Print this page
zpool import speedup
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/zfs/spa.c
+++ new/usr/src/uts/common/fs/zfs/spa.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
26 26 */
27 27
28 28 /*
29 29 * SPA: Storage Pool Allocator
30 30 *
31 31 * This file contains all the routines used when modifying on-disk SPA state.
32 32 * This includes opening, importing, destroying, exporting a pool, and syncing a
33 33 * pool.
34 34 */
35 35
36 36 #include <sys/zfs_context.h>
37 37 #include <sys/fm/fs/zfs.h>
38 38 #include <sys/spa_impl.h>
39 39 #include <sys/zio.h>
40 40 #include <sys/zio_checksum.h>
41 41 #include <sys/dmu.h>
42 42 #include <sys/dmu_tx.h>
43 43 #include <sys/zap.h>
44 44 #include <sys/zil.h>
45 45 #include <sys/ddt.h>
46 46 #include <sys/vdev_impl.h>
47 47 #include <sys/metaslab.h>
48 48 #include <sys/metaslab_impl.h>
49 49 #include <sys/uberblock_impl.h>
50 50 #include <sys/txg.h>
51 51 #include <sys/avl.h>
52 52 #include <sys/dmu_traverse.h>
53 53 #include <sys/dmu_objset.h>
54 54 #include <sys/unique.h>
55 55 #include <sys/dsl_pool.h>
56 56 #include <sys/dsl_dataset.h>
57 57 #include <sys/dsl_dir.h>
58 58 #include <sys/dsl_prop.h>
59 59 #include <sys/dsl_synctask.h>
60 60 #include <sys/fs/zfs.h>
61 61 #include <sys/arc.h>
62 62 #include <sys/callb.h>
63 63 #include <sys/systeminfo.h>
64 64 #include <sys/spa_boot.h>
65 65 #include <sys/zfs_ioctl.h>
66 66 #include <sys/dsl_scan.h>
67 67 #include <sys/zfeature.h>
68 68 #include <sys/dsl_destroy.h>
69 69
70 70 #ifdef _KERNEL
71 71 #include <sys/bootprops.h>
72 72 #include <sys/callb.h>
73 73 #include <sys/cpupart.h>
74 74 #include <sys/pool.h>
75 75 #include <sys/sysdc.h>
76 76 #include <sys/zone.h>
77 77 #endif /* _KERNEL */
78 78
79 79 #include "zfs_prop.h"
80 80 #include "zfs_comutil.h"
81 81
82 82 /*
83 83 * The interval, in seconds, at which failed configuration cache file writes
84 84 * should be retried.
85 85 */
86 86 static int zfs_ccw_retry_interval = 300;
87 87
88 88 typedef enum zti_modes {
89 89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
90 90 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
91 91 ZTI_MODE_NULL, /* don't create a taskq */
92 92 ZTI_NMODES
93 93 } zti_modes_t;
94 94
95 95 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
96 96 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
97 97 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
98 98
99 99 #define ZTI_N(n) ZTI_P(n, 1)
100 100 #define ZTI_ONE ZTI_N(1)
101 101
102 102 typedef struct zio_taskq_info {
103 103 zti_modes_t zti_mode;
104 104 uint_t zti_value;
105 105 uint_t zti_count;
106 106 } zio_taskq_info_t;
107 107
108 108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
109 109 "issue", "issue_high", "intr", "intr_high"
110 110 };
111 111
112 112 /*
113 113 * This table defines the taskq settings for each ZFS I/O type. When
114 114 * initializing a pool, we use this table to create an appropriately sized
115 115 * taskq. Some operations are low volume and therefore have a small, static
116 116 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
117 117 * macros. Other operations process a large amount of data; the ZTI_BATCH
118 118 * macro causes us to create a taskq oriented for throughput. Some operations
119 119 * are so high frequency and short-lived that the taskq itself can become a a
120 120 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
121 121 * additional degree of parallelism specified by the number of threads per-
122 122 * taskq and the number of taskqs; when dispatching an event in this case, the
123 123 * particular taskq is chosen at random.
124 124 *
125 125 * The different taskq priorities are to handle the different contexts (issue
126 126 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
127 127 * need to be handled with minimum delay.
128 128 */
129 129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
130 130 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
131 131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
132 132 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
133 133 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
134 134 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
135 135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
136 136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
137 137 };
138 138
139 139 static void spa_sync_version(void *arg, dmu_tx_t *tx);
140 140 static void spa_sync_props(void *arg, dmu_tx_t *tx);
141 141 static boolean_t spa_has_active_shared_spare(spa_t *spa);
142 142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
143 143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
144 144 char **ereport);
145 145 static void spa_vdev_resilver_done(spa_t *spa);
146 146
147 147 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
148 148 id_t zio_taskq_psrset_bind = PS_NONE;
149 149 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
150 150 uint_t zio_taskq_basedc = 80; /* base duty cycle */
151 151
152 152 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
153 153 extern int zfs_sync_pass_deferred_free;
154 154
155 155 /*
156 156 * This (illegal) pool name is used when temporarily importing a spa_t in order
157 157 * to get the vdev stats associated with the imported devices.
158 158 */
159 159 #define TRYIMPORT_NAME "$import"
160 160
161 161 /*
162 162 * ==========================================================================
163 163 * SPA properties routines
164 164 * ==========================================================================
165 165 */
166 166
167 167 /*
168 168 * Add a (source=src, propname=propval) list to an nvlist.
169 169 */
170 170 static void
171 171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
172 172 uint64_t intval, zprop_source_t src)
173 173 {
174 174 const char *propname = zpool_prop_to_name(prop);
175 175 nvlist_t *propval;
176 176
177 177 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
178 178 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
179 179
180 180 if (strval != NULL)
181 181 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
182 182 else
183 183 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
184 184
185 185 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
186 186 nvlist_free(propval);
187 187 }
188 188
189 189 /*
190 190 * Get property values from the spa configuration.
191 191 */
192 192 static void
193 193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
194 194 {
195 195 vdev_t *rvd = spa->spa_root_vdev;
196 196 dsl_pool_t *pool = spa->spa_dsl_pool;
197 197 uint64_t size;
198 198 uint64_t alloc;
199 199 uint64_t space;
200 200 uint64_t cap, version;
201 201 zprop_source_t src = ZPROP_SRC_NONE;
202 202 spa_config_dirent_t *dp;
203 203
204 204 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
205 205
206 206 if (rvd != NULL) {
207 207 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
208 208 size = metaslab_class_get_space(spa_normal_class(spa));
209 209 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
210 210 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
211 211 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
212 212 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
213 213 size - alloc, src);
214 214
215 215 space = 0;
216 216 for (int c = 0; c < rvd->vdev_children; c++) {
217 217 vdev_t *tvd = rvd->vdev_child[c];
218 218 space += tvd->vdev_max_asize - tvd->vdev_asize;
219 219 }
220 220 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
221 221 src);
222 222
223 223 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
224 224 (spa_mode(spa) == FREAD), src);
225 225
226 226 cap = (size == 0) ? 0 : (alloc * 100 / size);
227 227 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
228 228
229 229 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
230 230 ddt_get_pool_dedup_ratio(spa), src);
231 231
232 232 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
233 233 rvd->vdev_state, src);
234 234
235 235 version = spa_version(spa);
236 236 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
237 237 src = ZPROP_SRC_DEFAULT;
238 238 else
239 239 src = ZPROP_SRC_LOCAL;
240 240 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
241 241 }
242 242
243 243 if (pool != NULL) {
244 244 /*
245 245 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
246 246 * when opening pools before this version freedir will be NULL.
247 247 */
248 248 if (pool->dp_free_dir != NULL) {
249 249 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
250 250 pool->dp_free_dir->dd_phys->dd_used_bytes, src);
251 251 } else {
252 252 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
253 253 NULL, 0, src);
254 254 }
255 255
256 256 if (pool->dp_leak_dir != NULL) {
257 257 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
258 258 pool->dp_leak_dir->dd_phys->dd_used_bytes, src);
259 259 } else {
260 260 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
261 261 NULL, 0, src);
262 262 }
263 263 }
264 264
265 265 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
266 266
267 267 if (spa->spa_comment != NULL) {
268 268 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
269 269 0, ZPROP_SRC_LOCAL);
270 270 }
271 271
272 272 if (spa->spa_root != NULL)
273 273 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
274 274 0, ZPROP_SRC_LOCAL);
275 275
276 276 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
277 277 if (dp->scd_path == NULL) {
278 278 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
279 279 "none", 0, ZPROP_SRC_LOCAL);
280 280 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
281 281 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
282 282 dp->scd_path, 0, ZPROP_SRC_LOCAL);
283 283 }
284 284 }
285 285 }
286 286
287 287 /*
288 288 * Get zpool property values.
289 289 */
290 290 int
291 291 spa_prop_get(spa_t *spa, nvlist_t **nvp)
292 292 {
293 293 objset_t *mos = spa->spa_meta_objset;
294 294 zap_cursor_t zc;
295 295 zap_attribute_t za;
296 296 int err;
297 297
298 298 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
299 299
300 300 mutex_enter(&spa->spa_props_lock);
301 301
302 302 /*
303 303 * Get properties from the spa config.
304 304 */
305 305 spa_prop_get_config(spa, nvp);
306 306
307 307 /* If no pool property object, no more prop to get. */
308 308 if (mos == NULL || spa->spa_pool_props_object == 0) {
309 309 mutex_exit(&spa->spa_props_lock);
310 310 return (0);
311 311 }
312 312
313 313 /*
314 314 * Get properties from the MOS pool property object.
315 315 */
316 316 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
317 317 (err = zap_cursor_retrieve(&zc, &za)) == 0;
318 318 zap_cursor_advance(&zc)) {
319 319 uint64_t intval = 0;
320 320 char *strval = NULL;
321 321 zprop_source_t src = ZPROP_SRC_DEFAULT;
322 322 zpool_prop_t prop;
323 323
324 324 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
325 325 continue;
326 326
327 327 switch (za.za_integer_length) {
328 328 case 8:
329 329 /* integer property */
330 330 if (za.za_first_integer !=
331 331 zpool_prop_default_numeric(prop))
332 332 src = ZPROP_SRC_LOCAL;
333 333
334 334 if (prop == ZPOOL_PROP_BOOTFS) {
335 335 dsl_pool_t *dp;
336 336 dsl_dataset_t *ds = NULL;
337 337
338 338 dp = spa_get_dsl(spa);
339 339 dsl_pool_config_enter(dp, FTAG);
340 340 if (err = dsl_dataset_hold_obj(dp,
341 341 za.za_first_integer, FTAG, &ds)) {
342 342 dsl_pool_config_exit(dp, FTAG);
343 343 break;
344 344 }
345 345
346 346 strval = kmem_alloc(
347 347 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
348 348 KM_SLEEP);
349 349 dsl_dataset_name(ds, strval);
350 350 dsl_dataset_rele(ds, FTAG);
351 351 dsl_pool_config_exit(dp, FTAG);
352 352 } else {
353 353 strval = NULL;
354 354 intval = za.za_first_integer;
355 355 }
356 356
357 357 spa_prop_add_list(*nvp, prop, strval, intval, src);
358 358
359 359 if (strval != NULL)
360 360 kmem_free(strval,
361 361 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
362 362
363 363 break;
364 364
365 365 case 1:
366 366 /* string property */
367 367 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
368 368 err = zap_lookup(mos, spa->spa_pool_props_object,
369 369 za.za_name, 1, za.za_num_integers, strval);
370 370 if (err) {
371 371 kmem_free(strval, za.za_num_integers);
372 372 break;
373 373 }
374 374 spa_prop_add_list(*nvp, prop, strval, 0, src);
375 375 kmem_free(strval, za.za_num_integers);
376 376 break;
377 377
378 378 default:
379 379 break;
380 380 }
381 381 }
382 382 zap_cursor_fini(&zc);
383 383 mutex_exit(&spa->spa_props_lock);
384 384 out:
385 385 if (err && err != ENOENT) {
386 386 nvlist_free(*nvp);
387 387 *nvp = NULL;
388 388 return (err);
389 389 }
390 390
391 391 return (0);
392 392 }
393 393
394 394 /*
395 395 * Validate the given pool properties nvlist and modify the list
396 396 * for the property values to be set.
397 397 */
398 398 static int
399 399 spa_prop_validate(spa_t *spa, nvlist_t *props)
400 400 {
401 401 nvpair_t *elem;
402 402 int error = 0, reset_bootfs = 0;
403 403 uint64_t objnum = 0;
404 404 boolean_t has_feature = B_FALSE;
405 405
406 406 elem = NULL;
407 407 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
408 408 uint64_t intval;
409 409 char *strval, *slash, *check, *fname;
410 410 const char *propname = nvpair_name(elem);
411 411 zpool_prop_t prop = zpool_name_to_prop(propname);
412 412
413 413 switch (prop) {
414 414 case ZPROP_INVAL:
415 415 if (!zpool_prop_feature(propname)) {
416 416 error = SET_ERROR(EINVAL);
417 417 break;
418 418 }
419 419
420 420 /*
421 421 * Sanitize the input.
422 422 */
423 423 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
424 424 error = SET_ERROR(EINVAL);
425 425 break;
426 426 }
427 427
428 428 if (nvpair_value_uint64(elem, &intval) != 0) {
429 429 error = SET_ERROR(EINVAL);
430 430 break;
431 431 }
432 432
433 433 if (intval != 0) {
434 434 error = SET_ERROR(EINVAL);
435 435 break;
436 436 }
437 437
438 438 fname = strchr(propname, '@') + 1;
439 439 if (zfeature_lookup_name(fname, NULL) != 0) {
440 440 error = SET_ERROR(EINVAL);
441 441 break;
442 442 }
443 443
444 444 has_feature = B_TRUE;
445 445 break;
446 446
447 447 case ZPOOL_PROP_VERSION:
448 448 error = nvpair_value_uint64(elem, &intval);
449 449 if (!error &&
450 450 (intval < spa_version(spa) ||
451 451 intval > SPA_VERSION_BEFORE_FEATURES ||
452 452 has_feature))
453 453 error = SET_ERROR(EINVAL);
454 454 break;
455 455
456 456 case ZPOOL_PROP_DELEGATION:
457 457 case ZPOOL_PROP_AUTOREPLACE:
458 458 case ZPOOL_PROP_LISTSNAPS:
459 459 case ZPOOL_PROP_AUTOEXPAND:
460 460 error = nvpair_value_uint64(elem, &intval);
461 461 if (!error && intval > 1)
462 462 error = SET_ERROR(EINVAL);
463 463 break;
464 464
465 465 case ZPOOL_PROP_BOOTFS:
466 466 /*
467 467 * If the pool version is less than SPA_VERSION_BOOTFS,
468 468 * or the pool is still being created (version == 0),
469 469 * the bootfs property cannot be set.
470 470 */
471 471 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
472 472 error = SET_ERROR(ENOTSUP);
473 473 break;
474 474 }
475 475
476 476 /*
477 477 * Make sure the vdev config is bootable
478 478 */
479 479 if (!vdev_is_bootable(spa->spa_root_vdev)) {
480 480 error = SET_ERROR(ENOTSUP);
481 481 break;
482 482 }
483 483
484 484 reset_bootfs = 1;
485 485
486 486 error = nvpair_value_string(elem, &strval);
487 487
488 488 if (!error) {
489 489 objset_t *os;
490 490 uint64_t compress;
491 491
492 492 if (strval == NULL || strval[0] == '\0') {
493 493 objnum = zpool_prop_default_numeric(
494 494 ZPOOL_PROP_BOOTFS);
495 495 break;
496 496 }
497 497
498 498 if (error = dmu_objset_hold(strval, FTAG, &os))
499 499 break;
500 500
501 501 /* Must be ZPL and not gzip compressed. */
502 502
503 503 if (dmu_objset_type(os) != DMU_OST_ZFS) {
504 504 error = SET_ERROR(ENOTSUP);
505 505 } else if ((error =
506 506 dsl_prop_get_int_ds(dmu_objset_ds(os),
507 507 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
508 508 &compress)) == 0 &&
509 509 !BOOTFS_COMPRESS_VALID(compress)) {
510 510 error = SET_ERROR(ENOTSUP);
511 511 } else {
512 512 objnum = dmu_objset_id(os);
513 513 }
514 514 dmu_objset_rele(os, FTAG);
515 515 }
516 516 break;
517 517
518 518 case ZPOOL_PROP_FAILUREMODE:
519 519 error = nvpair_value_uint64(elem, &intval);
520 520 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
521 521 intval > ZIO_FAILURE_MODE_PANIC))
522 522 error = SET_ERROR(EINVAL);
523 523
524 524 /*
525 525 * This is a special case which only occurs when
526 526 * the pool has completely failed. This allows
527 527 * the user to change the in-core failmode property
528 528 * without syncing it out to disk (I/Os might
529 529 * currently be blocked). We do this by returning
530 530 * EIO to the caller (spa_prop_set) to trick it
531 531 * into thinking we encountered a property validation
532 532 * error.
533 533 */
534 534 if (!error && spa_suspended(spa)) {
535 535 spa->spa_failmode = intval;
536 536 error = SET_ERROR(EIO);
537 537 }
538 538 break;
539 539
540 540 case ZPOOL_PROP_CACHEFILE:
541 541 if ((error = nvpair_value_string(elem, &strval)) != 0)
542 542 break;
543 543
544 544 if (strval[0] == '\0')
545 545 break;
546 546
547 547 if (strcmp(strval, "none") == 0)
548 548 break;
549 549
550 550 if (strval[0] != '/') {
551 551 error = SET_ERROR(EINVAL);
552 552 break;
553 553 }
554 554
555 555 slash = strrchr(strval, '/');
556 556 ASSERT(slash != NULL);
557 557
558 558 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
559 559 strcmp(slash, "/..") == 0)
560 560 error = SET_ERROR(EINVAL);
561 561 break;
562 562
563 563 case ZPOOL_PROP_COMMENT:
564 564 if ((error = nvpair_value_string(elem, &strval)) != 0)
565 565 break;
566 566 for (check = strval; *check != '\0'; check++) {
567 567 /*
568 568 * The kernel doesn't have an easy isprint()
569 569 * check. For this kernel check, we merely
570 570 * check ASCII apart from DEL. Fix this if
571 571 * there is an easy-to-use kernel isprint().
572 572 */
573 573 if (*check >= 0x7f) {
574 574 error = SET_ERROR(EINVAL);
575 575 break;
576 576 }
577 577 check++;
578 578 }
579 579 if (strlen(strval) > ZPROP_MAX_COMMENT)
580 580 error = E2BIG;
581 581 break;
582 582
583 583 case ZPOOL_PROP_DEDUPDITTO:
584 584 if (spa_version(spa) < SPA_VERSION_DEDUP)
585 585 error = SET_ERROR(ENOTSUP);
586 586 else
587 587 error = nvpair_value_uint64(elem, &intval);
588 588 if (error == 0 &&
589 589 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
590 590 error = SET_ERROR(EINVAL);
591 591 break;
592 592 }
593 593
594 594 if (error)
595 595 break;
596 596 }
597 597
598 598 if (!error && reset_bootfs) {
599 599 error = nvlist_remove(props,
600 600 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
601 601
602 602 if (!error) {
603 603 error = nvlist_add_uint64(props,
604 604 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
605 605 }
606 606 }
607 607
608 608 return (error);
609 609 }
610 610
611 611 void
612 612 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
613 613 {
614 614 char *cachefile;
615 615 spa_config_dirent_t *dp;
616 616
617 617 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
618 618 &cachefile) != 0)
619 619 return;
620 620
621 621 dp = kmem_alloc(sizeof (spa_config_dirent_t),
622 622 KM_SLEEP);
623 623
624 624 if (cachefile[0] == '\0')
625 625 dp->scd_path = spa_strdup(spa_config_path);
626 626 else if (strcmp(cachefile, "none") == 0)
627 627 dp->scd_path = NULL;
628 628 else
629 629 dp->scd_path = spa_strdup(cachefile);
630 630
631 631 list_insert_head(&spa->spa_config_list, dp);
632 632 if (need_sync)
633 633 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
634 634 }
635 635
636 636 int
637 637 spa_prop_set(spa_t *spa, nvlist_t *nvp)
638 638 {
639 639 int error;
640 640 nvpair_t *elem = NULL;
641 641 boolean_t need_sync = B_FALSE;
642 642
643 643 if ((error = spa_prop_validate(spa, nvp)) != 0)
644 644 return (error);
645 645
646 646 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
647 647 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
648 648
649 649 if (prop == ZPOOL_PROP_CACHEFILE ||
650 650 prop == ZPOOL_PROP_ALTROOT ||
651 651 prop == ZPOOL_PROP_READONLY)
652 652 continue;
653 653
654 654 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
655 655 uint64_t ver;
656 656
657 657 if (prop == ZPOOL_PROP_VERSION) {
658 658 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
659 659 } else {
660 660 ASSERT(zpool_prop_feature(nvpair_name(elem)));
661 661 ver = SPA_VERSION_FEATURES;
662 662 need_sync = B_TRUE;
663 663 }
664 664
665 665 /* Save time if the version is already set. */
666 666 if (ver == spa_version(spa))
667 667 continue;
668 668
669 669 /*
670 670 * In addition to the pool directory object, we might
671 671 * create the pool properties object, the features for
672 672 * read object, the features for write object, or the
673 673 * feature descriptions object.
674 674 */
675 675 error = dsl_sync_task(spa->spa_name, NULL,
676 676 spa_sync_version, &ver, 6);
677 677 if (error)
678 678 return (error);
679 679 continue;
680 680 }
681 681
682 682 need_sync = B_TRUE;
683 683 break;
684 684 }
685 685
686 686 if (need_sync) {
687 687 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
688 688 nvp, 6));
689 689 }
690 690
691 691 return (0);
692 692 }
693 693
694 694 /*
695 695 * If the bootfs property value is dsobj, clear it.
696 696 */
697 697 void
698 698 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
699 699 {
700 700 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
701 701 VERIFY(zap_remove(spa->spa_meta_objset,
702 702 spa->spa_pool_props_object,
703 703 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
704 704 spa->spa_bootfs = 0;
705 705 }
706 706 }
707 707
708 708 /*ARGSUSED*/
709 709 static int
710 710 spa_change_guid_check(void *arg, dmu_tx_t *tx)
711 711 {
712 712 uint64_t *newguid = arg;
713 713 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
714 714 vdev_t *rvd = spa->spa_root_vdev;
715 715 uint64_t vdev_state;
716 716
717 717 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
718 718 vdev_state = rvd->vdev_state;
719 719 spa_config_exit(spa, SCL_STATE, FTAG);
720 720
721 721 if (vdev_state != VDEV_STATE_HEALTHY)
722 722 return (SET_ERROR(ENXIO));
723 723
724 724 ASSERT3U(spa_guid(spa), !=, *newguid);
725 725
726 726 return (0);
727 727 }
728 728
729 729 static void
730 730 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
731 731 {
732 732 uint64_t *newguid = arg;
733 733 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
734 734 uint64_t oldguid;
735 735 vdev_t *rvd = spa->spa_root_vdev;
736 736
737 737 oldguid = spa_guid(spa);
738 738
739 739 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
740 740 rvd->vdev_guid = *newguid;
741 741 rvd->vdev_guid_sum += (*newguid - oldguid);
742 742 vdev_config_dirty(rvd);
743 743 spa_config_exit(spa, SCL_STATE, FTAG);
744 744
745 745 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
746 746 oldguid, *newguid);
747 747 }
748 748
749 749 /*
750 750 * Change the GUID for the pool. This is done so that we can later
751 751 * re-import a pool built from a clone of our own vdevs. We will modify
752 752 * the root vdev's guid, our own pool guid, and then mark all of our
753 753 * vdevs dirty. Note that we must make sure that all our vdevs are
754 754 * online when we do this, or else any vdevs that weren't present
755 755 * would be orphaned from our pool. We are also going to issue a
756 756 * sysevent to update any watchers.
757 757 */
758 758 int
759 759 spa_change_guid(spa_t *spa)
760 760 {
761 761 int error;
762 762 uint64_t guid;
763 763
764 764 mutex_enter(&spa->spa_vdev_top_lock);
765 765 mutex_enter(&spa_namespace_lock);
766 766 guid = spa_generate_guid(NULL);
767 767
768 768 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
769 769 spa_change_guid_sync, &guid, 5);
770 770
771 771 if (error == 0) {
772 772 spa_config_sync(spa, B_FALSE, B_TRUE);
773 773 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
774 774 }
775 775
776 776 mutex_exit(&spa_namespace_lock);
777 777 mutex_exit(&spa->spa_vdev_top_lock);
778 778
779 779 return (error);
780 780 }
781 781
782 782 /*
783 783 * ==========================================================================
784 784 * SPA state manipulation (open/create/destroy/import/export)
785 785 * ==========================================================================
786 786 */
787 787
788 788 static int
789 789 spa_error_entry_compare(const void *a, const void *b)
790 790 {
791 791 spa_error_entry_t *sa = (spa_error_entry_t *)a;
792 792 spa_error_entry_t *sb = (spa_error_entry_t *)b;
793 793 int ret;
794 794
795 795 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
796 796 sizeof (zbookmark_t));
797 797
798 798 if (ret < 0)
799 799 return (-1);
800 800 else if (ret > 0)
801 801 return (1);
802 802 else
803 803 return (0);
804 804 }
805 805
806 806 /*
807 807 * Utility function which retrieves copies of the current logs and
808 808 * re-initializes them in the process.
809 809 */
810 810 void
811 811 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
812 812 {
813 813 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
814 814
815 815 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
816 816 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
817 817
818 818 avl_create(&spa->spa_errlist_scrub,
819 819 spa_error_entry_compare, sizeof (spa_error_entry_t),
820 820 offsetof(spa_error_entry_t, se_avl));
821 821 avl_create(&spa->spa_errlist_last,
822 822 spa_error_entry_compare, sizeof (spa_error_entry_t),
823 823 offsetof(spa_error_entry_t, se_avl));
824 824 }
825 825
826 826 static void
827 827 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
828 828 {
829 829 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
830 830 enum zti_modes mode = ztip->zti_mode;
831 831 uint_t value = ztip->zti_value;
832 832 uint_t count = ztip->zti_count;
833 833 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
834 834 char name[32];
835 835 uint_t flags = 0;
836 836 boolean_t batch = B_FALSE;
837 837
838 838 if (mode == ZTI_MODE_NULL) {
839 839 tqs->stqs_count = 0;
840 840 tqs->stqs_taskq = NULL;
841 841 return;
842 842 }
843 843
844 844 ASSERT3U(count, >, 0);
845 845
846 846 tqs->stqs_count = count;
847 847 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
848 848
849 849 switch (mode) {
850 850 case ZTI_MODE_FIXED:
851 851 ASSERT3U(value, >=, 1);
852 852 value = MAX(value, 1);
853 853 break;
854 854
855 855 case ZTI_MODE_BATCH:
856 856 batch = B_TRUE;
857 857 flags |= TASKQ_THREADS_CPU_PCT;
858 858 value = zio_taskq_batch_pct;
859 859 break;
860 860
861 861 default:
862 862 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
863 863 "spa_activate()",
864 864 zio_type_name[t], zio_taskq_types[q], mode, value);
865 865 break;
866 866 }
867 867
868 868 for (uint_t i = 0; i < count; i++) {
869 869 taskq_t *tq;
870 870
871 871 if (count > 1) {
872 872 (void) snprintf(name, sizeof (name), "%s_%s_%u",
873 873 zio_type_name[t], zio_taskq_types[q], i);
874 874 } else {
875 875 (void) snprintf(name, sizeof (name), "%s_%s",
876 876 zio_type_name[t], zio_taskq_types[q]);
877 877 }
878 878
879 879 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
880 880 if (batch)
881 881 flags |= TASKQ_DC_BATCH;
882 882
883 883 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
884 884 spa->spa_proc, zio_taskq_basedc, flags);
885 885 } else {
886 886 pri_t pri = maxclsyspri;
887 887 /*
888 888 * The write issue taskq can be extremely CPU
889 889 * intensive. Run it at slightly lower priority
890 890 * than the other taskqs.
891 891 */
892 892 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
893 893 pri--;
894 894
895 895 tq = taskq_create_proc(name, value, pri, 50,
896 896 INT_MAX, spa->spa_proc, flags);
897 897 }
898 898
899 899 tqs->stqs_taskq[i] = tq;
900 900 }
901 901 }
902 902
903 903 static void
904 904 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
905 905 {
906 906 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
907 907
908 908 if (tqs->stqs_taskq == NULL) {
909 909 ASSERT0(tqs->stqs_count);
910 910 return;
911 911 }
912 912
913 913 for (uint_t i = 0; i < tqs->stqs_count; i++) {
914 914 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
915 915 taskq_destroy(tqs->stqs_taskq[i]);
916 916 }
917 917
918 918 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
919 919 tqs->stqs_taskq = NULL;
920 920 }
921 921
922 922 /*
923 923 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
924 924 * Note that a type may have multiple discrete taskqs to avoid lock contention
925 925 * on the taskq itself. In that case we choose which taskq at random by using
926 926 * the low bits of gethrtime().
927 927 */
928 928 void
929 929 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
930 930 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
931 931 {
932 932 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
933 933 taskq_t *tq;
934 934
935 935 ASSERT3P(tqs->stqs_taskq, !=, NULL);
936 936 ASSERT3U(tqs->stqs_count, !=, 0);
937 937
938 938 if (tqs->stqs_count == 1) {
939 939 tq = tqs->stqs_taskq[0];
940 940 } else {
941 941 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
942 942 }
943 943
944 944 taskq_dispatch_ent(tq, func, arg, flags, ent);
945 945 }
946 946
947 947 static void
948 948 spa_create_zio_taskqs(spa_t *spa)
949 949 {
950 950 for (int t = 0; t < ZIO_TYPES; t++) {
951 951 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
952 952 spa_taskqs_init(spa, t, q);
953 953 }
954 954 }
955 955 }
956 956
957 957 #ifdef _KERNEL
958 958 static void
959 959 spa_thread(void *arg)
960 960 {
961 961 callb_cpr_t cprinfo;
962 962
963 963 spa_t *spa = arg;
964 964 user_t *pu = PTOU(curproc);
965 965
966 966 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
967 967 spa->spa_name);
968 968
969 969 ASSERT(curproc != &p0);
970 970 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
971 971 "zpool-%s", spa->spa_name);
972 972 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
973 973
974 974 /* bind this thread to the requested psrset */
975 975 if (zio_taskq_psrset_bind != PS_NONE) {
976 976 pool_lock();
977 977 mutex_enter(&cpu_lock);
978 978 mutex_enter(&pidlock);
979 979 mutex_enter(&curproc->p_lock);
980 980
981 981 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
982 982 0, NULL, NULL) == 0) {
983 983 curthread->t_bind_pset = zio_taskq_psrset_bind;
984 984 } else {
985 985 cmn_err(CE_WARN,
986 986 "Couldn't bind process for zfs pool \"%s\" to "
987 987 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
988 988 }
989 989
990 990 mutex_exit(&curproc->p_lock);
991 991 mutex_exit(&pidlock);
992 992 mutex_exit(&cpu_lock);
993 993 pool_unlock();
994 994 }
995 995
996 996 if (zio_taskq_sysdc) {
997 997 sysdc_thread_enter(curthread, 100, 0);
998 998 }
999 999
1000 1000 spa->spa_proc = curproc;
1001 1001 spa->spa_did = curthread->t_did;
1002 1002
1003 1003 spa_create_zio_taskqs(spa);
1004 1004
1005 1005 mutex_enter(&spa->spa_proc_lock);
1006 1006 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1007 1007
1008 1008 spa->spa_proc_state = SPA_PROC_ACTIVE;
1009 1009 cv_broadcast(&spa->spa_proc_cv);
1010 1010
1011 1011 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1012 1012 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1013 1013 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1014 1014 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1015 1015
1016 1016 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1017 1017 spa->spa_proc_state = SPA_PROC_GONE;
1018 1018 spa->spa_proc = &p0;
1019 1019 cv_broadcast(&spa->spa_proc_cv);
1020 1020 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1021 1021
1022 1022 mutex_enter(&curproc->p_lock);
1023 1023 lwp_exit();
1024 1024 }
1025 1025 #endif
1026 1026
1027 1027 /*
1028 1028 * Activate an uninitialized pool.
1029 1029 */
1030 1030 static void
1031 1031 spa_activate(spa_t *spa, int mode)
1032 1032 {
1033 1033 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1034 1034
1035 1035 spa->spa_state = POOL_STATE_ACTIVE;
1036 1036 spa->spa_mode = mode;
1037 1037
1038 1038 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1039 1039 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1040 1040
1041 1041 /* Try to create a covering process */
1042 1042 mutex_enter(&spa->spa_proc_lock);
1043 1043 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1044 1044 ASSERT(spa->spa_proc == &p0);
1045 1045 spa->spa_did = 0;
1046 1046
1047 1047 /* Only create a process if we're going to be around a while. */
1048 1048 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1049 1049 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1050 1050 NULL, 0) == 0) {
1051 1051 spa->spa_proc_state = SPA_PROC_CREATED;
1052 1052 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1053 1053 cv_wait(&spa->spa_proc_cv,
1054 1054 &spa->spa_proc_lock);
1055 1055 }
1056 1056 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1057 1057 ASSERT(spa->spa_proc != &p0);
1058 1058 ASSERT(spa->spa_did != 0);
1059 1059 } else {
1060 1060 #ifdef _KERNEL
1061 1061 cmn_err(CE_WARN,
1062 1062 "Couldn't create process for zfs pool \"%s\"\n",
1063 1063 spa->spa_name);
1064 1064 #endif
1065 1065 }
1066 1066 }
1067 1067 mutex_exit(&spa->spa_proc_lock);
1068 1068
1069 1069 /* If we didn't create a process, we need to create our taskqs. */
1070 1070 if (spa->spa_proc == &p0) {
1071 1071 spa_create_zio_taskqs(spa);
1072 1072 }
1073 1073
1074 1074 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1075 1075 offsetof(vdev_t, vdev_config_dirty_node));
1076 1076 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1077 1077 offsetof(vdev_t, vdev_state_dirty_node));
1078 1078
1079 1079 txg_list_create(&spa->spa_vdev_txg_list,
1080 1080 offsetof(struct vdev, vdev_txg_node));
1081 1081
1082 1082 avl_create(&spa->spa_errlist_scrub,
1083 1083 spa_error_entry_compare, sizeof (spa_error_entry_t),
1084 1084 offsetof(spa_error_entry_t, se_avl));
1085 1085 avl_create(&spa->spa_errlist_last,
1086 1086 spa_error_entry_compare, sizeof (spa_error_entry_t),
1087 1087 offsetof(spa_error_entry_t, se_avl));
1088 1088 }
1089 1089
1090 1090 /*
1091 1091 * Opposite of spa_activate().
1092 1092 */
1093 1093 static void
1094 1094 spa_deactivate(spa_t *spa)
1095 1095 {
1096 1096 ASSERT(spa->spa_sync_on == B_FALSE);
1097 1097 ASSERT(spa->spa_dsl_pool == NULL);
1098 1098 ASSERT(spa->spa_root_vdev == NULL);
1099 1099 ASSERT(spa->spa_async_zio_root == NULL);
1100 1100 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1101 1101
1102 1102 txg_list_destroy(&spa->spa_vdev_txg_list);
1103 1103
1104 1104 list_destroy(&spa->spa_config_dirty_list);
1105 1105 list_destroy(&spa->spa_state_dirty_list);
1106 1106
1107 1107 for (int t = 0; t < ZIO_TYPES; t++) {
1108 1108 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1109 1109 spa_taskqs_fini(spa, t, q);
1110 1110 }
1111 1111 }
1112 1112
1113 1113 metaslab_class_destroy(spa->spa_normal_class);
1114 1114 spa->spa_normal_class = NULL;
1115 1115
1116 1116 metaslab_class_destroy(spa->spa_log_class);
1117 1117 spa->spa_log_class = NULL;
1118 1118
1119 1119 /*
1120 1120 * If this was part of an import or the open otherwise failed, we may
1121 1121 * still have errors left in the queues. Empty them just in case.
1122 1122 */
1123 1123 spa_errlog_drain(spa);
1124 1124
1125 1125 avl_destroy(&spa->spa_errlist_scrub);
1126 1126 avl_destroy(&spa->spa_errlist_last);
1127 1127
1128 1128 spa->spa_state = POOL_STATE_UNINITIALIZED;
1129 1129
1130 1130 mutex_enter(&spa->spa_proc_lock);
1131 1131 if (spa->spa_proc_state != SPA_PROC_NONE) {
1132 1132 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1133 1133 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1134 1134 cv_broadcast(&spa->spa_proc_cv);
1135 1135 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1136 1136 ASSERT(spa->spa_proc != &p0);
1137 1137 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1138 1138 }
1139 1139 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1140 1140 spa->spa_proc_state = SPA_PROC_NONE;
1141 1141 }
1142 1142 ASSERT(spa->spa_proc == &p0);
1143 1143 mutex_exit(&spa->spa_proc_lock);
1144 1144
1145 1145 /*
1146 1146 * We want to make sure spa_thread() has actually exited the ZFS
1147 1147 * module, so that the module can't be unloaded out from underneath
1148 1148 * it.
1149 1149 */
1150 1150 if (spa->spa_did != 0) {
1151 1151 thread_join(spa->spa_did);
1152 1152 spa->spa_did = 0;
1153 1153 }
1154 1154 }
1155 1155
1156 1156 /*
1157 1157 * Verify a pool configuration, and construct the vdev tree appropriately. This
1158 1158 * will create all the necessary vdevs in the appropriate layout, with each vdev
1159 1159 * in the CLOSED state. This will prep the pool before open/creation/import.
1160 1160 * All vdev validation is done by the vdev_alloc() routine.
1161 1161 */
1162 1162 static int
1163 1163 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1164 1164 uint_t id, int atype)
1165 1165 {
1166 1166 nvlist_t **child;
1167 1167 uint_t children;
1168 1168 int error;
1169 1169
1170 1170 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1171 1171 return (error);
1172 1172
1173 1173 if ((*vdp)->vdev_ops->vdev_op_leaf)
1174 1174 return (0);
1175 1175
1176 1176 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1177 1177 &child, &children);
1178 1178
1179 1179 if (error == ENOENT)
1180 1180 return (0);
1181 1181
1182 1182 if (error) {
1183 1183 vdev_free(*vdp);
1184 1184 *vdp = NULL;
1185 1185 return (SET_ERROR(EINVAL));
1186 1186 }
1187 1187
1188 1188 for (int c = 0; c < children; c++) {
1189 1189 vdev_t *vd;
1190 1190 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1191 1191 atype)) != 0) {
1192 1192 vdev_free(*vdp);
1193 1193 *vdp = NULL;
1194 1194 return (error);
1195 1195 }
1196 1196 }
1197 1197
1198 1198 ASSERT(*vdp != NULL);
1199 1199
1200 1200 return (0);
1201 1201 }
1202 1202
1203 1203 /*
1204 1204 * Opposite of spa_load().
1205 1205 */
1206 1206 static void
1207 1207 spa_unload(spa_t *spa)
1208 1208 {
1209 1209 int i;
1210 1210
1211 1211 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1212 1212
1213 1213 /*
1214 1214 * Stop async tasks.
1215 1215 */
1216 1216 spa_async_suspend(spa);
1217 1217
1218 1218 /*
1219 1219 * Stop syncing.
1220 1220 */
1221 1221 if (spa->spa_sync_on) {
1222 1222 txg_sync_stop(spa->spa_dsl_pool);
1223 1223 spa->spa_sync_on = B_FALSE;
1224 1224 }
1225 1225
1226 1226 /*
1227 1227 * Wait for any outstanding async I/O to complete.
1228 1228 */
1229 1229 if (spa->spa_async_zio_root != NULL) {
1230 1230 (void) zio_wait(spa->spa_async_zio_root);
1231 1231 spa->spa_async_zio_root = NULL;
1232 1232 }
1233 1233
1234 1234 bpobj_close(&spa->spa_deferred_bpobj);
1235 1235
1236 1236 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1237 1237
1238 1238 /*
1239 1239 * Close all vdevs.
1240 1240 */
1241 1241 if (spa->spa_root_vdev)
1242 1242 vdev_free(spa->spa_root_vdev);
1243 1243 ASSERT(spa->spa_root_vdev == NULL);
1244 1244
1245 1245 /*
1246 1246 * Close the dsl pool.
1247 1247 */
1248 1248 if (spa->spa_dsl_pool) {
1249 1249 dsl_pool_close(spa->spa_dsl_pool);
1250 1250 spa->spa_dsl_pool = NULL;
1251 1251 spa->spa_meta_objset = NULL;
1252 1252 }
1253 1253
1254 1254 ddt_unload(spa);
1255 1255
1256 1256
1257 1257 /*
1258 1258 * Drop and purge level 2 cache
1259 1259 */
1260 1260 spa_l2cache_drop(spa);
1261 1261
1262 1262 for (i = 0; i < spa->spa_spares.sav_count; i++)
1263 1263 vdev_free(spa->spa_spares.sav_vdevs[i]);
1264 1264 if (spa->spa_spares.sav_vdevs) {
1265 1265 kmem_free(spa->spa_spares.sav_vdevs,
1266 1266 spa->spa_spares.sav_count * sizeof (void *));
1267 1267 spa->spa_spares.sav_vdevs = NULL;
1268 1268 }
1269 1269 if (spa->spa_spares.sav_config) {
1270 1270 nvlist_free(spa->spa_spares.sav_config);
1271 1271 spa->spa_spares.sav_config = NULL;
1272 1272 }
1273 1273 spa->spa_spares.sav_count = 0;
1274 1274
1275 1275 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1276 1276 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1277 1277 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1278 1278 }
1279 1279 if (spa->spa_l2cache.sav_vdevs) {
1280 1280 kmem_free(spa->spa_l2cache.sav_vdevs,
1281 1281 spa->spa_l2cache.sav_count * sizeof (void *));
1282 1282 spa->spa_l2cache.sav_vdevs = NULL;
1283 1283 }
1284 1284 if (spa->spa_l2cache.sav_config) {
1285 1285 nvlist_free(spa->spa_l2cache.sav_config);
1286 1286 spa->spa_l2cache.sav_config = NULL;
1287 1287 }
1288 1288 spa->spa_l2cache.sav_count = 0;
1289 1289
1290 1290 spa->spa_async_suspended = 0;
1291 1291
1292 1292 if (spa->spa_comment != NULL) {
1293 1293 spa_strfree(spa->spa_comment);
1294 1294 spa->spa_comment = NULL;
1295 1295 }
1296 1296
1297 1297 spa_config_exit(spa, SCL_ALL, FTAG);
1298 1298 }
1299 1299
1300 1300 /*
1301 1301 * Load (or re-load) the current list of vdevs describing the active spares for
1302 1302 * this pool. When this is called, we have some form of basic information in
1303 1303 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1304 1304 * then re-generate a more complete list including status information.
1305 1305 */
1306 1306 static void
1307 1307 spa_load_spares(spa_t *spa)
1308 1308 {
1309 1309 nvlist_t **spares;
1310 1310 uint_t nspares;
1311 1311 int i;
1312 1312 vdev_t *vd, *tvd;
1313 1313
1314 1314 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1315 1315
1316 1316 /*
1317 1317 * First, close and free any existing spare vdevs.
1318 1318 */
1319 1319 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1320 1320 vd = spa->spa_spares.sav_vdevs[i];
1321 1321
1322 1322 /* Undo the call to spa_activate() below */
1323 1323 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1324 1324 B_FALSE)) != NULL && tvd->vdev_isspare)
1325 1325 spa_spare_remove(tvd);
1326 1326 vdev_close(vd);
1327 1327 vdev_free(vd);
1328 1328 }
1329 1329
1330 1330 if (spa->spa_spares.sav_vdevs)
1331 1331 kmem_free(spa->spa_spares.sav_vdevs,
1332 1332 spa->spa_spares.sav_count * sizeof (void *));
1333 1333
1334 1334 if (spa->spa_spares.sav_config == NULL)
1335 1335 nspares = 0;
1336 1336 else
1337 1337 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1338 1338 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1339 1339
1340 1340 spa->spa_spares.sav_count = (int)nspares;
1341 1341 spa->spa_spares.sav_vdevs = NULL;
1342 1342
1343 1343 if (nspares == 0)
1344 1344 return;
1345 1345
1346 1346 /*
1347 1347 * Construct the array of vdevs, opening them to get status in the
1348 1348 * process. For each spare, there is potentially two different vdev_t
1349 1349 * structures associated with it: one in the list of spares (used only
1350 1350 * for basic validation purposes) and one in the active vdev
1351 1351 * configuration (if it's spared in). During this phase we open and
1352 1352 * validate each vdev on the spare list. If the vdev also exists in the
1353 1353 * active configuration, then we also mark this vdev as an active spare.
1354 1354 */
1355 1355 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1356 1356 KM_SLEEP);
1357 1357 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1358 1358 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1359 1359 VDEV_ALLOC_SPARE) == 0);
1360 1360 ASSERT(vd != NULL);
1361 1361
1362 1362 spa->spa_spares.sav_vdevs[i] = vd;
1363 1363
1364 1364 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1365 1365 B_FALSE)) != NULL) {
1366 1366 if (!tvd->vdev_isspare)
1367 1367 spa_spare_add(tvd);
1368 1368
1369 1369 /*
1370 1370 * We only mark the spare active if we were successfully
1371 1371 * able to load the vdev. Otherwise, importing a pool
1372 1372 * with a bad active spare would result in strange
1373 1373 * behavior, because multiple pool would think the spare
1374 1374 * is actively in use.
1375 1375 *
1376 1376 * There is a vulnerability here to an equally bizarre
1377 1377 * circumstance, where a dead active spare is later
1378 1378 * brought back to life (onlined or otherwise). Given
1379 1379 * the rarity of this scenario, and the extra complexity
1380 1380 * it adds, we ignore the possibility.
1381 1381 */
1382 1382 if (!vdev_is_dead(tvd))
1383 1383 spa_spare_activate(tvd);
1384 1384 }
1385 1385
1386 1386 vd->vdev_top = vd;
1387 1387 vd->vdev_aux = &spa->spa_spares;
1388 1388
1389 1389 if (vdev_open(vd) != 0)
1390 1390 continue;
1391 1391
1392 1392 if (vdev_validate_aux(vd) == 0)
1393 1393 spa_spare_add(vd);
1394 1394 }
1395 1395
1396 1396 /*
1397 1397 * Recompute the stashed list of spares, with status information
1398 1398 * this time.
1399 1399 */
1400 1400 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1401 1401 DATA_TYPE_NVLIST_ARRAY) == 0);
1402 1402
1403 1403 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1404 1404 KM_SLEEP);
1405 1405 for (i = 0; i < spa->spa_spares.sav_count; i++)
1406 1406 spares[i] = vdev_config_generate(spa,
1407 1407 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1408 1408 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1409 1409 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1410 1410 for (i = 0; i < spa->spa_spares.sav_count; i++)
1411 1411 nvlist_free(spares[i]);
1412 1412 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1413 1413 }
1414 1414
1415 1415 /*
1416 1416 * Load (or re-load) the current list of vdevs describing the active l2cache for
1417 1417 * this pool. When this is called, we have some form of basic information in
1418 1418 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1419 1419 * then re-generate a more complete list including status information.
1420 1420 * Devices which are already active have their details maintained, and are
1421 1421 * not re-opened.
1422 1422 */
1423 1423 static void
1424 1424 spa_load_l2cache(spa_t *spa)
1425 1425 {
1426 1426 nvlist_t **l2cache;
1427 1427 uint_t nl2cache;
1428 1428 int i, j, oldnvdevs;
1429 1429 uint64_t guid;
1430 1430 vdev_t *vd, **oldvdevs, **newvdevs;
1431 1431 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1432 1432
1433 1433 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1434 1434
1435 1435 if (sav->sav_config != NULL) {
1436 1436 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1437 1437 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1438 1438 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1439 1439 } else {
1440 1440 nl2cache = 0;
1441 1441 newvdevs = NULL;
1442 1442 }
1443 1443
1444 1444 oldvdevs = sav->sav_vdevs;
1445 1445 oldnvdevs = sav->sav_count;
1446 1446 sav->sav_vdevs = NULL;
1447 1447 sav->sav_count = 0;
1448 1448
1449 1449 /*
1450 1450 * Process new nvlist of vdevs.
1451 1451 */
1452 1452 for (i = 0; i < nl2cache; i++) {
1453 1453 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1454 1454 &guid) == 0);
1455 1455
1456 1456 newvdevs[i] = NULL;
1457 1457 for (j = 0; j < oldnvdevs; j++) {
1458 1458 vd = oldvdevs[j];
1459 1459 if (vd != NULL && guid == vd->vdev_guid) {
1460 1460 /*
1461 1461 * Retain previous vdev for add/remove ops.
1462 1462 */
1463 1463 newvdevs[i] = vd;
1464 1464 oldvdevs[j] = NULL;
1465 1465 break;
1466 1466 }
1467 1467 }
1468 1468
1469 1469 if (newvdevs[i] == NULL) {
1470 1470 /*
1471 1471 * Create new vdev
1472 1472 */
1473 1473 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1474 1474 VDEV_ALLOC_L2CACHE) == 0);
1475 1475 ASSERT(vd != NULL);
1476 1476 newvdevs[i] = vd;
1477 1477
1478 1478 /*
1479 1479 * Commit this vdev as an l2cache device,
1480 1480 * even if it fails to open.
1481 1481 */
1482 1482 spa_l2cache_add(vd);
1483 1483
1484 1484 vd->vdev_top = vd;
1485 1485 vd->vdev_aux = sav;
1486 1486
1487 1487 spa_l2cache_activate(vd);
1488 1488
1489 1489 if (vdev_open(vd) != 0)
1490 1490 continue;
1491 1491
1492 1492 (void) vdev_validate_aux(vd);
1493 1493
1494 1494 if (!vdev_is_dead(vd))
1495 1495 l2arc_add_vdev(spa, vd);
1496 1496 }
1497 1497 }
1498 1498
1499 1499 /*
1500 1500 * Purge vdevs that were dropped
1501 1501 */
1502 1502 for (i = 0; i < oldnvdevs; i++) {
1503 1503 uint64_t pool;
1504 1504
1505 1505 vd = oldvdevs[i];
1506 1506 if (vd != NULL) {
1507 1507 ASSERT(vd->vdev_isl2cache);
1508 1508
1509 1509 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1510 1510 pool != 0ULL && l2arc_vdev_present(vd))
1511 1511 l2arc_remove_vdev(vd);
1512 1512 vdev_clear_stats(vd);
1513 1513 vdev_free(vd);
1514 1514 }
1515 1515 }
1516 1516
1517 1517 if (oldvdevs)
1518 1518 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1519 1519
1520 1520 if (sav->sav_config == NULL)
1521 1521 goto out;
1522 1522
1523 1523 sav->sav_vdevs = newvdevs;
1524 1524 sav->sav_count = (int)nl2cache;
1525 1525
1526 1526 /*
1527 1527 * Recompute the stashed list of l2cache devices, with status
1528 1528 * information this time.
1529 1529 */
1530 1530 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1531 1531 DATA_TYPE_NVLIST_ARRAY) == 0);
1532 1532
1533 1533 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1534 1534 for (i = 0; i < sav->sav_count; i++)
1535 1535 l2cache[i] = vdev_config_generate(spa,
1536 1536 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1537 1537 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1538 1538 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1539 1539 out:
1540 1540 for (i = 0; i < sav->sav_count; i++)
1541 1541 nvlist_free(l2cache[i]);
1542 1542 if (sav->sav_count)
1543 1543 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1544 1544 }
1545 1545
1546 1546 static int
1547 1547 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1548 1548 {
1549 1549 dmu_buf_t *db;
1550 1550 char *packed = NULL;
1551 1551 size_t nvsize = 0;
1552 1552 int error;
1553 1553 *value = NULL;
1554 1554
1555 1555 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1556 1556 nvsize = *(uint64_t *)db->db_data;
1557 1557 dmu_buf_rele(db, FTAG);
1558 1558
1559 1559 packed = kmem_alloc(nvsize, KM_SLEEP);
1560 1560 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1561 1561 DMU_READ_PREFETCH);
1562 1562 if (error == 0)
1563 1563 error = nvlist_unpack(packed, nvsize, value, 0);
1564 1564 kmem_free(packed, nvsize);
1565 1565
1566 1566 return (error);
1567 1567 }
1568 1568
1569 1569 /*
1570 1570 * Checks to see if the given vdev could not be opened, in which case we post a
1571 1571 * sysevent to notify the autoreplace code that the device has been removed.
1572 1572 */
1573 1573 static void
1574 1574 spa_check_removed(vdev_t *vd)
1575 1575 {
1576 1576 for (int c = 0; c < vd->vdev_children; c++)
1577 1577 spa_check_removed(vd->vdev_child[c]);
1578 1578
1579 1579 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1580 1580 !vd->vdev_ishole) {
1581 1581 zfs_post_autoreplace(vd->vdev_spa, vd);
1582 1582 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1583 1583 }
1584 1584 }
1585 1585
1586 1586 /*
1587 1587 * Validate the current config against the MOS config
1588 1588 */
1589 1589 static boolean_t
1590 1590 spa_config_valid(spa_t *spa, nvlist_t *config)
1591 1591 {
1592 1592 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1593 1593 nvlist_t *nv;
1594 1594
1595 1595 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1596 1596
1597 1597 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1598 1598 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1599 1599
1600 1600 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1601 1601
1602 1602 /*
1603 1603 * If we're doing a normal import, then build up any additional
1604 1604 * diagnostic information about missing devices in this config.
1605 1605 * We'll pass this up to the user for further processing.
1606 1606 */
1607 1607 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1608 1608 nvlist_t **child, *nv;
1609 1609 uint64_t idx = 0;
1610 1610
1611 1611 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1612 1612 KM_SLEEP);
1613 1613 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1614 1614
1615 1615 for (int c = 0; c < rvd->vdev_children; c++) {
1616 1616 vdev_t *tvd = rvd->vdev_child[c];
1617 1617 vdev_t *mtvd = mrvd->vdev_child[c];
1618 1618
1619 1619 if (tvd->vdev_ops == &vdev_missing_ops &&
1620 1620 mtvd->vdev_ops != &vdev_missing_ops &&
1621 1621 mtvd->vdev_islog)
1622 1622 child[idx++] = vdev_config_generate(spa, mtvd,
1623 1623 B_FALSE, 0);
1624 1624 }
1625 1625
1626 1626 if (idx) {
1627 1627 VERIFY(nvlist_add_nvlist_array(nv,
1628 1628 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1629 1629 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1630 1630 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1631 1631
1632 1632 for (int i = 0; i < idx; i++)
1633 1633 nvlist_free(child[i]);
1634 1634 }
1635 1635 nvlist_free(nv);
1636 1636 kmem_free(child, rvd->vdev_children * sizeof (char **));
1637 1637 }
1638 1638
1639 1639 /*
1640 1640 * Compare the root vdev tree with the information we have
1641 1641 * from the MOS config (mrvd). Check each top-level vdev
1642 1642 * with the corresponding MOS config top-level (mtvd).
1643 1643 */
1644 1644 for (int c = 0; c < rvd->vdev_children; c++) {
1645 1645 vdev_t *tvd = rvd->vdev_child[c];
1646 1646 vdev_t *mtvd = mrvd->vdev_child[c];
1647 1647
1648 1648 /*
1649 1649 * Resolve any "missing" vdevs in the current configuration.
1650 1650 * If we find that the MOS config has more accurate information
1651 1651 * about the top-level vdev then use that vdev instead.
1652 1652 */
1653 1653 if (tvd->vdev_ops == &vdev_missing_ops &&
1654 1654 mtvd->vdev_ops != &vdev_missing_ops) {
1655 1655
1656 1656 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1657 1657 continue;
1658 1658
1659 1659 /*
1660 1660 * Device specific actions.
1661 1661 */
1662 1662 if (mtvd->vdev_islog) {
1663 1663 spa_set_log_state(spa, SPA_LOG_CLEAR);
1664 1664 } else {
1665 1665 /*
1666 1666 * XXX - once we have 'readonly' pool
1667 1667 * support we should be able to handle
1668 1668 * missing data devices by transitioning
1669 1669 * the pool to readonly.
1670 1670 */
1671 1671 continue;
1672 1672 }
1673 1673
1674 1674 /*
1675 1675 * Swap the missing vdev with the data we were
1676 1676 * able to obtain from the MOS config.
1677 1677 */
1678 1678 vdev_remove_child(rvd, tvd);
1679 1679 vdev_remove_child(mrvd, mtvd);
1680 1680
1681 1681 vdev_add_child(rvd, mtvd);
1682 1682 vdev_add_child(mrvd, tvd);
1683 1683
1684 1684 spa_config_exit(spa, SCL_ALL, FTAG);
1685 1685 vdev_load(mtvd);
1686 1686 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1687 1687
1688 1688 vdev_reopen(rvd);
1689 1689 } else if (mtvd->vdev_islog) {
1690 1690 /*
1691 1691 * Load the slog device's state from the MOS config
1692 1692 * since it's possible that the label does not
1693 1693 * contain the most up-to-date information.
1694 1694 */
1695 1695 vdev_load_log_state(tvd, mtvd);
1696 1696 vdev_reopen(tvd);
1697 1697 }
1698 1698 }
1699 1699 vdev_free(mrvd);
1700 1700 spa_config_exit(spa, SCL_ALL, FTAG);
1701 1701
1702 1702 /*
1703 1703 * Ensure we were able to validate the config.
1704 1704 */
1705 1705 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1706 1706 }
1707 1707
1708 1708 /*
1709 1709 * Check for missing log devices
↓ open down ↓ |
1709 lines elided |
↑ open up ↑ |
1710 1710 */
1711 1711 static boolean_t
1712 1712 spa_check_logs(spa_t *spa)
1713 1713 {
1714 1714 boolean_t rv = B_FALSE;
1715 1715
1716 1716 switch (spa->spa_log_state) {
1717 1717 case SPA_LOG_MISSING:
1718 1718 /* need to recheck in case slog has been restored */
1719 1719 case SPA_LOG_UNKNOWN:
1720 - rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1721 - NULL, DS_FIND_CHILDREN) != 0);
1720 + rv = (dmu_objset_find_parallel(spa->spa_name,
1721 + zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1722 1722 if (rv)
1723 1723 spa_set_log_state(spa, SPA_LOG_MISSING);
1724 1724 break;
1725 1725 }
1726 1726 return (rv);
1727 1727 }
1728 1728
1729 1729 static boolean_t
1730 1730 spa_passivate_log(spa_t *spa)
1731 1731 {
1732 1732 vdev_t *rvd = spa->spa_root_vdev;
1733 1733 boolean_t slog_found = B_FALSE;
1734 1734
1735 1735 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1736 1736
1737 1737 if (!spa_has_slogs(spa))
1738 1738 return (B_FALSE);
1739 1739
1740 1740 for (int c = 0; c < rvd->vdev_children; c++) {
1741 1741 vdev_t *tvd = rvd->vdev_child[c];
1742 1742 metaslab_group_t *mg = tvd->vdev_mg;
1743 1743
1744 1744 if (tvd->vdev_islog) {
1745 1745 metaslab_group_passivate(mg);
1746 1746 slog_found = B_TRUE;
1747 1747 }
1748 1748 }
1749 1749
1750 1750 return (slog_found);
1751 1751 }
1752 1752
1753 1753 static void
1754 1754 spa_activate_log(spa_t *spa)
1755 1755 {
1756 1756 vdev_t *rvd = spa->spa_root_vdev;
1757 1757
1758 1758 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1759 1759
1760 1760 for (int c = 0; c < rvd->vdev_children; c++) {
1761 1761 vdev_t *tvd = rvd->vdev_child[c];
1762 1762 metaslab_group_t *mg = tvd->vdev_mg;
1763 1763
1764 1764 if (tvd->vdev_islog)
1765 1765 metaslab_group_activate(mg);
1766 1766 }
1767 1767 }
1768 1768
1769 1769 int
1770 1770 spa_offline_log(spa_t *spa)
1771 1771 {
1772 1772 int error;
1773 1773
1774 1774 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1775 1775 NULL, DS_FIND_CHILDREN);
1776 1776 if (error == 0) {
1777 1777 /*
1778 1778 * We successfully offlined the log device, sync out the
1779 1779 * current txg so that the "stubby" block can be removed
1780 1780 * by zil_sync().
1781 1781 */
1782 1782 txg_wait_synced(spa->spa_dsl_pool, 0);
1783 1783 }
1784 1784 return (error);
1785 1785 }
1786 1786
1787 1787 static void
1788 1788 spa_aux_check_removed(spa_aux_vdev_t *sav)
1789 1789 {
1790 1790 for (int i = 0; i < sav->sav_count; i++)
1791 1791 spa_check_removed(sav->sav_vdevs[i]);
1792 1792 }
1793 1793
1794 1794 void
1795 1795 spa_claim_notify(zio_t *zio)
1796 1796 {
1797 1797 spa_t *spa = zio->io_spa;
1798 1798
1799 1799 if (zio->io_error)
1800 1800 return;
1801 1801
1802 1802 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1803 1803 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1804 1804 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1805 1805 mutex_exit(&spa->spa_props_lock);
1806 1806 }
1807 1807
1808 1808 typedef struct spa_load_error {
1809 1809 uint64_t sle_meta_count;
1810 1810 uint64_t sle_data_count;
1811 1811 } spa_load_error_t;
1812 1812
1813 1813 static void
1814 1814 spa_load_verify_done(zio_t *zio)
1815 1815 {
1816 1816 blkptr_t *bp = zio->io_bp;
1817 1817 spa_load_error_t *sle = zio->io_private;
1818 1818 dmu_object_type_t type = BP_GET_TYPE(bp);
1819 1819 int error = zio->io_error;
1820 1820
1821 1821 if (error) {
1822 1822 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1823 1823 type != DMU_OT_INTENT_LOG)
1824 1824 atomic_add_64(&sle->sle_meta_count, 1);
1825 1825 else
1826 1826 atomic_add_64(&sle->sle_data_count, 1);
1827 1827 }
1828 1828 zio_data_buf_free(zio->io_data, zio->io_size);
1829 1829 }
1830 1830
1831 1831 /*ARGSUSED*/
1832 1832 static int
1833 1833 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1834 1834 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1835 1835 {
1836 1836 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
1837 1837 zio_t *rio = arg;
1838 1838 size_t size = BP_GET_PSIZE(bp);
1839 1839 void *data = zio_data_buf_alloc(size);
1840 1840
1841 1841 zio_nowait(zio_read(rio, spa, bp, data, size,
1842 1842 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1843 1843 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1844 1844 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1845 1845 }
1846 1846 return (0);
1847 1847 }
1848 1848
1849 1849 static int
1850 1850 spa_load_verify(spa_t *spa)
1851 1851 {
1852 1852 zio_t *rio;
1853 1853 spa_load_error_t sle = { 0 };
1854 1854 zpool_rewind_policy_t policy;
1855 1855 boolean_t verify_ok = B_FALSE;
1856 1856 int error;
1857 1857
1858 1858 zpool_get_rewind_policy(spa->spa_config, &policy);
1859 1859
1860 1860 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1861 1861 return (0);
1862 1862
1863 1863 rio = zio_root(spa, NULL, &sle,
1864 1864 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1865 1865
1866 1866 error = traverse_pool(spa, spa->spa_verify_min_txg,
1867 1867 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1868 1868
1869 1869 (void) zio_wait(rio);
1870 1870
1871 1871 spa->spa_load_meta_errors = sle.sle_meta_count;
1872 1872 spa->spa_load_data_errors = sle.sle_data_count;
1873 1873
1874 1874 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1875 1875 sle.sle_data_count <= policy.zrp_maxdata) {
1876 1876 int64_t loss = 0;
1877 1877
1878 1878 verify_ok = B_TRUE;
1879 1879 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1880 1880 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1881 1881
1882 1882 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1883 1883 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1884 1884 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1885 1885 VERIFY(nvlist_add_int64(spa->spa_load_info,
1886 1886 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1887 1887 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1888 1888 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1889 1889 } else {
1890 1890 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1891 1891 }
1892 1892
1893 1893 if (error) {
1894 1894 if (error != ENXIO && error != EIO)
1895 1895 error = SET_ERROR(EIO);
1896 1896 return (error);
1897 1897 }
1898 1898
1899 1899 return (verify_ok ? 0 : EIO);
1900 1900 }
1901 1901
1902 1902 /*
1903 1903 * Find a value in the pool props object.
1904 1904 */
1905 1905 static void
1906 1906 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1907 1907 {
1908 1908 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1909 1909 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1910 1910 }
1911 1911
1912 1912 /*
1913 1913 * Find a value in the pool directory object.
1914 1914 */
1915 1915 static int
1916 1916 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1917 1917 {
1918 1918 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1919 1919 name, sizeof (uint64_t), 1, val));
1920 1920 }
1921 1921
1922 1922 static int
1923 1923 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1924 1924 {
1925 1925 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1926 1926 return (err);
1927 1927 }
1928 1928
1929 1929 /*
1930 1930 * Fix up config after a partly-completed split. This is done with the
1931 1931 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1932 1932 * pool have that entry in their config, but only the splitting one contains
1933 1933 * a list of all the guids of the vdevs that are being split off.
1934 1934 *
1935 1935 * This function determines what to do with that list: either rejoin
1936 1936 * all the disks to the pool, or complete the splitting process. To attempt
1937 1937 * the rejoin, each disk that is offlined is marked online again, and
1938 1938 * we do a reopen() call. If the vdev label for every disk that was
1939 1939 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1940 1940 * then we call vdev_split() on each disk, and complete the split.
1941 1941 *
1942 1942 * Otherwise we leave the config alone, with all the vdevs in place in
1943 1943 * the original pool.
1944 1944 */
1945 1945 static void
1946 1946 spa_try_repair(spa_t *spa, nvlist_t *config)
1947 1947 {
1948 1948 uint_t extracted;
1949 1949 uint64_t *glist;
1950 1950 uint_t i, gcount;
1951 1951 nvlist_t *nvl;
1952 1952 vdev_t **vd;
1953 1953 boolean_t attempt_reopen;
1954 1954
1955 1955 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1956 1956 return;
1957 1957
1958 1958 /* check that the config is complete */
1959 1959 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1960 1960 &glist, &gcount) != 0)
1961 1961 return;
1962 1962
1963 1963 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1964 1964
1965 1965 /* attempt to online all the vdevs & validate */
1966 1966 attempt_reopen = B_TRUE;
1967 1967 for (i = 0; i < gcount; i++) {
1968 1968 if (glist[i] == 0) /* vdev is hole */
1969 1969 continue;
1970 1970
1971 1971 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1972 1972 if (vd[i] == NULL) {
1973 1973 /*
1974 1974 * Don't bother attempting to reopen the disks;
1975 1975 * just do the split.
1976 1976 */
1977 1977 attempt_reopen = B_FALSE;
1978 1978 } else {
1979 1979 /* attempt to re-online it */
1980 1980 vd[i]->vdev_offline = B_FALSE;
1981 1981 }
1982 1982 }
1983 1983
1984 1984 if (attempt_reopen) {
1985 1985 vdev_reopen(spa->spa_root_vdev);
1986 1986
1987 1987 /* check each device to see what state it's in */
1988 1988 for (extracted = 0, i = 0; i < gcount; i++) {
1989 1989 if (vd[i] != NULL &&
1990 1990 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1991 1991 break;
1992 1992 ++extracted;
1993 1993 }
1994 1994 }
1995 1995
1996 1996 /*
1997 1997 * If every disk has been moved to the new pool, or if we never
1998 1998 * even attempted to look at them, then we split them off for
1999 1999 * good.
2000 2000 */
2001 2001 if (!attempt_reopen || gcount == extracted) {
2002 2002 for (i = 0; i < gcount; i++)
2003 2003 if (vd[i] != NULL)
2004 2004 vdev_split(vd[i]);
2005 2005 vdev_reopen(spa->spa_root_vdev);
2006 2006 }
2007 2007
2008 2008 kmem_free(vd, gcount * sizeof (vdev_t *));
2009 2009 }
2010 2010
2011 2011 static int
2012 2012 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2013 2013 boolean_t mosconfig)
2014 2014 {
2015 2015 nvlist_t *config = spa->spa_config;
2016 2016 char *ereport = FM_EREPORT_ZFS_POOL;
2017 2017 char *comment;
2018 2018 int error;
2019 2019 uint64_t pool_guid;
2020 2020 nvlist_t *nvl;
2021 2021
2022 2022 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2023 2023 return (SET_ERROR(EINVAL));
2024 2024
2025 2025 ASSERT(spa->spa_comment == NULL);
2026 2026 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2027 2027 spa->spa_comment = spa_strdup(comment);
2028 2028
2029 2029 /*
2030 2030 * Versioning wasn't explicitly added to the label until later, so if
2031 2031 * it's not present treat it as the initial version.
2032 2032 */
2033 2033 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2034 2034 &spa->spa_ubsync.ub_version) != 0)
2035 2035 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2036 2036
2037 2037 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2038 2038 &spa->spa_config_txg);
2039 2039
2040 2040 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2041 2041 spa_guid_exists(pool_guid, 0)) {
2042 2042 error = SET_ERROR(EEXIST);
2043 2043 } else {
2044 2044 spa->spa_config_guid = pool_guid;
2045 2045
2046 2046 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2047 2047 &nvl) == 0) {
2048 2048 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2049 2049 KM_SLEEP) == 0);
2050 2050 }
2051 2051
2052 2052 nvlist_free(spa->spa_load_info);
2053 2053 spa->spa_load_info = fnvlist_alloc();
2054 2054
2055 2055 gethrestime(&spa->spa_loaded_ts);
2056 2056 error = spa_load_impl(spa, pool_guid, config, state, type,
2057 2057 mosconfig, &ereport);
2058 2058 }
2059 2059
2060 2060 spa->spa_minref = refcount_count(&spa->spa_refcount);
2061 2061 if (error) {
2062 2062 if (error != EEXIST) {
2063 2063 spa->spa_loaded_ts.tv_sec = 0;
2064 2064 spa->spa_loaded_ts.tv_nsec = 0;
2065 2065 }
2066 2066 if (error != EBADF) {
2067 2067 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2068 2068 }
2069 2069 }
2070 2070 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2071 2071 spa->spa_ena = 0;
2072 2072
2073 2073 return (error);
2074 2074 }
2075 2075
2076 2076 /*
2077 2077 * Load an existing storage pool, using the pool's builtin spa_config as a
2078 2078 * source of configuration information.
2079 2079 */
2080 2080 static int
2081 2081 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2082 2082 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2083 2083 char **ereport)
2084 2084 {
2085 2085 int error = 0;
2086 2086 nvlist_t *nvroot = NULL;
2087 2087 nvlist_t *label;
2088 2088 vdev_t *rvd;
2089 2089 uberblock_t *ub = &spa->spa_uberblock;
2090 2090 uint64_t children, config_cache_txg = spa->spa_config_txg;
2091 2091 int orig_mode = spa->spa_mode;
2092 2092 int parse;
2093 2093 uint64_t obj;
2094 2094 boolean_t missing_feat_write = B_FALSE;
2095 2095
2096 2096 /*
2097 2097 * If this is an untrusted config, access the pool in read-only mode.
2098 2098 * This prevents things like resilvering recently removed devices.
2099 2099 */
2100 2100 if (!mosconfig)
2101 2101 spa->spa_mode = FREAD;
2102 2102
2103 2103 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2104 2104
2105 2105 spa->spa_load_state = state;
2106 2106
2107 2107 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2108 2108 return (SET_ERROR(EINVAL));
2109 2109
2110 2110 parse = (type == SPA_IMPORT_EXISTING ?
2111 2111 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2112 2112
2113 2113 /*
2114 2114 * Create "The Godfather" zio to hold all async IOs
2115 2115 */
2116 2116 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2117 2117 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2118 2118
2119 2119 /*
2120 2120 * Parse the configuration into a vdev tree. We explicitly set the
2121 2121 * value that will be returned by spa_version() since parsing the
2122 2122 * configuration requires knowing the version number.
2123 2123 */
2124 2124 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2125 2125 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2126 2126 spa_config_exit(spa, SCL_ALL, FTAG);
2127 2127
2128 2128 if (error != 0)
2129 2129 return (error);
2130 2130
2131 2131 ASSERT(spa->spa_root_vdev == rvd);
2132 2132
2133 2133 if (type != SPA_IMPORT_ASSEMBLE) {
2134 2134 ASSERT(spa_guid(spa) == pool_guid);
2135 2135 }
2136 2136
2137 2137 /*
2138 2138 * Try to open all vdevs, loading each label in the process.
2139 2139 */
2140 2140 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2141 2141 error = vdev_open(rvd);
2142 2142 spa_config_exit(spa, SCL_ALL, FTAG);
2143 2143 if (error != 0)
2144 2144 return (error);
2145 2145
2146 2146 /*
2147 2147 * We need to validate the vdev labels against the configuration that
2148 2148 * we have in hand, which is dependent on the setting of mosconfig. If
2149 2149 * mosconfig is true then we're validating the vdev labels based on
2150 2150 * that config. Otherwise, we're validating against the cached config
2151 2151 * (zpool.cache) that was read when we loaded the zfs module, and then
2152 2152 * later we will recursively call spa_load() and validate against
2153 2153 * the vdev config.
2154 2154 *
2155 2155 * If we're assembling a new pool that's been split off from an
2156 2156 * existing pool, the labels haven't yet been updated so we skip
2157 2157 * validation for now.
2158 2158 */
2159 2159 if (type != SPA_IMPORT_ASSEMBLE) {
2160 2160 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2161 2161 error = vdev_validate(rvd, mosconfig);
2162 2162 spa_config_exit(spa, SCL_ALL, FTAG);
2163 2163
2164 2164 if (error != 0)
2165 2165 return (error);
2166 2166
2167 2167 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2168 2168 return (SET_ERROR(ENXIO));
2169 2169 }
2170 2170
2171 2171 /*
2172 2172 * Find the best uberblock.
2173 2173 */
2174 2174 vdev_uberblock_load(rvd, ub, &label);
2175 2175
2176 2176 /*
2177 2177 * If we weren't able to find a single valid uberblock, return failure.
2178 2178 */
2179 2179 if (ub->ub_txg == 0) {
2180 2180 nvlist_free(label);
2181 2181 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2182 2182 }
2183 2183
2184 2184 /*
2185 2185 * If the pool has an unsupported version we can't open it.
2186 2186 */
2187 2187 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2188 2188 nvlist_free(label);
2189 2189 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2190 2190 }
2191 2191
2192 2192 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2193 2193 nvlist_t *features;
2194 2194
2195 2195 /*
2196 2196 * If we weren't able to find what's necessary for reading the
2197 2197 * MOS in the label, return failure.
2198 2198 */
2199 2199 if (label == NULL || nvlist_lookup_nvlist(label,
2200 2200 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2201 2201 nvlist_free(label);
2202 2202 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2203 2203 ENXIO));
2204 2204 }
2205 2205
2206 2206 /*
2207 2207 * Update our in-core representation with the definitive values
2208 2208 * from the label.
2209 2209 */
2210 2210 nvlist_free(spa->spa_label_features);
2211 2211 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2212 2212 }
2213 2213
2214 2214 nvlist_free(label);
2215 2215
2216 2216 /*
2217 2217 * Look through entries in the label nvlist's features_for_read. If
2218 2218 * there is a feature listed there which we don't understand then we
2219 2219 * cannot open a pool.
2220 2220 */
2221 2221 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2222 2222 nvlist_t *unsup_feat;
2223 2223
2224 2224 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2225 2225 0);
2226 2226
2227 2227 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2228 2228 NULL); nvp != NULL;
2229 2229 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2230 2230 if (!zfeature_is_supported(nvpair_name(nvp))) {
2231 2231 VERIFY(nvlist_add_string(unsup_feat,
2232 2232 nvpair_name(nvp), "") == 0);
2233 2233 }
2234 2234 }
2235 2235
2236 2236 if (!nvlist_empty(unsup_feat)) {
2237 2237 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2238 2238 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2239 2239 nvlist_free(unsup_feat);
2240 2240 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2241 2241 ENOTSUP));
2242 2242 }
2243 2243
2244 2244 nvlist_free(unsup_feat);
2245 2245 }
2246 2246
2247 2247 /*
2248 2248 * If the vdev guid sum doesn't match the uberblock, we have an
2249 2249 * incomplete configuration. We first check to see if the pool
2250 2250 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2251 2251 * If it is, defer the vdev_guid_sum check till later so we
2252 2252 * can handle missing vdevs.
2253 2253 */
2254 2254 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2255 2255 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2256 2256 rvd->vdev_guid_sum != ub->ub_guid_sum)
2257 2257 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2258 2258
2259 2259 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2260 2260 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2261 2261 spa_try_repair(spa, config);
2262 2262 spa_config_exit(spa, SCL_ALL, FTAG);
2263 2263 nvlist_free(spa->spa_config_splitting);
2264 2264 spa->spa_config_splitting = NULL;
2265 2265 }
2266 2266
2267 2267 /*
2268 2268 * Initialize internal SPA structures.
2269 2269 */
2270 2270 spa->spa_state = POOL_STATE_ACTIVE;
2271 2271 spa->spa_ubsync = spa->spa_uberblock;
2272 2272 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2273 2273 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2274 2274 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2275 2275 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2276 2276 spa->spa_claim_max_txg = spa->spa_first_txg;
2277 2277 spa->spa_prev_software_version = ub->ub_software_version;
2278 2278
2279 2279 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2280 2280 if (error)
2281 2281 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2282 2282 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2283 2283
2284 2284 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2285 2285 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2286 2286
2287 2287 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2288 2288 boolean_t missing_feat_read = B_FALSE;
2289 2289 nvlist_t *unsup_feat, *enabled_feat;
2290 2290
2291 2291 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2292 2292 &spa->spa_feat_for_read_obj) != 0) {
2293 2293 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2294 2294 }
2295 2295
2296 2296 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2297 2297 &spa->spa_feat_for_write_obj) != 0) {
2298 2298 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2299 2299 }
2300 2300
2301 2301 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2302 2302 &spa->spa_feat_desc_obj) != 0) {
2303 2303 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2304 2304 }
2305 2305
2306 2306 enabled_feat = fnvlist_alloc();
2307 2307 unsup_feat = fnvlist_alloc();
2308 2308
2309 2309 if (!spa_features_check(spa, B_FALSE,
2310 2310 unsup_feat, enabled_feat))
2311 2311 missing_feat_read = B_TRUE;
2312 2312
2313 2313 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2314 2314 if (!spa_features_check(spa, B_TRUE,
2315 2315 unsup_feat, enabled_feat)) {
2316 2316 missing_feat_write = B_TRUE;
2317 2317 }
2318 2318 }
2319 2319
2320 2320 fnvlist_add_nvlist(spa->spa_load_info,
2321 2321 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2322 2322
2323 2323 if (!nvlist_empty(unsup_feat)) {
2324 2324 fnvlist_add_nvlist(spa->spa_load_info,
2325 2325 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2326 2326 }
2327 2327
2328 2328 fnvlist_free(enabled_feat);
2329 2329 fnvlist_free(unsup_feat);
2330 2330
2331 2331 if (!missing_feat_read) {
2332 2332 fnvlist_add_boolean(spa->spa_load_info,
2333 2333 ZPOOL_CONFIG_CAN_RDONLY);
2334 2334 }
2335 2335
2336 2336 /*
2337 2337 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2338 2338 * twofold: to determine whether the pool is available for
2339 2339 * import in read-write mode and (if it is not) whether the
2340 2340 * pool is available for import in read-only mode. If the pool
2341 2341 * is available for import in read-write mode, it is displayed
2342 2342 * as available in userland; if it is not available for import
2343 2343 * in read-only mode, it is displayed as unavailable in
2344 2344 * userland. If the pool is available for import in read-only
2345 2345 * mode but not read-write mode, it is displayed as unavailable
2346 2346 * in userland with a special note that the pool is actually
2347 2347 * available for open in read-only mode.
2348 2348 *
2349 2349 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2350 2350 * missing a feature for write, we must first determine whether
2351 2351 * the pool can be opened read-only before returning to
2352 2352 * userland in order to know whether to display the
2353 2353 * abovementioned note.
2354 2354 */
2355 2355 if (missing_feat_read || (missing_feat_write &&
2356 2356 spa_writeable(spa))) {
2357 2357 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2358 2358 ENOTSUP));
2359 2359 }
2360 2360
2361 2361 /*
2362 2362 * Load refcounts for ZFS features from disk into an in-memory
2363 2363 * cache during SPA initialization.
2364 2364 */
2365 2365 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2366 2366 uint64_t refcount;
2367 2367
2368 2368 error = feature_get_refcount_from_disk(spa,
2369 2369 &spa_feature_table[i], &refcount);
2370 2370 if (error == 0) {
2371 2371 spa->spa_feat_refcount_cache[i] = refcount;
2372 2372 } else if (error == ENOTSUP) {
2373 2373 spa->spa_feat_refcount_cache[i] =
2374 2374 SPA_FEATURE_DISABLED;
2375 2375 } else {
2376 2376 return (spa_vdev_err(rvd,
2377 2377 VDEV_AUX_CORRUPT_DATA, EIO));
2378 2378 }
2379 2379 }
2380 2380 }
2381 2381
2382 2382 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2383 2383 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2384 2384 &spa->spa_feat_enabled_txg_obj) != 0)
2385 2385 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2386 2386 }
2387 2387
2388 2388 spa->spa_is_initializing = B_TRUE;
2389 2389 error = dsl_pool_open(spa->spa_dsl_pool);
2390 2390 spa->spa_is_initializing = B_FALSE;
2391 2391 if (error != 0)
2392 2392 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2393 2393
2394 2394 if (!mosconfig) {
2395 2395 uint64_t hostid;
2396 2396 nvlist_t *policy = NULL, *nvconfig;
2397 2397
2398 2398 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2399 2399 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2400 2400
2401 2401 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2402 2402 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2403 2403 char *hostname;
2404 2404 unsigned long myhostid = 0;
2405 2405
2406 2406 VERIFY(nvlist_lookup_string(nvconfig,
2407 2407 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2408 2408
2409 2409 #ifdef _KERNEL
2410 2410 myhostid = zone_get_hostid(NULL);
2411 2411 #else /* _KERNEL */
2412 2412 /*
2413 2413 * We're emulating the system's hostid in userland, so
2414 2414 * we can't use zone_get_hostid().
2415 2415 */
2416 2416 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2417 2417 #endif /* _KERNEL */
2418 2418 if (hostid != 0 && myhostid != 0 &&
2419 2419 hostid != myhostid) {
2420 2420 nvlist_free(nvconfig);
2421 2421 cmn_err(CE_WARN, "pool '%s' could not be "
2422 2422 "loaded as it was last accessed by "
2423 2423 "another system (host: %s hostid: 0x%lx). "
2424 2424 "See: http://illumos.org/msg/ZFS-8000-EY",
2425 2425 spa_name(spa), hostname,
2426 2426 (unsigned long)hostid);
2427 2427 return (SET_ERROR(EBADF));
2428 2428 }
2429 2429 }
2430 2430 if (nvlist_lookup_nvlist(spa->spa_config,
2431 2431 ZPOOL_REWIND_POLICY, &policy) == 0)
2432 2432 VERIFY(nvlist_add_nvlist(nvconfig,
2433 2433 ZPOOL_REWIND_POLICY, policy) == 0);
2434 2434
2435 2435 spa_config_set(spa, nvconfig);
2436 2436 spa_unload(spa);
2437 2437 spa_deactivate(spa);
2438 2438 spa_activate(spa, orig_mode);
2439 2439
2440 2440 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2441 2441 }
2442 2442
2443 2443 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2444 2444 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2445 2445 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2446 2446 if (error != 0)
2447 2447 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2448 2448
2449 2449 /*
2450 2450 * Load the bit that tells us to use the new accounting function
2451 2451 * (raid-z deflation). If we have an older pool, this will not
2452 2452 * be present.
2453 2453 */
2454 2454 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2455 2455 if (error != 0 && error != ENOENT)
2456 2456 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2457 2457
2458 2458 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2459 2459 &spa->spa_creation_version);
2460 2460 if (error != 0 && error != ENOENT)
2461 2461 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2462 2462
2463 2463 /*
2464 2464 * Load the persistent error log. If we have an older pool, this will
2465 2465 * not be present.
2466 2466 */
2467 2467 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2468 2468 if (error != 0 && error != ENOENT)
2469 2469 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2470 2470
2471 2471 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2472 2472 &spa->spa_errlog_scrub);
2473 2473 if (error != 0 && error != ENOENT)
2474 2474 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2475 2475
2476 2476 /*
2477 2477 * Load the history object. If we have an older pool, this
2478 2478 * will not be present.
2479 2479 */
2480 2480 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2481 2481 if (error != 0 && error != ENOENT)
2482 2482 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2483 2483
2484 2484 /*
2485 2485 * If we're assembling the pool from the split-off vdevs of
2486 2486 * an existing pool, we don't want to attach the spares & cache
2487 2487 * devices.
2488 2488 */
2489 2489
2490 2490 /*
2491 2491 * Load any hot spares for this pool.
2492 2492 */
2493 2493 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2494 2494 if (error != 0 && error != ENOENT)
2495 2495 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2496 2496 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2497 2497 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2498 2498 if (load_nvlist(spa, spa->spa_spares.sav_object,
2499 2499 &spa->spa_spares.sav_config) != 0)
2500 2500 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2501 2501
2502 2502 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2503 2503 spa_load_spares(spa);
2504 2504 spa_config_exit(spa, SCL_ALL, FTAG);
2505 2505 } else if (error == 0) {
2506 2506 spa->spa_spares.sav_sync = B_TRUE;
2507 2507 }
2508 2508
2509 2509 /*
2510 2510 * Load any level 2 ARC devices for this pool.
2511 2511 */
2512 2512 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2513 2513 &spa->spa_l2cache.sav_object);
2514 2514 if (error != 0 && error != ENOENT)
2515 2515 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2516 2516 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2517 2517 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2518 2518 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2519 2519 &spa->spa_l2cache.sav_config) != 0)
2520 2520 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2521 2521
2522 2522 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2523 2523 spa_load_l2cache(spa);
2524 2524 spa_config_exit(spa, SCL_ALL, FTAG);
2525 2525 } else if (error == 0) {
2526 2526 spa->spa_l2cache.sav_sync = B_TRUE;
2527 2527 }
2528 2528
2529 2529 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2530 2530
2531 2531 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2532 2532 if (error && error != ENOENT)
2533 2533 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2534 2534
2535 2535 if (error == 0) {
2536 2536 uint64_t autoreplace;
2537 2537
2538 2538 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2539 2539 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2540 2540 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2541 2541 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2542 2542 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2543 2543 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2544 2544 &spa->spa_dedup_ditto);
2545 2545
2546 2546 spa->spa_autoreplace = (autoreplace != 0);
2547 2547 }
2548 2548
2549 2549 /*
2550 2550 * If the 'autoreplace' property is set, then post a resource notifying
2551 2551 * the ZFS DE that it should not issue any faults for unopenable
2552 2552 * devices. We also iterate over the vdevs, and post a sysevent for any
2553 2553 * unopenable vdevs so that the normal autoreplace handler can take
2554 2554 * over.
2555 2555 */
2556 2556 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2557 2557 spa_check_removed(spa->spa_root_vdev);
2558 2558 /*
2559 2559 * For the import case, this is done in spa_import(), because
2560 2560 * at this point we're using the spare definitions from
2561 2561 * the MOS config, not necessarily from the userland config.
2562 2562 */
2563 2563 if (state != SPA_LOAD_IMPORT) {
2564 2564 spa_aux_check_removed(&spa->spa_spares);
2565 2565 spa_aux_check_removed(&spa->spa_l2cache);
2566 2566 }
2567 2567 }
2568 2568
2569 2569 /*
2570 2570 * Load the vdev state for all toplevel vdevs.
2571 2571 */
2572 2572 vdev_load(rvd);
2573 2573
2574 2574 /*
2575 2575 * Propagate the leaf DTLs we just loaded all the way up the tree.
2576 2576 */
2577 2577 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2578 2578 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2579 2579 spa_config_exit(spa, SCL_ALL, FTAG);
2580 2580
2581 2581 /*
2582 2582 * Load the DDTs (dedup tables).
2583 2583 */
2584 2584 error = ddt_load(spa);
2585 2585 if (error != 0)
2586 2586 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2587 2587
2588 2588 spa_update_dspace(spa);
2589 2589
2590 2590 /*
2591 2591 * Validate the config, using the MOS config to fill in any
2592 2592 * information which might be missing. If we fail to validate
2593 2593 * the config then declare the pool unfit for use. If we're
2594 2594 * assembling a pool from a split, the log is not transferred
2595 2595 * over.
2596 2596 */
2597 2597 if (type != SPA_IMPORT_ASSEMBLE) {
2598 2598 nvlist_t *nvconfig;
2599 2599
2600 2600 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2601 2601 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2602 2602
2603 2603 if (!spa_config_valid(spa, nvconfig)) {
2604 2604 nvlist_free(nvconfig);
2605 2605 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2606 2606 ENXIO));
2607 2607 }
2608 2608 nvlist_free(nvconfig);
2609 2609
2610 2610 /*
2611 2611 * Now that we've validated the config, check the state of the
2612 2612 * root vdev. If it can't be opened, it indicates one or
2613 2613 * more toplevel vdevs are faulted.
2614 2614 */
2615 2615 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2616 2616 return (SET_ERROR(ENXIO));
2617 2617
2618 2618 if (spa_check_logs(spa)) {
2619 2619 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2620 2620 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2621 2621 }
2622 2622 }
2623 2623
2624 2624 if (missing_feat_write) {
2625 2625 ASSERT(state == SPA_LOAD_TRYIMPORT);
2626 2626
2627 2627 /*
2628 2628 * At this point, we know that we can open the pool in
2629 2629 * read-only mode but not read-write mode. We now have enough
2630 2630 * information and can return to userland.
2631 2631 */
2632 2632 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2633 2633 }
2634 2634
2635 2635 /*
2636 2636 * We've successfully opened the pool, verify that we're ready
2637 2637 * to start pushing transactions.
2638 2638 */
2639 2639 if (state != SPA_LOAD_TRYIMPORT) {
2640 2640 if (error = spa_load_verify(spa))
2641 2641 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2642 2642 error));
2643 2643 }
2644 2644
2645 2645 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2646 2646 spa->spa_load_max_txg == UINT64_MAX)) {
2647 2647 dmu_tx_t *tx;
2648 2648 int need_update = B_FALSE;
2649 2649
2650 2650 ASSERT(state != SPA_LOAD_TRYIMPORT);
2651 2651
2652 2652 /*
↓ open down ↓ |
921 lines elided |
↑ open up ↑ |
2653 2653 * Claim log blocks that haven't been committed yet.
2654 2654 * This must all happen in a single txg.
2655 2655 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2656 2656 * invoked from zil_claim_log_block()'s i/o done callback.
2657 2657 * Price of rollback is that we abandon the log.
2658 2658 */
2659 2659 spa->spa_claiming = B_TRUE;
2660 2660
2661 2661 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2662 2662 spa_first_txg(spa));
2663 - (void) dmu_objset_find(spa_name(spa),
2663 + (void) dmu_objset_find_parallel(spa_name(spa),
2664 2664 zil_claim, tx, DS_FIND_CHILDREN);
2665 2665 dmu_tx_commit(tx);
2666 2666
2667 2667 spa->spa_claiming = B_FALSE;
2668 2668
2669 2669 spa_set_log_state(spa, SPA_LOG_GOOD);
2670 2670 spa->spa_sync_on = B_TRUE;
2671 2671 txg_sync_start(spa->spa_dsl_pool);
2672 2672
2673 2673 /*
2674 2674 * Wait for all claims to sync. We sync up to the highest
2675 2675 * claimed log block birth time so that claimed log blocks
2676 2676 * don't appear to be from the future. spa_claim_max_txg
2677 2677 * will have been set for us by either zil_check_log_chain()
2678 2678 * (invoked from spa_check_logs()) or zil_claim() above.
2679 2679 */
2680 2680 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2681 2681
2682 2682 /*
2683 2683 * If the config cache is stale, or we have uninitialized
2684 2684 * metaslabs (see spa_vdev_add()), then update the config.
2685 2685 *
2686 2686 * If this is a verbatim import, trust the current
2687 2687 * in-core spa_config and update the disk labels.
2688 2688 */
2689 2689 if (config_cache_txg != spa->spa_config_txg ||
2690 2690 state == SPA_LOAD_IMPORT ||
2691 2691 state == SPA_LOAD_RECOVER ||
2692 2692 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2693 2693 need_update = B_TRUE;
2694 2694
2695 2695 for (int c = 0; c < rvd->vdev_children; c++)
2696 2696 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2697 2697 need_update = B_TRUE;
2698 2698
2699 2699 /*
2700 2700 * Update the config cache asychronously in case we're the
2701 2701 * root pool, in which case the config cache isn't writable yet.
2702 2702 */
2703 2703 if (need_update)
2704 2704 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2705 2705
2706 2706 /*
2707 2707 * Check all DTLs to see if anything needs resilvering.
2708 2708 */
2709 2709 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2710 2710 vdev_resilver_needed(rvd, NULL, NULL))
2711 2711 spa_async_request(spa, SPA_ASYNC_RESILVER);
2712 2712
2713 2713 /*
2714 2714 * Log the fact that we booted up (so that we can detect if
2715 2715 * we rebooted in the middle of an operation).
2716 2716 */
2717 2717 spa_history_log_version(spa, "open");
2718 2718
2719 2719 /*
2720 2720 * Delete any inconsistent datasets.
2721 2721 */
2722 2722 (void) dmu_objset_find(spa_name(spa),
2723 2723 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2724 2724
2725 2725 /*
2726 2726 * Clean up any stale temporary dataset userrefs.
2727 2727 */
2728 2728 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2729 2729 }
2730 2730
2731 2731 return (0);
2732 2732 }
2733 2733
2734 2734 static int
2735 2735 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2736 2736 {
2737 2737 int mode = spa->spa_mode;
2738 2738
2739 2739 spa_unload(spa);
2740 2740 spa_deactivate(spa);
2741 2741
2742 2742 spa->spa_load_max_txg--;
2743 2743
2744 2744 spa_activate(spa, mode);
2745 2745 spa_async_suspend(spa);
2746 2746
2747 2747 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2748 2748 }
2749 2749
2750 2750 /*
2751 2751 * If spa_load() fails this function will try loading prior txg's. If
2752 2752 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2753 2753 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2754 2754 * function will not rewind the pool and will return the same error as
2755 2755 * spa_load().
2756 2756 */
2757 2757 static int
2758 2758 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2759 2759 uint64_t max_request, int rewind_flags)
2760 2760 {
2761 2761 nvlist_t *loadinfo = NULL;
2762 2762 nvlist_t *config = NULL;
2763 2763 int load_error, rewind_error;
2764 2764 uint64_t safe_rewind_txg;
2765 2765 uint64_t min_txg;
2766 2766
2767 2767 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2768 2768 spa->spa_load_max_txg = spa->spa_load_txg;
2769 2769 spa_set_log_state(spa, SPA_LOG_CLEAR);
2770 2770 } else {
2771 2771 spa->spa_load_max_txg = max_request;
2772 2772 }
2773 2773
2774 2774 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2775 2775 mosconfig);
2776 2776 if (load_error == 0)
2777 2777 return (0);
2778 2778
2779 2779 if (spa->spa_root_vdev != NULL)
2780 2780 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2781 2781
2782 2782 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2783 2783 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2784 2784
2785 2785 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2786 2786 nvlist_free(config);
2787 2787 return (load_error);
2788 2788 }
2789 2789
2790 2790 if (state == SPA_LOAD_RECOVER) {
2791 2791 /* Price of rolling back is discarding txgs, including log */
2792 2792 spa_set_log_state(spa, SPA_LOG_CLEAR);
2793 2793 } else {
2794 2794 /*
2795 2795 * If we aren't rolling back save the load info from our first
2796 2796 * import attempt so that we can restore it after attempting
2797 2797 * to rewind.
2798 2798 */
2799 2799 loadinfo = spa->spa_load_info;
2800 2800 spa->spa_load_info = fnvlist_alloc();
2801 2801 }
2802 2802
2803 2803 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2804 2804 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2805 2805 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2806 2806 TXG_INITIAL : safe_rewind_txg;
2807 2807
2808 2808 /*
2809 2809 * Continue as long as we're finding errors, we're still within
2810 2810 * the acceptable rewind range, and we're still finding uberblocks
2811 2811 */
2812 2812 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2813 2813 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2814 2814 if (spa->spa_load_max_txg < safe_rewind_txg)
2815 2815 spa->spa_extreme_rewind = B_TRUE;
2816 2816 rewind_error = spa_load_retry(spa, state, mosconfig);
2817 2817 }
2818 2818
2819 2819 spa->spa_extreme_rewind = B_FALSE;
2820 2820 spa->spa_load_max_txg = UINT64_MAX;
2821 2821
2822 2822 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2823 2823 spa_config_set(spa, config);
2824 2824
2825 2825 if (state == SPA_LOAD_RECOVER) {
2826 2826 ASSERT3P(loadinfo, ==, NULL);
2827 2827 return (rewind_error);
2828 2828 } else {
2829 2829 /* Store the rewind info as part of the initial load info */
2830 2830 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2831 2831 spa->spa_load_info);
2832 2832
2833 2833 /* Restore the initial load info */
2834 2834 fnvlist_free(spa->spa_load_info);
2835 2835 spa->spa_load_info = loadinfo;
2836 2836
2837 2837 return (load_error);
2838 2838 }
2839 2839 }
2840 2840
2841 2841 /*
2842 2842 * Pool Open/Import
2843 2843 *
2844 2844 * The import case is identical to an open except that the configuration is sent
↓ open down ↓ |
171 lines elided |
↑ open up ↑ |
2845 2845 * down from userland, instead of grabbed from the configuration cache. For the
2846 2846 * case of an open, the pool configuration will exist in the
2847 2847 * POOL_STATE_UNINITIALIZED state.
2848 2848 *
2849 2849 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2850 2850 * the same time open the pool, without having to keep around the spa_t in some
2851 2851 * ambiguous state.
2852 2852 */
2853 2853 static int
2854 2854 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2855 - nvlist_t **config)
2855 + nvlist_t **config, int lock)
2856 2856 {
2857 2857 spa_t *spa;
2858 2858 spa_load_state_t state = SPA_LOAD_OPEN;
2859 2859 int error;
2860 2860 int locked = B_FALSE;
2861 2861
2862 2862 *spapp = NULL;
2863 2863
2864 2864 /*
2865 2865 * As disgusting as this is, we need to support recursive calls to this
2866 2866 * function because dsl_dir_open() is called during spa_load(), and ends
2867 2867 * up calling spa_open() again. The real fix is to figure out how to
2868 2868 * avoid dsl_dir_open() calling this in the first place.
2869 2869 */
2870 - if (mutex_owner(&spa_namespace_lock) != curthread) {
2870 + if (lock && (mutex_owner(&spa_namespace_lock) != curthread)) {
2871 2871 mutex_enter(&spa_namespace_lock);
2872 2872 locked = B_TRUE;
2873 2873 }
2874 2874
2875 2875 if ((spa = spa_lookup(pool)) == NULL) {
2876 2876 if (locked)
2877 2877 mutex_exit(&spa_namespace_lock);
2878 2878 return (SET_ERROR(ENOENT));
2879 2879 }
2880 2880
2881 2881 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2882 2882 zpool_rewind_policy_t policy;
2883 2883
2884 2884 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2885 2885 &policy);
2886 2886 if (policy.zrp_request & ZPOOL_DO_REWIND)
2887 2887 state = SPA_LOAD_RECOVER;
2888 2888
2889 2889 spa_activate(spa, spa_mode_global);
2890 2890
2891 2891 if (state != SPA_LOAD_RECOVER)
2892 2892 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2893 2893
2894 2894 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2895 2895 policy.zrp_request);
2896 2896
2897 2897 if (error == EBADF) {
2898 2898 /*
2899 2899 * If vdev_validate() returns failure (indicated by
2900 2900 * EBADF), it indicates that one of the vdevs indicates
2901 2901 * that the pool has been exported or destroyed. If
2902 2902 * this is the case, the config cache is out of sync and
2903 2903 * we should remove the pool from the namespace.
2904 2904 */
2905 2905 spa_unload(spa);
2906 2906 spa_deactivate(spa);
2907 2907 spa_config_sync(spa, B_TRUE, B_TRUE);
2908 2908 spa_remove(spa);
2909 2909 if (locked)
2910 2910 mutex_exit(&spa_namespace_lock);
2911 2911 return (SET_ERROR(ENOENT));
2912 2912 }
2913 2913
2914 2914 if (error) {
2915 2915 /*
2916 2916 * We can't open the pool, but we still have useful
2917 2917 * information: the state of each vdev after the
2918 2918 * attempted vdev_open(). Return this to the user.
2919 2919 */
2920 2920 if (config != NULL && spa->spa_config) {
2921 2921 VERIFY(nvlist_dup(spa->spa_config, config,
2922 2922 KM_SLEEP) == 0);
2923 2923 VERIFY(nvlist_add_nvlist(*config,
2924 2924 ZPOOL_CONFIG_LOAD_INFO,
2925 2925 spa->spa_load_info) == 0);
2926 2926 }
2927 2927 spa_unload(spa);
2928 2928 spa_deactivate(spa);
2929 2929 spa->spa_last_open_failed = error;
2930 2930 if (locked)
2931 2931 mutex_exit(&spa_namespace_lock);
2932 2932 *spapp = NULL;
2933 2933 return (error);
2934 2934 }
2935 2935 }
2936 2936
2937 2937 spa_open_ref(spa, tag);
2938 2938
2939 2939 if (config != NULL)
2940 2940 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2941 2941
2942 2942 /*
2943 2943 * If we've recovered the pool, pass back any information we
2944 2944 * gathered while doing the load.
2945 2945 */
2946 2946 if (state == SPA_LOAD_RECOVER) {
2947 2947 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2948 2948 spa->spa_load_info) == 0);
2949 2949 }
2950 2950
2951 2951 if (locked) {
2952 2952 spa->spa_last_open_failed = 0;
2953 2953 spa->spa_last_ubsync_txg = 0;
2954 2954 spa->spa_load_txg = 0;
2955 2955 mutex_exit(&spa_namespace_lock);
2956 2956 }
↓ open down ↓ |
76 lines elided |
↑ open up ↑ |
2957 2957
2958 2958 *spapp = spa;
2959 2959
2960 2960 return (0);
2961 2961 }
2962 2962
2963 2963 int
2964 2964 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2965 2965 nvlist_t **config)
2966 2966 {
2967 - return (spa_open_common(name, spapp, tag, policy, config));
2967 + return (spa_open_common(name, spapp, tag, policy, config, 1));
2968 2968 }
2969 2969
2970 2970 int
2971 2971 spa_open(const char *name, spa_t **spapp, void *tag)
2972 2972 {
2973 - return (spa_open_common(name, spapp, tag, NULL, NULL));
2973 + return (spa_open_common(name, spapp, tag, NULL, NULL, 1));
2974 +}
2975 +
2976 +int
2977 +spa_open_lock(const char *name, spa_t **spapp, void *tag, int lock)
2978 +{
2979 + return (spa_open_common(name, spapp, tag, NULL, NULL, lock));
2974 2980 }
2975 2981
2976 2982 /*
2977 2983 * Lookup the given spa_t, incrementing the inject count in the process,
2978 2984 * preventing it from being exported or destroyed.
2979 2985 */
2980 2986 spa_t *
2981 2987 spa_inject_addref(char *name)
2982 2988 {
2983 2989 spa_t *spa;
2984 2990
2985 2991 mutex_enter(&spa_namespace_lock);
2986 2992 if ((spa = spa_lookup(name)) == NULL) {
2987 2993 mutex_exit(&spa_namespace_lock);
2988 2994 return (NULL);
2989 2995 }
2990 2996 spa->spa_inject_ref++;
2991 2997 mutex_exit(&spa_namespace_lock);
2992 2998
2993 2999 return (spa);
2994 3000 }
2995 3001
2996 3002 void
2997 3003 spa_inject_delref(spa_t *spa)
2998 3004 {
2999 3005 mutex_enter(&spa_namespace_lock);
3000 3006 spa->spa_inject_ref--;
3001 3007 mutex_exit(&spa_namespace_lock);
3002 3008 }
3003 3009
3004 3010 /*
3005 3011 * Add spares device information to the nvlist.
3006 3012 */
3007 3013 static void
3008 3014 spa_add_spares(spa_t *spa, nvlist_t *config)
3009 3015 {
3010 3016 nvlist_t **spares;
3011 3017 uint_t i, nspares;
3012 3018 nvlist_t *nvroot;
3013 3019 uint64_t guid;
3014 3020 vdev_stat_t *vs;
3015 3021 uint_t vsc;
3016 3022 uint64_t pool;
3017 3023
3018 3024 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3019 3025
3020 3026 if (spa->spa_spares.sav_count == 0)
3021 3027 return;
3022 3028
3023 3029 VERIFY(nvlist_lookup_nvlist(config,
3024 3030 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3025 3031 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3026 3032 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3027 3033 if (nspares != 0) {
3028 3034 VERIFY(nvlist_add_nvlist_array(nvroot,
3029 3035 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3030 3036 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3031 3037 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3032 3038
3033 3039 /*
3034 3040 * Go through and find any spares which have since been
3035 3041 * repurposed as an active spare. If this is the case, update
3036 3042 * their status appropriately.
3037 3043 */
3038 3044 for (i = 0; i < nspares; i++) {
3039 3045 VERIFY(nvlist_lookup_uint64(spares[i],
3040 3046 ZPOOL_CONFIG_GUID, &guid) == 0);
3041 3047 if (spa_spare_exists(guid, &pool, NULL) &&
3042 3048 pool != 0ULL) {
3043 3049 VERIFY(nvlist_lookup_uint64_array(
3044 3050 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3045 3051 (uint64_t **)&vs, &vsc) == 0);
3046 3052 vs->vs_state = VDEV_STATE_CANT_OPEN;
3047 3053 vs->vs_aux = VDEV_AUX_SPARED;
3048 3054 }
3049 3055 }
3050 3056 }
3051 3057 }
3052 3058
3053 3059 /*
3054 3060 * Add l2cache device information to the nvlist, including vdev stats.
3055 3061 */
3056 3062 static void
3057 3063 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3058 3064 {
3059 3065 nvlist_t **l2cache;
3060 3066 uint_t i, j, nl2cache;
3061 3067 nvlist_t *nvroot;
3062 3068 uint64_t guid;
3063 3069 vdev_t *vd;
3064 3070 vdev_stat_t *vs;
3065 3071 uint_t vsc;
3066 3072
3067 3073 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3068 3074
3069 3075 if (spa->spa_l2cache.sav_count == 0)
3070 3076 return;
3071 3077
3072 3078 VERIFY(nvlist_lookup_nvlist(config,
3073 3079 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3074 3080 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3075 3081 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3076 3082 if (nl2cache != 0) {
3077 3083 VERIFY(nvlist_add_nvlist_array(nvroot,
3078 3084 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3079 3085 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3080 3086 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3081 3087
3082 3088 /*
3083 3089 * Update level 2 cache device stats.
3084 3090 */
3085 3091
3086 3092 for (i = 0; i < nl2cache; i++) {
3087 3093 VERIFY(nvlist_lookup_uint64(l2cache[i],
3088 3094 ZPOOL_CONFIG_GUID, &guid) == 0);
3089 3095
3090 3096 vd = NULL;
3091 3097 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3092 3098 if (guid ==
3093 3099 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3094 3100 vd = spa->spa_l2cache.sav_vdevs[j];
3095 3101 break;
3096 3102 }
3097 3103 }
3098 3104 ASSERT(vd != NULL);
3099 3105
3100 3106 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3101 3107 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3102 3108 == 0);
3103 3109 vdev_get_stats(vd, vs);
3104 3110 }
3105 3111 }
3106 3112 }
3107 3113
3108 3114 static void
3109 3115 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3110 3116 {
3111 3117 nvlist_t *features;
3112 3118 zap_cursor_t zc;
3113 3119 zap_attribute_t za;
3114 3120
3115 3121 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3116 3122 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3117 3123
3118 3124 if (spa->spa_feat_for_read_obj != 0) {
3119 3125 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3120 3126 spa->spa_feat_for_read_obj);
3121 3127 zap_cursor_retrieve(&zc, &za) == 0;
3122 3128 zap_cursor_advance(&zc)) {
3123 3129 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3124 3130 za.za_num_integers == 1);
3125 3131 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3126 3132 za.za_first_integer));
3127 3133 }
3128 3134 zap_cursor_fini(&zc);
3129 3135 }
3130 3136
3131 3137 if (spa->spa_feat_for_write_obj != 0) {
3132 3138 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3133 3139 spa->spa_feat_for_write_obj);
3134 3140 zap_cursor_retrieve(&zc, &za) == 0;
3135 3141 zap_cursor_advance(&zc)) {
3136 3142 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3137 3143 za.za_num_integers == 1);
3138 3144 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3139 3145 za.za_first_integer));
3140 3146 }
3141 3147 zap_cursor_fini(&zc);
3142 3148 }
3143 3149
3144 3150 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3145 3151 features) == 0);
3146 3152 nvlist_free(features);
↓ open down ↓ |
163 lines elided |
↑ open up ↑ |
3147 3153 }
3148 3154
3149 3155 int
3150 3156 spa_get_stats(const char *name, nvlist_t **config,
3151 3157 char *altroot, size_t buflen)
3152 3158 {
3153 3159 int error;
3154 3160 spa_t *spa;
3155 3161
3156 3162 *config = NULL;
3157 - error = spa_open_common(name, &spa, FTAG, NULL, config);
3163 + error = spa_open_common(name, &spa, FTAG, NULL, config, 1);
3158 3164
3159 3165 if (spa != NULL) {
3160 3166 /*
3161 3167 * This still leaves a window of inconsistency where the spares
3162 3168 * or l2cache devices could change and the config would be
3163 3169 * self-inconsistent.
3164 3170 */
3165 3171 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3166 3172
3167 3173 if (*config != NULL) {
3168 3174 uint64_t loadtimes[2];
3169 3175
3170 3176 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3171 3177 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3172 3178 VERIFY(nvlist_add_uint64_array(*config,
3173 3179 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3174 3180
3175 3181 VERIFY(nvlist_add_uint64(*config,
3176 3182 ZPOOL_CONFIG_ERRCOUNT,
3177 3183 spa_get_errlog_size(spa)) == 0);
3178 3184
3179 3185 if (spa_suspended(spa))
3180 3186 VERIFY(nvlist_add_uint64(*config,
3181 3187 ZPOOL_CONFIG_SUSPENDED,
3182 3188 spa->spa_failmode) == 0);
3183 3189
3184 3190 spa_add_spares(spa, *config);
3185 3191 spa_add_l2cache(spa, *config);
3186 3192 spa_add_feature_stats(spa, *config);
3187 3193 }
3188 3194 }
3189 3195
3190 3196 /*
3191 3197 * We want to get the alternate root even for faulted pools, so we cheat
3192 3198 * and call spa_lookup() directly.
3193 3199 */
3194 3200 if (altroot) {
3195 3201 if (spa == NULL) {
3196 3202 mutex_enter(&spa_namespace_lock);
3197 3203 spa = spa_lookup(name);
3198 3204 if (spa)
3199 3205 spa_altroot(spa, altroot, buflen);
3200 3206 else
3201 3207 altroot[0] = '\0';
3202 3208 spa = NULL;
3203 3209 mutex_exit(&spa_namespace_lock);
3204 3210 } else {
3205 3211 spa_altroot(spa, altroot, buflen);
3206 3212 }
3207 3213 }
3208 3214
3209 3215 if (spa != NULL) {
3210 3216 spa_config_exit(spa, SCL_CONFIG, FTAG);
3211 3217 spa_close(spa, FTAG);
3212 3218 }
3213 3219
3214 3220 return (error);
3215 3221 }
3216 3222
3217 3223 /*
3218 3224 * Validate that the auxiliary device array is well formed. We must have an
3219 3225 * array of nvlists, each which describes a valid leaf vdev. If this is an
3220 3226 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3221 3227 * specified, as long as they are well-formed.
3222 3228 */
3223 3229 static int
3224 3230 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3225 3231 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3226 3232 vdev_labeltype_t label)
3227 3233 {
3228 3234 nvlist_t **dev;
3229 3235 uint_t i, ndev;
3230 3236 vdev_t *vd;
3231 3237 int error;
3232 3238
3233 3239 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3234 3240
3235 3241 /*
3236 3242 * It's acceptable to have no devs specified.
3237 3243 */
3238 3244 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3239 3245 return (0);
3240 3246
3241 3247 if (ndev == 0)
3242 3248 return (SET_ERROR(EINVAL));
3243 3249
3244 3250 /*
3245 3251 * Make sure the pool is formatted with a version that supports this
3246 3252 * device type.
3247 3253 */
3248 3254 if (spa_version(spa) < version)
3249 3255 return (SET_ERROR(ENOTSUP));
3250 3256
3251 3257 /*
3252 3258 * Set the pending device list so we correctly handle device in-use
3253 3259 * checking.
3254 3260 */
3255 3261 sav->sav_pending = dev;
3256 3262 sav->sav_npending = ndev;
3257 3263
3258 3264 for (i = 0; i < ndev; i++) {
3259 3265 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3260 3266 mode)) != 0)
3261 3267 goto out;
3262 3268
3263 3269 if (!vd->vdev_ops->vdev_op_leaf) {
3264 3270 vdev_free(vd);
3265 3271 error = SET_ERROR(EINVAL);
3266 3272 goto out;
3267 3273 }
3268 3274
3269 3275 /*
3270 3276 * The L2ARC currently only supports disk devices in
3271 3277 * kernel context. For user-level testing, we allow it.
3272 3278 */
3273 3279 #ifdef _KERNEL
3274 3280 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3275 3281 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3276 3282 error = SET_ERROR(ENOTBLK);
3277 3283 vdev_free(vd);
3278 3284 goto out;
3279 3285 }
3280 3286 #endif
3281 3287 vd->vdev_top = vd;
3282 3288
3283 3289 if ((error = vdev_open(vd)) == 0 &&
3284 3290 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3285 3291 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3286 3292 vd->vdev_guid) == 0);
3287 3293 }
3288 3294
3289 3295 vdev_free(vd);
3290 3296
3291 3297 if (error &&
3292 3298 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3293 3299 goto out;
3294 3300 else
3295 3301 error = 0;
3296 3302 }
3297 3303
3298 3304 out:
3299 3305 sav->sav_pending = NULL;
3300 3306 sav->sav_npending = 0;
3301 3307 return (error);
3302 3308 }
3303 3309
3304 3310 static int
3305 3311 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3306 3312 {
3307 3313 int error;
3308 3314
3309 3315 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3310 3316
3311 3317 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3312 3318 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3313 3319 VDEV_LABEL_SPARE)) != 0) {
3314 3320 return (error);
3315 3321 }
3316 3322
3317 3323 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3318 3324 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3319 3325 VDEV_LABEL_L2CACHE));
3320 3326 }
3321 3327
3322 3328 static void
3323 3329 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3324 3330 const char *config)
3325 3331 {
3326 3332 int i;
3327 3333
3328 3334 if (sav->sav_config != NULL) {
3329 3335 nvlist_t **olddevs;
3330 3336 uint_t oldndevs;
3331 3337 nvlist_t **newdevs;
3332 3338
3333 3339 /*
3334 3340 * Generate new dev list by concatentating with the
3335 3341 * current dev list.
3336 3342 */
3337 3343 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3338 3344 &olddevs, &oldndevs) == 0);
3339 3345
3340 3346 newdevs = kmem_alloc(sizeof (void *) *
3341 3347 (ndevs + oldndevs), KM_SLEEP);
3342 3348 for (i = 0; i < oldndevs; i++)
3343 3349 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3344 3350 KM_SLEEP) == 0);
3345 3351 for (i = 0; i < ndevs; i++)
3346 3352 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3347 3353 KM_SLEEP) == 0);
3348 3354
3349 3355 VERIFY(nvlist_remove(sav->sav_config, config,
3350 3356 DATA_TYPE_NVLIST_ARRAY) == 0);
3351 3357
3352 3358 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3353 3359 config, newdevs, ndevs + oldndevs) == 0);
3354 3360 for (i = 0; i < oldndevs + ndevs; i++)
3355 3361 nvlist_free(newdevs[i]);
3356 3362 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3357 3363 } else {
3358 3364 /*
3359 3365 * Generate a new dev list.
3360 3366 */
3361 3367 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3362 3368 KM_SLEEP) == 0);
3363 3369 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3364 3370 devs, ndevs) == 0);
3365 3371 }
3366 3372 }
3367 3373
3368 3374 /*
3369 3375 * Stop and drop level 2 ARC devices
3370 3376 */
3371 3377 void
3372 3378 spa_l2cache_drop(spa_t *spa)
3373 3379 {
3374 3380 vdev_t *vd;
3375 3381 int i;
3376 3382 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3377 3383
3378 3384 for (i = 0; i < sav->sav_count; i++) {
3379 3385 uint64_t pool;
3380 3386
3381 3387 vd = sav->sav_vdevs[i];
3382 3388 ASSERT(vd != NULL);
3383 3389
3384 3390 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3385 3391 pool != 0ULL && l2arc_vdev_present(vd))
3386 3392 l2arc_remove_vdev(vd);
3387 3393 }
3388 3394 }
3389 3395
3390 3396 /*
3391 3397 * Pool Creation
3392 3398 */
3393 3399 int
3394 3400 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3395 3401 nvlist_t *zplprops)
3396 3402 {
3397 3403 spa_t *spa;
3398 3404 char *altroot = NULL;
3399 3405 vdev_t *rvd;
3400 3406 dsl_pool_t *dp;
3401 3407 dmu_tx_t *tx;
3402 3408 int error = 0;
3403 3409 uint64_t txg = TXG_INITIAL;
3404 3410 nvlist_t **spares, **l2cache;
3405 3411 uint_t nspares, nl2cache;
3406 3412 uint64_t version, obj;
3407 3413 boolean_t has_features;
3408 3414
3409 3415 /*
3410 3416 * If this pool already exists, return failure.
3411 3417 */
3412 3418 mutex_enter(&spa_namespace_lock);
3413 3419 if (spa_lookup(pool) != NULL) {
3414 3420 mutex_exit(&spa_namespace_lock);
3415 3421 return (SET_ERROR(EEXIST));
3416 3422 }
3417 3423
3418 3424 /*
3419 3425 * Allocate a new spa_t structure.
3420 3426 */
3421 3427 (void) nvlist_lookup_string(props,
3422 3428 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3423 3429 spa = spa_add(pool, NULL, altroot);
3424 3430 spa_activate(spa, spa_mode_global);
3425 3431
3426 3432 if (props && (error = spa_prop_validate(spa, props))) {
3427 3433 spa_deactivate(spa);
3428 3434 spa_remove(spa);
3429 3435 mutex_exit(&spa_namespace_lock);
3430 3436 return (error);
3431 3437 }
3432 3438
3433 3439 has_features = B_FALSE;
3434 3440 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3435 3441 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3436 3442 if (zpool_prop_feature(nvpair_name(elem)))
3437 3443 has_features = B_TRUE;
3438 3444 }
3439 3445
3440 3446 if (has_features || nvlist_lookup_uint64(props,
3441 3447 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3442 3448 version = SPA_VERSION;
3443 3449 }
3444 3450 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3445 3451
3446 3452 spa->spa_first_txg = txg;
3447 3453 spa->spa_uberblock.ub_txg = txg - 1;
3448 3454 spa->spa_uberblock.ub_version = version;
3449 3455 spa->spa_ubsync = spa->spa_uberblock;
3450 3456
3451 3457 /*
3452 3458 * Create "The Godfather" zio to hold all async IOs
3453 3459 */
3454 3460 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3455 3461 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3456 3462
3457 3463 /*
3458 3464 * Create the root vdev.
3459 3465 */
3460 3466 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3461 3467
3462 3468 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3463 3469
3464 3470 ASSERT(error != 0 || rvd != NULL);
3465 3471 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3466 3472
3467 3473 if (error == 0 && !zfs_allocatable_devs(nvroot))
3468 3474 error = SET_ERROR(EINVAL);
3469 3475
3470 3476 if (error == 0 &&
3471 3477 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3472 3478 (error = spa_validate_aux(spa, nvroot, txg,
3473 3479 VDEV_ALLOC_ADD)) == 0) {
3474 3480 for (int c = 0; c < rvd->vdev_children; c++) {
3475 3481 vdev_metaslab_set_size(rvd->vdev_child[c]);
3476 3482 vdev_expand(rvd->vdev_child[c], txg);
3477 3483 }
3478 3484 }
3479 3485
3480 3486 spa_config_exit(spa, SCL_ALL, FTAG);
3481 3487
3482 3488 if (error != 0) {
3483 3489 spa_unload(spa);
3484 3490 spa_deactivate(spa);
3485 3491 spa_remove(spa);
3486 3492 mutex_exit(&spa_namespace_lock);
3487 3493 return (error);
3488 3494 }
3489 3495
3490 3496 /*
3491 3497 * Get the list of spares, if specified.
3492 3498 */
3493 3499 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3494 3500 &spares, &nspares) == 0) {
3495 3501 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3496 3502 KM_SLEEP) == 0);
3497 3503 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3498 3504 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3499 3505 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3500 3506 spa_load_spares(spa);
3501 3507 spa_config_exit(spa, SCL_ALL, FTAG);
3502 3508 spa->spa_spares.sav_sync = B_TRUE;
3503 3509 }
3504 3510
3505 3511 /*
3506 3512 * Get the list of level 2 cache devices, if specified.
3507 3513 */
3508 3514 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3509 3515 &l2cache, &nl2cache) == 0) {
3510 3516 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3511 3517 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3512 3518 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3513 3519 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3514 3520 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3515 3521 spa_load_l2cache(spa);
3516 3522 spa_config_exit(spa, SCL_ALL, FTAG);
3517 3523 spa->spa_l2cache.sav_sync = B_TRUE;
3518 3524 }
3519 3525
3520 3526 spa->spa_is_initializing = B_TRUE;
3521 3527 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3522 3528 spa->spa_meta_objset = dp->dp_meta_objset;
3523 3529 spa->spa_is_initializing = B_FALSE;
3524 3530
3525 3531 /*
3526 3532 * Create DDTs (dedup tables).
3527 3533 */
3528 3534 ddt_create(spa);
3529 3535
3530 3536 spa_update_dspace(spa);
3531 3537
3532 3538 tx = dmu_tx_create_assigned(dp, txg);
3533 3539
3534 3540 /*
3535 3541 * Create the pool config object.
3536 3542 */
3537 3543 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3538 3544 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3539 3545 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3540 3546
3541 3547 if (zap_add(spa->spa_meta_objset,
3542 3548 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3543 3549 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3544 3550 cmn_err(CE_PANIC, "failed to add pool config");
3545 3551 }
3546 3552
3547 3553 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3548 3554 spa_feature_create_zap_objects(spa, tx);
3549 3555
3550 3556 if (zap_add(spa->spa_meta_objset,
3551 3557 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3552 3558 sizeof (uint64_t), 1, &version, tx) != 0) {
3553 3559 cmn_err(CE_PANIC, "failed to add pool version");
3554 3560 }
3555 3561
3556 3562 /* Newly created pools with the right version are always deflated. */
3557 3563 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3558 3564 spa->spa_deflate = TRUE;
3559 3565 if (zap_add(spa->spa_meta_objset,
3560 3566 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3561 3567 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3562 3568 cmn_err(CE_PANIC, "failed to add deflate");
3563 3569 }
3564 3570 }
3565 3571
3566 3572 /*
3567 3573 * Create the deferred-free bpobj. Turn off compression
3568 3574 * because sync-to-convergence takes longer if the blocksize
3569 3575 * keeps changing.
3570 3576 */
3571 3577 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3572 3578 dmu_object_set_compress(spa->spa_meta_objset, obj,
3573 3579 ZIO_COMPRESS_OFF, tx);
3574 3580 if (zap_add(spa->spa_meta_objset,
3575 3581 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3576 3582 sizeof (uint64_t), 1, &obj, tx) != 0) {
3577 3583 cmn_err(CE_PANIC, "failed to add bpobj");
3578 3584 }
3579 3585 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3580 3586 spa->spa_meta_objset, obj));
3581 3587
3582 3588 /*
3583 3589 * Create the pool's history object.
3584 3590 */
3585 3591 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3586 3592 spa_history_create_obj(spa, tx);
3587 3593
3588 3594 /*
3589 3595 * Set pool properties.
3590 3596 */
3591 3597 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3592 3598 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3593 3599 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3594 3600 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3595 3601
3596 3602 if (props != NULL) {
3597 3603 spa_configfile_set(spa, props, B_FALSE);
3598 3604 spa_sync_props(props, tx);
3599 3605 }
3600 3606
3601 3607 dmu_tx_commit(tx);
3602 3608
3603 3609 spa->spa_sync_on = B_TRUE;
3604 3610 txg_sync_start(spa->spa_dsl_pool);
3605 3611
3606 3612 /*
3607 3613 * We explicitly wait for the first transaction to complete so that our
3608 3614 * bean counters are appropriately updated.
3609 3615 */
3610 3616 txg_wait_synced(spa->spa_dsl_pool, txg);
3611 3617
3612 3618 spa_config_sync(spa, B_FALSE, B_TRUE);
3613 3619
3614 3620 spa_history_log_version(spa, "create");
3615 3621
3616 3622 spa->spa_minref = refcount_count(&spa->spa_refcount);
3617 3623
3618 3624 mutex_exit(&spa_namespace_lock);
3619 3625
3620 3626 return (0);
3621 3627 }
3622 3628
3623 3629 #ifdef _KERNEL
3624 3630 /*
3625 3631 * Get the root pool information from the root disk, then import the root pool
3626 3632 * during the system boot up time.
3627 3633 */
3628 3634 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3629 3635
3630 3636 static nvlist_t *
3631 3637 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3632 3638 {
3633 3639 nvlist_t *config;
3634 3640 nvlist_t *nvtop, *nvroot;
3635 3641 uint64_t pgid;
3636 3642
3637 3643 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3638 3644 return (NULL);
3639 3645
3640 3646 /*
3641 3647 * Add this top-level vdev to the child array.
3642 3648 */
3643 3649 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3644 3650 &nvtop) == 0);
3645 3651 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3646 3652 &pgid) == 0);
3647 3653 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3648 3654
3649 3655 /*
3650 3656 * Put this pool's top-level vdevs into a root vdev.
3651 3657 */
3652 3658 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3653 3659 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3654 3660 VDEV_TYPE_ROOT) == 0);
3655 3661 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3656 3662 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3657 3663 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3658 3664 &nvtop, 1) == 0);
3659 3665
3660 3666 /*
3661 3667 * Replace the existing vdev_tree with the new root vdev in
3662 3668 * this pool's configuration (remove the old, add the new).
3663 3669 */
3664 3670 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3665 3671 nvlist_free(nvroot);
3666 3672 return (config);
3667 3673 }
3668 3674
3669 3675 /*
3670 3676 * Walk the vdev tree and see if we can find a device with "better"
3671 3677 * configuration. A configuration is "better" if the label on that
3672 3678 * device has a more recent txg.
3673 3679 */
3674 3680 static void
3675 3681 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3676 3682 {
3677 3683 for (int c = 0; c < vd->vdev_children; c++)
3678 3684 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3679 3685
3680 3686 if (vd->vdev_ops->vdev_op_leaf) {
3681 3687 nvlist_t *label;
3682 3688 uint64_t label_txg;
3683 3689
3684 3690 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3685 3691 &label) != 0)
3686 3692 return;
3687 3693
3688 3694 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3689 3695 &label_txg) == 0);
3690 3696
3691 3697 /*
3692 3698 * Do we have a better boot device?
3693 3699 */
3694 3700 if (label_txg > *txg) {
3695 3701 *txg = label_txg;
3696 3702 *avd = vd;
3697 3703 }
3698 3704 nvlist_free(label);
3699 3705 }
3700 3706 }
3701 3707
3702 3708 /*
3703 3709 * Import a root pool.
3704 3710 *
3705 3711 * For x86. devpath_list will consist of devid and/or physpath name of
3706 3712 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3707 3713 * The GRUB "findroot" command will return the vdev we should boot.
3708 3714 *
3709 3715 * For Sparc, devpath_list consists the physpath name of the booting device
3710 3716 * no matter the rootpool is a single device pool or a mirrored pool.
3711 3717 * e.g.
3712 3718 * "/pci@1f,0/ide@d/disk@0,0:a"
3713 3719 */
3714 3720 int
3715 3721 spa_import_rootpool(char *devpath, char *devid)
3716 3722 {
3717 3723 spa_t *spa;
3718 3724 vdev_t *rvd, *bvd, *avd = NULL;
3719 3725 nvlist_t *config, *nvtop;
3720 3726 uint64_t guid, txg;
3721 3727 char *pname;
3722 3728 int error;
3723 3729
3724 3730 /*
3725 3731 * Read the label from the boot device and generate a configuration.
3726 3732 */
3727 3733 config = spa_generate_rootconf(devpath, devid, &guid);
3728 3734 #if defined(_OBP) && defined(_KERNEL)
3729 3735 if (config == NULL) {
3730 3736 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3731 3737 /* iscsi boot */
3732 3738 get_iscsi_bootpath_phy(devpath);
3733 3739 config = spa_generate_rootconf(devpath, devid, &guid);
3734 3740 }
3735 3741 }
3736 3742 #endif
3737 3743 if (config == NULL) {
3738 3744 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3739 3745 devpath);
3740 3746 return (SET_ERROR(EIO));
3741 3747 }
3742 3748
3743 3749 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3744 3750 &pname) == 0);
3745 3751 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3746 3752
3747 3753 mutex_enter(&spa_namespace_lock);
3748 3754 if ((spa = spa_lookup(pname)) != NULL) {
3749 3755 /*
3750 3756 * Remove the existing root pool from the namespace so that we
3751 3757 * can replace it with the correct config we just read in.
3752 3758 */
3753 3759 spa_remove(spa);
3754 3760 }
3755 3761
3756 3762 spa = spa_add(pname, config, NULL);
3757 3763 spa->spa_is_root = B_TRUE;
3758 3764 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3759 3765
3760 3766 /*
3761 3767 * Build up a vdev tree based on the boot device's label config.
3762 3768 */
3763 3769 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3764 3770 &nvtop) == 0);
3765 3771 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3766 3772 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3767 3773 VDEV_ALLOC_ROOTPOOL);
3768 3774 spa_config_exit(spa, SCL_ALL, FTAG);
3769 3775 if (error) {
3770 3776 mutex_exit(&spa_namespace_lock);
3771 3777 nvlist_free(config);
3772 3778 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3773 3779 pname);
3774 3780 return (error);
3775 3781 }
3776 3782
3777 3783 /*
3778 3784 * Get the boot vdev.
3779 3785 */
3780 3786 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3781 3787 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3782 3788 (u_longlong_t)guid);
3783 3789 error = SET_ERROR(ENOENT);
3784 3790 goto out;
3785 3791 }
3786 3792
3787 3793 /*
3788 3794 * Determine if there is a better boot device.
3789 3795 */
3790 3796 avd = bvd;
3791 3797 spa_alt_rootvdev(rvd, &avd, &txg);
3792 3798 if (avd != bvd) {
3793 3799 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3794 3800 "try booting from '%s'", avd->vdev_path);
3795 3801 error = SET_ERROR(EINVAL);
3796 3802 goto out;
3797 3803 }
3798 3804
3799 3805 /*
3800 3806 * If the boot device is part of a spare vdev then ensure that
3801 3807 * we're booting off the active spare.
3802 3808 */
3803 3809 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3804 3810 !bvd->vdev_isspare) {
3805 3811 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3806 3812 "try booting from '%s'",
3807 3813 bvd->vdev_parent->
3808 3814 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3809 3815 error = SET_ERROR(EINVAL);
3810 3816 goto out;
3811 3817 }
3812 3818
3813 3819 error = 0;
3814 3820 out:
3815 3821 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3816 3822 vdev_free(rvd);
3817 3823 spa_config_exit(spa, SCL_ALL, FTAG);
3818 3824 mutex_exit(&spa_namespace_lock);
3819 3825
3820 3826 nvlist_free(config);
3821 3827 return (error);
3822 3828 }
3823 3829
3824 3830 #endif
3825 3831
3826 3832 /*
3827 3833 * Import a non-root pool into the system.
3828 3834 */
3829 3835 int
3830 3836 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3831 3837 {
3832 3838 spa_t *spa;
3833 3839 char *altroot = NULL;
3834 3840 spa_load_state_t state = SPA_LOAD_IMPORT;
3835 3841 zpool_rewind_policy_t policy;
3836 3842 uint64_t mode = spa_mode_global;
3837 3843 uint64_t readonly = B_FALSE;
3838 3844 int error;
3839 3845 nvlist_t *nvroot;
3840 3846 nvlist_t **spares, **l2cache;
3841 3847 uint_t nspares, nl2cache;
3842 3848
3843 3849 /*
3844 3850 * If a pool with this name exists, return failure.
3845 3851 */
3846 3852 mutex_enter(&spa_namespace_lock);
3847 3853 if (spa_lookup(pool) != NULL) {
3848 3854 mutex_exit(&spa_namespace_lock);
3849 3855 return (SET_ERROR(EEXIST));
3850 3856 }
3851 3857
3852 3858 /*
3853 3859 * Create and initialize the spa structure.
3854 3860 */
3855 3861 (void) nvlist_lookup_string(props,
3856 3862 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3857 3863 (void) nvlist_lookup_uint64(props,
3858 3864 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3859 3865 if (readonly)
3860 3866 mode = FREAD;
3861 3867 spa = spa_add(pool, config, altroot);
3862 3868 spa->spa_import_flags = flags;
3863 3869
3864 3870 /*
3865 3871 * Verbatim import - Take a pool and insert it into the namespace
3866 3872 * as if it had been loaded at boot.
3867 3873 */
3868 3874 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3869 3875 if (props != NULL)
3870 3876 spa_configfile_set(spa, props, B_FALSE);
3871 3877
3872 3878 spa_config_sync(spa, B_FALSE, B_TRUE);
3873 3879
3874 3880 mutex_exit(&spa_namespace_lock);
3875 3881 return (0);
3876 3882 }
3877 3883
3878 3884 spa_activate(spa, mode);
3879 3885
3880 3886 /*
3881 3887 * Don't start async tasks until we know everything is healthy.
3882 3888 */
3883 3889 spa_async_suspend(spa);
3884 3890
3885 3891 zpool_get_rewind_policy(config, &policy);
3886 3892 if (policy.zrp_request & ZPOOL_DO_REWIND)
3887 3893 state = SPA_LOAD_RECOVER;
3888 3894
3889 3895 /*
3890 3896 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3891 3897 * because the user-supplied config is actually the one to trust when
3892 3898 * doing an import.
3893 3899 */
3894 3900 if (state != SPA_LOAD_RECOVER)
3895 3901 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3896 3902
3897 3903 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3898 3904 policy.zrp_request);
3899 3905
3900 3906 /*
3901 3907 * Propagate anything learned while loading the pool and pass it
3902 3908 * back to caller (i.e. rewind info, missing devices, etc).
3903 3909 */
3904 3910 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3905 3911 spa->spa_load_info) == 0);
3906 3912
3907 3913 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3908 3914 /*
3909 3915 * Toss any existing sparelist, as it doesn't have any validity
3910 3916 * anymore, and conflicts with spa_has_spare().
3911 3917 */
3912 3918 if (spa->spa_spares.sav_config) {
3913 3919 nvlist_free(spa->spa_spares.sav_config);
3914 3920 spa->spa_spares.sav_config = NULL;
3915 3921 spa_load_spares(spa);
3916 3922 }
3917 3923 if (spa->spa_l2cache.sav_config) {
3918 3924 nvlist_free(spa->spa_l2cache.sav_config);
3919 3925 spa->spa_l2cache.sav_config = NULL;
3920 3926 spa_load_l2cache(spa);
3921 3927 }
3922 3928
3923 3929 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3924 3930 &nvroot) == 0);
3925 3931 if (error == 0)
3926 3932 error = spa_validate_aux(spa, nvroot, -1ULL,
3927 3933 VDEV_ALLOC_SPARE);
3928 3934 if (error == 0)
3929 3935 error = spa_validate_aux(spa, nvroot, -1ULL,
3930 3936 VDEV_ALLOC_L2CACHE);
3931 3937 spa_config_exit(spa, SCL_ALL, FTAG);
3932 3938
3933 3939 if (props != NULL)
3934 3940 spa_configfile_set(spa, props, B_FALSE);
3935 3941
3936 3942 if (error != 0 || (props && spa_writeable(spa) &&
3937 3943 (error = spa_prop_set(spa, props)))) {
3938 3944 spa_unload(spa);
3939 3945 spa_deactivate(spa);
3940 3946 spa_remove(spa);
3941 3947 mutex_exit(&spa_namespace_lock);
3942 3948 return (error);
3943 3949 }
3944 3950
3945 3951 spa_async_resume(spa);
3946 3952
3947 3953 /*
3948 3954 * Override any spares and level 2 cache devices as specified by
3949 3955 * the user, as these may have correct device names/devids, etc.
3950 3956 */
3951 3957 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3952 3958 &spares, &nspares) == 0) {
3953 3959 if (spa->spa_spares.sav_config)
3954 3960 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3955 3961 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3956 3962 else
3957 3963 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3958 3964 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3959 3965 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3960 3966 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3961 3967 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3962 3968 spa_load_spares(spa);
3963 3969 spa_config_exit(spa, SCL_ALL, FTAG);
3964 3970 spa->spa_spares.sav_sync = B_TRUE;
3965 3971 }
3966 3972 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3967 3973 &l2cache, &nl2cache) == 0) {
3968 3974 if (spa->spa_l2cache.sav_config)
3969 3975 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3970 3976 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3971 3977 else
3972 3978 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3973 3979 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3974 3980 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3975 3981 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3976 3982 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3977 3983 spa_load_l2cache(spa);
3978 3984 spa_config_exit(spa, SCL_ALL, FTAG);
3979 3985 spa->spa_l2cache.sav_sync = B_TRUE;
3980 3986 }
3981 3987
3982 3988 /*
3983 3989 * Check for any removed devices.
3984 3990 */
3985 3991 if (spa->spa_autoreplace) {
3986 3992 spa_aux_check_removed(&spa->spa_spares);
3987 3993 spa_aux_check_removed(&spa->spa_l2cache);
3988 3994 }
3989 3995
3990 3996 if (spa_writeable(spa)) {
3991 3997 /*
3992 3998 * Update the config cache to include the newly-imported pool.
3993 3999 */
3994 4000 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3995 4001 }
3996 4002
3997 4003 /*
3998 4004 * It's possible that the pool was expanded while it was exported.
3999 4005 * We kick off an async task to handle this for us.
4000 4006 */
4001 4007 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4002 4008
4003 4009 mutex_exit(&spa_namespace_lock);
4004 4010 spa_history_log_version(spa, "import");
4005 4011
4006 4012 return (0);
4007 4013 }
4008 4014
4009 4015 nvlist_t *
4010 4016 spa_tryimport(nvlist_t *tryconfig)
4011 4017 {
4012 4018 nvlist_t *config = NULL;
4013 4019 char *poolname;
4014 4020 spa_t *spa;
4015 4021 uint64_t state;
4016 4022 int error;
4017 4023
4018 4024 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4019 4025 return (NULL);
4020 4026
4021 4027 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4022 4028 return (NULL);
4023 4029
4024 4030 /*
4025 4031 * Create and initialize the spa structure.
4026 4032 */
4027 4033 mutex_enter(&spa_namespace_lock);
4028 4034 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4029 4035 spa_activate(spa, FREAD);
4030 4036
4031 4037 /*
4032 4038 * Pass off the heavy lifting to spa_load().
4033 4039 * Pass TRUE for mosconfig because the user-supplied config
4034 4040 * is actually the one to trust when doing an import.
4035 4041 */
4036 4042 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4037 4043
4038 4044 /*
4039 4045 * If 'tryconfig' was at least parsable, return the current config.
4040 4046 */
4041 4047 if (spa->spa_root_vdev != NULL) {
4042 4048 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4043 4049 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4044 4050 poolname) == 0);
4045 4051 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4046 4052 state) == 0);
4047 4053 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4048 4054 spa->spa_uberblock.ub_timestamp) == 0);
4049 4055 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4050 4056 spa->spa_load_info) == 0);
4051 4057
4052 4058 /*
4053 4059 * If the bootfs property exists on this pool then we
4054 4060 * copy it out so that external consumers can tell which
4055 4061 * pools are bootable.
4056 4062 */
4057 4063 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4058 4064 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4059 4065
4060 4066 /*
4061 4067 * We have to play games with the name since the
4062 4068 * pool was opened as TRYIMPORT_NAME.
4063 4069 */
4064 4070 if (dsl_dsobj_to_dsname(spa_name(spa),
4065 4071 spa->spa_bootfs, tmpname) == 0) {
4066 4072 char *cp;
4067 4073 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4068 4074
4069 4075 cp = strchr(tmpname, '/');
4070 4076 if (cp == NULL) {
4071 4077 (void) strlcpy(dsname, tmpname,
4072 4078 MAXPATHLEN);
4073 4079 } else {
4074 4080 (void) snprintf(dsname, MAXPATHLEN,
4075 4081 "%s/%s", poolname, ++cp);
4076 4082 }
4077 4083 VERIFY(nvlist_add_string(config,
4078 4084 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4079 4085 kmem_free(dsname, MAXPATHLEN);
4080 4086 }
4081 4087 kmem_free(tmpname, MAXPATHLEN);
4082 4088 }
4083 4089
4084 4090 /*
4085 4091 * Add the list of hot spares and level 2 cache devices.
4086 4092 */
4087 4093 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4088 4094 spa_add_spares(spa, config);
4089 4095 spa_add_l2cache(spa, config);
4090 4096 spa_config_exit(spa, SCL_CONFIG, FTAG);
4091 4097 }
4092 4098
4093 4099 spa_unload(spa);
4094 4100 spa_deactivate(spa);
4095 4101 spa_remove(spa);
4096 4102 mutex_exit(&spa_namespace_lock);
4097 4103
4098 4104 return (config);
4099 4105 }
4100 4106
4101 4107 /*
4102 4108 * Pool export/destroy
4103 4109 *
4104 4110 * The act of destroying or exporting a pool is very simple. We make sure there
4105 4111 * is no more pending I/O and any references to the pool are gone. Then, we
4106 4112 * update the pool state and sync all the labels to disk, removing the
4107 4113 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4108 4114 * we don't sync the labels or remove the configuration cache.
4109 4115 */
4110 4116 static int
4111 4117 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4112 4118 boolean_t force, boolean_t hardforce)
4113 4119 {
4114 4120 spa_t *spa;
4115 4121
4116 4122 if (oldconfig)
4117 4123 *oldconfig = NULL;
4118 4124
4119 4125 if (!(spa_mode_global & FWRITE))
4120 4126 return (SET_ERROR(EROFS));
4121 4127
4122 4128 mutex_enter(&spa_namespace_lock);
4123 4129 if ((spa = spa_lookup(pool)) == NULL) {
4124 4130 mutex_exit(&spa_namespace_lock);
4125 4131 return (SET_ERROR(ENOENT));
4126 4132 }
4127 4133
4128 4134 /*
4129 4135 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4130 4136 * reacquire the namespace lock, and see if we can export.
4131 4137 */
4132 4138 spa_open_ref(spa, FTAG);
4133 4139 mutex_exit(&spa_namespace_lock);
4134 4140 spa_async_suspend(spa);
4135 4141 mutex_enter(&spa_namespace_lock);
4136 4142 spa_close(spa, FTAG);
4137 4143
4138 4144 /*
4139 4145 * The pool will be in core if it's openable,
4140 4146 * in which case we can modify its state.
4141 4147 */
4142 4148 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4143 4149 /*
4144 4150 * Objsets may be open only because they're dirty, so we
4145 4151 * have to force it to sync before checking spa_refcnt.
4146 4152 */
4147 4153 txg_wait_synced(spa->spa_dsl_pool, 0);
4148 4154
4149 4155 /*
4150 4156 * A pool cannot be exported or destroyed if there are active
4151 4157 * references. If we are resetting a pool, allow references by
4152 4158 * fault injection handlers.
4153 4159 */
4154 4160 if (!spa_refcount_zero(spa) ||
4155 4161 (spa->spa_inject_ref != 0 &&
4156 4162 new_state != POOL_STATE_UNINITIALIZED)) {
4157 4163 spa_async_resume(spa);
4158 4164 mutex_exit(&spa_namespace_lock);
4159 4165 return (SET_ERROR(EBUSY));
4160 4166 }
4161 4167
4162 4168 /*
4163 4169 * A pool cannot be exported if it has an active shared spare.
4164 4170 * This is to prevent other pools stealing the active spare
4165 4171 * from an exported pool. At user's own will, such pool can
4166 4172 * be forcedly exported.
4167 4173 */
4168 4174 if (!force && new_state == POOL_STATE_EXPORTED &&
4169 4175 spa_has_active_shared_spare(spa)) {
4170 4176 spa_async_resume(spa);
4171 4177 mutex_exit(&spa_namespace_lock);
4172 4178 return (SET_ERROR(EXDEV));
4173 4179 }
4174 4180
4175 4181 /*
4176 4182 * We want this to be reflected on every label,
4177 4183 * so mark them all dirty. spa_unload() will do the
4178 4184 * final sync that pushes these changes out.
4179 4185 */
4180 4186 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4181 4187 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4182 4188 spa->spa_state = new_state;
4183 4189 spa->spa_final_txg = spa_last_synced_txg(spa) +
4184 4190 TXG_DEFER_SIZE + 1;
4185 4191 vdev_config_dirty(spa->spa_root_vdev);
4186 4192 spa_config_exit(spa, SCL_ALL, FTAG);
4187 4193 }
4188 4194 }
4189 4195
4190 4196 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4191 4197
4192 4198 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4193 4199 spa_unload(spa);
4194 4200 spa_deactivate(spa);
4195 4201 }
4196 4202
4197 4203 if (oldconfig && spa->spa_config)
4198 4204 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4199 4205
4200 4206 if (new_state != POOL_STATE_UNINITIALIZED) {
4201 4207 if (!hardforce)
4202 4208 spa_config_sync(spa, B_TRUE, B_TRUE);
4203 4209 spa_remove(spa);
4204 4210 }
4205 4211 mutex_exit(&spa_namespace_lock);
4206 4212
4207 4213 return (0);
4208 4214 }
4209 4215
4210 4216 /*
4211 4217 * Destroy a storage pool.
4212 4218 */
4213 4219 int
4214 4220 spa_destroy(char *pool)
4215 4221 {
4216 4222 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4217 4223 B_FALSE, B_FALSE));
4218 4224 }
4219 4225
4220 4226 /*
4221 4227 * Export a storage pool.
4222 4228 */
4223 4229 int
4224 4230 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4225 4231 boolean_t hardforce)
4226 4232 {
4227 4233 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4228 4234 force, hardforce));
4229 4235 }
4230 4236
4231 4237 /*
4232 4238 * Similar to spa_export(), this unloads the spa_t without actually removing it
4233 4239 * from the namespace in any way.
4234 4240 */
4235 4241 int
4236 4242 spa_reset(char *pool)
4237 4243 {
4238 4244 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4239 4245 B_FALSE, B_FALSE));
4240 4246 }
4241 4247
4242 4248 /*
4243 4249 * ==========================================================================
4244 4250 * Device manipulation
4245 4251 * ==========================================================================
4246 4252 */
4247 4253
4248 4254 /*
4249 4255 * Add a device to a storage pool.
4250 4256 */
4251 4257 int
4252 4258 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4253 4259 {
4254 4260 uint64_t txg, id;
4255 4261 int error;
4256 4262 vdev_t *rvd = spa->spa_root_vdev;
4257 4263 vdev_t *vd, *tvd;
4258 4264 nvlist_t **spares, **l2cache;
4259 4265 uint_t nspares, nl2cache;
4260 4266
4261 4267 ASSERT(spa_writeable(spa));
4262 4268
4263 4269 txg = spa_vdev_enter(spa);
4264 4270
4265 4271 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4266 4272 VDEV_ALLOC_ADD)) != 0)
4267 4273 return (spa_vdev_exit(spa, NULL, txg, error));
4268 4274
4269 4275 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4270 4276
4271 4277 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4272 4278 &nspares) != 0)
4273 4279 nspares = 0;
4274 4280
4275 4281 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4276 4282 &nl2cache) != 0)
4277 4283 nl2cache = 0;
4278 4284
4279 4285 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4280 4286 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4281 4287
4282 4288 if (vd->vdev_children != 0 &&
4283 4289 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4284 4290 return (spa_vdev_exit(spa, vd, txg, error));
4285 4291
4286 4292 /*
4287 4293 * We must validate the spares and l2cache devices after checking the
4288 4294 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4289 4295 */
4290 4296 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4291 4297 return (spa_vdev_exit(spa, vd, txg, error));
4292 4298
4293 4299 /*
4294 4300 * Transfer each new top-level vdev from vd to rvd.
4295 4301 */
4296 4302 for (int c = 0; c < vd->vdev_children; c++) {
4297 4303
4298 4304 /*
4299 4305 * Set the vdev id to the first hole, if one exists.
4300 4306 */
4301 4307 for (id = 0; id < rvd->vdev_children; id++) {
4302 4308 if (rvd->vdev_child[id]->vdev_ishole) {
4303 4309 vdev_free(rvd->vdev_child[id]);
4304 4310 break;
4305 4311 }
4306 4312 }
4307 4313 tvd = vd->vdev_child[c];
4308 4314 vdev_remove_child(vd, tvd);
4309 4315 tvd->vdev_id = id;
4310 4316 vdev_add_child(rvd, tvd);
4311 4317 vdev_config_dirty(tvd);
4312 4318 }
4313 4319
4314 4320 if (nspares != 0) {
4315 4321 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4316 4322 ZPOOL_CONFIG_SPARES);
4317 4323 spa_load_spares(spa);
4318 4324 spa->spa_spares.sav_sync = B_TRUE;
4319 4325 }
4320 4326
4321 4327 if (nl2cache != 0) {
4322 4328 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4323 4329 ZPOOL_CONFIG_L2CACHE);
4324 4330 spa_load_l2cache(spa);
4325 4331 spa->spa_l2cache.sav_sync = B_TRUE;
4326 4332 }
4327 4333
4328 4334 /*
4329 4335 * We have to be careful when adding new vdevs to an existing pool.
4330 4336 * If other threads start allocating from these vdevs before we
4331 4337 * sync the config cache, and we lose power, then upon reboot we may
4332 4338 * fail to open the pool because there are DVAs that the config cache
4333 4339 * can't translate. Therefore, we first add the vdevs without
4334 4340 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4335 4341 * and then let spa_config_update() initialize the new metaslabs.
4336 4342 *
4337 4343 * spa_load() checks for added-but-not-initialized vdevs, so that
4338 4344 * if we lose power at any point in this sequence, the remaining
4339 4345 * steps will be completed the next time we load the pool.
4340 4346 */
4341 4347 (void) spa_vdev_exit(spa, vd, txg, 0);
4342 4348
4343 4349 mutex_enter(&spa_namespace_lock);
4344 4350 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4345 4351 mutex_exit(&spa_namespace_lock);
4346 4352
4347 4353 return (0);
4348 4354 }
4349 4355
4350 4356 /*
4351 4357 * Attach a device to a mirror. The arguments are the path to any device
4352 4358 * in the mirror, and the nvroot for the new device. If the path specifies
4353 4359 * a device that is not mirrored, we automatically insert the mirror vdev.
4354 4360 *
4355 4361 * If 'replacing' is specified, the new device is intended to replace the
4356 4362 * existing device; in this case the two devices are made into their own
4357 4363 * mirror using the 'replacing' vdev, which is functionally identical to
4358 4364 * the mirror vdev (it actually reuses all the same ops) but has a few
4359 4365 * extra rules: you can't attach to it after it's been created, and upon
4360 4366 * completion of resilvering, the first disk (the one being replaced)
4361 4367 * is automatically detached.
4362 4368 */
4363 4369 int
4364 4370 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4365 4371 {
4366 4372 uint64_t txg, dtl_max_txg;
4367 4373 vdev_t *rvd = spa->spa_root_vdev;
4368 4374 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4369 4375 vdev_ops_t *pvops;
4370 4376 char *oldvdpath, *newvdpath;
4371 4377 int newvd_isspare;
4372 4378 int error;
4373 4379
4374 4380 ASSERT(spa_writeable(spa));
4375 4381
4376 4382 txg = spa_vdev_enter(spa);
4377 4383
4378 4384 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4379 4385
4380 4386 if (oldvd == NULL)
4381 4387 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4382 4388
4383 4389 if (!oldvd->vdev_ops->vdev_op_leaf)
4384 4390 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4385 4391
4386 4392 pvd = oldvd->vdev_parent;
4387 4393
4388 4394 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4389 4395 VDEV_ALLOC_ATTACH)) != 0)
4390 4396 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4391 4397
4392 4398 if (newrootvd->vdev_children != 1)
4393 4399 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4394 4400
4395 4401 newvd = newrootvd->vdev_child[0];
4396 4402
4397 4403 if (!newvd->vdev_ops->vdev_op_leaf)
4398 4404 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4399 4405
4400 4406 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4401 4407 return (spa_vdev_exit(spa, newrootvd, txg, error));
4402 4408
4403 4409 /*
4404 4410 * Spares can't replace logs
4405 4411 */
4406 4412 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4407 4413 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4408 4414
4409 4415 if (!replacing) {
4410 4416 /*
4411 4417 * For attach, the only allowable parent is a mirror or the root
4412 4418 * vdev.
4413 4419 */
4414 4420 if (pvd->vdev_ops != &vdev_mirror_ops &&
4415 4421 pvd->vdev_ops != &vdev_root_ops)
4416 4422 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4417 4423
4418 4424 pvops = &vdev_mirror_ops;
4419 4425 } else {
4420 4426 /*
4421 4427 * Active hot spares can only be replaced by inactive hot
4422 4428 * spares.
4423 4429 */
4424 4430 if (pvd->vdev_ops == &vdev_spare_ops &&
4425 4431 oldvd->vdev_isspare &&
4426 4432 !spa_has_spare(spa, newvd->vdev_guid))
4427 4433 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4428 4434
4429 4435 /*
4430 4436 * If the source is a hot spare, and the parent isn't already a
4431 4437 * spare, then we want to create a new hot spare. Otherwise, we
4432 4438 * want to create a replacing vdev. The user is not allowed to
4433 4439 * attach to a spared vdev child unless the 'isspare' state is
4434 4440 * the same (spare replaces spare, non-spare replaces
4435 4441 * non-spare).
4436 4442 */
4437 4443 if (pvd->vdev_ops == &vdev_replacing_ops &&
4438 4444 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4439 4445 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4440 4446 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4441 4447 newvd->vdev_isspare != oldvd->vdev_isspare) {
4442 4448 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4443 4449 }
4444 4450
4445 4451 if (newvd->vdev_isspare)
4446 4452 pvops = &vdev_spare_ops;
4447 4453 else
4448 4454 pvops = &vdev_replacing_ops;
4449 4455 }
4450 4456
4451 4457 /*
4452 4458 * Make sure the new device is big enough.
4453 4459 */
4454 4460 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4455 4461 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4456 4462
4457 4463 /*
4458 4464 * The new device cannot have a higher alignment requirement
4459 4465 * than the top-level vdev.
4460 4466 */
4461 4467 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4462 4468 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4463 4469
4464 4470 /*
4465 4471 * If this is an in-place replacement, update oldvd's path and devid
4466 4472 * to make it distinguishable from newvd, and unopenable from now on.
4467 4473 */
4468 4474 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4469 4475 spa_strfree(oldvd->vdev_path);
4470 4476 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4471 4477 KM_SLEEP);
4472 4478 (void) sprintf(oldvd->vdev_path, "%s/%s",
4473 4479 newvd->vdev_path, "old");
4474 4480 if (oldvd->vdev_devid != NULL) {
4475 4481 spa_strfree(oldvd->vdev_devid);
4476 4482 oldvd->vdev_devid = NULL;
4477 4483 }
4478 4484 }
4479 4485
4480 4486 /* mark the device being resilvered */
4481 4487 newvd->vdev_resilver_txg = txg;
4482 4488
4483 4489 /*
4484 4490 * If the parent is not a mirror, or if we're replacing, insert the new
4485 4491 * mirror/replacing/spare vdev above oldvd.
4486 4492 */
4487 4493 if (pvd->vdev_ops != pvops)
4488 4494 pvd = vdev_add_parent(oldvd, pvops);
4489 4495
4490 4496 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4491 4497 ASSERT(pvd->vdev_ops == pvops);
4492 4498 ASSERT(oldvd->vdev_parent == pvd);
4493 4499
4494 4500 /*
4495 4501 * Extract the new device from its root and add it to pvd.
4496 4502 */
4497 4503 vdev_remove_child(newrootvd, newvd);
4498 4504 newvd->vdev_id = pvd->vdev_children;
4499 4505 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4500 4506 vdev_add_child(pvd, newvd);
4501 4507
4502 4508 tvd = newvd->vdev_top;
4503 4509 ASSERT(pvd->vdev_top == tvd);
4504 4510 ASSERT(tvd->vdev_parent == rvd);
4505 4511
4506 4512 vdev_config_dirty(tvd);
4507 4513
4508 4514 /*
4509 4515 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4510 4516 * for any dmu_sync-ed blocks. It will propagate upward when
4511 4517 * spa_vdev_exit() calls vdev_dtl_reassess().
4512 4518 */
4513 4519 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4514 4520
4515 4521 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4516 4522 dtl_max_txg - TXG_INITIAL);
4517 4523
4518 4524 if (newvd->vdev_isspare) {
4519 4525 spa_spare_activate(newvd);
4520 4526 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4521 4527 }
4522 4528
4523 4529 oldvdpath = spa_strdup(oldvd->vdev_path);
4524 4530 newvdpath = spa_strdup(newvd->vdev_path);
4525 4531 newvd_isspare = newvd->vdev_isspare;
4526 4532
4527 4533 /*
4528 4534 * Mark newvd's DTL dirty in this txg.
4529 4535 */
4530 4536 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4531 4537
4532 4538 /*
4533 4539 * Schedule the resilver to restart in the future. We do this to
4534 4540 * ensure that dmu_sync-ed blocks have been stitched into the
4535 4541 * respective datasets.
4536 4542 */
4537 4543 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4538 4544
4539 4545 /*
4540 4546 * Commit the config
4541 4547 */
4542 4548 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4543 4549
4544 4550 spa_history_log_internal(spa, "vdev attach", NULL,
4545 4551 "%s vdev=%s %s vdev=%s",
4546 4552 replacing && newvd_isspare ? "spare in" :
4547 4553 replacing ? "replace" : "attach", newvdpath,
4548 4554 replacing ? "for" : "to", oldvdpath);
4549 4555
4550 4556 spa_strfree(oldvdpath);
4551 4557 spa_strfree(newvdpath);
4552 4558
4553 4559 if (spa->spa_bootfs)
4554 4560 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4555 4561
4556 4562 return (0);
4557 4563 }
4558 4564
4559 4565 /*
4560 4566 * Detach a device from a mirror or replacing vdev.
4561 4567 *
4562 4568 * If 'replace_done' is specified, only detach if the parent
4563 4569 * is a replacing vdev.
4564 4570 */
4565 4571 int
4566 4572 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4567 4573 {
4568 4574 uint64_t txg;
4569 4575 int error;
4570 4576 vdev_t *rvd = spa->spa_root_vdev;
4571 4577 vdev_t *vd, *pvd, *cvd, *tvd;
4572 4578 boolean_t unspare = B_FALSE;
4573 4579 uint64_t unspare_guid = 0;
4574 4580 char *vdpath;
4575 4581
4576 4582 ASSERT(spa_writeable(spa));
4577 4583
4578 4584 txg = spa_vdev_enter(spa);
4579 4585
4580 4586 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4581 4587
4582 4588 if (vd == NULL)
4583 4589 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4584 4590
4585 4591 if (!vd->vdev_ops->vdev_op_leaf)
4586 4592 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4587 4593
4588 4594 pvd = vd->vdev_parent;
4589 4595
4590 4596 /*
4591 4597 * If the parent/child relationship is not as expected, don't do it.
4592 4598 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4593 4599 * vdev that's replacing B with C. The user's intent in replacing
4594 4600 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4595 4601 * the replace by detaching C, the expected behavior is to end up
4596 4602 * M(A,B). But suppose that right after deciding to detach C,
4597 4603 * the replacement of B completes. We would have M(A,C), and then
4598 4604 * ask to detach C, which would leave us with just A -- not what
4599 4605 * the user wanted. To prevent this, we make sure that the
4600 4606 * parent/child relationship hasn't changed -- in this example,
4601 4607 * that C's parent is still the replacing vdev R.
4602 4608 */
4603 4609 if (pvd->vdev_guid != pguid && pguid != 0)
4604 4610 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4605 4611
4606 4612 /*
4607 4613 * Only 'replacing' or 'spare' vdevs can be replaced.
4608 4614 */
4609 4615 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4610 4616 pvd->vdev_ops != &vdev_spare_ops)
4611 4617 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4612 4618
4613 4619 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4614 4620 spa_version(spa) >= SPA_VERSION_SPARES);
4615 4621
4616 4622 /*
4617 4623 * Only mirror, replacing, and spare vdevs support detach.
4618 4624 */
4619 4625 if (pvd->vdev_ops != &vdev_replacing_ops &&
4620 4626 pvd->vdev_ops != &vdev_mirror_ops &&
4621 4627 pvd->vdev_ops != &vdev_spare_ops)
4622 4628 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4623 4629
4624 4630 /*
4625 4631 * If this device has the only valid copy of some data,
4626 4632 * we cannot safely detach it.
4627 4633 */
4628 4634 if (vdev_dtl_required(vd))
4629 4635 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4630 4636
4631 4637 ASSERT(pvd->vdev_children >= 2);
4632 4638
4633 4639 /*
4634 4640 * If we are detaching the second disk from a replacing vdev, then
4635 4641 * check to see if we changed the original vdev's path to have "/old"
4636 4642 * at the end in spa_vdev_attach(). If so, undo that change now.
4637 4643 */
4638 4644 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4639 4645 vd->vdev_path != NULL) {
4640 4646 size_t len = strlen(vd->vdev_path);
4641 4647
4642 4648 for (int c = 0; c < pvd->vdev_children; c++) {
4643 4649 cvd = pvd->vdev_child[c];
4644 4650
4645 4651 if (cvd == vd || cvd->vdev_path == NULL)
4646 4652 continue;
4647 4653
4648 4654 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4649 4655 strcmp(cvd->vdev_path + len, "/old") == 0) {
4650 4656 spa_strfree(cvd->vdev_path);
4651 4657 cvd->vdev_path = spa_strdup(vd->vdev_path);
4652 4658 break;
4653 4659 }
4654 4660 }
4655 4661 }
4656 4662
4657 4663 /*
4658 4664 * If we are detaching the original disk from a spare, then it implies
4659 4665 * that the spare should become a real disk, and be removed from the
4660 4666 * active spare list for the pool.
4661 4667 */
4662 4668 if (pvd->vdev_ops == &vdev_spare_ops &&
4663 4669 vd->vdev_id == 0 &&
4664 4670 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4665 4671 unspare = B_TRUE;
4666 4672
4667 4673 /*
4668 4674 * Erase the disk labels so the disk can be used for other things.
4669 4675 * This must be done after all other error cases are handled,
4670 4676 * but before we disembowel vd (so we can still do I/O to it).
4671 4677 * But if we can't do it, don't treat the error as fatal --
4672 4678 * it may be that the unwritability of the disk is the reason
4673 4679 * it's being detached!
4674 4680 */
4675 4681 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4676 4682
4677 4683 /*
4678 4684 * Remove vd from its parent and compact the parent's children.
4679 4685 */
4680 4686 vdev_remove_child(pvd, vd);
4681 4687 vdev_compact_children(pvd);
4682 4688
4683 4689 /*
4684 4690 * Remember one of the remaining children so we can get tvd below.
4685 4691 */
4686 4692 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4687 4693
4688 4694 /*
4689 4695 * If we need to remove the remaining child from the list of hot spares,
4690 4696 * do it now, marking the vdev as no longer a spare in the process.
4691 4697 * We must do this before vdev_remove_parent(), because that can
4692 4698 * change the GUID if it creates a new toplevel GUID. For a similar
4693 4699 * reason, we must remove the spare now, in the same txg as the detach;
4694 4700 * otherwise someone could attach a new sibling, change the GUID, and
4695 4701 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4696 4702 */
4697 4703 if (unspare) {
4698 4704 ASSERT(cvd->vdev_isspare);
4699 4705 spa_spare_remove(cvd);
4700 4706 unspare_guid = cvd->vdev_guid;
4701 4707 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4702 4708 cvd->vdev_unspare = B_TRUE;
4703 4709 }
4704 4710
4705 4711 /*
4706 4712 * If the parent mirror/replacing vdev only has one child,
4707 4713 * the parent is no longer needed. Remove it from the tree.
4708 4714 */
4709 4715 if (pvd->vdev_children == 1) {
4710 4716 if (pvd->vdev_ops == &vdev_spare_ops)
4711 4717 cvd->vdev_unspare = B_FALSE;
4712 4718 vdev_remove_parent(cvd);
4713 4719 }
4714 4720
4715 4721
4716 4722 /*
4717 4723 * We don't set tvd until now because the parent we just removed
4718 4724 * may have been the previous top-level vdev.
4719 4725 */
4720 4726 tvd = cvd->vdev_top;
4721 4727 ASSERT(tvd->vdev_parent == rvd);
4722 4728
4723 4729 /*
4724 4730 * Reevaluate the parent vdev state.
4725 4731 */
4726 4732 vdev_propagate_state(cvd);
4727 4733
4728 4734 /*
4729 4735 * If the 'autoexpand' property is set on the pool then automatically
4730 4736 * try to expand the size of the pool. For example if the device we
4731 4737 * just detached was smaller than the others, it may be possible to
4732 4738 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4733 4739 * first so that we can obtain the updated sizes of the leaf vdevs.
4734 4740 */
4735 4741 if (spa->spa_autoexpand) {
4736 4742 vdev_reopen(tvd);
4737 4743 vdev_expand(tvd, txg);
4738 4744 }
4739 4745
4740 4746 vdev_config_dirty(tvd);
4741 4747
4742 4748 /*
4743 4749 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4744 4750 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4745 4751 * But first make sure we're not on any *other* txg's DTL list, to
4746 4752 * prevent vd from being accessed after it's freed.
4747 4753 */
4748 4754 vdpath = spa_strdup(vd->vdev_path);
4749 4755 for (int t = 0; t < TXG_SIZE; t++)
4750 4756 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4751 4757 vd->vdev_detached = B_TRUE;
4752 4758 vdev_dirty(tvd, VDD_DTL, vd, txg);
4753 4759
4754 4760 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4755 4761
4756 4762 /* hang on to the spa before we release the lock */
4757 4763 spa_open_ref(spa, FTAG);
4758 4764
4759 4765 error = spa_vdev_exit(spa, vd, txg, 0);
4760 4766
4761 4767 spa_history_log_internal(spa, "detach", NULL,
4762 4768 "vdev=%s", vdpath);
4763 4769 spa_strfree(vdpath);
4764 4770
4765 4771 /*
4766 4772 * If this was the removal of the original device in a hot spare vdev,
4767 4773 * then we want to go through and remove the device from the hot spare
4768 4774 * list of every other pool.
4769 4775 */
4770 4776 if (unspare) {
4771 4777 spa_t *altspa = NULL;
4772 4778
4773 4779 mutex_enter(&spa_namespace_lock);
4774 4780 while ((altspa = spa_next(altspa)) != NULL) {
4775 4781 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4776 4782 altspa == spa)
4777 4783 continue;
4778 4784
4779 4785 spa_open_ref(altspa, FTAG);
4780 4786 mutex_exit(&spa_namespace_lock);
4781 4787 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4782 4788 mutex_enter(&spa_namespace_lock);
4783 4789 spa_close(altspa, FTAG);
4784 4790 }
4785 4791 mutex_exit(&spa_namespace_lock);
4786 4792
4787 4793 /* search the rest of the vdevs for spares to remove */
4788 4794 spa_vdev_resilver_done(spa);
4789 4795 }
4790 4796
4791 4797 /* all done with the spa; OK to release */
4792 4798 mutex_enter(&spa_namespace_lock);
4793 4799 spa_close(spa, FTAG);
4794 4800 mutex_exit(&spa_namespace_lock);
4795 4801
4796 4802 return (error);
4797 4803 }
4798 4804
4799 4805 /*
4800 4806 * Split a set of devices from their mirrors, and create a new pool from them.
4801 4807 */
4802 4808 int
4803 4809 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4804 4810 nvlist_t *props, boolean_t exp)
4805 4811 {
4806 4812 int error = 0;
4807 4813 uint64_t txg, *glist;
4808 4814 spa_t *newspa;
4809 4815 uint_t c, children, lastlog;
4810 4816 nvlist_t **child, *nvl, *tmp;
4811 4817 dmu_tx_t *tx;
4812 4818 char *altroot = NULL;
4813 4819 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4814 4820 boolean_t activate_slog;
4815 4821
4816 4822 ASSERT(spa_writeable(spa));
4817 4823
4818 4824 txg = spa_vdev_enter(spa);
4819 4825
4820 4826 /* clear the log and flush everything up to now */
4821 4827 activate_slog = spa_passivate_log(spa);
4822 4828 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4823 4829 error = spa_offline_log(spa);
4824 4830 txg = spa_vdev_config_enter(spa);
4825 4831
4826 4832 if (activate_slog)
4827 4833 spa_activate_log(spa);
4828 4834
4829 4835 if (error != 0)
4830 4836 return (spa_vdev_exit(spa, NULL, txg, error));
4831 4837
4832 4838 /* check new spa name before going any further */
4833 4839 if (spa_lookup(newname) != NULL)
4834 4840 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4835 4841
4836 4842 /*
4837 4843 * scan through all the children to ensure they're all mirrors
4838 4844 */
4839 4845 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4840 4846 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4841 4847 &children) != 0)
4842 4848 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4843 4849
4844 4850 /* first, check to ensure we've got the right child count */
4845 4851 rvd = spa->spa_root_vdev;
4846 4852 lastlog = 0;
4847 4853 for (c = 0; c < rvd->vdev_children; c++) {
4848 4854 vdev_t *vd = rvd->vdev_child[c];
4849 4855
4850 4856 /* don't count the holes & logs as children */
4851 4857 if (vd->vdev_islog || vd->vdev_ishole) {
4852 4858 if (lastlog == 0)
4853 4859 lastlog = c;
4854 4860 continue;
4855 4861 }
4856 4862
4857 4863 lastlog = 0;
4858 4864 }
4859 4865 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4860 4866 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4861 4867
4862 4868 /* next, ensure no spare or cache devices are part of the split */
4863 4869 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4864 4870 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4865 4871 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4866 4872
4867 4873 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4868 4874 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4869 4875
4870 4876 /* then, loop over each vdev and validate it */
4871 4877 for (c = 0; c < children; c++) {
4872 4878 uint64_t is_hole = 0;
4873 4879
4874 4880 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4875 4881 &is_hole);
4876 4882
4877 4883 if (is_hole != 0) {
4878 4884 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4879 4885 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4880 4886 continue;
4881 4887 } else {
4882 4888 error = SET_ERROR(EINVAL);
4883 4889 break;
4884 4890 }
4885 4891 }
4886 4892
4887 4893 /* which disk is going to be split? */
4888 4894 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4889 4895 &glist[c]) != 0) {
4890 4896 error = SET_ERROR(EINVAL);
4891 4897 break;
4892 4898 }
4893 4899
4894 4900 /* look it up in the spa */
4895 4901 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4896 4902 if (vml[c] == NULL) {
4897 4903 error = SET_ERROR(ENODEV);
4898 4904 break;
4899 4905 }
4900 4906
4901 4907 /* make sure there's nothing stopping the split */
4902 4908 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4903 4909 vml[c]->vdev_islog ||
4904 4910 vml[c]->vdev_ishole ||
4905 4911 vml[c]->vdev_isspare ||
4906 4912 vml[c]->vdev_isl2cache ||
4907 4913 !vdev_writeable(vml[c]) ||
4908 4914 vml[c]->vdev_children != 0 ||
4909 4915 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4910 4916 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4911 4917 error = SET_ERROR(EINVAL);
4912 4918 break;
4913 4919 }
4914 4920
4915 4921 if (vdev_dtl_required(vml[c])) {
4916 4922 error = SET_ERROR(EBUSY);
4917 4923 break;
4918 4924 }
4919 4925
4920 4926 /* we need certain info from the top level */
4921 4927 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4922 4928 vml[c]->vdev_top->vdev_ms_array) == 0);
4923 4929 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4924 4930 vml[c]->vdev_top->vdev_ms_shift) == 0);
4925 4931 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4926 4932 vml[c]->vdev_top->vdev_asize) == 0);
4927 4933 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4928 4934 vml[c]->vdev_top->vdev_ashift) == 0);
4929 4935 }
4930 4936
4931 4937 if (error != 0) {
4932 4938 kmem_free(vml, children * sizeof (vdev_t *));
4933 4939 kmem_free(glist, children * sizeof (uint64_t));
4934 4940 return (spa_vdev_exit(spa, NULL, txg, error));
4935 4941 }
4936 4942
4937 4943 /* stop writers from using the disks */
4938 4944 for (c = 0; c < children; c++) {
4939 4945 if (vml[c] != NULL)
4940 4946 vml[c]->vdev_offline = B_TRUE;
4941 4947 }
4942 4948 vdev_reopen(spa->spa_root_vdev);
4943 4949
4944 4950 /*
4945 4951 * Temporarily record the splitting vdevs in the spa config. This
4946 4952 * will disappear once the config is regenerated.
4947 4953 */
4948 4954 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4949 4955 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4950 4956 glist, children) == 0);
4951 4957 kmem_free(glist, children * sizeof (uint64_t));
4952 4958
4953 4959 mutex_enter(&spa->spa_props_lock);
4954 4960 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4955 4961 nvl) == 0);
4956 4962 mutex_exit(&spa->spa_props_lock);
4957 4963 spa->spa_config_splitting = nvl;
4958 4964 vdev_config_dirty(spa->spa_root_vdev);
4959 4965
4960 4966 /* configure and create the new pool */
4961 4967 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4962 4968 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4963 4969 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4964 4970 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4965 4971 spa_version(spa)) == 0);
4966 4972 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4967 4973 spa->spa_config_txg) == 0);
4968 4974 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4969 4975 spa_generate_guid(NULL)) == 0);
4970 4976 (void) nvlist_lookup_string(props,
4971 4977 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4972 4978
4973 4979 /* add the new pool to the namespace */
4974 4980 newspa = spa_add(newname, config, altroot);
4975 4981 newspa->spa_config_txg = spa->spa_config_txg;
4976 4982 spa_set_log_state(newspa, SPA_LOG_CLEAR);
4977 4983
4978 4984 /* release the spa config lock, retaining the namespace lock */
4979 4985 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4980 4986
4981 4987 if (zio_injection_enabled)
4982 4988 zio_handle_panic_injection(spa, FTAG, 1);
4983 4989
4984 4990 spa_activate(newspa, spa_mode_global);
4985 4991 spa_async_suspend(newspa);
4986 4992
4987 4993 /* create the new pool from the disks of the original pool */
4988 4994 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4989 4995 if (error)
4990 4996 goto out;
4991 4997
4992 4998 /* if that worked, generate a real config for the new pool */
4993 4999 if (newspa->spa_root_vdev != NULL) {
4994 5000 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4995 5001 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4996 5002 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4997 5003 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4998 5004 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4999 5005 B_TRUE));
5000 5006 }
5001 5007
5002 5008 /* set the props */
5003 5009 if (props != NULL) {
5004 5010 spa_configfile_set(newspa, props, B_FALSE);
5005 5011 error = spa_prop_set(newspa, props);
5006 5012 if (error)
5007 5013 goto out;
5008 5014 }
5009 5015
5010 5016 /* flush everything */
5011 5017 txg = spa_vdev_config_enter(newspa);
5012 5018 vdev_config_dirty(newspa->spa_root_vdev);
5013 5019 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5014 5020
5015 5021 if (zio_injection_enabled)
5016 5022 zio_handle_panic_injection(spa, FTAG, 2);
5017 5023
5018 5024 spa_async_resume(newspa);
5019 5025
5020 5026 /* finally, update the original pool's config */
5021 5027 txg = spa_vdev_config_enter(spa);
5022 5028 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5023 5029 error = dmu_tx_assign(tx, TXG_WAIT);
5024 5030 if (error != 0)
5025 5031 dmu_tx_abort(tx);
5026 5032 for (c = 0; c < children; c++) {
5027 5033 if (vml[c] != NULL) {
5028 5034 vdev_split(vml[c]);
5029 5035 if (error == 0)
5030 5036 spa_history_log_internal(spa, "detach", tx,
5031 5037 "vdev=%s", vml[c]->vdev_path);
5032 5038 vdev_free(vml[c]);
5033 5039 }
5034 5040 }
5035 5041 vdev_config_dirty(spa->spa_root_vdev);
5036 5042 spa->spa_config_splitting = NULL;
5037 5043 nvlist_free(nvl);
5038 5044 if (error == 0)
5039 5045 dmu_tx_commit(tx);
5040 5046 (void) spa_vdev_exit(spa, NULL, txg, 0);
5041 5047
5042 5048 if (zio_injection_enabled)
5043 5049 zio_handle_panic_injection(spa, FTAG, 3);
5044 5050
5045 5051 /* split is complete; log a history record */
5046 5052 spa_history_log_internal(newspa, "split", NULL,
5047 5053 "from pool %s", spa_name(spa));
5048 5054
5049 5055 kmem_free(vml, children * sizeof (vdev_t *));
5050 5056
5051 5057 /* if we're not going to mount the filesystems in userland, export */
5052 5058 if (exp)
5053 5059 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5054 5060 B_FALSE, B_FALSE);
5055 5061
5056 5062 return (error);
5057 5063
5058 5064 out:
5059 5065 spa_unload(newspa);
5060 5066 spa_deactivate(newspa);
5061 5067 spa_remove(newspa);
5062 5068
5063 5069 txg = spa_vdev_config_enter(spa);
5064 5070
5065 5071 /* re-online all offlined disks */
5066 5072 for (c = 0; c < children; c++) {
5067 5073 if (vml[c] != NULL)
5068 5074 vml[c]->vdev_offline = B_FALSE;
5069 5075 }
5070 5076 vdev_reopen(spa->spa_root_vdev);
5071 5077
5072 5078 nvlist_free(spa->spa_config_splitting);
5073 5079 spa->spa_config_splitting = NULL;
5074 5080 (void) spa_vdev_exit(spa, NULL, txg, error);
5075 5081
5076 5082 kmem_free(vml, children * sizeof (vdev_t *));
5077 5083 return (error);
5078 5084 }
5079 5085
5080 5086 static nvlist_t *
5081 5087 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5082 5088 {
5083 5089 for (int i = 0; i < count; i++) {
5084 5090 uint64_t guid;
5085 5091
5086 5092 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5087 5093 &guid) == 0);
5088 5094
5089 5095 if (guid == target_guid)
5090 5096 return (nvpp[i]);
5091 5097 }
5092 5098
5093 5099 return (NULL);
5094 5100 }
5095 5101
5096 5102 static void
5097 5103 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5098 5104 nvlist_t *dev_to_remove)
5099 5105 {
5100 5106 nvlist_t **newdev = NULL;
5101 5107
5102 5108 if (count > 1)
5103 5109 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5104 5110
5105 5111 for (int i = 0, j = 0; i < count; i++) {
5106 5112 if (dev[i] == dev_to_remove)
5107 5113 continue;
5108 5114 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5109 5115 }
5110 5116
5111 5117 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5112 5118 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5113 5119
5114 5120 for (int i = 0; i < count - 1; i++)
5115 5121 nvlist_free(newdev[i]);
5116 5122
5117 5123 if (count > 1)
5118 5124 kmem_free(newdev, (count - 1) * sizeof (void *));
5119 5125 }
5120 5126
5121 5127 /*
5122 5128 * Evacuate the device.
5123 5129 */
5124 5130 static int
5125 5131 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5126 5132 {
5127 5133 uint64_t txg;
5128 5134 int error = 0;
5129 5135
5130 5136 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5131 5137 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5132 5138 ASSERT(vd == vd->vdev_top);
5133 5139
5134 5140 /*
5135 5141 * Evacuate the device. We don't hold the config lock as writer
5136 5142 * since we need to do I/O but we do keep the
5137 5143 * spa_namespace_lock held. Once this completes the device
5138 5144 * should no longer have any blocks allocated on it.
5139 5145 */
5140 5146 if (vd->vdev_islog) {
5141 5147 if (vd->vdev_stat.vs_alloc != 0)
5142 5148 error = spa_offline_log(spa);
5143 5149 } else {
5144 5150 error = SET_ERROR(ENOTSUP);
5145 5151 }
5146 5152
5147 5153 if (error)
5148 5154 return (error);
5149 5155
5150 5156 /*
5151 5157 * The evacuation succeeded. Remove any remaining MOS metadata
5152 5158 * associated with this vdev, and wait for these changes to sync.
5153 5159 */
5154 5160 ASSERT0(vd->vdev_stat.vs_alloc);
5155 5161 txg = spa_vdev_config_enter(spa);
5156 5162 vd->vdev_removing = B_TRUE;
5157 5163 vdev_dirty_leaves(vd, VDD_DTL, txg);
5158 5164 vdev_config_dirty(vd);
5159 5165 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5160 5166
5161 5167 return (0);
5162 5168 }
5163 5169
5164 5170 /*
5165 5171 * Complete the removal by cleaning up the namespace.
5166 5172 */
5167 5173 static void
5168 5174 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5169 5175 {
5170 5176 vdev_t *rvd = spa->spa_root_vdev;
5171 5177 uint64_t id = vd->vdev_id;
5172 5178 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5173 5179
5174 5180 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5175 5181 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5176 5182 ASSERT(vd == vd->vdev_top);
5177 5183
5178 5184 /*
5179 5185 * Only remove any devices which are empty.
5180 5186 */
5181 5187 if (vd->vdev_stat.vs_alloc != 0)
5182 5188 return;
5183 5189
5184 5190 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5185 5191
5186 5192 if (list_link_active(&vd->vdev_state_dirty_node))
5187 5193 vdev_state_clean(vd);
5188 5194 if (list_link_active(&vd->vdev_config_dirty_node))
5189 5195 vdev_config_clean(vd);
5190 5196
5191 5197 vdev_free(vd);
5192 5198
5193 5199 if (last_vdev) {
5194 5200 vdev_compact_children(rvd);
5195 5201 } else {
5196 5202 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5197 5203 vdev_add_child(rvd, vd);
5198 5204 }
5199 5205 vdev_config_dirty(rvd);
5200 5206
5201 5207 /*
5202 5208 * Reassess the health of our root vdev.
5203 5209 */
5204 5210 vdev_reopen(rvd);
5205 5211 }
5206 5212
5207 5213 /*
5208 5214 * Remove a device from the pool -
5209 5215 *
5210 5216 * Removing a device from the vdev namespace requires several steps
5211 5217 * and can take a significant amount of time. As a result we use
5212 5218 * the spa_vdev_config_[enter/exit] functions which allow us to
5213 5219 * grab and release the spa_config_lock while still holding the namespace
5214 5220 * lock. During each step the configuration is synced out.
5215 5221 *
5216 5222 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5217 5223 * devices.
5218 5224 */
5219 5225 int
5220 5226 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5221 5227 {
5222 5228 vdev_t *vd;
5223 5229 metaslab_group_t *mg;
5224 5230 nvlist_t **spares, **l2cache, *nv;
5225 5231 uint64_t txg = 0;
5226 5232 uint_t nspares, nl2cache;
5227 5233 int error = 0;
5228 5234 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5229 5235
5230 5236 ASSERT(spa_writeable(spa));
5231 5237
5232 5238 if (!locked)
5233 5239 txg = spa_vdev_enter(spa);
5234 5240
5235 5241 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5236 5242
5237 5243 if (spa->spa_spares.sav_vdevs != NULL &&
5238 5244 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5239 5245 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5240 5246 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5241 5247 /*
5242 5248 * Only remove the hot spare if it's not currently in use
5243 5249 * in this pool.
5244 5250 */
5245 5251 if (vd == NULL || unspare) {
5246 5252 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5247 5253 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5248 5254 spa_load_spares(spa);
5249 5255 spa->spa_spares.sav_sync = B_TRUE;
5250 5256 } else {
5251 5257 error = SET_ERROR(EBUSY);
5252 5258 }
5253 5259 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5254 5260 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5255 5261 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5256 5262 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5257 5263 /*
5258 5264 * Cache devices can always be removed.
5259 5265 */
5260 5266 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5261 5267 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5262 5268 spa_load_l2cache(spa);
5263 5269 spa->spa_l2cache.sav_sync = B_TRUE;
5264 5270 } else if (vd != NULL && vd->vdev_islog) {
5265 5271 ASSERT(!locked);
5266 5272 ASSERT(vd == vd->vdev_top);
5267 5273
5268 5274 mg = vd->vdev_mg;
5269 5275
5270 5276 /*
5271 5277 * Stop allocating from this vdev.
5272 5278 */
5273 5279 metaslab_group_passivate(mg);
5274 5280
5275 5281 /*
5276 5282 * Wait for the youngest allocations and frees to sync,
5277 5283 * and then wait for the deferral of those frees to finish.
5278 5284 */
5279 5285 spa_vdev_config_exit(spa, NULL,
5280 5286 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5281 5287
5282 5288 /*
5283 5289 * Attempt to evacuate the vdev.
5284 5290 */
5285 5291 error = spa_vdev_remove_evacuate(spa, vd);
5286 5292
5287 5293 txg = spa_vdev_config_enter(spa);
5288 5294
5289 5295 /*
5290 5296 * If we couldn't evacuate the vdev, unwind.
5291 5297 */
5292 5298 if (error) {
5293 5299 metaslab_group_activate(mg);
5294 5300 return (spa_vdev_exit(spa, NULL, txg, error));
5295 5301 }
5296 5302
5297 5303 /*
5298 5304 * Clean up the vdev namespace.
5299 5305 */
5300 5306 spa_vdev_remove_from_namespace(spa, vd);
5301 5307
5302 5308 } else if (vd != NULL) {
5303 5309 /*
5304 5310 * Normal vdevs cannot be removed (yet).
5305 5311 */
5306 5312 error = SET_ERROR(ENOTSUP);
5307 5313 } else {
5308 5314 /*
5309 5315 * There is no vdev of any kind with the specified guid.
5310 5316 */
5311 5317 error = SET_ERROR(ENOENT);
5312 5318 }
5313 5319
5314 5320 if (!locked)
5315 5321 return (spa_vdev_exit(spa, NULL, txg, error));
5316 5322
5317 5323 return (error);
5318 5324 }
5319 5325
5320 5326 /*
5321 5327 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5322 5328 * currently spared, so we can detach it.
5323 5329 */
5324 5330 static vdev_t *
5325 5331 spa_vdev_resilver_done_hunt(vdev_t *vd)
5326 5332 {
5327 5333 vdev_t *newvd, *oldvd;
5328 5334
5329 5335 for (int c = 0; c < vd->vdev_children; c++) {
5330 5336 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5331 5337 if (oldvd != NULL)
5332 5338 return (oldvd);
5333 5339 }
5334 5340
5335 5341 /*
5336 5342 * Check for a completed replacement. We always consider the first
5337 5343 * vdev in the list to be the oldest vdev, and the last one to be
5338 5344 * the newest (see spa_vdev_attach() for how that works). In
5339 5345 * the case where the newest vdev is faulted, we will not automatically
5340 5346 * remove it after a resilver completes. This is OK as it will require
5341 5347 * user intervention to determine which disk the admin wishes to keep.
5342 5348 */
5343 5349 if (vd->vdev_ops == &vdev_replacing_ops) {
5344 5350 ASSERT(vd->vdev_children > 1);
5345 5351
5346 5352 newvd = vd->vdev_child[vd->vdev_children - 1];
5347 5353 oldvd = vd->vdev_child[0];
5348 5354
5349 5355 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5350 5356 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5351 5357 !vdev_dtl_required(oldvd))
5352 5358 return (oldvd);
5353 5359 }
5354 5360
5355 5361 /*
5356 5362 * Check for a completed resilver with the 'unspare' flag set.
5357 5363 */
5358 5364 if (vd->vdev_ops == &vdev_spare_ops) {
5359 5365 vdev_t *first = vd->vdev_child[0];
5360 5366 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5361 5367
5362 5368 if (last->vdev_unspare) {
5363 5369 oldvd = first;
5364 5370 newvd = last;
5365 5371 } else if (first->vdev_unspare) {
5366 5372 oldvd = last;
5367 5373 newvd = first;
5368 5374 } else {
5369 5375 oldvd = NULL;
5370 5376 }
5371 5377
5372 5378 if (oldvd != NULL &&
5373 5379 vdev_dtl_empty(newvd, DTL_MISSING) &&
5374 5380 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5375 5381 !vdev_dtl_required(oldvd))
5376 5382 return (oldvd);
5377 5383
5378 5384 /*
5379 5385 * If there are more than two spares attached to a disk,
5380 5386 * and those spares are not required, then we want to
5381 5387 * attempt to free them up now so that they can be used
5382 5388 * by other pools. Once we're back down to a single
5383 5389 * disk+spare, we stop removing them.
5384 5390 */
5385 5391 if (vd->vdev_children > 2) {
5386 5392 newvd = vd->vdev_child[1];
5387 5393
5388 5394 if (newvd->vdev_isspare && last->vdev_isspare &&
5389 5395 vdev_dtl_empty(last, DTL_MISSING) &&
5390 5396 vdev_dtl_empty(last, DTL_OUTAGE) &&
5391 5397 !vdev_dtl_required(newvd))
5392 5398 return (newvd);
5393 5399 }
5394 5400 }
5395 5401
5396 5402 return (NULL);
5397 5403 }
5398 5404
5399 5405 static void
5400 5406 spa_vdev_resilver_done(spa_t *spa)
5401 5407 {
5402 5408 vdev_t *vd, *pvd, *ppvd;
5403 5409 uint64_t guid, sguid, pguid, ppguid;
5404 5410
5405 5411 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5406 5412
5407 5413 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5408 5414 pvd = vd->vdev_parent;
5409 5415 ppvd = pvd->vdev_parent;
5410 5416 guid = vd->vdev_guid;
5411 5417 pguid = pvd->vdev_guid;
5412 5418 ppguid = ppvd->vdev_guid;
5413 5419 sguid = 0;
5414 5420 /*
5415 5421 * If we have just finished replacing a hot spared device, then
5416 5422 * we need to detach the parent's first child (the original hot
5417 5423 * spare) as well.
5418 5424 */
5419 5425 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5420 5426 ppvd->vdev_children == 2) {
5421 5427 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5422 5428 sguid = ppvd->vdev_child[1]->vdev_guid;
5423 5429 }
5424 5430 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5425 5431
5426 5432 spa_config_exit(spa, SCL_ALL, FTAG);
5427 5433 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5428 5434 return;
5429 5435 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5430 5436 return;
5431 5437 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5432 5438 }
5433 5439
5434 5440 spa_config_exit(spa, SCL_ALL, FTAG);
5435 5441 }
5436 5442
5437 5443 /*
5438 5444 * Update the stored path or FRU for this vdev.
5439 5445 */
5440 5446 int
5441 5447 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5442 5448 boolean_t ispath)
5443 5449 {
5444 5450 vdev_t *vd;
5445 5451 boolean_t sync = B_FALSE;
5446 5452
5447 5453 ASSERT(spa_writeable(spa));
5448 5454
5449 5455 spa_vdev_state_enter(spa, SCL_ALL);
5450 5456
5451 5457 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5452 5458 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5453 5459
5454 5460 if (!vd->vdev_ops->vdev_op_leaf)
5455 5461 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5456 5462
5457 5463 if (ispath) {
5458 5464 if (strcmp(value, vd->vdev_path) != 0) {
5459 5465 spa_strfree(vd->vdev_path);
5460 5466 vd->vdev_path = spa_strdup(value);
5461 5467 sync = B_TRUE;
5462 5468 }
5463 5469 } else {
5464 5470 if (vd->vdev_fru == NULL) {
5465 5471 vd->vdev_fru = spa_strdup(value);
5466 5472 sync = B_TRUE;
5467 5473 } else if (strcmp(value, vd->vdev_fru) != 0) {
5468 5474 spa_strfree(vd->vdev_fru);
5469 5475 vd->vdev_fru = spa_strdup(value);
5470 5476 sync = B_TRUE;
5471 5477 }
5472 5478 }
5473 5479
5474 5480 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5475 5481 }
5476 5482
5477 5483 int
5478 5484 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5479 5485 {
5480 5486 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5481 5487 }
5482 5488
5483 5489 int
5484 5490 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5485 5491 {
5486 5492 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5487 5493 }
5488 5494
5489 5495 /*
5490 5496 * ==========================================================================
5491 5497 * SPA Scanning
5492 5498 * ==========================================================================
5493 5499 */
5494 5500
5495 5501 int
5496 5502 spa_scan_stop(spa_t *spa)
5497 5503 {
5498 5504 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5499 5505 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5500 5506 return (SET_ERROR(EBUSY));
5501 5507 return (dsl_scan_cancel(spa->spa_dsl_pool));
5502 5508 }
5503 5509
5504 5510 int
5505 5511 spa_scan(spa_t *spa, pool_scan_func_t func)
5506 5512 {
5507 5513 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5508 5514
5509 5515 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5510 5516 return (SET_ERROR(ENOTSUP));
5511 5517
5512 5518 /*
5513 5519 * If a resilver was requested, but there is no DTL on a
5514 5520 * writeable leaf device, we have nothing to do.
5515 5521 */
5516 5522 if (func == POOL_SCAN_RESILVER &&
5517 5523 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5518 5524 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5519 5525 return (0);
5520 5526 }
5521 5527
5522 5528 return (dsl_scan(spa->spa_dsl_pool, func));
5523 5529 }
5524 5530
5525 5531 /*
5526 5532 * ==========================================================================
5527 5533 * SPA async task processing
5528 5534 * ==========================================================================
5529 5535 */
5530 5536
5531 5537 static void
5532 5538 spa_async_remove(spa_t *spa, vdev_t *vd)
5533 5539 {
5534 5540 if (vd->vdev_remove_wanted) {
5535 5541 vd->vdev_remove_wanted = B_FALSE;
5536 5542 vd->vdev_delayed_close = B_FALSE;
5537 5543 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5538 5544
5539 5545 /*
5540 5546 * We want to clear the stats, but we don't want to do a full
5541 5547 * vdev_clear() as that will cause us to throw away
5542 5548 * degraded/faulted state as well as attempt to reopen the
5543 5549 * device, all of which is a waste.
5544 5550 */
5545 5551 vd->vdev_stat.vs_read_errors = 0;
5546 5552 vd->vdev_stat.vs_write_errors = 0;
5547 5553 vd->vdev_stat.vs_checksum_errors = 0;
5548 5554
5549 5555 vdev_state_dirty(vd->vdev_top);
5550 5556 }
5551 5557
5552 5558 for (int c = 0; c < vd->vdev_children; c++)
5553 5559 spa_async_remove(spa, vd->vdev_child[c]);
5554 5560 }
5555 5561
5556 5562 static void
5557 5563 spa_async_probe(spa_t *spa, vdev_t *vd)
5558 5564 {
5559 5565 if (vd->vdev_probe_wanted) {
5560 5566 vd->vdev_probe_wanted = B_FALSE;
5561 5567 vdev_reopen(vd); /* vdev_open() does the actual probe */
5562 5568 }
5563 5569
5564 5570 for (int c = 0; c < vd->vdev_children; c++)
5565 5571 spa_async_probe(spa, vd->vdev_child[c]);
5566 5572 }
5567 5573
5568 5574 static void
5569 5575 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5570 5576 {
5571 5577 sysevent_id_t eid;
5572 5578 nvlist_t *attr;
5573 5579 char *physpath;
5574 5580
5575 5581 if (!spa->spa_autoexpand)
5576 5582 return;
5577 5583
5578 5584 for (int c = 0; c < vd->vdev_children; c++) {
5579 5585 vdev_t *cvd = vd->vdev_child[c];
5580 5586 spa_async_autoexpand(spa, cvd);
5581 5587 }
5582 5588
5583 5589 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5584 5590 return;
5585 5591
5586 5592 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5587 5593 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5588 5594
5589 5595 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5590 5596 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5591 5597
5592 5598 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5593 5599 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5594 5600
5595 5601 nvlist_free(attr);
5596 5602 kmem_free(physpath, MAXPATHLEN);
5597 5603 }
5598 5604
5599 5605 static void
5600 5606 spa_async_thread(spa_t *spa)
5601 5607 {
5602 5608 int tasks;
5603 5609
5604 5610 ASSERT(spa->spa_sync_on);
5605 5611
5606 5612 mutex_enter(&spa->spa_async_lock);
5607 5613 tasks = spa->spa_async_tasks;
5608 5614 spa->spa_async_tasks = 0;
5609 5615 mutex_exit(&spa->spa_async_lock);
5610 5616
5611 5617 /*
5612 5618 * See if the config needs to be updated.
5613 5619 */
5614 5620 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5615 5621 uint64_t old_space, new_space;
5616 5622
5617 5623 mutex_enter(&spa_namespace_lock);
5618 5624 old_space = metaslab_class_get_space(spa_normal_class(spa));
5619 5625 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5620 5626 new_space = metaslab_class_get_space(spa_normal_class(spa));
5621 5627 mutex_exit(&spa_namespace_lock);
5622 5628
5623 5629 /*
5624 5630 * If the pool grew as a result of the config update,
5625 5631 * then log an internal history event.
5626 5632 */
5627 5633 if (new_space != old_space) {
5628 5634 spa_history_log_internal(spa, "vdev online", NULL,
5629 5635 "pool '%s' size: %llu(+%llu)",
5630 5636 spa_name(spa), new_space, new_space - old_space);
5631 5637 }
5632 5638 }
5633 5639
5634 5640 /*
5635 5641 * See if any devices need to be marked REMOVED.
5636 5642 */
5637 5643 if (tasks & SPA_ASYNC_REMOVE) {
5638 5644 spa_vdev_state_enter(spa, SCL_NONE);
5639 5645 spa_async_remove(spa, spa->spa_root_vdev);
5640 5646 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5641 5647 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5642 5648 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5643 5649 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5644 5650 (void) spa_vdev_state_exit(spa, NULL, 0);
5645 5651 }
5646 5652
5647 5653 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5648 5654 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5649 5655 spa_async_autoexpand(spa, spa->spa_root_vdev);
5650 5656 spa_config_exit(spa, SCL_CONFIG, FTAG);
5651 5657 }
5652 5658
5653 5659 /*
5654 5660 * See if any devices need to be probed.
5655 5661 */
5656 5662 if (tasks & SPA_ASYNC_PROBE) {
5657 5663 spa_vdev_state_enter(spa, SCL_NONE);
5658 5664 spa_async_probe(spa, spa->spa_root_vdev);
5659 5665 (void) spa_vdev_state_exit(spa, NULL, 0);
5660 5666 }
5661 5667
5662 5668 /*
5663 5669 * If any devices are done replacing, detach them.
5664 5670 */
5665 5671 if (tasks & SPA_ASYNC_RESILVER_DONE)
5666 5672 spa_vdev_resilver_done(spa);
5667 5673
5668 5674 /*
5669 5675 * Kick off a resilver.
5670 5676 */
5671 5677 if (tasks & SPA_ASYNC_RESILVER)
5672 5678 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5673 5679
5674 5680 /*
5675 5681 * Let the world know that we're done.
5676 5682 */
5677 5683 mutex_enter(&spa->spa_async_lock);
5678 5684 spa->spa_async_thread = NULL;
5679 5685 cv_broadcast(&spa->spa_async_cv);
5680 5686 mutex_exit(&spa->spa_async_lock);
5681 5687 thread_exit();
5682 5688 }
5683 5689
5684 5690 void
5685 5691 spa_async_suspend(spa_t *spa)
5686 5692 {
5687 5693 mutex_enter(&spa->spa_async_lock);
5688 5694 spa->spa_async_suspended++;
5689 5695 while (spa->spa_async_thread != NULL)
5690 5696 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5691 5697 mutex_exit(&spa->spa_async_lock);
5692 5698 }
5693 5699
5694 5700 void
5695 5701 spa_async_resume(spa_t *spa)
5696 5702 {
5697 5703 mutex_enter(&spa->spa_async_lock);
5698 5704 ASSERT(spa->spa_async_suspended != 0);
5699 5705 spa->spa_async_suspended--;
5700 5706 mutex_exit(&spa->spa_async_lock);
5701 5707 }
5702 5708
5703 5709 static boolean_t
5704 5710 spa_async_tasks_pending(spa_t *spa)
5705 5711 {
5706 5712 uint_t non_config_tasks;
5707 5713 uint_t config_task;
5708 5714 boolean_t config_task_suspended;
5709 5715
5710 5716 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5711 5717 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5712 5718 if (spa->spa_ccw_fail_time == 0) {
5713 5719 config_task_suspended = B_FALSE;
5714 5720 } else {
5715 5721 config_task_suspended =
5716 5722 (gethrtime() - spa->spa_ccw_fail_time) <
5717 5723 (zfs_ccw_retry_interval * NANOSEC);
5718 5724 }
5719 5725
5720 5726 return (non_config_tasks || (config_task && !config_task_suspended));
5721 5727 }
5722 5728
5723 5729 static void
5724 5730 spa_async_dispatch(spa_t *spa)
5725 5731 {
5726 5732 mutex_enter(&spa->spa_async_lock);
5727 5733 if (spa_async_tasks_pending(spa) &&
5728 5734 !spa->spa_async_suspended &&
5729 5735 spa->spa_async_thread == NULL &&
5730 5736 rootdir != NULL)
5731 5737 spa->spa_async_thread = thread_create(NULL, 0,
5732 5738 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5733 5739 mutex_exit(&spa->spa_async_lock);
5734 5740 }
5735 5741
5736 5742 void
5737 5743 spa_async_request(spa_t *spa, int task)
5738 5744 {
5739 5745 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5740 5746 mutex_enter(&spa->spa_async_lock);
5741 5747 spa->spa_async_tasks |= task;
5742 5748 mutex_exit(&spa->spa_async_lock);
5743 5749 }
5744 5750
5745 5751 /*
5746 5752 * ==========================================================================
5747 5753 * SPA syncing routines
5748 5754 * ==========================================================================
5749 5755 */
5750 5756
5751 5757 static int
5752 5758 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5753 5759 {
5754 5760 bpobj_t *bpo = arg;
5755 5761 bpobj_enqueue(bpo, bp, tx);
5756 5762 return (0);
5757 5763 }
5758 5764
5759 5765 static int
5760 5766 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5761 5767 {
5762 5768 zio_t *zio = arg;
5763 5769
5764 5770 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5765 5771 zio->io_flags));
5766 5772 return (0);
5767 5773 }
5768 5774
5769 5775 /*
5770 5776 * Note: this simple function is not inlined to make it easier to dtrace the
5771 5777 * amount of time spent syncing frees.
5772 5778 */
5773 5779 static void
5774 5780 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5775 5781 {
5776 5782 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5777 5783 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5778 5784 VERIFY(zio_wait(zio) == 0);
5779 5785 }
5780 5786
5781 5787 /*
5782 5788 * Note: this simple function is not inlined to make it easier to dtrace the
5783 5789 * amount of time spent syncing deferred frees.
5784 5790 */
5785 5791 static void
5786 5792 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5787 5793 {
5788 5794 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5789 5795 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5790 5796 spa_free_sync_cb, zio, tx), ==, 0);
5791 5797 VERIFY0(zio_wait(zio));
5792 5798 }
5793 5799
5794 5800
5795 5801 static void
5796 5802 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5797 5803 {
5798 5804 char *packed = NULL;
5799 5805 size_t bufsize;
5800 5806 size_t nvsize = 0;
5801 5807 dmu_buf_t *db;
5802 5808
5803 5809 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5804 5810
5805 5811 /*
5806 5812 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5807 5813 * information. This avoids the dmu_buf_will_dirty() path and
5808 5814 * saves us a pre-read to get data we don't actually care about.
5809 5815 */
5810 5816 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5811 5817 packed = kmem_alloc(bufsize, KM_SLEEP);
5812 5818
5813 5819 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5814 5820 KM_SLEEP) == 0);
5815 5821 bzero(packed + nvsize, bufsize - nvsize);
5816 5822
5817 5823 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5818 5824
5819 5825 kmem_free(packed, bufsize);
5820 5826
5821 5827 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5822 5828 dmu_buf_will_dirty(db, tx);
5823 5829 *(uint64_t *)db->db_data = nvsize;
5824 5830 dmu_buf_rele(db, FTAG);
5825 5831 }
5826 5832
5827 5833 static void
5828 5834 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5829 5835 const char *config, const char *entry)
5830 5836 {
5831 5837 nvlist_t *nvroot;
5832 5838 nvlist_t **list;
5833 5839 int i;
5834 5840
5835 5841 if (!sav->sav_sync)
5836 5842 return;
5837 5843
5838 5844 /*
5839 5845 * Update the MOS nvlist describing the list of available devices.
5840 5846 * spa_validate_aux() will have already made sure this nvlist is
5841 5847 * valid and the vdevs are labeled appropriately.
5842 5848 */
5843 5849 if (sav->sav_object == 0) {
5844 5850 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5845 5851 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5846 5852 sizeof (uint64_t), tx);
5847 5853 VERIFY(zap_update(spa->spa_meta_objset,
5848 5854 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5849 5855 &sav->sav_object, tx) == 0);
5850 5856 }
5851 5857
5852 5858 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5853 5859 if (sav->sav_count == 0) {
5854 5860 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5855 5861 } else {
5856 5862 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5857 5863 for (i = 0; i < sav->sav_count; i++)
5858 5864 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5859 5865 B_FALSE, VDEV_CONFIG_L2CACHE);
5860 5866 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5861 5867 sav->sav_count) == 0);
5862 5868 for (i = 0; i < sav->sav_count; i++)
5863 5869 nvlist_free(list[i]);
5864 5870 kmem_free(list, sav->sav_count * sizeof (void *));
5865 5871 }
5866 5872
5867 5873 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5868 5874 nvlist_free(nvroot);
5869 5875
5870 5876 sav->sav_sync = B_FALSE;
5871 5877 }
5872 5878
5873 5879 static void
5874 5880 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5875 5881 {
5876 5882 nvlist_t *config;
5877 5883
5878 5884 if (list_is_empty(&spa->spa_config_dirty_list))
5879 5885 return;
5880 5886
5881 5887 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5882 5888
5883 5889 config = spa_config_generate(spa, spa->spa_root_vdev,
5884 5890 dmu_tx_get_txg(tx), B_FALSE);
5885 5891
5886 5892 /*
5887 5893 * If we're upgrading the spa version then make sure that
5888 5894 * the config object gets updated with the correct version.
5889 5895 */
5890 5896 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5891 5897 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5892 5898 spa->spa_uberblock.ub_version);
5893 5899
5894 5900 spa_config_exit(spa, SCL_STATE, FTAG);
5895 5901
5896 5902 if (spa->spa_config_syncing)
5897 5903 nvlist_free(spa->spa_config_syncing);
5898 5904 spa->spa_config_syncing = config;
5899 5905
5900 5906 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5901 5907 }
5902 5908
5903 5909 static void
5904 5910 spa_sync_version(void *arg, dmu_tx_t *tx)
5905 5911 {
5906 5912 uint64_t *versionp = arg;
5907 5913 uint64_t version = *versionp;
5908 5914 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5909 5915
5910 5916 /*
5911 5917 * Setting the version is special cased when first creating the pool.
5912 5918 */
5913 5919 ASSERT(tx->tx_txg != TXG_INITIAL);
5914 5920
5915 5921 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5916 5922 ASSERT(version >= spa_version(spa));
5917 5923
5918 5924 spa->spa_uberblock.ub_version = version;
5919 5925 vdev_config_dirty(spa->spa_root_vdev);
5920 5926 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5921 5927 }
5922 5928
5923 5929 /*
5924 5930 * Set zpool properties.
5925 5931 */
5926 5932 static void
5927 5933 spa_sync_props(void *arg, dmu_tx_t *tx)
5928 5934 {
5929 5935 nvlist_t *nvp = arg;
5930 5936 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5931 5937 objset_t *mos = spa->spa_meta_objset;
5932 5938 nvpair_t *elem = NULL;
5933 5939
5934 5940 mutex_enter(&spa->spa_props_lock);
5935 5941
5936 5942 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5937 5943 uint64_t intval;
5938 5944 char *strval, *fname;
5939 5945 zpool_prop_t prop;
5940 5946 const char *propname;
5941 5947 zprop_type_t proptype;
5942 5948 spa_feature_t fid;
5943 5949
5944 5950 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5945 5951 case ZPROP_INVAL:
5946 5952 /*
5947 5953 * We checked this earlier in spa_prop_validate().
5948 5954 */
5949 5955 ASSERT(zpool_prop_feature(nvpair_name(elem)));
5950 5956
5951 5957 fname = strchr(nvpair_name(elem), '@') + 1;
5952 5958 VERIFY0(zfeature_lookup_name(fname, &fid));
5953 5959
5954 5960 spa_feature_enable(spa, fid, tx);
5955 5961 spa_history_log_internal(spa, "set", tx,
5956 5962 "%s=enabled", nvpair_name(elem));
5957 5963 break;
5958 5964
5959 5965 case ZPOOL_PROP_VERSION:
5960 5966 intval = fnvpair_value_uint64(elem);
5961 5967 /*
5962 5968 * The version is synced seperatly before other
5963 5969 * properties and should be correct by now.
5964 5970 */
5965 5971 ASSERT3U(spa_version(spa), >=, intval);
5966 5972 break;
5967 5973
5968 5974 case ZPOOL_PROP_ALTROOT:
5969 5975 /*
5970 5976 * 'altroot' is a non-persistent property. It should
5971 5977 * have been set temporarily at creation or import time.
5972 5978 */
5973 5979 ASSERT(spa->spa_root != NULL);
5974 5980 break;
5975 5981
5976 5982 case ZPOOL_PROP_READONLY:
5977 5983 case ZPOOL_PROP_CACHEFILE:
5978 5984 /*
5979 5985 * 'readonly' and 'cachefile' are also non-persisitent
5980 5986 * properties.
5981 5987 */
5982 5988 break;
5983 5989 case ZPOOL_PROP_COMMENT:
5984 5990 strval = fnvpair_value_string(elem);
5985 5991 if (spa->spa_comment != NULL)
5986 5992 spa_strfree(spa->spa_comment);
5987 5993 spa->spa_comment = spa_strdup(strval);
5988 5994 /*
5989 5995 * We need to dirty the configuration on all the vdevs
5990 5996 * so that their labels get updated. It's unnecessary
5991 5997 * to do this for pool creation since the vdev's
5992 5998 * configuratoin has already been dirtied.
5993 5999 */
5994 6000 if (tx->tx_txg != TXG_INITIAL)
5995 6001 vdev_config_dirty(spa->spa_root_vdev);
5996 6002 spa_history_log_internal(spa, "set", tx,
5997 6003 "%s=%s", nvpair_name(elem), strval);
5998 6004 break;
5999 6005 default:
6000 6006 /*
6001 6007 * Set pool property values in the poolprops mos object.
6002 6008 */
6003 6009 if (spa->spa_pool_props_object == 0) {
6004 6010 spa->spa_pool_props_object =
6005 6011 zap_create_link(mos, DMU_OT_POOL_PROPS,
6006 6012 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6007 6013 tx);
6008 6014 }
6009 6015
6010 6016 /* normalize the property name */
6011 6017 propname = zpool_prop_to_name(prop);
6012 6018 proptype = zpool_prop_get_type(prop);
6013 6019
6014 6020 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6015 6021 ASSERT(proptype == PROP_TYPE_STRING);
6016 6022 strval = fnvpair_value_string(elem);
6017 6023 VERIFY0(zap_update(mos,
6018 6024 spa->spa_pool_props_object, propname,
6019 6025 1, strlen(strval) + 1, strval, tx));
6020 6026 spa_history_log_internal(spa, "set", tx,
6021 6027 "%s=%s", nvpair_name(elem), strval);
6022 6028 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6023 6029 intval = fnvpair_value_uint64(elem);
6024 6030
6025 6031 if (proptype == PROP_TYPE_INDEX) {
6026 6032 const char *unused;
6027 6033 VERIFY0(zpool_prop_index_to_string(
6028 6034 prop, intval, &unused));
6029 6035 }
6030 6036 VERIFY0(zap_update(mos,
6031 6037 spa->spa_pool_props_object, propname,
6032 6038 8, 1, &intval, tx));
6033 6039 spa_history_log_internal(spa, "set", tx,
6034 6040 "%s=%lld", nvpair_name(elem), intval);
6035 6041 } else {
6036 6042 ASSERT(0); /* not allowed */
6037 6043 }
6038 6044
6039 6045 switch (prop) {
6040 6046 case ZPOOL_PROP_DELEGATION:
6041 6047 spa->spa_delegation = intval;
6042 6048 break;
6043 6049 case ZPOOL_PROP_BOOTFS:
6044 6050 spa->spa_bootfs = intval;
6045 6051 break;
6046 6052 case ZPOOL_PROP_FAILUREMODE:
6047 6053 spa->spa_failmode = intval;
6048 6054 break;
6049 6055 case ZPOOL_PROP_AUTOEXPAND:
6050 6056 spa->spa_autoexpand = intval;
6051 6057 if (tx->tx_txg != TXG_INITIAL)
6052 6058 spa_async_request(spa,
6053 6059 SPA_ASYNC_AUTOEXPAND);
6054 6060 break;
6055 6061 case ZPOOL_PROP_DEDUPDITTO:
6056 6062 spa->spa_dedup_ditto = intval;
6057 6063 break;
6058 6064 default:
6059 6065 break;
6060 6066 }
6061 6067 }
6062 6068
6063 6069 }
6064 6070
6065 6071 mutex_exit(&spa->spa_props_lock);
6066 6072 }
6067 6073
6068 6074 /*
6069 6075 * Perform one-time upgrade on-disk changes. spa_version() does not
6070 6076 * reflect the new version this txg, so there must be no changes this
6071 6077 * txg to anything that the upgrade code depends on after it executes.
6072 6078 * Therefore this must be called after dsl_pool_sync() does the sync
6073 6079 * tasks.
6074 6080 */
6075 6081 static void
6076 6082 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6077 6083 {
6078 6084 dsl_pool_t *dp = spa->spa_dsl_pool;
6079 6085
6080 6086 ASSERT(spa->spa_sync_pass == 1);
6081 6087
6082 6088 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6083 6089
6084 6090 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6085 6091 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6086 6092 dsl_pool_create_origin(dp, tx);
6087 6093
6088 6094 /* Keeping the origin open increases spa_minref */
6089 6095 spa->spa_minref += 3;
6090 6096 }
6091 6097
6092 6098 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6093 6099 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6094 6100 dsl_pool_upgrade_clones(dp, tx);
6095 6101 }
6096 6102
6097 6103 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6098 6104 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6099 6105 dsl_pool_upgrade_dir_clones(dp, tx);
6100 6106
6101 6107 /* Keeping the freedir open increases spa_minref */
6102 6108 spa->spa_minref += 3;
6103 6109 }
6104 6110
6105 6111 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6106 6112 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6107 6113 spa_feature_create_zap_objects(spa, tx);
6108 6114 }
6109 6115 rrw_exit(&dp->dp_config_rwlock, FTAG);
6110 6116 }
6111 6117
6112 6118 /*
6113 6119 * Sync the specified transaction group. New blocks may be dirtied as
6114 6120 * part of the process, so we iterate until it converges.
6115 6121 */
6116 6122 void
6117 6123 spa_sync(spa_t *spa, uint64_t txg)
6118 6124 {
6119 6125 dsl_pool_t *dp = spa->spa_dsl_pool;
6120 6126 objset_t *mos = spa->spa_meta_objset;
6121 6127 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6122 6128 vdev_t *rvd = spa->spa_root_vdev;
6123 6129 vdev_t *vd;
6124 6130 dmu_tx_t *tx;
6125 6131 int error;
6126 6132
6127 6133 VERIFY(spa_writeable(spa));
6128 6134
6129 6135 /*
6130 6136 * Lock out configuration changes.
6131 6137 */
6132 6138 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6133 6139
6134 6140 spa->spa_syncing_txg = txg;
6135 6141 spa->spa_sync_pass = 0;
6136 6142
6137 6143 /*
6138 6144 * If there are any pending vdev state changes, convert them
6139 6145 * into config changes that go out with this transaction group.
6140 6146 */
6141 6147 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6142 6148 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6143 6149 /*
6144 6150 * We need the write lock here because, for aux vdevs,
6145 6151 * calling vdev_config_dirty() modifies sav_config.
6146 6152 * This is ugly and will become unnecessary when we
6147 6153 * eliminate the aux vdev wart by integrating all vdevs
6148 6154 * into the root vdev tree.
6149 6155 */
6150 6156 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6151 6157 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6152 6158 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6153 6159 vdev_state_clean(vd);
6154 6160 vdev_config_dirty(vd);
6155 6161 }
6156 6162 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6157 6163 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6158 6164 }
6159 6165 spa_config_exit(spa, SCL_STATE, FTAG);
6160 6166
6161 6167 tx = dmu_tx_create_assigned(dp, txg);
6162 6168
6163 6169 spa->spa_sync_starttime = gethrtime();
6164 6170 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6165 6171 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6166 6172
6167 6173 /*
6168 6174 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6169 6175 * set spa_deflate if we have no raid-z vdevs.
6170 6176 */
6171 6177 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6172 6178 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6173 6179 int i;
6174 6180
6175 6181 for (i = 0; i < rvd->vdev_children; i++) {
6176 6182 vd = rvd->vdev_child[i];
6177 6183 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6178 6184 break;
6179 6185 }
6180 6186 if (i == rvd->vdev_children) {
6181 6187 spa->spa_deflate = TRUE;
6182 6188 VERIFY(0 == zap_add(spa->spa_meta_objset,
6183 6189 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6184 6190 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6185 6191 }
6186 6192 }
6187 6193
6188 6194 /*
6189 6195 * If anything has changed in this txg, or if someone is waiting
6190 6196 * for this txg to sync (eg, spa_vdev_remove()), push the
6191 6197 * deferred frees from the previous txg. If not, leave them
6192 6198 * alone so that we don't generate work on an otherwise idle
6193 6199 * system.
6194 6200 */
6195 6201 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6196 6202 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6197 6203 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6198 6204 ((dsl_scan_active(dp->dp_scan) ||
6199 6205 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6200 6206 spa_sync_deferred_frees(spa, tx);
6201 6207 }
6202 6208
6203 6209 /*
6204 6210 * Iterate to convergence.
6205 6211 */
6206 6212 do {
6207 6213 int pass = ++spa->spa_sync_pass;
6208 6214
6209 6215 spa_sync_config_object(spa, tx);
6210 6216 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6211 6217 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6212 6218 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6213 6219 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6214 6220 spa_errlog_sync(spa, txg);
6215 6221 dsl_pool_sync(dp, txg);
6216 6222
6217 6223 if (pass < zfs_sync_pass_deferred_free) {
6218 6224 spa_sync_frees(spa, free_bpl, tx);
6219 6225 } else {
6220 6226 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6221 6227 &spa->spa_deferred_bpobj, tx);
6222 6228 }
6223 6229
6224 6230 ddt_sync(spa, txg);
6225 6231 dsl_scan_sync(dp, tx);
6226 6232
6227 6233 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6228 6234 vdev_sync(vd, txg);
6229 6235
6230 6236 if (pass == 1)
6231 6237 spa_sync_upgrades(spa, tx);
6232 6238
6233 6239 } while (dmu_objset_is_dirty(mos, txg));
6234 6240
6235 6241 /*
6236 6242 * Rewrite the vdev configuration (which includes the uberblock)
6237 6243 * to commit the transaction group.
6238 6244 *
6239 6245 * If there are no dirty vdevs, we sync the uberblock to a few
6240 6246 * random top-level vdevs that are known to be visible in the
6241 6247 * config cache (see spa_vdev_add() for a complete description).
6242 6248 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6243 6249 */
6244 6250 for (;;) {
6245 6251 /*
6246 6252 * We hold SCL_STATE to prevent vdev open/close/etc.
6247 6253 * while we're attempting to write the vdev labels.
6248 6254 */
6249 6255 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6250 6256
6251 6257 if (list_is_empty(&spa->spa_config_dirty_list)) {
6252 6258 vdev_t *svd[SPA_DVAS_PER_BP];
6253 6259 int svdcount = 0;
6254 6260 int children = rvd->vdev_children;
6255 6261 int c0 = spa_get_random(children);
6256 6262
6257 6263 for (int c = 0; c < children; c++) {
6258 6264 vd = rvd->vdev_child[(c0 + c) % children];
6259 6265 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6260 6266 continue;
6261 6267 svd[svdcount++] = vd;
6262 6268 if (svdcount == SPA_DVAS_PER_BP)
6263 6269 break;
6264 6270 }
6265 6271 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6266 6272 if (error != 0)
6267 6273 error = vdev_config_sync(svd, svdcount, txg,
6268 6274 B_TRUE);
6269 6275 } else {
6270 6276 error = vdev_config_sync(rvd->vdev_child,
6271 6277 rvd->vdev_children, txg, B_FALSE);
6272 6278 if (error != 0)
6273 6279 error = vdev_config_sync(rvd->vdev_child,
6274 6280 rvd->vdev_children, txg, B_TRUE);
6275 6281 }
6276 6282
6277 6283 if (error == 0)
6278 6284 spa->spa_last_synced_guid = rvd->vdev_guid;
6279 6285
6280 6286 spa_config_exit(spa, SCL_STATE, FTAG);
6281 6287
6282 6288 if (error == 0)
6283 6289 break;
6284 6290 zio_suspend(spa, NULL);
6285 6291 zio_resume_wait(spa);
6286 6292 }
6287 6293 dmu_tx_commit(tx);
6288 6294
6289 6295 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6290 6296
6291 6297 /*
6292 6298 * Clear the dirty config list.
6293 6299 */
6294 6300 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6295 6301 vdev_config_clean(vd);
6296 6302
6297 6303 /*
6298 6304 * Now that the new config has synced transactionally,
6299 6305 * let it become visible to the config cache.
6300 6306 */
6301 6307 if (spa->spa_config_syncing != NULL) {
6302 6308 spa_config_set(spa, spa->spa_config_syncing);
6303 6309 spa->spa_config_txg = txg;
6304 6310 spa->spa_config_syncing = NULL;
6305 6311 }
6306 6312
6307 6313 spa->spa_ubsync = spa->spa_uberblock;
6308 6314
6309 6315 dsl_pool_sync_done(dp, txg);
6310 6316
6311 6317 /*
6312 6318 * Update usable space statistics.
6313 6319 */
6314 6320 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6315 6321 vdev_sync_done(vd, txg);
6316 6322
6317 6323 spa_update_dspace(spa);
6318 6324
6319 6325 /*
6320 6326 * It had better be the case that we didn't dirty anything
6321 6327 * since vdev_config_sync().
6322 6328 */
6323 6329 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6324 6330 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6325 6331 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6326 6332
6327 6333 spa->spa_sync_pass = 0;
6328 6334
6329 6335 spa_config_exit(spa, SCL_CONFIG, FTAG);
6330 6336
6331 6337 spa_handle_ignored_writes(spa);
6332 6338
6333 6339 /*
6334 6340 * If any async tasks have been requested, kick them off.
6335 6341 */
6336 6342 spa_async_dispatch(spa);
6337 6343 }
6338 6344
6339 6345 /*
6340 6346 * Sync all pools. We don't want to hold the namespace lock across these
6341 6347 * operations, so we take a reference on the spa_t and drop the lock during the
6342 6348 * sync.
6343 6349 */
6344 6350 void
6345 6351 spa_sync_allpools(void)
6346 6352 {
6347 6353 spa_t *spa = NULL;
6348 6354 mutex_enter(&spa_namespace_lock);
6349 6355 while ((spa = spa_next(spa)) != NULL) {
6350 6356 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6351 6357 !spa_writeable(spa) || spa_suspended(spa))
6352 6358 continue;
6353 6359 spa_open_ref(spa, FTAG);
6354 6360 mutex_exit(&spa_namespace_lock);
6355 6361 txg_wait_synced(spa_get_dsl(spa), 0);
6356 6362 mutex_enter(&spa_namespace_lock);
6357 6363 spa_close(spa, FTAG);
6358 6364 }
6359 6365 mutex_exit(&spa_namespace_lock);
6360 6366 }
6361 6367
6362 6368 /*
6363 6369 * ==========================================================================
6364 6370 * Miscellaneous routines
6365 6371 * ==========================================================================
6366 6372 */
6367 6373
6368 6374 /*
6369 6375 * Remove all pools in the system.
6370 6376 */
6371 6377 void
6372 6378 spa_evict_all(void)
6373 6379 {
6374 6380 spa_t *spa;
6375 6381
6376 6382 /*
6377 6383 * Remove all cached state. All pools should be closed now,
6378 6384 * so every spa in the AVL tree should be unreferenced.
6379 6385 */
6380 6386 mutex_enter(&spa_namespace_lock);
6381 6387 while ((spa = spa_next(NULL)) != NULL) {
6382 6388 /*
6383 6389 * Stop async tasks. The async thread may need to detach
6384 6390 * a device that's been replaced, which requires grabbing
6385 6391 * spa_namespace_lock, so we must drop it here.
6386 6392 */
6387 6393 spa_open_ref(spa, FTAG);
6388 6394 mutex_exit(&spa_namespace_lock);
6389 6395 spa_async_suspend(spa);
6390 6396 mutex_enter(&spa_namespace_lock);
6391 6397 spa_close(spa, FTAG);
6392 6398
6393 6399 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6394 6400 spa_unload(spa);
6395 6401 spa_deactivate(spa);
6396 6402 }
6397 6403 spa_remove(spa);
6398 6404 }
6399 6405 mutex_exit(&spa_namespace_lock);
6400 6406 }
6401 6407
6402 6408 vdev_t *
6403 6409 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6404 6410 {
6405 6411 vdev_t *vd;
6406 6412 int i;
6407 6413
6408 6414 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6409 6415 return (vd);
6410 6416
6411 6417 if (aux) {
6412 6418 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6413 6419 vd = spa->spa_l2cache.sav_vdevs[i];
6414 6420 if (vd->vdev_guid == guid)
6415 6421 return (vd);
6416 6422 }
6417 6423
6418 6424 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6419 6425 vd = spa->spa_spares.sav_vdevs[i];
6420 6426 if (vd->vdev_guid == guid)
6421 6427 return (vd);
6422 6428 }
6423 6429 }
6424 6430
6425 6431 return (NULL);
6426 6432 }
6427 6433
6428 6434 void
6429 6435 spa_upgrade(spa_t *spa, uint64_t version)
6430 6436 {
6431 6437 ASSERT(spa_writeable(spa));
6432 6438
6433 6439 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6434 6440
6435 6441 /*
6436 6442 * This should only be called for a non-faulted pool, and since a
6437 6443 * future version would result in an unopenable pool, this shouldn't be
6438 6444 * possible.
6439 6445 */
6440 6446 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6441 6447 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6442 6448
6443 6449 spa->spa_uberblock.ub_version = version;
6444 6450 vdev_config_dirty(spa->spa_root_vdev);
6445 6451
6446 6452 spa_config_exit(spa, SCL_ALL, FTAG);
6447 6453
6448 6454 txg_wait_synced(spa_get_dsl(spa), 0);
6449 6455 }
6450 6456
6451 6457 boolean_t
6452 6458 spa_has_spare(spa_t *spa, uint64_t guid)
6453 6459 {
6454 6460 int i;
6455 6461 uint64_t spareguid;
6456 6462 spa_aux_vdev_t *sav = &spa->spa_spares;
6457 6463
6458 6464 for (i = 0; i < sav->sav_count; i++)
6459 6465 if (sav->sav_vdevs[i]->vdev_guid == guid)
6460 6466 return (B_TRUE);
6461 6467
6462 6468 for (i = 0; i < sav->sav_npending; i++) {
6463 6469 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6464 6470 &spareguid) == 0 && spareguid == guid)
6465 6471 return (B_TRUE);
6466 6472 }
6467 6473
6468 6474 return (B_FALSE);
6469 6475 }
6470 6476
6471 6477 /*
6472 6478 * Check if a pool has an active shared spare device.
6473 6479 * Note: reference count of an active spare is 2, as a spare and as a replace
6474 6480 */
6475 6481 static boolean_t
6476 6482 spa_has_active_shared_spare(spa_t *spa)
6477 6483 {
6478 6484 int i, refcnt;
6479 6485 uint64_t pool;
6480 6486 spa_aux_vdev_t *sav = &spa->spa_spares;
6481 6487
6482 6488 for (i = 0; i < sav->sav_count; i++) {
6483 6489 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6484 6490 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6485 6491 refcnt > 2)
6486 6492 return (B_TRUE);
6487 6493 }
6488 6494
6489 6495 return (B_FALSE);
6490 6496 }
6491 6497
6492 6498 /*
6493 6499 * Post a sysevent corresponding to the given event. The 'name' must be one of
6494 6500 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6495 6501 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6496 6502 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6497 6503 * or zdb as real changes.
6498 6504 */
6499 6505 void
6500 6506 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6501 6507 {
6502 6508 #ifdef _KERNEL
6503 6509 sysevent_t *ev;
6504 6510 sysevent_attr_list_t *attr = NULL;
6505 6511 sysevent_value_t value;
6506 6512 sysevent_id_t eid;
6507 6513
6508 6514 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6509 6515 SE_SLEEP);
6510 6516
6511 6517 value.value_type = SE_DATA_TYPE_STRING;
6512 6518 value.value.sv_string = spa_name(spa);
6513 6519 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6514 6520 goto done;
6515 6521
6516 6522 value.value_type = SE_DATA_TYPE_UINT64;
6517 6523 value.value.sv_uint64 = spa_guid(spa);
6518 6524 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6519 6525 goto done;
6520 6526
6521 6527 if (vd) {
6522 6528 value.value_type = SE_DATA_TYPE_UINT64;
6523 6529 value.value.sv_uint64 = vd->vdev_guid;
6524 6530 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6525 6531 SE_SLEEP) != 0)
6526 6532 goto done;
6527 6533
6528 6534 if (vd->vdev_path) {
6529 6535 value.value_type = SE_DATA_TYPE_STRING;
6530 6536 value.value.sv_string = vd->vdev_path;
6531 6537 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6532 6538 &value, SE_SLEEP) != 0)
6533 6539 goto done;
6534 6540 }
6535 6541 }
6536 6542
6537 6543 if (sysevent_attach_attributes(ev, attr) != 0)
6538 6544 goto done;
6539 6545 attr = NULL;
6540 6546
6541 6547 (void) log_sysevent(ev, SE_SLEEP, &eid);
6542 6548
6543 6549 done:
6544 6550 if (attr)
6545 6551 sysevent_free_attr(attr);
6546 6552 sysevent_free(ev);
6547 6553 #endif
6548 6554 }
↓ open down ↓ |
3381 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX