1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Steven Hartland. All rights reserved. 25 */ 26 27 #include <sys/dsl_pool.h> 28 #include <sys/dsl_dataset.h> 29 #include <sys/dsl_prop.h> 30 #include <sys/dsl_dir.h> 31 #include <sys/dsl_synctask.h> 32 #include <sys/dsl_scan.h> 33 #include <sys/dnode.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/arc.h> 37 #include <sys/zap.h> 38 #include <sys/zio.h> 39 #include <sys/zfs_context.h> 40 #include <sys/fs/zfs.h> 41 #include <sys/zfs_znode.h> 42 #include <sys/spa_impl.h> 43 #include <sys/dsl_deadlist.h> 44 #include <sys/bptree.h> 45 #include <sys/zfeature.h> 46 #include <sys/zil_impl.h> 47 #include <sys/dsl_userhold.h> 48 49 /* 50 * ZFS Write Throttle 51 * ------------------ 52 * 53 * ZFS must limit the rate of incoming writes to the rate at which it is able 54 * to sync data modifications to the backend storage. Throttling by too much 55 * creates an artificial limit; throttling by too little can only be sustained 56 * for short periods and would lead to highly lumpy performance. On a per-pool 57 * basis, ZFS tracks the amount of modified (dirty) data. As operations change 58 * data, the amount of dirty data increases; as ZFS syncs out data, the amount 59 * of dirty data decreases. When the amount of dirty data exceeds a 60 * predetermined threshold further modifications are blocked until the amount 61 * of dirty data decreases (as data is synced out). 62 * 63 * The limit on dirty data is tunable, and should be adjusted according to 64 * both the IO capacity and available memory of the system. The larger the 65 * window, the more ZFS is able to aggregate and amortize metadata (and data) 66 * changes. However, memory is a limited resource, and allowing for more dirty 67 * data comes at the cost of keeping other useful data in memory (for example 68 * ZFS data cached by the ARC). 69 * 70 * Implementation 71 * 72 * As buffers are modified dsl_pool_willuse_space() increments both the per- 73 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of 74 * dirty space used; dsl_pool_dirty_space() decrements those values as data 75 * is synced out from dsl_pool_sync(). While only the poolwide value is 76 * relevant, the per-txg value is useful for debugging. The tunable 77 * zfs_dirty_data_max determines the dirty space limit. Once that value is 78 * exceeded, new writes are halted until space frees up. 79 * 80 * The zfs_dirty_data_sync tunable dictates the threshold at which we 81 * ensure that there is a txg syncing (see the comment in txg.c for a full 82 * description of transaction group stages). 83 * 84 * The IO scheduler uses both the dirty space limit and current amount of 85 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS 86 * issues. See the comment in vdev_queue.c for details of the IO scheduler. 87 * 88 * The delay is also calculated based on the amount of dirty data. See the 89 * comment above dmu_tx_delay() for details. 90 */ 91 92 /* 93 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory, 94 * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system. 95 */ 96 uint64_t zfs_dirty_data_max; 97 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024; 98 int zfs_dirty_data_max_percent = 10; 99 100 /* 101 * If there is at least this much dirty data, push out a txg. 102 */ 103 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024; 104 105 /* 106 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in 107 * and delay each transaction. 108 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent. 109 */ 110 int zfs_delay_min_dirty_percent = 60; 111 112 /* 113 * This controls how quickly the delay approaches infinity. 114 * Larger values cause it to delay less for a given amount of dirty data. 115 * Therefore larger values will cause there to be more dirty data for a 116 * given throughput. 117 * 118 * For the smoothest delay, this value should be about 1 billion divided 119 * by the maximum number of operations per second. This will smoothly 120 * handle between 10x and 1/10th this number. 121 * 122 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the 123 * multiply in dmu_tx_delay(). 124 */ 125 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000; 126 127 128 /* 129 * XXX someday maybe turn these into #defines, and you have to tune it on a 130 * per-pool basis using zfs.conf. 131 */ 132 133 134 hrtime_t zfs_throttle_delay = MSEC2NSEC(10); 135 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10); 136 137 int 138 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) 139 { 140 uint64_t obj; 141 int err; 142 143 err = zap_lookup(dp->dp_meta_objset, 144 dp->dp_root_dir->dd_phys->dd_child_dir_zapobj, 145 name, sizeof (obj), 1, &obj); 146 if (err) 147 return (err); 148 149 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp)); 150 } 151 152 static dsl_pool_t * 153 dsl_pool_open_impl(spa_t *spa, uint64_t txg) 154 { 155 dsl_pool_t *dp; 156 blkptr_t *bp = spa_get_rootblkptr(spa); 157 158 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); 159 dp->dp_spa = spa; 160 dp->dp_meta_rootbp = *bp; 161 rrw_init(&dp->dp_config_rwlock, B_TRUE); 162 txg_init(dp, txg); 163 164 txg_list_create(&dp->dp_dirty_datasets, 165 offsetof(dsl_dataset_t, ds_dirty_link)); 166 txg_list_create(&dp->dp_dirty_zilogs, 167 offsetof(zilog_t, zl_dirty_link)); 168 txg_list_create(&dp->dp_dirty_dirs, 169 offsetof(dsl_dir_t, dd_dirty_link)); 170 txg_list_create(&dp->dp_sync_tasks, 171 offsetof(dsl_sync_task_t, dst_node)); 172 173 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); 174 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL); 175 176 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri, 177 1, 4, 0); 178 179 return (dp); 180 } 181 182 int 183 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp) 184 { 185 int err; 186 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 187 188 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp, 189 &dp->dp_meta_objset); 190 if (err != 0) 191 dsl_pool_close(dp); 192 else 193 *dpp = dp; 194 195 return (err); 196 } 197 198 int 199 dsl_pool_open(dsl_pool_t *dp) 200 { 201 int err; 202 dsl_dir_t *dd; 203 dsl_dataset_t *ds; 204 uint64_t obj; 205 206 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 207 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 208 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, 209 &dp->dp_root_dir_obj); 210 if (err) 211 goto out; 212 213 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 214 NULL, dp, &dp->dp_root_dir); 215 if (err) 216 goto out; 217 218 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir); 219 if (err) 220 goto out; 221 222 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) { 223 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd); 224 if (err) 225 goto out; 226 err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj, 227 FTAG, &ds); 228 if (err == 0) { 229 err = dsl_dataset_hold_obj(dp, 230 ds->ds_phys->ds_prev_snap_obj, dp, 231 &dp->dp_origin_snap); 232 dsl_dataset_rele(ds, FTAG); 233 } 234 dsl_dir_rele(dd, dp); 235 if (err) 236 goto out; 237 } 238 239 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 240 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME, 241 &dp->dp_free_dir); 242 if (err) 243 goto out; 244 245 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 246 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj); 247 if (err) 248 goto out; 249 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 250 dp->dp_meta_objset, obj)); 251 } 252 253 /* 254 * Note: errors ignored, because the leak dir will not exist if we 255 * have not encountered a leak yet. 256 */ 257 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME, 258 &dp->dp_leak_dir); 259 260 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) { 261 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 262 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1, 263 &dp->dp_bptree_obj); 264 if (err != 0) 265 goto out; 266 } 267 268 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) { 269 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 270 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1, 271 &dp->dp_empty_bpobj); 272 if (err != 0) 273 goto out; 274 } 275 276 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 277 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, 278 &dp->dp_tmp_userrefs_obj); 279 if (err == ENOENT) 280 err = 0; 281 if (err) 282 goto out; 283 284 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg); 285 286 out: 287 rrw_exit(&dp->dp_config_rwlock, FTAG); 288 return (err); 289 } 290 291 void 292 dsl_pool_close(dsl_pool_t *dp) 293 { 294 /* 295 * Drop our references from dsl_pool_open(). 296 * 297 * Since we held the origin_snap from "syncing" context (which 298 * includes pool-opening context), it actually only got a "ref" 299 * and not a hold, so just drop that here. 300 */ 301 if (dp->dp_origin_snap) 302 dsl_dataset_rele(dp->dp_origin_snap, dp); 303 if (dp->dp_mos_dir) 304 dsl_dir_rele(dp->dp_mos_dir, dp); 305 if (dp->dp_free_dir) 306 dsl_dir_rele(dp->dp_free_dir, dp); 307 if (dp->dp_leak_dir) 308 dsl_dir_rele(dp->dp_leak_dir, dp); 309 if (dp->dp_root_dir) 310 dsl_dir_rele(dp->dp_root_dir, dp); 311 312 bpobj_close(&dp->dp_free_bpobj); 313 314 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */ 315 if (dp->dp_meta_objset) 316 dmu_objset_evict(dp->dp_meta_objset); 317 318 txg_list_destroy(&dp->dp_dirty_datasets); 319 txg_list_destroy(&dp->dp_dirty_zilogs); 320 txg_list_destroy(&dp->dp_sync_tasks); 321 txg_list_destroy(&dp->dp_dirty_dirs); 322 323 arc_flush(dp->dp_spa); 324 txg_fini(dp); 325 dsl_scan_fini(dp); 326 rrw_destroy(&dp->dp_config_rwlock); 327 mutex_destroy(&dp->dp_lock); 328 taskq_destroy(dp->dp_vnrele_taskq); 329 if (dp->dp_blkstats) 330 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 331 kmem_free(dp, sizeof (dsl_pool_t)); 332 } 333 334 dsl_pool_t * 335 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg) 336 { 337 int err; 338 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 339 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 340 objset_t *os; 341 dsl_dataset_t *ds; 342 uint64_t obj; 343 344 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 345 346 /* create and open the MOS (meta-objset) */ 347 dp->dp_meta_objset = dmu_objset_create_impl(spa, 348 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx); 349 350 /* create the pool directory */ 351 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 352 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx); 353 ASSERT0(err); 354 355 /* Initialize scan structures */ 356 VERIFY0(dsl_scan_init(dp, txg)); 357 358 /* create and open the root dir */ 359 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx); 360 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 361 NULL, dp, &dp->dp_root_dir)); 362 363 /* create and open the meta-objset dir */ 364 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx); 365 VERIFY0(dsl_pool_open_special_dir(dp, 366 MOS_DIR_NAME, &dp->dp_mos_dir)); 367 368 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 369 /* create and open the free dir */ 370 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 371 FREE_DIR_NAME, tx); 372 VERIFY0(dsl_pool_open_special_dir(dp, 373 FREE_DIR_NAME, &dp->dp_free_dir)); 374 375 /* create and open the free_bplist */ 376 obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx); 377 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 378 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0); 379 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 380 dp->dp_meta_objset, obj)); 381 } 382 383 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) 384 dsl_pool_create_origin(dp, tx); 385 386 /* create the root dataset */ 387 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx); 388 389 /* create the root objset */ 390 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds)); 391 os = dmu_objset_create_impl(dp->dp_spa, ds, 392 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx); 393 #ifdef _KERNEL 394 zfs_create_fs(os, kcred, zplprops, tx); 395 #endif 396 dsl_dataset_rele(ds, FTAG); 397 398 dmu_tx_commit(tx); 399 400 rrw_exit(&dp->dp_config_rwlock, FTAG); 401 402 return (dp); 403 } 404 405 /* 406 * Account for the meta-objset space in its placeholder dsl_dir. 407 */ 408 void 409 dsl_pool_mos_diduse_space(dsl_pool_t *dp, 410 int64_t used, int64_t comp, int64_t uncomp) 411 { 412 ASSERT3U(comp, ==, uncomp); /* it's all metadata */ 413 mutex_enter(&dp->dp_lock); 414 dp->dp_mos_used_delta += used; 415 dp->dp_mos_compressed_delta += comp; 416 dp->dp_mos_uncompressed_delta += uncomp; 417 mutex_exit(&dp->dp_lock); 418 } 419 420 static int 421 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 422 { 423 dsl_deadlist_t *dl = arg; 424 dsl_deadlist_insert(dl, bp, tx); 425 return (0); 426 } 427 428 static void 429 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx) 430 { 431 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 432 dmu_objset_sync(dp->dp_meta_objset, zio, tx); 433 VERIFY0(zio_wait(zio)); 434 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); 435 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 436 } 437 438 static void 439 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta) 440 { 441 ASSERT(MUTEX_HELD(&dp->dp_lock)); 442 443 if (delta < 0) 444 ASSERT3U(-delta, <=, dp->dp_dirty_total); 445 446 dp->dp_dirty_total += delta; 447 448 /* 449 * Note: we signal even when increasing dp_dirty_total. 450 * This ensures forward progress -- each thread wakes the next waiter. 451 */ 452 if (dp->dp_dirty_total <= zfs_dirty_data_max) 453 cv_signal(&dp->dp_spaceavail_cv); 454 } 455 456 void 457 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) 458 { 459 zio_t *zio; 460 dmu_tx_t *tx; 461 dsl_dir_t *dd; 462 dsl_dataset_t *ds; 463 objset_t *mos = dp->dp_meta_objset; 464 list_t synced_datasets; 465 466 list_create(&synced_datasets, sizeof (dsl_dataset_t), 467 offsetof(dsl_dataset_t, ds_synced_link)); 468 469 tx = dmu_tx_create_assigned(dp, txg); 470 471 /* 472 * Write out all dirty blocks of dirty datasets. 473 */ 474 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 475 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 476 /* 477 * We must not sync any non-MOS datasets twice, because 478 * we may have taken a snapshot of them. However, we 479 * may sync newly-created datasets on pass 2. 480 */ 481 ASSERT(!list_link_active(&ds->ds_synced_link)); 482 list_insert_tail(&synced_datasets, ds); 483 dsl_dataset_sync(ds, zio, tx); 484 } 485 VERIFY0(zio_wait(zio)); 486 487 /* 488 * We have written all of the accounted dirty data, so our 489 * dp_space_towrite should now be zero. However, some seldom-used 490 * code paths do not adhere to this (e.g. dbuf_undirty(), also 491 * rounding error in dbuf_write_physdone). 492 * Shore up the accounting of any dirtied space now. 493 */ 494 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); 495 496 /* 497 * After the data blocks have been written (ensured by the zio_wait() 498 * above), update the user/group space accounting. 499 */ 500 for (ds = list_head(&synced_datasets); ds != NULL; 501 ds = list_next(&synced_datasets, ds)) { 502 dmu_objset_do_userquota_updates(ds->ds_objset, tx); 503 } 504 505 /* 506 * Sync the datasets again to push out the changes due to 507 * userspace updates. This must be done before we process the 508 * sync tasks, so that any snapshots will have the correct 509 * user accounting information (and we won't get confused 510 * about which blocks are part of the snapshot). 511 */ 512 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 513 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 514 ASSERT(list_link_active(&ds->ds_synced_link)); 515 dmu_buf_rele(ds->ds_dbuf, ds); 516 dsl_dataset_sync(ds, zio, tx); 517 } 518 VERIFY0(zio_wait(zio)); 519 520 /* 521 * Now that the datasets have been completely synced, we can 522 * clean up our in-memory structures accumulated while syncing: 523 * 524 * - move dead blocks from the pending deadlist to the on-disk deadlist 525 * - release hold from dsl_dataset_dirty() 526 */ 527 while ((ds = list_remove_head(&synced_datasets)) != NULL) { 528 objset_t *os = ds->ds_objset; 529 bplist_iterate(&ds->ds_pending_deadlist, 530 deadlist_enqueue_cb, &ds->ds_deadlist, tx); 531 ASSERT(!dmu_objset_is_dirty(os, txg)); 532 dmu_buf_rele(ds->ds_dbuf, ds); 533 } 534 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) { 535 dsl_dir_sync(dd, tx); 536 } 537 538 /* 539 * The MOS's space is accounted for in the pool/$MOS 540 * (dp_mos_dir). We can't modify the mos while we're syncing 541 * it, so we remember the deltas and apply them here. 542 */ 543 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 || 544 dp->dp_mos_uncompressed_delta != 0) { 545 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD, 546 dp->dp_mos_used_delta, 547 dp->dp_mos_compressed_delta, 548 dp->dp_mos_uncompressed_delta, tx); 549 dp->dp_mos_used_delta = 0; 550 dp->dp_mos_compressed_delta = 0; 551 dp->dp_mos_uncompressed_delta = 0; 552 } 553 554 if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL || 555 list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) { 556 dsl_pool_sync_mos(dp, tx); 557 } 558 559 /* 560 * If we modify a dataset in the same txg that we want to destroy it, 561 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it. 562 * dsl_dir_destroy_check() will fail if there are unexpected holds. 563 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf 564 * and clearing the hold on it) before we process the sync_tasks. 565 * The MOS data dirtied by the sync_tasks will be synced on the next 566 * pass. 567 */ 568 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { 569 dsl_sync_task_t *dst; 570 /* 571 * No more sync tasks should have been added while we 572 * were syncing. 573 */ 574 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 575 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL) 576 dsl_sync_task_sync(dst, tx); 577 } 578 579 dmu_tx_commit(tx); 580 581 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg); 582 } 583 584 void 585 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) 586 { 587 zilog_t *zilog; 588 589 while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) { 590 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 591 zil_clean(zilog, txg); 592 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); 593 dmu_buf_rele(ds->ds_dbuf, zilog); 594 } 595 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); 596 } 597 598 /* 599 * TRUE if the current thread is the tx_sync_thread or if we 600 * are being called from SPA context during pool initialization. 601 */ 602 int 603 dsl_pool_sync_context(dsl_pool_t *dp) 604 { 605 return (curthread == dp->dp_tx.tx_sync_thread || 606 spa_is_initializing(dp->dp_spa)); 607 } 608 609 uint64_t 610 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree) 611 { 612 uint64_t space, resv; 613 614 /* 615 * Reserve about 1.6% (1/64), or at least 32MB, for allocation 616 * efficiency. 617 * XXX The intent log is not accounted for, so it must fit 618 * within this slop. 619 * 620 * If we're trying to assess whether it's OK to do a free, 621 * cut the reservation in half to allow forward progress 622 * (e.g. make it possible to rm(1) files from a full pool). 623 */ 624 space = spa_get_dspace(dp->dp_spa); 625 resv = MAX(space >> 6, SPA_MINDEVSIZE >> 1); 626 if (netfree) 627 resv >>= 1; 628 629 return (space - resv); 630 } 631 632 boolean_t 633 dsl_pool_need_dirty_delay(dsl_pool_t *dp) 634 { 635 uint64_t delay_min_bytes = 636 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 637 boolean_t rv; 638 639 mutex_enter(&dp->dp_lock); 640 if (dp->dp_dirty_total > zfs_dirty_data_sync) 641 txg_kick(dp); 642 rv = (dp->dp_dirty_total > delay_min_bytes); 643 mutex_exit(&dp->dp_lock); 644 return (rv); 645 } 646 647 void 648 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) 649 { 650 if (space > 0) { 651 mutex_enter(&dp->dp_lock); 652 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space; 653 dsl_pool_dirty_delta(dp, space); 654 mutex_exit(&dp->dp_lock); 655 } 656 } 657 658 void 659 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg) 660 { 661 ASSERT3S(space, >=, 0); 662 if (space == 0) 663 return; 664 mutex_enter(&dp->dp_lock); 665 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) { 666 /* XXX writing something we didn't dirty? */ 667 space = dp->dp_dirty_pertxg[txg & TXG_MASK]; 668 } 669 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space); 670 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space; 671 ASSERT3U(dp->dp_dirty_total, >=, space); 672 dsl_pool_dirty_delta(dp, -space); 673 mutex_exit(&dp->dp_lock); 674 } 675 676 /* ARGSUSED */ 677 static int 678 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 679 { 680 dmu_tx_t *tx = arg; 681 dsl_dataset_t *ds, *prev = NULL; 682 int err; 683 684 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 685 if (err) 686 return (err); 687 688 while (ds->ds_phys->ds_prev_snap_obj != 0) { 689 err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, 690 FTAG, &prev); 691 if (err) { 692 dsl_dataset_rele(ds, FTAG); 693 return (err); 694 } 695 696 if (prev->ds_phys->ds_next_snap_obj != ds->ds_object) 697 break; 698 dsl_dataset_rele(ds, FTAG); 699 ds = prev; 700 prev = NULL; 701 } 702 703 if (prev == NULL) { 704 prev = dp->dp_origin_snap; 705 706 /* 707 * The $ORIGIN can't have any data, or the accounting 708 * will be wrong. 709 */ 710 ASSERT0(prev->ds_phys->ds_bp.blk_birth); 711 712 /* The origin doesn't get attached to itself */ 713 if (ds->ds_object == prev->ds_object) { 714 dsl_dataset_rele(ds, FTAG); 715 return (0); 716 } 717 718 dmu_buf_will_dirty(ds->ds_dbuf, tx); 719 ds->ds_phys->ds_prev_snap_obj = prev->ds_object; 720 ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg; 721 722 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 723 ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object; 724 725 dmu_buf_will_dirty(prev->ds_dbuf, tx); 726 prev->ds_phys->ds_num_children++; 727 728 if (ds->ds_phys->ds_next_snap_obj == 0) { 729 ASSERT(ds->ds_prev == NULL); 730 VERIFY0(dsl_dataset_hold_obj(dp, 731 ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev)); 732 } 733 } 734 735 ASSERT3U(ds->ds_dir->dd_phys->dd_origin_obj, ==, prev->ds_object); 736 ASSERT3U(ds->ds_phys->ds_prev_snap_obj, ==, prev->ds_object); 737 738 if (prev->ds_phys->ds_next_clones_obj == 0) { 739 dmu_buf_will_dirty(prev->ds_dbuf, tx); 740 prev->ds_phys->ds_next_clones_obj = 741 zap_create(dp->dp_meta_objset, 742 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); 743 } 744 VERIFY0(zap_add_int(dp->dp_meta_objset, 745 prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx)); 746 747 dsl_dataset_rele(ds, FTAG); 748 if (prev != dp->dp_origin_snap) 749 dsl_dataset_rele(prev, FTAG); 750 return (0); 751 } 752 753 void 754 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx) 755 { 756 ASSERT(dmu_tx_is_syncing(tx)); 757 ASSERT(dp->dp_origin_snap != NULL); 758 759 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb, 760 tx, DS_FIND_CHILDREN)); 761 } 762 763 /* ARGSUSED */ 764 static int 765 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 766 { 767 dmu_tx_t *tx = arg; 768 objset_t *mos = dp->dp_meta_objset; 769 770 if (ds->ds_dir->dd_phys->dd_origin_obj != 0) { 771 dsl_dataset_t *origin; 772 773 VERIFY0(dsl_dataset_hold_obj(dp, 774 ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin)); 775 776 if (origin->ds_dir->dd_phys->dd_clones == 0) { 777 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); 778 origin->ds_dir->dd_phys->dd_clones = zap_create(mos, 779 DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx); 780 } 781 782 VERIFY0(zap_add_int(dp->dp_meta_objset, 783 origin->ds_dir->dd_phys->dd_clones, ds->ds_object, tx)); 784 785 dsl_dataset_rele(origin, FTAG); 786 } 787 return (0); 788 } 789 790 void 791 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx) 792 { 793 ASSERT(dmu_tx_is_syncing(tx)); 794 uint64_t obj; 795 796 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); 797 VERIFY0(dsl_pool_open_special_dir(dp, 798 FREE_DIR_NAME, &dp->dp_free_dir)); 799 800 /* 801 * We can't use bpobj_alloc(), because spa_version() still 802 * returns the old version, and we need a new-version bpobj with 803 * subobj support. So call dmu_object_alloc() directly. 804 */ 805 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ, 806 SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx); 807 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 808 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 809 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); 810 811 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 812 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN)); 813 } 814 815 void 816 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx) 817 { 818 uint64_t dsobj; 819 dsl_dataset_t *ds; 820 821 ASSERT(dmu_tx_is_syncing(tx)); 822 ASSERT(dp->dp_origin_snap == NULL); 823 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER)); 824 825 /* create the origin dir, ds, & snap-ds */ 826 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME, 827 NULL, 0, kcred, tx); 828 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 829 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx); 830 VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, 831 dp, &dp->dp_origin_snap)); 832 dsl_dataset_rele(ds, FTAG); 833 } 834 835 taskq_t * 836 dsl_pool_vnrele_taskq(dsl_pool_t *dp) 837 { 838 return (dp->dp_vnrele_taskq); 839 } 840 841 /* 842 * Walk through the pool-wide zap object of temporary snapshot user holds 843 * and release them. 844 */ 845 void 846 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp) 847 { 848 zap_attribute_t za; 849 zap_cursor_t zc; 850 objset_t *mos = dp->dp_meta_objset; 851 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 852 nvlist_t *holds; 853 854 if (zapobj == 0) 855 return; 856 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 857 858 holds = fnvlist_alloc(); 859 860 for (zap_cursor_init(&zc, mos, zapobj); 861 zap_cursor_retrieve(&zc, &za) == 0; 862 zap_cursor_advance(&zc)) { 863 char *htag; 864 nvlist_t *tags; 865 866 htag = strchr(za.za_name, '-'); 867 *htag = '\0'; 868 ++htag; 869 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) { 870 tags = fnvlist_alloc(); 871 fnvlist_add_boolean(tags, htag); 872 fnvlist_add_nvlist(holds, za.za_name, tags); 873 fnvlist_free(tags); 874 } else { 875 fnvlist_add_boolean(tags, htag); 876 } 877 } 878 dsl_dataset_user_release_tmp(dp, holds); 879 fnvlist_free(holds); 880 zap_cursor_fini(&zc); 881 } 882 883 /* 884 * Create the pool-wide zap object for storing temporary snapshot holds. 885 */ 886 void 887 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx) 888 { 889 objset_t *mos = dp->dp_meta_objset; 890 891 ASSERT(dp->dp_tmp_userrefs_obj == 0); 892 ASSERT(dmu_tx_is_syncing(tx)); 893 894 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS, 895 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx); 896 } 897 898 static int 899 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj, 900 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding) 901 { 902 objset_t *mos = dp->dp_meta_objset; 903 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 904 char *name; 905 int error; 906 907 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 908 ASSERT(dmu_tx_is_syncing(tx)); 909 910 /* 911 * If the pool was created prior to SPA_VERSION_USERREFS, the 912 * zap object for temporary holds might not exist yet. 913 */ 914 if (zapobj == 0) { 915 if (holding) { 916 dsl_pool_user_hold_create_obj(dp, tx); 917 zapobj = dp->dp_tmp_userrefs_obj; 918 } else { 919 return (SET_ERROR(ENOENT)); 920 } 921 } 922 923 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag); 924 if (holding) 925 error = zap_add(mos, zapobj, name, 8, 1, &now, tx); 926 else 927 error = zap_remove(mos, zapobj, name, tx); 928 strfree(name); 929 930 return (error); 931 } 932 933 /* 934 * Add a temporary hold for the given dataset object and tag. 935 */ 936 int 937 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 938 uint64_t now, dmu_tx_t *tx) 939 { 940 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE)); 941 } 942 943 /* 944 * Release a temporary hold for the given dataset object and tag. 945 */ 946 int 947 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 948 dmu_tx_t *tx) 949 { 950 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL, 951 tx, B_FALSE)); 952 } 953 954 /* 955 * DSL Pool Configuration Lock 956 * 957 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset 958 * creation / destruction / rename / property setting). It must be held for 959 * read to hold a dataset or dsl_dir. I.e. you must call 960 * dsl_pool_config_enter() or dsl_pool_hold() before calling 961 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock 962 * must be held continuously until all datasets and dsl_dirs are released. 963 * 964 * The only exception to this rule is that if a "long hold" is placed on 965 * a dataset, then the dp_config_rwlock may be dropped while the dataset 966 * is still held. The long hold will prevent the dataset from being 967 * destroyed -- the destroy will fail with EBUSY. A long hold can be 968 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset 969 * (by calling dsl_{dataset,objset}_{try}own{_obj}). 970 * 971 * Legitimate long-holders (including owners) should be long-running, cancelable 972 * tasks that should cause "zfs destroy" to fail. This includes DMU 973 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open), 974 * "zfs send", and "zfs diff". There are several other long-holders whose 975 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()). 976 * 977 * The usual formula for long-holding would be: 978 * dsl_pool_hold() 979 * dsl_dataset_hold() 980 * ... perform checks ... 981 * dsl_dataset_long_hold() 982 * dsl_pool_rele() 983 * ... perform long-running task ... 984 * dsl_dataset_long_rele() 985 * dsl_dataset_rele() 986 * 987 * Note that when the long hold is released, the dataset is still held but 988 * the pool is not held. The dataset may change arbitrarily during this time 989 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the 990 * dataset except release it. 991 * 992 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only 993 * or modifying operations. 994 * 995 * Modifying operations should generally use dsl_sync_task(). The synctask 996 * infrastructure enforces proper locking strategy with respect to the 997 * dp_config_rwlock. See the comment above dsl_sync_task() for details. 998 * 999 * Read-only operations will manually hold the pool, then the dataset, obtain 1000 * information from the dataset, then release the pool and dataset. 1001 * dmu_objset_{hold,rele}() are convenience routines that also do the pool 1002 * hold/rele. 1003 */ 1004 1005 int 1006 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp) 1007 { 1008 spa_t *spa; 1009 int error; 1010 1011 error = spa_open(name, &spa, tag); 1012 if (error == 0) { 1013 *dp = spa_get_dsl(spa); 1014 dsl_pool_config_enter(*dp, tag); 1015 } 1016 return (error); 1017 } 1018 1019 void 1020 dsl_pool_rele(dsl_pool_t *dp, void *tag) 1021 { 1022 dsl_pool_config_exit(dp, tag); 1023 spa_close(dp->dp_spa, tag); 1024 } 1025 1026 void 1027 dsl_pool_config_enter(dsl_pool_t *dp, void *tag) 1028 { 1029 /* 1030 * We use a "reentrant" reader-writer lock, but not reentrantly. 1031 * 1032 * The rrwlock can (with the track_all flag) track all reading threads, 1033 * which is very useful for debugging which code path failed to release 1034 * the lock, and for verifying that the *current* thread does hold 1035 * the lock. 1036 * 1037 * (Unlike a rwlock, which knows that N threads hold it for 1038 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE 1039 * if any thread holds it for read, even if this thread doesn't). 1040 */ 1041 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1042 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag); 1043 } 1044 1045 void 1046 dsl_pool_config_exit(dsl_pool_t *dp, void *tag) 1047 { 1048 rrw_exit(&dp->dp_config_rwlock, tag); 1049 } 1050 1051 boolean_t 1052 dsl_pool_config_held(dsl_pool_t *dp) 1053 { 1054 return (RRW_LOCK_HELD(&dp->dp_config_rwlock)); 1055 }