1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/uberblock_impl.h> 36 #include <sys/metaslab.h> 37 #include <sys/metaslab_impl.h> 38 #include <sys/space_map.h> 39 #include <sys/space_reftree.h> 40 #include <sys/zio.h> 41 #include <sys/zap.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/arc.h> 44 #include <sys/zil.h> 45 #include <sys/dsl_scan.h> 46 47 /* 48 * Virtual device management. 49 */ 50 51 static vdev_ops_t *vdev_ops_table[] = { 52 &vdev_root_ops, 53 &vdev_raidz_ops, 54 &vdev_mirror_ops, 55 &vdev_replacing_ops, 56 &vdev_spare_ops, 57 &vdev_disk_ops, 58 &vdev_file_ops, 59 &vdev_missing_ops, 60 &vdev_hole_ops, 61 NULL 62 }; 63 64 /* maximum scrub/resilver I/O queue per leaf vdev */ 65 int zfs_scrub_limit = 10; 66 67 /* 68 * Given a vdev type, return the appropriate ops vector. 69 */ 70 static vdev_ops_t * 71 vdev_getops(const char *type) 72 { 73 vdev_ops_t *ops, **opspp; 74 75 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 76 if (strcmp(ops->vdev_op_type, type) == 0) 77 break; 78 79 return (ops); 80 } 81 82 /* 83 * Default asize function: return the MAX of psize with the asize of 84 * all children. This is what's used by anything other than RAID-Z. 85 */ 86 uint64_t 87 vdev_default_asize(vdev_t *vd, uint64_t psize) 88 { 89 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 90 uint64_t csize; 91 92 for (int c = 0; c < vd->vdev_children; c++) { 93 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 94 asize = MAX(asize, csize); 95 } 96 97 return (asize); 98 } 99 100 /* 101 * Get the minimum allocatable size. We define the allocatable size as 102 * the vdev's asize rounded to the nearest metaslab. This allows us to 103 * replace or attach devices which don't have the same physical size but 104 * can still satisfy the same number of allocations. 105 */ 106 uint64_t 107 vdev_get_min_asize(vdev_t *vd) 108 { 109 vdev_t *pvd = vd->vdev_parent; 110 111 /* 112 * If our parent is NULL (inactive spare or cache) or is the root, 113 * just return our own asize. 114 */ 115 if (pvd == NULL) 116 return (vd->vdev_asize); 117 118 /* 119 * The top-level vdev just returns the allocatable size rounded 120 * to the nearest metaslab. 121 */ 122 if (vd == vd->vdev_top) 123 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 124 125 /* 126 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 127 * so each child must provide at least 1/Nth of its asize. 128 */ 129 if (pvd->vdev_ops == &vdev_raidz_ops) 130 return (pvd->vdev_min_asize / pvd->vdev_children); 131 132 return (pvd->vdev_min_asize); 133 } 134 135 void 136 vdev_set_min_asize(vdev_t *vd) 137 { 138 vd->vdev_min_asize = vdev_get_min_asize(vd); 139 140 for (int c = 0; c < vd->vdev_children; c++) 141 vdev_set_min_asize(vd->vdev_child[c]); 142 } 143 144 vdev_t * 145 vdev_lookup_top(spa_t *spa, uint64_t vdev) 146 { 147 vdev_t *rvd = spa->spa_root_vdev; 148 149 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 150 151 if (vdev < rvd->vdev_children) { 152 ASSERT(rvd->vdev_child[vdev] != NULL); 153 return (rvd->vdev_child[vdev]); 154 } 155 156 return (NULL); 157 } 158 159 vdev_t * 160 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 161 { 162 vdev_t *mvd; 163 164 if (vd->vdev_guid == guid) 165 return (vd); 166 167 for (int c = 0; c < vd->vdev_children; c++) 168 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 169 NULL) 170 return (mvd); 171 172 return (NULL); 173 } 174 175 static int 176 vdev_count_leaves_impl(vdev_t *vd) 177 { 178 vdev_t *mvd; 179 int n = 0; 180 181 if (vd->vdev_children == 0) 182 return (1); 183 184 for (int c = 0; c < vd->vdev_children; c++) 185 n += vdev_count_leaves_impl(vd->vdev_child[c]); 186 187 return (n); 188 } 189 190 int 191 vdev_count_leaves(spa_t *spa) 192 { 193 return (vdev_count_leaves_impl(spa->spa_root_vdev)); 194 } 195 196 void 197 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 198 { 199 size_t oldsize, newsize; 200 uint64_t id = cvd->vdev_id; 201 vdev_t **newchild; 202 203 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 204 ASSERT(cvd->vdev_parent == NULL); 205 206 cvd->vdev_parent = pvd; 207 208 if (pvd == NULL) 209 return; 210 211 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 212 213 oldsize = pvd->vdev_children * sizeof (vdev_t *); 214 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 215 newsize = pvd->vdev_children * sizeof (vdev_t *); 216 217 newchild = kmem_zalloc(newsize, KM_SLEEP); 218 if (pvd->vdev_child != NULL) { 219 bcopy(pvd->vdev_child, newchild, oldsize); 220 kmem_free(pvd->vdev_child, oldsize); 221 } 222 223 pvd->vdev_child = newchild; 224 pvd->vdev_child[id] = cvd; 225 226 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 227 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 228 229 /* 230 * Walk up all ancestors to update guid sum. 231 */ 232 for (; pvd != NULL; pvd = pvd->vdev_parent) 233 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 234 } 235 236 void 237 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 238 { 239 int c; 240 uint_t id = cvd->vdev_id; 241 242 ASSERT(cvd->vdev_parent == pvd); 243 244 if (pvd == NULL) 245 return; 246 247 ASSERT(id < pvd->vdev_children); 248 ASSERT(pvd->vdev_child[id] == cvd); 249 250 pvd->vdev_child[id] = NULL; 251 cvd->vdev_parent = NULL; 252 253 for (c = 0; c < pvd->vdev_children; c++) 254 if (pvd->vdev_child[c]) 255 break; 256 257 if (c == pvd->vdev_children) { 258 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 259 pvd->vdev_child = NULL; 260 pvd->vdev_children = 0; 261 } 262 263 /* 264 * Walk up all ancestors to update guid sum. 265 */ 266 for (; pvd != NULL; pvd = pvd->vdev_parent) 267 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 268 } 269 270 /* 271 * Remove any holes in the child array. 272 */ 273 void 274 vdev_compact_children(vdev_t *pvd) 275 { 276 vdev_t **newchild, *cvd; 277 int oldc = pvd->vdev_children; 278 int newc; 279 280 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 281 282 for (int c = newc = 0; c < oldc; c++) 283 if (pvd->vdev_child[c]) 284 newc++; 285 286 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 287 288 for (int c = newc = 0; c < oldc; c++) { 289 if ((cvd = pvd->vdev_child[c]) != NULL) { 290 newchild[newc] = cvd; 291 cvd->vdev_id = newc++; 292 } 293 } 294 295 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 296 pvd->vdev_child = newchild; 297 pvd->vdev_children = newc; 298 } 299 300 /* 301 * Allocate and minimally initialize a vdev_t. 302 */ 303 vdev_t * 304 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 305 { 306 vdev_t *vd; 307 308 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 309 310 if (spa->spa_root_vdev == NULL) { 311 ASSERT(ops == &vdev_root_ops); 312 spa->spa_root_vdev = vd; 313 spa->spa_load_guid = spa_generate_guid(NULL); 314 } 315 316 if (guid == 0 && ops != &vdev_hole_ops) { 317 if (spa->spa_root_vdev == vd) { 318 /* 319 * The root vdev's guid will also be the pool guid, 320 * which must be unique among all pools. 321 */ 322 guid = spa_generate_guid(NULL); 323 } else { 324 /* 325 * Any other vdev's guid must be unique within the pool. 326 */ 327 guid = spa_generate_guid(spa); 328 } 329 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 330 } 331 332 vd->vdev_spa = spa; 333 vd->vdev_id = id; 334 vd->vdev_guid = guid; 335 vd->vdev_guid_sum = guid; 336 vd->vdev_ops = ops; 337 vd->vdev_state = VDEV_STATE_CLOSED; 338 vd->vdev_ishole = (ops == &vdev_hole_ops); 339 340 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 341 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 342 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 343 for (int t = 0; t < DTL_TYPES; t++) { 344 vd->vdev_dtl[t] = range_tree_create(NULL, NULL, 345 &vd->vdev_dtl_lock); 346 } 347 txg_list_create(&vd->vdev_ms_list, 348 offsetof(struct metaslab, ms_txg_node)); 349 txg_list_create(&vd->vdev_dtl_list, 350 offsetof(struct vdev, vdev_dtl_node)); 351 vd->vdev_stat.vs_timestamp = gethrtime(); 352 vdev_queue_init(vd); 353 vdev_cache_init(vd); 354 355 return (vd); 356 } 357 358 /* 359 * Allocate a new vdev. The 'alloctype' is used to control whether we are 360 * creating a new vdev or loading an existing one - the behavior is slightly 361 * different for each case. 362 */ 363 int 364 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 365 int alloctype) 366 { 367 vdev_ops_t *ops; 368 char *type; 369 uint64_t guid = 0, islog, nparity; 370 vdev_t *vd; 371 372 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 373 374 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 375 return (SET_ERROR(EINVAL)); 376 377 if ((ops = vdev_getops(type)) == NULL) 378 return (SET_ERROR(EINVAL)); 379 380 /* 381 * If this is a load, get the vdev guid from the nvlist. 382 * Otherwise, vdev_alloc_common() will generate one for us. 383 */ 384 if (alloctype == VDEV_ALLOC_LOAD) { 385 uint64_t label_id; 386 387 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 388 label_id != id) 389 return (SET_ERROR(EINVAL)); 390 391 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 392 return (SET_ERROR(EINVAL)); 393 } else if (alloctype == VDEV_ALLOC_SPARE) { 394 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 395 return (SET_ERROR(EINVAL)); 396 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 397 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 398 return (SET_ERROR(EINVAL)); 399 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 400 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 401 return (SET_ERROR(EINVAL)); 402 } 403 404 /* 405 * The first allocated vdev must be of type 'root'. 406 */ 407 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 408 return (SET_ERROR(EINVAL)); 409 410 /* 411 * Determine whether we're a log vdev. 412 */ 413 islog = 0; 414 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 415 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 416 return (SET_ERROR(ENOTSUP)); 417 418 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 419 return (SET_ERROR(ENOTSUP)); 420 421 /* 422 * Set the nparity property for RAID-Z vdevs. 423 */ 424 nparity = -1ULL; 425 if (ops == &vdev_raidz_ops) { 426 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 427 &nparity) == 0) { 428 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 429 return (SET_ERROR(EINVAL)); 430 /* 431 * Previous versions could only support 1 or 2 parity 432 * device. 433 */ 434 if (nparity > 1 && 435 spa_version(spa) < SPA_VERSION_RAIDZ2) 436 return (SET_ERROR(ENOTSUP)); 437 if (nparity > 2 && 438 spa_version(spa) < SPA_VERSION_RAIDZ3) 439 return (SET_ERROR(ENOTSUP)); 440 } else { 441 /* 442 * We require the parity to be specified for SPAs that 443 * support multiple parity levels. 444 */ 445 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 446 return (SET_ERROR(EINVAL)); 447 /* 448 * Otherwise, we default to 1 parity device for RAID-Z. 449 */ 450 nparity = 1; 451 } 452 } else { 453 nparity = 0; 454 } 455 ASSERT(nparity != -1ULL); 456 457 vd = vdev_alloc_common(spa, id, guid, ops); 458 459 vd->vdev_islog = islog; 460 vd->vdev_nparity = nparity; 461 462 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 463 vd->vdev_path = spa_strdup(vd->vdev_path); 464 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 465 vd->vdev_devid = spa_strdup(vd->vdev_devid); 466 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 467 &vd->vdev_physpath) == 0) 468 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 469 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 470 vd->vdev_fru = spa_strdup(vd->vdev_fru); 471 472 /* 473 * Set the whole_disk property. If it's not specified, leave the value 474 * as -1. 475 */ 476 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 477 &vd->vdev_wholedisk) != 0) 478 vd->vdev_wholedisk = -1ULL; 479 480 /* 481 * Look for the 'not present' flag. This will only be set if the device 482 * was not present at the time of import. 483 */ 484 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 485 &vd->vdev_not_present); 486 487 /* 488 * Get the alignment requirement. 489 */ 490 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 491 492 /* 493 * Retrieve the vdev creation time. 494 */ 495 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 496 &vd->vdev_crtxg); 497 498 /* 499 * If we're a top-level vdev, try to load the allocation parameters. 500 */ 501 if (parent && !parent->vdev_parent && 502 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 503 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 504 &vd->vdev_ms_array); 505 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 506 &vd->vdev_ms_shift); 507 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 508 &vd->vdev_asize); 509 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 510 &vd->vdev_removing); 511 } 512 513 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 514 ASSERT(alloctype == VDEV_ALLOC_LOAD || 515 alloctype == VDEV_ALLOC_ADD || 516 alloctype == VDEV_ALLOC_SPLIT || 517 alloctype == VDEV_ALLOC_ROOTPOOL); 518 vd->vdev_mg = metaslab_group_create(islog ? 519 spa_log_class(spa) : spa_normal_class(spa), vd); 520 } 521 522 /* 523 * If we're a leaf vdev, try to load the DTL object and other state. 524 */ 525 if (vd->vdev_ops->vdev_op_leaf && 526 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 527 alloctype == VDEV_ALLOC_ROOTPOOL)) { 528 if (alloctype == VDEV_ALLOC_LOAD) { 529 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 530 &vd->vdev_dtl_object); 531 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 532 &vd->vdev_unspare); 533 } 534 535 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 536 uint64_t spare = 0; 537 538 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 539 &spare) == 0 && spare) 540 spa_spare_add(vd); 541 } 542 543 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 544 &vd->vdev_offline); 545 546 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 547 &vd->vdev_resilver_txg); 548 549 /* 550 * When importing a pool, we want to ignore the persistent fault 551 * state, as the diagnosis made on another system may not be 552 * valid in the current context. Local vdevs will 553 * remain in the faulted state. 554 */ 555 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 556 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 557 &vd->vdev_faulted); 558 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 559 &vd->vdev_degraded); 560 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 561 &vd->vdev_removed); 562 563 if (vd->vdev_faulted || vd->vdev_degraded) { 564 char *aux; 565 566 vd->vdev_label_aux = 567 VDEV_AUX_ERR_EXCEEDED; 568 if (nvlist_lookup_string(nv, 569 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 570 strcmp(aux, "external") == 0) 571 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 572 } 573 } 574 } 575 576 /* 577 * Add ourselves to the parent's list of children. 578 */ 579 vdev_add_child(parent, vd); 580 581 *vdp = vd; 582 583 return (0); 584 } 585 586 void 587 vdev_free(vdev_t *vd) 588 { 589 spa_t *spa = vd->vdev_spa; 590 591 /* 592 * vdev_free() implies closing the vdev first. This is simpler than 593 * trying to ensure complicated semantics for all callers. 594 */ 595 vdev_close(vd); 596 597 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 598 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 599 600 /* 601 * Free all children. 602 */ 603 for (int c = 0; c < vd->vdev_children; c++) 604 vdev_free(vd->vdev_child[c]); 605 606 ASSERT(vd->vdev_child == NULL); 607 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 608 609 /* 610 * Discard allocation state. 611 */ 612 if (vd->vdev_mg != NULL) { 613 vdev_metaslab_fini(vd); 614 metaslab_group_destroy(vd->vdev_mg); 615 } 616 617 ASSERT0(vd->vdev_stat.vs_space); 618 ASSERT0(vd->vdev_stat.vs_dspace); 619 ASSERT0(vd->vdev_stat.vs_alloc); 620 621 /* 622 * Remove this vdev from its parent's child list. 623 */ 624 vdev_remove_child(vd->vdev_parent, vd); 625 626 ASSERT(vd->vdev_parent == NULL); 627 628 /* 629 * Clean up vdev structure. 630 */ 631 vdev_queue_fini(vd); 632 vdev_cache_fini(vd); 633 634 if (vd->vdev_path) 635 spa_strfree(vd->vdev_path); 636 if (vd->vdev_devid) 637 spa_strfree(vd->vdev_devid); 638 if (vd->vdev_physpath) 639 spa_strfree(vd->vdev_physpath); 640 if (vd->vdev_fru) 641 spa_strfree(vd->vdev_fru); 642 643 if (vd->vdev_isspare) 644 spa_spare_remove(vd); 645 if (vd->vdev_isl2cache) 646 spa_l2cache_remove(vd); 647 648 txg_list_destroy(&vd->vdev_ms_list); 649 txg_list_destroy(&vd->vdev_dtl_list); 650 651 mutex_enter(&vd->vdev_dtl_lock); 652 space_map_close(vd->vdev_dtl_sm); 653 for (int t = 0; t < DTL_TYPES; t++) { 654 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 655 range_tree_destroy(vd->vdev_dtl[t]); 656 } 657 mutex_exit(&vd->vdev_dtl_lock); 658 659 mutex_destroy(&vd->vdev_dtl_lock); 660 mutex_destroy(&vd->vdev_stat_lock); 661 mutex_destroy(&vd->vdev_probe_lock); 662 663 if (vd == spa->spa_root_vdev) 664 spa->spa_root_vdev = NULL; 665 666 kmem_free(vd, sizeof (vdev_t)); 667 } 668 669 /* 670 * Transfer top-level vdev state from svd to tvd. 671 */ 672 static void 673 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 674 { 675 spa_t *spa = svd->vdev_spa; 676 metaslab_t *msp; 677 vdev_t *vd; 678 int t; 679 680 ASSERT(tvd == tvd->vdev_top); 681 682 tvd->vdev_ms_array = svd->vdev_ms_array; 683 tvd->vdev_ms_shift = svd->vdev_ms_shift; 684 tvd->vdev_ms_count = svd->vdev_ms_count; 685 686 svd->vdev_ms_array = 0; 687 svd->vdev_ms_shift = 0; 688 svd->vdev_ms_count = 0; 689 690 if (tvd->vdev_mg) 691 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 692 tvd->vdev_mg = svd->vdev_mg; 693 tvd->vdev_ms = svd->vdev_ms; 694 695 svd->vdev_mg = NULL; 696 svd->vdev_ms = NULL; 697 698 if (tvd->vdev_mg != NULL) 699 tvd->vdev_mg->mg_vd = tvd; 700 701 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 702 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 703 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 704 705 svd->vdev_stat.vs_alloc = 0; 706 svd->vdev_stat.vs_space = 0; 707 svd->vdev_stat.vs_dspace = 0; 708 709 for (t = 0; t < TXG_SIZE; t++) { 710 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 711 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 712 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 713 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 714 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 715 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 716 } 717 718 if (list_link_active(&svd->vdev_config_dirty_node)) { 719 vdev_config_clean(svd); 720 vdev_config_dirty(tvd); 721 } 722 723 if (list_link_active(&svd->vdev_state_dirty_node)) { 724 vdev_state_clean(svd); 725 vdev_state_dirty(tvd); 726 } 727 728 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 729 svd->vdev_deflate_ratio = 0; 730 731 tvd->vdev_islog = svd->vdev_islog; 732 svd->vdev_islog = 0; 733 } 734 735 static void 736 vdev_top_update(vdev_t *tvd, vdev_t *vd) 737 { 738 if (vd == NULL) 739 return; 740 741 vd->vdev_top = tvd; 742 743 for (int c = 0; c < vd->vdev_children; c++) 744 vdev_top_update(tvd, vd->vdev_child[c]); 745 } 746 747 /* 748 * Add a mirror/replacing vdev above an existing vdev. 749 */ 750 vdev_t * 751 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 752 { 753 spa_t *spa = cvd->vdev_spa; 754 vdev_t *pvd = cvd->vdev_parent; 755 vdev_t *mvd; 756 757 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 758 759 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 760 761 mvd->vdev_asize = cvd->vdev_asize; 762 mvd->vdev_min_asize = cvd->vdev_min_asize; 763 mvd->vdev_max_asize = cvd->vdev_max_asize; 764 mvd->vdev_ashift = cvd->vdev_ashift; 765 mvd->vdev_state = cvd->vdev_state; 766 mvd->vdev_crtxg = cvd->vdev_crtxg; 767 768 vdev_remove_child(pvd, cvd); 769 vdev_add_child(pvd, mvd); 770 cvd->vdev_id = mvd->vdev_children; 771 vdev_add_child(mvd, cvd); 772 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 773 774 if (mvd == mvd->vdev_top) 775 vdev_top_transfer(cvd, mvd); 776 777 return (mvd); 778 } 779 780 /* 781 * Remove a 1-way mirror/replacing vdev from the tree. 782 */ 783 void 784 vdev_remove_parent(vdev_t *cvd) 785 { 786 vdev_t *mvd = cvd->vdev_parent; 787 vdev_t *pvd = mvd->vdev_parent; 788 789 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 790 791 ASSERT(mvd->vdev_children == 1); 792 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 793 mvd->vdev_ops == &vdev_replacing_ops || 794 mvd->vdev_ops == &vdev_spare_ops); 795 cvd->vdev_ashift = mvd->vdev_ashift; 796 797 vdev_remove_child(mvd, cvd); 798 vdev_remove_child(pvd, mvd); 799 800 /* 801 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 802 * Otherwise, we could have detached an offline device, and when we 803 * go to import the pool we'll think we have two top-level vdevs, 804 * instead of a different version of the same top-level vdev. 805 */ 806 if (mvd->vdev_top == mvd) { 807 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 808 cvd->vdev_orig_guid = cvd->vdev_guid; 809 cvd->vdev_guid += guid_delta; 810 cvd->vdev_guid_sum += guid_delta; 811 } 812 cvd->vdev_id = mvd->vdev_id; 813 vdev_add_child(pvd, cvd); 814 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 815 816 if (cvd == cvd->vdev_top) 817 vdev_top_transfer(mvd, cvd); 818 819 ASSERT(mvd->vdev_children == 0); 820 vdev_free(mvd); 821 } 822 823 int 824 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 825 { 826 spa_t *spa = vd->vdev_spa; 827 objset_t *mos = spa->spa_meta_objset; 828 uint64_t m; 829 uint64_t oldc = vd->vdev_ms_count; 830 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 831 metaslab_t **mspp; 832 int error; 833 834 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 835 836 /* 837 * This vdev is not being allocated from yet or is a hole. 838 */ 839 if (vd->vdev_ms_shift == 0) 840 return (0); 841 842 ASSERT(!vd->vdev_ishole); 843 844 /* 845 * Compute the raidz-deflation ratio. Note, we hard-code 846 * in 128k (1 << 17) because it is the current "typical" blocksize. 847 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, 848 * or we will inconsistently account for existing bp's. 849 */ 850 vd->vdev_deflate_ratio = (1 << 17) / 851 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 852 853 ASSERT(oldc <= newc); 854 855 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 856 857 if (oldc != 0) { 858 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 859 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 860 } 861 862 vd->vdev_ms = mspp; 863 vd->vdev_ms_count = newc; 864 865 for (m = oldc; m < newc; m++) { 866 uint64_t object = 0; 867 868 if (txg == 0) { 869 error = dmu_read(mos, vd->vdev_ms_array, 870 m * sizeof (uint64_t), sizeof (uint64_t), &object, 871 DMU_READ_PREFETCH); 872 if (error) 873 return (error); 874 } 875 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, m, object, txg); 876 } 877 878 if (txg == 0) 879 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 880 881 /* 882 * If the vdev is being removed we don't activate 883 * the metaslabs since we want to ensure that no new 884 * allocations are performed on this device. 885 */ 886 if (oldc == 0 && !vd->vdev_removing) 887 metaslab_group_activate(vd->vdev_mg); 888 889 if (txg == 0) 890 spa_config_exit(spa, SCL_ALLOC, FTAG); 891 892 return (0); 893 } 894 895 void 896 vdev_metaslab_fini(vdev_t *vd) 897 { 898 uint64_t m; 899 uint64_t count = vd->vdev_ms_count; 900 901 if (vd->vdev_ms != NULL) { 902 metaslab_group_passivate(vd->vdev_mg); 903 for (m = 0; m < count; m++) { 904 metaslab_t *msp = vd->vdev_ms[m]; 905 906 if (msp != NULL) 907 metaslab_fini(msp); 908 } 909 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 910 vd->vdev_ms = NULL; 911 } 912 } 913 914 typedef struct vdev_probe_stats { 915 boolean_t vps_readable; 916 boolean_t vps_writeable; 917 int vps_flags; 918 } vdev_probe_stats_t; 919 920 static void 921 vdev_probe_done(zio_t *zio) 922 { 923 spa_t *spa = zio->io_spa; 924 vdev_t *vd = zio->io_vd; 925 vdev_probe_stats_t *vps = zio->io_private; 926 927 ASSERT(vd->vdev_probe_zio != NULL); 928 929 if (zio->io_type == ZIO_TYPE_READ) { 930 if (zio->io_error == 0) 931 vps->vps_readable = 1; 932 if (zio->io_error == 0 && spa_writeable(spa)) { 933 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 934 zio->io_offset, zio->io_size, zio->io_data, 935 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 936 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 937 } else { 938 zio_buf_free(zio->io_data, zio->io_size); 939 } 940 } else if (zio->io_type == ZIO_TYPE_WRITE) { 941 if (zio->io_error == 0) 942 vps->vps_writeable = 1; 943 zio_buf_free(zio->io_data, zio->io_size); 944 } else if (zio->io_type == ZIO_TYPE_NULL) { 945 zio_t *pio; 946 947 vd->vdev_cant_read |= !vps->vps_readable; 948 vd->vdev_cant_write |= !vps->vps_writeable; 949 950 if (vdev_readable(vd) && 951 (vdev_writeable(vd) || !spa_writeable(spa))) { 952 zio->io_error = 0; 953 } else { 954 ASSERT(zio->io_error != 0); 955 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 956 spa, vd, NULL, 0, 0); 957 zio->io_error = SET_ERROR(ENXIO); 958 } 959 960 mutex_enter(&vd->vdev_probe_lock); 961 ASSERT(vd->vdev_probe_zio == zio); 962 vd->vdev_probe_zio = NULL; 963 mutex_exit(&vd->vdev_probe_lock); 964 965 while ((pio = zio_walk_parents(zio)) != NULL) 966 if (!vdev_accessible(vd, pio)) 967 pio->io_error = SET_ERROR(ENXIO); 968 969 kmem_free(vps, sizeof (*vps)); 970 } 971 } 972 973 /* 974 * Determine whether this device is accessible. 975 * 976 * Read and write to several known locations: the pad regions of each 977 * vdev label but the first, which we leave alone in case it contains 978 * a VTOC. 979 */ 980 zio_t * 981 vdev_probe(vdev_t *vd, zio_t *zio) 982 { 983 spa_t *spa = vd->vdev_spa; 984 vdev_probe_stats_t *vps = NULL; 985 zio_t *pio; 986 987 ASSERT(vd->vdev_ops->vdev_op_leaf); 988 989 /* 990 * Don't probe the probe. 991 */ 992 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 993 return (NULL); 994 995 /* 996 * To prevent 'probe storms' when a device fails, we create 997 * just one probe i/o at a time. All zios that want to probe 998 * this vdev will become parents of the probe io. 999 */ 1000 mutex_enter(&vd->vdev_probe_lock); 1001 1002 if ((pio = vd->vdev_probe_zio) == NULL) { 1003 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1004 1005 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1006 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1007 ZIO_FLAG_TRYHARD; 1008 1009 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1010 /* 1011 * vdev_cant_read and vdev_cant_write can only 1012 * transition from TRUE to FALSE when we have the 1013 * SCL_ZIO lock as writer; otherwise they can only 1014 * transition from FALSE to TRUE. This ensures that 1015 * any zio looking at these values can assume that 1016 * failures persist for the life of the I/O. That's 1017 * important because when a device has intermittent 1018 * connectivity problems, we want to ensure that 1019 * they're ascribed to the device (ENXIO) and not 1020 * the zio (EIO). 1021 * 1022 * Since we hold SCL_ZIO as writer here, clear both 1023 * values so the probe can reevaluate from first 1024 * principles. 1025 */ 1026 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1027 vd->vdev_cant_read = B_FALSE; 1028 vd->vdev_cant_write = B_FALSE; 1029 } 1030 1031 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1032 vdev_probe_done, vps, 1033 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1034 1035 /* 1036 * We can't change the vdev state in this context, so we 1037 * kick off an async task to do it on our behalf. 1038 */ 1039 if (zio != NULL) { 1040 vd->vdev_probe_wanted = B_TRUE; 1041 spa_async_request(spa, SPA_ASYNC_PROBE); 1042 } 1043 } 1044 1045 if (zio != NULL) 1046 zio_add_child(zio, pio); 1047 1048 mutex_exit(&vd->vdev_probe_lock); 1049 1050 if (vps == NULL) { 1051 ASSERT(zio != NULL); 1052 return (NULL); 1053 } 1054 1055 for (int l = 1; l < VDEV_LABELS; l++) { 1056 zio_nowait(zio_read_phys(pio, vd, 1057 vdev_label_offset(vd->vdev_psize, l, 1058 offsetof(vdev_label_t, vl_pad2)), 1059 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1060 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1061 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1062 } 1063 1064 if (zio == NULL) 1065 return (pio); 1066 1067 zio_nowait(pio); 1068 return (NULL); 1069 } 1070 1071 static void 1072 vdev_open_child(void *arg) 1073 { 1074 vdev_t *vd = arg; 1075 1076 vd->vdev_open_thread = curthread; 1077 vd->vdev_open_error = vdev_open(vd); 1078 vd->vdev_open_thread = NULL; 1079 } 1080 1081 boolean_t 1082 vdev_uses_zvols(vdev_t *vd) 1083 { 1084 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1085 strlen(ZVOL_DIR)) == 0) 1086 return (B_TRUE); 1087 for (int c = 0; c < vd->vdev_children; c++) 1088 if (vdev_uses_zvols(vd->vdev_child[c])) 1089 return (B_TRUE); 1090 return (B_FALSE); 1091 } 1092 1093 void 1094 vdev_open_children(vdev_t *vd) 1095 { 1096 taskq_t *tq; 1097 int children = vd->vdev_children; 1098 1099 /* 1100 * in order to handle pools on top of zvols, do the opens 1101 * in a single thread so that the same thread holds the 1102 * spa_namespace_lock 1103 */ 1104 if (vdev_uses_zvols(vd)) { 1105 for (int c = 0; c < children; c++) 1106 vd->vdev_child[c]->vdev_open_error = 1107 vdev_open(vd->vdev_child[c]); 1108 return; 1109 } 1110 tq = taskq_create("vdev_open", children, minclsyspri, 1111 children, children, TASKQ_PREPOPULATE); 1112 1113 for (int c = 0; c < children; c++) 1114 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1115 TQ_SLEEP) != NULL); 1116 1117 taskq_destroy(tq); 1118 } 1119 1120 /* 1121 * Prepare a virtual device for access. 1122 */ 1123 int 1124 vdev_open(vdev_t *vd) 1125 { 1126 spa_t *spa = vd->vdev_spa; 1127 int error; 1128 uint64_t osize = 0; 1129 uint64_t max_osize = 0; 1130 uint64_t asize, max_asize, psize; 1131 uint64_t ashift = 0; 1132 1133 ASSERT(vd->vdev_open_thread == curthread || 1134 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1135 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1136 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1137 vd->vdev_state == VDEV_STATE_OFFLINE); 1138 1139 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1140 vd->vdev_cant_read = B_FALSE; 1141 vd->vdev_cant_write = B_FALSE; 1142 vd->vdev_min_asize = vdev_get_min_asize(vd); 1143 1144 /* 1145 * If this vdev is not removed, check its fault status. If it's 1146 * faulted, bail out of the open. 1147 */ 1148 if (!vd->vdev_removed && vd->vdev_faulted) { 1149 ASSERT(vd->vdev_children == 0); 1150 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1151 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1152 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1153 vd->vdev_label_aux); 1154 return (SET_ERROR(ENXIO)); 1155 } else if (vd->vdev_offline) { 1156 ASSERT(vd->vdev_children == 0); 1157 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1158 return (SET_ERROR(ENXIO)); 1159 } 1160 1161 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1162 1163 /* 1164 * Reset the vdev_reopening flag so that we actually close 1165 * the vdev on error. 1166 */ 1167 vd->vdev_reopening = B_FALSE; 1168 if (zio_injection_enabled && error == 0) 1169 error = zio_handle_device_injection(vd, NULL, ENXIO); 1170 1171 if (error) { 1172 if (vd->vdev_removed && 1173 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1174 vd->vdev_removed = B_FALSE; 1175 1176 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1177 vd->vdev_stat.vs_aux); 1178 return (error); 1179 } 1180 1181 vd->vdev_removed = B_FALSE; 1182 1183 /* 1184 * Recheck the faulted flag now that we have confirmed that 1185 * the vdev is accessible. If we're faulted, bail. 1186 */ 1187 if (vd->vdev_faulted) { 1188 ASSERT(vd->vdev_children == 0); 1189 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1190 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1191 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1192 vd->vdev_label_aux); 1193 return (SET_ERROR(ENXIO)); 1194 } 1195 1196 if (vd->vdev_degraded) { 1197 ASSERT(vd->vdev_children == 0); 1198 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1199 VDEV_AUX_ERR_EXCEEDED); 1200 } else { 1201 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1202 } 1203 1204 /* 1205 * For hole or missing vdevs we just return success. 1206 */ 1207 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1208 return (0); 1209 1210 for (int c = 0; c < vd->vdev_children; c++) { 1211 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1212 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1213 VDEV_AUX_NONE); 1214 break; 1215 } 1216 } 1217 1218 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1219 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1220 1221 if (vd->vdev_children == 0) { 1222 if (osize < SPA_MINDEVSIZE) { 1223 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1224 VDEV_AUX_TOO_SMALL); 1225 return (SET_ERROR(EOVERFLOW)); 1226 } 1227 psize = osize; 1228 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1229 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1230 VDEV_LABEL_END_SIZE); 1231 } else { 1232 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1233 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1234 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1235 VDEV_AUX_TOO_SMALL); 1236 return (SET_ERROR(EOVERFLOW)); 1237 } 1238 psize = 0; 1239 asize = osize; 1240 max_asize = max_osize; 1241 } 1242 1243 vd->vdev_psize = psize; 1244 1245 /* 1246 * Make sure the allocatable size hasn't shrunk. 1247 */ 1248 if (asize < vd->vdev_min_asize) { 1249 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1250 VDEV_AUX_BAD_LABEL); 1251 return (SET_ERROR(EINVAL)); 1252 } 1253 1254 if (vd->vdev_asize == 0) { 1255 /* 1256 * This is the first-ever open, so use the computed values. 1257 * For testing purposes, a higher ashift can be requested. 1258 */ 1259 vd->vdev_asize = asize; 1260 vd->vdev_max_asize = max_asize; 1261 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1262 } else { 1263 /* 1264 * Detect if the alignment requirement has increased. 1265 * We don't want to make the pool unavailable, just 1266 * issue a warning instead. 1267 */ 1268 if (ashift > vd->vdev_top->vdev_ashift && 1269 vd->vdev_ops->vdev_op_leaf) { 1270 cmn_err(CE_WARN, 1271 "Disk, '%s', has a block alignment that is " 1272 "larger than the pool's alignment\n", 1273 vd->vdev_path); 1274 } 1275 vd->vdev_max_asize = max_asize; 1276 } 1277 1278 /* 1279 * If all children are healthy and the asize has increased, 1280 * then we've experienced dynamic LUN growth. If automatic 1281 * expansion is enabled then use the additional space. 1282 */ 1283 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1284 (vd->vdev_expanding || spa->spa_autoexpand)) 1285 vd->vdev_asize = asize; 1286 1287 vdev_set_min_asize(vd); 1288 1289 /* 1290 * Ensure we can issue some IO before declaring the 1291 * vdev open for business. 1292 */ 1293 if (vd->vdev_ops->vdev_op_leaf && 1294 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1295 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1296 VDEV_AUX_ERR_EXCEEDED); 1297 return (error); 1298 } 1299 1300 /* 1301 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1302 * resilver. But don't do this if we are doing a reopen for a scrub, 1303 * since this would just restart the scrub we are already doing. 1304 */ 1305 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1306 vdev_resilver_needed(vd, NULL, NULL)) 1307 spa_async_request(spa, SPA_ASYNC_RESILVER); 1308 1309 return (0); 1310 } 1311 1312 /* 1313 * Called once the vdevs are all opened, this routine validates the label 1314 * contents. This needs to be done before vdev_load() so that we don't 1315 * inadvertently do repair I/Os to the wrong device. 1316 * 1317 * If 'strict' is false ignore the spa guid check. This is necessary because 1318 * if the machine crashed during a re-guid the new guid might have been written 1319 * to all of the vdev labels, but not the cached config. The strict check 1320 * will be performed when the pool is opened again using the mos config. 1321 * 1322 * This function will only return failure if one of the vdevs indicates that it 1323 * has since been destroyed or exported. This is only possible if 1324 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1325 * will be updated but the function will return 0. 1326 */ 1327 int 1328 vdev_validate(vdev_t *vd, boolean_t strict) 1329 { 1330 spa_t *spa = vd->vdev_spa; 1331 nvlist_t *label; 1332 uint64_t guid = 0, top_guid; 1333 uint64_t state; 1334 1335 for (int c = 0; c < vd->vdev_children; c++) 1336 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1337 return (SET_ERROR(EBADF)); 1338 1339 /* 1340 * If the device has already failed, or was marked offline, don't do 1341 * any further validation. Otherwise, label I/O will fail and we will 1342 * overwrite the previous state. 1343 */ 1344 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1345 uint64_t aux_guid = 0; 1346 nvlist_t *nvl; 1347 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1348 spa_last_synced_txg(spa) : -1ULL; 1349 1350 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1351 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1352 VDEV_AUX_BAD_LABEL); 1353 return (0); 1354 } 1355 1356 /* 1357 * Determine if this vdev has been split off into another 1358 * pool. If so, then refuse to open it. 1359 */ 1360 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1361 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1362 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1363 VDEV_AUX_SPLIT_POOL); 1364 nvlist_free(label); 1365 return (0); 1366 } 1367 1368 if (strict && (nvlist_lookup_uint64(label, 1369 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1370 guid != spa_guid(spa))) { 1371 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1372 VDEV_AUX_CORRUPT_DATA); 1373 nvlist_free(label); 1374 return (0); 1375 } 1376 1377 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1378 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1379 &aux_guid) != 0) 1380 aux_guid = 0; 1381 1382 /* 1383 * If this vdev just became a top-level vdev because its 1384 * sibling was detached, it will have adopted the parent's 1385 * vdev guid -- but the label may or may not be on disk yet. 1386 * Fortunately, either version of the label will have the 1387 * same top guid, so if we're a top-level vdev, we can 1388 * safely compare to that instead. 1389 * 1390 * If we split this vdev off instead, then we also check the 1391 * original pool's guid. We don't want to consider the vdev 1392 * corrupt if it is partway through a split operation. 1393 */ 1394 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1395 &guid) != 0 || 1396 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1397 &top_guid) != 0 || 1398 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1399 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1400 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1401 VDEV_AUX_CORRUPT_DATA); 1402 nvlist_free(label); 1403 return (0); 1404 } 1405 1406 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1407 &state) != 0) { 1408 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1409 VDEV_AUX_CORRUPT_DATA); 1410 nvlist_free(label); 1411 return (0); 1412 } 1413 1414 nvlist_free(label); 1415 1416 /* 1417 * If this is a verbatim import, no need to check the 1418 * state of the pool. 1419 */ 1420 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1421 spa_load_state(spa) == SPA_LOAD_OPEN && 1422 state != POOL_STATE_ACTIVE) 1423 return (SET_ERROR(EBADF)); 1424 1425 /* 1426 * If we were able to open and validate a vdev that was 1427 * previously marked permanently unavailable, clear that state 1428 * now. 1429 */ 1430 if (vd->vdev_not_present) 1431 vd->vdev_not_present = 0; 1432 } 1433 1434 return (0); 1435 } 1436 1437 /* 1438 * Close a virtual device. 1439 */ 1440 void 1441 vdev_close(vdev_t *vd) 1442 { 1443 spa_t *spa = vd->vdev_spa; 1444 vdev_t *pvd = vd->vdev_parent; 1445 1446 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1447 1448 /* 1449 * If our parent is reopening, then we are as well, unless we are 1450 * going offline. 1451 */ 1452 if (pvd != NULL && pvd->vdev_reopening) 1453 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1454 1455 vd->vdev_ops->vdev_op_close(vd); 1456 1457 vdev_cache_purge(vd); 1458 1459 /* 1460 * We record the previous state before we close it, so that if we are 1461 * doing a reopen(), we don't generate FMA ereports if we notice that 1462 * it's still faulted. 1463 */ 1464 vd->vdev_prevstate = vd->vdev_state; 1465 1466 if (vd->vdev_offline) 1467 vd->vdev_state = VDEV_STATE_OFFLINE; 1468 else 1469 vd->vdev_state = VDEV_STATE_CLOSED; 1470 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1471 } 1472 1473 void 1474 vdev_hold(vdev_t *vd) 1475 { 1476 spa_t *spa = vd->vdev_spa; 1477 1478 ASSERT(spa_is_root(spa)); 1479 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1480 return; 1481 1482 for (int c = 0; c < vd->vdev_children; c++) 1483 vdev_hold(vd->vdev_child[c]); 1484 1485 if (vd->vdev_ops->vdev_op_leaf) 1486 vd->vdev_ops->vdev_op_hold(vd); 1487 } 1488 1489 void 1490 vdev_rele(vdev_t *vd) 1491 { 1492 spa_t *spa = vd->vdev_spa; 1493 1494 ASSERT(spa_is_root(spa)); 1495 for (int c = 0; c < vd->vdev_children; c++) 1496 vdev_rele(vd->vdev_child[c]); 1497 1498 if (vd->vdev_ops->vdev_op_leaf) 1499 vd->vdev_ops->vdev_op_rele(vd); 1500 } 1501 1502 /* 1503 * Reopen all interior vdevs and any unopened leaves. We don't actually 1504 * reopen leaf vdevs which had previously been opened as they might deadlock 1505 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1506 * If the leaf has never been opened then open it, as usual. 1507 */ 1508 void 1509 vdev_reopen(vdev_t *vd) 1510 { 1511 spa_t *spa = vd->vdev_spa; 1512 1513 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1514 1515 /* set the reopening flag unless we're taking the vdev offline */ 1516 vd->vdev_reopening = !vd->vdev_offline; 1517 vdev_close(vd); 1518 (void) vdev_open(vd); 1519 1520 /* 1521 * Call vdev_validate() here to make sure we have the same device. 1522 * Otherwise, a device with an invalid label could be successfully 1523 * opened in response to vdev_reopen(). 1524 */ 1525 if (vd->vdev_aux) { 1526 (void) vdev_validate_aux(vd); 1527 if (vdev_readable(vd) && vdev_writeable(vd) && 1528 vd->vdev_aux == &spa->spa_l2cache && 1529 !l2arc_vdev_present(vd)) 1530 l2arc_add_vdev(spa, vd); 1531 } else { 1532 (void) vdev_validate(vd, B_TRUE); 1533 } 1534 1535 /* 1536 * Reassess parent vdev's health. 1537 */ 1538 vdev_propagate_state(vd); 1539 } 1540 1541 int 1542 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1543 { 1544 int error; 1545 1546 /* 1547 * Normally, partial opens (e.g. of a mirror) are allowed. 1548 * For a create, however, we want to fail the request if 1549 * there are any components we can't open. 1550 */ 1551 error = vdev_open(vd); 1552 1553 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1554 vdev_close(vd); 1555 return (error ? error : ENXIO); 1556 } 1557 1558 /* 1559 * Recursively load DTLs and initialize all labels. 1560 */ 1561 if ((error = vdev_dtl_load(vd)) != 0 || 1562 (error = vdev_label_init(vd, txg, isreplacing ? 1563 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1564 vdev_close(vd); 1565 return (error); 1566 } 1567 1568 return (0); 1569 } 1570 1571 void 1572 vdev_metaslab_set_size(vdev_t *vd) 1573 { 1574 /* 1575 * Aim for roughly 200 metaslabs per vdev. 1576 */ 1577 vd->vdev_ms_shift = highbit64(vd->vdev_asize / 200); 1578 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1579 } 1580 1581 void 1582 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1583 { 1584 ASSERT(vd == vd->vdev_top); 1585 ASSERT(!vd->vdev_ishole); 1586 ASSERT(ISP2(flags)); 1587 ASSERT(spa_writeable(vd->vdev_spa)); 1588 1589 if (flags & VDD_METASLAB) 1590 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1591 1592 if (flags & VDD_DTL) 1593 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1594 1595 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1596 } 1597 1598 void 1599 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 1600 { 1601 for (int c = 0; c < vd->vdev_children; c++) 1602 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 1603 1604 if (vd->vdev_ops->vdev_op_leaf) 1605 vdev_dirty(vd->vdev_top, flags, vd, txg); 1606 } 1607 1608 /* 1609 * DTLs. 1610 * 1611 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1612 * the vdev has less than perfect replication. There are four kinds of DTL: 1613 * 1614 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1615 * 1616 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1617 * 1618 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1619 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1620 * txgs that was scrubbed. 1621 * 1622 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1623 * persistent errors or just some device being offline. 1624 * Unlike the other three, the DTL_OUTAGE map is not generally 1625 * maintained; it's only computed when needed, typically to 1626 * determine whether a device can be detached. 1627 * 1628 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1629 * either has the data or it doesn't. 1630 * 1631 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1632 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1633 * if any child is less than fully replicated, then so is its parent. 1634 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1635 * comprising only those txgs which appear in 'maxfaults' or more children; 1636 * those are the txgs we don't have enough replication to read. For example, 1637 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1638 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1639 * two child DTL_MISSING maps. 1640 * 1641 * It should be clear from the above that to compute the DTLs and outage maps 1642 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1643 * Therefore, that is all we keep on disk. When loading the pool, or after 1644 * a configuration change, we generate all other DTLs from first principles. 1645 */ 1646 void 1647 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1648 { 1649 range_tree_t *rt = vd->vdev_dtl[t]; 1650 1651 ASSERT(t < DTL_TYPES); 1652 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1653 ASSERT(spa_writeable(vd->vdev_spa)); 1654 1655 mutex_enter(rt->rt_lock); 1656 if (!range_tree_contains(rt, txg, size)) 1657 range_tree_add(rt, txg, size); 1658 mutex_exit(rt->rt_lock); 1659 } 1660 1661 boolean_t 1662 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1663 { 1664 range_tree_t *rt = vd->vdev_dtl[t]; 1665 boolean_t dirty = B_FALSE; 1666 1667 ASSERT(t < DTL_TYPES); 1668 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1669 1670 mutex_enter(rt->rt_lock); 1671 if (range_tree_space(rt) != 0) 1672 dirty = range_tree_contains(rt, txg, size); 1673 mutex_exit(rt->rt_lock); 1674 1675 return (dirty); 1676 } 1677 1678 boolean_t 1679 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1680 { 1681 range_tree_t *rt = vd->vdev_dtl[t]; 1682 boolean_t empty; 1683 1684 mutex_enter(rt->rt_lock); 1685 empty = (range_tree_space(rt) == 0); 1686 mutex_exit(rt->rt_lock); 1687 1688 return (empty); 1689 } 1690 1691 /* 1692 * Returns the lowest txg in the DTL range. 1693 */ 1694 static uint64_t 1695 vdev_dtl_min(vdev_t *vd) 1696 { 1697 range_seg_t *rs; 1698 1699 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1700 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1701 ASSERT0(vd->vdev_children); 1702 1703 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1704 return (rs->rs_start - 1); 1705 } 1706 1707 /* 1708 * Returns the highest txg in the DTL. 1709 */ 1710 static uint64_t 1711 vdev_dtl_max(vdev_t *vd) 1712 { 1713 range_seg_t *rs; 1714 1715 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1716 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1717 ASSERT0(vd->vdev_children); 1718 1719 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1720 return (rs->rs_end); 1721 } 1722 1723 /* 1724 * Determine if a resilvering vdev should remove any DTL entries from 1725 * its range. If the vdev was resilvering for the entire duration of the 1726 * scan then it should excise that range from its DTLs. Otherwise, this 1727 * vdev is considered partially resilvered and should leave its DTL 1728 * entries intact. The comment in vdev_dtl_reassess() describes how we 1729 * excise the DTLs. 1730 */ 1731 static boolean_t 1732 vdev_dtl_should_excise(vdev_t *vd) 1733 { 1734 spa_t *spa = vd->vdev_spa; 1735 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1736 1737 ASSERT0(scn->scn_phys.scn_errors); 1738 ASSERT0(vd->vdev_children); 1739 1740 if (vd->vdev_resilver_txg == 0 || 1741 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) 1742 return (B_TRUE); 1743 1744 /* 1745 * When a resilver is initiated the scan will assign the scn_max_txg 1746 * value to the highest txg value that exists in all DTLs. If this 1747 * device's max DTL is not part of this scan (i.e. it is not in 1748 * the range (scn_min_txg, scn_max_txg] then it is not eligible 1749 * for excision. 1750 */ 1751 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 1752 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 1753 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 1754 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 1755 return (B_TRUE); 1756 } 1757 return (B_FALSE); 1758 } 1759 1760 /* 1761 * Reassess DTLs after a config change or scrub completion. 1762 */ 1763 void 1764 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1765 { 1766 spa_t *spa = vd->vdev_spa; 1767 avl_tree_t reftree; 1768 int minref; 1769 1770 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1771 1772 for (int c = 0; c < vd->vdev_children; c++) 1773 vdev_dtl_reassess(vd->vdev_child[c], txg, 1774 scrub_txg, scrub_done); 1775 1776 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1777 return; 1778 1779 if (vd->vdev_ops->vdev_op_leaf) { 1780 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1781 1782 mutex_enter(&vd->vdev_dtl_lock); 1783 1784 /* 1785 * If we've completed a scan cleanly then determine 1786 * if this vdev should remove any DTLs. We only want to 1787 * excise regions on vdevs that were available during 1788 * the entire duration of this scan. 1789 */ 1790 if (scrub_txg != 0 && 1791 (spa->spa_scrub_started || 1792 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 1793 vdev_dtl_should_excise(vd)) { 1794 /* 1795 * We completed a scrub up to scrub_txg. If we 1796 * did it without rebooting, then the scrub dtl 1797 * will be valid, so excise the old region and 1798 * fold in the scrub dtl. Otherwise, leave the 1799 * dtl as-is if there was an error. 1800 * 1801 * There's little trick here: to excise the beginning 1802 * of the DTL_MISSING map, we put it into a reference 1803 * tree and then add a segment with refcnt -1 that 1804 * covers the range [0, scrub_txg). This means 1805 * that each txg in that range has refcnt -1 or 0. 1806 * We then add DTL_SCRUB with a refcnt of 2, so that 1807 * entries in the range [0, scrub_txg) will have a 1808 * positive refcnt -- either 1 or 2. We then convert 1809 * the reference tree into the new DTL_MISSING map. 1810 */ 1811 space_reftree_create(&reftree); 1812 space_reftree_add_map(&reftree, 1813 vd->vdev_dtl[DTL_MISSING], 1); 1814 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 1815 space_reftree_add_map(&reftree, 1816 vd->vdev_dtl[DTL_SCRUB], 2); 1817 space_reftree_generate_map(&reftree, 1818 vd->vdev_dtl[DTL_MISSING], 1); 1819 space_reftree_destroy(&reftree); 1820 } 1821 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1822 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1823 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 1824 if (scrub_done) 1825 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1826 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1827 if (!vdev_readable(vd)) 1828 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1829 else 1830 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1831 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 1832 1833 /* 1834 * If the vdev was resilvering and no longer has any 1835 * DTLs then reset its resilvering flag. 1836 */ 1837 if (vd->vdev_resilver_txg != 0 && 1838 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && 1839 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) 1840 vd->vdev_resilver_txg = 0; 1841 1842 mutex_exit(&vd->vdev_dtl_lock); 1843 1844 if (txg != 0) 1845 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1846 return; 1847 } 1848 1849 mutex_enter(&vd->vdev_dtl_lock); 1850 for (int t = 0; t < DTL_TYPES; t++) { 1851 /* account for child's outage in parent's missing map */ 1852 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1853 if (t == DTL_SCRUB) 1854 continue; /* leaf vdevs only */ 1855 if (t == DTL_PARTIAL) 1856 minref = 1; /* i.e. non-zero */ 1857 else if (vd->vdev_nparity != 0) 1858 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1859 else 1860 minref = vd->vdev_children; /* any kind of mirror */ 1861 space_reftree_create(&reftree); 1862 for (int c = 0; c < vd->vdev_children; c++) { 1863 vdev_t *cvd = vd->vdev_child[c]; 1864 mutex_enter(&cvd->vdev_dtl_lock); 1865 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 1866 mutex_exit(&cvd->vdev_dtl_lock); 1867 } 1868 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 1869 space_reftree_destroy(&reftree); 1870 } 1871 mutex_exit(&vd->vdev_dtl_lock); 1872 } 1873 1874 int 1875 vdev_dtl_load(vdev_t *vd) 1876 { 1877 spa_t *spa = vd->vdev_spa; 1878 objset_t *mos = spa->spa_meta_objset; 1879 int error = 0; 1880 1881 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 1882 ASSERT(!vd->vdev_ishole); 1883 1884 error = space_map_open(&vd->vdev_dtl_sm, mos, 1885 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock); 1886 if (error) 1887 return (error); 1888 ASSERT(vd->vdev_dtl_sm != NULL); 1889 1890 mutex_enter(&vd->vdev_dtl_lock); 1891 1892 /* 1893 * Now that we've opened the space_map we need to update 1894 * the in-core DTL. 1895 */ 1896 space_map_update(vd->vdev_dtl_sm); 1897 1898 error = space_map_load(vd->vdev_dtl_sm, 1899 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 1900 mutex_exit(&vd->vdev_dtl_lock); 1901 1902 return (error); 1903 } 1904 1905 for (int c = 0; c < vd->vdev_children; c++) { 1906 error = vdev_dtl_load(vd->vdev_child[c]); 1907 if (error != 0) 1908 break; 1909 } 1910 1911 return (error); 1912 } 1913 1914 void 1915 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1916 { 1917 spa_t *spa = vd->vdev_spa; 1918 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 1919 objset_t *mos = spa->spa_meta_objset; 1920 range_tree_t *rtsync; 1921 kmutex_t rtlock; 1922 dmu_tx_t *tx; 1923 uint64_t object = space_map_object(vd->vdev_dtl_sm); 1924 1925 ASSERT(!vd->vdev_ishole); 1926 ASSERT(vd->vdev_ops->vdev_op_leaf); 1927 1928 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1929 1930 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 1931 mutex_enter(&vd->vdev_dtl_lock); 1932 space_map_free(vd->vdev_dtl_sm, tx); 1933 space_map_close(vd->vdev_dtl_sm); 1934 vd->vdev_dtl_sm = NULL; 1935 mutex_exit(&vd->vdev_dtl_lock); 1936 dmu_tx_commit(tx); 1937 return; 1938 } 1939 1940 if (vd->vdev_dtl_sm == NULL) { 1941 uint64_t new_object; 1942 1943 new_object = space_map_alloc(mos, tx); 1944 VERIFY3U(new_object, !=, 0); 1945 1946 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 1947 0, -1ULL, 0, &vd->vdev_dtl_lock)); 1948 ASSERT(vd->vdev_dtl_sm != NULL); 1949 } 1950 1951 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL); 1952 1953 rtsync = range_tree_create(NULL, NULL, &rtlock); 1954 1955 mutex_enter(&rtlock); 1956 1957 mutex_enter(&vd->vdev_dtl_lock); 1958 range_tree_walk(rt, range_tree_add, rtsync); 1959 mutex_exit(&vd->vdev_dtl_lock); 1960 1961 space_map_truncate(vd->vdev_dtl_sm, tx); 1962 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); 1963 range_tree_vacate(rtsync, NULL, NULL); 1964 1965 range_tree_destroy(rtsync); 1966 1967 mutex_exit(&rtlock); 1968 mutex_destroy(&rtlock); 1969 1970 /* 1971 * If the object for the space map has changed then dirty 1972 * the top level so that we update the config. 1973 */ 1974 if (object != space_map_object(vd->vdev_dtl_sm)) { 1975 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, " 1976 "new object %llu", txg, spa_name(spa), object, 1977 space_map_object(vd->vdev_dtl_sm)); 1978 vdev_config_dirty(vd->vdev_top); 1979 } 1980 1981 dmu_tx_commit(tx); 1982 1983 mutex_enter(&vd->vdev_dtl_lock); 1984 space_map_update(vd->vdev_dtl_sm); 1985 mutex_exit(&vd->vdev_dtl_lock); 1986 } 1987 1988 /* 1989 * Determine whether the specified vdev can be offlined/detached/removed 1990 * without losing data. 1991 */ 1992 boolean_t 1993 vdev_dtl_required(vdev_t *vd) 1994 { 1995 spa_t *spa = vd->vdev_spa; 1996 vdev_t *tvd = vd->vdev_top; 1997 uint8_t cant_read = vd->vdev_cant_read; 1998 boolean_t required; 1999 2000 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2001 2002 if (vd == spa->spa_root_vdev || vd == tvd) 2003 return (B_TRUE); 2004 2005 /* 2006 * Temporarily mark the device as unreadable, and then determine 2007 * whether this results in any DTL outages in the top-level vdev. 2008 * If not, we can safely offline/detach/remove the device. 2009 */ 2010 vd->vdev_cant_read = B_TRUE; 2011 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2012 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2013 vd->vdev_cant_read = cant_read; 2014 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2015 2016 if (!required && zio_injection_enabled) 2017 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2018 2019 return (required); 2020 } 2021 2022 /* 2023 * Determine if resilver is needed, and if so the txg range. 2024 */ 2025 boolean_t 2026 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2027 { 2028 boolean_t needed = B_FALSE; 2029 uint64_t thismin = UINT64_MAX; 2030 uint64_t thismax = 0; 2031 2032 if (vd->vdev_children == 0) { 2033 mutex_enter(&vd->vdev_dtl_lock); 2034 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && 2035 vdev_writeable(vd)) { 2036 2037 thismin = vdev_dtl_min(vd); 2038 thismax = vdev_dtl_max(vd); 2039 needed = B_TRUE; 2040 } 2041 mutex_exit(&vd->vdev_dtl_lock); 2042 } else { 2043 for (int c = 0; c < vd->vdev_children; c++) { 2044 vdev_t *cvd = vd->vdev_child[c]; 2045 uint64_t cmin, cmax; 2046 2047 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2048 thismin = MIN(thismin, cmin); 2049 thismax = MAX(thismax, cmax); 2050 needed = B_TRUE; 2051 } 2052 } 2053 } 2054 2055 if (needed && minp) { 2056 *minp = thismin; 2057 *maxp = thismax; 2058 } 2059 return (needed); 2060 } 2061 2062 void 2063 vdev_load(vdev_t *vd) 2064 { 2065 /* 2066 * Recursively load all children. 2067 */ 2068 for (int c = 0; c < vd->vdev_children; c++) 2069 vdev_load(vd->vdev_child[c]); 2070 2071 /* 2072 * If this is a top-level vdev, initialize its metaslabs. 2073 */ 2074 if (vd == vd->vdev_top && !vd->vdev_ishole && 2075 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 2076 vdev_metaslab_init(vd, 0) != 0)) 2077 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2078 VDEV_AUX_CORRUPT_DATA); 2079 2080 /* 2081 * If this is a leaf vdev, load its DTL. 2082 */ 2083 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 2084 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2085 VDEV_AUX_CORRUPT_DATA); 2086 } 2087 2088 /* 2089 * The special vdev case is used for hot spares and l2cache devices. Its 2090 * sole purpose it to set the vdev state for the associated vdev. To do this, 2091 * we make sure that we can open the underlying device, then try to read the 2092 * label, and make sure that the label is sane and that it hasn't been 2093 * repurposed to another pool. 2094 */ 2095 int 2096 vdev_validate_aux(vdev_t *vd) 2097 { 2098 nvlist_t *label; 2099 uint64_t guid, version; 2100 uint64_t state; 2101 2102 if (!vdev_readable(vd)) 2103 return (0); 2104 2105 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2106 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2107 VDEV_AUX_CORRUPT_DATA); 2108 return (-1); 2109 } 2110 2111 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2112 !SPA_VERSION_IS_SUPPORTED(version) || 2113 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2114 guid != vd->vdev_guid || 2115 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2116 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2117 VDEV_AUX_CORRUPT_DATA); 2118 nvlist_free(label); 2119 return (-1); 2120 } 2121 2122 /* 2123 * We don't actually check the pool state here. If it's in fact in 2124 * use by another pool, we update this fact on the fly when requested. 2125 */ 2126 nvlist_free(label); 2127 return (0); 2128 } 2129 2130 void 2131 vdev_remove(vdev_t *vd, uint64_t txg) 2132 { 2133 spa_t *spa = vd->vdev_spa; 2134 objset_t *mos = spa->spa_meta_objset; 2135 dmu_tx_t *tx; 2136 2137 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2138 2139 if (vd->vdev_ms != NULL) { 2140 for (int m = 0; m < vd->vdev_ms_count; m++) { 2141 metaslab_t *msp = vd->vdev_ms[m]; 2142 2143 if (msp == NULL || msp->ms_sm == NULL) 2144 continue; 2145 2146 mutex_enter(&msp->ms_lock); 2147 VERIFY0(space_map_allocated(msp->ms_sm)); 2148 space_map_free(msp->ms_sm, tx); 2149 space_map_close(msp->ms_sm); 2150 msp->ms_sm = NULL; 2151 mutex_exit(&msp->ms_lock); 2152 } 2153 } 2154 2155 if (vd->vdev_ms_array) { 2156 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2157 vd->vdev_ms_array = 0; 2158 } 2159 dmu_tx_commit(tx); 2160 } 2161 2162 void 2163 vdev_sync_done(vdev_t *vd, uint64_t txg) 2164 { 2165 metaslab_t *msp; 2166 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2167 2168 ASSERT(!vd->vdev_ishole); 2169 2170 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2171 metaslab_sync_done(msp, txg); 2172 2173 if (reassess) 2174 metaslab_sync_reassess(vd->vdev_mg); 2175 } 2176 2177 void 2178 vdev_sync(vdev_t *vd, uint64_t txg) 2179 { 2180 spa_t *spa = vd->vdev_spa; 2181 vdev_t *lvd; 2182 metaslab_t *msp; 2183 dmu_tx_t *tx; 2184 2185 ASSERT(!vd->vdev_ishole); 2186 2187 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2188 ASSERT(vd == vd->vdev_top); 2189 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2190 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2191 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2192 ASSERT(vd->vdev_ms_array != 0); 2193 vdev_config_dirty(vd); 2194 dmu_tx_commit(tx); 2195 } 2196 2197 /* 2198 * Remove the metadata associated with this vdev once it's empty. 2199 */ 2200 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2201 vdev_remove(vd, txg); 2202 2203 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2204 metaslab_sync(msp, txg); 2205 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2206 } 2207 2208 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2209 vdev_dtl_sync(lvd, txg); 2210 2211 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2212 } 2213 2214 uint64_t 2215 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2216 { 2217 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2218 } 2219 2220 /* 2221 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2222 * not be opened, and no I/O is attempted. 2223 */ 2224 int 2225 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2226 { 2227 vdev_t *vd, *tvd; 2228 2229 spa_vdev_state_enter(spa, SCL_NONE); 2230 2231 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2232 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2233 2234 if (!vd->vdev_ops->vdev_op_leaf) 2235 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2236 2237 tvd = vd->vdev_top; 2238 2239 /* 2240 * We don't directly use the aux state here, but if we do a 2241 * vdev_reopen(), we need this value to be present to remember why we 2242 * were faulted. 2243 */ 2244 vd->vdev_label_aux = aux; 2245 2246 /* 2247 * Faulted state takes precedence over degraded. 2248 */ 2249 vd->vdev_delayed_close = B_FALSE; 2250 vd->vdev_faulted = 1ULL; 2251 vd->vdev_degraded = 0ULL; 2252 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2253 2254 /* 2255 * If this device has the only valid copy of the data, then 2256 * back off and simply mark the vdev as degraded instead. 2257 */ 2258 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2259 vd->vdev_degraded = 1ULL; 2260 vd->vdev_faulted = 0ULL; 2261 2262 /* 2263 * If we reopen the device and it's not dead, only then do we 2264 * mark it degraded. 2265 */ 2266 vdev_reopen(tvd); 2267 2268 if (vdev_readable(vd)) 2269 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2270 } 2271 2272 return (spa_vdev_state_exit(spa, vd, 0)); 2273 } 2274 2275 /* 2276 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2277 * user that something is wrong. The vdev continues to operate as normal as far 2278 * as I/O is concerned. 2279 */ 2280 int 2281 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2282 { 2283 vdev_t *vd; 2284 2285 spa_vdev_state_enter(spa, SCL_NONE); 2286 2287 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2288 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2289 2290 if (!vd->vdev_ops->vdev_op_leaf) 2291 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2292 2293 /* 2294 * If the vdev is already faulted, then don't do anything. 2295 */ 2296 if (vd->vdev_faulted || vd->vdev_degraded) 2297 return (spa_vdev_state_exit(spa, NULL, 0)); 2298 2299 vd->vdev_degraded = 1ULL; 2300 if (!vdev_is_dead(vd)) 2301 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2302 aux); 2303 2304 return (spa_vdev_state_exit(spa, vd, 0)); 2305 } 2306 2307 /* 2308 * Online the given vdev. 2309 * 2310 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2311 * spare device should be detached when the device finishes resilvering. 2312 * Second, the online should be treated like a 'test' online case, so no FMA 2313 * events are generated if the device fails to open. 2314 */ 2315 int 2316 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2317 { 2318 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2319 2320 spa_vdev_state_enter(spa, SCL_NONE); 2321 2322 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2323 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2324 2325 if (!vd->vdev_ops->vdev_op_leaf) 2326 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2327 2328 tvd = vd->vdev_top; 2329 vd->vdev_offline = B_FALSE; 2330 vd->vdev_tmpoffline = B_FALSE; 2331 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2332 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2333 2334 /* XXX - L2ARC 1.0 does not support expansion */ 2335 if (!vd->vdev_aux) { 2336 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2337 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2338 } 2339 2340 vdev_reopen(tvd); 2341 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2342 2343 if (!vd->vdev_aux) { 2344 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2345 pvd->vdev_expanding = B_FALSE; 2346 } 2347 2348 if (newstate) 2349 *newstate = vd->vdev_state; 2350 if ((flags & ZFS_ONLINE_UNSPARE) && 2351 !vdev_is_dead(vd) && vd->vdev_parent && 2352 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2353 vd->vdev_parent->vdev_child[0] == vd) 2354 vd->vdev_unspare = B_TRUE; 2355 2356 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2357 2358 /* XXX - L2ARC 1.0 does not support expansion */ 2359 if (vd->vdev_aux) 2360 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2361 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2362 } 2363 return (spa_vdev_state_exit(spa, vd, 0)); 2364 } 2365 2366 static int 2367 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2368 { 2369 vdev_t *vd, *tvd; 2370 int error = 0; 2371 uint64_t generation; 2372 metaslab_group_t *mg; 2373 2374 top: 2375 spa_vdev_state_enter(spa, SCL_ALLOC); 2376 2377 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2378 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2379 2380 if (!vd->vdev_ops->vdev_op_leaf) 2381 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2382 2383 tvd = vd->vdev_top; 2384 mg = tvd->vdev_mg; 2385 generation = spa->spa_config_generation + 1; 2386 2387 /* 2388 * If the device isn't already offline, try to offline it. 2389 */ 2390 if (!vd->vdev_offline) { 2391 /* 2392 * If this device has the only valid copy of some data, 2393 * don't allow it to be offlined. Log devices are always 2394 * expendable. 2395 */ 2396 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2397 vdev_dtl_required(vd)) 2398 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2399 2400 /* 2401 * If the top-level is a slog and it has had allocations 2402 * then proceed. We check that the vdev's metaslab group 2403 * is not NULL since it's possible that we may have just 2404 * added this vdev but not yet initialized its metaslabs. 2405 */ 2406 if (tvd->vdev_islog && mg != NULL) { 2407 /* 2408 * Prevent any future allocations. 2409 */ 2410 metaslab_group_passivate(mg); 2411 (void) spa_vdev_state_exit(spa, vd, 0); 2412 2413 error = spa_offline_log(spa); 2414 2415 spa_vdev_state_enter(spa, SCL_ALLOC); 2416 2417 /* 2418 * Check to see if the config has changed. 2419 */ 2420 if (error || generation != spa->spa_config_generation) { 2421 metaslab_group_activate(mg); 2422 if (error) 2423 return (spa_vdev_state_exit(spa, 2424 vd, error)); 2425 (void) spa_vdev_state_exit(spa, vd, 0); 2426 goto top; 2427 } 2428 ASSERT0(tvd->vdev_stat.vs_alloc); 2429 } 2430 2431 /* 2432 * Offline this device and reopen its top-level vdev. 2433 * If the top-level vdev is a log device then just offline 2434 * it. Otherwise, if this action results in the top-level 2435 * vdev becoming unusable, undo it and fail the request. 2436 */ 2437 vd->vdev_offline = B_TRUE; 2438 vdev_reopen(tvd); 2439 2440 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2441 vdev_is_dead(tvd)) { 2442 vd->vdev_offline = B_FALSE; 2443 vdev_reopen(tvd); 2444 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2445 } 2446 2447 /* 2448 * Add the device back into the metaslab rotor so that 2449 * once we online the device it's open for business. 2450 */ 2451 if (tvd->vdev_islog && mg != NULL) 2452 metaslab_group_activate(mg); 2453 } 2454 2455 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2456 2457 return (spa_vdev_state_exit(spa, vd, 0)); 2458 } 2459 2460 int 2461 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2462 { 2463 int error; 2464 2465 mutex_enter(&spa->spa_vdev_top_lock); 2466 error = vdev_offline_locked(spa, guid, flags); 2467 mutex_exit(&spa->spa_vdev_top_lock); 2468 2469 return (error); 2470 } 2471 2472 /* 2473 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2474 * vdev_offline(), we assume the spa config is locked. We also clear all 2475 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2476 */ 2477 void 2478 vdev_clear(spa_t *spa, vdev_t *vd) 2479 { 2480 vdev_t *rvd = spa->spa_root_vdev; 2481 2482 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2483 2484 if (vd == NULL) 2485 vd = rvd; 2486 2487 vd->vdev_stat.vs_read_errors = 0; 2488 vd->vdev_stat.vs_write_errors = 0; 2489 vd->vdev_stat.vs_checksum_errors = 0; 2490 2491 for (int c = 0; c < vd->vdev_children; c++) 2492 vdev_clear(spa, vd->vdev_child[c]); 2493 2494 /* 2495 * If we're in the FAULTED state or have experienced failed I/O, then 2496 * clear the persistent state and attempt to reopen the device. We 2497 * also mark the vdev config dirty, so that the new faulted state is 2498 * written out to disk. 2499 */ 2500 if (vd->vdev_faulted || vd->vdev_degraded || 2501 !vdev_readable(vd) || !vdev_writeable(vd)) { 2502 2503 /* 2504 * When reopening in reponse to a clear event, it may be due to 2505 * a fmadm repair request. In this case, if the device is 2506 * still broken, we want to still post the ereport again. 2507 */ 2508 vd->vdev_forcefault = B_TRUE; 2509 2510 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2511 vd->vdev_cant_read = B_FALSE; 2512 vd->vdev_cant_write = B_FALSE; 2513 2514 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2515 2516 vd->vdev_forcefault = B_FALSE; 2517 2518 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2519 vdev_state_dirty(vd->vdev_top); 2520 2521 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2522 spa_async_request(spa, SPA_ASYNC_RESILVER); 2523 2524 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2525 } 2526 2527 /* 2528 * When clearing a FMA-diagnosed fault, we always want to 2529 * unspare the device, as we assume that the original spare was 2530 * done in response to the FMA fault. 2531 */ 2532 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2533 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2534 vd->vdev_parent->vdev_child[0] == vd) 2535 vd->vdev_unspare = B_TRUE; 2536 } 2537 2538 boolean_t 2539 vdev_is_dead(vdev_t *vd) 2540 { 2541 /* 2542 * Holes and missing devices are always considered "dead". 2543 * This simplifies the code since we don't have to check for 2544 * these types of devices in the various code paths. 2545 * Instead we rely on the fact that we skip over dead devices 2546 * before issuing I/O to them. 2547 */ 2548 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2549 vd->vdev_ops == &vdev_missing_ops); 2550 } 2551 2552 boolean_t 2553 vdev_readable(vdev_t *vd) 2554 { 2555 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2556 } 2557 2558 boolean_t 2559 vdev_writeable(vdev_t *vd) 2560 { 2561 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2562 } 2563 2564 boolean_t 2565 vdev_allocatable(vdev_t *vd) 2566 { 2567 uint64_t state = vd->vdev_state; 2568 2569 /* 2570 * We currently allow allocations from vdevs which may be in the 2571 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2572 * fails to reopen then we'll catch it later when we're holding 2573 * the proper locks. Note that we have to get the vdev state 2574 * in a local variable because although it changes atomically, 2575 * we're asking two separate questions about it. 2576 */ 2577 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2578 !vd->vdev_cant_write && !vd->vdev_ishole); 2579 } 2580 2581 boolean_t 2582 vdev_accessible(vdev_t *vd, zio_t *zio) 2583 { 2584 ASSERT(zio->io_vd == vd); 2585 2586 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2587 return (B_FALSE); 2588 2589 if (zio->io_type == ZIO_TYPE_READ) 2590 return (!vd->vdev_cant_read); 2591 2592 if (zio->io_type == ZIO_TYPE_WRITE) 2593 return (!vd->vdev_cant_write); 2594 2595 return (B_TRUE); 2596 } 2597 2598 /* 2599 * Get statistics for the given vdev. 2600 */ 2601 void 2602 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2603 { 2604 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2605 2606 mutex_enter(&vd->vdev_stat_lock); 2607 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2608 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2609 vs->vs_state = vd->vdev_state; 2610 vs->vs_rsize = vdev_get_min_asize(vd); 2611 if (vd->vdev_ops->vdev_op_leaf) 2612 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2613 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize; 2614 mutex_exit(&vd->vdev_stat_lock); 2615 2616 /* 2617 * If we're getting stats on the root vdev, aggregate the I/O counts 2618 * over all top-level vdevs (i.e. the direct children of the root). 2619 */ 2620 if (vd == rvd) { 2621 for (int c = 0; c < rvd->vdev_children; c++) { 2622 vdev_t *cvd = rvd->vdev_child[c]; 2623 vdev_stat_t *cvs = &cvd->vdev_stat; 2624 2625 mutex_enter(&vd->vdev_stat_lock); 2626 for (int t = 0; t < ZIO_TYPES; t++) { 2627 vs->vs_ops[t] += cvs->vs_ops[t]; 2628 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2629 } 2630 cvs->vs_scan_removing = cvd->vdev_removing; 2631 mutex_exit(&vd->vdev_stat_lock); 2632 } 2633 } 2634 } 2635 2636 void 2637 vdev_clear_stats(vdev_t *vd) 2638 { 2639 mutex_enter(&vd->vdev_stat_lock); 2640 vd->vdev_stat.vs_space = 0; 2641 vd->vdev_stat.vs_dspace = 0; 2642 vd->vdev_stat.vs_alloc = 0; 2643 mutex_exit(&vd->vdev_stat_lock); 2644 } 2645 2646 void 2647 vdev_scan_stat_init(vdev_t *vd) 2648 { 2649 vdev_stat_t *vs = &vd->vdev_stat; 2650 2651 for (int c = 0; c < vd->vdev_children; c++) 2652 vdev_scan_stat_init(vd->vdev_child[c]); 2653 2654 mutex_enter(&vd->vdev_stat_lock); 2655 vs->vs_scan_processed = 0; 2656 mutex_exit(&vd->vdev_stat_lock); 2657 } 2658 2659 void 2660 vdev_stat_update(zio_t *zio, uint64_t psize) 2661 { 2662 spa_t *spa = zio->io_spa; 2663 vdev_t *rvd = spa->spa_root_vdev; 2664 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2665 vdev_t *pvd; 2666 uint64_t txg = zio->io_txg; 2667 vdev_stat_t *vs = &vd->vdev_stat; 2668 zio_type_t type = zio->io_type; 2669 int flags = zio->io_flags; 2670 2671 /* 2672 * If this i/o is a gang leader, it didn't do any actual work. 2673 */ 2674 if (zio->io_gang_tree) 2675 return; 2676 2677 if (zio->io_error == 0) { 2678 /* 2679 * If this is a root i/o, don't count it -- we've already 2680 * counted the top-level vdevs, and vdev_get_stats() will 2681 * aggregate them when asked. This reduces contention on 2682 * the root vdev_stat_lock and implicitly handles blocks 2683 * that compress away to holes, for which there is no i/o. 2684 * (Holes never create vdev children, so all the counters 2685 * remain zero, which is what we want.) 2686 * 2687 * Note: this only applies to successful i/o (io_error == 0) 2688 * because unlike i/o counts, errors are not additive. 2689 * When reading a ditto block, for example, failure of 2690 * one top-level vdev does not imply a root-level error. 2691 */ 2692 if (vd == rvd) 2693 return; 2694 2695 ASSERT(vd == zio->io_vd); 2696 2697 if (flags & ZIO_FLAG_IO_BYPASS) 2698 return; 2699 2700 mutex_enter(&vd->vdev_stat_lock); 2701 2702 if (flags & ZIO_FLAG_IO_REPAIR) { 2703 if (flags & ZIO_FLAG_SCAN_THREAD) { 2704 dsl_scan_phys_t *scn_phys = 2705 &spa->spa_dsl_pool->dp_scan->scn_phys; 2706 uint64_t *processed = &scn_phys->scn_processed; 2707 2708 /* XXX cleanup? */ 2709 if (vd->vdev_ops->vdev_op_leaf) 2710 atomic_add_64(processed, psize); 2711 vs->vs_scan_processed += psize; 2712 } 2713 2714 if (flags & ZIO_FLAG_SELF_HEAL) 2715 vs->vs_self_healed += psize; 2716 } 2717 2718 vs->vs_ops[type]++; 2719 vs->vs_bytes[type] += psize; 2720 2721 mutex_exit(&vd->vdev_stat_lock); 2722 return; 2723 } 2724 2725 if (flags & ZIO_FLAG_SPECULATIVE) 2726 return; 2727 2728 /* 2729 * If this is an I/O error that is going to be retried, then ignore the 2730 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2731 * hard errors, when in reality they can happen for any number of 2732 * innocuous reasons (bus resets, MPxIO link failure, etc). 2733 */ 2734 if (zio->io_error == EIO && 2735 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2736 return; 2737 2738 /* 2739 * Intent logs writes won't propagate their error to the root 2740 * I/O so don't mark these types of failures as pool-level 2741 * errors. 2742 */ 2743 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2744 return; 2745 2746 mutex_enter(&vd->vdev_stat_lock); 2747 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2748 if (zio->io_error == ECKSUM) 2749 vs->vs_checksum_errors++; 2750 else 2751 vs->vs_read_errors++; 2752 } 2753 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2754 vs->vs_write_errors++; 2755 mutex_exit(&vd->vdev_stat_lock); 2756 2757 if (type == ZIO_TYPE_WRITE && txg != 0 && 2758 (!(flags & ZIO_FLAG_IO_REPAIR) || 2759 (flags & ZIO_FLAG_SCAN_THREAD) || 2760 spa->spa_claiming)) { 2761 /* 2762 * This is either a normal write (not a repair), or it's 2763 * a repair induced by the scrub thread, or it's a repair 2764 * made by zil_claim() during spa_load() in the first txg. 2765 * In the normal case, we commit the DTL change in the same 2766 * txg as the block was born. In the scrub-induced repair 2767 * case, we know that scrubs run in first-pass syncing context, 2768 * so we commit the DTL change in spa_syncing_txg(spa). 2769 * In the zil_claim() case, we commit in spa_first_txg(spa). 2770 * 2771 * We currently do not make DTL entries for failed spontaneous 2772 * self-healing writes triggered by normal (non-scrubbing) 2773 * reads, because we have no transactional context in which to 2774 * do so -- and it's not clear that it'd be desirable anyway. 2775 */ 2776 if (vd->vdev_ops->vdev_op_leaf) { 2777 uint64_t commit_txg = txg; 2778 if (flags & ZIO_FLAG_SCAN_THREAD) { 2779 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2780 ASSERT(spa_sync_pass(spa) == 1); 2781 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2782 commit_txg = spa_syncing_txg(spa); 2783 } else if (spa->spa_claiming) { 2784 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2785 commit_txg = spa_first_txg(spa); 2786 } 2787 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2788 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2789 return; 2790 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2791 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2792 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2793 } 2794 if (vd != rvd) 2795 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2796 } 2797 } 2798 2799 /* 2800 * Update the in-core space usage stats for this vdev, its metaslab class, 2801 * and the root vdev. 2802 */ 2803 void 2804 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2805 int64_t space_delta) 2806 { 2807 int64_t dspace_delta = space_delta; 2808 spa_t *spa = vd->vdev_spa; 2809 vdev_t *rvd = spa->spa_root_vdev; 2810 metaslab_group_t *mg = vd->vdev_mg; 2811 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2812 2813 ASSERT(vd == vd->vdev_top); 2814 2815 /* 2816 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2817 * factor. We must calculate this here and not at the root vdev 2818 * because the root vdev's psize-to-asize is simply the max of its 2819 * childrens', thus not accurate enough for us. 2820 */ 2821 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2822 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2823 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2824 vd->vdev_deflate_ratio; 2825 2826 mutex_enter(&vd->vdev_stat_lock); 2827 vd->vdev_stat.vs_alloc += alloc_delta; 2828 vd->vdev_stat.vs_space += space_delta; 2829 vd->vdev_stat.vs_dspace += dspace_delta; 2830 mutex_exit(&vd->vdev_stat_lock); 2831 2832 if (mc == spa_normal_class(spa)) { 2833 mutex_enter(&rvd->vdev_stat_lock); 2834 rvd->vdev_stat.vs_alloc += alloc_delta; 2835 rvd->vdev_stat.vs_space += space_delta; 2836 rvd->vdev_stat.vs_dspace += dspace_delta; 2837 mutex_exit(&rvd->vdev_stat_lock); 2838 } 2839 2840 if (mc != NULL) { 2841 ASSERT(rvd == vd->vdev_parent); 2842 ASSERT(vd->vdev_ms_count != 0); 2843 2844 metaslab_class_space_update(mc, 2845 alloc_delta, defer_delta, space_delta, dspace_delta); 2846 } 2847 } 2848 2849 /* 2850 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2851 * so that it will be written out next time the vdev configuration is synced. 2852 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2853 */ 2854 void 2855 vdev_config_dirty(vdev_t *vd) 2856 { 2857 spa_t *spa = vd->vdev_spa; 2858 vdev_t *rvd = spa->spa_root_vdev; 2859 int c; 2860 2861 ASSERT(spa_writeable(spa)); 2862 2863 /* 2864 * If this is an aux vdev (as with l2cache and spare devices), then we 2865 * update the vdev config manually and set the sync flag. 2866 */ 2867 if (vd->vdev_aux != NULL) { 2868 spa_aux_vdev_t *sav = vd->vdev_aux; 2869 nvlist_t **aux; 2870 uint_t naux; 2871 2872 for (c = 0; c < sav->sav_count; c++) { 2873 if (sav->sav_vdevs[c] == vd) 2874 break; 2875 } 2876 2877 if (c == sav->sav_count) { 2878 /* 2879 * We're being removed. There's nothing more to do. 2880 */ 2881 ASSERT(sav->sav_sync == B_TRUE); 2882 return; 2883 } 2884 2885 sav->sav_sync = B_TRUE; 2886 2887 if (nvlist_lookup_nvlist_array(sav->sav_config, 2888 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2889 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2890 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2891 } 2892 2893 ASSERT(c < naux); 2894 2895 /* 2896 * Setting the nvlist in the middle if the array is a little 2897 * sketchy, but it will work. 2898 */ 2899 nvlist_free(aux[c]); 2900 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 2901 2902 return; 2903 } 2904 2905 /* 2906 * The dirty list is protected by the SCL_CONFIG lock. The caller 2907 * must either hold SCL_CONFIG as writer, or must be the sync thread 2908 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2909 * so this is sufficient to ensure mutual exclusion. 2910 */ 2911 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2912 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2913 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2914 2915 if (vd == rvd) { 2916 for (c = 0; c < rvd->vdev_children; c++) 2917 vdev_config_dirty(rvd->vdev_child[c]); 2918 } else { 2919 ASSERT(vd == vd->vdev_top); 2920 2921 if (!list_link_active(&vd->vdev_config_dirty_node) && 2922 !vd->vdev_ishole) 2923 list_insert_head(&spa->spa_config_dirty_list, vd); 2924 } 2925 } 2926 2927 void 2928 vdev_config_clean(vdev_t *vd) 2929 { 2930 spa_t *spa = vd->vdev_spa; 2931 2932 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2933 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2934 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2935 2936 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2937 list_remove(&spa->spa_config_dirty_list, vd); 2938 } 2939 2940 /* 2941 * Mark a top-level vdev's state as dirty, so that the next pass of 2942 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2943 * the state changes from larger config changes because they require 2944 * much less locking, and are often needed for administrative actions. 2945 */ 2946 void 2947 vdev_state_dirty(vdev_t *vd) 2948 { 2949 spa_t *spa = vd->vdev_spa; 2950 2951 ASSERT(spa_writeable(spa)); 2952 ASSERT(vd == vd->vdev_top); 2953 2954 /* 2955 * The state list is protected by the SCL_STATE lock. The caller 2956 * must either hold SCL_STATE as writer, or must be the sync thread 2957 * (which holds SCL_STATE as reader). There's only one sync thread, 2958 * so this is sufficient to ensure mutual exclusion. 2959 */ 2960 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2961 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2962 spa_config_held(spa, SCL_STATE, RW_READER))); 2963 2964 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 2965 list_insert_head(&spa->spa_state_dirty_list, vd); 2966 } 2967 2968 void 2969 vdev_state_clean(vdev_t *vd) 2970 { 2971 spa_t *spa = vd->vdev_spa; 2972 2973 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2974 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2975 spa_config_held(spa, SCL_STATE, RW_READER))); 2976 2977 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2978 list_remove(&spa->spa_state_dirty_list, vd); 2979 } 2980 2981 /* 2982 * Propagate vdev state up from children to parent. 2983 */ 2984 void 2985 vdev_propagate_state(vdev_t *vd) 2986 { 2987 spa_t *spa = vd->vdev_spa; 2988 vdev_t *rvd = spa->spa_root_vdev; 2989 int degraded = 0, faulted = 0; 2990 int corrupted = 0; 2991 vdev_t *child; 2992 2993 if (vd->vdev_children > 0) { 2994 for (int c = 0; c < vd->vdev_children; c++) { 2995 child = vd->vdev_child[c]; 2996 2997 /* 2998 * Don't factor holes into the decision. 2999 */ 3000 if (child->vdev_ishole) 3001 continue; 3002 3003 if (!vdev_readable(child) || 3004 (!vdev_writeable(child) && spa_writeable(spa))) { 3005 /* 3006 * Root special: if there is a top-level log 3007 * device, treat the root vdev as if it were 3008 * degraded. 3009 */ 3010 if (child->vdev_islog && vd == rvd) 3011 degraded++; 3012 else 3013 faulted++; 3014 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 3015 degraded++; 3016 } 3017 3018 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 3019 corrupted++; 3020 } 3021 3022 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 3023 3024 /* 3025 * Root special: if there is a top-level vdev that cannot be 3026 * opened due to corrupted metadata, then propagate the root 3027 * vdev's aux state as 'corrupt' rather than 'insufficient 3028 * replicas'. 3029 */ 3030 if (corrupted && vd == rvd && 3031 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 3032 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 3033 VDEV_AUX_CORRUPT_DATA); 3034 } 3035 3036 if (vd->vdev_parent) 3037 vdev_propagate_state(vd->vdev_parent); 3038 } 3039 3040 /* 3041 * Set a vdev's state. If this is during an open, we don't update the parent 3042 * state, because we're in the process of opening children depth-first. 3043 * Otherwise, we propagate the change to the parent. 3044 * 3045 * If this routine places a device in a faulted state, an appropriate ereport is 3046 * generated. 3047 */ 3048 void 3049 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 3050 { 3051 uint64_t save_state; 3052 spa_t *spa = vd->vdev_spa; 3053 3054 if (state == vd->vdev_state) { 3055 vd->vdev_stat.vs_aux = aux; 3056 return; 3057 } 3058 3059 save_state = vd->vdev_state; 3060 3061 vd->vdev_state = state; 3062 vd->vdev_stat.vs_aux = aux; 3063 3064 /* 3065 * If we are setting the vdev state to anything but an open state, then 3066 * always close the underlying device unless the device has requested 3067 * a delayed close (i.e. we're about to remove or fault the device). 3068 * Otherwise, we keep accessible but invalid devices open forever. 3069 * We don't call vdev_close() itself, because that implies some extra 3070 * checks (offline, etc) that we don't want here. This is limited to 3071 * leaf devices, because otherwise closing the device will affect other 3072 * children. 3073 */ 3074 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 3075 vd->vdev_ops->vdev_op_leaf) 3076 vd->vdev_ops->vdev_op_close(vd); 3077 3078 /* 3079 * If we have brought this vdev back into service, we need 3080 * to notify fmd so that it can gracefully repair any outstanding 3081 * cases due to a missing device. We do this in all cases, even those 3082 * that probably don't correlate to a repaired fault. This is sure to 3083 * catch all cases, and we let the zfs-retire agent sort it out. If 3084 * this is a transient state it's OK, as the retire agent will 3085 * double-check the state of the vdev before repairing it. 3086 */ 3087 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 3088 vd->vdev_prevstate != state) 3089 zfs_post_state_change(spa, vd); 3090 3091 if (vd->vdev_removed && 3092 state == VDEV_STATE_CANT_OPEN && 3093 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 3094 /* 3095 * If the previous state is set to VDEV_STATE_REMOVED, then this 3096 * device was previously marked removed and someone attempted to 3097 * reopen it. If this failed due to a nonexistent device, then 3098 * keep the device in the REMOVED state. We also let this be if 3099 * it is one of our special test online cases, which is only 3100 * attempting to online the device and shouldn't generate an FMA 3101 * fault. 3102 */ 3103 vd->vdev_state = VDEV_STATE_REMOVED; 3104 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 3105 } else if (state == VDEV_STATE_REMOVED) { 3106 vd->vdev_removed = B_TRUE; 3107 } else if (state == VDEV_STATE_CANT_OPEN) { 3108 /* 3109 * If we fail to open a vdev during an import or recovery, we 3110 * mark it as "not available", which signifies that it was 3111 * never there to begin with. Failure to open such a device 3112 * is not considered an error. 3113 */ 3114 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 3115 spa_load_state(spa) == SPA_LOAD_RECOVER) && 3116 vd->vdev_ops->vdev_op_leaf) 3117 vd->vdev_not_present = 1; 3118 3119 /* 3120 * Post the appropriate ereport. If the 'prevstate' field is 3121 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3122 * that this is part of a vdev_reopen(). In this case, we don't 3123 * want to post the ereport if the device was already in the 3124 * CANT_OPEN state beforehand. 3125 * 3126 * If the 'checkremove' flag is set, then this is an attempt to 3127 * online the device in response to an insertion event. If we 3128 * hit this case, then we have detected an insertion event for a 3129 * faulted or offline device that wasn't in the removed state. 3130 * In this scenario, we don't post an ereport because we are 3131 * about to replace the device, or attempt an online with 3132 * vdev_forcefault, which will generate the fault for us. 3133 */ 3134 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3135 !vd->vdev_not_present && !vd->vdev_checkremove && 3136 vd != spa->spa_root_vdev) { 3137 const char *class; 3138 3139 switch (aux) { 3140 case VDEV_AUX_OPEN_FAILED: 3141 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3142 break; 3143 case VDEV_AUX_CORRUPT_DATA: 3144 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3145 break; 3146 case VDEV_AUX_NO_REPLICAS: 3147 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3148 break; 3149 case VDEV_AUX_BAD_GUID_SUM: 3150 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3151 break; 3152 case VDEV_AUX_TOO_SMALL: 3153 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3154 break; 3155 case VDEV_AUX_BAD_LABEL: 3156 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3157 break; 3158 default: 3159 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3160 } 3161 3162 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3163 } 3164 3165 /* Erase any notion of persistent removed state */ 3166 vd->vdev_removed = B_FALSE; 3167 } else { 3168 vd->vdev_removed = B_FALSE; 3169 } 3170 3171 if (!isopen && vd->vdev_parent) 3172 vdev_propagate_state(vd->vdev_parent); 3173 } 3174 3175 /* 3176 * Check the vdev configuration to ensure that it's capable of supporting 3177 * a root pool. Currently, we do not support RAID-Z or partial configuration. 3178 * In addition, only a single top-level vdev is allowed and none of the leaves 3179 * can be wholedisks. 3180 */ 3181 boolean_t 3182 vdev_is_bootable(vdev_t *vd) 3183 { 3184 if (!vd->vdev_ops->vdev_op_leaf) { 3185 char *vdev_type = vd->vdev_ops->vdev_op_type; 3186 3187 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3188 vd->vdev_children > 1) { 3189 return (B_FALSE); 3190 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 3191 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3192 return (B_FALSE); 3193 } 3194 } else if (vd->vdev_wholedisk == 1) { 3195 return (B_FALSE); 3196 } 3197 3198 for (int c = 0; c < vd->vdev_children; c++) { 3199 if (!vdev_is_bootable(vd->vdev_child[c])) 3200 return (B_FALSE); 3201 } 3202 return (B_TRUE); 3203 } 3204 3205 /* 3206 * Load the state from the original vdev tree (ovd) which 3207 * we've retrieved from the MOS config object. If the original 3208 * vdev was offline or faulted then we transfer that state to the 3209 * device in the current vdev tree (nvd). 3210 */ 3211 void 3212 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3213 { 3214 spa_t *spa = nvd->vdev_spa; 3215 3216 ASSERT(nvd->vdev_top->vdev_islog); 3217 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3218 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3219 3220 for (int c = 0; c < nvd->vdev_children; c++) 3221 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3222 3223 if (nvd->vdev_ops->vdev_op_leaf) { 3224 /* 3225 * Restore the persistent vdev state 3226 */ 3227 nvd->vdev_offline = ovd->vdev_offline; 3228 nvd->vdev_faulted = ovd->vdev_faulted; 3229 nvd->vdev_degraded = ovd->vdev_degraded; 3230 nvd->vdev_removed = ovd->vdev_removed; 3231 } 3232 } 3233 3234 /* 3235 * Determine if a log device has valid content. If the vdev was 3236 * removed or faulted in the MOS config then we know that 3237 * the content on the log device has already been written to the pool. 3238 */ 3239 boolean_t 3240 vdev_log_state_valid(vdev_t *vd) 3241 { 3242 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3243 !vd->vdev_removed) 3244 return (B_TRUE); 3245 3246 for (int c = 0; c < vd->vdev_children; c++) 3247 if (vdev_log_state_valid(vd->vdev_child[c])) 3248 return (B_TRUE); 3249 3250 return (B_FALSE); 3251 } 3252 3253 /* 3254 * Expand a vdev if possible. 3255 */ 3256 void 3257 vdev_expand(vdev_t *vd, uint64_t txg) 3258 { 3259 ASSERT(vd->vdev_top == vd); 3260 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3261 3262 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3263 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3264 vdev_config_dirty(vd); 3265 } 3266 } 3267 3268 /* 3269 * Split a vdev. 3270 */ 3271 void 3272 vdev_split(vdev_t *vd) 3273 { 3274 vdev_t *cvd, *pvd = vd->vdev_parent; 3275 3276 vdev_remove_child(pvd, vd); 3277 vdev_compact_children(pvd); 3278 3279 cvd = pvd->vdev_child[0]; 3280 if (pvd->vdev_children == 1) { 3281 vdev_remove_parent(cvd); 3282 cvd->vdev_splitting = B_TRUE; 3283 } 3284 vdev_propagate_state(cvd); 3285 } 3286 3287 void 3288 vdev_deadman(vdev_t *vd) 3289 { 3290 for (int c = 0; c < vd->vdev_children; c++) { 3291 vdev_t *cvd = vd->vdev_child[c]; 3292 3293 vdev_deadman(cvd); 3294 } 3295 3296 if (vd->vdev_ops->vdev_op_leaf) { 3297 vdev_queue_t *vq = &vd->vdev_queue; 3298 3299 mutex_enter(&vq->vq_lock); 3300 if (avl_numnodes(&vq->vq_active_tree) > 0) { 3301 spa_t *spa = vd->vdev_spa; 3302 zio_t *fio; 3303 uint64_t delta; 3304 3305 /* 3306 * Look at the head of all the pending queues, 3307 * if any I/O has been outstanding for longer than 3308 * the spa_deadman_synctime we panic the system. 3309 */ 3310 fio = avl_first(&vq->vq_active_tree); 3311 delta = gethrtime() - fio->io_timestamp; 3312 if (delta > spa_deadman_synctime(spa)) { 3313 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3314 "delta %lluns, last io %lluns", 3315 fio->io_timestamp, delta, 3316 vq->vq_io_complete_ts); 3317 fm_panic("I/O to pool '%s' appears to be " 3318 "hung.", spa_name(spa)); 3319 } 3320 } 3321 mutex_exit(&vq->vq_lock); 3322 } 3323 }