1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/spa_impl.h> 29 #include <sys/spa_boot.h> 30 #include <sys/zio.h> 31 #include <sys/zio_checksum.h> 32 #include <sys/zio_compress.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/zap.h> 36 #include <sys/zil.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/metaslab.h> 39 #include <sys/uberblock_impl.h> 40 #include <sys/txg.h> 41 #include <sys/avl.h> 42 #include <sys/unique.h> 43 #include <sys/dsl_pool.h> 44 #include <sys/dsl_dir.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/dsl_scan.h> 47 #include <sys/fs/zfs.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/arc.h> 50 #include <sys/ddt.h> 51 #include "zfs_prop.h" 52 #include "zfeature_common.h" 53 54 /* 55 * SPA locking 56 * 57 * There are four basic locks for managing spa_t structures: 58 * 59 * spa_namespace_lock (global mutex) 60 * 61 * This lock must be acquired to do any of the following: 62 * 63 * - Lookup a spa_t by name 64 * - Add or remove a spa_t from the namespace 65 * - Increase spa_refcount from non-zero 66 * - Check if spa_refcount is zero 67 * - Rename a spa_t 68 * - add/remove/attach/detach devices 69 * - Held for the duration of create/destroy/import/export 70 * 71 * It does not need to handle recursion. A create or destroy may 72 * reference objects (files or zvols) in other pools, but by 73 * definition they must have an existing reference, and will never need 74 * to lookup a spa_t by name. 75 * 76 * spa_refcount (per-spa refcount_t protected by mutex) 77 * 78 * This reference count keep track of any active users of the spa_t. The 79 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 80 * the refcount is never really 'zero' - opening a pool implicitly keeps 81 * some references in the DMU. Internally we check against spa_minref, but 82 * present the image of a zero/non-zero value to consumers. 83 * 84 * spa_config_lock[] (per-spa array of rwlocks) 85 * 86 * This protects the spa_t from config changes, and must be held in 87 * the following circumstances: 88 * 89 * - RW_READER to perform I/O to the spa 90 * - RW_WRITER to change the vdev config 91 * 92 * The locking order is fairly straightforward: 93 * 94 * spa_namespace_lock -> spa_refcount 95 * 96 * The namespace lock must be acquired to increase the refcount from 0 97 * or to check if it is zero. 98 * 99 * spa_refcount -> spa_config_lock[] 100 * 101 * There must be at least one valid reference on the spa_t to acquire 102 * the config lock. 103 * 104 * spa_namespace_lock -> spa_config_lock[] 105 * 106 * The namespace lock must always be taken before the config lock. 107 * 108 * 109 * The spa_namespace_lock can be acquired directly and is globally visible. 110 * 111 * The namespace is manipulated using the following functions, all of which 112 * require the spa_namespace_lock to be held. 113 * 114 * spa_lookup() Lookup a spa_t by name. 115 * 116 * spa_add() Create a new spa_t in the namespace. 117 * 118 * spa_remove() Remove a spa_t from the namespace. This also 119 * frees up any memory associated with the spa_t. 120 * 121 * spa_next() Returns the next spa_t in the system, or the 122 * first if NULL is passed. 123 * 124 * spa_evict_all() Shutdown and remove all spa_t structures in 125 * the system. 126 * 127 * spa_guid_exists() Determine whether a pool/device guid exists. 128 * 129 * The spa_refcount is manipulated using the following functions: 130 * 131 * spa_open_ref() Adds a reference to the given spa_t. Must be 132 * called with spa_namespace_lock held if the 133 * refcount is currently zero. 134 * 135 * spa_close() Remove a reference from the spa_t. This will 136 * not free the spa_t or remove it from the 137 * namespace. No locking is required. 138 * 139 * spa_refcount_zero() Returns true if the refcount is currently 140 * zero. Must be called with spa_namespace_lock 141 * held. 142 * 143 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 144 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 145 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 146 * 147 * To read the configuration, it suffices to hold one of these locks as reader. 148 * To modify the configuration, you must hold all locks as writer. To modify 149 * vdev state without altering the vdev tree's topology (e.g. online/offline), 150 * you must hold SCL_STATE and SCL_ZIO as writer. 151 * 152 * We use these distinct config locks to avoid recursive lock entry. 153 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 154 * block allocations (SCL_ALLOC), which may require reading space maps 155 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 156 * 157 * The spa config locks cannot be normal rwlocks because we need the 158 * ability to hand off ownership. For example, SCL_ZIO is acquired 159 * by the issuing thread and later released by an interrupt thread. 160 * They do, however, obey the usual write-wanted semantics to prevent 161 * writer (i.e. system administrator) starvation. 162 * 163 * The lock acquisition rules are as follows: 164 * 165 * SCL_CONFIG 166 * Protects changes to the vdev tree topology, such as vdev 167 * add/remove/attach/detach. Protects the dirty config list 168 * (spa_config_dirty_list) and the set of spares and l2arc devices. 169 * 170 * SCL_STATE 171 * Protects changes to pool state and vdev state, such as vdev 172 * online/offline/fault/degrade/clear. Protects the dirty state list 173 * (spa_state_dirty_list) and global pool state (spa_state). 174 * 175 * SCL_ALLOC 176 * Protects changes to metaslab groups and classes. 177 * Held as reader by metaslab_alloc() and metaslab_claim(). 178 * 179 * SCL_ZIO 180 * Held by bp-level zios (those which have no io_vd upon entry) 181 * to prevent changes to the vdev tree. The bp-level zio implicitly 182 * protects all of its vdev child zios, which do not hold SCL_ZIO. 183 * 184 * SCL_FREE 185 * Protects changes to metaslab groups and classes. 186 * Held as reader by metaslab_free(). SCL_FREE is distinct from 187 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 188 * blocks in zio_done() while another i/o that holds either 189 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 190 * 191 * SCL_VDEV 192 * Held as reader to prevent changes to the vdev tree during trivial 193 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 194 * other locks, and lower than all of them, to ensure that it's safe 195 * to acquire regardless of caller context. 196 * 197 * In addition, the following rules apply: 198 * 199 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 200 * The lock ordering is SCL_CONFIG > spa_props_lock. 201 * 202 * (b) I/O operations on leaf vdevs. For any zio operation that takes 203 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 204 * or zio_write_phys() -- the caller must ensure that the config cannot 205 * cannot change in the interim, and that the vdev cannot be reopened. 206 * SCL_STATE as reader suffices for both. 207 * 208 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 209 * 210 * spa_vdev_enter() Acquire the namespace lock and the config lock 211 * for writing. 212 * 213 * spa_vdev_exit() Release the config lock, wait for all I/O 214 * to complete, sync the updated configs to the 215 * cache, and release the namespace lock. 216 * 217 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 218 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 219 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 220 * 221 * spa_rename() is also implemented within this file since it requires 222 * manipulation of the namespace. 223 */ 224 225 static avl_tree_t spa_namespace_avl; 226 kmutex_t spa_namespace_lock; 227 static kcondvar_t spa_namespace_cv; 228 static int spa_active_count; 229 int spa_max_replication_override = SPA_DVAS_PER_BP; 230 231 static kmutex_t spa_spare_lock; 232 static avl_tree_t spa_spare_avl; 233 static kmutex_t spa_l2cache_lock; 234 static avl_tree_t spa_l2cache_avl; 235 236 kmem_cache_t *spa_buffer_pool; 237 int spa_mode_global; 238 239 #ifdef ZFS_DEBUG 240 /* Everything except dprintf and spa is on by default in debug builds */ 241 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA); 242 #else 243 int zfs_flags = 0; 244 #endif 245 246 /* 247 * zfs_recover can be set to nonzero to attempt to recover from 248 * otherwise-fatal errors, typically caused by on-disk corruption. When 249 * set, calls to zfs_panic_recover() will turn into warning messages. 250 * This should only be used as a last resort, as it typically results 251 * in leaked space, or worse. 252 */ 253 boolean_t zfs_recover = B_FALSE; 254 255 /* 256 * If destroy encounters an EIO while reading metadata (e.g. indirect 257 * blocks), space referenced by the missing metadata can not be freed. 258 * Normally this causes the background destroy to become "stalled", as 259 * it is unable to make forward progress. While in this stalled state, 260 * all remaining space to free from the error-encountering filesystem is 261 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 262 * permanently leak the space from indirect blocks that can not be read, 263 * and continue to free everything else that it can. 264 * 265 * The default, "stalling" behavior is useful if the storage partially 266 * fails (i.e. some but not all i/os fail), and then later recovers. In 267 * this case, we will be able to continue pool operations while it is 268 * partially failed, and when it recovers, we can continue to free the 269 * space, with no leaks. However, note that this case is actually 270 * fairly rare. 271 * 272 * Typically pools either (a) fail completely (but perhaps temporarily, 273 * e.g. a top-level vdev going offline), or (b) have localized, 274 * permanent errors (e.g. disk returns the wrong data due to bit flip or 275 * firmware bug). In case (a), this setting does not matter because the 276 * pool will be suspended and the sync thread will not be able to make 277 * forward progress regardless. In case (b), because the error is 278 * permanent, the best we can do is leak the minimum amount of space, 279 * which is what setting this flag will do. Therefore, it is reasonable 280 * for this flag to normally be set, but we chose the more conservative 281 * approach of not setting it, so that there is no possibility of 282 * leaking space in the "partial temporary" failure case. 283 */ 284 boolean_t zfs_free_leak_on_eio = B_FALSE; 285 286 /* 287 * Expiration time in milliseconds. This value has two meanings. First it is 288 * used to determine when the spa_deadman() logic should fire. By default the 289 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds. 290 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 291 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 292 * in a system panic. 293 */ 294 uint64_t zfs_deadman_synctime_ms = 1000000ULL; 295 296 /* 297 * Check time in milliseconds. This defines the frequency at which we check 298 * for hung I/O. 299 */ 300 uint64_t zfs_deadman_checktime_ms = 5000ULL; 301 302 /* 303 * Override the zfs deadman behavior via /etc/system. By default the 304 * deadman is enabled except on VMware and sparc deployments. 305 */ 306 int zfs_deadman_enabled = -1; 307 308 /* 309 * The worst case is single-sector max-parity RAID-Z blocks, in which 310 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 311 * times the size; so just assume that. Add to this the fact that 312 * we can have up to 3 DVAs per bp, and one more factor of 2 because 313 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 314 * the worst case is: 315 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 316 */ 317 int spa_asize_inflation = 24; 318 319 /* 320 * ========================================================================== 321 * SPA config locking 322 * ========================================================================== 323 */ 324 static void 325 spa_config_lock_init(spa_t *spa) 326 { 327 for (int i = 0; i < SCL_LOCKS; i++) { 328 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 329 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 330 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 331 refcount_create_untracked(&scl->scl_count); 332 scl->scl_writer = NULL; 333 scl->scl_write_wanted = 0; 334 } 335 } 336 337 static void 338 spa_config_lock_destroy(spa_t *spa) 339 { 340 for (int i = 0; i < SCL_LOCKS; i++) { 341 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 342 mutex_destroy(&scl->scl_lock); 343 cv_destroy(&scl->scl_cv); 344 refcount_destroy(&scl->scl_count); 345 ASSERT(scl->scl_writer == NULL); 346 ASSERT(scl->scl_write_wanted == 0); 347 } 348 } 349 350 int 351 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 352 { 353 for (int i = 0; i < SCL_LOCKS; i++) { 354 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 355 if (!(locks & (1 << i))) 356 continue; 357 mutex_enter(&scl->scl_lock); 358 if (rw == RW_READER) { 359 if (scl->scl_writer || scl->scl_write_wanted) { 360 mutex_exit(&scl->scl_lock); 361 spa_config_exit(spa, locks ^ (1 << i), tag); 362 return (0); 363 } 364 } else { 365 ASSERT(scl->scl_writer != curthread); 366 if (!refcount_is_zero(&scl->scl_count)) { 367 mutex_exit(&scl->scl_lock); 368 spa_config_exit(spa, locks ^ (1 << i), tag); 369 return (0); 370 } 371 scl->scl_writer = curthread; 372 } 373 (void) refcount_add(&scl->scl_count, tag); 374 mutex_exit(&scl->scl_lock); 375 } 376 return (1); 377 } 378 379 void 380 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) 381 { 382 int wlocks_held = 0; 383 384 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 385 386 for (int i = 0; i < SCL_LOCKS; i++) { 387 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 388 if (scl->scl_writer == curthread) 389 wlocks_held |= (1 << i); 390 if (!(locks & (1 << i))) 391 continue; 392 mutex_enter(&scl->scl_lock); 393 if (rw == RW_READER) { 394 while (scl->scl_writer || scl->scl_write_wanted) { 395 cv_wait(&scl->scl_cv, &scl->scl_lock); 396 } 397 } else { 398 ASSERT(scl->scl_writer != curthread); 399 while (!refcount_is_zero(&scl->scl_count)) { 400 scl->scl_write_wanted++; 401 cv_wait(&scl->scl_cv, &scl->scl_lock); 402 scl->scl_write_wanted--; 403 } 404 scl->scl_writer = curthread; 405 } 406 (void) refcount_add(&scl->scl_count, tag); 407 mutex_exit(&scl->scl_lock); 408 } 409 ASSERT(wlocks_held <= locks); 410 } 411 412 void 413 spa_config_exit(spa_t *spa, int locks, void *tag) 414 { 415 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 416 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 417 if (!(locks & (1 << i))) 418 continue; 419 mutex_enter(&scl->scl_lock); 420 ASSERT(!refcount_is_zero(&scl->scl_count)); 421 if (refcount_remove(&scl->scl_count, tag) == 0) { 422 ASSERT(scl->scl_writer == NULL || 423 scl->scl_writer == curthread); 424 scl->scl_writer = NULL; /* OK in either case */ 425 cv_broadcast(&scl->scl_cv); 426 } 427 mutex_exit(&scl->scl_lock); 428 } 429 } 430 431 int 432 spa_config_held(spa_t *spa, int locks, krw_t rw) 433 { 434 int locks_held = 0; 435 436 for (int i = 0; i < SCL_LOCKS; i++) { 437 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 438 if (!(locks & (1 << i))) 439 continue; 440 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) || 441 (rw == RW_WRITER && scl->scl_writer == curthread)) 442 locks_held |= 1 << i; 443 } 444 445 return (locks_held); 446 } 447 448 /* 449 * ========================================================================== 450 * SPA namespace functions 451 * ========================================================================== 452 */ 453 454 /* 455 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 456 * Returns NULL if no matching spa_t is found. 457 */ 458 spa_t * 459 spa_lookup(const char *name) 460 { 461 spa_t *search; 462 spa_t *spa; 463 avl_index_t where; 464 char *cp; 465 466 search = kmem_alloc(sizeof(*search), KM_SLEEP); 467 468 (void) strlcpy(search->spa_name, name, sizeof (search->spa_name)); 469 470 /* 471 * If it's a full dataset name, figure out the pool name and 472 * just use that. 473 */ 474 cp = strpbrk(search->spa_name, "/@#"); 475 if (cp != NULL) 476 *cp = '\0'; 477 478 spa = avl_find(&spa_namespace_avl, search, &where); 479 kmem_free(search, sizeof(*search)); 480 481 return (spa); 482 } 483 484 /* 485 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 486 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 487 * looking for potentially hung I/Os. 488 */ 489 void 490 spa_deadman(void *arg) 491 { 492 spa_t *spa = arg; 493 494 /* 495 * Disable the deadman timer if the pool is suspended. 496 */ 497 if (spa_suspended(spa)) { 498 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 499 return; 500 } 501 502 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 503 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 504 ++spa->spa_deadman_calls); 505 if (zfs_deadman_enabled) 506 vdev_deadman(spa->spa_root_vdev); 507 } 508 509 /* 510 * Create an uninitialized spa_t with the given name. Requires 511 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 512 * exist by calling spa_lookup() first. 513 */ 514 spa_t * 515 spa_add(const char *name, nvlist_t *config, const char *altroot) 516 { 517 spa_t *spa; 518 spa_config_dirent_t *dp; 519 cyc_handler_t hdlr; 520 cyc_time_t when; 521 522 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 523 524 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 525 526 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 527 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 528 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 529 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 530 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 531 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 532 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 533 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 534 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 535 mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL); 536 537 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 538 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 539 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 540 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 541 542 for (int t = 0; t < TXG_SIZE; t++) 543 bplist_create(&spa->spa_free_bplist[t]); 544 545 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 546 spa->spa_state = POOL_STATE_UNINITIALIZED; 547 spa->spa_freeze_txg = UINT64_MAX; 548 spa->spa_final_txg = UINT64_MAX; 549 spa->spa_load_max_txg = UINT64_MAX; 550 spa->spa_proc = &p0; 551 spa->spa_proc_state = SPA_PROC_NONE; 552 553 hdlr.cyh_func = spa_deadman; 554 hdlr.cyh_arg = spa; 555 hdlr.cyh_level = CY_LOW_LEVEL; 556 557 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 558 559 /* 560 * This determines how often we need to check for hung I/Os after 561 * the cyclic has already fired. Since checking for hung I/Os is 562 * an expensive operation we don't want to check too frequently. 563 * Instead wait for 5 seconds before checking again. 564 */ 565 when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms); 566 when.cyt_when = CY_INFINITY; 567 mutex_enter(&cpu_lock); 568 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when); 569 mutex_exit(&cpu_lock); 570 571 refcount_create(&spa->spa_refcount); 572 spa_config_lock_init(spa); 573 574 avl_add(&spa_namespace_avl, spa); 575 576 /* 577 * Set the alternate root, if there is one. 578 */ 579 if (altroot) { 580 spa->spa_root = spa_strdup(altroot); 581 spa_active_count++; 582 } 583 584 /* 585 * Every pool starts with the default cachefile 586 */ 587 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 588 offsetof(spa_config_dirent_t, scd_link)); 589 590 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 591 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 592 list_insert_head(&spa->spa_config_list, dp); 593 594 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 595 KM_SLEEP) == 0); 596 597 if (config != NULL) { 598 nvlist_t *features; 599 600 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 601 &features) == 0) { 602 VERIFY(nvlist_dup(features, &spa->spa_label_features, 603 0) == 0); 604 } 605 606 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 607 } 608 609 if (spa->spa_label_features == NULL) { 610 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 611 KM_SLEEP) == 0); 612 } 613 614 spa->spa_iokstat = kstat_create("zfs", 0, name, 615 "disk", KSTAT_TYPE_IO, 1, 0); 616 if (spa->spa_iokstat) { 617 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock; 618 kstat_install(spa->spa_iokstat); 619 } 620 621 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0); 622 623 /* 624 * As a pool is being created, treat all features as disabled by 625 * setting SPA_FEATURE_DISABLED for all entries in the feature 626 * refcount cache. 627 */ 628 for (int i = 0; i < SPA_FEATURES; i++) { 629 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 630 } 631 632 return (spa); 633 } 634 635 /* 636 * Removes a spa_t from the namespace, freeing up any memory used. Requires 637 * spa_namespace_lock. This is called only after the spa_t has been closed and 638 * deactivated. 639 */ 640 void 641 spa_remove(spa_t *spa) 642 { 643 spa_config_dirent_t *dp; 644 645 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 646 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 647 648 nvlist_free(spa->spa_config_splitting); 649 650 avl_remove(&spa_namespace_avl, spa); 651 cv_broadcast(&spa_namespace_cv); 652 653 if (spa->spa_root) { 654 spa_strfree(spa->spa_root); 655 spa_active_count--; 656 } 657 658 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 659 list_remove(&spa->spa_config_list, dp); 660 if (dp->scd_path != NULL) 661 spa_strfree(dp->scd_path); 662 kmem_free(dp, sizeof (spa_config_dirent_t)); 663 } 664 665 list_destroy(&spa->spa_config_list); 666 667 nvlist_free(spa->spa_label_features); 668 nvlist_free(spa->spa_load_info); 669 spa_config_set(spa, NULL); 670 671 mutex_enter(&cpu_lock); 672 if (spa->spa_deadman_cycid != CYCLIC_NONE) 673 cyclic_remove(spa->spa_deadman_cycid); 674 mutex_exit(&cpu_lock); 675 spa->spa_deadman_cycid = CYCLIC_NONE; 676 677 refcount_destroy(&spa->spa_refcount); 678 679 spa_config_lock_destroy(spa); 680 681 kstat_delete(spa->spa_iokstat); 682 spa->spa_iokstat = NULL; 683 684 for (int t = 0; t < TXG_SIZE; t++) 685 bplist_destroy(&spa->spa_free_bplist[t]); 686 687 cv_destroy(&spa->spa_async_cv); 688 cv_destroy(&spa->spa_proc_cv); 689 cv_destroy(&spa->spa_scrub_io_cv); 690 cv_destroy(&spa->spa_suspend_cv); 691 692 mutex_destroy(&spa->spa_async_lock); 693 mutex_destroy(&spa->spa_errlist_lock); 694 mutex_destroy(&spa->spa_errlog_lock); 695 mutex_destroy(&spa->spa_history_lock); 696 mutex_destroy(&spa->spa_proc_lock); 697 mutex_destroy(&spa->spa_props_lock); 698 mutex_destroy(&spa->spa_scrub_lock); 699 mutex_destroy(&spa->spa_suspend_lock); 700 mutex_destroy(&spa->spa_vdev_top_lock); 701 mutex_destroy(&spa->spa_iokstat_lock); 702 703 kmem_free(spa, sizeof (spa_t)); 704 } 705 706 /* 707 * Given a pool, return the next pool in the namespace, or NULL if there is 708 * none. If 'prev' is NULL, return the first pool. 709 */ 710 spa_t * 711 spa_next(spa_t *prev) 712 { 713 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 714 715 if (prev) 716 return (AVL_NEXT(&spa_namespace_avl, prev)); 717 else 718 return (avl_first(&spa_namespace_avl)); 719 } 720 721 /* 722 * ========================================================================== 723 * SPA refcount functions 724 * ========================================================================== 725 */ 726 727 /* 728 * Add a reference to the given spa_t. Must have at least one reference, or 729 * have the namespace lock held. 730 */ 731 void 732 spa_open_ref(spa_t *spa, void *tag) 733 { 734 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || 735 MUTEX_HELD(&spa_namespace_lock)); 736 (void) refcount_add(&spa->spa_refcount, tag); 737 } 738 739 /* 740 * Remove a reference to the given spa_t. Must have at least one reference, or 741 * have the namespace lock held. 742 */ 743 void 744 spa_close(spa_t *spa, void *tag) 745 { 746 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || 747 MUTEX_HELD(&spa_namespace_lock)); 748 (void) refcount_remove(&spa->spa_refcount, tag); 749 } 750 751 /* 752 * Check to see if the spa refcount is zero. Must be called with 753 * spa_namespace_lock held. We really compare against spa_minref, which is the 754 * number of references acquired when opening a pool 755 */ 756 boolean_t 757 spa_refcount_zero(spa_t *spa) 758 { 759 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 760 761 return (refcount_count(&spa->spa_refcount) == spa->spa_minref); 762 } 763 764 /* 765 * ========================================================================== 766 * SPA spare and l2cache tracking 767 * ========================================================================== 768 */ 769 770 /* 771 * Hot spares and cache devices are tracked using the same code below, 772 * for 'auxiliary' devices. 773 */ 774 775 typedef struct spa_aux { 776 uint64_t aux_guid; 777 uint64_t aux_pool; 778 avl_node_t aux_avl; 779 int aux_count; 780 } spa_aux_t; 781 782 static int 783 spa_aux_compare(const void *a, const void *b) 784 { 785 const spa_aux_t *sa = a; 786 const spa_aux_t *sb = b; 787 788 if (sa->aux_guid < sb->aux_guid) 789 return (-1); 790 else if (sa->aux_guid > sb->aux_guid) 791 return (1); 792 else 793 return (0); 794 } 795 796 void 797 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 798 { 799 avl_index_t where; 800 spa_aux_t search; 801 spa_aux_t *aux; 802 803 search.aux_guid = vd->vdev_guid; 804 if ((aux = avl_find(avl, &search, &where)) != NULL) { 805 aux->aux_count++; 806 } else { 807 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 808 aux->aux_guid = vd->vdev_guid; 809 aux->aux_count = 1; 810 avl_insert(avl, aux, where); 811 } 812 } 813 814 void 815 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 816 { 817 spa_aux_t search; 818 spa_aux_t *aux; 819 avl_index_t where; 820 821 search.aux_guid = vd->vdev_guid; 822 aux = avl_find(avl, &search, &where); 823 824 ASSERT(aux != NULL); 825 826 if (--aux->aux_count == 0) { 827 avl_remove(avl, aux); 828 kmem_free(aux, sizeof (spa_aux_t)); 829 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 830 aux->aux_pool = 0ULL; 831 } 832 } 833 834 boolean_t 835 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 836 { 837 spa_aux_t search, *found; 838 839 search.aux_guid = guid; 840 found = avl_find(avl, &search, NULL); 841 842 if (pool) { 843 if (found) 844 *pool = found->aux_pool; 845 else 846 *pool = 0ULL; 847 } 848 849 if (refcnt) { 850 if (found) 851 *refcnt = found->aux_count; 852 else 853 *refcnt = 0; 854 } 855 856 return (found != NULL); 857 } 858 859 void 860 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 861 { 862 spa_aux_t search, *found; 863 avl_index_t where; 864 865 search.aux_guid = vd->vdev_guid; 866 found = avl_find(avl, &search, &where); 867 ASSERT(found != NULL); 868 ASSERT(found->aux_pool == 0ULL); 869 870 found->aux_pool = spa_guid(vd->vdev_spa); 871 } 872 873 /* 874 * Spares are tracked globally due to the following constraints: 875 * 876 * - A spare may be part of multiple pools. 877 * - A spare may be added to a pool even if it's actively in use within 878 * another pool. 879 * - A spare in use in any pool can only be the source of a replacement if 880 * the target is a spare in the same pool. 881 * 882 * We keep track of all spares on the system through the use of a reference 883 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 884 * spare, then we bump the reference count in the AVL tree. In addition, we set 885 * the 'vdev_isspare' member to indicate that the device is a spare (active or 886 * inactive). When a spare is made active (used to replace a device in the 887 * pool), we also keep track of which pool its been made a part of. 888 * 889 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 890 * called under the spa_namespace lock as part of vdev reconfiguration. The 891 * separate spare lock exists for the status query path, which does not need to 892 * be completely consistent with respect to other vdev configuration changes. 893 */ 894 895 static int 896 spa_spare_compare(const void *a, const void *b) 897 { 898 return (spa_aux_compare(a, b)); 899 } 900 901 void 902 spa_spare_add(vdev_t *vd) 903 { 904 mutex_enter(&spa_spare_lock); 905 ASSERT(!vd->vdev_isspare); 906 spa_aux_add(vd, &spa_spare_avl); 907 vd->vdev_isspare = B_TRUE; 908 mutex_exit(&spa_spare_lock); 909 } 910 911 void 912 spa_spare_remove(vdev_t *vd) 913 { 914 mutex_enter(&spa_spare_lock); 915 ASSERT(vd->vdev_isspare); 916 spa_aux_remove(vd, &spa_spare_avl); 917 vd->vdev_isspare = B_FALSE; 918 mutex_exit(&spa_spare_lock); 919 } 920 921 boolean_t 922 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 923 { 924 boolean_t found; 925 926 mutex_enter(&spa_spare_lock); 927 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 928 mutex_exit(&spa_spare_lock); 929 930 return (found); 931 } 932 933 void 934 spa_spare_activate(vdev_t *vd) 935 { 936 mutex_enter(&spa_spare_lock); 937 ASSERT(vd->vdev_isspare); 938 spa_aux_activate(vd, &spa_spare_avl); 939 mutex_exit(&spa_spare_lock); 940 } 941 942 /* 943 * Level 2 ARC devices are tracked globally for the same reasons as spares. 944 * Cache devices currently only support one pool per cache device, and so 945 * for these devices the aux reference count is currently unused beyond 1. 946 */ 947 948 static int 949 spa_l2cache_compare(const void *a, const void *b) 950 { 951 return (spa_aux_compare(a, b)); 952 } 953 954 void 955 spa_l2cache_add(vdev_t *vd) 956 { 957 mutex_enter(&spa_l2cache_lock); 958 ASSERT(!vd->vdev_isl2cache); 959 spa_aux_add(vd, &spa_l2cache_avl); 960 vd->vdev_isl2cache = B_TRUE; 961 mutex_exit(&spa_l2cache_lock); 962 } 963 964 void 965 spa_l2cache_remove(vdev_t *vd) 966 { 967 mutex_enter(&spa_l2cache_lock); 968 ASSERT(vd->vdev_isl2cache); 969 spa_aux_remove(vd, &spa_l2cache_avl); 970 vd->vdev_isl2cache = B_FALSE; 971 mutex_exit(&spa_l2cache_lock); 972 } 973 974 boolean_t 975 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 976 { 977 boolean_t found; 978 979 mutex_enter(&spa_l2cache_lock); 980 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 981 mutex_exit(&spa_l2cache_lock); 982 983 return (found); 984 } 985 986 void 987 spa_l2cache_activate(vdev_t *vd) 988 { 989 mutex_enter(&spa_l2cache_lock); 990 ASSERT(vd->vdev_isl2cache); 991 spa_aux_activate(vd, &spa_l2cache_avl); 992 mutex_exit(&spa_l2cache_lock); 993 } 994 995 /* 996 * ========================================================================== 997 * SPA vdev locking 998 * ========================================================================== 999 */ 1000 1001 /* 1002 * Lock the given spa_t for the purpose of adding or removing a vdev. 1003 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1004 * It returns the next transaction group for the spa_t. 1005 */ 1006 uint64_t 1007 spa_vdev_enter(spa_t *spa) 1008 { 1009 mutex_enter(&spa->spa_vdev_top_lock); 1010 mutex_enter(&spa_namespace_lock); 1011 return (spa_vdev_config_enter(spa)); 1012 } 1013 1014 /* 1015 * Internal implementation for spa_vdev_enter(). Used when a vdev 1016 * operation requires multiple syncs (i.e. removing a device) while 1017 * keeping the spa_namespace_lock held. 1018 */ 1019 uint64_t 1020 spa_vdev_config_enter(spa_t *spa) 1021 { 1022 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1023 1024 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1025 1026 return (spa_last_synced_txg(spa) + 1); 1027 } 1028 1029 /* 1030 * Used in combination with spa_vdev_config_enter() to allow the syncing 1031 * of multiple transactions without releasing the spa_namespace_lock. 1032 */ 1033 void 1034 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 1035 { 1036 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1037 1038 int config_changed = B_FALSE; 1039 1040 ASSERT(txg > spa_last_synced_txg(spa)); 1041 1042 spa->spa_pending_vdev = NULL; 1043 1044 /* 1045 * Reassess the DTLs. 1046 */ 1047 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 1048 1049 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1050 config_changed = B_TRUE; 1051 spa->spa_config_generation++; 1052 } 1053 1054 /* 1055 * Verify the metaslab classes. 1056 */ 1057 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1058 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1059 1060 spa_config_exit(spa, SCL_ALL, spa); 1061 1062 /* 1063 * Panic the system if the specified tag requires it. This 1064 * is useful for ensuring that configurations are updated 1065 * transactionally. 1066 */ 1067 if (zio_injection_enabled) 1068 zio_handle_panic_injection(spa, tag, 0); 1069 1070 /* 1071 * Note: this txg_wait_synced() is important because it ensures 1072 * that there won't be more than one config change per txg. 1073 * This allows us to use the txg as the generation number. 1074 */ 1075 if (error == 0) 1076 txg_wait_synced(spa->spa_dsl_pool, txg); 1077 1078 if (vd != NULL) { 1079 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1080 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1081 vdev_free(vd); 1082 spa_config_exit(spa, SCL_ALL, spa); 1083 } 1084 1085 /* 1086 * If the config changed, update the config cache. 1087 */ 1088 if (config_changed) 1089 spa_config_sync(spa, B_FALSE, B_TRUE); 1090 } 1091 1092 /* 1093 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1094 * locking of spa_vdev_enter(), we also want make sure the transactions have 1095 * synced to disk, and then update the global configuration cache with the new 1096 * information. 1097 */ 1098 int 1099 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1100 { 1101 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1102 mutex_exit(&spa_namespace_lock); 1103 mutex_exit(&spa->spa_vdev_top_lock); 1104 1105 return (error); 1106 } 1107 1108 /* 1109 * Lock the given spa_t for the purpose of changing vdev state. 1110 */ 1111 void 1112 spa_vdev_state_enter(spa_t *spa, int oplocks) 1113 { 1114 int locks = SCL_STATE_ALL | oplocks; 1115 1116 /* 1117 * Root pools may need to read of the underlying devfs filesystem 1118 * when opening up a vdev. Unfortunately if we're holding the 1119 * SCL_ZIO lock it will result in a deadlock when we try to issue 1120 * the read from the root filesystem. Instead we "prefetch" 1121 * the associated vnodes that we need prior to opening the 1122 * underlying devices and cache them so that we can prevent 1123 * any I/O when we are doing the actual open. 1124 */ 1125 if (spa_is_root(spa)) { 1126 int low = locks & ~(SCL_ZIO - 1); 1127 int high = locks & ~low; 1128 1129 spa_config_enter(spa, high, spa, RW_WRITER); 1130 vdev_hold(spa->spa_root_vdev); 1131 spa_config_enter(spa, low, spa, RW_WRITER); 1132 } else { 1133 spa_config_enter(spa, locks, spa, RW_WRITER); 1134 } 1135 spa->spa_vdev_locks = locks; 1136 } 1137 1138 int 1139 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1140 { 1141 boolean_t config_changed = B_FALSE; 1142 1143 if (vd != NULL || error == 0) 1144 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 1145 0, 0, B_FALSE); 1146 1147 if (vd != NULL) { 1148 vdev_state_dirty(vd->vdev_top); 1149 config_changed = B_TRUE; 1150 spa->spa_config_generation++; 1151 } 1152 1153 if (spa_is_root(spa)) 1154 vdev_rele(spa->spa_root_vdev); 1155 1156 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1157 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1158 1159 /* 1160 * If anything changed, wait for it to sync. This ensures that, 1161 * from the system administrator's perspective, zpool(1M) commands 1162 * are synchronous. This is important for things like zpool offline: 1163 * when the command completes, you expect no further I/O from ZFS. 1164 */ 1165 if (vd != NULL) 1166 txg_wait_synced(spa->spa_dsl_pool, 0); 1167 1168 /* 1169 * If the config changed, update the config cache. 1170 */ 1171 if (config_changed) { 1172 mutex_enter(&spa_namespace_lock); 1173 spa_config_sync(spa, B_FALSE, B_TRUE); 1174 mutex_exit(&spa_namespace_lock); 1175 } 1176 1177 return (error); 1178 } 1179 1180 /* 1181 * ========================================================================== 1182 * Miscellaneous functions 1183 * ========================================================================== 1184 */ 1185 1186 void 1187 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1188 { 1189 if (!nvlist_exists(spa->spa_label_features, feature)) { 1190 fnvlist_add_boolean(spa->spa_label_features, feature); 1191 /* 1192 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1193 * dirty the vdev config because lock SCL_CONFIG is not held. 1194 * Thankfully, in this case we don't need to dirty the config 1195 * because it will be written out anyway when we finish 1196 * creating the pool. 1197 */ 1198 if (tx->tx_txg != TXG_INITIAL) 1199 vdev_config_dirty(spa->spa_root_vdev); 1200 } 1201 } 1202 1203 void 1204 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1205 { 1206 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1207 vdev_config_dirty(spa->spa_root_vdev); 1208 } 1209 1210 /* 1211 * Rename a spa_t. 1212 */ 1213 int 1214 spa_rename(const char *name, const char *newname) 1215 { 1216 spa_t *spa; 1217 int err; 1218 1219 /* 1220 * Lookup the spa_t and grab the config lock for writing. We need to 1221 * actually open the pool so that we can sync out the necessary labels. 1222 * It's OK to call spa_open() with the namespace lock held because we 1223 * allow recursive calls for other reasons. 1224 */ 1225 mutex_enter(&spa_namespace_lock); 1226 if ((err = spa_open(name, &spa, FTAG)) != 0) { 1227 mutex_exit(&spa_namespace_lock); 1228 return (err); 1229 } 1230 1231 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1232 1233 avl_remove(&spa_namespace_avl, spa); 1234 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name)); 1235 avl_add(&spa_namespace_avl, spa); 1236 1237 /* 1238 * Sync all labels to disk with the new names by marking the root vdev 1239 * dirty and waiting for it to sync. It will pick up the new pool name 1240 * during the sync. 1241 */ 1242 vdev_config_dirty(spa->spa_root_vdev); 1243 1244 spa_config_exit(spa, SCL_ALL, FTAG); 1245 1246 txg_wait_synced(spa->spa_dsl_pool, 0); 1247 1248 /* 1249 * Sync the updated config cache. 1250 */ 1251 spa_config_sync(spa, B_FALSE, B_TRUE); 1252 1253 spa_close(spa, FTAG); 1254 1255 mutex_exit(&spa_namespace_lock); 1256 1257 return (0); 1258 } 1259 1260 /* 1261 * Return the spa_t associated with given pool_guid, if it exists. If 1262 * device_guid is non-zero, determine whether the pool exists *and* contains 1263 * a device with the specified device_guid. 1264 */ 1265 spa_t * 1266 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1267 { 1268 spa_t *spa; 1269 avl_tree_t *t = &spa_namespace_avl; 1270 1271 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1272 1273 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1274 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1275 continue; 1276 if (spa->spa_root_vdev == NULL) 1277 continue; 1278 if (spa_guid(spa) == pool_guid) { 1279 if (device_guid == 0) 1280 break; 1281 1282 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1283 device_guid) != NULL) 1284 break; 1285 1286 /* 1287 * Check any devices we may be in the process of adding. 1288 */ 1289 if (spa->spa_pending_vdev) { 1290 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1291 device_guid) != NULL) 1292 break; 1293 } 1294 } 1295 } 1296 1297 return (spa); 1298 } 1299 1300 /* 1301 * Determine whether a pool with the given pool_guid exists. 1302 */ 1303 boolean_t 1304 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1305 { 1306 return (spa_by_guid(pool_guid, device_guid) != NULL); 1307 } 1308 1309 char * 1310 spa_strdup(const char *s) 1311 { 1312 size_t len; 1313 char *new; 1314 1315 len = strlen(s); 1316 new = kmem_alloc(len + 1, KM_SLEEP); 1317 bcopy(s, new, len); 1318 new[len] = '\0'; 1319 1320 return (new); 1321 } 1322 1323 void 1324 spa_strfree(char *s) 1325 { 1326 kmem_free(s, strlen(s) + 1); 1327 } 1328 1329 uint64_t 1330 spa_get_random(uint64_t range) 1331 { 1332 uint64_t r; 1333 1334 ASSERT(range != 0); 1335 1336 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1337 1338 return (r % range); 1339 } 1340 1341 uint64_t 1342 spa_generate_guid(spa_t *spa) 1343 { 1344 uint64_t guid = spa_get_random(-1ULL); 1345 1346 if (spa != NULL) { 1347 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) 1348 guid = spa_get_random(-1ULL); 1349 } else { 1350 while (guid == 0 || spa_guid_exists(guid, 0)) 1351 guid = spa_get_random(-1ULL); 1352 } 1353 1354 return (guid); 1355 } 1356 1357 void 1358 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1359 { 1360 char type[256]; 1361 char *checksum = NULL; 1362 char *compress = NULL; 1363 1364 if (bp != NULL) { 1365 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1366 dmu_object_byteswap_t bswap = 1367 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1368 (void) snprintf(type, sizeof (type), "bswap %s %s", 1369 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1370 "metadata" : "data", 1371 dmu_ot_byteswap[bswap].ob_name); 1372 } else { 1373 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1374 sizeof (type)); 1375 } 1376 if (!BP_IS_EMBEDDED(bp)) { 1377 checksum = 1378 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1379 } 1380 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1381 } 1382 1383 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum, 1384 compress); 1385 } 1386 1387 void 1388 spa_freeze(spa_t *spa) 1389 { 1390 uint64_t freeze_txg = 0; 1391 1392 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1393 if (spa->spa_freeze_txg == UINT64_MAX) { 1394 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1395 spa->spa_freeze_txg = freeze_txg; 1396 } 1397 spa_config_exit(spa, SCL_ALL, FTAG); 1398 if (freeze_txg != 0) 1399 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1400 } 1401 1402 void 1403 zfs_panic_recover(const char *fmt, ...) 1404 { 1405 va_list adx; 1406 1407 va_start(adx, fmt); 1408 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1409 va_end(adx); 1410 } 1411 1412 /* 1413 * This is a stripped-down version of strtoull, suitable only for converting 1414 * lowercase hexadecimal numbers that don't overflow. 1415 */ 1416 uint64_t 1417 strtonum(const char *str, char **nptr) 1418 { 1419 uint64_t val = 0; 1420 char c; 1421 int digit; 1422 1423 while ((c = *str) != '\0') { 1424 if (c >= '0' && c <= '9') 1425 digit = c - '0'; 1426 else if (c >= 'a' && c <= 'f') 1427 digit = 10 + c - 'a'; 1428 else 1429 break; 1430 1431 val *= 16; 1432 val += digit; 1433 1434 str++; 1435 } 1436 1437 if (nptr) 1438 *nptr = (char *)str; 1439 1440 return (val); 1441 } 1442 1443 /* 1444 * ========================================================================== 1445 * Accessor functions 1446 * ========================================================================== 1447 */ 1448 1449 boolean_t 1450 spa_shutting_down(spa_t *spa) 1451 { 1452 return (spa->spa_async_suspended); 1453 } 1454 1455 dsl_pool_t * 1456 spa_get_dsl(spa_t *spa) 1457 { 1458 return (spa->spa_dsl_pool); 1459 } 1460 1461 boolean_t 1462 spa_is_initializing(spa_t *spa) 1463 { 1464 return (spa->spa_is_initializing); 1465 } 1466 1467 blkptr_t * 1468 spa_get_rootblkptr(spa_t *spa) 1469 { 1470 return (&spa->spa_ubsync.ub_rootbp); 1471 } 1472 1473 void 1474 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1475 { 1476 spa->spa_uberblock.ub_rootbp = *bp; 1477 } 1478 1479 void 1480 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1481 { 1482 if (spa->spa_root == NULL) 1483 buf[0] = '\0'; 1484 else 1485 (void) strncpy(buf, spa->spa_root, buflen); 1486 } 1487 1488 int 1489 spa_sync_pass(spa_t *spa) 1490 { 1491 return (spa->spa_sync_pass); 1492 } 1493 1494 char * 1495 spa_name(spa_t *spa) 1496 { 1497 return (spa->spa_name); 1498 } 1499 1500 uint64_t 1501 spa_guid(spa_t *spa) 1502 { 1503 dsl_pool_t *dp = spa_get_dsl(spa); 1504 uint64_t guid; 1505 1506 /* 1507 * If we fail to parse the config during spa_load(), we can go through 1508 * the error path (which posts an ereport) and end up here with no root 1509 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1510 * this case. 1511 */ 1512 if (spa->spa_root_vdev == NULL) 1513 return (spa->spa_config_guid); 1514 1515 guid = spa->spa_last_synced_guid != 0 ? 1516 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1517 1518 /* 1519 * Return the most recently synced out guid unless we're 1520 * in syncing context. 1521 */ 1522 if (dp && dsl_pool_sync_context(dp)) 1523 return (spa->spa_root_vdev->vdev_guid); 1524 else 1525 return (guid); 1526 } 1527 1528 uint64_t 1529 spa_load_guid(spa_t *spa) 1530 { 1531 /* 1532 * This is a GUID that exists solely as a reference for the 1533 * purposes of the arc. It is generated at load time, and 1534 * is never written to persistent storage. 1535 */ 1536 return (spa->spa_load_guid); 1537 } 1538 1539 uint64_t 1540 spa_last_synced_txg(spa_t *spa) 1541 { 1542 return (spa->spa_ubsync.ub_txg); 1543 } 1544 1545 uint64_t 1546 spa_first_txg(spa_t *spa) 1547 { 1548 return (spa->spa_first_txg); 1549 } 1550 1551 uint64_t 1552 spa_syncing_txg(spa_t *spa) 1553 { 1554 return (spa->spa_syncing_txg); 1555 } 1556 1557 pool_state_t 1558 spa_state(spa_t *spa) 1559 { 1560 return (spa->spa_state); 1561 } 1562 1563 spa_load_state_t 1564 spa_load_state(spa_t *spa) 1565 { 1566 return (spa->spa_load_state); 1567 } 1568 1569 uint64_t 1570 spa_freeze_txg(spa_t *spa) 1571 { 1572 return (spa->spa_freeze_txg); 1573 } 1574 1575 /* ARGSUSED */ 1576 uint64_t 1577 spa_get_asize(spa_t *spa, uint64_t lsize) 1578 { 1579 return (lsize * spa_asize_inflation); 1580 } 1581 1582 uint64_t 1583 spa_get_dspace(spa_t *spa) 1584 { 1585 return (spa->spa_dspace); 1586 } 1587 1588 void 1589 spa_update_dspace(spa_t *spa) 1590 { 1591 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1592 ddt_get_dedup_dspace(spa); 1593 } 1594 1595 /* 1596 * Return the failure mode that has been set to this pool. The default 1597 * behavior will be to block all I/Os when a complete failure occurs. 1598 */ 1599 uint8_t 1600 spa_get_failmode(spa_t *spa) 1601 { 1602 return (spa->spa_failmode); 1603 } 1604 1605 boolean_t 1606 spa_suspended(spa_t *spa) 1607 { 1608 return (spa->spa_suspended); 1609 } 1610 1611 uint64_t 1612 spa_version(spa_t *spa) 1613 { 1614 return (spa->spa_ubsync.ub_version); 1615 } 1616 1617 boolean_t 1618 spa_deflate(spa_t *spa) 1619 { 1620 return (spa->spa_deflate); 1621 } 1622 1623 metaslab_class_t * 1624 spa_normal_class(spa_t *spa) 1625 { 1626 return (spa->spa_normal_class); 1627 } 1628 1629 metaslab_class_t * 1630 spa_log_class(spa_t *spa) 1631 { 1632 return (spa->spa_log_class); 1633 } 1634 1635 int 1636 spa_max_replication(spa_t *spa) 1637 { 1638 /* 1639 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1640 * handle BPs with more than one DVA allocated. Set our max 1641 * replication level accordingly. 1642 */ 1643 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1644 return (1); 1645 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1646 } 1647 1648 int 1649 spa_prev_software_version(spa_t *spa) 1650 { 1651 return (spa->spa_prev_software_version); 1652 } 1653 1654 uint64_t 1655 spa_deadman_synctime(spa_t *spa) 1656 { 1657 return (spa->spa_deadman_synctime); 1658 } 1659 1660 uint64_t 1661 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 1662 { 1663 uint64_t asize = DVA_GET_ASIZE(dva); 1664 uint64_t dsize = asize; 1665 1666 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1667 1668 if (asize != 0 && spa->spa_deflate) { 1669 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 1670 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1671 } 1672 1673 return (dsize); 1674 } 1675 1676 uint64_t 1677 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 1678 { 1679 uint64_t dsize = 0; 1680 1681 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 1682 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1683 1684 return (dsize); 1685 } 1686 1687 uint64_t 1688 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 1689 { 1690 uint64_t dsize = 0; 1691 1692 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1693 1694 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 1695 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1696 1697 spa_config_exit(spa, SCL_VDEV, FTAG); 1698 1699 return (dsize); 1700 } 1701 1702 /* 1703 * ========================================================================== 1704 * Initialization and Termination 1705 * ========================================================================== 1706 */ 1707 1708 static int 1709 spa_name_compare(const void *a1, const void *a2) 1710 { 1711 const spa_t *s1 = a1; 1712 const spa_t *s2 = a2; 1713 int s; 1714 1715 s = strcmp(s1->spa_name, s2->spa_name); 1716 if (s > 0) 1717 return (1); 1718 if (s < 0) 1719 return (-1); 1720 return (0); 1721 } 1722 1723 int 1724 spa_busy(void) 1725 { 1726 return (spa_active_count); 1727 } 1728 1729 void 1730 spa_boot_init() 1731 { 1732 spa_config_load(); 1733 } 1734 1735 void 1736 spa_init(int mode) 1737 { 1738 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1739 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 1740 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 1741 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1742 1743 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1744 offsetof(spa_t, spa_avl)); 1745 1746 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 1747 offsetof(spa_aux_t, aux_avl)); 1748 1749 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 1750 offsetof(spa_aux_t, aux_avl)); 1751 1752 spa_mode_global = mode; 1753 1754 #ifdef _KERNEL 1755 spa_arch_init(); 1756 #else 1757 if (spa_mode_global != FREAD && dprintf_find_string("watch")) { 1758 arc_procfd = open("/proc/self/ctl", O_WRONLY); 1759 if (arc_procfd == -1) { 1760 perror("could not enable watchpoints: " 1761 "opening /proc/self/ctl failed: "); 1762 } else { 1763 arc_watch = B_TRUE; 1764 } 1765 } 1766 #endif 1767 1768 refcount_init(); 1769 unique_init(); 1770 range_tree_init(); 1771 zio_init(); 1772 dmu_init(); 1773 zil_init(); 1774 vdev_cache_stat_init(); 1775 zfs_prop_init(); 1776 zpool_prop_init(); 1777 zpool_feature_init(); 1778 spa_config_load(); 1779 l2arc_start(); 1780 } 1781 1782 void 1783 spa_fini(void) 1784 { 1785 l2arc_stop(); 1786 1787 spa_evict_all(); 1788 1789 vdev_cache_stat_fini(); 1790 zil_fini(); 1791 dmu_fini(); 1792 zio_fini(); 1793 range_tree_fini(); 1794 unique_fini(); 1795 refcount_fini(); 1796 1797 avl_destroy(&spa_namespace_avl); 1798 avl_destroy(&spa_spare_avl); 1799 avl_destroy(&spa_l2cache_avl); 1800 1801 cv_destroy(&spa_namespace_cv); 1802 mutex_destroy(&spa_namespace_lock); 1803 mutex_destroy(&spa_spare_lock); 1804 mutex_destroy(&spa_l2cache_lock); 1805 } 1806 1807 /* 1808 * Return whether this pool has slogs. No locking needed. 1809 * It's not a problem if the wrong answer is returned as it's only for 1810 * performance and not correctness 1811 */ 1812 boolean_t 1813 spa_has_slogs(spa_t *spa) 1814 { 1815 return (spa->spa_log_class->mc_rotor != NULL); 1816 } 1817 1818 spa_log_state_t 1819 spa_get_log_state(spa_t *spa) 1820 { 1821 return (spa->spa_log_state); 1822 } 1823 1824 void 1825 spa_set_log_state(spa_t *spa, spa_log_state_t state) 1826 { 1827 spa->spa_log_state = state; 1828 } 1829 1830 boolean_t 1831 spa_is_root(spa_t *spa) 1832 { 1833 return (spa->spa_is_root); 1834 } 1835 1836 boolean_t 1837 spa_writeable(spa_t *spa) 1838 { 1839 return (!!(spa->spa_mode & FWRITE)); 1840 } 1841 1842 int 1843 spa_mode(spa_t *spa) 1844 { 1845 return (spa->spa_mode); 1846 } 1847 1848 uint64_t 1849 spa_bootfs(spa_t *spa) 1850 { 1851 return (spa->spa_bootfs); 1852 } 1853 1854 uint64_t 1855 spa_delegation(spa_t *spa) 1856 { 1857 return (spa->spa_delegation); 1858 } 1859 1860 objset_t * 1861 spa_meta_objset(spa_t *spa) 1862 { 1863 return (spa->spa_meta_objset); 1864 } 1865 1866 enum zio_checksum 1867 spa_dedup_checksum(spa_t *spa) 1868 { 1869 return (spa->spa_dedup_checksum); 1870 } 1871 1872 /* 1873 * Reset pool scan stat per scan pass (or reboot). 1874 */ 1875 void 1876 spa_scan_stat_init(spa_t *spa) 1877 { 1878 /* data not stored on disk */ 1879 spa->spa_scan_pass_start = gethrestime_sec(); 1880 spa->spa_scan_pass_exam = 0; 1881 vdev_scan_stat_init(spa->spa_root_vdev); 1882 } 1883 1884 /* 1885 * Get scan stats for zpool status reports 1886 */ 1887 int 1888 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 1889 { 1890 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 1891 1892 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 1893 return (SET_ERROR(ENOENT)); 1894 bzero(ps, sizeof (pool_scan_stat_t)); 1895 1896 /* data stored on disk */ 1897 ps->pss_func = scn->scn_phys.scn_func; 1898 ps->pss_start_time = scn->scn_phys.scn_start_time; 1899 ps->pss_end_time = scn->scn_phys.scn_end_time; 1900 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 1901 ps->pss_examined = scn->scn_phys.scn_examined; 1902 ps->pss_to_process = scn->scn_phys.scn_to_process; 1903 ps->pss_processed = scn->scn_phys.scn_processed; 1904 ps->pss_errors = scn->scn_phys.scn_errors; 1905 ps->pss_state = scn->scn_phys.scn_state; 1906 1907 /* data not stored on disk */ 1908 ps->pss_pass_start = spa->spa_scan_pass_start; 1909 ps->pss_pass_exam = spa->spa_scan_pass_exam; 1910 1911 return (0); 1912 } 1913 1914 boolean_t 1915 spa_debug_enabled(spa_t *spa) 1916 { 1917 return (spa->spa_debug); 1918 }