1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
26 */
27
28 /*
29 * SPA: Storage Pool Allocator
30 *
31 * This file contains all the routines used when modifying on-disk SPA state.
32 * This includes opening, importing, destroying, exporting a pool, and syncing a
33 * pool.
34 */
35
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa_impl.h>
39 #include <sys/zio.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/ddt.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/uberblock_impl.h>
50 #include <sys/txg.h>
51 #include <sys/avl.h>
52 #include <sys/dmu_traverse.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/unique.h>
55 #include <sys/dsl_pool.h>
56 #include <sys/dsl_dataset.h>
57 #include <sys/dsl_dir.h>
58 #include <sys/dsl_prop.h>
59 #include <sys/dsl_synctask.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/arc.h>
62 #include <sys/callb.h>
63 #include <sys/systeminfo.h>
64 #include <sys/spa_boot.h>
65 #include <sys/zfs_ioctl.h>
66 #include <sys/dsl_scan.h>
67 #include <sys/zfeature.h>
68 #include <sys/dsl_destroy.h>
69
70 #ifdef _KERNEL
71 #include <sys/bootprops.h>
72 #include <sys/callb.h>
73 #include <sys/cpupart.h>
74 #include <sys/pool.h>
75 #include <sys/sysdc.h>
76 #include <sys/zone.h>
77 #endif /* _KERNEL */
78
79 #include "zfs_prop.h"
80 #include "zfs_comutil.h"
81
82 /*
83 * The interval, in seconds, at which failed configuration cache file writes
84 * should be retried.
85 */
86 static int zfs_ccw_retry_interval = 300;
87
88 typedef enum zti_modes {
89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
90 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
91 ZTI_MODE_NULL, /* don't create a taskq */
92 ZTI_NMODES
93 } zti_modes_t;
94
95 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
96 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
97 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
98
99 #define ZTI_N(n) ZTI_P(n, 1)
100 #define ZTI_ONE ZTI_N(1)
101
102 typedef struct zio_taskq_info {
103 zti_modes_t zti_mode;
104 uint_t zti_value;
105 uint_t zti_count;
106 } zio_taskq_info_t;
107
108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
109 "issue", "issue_high", "intr", "intr_high"
110 };
111
112 /*
113 * This table defines the taskq settings for each ZFS I/O type. When
114 * initializing a pool, we use this table to create an appropriately sized
115 * taskq. Some operations are low volume and therefore have a small, static
116 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
117 * macros. Other operations process a large amount of data; the ZTI_BATCH
118 * macro causes us to create a taskq oriented for throughput. Some operations
119 * are so high frequency and short-lived that the taskq itself can become a a
120 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
121 * additional degree of parallelism specified by the number of threads per-
122 * taskq and the number of taskqs; when dispatching an event in this case, the
123 * particular taskq is chosen at random.
124 *
125 * The different taskq priorities are to handle the different contexts (issue
126 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
127 * need to be handled with minimum delay.
128 */
129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
130 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
132 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
133 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
134 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
137 };
138
139 static void spa_sync_version(void *arg, dmu_tx_t *tx);
140 static void spa_sync_props(void *arg, dmu_tx_t *tx);
141 static boolean_t spa_has_active_shared_spare(spa_t *spa);
142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
144 char **ereport);
145 static void spa_vdev_resilver_done(spa_t *spa);
146
147 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
148 id_t zio_taskq_psrset_bind = PS_NONE;
149 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
150 uint_t zio_taskq_basedc = 80; /* base duty cycle */
151
152 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
153 extern int zfs_sync_pass_deferred_free;
154
155 /*
156 * This (illegal) pool name is used when temporarily importing a spa_t in order
157 * to get the vdev stats associated with the imported devices.
158 */
159 #define TRYIMPORT_NAME "$import"
160
161 /*
162 * ==========================================================================
163 * SPA properties routines
164 * ==========================================================================
165 */
166
167 /*
168 * Add a (source=src, propname=propval) list to an nvlist.
169 */
170 static void
171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
172 uint64_t intval, zprop_source_t src)
173 {
174 const char *propname = zpool_prop_to_name(prop);
175 nvlist_t *propval;
176
177 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
178 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
179
180 if (strval != NULL)
181 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
182 else
183 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
184
185 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
186 nvlist_free(propval);
187 }
188
189 /*
190 * Get property values from the spa configuration.
191 */
192 static void
193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
194 {
195 vdev_t *rvd = spa->spa_root_vdev;
196 dsl_pool_t *pool = spa->spa_dsl_pool;
197 uint64_t size;
198 uint64_t alloc;
199 uint64_t space;
200 uint64_t cap, version;
201 zprop_source_t src = ZPROP_SRC_NONE;
202 spa_config_dirent_t *dp;
203
204 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
205
206 if (rvd != NULL) {
207 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
208 size = metaslab_class_get_space(spa_normal_class(spa));
209 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
210 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
211 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
212 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
213 size - alloc, src);
214
215 space = 0;
216 for (int c = 0; c < rvd->vdev_children; c++) {
217 vdev_t *tvd = rvd->vdev_child[c];
218 space += tvd->vdev_max_asize - tvd->vdev_asize;
219 }
220 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
221 src);
222
223 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
224 (spa_mode(spa) == FREAD), src);
225
226 cap = (size == 0) ? 0 : (alloc * 100 / size);
227 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
228
229 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
230 ddt_get_pool_dedup_ratio(spa), src);
231
232 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
233 rvd->vdev_state, src);
234
235 version = spa_version(spa);
236 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
237 src = ZPROP_SRC_DEFAULT;
238 else
239 src = ZPROP_SRC_LOCAL;
240 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
241 }
242
243 if (pool != NULL) {
244 /*
245 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
246 * when opening pools before this version freedir will be NULL.
247 */
248 if (pool->dp_free_dir != NULL) {
249 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
250 pool->dp_free_dir->dd_phys->dd_used_bytes, src);
251 } else {
252 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
253 NULL, 0, src);
254 }
255
256 if (pool->dp_leak_dir != NULL) {
257 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
258 pool->dp_leak_dir->dd_phys->dd_used_bytes, src);
259 } else {
260 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
261 NULL, 0, src);
262 }
263 }
264
265 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
266
267 if (spa->spa_comment != NULL) {
268 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
269 0, ZPROP_SRC_LOCAL);
270 }
271
272 if (spa->spa_root != NULL)
273 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
274 0, ZPROP_SRC_LOCAL);
275
276 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
277 if (dp->scd_path == NULL) {
278 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
279 "none", 0, ZPROP_SRC_LOCAL);
280 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
281 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
282 dp->scd_path, 0, ZPROP_SRC_LOCAL);
283 }
284 }
285 }
286
287 /*
288 * Get zpool property values.
289 */
290 int
291 spa_prop_get(spa_t *spa, nvlist_t **nvp)
292 {
293 objset_t *mos = spa->spa_meta_objset;
294 zap_cursor_t zc;
295 zap_attribute_t za;
296 int err;
297
298 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
299
300 mutex_enter(&spa->spa_props_lock);
301
302 /*
303 * Get properties from the spa config.
304 */
305 spa_prop_get_config(spa, nvp);
306
307 /* If no pool property object, no more prop to get. */
308 if (mos == NULL || spa->spa_pool_props_object == 0) {
309 mutex_exit(&spa->spa_props_lock);
310 return (0);
311 }
312
313 /*
314 * Get properties from the MOS pool property object.
315 */
316 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
317 (err = zap_cursor_retrieve(&zc, &za)) == 0;
318 zap_cursor_advance(&zc)) {
319 uint64_t intval = 0;
320 char *strval = NULL;
321 zprop_source_t src = ZPROP_SRC_DEFAULT;
322 zpool_prop_t prop;
323
324 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
325 continue;
326
327 switch (za.za_integer_length) {
328 case 8:
329 /* integer property */
330 if (za.za_first_integer !=
331 zpool_prop_default_numeric(prop))
332 src = ZPROP_SRC_LOCAL;
333
334 if (prop == ZPOOL_PROP_BOOTFS) {
335 dsl_pool_t *dp;
336 dsl_dataset_t *ds = NULL;
337
338 dp = spa_get_dsl(spa);
339 dsl_pool_config_enter(dp, FTAG);
340 if (err = dsl_dataset_hold_obj(dp,
341 za.za_first_integer, FTAG, &ds)) {
342 dsl_pool_config_exit(dp, FTAG);
343 break;
344 }
345
346 strval = kmem_alloc(
347 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
348 KM_SLEEP);
349 dsl_dataset_name(ds, strval);
350 dsl_dataset_rele(ds, FTAG);
351 dsl_pool_config_exit(dp, FTAG);
352 } else {
353 strval = NULL;
354 intval = za.za_first_integer;
355 }
356
357 spa_prop_add_list(*nvp, prop, strval, intval, src);
358
359 if (strval != NULL)
360 kmem_free(strval,
361 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
362
363 break;
364
365 case 1:
366 /* string property */
367 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
368 err = zap_lookup(mos, spa->spa_pool_props_object,
369 za.za_name, 1, za.za_num_integers, strval);
370 if (err) {
371 kmem_free(strval, za.za_num_integers);
372 break;
373 }
374 spa_prop_add_list(*nvp, prop, strval, 0, src);
375 kmem_free(strval, za.za_num_integers);
376 break;
377
378 default:
379 break;
380 }
381 }
382 zap_cursor_fini(&zc);
383 mutex_exit(&spa->spa_props_lock);
384 out:
385 if (err && err != ENOENT) {
386 nvlist_free(*nvp);
387 *nvp = NULL;
388 return (err);
389 }
390
391 return (0);
392 }
393
394 /*
395 * Validate the given pool properties nvlist and modify the list
396 * for the property values to be set.
397 */
398 static int
399 spa_prop_validate(spa_t *spa, nvlist_t *props)
400 {
401 nvpair_t *elem;
402 int error = 0, reset_bootfs = 0;
403 uint64_t objnum = 0;
404 boolean_t has_feature = B_FALSE;
405
406 elem = NULL;
407 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
408 uint64_t intval;
409 char *strval, *slash, *check, *fname;
410 const char *propname = nvpair_name(elem);
411 zpool_prop_t prop = zpool_name_to_prop(propname);
412
413 switch (prop) {
414 case ZPROP_INVAL:
415 if (!zpool_prop_feature(propname)) {
416 error = SET_ERROR(EINVAL);
417 break;
418 }
419
420 /*
421 * Sanitize the input.
422 */
423 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
424 error = SET_ERROR(EINVAL);
425 break;
426 }
427
428 if (nvpair_value_uint64(elem, &intval) != 0) {
429 error = SET_ERROR(EINVAL);
430 break;
431 }
432
433 if (intval != 0) {
434 error = SET_ERROR(EINVAL);
435 break;
436 }
437
438 fname = strchr(propname, '@') + 1;
439 if (zfeature_lookup_name(fname, NULL) != 0) {
440 error = SET_ERROR(EINVAL);
441 break;
442 }
443
444 has_feature = B_TRUE;
445 break;
446
447 case ZPOOL_PROP_VERSION:
448 error = nvpair_value_uint64(elem, &intval);
449 if (!error &&
450 (intval < spa_version(spa) ||
451 intval > SPA_VERSION_BEFORE_FEATURES ||
452 has_feature))
453 error = SET_ERROR(EINVAL);
454 break;
455
456 case ZPOOL_PROP_DELEGATION:
457 case ZPOOL_PROP_AUTOREPLACE:
458 case ZPOOL_PROP_LISTSNAPS:
459 case ZPOOL_PROP_AUTOEXPAND:
460 error = nvpair_value_uint64(elem, &intval);
461 if (!error && intval > 1)
462 error = SET_ERROR(EINVAL);
463 break;
464
465 case ZPOOL_PROP_BOOTFS:
466 /*
467 * If the pool version is less than SPA_VERSION_BOOTFS,
468 * or the pool is still being created (version == 0),
469 * the bootfs property cannot be set.
470 */
471 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
472 error = SET_ERROR(ENOTSUP);
473 break;
474 }
475
476 /*
477 * Make sure the vdev config is bootable
478 */
479 if (!vdev_is_bootable(spa->spa_root_vdev)) {
480 error = SET_ERROR(ENOTSUP);
481 break;
482 }
483
484 reset_bootfs = 1;
485
486 error = nvpair_value_string(elem, &strval);
487
488 if (!error) {
489 objset_t *os;
490 uint64_t compress;
491
492 if (strval == NULL || strval[0] == '\0') {
493 objnum = zpool_prop_default_numeric(
494 ZPOOL_PROP_BOOTFS);
495 break;
496 }
497
498 if (error = dmu_objset_hold(strval, FTAG, &os))
499 break;
500
501 /* Must be ZPL and not gzip compressed. */
502
503 if (dmu_objset_type(os) != DMU_OST_ZFS) {
504 error = SET_ERROR(ENOTSUP);
505 } else if ((error =
506 dsl_prop_get_int_ds(dmu_objset_ds(os),
507 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
508 &compress)) == 0 &&
509 !BOOTFS_COMPRESS_VALID(compress)) {
510 error = SET_ERROR(ENOTSUP);
511 } else {
512 objnum = dmu_objset_id(os);
513 }
514 dmu_objset_rele(os, FTAG);
515 }
516 break;
517
518 case ZPOOL_PROP_FAILUREMODE:
519 error = nvpair_value_uint64(elem, &intval);
520 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
521 intval > ZIO_FAILURE_MODE_PANIC))
522 error = SET_ERROR(EINVAL);
523
524 /*
525 * This is a special case which only occurs when
526 * the pool has completely failed. This allows
527 * the user to change the in-core failmode property
528 * without syncing it out to disk (I/Os might
529 * currently be blocked). We do this by returning
530 * EIO to the caller (spa_prop_set) to trick it
531 * into thinking we encountered a property validation
532 * error.
533 */
534 if (!error && spa_suspended(spa)) {
535 spa->spa_failmode = intval;
536 error = SET_ERROR(EIO);
537 }
538 break;
539
540 case ZPOOL_PROP_CACHEFILE:
541 if ((error = nvpair_value_string(elem, &strval)) != 0)
542 break;
543
544 if (strval[0] == '\0')
545 break;
546
547 if (strcmp(strval, "none") == 0)
548 break;
549
550 if (strval[0] != '/') {
551 error = SET_ERROR(EINVAL);
552 break;
553 }
554
555 slash = strrchr(strval, '/');
556 ASSERT(slash != NULL);
557
558 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
559 strcmp(slash, "/..") == 0)
560 error = SET_ERROR(EINVAL);
561 break;
562
563 case ZPOOL_PROP_COMMENT:
564 if ((error = nvpair_value_string(elem, &strval)) != 0)
565 break;
566 for (check = strval; *check != '\0'; check++) {
567 /*
568 * The kernel doesn't have an easy isprint()
569 * check. For this kernel check, we merely
570 * check ASCII apart from DEL. Fix this if
571 * there is an easy-to-use kernel isprint().
572 */
573 if (*check >= 0x7f) {
574 error = SET_ERROR(EINVAL);
575 break;
576 }
577 check++;
578 }
579 if (strlen(strval) > ZPROP_MAX_COMMENT)
580 error = E2BIG;
581 break;
582
583 case ZPOOL_PROP_DEDUPDITTO:
584 if (spa_version(spa) < SPA_VERSION_DEDUP)
585 error = SET_ERROR(ENOTSUP);
586 else
587 error = nvpair_value_uint64(elem, &intval);
588 if (error == 0 &&
589 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
590 error = SET_ERROR(EINVAL);
591 break;
592 }
593
594 if (error)
595 break;
596 }
597
598 if (!error && reset_bootfs) {
599 error = nvlist_remove(props,
600 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
601
602 if (!error) {
603 error = nvlist_add_uint64(props,
604 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
605 }
606 }
607
608 return (error);
609 }
610
611 void
612 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
613 {
614 char *cachefile;
615 spa_config_dirent_t *dp;
616
617 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
618 &cachefile) != 0)
619 return;
620
621 dp = kmem_alloc(sizeof (spa_config_dirent_t),
622 KM_SLEEP);
623
624 if (cachefile[0] == '\0')
625 dp->scd_path = spa_strdup(spa_config_path);
626 else if (strcmp(cachefile, "none") == 0)
627 dp->scd_path = NULL;
628 else
629 dp->scd_path = spa_strdup(cachefile);
630
631 list_insert_head(&spa->spa_config_list, dp);
632 if (need_sync)
633 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
634 }
635
636 int
637 spa_prop_set(spa_t *spa, nvlist_t *nvp)
638 {
639 int error;
640 nvpair_t *elem = NULL;
641 boolean_t need_sync = B_FALSE;
642
643 if ((error = spa_prop_validate(spa, nvp)) != 0)
644 return (error);
645
646 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
647 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
648
649 if (prop == ZPOOL_PROP_CACHEFILE ||
650 prop == ZPOOL_PROP_ALTROOT ||
651 prop == ZPOOL_PROP_READONLY)
652 continue;
653
654 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
655 uint64_t ver;
656
657 if (prop == ZPOOL_PROP_VERSION) {
658 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
659 } else {
660 ASSERT(zpool_prop_feature(nvpair_name(elem)));
661 ver = SPA_VERSION_FEATURES;
662 need_sync = B_TRUE;
663 }
664
665 /* Save time if the version is already set. */
666 if (ver == spa_version(spa))
667 continue;
668
669 /*
670 * In addition to the pool directory object, we might
671 * create the pool properties object, the features for
672 * read object, the features for write object, or the
673 * feature descriptions object.
674 */
675 error = dsl_sync_task(spa->spa_name, NULL,
676 spa_sync_version, &ver, 6);
677 if (error)
678 return (error);
679 continue;
680 }
681
682 need_sync = B_TRUE;
683 break;
684 }
685
686 if (need_sync) {
687 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
688 nvp, 6));
689 }
690
691 return (0);
692 }
693
694 /*
695 * If the bootfs property value is dsobj, clear it.
696 */
697 void
698 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
699 {
700 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
701 VERIFY(zap_remove(spa->spa_meta_objset,
702 spa->spa_pool_props_object,
703 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
704 spa->spa_bootfs = 0;
705 }
706 }
707
708 /*ARGSUSED*/
709 static int
710 spa_change_guid_check(void *arg, dmu_tx_t *tx)
711 {
712 uint64_t *newguid = arg;
713 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
714 vdev_t *rvd = spa->spa_root_vdev;
715 uint64_t vdev_state;
716
717 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
718 vdev_state = rvd->vdev_state;
719 spa_config_exit(spa, SCL_STATE, FTAG);
720
721 if (vdev_state != VDEV_STATE_HEALTHY)
722 return (SET_ERROR(ENXIO));
723
724 ASSERT3U(spa_guid(spa), !=, *newguid);
725
726 return (0);
727 }
728
729 static void
730 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
731 {
732 uint64_t *newguid = arg;
733 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
734 uint64_t oldguid;
735 vdev_t *rvd = spa->spa_root_vdev;
736
737 oldguid = spa_guid(spa);
738
739 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
740 rvd->vdev_guid = *newguid;
741 rvd->vdev_guid_sum += (*newguid - oldguid);
742 vdev_config_dirty(rvd);
743 spa_config_exit(spa, SCL_STATE, FTAG);
744
745 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
746 oldguid, *newguid);
747 }
748
749 /*
750 * Change the GUID for the pool. This is done so that we can later
751 * re-import a pool built from a clone of our own vdevs. We will modify
752 * the root vdev's guid, our own pool guid, and then mark all of our
753 * vdevs dirty. Note that we must make sure that all our vdevs are
754 * online when we do this, or else any vdevs that weren't present
755 * would be orphaned from our pool. We are also going to issue a
756 * sysevent to update any watchers.
757 */
758 int
759 spa_change_guid(spa_t *spa)
760 {
761 int error;
762 uint64_t guid;
763
764 mutex_enter(&spa->spa_vdev_top_lock);
765 mutex_enter(&spa_namespace_lock);
766 guid = spa_generate_guid(NULL);
767
768 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
769 spa_change_guid_sync, &guid, 5);
770
771 if (error == 0) {
772 spa_config_sync(spa, B_FALSE, B_TRUE);
773 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
774 }
775
776 mutex_exit(&spa_namespace_lock);
777 mutex_exit(&spa->spa_vdev_top_lock);
778
779 return (error);
780 }
781
782 /*
783 * ==========================================================================
784 * SPA state manipulation (open/create/destroy/import/export)
785 * ==========================================================================
786 */
787
788 static int
789 spa_error_entry_compare(const void *a, const void *b)
790 {
791 spa_error_entry_t *sa = (spa_error_entry_t *)a;
792 spa_error_entry_t *sb = (spa_error_entry_t *)b;
793 int ret;
794
795 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
796 sizeof (zbookmark_t));
797
798 if (ret < 0)
799 return (-1);
800 else if (ret > 0)
801 return (1);
802 else
803 return (0);
804 }
805
806 /*
807 * Utility function which retrieves copies of the current logs and
808 * re-initializes them in the process.
809 */
810 void
811 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
812 {
813 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
814
815 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
816 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
817
818 avl_create(&spa->spa_errlist_scrub,
819 spa_error_entry_compare, sizeof (spa_error_entry_t),
820 offsetof(spa_error_entry_t, se_avl));
821 avl_create(&spa->spa_errlist_last,
822 spa_error_entry_compare, sizeof (spa_error_entry_t),
823 offsetof(spa_error_entry_t, se_avl));
824 }
825
826 static void
827 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
828 {
829 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
830 enum zti_modes mode = ztip->zti_mode;
831 uint_t value = ztip->zti_value;
832 uint_t count = ztip->zti_count;
833 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
834 char name[32];
835 uint_t flags = 0;
836 boolean_t batch = B_FALSE;
837
838 if (mode == ZTI_MODE_NULL) {
839 tqs->stqs_count = 0;
840 tqs->stqs_taskq = NULL;
841 return;
842 }
843
844 ASSERT3U(count, >, 0);
845
846 tqs->stqs_count = count;
847 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
848
849 switch (mode) {
850 case ZTI_MODE_FIXED:
851 ASSERT3U(value, >=, 1);
852 value = MAX(value, 1);
853 break;
854
855 case ZTI_MODE_BATCH:
856 batch = B_TRUE;
857 flags |= TASKQ_THREADS_CPU_PCT;
858 value = zio_taskq_batch_pct;
859 break;
860
861 default:
862 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
863 "spa_activate()",
864 zio_type_name[t], zio_taskq_types[q], mode, value);
865 break;
866 }
867
868 for (uint_t i = 0; i < count; i++) {
869 taskq_t *tq;
870
871 if (count > 1) {
872 (void) snprintf(name, sizeof (name), "%s_%s_%u",
873 zio_type_name[t], zio_taskq_types[q], i);
874 } else {
875 (void) snprintf(name, sizeof (name), "%s_%s",
876 zio_type_name[t], zio_taskq_types[q]);
877 }
878
879 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
880 if (batch)
881 flags |= TASKQ_DC_BATCH;
882
883 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
884 spa->spa_proc, zio_taskq_basedc, flags);
885 } else {
886 pri_t pri = maxclsyspri;
887 /*
888 * The write issue taskq can be extremely CPU
889 * intensive. Run it at slightly lower priority
890 * than the other taskqs.
891 */
892 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
893 pri--;
894
895 tq = taskq_create_proc(name, value, pri, 50,
896 INT_MAX, spa->spa_proc, flags);
897 }
898
899 tqs->stqs_taskq[i] = tq;
900 }
901 }
902
903 static void
904 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
905 {
906 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
907
908 if (tqs->stqs_taskq == NULL) {
909 ASSERT0(tqs->stqs_count);
910 return;
911 }
912
913 for (uint_t i = 0; i < tqs->stqs_count; i++) {
914 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
915 taskq_destroy(tqs->stqs_taskq[i]);
916 }
917
918 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
919 tqs->stqs_taskq = NULL;
920 }
921
922 /*
923 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
924 * Note that a type may have multiple discrete taskqs to avoid lock contention
925 * on the taskq itself. In that case we choose which taskq at random by using
926 * the low bits of gethrtime().
927 */
928 void
929 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
930 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
931 {
932 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
933 taskq_t *tq;
934
935 ASSERT3P(tqs->stqs_taskq, !=, NULL);
936 ASSERT3U(tqs->stqs_count, !=, 0);
937
938 if (tqs->stqs_count == 1) {
939 tq = tqs->stqs_taskq[0];
940 } else {
941 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
942 }
943
944 taskq_dispatch_ent(tq, func, arg, flags, ent);
945 }
946
947 static void
948 spa_create_zio_taskqs(spa_t *spa)
949 {
950 for (int t = 0; t < ZIO_TYPES; t++) {
951 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
952 spa_taskqs_init(spa, t, q);
953 }
954 }
955 }
956
957 #ifdef _KERNEL
958 static void
959 spa_thread(void *arg)
960 {
961 callb_cpr_t cprinfo;
962
963 spa_t *spa = arg;
964 user_t *pu = PTOU(curproc);
965
966 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
967 spa->spa_name);
968
969 ASSERT(curproc != &p0);
970 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
971 "zpool-%s", spa->spa_name);
972 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
973
974 /* bind this thread to the requested psrset */
975 if (zio_taskq_psrset_bind != PS_NONE) {
976 pool_lock();
977 mutex_enter(&cpu_lock);
978 mutex_enter(&pidlock);
979 mutex_enter(&curproc->p_lock);
980
981 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
982 0, NULL, NULL) == 0) {
983 curthread->t_bind_pset = zio_taskq_psrset_bind;
984 } else {
985 cmn_err(CE_WARN,
986 "Couldn't bind process for zfs pool \"%s\" to "
987 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
988 }
989
990 mutex_exit(&curproc->p_lock);
991 mutex_exit(&pidlock);
992 mutex_exit(&cpu_lock);
993 pool_unlock();
994 }
995
996 if (zio_taskq_sysdc) {
997 sysdc_thread_enter(curthread, 100, 0);
998 }
999
1000 spa->spa_proc = curproc;
1001 spa->spa_did = curthread->t_did;
1002
1003 spa_create_zio_taskqs(spa);
1004
1005 mutex_enter(&spa->spa_proc_lock);
1006 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1007
1008 spa->spa_proc_state = SPA_PROC_ACTIVE;
1009 cv_broadcast(&spa->spa_proc_cv);
1010
1011 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1012 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1013 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1014 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1015
1016 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1017 spa->spa_proc_state = SPA_PROC_GONE;
1018 spa->spa_proc = &p0;
1019 cv_broadcast(&spa->spa_proc_cv);
1020 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1021
1022 mutex_enter(&curproc->p_lock);
1023 lwp_exit();
1024 }
1025 #endif
1026
1027 /*
1028 * Activate an uninitialized pool.
1029 */
1030 static void
1031 spa_activate(spa_t *spa, int mode)
1032 {
1033 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1034
1035 spa->spa_state = POOL_STATE_ACTIVE;
1036 spa->spa_mode = mode;
1037
1038 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1039 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1040
1041 /* Try to create a covering process */
1042 mutex_enter(&spa->spa_proc_lock);
1043 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1044 ASSERT(spa->spa_proc == &p0);
1045 spa->spa_did = 0;
1046
1047 /* Only create a process if we're going to be around a while. */
1048 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1049 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1050 NULL, 0) == 0) {
1051 spa->spa_proc_state = SPA_PROC_CREATED;
1052 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1053 cv_wait(&spa->spa_proc_cv,
1054 &spa->spa_proc_lock);
1055 }
1056 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1057 ASSERT(spa->spa_proc != &p0);
1058 ASSERT(spa->spa_did != 0);
1059 } else {
1060 #ifdef _KERNEL
1061 cmn_err(CE_WARN,
1062 "Couldn't create process for zfs pool \"%s\"\n",
1063 spa->spa_name);
1064 #endif
1065 }
1066 }
1067 mutex_exit(&spa->spa_proc_lock);
1068
1069 /* If we didn't create a process, we need to create our taskqs. */
1070 if (spa->spa_proc == &p0) {
1071 spa_create_zio_taskqs(spa);
1072 }
1073
1074 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1075 offsetof(vdev_t, vdev_config_dirty_node));
1076 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1077 offsetof(vdev_t, vdev_state_dirty_node));
1078
1079 txg_list_create(&spa->spa_vdev_txg_list,
1080 offsetof(struct vdev, vdev_txg_node));
1081
1082 avl_create(&spa->spa_errlist_scrub,
1083 spa_error_entry_compare, sizeof (spa_error_entry_t),
1084 offsetof(spa_error_entry_t, se_avl));
1085 avl_create(&spa->spa_errlist_last,
1086 spa_error_entry_compare, sizeof (spa_error_entry_t),
1087 offsetof(spa_error_entry_t, se_avl));
1088 }
1089
1090 /*
1091 * Opposite of spa_activate().
1092 */
1093 static void
1094 spa_deactivate(spa_t *spa)
1095 {
1096 ASSERT(spa->spa_sync_on == B_FALSE);
1097 ASSERT(spa->spa_dsl_pool == NULL);
1098 ASSERT(spa->spa_root_vdev == NULL);
1099 ASSERT(spa->spa_async_zio_root == NULL);
1100 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1101
1102 txg_list_destroy(&spa->spa_vdev_txg_list);
1103
1104 list_destroy(&spa->spa_config_dirty_list);
1105 list_destroy(&spa->spa_state_dirty_list);
1106
1107 for (int t = 0; t < ZIO_TYPES; t++) {
1108 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1109 spa_taskqs_fini(spa, t, q);
1110 }
1111 }
1112
1113 metaslab_class_destroy(spa->spa_normal_class);
1114 spa->spa_normal_class = NULL;
1115
1116 metaslab_class_destroy(spa->spa_log_class);
1117 spa->spa_log_class = NULL;
1118
1119 /*
1120 * If this was part of an import or the open otherwise failed, we may
1121 * still have errors left in the queues. Empty them just in case.
1122 */
1123 spa_errlog_drain(spa);
1124
1125 avl_destroy(&spa->spa_errlist_scrub);
1126 avl_destroy(&spa->spa_errlist_last);
1127
1128 spa->spa_state = POOL_STATE_UNINITIALIZED;
1129
1130 mutex_enter(&spa->spa_proc_lock);
1131 if (spa->spa_proc_state != SPA_PROC_NONE) {
1132 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1133 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1134 cv_broadcast(&spa->spa_proc_cv);
1135 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1136 ASSERT(spa->spa_proc != &p0);
1137 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1138 }
1139 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1140 spa->spa_proc_state = SPA_PROC_NONE;
1141 }
1142 ASSERT(spa->spa_proc == &p0);
1143 mutex_exit(&spa->spa_proc_lock);
1144
1145 /*
1146 * We want to make sure spa_thread() has actually exited the ZFS
1147 * module, so that the module can't be unloaded out from underneath
1148 * it.
1149 */
1150 if (spa->spa_did != 0) {
1151 thread_join(spa->spa_did);
1152 spa->spa_did = 0;
1153 }
1154 }
1155
1156 /*
1157 * Verify a pool configuration, and construct the vdev tree appropriately. This
1158 * will create all the necessary vdevs in the appropriate layout, with each vdev
1159 * in the CLOSED state. This will prep the pool before open/creation/import.
1160 * All vdev validation is done by the vdev_alloc() routine.
1161 */
1162 static int
1163 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1164 uint_t id, int atype)
1165 {
1166 nvlist_t **child;
1167 uint_t children;
1168 int error;
1169
1170 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1171 return (error);
1172
1173 if ((*vdp)->vdev_ops->vdev_op_leaf)
1174 return (0);
1175
1176 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1177 &child, &children);
1178
1179 if (error == ENOENT)
1180 return (0);
1181
1182 if (error) {
1183 vdev_free(*vdp);
1184 *vdp = NULL;
1185 return (SET_ERROR(EINVAL));
1186 }
1187
1188 for (int c = 0; c < children; c++) {
1189 vdev_t *vd;
1190 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1191 atype)) != 0) {
1192 vdev_free(*vdp);
1193 *vdp = NULL;
1194 return (error);
1195 }
1196 }
1197
1198 ASSERT(*vdp != NULL);
1199
1200 return (0);
1201 }
1202
1203 /*
1204 * Opposite of spa_load().
1205 */
1206 static void
1207 spa_unload(spa_t *spa)
1208 {
1209 int i;
1210
1211 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1212
1213 /*
1214 * Stop async tasks.
1215 */
1216 spa_async_suspend(spa);
1217
1218 /*
1219 * Stop syncing.
1220 */
1221 if (spa->spa_sync_on) {
1222 txg_sync_stop(spa->spa_dsl_pool);
1223 spa->spa_sync_on = B_FALSE;
1224 }
1225
1226 /*
1227 * Wait for any outstanding async I/O to complete.
1228 */
1229 if (spa->spa_async_zio_root != NULL) {
1230 (void) zio_wait(spa->spa_async_zio_root);
1231 spa->spa_async_zio_root = NULL;
1232 }
1233
1234 bpobj_close(&spa->spa_deferred_bpobj);
1235
1236 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1237
1238 /*
1239 * Close all vdevs.
1240 */
1241 if (spa->spa_root_vdev)
1242 vdev_free(spa->spa_root_vdev);
1243 ASSERT(spa->spa_root_vdev == NULL);
1244
1245 /*
1246 * Close the dsl pool.
1247 */
1248 if (spa->spa_dsl_pool) {
1249 dsl_pool_close(spa->spa_dsl_pool);
1250 spa->spa_dsl_pool = NULL;
1251 spa->spa_meta_objset = NULL;
1252 }
1253
1254 ddt_unload(spa);
1255
1256
1257 /*
1258 * Drop and purge level 2 cache
1259 */
1260 spa_l2cache_drop(spa);
1261
1262 for (i = 0; i < spa->spa_spares.sav_count; i++)
1263 vdev_free(spa->spa_spares.sav_vdevs[i]);
1264 if (spa->spa_spares.sav_vdevs) {
1265 kmem_free(spa->spa_spares.sav_vdevs,
1266 spa->spa_spares.sav_count * sizeof (void *));
1267 spa->spa_spares.sav_vdevs = NULL;
1268 }
1269 if (spa->spa_spares.sav_config) {
1270 nvlist_free(spa->spa_spares.sav_config);
1271 spa->spa_spares.sav_config = NULL;
1272 }
1273 spa->spa_spares.sav_count = 0;
1274
1275 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1276 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1277 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1278 }
1279 if (spa->spa_l2cache.sav_vdevs) {
1280 kmem_free(spa->spa_l2cache.sav_vdevs,
1281 spa->spa_l2cache.sav_count * sizeof (void *));
1282 spa->spa_l2cache.sav_vdevs = NULL;
1283 }
1284 if (spa->spa_l2cache.sav_config) {
1285 nvlist_free(spa->spa_l2cache.sav_config);
1286 spa->spa_l2cache.sav_config = NULL;
1287 }
1288 spa->spa_l2cache.sav_count = 0;
1289
1290 spa->spa_async_suspended = 0;
1291
1292 if (spa->spa_comment != NULL) {
1293 spa_strfree(spa->spa_comment);
1294 spa->spa_comment = NULL;
1295 }
1296
1297 spa_config_exit(spa, SCL_ALL, FTAG);
1298 }
1299
1300 /*
1301 * Load (or re-load) the current list of vdevs describing the active spares for
1302 * this pool. When this is called, we have some form of basic information in
1303 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1304 * then re-generate a more complete list including status information.
1305 */
1306 static void
1307 spa_load_spares(spa_t *spa)
1308 {
1309 nvlist_t **spares;
1310 uint_t nspares;
1311 int i;
1312 vdev_t *vd, *tvd;
1313
1314 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1315
1316 /*
1317 * First, close and free any existing spare vdevs.
1318 */
1319 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1320 vd = spa->spa_spares.sav_vdevs[i];
1321
1322 /* Undo the call to spa_activate() below */
1323 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1324 B_FALSE)) != NULL && tvd->vdev_isspare)
1325 spa_spare_remove(tvd);
1326 vdev_close(vd);
1327 vdev_free(vd);
1328 }
1329
1330 if (spa->spa_spares.sav_vdevs)
1331 kmem_free(spa->spa_spares.sav_vdevs,
1332 spa->spa_spares.sav_count * sizeof (void *));
1333
1334 if (spa->spa_spares.sav_config == NULL)
1335 nspares = 0;
1336 else
1337 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1338 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1339
1340 spa->spa_spares.sav_count = (int)nspares;
1341 spa->spa_spares.sav_vdevs = NULL;
1342
1343 if (nspares == 0)
1344 return;
1345
1346 /*
1347 * Construct the array of vdevs, opening them to get status in the
1348 * process. For each spare, there is potentially two different vdev_t
1349 * structures associated with it: one in the list of spares (used only
1350 * for basic validation purposes) and one in the active vdev
1351 * configuration (if it's spared in). During this phase we open and
1352 * validate each vdev on the spare list. If the vdev also exists in the
1353 * active configuration, then we also mark this vdev as an active spare.
1354 */
1355 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1356 KM_SLEEP);
1357 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1358 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1359 VDEV_ALLOC_SPARE) == 0);
1360 ASSERT(vd != NULL);
1361
1362 spa->spa_spares.sav_vdevs[i] = vd;
1363
1364 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1365 B_FALSE)) != NULL) {
1366 if (!tvd->vdev_isspare)
1367 spa_spare_add(tvd);
1368
1369 /*
1370 * We only mark the spare active if we were successfully
1371 * able to load the vdev. Otherwise, importing a pool
1372 * with a bad active spare would result in strange
1373 * behavior, because multiple pool would think the spare
1374 * is actively in use.
1375 *
1376 * There is a vulnerability here to an equally bizarre
1377 * circumstance, where a dead active spare is later
1378 * brought back to life (onlined or otherwise). Given
1379 * the rarity of this scenario, and the extra complexity
1380 * it adds, we ignore the possibility.
1381 */
1382 if (!vdev_is_dead(tvd))
1383 spa_spare_activate(tvd);
1384 }
1385
1386 vd->vdev_top = vd;
1387 vd->vdev_aux = &spa->spa_spares;
1388
1389 if (vdev_open(vd) != 0)
1390 continue;
1391
1392 if (vdev_validate_aux(vd) == 0)
1393 spa_spare_add(vd);
1394 }
1395
1396 /*
1397 * Recompute the stashed list of spares, with status information
1398 * this time.
1399 */
1400 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1401 DATA_TYPE_NVLIST_ARRAY) == 0);
1402
1403 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1404 KM_SLEEP);
1405 for (i = 0; i < spa->spa_spares.sav_count; i++)
1406 spares[i] = vdev_config_generate(spa,
1407 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1408 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1409 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1410 for (i = 0; i < spa->spa_spares.sav_count; i++)
1411 nvlist_free(spares[i]);
1412 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1413 }
1414
1415 /*
1416 * Load (or re-load) the current list of vdevs describing the active l2cache for
1417 * this pool. When this is called, we have some form of basic information in
1418 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1419 * then re-generate a more complete list including status information.
1420 * Devices which are already active have their details maintained, and are
1421 * not re-opened.
1422 */
1423 static void
1424 spa_load_l2cache(spa_t *spa)
1425 {
1426 nvlist_t **l2cache;
1427 uint_t nl2cache;
1428 int i, j, oldnvdevs;
1429 uint64_t guid;
1430 vdev_t *vd, **oldvdevs, **newvdevs;
1431 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1432
1433 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1434
1435 if (sav->sav_config != NULL) {
1436 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1437 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1438 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1439 } else {
1440 nl2cache = 0;
1441 newvdevs = NULL;
1442 }
1443
1444 oldvdevs = sav->sav_vdevs;
1445 oldnvdevs = sav->sav_count;
1446 sav->sav_vdevs = NULL;
1447 sav->sav_count = 0;
1448
1449 /*
1450 * Process new nvlist of vdevs.
1451 */
1452 for (i = 0; i < nl2cache; i++) {
1453 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1454 &guid) == 0);
1455
1456 newvdevs[i] = NULL;
1457 for (j = 0; j < oldnvdevs; j++) {
1458 vd = oldvdevs[j];
1459 if (vd != NULL && guid == vd->vdev_guid) {
1460 /*
1461 * Retain previous vdev for add/remove ops.
1462 */
1463 newvdevs[i] = vd;
1464 oldvdevs[j] = NULL;
1465 break;
1466 }
1467 }
1468
1469 if (newvdevs[i] == NULL) {
1470 /*
1471 * Create new vdev
1472 */
1473 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1474 VDEV_ALLOC_L2CACHE) == 0);
1475 ASSERT(vd != NULL);
1476 newvdevs[i] = vd;
1477
1478 /*
1479 * Commit this vdev as an l2cache device,
1480 * even if it fails to open.
1481 */
1482 spa_l2cache_add(vd);
1483
1484 vd->vdev_top = vd;
1485 vd->vdev_aux = sav;
1486
1487 spa_l2cache_activate(vd);
1488
1489 if (vdev_open(vd) != 0)
1490 continue;
1491
1492 (void) vdev_validate_aux(vd);
1493
1494 if (!vdev_is_dead(vd))
1495 l2arc_add_vdev(spa, vd);
1496 }
1497 }
1498
1499 /*
1500 * Purge vdevs that were dropped
1501 */
1502 for (i = 0; i < oldnvdevs; i++) {
1503 uint64_t pool;
1504
1505 vd = oldvdevs[i];
1506 if (vd != NULL) {
1507 ASSERT(vd->vdev_isl2cache);
1508
1509 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1510 pool != 0ULL && l2arc_vdev_present(vd))
1511 l2arc_remove_vdev(vd);
1512 vdev_clear_stats(vd);
1513 vdev_free(vd);
1514 }
1515 }
1516
1517 if (oldvdevs)
1518 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1519
1520 if (sav->sav_config == NULL)
1521 goto out;
1522
1523 sav->sav_vdevs = newvdevs;
1524 sav->sav_count = (int)nl2cache;
1525
1526 /*
1527 * Recompute the stashed list of l2cache devices, with status
1528 * information this time.
1529 */
1530 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1531 DATA_TYPE_NVLIST_ARRAY) == 0);
1532
1533 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1534 for (i = 0; i < sav->sav_count; i++)
1535 l2cache[i] = vdev_config_generate(spa,
1536 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1537 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1538 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1539 out:
1540 for (i = 0; i < sav->sav_count; i++)
1541 nvlist_free(l2cache[i]);
1542 if (sav->sav_count)
1543 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1544 }
1545
1546 static int
1547 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1548 {
1549 dmu_buf_t *db;
1550 char *packed = NULL;
1551 size_t nvsize = 0;
1552 int error;
1553 *value = NULL;
1554
1555 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1556 nvsize = *(uint64_t *)db->db_data;
1557 dmu_buf_rele(db, FTAG);
1558
1559 packed = kmem_alloc(nvsize, KM_SLEEP);
1560 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1561 DMU_READ_PREFETCH);
1562 if (error == 0)
1563 error = nvlist_unpack(packed, nvsize, value, 0);
1564 kmem_free(packed, nvsize);
1565
1566 return (error);
1567 }
1568
1569 /*
1570 * Checks to see if the given vdev could not be opened, in which case we post a
1571 * sysevent to notify the autoreplace code that the device has been removed.
1572 */
1573 static void
1574 spa_check_removed(vdev_t *vd)
1575 {
1576 for (int c = 0; c < vd->vdev_children; c++)
1577 spa_check_removed(vd->vdev_child[c]);
1578
1579 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1580 !vd->vdev_ishole) {
1581 zfs_post_autoreplace(vd->vdev_spa, vd);
1582 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1583 }
1584 }
1585
1586 /*
1587 * Validate the current config against the MOS config
1588 */
1589 static boolean_t
1590 spa_config_valid(spa_t *spa, nvlist_t *config)
1591 {
1592 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1593 nvlist_t *nv;
1594
1595 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1596
1597 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1598 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1599
1600 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1601
1602 /*
1603 * If we're doing a normal import, then build up any additional
1604 * diagnostic information about missing devices in this config.
1605 * We'll pass this up to the user for further processing.
1606 */
1607 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1608 nvlist_t **child, *nv;
1609 uint64_t idx = 0;
1610
1611 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1612 KM_SLEEP);
1613 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1614
1615 for (int c = 0; c < rvd->vdev_children; c++) {
1616 vdev_t *tvd = rvd->vdev_child[c];
1617 vdev_t *mtvd = mrvd->vdev_child[c];
1618
1619 if (tvd->vdev_ops == &vdev_missing_ops &&
1620 mtvd->vdev_ops != &vdev_missing_ops &&
1621 mtvd->vdev_islog)
1622 child[idx++] = vdev_config_generate(spa, mtvd,
1623 B_FALSE, 0);
1624 }
1625
1626 if (idx) {
1627 VERIFY(nvlist_add_nvlist_array(nv,
1628 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1629 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1630 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1631
1632 for (int i = 0; i < idx; i++)
1633 nvlist_free(child[i]);
1634 }
1635 nvlist_free(nv);
1636 kmem_free(child, rvd->vdev_children * sizeof (char **));
1637 }
1638
1639 /*
1640 * Compare the root vdev tree with the information we have
1641 * from the MOS config (mrvd). Check each top-level vdev
1642 * with the corresponding MOS config top-level (mtvd).
1643 */
1644 for (int c = 0; c < rvd->vdev_children; c++) {
1645 vdev_t *tvd = rvd->vdev_child[c];
1646 vdev_t *mtvd = mrvd->vdev_child[c];
1647
1648 /*
1649 * Resolve any "missing" vdevs in the current configuration.
1650 * If we find that the MOS config has more accurate information
1651 * about the top-level vdev then use that vdev instead.
1652 */
1653 if (tvd->vdev_ops == &vdev_missing_ops &&
1654 mtvd->vdev_ops != &vdev_missing_ops) {
1655
1656 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1657 continue;
1658
1659 /*
1660 * Device specific actions.
1661 */
1662 if (mtvd->vdev_islog) {
1663 spa_set_log_state(spa, SPA_LOG_CLEAR);
1664 } else {
1665 /*
1666 * XXX - once we have 'readonly' pool
1667 * support we should be able to handle
1668 * missing data devices by transitioning
1669 * the pool to readonly.
1670 */
1671 continue;
1672 }
1673
1674 /*
1675 * Swap the missing vdev with the data we were
1676 * able to obtain from the MOS config.
1677 */
1678 vdev_remove_child(rvd, tvd);
1679 vdev_remove_child(mrvd, mtvd);
1680
1681 vdev_add_child(rvd, mtvd);
1682 vdev_add_child(mrvd, tvd);
1683
1684 spa_config_exit(spa, SCL_ALL, FTAG);
1685 vdev_load(mtvd);
1686 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1687
1688 vdev_reopen(rvd);
1689 } else if (mtvd->vdev_islog) {
1690 /*
1691 * Load the slog device's state from the MOS config
1692 * since it's possible that the label does not
1693 * contain the most up-to-date information.
1694 */
1695 vdev_load_log_state(tvd, mtvd);
1696 vdev_reopen(tvd);
1697 }
1698 }
1699 vdev_free(mrvd);
1700 spa_config_exit(spa, SCL_ALL, FTAG);
1701
1702 /*
1703 * Ensure we were able to validate the config.
1704 */
1705 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1706 }
1707
1708 /*
1709 * Check for missing log devices
1710 */
1711 static boolean_t
1712 spa_check_logs(spa_t *spa)
1713 {
1714 boolean_t rv = B_FALSE;
1715 dsl_pool_t *dp = spa_get_dsl(spa);
1716
1717 switch (spa->spa_log_state) {
1718 case SPA_LOG_MISSING:
1719 /* need to recheck in case slog has been restored */
1720 case SPA_LOG_UNKNOWN:
1721 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1722 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1723 if (rv)
1724 spa_set_log_state(spa, SPA_LOG_MISSING);
1725 break;
1726 }
1727 return (rv);
1728 }
1729
1730 static boolean_t
1731 spa_passivate_log(spa_t *spa)
1732 {
1733 vdev_t *rvd = spa->spa_root_vdev;
1734 boolean_t slog_found = B_FALSE;
1735
1736 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1737
1738 if (!spa_has_slogs(spa))
1739 return (B_FALSE);
1740
1741 for (int c = 0; c < rvd->vdev_children; c++) {
1742 vdev_t *tvd = rvd->vdev_child[c];
1743 metaslab_group_t *mg = tvd->vdev_mg;
1744
1745 if (tvd->vdev_islog) {
1746 metaslab_group_passivate(mg);
1747 slog_found = B_TRUE;
1748 }
1749 }
1750
1751 return (slog_found);
1752 }
1753
1754 static void
1755 spa_activate_log(spa_t *spa)
1756 {
1757 vdev_t *rvd = spa->spa_root_vdev;
1758
1759 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1760
1761 for (int c = 0; c < rvd->vdev_children; c++) {
1762 vdev_t *tvd = rvd->vdev_child[c];
1763 metaslab_group_t *mg = tvd->vdev_mg;
1764
1765 if (tvd->vdev_islog)
1766 metaslab_group_activate(mg);
1767 }
1768 }
1769
1770 int
1771 spa_offline_log(spa_t *spa)
1772 {
1773 int error;
1774
1775 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1776 NULL, DS_FIND_CHILDREN);
1777 if (error == 0) {
1778 /*
1779 * We successfully offlined the log device, sync out the
1780 * current txg so that the "stubby" block can be removed
1781 * by zil_sync().
1782 */
1783 txg_wait_synced(spa->spa_dsl_pool, 0);
1784 }
1785 return (error);
1786 }
1787
1788 static void
1789 spa_aux_check_removed(spa_aux_vdev_t *sav)
1790 {
1791 for (int i = 0; i < sav->sav_count; i++)
1792 spa_check_removed(sav->sav_vdevs[i]);
1793 }
1794
1795 void
1796 spa_claim_notify(zio_t *zio)
1797 {
1798 spa_t *spa = zio->io_spa;
1799
1800 if (zio->io_error)
1801 return;
1802
1803 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1804 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1805 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1806 mutex_exit(&spa->spa_props_lock);
1807 }
1808
1809 typedef struct spa_load_error {
1810 uint64_t sle_meta_count;
1811 uint64_t sle_data_count;
1812 } spa_load_error_t;
1813
1814 static void
1815 spa_load_verify_done(zio_t *zio)
1816 {
1817 blkptr_t *bp = zio->io_bp;
1818 spa_load_error_t *sle = zio->io_private;
1819 dmu_object_type_t type = BP_GET_TYPE(bp);
1820 int error = zio->io_error;
1821
1822 if (error) {
1823 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1824 type != DMU_OT_INTENT_LOG)
1825 atomic_add_64(&sle->sle_meta_count, 1);
1826 else
1827 atomic_add_64(&sle->sle_data_count, 1);
1828 }
1829 zio_data_buf_free(zio->io_data, zio->io_size);
1830 }
1831
1832 /*ARGSUSED*/
1833 static int
1834 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1835 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1836 {
1837 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
1838 zio_t *rio = arg;
1839 size_t size = BP_GET_PSIZE(bp);
1840 void *data = zio_data_buf_alloc(size);
1841
1842 zio_nowait(zio_read(rio, spa, bp, data, size,
1843 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1844 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1845 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1846 }
1847 return (0);
1848 }
1849
1850 static int
1851 spa_load_verify(spa_t *spa)
1852 {
1853 zio_t *rio;
1854 spa_load_error_t sle = { 0 };
1855 zpool_rewind_policy_t policy;
1856 boolean_t verify_ok = B_FALSE;
1857 int error;
1858
1859 zpool_get_rewind_policy(spa->spa_config, &policy);
1860
1861 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1862 return (0);
1863
1864 rio = zio_root(spa, NULL, &sle,
1865 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1866
1867 error = traverse_pool(spa, spa->spa_verify_min_txg,
1868 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1869
1870 (void) zio_wait(rio);
1871
1872 spa->spa_load_meta_errors = sle.sle_meta_count;
1873 spa->spa_load_data_errors = sle.sle_data_count;
1874
1875 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1876 sle.sle_data_count <= policy.zrp_maxdata) {
1877 int64_t loss = 0;
1878
1879 verify_ok = B_TRUE;
1880 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1881 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1882
1883 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1884 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1885 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1886 VERIFY(nvlist_add_int64(spa->spa_load_info,
1887 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1888 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1889 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1890 } else {
1891 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1892 }
1893
1894 if (error) {
1895 if (error != ENXIO && error != EIO)
1896 error = SET_ERROR(EIO);
1897 return (error);
1898 }
1899
1900 return (verify_ok ? 0 : EIO);
1901 }
1902
1903 /*
1904 * Find a value in the pool props object.
1905 */
1906 static void
1907 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1908 {
1909 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1910 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1911 }
1912
1913 /*
1914 * Find a value in the pool directory object.
1915 */
1916 static int
1917 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1918 {
1919 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1920 name, sizeof (uint64_t), 1, val));
1921 }
1922
1923 static int
1924 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1925 {
1926 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1927 return (err);
1928 }
1929
1930 /*
1931 * Fix up config after a partly-completed split. This is done with the
1932 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1933 * pool have that entry in their config, but only the splitting one contains
1934 * a list of all the guids of the vdevs that are being split off.
1935 *
1936 * This function determines what to do with that list: either rejoin
1937 * all the disks to the pool, or complete the splitting process. To attempt
1938 * the rejoin, each disk that is offlined is marked online again, and
1939 * we do a reopen() call. If the vdev label for every disk that was
1940 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1941 * then we call vdev_split() on each disk, and complete the split.
1942 *
1943 * Otherwise we leave the config alone, with all the vdevs in place in
1944 * the original pool.
1945 */
1946 static void
1947 spa_try_repair(spa_t *spa, nvlist_t *config)
1948 {
1949 uint_t extracted;
1950 uint64_t *glist;
1951 uint_t i, gcount;
1952 nvlist_t *nvl;
1953 vdev_t **vd;
1954 boolean_t attempt_reopen;
1955
1956 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1957 return;
1958
1959 /* check that the config is complete */
1960 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1961 &glist, &gcount) != 0)
1962 return;
1963
1964 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1965
1966 /* attempt to online all the vdevs & validate */
1967 attempt_reopen = B_TRUE;
1968 for (i = 0; i < gcount; i++) {
1969 if (glist[i] == 0) /* vdev is hole */
1970 continue;
1971
1972 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1973 if (vd[i] == NULL) {
1974 /*
1975 * Don't bother attempting to reopen the disks;
1976 * just do the split.
1977 */
1978 attempt_reopen = B_FALSE;
1979 } else {
1980 /* attempt to re-online it */
1981 vd[i]->vdev_offline = B_FALSE;
1982 }
1983 }
1984
1985 if (attempt_reopen) {
1986 vdev_reopen(spa->spa_root_vdev);
1987
1988 /* check each device to see what state it's in */
1989 for (extracted = 0, i = 0; i < gcount; i++) {
1990 if (vd[i] != NULL &&
1991 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1992 break;
1993 ++extracted;
1994 }
1995 }
1996
1997 /*
1998 * If every disk has been moved to the new pool, or if we never
1999 * even attempted to look at them, then we split them off for
2000 * good.
2001 */
2002 if (!attempt_reopen || gcount == extracted) {
2003 for (i = 0; i < gcount; i++)
2004 if (vd[i] != NULL)
2005 vdev_split(vd[i]);
2006 vdev_reopen(spa->spa_root_vdev);
2007 }
2008
2009 kmem_free(vd, gcount * sizeof (vdev_t *));
2010 }
2011
2012 static int
2013 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2014 boolean_t mosconfig)
2015 {
2016 nvlist_t *config = spa->spa_config;
2017 char *ereport = FM_EREPORT_ZFS_POOL;
2018 char *comment;
2019 int error;
2020 uint64_t pool_guid;
2021 nvlist_t *nvl;
2022
2023 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2024 return (SET_ERROR(EINVAL));
2025
2026 ASSERT(spa->spa_comment == NULL);
2027 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2028 spa->spa_comment = spa_strdup(comment);
2029
2030 /*
2031 * Versioning wasn't explicitly added to the label until later, so if
2032 * it's not present treat it as the initial version.
2033 */
2034 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2035 &spa->spa_ubsync.ub_version) != 0)
2036 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2037
2038 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2039 &spa->spa_config_txg);
2040
2041 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2042 spa_guid_exists(pool_guid, 0)) {
2043 error = SET_ERROR(EEXIST);
2044 } else {
2045 spa->spa_config_guid = pool_guid;
2046
2047 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2048 &nvl) == 0) {
2049 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2050 KM_SLEEP) == 0);
2051 }
2052
2053 nvlist_free(spa->spa_load_info);
2054 spa->spa_load_info = fnvlist_alloc();
2055
2056 gethrestime(&spa->spa_loaded_ts);
2057 error = spa_load_impl(spa, pool_guid, config, state, type,
2058 mosconfig, &ereport);
2059 }
2060
2061 spa->spa_minref = refcount_count(&spa->spa_refcount);
2062 if (error) {
2063 if (error != EEXIST) {
2064 spa->spa_loaded_ts.tv_sec = 0;
2065 spa->spa_loaded_ts.tv_nsec = 0;
2066 }
2067 if (error != EBADF) {
2068 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2069 }
2070 }
2071 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2072 spa->spa_ena = 0;
2073
2074 return (error);
2075 }
2076
2077 /*
2078 * Load an existing storage pool, using the pool's builtin spa_config as a
2079 * source of configuration information.
2080 */
2081 static int
2082 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2083 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2084 char **ereport)
2085 {
2086 int error = 0;
2087 nvlist_t *nvroot = NULL;
2088 nvlist_t *label;
2089 vdev_t *rvd;
2090 uberblock_t *ub = &spa->spa_uberblock;
2091 uint64_t children, config_cache_txg = spa->spa_config_txg;
2092 int orig_mode = spa->spa_mode;
2093 int parse;
2094 uint64_t obj;
2095 boolean_t missing_feat_write = B_FALSE;
2096 /*
2097 * If this is an untrusted config, access the pool in read-only mode.
2098 * This prevents things like resilvering recently removed devices.
2099 */
2100 if (!mosconfig)
2101 spa->spa_mode = FREAD;
2102
2103 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2104
2105 spa->spa_load_state = state;
2106
2107 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2108 return (SET_ERROR(EINVAL));
2109
2110 parse = (type == SPA_IMPORT_EXISTING ?
2111 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2112
2113 /*
2114 * Create "The Godfather" zio to hold all async IOs
2115 */
2116 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2117 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2118
2119 /*
2120 * Parse the configuration into a vdev tree. We explicitly set the
2121 * value that will be returned by spa_version() since parsing the
2122 * configuration requires knowing the version number.
2123 */
2124 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2125 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2126 spa_config_exit(spa, SCL_ALL, FTAG);
2127
2128 if (error != 0)
2129 return (error);
2130
2131 ASSERT(spa->spa_root_vdev == rvd);
2132
2133 if (type != SPA_IMPORT_ASSEMBLE) {
2134 ASSERT(spa_guid(spa) == pool_guid);
2135 }
2136
2137 /*
2138 * Try to open all vdevs, loading each label in the process.
2139 */
2140 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2141 error = vdev_open(rvd);
2142 spa_config_exit(spa, SCL_ALL, FTAG);
2143 if (error != 0)
2144 return (error);
2145
2146 /*
2147 * We need to validate the vdev labels against the configuration that
2148 * we have in hand, which is dependent on the setting of mosconfig. If
2149 * mosconfig is true then we're validating the vdev labels based on
2150 * that config. Otherwise, we're validating against the cached config
2151 * (zpool.cache) that was read when we loaded the zfs module, and then
2152 * later we will recursively call spa_load() and validate against
2153 * the vdev config.
2154 *
2155 * If we're assembling a new pool that's been split off from an
2156 * existing pool, the labels haven't yet been updated so we skip
2157 * validation for now.
2158 */
2159 if (type != SPA_IMPORT_ASSEMBLE) {
2160 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2161 error = vdev_validate(rvd, mosconfig);
2162 spa_config_exit(spa, SCL_ALL, FTAG);
2163
2164 if (error != 0)
2165 return (error);
2166
2167 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2168 return (SET_ERROR(ENXIO));
2169 }
2170
2171 /*
2172 * Find the best uberblock.
2173 */
2174 vdev_uberblock_load(rvd, ub, &label);
2175
2176 /*
2177 * If we weren't able to find a single valid uberblock, return failure.
2178 */
2179 if (ub->ub_txg == 0) {
2180 nvlist_free(label);
2181 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2182 }
2183
2184 /*
2185 * If the pool has an unsupported version we can't open it.
2186 */
2187 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2188 nvlist_free(label);
2189 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2190 }
2191
2192 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2193 nvlist_t *features;
2194
2195 /*
2196 * If we weren't able to find what's necessary for reading the
2197 * MOS in the label, return failure.
2198 */
2199 if (label == NULL || nvlist_lookup_nvlist(label,
2200 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2201 nvlist_free(label);
2202 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2203 ENXIO));
2204 }
2205
2206 /*
2207 * Update our in-core representation with the definitive values
2208 * from the label.
2209 */
2210 nvlist_free(spa->spa_label_features);
2211 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2212 }
2213
2214 nvlist_free(label);
2215
2216 /*
2217 * Look through entries in the label nvlist's features_for_read. If
2218 * there is a feature listed there which we don't understand then we
2219 * cannot open a pool.
2220 */
2221 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2222 nvlist_t *unsup_feat;
2223
2224 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2225 0);
2226
2227 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2228 NULL); nvp != NULL;
2229 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2230 if (!zfeature_is_supported(nvpair_name(nvp))) {
2231 VERIFY(nvlist_add_string(unsup_feat,
2232 nvpair_name(nvp), "") == 0);
2233 }
2234 }
2235
2236 if (!nvlist_empty(unsup_feat)) {
2237 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2238 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2239 nvlist_free(unsup_feat);
2240 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2241 ENOTSUP));
2242 }
2243
2244 nvlist_free(unsup_feat);
2245 }
2246
2247 /*
2248 * If the vdev guid sum doesn't match the uberblock, we have an
2249 * incomplete configuration. We first check to see if the pool
2250 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2251 * If it is, defer the vdev_guid_sum check till later so we
2252 * can handle missing vdevs.
2253 */
2254 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2255 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2256 rvd->vdev_guid_sum != ub->ub_guid_sum)
2257 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2258
2259 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2260 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2261 spa_try_repair(spa, config);
2262 spa_config_exit(spa, SCL_ALL, FTAG);
2263 nvlist_free(spa->spa_config_splitting);
2264 spa->spa_config_splitting = NULL;
2265 }
2266
2267 /*
2268 * Initialize internal SPA structures.
2269 */
2270 spa->spa_state = POOL_STATE_ACTIVE;
2271 spa->spa_ubsync = spa->spa_uberblock;
2272 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2273 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2274 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2275 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2276 spa->spa_claim_max_txg = spa->spa_first_txg;
2277 spa->spa_prev_software_version = ub->ub_software_version;
2278
2279 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2280 if (error)
2281 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2282 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2283
2284 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2285 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2286
2287 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2288 boolean_t missing_feat_read = B_FALSE;
2289 nvlist_t *unsup_feat, *enabled_feat;
2290
2291 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2292 &spa->spa_feat_for_read_obj) != 0) {
2293 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2294 }
2295
2296 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2297 &spa->spa_feat_for_write_obj) != 0) {
2298 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2299 }
2300
2301 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2302 &spa->spa_feat_desc_obj) != 0) {
2303 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2304 }
2305
2306 enabled_feat = fnvlist_alloc();
2307 unsup_feat = fnvlist_alloc();
2308
2309 if (!spa_features_check(spa, B_FALSE,
2310 unsup_feat, enabled_feat))
2311 missing_feat_read = B_TRUE;
2312
2313 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2314 if (!spa_features_check(spa, B_TRUE,
2315 unsup_feat, enabled_feat)) {
2316 missing_feat_write = B_TRUE;
2317 }
2318 }
2319
2320 fnvlist_add_nvlist(spa->spa_load_info,
2321 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2322
2323 if (!nvlist_empty(unsup_feat)) {
2324 fnvlist_add_nvlist(spa->spa_load_info,
2325 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2326 }
2327
2328 fnvlist_free(enabled_feat);
2329 fnvlist_free(unsup_feat);
2330
2331 if (!missing_feat_read) {
2332 fnvlist_add_boolean(spa->spa_load_info,
2333 ZPOOL_CONFIG_CAN_RDONLY);
2334 }
2335
2336 /*
2337 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2338 * twofold: to determine whether the pool is available for
2339 * import in read-write mode and (if it is not) whether the
2340 * pool is available for import in read-only mode. If the pool
2341 * is available for import in read-write mode, it is displayed
2342 * as available in userland; if it is not available for import
2343 * in read-only mode, it is displayed as unavailable in
2344 * userland. If the pool is available for import in read-only
2345 * mode but not read-write mode, it is displayed as unavailable
2346 * in userland with a special note that the pool is actually
2347 * available for open in read-only mode.
2348 *
2349 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2350 * missing a feature for write, we must first determine whether
2351 * the pool can be opened read-only before returning to
2352 * userland in order to know whether to display the
2353 * abovementioned note.
2354 */
2355 if (missing_feat_read || (missing_feat_write &&
2356 spa_writeable(spa))) {
2357 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2358 ENOTSUP));
2359 }
2360
2361 /*
2362 * Load refcounts for ZFS features from disk into an in-memory
2363 * cache during SPA initialization.
2364 */
2365 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2366 uint64_t refcount;
2367
2368 error = feature_get_refcount_from_disk(spa,
2369 &spa_feature_table[i], &refcount);
2370 if (error == 0) {
2371 spa->spa_feat_refcount_cache[i] = refcount;
2372 } else if (error == ENOTSUP) {
2373 spa->spa_feat_refcount_cache[i] =
2374 SPA_FEATURE_DISABLED;
2375 } else {
2376 return (spa_vdev_err(rvd,
2377 VDEV_AUX_CORRUPT_DATA, EIO));
2378 }
2379 }
2380 }
2381
2382 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2383 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2384 &spa->spa_feat_enabled_txg_obj) != 0)
2385 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2386 }
2387
2388 spa->spa_is_initializing = B_TRUE;
2389 error = dsl_pool_open(spa->spa_dsl_pool);
2390 spa->spa_is_initializing = B_FALSE;
2391 if (error != 0)
2392 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2393
2394 if (!mosconfig) {
2395 uint64_t hostid;
2396 nvlist_t *policy = NULL, *nvconfig;
2397
2398 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2399 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2400
2401 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2402 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2403 char *hostname;
2404 unsigned long myhostid = 0;
2405
2406 VERIFY(nvlist_lookup_string(nvconfig,
2407 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2408
2409 #ifdef _KERNEL
2410 myhostid = zone_get_hostid(NULL);
2411 #else /* _KERNEL */
2412 /*
2413 * We're emulating the system's hostid in userland, so
2414 * we can't use zone_get_hostid().
2415 */
2416 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2417 #endif /* _KERNEL */
2418 if (hostid != 0 && myhostid != 0 &&
2419 hostid != myhostid) {
2420 nvlist_free(nvconfig);
2421 cmn_err(CE_WARN, "pool '%s' could not be "
2422 "loaded as it was last accessed by "
2423 "another system (host: %s hostid: 0x%lx). "
2424 "See: http://illumos.org/msg/ZFS-8000-EY",
2425 spa_name(spa), hostname,
2426 (unsigned long)hostid);
2427 return (SET_ERROR(EBADF));
2428 }
2429 }
2430 if (nvlist_lookup_nvlist(spa->spa_config,
2431 ZPOOL_REWIND_POLICY, &policy) == 0)
2432 VERIFY(nvlist_add_nvlist(nvconfig,
2433 ZPOOL_REWIND_POLICY, policy) == 0);
2434
2435 spa_config_set(spa, nvconfig);
2436 spa_unload(spa);
2437 spa_deactivate(spa);
2438 spa_activate(spa, orig_mode);
2439
2440 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2441 }
2442
2443 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2444 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2445 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2446 if (error != 0)
2447 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2448
2449 /*
2450 * Load the bit that tells us to use the new accounting function
2451 * (raid-z deflation). If we have an older pool, this will not
2452 * be present.
2453 */
2454 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2455 if (error != 0 && error != ENOENT)
2456 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2457
2458 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2459 &spa->spa_creation_version);
2460 if (error != 0 && error != ENOENT)
2461 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2462
2463 /*
2464 * Load the persistent error log. If we have an older pool, this will
2465 * not be present.
2466 */
2467 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2468 if (error != 0 && error != ENOENT)
2469 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2470
2471 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2472 &spa->spa_errlog_scrub);
2473 if (error != 0 && error != ENOENT)
2474 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2475
2476 /*
2477 * Load the history object. If we have an older pool, this
2478 * will not be present.
2479 */
2480 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2481 if (error != 0 && error != ENOENT)
2482 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2483
2484 /*
2485 * If we're assembling the pool from the split-off vdevs of
2486 * an existing pool, we don't want to attach the spares & cache
2487 * devices.
2488 */
2489
2490 /*
2491 * Load any hot spares for this pool.
2492 */
2493 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2494 if (error != 0 && error != ENOENT)
2495 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2496 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2497 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2498 if (load_nvlist(spa, spa->spa_spares.sav_object,
2499 &spa->spa_spares.sav_config) != 0)
2500 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2501
2502 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2503 spa_load_spares(spa);
2504 spa_config_exit(spa, SCL_ALL, FTAG);
2505 } else if (error == 0) {
2506 spa->spa_spares.sav_sync = B_TRUE;
2507 }
2508
2509 /*
2510 * Load any level 2 ARC devices for this pool.
2511 */
2512 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2513 &spa->spa_l2cache.sav_object);
2514 if (error != 0 && error != ENOENT)
2515 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2516 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2517 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2518 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2519 &spa->spa_l2cache.sav_config) != 0)
2520 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2521
2522 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2523 spa_load_l2cache(spa);
2524 spa_config_exit(spa, SCL_ALL, FTAG);
2525 } else if (error == 0) {
2526 spa->spa_l2cache.sav_sync = B_TRUE;
2527 }
2528
2529 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2530
2531 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2532 if (error && error != ENOENT)
2533 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2534
2535 if (error == 0) {
2536 uint64_t autoreplace;
2537
2538 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2539 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2540 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2541 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2542 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2543 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2544 &spa->spa_dedup_ditto);
2545
2546 spa->spa_autoreplace = (autoreplace != 0);
2547 }
2548
2549 /*
2550 * If the 'autoreplace' property is set, then post a resource notifying
2551 * the ZFS DE that it should not issue any faults for unopenable
2552 * devices. We also iterate over the vdevs, and post a sysevent for any
2553 * unopenable vdevs so that the normal autoreplace handler can take
2554 * over.
2555 */
2556 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2557 spa_check_removed(spa->spa_root_vdev);
2558 /*
2559 * For the import case, this is done in spa_import(), because
2560 * at this point we're using the spare definitions from
2561 * the MOS config, not necessarily from the userland config.
2562 */
2563 if (state != SPA_LOAD_IMPORT) {
2564 spa_aux_check_removed(&spa->spa_spares);
2565 spa_aux_check_removed(&spa->spa_l2cache);
2566 }
2567 }
2568
2569 /*
2570 * Load the vdev state for all toplevel vdevs.
2571 */
2572 vdev_load(rvd);
2573
2574 /*
2575 * Propagate the leaf DTLs we just loaded all the way up the tree.
2576 */
2577 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2578 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2579 spa_config_exit(spa, SCL_ALL, FTAG);
2580
2581 /*
2582 * Load the DDTs (dedup tables).
2583 */
2584 error = ddt_load(spa);
2585 if (error != 0)
2586 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2587
2588 spa_update_dspace(spa);
2589
2590 /*
2591 * Validate the config, using the MOS config to fill in any
2592 * information which might be missing. If we fail to validate
2593 * the config then declare the pool unfit for use. If we're
2594 * assembling a pool from a split, the log is not transferred
2595 * over.
2596 */
2597 if (type != SPA_IMPORT_ASSEMBLE) {
2598 nvlist_t *nvconfig;
2599
2600 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2601 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2602
2603 if (!spa_config_valid(spa, nvconfig)) {
2604 nvlist_free(nvconfig);
2605 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2606 ENXIO));
2607 }
2608 nvlist_free(nvconfig);
2609
2610 /*
2611 * Now that we've validated the config, check the state of the
2612 * root vdev. If it can't be opened, it indicates one or
2613 * more toplevel vdevs are faulted.
2614 */
2615 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2616 return (SET_ERROR(ENXIO));
2617
2618 if (spa_check_logs(spa)) {
2619 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2620 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2621 }
2622 }
2623
2624 if (missing_feat_write) {
2625 ASSERT(state == SPA_LOAD_TRYIMPORT);
2626
2627 /*
2628 * At this point, we know that we can open the pool in
2629 * read-only mode but not read-write mode. We now have enough
2630 * information and can return to userland.
2631 */
2632 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2633 }
2634
2635 /*
2636 * We've successfully opened the pool, verify that we're ready
2637 * to start pushing transactions.
2638 */
2639 if (state != SPA_LOAD_TRYIMPORT) {
2640 if (error = spa_load_verify(spa))
2641 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2642 error));
2643 }
2644
2645 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2646 spa->spa_load_max_txg == UINT64_MAX)) {
2647 dmu_tx_t *tx;
2648 int need_update = B_FALSE;
2649 dsl_pool_t *dp = spa_get_dsl(spa);
2650
2651 ASSERT(state != SPA_LOAD_TRYIMPORT);
2652
2653 /*
2654 * Claim log blocks that haven't been committed yet.
2655 * This must all happen in a single txg.
2656 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2657 * invoked from zil_claim_log_block()'s i/o done callback.
2658 * Price of rollback is that we abandon the log.
2659 */
2660 spa->spa_claiming = B_TRUE;
2661
2662 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2663 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2664 zil_claim, tx, DS_FIND_CHILDREN);
2665 dmu_tx_commit(tx);
2666
2667 spa->spa_claiming = B_FALSE;
2668
2669 spa_set_log_state(spa, SPA_LOG_GOOD);
2670 spa->spa_sync_on = B_TRUE;
2671 txg_sync_start(spa->spa_dsl_pool);
2672
2673 /*
2674 * Wait for all claims to sync. We sync up to the highest
2675 * claimed log block birth time so that claimed log blocks
2676 * don't appear to be from the future. spa_claim_max_txg
2677 * will have been set for us by either zil_check_log_chain()
2678 * (invoked from spa_check_logs()) or zil_claim() above.
2679 */
2680 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2681
2682 /*
2683 * If the config cache is stale, or we have uninitialized
2684 * metaslabs (see spa_vdev_add()), then update the config.
2685 *
2686 * If this is a verbatim import, trust the current
2687 * in-core spa_config and update the disk labels.
2688 */
2689 if (config_cache_txg != spa->spa_config_txg ||
2690 state == SPA_LOAD_IMPORT ||
2691 state == SPA_LOAD_RECOVER ||
2692 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2693 need_update = B_TRUE;
2694
2695 for (int c = 0; c < rvd->vdev_children; c++)
2696 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2697 need_update = B_TRUE;
2698
2699 /*
2700 * Update the config cache asychronously in case we're the
2701 * root pool, in which case the config cache isn't writable yet.
2702 */
2703 if (need_update)
2704 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2705
2706 /*
2707 * Check all DTLs to see if anything needs resilvering.
2708 */
2709 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2710 vdev_resilver_needed(rvd, NULL, NULL))
2711 spa_async_request(spa, SPA_ASYNC_RESILVER);
2712
2713 /*
2714 * Log the fact that we booted up (so that we can detect if
2715 * we rebooted in the middle of an operation).
2716 */
2717 spa_history_log_version(spa, "open");
2718
2719 /*
2720 * Delete any inconsistent datasets.
2721 */
2722 (void) dmu_objset_find(spa_name(spa),
2723 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2724
2725 /*
2726 * Clean up any stale temporary dataset userrefs.
2727 */
2728 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2729 }
2730
2731 return (0);
2732 }
2733
2734 static int
2735 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2736 {
2737 int mode = spa->spa_mode;
2738
2739 spa_unload(spa);
2740 spa_deactivate(spa);
2741
2742 spa->spa_load_max_txg--;
2743
2744 spa_activate(spa, mode);
2745 spa_async_suspend(spa);
2746
2747 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2748 }
2749
2750 /*
2751 * If spa_load() fails this function will try loading prior txg's. If
2752 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2753 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2754 * function will not rewind the pool and will return the same error as
2755 * spa_load().
2756 */
2757 static int
2758 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2759 uint64_t max_request, int rewind_flags)
2760 {
2761 nvlist_t *loadinfo = NULL;
2762 nvlist_t *config = NULL;
2763 int load_error, rewind_error;
2764 uint64_t safe_rewind_txg;
2765 uint64_t min_txg;
2766
2767 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2768 spa->spa_load_max_txg = spa->spa_load_txg;
2769 spa_set_log_state(spa, SPA_LOG_CLEAR);
2770 } else {
2771 spa->spa_load_max_txg = max_request;
2772 }
2773
2774 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2775 mosconfig);
2776 if (load_error == 0)
2777 return (0);
2778
2779 if (spa->spa_root_vdev != NULL)
2780 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2781
2782 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2783 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2784
2785 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2786 nvlist_free(config);
2787 return (load_error);
2788 }
2789
2790 if (state == SPA_LOAD_RECOVER) {
2791 /* Price of rolling back is discarding txgs, including log */
2792 spa_set_log_state(spa, SPA_LOG_CLEAR);
2793 } else {
2794 /*
2795 * If we aren't rolling back save the load info from our first
2796 * import attempt so that we can restore it after attempting
2797 * to rewind.
2798 */
2799 loadinfo = spa->spa_load_info;
2800 spa->spa_load_info = fnvlist_alloc();
2801 }
2802
2803 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2804 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2805 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2806 TXG_INITIAL : safe_rewind_txg;
2807
2808 /*
2809 * Continue as long as we're finding errors, we're still within
2810 * the acceptable rewind range, and we're still finding uberblocks
2811 */
2812 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2813 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2814 if (spa->spa_load_max_txg < safe_rewind_txg)
2815 spa->spa_extreme_rewind = B_TRUE;
2816 rewind_error = spa_load_retry(spa, state, mosconfig);
2817 }
2818
2819 spa->spa_extreme_rewind = B_FALSE;
2820 spa->spa_load_max_txg = UINT64_MAX;
2821
2822 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2823 spa_config_set(spa, config);
2824
2825 if (state == SPA_LOAD_RECOVER) {
2826 ASSERT3P(loadinfo, ==, NULL);
2827 return (rewind_error);
2828 } else {
2829 /* Store the rewind info as part of the initial load info */
2830 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2831 spa->spa_load_info);
2832
2833 /* Restore the initial load info */
2834 fnvlist_free(spa->spa_load_info);
2835 spa->spa_load_info = loadinfo;
2836
2837 return (load_error);
2838 }
2839 }
2840
2841 /*
2842 * Pool Open/Import
2843 *
2844 * The import case is identical to an open except that the configuration is sent
2845 * down from userland, instead of grabbed from the configuration cache. For the
2846 * case of an open, the pool configuration will exist in the
2847 * POOL_STATE_UNINITIALIZED state.
2848 *
2849 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2850 * the same time open the pool, without having to keep around the spa_t in some
2851 * ambiguous state.
2852 */
2853 static int
2854 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2855 nvlist_t **config)
2856 {
2857 spa_t *spa;
2858 spa_load_state_t state = SPA_LOAD_OPEN;
2859 int error;
2860 int locked = B_FALSE;
2861
2862 *spapp = NULL;
2863
2864 /*
2865 * As disgusting as this is, we need to support recursive calls to this
2866 * function because dsl_dir_open() is called during spa_load(), and ends
2867 * up calling spa_open() again. The real fix is to figure out how to
2868 * avoid dsl_dir_open() calling this in the first place.
2869 */
2870 if (mutex_owner(&spa_namespace_lock) != curthread) {
2871 mutex_enter(&spa_namespace_lock);
2872 locked = B_TRUE;
2873 }
2874
2875 if ((spa = spa_lookup(pool)) == NULL) {
2876 if (locked)
2877 mutex_exit(&spa_namespace_lock);
2878 return (SET_ERROR(ENOENT));
2879 }
2880
2881 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2882 zpool_rewind_policy_t policy;
2883
2884 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2885 &policy);
2886 if (policy.zrp_request & ZPOOL_DO_REWIND)
2887 state = SPA_LOAD_RECOVER;
2888
2889 spa_activate(spa, spa_mode_global);
2890
2891 if (state != SPA_LOAD_RECOVER)
2892 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2893
2894 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2895 policy.zrp_request);
2896
2897 if (error == EBADF) {
2898 /*
2899 * If vdev_validate() returns failure (indicated by
2900 * EBADF), it indicates that one of the vdevs indicates
2901 * that the pool has been exported or destroyed. If
2902 * this is the case, the config cache is out of sync and
2903 * we should remove the pool from the namespace.
2904 */
2905 spa_unload(spa);
2906 spa_deactivate(spa);
2907 spa_config_sync(spa, B_TRUE, B_TRUE);
2908 spa_remove(spa);
2909 if (locked)
2910 mutex_exit(&spa_namespace_lock);
2911 return (SET_ERROR(ENOENT));
2912 }
2913
2914 if (error) {
2915 /*
2916 * We can't open the pool, but we still have useful
2917 * information: the state of each vdev after the
2918 * attempted vdev_open(). Return this to the user.
2919 */
2920 if (config != NULL && spa->spa_config) {
2921 VERIFY(nvlist_dup(spa->spa_config, config,
2922 KM_SLEEP) == 0);
2923 VERIFY(nvlist_add_nvlist(*config,
2924 ZPOOL_CONFIG_LOAD_INFO,
2925 spa->spa_load_info) == 0);
2926 }
2927 spa_unload(spa);
2928 spa_deactivate(spa);
2929 spa->spa_last_open_failed = error;
2930 if (locked)
2931 mutex_exit(&spa_namespace_lock);
2932 *spapp = NULL;
2933 return (error);
2934 }
2935 }
2936
2937 spa_open_ref(spa, tag);
2938
2939 if (config != NULL)
2940 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2941
2942 /*
2943 * If we've recovered the pool, pass back any information we
2944 * gathered while doing the load.
2945 */
2946 if (state == SPA_LOAD_RECOVER) {
2947 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2948 spa->spa_load_info) == 0);
2949 }
2950
2951 if (locked) {
2952 spa->spa_last_open_failed = 0;
2953 spa->spa_last_ubsync_txg = 0;
2954 spa->spa_load_txg = 0;
2955 mutex_exit(&spa_namespace_lock);
2956 }
2957
2958 *spapp = spa;
2959
2960 return (0);
2961 }
2962
2963 int
2964 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2965 nvlist_t **config)
2966 {
2967 return (spa_open_common(name, spapp, tag, policy, config));
2968 }
2969
2970 int
2971 spa_open(const char *name, spa_t **spapp, void *tag)
2972 {
2973 return (spa_open_common(name, spapp, tag, NULL, NULL));
2974 }
2975
2976 /*
2977 * Lookup the given spa_t, incrementing the inject count in the process,
2978 * preventing it from being exported or destroyed.
2979 */
2980 spa_t *
2981 spa_inject_addref(char *name)
2982 {
2983 spa_t *spa;
2984
2985 mutex_enter(&spa_namespace_lock);
2986 if ((spa = spa_lookup(name)) == NULL) {
2987 mutex_exit(&spa_namespace_lock);
2988 return (NULL);
2989 }
2990 spa->spa_inject_ref++;
2991 mutex_exit(&spa_namespace_lock);
2992
2993 return (spa);
2994 }
2995
2996 void
2997 spa_inject_delref(spa_t *spa)
2998 {
2999 mutex_enter(&spa_namespace_lock);
3000 spa->spa_inject_ref--;
3001 mutex_exit(&spa_namespace_lock);
3002 }
3003
3004 /*
3005 * Add spares device information to the nvlist.
3006 */
3007 static void
3008 spa_add_spares(spa_t *spa, nvlist_t *config)
3009 {
3010 nvlist_t **spares;
3011 uint_t i, nspares;
3012 nvlist_t *nvroot;
3013 uint64_t guid;
3014 vdev_stat_t *vs;
3015 uint_t vsc;
3016 uint64_t pool;
3017
3018 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3019
3020 if (spa->spa_spares.sav_count == 0)
3021 return;
3022
3023 VERIFY(nvlist_lookup_nvlist(config,
3024 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3025 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3026 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3027 if (nspares != 0) {
3028 VERIFY(nvlist_add_nvlist_array(nvroot,
3029 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3030 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3031 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3032
3033 /*
3034 * Go through and find any spares which have since been
3035 * repurposed as an active spare. If this is the case, update
3036 * their status appropriately.
3037 */
3038 for (i = 0; i < nspares; i++) {
3039 VERIFY(nvlist_lookup_uint64(spares[i],
3040 ZPOOL_CONFIG_GUID, &guid) == 0);
3041 if (spa_spare_exists(guid, &pool, NULL) &&
3042 pool != 0ULL) {
3043 VERIFY(nvlist_lookup_uint64_array(
3044 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3045 (uint64_t **)&vs, &vsc) == 0);
3046 vs->vs_state = VDEV_STATE_CANT_OPEN;
3047 vs->vs_aux = VDEV_AUX_SPARED;
3048 }
3049 }
3050 }
3051 }
3052
3053 /*
3054 * Add l2cache device information to the nvlist, including vdev stats.
3055 */
3056 static void
3057 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3058 {
3059 nvlist_t **l2cache;
3060 uint_t i, j, nl2cache;
3061 nvlist_t *nvroot;
3062 uint64_t guid;
3063 vdev_t *vd;
3064 vdev_stat_t *vs;
3065 uint_t vsc;
3066
3067 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3068
3069 if (spa->spa_l2cache.sav_count == 0)
3070 return;
3071
3072 VERIFY(nvlist_lookup_nvlist(config,
3073 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3074 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3075 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3076 if (nl2cache != 0) {
3077 VERIFY(nvlist_add_nvlist_array(nvroot,
3078 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3079 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3080 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3081
3082 /*
3083 * Update level 2 cache device stats.
3084 */
3085
3086 for (i = 0; i < nl2cache; i++) {
3087 VERIFY(nvlist_lookup_uint64(l2cache[i],
3088 ZPOOL_CONFIG_GUID, &guid) == 0);
3089
3090 vd = NULL;
3091 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3092 if (guid ==
3093 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3094 vd = spa->spa_l2cache.sav_vdevs[j];
3095 break;
3096 }
3097 }
3098 ASSERT(vd != NULL);
3099
3100 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3101 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3102 == 0);
3103 vdev_get_stats(vd, vs);
3104 }
3105 }
3106 }
3107
3108 static void
3109 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3110 {
3111 nvlist_t *features;
3112 zap_cursor_t zc;
3113 zap_attribute_t za;
3114
3115 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3116 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3117
3118 if (spa->spa_feat_for_read_obj != 0) {
3119 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3120 spa->spa_feat_for_read_obj);
3121 zap_cursor_retrieve(&zc, &za) == 0;
3122 zap_cursor_advance(&zc)) {
3123 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3124 za.za_num_integers == 1);
3125 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3126 za.za_first_integer));
3127 }
3128 zap_cursor_fini(&zc);
3129 }
3130
3131 if (spa->spa_feat_for_write_obj != 0) {
3132 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3133 spa->spa_feat_for_write_obj);
3134 zap_cursor_retrieve(&zc, &za) == 0;
3135 zap_cursor_advance(&zc)) {
3136 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3137 za.za_num_integers == 1);
3138 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3139 za.za_first_integer));
3140 }
3141 zap_cursor_fini(&zc);
3142 }
3143
3144 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3145 features) == 0);
3146 nvlist_free(features);
3147 }
3148
3149 int
3150 spa_get_stats(const char *name, nvlist_t **config,
3151 char *altroot, size_t buflen)
3152 {
3153 int error;
3154 spa_t *spa;
3155
3156 *config = NULL;
3157 error = spa_open_common(name, &spa, FTAG, NULL, config);
3158
3159 if (spa != NULL) {
3160 /*
3161 * This still leaves a window of inconsistency where the spares
3162 * or l2cache devices could change and the config would be
3163 * self-inconsistent.
3164 */
3165 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3166
3167 if (*config != NULL) {
3168 uint64_t loadtimes[2];
3169
3170 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3171 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3172 VERIFY(nvlist_add_uint64_array(*config,
3173 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3174
3175 VERIFY(nvlist_add_uint64(*config,
3176 ZPOOL_CONFIG_ERRCOUNT,
3177 spa_get_errlog_size(spa)) == 0);
3178
3179 if (spa_suspended(spa))
3180 VERIFY(nvlist_add_uint64(*config,
3181 ZPOOL_CONFIG_SUSPENDED,
3182 spa->spa_failmode) == 0);
3183
3184 spa_add_spares(spa, *config);
3185 spa_add_l2cache(spa, *config);
3186 spa_add_feature_stats(spa, *config);
3187 }
3188 }
3189
3190 /*
3191 * We want to get the alternate root even for faulted pools, so we cheat
3192 * and call spa_lookup() directly.
3193 */
3194 if (altroot) {
3195 if (spa == NULL) {
3196 mutex_enter(&spa_namespace_lock);
3197 spa = spa_lookup(name);
3198 if (spa)
3199 spa_altroot(spa, altroot, buflen);
3200 else
3201 altroot[0] = '\0';
3202 spa = NULL;
3203 mutex_exit(&spa_namespace_lock);
3204 } else {
3205 spa_altroot(spa, altroot, buflen);
3206 }
3207 }
3208
3209 if (spa != NULL) {
3210 spa_config_exit(spa, SCL_CONFIG, FTAG);
3211 spa_close(spa, FTAG);
3212 }
3213
3214 return (error);
3215 }
3216
3217 /*
3218 * Validate that the auxiliary device array is well formed. We must have an
3219 * array of nvlists, each which describes a valid leaf vdev. If this is an
3220 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3221 * specified, as long as they are well-formed.
3222 */
3223 static int
3224 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3225 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3226 vdev_labeltype_t label)
3227 {
3228 nvlist_t **dev;
3229 uint_t i, ndev;
3230 vdev_t *vd;
3231 int error;
3232
3233 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3234
3235 /*
3236 * It's acceptable to have no devs specified.
3237 */
3238 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3239 return (0);
3240
3241 if (ndev == 0)
3242 return (SET_ERROR(EINVAL));
3243
3244 /*
3245 * Make sure the pool is formatted with a version that supports this
3246 * device type.
3247 */
3248 if (spa_version(spa) < version)
3249 return (SET_ERROR(ENOTSUP));
3250
3251 /*
3252 * Set the pending device list so we correctly handle device in-use
3253 * checking.
3254 */
3255 sav->sav_pending = dev;
3256 sav->sav_npending = ndev;
3257
3258 for (i = 0; i < ndev; i++) {
3259 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3260 mode)) != 0)
3261 goto out;
3262
3263 if (!vd->vdev_ops->vdev_op_leaf) {
3264 vdev_free(vd);
3265 error = SET_ERROR(EINVAL);
3266 goto out;
3267 }
3268
3269 /*
3270 * The L2ARC currently only supports disk devices in
3271 * kernel context. For user-level testing, we allow it.
3272 */
3273 #ifdef _KERNEL
3274 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3275 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3276 error = SET_ERROR(ENOTBLK);
3277 vdev_free(vd);
3278 goto out;
3279 }
3280 #endif
3281 vd->vdev_top = vd;
3282
3283 if ((error = vdev_open(vd)) == 0 &&
3284 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3285 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3286 vd->vdev_guid) == 0);
3287 }
3288
3289 vdev_free(vd);
3290
3291 if (error &&
3292 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3293 goto out;
3294 else
3295 error = 0;
3296 }
3297
3298 out:
3299 sav->sav_pending = NULL;
3300 sav->sav_npending = 0;
3301 return (error);
3302 }
3303
3304 static int
3305 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3306 {
3307 int error;
3308
3309 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3310
3311 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3312 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3313 VDEV_LABEL_SPARE)) != 0) {
3314 return (error);
3315 }
3316
3317 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3318 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3319 VDEV_LABEL_L2CACHE));
3320 }
3321
3322 static void
3323 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3324 const char *config)
3325 {
3326 int i;
3327
3328 if (sav->sav_config != NULL) {
3329 nvlist_t **olddevs;
3330 uint_t oldndevs;
3331 nvlist_t **newdevs;
3332
3333 /*
3334 * Generate new dev list by concatentating with the
3335 * current dev list.
3336 */
3337 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3338 &olddevs, &oldndevs) == 0);
3339
3340 newdevs = kmem_alloc(sizeof (void *) *
3341 (ndevs + oldndevs), KM_SLEEP);
3342 for (i = 0; i < oldndevs; i++)
3343 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3344 KM_SLEEP) == 0);
3345 for (i = 0; i < ndevs; i++)
3346 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3347 KM_SLEEP) == 0);
3348
3349 VERIFY(nvlist_remove(sav->sav_config, config,
3350 DATA_TYPE_NVLIST_ARRAY) == 0);
3351
3352 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3353 config, newdevs, ndevs + oldndevs) == 0);
3354 for (i = 0; i < oldndevs + ndevs; i++)
3355 nvlist_free(newdevs[i]);
3356 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3357 } else {
3358 /*
3359 * Generate a new dev list.
3360 */
3361 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3362 KM_SLEEP) == 0);
3363 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3364 devs, ndevs) == 0);
3365 }
3366 }
3367
3368 /*
3369 * Stop and drop level 2 ARC devices
3370 */
3371 void
3372 spa_l2cache_drop(spa_t *spa)
3373 {
3374 vdev_t *vd;
3375 int i;
3376 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3377
3378 for (i = 0; i < sav->sav_count; i++) {
3379 uint64_t pool;
3380
3381 vd = sav->sav_vdevs[i];
3382 ASSERT(vd != NULL);
3383
3384 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3385 pool != 0ULL && l2arc_vdev_present(vd))
3386 l2arc_remove_vdev(vd);
3387 }
3388 }
3389
3390 /*
3391 * Pool Creation
3392 */
3393 int
3394 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3395 nvlist_t *zplprops)
3396 {
3397 spa_t *spa;
3398 char *altroot = NULL;
3399 vdev_t *rvd;
3400 dsl_pool_t *dp;
3401 dmu_tx_t *tx;
3402 int error = 0;
3403 uint64_t txg = TXG_INITIAL;
3404 nvlist_t **spares, **l2cache;
3405 uint_t nspares, nl2cache;
3406 uint64_t version, obj;
3407 boolean_t has_features;
3408
3409 /*
3410 * If this pool already exists, return failure.
3411 */
3412 mutex_enter(&spa_namespace_lock);
3413 if (spa_lookup(pool) != NULL) {
3414 mutex_exit(&spa_namespace_lock);
3415 return (SET_ERROR(EEXIST));
3416 }
3417
3418 /*
3419 * Allocate a new spa_t structure.
3420 */
3421 (void) nvlist_lookup_string(props,
3422 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3423 spa = spa_add(pool, NULL, altroot);
3424 spa_activate(spa, spa_mode_global);
3425
3426 if (props && (error = spa_prop_validate(spa, props))) {
3427 spa_deactivate(spa);
3428 spa_remove(spa);
3429 mutex_exit(&spa_namespace_lock);
3430 return (error);
3431 }
3432
3433 has_features = B_FALSE;
3434 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3435 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3436 if (zpool_prop_feature(nvpair_name(elem)))
3437 has_features = B_TRUE;
3438 }
3439
3440 if (has_features || nvlist_lookup_uint64(props,
3441 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3442 version = SPA_VERSION;
3443 }
3444 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3445
3446 spa->spa_first_txg = txg;
3447 spa->spa_uberblock.ub_txg = txg - 1;
3448 spa->spa_uberblock.ub_version = version;
3449 spa->spa_ubsync = spa->spa_uberblock;
3450
3451 /*
3452 * Create "The Godfather" zio to hold all async IOs
3453 */
3454 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3455 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3456
3457 /*
3458 * Create the root vdev.
3459 */
3460 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3461
3462 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3463
3464 ASSERT(error != 0 || rvd != NULL);
3465 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3466
3467 if (error == 0 && !zfs_allocatable_devs(nvroot))
3468 error = SET_ERROR(EINVAL);
3469
3470 if (error == 0 &&
3471 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3472 (error = spa_validate_aux(spa, nvroot, txg,
3473 VDEV_ALLOC_ADD)) == 0) {
3474 for (int c = 0; c < rvd->vdev_children; c++) {
3475 vdev_metaslab_set_size(rvd->vdev_child[c]);
3476 vdev_expand(rvd->vdev_child[c], txg);
3477 }
3478 }
3479
3480 spa_config_exit(spa, SCL_ALL, FTAG);
3481
3482 if (error != 0) {
3483 spa_unload(spa);
3484 spa_deactivate(spa);
3485 spa_remove(spa);
3486 mutex_exit(&spa_namespace_lock);
3487 return (error);
3488 }
3489
3490 /*
3491 * Get the list of spares, if specified.
3492 */
3493 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3494 &spares, &nspares) == 0) {
3495 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3496 KM_SLEEP) == 0);
3497 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3498 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3499 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3500 spa_load_spares(spa);
3501 spa_config_exit(spa, SCL_ALL, FTAG);
3502 spa->spa_spares.sav_sync = B_TRUE;
3503 }
3504
3505 /*
3506 * Get the list of level 2 cache devices, if specified.
3507 */
3508 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3509 &l2cache, &nl2cache) == 0) {
3510 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3511 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3512 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3513 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3514 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3515 spa_load_l2cache(spa);
3516 spa_config_exit(spa, SCL_ALL, FTAG);
3517 spa->spa_l2cache.sav_sync = B_TRUE;
3518 }
3519
3520 spa->spa_is_initializing = B_TRUE;
3521 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3522 spa->spa_meta_objset = dp->dp_meta_objset;
3523 spa->spa_is_initializing = B_FALSE;
3524
3525 /*
3526 * Create DDTs (dedup tables).
3527 */
3528 ddt_create(spa);
3529
3530 spa_update_dspace(spa);
3531
3532 tx = dmu_tx_create_assigned(dp, txg);
3533
3534 /*
3535 * Create the pool config object.
3536 */
3537 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3538 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3539 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3540
3541 if (zap_add(spa->spa_meta_objset,
3542 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3543 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3544 cmn_err(CE_PANIC, "failed to add pool config");
3545 }
3546
3547 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3548 spa_feature_create_zap_objects(spa, tx);
3549
3550 if (zap_add(spa->spa_meta_objset,
3551 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3552 sizeof (uint64_t), 1, &version, tx) != 0) {
3553 cmn_err(CE_PANIC, "failed to add pool version");
3554 }
3555
3556 /* Newly created pools with the right version are always deflated. */
3557 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3558 spa->spa_deflate = TRUE;
3559 if (zap_add(spa->spa_meta_objset,
3560 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3561 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3562 cmn_err(CE_PANIC, "failed to add deflate");
3563 }
3564 }
3565
3566 /*
3567 * Create the deferred-free bpobj. Turn off compression
3568 * because sync-to-convergence takes longer if the blocksize
3569 * keeps changing.
3570 */
3571 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3572 dmu_object_set_compress(spa->spa_meta_objset, obj,
3573 ZIO_COMPRESS_OFF, tx);
3574 if (zap_add(spa->spa_meta_objset,
3575 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3576 sizeof (uint64_t), 1, &obj, tx) != 0) {
3577 cmn_err(CE_PANIC, "failed to add bpobj");
3578 }
3579 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3580 spa->spa_meta_objset, obj));
3581
3582 /*
3583 * Create the pool's history object.
3584 */
3585 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3586 spa_history_create_obj(spa, tx);
3587
3588 /*
3589 * Set pool properties.
3590 */
3591 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3592 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3593 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3594 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3595
3596 if (props != NULL) {
3597 spa_configfile_set(spa, props, B_FALSE);
3598 spa_sync_props(props, tx);
3599 }
3600
3601 dmu_tx_commit(tx);
3602
3603 spa->spa_sync_on = B_TRUE;
3604 txg_sync_start(spa->spa_dsl_pool);
3605
3606 /*
3607 * We explicitly wait for the first transaction to complete so that our
3608 * bean counters are appropriately updated.
3609 */
3610 txg_wait_synced(spa->spa_dsl_pool, txg);
3611
3612 spa_config_sync(spa, B_FALSE, B_TRUE);
3613
3614 spa_history_log_version(spa, "create");
3615
3616 spa->spa_minref = refcount_count(&spa->spa_refcount);
3617
3618 mutex_exit(&spa_namespace_lock);
3619
3620 return (0);
3621 }
3622
3623 #ifdef _KERNEL
3624 /*
3625 * Get the root pool information from the root disk, then import the root pool
3626 * during the system boot up time.
3627 */
3628 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3629
3630 static nvlist_t *
3631 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3632 {
3633 nvlist_t *config;
3634 nvlist_t *nvtop, *nvroot;
3635 uint64_t pgid;
3636
3637 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3638 return (NULL);
3639
3640 /*
3641 * Add this top-level vdev to the child array.
3642 */
3643 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3644 &nvtop) == 0);
3645 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3646 &pgid) == 0);
3647 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3648
3649 /*
3650 * Put this pool's top-level vdevs into a root vdev.
3651 */
3652 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3653 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3654 VDEV_TYPE_ROOT) == 0);
3655 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3656 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3657 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3658 &nvtop, 1) == 0);
3659
3660 /*
3661 * Replace the existing vdev_tree with the new root vdev in
3662 * this pool's configuration (remove the old, add the new).
3663 */
3664 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3665 nvlist_free(nvroot);
3666 return (config);
3667 }
3668
3669 /*
3670 * Walk the vdev tree and see if we can find a device with "better"
3671 * configuration. A configuration is "better" if the label on that
3672 * device has a more recent txg.
3673 */
3674 static void
3675 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3676 {
3677 for (int c = 0; c < vd->vdev_children; c++)
3678 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3679
3680 if (vd->vdev_ops->vdev_op_leaf) {
3681 nvlist_t *label;
3682 uint64_t label_txg;
3683
3684 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3685 &label) != 0)
3686 return;
3687
3688 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3689 &label_txg) == 0);
3690
3691 /*
3692 * Do we have a better boot device?
3693 */
3694 if (label_txg > *txg) {
3695 *txg = label_txg;
3696 *avd = vd;
3697 }
3698 nvlist_free(label);
3699 }
3700 }
3701
3702 /*
3703 * Import a root pool.
3704 *
3705 * For x86. devpath_list will consist of devid and/or physpath name of
3706 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3707 * The GRUB "findroot" command will return the vdev we should boot.
3708 *
3709 * For Sparc, devpath_list consists the physpath name of the booting device
3710 * no matter the rootpool is a single device pool or a mirrored pool.
3711 * e.g.
3712 * "/pci@1f,0/ide@d/disk@0,0:a"
3713 */
3714 int
3715 spa_import_rootpool(char *devpath, char *devid)
3716 {
3717 spa_t *spa;
3718 vdev_t *rvd, *bvd, *avd = NULL;
3719 nvlist_t *config, *nvtop;
3720 uint64_t guid, txg;
3721 char *pname;
3722 int error;
3723
3724 /*
3725 * Read the label from the boot device and generate a configuration.
3726 */
3727 config = spa_generate_rootconf(devpath, devid, &guid);
3728 #if defined(_OBP) && defined(_KERNEL)
3729 if (config == NULL) {
3730 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3731 /* iscsi boot */
3732 get_iscsi_bootpath_phy(devpath);
3733 config = spa_generate_rootconf(devpath, devid, &guid);
3734 }
3735 }
3736 #endif
3737 if (config == NULL) {
3738 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3739 devpath);
3740 return (SET_ERROR(EIO));
3741 }
3742
3743 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3744 &pname) == 0);
3745 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3746
3747 mutex_enter(&spa_namespace_lock);
3748 if ((spa = spa_lookup(pname)) != NULL) {
3749 /*
3750 * Remove the existing root pool from the namespace so that we
3751 * can replace it with the correct config we just read in.
3752 */
3753 spa_remove(spa);
3754 }
3755
3756 spa = spa_add(pname, config, NULL);
3757 spa->spa_is_root = B_TRUE;
3758 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3759
3760 /*
3761 * Build up a vdev tree based on the boot device's label config.
3762 */
3763 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3764 &nvtop) == 0);
3765 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3766 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3767 VDEV_ALLOC_ROOTPOOL);
3768 spa_config_exit(spa, SCL_ALL, FTAG);
3769 if (error) {
3770 mutex_exit(&spa_namespace_lock);
3771 nvlist_free(config);
3772 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3773 pname);
3774 return (error);
3775 }
3776
3777 /*
3778 * Get the boot vdev.
3779 */
3780 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3781 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3782 (u_longlong_t)guid);
3783 error = SET_ERROR(ENOENT);
3784 goto out;
3785 }
3786
3787 /*
3788 * Determine if there is a better boot device.
3789 */
3790 avd = bvd;
3791 spa_alt_rootvdev(rvd, &avd, &txg);
3792 if (avd != bvd) {
3793 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3794 "try booting from '%s'", avd->vdev_path);
3795 error = SET_ERROR(EINVAL);
3796 goto out;
3797 }
3798
3799 /*
3800 * If the boot device is part of a spare vdev then ensure that
3801 * we're booting off the active spare.
3802 */
3803 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3804 !bvd->vdev_isspare) {
3805 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3806 "try booting from '%s'",
3807 bvd->vdev_parent->
3808 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3809 error = SET_ERROR(EINVAL);
3810 goto out;
3811 }
3812
3813 error = 0;
3814 out:
3815 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3816 vdev_free(rvd);
3817 spa_config_exit(spa, SCL_ALL, FTAG);
3818 mutex_exit(&spa_namespace_lock);
3819
3820 nvlist_free(config);
3821 return (error);
3822 }
3823
3824 #endif
3825
3826 /*
3827 * Import a non-root pool into the system.
3828 */
3829 int
3830 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3831 {
3832 spa_t *spa;
3833 char *altroot = NULL;
3834 spa_load_state_t state = SPA_LOAD_IMPORT;
3835 zpool_rewind_policy_t policy;
3836 uint64_t mode = spa_mode_global;
3837 uint64_t readonly = B_FALSE;
3838 int error;
3839 nvlist_t *nvroot;
3840 nvlist_t **spares, **l2cache;
3841 uint_t nspares, nl2cache;
3842
3843 /*
3844 * If a pool with this name exists, return failure.
3845 */
3846 mutex_enter(&spa_namespace_lock);
3847 if (spa_lookup(pool) != NULL) {
3848 mutex_exit(&spa_namespace_lock);
3849 return (SET_ERROR(EEXIST));
3850 }
3851
3852 /*
3853 * Create and initialize the spa structure.
3854 */
3855 (void) nvlist_lookup_string(props,
3856 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3857 (void) nvlist_lookup_uint64(props,
3858 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3859 if (readonly)
3860 mode = FREAD;
3861 spa = spa_add(pool, config, altroot);
3862 spa->spa_import_flags = flags;
3863
3864 /*
3865 * Verbatim import - Take a pool and insert it into the namespace
3866 * as if it had been loaded at boot.
3867 */
3868 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3869 if (props != NULL)
3870 spa_configfile_set(spa, props, B_FALSE);
3871
3872 spa_config_sync(spa, B_FALSE, B_TRUE);
3873
3874 mutex_exit(&spa_namespace_lock);
3875 return (0);
3876 }
3877
3878 spa_activate(spa, mode);
3879
3880 /*
3881 * Don't start async tasks until we know everything is healthy.
3882 */
3883 spa_async_suspend(spa);
3884
3885 zpool_get_rewind_policy(config, &policy);
3886 if (policy.zrp_request & ZPOOL_DO_REWIND)
3887 state = SPA_LOAD_RECOVER;
3888
3889 /*
3890 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3891 * because the user-supplied config is actually the one to trust when
3892 * doing an import.
3893 */
3894 if (state != SPA_LOAD_RECOVER)
3895 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3896
3897 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3898 policy.zrp_request);
3899
3900 /*
3901 * Propagate anything learned while loading the pool and pass it
3902 * back to caller (i.e. rewind info, missing devices, etc).
3903 */
3904 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3905 spa->spa_load_info) == 0);
3906
3907 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3908 /*
3909 * Toss any existing sparelist, as it doesn't have any validity
3910 * anymore, and conflicts with spa_has_spare().
3911 */
3912 if (spa->spa_spares.sav_config) {
3913 nvlist_free(spa->spa_spares.sav_config);
3914 spa->spa_spares.sav_config = NULL;
3915 spa_load_spares(spa);
3916 }
3917 if (spa->spa_l2cache.sav_config) {
3918 nvlist_free(spa->spa_l2cache.sav_config);
3919 spa->spa_l2cache.sav_config = NULL;
3920 spa_load_l2cache(spa);
3921 }
3922
3923 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3924 &nvroot) == 0);
3925 if (error == 0)
3926 error = spa_validate_aux(spa, nvroot, -1ULL,
3927 VDEV_ALLOC_SPARE);
3928 if (error == 0)
3929 error = spa_validate_aux(spa, nvroot, -1ULL,
3930 VDEV_ALLOC_L2CACHE);
3931 spa_config_exit(spa, SCL_ALL, FTAG);
3932
3933 if (props != NULL)
3934 spa_configfile_set(spa, props, B_FALSE);
3935
3936 if (error != 0 || (props && spa_writeable(spa) &&
3937 (error = spa_prop_set(spa, props)))) {
3938 spa_unload(spa);
3939 spa_deactivate(spa);
3940 spa_remove(spa);
3941 mutex_exit(&spa_namespace_lock);
3942 return (error);
3943 }
3944
3945 spa_async_resume(spa);
3946
3947 /*
3948 * Override any spares and level 2 cache devices as specified by
3949 * the user, as these may have correct device names/devids, etc.
3950 */
3951 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3952 &spares, &nspares) == 0) {
3953 if (spa->spa_spares.sav_config)
3954 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3955 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3956 else
3957 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3958 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3959 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3960 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3961 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3962 spa_load_spares(spa);
3963 spa_config_exit(spa, SCL_ALL, FTAG);
3964 spa->spa_spares.sav_sync = B_TRUE;
3965 }
3966 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3967 &l2cache, &nl2cache) == 0) {
3968 if (spa->spa_l2cache.sav_config)
3969 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3970 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3971 else
3972 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3973 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3974 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3975 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3976 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3977 spa_load_l2cache(spa);
3978 spa_config_exit(spa, SCL_ALL, FTAG);
3979 spa->spa_l2cache.sav_sync = B_TRUE;
3980 }
3981
3982 /*
3983 * Check for any removed devices.
3984 */
3985 if (spa->spa_autoreplace) {
3986 spa_aux_check_removed(&spa->spa_spares);
3987 spa_aux_check_removed(&spa->spa_l2cache);
3988 }
3989
3990 if (spa_writeable(spa)) {
3991 /*
3992 * Update the config cache to include the newly-imported pool.
3993 */
3994 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3995 }
3996
3997 /*
3998 * It's possible that the pool was expanded while it was exported.
3999 * We kick off an async task to handle this for us.
4000 */
4001 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4002
4003 mutex_exit(&spa_namespace_lock);
4004 spa_history_log_version(spa, "import");
4005
4006 return (0);
4007 }
4008
4009 nvlist_t *
4010 spa_tryimport(nvlist_t *tryconfig)
4011 {
4012 nvlist_t *config = NULL;
4013 char *poolname;
4014 spa_t *spa;
4015 uint64_t state;
4016 int error;
4017
4018 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4019 return (NULL);
4020
4021 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4022 return (NULL);
4023
4024 /*
4025 * Create and initialize the spa structure.
4026 */
4027 mutex_enter(&spa_namespace_lock);
4028 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4029 spa_activate(spa, FREAD);
4030
4031 /*
4032 * Pass off the heavy lifting to spa_load().
4033 * Pass TRUE for mosconfig because the user-supplied config
4034 * is actually the one to trust when doing an import.
4035 */
4036 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4037
4038 /*
4039 * If 'tryconfig' was at least parsable, return the current config.
4040 */
4041 if (spa->spa_root_vdev != NULL) {
4042 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4043 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4044 poolname) == 0);
4045 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4046 state) == 0);
4047 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4048 spa->spa_uberblock.ub_timestamp) == 0);
4049 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4050 spa->spa_load_info) == 0);
4051
4052 /*
4053 * If the bootfs property exists on this pool then we
4054 * copy it out so that external consumers can tell which
4055 * pools are bootable.
4056 */
4057 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4058 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4059
4060 /*
4061 * We have to play games with the name since the
4062 * pool was opened as TRYIMPORT_NAME.
4063 */
4064 if (dsl_dsobj_to_dsname(spa_name(spa),
4065 spa->spa_bootfs, tmpname) == 0) {
4066 char *cp;
4067 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4068
4069 cp = strchr(tmpname, '/');
4070 if (cp == NULL) {
4071 (void) strlcpy(dsname, tmpname,
4072 MAXPATHLEN);
4073 } else {
4074 (void) snprintf(dsname, MAXPATHLEN,
4075 "%s/%s", poolname, ++cp);
4076 }
4077 VERIFY(nvlist_add_string(config,
4078 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4079 kmem_free(dsname, MAXPATHLEN);
4080 }
4081 kmem_free(tmpname, MAXPATHLEN);
4082 }
4083
4084 /*
4085 * Add the list of hot spares and level 2 cache devices.
4086 */
4087 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4088 spa_add_spares(spa, config);
4089 spa_add_l2cache(spa, config);
4090 spa_config_exit(spa, SCL_CONFIG, FTAG);
4091 }
4092
4093 spa_unload(spa);
4094 spa_deactivate(spa);
4095 spa_remove(spa);
4096 mutex_exit(&spa_namespace_lock);
4097
4098 return (config);
4099 }
4100
4101 /*
4102 * Pool export/destroy
4103 *
4104 * The act of destroying or exporting a pool is very simple. We make sure there
4105 * is no more pending I/O and any references to the pool are gone. Then, we
4106 * update the pool state and sync all the labels to disk, removing the
4107 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4108 * we don't sync the labels or remove the configuration cache.
4109 */
4110 static int
4111 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4112 boolean_t force, boolean_t hardforce)
4113 {
4114 spa_t *spa;
4115
4116 if (oldconfig)
4117 *oldconfig = NULL;
4118
4119 if (!(spa_mode_global & FWRITE))
4120 return (SET_ERROR(EROFS));
4121
4122 mutex_enter(&spa_namespace_lock);
4123 if ((spa = spa_lookup(pool)) == NULL) {
4124 mutex_exit(&spa_namespace_lock);
4125 return (SET_ERROR(ENOENT));
4126 }
4127
4128 /*
4129 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4130 * reacquire the namespace lock, and see if we can export.
4131 */
4132 spa_open_ref(spa, FTAG);
4133 mutex_exit(&spa_namespace_lock);
4134 spa_async_suspend(spa);
4135 mutex_enter(&spa_namespace_lock);
4136 spa_close(spa, FTAG);
4137
4138 /*
4139 * The pool will be in core if it's openable,
4140 * in which case we can modify its state.
4141 */
4142 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4143 /*
4144 * Objsets may be open only because they're dirty, so we
4145 * have to force it to sync before checking spa_refcnt.
4146 */
4147 txg_wait_synced(spa->spa_dsl_pool, 0);
4148
4149 /*
4150 * A pool cannot be exported or destroyed if there are active
4151 * references. If we are resetting a pool, allow references by
4152 * fault injection handlers.
4153 */
4154 if (!spa_refcount_zero(spa) ||
4155 (spa->spa_inject_ref != 0 &&
4156 new_state != POOL_STATE_UNINITIALIZED)) {
4157 spa_async_resume(spa);
4158 mutex_exit(&spa_namespace_lock);
4159 return (SET_ERROR(EBUSY));
4160 }
4161
4162 /*
4163 * A pool cannot be exported if it has an active shared spare.
4164 * This is to prevent other pools stealing the active spare
4165 * from an exported pool. At user's own will, such pool can
4166 * be forcedly exported.
4167 */
4168 if (!force && new_state == POOL_STATE_EXPORTED &&
4169 spa_has_active_shared_spare(spa)) {
4170 spa_async_resume(spa);
4171 mutex_exit(&spa_namespace_lock);
4172 return (SET_ERROR(EXDEV));
4173 }
4174
4175 /*
4176 * We want this to be reflected on every label,
4177 * so mark them all dirty. spa_unload() will do the
4178 * final sync that pushes these changes out.
4179 */
4180 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4181 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4182 spa->spa_state = new_state;
4183 spa->spa_final_txg = spa_last_synced_txg(spa) +
4184 TXG_DEFER_SIZE + 1;
4185 vdev_config_dirty(spa->spa_root_vdev);
4186 spa_config_exit(spa, SCL_ALL, FTAG);
4187 }
4188 }
4189
4190 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4191
4192 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4193 spa_unload(spa);
4194 spa_deactivate(spa);
4195 }
4196
4197 if (oldconfig && spa->spa_config)
4198 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4199
4200 if (new_state != POOL_STATE_UNINITIALIZED) {
4201 if (!hardforce)
4202 spa_config_sync(spa, B_TRUE, B_TRUE);
4203 spa_remove(spa);
4204 }
4205 mutex_exit(&spa_namespace_lock);
4206
4207 return (0);
4208 }
4209
4210 /*
4211 * Destroy a storage pool.
4212 */
4213 int
4214 spa_destroy(char *pool)
4215 {
4216 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4217 B_FALSE, B_FALSE));
4218 }
4219
4220 /*
4221 * Export a storage pool.
4222 */
4223 int
4224 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4225 boolean_t hardforce)
4226 {
4227 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4228 force, hardforce));
4229 }
4230
4231 /*
4232 * Similar to spa_export(), this unloads the spa_t without actually removing it
4233 * from the namespace in any way.
4234 */
4235 int
4236 spa_reset(char *pool)
4237 {
4238 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4239 B_FALSE, B_FALSE));
4240 }
4241
4242 /*
4243 * ==========================================================================
4244 * Device manipulation
4245 * ==========================================================================
4246 */
4247
4248 /*
4249 * Add a device to a storage pool.
4250 */
4251 int
4252 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4253 {
4254 uint64_t txg, id;
4255 int error;
4256 vdev_t *rvd = spa->spa_root_vdev;
4257 vdev_t *vd, *tvd;
4258 nvlist_t **spares, **l2cache;
4259 uint_t nspares, nl2cache;
4260
4261 ASSERT(spa_writeable(spa));
4262
4263 txg = spa_vdev_enter(spa);
4264
4265 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4266 VDEV_ALLOC_ADD)) != 0)
4267 return (spa_vdev_exit(spa, NULL, txg, error));
4268
4269 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4270
4271 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4272 &nspares) != 0)
4273 nspares = 0;
4274
4275 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4276 &nl2cache) != 0)
4277 nl2cache = 0;
4278
4279 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4280 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4281
4282 if (vd->vdev_children != 0 &&
4283 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4284 return (spa_vdev_exit(spa, vd, txg, error));
4285
4286 /*
4287 * We must validate the spares and l2cache devices after checking the
4288 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4289 */
4290 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4291 return (spa_vdev_exit(spa, vd, txg, error));
4292
4293 /*
4294 * Transfer each new top-level vdev from vd to rvd.
4295 */
4296 for (int c = 0; c < vd->vdev_children; c++) {
4297
4298 /*
4299 * Set the vdev id to the first hole, if one exists.
4300 */
4301 for (id = 0; id < rvd->vdev_children; id++) {
4302 if (rvd->vdev_child[id]->vdev_ishole) {
4303 vdev_free(rvd->vdev_child[id]);
4304 break;
4305 }
4306 }
4307 tvd = vd->vdev_child[c];
4308 vdev_remove_child(vd, tvd);
4309 tvd->vdev_id = id;
4310 vdev_add_child(rvd, tvd);
4311 vdev_config_dirty(tvd);
4312 }
4313
4314 if (nspares != 0) {
4315 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4316 ZPOOL_CONFIG_SPARES);
4317 spa_load_spares(spa);
4318 spa->spa_spares.sav_sync = B_TRUE;
4319 }
4320
4321 if (nl2cache != 0) {
4322 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4323 ZPOOL_CONFIG_L2CACHE);
4324 spa_load_l2cache(spa);
4325 spa->spa_l2cache.sav_sync = B_TRUE;
4326 }
4327
4328 /*
4329 * We have to be careful when adding new vdevs to an existing pool.
4330 * If other threads start allocating from these vdevs before we
4331 * sync the config cache, and we lose power, then upon reboot we may
4332 * fail to open the pool because there are DVAs that the config cache
4333 * can't translate. Therefore, we first add the vdevs without
4334 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4335 * and then let spa_config_update() initialize the new metaslabs.
4336 *
4337 * spa_load() checks for added-but-not-initialized vdevs, so that
4338 * if we lose power at any point in this sequence, the remaining
4339 * steps will be completed the next time we load the pool.
4340 */
4341 (void) spa_vdev_exit(spa, vd, txg, 0);
4342
4343 mutex_enter(&spa_namespace_lock);
4344 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4345 mutex_exit(&spa_namespace_lock);
4346
4347 return (0);
4348 }
4349
4350 /*
4351 * Attach a device to a mirror. The arguments are the path to any device
4352 * in the mirror, and the nvroot for the new device. If the path specifies
4353 * a device that is not mirrored, we automatically insert the mirror vdev.
4354 *
4355 * If 'replacing' is specified, the new device is intended to replace the
4356 * existing device; in this case the two devices are made into their own
4357 * mirror using the 'replacing' vdev, which is functionally identical to
4358 * the mirror vdev (it actually reuses all the same ops) but has a few
4359 * extra rules: you can't attach to it after it's been created, and upon
4360 * completion of resilvering, the first disk (the one being replaced)
4361 * is automatically detached.
4362 */
4363 int
4364 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4365 {
4366 uint64_t txg, dtl_max_txg;
4367 vdev_t *rvd = spa->spa_root_vdev;
4368 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4369 vdev_ops_t *pvops;
4370 char *oldvdpath, *newvdpath;
4371 int newvd_isspare;
4372 int error;
4373
4374 ASSERT(spa_writeable(spa));
4375
4376 txg = spa_vdev_enter(spa);
4377
4378 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4379
4380 if (oldvd == NULL)
4381 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4382
4383 if (!oldvd->vdev_ops->vdev_op_leaf)
4384 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4385
4386 pvd = oldvd->vdev_parent;
4387
4388 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4389 VDEV_ALLOC_ATTACH)) != 0)
4390 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4391
4392 if (newrootvd->vdev_children != 1)
4393 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4394
4395 newvd = newrootvd->vdev_child[0];
4396
4397 if (!newvd->vdev_ops->vdev_op_leaf)
4398 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4399
4400 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4401 return (spa_vdev_exit(spa, newrootvd, txg, error));
4402
4403 /*
4404 * Spares can't replace logs
4405 */
4406 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4407 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4408
4409 if (!replacing) {
4410 /*
4411 * For attach, the only allowable parent is a mirror or the root
4412 * vdev.
4413 */
4414 if (pvd->vdev_ops != &vdev_mirror_ops &&
4415 pvd->vdev_ops != &vdev_root_ops)
4416 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4417
4418 pvops = &vdev_mirror_ops;
4419 } else {
4420 /*
4421 * Active hot spares can only be replaced by inactive hot
4422 * spares.
4423 */
4424 if (pvd->vdev_ops == &vdev_spare_ops &&
4425 oldvd->vdev_isspare &&
4426 !spa_has_spare(spa, newvd->vdev_guid))
4427 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4428
4429 /*
4430 * If the source is a hot spare, and the parent isn't already a
4431 * spare, then we want to create a new hot spare. Otherwise, we
4432 * want to create a replacing vdev. The user is not allowed to
4433 * attach to a spared vdev child unless the 'isspare' state is
4434 * the same (spare replaces spare, non-spare replaces
4435 * non-spare).
4436 */
4437 if (pvd->vdev_ops == &vdev_replacing_ops &&
4438 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4439 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4440 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4441 newvd->vdev_isspare != oldvd->vdev_isspare) {
4442 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4443 }
4444
4445 if (newvd->vdev_isspare)
4446 pvops = &vdev_spare_ops;
4447 else
4448 pvops = &vdev_replacing_ops;
4449 }
4450
4451 /*
4452 * Make sure the new device is big enough.
4453 */
4454 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4455 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4456
4457 /*
4458 * The new device cannot have a higher alignment requirement
4459 * than the top-level vdev.
4460 */
4461 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4462 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4463
4464 /*
4465 * If this is an in-place replacement, update oldvd's path and devid
4466 * to make it distinguishable from newvd, and unopenable from now on.
4467 */
4468 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4469 spa_strfree(oldvd->vdev_path);
4470 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4471 KM_SLEEP);
4472 (void) sprintf(oldvd->vdev_path, "%s/%s",
4473 newvd->vdev_path, "old");
4474 if (oldvd->vdev_devid != NULL) {
4475 spa_strfree(oldvd->vdev_devid);
4476 oldvd->vdev_devid = NULL;
4477 }
4478 }
4479
4480 /* mark the device being resilvered */
4481 newvd->vdev_resilver_txg = txg;
4482
4483 /*
4484 * If the parent is not a mirror, or if we're replacing, insert the new
4485 * mirror/replacing/spare vdev above oldvd.
4486 */
4487 if (pvd->vdev_ops != pvops)
4488 pvd = vdev_add_parent(oldvd, pvops);
4489
4490 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4491 ASSERT(pvd->vdev_ops == pvops);
4492 ASSERT(oldvd->vdev_parent == pvd);
4493
4494 /*
4495 * Extract the new device from its root and add it to pvd.
4496 */
4497 vdev_remove_child(newrootvd, newvd);
4498 newvd->vdev_id = pvd->vdev_children;
4499 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4500 vdev_add_child(pvd, newvd);
4501
4502 tvd = newvd->vdev_top;
4503 ASSERT(pvd->vdev_top == tvd);
4504 ASSERT(tvd->vdev_parent == rvd);
4505
4506 vdev_config_dirty(tvd);
4507
4508 /*
4509 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4510 * for any dmu_sync-ed blocks. It will propagate upward when
4511 * spa_vdev_exit() calls vdev_dtl_reassess().
4512 */
4513 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4514
4515 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4516 dtl_max_txg - TXG_INITIAL);
4517
4518 if (newvd->vdev_isspare) {
4519 spa_spare_activate(newvd);
4520 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4521 }
4522
4523 oldvdpath = spa_strdup(oldvd->vdev_path);
4524 newvdpath = spa_strdup(newvd->vdev_path);
4525 newvd_isspare = newvd->vdev_isspare;
4526
4527 /*
4528 * Mark newvd's DTL dirty in this txg.
4529 */
4530 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4531
4532 /*
4533 * Schedule the resilver to restart in the future. We do this to
4534 * ensure that dmu_sync-ed blocks have been stitched into the
4535 * respective datasets.
4536 */
4537 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4538
4539 /*
4540 * Commit the config
4541 */
4542 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4543
4544 spa_history_log_internal(spa, "vdev attach", NULL,
4545 "%s vdev=%s %s vdev=%s",
4546 replacing && newvd_isspare ? "spare in" :
4547 replacing ? "replace" : "attach", newvdpath,
4548 replacing ? "for" : "to", oldvdpath);
4549
4550 spa_strfree(oldvdpath);
4551 spa_strfree(newvdpath);
4552
4553 if (spa->spa_bootfs)
4554 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4555
4556 return (0);
4557 }
4558
4559 /*
4560 * Detach a device from a mirror or replacing vdev.
4561 *
4562 * If 'replace_done' is specified, only detach if the parent
4563 * is a replacing vdev.
4564 */
4565 int
4566 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4567 {
4568 uint64_t txg;
4569 int error;
4570 vdev_t *rvd = spa->spa_root_vdev;
4571 vdev_t *vd, *pvd, *cvd, *tvd;
4572 boolean_t unspare = B_FALSE;
4573 uint64_t unspare_guid = 0;
4574 char *vdpath;
4575
4576 ASSERT(spa_writeable(spa));
4577
4578 txg = spa_vdev_enter(spa);
4579
4580 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4581
4582 if (vd == NULL)
4583 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4584
4585 if (!vd->vdev_ops->vdev_op_leaf)
4586 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4587
4588 pvd = vd->vdev_parent;
4589
4590 /*
4591 * If the parent/child relationship is not as expected, don't do it.
4592 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4593 * vdev that's replacing B with C. The user's intent in replacing
4594 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4595 * the replace by detaching C, the expected behavior is to end up
4596 * M(A,B). But suppose that right after deciding to detach C,
4597 * the replacement of B completes. We would have M(A,C), and then
4598 * ask to detach C, which would leave us with just A -- not what
4599 * the user wanted. To prevent this, we make sure that the
4600 * parent/child relationship hasn't changed -- in this example,
4601 * that C's parent is still the replacing vdev R.
4602 */
4603 if (pvd->vdev_guid != pguid && pguid != 0)
4604 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4605
4606 /*
4607 * Only 'replacing' or 'spare' vdevs can be replaced.
4608 */
4609 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4610 pvd->vdev_ops != &vdev_spare_ops)
4611 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4612
4613 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4614 spa_version(spa) >= SPA_VERSION_SPARES);
4615
4616 /*
4617 * Only mirror, replacing, and spare vdevs support detach.
4618 */
4619 if (pvd->vdev_ops != &vdev_replacing_ops &&
4620 pvd->vdev_ops != &vdev_mirror_ops &&
4621 pvd->vdev_ops != &vdev_spare_ops)
4622 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4623
4624 /*
4625 * If this device has the only valid copy of some data,
4626 * we cannot safely detach it.
4627 */
4628 if (vdev_dtl_required(vd))
4629 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4630
4631 ASSERT(pvd->vdev_children >= 2);
4632
4633 /*
4634 * If we are detaching the second disk from a replacing vdev, then
4635 * check to see if we changed the original vdev's path to have "/old"
4636 * at the end in spa_vdev_attach(). If so, undo that change now.
4637 */
4638 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4639 vd->vdev_path != NULL) {
4640 size_t len = strlen(vd->vdev_path);
4641
4642 for (int c = 0; c < pvd->vdev_children; c++) {
4643 cvd = pvd->vdev_child[c];
4644
4645 if (cvd == vd || cvd->vdev_path == NULL)
4646 continue;
4647
4648 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4649 strcmp(cvd->vdev_path + len, "/old") == 0) {
4650 spa_strfree(cvd->vdev_path);
4651 cvd->vdev_path = spa_strdup(vd->vdev_path);
4652 break;
4653 }
4654 }
4655 }
4656
4657 /*
4658 * If we are detaching the original disk from a spare, then it implies
4659 * that the spare should become a real disk, and be removed from the
4660 * active spare list for the pool.
4661 */
4662 if (pvd->vdev_ops == &vdev_spare_ops &&
4663 vd->vdev_id == 0 &&
4664 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4665 unspare = B_TRUE;
4666
4667 /*
4668 * Erase the disk labels so the disk can be used for other things.
4669 * This must be done after all other error cases are handled,
4670 * but before we disembowel vd (so we can still do I/O to it).
4671 * But if we can't do it, don't treat the error as fatal --
4672 * it may be that the unwritability of the disk is the reason
4673 * it's being detached!
4674 */
4675 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4676
4677 /*
4678 * Remove vd from its parent and compact the parent's children.
4679 */
4680 vdev_remove_child(pvd, vd);
4681 vdev_compact_children(pvd);
4682
4683 /*
4684 * Remember one of the remaining children so we can get tvd below.
4685 */
4686 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4687
4688 /*
4689 * If we need to remove the remaining child from the list of hot spares,
4690 * do it now, marking the vdev as no longer a spare in the process.
4691 * We must do this before vdev_remove_parent(), because that can
4692 * change the GUID if it creates a new toplevel GUID. For a similar
4693 * reason, we must remove the spare now, in the same txg as the detach;
4694 * otherwise someone could attach a new sibling, change the GUID, and
4695 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4696 */
4697 if (unspare) {
4698 ASSERT(cvd->vdev_isspare);
4699 spa_spare_remove(cvd);
4700 unspare_guid = cvd->vdev_guid;
4701 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4702 cvd->vdev_unspare = B_TRUE;
4703 }
4704
4705 /*
4706 * If the parent mirror/replacing vdev only has one child,
4707 * the parent is no longer needed. Remove it from the tree.
4708 */
4709 if (pvd->vdev_children == 1) {
4710 if (pvd->vdev_ops == &vdev_spare_ops)
4711 cvd->vdev_unspare = B_FALSE;
4712 vdev_remove_parent(cvd);
4713 }
4714
4715
4716 /*
4717 * We don't set tvd until now because the parent we just removed
4718 * may have been the previous top-level vdev.
4719 */
4720 tvd = cvd->vdev_top;
4721 ASSERT(tvd->vdev_parent == rvd);
4722
4723 /*
4724 * Reevaluate the parent vdev state.
4725 */
4726 vdev_propagate_state(cvd);
4727
4728 /*
4729 * If the 'autoexpand' property is set on the pool then automatically
4730 * try to expand the size of the pool. For example if the device we
4731 * just detached was smaller than the others, it may be possible to
4732 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4733 * first so that we can obtain the updated sizes of the leaf vdevs.
4734 */
4735 if (spa->spa_autoexpand) {
4736 vdev_reopen(tvd);
4737 vdev_expand(tvd, txg);
4738 }
4739
4740 vdev_config_dirty(tvd);
4741
4742 /*
4743 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4744 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4745 * But first make sure we're not on any *other* txg's DTL list, to
4746 * prevent vd from being accessed after it's freed.
4747 */
4748 vdpath = spa_strdup(vd->vdev_path);
4749 for (int t = 0; t < TXG_SIZE; t++)
4750 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4751 vd->vdev_detached = B_TRUE;
4752 vdev_dirty(tvd, VDD_DTL, vd, txg);
4753
4754 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4755
4756 /* hang on to the spa before we release the lock */
4757 spa_open_ref(spa, FTAG);
4758
4759 error = spa_vdev_exit(spa, vd, txg, 0);
4760
4761 spa_history_log_internal(spa, "detach", NULL,
4762 "vdev=%s", vdpath);
4763 spa_strfree(vdpath);
4764
4765 /*
4766 * If this was the removal of the original device in a hot spare vdev,
4767 * then we want to go through and remove the device from the hot spare
4768 * list of every other pool.
4769 */
4770 if (unspare) {
4771 spa_t *altspa = NULL;
4772
4773 mutex_enter(&spa_namespace_lock);
4774 while ((altspa = spa_next(altspa)) != NULL) {
4775 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4776 altspa == spa)
4777 continue;
4778
4779 spa_open_ref(altspa, FTAG);
4780 mutex_exit(&spa_namespace_lock);
4781 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4782 mutex_enter(&spa_namespace_lock);
4783 spa_close(altspa, FTAG);
4784 }
4785 mutex_exit(&spa_namespace_lock);
4786
4787 /* search the rest of the vdevs for spares to remove */
4788 spa_vdev_resilver_done(spa);
4789 }
4790
4791 /* all done with the spa; OK to release */
4792 mutex_enter(&spa_namespace_lock);
4793 spa_close(spa, FTAG);
4794 mutex_exit(&spa_namespace_lock);
4795
4796 return (error);
4797 }
4798
4799 /*
4800 * Split a set of devices from their mirrors, and create a new pool from them.
4801 */
4802 int
4803 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4804 nvlist_t *props, boolean_t exp)
4805 {
4806 int error = 0;
4807 uint64_t txg, *glist;
4808 spa_t *newspa;
4809 uint_t c, children, lastlog;
4810 nvlist_t **child, *nvl, *tmp;
4811 dmu_tx_t *tx;
4812 char *altroot = NULL;
4813 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4814 boolean_t activate_slog;
4815
4816 ASSERT(spa_writeable(spa));
4817
4818 txg = spa_vdev_enter(spa);
4819
4820 /* clear the log and flush everything up to now */
4821 activate_slog = spa_passivate_log(spa);
4822 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4823 error = spa_offline_log(spa);
4824 txg = spa_vdev_config_enter(spa);
4825
4826 if (activate_slog)
4827 spa_activate_log(spa);
4828
4829 if (error != 0)
4830 return (spa_vdev_exit(spa, NULL, txg, error));
4831
4832 /* check new spa name before going any further */
4833 if (spa_lookup(newname) != NULL)
4834 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4835
4836 /*
4837 * scan through all the children to ensure they're all mirrors
4838 */
4839 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4840 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4841 &children) != 0)
4842 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4843
4844 /* first, check to ensure we've got the right child count */
4845 rvd = spa->spa_root_vdev;
4846 lastlog = 0;
4847 for (c = 0; c < rvd->vdev_children; c++) {
4848 vdev_t *vd = rvd->vdev_child[c];
4849
4850 /* don't count the holes & logs as children */
4851 if (vd->vdev_islog || vd->vdev_ishole) {
4852 if (lastlog == 0)
4853 lastlog = c;
4854 continue;
4855 }
4856
4857 lastlog = 0;
4858 }
4859 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4860 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4861
4862 /* next, ensure no spare or cache devices are part of the split */
4863 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4864 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4865 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4866
4867 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4868 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4869
4870 /* then, loop over each vdev and validate it */
4871 for (c = 0; c < children; c++) {
4872 uint64_t is_hole = 0;
4873
4874 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4875 &is_hole);
4876
4877 if (is_hole != 0) {
4878 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4879 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4880 continue;
4881 } else {
4882 error = SET_ERROR(EINVAL);
4883 break;
4884 }
4885 }
4886
4887 /* which disk is going to be split? */
4888 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4889 &glist[c]) != 0) {
4890 error = SET_ERROR(EINVAL);
4891 break;
4892 }
4893
4894 /* look it up in the spa */
4895 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4896 if (vml[c] == NULL) {
4897 error = SET_ERROR(ENODEV);
4898 break;
4899 }
4900
4901 /* make sure there's nothing stopping the split */
4902 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4903 vml[c]->vdev_islog ||
4904 vml[c]->vdev_ishole ||
4905 vml[c]->vdev_isspare ||
4906 vml[c]->vdev_isl2cache ||
4907 !vdev_writeable(vml[c]) ||
4908 vml[c]->vdev_children != 0 ||
4909 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4910 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4911 error = SET_ERROR(EINVAL);
4912 break;
4913 }
4914
4915 if (vdev_dtl_required(vml[c])) {
4916 error = SET_ERROR(EBUSY);
4917 break;
4918 }
4919
4920 /* we need certain info from the top level */
4921 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4922 vml[c]->vdev_top->vdev_ms_array) == 0);
4923 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4924 vml[c]->vdev_top->vdev_ms_shift) == 0);
4925 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4926 vml[c]->vdev_top->vdev_asize) == 0);
4927 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4928 vml[c]->vdev_top->vdev_ashift) == 0);
4929 }
4930
4931 if (error != 0) {
4932 kmem_free(vml, children * sizeof (vdev_t *));
4933 kmem_free(glist, children * sizeof (uint64_t));
4934 return (spa_vdev_exit(spa, NULL, txg, error));
4935 }
4936
4937 /* stop writers from using the disks */
4938 for (c = 0; c < children; c++) {
4939 if (vml[c] != NULL)
4940 vml[c]->vdev_offline = B_TRUE;
4941 }
4942 vdev_reopen(spa->spa_root_vdev);
4943
4944 /*
4945 * Temporarily record the splitting vdevs in the spa config. This
4946 * will disappear once the config is regenerated.
4947 */
4948 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4949 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4950 glist, children) == 0);
4951 kmem_free(glist, children * sizeof (uint64_t));
4952
4953 mutex_enter(&spa->spa_props_lock);
4954 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4955 nvl) == 0);
4956 mutex_exit(&spa->spa_props_lock);
4957 spa->spa_config_splitting = nvl;
4958 vdev_config_dirty(spa->spa_root_vdev);
4959
4960 /* configure and create the new pool */
4961 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4962 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4963 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4964 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4965 spa_version(spa)) == 0);
4966 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4967 spa->spa_config_txg) == 0);
4968 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4969 spa_generate_guid(NULL)) == 0);
4970 (void) nvlist_lookup_string(props,
4971 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4972
4973 /* add the new pool to the namespace */
4974 newspa = spa_add(newname, config, altroot);
4975 newspa->spa_config_txg = spa->spa_config_txg;
4976 spa_set_log_state(newspa, SPA_LOG_CLEAR);
4977
4978 /* release the spa config lock, retaining the namespace lock */
4979 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4980
4981 if (zio_injection_enabled)
4982 zio_handle_panic_injection(spa, FTAG, 1);
4983
4984 spa_activate(newspa, spa_mode_global);
4985 spa_async_suspend(newspa);
4986
4987 /* create the new pool from the disks of the original pool */
4988 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4989 if (error)
4990 goto out;
4991
4992 /* if that worked, generate a real config for the new pool */
4993 if (newspa->spa_root_vdev != NULL) {
4994 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4995 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4996 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4997 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4998 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4999 B_TRUE));
5000 }
5001
5002 /* set the props */
5003 if (props != NULL) {
5004 spa_configfile_set(newspa, props, B_FALSE);
5005 error = spa_prop_set(newspa, props);
5006 if (error)
5007 goto out;
5008 }
5009
5010 /* flush everything */
5011 txg = spa_vdev_config_enter(newspa);
5012 vdev_config_dirty(newspa->spa_root_vdev);
5013 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5014
5015 if (zio_injection_enabled)
5016 zio_handle_panic_injection(spa, FTAG, 2);
5017
5018 spa_async_resume(newspa);
5019
5020 /* finally, update the original pool's config */
5021 txg = spa_vdev_config_enter(spa);
5022 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5023 error = dmu_tx_assign(tx, TXG_WAIT);
5024 if (error != 0)
5025 dmu_tx_abort(tx);
5026 for (c = 0; c < children; c++) {
5027 if (vml[c] != NULL) {
5028 vdev_split(vml[c]);
5029 if (error == 0)
5030 spa_history_log_internal(spa, "detach", tx,
5031 "vdev=%s", vml[c]->vdev_path);
5032 vdev_free(vml[c]);
5033 }
5034 }
5035 vdev_config_dirty(spa->spa_root_vdev);
5036 spa->spa_config_splitting = NULL;
5037 nvlist_free(nvl);
5038 if (error == 0)
5039 dmu_tx_commit(tx);
5040 (void) spa_vdev_exit(spa, NULL, txg, 0);
5041
5042 if (zio_injection_enabled)
5043 zio_handle_panic_injection(spa, FTAG, 3);
5044
5045 /* split is complete; log a history record */
5046 spa_history_log_internal(newspa, "split", NULL,
5047 "from pool %s", spa_name(spa));
5048
5049 kmem_free(vml, children * sizeof (vdev_t *));
5050
5051 /* if we're not going to mount the filesystems in userland, export */
5052 if (exp)
5053 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5054 B_FALSE, B_FALSE);
5055
5056 return (error);
5057
5058 out:
5059 spa_unload(newspa);
5060 spa_deactivate(newspa);
5061 spa_remove(newspa);
5062
5063 txg = spa_vdev_config_enter(spa);
5064
5065 /* re-online all offlined disks */
5066 for (c = 0; c < children; c++) {
5067 if (vml[c] != NULL)
5068 vml[c]->vdev_offline = B_FALSE;
5069 }
5070 vdev_reopen(spa->spa_root_vdev);
5071
5072 nvlist_free(spa->spa_config_splitting);
5073 spa->spa_config_splitting = NULL;
5074 (void) spa_vdev_exit(spa, NULL, txg, error);
5075
5076 kmem_free(vml, children * sizeof (vdev_t *));
5077 return (error);
5078 }
5079
5080 static nvlist_t *
5081 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5082 {
5083 for (int i = 0; i < count; i++) {
5084 uint64_t guid;
5085
5086 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5087 &guid) == 0);
5088
5089 if (guid == target_guid)
5090 return (nvpp[i]);
5091 }
5092
5093 return (NULL);
5094 }
5095
5096 static void
5097 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5098 nvlist_t *dev_to_remove)
5099 {
5100 nvlist_t **newdev = NULL;
5101
5102 if (count > 1)
5103 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5104
5105 for (int i = 0, j = 0; i < count; i++) {
5106 if (dev[i] == dev_to_remove)
5107 continue;
5108 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5109 }
5110
5111 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5112 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5113
5114 for (int i = 0; i < count - 1; i++)
5115 nvlist_free(newdev[i]);
5116
5117 if (count > 1)
5118 kmem_free(newdev, (count - 1) * sizeof (void *));
5119 }
5120
5121 /*
5122 * Evacuate the device.
5123 */
5124 static int
5125 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5126 {
5127 uint64_t txg;
5128 int error = 0;
5129
5130 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5131 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5132 ASSERT(vd == vd->vdev_top);
5133
5134 /*
5135 * Evacuate the device. We don't hold the config lock as writer
5136 * since we need to do I/O but we do keep the
5137 * spa_namespace_lock held. Once this completes the device
5138 * should no longer have any blocks allocated on it.
5139 */
5140 if (vd->vdev_islog) {
5141 if (vd->vdev_stat.vs_alloc != 0)
5142 error = spa_offline_log(spa);
5143 } else {
5144 error = SET_ERROR(ENOTSUP);
5145 }
5146
5147 if (error)
5148 return (error);
5149
5150 /*
5151 * The evacuation succeeded. Remove any remaining MOS metadata
5152 * associated with this vdev, and wait for these changes to sync.
5153 */
5154 ASSERT0(vd->vdev_stat.vs_alloc);
5155 txg = spa_vdev_config_enter(spa);
5156 vd->vdev_removing = B_TRUE;
5157 vdev_dirty_leaves(vd, VDD_DTL, txg);
5158 vdev_config_dirty(vd);
5159 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5160
5161 return (0);
5162 }
5163
5164 /*
5165 * Complete the removal by cleaning up the namespace.
5166 */
5167 static void
5168 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5169 {
5170 vdev_t *rvd = spa->spa_root_vdev;
5171 uint64_t id = vd->vdev_id;
5172 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5173
5174 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5175 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5176 ASSERT(vd == vd->vdev_top);
5177
5178 /*
5179 * Only remove any devices which are empty.
5180 */
5181 if (vd->vdev_stat.vs_alloc != 0)
5182 return;
5183
5184 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5185
5186 if (list_link_active(&vd->vdev_state_dirty_node))
5187 vdev_state_clean(vd);
5188 if (list_link_active(&vd->vdev_config_dirty_node))
5189 vdev_config_clean(vd);
5190
5191 vdev_free(vd);
5192
5193 if (last_vdev) {
5194 vdev_compact_children(rvd);
5195 } else {
5196 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5197 vdev_add_child(rvd, vd);
5198 }
5199 vdev_config_dirty(rvd);
5200
5201 /*
5202 * Reassess the health of our root vdev.
5203 */
5204 vdev_reopen(rvd);
5205 }
5206
5207 /*
5208 * Remove a device from the pool -
5209 *
5210 * Removing a device from the vdev namespace requires several steps
5211 * and can take a significant amount of time. As a result we use
5212 * the spa_vdev_config_[enter/exit] functions which allow us to
5213 * grab and release the spa_config_lock while still holding the namespace
5214 * lock. During each step the configuration is synced out.
5215 *
5216 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5217 * devices.
5218 */
5219 int
5220 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5221 {
5222 vdev_t *vd;
5223 metaslab_group_t *mg;
5224 nvlist_t **spares, **l2cache, *nv;
5225 uint64_t txg = 0;
5226 uint_t nspares, nl2cache;
5227 int error = 0;
5228 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5229
5230 ASSERT(spa_writeable(spa));
5231
5232 if (!locked)
5233 txg = spa_vdev_enter(spa);
5234
5235 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5236
5237 if (spa->spa_spares.sav_vdevs != NULL &&
5238 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5239 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5240 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5241 /*
5242 * Only remove the hot spare if it's not currently in use
5243 * in this pool.
5244 */
5245 if (vd == NULL || unspare) {
5246 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5247 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5248 spa_load_spares(spa);
5249 spa->spa_spares.sav_sync = B_TRUE;
5250 } else {
5251 error = SET_ERROR(EBUSY);
5252 }
5253 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5254 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5255 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5256 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5257 /*
5258 * Cache devices can always be removed.
5259 */
5260 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5261 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5262 spa_load_l2cache(spa);
5263 spa->spa_l2cache.sav_sync = B_TRUE;
5264 } else if (vd != NULL && vd->vdev_islog) {
5265 ASSERT(!locked);
5266 ASSERT(vd == vd->vdev_top);
5267
5268 mg = vd->vdev_mg;
5269
5270 /*
5271 * Stop allocating from this vdev.
5272 */
5273 metaslab_group_passivate(mg);
5274
5275 /*
5276 * Wait for the youngest allocations and frees to sync,
5277 * and then wait for the deferral of those frees to finish.
5278 */
5279 spa_vdev_config_exit(spa, NULL,
5280 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5281
5282 /*
5283 * Attempt to evacuate the vdev.
5284 */
5285 error = spa_vdev_remove_evacuate(spa, vd);
5286
5287 txg = spa_vdev_config_enter(spa);
5288
5289 /*
5290 * If we couldn't evacuate the vdev, unwind.
5291 */
5292 if (error) {
5293 metaslab_group_activate(mg);
5294 return (spa_vdev_exit(spa, NULL, txg, error));
5295 }
5296
5297 /*
5298 * Clean up the vdev namespace.
5299 */
5300 spa_vdev_remove_from_namespace(spa, vd);
5301
5302 } else if (vd != NULL) {
5303 /*
5304 * Normal vdevs cannot be removed (yet).
5305 */
5306 error = SET_ERROR(ENOTSUP);
5307 } else {
5308 /*
5309 * There is no vdev of any kind with the specified guid.
5310 */
5311 error = SET_ERROR(ENOENT);
5312 }
5313
5314 if (!locked)
5315 return (spa_vdev_exit(spa, NULL, txg, error));
5316
5317 return (error);
5318 }
5319
5320 /*
5321 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5322 * currently spared, so we can detach it.
5323 */
5324 static vdev_t *
5325 spa_vdev_resilver_done_hunt(vdev_t *vd)
5326 {
5327 vdev_t *newvd, *oldvd;
5328
5329 for (int c = 0; c < vd->vdev_children; c++) {
5330 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5331 if (oldvd != NULL)
5332 return (oldvd);
5333 }
5334
5335 /*
5336 * Check for a completed replacement. We always consider the first
5337 * vdev in the list to be the oldest vdev, and the last one to be
5338 * the newest (see spa_vdev_attach() for how that works). In
5339 * the case where the newest vdev is faulted, we will not automatically
5340 * remove it after a resilver completes. This is OK as it will require
5341 * user intervention to determine which disk the admin wishes to keep.
5342 */
5343 if (vd->vdev_ops == &vdev_replacing_ops) {
5344 ASSERT(vd->vdev_children > 1);
5345
5346 newvd = vd->vdev_child[vd->vdev_children - 1];
5347 oldvd = vd->vdev_child[0];
5348
5349 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5350 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5351 !vdev_dtl_required(oldvd))
5352 return (oldvd);
5353 }
5354
5355 /*
5356 * Check for a completed resilver with the 'unspare' flag set.
5357 */
5358 if (vd->vdev_ops == &vdev_spare_ops) {
5359 vdev_t *first = vd->vdev_child[0];
5360 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5361
5362 if (last->vdev_unspare) {
5363 oldvd = first;
5364 newvd = last;
5365 } else if (first->vdev_unspare) {
5366 oldvd = last;
5367 newvd = first;
5368 } else {
5369 oldvd = NULL;
5370 }
5371
5372 if (oldvd != NULL &&
5373 vdev_dtl_empty(newvd, DTL_MISSING) &&
5374 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5375 !vdev_dtl_required(oldvd))
5376 return (oldvd);
5377
5378 /*
5379 * If there are more than two spares attached to a disk,
5380 * and those spares are not required, then we want to
5381 * attempt to free them up now so that they can be used
5382 * by other pools. Once we're back down to a single
5383 * disk+spare, we stop removing them.
5384 */
5385 if (vd->vdev_children > 2) {
5386 newvd = vd->vdev_child[1];
5387
5388 if (newvd->vdev_isspare && last->vdev_isspare &&
5389 vdev_dtl_empty(last, DTL_MISSING) &&
5390 vdev_dtl_empty(last, DTL_OUTAGE) &&
5391 !vdev_dtl_required(newvd))
5392 return (newvd);
5393 }
5394 }
5395
5396 return (NULL);
5397 }
5398
5399 static void
5400 spa_vdev_resilver_done(spa_t *spa)
5401 {
5402 vdev_t *vd, *pvd, *ppvd;
5403 uint64_t guid, sguid, pguid, ppguid;
5404
5405 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5406
5407 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5408 pvd = vd->vdev_parent;
5409 ppvd = pvd->vdev_parent;
5410 guid = vd->vdev_guid;
5411 pguid = pvd->vdev_guid;
5412 ppguid = ppvd->vdev_guid;
5413 sguid = 0;
5414 /*
5415 * If we have just finished replacing a hot spared device, then
5416 * we need to detach the parent's first child (the original hot
5417 * spare) as well.
5418 */
5419 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5420 ppvd->vdev_children == 2) {
5421 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5422 sguid = ppvd->vdev_child[1]->vdev_guid;
5423 }
5424 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5425
5426 spa_config_exit(spa, SCL_ALL, FTAG);
5427 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5428 return;
5429 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5430 return;
5431 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5432 }
5433
5434 spa_config_exit(spa, SCL_ALL, FTAG);
5435 }
5436
5437 /*
5438 * Update the stored path or FRU for this vdev.
5439 */
5440 int
5441 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5442 boolean_t ispath)
5443 {
5444 vdev_t *vd;
5445 boolean_t sync = B_FALSE;
5446
5447 ASSERT(spa_writeable(spa));
5448
5449 spa_vdev_state_enter(spa, SCL_ALL);
5450
5451 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5452 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5453
5454 if (!vd->vdev_ops->vdev_op_leaf)
5455 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5456
5457 if (ispath) {
5458 if (strcmp(value, vd->vdev_path) != 0) {
5459 spa_strfree(vd->vdev_path);
5460 vd->vdev_path = spa_strdup(value);
5461 sync = B_TRUE;
5462 }
5463 } else {
5464 if (vd->vdev_fru == NULL) {
5465 vd->vdev_fru = spa_strdup(value);
5466 sync = B_TRUE;
5467 } else if (strcmp(value, vd->vdev_fru) != 0) {
5468 spa_strfree(vd->vdev_fru);
5469 vd->vdev_fru = spa_strdup(value);
5470 sync = B_TRUE;
5471 }
5472 }
5473
5474 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5475 }
5476
5477 int
5478 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5479 {
5480 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5481 }
5482
5483 int
5484 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5485 {
5486 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5487 }
5488
5489 /*
5490 * ==========================================================================
5491 * SPA Scanning
5492 * ==========================================================================
5493 */
5494
5495 int
5496 spa_scan_stop(spa_t *spa)
5497 {
5498 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5499 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5500 return (SET_ERROR(EBUSY));
5501 return (dsl_scan_cancel(spa->spa_dsl_pool));
5502 }
5503
5504 int
5505 spa_scan(spa_t *spa, pool_scan_func_t func)
5506 {
5507 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5508
5509 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5510 return (SET_ERROR(ENOTSUP));
5511
5512 /*
5513 * If a resilver was requested, but there is no DTL on a
5514 * writeable leaf device, we have nothing to do.
5515 */
5516 if (func == POOL_SCAN_RESILVER &&
5517 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5518 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5519 return (0);
5520 }
5521
5522 return (dsl_scan(spa->spa_dsl_pool, func));
5523 }
5524
5525 /*
5526 * ==========================================================================
5527 * SPA async task processing
5528 * ==========================================================================
5529 */
5530
5531 static void
5532 spa_async_remove(spa_t *spa, vdev_t *vd)
5533 {
5534 if (vd->vdev_remove_wanted) {
5535 vd->vdev_remove_wanted = B_FALSE;
5536 vd->vdev_delayed_close = B_FALSE;
5537 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5538
5539 /*
5540 * We want to clear the stats, but we don't want to do a full
5541 * vdev_clear() as that will cause us to throw away
5542 * degraded/faulted state as well as attempt to reopen the
5543 * device, all of which is a waste.
5544 */
5545 vd->vdev_stat.vs_read_errors = 0;
5546 vd->vdev_stat.vs_write_errors = 0;
5547 vd->vdev_stat.vs_checksum_errors = 0;
5548
5549 vdev_state_dirty(vd->vdev_top);
5550 }
5551
5552 for (int c = 0; c < vd->vdev_children; c++)
5553 spa_async_remove(spa, vd->vdev_child[c]);
5554 }
5555
5556 static void
5557 spa_async_probe(spa_t *spa, vdev_t *vd)
5558 {
5559 if (vd->vdev_probe_wanted) {
5560 vd->vdev_probe_wanted = B_FALSE;
5561 vdev_reopen(vd); /* vdev_open() does the actual probe */
5562 }
5563
5564 for (int c = 0; c < vd->vdev_children; c++)
5565 spa_async_probe(spa, vd->vdev_child[c]);
5566 }
5567
5568 static void
5569 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5570 {
5571 sysevent_id_t eid;
5572 nvlist_t *attr;
5573 char *physpath;
5574
5575 if (!spa->spa_autoexpand)
5576 return;
5577
5578 for (int c = 0; c < vd->vdev_children; c++) {
5579 vdev_t *cvd = vd->vdev_child[c];
5580 spa_async_autoexpand(spa, cvd);
5581 }
5582
5583 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5584 return;
5585
5586 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5587 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5588
5589 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5590 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5591
5592 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5593 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5594
5595 nvlist_free(attr);
5596 kmem_free(physpath, MAXPATHLEN);
5597 }
5598
5599 static void
5600 spa_async_thread(spa_t *spa)
5601 {
5602 int tasks;
5603
5604 ASSERT(spa->spa_sync_on);
5605
5606 mutex_enter(&spa->spa_async_lock);
5607 tasks = spa->spa_async_tasks;
5608 spa->spa_async_tasks = 0;
5609 mutex_exit(&spa->spa_async_lock);
5610
5611 /*
5612 * See if the config needs to be updated.
5613 */
5614 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5615 uint64_t old_space, new_space;
5616
5617 mutex_enter(&spa_namespace_lock);
5618 old_space = metaslab_class_get_space(spa_normal_class(spa));
5619 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5620 new_space = metaslab_class_get_space(spa_normal_class(spa));
5621 mutex_exit(&spa_namespace_lock);
5622
5623 /*
5624 * If the pool grew as a result of the config update,
5625 * then log an internal history event.
5626 */
5627 if (new_space != old_space) {
5628 spa_history_log_internal(spa, "vdev online", NULL,
5629 "pool '%s' size: %llu(+%llu)",
5630 spa_name(spa), new_space, new_space - old_space);
5631 }
5632 }
5633
5634 /*
5635 * See if any devices need to be marked REMOVED.
5636 */
5637 if (tasks & SPA_ASYNC_REMOVE) {
5638 spa_vdev_state_enter(spa, SCL_NONE);
5639 spa_async_remove(spa, spa->spa_root_vdev);
5640 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5641 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5642 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5643 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5644 (void) spa_vdev_state_exit(spa, NULL, 0);
5645 }
5646
5647 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5648 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5649 spa_async_autoexpand(spa, spa->spa_root_vdev);
5650 spa_config_exit(spa, SCL_CONFIG, FTAG);
5651 }
5652
5653 /*
5654 * See if any devices need to be probed.
5655 */
5656 if (tasks & SPA_ASYNC_PROBE) {
5657 spa_vdev_state_enter(spa, SCL_NONE);
5658 spa_async_probe(spa, spa->spa_root_vdev);
5659 (void) spa_vdev_state_exit(spa, NULL, 0);
5660 }
5661
5662 /*
5663 * If any devices are done replacing, detach them.
5664 */
5665 if (tasks & SPA_ASYNC_RESILVER_DONE)
5666 spa_vdev_resilver_done(spa);
5667
5668 /*
5669 * Kick off a resilver.
5670 */
5671 if (tasks & SPA_ASYNC_RESILVER)
5672 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5673
5674 /*
5675 * Let the world know that we're done.
5676 */
5677 mutex_enter(&spa->spa_async_lock);
5678 spa->spa_async_thread = NULL;
5679 cv_broadcast(&spa->spa_async_cv);
5680 mutex_exit(&spa->spa_async_lock);
5681 thread_exit();
5682 }
5683
5684 void
5685 spa_async_suspend(spa_t *spa)
5686 {
5687 mutex_enter(&spa->spa_async_lock);
5688 spa->spa_async_suspended++;
5689 while (spa->spa_async_thread != NULL)
5690 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5691 mutex_exit(&spa->spa_async_lock);
5692 }
5693
5694 void
5695 spa_async_resume(spa_t *spa)
5696 {
5697 mutex_enter(&spa->spa_async_lock);
5698 ASSERT(spa->spa_async_suspended != 0);
5699 spa->spa_async_suspended--;
5700 mutex_exit(&spa->spa_async_lock);
5701 }
5702
5703 static boolean_t
5704 spa_async_tasks_pending(spa_t *spa)
5705 {
5706 uint_t non_config_tasks;
5707 uint_t config_task;
5708 boolean_t config_task_suspended;
5709
5710 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5711 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5712 if (spa->spa_ccw_fail_time == 0) {
5713 config_task_suspended = B_FALSE;
5714 } else {
5715 config_task_suspended =
5716 (gethrtime() - spa->spa_ccw_fail_time) <
5717 (zfs_ccw_retry_interval * NANOSEC);
5718 }
5719
5720 return (non_config_tasks || (config_task && !config_task_suspended));
5721 }
5722
5723 static void
5724 spa_async_dispatch(spa_t *spa)
5725 {
5726 mutex_enter(&spa->spa_async_lock);
5727 if (spa_async_tasks_pending(spa) &&
5728 !spa->spa_async_suspended &&
5729 spa->spa_async_thread == NULL &&
5730 rootdir != NULL)
5731 spa->spa_async_thread = thread_create(NULL, 0,
5732 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5733 mutex_exit(&spa->spa_async_lock);
5734 }
5735
5736 void
5737 spa_async_request(spa_t *spa, int task)
5738 {
5739 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5740 mutex_enter(&spa->spa_async_lock);
5741 spa->spa_async_tasks |= task;
5742 mutex_exit(&spa->spa_async_lock);
5743 }
5744
5745 /*
5746 * ==========================================================================
5747 * SPA syncing routines
5748 * ==========================================================================
5749 */
5750
5751 static int
5752 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5753 {
5754 bpobj_t *bpo = arg;
5755 bpobj_enqueue(bpo, bp, tx);
5756 return (0);
5757 }
5758
5759 static int
5760 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5761 {
5762 zio_t *zio = arg;
5763
5764 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5765 zio->io_flags));
5766 return (0);
5767 }
5768
5769 /*
5770 * Note: this simple function is not inlined to make it easier to dtrace the
5771 * amount of time spent syncing frees.
5772 */
5773 static void
5774 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5775 {
5776 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5777 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5778 VERIFY(zio_wait(zio) == 0);
5779 }
5780
5781 /*
5782 * Note: this simple function is not inlined to make it easier to dtrace the
5783 * amount of time spent syncing deferred frees.
5784 */
5785 static void
5786 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5787 {
5788 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5789 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5790 spa_free_sync_cb, zio, tx), ==, 0);
5791 VERIFY0(zio_wait(zio));
5792 }
5793
5794
5795 static void
5796 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5797 {
5798 char *packed = NULL;
5799 size_t bufsize;
5800 size_t nvsize = 0;
5801 dmu_buf_t *db;
5802
5803 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5804
5805 /*
5806 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5807 * information. This avoids the dmu_buf_will_dirty() path and
5808 * saves us a pre-read to get data we don't actually care about.
5809 */
5810 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5811 packed = kmem_alloc(bufsize, KM_SLEEP);
5812
5813 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5814 KM_SLEEP) == 0);
5815 bzero(packed + nvsize, bufsize - nvsize);
5816
5817 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5818
5819 kmem_free(packed, bufsize);
5820
5821 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5822 dmu_buf_will_dirty(db, tx);
5823 *(uint64_t *)db->db_data = nvsize;
5824 dmu_buf_rele(db, FTAG);
5825 }
5826
5827 static void
5828 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5829 const char *config, const char *entry)
5830 {
5831 nvlist_t *nvroot;
5832 nvlist_t **list;
5833 int i;
5834
5835 if (!sav->sav_sync)
5836 return;
5837
5838 /*
5839 * Update the MOS nvlist describing the list of available devices.
5840 * spa_validate_aux() will have already made sure this nvlist is
5841 * valid and the vdevs are labeled appropriately.
5842 */
5843 if (sav->sav_object == 0) {
5844 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5845 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5846 sizeof (uint64_t), tx);
5847 VERIFY(zap_update(spa->spa_meta_objset,
5848 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5849 &sav->sav_object, tx) == 0);
5850 }
5851
5852 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5853 if (sav->sav_count == 0) {
5854 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5855 } else {
5856 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5857 for (i = 0; i < sav->sav_count; i++)
5858 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5859 B_FALSE, VDEV_CONFIG_L2CACHE);
5860 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5861 sav->sav_count) == 0);
5862 for (i = 0; i < sav->sav_count; i++)
5863 nvlist_free(list[i]);
5864 kmem_free(list, sav->sav_count * sizeof (void *));
5865 }
5866
5867 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5868 nvlist_free(nvroot);
5869
5870 sav->sav_sync = B_FALSE;
5871 }
5872
5873 static void
5874 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5875 {
5876 nvlist_t *config;
5877
5878 if (list_is_empty(&spa->spa_config_dirty_list))
5879 return;
5880
5881 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5882
5883 config = spa_config_generate(spa, spa->spa_root_vdev,
5884 dmu_tx_get_txg(tx), B_FALSE);
5885
5886 /*
5887 * If we're upgrading the spa version then make sure that
5888 * the config object gets updated with the correct version.
5889 */
5890 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5891 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5892 spa->spa_uberblock.ub_version);
5893
5894 spa_config_exit(spa, SCL_STATE, FTAG);
5895
5896 if (spa->spa_config_syncing)
5897 nvlist_free(spa->spa_config_syncing);
5898 spa->spa_config_syncing = config;
5899
5900 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5901 }
5902
5903 static void
5904 spa_sync_version(void *arg, dmu_tx_t *tx)
5905 {
5906 uint64_t *versionp = arg;
5907 uint64_t version = *versionp;
5908 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5909
5910 /*
5911 * Setting the version is special cased when first creating the pool.
5912 */
5913 ASSERT(tx->tx_txg != TXG_INITIAL);
5914
5915 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5916 ASSERT(version >= spa_version(spa));
5917
5918 spa->spa_uberblock.ub_version = version;
5919 vdev_config_dirty(spa->spa_root_vdev);
5920 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5921 }
5922
5923 /*
5924 * Set zpool properties.
5925 */
5926 static void
5927 spa_sync_props(void *arg, dmu_tx_t *tx)
5928 {
5929 nvlist_t *nvp = arg;
5930 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5931 objset_t *mos = spa->spa_meta_objset;
5932 nvpair_t *elem = NULL;
5933
5934 mutex_enter(&spa->spa_props_lock);
5935
5936 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5937 uint64_t intval;
5938 char *strval, *fname;
5939 zpool_prop_t prop;
5940 const char *propname;
5941 zprop_type_t proptype;
5942 spa_feature_t fid;
5943
5944 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5945 case ZPROP_INVAL:
5946 /*
5947 * We checked this earlier in spa_prop_validate().
5948 */
5949 ASSERT(zpool_prop_feature(nvpair_name(elem)));
5950
5951 fname = strchr(nvpair_name(elem), '@') + 1;
5952 VERIFY0(zfeature_lookup_name(fname, &fid));
5953
5954 spa_feature_enable(spa, fid, tx);
5955 spa_history_log_internal(spa, "set", tx,
5956 "%s=enabled", nvpair_name(elem));
5957 break;
5958
5959 case ZPOOL_PROP_VERSION:
5960 intval = fnvpair_value_uint64(elem);
5961 /*
5962 * The version is synced seperatly before other
5963 * properties and should be correct by now.
5964 */
5965 ASSERT3U(spa_version(spa), >=, intval);
5966 break;
5967
5968 case ZPOOL_PROP_ALTROOT:
5969 /*
5970 * 'altroot' is a non-persistent property. It should
5971 * have been set temporarily at creation or import time.
5972 */
5973 ASSERT(spa->spa_root != NULL);
5974 break;
5975
5976 case ZPOOL_PROP_READONLY:
5977 case ZPOOL_PROP_CACHEFILE:
5978 /*
5979 * 'readonly' and 'cachefile' are also non-persisitent
5980 * properties.
5981 */
5982 break;
5983 case ZPOOL_PROP_COMMENT:
5984 strval = fnvpair_value_string(elem);
5985 if (spa->spa_comment != NULL)
5986 spa_strfree(spa->spa_comment);
5987 spa->spa_comment = spa_strdup(strval);
5988 /*
5989 * We need to dirty the configuration on all the vdevs
5990 * so that their labels get updated. It's unnecessary
5991 * to do this for pool creation since the vdev's
5992 * configuratoin has already been dirtied.
5993 */
5994 if (tx->tx_txg != TXG_INITIAL)
5995 vdev_config_dirty(spa->spa_root_vdev);
5996 spa_history_log_internal(spa, "set", tx,
5997 "%s=%s", nvpair_name(elem), strval);
5998 break;
5999 default:
6000 /*
6001 * Set pool property values in the poolprops mos object.
6002 */
6003 if (spa->spa_pool_props_object == 0) {
6004 spa->spa_pool_props_object =
6005 zap_create_link(mos, DMU_OT_POOL_PROPS,
6006 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6007 tx);
6008 }
6009
6010 /* normalize the property name */
6011 propname = zpool_prop_to_name(prop);
6012 proptype = zpool_prop_get_type(prop);
6013
6014 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6015 ASSERT(proptype == PROP_TYPE_STRING);
6016 strval = fnvpair_value_string(elem);
6017 VERIFY0(zap_update(mos,
6018 spa->spa_pool_props_object, propname,
6019 1, strlen(strval) + 1, strval, tx));
6020 spa_history_log_internal(spa, "set", tx,
6021 "%s=%s", nvpair_name(elem), strval);
6022 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6023 intval = fnvpair_value_uint64(elem);
6024
6025 if (proptype == PROP_TYPE_INDEX) {
6026 const char *unused;
6027 VERIFY0(zpool_prop_index_to_string(
6028 prop, intval, &unused));
6029 }
6030 VERIFY0(zap_update(mos,
6031 spa->spa_pool_props_object, propname,
6032 8, 1, &intval, tx));
6033 spa_history_log_internal(spa, "set", tx,
6034 "%s=%lld", nvpair_name(elem), intval);
6035 } else {
6036 ASSERT(0); /* not allowed */
6037 }
6038
6039 switch (prop) {
6040 case ZPOOL_PROP_DELEGATION:
6041 spa->spa_delegation = intval;
6042 break;
6043 case ZPOOL_PROP_BOOTFS:
6044 spa->spa_bootfs = intval;
6045 break;
6046 case ZPOOL_PROP_FAILUREMODE:
6047 spa->spa_failmode = intval;
6048 break;
6049 case ZPOOL_PROP_AUTOEXPAND:
6050 spa->spa_autoexpand = intval;
6051 if (tx->tx_txg != TXG_INITIAL)
6052 spa_async_request(spa,
6053 SPA_ASYNC_AUTOEXPAND);
6054 break;
6055 case ZPOOL_PROP_DEDUPDITTO:
6056 spa->spa_dedup_ditto = intval;
6057 break;
6058 default:
6059 break;
6060 }
6061 }
6062
6063 }
6064
6065 mutex_exit(&spa->spa_props_lock);
6066 }
6067
6068 /*
6069 * Perform one-time upgrade on-disk changes. spa_version() does not
6070 * reflect the new version this txg, so there must be no changes this
6071 * txg to anything that the upgrade code depends on after it executes.
6072 * Therefore this must be called after dsl_pool_sync() does the sync
6073 * tasks.
6074 */
6075 static void
6076 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6077 {
6078 dsl_pool_t *dp = spa->spa_dsl_pool;
6079
6080 ASSERT(spa->spa_sync_pass == 1);
6081
6082 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6083
6084 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6085 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6086 dsl_pool_create_origin(dp, tx);
6087
6088 /* Keeping the origin open increases spa_minref */
6089 spa->spa_minref += 3;
6090 }
6091
6092 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6093 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6094 dsl_pool_upgrade_clones(dp, tx);
6095 }
6096
6097 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6098 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6099 dsl_pool_upgrade_dir_clones(dp, tx);
6100
6101 /* Keeping the freedir open increases spa_minref */
6102 spa->spa_minref += 3;
6103 }
6104
6105 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6106 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6107 spa_feature_create_zap_objects(spa, tx);
6108 }
6109 rrw_exit(&dp->dp_config_rwlock, FTAG);
6110 }
6111
6112 /*
6113 * Sync the specified transaction group. New blocks may be dirtied as
6114 * part of the process, so we iterate until it converges.
6115 */
6116 void
6117 spa_sync(spa_t *spa, uint64_t txg)
6118 {
6119 dsl_pool_t *dp = spa->spa_dsl_pool;
6120 objset_t *mos = spa->spa_meta_objset;
6121 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6122 vdev_t *rvd = spa->spa_root_vdev;
6123 vdev_t *vd;
6124 dmu_tx_t *tx;
6125 int error;
6126
6127 VERIFY(spa_writeable(spa));
6128
6129 /*
6130 * Lock out configuration changes.
6131 */
6132 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6133
6134 spa->spa_syncing_txg = txg;
6135 spa->spa_sync_pass = 0;
6136
6137 /*
6138 * If there are any pending vdev state changes, convert them
6139 * into config changes that go out with this transaction group.
6140 */
6141 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6142 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6143 /*
6144 * We need the write lock here because, for aux vdevs,
6145 * calling vdev_config_dirty() modifies sav_config.
6146 * This is ugly and will become unnecessary when we
6147 * eliminate the aux vdev wart by integrating all vdevs
6148 * into the root vdev tree.
6149 */
6150 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6151 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6152 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6153 vdev_state_clean(vd);
6154 vdev_config_dirty(vd);
6155 }
6156 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6157 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6158 }
6159 spa_config_exit(spa, SCL_STATE, FTAG);
6160
6161 tx = dmu_tx_create_assigned(dp, txg);
6162
6163 spa->spa_sync_starttime = gethrtime();
6164 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6165 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6166
6167 /*
6168 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6169 * set spa_deflate if we have no raid-z vdevs.
6170 */
6171 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6172 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6173 int i;
6174
6175 for (i = 0; i < rvd->vdev_children; i++) {
6176 vd = rvd->vdev_child[i];
6177 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6178 break;
6179 }
6180 if (i == rvd->vdev_children) {
6181 spa->spa_deflate = TRUE;
6182 VERIFY(0 == zap_add(spa->spa_meta_objset,
6183 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6184 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6185 }
6186 }
6187
6188 /*
6189 * If anything has changed in this txg, or if someone is waiting
6190 * for this txg to sync (eg, spa_vdev_remove()), push the
6191 * deferred frees from the previous txg. If not, leave them
6192 * alone so that we don't generate work on an otherwise idle
6193 * system.
6194 */
6195 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6196 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6197 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6198 ((dsl_scan_active(dp->dp_scan) ||
6199 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6200 spa_sync_deferred_frees(spa, tx);
6201 }
6202
6203 /*
6204 * Iterate to convergence.
6205 */
6206 do {
6207 int pass = ++spa->spa_sync_pass;
6208
6209 spa_sync_config_object(spa, tx);
6210 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6211 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6212 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6213 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6214 spa_errlog_sync(spa, txg);
6215 dsl_pool_sync(dp, txg);
6216
6217 if (pass < zfs_sync_pass_deferred_free) {
6218 spa_sync_frees(spa, free_bpl, tx);
6219 } else {
6220 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6221 &spa->spa_deferred_bpobj, tx);
6222 }
6223
6224 ddt_sync(spa, txg);
6225 dsl_scan_sync(dp, tx);
6226
6227 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6228 vdev_sync(vd, txg);
6229
6230 if (pass == 1)
6231 spa_sync_upgrades(spa, tx);
6232
6233 } while (dmu_objset_is_dirty(mos, txg));
6234
6235 /*
6236 * Rewrite the vdev configuration (which includes the uberblock)
6237 * to commit the transaction group.
6238 *
6239 * If there are no dirty vdevs, we sync the uberblock to a few
6240 * random top-level vdevs that are known to be visible in the
6241 * config cache (see spa_vdev_add() for a complete description).
6242 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6243 */
6244 for (;;) {
6245 /*
6246 * We hold SCL_STATE to prevent vdev open/close/etc.
6247 * while we're attempting to write the vdev labels.
6248 */
6249 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6250
6251 if (list_is_empty(&spa->spa_config_dirty_list)) {
6252 vdev_t *svd[SPA_DVAS_PER_BP];
6253 int svdcount = 0;
6254 int children = rvd->vdev_children;
6255 int c0 = spa_get_random(children);
6256
6257 for (int c = 0; c < children; c++) {
6258 vd = rvd->vdev_child[(c0 + c) % children];
6259 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6260 continue;
6261 svd[svdcount++] = vd;
6262 if (svdcount == SPA_DVAS_PER_BP)
6263 break;
6264 }
6265 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6266 if (error != 0)
6267 error = vdev_config_sync(svd, svdcount, txg,
6268 B_TRUE);
6269 } else {
6270 error = vdev_config_sync(rvd->vdev_child,
6271 rvd->vdev_children, txg, B_FALSE);
6272 if (error != 0)
6273 error = vdev_config_sync(rvd->vdev_child,
6274 rvd->vdev_children, txg, B_TRUE);
6275 }
6276
6277 if (error == 0)
6278 spa->spa_last_synced_guid = rvd->vdev_guid;
6279
6280 spa_config_exit(spa, SCL_STATE, FTAG);
6281
6282 if (error == 0)
6283 break;
6284 zio_suspend(spa, NULL);
6285 zio_resume_wait(spa);
6286 }
6287 dmu_tx_commit(tx);
6288
6289 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6290
6291 /*
6292 * Clear the dirty config list.
6293 */
6294 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6295 vdev_config_clean(vd);
6296
6297 /*
6298 * Now that the new config has synced transactionally,
6299 * let it become visible to the config cache.
6300 */
6301 if (spa->spa_config_syncing != NULL) {
6302 spa_config_set(spa, spa->spa_config_syncing);
6303 spa->spa_config_txg = txg;
6304 spa->spa_config_syncing = NULL;
6305 }
6306
6307 spa->spa_ubsync = spa->spa_uberblock;
6308
6309 dsl_pool_sync_done(dp, txg);
6310
6311 /*
6312 * Update usable space statistics.
6313 */
6314 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6315 vdev_sync_done(vd, txg);
6316
6317 spa_update_dspace(spa);
6318
6319 /*
6320 * It had better be the case that we didn't dirty anything
6321 * since vdev_config_sync().
6322 */
6323 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6324 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6325 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6326
6327 spa->spa_sync_pass = 0;
6328
6329 spa_config_exit(spa, SCL_CONFIG, FTAG);
6330
6331 spa_handle_ignored_writes(spa);
6332
6333 /*
6334 * If any async tasks have been requested, kick them off.
6335 */
6336 spa_async_dispatch(spa);
6337 }
6338
6339 /*
6340 * Sync all pools. We don't want to hold the namespace lock across these
6341 * operations, so we take a reference on the spa_t and drop the lock during the
6342 * sync.
6343 */
6344 void
6345 spa_sync_allpools(void)
6346 {
6347 spa_t *spa = NULL;
6348 mutex_enter(&spa_namespace_lock);
6349 while ((spa = spa_next(spa)) != NULL) {
6350 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6351 !spa_writeable(spa) || spa_suspended(spa))
6352 continue;
6353 spa_open_ref(spa, FTAG);
6354 mutex_exit(&spa_namespace_lock);
6355 txg_wait_synced(spa_get_dsl(spa), 0);
6356 mutex_enter(&spa_namespace_lock);
6357 spa_close(spa, FTAG);
6358 }
6359 mutex_exit(&spa_namespace_lock);
6360 }
6361
6362 /*
6363 * ==========================================================================
6364 * Miscellaneous routines
6365 * ==========================================================================
6366 */
6367
6368 /*
6369 * Remove all pools in the system.
6370 */
6371 void
6372 spa_evict_all(void)
6373 {
6374 spa_t *spa;
6375
6376 /*
6377 * Remove all cached state. All pools should be closed now,
6378 * so every spa in the AVL tree should be unreferenced.
6379 */
6380 mutex_enter(&spa_namespace_lock);
6381 while ((spa = spa_next(NULL)) != NULL) {
6382 /*
6383 * Stop async tasks. The async thread may need to detach
6384 * a device that's been replaced, which requires grabbing
6385 * spa_namespace_lock, so we must drop it here.
6386 */
6387 spa_open_ref(spa, FTAG);
6388 mutex_exit(&spa_namespace_lock);
6389 spa_async_suspend(spa);
6390 mutex_enter(&spa_namespace_lock);
6391 spa_close(spa, FTAG);
6392
6393 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6394 spa_unload(spa);
6395 spa_deactivate(spa);
6396 }
6397 spa_remove(spa);
6398 }
6399 mutex_exit(&spa_namespace_lock);
6400 }
6401
6402 vdev_t *
6403 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6404 {
6405 vdev_t *vd;
6406 int i;
6407
6408 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6409 return (vd);
6410
6411 if (aux) {
6412 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6413 vd = spa->spa_l2cache.sav_vdevs[i];
6414 if (vd->vdev_guid == guid)
6415 return (vd);
6416 }
6417
6418 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6419 vd = spa->spa_spares.sav_vdevs[i];
6420 if (vd->vdev_guid == guid)
6421 return (vd);
6422 }
6423 }
6424
6425 return (NULL);
6426 }
6427
6428 void
6429 spa_upgrade(spa_t *spa, uint64_t version)
6430 {
6431 ASSERT(spa_writeable(spa));
6432
6433 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6434
6435 /*
6436 * This should only be called for a non-faulted pool, and since a
6437 * future version would result in an unopenable pool, this shouldn't be
6438 * possible.
6439 */
6440 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6441 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6442
6443 spa->spa_uberblock.ub_version = version;
6444 vdev_config_dirty(spa->spa_root_vdev);
6445
6446 spa_config_exit(spa, SCL_ALL, FTAG);
6447
6448 txg_wait_synced(spa_get_dsl(spa), 0);
6449 }
6450
6451 boolean_t
6452 spa_has_spare(spa_t *spa, uint64_t guid)
6453 {
6454 int i;
6455 uint64_t spareguid;
6456 spa_aux_vdev_t *sav = &spa->spa_spares;
6457
6458 for (i = 0; i < sav->sav_count; i++)
6459 if (sav->sav_vdevs[i]->vdev_guid == guid)
6460 return (B_TRUE);
6461
6462 for (i = 0; i < sav->sav_npending; i++) {
6463 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6464 &spareguid) == 0 && spareguid == guid)
6465 return (B_TRUE);
6466 }
6467
6468 return (B_FALSE);
6469 }
6470
6471 /*
6472 * Check if a pool has an active shared spare device.
6473 * Note: reference count of an active spare is 2, as a spare and as a replace
6474 */
6475 static boolean_t
6476 spa_has_active_shared_spare(spa_t *spa)
6477 {
6478 int i, refcnt;
6479 uint64_t pool;
6480 spa_aux_vdev_t *sav = &spa->spa_spares;
6481
6482 for (i = 0; i < sav->sav_count; i++) {
6483 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6484 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6485 refcnt > 2)
6486 return (B_TRUE);
6487 }
6488
6489 return (B_FALSE);
6490 }
6491
6492 /*
6493 * Post a sysevent corresponding to the given event. The 'name' must be one of
6494 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6495 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6496 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6497 * or zdb as real changes.
6498 */
6499 void
6500 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6501 {
6502 #ifdef _KERNEL
6503 sysevent_t *ev;
6504 sysevent_attr_list_t *attr = NULL;
6505 sysevent_value_t value;
6506 sysevent_id_t eid;
6507
6508 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6509 SE_SLEEP);
6510
6511 value.value_type = SE_DATA_TYPE_STRING;
6512 value.value.sv_string = spa_name(spa);
6513 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6514 goto done;
6515
6516 value.value_type = SE_DATA_TYPE_UINT64;
6517 value.value.sv_uint64 = spa_guid(spa);
6518 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6519 goto done;
6520
6521 if (vd) {
6522 value.value_type = SE_DATA_TYPE_UINT64;
6523 value.value.sv_uint64 = vd->vdev_guid;
6524 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6525 SE_SLEEP) != 0)
6526 goto done;
6527
6528 if (vd->vdev_path) {
6529 value.value_type = SE_DATA_TYPE_STRING;
6530 value.value.sv_string = vd->vdev_path;
6531 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6532 &value, SE_SLEEP) != 0)
6533 goto done;
6534 }
6535 }
6536
6537 if (sysevent_attach_attributes(ev, attr) != 0)
6538 goto done;
6539 attr = NULL;
6540
6541 (void) log_sysevent(ev, SE_SLEEP, &eid);
6542
6543 done:
6544 if (attr)
6545 sysevent_free_attr(attr);
6546 sysevent_free(ev);
6547 #endif
6548 }