1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 */ 25 26 /* Portions Copyright 2010 Robert Milkowski */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa.h> 30 #include <sys/dmu.h> 31 #include <sys/zap.h> 32 #include <sys/arc.h> 33 #include <sys/stat.h> 34 #include <sys/resource.h> 35 #include <sys/zil.h> 36 #include <sys/zil_impl.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/vdev_impl.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/dsl_pool.h> 41 42 /* 43 * The zfs intent log (ZIL) saves transaction records of system calls 44 * that change the file system in memory with enough information 45 * to be able to replay them. These are stored in memory until 46 * either the DMU transaction group (txg) commits them to the stable pool 47 * and they can be discarded, or they are flushed to the stable log 48 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 49 * requirement. In the event of a panic or power fail then those log 50 * records (transactions) are replayed. 51 * 52 * There is one ZIL per file system. Its on-disk (pool) format consists 53 * of 3 parts: 54 * 55 * - ZIL header 56 * - ZIL blocks 57 * - ZIL records 58 * 59 * A log record holds a system call transaction. Log blocks can 60 * hold many log records and the blocks are chained together. 61 * Each ZIL block contains a block pointer (blkptr_t) to the next 62 * ZIL block in the chain. The ZIL header points to the first 63 * block in the chain. Note there is not a fixed place in the pool 64 * to hold blocks. They are dynamically allocated and freed as 65 * needed from the blocks available. Figure X shows the ZIL structure: 66 */ 67 68 /* 69 * Disable intent logging replay. This global ZIL switch affects all pools. 70 */ 71 int zil_replay_disable = 0; 72 73 /* 74 * Tunable parameter for debugging or performance analysis. Setting 75 * zfs_nocacheflush will cause corruption on power loss if a volatile 76 * out-of-order write cache is enabled. 77 */ 78 boolean_t zfs_nocacheflush = B_FALSE; 79 80 static kmem_cache_t *zil_lwb_cache; 81 82 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid); 83 84 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ 85 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) 86 87 88 /* 89 * ziltest is by and large an ugly hack, but very useful in 90 * checking replay without tedious work. 91 * When running ziltest we want to keep all itx's and so maintain 92 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG 93 * We subtract TXG_CONCURRENT_STATES to allow for common code. 94 */ 95 #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES) 96 97 static int 98 zil_bp_compare(const void *x1, const void *x2) 99 { 100 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 101 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 102 103 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 104 return (-1); 105 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 106 return (1); 107 108 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 109 return (-1); 110 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 111 return (1); 112 113 return (0); 114 } 115 116 static void 117 zil_bp_tree_init(zilog_t *zilog) 118 { 119 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 120 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 121 } 122 123 static void 124 zil_bp_tree_fini(zilog_t *zilog) 125 { 126 avl_tree_t *t = &zilog->zl_bp_tree; 127 zil_bp_node_t *zn; 128 void *cookie = NULL; 129 130 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 131 kmem_free(zn, sizeof (zil_bp_node_t)); 132 133 avl_destroy(t); 134 } 135 136 int 137 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 138 { 139 avl_tree_t *t = &zilog->zl_bp_tree; 140 const dva_t *dva; 141 zil_bp_node_t *zn; 142 avl_index_t where; 143 144 if (BP_IS_EMBEDDED(bp)) 145 return (0); 146 147 dva = BP_IDENTITY(bp); 148 149 if (avl_find(t, dva, &where) != NULL) 150 return (SET_ERROR(EEXIST)); 151 152 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 153 zn->zn_dva = *dva; 154 avl_insert(t, zn, where); 155 156 return (0); 157 } 158 159 static zil_header_t * 160 zil_header_in_syncing_context(zilog_t *zilog) 161 { 162 return ((zil_header_t *)zilog->zl_header); 163 } 164 165 static void 166 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 167 { 168 zio_cksum_t *zc = &bp->blk_cksum; 169 170 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 171 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 172 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 173 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 174 } 175 176 /* 177 * Read a log block and make sure it's valid. 178 */ 179 static int 180 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst, 181 char **end) 182 { 183 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 184 uint32_t aflags = ARC_WAIT; 185 arc_buf_t *abuf = NULL; 186 zbookmark_t zb; 187 int error; 188 189 if (zilog->zl_header->zh_claim_txg == 0) 190 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 191 192 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 193 zio_flags |= ZIO_FLAG_SPECULATIVE; 194 195 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 196 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 197 198 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 199 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 200 201 if (error == 0) { 202 zio_cksum_t cksum = bp->blk_cksum; 203 204 /* 205 * Validate the checksummed log block. 206 * 207 * Sequence numbers should be... sequential. The checksum 208 * verifier for the next block should be bp's checksum plus 1. 209 * 210 * Also check the log chain linkage and size used. 211 */ 212 cksum.zc_word[ZIL_ZC_SEQ]++; 213 214 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 215 zil_chain_t *zilc = abuf->b_data; 216 char *lr = (char *)(zilc + 1); 217 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); 218 219 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 220 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { 221 error = SET_ERROR(ECKSUM); 222 } else { 223 bcopy(lr, dst, len); 224 *end = (char *)dst + len; 225 *nbp = zilc->zc_next_blk; 226 } 227 } else { 228 char *lr = abuf->b_data; 229 uint64_t size = BP_GET_LSIZE(bp); 230 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 231 232 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 233 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || 234 (zilc->zc_nused > (size - sizeof (*zilc)))) { 235 error = SET_ERROR(ECKSUM); 236 } else { 237 bcopy(lr, dst, zilc->zc_nused); 238 *end = (char *)dst + zilc->zc_nused; 239 *nbp = zilc->zc_next_blk; 240 } 241 } 242 243 VERIFY(arc_buf_remove_ref(abuf, &abuf)); 244 } 245 246 return (error); 247 } 248 249 /* 250 * Read a TX_WRITE log data block. 251 */ 252 static int 253 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 254 { 255 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; 256 const blkptr_t *bp = &lr->lr_blkptr; 257 uint32_t aflags = ARC_WAIT; 258 arc_buf_t *abuf = NULL; 259 zbookmark_t zb; 260 int error; 261 262 if (BP_IS_HOLE(bp)) { 263 if (wbuf != NULL) 264 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 265 return (0); 266 } 267 268 if (zilog->zl_header->zh_claim_txg == 0) 269 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 270 271 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 272 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 273 274 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 275 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 276 277 if (error == 0) { 278 if (wbuf != NULL) 279 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); 280 (void) arc_buf_remove_ref(abuf, &abuf); 281 } 282 283 return (error); 284 } 285 286 /* 287 * Parse the intent log, and call parse_func for each valid record within. 288 */ 289 int 290 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 291 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 292 { 293 const zil_header_t *zh = zilog->zl_header; 294 boolean_t claimed = !!zh->zh_claim_txg; 295 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 296 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 297 uint64_t max_blk_seq = 0; 298 uint64_t max_lr_seq = 0; 299 uint64_t blk_count = 0; 300 uint64_t lr_count = 0; 301 blkptr_t blk, next_blk; 302 char *lrbuf, *lrp; 303 int error = 0; 304 305 /* 306 * Old logs didn't record the maximum zh_claim_lr_seq. 307 */ 308 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 309 claim_lr_seq = UINT64_MAX; 310 311 /* 312 * Starting at the block pointed to by zh_log we read the log chain. 313 * For each block in the chain we strongly check that block to 314 * ensure its validity. We stop when an invalid block is found. 315 * For each block pointer in the chain we call parse_blk_func(). 316 * For each record in each valid block we call parse_lr_func(). 317 * If the log has been claimed, stop if we encounter a sequence 318 * number greater than the highest claimed sequence number. 319 */ 320 lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE); 321 zil_bp_tree_init(zilog); 322 323 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 324 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 325 int reclen; 326 char *end; 327 328 if (blk_seq > claim_blk_seq) 329 break; 330 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0) 331 break; 332 ASSERT3U(max_blk_seq, <, blk_seq); 333 max_blk_seq = blk_seq; 334 blk_count++; 335 336 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 337 break; 338 339 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end); 340 if (error != 0) 341 break; 342 343 for (lrp = lrbuf; lrp < end; lrp += reclen) { 344 lr_t *lr = (lr_t *)lrp; 345 reclen = lr->lrc_reclen; 346 ASSERT3U(reclen, >=, sizeof (lr_t)); 347 if (lr->lrc_seq > claim_lr_seq) 348 goto done; 349 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0) 350 goto done; 351 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 352 max_lr_seq = lr->lrc_seq; 353 lr_count++; 354 } 355 } 356 done: 357 zilog->zl_parse_error = error; 358 zilog->zl_parse_blk_seq = max_blk_seq; 359 zilog->zl_parse_lr_seq = max_lr_seq; 360 zilog->zl_parse_blk_count = blk_count; 361 zilog->zl_parse_lr_count = lr_count; 362 363 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || 364 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq)); 365 366 zil_bp_tree_fini(zilog); 367 zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE); 368 369 return (error); 370 } 371 372 static int 373 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 374 { 375 /* 376 * Claim log block if not already committed and not already claimed. 377 * If tx == NULL, just verify that the block is claimable. 378 */ 379 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || 380 zil_bp_tree_add(zilog, bp) != 0) 381 return (0); 382 383 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 384 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 385 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 386 } 387 388 static int 389 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 390 { 391 lr_write_t *lr = (lr_write_t *)lrc; 392 int error; 393 394 if (lrc->lrc_txtype != TX_WRITE) 395 return (0); 396 397 /* 398 * If the block is not readable, don't claim it. This can happen 399 * in normal operation when a log block is written to disk before 400 * some of the dmu_sync() blocks it points to. In this case, the 401 * transaction cannot have been committed to anyone (we would have 402 * waited for all writes to be stable first), so it is semantically 403 * correct to declare this the end of the log. 404 */ 405 if (lr->lr_blkptr.blk_birth >= first_txg && 406 (error = zil_read_log_data(zilog, lr, NULL)) != 0) 407 return (error); 408 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 409 } 410 411 /* ARGSUSED */ 412 static int 413 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 414 { 415 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 416 417 return (0); 418 } 419 420 static int 421 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 422 { 423 lr_write_t *lr = (lr_write_t *)lrc; 424 blkptr_t *bp = &lr->lr_blkptr; 425 426 /* 427 * If we previously claimed it, we need to free it. 428 */ 429 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && 430 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && 431 !BP_IS_HOLE(bp)) 432 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 433 434 return (0); 435 } 436 437 static lwb_t * 438 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg) 439 { 440 lwb_t *lwb; 441 442 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 443 lwb->lwb_zilog = zilog; 444 lwb->lwb_blk = *bp; 445 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); 446 lwb->lwb_max_txg = txg; 447 lwb->lwb_zio = NULL; 448 lwb->lwb_tx = NULL; 449 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 450 lwb->lwb_nused = sizeof (zil_chain_t); 451 lwb->lwb_sz = BP_GET_LSIZE(bp); 452 } else { 453 lwb->lwb_nused = 0; 454 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); 455 } 456 457 mutex_enter(&zilog->zl_lock); 458 list_insert_tail(&zilog->zl_lwb_list, lwb); 459 mutex_exit(&zilog->zl_lock); 460 461 return (lwb); 462 } 463 464 /* 465 * Called when we create in-memory log transactions so that we know 466 * to cleanup the itxs at the end of spa_sync(). 467 */ 468 void 469 zilog_dirty(zilog_t *zilog, uint64_t txg) 470 { 471 dsl_pool_t *dp = zilog->zl_dmu_pool; 472 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 473 474 if (dsl_dataset_is_snapshot(ds)) 475 panic("dirtying snapshot!"); 476 477 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 478 /* up the hold count until we can be written out */ 479 dmu_buf_add_ref(ds->ds_dbuf, zilog); 480 } 481 } 482 483 boolean_t 484 zilog_is_dirty(zilog_t *zilog) 485 { 486 dsl_pool_t *dp = zilog->zl_dmu_pool; 487 488 for (int t = 0; t < TXG_SIZE; t++) { 489 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 490 return (B_TRUE); 491 } 492 return (B_FALSE); 493 } 494 495 /* 496 * Create an on-disk intent log. 497 */ 498 static lwb_t * 499 zil_create(zilog_t *zilog) 500 { 501 const zil_header_t *zh = zilog->zl_header; 502 lwb_t *lwb = NULL; 503 uint64_t txg = 0; 504 dmu_tx_t *tx = NULL; 505 blkptr_t blk; 506 int error = 0; 507 508 /* 509 * Wait for any previous destroy to complete. 510 */ 511 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 512 513 ASSERT(zh->zh_claim_txg == 0); 514 ASSERT(zh->zh_replay_seq == 0); 515 516 blk = zh->zh_log; 517 518 /* 519 * Allocate an initial log block if: 520 * - there isn't one already 521 * - the existing block is the wrong endianess 522 */ 523 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 524 tx = dmu_tx_create(zilog->zl_os); 525 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 526 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 527 txg = dmu_tx_get_txg(tx); 528 529 if (!BP_IS_HOLE(&blk)) { 530 zio_free_zil(zilog->zl_spa, txg, &blk); 531 BP_ZERO(&blk); 532 } 533 534 error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL, 535 ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY); 536 537 if (error == 0) 538 zil_init_log_chain(zilog, &blk); 539 } 540 541 /* 542 * Allocate a log write buffer (lwb) for the first log block. 543 */ 544 if (error == 0) 545 lwb = zil_alloc_lwb(zilog, &blk, txg); 546 547 /* 548 * If we just allocated the first log block, commit our transaction 549 * and wait for zil_sync() to stuff the block poiner into zh_log. 550 * (zh is part of the MOS, so we cannot modify it in open context.) 551 */ 552 if (tx != NULL) { 553 dmu_tx_commit(tx); 554 txg_wait_synced(zilog->zl_dmu_pool, txg); 555 } 556 557 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 558 559 return (lwb); 560 } 561 562 /* 563 * In one tx, free all log blocks and clear the log header. 564 * If keep_first is set, then we're replaying a log with no content. 565 * We want to keep the first block, however, so that the first 566 * synchronous transaction doesn't require a txg_wait_synced() 567 * in zil_create(). We don't need to txg_wait_synced() here either 568 * when keep_first is set, because both zil_create() and zil_destroy() 569 * will wait for any in-progress destroys to complete. 570 */ 571 void 572 zil_destroy(zilog_t *zilog, boolean_t keep_first) 573 { 574 const zil_header_t *zh = zilog->zl_header; 575 lwb_t *lwb; 576 dmu_tx_t *tx; 577 uint64_t txg; 578 579 /* 580 * Wait for any previous destroy to complete. 581 */ 582 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 583 584 zilog->zl_old_header = *zh; /* debugging aid */ 585 586 if (BP_IS_HOLE(&zh->zh_log)) 587 return; 588 589 tx = dmu_tx_create(zilog->zl_os); 590 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 591 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 592 txg = dmu_tx_get_txg(tx); 593 594 mutex_enter(&zilog->zl_lock); 595 596 ASSERT3U(zilog->zl_destroy_txg, <, txg); 597 zilog->zl_destroy_txg = txg; 598 zilog->zl_keep_first = keep_first; 599 600 if (!list_is_empty(&zilog->zl_lwb_list)) { 601 ASSERT(zh->zh_claim_txg == 0); 602 VERIFY(!keep_first); 603 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 604 list_remove(&zilog->zl_lwb_list, lwb); 605 if (lwb->lwb_buf != NULL) 606 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 607 zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk); 608 kmem_cache_free(zil_lwb_cache, lwb); 609 } 610 } else if (!keep_first) { 611 zil_destroy_sync(zilog, tx); 612 } 613 mutex_exit(&zilog->zl_lock); 614 615 dmu_tx_commit(tx); 616 } 617 618 void 619 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 620 { 621 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 622 (void) zil_parse(zilog, zil_free_log_block, 623 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg); 624 } 625 626 int 627 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) 628 { 629 dmu_tx_t *tx = txarg; 630 uint64_t first_txg = dmu_tx_get_txg(tx); 631 zilog_t *zilog; 632 zil_header_t *zh; 633 objset_t *os; 634 int error; 635 636 error = dmu_objset_own_obj(dp, ds->ds_object, 637 DMU_OST_ANY, B_FALSE, FTAG, &os); 638 if (error != 0) { 639 cmn_err(CE_WARN, "can't open objset %llu, error %d", 640 (unsigned long long)ds->ds_object, error); 641 return (0); 642 } 643 644 zilog = dmu_objset_zil(os); 645 zh = zil_header_in_syncing_context(zilog); 646 647 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) { 648 if (!BP_IS_HOLE(&zh->zh_log)) 649 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log); 650 BP_ZERO(&zh->zh_log); 651 dsl_dataset_dirty(dmu_objset_ds(os), tx); 652 dmu_objset_disown(os, FTAG); 653 return (0); 654 } 655 656 /* 657 * Claim all log blocks if we haven't already done so, and remember 658 * the highest claimed sequence number. This ensures that if we can 659 * read only part of the log now (e.g. due to a missing device), 660 * but we can read the entire log later, we will not try to replay 661 * or destroy beyond the last block we successfully claimed. 662 */ 663 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 664 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 665 (void) zil_parse(zilog, zil_claim_log_block, 666 zil_claim_log_record, tx, first_txg); 667 zh->zh_claim_txg = first_txg; 668 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 669 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 670 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 671 zh->zh_flags |= ZIL_REPLAY_NEEDED; 672 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 673 dsl_dataset_dirty(dmu_objset_ds(os), tx); 674 } 675 676 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 677 dmu_objset_disown(os, FTAG); 678 return (0); 679 } 680 681 /* 682 * Check the log by walking the log chain. 683 * Checksum errors are ok as they indicate the end of the chain. 684 * Any other error (no device or read failure) returns an error. 685 */ 686 int 687 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) 688 { 689 zilog_t *zilog; 690 objset_t *os; 691 blkptr_t *bp; 692 int error; 693 694 ASSERT(tx == NULL); 695 696 error = dmu_objset_from_ds(ds, &os); 697 if (error != 0) { 698 cmn_err(CE_WARN, "can't open objset %llu, error %d", 699 (unsigned long long)ds->ds_object, error); 700 return (0); 701 } 702 703 zilog = dmu_objset_zil(os); 704 bp = (blkptr_t *)&zilog->zl_header->zh_log; 705 706 /* 707 * Check the first block and determine if it's on a log device 708 * which may have been removed or faulted prior to loading this 709 * pool. If so, there's no point in checking the rest of the log 710 * as its content should have already been synced to the pool. 711 */ 712 if (!BP_IS_HOLE(bp)) { 713 vdev_t *vd; 714 boolean_t valid = B_TRUE; 715 716 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 717 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 718 if (vd->vdev_islog && vdev_is_dead(vd)) 719 valid = vdev_log_state_valid(vd); 720 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 721 722 if (!valid) 723 return (0); 724 } 725 726 /* 727 * Because tx == NULL, zil_claim_log_block() will not actually claim 728 * any blocks, but just determine whether it is possible to do so. 729 * In addition to checking the log chain, zil_claim_log_block() 730 * will invoke zio_claim() with a done func of spa_claim_notify(), 731 * which will update spa_max_claim_txg. See spa_load() for details. 732 */ 733 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 734 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa)); 735 736 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 737 } 738 739 static int 740 zil_vdev_compare(const void *x1, const void *x2) 741 { 742 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 743 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 744 745 if (v1 < v2) 746 return (-1); 747 if (v1 > v2) 748 return (1); 749 750 return (0); 751 } 752 753 void 754 zil_add_block(zilog_t *zilog, const blkptr_t *bp) 755 { 756 avl_tree_t *t = &zilog->zl_vdev_tree; 757 avl_index_t where; 758 zil_vdev_node_t *zv, zvsearch; 759 int ndvas = BP_GET_NDVAS(bp); 760 int i; 761 762 if (zfs_nocacheflush) 763 return; 764 765 ASSERT(zilog->zl_writer); 766 767 /* 768 * Even though we're zl_writer, we still need a lock because the 769 * zl_get_data() callbacks may have dmu_sync() done callbacks 770 * that will run concurrently. 771 */ 772 mutex_enter(&zilog->zl_vdev_lock); 773 for (i = 0; i < ndvas; i++) { 774 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 775 if (avl_find(t, &zvsearch, &where) == NULL) { 776 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 777 zv->zv_vdev = zvsearch.zv_vdev; 778 avl_insert(t, zv, where); 779 } 780 } 781 mutex_exit(&zilog->zl_vdev_lock); 782 } 783 784 static void 785 zil_flush_vdevs(zilog_t *zilog) 786 { 787 spa_t *spa = zilog->zl_spa; 788 avl_tree_t *t = &zilog->zl_vdev_tree; 789 void *cookie = NULL; 790 zil_vdev_node_t *zv; 791 zio_t *zio; 792 793 ASSERT(zilog->zl_writer); 794 795 /* 796 * We don't need zl_vdev_lock here because we're the zl_writer, 797 * and all zl_get_data() callbacks are done. 798 */ 799 if (avl_numnodes(t) == 0) 800 return; 801 802 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 803 804 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 805 806 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 807 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 808 if (vd != NULL) 809 zio_flush(zio, vd); 810 kmem_free(zv, sizeof (*zv)); 811 } 812 813 /* 814 * Wait for all the flushes to complete. Not all devices actually 815 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 816 */ 817 (void) zio_wait(zio); 818 819 spa_config_exit(spa, SCL_STATE, FTAG); 820 } 821 822 /* 823 * Function called when a log block write completes 824 */ 825 static void 826 zil_lwb_write_done(zio_t *zio) 827 { 828 lwb_t *lwb = zio->io_private; 829 zilog_t *zilog = lwb->lwb_zilog; 830 dmu_tx_t *tx = lwb->lwb_tx; 831 832 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 833 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 834 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 835 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 836 ASSERT(!BP_IS_GANG(zio->io_bp)); 837 ASSERT(!BP_IS_HOLE(zio->io_bp)); 838 ASSERT(BP_GET_FILL(zio->io_bp) == 0); 839 840 /* 841 * Ensure the lwb buffer pointer is cleared before releasing 842 * the txg. If we have had an allocation failure and 843 * the txg is waiting to sync then we want want zil_sync() 844 * to remove the lwb so that it's not picked up as the next new 845 * one in zil_commit_writer(). zil_sync() will only remove 846 * the lwb if lwb_buf is null. 847 */ 848 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 849 mutex_enter(&zilog->zl_lock); 850 lwb->lwb_buf = NULL; 851 lwb->lwb_tx = NULL; 852 mutex_exit(&zilog->zl_lock); 853 854 /* 855 * Now that we've written this log block, we have a stable pointer 856 * to the next block in the chain, so it's OK to let the txg in 857 * which we allocated the next block sync. 858 */ 859 dmu_tx_commit(tx); 860 } 861 862 /* 863 * Initialize the io for a log block. 864 */ 865 static void 866 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 867 { 868 zbookmark_t zb; 869 870 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 871 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 872 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 873 874 if (zilog->zl_root_zio == NULL) { 875 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 876 ZIO_FLAG_CANFAIL); 877 } 878 if (lwb->lwb_zio == NULL) { 879 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 880 0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk), 881 zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE, 882 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb); 883 } 884 } 885 886 /* 887 * Define a limited set of intent log block sizes. 888 * 889 * These must be a multiple of 4KB. Note only the amount used (again 890 * aligned to 4KB) actually gets written. However, we can't always just 891 * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted. 892 */ 893 uint64_t zil_block_buckets[] = { 894 4096, /* non TX_WRITE */ 895 8192+4096, /* data base */ 896 32*1024 + 4096, /* NFS writes */ 897 UINT64_MAX 898 }; 899 900 /* 901 * Use the slog as long as the logbias is 'latency' and the current commit size 902 * is less than the limit or the total list size is less than 2X the limit. 903 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX. 904 */ 905 uint64_t zil_slog_limit = 1024 * 1024; 906 #define USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \ 907 (((zilog)->zl_cur_used < zil_slog_limit) || \ 908 ((zilog)->zl_itx_list_sz < (zil_slog_limit << 1)))) 909 910 /* 911 * Start a log block write and advance to the next log block. 912 * Calls are serialized. 913 */ 914 static lwb_t * 915 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 916 { 917 lwb_t *nlwb = NULL; 918 zil_chain_t *zilc; 919 spa_t *spa = zilog->zl_spa; 920 blkptr_t *bp; 921 dmu_tx_t *tx; 922 uint64_t txg; 923 uint64_t zil_blksz, wsz; 924 int i, error; 925 926 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 927 zilc = (zil_chain_t *)lwb->lwb_buf; 928 bp = &zilc->zc_next_blk; 929 } else { 930 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); 931 bp = &zilc->zc_next_blk; 932 } 933 934 ASSERT(lwb->lwb_nused <= lwb->lwb_sz); 935 936 /* 937 * Allocate the next block and save its address in this block 938 * before writing it in order to establish the log chain. 939 * Note that if the allocation of nlwb synced before we wrote 940 * the block that points at it (lwb), we'd leak it if we crashed. 941 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). 942 * We dirty the dataset to ensure that zil_sync() will be called 943 * to clean up in the event of allocation failure or I/O failure. 944 */ 945 tx = dmu_tx_create(zilog->zl_os); 946 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); 947 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 948 txg = dmu_tx_get_txg(tx); 949 950 lwb->lwb_tx = tx; 951 952 /* 953 * Log blocks are pre-allocated. Here we select the size of the next 954 * block, based on size used in the last block. 955 * - first find the smallest bucket that will fit the block from a 956 * limited set of block sizes. This is because it's faster to write 957 * blocks allocated from the same metaslab as they are adjacent or 958 * close. 959 * - next find the maximum from the new suggested size and an array of 960 * previous sizes. This lessens a picket fence effect of wrongly 961 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k 962 * requests. 963 * 964 * Note we only write what is used, but we can't just allocate 965 * the maximum block size because we can exhaust the available 966 * pool log space. 967 */ 968 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 969 for (i = 0; zil_blksz > zil_block_buckets[i]; i++) 970 continue; 971 zil_blksz = zil_block_buckets[i]; 972 if (zil_blksz == UINT64_MAX) 973 zil_blksz = SPA_MAXBLOCKSIZE; 974 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 975 for (i = 0; i < ZIL_PREV_BLKS; i++) 976 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 977 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 978 979 BP_ZERO(bp); 980 /* pass the old blkptr in order to spread log blocks across devs */ 981 error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, 982 USE_SLOG(zilog)); 983 if (error == 0) { 984 ASSERT3U(bp->blk_birth, ==, txg); 985 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 986 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 987 988 /* 989 * Allocate a new log write buffer (lwb). 990 */ 991 nlwb = zil_alloc_lwb(zilog, bp, txg); 992 993 /* Record the block for later vdev flushing */ 994 zil_add_block(zilog, &lwb->lwb_blk); 995 } 996 997 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { 998 /* For Slim ZIL only write what is used. */ 999 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); 1000 ASSERT3U(wsz, <=, lwb->lwb_sz); 1001 zio_shrink(lwb->lwb_zio, wsz); 1002 1003 } else { 1004 wsz = lwb->lwb_sz; 1005 } 1006 1007 zilc->zc_pad = 0; 1008 zilc->zc_nused = lwb->lwb_nused; 1009 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1010 1011 /* 1012 * clear unused data for security 1013 */ 1014 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); 1015 1016 zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */ 1017 1018 /* 1019 * If there was an allocation failure then nlwb will be null which 1020 * forces a txg_wait_synced(). 1021 */ 1022 return (nlwb); 1023 } 1024 1025 static lwb_t * 1026 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 1027 { 1028 lr_t *lrc = &itx->itx_lr; /* common log record */ 1029 lr_write_t *lrw = (lr_write_t *)lrc; 1030 char *lr_buf; 1031 uint64_t txg = lrc->lrc_txg; 1032 uint64_t reclen = lrc->lrc_reclen; 1033 uint64_t dlen = 0; 1034 1035 if (lwb == NULL) 1036 return (NULL); 1037 1038 ASSERT(lwb->lwb_buf != NULL); 1039 ASSERT(zilog_is_dirty(zilog) || 1040 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 1041 1042 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 1043 dlen = P2ROUNDUP_TYPED( 1044 lrw->lr_length, sizeof (uint64_t), uint64_t); 1045 1046 zilog->zl_cur_used += (reclen + dlen); 1047 1048 zil_lwb_write_init(zilog, lwb); 1049 1050 /* 1051 * If this record won't fit in the current log block, start a new one. 1052 */ 1053 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { 1054 lwb = zil_lwb_write_start(zilog, lwb); 1055 if (lwb == NULL) 1056 return (NULL); 1057 zil_lwb_write_init(zilog, lwb); 1058 ASSERT(LWB_EMPTY(lwb)); 1059 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { 1060 txg_wait_synced(zilog->zl_dmu_pool, txg); 1061 return (lwb); 1062 } 1063 } 1064 1065 lr_buf = lwb->lwb_buf + lwb->lwb_nused; 1066 bcopy(lrc, lr_buf, reclen); 1067 lrc = (lr_t *)lr_buf; 1068 lrw = (lr_write_t *)lrc; 1069 1070 /* 1071 * If it's a write, fetch the data or get its blkptr as appropriate. 1072 */ 1073 if (lrc->lrc_txtype == TX_WRITE) { 1074 if (txg > spa_freeze_txg(zilog->zl_spa)) 1075 txg_wait_synced(zilog->zl_dmu_pool, txg); 1076 if (itx->itx_wr_state != WR_COPIED) { 1077 char *dbuf; 1078 int error; 1079 1080 if (dlen) { 1081 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 1082 dbuf = lr_buf + reclen; 1083 lrw->lr_common.lrc_reclen += dlen; 1084 } else { 1085 ASSERT(itx->itx_wr_state == WR_INDIRECT); 1086 dbuf = NULL; 1087 } 1088 error = zilog->zl_get_data( 1089 itx->itx_private, lrw, dbuf, lwb->lwb_zio); 1090 if (error == EIO) { 1091 txg_wait_synced(zilog->zl_dmu_pool, txg); 1092 return (lwb); 1093 } 1094 if (error != 0) { 1095 ASSERT(error == ENOENT || error == EEXIST || 1096 error == EALREADY); 1097 return (lwb); 1098 } 1099 } 1100 } 1101 1102 /* 1103 * We're actually making an entry, so update lrc_seq to be the 1104 * log record sequence number. Note that this is generally not 1105 * equal to the itx sequence number because not all transactions 1106 * are synchronous, and sometimes spa_sync() gets there first. 1107 */ 1108 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 1109 lwb->lwb_nused += reclen + dlen; 1110 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1111 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); 1112 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 1113 1114 return (lwb); 1115 } 1116 1117 itx_t * 1118 zil_itx_create(uint64_t txtype, size_t lrsize) 1119 { 1120 itx_t *itx; 1121 1122 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 1123 1124 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 1125 itx->itx_lr.lrc_txtype = txtype; 1126 itx->itx_lr.lrc_reclen = lrsize; 1127 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ 1128 itx->itx_lr.lrc_seq = 0; /* defensive */ 1129 itx->itx_sync = B_TRUE; /* default is synchronous */ 1130 1131 return (itx); 1132 } 1133 1134 void 1135 zil_itx_destroy(itx_t *itx) 1136 { 1137 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); 1138 } 1139 1140 /* 1141 * Free up the sync and async itxs. The itxs_t has already been detached 1142 * so no locks are needed. 1143 */ 1144 static void 1145 zil_itxg_clean(itxs_t *itxs) 1146 { 1147 itx_t *itx; 1148 list_t *list; 1149 avl_tree_t *t; 1150 void *cookie; 1151 itx_async_node_t *ian; 1152 1153 list = &itxs->i_sync_list; 1154 while ((itx = list_head(list)) != NULL) { 1155 list_remove(list, itx); 1156 kmem_free(itx, offsetof(itx_t, itx_lr) + 1157 itx->itx_lr.lrc_reclen); 1158 } 1159 1160 cookie = NULL; 1161 t = &itxs->i_async_tree; 1162 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1163 list = &ian->ia_list; 1164 while ((itx = list_head(list)) != NULL) { 1165 list_remove(list, itx); 1166 kmem_free(itx, offsetof(itx_t, itx_lr) + 1167 itx->itx_lr.lrc_reclen); 1168 } 1169 list_destroy(list); 1170 kmem_free(ian, sizeof (itx_async_node_t)); 1171 } 1172 avl_destroy(t); 1173 1174 kmem_free(itxs, sizeof (itxs_t)); 1175 } 1176 1177 static int 1178 zil_aitx_compare(const void *x1, const void *x2) 1179 { 1180 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 1181 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 1182 1183 if (o1 < o2) 1184 return (-1); 1185 if (o1 > o2) 1186 return (1); 1187 1188 return (0); 1189 } 1190 1191 /* 1192 * Remove all async itx with the given oid. 1193 */ 1194 static void 1195 zil_remove_async(zilog_t *zilog, uint64_t oid) 1196 { 1197 uint64_t otxg, txg; 1198 itx_async_node_t *ian; 1199 avl_tree_t *t; 1200 avl_index_t where; 1201 list_t clean_list; 1202 itx_t *itx; 1203 1204 ASSERT(oid != 0); 1205 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 1206 1207 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1208 otxg = ZILTEST_TXG; 1209 else 1210 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1211 1212 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1213 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1214 1215 mutex_enter(&itxg->itxg_lock); 1216 if (itxg->itxg_txg != txg) { 1217 mutex_exit(&itxg->itxg_lock); 1218 continue; 1219 } 1220 1221 /* 1222 * Locate the object node and append its list. 1223 */ 1224 t = &itxg->itxg_itxs->i_async_tree; 1225 ian = avl_find(t, &oid, &where); 1226 if (ian != NULL) 1227 list_move_tail(&clean_list, &ian->ia_list); 1228 mutex_exit(&itxg->itxg_lock); 1229 } 1230 while ((itx = list_head(&clean_list)) != NULL) { 1231 list_remove(&clean_list, itx); 1232 kmem_free(itx, offsetof(itx_t, itx_lr) + 1233 itx->itx_lr.lrc_reclen); 1234 } 1235 list_destroy(&clean_list); 1236 } 1237 1238 void 1239 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 1240 { 1241 uint64_t txg; 1242 itxg_t *itxg; 1243 itxs_t *itxs, *clean = NULL; 1244 1245 /* 1246 * Object ids can be re-instantiated in the next txg so 1247 * remove any async transactions to avoid future leaks. 1248 * This can happen if a fsync occurs on the re-instantiated 1249 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets 1250 * the new file data and flushes a write record for the old object. 1251 */ 1252 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE) 1253 zil_remove_async(zilog, itx->itx_oid); 1254 1255 /* 1256 * Ensure the data of a renamed file is committed before the rename. 1257 */ 1258 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 1259 zil_async_to_sync(zilog, itx->itx_oid); 1260 1261 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 1262 txg = ZILTEST_TXG; 1263 else 1264 txg = dmu_tx_get_txg(tx); 1265 1266 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1267 mutex_enter(&itxg->itxg_lock); 1268 itxs = itxg->itxg_itxs; 1269 if (itxg->itxg_txg != txg) { 1270 if (itxs != NULL) { 1271 /* 1272 * The zil_clean callback hasn't got around to cleaning 1273 * this itxg. Save the itxs for release below. 1274 * This should be rare. 1275 */ 1276 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); 1277 itxg->itxg_sod = 0; 1278 clean = itxg->itxg_itxs; 1279 } 1280 ASSERT(itxg->itxg_sod == 0); 1281 itxg->itxg_txg = txg; 1282 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP); 1283 1284 list_create(&itxs->i_sync_list, sizeof (itx_t), 1285 offsetof(itx_t, itx_node)); 1286 avl_create(&itxs->i_async_tree, zil_aitx_compare, 1287 sizeof (itx_async_node_t), 1288 offsetof(itx_async_node_t, ia_node)); 1289 } 1290 if (itx->itx_sync) { 1291 list_insert_tail(&itxs->i_sync_list, itx); 1292 atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod); 1293 itxg->itxg_sod += itx->itx_sod; 1294 } else { 1295 avl_tree_t *t = &itxs->i_async_tree; 1296 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid; 1297 itx_async_node_t *ian; 1298 avl_index_t where; 1299 1300 ian = avl_find(t, &foid, &where); 1301 if (ian == NULL) { 1302 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP); 1303 list_create(&ian->ia_list, sizeof (itx_t), 1304 offsetof(itx_t, itx_node)); 1305 ian->ia_foid = foid; 1306 avl_insert(t, ian, where); 1307 } 1308 list_insert_tail(&ian->ia_list, itx); 1309 } 1310 1311 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 1312 zilog_dirty(zilog, txg); 1313 mutex_exit(&itxg->itxg_lock); 1314 1315 /* Release the old itxs now we've dropped the lock */ 1316 if (clean != NULL) 1317 zil_itxg_clean(clean); 1318 } 1319 1320 /* 1321 * If there are any in-memory intent log transactions which have now been 1322 * synced then start up a taskq to free them. We should only do this after we 1323 * have written out the uberblocks (i.e. txg has been comitted) so that 1324 * don't inadvertently clean out in-memory log records that would be required 1325 * by zil_commit(). 1326 */ 1327 void 1328 zil_clean(zilog_t *zilog, uint64_t synced_txg) 1329 { 1330 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 1331 itxs_t *clean_me; 1332 1333 mutex_enter(&itxg->itxg_lock); 1334 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 1335 mutex_exit(&itxg->itxg_lock); 1336 return; 1337 } 1338 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 1339 ASSERT(itxg->itxg_txg != 0); 1340 ASSERT(zilog->zl_clean_taskq != NULL); 1341 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); 1342 itxg->itxg_sod = 0; 1343 clean_me = itxg->itxg_itxs; 1344 itxg->itxg_itxs = NULL; 1345 itxg->itxg_txg = 0; 1346 mutex_exit(&itxg->itxg_lock); 1347 /* 1348 * Preferably start a task queue to free up the old itxs but 1349 * if taskq_dispatch can't allocate resources to do that then 1350 * free it in-line. This should be rare. Note, using TQ_SLEEP 1351 * created a bad performance problem. 1352 */ 1353 if (taskq_dispatch(zilog->zl_clean_taskq, 1354 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL) 1355 zil_itxg_clean(clean_me); 1356 } 1357 1358 /* 1359 * Get the list of itxs to commit into zl_itx_commit_list. 1360 */ 1361 static void 1362 zil_get_commit_list(zilog_t *zilog) 1363 { 1364 uint64_t otxg, txg; 1365 list_t *commit_list = &zilog->zl_itx_commit_list; 1366 uint64_t push_sod = 0; 1367 1368 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1369 otxg = ZILTEST_TXG; 1370 else 1371 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1372 1373 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1374 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1375 1376 mutex_enter(&itxg->itxg_lock); 1377 if (itxg->itxg_txg != txg) { 1378 mutex_exit(&itxg->itxg_lock); 1379 continue; 1380 } 1381 1382 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); 1383 push_sod += itxg->itxg_sod; 1384 itxg->itxg_sod = 0; 1385 1386 mutex_exit(&itxg->itxg_lock); 1387 } 1388 atomic_add_64(&zilog->zl_itx_list_sz, -push_sod); 1389 } 1390 1391 /* 1392 * Move the async itxs for a specified object to commit into sync lists. 1393 */ 1394 static void 1395 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 1396 { 1397 uint64_t otxg, txg; 1398 itx_async_node_t *ian; 1399 avl_tree_t *t; 1400 avl_index_t where; 1401 1402 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 1403 otxg = ZILTEST_TXG; 1404 else 1405 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 1406 1407 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 1408 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 1409 1410 mutex_enter(&itxg->itxg_lock); 1411 if (itxg->itxg_txg != txg) { 1412 mutex_exit(&itxg->itxg_lock); 1413 continue; 1414 } 1415 1416 /* 1417 * If a foid is specified then find that node and append its 1418 * list. Otherwise walk the tree appending all the lists 1419 * to the sync list. We add to the end rather than the 1420 * beginning to ensure the create has happened. 1421 */ 1422 t = &itxg->itxg_itxs->i_async_tree; 1423 if (foid != 0) { 1424 ian = avl_find(t, &foid, &where); 1425 if (ian != NULL) { 1426 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1427 &ian->ia_list); 1428 } 1429 } else { 1430 void *cookie = NULL; 1431 1432 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 1433 list_move_tail(&itxg->itxg_itxs->i_sync_list, 1434 &ian->ia_list); 1435 list_destroy(&ian->ia_list); 1436 kmem_free(ian, sizeof (itx_async_node_t)); 1437 } 1438 } 1439 mutex_exit(&itxg->itxg_lock); 1440 } 1441 } 1442 1443 static void 1444 zil_commit_writer(zilog_t *zilog) 1445 { 1446 uint64_t txg; 1447 itx_t *itx; 1448 lwb_t *lwb; 1449 spa_t *spa = zilog->zl_spa; 1450 int error = 0; 1451 1452 ASSERT(zilog->zl_root_zio == NULL); 1453 1454 mutex_exit(&zilog->zl_lock); 1455 1456 zil_get_commit_list(zilog); 1457 1458 /* 1459 * Return if there's nothing to commit before we dirty the fs by 1460 * calling zil_create(). 1461 */ 1462 if (list_head(&zilog->zl_itx_commit_list) == NULL) { 1463 mutex_enter(&zilog->zl_lock); 1464 return; 1465 } 1466 1467 if (zilog->zl_suspend) { 1468 lwb = NULL; 1469 } else { 1470 lwb = list_tail(&zilog->zl_lwb_list); 1471 if (lwb == NULL) 1472 lwb = zil_create(zilog); 1473 } 1474 1475 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 1476 while (itx = list_head(&zilog->zl_itx_commit_list)) { 1477 txg = itx->itx_lr.lrc_txg; 1478 ASSERT(txg); 1479 1480 if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa)) 1481 lwb = zil_lwb_commit(zilog, itx, lwb); 1482 list_remove(&zilog->zl_itx_commit_list, itx); 1483 kmem_free(itx, offsetof(itx_t, itx_lr) 1484 + itx->itx_lr.lrc_reclen); 1485 } 1486 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 1487 1488 /* write the last block out */ 1489 if (lwb != NULL && lwb->lwb_zio != NULL) 1490 lwb = zil_lwb_write_start(zilog, lwb); 1491 1492 zilog->zl_cur_used = 0; 1493 1494 /* 1495 * Wait if necessary for the log blocks to be on stable storage. 1496 */ 1497 if (zilog->zl_root_zio) { 1498 error = zio_wait(zilog->zl_root_zio); 1499 zilog->zl_root_zio = NULL; 1500 zil_flush_vdevs(zilog); 1501 } 1502 1503 if (error || lwb == NULL) 1504 txg_wait_synced(zilog->zl_dmu_pool, 0); 1505 1506 mutex_enter(&zilog->zl_lock); 1507 1508 /* 1509 * Remember the highest committed log sequence number for ztest. 1510 * We only update this value when all the log writes succeeded, 1511 * because ztest wants to ASSERT that it got the whole log chain. 1512 */ 1513 if (error == 0 && lwb != NULL) 1514 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1515 } 1516 1517 /* 1518 * Commit zfs transactions to stable storage. 1519 * If foid is 0 push out all transactions, otherwise push only those 1520 * for that object or might reference that object. 1521 * 1522 * itxs are committed in batches. In a heavily stressed zil there will be 1523 * a commit writer thread who is writing out a bunch of itxs to the log 1524 * for a set of committing threads (cthreads) in the same batch as the writer. 1525 * Those cthreads are all waiting on the same cv for that batch. 1526 * 1527 * There will also be a different and growing batch of threads that are 1528 * waiting to commit (qthreads). When the committing batch completes 1529 * a transition occurs such that the cthreads exit and the qthreads become 1530 * cthreads. One of the new cthreads becomes the writer thread for the 1531 * batch. Any new threads arriving become new qthreads. 1532 * 1533 * Only 2 condition variables are needed and there's no transition 1534 * between the two cvs needed. They just flip-flop between qthreads 1535 * and cthreads. 1536 * 1537 * Using this scheme we can efficiently wakeup up only those threads 1538 * that have been committed. 1539 */ 1540 void 1541 zil_commit(zilog_t *zilog, uint64_t foid) 1542 { 1543 uint64_t mybatch; 1544 1545 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 1546 return; 1547 1548 /* move the async itxs for the foid to the sync queues */ 1549 zil_async_to_sync(zilog, foid); 1550 1551 mutex_enter(&zilog->zl_lock); 1552 mybatch = zilog->zl_next_batch; 1553 while (zilog->zl_writer) { 1554 cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock); 1555 if (mybatch <= zilog->zl_com_batch) { 1556 mutex_exit(&zilog->zl_lock); 1557 return; 1558 } 1559 } 1560 1561 zilog->zl_next_batch++; 1562 zilog->zl_writer = B_TRUE; 1563 zil_commit_writer(zilog); 1564 zilog->zl_com_batch = mybatch; 1565 zilog->zl_writer = B_FALSE; 1566 mutex_exit(&zilog->zl_lock); 1567 1568 /* wake up one thread to become the next writer */ 1569 cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]); 1570 1571 /* wake up all threads waiting for this batch to be committed */ 1572 cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]); 1573 } 1574 1575 /* 1576 * Called in syncing context to free committed log blocks and update log header. 1577 */ 1578 void 1579 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1580 { 1581 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1582 uint64_t txg = dmu_tx_get_txg(tx); 1583 spa_t *spa = zilog->zl_spa; 1584 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 1585 lwb_t *lwb; 1586 1587 /* 1588 * We don't zero out zl_destroy_txg, so make sure we don't try 1589 * to destroy it twice. 1590 */ 1591 if (spa_sync_pass(spa) != 1) 1592 return; 1593 1594 mutex_enter(&zilog->zl_lock); 1595 1596 ASSERT(zilog->zl_stop_sync == 0); 1597 1598 if (*replayed_seq != 0) { 1599 ASSERT(zh->zh_replay_seq < *replayed_seq); 1600 zh->zh_replay_seq = *replayed_seq; 1601 *replayed_seq = 0; 1602 } 1603 1604 if (zilog->zl_destroy_txg == txg) { 1605 blkptr_t blk = zh->zh_log; 1606 1607 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1608 1609 bzero(zh, sizeof (zil_header_t)); 1610 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 1611 1612 if (zilog->zl_keep_first) { 1613 /* 1614 * If this block was part of log chain that couldn't 1615 * be claimed because a device was missing during 1616 * zil_claim(), but that device later returns, 1617 * then this block could erroneously appear valid. 1618 * To guard against this, assign a new GUID to the new 1619 * log chain so it doesn't matter what blk points to. 1620 */ 1621 zil_init_log_chain(zilog, &blk); 1622 zh->zh_log = blk; 1623 } 1624 } 1625 1626 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1627 zh->zh_log = lwb->lwb_blk; 1628 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1629 break; 1630 list_remove(&zilog->zl_lwb_list, lwb); 1631 zio_free_zil(spa, txg, &lwb->lwb_blk); 1632 kmem_cache_free(zil_lwb_cache, lwb); 1633 1634 /* 1635 * If we don't have anything left in the lwb list then 1636 * we've had an allocation failure and we need to zero 1637 * out the zil_header blkptr so that we don't end 1638 * up freeing the same block twice. 1639 */ 1640 if (list_head(&zilog->zl_lwb_list) == NULL) 1641 BP_ZERO(&zh->zh_log); 1642 } 1643 mutex_exit(&zilog->zl_lock); 1644 } 1645 1646 void 1647 zil_init(void) 1648 { 1649 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1650 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); 1651 } 1652 1653 void 1654 zil_fini(void) 1655 { 1656 kmem_cache_destroy(zil_lwb_cache); 1657 } 1658 1659 void 1660 zil_set_sync(zilog_t *zilog, uint64_t sync) 1661 { 1662 zilog->zl_sync = sync; 1663 } 1664 1665 void 1666 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 1667 { 1668 zilog->zl_logbias = logbias; 1669 } 1670 1671 zilog_t * 1672 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1673 { 1674 zilog_t *zilog; 1675 1676 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1677 1678 zilog->zl_header = zh_phys; 1679 zilog->zl_os = os; 1680 zilog->zl_spa = dmu_objset_spa(os); 1681 zilog->zl_dmu_pool = dmu_objset_pool(os); 1682 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1683 zilog->zl_logbias = dmu_objset_logbias(os); 1684 zilog->zl_sync = dmu_objset_syncprop(os); 1685 zilog->zl_next_batch = 1; 1686 1687 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 1688 1689 for (int i = 0; i < TXG_SIZE; i++) { 1690 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 1691 MUTEX_DEFAULT, NULL); 1692 } 1693 1694 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1695 offsetof(lwb_t, lwb_node)); 1696 1697 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 1698 offsetof(itx_t, itx_node)); 1699 1700 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 1701 1702 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, 1703 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 1704 1705 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); 1706 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 1707 cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL); 1708 cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL); 1709 1710 return (zilog); 1711 } 1712 1713 void 1714 zil_free(zilog_t *zilog) 1715 { 1716 zilog->zl_stop_sync = 1; 1717 1718 ASSERT0(zilog->zl_suspend); 1719 ASSERT0(zilog->zl_suspending); 1720 1721 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1722 list_destroy(&zilog->zl_lwb_list); 1723 1724 avl_destroy(&zilog->zl_vdev_tree); 1725 mutex_destroy(&zilog->zl_vdev_lock); 1726 1727 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 1728 list_destroy(&zilog->zl_itx_commit_list); 1729 1730 for (int i = 0; i < TXG_SIZE; i++) { 1731 /* 1732 * It's possible for an itx to be generated that doesn't dirty 1733 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 1734 * callback to remove the entry. We remove those here. 1735 * 1736 * Also free up the ziltest itxs. 1737 */ 1738 if (zilog->zl_itxg[i].itxg_itxs) 1739 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 1740 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 1741 } 1742 1743 mutex_destroy(&zilog->zl_lock); 1744 1745 cv_destroy(&zilog->zl_cv_writer); 1746 cv_destroy(&zilog->zl_cv_suspend); 1747 cv_destroy(&zilog->zl_cv_batch[0]); 1748 cv_destroy(&zilog->zl_cv_batch[1]); 1749 1750 kmem_free(zilog, sizeof (zilog_t)); 1751 } 1752 1753 /* 1754 * Open an intent log. 1755 */ 1756 zilog_t * 1757 zil_open(objset_t *os, zil_get_data_t *get_data) 1758 { 1759 zilog_t *zilog = dmu_objset_zil(os); 1760 1761 ASSERT(zilog->zl_clean_taskq == NULL); 1762 ASSERT(zilog->zl_get_data == NULL); 1763 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1764 1765 zilog->zl_get_data = get_data; 1766 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1767 2, 2, TASKQ_PREPOPULATE); 1768 1769 return (zilog); 1770 } 1771 1772 /* 1773 * Close an intent log. 1774 */ 1775 void 1776 zil_close(zilog_t *zilog) 1777 { 1778 lwb_t *lwb; 1779 uint64_t txg = 0; 1780 1781 zil_commit(zilog, 0); /* commit all itx */ 1782 1783 /* 1784 * The lwb_max_txg for the stubby lwb will reflect the last activity 1785 * for the zil. After a txg_wait_synced() on the txg we know all the 1786 * callbacks have occurred that may clean the zil. Only then can we 1787 * destroy the zl_clean_taskq. 1788 */ 1789 mutex_enter(&zilog->zl_lock); 1790 lwb = list_tail(&zilog->zl_lwb_list); 1791 if (lwb != NULL) 1792 txg = lwb->lwb_max_txg; 1793 mutex_exit(&zilog->zl_lock); 1794 if (txg) 1795 txg_wait_synced(zilog->zl_dmu_pool, txg); 1796 ASSERT(!zilog_is_dirty(zilog)); 1797 1798 taskq_destroy(zilog->zl_clean_taskq); 1799 zilog->zl_clean_taskq = NULL; 1800 zilog->zl_get_data = NULL; 1801 1802 /* 1803 * We should have only one LWB left on the list; remove it now. 1804 */ 1805 mutex_enter(&zilog->zl_lock); 1806 lwb = list_head(&zilog->zl_lwb_list); 1807 if (lwb != NULL) { 1808 ASSERT(lwb == list_tail(&zilog->zl_lwb_list)); 1809 list_remove(&zilog->zl_lwb_list, lwb); 1810 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1811 kmem_cache_free(zil_lwb_cache, lwb); 1812 } 1813 mutex_exit(&zilog->zl_lock); 1814 } 1815 1816 static char *suspend_tag = "zil suspending"; 1817 1818 /* 1819 * Suspend an intent log. While in suspended mode, we still honor 1820 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1821 * On old version pools, we suspend the log briefly when taking a 1822 * snapshot so that it will have an empty intent log. 1823 * 1824 * Long holds are not really intended to be used the way we do here -- 1825 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 1826 * could fail. Therefore we take pains to only put a long hold if it is 1827 * actually necessary. Fortunately, it will only be necessary if the 1828 * objset is currently mounted (or the ZVOL equivalent). In that case it 1829 * will already have a long hold, so we are not really making things any worse. 1830 * 1831 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 1832 * zvol_state_t), and use their mechanism to prevent their hold from being 1833 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 1834 * very little gain. 1835 * 1836 * if cookiep == NULL, this does both the suspend & resume. 1837 * Otherwise, it returns with the dataset "long held", and the cookie 1838 * should be passed into zil_resume(). 1839 */ 1840 int 1841 zil_suspend(const char *osname, void **cookiep) 1842 { 1843 objset_t *os; 1844 zilog_t *zilog; 1845 const zil_header_t *zh; 1846 int error; 1847 1848 error = dmu_objset_hold(osname, suspend_tag, &os); 1849 if (error != 0) 1850 return (error); 1851 zilog = dmu_objset_zil(os); 1852 1853 mutex_enter(&zilog->zl_lock); 1854 zh = zilog->zl_header; 1855 1856 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 1857 mutex_exit(&zilog->zl_lock); 1858 dmu_objset_rele(os, suspend_tag); 1859 return (SET_ERROR(EBUSY)); 1860 } 1861 1862 /* 1863 * Don't put a long hold in the cases where we can avoid it. This 1864 * is when there is no cookie so we are doing a suspend & resume 1865 * (i.e. called from zil_vdev_offline()), and there's nothing to do 1866 * for the suspend because it's already suspended, or there's no ZIL. 1867 */ 1868 if (cookiep == NULL && !zilog->zl_suspending && 1869 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 1870 mutex_exit(&zilog->zl_lock); 1871 dmu_objset_rele(os, suspend_tag); 1872 return (0); 1873 } 1874 1875 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 1876 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 1877 1878 zilog->zl_suspend++; 1879 1880 if (zilog->zl_suspend > 1) { 1881 /* 1882 * Someone else is already suspending it. 1883 * Just wait for them to finish. 1884 */ 1885 1886 while (zilog->zl_suspending) 1887 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1888 mutex_exit(&zilog->zl_lock); 1889 1890 if (cookiep == NULL) 1891 zil_resume(os); 1892 else 1893 *cookiep = os; 1894 return (0); 1895 } 1896 1897 /* 1898 * If there is no pointer to an on-disk block, this ZIL must not 1899 * be active (e.g. filesystem not mounted), so there's nothing 1900 * to clean up. 1901 */ 1902 if (BP_IS_HOLE(&zh->zh_log)) { 1903 ASSERT(cookiep != NULL); /* fast path already handled */ 1904 1905 *cookiep = os; 1906 mutex_exit(&zilog->zl_lock); 1907 return (0); 1908 } 1909 1910 zilog->zl_suspending = B_TRUE; 1911 mutex_exit(&zilog->zl_lock); 1912 1913 zil_commit(zilog, 0); 1914 1915 zil_destroy(zilog, B_FALSE); 1916 1917 mutex_enter(&zilog->zl_lock); 1918 zilog->zl_suspending = B_FALSE; 1919 cv_broadcast(&zilog->zl_cv_suspend); 1920 mutex_exit(&zilog->zl_lock); 1921 1922 if (cookiep == NULL) 1923 zil_resume(os); 1924 else 1925 *cookiep = os; 1926 return (0); 1927 } 1928 1929 void 1930 zil_resume(void *cookie) 1931 { 1932 objset_t *os = cookie; 1933 zilog_t *zilog = dmu_objset_zil(os); 1934 1935 mutex_enter(&zilog->zl_lock); 1936 ASSERT(zilog->zl_suspend != 0); 1937 zilog->zl_suspend--; 1938 mutex_exit(&zilog->zl_lock); 1939 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 1940 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 1941 } 1942 1943 typedef struct zil_replay_arg { 1944 zil_replay_func_t **zr_replay; 1945 void *zr_arg; 1946 boolean_t zr_byteswap; 1947 char *zr_lr; 1948 } zil_replay_arg_t; 1949 1950 static int 1951 zil_replay_error(zilog_t *zilog, lr_t *lr, int error) 1952 { 1953 char name[MAXNAMELEN]; 1954 1955 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 1956 1957 dmu_objset_name(zilog->zl_os, name); 1958 1959 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1960 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 1961 (u_longlong_t)lr->lrc_seq, 1962 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 1963 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 1964 1965 return (error); 1966 } 1967 1968 static int 1969 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1970 { 1971 zil_replay_arg_t *zr = zra; 1972 const zil_header_t *zh = zilog->zl_header; 1973 uint64_t reclen = lr->lrc_reclen; 1974 uint64_t txtype = lr->lrc_txtype; 1975 int error = 0; 1976 1977 zilog->zl_replaying_seq = lr->lrc_seq; 1978 1979 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1980 return (0); 1981 1982 if (lr->lrc_txg < claim_txg) /* already committed */ 1983 return (0); 1984 1985 /* Strip case-insensitive bit, still present in log record */ 1986 txtype &= ~TX_CI; 1987 1988 if (txtype == 0 || txtype >= TX_MAX_TYPE) 1989 return (zil_replay_error(zilog, lr, EINVAL)); 1990 1991 /* 1992 * If this record type can be logged out of order, the object 1993 * (lr_foid) may no longer exist. That's legitimate, not an error. 1994 */ 1995 if (TX_OOO(txtype)) { 1996 error = dmu_object_info(zilog->zl_os, 1997 ((lr_ooo_t *)lr)->lr_foid, NULL); 1998 if (error == ENOENT || error == EEXIST) 1999 return (0); 2000 } 2001 2002 /* 2003 * Make a copy of the data so we can revise and extend it. 2004 */ 2005 bcopy(lr, zr->zr_lr, reclen); 2006 2007 /* 2008 * If this is a TX_WRITE with a blkptr, suck in the data. 2009 */ 2010 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 2011 error = zil_read_log_data(zilog, (lr_write_t *)lr, 2012 zr->zr_lr + reclen); 2013 if (error != 0) 2014 return (zil_replay_error(zilog, lr, error)); 2015 } 2016 2017 /* 2018 * The log block containing this lr may have been byteswapped 2019 * so that we can easily examine common fields like lrc_txtype. 2020 * However, the log is a mix of different record types, and only the 2021 * replay vectors know how to byteswap their records. Therefore, if 2022 * the lr was byteswapped, undo it before invoking the replay vector. 2023 */ 2024 if (zr->zr_byteswap) 2025 byteswap_uint64_array(zr->zr_lr, reclen); 2026 2027 /* 2028 * We must now do two things atomically: replay this log record, 2029 * and update the log header sequence number to reflect the fact that 2030 * we did so. At the end of each replay function the sequence number 2031 * is updated if we are in replay mode. 2032 */ 2033 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 2034 if (error != 0) { 2035 /* 2036 * The DMU's dnode layer doesn't see removes until the txg 2037 * commits, so a subsequent claim can spuriously fail with 2038 * EEXIST. So if we receive any error we try syncing out 2039 * any removes then retry the transaction. Note that we 2040 * specify B_FALSE for byteswap now, so we don't do it twice. 2041 */ 2042 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 2043 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 2044 if (error != 0) 2045 return (zil_replay_error(zilog, lr, error)); 2046 } 2047 return (0); 2048 } 2049 2050 /* ARGSUSED */ 2051 static int 2052 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 2053 { 2054 zilog->zl_replay_blks++; 2055 2056 return (0); 2057 } 2058 2059 /* 2060 * If this dataset has a non-empty intent log, replay it and destroy it. 2061 */ 2062 void 2063 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) 2064 { 2065 zilog_t *zilog = dmu_objset_zil(os); 2066 const zil_header_t *zh = zilog->zl_header; 2067 zil_replay_arg_t zr; 2068 2069 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 2070 zil_destroy(zilog, B_TRUE); 2071 return; 2072 } 2073 2074 zr.zr_replay = replay_func; 2075 zr.zr_arg = arg; 2076 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 2077 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 2078 2079 /* 2080 * Wait for in-progress removes to sync before starting replay. 2081 */ 2082 txg_wait_synced(zilog->zl_dmu_pool, 0); 2083 2084 zilog->zl_replay = B_TRUE; 2085 zilog->zl_replay_time = ddi_get_lbolt(); 2086 ASSERT(zilog->zl_replay_blks == 0); 2087 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 2088 zh->zh_claim_txg); 2089 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 2090 2091 zil_destroy(zilog, B_FALSE); 2092 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 2093 zilog->zl_replay = B_FALSE; 2094 } 2095 2096 boolean_t 2097 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 2098 { 2099 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 2100 return (B_TRUE); 2101 2102 if (zilog->zl_replay) { 2103 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 2104 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 2105 zilog->zl_replaying_seq; 2106 return (B_TRUE); 2107 } 2108 2109 return (B_FALSE); 2110 } 2111 2112 /* ARGSUSED */ 2113 int 2114 zil_vdev_offline(const char *osname, void *arg) 2115 { 2116 int error; 2117 2118 error = zil_suspend(osname, NULL); 2119 if (error != 0) 2120 return (SET_ERROR(EEXIST)); 2121 return (0); 2122 }