1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/space_reftree.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46
47 /*
48 * Virtual device management.
49 */
50
51 static vdev_ops_t *vdev_ops_table[] = {
52 &vdev_root_ops,
53 &vdev_raidz_ops,
54 &vdev_mirror_ops,
55 &vdev_replacing_ops,
56 &vdev_spare_ops,
57 &vdev_disk_ops,
58 &vdev_file_ops,
59 &vdev_missing_ops,
60 &vdev_hole_ops,
61 NULL
62 };
63
64 /* maximum scrub/resilver I/O queue per leaf vdev */
65 int zfs_scrub_limit = 10;
66
67 /*
68 * Given a vdev type, return the appropriate ops vector.
69 */
70 static vdev_ops_t *
71 vdev_getops(const char *type)
72 {
73 vdev_ops_t *ops, **opspp;
74
75 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
76 if (strcmp(ops->vdev_op_type, type) == 0)
77 break;
78
79 return (ops);
80 }
81
82 /*
83 * Default asize function: return the MAX of psize with the asize of
84 * all children. This is what's used by anything other than RAID-Z.
85 */
86 uint64_t
87 vdev_default_asize(vdev_t *vd, uint64_t psize)
88 {
89 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
90 uint64_t csize;
91
92 for (int c = 0; c < vd->vdev_children; c++) {
93 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
94 asize = MAX(asize, csize);
95 }
96
97 return (asize);
98 }
99
100 /*
101 * Get the minimum allocatable size. We define the allocatable size as
102 * the vdev's asize rounded to the nearest metaslab. This allows us to
103 * replace or attach devices which don't have the same physical size but
104 * can still satisfy the same number of allocations.
105 */
106 uint64_t
107 vdev_get_min_asize(vdev_t *vd)
108 {
109 vdev_t *pvd = vd->vdev_parent;
110
111 /*
112 * If our parent is NULL (inactive spare or cache) or is the root,
113 * just return our own asize.
114 */
115 if (pvd == NULL)
116 return (vd->vdev_asize);
117
118 /*
119 * The top-level vdev just returns the allocatable size rounded
120 * to the nearest metaslab.
121 */
122 if (vd == vd->vdev_top)
123 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
124
125 /*
126 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
127 * so each child must provide at least 1/Nth of its asize.
128 */
129 if (pvd->vdev_ops == &vdev_raidz_ops)
130 return (pvd->vdev_min_asize / pvd->vdev_children);
131
132 return (pvd->vdev_min_asize);
133 }
134
135 void
136 vdev_set_min_asize(vdev_t *vd)
137 {
138 vd->vdev_min_asize = vdev_get_min_asize(vd);
139
140 for (int c = 0; c < vd->vdev_children; c++)
141 vdev_set_min_asize(vd->vdev_child[c]);
142 }
143
144 vdev_t *
145 vdev_lookup_top(spa_t *spa, uint64_t vdev)
146 {
147 vdev_t *rvd = spa->spa_root_vdev;
148
149 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
150
151 if (vdev < rvd->vdev_children) {
152 ASSERT(rvd->vdev_child[vdev] != NULL);
153 return (rvd->vdev_child[vdev]);
154 }
155
156 return (NULL);
157 }
158
159 vdev_t *
160 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
161 {
162 vdev_t *mvd;
163
164 if (vd->vdev_guid == guid)
165 return (vd);
166
167 for (int c = 0; c < vd->vdev_children; c++)
168 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
169 NULL)
170 return (mvd);
171
172 return (NULL);
173 }
174
175 void
176 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
177 {
178 size_t oldsize, newsize;
179 uint64_t id = cvd->vdev_id;
180 vdev_t **newchild;
181
182 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
183 ASSERT(cvd->vdev_parent == NULL);
184
185 cvd->vdev_parent = pvd;
186
187 if (pvd == NULL)
188 return;
189
190 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
191
192 oldsize = pvd->vdev_children * sizeof (vdev_t *);
193 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
194 newsize = pvd->vdev_children * sizeof (vdev_t *);
195
196 newchild = kmem_zalloc(newsize, KM_SLEEP);
197 if (pvd->vdev_child != NULL) {
198 bcopy(pvd->vdev_child, newchild, oldsize);
199 kmem_free(pvd->vdev_child, oldsize);
200 }
201
202 pvd->vdev_child = newchild;
203 pvd->vdev_child[id] = cvd;
204
205 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
206 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
207
208 /*
209 * Walk up all ancestors to update guid sum.
210 */
211 for (; pvd != NULL; pvd = pvd->vdev_parent)
212 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
213 }
214
215 void
216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217 {
218 int c;
219 uint_t id = cvd->vdev_id;
220
221 ASSERT(cvd->vdev_parent == pvd);
222
223 if (pvd == NULL)
224 return;
225
226 ASSERT(id < pvd->vdev_children);
227 ASSERT(pvd->vdev_child[id] == cvd);
228
229 pvd->vdev_child[id] = NULL;
230 cvd->vdev_parent = NULL;
231
232 for (c = 0; c < pvd->vdev_children; c++)
233 if (pvd->vdev_child[c])
234 break;
235
236 if (c == pvd->vdev_children) {
237 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
238 pvd->vdev_child = NULL;
239 pvd->vdev_children = 0;
240 }
241
242 /*
243 * Walk up all ancestors to update guid sum.
244 */
245 for (; pvd != NULL; pvd = pvd->vdev_parent)
246 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
247 }
248
249 /*
250 * Remove any holes in the child array.
251 */
252 void
253 vdev_compact_children(vdev_t *pvd)
254 {
255 vdev_t **newchild, *cvd;
256 int oldc = pvd->vdev_children;
257 int newc;
258
259 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
260
261 for (int c = newc = 0; c < oldc; c++)
262 if (pvd->vdev_child[c])
263 newc++;
264
265 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
266
267 for (int c = newc = 0; c < oldc; c++) {
268 if ((cvd = pvd->vdev_child[c]) != NULL) {
269 newchild[newc] = cvd;
270 cvd->vdev_id = newc++;
271 }
272 }
273
274 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
275 pvd->vdev_child = newchild;
276 pvd->vdev_children = newc;
277 }
278
279 /*
280 * Allocate and minimally initialize a vdev_t.
281 */
282 vdev_t *
283 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
284 {
285 vdev_t *vd;
286
287 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
288
289 if (spa->spa_root_vdev == NULL) {
290 ASSERT(ops == &vdev_root_ops);
291 spa->spa_root_vdev = vd;
292 spa->spa_load_guid = spa_generate_guid(NULL);
293 }
294
295 if (guid == 0 && ops != &vdev_hole_ops) {
296 if (spa->spa_root_vdev == vd) {
297 /*
298 * The root vdev's guid will also be the pool guid,
299 * which must be unique among all pools.
300 */
301 guid = spa_generate_guid(NULL);
302 } else {
303 /*
304 * Any other vdev's guid must be unique within the pool.
305 */
306 guid = spa_generate_guid(spa);
307 }
308 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
309 }
310
311 vd->vdev_spa = spa;
312 vd->vdev_id = id;
313 vd->vdev_guid = guid;
314 vd->vdev_guid_sum = guid;
315 vd->vdev_ops = ops;
316 vd->vdev_state = VDEV_STATE_CLOSED;
317 vd->vdev_ishole = (ops == &vdev_hole_ops);
318
319 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
320 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
321 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
322 for (int t = 0; t < DTL_TYPES; t++) {
323 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
324 &vd->vdev_dtl_lock);
325 }
326 txg_list_create(&vd->vdev_ms_list,
327 offsetof(struct metaslab, ms_txg_node));
328 txg_list_create(&vd->vdev_dtl_list,
329 offsetof(struct vdev, vdev_dtl_node));
330 vd->vdev_stat.vs_timestamp = gethrtime();
331 vdev_queue_init(vd);
332 vdev_cache_init(vd);
333
334 return (vd);
335 }
336
337 /*
338 * Allocate a new vdev. The 'alloctype' is used to control whether we are
339 * creating a new vdev or loading an existing one - the behavior is slightly
340 * different for each case.
341 */
342 int
343 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
344 int alloctype)
345 {
346 vdev_ops_t *ops;
347 char *type;
348 uint64_t guid = 0, islog, nparity;
349 vdev_t *vd;
350
351 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
352
353 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
354 return (SET_ERROR(EINVAL));
355
356 if ((ops = vdev_getops(type)) == NULL)
357 return (SET_ERROR(EINVAL));
358
359 /*
360 * If this is a load, get the vdev guid from the nvlist.
361 * Otherwise, vdev_alloc_common() will generate one for us.
362 */
363 if (alloctype == VDEV_ALLOC_LOAD) {
364 uint64_t label_id;
365
366 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
367 label_id != id)
368 return (SET_ERROR(EINVAL));
369
370 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
371 return (SET_ERROR(EINVAL));
372 } else if (alloctype == VDEV_ALLOC_SPARE) {
373 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
374 return (SET_ERROR(EINVAL));
375 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
376 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377 return (SET_ERROR(EINVAL));
378 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
379 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380 return (SET_ERROR(EINVAL));
381 }
382
383 /*
384 * The first allocated vdev must be of type 'root'.
385 */
386 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
387 return (SET_ERROR(EINVAL));
388
389 /*
390 * Determine whether we're a log vdev.
391 */
392 islog = 0;
393 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
394 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
395 return (SET_ERROR(ENOTSUP));
396
397 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
398 return (SET_ERROR(ENOTSUP));
399
400 /*
401 * Set the nparity property for RAID-Z vdevs.
402 */
403 nparity = -1ULL;
404 if (ops == &vdev_raidz_ops) {
405 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
406 &nparity) == 0) {
407 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
408 return (SET_ERROR(EINVAL));
409 /*
410 * Previous versions could only support 1 or 2 parity
411 * device.
412 */
413 if (nparity > 1 &&
414 spa_version(spa) < SPA_VERSION_RAIDZ2)
415 return (SET_ERROR(ENOTSUP));
416 if (nparity > 2 &&
417 spa_version(spa) < SPA_VERSION_RAIDZ3)
418 return (SET_ERROR(ENOTSUP));
419 } else {
420 /*
421 * We require the parity to be specified for SPAs that
422 * support multiple parity levels.
423 */
424 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
425 return (SET_ERROR(EINVAL));
426 /*
427 * Otherwise, we default to 1 parity device for RAID-Z.
428 */
429 nparity = 1;
430 }
431 } else {
432 nparity = 0;
433 }
434 ASSERT(nparity != -1ULL);
435
436 vd = vdev_alloc_common(spa, id, guid, ops);
437
438 vd->vdev_islog = islog;
439 vd->vdev_nparity = nparity;
440
441 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
442 vd->vdev_path = spa_strdup(vd->vdev_path);
443 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
444 vd->vdev_devid = spa_strdup(vd->vdev_devid);
445 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
446 &vd->vdev_physpath) == 0)
447 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
448 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
449 vd->vdev_fru = spa_strdup(vd->vdev_fru);
450
451 /*
452 * Set the whole_disk property. If it's not specified, leave the value
453 * as -1.
454 */
455 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
456 &vd->vdev_wholedisk) != 0)
457 vd->vdev_wholedisk = -1ULL;
458
459 /*
460 * Look for the 'not present' flag. This will only be set if the device
461 * was not present at the time of import.
462 */
463 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
464 &vd->vdev_not_present);
465
466 /*
467 * Get the alignment requirement.
468 */
469 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
470
471 /*
472 * Retrieve the vdev creation time.
473 */
474 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
475 &vd->vdev_crtxg);
476
477 /*
478 * If we're a top-level vdev, try to load the allocation parameters.
479 */
480 if (parent && !parent->vdev_parent &&
481 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
482 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
483 &vd->vdev_ms_array);
484 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
485 &vd->vdev_ms_shift);
486 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
487 &vd->vdev_asize);
488 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
489 &vd->vdev_removing);
490 }
491
492 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
493 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
494 alloctype == VDEV_ALLOC_ADD ||
495 alloctype == VDEV_ALLOC_SPLIT ||
496 alloctype == VDEV_ALLOC_ROOTPOOL);
497 vd->vdev_mg = metaslab_group_create(islog ?
498 spa_log_class(spa) : spa_normal_class(spa), vd);
499 }
500
501 /*
502 * If we're a leaf vdev, try to load the DTL object and other state.
503 */
504 if (vd->vdev_ops->vdev_op_leaf &&
505 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
506 alloctype == VDEV_ALLOC_ROOTPOOL)) {
507 if (alloctype == VDEV_ALLOC_LOAD) {
508 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
509 &vd->vdev_dtl_object);
510 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
511 &vd->vdev_unspare);
512 }
513
514 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
515 uint64_t spare = 0;
516
517 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
518 &spare) == 0 && spare)
519 spa_spare_add(vd);
520 }
521
522 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
523 &vd->vdev_offline);
524
525 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
526 &vd->vdev_resilver_txg);
527
528 /*
529 * When importing a pool, we want to ignore the persistent fault
530 * state, as the diagnosis made on another system may not be
531 * valid in the current context. Local vdevs will
532 * remain in the faulted state.
533 */
534 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
535 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
536 &vd->vdev_faulted);
537 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
538 &vd->vdev_degraded);
539 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
540 &vd->vdev_removed);
541
542 if (vd->vdev_faulted || vd->vdev_degraded) {
543 char *aux;
544
545 vd->vdev_label_aux =
546 VDEV_AUX_ERR_EXCEEDED;
547 if (nvlist_lookup_string(nv,
548 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
549 strcmp(aux, "external") == 0)
550 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
551 }
552 }
553 }
554
555 /*
556 * Add ourselves to the parent's list of children.
557 */
558 vdev_add_child(parent, vd);
559
560 *vdp = vd;
561
562 return (0);
563 }
564
565 void
566 vdev_free(vdev_t *vd)
567 {
568 spa_t *spa = vd->vdev_spa;
569
570 /*
571 * vdev_free() implies closing the vdev first. This is simpler than
572 * trying to ensure complicated semantics for all callers.
573 */
574 vdev_close(vd);
575
576 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
577 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
578
579 /*
580 * Free all children.
581 */
582 for (int c = 0; c < vd->vdev_children; c++)
583 vdev_free(vd->vdev_child[c]);
584
585 ASSERT(vd->vdev_child == NULL);
586 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
587
588 /*
589 * Discard allocation state.
590 */
591 if (vd->vdev_mg != NULL) {
592 vdev_metaslab_fini(vd);
593 metaslab_group_destroy(vd->vdev_mg);
594 }
595
596 ASSERT0(vd->vdev_stat.vs_space);
597 ASSERT0(vd->vdev_stat.vs_dspace);
598 ASSERT0(vd->vdev_stat.vs_alloc);
599
600 /*
601 * Remove this vdev from its parent's child list.
602 */
603 vdev_remove_child(vd->vdev_parent, vd);
604
605 ASSERT(vd->vdev_parent == NULL);
606
607 /*
608 * Clean up vdev structure.
609 */
610 vdev_queue_fini(vd);
611 vdev_cache_fini(vd);
612
613 if (vd->vdev_path)
614 spa_strfree(vd->vdev_path);
615 if (vd->vdev_devid)
616 spa_strfree(vd->vdev_devid);
617 if (vd->vdev_physpath)
618 spa_strfree(vd->vdev_physpath);
619 if (vd->vdev_fru)
620 spa_strfree(vd->vdev_fru);
621
622 if (vd->vdev_isspare)
623 spa_spare_remove(vd);
624 if (vd->vdev_isl2cache)
625 spa_l2cache_remove(vd);
626
627 txg_list_destroy(&vd->vdev_ms_list);
628 txg_list_destroy(&vd->vdev_dtl_list);
629
630 mutex_enter(&vd->vdev_dtl_lock);
631 space_map_close(vd->vdev_dtl_sm);
632 for (int t = 0; t < DTL_TYPES; t++) {
633 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
634 range_tree_destroy(vd->vdev_dtl[t]);
635 }
636 mutex_exit(&vd->vdev_dtl_lock);
637
638 mutex_destroy(&vd->vdev_dtl_lock);
639 mutex_destroy(&vd->vdev_stat_lock);
640 mutex_destroy(&vd->vdev_probe_lock);
641
642 if (vd == spa->spa_root_vdev)
643 spa->spa_root_vdev = NULL;
644
645 kmem_free(vd, sizeof (vdev_t));
646 }
647
648 /*
649 * Transfer top-level vdev state from svd to tvd.
650 */
651 static void
652 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
653 {
654 spa_t *spa = svd->vdev_spa;
655 metaslab_t *msp;
656 vdev_t *vd;
657 int t;
658
659 ASSERT(tvd == tvd->vdev_top);
660
661 tvd->vdev_ms_array = svd->vdev_ms_array;
662 tvd->vdev_ms_shift = svd->vdev_ms_shift;
663 tvd->vdev_ms_count = svd->vdev_ms_count;
664
665 svd->vdev_ms_array = 0;
666 svd->vdev_ms_shift = 0;
667 svd->vdev_ms_count = 0;
668
669 if (tvd->vdev_mg)
670 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
671 tvd->vdev_mg = svd->vdev_mg;
672 tvd->vdev_ms = svd->vdev_ms;
673
674 svd->vdev_mg = NULL;
675 svd->vdev_ms = NULL;
676
677 if (tvd->vdev_mg != NULL)
678 tvd->vdev_mg->mg_vd = tvd;
679
680 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
681 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
682 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
683
684 svd->vdev_stat.vs_alloc = 0;
685 svd->vdev_stat.vs_space = 0;
686 svd->vdev_stat.vs_dspace = 0;
687
688 for (t = 0; t < TXG_SIZE; t++) {
689 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
690 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
691 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
692 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
693 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
694 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
695 }
696
697 if (list_link_active(&svd->vdev_config_dirty_node)) {
698 vdev_config_clean(svd);
699 vdev_config_dirty(tvd);
700 }
701
702 if (list_link_active(&svd->vdev_state_dirty_node)) {
703 vdev_state_clean(svd);
704 vdev_state_dirty(tvd);
705 }
706
707 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
708 svd->vdev_deflate_ratio = 0;
709
710 tvd->vdev_islog = svd->vdev_islog;
711 svd->vdev_islog = 0;
712 }
713
714 static void
715 vdev_top_update(vdev_t *tvd, vdev_t *vd)
716 {
717 if (vd == NULL)
718 return;
719
720 vd->vdev_top = tvd;
721
722 for (int c = 0; c < vd->vdev_children; c++)
723 vdev_top_update(tvd, vd->vdev_child[c]);
724 }
725
726 /*
727 * Add a mirror/replacing vdev above an existing vdev.
728 */
729 vdev_t *
730 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
731 {
732 spa_t *spa = cvd->vdev_spa;
733 vdev_t *pvd = cvd->vdev_parent;
734 vdev_t *mvd;
735
736 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
737
738 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
739
740 mvd->vdev_asize = cvd->vdev_asize;
741 mvd->vdev_min_asize = cvd->vdev_min_asize;
742 mvd->vdev_max_asize = cvd->vdev_max_asize;
743 mvd->vdev_ashift = cvd->vdev_ashift;
744 mvd->vdev_state = cvd->vdev_state;
745 mvd->vdev_crtxg = cvd->vdev_crtxg;
746
747 vdev_remove_child(pvd, cvd);
748 vdev_add_child(pvd, mvd);
749 cvd->vdev_id = mvd->vdev_children;
750 vdev_add_child(mvd, cvd);
751 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
752
753 if (mvd == mvd->vdev_top)
754 vdev_top_transfer(cvd, mvd);
755
756 return (mvd);
757 }
758
759 /*
760 * Remove a 1-way mirror/replacing vdev from the tree.
761 */
762 void
763 vdev_remove_parent(vdev_t *cvd)
764 {
765 vdev_t *mvd = cvd->vdev_parent;
766 vdev_t *pvd = mvd->vdev_parent;
767
768 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
769
770 ASSERT(mvd->vdev_children == 1);
771 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
772 mvd->vdev_ops == &vdev_replacing_ops ||
773 mvd->vdev_ops == &vdev_spare_ops);
774 cvd->vdev_ashift = mvd->vdev_ashift;
775
776 vdev_remove_child(mvd, cvd);
777 vdev_remove_child(pvd, mvd);
778
779 /*
780 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
781 * Otherwise, we could have detached an offline device, and when we
782 * go to import the pool we'll think we have two top-level vdevs,
783 * instead of a different version of the same top-level vdev.
784 */
785 if (mvd->vdev_top == mvd) {
786 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
787 cvd->vdev_orig_guid = cvd->vdev_guid;
788 cvd->vdev_guid += guid_delta;
789 cvd->vdev_guid_sum += guid_delta;
790 }
791 cvd->vdev_id = mvd->vdev_id;
792 vdev_add_child(pvd, cvd);
793 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
794
795 if (cvd == cvd->vdev_top)
796 vdev_top_transfer(mvd, cvd);
797
798 ASSERT(mvd->vdev_children == 0);
799 vdev_free(mvd);
800 }
801
802 int
803 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
804 {
805 spa_t *spa = vd->vdev_spa;
806 objset_t *mos = spa->spa_meta_objset;
807 uint64_t m;
808 uint64_t oldc = vd->vdev_ms_count;
809 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
810 metaslab_t **mspp;
811 int error;
812
813 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
814
815 /*
816 * This vdev is not being allocated from yet or is a hole.
817 */
818 if (vd->vdev_ms_shift == 0)
819 return (0);
820
821 ASSERT(!vd->vdev_ishole);
822
823 /*
824 * Compute the raidz-deflation ratio. Note, we hard-code
825 * in 128k (1 << 17) because it is the current "typical" blocksize.
826 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
827 * or we will inconsistently account for existing bp's.
828 */
829 vd->vdev_deflate_ratio = (1 << 17) /
830 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
831
832 ASSERT(oldc <= newc);
833
834 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
835
836 if (oldc != 0) {
837 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
838 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
839 }
840
841 vd->vdev_ms = mspp;
842 vd->vdev_ms_count = newc;
843
844 for (m = oldc; m < newc; m++) {
845 uint64_t object = 0;
846
847 if (txg == 0) {
848 error = dmu_read(mos, vd->vdev_ms_array,
849 m * sizeof (uint64_t), sizeof (uint64_t), &object,
850 DMU_READ_PREFETCH);
851 if (error)
852 return (error);
853 }
854 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, m, object, txg);
855 }
856
857 if (txg == 0)
858 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
859
860 /*
861 * If the vdev is being removed we don't activate
862 * the metaslabs since we want to ensure that no new
863 * allocations are performed on this device.
864 */
865 if (oldc == 0 && !vd->vdev_removing)
866 metaslab_group_activate(vd->vdev_mg);
867
868 if (txg == 0)
869 spa_config_exit(spa, SCL_ALLOC, FTAG);
870
871 return (0);
872 }
873
874 void
875 vdev_metaslab_fini(vdev_t *vd)
876 {
877 uint64_t m;
878 uint64_t count = vd->vdev_ms_count;
879
880 if (vd->vdev_ms != NULL) {
881 metaslab_group_passivate(vd->vdev_mg);
882 for (m = 0; m < count; m++) {
883 metaslab_t *msp = vd->vdev_ms[m];
884
885 if (msp != NULL)
886 metaslab_fini(msp);
887 }
888 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
889 vd->vdev_ms = NULL;
890 }
891 }
892
893 typedef struct vdev_probe_stats {
894 boolean_t vps_readable;
895 boolean_t vps_writeable;
896 int vps_flags;
897 } vdev_probe_stats_t;
898
899 static void
900 vdev_probe_done(zio_t *zio)
901 {
902 spa_t *spa = zio->io_spa;
903 vdev_t *vd = zio->io_vd;
904 vdev_probe_stats_t *vps = zio->io_private;
905
906 ASSERT(vd->vdev_probe_zio != NULL);
907
908 if (zio->io_type == ZIO_TYPE_READ) {
909 if (zio->io_error == 0)
910 vps->vps_readable = 1;
911 if (zio->io_error == 0 && spa_writeable(spa)) {
912 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
913 zio->io_offset, zio->io_size, zio->io_data,
914 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
915 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
916 } else {
917 zio_buf_free(zio->io_data, zio->io_size);
918 }
919 } else if (zio->io_type == ZIO_TYPE_WRITE) {
920 if (zio->io_error == 0)
921 vps->vps_writeable = 1;
922 zio_buf_free(zio->io_data, zio->io_size);
923 } else if (zio->io_type == ZIO_TYPE_NULL) {
924 zio_t *pio;
925
926 vd->vdev_cant_read |= !vps->vps_readable;
927 vd->vdev_cant_write |= !vps->vps_writeable;
928
929 if (vdev_readable(vd) &&
930 (vdev_writeable(vd) || !spa_writeable(spa))) {
931 zio->io_error = 0;
932 } else {
933 ASSERT(zio->io_error != 0);
934 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
935 spa, vd, NULL, 0, 0);
936 zio->io_error = SET_ERROR(ENXIO);
937 }
938
939 mutex_enter(&vd->vdev_probe_lock);
940 ASSERT(vd->vdev_probe_zio == zio);
941 vd->vdev_probe_zio = NULL;
942 mutex_exit(&vd->vdev_probe_lock);
943
944 while ((pio = zio_walk_parents(zio)) != NULL)
945 if (!vdev_accessible(vd, pio))
946 pio->io_error = SET_ERROR(ENXIO);
947
948 kmem_free(vps, sizeof (*vps));
949 }
950 }
951
952 /*
953 * Determine whether this device is accessible.
954 *
955 * Read and write to several known locations: the pad regions of each
956 * vdev label but the first, which we leave alone in case it contains
957 * a VTOC.
958 */
959 zio_t *
960 vdev_probe(vdev_t *vd, zio_t *zio)
961 {
962 spa_t *spa = vd->vdev_spa;
963 vdev_probe_stats_t *vps = NULL;
964 zio_t *pio;
965
966 ASSERT(vd->vdev_ops->vdev_op_leaf);
967
968 /*
969 * Don't probe the probe.
970 */
971 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
972 return (NULL);
973
974 /*
975 * To prevent 'probe storms' when a device fails, we create
976 * just one probe i/o at a time. All zios that want to probe
977 * this vdev will become parents of the probe io.
978 */
979 mutex_enter(&vd->vdev_probe_lock);
980
981 if ((pio = vd->vdev_probe_zio) == NULL) {
982 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
983
984 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
985 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
986 ZIO_FLAG_TRYHARD;
987
988 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
989 /*
990 * vdev_cant_read and vdev_cant_write can only
991 * transition from TRUE to FALSE when we have the
992 * SCL_ZIO lock as writer; otherwise they can only
993 * transition from FALSE to TRUE. This ensures that
994 * any zio looking at these values can assume that
995 * failures persist for the life of the I/O. That's
996 * important because when a device has intermittent
997 * connectivity problems, we want to ensure that
998 * they're ascribed to the device (ENXIO) and not
999 * the zio (EIO).
1000 *
1001 * Since we hold SCL_ZIO as writer here, clear both
1002 * values so the probe can reevaluate from first
1003 * principles.
1004 */
1005 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1006 vd->vdev_cant_read = B_FALSE;
1007 vd->vdev_cant_write = B_FALSE;
1008 }
1009
1010 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1011 vdev_probe_done, vps,
1012 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1013
1014 /*
1015 * We can't change the vdev state in this context, so we
1016 * kick off an async task to do it on our behalf.
1017 */
1018 if (zio != NULL) {
1019 vd->vdev_probe_wanted = B_TRUE;
1020 spa_async_request(spa, SPA_ASYNC_PROBE);
1021 }
1022 }
1023
1024 if (zio != NULL)
1025 zio_add_child(zio, pio);
1026
1027 mutex_exit(&vd->vdev_probe_lock);
1028
1029 if (vps == NULL) {
1030 ASSERT(zio != NULL);
1031 return (NULL);
1032 }
1033
1034 for (int l = 1; l < VDEV_LABELS; l++) {
1035 zio_nowait(zio_read_phys(pio, vd,
1036 vdev_label_offset(vd->vdev_psize, l,
1037 offsetof(vdev_label_t, vl_pad2)),
1038 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1039 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1040 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1041 }
1042
1043 if (zio == NULL)
1044 return (pio);
1045
1046 zio_nowait(pio);
1047 return (NULL);
1048 }
1049
1050 static void
1051 vdev_open_child(void *arg)
1052 {
1053 vdev_t *vd = arg;
1054
1055 vd->vdev_open_thread = curthread;
1056 vd->vdev_open_error = vdev_open(vd);
1057 vd->vdev_open_thread = NULL;
1058 }
1059
1060 boolean_t
1061 vdev_uses_zvols(vdev_t *vd)
1062 {
1063 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1064 strlen(ZVOL_DIR)) == 0)
1065 return (B_TRUE);
1066 for (int c = 0; c < vd->vdev_children; c++)
1067 if (vdev_uses_zvols(vd->vdev_child[c]))
1068 return (B_TRUE);
1069 return (B_FALSE);
1070 }
1071
1072 void
1073 vdev_open_children(vdev_t *vd)
1074 {
1075 taskq_t *tq;
1076 int children = vd->vdev_children;
1077
1078 /*
1079 * in order to handle pools on top of zvols, do the opens
1080 * in a single thread so that the same thread holds the
1081 * spa_namespace_lock
1082 */
1083 if (vdev_uses_zvols(vd)) {
1084 for (int c = 0; c < children; c++)
1085 vd->vdev_child[c]->vdev_open_error =
1086 vdev_open(vd->vdev_child[c]);
1087 return;
1088 }
1089 tq = taskq_create("vdev_open", children, minclsyspri,
1090 children, children, TASKQ_PREPOPULATE);
1091
1092 for (int c = 0; c < children; c++)
1093 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1094 TQ_SLEEP) != NULL);
1095
1096 taskq_destroy(tq);
1097 }
1098
1099 /*
1100 * Prepare a virtual device for access.
1101 */
1102 int
1103 vdev_open(vdev_t *vd)
1104 {
1105 spa_t *spa = vd->vdev_spa;
1106 int error;
1107 uint64_t osize = 0;
1108 uint64_t max_osize = 0;
1109 uint64_t asize, max_asize, psize;
1110 uint64_t ashift = 0;
1111
1112 ASSERT(vd->vdev_open_thread == curthread ||
1113 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1114 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1115 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1116 vd->vdev_state == VDEV_STATE_OFFLINE);
1117
1118 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1119 vd->vdev_cant_read = B_FALSE;
1120 vd->vdev_cant_write = B_FALSE;
1121 vd->vdev_min_asize = vdev_get_min_asize(vd);
1122
1123 /*
1124 * If this vdev is not removed, check its fault status. If it's
1125 * faulted, bail out of the open.
1126 */
1127 if (!vd->vdev_removed && vd->vdev_faulted) {
1128 ASSERT(vd->vdev_children == 0);
1129 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1130 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1131 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1132 vd->vdev_label_aux);
1133 return (SET_ERROR(ENXIO));
1134 } else if (vd->vdev_offline) {
1135 ASSERT(vd->vdev_children == 0);
1136 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1137 return (SET_ERROR(ENXIO));
1138 }
1139
1140 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1141
1142 /*
1143 * Reset the vdev_reopening flag so that we actually close
1144 * the vdev on error.
1145 */
1146 vd->vdev_reopening = B_FALSE;
1147 if (zio_injection_enabled && error == 0)
1148 error = zio_handle_device_injection(vd, NULL, ENXIO);
1149
1150 if (error) {
1151 if (vd->vdev_removed &&
1152 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1153 vd->vdev_removed = B_FALSE;
1154
1155 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1156 vd->vdev_stat.vs_aux);
1157 return (error);
1158 }
1159
1160 vd->vdev_removed = B_FALSE;
1161
1162 /*
1163 * Recheck the faulted flag now that we have confirmed that
1164 * the vdev is accessible. If we're faulted, bail.
1165 */
1166 if (vd->vdev_faulted) {
1167 ASSERT(vd->vdev_children == 0);
1168 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1169 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1170 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1171 vd->vdev_label_aux);
1172 return (SET_ERROR(ENXIO));
1173 }
1174
1175 if (vd->vdev_degraded) {
1176 ASSERT(vd->vdev_children == 0);
1177 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1178 VDEV_AUX_ERR_EXCEEDED);
1179 } else {
1180 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1181 }
1182
1183 /*
1184 * For hole or missing vdevs we just return success.
1185 */
1186 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1187 return (0);
1188
1189 for (int c = 0; c < vd->vdev_children; c++) {
1190 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1191 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1192 VDEV_AUX_NONE);
1193 break;
1194 }
1195 }
1196
1197 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1198 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1199
1200 if (vd->vdev_children == 0) {
1201 if (osize < SPA_MINDEVSIZE) {
1202 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1203 VDEV_AUX_TOO_SMALL);
1204 return (SET_ERROR(EOVERFLOW));
1205 }
1206 psize = osize;
1207 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1208 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1209 VDEV_LABEL_END_SIZE);
1210 } else {
1211 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1212 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1213 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1214 VDEV_AUX_TOO_SMALL);
1215 return (SET_ERROR(EOVERFLOW));
1216 }
1217 psize = 0;
1218 asize = osize;
1219 max_asize = max_osize;
1220 }
1221
1222 vd->vdev_psize = psize;
1223
1224 /*
1225 * Make sure the allocatable size hasn't shrunk.
1226 */
1227 if (asize < vd->vdev_min_asize) {
1228 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1229 VDEV_AUX_BAD_LABEL);
1230 return (SET_ERROR(EINVAL));
1231 }
1232
1233 if (vd->vdev_asize == 0) {
1234 /*
1235 * This is the first-ever open, so use the computed values.
1236 * For testing purposes, a higher ashift can be requested.
1237 */
1238 vd->vdev_asize = asize;
1239 vd->vdev_max_asize = max_asize;
1240 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1241 } else {
1242 /*
1243 * Detect if the alignment requirement has increased.
1244 * We don't want to make the pool unavailable, just
1245 * issue a warning instead.
1246 */
1247 if (ashift > vd->vdev_top->vdev_ashift &&
1248 vd->vdev_ops->vdev_op_leaf) {
1249 cmn_err(CE_WARN,
1250 "Disk, '%s', has a block alignment that is "
1251 "larger than the pool's alignment\n",
1252 vd->vdev_path);
1253 }
1254 vd->vdev_max_asize = max_asize;
1255 }
1256
1257 /*
1258 * If all children are healthy and the asize has increased,
1259 * then we've experienced dynamic LUN growth. If automatic
1260 * expansion is enabled then use the additional space.
1261 */
1262 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1263 (vd->vdev_expanding || spa->spa_autoexpand))
1264 vd->vdev_asize = asize;
1265
1266 vdev_set_min_asize(vd);
1267
1268 /*
1269 * Ensure we can issue some IO before declaring the
1270 * vdev open for business.
1271 */
1272 if (vd->vdev_ops->vdev_op_leaf &&
1273 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1274 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1275 VDEV_AUX_ERR_EXCEEDED);
1276 return (error);
1277 }
1278
1279 /*
1280 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1281 * resilver. But don't do this if we are doing a reopen for a scrub,
1282 * since this would just restart the scrub we are already doing.
1283 */
1284 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1285 vdev_resilver_needed(vd, NULL, NULL))
1286 spa_async_request(spa, SPA_ASYNC_RESILVER);
1287
1288 return (0);
1289 }
1290
1291 /*
1292 * Called once the vdevs are all opened, this routine validates the label
1293 * contents. This needs to be done before vdev_load() so that we don't
1294 * inadvertently do repair I/Os to the wrong device.
1295 *
1296 * If 'strict' is false ignore the spa guid check. This is necessary because
1297 * if the machine crashed during a re-guid the new guid might have been written
1298 * to all of the vdev labels, but not the cached config. The strict check
1299 * will be performed when the pool is opened again using the mos config.
1300 *
1301 * This function will only return failure if one of the vdevs indicates that it
1302 * has since been destroyed or exported. This is only possible if
1303 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1304 * will be updated but the function will return 0.
1305 */
1306 int
1307 vdev_validate(vdev_t *vd, boolean_t strict)
1308 {
1309 spa_t *spa = vd->vdev_spa;
1310 nvlist_t *label;
1311 uint64_t guid = 0, top_guid;
1312 uint64_t state;
1313
1314 for (int c = 0; c < vd->vdev_children; c++)
1315 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1316 return (SET_ERROR(EBADF));
1317
1318 /*
1319 * If the device has already failed, or was marked offline, don't do
1320 * any further validation. Otherwise, label I/O will fail and we will
1321 * overwrite the previous state.
1322 */
1323 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1324 uint64_t aux_guid = 0;
1325 nvlist_t *nvl;
1326 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1327 spa_last_synced_txg(spa) : -1ULL;
1328
1329 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1330 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1331 VDEV_AUX_BAD_LABEL);
1332 return (0);
1333 }
1334
1335 /*
1336 * Determine if this vdev has been split off into another
1337 * pool. If so, then refuse to open it.
1338 */
1339 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1340 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1341 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1342 VDEV_AUX_SPLIT_POOL);
1343 nvlist_free(label);
1344 return (0);
1345 }
1346
1347 if (strict && (nvlist_lookup_uint64(label,
1348 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1349 guid != spa_guid(spa))) {
1350 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1351 VDEV_AUX_CORRUPT_DATA);
1352 nvlist_free(label);
1353 return (0);
1354 }
1355
1356 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1357 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1358 &aux_guid) != 0)
1359 aux_guid = 0;
1360
1361 /*
1362 * If this vdev just became a top-level vdev because its
1363 * sibling was detached, it will have adopted the parent's
1364 * vdev guid -- but the label may or may not be on disk yet.
1365 * Fortunately, either version of the label will have the
1366 * same top guid, so if we're a top-level vdev, we can
1367 * safely compare to that instead.
1368 *
1369 * If we split this vdev off instead, then we also check the
1370 * original pool's guid. We don't want to consider the vdev
1371 * corrupt if it is partway through a split operation.
1372 */
1373 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1374 &guid) != 0 ||
1375 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1376 &top_guid) != 0 ||
1377 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1378 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1379 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1380 VDEV_AUX_CORRUPT_DATA);
1381 nvlist_free(label);
1382 return (0);
1383 }
1384
1385 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1386 &state) != 0) {
1387 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1388 VDEV_AUX_CORRUPT_DATA);
1389 nvlist_free(label);
1390 return (0);
1391 }
1392
1393 nvlist_free(label);
1394
1395 /*
1396 * If this is a verbatim import, no need to check the
1397 * state of the pool.
1398 */
1399 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1400 spa_load_state(spa) == SPA_LOAD_OPEN &&
1401 state != POOL_STATE_ACTIVE)
1402 return (SET_ERROR(EBADF));
1403
1404 /*
1405 * If we were able to open and validate a vdev that was
1406 * previously marked permanently unavailable, clear that state
1407 * now.
1408 */
1409 if (vd->vdev_not_present)
1410 vd->vdev_not_present = 0;
1411 }
1412
1413 return (0);
1414 }
1415
1416 /*
1417 * Close a virtual device.
1418 */
1419 void
1420 vdev_close(vdev_t *vd)
1421 {
1422 spa_t *spa = vd->vdev_spa;
1423 vdev_t *pvd = vd->vdev_parent;
1424
1425 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1426
1427 /*
1428 * If our parent is reopening, then we are as well, unless we are
1429 * going offline.
1430 */
1431 if (pvd != NULL && pvd->vdev_reopening)
1432 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1433
1434 vd->vdev_ops->vdev_op_close(vd);
1435
1436 vdev_cache_purge(vd);
1437
1438 /*
1439 * We record the previous state before we close it, so that if we are
1440 * doing a reopen(), we don't generate FMA ereports if we notice that
1441 * it's still faulted.
1442 */
1443 vd->vdev_prevstate = vd->vdev_state;
1444
1445 if (vd->vdev_offline)
1446 vd->vdev_state = VDEV_STATE_OFFLINE;
1447 else
1448 vd->vdev_state = VDEV_STATE_CLOSED;
1449 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1450 }
1451
1452 void
1453 vdev_hold(vdev_t *vd)
1454 {
1455 spa_t *spa = vd->vdev_spa;
1456
1457 ASSERT(spa_is_root(spa));
1458 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1459 return;
1460
1461 for (int c = 0; c < vd->vdev_children; c++)
1462 vdev_hold(vd->vdev_child[c]);
1463
1464 if (vd->vdev_ops->vdev_op_leaf)
1465 vd->vdev_ops->vdev_op_hold(vd);
1466 }
1467
1468 void
1469 vdev_rele(vdev_t *vd)
1470 {
1471 spa_t *spa = vd->vdev_spa;
1472
1473 ASSERT(spa_is_root(spa));
1474 for (int c = 0; c < vd->vdev_children; c++)
1475 vdev_rele(vd->vdev_child[c]);
1476
1477 if (vd->vdev_ops->vdev_op_leaf)
1478 vd->vdev_ops->vdev_op_rele(vd);
1479 }
1480
1481 /*
1482 * Reopen all interior vdevs and any unopened leaves. We don't actually
1483 * reopen leaf vdevs which had previously been opened as they might deadlock
1484 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1485 * If the leaf has never been opened then open it, as usual.
1486 */
1487 void
1488 vdev_reopen(vdev_t *vd)
1489 {
1490 spa_t *spa = vd->vdev_spa;
1491
1492 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1493
1494 /* set the reopening flag unless we're taking the vdev offline */
1495 vd->vdev_reopening = !vd->vdev_offline;
1496 vdev_close(vd);
1497 (void) vdev_open(vd);
1498
1499 /*
1500 * Call vdev_validate() here to make sure we have the same device.
1501 * Otherwise, a device with an invalid label could be successfully
1502 * opened in response to vdev_reopen().
1503 */
1504 if (vd->vdev_aux) {
1505 (void) vdev_validate_aux(vd);
1506 if (vdev_readable(vd) && vdev_writeable(vd) &&
1507 vd->vdev_aux == &spa->spa_l2cache &&
1508 !l2arc_vdev_present(vd))
1509 l2arc_add_vdev(spa, vd);
1510 } else {
1511 (void) vdev_validate(vd, B_TRUE);
1512 }
1513
1514 /*
1515 * Reassess parent vdev's health.
1516 */
1517 vdev_propagate_state(vd);
1518 }
1519
1520 int
1521 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1522 {
1523 int error;
1524
1525 /*
1526 * Normally, partial opens (e.g. of a mirror) are allowed.
1527 * For a create, however, we want to fail the request if
1528 * there are any components we can't open.
1529 */
1530 error = vdev_open(vd);
1531
1532 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1533 vdev_close(vd);
1534 return (error ? error : ENXIO);
1535 }
1536
1537 /*
1538 * Recursively load DTLs and initialize all labels.
1539 */
1540 if ((error = vdev_dtl_load(vd)) != 0 ||
1541 (error = vdev_label_init(vd, txg, isreplacing ?
1542 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1543 vdev_close(vd);
1544 return (error);
1545 }
1546
1547 return (0);
1548 }
1549
1550 void
1551 vdev_metaslab_set_size(vdev_t *vd)
1552 {
1553 /*
1554 * Aim for roughly 200 metaslabs per vdev.
1555 */
1556 vd->vdev_ms_shift = highbit64(vd->vdev_asize / 200);
1557 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1558 }
1559
1560 void
1561 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1562 {
1563 ASSERT(vd == vd->vdev_top);
1564 ASSERT(!vd->vdev_ishole);
1565 ASSERT(ISP2(flags));
1566 ASSERT(spa_writeable(vd->vdev_spa));
1567
1568 if (flags & VDD_METASLAB)
1569 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1570
1571 if (flags & VDD_DTL)
1572 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1573
1574 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1575 }
1576
1577 void
1578 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1579 {
1580 for (int c = 0; c < vd->vdev_children; c++)
1581 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1582
1583 if (vd->vdev_ops->vdev_op_leaf)
1584 vdev_dirty(vd->vdev_top, flags, vd, txg);
1585 }
1586
1587 /*
1588 * DTLs.
1589 *
1590 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1591 * the vdev has less than perfect replication. There are four kinds of DTL:
1592 *
1593 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1594 *
1595 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1596 *
1597 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1598 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1599 * txgs that was scrubbed.
1600 *
1601 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1602 * persistent errors or just some device being offline.
1603 * Unlike the other three, the DTL_OUTAGE map is not generally
1604 * maintained; it's only computed when needed, typically to
1605 * determine whether a device can be detached.
1606 *
1607 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1608 * either has the data or it doesn't.
1609 *
1610 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1611 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1612 * if any child is less than fully replicated, then so is its parent.
1613 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1614 * comprising only those txgs which appear in 'maxfaults' or more children;
1615 * those are the txgs we don't have enough replication to read. For example,
1616 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1617 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1618 * two child DTL_MISSING maps.
1619 *
1620 * It should be clear from the above that to compute the DTLs and outage maps
1621 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1622 * Therefore, that is all we keep on disk. When loading the pool, or after
1623 * a configuration change, we generate all other DTLs from first principles.
1624 */
1625 void
1626 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1627 {
1628 range_tree_t *rt = vd->vdev_dtl[t];
1629
1630 ASSERT(t < DTL_TYPES);
1631 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1632 ASSERT(spa_writeable(vd->vdev_spa));
1633
1634 mutex_enter(rt->rt_lock);
1635 if (!range_tree_contains(rt, txg, size))
1636 range_tree_add(rt, txg, size);
1637 mutex_exit(rt->rt_lock);
1638 }
1639
1640 boolean_t
1641 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1642 {
1643 range_tree_t *rt = vd->vdev_dtl[t];
1644 boolean_t dirty = B_FALSE;
1645
1646 ASSERT(t < DTL_TYPES);
1647 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1648
1649 mutex_enter(rt->rt_lock);
1650 if (range_tree_space(rt) != 0)
1651 dirty = range_tree_contains(rt, txg, size);
1652 mutex_exit(rt->rt_lock);
1653
1654 return (dirty);
1655 }
1656
1657 boolean_t
1658 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1659 {
1660 range_tree_t *rt = vd->vdev_dtl[t];
1661 boolean_t empty;
1662
1663 mutex_enter(rt->rt_lock);
1664 empty = (range_tree_space(rt) == 0);
1665 mutex_exit(rt->rt_lock);
1666
1667 return (empty);
1668 }
1669
1670 /*
1671 * Returns the lowest txg in the DTL range.
1672 */
1673 static uint64_t
1674 vdev_dtl_min(vdev_t *vd)
1675 {
1676 range_seg_t *rs;
1677
1678 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1679 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1680 ASSERT0(vd->vdev_children);
1681
1682 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1683 return (rs->rs_start - 1);
1684 }
1685
1686 /*
1687 * Returns the highest txg in the DTL.
1688 */
1689 static uint64_t
1690 vdev_dtl_max(vdev_t *vd)
1691 {
1692 range_seg_t *rs;
1693
1694 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1695 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1696 ASSERT0(vd->vdev_children);
1697
1698 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1699 return (rs->rs_end);
1700 }
1701
1702 /*
1703 * Determine if a resilvering vdev should remove any DTL entries from
1704 * its range. If the vdev was resilvering for the entire duration of the
1705 * scan then it should excise that range from its DTLs. Otherwise, this
1706 * vdev is considered partially resilvered and should leave its DTL
1707 * entries intact. The comment in vdev_dtl_reassess() describes how we
1708 * excise the DTLs.
1709 */
1710 static boolean_t
1711 vdev_dtl_should_excise(vdev_t *vd)
1712 {
1713 spa_t *spa = vd->vdev_spa;
1714 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1715
1716 ASSERT0(scn->scn_phys.scn_errors);
1717 ASSERT0(vd->vdev_children);
1718
1719 if (vd->vdev_resilver_txg == 0 ||
1720 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1721 return (B_TRUE);
1722
1723 /*
1724 * When a resilver is initiated the scan will assign the scn_max_txg
1725 * value to the highest txg value that exists in all DTLs. If this
1726 * device's max DTL is not part of this scan (i.e. it is not in
1727 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1728 * for excision.
1729 */
1730 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1731 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1732 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1733 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1734 return (B_TRUE);
1735 }
1736 return (B_FALSE);
1737 }
1738
1739 /*
1740 * Reassess DTLs after a config change or scrub completion.
1741 */
1742 void
1743 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1744 {
1745 spa_t *spa = vd->vdev_spa;
1746 avl_tree_t reftree;
1747 int minref;
1748
1749 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1750
1751 for (int c = 0; c < vd->vdev_children; c++)
1752 vdev_dtl_reassess(vd->vdev_child[c], txg,
1753 scrub_txg, scrub_done);
1754
1755 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1756 return;
1757
1758 if (vd->vdev_ops->vdev_op_leaf) {
1759 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1760
1761 mutex_enter(&vd->vdev_dtl_lock);
1762
1763 /*
1764 * If we've completed a scan cleanly then determine
1765 * if this vdev should remove any DTLs. We only want to
1766 * excise regions on vdevs that were available during
1767 * the entire duration of this scan.
1768 */
1769 if (scrub_txg != 0 &&
1770 (spa->spa_scrub_started ||
1771 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1772 vdev_dtl_should_excise(vd)) {
1773 /*
1774 * We completed a scrub up to scrub_txg. If we
1775 * did it without rebooting, then the scrub dtl
1776 * will be valid, so excise the old region and
1777 * fold in the scrub dtl. Otherwise, leave the
1778 * dtl as-is if there was an error.
1779 *
1780 * There's little trick here: to excise the beginning
1781 * of the DTL_MISSING map, we put it into a reference
1782 * tree and then add a segment with refcnt -1 that
1783 * covers the range [0, scrub_txg). This means
1784 * that each txg in that range has refcnt -1 or 0.
1785 * We then add DTL_SCRUB with a refcnt of 2, so that
1786 * entries in the range [0, scrub_txg) will have a
1787 * positive refcnt -- either 1 or 2. We then convert
1788 * the reference tree into the new DTL_MISSING map.
1789 */
1790 space_reftree_create(&reftree);
1791 space_reftree_add_map(&reftree,
1792 vd->vdev_dtl[DTL_MISSING], 1);
1793 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1794 space_reftree_add_map(&reftree,
1795 vd->vdev_dtl[DTL_SCRUB], 2);
1796 space_reftree_generate_map(&reftree,
1797 vd->vdev_dtl[DTL_MISSING], 1);
1798 space_reftree_destroy(&reftree);
1799 }
1800 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1801 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1802 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1803 if (scrub_done)
1804 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1805 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1806 if (!vdev_readable(vd))
1807 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1808 else
1809 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1810 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1811
1812 /*
1813 * If the vdev was resilvering and no longer has any
1814 * DTLs then reset its resilvering flag.
1815 */
1816 if (vd->vdev_resilver_txg != 0 &&
1817 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1818 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1819 vd->vdev_resilver_txg = 0;
1820
1821 mutex_exit(&vd->vdev_dtl_lock);
1822
1823 if (txg != 0)
1824 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1825 return;
1826 }
1827
1828 mutex_enter(&vd->vdev_dtl_lock);
1829 for (int t = 0; t < DTL_TYPES; t++) {
1830 /* account for child's outage in parent's missing map */
1831 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1832 if (t == DTL_SCRUB)
1833 continue; /* leaf vdevs only */
1834 if (t == DTL_PARTIAL)
1835 minref = 1; /* i.e. non-zero */
1836 else if (vd->vdev_nparity != 0)
1837 minref = vd->vdev_nparity + 1; /* RAID-Z */
1838 else
1839 minref = vd->vdev_children; /* any kind of mirror */
1840 space_reftree_create(&reftree);
1841 for (int c = 0; c < vd->vdev_children; c++) {
1842 vdev_t *cvd = vd->vdev_child[c];
1843 mutex_enter(&cvd->vdev_dtl_lock);
1844 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1845 mutex_exit(&cvd->vdev_dtl_lock);
1846 }
1847 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1848 space_reftree_destroy(&reftree);
1849 }
1850 mutex_exit(&vd->vdev_dtl_lock);
1851 }
1852
1853 int
1854 vdev_dtl_load(vdev_t *vd)
1855 {
1856 spa_t *spa = vd->vdev_spa;
1857 objset_t *mos = spa->spa_meta_objset;
1858 int error = 0;
1859
1860 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1861 ASSERT(!vd->vdev_ishole);
1862
1863 error = space_map_open(&vd->vdev_dtl_sm, mos,
1864 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1865 if (error)
1866 return (error);
1867 ASSERT(vd->vdev_dtl_sm != NULL);
1868
1869 mutex_enter(&vd->vdev_dtl_lock);
1870
1871 /*
1872 * Now that we've opened the space_map we need to update
1873 * the in-core DTL.
1874 */
1875 space_map_update(vd->vdev_dtl_sm);
1876
1877 error = space_map_load(vd->vdev_dtl_sm,
1878 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1879 mutex_exit(&vd->vdev_dtl_lock);
1880
1881 return (error);
1882 }
1883
1884 for (int c = 0; c < vd->vdev_children; c++) {
1885 error = vdev_dtl_load(vd->vdev_child[c]);
1886 if (error != 0)
1887 break;
1888 }
1889
1890 return (error);
1891 }
1892
1893 void
1894 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1895 {
1896 spa_t *spa = vd->vdev_spa;
1897 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
1898 objset_t *mos = spa->spa_meta_objset;
1899 range_tree_t *rtsync;
1900 kmutex_t rtlock;
1901 dmu_tx_t *tx;
1902 uint64_t object = space_map_object(vd->vdev_dtl_sm);
1903
1904 ASSERT(!vd->vdev_ishole);
1905 ASSERT(vd->vdev_ops->vdev_op_leaf);
1906
1907 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1908
1909 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
1910 mutex_enter(&vd->vdev_dtl_lock);
1911 space_map_free(vd->vdev_dtl_sm, tx);
1912 space_map_close(vd->vdev_dtl_sm);
1913 vd->vdev_dtl_sm = NULL;
1914 mutex_exit(&vd->vdev_dtl_lock);
1915 dmu_tx_commit(tx);
1916 return;
1917 }
1918
1919 if (vd->vdev_dtl_sm == NULL) {
1920 uint64_t new_object;
1921
1922 new_object = space_map_alloc(mos, tx);
1923 VERIFY3U(new_object, !=, 0);
1924
1925 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
1926 0, -1ULL, 0, &vd->vdev_dtl_lock));
1927 ASSERT(vd->vdev_dtl_sm != NULL);
1928 }
1929
1930 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
1931
1932 rtsync = range_tree_create(NULL, NULL, &rtlock);
1933
1934 mutex_enter(&rtlock);
1935
1936 mutex_enter(&vd->vdev_dtl_lock);
1937 range_tree_walk(rt, range_tree_add, rtsync);
1938 mutex_exit(&vd->vdev_dtl_lock);
1939
1940 space_map_truncate(vd->vdev_dtl_sm, tx);
1941 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
1942 range_tree_vacate(rtsync, NULL, NULL);
1943
1944 range_tree_destroy(rtsync);
1945
1946 mutex_exit(&rtlock);
1947 mutex_destroy(&rtlock);
1948
1949 /*
1950 * If the object for the space map has changed then dirty
1951 * the top level so that we update the config.
1952 */
1953 if (object != space_map_object(vd->vdev_dtl_sm)) {
1954 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
1955 "new object %llu", txg, spa_name(spa), object,
1956 space_map_object(vd->vdev_dtl_sm));
1957 vdev_config_dirty(vd->vdev_top);
1958 }
1959
1960 dmu_tx_commit(tx);
1961
1962 mutex_enter(&vd->vdev_dtl_lock);
1963 space_map_update(vd->vdev_dtl_sm);
1964 mutex_exit(&vd->vdev_dtl_lock);
1965 }
1966
1967 /*
1968 * Determine whether the specified vdev can be offlined/detached/removed
1969 * without losing data.
1970 */
1971 boolean_t
1972 vdev_dtl_required(vdev_t *vd)
1973 {
1974 spa_t *spa = vd->vdev_spa;
1975 vdev_t *tvd = vd->vdev_top;
1976 uint8_t cant_read = vd->vdev_cant_read;
1977 boolean_t required;
1978
1979 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1980
1981 if (vd == spa->spa_root_vdev || vd == tvd)
1982 return (B_TRUE);
1983
1984 /*
1985 * Temporarily mark the device as unreadable, and then determine
1986 * whether this results in any DTL outages in the top-level vdev.
1987 * If not, we can safely offline/detach/remove the device.
1988 */
1989 vd->vdev_cant_read = B_TRUE;
1990 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1991 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1992 vd->vdev_cant_read = cant_read;
1993 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1994
1995 if (!required && zio_injection_enabled)
1996 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1997
1998 return (required);
1999 }
2000
2001 /*
2002 * Determine if resilver is needed, and if so the txg range.
2003 */
2004 boolean_t
2005 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2006 {
2007 boolean_t needed = B_FALSE;
2008 uint64_t thismin = UINT64_MAX;
2009 uint64_t thismax = 0;
2010
2011 if (vd->vdev_children == 0) {
2012 mutex_enter(&vd->vdev_dtl_lock);
2013 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2014 vdev_writeable(vd)) {
2015
2016 thismin = vdev_dtl_min(vd);
2017 thismax = vdev_dtl_max(vd);
2018 needed = B_TRUE;
2019 }
2020 mutex_exit(&vd->vdev_dtl_lock);
2021 } else {
2022 for (int c = 0; c < vd->vdev_children; c++) {
2023 vdev_t *cvd = vd->vdev_child[c];
2024 uint64_t cmin, cmax;
2025
2026 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2027 thismin = MIN(thismin, cmin);
2028 thismax = MAX(thismax, cmax);
2029 needed = B_TRUE;
2030 }
2031 }
2032 }
2033
2034 if (needed && minp) {
2035 *minp = thismin;
2036 *maxp = thismax;
2037 }
2038 return (needed);
2039 }
2040
2041 void
2042 vdev_load(vdev_t *vd)
2043 {
2044 /*
2045 * Recursively load all children.
2046 */
2047 for (int c = 0; c < vd->vdev_children; c++)
2048 vdev_load(vd->vdev_child[c]);
2049
2050 /*
2051 * If this is a top-level vdev, initialize its metaslabs.
2052 */
2053 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2054 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2055 vdev_metaslab_init(vd, 0) != 0))
2056 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2057 VDEV_AUX_CORRUPT_DATA);
2058
2059 /*
2060 * If this is a leaf vdev, load its DTL.
2061 */
2062 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2063 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2064 VDEV_AUX_CORRUPT_DATA);
2065 }
2066
2067 /*
2068 * The special vdev case is used for hot spares and l2cache devices. Its
2069 * sole purpose it to set the vdev state for the associated vdev. To do this,
2070 * we make sure that we can open the underlying device, then try to read the
2071 * label, and make sure that the label is sane and that it hasn't been
2072 * repurposed to another pool.
2073 */
2074 int
2075 vdev_validate_aux(vdev_t *vd)
2076 {
2077 nvlist_t *label;
2078 uint64_t guid, version;
2079 uint64_t state;
2080
2081 if (!vdev_readable(vd))
2082 return (0);
2083
2084 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2085 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2086 VDEV_AUX_CORRUPT_DATA);
2087 return (-1);
2088 }
2089
2090 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2091 !SPA_VERSION_IS_SUPPORTED(version) ||
2092 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2093 guid != vd->vdev_guid ||
2094 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2095 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2096 VDEV_AUX_CORRUPT_DATA);
2097 nvlist_free(label);
2098 return (-1);
2099 }
2100
2101 /*
2102 * We don't actually check the pool state here. If it's in fact in
2103 * use by another pool, we update this fact on the fly when requested.
2104 */
2105 nvlist_free(label);
2106 return (0);
2107 }
2108
2109 void
2110 vdev_remove(vdev_t *vd, uint64_t txg)
2111 {
2112 spa_t *spa = vd->vdev_spa;
2113 objset_t *mos = spa->spa_meta_objset;
2114 dmu_tx_t *tx;
2115
2116 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2117
2118 if (vd->vdev_ms != NULL) {
2119 for (int m = 0; m < vd->vdev_ms_count; m++) {
2120 metaslab_t *msp = vd->vdev_ms[m];
2121
2122 if (msp == NULL || msp->ms_sm == NULL)
2123 continue;
2124
2125 mutex_enter(&msp->ms_lock);
2126 VERIFY0(space_map_allocated(msp->ms_sm));
2127 space_map_free(msp->ms_sm, tx);
2128 space_map_close(msp->ms_sm);
2129 msp->ms_sm = NULL;
2130 mutex_exit(&msp->ms_lock);
2131 }
2132 }
2133
2134 if (vd->vdev_ms_array) {
2135 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2136 vd->vdev_ms_array = 0;
2137 }
2138 dmu_tx_commit(tx);
2139 }
2140
2141 void
2142 vdev_sync_done(vdev_t *vd, uint64_t txg)
2143 {
2144 metaslab_t *msp;
2145 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2146
2147 ASSERT(!vd->vdev_ishole);
2148
2149 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2150 metaslab_sync_done(msp, txg);
2151
2152 if (reassess)
2153 metaslab_sync_reassess(vd->vdev_mg);
2154 }
2155
2156 void
2157 vdev_sync(vdev_t *vd, uint64_t txg)
2158 {
2159 spa_t *spa = vd->vdev_spa;
2160 vdev_t *lvd;
2161 metaslab_t *msp;
2162 dmu_tx_t *tx;
2163
2164 ASSERT(!vd->vdev_ishole);
2165
2166 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2167 ASSERT(vd == vd->vdev_top);
2168 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2169 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2170 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2171 ASSERT(vd->vdev_ms_array != 0);
2172 vdev_config_dirty(vd);
2173 dmu_tx_commit(tx);
2174 }
2175
2176 /*
2177 * Remove the metadata associated with this vdev once it's empty.
2178 */
2179 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2180 vdev_remove(vd, txg);
2181
2182 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2183 metaslab_sync(msp, txg);
2184 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2185 }
2186
2187 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2188 vdev_dtl_sync(lvd, txg);
2189
2190 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2191 }
2192
2193 uint64_t
2194 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2195 {
2196 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2197 }
2198
2199 /*
2200 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2201 * not be opened, and no I/O is attempted.
2202 */
2203 int
2204 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2205 {
2206 vdev_t *vd, *tvd;
2207
2208 spa_vdev_state_enter(spa, SCL_NONE);
2209
2210 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2211 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2212
2213 if (!vd->vdev_ops->vdev_op_leaf)
2214 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2215
2216 tvd = vd->vdev_top;
2217
2218 /*
2219 * We don't directly use the aux state here, but if we do a
2220 * vdev_reopen(), we need this value to be present to remember why we
2221 * were faulted.
2222 */
2223 vd->vdev_label_aux = aux;
2224
2225 /*
2226 * Faulted state takes precedence over degraded.
2227 */
2228 vd->vdev_delayed_close = B_FALSE;
2229 vd->vdev_faulted = 1ULL;
2230 vd->vdev_degraded = 0ULL;
2231 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2232
2233 /*
2234 * If this device has the only valid copy of the data, then
2235 * back off and simply mark the vdev as degraded instead.
2236 */
2237 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2238 vd->vdev_degraded = 1ULL;
2239 vd->vdev_faulted = 0ULL;
2240
2241 /*
2242 * If we reopen the device and it's not dead, only then do we
2243 * mark it degraded.
2244 */
2245 vdev_reopen(tvd);
2246
2247 if (vdev_readable(vd))
2248 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2249 }
2250
2251 return (spa_vdev_state_exit(spa, vd, 0));
2252 }
2253
2254 /*
2255 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2256 * user that something is wrong. The vdev continues to operate as normal as far
2257 * as I/O is concerned.
2258 */
2259 int
2260 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2261 {
2262 vdev_t *vd;
2263
2264 spa_vdev_state_enter(spa, SCL_NONE);
2265
2266 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2267 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2268
2269 if (!vd->vdev_ops->vdev_op_leaf)
2270 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2271
2272 /*
2273 * If the vdev is already faulted, then don't do anything.
2274 */
2275 if (vd->vdev_faulted || vd->vdev_degraded)
2276 return (spa_vdev_state_exit(spa, NULL, 0));
2277
2278 vd->vdev_degraded = 1ULL;
2279 if (!vdev_is_dead(vd))
2280 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2281 aux);
2282
2283 return (spa_vdev_state_exit(spa, vd, 0));
2284 }
2285
2286 /*
2287 * Online the given vdev.
2288 *
2289 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2290 * spare device should be detached when the device finishes resilvering.
2291 * Second, the online should be treated like a 'test' online case, so no FMA
2292 * events are generated if the device fails to open.
2293 */
2294 int
2295 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2296 {
2297 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2298
2299 spa_vdev_state_enter(spa, SCL_NONE);
2300
2301 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2302 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2303
2304 if (!vd->vdev_ops->vdev_op_leaf)
2305 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2306
2307 tvd = vd->vdev_top;
2308 vd->vdev_offline = B_FALSE;
2309 vd->vdev_tmpoffline = B_FALSE;
2310 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2311 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2312
2313 /* XXX - L2ARC 1.0 does not support expansion */
2314 if (!vd->vdev_aux) {
2315 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2316 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2317 }
2318
2319 vdev_reopen(tvd);
2320 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2321
2322 if (!vd->vdev_aux) {
2323 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2324 pvd->vdev_expanding = B_FALSE;
2325 }
2326
2327 if (newstate)
2328 *newstate = vd->vdev_state;
2329 if ((flags & ZFS_ONLINE_UNSPARE) &&
2330 !vdev_is_dead(vd) && vd->vdev_parent &&
2331 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2332 vd->vdev_parent->vdev_child[0] == vd)
2333 vd->vdev_unspare = B_TRUE;
2334
2335 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2336
2337 /* XXX - L2ARC 1.0 does not support expansion */
2338 if (vd->vdev_aux)
2339 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2340 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2341 }
2342 return (spa_vdev_state_exit(spa, vd, 0));
2343 }
2344
2345 static int
2346 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2347 {
2348 vdev_t *vd, *tvd;
2349 int error = 0;
2350 uint64_t generation;
2351 metaslab_group_t *mg;
2352
2353 top:
2354 spa_vdev_state_enter(spa, SCL_ALLOC);
2355
2356 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2357 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2358
2359 if (!vd->vdev_ops->vdev_op_leaf)
2360 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2361
2362 tvd = vd->vdev_top;
2363 mg = tvd->vdev_mg;
2364 generation = spa->spa_config_generation + 1;
2365
2366 /*
2367 * If the device isn't already offline, try to offline it.
2368 */
2369 if (!vd->vdev_offline) {
2370 /*
2371 * If this device has the only valid copy of some data,
2372 * don't allow it to be offlined. Log devices are always
2373 * expendable.
2374 */
2375 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2376 vdev_dtl_required(vd))
2377 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2378
2379 /*
2380 * If the top-level is a slog and it has had allocations
2381 * then proceed. We check that the vdev's metaslab group
2382 * is not NULL since it's possible that we may have just
2383 * added this vdev but not yet initialized its metaslabs.
2384 */
2385 if (tvd->vdev_islog && mg != NULL) {
2386 /*
2387 * Prevent any future allocations.
2388 */
2389 metaslab_group_passivate(mg);
2390 (void) spa_vdev_state_exit(spa, vd, 0);
2391
2392 error = spa_offline_log(spa);
2393
2394 spa_vdev_state_enter(spa, SCL_ALLOC);
2395
2396 /*
2397 * Check to see if the config has changed.
2398 */
2399 if (error || generation != spa->spa_config_generation) {
2400 metaslab_group_activate(mg);
2401 if (error)
2402 return (spa_vdev_state_exit(spa,
2403 vd, error));
2404 (void) spa_vdev_state_exit(spa, vd, 0);
2405 goto top;
2406 }
2407 ASSERT0(tvd->vdev_stat.vs_alloc);
2408 }
2409
2410 /*
2411 * Offline this device and reopen its top-level vdev.
2412 * If the top-level vdev is a log device then just offline
2413 * it. Otherwise, if this action results in the top-level
2414 * vdev becoming unusable, undo it and fail the request.
2415 */
2416 vd->vdev_offline = B_TRUE;
2417 vdev_reopen(tvd);
2418
2419 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2420 vdev_is_dead(tvd)) {
2421 vd->vdev_offline = B_FALSE;
2422 vdev_reopen(tvd);
2423 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2424 }
2425
2426 /*
2427 * Add the device back into the metaslab rotor so that
2428 * once we online the device it's open for business.
2429 */
2430 if (tvd->vdev_islog && mg != NULL)
2431 metaslab_group_activate(mg);
2432 }
2433
2434 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2435
2436 return (spa_vdev_state_exit(spa, vd, 0));
2437 }
2438
2439 int
2440 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2441 {
2442 int error;
2443
2444 mutex_enter(&spa->spa_vdev_top_lock);
2445 error = vdev_offline_locked(spa, guid, flags);
2446 mutex_exit(&spa->spa_vdev_top_lock);
2447
2448 return (error);
2449 }
2450
2451 /*
2452 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2453 * vdev_offline(), we assume the spa config is locked. We also clear all
2454 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2455 */
2456 void
2457 vdev_clear(spa_t *spa, vdev_t *vd)
2458 {
2459 vdev_t *rvd = spa->spa_root_vdev;
2460
2461 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2462
2463 if (vd == NULL)
2464 vd = rvd;
2465
2466 vd->vdev_stat.vs_read_errors = 0;
2467 vd->vdev_stat.vs_write_errors = 0;
2468 vd->vdev_stat.vs_checksum_errors = 0;
2469
2470 for (int c = 0; c < vd->vdev_children; c++)
2471 vdev_clear(spa, vd->vdev_child[c]);
2472
2473 /*
2474 * If we're in the FAULTED state or have experienced failed I/O, then
2475 * clear the persistent state and attempt to reopen the device. We
2476 * also mark the vdev config dirty, so that the new faulted state is
2477 * written out to disk.
2478 */
2479 if (vd->vdev_faulted || vd->vdev_degraded ||
2480 !vdev_readable(vd) || !vdev_writeable(vd)) {
2481
2482 /*
2483 * When reopening in reponse to a clear event, it may be due to
2484 * a fmadm repair request. In this case, if the device is
2485 * still broken, we want to still post the ereport again.
2486 */
2487 vd->vdev_forcefault = B_TRUE;
2488
2489 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2490 vd->vdev_cant_read = B_FALSE;
2491 vd->vdev_cant_write = B_FALSE;
2492
2493 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2494
2495 vd->vdev_forcefault = B_FALSE;
2496
2497 if (vd != rvd && vdev_writeable(vd->vdev_top))
2498 vdev_state_dirty(vd->vdev_top);
2499
2500 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2501 spa_async_request(spa, SPA_ASYNC_RESILVER);
2502
2503 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2504 }
2505
2506 /*
2507 * When clearing a FMA-diagnosed fault, we always want to
2508 * unspare the device, as we assume that the original spare was
2509 * done in response to the FMA fault.
2510 */
2511 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2512 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2513 vd->vdev_parent->vdev_child[0] == vd)
2514 vd->vdev_unspare = B_TRUE;
2515 }
2516
2517 boolean_t
2518 vdev_is_dead(vdev_t *vd)
2519 {
2520 /*
2521 * Holes and missing devices are always considered "dead".
2522 * This simplifies the code since we don't have to check for
2523 * these types of devices in the various code paths.
2524 * Instead we rely on the fact that we skip over dead devices
2525 * before issuing I/O to them.
2526 */
2527 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2528 vd->vdev_ops == &vdev_missing_ops);
2529 }
2530
2531 boolean_t
2532 vdev_readable(vdev_t *vd)
2533 {
2534 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2535 }
2536
2537 boolean_t
2538 vdev_writeable(vdev_t *vd)
2539 {
2540 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2541 }
2542
2543 boolean_t
2544 vdev_allocatable(vdev_t *vd)
2545 {
2546 uint64_t state = vd->vdev_state;
2547
2548 /*
2549 * We currently allow allocations from vdevs which may be in the
2550 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2551 * fails to reopen then we'll catch it later when we're holding
2552 * the proper locks. Note that we have to get the vdev state
2553 * in a local variable because although it changes atomically,
2554 * we're asking two separate questions about it.
2555 */
2556 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2557 !vd->vdev_cant_write && !vd->vdev_ishole);
2558 }
2559
2560 boolean_t
2561 vdev_accessible(vdev_t *vd, zio_t *zio)
2562 {
2563 ASSERT(zio->io_vd == vd);
2564
2565 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2566 return (B_FALSE);
2567
2568 if (zio->io_type == ZIO_TYPE_READ)
2569 return (!vd->vdev_cant_read);
2570
2571 if (zio->io_type == ZIO_TYPE_WRITE)
2572 return (!vd->vdev_cant_write);
2573
2574 return (B_TRUE);
2575 }
2576
2577 /*
2578 * Get statistics for the given vdev.
2579 */
2580 void
2581 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2582 {
2583 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2584
2585 mutex_enter(&vd->vdev_stat_lock);
2586 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2587 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2588 vs->vs_state = vd->vdev_state;
2589 vs->vs_rsize = vdev_get_min_asize(vd);
2590 if (vd->vdev_ops->vdev_op_leaf)
2591 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2592 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2593 mutex_exit(&vd->vdev_stat_lock);
2594
2595 /*
2596 * If we're getting stats on the root vdev, aggregate the I/O counts
2597 * over all top-level vdevs (i.e. the direct children of the root).
2598 */
2599 if (vd == rvd) {
2600 for (int c = 0; c < rvd->vdev_children; c++) {
2601 vdev_t *cvd = rvd->vdev_child[c];
2602 vdev_stat_t *cvs = &cvd->vdev_stat;
2603
2604 mutex_enter(&vd->vdev_stat_lock);
2605 for (int t = 0; t < ZIO_TYPES; t++) {
2606 vs->vs_ops[t] += cvs->vs_ops[t];
2607 vs->vs_bytes[t] += cvs->vs_bytes[t];
2608 }
2609 cvs->vs_scan_removing = cvd->vdev_removing;
2610 mutex_exit(&vd->vdev_stat_lock);
2611 }
2612 }
2613 }
2614
2615 void
2616 vdev_clear_stats(vdev_t *vd)
2617 {
2618 mutex_enter(&vd->vdev_stat_lock);
2619 vd->vdev_stat.vs_space = 0;
2620 vd->vdev_stat.vs_dspace = 0;
2621 vd->vdev_stat.vs_alloc = 0;
2622 mutex_exit(&vd->vdev_stat_lock);
2623 }
2624
2625 void
2626 vdev_scan_stat_init(vdev_t *vd)
2627 {
2628 vdev_stat_t *vs = &vd->vdev_stat;
2629
2630 for (int c = 0; c < vd->vdev_children; c++)
2631 vdev_scan_stat_init(vd->vdev_child[c]);
2632
2633 mutex_enter(&vd->vdev_stat_lock);
2634 vs->vs_scan_processed = 0;
2635 mutex_exit(&vd->vdev_stat_lock);
2636 }
2637
2638 void
2639 vdev_stat_update(zio_t *zio, uint64_t psize)
2640 {
2641 spa_t *spa = zio->io_spa;
2642 vdev_t *rvd = spa->spa_root_vdev;
2643 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2644 vdev_t *pvd;
2645 uint64_t txg = zio->io_txg;
2646 vdev_stat_t *vs = &vd->vdev_stat;
2647 zio_type_t type = zio->io_type;
2648 int flags = zio->io_flags;
2649
2650 /*
2651 * If this i/o is a gang leader, it didn't do any actual work.
2652 */
2653 if (zio->io_gang_tree)
2654 return;
2655
2656 if (zio->io_error == 0) {
2657 /*
2658 * If this is a root i/o, don't count it -- we've already
2659 * counted the top-level vdevs, and vdev_get_stats() will
2660 * aggregate them when asked. This reduces contention on
2661 * the root vdev_stat_lock and implicitly handles blocks
2662 * that compress away to holes, for which there is no i/o.
2663 * (Holes never create vdev children, so all the counters
2664 * remain zero, which is what we want.)
2665 *
2666 * Note: this only applies to successful i/o (io_error == 0)
2667 * because unlike i/o counts, errors are not additive.
2668 * When reading a ditto block, for example, failure of
2669 * one top-level vdev does not imply a root-level error.
2670 */
2671 if (vd == rvd)
2672 return;
2673
2674 ASSERT(vd == zio->io_vd);
2675
2676 if (flags & ZIO_FLAG_IO_BYPASS)
2677 return;
2678
2679 mutex_enter(&vd->vdev_stat_lock);
2680
2681 if (flags & ZIO_FLAG_IO_REPAIR) {
2682 if (flags & ZIO_FLAG_SCAN_THREAD) {
2683 dsl_scan_phys_t *scn_phys =
2684 &spa->spa_dsl_pool->dp_scan->scn_phys;
2685 uint64_t *processed = &scn_phys->scn_processed;
2686
2687 /* XXX cleanup? */
2688 if (vd->vdev_ops->vdev_op_leaf)
2689 atomic_add_64(processed, psize);
2690 vs->vs_scan_processed += psize;
2691 }
2692
2693 if (flags & ZIO_FLAG_SELF_HEAL)
2694 vs->vs_self_healed += psize;
2695 }
2696
2697 vs->vs_ops[type]++;
2698 vs->vs_bytes[type] += psize;
2699
2700 mutex_exit(&vd->vdev_stat_lock);
2701 return;
2702 }
2703
2704 if (flags & ZIO_FLAG_SPECULATIVE)
2705 return;
2706
2707 /*
2708 * If this is an I/O error that is going to be retried, then ignore the
2709 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2710 * hard errors, when in reality they can happen for any number of
2711 * innocuous reasons (bus resets, MPxIO link failure, etc).
2712 */
2713 if (zio->io_error == EIO &&
2714 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2715 return;
2716
2717 /*
2718 * Intent logs writes won't propagate their error to the root
2719 * I/O so don't mark these types of failures as pool-level
2720 * errors.
2721 */
2722 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2723 return;
2724
2725 mutex_enter(&vd->vdev_stat_lock);
2726 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2727 if (zio->io_error == ECKSUM)
2728 vs->vs_checksum_errors++;
2729 else
2730 vs->vs_read_errors++;
2731 }
2732 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2733 vs->vs_write_errors++;
2734 mutex_exit(&vd->vdev_stat_lock);
2735
2736 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2737 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2738 (flags & ZIO_FLAG_SCAN_THREAD) ||
2739 spa->spa_claiming)) {
2740 /*
2741 * This is either a normal write (not a repair), or it's
2742 * a repair induced by the scrub thread, or it's a repair
2743 * made by zil_claim() during spa_load() in the first txg.
2744 * In the normal case, we commit the DTL change in the same
2745 * txg as the block was born. In the scrub-induced repair
2746 * case, we know that scrubs run in first-pass syncing context,
2747 * so we commit the DTL change in spa_syncing_txg(spa).
2748 * In the zil_claim() case, we commit in spa_first_txg(spa).
2749 *
2750 * We currently do not make DTL entries for failed spontaneous
2751 * self-healing writes triggered by normal (non-scrubbing)
2752 * reads, because we have no transactional context in which to
2753 * do so -- and it's not clear that it'd be desirable anyway.
2754 */
2755 if (vd->vdev_ops->vdev_op_leaf) {
2756 uint64_t commit_txg = txg;
2757 if (flags & ZIO_FLAG_SCAN_THREAD) {
2758 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2759 ASSERT(spa_sync_pass(spa) == 1);
2760 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2761 commit_txg = spa_syncing_txg(spa);
2762 } else if (spa->spa_claiming) {
2763 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2764 commit_txg = spa_first_txg(spa);
2765 }
2766 ASSERT(commit_txg >= spa_syncing_txg(spa));
2767 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2768 return;
2769 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2770 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2771 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2772 }
2773 if (vd != rvd)
2774 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2775 }
2776 }
2777
2778 /*
2779 * Update the in-core space usage stats for this vdev, its metaslab class,
2780 * and the root vdev.
2781 */
2782 void
2783 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2784 int64_t space_delta)
2785 {
2786 int64_t dspace_delta = space_delta;
2787 spa_t *spa = vd->vdev_spa;
2788 vdev_t *rvd = spa->spa_root_vdev;
2789 metaslab_group_t *mg = vd->vdev_mg;
2790 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2791
2792 ASSERT(vd == vd->vdev_top);
2793
2794 /*
2795 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2796 * factor. We must calculate this here and not at the root vdev
2797 * because the root vdev's psize-to-asize is simply the max of its
2798 * childrens', thus not accurate enough for us.
2799 */
2800 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2801 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2802 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2803 vd->vdev_deflate_ratio;
2804
2805 mutex_enter(&vd->vdev_stat_lock);
2806 vd->vdev_stat.vs_alloc += alloc_delta;
2807 vd->vdev_stat.vs_space += space_delta;
2808 vd->vdev_stat.vs_dspace += dspace_delta;
2809 mutex_exit(&vd->vdev_stat_lock);
2810
2811 if (mc == spa_normal_class(spa)) {
2812 mutex_enter(&rvd->vdev_stat_lock);
2813 rvd->vdev_stat.vs_alloc += alloc_delta;
2814 rvd->vdev_stat.vs_space += space_delta;
2815 rvd->vdev_stat.vs_dspace += dspace_delta;
2816 mutex_exit(&rvd->vdev_stat_lock);
2817 }
2818
2819 if (mc != NULL) {
2820 ASSERT(rvd == vd->vdev_parent);
2821 ASSERT(vd->vdev_ms_count != 0);
2822
2823 metaslab_class_space_update(mc,
2824 alloc_delta, defer_delta, space_delta, dspace_delta);
2825 }
2826 }
2827
2828 /*
2829 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2830 * so that it will be written out next time the vdev configuration is synced.
2831 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2832 */
2833 void
2834 vdev_config_dirty(vdev_t *vd)
2835 {
2836 spa_t *spa = vd->vdev_spa;
2837 vdev_t *rvd = spa->spa_root_vdev;
2838 int c;
2839
2840 ASSERT(spa_writeable(spa));
2841
2842 /*
2843 * If this is an aux vdev (as with l2cache and spare devices), then we
2844 * update the vdev config manually and set the sync flag.
2845 */
2846 if (vd->vdev_aux != NULL) {
2847 spa_aux_vdev_t *sav = vd->vdev_aux;
2848 nvlist_t **aux;
2849 uint_t naux;
2850
2851 for (c = 0; c < sav->sav_count; c++) {
2852 if (sav->sav_vdevs[c] == vd)
2853 break;
2854 }
2855
2856 if (c == sav->sav_count) {
2857 /*
2858 * We're being removed. There's nothing more to do.
2859 */
2860 ASSERT(sav->sav_sync == B_TRUE);
2861 return;
2862 }
2863
2864 sav->sav_sync = B_TRUE;
2865
2866 if (nvlist_lookup_nvlist_array(sav->sav_config,
2867 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2868 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2869 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2870 }
2871
2872 ASSERT(c < naux);
2873
2874 /*
2875 * Setting the nvlist in the middle if the array is a little
2876 * sketchy, but it will work.
2877 */
2878 nvlist_free(aux[c]);
2879 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2880
2881 return;
2882 }
2883
2884 /*
2885 * The dirty list is protected by the SCL_CONFIG lock. The caller
2886 * must either hold SCL_CONFIG as writer, or must be the sync thread
2887 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2888 * so this is sufficient to ensure mutual exclusion.
2889 */
2890 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2891 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2892 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2893
2894 if (vd == rvd) {
2895 for (c = 0; c < rvd->vdev_children; c++)
2896 vdev_config_dirty(rvd->vdev_child[c]);
2897 } else {
2898 ASSERT(vd == vd->vdev_top);
2899
2900 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2901 !vd->vdev_ishole)
2902 list_insert_head(&spa->spa_config_dirty_list, vd);
2903 }
2904 }
2905
2906 void
2907 vdev_config_clean(vdev_t *vd)
2908 {
2909 spa_t *spa = vd->vdev_spa;
2910
2911 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2912 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2913 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2914
2915 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2916 list_remove(&spa->spa_config_dirty_list, vd);
2917 }
2918
2919 /*
2920 * Mark a top-level vdev's state as dirty, so that the next pass of
2921 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2922 * the state changes from larger config changes because they require
2923 * much less locking, and are often needed for administrative actions.
2924 */
2925 void
2926 vdev_state_dirty(vdev_t *vd)
2927 {
2928 spa_t *spa = vd->vdev_spa;
2929
2930 ASSERT(spa_writeable(spa));
2931 ASSERT(vd == vd->vdev_top);
2932
2933 /*
2934 * The state list is protected by the SCL_STATE lock. The caller
2935 * must either hold SCL_STATE as writer, or must be the sync thread
2936 * (which holds SCL_STATE as reader). There's only one sync thread,
2937 * so this is sufficient to ensure mutual exclusion.
2938 */
2939 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2940 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2941 spa_config_held(spa, SCL_STATE, RW_READER)));
2942
2943 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2944 list_insert_head(&spa->spa_state_dirty_list, vd);
2945 }
2946
2947 void
2948 vdev_state_clean(vdev_t *vd)
2949 {
2950 spa_t *spa = vd->vdev_spa;
2951
2952 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2953 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2954 spa_config_held(spa, SCL_STATE, RW_READER)));
2955
2956 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2957 list_remove(&spa->spa_state_dirty_list, vd);
2958 }
2959
2960 /*
2961 * Propagate vdev state up from children to parent.
2962 */
2963 void
2964 vdev_propagate_state(vdev_t *vd)
2965 {
2966 spa_t *spa = vd->vdev_spa;
2967 vdev_t *rvd = spa->spa_root_vdev;
2968 int degraded = 0, faulted = 0;
2969 int corrupted = 0;
2970 vdev_t *child;
2971
2972 if (vd->vdev_children > 0) {
2973 for (int c = 0; c < vd->vdev_children; c++) {
2974 child = vd->vdev_child[c];
2975
2976 /*
2977 * Don't factor holes into the decision.
2978 */
2979 if (child->vdev_ishole)
2980 continue;
2981
2982 if (!vdev_readable(child) ||
2983 (!vdev_writeable(child) && spa_writeable(spa))) {
2984 /*
2985 * Root special: if there is a top-level log
2986 * device, treat the root vdev as if it were
2987 * degraded.
2988 */
2989 if (child->vdev_islog && vd == rvd)
2990 degraded++;
2991 else
2992 faulted++;
2993 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2994 degraded++;
2995 }
2996
2997 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2998 corrupted++;
2999 }
3000
3001 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3002
3003 /*
3004 * Root special: if there is a top-level vdev that cannot be
3005 * opened due to corrupted metadata, then propagate the root
3006 * vdev's aux state as 'corrupt' rather than 'insufficient
3007 * replicas'.
3008 */
3009 if (corrupted && vd == rvd &&
3010 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3011 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3012 VDEV_AUX_CORRUPT_DATA);
3013 }
3014
3015 if (vd->vdev_parent)
3016 vdev_propagate_state(vd->vdev_parent);
3017 }
3018
3019 /*
3020 * Set a vdev's state. If this is during an open, we don't update the parent
3021 * state, because we're in the process of opening children depth-first.
3022 * Otherwise, we propagate the change to the parent.
3023 *
3024 * If this routine places a device in a faulted state, an appropriate ereport is
3025 * generated.
3026 */
3027 void
3028 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3029 {
3030 uint64_t save_state;
3031 spa_t *spa = vd->vdev_spa;
3032
3033 if (state == vd->vdev_state) {
3034 vd->vdev_stat.vs_aux = aux;
3035 return;
3036 }
3037
3038 save_state = vd->vdev_state;
3039
3040 vd->vdev_state = state;
3041 vd->vdev_stat.vs_aux = aux;
3042
3043 /*
3044 * If we are setting the vdev state to anything but an open state, then
3045 * always close the underlying device unless the device has requested
3046 * a delayed close (i.e. we're about to remove or fault the device).
3047 * Otherwise, we keep accessible but invalid devices open forever.
3048 * We don't call vdev_close() itself, because that implies some extra
3049 * checks (offline, etc) that we don't want here. This is limited to
3050 * leaf devices, because otherwise closing the device will affect other
3051 * children.
3052 */
3053 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3054 vd->vdev_ops->vdev_op_leaf)
3055 vd->vdev_ops->vdev_op_close(vd);
3056
3057 /*
3058 * If we have brought this vdev back into service, we need
3059 * to notify fmd so that it can gracefully repair any outstanding
3060 * cases due to a missing device. We do this in all cases, even those
3061 * that probably don't correlate to a repaired fault. This is sure to
3062 * catch all cases, and we let the zfs-retire agent sort it out. If
3063 * this is a transient state it's OK, as the retire agent will
3064 * double-check the state of the vdev before repairing it.
3065 */
3066 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3067 vd->vdev_prevstate != state)
3068 zfs_post_state_change(spa, vd);
3069
3070 if (vd->vdev_removed &&
3071 state == VDEV_STATE_CANT_OPEN &&
3072 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3073 /*
3074 * If the previous state is set to VDEV_STATE_REMOVED, then this
3075 * device was previously marked removed and someone attempted to
3076 * reopen it. If this failed due to a nonexistent device, then
3077 * keep the device in the REMOVED state. We also let this be if
3078 * it is one of our special test online cases, which is only
3079 * attempting to online the device and shouldn't generate an FMA
3080 * fault.
3081 */
3082 vd->vdev_state = VDEV_STATE_REMOVED;
3083 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3084 } else if (state == VDEV_STATE_REMOVED) {
3085 vd->vdev_removed = B_TRUE;
3086 } else if (state == VDEV_STATE_CANT_OPEN) {
3087 /*
3088 * If we fail to open a vdev during an import or recovery, we
3089 * mark it as "not available", which signifies that it was
3090 * never there to begin with. Failure to open such a device
3091 * is not considered an error.
3092 */
3093 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3094 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3095 vd->vdev_ops->vdev_op_leaf)
3096 vd->vdev_not_present = 1;
3097
3098 /*
3099 * Post the appropriate ereport. If the 'prevstate' field is
3100 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3101 * that this is part of a vdev_reopen(). In this case, we don't
3102 * want to post the ereport if the device was already in the
3103 * CANT_OPEN state beforehand.
3104 *
3105 * If the 'checkremove' flag is set, then this is an attempt to
3106 * online the device in response to an insertion event. If we
3107 * hit this case, then we have detected an insertion event for a
3108 * faulted or offline device that wasn't in the removed state.
3109 * In this scenario, we don't post an ereport because we are
3110 * about to replace the device, or attempt an online with
3111 * vdev_forcefault, which will generate the fault for us.
3112 */
3113 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3114 !vd->vdev_not_present && !vd->vdev_checkremove &&
3115 vd != spa->spa_root_vdev) {
3116 const char *class;
3117
3118 switch (aux) {
3119 case VDEV_AUX_OPEN_FAILED:
3120 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3121 break;
3122 case VDEV_AUX_CORRUPT_DATA:
3123 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3124 break;
3125 case VDEV_AUX_NO_REPLICAS:
3126 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3127 break;
3128 case VDEV_AUX_BAD_GUID_SUM:
3129 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3130 break;
3131 case VDEV_AUX_TOO_SMALL:
3132 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3133 break;
3134 case VDEV_AUX_BAD_LABEL:
3135 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3136 break;
3137 default:
3138 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3139 }
3140
3141 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3142 }
3143
3144 /* Erase any notion of persistent removed state */
3145 vd->vdev_removed = B_FALSE;
3146 } else {
3147 vd->vdev_removed = B_FALSE;
3148 }
3149
3150 if (!isopen && vd->vdev_parent)
3151 vdev_propagate_state(vd->vdev_parent);
3152 }
3153
3154 /*
3155 * Check the vdev configuration to ensure that it's capable of supporting
3156 * a root pool. Currently, we do not support RAID-Z or partial configuration.
3157 * In addition, only a single top-level vdev is allowed and none of the leaves
3158 * can be wholedisks.
3159 */
3160 boolean_t
3161 vdev_is_bootable(vdev_t *vd)
3162 {
3163 if (!vd->vdev_ops->vdev_op_leaf) {
3164 char *vdev_type = vd->vdev_ops->vdev_op_type;
3165
3166 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3167 vd->vdev_children > 1) {
3168 return (B_FALSE);
3169 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3170 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3171 return (B_FALSE);
3172 }
3173 } else if (vd->vdev_wholedisk == 1) {
3174 return (B_FALSE);
3175 }
3176
3177 for (int c = 0; c < vd->vdev_children; c++) {
3178 if (!vdev_is_bootable(vd->vdev_child[c]))
3179 return (B_FALSE);
3180 }
3181 return (B_TRUE);
3182 }
3183
3184 /*
3185 * Load the state from the original vdev tree (ovd) which
3186 * we've retrieved from the MOS config object. If the original
3187 * vdev was offline or faulted then we transfer that state to the
3188 * device in the current vdev tree (nvd).
3189 */
3190 void
3191 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3192 {
3193 spa_t *spa = nvd->vdev_spa;
3194
3195 ASSERT(nvd->vdev_top->vdev_islog);
3196 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3197 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3198
3199 for (int c = 0; c < nvd->vdev_children; c++)
3200 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3201
3202 if (nvd->vdev_ops->vdev_op_leaf) {
3203 /*
3204 * Restore the persistent vdev state
3205 */
3206 nvd->vdev_offline = ovd->vdev_offline;
3207 nvd->vdev_faulted = ovd->vdev_faulted;
3208 nvd->vdev_degraded = ovd->vdev_degraded;
3209 nvd->vdev_removed = ovd->vdev_removed;
3210 }
3211 }
3212
3213 /*
3214 * Determine if a log device has valid content. If the vdev was
3215 * removed or faulted in the MOS config then we know that
3216 * the content on the log device has already been written to the pool.
3217 */
3218 boolean_t
3219 vdev_log_state_valid(vdev_t *vd)
3220 {
3221 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3222 !vd->vdev_removed)
3223 return (B_TRUE);
3224
3225 for (int c = 0; c < vd->vdev_children; c++)
3226 if (vdev_log_state_valid(vd->vdev_child[c]))
3227 return (B_TRUE);
3228
3229 return (B_FALSE);
3230 }
3231
3232 /*
3233 * Expand a vdev if possible.
3234 */
3235 void
3236 vdev_expand(vdev_t *vd, uint64_t txg)
3237 {
3238 ASSERT(vd->vdev_top == vd);
3239 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3240
3241 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3242 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3243 vdev_config_dirty(vd);
3244 }
3245 }
3246
3247 /*
3248 * Split a vdev.
3249 */
3250 void
3251 vdev_split(vdev_t *vd)
3252 {
3253 vdev_t *cvd, *pvd = vd->vdev_parent;
3254
3255 vdev_remove_child(pvd, vd);
3256 vdev_compact_children(pvd);
3257
3258 cvd = pvd->vdev_child[0];
3259 if (pvd->vdev_children == 1) {
3260 vdev_remove_parent(cvd);
3261 cvd->vdev_splitting = B_TRUE;
3262 }
3263 vdev_propagate_state(cvd);
3264 }
3265
3266 void
3267 vdev_deadman(vdev_t *vd)
3268 {
3269 for (int c = 0; c < vd->vdev_children; c++) {
3270 vdev_t *cvd = vd->vdev_child[c];
3271
3272 vdev_deadman(cvd);
3273 }
3274
3275 if (vd->vdev_ops->vdev_op_leaf) {
3276 vdev_queue_t *vq = &vd->vdev_queue;
3277
3278 mutex_enter(&vq->vq_lock);
3279 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3280 spa_t *spa = vd->vdev_spa;
3281 zio_t *fio;
3282 uint64_t delta;
3283
3284 /*
3285 * Look at the head of all the pending queues,
3286 * if any I/O has been outstanding for longer than
3287 * the spa_deadman_synctime we panic the system.
3288 */
3289 fio = avl_first(&vq->vq_active_tree);
3290 delta = gethrtime() - fio->io_timestamp;
3291 if (delta > spa_deadman_synctime(spa)) {
3292 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3293 "delta %lluns, last io %lluns",
3294 fio->io_timestamp, delta,
3295 vq->vq_io_complete_ts);
3296 fm_panic("I/O to pool '%s' appears to be "
3297 "hung.", spa_name(spa));
3298 }
3299 }
3300 mutex_exit(&vq->vq_lock);
3301 }
3302 }