1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
26 */
27
28 /*
29 * SPA: Storage Pool Allocator
30 *
31 * This file contains all the routines used when modifying on-disk SPA state.
32 * This includes opening, importing, destroying, exporting a pool, and syncing a
33 * pool.
34 */
35
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa_impl.h>
39 #include <sys/zio.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/ddt.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/uberblock_impl.h>
50 #include <sys/txg.h>
51 #include <sys/avl.h>
52 #include <sys/dmu_traverse.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/unique.h>
55 #include <sys/dsl_pool.h>
56 #include <sys/dsl_dataset.h>
57 #include <sys/dsl_dir.h>
58 #include <sys/dsl_prop.h>
59 #include <sys/dsl_synctask.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/arc.h>
62 #include <sys/callb.h>
63 #include <sys/systeminfo.h>
64 #include <sys/spa_boot.h>
65 #include <sys/zfs_ioctl.h>
66 #include <sys/dsl_scan.h>
67 #include <sys/zfeature.h>
68 #include <sys/dsl_destroy.h>
69
70 #ifdef _KERNEL
71 #include <sys/bootprops.h>
72 #include <sys/callb.h>
73 #include <sys/cpupart.h>
74 #include <sys/pool.h>
75 #include <sys/sysdc.h>
76 #include <sys/zone.h>
77 #endif /* _KERNEL */
78
79 #include "zfs_prop.h"
80 #include "zfs_comutil.h"
81
82 /*
83 * The interval, in seconds, at which failed configuration cache file writes
84 * should be retried.
85 */
86 static int zfs_ccw_retry_interval = 300;
87
88 typedef enum zti_modes {
89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
90 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
91 ZTI_MODE_NULL, /* don't create a taskq */
92 ZTI_NMODES
93 } zti_modes_t;
94
95 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
96 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
97 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
98
99 #define ZTI_N(n) ZTI_P(n, 1)
100 #define ZTI_ONE ZTI_N(1)
101
102 typedef struct zio_taskq_info {
103 zti_modes_t zti_mode;
104 uint_t zti_value;
105 uint_t zti_count;
106 } zio_taskq_info_t;
107
108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
109 "issue", "issue_high", "intr", "intr_high"
110 };
111
112 /*
113 * This table defines the taskq settings for each ZFS I/O type. When
114 * initializing a pool, we use this table to create an appropriately sized
115 * taskq. Some operations are low volume and therefore have a small, static
116 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
117 * macros. Other operations process a large amount of data; the ZTI_BATCH
118 * macro causes us to create a taskq oriented for throughput. Some operations
119 * are so high frequency and short-lived that the taskq itself can become a a
120 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
121 * additional degree of parallelism specified by the number of threads per-
122 * taskq and the number of taskqs; when dispatching an event in this case, the
123 * particular taskq is chosen at random.
124 *
125 * The different taskq priorities are to handle the different contexts (issue
126 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
127 * need to be handled with minimum delay.
128 */
129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
130 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
132 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
133 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
134 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
137 };
138
139 static void spa_sync_version(void *arg, dmu_tx_t *tx);
140 static void spa_sync_props(void *arg, dmu_tx_t *tx);
141 static boolean_t spa_has_active_shared_spare(spa_t *spa);
142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
144 char **ereport);
145 static void spa_vdev_resilver_done(spa_t *spa);
146
147 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
148 id_t zio_taskq_psrset_bind = PS_NONE;
149 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
150 uint_t zio_taskq_basedc = 80; /* base duty cycle */
151
152 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
153 extern int zfs_sync_pass_deferred_free;
154
155 /*
156 * This (illegal) pool name is used when temporarily importing a spa_t in order
157 * to get the vdev stats associated with the imported devices.
158 */
159 #define TRYIMPORT_NAME "$import"
160
161 /*
162 * ==========================================================================
163 * SPA properties routines
164 * ==========================================================================
165 */
166
167 /*
168 * Add a (source=src, propname=propval) list to an nvlist.
169 */
170 static void
171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
172 uint64_t intval, zprop_source_t src)
173 {
174 const char *propname = zpool_prop_to_name(prop);
175 nvlist_t *propval;
176
177 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
178 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
179
180 if (strval != NULL)
181 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
182 else
183 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
184
185 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
186 nvlist_free(propval);
187 }
188
189 /*
190 * Get property values from the spa configuration.
191 */
192 static void
193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
194 {
195 vdev_t *rvd = spa->spa_root_vdev;
196 dsl_pool_t *pool = spa->spa_dsl_pool;
197 uint64_t size;
198 uint64_t alloc;
199 uint64_t space;
200 uint64_t cap, version;
201 zprop_source_t src = ZPROP_SRC_NONE;
202 spa_config_dirent_t *dp;
203
204 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
205
206 if (rvd != NULL) {
207 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
208 size = metaslab_class_get_space(spa_normal_class(spa));
209 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
210 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
211 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
212 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
213 size - alloc, src);
214
215 space = 0;
216 for (int c = 0; c < rvd->vdev_children; c++) {
217 vdev_t *tvd = rvd->vdev_child[c];
218 space += tvd->vdev_max_asize - tvd->vdev_asize;
219 }
220 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
221 src);
222
223 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
224 (spa_mode(spa) == FREAD), src);
225
226 cap = (size == 0) ? 0 : (alloc * 100 / size);
227 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
228
229 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
230 ddt_get_pool_dedup_ratio(spa), src);
231
232 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
233 rvd->vdev_state, src);
234
235 version = spa_version(spa);
236 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
237 src = ZPROP_SRC_DEFAULT;
238 else
239 src = ZPROP_SRC_LOCAL;
240 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
241 }
242
243 if (pool != NULL) {
244 /*
245 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
246 * when opening pools before this version freedir will be NULL.
247 */
248 if (pool->dp_free_dir != NULL) {
249 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
250 pool->dp_free_dir->dd_phys->dd_used_bytes, src);
251 } else {
252 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
253 NULL, 0, src);
254 }
255
256 if (pool->dp_leak_dir != NULL) {
257 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
258 pool->dp_leak_dir->dd_phys->dd_used_bytes, src);
259 } else {
260 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
261 NULL, 0, src);
262 }
263 }
264
265 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
266
267 if (spa->spa_comment != NULL) {
268 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
269 0, ZPROP_SRC_LOCAL);
270 }
271
272 if (spa->spa_root != NULL)
273 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
274 0, ZPROP_SRC_LOCAL);
275
276 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
277 if (dp->scd_path == NULL) {
278 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
279 "none", 0, ZPROP_SRC_LOCAL);
280 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
281 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
282 dp->scd_path, 0, ZPROP_SRC_LOCAL);
283 }
284 }
285 }
286
287 /*
288 * Get zpool property values.
289 */
290 int
291 spa_prop_get(spa_t *spa, nvlist_t **nvp)
292 {
293 objset_t *mos = spa->spa_meta_objset;
294 zap_cursor_t zc;
295 zap_attribute_t za;
296 int err;
297
298 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
299
300 mutex_enter(&spa->spa_props_lock);
301
302 /*
303 * Get properties from the spa config.
304 */
305 spa_prop_get_config(spa, nvp);
306
307 /* If no pool property object, no more prop to get. */
308 if (mos == NULL || spa->spa_pool_props_object == 0) {
309 mutex_exit(&spa->spa_props_lock);
310 return (0);
311 }
312
313 /*
314 * Get properties from the MOS pool property object.
315 */
316 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
317 (err = zap_cursor_retrieve(&zc, &za)) == 0;
318 zap_cursor_advance(&zc)) {
319 uint64_t intval = 0;
320 char *strval = NULL;
321 zprop_source_t src = ZPROP_SRC_DEFAULT;
322 zpool_prop_t prop;
323
324 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
325 continue;
326
327 switch (za.za_integer_length) {
328 case 8:
329 /* integer property */
330 if (za.za_first_integer !=
331 zpool_prop_default_numeric(prop))
332 src = ZPROP_SRC_LOCAL;
333
334 if (prop == ZPOOL_PROP_BOOTFS) {
335 dsl_pool_t *dp;
336 dsl_dataset_t *ds = NULL;
337
338 dp = spa_get_dsl(spa);
339 dsl_pool_config_enter(dp, FTAG);
340 if (err = dsl_dataset_hold_obj(dp,
341 za.za_first_integer, FTAG, &ds)) {
342 dsl_pool_config_exit(dp, FTAG);
343 break;
344 }
345
346 strval = kmem_alloc(
347 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
348 KM_SLEEP);
349 dsl_dataset_name(ds, strval);
350 dsl_dataset_rele(ds, FTAG);
351 dsl_pool_config_exit(dp, FTAG);
352 } else {
353 strval = NULL;
354 intval = za.za_first_integer;
355 }
356
357 spa_prop_add_list(*nvp, prop, strval, intval, src);
358
359 if (strval != NULL)
360 kmem_free(strval,
361 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
362
363 break;
364
365 case 1:
366 /* string property */
367 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
368 err = zap_lookup(mos, spa->spa_pool_props_object,
369 za.za_name, 1, za.za_num_integers, strval);
370 if (err) {
371 kmem_free(strval, za.za_num_integers);
372 break;
373 }
374 spa_prop_add_list(*nvp, prop, strval, 0, src);
375 kmem_free(strval, za.za_num_integers);
376 break;
377
378 default:
379 break;
380 }
381 }
382 zap_cursor_fini(&zc);
383 mutex_exit(&spa->spa_props_lock);
384 out:
385 if (err && err != ENOENT) {
386 nvlist_free(*nvp);
387 *nvp = NULL;
388 return (err);
389 }
390
391 return (0);
392 }
393
394 /*
395 * Validate the given pool properties nvlist and modify the list
396 * for the property values to be set.
397 */
398 static int
399 spa_prop_validate(spa_t *spa, nvlist_t *props)
400 {
401 nvpair_t *elem;
402 int error = 0, reset_bootfs = 0;
403 uint64_t objnum = 0;
404 boolean_t has_feature = B_FALSE;
405
406 elem = NULL;
407 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
408 uint64_t intval;
409 char *strval, *slash, *check, *fname;
410 const char *propname = nvpair_name(elem);
411 zpool_prop_t prop = zpool_name_to_prop(propname);
412
413 switch (prop) {
414 case ZPROP_INVAL:
415 if (!zpool_prop_feature(propname)) {
416 error = SET_ERROR(EINVAL);
417 break;
418 }
419
420 /*
421 * Sanitize the input.
422 */
423 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
424 error = SET_ERROR(EINVAL);
425 break;
426 }
427
428 if (nvpair_value_uint64(elem, &intval) != 0) {
429 error = SET_ERROR(EINVAL);
430 break;
431 }
432
433 if (intval != 0) {
434 error = SET_ERROR(EINVAL);
435 break;
436 }
437
438 fname = strchr(propname, '@') + 1;
439 if (zfeature_lookup_name(fname, NULL) != 0) {
440 error = SET_ERROR(EINVAL);
441 break;
442 }
443
444 has_feature = B_TRUE;
445 break;
446
447 case ZPOOL_PROP_VERSION:
448 error = nvpair_value_uint64(elem, &intval);
449 if (!error &&
450 (intval < spa_version(spa) ||
451 intval > SPA_VERSION_BEFORE_FEATURES ||
452 has_feature))
453 error = SET_ERROR(EINVAL);
454 break;
455
456 case ZPOOL_PROP_DELEGATION:
457 case ZPOOL_PROP_AUTOREPLACE:
458 case ZPOOL_PROP_LISTSNAPS:
459 case ZPOOL_PROP_AUTOEXPAND:
460 error = nvpair_value_uint64(elem, &intval);
461 if (!error && intval > 1)
462 error = SET_ERROR(EINVAL);
463 break;
464
465 case ZPOOL_PROP_BOOTFS:
466 /*
467 * If the pool version is less than SPA_VERSION_BOOTFS,
468 * or the pool is still being created (version == 0),
469 * the bootfs property cannot be set.
470 */
471 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
472 error = SET_ERROR(ENOTSUP);
473 break;
474 }
475
476 /*
477 * Make sure the vdev config is bootable
478 */
479 if (!vdev_is_bootable(spa->spa_root_vdev)) {
480 error = SET_ERROR(ENOTSUP);
481 break;
482 }
483
484 reset_bootfs = 1;
485
486 error = nvpair_value_string(elem, &strval);
487
488 if (!error) {
489 objset_t *os;
490 uint64_t compress;
491
492 if (strval == NULL || strval[0] == '\0') {
493 objnum = zpool_prop_default_numeric(
494 ZPOOL_PROP_BOOTFS);
495 break;
496 }
497
498 if (error = dmu_objset_hold(strval, FTAG, &os))
499 break;
500
501 /* Must be ZPL and not gzip compressed. */
502
503 if (dmu_objset_type(os) != DMU_OST_ZFS) {
504 error = SET_ERROR(ENOTSUP);
505 } else if ((error =
506 dsl_prop_get_int_ds(dmu_objset_ds(os),
507 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
508 &compress)) == 0 &&
509 !BOOTFS_COMPRESS_VALID(compress)) {
510 error = SET_ERROR(ENOTSUP);
511 } else {
512 objnum = dmu_objset_id(os);
513 }
514 dmu_objset_rele(os, FTAG);
515 }
516 break;
517
518 case ZPOOL_PROP_FAILUREMODE:
519 error = nvpair_value_uint64(elem, &intval);
520 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
521 intval > ZIO_FAILURE_MODE_PANIC))
522 error = SET_ERROR(EINVAL);
523
524 /*
525 * This is a special case which only occurs when
526 * the pool has completely failed. This allows
527 * the user to change the in-core failmode property
528 * without syncing it out to disk (I/Os might
529 * currently be blocked). We do this by returning
530 * EIO to the caller (spa_prop_set) to trick it
531 * into thinking we encountered a property validation
532 * error.
533 */
534 if (!error && spa_suspended(spa)) {
535 spa->spa_failmode = intval;
536 error = SET_ERROR(EIO);
537 }
538 break;
539
540 case ZPOOL_PROP_CACHEFILE:
541 if ((error = nvpair_value_string(elem, &strval)) != 0)
542 break;
543
544 if (strval[0] == '\0')
545 break;
546
547 if (strcmp(strval, "none") == 0)
548 break;
549
550 if (strval[0] != '/') {
551 error = SET_ERROR(EINVAL);
552 break;
553 }
554
555 slash = strrchr(strval, '/');
556 ASSERT(slash != NULL);
557
558 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
559 strcmp(slash, "/..") == 0)
560 error = SET_ERROR(EINVAL);
561 break;
562
563 case ZPOOL_PROP_COMMENT:
564 if ((error = nvpair_value_string(elem, &strval)) != 0)
565 break;
566 for (check = strval; *check != '\0'; check++) {
567 /*
568 * The kernel doesn't have an easy isprint()
569 * check. For this kernel check, we merely
570 * check ASCII apart from DEL. Fix this if
571 * there is an easy-to-use kernel isprint().
572 */
573 if (*check >= 0x7f) {
574 error = SET_ERROR(EINVAL);
575 break;
576 }
577 check++;
578 }
579 if (strlen(strval) > ZPROP_MAX_COMMENT)
580 error = E2BIG;
581 break;
582
583 case ZPOOL_PROP_DEDUPDITTO:
584 if (spa_version(spa) < SPA_VERSION_DEDUP)
585 error = SET_ERROR(ENOTSUP);
586 else
587 error = nvpair_value_uint64(elem, &intval);
588 if (error == 0 &&
589 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
590 error = SET_ERROR(EINVAL);
591 break;
592 }
593
594 if (error)
595 break;
596 }
597
598 if (!error && reset_bootfs) {
599 error = nvlist_remove(props,
600 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
601
602 if (!error) {
603 error = nvlist_add_uint64(props,
604 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
605 }
606 }
607
608 return (error);
609 }
610
611 void
612 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
613 {
614 char *cachefile;
615 spa_config_dirent_t *dp;
616
617 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
618 &cachefile) != 0)
619 return;
620
621 dp = kmem_alloc(sizeof (spa_config_dirent_t),
622 KM_SLEEP);
623
624 if (cachefile[0] == '\0')
625 dp->scd_path = spa_strdup(spa_config_path);
626 else if (strcmp(cachefile, "none") == 0)
627 dp->scd_path = NULL;
628 else
629 dp->scd_path = spa_strdup(cachefile);
630
631 list_insert_head(&spa->spa_config_list, dp);
632 if (need_sync)
633 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
634 }
635
636 int
637 spa_prop_set(spa_t *spa, nvlist_t *nvp)
638 {
639 int error;
640 nvpair_t *elem = NULL;
641 boolean_t need_sync = B_FALSE;
642
643 if ((error = spa_prop_validate(spa, nvp)) != 0)
644 return (error);
645
646 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
647 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
648
649 if (prop == ZPOOL_PROP_CACHEFILE ||
650 prop == ZPOOL_PROP_ALTROOT ||
651 prop == ZPOOL_PROP_READONLY)
652 continue;
653
654 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
655 uint64_t ver;
656
657 if (prop == ZPOOL_PROP_VERSION) {
658 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
659 } else {
660 ASSERT(zpool_prop_feature(nvpair_name(elem)));
661 ver = SPA_VERSION_FEATURES;
662 need_sync = B_TRUE;
663 }
664
665 /* Save time if the version is already set. */
666 if (ver == spa_version(spa))
667 continue;
668
669 /*
670 * In addition to the pool directory object, we might
671 * create the pool properties object, the features for
672 * read object, the features for write object, or the
673 * feature descriptions object.
674 */
675 error = dsl_sync_task(spa->spa_name, NULL,
676 spa_sync_version, &ver, 6);
677 if (error)
678 return (error);
679 continue;
680 }
681
682 need_sync = B_TRUE;
683 break;
684 }
685
686 if (need_sync) {
687 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
688 nvp, 6));
689 }
690
691 return (0);
692 }
693
694 /*
695 * If the bootfs property value is dsobj, clear it.
696 */
697 void
698 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
699 {
700 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
701 VERIFY(zap_remove(spa->spa_meta_objset,
702 spa->spa_pool_props_object,
703 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
704 spa->spa_bootfs = 0;
705 }
706 }
707
708 /*ARGSUSED*/
709 static int
710 spa_change_guid_check(void *arg, dmu_tx_t *tx)
711 {
712 uint64_t *newguid = arg;
713 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
714 vdev_t *rvd = spa->spa_root_vdev;
715 uint64_t vdev_state;
716
717 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
718 vdev_state = rvd->vdev_state;
719 spa_config_exit(spa, SCL_STATE, FTAG);
720
721 if (vdev_state != VDEV_STATE_HEALTHY)
722 return (SET_ERROR(ENXIO));
723
724 ASSERT3U(spa_guid(spa), !=, *newguid);
725
726 return (0);
727 }
728
729 static void
730 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
731 {
732 uint64_t *newguid = arg;
733 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
734 uint64_t oldguid;
735 vdev_t *rvd = spa->spa_root_vdev;
736
737 oldguid = spa_guid(spa);
738
739 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
740 rvd->vdev_guid = *newguid;
741 rvd->vdev_guid_sum += (*newguid - oldguid);
742 vdev_config_dirty(rvd);
743 spa_config_exit(spa, SCL_STATE, FTAG);
744
745 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
746 oldguid, *newguid);
747 }
748
749 /*
750 * Change the GUID for the pool. This is done so that we can later
751 * re-import a pool built from a clone of our own vdevs. We will modify
752 * the root vdev's guid, our own pool guid, and then mark all of our
753 * vdevs dirty. Note that we must make sure that all our vdevs are
754 * online when we do this, or else any vdevs that weren't present
755 * would be orphaned from our pool. We are also going to issue a
756 * sysevent to update any watchers.
757 */
758 int
759 spa_change_guid(spa_t *spa)
760 {
761 int error;
762 uint64_t guid;
763
764 mutex_enter(&spa->spa_vdev_top_lock);
765 mutex_enter(&spa_namespace_lock);
766 guid = spa_generate_guid(NULL);
767
768 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
769 spa_change_guid_sync, &guid, 5);
770
771 if (error == 0) {
772 spa_config_sync(spa, B_FALSE, B_TRUE);
773 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
774 }
775
776 mutex_exit(&spa_namespace_lock);
777 mutex_exit(&spa->spa_vdev_top_lock);
778
779 return (error);
780 }
781
782 /*
783 * ==========================================================================
784 * SPA state manipulation (open/create/destroy/import/export)
785 * ==========================================================================
786 */
787
788 static int
789 spa_error_entry_compare(const void *a, const void *b)
790 {
791 spa_error_entry_t *sa = (spa_error_entry_t *)a;
792 spa_error_entry_t *sb = (spa_error_entry_t *)b;
793 int ret;
794
795 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
796 sizeof (zbookmark_t));
797
798 if (ret < 0)
799 return (-1);
800 else if (ret > 0)
801 return (1);
802 else
803 return (0);
804 }
805
806 /*
807 * Utility function which retrieves copies of the current logs and
808 * re-initializes them in the process.
809 */
810 void
811 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
812 {
813 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
814
815 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
816 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
817
818 avl_create(&spa->spa_errlist_scrub,
819 spa_error_entry_compare, sizeof (spa_error_entry_t),
820 offsetof(spa_error_entry_t, se_avl));
821 avl_create(&spa->spa_errlist_last,
822 spa_error_entry_compare, sizeof (spa_error_entry_t),
823 offsetof(spa_error_entry_t, se_avl));
824 }
825
826 static void
827 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
828 {
829 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
830 enum zti_modes mode = ztip->zti_mode;
831 uint_t value = ztip->zti_value;
832 uint_t count = ztip->zti_count;
833 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
834 char name[32];
835 uint_t flags = 0;
836 boolean_t batch = B_FALSE;
837
838 if (mode == ZTI_MODE_NULL) {
839 tqs->stqs_count = 0;
840 tqs->stqs_taskq = NULL;
841 return;
842 }
843
844 ASSERT3U(count, >, 0);
845
846 tqs->stqs_count = count;
847 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
848
849 switch (mode) {
850 case ZTI_MODE_FIXED:
851 ASSERT3U(value, >=, 1);
852 value = MAX(value, 1);
853 break;
854
855 case ZTI_MODE_BATCH:
856 batch = B_TRUE;
857 flags |= TASKQ_THREADS_CPU_PCT;
858 value = zio_taskq_batch_pct;
859 break;
860
861 default:
862 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
863 "spa_activate()",
864 zio_type_name[t], zio_taskq_types[q], mode, value);
865 break;
866 }
867
868 for (uint_t i = 0; i < count; i++) {
869 taskq_t *tq;
870
871 if (count > 1) {
872 (void) snprintf(name, sizeof (name), "%s_%s_%u",
873 zio_type_name[t], zio_taskq_types[q], i);
874 } else {
875 (void) snprintf(name, sizeof (name), "%s_%s",
876 zio_type_name[t], zio_taskq_types[q]);
877 }
878
879 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
880 if (batch)
881 flags |= TASKQ_DC_BATCH;
882
883 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
884 spa->spa_proc, zio_taskq_basedc, flags);
885 } else {
886 pri_t pri = maxclsyspri;
887 /*
888 * The write issue taskq can be extremely CPU
889 * intensive. Run it at slightly lower priority
890 * than the other taskqs.
891 */
892 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
893 pri--;
894
895 tq = taskq_create_proc(name, value, pri, 50,
896 INT_MAX, spa->spa_proc, flags);
897 }
898
899 tqs->stqs_taskq[i] = tq;
900 }
901 }
902
903 static void
904 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
905 {
906 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
907
908 if (tqs->stqs_taskq == NULL) {
909 ASSERT0(tqs->stqs_count);
910 return;
911 }
912
913 for (uint_t i = 0; i < tqs->stqs_count; i++) {
914 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
915 taskq_destroy(tqs->stqs_taskq[i]);
916 }
917
918 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
919 tqs->stqs_taskq = NULL;
920 }
921
922 /*
923 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
924 * Note that a type may have multiple discrete taskqs to avoid lock contention
925 * on the taskq itself. In that case we choose which taskq at random by using
926 * the low bits of gethrtime().
927 */
928 void
929 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
930 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
931 {
932 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
933 taskq_t *tq;
934
935 ASSERT3P(tqs->stqs_taskq, !=, NULL);
936 ASSERT3U(tqs->stqs_count, !=, 0);
937
938 if (tqs->stqs_count == 1) {
939 tq = tqs->stqs_taskq[0];
940 } else {
941 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
942 }
943
944 taskq_dispatch_ent(tq, func, arg, flags, ent);
945 }
946
947 static void
948 spa_create_zio_taskqs(spa_t *spa)
949 {
950 for (int t = 0; t < ZIO_TYPES; t++) {
951 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
952 spa_taskqs_init(spa, t, q);
953 }
954 }
955 }
956
957 #ifdef _KERNEL
958 static void
959 spa_thread(void *arg)
960 {
961 callb_cpr_t cprinfo;
962
963 spa_t *spa = arg;
964 user_t *pu = PTOU(curproc);
965
966 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
967 spa->spa_name);
968
969 ASSERT(curproc != &p0);
970 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
971 "zpool-%s", spa->spa_name);
972 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
973
974 /* bind this thread to the requested psrset */
975 if (zio_taskq_psrset_bind != PS_NONE) {
976 pool_lock();
977 mutex_enter(&cpu_lock);
978 mutex_enter(&pidlock);
979 mutex_enter(&curproc->p_lock);
980
981 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
982 0, NULL, NULL) == 0) {
983 curthread->t_bind_pset = zio_taskq_psrset_bind;
984 } else {
985 cmn_err(CE_WARN,
986 "Couldn't bind process for zfs pool \"%s\" to "
987 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
988 }
989
990 mutex_exit(&curproc->p_lock);
991 mutex_exit(&pidlock);
992 mutex_exit(&cpu_lock);
993 pool_unlock();
994 }
995
996 if (zio_taskq_sysdc) {
997 sysdc_thread_enter(curthread, 100, 0);
998 }
999
1000 spa->spa_proc = curproc;
1001 spa->spa_did = curthread->t_did;
1002
1003 spa_create_zio_taskqs(spa);
1004
1005 mutex_enter(&spa->spa_proc_lock);
1006 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1007
1008 spa->spa_proc_state = SPA_PROC_ACTIVE;
1009 cv_broadcast(&spa->spa_proc_cv);
1010
1011 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1012 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1013 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1014 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1015
1016 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1017 spa->spa_proc_state = SPA_PROC_GONE;
1018 spa->spa_proc = &p0;
1019 cv_broadcast(&spa->spa_proc_cv);
1020 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1021
1022 mutex_enter(&curproc->p_lock);
1023 lwp_exit();
1024 }
1025 #endif
1026
1027 /*
1028 * Activate an uninitialized pool.
1029 */
1030 static void
1031 spa_activate(spa_t *spa, int mode)
1032 {
1033 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1034
1035 spa->spa_state = POOL_STATE_ACTIVE;
1036 spa->spa_mode = mode;
1037
1038 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1039 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1040
1041 /* Try to create a covering process */
1042 mutex_enter(&spa->spa_proc_lock);
1043 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1044 ASSERT(spa->spa_proc == &p0);
1045 spa->spa_did = 0;
1046
1047 /* Only create a process if we're going to be around a while. */
1048 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1049 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1050 NULL, 0) == 0) {
1051 spa->spa_proc_state = SPA_PROC_CREATED;
1052 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1053 cv_wait(&spa->spa_proc_cv,
1054 &spa->spa_proc_lock);
1055 }
1056 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1057 ASSERT(spa->spa_proc != &p0);
1058 ASSERT(spa->spa_did != 0);
1059 } else {
1060 #ifdef _KERNEL
1061 cmn_err(CE_WARN,
1062 "Couldn't create process for zfs pool \"%s\"\n",
1063 spa->spa_name);
1064 #endif
1065 }
1066 }
1067 mutex_exit(&spa->spa_proc_lock);
1068
1069 /* If we didn't create a process, we need to create our taskqs. */
1070 if (spa->spa_proc == &p0) {
1071 spa_create_zio_taskqs(spa);
1072 }
1073
1074 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1075 offsetof(vdev_t, vdev_config_dirty_node));
1076 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1077 offsetof(vdev_t, vdev_state_dirty_node));
1078
1079 txg_list_create(&spa->spa_vdev_txg_list,
1080 offsetof(struct vdev, vdev_txg_node));
1081
1082 avl_create(&spa->spa_errlist_scrub,
1083 spa_error_entry_compare, sizeof (spa_error_entry_t),
1084 offsetof(spa_error_entry_t, se_avl));
1085 avl_create(&spa->spa_errlist_last,
1086 spa_error_entry_compare, sizeof (spa_error_entry_t),
1087 offsetof(spa_error_entry_t, se_avl));
1088 }
1089
1090 /*
1091 * Opposite of spa_activate().
1092 */
1093 static void
1094 spa_deactivate(spa_t *spa)
1095 {
1096 ASSERT(spa->spa_sync_on == B_FALSE);
1097 ASSERT(spa->spa_dsl_pool == NULL);
1098 ASSERT(spa->spa_root_vdev == NULL);
1099 ASSERT(spa->spa_async_zio_root == NULL);
1100 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1101
1102 txg_list_destroy(&spa->spa_vdev_txg_list);
1103
1104 list_destroy(&spa->spa_config_dirty_list);
1105 list_destroy(&spa->spa_state_dirty_list);
1106
1107 for (int t = 0; t < ZIO_TYPES; t++) {
1108 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1109 spa_taskqs_fini(spa, t, q);
1110 }
1111 }
1112
1113 metaslab_class_destroy(spa->spa_normal_class);
1114 spa->spa_normal_class = NULL;
1115
1116 metaslab_class_destroy(spa->spa_log_class);
1117 spa->spa_log_class = NULL;
1118
1119 /*
1120 * If this was part of an import or the open otherwise failed, we may
1121 * still have errors left in the queues. Empty them just in case.
1122 */
1123 spa_errlog_drain(spa);
1124
1125 avl_destroy(&spa->spa_errlist_scrub);
1126 avl_destroy(&spa->spa_errlist_last);
1127
1128 spa->spa_state = POOL_STATE_UNINITIALIZED;
1129
1130 mutex_enter(&spa->spa_proc_lock);
1131 if (spa->spa_proc_state != SPA_PROC_NONE) {
1132 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1133 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1134 cv_broadcast(&spa->spa_proc_cv);
1135 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1136 ASSERT(spa->spa_proc != &p0);
1137 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1138 }
1139 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1140 spa->spa_proc_state = SPA_PROC_NONE;
1141 }
1142 ASSERT(spa->spa_proc == &p0);
1143 mutex_exit(&spa->spa_proc_lock);
1144
1145 /*
1146 * We want to make sure spa_thread() has actually exited the ZFS
1147 * module, so that the module can't be unloaded out from underneath
1148 * it.
1149 */
1150 if (spa->spa_did != 0) {
1151 thread_join(spa->spa_did);
1152 spa->spa_did = 0;
1153 }
1154 }
1155
1156 /*
1157 * Verify a pool configuration, and construct the vdev tree appropriately. This
1158 * will create all the necessary vdevs in the appropriate layout, with each vdev
1159 * in the CLOSED state. This will prep the pool before open/creation/import.
1160 * All vdev validation is done by the vdev_alloc() routine.
1161 */
1162 static int
1163 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1164 uint_t id, int atype)
1165 {
1166 nvlist_t **child;
1167 uint_t children;
1168 int error;
1169
1170 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1171 return (error);
1172
1173 if ((*vdp)->vdev_ops->vdev_op_leaf)
1174 return (0);
1175
1176 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1177 &child, &children);
1178
1179 if (error == ENOENT)
1180 return (0);
1181
1182 if (error) {
1183 vdev_free(*vdp);
1184 *vdp = NULL;
1185 return (SET_ERROR(EINVAL));
1186 }
1187
1188 for (int c = 0; c < children; c++) {
1189 vdev_t *vd;
1190 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1191 atype)) != 0) {
1192 vdev_free(*vdp);
1193 *vdp = NULL;
1194 return (error);
1195 }
1196 }
1197
1198 ASSERT(*vdp != NULL);
1199
1200 return (0);
1201 }
1202
1203 /*
1204 * Opposite of spa_load().
1205 */
1206 static void
1207 spa_unload(spa_t *spa)
1208 {
1209 int i;
1210
1211 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1212
1213 /*
1214 * Stop async tasks.
1215 */
1216 spa_async_suspend(spa);
1217
1218 /*
1219 * Stop syncing.
1220 */
1221 if (spa->spa_sync_on) {
1222 txg_sync_stop(spa->spa_dsl_pool);
1223 spa->spa_sync_on = B_FALSE;
1224 }
1225
1226 /*
1227 * Wait for any outstanding async I/O to complete.
1228 */
1229 if (spa->spa_async_zio_root != NULL) {
1230 (void) zio_wait(spa->spa_async_zio_root);
1231 spa->spa_async_zio_root = NULL;
1232 }
1233
1234 bpobj_close(&spa->spa_deferred_bpobj);
1235
1236 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1237
1238 /*
1239 * Close all vdevs.
1240 */
1241 if (spa->spa_root_vdev)
1242 vdev_free(spa->spa_root_vdev);
1243 ASSERT(spa->spa_root_vdev == NULL);
1244
1245 /*
1246 * Close the dsl pool.
1247 */
1248 if (spa->spa_dsl_pool) {
1249 dsl_pool_close(spa->spa_dsl_pool);
1250 spa->spa_dsl_pool = NULL;
1251 spa->spa_meta_objset = NULL;
1252 }
1253
1254 ddt_unload(spa);
1255
1256
1257 /*
1258 * Drop and purge level 2 cache
1259 */
1260 spa_l2cache_drop(spa);
1261
1262 for (i = 0; i < spa->spa_spares.sav_count; i++)
1263 vdev_free(spa->spa_spares.sav_vdevs[i]);
1264 if (spa->spa_spares.sav_vdevs) {
1265 kmem_free(spa->spa_spares.sav_vdevs,
1266 spa->spa_spares.sav_count * sizeof (void *));
1267 spa->spa_spares.sav_vdevs = NULL;
1268 }
1269 if (spa->spa_spares.sav_config) {
1270 nvlist_free(spa->spa_spares.sav_config);
1271 spa->spa_spares.sav_config = NULL;
1272 }
1273 spa->spa_spares.sav_count = 0;
1274
1275 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1276 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1277 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1278 }
1279 if (spa->spa_l2cache.sav_vdevs) {
1280 kmem_free(spa->spa_l2cache.sav_vdevs,
1281 spa->spa_l2cache.sav_count * sizeof (void *));
1282 spa->spa_l2cache.sav_vdevs = NULL;
1283 }
1284 if (spa->spa_l2cache.sav_config) {
1285 nvlist_free(spa->spa_l2cache.sav_config);
1286 spa->spa_l2cache.sav_config = NULL;
1287 }
1288 spa->spa_l2cache.sav_count = 0;
1289
1290 spa->spa_async_suspended = 0;
1291
1292 if (spa->spa_comment != NULL) {
1293 spa_strfree(spa->spa_comment);
1294 spa->spa_comment = NULL;
1295 }
1296
1297 spa_config_exit(spa, SCL_ALL, FTAG);
1298 }
1299
1300 /*
1301 * Load (or re-load) the current list of vdevs describing the active spares for
1302 * this pool. When this is called, we have some form of basic information in
1303 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1304 * then re-generate a more complete list including status information.
1305 */
1306 static void
1307 spa_load_spares(spa_t *spa)
1308 {
1309 nvlist_t **spares;
1310 uint_t nspares;
1311 int i;
1312 vdev_t *vd, *tvd;
1313
1314 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1315
1316 /*
1317 * First, close and free any existing spare vdevs.
1318 */
1319 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1320 vd = spa->spa_spares.sav_vdevs[i];
1321
1322 /* Undo the call to spa_activate() below */
1323 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1324 B_FALSE)) != NULL && tvd->vdev_isspare)
1325 spa_spare_remove(tvd);
1326 vdev_close(vd);
1327 vdev_free(vd);
1328 }
1329
1330 if (spa->spa_spares.sav_vdevs)
1331 kmem_free(spa->spa_spares.sav_vdevs,
1332 spa->spa_spares.sav_count * sizeof (void *));
1333
1334 if (spa->spa_spares.sav_config == NULL)
1335 nspares = 0;
1336 else
1337 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1338 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1339
1340 spa->spa_spares.sav_count = (int)nspares;
1341 spa->spa_spares.sav_vdevs = NULL;
1342
1343 if (nspares == 0)
1344 return;
1345
1346 /*
1347 * Construct the array of vdevs, opening them to get status in the
1348 * process. For each spare, there is potentially two different vdev_t
1349 * structures associated with it: one in the list of spares (used only
1350 * for basic validation purposes) and one in the active vdev
1351 * configuration (if it's spared in). During this phase we open and
1352 * validate each vdev on the spare list. If the vdev also exists in the
1353 * active configuration, then we also mark this vdev as an active spare.
1354 */
1355 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1356 KM_SLEEP);
1357 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1358 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1359 VDEV_ALLOC_SPARE) == 0);
1360 ASSERT(vd != NULL);
1361
1362 spa->spa_spares.sav_vdevs[i] = vd;
1363
1364 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1365 B_FALSE)) != NULL) {
1366 if (!tvd->vdev_isspare)
1367 spa_spare_add(tvd);
1368
1369 /*
1370 * We only mark the spare active if we were successfully
1371 * able to load the vdev. Otherwise, importing a pool
1372 * with a bad active spare would result in strange
1373 * behavior, because multiple pool would think the spare
1374 * is actively in use.
1375 *
1376 * There is a vulnerability here to an equally bizarre
1377 * circumstance, where a dead active spare is later
1378 * brought back to life (onlined or otherwise). Given
1379 * the rarity of this scenario, and the extra complexity
1380 * it adds, we ignore the possibility.
1381 */
1382 if (!vdev_is_dead(tvd))
1383 spa_spare_activate(tvd);
1384 }
1385
1386 vd->vdev_top = vd;
1387 vd->vdev_aux = &spa->spa_spares;
1388
1389 if (vdev_open(vd) != 0)
1390 continue;
1391
1392 if (vdev_validate_aux(vd) == 0)
1393 spa_spare_add(vd);
1394 }
1395
1396 /*
1397 * Recompute the stashed list of spares, with status information
1398 * this time.
1399 */
1400 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1401 DATA_TYPE_NVLIST_ARRAY) == 0);
1402
1403 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1404 KM_SLEEP);
1405 for (i = 0; i < spa->spa_spares.sav_count; i++)
1406 spares[i] = vdev_config_generate(spa,
1407 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1408 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1409 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1410 for (i = 0; i < spa->spa_spares.sav_count; i++)
1411 nvlist_free(spares[i]);
1412 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1413 }
1414
1415 /*
1416 * Load (or re-load) the current list of vdevs describing the active l2cache for
1417 * this pool. When this is called, we have some form of basic information in
1418 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1419 * then re-generate a more complete list including status information.
1420 * Devices which are already active have their details maintained, and are
1421 * not re-opened.
1422 */
1423 static void
1424 spa_load_l2cache(spa_t *spa)
1425 {
1426 nvlist_t **l2cache;
1427 uint_t nl2cache;
1428 int i, j, oldnvdevs;
1429 uint64_t guid;
1430 vdev_t *vd, **oldvdevs, **newvdevs;
1431 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1432
1433 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1434
1435 if (sav->sav_config != NULL) {
1436 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1437 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1438 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1439 } else {
1440 nl2cache = 0;
1441 newvdevs = NULL;
1442 }
1443
1444 oldvdevs = sav->sav_vdevs;
1445 oldnvdevs = sav->sav_count;
1446 sav->sav_vdevs = NULL;
1447 sav->sav_count = 0;
1448
1449 /*
1450 * Process new nvlist of vdevs.
1451 */
1452 for (i = 0; i < nl2cache; i++) {
1453 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1454 &guid) == 0);
1455
1456 newvdevs[i] = NULL;
1457 for (j = 0; j < oldnvdevs; j++) {
1458 vd = oldvdevs[j];
1459 if (vd != NULL && guid == vd->vdev_guid) {
1460 /*
1461 * Retain previous vdev for add/remove ops.
1462 */
1463 newvdevs[i] = vd;
1464 oldvdevs[j] = NULL;
1465 break;
1466 }
1467 }
1468
1469 if (newvdevs[i] == NULL) {
1470 /*
1471 * Create new vdev
1472 */
1473 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1474 VDEV_ALLOC_L2CACHE) == 0);
1475 ASSERT(vd != NULL);
1476 newvdevs[i] = vd;
1477
1478 /*
1479 * Commit this vdev as an l2cache device,
1480 * even if it fails to open.
1481 */
1482 spa_l2cache_add(vd);
1483
1484 vd->vdev_top = vd;
1485 vd->vdev_aux = sav;
1486
1487 spa_l2cache_activate(vd);
1488
1489 if (vdev_open(vd) != 0)
1490 continue;
1491
1492 (void) vdev_validate_aux(vd);
1493
1494 if (!vdev_is_dead(vd))
1495 l2arc_add_vdev(spa, vd);
1496 }
1497 }
1498
1499 /*
1500 * Purge vdevs that were dropped
1501 */
1502 for (i = 0; i < oldnvdevs; i++) {
1503 uint64_t pool;
1504
1505 vd = oldvdevs[i];
1506 if (vd != NULL) {
1507 ASSERT(vd->vdev_isl2cache);
1508
1509 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1510 pool != 0ULL && l2arc_vdev_present(vd))
1511 l2arc_remove_vdev(vd);
1512 vdev_clear_stats(vd);
1513 vdev_free(vd);
1514 }
1515 }
1516
1517 if (oldvdevs)
1518 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1519
1520 if (sav->sav_config == NULL)
1521 goto out;
1522
1523 sav->sav_vdevs = newvdevs;
1524 sav->sav_count = (int)nl2cache;
1525
1526 /*
1527 * Recompute the stashed list of l2cache devices, with status
1528 * information this time.
1529 */
1530 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1531 DATA_TYPE_NVLIST_ARRAY) == 0);
1532
1533 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1534 for (i = 0; i < sav->sav_count; i++)
1535 l2cache[i] = vdev_config_generate(spa,
1536 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1537 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1538 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1539 out:
1540 for (i = 0; i < sav->sav_count; i++)
1541 nvlist_free(l2cache[i]);
1542 if (sav->sav_count)
1543 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1544 }
1545
1546 static int
1547 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1548 {
1549 dmu_buf_t *db;
1550 char *packed = NULL;
1551 size_t nvsize = 0;
1552 int error;
1553 *value = NULL;
1554
1555 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1556 nvsize = *(uint64_t *)db->db_data;
1557 dmu_buf_rele(db, FTAG);
1558
1559 packed = kmem_alloc(nvsize, KM_SLEEP);
1560 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1561 DMU_READ_PREFETCH);
1562 if (error == 0)
1563 error = nvlist_unpack(packed, nvsize, value, 0);
1564 kmem_free(packed, nvsize);
1565
1566 return (error);
1567 }
1568
1569 /*
1570 * Checks to see if the given vdev could not be opened, in which case we post a
1571 * sysevent to notify the autoreplace code that the device has been removed.
1572 */
1573 static void
1574 spa_check_removed(vdev_t *vd)
1575 {
1576 for (int c = 0; c < vd->vdev_children; c++)
1577 spa_check_removed(vd->vdev_child[c]);
1578
1579 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1580 !vd->vdev_ishole) {
1581 zfs_post_autoreplace(vd->vdev_spa, vd);
1582 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1583 }
1584 }
1585
1586 /*
1587 * Validate the current config against the MOS config
1588 */
1589 static boolean_t
1590 spa_config_valid(spa_t *spa, nvlist_t *config)
1591 {
1592 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1593 nvlist_t *nv;
1594
1595 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1596
1597 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1598 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1599
1600 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1601
1602 /*
1603 * If we're doing a normal import, then build up any additional
1604 * diagnostic information about missing devices in this config.
1605 * We'll pass this up to the user for further processing.
1606 */
1607 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1608 nvlist_t **child, *nv;
1609 uint64_t idx = 0;
1610
1611 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1612 KM_SLEEP);
1613 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1614
1615 for (int c = 0; c < rvd->vdev_children; c++) {
1616 vdev_t *tvd = rvd->vdev_child[c];
1617 vdev_t *mtvd = mrvd->vdev_child[c];
1618
1619 if (tvd->vdev_ops == &vdev_missing_ops &&
1620 mtvd->vdev_ops != &vdev_missing_ops &&
1621 mtvd->vdev_islog)
1622 child[idx++] = vdev_config_generate(spa, mtvd,
1623 B_FALSE, 0);
1624 }
1625
1626 if (idx) {
1627 VERIFY(nvlist_add_nvlist_array(nv,
1628 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1629 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1630 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1631
1632 for (int i = 0; i < idx; i++)
1633 nvlist_free(child[i]);
1634 }
1635 nvlist_free(nv);
1636 kmem_free(child, rvd->vdev_children * sizeof (char **));
1637 }
1638
1639 /*
1640 * Compare the root vdev tree with the information we have
1641 * from the MOS config (mrvd). Check each top-level vdev
1642 * with the corresponding MOS config top-level (mtvd).
1643 */
1644 for (int c = 0; c < rvd->vdev_children; c++) {
1645 vdev_t *tvd = rvd->vdev_child[c];
1646 vdev_t *mtvd = mrvd->vdev_child[c];
1647
1648 /*
1649 * Resolve any "missing" vdevs in the current configuration.
1650 * If we find that the MOS config has more accurate information
1651 * about the top-level vdev then use that vdev instead.
1652 */
1653 if (tvd->vdev_ops == &vdev_missing_ops &&
1654 mtvd->vdev_ops != &vdev_missing_ops) {
1655
1656 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1657 continue;
1658
1659 /*
1660 * Device specific actions.
1661 */
1662 if (mtvd->vdev_islog) {
1663 spa_set_log_state(spa, SPA_LOG_CLEAR);
1664 } else {
1665 /*
1666 * XXX - once we have 'readonly' pool
1667 * support we should be able to handle
1668 * missing data devices by transitioning
1669 * the pool to readonly.
1670 */
1671 continue;
1672 }
1673
1674 /*
1675 * Swap the missing vdev with the data we were
1676 * able to obtain from the MOS config.
1677 */
1678 vdev_remove_child(rvd, tvd);
1679 vdev_remove_child(mrvd, mtvd);
1680
1681 vdev_add_child(rvd, mtvd);
1682 vdev_add_child(mrvd, tvd);
1683
1684 spa_config_exit(spa, SCL_ALL, FTAG);
1685 vdev_load(mtvd);
1686 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1687
1688 vdev_reopen(rvd);
1689 } else if (mtvd->vdev_islog) {
1690 /*
1691 * Load the slog device's state from the MOS config
1692 * since it's possible that the label does not
1693 * contain the most up-to-date information.
1694 */
1695 vdev_load_log_state(tvd, mtvd);
1696 vdev_reopen(tvd);
1697 }
1698 }
1699 vdev_free(mrvd);
1700 spa_config_exit(spa, SCL_ALL, FTAG);
1701
1702 /*
1703 * Ensure we were able to validate the config.
1704 */
1705 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1706 }
1707
1708 /*
1709 * Check for missing log devices
1710 */
1711 static boolean_t
1712 spa_check_logs(spa_t *spa)
1713 {
1714 boolean_t rv = B_FALSE;
1715
1716 switch (spa->spa_log_state) {
1717 case SPA_LOG_MISSING:
1718 /* need to recheck in case slog has been restored */
1719 case SPA_LOG_UNKNOWN:
1720 rv = (dmu_objset_find_parallel(spa->spa_name,
1721 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1722 if (rv)
1723 spa_set_log_state(spa, SPA_LOG_MISSING);
1724 break;
1725 }
1726 return (rv);
1727 }
1728
1729 static boolean_t
1730 spa_passivate_log(spa_t *spa)
1731 {
1732 vdev_t *rvd = spa->spa_root_vdev;
1733 boolean_t slog_found = B_FALSE;
1734
1735 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1736
1737 if (!spa_has_slogs(spa))
1738 return (B_FALSE);
1739
1740 for (int c = 0; c < rvd->vdev_children; c++) {
1741 vdev_t *tvd = rvd->vdev_child[c];
1742 metaslab_group_t *mg = tvd->vdev_mg;
1743
1744 if (tvd->vdev_islog) {
1745 metaslab_group_passivate(mg);
1746 slog_found = B_TRUE;
1747 }
1748 }
1749
1750 return (slog_found);
1751 }
1752
1753 static void
1754 spa_activate_log(spa_t *spa)
1755 {
1756 vdev_t *rvd = spa->spa_root_vdev;
1757
1758 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1759
1760 for (int c = 0; c < rvd->vdev_children; c++) {
1761 vdev_t *tvd = rvd->vdev_child[c];
1762 metaslab_group_t *mg = tvd->vdev_mg;
1763
1764 if (tvd->vdev_islog)
1765 metaslab_group_activate(mg);
1766 }
1767 }
1768
1769 int
1770 spa_offline_log(spa_t *spa)
1771 {
1772 int error;
1773
1774 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1775 NULL, DS_FIND_CHILDREN);
1776 if (error == 0) {
1777 /*
1778 * We successfully offlined the log device, sync out the
1779 * current txg so that the "stubby" block can be removed
1780 * by zil_sync().
1781 */
1782 txg_wait_synced(spa->spa_dsl_pool, 0);
1783 }
1784 return (error);
1785 }
1786
1787 static void
1788 spa_aux_check_removed(spa_aux_vdev_t *sav)
1789 {
1790 for (int i = 0; i < sav->sav_count; i++)
1791 spa_check_removed(sav->sav_vdevs[i]);
1792 }
1793
1794 void
1795 spa_claim_notify(zio_t *zio)
1796 {
1797 spa_t *spa = zio->io_spa;
1798
1799 if (zio->io_error)
1800 return;
1801
1802 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1803 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1804 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1805 mutex_exit(&spa->spa_props_lock);
1806 }
1807
1808 typedef struct spa_load_error {
1809 uint64_t sle_meta_count;
1810 uint64_t sle_data_count;
1811 } spa_load_error_t;
1812
1813 static void
1814 spa_load_verify_done(zio_t *zio)
1815 {
1816 blkptr_t *bp = zio->io_bp;
1817 spa_load_error_t *sle = zio->io_private;
1818 dmu_object_type_t type = BP_GET_TYPE(bp);
1819 int error = zio->io_error;
1820
1821 if (error) {
1822 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1823 type != DMU_OT_INTENT_LOG)
1824 atomic_add_64(&sle->sle_meta_count, 1);
1825 else
1826 atomic_add_64(&sle->sle_data_count, 1);
1827 }
1828 zio_data_buf_free(zio->io_data, zio->io_size);
1829 }
1830
1831 /*ARGSUSED*/
1832 static int
1833 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1834 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1835 {
1836 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
1837 zio_t *rio = arg;
1838 size_t size = BP_GET_PSIZE(bp);
1839 void *data = zio_data_buf_alloc(size);
1840
1841 zio_nowait(zio_read(rio, spa, bp, data, size,
1842 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1843 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1844 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1845 }
1846 return (0);
1847 }
1848
1849 static int
1850 spa_load_verify(spa_t *spa)
1851 {
1852 zio_t *rio;
1853 spa_load_error_t sle = { 0 };
1854 zpool_rewind_policy_t policy;
1855 boolean_t verify_ok = B_FALSE;
1856 int error;
1857
1858 zpool_get_rewind_policy(spa->spa_config, &policy);
1859
1860 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1861 return (0);
1862
1863 rio = zio_root(spa, NULL, &sle,
1864 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1865
1866 error = traverse_pool(spa, spa->spa_verify_min_txg,
1867 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1868
1869 (void) zio_wait(rio);
1870
1871 spa->spa_load_meta_errors = sle.sle_meta_count;
1872 spa->spa_load_data_errors = sle.sle_data_count;
1873
1874 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1875 sle.sle_data_count <= policy.zrp_maxdata) {
1876 int64_t loss = 0;
1877
1878 verify_ok = B_TRUE;
1879 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1880 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1881
1882 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1883 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1884 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1885 VERIFY(nvlist_add_int64(spa->spa_load_info,
1886 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1887 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1888 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1889 } else {
1890 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1891 }
1892
1893 if (error) {
1894 if (error != ENXIO && error != EIO)
1895 error = SET_ERROR(EIO);
1896 return (error);
1897 }
1898
1899 return (verify_ok ? 0 : EIO);
1900 }
1901
1902 /*
1903 * Find a value in the pool props object.
1904 */
1905 static void
1906 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1907 {
1908 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1909 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1910 }
1911
1912 /*
1913 * Find a value in the pool directory object.
1914 */
1915 static int
1916 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1917 {
1918 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1919 name, sizeof (uint64_t), 1, val));
1920 }
1921
1922 static int
1923 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1924 {
1925 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1926 return (err);
1927 }
1928
1929 /*
1930 * Fix up config after a partly-completed split. This is done with the
1931 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1932 * pool have that entry in their config, but only the splitting one contains
1933 * a list of all the guids of the vdevs that are being split off.
1934 *
1935 * This function determines what to do with that list: either rejoin
1936 * all the disks to the pool, or complete the splitting process. To attempt
1937 * the rejoin, each disk that is offlined is marked online again, and
1938 * we do a reopen() call. If the vdev label for every disk that was
1939 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1940 * then we call vdev_split() on each disk, and complete the split.
1941 *
1942 * Otherwise we leave the config alone, with all the vdevs in place in
1943 * the original pool.
1944 */
1945 static void
1946 spa_try_repair(spa_t *spa, nvlist_t *config)
1947 {
1948 uint_t extracted;
1949 uint64_t *glist;
1950 uint_t i, gcount;
1951 nvlist_t *nvl;
1952 vdev_t **vd;
1953 boolean_t attempt_reopen;
1954
1955 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1956 return;
1957
1958 /* check that the config is complete */
1959 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1960 &glist, &gcount) != 0)
1961 return;
1962
1963 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1964
1965 /* attempt to online all the vdevs & validate */
1966 attempt_reopen = B_TRUE;
1967 for (i = 0; i < gcount; i++) {
1968 if (glist[i] == 0) /* vdev is hole */
1969 continue;
1970
1971 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1972 if (vd[i] == NULL) {
1973 /*
1974 * Don't bother attempting to reopen the disks;
1975 * just do the split.
1976 */
1977 attempt_reopen = B_FALSE;
1978 } else {
1979 /* attempt to re-online it */
1980 vd[i]->vdev_offline = B_FALSE;
1981 }
1982 }
1983
1984 if (attempt_reopen) {
1985 vdev_reopen(spa->spa_root_vdev);
1986
1987 /* check each device to see what state it's in */
1988 for (extracted = 0, i = 0; i < gcount; i++) {
1989 if (vd[i] != NULL &&
1990 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1991 break;
1992 ++extracted;
1993 }
1994 }
1995
1996 /*
1997 * If every disk has been moved to the new pool, or if we never
1998 * even attempted to look at them, then we split them off for
1999 * good.
2000 */
2001 if (!attempt_reopen || gcount == extracted) {
2002 for (i = 0; i < gcount; i++)
2003 if (vd[i] != NULL)
2004 vdev_split(vd[i]);
2005 vdev_reopen(spa->spa_root_vdev);
2006 }
2007
2008 kmem_free(vd, gcount * sizeof (vdev_t *));
2009 }
2010
2011 static int
2012 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2013 boolean_t mosconfig)
2014 {
2015 nvlist_t *config = spa->spa_config;
2016 char *ereport = FM_EREPORT_ZFS_POOL;
2017 char *comment;
2018 int error;
2019 uint64_t pool_guid;
2020 nvlist_t *nvl;
2021
2022 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2023 return (SET_ERROR(EINVAL));
2024
2025 ASSERT(spa->spa_comment == NULL);
2026 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2027 spa->spa_comment = spa_strdup(comment);
2028
2029 /*
2030 * Versioning wasn't explicitly added to the label until later, so if
2031 * it's not present treat it as the initial version.
2032 */
2033 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2034 &spa->spa_ubsync.ub_version) != 0)
2035 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2036
2037 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2038 &spa->spa_config_txg);
2039
2040 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2041 spa_guid_exists(pool_guid, 0)) {
2042 error = SET_ERROR(EEXIST);
2043 } else {
2044 spa->spa_config_guid = pool_guid;
2045
2046 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2047 &nvl) == 0) {
2048 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2049 KM_SLEEP) == 0);
2050 }
2051
2052 nvlist_free(spa->spa_load_info);
2053 spa->spa_load_info = fnvlist_alloc();
2054
2055 gethrestime(&spa->spa_loaded_ts);
2056 error = spa_load_impl(spa, pool_guid, config, state, type,
2057 mosconfig, &ereport);
2058 }
2059
2060 spa->spa_minref = refcount_count(&spa->spa_refcount);
2061 if (error) {
2062 if (error != EEXIST) {
2063 spa->spa_loaded_ts.tv_sec = 0;
2064 spa->spa_loaded_ts.tv_nsec = 0;
2065 }
2066 if (error != EBADF) {
2067 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2068 }
2069 }
2070 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2071 spa->spa_ena = 0;
2072
2073 return (error);
2074 }
2075
2076 /*
2077 * Load an existing storage pool, using the pool's builtin spa_config as a
2078 * source of configuration information.
2079 */
2080 static int
2081 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2082 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2083 char **ereport)
2084 {
2085 int error = 0;
2086 nvlist_t *nvroot = NULL;
2087 nvlist_t *label;
2088 vdev_t *rvd;
2089 uberblock_t *ub = &spa->spa_uberblock;
2090 uint64_t children, config_cache_txg = spa->spa_config_txg;
2091 int orig_mode = spa->spa_mode;
2092 int parse;
2093 uint64_t obj;
2094 boolean_t missing_feat_write = B_FALSE;
2095
2096 /*
2097 * If this is an untrusted config, access the pool in read-only mode.
2098 * This prevents things like resilvering recently removed devices.
2099 */
2100 if (!mosconfig)
2101 spa->spa_mode = FREAD;
2102
2103 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2104
2105 spa->spa_load_state = state;
2106
2107 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2108 return (SET_ERROR(EINVAL));
2109
2110 parse = (type == SPA_IMPORT_EXISTING ?
2111 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2112
2113 /*
2114 * Create "The Godfather" zio to hold all async IOs
2115 */
2116 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2117 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2118
2119 /*
2120 * Parse the configuration into a vdev tree. We explicitly set the
2121 * value that will be returned by spa_version() since parsing the
2122 * configuration requires knowing the version number.
2123 */
2124 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2125 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2126 spa_config_exit(spa, SCL_ALL, FTAG);
2127
2128 if (error != 0)
2129 return (error);
2130
2131 ASSERT(spa->spa_root_vdev == rvd);
2132
2133 if (type != SPA_IMPORT_ASSEMBLE) {
2134 ASSERT(spa_guid(spa) == pool_guid);
2135 }
2136
2137 /*
2138 * Try to open all vdevs, loading each label in the process.
2139 */
2140 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2141 error = vdev_open(rvd);
2142 spa_config_exit(spa, SCL_ALL, FTAG);
2143 if (error != 0)
2144 return (error);
2145
2146 /*
2147 * We need to validate the vdev labels against the configuration that
2148 * we have in hand, which is dependent on the setting of mosconfig. If
2149 * mosconfig is true then we're validating the vdev labels based on
2150 * that config. Otherwise, we're validating against the cached config
2151 * (zpool.cache) that was read when we loaded the zfs module, and then
2152 * later we will recursively call spa_load() and validate against
2153 * the vdev config.
2154 *
2155 * If we're assembling a new pool that's been split off from an
2156 * existing pool, the labels haven't yet been updated so we skip
2157 * validation for now.
2158 */
2159 if (type != SPA_IMPORT_ASSEMBLE) {
2160 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2161 error = vdev_validate(rvd, mosconfig);
2162 spa_config_exit(spa, SCL_ALL, FTAG);
2163
2164 if (error != 0)
2165 return (error);
2166
2167 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2168 return (SET_ERROR(ENXIO));
2169 }
2170
2171 /*
2172 * Find the best uberblock.
2173 */
2174 vdev_uberblock_load(rvd, ub, &label);
2175
2176 /*
2177 * If we weren't able to find a single valid uberblock, return failure.
2178 */
2179 if (ub->ub_txg == 0) {
2180 nvlist_free(label);
2181 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2182 }
2183
2184 /*
2185 * If the pool has an unsupported version we can't open it.
2186 */
2187 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2188 nvlist_free(label);
2189 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2190 }
2191
2192 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2193 nvlist_t *features;
2194
2195 /*
2196 * If we weren't able to find what's necessary for reading the
2197 * MOS in the label, return failure.
2198 */
2199 if (label == NULL || nvlist_lookup_nvlist(label,
2200 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2201 nvlist_free(label);
2202 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2203 ENXIO));
2204 }
2205
2206 /*
2207 * Update our in-core representation with the definitive values
2208 * from the label.
2209 */
2210 nvlist_free(spa->spa_label_features);
2211 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2212 }
2213
2214 nvlist_free(label);
2215
2216 /*
2217 * Look through entries in the label nvlist's features_for_read. If
2218 * there is a feature listed there which we don't understand then we
2219 * cannot open a pool.
2220 */
2221 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2222 nvlist_t *unsup_feat;
2223
2224 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2225 0);
2226
2227 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2228 NULL); nvp != NULL;
2229 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2230 if (!zfeature_is_supported(nvpair_name(nvp))) {
2231 VERIFY(nvlist_add_string(unsup_feat,
2232 nvpair_name(nvp), "") == 0);
2233 }
2234 }
2235
2236 if (!nvlist_empty(unsup_feat)) {
2237 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2238 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2239 nvlist_free(unsup_feat);
2240 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2241 ENOTSUP));
2242 }
2243
2244 nvlist_free(unsup_feat);
2245 }
2246
2247 /*
2248 * If the vdev guid sum doesn't match the uberblock, we have an
2249 * incomplete configuration. We first check to see if the pool
2250 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2251 * If it is, defer the vdev_guid_sum check till later so we
2252 * can handle missing vdevs.
2253 */
2254 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2255 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2256 rvd->vdev_guid_sum != ub->ub_guid_sum)
2257 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2258
2259 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2260 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2261 spa_try_repair(spa, config);
2262 spa_config_exit(spa, SCL_ALL, FTAG);
2263 nvlist_free(spa->spa_config_splitting);
2264 spa->spa_config_splitting = NULL;
2265 }
2266
2267 /*
2268 * Initialize internal SPA structures.
2269 */
2270 spa->spa_state = POOL_STATE_ACTIVE;
2271 spa->spa_ubsync = spa->spa_uberblock;
2272 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2273 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2274 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2275 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2276 spa->spa_claim_max_txg = spa->spa_first_txg;
2277 spa->spa_prev_software_version = ub->ub_software_version;
2278
2279 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2280 if (error)
2281 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2282 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2283
2284 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2285 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2286
2287 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2288 boolean_t missing_feat_read = B_FALSE;
2289 nvlist_t *unsup_feat, *enabled_feat;
2290
2291 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2292 &spa->spa_feat_for_read_obj) != 0) {
2293 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2294 }
2295
2296 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2297 &spa->spa_feat_for_write_obj) != 0) {
2298 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2299 }
2300
2301 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2302 &spa->spa_feat_desc_obj) != 0) {
2303 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2304 }
2305
2306 enabled_feat = fnvlist_alloc();
2307 unsup_feat = fnvlist_alloc();
2308
2309 if (!spa_features_check(spa, B_FALSE,
2310 unsup_feat, enabled_feat))
2311 missing_feat_read = B_TRUE;
2312
2313 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2314 if (!spa_features_check(spa, B_TRUE,
2315 unsup_feat, enabled_feat)) {
2316 missing_feat_write = B_TRUE;
2317 }
2318 }
2319
2320 fnvlist_add_nvlist(spa->spa_load_info,
2321 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2322
2323 if (!nvlist_empty(unsup_feat)) {
2324 fnvlist_add_nvlist(spa->spa_load_info,
2325 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2326 }
2327
2328 fnvlist_free(enabled_feat);
2329 fnvlist_free(unsup_feat);
2330
2331 if (!missing_feat_read) {
2332 fnvlist_add_boolean(spa->spa_load_info,
2333 ZPOOL_CONFIG_CAN_RDONLY);
2334 }
2335
2336 /*
2337 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2338 * twofold: to determine whether the pool is available for
2339 * import in read-write mode and (if it is not) whether the
2340 * pool is available for import in read-only mode. If the pool
2341 * is available for import in read-write mode, it is displayed
2342 * as available in userland; if it is not available for import
2343 * in read-only mode, it is displayed as unavailable in
2344 * userland. If the pool is available for import in read-only
2345 * mode but not read-write mode, it is displayed as unavailable
2346 * in userland with a special note that the pool is actually
2347 * available for open in read-only mode.
2348 *
2349 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2350 * missing a feature for write, we must first determine whether
2351 * the pool can be opened read-only before returning to
2352 * userland in order to know whether to display the
2353 * abovementioned note.
2354 */
2355 if (missing_feat_read || (missing_feat_write &&
2356 spa_writeable(spa))) {
2357 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2358 ENOTSUP));
2359 }
2360
2361 /*
2362 * Load refcounts for ZFS features from disk into an in-memory
2363 * cache during SPA initialization.
2364 */
2365 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2366 uint64_t refcount;
2367
2368 error = feature_get_refcount_from_disk(spa,
2369 &spa_feature_table[i], &refcount);
2370 if (error == 0) {
2371 spa->spa_feat_refcount_cache[i] = refcount;
2372 } else if (error == ENOTSUP) {
2373 spa->spa_feat_refcount_cache[i] =
2374 SPA_FEATURE_DISABLED;
2375 } else {
2376 return (spa_vdev_err(rvd,
2377 VDEV_AUX_CORRUPT_DATA, EIO));
2378 }
2379 }
2380 }
2381
2382 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2383 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2384 &spa->spa_feat_enabled_txg_obj) != 0)
2385 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2386 }
2387
2388 spa->spa_is_initializing = B_TRUE;
2389 error = dsl_pool_open(spa->spa_dsl_pool);
2390 spa->spa_is_initializing = B_FALSE;
2391 if (error != 0)
2392 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2393
2394 if (!mosconfig) {
2395 uint64_t hostid;
2396 nvlist_t *policy = NULL, *nvconfig;
2397
2398 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2399 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2400
2401 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2402 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2403 char *hostname;
2404 unsigned long myhostid = 0;
2405
2406 VERIFY(nvlist_lookup_string(nvconfig,
2407 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2408
2409 #ifdef _KERNEL
2410 myhostid = zone_get_hostid(NULL);
2411 #else /* _KERNEL */
2412 /*
2413 * We're emulating the system's hostid in userland, so
2414 * we can't use zone_get_hostid().
2415 */
2416 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2417 #endif /* _KERNEL */
2418 if (hostid != 0 && myhostid != 0 &&
2419 hostid != myhostid) {
2420 nvlist_free(nvconfig);
2421 cmn_err(CE_WARN, "pool '%s' could not be "
2422 "loaded as it was last accessed by "
2423 "another system (host: %s hostid: 0x%lx). "
2424 "See: http://illumos.org/msg/ZFS-8000-EY",
2425 spa_name(spa), hostname,
2426 (unsigned long)hostid);
2427 return (SET_ERROR(EBADF));
2428 }
2429 }
2430 if (nvlist_lookup_nvlist(spa->spa_config,
2431 ZPOOL_REWIND_POLICY, &policy) == 0)
2432 VERIFY(nvlist_add_nvlist(nvconfig,
2433 ZPOOL_REWIND_POLICY, policy) == 0);
2434
2435 spa_config_set(spa, nvconfig);
2436 spa_unload(spa);
2437 spa_deactivate(spa);
2438 spa_activate(spa, orig_mode);
2439
2440 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2441 }
2442
2443 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2444 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2445 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2446 if (error != 0)
2447 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2448
2449 /*
2450 * Load the bit that tells us to use the new accounting function
2451 * (raid-z deflation). If we have an older pool, this will not
2452 * be present.
2453 */
2454 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2455 if (error != 0 && error != ENOENT)
2456 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2457
2458 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2459 &spa->spa_creation_version);
2460 if (error != 0 && error != ENOENT)
2461 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2462
2463 /*
2464 * Load the persistent error log. If we have an older pool, this will
2465 * not be present.
2466 */
2467 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2468 if (error != 0 && error != ENOENT)
2469 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2470
2471 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2472 &spa->spa_errlog_scrub);
2473 if (error != 0 && error != ENOENT)
2474 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2475
2476 /*
2477 * Load the history object. If we have an older pool, this
2478 * will not be present.
2479 */
2480 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2481 if (error != 0 && error != ENOENT)
2482 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2483
2484 /*
2485 * If we're assembling the pool from the split-off vdevs of
2486 * an existing pool, we don't want to attach the spares & cache
2487 * devices.
2488 */
2489
2490 /*
2491 * Load any hot spares for this pool.
2492 */
2493 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2494 if (error != 0 && error != ENOENT)
2495 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2496 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2497 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2498 if (load_nvlist(spa, spa->spa_spares.sav_object,
2499 &spa->spa_spares.sav_config) != 0)
2500 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2501
2502 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2503 spa_load_spares(spa);
2504 spa_config_exit(spa, SCL_ALL, FTAG);
2505 } else if (error == 0) {
2506 spa->spa_spares.sav_sync = B_TRUE;
2507 }
2508
2509 /*
2510 * Load any level 2 ARC devices for this pool.
2511 */
2512 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2513 &spa->spa_l2cache.sav_object);
2514 if (error != 0 && error != ENOENT)
2515 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2516 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2517 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2518 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2519 &spa->spa_l2cache.sav_config) != 0)
2520 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2521
2522 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2523 spa_load_l2cache(spa);
2524 spa_config_exit(spa, SCL_ALL, FTAG);
2525 } else if (error == 0) {
2526 spa->spa_l2cache.sav_sync = B_TRUE;
2527 }
2528
2529 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2530
2531 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2532 if (error && error != ENOENT)
2533 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2534
2535 if (error == 0) {
2536 uint64_t autoreplace;
2537
2538 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2539 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2540 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2541 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2542 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2543 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2544 &spa->spa_dedup_ditto);
2545
2546 spa->spa_autoreplace = (autoreplace != 0);
2547 }
2548
2549 /*
2550 * If the 'autoreplace' property is set, then post a resource notifying
2551 * the ZFS DE that it should not issue any faults for unopenable
2552 * devices. We also iterate over the vdevs, and post a sysevent for any
2553 * unopenable vdevs so that the normal autoreplace handler can take
2554 * over.
2555 */
2556 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2557 spa_check_removed(spa->spa_root_vdev);
2558 /*
2559 * For the import case, this is done in spa_import(), because
2560 * at this point we're using the spare definitions from
2561 * the MOS config, not necessarily from the userland config.
2562 */
2563 if (state != SPA_LOAD_IMPORT) {
2564 spa_aux_check_removed(&spa->spa_spares);
2565 spa_aux_check_removed(&spa->spa_l2cache);
2566 }
2567 }
2568
2569 /*
2570 * Load the vdev state for all toplevel vdevs.
2571 */
2572 vdev_load(rvd);
2573
2574 /*
2575 * Propagate the leaf DTLs we just loaded all the way up the tree.
2576 */
2577 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2578 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2579 spa_config_exit(spa, SCL_ALL, FTAG);
2580
2581 /*
2582 * Load the DDTs (dedup tables).
2583 */
2584 error = ddt_load(spa);
2585 if (error != 0)
2586 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2587
2588 spa_update_dspace(spa);
2589
2590 /*
2591 * Validate the config, using the MOS config to fill in any
2592 * information which might be missing. If we fail to validate
2593 * the config then declare the pool unfit for use. If we're
2594 * assembling a pool from a split, the log is not transferred
2595 * over.
2596 */
2597 if (type != SPA_IMPORT_ASSEMBLE) {
2598 nvlist_t *nvconfig;
2599
2600 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2601 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2602
2603 if (!spa_config_valid(spa, nvconfig)) {
2604 nvlist_free(nvconfig);
2605 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2606 ENXIO));
2607 }
2608 nvlist_free(nvconfig);
2609
2610 /*
2611 * Now that we've validated the config, check the state of the
2612 * root vdev. If it can't be opened, it indicates one or
2613 * more toplevel vdevs are faulted.
2614 */
2615 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2616 return (SET_ERROR(ENXIO));
2617
2618 if (spa_check_logs(spa)) {
2619 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2620 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2621 }
2622 }
2623
2624 if (missing_feat_write) {
2625 ASSERT(state == SPA_LOAD_TRYIMPORT);
2626
2627 /*
2628 * At this point, we know that we can open the pool in
2629 * read-only mode but not read-write mode. We now have enough
2630 * information and can return to userland.
2631 */
2632 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2633 }
2634
2635 /*
2636 * We've successfully opened the pool, verify that we're ready
2637 * to start pushing transactions.
2638 */
2639 if (state != SPA_LOAD_TRYIMPORT) {
2640 if (error = spa_load_verify(spa))
2641 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2642 error));
2643 }
2644
2645 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2646 spa->spa_load_max_txg == UINT64_MAX)) {
2647 dmu_tx_t *tx;
2648 int need_update = B_FALSE;
2649
2650 ASSERT(state != SPA_LOAD_TRYIMPORT);
2651
2652 /*
2653 * Claim log blocks that haven't been committed yet.
2654 * This must all happen in a single txg.
2655 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2656 * invoked from zil_claim_log_block()'s i/o done callback.
2657 * Price of rollback is that we abandon the log.
2658 */
2659 spa->spa_claiming = B_TRUE;
2660
2661 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2662 spa_first_txg(spa));
2663 (void) dmu_objset_find_parallel(spa_name(spa),
2664 zil_claim, tx, DS_FIND_CHILDREN);
2665 dmu_tx_commit(tx);
2666
2667 spa->spa_claiming = B_FALSE;
2668
2669 spa_set_log_state(spa, SPA_LOG_GOOD);
2670 spa->spa_sync_on = B_TRUE;
2671 txg_sync_start(spa->spa_dsl_pool);
2672
2673 /*
2674 * Wait for all claims to sync. We sync up to the highest
2675 * claimed log block birth time so that claimed log blocks
2676 * don't appear to be from the future. spa_claim_max_txg
2677 * will have been set for us by either zil_check_log_chain()
2678 * (invoked from spa_check_logs()) or zil_claim() above.
2679 */
2680 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2681
2682 /*
2683 * If the config cache is stale, or we have uninitialized
2684 * metaslabs (see spa_vdev_add()), then update the config.
2685 *
2686 * If this is a verbatim import, trust the current
2687 * in-core spa_config and update the disk labels.
2688 */
2689 if (config_cache_txg != spa->spa_config_txg ||
2690 state == SPA_LOAD_IMPORT ||
2691 state == SPA_LOAD_RECOVER ||
2692 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2693 need_update = B_TRUE;
2694
2695 for (int c = 0; c < rvd->vdev_children; c++)
2696 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2697 need_update = B_TRUE;
2698
2699 /*
2700 * Update the config cache asychronously in case we're the
2701 * root pool, in which case the config cache isn't writable yet.
2702 */
2703 if (need_update)
2704 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2705
2706 /*
2707 * Check all DTLs to see if anything needs resilvering.
2708 */
2709 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2710 vdev_resilver_needed(rvd, NULL, NULL))
2711 spa_async_request(spa, SPA_ASYNC_RESILVER);
2712
2713 /*
2714 * Log the fact that we booted up (so that we can detect if
2715 * we rebooted in the middle of an operation).
2716 */
2717 spa_history_log_version(spa, "open");
2718
2719 /*
2720 * Delete any inconsistent datasets.
2721 */
2722 (void) dmu_objset_find(spa_name(spa),
2723 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2724
2725 /*
2726 * Clean up any stale temporary dataset userrefs.
2727 */
2728 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2729 }
2730
2731 return (0);
2732 }
2733
2734 static int
2735 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2736 {
2737 int mode = spa->spa_mode;
2738
2739 spa_unload(spa);
2740 spa_deactivate(spa);
2741
2742 spa->spa_load_max_txg--;
2743
2744 spa_activate(spa, mode);
2745 spa_async_suspend(spa);
2746
2747 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2748 }
2749
2750 /*
2751 * If spa_load() fails this function will try loading prior txg's. If
2752 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2753 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2754 * function will not rewind the pool and will return the same error as
2755 * spa_load().
2756 */
2757 static int
2758 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2759 uint64_t max_request, int rewind_flags)
2760 {
2761 nvlist_t *loadinfo = NULL;
2762 nvlist_t *config = NULL;
2763 int load_error, rewind_error;
2764 uint64_t safe_rewind_txg;
2765 uint64_t min_txg;
2766
2767 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2768 spa->spa_load_max_txg = spa->spa_load_txg;
2769 spa_set_log_state(spa, SPA_LOG_CLEAR);
2770 } else {
2771 spa->spa_load_max_txg = max_request;
2772 }
2773
2774 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2775 mosconfig);
2776 if (load_error == 0)
2777 return (0);
2778
2779 if (spa->spa_root_vdev != NULL)
2780 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2781
2782 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2783 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2784
2785 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2786 nvlist_free(config);
2787 return (load_error);
2788 }
2789
2790 if (state == SPA_LOAD_RECOVER) {
2791 /* Price of rolling back is discarding txgs, including log */
2792 spa_set_log_state(spa, SPA_LOG_CLEAR);
2793 } else {
2794 /*
2795 * If we aren't rolling back save the load info from our first
2796 * import attempt so that we can restore it after attempting
2797 * to rewind.
2798 */
2799 loadinfo = spa->spa_load_info;
2800 spa->spa_load_info = fnvlist_alloc();
2801 }
2802
2803 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2804 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2805 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2806 TXG_INITIAL : safe_rewind_txg;
2807
2808 /*
2809 * Continue as long as we're finding errors, we're still within
2810 * the acceptable rewind range, and we're still finding uberblocks
2811 */
2812 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2813 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2814 if (spa->spa_load_max_txg < safe_rewind_txg)
2815 spa->spa_extreme_rewind = B_TRUE;
2816 rewind_error = spa_load_retry(spa, state, mosconfig);
2817 }
2818
2819 spa->spa_extreme_rewind = B_FALSE;
2820 spa->spa_load_max_txg = UINT64_MAX;
2821
2822 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2823 spa_config_set(spa, config);
2824
2825 if (state == SPA_LOAD_RECOVER) {
2826 ASSERT3P(loadinfo, ==, NULL);
2827 return (rewind_error);
2828 } else {
2829 /* Store the rewind info as part of the initial load info */
2830 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2831 spa->spa_load_info);
2832
2833 /* Restore the initial load info */
2834 fnvlist_free(spa->spa_load_info);
2835 spa->spa_load_info = loadinfo;
2836
2837 return (load_error);
2838 }
2839 }
2840
2841 /*
2842 * Pool Open/Import
2843 *
2844 * The import case is identical to an open except that the configuration is sent
2845 * down from userland, instead of grabbed from the configuration cache. For the
2846 * case of an open, the pool configuration will exist in the
2847 * POOL_STATE_UNINITIALIZED state.
2848 *
2849 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2850 * the same time open the pool, without having to keep around the spa_t in some
2851 * ambiguous state.
2852 */
2853 static int
2854 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2855 nvlist_t **config, int lock)
2856 {
2857 spa_t *spa;
2858 spa_load_state_t state = SPA_LOAD_OPEN;
2859 int error;
2860 int locked = B_FALSE;
2861
2862 *spapp = NULL;
2863
2864 /*
2865 * As disgusting as this is, we need to support recursive calls to this
2866 * function because dsl_dir_open() is called during spa_load(), and ends
2867 * up calling spa_open() again. The real fix is to figure out how to
2868 * avoid dsl_dir_open() calling this in the first place.
2869 */
2870 if (lock && (mutex_owner(&spa_namespace_lock) != curthread)) {
2871 mutex_enter(&spa_namespace_lock);
2872 locked = B_TRUE;
2873 }
2874
2875 if ((spa = spa_lookup(pool)) == NULL) {
2876 if (locked)
2877 mutex_exit(&spa_namespace_lock);
2878 return (SET_ERROR(ENOENT));
2879 }
2880
2881 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2882 zpool_rewind_policy_t policy;
2883
2884 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2885 &policy);
2886 if (policy.zrp_request & ZPOOL_DO_REWIND)
2887 state = SPA_LOAD_RECOVER;
2888
2889 spa_activate(spa, spa_mode_global);
2890
2891 if (state != SPA_LOAD_RECOVER)
2892 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2893
2894 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2895 policy.zrp_request);
2896
2897 if (error == EBADF) {
2898 /*
2899 * If vdev_validate() returns failure (indicated by
2900 * EBADF), it indicates that one of the vdevs indicates
2901 * that the pool has been exported or destroyed. If
2902 * this is the case, the config cache is out of sync and
2903 * we should remove the pool from the namespace.
2904 */
2905 spa_unload(spa);
2906 spa_deactivate(spa);
2907 spa_config_sync(spa, B_TRUE, B_TRUE);
2908 spa_remove(spa);
2909 if (locked)
2910 mutex_exit(&spa_namespace_lock);
2911 return (SET_ERROR(ENOENT));
2912 }
2913
2914 if (error) {
2915 /*
2916 * We can't open the pool, but we still have useful
2917 * information: the state of each vdev after the
2918 * attempted vdev_open(). Return this to the user.
2919 */
2920 if (config != NULL && spa->spa_config) {
2921 VERIFY(nvlist_dup(spa->spa_config, config,
2922 KM_SLEEP) == 0);
2923 VERIFY(nvlist_add_nvlist(*config,
2924 ZPOOL_CONFIG_LOAD_INFO,
2925 spa->spa_load_info) == 0);
2926 }
2927 spa_unload(spa);
2928 spa_deactivate(spa);
2929 spa->spa_last_open_failed = error;
2930 if (locked)
2931 mutex_exit(&spa_namespace_lock);
2932 *spapp = NULL;
2933 return (error);
2934 }
2935 }
2936
2937 spa_open_ref(spa, tag);
2938
2939 if (config != NULL)
2940 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2941
2942 /*
2943 * If we've recovered the pool, pass back any information we
2944 * gathered while doing the load.
2945 */
2946 if (state == SPA_LOAD_RECOVER) {
2947 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2948 spa->spa_load_info) == 0);
2949 }
2950
2951 if (locked) {
2952 spa->spa_last_open_failed = 0;
2953 spa->spa_last_ubsync_txg = 0;
2954 spa->spa_load_txg = 0;
2955 mutex_exit(&spa_namespace_lock);
2956 }
2957
2958 *spapp = spa;
2959
2960 return (0);
2961 }
2962
2963 int
2964 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2965 nvlist_t **config)
2966 {
2967 return (spa_open_common(name, spapp, tag, policy, config, 1));
2968 }
2969
2970 int
2971 spa_open(const char *name, spa_t **spapp, void *tag)
2972 {
2973 return (spa_open_common(name, spapp, tag, NULL, NULL, 1));
2974 }
2975
2976 int
2977 spa_open_lock(const char *name, spa_t **spapp, void *tag, int lock)
2978 {
2979 return (spa_open_common(name, spapp, tag, NULL, NULL, lock));
2980 }
2981
2982 /*
2983 * Lookup the given spa_t, incrementing the inject count in the process,
2984 * preventing it from being exported or destroyed.
2985 */
2986 spa_t *
2987 spa_inject_addref(char *name)
2988 {
2989 spa_t *spa;
2990
2991 mutex_enter(&spa_namespace_lock);
2992 if ((spa = spa_lookup(name)) == NULL) {
2993 mutex_exit(&spa_namespace_lock);
2994 return (NULL);
2995 }
2996 spa->spa_inject_ref++;
2997 mutex_exit(&spa_namespace_lock);
2998
2999 return (spa);
3000 }
3001
3002 void
3003 spa_inject_delref(spa_t *spa)
3004 {
3005 mutex_enter(&spa_namespace_lock);
3006 spa->spa_inject_ref--;
3007 mutex_exit(&spa_namespace_lock);
3008 }
3009
3010 /*
3011 * Add spares device information to the nvlist.
3012 */
3013 static void
3014 spa_add_spares(spa_t *spa, nvlist_t *config)
3015 {
3016 nvlist_t **spares;
3017 uint_t i, nspares;
3018 nvlist_t *nvroot;
3019 uint64_t guid;
3020 vdev_stat_t *vs;
3021 uint_t vsc;
3022 uint64_t pool;
3023
3024 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3025
3026 if (spa->spa_spares.sav_count == 0)
3027 return;
3028
3029 VERIFY(nvlist_lookup_nvlist(config,
3030 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3031 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3032 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3033 if (nspares != 0) {
3034 VERIFY(nvlist_add_nvlist_array(nvroot,
3035 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3036 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3037 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3038
3039 /*
3040 * Go through and find any spares which have since been
3041 * repurposed as an active spare. If this is the case, update
3042 * their status appropriately.
3043 */
3044 for (i = 0; i < nspares; i++) {
3045 VERIFY(nvlist_lookup_uint64(spares[i],
3046 ZPOOL_CONFIG_GUID, &guid) == 0);
3047 if (spa_spare_exists(guid, &pool, NULL) &&
3048 pool != 0ULL) {
3049 VERIFY(nvlist_lookup_uint64_array(
3050 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3051 (uint64_t **)&vs, &vsc) == 0);
3052 vs->vs_state = VDEV_STATE_CANT_OPEN;
3053 vs->vs_aux = VDEV_AUX_SPARED;
3054 }
3055 }
3056 }
3057 }
3058
3059 /*
3060 * Add l2cache device information to the nvlist, including vdev stats.
3061 */
3062 static void
3063 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3064 {
3065 nvlist_t **l2cache;
3066 uint_t i, j, nl2cache;
3067 nvlist_t *nvroot;
3068 uint64_t guid;
3069 vdev_t *vd;
3070 vdev_stat_t *vs;
3071 uint_t vsc;
3072
3073 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3074
3075 if (spa->spa_l2cache.sav_count == 0)
3076 return;
3077
3078 VERIFY(nvlist_lookup_nvlist(config,
3079 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3080 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3081 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3082 if (nl2cache != 0) {
3083 VERIFY(nvlist_add_nvlist_array(nvroot,
3084 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3085 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3086 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3087
3088 /*
3089 * Update level 2 cache device stats.
3090 */
3091
3092 for (i = 0; i < nl2cache; i++) {
3093 VERIFY(nvlist_lookup_uint64(l2cache[i],
3094 ZPOOL_CONFIG_GUID, &guid) == 0);
3095
3096 vd = NULL;
3097 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3098 if (guid ==
3099 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3100 vd = spa->spa_l2cache.sav_vdevs[j];
3101 break;
3102 }
3103 }
3104 ASSERT(vd != NULL);
3105
3106 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3107 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3108 == 0);
3109 vdev_get_stats(vd, vs);
3110 }
3111 }
3112 }
3113
3114 static void
3115 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3116 {
3117 nvlist_t *features;
3118 zap_cursor_t zc;
3119 zap_attribute_t za;
3120
3121 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3122 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3123
3124 if (spa->spa_feat_for_read_obj != 0) {
3125 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3126 spa->spa_feat_for_read_obj);
3127 zap_cursor_retrieve(&zc, &za) == 0;
3128 zap_cursor_advance(&zc)) {
3129 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3130 za.za_num_integers == 1);
3131 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3132 za.za_first_integer));
3133 }
3134 zap_cursor_fini(&zc);
3135 }
3136
3137 if (spa->spa_feat_for_write_obj != 0) {
3138 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3139 spa->spa_feat_for_write_obj);
3140 zap_cursor_retrieve(&zc, &za) == 0;
3141 zap_cursor_advance(&zc)) {
3142 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3143 za.za_num_integers == 1);
3144 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3145 za.za_first_integer));
3146 }
3147 zap_cursor_fini(&zc);
3148 }
3149
3150 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3151 features) == 0);
3152 nvlist_free(features);
3153 }
3154
3155 int
3156 spa_get_stats(const char *name, nvlist_t **config,
3157 char *altroot, size_t buflen)
3158 {
3159 int error;
3160 spa_t *spa;
3161
3162 *config = NULL;
3163 error = spa_open_common(name, &spa, FTAG, NULL, config, 1);
3164
3165 if (spa != NULL) {
3166 /*
3167 * This still leaves a window of inconsistency where the spares
3168 * or l2cache devices could change and the config would be
3169 * self-inconsistent.
3170 */
3171 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3172
3173 if (*config != NULL) {
3174 uint64_t loadtimes[2];
3175
3176 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3177 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3178 VERIFY(nvlist_add_uint64_array(*config,
3179 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3180
3181 VERIFY(nvlist_add_uint64(*config,
3182 ZPOOL_CONFIG_ERRCOUNT,
3183 spa_get_errlog_size(spa)) == 0);
3184
3185 if (spa_suspended(spa))
3186 VERIFY(nvlist_add_uint64(*config,
3187 ZPOOL_CONFIG_SUSPENDED,
3188 spa->spa_failmode) == 0);
3189
3190 spa_add_spares(spa, *config);
3191 spa_add_l2cache(spa, *config);
3192 spa_add_feature_stats(spa, *config);
3193 }
3194 }
3195
3196 /*
3197 * We want to get the alternate root even for faulted pools, so we cheat
3198 * and call spa_lookup() directly.
3199 */
3200 if (altroot) {
3201 if (spa == NULL) {
3202 mutex_enter(&spa_namespace_lock);
3203 spa = spa_lookup(name);
3204 if (spa)
3205 spa_altroot(spa, altroot, buflen);
3206 else
3207 altroot[0] = '\0';
3208 spa = NULL;
3209 mutex_exit(&spa_namespace_lock);
3210 } else {
3211 spa_altroot(spa, altroot, buflen);
3212 }
3213 }
3214
3215 if (spa != NULL) {
3216 spa_config_exit(spa, SCL_CONFIG, FTAG);
3217 spa_close(spa, FTAG);
3218 }
3219
3220 return (error);
3221 }
3222
3223 /*
3224 * Validate that the auxiliary device array is well formed. We must have an
3225 * array of nvlists, each which describes a valid leaf vdev. If this is an
3226 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3227 * specified, as long as they are well-formed.
3228 */
3229 static int
3230 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3231 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3232 vdev_labeltype_t label)
3233 {
3234 nvlist_t **dev;
3235 uint_t i, ndev;
3236 vdev_t *vd;
3237 int error;
3238
3239 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3240
3241 /*
3242 * It's acceptable to have no devs specified.
3243 */
3244 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3245 return (0);
3246
3247 if (ndev == 0)
3248 return (SET_ERROR(EINVAL));
3249
3250 /*
3251 * Make sure the pool is formatted with a version that supports this
3252 * device type.
3253 */
3254 if (spa_version(spa) < version)
3255 return (SET_ERROR(ENOTSUP));
3256
3257 /*
3258 * Set the pending device list so we correctly handle device in-use
3259 * checking.
3260 */
3261 sav->sav_pending = dev;
3262 sav->sav_npending = ndev;
3263
3264 for (i = 0; i < ndev; i++) {
3265 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3266 mode)) != 0)
3267 goto out;
3268
3269 if (!vd->vdev_ops->vdev_op_leaf) {
3270 vdev_free(vd);
3271 error = SET_ERROR(EINVAL);
3272 goto out;
3273 }
3274
3275 /*
3276 * The L2ARC currently only supports disk devices in
3277 * kernel context. For user-level testing, we allow it.
3278 */
3279 #ifdef _KERNEL
3280 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3281 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3282 error = SET_ERROR(ENOTBLK);
3283 vdev_free(vd);
3284 goto out;
3285 }
3286 #endif
3287 vd->vdev_top = vd;
3288
3289 if ((error = vdev_open(vd)) == 0 &&
3290 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3291 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3292 vd->vdev_guid) == 0);
3293 }
3294
3295 vdev_free(vd);
3296
3297 if (error &&
3298 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3299 goto out;
3300 else
3301 error = 0;
3302 }
3303
3304 out:
3305 sav->sav_pending = NULL;
3306 sav->sav_npending = 0;
3307 return (error);
3308 }
3309
3310 static int
3311 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3312 {
3313 int error;
3314
3315 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3316
3317 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3318 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3319 VDEV_LABEL_SPARE)) != 0) {
3320 return (error);
3321 }
3322
3323 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3324 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3325 VDEV_LABEL_L2CACHE));
3326 }
3327
3328 static void
3329 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3330 const char *config)
3331 {
3332 int i;
3333
3334 if (sav->sav_config != NULL) {
3335 nvlist_t **olddevs;
3336 uint_t oldndevs;
3337 nvlist_t **newdevs;
3338
3339 /*
3340 * Generate new dev list by concatentating with the
3341 * current dev list.
3342 */
3343 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3344 &olddevs, &oldndevs) == 0);
3345
3346 newdevs = kmem_alloc(sizeof (void *) *
3347 (ndevs + oldndevs), KM_SLEEP);
3348 for (i = 0; i < oldndevs; i++)
3349 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3350 KM_SLEEP) == 0);
3351 for (i = 0; i < ndevs; i++)
3352 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3353 KM_SLEEP) == 0);
3354
3355 VERIFY(nvlist_remove(sav->sav_config, config,
3356 DATA_TYPE_NVLIST_ARRAY) == 0);
3357
3358 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3359 config, newdevs, ndevs + oldndevs) == 0);
3360 for (i = 0; i < oldndevs + ndevs; i++)
3361 nvlist_free(newdevs[i]);
3362 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3363 } else {
3364 /*
3365 * Generate a new dev list.
3366 */
3367 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3368 KM_SLEEP) == 0);
3369 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3370 devs, ndevs) == 0);
3371 }
3372 }
3373
3374 /*
3375 * Stop and drop level 2 ARC devices
3376 */
3377 void
3378 spa_l2cache_drop(spa_t *spa)
3379 {
3380 vdev_t *vd;
3381 int i;
3382 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3383
3384 for (i = 0; i < sav->sav_count; i++) {
3385 uint64_t pool;
3386
3387 vd = sav->sav_vdevs[i];
3388 ASSERT(vd != NULL);
3389
3390 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3391 pool != 0ULL && l2arc_vdev_present(vd))
3392 l2arc_remove_vdev(vd);
3393 }
3394 }
3395
3396 /*
3397 * Pool Creation
3398 */
3399 int
3400 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3401 nvlist_t *zplprops)
3402 {
3403 spa_t *spa;
3404 char *altroot = NULL;
3405 vdev_t *rvd;
3406 dsl_pool_t *dp;
3407 dmu_tx_t *tx;
3408 int error = 0;
3409 uint64_t txg = TXG_INITIAL;
3410 nvlist_t **spares, **l2cache;
3411 uint_t nspares, nl2cache;
3412 uint64_t version, obj;
3413 boolean_t has_features;
3414
3415 /*
3416 * If this pool already exists, return failure.
3417 */
3418 mutex_enter(&spa_namespace_lock);
3419 if (spa_lookup(pool) != NULL) {
3420 mutex_exit(&spa_namespace_lock);
3421 return (SET_ERROR(EEXIST));
3422 }
3423
3424 /*
3425 * Allocate a new spa_t structure.
3426 */
3427 (void) nvlist_lookup_string(props,
3428 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3429 spa = spa_add(pool, NULL, altroot);
3430 spa_activate(spa, spa_mode_global);
3431
3432 if (props && (error = spa_prop_validate(spa, props))) {
3433 spa_deactivate(spa);
3434 spa_remove(spa);
3435 mutex_exit(&spa_namespace_lock);
3436 return (error);
3437 }
3438
3439 has_features = B_FALSE;
3440 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3441 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3442 if (zpool_prop_feature(nvpair_name(elem)))
3443 has_features = B_TRUE;
3444 }
3445
3446 if (has_features || nvlist_lookup_uint64(props,
3447 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3448 version = SPA_VERSION;
3449 }
3450 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3451
3452 spa->spa_first_txg = txg;
3453 spa->spa_uberblock.ub_txg = txg - 1;
3454 spa->spa_uberblock.ub_version = version;
3455 spa->spa_ubsync = spa->spa_uberblock;
3456
3457 /*
3458 * Create "The Godfather" zio to hold all async IOs
3459 */
3460 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3461 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3462
3463 /*
3464 * Create the root vdev.
3465 */
3466 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3467
3468 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3469
3470 ASSERT(error != 0 || rvd != NULL);
3471 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3472
3473 if (error == 0 && !zfs_allocatable_devs(nvroot))
3474 error = SET_ERROR(EINVAL);
3475
3476 if (error == 0 &&
3477 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3478 (error = spa_validate_aux(spa, nvroot, txg,
3479 VDEV_ALLOC_ADD)) == 0) {
3480 for (int c = 0; c < rvd->vdev_children; c++) {
3481 vdev_metaslab_set_size(rvd->vdev_child[c]);
3482 vdev_expand(rvd->vdev_child[c], txg);
3483 }
3484 }
3485
3486 spa_config_exit(spa, SCL_ALL, FTAG);
3487
3488 if (error != 0) {
3489 spa_unload(spa);
3490 spa_deactivate(spa);
3491 spa_remove(spa);
3492 mutex_exit(&spa_namespace_lock);
3493 return (error);
3494 }
3495
3496 /*
3497 * Get the list of spares, if specified.
3498 */
3499 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3500 &spares, &nspares) == 0) {
3501 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3502 KM_SLEEP) == 0);
3503 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3504 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3505 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3506 spa_load_spares(spa);
3507 spa_config_exit(spa, SCL_ALL, FTAG);
3508 spa->spa_spares.sav_sync = B_TRUE;
3509 }
3510
3511 /*
3512 * Get the list of level 2 cache devices, if specified.
3513 */
3514 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3515 &l2cache, &nl2cache) == 0) {
3516 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3517 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3518 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3519 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3520 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3521 spa_load_l2cache(spa);
3522 spa_config_exit(spa, SCL_ALL, FTAG);
3523 spa->spa_l2cache.sav_sync = B_TRUE;
3524 }
3525
3526 spa->spa_is_initializing = B_TRUE;
3527 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3528 spa->spa_meta_objset = dp->dp_meta_objset;
3529 spa->spa_is_initializing = B_FALSE;
3530
3531 /*
3532 * Create DDTs (dedup tables).
3533 */
3534 ddt_create(spa);
3535
3536 spa_update_dspace(spa);
3537
3538 tx = dmu_tx_create_assigned(dp, txg);
3539
3540 /*
3541 * Create the pool config object.
3542 */
3543 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3544 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3545 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3546
3547 if (zap_add(spa->spa_meta_objset,
3548 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3549 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3550 cmn_err(CE_PANIC, "failed to add pool config");
3551 }
3552
3553 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3554 spa_feature_create_zap_objects(spa, tx);
3555
3556 if (zap_add(spa->spa_meta_objset,
3557 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3558 sizeof (uint64_t), 1, &version, tx) != 0) {
3559 cmn_err(CE_PANIC, "failed to add pool version");
3560 }
3561
3562 /* Newly created pools with the right version are always deflated. */
3563 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3564 spa->spa_deflate = TRUE;
3565 if (zap_add(spa->spa_meta_objset,
3566 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3567 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3568 cmn_err(CE_PANIC, "failed to add deflate");
3569 }
3570 }
3571
3572 /*
3573 * Create the deferred-free bpobj. Turn off compression
3574 * because sync-to-convergence takes longer if the blocksize
3575 * keeps changing.
3576 */
3577 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3578 dmu_object_set_compress(spa->spa_meta_objset, obj,
3579 ZIO_COMPRESS_OFF, tx);
3580 if (zap_add(spa->spa_meta_objset,
3581 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3582 sizeof (uint64_t), 1, &obj, tx) != 0) {
3583 cmn_err(CE_PANIC, "failed to add bpobj");
3584 }
3585 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3586 spa->spa_meta_objset, obj));
3587
3588 /*
3589 * Create the pool's history object.
3590 */
3591 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3592 spa_history_create_obj(spa, tx);
3593
3594 /*
3595 * Set pool properties.
3596 */
3597 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3598 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3599 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3600 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3601
3602 if (props != NULL) {
3603 spa_configfile_set(spa, props, B_FALSE);
3604 spa_sync_props(props, tx);
3605 }
3606
3607 dmu_tx_commit(tx);
3608
3609 spa->spa_sync_on = B_TRUE;
3610 txg_sync_start(spa->spa_dsl_pool);
3611
3612 /*
3613 * We explicitly wait for the first transaction to complete so that our
3614 * bean counters are appropriately updated.
3615 */
3616 txg_wait_synced(spa->spa_dsl_pool, txg);
3617
3618 spa_config_sync(spa, B_FALSE, B_TRUE);
3619
3620 spa_history_log_version(spa, "create");
3621
3622 spa->spa_minref = refcount_count(&spa->spa_refcount);
3623
3624 mutex_exit(&spa_namespace_lock);
3625
3626 return (0);
3627 }
3628
3629 #ifdef _KERNEL
3630 /*
3631 * Get the root pool information from the root disk, then import the root pool
3632 * during the system boot up time.
3633 */
3634 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3635
3636 static nvlist_t *
3637 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3638 {
3639 nvlist_t *config;
3640 nvlist_t *nvtop, *nvroot;
3641 uint64_t pgid;
3642
3643 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3644 return (NULL);
3645
3646 /*
3647 * Add this top-level vdev to the child array.
3648 */
3649 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3650 &nvtop) == 0);
3651 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3652 &pgid) == 0);
3653 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3654
3655 /*
3656 * Put this pool's top-level vdevs into a root vdev.
3657 */
3658 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3659 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3660 VDEV_TYPE_ROOT) == 0);
3661 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3662 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3663 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3664 &nvtop, 1) == 0);
3665
3666 /*
3667 * Replace the existing vdev_tree with the new root vdev in
3668 * this pool's configuration (remove the old, add the new).
3669 */
3670 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3671 nvlist_free(nvroot);
3672 return (config);
3673 }
3674
3675 /*
3676 * Walk the vdev tree and see if we can find a device with "better"
3677 * configuration. A configuration is "better" if the label on that
3678 * device has a more recent txg.
3679 */
3680 static void
3681 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3682 {
3683 for (int c = 0; c < vd->vdev_children; c++)
3684 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3685
3686 if (vd->vdev_ops->vdev_op_leaf) {
3687 nvlist_t *label;
3688 uint64_t label_txg;
3689
3690 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3691 &label) != 0)
3692 return;
3693
3694 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3695 &label_txg) == 0);
3696
3697 /*
3698 * Do we have a better boot device?
3699 */
3700 if (label_txg > *txg) {
3701 *txg = label_txg;
3702 *avd = vd;
3703 }
3704 nvlist_free(label);
3705 }
3706 }
3707
3708 /*
3709 * Import a root pool.
3710 *
3711 * For x86. devpath_list will consist of devid and/or physpath name of
3712 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3713 * The GRUB "findroot" command will return the vdev we should boot.
3714 *
3715 * For Sparc, devpath_list consists the physpath name of the booting device
3716 * no matter the rootpool is a single device pool or a mirrored pool.
3717 * e.g.
3718 * "/pci@1f,0/ide@d/disk@0,0:a"
3719 */
3720 int
3721 spa_import_rootpool(char *devpath, char *devid)
3722 {
3723 spa_t *spa;
3724 vdev_t *rvd, *bvd, *avd = NULL;
3725 nvlist_t *config, *nvtop;
3726 uint64_t guid, txg;
3727 char *pname;
3728 int error;
3729
3730 /*
3731 * Read the label from the boot device and generate a configuration.
3732 */
3733 config = spa_generate_rootconf(devpath, devid, &guid);
3734 #if defined(_OBP) && defined(_KERNEL)
3735 if (config == NULL) {
3736 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3737 /* iscsi boot */
3738 get_iscsi_bootpath_phy(devpath);
3739 config = spa_generate_rootconf(devpath, devid, &guid);
3740 }
3741 }
3742 #endif
3743 if (config == NULL) {
3744 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3745 devpath);
3746 return (SET_ERROR(EIO));
3747 }
3748
3749 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3750 &pname) == 0);
3751 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3752
3753 mutex_enter(&spa_namespace_lock);
3754 if ((spa = spa_lookup(pname)) != NULL) {
3755 /*
3756 * Remove the existing root pool from the namespace so that we
3757 * can replace it with the correct config we just read in.
3758 */
3759 spa_remove(spa);
3760 }
3761
3762 spa = spa_add(pname, config, NULL);
3763 spa->spa_is_root = B_TRUE;
3764 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3765
3766 /*
3767 * Build up a vdev tree based on the boot device's label config.
3768 */
3769 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3770 &nvtop) == 0);
3771 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3772 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3773 VDEV_ALLOC_ROOTPOOL);
3774 spa_config_exit(spa, SCL_ALL, FTAG);
3775 if (error) {
3776 mutex_exit(&spa_namespace_lock);
3777 nvlist_free(config);
3778 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3779 pname);
3780 return (error);
3781 }
3782
3783 /*
3784 * Get the boot vdev.
3785 */
3786 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3787 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3788 (u_longlong_t)guid);
3789 error = SET_ERROR(ENOENT);
3790 goto out;
3791 }
3792
3793 /*
3794 * Determine if there is a better boot device.
3795 */
3796 avd = bvd;
3797 spa_alt_rootvdev(rvd, &avd, &txg);
3798 if (avd != bvd) {
3799 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3800 "try booting from '%s'", avd->vdev_path);
3801 error = SET_ERROR(EINVAL);
3802 goto out;
3803 }
3804
3805 /*
3806 * If the boot device is part of a spare vdev then ensure that
3807 * we're booting off the active spare.
3808 */
3809 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3810 !bvd->vdev_isspare) {
3811 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3812 "try booting from '%s'",
3813 bvd->vdev_parent->
3814 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3815 error = SET_ERROR(EINVAL);
3816 goto out;
3817 }
3818
3819 error = 0;
3820 out:
3821 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3822 vdev_free(rvd);
3823 spa_config_exit(spa, SCL_ALL, FTAG);
3824 mutex_exit(&spa_namespace_lock);
3825
3826 nvlist_free(config);
3827 return (error);
3828 }
3829
3830 #endif
3831
3832 /*
3833 * Import a non-root pool into the system.
3834 */
3835 int
3836 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3837 {
3838 spa_t *spa;
3839 char *altroot = NULL;
3840 spa_load_state_t state = SPA_LOAD_IMPORT;
3841 zpool_rewind_policy_t policy;
3842 uint64_t mode = spa_mode_global;
3843 uint64_t readonly = B_FALSE;
3844 int error;
3845 nvlist_t *nvroot;
3846 nvlist_t **spares, **l2cache;
3847 uint_t nspares, nl2cache;
3848
3849 /*
3850 * If a pool with this name exists, return failure.
3851 */
3852 mutex_enter(&spa_namespace_lock);
3853 if (spa_lookup(pool) != NULL) {
3854 mutex_exit(&spa_namespace_lock);
3855 return (SET_ERROR(EEXIST));
3856 }
3857
3858 /*
3859 * Create and initialize the spa structure.
3860 */
3861 (void) nvlist_lookup_string(props,
3862 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3863 (void) nvlist_lookup_uint64(props,
3864 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3865 if (readonly)
3866 mode = FREAD;
3867 spa = spa_add(pool, config, altroot);
3868 spa->spa_import_flags = flags;
3869
3870 /*
3871 * Verbatim import - Take a pool and insert it into the namespace
3872 * as if it had been loaded at boot.
3873 */
3874 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3875 if (props != NULL)
3876 spa_configfile_set(spa, props, B_FALSE);
3877
3878 spa_config_sync(spa, B_FALSE, B_TRUE);
3879
3880 mutex_exit(&spa_namespace_lock);
3881 return (0);
3882 }
3883
3884 spa_activate(spa, mode);
3885
3886 /*
3887 * Don't start async tasks until we know everything is healthy.
3888 */
3889 spa_async_suspend(spa);
3890
3891 zpool_get_rewind_policy(config, &policy);
3892 if (policy.zrp_request & ZPOOL_DO_REWIND)
3893 state = SPA_LOAD_RECOVER;
3894
3895 /*
3896 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3897 * because the user-supplied config is actually the one to trust when
3898 * doing an import.
3899 */
3900 if (state != SPA_LOAD_RECOVER)
3901 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3902
3903 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3904 policy.zrp_request);
3905
3906 /*
3907 * Propagate anything learned while loading the pool and pass it
3908 * back to caller (i.e. rewind info, missing devices, etc).
3909 */
3910 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3911 spa->spa_load_info) == 0);
3912
3913 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3914 /*
3915 * Toss any existing sparelist, as it doesn't have any validity
3916 * anymore, and conflicts with spa_has_spare().
3917 */
3918 if (spa->spa_spares.sav_config) {
3919 nvlist_free(spa->spa_spares.sav_config);
3920 spa->spa_spares.sav_config = NULL;
3921 spa_load_spares(spa);
3922 }
3923 if (spa->spa_l2cache.sav_config) {
3924 nvlist_free(spa->spa_l2cache.sav_config);
3925 spa->spa_l2cache.sav_config = NULL;
3926 spa_load_l2cache(spa);
3927 }
3928
3929 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3930 &nvroot) == 0);
3931 if (error == 0)
3932 error = spa_validate_aux(spa, nvroot, -1ULL,
3933 VDEV_ALLOC_SPARE);
3934 if (error == 0)
3935 error = spa_validate_aux(spa, nvroot, -1ULL,
3936 VDEV_ALLOC_L2CACHE);
3937 spa_config_exit(spa, SCL_ALL, FTAG);
3938
3939 if (props != NULL)
3940 spa_configfile_set(spa, props, B_FALSE);
3941
3942 if (error != 0 || (props && spa_writeable(spa) &&
3943 (error = spa_prop_set(spa, props)))) {
3944 spa_unload(spa);
3945 spa_deactivate(spa);
3946 spa_remove(spa);
3947 mutex_exit(&spa_namespace_lock);
3948 return (error);
3949 }
3950
3951 spa_async_resume(spa);
3952
3953 /*
3954 * Override any spares and level 2 cache devices as specified by
3955 * the user, as these may have correct device names/devids, etc.
3956 */
3957 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3958 &spares, &nspares) == 0) {
3959 if (spa->spa_spares.sav_config)
3960 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3961 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3962 else
3963 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3964 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3965 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3966 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3967 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3968 spa_load_spares(spa);
3969 spa_config_exit(spa, SCL_ALL, FTAG);
3970 spa->spa_spares.sav_sync = B_TRUE;
3971 }
3972 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3973 &l2cache, &nl2cache) == 0) {
3974 if (spa->spa_l2cache.sav_config)
3975 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3976 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3977 else
3978 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3979 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3980 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3981 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3982 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3983 spa_load_l2cache(spa);
3984 spa_config_exit(spa, SCL_ALL, FTAG);
3985 spa->spa_l2cache.sav_sync = B_TRUE;
3986 }
3987
3988 /*
3989 * Check for any removed devices.
3990 */
3991 if (spa->spa_autoreplace) {
3992 spa_aux_check_removed(&spa->spa_spares);
3993 spa_aux_check_removed(&spa->spa_l2cache);
3994 }
3995
3996 if (spa_writeable(spa)) {
3997 /*
3998 * Update the config cache to include the newly-imported pool.
3999 */
4000 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4001 }
4002
4003 /*
4004 * It's possible that the pool was expanded while it was exported.
4005 * We kick off an async task to handle this for us.
4006 */
4007 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4008
4009 mutex_exit(&spa_namespace_lock);
4010 spa_history_log_version(spa, "import");
4011
4012 return (0);
4013 }
4014
4015 nvlist_t *
4016 spa_tryimport(nvlist_t *tryconfig)
4017 {
4018 nvlist_t *config = NULL;
4019 char *poolname;
4020 spa_t *spa;
4021 uint64_t state;
4022 int error;
4023
4024 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4025 return (NULL);
4026
4027 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4028 return (NULL);
4029
4030 /*
4031 * Create and initialize the spa structure.
4032 */
4033 mutex_enter(&spa_namespace_lock);
4034 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4035 spa_activate(spa, FREAD);
4036
4037 /*
4038 * Pass off the heavy lifting to spa_load().
4039 * Pass TRUE for mosconfig because the user-supplied config
4040 * is actually the one to trust when doing an import.
4041 */
4042 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4043
4044 /*
4045 * If 'tryconfig' was at least parsable, return the current config.
4046 */
4047 if (spa->spa_root_vdev != NULL) {
4048 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4049 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4050 poolname) == 0);
4051 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4052 state) == 0);
4053 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4054 spa->spa_uberblock.ub_timestamp) == 0);
4055 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4056 spa->spa_load_info) == 0);
4057
4058 /*
4059 * If the bootfs property exists on this pool then we
4060 * copy it out so that external consumers can tell which
4061 * pools are bootable.
4062 */
4063 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4064 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4065
4066 /*
4067 * We have to play games with the name since the
4068 * pool was opened as TRYIMPORT_NAME.
4069 */
4070 if (dsl_dsobj_to_dsname(spa_name(spa),
4071 spa->spa_bootfs, tmpname) == 0) {
4072 char *cp;
4073 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4074
4075 cp = strchr(tmpname, '/');
4076 if (cp == NULL) {
4077 (void) strlcpy(dsname, tmpname,
4078 MAXPATHLEN);
4079 } else {
4080 (void) snprintf(dsname, MAXPATHLEN,
4081 "%s/%s", poolname, ++cp);
4082 }
4083 VERIFY(nvlist_add_string(config,
4084 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4085 kmem_free(dsname, MAXPATHLEN);
4086 }
4087 kmem_free(tmpname, MAXPATHLEN);
4088 }
4089
4090 /*
4091 * Add the list of hot spares and level 2 cache devices.
4092 */
4093 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4094 spa_add_spares(spa, config);
4095 spa_add_l2cache(spa, config);
4096 spa_config_exit(spa, SCL_CONFIG, FTAG);
4097 }
4098
4099 spa_unload(spa);
4100 spa_deactivate(spa);
4101 spa_remove(spa);
4102 mutex_exit(&spa_namespace_lock);
4103
4104 return (config);
4105 }
4106
4107 /*
4108 * Pool export/destroy
4109 *
4110 * The act of destroying or exporting a pool is very simple. We make sure there
4111 * is no more pending I/O and any references to the pool are gone. Then, we
4112 * update the pool state and sync all the labels to disk, removing the
4113 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4114 * we don't sync the labels or remove the configuration cache.
4115 */
4116 static int
4117 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4118 boolean_t force, boolean_t hardforce)
4119 {
4120 spa_t *spa;
4121
4122 if (oldconfig)
4123 *oldconfig = NULL;
4124
4125 if (!(spa_mode_global & FWRITE))
4126 return (SET_ERROR(EROFS));
4127
4128 mutex_enter(&spa_namespace_lock);
4129 if ((spa = spa_lookup(pool)) == NULL) {
4130 mutex_exit(&spa_namespace_lock);
4131 return (SET_ERROR(ENOENT));
4132 }
4133
4134 /*
4135 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4136 * reacquire the namespace lock, and see if we can export.
4137 */
4138 spa_open_ref(spa, FTAG);
4139 mutex_exit(&spa_namespace_lock);
4140 spa_async_suspend(spa);
4141 mutex_enter(&spa_namespace_lock);
4142 spa_close(spa, FTAG);
4143
4144 /*
4145 * The pool will be in core if it's openable,
4146 * in which case we can modify its state.
4147 */
4148 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4149 /*
4150 * Objsets may be open only because they're dirty, so we
4151 * have to force it to sync before checking spa_refcnt.
4152 */
4153 txg_wait_synced(spa->spa_dsl_pool, 0);
4154
4155 /*
4156 * A pool cannot be exported or destroyed if there are active
4157 * references. If we are resetting a pool, allow references by
4158 * fault injection handlers.
4159 */
4160 if (!spa_refcount_zero(spa) ||
4161 (spa->spa_inject_ref != 0 &&
4162 new_state != POOL_STATE_UNINITIALIZED)) {
4163 spa_async_resume(spa);
4164 mutex_exit(&spa_namespace_lock);
4165 return (SET_ERROR(EBUSY));
4166 }
4167
4168 /*
4169 * A pool cannot be exported if it has an active shared spare.
4170 * This is to prevent other pools stealing the active spare
4171 * from an exported pool. At user's own will, such pool can
4172 * be forcedly exported.
4173 */
4174 if (!force && new_state == POOL_STATE_EXPORTED &&
4175 spa_has_active_shared_spare(spa)) {
4176 spa_async_resume(spa);
4177 mutex_exit(&spa_namespace_lock);
4178 return (SET_ERROR(EXDEV));
4179 }
4180
4181 /*
4182 * We want this to be reflected on every label,
4183 * so mark them all dirty. spa_unload() will do the
4184 * final sync that pushes these changes out.
4185 */
4186 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4187 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4188 spa->spa_state = new_state;
4189 spa->spa_final_txg = spa_last_synced_txg(spa) +
4190 TXG_DEFER_SIZE + 1;
4191 vdev_config_dirty(spa->spa_root_vdev);
4192 spa_config_exit(spa, SCL_ALL, FTAG);
4193 }
4194 }
4195
4196 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4197
4198 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4199 spa_unload(spa);
4200 spa_deactivate(spa);
4201 }
4202
4203 if (oldconfig && spa->spa_config)
4204 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4205
4206 if (new_state != POOL_STATE_UNINITIALIZED) {
4207 if (!hardforce)
4208 spa_config_sync(spa, B_TRUE, B_TRUE);
4209 spa_remove(spa);
4210 }
4211 mutex_exit(&spa_namespace_lock);
4212
4213 return (0);
4214 }
4215
4216 /*
4217 * Destroy a storage pool.
4218 */
4219 int
4220 spa_destroy(char *pool)
4221 {
4222 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4223 B_FALSE, B_FALSE));
4224 }
4225
4226 /*
4227 * Export a storage pool.
4228 */
4229 int
4230 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4231 boolean_t hardforce)
4232 {
4233 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4234 force, hardforce));
4235 }
4236
4237 /*
4238 * Similar to spa_export(), this unloads the spa_t without actually removing it
4239 * from the namespace in any way.
4240 */
4241 int
4242 spa_reset(char *pool)
4243 {
4244 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4245 B_FALSE, B_FALSE));
4246 }
4247
4248 /*
4249 * ==========================================================================
4250 * Device manipulation
4251 * ==========================================================================
4252 */
4253
4254 /*
4255 * Add a device to a storage pool.
4256 */
4257 int
4258 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4259 {
4260 uint64_t txg, id;
4261 int error;
4262 vdev_t *rvd = spa->spa_root_vdev;
4263 vdev_t *vd, *tvd;
4264 nvlist_t **spares, **l2cache;
4265 uint_t nspares, nl2cache;
4266
4267 ASSERT(spa_writeable(spa));
4268
4269 txg = spa_vdev_enter(spa);
4270
4271 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4272 VDEV_ALLOC_ADD)) != 0)
4273 return (spa_vdev_exit(spa, NULL, txg, error));
4274
4275 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4276
4277 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4278 &nspares) != 0)
4279 nspares = 0;
4280
4281 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4282 &nl2cache) != 0)
4283 nl2cache = 0;
4284
4285 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4286 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4287
4288 if (vd->vdev_children != 0 &&
4289 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4290 return (spa_vdev_exit(spa, vd, txg, error));
4291
4292 /*
4293 * We must validate the spares and l2cache devices after checking the
4294 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4295 */
4296 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4297 return (spa_vdev_exit(spa, vd, txg, error));
4298
4299 /*
4300 * Transfer each new top-level vdev from vd to rvd.
4301 */
4302 for (int c = 0; c < vd->vdev_children; c++) {
4303
4304 /*
4305 * Set the vdev id to the first hole, if one exists.
4306 */
4307 for (id = 0; id < rvd->vdev_children; id++) {
4308 if (rvd->vdev_child[id]->vdev_ishole) {
4309 vdev_free(rvd->vdev_child[id]);
4310 break;
4311 }
4312 }
4313 tvd = vd->vdev_child[c];
4314 vdev_remove_child(vd, tvd);
4315 tvd->vdev_id = id;
4316 vdev_add_child(rvd, tvd);
4317 vdev_config_dirty(tvd);
4318 }
4319
4320 if (nspares != 0) {
4321 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4322 ZPOOL_CONFIG_SPARES);
4323 spa_load_spares(spa);
4324 spa->spa_spares.sav_sync = B_TRUE;
4325 }
4326
4327 if (nl2cache != 0) {
4328 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4329 ZPOOL_CONFIG_L2CACHE);
4330 spa_load_l2cache(spa);
4331 spa->spa_l2cache.sav_sync = B_TRUE;
4332 }
4333
4334 /*
4335 * We have to be careful when adding new vdevs to an existing pool.
4336 * If other threads start allocating from these vdevs before we
4337 * sync the config cache, and we lose power, then upon reboot we may
4338 * fail to open the pool because there are DVAs that the config cache
4339 * can't translate. Therefore, we first add the vdevs without
4340 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4341 * and then let spa_config_update() initialize the new metaslabs.
4342 *
4343 * spa_load() checks for added-but-not-initialized vdevs, so that
4344 * if we lose power at any point in this sequence, the remaining
4345 * steps will be completed the next time we load the pool.
4346 */
4347 (void) spa_vdev_exit(spa, vd, txg, 0);
4348
4349 mutex_enter(&spa_namespace_lock);
4350 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4351 mutex_exit(&spa_namespace_lock);
4352
4353 return (0);
4354 }
4355
4356 /*
4357 * Attach a device to a mirror. The arguments are the path to any device
4358 * in the mirror, and the nvroot for the new device. If the path specifies
4359 * a device that is not mirrored, we automatically insert the mirror vdev.
4360 *
4361 * If 'replacing' is specified, the new device is intended to replace the
4362 * existing device; in this case the two devices are made into their own
4363 * mirror using the 'replacing' vdev, which is functionally identical to
4364 * the mirror vdev (it actually reuses all the same ops) but has a few
4365 * extra rules: you can't attach to it after it's been created, and upon
4366 * completion of resilvering, the first disk (the one being replaced)
4367 * is automatically detached.
4368 */
4369 int
4370 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4371 {
4372 uint64_t txg, dtl_max_txg;
4373 vdev_t *rvd = spa->spa_root_vdev;
4374 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4375 vdev_ops_t *pvops;
4376 char *oldvdpath, *newvdpath;
4377 int newvd_isspare;
4378 int error;
4379
4380 ASSERT(spa_writeable(spa));
4381
4382 txg = spa_vdev_enter(spa);
4383
4384 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4385
4386 if (oldvd == NULL)
4387 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4388
4389 if (!oldvd->vdev_ops->vdev_op_leaf)
4390 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4391
4392 pvd = oldvd->vdev_parent;
4393
4394 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4395 VDEV_ALLOC_ATTACH)) != 0)
4396 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4397
4398 if (newrootvd->vdev_children != 1)
4399 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4400
4401 newvd = newrootvd->vdev_child[0];
4402
4403 if (!newvd->vdev_ops->vdev_op_leaf)
4404 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4405
4406 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4407 return (spa_vdev_exit(spa, newrootvd, txg, error));
4408
4409 /*
4410 * Spares can't replace logs
4411 */
4412 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4413 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4414
4415 if (!replacing) {
4416 /*
4417 * For attach, the only allowable parent is a mirror or the root
4418 * vdev.
4419 */
4420 if (pvd->vdev_ops != &vdev_mirror_ops &&
4421 pvd->vdev_ops != &vdev_root_ops)
4422 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4423
4424 pvops = &vdev_mirror_ops;
4425 } else {
4426 /*
4427 * Active hot spares can only be replaced by inactive hot
4428 * spares.
4429 */
4430 if (pvd->vdev_ops == &vdev_spare_ops &&
4431 oldvd->vdev_isspare &&
4432 !spa_has_spare(spa, newvd->vdev_guid))
4433 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4434
4435 /*
4436 * If the source is a hot spare, and the parent isn't already a
4437 * spare, then we want to create a new hot spare. Otherwise, we
4438 * want to create a replacing vdev. The user is not allowed to
4439 * attach to a spared vdev child unless the 'isspare' state is
4440 * the same (spare replaces spare, non-spare replaces
4441 * non-spare).
4442 */
4443 if (pvd->vdev_ops == &vdev_replacing_ops &&
4444 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4445 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4446 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4447 newvd->vdev_isspare != oldvd->vdev_isspare) {
4448 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4449 }
4450
4451 if (newvd->vdev_isspare)
4452 pvops = &vdev_spare_ops;
4453 else
4454 pvops = &vdev_replacing_ops;
4455 }
4456
4457 /*
4458 * Make sure the new device is big enough.
4459 */
4460 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4461 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4462
4463 /*
4464 * The new device cannot have a higher alignment requirement
4465 * than the top-level vdev.
4466 */
4467 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4468 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4469
4470 /*
4471 * If this is an in-place replacement, update oldvd's path and devid
4472 * to make it distinguishable from newvd, and unopenable from now on.
4473 */
4474 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4475 spa_strfree(oldvd->vdev_path);
4476 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4477 KM_SLEEP);
4478 (void) sprintf(oldvd->vdev_path, "%s/%s",
4479 newvd->vdev_path, "old");
4480 if (oldvd->vdev_devid != NULL) {
4481 spa_strfree(oldvd->vdev_devid);
4482 oldvd->vdev_devid = NULL;
4483 }
4484 }
4485
4486 /* mark the device being resilvered */
4487 newvd->vdev_resilver_txg = txg;
4488
4489 /*
4490 * If the parent is not a mirror, or if we're replacing, insert the new
4491 * mirror/replacing/spare vdev above oldvd.
4492 */
4493 if (pvd->vdev_ops != pvops)
4494 pvd = vdev_add_parent(oldvd, pvops);
4495
4496 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4497 ASSERT(pvd->vdev_ops == pvops);
4498 ASSERT(oldvd->vdev_parent == pvd);
4499
4500 /*
4501 * Extract the new device from its root and add it to pvd.
4502 */
4503 vdev_remove_child(newrootvd, newvd);
4504 newvd->vdev_id = pvd->vdev_children;
4505 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4506 vdev_add_child(pvd, newvd);
4507
4508 tvd = newvd->vdev_top;
4509 ASSERT(pvd->vdev_top == tvd);
4510 ASSERT(tvd->vdev_parent == rvd);
4511
4512 vdev_config_dirty(tvd);
4513
4514 /*
4515 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4516 * for any dmu_sync-ed blocks. It will propagate upward when
4517 * spa_vdev_exit() calls vdev_dtl_reassess().
4518 */
4519 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4520
4521 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4522 dtl_max_txg - TXG_INITIAL);
4523
4524 if (newvd->vdev_isspare) {
4525 spa_spare_activate(newvd);
4526 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4527 }
4528
4529 oldvdpath = spa_strdup(oldvd->vdev_path);
4530 newvdpath = spa_strdup(newvd->vdev_path);
4531 newvd_isspare = newvd->vdev_isspare;
4532
4533 /*
4534 * Mark newvd's DTL dirty in this txg.
4535 */
4536 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4537
4538 /*
4539 * Schedule the resilver to restart in the future. We do this to
4540 * ensure that dmu_sync-ed blocks have been stitched into the
4541 * respective datasets.
4542 */
4543 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4544
4545 /*
4546 * Commit the config
4547 */
4548 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4549
4550 spa_history_log_internal(spa, "vdev attach", NULL,
4551 "%s vdev=%s %s vdev=%s",
4552 replacing && newvd_isspare ? "spare in" :
4553 replacing ? "replace" : "attach", newvdpath,
4554 replacing ? "for" : "to", oldvdpath);
4555
4556 spa_strfree(oldvdpath);
4557 spa_strfree(newvdpath);
4558
4559 if (spa->spa_bootfs)
4560 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4561
4562 return (0);
4563 }
4564
4565 /*
4566 * Detach a device from a mirror or replacing vdev.
4567 *
4568 * If 'replace_done' is specified, only detach if the parent
4569 * is a replacing vdev.
4570 */
4571 int
4572 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4573 {
4574 uint64_t txg;
4575 int error;
4576 vdev_t *rvd = spa->spa_root_vdev;
4577 vdev_t *vd, *pvd, *cvd, *tvd;
4578 boolean_t unspare = B_FALSE;
4579 uint64_t unspare_guid = 0;
4580 char *vdpath;
4581
4582 ASSERT(spa_writeable(spa));
4583
4584 txg = spa_vdev_enter(spa);
4585
4586 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4587
4588 if (vd == NULL)
4589 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4590
4591 if (!vd->vdev_ops->vdev_op_leaf)
4592 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4593
4594 pvd = vd->vdev_parent;
4595
4596 /*
4597 * If the parent/child relationship is not as expected, don't do it.
4598 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4599 * vdev that's replacing B with C. The user's intent in replacing
4600 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4601 * the replace by detaching C, the expected behavior is to end up
4602 * M(A,B). But suppose that right after deciding to detach C,
4603 * the replacement of B completes. We would have M(A,C), and then
4604 * ask to detach C, which would leave us with just A -- not what
4605 * the user wanted. To prevent this, we make sure that the
4606 * parent/child relationship hasn't changed -- in this example,
4607 * that C's parent is still the replacing vdev R.
4608 */
4609 if (pvd->vdev_guid != pguid && pguid != 0)
4610 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4611
4612 /*
4613 * Only 'replacing' or 'spare' vdevs can be replaced.
4614 */
4615 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4616 pvd->vdev_ops != &vdev_spare_ops)
4617 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4618
4619 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4620 spa_version(spa) >= SPA_VERSION_SPARES);
4621
4622 /*
4623 * Only mirror, replacing, and spare vdevs support detach.
4624 */
4625 if (pvd->vdev_ops != &vdev_replacing_ops &&
4626 pvd->vdev_ops != &vdev_mirror_ops &&
4627 pvd->vdev_ops != &vdev_spare_ops)
4628 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4629
4630 /*
4631 * If this device has the only valid copy of some data,
4632 * we cannot safely detach it.
4633 */
4634 if (vdev_dtl_required(vd))
4635 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4636
4637 ASSERT(pvd->vdev_children >= 2);
4638
4639 /*
4640 * If we are detaching the second disk from a replacing vdev, then
4641 * check to see if we changed the original vdev's path to have "/old"
4642 * at the end in spa_vdev_attach(). If so, undo that change now.
4643 */
4644 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4645 vd->vdev_path != NULL) {
4646 size_t len = strlen(vd->vdev_path);
4647
4648 for (int c = 0; c < pvd->vdev_children; c++) {
4649 cvd = pvd->vdev_child[c];
4650
4651 if (cvd == vd || cvd->vdev_path == NULL)
4652 continue;
4653
4654 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4655 strcmp(cvd->vdev_path + len, "/old") == 0) {
4656 spa_strfree(cvd->vdev_path);
4657 cvd->vdev_path = spa_strdup(vd->vdev_path);
4658 break;
4659 }
4660 }
4661 }
4662
4663 /*
4664 * If we are detaching the original disk from a spare, then it implies
4665 * that the spare should become a real disk, and be removed from the
4666 * active spare list for the pool.
4667 */
4668 if (pvd->vdev_ops == &vdev_spare_ops &&
4669 vd->vdev_id == 0 &&
4670 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4671 unspare = B_TRUE;
4672
4673 /*
4674 * Erase the disk labels so the disk can be used for other things.
4675 * This must be done after all other error cases are handled,
4676 * but before we disembowel vd (so we can still do I/O to it).
4677 * But if we can't do it, don't treat the error as fatal --
4678 * it may be that the unwritability of the disk is the reason
4679 * it's being detached!
4680 */
4681 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4682
4683 /*
4684 * Remove vd from its parent and compact the parent's children.
4685 */
4686 vdev_remove_child(pvd, vd);
4687 vdev_compact_children(pvd);
4688
4689 /*
4690 * Remember one of the remaining children so we can get tvd below.
4691 */
4692 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4693
4694 /*
4695 * If we need to remove the remaining child from the list of hot spares,
4696 * do it now, marking the vdev as no longer a spare in the process.
4697 * We must do this before vdev_remove_parent(), because that can
4698 * change the GUID if it creates a new toplevel GUID. For a similar
4699 * reason, we must remove the spare now, in the same txg as the detach;
4700 * otherwise someone could attach a new sibling, change the GUID, and
4701 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4702 */
4703 if (unspare) {
4704 ASSERT(cvd->vdev_isspare);
4705 spa_spare_remove(cvd);
4706 unspare_guid = cvd->vdev_guid;
4707 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4708 cvd->vdev_unspare = B_TRUE;
4709 }
4710
4711 /*
4712 * If the parent mirror/replacing vdev only has one child,
4713 * the parent is no longer needed. Remove it from the tree.
4714 */
4715 if (pvd->vdev_children == 1) {
4716 if (pvd->vdev_ops == &vdev_spare_ops)
4717 cvd->vdev_unspare = B_FALSE;
4718 vdev_remove_parent(cvd);
4719 }
4720
4721
4722 /*
4723 * We don't set tvd until now because the parent we just removed
4724 * may have been the previous top-level vdev.
4725 */
4726 tvd = cvd->vdev_top;
4727 ASSERT(tvd->vdev_parent == rvd);
4728
4729 /*
4730 * Reevaluate the parent vdev state.
4731 */
4732 vdev_propagate_state(cvd);
4733
4734 /*
4735 * If the 'autoexpand' property is set on the pool then automatically
4736 * try to expand the size of the pool. For example if the device we
4737 * just detached was smaller than the others, it may be possible to
4738 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4739 * first so that we can obtain the updated sizes of the leaf vdevs.
4740 */
4741 if (spa->spa_autoexpand) {
4742 vdev_reopen(tvd);
4743 vdev_expand(tvd, txg);
4744 }
4745
4746 vdev_config_dirty(tvd);
4747
4748 /*
4749 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4750 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4751 * But first make sure we're not on any *other* txg's DTL list, to
4752 * prevent vd from being accessed after it's freed.
4753 */
4754 vdpath = spa_strdup(vd->vdev_path);
4755 for (int t = 0; t < TXG_SIZE; t++)
4756 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4757 vd->vdev_detached = B_TRUE;
4758 vdev_dirty(tvd, VDD_DTL, vd, txg);
4759
4760 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4761
4762 /* hang on to the spa before we release the lock */
4763 spa_open_ref(spa, FTAG);
4764
4765 error = spa_vdev_exit(spa, vd, txg, 0);
4766
4767 spa_history_log_internal(spa, "detach", NULL,
4768 "vdev=%s", vdpath);
4769 spa_strfree(vdpath);
4770
4771 /*
4772 * If this was the removal of the original device in a hot spare vdev,
4773 * then we want to go through and remove the device from the hot spare
4774 * list of every other pool.
4775 */
4776 if (unspare) {
4777 spa_t *altspa = NULL;
4778
4779 mutex_enter(&spa_namespace_lock);
4780 while ((altspa = spa_next(altspa)) != NULL) {
4781 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4782 altspa == spa)
4783 continue;
4784
4785 spa_open_ref(altspa, FTAG);
4786 mutex_exit(&spa_namespace_lock);
4787 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4788 mutex_enter(&spa_namespace_lock);
4789 spa_close(altspa, FTAG);
4790 }
4791 mutex_exit(&spa_namespace_lock);
4792
4793 /* search the rest of the vdevs for spares to remove */
4794 spa_vdev_resilver_done(spa);
4795 }
4796
4797 /* all done with the spa; OK to release */
4798 mutex_enter(&spa_namespace_lock);
4799 spa_close(spa, FTAG);
4800 mutex_exit(&spa_namespace_lock);
4801
4802 return (error);
4803 }
4804
4805 /*
4806 * Split a set of devices from their mirrors, and create a new pool from them.
4807 */
4808 int
4809 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4810 nvlist_t *props, boolean_t exp)
4811 {
4812 int error = 0;
4813 uint64_t txg, *glist;
4814 spa_t *newspa;
4815 uint_t c, children, lastlog;
4816 nvlist_t **child, *nvl, *tmp;
4817 dmu_tx_t *tx;
4818 char *altroot = NULL;
4819 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4820 boolean_t activate_slog;
4821
4822 ASSERT(spa_writeable(spa));
4823
4824 txg = spa_vdev_enter(spa);
4825
4826 /* clear the log and flush everything up to now */
4827 activate_slog = spa_passivate_log(spa);
4828 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4829 error = spa_offline_log(spa);
4830 txg = spa_vdev_config_enter(spa);
4831
4832 if (activate_slog)
4833 spa_activate_log(spa);
4834
4835 if (error != 0)
4836 return (spa_vdev_exit(spa, NULL, txg, error));
4837
4838 /* check new spa name before going any further */
4839 if (spa_lookup(newname) != NULL)
4840 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4841
4842 /*
4843 * scan through all the children to ensure they're all mirrors
4844 */
4845 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4846 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4847 &children) != 0)
4848 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4849
4850 /* first, check to ensure we've got the right child count */
4851 rvd = spa->spa_root_vdev;
4852 lastlog = 0;
4853 for (c = 0; c < rvd->vdev_children; c++) {
4854 vdev_t *vd = rvd->vdev_child[c];
4855
4856 /* don't count the holes & logs as children */
4857 if (vd->vdev_islog || vd->vdev_ishole) {
4858 if (lastlog == 0)
4859 lastlog = c;
4860 continue;
4861 }
4862
4863 lastlog = 0;
4864 }
4865 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4866 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4867
4868 /* next, ensure no spare or cache devices are part of the split */
4869 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4870 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4871 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4872
4873 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4874 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4875
4876 /* then, loop over each vdev and validate it */
4877 for (c = 0; c < children; c++) {
4878 uint64_t is_hole = 0;
4879
4880 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4881 &is_hole);
4882
4883 if (is_hole != 0) {
4884 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4885 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4886 continue;
4887 } else {
4888 error = SET_ERROR(EINVAL);
4889 break;
4890 }
4891 }
4892
4893 /* which disk is going to be split? */
4894 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4895 &glist[c]) != 0) {
4896 error = SET_ERROR(EINVAL);
4897 break;
4898 }
4899
4900 /* look it up in the spa */
4901 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4902 if (vml[c] == NULL) {
4903 error = SET_ERROR(ENODEV);
4904 break;
4905 }
4906
4907 /* make sure there's nothing stopping the split */
4908 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4909 vml[c]->vdev_islog ||
4910 vml[c]->vdev_ishole ||
4911 vml[c]->vdev_isspare ||
4912 vml[c]->vdev_isl2cache ||
4913 !vdev_writeable(vml[c]) ||
4914 vml[c]->vdev_children != 0 ||
4915 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4916 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4917 error = SET_ERROR(EINVAL);
4918 break;
4919 }
4920
4921 if (vdev_dtl_required(vml[c])) {
4922 error = SET_ERROR(EBUSY);
4923 break;
4924 }
4925
4926 /* we need certain info from the top level */
4927 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4928 vml[c]->vdev_top->vdev_ms_array) == 0);
4929 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4930 vml[c]->vdev_top->vdev_ms_shift) == 0);
4931 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4932 vml[c]->vdev_top->vdev_asize) == 0);
4933 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4934 vml[c]->vdev_top->vdev_ashift) == 0);
4935 }
4936
4937 if (error != 0) {
4938 kmem_free(vml, children * sizeof (vdev_t *));
4939 kmem_free(glist, children * sizeof (uint64_t));
4940 return (spa_vdev_exit(spa, NULL, txg, error));
4941 }
4942
4943 /* stop writers from using the disks */
4944 for (c = 0; c < children; c++) {
4945 if (vml[c] != NULL)
4946 vml[c]->vdev_offline = B_TRUE;
4947 }
4948 vdev_reopen(spa->spa_root_vdev);
4949
4950 /*
4951 * Temporarily record the splitting vdevs in the spa config. This
4952 * will disappear once the config is regenerated.
4953 */
4954 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4955 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4956 glist, children) == 0);
4957 kmem_free(glist, children * sizeof (uint64_t));
4958
4959 mutex_enter(&spa->spa_props_lock);
4960 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4961 nvl) == 0);
4962 mutex_exit(&spa->spa_props_lock);
4963 spa->spa_config_splitting = nvl;
4964 vdev_config_dirty(spa->spa_root_vdev);
4965
4966 /* configure and create the new pool */
4967 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4968 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4969 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4970 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4971 spa_version(spa)) == 0);
4972 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4973 spa->spa_config_txg) == 0);
4974 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4975 spa_generate_guid(NULL)) == 0);
4976 (void) nvlist_lookup_string(props,
4977 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4978
4979 /* add the new pool to the namespace */
4980 newspa = spa_add(newname, config, altroot);
4981 newspa->spa_config_txg = spa->spa_config_txg;
4982 spa_set_log_state(newspa, SPA_LOG_CLEAR);
4983
4984 /* release the spa config lock, retaining the namespace lock */
4985 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4986
4987 if (zio_injection_enabled)
4988 zio_handle_panic_injection(spa, FTAG, 1);
4989
4990 spa_activate(newspa, spa_mode_global);
4991 spa_async_suspend(newspa);
4992
4993 /* create the new pool from the disks of the original pool */
4994 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4995 if (error)
4996 goto out;
4997
4998 /* if that worked, generate a real config for the new pool */
4999 if (newspa->spa_root_vdev != NULL) {
5000 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5001 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5002 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5003 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5004 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5005 B_TRUE));
5006 }
5007
5008 /* set the props */
5009 if (props != NULL) {
5010 spa_configfile_set(newspa, props, B_FALSE);
5011 error = spa_prop_set(newspa, props);
5012 if (error)
5013 goto out;
5014 }
5015
5016 /* flush everything */
5017 txg = spa_vdev_config_enter(newspa);
5018 vdev_config_dirty(newspa->spa_root_vdev);
5019 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5020
5021 if (zio_injection_enabled)
5022 zio_handle_panic_injection(spa, FTAG, 2);
5023
5024 spa_async_resume(newspa);
5025
5026 /* finally, update the original pool's config */
5027 txg = spa_vdev_config_enter(spa);
5028 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5029 error = dmu_tx_assign(tx, TXG_WAIT);
5030 if (error != 0)
5031 dmu_tx_abort(tx);
5032 for (c = 0; c < children; c++) {
5033 if (vml[c] != NULL) {
5034 vdev_split(vml[c]);
5035 if (error == 0)
5036 spa_history_log_internal(spa, "detach", tx,
5037 "vdev=%s", vml[c]->vdev_path);
5038 vdev_free(vml[c]);
5039 }
5040 }
5041 vdev_config_dirty(spa->spa_root_vdev);
5042 spa->spa_config_splitting = NULL;
5043 nvlist_free(nvl);
5044 if (error == 0)
5045 dmu_tx_commit(tx);
5046 (void) spa_vdev_exit(spa, NULL, txg, 0);
5047
5048 if (zio_injection_enabled)
5049 zio_handle_panic_injection(spa, FTAG, 3);
5050
5051 /* split is complete; log a history record */
5052 spa_history_log_internal(newspa, "split", NULL,
5053 "from pool %s", spa_name(spa));
5054
5055 kmem_free(vml, children * sizeof (vdev_t *));
5056
5057 /* if we're not going to mount the filesystems in userland, export */
5058 if (exp)
5059 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5060 B_FALSE, B_FALSE);
5061
5062 return (error);
5063
5064 out:
5065 spa_unload(newspa);
5066 spa_deactivate(newspa);
5067 spa_remove(newspa);
5068
5069 txg = spa_vdev_config_enter(spa);
5070
5071 /* re-online all offlined disks */
5072 for (c = 0; c < children; c++) {
5073 if (vml[c] != NULL)
5074 vml[c]->vdev_offline = B_FALSE;
5075 }
5076 vdev_reopen(spa->spa_root_vdev);
5077
5078 nvlist_free(spa->spa_config_splitting);
5079 spa->spa_config_splitting = NULL;
5080 (void) spa_vdev_exit(spa, NULL, txg, error);
5081
5082 kmem_free(vml, children * sizeof (vdev_t *));
5083 return (error);
5084 }
5085
5086 static nvlist_t *
5087 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5088 {
5089 for (int i = 0; i < count; i++) {
5090 uint64_t guid;
5091
5092 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5093 &guid) == 0);
5094
5095 if (guid == target_guid)
5096 return (nvpp[i]);
5097 }
5098
5099 return (NULL);
5100 }
5101
5102 static void
5103 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5104 nvlist_t *dev_to_remove)
5105 {
5106 nvlist_t **newdev = NULL;
5107
5108 if (count > 1)
5109 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5110
5111 for (int i = 0, j = 0; i < count; i++) {
5112 if (dev[i] == dev_to_remove)
5113 continue;
5114 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5115 }
5116
5117 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5118 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5119
5120 for (int i = 0; i < count - 1; i++)
5121 nvlist_free(newdev[i]);
5122
5123 if (count > 1)
5124 kmem_free(newdev, (count - 1) * sizeof (void *));
5125 }
5126
5127 /*
5128 * Evacuate the device.
5129 */
5130 static int
5131 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5132 {
5133 uint64_t txg;
5134 int error = 0;
5135
5136 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5137 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5138 ASSERT(vd == vd->vdev_top);
5139
5140 /*
5141 * Evacuate the device. We don't hold the config lock as writer
5142 * since we need to do I/O but we do keep the
5143 * spa_namespace_lock held. Once this completes the device
5144 * should no longer have any blocks allocated on it.
5145 */
5146 if (vd->vdev_islog) {
5147 if (vd->vdev_stat.vs_alloc != 0)
5148 error = spa_offline_log(spa);
5149 } else {
5150 error = SET_ERROR(ENOTSUP);
5151 }
5152
5153 if (error)
5154 return (error);
5155
5156 /*
5157 * The evacuation succeeded. Remove any remaining MOS metadata
5158 * associated with this vdev, and wait for these changes to sync.
5159 */
5160 ASSERT0(vd->vdev_stat.vs_alloc);
5161 txg = spa_vdev_config_enter(spa);
5162 vd->vdev_removing = B_TRUE;
5163 vdev_dirty_leaves(vd, VDD_DTL, txg);
5164 vdev_config_dirty(vd);
5165 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5166
5167 return (0);
5168 }
5169
5170 /*
5171 * Complete the removal by cleaning up the namespace.
5172 */
5173 static void
5174 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5175 {
5176 vdev_t *rvd = spa->spa_root_vdev;
5177 uint64_t id = vd->vdev_id;
5178 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5179
5180 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5181 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5182 ASSERT(vd == vd->vdev_top);
5183
5184 /*
5185 * Only remove any devices which are empty.
5186 */
5187 if (vd->vdev_stat.vs_alloc != 0)
5188 return;
5189
5190 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5191
5192 if (list_link_active(&vd->vdev_state_dirty_node))
5193 vdev_state_clean(vd);
5194 if (list_link_active(&vd->vdev_config_dirty_node))
5195 vdev_config_clean(vd);
5196
5197 vdev_free(vd);
5198
5199 if (last_vdev) {
5200 vdev_compact_children(rvd);
5201 } else {
5202 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5203 vdev_add_child(rvd, vd);
5204 }
5205 vdev_config_dirty(rvd);
5206
5207 /*
5208 * Reassess the health of our root vdev.
5209 */
5210 vdev_reopen(rvd);
5211 }
5212
5213 /*
5214 * Remove a device from the pool -
5215 *
5216 * Removing a device from the vdev namespace requires several steps
5217 * and can take a significant amount of time. As a result we use
5218 * the spa_vdev_config_[enter/exit] functions which allow us to
5219 * grab and release the spa_config_lock while still holding the namespace
5220 * lock. During each step the configuration is synced out.
5221 *
5222 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5223 * devices.
5224 */
5225 int
5226 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5227 {
5228 vdev_t *vd;
5229 metaslab_group_t *mg;
5230 nvlist_t **spares, **l2cache, *nv;
5231 uint64_t txg = 0;
5232 uint_t nspares, nl2cache;
5233 int error = 0;
5234 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5235
5236 ASSERT(spa_writeable(spa));
5237
5238 if (!locked)
5239 txg = spa_vdev_enter(spa);
5240
5241 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5242
5243 if (spa->spa_spares.sav_vdevs != NULL &&
5244 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5245 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5246 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5247 /*
5248 * Only remove the hot spare if it's not currently in use
5249 * in this pool.
5250 */
5251 if (vd == NULL || unspare) {
5252 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5253 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5254 spa_load_spares(spa);
5255 spa->spa_spares.sav_sync = B_TRUE;
5256 } else {
5257 error = SET_ERROR(EBUSY);
5258 }
5259 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5260 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5261 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5262 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5263 /*
5264 * Cache devices can always be removed.
5265 */
5266 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5267 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5268 spa_load_l2cache(spa);
5269 spa->spa_l2cache.sav_sync = B_TRUE;
5270 } else if (vd != NULL && vd->vdev_islog) {
5271 ASSERT(!locked);
5272 ASSERT(vd == vd->vdev_top);
5273
5274 mg = vd->vdev_mg;
5275
5276 /*
5277 * Stop allocating from this vdev.
5278 */
5279 metaslab_group_passivate(mg);
5280
5281 /*
5282 * Wait for the youngest allocations and frees to sync,
5283 * and then wait for the deferral of those frees to finish.
5284 */
5285 spa_vdev_config_exit(spa, NULL,
5286 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5287
5288 /*
5289 * Attempt to evacuate the vdev.
5290 */
5291 error = spa_vdev_remove_evacuate(spa, vd);
5292
5293 txg = spa_vdev_config_enter(spa);
5294
5295 /*
5296 * If we couldn't evacuate the vdev, unwind.
5297 */
5298 if (error) {
5299 metaslab_group_activate(mg);
5300 return (spa_vdev_exit(spa, NULL, txg, error));
5301 }
5302
5303 /*
5304 * Clean up the vdev namespace.
5305 */
5306 spa_vdev_remove_from_namespace(spa, vd);
5307
5308 } else if (vd != NULL) {
5309 /*
5310 * Normal vdevs cannot be removed (yet).
5311 */
5312 error = SET_ERROR(ENOTSUP);
5313 } else {
5314 /*
5315 * There is no vdev of any kind with the specified guid.
5316 */
5317 error = SET_ERROR(ENOENT);
5318 }
5319
5320 if (!locked)
5321 return (spa_vdev_exit(spa, NULL, txg, error));
5322
5323 return (error);
5324 }
5325
5326 /*
5327 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5328 * currently spared, so we can detach it.
5329 */
5330 static vdev_t *
5331 spa_vdev_resilver_done_hunt(vdev_t *vd)
5332 {
5333 vdev_t *newvd, *oldvd;
5334
5335 for (int c = 0; c < vd->vdev_children; c++) {
5336 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5337 if (oldvd != NULL)
5338 return (oldvd);
5339 }
5340
5341 /*
5342 * Check for a completed replacement. We always consider the first
5343 * vdev in the list to be the oldest vdev, and the last one to be
5344 * the newest (see spa_vdev_attach() for how that works). In
5345 * the case where the newest vdev is faulted, we will not automatically
5346 * remove it after a resilver completes. This is OK as it will require
5347 * user intervention to determine which disk the admin wishes to keep.
5348 */
5349 if (vd->vdev_ops == &vdev_replacing_ops) {
5350 ASSERT(vd->vdev_children > 1);
5351
5352 newvd = vd->vdev_child[vd->vdev_children - 1];
5353 oldvd = vd->vdev_child[0];
5354
5355 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5356 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5357 !vdev_dtl_required(oldvd))
5358 return (oldvd);
5359 }
5360
5361 /*
5362 * Check for a completed resilver with the 'unspare' flag set.
5363 */
5364 if (vd->vdev_ops == &vdev_spare_ops) {
5365 vdev_t *first = vd->vdev_child[0];
5366 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5367
5368 if (last->vdev_unspare) {
5369 oldvd = first;
5370 newvd = last;
5371 } else if (first->vdev_unspare) {
5372 oldvd = last;
5373 newvd = first;
5374 } else {
5375 oldvd = NULL;
5376 }
5377
5378 if (oldvd != NULL &&
5379 vdev_dtl_empty(newvd, DTL_MISSING) &&
5380 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5381 !vdev_dtl_required(oldvd))
5382 return (oldvd);
5383
5384 /*
5385 * If there are more than two spares attached to a disk,
5386 * and those spares are not required, then we want to
5387 * attempt to free them up now so that they can be used
5388 * by other pools. Once we're back down to a single
5389 * disk+spare, we stop removing them.
5390 */
5391 if (vd->vdev_children > 2) {
5392 newvd = vd->vdev_child[1];
5393
5394 if (newvd->vdev_isspare && last->vdev_isspare &&
5395 vdev_dtl_empty(last, DTL_MISSING) &&
5396 vdev_dtl_empty(last, DTL_OUTAGE) &&
5397 !vdev_dtl_required(newvd))
5398 return (newvd);
5399 }
5400 }
5401
5402 return (NULL);
5403 }
5404
5405 static void
5406 spa_vdev_resilver_done(spa_t *spa)
5407 {
5408 vdev_t *vd, *pvd, *ppvd;
5409 uint64_t guid, sguid, pguid, ppguid;
5410
5411 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5412
5413 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5414 pvd = vd->vdev_parent;
5415 ppvd = pvd->vdev_parent;
5416 guid = vd->vdev_guid;
5417 pguid = pvd->vdev_guid;
5418 ppguid = ppvd->vdev_guid;
5419 sguid = 0;
5420 /*
5421 * If we have just finished replacing a hot spared device, then
5422 * we need to detach the parent's first child (the original hot
5423 * spare) as well.
5424 */
5425 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5426 ppvd->vdev_children == 2) {
5427 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5428 sguid = ppvd->vdev_child[1]->vdev_guid;
5429 }
5430 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5431
5432 spa_config_exit(spa, SCL_ALL, FTAG);
5433 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5434 return;
5435 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5436 return;
5437 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5438 }
5439
5440 spa_config_exit(spa, SCL_ALL, FTAG);
5441 }
5442
5443 /*
5444 * Update the stored path or FRU for this vdev.
5445 */
5446 int
5447 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5448 boolean_t ispath)
5449 {
5450 vdev_t *vd;
5451 boolean_t sync = B_FALSE;
5452
5453 ASSERT(spa_writeable(spa));
5454
5455 spa_vdev_state_enter(spa, SCL_ALL);
5456
5457 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5458 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5459
5460 if (!vd->vdev_ops->vdev_op_leaf)
5461 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5462
5463 if (ispath) {
5464 if (strcmp(value, vd->vdev_path) != 0) {
5465 spa_strfree(vd->vdev_path);
5466 vd->vdev_path = spa_strdup(value);
5467 sync = B_TRUE;
5468 }
5469 } else {
5470 if (vd->vdev_fru == NULL) {
5471 vd->vdev_fru = spa_strdup(value);
5472 sync = B_TRUE;
5473 } else if (strcmp(value, vd->vdev_fru) != 0) {
5474 spa_strfree(vd->vdev_fru);
5475 vd->vdev_fru = spa_strdup(value);
5476 sync = B_TRUE;
5477 }
5478 }
5479
5480 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5481 }
5482
5483 int
5484 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5485 {
5486 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5487 }
5488
5489 int
5490 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5491 {
5492 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5493 }
5494
5495 /*
5496 * ==========================================================================
5497 * SPA Scanning
5498 * ==========================================================================
5499 */
5500
5501 int
5502 spa_scan_stop(spa_t *spa)
5503 {
5504 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5505 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5506 return (SET_ERROR(EBUSY));
5507 return (dsl_scan_cancel(spa->spa_dsl_pool));
5508 }
5509
5510 int
5511 spa_scan(spa_t *spa, pool_scan_func_t func)
5512 {
5513 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5514
5515 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5516 return (SET_ERROR(ENOTSUP));
5517
5518 /*
5519 * If a resilver was requested, but there is no DTL on a
5520 * writeable leaf device, we have nothing to do.
5521 */
5522 if (func == POOL_SCAN_RESILVER &&
5523 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5524 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5525 return (0);
5526 }
5527
5528 return (dsl_scan(spa->spa_dsl_pool, func));
5529 }
5530
5531 /*
5532 * ==========================================================================
5533 * SPA async task processing
5534 * ==========================================================================
5535 */
5536
5537 static void
5538 spa_async_remove(spa_t *spa, vdev_t *vd)
5539 {
5540 if (vd->vdev_remove_wanted) {
5541 vd->vdev_remove_wanted = B_FALSE;
5542 vd->vdev_delayed_close = B_FALSE;
5543 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5544
5545 /*
5546 * We want to clear the stats, but we don't want to do a full
5547 * vdev_clear() as that will cause us to throw away
5548 * degraded/faulted state as well as attempt to reopen the
5549 * device, all of which is a waste.
5550 */
5551 vd->vdev_stat.vs_read_errors = 0;
5552 vd->vdev_stat.vs_write_errors = 0;
5553 vd->vdev_stat.vs_checksum_errors = 0;
5554
5555 vdev_state_dirty(vd->vdev_top);
5556 }
5557
5558 for (int c = 0; c < vd->vdev_children; c++)
5559 spa_async_remove(spa, vd->vdev_child[c]);
5560 }
5561
5562 static void
5563 spa_async_probe(spa_t *spa, vdev_t *vd)
5564 {
5565 if (vd->vdev_probe_wanted) {
5566 vd->vdev_probe_wanted = B_FALSE;
5567 vdev_reopen(vd); /* vdev_open() does the actual probe */
5568 }
5569
5570 for (int c = 0; c < vd->vdev_children; c++)
5571 spa_async_probe(spa, vd->vdev_child[c]);
5572 }
5573
5574 static void
5575 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5576 {
5577 sysevent_id_t eid;
5578 nvlist_t *attr;
5579 char *physpath;
5580
5581 if (!spa->spa_autoexpand)
5582 return;
5583
5584 for (int c = 0; c < vd->vdev_children; c++) {
5585 vdev_t *cvd = vd->vdev_child[c];
5586 spa_async_autoexpand(spa, cvd);
5587 }
5588
5589 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5590 return;
5591
5592 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5593 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5594
5595 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5596 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5597
5598 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5599 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5600
5601 nvlist_free(attr);
5602 kmem_free(physpath, MAXPATHLEN);
5603 }
5604
5605 static void
5606 spa_async_thread(spa_t *spa)
5607 {
5608 int tasks;
5609
5610 ASSERT(spa->spa_sync_on);
5611
5612 mutex_enter(&spa->spa_async_lock);
5613 tasks = spa->spa_async_tasks;
5614 spa->spa_async_tasks = 0;
5615 mutex_exit(&spa->spa_async_lock);
5616
5617 /*
5618 * See if the config needs to be updated.
5619 */
5620 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5621 uint64_t old_space, new_space;
5622
5623 mutex_enter(&spa_namespace_lock);
5624 old_space = metaslab_class_get_space(spa_normal_class(spa));
5625 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5626 new_space = metaslab_class_get_space(spa_normal_class(spa));
5627 mutex_exit(&spa_namespace_lock);
5628
5629 /*
5630 * If the pool grew as a result of the config update,
5631 * then log an internal history event.
5632 */
5633 if (new_space != old_space) {
5634 spa_history_log_internal(spa, "vdev online", NULL,
5635 "pool '%s' size: %llu(+%llu)",
5636 spa_name(spa), new_space, new_space - old_space);
5637 }
5638 }
5639
5640 /*
5641 * See if any devices need to be marked REMOVED.
5642 */
5643 if (tasks & SPA_ASYNC_REMOVE) {
5644 spa_vdev_state_enter(spa, SCL_NONE);
5645 spa_async_remove(spa, spa->spa_root_vdev);
5646 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5647 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5648 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5649 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5650 (void) spa_vdev_state_exit(spa, NULL, 0);
5651 }
5652
5653 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5654 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5655 spa_async_autoexpand(spa, spa->spa_root_vdev);
5656 spa_config_exit(spa, SCL_CONFIG, FTAG);
5657 }
5658
5659 /*
5660 * See if any devices need to be probed.
5661 */
5662 if (tasks & SPA_ASYNC_PROBE) {
5663 spa_vdev_state_enter(spa, SCL_NONE);
5664 spa_async_probe(spa, spa->spa_root_vdev);
5665 (void) spa_vdev_state_exit(spa, NULL, 0);
5666 }
5667
5668 /*
5669 * If any devices are done replacing, detach them.
5670 */
5671 if (tasks & SPA_ASYNC_RESILVER_DONE)
5672 spa_vdev_resilver_done(spa);
5673
5674 /*
5675 * Kick off a resilver.
5676 */
5677 if (tasks & SPA_ASYNC_RESILVER)
5678 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5679
5680 /*
5681 * Let the world know that we're done.
5682 */
5683 mutex_enter(&spa->spa_async_lock);
5684 spa->spa_async_thread = NULL;
5685 cv_broadcast(&spa->spa_async_cv);
5686 mutex_exit(&spa->spa_async_lock);
5687 thread_exit();
5688 }
5689
5690 void
5691 spa_async_suspend(spa_t *spa)
5692 {
5693 mutex_enter(&spa->spa_async_lock);
5694 spa->spa_async_suspended++;
5695 while (spa->spa_async_thread != NULL)
5696 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5697 mutex_exit(&spa->spa_async_lock);
5698 }
5699
5700 void
5701 spa_async_resume(spa_t *spa)
5702 {
5703 mutex_enter(&spa->spa_async_lock);
5704 ASSERT(spa->spa_async_suspended != 0);
5705 spa->spa_async_suspended--;
5706 mutex_exit(&spa->spa_async_lock);
5707 }
5708
5709 static boolean_t
5710 spa_async_tasks_pending(spa_t *spa)
5711 {
5712 uint_t non_config_tasks;
5713 uint_t config_task;
5714 boolean_t config_task_suspended;
5715
5716 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5717 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5718 if (spa->spa_ccw_fail_time == 0) {
5719 config_task_suspended = B_FALSE;
5720 } else {
5721 config_task_suspended =
5722 (gethrtime() - spa->spa_ccw_fail_time) <
5723 (zfs_ccw_retry_interval * NANOSEC);
5724 }
5725
5726 return (non_config_tasks || (config_task && !config_task_suspended));
5727 }
5728
5729 static void
5730 spa_async_dispatch(spa_t *spa)
5731 {
5732 mutex_enter(&spa->spa_async_lock);
5733 if (spa_async_tasks_pending(spa) &&
5734 !spa->spa_async_suspended &&
5735 spa->spa_async_thread == NULL &&
5736 rootdir != NULL)
5737 spa->spa_async_thread = thread_create(NULL, 0,
5738 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5739 mutex_exit(&spa->spa_async_lock);
5740 }
5741
5742 void
5743 spa_async_request(spa_t *spa, int task)
5744 {
5745 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5746 mutex_enter(&spa->spa_async_lock);
5747 spa->spa_async_tasks |= task;
5748 mutex_exit(&spa->spa_async_lock);
5749 }
5750
5751 /*
5752 * ==========================================================================
5753 * SPA syncing routines
5754 * ==========================================================================
5755 */
5756
5757 static int
5758 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5759 {
5760 bpobj_t *bpo = arg;
5761 bpobj_enqueue(bpo, bp, tx);
5762 return (0);
5763 }
5764
5765 static int
5766 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5767 {
5768 zio_t *zio = arg;
5769
5770 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5771 zio->io_flags));
5772 return (0);
5773 }
5774
5775 /*
5776 * Note: this simple function is not inlined to make it easier to dtrace the
5777 * amount of time spent syncing frees.
5778 */
5779 static void
5780 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5781 {
5782 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5783 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5784 VERIFY(zio_wait(zio) == 0);
5785 }
5786
5787 /*
5788 * Note: this simple function is not inlined to make it easier to dtrace the
5789 * amount of time spent syncing deferred frees.
5790 */
5791 static void
5792 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5793 {
5794 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5795 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5796 spa_free_sync_cb, zio, tx), ==, 0);
5797 VERIFY0(zio_wait(zio));
5798 }
5799
5800
5801 static void
5802 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5803 {
5804 char *packed = NULL;
5805 size_t bufsize;
5806 size_t nvsize = 0;
5807 dmu_buf_t *db;
5808
5809 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5810
5811 /*
5812 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5813 * information. This avoids the dmu_buf_will_dirty() path and
5814 * saves us a pre-read to get data we don't actually care about.
5815 */
5816 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5817 packed = kmem_alloc(bufsize, KM_SLEEP);
5818
5819 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5820 KM_SLEEP) == 0);
5821 bzero(packed + nvsize, bufsize - nvsize);
5822
5823 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5824
5825 kmem_free(packed, bufsize);
5826
5827 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5828 dmu_buf_will_dirty(db, tx);
5829 *(uint64_t *)db->db_data = nvsize;
5830 dmu_buf_rele(db, FTAG);
5831 }
5832
5833 static void
5834 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5835 const char *config, const char *entry)
5836 {
5837 nvlist_t *nvroot;
5838 nvlist_t **list;
5839 int i;
5840
5841 if (!sav->sav_sync)
5842 return;
5843
5844 /*
5845 * Update the MOS nvlist describing the list of available devices.
5846 * spa_validate_aux() will have already made sure this nvlist is
5847 * valid and the vdevs are labeled appropriately.
5848 */
5849 if (sav->sav_object == 0) {
5850 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5851 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5852 sizeof (uint64_t), tx);
5853 VERIFY(zap_update(spa->spa_meta_objset,
5854 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5855 &sav->sav_object, tx) == 0);
5856 }
5857
5858 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5859 if (sav->sav_count == 0) {
5860 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5861 } else {
5862 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5863 for (i = 0; i < sav->sav_count; i++)
5864 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5865 B_FALSE, VDEV_CONFIG_L2CACHE);
5866 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5867 sav->sav_count) == 0);
5868 for (i = 0; i < sav->sav_count; i++)
5869 nvlist_free(list[i]);
5870 kmem_free(list, sav->sav_count * sizeof (void *));
5871 }
5872
5873 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5874 nvlist_free(nvroot);
5875
5876 sav->sav_sync = B_FALSE;
5877 }
5878
5879 static void
5880 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5881 {
5882 nvlist_t *config;
5883
5884 if (list_is_empty(&spa->spa_config_dirty_list))
5885 return;
5886
5887 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5888
5889 config = spa_config_generate(spa, spa->spa_root_vdev,
5890 dmu_tx_get_txg(tx), B_FALSE);
5891
5892 /*
5893 * If we're upgrading the spa version then make sure that
5894 * the config object gets updated with the correct version.
5895 */
5896 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5897 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5898 spa->spa_uberblock.ub_version);
5899
5900 spa_config_exit(spa, SCL_STATE, FTAG);
5901
5902 if (spa->spa_config_syncing)
5903 nvlist_free(spa->spa_config_syncing);
5904 spa->spa_config_syncing = config;
5905
5906 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5907 }
5908
5909 static void
5910 spa_sync_version(void *arg, dmu_tx_t *tx)
5911 {
5912 uint64_t *versionp = arg;
5913 uint64_t version = *versionp;
5914 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5915
5916 /*
5917 * Setting the version is special cased when first creating the pool.
5918 */
5919 ASSERT(tx->tx_txg != TXG_INITIAL);
5920
5921 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5922 ASSERT(version >= spa_version(spa));
5923
5924 spa->spa_uberblock.ub_version = version;
5925 vdev_config_dirty(spa->spa_root_vdev);
5926 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5927 }
5928
5929 /*
5930 * Set zpool properties.
5931 */
5932 static void
5933 spa_sync_props(void *arg, dmu_tx_t *tx)
5934 {
5935 nvlist_t *nvp = arg;
5936 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5937 objset_t *mos = spa->spa_meta_objset;
5938 nvpair_t *elem = NULL;
5939
5940 mutex_enter(&spa->spa_props_lock);
5941
5942 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5943 uint64_t intval;
5944 char *strval, *fname;
5945 zpool_prop_t prop;
5946 const char *propname;
5947 zprop_type_t proptype;
5948 spa_feature_t fid;
5949
5950 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5951 case ZPROP_INVAL:
5952 /*
5953 * We checked this earlier in spa_prop_validate().
5954 */
5955 ASSERT(zpool_prop_feature(nvpair_name(elem)));
5956
5957 fname = strchr(nvpair_name(elem), '@') + 1;
5958 VERIFY0(zfeature_lookup_name(fname, &fid));
5959
5960 spa_feature_enable(spa, fid, tx);
5961 spa_history_log_internal(spa, "set", tx,
5962 "%s=enabled", nvpair_name(elem));
5963 break;
5964
5965 case ZPOOL_PROP_VERSION:
5966 intval = fnvpair_value_uint64(elem);
5967 /*
5968 * The version is synced seperatly before other
5969 * properties and should be correct by now.
5970 */
5971 ASSERT3U(spa_version(spa), >=, intval);
5972 break;
5973
5974 case ZPOOL_PROP_ALTROOT:
5975 /*
5976 * 'altroot' is a non-persistent property. It should
5977 * have been set temporarily at creation or import time.
5978 */
5979 ASSERT(spa->spa_root != NULL);
5980 break;
5981
5982 case ZPOOL_PROP_READONLY:
5983 case ZPOOL_PROP_CACHEFILE:
5984 /*
5985 * 'readonly' and 'cachefile' are also non-persisitent
5986 * properties.
5987 */
5988 break;
5989 case ZPOOL_PROP_COMMENT:
5990 strval = fnvpair_value_string(elem);
5991 if (spa->spa_comment != NULL)
5992 spa_strfree(spa->spa_comment);
5993 spa->spa_comment = spa_strdup(strval);
5994 /*
5995 * We need to dirty the configuration on all the vdevs
5996 * so that their labels get updated. It's unnecessary
5997 * to do this for pool creation since the vdev's
5998 * configuratoin has already been dirtied.
5999 */
6000 if (tx->tx_txg != TXG_INITIAL)
6001 vdev_config_dirty(spa->spa_root_vdev);
6002 spa_history_log_internal(spa, "set", tx,
6003 "%s=%s", nvpair_name(elem), strval);
6004 break;
6005 default:
6006 /*
6007 * Set pool property values in the poolprops mos object.
6008 */
6009 if (spa->spa_pool_props_object == 0) {
6010 spa->spa_pool_props_object =
6011 zap_create_link(mos, DMU_OT_POOL_PROPS,
6012 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6013 tx);
6014 }
6015
6016 /* normalize the property name */
6017 propname = zpool_prop_to_name(prop);
6018 proptype = zpool_prop_get_type(prop);
6019
6020 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6021 ASSERT(proptype == PROP_TYPE_STRING);
6022 strval = fnvpair_value_string(elem);
6023 VERIFY0(zap_update(mos,
6024 spa->spa_pool_props_object, propname,
6025 1, strlen(strval) + 1, strval, tx));
6026 spa_history_log_internal(spa, "set", tx,
6027 "%s=%s", nvpair_name(elem), strval);
6028 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6029 intval = fnvpair_value_uint64(elem);
6030
6031 if (proptype == PROP_TYPE_INDEX) {
6032 const char *unused;
6033 VERIFY0(zpool_prop_index_to_string(
6034 prop, intval, &unused));
6035 }
6036 VERIFY0(zap_update(mos,
6037 spa->spa_pool_props_object, propname,
6038 8, 1, &intval, tx));
6039 spa_history_log_internal(spa, "set", tx,
6040 "%s=%lld", nvpair_name(elem), intval);
6041 } else {
6042 ASSERT(0); /* not allowed */
6043 }
6044
6045 switch (prop) {
6046 case ZPOOL_PROP_DELEGATION:
6047 spa->spa_delegation = intval;
6048 break;
6049 case ZPOOL_PROP_BOOTFS:
6050 spa->spa_bootfs = intval;
6051 break;
6052 case ZPOOL_PROP_FAILUREMODE:
6053 spa->spa_failmode = intval;
6054 break;
6055 case ZPOOL_PROP_AUTOEXPAND:
6056 spa->spa_autoexpand = intval;
6057 if (tx->tx_txg != TXG_INITIAL)
6058 spa_async_request(spa,
6059 SPA_ASYNC_AUTOEXPAND);
6060 break;
6061 case ZPOOL_PROP_DEDUPDITTO:
6062 spa->spa_dedup_ditto = intval;
6063 break;
6064 default:
6065 break;
6066 }
6067 }
6068
6069 }
6070
6071 mutex_exit(&spa->spa_props_lock);
6072 }
6073
6074 /*
6075 * Perform one-time upgrade on-disk changes. spa_version() does not
6076 * reflect the new version this txg, so there must be no changes this
6077 * txg to anything that the upgrade code depends on after it executes.
6078 * Therefore this must be called after dsl_pool_sync() does the sync
6079 * tasks.
6080 */
6081 static void
6082 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6083 {
6084 dsl_pool_t *dp = spa->spa_dsl_pool;
6085
6086 ASSERT(spa->spa_sync_pass == 1);
6087
6088 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6089
6090 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6091 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6092 dsl_pool_create_origin(dp, tx);
6093
6094 /* Keeping the origin open increases spa_minref */
6095 spa->spa_minref += 3;
6096 }
6097
6098 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6099 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6100 dsl_pool_upgrade_clones(dp, tx);
6101 }
6102
6103 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6104 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6105 dsl_pool_upgrade_dir_clones(dp, tx);
6106
6107 /* Keeping the freedir open increases spa_minref */
6108 spa->spa_minref += 3;
6109 }
6110
6111 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6112 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6113 spa_feature_create_zap_objects(spa, tx);
6114 }
6115 rrw_exit(&dp->dp_config_rwlock, FTAG);
6116 }
6117
6118 /*
6119 * Sync the specified transaction group. New blocks may be dirtied as
6120 * part of the process, so we iterate until it converges.
6121 */
6122 void
6123 spa_sync(spa_t *spa, uint64_t txg)
6124 {
6125 dsl_pool_t *dp = spa->spa_dsl_pool;
6126 objset_t *mos = spa->spa_meta_objset;
6127 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6128 vdev_t *rvd = spa->spa_root_vdev;
6129 vdev_t *vd;
6130 dmu_tx_t *tx;
6131 int error;
6132
6133 VERIFY(spa_writeable(spa));
6134
6135 /*
6136 * Lock out configuration changes.
6137 */
6138 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6139
6140 spa->spa_syncing_txg = txg;
6141 spa->spa_sync_pass = 0;
6142
6143 /*
6144 * If there are any pending vdev state changes, convert them
6145 * into config changes that go out with this transaction group.
6146 */
6147 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6148 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6149 /*
6150 * We need the write lock here because, for aux vdevs,
6151 * calling vdev_config_dirty() modifies sav_config.
6152 * This is ugly and will become unnecessary when we
6153 * eliminate the aux vdev wart by integrating all vdevs
6154 * into the root vdev tree.
6155 */
6156 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6157 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6158 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6159 vdev_state_clean(vd);
6160 vdev_config_dirty(vd);
6161 }
6162 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6163 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6164 }
6165 spa_config_exit(spa, SCL_STATE, FTAG);
6166
6167 tx = dmu_tx_create_assigned(dp, txg);
6168
6169 spa->spa_sync_starttime = gethrtime();
6170 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6171 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6172
6173 /*
6174 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6175 * set spa_deflate if we have no raid-z vdevs.
6176 */
6177 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6178 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6179 int i;
6180
6181 for (i = 0; i < rvd->vdev_children; i++) {
6182 vd = rvd->vdev_child[i];
6183 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6184 break;
6185 }
6186 if (i == rvd->vdev_children) {
6187 spa->spa_deflate = TRUE;
6188 VERIFY(0 == zap_add(spa->spa_meta_objset,
6189 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6190 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6191 }
6192 }
6193
6194 /*
6195 * If anything has changed in this txg, or if someone is waiting
6196 * for this txg to sync (eg, spa_vdev_remove()), push the
6197 * deferred frees from the previous txg. If not, leave them
6198 * alone so that we don't generate work on an otherwise idle
6199 * system.
6200 */
6201 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6202 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6203 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6204 ((dsl_scan_active(dp->dp_scan) ||
6205 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6206 spa_sync_deferred_frees(spa, tx);
6207 }
6208
6209 /*
6210 * Iterate to convergence.
6211 */
6212 do {
6213 int pass = ++spa->spa_sync_pass;
6214
6215 spa_sync_config_object(spa, tx);
6216 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6217 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6218 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6219 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6220 spa_errlog_sync(spa, txg);
6221 dsl_pool_sync(dp, txg);
6222
6223 if (pass < zfs_sync_pass_deferred_free) {
6224 spa_sync_frees(spa, free_bpl, tx);
6225 } else {
6226 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6227 &spa->spa_deferred_bpobj, tx);
6228 }
6229
6230 ddt_sync(spa, txg);
6231 dsl_scan_sync(dp, tx);
6232
6233 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6234 vdev_sync(vd, txg);
6235
6236 if (pass == 1)
6237 spa_sync_upgrades(spa, tx);
6238
6239 } while (dmu_objset_is_dirty(mos, txg));
6240
6241 /*
6242 * Rewrite the vdev configuration (which includes the uberblock)
6243 * to commit the transaction group.
6244 *
6245 * If there are no dirty vdevs, we sync the uberblock to a few
6246 * random top-level vdevs that are known to be visible in the
6247 * config cache (see spa_vdev_add() for a complete description).
6248 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6249 */
6250 for (;;) {
6251 /*
6252 * We hold SCL_STATE to prevent vdev open/close/etc.
6253 * while we're attempting to write the vdev labels.
6254 */
6255 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6256
6257 if (list_is_empty(&spa->spa_config_dirty_list)) {
6258 vdev_t *svd[SPA_DVAS_PER_BP];
6259 int svdcount = 0;
6260 int children = rvd->vdev_children;
6261 int c0 = spa_get_random(children);
6262
6263 for (int c = 0; c < children; c++) {
6264 vd = rvd->vdev_child[(c0 + c) % children];
6265 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6266 continue;
6267 svd[svdcount++] = vd;
6268 if (svdcount == SPA_DVAS_PER_BP)
6269 break;
6270 }
6271 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6272 if (error != 0)
6273 error = vdev_config_sync(svd, svdcount, txg,
6274 B_TRUE);
6275 } else {
6276 error = vdev_config_sync(rvd->vdev_child,
6277 rvd->vdev_children, txg, B_FALSE);
6278 if (error != 0)
6279 error = vdev_config_sync(rvd->vdev_child,
6280 rvd->vdev_children, txg, B_TRUE);
6281 }
6282
6283 if (error == 0)
6284 spa->spa_last_synced_guid = rvd->vdev_guid;
6285
6286 spa_config_exit(spa, SCL_STATE, FTAG);
6287
6288 if (error == 0)
6289 break;
6290 zio_suspend(spa, NULL);
6291 zio_resume_wait(spa);
6292 }
6293 dmu_tx_commit(tx);
6294
6295 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6296
6297 /*
6298 * Clear the dirty config list.
6299 */
6300 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6301 vdev_config_clean(vd);
6302
6303 /*
6304 * Now that the new config has synced transactionally,
6305 * let it become visible to the config cache.
6306 */
6307 if (spa->spa_config_syncing != NULL) {
6308 spa_config_set(spa, spa->spa_config_syncing);
6309 spa->spa_config_txg = txg;
6310 spa->spa_config_syncing = NULL;
6311 }
6312
6313 spa->spa_ubsync = spa->spa_uberblock;
6314
6315 dsl_pool_sync_done(dp, txg);
6316
6317 /*
6318 * Update usable space statistics.
6319 */
6320 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6321 vdev_sync_done(vd, txg);
6322
6323 spa_update_dspace(spa);
6324
6325 /*
6326 * It had better be the case that we didn't dirty anything
6327 * since vdev_config_sync().
6328 */
6329 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6330 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6331 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6332
6333 spa->spa_sync_pass = 0;
6334
6335 spa_config_exit(spa, SCL_CONFIG, FTAG);
6336
6337 spa_handle_ignored_writes(spa);
6338
6339 /*
6340 * If any async tasks have been requested, kick them off.
6341 */
6342 spa_async_dispatch(spa);
6343 }
6344
6345 /*
6346 * Sync all pools. We don't want to hold the namespace lock across these
6347 * operations, so we take a reference on the spa_t and drop the lock during the
6348 * sync.
6349 */
6350 void
6351 spa_sync_allpools(void)
6352 {
6353 spa_t *spa = NULL;
6354 mutex_enter(&spa_namespace_lock);
6355 while ((spa = spa_next(spa)) != NULL) {
6356 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6357 !spa_writeable(spa) || spa_suspended(spa))
6358 continue;
6359 spa_open_ref(spa, FTAG);
6360 mutex_exit(&spa_namespace_lock);
6361 txg_wait_synced(spa_get_dsl(spa), 0);
6362 mutex_enter(&spa_namespace_lock);
6363 spa_close(spa, FTAG);
6364 }
6365 mutex_exit(&spa_namespace_lock);
6366 }
6367
6368 /*
6369 * ==========================================================================
6370 * Miscellaneous routines
6371 * ==========================================================================
6372 */
6373
6374 /*
6375 * Remove all pools in the system.
6376 */
6377 void
6378 spa_evict_all(void)
6379 {
6380 spa_t *spa;
6381
6382 /*
6383 * Remove all cached state. All pools should be closed now,
6384 * so every spa in the AVL tree should be unreferenced.
6385 */
6386 mutex_enter(&spa_namespace_lock);
6387 while ((spa = spa_next(NULL)) != NULL) {
6388 /*
6389 * Stop async tasks. The async thread may need to detach
6390 * a device that's been replaced, which requires grabbing
6391 * spa_namespace_lock, so we must drop it here.
6392 */
6393 spa_open_ref(spa, FTAG);
6394 mutex_exit(&spa_namespace_lock);
6395 spa_async_suspend(spa);
6396 mutex_enter(&spa_namespace_lock);
6397 spa_close(spa, FTAG);
6398
6399 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6400 spa_unload(spa);
6401 spa_deactivate(spa);
6402 }
6403 spa_remove(spa);
6404 }
6405 mutex_exit(&spa_namespace_lock);
6406 }
6407
6408 vdev_t *
6409 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6410 {
6411 vdev_t *vd;
6412 int i;
6413
6414 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6415 return (vd);
6416
6417 if (aux) {
6418 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6419 vd = spa->spa_l2cache.sav_vdevs[i];
6420 if (vd->vdev_guid == guid)
6421 return (vd);
6422 }
6423
6424 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6425 vd = spa->spa_spares.sav_vdevs[i];
6426 if (vd->vdev_guid == guid)
6427 return (vd);
6428 }
6429 }
6430
6431 return (NULL);
6432 }
6433
6434 void
6435 spa_upgrade(spa_t *spa, uint64_t version)
6436 {
6437 ASSERT(spa_writeable(spa));
6438
6439 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6440
6441 /*
6442 * This should only be called for a non-faulted pool, and since a
6443 * future version would result in an unopenable pool, this shouldn't be
6444 * possible.
6445 */
6446 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6447 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6448
6449 spa->spa_uberblock.ub_version = version;
6450 vdev_config_dirty(spa->spa_root_vdev);
6451
6452 spa_config_exit(spa, SCL_ALL, FTAG);
6453
6454 txg_wait_synced(spa_get_dsl(spa), 0);
6455 }
6456
6457 boolean_t
6458 spa_has_spare(spa_t *spa, uint64_t guid)
6459 {
6460 int i;
6461 uint64_t spareguid;
6462 spa_aux_vdev_t *sav = &spa->spa_spares;
6463
6464 for (i = 0; i < sav->sav_count; i++)
6465 if (sav->sav_vdevs[i]->vdev_guid == guid)
6466 return (B_TRUE);
6467
6468 for (i = 0; i < sav->sav_npending; i++) {
6469 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6470 &spareguid) == 0 && spareguid == guid)
6471 return (B_TRUE);
6472 }
6473
6474 return (B_FALSE);
6475 }
6476
6477 /*
6478 * Check if a pool has an active shared spare device.
6479 * Note: reference count of an active spare is 2, as a spare and as a replace
6480 */
6481 static boolean_t
6482 spa_has_active_shared_spare(spa_t *spa)
6483 {
6484 int i, refcnt;
6485 uint64_t pool;
6486 spa_aux_vdev_t *sav = &spa->spa_spares;
6487
6488 for (i = 0; i < sav->sav_count; i++) {
6489 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6490 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6491 refcnt > 2)
6492 return (B_TRUE);
6493 }
6494
6495 return (B_FALSE);
6496 }
6497
6498 /*
6499 * Post a sysevent corresponding to the given event. The 'name' must be one of
6500 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6501 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6502 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6503 * or zdb as real changes.
6504 */
6505 void
6506 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6507 {
6508 #ifdef _KERNEL
6509 sysevent_t *ev;
6510 sysevent_attr_list_t *attr = NULL;
6511 sysevent_value_t value;
6512 sysevent_id_t eid;
6513
6514 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6515 SE_SLEEP);
6516
6517 value.value_type = SE_DATA_TYPE_STRING;
6518 value.value.sv_string = spa_name(spa);
6519 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6520 goto done;
6521
6522 value.value_type = SE_DATA_TYPE_UINT64;
6523 value.value.sv_uint64 = spa_guid(spa);
6524 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6525 goto done;
6526
6527 if (vd) {
6528 value.value_type = SE_DATA_TYPE_UINT64;
6529 value.value.sv_uint64 = vd->vdev_guid;
6530 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6531 SE_SLEEP) != 0)
6532 goto done;
6533
6534 if (vd->vdev_path) {
6535 value.value_type = SE_DATA_TYPE_STRING;
6536 value.value.sv_string = vd->vdev_path;
6537 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6538 &value, SE_SLEEP) != 0)
6539 goto done;
6540 }
6541 }
6542
6543 if (sysevent_attach_attributes(ev, attr) != 0)
6544 goto done;
6545 attr = NULL;
6546
6547 (void) log_sysevent(ev, SE_SLEEP, &eid);
6548
6549 done:
6550 if (attr)
6551 sysevent_free_attr(attr);
6552 sysevent_free(ev);
6553 #endif
6554 }