | SDIR(si.si_node))) {
333 if (which_in == FITS OLD) {

334 new_parent = O;

335 }e|SEIf(V\hIChIr‘I——F|TSNEW{

336 ol d_parent = O;

337 if (S_ISDIR(si.si_node))

338 check_t enpnanme = 1;

339 }

340 }

342 if (f->f pass == PASS_LI NK)

343 f (ol d _parent && !new parent) {

344 whi ch = FITS_OLD;

345 } else if (!old_parent & new parent) {
346 which = FI TS_NEW

347 } else if (is_ino_run(f, new_ parent)) {
348 check ter’rpnama =1

349 whi ch = FI TS_NEW

350 } else {

351 which = FITS _OLD;

352 }

353 } else {

354 if (old parent && ! new parent) {

355 whi ch = FITS_OLD;

356 } else {

357 check_t enpnanme = 1;

358 whi ch = FI TS _NEW

359 }

360 }

361 if (which == FITS_OLD)

362 parent = ol d_parent;

363 el se

364 parent = new_parent;

365 if (parent == ino)

366 br eak;

367 ret =fits f|nd _entry(f, parent, ino, which, & _nane);
368 if (ret)

369 return (ret);

370 nanme = strdup(t_nane);

371 fits_free_nane(t_nane);

372 nanebuflen = strlen(nane) + 1;

373 if (check_tenpnane)

374 fits_info_t si_old;

375 fits_info_t si_new,

377 ret = fits_get_info(f, parent, FITS OLD,
378 &si_old, FI_ATTR GEN):
379 if (ret & ret != ENCENT)

380 return (ret);

381 if (ret == 0) {

382 ret = fits_get_info(f, parent, FITS_NEW
383 &i_new, FI_ATTR GEN);
384 if (ret)

385 return (ret);

386 if (si_old.si_gen != si_new. si_gen)
387 check_t enpnanme = 0;

388 } else {

new usr/src/uts/comon/fs/zfs/fits_send.c

389 check_t empnanme = 0;
390 }

391 }

392 if (check_tempnane) {

393 uint64_t ol d_i no;

395 ret = fits_lookup_entry(f, parent, nane,

396 FITS OLD, &ol d_i no);

397 if (ret & ret != ENCENT) {

398 fits_free_nane(nane);

399 return (ret);

400 }

401 if ((ret == 0 & old_ino !'=ino) ||

402 (ret == 0 & S | SDI R(si.si_node) &&

403 I'S I SDIR(ol d_npde) & old_ino == ino)) {

404 int ret;
405 ui nt 64_t cnt = 1;

407 if (f->f_pass == PASS_UNLI NK &&

408 new parent < f->f_current_ino) {
409 ret = fits_get_count (& ->f _put_

410 ol d_ino, &cnt, NULL);
411 if (ret” & ret = ENCENT)
412 return (ret);
413 }

414 if (cnt) {

415 kmem free(nanme, nanebuflen);
416 nanebufl en = TEMPNAME_SI ZE;
417 nane = knem al | oc(nanebufl en,
418 tempnane(i no, nane, nanebuflen);

419 }

420 }

421

422 ino = parent;

423 pat h_add_name(fp, nane, strlen(nane));
424 kmem free(nanme, nanebuflen);

425 }

426 if (*fp == NULL)

427 pat h_add_name(fp, "", 0);

429 return (0);
430 }

432 int

433 fits_send_start(fits_t *f)
434 {

435 int r
436 uint8_
437 ui nt 8~
438 uint64_t o
439 uint64_t n
440 char *path™
441 int len;
442 char *p;
443 int cmd = FI TS _CMD_SUBVQL;

445 ret =
446 if (re
447 fits_abort(f);
448 return (ret);
449 1

451 if ((ret =fits_get_uuid(f, FITS NEW n_uuid
452 (ret = fits_get_ctransid(f, FITS_NEW &n
453 (ret = fits_get_snapname(f, FITS_NEW &p
454 goto out;

_send_st ream header (f);

Am

-0~

)
a

new usr/src/uts/comon/fs/zfs/fits_send.c

455 /* for now, strip the pool name */

456 if ((p = strchr(path, '/")))

457 ++p;

458 el se

459 p = path;

460 ret = fits_get_uuid(f, FITS_ OLD, o_uuid);

461 if (ret & ret I'= ENCENT)

462 goto out;

463 if (ret == {

464 ret = fits_get_ctransid(f, FITS OLD, &o_ctrans);

465 if (ret)

466 goto out;

467 cnd = FI TS_CVD_SNAPSHCT;

468 }

469 if ((ret =fits_cnmd_start(f, cnd)) ||

470 (ret = fits_send_put attr(f, FI TS_ATTR _PATH, p, strlen(p))) ||
471 (ret = fits_send_put_u64(f, FITS_ATTR CTRANSID, n_ctrans)) ||
472 (ret = fits_send_put_attr(f, FITS ATTR UUID, n_uuid, 16)))
473 goto out;

474 if (cmd == FI TS_CND_SNAPSHOT) {

475 if ((ret = fits_send_put_u64(f, FITS_ATTR CLONE_CTRANSI D,
476 o_ctrans)) ||

477 (ret = fits_send_put_attr(f, FITS_ATTR CLONE_UU D,
478 o_uuid, 16)))

479 goto out;

480 }

481 ret = fits_cmd_send(f);

483 out:

484 kmem free(path, len);

486 return (ret);

487 }

489 int

490 fits_send_create_file(fits_t *f, fits_dirent_t *dirent, uint64_t ino,
491{ int devise tenpnane, fits path t **path_ret)

492

493 fits_path_t *path = NULL;

494 fits_info_t si;

495 int ret;

496 int send_r dev = 0;

497 int cnd,;

498 uint64_t rdev = 0;

499 char *symink = NULL;

500 int symen = 0;

502 ret = build_path(f, dirent, ino, devise_tenpnane, FITS NEW &path);
503 if (ret)

504 goto out;

506 ret = fits_get_info(f, ino, FITS_NEW &si,

507 FI_ATTR MODE | FI_ATTR UD | FI_ATTR G D);
508 if (ret)

509 goto out;

511 if (S_ISREGsi.si_node)) {

512 cmd = FI TS _CMD_MKFI LE;

513 } else if (S_ISDIR(si.si_node)) {

514 cmd = FITS CVMD_MKDI R;

515 } else if (S_ISLNK(si.si_node)) {

516 cnd = FI TS_CVD_SYM.I NK;

517 ret = fits_read_symi nk(f, ino, FITS_ NEW &symink, &synien);
518 if (ret)

519 goto out;

520 } else if (S_ISCHR(si.si_nopde) || S_ISBLK(si.si_node)) {

new usr/src/uts/comon/fs/zfs/fits_send.c

521 cnd = FI TS_CVD_MKNOD;

522 send_rdev = 1,

523 } elseif (SISFIFO(S|. i_node)) {

524 cnd = FITS CVMD_MKFI FQ,

525 } else |f (S ISS@K(Sl si_nmode)) {

526 = FI TS_CVD_MKSOCK;

527 } else {

528 /* unknown file type, ignore for now */

529 printf("!send_create_file: ignore file with node 0% o\n",
530 (unsi gned | ong)si.si_node);

531 return (0);

532 }

534 if (send_rdev) {

535 fits_info_t sirdeyv;

536 uint64_t r_mgjor;

537 uint64_t r_mnor;

538 ret = fits_get_info(f, ino, FITS_NEW &sirdev, FlI_ATTR RDEV);
539 if (ret)

540 goto out;

541 rdev = sirdev.si_rdev;

543 /* XXX hardcodedly transformrdev to |inux form*/
544 r_major = rdev >> 32;

545 r_mnor = rdev & Oxffffffful;

546 rdev = ((r_minor & Oxff) | ((r_mmjor & Oxfff) << 8) |
547 ((r_mnor >> 8) << 20) | ((r_major >> 12) << 44));
548 }

549 /* send MKFILE */

550 if ((ret =fits_crmd_start(f, cnd)) ||

551 (ret = put_path(f, FITS ATTR PATH, path)) ||

552 (ret = fits_send_put_u64(f, FITS ATTR INO ino)))

553 goto out;

554 if (send_rdev) {

555 ret = fits_send_put_u64(f, FITS_ATTR RDEV, rdev);

556 if (ret)

557 goto out;

558 ret = fits_send put _ub4(f, FITS _ATTR_MODE, si.si_node);
559 if (ret)

560 goto out;

561 }

562 if (S_ISLNK(si.si_node)) {

563 ret = fits_send_put_attr(f, FITS_ATTR PATH LI NK,

564 symink, strlen(symink));
565 if (ret)

566 goto out;

567 }

568 if ((ret = fits_cnd_send(f)))

569 goto out;

571 /* send CHOWN */

572 if ((ret = fits_cmd_start(f, FITS_CVD_) ||

573 (ret = put_path(f, FITS_ATTR PATH, path)) ||

574 (ret = fits_send_put_u64(f, FITS_ATTR U D, si.si_uid)) |]
575 (ret = fits_send_put_u64(f, FITS ATTRAD, si.si_gid)) |]
576 (ret = fits_cnd_send(f)))

577 goto out;

579 /* send CHVOD */

580 if ((ret = fits_cmd_start(f, FITS CVD CHMOD)) ||

581 (ret = put_path(f, FITS ATTR PATH, path)) ||

582 (ret = fits_send_put_u64(f, FITS_ATTR MODE,

583 si.si_nmode & Oxfff)) ||

584 (ret = fits_cnd_send(f)))

585 goto out;

new usr/src/uts/comon/fs/zfs/fits_send.c

587 out:

588 if (ret == 0 & path_ret)

589 *path_ret = path;

590 el se

591 fits_path_free(path);

592 if (synlink)

593 kmem free(sym ink, synlen);

594 return (ret);

595 }

597 int

598 fits_send_link(fits_t *f, fits_dirent_t *new dirent,

599 uint64_t ol d_parent_ino, fits_which_t which, i nt
600 {

601 fits_path_t *new path = NULL;

602 fits_path_t *old_path = NULL;

603 int ret;

604 fits_dirent_t old_dirent = {

605 .fd_nanme = NULL,

606 .fd_parent_ino = ol d_parent_ino,

607 .fd_prev = NULL,

608 };

610 ret = fits_find_entry(f, old_parent_ino, ino, which,
611 ol d_dirent.fd_nane);

612 if (ret)

613 return (ret);

614 ret = build_path(f, &ld_dirent, ino, 0, FITS OLD, &old_path);
615 if (ret)

616 goto out;

618 ret = build_path(f, new_dirent, ino, devise_tenpnane, FITS NEW
619 &new_pat h);

620 if (ret)

621 goto out;

623 if ((ret = fits_crnd_start(f, FITS CMD_LINK)) |]
624 (ret = put_path(f, FITS ATTR PATH LINK, old_path)) ||
625 (ret = put_path(f, FI TS_ATTR_PATH, new path)) ||
626 (ret = fits_cnd_send(f)))

627 goto out;

629 if (f->f pass == PASS_UNLI NK)

630 ret fits_send_ntime_update(f,

631 out:

632 if (old_dirent.fd_nane)

633 kmem free(ol d_dirent.fd_nane,

634 fits_path_free(ol d_path);

635 fits_path_free(new path);

636 return (ret);

637 }

639 int

640 fits_send_nkdir(fits_t *f, fits_dirent_t *dirent,

641 uint64_t ino, int devise_tenpnane)

642 {

643 fits_path_t *path = NULL;

644 fits_info_t si;

645 int ret;

647 ret = build_path(f, dirent, i

648 if (ret)

649 goto out;

651 ret = fits_get_info(f, ino, FITS NEW &si,

652 FI ATTRUD]| FI_ATTR G D | FI_ATTR MODE);

no, devise_tenpnane, FITS_NEW &path);

uint64_t ino,
devi se_t enpnane)

new di rent, ino);

strlen(old_dirent.fd_nanme) + 1);

10

new usr/src/uts/comon/fs/zfs/fits_send.c 11 new usr/src/uts/comon/fs/zfs/fits_send.c 12
653 if (ret) 719 fits_path_free(ol d_path);
654 goto out; 720 fits_path_free(new path);
721 return (ret);
656 if (path- >fpt0ta| len I=1) { 722 }
657 /* don’t send an mkdir for the root, but send chown/chmod */
658 if ((ret =fits_cnd_start(f, FITSCIVDNKDIR)) | 724 int
659 (ret = put_path(f, FITS_ATTR PATH, path)) || 725 fits_send_rename_fromtenpname(fits_t *f, fits_dirent_t *dirent,
660 (ret = fits_send_put_u64(f, FITS_ATTRINO ino)) || 726 uint64_t ino, uint64_t old)
661 (ret = fits_cnd_send(f))) 727 {
662 goto out; 728 char buf [TEMPNAME_SI ZE] ;
663 } 729 fits_path_t *new path = NULL;
730 fits_path_t *old_path = NULL;
665 /* send CHOWN */ 731 int ret;
666 if ((ret = fits_crmd_start(f, FITS_CVD_) || 732 fits_dirent_t old_dirent;
667 (ret = put_path(f, FITS ATTR PATH, path)) ||
668 (ret = fits_send_put_u64(f, FITS_ATTR U D, si.si_uid)) || 734 tempnane(ol d, buf, SI zeof (buf));
669 (ret = fi ts_send_put_u64(f, FITS_ ATTR G D, si.si_gid)) || 735 old_dirent = *diren
670 (ret = fits_cnd_send(f))) 736 old_dirent.fd_nane = buf
671 goto out;
738 ret = build_path(f, &l d_dirent, old, 0, FITS OLD, &old_path);
673 /* send CHMOD */ 739 if (ret)
674 if ((ret = fits_cmd_start(f, FITS CVMD CHMOD)) || 740 goto out;
675 (ret = put_path(f, FITS ATTR PATH, path)) || 741 ret = build_path(f, dirent, ino, 0, FITS_NEW &new path);
676 (ret = fits_send_put_u64(f, FITS ATTR MODE, 742 if (ret)
677 si.si_mode & Oxfff)) || 743 goto out;
678 (ret = fits_cmd_send(f)))
679 goto out; 745 if ((ret = fits_cmd_start(f, FITS_CVD_RENAME)) ||
746 (ret = put_path(f, FITS ATTR PATH, ol d_path)) ||
681 out: 747 (ret = put_pat h(f, FI TS_ATTR_PATH TO, new path)) ||
682 fits_path_free(path); 748 (ret = fits_cnd_send(f)))
683 return (ret); 749 goto out;
684 }
751 ret = fits_send_ntinme_update(f, dirent, old);
686 /* this one is only used for directory renanes */
687 int 753 out:
688 fits_send_renane(fits_t *f, fits_dirent_t *new.dirent, uint64_t ino, 754 fits_path_free(ol d_path);
689 uint64_t ol d_parent_ino, int devise_tenpname) 755 fits_path_free(new path);
690 { 756 return (ret);
691 fits_path_t *new path = NULL; 757 }
692 fits_path_t *old_path = NULL;
693 int ret; 759 int
694 fits_dirent_t old_dirent = { 760 fits_send_unlink(fits_t *f, fits_dirent_t *dirent, uint64_t ino)
695 .fd_name = NULL, 761 {
696 .fd_parent_ino = ol d_parent_ino, 762 fits_path_t *path = NULL;
697 .fd_prev = NULL, 763 int ret;
698 &
765 ret = build_path(f, dirent, ino, 0, FITS OLD, &path);
700 ret = fits_find_entry(f, old_parent_ino, ino, FITS OLD, 766 if (ret)
701 ol d_dirent. fd_nane); 767 goto out;
702 if (ret)
703 return (ret); 769 if ((ret =fits_cnd start(f FITS_CVD_UNLI NK)) ||
704 ret = build_path(f, &l d _dirent, ino, 0, FITS OLD, &old_path); 770 (ret = put_path(f, TS_ \TTR_PATH, path)) ||
705 if (ret) 771 (ret = fits_crrd_send(f)))
706 goto out; 772 goto out;
708 ret = build_path(f, new_dirent, ino, devise_tenpnane, FITS NEW 774 out:
709 &new_pat h) ; 775 fits_path_free(path);
710 if (ret) 776 return (ret);
711 goto out; 777 }
713 if ((ret = fits_cmd_start(f, FITS CVMD_RENAME)) || 779 int
714 (ret = put_path(f, FITS ATTR PATH, ol d_path)) || 780 fits_send_rndir(fits_t *f, fits_dirent_t *dirent, uint64_t ino)
715 (ret = put_path(f, FITS ATTR_PATH TO new path)) || 781 {
716 (ret = fi ts_cmj_send(f))) 782 fits_path_t *path;
717 goto out; 783 int ret;
718 out:

new usr/src/uts/comon/fs/zfs/fits_send.c

785 ret = build_path(f,
786 if (ret)
787 goto out;

789 if ((ret fits_cnd start(f
790 (ret put _pat h(f, TS_ ATTR_PATH,
791 (ret = fi ts_crrd_send(f)))

792 goto out;

dirent, ino,

794 out:

795 fits_path_fre
796 return (ret);
797 }

799 int

800 fits_send_file_data(fits_t *f, fits_path_t
801 fits_dirent _t *dirent, uint
802 uint64_t off, uint64_t len,
803 {

804 int ret =0;

e(path);

806 if (!*path_p) {

807 ret = build_path(f,
808 if (ret)

809 return (ret);
810 }

dirent,

812 while (len) {
813 ui nt64_t

= MN(len,

815 if ((ret
816 (ret
817 (ret
818 (ret fits_send_put attr(f
819 (ret fits_cmd_send(f)))
820 goto out;

821 data += I;

822 off +=1;

823 len -=1;

824 }

fits_cnd_start(f, FI
put _pat h(f,
fits_send_put_u64(f,

826 out:
827 return (ret);
828 }

830 int

831 fits_send_ntinme_update(fits_t *f,
832 {

833 fits_path_t
834 int ret;
835 fits_info_t si;

fits_dirent_t

*path = NULL;

837 ret = fits_get_info(f, ino, >
838 FI _ATTR _ATIME | FI
839 FI _ATTR CTIME | FI
840 if (ret) {

841 if (ret == ENCENT)
842 ret = 0;
843 goto out;

844 }

846 ret = build_path(f,
847 if (ret)
848 goto out;

850 if ((ret

dirent, ino,

= fits_cnmd_start(f,

0, FITS QLD

FITS_CMD_RMDI R)

i no,

FI TS_ATTR_PATH,

&pat h);

)
pat h))

**pat h_p,

64_t ino,
voi d *dat a)

0, FITS_NEW path_p);

FI TS_SEND READ Sl ZE) ;

TS CMD VR TE)) ||
*path_p)) ||

FI TS_ATTR FI LE_OFFSET,
FI TS_ATTR DATA, data,

*dirent, uint64_t ino)

FI TS NEW &si,

_ATTR_MTI ME |
“ATTR_OTI ME) ;

0, FITS_NEW &path);

FI TS CVD_UTI MES)) ||

13

new usr/src/uts/comon/fs/zfs/fits_send.c

851 (ret = put_path(f, FITS_ATTR PATH, path)) ||

852 (ret = fits_send_put_time(f, FITS ATTR ATIME, &si.si_atine
853 (ret = fits_send_put_time(f, FITS_ATTR MII ME, &si.si_ntinme
854 (ret = fits_send_put_time(f, FITS_ATTR CTIME, &si.si_ctime
855 (ret = fits_send_put_time(f, FITS_ATTR OTl ME, &si.si_otinme
856 (ret = fits_cnd_send(f)))

857 got o out;

859 out:

860 fits_path_free(path);

861 return (ret);

862 }

864 int

865 fits_send_truncate(fits_t *f, fits_dirent_t *dirent, uint64_t ino,
866 uint64_t new si ze)

867 {

868 fits_path_t *path = NULL;

869 int ret;

871 ret = build_path(f, dirent, ino, 0, FITS NEW &path);

872 if (ret)

873 return (ret);

875 if ((ret =fits_crmd_start(f, FITS CVMD_TRUNCATE)) ||

876 (ret = put_path(f, FITS ATTR PATH, path)) ||

877 (ret = fits_send_put_u64(f, FITS ATTR SIZE, new size)) ||
878 (ret = fits_cnd_send(f)))

879 goto out;

881 out:

882 fits_path_free(path);

883 return (ret);

884 }

886 int

887 fits_send_chown(fits_t *f, fits_dirent_t *dirent, uint64_t ino,

888 uint64_t new_uid, uint64_t new_ gid)

889 {

890 fits_path_t *path = NULL;

891 int ret;

893 ret = build_path(f, dirent, ino, 0, FITS_NEW &path);

894 if (ret)

895 return (ret);

897 if ((ret =fits_cnd_start(f, FITSCI\/DC}-ICV\N)) ||

898 (ret = put_path(f, FITS ATTR PATH, path)) ||

899 (ret = fits_send_put_u64(f, FITS_ATTR U D, new uid)) ||
900 (ret = fi ts_send_put_u64(f, FITS_ ATTR_ G D, new gid)) ||
901 (ret = fits_cmd_send(f)))

902 goto out;

904 out:

905 fits_path_free(path);

906 return (ret);

907 }

909 int

910 fits_send_chrmod(fits_t *f, fits_dirent_t *dirent, uint64_t ino,

911 ui nt 64_t new_node)

912 {

913 fits_path_t *path = NULL;

914 int ret;

916 ret = build_path(f, dirent, ino, 0, FITS_NEW &path);

14

new usr/src/uts/comon/fs/zfs/fits_send.c

917 if (ret)

918 return (ret);

920 if ((ret = fits_cnd_start(f, FITS CVD_CHMOD))
921 (ret = put_path(f, FITS_ATTR PATH, path)) ||
922 (ret = fits_send_put_u64(f, FITS_ATTR MODE,
923 (ret = fits_cmd_send(f)))

924 goto out;

926 out:

927 fits_path_free(path);

928 return (ret);

929 }

931 int

932 fits_send_end(fits_t *f)

933 {

934 int ret;

936 if ((ret =fits_cnd_start(f, FITS_CMD END)) ||
937 (ret = fits_cmd_send(f)))

938 goto out;

940 out:

941 return (ret);

942 }

943 #endif /* | codereview */

new_node))

15

new usr/src/uts/comon/fs/zfs/sys/dsl _dataset.h 1

R R R R

10469 Wed Cct 17 21:48:39 2012
new usr/src/uts/comon/ fs/zfs/sys/dsl _dataset.h
FITS: generating send-streans in portable format
This commit adds the command 'zfs fits-send’, anal ogous to zfs send. The
generated send streamis conpatible with the stream generated with that
from’btrfs send” and can in principle easily be received to any fil esystem

hkkkkkkkkkkkkkkkkhkkhkkhkkhkhkhkkkkkkkkkkkkkkhkkFkhkkkkkk ok kk k k&

__unchanged_portion_om tted_

191 #define dsl_dataset_is_snapshot(ds) \
192 ((ds)->ds_phys->ds_num children != 0)

194 #define DS_UN QUE_| S_ACCURATE(ds) \
195 (((ds)->ds_phys->ds_flags & DS_FLAG UNI QUE_ACCURATE) != 0)

197 int dsl _dataset_hol d(const char *name, void *tag, dsl_dataset_t **dsp);
198 int dsl _dataset _hol d_obj (struct dsl_pool *dp, uint64_t dsobj,

199 void *tag, dsl_dataset_t **);

200 int dsl_dataset_own(const char *nane, bool ean_t inconsi stent ok,
201 void *tag, dsl_dataset_t **dsp);

202 int dsl_dataset_own_obj (struct dsl pool *dp, uint64_t dsobj,
203 bool ean_t inconsistentok, void *tag, dsl_dataset_t **dsp);

204 voi d dsl _dataset _nane(dsl _dataset _t *ds, char *nane);

205 int dsl_dataset_nanel en(dsl _dataset_t *ds);

206 #endif /* ! codereview */

207 voi d dsl _dataset_rel e(dsl _dataset _t *ds, void *tag);

208 void dsl _dat aset _di sown(dsl _dataset _t *ds, void *tag);

209 void dsl _dat aset _drop_ref(dsl _dataset _t *ds, void *tag);

210 bool ean_t dsl _dataset_tryown(dsl _dataset_t *ds, bool ean_t inconsi stentok,
211 void *tag);

212 voi d dsl _dat aset _nmake_excl usi ve(dsl _dataset _t *ds, void *tag);

213 void dsl _register_onexit_hol d_cl eanup(dsl _dataset_t *ds, const char *htag,

214 m nor_t mnor);

215 uint64_t dsl_dataset_create_sync(dsl _dir_t *pds, const char *|astnane,
216 dsl _dataset _t *origin, uint64_t flags, cred_t *, dmu_tx_t *);

217 uint64_t dsl _dataset _create_sync_dd(dsl _dir_t *dd, dsl_dataset_t *origin,
218 uint64_t flags, dmu_tx_t *tx);

219 int dsl_dataset_destroy(dsl _dataset_t *ds, void *tag, boolean_t defer);

220 dsl _checkfunc_t dsl_dataset destroy_check;

221 dsl _syncfunc_t dsl_dataset _destroy_sync;

222 dsl _syncfunc_t dsl _dataset _user_hol d_sync;

223 int dsl_dataset_snapshot _check(dsl _dataset_t *ds, const char *, drmu_tx_t *tx);
224 void dsl_dat aset _snapshot _sync(dsl _dataset _t *ds, const char *, dmu_tx_t *tx);
225 int dsl_dataset_rename(char *nane, const char *newnane bool ean_t recursive);
226 int dsl_dataset_pronot e(const char *name, char *conflsnap)

227 int dsl_dataset_cl one_swap(dsl_dataset_t *clone, dsl_dataset_t *ori gi n_head,
228 boolean_t force);

229 int dsl_dataset _user_hol d(char *dsname, char *snapname, char *htag,

230 bool ean_t recursive, bool ean_t terrphol d, int cleanup_fd);

231 int dsl_dat aset_user_hol d_for_send(dsl _dataset_t *ds, char *htag,

232 bool ean_t tenphol d);

233 int dsl_dataset_user_rel ease(char *dsnane, char *snapnane, char *htag,
234 bool ean_t recursive);

235 int dsl_dataset_user_rel ease_tnp(struct dsl_pool *dp, uint64_t dsobj,
236 char *htag, boolean_t retry);

237 int dsl_dataset_get_hol ds(const char *dsnanme, nvlist_t **nvp);

239 bl kptr_t *dsl_dataset _get_bl kptr(dsl _dataset_t *ds);
240 voi d dsl _dataset _set_bl kptr(dsl _dataset _t *ds, blkptr_t *bp, dmu_tx_t *tx);

242 spa_t *dsl _dataset _get _spa(dsl _dataset_t *ds);
244 bool ean_t dsl _dataset _nodified_since_| ast snap(dsl _dataset_t *ds);

246 voi d dsl _dataset_sync(dsl _dataset _t *os, zio_t *zio, dmu_tx_t *tx);

new usr/src/uts/comon/fs/zfs/sys/dsl _dataset.h

248
249
250
251
252
253
254

256

voi d dsl _dataset _bl ock_born(dsl _dataset_t *ds, const blkptr_t *bp,
dmu_tx_t *tx);

int dsl_dataset_bl ock_kill (dsl _t dataset _t *ds, const blkptr_t *bp,
dmu_tx_t *tx, boolean_t async

bool ean_t dsl dat aset _bl ock freeabl e(dsl _dataset _t *ds, const bl kptr_t *bp,
ui nt64_t bl k_birth);

uint64_t dsl _dataset _prev_snap_txg(dsl _dataset _t *ds);

voi d dsl _dataset_dirty(dsl_dataset_t *ds, dmu_tx_t *tx);

257 void dsl _dataset _stats(dsl _dataset_t *os, nvlist_t *nv);

258 void dsl _dataset _fast_stat(dsl _dataset t *ds, dmu_objset_stats_t *stat);
259 voi d dsl _dataset_space(dsl _dataset_t *ds,

260 uint64_t *refdbytesp, uint64_t *avail bytesp,

261 uint64_t *usedobj sp, uint64_t *avail objsp);

262 uint64_t dsl _dataset fsid_guid(dsl_dataset t *ds);

263 int dsl_dataset_space_witten(dsl_dataset_t *ol dsnap, dsl_dataset_t *new,
264 uint64_t *usedp, uint64_t *conpp, uint64_t *unconpp);

265 int dsl_dataset_space_woul dfree(dsl _dataset_t *firstsnap, dsl_dataset_t *|ast,
266 uint64_t *usedp, uint64_t *conpp, uint64_t *unconpp);

267 bool ean_t dsl _dataset_is_dirty(dsl_dataset_t *ds);

269 int dsl_dsobj _to_dsnane(char *pnane, uint64_t obj, char *buf);

271 int dsl_dataset_check_quota(dsl _dataset_t *ds, boolean_t check_quota,
272 uint64_t asize, uint64_t inflight, uint64_t *used,

273 uint64_t *ref_rsrv);

274 int dsl_dataset_set_quota(const char *dsnane, zprop_source_t source,
275 uint64_t quota);

276 dsl _syncfunc_t dsl _dataset_set_quota_sync;

277 int dsl_dataset_set_reservation(const char *dsname, zprop_source_t source,
278 uint64_t reservation);

280 int dsl_destroy_inconsistent(const char *dsnane, void *arg);

282 #ifdef ZFS_DEBUG

283 #define dprintf_ds(ds, fnt, ...) do { \

284 if (zfs_flags &ZFS DEBUG 5 DPRINTF) { \

285 char * “ds_nanme = kmem al oc(MAXNAVELEN, KM SLEEP); \

286 dsl _dat aset _nane(ds, __ds_nane); \

287 dprintf("ds=% " fnt, ds_nane, _ VA ARGS_); \

288 kmem free(__ds_nane, MAXNANELEN) \

289 1\

290 NOTE(CONSTCOND) } while (0)

291 #el se

292 #define dprintf_ds(dd, fnt, ...)

293 #endi f

295 #ifdef __cplusplus

296 }

297 #endi f

299 #endif /* _SYS DSL_DATASET H */

new usr/src/uts/comon/fs/zfs/sys/fits.h 1 new usr/src/uts/comon/fs/zfs/sys/fits.h

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 59 u| ntle t ype'
3383 Wed COct 17 21:48:39 2012 60 /* len of the payl oad, not including header */
new usr/src/uts/comon/fs/zfs/sys/fits.h 61 ui nt16_t fa_len;
FITS: generating send-streans in portable format 62 } __attribute__((__packed__)) fits_attr_header_t;
This commit adds the command 'zfs fits-send’, anal ogous to zfs send. The
generated send streamis conpatible with the stream generated with that 64 /* conmmands */
from’btrfs send” and can in principle easily be received to any fil esystem 65 #define FI TS _CVMD_SUBVOL 1
IR R R R R R R R SRR RS R SRR RS E R E RS R R R RREREREREEEEEEE] 66 #defl ne FI TS OVD S’\‘APSI_DI’ 2
1/* 67 #define FI TS_CVMD_MKFI LE 3
2 * CDDL HEADER START 68 #define FITS_CVMD_MKDI R 4
3 * 69 #define FI TS_CVD_MKNCOD 5
4 * The contents of this file are subject to the terms of the 70 #define FITS CMD_MKFI FO 6
5 * Common Devel opnent and Distribution License (the "License"). 71 #define FI TS_CMD_MKSOCK 7
6 * You may not use this file except in conpliance with the License. 72 #define FI TS_CMD_SYM.I NK 8
7 * 73 #define FI TS_CVD_RENAMVE 9
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 #define FITS_CVD LI NK 10
9 * or http://ww. opensol aris.org/os/licensing. 75 #define FI TS_CMD_UNLI NK 11
10 * See the License for the specific |anguage governi ng perm ssions 76 #define FI TS CMD RMDIR 12
11 * and limtations under the License. 77 #define FI TS _CMD _SET_XATTR 13
12 * 78 #define FI TS_CMD REMOVE_XATTR 14
13 * \Wen distributing Covered Code, include this CDDL HEADER i n each 79 #define FI TS_CMD WRI TE 15
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 80 #define FI TS_CMD_CLONE 16
15 * |If applicable, add the followi ng below this CDDL HEADER, wth the 81 #define FI TS _CVD _TRUNCATE 17
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 #define FITS_CvVD_CHMOD 18
17 * information: Portions Copyright [yyyy] [nane of copyright owner] 83 #define FI TS_CVD_CHOWN 19
18 = 84 #define FI TS_CVD_UTI MES 20
19 * CDDL HEADER END 85 #define FI TS_CVMD_END 21
20 */ 86 #define FITS CVD_MAX 21
22 /* 88 /* attributes */
23 * Copyright (c) 2012 Al exander Block. All rights reserved. 89 #define FITS_ATTR UU D 1
24 * Copyright (c) 2012 STRATO AG. All rights reserved. 90 #define FI TS_ATTR_CTRANSI D 2
25 */ 91 #define FI TS_ATTR | NO 3
92 #define FI TS_ATTR S| ZE 4
27 #ifndef SYS FITS H 93 #define FI TS _ATTR_MODE 5
28 #define _SYS FITS H 94 #define FITS_ATTR U D 6
95 #define FITS_ATTR G D 7
30 #include <sys/inttypes. h> 96 #define FI TS_ATTR_RDEV 8
31 #include <sys/types. h> 97 #define FITS_ATTR CTI ME 9
32 #include <sys/dnu. h> 98 #define FI TS_ATTR_MII VE 10
33 #include <sys/vnode. h> 99 #define FI TS_ATTR_ATI VE 11
100 #define FI TS_ATTR_OTI ME 12
35 #ifdef __cplusplus 101 #define FI TS_ATTR_XATTR NAME 13
36 extern "C' { 102 #define FI TS_ATTR_XATTR_DATA 14
37 #endif 103 #define FI TS_ATTR_PATH 15
104 #define FI TS_ATTR _PATH TO 16
39 #define FITS SEND _STREAM MAG C "btrfs-streant 105 #define FI TS_ATTR_PATH LI NK 17
40 #define FI TS_SEND STREAM VERSI ON 1 106 #define FI TS _ATTR_Fl LE_OFFSET 18
107 #define FI TS ATTR DATA 19
42 #define FITS_SEND BUF_SI ZE 65536 108 #define FI TS_ATTR_CLONE_UUI D 20
43 #define FI TS _SEND_READ S| ZE 49152 109 #define FI TS_ATTR_CLONE_CTRANSI D 21
110 #define FI TS _ATTR_CLONE_PATH 22
45 typedef struct _fits_stream header { 111 #define FI TS_ATTR_CLONE_OFFSET 23
46 char fs_magi c[si zeof (FI TS_SEND STREAM MAG Q)] ; 112 #define FI TS_ATTR CLONE_LEN 24
47 ui nt 32_t fs_version; 113 #define FITS_ATTR_MAX 24

48 } _ attribute__((__packed__)) fits_stream header t;
115 int fits_send(objset_t *tosnap, objset_t *fronsnap, int outfd, vnode_t *vp,

50 typedef struct _fits_cnd_header { 116 offset_t *off);

51 /* len of the payload, not including header */

52 ui nt 32_t fc_len; 118 #ifdef __ cplusplus

53 uint16_t fc_cnd; 119 }

54 /* the crc includes the header, but with fc_crc assumed as 0 */ 120 #endi f

55 ui nt 32_t fc_crc;

56 } __attribute_ ((__packed__)) fits_cnd_header_t; 122 #endif /* _SYS FITS H */
*

123 #endif /* | codereview */

58 typedef struct _fits_attr_header {

new usr/src/uts/comon/fs/zfs/sys/fits_crc32c.h

R R R R

1026 Wed COct 17 21:48:39 2012
new usr/src/uts/comon/fs/zfs/sys/fits_crc32c.h
FITS: generating send-streans in portable format
This commit adds the command 'zfs fits-send’, anal ogous to zfs send. The
generated send streamis conpatible with the stream generated with that
from’btrfs send” and can in principle easily be received to any fil esystem
IR R R R R R R R SRR RS R SRR RS E R E RS R R R RREREREREEEEEEE]

1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmmon Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governi ng perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the foll ow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

* Ok ok ok Rk Ok Ok % b ok Ok % %

CDDL HEADER END
/

22 #ifndef _SYS_FI TS _CRC32C H
23 #define —SYS FI TS_CRC32C H

NRERRRERRRER R
COONOUITAWNROOO~NOUTDWN

25 #include <sys/inttypes. h>
26 #include <sys/types. h>

28 uint32_t fits_crc32c(uint32_t seed, const uint8_t *data, int len);

_SYS_FITS_CRC32C H */

30 #endif /*
f /* 1 codereview */

31 #endi

new usr/src/uts/comon/fs/zfs/sys/fits_inpl.h

R R R R

7223 Wed COct 17 21:48:39 2012
new usr/src/uts/comon/fs/zfs/sys/fits_inpl.h
FITS: generating send-streans in portable format
This commit adds the command 'zfs fits-send’, anal ogous to zfs send. The
generated send streamis conpatible with the stream generated with that
from’btrfs send” and can in principle easily be received to any fil esystem
IR R R R R R R R SRR RS R SRR RS E R E RS R R R RREREREREEEEEEE]

1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License")
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww:. opensolaris.org/os/licensing.

* See the License for the specific |anguage governi ng perm ssions

* and limtations under the License.
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the foll ow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

NRERRRERRRER R
COONOUITAWNROOO~NOUTDWN

23 * Copyright (c) 2012 STRATO AG. All rights reserved.
*
/

26 #ifndef _SYS FITS | MPL_H
27 #define “SYS_FI TS | MPL_H

29 #include <sys/inttypes. h>

30 #include <sys/types. h>

31 #include <sys/cmm_err. h>

32 #include <sys/spa. h>

33 #include <sys/arc. h>

34 #include <sys/dsl_dataset. h>
35 #include <sys/dnode. h>

36 #include <sys/sa.h>

38 #define FITS_NO_I NO 0

40 enum pass {

41 PASS_LI NK,

42 PASS_UNLI NK

43 };

45 typedef struct _fits_count_elem {

46 struct _fits_count_el em *fce_next;
47 uint64_t fce_ino;

48 uint64_t fce_count;

49 uint64_t fce_aux;

50 } fits_count_elemt;

52 typedef struct _fits_counter {

53 fits_count_elemt *fc_head,;
54 const char *fc_nane;

55 } fits_counter_t;

57 typedef struct blklevel {
58 ui nt 64_t bl _bl k;

new usr/src/uts/comon/fs/zfs/sys/fits_inpl.h

59 int bI _nslots;
60 bl kptr_t *bl _bp;
61 arc_buf _t *bI _buf;

62 } blklevel _t;
64 typedef struct _fits {

65 enum pass f_pass;

66 struct _fits_ops *f_ops;

67 fits_counter_t f_del _dir_cnt;

68 fits_counter_t f_put_back cnt

69 fits_counter_t f_link_add _cnt;

70 uint64_t f_current_ino;

71 struct _fits_path *f_current_path;

72 int f_alToc_len;

73 uint8_t *f _buf;

74 int f_size;

75 struct vnode *f_vp; /* file to which we are reporting */
76 of fset _t *f _of fp;

77 int f_err; /* error that stopped diff search */
78 dsl _dat aset _t *f _fronds;

79 dsl _dat aset _t *f _tods;

80 obj set _t *f _fronsnap;

81 obj set _t *f _t osnap;

82 dnode_phys_t *f _dnp;

83 bl kl evel _t *f_bl;

84 bl kl evel _t *f filebl;

85 ui nt 64_t f_fromt xg,

86 sa_attr_type_t *f_fromsa_table;

87 sa_attr_type_t *f_to_sa_table;

88 ui nt 64_t f_shares_dir;

89 } fits_t;

91 typedef struct _fits ops

92 int (*fits_dir_add)(fits_t *f, uint64_t ino);

93 int (*fits_dir d 1)(fits_t *f, uint64_t ino);

94 int (*fits_dir_nod)(fits_t *f, uint64_t ino);

95 int (*fits_dirent_add)(void *fits _enunp, char *nanme, uint64_t ino);
96 int (*fits_dirent_del)(void *fits_enunp, char *nanme, uint64_t ino);
97 int (*fits_dirent m)d)(v0|d *fits_enunp, char *nane,

98 uint64_t ino_old, uint64_t ino_new,;

99 int (*fits_dirent unnDd)(VOld *fits_enunp, char *name, uint64_t ino);
100 int (*fits_file_add)(fits_t *f, uint64_t ino);

101 int (*fits_file_del)(fits_t *f, uint64_t ino);

102 int (*fits file_nod)(fits_t *f, uint64_t ino);

103 int (*fits_file_data)(void *fits _filep, void *data, uint64_t off,
104 uint64_t len);

105 } fits_ops_t;
107 typedef struct _fits_path {

108 struct _fits_path *fp_next;
109 int fp_len;

110 int fp_total _len;

111 char fp_buf[0];

112 } fits_path_t;
114 typedef struct _fits_dirent {
h

115 char *fd_nane;
116 uint64_t fd_parent_ino;
117 struct _fits_dirent *fd_prev;

118 } fits_dirent_t;
120 typedef enum _fits_which {

121 FI TS_UNDEF,
122 FI TS_OLD,
123 FI TS_NEW

124 } fits_which_t;

new usr/src/uts/comon/fs/zfs/sys/fits_inpl.
126 typedef struct _fits_time {

127 ui nt 64_t st _sec;

128 ui nt 64_t st _nsec;

129 } fits_tine_t;

131 #define FlI_ATTR_ATI ME (1 <<
132 #define FI _ATTR MII ME (1 <<
133 #define FI _ATTR CTI ME (1 <<
134 #define FI _ATTR OTI ME (1 <<
135 #define FI_ATTR MODE (1 <<
136 #define FI_ATTR S| ZE (1 <<
137 #define FI _ATTR_NENTRI ES (1 <<
138 #define FI _ATTR_PARENT (1 <<
139 #define FI _ATTR LI NKS (1 <<
140 #define FI_ATTR RDEV (1 <<
141 #define FI_ATTR U D (1 <<
142 #define FI_ATTR G D (1 << 1
143 #define FI_ATTR_GEN (1 <<1

144 [* XXX TODO xattr, acl, dacl */

146 #undef si_uid /* XXX defined in sigin
147 #undef si_gid /[* XXX defined in sigin
148 typedef struct _fits_info {

h

fo.h */
fo.h */

149 ui nt 64_t si _nli nks;

150 ui nt 64_t si _parent;

151 uni on {

152 ui nt 64_t si_nentries;
153 ui nt 64_t si _si ze;
154 }s

155 fits_tine_t si_atine;

156 fits_tine_t si_ntine;

157 fits_tine_t si_ctine;

158 fits_tinme_t si_otinme

159 ui nt 64_t si _node;

160 /* XXX TODO xattr */

161 ui nt 64_t si _rdev;

162 ui nt64_t si_uid

163 UI nt 64_t si_gid;

164 nt 64t si _gen;

165 } fits |nf0 _t;

167 int fits_start(fits_t *f, fits_ops_t **);
168 int fits_start2(fits_t *f, fits_ops_t **);

169 int fits_abort(fits_t *f);
170 int fits_end(fits_t *f);

172 int fits_dirent_add file(fits_t *f, fits_dirent_t *dirent,

173 uint64_t ino, uint64_t node, int ex
174 void fits_path_free(fits_path_t *fp);

176 int fits_get_info(fits_t *f, uint64_t d
177 fits_info_t *sp, uint64_t flags);

179 typedef int (*fits_file_cb_t)(void *ctx,

ists);

nobj, fi

ts_which_t which,

void *data, int len);

180 int fits_file_contents(fits_t *f, uint64_t dnobj, void *ctx);

181 int fits_ dir_contents(fits_ t *f, uint64_t dnobj,

182 int fits_find entry(fits_t *f, uint64_t
183 fits_which_t which, char **nama);
184 void fits_free_nane(char *nane);

185 int fits_Iookup_ entry(fits_t *f, uint64_t

186 fits_which_t which, ui nt64_t *dnobj
187 int fits_wite(fits_t *f const uint8_t

188 int fits_get_uuid(fits_t *f, fits_which_t which,

di robj,

B

*dat a,

void *ctx);
ui nt64_t dnobj,

dirobj, char *nane,

int len);
ui nt8t dat a[16]) ;

189 int fits_get ctran5|d(f|tst *f, fits_which_t V\hICh

190 uint64_t *ctransid);

new usr/src/uts/comon/fs/zfs/sys/fits_inpl.h

191 int fits_get snapnane(flts t *f, fits_which_t which,

192 char **npanme, int *len);

193 int fits_read syn1|nk(f|ts_t *f, uint64_t dnobj, fits_which_t which,
194 char **target, int *plen);

196 int fits_send_start(fits_t *f);

197 int fits_send_create file(fits_t *f, fits_dirent_t *dirent, uint64_t ino,
198 int devise_tenpnane, fits_path_t **path ret);

199 int fits_send_link(fits_t *f, fits_dirent_t *new_dirent| uint64_t ino,
200 uint64_t ol d_parent_ino, fits_which_t which,

201 int devise_tenpnane);

202 int fits_send_nkdi r(flts t *f, fits_dirent_t *dirent, uint64_t ino,

203 int devise _tenpnane) ;
i

204 int fits_send renane(fltst *f, fits_dirent_t *dirent, uint64_t ino,
205 uint64_t ol d_parent_ino, int devise_tenpnane);

206 int f|ts_send_renarre_from_tenpnama(fits_t *f, fits_dirent_t *dirent,
207 uint64_t ino, uint64_t old);

208 int fits_send unlink(fits t *f, fits dirent_t *dirent, uint64 ino);
209 int fits_send_rndir(fits_t *f, fits dirent_t *dirent, U|nt64_ |no);
210 /* TODO nmke **path *path or do we really still alloc it? *7/

211 int fits_send_file_data(fits_t *f,

212 fits_path_t **path, fits_dirent_t *dirent,

213 uint64_t ino, uint64_t off, uint64_t len, void *data);

214 int fits_send_ntine upda e(f |ts_t *f, fits_dirent_t *dirent, uint64_t ino);
215 int fits_send_ _truncate(fits_t *f, fits_dirent_t *dirent, ui nt64t ino,

216 ui nt64_t new size);

217 int fits_send_chown(fits_t *f, fits_dirent_t *dirent, uint64_t ino,
218 uint64_t new uid, uint64_t new_gid);

219 int fits_send_chnmod(fits_t *f, fits_dirent_t *dirent, uint64_t ino,
220 ui nt 64_t new node);

221 int fits_send end(fits_t *f);

222 int fits_add_count(fits counter_t *fc, uint64_t ino, uint64_t inc,

223 uint64_t aux, uint64_t *new count, uint64_t *ol d _aux);

224 void fits_free_count(fits counter_t *fc, uint64_t ino);

225 int fits_get_count(fits_counter_t *fc, ui nt 64_t ino, ui nt 64_t *new_count,
226 uint64_t *ol d_aux);

227 int fits_assert_count errpty(flts counter_t *fc);

229 void fits_send_init(fits_t *f);
230 void fits_send_fini(fits_t *f);

232 #endif /* _SYS_FITS IMPL_H */
233 #endif /* I codereview */

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

R R R R

145361 Wed COct 17 21:48:39 2012
new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
FITS: generating send-streans in portable format
This commit adds the command 'zfs fits-send’, anal ogous to zfs send. The
generated send streamis conpatible with the stream generated with that
from’btrfs send” and can in principle easily be received to any fil esystem
IR R R R R R R R SRR RS R SRR RS E R E RS R R R RREREREREEEEEEE]

1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Conmon Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governi ng perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

I T

CDDL HEADER END

NRERRRERRRER R
COONOUITARWNROOO~NOUTDSWN

22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
24 * Portions Copyright 2011 Martin Matuska
25 * Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
26 * Copyright (c) 2012, Joyent, Inc. Al rights reserved.
27 * Copyright (c) 2012 by Del phix. Al rights reserved.
28 */
30 /*
31 * ZFS ioctls.
32 *
33 * This file handles the ioctls to /dev/zfs, used for configuring ZFS storage
34 * pools and filesystens, e.g. with /shin/zfs and /sbin/zpool.
35 *
36 * There are two ways that we handle ioctls: the | egacy way where al npst
37 * all of the logic is in the ioctl callback, and the new way where nost
38 * of the marshalling is handled in the common entry point, zfsdev_ioctl().
39 *
40 * Non-legacy ioctls should be registered by calling
41 * zfs_ioctl _register() fromzfs_ioctl_init(). The ioctl is invoked
42 * fromuserland by |zc_ioctl().
43 *
44 * The registration argunents are as follows:
45 *
46 * const char *nanme
47 = The nanme of the ioctl. This is used for history logging. |If the
48 * ioctl returns successfully (the callback returns 0), and allow_| og
49 * is true, then a history log entry will be recorded with the input &
50 * output nvlists. The log entry can be printed with "zpool history -i".
51 *
52 * zfs_ioc_t ioc
53 * The ioctl request nunber, which userland will pass to ioctl(2).
54 * The ioctl nunbers can change fromrel ease to rel ease, because
55 = the caller (libzfs) must be matched to the kernel.
*
56 .
*

zfs_secpolicy_func_t *secpolicy
This function will be called before the zfs_ioc_func_t, to

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

® Ok ok ok E ok ok o E SR SF b SR OF 3k ok Sk b SR SF Sk F S 3k O E O 3R b Sk OF 3k ok Sk ok SR F Sk F o 3k O F O 3k b 3k b R ok Sk ok R ok % b Ok O o ok ok 3k

determne if this operation is permtted. It should return EPERM

on failure, and 0 on success. Checks include determning if the
dataset is visible in this zone, and if the user has either all

zfs privileges in the zone (SYS_MOUNT), or has been granted perm ssion
to do this operation on this dataset with "zfs allow'.

zfs_i oc_nanecheck_t nanmecheck
This specifies what to expect in the zfs_cnmd_t:zc_name -- a pool
nane, a dataset name, or nothing. |If the name is not well-forned,
the ioctl will fail and the callback will not be called.
Therefore, the callback can assune that the nanme is well-forned
(e.g. is null-termnated, doesn’t have nore than one '@ character,
doesn’t have invalid characters).

zfs_i oc_pool check_t pool _check

This specifies requirenents on the pool state. |f the pool does
not nmeet them (is suspended or is readonly), the ioctl will fail
and the callback will not be called. |If any checks are specified

(i.e. it is not POOL_CHECK_NONE), nanecheck nust not be NO NAME.
Mul tiple checks can be or-ed together (e.g. POOL_CHECK_ SUSPENDED |
POOL_CHECK_READONLY) .

bool ean_t snush_out nvli st
If smush_outnvlist is true, then the output is presuned to be a
list of errors, and it will be "snushed" down to fit into the
caller’s buffer, by renopving some entries and replacing themwith a
single "N_MORE_ERRORS" entry indicating how many were renoved. See
nvlist_snush() for details. |If smush_outnvlist is false, and the
outnvlist does not fit into the userland-provided buffer, then the
ioctl will fail w th ENOVEM

zfs_ioc_func_t *func
The cal |l back function that will performthe operation.

The cal | back should return O on success, or an error nunber on
failure. |If the function fails, the userland ioctl will return -1,
and errno will be set to the callback’s return value. The call back
will be called with the foll ow ng argunents:

const char *nanme
The nane of the pool or dataset to operate on, from
zfs_cmd_t:zc_nane. The 'nanecheck’ argunent specifies the
expected type (pool, dataset, or none).

nvlist_t *innvl
The input nvlist, deserialized fromzfs_cnd_t:zc_nvlist_src. O
NULL if no input nvlist was provided. Changes to this nvlist are
ignored. |If the input nvlist could not be deserialized, the
ioctl will fail and the callback will not be called.

nvlist_t *outnvl
The output nvlist, initially enpty. The callback can fill it in,
and it will be returned to userland by serializing it into
zfs_cmd_t:zc_nvlist_dst. |If it is non-enpty, and serialization
fails (e.g. because the caller didn't supply a | arge enough
buffer), then the overall ioctl will fail. See the
"smush_nvlist’ argunment above for additional behaviors.

There are two typical uses of the output nvlist:

- To return state, e.g. property values. In this case,
smush_outnvlist should be false. |If the buffer was not |arge
enough, the caller will reallocate a larger buffer and try
the ioctl again.

- To return nultiple errors froman ioctl which makes on-di sk
changes. In this case, snmush_outnvlist should be true.

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

125
126
127
128
129

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

178
179
180
181

185
186

188
189

EE

/

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

#endi f /*

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

loctls which nake on-di sk nodifications should generally not
use the outnvl if they succeed, because the caller can not
di stingui sh between the operation failing, and
deserialization failing.

<sys/types. h>
<sys/ param h>
<sys/errno. h>
<sys/ ui 0. h>

<sys/ buf. h>

<sys/ nmodct| . h>
<sys/ open. h>
<sys/file.h>

<sys/ kmem h>
<sys/conf. h>
<sys/cmm_err. h>
<sys/stat. h>
<sys/zfs_ioctl.h>
<sys/ zfs_vfsops. h>
<sys/ zfs_znode. h>
<sys/ zap. h>
<sys/spa. h>
<sys/spa_i npl . h>
<sys/vdev. h>
<sys/priv_inpl.h>
<sys/ dmu. h>
<sys/dsl _dir. h>
<sys/dsl _dat aset. h>
<sys/dsl _prop. h>
<sys/ dsl _del eg. h>
<sys/ dmu_obj set. h>
<sys/ dmu_i npl . h>
<sys/ddi. h>

<sys/ sunddi . h>
<sys/sunl di . h>
<sys/policy. h>
<sys/ zone. h>
<sys/nvpair. h>
<sys/ pat hnare. h>
<sys/ mount . h>
<sys/sdt. h>
<sys/fs/zfs. h>
<sys/zfs_ctldir.h>
<sys/zfs_dir.h>
<sys/ zfs_onexit.h>
<sys/ zvol . h>
<sys/ dsl _scan. h>
<sharef s/share. h>
<sys/ dmu_obj set . h>
<sys/fits. h>
coderevi ew */

"zfs_namecheck. h"
"zfs_prop. h"
"zfs_del eg. h"
"zfs_comutil.h"

extern struct nodlfs zfs_nodlfs

extern void zfs_init(void);
extern void zfs_fini(void);

Idi _ident_t zfs I| = NULL

dev_info_t

*zfs_dip;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

191
192
193

195
196
197

199
200
201
202
203

205
206
207
208
209

211
212
213
214
215
216
217
218
219
220

222
223
224
225
226
227
228

230
231
232
233
234
235
236
237
238

240

241 void

242

243 |

244 const char *newfile;
245 char buf[512];

246 va_list adx;

248 /*

249 * Get rid of annoying '
250 */

251 newfile = strrchr(file,
252 if (newfile !'= NULL)
253

254 } else {

255 newfile = file;
256 }

uint _t zfs_fsyncer_key
extern uint_t rrw_ tsd_key

static uint_t zfs_allow | og_key

typedef int zfs_ioc_legacy_func_t(zfs_cnd_t *);
typedef int zfs_ioc_func_t(const char *, nvllst_1 *, onvlist_t *)
typedef int zfs_secpolicy func_t(zfs crmd_t *, nvlist_t *, cred_t *)

typedef enum {
NO_NAME,
POOL_ NAME,
DATASET NANME

} zfs_ioc_nanmecheck_t

typedef enum {
POOL_CHECK_NONE
POOL_ CHECK_ SUSPENDED
POOL_CHECK_READONLY
} zfs_ioc_pool check_t

typedef struct zfs_ioc_vec {
zfs_ioc_|l egacy_func_t
zfs_ioc_func_t
zfs secpollcy func_t
zfs_i oc_nanmecheck_t
bool ean_t
zfs_i oc_pool check_t
bool ean_t
const char

} zfs_ioc_vec_t;

nnn
-
A
=

*zvec_| egacy_func
*zvec_func
*zvec_secpolicy
zvec_nanecheck;
zvec_al | ow_| og
zvec_pool _check
zvec_snmush_out nvlist;
*zvec_nane

/* This array is indexed by zfs userquota prop_t */
static const char *userquota_perns[] = {

ZFS_DELEG_PERM USERUSED,

ZFS_DELEG PERM USERQUOTA,
ZFS_DELEG PERM GROUPUSED,
ZFS_DELEG_PERM_GROUPQUOTA,

}s

static int zfs_ioc_userspace_upgrade(zfs_cnd_t *zc)

static int zfs_check_settabl e(const char *name, nvpair_t

cred_t *cr);

static int zfs_check_clearable(char *dat aset

nvlist_t **errors)

*property,

nvlist_t *props,

static int zfs_fill_zplprops_root(uint64_t, nvlist_t *, nvlist_t *,

bool ean_t *);
int zfs_set_prop_nvlist(const char *, zprop_source_t, nvlist_t *, nvlist_t *);
static int get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp);

/* _NOTE(PRI NTFLI KE(4))

this is printf-like, but lint is too whiney */

__dprintf(const char *file, const char *func, int line, const char *fnt, ...)

./comon/" prefix to filenane

1)

newfile = newfile + 1; /* Get rid of leading / */

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 5 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
323 */
258 va_start (adx, fnt); 324 static int
259 (void) vsnprintf(buf, sizeof (buf), fnt, adx); 325 zfs_earlier_version(const char *nane, int version)
260 va_end(adx) ; 326 {
327 spa_t *spa;
262 /*
263 * To get this data, use the zfs-dprintf probe as so: 329 if (spa_open(nane, &spa, FTAG == 0) {
264 * dtrace -q -n 'zfs-dprintf \ 330 if (spa_version(spa) < version) {
265 * /stringof (arg0) == "dbuf.c"/ \ 331 spa_cl ose(spa, FTAG;
266 * {printf("%: 9", stringof(argl), stringof(arg3))}’ 332 return (1);
267 * arg0 = file nane 333
268 * argl = function name 334 spa_cl ose(spa, FTAQ;
269 * arg2 = |ine nunber 335
270 * arg3 = nessage 336 return (0);
271 */ 337 }
272 DTRACE_PROBE4(zfs__dprintf,
273 char *, newfile, char *, func, int, line, char *, buf); 339 /*
274 } 340 * zpl _earlier_version
341 *
276 static void 342 * Return TRUE if the ZPL version is |ess than requested version.
277 history_str_free(char *buf) 343 */
278 { 344 static bool ean_t
279 kmem free(buf, H S _MAX RECORD_LEN); 345 zpl _earlier_version(const char *nane, int version)
280 } 346 {
347 obj set _t *os;
282 static char * 348 bool ean_t rc = B_TRUE;
283 history_str_get(zfs_cnd_t *zc)
284 { 350 if (dmu_objset_hol d(name, FTAG &os) == 0) {
285 char *buf; 351 uint64_t zpl version;
287 if (zc->zc_history == NULL) 353 if (dmu_objset_type(os) != DMJ _OST_ZFS) {
288 return (NULL); 354 dmu_obj set _rel e(os, FTAG;
355 return (B_TRUE);
290 buf = knmem al | oc(H S_MAX_RECORD_LEN, KM SLEEP); 356 }
291 if (copyinstr((void *)(uintptr_t)zc->zc_history, 357 /* XXX readi ng from non-owned objset */
292 buf, H S MAX RECORD LEN, NULL) != 0) { 358 if (zfs_get_zpl prop(os, ZFS _PROP_VERSI ON, &zplversion) == 0)
293 history_str_free(buf); 359 rc = zplversion < version;
294 return (NULL); 360 dnu_obj set _rel e(os, FTAQ;
295 } 361 }
362 return (rc);
297 buf [H'S_MAX_RECORD_LEN -1] = '\0’; 363 }
299 return (buf); 365 static void
300 } 366 zfs_log_history(zfs_cnd_t *zc)
367 {
302 /* 368 spa_t *spa;
303 * Check to see if the naned dataset is currently defined as bootabl e 369 char *buf;
304 */
305 static bool ean_t 371 if ((buf = history_str_get(zc)) == NULL)
306 {zfs_i s_boot f s(const char *nane) 372 return;
307
308 obj set _t *os; 374 if (spa_open(zc->zc_nane, &spa, FTAG == 0) {
375 if (spa_version(spa) >= SPA_VERSI ON_ZPOOL_H STORY)
310 if (dmu_objset_hol d(nane, FTAG &os) == 0) { 376 (void) spa_history_log(spa, buf);
311 bool ean_t ret; 377 spa_cl ose(spa, FTAQ;
312 ret = (dmu_objset_id(os) == spa_boot fs(dnu_objset_spa(o0s))); 378 }
313 dmu_obj set _rel e(os, FTAQ; 379 history_str_free(buf);
314 return (ret); 380 }
315 }
316 return (B_FALSE); 382 /*
317 } 383 * Policy for top-level read operations (list pools). Requires no privileges,
384 * and can be used in the local zone, as there is no associated dataset.
319 /* 385 */
320 * zfs_earlier_version 386 /* ARGSUSED */
321 * 387 static int
322 * Return non-zero if the spa version is |less than requested version. 388 zfs_secpolicy_none(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 7

389 {
390 return (0);
391 }

393 /*

394 * Policy for dataset read operations (list children, get statistics). Requires
395 * no privileges, but nust be visible in the |local zone.

396 */

397 /* ARGSUSED */

398 static int

399 zfs_secpolicy_read(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)

400 {

401 if (I NGLOBALZONE(curproc) ||

402 zone_dat aset _vi si bl e(zc->zc_nane, NULL))
403 return (0);

405 return (ENCENT);

406 }

408 static int
409 zfs_dozonecheck_i npl (const char *dataset, uint64_t zoned, cred_t *cr)

410 {

411 int witable = 1;

413 I

414 * The dataset must be visible by this zone -- check this first
415 * so they don’t see EPERM on sonething they shoul dn’t know about.
416 */

417 if (!l NGLOBALZONE(curproc) &&

418 ! zone_dat aset _vi si bl e(dataset, &witable))

419 return (ENCENT);

421 if (I NGLOBALZONE(curproc)) {

422 /*

423 * If the fs is zoned, only root can access it fromthe
424 * gl obal zone.

425 */

426 if (secpolicy_zfs(cr) &% zoned)

427 return (EPERV;

428 } else {

429 *

430 * |f we are in a local zone, the 'zoned property nust be set.
431 */

432 if (!zoned)

433 return (EPERV;

435 /* must be witable by this zone */

436 if ('witable)

437 return (EPERV;

438 }

439 return (0);

440 }

442 static int
443 zfs_dozonecheck(const char *dataset, cred_t *cr)

444 {

445 uint64_t zoned;

447 if (dsl_prop_get_integer(dataset, "zoned", &zoned, NULL))
448 return (ENCENT);

450 return (zfs_dozonecheck_i npl (dataset, zoned, cr));

451 }

453 static int
454 zfs_dozonecheck_ds(const char *dataset, dsl_dataset_t *ds, cred_t *cr)

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

455 {

456 uint64_t zoned;

458 rw_ent er (&ls->ds_di r->dd_pool - >dp_confi g_rw ock, RW READER);
459 if (dsl_prop_get_ds(ds, "zoned", 8, 1, &oned, NULL)) {

460 rw_exit (&ds->ds_dir->dd_pool - >dp_confi g_rw ock) ;

461 return (ENCENT);

462 }

463 rw_exit (&dIs->ds_dir->dd_pool - >dp_confi g_rw ock);

465 return (zfs_dozonecheck_i npl (dat aset, zoned, cr));

466 }

468 static int
469 zfs_secpolicy_wite_pernms(const char *name, const char *perm cred_t *cr)

470 {

471 int error;

472 dsl _dat aset _t *ds;

474 error = dsl _dataset _hol d(nane, FTAG &ds);
475 if (error =0

476 return (error);

478 error = zfs_dozonecheck_ds(nane, ds, cr);
479 if (error ==

480 error = secpolicy_zfs(cr);

481 if (error)

482 error = dsl_del eg_access_i npl (ds, perm cr);
483 }

485 dsl _dat aset _rel e(ds, FTAQ;

486 return (error);

487 }

489 static int
490 zfs_secpolicy_wite_perns_ds(const char *name, dsl_dataset_t *ds,

491 const char *perm cred_t *cr)

492 {

493 int error;

495 error = zfs_dozonecheck_ds(nane, ds, cr);

496 if (error == 0) {

497 error = secpolicy_zfs(cr);

498 if (error)

499 error = dsl _del eg_access_i npl (ds, perm cr);
500

501 return (error);

502 }

504 /*

505 * Policy for setting the security |abel property.

506 *

507 * Returns O for success, non-zero for access and other errors.

508
509 static int
510 zfs_set_sl abel _policy(const char *name, char *strval, cred_t *cr)

511 {

512 char ds_hexsl [MAXNAMELEN] ;

513 bsl abel _t ds_sl, newsl;

514 bool ean_t new _default = FALSE;

515 ui nt 64_t zoned;

516 int needed_priv = -1;

517 int error;

519 /* First get the existing dataset |abel. */

520 error = dsl _prop_get(nane, zfs_prop_to_nanme(ZFS_PROP_M.SLABEL),

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

521 1, sizeof (ds_hexsl), &ds_hexsl, NULL);

522 if (error)

523 return (EPERV;

525 if (strcasecnp(strval ZFS_M_SLABEL_DEFAULT) == 0)

526 new_default = TRUE;

528 /* The | abel nust be translatable */

529 if (!new default && (hexstr_to_| abel (strval, &iew.sl) != 0))
530 return (EINVAL);

532 /*

533 * In a non-global zone, disallow attenpts to set a |abel that
534 * doesn’t match that of the zone; otherwi se no other checks
535 * are needed.

536

537 i f ("1 NGLOBALZONE(curproc)) {

538 if (new_default || !blequal (&ew sl, CR SL(CRED())))
539 return (EPERV);

540 return (0);

541 }

543 I*

544 * For gl obal -zone datasets (i.e., those whose zoned property is
545 * "off", verify that the specified new label is valid for the
546 * gl obal zone.

547 */

548 if (dsl_prop_get_integer(nane,

549 zfs_prop_to_nanme(ZFS_PROP_ZONED), &zoned, NULL))

550 return (EPERV;

551 if (!zoned)

552 if (zfs_check_gl obal _| abel (nane, strval) != 0)

553 return (EPERW);

554 }

556 I*

557 * |f the existing dataset |abel is nondefault, check if the
558 * dataset is nounted (| abel cannot be changed while nounted).
559 * CGet the zfsvfs; if there isn't one, then the dataset isn't
560 * mounted (or isn't a dataset, doesn't exist, .

561 td

562 if (strcasecnp(ds_hexsl, ZFS_M.SLABEL_DEFAULT) != 0) {

563 obj set _t *os;

564 static char *setsl _tag = "setsl_tag";

566 /*

567 * Try to own the dataset; abort if there is any error,
568 * (e.g., already nounted, in use, or other error).
569 */

570 error = dnu_obj set _own(name, DMJ_OST_ZFS, B_TRUE,
571 setsl _tag, &os);

572 if (error)

573 return (EPERV;

575 dnu_obj set _di sown(os, setsl_tag);

577 if (new_default) {

578 needed_priv = PRI V_FI LE_DOANGRADE_SL;

579 goto out_check;

580 }

582 if (hexstr_to_label (strval, &ew.sl) != 0)

583 return (EPERV;

585 if (blstrictdom&s_sl, &new_sl))

586 needed_priv = PRI V_FI LE_DOANGRADE_SL;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

587 else if (blstrictdom &ew_ sl, &ds_sl))

588 needed_priv = PRI V_| Fi LE_UPGRADE_SL;
589 } else {

590 /* dataset currently has a default |abel */
591 if (!new_default)

592 needed_priv = PRI V_FI LE_UPGRADE_SL;
593 }

595 out _check:

596 if (needed_priv != -1)

597 return (PRIV_POLICY(cr, needed_priv, B _FALSE, EPERM NULL));
598 return (0);

599 }

601 static int

602 zfs_secpolicy_setprop(const char *dsnane, zfs_prop_t prop, nvpair_t *propval,
603 cred_t *cr)

604 {

605 char *strval;

607 /*

608 * Check permi ssions for special properties.
609 */

610 switch (prop) {

611 case ZFS_PROP_ZONED:

612 [*

613 * Disallow setting of 'zoned” fromwi thin a |ocal zone.
614

615 i f (! 1 NGLOBALZONE(cur proc))

616 return (EPERM;

617 br eak;

619 case ZFS_PROP_ A

620 it (T NG_GBALZCNE(cur proc)) {

621 uint64_t zoned,

622 char setpoint[IW-\XNANELEI\I] ;

623 /*

624 * Unprivileged users are allowed to nodify the
625 * quota on things *under* (ie. contained by)
626 * the thing they own.

627 *

628 if (dsl_prop_get_integer(dsname, "zoned", &zoned,
629 set point))

630 return (EPERV) ;

631 if (lzoned || strl en(dsnarre) <= strlen(setpoint))
632 return (EPERV;

633 }

634 br eak;

636 case ZFS_PROP_M._SLABEL:
637 if (!is_system| abel ed())
638 return (EPERV);

640 if (nvpair_value_string(propval, &strval) == 0) {
641 int err;

643 err = zfs_set_sl abel _policy(dsnane, strval, CREX));
644 if (err 1= 0)

645 return (err);

646 }

647 br eak;

648 }

10

650 return (zfs_secpolicy_wite_pernms(dsnanme, zfs_prop_to_nane(prop), cr));

651 }

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

653 /* ARGSUSED */
654 static int
655 zfs_secpolicy_set_fsacl (zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)

656 {

657 int error;

659 error = zfs_dozonecheck(zc->zc_name, cr);
660 if (error)

661 return (error);

663 I*

664 * perm ssion to set permssions will be evaluated later in
665 * dsl _del eg_can_al | ow()

666 */

667 return (0);

668 }

670 /* ARGSUSED */
671 static int
672 zfs_secpolicy_rollback(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)

673 {

674 return (zfs_secpolicy_wite_perns(zc->zc_nane,
675 ZFS_DELEG PERM ROLLBACK, cr));

676 }

678 /* ARGSUSED */
679 static int
680 zfs_secpolicy_send(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)

681 {

682 spa_t *spa;

683 dsl _pool _t *dp;

684 dsl _dat aset _t *ds;

685 char *cp;

686 int error;

688 I*

689 * Cenerate the current snapshot name fromthe given objsetid,
690 * use that name for the secpolicy/zone checks.

691 */

692 cp = strchr(zc->zc_nane, ' @);

693 if (cp == NULL)

694 return (EINVAL);

695 error = spa_open(zc->zc_nane, &spa, FTAG;

696 if (error)

697 return (error);

699 dp = spa_get_dsl (spa);

700 rw_ent er (&p- >dp_confi g_rw ock, RW READER);

701 error = dsl_dataset _hol d_obj (dp, zc->zc_sendobj, FTAG &ds);
702 rw_exit(&p->dp_config_rw ock);

703 spa_cl ose(spa, FTAQ;

704 if (error)

705 return (error);

707 dsl _dat aset _nanme(ds, zc->zc_nane);

709 error = zfs_secpolicy_wite_perns_ds(zc->zc_nane, ds,
710 ZFS_DELEG PERM SEND, cr);

711 dsl _dataset _rel e(ds, FTAQ;

713 return (error);

714 }

716 /* ARGSUSED */
717 static int
718 zfs_secpolicy_send_new zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)

t hen

11

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
719 {
720 return (zfs_secpolicy_wite_perns(zc->zc_nang,
721 ZFS_DELEG PERM SEND, cr));
722 }

724 |* ARGSUSED */
725 static int
726 zfs_secpolicy_del eg_share(zfs_cnmd_t *zc, nvlist_t *innvl, cred_t *cr)

727 {

728 vnode_t *vp;

729 int error;

731 if ((error = | ookupnane(zc->zc_val ue, U O SYSSPACE,
732 NO FOLLOW NULL, &p)) !'= 0)

733 return (error);

735 /* Now make sure mmtpnt and dataset are ZFS */

737 if (vp->v_vfsp->vfs_fstype ! = zfsfstype ||

738 (strcnmp((char *)refstr_val ue(vp->v_vfsp->vfs_resource),
739 zc->zc_nane) = 0)) {

740 VN_RELE(vp) ;

741 return (EPERM ;

742 1

744 VN_RELE(vp) ;

745 return (dsl_del eg_access(zc->zc_nane,

746 ZFS_DELEG PERM SHARE, cr));

747 }

749 int

750 zfs_secpolicy_share(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
751

752 if (! NGLOBALZONE(curproc))

753 return (EPERM ;

755 if (secpolicy_nfs(cr) == 0) {

756 return (0);

757 } else {

758 return (zfs_secpolicy_del eg_share(zc, innvl, cr));
759 }

760 }

762 int

763 zfs_secpolicy_snmb_acl (zfs_cnmd_t *zc, nvlist_t *innvl, cred_t *cr)
764 {

765 if (! NGLOBALZONE(curproc))

766 return (EPERM ;

768 if (secpolicy_snb(cr) == 0) {

769 return (0);

770 } else {

771 return (zfs_secpolicy_del eg_share(zc, innvl, cr));
772 }

773 }

775 static int
776 zfs_get_parent(const char *datasetnanme, char *parent, int parentsize)

777 {

778 char *cp;

780 /*

781 * Renpve the @l a or /bla fromthe end of the name to get the parent.
782 */

783 (void) strncpy(parent, datasetnane, parentsize);

784 cp = strrchr(parent, '@);

12

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

13

785 if (cp !'= NULL) {

786 cp[0] = "\0";

787 } else {

788 cp = strrchr(parent, '/");

789 if (cp == NULL)

790 return (ENCENT);

791 cp[0] ="'\0";

792

794 return (0);

795 }

797 int

798 zfs_secpolicy_destroy_perns(const char *nane, cred_t *cr)

799 {

800 int error;

802 if ((error = zfs_secpolicy_wite_perns(nang,

803 ZFS_DELEG PERM MOUNT, cr)) != 0)

804 return (error);

806 return (zfs_secpolicy_wite_pernms(nanme, ZFS_DELEG PERM DESTROY, cr));
807 }

809 /* ARGSUSED */

810 static int

811 zfs_secpolicy_destroy(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)

812 {

813 return (zfs_secpolicy_destroy_perns(zc->zc_nanme, cr));

814 }

816 /*

817 * Destroying snapshots with del egated pernissions requires

818 * descendant nount and destroy permi ssions.

819 */

820 /* ARGSUSED */

821 static int

822 zfs_secpolicy_destroy_snaps(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
823 {

824 nvlist_t *snaps;

825 nvpair_t *pair, *nextpair;

826 int error = 0;

828 if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0)

829 return (EINVAL);

830 (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;

831 pair = nextpair)

832 dsl _dataset _t *ds;

834 nextpair = nvlist_next_nvpair(snaps, pair);

835 error = dsl_dataset_hol d(nvpair_name(pair), FTAG &ds);
836 if (error == 0) {

837 dsl _dat aset _rel e(ds, FTAQ;

838 } else if (error == ENCENT

839 /*

840 * | gnore any snapshots that don't exist (we consider
841 * them "al ready destroyed"). Renpve the nanme fromthe
842 * nvl here in case the snapshot is created between
843 * now and when we try to destroy it (in which case
844 * we don't want to destroy it since we haven't
845 * checked for perm ssion).

846 */

847 fnvlist_renmove_nvpair(snaps, pair);

848 error = 0;

849 cont i nue;

850 } else {

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

cr);

cr));

851 br eak;

852

853 error = zfs_secpolicy_destroy_perns(nvpair_name(pair),
854 if (error 1= 0)

855 br eak;

856 }

858 return (error);

859 }

861 int

862 zfs_secpolicy_renane_perns(const char *from const char *to, cred_t *cr)
863 {

864 char par ent name[MAXNAMVELEN] ;

865 int error;

867 if ((error = zfs_secpolicy_wite_pernms(from

868 ZFS_DELEG PERM RENAME, cr)) T= 0)

869 return (error);

871 if ((error = zfs_secpolicy_wite pern‘s(from

872 ZFS_DELEG PERM MOUNT, cr)) != 0)

873 return (error);

875 if ((error = zfs_get_parent(to, parentnang,

876 si zeof (parentnane))) != 0)

877 return (error);

879 if ((error = zfs_secpolicy_ Wr| t e_per ms(par ent nang,
880 ZFS_DELEG PERM CREATE, cr)) != 0)

881 return (error);

883 if ((error = zfs_secpolicy_wite perms(parentnane
884 ZFS_DELEG PERM MOUNT, cr)) != 0)

885 return (error);

887 return (error);

888 }

890 /* ARGSUSED */

891 static int

892 zfs_secpolicy_renane(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
893 {

894 return (zfs_secpolicy_rename_perns(zc->zc_nane, zc->zc_val ue,
895 }

897 /* ARGSUSED */

898 static int

899 zfs_secpolicy_prompte(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
900 {

901 char par ent nane[MAXNAMELEN ;

902 obj set _t *cl one;

903 int error;

905 error = zfs_secpolicy_wite_perns(zc->zc_naneg,

906 ZFS_DELEG PERM PROMOTE, cr);

907 if (error)

908 return (error);

910 error = dnu_obj set _hol d(zc->zc_nane, FTAG &clone);
912 if (error == 0)

913 dsl _dataset _t *pclone = NULL;

914 dsl _dir_t *dd;

915 dd = cl one->o0s_dsl _dataset->ds_dir;

14

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

917 rw_ent er(&dd >dd_pool - >dp_confi g_rw ock, RW READER);
918 error = dsl _dataset_hol d_obj (dd->dd pooI

919 dd- >dd_phys->dd_ori gi n_obj, FTAG &pcl one);
920 rw_exi t (&d- >dd_pool - >dp_conf i g_rV\A ock);

921 if (error) {

922 drmu_obj set _rel e(cl one, FTAQ;

923 return (error);

924 }

926 error = zfs_secpolicy_wite_perms(zc->zc_nane,
927 ZFS_DELEG PERM MOUNT, cr);

929 dsl _dat aset _nane(pcl one, parentnane);

930 dnu_obj set_rel e(clone, FTAG;

931 dsl _dat aset _rel e(pclone FTAG)

932 if (error ==

933 error = zfs_secpolicy_wite_perns(parentnang,
934 ZFS_DELEG PERM PROMOTE, “cr);

935

936 return (error);

937 }

939 /* ARGSUSED */

940 static int

941 zfs_secpolicy_recv(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
942 {

943 int error;

945 if ((error = zfs_secpolicy_wite_pernms(zc->zc_nane,
946 ZFS_DELEG PERM RECEI VE, cr)) != 0)

947 return (error);

949 if ((error = zfs_secpolicy_wite perms(zc >zc_nane,
950 ZFS_DELEG PERM MOUNT, cr)) != 0)

951 return (error);

953 return (zfs_secpolicy_wite_perns(zc->zc_nane,

954 ZFS_DELEG PERM CREATE, cr));

955 }

957 int

958 zfs_secpolicy_snapshot_perns(const char *nane, cred_t *cr)
959 {

960 return (zfs_secpolicy_wite_perns(nane,

961 ZFS_DELEG PERM SNAPSHOT, cr));

962 }

964 /*

965 * Check for permission to create each snapshot in the nvlist.
966 */

967 /* ARGSUSED */

968 static int

969 zfs_secpolicy_snapshot(zfs_cnmd_t *zc, nvlist_t *innvl, cred_t *cr)
970 {

971 nvlist_t *snaps;

972 int error;

973 nvpair_t *pair;

975 if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0)
976 return (EINVAL);

977 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
978 pair = nvlist_next_nvpair(snaps, pair)) {

979 char *nane = nvpair_nane(pair);

980 char *atp = strchr(nanme, '@);

982 if (atp == NULL) {

15

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

983 error = EI NVAL;
984 break;
985 }
986 *atp = '\0’;
987 error = zfs_secpolicy_snapshot _perns(nanme, cr);
988 *atp = ' @;
989 if (error 1= 0)
990 br eak;
991
992 return (error);
993 }
995 /* ARGSUSED */
996 static int
997 zfs_secpolicy_log_history(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
998 {
999 /*
1000 * Even root nust have a proper TSD so that we know what pool
1001 * to log to.
1002 */
1003 if (tsd_get(zfs_allow |og_key) == NULL)
1004 return (EPERM;
1005 return (0);
1006 }
1008 static int
1009 zfs_secpolicy_create_clone(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
1010 {
1011 char par ent nane[MAXNAMELEN ;
1012 int error;
1013 char *origin;
1015 if ((error = zfs_get_parent(zc->zc_name, parentnane,
1016 si zeof (parentnane))) != 0)
1017 return (error);
1019 if (nvlist_lookup_string(innvl, "origin', &rigin) == 0 &&
1020 (error = zfs_secpolicy_wite_perns(origin,
1021 ZFS_DELEG PERM CLONE, "cr)) !'= 0)
1022 return (error);
1024 if ((error = zfs_secpolicy_wite_perns(parentnang,
1025 ZFS_DELEG PERM CREATE, cr)) T= 0)
1026 return (error);
1028 return (zfs_secpolicy_wite_perns(parentnane,
1029 ZFS_DELEG PERM MOUNT, cr));
1030 }
1032 /*
1033 * Policy for pool operations - create/destroy pools, add vdevs, etc.
1034 * SYS CONFIG privilege, which is not available in a | ocal zone.
1035
1036 /* ARGSUSED */
1037 static int
1038 zfs_secpolicy_config(zfs_cnmd_t *zc, nvlist_t *innvl, cred_t *cr)
1039 {
1040 if (secpolicy_sys_config(cr, B_FALSE) != 0)
1041 return (EPERV;
1043 return (0);
1044 }
1046 /*
1047 * Policy for object to nane | ookups.
1048 */

16

Requi res

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 17

1049
1050
1051
1052
1053

1055
1056

1058
1059
1060

1062
1063
1064
1065
1066
1067
1068
1069
1070

1072
1073
1074
1075
1076

1078
1079
1080
1081
1082
1083
1084
1085
1086
1087

1089
1090

/* ARGSUSED */
static int
zfs_secpolicy_diff(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)

{

int error;

if ((error = secpolicy_sys_config(cr, B FALSE)) == 0)
return (0);

error = zfs_secpolicy_wite_perns(zc->zc_nanme, ZFS DELEG PERM DI FF, cr);
return (error);

}

/*
* Policy for fault injection. Requires all privileges.
*/
/* ARGSUSED */
static int
zfs_secpolicy_inject(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)

{

}

/* ARGSUSED */
static int
zfs_secpolicy_inherit_prop(zfs_cnmd_t *zc, nvlist_t *innvl, cred_t *cr)

{

return (secpolicy_zinject(cr));

zfs_prop_t prop = zfs_nane_to_prop(zc->zc_val ue);

if (prop == ZPROP_I NVAL) {
if (!zfs_prop_user(zc->zc_val ue))
return (ElINVAL);
return (zfs_secpolicy_wite_pernms(zc->zc_nane,
ZFS_DELEG_PERM USERPROP, cr));
} else {
return (zfs_secpolicy_setprop(zc->zc_nane, prop,
NULL, cr));

}

static int
zfs_secpol i cy_userspace_one(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)

1091 {

1092
1093
1094

1096
1097

1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112

1114

int err = zfs_secpolicy_read(zc, innvl, cr);
if (err)
return (err);

if (zc->zc_objset_type >= ZFS NUM USERQUOTA_PROPS)
return (EINVAL);

if (zc->/zc_va| ue[0] == 0) {

* They are asking about a posix uid/gid. If it's
* thenself, allowit.
*/
if (zc->zc_objset_type == ZFS_PROP_USERUSED | |
zc->zc_obj set _type == ZFS_PROP_USERQUOTA) {
if (zc->zc_guid == crgetuid(cr))
return (0);
} else {
if (groupnenber(zc->zc_guid, cr))
return (0);

}

return (zfs_secpolicy_wite_perns(zc->zc_nane,

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

1115 user quot a_per ns[zc- >zc_obj set _type], cr));

1116 }

1118 static int

1119 zfs_secpolicy_userspace_many(zfs_cnmd_t *zc, nvlist_t *innvl, cred_t *cr)
1120 {

1121 int err = zfs_secpolicy_read(zc, innvl, cr);

1122 if (err)

1123 return (err);

1125 if (zc->zc_objset_type >= ZFS_NUM USERQUOTA PROPS)

1126 return (EINVAL);

1128 return (zfs_secpolicy_wite_perns(zc->zc_nane,

1129 user quot a_perns[zc- >zc_obj set _type], cr));

1130 }

1132 /* ARGSUSED */

1133 static int

1134 zfs_secpolicy_userspace_upgrade(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
1135 {

1136 return (zfs_secpolicy_setprop(zc->zc_nane, ZFS_PROP_VERSI ON,
1137 NULL, cr));

1138 }

1140 /* ARGSUSED */

1141 static int

1142 zfs_secpolicy_hold(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
1143 {

1144 return (zfs_secpolicy_wite_perns(zc->zc_nane,

1145 ZFS_DELEG PERM HOLD, cr));

1146 }

1148 /* ARGSUSED */

1149 static int

1150 zfs_secpolicy_rel ease(zfs_cnd_t *zc, nvlist_t *innvl, cred_t *cr)
1151 {

1152 return (zfs_secpolicy_wite_pernms(zc->zc_nane,

1153 ZFS_DELEG PERM RELEASE, cr));

1154 }

1156 /*

1157 * Policy for allow ng tenporary snapshots to be taken or rel eased
1158 */

1159 static int

1160 zfs_secpolicy_tnp_snapshot(zfs_cnmd_t *zc, nvlist_t *innvl, cred_t *cr)
1161 {

1162 I*

1163 * A tenporary snapshot is the sanme as a snapshot,

1164 * hold, destroy and release all rolled into one.

1165 * Del egated diff alone is sufficient that we allow this.
1166 */

1167 int error;

1169 if ((error = zfs_secpolicy_wite_pernms(zc->zc_nane,

1170 ZFS DELEG PERM DI FF, cr)) == 0)

1171 return (0);

1173 error = zfs_secpolicy_snapshot_perns(zc->zc_nanme, cr);
1174 if (lerror)

1175 error = zfs_secpolicy_hold(zc, innvl, cr);

1176 if (lerror)

1177 error = zfs_secpolicy_rel ease(zc, innvl, cr);
1178 if (lerror)

1179 error = zfs_secpolicy_destroy(zc, innvl, cr);
1180 return (error);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

1181

1183
1184
1185

}
| *

*

*/

Returns the nvlist as specified by the user in the zfs_cnd_t.

1186 static int

1187 get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp)
1188 {

1189 char *packed;

1190 int error;

1191 nvlist_t *list = NULL;

1193 /*

1194 * Read in and unpack the user-supplied nvlist.

1195 */

1196 if (size == 0)

1197 return (EINVAL);

1199 packed = kmem al | oc(si ze, KM SLEEP);

1201 if ((error = ddi _copyin((void *)(uintptr_t)nvl, packed, size,
1202 iflag)) !'=0) {

1203 kmem f r ee(packed, size);

1204 return (error);

1205 }

1207 if ((error = nvlist_unpack(packed, size, &ist, 0)) !'=0) {
1208 kmem f ree(packed, size);

1209 return (error);

1210 }

1212 kmem f ree(packed, size);

1214 *nvp = |ist;

1215 return (0);

1216 }

1218 /*

1219 * Reduce the size of this nvlist until it can be serialized in ' max’ bytes.
1220 * Entries will be renoved fromthe end of the nvlist, and one int32 entry
1221 * narmed "N_MORE_ERRORS" wi || be added indicating how many entries were
1222 * renoved.

1223 */

1224 static int

1225 nvlist_smush(nvlist_t *errors, size_t nax)

1226 {

1227 size_t size;

1229 size = fnvlist_size(errors);

1231 if (size > max) {

1232 nvpair_t *nore_errors;

1233 int n=0;

1235 if (max < 1024)

1236 return (ENOVEM ;

1238 fnvlist_add_int32(errors, ZPROP_N_MORE_ERRCRS, 0);
1239 nore_errors = nvlist_prev_nvpair(errors, NULL);
1241 do {

1242 nvpair_t *pair = nvlist_prev_nvpair(errors,
1243 nore_errors);

1244 fnvlist_renove_nvpair(errors, pair);

1245 n++;

1246 size = fnvlist_size(errors);

19

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

1247 } while (size > max);

1249 fnvlist_renpve_nvpair(errors, nore_errors);
1250 fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, n);
1251 ASSERT3U(f nvl i st_size(errors), <= max);
1252 }

1254 return (0);

1255 }

1257 static int

1258 put_nvlist(zfs_cnd_t *zc, nvlist_t *nvl)

1259 {

1260 char *packed = NULL;

1261 int error = 0;

1262 size_t size;

1264 size = fnvlist_size(nvl);

1266 if (size > zc->zc_nvlist_dst_size) {

1267 error = ENOVEM

1268 } else {

1269 packed = fnvlist_pack(nvl, &size);

1270 i f (ddi _copyout (packed, (void *)(uintptr_t)zc->zc_nvlist_dst,
1271 size, zc->zc_iflags) != 0)

1272 error = EFAULT;

1273 fnvlist_pack_free(packed, size);

1274 1

1276 zc->zc_nvlist_dst_size = size;

1277 zc->zc_nvlist_dst_filled = B_TRUE;

1278 return (error);

1279 }

1281 static int

1282 get zf svfs(const char *dsname, zfsvfs_t **zfvp)

1283 {

1284 obj set _t *os;

1285 int error;

1287 error = dnu_obj set _hol d(dsnane, FTAG &os);

1288 if (error)

1289 return (error);

1290 if (dmu_objset_type(os) != DMJ_OST_ZFS) {

1291 dmu_obj set _rel e(os, FTAQ;

1292 return (EINVAL);

1293 }

1295 mut ex_ent er (&os- >0s_user _ptr_| ock);

1296 *zfvp = dnu_obj set _get_user (o0s);

1297 if (*zfvp) {

1298 VFS_HOLD((*zfvp)->z_vfs);

1299 } else {

1300 error = ESRCH;

1301 }

1302 mut ex_exi t (&os->0s_user _ptr_| ock);

1303 dmu_obj set _rel e(os, FTAG;

1304 return (error);

1305 }

1307 /*

1308 * Find a zfsvfs_t for a nounted filesystem or create our own, in which
1309 * case its z_vfs will be NULL, and it will be opened as the owner.
1310 * If "witer’ is set, the z_teardown_lock will be held for RWWRI TER,
1311 * which prevents all vnode ops from running.

1312 *

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 21

1313 static int

1314 zfsvfs_hol d(const char *nane, void *tag, zfsvfs_t **zfvp, boolean_t witer)
1315 {

1316 int error = 0;

1318 if (getzfsvfs(nanme, zfvp) != 0)

1319 error = zfsvfs_create(name, zfvp);

1320 if (error == 0) {

1321 rrw_enter (& *zfvp)->z_teardown_| ock, (witer) ? RWWR TER :
1322 RW READER, tag);

1323 if ((*zfvp) >z_unnount ed) {

1324 /*

1325 * XXX we coul d probably try again, since the unnmounting
1326 * thread should be just about to di sassoci ate the
1327 * objset fromthe zfsvfs.

1328 */

1329 rrw_exit (& *zfvp)->z_teardown_| ock, tag);

1330 return (EBUSY);

1331 }

1332 }

1333 return (error);

1334 }

1336 static void

1337 zfsvfs_rel e(zfsvfs_t *zfsvfs, void *tag)

1338 {

1339 rrw_exit(&fsvfs->z_teardown_| ock, tag);

1341 if (zfsvfs >z_vfs) {

1342 S RELE(zfsvfs->z_vfs);

1343 } else {

1344 dmu_obj set _di sown(zf svfs->z_os, zfsvfs);

1345 zfsvfs_free(zfsvfs);

1346 }

1347 }

1349 static int

1350 zfs_ioc_pool _create(zfs_cnd_t *zc)

1351 {

1352 int error;

1353 nvlist_t *config, *props = NULL;

1354 nvlist_t *rootprops = NULL;

1355 nvlist_t *zplprops = NULL;

1357 if (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1358 zc->zc_iflags, &config))

1359 return (error);

1361 if (zc->zc_nvlist_src_size !'= 0 & (error =

1362 get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,

1363 zc->zc_iflags, &props))) {

1364 nvlist_free(config);

1365 return (error);

1366 }

1368 if (props) {

1369 nvlist_t *nvl = NU

1370 uint64_t version SPA VERSI ON;

1372 (void) nvlist_| ookup_ui nt 64(props,

1373 zpool _prop_to_name(ZPOOL_PROP_VERSI ON), &version);

1374 if (!SPAVERSIONTS > SUPPORTED(ver si on)) {

1375 error El NVAL;

1376 goto pool _props_bad;

1377

1378 (void) nvlist_lookup_nvlist(props, ZPOOL_ROOTFS_PROPS, &nvl);

22

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

1379 if (nvl) {

1380 error = nvlist_dup(nvl, & ootprops, KM SLEEP);
1381 if (error !'=0)

1382 nvlist_free(config);

1383 nvlist_free(props);

1384 return (error);

1385 }

1386 (void) nvlist_renove_all (props, ZPOOL_ROOTFS_PROPS);
1387

1388 VERI FY(nvlist_all oc(&pl props, NV_UNI QUE_NAME, KM SLEEP) == 0);
1389 error = zfs_fill_zpl props_root (version, rootprops,
1390 zpl props, NULL);

1391 if (error)

1392 got o pool _props_bad;

1393 }

1395 error = spa_create(zc->zc_nanme, config, props, zplprops);
1397 /*

1398 * Set the remmining root properties

1399 *

1400 if (lerror & (error = zfs_set_prop_nvlist(zc->zc_nane,
1401 ZPROP_SRC LOCAL, rootprops, NULL)) != 0)

1402 (voi d) spa_ dest roy(zc->zc_nane);

1404 pool _props_bad:

1405 nvlist_free(rootprops);

1406 nvlist_free(zpl props);

1407 nvlist_free(config);

1408 nvlist_free(props);

1410 return (error);

1411 }

1413 static int

1414 zfs_ioc_pool _destroy(zfs_cnd_t *zc)

1415 {

1416 int error;

1417 zfs_l og_hi story(zc);

1418 error = spa_destroy(zc->zc_nane);

1419 if (error == 0)

1420 zvol _renmpve_mi nors(zc->zc_nane);

1421 return (error);

1422 }

1424 static int

1425 zfs_ioc_pool _inport(zfs_cnmd_t *zc)

1426 {

1427 nvlist_t *config, *props = NULL;

1428 uint64_t guid;

1429 int error;

1431 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1432 zc->zc_iflags, &config)) != 0)

1433 return (error);

1435 if (zc->zc_nvlist_src_size !=0 & (error =

1436 get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
1437 zc->zc_iflags, &props))) {

1438 nvlist_free(config);

1439 return (error);

1440 }

1442 if (nvl | st _| ookup_ui nt 64(confi g, ZPOOL_CONFI G POOL_GUI D, &guid) != 0 ||
1443 guid !'= zc->zc_gui d)

1444 error = EI NVAL;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 23

1445 el se

1446 error = spa_inport(zc->zc_nane, config, props, zc->zc_cookie);
1448 if (zc->zc_nvlist_dst !'=0) {

1449 int err;

1451 if ((err = put_nvlist(zc, config)) != 0)
1452 error = err;

1453 }

1455 nvlist_free(config);

1457 if (props)

1458 nvlist_free(props);

1460 return (error);

1461 }

1463 static int

1464 zfs_ioc_pool _export(zfs_cmd_t *zc)

1465 {

1466 int error;

1467 bool ean_t force = (bool ean_t)zc->zc_cooki e;
1468 bool ean_t hardforce = (boolean_t)zc->zc_guid;
1470 zfs_l og_history(zc);

1471 error = spa_export(zc->zc_nane, NULL, force, hardforce);
1472 if (error ==

1473 zvol _renmpve_m nors(zc->zc_nane);

1474 return (error);

1475 }

1477 static int

1478 zfs_ioc_pool _configs(zfs_cmd_t *zc)

1479 {

1480 nvlist_t *configs;

1481 int error;

1483 if ((configs = spa_all _configs(&zc->zc_cookie)) == NULL)
1484 return (EEXIST);

1486 error = put_nvlist(zc, configs);

1488 nvlist_free(configs);

1490 return (error);

1491 }

1493 /*

1494 * jnputs:

1495 * zc_nane name of the pool

1496 *

1497 * outputs

1498 * zc_cookie real errno

1499 * zc_nvlist_dst config nvlist

1500 * zc_nvlist_dst_size size of config nvlist

1501 */

1502 static int

1503 zfs_ioc_pool _stats(zfs_cnd_t *zc)

1504 {

1505 nvlist_t *config;

1506 int error;

1507 int ret = 0;

1509 error = spa_get_stats(zc->zc_nane, &config, zc->zc_val ue,
1510 si zeof (zc->zc_value));

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 24

1512

if (config !'= NULL) {

1513 ret = put_nvlist(zc, config);

1514 nvlist_free(config);

1516 /*

1517 * The config may be present even if ’error’ is non-zero.
1518 * In this case we return success, and preserve the real errno
1519 * in 'zc_cookie'.

1520 */

1521 zc->zc_cookie = error;

1522 } else {

1523 ret = error;

1524 }

1526 return (ret);

1527 }

1529 /*

1530 * Try to inport the given pool, returning pool stats as appropriate so that
1531 * user |and knows which devices are avail able and overall pool health.
1532 */

1533 static int

1534 zfs_ioc_pool _tryinport(zfs_cnd_t *zc)

1535 {

1536 nvlist_t *tryconfig, *config;

1537 int error;

1539 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1540 zc->zc_iflags, &ryconfig)) !=0)

1541 return (error);

1543 config = spa_tryinport(tryconfig);

1545 nvlist_free(tryconfig);

1547 if (config == NULL)

1548 return (EINVAL);

1550 error = put_nvlist(zc, config);

1551 nvlist_free(config);

1553 return (error);

1554 }

1556 /*

1557 * inputs:

1558 * zc_nane nanme of the pool

1559 * zc_cookie scan func (pool _scan_func_t)

1560 */

1561 static int

1562 zfs_i oc_pool _scan(zfs_cnmd_t *zc)

1563 {

1564 spa_t *spa;

1565 int error;

1567 if ((error = spa_open(zc->zc_nane, &spa, FTAG) != 0)

1568 return (error);

1570 if (zc->zc_cooki e == POOL_SCAN_NONE)

1571 error = spa_scan_stop(spa);

1572 el se

1573 error = spa_scan(spa, zc->zc_cookie);

1575 spa_cl ose(spa, FTAQ;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 25

1577
1578 }

return (error);

1580 static int
1581 zfs_ioc_pool _freeze(zfs_cnd_t *zc)

1582 {
1583
1584

1586
1587
1588
1589
1590
1591
1592 }

spa_t *spa;
int error;

error = spa_open(zc->zc_nane, &spa, FTAG;
if (error == 0)

spa_freeze(spa);

spa_cl ose(spa, FTAQ;

return (error);

1594 static int
1595 zfs_ioc_pool _upgrade(zfs_cnd_t *zc)

1596 {
1597
1598

1600
1601

1603
1604
1605
1606
1607

1609
1610

1612
1613 }

spa_t *spa;
int error;

if ((error = spa_open(zc->zc_nane, &spa, FTAG) != 0)
return (error);

if (zc->zc_cookie < spa_version(spa) ||
I SPA_VERSI ON_| S_SUPPORTED(zc- >zc_cooki e)) {
spa_cl ose(spa, FTAQ;
return (EINVAL);
}

spa_upgr ade(spa, zc->zc_cookie);
spa_cl ose(spa, FTAQ;

return (error);

1615 static int
1616 zfs_ioc_pool _get_history(zfs_cnd_t *zc)

1617 {
1618
1619
1620
1621

1623
1624

1626
1627

1629
1630
1631
1632

1634
1635
1636
1637
1638
1639
1640

1642

spa_t *spa;
char *hi st _buf;
uint64_t size;
int error;

if ((size = zc->zc_history_len) == 0)
return (EINVAL);

if ((error = spa_open(zc->zc_nanme, &spa, FTAG) != 0)
return (error);

if (spa_version(spa) < SPA VERSI ON_ZPOOL_HI STORY) {
spa_cl ose(spa, FTAQ;
return (ENOTSUP);

}

hi st _buf = kmem al | oc(size, KM SLEEP);
if ((error = spa_history_get(spa, &zc->zc_history_offset,
& c->zc_history_len, hist_buf)) == 0) {
error = ddi _copyout (hi st _buf,
(void *)(uintptr_t)zc->zc_history,
zc->zc_history_len, zc->zc_iflags);

}
spa_cl ose(spa, FTAQ;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

1643 kmem f ree(hi st _buf, size);

1644 return (error);

1645 }

1647 static int

1648 zfs_i oc_pool _reguid(zfs_cmd_t *zc)

1649 {

1650 spa_t *spa;

1651 int error;

1653 error = spa_open(zc->zc_nane, &spa, FTAG;
1654 if (error == 0)

1655 error = spa_change_gui d(spa);
1656 spa_cl ose(spa, FTAG;

1657

1658 return (error);

1659 }

1661 static int

1662 zfs_i oc_dsobj_to_dsname(zfs_cnmd_t *zc)

1663 {

1664 int error;

1666 if (error = dsl_dsobj_to_dsnanme(zc->zc_nane, zc->zc_obj, zc->zc_value))
1667 return (error);

1669 return (0);

1670 }

1672 /*

1673 * inputs:

1674 * zc_nane nane of filesystem
1675 * zc_obj object to find

1676 *

1677 * outputs:

1678 * zc_val ue nane of object

1679 */

1680 static int

1681 zfs_ioc_obj_to_path(zfs_cmd_t *zc)

1682 {

1683 obj set _t *os;

1684 int error;

1686 /* XXX reading from obj set not owned */
1687 if ((error = dnmu_objset_hol d(zc->zc_nane, FTAG &os)) != 0)
1688 return (error);

1689 if (dmu_objset_type(os) != DMJ OST_ZFS) {
1690 dmu_obj set _rel e(os, FTAQ;

1691 return (EINVAL);

1692

1693 error = zfs_obj_to_path(os, zc->zc_obj, zc->zc_val ue,
1694 si zeof (zc->zc_value));

1695 dmu_obj set _rel e(os, FTAG;

1697 return (error);

1698 }

1700 /*

1701 * inputs:

1702 * zc_nane name of filesystem
1703 * zc_obj object to find

1704 *

1705 * outputs:

1706 * zc_stat stats on obj ect

1707 * zc_val ue path to object

1708 *

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 27 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 28
1709 static int 1775 * zc_nane name of the pool
1710 zfs_ioc_obj_to_stats(zfs_cnd_t *zc) 1776 * zc_nvlist_conf nvlist of devices to renove
1711 { 1777 * zc_cookie to stop the renpve?
1712 obj set _t *os; 1778 */
1713 int error; 1779 static int
1780 zfs_ioc_vdev_renove(zfs_cnmd_t *zc)
1715 /* XXX reading from objset not owned */ 1781 {
1716 if ((error = dnu_objset_hold(zc->zc_name, FTAG &os)) != 0) 1782 spa_t *spa;
1717 return (error); 1783 int error;
1718 if (dmu_objset_type(os) !'= DMJ_OST_ZFS) {
1719 dmu_obj set _rel e(os, FTAQ; 1785 error = spa_open(zc->zc_nane, &spa, FTAG;
1720 return (EINVAL); 1786 if (error 1= 0)
1721 } 1787 return (error);
1722 error = zfs_obj _to_stats(os, zc->zc_obj, &zc->zc_stat, zc->zc_val ue, 1788 error = spa_vdev_renopve(spa, zc->zc_guid, B FALSE);
1723 si zeof (zc->zc_value)); 1789 spa_cl ose(spa, FTAQ;
1724 drmu_obj set _rel e(os, FTAG; 1790 return (error);
1791 }
1726 return (error);
1727 } 1793 static int
1794 zfs_ioc_vdev_set_state(zfs_cnd_t *zc)
1729 static int 1795 {
1730 zfs_ioc_vdev_add(zfs_cnd_t *zc) 1796 spa_t *spa;
1731 { 1797 int error;
1732 spa_t *spa; 1798 vdev_state_t newstate = VDEV_STATE_UNKNOM;
1733 int error;
1734 nvlist_t *config, **|2cache, **spares; 1800 if ((error = spa_open(zc->zc_nane, &spa, FTAG) != 0)
1735 uint_t nl2cache = 0, nspares = O; 1801 return (error);
1802 switch (zc->zc_cookie) {
1737 error = spa_open(zc->zc_nanme, &spa, FTAG; 1803 case VDEV_STATE_ONLI NE:
1738 if (error 1= 0) 1804 error = vdev_online(spa, zc->zc_guid, zc->zc_obj, &newstate);
1739 return (error); 1805 br eak;
1741 error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, 1807 case VDEV_STATE_OFFLI NE:
1742 zc->zc_iflags, &config); 1808 error = vdev_offline(spa, zc->zc_guid, zc->zc_obj);
1743 (void) nvlist_lookup_nvlist_array(config, ZPOOL_CONFI G L2CACHE, 1809 br eak;
1744 &l 2cache, &nl 2cache);
1811 case VDEV_STATE_FAULTED:
1746 (void) nvlist_|lookup_nvlist_array(config, ZPOOL_CONFI G _SPARES, 1812 if (zc->zc_obj != VDEV_AUX ERR EXCEEDED &&
1747 &spares, &nspares); 1813 zc->zc_ob] !'= VDEV_AUX_EXTERNAL)
1814 zc->zc_obj = VDEV_AUX_ERR EXCEEDED,
1749 /*
1750 * A root pool wth concatenated devices is not supported. 1816 error = vdev_fault(spa, zc->zc_guid, zc->zc_obj);
1751 * Thus, can not add a device to a root pool. 1817 br eak;
1752 *
1753 * Intent log device can not be added to a rootpool because 1819 case VDEV_STATE_DEGRADED:
1754 * during mountroot, zil is replayed, a seperated |og device 1820 if (zc->zc_obj != VDEV_AUX ERR EXCEEDED &&
1755 * can not be accessed during the nmountroot tine. 1821 zc->zc_obj !'= VDEV_AUX_EXTERNAL)
1756 * 1822 zc->zc_obj = VDEV_AUX_ERR EXCEEDED,
1757 * | 2cache and spare devices are ok to be added to a rootpool.
1758 */ 1824 error = vdev_degrade(spa, zc->zc_guid, zc->zc_obj);
1759 if (spa_bootfs(spa) !'= 0 & nl2cache == 0 && nspares == 0) { 1825 br eak;
1760 nvlist_free(config);
1761 spa_cl ose(spa, FTAG; 1827 defaul t:
1762 return (EDOV ; 1828 error = EI NVAL;
1763 } 1829
1830 zc->zc_cooki e = newst at e;
1765 if (error == 0) { 1831 spa_cl ose(spa, FTAQ;
1766 error = spa_vdev_add(spa, config); 1832 return (error);
1767 nvlist_free(config); 1833 }
1768 }
1769 spa_cl ose(spa, FTAQ; 1835 static int
1770 return (error); 1836 zfs_ioc_vdev_attach(zfs_cnmd_t *zc)
1771 } 1837 {
1838 spa_t *spa;
1773 | * 1839 int replacing = zc->zc_cooki e;
1774 * inputs: 1840 nvlist_t *config;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

1841 int error;

1843 if ((error = spa_open(zc->zc_name, &spa, FTAG) != 0)

1844 return (error);

1846 if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1847 zc->zc_iflags, &config)) == {

1848 error = spa_vdev_attach(spa, zc->zc_guid, config, replacing);
1849 nvlist_free(config);

1850 }

1852 spa_cl ose(spa, FTAQ;

1853 return (error);

1854 }

1856 static int
1857 zfs_ioc_vdev_detach(zfs_cnd_t *zc)

1858 {

1859 spa_t *spa;

1860 int error;

1862 if ((error = spa_open(zc->zc_nane, &spa, FTAG) != 0)
1863 return (error);

1865 error = spa_vdev_detach(spa, zc->zc_guid, 0, B_FALSE);
1867 spa_cl ose(spa, FTAQ;

1868 return (error);

1869 }

1871 static int
1872 zfs_ioc_vdev_split(zfs_cnd_t *zc)

1873 {

1874 spa_t *spa;

1875 nvlist_t *config, *props = NULL;

1876 int error;

1877 bool ean_t exp = !!(zc->zc_cookie & ZPOOL_EXPORT_AFTER SPLIT);
1879 if ((error = spa_open(zc->zc_nane, &spa, FTAG) != 0)

1880 return (error);

1882 if (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
1883 zc->zc_iflags, &config)) {

1884 spa_cl ose(spa, FTAG;

1885 return (error);

1886 }

1888 if (zc->zc_nvlist_src_size !=0 & (error =

1889 get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
1890 zc->zc_iflags, &props))) {

1891 spa_cl ose(spa, FTAGQ;

1892 nvlist_free(config);

1893 return (error);

1894 }

1896 error = spa_vdev_split_mirror(spa, zc->zc_string, config, props, exp);
1898 spa_cl ose(spa, FTAQ;

1900 nvlist_free(config);

1901 nvlist_free(props);

1903 return (error);

1904 }

1906 static int

29

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 30

1907 zfs_ioc_vdev_setpath(zfs_cmd_t *zc)

1908 {
1909
1910
1911
1912

1914
1915
1916

1918
1919
1920
1921 }

spa_t *spa;

char *path = zc->zc_val ue;
uint64_t guid = zc->zc_guid;
int error;

error = spa_open(zc->zc_nanme, &spa, FTAG;
if (error 1= 0)
return (error);

error = spa_vdev_set pat h(spa, guid, path);
spa_cl ose(spa, FTAQ;
return (error);

1923 static int
1924 zfs_ioc_vdev_setfru(zfs_cmd_t *zc)

1925 {
1926
1927
1928
1929

1931
1932
1933

1935
1936
1937
1938 }

spa_t *spa;

char *fru = zc->zc_val ue;
uint64_t guid = zc->zc_guid;
int error;

error = spa_open(zc->zc_nanme, &spa, FTAG;
if (error 1= 0)
return (error);

error = spa_vdev_setfru(spa, guid, fru);
spa_cl ose(spa, FTAQ;
return (error);

1940 static int
1941 zfs_ioc_objset_stats_inpl (zfs_cnd_t *zc, objset_t *os)

1942 {
1943
1944

1946

1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967

1969
1970 }

1972 /*

int error = 0;
nvlist_t *nv;

drmu_obj set _fast _stat (os, &zc->zc_objset_stats);

if (zc->zc_nvlist_dst !'= 0 &&
(error = dsl_prop_get_all (os, &wv)) == 0) {
dmu_obj set _stats(os, nv);
/*

* NB: zvol _get_stats() will read the objset contents,
* which we aren’t supposed to do with a
* DS_MODE_USER hol d, because it coul d be
* inconsistent. So this is a bit of a workaround...
*/XXX reading with out owning
*
if (!zc->zc_objset_stats.dds_inconsistent &
drmu_obj set _type(os) == DMJ_OST_zVOL) {
error = zvol _get_stats(os, nv);
if (error == EIOQ
return (error);
VERI FYO(error);
}
error = put_nvlist(zc, nv);
nvlist_free(nv);

}

return (error);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 31
1973 * inputs:

1974 * zc_nane nane of filesystem

1975 * zc_nvlist_dst_size size of buffer for property nvlist
1976 *

1977 * outputs:

1978 * zc_objset_stats stats

1979 * zc_nvlist_dst property nvlist

1980 * zc_nvlist_dst_size size of property nvlist

1981 */

1982 static int

1983 zfs_ioc_objset_stats(zfs_cnd_t *zc)

1984 {

1985 obj set _t *os = NULL;

1986 int error;

1988 if (error = dmu_objset_hol d(zc->zc_nane, FTAG &os))
1989 return (error);

1991 error = zfs_ioc_objset_stats_inpl (zc, o0s);

1993 dmu_obj set _rel e(os, FTAG;

1995 return (error);

1996 }

1998 /*

1999 * inputs:

2000 * zc_nanme name of filesystem

2001 * zc_nvlist_dst_size size of buffer for property nvlist
2002 *

2003 * outputs:

2004 * zc_nvlist_dst recei ved property nvlist

2005 * zc_nvlist_dst_size size of received property nvlist
2006 *

2007 * Cets received properties (distinct fromlocal properties on or after
2008 * SPA VERSI ON_RECVD PROPS) for callers who want to differentiate received from
2009 * local property val ues.

2010 */

2011 static int

2012 zfs_ioc_objset_recvd_props(zfs_cmd_t *zc)

2013 {

2014 obj set _t *os = NULL;

2015 int error;

2016 nvlist_t *nv;

2018 if (error = dnmu_obj set _hol d(zc->zc_nanme, FTAG &os))
2019 return (error);

2021 /*

2022 * Wthout this check, we would return |ocal property values if the
2023 * caller has not already received properties on or after
2024 * SPA VERSI ON_RECVD PRCPS

2025 *

2026 if (!dsl_prop_get_hasrecvd(os)) {

2027 dnu_obj set _rel e(os, FTAQ;

2028 return (ENOTSUP);

2029 1

2031 if (zc->zc_nvlist_dst '=0 &&

2032 (error = dsl_prop_get_received(os, &nv)) == 0) {
2033 error = put_nvlist(zc, nv);

2034 nvlist_free(nv);

2035 }

2037 drmu_obj set _rel e(os, FTAG;

2038 return (error);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2039 }

32

2041 static int
2042 nvl _add_zpl prop(objset_t *os, nvlist_t *props, zfs_prop_t prop)

2043 {
2044
2045

2047
2048
2049
2050
2051
2052
2053
2054
2055 }
/

2057
2058
2059
2060
2061
2062
2063
2064
2065

* ok Gk ok k% ok F

*/

zc_nvlist_dst_size

uint64_t val ue;
int error;

/*
* zfs_get_zplprop() will either find a value or give us
* the default value (if there is one).
*
/
if ((error = zfs_get_zpl prop(os,
return (error);

prop, &value)) != 0)

i nputs:
zc_nane

out put s:

VERI FY(nvlist_add_ui nt 64(props, zfs_prop_to_nanme(prop), value) == 0);
return (0);
_ name of filesystem
zc_nvlist_dst_size size of buffer for zpl property nvlist
zc_nvlist_dst zpl property nvlist

size of zpl property nvlist

2066 static int
2067 zfs_ioc_objset_zplprops(zfs_cml_t *zc)

2068 {
2069
2070

2072
2073
2074

2076

2078
2079
2080
2081
2082
2083
2084
2085
2086

2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100 }

obj set _t *os;

int err;

/* XXX readi ng w thout owning */

if (err = dmu_objset_hol d(zc->zc_nane, FTAG &os))
return (err);

dmu_obj set _fast_stat(os, &zc->zc_objset_stats);

/*
* NB: nvl_add_zplprop() will read the objset contents,
* which we aren’t supposed to do with a DS _MODE_USER
* hol d, because it could be inconsistent.
*
/
if (zc->zc_nvlist_dst != NULL &&
1zc->zc_obj set _stats.dds_i nconsi stent &&
dmu_obj set _type(os) == DMJ_OST_ZFS) {
nvlist_t *nv;
VERI FY(nvlist_alloc(&v, NV_UNI QUE_NAME, KM SLEEP) == 0);
if ((err = nvl_add_zpl prop(os, nv, ZFS _PROP_VERSION)) == 0 &&
(err = nvl _add_zpl prop(os, nv, ZFS PROP_NORMALIZE)) == 0 &&
(err = nvl _add_zpl prop(os, nv, ZFS PROP_UTF8ONLY)) == 0 &&
(err = nvl _add_zpl prop(os, nv, ZFS PROP_CASE)) == 0)
err = put_nvlist(zc, nv);
nvlist_free(nv);
} else {

err = ENCENT;

drmu_obj set _rel e(os,
return (err);

FTAG) ;

2102 static bool ean_t
2103 dat aset _nane_hi dden(const char *nane)

2104 {

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2105 /*

2106 * Skip over datasets that are not visible in this zone,

2107 * internal datasets (which have a $ in their nane), and

2108 * tenporary datasets (which have a %in their nane).

2109 *

2110 if (strchr(nane, '$) != NULL)

2111 return (B_TRUE);

2112 if (strchr(nane, "%) != NULL)

2113 return (B_TRUE);

2114 if (!1NGLOBALZONE(curproc) && !zone_dataset _visibl e(nanme, NULL))
2115 return (B_TRUE);

2116 return (B_FALSE);

2117 }

2119 /*

2120 * inputs:

2121 * zc_nane name of filesystem

2122 * zc_cookie zap cursor

2123 * zc_nvlist_dst_size size of buffer for property nvlist

2124 *

2125 * outputs:

2126 * zc_nane name of next filesystem

2127 * zc_cookie zap cursor

2128 * zc_objset_stats stats

2129 * zc_nvlist_dst property nvli st

2130 * zc_nvlist_dst_size size of property nvlist

2131 */

2132 static int

2133 zfs_ioc_dataset_list_next(zfs_cnd_t *zc)

2134 {

2135 obj set _t *os;

2136 int error;

2137 char *p;

2138 size_t orig_len = strlen(zc->zc_nane);

2140 top:

2141 if (error = dnmu_objset_hol d(zc->zc_nane, FTAG &os)) {

2142 if (error == ENCENT)

2143 error = ESRCH;

2144 return (error);

2145 }

2147 p = strrchr(zc->zc_name, '/");

2148 if (p == NUL || p[1] !'='\0")

2149 (voi d) strlcat(zc->zc_narre, "/", sizeof (zc->zc_nane));
2150 p = zc->zc_nane + strlen(zc->zc_nane);

2152 I*

2153 * Pre-fetch the datasets. dnu_objset_prefetch() always returns 0O
2154 */but is not declared void because its called by dmu_objset_find().
2155 *

2156 if (zc->zc_cookie == {

2157 ui nt 64_t cook| e = 0;

2158 int len = sizeof (zc >zc_namne) (p - zc->zc_nane);
2160 while (dnu_dir_list_next(os, len, p, NULL, &cookie) == 0) {
2161 i f (! dataset_nanme_hi dden(zc >zc narre))

2162 (void) dmu_objset_prefetch(zc->zc_name, NULL);
2163 }

2164 }

2166 do {

2167 error = dnu_dir_list_next(os,

2168 si zeof (zc->zc_nane) - (p - zc->zc_nane), p,

2169 NULL, &zc->zc_cookie);

2170 if (error == ENCENT)

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2171 error = ESRCH;

2172 } while (error == 0 && dat aset_nane_hi dden(zc->zc_nane));

2173 dmu_obj set _rel e(os, FTAG;

2175 /*

2176 * |f it's an internal dataset (ie. with a’'$ in its name),
2177 * don't try to get stats for it, otherwise we'll return ENCENT.
2178 */

2179 if (error == 0 & strchr(zc->zc_nanme, '$') == NULL) {

2180 error = zfs_ioc_objset_stats(zc); /* fill in the stats */
2181 if (error == ENCENT)

2182 /* W lost arace with destroy, get the next one. */
2183 zc->zc_nane[orig_len] ='\0

2184 goto top;

2185 }

2186 }

2187 return (error);

2188 }

2190 /*

2191 * inputs:

2192 * zc_nane name of filesystem

2193 * zc_cookie zap cursor

2194 * zc_nvlist_dst_size size of buffer for property nvlist

2195 *

2196 * outputs:

2197 * zc_nane nanme of next snapshot

2198 * zc_objset_stats stats

2199 * zc_nvlist_dst property nvli st

2200 * zc_nvlist_dst_size size of property nvlist

2201 */

2202 static int

2203 zfs_ioc_snapshot_list_next(zfs_cnd_t *zc)

2204 {

2205 obj set _t *os;

2206 int error;

2208 top:

2209 if (zc->zc_cookie ==

2210 (voi d) dmu_objset _find(zc->zc_nane, dnu_objset_prefetch,
2211 NULL, DS_FI ND_SNAPSHOTS) ;

2213 error = dnu_obj set _hol d(zc->zc_nane, FTAG &o0s);

2214 if (error)

2215 return (error == ENOENT ? ESRCH : error);

2217 /*

2218 * A dataset nane of maxi mum | ength cannot have any snapshots,
2219 * so exit immediately.

2220 */

2221 if (strlcat(zc->zc_nane, "@, sizeof (zc->zc_nane)) >= MAXNAMELEN) {
2222 dmu_obj set _rel e(os, FTAQ;

2223 return (ESRCH);

2224 }

2226 error = dnu_snapshot _I| i st_next (os,

2227 3|zeof (zc->zc_nane) - strlen(zc->zc_nane),

2228 zc->zc_nane + strlen(zc->zc_nane), &zc- >zc_0bj, &zc->zc_cooki e,
2229 NULL) ;

2231 if (error == 0) {

2232 dsl _dat aset _t *ds;

2233 dsl _pool _t *dp = os->o0s_dsl _dataset->ds_dir->dd_pool ;
2235 /*

2236 * Since we probably don’t have a hold on this snapshot,

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 35

2237 * it’'s possible that the objsetid could have been destroyed
2238 * and reused for a new objset. It's OKif this happens during
2239 * a zfs send operation, since the new createtxg wll be
2240 * beyond the range we're interested in.

2241 */

2242 rw_ent er (&p->dp_confi g_rw ock, RW READER);

2243 error = dsl_dataset_hol d_obj (dp, zc->zc_obj, FTAG &ds);
2244 rw_exit (&p->dp_config_rw ock);

2245 if (error) {

2246 if (error == ENCENT)

2247 /* Racing with destroy, get the next one. */
2248 *strchr(zc->zc_nane, '@) = '\0";

2249 dmu_obj set _rel e(os, FTAG;

2250 goto top;

2251

2252 } else {

2253 obj set _t *ossnap;

2255 error = drmu_obj set _fromds(ds, &ossnap);

2256 if (error ==

2257 error = zfs_ioc_objset_stats_inpl(zc, ossnap);
2258 dsl _dat aset _rel e(ds, FTAQ;

2259 }

2260 } else if (error == ENCENT) {

2261 error = ESRCH,

2262 }

2264 dmu_obj set _rel e(os, FTAG;

2265 /* if we failed, undo the @that we tacked on to zc_nane */
2266 if (error)

2267 *strchr(zc->zc_nane, ' @) = '\0";

2268 return (error);

2269 }

2271 static int

2272 zfs_prop_set _userquota(const char *dsname, nvpair_t *pair)

2273 {

2274 const char *propnanme = nvpair_name(pair);

2275 uint64_t *val ary;

2276 unsi gned int vallen;

2277 const char *donai n;

2278 char *dash;

2279 zfs_userquota_prop_t type;

2280 uint64_t rid;

2281 uint64_t quota;

2282 zfsvfs_t *zfsvfs;

2283 int err;

2285 if (nvpair_type(pair) == DATA TYPE_NVLI ST) {

2286 nvlist_t *attrs;

2287 VERI FY(nvpair_value_nvlist(pair, &ttrs) == 0);

2288 if (nvlist_|lookup_nvpair(attrs, ZPROP_VALUE,

2289 &pair) 1= 0)

2290 return (EINVAL);

2291 }

2293 I*

2294 * A correctly constructed propnane is encoded as

2295 * userquot a@ri d>- <domai n>.

2296 *

2297 if ((dash = strchr(propnanme, '-')) == NULL ||

2298 nvpair_val ue_ui nt64_array(pair, &alary, &allen) =0 ||
2299 vallen 1= 3

2300 return (EINVAL);

2302

domai n = dash + 1;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 36
2303 type = valary[O0];

2304 rid = valary[1];

2305 quota = val ary[2];

2307 err = zfsvfs_hol d(dsnane, FTAG &zfsvfs, B_FALSE);

2308 if (err == 0) {

2309 err = zfs_set_userquota(zfsvfs, type, donmmin, rid, quota);
2310 zfsvfs_rel e(zfsvfs, FTAQ;

2311 }

2313 return (err);

2314 }

2316 /*

2317 * If the naned property is one that has a special function to set its val ue,
2318 * return O on success and a positive error code on failure; otherwise if it is
2319 * one of the special properties handled by this function, return -1.
2320 *

2321 * It would be better for callers of the property interface if we handl ed
2322 * these special cases in dsl_prop.c (in the dsl layer).

2323 */

2324 static int

2325 zfs_prop_set_speci al (const char *dsnanme, zprop_source_t source,

2326 nvpair_t *pair)

2327 {

2328 const char *propnanme = nvpair_nanme(pair);

2329 zfs_prop_t prop = zfs_nane_to_prop(propnane);

2330 uint64_t intval;

2331 int err;

2333 if (prop == ZPROP_I NVAL)

2334 if (zfs_prop_userquota(propnane))

2335 return (zfs_prop_set_userquota(dsnanme, pair));
2336 return (-1);

2337 }

2339 if (nvpair_type(pair) == DATA TYPE_NVLI ST) {

2340 nvlist_t *attrs;

2341 VERI FY(nvpair_val ue_nvlist(pair, &ttrs) == 0);

2342 VERI FY(nvli st _| ookup_nvpair(attrs, ZPROP_VALUE,

2343 &pair) == 0);

2344 }

2346 if (zfs_prop_get_type(prop) == PROP_TYPE_STRI NG

2347 return (-1);

2349 VERI FY(0 == nvpair_val ue_uint64(pair, & ntval));

2351 switch (prop) {

2352 case ZFS_PROP_QUOTA:

2353 err = dsl _dir_set_quota(dsnane, source, intval);

2354 br eak;

2355 case ZFS_PROP_REFQUOTA:

2356 err = dsl _dataset_set_quota(dsname, source, intval);

2357 br eak;

2358 case ZFS_PROP_RESERVATI ON:

2359 err = dsl _dir_set_reservation(dsnane, source, intval);
2360 br eak;

2361 case ZFS_PROP_REFRESERVATI ON:

2362 err = dsl _dataset_set_reservation(dsnane, source, intval);
2363 br eak;

2364 case ZFS_PROP_VOLSI ZE:

2365 err = zvol _set_vol si ze(dsnane, ddi _driver_ngjor(zfs_dip),
2366 intval);

2367 br eak;

2368 case ZFS_PROP_VERSI ON:

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2369
2370

2372
2373

2375
2376

2378
2379

2381
2382
2383
2384
2385
2386
2387

2389
2390
2391

2393
2394

2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408

t

{
zfsvfs_t *zfsvfs;
if ((err = zfsvfs_hold(dsnane, FTAG &zfsvfs, B _TRUE))
br eak;
err = zfs_set_version(zfsvfs, intval);
zfsvfs_rel e(zfsvfs, FTAQ;
if (err == 0 & intval >= ZPL_VERSI ON_USERSPACE) {
zfs_cmd_t *zc;
zc = knmem zal | oc(si zeof (zfs_cnd_t), KM SLEEP);
(void) strcpy(zc->zc_nane, dsnane);
(void) zfs_ioc_userspace_upgrade(zc);
kmem free(zc, sizeof (zfs_cnmd_t));
br eak;
}
defaul t:
err = -1;
}

return (err);

This function is best effort. If it fails to set any of the given pr
it continues to set as nany as it can and returns the |last error
encountered. If the caller provides a non-NULL errlist, it will be f
with the list of names of all the properties that failed along with
correspondi ng error nunbers.

| f every property is set successfully, zero is returned and errli st
nodi fi ed

s_set _prop_nvlist(const char *dsname, zprop_source_t source, nvlist_t

“nvlist_t *errlist)

2409 {

2410
2411
2412
2413
2414
2415
2416

2418
2419
2420
2421
2422
2423

2425
2426
2427
2428
2429
2430
2431
2432
2433

retry:

nvpair_t *pair;
nvpair_t *propval ;
int rv = 0;
uint64_t intval;
char *st rval

nvlist_t *generi cnvI = fnvlist_alloc();

nvlist_t *retrynvl = fnvlist_alloc();

pair = NULL;

while ((pair = nvlist_next nvpalr(nvl pair)) !'= NULL) {

const char *propname = nvpair_nane(pair);
zfs_prop_t prop = zfs_name_to_prop(pr opnar're)
int err = 0;

/* decode the property value */
propval = pair;
if (nvpair type(pair) == DATA TYPE_NVLIST) {

nvlist t *attrs

attrs = fnvpai r_val ue_nvlist(pair);

if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE,

&propval) !'= 0)
err = EINVAL;

37

1= 0)

operties,
illed in
the

is not

*nvl,

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 38
2435 /* Validate val ue type */

2436 if (err == 0 && prop == ZPROP_I NVAL) {

2437 if (zfs_prop_user(propnane)) {

2438 I1f (nvpair type(pr opval) !'= DATA TYPE_STRI NG
2439 err =

2440 } else if (zfs_prop_userquot a(propname)) {

2441 if (nvpair_type(propval) !=

2442 DATA_TYPE_UI NT64_ARRAY)

2443 err = EINVAL;

2444 } else {

2445 err = EINVAL;

2446 }

2447 } elseif (err == 0) {

2448 if (nvpair_type(propval) == DATA TYPE_STRI NG {

2449 if (zfs_prop_get type(prop) ! = PROP_TYPE_STRI NG
2450 err = EINVAL

2451 } else if (nvpair type(propval) == DATA_TYPE_UI NT64) {
2452 const char *unuse

2454 intval = fnvpair_val ue_ui nt64(propval);

2456 switch (zfs_prop_get type(prop)) {

2457 case PROP_TYPE_NUVMBER:

2458 break;

2459 case PRCP_TYPE_STRI NG

2460 err = ElI NVAL;

2461 br eak;

2462 case PROP_TYPE_I NDEX:

2463 if (zfs_prop_index_to strlng(prop,
2464 intval, &unused) T= 0)

2465 err = El NVAL;

2466 br eak;

2467 defaul t:

2468 cmm_err (CE_PANI C,

2469 "unknown property type");

2470

2471 } else {

2472 err = EINVAL;

2473 }

2474 }

2476 /* Validate permnissions */

2477 if (err == 0)

2478 err = zfs_check_settabl e(dsnane, pair, CRED());

2480 if (err == 0) {

2481 err = zfs prop set _speci al (dsnane, source, pair);
2482 if (err ==) {

2483 *

2484 * For better performance we build up a list of
2485 * properties to set in a single transaction.
2486 */

2487 err = nvlist_add_nvpair(genericnvl, pair);
2488 } elseif (err '=0 & nvl = retrynvl)

2489 /*

2490 * This may be a spurious error caused by
2491 * receiving quota and reservation out of order.
2492 * Try again in a second pass.

2493 */

2494 err = nvlist_add_nvpair(retrynvl, pair);

2495 }

2496 }

2498 if (err 1=0) {

2499 if (errlist !'= NULL)

2500 fnvlist_add_int32(errlist, propnane, err);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2501
2502
2503

2505
2506
2507
2508

2510
2511
2512
2513
2514
2515
2516
2517
2518
2519

2521
2522
2523
2524
2525
2526
2527

2529
2530
2531
2532
2533
2534
2535
2536
2537

2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549

2551
2552

2554
2555
2556
2557
2558

rv =err;

}

if (nvl !'=retrynvl && !nvlist
nvl = retrynvl;

goto retry;

}

if (!'nvlist_enpty(genericnvl)
dsl _props_set (dsnane, sour
/*

* |f this fails, we s

* can, so try setting

*

/

pair = NULL;

while ((pair = nvlist
const char *pr
int err = 0;

_empty(retrynvl)) {

&&

ce, genericnvl) I'=0) {
till
t hem i ndi vi dual |'y.

next _nvpair(genericnvl, pair))
opnanme = nvpai r_name(pal r);

propval = pair;

1 f (nvpair_typ
nvlist
attrs
propva

e(pair) == DATA_TYPE_NVLI ST) {

_t *attrs;

= fnvpair_value_nvlist(pair);
| = fnvlist_lookup_nvpair(attrs,

ZPROP_VALUE) ;

}
if (nvpair typ
str

err
st

} else {
intval
err =
l

if (err 1= 0)
if (er

rv=-=e

}

nvlist_free(genericnvl);
nvlist_free(retrynvl);

return (rv);
}
/*

* Check that all the properties are v
=Y

static int

zfs_check_user props(const char *fsnane,

2559 {

2560
2561

2563
2564
2565

nvpair_t *pair = NULL;
int error = 0;

while ((pair = nvlist_next_nvp
const char *propnanme =
char *val str;

e(pr opval) == DATA TYPE_STRI NG {
= fnvpair vaI ue_string(propval);

= dsl| _prop_set (dsnanme, propnane,

rlen(strval) + 1, strval)

= fnvpair_val ue_ui nt 64(propval);

dsl _prop_set (dsname, propnang,
& ntval);

{
rlist I'= NULL) {
fnvlist_add_int32(errlist,
err);

rr;

alid user properties.

nvlist_t *nvl)

air(nvl,
nvpai r

pair)) != NULL) {
_nane(pair);

source,

source,

pr opnane,

39

want to set as many properties as we

I= NULL) {

1,

8,

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2567 if (!zfs_prop_user(propnane) ||

2568 nvpai r_type(pair) != DATA TYPE_STRI NG

2569 return (EI NVAL);

2571 if (error = zfs_secpolicy_wite_perns(fsnane,

2572 ZFS_DELEG PERM USERPROP, CRED()))

2573 return (error);

2575 if (strlen(propnanme) >= ZAP_MAXNAMELEN)

2576 return (ENAVETOOLONG) ;

2578 VERI FY(nvpair_val ue_string(pair, &alstr) == 0)
2579 if (strlen(valstr) >= ZAP_MAXVALUELEN)

2580 return (E2BlI G);

2581 }

2582 return (0);

2583 }

2585 static void

2586 ?r ops_ski p(nvlist_t *props, nvlist_t *skipped, nvlist_t **newprops)
2587

2588 nvpair_t *pair;

2590 VERI FY(nvlist_all oc(newprops, NV_UNI QUE_NAME, KM SLEEP) == 0);
2592 pair = NULL;

2593 whi | e ((palr = nvlist_next_nvpair(props, pair)) != NULL) {
2594 if (nvlist_exists(skipped, nvpair_nanme(pair)))
2595 cont i nue;

2597 VERI FY(nvli st _add_nvpai r (*newprops, pair) == 0);
2598 1

2599 }

2601 static int

2602 cl ear _recei ved_props(objset_t *os, const char *fs, nvlist_t *props,
2603 nvlist_t *skipped)

2604 {

2605 int err = 0;

2606 nvlist_t *cleared_props = NULL;

2607 props_ski p(props, skipped, &cleared_props);

2608 i1f (!'nvlist_enpty(cleared_props))

2609 /*

2610 * Acts on local properties until the dataset

2611 * properties at |east once on or after

2612 */

2613 zprop_source_t flags = (ZPROP_SRC NONE |

2614 (dsl _prop_get _hasrecvd(os) ? ZPROP_SRC_RECEI VED :
2615 err = zfs_set_prop_nvlist(fs, flags, cleared_props,
2616

2617 nvlist_free(cleared_props);

2618 return (err);

2619 }

2621 [*

2622 * inputs:

2623 * zc_nane nane of filesystem

2624 * zc_val ue name of property to set

2625 * zc_nvlist_src{_size} nvlist of properties to apply

2626 * zc_cookie recei ved properties flag

2627 *

2628 * outputs:

2629 * zc_nvlist_dst{_size} error for each unapplied received property
2630 */

2631 static int

2632 zfs_ioc_set_prop(zfs_cnd_t *zc)

has received
SPA_VERSI ON_RECVD_PROPS.

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2633 {

2634 nvlist_t *nvl;

2635 bool ean_t received = zc->zc_cooki e;

2636 zprop_source_t source = (received ? ZPROP_SRC RECEI VED :
2637 ZPROP_SRC_LOCAL) ;

2638 nvlist_t ¥errors;

2639 int error;

2641 if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
2642 zc->zc_iflags, &nvl)) !'= 0)

2643 return (error);

2645 if (received)

2646 nvlist_t *origprops;

2647 obj set _t *os;

2649 if (dmu_objset_hol d(zc->zc_nane, FTAG &os) == 0) {
2650 i f (dsl_prop_get _received(os, &origprops) == 0) {
2651 (voi d) clear_received_props(os,
2652 zc->zc_nane, origprops, nvl);
2653 nvlist_free(origprops);

2654 }

2656 dsl _prop_set _hasrecvd(os);

2657 dmu_obj set _rel e(os, FTAQ;

2658 }

2659 }

2661 errors = fnvlist_alloc();

2662 error = zfs_set_prop_nvlist(zc->zc_nanme, source, nvl, errors);
2664 if (zc->zc_nvlist_dst != NULL & errors != NULL) {

2665 (void) put_nvlist(zc, errors);

2666 }

2668 nvlist_free(errors);

2669 nvlist_free(nvl);

2670 return (error);

2671 }

2673 /*

2674 * inputs:

2675 * zc_nane name of filesystem

2676 * zc_val ue nane of property to inherit

2677 * zc_cookie revert to received value if TRUE

2678 *

2679 * outputs: none

2680 */

2681 static int

2682 zfs_ioc_inherit_prop(zfs_cnd_t *zc)

2683 {

2684 const char *propnane = zc->zc_val ue;

2685 zfs_prop_t prop = zfs_nane_to_prop(propnane);

2686 bool ean_t received = zc->zc_cooki e;

2687 zprop_source_t source = (received

2688 ? ZPROP_SRC_NONE /* revert to received value, if any */
2689 : ZPROP_SRC_| NHERI TED) ; /* explicitly inherit */
2691 if (received)

2692 nvlist_t *durmy

2693 nvpair_t *pair;

2694 zprop_type_t type

2695 int err;

2697 /*

2698 * zfs_prop_set_special () expects properties in the formof an

41

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 42
2699 * nvpair with type info.

2700 */

2701 if (prop == ZPROP_I NVAL) {

2702 if (I zfs_prop_user (propnane))

2703 return (EI NVAL);

2705 type = PR(]3 TYPE_STRI NG,

2706 } else if (prop == ZFS_PROP_VOLSI ZE | |

2707 prop == ZFS_PROP_VERSI ON) {

2708 return (EINVAL);

2709 } else {

2710 type = zfs_prop_get_type(prop);

2711 }

2713 VERI FY(nvlist_alloc(&ummy, NV_UNI QUE NAME, KM SLEEP) == 0);
2715 switch (type) {

2716 case PRO3 TYPE STRI NG

2717 VERI FY(0 == nvlist_add_string(dumry, propname, ""));
2718 br eak;

2719 case PROP_ TYPE NUMVBER:

2720 case PROP_TYPE_| NDEX:

2721 VERI FY(0 == nvlist_add_ui nt 64(dummy, propnanme, 0));
2722 br eak;

2723 defaul t:

2724 nvlist_free(dumy);

2725 return (ElINVAL);

2726 }

2728 pair = nvlist_next_nvpair(dummy, NULL);

2729 err = zfs_prop_set_special (zc->zc_nane, source, pair);

2730 nvlist_free(dumy);

2731 if (err 1= -1)

2732 return (err); /* special property already handl ed */
2733 } else {

2734 /*

2735 * Only check this in the non-received case. W want to allow
2736 * "inherit -S to revert non-inheritable properties |ike quota
2737 * and reservation to the received or default val ues even though
2738 * they are not considered inheritable.

2739 *

2740 if (prop != ZPROP_INVAL && !zfs_prop_inheritabl e(prop))

2741 return (EINVAL);

2742 1

2744 /* property name has been validated by zfs_secpolicy_inherit_prop()
2745 return (dsl_prop_set(zc->zc_nanme, zc->zc_val ue, source, 0, 0, NULL));
2746

2748 static int

2749 zfs_ioc_pool _set_props(zfs_cnmd_t *zc)

2750 {

2751 nvlist_t *props;

2752 spa_t *spa;

2753 int error;

2754 nvpair_t *pair;

2756 if (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
2757 zc->zc_iflags, &props))

2758 return (error);

2760 /*

2761 * |f the only property is the configfile, then just do a spa_l ookup()
2762 * to handle the faulted case.

2763 */

2764 pair = nvlist_next_nvpair(props, NULL);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 43 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 44

2765 if (pair !'= NULL && strcnp(nvpair_nanme(pair), 2831 */
2766 zpool _prop_t o_nane(ZPOOL_PROP_CACHEFI LE)) == 0 && 2832 static int
2767 nvlist_next_nvpair(props, pair) == NULL) { 2833 zfs_ioc_set_fsacl (zfs_cnmd_t *zc)
2768 nmut ex_ent er (&spa_nanmespace_| ock) ; 2834 {
2769 if ((spa = spa_l ookup(zc->zc_nane)) !'= NULL) { 2835 int error;
2770 spa_configfil e_set(spa, props, B_FALSE); 2836 nvlist_t *fsaclnv = NULL;
2771 spa_config_sync(spa, B _FALSE, B_TRUE);
2772 } 2838 if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
2773 nmut ex_exi t (&spa_nanmespace_| ock) ; 2839 zc->zc_iflags, &f saclnv)) I'=0)
2774 if (spa !'= NULL) { 2840 return (error);
2775 nvlist_free(props);
2776 return (0); 2842 /*
2777 } 2843 * Verify nvlist is constructed correctly
2778 } 2844 */
2845 if ((error = zfs_deleg_verify_nvlist(fsaclnv)) !'=0) {
2780 if ((error = spa_open(zc->zc_nane, &spa, FTAG) != 0) { 2846 nvlist_free(fsaclnv);
2781 nvlist_free(props); 2847 return (EINVAL);
2782 return (error); 2848 }
2783 1
2850 /*
2785 error = spa_prop_set(spa, props); 2851 * |f we don't have PRI V_SYS_MOUNT, then validate
2852 * that user is allowed to hand out each perm ssion in
2787 nvlist_free(props); 2853 * the nvlist(s)
2788 spa_cl ose(spa, FTAQ; 2854 */
2790 return (error); 2856 error = secpolicy_zfs(CREDX));
2791 } 2857 if (error) {
2858 if (zc->zc_permaction == B_FALSE)
2793 static int 2859 error = dsl_del eg_can_al | om zc->zc_nane,
2794 zfs_ioc_pool _get_props(zfs_cnd_t *zc) 2860 fsaclnv, CRED());
2795 { 2861 } else {
2796 spa_t *spa; 2862 error = dsl _del eg_can_unal | ow(zc- >zc_nane,
2797 int error; 2863 fsaclnv, CRED));
2798 nvlist_t *nvp = NULL; 2864 }
2865 }
2800 if ((error = spa_open(zc->zc_nane, &spa, FTAG) != 0) {
2801 /* 2867 if (error == 0)
2802 * |f the pool is faulted, there may be properties we can still 2868 error = dsl_del eg_set (zc->zc_nane, fsaclnv, zc->zc_permaction);
2803 * get (such as altroot and cachefile), so attenpt to get them
2804 * anyway. 2870 nvlist_free(fsaclnv);
2805 =[] 2871 return (error);
2806 mut ex_ent er (&spa_nanmespace_| ock) ; 2872 }
2807 if ((spa = spa_l ookup(zc->zc_nane)) != NULL)
2808 error = spa_prop_get(spa, &nvp); 2874 | *
2809 nmut ex_exi t (&pa_nanespace_| ock) ; 2875 * inputs:
2810 } else { 2876 * zc_nane name of filesystem
2811 error = spa_prop_get(spa, &nvp); 2877 *
2812 spa_cl ose(spa, FTAQ; 2878 * outputs:
2813 } 2879 */zc_nvl ist_src{_size} nvlist of del egated perm ssions
2880 *
2815 if (error == 0 && zc->zc_nvlist_dst !'= NULL) 2881 static int
2816 error = put_nvlist(zc, nvp); 2882 zfs_ioc_get_fsacl (zfs_cnd_t *zc)
2817 el se 2883 {
2818 error = EFAULT; 2884 nvlist_t *nvp;
2885 int error;
2820 nvlist_free(nvp);
2821 return (error); 2887 if ((error = dsl_del eg_get(zc->zc_nane, &nvp)) == 0) {
2822 } 2888 error = put_nvlist(zc, nvp);
2889 nvlist_free(nvp);
2824 | * 2890 }
2825 * inputs:
2826 * zc_nanme name of fil esystem 2892 return (error);
2827 * zc_nvlist_src{_size} nvlist of del egated perm ssions 2893 }
2828 * zc_perm. action al | ow unal | ow fl ag
2829 * 2895 /*
2830 * outputs: none 2896 * Search the vfs list for a specified resource. Returns a pointer to it

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2897 * or NULL if no suitable entry is found. The caller of this routine
2898 * is responsible for releasing the returned vfs pointer.

2899 */

2900 static vfs_t *

2901 zfs_get _vfs(const char *resource)

2902 {

2903 struct vfs *vfsp;

2904 struct vfs *vfs_found = NULL;

2906 vis_list_read_| ock();

2907 vfsp = rootvfs;

2908 do {

2909 if (strcnp(refstr val ue(vfsp->vfs_resource), resource) == 0) {
2910 S_HOLD(vf sp),

2911 vfs found = vfsp;

2912 br eak;

2913

2914 vfsp = vfsp->vfs_next;

2915 } while (vfsp != rootvfs);

2916 vfs_list_unlock();

2917 return (vfs found)

2918 }

2920 /* ARGSUSED */

2921 static void

2922 zfs_create_cb(objset_t *os, void *arg, cred_t *cr, dnmu_tx_t *tx)
2923 {

2924 zfs_creat_t *zct = arg;

2926 zfs_create_fs(os, cr, zct->zct_zplprops, tx);

2927 }

2929 #define ZFS_PROP_UNDEFI NED ((uint64_t)-1)

2931 /*

2932 * inputs:

2933 * createprops list of properties requested by creator

2934 * defaul t_zpl ver zpl version to use if unspecified in createprops
2935 * fuids_ok fuids allowed in this version of the spa?
2936 * os parent objset pointer (NULL if root fs)

2937 *

2938 * outputs:

2939 * zpl props values for the zplprops we attach to the master node object
2940 * is_ci true if requested file systemw || be purely case-insensitive
2941 *

2942 * Determne the settings for utf8only, nornmalization and

2943 * casesensitivity. Specific values nmay have been requested by the
2944 * creator and/or we can inherit values fromthe parent dataset. |If
2945 * the file systemis of too early a vintage, a creator can not

2946 * request settings for these properties, even if the requested
2947 * setting is the default value. W don't actually want to create dsl
2948 * properties for these, so renmove themfromthe source nvlist after
2949 * processing.

2950 */

2951 static int

2952 zfs_fill_zpl props_inpl (objset_t *os, uint64_t zplver,

2953 bool ean_t fuids_ok, boolean_t sa_ok, nvlist_t *createprops,

2954 nvlist_t *zpl props, boolean_t *i S_CI)

2955 {

2956 uint64_t sense = ZFS PROP_UNDEFI NED;

2957 uint64_t norm= ZFS PROP_UNDEFI NED;

2958 uint64_t u8 = ZFS_PROP_UNDEFI NED;

2960 ASSERT(zpl props != NULL);

2962

| *

45

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980

2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994

2996
2997
2998
2999
3000

3002
3003
3004
3005

3007
3008
3009
3010
3011
3012
3013
3014
3015

3017
3018
3019
3020

3022
3023

3025
3026 }

*

Pull out creator prop choices, if any.

if (createprops) {

}

*

* If the zpl
* or pool
* and the creator tried to set

(void) nvlist_|ookup_uint64(createprops,
zfs_prop_to_nanme(ZFS_PROP_VERSI ON), &zplver);

(void) nvlist_| ookup_ui nt 64(creat eprops,
zfs_prop_t o_nanme(ZFS_PROP_NORMALI ZE), &norm;

(void) nvlist_renove_all (createprops,
zfs_prop_t o_nanme(ZFS_PROP_NORMALI ZE)) ;

(void) nvlist_| ookup_ui nt 64(createprops,
zfs_prop_t o_nanme(ZFS_PROP_UTF8ONLY), &u8);

(void) nvlist_renove_all (createprops,
zfs_prop_to_nanme(ZFS_PROP_UTF8ONLY)) ;

(void) nvlist_| ookup_ui nt 64(creat eprops,
zfs_prop_t o_nanme(ZFS_PROP_CASE), &sense);

(void) nvlist_renove_all (createprops,
zfs_prop_to_nanme(ZFS_PROP_CASE)) ;

versi on requested is V\/nacky or the file system
I's version is too "young" to support normalization
a value for one of the props,

* error out.
*

if ((zplver < ZPL_VERSI ON_INITIAL ||

/*

zplver > ZPL_VERSION) ||
(zplver >= ZPL_VERSION_FUID && !fuids_ok) ||
(zpl ver >= ZPL_VERSI ON_SA && !sa_ok)
(zpl ver < ZPL_VERSI ON_NORVAL| ZATI ON &&
(norm!= ZFS_PROP_UNDEFI NED || u8 != ZFS_PROP_UNDEFI NED | |
sense ! = ZFS_PROP_UNDEFI NED)))

return (ENOTSUP);

* Put the version in the zpl props

*

/

VERI FY(nvlist_add_ui nt 64(zpl props

if (norm=

zfs_prop_to_nane(ZFS_PRCP_VER’SI O\), zplver) == 0);

= ZFS_PROP_UNDEFI NED)

VERI FY(zfs_get _zpl prop(os, ZFS_PROP_NORMALI ZE, &norm) ==

VERI FY(nvl i st_add_ui nt 64(zpl props,

*

* |f we're normalizing,

*/
if (norm

if (us

zfs_prop_t o_nane(ZFS_PROP_NORMALI ZE), norm) == 0);

ug8 = 1;
== ZFS_PROP_UNDEFI NED)

VERI FY(zfs_get _zpl prop(os, ZFS_PROP_UTF8ONLY, &u8) == 0);

VERI FY(nvl i st_add_ui nt 64(zpl props,

zfs_prop_to_nane(ZFS_PROP_UTF8ONLY), u8) == 0);

if (sense == ZFS_PROP_UNDEFI NED)

VERI FY(zfs_ get _zpl prop(os, ZFS PROP_CASE, &sense) == 0);

VERI FY(nvlist_add_ui nt 64(zpl props,

zfs_prop_to_name(ZFS_PROP_CASE), sense) == 0);
if (is_ci)
*is_ci = (sense == ZFS_CASE_| NSENSI Tl VE) ;
return (0);

3028 static int

0)

names nust always be valid UTF-8 strings.

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 47

3029 zfs_fill_zpl props(const char *dataset, nvlist_t *createprops,
3030 “nvlist_t *zplprops, boolean_t *is_ci)

3031 {

3032 bool ean_t fuids_ok, sa_ok;

3033 uint64_t zplver = ZPL_VERSI ON

3034 obj set _t *os = NULL;

3035 char parent name[MAXNAVELEN] ;

3036 char *cp;

3037 spa_t *spa;

3038 uint64_t spa_vers;

3039 int error;

3041 (v0| d) strlcpy(parentnanme, dataset, sizeof (parentnane));
3042 cp = strrchr(parentnane, '/’);

3043 ASSERT(cp != NULL);

3044 cp[0] ="\0;

3046 if ((error = spa_open(dataset, &spa, FTAQ) != 0)

3047 return (error);

3049 spa_vers = spa_versi on(spa)

3050 spa_cl ose(spa, FTA(

3052 zplver = zfs_zpl _version_map(spa_vers);

3053 fuids_ok = (zplver >= ZPL_VERS|I ON_FUl D)

3054 sa_ok = (zplver >= ZPL_VERSI ON_SA);

3056 /*

3057 */QJen parent object set so we can inherit zplprop val ues.
3058 *

3059 if ((error = dmu_obj set_hol d(parent nane, FTAG &os)) != 0)
3060 return (error);

3062 error = zfs_fill_zplprops_i nmpl (os, zplver, fuids_ok, sa_ok, createprops,
3063 zpl props, is_ci);

3064 dmu_obj set _rel e(os, FTAG;

3065 return (error);

3066 }

3068 static int

3069 zfs_fill_zpl props_root(uint64_t spa_vers, nvlist_t *createprops,
3070 nvlist_t *zpl props, boolean_t *is_ci)

3071 {

3072 bool ean_t fui ds_ok;

3073 bool ean_t sa_ok;

3074 uint64_t zplver = ZPL_VERSI ON;

3075 int error;

3077 zpl ver = zfs_zpl _versi on_nap(spa_vers);

3078 fuids_ok = (zplver >= ZPL_VERS|I ON_FU D);

3079 sa_ok = (zplver >= ZPL_VERSI ON_SA);

3081 error = zfs_fill_zpl props_i mpl (NULL, zplver, fuids_ok, sa_ok,
3082 createprops, zplprops, is_ci);

3083 return (error);

3084 }

3086 /*

3087 * innvl: {

3088 * "type" -> dmu_objset_type_t (int32)

3089 * (optional) "props" -> { prop -> value }

3090 *

3091 *

3092 * outnvl: propnane -> error code (int32)

3093 *

3094 static int

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3095 zfs_ioc_create(const char *fsnane, nvlist_t *innvl,

3096 {
3097
3098
3099
3100
3101
3102
3103

3105
3106
3107
3108

3110
3111
3112
3113

3115
3116
3117

3119
3120
3121
3122
3123
3124
3125

3127

3129
3130

3132
3133

3135
3136
3137
3138
3139

3141
3142
3143
3144

3146
3147
3148

3150
3151
3152
3153
3154
3155
3156

3158
3159
3160

int error = 0;
zfs_creat_t zct = { 0 };
nvlist_t *nvprops = NULL;

nvlist_t *outnvl)

voi d (*cbfunc) (objset_t *os, void *arg, cred_t *cr, dnu_tx_t *tx);

int32_t type32;
dmu_obj set _type_t type;
bool ean_t is_insensitive = B_FALSE;

if (nvlist_lookup_int32(innvl, "type",
return (EINVAL);
type = type32;

& ype32) 1= 0)

(void) nvlist_lookup_nvlist(innvl, "props", &nvprops);
switch (type) {
case DMJ_OST

cbfunc = zfs_create_cb;

br eak;

case DMJ_OST_zVQOL:
cbfunc = zvol _create_cb;
br eak;

defaul t:
cbf unc = NULL;
br eak;

}
if (strchr(fsname, ' @) ||
strchr(fsnane, '%))
return (EINVAL);

zct. zct _props = nvprops;

if (cbfunc == NULL)
return (EINVAL);

if (type == DMJ_OST_zVQL)
uint64_t vol si ze, vol bl ocksi ze;

if (nvprops == NULL)
return (EI NVAL);
if (nvlist_| ookup_uint64(nvprops,
zfs_prop_t o_name(ZFS_PROP_VOLSI ZE), &vol si ze)
return (EI NVAL);

if ((error = nvlist_lookup_uint64(nvprops,
zfs_prop_t o_nanme(ZFS_PROP_VOLBLOCKSI ZE) ,
&vol bl ocksize)) = 0 & error != ENCENT)
return (EI NVAL);

if (error 1= 0)
vol bl ocksi ze = zfs_prop_defaul t_nuneri c(
ZFS_PROP_VOLBLOCKSI ZE) ;

if ((error = zvol _check_vol bl ocksi ze(
vol bl ocksize)) !'= 0 ||
(error = zvol _check_vol size(vol si ze,
vol bl ocksi ze)) != 0)
return (error);
} else if (type == DMJ_OST_ZFS) {
int error;

/*
* We have to have nornalization and
* case-folding flags correct when we do the

1= 0)

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 49 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 50
3161 * file systemcreation, so go figure them out 3227 * |t would be nice to do this atomically.
3162 * now. 3228 */
3163 */ 3229 if (error == 0) {
3164 VERI FY(nvlist_alloc(&ct.zct_zpl props, 3230 error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL,
3165 NV_UNI QUE_NAME, KM SLEEP) == 0); 3231 nvprops, outnvl);
3166 error = zfs_fill_zpl props(fsnane, nvprops, 3232 if (error 1= 0)
3167 zct. zct _zpl props, & s_insensitive); 3233 (voi d) dmu_obj set_destroy(fsnanme, B_FALSE);
3168 if (error 1=0) { 3234 }
3169 nvlist_free(zct.zct_zpl props); 3235 return (error);
3170 return (error); 3236 }
3171 }
3172 } 3238 /*
3239 * innvl: {
3174 error = dmu_obj set _create(fsnane, type, 3240 * "snaps" -> { snapshotl, snapshot2 }
3175 is_insensitive ? DS_FLAG Cl _DATASET : 0, cbfunc, &zct); 3241 * (optional) "props" -> { prop -> value (string) }
3176 nvlist_free(zct.zct_zpl props); 3242 *
3243 *
3178 /* 3244 * outnvl: snapshot -> error code (int32)
3179 * It would be nice to do this atomically. 3245 *
3180 */ 3246 */
3181 if (error == 0) { 3247 static int
3182 error = zfs_set_prop_nvlist(fsnane, ZPROP_SRC LOCAL, 3248 zfs_ioc_snapshot (const char *pool name, nvlist_t *innvl, nvlist_t *outnvl)
3183 nvprops, outnvl); 3249 {
3184 if (error 1= 0) 3250 nvlist_t *snaps;
3185 (voi d) dnu_obj set _destroy(fsname, B_FALSE); 3251 nvlist_t *props = NULL;
3186 } 3252 int error, poollen;
3187 return (error); 3253 nvpair_t *pair;
3188 }
3255 (oid) nvlist_lookup_nvlist(innvl, "props", &props);
3190 /* 3256 if ((error = zfs_check_user props(pool nane, pr ops)) 1= 0)
3191 * innvl: { 3257 return (error);
3192 * "origin" -> name of origin snapshot
3193 * (optional) "props" -> { prop -> value } 3259 if (!I'nvlist_enpty(props) &&
3194 * 3260 zfs_earlier_version(pool name, SPA_VERSI ON_SNAP_PROPS))
3195 * 3261 return (ENOTSUP);
3196 * outnvl: propnane -> error code (int32)
3197 * 3263 if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0)
3198 static int 3264 return (EINVAL);
3199 zfs_ioc_clone(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) 3265 pool I en = strlen(pool nane);
3200 { 3266 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
3201 int error = 0; 3267 pair = nvlist_next nvpa| r(snaps, pair)) {
3202 nvlist_t *nvprops = NULL; 3268 const char *name = nvpair_nanme(pair);
3203 char *origi n_naneg; 3269 const char *cp = strchr(nanme, '@);
3204 dsl _dataset _t *origin;
3271 /*
3206 if (nvlist_lookup_string(innvl, "origin", &origin_nanme) != 0) 3272 * The snap nanme nust contain an @ and the part after it nust
3207 return (EINVAL); 3273 * contain only valid characters.
3208 (void) nvlist_lookup_nvlist(innvl, "props", &nvprops); 3274 *
3275 if (cp == NULL || snapshot_nanecheck(cp + 1, NULL, NULL) != 0)
3210 if (strchr(fsnane, " @) || 3276 return (EI NVAL);
3211 strchr(fsname, "%))
3212 return (EINVAL); 3278 /*
3279 * The snap nust be in the specified pool.
3214 if (dataset_nanecheck(origin_name, NULL, NULL) != 0) 3280 */
3215 return (EINVAL); 3281 if (strncnp(nane, pool name, poollen) !'=0 ||
3282 (nanme[poollen] !'="/" && nane[poollen] '="'@))
3217 error = dsl_dataset _hol d(origi n_nane, FTAG &origin); 3283 return (EXDEV);
3218 if (error)
3219 return (error); 3285 /* This must be the only snap of this fs. */
3286 for (nvpair_t *pair2 = nvlist_next_nvpair(snaps, pair);
3221 error = dnu_obj set _cl one(fsnane, origin, 0); 3287 pair2 !'= NULL; pair2 = nvlist_next_nvpair(snaps, pair2)) {
3222 dsl _dataset _rel e(origin, FTAG; 3288 if (strncnp(nanme, nvpair_name(pair2), cp - nane + 1)
3223 if (error) 3289 == 0) {
3224 return (error); 3290 return (EXDEV);
3291 }
3226 /* 3292 }

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 51
3293 }

3295 error = dnu_obj set _snapshot (snaps, props, outnvl);

3296 return (error);

3297 }

3299 /*

3300 * innvl: "nessage" -> string

3301

3302 /* ARGSUSED */

3303 static int

3304 {zf s_ioc_l og_history(const char *unused, nvlist_t *innvl, nvlist_t *outnvl)
3305

3306 char *nessage;

3307 spa_t *spa;

3308 int error;

3309 char *pool nane;

3311 /*

3312 * The poolnane in the ioctl is not set, we get it fromthe TSD,
3313 * which was set at the end of the |ast successful ioctl that allows
3314 * | ogging. The secpolicy func already checked that it is set.
3315 * Only one log ioctl is allowed after each successful ioctl, so
3316 * we clear the TSD here.

3317 *

3318 pool name = tsd_get(zfs_allow_| og_key);

3319 (void) tsd_set(zfs_allow_|og_key, NULL);

3320 error = spa_open(pool nane, &spa, FTAG;

3321 strfree(pool nane);

3322 if (error 1= 0)

3323 return (error);

3325 if (nvlist_lookup_string(innvl, "nessage", &message) != 0) {
3326 spa_cl ose(spa, FTAQ;

3327 return (EINVAL);

3328 1

3330 if (spa_version(spa) < SPA VERSI ON_ZPOOL_HI STORY) {

3331 spa_cl ose(spa, FTAQ;

3332 return (ENOTSUP);

3333 }

3335 error = spa_history_|l og(spa, nessage);

3336 spa_cl ose(spa, FTAQ;

3337 return (error);

3338 }

3340 /* ARGSUSED */

3341 int

3342 zfs_unnount _snap(const char *nane, void *arg)

3343 {

3344 vfs_t *vfsp;

3345 int err;

3347 if (strchr(name, '@) == NULL)

3348 return (0);

3350 visp = zfs_get _vfs(nane);

3351 if (vfsp == NULL)

3352 return (0);

3354 if ((err = vn_vfsw ock(vfsp->vfs_vnodecovered)) != 0) {

3355 VFS_RELE(vf sp);

3356 return (err);

3357 1

3358 VFS_RELE(vfsp);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3360 /*

3361 * Always force the unmount for snapshots.

3362 */

3363 return (dounmount (vfsp, MS_FORCE, kcred));

3364 }

3366 /*

3367 * innvl: {

3368 * "snaps" -> { snapshotl, snapshot2 }

3369 * (optional bool ean) "defer"

3370 *

3371 *

3372 * outnvl: snapshot -> error code (int32)

3373 *

3374 */

3375 static int

3376 zfs_ioc_destroy_snaps(const char *pool name, nvlist_t *innvl, nvlist_t *outnvl)
3377 {

3378 int poollen;

3379 nvlist_t *snaps;

3380 nvpair_t *pair;

3381 bool ean_t defer;

3383 if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0)
3384 return (EINVAL);

3385 defer = nvlist_exists(innvl, "defer");

3387 pool | en = strlen(pool nane);

3388 for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
3389 pair = nvlist_next_nvpair(snaps, pair)) {

3390 const char *name = nvpair_nanme(pair);

3392 /*

3393 * The snap nust be in the specified pool.

3394 *

3395 if (strncnp(nane, pool name, poollen) !=0 ||

3396 (nane[poollen] !'="'/" &% nanme[poollen] !'="@))
3397 return (EXDEV);

3399 *

3400 * |gnore failures to unnount; dnmu_snapshots_destroy_nvl ()
3401 * wll deal with this gracefully (by filling in outnvl).
3402 */

3403 (voi d) zfs_unmount_snap(name, NULL);

3404 }

3406 return (dmu_snapshots_destroy_nvl (snaps, defer, outnvl));
3407 }

3409 /*

3410 * inputs:

3411 * zc_nane name of dataset to destroy

3412 * zc_objset_type type of objset

3413 * zc_defer_destroy mark for deferred destroy

3414 *

3415 * outputs: none

3416 */

3417 static int

3418 zfs_ioc_destroy(zfs_cnd_t *zc)

3419 {

3420 int err;

3421 if (strchr(zc->zc_nane, '@) && zc->zc_objset_type == DMJ_OST_ZFS) {
3422 err = zfs_unnmount _snap(zc->zc_nane, NULL);

3423 if (err)

3424 return (err);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 53 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3425 } 3491 resune_err = zfs_resune_fs(zfsvfs, zc->zc_nane);
3492 error = error ? error : resume_err;
3427 err = dnu_obj set _destroy(zc->zc_nane, zc->zc_defer_destroy); 3493 }
3428 if (zc->zc_objset_type == DMJ_OST_ZVOL && err == 0) 3494 VFS_RELE(zf svfs->z_vfs);
3429 (void) zvol _renpve_mi nor(zc->zc_nane); 3495 } else {
3430 return (err); 3496 if (dsl_dataset_tryown(ds, B_FALSE, FTAQ) {
3431 } 3497 error = dsl_dataset_cl one_swap(clone, ds, B TRUE);
3498 dsl _dat aset _di sown(ds, FTAG;
3433 /* 3499 ds = NULL;
3434 * inputs: 3500 } else {
3435 * zc_nane nanme of dataset to rollback (to nbost recent snapshot) 3501 error = EBUSY;
3436 * 3502 }
3437 * outputs: none 3503 }
3438 */
3439 static int 3505 /*
3440 zfs_ioc_roll back(zfs_cnd_t *zc) 3506 * Destroy clone (which also closes it).
3441 { 3507 */
3442 dsl _dataset _t *ds, *clone; 3508 (voi d) dsl_dataset_destroy(clone, FTAG B_FALSE);
3443 int error;
3444 zfsvfs_t *zfsvfs; 3510 out:
3445 char *cl one_nane; 3511 strfree(cl one_nane);
3512 if (ds)
3447 error = dsl_dataset _hol d(zc->zc_nane, FTAG &ds); 3513 dsl _dataset _rel e(ds, FTAG;
3448 if (error) 3514 return (error);
3449 return (error); 3515 }
3451 /* nust not be a snapshot */ 3517 /*
3452 if (dsl_dataset_is_snapshot(ds)) { 3518 * inputs:
3453 dsl _dataset _rel e(ds, FTAQ; 3519 * zc_nane ol d nane of dataset
3454 return (EINVAL); 3520 * zc_val ue new nane of dataset
3455 } 3521 * zc_cookie recursive flag (only valid for snapshots)
3522 *
3457 /* must have a npbst recent snapshot */ 3523 * outputs: none
3458 if (ds->ds_phys->ds_prev_snap_txg < TXG_IN TIAL) { 3524 */
3459 dsl _dataset_rel e(ds, FTAQ; 3525 static int
3460 return (EINVAL); 3526 zfs_ioc_renane(zfs_cnd_t *zc)
3461 } 3527 {
3528 bool ean_t recursive = zc->zc_cookie & 1;
3463 /*
3464 * Create clone of npbst recent snapshot. 3530 zc->zc_val ue[si zeof (zc->zc_value) - 1] = '\0";
3465 */ 3531 if (dataset_nanecheck(zc->zc_val ue, NULL, NULL) != 0 ||
3466 cl one_nanme = knmem asprintf("%/ %% ol | back", zc->zc_nane); 3532 strchr(zc->zc_value, "%))
3467 error = dnu_obj set _cl one(cl one_nane, ds->ds_prev, DS FLAG | NCONSI STENT) ; 3533 return (EINVAL);
3468 if (error)
3469 goto out; 3535 /*
3536 * Unnopunt snapshot unl ess we’re doing a recursive renane,
3471 error = dsl _dataset_own(cl one_name, B _TRUE, FTAG &cl one); 3537 * in which case the dataset code figures out which snapshots
3472 if (error) 3538 * to unnount.
3473 goto out; 3539 *
3540 if (!recursive & strchr(zc->zc_nane, @) != NULL &&
3475 /* 3541 zc->zc_obj set _type == DMJ_OST_ZFS)
3476 * Do clone swap. 3542 int err = zfs_unnmount _snap(zc->zc_nane, NULL);
3477 */ 3543 if (err)
3478 if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) { 3544 return (err);
3479 error = zfs_suspend_fs(zfsvfs); 3545 }
3480 if (error == 0) { 3546 if (zc->zc_objset_type == DMJ_OST_zVQL)
3481 int resunme_err; 3547 (void) zvol _renove_m nor(zc->zc_nane);
3548 return (dnu_objset_renanme(zc->zc_nane, zc->zc_value, recursive));
3483 if (dsl_dataset_tryown(ds, B_FALSE, FTAG) { 3549 }
3484 error = dsl_dataset _cl one_swap(cl one, ds,
3485 B _TRUE) 3551 static int
3486 dsl _dat aset _di sown(ds, FTAG; 3552 zfs_check_settabl e(const char *dsname, nvpair_t *pair, cred_t *cr)
3487 ds = NULL; 3553 {
3488 } else { 3554 const char *propnane = nvpair_nane(pair);
3489 error = EBUSY; 3555 bool ean_t issnap = (strchr(dsname, '@) != NULL);

3490 } 3556 zfs_prop_t prop = zfs_nane_to_prop(propnane);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3557
3558

3560
3561
3562
3563
3564
3565
3566

3568
3569
3570
3571
3572
3573

3575
3576
3577
3578
3579
3580
3581
3582
3583
3584

3586
3587
3588
3589

3591
3592

3594
3595

3597
3598
3599
3600
3601
3602
3603
3604
3605
3606

3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622

uint64_t intval;
int err;

if (prop == ZPROP_I NVAL) {
if (zfs prop_! user(propnane))
i f (err = zfs_secpolicy_wite_perns(dsnane,
ZFS_DELEG PERM USERPROP, cr))
return (err);
return (0);
}

if (lissnap && zfs_prop_userquota(propnane)) {
const char *perm = NULL;
const char *uq_prefix =
zfs_userquot a_prop_prefixes[ZFS_PROP_USERQUOTA] ;
const char *gg_prefix =

zfs_user quot a_prop_prefi xes[ZFS_PROP_GROUPQUOTA| ;

if (strncnp(propnanme, uqg_prefix,
strlen(ug_prefix)) == 0) {
perm = ZFS_DELEG PERM USERQUOTA;
} else if (strncnp(propnane, gq_prefix,
strlen(gq_prefix)) == 0
perm = ZFS_DELEG PERM GROUPQUOTA;
} else {
/* USERUSED and GROUPUSED are read-only */
return (EINVAL);
}

if (err = zfs_secpolicy_wite_perns(dsnane, perm cr))

return (err);
return (0);

}

return (EINVAL);
}

if (issnap)
return (EINVAL);

if (nvpair_type(pair) == DATA TYPE_NVLI ST) {
/*

* dsl _prop_get_all _inpl () returns properties in this

* format.

*/

nvlist_t *attrs;

VERI FY(nvpair_val ue_nvlist(pair,

VERI FY(nvl i st _| ookup_nvpair(attrs,
gpair) == 0);

&attrs) == 0);
ZPROP_VALUE,

}

/*
* Check that this value is valid for this pool version
*/

switch (prop) {

case ZFS_PROP_COWPRESSI ON:
/*

* |f the user specified gzip conpression, nake sure

* the SPA supports it. We ignore any errors here since

* we'll catch themlater.

*/

if (nvpair_type(pair) == DATA TYPE U NT64 &&
nvpai r _val ue_ui nt64(pair, & ntval) == 0) {
if (intval >= ZIO COWRESS GZIP_1 &&
intval <= ZI O COWPRESS &ZI P 9 &&
zfs_earlier_version(dsnane,

55

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3623
3624
3625

3627
3628
3629
3630

3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644

3646
3647
3648
3649

3651
3652
3653
3654

3656
3657
3658
3659

3661
3662
3663
3664
3665
3666
3667
3668
3669
3670

3672
3673

3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688

* Ok ok ok kR % O % bk % k%

case

case

case

case

}

return (zfs_secpolicy_setprop(dsnane, prop, pair,

SPA_VERSI ON_&ZI P_COVPRESSI ON)) {
return (ENOTSUP);

if (intval == ZI O COWRESS_ZLE &&
zfs_earlier_version(dsname,
SPA_VERSI ON_ZLE_COVPRESSI ON))
return (ENOTSUP);

*
* |f this is a bootable dataset then

* verify that the conpression algorithm

* is supported for booting. We nust return
* sonet hi ng ot her than ENOTSUP since it

* inplies a downrev pool version.

*

if (zfs i s_bootfs(dsnane) &&
BOOTFS_COWPRESS _VALI D(intval)) {
return (ERANGE);

br eak;

ZFS_PROP_CCPI ES:
if (zfs_earlier_version(dsnane, SPA VERSI ON_DI TTO BLOCKS))
return (ENOTSUP);
br eak;

ZFS_PROP_DEDUP:
if (zfs_earlier_version(dsnane, SPA VERS|I ON_DEDUP))
return (ENOTSUP);
br eak;

ZFS_PROP_SHARESMB:
if (zpl_earlier_version(dsnane, ZPL_VERSI ON_FU D))
return (ENOTSUP);
br eak;

ZFS_PROP_ACLI NHERI T:
if (nvpa| r_type(pair) == DATA TYPE U NT64 &&
nvpai r _val ue U|nt64(palr & ntval) == 0) {
if (intval == ZFS_ACL_PASSTHROUGH X &&
zfs_earlier_version(dsnang,
SPA_VERSI ON_PASSTHROUGH_X))
return (ENOTSUP) ;

}
br eak;

CREX())) ;

Rermoves properties fromthe given props list that fail perm ssion checks

needed to
property,

Returns the first error encountered if any perm ssion checks fail.

clear themand to restore themin case of a receive error. For
make sure we have both set and inherit perni ssions.

If the

56

each

caller provides a non-NULL errlist, it also gives the conplete |ist of nanes
of all the properties that failed a perm ssion check along with the

correspondi ng error nunbers.

The caller is responsible for freeing the

returned errlist.

If every property checks out successfully, zero is returned and the |i st

poi nted at

by errlist is NULL.

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

3689
3690
3691
3692
3693
3694
3695

3697
3698

3700

3702
3703
3704
3705
3706

3708
3709
3710
3711
3712
3713
3714
3715
3716
3717

3719
3720
3721
3722
3723
3724

3726
3727
3728
3729

3731
3732

3734
3735
3736
3737
3738
3739
3740
3741
3742
3743

3745
3746
3747
3748
3749
3750

3752
3753

static int
zfs_check_cl earabl e(char *dataset, nvlist_t *props, nvlist_t **errlist)
{

zfs_cmd_t *zc;

nvpair_t *pair, *next_pair;
nvliist_t *errors;

int err, rv = 0;

if (props == NULL)
urn (0);

VERI FY(nvlist_alloc(&rrors, NV_UN QUE_NAME, KM SLEEP) == 0);

zc = kmem al | oc(sizeof (zfs_cnd_t), KM SLEEP);
(void) strcpy(zc->zc_nane, dataset);
pair = nvlist_next_nvpair(props, NULL);

while (pair != NULL)
next_pair = nvlist_next_nvpair(props, pair);

(voi d) strcpy(zc >zc_val ue, nvpair_nane(pair));

if ((err = zfs_check “sett abl e(dataset, pair, CRED())) I =
(err = zfs secpolicy_inheri t_prop(zc, NULL, CRED()))
VERI FY(nvlist_renove_nvpair(props, pair) == 0);

VERI FY(nvlist_add_int32(errors,
zc->zc_value, err) == 0);

pair = next_pair;

}
kmem free(zc, sizeof (zfs_cnd_t));
if ((pair = nvlist_next_nvpair(errors,
nvlist_free(errors);
errors = NULL;
} else {
VERI FY(nvpai r _val ue_i nt 32(pair,
}

if (errlist == NULL)
nvlist_free(errors);

NULL)) == NULL) {

&rv) == 0);

el se
*errlist = errors;

return (rv);

}

static bool ean_t
propval _equal s(nvpair_t *pl, nvpair_t *p2)
if (nvpair_type(pl) == DATA TYPE _NVLIST) {
/* dsl _prop_get_all_inpl () format */
nvlist_t *attrs;
VERI FY(nvpair_ val ue_nvl i st(pl, &attrs) == 0);
VERI FY(nvl i st _| ookup_nvpair(attrs, ZPR(P VALUE
) &l) == 0);

if (nvpair_type(p2) == DATA_TYPE_NVLI ST) {
nvlist_t *attrs;
VERI FY(nvpai r val ue_nvl i st(p2, &attrs) == 0);
VERI FY(nvl i st _| ookup_nvpair(attrs, ZPROP_VALUE,
) &p2) == 0);

if (nvpair_type(pl) != nvpair_type(p2))
return (B_FALSE);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

58

since we

call)

3755 if (nvpalr type(pl) == DATA TYPE_STRING {

3756 *val strl *val str2;

3758 VERI FY(nvpair_val ue_string(pl, (char **)&alstrl) == 0);
3759 VERI FY(nvpair_val ue_string(p2, (char **)&alstr2) == 0);
3760 return (strcnp(val strl, valstr2) == 0);

3761 } else {

3762 uint64_t intvall, intval2;

3764 VERI FY(nvpai r _val ue_ui nt 64(pl, & ntvall) == 0);

3765 VERI FY(nvpai r _val ue_ui nt 64(p2, & ntval2) == 0);

3766 return (intvall == intval 2);

3767 }

3768 }

3770 /*

3771 * Remove properties fromprops if they are not going to change (as determ ned
3772 * by conparison with origprops). Renpbve them from ori gprops as wel |,
3773 * do not need to clear or restore properties that won't change.
3774 */

3775 static void

3776 props_reduce(nvlist_t *props, nvlist_t *origprops)

3777 {

3778 nvpair_t *pair, *next_pair;

3780 if (origprops == NULL)

3781 return; /* all props need to be received */

3783 pair = nvlist_next_nvpair(props, NULL);

3784 while (pair !'= NULL) {

3785 const char *propname = nvpair_nanme(pair);

3786 nvpair_t *match;

3788 next _pair = nvlist_next_nvpair(props, pair);

3790 if ((nvlist_|lookup_nvpair(origprops, propnane,

3791 &match) !'= 0) || !propval _equal s(pair, match))
3792 goto next; /* need to set received value */
3794 /* don't clear the existing received value */

3795 (void) nvlist_renove_nvpair(origprops, natch);

3796 /* don’'t bother receiving the property */

3797 (void) nvlist_renove_nvpair(props, pair);

3798 next:

3799 pair = next_pair;

3800 }

3801 }

3803 #i fdef DEBUG

3804 static boolean_t zfs_ioc_recv_inject_err;

3805 #endi f

3807 /*

3808 * inputs:

3809 * zc_nane name of containing filesystem

3810 * zc_nvlist_src{_size} nvlist of properties to apply

3811 * zc_val ue nane of snapshot to create

3812 * zc_string name of clone origin (if DRR_FLAG CLONE)
3813 * zc_cookie file descriptor to recv from

3814 * zc_begin_record the BEGA N record of the stream (not byteswapped)
3815 * zc_guid force flag

3816 * zc_cl eanup_fd cl eanup-on-exit file descriptor

3817 * zc_action_handle handl e for this guid/ds mapping (or zero on first
3818 *

3819 * outputs:

3820 * zc_cookie nunber of bytes read

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 59

3821 * zc_nvlist_dst{_size} error for each unapplled received property

3822 * zc_obj zprop_errflags_t

3823 * zc_action_handl e handl e for this guid/ds mapping

3824 */

3825 static int

3826 zfs_ioc_recv(zfs_cnd_t *zc)

3827 {

3828 file_t *fp;

3829 obj set _t *os;

3830 dmu_recv_cooki e_t dr

3831 boolean_t force = (ool ean_t)zc->zc_gui d;

3832 int fd;

3833 int error = 0;

3834 int props_error = 0;

3835 nvliist_t *errors;

3836 of fset _t off;

3837 nvlist_t *props = NULL; /* sent properties */

3838 nvlist_t *origprops = NULL; /* existing properties */

3839 obj set _t *origin = NULL;

3840 char *tosnap;

3841 char tof s[ZFS_MAXNAMVELEN ;

3842 bool ean_t first_recvd_props = B_FALSE;

3844 if (dataset_nanmecheck(zc->zc_ val ue, NULL, NULL) !'= 0 ||

3845 strchr(zc->zc_value, @) == NULL ||

3846 strchr(zc->zc_value, "%))

3847 return (EINVAL);

3849 (void) strcpy(tofs, zc->z¢ _val ue);

3850 tosnap = strchr(tofs '@);

3851 *tosnap++ = '\ 0’

3853 if (zc->zc_nvlist_src != NULL &&

3854 (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
3855 zc->zc_iflags, &props)) != 0)

3856 return (error);

3858 fd = zc->zc_cooki e

3859 fp = getf(fd);

3860 if (fp == NULL

3861 nvlist_free(props);

3862 return (EBADF);

3863 }

3865 VERI FY(nvlist_alloc(&rrors, NV_UNI QUE_NAVE, KM SLEEP) == 0);

3867 if (props & dnu_objset_hol d(tofs, FTAG &os) == 0) {

3868 if ((spa versi on(0s->0s_spa) >= SPA_ VERSI ON_RECVD_PROPS) &&
3869 I'dsl _prop_get _hasrecvd(o0s))

3870 first_recvd_props = B_TRUE;

3871 }

3873 *

3874 * |f new received properties are supplied, they are to
3875 * conpl etely replace the existing received properties, so stash
3876 * away the existing ones.

3877 */

3878 if (dsl_prop_get_received(os, &origprops) == 0) {

3879 nvlist_t *errlist = NULL;

3880 /*

3881 * Don't bother witing a property if its value won't
3882 * change (and avoid the unnecessary security checks).
3883 *

3884 * The first receive after SPA VERSI ON_ RECVD PROPS is a
3885 * special case where we bl ow away al |l | ocal properties
3886 * regardl ess.

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 60
3887 */

3888 if (!first_recvd_props)

3889 props_reduce(props, origprops);

3890 if (zfs_check_clearabl e(tofs, origprops,

3891 &errlist) !'=0)

3892 (void) nvlist_merge(errors, errlist, 0);
3893 nvlist_free(errlist);

3894 }

3896 drmu_obj set _rel e(os, FTAQ;

3897 1

3899 if (zc->zc_string[0]) {

3900 error = dmu_obj set _hol d(zc->zc_string, FTAG &origin);

3901 if (error)

3902 goto out;

3903 }

3905 error = dnu_recv_begin(tofs, tosnap, zc->zc_top_ds,

3906 &zc->zc_begin_record, force, origin, &drc);

3907 if (ori gl n)

3908 drmu_obj set _rel e(origin, FTAQ;

3909 if (error)

3910 goto out;

3912 /*

3913 * Set properties before we receive the streamso that they are applied
3914 * to the new data. Note that we nust call dnmu_recv_strean() if
3915 * dmu_recv_begi n() succeeds.

3916 *

3917 if (props) {

3918 if (dmu_objset_fromds(drc.drc_| ogical _ds, &s) == 0) {
3919 if (drc.drc_newfs) {

3920 if (spa_version(os->0s_spa) >=

3921 SPA_VERSI ON_RECVD_PROPS)

3922 “first_recvd_props = B_TRUE;

3923 } else if (origprops !'= NULL) {

3924 if (clear_received_props(os, tofs, origprops,
3925 first_recvd_props ? NULL : props) = 0)
3926 zc->zc_obj |= ZPROP_ERR NOCLEAR
3927 } else {

3928 zc->zc_obj | = ZPROP_ERR NOCLEAR;

3929

3930 dsl _prop_set _hasrecvd(os);

3931 } else if (Tdrc.drc_news)

3932 zc->zc_obj [= ZPROP_ERR _NOCLEAR;

3933 }

3935 (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEI VED,

3936 props, errors);

3937 }

3939 if (zc->zc_nvlist_dst_size !'= 0 &&

3940 (nvlist_snush(errors, zc->zc_nvlist_dst_size) !=0 ||

3941 put _nvlist(zc, errors) !'=0)) {

3942 /*

3943 * Caller made zc->zc_nvlist_dst |ess than the m ni mum expected
3944 * size or supplied an invalid address.

3945 */

3946 props_error = ElI NVAL;

3947 1

3949 off = fp->f_offset;

3950 error = dnu_recv_strean(&drc, fp->f_vnode, &off, zc->zc_cleanup_fd,
3951 &zc->zc_action_handl e);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 61 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
3953 if (error == 0) { 4019 ZPROP_SRC_LOCAL : ZPROP_SRC _RECEI VED),
3954 zfsvfs_t *zfsvfs = NULL; 4020 origprops, NULL) != 0) {
4021 /*
3956 if (getzfsvfs(tofs, &fsvfs) == 0) { 4022 * We stashed the original properties but failed to
3957 /* online recv */ 4023 * restore them
3958 int end_err; 4024 &/
4025 zc->zc_obj | = ZPROP_ERR _NORESTORE;
3960 error = zfs_suspend_fs(zfsvfs); 4026 }
3961 /* 4027 }
3962 * |f the suspend fails, then the recv_end wll 4028 out:
3963 * likely also fail, and clean up after itself. 4029 nvlist_free(props);
3964 =l 4030 nvlist_free(origprops);
3965 end_err = drmu_recv_end(&drc); 4031 nvlist_free(errors);
3966 if (error == 0) 4032 rel easef (fd);
3967 error = zfs_resune_fs(zfsvfs, tofs);
3968 error = error ? error : end_err; 4034 if (error == 0)
3969 VFS_RELE(zf svfs->z_vfs); 4035 error = props_error;
3970 } else {
3971 error = dmu_recv_end(&drc); 4037 return (error);
3972 } 4038 }
3973 }
4040 /*
3975 zc->zc_cookie = off - fp->f_offset; 4041 * inputs:
3976 if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0) 4042 * zc_nane nane of snapshot to send
3977 fp->f_offset = off; 4043 * zc_cookie file descriptor to send streamto
4044 * zc_obj fronmorigin flag (nutually exclusive with zc_fronobj)
3979 #ifdef DEBUG 4045 * zc_sendobj obj setid of snapshot to send
3980 if (zfs_ioc_recv_inject_err) { 4046 * zc_fronobj objsetid of incremental fronsnap (nay be zero)
3981 zfs_ioc_recv_inject_err = B_FALSE; 4047 * zc_guid if set, estimate size of streamonly. zc_cookie is ignored.
3982 error = 1; 4048 * output size in zc_objset_type.
3983 } 4049 *
3984 #endi f 4050 * outputs: none
3985 /* 4051 */
3986 * On error, restore the original props. 4052 static int
3987 */ 4053 zfs_ioc_send(zfs_cnd_t *zc)
3988 if (error &% props) { 4054 {
3989 if (dmu_objset_hold(tofs, FTAG &os) == 0) { 4055 obj set _t *fromsnap = NULL;
3990 if (clear_received_props(os, tofs, props, NULL) != 0) { 4056 obj set _t *tosnap;
3991 s 4057 int error;
3992 * W failed to clear the received properties. 4058 of fset _t off;
3993 * Since we may have left a $recvd value on the 4059 dsl _dat aset _t *ds;
3994 * system we can't clear the $hasrecvd flag. 4060 dsl _dataset _t *dsfrom = NULL;
3995 */ 4061 spa_t *spa;
3996 zc->zc_obj | = ZPROP_ERR NORESTORE; 4062 dsl _pool _t *dp;
3997 } else if (first_recvd_props) { 4063 bool ean_t estimate = (zc->zc_guid != 0);
3998 dsl _prop_unset _hasrecvd(os);
3999 } 4065 error = spa_open(zc->zc_nanme, &spa, FTAG;
4000 dmu_obj set _rel e(os, FTAGQ; 4066 if (error)
4001 } else if (!drc.drc_news) { 4067 return (error);
4002 /* We failed to clear the received properties. */
4003 zc->zc_obj | = ZPROP_ERR _NORESTORE; 4069 dp = spa_get_dsl (spa);
4004 } 4070 rw_ent er (&p- >dp_confi g_rw ock, RW READER);
4071 error = dsl_dataset _hol d_obj (dp, zc->zc_sendobj, FTAG &ds);
4006 if (origprops == NULL && !drc.drc_newfs) { 4072 rw_exit (&dp->dp_config_rw ock);
4007 /* W failed to stash the original properties. */ 4073 spa_cl ose(spa, FTAQ;
4008 zc->zc_obj | = ZPROP_ERR_NORESTORE; 4074 if (error)
4009 } 4075 return (error);
4011 /* 4077 error = dnu_objset _fromds(ds, &t osnap);
4012 * dsl _props_set() will not convert RECEIVED to LOCAL on or 4078 if (error) {
4013 * after SPA_VERSI ON_ RECVD PROPS, so we need to specify LOCAL 4079 dsl _dataset _rel e(ds, FTAQ;
4014 * explictly if we're restoring |ocal properties cleared in the 4080 return (error);
4015 * first newstyle receive. 4081 }
4016 */
4017 if (origprops != NULL && 4083 if (zc->zc_fromobj != 0)
4018 zfs_set_prop_nvlist(tofs, (first_recvd_props ? 4084 rw_ent er (&p- >dp_confi g_rw ock, RW READER);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 63

4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097

4099
4100

4102
4103
4104
4105
4106

4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124

4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136

4138
4139
4140

4142
4143
4144
4145
4146
4147
4148
4149
4150 }

error = dsl_dataset_hol d_obj (dp, zc->zc_fronobj, FTAG &dsfrom;
rw_exit (&dp->dp_config_rw ock);
if (error) {

dsl _dataset _rel e(ds, FTAQ;

return (error);

}

error = dmu_obj set _fromds(dsfrom &fronsnap);
if (error) {

dsl _dataset _rel e(dsfrom FTAG;
dsl _dat aset _rel e(ds, FTAQ;
return (error);

}

if (zc->zc_obj) {
dsl _pool _t *dp = ds->ds_dir->dd_pool ;

if (fromsnap != NULL)
dsl _dat aset _rel e(dsfrom FTAQ;
dsl _dataset _rel e(ds, FTAQ;
return (EI NVAL);

}

if (dsl_dir_is_clone(ds->ds_dir)) {
rw_enter (& p->dp_config_rw ock, RW READER);
error = dsl _dataset_hol d_obj (dp,
ds->ds_di r->dd_phys->dd_ori gi n_obj, FTAG &dsfron);
rw_exit(&dp->dp_config_rw ock);
if (error)
dsl _dat aset _rel e(ds, FTAQ;
return (error);

error = dnu_objset_fromds(dsfrom &fromsnap);
if (error) {

dsl _dataset _rel e(dsfrom FTAG;

dsl _dat aset _rel e(ds, FTAQ;

return (error);

}

if (estimate) {
error = dmu_send_esti mat e(tosnap, fronsnap,
&zc->zc_obj set _type);

} else {

file_t *fp = getf(zc->zc_cookie);

if (fp == NULL)
dsl _dat aset _rel e(ds, FTAQ;
if (dsfrom

dsl _dataset _rel e(dsfrom FTAG;

return (EBADF);

}

of f = fp->f_offset;
error = dnu_send(tosnap, fronsnap,
zc->zc_cooki e, fp->f_vnode, &off);

if (VOP_SEEK(fp->f_vnode, fp->f_offset, &ff, NULL) == 0)
fp->f_offset = off;
rel easef (zc->zc_cooki e);

}
if (dsfrom
dsl _dataset _rel e(dsfrom FTAG;
dsl _dat aset _rel e(ds, FTAQ;
return (error);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

4152 /
4153
4154
4155
4156
4157
4158
4159

*

*
*
*
*
*
*

*/

64

inputs:

zc_nane nane of snapshot on which to report progress
zc_cooki e file descriptor of send stream

out put s:

zc_cooki e nunber of bytes witten in send streamthus far

4160 static int
4161 zfs_ioc_send_progress(zfs_cnd_t *zc)

4162 {
4163
4164
4165

4167
4168

4170

4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183

4185
4186
4187
4188

4190
4191
4192
4193 }

dsl _dat aset _t *ds;
drmu_sendarg_t *dsp = NULL;
int error;

if ((error = dsl_dataset_hol d(zc->zc_nanme, FTAG &ds)) != 0)
return (error);

mut ex_ent er (&ds- >ds_sendstream | ock) ;

/
Iterate over all the send streams currently active on this dataset.
If there’'s one which matches the specified file descriptor _and_ the
stream was started by the current process, return the progress of

* that stream

EEE

*/
for (dsp = list_head(&ds->ds_sendstreans); dsp != NULL;
dsp = |ist_next(&ds->ds_sendstreans, dsp)) {
if (dsp->dsa_outfd == zc->zc_cookie &&
dsp- >dsa_proc == curproc)
break;
}

if (dsp !'= NULL)

zc->zc_cookie = *(dsp->dsa_off);
el se

error = ENOCENT;

mut ex_exi t (&ds- >ds_sendstream | ock) ;
dsl _dat aset _rel e(ds, FTAQ;
return (error);

4195 static int
4196 zfs_ioc_inject_fault(zfs_cnd_t *zc)

4197 {
4198

4200
4201

4203
4204

4206
4207 }

int id, error;

error = zio_inject_fault(zc->zc_name, (int)zc->zc_guid, &d,
&zc->zc_inject_record);

if (error == 0)
zc->zc_guid = (uint64_t)id;

return (error);

4209 static int
4210 zfs_ioc_clear_fault(zfs_cnd_t *zc)

4211 {
4212
4213 }

return (zio_clear_fault((int)zc->zc_guid));

4215 static int
4216 zfs_ioc_inject _list_next(zfs_cnmd_t *zc)

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

4217 {

4218 int id = (int)zc->zc_guid;

4219 int error;

4221 error = zio_inject_list_next(& d, zc->zc_nane, sizeof (zc->zc_nane),
4222 &zc->zc_inject_record);

4224 zc->zc_guid = id;

4226 return (error);

4227 }

4229 static int

4230 zfs_ioc_error_log(zfs_cnd_t *zc)

4231 {

4232 spa_t *spa;

4233 int error;

4234 size_t count = (size_t)zc->zc_nvlist_dst_size;
4236 if ((error = spa_open(zc->zc_nane, &spa, FTAG) != 0)
4237 return (error);

4239 error = spa_get_errlog(spa, (void *)(uintptr_t)zc->zc_nvlist_dst,
4240 &count) ;

4241 if (error ==

4242 zc->zc_nvlist_dst_size = count;

4243 el se

4244 zc->zc_nvlist_dst_size = spa_get_errlog_size(spa);
4246 spa_cl ose(spa, FTAQ;

4248 return (error);

4249 }

4251 static int

4252 zfs_ioc_clear(zfs_cnd_t *zc)

4253 {

4254 spa_t *spa;

4255 vdev_t *vd;

4256 int error;

4258 /*

4259 * On zpool clear we also fix up mssing slogs
4260 */

4261 mut ex_ent er (&spa_nanespace_| ock) ;

4262 spa = spa_| ookup(zc->zc_nane);

4263 if (spa == NULL)

4264 mut ex_exi t (&pa_nanmespace_| ock) ;

4265 return (EIO;

4266 }

4267 if (spa_get_log_state(spa) == SPA_LOG M SSI NG
4268 /* we need to | et spa_open/spa_l oad clear the chains */
4269 spa_set _| og_state(spa, SPA LOG CLEAR);
4270

4271 spa->spa_| ast _open_failed = 0;

4272 mut ex_exi t (&spa_nanmespace_| ock) ;

4274 if (zc->zc_cookie & ZPOOL_NO REW ND)

4275 error = spa_open(zc->zc_nane, &spa, FTAG;
4276 } else {

4277 nvlist_t *policy;

4278 nvlist_t *config = NULL;

4280 if (zc->zc_nvlist_src == NULL)

4281 return (EINVAL);

65

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

4283 if ((error = get_nvlist(zc->zc_nvlist_src,

4284 zc->zC nvllst _src_size, zc->zc_iflags, &policy)) ==
4285 error = spa_open_rew nd(zc->zc_nane, &spa, FTAG
4286 policy, &config);

4287 if (conflg I'= NULL) {

4288 int err;

4290 if ((err = put_nvlist(zc, config)) != 0)
4291 error = err;

4292 nvlist_free(config);

4293 }

4294 nvlist_free(policy);

4295 }

4296 }

4298 if (error)

4299 return (error);

4301 spa_vdev_state_enter(spa, SCL_NONE);

4303 if (zc->zc_guid == 0) {

4304 vd = NULL;

4305 } else {

4306 vd = spa_ Iookup by_gui d(spa, zc->zc_guid, B_TRUE);
4307 if (vd = {

4308 (v0| d) spa_vdev_state_exit(spa, NULL, ENCDEV);
4309 spa_cl ose(spa, FTAQ;

4310 return (ENCDEV);

4311 }

4312 }

4314 vdev_cl ear (spa, vd);

4316 (void) spa_vdev_state_exit(spa, NULL, 0);

4318 /*

4319 * Resune any suspended |/ GCs.

4320 */

4321 if (zio_resunme(spa) != 0)

4322 error = EIQ

4324 spa_cl ose(spa, FTAQ;

4326 return (error);

4327 }

4329 static int

4330 zfs_i oc_pool _reopen(zfs_cnd_t *zc)

4331 {

4332 spa_t *spa;

4333 int error;

4335 error = spa_open(zc->zc_nane, &spa, FTAG;

4336 if (error)

4337 return (error);

4339 spa_vdev_state_enter(spa, SCL_NONE);

4341 /*

4342 * If aresilver is already in progress then set the

4343 * spa_scrub_reopen flag to B_TRUE so that we don't restart
4344 * the scan as a side effect of the reopen. Otherwise, |et
4345 * vdev_open() decided if a resilver is required.

4346 */

4347 spa- >spa_scrub_reopen = dsl_scan_resilvering(spa->spa_dsl _pool);
4348 vdev_r eopen(spa- >spa_r oot _vdev) ;

0)

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

4349 spa- >spa_scrub_reopen = B_FALSE;

4351 (void) spa_vdev_state_exit(spa, NULL, 0);

4352 spa_cl ose(spa, FTAQ;

4353 return (0);

4354 }

4355 [*

4356 * inputs:

4357 * zc_nane nane of filesystem

4358 * zc_val ue nanme of origin snapshot

4359 *

4360 * outputs:

4361 * zc_string nane of conflicting snapshot, if there is one
4362 */

4363 static int

4364 zfs_ioc_pronote(zfs_cnd_t *zc)

4365 {

4366 char *cp;

4368 /*

4369 * We don’t need to unmount *all* the origin fs's snapshots, but
4370 * it's easier.

4371 */

4372 cp = strchr(zc->zc_value, '@);

4373 if (cp

4374 *cp = '\0;

4375 (voi d) dmu_obj set f| nd(zc->zc_val ue,

4376 zf s_unmount _snap, NULL, DS_FI ND_SNAPSHOTS) ;
4377 return (dsl_dataset pronnte(zc >zc_name, zc- >zc_stri ng));
4378 }

4380 /*

4381 * Retrieve a single {user|group}{used|quota}@.. property.
4382 *

4383 * jnputs:

4384 * zc_nane nanme of filesystem

4385 * zc_objset_type zfs_userquota_prop_t

4386 * zc_val ue donmain nane (eg. "S-1-234-567-89")

4387 * zc_guid RI DU DG D

4388 *

4389 * outputs:

4390 * zc_cookie property val ue

4391 */

4392 static int

4393 zfs_ioc_userspace_one(zfs_cnd_t *zc)

4394 {

4395 zfsvfs_t *zfsvfs;

4396 int error;

4398 if (zc->zc_objset_type >= ZFS_NUM USERQUOTA_PROPS)
4399 return (EINVAL);

4401 error = zfsvfs_hol d(zc->zc_nane, FTAG &zfsvfs, B _FALSE);
4402 if (error)

4403 return (error);

4405 error = zfs_userspace_one(zfsvfs,

4406 zc->zc_obj set _type, zc->zc_value, zc->zc_guid, &zc->zc_cookie);
4407 zfsvfs_rel e(zfsvfs, FTAG;

4409 return (error);

4410 }

4412 | *

4413 * inputs:

4414 * zc_nane name of fil esystem

67

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

4415 * zc_cookie zap cursor

4416 * zc_objset_type zfs_userquota_prop_t

4417 * zc_nvlist_dst[_size] buffer to fillT (not really an nvlist)

4418 *

4419 * outputs:

4420 * zc_nvlist_dst[_size] data buffer (array of zfs_useracct_t)

4421 * zc_cookie zap cursor

4422 */

4423 static int

4424 zfs_ioc_userspace_nmany(zfs_cnmd_t *zc)

4425 {

4426 zfsvfs_t *zfsvfs;

4427 int bufsize = zc->zc_nvlist_dst_size;

4429 if (bufsize <= 0)

4430 return (ENOVEM ;

4432 int error = zfsvfs_hol d(zc->zc_nanme, FTAG &zfsvfs, B_FALSE);

4433 if (error)

4434 return (error);

4436 voi d *buf = kmem al | oc(bufsize, KM SLEEP);

4438 error = zfs_userspace_nmany(zfsvfs, zc->zc_objset_type, &zc->zc_cookie,
4439 buf, &zc->zc_nvlist_dst_size);

4441 if (error == 0) {

4442 error = xcopyout (buf,

4443 (void *)(uintptr_t)zc->zc_nvlist_dst,

4444 zc->zc_nvlist_dst_si ze);

4445

4446 kmem f ree(buf, bufsize);

4447 zfsvis_rel e(zt svfs, FTAG);

4449 return (error);

4450 }

4452 [*

4453 * jnputs:

4454 * zc_nane nane of filesystem

4455 *

4456 * outputs:

4457 * none

4458 */

4459 static int

4460 zfs_ioc_userspace_upgrade(zfs_cnd_t *zc)

4461 {

4462 obj set _t *os;

4463 int error = 0;

4464 zfsvfs_t *zfsvfs;

4466 if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) {

4467 if ('de/Ob] set userused enabl ed(zfsvfs->z_os)) {

4468

4469 * |f userused is not enabled, it may be because the
4470 * obj set needs to be closed & reopened (to grow the
4471 * obj set_phys_t). Suspend/resunme the fs will do that.
4472 */

4473 error = zfs_suspend_fs(zfsvfs);

4474 if (error == 0)

4475 error = zfs_resune_fs(zfsvfs, zc->zc_nane);
4476

4477 if (error ==

4478 error = dmu_obj set _user space_upgr ade(zfsvfs->z_os);
4479 VFS_RELE(zf svfs->z_vfs);

4480 } else {

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 69 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
4481 /* XXX kind of reading contents without owning */ 4547 }
4482 error = dmu_obj set _hol d(zc->zc_nane, FTAG &os); 4548 if (znfsexport_fs == NULL &&
4483 if (error) 4549 ((znfsexport_fs = (int (*)(void *))
4484 return (error); 4550 ddi _nodsyn(nfs_nod,
4551 "nfs_export"”, &error)) == NULL)) {
4486 error = dmu_obj set _userspace_upgrade(o0s); 4552 mut ex_exi t (&fs_share_| ock);
4487 dnu_obj set _rel e(os, FTAQ; 4553 return (ENOSYS);
4488 } 4554
4555 error = zfs_init_sharefs();
4490 return (error); 4556 if (error)
4491 } 4557 mut ex_exi t (&fs_share_| ock);
4558 return (ENOSYS);
4493 [* 4559 }
4494 * \W don’t want to have a hard dependency 4560 zfs_nfsshare_inited = 1;
4495 * agai nst sone special synbols in sharefs 4561 mut ex_exi t (&fs_share_l ock);
4496 * nfs, and snbsrv. Determine themif needed when 4562 }
4497 * the first file systemis shared. 4563 br eak;
4498 * Neither sharefs, nfs or snbsrv are unl oadabl e nodul es. 4564 case ZFS_SHARE_SMB:
4499 */ 4565 case ZFS_UNSHARE_SMB:
4500 int (*znfsexport_fs)(void *arg); 4566 if (zfs_snbshare_inited == 0) {
4501 int (*zshare_fs)(enum sharefs_sys_op, share_t *, uint32_t); 4567 nut ex_ent er (&fs_share_| ock);
4502 int (*zsnbexport_fs)(void *arg, boolean_t add_share); 4568 if (smbsrv_nmod == NULL && ((smbsrv_nod =
4569 ddi _nodopen("drv/snbsrv",
4504 int zfs_nfsshare_inited; 4570 KRTLD_MODE_FI RST, &error)) == NULL)) {
4505 int zfs_snbshare_inited; 4571 mut ex_exi t (&fs_share_| Ioc)
4572 return (ENOSYS);
4507 ddi _nodhandl e_t nfs_nod; 4573 }
4508 ddi _nodhandl e_t sharefs_nod; 4574 if (zsn‘oexport fs == NULL && ((zsnbexport_fs =
4509 ddi _nodhandl e_t smbsrv_nod; 4575 (| nt (*)(void *, bool ean_t)) ddi rmdsyn(sr'rbsrv nod,
4510 kmutex_t zfs_share_| ock; 4576 "snb_server_share", &error)) == NULL)) {
4577 mut ex_exi t (&fs_share_| ock);
4512 static int 4578 return (ENOSYS);
4513 zfs_init_sharefs() 4579 }
4514 { 4580 error = zfs_init_sharefs();
4515 int error; 4581 if (error) {
4582 mut ex_exi t (&fs_share_l ock);
4517 ASSERT(MUTEX_HELD(&f s_share_l ock)); 4583 return (ENOSYS);
4518 /* Both NFS and SMB shares al so require sharetab support. */ 4584 }
4519 if (sharefs_nmod == NULL && ((sharef s_nmod = 4585 zfs_snbshare_inited = 1;
4520 ddi _nodopen("fs/sharefs" 4586 mut ex_exi t (&fs_share_l ock);
4521 KRTLD_MODE_FI RST, &error)) == NULL)) { 4587 }
4522 return (ENCSYS); 4588 br eak;
4523 } 4589 defaul t:
4524 if (zshare_fs == NULL && ((zshare_fs = 4590 return (EINVAL);
4525 (int (*)(enum sharefs_sys_op, share_t *, uint32_t)) 4591 }
4526 ddi _nodsyn{sharefs_nod, "sharefs_inpl", &error)) == NULL)) {
4527 return (ENOSYS); 4593 switch (zc->zc_share.z_sharetype) {
4528 } 4594 case ZFS_SHARE NFS:
4529 return (0); 4595 case ZFS_UNSHARE_NFS:
4530 } 4596 if (error =
4597 znf sexport _fs((void *)
4532 static int 4598 (uintptr_t)zc->zc_share. z_exportdata))
4533 zfs_ioc_share(zfs_cnd_t *zc) 4599 return (error);
4534 { 4600 br eak;
4535 int error; 4601 case ZFS_SHARE_SMB:
4536 int opcode; 4602 case ZFS_ UNSHARE_SMB:
4603 if (error = zsnbexport_fs((void *)
4538 switch (zc->zc_share.z_sharetype) { 4604 (uintptr_t)zc->zc_share. z_exportdata,
4539 case ZFS_SHARE_NFS: 4605 zc->zc_share. z_sharetype == ZFS_SHARE_SMB ?
4540 case ZFS_UNSHARE NFS: 4606 B TRUE: B FALSE)) {
4541 if (zfs_nfsshare_inited == 0) { 4607 return (error);
4542 mut ex_ent er(&zfs share 1 ock) ; 4608 }
4543 if (nfs_nmod == NULL & ((nfs_nod = ddi _nodopen("fs/nfs", 4609 br eak;
4544 KRTLD_ NODE FIRST, &error)) == NULL)) { 4610 }
4545 mit ex_exi t (&zf s_share_l ock);
4546 return (ENOSYS); 4612 opcode = (zc->zc_share.z_sharetype == ZFS SHARE NFS ||

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 71 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 72
4613 zc->zc_share. z_sharetype == ZFS_SHARE_SMB) ? 4679 error = dnu_obj set _snapshot _t np(snap_nane, "% enp", zc->zc_cleanup_fd);
4614 SHAREFS ADD : SHAREFS REMOVE; 4680 if (error 1= 0) {
4681 strfree(snap_nane);
4616 /* 4682 return (error);
4617 * Add or renpve share from sharetab 4683 }
4618 */
4619 error = zshare_fs(opcode, 4685 (void) strcpy(zc->zc_value, strchr(snap_nane, ' @) + 1);
4620 (void *)(uintptr_t)zc->zc_share. z_sharedat a, 4686 strfree(snap_nane);
4621 zc->zc_share. z_shar emax) ; 4687 return (0);
4688 }
4623 return (error);
4690 /*
4625 } 4691 * inputs:
4692 * zc_nane name of "to" snapshot
4627 ace_t full _access[] = { 4693 * zc_val ue nane of "fronl' snapshot
4628 {(uid_t)-1, ACE_ALL_PERVS, ACE_EVERYONE, 0} 4694 * zc_cooki e file descriptor to wite diff data on
4629 }; 4695 *
4696 * outputs:
4631 /* 4697 * dnu_diff_record_t’'s to the file descriptor
4632 * inputs: 4698 */
4633 * zc_nane name of containing filesystem 4699 static int
4634 * zc_obj obj ect # beyond which we want next in-use object # 4700 zfs_ioc_diff(zfs_cnd_t *zc)
4635 * 4701 {
4636 * outputs: 4702 obj set _t *fronsnap;
4637 * zc_obj next in-use object # 4703 obj set _t *tosnap;
4638 */ 4704 file_t *fp;
4639 static int 4705 of fset _t off;
4640 zfs_ioc_next_obj (zfs_cmd_t *zc) 4706 int error;
4641 {
4642 obj set _t *os = NULL; 4708 error = dnu_obj set _hol d(zc->zc_nanme, FTAG &tosnap);
4643 int error; 4709 if (error)
4710 return (error);
4645 error = dnu_obj set _hol d(zc->zc_nanme, FTAG &os);
4646 if (error) 4712 error = dnu_obj set _hol d(zc->zc_val ue, FTAG &fronsnap);
4647 return (error); 4713 if (error) {
4714 dmu_obj set _rel e(tosnap, FTAG;
4649 error = dnu_obj ect _next (os, &zc->zc_obj, B _FALSE, 4715 return (error);
4650 os- >0s_dsl _dat aset - >ds_phys- >ds_prev_snap_t xg) ; 4716 }
4652 dmu_obj set _rel e(os, FTAG; 4718 fp = getf(zc->zc_cookie);
4653 return (error); 4719 if (fp == NULL) {
4654 } 4720 dnu_obj set _rel e(fromsnap, FTAQ;
4721 drmu_obj set _rel e(tosnap, FTAQ;
4656 /* 4722 return (EBADF);
4657 * inputs: 4723 }
4658 * zc_nane name of fil esystem
4659 * zc_val ue prefix name for snapshot 4725 off = fp->f_offset;
4660 * zc_cl eanup_fd cl eanup-on-exit file descriptor for calling process
4661 * 4727 error = dnu_di ff(tosnap, fromsnap, fp->f_vnode, &off);
4662 * outputs:
4663 * zc_val ue short nanme of new snapshot 4729 if (VOP_SEEK(fp->f_vnode, fp->f_offset, &ff, NULL) == 0)
4664 */ 4730 fp->f _offset = off;
4665 static int 4731 rel easef (zc->zc_cooki e);
4666 zfs_ioc_tnp_snapshot (zfs_cnd_t *zc)
4667 { 4733 dmu_obj set _rel e(fromsnap, FTAG;
4668 char *snap_nane; 4734 drmu_obj set _rel e(tosnap, FTAG;
4669 int error; 4735 return (error);
4736 }
4671 snap_nanme = kmem asprintf ("% @s- %16l | x", zc->zc_name, zc->zc_val ue,
4672 (u_l ongl ong_t) ddi _get _| bol t 64()); 4738 [*
4739 * Renove all ACL files in shares dir
4674 if (strlen(snap_nanme) >= MAXPATHLEN) { 4740 */
4675 strfree(snap_nane); 4741 static int
4676 return (E2BI G ; 4742 zfs_snb_acl _purge(znode_t *dzp)
4677 1 4743 {
4744 zap_cursor _t zc;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 73

4745 zap_attribute_t zap;

4746 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;

4747 int error;

4749 for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id);
4750 (error = zap_cursor_retrieve(&c, &zap)) == 0;
4751 zap_cur sor _advance(&zc)) {

4752 if ((error = VOP_REMOVE(ZTOV(dzp), zap.za_nane, kcred,
4753 NULL, 0)) !'= 0)

4754 break;

4755

4756 zap_cursor _fini (&zc);

4757 return (error);

4758 }

4760 static int

4761 zfs_ioc_snmb_acl (zfs_cnmd_t *zc)

4762 {

4763 vnode_t *vp;

4764 znode_t *dzp;

4765 vnode_t *resourcevp = NULL;

4766 znode_t *sharedir;

4767 zfsvfs_t *zfsvfs;

4768 nvlist_t *nvlist;

4769 char *src, *target;

4770 vattr_t vattr;

4771 vsecattr_t vsec;

4772 int error = 0;

4774 if ((error = | ookupnane(zc->zc_val ue, U O SYSSPACE,
4775 NO FOLLOW NULL, &p)) !'= 0)

4776 return (error);

4778 /* Now make sure mmtpnt and dataset are ZFS */
4780 if (vp->v_vfsp->vfs_fstype != zfsfstype ||

4781 (strcmp((char *)refstr_val ue(vp->v_vfsp->vfs_resource),
4782 zc->zc_nane) != 0)) {

4783 VN_RELE(vp) ;

4784 return (EINVAL);

4785 }

4787 dzp = VTQZ(vp);

4788 zfsvfs = dzp->z_zfsvfs;

4789 ZFS_ENTER(zf svfs);

4791 /*

4792 * Create share dir if its mssing.

4793 */

4794 nmut ex_ent er (&zf svfs->z_| ock);

4795 if (zfsvfs->z_shares_dir == 0)

4796 dmu_t x_t *tx;

4798 tx = drmu_tx_create(zfsvfs->z_os);

4799 dnu_t x_hol d_zap(tx, MASTER_NODE_OBJ, TRUE,
4800 ZFS SHARES DI R);

4801 dmu_tx_hol d_zap(tx, DMJ NEW OBJECT, FALSE, NULL)
4802 error = dnu_tx_assign(tx, TXG WAIT);

4803 if (error)

4804 drmu_t x_abort (tx);

4805 } else {

4806 error = zfs_create_share_dir(zfsvfs, tx);
4807 dmu_t x_conmi t (tx);

4808 }

4809 i1f (error) {

4810 nut ex_exi t (&f svfs->z_| ock);

4811
4812
4813
4814
4815
4816

4818
4819

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
VN_RELE(vp);
ZFS_EXI T(zf svfs);
return (error);
}

nmut ex_exi t (&f svfs->z_I ock);

ASSERT(zf svfs->z_shares_dir);

if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &sharedir)) !=0) {

4820
4821
4822
4823

4825
4826
4827
4828
4829
4830
4831

4833
4834
4835
4836

4838
4839
4840
4841
4842

4844
4845
4846
4847

4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868

4870
4871
4872

4874
4875
4876

}

VN_RELE(vp);
ZFS_EXI T(zf svfs);
return (error);

switch (zc->zc_cookie) {
case ZFS_SMB_ACL_ADD:

vattr.va_mask =
vattr.va_type =
vattr.va_node =
vattr.va_uid = 0;
vattr.va_gid = 0;

AT_MODE| AT_Ul D| AT_Gl D| AT_TYPE;
VRE
S | FREG 0777

vsec. vsa_nmask = VSA ACE;

vsec.vsa_aclentp = & ull _access;
vsec.vsa_acl entsz = sizeof (full_access);
vsec.vsa_aclcnt = 1;

error = VOP_CREATE(ZTOV(sharedir), zc->zc_string,
&vattr, EXCL, 0, & esourcevp, kcred, 0, NULL, &vsec);
if (resourcevp)
VN_RELE(r esour cevp) ;

br eak;

case ZFS_SMB_ACL_REMOVE:

error = VOP_REMOVE(ZTOV(sharedir), zc->zc_string, kcred,
NULL, 0);
br eak;

case ZFS_SMB_ACL_RENAME:

if ((error = get_nvlist(zc->zc_nvlist_src,
zc->zc_nvlist_src_size, zc->zc_iflags, &vlist)) !'=0) {
VN_RELE(vp);
ZFS_EXI T(zfsvfs);
return (error);

}
if (nvlist_lookup_string(nvlist, ZFS SMB ACL_SRC, &src) ||
nvlist_|l ookup_string(nvlist, ZFS SMB_ACL_TARGET,
& arget)) {
VN_RELE(vp) ;
VN_RELE(ZTOV(sharedir));
ZFS_EXI T(zfsvfs);
nvlist_free(nvlist);
return (error);

}

error = VOP_RENAME(ZTOV(sharedir), src, ZTOV(sharedir), target,
kcred, NULL, 0);

nvlist_free(nvlist);

br eak;

case ZFS_SMB_ACL_PURCE:

defaul t:

error = zfs_snb_acl _purge(sharedir);
br eak;

error = EI NVAL;
br eak;

74

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 75 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
4877 }
4944 if (zc->zc_cleanup_fd !'= -1 && zc->zc_tenphol d) {
4879 VN_RELE(vp) ; 4945 error = zfs_onexit_fd_hol d(zc->zc_cl eanup_fd, &mnor);
4880 VN_RELE(ZTOV(sharedir)); 4946 if (error) {
4947 dsl _dataset _rel e(ds, FTAQ;
4882 ZFS_EXI T(zf svfs); 4948 return (error);
4949 }
4884 return (error); 4950 }
4885 }
4952 error = dsl _dataset _user_hol d_for_send(ds, zc->zc_string,
4887 | * 4953 zc->zc_t enphol d) ;
4888 * inputs: 4954 if (mnor I'=0)
4889 * zc_nane name of filesystem 4955 if (error == 0)
4890 * zc_val ue short name of snap 4956 dsl _regi ster_onexit_hol d_cl eanup(ds, zc->zc_string,
4891 * zc_string user-supplied tag for this hold 4957 m nor);
4892 * zc_cookie recursive flag 4958 }
4893 * zc_tenphol d set if hold is tenporary 4959 zfs_onexit_fd_rel e(zc->zc_cl eanup_fd);
4894 * zc_cl eanup_fd cl eanup-on-exit file descriptor for calling process 4960
4895 * zc_sendobj if non-zero, the objid for zc_nane@c_val ue 4961 dsl _dat aset _rel e(ds, FTAQ;
4896 * zc_createtxg if zc_sendobj is non-zero, snap nust have zc_createtxg
4897 * 4963 return (error);
4898 * outputs: none 4964 }
4899 */
4900 static int 4966 /*
4901 zfs_ioc_hold(zfs_cnd_t *zc) 4967 * inputs:
4902 { 4968 * zc_nane nane of dataset fromwhich we're releasing a user hold
4903 bool ean_t recursive = zc->zc_cooki e; 4969 * zc_val ue short name of snap
4904 spa_t *spa; 4970 * zc_string user-supplied tag for this hold
4905 dsl _pool _t *dp; 4971 * zc_cookie recursive flag
4906 dsl _dat aset _t *ds; 4972 *
4907 int error; 4973 * outputs: none
4908 m nor _t m' nor = 0; 4974 */
4975 static int
4910 i f (snapshot_nanmecheck(zc->zc_val ue, NULL, NULL) != 0) 4976 zfs_ioc_rel ease(zfs_cnd_t *zc)
4911 return (EINVAL); 4977 {
4978 bool ean_t recursive = zc->zc_cooki €;
4913 if (zc->zc_sendobj == 0) {
4914 return (dsl_dataset_user_hol d(zc->zc_nanme, zc->zc_val ue, 4980 i f (snapshot_nanecheck(zc->zc_val ue, NULL, NULL) != 0)
4915 zc->zc_string, recursive, zc->zc_tenphol d, 4981 return (EINVAL);
4916 zc->zc_cl eanup_fd));
4917 } 4983 return (dsl_dataset_user_rel ease(zc->zc_nane, zc->zc_val ue,
4984 zc->zc_string, recursive));
4919 if (recursive) 4985 }
4920 return (EINVAL);
4987 [*
4922 error = spa_open(zc->zc_nanme, &spa, FTAG; 4988 * inputs:
4923 if (error) 4989 * zc_nane name of fil esystem
4924 return (error); 4990 *
4991 * outputs:
4926 dp = spa_get_dsl (spa); 4992 * zc_nvlist_src{_size} nvlist of snapshot hol ds
4927 rw_enter(&dp >dp_config_rw ock, RW READER); 4993 */
4928 error dsl _dat aset _hol d_obj (dp zc->zC sendobj, FTAG, &ds); 4994 static int
4929 rw eX|t(&dp >dp_confi g_rw ock) ; 4995 zfs_ioc_get_holds(zfs_cnd_t *zc)
4930 spa_cl ose(spa, FTAQ; 4996 {
4931 if (error) 4997 nvlist_t *nvp;
4932 return (error); 4998 int error;
4934 /* 5000 if ((error = dsl_dataset_get_hol ds(zc->zc_nanme, &nvp)) == 0) {
4935 * Until we have a hold on this snapshot, it's possible that 5001 error = put_nvlist(zc, nvp);
4936 * zc_sendobj coul d’ ve been destroyed and reused as part 5002 nvlist_free(nvp);
4937 * of a later txg. Mke sure we're |ooking at the right object. 5003 }
4938 */
4939 if (zc->zc_createtxg != ds->ds_phys->ds_creation_txg) { 5005 return (error);
4940 dsl _dataset_rel e(ds, FTAQ; 5006 }
4941 return (ENCENT);
4942 } 5008 /*

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

5009 * inputs:

5010 * zc_nane nanme of new fil esystem or snapshot
5011 * zc_val ue full name of ol d snapshot

5012 *

5013 * outputs:

5014 * zc_cookie space in bytes

5015 * zc_objset_type conpressed space in bytes

5016 * zc_perm.action unconpr essed space in bytes

5017 */

5018 static int

5019 zfs_ioc_space_witten(zfs_cnd_t *zc)

5020 {

5021 int error;

5022 dsl _dataset _t *new, *old;

5024 error = dsl _dataset _hol d(zc->zc_nane, FTAG &new);
5025 if (error 1= 0)

5026 return (error);

5027 error = dsl_dataset _hol d(zc->zc_val ue, FTAG &old);
5028 if (error I=0) {

5029 dsl _dataset _rel e(new, FTAG;

5030 return (error);

5031 1

5033 error = dsl_dataset_space_witten(old, new, &zc->zc_cookie,
5034 &zc->zc_obj set _type, &zc->zc_perm action);
5035 dsl _dat aset _rel e(old, FTAG;

5036 dsl _dat aset _rel e(new, FTAQ);

5037 return (error);

5038 }

5039 /*

5040 * innvl: {

5041 * "firstsnap" -> snapshot name

5042 *

5043 *

5044 * outnvl: {

5045 * "used" -> space in bytes

5046 * "conpressed” -> conpressed space in bytes

5047 * "unconpressed" -> unconpressed space in bytes

5048 * }

5049 */

5050 static int

5051 zfs_ioc_space_snaps(const char *lastsnap, nvlist_t *innvl,
5052 {

5053 int error;

5054 dsl _dataset _t *new, *old;

5055 char *firstsnap;

5056 uint64_t used, comp, unconp;

5058 if (nvlist_lookup_string(innvl, "firstsnap", &firstsnap)
5059 return (EINVAL);

5061 error = dsl_dataset _hol d(I ast snap, FTAG &new);
5062 if (error '=0)

5063 return (error);

5064 error = dsl_dataset _hol d(firstsnap, FTAG &old);
5065 if (error 1= 0)

5066 dsl _dataset _rel e(new, FTAG;

5067 return (error);

5068 }

5070 error = dsl_dataset _space_woul df ree(ol d, new, &used, &conp,
5071 dsl _dataset _rele(old, FTAG;

5072 dsl _dat aset _rel e(new, FTAG;

5073 fnvlist_add_uint64(outnvl, "used", used);

5074 fnvlist_add_uint64(outnvl, "conpressed", conp);

nvlist_t *outnvl)

1= 0)

&unconp) ;

7

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

5075 fnvlist_add_uint64(outnvl, "unconpressed", unconp);

5076 return (error);

5077 }

5079 /*

5080 * innvl: {

5081 * "fd" -> file descriptor to wite streamto (int32)

5082 * (optional) "fronmsnap" -> full snap name to send an increnental from
5083 *

5084 *

5085 * outnvl is unused

5086 *

5087 /* ARGSUSED */

5088 static int

5089 zfs_ioc_send_new(const char *snapnane, nvlist_t *innvl, nvlist_t *outnvl)
5090 {

5091 obj set _t *fromsnap = NULL;

5092 obj set _t *tosnap;

5093 int error;

5094 of fset _t off;

5095 char *fromare;

5096 int fd;

5098 error = nvlist_lookup_int32(innvl, "fd", &fd);

5099 if (error =0

5100 return (EINVAL);

5102 error = dnu_obj set _hol d(snapnane, FTAG &t osnap);

5103 if (error)

5104 return (error);

5106 error = nvlist_lookup_string(innvl, "fronsnap", &fromane);
5107 if (error == 0

5108 error = dnu_obj set _hol d(fromane, FTAG &fronsnap);
5109 if (error) {

5110 dmu_obj set _rel e(tosnap, FTAG;

5111 return (error);

5112 }

5113 }

5115 file_t *fp = getf(fd);

5116 if (fp == NULL) {

5117 drmu_obj set _rel e(tosnap, FTAQ;

5118 if (fromsnap != NULL)

5119 dmu_obj set _rel e(fronsnap, FTAG;

5120 return (EBADF);

5121 }

5123 of f = fp->f_offset;

5124 error = dnu_send(tosnap, fromsnap, fd, fp->f_vnode, &off);
5126 if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0)
5127 fp->f_offset = off;

5128 rel easef (fd);

5129 if (fronmsnap != NULL)

5130 drmu_obj set _rel e(fromsnap, FTAQ;

5131 dmu_obj set _rel e(tosnap, FTAG;

5132} return (error);

5133

5135 /*

5136 * inputs:

5137 * zc_nane nane of snapshot to send

5138 * zc_cookie file descriptor to send streamto

5139 * zc_obj fronorigin flag (nutually exclusive with zc_fronobj)
5140 * zc_sendobj obj setid of snapshot to send

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

5141 * zc_fronobj obj setid of incremental fronsnap (nmay be zero)
5142 * zc_guid if set, estimate size of streamonly. zc_cookie is ignored.
5143 * output size in zc_objset_type.

5144 *

5145 * outputs: none

5146 */

5147 static int

5148 zfs_ioc_fits_send(zfs_cmd_t *zc)

5149 {

5150 obj set _t *fronsnap = NULL;

5151 obj set _t *tosnap;

5152 int error;

558 of fset _t off;

5154 ds| _dataset t *ds;

5155 dsl “dat aset _t *dsfrom = NULL;

5156 spa_t *spa;

5157 file_t *fp;

5158 dsl _pool _t *dp;

5159 bool ean_t estimate = (zc->zc_guid != 0);

5161 error = spa_open(zc->zc_nanme, &spa, FTAG;

5162 if (error)

5163 return (error);

5165 dp = spa_get_dsl (spa);

5166 rw_ent er(&dp— >dp_config_rw ock, RW READER);

5167 error dsl _dat aset _hol d_obj (dp, zc->zc sendobj , FTAG &ds);
5168 rw_exi t (&dp->dp_confi g_rw ock);

5169 spa_cl ose(spa, FTAQ;

5170 if (error)

5171 return (error);

5173 error = dnu_obj set _fromds(ds, &t osnap);

5174 if (error) {

5175 dsl _dataset_rel e(ds, FTAQ;

5176 return (error);

5177 }

5179 if (zc->zc_fromobj !'= 0)

5180 rw_ent er (&dp- >dp_confi g_rw ock, RW READER);
5181 error = dsl_dataset_hol d_obj (dp, zc->zc frormb], FTAG &dsfron);
5182 rw_exi t (&dp->dp_config_rw ock);

5183 if (error) {

5184 dsl _dat aset _rel e(ds, FTAQ;

5185 return (error);

5186

5187 error = dnu_obj set _fromds(dsfrom &fronsnap);
5188 if (error) {

5189 dsl _dat aset _rel e(dsfrom FTAQ;

5190 dsl _dataset _rel e(ds, FTAQ;

5191 return (error);

5192 }

5193 }

5195 if (zc->zc_obj) {

5196 sl _pool _t *dp = ds->ds_dir->dd_pool;

5198 if (fromsnap != NULL)

5199 dsl _dataset _rel e(dsfrom FTAG;

5200 dsl _dat aset _rel e(ds, FTAG;

5201 return (EINVAL);

5202 }

5204 if (dsl_dir_is_clone(ds->ds_dir)) {

5205 rw_ent er (&p- >dp_confi g_rw ock, RW READER);
5206 error = dsl_dataset _hol d_obj (dp,

79

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

5207 ds->ds_dir->dd_phys->dd_ori gi n_obj, FTAG &dsfrom);
5208 rw_exit (&dp->dp_config_rw ock);

5209 if (error) {

5210 dsl _dat aset _rel e(ds, FTAQ;

5211 return (error);

5212

5213 error = dnu_objset _fromds(dsfrom &fromsnap);
5214 if (error) {

5215 dsl _dat aset _rel e(dsfrom FTAG;

5216 dsl _dat aset _rel e(ds, FTAQ;

5217 return (error);

5218 }

5219 }

5220 }

5222 fp = getf(zc->zc_cookie);

5223 f (fp == NULL)

5224 dsl _dataset_rel e(ds, FTAQ;

5225 if (dsfrom

5226 dsl _dat aset _rel e(dsfrom FTAQ;

5227 return (EBADF);

5228 }

5230 off = fp->f_offset;

5231 error = fits_send(tosnap, fronsnap, zc->zc_cookie, fp->f_vnode, &off);
5233 if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0)

5234 fp->f_offset = off;

5235 rel easef (zc->zc_cooki e);

5237 if (dsfrom

5238 dsl _dat aset _rel e(dsfrom FTAQ;

5239 dsl _dat aset _rel e(ds, FTAG;

5240 return (error);

5241 }

5243 [*

5244 #endif /* | codereview */

5245 * Deternine approxi mately how |l arge a zfs send streamw || be -- the nunber
5246 * of bytes that will be witten to the fd supplied to zfs_ioc_send_new().
5247 *

5248 * innvl: {

5249 * (optional) "fromsnap" -> full snap nane to send an incremental from
5250 *

5251 *

5252 * outnvl: {

5253 * "space" -> bytes of space (uint64)

5254 *

5255 */

5256 static int

5257 zfs_ioc_send_space(const char *snapnane, nvlist_t *innvl, nvlist_t *outnvl)
5258 {

5259 obj set _t *fronmsnap = NULL;

5260 obj set _t *tosnap;

5261 int error;

5262 char *fromane;

5263 uint64_t space;

5265 error = dnu_obj set _hol d(snapnane, FTAG &tosnap);

5266 if (error)

5267 return (error);

5269 error = nvlist_lookup_string(innvl, "fromsnap", &fromane);

5270 if (error == 0)

5271 error = dmu_obj set _hol d(fromane, FTAG &fronsnap);

5272 if (error) {

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

5273 dmu_obj set _rel e(tosnap, FTAG;
5274 return (error)

5275 }

5276 }

5278 error = dnu_send_esti nat e(tosnap, fronsnap, &space)
5279 fnvlist_add_uint64(outnvl, "space", space)
5281 if (fromsnap != NULL)

5282 drmu_obj set _rel e(fromsnap, FTAQ;

5283 drmu_obj set _rel e(tosnap, FTAG;

5284 return (error);

5285 }

5288 static zfs_ioc_vec_t zfs_ioc_vec[ZFS | OC LAST - ZFS | OC Fl RST];

5290 static void
5291 zfs_ioctl _register_|legacy(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func

5292 zfs_secpolicy_func_t *secpolicy, zfs_ioc_namecheck_t namecheck
5293 bool ean_t | og_history, zfs_ioc_pool check_t pool _check)

5294 {

5295 zfs_ioc_vec_t *vec = &fs_ioc_vec[ioc - ZFS | OC FI RST];
5297 ASSERT3U(i oc, >=, ZFS_| OC_FI RST);

5298 ASSERT3U(i oc, <, ZFS_IOC LAST);

5299 ASSERT3P(vec->zvec_| egacy_func, ==, NULL)

5300 ASSERT3P(vec->zvec_func, ==, NULL)

5302 vec- >zvec_| egacy_func = func

5303 vec->zvec_secpolicy = secpolicy

5304 vec->zvec_nanecheck = namecheck

5305 vec->zvec_al low_ | og = | og_history

5306 vec- >zvec_pool _check = pool _check

5307 }

5309 /*

5310 * See the block commrent at the beginning of this file for details on
5311 * each argunent to this function

5312 */

5313 static void

5314 zfs_ioctl_register(const char *name, zfs_ioc_t ioc, zfs_ioc_func_t *func

5315 zfs_secpolicy_func_t *secpolicy, zfs_ioc_namecheck_t namecheck
5316 zfs_i oc_pool check_t pool _check, bool ean_t snmush_outnvli st
5317 bool ean_t al |l ow_| og)

5318 {

5319 zfs_ioc_vec_t *vec = &fs_ioc_vec[ioc - ZFS_| OC FI RST];
5321 ASSERT3U(i oc, >=, ZFS_|OC FIRST);

5322 ASSERT3U(i oc, <, ZFS_IOC _LAST);

5323 ASSERT3P(vec->zvec_| egacy_func, == NULL)

5324 ASSERT3P(vec->zvec_func, ==, NULL)

5326 /* if we are logging, the name nust be valid */

5327 ASSERT(!al l ow_| og || namecheck != NO_NAME)

5329 vec->zvec_nanme = nane

5330 vec->zvec_func = func

5331 vec- >zvec_secpol i cy = secpolicy

5332 vec->zvec_nanecheck = namecheck

5333 vec->zvec_pool _check = pool _check

5334 vec->zvec_snmush_out nvli st = snmush_out nvli st

5335 vec->zvec_allow_ | og = all ow_| og

5336 }

5338 static void

81

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 82
5339 zfs_ioctl_register_pool (zfs_ioc_t ioc, zfs_ioc_|legacy_func_t *func

5340 zfs_secpolicy_func_t *secpolicy, boolean_t |o0g_history

5341 zfs_i oc_pool check_t pool _check)

5342 {

5343 zfs_ioctl _register_| egacy(ioc, func, secpolicy

5344 POOL_ , log_history, pool_check)

5345 }

5347 static void

5348 zfs_ioctl _register_dataset_nol og(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func
5349 zfs_secpolicy_func_t *secpolicy, zfs_ioc_pool check_t pool _check)

5350 {

5351 zfs_ioctl _register_| egacy(ioc, func, secpolicy

5352 DATASET_NAME, B_FALSE, pool _check)

5353 }

5355 static void

5356 zfs_ioctl_register_pool _nodify(zfs_ioc_t ioc, zfs_ioc_|legacy_func_t *func)
5357 {

5358 zfs_ioctl _register_|legacy(ioc, func, zfs_secpolicy_config,

5359 POOL_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY) ;
5360 }

5362 static void

5363 zfs_ioctl_register_pool _neta(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func
5364 zfs_secpolicy_func_t *secpolicy)

5365 {

5366 zfs_ioctl _register_Il egacy(ioc, func, secpolicy

5367 NO_NAME, B_FALSE, POOL_CHECK_NONE);

5368 }

5370 static void

5371 zfs_ioctl_register_dataset_read_secpolicy(zfs_ioc_t ioc

5372 zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy)

5373 {

5374 zfs_ioctl _register_|l egacy(ioc, func, secpolicy

5375 DATASET_NAME, B_FALSE, POOL_CHECK_SUSPENDED) ;

5376 }

5378 static void

5379 zfs_ioctl _register_dataset_read(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func)
5380 {

5381 zfs_ioctl _register_dataset_read_secpolicy(ioc, func

5382 zfs_secpol i cy_read)

5383 }

5385 static void

5386 zfs_ioctl_register_dataset_nodify(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func
5387 zfs_secpolicy_func_t *secpolicy)

5388 {

5389 zfs_ioctl _register_| egacy(ioc, func, secpolicy

5390 DATASET_NAME, B TRUE, POOL_CHECK SUSPENDED | POOL_CHECK READONLY)
5391 }

5393 static void

5394 zfs_ioctl _init(void)

5395 {

5396 zfs_ioctl _register("snapshot", ZFS | OC_SNAPSHOT

5397 zfs_ioc_snapshot, zfs_secpolicy_snapshot, POOL_NAME,

5398 POOL_CHECK_SUSPENDED | POOL_CHECK _READONLY, B TRUE, B TRUE);
5400 zfs_ioctl _register("log_history", ZFS | OC_LOG H STORY,

5401 zfs_ioc_log_history, zfs_secpolicy_|log_history, NO NAVME

5402 POOL_CHECK_SUSPENDED | POOL_CHECK READONLY, B FALSE, B FALSE);
5404 zfs_ioctl _register("space_snaps", ZFS | OC_SPACE_SNAPS

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

5405
5406

5408
5409
5410

5412
5413
5414

5416
5417
5418

5420
5421
5422

5424
5425
5426

5428

5430
5431

5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458

5460
5461
5462
5463
5464
5465
5466
5467
5468
5469

zfs_ioc_space_snaps, zfs_secpolicy_read, DATASET_NAME,
POOL_CHECK_SUSPENDED, B FALSE, B FALSE);

zfs_ioctl _register("send", ZFS_| OC_SEND_NEW
“zfs_ioc_send_new, zfs_secpolicy_send_new, DATASET_ NAME,
POOL_CHECK_SUSPENDED, “B_FALSE, B _FALSE);

zfs_ioctl _register("send_space", ZFS_ | OC_SEND_SPACE,
“zfs_ioc_send_space, zfs_secpolicy read, DATASET_NAME,
POOL_CHECK_SUSPENDED, B_FALSE, B FALSE);

zfs_ioctl _register("create", ZFS_| OC CREATE,
zfs_ioc_create, zfs_secpolicy_create_clone, DATASET_NAMNE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B TRUE, B _TRUE);

zfs_ioctl _register("clone", ZFS | OC CLONE,
“zfs_ioc_clone, zfs_secpolicy_create_clone, DATASET_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B TRUE, B _TRUE);

zfs_ioctl _register("destroy_snaps", ZFS | OC_DESTROY_SNAPS,
“zfs_ioc_destroy_snaps, zfs_secpolicy_destroy_snaps, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK _READONLY, B TRUE, B TRUE);

/* 1 OCTLS that use the |egacy function signature */

zfs_ioctl _register_| egacy(ZFS_| OC_POOL_FREEZE, zfs_ioc_pool _freeze,
zfs_secpol i cy_config, NO NAME, B _FALSE, POO_ CHECK_READONLY) ;

zfs_ioctl _register_pool (ZFS_| OC_POOL_CREATE, zfs_ioc_pool _create,
“zfs _secpolicy_config, B TRUE, POOL_CHECK_NONE) ;

zfs_i octl _register_pool _modify(ZFS_| OC_POOL_SCAN,
“zfs_ioc _pool _scan);

zfs_i octl _regi st er_pool _nodi fy(ZFS_| OC_POOL_UPGRADE,
“zfs_ioc _pool _upgr ade) ;

zfs_i octl _register_pool _nodify(ZFS_| OC_VDEV_ADD,
“zfs_ioc_vdev_add);

zfs_i octl _regi st er_pool _nodi fy(ZFS_| OC_VDEV_REMOVE,
“zfs_i oc_vdev_renove);

zfs_ioctl _register_pool _nodi fy(ZFS_| OC_VDEV_SET_STATE,
“zfs_ioc_vdev_set_state);

zfs_i octl _register_pool modi fy(ZFS_I OC_VDEV_ATTACH,
“zfs_ioc_vdev_attach);

zfs_ioctl _register_pool _rmdi fy(ZFS_I OC_VDEV_DETACH,
zfs_i oc_vdev_det ach);

zfs_ioctl _regi ster_pool _nodi fy(ZFS_| OC_VDEV_SETPATH,
zfs_ioc_vdev_setpath);

zfs_ioctl _register_pool _nodify(ZFS_ | OC_VDEV_SETFRU,
“zfs_ioc_vdev_setfru);

zfs_i oct| _register_pool _m)di fy(ZFS_| OC_POOL_SET_PROPS,
“zfs_i oc_pool _set _props);

zfs_ioctl _register_pool _nodify(ZFS_ | OC_VDEV_SPLI T,
“zfs_ioc_vdev_split);

zfs_i octl _register _pool _nodi fy(ZFS_| OC_POOL_REGUI D,
“zfs_i oc_pool _reguid);

zfs_ioctl _register_pool _neta(ZFS_| OC_POOL_CONFI GS,
“zfs_ioc _pool _configs, zfs_secpolicy_none);

zfs_i octl _register_pool _neta(ZFS_| OC_POOL_TRYl MPORT,
“zfs_ioc_pool _tryinport, zfs_secpolicy _config);

zfs_i octl _register_pool _meta(ZFS_| OC_I NJECT_FAULT,
“zfs_ioc_li nj ect “fault, zfs_secpolicy_inject);

zfs_i oct| _register_pool _ et a(ZFS_| OC_CLEAR | FAULT
“zfs_ioc_clear_fault, zfs_secpolicy_inject);

zfs_ioctl _regi ster_pool _neta(ZFS_| OC | NJECT LI ST NEXT,
“zfs_ioc_inject_list_next, zfs_secpolicy_inject);

83

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

5471
5472
5473
5474
5475
5476
5477
5478
5479

5481
5482
5483
5484

5486
5487
5488
5489
5490
5491
5492
5493

5495
5496

5498
5499
5500
5501

5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522

5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536

/*

84

* pool destroy, and export don’t log the history as part of
* zfsdev_ioctl, but rather zfs_ioc_pool _export
* does the | ogging of those conmands.

*

zfs_ioctl _register_pool (ZFS_| OC_POOL_DESTROY, zfs_ioc_pool _destroy,

“zfs _secpol icy_config,

B_FALSE, POOL_CHECK NO\IE)

zfs_i octl _register_pool (ZFS_I OC_POOL_EXPORT, zfs_i oc_pool _export,

zfs_secpolicy_config,

B_FALSE, POOL_CHECK_NONE);

zfs_ioctl _register_pool (ZFS_| OC_POOL_STATS, zfs_ioc_pool _stats,
zfs_secpolicy_read, B_FALSE, POOL_CHECK NONE);

zfs_ioctl _register_pool (ZFS_| OC_POOL_CGET_PROPS, zfs_ioc_pool _get_props,
zfs_secpolicy_read, B_FALSE, POOL_CHECK_NONE);

zfs_ioctl _register_pool (ZFS_| OC_ERROR LOG, zfs_ioc_error_| og,

“zfs _secpol icy_inject,

B_FALSE, POOL_CHECK_SUSPENDED) ;

zfs_ioctl _regi ster_pool (ZFS | OC_DSOBJ_TO DSNANME,
“zfs_ioc_dsobj _to_dsname,
zfs secpollcy diff, B_FALSE, POCL_CHECK_SUSPENDED) ;
zfs_ioctl _register pool (ZFS_I OC_POOL_GET_HI STORY,
“zfs_ioc _pool _get _history,

zf s_secpol i cy_confi g,

B_FALSE, POOL_CHECK_SUSPENDED) ;

zfs_ioctl _register_pool (ZFS_| OC_POOL_| MPORT, zfs_ioc_pool _inport,

zfs_secpolicy_config,

B_TRUE, POOL_CHECK_NONE) ;

zfs_ioctl _register_pool (ZFS_| OC_CLEAR, zfs_ioc_clear,

zfs_secpol i cy_config,

B_TRUE, POOL_CHECK SUSPENDEQ

zfs_ioctl _register_pool (ZFS_| OC_ POOL_REOPEN, zfs_ioc pooI _reopen,

zfs_secpolicy_config,

zfs_ioctl _register_dataset
“zfs_ioc _space_ witten);
zfs_ioctl _regi ster_dat aset

“zfs_ioc_get_holds);

zfs_ioctl _regi ster_dataset

B_TRUE, POOL_CHECK_SUSPENDED) ;
read(ZFS| OC_SPACE_WRI TTEN,

read(ZFS| OC_GET_HOLDS,

read(ZFS| OC_OBJSET_RECVD_PROPS,

zfs_i oc_obj set _recvd_props);

zfs_ioct| _register_dataset

zf s_i oc_next _obj)

zfs_ioctl _regi st er_da"r aset

zfs_ioc_get_fsacl)

zfs_ioctl _register_dataset
zfs_i oc_obj set_stats);
zfs_ioctl _regi ster_dataset

read(ZFS | OC_NEXT_OBJ,

read(ZFS| OC_GET_FSACL
read(ZFS| OC_OBJSET_STATS
read(ZFS| OC_OBJSET_ZPLPROPS,

zfs_i oc_obj set _zpl props);

zfs_ioctl_register_dataset

read(ZFS| OC_DATASET_LI ST_NEXT,

“zfs_ioc_dataset |ist_next);

zfs_i octl _register_dat aset

read(ZFS | OC_SNAPSHOT_LI ST_NEXT,

“zfs_ioc_snapshot _|ist_next);

zfs_ioctl_register_dataset

read(ZFS| OC_SEND_PROGRESS

zf s_i oc_send_progress);

zfs_ioctl _register_dataset

_read_secpol i cy(ZFS_| CC_DlI FF,

zfs_ioc_diff, zfs_secpolicy_diff);

zfs_ioctl _register_dataset

“zfs_ioc obJ_to stats,

zfs_i octl _register_dat aset
zfs_secpolicy _diff);

“zfs_ioc ObJ7IO pat h,

zfs_i octl _regi ster_dat aset
“zfs_ioc userspace one,
zfs_i oct| _register_dataset
“zfs_i oc_user space_many,
zfs_ioctl _register_dataset

read secpol i cy(ZFS_| OC_OBJ_TO_STATS,

zfs_secpol i cy_diff);

read_secpol i cy(ZFS_| OC_OBJ_TO_PATH,

read_secpol i cy(ZFS | OC_USERSPACE_ONE,
“zfs_secpoli cy_user space_one);
_read_secpol i cy(ZFS_| OC_ USERSPAE MANY,
zf s_secpol i cy_user space_nany) ;
read_secpol i cy(ZFS_| OC_SEND,

“zfs_ioc_send, zfs_secpolicy_send);

zfs_i oct! _regi ster_dat aset

read secpol i cy(ZFS| OC_FI TS_SEND,

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 85

5537
5538

5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559

5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571

5573
5574
5575
5576
5577
5578

5580

5582
5583

5585
5586
5587
5588
5589
5590
5591
5592
5593
5594

5596
5597
5598
5599
5600

5602

#endi f /*

}

int
pool

{

}
!

*
*

*/

m nor _t

zfs_ioc_fits_send, zfs_secpolicy_send);
coderevi ew */

zfs_ioctl _register_dataset _nodi fy(ZFS_| OC_SET_PROP, zfs_ioc_set_prop,

zfs_secpol i cy_none);

zfs_ioctl _register_dataset _nodi fy(ZFS_| OC_DESTROY, zfs_ioc_destroy,

zfs_secpol i cy_destroy);

zfs_ioctl _regi ster_dataset _nodi fy(ZFS_| OC_ROLLBACK, zfs_ioc_roll back,

zfs_secpolicy_roll back)

zfs_ioctl _register_dataset _Hndi fy(ZFS_| OC_RENAME, zfs_ioc_renane,

zfs_secpol i cy_renane);

zfs_ioctl _register_dataset_nodify(ZFS_| OC_ RECV, zfs_ioc_recv,

zfs_secpolicy_recv);

zfs_ioctl _register_dataset _nodi fy(ZFS_| OC_PROMOTE, zfs_i oc_pronote,

zfs_secpol i cy_pronote);

zfs_ioctl _register_dataset_nodi fy(ZFS_| OC HOLD, zfs_ioc_hold,

zfs_secpolicy_hol d);

zfs_ioctl _register_dataset _nodi fy(ZFS_| OC_RELEASE, zfs_ioc_rel ease,

zfs_secpolicy_rel ease);

zfs_ioctl _regi ster_dataset _nmodi fy(ZFS_|I OC_| NHERI T_PROP,

zfs_ioc_inherit_prop, zfs_secpolicy_inherit_prop);

zfs_ioctl _register_dataset_nodify(ZFS | OC SET_FSACL, zfs ioc_set_fsacl,

“zfs_secpolicy_set fsacl);

zfs_ioctl _register_dataset_nol og(ZFS_| OC_SHARE, zfs_ioc_share,
NONE) ;

“zfs _secpol icy_ share, POOL_CHECK

zfs_i octl _register_dataset_nol og(ZFS_| OC_ SNB ACL, zfs_ioc_snb_acl,

“zfs _secpolicy_ smb_acl , POOL_CHECK_NONI

E) ;
zfs_ioctl _register_dat aset_nol 0g(ZFS_TOC_ USERSPACE UPGRADE,

“zfs_ioc_userspace_upgrade, zfs_secpolicy_userspace_upgrade,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY) ;

zfs_ioctl _register_dataset_nol og(ZFS 1 OC_TMP. SNAPSHOT

“zfs_ioc_tnp_snapshot, zfs_secpolicy_tnmp_snapshot,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY) ;

_status_check(const char *nane, zfs_ioc_nanmecheck_t type,
zfs_i oc_pool check_t check)

spa_t *spa;
int error;

ASSERT(type == POOL_NAME || type == DATASET NANE)
if (check & POOL_CHECK_NONE)

return (0);

error = spa_open(nane, &spa, FTAG;
if (error == 0

if ((check & Pw__CHECK_SUSPENDED) && spa_suspended(spa))
error = EAGAIN;

else if ((check & POO_ CHECK_READONLY) && !spa_writeabl e(spa))
error = El S;

spa_cl ose(spa, FTAQ;

}
return (error);

Find a free m nor nunber.

zf sdev_mi nor _al | oc(voi d)
5601 {

static mnor_t |ast_mnor;

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

m=1;
f (ddi_get_soft_state(zfsdev_state,

*zo0,

=m

int otyp,

m nor);

me+) {

m == NULL) {

mnor) != DDl _SUCCESS)

m nor);

m nor _t mnor)

m nor) ;

**) &zs->zss_dat a) ;

enum zfs_soft_state_type which)

m nor);
zp->zss_type ! = which)

cred_t

5603 mnor_t m

5605 ASSERT(MUTEX_HELD(&zf sdev_st at e_| ock)) ;
5607 for (m=last_mnor + 1; m!= last_mnor;
5608 if (m> ZFSDEV_MAX_M NOR)

5609 ;

5610 i

5611 I'ast _mi nor

5612 return (m;

5613 }

5614 }

5616 return (0);

5617 }

5619 static int

5620 zfs_ctldev_init(dev_t *devp)

5621 {

5622 m nor_t mnor;

5623 zfs_soft_state_t *zs;

5625 ASSERT(MUTEX HELD(&zfsdev state_l ock));
5626 ASSERT(get mi nor (*devp) == 0);

5628 m nor = zfsdev_mi nor_alloc();

5629 if (mnor == 0)

5630 return (ENXIO);

5632 if (ddi _soft_state_zalloc(zfsdev_state,
5633 return (EAGAIN);

5635 *devp = makedevi ce(get ensj or (*devp),
5637 zs = ddi _get soft_st ate(zfsdev_state,
5638 7s->7s5 _type = ZSST_CTLDEV;

5639 zfs_onexit_init((zfs_onexit_t

5641 return (0);

5642 }

5644 static void

5645 zfs_ctl dev_destroy(zfs_onexit_t

5646 {

5647 ASSERT(MUTEX_HELD(&zf sdev_state_| ock)) ;
5649 zfs_onexit_destroy(zo);

5650 ddi _soft_state_free(zfsdev_state,

5651 }

5653 void *

5654 zfsdev_get _soft_state(m nor_t m nor,

5655 {

5656 zfs_soft_state_t *zp;

5658 zp = ddi _get _soft_state(zfsdev_state,
5659 if (zp == NULL || i
5660 return (NULL);

5662 return (zp->zss_data);

5663 }

5665 static int

5666 zfsdev_open(dev_t *devp, int flag,

5667 {

5668 int error = 0;

*cr)

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c 87 new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
5735 if (zc->zc_nvl i st_src_size != 0)
5670 if (getmnor(*devp) != 0) 5736 error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
5671 return (zvol _open(devp, flag, otyp, cr)); 5737 zc->zc_iflags, & nnvl);
5738 if (error T= 0)
5673 /* This is the control device. Allocate a new mnor if requested. */ 5739 goto out;
5674 if (flag & FEXCL) { 5740 }
5675 mut ex_ent er (&zf sdev_state_| ock);
5676 error = zfs_ctldev_init(devp); 5742 /*
5677 mut ex_exi t (&f sdev_state Iock) 5743 * Ensure that all pool/dataset names are valid before we pass down to
5678 } 5744 * the |ower |ayers.
5745 */
5680 return (error); 5746 zc->zc_nane[si zeof (zc->zc_nane) - 1] = '\0';
5681 } 5747 switch (vec->zvec_nanecheck) {
5748 case POOL_NAME:
5683 static int 5749 i T (pool _namecheck(zc->zc_nanme, NULL, NULL) != 0)
5684 zfsdev_cl ose(dev_t dev, int flag, int otyp, cred_t *cr) 5750 error = ElI NVAL;
5685 { 5751 el se
5686 zfs_onexit_t *zo; 5752 error = pool _status_check(zc->zc_nane,
5687 m nor_t mnor = getm nor(dev); 5753 vec->zvec_nanecheck, vec->zvec_pool _check);
5754 br eak;
5689 if (mnor == 0)
5690 return (0); 5756 case DATASET_NAME:
5757 if (dataset_namecheck(zc->zc_nane, NULL, NULL) != 0)
5692 mut ex_ent er (&zf sdev_st ate_I ock); 5758 error = El NVAL;
5693 zo = zfsdev_get_soft_state(m nor, ZSST_CTLDEV); 5759 el se
5694 if (zo == NULL) { 5760 error = pool _status_check(zc->zc_nane,
5695 mut ex_exi t (&f sdev_state_| ock); 5761 vec->zvec_nanecheck, vec->zvec_pool _check);
5696) return (zvol _cl ose(dev, flag, otyp, cr)); 5762 br eak;
5697
5698 zfs_ctl dev_destroy(zo, mnor); 5764 case NO_NAME:
5699 nmut ex_exi t (&f sdev_state Iock) 5765 br eak;
5766 1
5701 return (0);
5702 }
5769 if (error == 0 && !(flag & FKICCTL))
5704 static int 5770 error = vec->zvec_secpolicy(zc, innvl, cr);
5705 zfsdev_ioctl (dev_t dev, int cnmd, intptr_t arg, int flag, cred_t *cr, int *rvalp)
5706 { 5772 if (error = 0)
5707 zfs_cmd_t *zc; 5773 goto out;
5708 uint_t vecnum
5709 int error, rc, len; 5775 /* legacy ioctls can nmodify zc_nanme */
5710 m nor_t mnor = getminor(dev); 5776 len = strcspn(zc->zc_nane, "/ @) + 1;
5711 const zfs_ioc_vec_t *vec; 5777 saved_pool name = knem al | oc(l en, KM SLEEP);
5712 char *saved_pool nane = NULL; 5778 (void) strlcpy(saved_pool name, zc->zc_nane, |en);
5713 nvlist_t *innvl = NULL;
5780 if (vec->zvec_func !'= NULL) {
5715 if (mnor !'=0 && 5781 nvlist_t *outnvl;
5716 zf sdev_get _soft _state(m nor, ZSST_CTLDEV) == NULL) 5782 int puterror = 0;
5717 return (zvol _ioctl(dev, cnd, arg, flag, cr, rvalp)); 5783 spa_t *spa;
5784 nvlist_t *lognv = NULL;
5719 vecnhum = cmd - ZFS_| OC_FI RST;
5720 ASSERT3U(get maj or (dev), ==, ddi _driver_mgjor(zfs_dip)); 5786 ASSERT(vec->zvec_| egacy_func == NULL);
5722 if (vecnum >= sizeof (zfs_ioc_vec) / sizeof (zfs_ioc_vec[O0])) 5788 /*
5723 return (EINVAL); 5789 * Add the innvl to the lognv before calling the func,
5724 vec = &fs_ioc_vec[vecnuni; 5790 * in case the func changes the innvl.
5791 */
5726 zc = krmem zal | oc(si zeof (zfs_cnd_t), KM SLEEP); 5792 if (vec->zvec_allow | og) {
5793 lognv = fnvlist_alloc();
5728 error = ddi _copyin((void *)arg, zc, sizeof (zfs_cmd_t), flag); 5794 fnvlist_add_string(lognv, ZPOOL_H ST_| OCTL,
5729 if (error 1= 0) { 5795 vec->zvec_nane) ;
5730 error = EFAULT; 5796 if (!'nvlist_enpty(innvl)) {
5731 goto out; 5797 fnvlist_add_nvlist(lognv, ZPOOL_HI ST_| NPUT_NVL,
5732 } 5798 innvl);
5799 }
5734 zc->zc_iflags = flag & FKI OCTL; 5800 }

89

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

5802 outnvl = fnvlist_alloc();

5803 error = vec->zvec_func(zc->zc_nanme, innvl, outnvl);
5805 if (error == 0 && vec->zvec_allow | og &&

5806 spa_open(zc->zc_nane, &spa, FTAG == 0) {

5807 if (I'nvlist_enpty(outnvl)) {

5808 fnvlist_add_nvlist(lognv, ZPOOL_H ST_OUTPUT_NVL,
5809 outnvl);

5810

5811 (void) spa_history_l og_nvl(spa, |ognv);
5812 spa_cl ose(spa, FTAQG;

5813

5814 fnvlist_free(lognv);

5816 if (!Invlist_empty(outnvl) || zc->zc_nvlist_dst_size != 0) {
5817 int smusherror = 0;

5818 if (vec->zvec_snush_outnvlist) {

5819 smusherror = nvlist_snush(outnvl,
5820 zc->zc_nvli st _dst_si ze);

5821 }

5822 if (smusherror == 0)

5823 puterror = put_nvlist(zc, outnvl);
5824 }

5826 if (puterror !'=0)

5827 error = puterror;

5829 nvlist_free(outnvl);

5830 } else {

5831 error = vec->zvec_| egacy_func(zc);

5832 1

5834 out:

5835 nvlist_free(innvl);

5836 rc = ddi _copyout (zc, (void *)arg, sizeof (zfs_cnd_t), flag);
5837 if (error == 0 & rc !'=0)

5838 error = EFAULT,

5839 if (error == 0 & vec->zvec_all ow_| og) {

5840 char *s = tsd_get(zfs_allow_| og_key);

5841 if (s !'= NULL)

5842 strfree(s);

5843 (void) tsd_set(zfs_allow_|og_key, saved_pool nane);
5844 } else {

5845 if (saved_pool name != NULL)

5846 strfree(saved_pool nane);

5847 }

5849 knmem free(zc, sizeof (zfs_cnd_t));

5850 return (error);

5851 }

5853 static int

5854 {zfs_attach(dev_i nfo_t *dip, ddi_attach_cnd_t cnd)

5855

5856 if (cnd !'= DDl _ATTACH)

5857 return (DDl _FAI LURE);

5859 if (ddi _create_m nor_node(dip, "zfs", S I|FCHR 0O,

5860 DDl _PSEUDO, 0) == DDI _FAI LURE)

5861 return (DDl _FAI LURE);

5863 zfs_dip = dip;

5865 ddi _report_dev(dip);

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

5867 return (DDl _SUCCESS);

5868 }

5870 static int

5871 zfs_detach(dev_info_t *dip, ddi_detach_cnd_t cnd)
5872 {

5873 if (spa_busy() || zfs_busy() || zvol _busy())
5874 return (DDl _FAI LURE);

5876 if (cnd !'= DDl _DETACH)

5877 return (DDl _FAI LURE);

5879 zfs_dip = NULL;

5881 ddi _prop_renove_al | (dip);

5882 ddi _renove_m nor _node(di p, NULL);

5884 return (DDl _SUCCESS);

5885 }

5887 /* ARGSUSED*/

5888 static int

5889 zfs_info(dev_info_t *dip, ddi _info_cmd_t infocnmd, void *arg, void **result)
5890 {

5891 switch (infocrmd) {

5892 case DDl _I NFO _DEVT2DEVI NFO.

5893 *result = zfs_dip;

5894 return (DDl _SUCCESS);

5896 case DDl _I NFO_DEVT2I NSTANCE:

5897 *result = (void *)O0;

5898 return (DDl _SUCCESS)

5899 }

5901 return (DDl _FAI LURE);

5902 }

5904 /*

5905 * OK, sothisis alittle weird.

5906 *

5907 * /dev/zfs is the control node, i.e. minor O.

5908 * /dev/zvol/[r]dsk/pool/dataset are the zvols, mnor > 0.
5909 *

5910 * /dev/zfs has basically nothing to do except serve up ioctls,
5911 * so nost of the standard driver entry points are in zvol.c.
5912 */

5913 static struct cb_ops zfs_cb_ops = {

5914 zf sdev_open, /* open */

5915 zf sdev_cl ose, /* close */

5916 zvol _strategy, [/* strategy */

5917 nodev, /* print */

5918 zvol _dunp, /* dunp */

5919 zvol _read, /* read */

5920 zvol _write, /* wite */

5921 zf sdev_i oct |, /* ioctl */

5922 nodev, /* devmap */

5923 nodev, /* mmap */

5924 nodev, /* segmap */

5925 nochpol |, /* poll */

5926 ddi _prop_op, /* prop_op */

5927 NULL, /* streantab */

5928 D NEW| D MP | D 64BIT, /* Driver conpatibility flag */
5929 CB_REV, /* version */

5930 nodev, /* async read */

5931 nodev, /* async wite */

5932 };

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

5934 static struct dev_ops zfs_dev_ops = {

5935 DEVO_REV, /* version */
5936 0, /* refcnt */
5937 zfs_info, /* info */
5938 nul | dev, /* identify */
5939 nul | dev, /* probe */
5940 zfs_attach, /* attach */
5941 zf s_det ach, /* detach */
5942 nodev, /* reset */
5943 &fs_cb_ops, /* driver oper
5944 NULL, /* no bus oper
5945 NULL, /* power */
5946 ddi _qui esce_not _needed, /* qui
5947 };

5949 static struct nodldrv zfs_nodldrv = {

91

ations */
ations */

esce */

5950 &mod_dri ver ops,

5951 "ZFS storage pool ",

5952 &zfs_dev_ops

5953 };

5955 static struct nodlinkage nodlinkage = {

5956 EV_1,

5957 (void *)&zfs_nodlfs,

5958 (void *)&zfs_nodl drv,

5959 NULL

5960 };

5962 static void

5963 zfs_al |l ow_| og_destroy(void *arQg)

5964 {

5965 char *pool name = arg;

5966 strfree(pool nane);

5967 }

5969 int

5970 _init(void)

5971

5972 int error;

5974 spa_i nit (FREAD | FWRI TE);

5975 zfs_init();

5976 zvol _init();

5977 zfs_ioctl_init();

5979 if ((error = nod_install (&modlinkage)) != 0) {
5980 zvol _fini();

5981 zfs_fini();

5982 spa_fini();

5983 return (error)

5984 }

5986 tsd_create(&fs_fsyncer_key, NULL);

5987 tsd_create(&rw tsd_key, rrw tsd destroy)
5988 tsd_create(&fs_all ow log_key, zfs_allow_ i og_destroy);
5990 error = Idi_i dent from nod(&odl i nkage, &zfs_li);
5991 ASSERT(error == 0);

5992 mut ex_i nit (&zfs share I ock, NULL, MJTEX_DEFAULT, NULL);
5994 return (0);

5995 }

5997 int

5998 _fini(void)

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

| zvol

nkage))

s_nod) ;

nodcl ose(snbsrv_nod) ;
zfs_snbshare_inited)
_nodcl ose(sharefs_nod);

nmodi nf op)) ;

5999 {

6000 int error;

6002 if (spa_busy() || zfs_busy() |
6003 return (EBUSY);

6005 if ((error = nod_renpve(&odl i
6006 return (error);

6008 zvol _fini();

6009 zfs_fini();

6010 spa_fini();

6011 if (zfs_ nf sshar e _i ni ted)

6012 (voi d) ddi _nodcl ose(nf
6013 if (zfs_snbshare_inited)

6014 (voi d) ddi

6015 if (zfs_nfsshare_inited ||
6016 (voi d) ddi

6018 tsd_destroy(&zfs_fsyncer_key);
6019 I di _i dent _rel ease(zfs_li);

6020 zfs_li = NULL;

6021 mut ex_dest roy(&zfs_shar e_l ock);
6023 return (error);

6024 }

6026 i nt

6027 _info(struct nodinfo *nodi nfop)

6028 {

6029 return (nod_i nfo(&nodl i nkage,
6030 }

_busy() zi o_i nj ecti on_enabl ed)

1= 0)

new usr/src/uts/comon/sys/fs/zfs. h 1 new usr/src/uts/comon/sys/fs/zfs.h
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 796 ZFS Im SNAPS'_D‘I’
28824 Wed COct 17 21:48:40 2012 797 ZFS_| OC_DSOBJ_TO DSNAME,
new usr/src/uts/comon/sys/fs/zfs.h 798 ZFS_1 OC_0BJ_TO PATH,
FITS: generating send-streans in portable format 799 ZFS_| OC_POOL_SET_PROPS,
This commit adds the command 'zfs fits-send’, anal ogous to zfs send. The 800 ZFS_| OC_POOL_GET_PROPS,
generated send streamis conpatible with the stream generated with that 801 ZFS_| OC_SET_FSACL,
from’btrfs send” and can in principle easily be received to any fil esystem 802 ZFS_I OC_CGET_FSACL,
IR R R R R R R R SRR RS R SRR RS E R E RS R R R RREREREREEEEEEE] 803 ZFS Im S'_'ARE
__unchanged_portion_omtted_ 804 ZFS_| OC_| NHERI T_PROP,
805 ZFS_| OC_SMB_ACL,
740 #define ZVOL_DRI VER "zvol " 806 ZFS_1 OC_ USERSPACE ONE,
741 #define ZFS_DRI VER "zfs" 807 ZFS_| OC_USERSPACE_NANY,
742 #define ZFS_DEV "/ dev/ zf s" 808 ZFS_| OC_USERSPACE_UPGRADE,
809 ZFS_| OC_HOLD,
744 |* general zvol path */ 810 ZFS_| OC_RELEASE,
745 #define ZVOL_DIR "/ dev/zvol " 811 ZFS_| OC_GET_HOLDS,
746 /* expansion */ 812 ZFS_| OC_OBJSET_RECVD_PROPS,
747 #define ZVOL_PSEUDO DEV "/ devi ces/ pseudo/ zf s@: " 813 ZFS_| OC_VDEV_SPLI T,
748 |/ * for dunp and swap */ 814 ZFS_| OC_NEXT_OBJ,
749 #define ZVOL_FULL_DEV_DI R ZVOL_DIR "/ dsk/™" 815 ZFS_| OC_DI FF,
750 #define ZVOL_FULL_RDEV_DI R ZVOL_DIR "/rdsk/" 816 ZFS_| OC_TMP_SNAPSHOT,
817 ZFS_| OC_OBJ_TO STATS,
752 #define ZVOL_PROP_NAME "name" 818 ZFS_| OC_SPACE_WRI TTEN,
753 #define ZVOL_DEFAULT_BLOCKSI ZE 8192 819 ZFS_| OC_SPACE_SNAPS,
820 ZFS_| OC_DESTROY_SNAPS,
755 | * 821 ZFS_| OC_POOL_REGUI D,
756 * /dev/zfs ioctl nunbers. 822 ZFS_| OC_POOL_RECPEN,
757 */ 823 ZFS_| OC_SEND_PROGRESS,
758 typedef enum zfs_ioc { 824 ZFS_| OC_LOG HI STCRY,
759 ZFS_IOC_FIRST = (2" << 8), 825 ZFS_| OC_SEND_NEW
760 ZFS_1 OC = ZFS_| OC_FI RST, 826 ZFS_| OC_SEND_SPACE,
761 ZFS_| OC_POOL_CREATE = ZFS_| OC FI RST, 827 ZFS_| OC_CLONE,
762 ZFS_| OC_POOL_DESTROY, 828 ZFS_| OC_FI TS_SEND,
763 ZFS | OC_POOL_I| MPORT, 829 #endif /* | codereview */
764 ZFS_| OC_POOL_EXPORT, 830 ZFS | OC_LAST
765 ZFS_| OC_POOL_CONFI GS, 831 } zfs_ ioc_t;
766 ZFS_| OC_POOL_STATS,
767 ZFS_| OC_POOL_TRYI MPORT, 833 /*
768 ZFS_| OC_POOL_SCAN, 834 * Internal SPA |oad state. Used by FMA di agnosi s engine.
769 ZFS_| OC_POOL_FREEZE, 835 *
770 ZFS_| OC_POOL_UPGRADE, 836 typedef enum {
771 ZFS_| OC_POOL_GET_HI STCRY, 837 SPA_LOAD_NONE, /* no load in progress */
772 ZFS |oc VDEV_ADD, 838 SPA LOAD OPEN, /* normal open */
773 ZFS_| OC_VDEV_REMOVE, 839 SPA_LOAD_| MPORT, /* inport in progress */
774 ZFS_| OC_VDEV_SET_STATE, 840 SPA_LQAD_TRY! MPORT, /* tryinport in progress */
775 ZFS_| OC_VDEV_ATTACH, 841 SPA_LOAD_RECOVER, /* recovery requested */
776 ZFS_| OC_VDEV_DETACH, 842 SPA_LOAD_ERRCOR /* load failed */
777 ZFS_| OC_VDEV_SETPATH, 843 } spa_l oad_state_t;
778 ZFS_| OC_VDEV_SETFRU,
779 ZFS_| OC_OBJSET_STATS, 845 [*
780 ZFS_| OC_OBJSET_ZPLPROPS, 846 * Bookmark name val ues.
781 ZFS_| OC_DATASET_LI ST_NEXT, 847 */
782 ZFS_| OC_SNAPSHOT_LI ST_NEXT, 848 #define ZPOOL_ERR LI ST "error list"
783 ZFS_| OC_SET_PROP, 849 #define ZPOOL_ERR DATASET "dat aset "
784 ZFS_| OC_CREATE, 850 #define ZPOOL_ERR OBJECT "obj ect"
785 ZFS_| OC_DESTROY,
786 ZFS_ | OC_ROLLBACK, 852 #define H S_MAX_RECORD LEN (MAXPATHLEN + MAXPATHLEN + 1)
787 ZFS_| OC_RENAME,
788 ZFS_| OC_RECV, 854 [*
789 ZFS_| OC_SEND, 855 * The followi ng are nanes used in the nvlist describing
790 ZFS_1 OC_I NJECT_FAULT, 856 * the pool’s history |og.
791 ZFS_| OC_CLEAR FAULT, 857 */
792 ZFS_| OC_| NJECT_LI ST_NEXT, 858 #define ZPOOL_H ST_RECORD "history record"
793 ZFS_| OC | ERRCR LOG, 859 #define ZPOOL_HI ST_TI ME "history tine"
794 ZFS_| OC_CLEA 860 #define ZPOOL_HI ST_CMD "hi story comrand"
795 ZFS_| OC | PROVDTE, 861 #define ZPOOL_H ST_WHO "hi story who"

new usr/src/uts/comon/sys/fs/zfs.h

862
863
864
865
866
867
868
869
870
871
872

874
875
876
877
878
879
880
881

883
884
885
886
887
888
889
890

892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916

918
920
922

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

/*

* Fl
*/
#def i
#def i
#def i
#def i
#def i

/*

* Fl
*/
#def i
#def i
#def i
#def i
#def i

/

R B

*/
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ZPOOL_HI ST_ZONE
ZPOOL_HI ST_HOST
ZPOOL_HI ST_TXG
ZPOOL_HI ST_| NT_EVENT
ZPOOL_HI ST_I NT_STR
ZPOOL_HI ST_| NT_NAMVE
ZPOOL_HI ST_| OCTL
ZPOOL_HI ST_I NPUT_NVL
ZPOOL_HI ST_OUTPUT_NVL
ZPOOL_HI ST_DSNANE
ZPOOL_H ST_DSI D

"hi story zone"
"hi story hostnane"
"history txg"

"history internal
"history internal

event"
str”

"i nternal _nane"

"ioctl"

"in_nvl"
"out _nvl"
"dsnane"”

"dsid"

ags for ZFS_| OC_VDEV_SET_STATE

ne
ne
ne
ne
ne

ZFS_ONLI NE_CHECKREMOVE
ZFS_ONLI NE_UNSPARE
ZFS_ONLI NE_FORCEFAULT
ZFS_ONLI NE_EXPAND
ZFS_OFFLI NE_TEMPORARY

Ox1
0x2
0x4
0x8
Ox1

ags for ZFS_| OC_POOL_| MPORT

ne
ne
ne
ne
ne

Sysevent
gi ven payl oads:

ne
ne
ne
ne

#i f def
919 }

#endi
#endi

f
f

ZFS | MPORT_NORMAL
ZFS_| MPORT_VERBATI M
ZFS_| MPORT_ANY_HOST
ZFS_| MPORT_M SSI NG_LOG
ZFS_| MPORT_ONLY

payl oad nenbers.

ESC_ZFS RESI LVER START
ESC_ZFS_RESI LVER_END
ESC_ZFS_POOL_DESTROY
ESC_ZFS_POOL_REGUI D

0x0
Ox1
0x2
0x4
0x8

ZFS wil |

ZFS_EV_PQOOL_NANE
ZFS_EV_POOL_GUI D

ESC_ZFS_VDEV_REMOVE
ESC_ZFS_VDEV_CLEAR
ESC_ZFS_VDEV_CHECK

ZFS_EV_POOL_NAMVE
ZFS_EV_POOL_GUI D
ZFS_EV_VDEV_PATH
ZFS_EV_VDEV_GUI D

ZFS_EV_PCOL_NAMVE
ZFS_EV_POOL_GUI D
ZFS_EV_VDEV_PATH
ZFS_EV_VDEV_GUI D

__cpl uspl us

/* _SYS FS ZFS H */

generate the followi ng sysevents with the

DATA_TYPE_STRI NG
DATA_TYPE_Ul NT64

DATA TYPE_STRI NG
DATA_TYPE_Ul NT64
DATA_TYPE_STRI NG
DATA_TYPE_UI NT64

"pool _nane"
"pool _gui d"
"vdev_pat h"
"vdev_gui d"

(optional)

