Print this page
5269 zfs: zpool import slow
While importing a pool all objsets are enumerated twice, once to check
the zil log chains and once to claim them. On pools with many datasets
this process might take a substantial amount of time.
Speed up the process by parallelizing it utilizing a taskq. The number
of parallel tasks is limited to 4 times the number of leaf vdevs.
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/zfs/sys/dmu.h
+++ new/usr/src/uts/common/fs/zfs/sys/dmu.h
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 26 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
27 27 * Copyright 2013 DEY Storage Systems, Inc.
28 28 */
29 29
30 30 /* Portions Copyright 2010 Robert Milkowski */
31 31
32 32 #ifndef _SYS_DMU_H
33 33 #define _SYS_DMU_H
34 34
35 35 /*
36 36 * This file describes the interface that the DMU provides for its
37 37 * consumers.
38 38 *
39 39 * The DMU also interacts with the SPA. That interface is described in
40 40 * dmu_spa.h.
41 41 */
42 42
43 43 #include <sys/inttypes.h>
44 44 #include <sys/types.h>
45 45 #include <sys/param.h>
46 46 #include <sys/cred.h>
47 47 #include <sys/time.h>
48 48 #include <sys/fs/zfs.h>
49 49
50 50 #ifdef __cplusplus
51 51 extern "C" {
52 52 #endif
53 53
54 54 struct uio;
55 55 struct xuio;
56 56 struct page;
57 57 struct vnode;
58 58 struct spa;
59 59 struct zilog;
60 60 struct zio;
61 61 struct blkptr;
62 62 struct zap_cursor;
63 63 struct dsl_dataset;
64 64 struct dsl_pool;
65 65 struct dnode;
66 66 struct drr_begin;
67 67 struct drr_end;
68 68 struct zbookmark;
69 69 struct spa;
70 70 struct nvlist;
71 71 struct arc_buf;
72 72 struct zio_prop;
73 73 struct sa_handle;
74 74
75 75 typedef struct objset objset_t;
76 76 typedef struct dmu_tx dmu_tx_t;
77 77 typedef struct dsl_dir dsl_dir_t;
78 78
79 79 typedef enum dmu_object_byteswap {
80 80 DMU_BSWAP_UINT8,
81 81 DMU_BSWAP_UINT16,
82 82 DMU_BSWAP_UINT32,
83 83 DMU_BSWAP_UINT64,
84 84 DMU_BSWAP_ZAP,
85 85 DMU_BSWAP_DNODE,
86 86 DMU_BSWAP_OBJSET,
87 87 DMU_BSWAP_ZNODE,
88 88 DMU_BSWAP_OLDACL,
89 89 DMU_BSWAP_ACL,
90 90 /*
91 91 * Allocating a new byteswap type number makes the on-disk format
92 92 * incompatible with any other format that uses the same number.
93 93 *
94 94 * Data can usually be structured to work with one of the
95 95 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
96 96 */
97 97 DMU_BSWAP_NUMFUNCS
98 98 } dmu_object_byteswap_t;
99 99
100 100 #define DMU_OT_NEWTYPE 0x80
101 101 #define DMU_OT_METADATA 0x40
102 102 #define DMU_OT_BYTESWAP_MASK 0x3f
103 103
104 104 /*
105 105 * Defines a uint8_t object type. Object types specify if the data
106 106 * in the object is metadata (boolean) and how to byteswap the data
107 107 * (dmu_object_byteswap_t).
108 108 */
109 109 #define DMU_OT(byteswap, metadata) \
110 110 (DMU_OT_NEWTYPE | \
111 111 ((metadata) ? DMU_OT_METADATA : 0) | \
112 112 ((byteswap) & DMU_OT_BYTESWAP_MASK))
113 113
114 114 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
115 115 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
116 116 (ot) < DMU_OT_NUMTYPES)
117 117
118 118 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
119 119 ((ot) & DMU_OT_METADATA) : \
120 120 dmu_ot[(ot)].ot_metadata)
121 121
122 122 /*
123 123 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
124 124 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
125 125 * is repurposed for embedded BPs.
126 126 */
127 127 #define DMU_OT_HAS_FILL(ot) \
128 128 ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
129 129
130 130 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
131 131 ((ot) & DMU_OT_BYTESWAP_MASK) : \
132 132 dmu_ot[(ot)].ot_byteswap)
133 133
134 134 typedef enum dmu_object_type {
135 135 DMU_OT_NONE,
136 136 /* general: */
137 137 DMU_OT_OBJECT_DIRECTORY, /* ZAP */
138 138 DMU_OT_OBJECT_ARRAY, /* UINT64 */
139 139 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */
140 140 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */
141 141 DMU_OT_BPOBJ, /* UINT64 */
142 142 DMU_OT_BPOBJ_HDR, /* UINT64 */
143 143 /* spa: */
144 144 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */
145 145 DMU_OT_SPACE_MAP, /* UINT64 */
146 146 /* zil: */
147 147 DMU_OT_INTENT_LOG, /* UINT64 */
148 148 /* dmu: */
149 149 DMU_OT_DNODE, /* DNODE */
150 150 DMU_OT_OBJSET, /* OBJSET */
151 151 /* dsl: */
152 152 DMU_OT_DSL_DIR, /* UINT64 */
153 153 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */
154 154 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */
155 155 DMU_OT_DSL_PROPS, /* ZAP */
156 156 DMU_OT_DSL_DATASET, /* UINT64 */
157 157 /* zpl: */
158 158 DMU_OT_ZNODE, /* ZNODE */
159 159 DMU_OT_OLDACL, /* Old ACL */
160 160 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */
161 161 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */
162 162 DMU_OT_MASTER_NODE, /* ZAP */
163 163 DMU_OT_UNLINKED_SET, /* ZAP */
164 164 /* zvol: */
165 165 DMU_OT_ZVOL, /* UINT8 */
166 166 DMU_OT_ZVOL_PROP, /* ZAP */
167 167 /* other; for testing only! */
168 168 DMU_OT_PLAIN_OTHER, /* UINT8 */
169 169 DMU_OT_UINT64_OTHER, /* UINT64 */
170 170 DMU_OT_ZAP_OTHER, /* ZAP */
171 171 /* new object types: */
172 172 DMU_OT_ERROR_LOG, /* ZAP */
173 173 DMU_OT_SPA_HISTORY, /* UINT8 */
174 174 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */
175 175 DMU_OT_POOL_PROPS, /* ZAP */
176 176 DMU_OT_DSL_PERMS, /* ZAP */
177 177 DMU_OT_ACL, /* ACL */
178 178 DMU_OT_SYSACL, /* SYSACL */
179 179 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */
180 180 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */
181 181 DMU_OT_NEXT_CLONES, /* ZAP */
182 182 DMU_OT_SCAN_QUEUE, /* ZAP */
183 183 DMU_OT_USERGROUP_USED, /* ZAP */
184 184 DMU_OT_USERGROUP_QUOTA, /* ZAP */
185 185 DMU_OT_USERREFS, /* ZAP */
186 186 DMU_OT_DDT_ZAP, /* ZAP */
187 187 DMU_OT_DDT_STATS, /* ZAP */
188 188 DMU_OT_SA, /* System attr */
189 189 DMU_OT_SA_MASTER_NODE, /* ZAP */
190 190 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */
191 191 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */
192 192 DMU_OT_SCAN_XLATE, /* ZAP */
193 193 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */
194 194 DMU_OT_DEADLIST, /* ZAP */
195 195 DMU_OT_DEADLIST_HDR, /* UINT64 */
196 196 DMU_OT_DSL_CLONES, /* ZAP */
197 197 DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */
198 198 /*
199 199 * Do not allocate new object types here. Doing so makes the on-disk
200 200 * format incompatible with any other format that uses the same object
201 201 * type number.
202 202 *
203 203 * When creating an object which does not have one of the above types
204 204 * use the DMU_OTN_* type with the correct byteswap and metadata
205 205 * values.
206 206 *
207 207 * The DMU_OTN_* types do not have entries in the dmu_ot table,
208 208 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead
209 209 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
210 210 * and DMU_OTN_* types).
211 211 */
212 212 DMU_OT_NUMTYPES,
213 213
214 214 /*
215 215 * Names for valid types declared with DMU_OT().
216 216 */
217 217 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE),
218 218 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE),
219 219 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE),
220 220 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE),
221 221 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE),
222 222 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE),
223 223 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE),
224 224 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE),
225 225 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE),
226 226 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE),
227 227 } dmu_object_type_t;
228 228
229 229 typedef enum txg_how {
230 230 TXG_WAIT = 1,
231 231 TXG_NOWAIT,
232 232 TXG_WAITED,
233 233 } txg_how_t;
234 234
235 235 void byteswap_uint64_array(void *buf, size_t size);
236 236 void byteswap_uint32_array(void *buf, size_t size);
237 237 void byteswap_uint16_array(void *buf, size_t size);
238 238 void byteswap_uint8_array(void *buf, size_t size);
239 239 void zap_byteswap(void *buf, size_t size);
240 240 void zfs_oldacl_byteswap(void *buf, size_t size);
241 241 void zfs_acl_byteswap(void *buf, size_t size);
242 242 void zfs_znode_byteswap(void *buf, size_t size);
243 243
244 244 #define DS_FIND_SNAPSHOTS (1<<0)
245 245 #define DS_FIND_CHILDREN (1<<1)
246 246
247 247 /*
248 248 * The maximum number of bytes that can be accessed as part of one
249 249 * operation, including metadata.
250 250 */
251 251 #define DMU_MAX_ACCESS (10<<20) /* 10MB */
252 252 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
253 253
254 254 #define DMU_USERUSED_OBJECT (-1ULL)
255 255 #define DMU_GROUPUSED_OBJECT (-2ULL)
256 256
257 257 /*
258 258 * artificial blkids for bonus buffer and spill blocks
↓ open down ↓ |
258 lines elided |
↑ open up ↑ |
259 259 */
260 260 #define DMU_BONUS_BLKID (-1ULL)
261 261 #define DMU_SPILL_BLKID (-2ULL)
262 262 /*
263 263 * Public routines to create, destroy, open, and close objsets.
264 264 */
265 265 int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
266 266 int dmu_objset_own(const char *name, dmu_objset_type_t type,
267 267 boolean_t readonly, void *tag, objset_t **osp);
268 268 void dmu_objset_rele(objset_t *os, void *tag);
269 +void dmu_objset_rele_obj(objset_t *os, void *tag);
269 270 void dmu_objset_disown(objset_t *os, void *tag);
270 271 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
271 272
272 273 void dmu_objset_evict_dbufs(objset_t *os);
273 274 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
274 275 void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg);
275 276 int dmu_objset_clone(const char *name, const char *origin);
276 277 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
277 278 struct nvlist *errlist);
278 279 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
279 280 int dmu_objset_snapshot_tmp(const char *, const char *, int);
280 281 int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
281 282 int flags);
282 283 void dmu_objset_byteswap(void *buf, size_t size);
283 284 int dsl_dataset_rename_snapshot(const char *fsname,
284 285 const char *oldsnapname, const char *newsnapname, boolean_t recursive);
285 286
286 287 typedef struct dmu_buf {
287 288 uint64_t db_object; /* object that this buffer is part of */
288 289 uint64_t db_offset; /* byte offset in this object */
289 290 uint64_t db_size; /* size of buffer in bytes */
290 291 void *db_data; /* data in buffer */
291 292 } dmu_buf_t;
292 293
293 294 typedef void dmu_buf_evict_func_t(struct dmu_buf *db, void *user_ptr);
294 295
295 296 /*
296 297 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
297 298 */
298 299 #define DMU_POOL_DIRECTORY_OBJECT 1
299 300 #define DMU_POOL_CONFIG "config"
300 301 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write"
301 302 #define DMU_POOL_FEATURES_FOR_READ "features_for_read"
302 303 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions"
303 304 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg"
304 305 #define DMU_POOL_ROOT_DATASET "root_dataset"
305 306 #define DMU_POOL_SYNC_BPOBJ "sync_bplist"
306 307 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub"
307 308 #define DMU_POOL_ERRLOG_LAST "errlog_last"
308 309 #define DMU_POOL_SPARES "spares"
309 310 #define DMU_POOL_DEFLATE "deflate"
310 311 #define DMU_POOL_HISTORY "history"
311 312 #define DMU_POOL_PROPS "pool_props"
312 313 #define DMU_POOL_L2CACHE "l2cache"
313 314 #define DMU_POOL_TMP_USERREFS "tmp_userrefs"
314 315 #define DMU_POOL_DDT "DDT-%s-%s-%s"
315 316 #define DMU_POOL_DDT_STATS "DDT-statistics"
316 317 #define DMU_POOL_CREATION_VERSION "creation_version"
317 318 #define DMU_POOL_SCAN "scan"
318 319 #define DMU_POOL_FREE_BPOBJ "free_bpobj"
319 320 #define DMU_POOL_BPTREE_OBJ "bptree_obj"
320 321 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj"
321 322
322 323 /*
323 324 * Allocate an object from this objset. The range of object numbers
324 325 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode.
325 326 *
326 327 * The transaction must be assigned to a txg. The newly allocated
327 328 * object will be "held" in the transaction (ie. you can modify the
328 329 * newly allocated object in this transaction).
329 330 *
330 331 * dmu_object_alloc() chooses an object and returns it in *objectp.
331 332 *
332 333 * dmu_object_claim() allocates a specific object number. If that
333 334 * number is already allocated, it fails and returns EEXIST.
334 335 *
335 336 * Return 0 on success, or ENOSPC or EEXIST as specified above.
336 337 */
337 338 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
338 339 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
339 340 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
340 341 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
341 342 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
342 343 int blocksize, dmu_object_type_t bonustype, int bonuslen);
343 344
344 345 /*
345 346 * Free an object from this objset.
346 347 *
347 348 * The object's data will be freed as well (ie. you don't need to call
348 349 * dmu_free(object, 0, -1, tx)).
349 350 *
350 351 * The object need not be held in the transaction.
351 352 *
352 353 * If there are any holds on this object's buffers (via dmu_buf_hold()),
353 354 * or tx holds on the object (via dmu_tx_hold_object()), you can not
354 355 * free it; it fails and returns EBUSY.
355 356 *
356 357 * If the object is not allocated, it fails and returns ENOENT.
357 358 *
358 359 * Return 0 on success, or EBUSY or ENOENT as specified above.
359 360 */
360 361 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
361 362
362 363 /*
363 364 * Find the next allocated or free object.
364 365 *
365 366 * The objectp parameter is in-out. It will be updated to be the next
366 367 * object which is allocated. Ignore objects which have not been
367 368 * modified since txg.
368 369 *
369 370 * XXX Can only be called on a objset with no dirty data.
370 371 *
371 372 * Returns 0 on success, or ENOENT if there are no more objects.
372 373 */
373 374 int dmu_object_next(objset_t *os, uint64_t *objectp,
374 375 boolean_t hole, uint64_t txg);
375 376
376 377 /*
377 378 * Set the data blocksize for an object.
378 379 *
379 380 * The object cannot have any blocks allcated beyond the first. If
380 381 * the first block is allocated already, the new size must be greater
381 382 * than the current block size. If these conditions are not met,
382 383 * ENOTSUP will be returned.
383 384 *
384 385 * Returns 0 on success, or EBUSY if there are any holds on the object
385 386 * contents, or ENOTSUP as described above.
386 387 */
387 388 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
388 389 int ibs, dmu_tx_t *tx);
389 390
390 391 /*
391 392 * Set the checksum property on a dnode. The new checksum algorithm will
392 393 * apply to all newly written blocks; existing blocks will not be affected.
393 394 */
394 395 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
395 396 dmu_tx_t *tx);
396 397
397 398 /*
398 399 * Set the compress property on a dnode. The new compression algorithm will
399 400 * apply to all newly written blocks; existing blocks will not be affected.
400 401 */
401 402 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
402 403 dmu_tx_t *tx);
403 404
404 405 void
405 406 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
406 407 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
407 408 int compressed_size, int byteorder, dmu_tx_t *tx);
408 409
409 410 /*
410 411 * Decide how to write a block: checksum, compression, number of copies, etc.
411 412 */
412 413 #define WP_NOFILL 0x1
413 414 #define WP_DMU_SYNC 0x2
414 415 #define WP_SPILL 0x4
415 416
416 417 void dmu_write_policy(objset_t *os, struct dnode *dn, int level, int wp,
417 418 struct zio_prop *zp);
418 419 /*
419 420 * The bonus data is accessed more or less like a regular buffer.
420 421 * You must dmu_bonus_hold() to get the buffer, which will give you a
421 422 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
422 423 * data. As with any normal buffer, you must call dmu_buf_read() to
423 424 * read db_data, dmu_buf_will_dirty() before modifying it, and the
424 425 * object must be held in an assigned transaction before calling
425 426 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus
426 427 * buffer as well. You must release your hold with dmu_buf_rele().
427 428 *
428 429 * Returns ENOENT, EIO, or 0.
429 430 */
430 431 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
431 432 int dmu_bonus_max(void);
432 433 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
433 434 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
434 435 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
435 436 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
436 437
437 438 /*
438 439 * Special spill buffer support used by "SA" framework
439 440 */
440 441
441 442 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
442 443 int dmu_spill_hold_by_dnode(struct dnode *dn, uint32_t flags,
443 444 void *tag, dmu_buf_t **dbp);
444 445 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
445 446
446 447 /*
447 448 * Obtain the DMU buffer from the specified object which contains the
448 449 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so
449 450 * that it will remain in memory. You must release the hold with
450 451 * dmu_buf_rele(). You musn't access the dmu_buf_t after releasing your
451 452 * hold. You must have a hold on any dmu_buf_t* you pass to the DMU.
452 453 *
453 454 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
454 455 * on the returned buffer before reading or writing the buffer's
455 456 * db_data. The comments for those routines describe what particular
456 457 * operations are valid after calling them.
457 458 *
458 459 * The object number must be a valid, allocated object number.
459 460 */
460 461 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
461 462 void *tag, dmu_buf_t **, int flags);
462 463 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
463 464 void dmu_buf_rele(dmu_buf_t *db, void *tag);
464 465 uint64_t dmu_buf_refcount(dmu_buf_t *db);
465 466
466 467 /*
467 468 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
468 469 * range of an object. A pointer to an array of dmu_buf_t*'s is
469 470 * returned (in *dbpp).
470 471 *
471 472 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
472 473 * frees the array. The hold on the array of buffers MUST be released
473 474 * with dmu_buf_rele_array. You can NOT release the hold on each buffer
474 475 * individually with dmu_buf_rele.
475 476 */
476 477 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
477 478 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp);
478 479 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
479 480
480 481 /*
481 482 * Returns NULL on success, or the existing user ptr if it's already
482 483 * been set.
483 484 *
484 485 * user_ptr is for use by the user and can be obtained via dmu_buf_get_user().
485 486 *
486 487 * user_data_ptr_ptr should be NULL, or a pointer to a pointer which
487 488 * will be set to db->db_data when you are allowed to access it. Note
488 489 * that db->db_data (the pointer) can change when you do dmu_buf_read(),
489 490 * dmu_buf_tryupgrade(), dmu_buf_will_dirty(), or dmu_buf_will_fill().
490 491 * *user_data_ptr_ptr will be set to the new value when it changes.
491 492 *
492 493 * If non-NULL, pageout func will be called when this buffer is being
493 494 * excised from the cache, so that you can clean up the data structure
494 495 * pointed to by user_ptr.
495 496 *
496 497 * dmu_evict_user() will call the pageout func for all buffers in a
497 498 * objset with a given pageout func.
498 499 */
499 500 void *dmu_buf_set_user(dmu_buf_t *db, void *user_ptr, void *user_data_ptr_ptr,
500 501 dmu_buf_evict_func_t *pageout_func);
501 502 /*
502 503 * set_user_ie is the same as set_user, but request immediate eviction
503 504 * when hold count goes to zero.
504 505 */
505 506 void *dmu_buf_set_user_ie(dmu_buf_t *db, void *user_ptr,
506 507 void *user_data_ptr_ptr, dmu_buf_evict_func_t *pageout_func);
507 508 void *dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr,
508 509 void *user_ptr, void *user_data_ptr_ptr,
509 510 dmu_buf_evict_func_t *pageout_func);
510 511 void dmu_evict_user(objset_t *os, dmu_buf_evict_func_t *func);
511 512
512 513 /*
513 514 * Returns the user_ptr set with dmu_buf_set_user(), or NULL if not set.
514 515 */
515 516 void *dmu_buf_get_user(dmu_buf_t *db);
516 517
517 518 /*
518 519 * Returns the blkptr associated with this dbuf, or NULL if not set.
519 520 */
520 521 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
521 522
522 523 /*
523 524 * Indicate that you are going to modify the buffer's data (db_data).
524 525 *
525 526 * The transaction (tx) must be assigned to a txg (ie. you've called
526 527 * dmu_tx_assign()). The buffer's object must be held in the tx
527 528 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
528 529 */
529 530 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
530 531
531 532 /*
532 533 * Tells if the given dbuf is freeable.
533 534 */
534 535 boolean_t dmu_buf_freeable(dmu_buf_t *);
535 536
536 537 /*
537 538 * You must create a transaction, then hold the objects which you will
538 539 * (or might) modify as part of this transaction. Then you must assign
539 540 * the transaction to a transaction group. Once the transaction has
540 541 * been assigned, you can modify buffers which belong to held objects as
541 542 * part of this transaction. You can't modify buffers before the
542 543 * transaction has been assigned; you can't modify buffers which don't
543 544 * belong to objects which this transaction holds; you can't hold
544 545 * objects once the transaction has been assigned. You may hold an
545 546 * object which you are going to free (with dmu_object_free()), but you
546 547 * don't have to.
547 548 *
548 549 * You can abort the transaction before it has been assigned.
549 550 *
550 551 * Note that you may hold buffers (with dmu_buf_hold) at any time,
551 552 * regardless of transaction state.
552 553 */
553 554
554 555 #define DMU_NEW_OBJECT (-1ULL)
555 556 #define DMU_OBJECT_END (-1ULL)
556 557
557 558 dmu_tx_t *dmu_tx_create(objset_t *os);
558 559 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
559 560 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
560 561 uint64_t len);
561 562 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
562 563 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
563 564 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
564 565 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
565 566 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
566 567 void dmu_tx_abort(dmu_tx_t *tx);
567 568 int dmu_tx_assign(dmu_tx_t *tx, enum txg_how txg_how);
568 569 void dmu_tx_wait(dmu_tx_t *tx);
569 570 void dmu_tx_commit(dmu_tx_t *tx);
570 571
571 572 /*
572 573 * To register a commit callback, dmu_tx_callback_register() must be called.
573 574 *
574 575 * dcb_data is a pointer to caller private data that is passed on as a
575 576 * callback parameter. The caller is responsible for properly allocating and
576 577 * freeing it.
577 578 *
578 579 * When registering a callback, the transaction must be already created, but
579 580 * it cannot be committed or aborted. It can be assigned to a txg or not.
580 581 *
581 582 * The callback will be called after the transaction has been safely written
582 583 * to stable storage and will also be called if the dmu_tx is aborted.
583 584 * If there is any error which prevents the transaction from being committed to
584 585 * disk, the callback will be called with a value of error != 0.
585 586 */
586 587 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
587 588
588 589 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
589 590 void *dcb_data);
590 591
591 592 /*
592 593 * Free up the data blocks for a defined range of a file. If size is
593 594 * -1, the range from offset to end-of-file is freed.
594 595 */
595 596 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
596 597 uint64_t size, dmu_tx_t *tx);
597 598 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
598 599 uint64_t size);
599 600 int dmu_free_long_object(objset_t *os, uint64_t object);
600 601
601 602 /*
602 603 * Convenience functions.
603 604 *
604 605 * Canfail routines will return 0 on success, or an errno if there is a
605 606 * nonrecoverable I/O error.
606 607 */
607 608 #define DMU_READ_PREFETCH 0 /* prefetch */
608 609 #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */
609 610 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
610 611 void *buf, uint32_t flags);
611 612 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
612 613 const void *buf, dmu_tx_t *tx);
613 614 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
614 615 dmu_tx_t *tx);
615 616 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
616 617 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
617 618 dmu_tx_t *tx);
618 619 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
619 620 dmu_tx_t *tx);
620 621 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
621 622 uint64_t size, struct page *pp, dmu_tx_t *tx);
622 623 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
623 624 void dmu_return_arcbuf(struct arc_buf *buf);
624 625 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
625 626 dmu_tx_t *tx);
626 627 int dmu_xuio_init(struct xuio *uio, int niov);
627 628 void dmu_xuio_fini(struct xuio *uio);
628 629 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
629 630 size_t n);
630 631 int dmu_xuio_cnt(struct xuio *uio);
631 632 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
632 633 void dmu_xuio_clear(struct xuio *uio, int i);
633 634 void xuio_stat_wbuf_copied();
634 635 void xuio_stat_wbuf_nocopy();
635 636
636 637 extern int zfs_prefetch_disable;
637 638
638 639 /*
639 640 * Asynchronously try to read in the data.
640 641 */
641 642 void dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset,
642 643 uint64_t len);
643 644
644 645 typedef struct dmu_object_info {
645 646 /* All sizes are in bytes unless otherwise indicated. */
646 647 uint32_t doi_data_block_size;
647 648 uint32_t doi_metadata_block_size;
648 649 dmu_object_type_t doi_type;
649 650 dmu_object_type_t doi_bonus_type;
650 651 uint64_t doi_bonus_size;
651 652 uint8_t doi_indirection; /* 2 = dnode->indirect->data */
652 653 uint8_t doi_checksum;
653 654 uint8_t doi_compress;
654 655 uint8_t doi_pad[5];
655 656 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */
656 657 uint64_t doi_max_offset;
657 658 uint64_t doi_fill_count; /* number of non-empty blocks */
658 659 } dmu_object_info_t;
659 660
660 661 typedef void arc_byteswap_func_t(void *buf, size_t size);
661 662
662 663 typedef struct dmu_object_type_info {
663 664 dmu_object_byteswap_t ot_byteswap;
664 665 boolean_t ot_metadata;
665 666 char *ot_name;
666 667 } dmu_object_type_info_t;
667 668
668 669 typedef struct dmu_object_byteswap_info {
669 670 arc_byteswap_func_t *ob_func;
670 671 char *ob_name;
671 672 } dmu_object_byteswap_info_t;
672 673
673 674 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
674 675 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
675 676
676 677 /*
677 678 * Get information on a DMU object.
678 679 *
679 680 * Return 0 on success or ENOENT if object is not allocated.
680 681 *
681 682 * If doi is NULL, just indicates whether the object exists.
682 683 */
683 684 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
684 685 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
685 686 void dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
686 687 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
687 688 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
688 689 /*
689 690 * Like dmu_object_info_from_db, but faster still when you only care about
690 691 * the size. This is specifically optimized for zfs_getattr().
691 692 */
692 693 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
693 694 u_longlong_t *nblk512);
694 695
695 696 typedef struct dmu_objset_stats {
696 697 uint64_t dds_num_clones; /* number of clones of this */
697 698 uint64_t dds_creation_txg;
698 699 uint64_t dds_guid;
699 700 dmu_objset_type_t dds_type;
700 701 uint8_t dds_is_snapshot;
701 702 uint8_t dds_inconsistent;
702 703 char dds_origin[MAXNAMELEN];
703 704 } dmu_objset_stats_t;
704 705
705 706 /*
706 707 * Get stats on a dataset.
707 708 */
708 709 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
709 710
710 711 /*
711 712 * Add entries to the nvlist for all the objset's properties. See
712 713 * zfs_prop_table[] and zfs(1m) for details on the properties.
713 714 */
714 715 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
715 716
716 717 /*
717 718 * Get the space usage statistics for statvfs().
718 719 *
719 720 * refdbytes is the amount of space "referenced" by this objset.
720 721 * availbytes is the amount of space available to this objset, taking
721 722 * into account quotas & reservations, assuming that no other objsets
722 723 * use the space first. These values correspond to the 'referenced' and
723 724 * 'available' properties, described in the zfs(1m) manpage.
724 725 *
725 726 * usedobjs and availobjs are the number of objects currently allocated,
726 727 * and available.
727 728 */
728 729 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
729 730 uint64_t *usedobjsp, uint64_t *availobjsp);
730 731
731 732 /*
732 733 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
733 734 * (Contrast with the ds_guid which is a 64-bit ID that will never
734 735 * change, so there is a small probability that it will collide.)
735 736 */
736 737 uint64_t dmu_objset_fsid_guid(objset_t *os);
737 738
738 739 /*
739 740 * Get the [cm]time for an objset's snapshot dir
740 741 */
741 742 timestruc_t dmu_objset_snap_cmtime(objset_t *os);
742 743
743 744 int dmu_objset_is_snapshot(objset_t *os);
744 745
745 746 extern struct spa *dmu_objset_spa(objset_t *os);
746 747 extern struct zilog *dmu_objset_zil(objset_t *os);
747 748 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
748 749 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
749 750 extern void dmu_objset_name(objset_t *os, char *buf);
750 751 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
751 752 extern uint64_t dmu_objset_id(objset_t *os);
752 753 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
753 754 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
754 755 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
755 756 uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
756 757 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
757 758 int maxlen, boolean_t *conflict);
758 759 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
759 760 uint64_t *idp, uint64_t *offp);
760 761
761 762 typedef int objset_used_cb_t(dmu_object_type_t bonustype,
762 763 void *bonus, uint64_t *userp, uint64_t *groupp);
763 764 extern void dmu_objset_register_type(dmu_objset_type_t ost,
764 765 objset_used_cb_t *cb);
765 766 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
766 767 extern void *dmu_objset_get_user(objset_t *os);
767 768
768 769 /*
769 770 * Return the txg number for the given assigned transaction.
770 771 */
771 772 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
772 773
773 774 /*
774 775 * Synchronous write.
775 776 * If a parent zio is provided this function initiates a write on the
776 777 * provided buffer as a child of the parent zio.
777 778 * In the absence of a parent zio, the write is completed synchronously.
778 779 * At write completion, blk is filled with the bp of the written block.
779 780 * Note that while the data covered by this function will be on stable
780 781 * storage when the write completes this new data does not become a
781 782 * permanent part of the file until the associated transaction commits.
782 783 */
783 784
784 785 /*
785 786 * {zfs,zvol,ztest}_get_done() args
786 787 */
787 788 typedef struct zgd {
788 789 struct zilog *zgd_zilog;
789 790 struct blkptr *zgd_bp;
790 791 dmu_buf_t *zgd_db;
791 792 struct rl *zgd_rl;
792 793 void *zgd_private;
793 794 } zgd_t;
794 795
795 796 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
796 797 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
797 798
798 799 /*
799 800 * Find the next hole or data block in file starting at *off
800 801 * Return found offset in *off. Return ESRCH for end of file.
801 802 */
802 803 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
803 804 uint64_t *off);
804 805
805 806 /*
806 807 * Initial setup and final teardown.
807 808 */
808 809 extern void dmu_init(void);
809 810 extern void dmu_fini(void);
810 811
811 812 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
812 813 uint64_t object, uint64_t offset, int len);
813 814 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
814 815 dmu_traverse_cb_t cb, void *arg);
815 816
816 817 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
817 818 struct vnode *vp, offset_t *offp);
818 819
819 820 /* CRC64 table */
820 821 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
821 822 extern uint64_t zfs_crc64_table[256];
822 823
823 824 extern int zfs_mdcomp_disable;
824 825
825 826 #ifdef __cplusplus
826 827 }
827 828 #endif
828 829
829 830 #endif /* _SYS_DMU_H */
↓ open down ↓ |
551 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX