new usr/src/uts/ common/fs/zfs/dm_objset.c 1 new usr/src/uts/ comon/fs/zfs/dm_objset.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 62 rWInIt(&OS |OCk, NULL, WVDEFAULT' NULL)’
48886 Thu Oct 16 19:15:50 2014 63 }
new usr/src/uts/comon/ fs/zfs/dmu_objset.c
zpool inport speedup 65 void
LEEE R SRR EE SRR EEEEEEEEEEE R REEEE SRR EEEEEEEEEEEEREREEEEEEEEESE] 66 drTu_Obj Set_fi ni (VOi d)
1/* 67 {
2 * CDDL HEADER START 68) rw_destroy(&os_I ock);
3 * 69
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License"). 71 spa_t *
6 * You may not use this file except in conpliance with the License. 72 dmu_obj set _spa(obj set _t *os)
7 * 73
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 return (os->0s_spa);
9 * or http://ww. opensol aris.org/os/licensing. 75 }
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License. 77 zilog_t *
12 * 78 dmu_obj set _zil (obj set_t *os)
13 * When distributing Covered Code, include this CDDL HEADER in each 79 {
14 * file and include the License file at usr/src/OPENSOLARI S. LI CENSE. 80 return (os->o0s_zil);
15 * |f applicable, add the follow ng below this CODL HEADER, wth the 81 }
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner] 83 dsl _pool _t *
18 * 84 dnu_obj set _pool (obj set _t *os)
19 * CDDL HEADER END 85 {
20 */ 86 dsl _dat aset _t *ds;
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved. 88 if ((ds = os->0s_dsl _dataset) != NULL && ds->ds_dir)
23 * Copyright (c) 2012, 2014 by Del phix. Al rights reserved. 89 return (ds->ds_dir->dd_pool);
24 * Copyright (c) 2013 by Saso Kiselkov. Al rights reserved. 90 el se
25 * Copyright (c) 2013, Joyent, Inc. Al rights reserved. 91 return (spa_get_dsl (os->0s_spa));
26 */ 92 }
28 /* Portions Copyright 2010 Robert M| kowski */ 94 dsl _dataset_t *
95 dnu_obj set _ds(obj set_t *os)
30 #include <sys/cred. h> 96 {
31 #include <sys/zfs_context.h> 97 return (os->o0s_dsl _dataset);
32 #include <sys/dnu_obj set. h> 98 }
33 #include <sys/dsl _dir.h>
34 #include <sys/dsl_dataset. h> 100 dnu_obj set _type_t
35 #include <sys/dsl _prop. h> 101 dmu_obj set _type(objset_t *os)
36 #include <sys/dsl _pool . h> 102 {
37 #include <sys/dsl_synctask. h> 103 return (os->o0s_phys->o0s_type);
38 #include <sys/dsl _del eg. h> 104 }
39 #include <sys/dnode. h>
40 #i ncl ude <sys/dbuf. h> 106 void
41 #incl ude <sys/zvol . h> 107 dnmu_obj set _nanme(objset_t *os, char *buf)
42 #incl ude <sys/dnmu_tx. h> 108 {
43 #incl ude <sys/zap. h> 109 dsl _dat aset _name(os->o0s_dsl _dat aset, buf);
44 #include <sys/zil.h> 110 }
45 #incl ude <sys/dnmu_i npl. h>
46 #include <sys/zfs_ioctl.h> 112 uint64_t
47 #include <sys/sa. h> 113 dnu_obj set _i d(obj set _t *os)
48 #include <sys/zfs_onexit.h> 114 {
49 #include <sys/dsl _destroy. h> 115 dsl _dataset _t *ds = os->os_dsl| _dat aset;
50 #include <sys/vdev. h>
51 #endif /* | codereview */ 117 return (ds ? ds->ds_object : 0);
118 }
53 /*
54 * Needed to close a window in dnode_nove() that allows the objset to be freed 120 zfs_sync_type_t
55 * before it can be safely accessed. 121 dmu_obj set _syncprop(obj set_t *os)
56 */ 122 {
57 krw ock_t os_I ock; 123 return (0s->0s_sync);
124 }
59 void
60 dnmu_obj set _i ni t (voi d) 126 zfs_| ogbi as_op_t
61 { 127 dmu_obj set _| ogbi as(obj set _t *os)

new usr/src/uts/ common/fs/zfs/dm_objset.c

128 {

129 return (os->o0s_| ogbi as);

130 }

132 static void

133 checksum changed_cb(void *arg, uint64_t newal)

134 {

135 objset_t *os = arg;

137 /*

138 * I nheritance shoul d have been done by now.

139 */

140 ASSERT(newal != ZI O CHECKSUM | NHERI T) ;

142 o0s->0s_checksum = zi o_checksum sel ect (newal , ZI O CHECKSUM ON_VALUE) ;
143 }

145 static void

146 conpressi on_changed_cb(void *arg, uint64_t newal)

147 {

148 obj set_t *os = arg;

150 I*

151 * I nheritance and range checki ng shoul d have been done by now.
152 *

153 ASSERT(newal != ZI O COMPRESS | NHERI T);

155 0s->0s_conpress = zi o_conpress_sel ect (newal , ZI O COWRESS _ON VALUE) ;
156 }

158 static void

159 copi es_changed_cb(void *arg, uint64_t newal)

160 {

161 obj set_t *os = arg;

163 I*

164 * I nheritance and range checki ng shoul d have been done by now.
165 */

166 ASSERT(newal > 0);

167 ASSERT(newal <= spa_max_replication(os->0s_spa));

169 0s->0s_copi es = newal ;

170 }

172 static void

173 dedup_changed_cb(void *arg, uint64_t newal)

174 {

175 objset_t *os = arg;

176 spa_t *spa = 0s->0S_spa;

177 enum zi o_checksum checksum

179 /*

180 * | nheritance shoul d have been done by now.

181 */

182 ASSERT(newal != ZI O CHECKSUM | NHERI T) ;

184 checksum = zi o_checksum dedup_sel ect (spa, newal, ZI O CHECKSUM OFF);
186 os- >0s_dedup_checksum = checksum & ZI O CHECKSUM MASK;

187 os->0s_dedup_verify = !l (checksum & ZI O CHECKSUM VERI FY) ;
188 }

190 static void

191 primary_cache_changed_cb(void *arg, uint64_t newal)

192 {

193 obj set _t *os = arg;

new usr/src/ uts/ comon/fs/zfs/dm_objset.c

195 I*

196 * I nheritance and range checki ng shoul d have been done by now.
197 */

198 ASSERT(newal == ZFS_CACHE_ALL || newal == ZFS_CACHE_NONE | |
199 newal == ZFS_CACHE_METADATA) ;

201 0s->0s_primary_cache = newal ;

202 }

204 static void

205 secondary_cache_changed_cb(void *arg, uint64_t newal)

206 {

207 objset_t *os = arg;

209 /*

210 * | nheritance and range checki ng shoul d have been done by now.
211 */

212 ASSERT(newal == ZFS CACHE ALL || newal == ZFS CACHE NONE | |
213 newal == ZFS_CACHE_METADATA);

215 0s->0s_secondary_cache = newal ;

216 }

218 static void

219 sync_changed_cb(void *arg, uint64_t newal)

220 {

221 objset _t *os = arg;

223 /*

224 * I nheritance and range checki ng shoul d have been done by now.
225 */

226 ASSERT(newval == ZFS_SYNC_STANDARD || newal == ZFS_SYNC ALWAYS ||
227 newal == ZFS_SYNC_DI SABLED) ;

229 0s->0s_sync = newal ;

230 if (os->o0s_zil)

231 zi | _set_sync(os->0s_zil, newal);

232 }

234 static void

235 redundant _net adat a_changed_cb(void *arg, uint64_t newal)

236 {

237 objset_t *os = arg;

239 /*

240 * | nheritance and range checki ng shoul d have been done by now.
241 */

242 ASSERT(newal == ZFS_REDUNDANT_METADATA ALL ||

243 newal == ZFS_REDUNDANT_METADATA_ MOST) ;

245 0s->0s_r edundant _net adata = newal ;

246 }

248 static void

249 | ogbi as_changed_cb(void *arg, uint64_t newal)

250 {

251 objset_t *os = arg;

253 ASSERT(newal == ZFS_LOGBI AS_LATENCY | |

254 newal == ZFS_LOGBI AS_THROUGHPUT) ;

255 os->0s_| ogbi as = newal ;

256 if (os->o0s_zil)

257 zi | _set_| ogbi as(os->o0s_zil, newal);

258 }

new usr/src/uts/ common/fs/zfs/dm_objset.c

260 void

261 dmu_obj set _byt eswap(void *buf, size_t size)

262 {

263 obj set _phys_t *osp = buf;

265 ASSERT(si ze == OBJSET_OLD PHYS SI ZE || size == sizeof (objset_phys_t));
266 dnode_byt eswap(&osp- >o0s_net a_dnode) ;

267 byt eswap_ui nt 64_array(&osp->0s_zi | _header, sizeof (zil_header_t));
268 osp->0s_type = BSWAP_64(osp- >0s_type);

269 osp->os_flags = BSWAP_64(osp->o0s_fl ags);

270 if (size == sizeof (objset_phys_t)) {

271 dnode_byt eswap(&sp- >0s_user used_dnode) ;

272 dnode_byt eswap(&sp- >0s_gr oupused_ dnode)

273 }

274 }

276 int

277 dmu_obj set _open_i npl (spa_t *spa, dsl_dataset_t *ds, blkptr_t *bp,

278 obj set _t **osp)

279 {

280 obj set _t *os;

281 int i, err;

283 ASSERT(ds == NULL || MJTEX_HELD(&ds- >ds_openi ng_| ock));

285 os = kmem zal | oc(si zeof (objset_t), KM SLEEP);

286 os->os_ds|_dat aset = ds;

287 0s->0s_spa = spa;

288 0s->0s_rootbp = bp;

289 if ('BPIS HO_E(os >0s_rootbp)) {

290 uint32_t aflags = ARC_WAIT;

291 zbookmar k_t zb;

292 SET BOO(MARK(&zb ds ? ds->ds_object : DMJ META OBJSET,
293 ZB_ROOT_OBJECT, ZB ROOT_LEVEL, ZB ROOT_BLKID);
295 if (DMJ OS IS L2CACHEABLE(0s))

296 afTags | = ARC_L2CACHE,

297 if (DMJ_OS_I'S_L2COVPRESSI BLE(0s))

298 afTags | = ARC_L2COVPRESS;

300 dpri ntf_bp(os->os_r ootbp, "reading %", "");

301 err = arc_read(NULL, spa, os->o0s_rootbp,

302 arc_get buf _func, &os->os_phys_buf,

303 ZI O PRI ORI TY_ SYNC READ, ZI O FLAG_ C‘ANFAI L, &aflags, &zb);
304 if (err 1=0) {

305 kmem free(os, sizeof (objset_t));

306 /* convert checksumerrors into IO errors */
307 if (err == ECKSUM

308 err = SET_ERROR(EIO;

309 return (err);

310 }

312 /* Increase the blocksize if we are permtted. */
313 if (spa_version(spa) >= SPA VERSI ON_USERSPACE &&

314 arc_buf _si ze(os->0s_phys_buf) < sizeof (objset_phys_t)) {
315 arc_buf _t *buf = arc_buf_all oc(spa,

316 si zeof (objset_phys t), &os->os_phys_buf,
317 ARC_BUFC NETADATA)

318 bzero(buf->b_data, si zeof (obj set _phys_t));
319 bcopy(os->0s_phys_buf->b_data, buf->b_dat a,
320 ar c_buf _si ze(os->o0s_phys_buf));

321 (voi d) arc_buf_renove_ref (0s->0s_phys_buf,
322 &0s- >0s_phys_buf);

323 os->o0s_phys_buf = buf;

324 }

new usr/src/uts/ common/fs/zfs/dm_objset.c

326 0s->0s_phys = os->o0s_phys_buf->b_dat a;

327 os->o0s_flags = os->o0s_phys->os_fl ags;

328 } else {

329 int size = spa_version(spa) >= SPA VERS|I ON_USERSPACE ?
330 si zeof (obj set _phys_t) : OBJSET_OLD PHYS_SI ZE;

331 os->0s_phys_buf = arc_buf_al |l oc(spa, size,

332 &0s- >0s_phys_buf , “TARC_BUFC_METADATA) ;

333 0s->0s_phys = os->os_phys_buf ->b_dat a;

334 bzer o(0s- >0s_phys, size);

335 }

337 /*

338 * Note: the changed_cb will be called once before the register
339 * func returns, thus changing the checksuni conpression fromthe
340 * default (fletcher2/off). Snapshots don’t need to know about
341 * checksunm conpr essi on/ copi es.

342 */

343 if (ds !'= NULL) {

344 err = dsl_prop_register(ds,

345 zfs_prop_t o_nanme(ZFS_PROP_PRI MARYCACHE) ,

346 primary_cache_changed_cb, o0s);

347 if (err ==) {

348 err dsl _prop_register(ds,

349 zf s_prop_t o_nanme(ZFS_PROP_SECONDARYCACHE) ,
350) secondary_cache_changed_cb, o0s);

351

352 1f (!dsl_dataset_is_snapshot(ds)) {

353 if (err == 0)

354 err dsl _prop_register(ds,

355 zfs _prop_to_nanme(ZFS_| PROP > CHECKSWV ,
356 checksum changed_cb, ~0s);

357 }

358 if (err ==0) {

359 err = dsl _prop_register(ds,

360 zf s_prop_t o_nane(ZFS_PROP_COWVPRESSI ON) ,
361 conpr essi on_changed_cb, os);

362 }

363 if (err == 0) {

364 err = dsl|l _prop_register(ds,

365 zfs_prop_t o_nane(ZFS_PROP_COPI ES) ,
366 copi es_changed_cb, os);

367 }

368 if (err == 0) {

369 err = dsl _prop_register(ds,

370 zf s_prop_t o_nane(ZFS_PROP_DEDUP) ,
371 dedup_changed_cb, o0s);

372 }

373 if (err == 0) {

374 err = dsl _prop_register(ds,

375 zfs_prop_t o_name(ZFS_PROP_LOGBI AS),
376 | ogbi as_changed_cb, o0s);

377 }

378 if (err ==0) {

379 err = dsl _prop_register(ds,

380 zfs_prop_t o_nanme(ZFS_PROP_SYNC),
381 sync_changed_cb, o0s);

382 }

383 if (err ==0) {

384 err = dsl _prop_register(ds,

385 zfs_prop_t o_nanme(

386 ZFS_PROP_REDUNDANT_METADATA) ,

387 redundant _net adat a_changed_ cb 0s);
388 }

389 }

390 if (err 1= 0)

391 VERI FY(ar c_buf _renove_r ef (0s- >0s_phys_buf,

new usr/src/uts/ common/fs/zfs/dm_objset.c

392 &os->0s_phys_buf));

393 knmem free(os, sizeof (Obj set_t));

394 return (err);

395 }

396 } else {

397 /* 1t’s the neta-objset. */

398 0s->0s_checksum = Z| O CHECKSUM FLETCHER 4;

399 0S->0S_conpress = ZI O_COWPRESS_LZJB;

400 0s->0s_copi es = spa_nmax_replication(spa);

401 0s- >0s_dedup_checksum = ZI O_CHECKSUM OFF;

402 0s->0s_dedup_ verlfy = B_FALSE;

403 0s->0s_| ogbi as = ZFS_LOGBI AS_LATENCY;

404 0s->0s_sync = ZFS_ SYNC_STANDARD;

405 0s->0s_primary_cache = ZFS CACHE ALL;

406 0s->0s_secondary_cache = ZFS_CACHE_ ALL

407 }

409 if (ds == NULL || !dsl_dataset_is_snapshot(ds))

410 0s->0s_zi | _header = o0s->o0s_phys->o0s_zi | _header;

411 os->0s_zil = zil_alloc(os, &os->o0s_zil_header);

413 for (i =0; i < TXGSIZE, i++) {

414 list_create(&s->o0s_dirty dnodes[i], sizeof (dnode_t),
415 of f set of (dnode_t, dn _dirty_link[i]));

416 |ist_create(&os->0s_free dnodes[l], si zeof (dnode_t),
417 of f set of (dnode_t, dn_dirty link[i]));

418 }

419 i st _create(&os->0s_dnodes, sizeof (dnode_t),

420 of f set of (dnode_t, dn Ilnk))

421 l'i st _create(&os- >os_dovmgraded_dbuf s, sizeof (dmu_buf_inpl_t),
422 of f set of (dnu_buf _i npl _t, db_Iink));

424 mut ex_i ni t (&os->o0s_l ock, NULL, MJTEX_DEFAULT, NULL);

425 mut ex_i ni t (&os->0s_obj _| ock, NULL, MJTEX_ DEFAULT, NULL);

426 mut ex_i ni t (&os->0s_user_ptr_| ock, NULL, MJTEX_DEFAULT, NULL);
428 DMJ_META _DNCDE(0s) = dnode_speci al _open(os,

429 &0s- >0s_phys- >0s_net a_dnode, DMJ_META_ DNODE_OBJECT,

430 &os->0s_net a_dnode) ;

431 if (arc_buf_size(os->0s_phys_buf) >= sizeof (objset_phys_ t)) {
432 DMJ_USERUSED DNODE(0s) = dnode_speci al _open(os,

433 &0s- >0s_phys- >0s_user used_dnode, DMJ_USERUSED_OBJECT,
434 &0s- >0s_user used_dnode) ;

435 DMJ_GROUPUSED _DNODE(0s) = dnode_speci al _open(os,

436 &0s- >0s_phys- >0s_gr oupused_dnode, DMJ_GROUPUSED OBJECT,
437 &0s->0s_groupused_dnode) ;

438 }

440 *osp = 0s;

441 return (0);

442 }

444 int

445 ?rru_obj set _fromds(dsl _dataset_t *ds, objset_t **osp)

446

447 int err = 0;

449 nmut ex_ent er (&ds- >ds_openi ng_| ock) ;

450 if (ds->ds_objset == NULL) {

451 obj set t *os;

452 err = dnu Obj set _open_i npl (dsl _dat aset _get _spa(ds),
453 ds, dsl_dataset get bl kptr(ds), &os);

455 if (err == 0) {

456 mut ex_ent er (&ds- >ds_| ock) ;

457 ASSERT(ds->ds_obj set == NULL);

new usr/src/ uts/ common/fs/zfs/dm_objset.c

458 ds->ds_obj set = os

459 mut ex_exi t (&ds- >ds | ock) ;
460 }

461 }

462 *osp = ds->ds_obj set;

463 mut ex_exi t (&ds- >ds_openi ng_| ock) ;

464 return (err);

465 }

467 | *

468 * Holds the pool while the objset is held. Therefore only one objset

469 * can be held at a tine.
470 */
471 static int

472 dnu_obj set _hol d_i npl (const char *nane, void *tag, objset_t **osp,

int

50 int

51 dnu_obj set _hol d(const char *name, void *tag, objset_t **osp)
473 {

474 dsl _pool _t *dp;

475 dsl _dat aset _t *ds;

476 int err;

478 err = dsl_pool _hol d_I ock(nane, tag, &dp, |ock);
57 err = dsl _pool _hol d(nane, tag, &dp);

479 if (err 1=0)

480 return (err);

481 err = dsl _dataset _hol d(dp, nane, tag, &ds);

482 if (err 1=0)

483 dsl _pool _rel e(dp, tag);

484 return (err);

485 }

487 err = dmu_obj set_fromds(ds, osp);

488 if (err 1=0)

489 dsl _dataset _rel e(ds, tag);

490 dsl _pool _rele(dp, tag);

491 }

493 return (err);

494 }

496 int

497 dnu_obj set _hol d(const char *name, void *tag, objset_t **osp)
498 {

499 return (dmu_objset_hol d_i npl (nane, tag, osp, 1));
500 }

502 int

503 dmu_obj set _hol d_nol ock(const char *nane, void *tag, objset_t **osp)
504

505 return (dnu_objset_hol d_i npl (nanme, tag, osp, 0));
506 }

508 #endif /* ! codereview */
509 /*
510 * dsl_pool nust not be held when this is call ed.

511 * Upon successful return, there will be a Ionghold on the dataset,

512 * and the dsl _pool will not be held.
513 */
514 static int

515 dru_obj set _own_i npl (const char *nane, dnu_objset_type_t type,

516 bool ean_t readonly, void *tag, objset_t **osp, int |ock)
75 int

76 dmu_obj set _own(const char *nanme, dnu_objset_type_t type,

77 bool ean_t readonly, void *tag, objset_t **osp)

517 {

| ock)

new usr/src/uts/ common/fs/zfs/dm_objset.c

518 dsl _pool _t *dp;

519 dsl _dat aset _t *ds;

520 int err;

522 err = dsl _pool _hol d_I| ock(nanme, FTAG &dp, |ock);

83 err = dsl _pool _hol d(nane, FTAG &dp);

523 if (err 1= 0)

524 return (err);

525 err = dsl_dataset_own(dp, nane, tag, &ds);

526 if (err 1=0) {

527 dsl _pool _rel e(dp, FTAQ;

528 return (err);

529 }

531 err = dnu_obj set _fromds(ds, osp);

532 dsl _pool _rel e(dp, FTAG;

533 if (err 1=0)

534 dsl _dat aset _di sown(ds, tag);

535 } elseif (type !'= DMJ OST_ANY && type != (*osp)->0s_phys->o0s_type) {
536 dsl _dat aset _di sown(ds, tag);

537 return (SET_ERROR(EINVAL));

538 } else if (!readonly && dsl _dataset_is_snapshot (ds)) {

539 dsl _dat aset _di sown(ds, tag);

540 return (SET_ERROR(ERCFS));

541 }

542 return (err);

543 }

545 int

546 dmu_obj set _own(const char *name, dmu_objset_type_t type,

547 bool ean_t readonly, void *tag, objset_t **osp)

548 {

549) return (dnu_objset_own_i npl (nanme, type, readonly, tag, osp, 1));

550

552 int

553 dmu_obj set _own_nol ock(const char *nane, dnu_objset_type_ t type,

554 bool ean_t readonly, void *tag, objset_t **osp)

555 {

556 return (dmu_objset_own_i npl (nane, type, readonly, tag, osp, 0));

557 }

559 #endif /* | codereview */

560 void

561 ?m.l_obj set_rele(objset_t *os, void *tag)

562

563 dsl _pool _t *dp = dnu_obj set_pool (o0s);

564 dsl _dat aset _rel e(os->0s_dsl| _dat aset, tag);

565 dsl _pool _rele(dp, tag);

566 }

568 /*

569 * When we are called, os MIST refer to an objset associated with a dataset
570 * that is owned by 'tag’; that is, is held and long held by 'tag’ and ds_owner
571 * ==tag. W will then release and reacquire ownership of the dataset while
572 * hol ding the pool config_rw ock to avoid intervening namespace or ownership
573 * changes mmy occur.

574 *

575 * This exists solely to accormpdate zfs_i oc_userspace_upgrade()’'s desire to
576 * release the hold on its dataset and acquire a new one on the dataset of the
577 * same nanme so that it can be partially torn down and reconstructed.

578 */

579 void

580 dru_obj set _refresh_ownershi p(objset_t *os, void *tag)

581 {

582 dsl _pool _t *dp;

new usr/src/ uts/ comon/fs/zfs/dm_objset.c

583 dsl _dataset _t *ds, *newds;

584 char name[MAXNAMELEN ;

586 ds = os->o0s_dsl| _dat aset;

587 VERI FY3P(ds, !=, NULL);

588 VERI FY3P(ds->ds_owner, ==, tag);

589 VERI FY(dsl _dat aset _| ong_hel d(ds));

591 dsl _dat aset _nane(ds, nane);

592 dp = dnu_obj set _pool (0s);

593 dsl _pool _config_enter(dp, FTAG;

594 dmu_obj set _di sown(os, tag);

595 VERI FYO(dsl _dat aset _own(dp, nane, tag, &newds));

596 VERI FY3P(newds, ==, o0s->0s_dsl _dataset);

597 dsl _pool _config_exit(dp, FTAGQ;

598 }

600 void

601 dmu_obj set _di sown(obj set _t *os, void *tag)

602 {

603 dsl _dat aset _di sown(os->os_dsl _dat aset, tag);

604 }

606 void

607 drmu_obj set _evi ct _dbuf s(obj set_t *os)

608 {

609 dnode_t *dn;

611 nmut ex_ent er (&os->0s_| ock) ;

613 /* process the mdn | ast, since the other dnodes have holds on it
614 list_renove(&os->0s_dnodes, DMJ_META DNODE(0s));

615 list_insert_tail (&os->0s_dnodes, DMJ META DNODE(o0s));

617 /*

618 * Find the first dnode with holds. W have to do this dance
619 * because dnode_add_ref() only works if you already have a
620 * hold. |If there are no holds then it has no dbufs so K to
621 * skip.

622 *

623 for (dn = |ist_head(&os->0s_dnodes);

624 dn && !'dnode_add_ref(dn, FTAG;

625 dn = |ist_next (&os->0s_dnodes, dn))

626 conti nue;

628 while (dn) {

629 dnode_t *next_dn = dn;

631 do {

632 next _dn = |ist_next (&os->0s_dnodes, next_dn);
633 } while (next_dn && !dnode_add_ref(next_dn, FTAG);
635 mut ex_exi t (&os->0s_| ock) ;

636 dnode_evi ct _dbufs(dn);

637 dnode_rel e(dn, FTAG;

638 mut ex_ent er (&os- >0s_| ock) ;

639 dn = next_dn;

640

641 mut ex_exi t (&os->os_| ock) ;

642 }

644 void

645 dmu_obj set _evi ct (obj set_t *os)

646 {

647 dsl _dataset _t *ds = os->o0s_dsl| _dat aset;

10

new usr/src/uts/ common/fs/zfs/dm_objset.c

649
650

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682

684
685

687

689
690
691
692
693
694

696
698

700
701
702
703
704
705
706
707

709
710
711
712
713 }

(int t =0; t < TXG SIZE; t++)
ASSERT(! dnu_obj set _is_dirty(os, t));

if (ds) {
if (!dsl_dataset_is_snapshot(ds)) {

VERI FYO(dsl _prop_unregi ster(ds,
zf s_prop_t o_nane(ZFS_PROP_CHECKSWV ,
checksum changed_cb, os));

VERI FYO(dsl _prop_unregi ster(ds,
zf s_prop_t o_nanme(ZFS_PROP_COVPRESSI ON) ,
conpr essi on_changed_cb, 0s));

VERI FYO(dsl _prop_unr egi ster(ds,
zfs_prop_t o_name(ZFS_PROP_COPI ES),
copi es_changed_cb, o0s));

VERI FYO(dsl _prop_unregi ster(ds,
zfs_prop_t o_nanme(ZFS_PROP_DEDUP) ,
dedup_changed_ch, o0s));

VERI FYO(dsl _prop_unregi ster(ds,
zfs_prop_t o_nanme(ZFS_PROP_LOGBI AS) ,
| ogbi as_changed_cb, o0s));

VERI FYO(dsI _prop_unregi ster(ds,
zf s_prop_t o_nane(ZFS_PROP_SYNC),
sync_changed_cb, os));

VERI FYO(dsl _prop_unregi ster(ds,
zfs_prop_t o_name(ZFS_PROP_REDUNDANT_METADATA) ,
redundant _net adat a_changed_cb, 0s));

}

VERI FYO(dsl _prop_unregi ster (ds,
zfs_prop_t o_nanme(ZFS_PROP_PRI MARYCACHE) ,
pri mary_cache_changed_cb, o0s));

VERI FYO(dsl _prop_unregi ster (ds,
zf s_prop_t o_nanme(ZFS_PROP_SECONDARYCACHE) ,
secondary_cache_changed_cb, o0s));

}

if (o0s->0s_sa
sa_t ear _down(os);

drmu_obj set _evi ct _dbuf s(os);

dnode_speci al _cl ose(&s->o0s_net a_dnode) ;

i f (DMJ_USERUSED_DNODE(0s))
dnode_speci al _cl ose(&s- >0s_user used_dnode) ;
dnode_speci al _cl ose(&s- >0s_gr oupused_dnode) ;

}
zil _free(os->o0s_zil);
ASSERT3P(1i st _head(&os->0s_dnodes), ==, NULL);

VERI FY(ar c_buf _renove_ref (0s->os_phys_buf, &os->o0s_phys_buf));
/*
* This is a barrier to prevent the objset fromgoing away in
* dnode_nove() until we can safely ensure that the objset is still
* use. We consider the objset valid before the barrier and invalid
* after the barrier.
*
/

rw_enter (&os_| ock,
rw_exit(&os_l ock);

RW READER) ;

mut ex_dest r oy(&os- >o0s_I ock) ;

mut ex_dest roy(&s- >0s_obj _| ock);

nmut ex_dest r oy(&os- >0s_user _ptr _| ock);
kmem free(os, sizeof (objset_t));

in

11

new usr/src/uts/ common/fs/zfs/dm_objset.c

715 timestruc_t
716 dmu_obj set _snap_cnti ne(obj set _t *os)

717 {
718
719 }

return (dsl_dir_snap_cnti me(os->o0s_dsl|_dataset->ds_dir));

721 /* called fromdsl for neta-objset */
722 objset _t *
723 dmu_obj set _create |np|(spat *spa, dsl_dataset_t *ds, blkptr_t *bp,

724
725 {
726
727

729

731
732
733
734

736

738
739

741
742
743
744
745
746
747
748
749
750
751
752
753

755
756
757
758
759
760
761
762

764
765
766

768
769
770
771
772
773
774
775

779
780 }

dmu_obj set _type_t

type, dnu_tx_t *tx)
obj set _t *os;
dnode_t *ndn;

ASSERT(dnmu_t x_i s_synci ng(tx));

if (ds !'= NULL)
VERI FYO(dnu_obj set _from ds(ds, &os));
el se

VERI FYO(dmu_obj set _open_i npl (spa, NULL, bp, &o0s));
mdn = DMJ_META_DNODE(0S) ;

dnode_al | ocat e(ndn, DMJ_OT_DNODE, 1 << DNODE_BLOCK_SHI FT,
DN_MAX_| NDBLKSHI FT, DMJ_OT_NONE, 0, tx);

We don’t want to have to increase the neta-dnode’s nlevels
I ater, because then we could do it in quescing context while
we are al so accessing it in open context.

This precaution is not necessary for the MOS (ds == NULL),
because the MOS is only updated in syncing context.

This is nost fortunate: the MXS is the only objset that
needs to be synced nultiple tinmes as spa_sync() iterates
to convergence, so mnimzing its dn_nlevels matters.

* ok K ok % ok k ok ¥ ok

*

if (ds !'= NULL) {
int levels = 1;

/*

* Determne the nunber of |evels necessary for the neta-dnode

* to contain DN_MAX_OBJECT dnodes.

*

/

while ((uint64_t)mn->dn_nbl kptr << (mdn->dn_dat abl kshift +
(levels - 1) * (ndn->dn_i ndbl kshift - SPA BLKPTRSH FT)) <
DN_MAX_OBJECT * si zeof (dnode_phys_t))

| evel s++;

mdn- >dn_next _nl evel s[tx->t x_txg & TXG MASK] =
nmdn- >dn_nl evel s = | evel s;

}

ASSERT(type != DMJ_OST. NCNIS

ASSERT(type != DMJ_OST

ASSERT(type < DMJ_OST NUMTYPES)

0s->0s_phys->0s_type = type;

i f (dmu_obj set _userused enabl ed(os)) {
0s->0s_phys->o0s_flags | = OBJSET_FLAG USERACCOUNTI NG _COVPLETE;
os->o0s_flags = os->o0s_phys->os_f | ags;

}
dsl _dataset _dirty(ds, tx);

return (0s);

12

new usr/src/uts/ common/fs/zfs/dm_objset.c

782 typedef struct dnu_objset_create_arg {
783

784 cred_t *doca_cred;

785 voi d (*doca_ userfunc)(obj set _t *os, void *arg,

786 cred_t *cr, dmu_tx_t *tx);

787 voi d *doca_userarg;

788 dmu_obj set _type_t doca_type;

789 uint64_t doca_fl ags;

790 } drmu_obj set _create_arg_t;

792 | * ARGSUSED*/

793 static int

794 dmu_obj set _create_check(void *arg, dmu_tx_t *tx)

795 {

796 dmu_obj set _create_arg_t *doca = arg;

797 dsl _pool _t *dp = dnu_tx_pool (tx);

798 dsl _dir_t *pdd;

799 const char *tail;

800 int error;

802 if (strchr(doca->doca_nanme, ' @) != NULL)

803 return (SET_ERROR(EI NVAL));

805 error = dsl _dir_hol d(dp, doca->doca_nanme, FTAG &pdd, &tail);
806 if (error 1= 0)

807 return (error);

808 if (tail == NULL) {

809 dsI _dir_rele(pdd, FTAG;

810 return (SET_ERROR(EEXI ST))

811 }

812 error = dsl_fs_ss_limt_check(pdd, 1, ZFS PROP_FILESYSTEM LIM T, NULL,
813 doca->doca_cred);

814 dsl _dir_rel e(pdd, FTAG;

816 return (error);

817 }

819 static void

820 dmu_obj set _create_sync(void *arg, dnu_tx_t *tx)

821 {

822 dmu_obj set _create_arg_t *doca = arg;

823 dsl _pool _t *dp = dnu_t x_pool (tx);

824 dsl _dir_t *pdd;

825 const char *tail;

826 dsl _dat aset _t *ds;

827 uint64_t obj;

828 bl kptr_t *bp;

829 obj set _t *os;

831 VERI FYO(ds!| _di r_hol d(dp, doca->doca_nanme, FTAG &pdd, &tail));
833 obj = dsl_dataset_create_sync(pdd, tail, NULL, doca->doca_fI ags,
834 doca->doca_cred, tx);

836 VERI FYO(ds| _dat aset _hol d_obj (pdd- >dd_pool, obj, FTAG &ds));
837 bp = dsl _dat aset_get_bl kptr(ds);

838 os = dmu_obj set _create_i npl (pdd->dd_pool - >dp_spa,
839 ds, bp, doca->doca_type, tx);

841 if (doca->doca_userfunc !'= NULL) {

842 doca- >doca_userfunc(os, doca->doca_userarg,
843 doca- >doca_cred, tx);

844 }

846 spa_history_log_internal _ds(ds, "create", tx, "");

const char *doca_nane;

13

new usr/src/ uts/ comon/fs/zfs/dm_objset.c 14
847 dsl| _dataset _rel e(ds, FTAQ;

848 dsl _dir_rel e(pdd, FTAG;

849 }

851 int

852 dmu_obj set _create(const char *naneg, dnu _obj set_type_t type, uint64_t flags,
853 void (*func)(objset_t *os, voi d * arg, cred_t *cr, dmu_tx_t *tx), void *arg)
854 {

855 dmu_obj set _create_arg_t doca;

857 doca. doca_nane = nane;

858 doca. doca_cred = CRED();

859 doca. doca_flags = fl ags;

860 doca. doca_userfunc = func;

861 doca. doca_userarg = arg;

862 doca. doca_t ype = type;

864 return (dsl_sync_task(nane,

865 drmu_obj set _creat e_check, dmu_objset_create_sync, &doca, 5));
866 }

868 typedef struct dnu_objset_clone_arg {

869 const char *doca_cl one;

870 const char *doca_ori gin;

871 cred_t *doca_cred;

872 } dmu_obj set_clone_arg_t;

874 | * ARGSUSED*/

875 static int

876 dmu_obj set_cl one_check(void *arg, dmu_tx_t *tx)

877 {

878 dmu_obj set _clone_arg_t *doca = arg;

879 dsl _dir_t *pdd;

880 const char *tail;

881 int error;

882 dsl _dataset _t *origin;

883 dsl _pool _t *dp = dnu_tx_pool (tx);

885 if (strchr(doca->doca_clone, '@) != NULL)

886 return (SET_ERROR(EI NVAL));

888 error = dsl _dir_hol d(dp, doca->doca_clone, FTAG &pdd, &tail);
889 if (error 1= 0)

890 return (error);

891 if (tail == NULL)

892 dsl _dir_rele(pdd, FTAG;

893 return (SET_ERROR(EEXI ST));

894 1

895 /* You can’t clone across pools. */

896 if (pdd->dd_pool != dp)

897 dsl _dir_rele(pdd, FTAG;

898 return (SET_ERROR(EXDEV));

899 }

900 error = dsl _fs_ss_limt_check(pdd, 1, ZFS PROP_FI LESYSTEM LIM T, NULL,
901 doca->doca_cred);

902 if (error 1= 0) {

903 dsl _dir_rel e(pdd, FTAQ;

904 return (SET_ERROR(EDQJOT))

905 }

906 dsl _dir_rel e(pdd, FTAG;

908 error = dsl_dataset _hol d(dp, doca->doca_origin, FTAG &origin);
909 if (error 1= 0)

910 return (error);

912 /* You can’'t clone across pools. */

new usr/src/uts/ common/fs/zfs/dm_objset.c

913 if (orlgln >ds_dir->dd_pool !'= dp) {
914 dsl _dataset _rele(origin, FTAG;
915 return (SET_ERROR(EXDEV))

916 }

918 /* You can only clone snapshots, not the head datasets. */
919 if (!dsl_dataset_is_snapshot(origin)) {
920 dsl _dataset _rel e(origin, FTAG;
921 return (SET_ERROR(EINVAL));

922 }

923 dsl _dataset _rele(origin, FTAG;

925 return (0);

926 }

928 static void
929 dmu_obj set _cl one_sync(void *arg, dmu_tx_t *tx)

930 {

931 drmu_obj set _clone_arg_t *doca = arg;

932 dsl _pool _t *dp = dnu_tx_pool (tx);

933 dsl _dir_t *pdd;

934 const char *tail;

935 dsl _dataset _t *origin, *ds;

936 uint64_t obj;

937 char narrebuf [MAXNAMELEN] ;

939 VERI FYO(ds| _di r_hol d(dp, doca->doca_clone, FTAG &pdd, é&tail));
940 VERI FYO(ds| _dat aset _hol d(dp, doca->doca_origin, FTAG &origin));
942 obj = dsl|_dataset_create_sync(pdd, tail, origin, O,

943 doca->doca_cred, tx);

945 VERI FYO(ds| _dat aset _hol d_obj (pdd->dd_pool, obj, FTAG &ds));
946 dsl _dat aset _name(origin, nanebuf);

947 spa_| h| story_| og_| i nternal _ds(ds, "cl one", tx,

948 "origin=% (% Ilu)", namebuf, origin->ds_object);

949 dsl _dat aset _rel e(ds, FTAG) ;

950 dsl _dataset _rele(origin, FTAG;

951 dsl _dir_rel e(pdd, FTAG;

952 }

954 int

955 dmu_obj set _cl one(const char *clone, const char *origin)

956 {

957 dmu_obj set _clone_arg_t doca;

959 doca. doca_cl one = cI one;

960 doca. doca_origin = origin;

961 doca. doca_cred = CRED();

963 return (dsl_sync_task(cl one,

964 dmu_obj set _cl one_check, dnu_obj set_cl one_sync, &doca, 5));
965 }

967 int

968 dmu_obj set _snapshot _one(const char *fsname, const char *snapnane)
969 {

970 int err;

971 char *longsnap = knem asprintf("%@s", fsnane, snapnane);
972 nvlist_t *snaps = fnvlist_alloc();

974 fnvlist_add_bool ean(snaps, |ongsnap);

975 strf ree(I ongsnap) ;

976 err = dsl _dataset _snapshot (snaps, NULL, NULL);

977 fnvlist_free(snaps);

978 return (err);

15

new usr/src/ uts/ comon/fs/zfs/dm_objset.c

979 }

981 static void

982 dmu_obj set _sync_dnodes(list_t *list, list_t *newist, dmu_tx_t *tx)
983 {

984 dnode_t *dn;

986 while (dn = list_head(list)) {

987 ASSERT(dn- >dn_obj ect = DMJ_META_DNODE_OBJECT) ;
988 ASSERT(dn- >dn_dbuf - >db_dat a_pendi ng) ;

989 /*

990 * Initialize dn_zio outside dnode_sync() because the
991 * meta-dnode needs to set it ouside dnode_sync()
992 */

993 dn->dn_zi o = dn->dn_dbuf - >db_dat a_pendi ng- >dr _zi o;
994 ASSERT(dn- >dn_zi 0) ;

996 ASSERT3U(dn->dn_nl evel s, <=, DN_MAX_ LEVELS);

997 list_renmove(list, dn);

999 if (newist) {

1000 (voi d) dnode_add_ref(dn, newist);

1001 list_insert_tail(newist, dn);

1002 }

1004 dnode_sync(dn, tx);

1005 }

1006 }

1008 /* ARGSUSED */
1009 static void
1010 dmu_obj set_wite_ready(zio_t *zio, arc_buf_t *abuf, void *arg)

1011 {

1012 bl kptr_t *bp = zio->io_bp;

1013 objset_t *os = arg;

1014 dnode_phys_t *dnp = &os->o0s_phys->o0s_net a_dnode;

1016 ASSERT(! BP_I S_EMBEDDED(bp)) ;

1017 ASSERT3P(bp, ==, o0s->0s_roothp);

1018 ASSERT3U(BP_GET_TYPE(bp), ==, DMJ OT_OBJSET);

1019 ASSERTO(BP_GET LEVEL(bp));

1021 /*

1022 * Update rootbp fill count: it should be the nunber of objects
1023 * allocated in the object set (not counting the "special"
1024 * objects that are stored in the objset_phys_t -- the neta
1025 * dnode and user/group accounting objects).

1026 */

1027 bp->bl k_fill = 0;

1028 for (int i =0; i < dnp->dn_nblkptr; i++)

1029 bp->bl k_fill += BP_GET_FI LL(&dnp->dn_bl kptr[i]);
1030 }

1032 /* ARGSUSED */

1033 static void

1034 dmu_obj set _write_done(zio_t *zio, arc_buf_t *abuf, void *arg)
1035 {

1036 bl kptr_t *bp = zio->io_bp;

1037 bl kptr_t *bp_orig = &zio->io_bp_orig;

1038 objset_t *os = arg;

1040 if (zio->o_flags & ZI O FLAG | O REWRI TE) {
1041 ASSERT(BP_EQUAL(bp, bp_orig));

1042 } else {

1043 dsl _dataset _t *ds = os->o0s_dsl _dat aset;
1044 dnu_tx_t *tx = 0s->0s_synctx;

16

new usr/src/uts/ common/fs/zfs/dm_objset.c

1046 (voi d) dsl_dataset_bl ock_kill(ds, bp_orig, tx, B _TRUE);
1047 dsl _dat aset _bl ock_born(ds, bp, tx);

1048 }

1049 }

1051 /* called fromdsl */

1052 voi d

1053 dnu_obj set _sync(objset_t *os, zio_t *pio, dnu_tx_t *tx)

1054 {

1055 int txgoff;

1056 zbookmark_t zb;

1057 zio_prop_t zp;

1058 zio_t *zio;

1059 list_t *Ilst;

1060 list_t *new ist = NULL;

1061 dbuf _dirty_record_t *dr;

1063 dprintf_ds(os->0s_dsl _dataset, "txg=%I|u\n", tx->tx_txg);
1065 ASSERT(drmu_t x_i s_synci ng(tx));

1066 /* XXX the write_done cal | back shoul d really give us the tx. */
1067 0s->0s_synctx = tx;

1069 if (os->o0s_dsl_dataset == NULL) {

1070 /*

1071 * This is the MOS. |If we have upgraded,

1072 * spa_max_replication() could change, so reset

1073 * os_copies here.

1074 */

1075 0s->0s_copi es = spa_nax_replication(os->0s_spa);

1076 1

1078 /*

1079 * Create the root block 10

1080 */

1081 SET_BOOKMARK(&b, o0s->o0s_dsl _dataset ?

1082 0s->0s_dsl| _dat aset - >ds_obj ect : DMJ_META OBJSET,

1083 ZB_ROOT_OBJECT, ZB ROOT_LEVEL, ZB ROOT_BLKI D);

1084 arc_rel ease(o0s->0s_phys_buf, &os- >os_phys_buf)

1086 dmu_write_policy(os, NULL, 0, O, &zp);

1088 zio = arc_wite(pio, os->0s_spa, tx->tx_txg,

1089 0s->0S_r oot bp, 0s->os_phys_buf, DMJ OS_I S_L2CACHEABLE(0s),
1090 DMJ_OS_| S_L2COVWPRESSI BLE(0s) , &zp, dmu_obj set_write_ready,
1091 NULL, dmu_objset_write_done, os, ZI O PRI ORI TY_ASYNC WRI TE,
1092 ZI O_FLAG_NUSTSUCCEED &zb);

1094 /*

1095 * Sync special dnodes - the parent 10 for the sync is the root block
1096 */

1097 DMJ_META_DNODE(0s) - >dn_zi 0 = zi o;

1098 dnode_sync(DMJ_META _DNODE(0s), tx);

1100 os->0s_phys->o0s_fl ags = os->os_fl ags;

1102 i f (DMJ_USERUSED DNODE(0s) &&

1103 DMJ_USERUSED _DNODE(0s) - >dn_type ! = DMJ_OT_NONE) {

1104 DMJ_USERUSED DNODE(0s) ->dn_zi o = zio;

1105 dnode_sync(DMJ_USERUSED_DNODE(os) tx);

1106 DMJ_GROUPUSED _DNCDE(0s) - >dn_zi 0 = zi 0;

1107 dnode_sync(vaU_G?(lJPUSED_Dl\KDE(os), tx);

1108 }

1110 txgoff = tx->tx_txg & TXG MASK;

new usr/src/ uts/ comon/fs/zfs/dm_objset.c 18
1112 if (dmu_objset_userused_enabl ed(os)) {

1113 new i st = &os->0s_synced_dnodes;

1114 /*

1115 * We nust create the |list here because it uses the
1116 * dn_dirty_link[] of this txg.

1117 */

1118 list_create(newist, sizeof (dnode_t),

1119 of f set of (dnode_t, dn_dirty_link[txgoff]));

1120 }

1122 dmu_obj set _sync_dnodes(&s->o0s_free_dnodes[txgoff], newist, tx);
1123 dmu_obj set _sync_dnodes(&os->os_dirty_dnodes[txgoff], newist, tx);
1125 list = &MJ META DNODE(0s)->dn_dirty_records[txgoff];

1126 while (dr = list_head(list)) {

1127 ASSERTO(dr - >dr _dbuf - >db_| evel) ;

1128 list_remove(list, dr);

1129 if (dr->dr_zio)

1130 zi o_nowai t (dr->dr_zio);

1131 }

1132 /*

1133 * Free intent log blocks up to this tx.

1134 */

1135 zil _sync(os->o0s_zil, tx);

1136 0s- >0s_phys->o0s_zi | _header = os->o0s_zil _header;

1137 zi o_nowai t (zi 0);

1138 }

1140 bool ean_t

1141 dmu_obj set _is_dirty(objset_t *os, uint64_t txg)

1142 {

1143 return (!list_is_enmpty(&os->o0s_dirty_| dnodes[txg & TXG MASK]) ||
1144 Ilist_is_enpty(&os->0s_free_dnodes[txg & TXG MASK]));

1145 }

1147 static objset_used_cb_t *used_cbs[DMJ_OST_NUMTYPES] ;

1149 void

1150 dmu_obj set _regi ster_type(dnu_obj set _type_t ost, objset_used_cb_t *cb)
1151 {

1152 used_chs[ost] = cb;

1153 }

1155 bool ean_t

1156 ?rru_obj set _userused_enabl ed(obj set _t *os)

1157

1158 return (spa_version(os->0s_spa) >= SPA VERSI ON_USERSPACE &&
1159 used_cbs[os- >0s_phys->0s_type] != NULL &&

1160 DMJ_USERUSED_DNODE(o0s) != NULL);

1161 }

1163 static void

1164 do_user quot a_updat e(obj set_t *os, uint64_t used, uint64_t flags,

1165 uint64_t user, uint64_t group, boolean_t subtract, dmu_tx_t *tx)
1166 {

1167 if ((flags & DNODE_FLAG USERUSED ACCOUNTED)) {

1168 int64_t delta = DNODE_SI ZE + used;

1169 if (subtract)

1170 delta = -delta;

1171 VERI FY3U(0, ==, zap_increnent_int(os, DMJ USERUSED OBJECT,
1172 user, delta, tx));

1173 VERI FY3U(0, ==, zap_i ncrenent_int(os, DMJ_GROUPUSED OBJECT,
1174 group, delta, tx));

1175

1176 }

new usr/src/uts/ common/fs/zfs/dm_objset.c 19

1178 void

1179 ?rru_obj set _do_user quot a_updat es(obj set _t *os, dmu_tx_t *tx)

1180

1181 dnode_t *dn;

1182 list_t *list = &s->0s_synced_dnodes;

1184 ASSERT(li st_head(list) == NULL || dmu_obj set_userused_enabl ed(o0s));
1186 while (dn = list_head(list)) {

1187 int flags;

1188 ASSERT(! DMJ_OBJECT_I S_SPECI AL(dn >dn_obj ect));

1189 ASSERT(dn- >dn_phys->dn_t ype == DMJ_OT_NONE | |

1190 dn- >dn_phys->dn_fl ags &

1191 DNODE_FLAG_USERUSED_ACCOUNTED) ;

1193 /* Allocate the user/groupused objects if necessary. */
1194 i f (DMJU_USERUSED_DNODE(0s) - >dn_t ype == DMJ_OT_NONE) {
1195 VERI FY(0 == zap_create_cl ai n(os,

1196 DMJ_USERUSED_OBJECT,

1197 DMU_OT_USERGROUP_USED, DMJ_OT_NONE, 0, tx));
1198 VERI FY(0 == zap_create_cl ai n{ os,

1199 DMJ_GROUPUSED_OBJECT,

1200 DMUJ_OT_USERGROUP_USED, DMJ_OT_NONE, 0, tx));
1201 }

1203 /*

1204 * W intentionally nodify the zap object even if the
1205 * net delta is zero. Oherw se

1206 * the block of the zap obj could be shared between
1207 * datasets but need to be different between them after
1208 * a bprewite.

1209 */

1211 flags = dn->dn_i d_fl ags;

1212 ASSERT(f | ags)

1213 if (flags & DN_ID_OLD EXIST) {

1214 do_user quot a_updat e(os, dn->dn_ol dused, dn->dn_ol dfl ags,
1215 dn->dn_ol dui d, dn->dn_ol dgid, B _TRUE, tXx);
1216 }

1217 if (flags & DN_I D_NEWEXI ST) {

1218 do_user quot a_updat e(0os, DN_USED BYTES(dn- >dn_phys),
1219 dn->dn_phys->dn_fl ags, dn->dn_newii d,

1220 dn->dn_newgi d, B_FALSE, tx);

1221 }

1223 mut ex_ent er(&dn—>dn_m X);

1224 dn- >dn_ol dused = 0;

1225 dn->dn_ol df | ags = O

1226 if (dn- >dn|df|ags&DN_IDNEWEXIST) {

1227 dn->dn_ol dui d = dn->dn_newui d;

1228 dn->dn_ol dgid = dn->dn_newgi d;

1229 dn>dn|dflags|—DNIDCLDEXIST

1230 i f (dn->dn_bonusl en == 0)

1231 dn->dn_i d_flags |= DN_I D_CHKED SPILL;
1232 el se

1233 dn->dn_id_flags | = DN_| D CHKED BONUS,
1234 }

1235 dn->dn_i d_fl ags & ~(DN_I D_NEW EXI ST);

1236 mut ex_exi t (&n->dn_nt x) ;

1238 list_renmove(list, dn);

1239 dnode_rel e(dn, list);

1240 }

1241 }

new usr/src/uts/ common/fs/zfs/dm_objset.c

1243 /*

1244 * Returns a pointer to data to find uid/gid from

1245 *

1246 * If a dirty record for transaction group that is syncing can't
1247 * be found then NULL is returned. In the NULL case it is assuned
1248 * the uid/gid aren’t changing.

1249 */

1250 static void *
1251 dmu_obj set _userquot a_fi nd_dat a(dmu_buf _i mpl _t *db, dmu_tx_t *tx)

1252 {

1253 dbuf _dirty_record_t *dr, **drp;

1254 voi d *dat a;

1256 if (db->db_dirtycnt == 0)

1257 return (db->db.db_data); /* Nothing is changing *
1259 r (drp = &b->db_last_dirty; (dr = *drp) != NULL; drp =
1260 if (dr->dr_txg == tx->tx_txg)

1261 br eak;

1263 if (dr == NULL) {

1264 data = NULL;

1265 } else {

1266 dnode_t *dn;

1268 DB_DNODE_ENTER(dr - >dr _dbuf) ;

1269 dn = DB_DNODE(dr->dr_dbuf);

1271 if (dn->dn_bonuslen == 0 &&

1272 dr - >dr _dbuf - >db_bl ki d == DMJ_SPI LL_BLKI D)
1273 data = dr->dt.dl.dr_data->b_data;
1274 el se

1275 data = dr->dt.dl.dr_data;

1277 DB_DNODE_EXI T(dr->dr_dbuf);

1278 1

1280 return (data);

1281 }

1283 voi d

1284 dmu_obj set _userquot a_get _i ds(dnode_t *dn, bool ean_t before, dnu_tx
1285 {

1286 objset _t *os = dn->dn_obj set;

1287 void *data = NULL;

1288 dmu_buf _i npl _t *db = NULL;

1289 ui nt 64_t *user = NULL;

1290 ui nt 64_t group = NULL

1291 int flags dn->dn_id flags

1292 int error;

1293 bool ean_t have_spill = B_FALSE;

1295 if (!dmu_objset_userused_enabl ed(dn->dn_obj set))

1296 return;

1298 if (before & (flags & (DN_| D_CHKED_BONUS| DN_| D_OLD_EXI ST|
1299 DN | D_CHKED SPILL)))

1300 return;

1302 if (before && dn->dn_bonuslen != 0)

1303 data = DN_BONUS(dn->dn_phys);

1304 else if (!before & dn->dn_bonuslen != 0) {

1305 if (dn->dn bonus) {

1306 db = dn->dn_bonus;

1307 nmut ex_ent er (&db- >db_m X);

1308 data = dmu_obj set _userquot a_fi nd_dat a(db,

20

/
&dr - >dr _next)

_t *tx)

tx);

new usr/src/uts/ common/fs/zfs/dm_objset.c 21

1309
1310
1311
1312
1313

1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330

1332
1333
1334
1335
1336
1337
1338
1339

1341
1342
1343
1344
1345
1346

1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364

1366
1367

1369
1370
1371
1372
1373

} else {
data = DN_BONUS(dn->dn_phys);

}
} else if (dn->dn_bonuslen == 0 && dn->dn_bonustype == DMJ_OT_SA) {
int rf = 0;

if (RWWRl TE_HELD(&n- >dn_struct _rw ock))
rf | = DB_RF_HAVESTRUCT;
error = dmu_spi | T_hol d_by_dnode(dn,
rf | DB_RF_MJST_SUCCEED,
FTAG, (drm buf _t **)&db);
ASSERT(error == 0);
nut ex_ent er (&db- >db _mtx);
data = (before) ? db->db.db_data :
drmu_obj set _userquota_find_data(db, tx);
have_spill = B_TRUE;
} else {
nmut ex_ent er (&dn- >dn mx)
dn->dn_id_flags |= DN_I D) CHKED_BONUS;
nmut ex_exi t (&dn->dn_nt x) ;
return;

}

if (before) {
ASSERT(dat a) ;
user = &dn->dn_ol dui d;
group = &dn->dn_ol dgi d;
} else if (data) {
user = &dn->dn_newui d;
group = &dn->dn_newgi d;
}

*

* Must always call the callback in case the object
:/type has changed and that type isn't an object type to track

error = used_cbs[os->0s_phys->o0s_type] (dn->dn_bonustype, data,
user, group);

*
* Preserve existing uid/gid when the callback can’t determnine
* what the new uid/gid are and the call back returned EEXI ST.
* The EEXI ST error tells us to just use the existing uid/gid.
* |If we don’t know what the old values are then just assign
*/themto 0, since that is a new file being created.

*

if

(!'before & data == NULL && error == EEXI ST) {
if (flags & DN_ID_OLD EXI ST)
dn->dn_newui d dn- >dn_ol dui d;
dn- >dn_newgi d dn->dn_ol dgi d;
} else {

dn->dn_newid = O;
dn->dn_newgi d = O;
error = 0;
}
if (db)

nmut ex_exi t (&db->db_nt x) ;

mut ex_ent er (&dn->dn_nt x) ;
if (error == 0 & before)

dn->dn_id_flags | = DN_I D_O.D EXI ST;
if (error == 0 && !before

dn->dn_i d_flags | = DN_I D_NEW EXI ST;

new usr/src/uts/ common/fs/zfs/dm_objset.c

1375 if (have spill) {

1376 dn->dn_id_flags | = DN_I D_CHKED_ SPI LL;

1377 } else {

1378 dn->dn_id_flags | = DN_I D_CHKED_BONUS;

1379

1380 mut ex_exi t (&dn->dn_nt x) ;

1381 if (have_spill)

1382 dnu_buf _rel e((dnu_buf _t *)db, FTAG;

1383 }

1385 bool ean_t

1386 dmu_obj set _userspace_present (obj set _t *os)

1387 {

1388 return (os->o0s_phys->o0s_flags &

1389 OBJSET_FLAG_USERACCOUNTI NG_COWPLETE) ;

1390 }

1392 int

1393 dmu_obj set _user space_upgr ade(obj set _t *os)

1394 {

1395 uint64_t obj;

1396 int err = 0;

1398 if (dmu_obj set_userspace_present(0s))

1399 return (0);

1400 if (!dmu_objset_userused_enabl ed(os))

1401 return (SEI' ERROR(ENOTSUP)) ;

1402 if (dmu_objset_is_snapshot (0s))

1403 return (SET_ERROR(EINVAL));

1405 /*

1406 * W sinply need to mark every object dirty, so that it will be
1407 * synced out and now accounted. |f this is called
1408 * concurrently, or if we already did some work before crashing,
1409 * that’'s fine, since we track each object’s accounted state
1410 * independent|y.

1411 */

1413 for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
1414 dmu_tx_t *tx;

1415 dmu_buf _t *db;

1416 int objerr;

1418 if (issig(JUSTLOOKING) && issig(FORREAL))
1419 return (SET_ERROR(EINTR));

1421 obj err = dnu_bonus_hol d(os, obj, FTAG &db);
1422 if (objerr 1= 0)

1423 conti nue;

1424 tx = dnmu_tx_create(os);

1425 dmu_t x_hol d_bonus(t x, ob])

1426 objerr = dmu_tx_assign(tx, TXG WAIT);

1427 if (objerr I'=0)

1428 dmu_t x_abort (tx);

1429 conti nue;

1430 }

1431 dmu_buf _wi Il _dirty(db, tx);

1432 dmu_buf _rel e(db, FTAG;

1433 dmu_t x_commi t (tx);

1434 }

1436 os->0s_flags | = OBJSET_FLAG _USERACCOUNTI NG_COVPLETE;
1437 t xg_wai t _synced(dmu_obj set _pool (os), 0);

1438 return (0);

1439 }

new usr/src/uts/ common/fs/zfs/dm_objset.c

1441 void

1442 dmu_obj set _space(obj set _t *os, uint64_t *refdbytesp, uint64_t *avail bytesp,
1443 uint64_t *usedobjsp, uint64_t *avail obj sp)

1444 {

1445 dsl _dat aset _space(os->os_dsl _dat aset, refdbytesp, avail bytesp,
1446 usedobj sp, avail obj sp);

1447 }

1449 uint64_t

1450 dmu_obj set _fsi d_gui d(obj set _t *os)

1451 {

1452 return (dsl_dataset_fsid_guid(os->0s_dsl_dataset));

1453 }

1455 voi d

1456 ?nu_obj set _fast_stat(objset_t *os, dnu_objset_stats_t *stat)

1457

1458 stat->dds_type = o0s->0s_phys->0s_type;

1459 if (os->o0s_dsl_dataset)

1460 dsl _dat aset _f ast _stat (os->o0s_dsl _dataset, stat);
1461 }

1463 voi d

1464 dmu_obj set _stats(objset_t *os, nvlist_t *nv)

1465 {

1466 ASSERT(0s- >0s_dsl _dat aset ||

1467 0s->0s_phys->0s_t ype == DMJ_OST_META) ;

1469 if (os->os_dsl_dataset != NULL)

1470 dsl _dat aset _st at s(o0s->o0s_dsl _dataset, nv);

1472 dsl _prop_nvlist_add_ui nt 64(nv, ZFS_PROP_TYPE,

1473 0s- >0s_phys->0s_type);

1474 dsl _prop_nvlist_add_ui nt 64(nv, ZFS PROP_USERACCOUNTI NG,

1475 drmu_obj set _user space_present (0S));

1476 }

1478 int

1479 dmu_obj set _i s_snapshot (obj set _t *os)

1480 {

1481 if (os->o0s_dsl_dataset != NULL)

1482 return (dsl_dataset_is_snapshot (os->0s_dsl _dataset));
1483 el se

1484 return (B_FALSE);

1485 }

1487 int

1488 dmu_snapshot _r eal nane(obj set _t *os, char *nane, char *real, int maxlen,
1489 bool ean_t *conflict)

1490 {

1491 dsl _dataset _t *ds = os->os_dsl _dataset;

1492 uint64_t ignored;

1494 if (ds->ds_phys->ds_snapnanes_zapobj == 0)

1495 return (SET_ERROR(ENCENT));

1497 return (zap_l ookup_norm(ds->ds_dir->dd_pool - >dp_n®et a_obj set,
1498 ds- >ds_phys->ds_snapnanes_zapobj, nane, 8, 1, & gnored, MI_FIRST,
1499 real, maxlen, conflict));

1500 }

1502 int

1503 dmu_snapshot _| i st _next (obj set_t *os, int nanel en, char *nane,

1504 uint64_t *idp, uint64_t *offp, boolean_t *case_conflict)

1505 {

1506 dsl _dataset _t *ds = os->os_dsl| _dat aset;

new usr/src/ uts/ comon/fs/zfs/dm_objset.c

1507
1508

1510

1512
1513

1515
1516
1517

1519
1520
1521
1522

1524
1525
1526
1527

1529
1530
1531
1532
1533
1534
1535
1536

1538
1539

1541
1542

zap_cursor _t cursor;
zap_attribute_t attr;

ASSERT(dsl _pool _confi g_hel d(dmu_obj set _pool (0s)));

if (ds->ds_phys->ds_snapnanes_zapobj == 0)
return (SET_ERROR(ENCENT));

zap_cursor_init_serialized(&cursor,
ds->ds_di r->dd_pool - >dp_n®et a_obj set,
ds- >ds_phys->ds_snapnanes_zapobj, *offp);

if (zap_cursor_retrieve(&ursor, &ttr) != 0) {
zap_cursor_fini (&ursor);
return (SET_ERROR(ENCENT));

}

if (strlen(attr.za_name) + 1 > nanelen) {
zap_cursor_fini (&cursor);
return (SET_ERROR(ENAMETOOLONG)) ;

}
(void) strcpy(nanme, attr.za_nane);
if d

(i
*idp = attr.za_first_integer;
if (case_conflict)
*case_conflict = attr.za_normalization_conflict;
zap_cur sor _advance(&ur sor) ;
*of fp = zap_cursor_serialize(&cursor);
zap_cursor _fini (&ursor);

return (0);
}
int
drmu_dir_list_next(objset_t *os, int nanelen, char *nane,

1543 uint64_t *idp, uint64_t *offp)

1544 {

1545 dsl _dir_t *dd = os->os_dsl| _dataset->ds_dir;
1546 zap_cursor_t cursor;

1547 zap_attribute_t attr;

1549 /* there is no next dir on a snapshot! */
1550 if (os->o0s_dsl_dataset->ds_object !=

1551 dd- >dd_phys->dd_head_dat aset _obj)

1552 return (SET_ERROR(ENCENT));

1554 zap_cursor_init_serialized(&cursor,

1555 dd- >dd_pool - >dp_net a_obj set,

1556 dd- >dd_phys->dd_chi | d_di r_zapobj, *offp);
1558 if (zap_cursor_retrieve(&cursor, &attr) != 0) {
1559 zap_cursor _fini (&cursor);

1560 return (SET_ERROR(ENCENT));

1561 }

1563 if (strlen(attr.za_name) + 1 > nanelen) {
1564 zap_cursor _fini (&cursor);

1565 return (SET_ERROR(ENAMETOOLONG)) ;
1566 }

1568 (void) strcpy(nanme, attr.za_nane);

1569 if (idp)

1570 *idp = attr.za_first_integer;

1571 zap_cur sor _advance(&ur sor) ;

1572 *of fp = zap_cursor_serialize(&cursor);

new usr/src/uts/ common/fs/zfs/dm_objset.c 25

1573 zap_cursor _fini (&ursor);

1575 return (0);

1576 }

1578 /*

1579 */Fi nd obj sets under and including ddobj, call func(ds) on each.
1580 *

1581 int

1582 dmu_obj set _find_dp(dsl _pool _t *dp, uint64_t ddobj,

1583 int func(dsl_pool _t *, dsl_dataset_t *, void *), void *arg, int flags)
1584 {

1585 dsl _dir_t *dd;

1586 dsl _dat aset _t *ds;

1587 zap_cursor_t zc;

1588 zap_attribute_t *attr;

1589 uint64_t thisobj;

1590 int err;

1592 ASSERT(dsl _pool _config_hel d(dp));

1594 err = dsl _dir_hol d_obj (dp, ddobj, NULL, FTAG &dd);
1595 if (err 1= 0)

1596 return (err);

1598 /* Don't visit hidden ($NOS & $ORIG N) objsets. */
1599 if (dd->dd_nyname[0] == '$") {

1600 dsl_dir_rele(dd, FTAG;

1601 return (0);

1602 }

1604 t hi sobj = dd->dd_phys->dd_head_dat aset _obj ;

1605 attr = krrem all oc(sizeof (zap_attribute_t), KM SLEEP);
1607 /*

1608 * |terate over all children.

1609 *

1610 if (flags & DS_FI ND_CH LDREN) {

1611 for (zap_cursor_init(&c, dp->dp_neta_objset,
1612 dd- >dd_phys->dd_chi | d_di r _zapobj);

1613 zap_cursor_retrieve(&c, attr) == 0;

1614 (void) zap_cursor_advance(&zc)) {

1615 ASSERT3U(attr->za_i nteger_| ength, ==,
1616 sizeof (uint64_t));

1617 ASSERT3U(attr->za_num.integers, == 1);
1619 err = dmu_obj set _find_dp(dp, attr->za_first_integer,
1620 func, arg, flags);

1621 if (err 1=0)

1622 br eak;

1623 }

1624 zap_cursor_fini(&zc);

1626 if (err 1=0) {

1627 dsl _dir_rele(dd, FTAQ;

1628 kmem free(attr, sizeof (zap_attribute_t));
1629 return (err);

1630 }

1631 }

1633 I*

1634 * |terate over all snapshots.

1635 */

1636 if (flags & DS_FI ND_SNAPSHOTS) {

1637 dsl dat aset _t *ds;

1638 err = dsl _dataset _hol d_obj (dp, thisobj, FTAG &ds);

new usr/src/uts/ comon/fs/zfs/dm_objset.c 26

1640 if (err ==0) {
1641 ui nt 64_t snapobj = ds->ds_phys->ds_snapnanes_zapobj ;
1642 dsl _dataset _rel e(ds, FTAQ;

1644 for (zap_cursor_init(&c, dp->dp_neta_objset, snapobj);
1645 zap_cursor_retrieve(&c, attr) == 0;

1646 (void) zap_cursor_advance(&zc)) {

1647 ASSERT3U(attr->za_i nteger_|l ength, ==,

1648 sizeof (uint64_t));

1649 ASSERT3U(attr->za_num.integers, ==, 1);

1651 err = dsl _dataset_hol d_obj (dp,
1652 attr->za_first_integer, FTAG &ds);
1653 if (err !'=0)

1654 br eak;

1655 err = func(dp, ds, arg);

1656 dsl _dataset _rel e(ds, FTAQ;
1657 if (err 1= 0)

1658 br eak;

1659 }

1660 zap_cursor _fini (&zc);

1661 }

1662 }

1664 dsl _dir_rel e(dd, FTAG;
1665 kmem free(attr, sizeof (zap_attribute_t));

1667 if (err 1=0)
1668 return (err);

1670 I*
1671 * Apply to self.
1672 */
1673 err = dsl _dataset _hol d_obj (dp, thisobj, FTAG &ds);
1674 if (err 1= 0)
1675 return (err);
1676 err = func(dp, ds, arg);
1677 dsl _dat aset _rel e(ds, FTAQ;
1678 return (err);
1679 }
/

1681 /*

1682 * Find all objsets under name, and for each, call ’func(child_nane, arg)’

1683 * The dp_config_rw ock nust not be held when this is called, and it

1684 * will not be held when the callback is called.

1685 * Therefore this function should only be used when the pool is not changing
1686 * (e.g. in syncing context), or the callback can deal wth the possible races.
1687 */

1688 static int

1689 dmu_obj set _find_i npl (spa_t *spa, const char *nane,

1690 int func(const char *, void *), void *arg, int flags)
1691 {

1692 dsl _dir_t *dd;

1693 dsl _pool _t *dp = spa_get _dsl (spa);

1694 dsl _dat aset _t *ds;

1695 zap_cursor _t zc;

1696 zap_attribute_t *attr;

1697 char *child,;

1698 ui nt 64_t t hi sobj ;

1699 int err;

1701 dsl _pool _config_enter(dp, FTAG;

1703 err = dsl_dir_hol d(dp, nane, FTAG &dd, NULL);
1704 if (err 1=0) {

new usr/src/uts/ common/fs/zfs/dm_objset.c

1705
1706
1707

1709
1710
1711
1712
1713
1714

1716
1717

1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729

1731
1732
1733
1734
1735
1736
1737
1738
1739
1740

1742
1743
1744
1745
1746
1747
1748

1750
1751
1752
1753
1754

1756
1757
1758

1760
1761
1762
1763
1764
1765

1767
1768
1769
1770

dsl _pool _config_exit(dp, FTAG;
return (err);

}

/* Don't visit hidden ($IVDS & $ORIG N) objsets. */
if (dd->dd_nynane[0] =="'9¢’

dsl_dir_rele(dd, FTAG;

dsl _pool _config_exit(dp, FTAG;

return (0);

}

t hi sob] = dd- >dd_phys- >dd_head_dat aset _obj
attr = knem al | oc(sizeof (zap_attribute t) KM _SLEEP) ;

/*
* Iterate over all children.
*

if (flags & DS_FI ND_CH LDREN) {
for (zap_cursor_init(&c, dp->dp_neta_objset,

dd- >dd_phys->dd_chi | d_di r _zapobj);

zap_cursor_retrieve(&zc, attr) == 0;

(void) zap_cursor_advance(&zc)) {
ASSERT3U(attr->za_integer_|l ength, ==

sizeof (uint64_t));

ASSERT3U(attr->za_num.integers, == 1);

child = kmem asprintf("%/%", nane, attr->za_nane);
dsl pool _config_exit(dp, FTAG)
err = dmu_obj set _find_inpl (spa, child,
func, arg, flags);
dsl _pool _confi g_enter (dp, FTAQ;
strfree(child);
if (err I=0)
br eak;

zap_cursor_fini(&zc);

if (err 1'=0) {
dsl _dir_rel e(dd, FTAQ;
dsl _pool _config_ eX|t(dp, FTAG ;
kmem free(attr, sizeof (zap_ attribute 1))
return (err);

}

/*
* |terate over all snapshots.
*

if (flags & DS_FI ND_SNAPSHOTS) {
err = dsl _dataset _hol d_obj (dp, thisobj, FTAG &ds);

if (err == {
ui nt 64_t snapobj = ds->ds_phys->ds_snapnanes_zapobj ;
dsl _dataset _rel e(ds, FTAG;

for (zap_cursor_init(&c, dp->dp_neta_objset, snapobj);

zap_cursor_retrieve(&c, attr) == 0;
(void) zap_cursor_advance(&zc)) {
ASSERT3U(attr->za_i nteger_|l ength, ==,
sizeof (uint64_t));
ASSERT3U(attr->za_num.integers, ==, 1);

child = knem asprintf("%@s",
name, attr->za_nane);

dsl _pool _config_exit(dp, FTAG;

err = func(child, arg);

new usr/src/uts/ comon/fs/zfs/dm_objset.c

1771 dsl _pool _config_enter(dp,
1772 strfree(child);

1773 if (err 1= 0)

1774 br eak;

1775 }

1776 zap_cursor _fini (&zc);

1777 }

1778 }

1780 dsl _dir_rel e(dd, FTAQ;
1781 kmem free(attr, sizeof (zap_attribute_t));
1782 dsl _pool _config_exit(dp, FTAG;

1784 if (err 1= 0)
1785 return (err);

1787 /* Apply to self. */
1788 return (func(nanme, arg));
1789 }

1791 /*
1792 * See commrent above dmu_obj set _find_inpl ().
1793 */

1794 int

1795 dnmu_obj set _find(char *nanme, int func(const char *, void *),
1796 int flags)

1797 {

1798 spa_t *spa;

1799 int error;

1801 error = spa_open(nane, &spa, FTAG;

1802 if (error 1= 0)

1803 return (error);

1804 error = dnu_obj set _find_inpl (spa, nane, func, arg,
1805 spa_cl ose(spa, FTAQ;

1807 return (error);

1808 }

1810 typedef struct dmu_obj set _fi nd _ctx {

1811 askq t *dc_tq;

1812 spa_t *dc_spa;

1813 char *dc_nane;

1814 int (*dc_func) (const char *, void *);
1815 voi d *dc_arg;

1816 int dc_fl ags;

1817 kmut ex_t *dc_error_| ock;

1818 int *dc_error;
1819 } dnu_objset _find_ctx_t;

1821 static void
1822 dmu_obj set _find_parallel _inpl(void *arg)

1823 {

1824 dmu_obj set _find_ctx_t *dcp = arg;

1825 dsl _dir_t *dd;

1826 dsl “pool _t *dp = spa_get _dsl (dcp->dc_spa);
1827 dsl _dat aset _t *ds;

1828 zap_cursor _t zc;

1829 zap_attribute_t *attr;

1830 char *child;

1831 drmu_obj set _find_ctx_t *child_dcp;

1832 uint64_t thisobj;

1833 int err;

1835 /* don’t process if there already was an error */
1836 if (*dcp->dc_error)

FTAG) ;

void *arg,

flags);

new usr/src/uts/ common/fs/zfs/dm_objset.c 29

1837
1839

1841
1842
1843
1844
1845

1847
1848
1849
1850
1851
1852

1854
1855

1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867

1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880

1882
1883
1884

1886

1888 fail:

1889
1890
1891
1892
1893
1894
1895

1897 out:
1898
1899
1900 }

1902 int

goto out;
dsl _pool _config_enter(dp, FTAG;
err = dsl _dir_hol d(dp, dcp->dc_nanme, FTAG &dd, NULL);

if (err 1=0) {
dsl _pool _config_exit(dp, FTAG;

goto fail;
}
/* Don’t visit hidden ($N[B & $ORIG N) objsets. */
if (dd->dd_nyname[0] == "$) {
dsl _dir_rele(dd, FTAG;
dsl “pool _config_exit(dp, FTAG ;
goto out;
}
t hi sobj = dd->dd_phys->dd_head_dat aset _obj ;

attr = knmem al | oc(sizeof (zap_attribute_t) KM_SLEEP) ;
/*

* Iterate over all children.

*/

if (dcp->dc_flags & DS_FIND CHI LDREN) {
for (zap_cursor_init(&c, dp->dp_neta_objset,

dd- >dd_phys->dd_chi | d_di r _zapobj) ;

zap_cursor_retrieve(&c, attr) == 0;

(void) zap_cursor_advance(é&zc)) {
ASSERT3U(attr->za_integer_|l ength, ==,

sizeof (uint64_t));

ASSERT3U(attr->za_num.integers, ==, 1);

child = knem asprintf("%/ %",
attr->za_nane);
dsl _pool _config_ eX|t(dp, FTAG) ;
chiTd_dcp = kmem_ al | oc(si zeof (*chil d_dcp),
*child_dcp = *dcp
chi | d_dcp- >dc_name = child;
t askq_di spat ch(dcp->dc_tq,
drmu_obj set _find_parallel _inpl,
dsl _pool _config_enter(dp, FTAG;

dcp->dc_nane,

KM SLEEP) ;

child_dcp, TQ SLEEP);

zap_cursor_fini (&zc);

}

dsl _dir_rele(dd, FTAG;
kmem free(attr, sizeof (zap_attribute_t));
dsl _pool _config_exit(dp, FTAGQ;

err = dcp->dc_func(dcp->dc_nane, dcp->dc_arg);

if (err) {
mut ex_ent er (dcp->dc_error_| ock);
/* only keep first error */
if (*dcp->dc_error ==
*dcp->dc_error = err;
nmut ex_exi t (dcp->dc_error_| ock);

strfree(dcp->dc_nane);
kmem free(dcp, sizeof(*dcp));

new usr/src/uts/ comon/fs/zfs/dm_objset.c

1903
1904
1905
1906
1907
1908
1909
1910
1911

1913
1914
1915

1917
1918
1919
1920
1921
1922
1923

1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936

1938
1939
1940

1942

1944
1945
1946

1948
1949
1950
1951
1952
1953

1955
1956
1957
1958
1959
1960

1962
1963
1964
1965
1966
1967
1968

30

dmu_obj set _find_paral |l el (char *nanme, int func(const char *, void *), void *arg,

int flags)
{
spa_t *spa;
int error;
taskq_t *tq = NULL;
int ntasks;
dmu_obj set _find_ctx_t *dcp;
kmut ex_t err_| ock;
error = spa_open(nane, &spa, FTAG;
if (error 1= 0)
return (error);

ntasks = vdev_count _| eaves(spa) * 4;

tq = taskqg_create("dmu_objset_find", ntasks, mnclsyspri, ntasks,
I NT_MAX, 0)
if ('tqg) {

spa_cl ose(spa, FTAQ;
return (dmu_objset_find(nanme, func, arg, flags));

}

mutex_init(&err_lock, NULL, MJTEX_DEFAULT, NULL);
dcp = kmem al | oc(si zeof(dcp) KM_SLEEP) ;
dcp->dc_tq = tq;

dcp->dc_spa = spa;

dcp- >dc_nane strdup(nane) ;

dcp->dc_func func;

dcp->dc_arg = arg;

dcp->dc_flags = flags;

dcp->dc_error_l ock = &err_| ock;
dcp->dc_error = &error;

/* dcp and dc_name will be freed by task */

t askq_di spatch(tq, drmu_objset_find_parallel _inpl, dcp, TQ SLEEP);

taskg_wait(tq);
taskq_destroy(tq);
mut ex_destroy(&err_l ock);

spa_cl ose(spa, FTAQ;

#endif /* | codereview */
return (error);

}

voi d

dmu_obj set _set _user (obj set_t *os, void *user_ptr)

{
ASSERT(MUTEX_HELD(&0s- >0s_user _ptr_| ock));
0s->0s_user_ptr = user_ptr;

}

void *

dmu_obj set _get _user (obj set_t *os)

{
ASSERT(MUTEX_HELD(&0s- >0s_user _ptr_| ock));
return (0s->o0s_user_ptr);

}

/*

* Determ ne nane of filesystem given nane of snapshot.
* buf nust be at |east MAXNAMVELEN byt es

*/

int

dmu_f sname(const char *snapnane, char *buf)

{

new usr/src/uts/ common/fs/zfs/dm_objset.c 31

1969 char *atp = strchr(snapnanme, ' @);

1970 if (atp == NULL

1971 return (SET_ERROR(EI NVAL));

1972 if (atp - snapnanme >= MAXNAMELEN)

1973 return (SET_ERROR(ENAMETOOLONG)) ;

1974 (void) strlcpy(buf, snapnane, atp - snapnane + 1);
1975 return (0);

1976 }

new usr/src/uts/ comon/fs/zfs/dsl_pool.c 1

R R R R

30992 Thu COct 16 19: 15: 50 2014
new usr/src/uts/comon/fs/zfs/dsl_pool.c

zpool

i nport speedup

R R R R

__unchanged_portion_onitted_

954 [*

955 * DSL Pool Configuration Lock

956 *

957 * The dp_config_rw ock protects against changes to DSL state (e.g. dataset
958 * creation / destruction / renane / property setting). It nust be held for
959 * read to hold a dataset or dsl_dir. |.e. you nust cal

960 * dsl _pool config_ enter() or dsl_pool hold() before calling

961 * dsl_{dataset,dir}_hold{_obj}. 1In npbst circunmstances, the dp_config_rw ock
962 * nust be held continuousTy until all datasets and dsl_dirs are rel eased
963 *

964 * The only exception to this rule is that if a "long hold" is placed on

965 * a dataset, then the dp_config_rw ock nmay be dropped while the dataset

966 * is still held. The long hold will prevent the dataset from being

967 * destroyed -- the destroy will fail with EBUSY. A long hold can be

968 * obtained by calling dsl_dataset_|long_hold(), or by "owning" a dataset

969 * (by calling dsl_{dataset, objset} {try}own{ Obj})

970 *

971 * Legitimate |ong-hol ders (including owners) should be |ong-running, cancelable
972 * tasks that should cause "zfs destroy” to fail. This includes DWMJ

973 * consuners (i.e. a ZPL filesystem being mounted or ZVOL bei ng open)

974 * "zfs send", and "zfs diff" There are several other |ong-holders whose
975 * uses are suboptinal (e.g. "zfs pronote", and zil_suspend())

976 *

977 * The usual formula for |ong-holding would be

978 * dsl _pool _hol d(

979 * dsl _dataset _hol d()

980 * ... perform checks ..

981 * dsl _dataset_l ong_hol d()

982 * dsl _pool _rele()

983 * perform | ong-running task ...

984 * dsl _dataset_long_rele()

985 * dsl_dataset_rele()

986 *

987 * Note that when the long hold is released, the dataset is still held but
988 * the pool is not held. The dataset may change arbitrarily during this time
989 * (e.g. it could be destroyed). Therefore you shouldn’t do anything to the
990 * dataset except release it.

991 *

992 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
993 * or nodifying operations

994 *

995 * Modifying operations should generally use dsl_sync_task(). The synctask
996 * infrastructure enforces proper |ocking strategy with respect to the

997 * dp_config_rw ock. See the comment above dsl_sync_task() for details.

998 *

999 * Read-only operations will manually hold the pool, then the dataset, obtain
1000 * information fromthe dataset, then release the pool and dataset.

1001 * dnu_objset_{hold,rele}() are convenience routines that also do the poo
1002 * hold/rele.

1003 */

1005 int

1006 dsl _pool _hol d_I| ock(const char *nanme, void *tag, dsl_pool _t **dp, int |ock)
1006 dsl _pool _hol d(const char *nane, void *tag, dsl_pool _t **dp)

1007 {

1008 spa_t *spa;

1009 int error;

1011 error = spa_open_| ock(nane, &spa, tag, |ock)

new usr/src/uts/comon/fs/zfs/dsl_pool.c

1011 error = spa_ open(nane, &spa, tag)

1012 if (error == 0)

1013 *dp = spa_get _dsl (spa)

1014 dsl _pool _config_enter(*dp, tag)

1015

1016 return (error)

1017 }

1019 int

1020 dsl _pool _hol d(const char *nane, void *tag, dsl_pool _t **dp)

1021 {

1022 return (dsl_pool _hol d_I| ock(nanme, tag, dp, 1))

1023 }

1025 #endif /* ! codereview */

1026 void

1027 dsl _pool _rel e(dsl _pool _t *dp, void *tag)

1028 {

1029 dsl _pool _config_exit(dp, tag)

1030 spa_cl ose(dp->dp_spa, tag);

1031 }

1033 voi d

1034 dsl _pool _config_enter(dsl _pool _t *dp, void *tag)

1035 {

1036 /*

1037 * W use a "reentrant" reader-witer |ock, but not reentrantly
1038 *

1039 * The rrw ock can (with the track_all flag) track all reading threads,
1040 * which is very useful for debugging which code path failed to rel ease
1041 * the lock, and for verifying that the *current* thread does hold
1042 * the | ock.

1043 *

1044 * (Unlike a rw ock, which knows that N threads hold it for

1045 * read, but not *which* threads, so rw _hel d(RW READER) returns TRUE
1046 * if any thread holds it for read, even if this thread doesn’t)
1047 *

1048 ASSERT(! rrw_hel d(&p->dp_config_rw ock, RW READER));

1049 rrw_enter (&dp->dp_confi g_rw ock, RW READER, tag)

1050 }

1052 voi d

1053 dsl _pool _config_exit(dsl _pool _t *dp, void *tag)

1054 {

1055 rrw_exit(&dIp->dp_config_rw ock, tag)

1056 }

1058 bool ean_t

1059 dsl _pool _config_hel d(dsl _pool _t *dp)

1060 {

1061 return (RRW LOCK_HELD(&dp- >dp_confi g_rw ock))

1062 }

new usr/src/uts/comon/fs/zfs/spa.c

R R R R

176914 Thu COct 16 19: 15:51 2014
new usr/src/uts/comon/fs/zfs/spa.c
zpool inport speedup

R R R R

__unchanged_portion_onitted_

1708 /*

1709 * Check for missing |log devices
1710 */

1711 static bool ean_t

1712 spa_check_l ogs(spa_t *spa)

1713 {
1714 bool ean_t rv = B_FALSE;
1716 switch (spa->spa_log_state) {
1717 case SPA_LOG M SSI NG
1718 7* need to recheck in case sl og has been restored */
1719 case SPA LOG UNKNOMN:
1720 rv = (dmu_obj set _find_parall el (spa->spa_naneg,
1721 zi | _check_l og_chain, NULL, DS _FIND CH LDREN) != 0);
1720 rv = (dmu_obj set _fi nd(spa >spa_nane, zil _check_| og_chain,
1721 NULL, DS_FIND CH LDREN) !=0);
1722 if (rv)
1723 spa_set_l og_state(spa, SPA_LOG M SSI NG ;
1724 br eak;
1725 1
1726 return (rv);
1727 }
__unchanged_portion_omtted_
2076 /*

2077 * Load an existing storage pool, using the pool’'s builtin spa_config as a

2078 * source of configuration i nf or mat i on.

2079 */

2080 static int

2081 spa_l oad_i npl (spa_t *spa, uint64_t pool_guid, nvlist_t *config

2082 spa_l oad_state_t state, spa_inport_type_t type, bool ean_t nosconfig,
2083 char **ereport)

2084 {

2085 int error = 0;

2086 nvlist_t *nvroot = NULL;

2087 nvlist_t *|abel;

2088 vdev_t *rvd;

2089 uber bl ock_t *ub = &spa->spa_uber bl ock;

2090 uint64_t children, config_cache_txg = spa->spa_config_txg;

2091 int orig_node = spa->spa_node;

2092 int parse;

2093 uint64_t obj;

2094 bool ean_t m ssing_feat_wite = B _FALSE;

2096 /*

2097 * If this is an untrusted config, access the pool in read-only node.
2098 */Thi s prevents things like resilvering recently renpved devices.
2099 *

2100 if (!mosconfig)

2101 spa- >spa_node = FREAD;

2103 ASSERT(MUTEX_HELD(&spa_nanespace_| ock));

2105 spa->spa_|l oad_state = state;

2107 if (nvlist_lookup_nvlist(config, ZPOOL_CONFI G VDEV_TREE, &nvroot))
2108 return (SET_ERROR(EINVAL));

2110 parse = (type == SPA_| MPORT_EXI STI NG ?

new usr/src/uts/comon/fs/zfs/spa.c

2111

2113
2114
2115
2116
2117

2119
2120
2121
2122
2123
2124
2125
2126

2128
2129

2131

2133
2134
2135

2137
2138
2139
2140
2141
2142
2143
2144

2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162

2164
2165

2167
2168
2169

2171
2172
2173
2174

2176

VDEV_ALLOC LOAD : VDEV_ALLOC_SPLIT)

/*
* Create "The Godfather"” zio to hold all async IGCs
*/

spa- >spa_async_zi o_root = zio_root(spa, NULL, NULL,
ZI O FLAG CANFATL | ZI O FLAG SPECULATI VE | ZI O_FLAG GODFATHER) ;

/*

* Parse the configuration into a vdev tree. W explicitly set the
* value that will be returned by spa_version() since parsing the

* configuration requires knowi ng the version nunber.

*/

spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER);
error = spa_config_parse(spa, &vd, nvroot, NULL, 0, parse);
spa_config_exit(spa, SCL_ALL, FTAG;

if (error 1= 0)
return (error);

ASSERT(spa- >spa_r oot _vdev == rvd);

if (type != SPA | NPORT_ASSEMBLE) {
ASSERT(spa_gui d(spa) == pool _guid);

/*
* Try to open all vdevs, |oading each |abel in the process.
*/

spa_config_enter(spa, SCL_ALL, FTAG RWMWRI TER);
error = vdev_open(rvd);
spa_config_exit(spa, scL _ALL, FTAG;
if (error 1=0
return (error);

We need to validate the vdev |abels against the configuration that
we have in hand, which is dependent on the setting of nobsconfig. If
nosconfig is true then we’'re validating the vdev | abels based on
that config. Oherwi se, we're validating against the cached config
(zpool . cache) that was read when we | oaded the zfs nodule, and then
later we will recursively call spa_load() and validate agai nst

the vdev config.

If we're assenbling a new pool that’s been split off froman
exi sting pool, the |abels haven't yet been updated so we skip
* validation for now.
*

/
if (type !'= SPA | MPORT_ASSEMBLE) {
spa_config_enter(spa, SCL_ALL, FTAG RWMWR TER);
error = vdev_validate(rvd, npsconfig);
spa_config_exit(spa, SCL_ALL, FTAG;

* % ok k% ok % ok ok ok ¥

if (error 1= 0)
return (error);

if (rvd->vdev_state <= VDEV_STATE CANT_OPEN)
return (SET_ERROR(ENXIO));
}

/*
* Find the best uberbl ock.
*/

vdev_uber bl ock_| oad(rvd, ub, & abel);
/*

new usr/src/uts/comon/fs/zfs/spa.c

2177
2178
2179
2180
2181
2182

2184
2185
2186
2187
2188
2189
2190

2192
2193

2195
2196
2197
2198
2199
2200
2201
2202
2203
2204

2206
2207
2208
2209
2210
2211
2212

2214

2216
2217
2218
2219
2220
2221
2222

2224
2225

2227
2228
2229
2230
2231
2232
2233
2234

2236
2237
2238
2239
2240
2241
2242

* |f we weren't able to find a single valid uberblock, return failure.
*
/
if (ub->ub_txg == 0) {
nvlist_free(label);
return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, ENXI O));
}

*

* |f the pool has an unsupported version we can’'t open it.
*/

if (!SPA VERSION | S SUPPORTED(ub->ub_version)) {

nvlist_free(label);

return (spa_vdev_err(rvd, VDEV_AUX VERSI ON_NEWER, ENOTSUP));
}

if (ub->ub_version >= SPA VERSI ON_FEATURES) {
nvlist_t *features;

/*
* If we weren't able to find what's necessary for reading the
* MOS in the label, return failure.
*/
if (label == NULL || nvlist_lookup_nvlist(label,
ZPOOL_CONFI G_FEATURES FOR READ, &features) != 0) {
nvlist_free(label);
return (spa_vdev_er r(rvd, VDEV_AUX_CORRUPT_DATA,
ENXIO));
}
/*
* Update our in-core representation with the definitive val ues
* fromthe | abel.
*
nvlist_free(spa->spa_| abel _features);
VERI FY(nvli st _dup(features, &spa->spa_|abel _features, 0) == 0);
}

nvlist_free(label);

/
Look through entries in the label nvlist’s features_for_read. If
there is a feature listed there which we don't understand then we
cannot open a pool .

* ok ok ok ¥
-~

if (ub->ub_version >= SPA VERSI ON_FEATURES) {
nvlist_t *unsup_feat;

VERI FY(nvlist_alloc(&nsup_feat, NV_UNI QUE_NAME, KM SLEEP) ==

for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_| abel _features,

NULL); nvp != NULL;
nvp = nvlist_next_nvpair(spa->spa_|l abel _features, nvp)) {
if (!zfeature_is_supported(nvpair_name(nvp)))
VERI FY(nvl i st _add_stri ng(unsup_ feat,
nvpai r_name(nvp), "") == 0);

}

if (Invlist_enpty(unsup_feat)) {
VERI FY(nvlist_add_nvli st (spa->spa_| oad_i nfo,
ZPOOL_CONFI G_UNSUP_FEAT, unsup_feat) == 0);
nvlist_free(unsup_feat);
return (spa_vdev err(rvd VDEV_AUX_UNSUP_FEAT,
ENOTSUP)) ;

new usr/src/uts/comon/fs/zfs/spa.c

2244
2245

2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257

2259
2260
2261
2262
2263
2264
2265

2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277

2279
2280
2281
2282

2284
2285

2287
2288
2289

2291
2292
2293
2294

2296
2297
2298
2299

2301
2302
2303
2304

2306
2307

nvlist_free(unsup_feat);

}

/*

* |f the vdev guid sumdoesn't match the uberbl ock, we have an

* inconplete configuration. W first check to see if the pool

* is aware of the conplete config (i.e ZPOOL_CONFI G VDEV_CHI LDREN) .
* |f it is, defer the vdev_gui d_sumcheck tiTl later so we

* can handi e missi ng vdevs.

*/

if (nvlist_lookup_uint64(config, ZPOOL_CONFI G VDEV_CHI LDREN
&children) !'= 0 & nosconfig & type != SPA | MPORT_ASSEMBLE &&
rvd- >vdev_gui d_sum ! = ub->ub_gui d_sum
return (spa_vdev_err(rvd, VDEV_AUX BAD GUI D SUM ENXI Q));

if (type != SPA | MPORT_ASSEMBLE && spa->spa_config_splitting) {
spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER);
spa_try_repair(spa, config);
spa_config_exit(spa, SCL_ALL, FTAG;
nvlist_free(spa->spa_config_splitting);
spa->spa_config_splitting = NULL;

}

/*
* Initialize internal SPA structures.
*/

spa->spa_state = POOL_STATE_ACTI VE;
spa- >spa_ubsync = spa- >spa_uber bl ock;
spa->spa_verify_mn_txg = spa->spa_extrene_rew nd ?
TXGTNITIAL - 1: spa_last_synced_txg(spa) - TXG DEFER SIZE - 1;
spa->spa_first_txg = spa->spa_l ast_ubsync_txg ?
spa- >spa_| ast ubsync _txg : spa_last_synced_txg(spa) + 1;
spa- >spa_cl ai m_max_txg = spa- >spa first_txg;
spa- >spa_prev_sof t ware_versi on = ub->ub_software_version;

error = dsl_pool _init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
if (error)

return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIOQ);
spa- >spa_met a_obj set = spa->spa_dsl| _pool - >dp_net a_obj set ;

if (spa_dir_prop(spa, DMJ_POOL_CONFI G &spa->spa_config_object) != 0)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIOQ);

if (spa_version(spa) >= SPA_VERSI ON FEATURE$ {
bool ean_t m ssing_feat_read = B_FALSE;
nvlist_t *unsup_feat, ¥enabl ed feat;

if (spa_dir_prop(spa, DMJ POOL_FEATURES FOR READ,
&spa- >spa_feat_for_read_obj) != 0)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO);

}
if (spa_dir_prop(spa, DMJ_POOL_FEATURES FOR WRI TE,
&spa- >spa_feat_for_wite_obj) != 0)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO);
}
if (spa_dir_prop(spa, DMJ_POOL_FEATURE_DESCRI PTI ONS,
&spa- >spa_f eat _desc_obj) != 0)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIQ);
}

enabl ed feat = fnvlist_alloc();
unsup_feat = fnvI ist_alloc();

new usr/src/uts/comon/fs/zfs/spa.c

2309
2310
2311

2313
2314
2315
2316
2317
2318

2320
2321

2323
2324
2325
2326

2328
2329

2331
2332
2333
2334

2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359

2361
2362
2363
2364
2365
2366

2368
2369
2370
2371
2372
2373
2374

if (!spa_features_check(spa, B_FALSE,
unsup_feat, enabled_feat))
m ssing_feat_read = B_TRUE;

if (spa_witeable(spa) || state == SPA_LOAD TRYI MPORT) {
if (!spa_features_check(spa, B_TRUE,
unsup_feat, enabled_feat)) {
m ssi ng_f eat_wite = B_TRUE;

}

fnvlist_add_nvlist(spa->spa_|l oad_info,
ZPOOL_CONFI G_ENABLED FEAT, enabl ed _feat);

if (!nvlist_enpty(unsup_feat)) {
fnvlist_add_nvlist(spa->spa_l oad_info,
ZPOOL_CONFI G_UNSUP_FEAT, unsup_| feat)
}

fnvlist_free(enabl ed_feat);
fnvlist_free(unsup_feat);

if (!'mssing_feat_read)
fnviist_add_bool ean(spa->spa_l oad_i nfo,
ZPOOL_CONFI G_CAN_RDONLY) ;

PN —

T S N
-

If the state is SPA_LOAD TRYI MPORT, our objective is

twof ol d: to determ ne whether the pool is available for
import in read-wite node and (if It is not) whether the
pool is available for inport in read-only node. If the pool
I's available for import in read-wite node, it is displayed
as available in userland; if it is not available for iInport
in read-only node, it is displayed as unavailable in
userland. If the pool is available for inport in read-only
node but not read-wite node, it is displayed as unavail abl e
in userland with a special note that the pool is actually
avail abl e for open in read-only node.

As a result, if the state is SPA LOAD TRYI MPORT and we are
mssing a feature for wite, we nust first determ ne whether
the pool can be opened read-only before returning to
userland in order to know whether to display the

abovenenti oned note.

(missing_feat_read || (nmissing_feat_wite &&
spa_writeabl e(spa))) {
return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
) ENOTSUP)) ;

*

* Load refcounts for ZFS features fromdisk into an in-nenory
* cache during SPA initialization.
*/
for (spa_feature_t i = 0; i < SPA FEATURES; i++) {
uint64_t refcount;

error = feature_get_refcount _fromdi sk(spa,
&spa_feature_table[i], & efcount);
if (error == 0)
spa- >spa_f eat _refcount_cache[i] = refcount;
} else if (error == ENOTSUP)
spa- >spa_f eat _refcount _cache[i]
SPA_FEATURE_DI SABLED;

new usr/src/uts/comron/fs/zfs/spa.c

2375
2376
2377
2378
2379
2380

2382
2383
2384
2385
2386

2388
2389
2390
2391
2392

2394
2395
2396

2398
2399

2401
2402
2403
2404

2406
2407

2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433

2435
2436
2437
2438

2440

#i f def

#el se

#endi f

}
if (spa_

}

} else {
return (spa_vdev_err(rvd,
VDEV_AUX_CORRUPT_DATA, EIO);

feature_is_active(spa, SPA FEATURE ENABLED TXQ) {
if (spa_dir_prop(spa, DMJ POOL_FEATURE ENABLED TXG,
&spa- >spa_f eat _enabl ed_txg_obj) != 0)
return (spa_vdev_err(rvd, VDEV_AUX _CORRUPT_DATA, EIQ);

spa->spa_is_initializing = B_TRUE;

error =

dsl _pool _open(spa->spa_dsl _pool);

spa->spa_is_initializing = B_FALSE
if (error 1= 0)

return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIQ);

if (!mosconfig)

_KERNEL

uint64_t hostid;
nvlist_t *policy = NULL, *nvconfig;

if (load_nvlist(spa, spa->spa_config_object, &vconfig) != 0)
return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);

if (!spa_is_root(spa) && nvlist_|ookup_uint64(nvconfig,
ZPOOL_CONFI G_HOSTI D, &hostid) == 0)
char *host nane;
unsi gned | ong nyhost id=

VERI FY(nvlist_I ookup_string(nvconfig,
ZPOOL_CONFI G_HOSTNAME, &hostnane) == 0);

nyhostid = zone_get_hosti d(NULL);

/* _KERNEL */

/*

* W're enulating the system s hostid in userland, so
* we can’'t use zone_get _hostid().

*

(void) ddi_strtoul (hw_serial, NULL, 10, &nyhostid);

/* _KERNEL */

if (hostid !'=0 & nyhostid =0 &&
hostid != nmyhostid) {
nvlist_free(nvconfig);
cm_err (CE_WARN, "pool '9%’ could not be "
"loaded as it was | ast accessed by "
"anot her system (host: % hostid: Ox%Xx).
"See: http://illunos.org/ msg/ ZFS- 8000- EY",
spa_nane(spa), hostnane,
(unsi gned | ong) hostid);
return (SET_ERROR(EBADF));
}

}
i1f (nvlist_lookup_nvlist(spa->spa_ confi g,
ZPOOL_REW ND_POLI CY, &policy) == 0)
VERI FY(nvl i st _ add _nvlist(nvconfig
ZPOOL_REW ND_POLI CY, policy) == 0);

spa_config_set(spa, nvconfig);
spa_unl oad(spa) ;

spa_deacti vat e(spa);
spa_activate(spa, orig_node);

return (spa_l oad(spa, state, SPA | MPORT_EXI STING B _TRUE));

new usr/src/uts/comon/fs/zfs/spa.c

2441

2443
2444
2445
2446
2447

2449
2450
2451
2452
2453
2454
2455
2456

2458
2459
2460
2461

2463
2464
2465
2466
2467
2468
2469

2471
2472
2473
2474

2476
2477
2478
2479
2480
2481
2482

2484
2485
2486
2487
2488

2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500

2502
2503
2504
2505
2506

}

if (spa_dir_prop(spa, DMJ_POOL_SYNC BPOBJ, &obj) !'= 0)
return (spa_vdev_err(rvd, VDEV_ AUX CORRUPT_DATA, EI

09);
error = bpobj open(&spa->spa_def erred_bpobj, spa->spa_neta_objset, obj);
0)

if (error I =
return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);

*

* Load the bit that tells us to use the new accounting function
* (raid-z deflation). |If we have an older pool, this will not
* be present.

*/

error = spa_dir_prop(spa, DMJ POOL_DEFLATE, &spa->spa_deflate);
if (error =0 & error != ENCENT)
return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);

error = spa_dir_prop(spa, DMJ_POOL_CREATI ON_VERSI ON,
&spa- >spa_creation_version);
if (error =0 &% error != ENCENT)
return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);

/*

* Load the persistent error log. |f we have an ol der pool, this wll
* not be present.

*/

error = spa_dir_prop(spa, DMJ POOL_ERRLOG LAST, &spa->spa_errlog_last);
if (error =0 &% error != ENCENT)
return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);

error = spa_dir_prop(spa, DMJ POOL_ERRLOG SCRUB,
&spa- >spa_errl og_scrub);
if (error 1= 0 & error != ENCENT)
return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);

*

* Load the history object. |f we have an ol der pool, this
* will not be present.

*/

error = spa_dir_prop(spa, DMJ POOL_HI STORY, &spa->spa_history);
if (error =0 &% error != ENCENT)
return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);

/*

* |f we're assenbling the pool fromthe split-off vdevs of

* an existing pool, we don’t want to attach the spares & cache
* devi ces.

*/

/*

* Load any hot spares for this pool.
*

/

error = spa_dir_prop(spa, DMJ POOL_SPARES, &spa->spa_spares.sav_object);
if (error '= 0 & error != ENCENT)
return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);
if (error == 0 & type != SPA_| MPORT_ASSEMBLE)
ASSERT(spa_versi on(spa) >= SPA_VERSI ON_SPARES) ;
if (load_nvlist(spa, spa->spa_spares.sav_object,
&spa- >spa_spares.sav_config) != 0
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO);

spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER);
spa_| oad_spar es(spa);
spa_ conflg eX|t(spa SCL_ALL, FTAQ;
} else if (error == 0) {
spa- >spa_spares. sav_sync = B_TRUE;

new usr/src/uts/comon/fs/zfs/spa.c 8
2507 }

2509 /*

2510 * Load any |l evel 2 ARC devices for this pool.

2511 */

2512 error = spa_dir_prop(spa, DMJ_POOL_L2CACHE,

2513 &spa->spa_| 2cache. sav_obj ect);

2514 if (error =0 &% error != ENCENT)

2515 return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);

2516 if (error == 0 & type != SPA | MPORT_ASSEMBLE) {

2517 ASSERT(spa_ver si on(spa) >= SPA VERSI ON_L2CACHE) ;

2518 if (load_nvlist(spa, spa->spa_|2cache.sav_object,

2519 &spa- >spa_| 2cache. sav_config) !'= 0

2520 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO);
2522 spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER);

2523 spa_| oad_| 2cache(spa);

2524 spa_config_exit(spa, SCL_ALL, FTAG;

2525 } else if (error == {

2526 spa- >spa_|l 2cache. sav_sync = B_TRUE;

2527 }

2529 spa- >spa_del egati on = zpool _prop_defaul t_numeri c(ZPOOL_PROP_DELEGATI ON) ;
2531 error = spa_dir_prop(spa, DMJ POOL_PROPS, &spa->spa_pool _props_object);
2532 if (error & error != ENCENT)

2533 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIQ);

2535 if (error == 0) {

2536 ui nt64_t autorepl ace;

2538 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);

2539 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &aut orepl ace)

2540 spa_prop_find(spa, ZPOOL_PROP_DELEGATI ON, &spa- >spa_del egation);
2541 spa_prop_find(spa, ZPOOL_PROP_FAI LUREMODE, &spa->spa_fail node);
2542 spa_prop_find(spa, ZPOOL_PROP_AUTCEXPAND, &spa->spa_aut oexpand)
2543 spa_prop_find(spa, ZPOO._PROP_DEDUPDI TTO,

2544 &spa- >spa_dedup_ditto);

2546 spa- >spa_aut orepl ace = (autoreplace != 0);

2547 }

2549 /*

2550 * |f the 'autoreplace’ property is set, then post a resource notifying
2551 * the ZFS DE that it should not issue any faults for unopenable

2552 * devices. W also iterate over the vdevs, and post a sysevent for any
2553 * unopenabl e vdevs so that the normal autoreplace handl er can take
2554 * over.

2555 */

2556 if (spa->spa_autoreplace &k state != SPA LOAD TRYI MPORT) {

2557 spa_check_r enpved(spa- >spa_r oot _vdev);

2558 /*

2559 * For the inport case, this is done in spa_inport(), because
2560 * at this point we're using the spare definitions from

2561 * the MOS config, not necessarily fromthe userland config.
2562 */

2563 if (state !'= SPA LOAD | MPORT) {

2564 spa_aux_check_r enoved(&pa- >spa_spar es) ;

2565 spa_aux_check_r enoved(&pa- >spa_| ZCache)

2566 }

2567 1

2569 /*

2570 * Load the vdev state for all toplevel vdevs.

2571 */

2572 vdev_| oad(rvd);

new usr/src/uts/comon/fs/zfs/spa.c

2574
2575
2576
2577
2578
2579

2581
2582
2583
2584
2585
2586

2588

2590
2591
2592
2593
2594
2595
2596
2597
2598

2600
2601

2603
2604
2605
2606
2607
2608

2610
2611
2612
2613
2614
2615
2616

2618
2619
2620
2621
2622

2624
2625

2627
2628
2629
2630
2631
2632
2633

2635
2636
2637
2638

/*
* Propagate the |leaf DTLs we just |oaded all the way up the tree.
*/

spa_config_enter(spa, SCL_ALL, FTAG RWMWRI TER);
vdev_dt| reassess(rvd, 0, 0, B_FALSE);
spa_config_exit(spa, SCL_ ALL FTAG ;

*
* Load the DDTs (dedup tables).
*
/
error = ddt_| oad(spa);
if (error 1= 0)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIOQ);

spa_updat e_dspace(spa);

/*

* Validate the config, using the MOS config to fill in any

* information which mght be missing. If we fail to validate
* the config then declare the pool unfit for use. If we're

*

assenbling a pool froma split, the log is not transferred
* over.
*/
if (type !'= SPA_| MPORT. ASSENBLE) {
nvlist_t *nvconfig;

if (load_nvlist(spa, spa->spa_config_object, &vconfig) != 0)

return (spa_vdev_err(rvd, VDEV_AUX CORRUPT_DATA, EIO);

if (!spa_config_valid(spa, nvconfig)) {
nvlist_free(nvconfig);
return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUI D_SUM
ENXIO));

}
nvlist_free(nvconfig);

/
Now t hat we’ve validated the config, check the state of the
root vdev. |If it can’t be opened, it indicates one or

nore toplevel vdevs are faulted.

* ok % k%

if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
return (SET_ERROR(ENXI O));

if (spa_check_|logs(spa)) {
*ereport = FM EREPORT_ZFS LOG REPLAY;
return (spa vdev_err(rvd, VDEV_AUX BAD LOG ENXIO));

if (mssing_feat_wite) {
ASSERT(state == SPA_LOAD_TRYI MPORT) ;

/*
* At this point, we know that we can open the pool in
* read-only node but not read-wite nbde. W& now have enough
* information and can return to userland.
*/
return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
}

/*
* W' ve successfully opened the pool, verify that we’re ready
* to start pushing transactions.

*/

new usr/src/uts/comon/fs/zfs/spa.c 10
2639 if (state !'= SPA_LOAD TRYI MPORT) {

2640 if (error = spa_l oad_verify(spa))

2641 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2642 error));

2643 }

2645 if (spa_witeable(spa) & (state == SPA LOAD_RECOVER | |

2646 spa- >spa_|l oad_max_txg == U NT64_MAX)) {

2647 dnu_tx_t *tx;

2648 int need_update = B_FALSE;

2650 ASSERT(state ! = SPA LOAD TRYI MPORT) ;

2652 /*

2653 * Claimlog blocks that haven’'t been committed yet.

2654 * This must all happen in a single txg

2655 * Note: spa_claimmax_txg is updated by spa_clai mnoti fy()
2656 * invoked fromzil _claimlog_block()'s i/o done callback
2657 * Price of rollback is that we abandon the |og.

2658 */

2659 spa- >spa_cl ai m ng = B_TRUE;

2661 tx = dnu_t x_create_assi gned(spa_get _dsl (spa),

2662 spa_first_txg(spa));

2663 (voi d) dnu_obj set f| nd_paral | el (spa_nane(spa),

2663 (voi d) dnmu_obj set_fi nd(spa_nane(spa),

2664 zil _claim tx, DS_FIND_CH LDREN);

2665 dmu_t x_commi t (tx);

2667 spa- >spa_cl ai m ng = B_FALSE;

2669 spa_set _| og_stat e(spa SPA_LOG_GOOD) ;

2670 spa- >spa_sync_on = B_TRUE;

2671 txg_sync_start (spa->spa_dsl _pool);

2673 /*

2674 * Wit for all clains to sync. W sync up to the highest
2675 * claimed log block birth time so that clained |og bl ocks
2676 * don’t appear to be fromthe future. spa_claimmax_txg
2677 * will have been set for us by either zil_check_|og_chain()
2678 * (invoked from spa_check_l ogs()) or zil_clain() above.
2679 */

2680 t xg_wai t _synced(spa->spa_ds| _pool, spa->spa_clai m max_txg);
2682 /*

2683 * |f the config cache is stale, or we have uninitialized
2684 * netasl abs (see spa_vdev_add()), then update the config.
2685 *

2686 * |f this is a verbatiminport, trust the current

2687 * in-core spa_config and update the disk |abels.

2688 */

2689 if (config_cache_txg != spa->spa_config_txg ||

2690 state == SPA_LOAD | MPORT ||

2691 state == SPA_LOAD RECOVER | |

2692 (spa->spa_inport _flags & ZFS_| MPORT_VERBATI M)

2693 need_update = B_TRUE;

2695 for (int ¢ = 0; ¢ < rvd->vdev_children; c++)

2696 if (rvd->vdev_child[c]->vdev_ns_array == 0)

2697 need_update = B_TRUE;

2699 /*

2700 * Update the config cache asychronously in case we're the
2701 * root pool, in which case the config cache isn't witable yet.
2702 */

2703 if (need_update)

new usr/src/uts/comon/fs/zfs/spa.c 11

2704

2706
2707
2708
2709
2710
2711

2713
2714
2715
2716
2717

2719
2720
2721
2722
2723

2725
2726
2727
2728
2729

2731
2732 }

spa_async_request (spa, SPA_ASYNC_CONFI G_UPDATE) ;

/*
* Check all DTLs to see if anything needs resilvering.
*

if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
vdev_resilver_needed(rvd, NULL, NULL))
spa_async_request (spa, SPA_ASYNC_RESI LVER);

/*

* Log the fact that we booted up (so that we can detect if
* we rebooted in the mddle of an operation).

*/

spa_history_l og_version(spa, "open");
/*

* Del ete any inconsistent datasets.
*/

(void) dmu_obj set_find(spa_nane(spa),
dsl _destroy_i nconsi stent, NULL, DS_FI ND_CHI LDREN);

/*
* Clean up any stale tenporary dataset userrefs.
*

dsl _pool _cl ean_t np_userr ef s(spa- >spa_dsl _pool);

}

return (0);

__unchanged_portion_omtted_

2841 /
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852

*
*
*
*
*
*
*
*
*
*

*

*/

Pool Open/ | nport

The inport case is identical to an open except that the configuration is sent
down fromuserland, instead of grabbed fromthe configuration cache. For the
case of an open, the pool configuration will exist in the

POOL_STATE_UNI NI TI ALI ZED st ate.

The stats information (gen/count/ustats) is used to gather vdev statistics at
the sane tine open the pool, wi thout having to keep around the spa_t in sone
anbi guous state.

2853 static int
2854 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,

2855
2855
2856 {
2857
2858
2859
2860

2862

2864
2865
2866
2867
2868
2869
2870
2870
2871
2872
2873

nvlist_t **config, int |ock)
nvlist_t **config)

spa_t *spa;

spa_l oad_state_t state
int error;

int locked = B_FALSE;

= SPA LOAD OPEN;

*spapp = NULL

*
* As disgusting as this is, we need to support recursive calls to this
* function because dsl_dir_open() is called during spa_load(), and ends
* up calling spa_open() again. The real fix is to figure out how to
* avoid dsl _dir_open() calling this in the first place.
*
/
f (lock && (mutex_owner (&spa_nanespace_l ock) != curthread)) {
f (mut ex_owner (&spa_nanespace_| ock) != curthread) {

mut ex enter(&&pa nanmespace_| ock) ;

| ocked = B_TRUE;

new usr/src/uts/comon/fs/zfs/spa.c 12
2875 if ((spa = spa_l ookup(pool)) == NULL) {

2876 if (Iocked)

2877 nut ex_exi t (&pa_nanmespace_| ock) ;

2878 return (SET_ERROR(ENCENT));

2879 }

2881 if (spa->spa_state == POOL_STATE_UNI NI TI ALI ZED) {

2882 zpool _rewi nd _policy_t policy;

2884 zpool _get _rew nd_policy(nvpolicy ? nvpolicy : spa->spa_config,
2885 &policy);

2886 if (policy.zrp_request & ZPOOL_DO REW ND)

2887 state = SPA_LOAD RECOVER;

2889 spa_activat e(spa, spa_node_gl obal);

2891 if (state !'= SPA_LOAD RECOVER)

2892 spa- >spa_| ast _ubsync_t xg = spa->spa_l oad_txg =
2894 error = spa_| oad_best (spa, state, B _FALSE, policy.zrp_txg,
2895 policy.zrp_request);

2897 if (error == EBADF) {

2898 /*

2899 * |f vdev_validate() returns failure (indicated by
2900 * EBADF), it indicates that one of the vdevs indicates
2901 * that the pool has been exported or destroyed. |If
2902 * this is the case, the config cache is out of sync and
2903 * we should renove the pool fromthe nanmespace.
2904 */

2905 spa_unl oad(spa) ;

2906 spa_deacti vat e(spa);

2907 spa_config_sync(spa, B _TRUE, B _TRUE);

2908 spa_renove(spa);

2909 if (1ocked)

2910 mut ex_exi t (&pa_nanmespace_l ock);

2911 return (SET_ERROR(ENCENT));

2912 }

2914 if (error) {

2915 /*

2916 * W can't open the pool, but we still have useful
2917 * information: the state of each vdev after the
2918 * attenpted vdev_open(). Return this to the user.
2919 */

2920 if (config !'= NULL && spa->spa_config) {

2921 VERI FY(nvlist_dup(spa->spa_config, config,
2922 KM SLEEP) == 0);

2923 VERI FY(nvlist_add vl i st (*confi g,

2924 ZPOOL_CONFI G_LOAD_| NFO,

2925 spa->spa_|l oad_i nfo) == 0);

2926

2927 spa_unl oad(spa);

2928 spa_deacti vat e(spa);

2929 spa- >spa_| ast _open_failed = error;

2930 if (1ocked)

2931 mut ex_exi t (&spa_nanmespace_| ock) ;

2932 *spapp = NULL;

2933 return (error);

2934 }

2935 }

2937 spa_open_ref(spa, tag);

2939 if (config !'= NULL)

new usr/src/uts/comon/fs/zfs/spa.c

2940 *config = spa_config_generate(spa, NULL, -1ULL, B TRUE);
2942 /*
2943 * |f we’ve recovered the pool, pass back any infornation we
2944 * gat hered whil e doing the | oa
2945 */
2946 if (state == SPA LOAD RECOVER) {
2947 VERI FY(nvl i st _add_nvlist(*config, ZPOOL_CONFI G LOAD | NFQ,
2948 spa->spa_l oad_i nfo) == 0);
2949 }
2951 if (locked) {
2952 spa- >spa_| ast _open_failed = 0;
2953 spa- >spa_|l ast _ubsync_txg = O;
2954 spa- >spa_l oad_txg = O;
2955 nmut ex_exi t (&pa_nanespace_| ock);
2956 }
2958 *spapp = spa;
2960 return (0);
2961 }
2963 int
2964 spa_open_rew nd(const char *nane, spa_t **spapp, void *tag, nvlist_t *policy,
2965 nvlist_t **config)
2966 {
2967 return (spa_open_common(nane, spapp, tag, policy, config, 1));
2967 return (spa_open_common(nane, spapp, tag, policy, config));
2968 }
2970 int
2971 spa_open(const char *nanme, spa_t **spapp, void *tag)
2972 {
2973 return (spa_open_common(nane, spapp, tag, NULL, NULL, 1));
2974 }
2976 int
2977 spa_open_l ock(const char *name, spa_t **spapp, void *tag, int |ock)
2978 {
2979 return (spa_open_common(nane, spapp, tag, NULL, NULL, |ock));
2973 return (spa_open_common(nane, spapp, tag, NULL, NULL));
2980 }
__unchanged_portion_onitted_
3155 int
3156 spa_get_stats(const char *name, nvlist_t **config,
3157 char *altroot, size_t buflen)
3158 {
3159 int error;
3160 spa_t *spa;
3162 *confi g = NULL;
3163 error = spa_open_comon(name, &spa, FTAG NULL, config, 1);
3157 error = spa_open_common(nanme, &spa, FTAG NULL, config);
3165 if (spa != NULL) {
3166 /*
3167 * This still |eaves a wi ndow of inconsistency where the spares
3168 * or |2cache devices could change and the config would be
3169 * self-inconsistent.
3170 */
3171 spa_config_enter(spa, SCL_CONFIG FTAG RW READER);
3173 if (*config !'= NULL) {
3174 uint64_t |oadtines[2];

new usr/src/uts/comon/fs/zfs/spa.c

3176
3177
3178
3179

3181
3182
3183

3185
3186
3187
3188

3190
3191
3192
3193
3194

3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213

3215
3216
3217
3218

3220

3221 }
__unchanged_portion_onitted_

14

| oadti mes[0] spa- >spa_| oaded_ts.tv_sec;

| oadti mes[1] spa- >spa_| oaded_ts.tv_nsec;

VERI FY(nvlist_add_uint64_array(*config,
ZPOOL_CONFI G_LOADED_TI ME, |oadtimes, 2) == 0);

VERI FY(nvlist_add_ui nt 64(*confi g,
ZPOOL_CONFI G_ERRCOUNT
spa_get _errl og_si ze(spa)) = 0);

if (spa_suspended(spa))
VERI FY(nvlist_add_ui nt 64(*confi g,
ZPOOL_CONFI G_SUSPENDED,
spa->spa_fail node) == 0);

spa_add_spares(spa, *config);
spa_add_| 2cache(spa, *confi g)
spa_add_f eat ure_st at s(spa, *confi 9);

}

/*

* W want to get the alternate root even for faulted pools, so we cheat
* and call spa_l ookup() directly.

*

if (altroot) {
if (spa == NULL) {
nmut ex_ent er (&spa_nanespace_| ock) ;
spa = spa_| ookup(nane);
if (spa)
spa_al troot (spa, altroot, buflen);

el se
altroot[0] = "\0;
spa = NULL;
mut ex_exi t (&spa_nanmespace_| ock);
} else {

spa_al troot(spa, altroot, buflen);
}
}

if (spa != NULL) {
spa_config_exit(spa, SCL_CONFIG FTAG;
spa_cl ose(spa, FTAQ;

}

return (error);

new usr/src/uts/ comon/fs/zfs/spa_msc.c 1

R R R R

48795 Thu Oct 16 19:15:51 2014
new usr/src/uts/ comon/fs/zfs/spa_msc.c
zpool inport speedup

R R R R

__unchanged_portion_onitted_

448 | *

449 =

450 * SPA nanespace functions

451 *

452 */

454 | *

455 * Lookup the naned spa_t in the AVL tree. The spa_nanespace_| ock nust be held.
456 * Returns NULL if no matching spa_t is found.

457 */

458 spa_t *

459 spa_l ookup(const char *nane)

460 {

461 spa_t *search;

461 static spa_t search; /* spa_t is large; don’t allocate on stack */
462 spa_t *spa;

463 avl _i ndex_t where;

464 char *cp;

466 search = knmem al | oc(si zeof (*search), KM SLEEP);

466 ASSERT(MUTEX_HELD(&spa_nanespace_| ock));

468 (void) strlcpy(search->spa_nane, nane, sizeof (search->spa_nane));
468 (void) strlcpy(search.spa_nane, nane, sizeof (search.spa_nane));
470 *

471 * |f it's a full dataset name, figure out the pool name and
472 * just use that.

473 */

474 cp = strpbrk(search->spa_nane, "/ @");

474 cp = strpbrk(search. spa_nanme, "/ @");

475 if (cp !'= NULL)

476 *cp = '\0";

478 spa = avl _find(&spa_nanespace_avl, search, &where);

479 kmem free(search, sizeof(*search));

478 spa = avl _find(&spa_nanespace_avl, &search, &where);

481 return (spa);

482 }

__unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/sys/dmu. h 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
29678 Thu Oct 16 19: 15:51 2014

new usr/src/uts/comon/ fs/zfs/sys/dnu. h

zpool inport speedup

IR RS SR RS RS E SRR R RS R R R SRR R R R SRR EEEEREEREEREEEEERSE]
__unchanged_portion_onitted_

235 void byteswap_uint64_array(void *buf, size_t size);

236 void byteswap_uint32_array(void *buf, size_t size);

237 void byteswap_uint16_array(void *buf, size_t size);

238 void byteswap_uint8 array(void *buf, size_t size);

239 void zap_byteswap(void *buf, size_t size);

240 void zfs_ol dacl _byteswap(voi d *buf, size_t size);

241 voi d zfs_acl _byteswap(void *buf, size_t size);

242 void zfs_znode_byt eswap(void *buf, size_t size);

244 #define DS_FI ND_SNAPSHOTS (1<<0)

245 #define DS_FI ND_CH LDREN (1<<1)

247 | *

248 * The maxi num nunber of bytes that can be accessed as part of one

249 * operation, including netadata.

250 */

251 #define DMJ_MAX_ACCESS (10<<20) /* 10MB */

252 #define DMJ_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */

254 #define DMJ_USERUSED OBJECT (-1ULL)

255 #defi ne DMJ_GROUPUSED_OBJECT (-2ULL)

257 [*

258 * artificial blkids for bonus buffer and spill blocks

259 */

260 #defi ne DMJ_BONUS_BLKI D (-1ULL)

261 #define DMJ_SPILL_BLKID (-2ULL)

262 /| *

263 * Public routines to create, destroy, open, and close objsets.

264 */

265 int dnu_objset_hol d(const char *name, void *tag, objset_t **osp);

266 int dmu_obj set _hol d_nol ock(const char *name, void *tag, objset_t **osp);

267 #endif /* | codereview */

268 int dmu_obj set_own(const char *nane, dnmu_objset_type_t type,

269 bool ean_t readonly, void *tag, objset_t **osp);

270 voi d drmu_obj set _rel e(objset_t *os, void *tag);

271 voi d dnmu_obj set _di sown(obj set _t *os, void *tag)

272 int drmu_obj set_open_ds(struct dsl _dataset *ds, Ob] set_t **osp);

274 voi d dnu_obj set _evi ct _dbufs(objset_t *os);

275 int dmu_obj set _create(const char *name dnu _objset_type_t type, uint64_t flags,

276 voi d (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg);

277 int dnu_objset_cl one(const char *nane, const char *origi n);

278 int dsl_destroy_snapshots_nvl (struct nvlist *snaps, boolean_t defer,

279 struct nvlist *errlist);

280 int dnu_objset _snapshot_one(const char *fsnane, const char *snapnane);

281 int dnu_objset_snapshot_tnp(const char *, const char *, int);

282 int dnu_objset_find(char *name, int func(const char *, void *), void *arg,

283 int flags);

284 int dmu_objset_find_parallel (char *nane, int func(const char *, void *),

285 void *arg, int flags);

286 #endif /* | codereview */

287 voi d dmu_obj set _byt eswap(void *buf, size_t size);

288 int dsl_dataset_renane_snapshot (const char *fsnane,

289 const char *ol dsnapnane, const char *newsnapnanme, bool ean_t recursive);

291 typedef struct drmu_buf {

292 uint64_t db_obj ect; /* object that this buffer is part of */

293 uint64_t db_offset; /* byte offset in this object */

new usr/src/uts/comon/ fs/zfs/sys/dnu. h

294
295
296

298

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

349
350
351
352
353
354
355
356
357
358
359

uint64_t db_size; /* size of buffer in bytes */
voi d *db_dat a; /* data in buffer */

} dnu_buf _t;

typedef void dmu_buf _evict_func_t(struct dmu_buf *db, void *user_ptr);

/*

* The nanes of zap entries in the DI RECTORY_OBJECT of the MOS.
*/

#def i ne DMJ_POOL_DI RECTORY_OBJECT 1

#def i ne DMU_POOL_CONFI G
#def i ne DMU_POOL_FEATURES _FOR WRI TE
#def i ne DMU_POOL_FEATURES_FOR_READ
#def i ne DMJ_POOL_FEATURE_DESCRI PTI ONS
#def i ne DMU_POOL_FEATURE_ENABLED TXG
#def i ne DMU_POOL_ROOT_DATASET

#def i ne DMU_POOL_SYNC_BPOBJ

#def i ne DMJU_POOL_ERRLOG_SCRUB

#def i ne DMU_POOL_ERRLOG_LAST

"config"
"features_for_wite"
"features_for_read"
"feature_descriptions”
"feature_enabl ed_t xg"
"root _dat aset"
"sync_bplist"

"errl og_scrub”
"errlog_last"

#defi ne DMJ_POOL_SPARES "spares"
#def i ne DMJ_POOL_DEFLATE "defl ate"
#def i ne DMU_POOL_H STORY "history"

#def i ne DMJ_POOL_PROPS " pool
#defi ne DMJ_POOL_L2CACHE

#def i ne DMJ_POOL_TMP_USERREFS
#def i ne DMJ_POOL_DDT

#def i ne DMJ_POOL_DDT_STATS

#defi ne DMJ_POOL_CREATI ON_VERSI ON

_props"

"1 2cache"

"tnp_userrefs”

" DDT- %- %- %"
"DDT-statistics"
"cr eat i on_version"

#defi ne DMJ_POOL_SCAN "scan"

#def i ne DMJ_POOL_FREE_BPOBJ "free_bpobj"
#def i ne DMJ_POOL_BPTREE_OBJ "bptree_obj"
#defi ne DMJ_POOL_EMPTY_BPOBJ "enpty_bpobj "

/
Al'l ocate an object fromthis objset. The range of object nunbers
available is (0, DN_MAX _OBJECT). bject 0 is the neta-dnode.

The transaction nust be assigned to a txg. The newly allocated
object will be "held" in the transaction (ie. you can nodify the
newmy allocated object in this transaction).

dnu_obj ect _al | oc() chooses an object and returns it in *objectp.

dmu_obj ect _claim() allocates a specific object nunber. |f that
number is already allocated, it fails and returns EEXI ST.

Return O on success, or ENOSPC or EEXI ST as specified above.

I B S N

uint64_t dmu_object_all oc(objset_t *os, dnu_object_type_t ot,

i nt bl ocksi ze, dmu_object_type_t bonus _type, int bonus Ien dmu_tx_t *tx);
i nt dmu_obj ect _cl ai n(obj set _t *os, uint64_t object, dmu_object_type_t ot,

int bl ocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
int dmu_object_reclainobjset_t *os, uint64_t object, dnu_object_type_t ot,

int bl ocksize, drmu_object_type_t bonustype, int bonuslen);

Free an object fromthis objset.

The object’s data will be freed as well (ie.
drmu_free(object, 0, -1, tx)).

you don’t need to call

The obj ect need not be held in the transaction.

* Ok kR kR % Ok ok Ok 3k

If there are any holds on this object’s buffers (vi
or tx holds on the object (via dnu_tx_hol d_obj ect ()
free it; it fails and returns EBUSY.

a drmu_buf _hol d()),
), you can not

new usr/src/uts/comon/fs/zfs/sys/dnu. h

360
361
362
363
364
365

367
368
369
370
371
372
373
374
375
376
377
378
379

381
382
383
384
385
386
387
388
389
390
391
392
393

395
396
397
398
399
400

402
403
404
405
406
407

409
410
411
412

414
415
416
417
418
419

421
422
423
424
425

If the object is not allocated, it fails and returns ENCENT.

* ok k ok 3k

Return O on success, or EBUSY or ENCENT as specified above.
int dmu_object_free(objset_t *os, uint64_t object,

/

dmu_t x_t *tx);

Find the next allocated or free object.

The objectp paraneter is in-out. It will be updated to be the next
obj ect which is allocated. Ignore objects which have not been

nodi fi ed since txg.

XXX Can only be called on a objset with no dirty data.

* Ok Ok ok ko Ok k% ok
-~

Returns 0 on success, or ENCENT if there are no nore objects.

int dmu_obj ect _next (objset_t *os, uint64_t *objectp,
bool ean_t hole, uint64_t txg);

Set the data bl ocksize for an object.

The obj ect cannot have any bl ocks allcated beyond the first. |If
the first block is allocated already, the new size nust be greater
than the current block size. |If these conditions are not net,
ENOTSUP wi || be returned.

Returns 0 on success, or EBUSY if there are any holds on the object
contents, or ENOTSUP as descri bed above.

* Ok Ok ok % Ok % ok ok ok 3k
-~

i nt dmu_obj ect _set_bl ocksi ze(obj set _t *os, uint64_t object,
int ibs, dmu_tx_t *tx);

uint64_t size,

/*

* Set the checksum property on a dnode. The new checksum al gorithm will

* apply to all newly witten blocks; existing blocks will not be affected.
*/

voi d dnu_obj ect _set _checksun{objset_t *os, uint64_t object,
dmu_tx_t *tx);

uint8_t checksum

/*
* Set the conpress property on a dnode. The new conpression algorithmwll
* apply to all newly witten bl ocks; existing blocks will not be affected.
*/

voi d dnu_obj ect _set _conpress(objset_t *os, uint64_t object,
dmu_tx_t *tx);

ui nt8_t conpress,

voi d

dmu_wri t e_enbedded(obj set _t *os, uint64_t object, uint64_t offset,
void *data, uint8_t etype, uint8_t conp, int unconpressed_size,
int conpressed_size, int byteorder, dnu_tx_t *tx);

/*

* Decide howto wite a block: checksum conpression, nunber of copies, etc.
*/

#defi ne WP_NOFI LL Ox1

#defi ne WP_DMJ_SYNC 0x2

#define WP_SPILL 0x4

void dnmu_write_policy(objset_t *os, struct dnode *dn, int |evel,
struct zio_prop *zp);

int wp,

/*
* The bonus data is accessed nore or less like a regular buffer.
* You nust dnu_bonus_hol d() to get the buffer, which will give you a

new usr/src/uts/comon/fs/zfs/sys/dnu. h

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

442
443
444

446

447

448
449

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

471
472
473
474
475
476
477
478
479
480
481
482
483

485
486
487
488
489
490
491

dnmu_buf _t with db_of fset==-1ULL, and db_size = the size of the bonus
data. As with any normal buffer, you nust call dmu_buf_read() to
read db_data, dmu_buf_will _dirty() before nodifying it, and the

obj ect nust be held in an assigned transaction before calling
dnu_buf _will_dirty. You may use dnu_buf_set_user() on the bonus
buffer as well. You nust release your hold with dmu_buf_rele().

* Ok kR % ok k k

/Returns ENCENT, EIO or O.
*

i nt dmu_bonus_hol d(obj set _t *os, uint64_t object,
int dmu_bonus_max(voi d);

int dmu_set _bonus(dmu_| buf _t o*, int, dnmu_tx_t *);
i nt dmu_set _bonust ype(dmu_buf _t *, dmu_object _type_t,
dmu_obj ect _type_t dnu_get bonustype(drru buf _t *);
int dmu_rmspilT(objset_t *, uint64_t, dmu_tx_t *);

void *tag, dmu_buf_t **);

dmu_tx_t *);

/*

* Special spill buffer support used by "SA" framework
*

/

int dmu_spill_hol d_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
int dmu Spl Il “hol d_by_dnode(struct dnode *dn, uint32_t flags,

voi d tag, drmu_buf _t **dbp);

|

int dmu_spill_hol d_eX|st|ng(de_buf_t *bonus, void *tag, dmu_buf_t **dbp);

Oobtain the DMJ buffer fromthe specified object which contains the
specified of fset. dmu_buf_hold() puts a "hold" on the buffer, so
that it will remainin nenory. You nust release the hold with
dnu_buf _rele(). You nusn’t access the dmu_buf_t after rel easing your
hold. You nust have a hold on any dnu_buf _t* you pass to the DWU.

You nust call dmu_buf_read, dmu_buf_will_dirty, or drmu_buf_wll _fill
on the returned buffer before reading or witing the buffer’'s
db_data. The comrents for those routines describe what particul ar
operations are valid after calling them

The obj ect nunmber nust be a valid, allocated object nunber.

I T T
-~

int dmu_buf_hol d(obj set _t *os, uint64_t object,
void *tag, dmu_buf t ** int flags)

voi d dmu_buf _add_ref (dmu_ buf _t *db, voi d* tag);

voi d dmu_buf “rel e(dmu_buf_t *db, void *tag);

ui nt 64_t dmu_buf _ref count (dmu_| buf _t *db);

/

uint64_t offset,

dnu_buf _hol d_array hol ds the DMJ buffers which contain all bytes in a
range of an object. A pointer to an array of dmu_buf_t*'s is
returned (in *dbpp).

dnu_buf _rele_array rel eases the hold on an array of dmu_buf_t*’'s, and
frees the array. The hold on the array of buffers MJUST be rel eased
with dnu_buf_rele_array. You can NOT release the hold on each buffer
individually with dmu_buf_rele.

I
-~

int dmu_buf_hol d_array_by_bonus(dmu_buf _t *db, uint64_t offset,
uint64_t length, int read, void *tag, int *numbufsp, dmu_buf t ***dbpp);
voi d dmu_buf _rel e_array(dnu_buf_t ** int nunbufs, void *tag);

/
Returns NULL on success, or the existing user ptr if it’s already
been set.

user_ptr is for use by the user and can be obtained via dmu_buf_get_user().

O

user_data_ptr_ptr should be NULL, or a pointer to a pointer which

new usr/src/uts/comon/fs/zfs/sys/dnu. h

492 * will be set to db->db_data when you are allowed to access it. Note
493 * that db->db_data (the pointer) can change when you do dmu_buf read(),
494 * dmu_buf _tryupgrade(), dmu_buf_will_dirty(), or dmu_buf _wiTl_fill().
495 * *user_data_ptr_ptr Wil be set to the new val ue when it changes.
496 *

497 * |f non-NULL, pageout func will be called when this buffer is being
498 * excised fromthe cache, so that you can clean up the data structure
499 * pointed to by user_ptr.

500 *

501 * dmu_evict_user() will call the pageout func for all buffers in a
502 * objset with a given pageout func.

503 *

504 void *dmu_buf _set_user (dnu_buf_t *db, void *user_ptr, void *user_data_ptr_ptr,
505 drmu_buf _evi ct _func_t *pageout _func);

506 /*

507 * set_user_ie is the sane as set_user, but request i nmediate eviction
508 * when hold count goes to zero.

509 */

510 void *dmu_buf _set _user_i e(dnu_buf _t *db, void *user_ptr,

511 voi d *user _data_ptr_ptr, dmu_buf_evict func_t *pageout_func);

512 void *dmu_buf updat e_user (dmu_buf _t *db_fake, void *old_user_ptr,

513 void *user_ptr, void *user data_ptr_ptr,

514 dmu_buf _evi ct func_t *pageout _func);

515 voi d dnu_evi ct _user (obj set _t *os, dn'u_buf_evi ct_func_t *func);

517 /*

518 * Returns the user_ptr set with dnu_buf_set_user(), or NULL if not set.
519 *

520 voi d *drmu_buf _get _user (dnu_buf _t *db);

522 | *

523 * Returns the bl kptr associated with this dbuf, or NULL if not set.
524 *

525 struct bl kptr *dmu_buf_get _bl kptr (dmu_buf _t *db);

527 |*

528 * Indicate that you are going to nodify the buffer’s data (db_data).
529 *

530 * The transaction (tx) nust be assigned to a txg (ie. you ve called
531 * dmu_tx_assign()). The buffer’s object nust be held in the tx

532 * (ie. you've called dnu_tx_hol d_obj ect (tx, db->db_object)).

533 *

534 void drmu_buf _will _dirty(dnu_buf _t *db, dnu_tx_t *tx);

536 /*

537 * Tells if the given dbuf is freeable.

538 */

539 bool ean_t drmu_buf _freeabl e(dnu_buf _t *);

541 [*

542 * You nust create a transaction, then hold the objects which you wll
543 * (or mght) nodify as part of this transaction. Then you nust assign
544 * the transaction to a transaction group. Once the transaction has
545 * been assigned, you can nodify buffers which belong to held objects as
546 * part of this transaction. You can't nodify buffers before the

547 * transaction has been assigned; you can't nodify buffers which don’t
548 * belong to objects which this transaction holds; you can’t hold

549 * objects once the transaction has been assigned. You may hold an
550 * object which you are going to free (with dnu_object_free()), but you
551 * don’'t have to.

552 *

553 * You can abort the transaction before it has been assigned.

554 *

555 * Note that you nmay hold buffers (with dmu_buf_hold) at any tine,

556 * regardl ess of transaction state.

557 */

new usr/src/uts/comon/fs/zfs/sys/dnu. h

559
560

562
563
564
565
566
567
568
569
570
571
572
573
574

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591

593
594

596
597
598
599
600
601
602
603
604

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

#def i ne DMU_NEW OBJECT (- 1ULL)
#def i ne DMU_OBJECT_END (- 1ULL)

dmu_t x_t *dmu_tx_create(objset_t *os);

void dmu_tx_hol d_write(dmu_tx_t *tx, uint64_t object,

void dmu_tx_hol d_free(dmu_tx_t *tx, uint64_t object,
uint64_t len);

voi d dnu_t x_hol d zap(drm tx_t *tx, uint64_t object, int add, const char *nane);

voi d dmu_t x_hol d_bonus(dmu_tx_t *tx, uint64_t obj ect)

void dmu_tx_hol d_spill (dmu_tx_t *tx, uint64_t object);

void dmu_tx_hol d_sa(dmu_tx_t *tx, struct sa_handle *hdl,

void dnu_tx_hol d_sa_create(dmu_tx_t *tx, int total_size);

void dnu_t x_abort (dmu_tx_t *tx);

int dmu_tx_assign(dmu_tx_t *tx, enum txg_how txg_how);

void dnu_tx_wait(dnu_tx_t *tx);

uint64_t off, int len);
uint64_t off,

bool ean_t may_grow);

void dnu_tx_comm t (dmu_tx_t *tx);

/*

* To register a conmt callback, dnmu_tx_call back_register() nust be called.
*

* dcb_data is a pointer to caller private data that is passed on as a

* cal | back paraneter. The caller is responsible for properly allocating and
* freeing it.

*

* \Wen registering a callback, the transaction nust be already created, but
* it cannot be committed or aborted. It can be assigned to a txg or not.

*

* The cal | back will be called after the transaction has been safely witten
* to stable storage and will also be called if the dmu_tx is aborted.

* |f there is any error which prevents the transaction frombeing conmitted to
* disk, the callback will be called with a value of error != 0.

*

typedef void dmu_tx_cal | back_func_t(void *dcb_data, int error);

void dnu_t x_cal | back_regi ster(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
voi d *dcb_dat a);

/
Free up the data bl ocks for a defined range of a file. If sizeis

*
*
* -1, the range fromoffset to end-of-file is freed.
*/

int dmu_free_range(objset_t *os, ui nt 64_t object,
uint64_t size, dmu_tx_t *tx

int dmu_free_|l ong_ range(obJ set _t *os ui nt 64_t obj ect,
uint64_t size);

int dmu_free_| ong_obj ect(obj set _t *os, uint64_t object);

/

uint64_t offset,

uint64_t of fset,

Conveni ence functions.

Canfail routines will return O on success, or an errno if there is a
nonrecoverable I/O error.

* Ok ok * ok

#def i ne DMJ_READ PREFETCH 0 /* prefetch */

#defi ne DMJ_READ_NO_PREFETCH 1/* don't prefetch */

int dmu read(obJ set_t *os, uint64_t object, uint64_t offset,
voi d *buf, uint 32_t flags);

void dnmu_write(obj set_t *os, uint64_t object,
const void *buf, dnu_tx_t *tx);

voi d dnu_preal | oc(objset_t *os, uint64_t object,
dmu_tx_t *tx);

int dmu_read_ui o(objset_t *os, uint64_t object,

int dmu_write_uio(objset_t *os, uint64_t object,

drmu_tx_t *tx)
int dmu_write_ uio_dbuf(dmu_buf t *zdb, struct uio *uio, uint64_t size,

uint64_t size,
uint64_t offset, uint64_t size,
uint64_t offset, uint64_t size,

struct uio *uio, uint64_t size);
struct uio *uio, uint64_t size,

new usr/src/uts/comon/fs/zfs/sys/dnu. h

624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639

641

643
644
645
646
647

649
650
651
652
653
654
655
656
657
658
659
660
661
662
663

665

667
668
669
670
671

673
674
675
676

678
679

681
682
683
684
685
686
687
688
689

dmu_tx_t *tx);

int dmu_wite_pages(objset_t *os, uint64_t object, uint64_t offset,
uint64_t size, struct page *pp, dnu_tx_t *tx);

struct arc_buf *dmu _request _ar chuf (dmu_buf _t *handle int size);

voi d dmu_return_arcbuf (struct arc_buf *buf);

voi d dmu_assi gn_arcbuf (dnu_buf _t *handl e, uint64_t offset, struct arc_buf *buf,
dmu_tx_t *tx);

int dmu_xui o_init(struct xuio *uio, int niov);

voi d dnu_xui o_fini(struct xuio *uio);

int dmu_xui o_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
size_t n);

int dmu_xui o_cnt(struct xuio *uio);

struct arc_buf *dnu_xuio arcbuf(struct Xuio *uio, int i);

voi d dmu_xuio_clear(struct xuio *uio, int i);

voi d xui o_stat_wbuf _copi ed();

voi d xui o_stat _wbuf _nocopy();

extern int zfs_prefetch_disable;

/*

* Asynchronously try to read in the data.
*

/

voi d dnu_prefetch(objset_t *os, uint64_t object, uint64_t offset,
uint64_t len);

typedef struct dmu_object_info {
/* Al sizes are in bytes unless otherw se indicated. */
ui nt32_t doi _dat a_bl ock_si ze;
uint32_t doi _net adat a_bl ock_si ze;
dmu_obj ect _type_t doi _type;
drmu_obj ect _type_t doi _bonus_t ype;
ui nt64_t doi _bonus_si ze;
uint8_t doi _indirection; /* 2 = dnode->i ndirect->data */
ui nt8_t doi _checksum
uint8_t doi _conpress;
uint8_t doi _pad[5];

ui nt 64_t doi _physi cal _bl ocks_512; /* data + nmetadata, 512b bl ks */

uint64_t doi _nmax_of fset;

uint64_t doi _fill_count; /* nunber of non-enpty bl ocks */

} dnu_object _info_t;
typedef void arc_byteswap_func_t(void *buf, size_t size);

typedef struct dmu_object_type_info {
drmu_obj ect _byt eswap_t ot _byt eswap;
bool ean_t ot _net adat a;
char *ot _nane;

} dnu_obj ect _type_info_t;

typedef struct dmu_object_byteswap_info {
arc_byt eswap_func_t *ob_func;
char *ob_nane;
} dnu_obj ect _byteswap_info_t;

extern const dmu_object_type_info_t dnmu_ot[DMJ_OT_NUMIYPES] ;
extern const dnu_obj ect _byteswap_i nfo_t dmu_ot _byt eswap[DMJ_BSWAP_NUMFUNCS] ;

-~

Get information on a DMJ obj ect.
Return 0 on success or ENCENT if object is not allocated.

If doi is NULL, just indicates whether the object exists.

B B
-~

t dnu_obj ect _i nfo(objset_t *os, uint64_t object, dmu_object_info_t *doi);
Li ke dnmu_obj ect _i nfo, but faster if you have a hel d dnode in hand. */

R

new usr/src/uts/comon/fs/zfs/sys/dnu. h

690
691

voi d dnu_obj ect _i nfo_from dnode(struct dnode *dn, dnu_object_info_t *doi);
/* Like dmu_object_info, but faster if you have a held dbuf in hand. */

692 void dnu_obj ect _i nf o_from_db(dnru_buf_t *db, dmu_object_info_t *doi);
693 /*

694 * Like dmu_object_info_fromdb, but faster still when you only care about
695 * the size. This is specifically optinized for zfs_getattr().

696 */

697 void dnu_obj ect_size_fromdb(dnmu_buf_t *db, uint32_t *blksize,

698 u_l ongl ong_t *nbl k512);

700 typedef struct dmu_objset_stats {

701 uint64_t dds_numclones; /* nunber of clones of this */

702 uint64_t dds creati on_t xg;

703 uint64_t dds_guid

704 drmu_obj set _type_t " dds _type;

705 uint8_t dds_is_snapshot;

706 uint8_ t dds_inconsistent;

707 char dds_ori gi n[MAXNAMELEN ;

708 } dmu_obj set_stats_t;

710 /*

711 * Get stats on a dataset.

712 */

713 voi d dmu_obj set _fast_stat(objset_t *os, dnu_objset_stats_t *stat);
715 | *

716 * Add entries to the nvlist for all the objset’s properties. See
717 * zfs_prop_table[] and zfs(1n) for details on the properties.

718 *

719 voi d dnu_obj set_stats(objset_t *os, struct nvlist *nv);

721 |*

722 * Get the space usage statistics for statvfs().

723 *

724 * refdbytes is the anount of space "referenced" by this objset.

725 * availbytes is the anpbunt of space available to this objset, taking
726 * into account quotas & reservations, assumng that no other objsets
727 * use the space first. These values correspond to the 'referenced and
728 * ’'available’ properties, described in the zfs(1lm manpage.

729 *

730 * usedobjs and availobjs are the nunber of objects currently allocated,
731 * and avail abl e.

732 *

733 void dnmu Obj set _space(objset _t *os, uint64_t *refdbytesp, uint64_t *avail bytesp,
734 uint64_t *usedobjsp, uint64_t *avail objsp);

736 [*

737 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
738 * (Contrast with the ds_guid which is a 64-bit IDthat will never
739 * change, so there is a small probability that it will collide.)

740 */

741 uint64_t dnu_objset _fsid_guid(objset_t *os);

743 | *

744 * Get the [cnitine for an objset’s snapshot dir

745 */

746 timestruc_t dmu_obj set_snap_cnti ne(objset_t *os);

748 int dnu_objset_i s_snapshot (objset_t *os);

750 extern struct spa *dnmu_obj set _spa(objset_t *os);

751 extern struct zilog *dnmu_obj set _zil (objset_t *os);

752 extern struct dsl_pool *dnu_objset_pool (objset_t *os);

753
754
755

extern struct dsl_dataset *dnu_obj set _ds(objset_t *os);
extern void dnmu_obj set _nane(obj set _t *os, char *buf);
extern dmu_obj set _type_t dmu_obj set type(obj set _t *os)

new usr/src/uts/comon/fs/zfs/sys/dnu. h

756 extern uint64_t dnu_objset_id(objset_t *os);

757 extern zfs_sync_type_t dnu_obj set _syncprop(objset_t *os);

758 extern zfs_| ogbias_op_t dnu_obj set _| ogbi as(obj set_t *os);

759 extern int dnu_snapshot_|ist_next(objset_t *os, int namelen, char *nane,

760 uint64_t *id, uint64_t *offp, boolean_t *case_conflict);

761 extern int dmu_snapshot _real nane(objset_t *os, char *nanme, char *real,
762 int maxlen, boolean_t *conflict);

763 extern int dnu_dir_list_next(objset_t *os, int nanelen, char *nang,
764 uint64_t *idp, uint64_t *offp);

766 typedef int objset_used_cb_t(dnu_object_type_t bonustype,

767 voi d *bonus, uint64_t *userp, uint64_t *groupp);

768 extern void dmu_obj set_register_type(dnu_objset_type_t ost,

769 obj set _used_cb_t *cb);

770 extern voi d dmu_obj set _set _user(objset _t *os, void *user_ptr);
771 extern void *dmu_obj set _get _user (objset _t *os);

773 | *

774 * Return the txg nunber for the given assigned transaction.
775 */

776 uint64_t dmu_tx_get_txg(dnmu_tx_t *tx);

778 |*

779 * Synchronous wite.

780 * |f a parent zio is provided this function initiates a wite on the
781 * provided buffer as a child of the parent zio.

782 * In the absence of a parent zio, the wite is conpleted synchronously.
783 * At wite conpletion, blk is filled with the bp of the witten bl ock.
784 * Note that while the data covered by this function will be on stable
785 * storage when the wite conpletes this new data does not becone a
786 * permanent part of the file until the associated transaction conmmts.
787 */

789 [*

790 * {zfs, zvol,ztest}_get_done() args

791 *

792 typedef struct zgd {

793 struct zilog *zgd_zi | og;

794 struct bl kptr *zgd_bp;

795 dmu_buf _t *zqd_db;

796 struct rl *zgd_rl;

797 voi d *zgd_private;

798 } zgd_t;

800 typedef void dnmu_sync_cb_t(zgd_t *arg, int error);
801 int dnu_sync(struct zio *zio, uint64_t txg, dnu_sync_cb_t *done, zgd_t *zgd);

803 /*

804 * Find the next hole or data block in file starting at *off

805 * Return found offset in *off. Return ESRCH for end of file.

806 */

807 int dmu_of fset_next(objset_t *os, uint64_t object, boolean_t hole,
808 uint64_t *off);

810 /*
811 * Initial setup and final teardown.
812 */

813 extern void drmu_init(void);
814 extern void dmu_fini(void);

816 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,

817 uint64_t object, uint64_t offset, int len);
818 void dnu_traverse_objset(objset_t *os, uint64_t txg_start,
819 drmu_traverse_cb_t cb, void *arg);

821 int dmu_diff(const char *tosnap_nane, const char *fronmsnap_nane,

new usr/src/uts/comon/fs/zfs/sys/dnu. h

822 struct vnode *vp, offset_t *offp);

824 /* CRC64 table */

825 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form*/
826 extern uint64_t zfs_crc64_tabl e[256];

828 extern int zfs_ndconp_di sabl e;

830 #ifdef _ cplusplus

831 }

832 #endi f

834 #endif /* _SYS DMJH */

10

new usr/src/uts/comon/ fs/zfs/sys/dnu_objset.h 1 new usr/src/uts/comon/ fs/zfs/sys/dnu_objset.h

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 182 #endlf
5939 Thu Cct 16 19:15:51 2014
new usr/src/uts/ comon/ fs/zfs/sys/dnmu_obj set.h 184 #endif /* _SYS DMJ OBJSET_H */

zpool inport speedup

R R R R

__unchanged_portion_onitted_

123 #define DMJ_META_OBJSET 0

124 #define DMJ_META_DNODE_OBJECT

125 #define DMJ_OBJECT_| S SPECI AL(ObJ) ((int64_t)(obj) <= 0)

126 #defi ne DMJ_META_ DNCODE(0s) ((o0s)->o0s_neta_dnode. dnh_dnode)

127 #define DMJ_USERUSED DNODE(o0s) ((os)->os_userused_dnode. dnh_dnode)
128 #defi ne DMJ_GROUPUSED_DNCODE(0s) ((os)->o0s_groupused_dnode. dnh_dnode)

130 #define DMJ OS | S L2CACHEABLE(0s) \
131 ((os)->o0s_secondary_cache == ZFS CACHE ALL || \
132 (0s)->o0s_secondary_cache == ZFS_CACHE_METADATA)

134 #define DMJ_OS | S L2COVWPRESSI BLE(0s) (zfs_ndconp_di sabl e == B_FALSE)

136 /* called fromzpl */

137 int dmu_obj set_hol d(const char *name, void *tag, objset_t **osp);

138 int dmu_obj set _hol d_nol ock(const char *name, void *tag, objset_t **osp);
139 #endif 7* 1| codereview */

140 int drmu_obj set_own(const char *name, dmu_objset_type_t type,

141 bool ean_t readonly, void *tag, Obj set_t **osp);
142 int dmu_obj set _own_nol ock(const char *nane, de_ObJ set _type_t type,
143 bool ean_t readonly, void *tag, objset_t **osp);

144 #endif /* | codereview */

145 voi d dmu_obj set _refresh_ownershi p(objset_t *os, void *tag);
146 void dmu_obj set_rel e(objset_t *os, void *tag);

147 voi d drmu_obj set _di sown(obj set _t *os, void *tag)

148 int dmu_objset_fromds(struct dsl_dataset *ds, ob] set _t **osp);

150 voi d dmu_obj set_stats(objset_t *os, nvlist_t *nv);

151 voi d dmu_obj set _fast_stat (objset _t *os, dnmu_objset_stats t *stat);
152 voi d drmu_obj set _space(obj set _t *os, ui nt 64 _t *ref dbyt esp, uint64_t *avail bytesp,
153 ui nt64_t *usedobjsp, uint64_t *avai | obj sp);

154 uint64_t dmu_obj set _fsid_gui d(objset_t *os);

155 int dmu_objset_find_dp(struct dsl_pool *dp, uint64_t ddobj,

156 int func(struct dsl_pool *, struct dsl_dataset *, void *),

157 void *arg, int flags);

158 int dnu_objset_prefetch(const char *name, void *arg);

159 voi d dmu_obj set _evi ct _dbuf s(obj set _t *os)

160 tinestruc_t dmu_objset_snap_cntine(objset _t *os);

162 /* called fromdsl */

163 voi d dnu_obj set _sync(objset _t *os, zio_t *zio, dnu_tx_t *tx);

164 bool ean_t drmu_obj set _i s_dirty(obj set t “*0s, uint64_t txg);

165 objset _t *dmu_obj set _create_i npl (spa_t *spa, struct dsl_dataset *ds,

166 bl kptr_t *bp, drmu_objset_type_t type, dmu_tx_t *tx);
167 int dmu_obj set_open_inpl (spa_t *spa, struct dsl_dataset *ds, blkptr_t *bp,
168 obj set _t **osp);

169 void dnmu_obj set_evi ct (objset_t *os);

170 voi d dnu_obj set _do_user quot a_updat es(obj set_t *os, dnu_tx_t *tx);

171 voi d drmu_obj set _user quot a_get I ds(dnode_t *dn, bool ean “t before, dmu_tx_t *tx);
172 bool ean_t dnu_obj set _user used_enabl ed(obj set t *0s);

173 int dmu_obj set _user space_upgr ade(obj set _t *os);

174 bool ean_t dmu_obj set _user space_present (obj set _t *o0s);

175 int dmu_fsname(const char *snapnanme, char *buf);

177 void dmu_obj set _init(void);
178 void dmu_obj set_fini(void);

180 #i fdef __ cplusplus
181 }

new usr/src/uts/comon/ fs/zfs/sys/dsl_pool.h

R R R R

5558 Thu COct 16 19: 15:51 2014
new usr/src/uts/comon/ fs/zfs/sys/dsl _pool.h
zpool inport speedup

R R R R

__unchanged_portion_onitted_

135 int dsl_pool _init(spa_t *spa, uint64_t txg, dsl_pool _t **dpp);

136 int dsl_pool _open(dsl_pool _t *dp);

137 void dsT_pool _cl ose(dsl _pool _t *dp),

138 dsl _pool _t *dsl _pool _creat e(spa t *spa, nvlist_t *zplprops, uint64_t txg);
139 voi d dsl _pool _sync(dsl _pool _t *dp, uint64 t txg);

140 voi d dsl _pool _sync_done(dsl _pool _t *dp, uint64_t txg);

141 int dsl_pool _sync_context (dsl _pool t *dp);

142 uint64_t dsl_pool _adj ust edsi ze(dsl _pool _t *dp, boolean_t netfree);

143 uint64_t dsl_pool _adj ust edfree(dsl _pool _t *dp, boolean_t netfree);

144 void dsl _pool _dirty_space(dsl _pool _t *dp, int64_t space, dmu_tx_t *tx);
145 voi d dsl _pool _undirty_space(dsl_pool _t *dp, int64_t space, uint64_t txg);
146 voi d dsl _free(dsl _pool _t *dp ui nt 64_t txg const bl kptr_t *bpp);

147 void dsl free_sync(zio_t *pio, dsl_pool t *dp, uint64_t txg,

148 const bl kptr_t *bpp)

149 voi d dsl _pool _create_origin(dsl _pool _t *dp, dnu_tx_t *tx);

150 voi d dsl _pool _upgrade_cl ones(dsl_pool _t *dp, dmu_tx_t *tx);

151 voi d dsl _pool _upgrade_di r_cl ones(dsl _pool _t *dp, dmu_tx_t *tx);

152 void dsl _pool _nps_di duse_space(dsl _pool _t *dp,

153 int64_t used, int64_t conp, int64_t unconp);

154 void dsl _pool _config_enter(dsl_pool _t *dp, void *tag);

155 voi d dsl _pool _config_exit(dsl_pool _t *dp, void *tag);

156 bool ean_t dsl _pool _config_hel d(dsl _pool _t *dp);

157 bool ean_t dsl _pool _need_dirty_del ay(dsl _pool _t *dp);

159 taskqg_t *dsl _pool _vnrel e_taskq(dsl _pool _t *dp);
161 int dsl_pool _user_hol d(dsl _pool _t *dp, uint64_t dsobj,

162 const char *tag, uint64_t now, dnmu_tx_t *tx);
163 int dsl_pool _user_rel ease(dsl _pool _t *dp, uint64_t dsobj,
164 const char *tag, dmu_tx_t *tx);

165 void dsl_pool _cl ean_tnp_userrefs(dsl_pool _t *dp);

166 int dsl_pool _open_special _dir(dsl _pool _t *dp, const char *nane, dsl_dir_t **);
167 int dsl_pool _hol d(const char *nane, void *tag, dsl_pool _t **d

168 int dsl _pool _hol d_| ock(const char *nane, void *tag, dsl_pool _t **dp int |ock);
169 #endif 7* ! codereview */

170 void dsl _pool _rel e(dsl _pool _t *dp, void *tag);

171 void dsl _pool _rel e_spa(dsl _pool _t *dp, void *tag);

172 #endif /* ! codereview */

174 #ifdef __cplusplus

175 }

176 #endi f

178 #endif /* _SYS DSL_POOL_H */

new usr/src/uts/comon/ fs/zfs/sys/spa.h

R R R R

32150 Thu COct 16 19: 15:52 2014
new usr/src/uts/comon/ fs/zfs/sys/spa.h
zpool inport speedup

R R R R

____unchanged_portion_onitted_

571 /* state manipul ation functions */

572 extern int spa_open(const char *pool, spa_t **, void *tag);

573 extern int spa_open_| ock(const char *pool, spa_t **, void *tag, int |ock);
574 #endif /* | codereview */

575 extern int spa_open_rew nd(const char *pool, spa_t **, void *tag,

576 nvlist_t *policy, nvlist_t **config);

577 extern int spa_get_stats(const char *pool, nvlist_t **config, char *altroot,
578 size_t buflen);

579 extern int spa_create(const char *pool, nvlist_t *config, nvlist_t *props,
580 nvlist_t *zplprops);

581 extern int spa_inport_rootpool (char *devpath, char *devid);

582 extern int spa_inport(const char *pool, nvlist_t *config, nvlist_t *props,
583 uint64_t flags);

584 extern nvlist_t *spa_tryinport(nvlist_t *tryconfig);

585 extern int spa_destroy(char *pool);

586 extern int spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
587 bool ean_t hardforce);

588 extern int spa_reset(char *pool);

589 extern void spa_async_request(spa_t *spa, int flag);

590 extern voi d spa_async_unrequest (spa_t *spa, int flag);

591 extern void spa_async_suspend(spa_t *spa);

592 extern void spa_async_resune(spa_t *spa);

593 extern spa_t *spa_inject_addref(char *pool);

594 extern void spa_inject_delref(spa_t *spa);

595 extern void spa_scan_stat_init(spa_t *spa);

596 extern int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps);

598 #define SPA ASYNC CONFI G UPDATE 0x01

599 #define SPA ASYNC REMOVE 0x02
600 #define SPA ASYNC PROBE 0x04
601 #define SPA_ASYNC RESI LVER DONE 0x08
602 #define SPA_ASYNC RESI LVER 0x10

603 #define SPA_ASYNC AUTOEXPAND 0x20
604 #define SPA_ASYNC REMOVE _DONE 0x40
605 #define SPA_ASYNC REMOVE_STCP 0x80

607 /*

608 * Controls the behavior of spa_vdev_renove().
609 */

610 #defi ne SPA REMOVE_UNSPARE 0x01

611 #defi ne SPA_REMOVE_DONE 0x02

613 /* device manipul ation */

614 extern int spa_vdev_add(spa_t *spa, nvlist_t *nvroot);

615 extern int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot,

616 int replacing);

617 extern int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid,

618 int replace_done);

619 extern int spa_vdev_renove(spa_t *spa, uint64_t guid, boolean_t unspare);
620 extern bool ean_t spa_vdev_renpve_active(spa_t *spa);

621 extern int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath);
622 extern int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru);
623 extern int spa_vdev_split_nirror(spa_t *spa, char *newnane, nvlist_t *config,
624 nvlist_t *props, bool ean_t exp);

626 /* spare state (which is global across all pools) */

627 extern voi d spa_spare_add(vdev_t *vd);

628 extern voi d spa_spare_renove(vdev_t *vd);

629 extern bool ean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt);

new usr/src/uts/comon/ fs/zfs/sys/spa.h
630 extern void spa_spare_activate(vdev_t *vd);

632 /* L2ARC state (which is global across all pools) */

633 extern void spa_| 2cache_add(vdev_t *vd);

634 extern void spa_| 2cache_renove(vdev_t *vd);

635 extern bool ean_t spa_|l 2cache_exi sts(uint64_t guid, uint64_t *pool);
636 extern void spa_|l 2cache_activate(vdev_t *vd);

637 extern void spa_|l 2cache_drop(spa_t *spa);

639 /* scanning */
640 extern int spa_scan(spa_t *spa, pool _scan_func_t func);
641 extern int spa_scan_stop(spa_t *spa);

643 /* spa syncing */
644 extern void spa_sync(spa_t *spa, uint64_t txg); /* only for DMJ use */
645 extern void spa_sync_al | pool s(voi d);

647 /* spa namespace gl obal nutex */
648 extern kmutex_t spa_nanespace_| ock;

650 /*
651 * SPA configuration functions in spa_config.c
652 */

654 #define SPA CONFI G UPDATE_POOL 0
655 #define SPA_CONFI G_UPDATE_VDEVS 1

657 extern void spa_config_sync(spa_t *, boolean_t, bool ean_t);

658 extern void spa_config_|oad(void);

659 extern nvlist_t *spa_all_configs(uint64_t *);

660 extern void spa_config_set(spa_t *spa, nvlist_t *config);

661 extern nvlist_t *spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg,
662 int getstats);

663 extern void spa_config_update(spa_t *spa, int what);

665 /*
666 * M scel |l aneous SPA routines in spa_misc.c
667 */

669 /* Namespace mani pul ation */
670 extern spa_t *spa_l ookup(const char *nane);

671 extern spa_t *spa_add(const char *name, nvlist_t *config, const char *altroot);

672 extern void spa_renove(spa_t *spa);
673 extern spa_t *spa_next(spa_t *prev);

675 /* Refcount functions */

676 extern void spa_open_ref(spa_t *spa, void *tag);
677 extern void spa_cl ose(spa_t *spa, void *tag);
678 extern bool ean_t spa_refcount_zero(spa_t *spa);

680 #defi ne SCL_NONE 0x00

681 #define SCL_CONFI G 0x01

682 #define SCL_STATE 0x02

683 #define SCL_L2ARC 0x04 /* hack until L2ARC 2.0 */
684 #define SCL_ALLOC 0x08

685 #define SCL_ZI O 0x10

686 #define SCL_FREE 0x20

687 #define SCL_VDEV 0x40

688 #define SCL_LOCKS 7

689 #define SCL_ALL ((1 << SCL_LOCKS) -

o . 1)
690 #define SCL_STATE_ALL (SCL_STATE | SCL_L2ARC | SCL_ZIO)

692 /* Pool configuration |ocks */

693 extern int spa_config_tryenter(spa_t *spa, int |locks, void *tag, krw.t rw);
694 extern void spa_config_enter(spa_t *spa, int locks, void *tag, krw.t rw);
695 extern void spa_config_exit(spa_t *spa, int |ocks, void *tag);

new usr/src/uts/comon/ fs/zfs/sys/spa.h
696 extern int spa_config_held(spa_t *spa, int locks, krw.t rw;

698 /* Pool vdev add/renove |ock */

699 extern uint64_t spa_vdev_enter(spa_t *spa);

700 extern uint64_t spa_vdev_config_enter(spa_t *spa);

701 extern void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg,
702 int error, char *tag);

703 extern int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error);

705 /* Pool vdev state change |ock */
706 extern void spa_vdev_state_enter(spa_t *spa, int oplock);
707 extern int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error);

709 /* Log state */
710 typedef enum spa_l og_state {

711 SPA_LOG _UNKNOWN = 0, /* unknown | og state */
712 SPA_LOG M SSI NG /* missing log(s) */
713 SPA_LOG_CLEAR, /* clear the log(s) */
714 SPA_LOG_GOOD, /* log(s) are good */

715 } spa_log_state t;

717 extern spa_log_state_t spa_get_|og_state(spa_t *spa);
718 extern void spa_set_log_state(spa_t *spa, spa_log_state_t state);
719 extern int spa_offline_log(spa_t *spa);

721 /* Log cl ai mcallback */
722 extern void spa_claimnotify(zio_t *zio);

724 |* Accessor functions */

725 extern bool ean_t spa_shutting_down(spa_t *spa);
726 extern struct dsl_pool *spa_get_dsl (spa_t *spa);
727 extern boolean_t spa_is_initializing(spa_t *spa);
728 extern bl kptr_t *spa_get_rootbl kptr(spa_t *spa);
729 extern void spa_set_rootbl kptr(spa_t *spa, const blkptr_t *bp);
730 extern void spa_altroot(spa_t *, char *, size_t);
731 extern int spa_sync_pass(spa_t *spa);

732 extern char *spa_nane(spa_t *spa);

733 extern uint64_t spa_guid(spa_t *spa);

734 extern uint6 spa_| oad_gui d(spa_t *spa);

735 extern uint6 spa_l ast _synced_t xg(spa_t *spa);
736 extern uint64_t spa_first_txg(spa_t *spa);

737 extern uint64_t spa_syncing_txg(spa_t *spa);

738 extern uint64_t spa_version(spa_t *spa);

739 extern pool state t spa_state(spa_t *spa)

740 extern spa_ Toad_state_t spa_l oad_st at e(spa t *spa);
741 extern uint64_t spa_freeze txg(spa_t *spa);

742 extern uint64_t spa_get_asize(spa_t *spa, ui nt 64_t |size);
743 extern uint64_t spa_get_dspace(spa_t *spa);

744 extern voi d spa_update_dspace(spa_t *spa);

745 extern uint64_t spa_version(spa_t *spa);

746 extern bool ean_t spa_defl ate(spa_t *spa);

747 extern netaslab_class_t *spa_normal _cl ass(spa t *spa);
748 extern netaslab_class_t *spa_l og_class(spa_t *spa);
749 extern int spa_max_replication(spa_t *spa);

750 extern int spa_prev_software_version(spa_t *spa);
751 extern int spa_busy(void);

752 extern uint8_t spa_get_fail node(spa_t *spa);

753 extern bool ean_t spa_suspended(spa_t *spa);

754 extern uint64_t spa_bootfs(spa_t *spa);

755 extern uint64_t spa_del egation(spa_t *spa);

756 extern obj set "t *spa_neta_objset(spa_t *spa);

757 extern uint64_t spa_deadman_synctine(spa_t *spa);

759 /* M scel | aneous support routines */
760 extern void spa_activate_npos_feature(spa_t *spa, const char *feature,
761 dmu_tx_t *tx);

new usr/src/uts/comon/ fs/zfs/sys/spa.h

762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783

785
786

788

790
791
792
793
794
795
796
797
798
799
800
801

803
804
805
806
807
808
809
810
811
812
813
814
815
816

818
819
820

822
823
824
825

827

extern void spa_deactivate_nps_feature(spa_t *spa, const char *feature);
extern int spa_renane(const char *ol dnane, const char *newnane);
extern spa_t *spa_by_guid(uint64_t pool _guid, uint64_t device_guid);
extern bool ean_t spa_gui d_exi sts(uint64_t pool _guid, uint64_t device_guid);
extern char *spa_strdup(const char *);
extern void spa_strfree(char *);
extern uint64_t spa_get_randon{ui nt64_t range)
extern uint64_t spa_generate_gui d(spa_t *spa);
extern void snprintf_bl kptr(char *buf, size_t buflen, const blkptr_t *bp);
extern void spa_freeze(spa_t *spa);
extern int spa_change_guid(spa_t *spa);
extern void spa_upgrade(spa_t *spa, uint64_t version);
extern void spa_evict_all(void);
extern vdev_t *spa_| ookup_by_gui d(spa_t *spa, uint64_t guid,
bool ean_t | 2cache);
extern bool ean_t spa_has_spare(spa_t *, uint64_t guid);
extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva);
extern uint64_t bp_get dsize_sync(spa_t *spa, const blkptr_t *bp);
extern uint64_t bp_get dsize(spa_t *spa, const blkptr_t *bp);
extern bool ean_t spa_has_sl ogs(spa_t *spa);
extern bool ean_t spa_is_root(spa_t *spa);
extern bool ean_t spa_witeabl e(spa_t *spa);

extern int spa_node(spa_t *spa);
extern uint64_t strtonun{const char *str, char **nptr);

extern char *spa_his_ievent_table[];

extern voi d spa_history_create_obj(spa_t *spa, dmu_tx_t *tx);

extern int spa_history get(spa_t *spa, uint64_t *offset, uint64_t *len_read,
char *his_buf);

extern int spa_history_log(spa_t *spa, const char *his_buf);

extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl);

extern void spa_history_log_version(spa_t *spa, const char *operation);

extern void spa_history_|l og_internal (spa t *spa, const char *operation,
dmu_tx_t *tx, const char *fnt,)

extern void spa_| hi st ory_log_inter nal ds(struct dsl _dat aset *ds, const char *op,
dmu_tx_t *tx, const char *fnmt, ..

extern void spa_hi story_log_inter nal _dd(dsl _dir_t *dd, const char *operation,
dmu_tx_t *tx, const char *fnt, ...);

/* error handling */

struct zbooknark;

extern void spa_log_error(spa_t *spa, zio_t *zio);

extern void zfs_ereport_post(const char *class, spa_t *spa, vdev_t *vd,
zio_t *zio, uint64_t stateoroffset, uint64_t |length);

extern void zfs_post_renove(spa_t *spa, vdev_t *vd);

extern void zfs_post_state_change(spa_t *spa, vdev_t *vd);

extern void zfs_post_autorepl ace(spa_t *spa, vdev_t *vd);

extern uint64_t spa_get_errlog_size(spa_t *spa);

extern int spa_get_errlog(spa_t *spa, void *uaddr, size_t *count);

extern void spa_errlog_rotate(spa_t *spa);

extern void spa_errlog_drain(spa_t *spa);

extern void spa_errlog_sync(spa_t *spa, uint64_t txg);

extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub);

/* vdev cache */
extern void vdev_cache_stat_init(void);
extern void vdev_cache_stat_fini(void);

/* Initialization and termnation */
extern void spa_init(int flags);
extern void spa_fini(void);

extern void spa_boot _init();

/* properties */

new usr/src/uts/comon/ fs/zfs/sys/spa.h

828 extern int spa_prop_set(spa_t *spa, nvlist_t *nvp);

829 extern int spa_prop_get(spa_t *spa, nvlist_t **nvp);

830 extern void spa_prop_cl ear_bootfs(spa_t *spa, uint64_t obj, dmu_tx_t *tx);
831 extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t);

833 /* asynchronous event notification */

834 extern void spa_event_notify(spa_t *spa, vdev_t *vdev, const char *nane);
836 #ifdef ZFS_DEBUG

837 #define dprintf_bp(bp, fnt, ...) do { \

838 if (zfs_flags & ZFS DEBUG DPRI NTF) { \

839 char *__bl kbuf = knem al | oc(BP_SPRI NTF_LEN, KM SLEEP); \

840 snprintf_bl kptr(__bl kbuf, BP_SPRI NTF_LEN, (bp)); \

841 dprintf(fm " 9%\n", _ VA ARGS_, _ bl kbuf); \

842 kmem free(__ bl kbuf, BP_SPRI NTF_LEN); \

843 1\

844 _NOTE(CONSTCOND) } while (0)

845 #el se

846 #define dprintf_bp(bp, fnt,)

847 #endi f

849 extern bool ean_t spa_debug_enabl ed(spa_t *spa);

850 #define spa_dbgnsg(spa, \

851 { \

852 if (spa_debug_enabl ed(spa)) \

853 zfs_dbgnmsg(__VA ARGS_); \

854 }

856 extern int spa_node_gl obal; /* mode, e.g. FREAD | FWRITE */
858 #ifdef _ cplusplus

859 }

860 #endi f

862 #endif /* _SYS SPA H */

new usr/src/uts/comon/ fs/zfs/sys/vdev. h

R R R R

5825 Thu Cct 16 19: 15:52 2014
new usr/src/uts/comon/ fs/zfs/sys/vdev. h
zpool inport speedup

R R R R

__unchanged_portion_onitted_
48 extern bool ean_t zfs_nocachef| ush;

50 extern int vdev_open(vdev_t *);

51 extern void vdev_open_chil dren(vdev t o*);

52 extern bool ean_t vdev_uses_zvol s(vdev_t *)

53 extern int vdev_validate(vdev_t *, bool ean_t);

54 extern void vdev_cl ose(vdev_t *);

55 extern int vdev_create(vdev_t *, uint64_t txg, boolean_t isreplace);
56 extern void vdev _reopen(vdev_t *);

57 extern int vdev_validate_aux(vdev_t *vd);

58 extern zio_t *vdev_probe(vdev_t *vd, zio_t *pio);

60 extern bool ean_t vdev_is_bootabl e(vdev_t *vd);

61 extern vdev_t *vdev_| ookup_top(spa_t *spa, uint64_t vdev);

62 extern vdev_t *vdev_| ookup_by_gui d(vdev_t *vd, uint64_t guid);
63 extern int vdev_count | eaves(spa_t *spa);

64 #endif /* | codereview */

65 extern void vdev_dtl _dirty(vdev_t *vd, vdev_dtl _type_t d,

66 uint64_t txg, uint64_t size);
67 extern bool ean_t vdev_dtl _cont ai ns(vdev t *vd, vdev_dtl _type_t d,
68 uint64_t txg, uint64_t size)

69 extern boolean_t vdev_dtT errpty(vdev t *vd, vdev_dtl _type_t d);

70 extern void vdev_dtl _reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
71 int scrub_done);

72 extern bool ean_t vdev_dtl| _required(vdev_t *vd);

73 extern bool ean_t vdev_resilver_needed(vdev_t *vd,

74 uint64_t *mnp, uint64_t *nmaxp);

76 extern void vdev_hol d(vdev_t *);
77 extern void vdev_rel e(vdev_t *);

79 extern int vdev_netaslab_init(vdev_t *vd, uint64_t txg);
80 extern void vdev_netasl ab_fini (vdev_t *vd);

81 extern void vdev_netasl ab_set_si ze(vdev_t *);

82 extern void vdev_expand(vdev_t *vd, uint64_t txg);

83 extern void vdev_split(vdev_t *vd);

84 extern void vdev_deadman(vdev_t *vd);

87 extern void vdev_get_stats(vdev_t *vd, vdev_stat_t *vs);
88 extern void vdev_cl ear_stats(vdev_t *vd);

89 extern void vdev_stat_update(zio_t *zio, uint64_t psize);
90 extern void vdev_scan_stat_init(vdev_t *vd);

91 extern void vdev_propagate_state(vdev_t *vd);

92 extern void vdev_set _state(vdev_t *vd, boolean_t isopen, vdev_state_t state,

93 vdev_aux_t aux);

95 extern void vdev_space_updat e(vdev_t *vd,
96 int64_t alloc_delta, int64_t defer_delta, int64_t space_delta);

98 extern uint64_t vdev_psize_to_asize(vdev_t *vd, uint64_t psize);

100 extern int vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux);
101 extern int vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
102 extern int vdev_oniine(spa_t *spa, uint64_t guid, uint64_t flags,
103 vdev_state_t *);

104 extern int vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags);
105 extern void vdev_cl ear(spa_t *spa, vdev_t *vd);

new usr/src/uts/comon/ fs/zfs/sys/vdev. h

107 extern bool ean_t vdev_is_dead(vdev_t *vd);

108 extern bool ean_t vdev_readabl e(vdev_t *vd);

109 extern bool ean_t vdev_writeabl e(vdev_t *vd);

110 extern bool ean_t vdev_al | ocat abl e(vdev_t *vd);

111 extern bool ean_t vdev_accessi bl e(vdev_t *vd, zio_t *zio);

113 extern void vdev_cache_init(vdev_t *vd);
114 extern void vdev_cache_fini (vdev_t *vd);
115 extern bool ean_t vdev_cache_read(zio_t *zio);
116 extern void vdev_cache_wite(zio_t *zio);
117 extern voi d vdev_cache_purge(vdev_t *vd);

119 extern void vdev_queue_init(vdev_t *vd);
120 extern void vdev_queue_fini (vdev_t *vd);
121 extern zio_t *vdev_queue_io(zio_t *zio);
122 extern void vdev_queue_i o_done(zio_t *zio);

124 extern void vdev_config_dirty(vdev_t *vd);

125 extern void vdev_config_cl ean(vdev_t *vd);

126 extern int vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg,
127 bool ean_t);

129 extern void vdev_state_dirty(vdev_t *vd);
130 extern void vdev_state_cl ean(vdev_t *vd);

132 typedef enum vdev_config_flag {

133 VDEV_CONFI G_ SPARE = 1 << 0,
134 VDEV_CONFI G L2CACHE = 1 << 1,

135 VDEV_CONFI G_REMOVI NG = 1 << 2
136 } vdev_config_flag_t;

138 extern void vdev_top_config_generate(spa_t *spa, nvlist_t *config);
139 extern nvlist_t *vdev_config_generate(spa_t *spa, vdev_t *vd,

140 bool ean_t getstats, vdev_config_flag_t flags);
142 | *

143 * Label routines

144 */

145 struct uberbl ock;

)8

146 extern uint64_t vdev_| abel _offset(uint64_t psize, int I, uint64_t offset);
147 extern int vdev_| abel _number (uint64_t psise, uint64_t offset);

148 extern nvlist_t *vdev_| abel _read_confi g(vdev_t *vd, uint64_t txg);

149 extern void vdev_uberbl ock_Toad(vdev_t *, struct uberblock *, nvlist_t
151 typedef enum {

152 VDEV_LABEL_CREATE, /* create/add a new device */

153 VDEV_LABEL_REPLACE, /* replace an existing device */

154 VDEV_LABEL_SPARE, /* add a new hot spare */

155 VDEV_LABEL_REMOVE, /* renpve an existing device */

156 VDEV_LABEL_L2CACHE, /* add an L2ARC cache device */

157 VDEV_LABEL_SPLI T /* generating new | abel for split-off

158 } vdev_l abel type_t;

160 extern int vdev_|abel _init(vdev_t *vd, uint64_t txg, vdev_|abeltype_t
162 #ifdef __ cplusplus

163 }

164 #endi f

166 #endif /* _SYS VDEV H */

dev */

reason);

new usr/src/uts/comon/fs/zfs/vdev.c

R R R R

89413 Thu COct 16 19:15:52 2014
new usr/src/uts/ comon/fs/zfs/vdev.c

zpool

i nport speedup

R R R R

__unchanged_portion_onitted_

175 int

176 vdev_count _| eaves_i npl (vdev_t *vd)

177 {

178 vdev_t *nvd;

179 int n=0;

181 if (vd->vdev_children == 0)

182 return (1);

184 (int ¢ = 0; ¢ < vd->vdev_children; c++

185 n += vdev_count | eaves_i npl (vd >vdev_child[c]);
187 return (n);

188 }

190 int

191 vdev_count _| eaves(spa_t *spa)

192 {

193 return (vdev_count _| eaves_i npl (spa->spa_root_vdev));
194 }

196 #endif /* | codereview */

197 void

198 vdev_add_chil d(vdev_t *pvd, vdev_t *cvd)

199 {

200 size_t ol dsize, newsize;

201 uinté4_t id = cvd- >vdev_i d;

202 vdev_t **newchi | d;

204 ASSERT(spa_confi g_hel d(cvd- >vdev _spa, SCL_ALL, RWWRITER) == SCL_ALL);
205 ASSERT(cvd- >vdev_parent == LL);

207 cvd- >vdev_parent = pvd;

209 if (pvd == NULL)

210 return;

212 ASSERT(i d >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
214 ol dsi ze = pvd->vdev_children * sizeof (vdev_t *);

215 pvd- >vdev_ch| I dren = MAX(pvd->vdev_children, id + 1);
216 newsi ze = pvd->vdev_chil dren * sizeof (vdev_t *);
218 newchi |l d = kmem zal | oc(newsi ze, KM SLEEP);

219 if (pvd->vdev_child != NULL)

220 bcopy(pvd->vdev_child, newchild, oldsize);
221 kmem free(pvd->vdev_child, oldsize);

222 }

224 pvd- >vdev_child = newchil d;

225 pvd->vdev_child[id] = cvd;

227 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
228 ASSERT(cvd- >vdev_t op- >vdev_par ent - >vdev_parent == NULL);
230 /*

231 * Walk up all ancestors to update guid sum

232 */

233 for (; pvd != NULL; pvd = pvd->vdev_parent)

new usr/src/uts/comon/fs/zfs/vdev.c

234
235 }

237 void

238 vdev_renove_chil d(vdev_t

239 {
240
241

243

245
246

248
249

251
252

254
255
256

258
259
260
261
262

264
265
266
267
268
269 }

271 | *

pvd- >vdev_gui d_sum += cvd- >vdev_gui d_sum

int c;

*pvd,

uint_t id = cvd->vdev_id;

ASSERT(cvd- >vdev_parent ==

if (pvd == NULL)
return;

vdev_t *cvd)

pvd);

ASSERT(i d < pvd->vdev_children);
ASSERT(pvd- >vdev_chi I d[id]

pvd- >vdev_chi | d[i d]

== cvd);

= NULL;
cvd- >vdev_parent = NULL;

(c = 0; c < pvd->vdev_children; c++)
if (pvd->vdev_child[c])
break;

if (c == pvd->vdev_children) {
kmem free(pvd->vdev_child, ¢ * sizeof (vdev_t *));
pvd- >vdev_child =
pvd- >vdev_chi | dren

/*

NULL;
= 0;

* Walk up all ancestors to update guid sum
*

for (; pvd !'= NULL; pvd = pvd->vdev_parent)
pvd->vdev_gui d_sum - = cvd->vdev_gui d_sum

272 * Renove any holes in the child array.

273 */
274 void

275 vdev_conpact _chil dren(vdev_t

276 {
277
278
279

283
284
285

289
290
291
292
293
294

296
297
298
299 }

vdev_t **newchild,

*

*pvd)

cvd;

int oldc = pvd->vdev_children;

int newc;

ASSERT(spa_confi g_hel d(pvd- >vdev_spa, SCL_ALL, RWWRI TER)

(int
i

-0

=new = 0; c <
(pvd->vdev_child[c])

newc++;

ol dc; c++)

newchild = kmem al | oc(newc * sizeof (vdev_t *), KM SLEEP);

for (int ¢ =

we = 0; ¢ <

ol dc; c++

) |
|f ((cvd = pvd- >vdev chlld[c]) 1= NULL) {
newchi | d[newc] = cvd;
cvd->vdev_i d = newc++;

}

kmem f ree(pvd- >vdev child,
pvd->vdev_child = newchild;

pvd->vdev_chil dr en

newc;

oldc * sizeof (vdev_t *));

== SCL_ALL);

new usr/src/uts/comon/fs/zfs/vdev.c

301 /*

302 * Allocate and minimally initialize a vdev_t.

303 */

304 vdev_t *

305 vdev_al | oc_comon(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
306 {

307 vdev_t *vd;

309 vd = knem zal | oc(si zeof (vdev_t), KM SLEEP);

311 if (spa->spa_root_vdev == NULL) {

312 ASSERT(ops == &vdev_r oot _ops);

313 spa- >spa_r oot _vdev = vd;

314 spa- >spa_|l oad_gui d = spa_generat e_gui d(NULL) ;

315 }

317 if (guid == 0 & ops != &vdev_hol e_ops) {

318 if (spa->spa_root_vdev == vd) {

319 /*

320 * The root vdev's guid will also be the pool guid,
321 * which nust be unique anong all pools.
322 */

323 gui d = spa_generate_gui d(NULL) ;

324 } else {

325 /*

326 * Any other vdev’'s guid nust be unique within the pool.
327 */

328 guid = spa_generate_guid(spa);

329

330 ASSERT(! spa_gui d_exi st s(spa_gui d(spa), guid));

331 1

333 vd- >vdev_spa = spa;

334 vd->vdev_id = id;

335 vd->vdev_gui d = guid;

336 vd- >vdev_gui d_sum = gui d;

337 vd- >vdev_ops = ops;

338 vd->vdev_state = VDEV_STATE CLOSED;

339 vd->vdev_i shol e = (ops == &dev_hol e_ops);

341 mut ex_i ni t (&d->vdev_dt| _l ock, NULL, MJTEX_DEFAULT, NULL);
342 mut ex_i ni t (& d->vdev_stat | ock, NULL, MJUTEX DEFAULT, NULL);
343 mut ex_i mt(&vd >vdev_pr obe Iock NULL MUTEX_DEFAULT, NULL)
344 for (int t =0; t < DIL_TYPES; t++) {

345 vd- >vdev_dt| [t] = range_tree_create(NULL, NULL,

346 &vd->vdev_dt| _| ock);

347 1

348 txg_list_create(&d->vdev_ns_list,

349 of fsetof (struct netaslab, nms_txg_node));

350 txg_list_create(&d->vdev dti list,

351 of f set of (struct vdev, vdev_dtl _node));

352 vd->vdev_stat.vs_tinestanp = gethrtime();

353 vdev_queue_i ni t(vd);

354 vdev_cache_ini t(vd);

356 return (vd);

357 }

359 /*

360 * Allocate a new vdev. The ’'alloctype’ is used to control whether we are
361 * creating a new vdev or |oading an existing one - the behavior is slightly
362 * different for each case.

363 */

364 int

365 vdev_al l oc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,

new usr/src/uts/comon/fs/zfs/vdev.c

366

367 {

368
369
370
371

373

375
376

378
379

381
382
383
384
385
386

388
389
390

392
393
394
395
396
397
398
399
400
401
402
403

405
406
407
408
409

411
412
413
414
415
416
417

419
420

422
423
424
425
426
427
428
429
430
431

int alloctype)

vdev_ops_t *ops;

char *type;

uint64_t guid = 0, islog, nparity;
vdev_t *vd;

ASSERT(spa_config_hel d(spa, SCL_ALL, RWWRI TER) == SCL_ALL);

if (nvlist_lookup_string(nv, ZPOOL_CONFI G TYPE, &type) != 0)
return (SET_ERROR(EI NVAL));

if ((ops = vdev getops(type)) == NULL)
return (SET_ERROR(E)),

/*
* |f this is a load, get the vdev guid fromthe nvlist.
* Ot herwi se, vdev_alloc_common() w il generate one for us.
*/
if (alloctype == VDEV_ALLOC LQOAD) {
uint64_t | abel _id;

if (nvlist_|ookup_uint64(nv, ZPOOL_CONFI G ID, & abel _id) ||
label _id !'=1d)
return (SET_ERROR(EI NVAL));

if (nvlist_|ookup_uint64(nv, ZPOOL_CONFIG GUI D, &guid) != 0)
refurn (SET_ERROR(EINVAL));
} else if (alloctype == VDEV_ALLOC_SPARE) {
if (nvlist_lookup_uint64(nv, ZPOOL_CONFI G GUID, &guid) != 0)
return (SET_ERROR(EI NVAL));
} else if (alloctype == VDEV_ALLOC L2CACHE) {
if (nvlist_lookup_uint64(nv, ZPOOL_CONFI G GUID, &guid) != 0)
return (SET_ERROR(El NVAL)) ;
} else if (alloctype == VDEV_ALLCC ROOTPCD_)
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG GUI D, &guid) != 0)
refurn (SET_ERROR(EI NVAL)):

}

*

* The first allocated vdev nmust be of type 'root’.

*/

if (ops != &dev_root_ops && spa->spa_root_vdev == NULL)
return (SET_ERROR(EI NVAL));

/*
* Determ ne whether we’'re a | og vdev.

*/
log = 0;
oi d) nvi i st _l ookup_ui nt64(nv, ZPOOL_CONFI G |S_LOG, &islog);
(islog & spa_version(spa) < SPA VERSI ON_SLOGS)
return (SET_ERROR(ENOTSUP)) ;

if (ops == &dev_hol e_ops && spa_version(spa) < SPA_VERSI ON_HOLES)
return (SET_ERROR(ENOTSUP));

is
(v
i f

/*
*/Set the nparity property for RAID Z vdevs.
*
nparity = -1ULL;
if (ops == &dev_raidz_ops) {
if (nvlist_lookup_uint64(nv, ZPOOL_CONFI G NPARITY,
&nparity))
if (nparity == 0 || nparity > VDEV_RAI DZ_NMAXPARI TY)
return (SET_ERROR(EI NVAL));
/*

new usr/src/uts/comon/fs/zfs/vdev.c 5
432 * Previous versions could only support 1 or 2 parity
433 * device.
434 */
435 if (nparity > 1 &&
436 spa_version(spa) < SPA VERS|I ON_RAI DZ2)
437 return (SET_ERROR(ENOTSUP));
438 if (nparity > 2 &&
439 spa_version(spa) < SPA VERS|I ON_RAI DZ3)
440 return (SET_ERROR(ENOTSUP));
441 } else {
442 /*
443 * W require the parity to be specified for SPAs that
444 * support nultiple parity |evels.
445 */
446 if (spa_version(spa) >= SPA VERS|I ON_RAI DZ2)
447 return (SET_ERROR(EINVAL));
448 /*
449 * Otherwise, we default to 1 parity device for RAID Z
450 */
451 nparity = 1;
452
453 } else {
454 nparity =
455 }
456 ASSERT(nparity != -1ULL);
458 vd = vdev_al |l oc_common(spa, id, guid, ops);
460 vd->vdev_i sl og = islog;
461 vd->vdev_nparity = nparity;
463 if (nvlist_lookup_string(nv, ZPOOL_CONFI G PATH, &vd->vdev_path) == 0)
464 vd- >vdev_pat h = spa_strdup(vd->vdev_path);
465 if (nvlist_lookup_string(nv, ZPOOL_CONFI G DEVI D, &vd->vdev_devid) == 0)
466 vd->vdev_devi d = spa_strdup(vd->vdev_devid);
467 if (nvlist_lookup_string(nv, ZPOOL_CONFI G PHYS_PATH,
468 &vd- >vdev_physpat h) == 0)
469 vd- >vdev_physpath = spa_strdup(vd->vdev_physpath);
470 if (nvlist_lookup_string(nv, ZPOOL_CONFI G FRU, &vd->vdev_fru) == 0)
471 vd->vdev_fru = spa_strdup(vd->vdev_fru);
473 /*
474 * Set the whol e_di sk property. |If it’s not specified, |eave the value
475 * as -1.
476 */
477 if (nvlist_|ookup_uint64(nv, ZPOOL_CONFI G WHOLE_ DI SK,
478 &vd- >vdev_whol edi sk) !'= 0)
479 vd- >vdev_whol edi sk = - 1ULL;
481 /*
482 * Look for the "not present’ flag. This will only be set if the device
483 * was not present at the time of inport.
484 *
485 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFI G _NOT_PRESENT,
486 &vd- >vdev_not _present);
488 I*
489 * Cet the alignnent requirenent.
490 */
491 (void) nvlist_| ookup_uint64(nv, ZPOOL_CONFI G ASHI FT, &vd->vdev_ashift);
493 /*
494 * Retrieve the vdev creation tine.
495 */
496 (void) nvlist | ookup uint64(nv, ZPOOL_CONFI G CREATE TXG
497 &vd->vdev_crtxg);

new usr/src/uts/comon/fs/zfs/vdev.c

499
500
501
502
503
504
505
506
507
508
509
510
511
512

514
515
516
517
518
519
520
521

523
524
525
526
527
528
529
530
531
532
533
534

536
537

539
540
541
542

544
545

547
548

550
551
552,
553
554
555
556
557
558
559
560
561
562

/*
*/If we're a top-level vdev, try to load the allocation paraneters.
*
if (parent && !parent->vdev_parent &&
(alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLCC SPLIT)) {
(void) nvlist_Tookup_uint64(nv, ZPOO._CONFI G METASLAB ARRAY,
&vd- >vdev_ns _array);
(void) nvlist_| ookup_uint64(nv, ZPOOL_CONFI G METASLAB_SHI FT,
&vd->vdev_ns _shift);
(void) nvlist_| ookup_ui nt 64(nv, ZPOOL_CONFI G_ASI ZE,
&vd- >vdev_asi ze);
(void) nvlist_| ookup_ui nt 64(nv, ZPOOL_CONFI G_REMOVI NG,
&vd- >vdev_renovi ng) ;

}

if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC ATTACH) {
ASSERT(al | oct ype == VDEV_ALLOC _LOAD ||
al | octype == VDEV_ALLOC _ADD | |
al l oct ype == VDEV_ALLOC SPLIT ||
al | octype == VDEV_ALLOC_ROOTPOQL) ;
vd->vdev_ng = netasl ab_group_create(islog ?
spa_l og_cl ass(spa) : spa_nornual _class(spa), vd);

}

/*
* |If we're a leaf vdev, try to |load the DIL object and other state.
*
/
if (vd->vdev_ops->vdev_op_| eaf &&
(al l octype == VDEV_ALLOC LOAD || alloctype == VDEV_ALLOC_L2CACHE | |
al | octype == VDEV_ALLOC ROOTPOOL)) {
if (alloctype == VDEV_ALLCC . LOAD) {
(void) nvlist_| ookup_uint64(nv, ZPOOL_CONFI G DTL,
&vd->vdev_dt| _object);
(void) nvlist_lookup_uint 64(nv, ZPOOL_CONFI G_UNSPARE,
&vd- >vdev_unspare);

}

if (alloctype == VDEV_ALLOC ROOTPOCL) ({
uint64_t spare = 0;

if (nvlist_lookup_uint64(nv, ZPOOL_CONFI G | S_SPARE,
&spare) == 0 && spare)
spa_spar e_add(vd);
}

(void) nvlist_|ookup_uint64(nv, ZPOOL_CONFI G _OFFLI NE,
&vd- >vdev_of fline);

(void) nvlist_|ookup_uint64(nv, ZPOOL_CONFI G RESI LVER TXG
&vd->vdev_resilver_txg);

When inporting a pool, we want to ignore the persistent fault
state, as the diagnosis nade on another system may not be
valid in the current context. Local vdevs will

remain in the faulted state.

* ok ok kX %

if (spa_l oad_state(spa) == SPA LOAD COPEN) {
(void) nvlist_|ookup_uint64(nv, ZPOOL_CONFI G _FAULTED,
&vd->vdev_faul ted);
(void) nvlist_|ookup_uint64(nv, ZPOOL_CONFI G _DEGRADED,
&vd- >vdev_degr aded) ;
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFI G_REMOVED,
&vd- >vdev_r enoved) ;

new usr/src/uts/comon/fs/zfs/vdev.c

564
565

567
568
569
570
571
572
573
574
575

577
578
579
580

582

584
585

587 void
vdev_free(vdev_t *vd)
{

588
589
590

592
593
594
595
596

598
599

601
602
603
604
605

607
608

610
611
612
613
614
615
616

618
619
620

622
623
624
625
627

629

if (vd->vdev_faulted || vd->vdev_degraded) {
char *aux;

vd->vdev_| abel _aux =
VDEV_AUX_ERR EXCEEDED

if (nvlist_|lookup_string(nv,
ZPOOL_CONFI G AUX_STATE, &aux) == 0 &&
strcnp(aux, "external") ==

)
vd- >vdev_| abel _aux = VDEV_AUX_EXTERNAL;

}

/*

* Add ourselves to the parent’s list of children.
*

vdev_add_chi |l d(parent, vd);

*vdp =

return (0);

spa_t *spa = vd->vdev_spa;
*

* vdev_free() inplies closing the vdev first. This is sinpler than
* trying to ensure conplicated semantics for all callers.
*

vdev_cl ose(vd);

ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
ASSERT(!list_link_active(&vd->vdev_state_dirty_node));

/*
* Free all children.
*

for (int ¢ = 0; ¢ < vd->vdev_children; c++)
vdev_free(vd->vdev_child[c]);

ASSERT(vd- >vdev_child == NULL)
ASSERT(vd- >vdev_gui d_sum == vd- >vdev_gui d);

/*
* Discard allocation state.
*

if (vd->vdev_ng != NULL) {
vdev_netasl ab_fini (vd);
nmet asl ab_gr oup_dest roy(vd->vdev_ng) ;

}

ASSERTO(vd- >vdev_st at. vs_space);
ASSERTO(vd- >vdev_st at . vs_dspace) ;
ASSERTO(vd- >vdev_stat.vs_all oc);

/*
* Renove this vdev fromits parent’s child |list.
*/

vdev_renove_chi | d(vd- >vdev_parent, vd);

ASSERT(vd- >vdev_parent == NULL);

| *

new usr/src/uts/comon/fs/zfs/vdev.c

630 * Clean up vdev structure.

631 */

632 vdev_queue_fini (vd);

633 vdev_cache_fini (vd);

635 if (vd->vdev_path)

636 spa_strfree(vd->vdev_path);

637 if (vd->vdev_devid)

638 spa_strfree(vd->vdev_devid);

639 if (vd->vdev_physpat h)

640 spa_strfree(vd->vdev_physpath);
641 if (vd->vdev_fru)

642 spa_strfree(vd->vdev_fru);

644 if (vd->vdev_isspare)

645 spa_spare_renove(vd);

646 if (vd- >vdev I sl 2cache)

647 spa_l 2cache_renove(vd);

649 txg_list_destroy(&vd->vdev_ns_list);

650 txg_list_destroy(&d->vdev_dtT _|ist);
652 mut ex_ent er (& d- >vdev_dt| _I| ock);

653 space_map_cl ose(vd->vdev_dt| _sm;

654 for (int T =0; t < DIL_TYPES; t++)

655 range_tree_vacat e(vd->vdev_dtl[t], NULL,
656 range_tree_destroy(vd->vdev_dtl[t]);
657 }

658 mut ex_exi t (&d->vdev_dt ! _| ock);

660 mut ex_dest roy(& d->vdev_dtl _I ock);

661 mut ex_dest r oy(& d- >vdev_st at Iock)

662 mut ex_dest r oy(& d- >vdev_pr obe_ Iock)

664 if (vd == spa->spa_root_vdev)

665 spa- >spa_root _vdev = NULL;

667 kmem free(vd, sizeof (vdev_t));

668 }

670 /*

671 * Transfer top-level vdev state fromsvd to tvd.
672 */

673 static void

674 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)

675 {

676 spa_t *spa = svd->vdev_spa;

677 met asl ab_t *msp;

678 vdev_t *vd;

679 int t;

681 ASSERT(tvd == tvd->vdev_top);

683 tvd->vdev_ns_array = svd->vdev_ns_array;
684 tvd- >vdev_ns_shift = svd->vdev_ns_shift;
685 tvd- >vdev_ns_count = svd->vdev_ns_count;
687 svd->vdev_ns_array = 0;

688 svd->vdev_ns_shift = 0;

689 svd- >vdev_ns_count = O;

691 if (tvd->vdev_ng)

692 ASSERT3P(t vd->vdev_ng, ==, svd->vdev_ng);
693 tvd->vdev_ng = svd- >vdev_ny;

694 tvd->vdev_nms = svd->vdev_ns;

NULL) ;

new usr/src/uts/comon/fs/zfs/vdev.c

696 svd->vdev_ng = NULL;

697 svd->vdev_ns = NULL;

699 if (tvd->vdev_ng != NULL)

700 tvd- >vdev_ng->ng_vd = tvd;

702 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;

703 tvd- >vdev_stat.vs_space = svd->vdev_stat.vs_space;

704 tvd- >vdev_st at.vs_dspace = svd->vdev_stat.vs_dspace;

706 svd->vdev_stat.vs_alloc = 0;

707 svd- >vdev_st at.vs_space = 0;

708 svd->vdev_stat.vs_dspace = 0;

710 for (t = 0; t < TXG SIZE, t++) {

711 V\hlle((n'sp—txghst _renove(&svd->vdev_ns_list, t))
712 (void) txg_list_add(& vd->vdev_ms_list, nsp,
713 while ((vd = txg_Iist_renove(&svd->vdev_dtl Ilst, t))
714 (void) txg_ list_add(& vd->vdev_dtl _Tist, vd, t);
715 if (txg_list_renpve_this(&spa->spa_vdev_txg_list, svd,
716 (void) txg_Tist_add(&spa->spa_vdev_txg_list, tvd,
717 }

719 if (list_link_active(&svd->vdev_config_dirty_node)) {

720 vdev_config_cl ean(svd);

721 vdev_config_dirty(tvd);

722 }

724 if (list_link_active(&vd->vdev_state_dirty_node)) {

725 vdev_state_cl ean(svd);

726 vdev_state_dirty(tvd);

727 1

729 tvd->vdev_defl ate_ratio = svd->vdev_deflate_ratio;

730 svd->vdev_deflate_ratio = 0;

732 tvd->vdev_i sl og = svd->vdev_i sl og;

733 svd->vdev_i sl og = O;

734 }

736 static void

737 vdev_top_update(vdev_t *tvd, vdev_t *vd)

738 {

739 if (vd == NULL)

740 return;

742 vd- >vdev_top = tvd;

744 for (int ¢ = 0; ¢ < vd->vdev_children; c++)

745 vdev_t op_updat e(tvd, vd->vdev_child[c]);

746 }

748 | *

749 * Add a mirror/replacing vdev above an existing vdev.

750 */

751 vdev_t *

752 vdev_add_parent (vdev_t *cvd, vdev_ops_t *ops)

753 {

754 spa_t *spa = cvd->vdev_spa;

755 vdev_t *pvd = cvd->vdev_parent;

756 vdev_t *nvd;

758 ASSERT(spa_confi g_hel d(spa, SCL_ALL, RWWRI TER) == SCL_ALL);
760 mvd = vdev_al |l oc_common(spa, cvd->vdev_id, 0, ops);

new usr/src/uts/comon/fs/zfs/vdev.c

762
763
764
765
766
767

769
770
771
772
773

775
776

778
779

781 | *
* Renpve a l-way mirror/replacing vdev fromthe tree.
*/

782
783

784 void

}

nmvd- >vdev_asi ze = cvd->vdev_asi ze;

mvd- >vdev_mi n_asi ze = cvd->vdev_ni n_asi ze;
mvd- >vdev_nax_asi ze = cvd->vdev_nex_asi ze;
nmvd- >vdev_ashi ft = cvd->vdev_ashift;

nmvd- >vdev_state = cvd->vdev_state;

mvd- >vdev_crtxg = cvd->vdev_crtxg;

vdev_renove_chil d(pvd, cvd);

vdev_add_chi |l d(pvd, nvd);

cvd->vdev_id = nvd->vdev_chil dren;
vdev_add_chi | d(nvd, cvd);

vdev_t op_updat e(cvd- >vdev_t op, cvd->vdev_top);

if (mvd == nvd->vdev_t op)
vdev_top_transfer(cvd, nmvd);

return (nvd);

785 vdev_renove_parent (vdev_t *cvd)
786 {

787
788

790

792
793
794
795
796

798
799

801
802
803
804
805
806
807
808
809
810
811
812
813
814
815

817
818

820
821
822

824

}

int

vdev_t *mvd = cvd->vdev_parent;
vdev_t *pvd = nvd->vdev_parent;

ASSERT(spa_confi g_hel d(cvd->vdev_spa, SCL_ALL, RWWRI TER)

ASSERT(nvd- >vdev_chi | dren == 1);

ASSERT(mvd- >vdev_ _ops == &vdev_mrror_ops ||
mvd- >vdev_ops == &vdev_repl aci ng_ops ||
nmvd- >vdev_ops == &vdev_spare_ops);

cvd->vdev_ashift = r’rvd >vdev_ashift;

vdev_renove_chil d(nmvd, cvd);
vdev_renove_chil d(pvd, mvd);

/
If cvd will replace nvd as a top-level vdev, preserve nvd' s guid.
O herwi se, we coul d have detached an offline device, and when we
go to inmport the pool we'll think we have two top-Ievel vdevs,
instead of a different version of the sane top-Ilevel vdev.

* Ok ok ok ko
-~

if (mvd->vdev_top == nvd) {
uint64_t guid_delta = nvd->vdev_guid - cvd->vdev_gui d;
cvd->vdev_orig_guid = cvd->vdev_gui d;
cvd- >vdev_gui d += gui d_del t a;
cvd->vdev_gui d_sum += gui d_del t a;

cvd->vdev_id = nvd->vdev_i d;
vdev_add_chi | d(pvd, cvd);
vdev_t op_updat e(cvd- >vdev_t op, cvd->vdev_top);

if (cvd == cvd->vdev_top)
vdev_top_transfer(nvd, cvd);

ASSERT(nvd- >vdev_chi | dren == 0);
vdev_free(nvd);

825 vdev_netasl ab_i nit(vdev_t *vd, uint64_t txg)
826 {

827

spa_t *spa = vd->vdev_spa;

== SCL_ALL);

10

new usr/src/uts/comon/fs/zfs/vdev.c

828
829
830
831
832
833

835

837
838
839
840
841

843

845
846
847
848
849
850
851
852

854
856

858
859
860
861

863
864

866
867

869
870
871
872
873
874
875
876
877

879
880

882
883
884
885
886
887
888

890
891

893

obj set _t *nps
uint64_t m
uint64_t oldc = vd->vdev_ns_count;

uint64_t newc = vd->vdev_asi ze >> vd->vdev_ns_shift;
net asl ab_t **nspp;

int error;

spa- >spa_net a_obj set;

ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RWWRI TER));

/*
* This vdev is not being allocated fromyet or is a hole.
*
/
if (vd->vdev_ns_shift == 0)
return (0);

ASSERT(! vd- >vdev_i shol e) ;

/
Conpute the raidz-deflation ratio. Note, we hard-code
in 128k (1 << 17) because it is the current "typical" bl ocksize.
Even if SPA_MAXBLOCKSI ZE changes,
or we Wi ll inconsistently account for existing bp’s.
/
vd->vdev_defl ate_ratio = (1 << 17) /

(vdev_psi ze_to_asi ze(vd 1 << 17) >> SPA_M NBLOCKSHI FT) ;

* ok ok ok F ok

ASSERT(ol dc <= newc);

nepp = knem zal | oc(newc * sizeof (*nspp), KM SLEEP);

if (oldc !'= 0)
bcopy(vd->vdev_ns, nspp, oldc * sizeof (*nspp));
kmem free(vd- >vdev ns, oldc * sizeof (*nspp));

}

vd->vdev_ns = nspp;
vd- >vdev_ns_count = newc;

for (m= oldc; m< newc; mt+) {
uint64_t object = O;

if (txg == 0)
error = dmu_read(nos,
m* sizeof (uint64_t),
DMJ_READ PREFETCH) ;
if (error)
return (error);

vd->vdev_ns_arr ay,
sizeof (uint64_t),

}
vd->vdev_ns[n] = netaslab_init(vd->vdev_ng, m object, txg);

}

if (txg == 0)
spa_config_enter(spa, SCL_ALLOC, FTAG RWWRI TER);

/*

* If the vdev is being renbved we don’t activate

* the netaslabs since we want to ensure that no new
* allocations are perforned on this device.

*/
if (oldc == 0 && !vd->vdev_renovi ng)

nmet asl ab_group_acti vat e(vd- >vdev_ng) ;
if (txg ==

)
spa_config_exit(spa, SCL_ALLCC, FTAG);
return (0);

this al gorithm nmust never change,

&obj ect ,

11

new usr/src/uts/comon/fs/zfs/vdev.c 12
894 }

896 void

897 vdev_netasl ab_fini (vdev_t *vd)

898 {

899 uint64_t m

900 uint64_t count = vd->vdev_mns_count;

902 if (vd->vdev_ns != NULL)

903 met asl ab_gr oup_passi vat e(vd- >vdev_ng) ;
904 for (m=0; m< count; mt+)

905 netaslab_t *msp = vd->vdev_ns[nj;
907 if (msp !'= NULL)

908 met asl ab_fini (nmsp);

909 }

910 kmem free(vd->vdev_ns, count * sizeof (metaslab_t *));
911 vd->vdev_ns = NULL;

912 1

913 }

915 typedef struct vdev_probe_stats {

916 bool ean_t vps_readabl e;

917 bool ean_t vps_writeabl e;

918 int vps_fl ags;

919 } vdev_probe_stats_t;

921 static void

922 vdev_probe_done(zio_t *zio)

923 {

924 spa_t *spa = zio->i 0_spa;

925 vdev_t *vd = zio->i 0_vd;

926 vdev_probe_stats_t *vps = zio->io_private;

928 ASSERT(vd- >vdev_probe_zio ! = NULL);

930 if (zio->io_type == ZI O TYPE_READ) ({

931 if (zio->io_error == 0)

932 vps->vps_readable = 1;

933 if (zio->o_error == 0 && spa_writeabl e(spa)) {

934 zio_nowai t (zi o_write_phys(vd->vdev_probe_zio, vd,
935 zi 0o->i o_of fset, zio->io_size, zio->io_data,
936 ZI O_CHECKSUM_ CFF vdev_probe_done, vps,
937 ZI O PRI ORI TY_SYNC WRI TE, vps->vps_flags, B TRUE));
938 } else {

939 zi o_buf _free(zio->io_data, zio->io_size);

940 }

941 } else if (zio->o_type == ZIO TYPE WRI TE) {

942 if (zio->io_error == 0)

943 vps->vps_writeable = 1;

944 zi o_buf _free(zio->io_data, zio->io_size);

945 } elseif (2|o >io_type == ZIO TYPE_NULL) {

946 zio_t *pio;

948 vd- >vdev_cant _read | = !vps->vps_readabl e;

949 vd->vdev_cant_wite |= !vps->vps_witeable;

951 if (vdev_readabl e(vd) &&

952 (vdev_writeable(vd) || !'spa_witeable(spa))) {

953 zio->o_error = 0;

954 } else {

955 ASSERT(zi o->io_error != 0);

956 zfs_ereport _post (FM EREPORT_ZFS_PROBE_FAI LURE,
957 spa, vd, NULL, O, 0);

958 zio->0_error = SET_ERROR(ENXI O ;

959 }

new usr/src/uts/comon/fs/zfs/vdev.c

961 mut ex_ent er (&vd- >vdev_probe_| ock) ;

962 ASSERT(vd- >vdev probe zio == zio);

963 vd- >vdev_probe_zio = NULL;

964 mut ex_exi t (&d- >vdev_pr obe_l ock) ;

966 while ((pio = zio_wal k_parents(zio)) != NULL)

967 i f (!vdev_accessible(vd, pio))

968 pio->io_error = SET_ERROR(ENXI O);

970 kmem free(vps, sizeof (*vps));

971 }

972 }

974 | *

975 * Determ ne whether this device is accessible.

976 *

977 * Read and wite to several known |ocations: the pad regions of each

978 * vdev |l abel but the first, which we |eave alone in case it contains

979 * a VICC,

980 */

981 zio_t *

982 vdev_probe(vdev_t *vd, zio_t *zio)

983 {

984 spa_t *spa = vd->vdev_spa;

985 vdev_probe_stats_t *vps = NULL;

986 zio_t *pio;

988 ASSERT(vd- >vdev_ops->vdev_op_| eaf);

990 /*

991 * Don’'t probe the probe.

992 ki

993 if (zio & (zio->io_flags & ZI O FLAG PROBE))

994 return (NULL);

996 /*

997 * To prevent "probe stornms’ when a device fails, we create

998 * just one probe i/o at a time. Al zios that want to probe

999 * this vdev will becone parents of the probe io.

1000 */

1001 nmut ex_ent er (&vd- >vdev_probe_| ock) ;

1003 if ((pio = vd->vdev_probe_zio) == NULL) {

1004 vps = kNBWIZa||OC(SIZeOf (vps), KM SLEEP)

1006 vps->vps_flags = ZI O FLAG CANFAIL | ZI O FLAG PROBE

1007 ZI O FLAG DONT_CACHE |~ ZI O FLAG DONT_AGGREGATE |

1008 Zl O_FLAG_TRYHARD;

1010 if (spa_config_held(spa, SCL_ZIO RWWRI TER)) {

1011 /*

1012 * vdev_cant _read and vdev_cant_wite can only
1013 * transition from TRUE to FALSE when we have the
1014 * SCL_ZIO lock as witer; otherwi se they can only
1015 * transition fromFALSE to TRUE. This ensures that
1016 * any zio |ooking at these values can assune that
1017 * failures persist for the life of the I/O That's
1018 * inportant because when a device has intermittent
1019 * connectivity problens, we want to ensure that
1020 * they're ascribed to the device (ENXIO and not
1021 * the zio (EIO.

1022 *

1023 * Since we hold SCL_ZIO as writer here, clear both
1024 * val ues so the probe can reevaluate fromfirst
1025 * principles

13

new usr/src/uts/comon/fs/zfs/vdev.c

1026
1027
1028
1029
1030

1032
1033
1034

1036
1037
1038
1039
1040
1041
1042
1043
1044

1046
1047

1049

1051
1052
1053
1054

1056
1057
1058
1059
1060
1061
1062
1063

1065
1066

1068
1069
1070

1072

*/
vps->vps_flags |= ZI O FLAG_CONFI G_ VRl TER,
vd->vdev_cant _read = B_FALSE;
vd->vdev_cant _wite = B_FALSE;

}

vd- >vdev_probe_zio = p
vdev_probe_done, vp
vps->vps_flags | Zl

o = zio_nul I (NULL, spa, vd,
S,
O_FLAG_DONT_PROPAGATE) ;
/*
* W can’t change the vdev state in this context, so
* kick off an async task to do it on our behal f.
*
/

if (zio !'= NULL) {
vd- >vdev_probe_wanted = B TRUE;
spa_async_request (spa, SPA_ASYNC PROBE);

}

if (zio !'= NULL)
zi o_add_chil d(zi o, pio);
mut ex_exi t (&d- >vdev_probe_| ock);

if (vps == NULL) {
ASSERT(zio != NULL);
return (NULL);

}

for (int I =1; | < VDEV_LABELS; |++) {
zi o_nowai t (zi o_read_phys(pio, vd,
vdev_| abel _of f set (vd- >vdev_psi ze, |,
of fset of (vdev_| abel _t, vl _pad2)),
VDEV_PAD SI ZE, zio_buf _al T oc(VDEV PAD_SI ZE) ,
Zl O CHECKSUM OFF, vdev_probe_done, vps
ZI O_PRI ORI TY_SYNC_READ, vps->Vps_ fl ags B_TRUE));

}

if (zio == NULL)
return (pio);
zi o_nowai t (pi 0);
return (NULL);
}

static void

1073 vdev_open_chil d(void *arg)

1074 {

1075 vdev_t *vd = arg;

1077 vd- >vdev_open_t hread = curthread;

1078 vd- >vdev_open_error = vdev open(vd)

1079 vd- >vdev_open_t hread = NULL

1080 }

1082 bool ean_t

1083 vdev_uses_zvol s(vdev_t *vd)

1084 {

1085 if (vd->vdev_path && strncnp(vd->vdev_path, ZVOL_DI R,
1086 strlen(ZVOL_DIR)) == 0

1087 return (B_TRUE);

1088 (int ¢ = 0; ¢ < vd->vdev_children; c++)
1089 if (vdev_uses_zvol s(vd->vdev_child[c]))
1090 return (B_TRUE);

1091 return (B_FALSE);

we

new usr/src/uts/comon/fs/zfs/vdev.c

1092 }

1094 void

1095 vdev_open_chil dren(vdev_t *vd)

1096 {

1097 taskq_t *tq;

1098 int children = vd->vdev_chil dren;

1100 /*

1101 * in order to handl e pools on top of zvols, do the opens
1102 * in a single thread so that the same thread holds the
1103 * spa_nanespace_| ock

1104 *

1105 if (vdev_uses_zvol s(vd)) {

1106 for (int ¢ = 0; c < children; c++)

1107 vd- >vdev_chi I d[c] - Svdev _open_error =
1108 vdev_open(vd->vdev_child[c]);

1109 return;

1110 1

1111 tq = taskg_create("vdev_open", children, mnclsyspri,
1112 children, children, TASKQPREPCPULATE)

1114 for (int ¢ = 0; ¢ < children; c++)

1115 VERI FY(taskq_di spatch(tq, vdev_open_child, vd->vdev_child[c],
1116 TQ SLEEP) != NULL);

1118 taskq_destroy(tq);

1119 }

1121 /*

1122 * Prepare a virtual device for access.

1123 */

1124 int

1125 vdev_open(vdev_t *vd)

1126 {

1127 spa_t *spa = vd->vdev_spa;

1128 int error;

1129 uint64_t osize = 0;

1130 uint64_t max_osize = 0;

1131 uint64_t asize, max_asize, psize;

1132 uint64_t ashift = 0;

1134 ASSERT(vd- >vdev_open_t hread == curthread ||

1135 spa_confi g _hel d(spa, SCL_STATE ALL, RWWRI TER) == SCL_STATE ALL)
1136 ASSERT(vd- >vdev_state == VDEV_STATE | CLOSED |

1137 vd- >vdev_state == VDEV_STATE_CANT_OPEN |

1138 vd- >vdev_state == VDEV_STATE_OFFLINE);

1140 vd- >vdev_stat.vs_aux = VDEV_AUX_NONE;

1141 vd->vdev_cant _read = B_FALSE;

1142 vd->vdev_cant_wite = B _FALSE;

1143 vd->vdev_m n_asi ze = vdev_get_mi n_asi ze(vd);

1145 /*

1146 * |If this vdev is not renpved, check its fault status.
1147 * faulted, bail out of the open.

1148 */

1149 f (!vd->vdev_renoved && vd->vdev_faulted) {

1150 ASSERT(vd- >vdev_chi |l dren == 0);

1151 ASSERT(vd- >vdev_|I abel _aux == VDEV_AUX_ERR_EXCEEDED | |
1152 vd->vdev_| abel _aux == VDEV AUX_EXTERNAL) ;
1153 vdev_set _state(vd, B_TRUE, VDEV_STATE FAULTED
1154 vd->vdev_| abel _aux);

1155 return (SET_| ERRO?(ENXIO));

1156 } else if (vd->vdev_offline) {

1157 ASSERT(vd->vdev_children == 0);

new usr/src/uts/comon/fs/zfs/vdev.c

1158
1159
1160

1162

1164
1165
1166
1167
1168
1169
1170

1172
1173
1174
1175

1177
1178
1179
1180

1182

1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

1197
1198
1199
1200
1201
1202
1203

1205
1206
1207
1208
1209

1211
1212
1213
1214
1215
1216
1217

1219
1220

1222
1223

vdev_set _state(vd, B_TRUE, VDEV_STATE OFFLI NE, VDEV_AUX_NONE);
return (SET_ERROR(ENXIO));

}
error = vd->vdev_ops- >vdev_op_open(vd, &osize, &max_osize, &ashift);

/*

* Reset the vdev_reopening flag so that we actually cl ose
* the vdev on error.

&/

vd- >vdev_r eopeni ng = B_FALSE;
if (zio_injection_enabled & error == 0)
error = zio_handl e_device_injection(vd, NULL, ENXI O;

if (error) {
if (vd->vdev_renpved &&
vd- >vdev_st at.vs_aux != VDEV_AUX_OPEN_FAI LED)
vd->vdev_renpved = B_FALSE;

vdev_set _state(vd, B _TRUE, VDEV_STATE CANT_OPEN
vd- >vdev_st at. vs_aux);
return (error);

}

vd- >vdev_renpbved = B_FALSE;

/*

* Recheck the faulted flag now that we have confirnmed that
* the vdev is accessible. If we're faulted, bail

*/

if (vd->vdev_faulted) {
ASSERT(vd- >vdev_chi |l dren == O)
ASSERT(vd- >vdev_| abel _aux == VDEV AUX_ERR_EXCEEDED | |
vd- >vdev_| abel _aux == VDEV AUX_EXTERNAL) ;
vdev_set _state(vd, B_TRUE, VDEV_STATE_FAULTED
vd->vdev_| abel _aux);
) return (SET_ERROR(ENXIO));

if (vd->vdev_degraded) {
ASSERT(vd- >vdev_chil dren == 0);
vdev_set _state(vd, B_TRUE, VDEV STATE_DEGRADED,
VDEV_AUX_ERR_EXCEEDED) ;
} else {
vdev_set _state(vd, B_TRUE, VDEV_STATE HEALTHY, 0)
}

*

* For hole or m ssing vdevs we just return success.
*/

if (vd->vdev_ishole || vd->vdev_ops == &vdev_ni ssi ng_ops)
return (0);

(int ¢ = 0; ¢ < vd->vdev_children; c++)
if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
vdev_set _state(vd, B_TRUE, VDEV_STATE_ DEGRADED,
VDEV_AUX_NONE) ;
br eak;

}

osi ze = P2ALI G\(osi ze, (uint64_t)sizeof (vdev_label _t));
max_osi ze = P2ALI G\(nex_osi ze, (uint64_t)sizeof (vdev_|abel_t));

if (vd->vdev_children == 0) {
if (osize < SPA_M NDEVSI ZE) {

new usr/src/uts/comon/fs/zfs/vdev.c

1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242

1244

1246
1247
1248
1249
1250
1251
1252
1253

1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277

1279
1280
1281
1282
1283
1284
1285
1286

1288

vdev_set _state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_TOO SMALL) ;
return (SET_ERROR(EOVERFLOW);

psi ze = osi ze;
asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END Sl ZE);
max_asi ze = max_osi ze - (VDEV_LABEL_START_SI ZE +
VDEV_LABEL_END_ SI ZE) ;
} else {
if (vd->vdev_parent != NULL && osize < SPA_M NDEVSI ZE -
(VDEV_LABEL_START_SI ZE + VDEV_LABEL_END SI ZE)) {
vdev_set _state(vd, B TRUE, VDEV_STATE_ CANT_OPEN,
VDEV_AUX_TOO SMALL);
return (SET_ERROR(EOVERFLOW) ;

psize = 0;
asi ze = osize;)
nax_asi ze = max_osi ze;

}
vd- >vdev_psi ze = psi ze;

/*
* Make sure the allocatable size hasn't shrunk.
*
if (asize < vd->vdev_min_asize) {
vdev_set _state(vd, B_TRUE, VDEV_STATE_ CANT_OPEN,
VDEV_AUX_BAD_LABEL) ;
return (SET_ERROR(EINVAL));

}
if (vd->vdev_asize == 0) {
/*
* This is the first-ever open, so use the conputed val ues.
* For testing purposes, a higher ashift can be requested.
*/
vd- >vdev_asi ze = asi ze;
vd- >vdev_nex_asi ze = nmax_asi ze;
vd->vdev_ashi ft = MAX(ashift, vd->vdev_ashift);
} else {
/*
* Detect if the alignment requirenment has increased.
* W don’t want to neke the pool unavail able, just
* jssue a warning instead.
*/
if (ashift > vd->vdev_top->vdev_ashift &&
vd- >vdev_ops->vdev_op_l eaf) {
cmm_er r (CE_WARN,
"Disk, "%’, has a block alignnent that is "
"larger than the pool’s alignnent\n",
vd- >vdev_pat h);
}
vd->vdev_max_asi ze = nmax_asi ze;
}
/*
* If all children are healthy and the asize has increased,
* then we’ ve experienced dynamc LUN growth. |If automatic
* expansion is enabled then use the additional space.
*

if (vd->vdev_state == VDEV_STATE HEALTHY && asi ze > vd->vdev_asi ze &&
(vd->vdev_expandi ng || spa->spa_aut oexpand))
vd- >vdev_asi ze = asi ze;

vdev_set _m n_asi ze(vd);

new usr/src/uts/comon/fs/zfs/vdev.c

1290 /*

1291 * Ensure we can issue sone |O before declaring the

1292 * vdev open for business.

1293 *

1294 if (vd->vdev_ops->vdev_op_| eaf &&

1295 (error = zio_wait(vdev_probe(vd, NULL))) != 0)

1296 vdev_set _state(vd, B TRUE, VDEV_STATE_FAULTED,

1297 VDEV_AUX_ERR_EXCEEDED) ;

1298 return (error);

1299 }

1301 /*

1302 * |f a leaf vdev has a DTL, and seens heal thy, then kick off a
1303 * resilver. But don't do this if we are doing a reopen for a scrub,
1304 * since this would just restart the scrub we are already doing.
1305 */

1306 if (vd->vdev_ops->vdev_op_| eaf && !spa->spa_scrub_reopen &&

1307 vdev_resi | ver_needed(vd, NULL, NULL))

1308 spa_async_request (spa, SPA ASYNC RESI LVER);

1310 return (0);

1311 }

1313 /*

1314 * Called once the vdevs are all opened, this routine validates the |abel
1315 * contents. This needs to be done before vdev_|oad() so that we don’t

1316 * inadvertently do repair I/Gs to the wong device.

1317 *

1318 * If 'strict’ is false ignore the spa guid check. This is necessary because
1319 * if the nmachine crashed during a re-guid the new guid m ght have been witten
1320 * to all of the vdev |abels, but not the cached config. The strict check
1321 * will be performed when the pool is opened again using the npbs config.
1322 *

1323 * This function will only return failure if one of the vdevs indicates that it
1324 * has since been destroyed or exported. This is only possible if

1325 * /etc/zfs/zpool.cache was readonly at the tine. Oherw se, the vdev state
1326 * will be updated but the function will return O.

1327 */

1328 int

1329 vdev_validate(vdev_t *vd, boolean_t strict)

1330 {

1331 spa_t *spa = vd->vdev_spa;

1332 nvlist_t *|abel;

1333 uint64_t guid = 0, top_guid;

1334 uint64_t state;

1336 for (int ¢ = 0; ¢ < vd->vdev_children; c++)

1337 if (vdev_validate(vd->vdev_child[c], strict) != 0)

1338 return (SET_ERROR(EBADF));

1340 /*

1341 * |f the device has already failed, or was marked offline, don’t do
1342 * any further validation. Oherwise, label I/Owll fail and we wll
1343 * overwite the previous state.

1344 */

1345 if (vd->vdev_ops->vdev_op_| eaf && vdev_readabl e(vd)) {

1346 uint64_t aux_guid = O;

1347 nvlist_t *nvl

1348 uint64_t txg = spa_l ast_synced_txg(spa) !=0 ?

1349 spa_l ast _synced_t xg(spa) : -1ULL;

1351 if ((label = vdev_label _read_config(vd, txg)) == NULL) {
1352 vdev_set _state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,

1353 VDEV_AUX_BAD LABEL) ;

1354 return (0);

1355) }

18

new usr/src/uts/comon/fs/zfs/vdev.c

1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367

1369
1370
1371
1372
1373
1374
1375
1376

1378
1379
1380
1381

1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405

1407
1408
1409
1410
1411
1412
1413

1415

1417
1418
1419
1420
1421

/*
* Determine if this vdev has been split off into another
* pool. |If so, then refuse to open it.
*
if (nvlist_| ookup_uint64(label, ZPOOL_CONFI G SPLIT_GU D,
&aux_guid) == 0 && aux_guid == spa_gui d(spa)) {
vdev_set _state(vd, B_FALSE, VDEV_STATE_CANT_OPEN
VDEV_AUX_SPLI T_POOL) ;
nvlist_free(Tabel);
return (0);

if (strict & & (nvlist_| ookup_uint 64(I abel,
ZPOOL_CONFI G POOL_GUI D, &guid) '= 0 ||
guid T= spa_guid(spa))) {
vdev_set _state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_ _DATA) ;
nvlist_free(Tabel);
return (0);

if (nvlist_lookup_nvlist(label, ZPOO._CONFI G VDEV_TREE, &nvl)

1= 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFI G ORI G GU D,
&aux_guid) !'= 0)
aux_guid = O;

If this vdev just became a top-level vdev because its
sibling was detached, it will have adopted the parent’s
vdev guid -- but the |abel may or may not be on disk yet.
Fortunately, either version of the label will have the
sanme top guid, so if we're a top-level vdev, we can
safely conpare to that instead.

If we split this vdev off instead, then we al so check the
original pool’s guid. W don't want to consider the vdev
corrupt if it is partway through a split operation.

e
-

if (nvlist_|ookup_uint64(label, ZPOOL_CONFI G GUI D,
&uid) '=0
nvlist_| ookup_ui nt 64(1 abel, ZPOOL_CONFI G TOP_GUI D,
& op_guid) !'=0 ||
((vd->vdev_guid = guid & vd->vdev_guid != aux_guid) &&
(vd->vdev_guid != top_guid || vd !'= vd->vdev_top))) {
vdev_set _state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_ __DATA) ;
nvlist_free(Tabel);
return (0);

}

if (nvlist_| ookup_uint64(label, ZPOOL_CONFI G_POOL_STATE,
&state) = 0) {
vdev_set _state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA) ;
nvlist_free(Tabel);
return (0);

}

nvlist_free(label);

/*

* |f this is a verbatiminport, no need to check the
* state of the pool.

*/

if (!(spa->spa_inport_flags & ZFS | MPORT_VERBATI M &&

new usr/src/uts/comon/fs/zfs/vdev.c 20
1422 spa_| oad_state(spa) == SPA LOAD OPEN &&

1423 state ! = POOL_STATE_ACTI VE)

1424 return (SET_ERROR(EBADF));

1426 /*

1427 * If we were able to open and validate a vdev that was

1428 * previously marked pernmanently unavail able, clear that state
1429 * now.

1430 */

1431 if (vd->vdev_not_present)

1432 vd- >vdev_not _present = O;

1433 }

1435 return (0);

1436 }

1438 /*

1439 * Close a virtual device.

1440 */

1441 void

1442 vdev_cl ose(vdev_t *vd)

1443 {

1444 spa_t *spa = vd->vdev_spa;

1445 vdev_t *pvd = vd->vdev_parent;

1447 ASSERT(spa_confi g_hel d(spa, SCL_STATE ALL, RWWRI TER) == SCL_STATE_ALL);
1449 /*

1450 * |f our parent is reopening, then we are as well, unless we are
1451 * going offline.

1452 */

1453 if (pvd !'= NULL && pvd->vdev_r eopeni ng)

1454 vd- >vdev_reopeni ng = (pvd->vdev_reopening & !vd->vdev_offline);
1456 vd- >vdev_ops- >vdev_op_cl ose(vd);

1458 vdev_cache_purge(vd);

1460 /*

1461 * We record the previous state before we close it, so that if we are
1462 * doing a reopen(), we don’t generate FMA ereports if we notice that
1463 * it's still faulted.

1464 */

1465 vd->vdev_prevstate = vd->vdev_state;

1467 if (vd->vdev_offline)

1468 vd- >vdev_state = VDEV_STATE_OFFLI NE;

1469 el se

1470 vd->vdev_state = VDEV_STATE CLOSED,

1471 vd- >vdev_stat.vs_aux = VDEV_AUX_NONE;

1472 }

1474 void

1475 vdev_hol d(vdev_t *vd)

1476 {

1477 spa_t *spa = vd->vdev_spa;

1479 ASSERT(spa_i s_root (spa));

1480 if (spa->spa_state == POOL_STATE_UNI NI TI ALl ZED)

1481 return;

1483 for (int ¢ = 0; ¢ < vd->vdev_children; c++)

1484 vdev_hol d(vd->vdev_child[c]);

1486 if (vd->vdev_ops->vdev_op_| eaf)

1487 vd- >vdev_ops- >vdev_op_hol d(vd);

new usr/src/uts/comon/fs/zfs/vdev.c 21 new usr/src/uts/comon/fs/zfs/vdev.c
1488 } 1554 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1555 vdev_cl ose(vd);
1490 void 1556 return (error ? error : ENXIO);
1491 vdev_rel e(vdev_t *vd) 1557 }
1492 {
1493 spa_t *spa = vd->vdev_spa; 1559 /*
1560 * Recursively load DTLs and initialize all |abels.
1495 ASSERT(spa_ | s_root(spa)); 1561 */
1496 for (int ¢ = 0; c < vd->vdev_children; c++) 1562 if ((error = vdev_dtl_load(vd)) !'=0 ||
1497 vdev_rel e(vd->vdev_child[c]); 1563 (error = vdev_| abel _init(vd, txg, Isreplacing ?
1564 VDEV_LABEL REPLACE © VDEV_LABEL CREATE)) != 0) {
1499 if (vd->vdev_ops->vdev_op_| eaf) 1565 vdev_close(vd);
1500 vd- >vdev_ops->vdev_op_rel e(vd); 1566 return (error);
1501 } 1567 }
1503 /* 1569 return (0);
1504 * Reopen all interior vdevs and any unopened | eaves. W don't actually 1570 }
1505 * reopen | eaf vdevs which had previously been opened as they m ght deadl ock
1506 * on the spa_config_lock. Instead we only obtain the |eaf’s physical size. 1572 void
1507 * |f the | eaf has never been opened then open it, as usual. 1573 vdev_net asl ab_set _si ze(vdev_t *vd)
1508 */ 1574 {
1509 void 1575 l*
1510 vdev_reopen(vdev_t *vd) 1576 * Aim for roughly 200 netasl abs per vdev.
1511 { 1577 */
1512 spa_t *spa = vd->vdev_spa; 1578 vd- >vdev_ns_shi ft = hi ghbi t 64(vd->vdev_asi ze / 200);
1579 vd->vdev_ms_shift = MAX(vd->vdev_ns_shift, SPA_ MAXBLOCKSHI FT);
1514 ASSERT(spa_config_hel d(spa, SCL_STATE ALL, RWWRI TER) == SCL_STATE_ALL); 1580 }
1516 /* set the reopening flag unless we're taking the vdev offline */ 1582 void
1517 vd- >vdev_r eopeni ng = !vd->vdev_offli ne; 1583 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1518 vdev_cl ose(vd); 1584 {
1519 (voi d) vdev_open(vd); 1585 ASSERT(vd == vd->vdev_top);
1586 ASSERT(! vd- >vdev_i shol e) ;
1521 /* 1587 ASSERT(| SP2(fl ags));
1522 * Call vdev_validate() here to make sure we have the sanme device. 1588 ASSERT(spa_writ eabl e(vd- >vdev_spa));
1523 * Otherwise, a device with an invalid |abel could be successfully
1524 * opened in response to vdev_reopen(). 1590 if (flags & VDD METASLAB)
1525 */ 1591 (void) txg_list_add(&vd->vdev_ns_list, arg, txg);
1526 if (vd->vdev_aux) {
1527 (voi d) vdev_validate_aux(vd); 1593 if (flags & VDD _DTL)
1528 if (vdev_readabl e(vd) && vdev_writeabl e(vd) && 1594 (void) txg_list_add(&d->vdev_dtl _list, arg, txg);
1529 vd- >vdev_aux == &spa- >spa_| 2cache &&
1530 'l 2arc_vdev_present (vd)) 1596 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1531 | 2arc_add_vdev(spa, vd); 1597 }
1532 } else {
1533 (voi d) vdev_validate(vd, B_TRUE); 1599 void
1534 } 1600 vdev_dirty_| eaves(vdev_t *vd, int flags, uint64_t txg)
1601
1536 /* 1602 for (int ¢ = 0; ¢ < vd->vdev_children; c++)
1537 */ Reassess parent vdev’'s heal th. 1603 vdev_dirty_| eaves(vd->vdev_child[c], flags, txg);
1538 *
1539 vdev_propagat e_st ate(vd); 1605 if (vd->vdev_ops->vdev_op_| eaf)
1540 } 1606 vdev_dirty(vd->vdev_top, flags, vd, txg);
1607 }
1542 int
1543 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1609 /*
1544 { 1610 * DILs.
1545 int error; 1611 *
1612 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1547 /* 1613 * the vdev has |less than perfect replication. There are four kinds of DTL:
1548 * Nornmally, partial opens (e.g. of a mirror) are allowed. 1614 *
1549 * For a create, however, we want to fail the request if 1615 * DTL_M SSING txgs for which the vdev has no valid copies of the data
1550 * there are any conponents we can’'t open. 1616 *
1551 */ 1617 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1552 error = vdev_open(vd); 1618 *
1619 * DTL_SCRUB: the txgs that could not be repaired by the |ast scrub; upon

new usr/src/uts/comon/fs/zfs/vdev.c 23

1620 * scrub conpl etion, DTL_SCRUB replaces DIL_M SSING in the range of
1621 * txgs that was scrubbed.

1622 *

1623 * DITL_QOUTAGE: txgs which cannot currently be read, whether due to

1624 * persistent errors or just some device being offline.

1625 * Unli ke the other three, the DIL_OUTAGE nmap is not generally

1626 * mai ntained; it’s only corrput ed when needed, typically to

1627 * determ ne whether a device can be detached.

1628 *

1629 * For |eaf vdevs, DTL_M SSING and DTL_PARTI AL are identical: the device
1630 * either has the data or it doesn't.

1631 *

1632 * For interior vdevs such as mirror and RAID-Z the picture is nore conpl ex.
1633 * A vdev's DTL_PARTIAL is the union of its children’s DTL_PARTI ALs, because
1634 * if any child is less than fully replicated, then so is its parent.

1635 * A vdev's DIL_M SSING is a nodified union of its children’s DIL_M SSI NGs,
1636 * conprising only those txgs which appear in 'maxfaults’ or nore children;
1637 * those are the txgs we don’t have enough replication to read. For exanple,
1638 * double-parity RAID-Z can tolerate up to two mi ssing devices (maxfaults == 2);
1639 * thus, its DIL_M SSING consists of the set of txgs that appear in nore than
1640 * two child DTL_M SSI NG nmaps.

1641 *

1642 * |t should be clear fromthe above that to conpute the DTLs and outage maps
1643 * for all vdevs, it suffices to know just the | eaf vdevs' DTL_M SSI NG maps.
1644 * Therefore, that is all we keep on disk. Wen |oading the pool, or after
1645 * a configuration change, we generate all other DTLs fromfirst principles.
1646 */

1647 void

1648 }/dev_dtl_dirty(vdev_t *vd, vdev_dtl _type_t t, uint64_t txg, uint64_t size)
1649

1650 range_tree_t *rt = vd->vdev_dtl[t];

1652 ASSERT(t < DTL_TYPES);

1653 ASSERT(vd ! = vd- >vdev_spa- >spa_r oot _vdev);

1654 ASSERT(spa_writ eabl e(vd->vdev_spa));

1656 mut ex_enter(rt->rt_|l ock);

1657 if (!range_tree_contains(rt, txg, size))

1658 range_tree_add(rt, txg, size);

1659 mutex_exit(rt->rt_Il ock);

1660 }

1662 bool ean_t

1663 vdev_dtl _contai ns(vdev_t *vd, vdev_dtl _type_t t, uint64_t txg, uint64_t size)
1664 {

1665 range_tree_t *rt = vd->vdev_dtl[t];

1666 bool ean_t dirty = B_FALSE;

1668 ASSERT(t < DTL_TYPES)

1669 ASSERT(vd ! = vd- >vdev_spa- >spa_r oot _vdev);

1671 mutex_enter(rt->rt_| ock);

1672 if (range_tree_space(rt) != 0)

1673 dirty = range_tree_contains(rt, txg, size);

1674 mut ex_exit(rt->rt_Il ock);

1676 return (dirty);

1677 }

1679 bool ean_t

1680 vdev_dtl _enpty(vdev_t *vd, vdev_dtl _type_t t)

1681 {

1682 range_tree_t *rt = vd->vdev_dtl[t];

1683 bool ean_t enpty;

1685 mut ex_enter(rt->rt_| ock);

new usr/src/uts/comon/fs/zfs/vdev.c 24
1686 enpty = (range_tree_space(rt) == 0);

1687 mutex_exit(rt->rt_|l ock);

1689 return (enpty);

1690 }

1692 /*

1693 * Returns the lowest txg in the DIL range.

1694 */

1695 static uint64_t

1696 vdev_dtl _m n(vdev_t *vd)

1697 {

1698 range_seg_t *rs;

1700 ASSERT(MUTEX_HELD(& d- >vdev_dt| | ock));

1701 ASSERT3U(r ange_t r ee_space(vd->vdev_dt| [DTL_M SSING), != 0);
1702 ASSERTO(vd- >vdev_chi | dren);

1704 rs = avl _first(&vd->vdev_dt|[DTL_M SSING ->rt _root);

1705 return (rs->rs_start - 1);

1706 }

1708 /*

1709 * Returns the highest txg in the DTL.

1710 */

1711 static uint64_t

1712 vdev_dt| _max(vdev_t *vd)

1713 {

1714 range_seg_t *rs;

1716 ASSERT(MUTEX_HELD(& d- >vdev_dt | _I ock));

1717 ASSERT3U(r ange_t ree_space(vd- >vdev_dt| [DTL_M SSING), !'= 0);
1718 ASSERTO(vd- >vdev_chi | dren);

1720 rs = avl _|l ast(&vd->vdev_dt|[DTL_M SSING ->rt _root);

1721 return (rs->rs_end);

1722 }

1724 | *

1725 * Determine if a resilvering vdev should renpve any DTL entries from
1726 * its range. |f the vdev was resilvering for the entire duration of the
1727 * scan then it should excise that range fromits DILs. Otherwi se, this
1728 * vdev is considered partially resilvered and should | eave its DTL
1729 * entries intact. The comment in vdev_dtl _reassess() describes how we
1730 * excise the DTLs.

1731 */

1732 static bool ean_t

1733 vdev_dt| _shoul d_exci se(vdev_t *vd)

1734 {

1735 spa_t *spa = vd->vdev_spa;

1736 dsl _scan_t *scn = spa->spa_dsl| _pool - >dp_scan;

1738 ASSERTO(scn->scn_phys. scn_errors);

1739 ASSERTO(vd- >vdev_chi | dren);

1741 if (vd->vdev_resilver_txg == 0 ||

1742 range_tree_space(vd->vdev_dt|I [DTL_M SSING) == 0)

1743 return (B_TRUE);

1745 /*

1746 * Wien a resilver is initiated the scan will assign the scn_max_t xg
1747 * value to the highest txg value that exists in all DTLs. If this
1748 * device’s max DTL is not part of this scan (i.e. it is not in
1749 * the range (scn_nin_txg, scn_nmax_txg] then it is not eligible
1750 * for excision.

1751 */

new usr/src/uts/comon/fs/zfs/vdev.c

25

1752 if (vdev_dtl_max(vd) <= scn->scn_phys. scn_max_txg) {

1753 ASSERT3U(scn- >scn_phys. scn_nmin_txg, <=, vdev_dtl_min(vd));
1754 ASSERT3U(scn- >scn_phys. scn_nmin_txg, <, vd->vdev_resilver_txg);
1755 ASSERT3U(vd- >vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1756 return (B_TRUE);

1757 1

1758 return (B_FALSE);

1759 }

1761 /*

1762 * Reassess DILs after a config change or scrub conpletion.

1763 */

1764 void

1765 vdev_dt| _reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1766 {

1767 spa_t *spa = vd->vdev_spa;

1768 avl _tree_t reftree;

1769 int minref;

1771 ASSERT(spa_config_hel d(spa, SCL_ALL, RWREADER) != 0)

1773 for (int ¢ = 0; ¢ < vd->vdev_children; c++)

1774 vdev_dt| _reassess(vd->vdev_child[c], txg,

1775 scrub_t xg, scrub_done);

1777 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)

1778 return;

1780 if (vd->vdev_ops->vdev_op_leaf) {

1781 dsl _scan_t *scn = spa->spa_dsl| _pool - >dp_scan;

1783 mut ex_ent er (&d- >vdev_dt | _I ock);

1785 /*

1786 * |f we’ve conpleted a scan cleanly then determ ne

1787 * if this vdev should renpve any DTLs. W only want to

1788 * excise regions on vdevs that were avail able during

1789 * the entire duration of this scan.

1790 */

1791 if (scrub_txg !'=0 &&

1792 (spa->spa_scrub_started ||

1793 (scn !'= NULL && scn->scn_phys.scn_errors == 0)) &&

1794 vdev_dt | _shoul d_exci se(vd)) {

1795 I*

1796 * We conpleted a scrub up to scrub_txg. If we

1797 * did it wthout rebooting, then the scrub dtl

1798 * will be valid, so excise the old region and

1799 * fold in the scrub dtl. Oherw se, |eave the

1800 * dtl as-is if there was an error.

1801 *

1802 * There's little trick here: to excise the beginning
1803 * of the DIL_M SSING nmap, we put it into a reference
1804 * tree and then add a segment with refcnt -1 that
1805 * covers the range [0, scrub_txg). This nmeans

1806 * that each txg in that range has refcnt -1 or O.
1807 * W then add DTL_SCRUB with a refcnt of 2, so that
1808 * entries in the range [0, scrub_txg) will have a
1809 * positive refcnt -- either 1 or 2. W then convert
1810 * the reference tree into the new DTL_M SSI NG map.
1811 */

1812 space_reftree_create(&eftree);

1813 space_reftree_add_map(&r eftree,

1814 vd- >vdev_dt| [DTL_M SSING , 1);

1815 space_reftree_add_seg(&eftree, 0, scrub_txg, -1);
1816 space_reftree_add_map(&reftree,

1817 vd- >vdev_dt | [DTL_SCRUB], 2);

new usr/src/uts/comon/fs/zfs/vdev.c

1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832

1834
1835
1836
1837
1838
1839
1840
1841

1843

1845
1846
1847
1848

1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873

1875 i

1876

1877 {

1878
1879
1880

1882
1883

space_reftree_generate_map(&reftree,
vd->vdev_dt| [DTL_M SSING, 1);
space_reftree_destroy(&eftr ee) ;

}
range_tree_vacat e(vd->vdev_dt| [DTL_PARTI AL], NULL, NULL);
range_tree_wal k(vd->vdev_dt| [DTL_M SSI NG ,
range_tree_add, vd->vdev_dtl[DTL_ PARTI ALl);
if (scrub_done)

range_tree_vacat e(vd->vdev_dt| [DTL_SCRUB], NULL, NULL);

range_tree_vacat e(vd->vdev_dt| [DTL_OUTAGE], NULL, NULL);
if (!vdev_readabl e(vd))

range_tree_add(vd->vdev_dt| [DTL_OUTAGE], 0, -1ULL);

el se
range_tree_wal k(vd->vdev_dt| [DTL_M SSI NG ,
range_tree_add, vd->vdev_dt|[DTL_ QJTAGE])

/*

* If the vdev was resilvering and no |onger has any

* DTLs then reset its resilvering flag.

*

/

if (vd->vdev_resilver_txg != 0 &&
range_tree_space(vd->vdev_dtI[DTL_M SSING) == 0 &&
range_tree_space(vd->vdev_dt | [DTL QUTACE]) == 0)

vd->vdev_resilver_txg =

mut ex_exi t (&d->vdev_dt | _| ock);

if (txg !=0)
vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
return;

}

nut ex_ent er(&vd >vdev_dt| _| ock);
for (int t =0; t < DIL_TYPES; t++) {
/* account for child s outage in parent’s nissing map */

int s =(t == DIL_MSSING ? DIL_OUTAGE: t;
if (t == DTL_SCRUB)

conti nue; /* leaf vdevs only */
if (t == DTL_PARTIAL)

mnref = 1; /* i.e. non-zero */
else if (vd->vdev_nparity != 0)

m nref = vd->vdev_nparity + 1; /* RAIDZ */
el se

m nref = vd->vdev_children;
space_reftree_create(&eftree);
for (int ¢ = 0; ¢ < vd->vdev_children; c++) {

vdev_t *cvd = vd->vdev_child[c];

mut ex_ent er (&cvd- >vdev_dt | _| ock);

space_reftree_add_map(& eftree, cvd->vdev_dtl[s],

nut ex_exi t (&cvd- >vdev_dt| _| ock);

space_reftree_generate_map(& eftree, vd->vdev_dtl[t], minref);

space_reftree_destroy(&eftree);

mut ex_exi t (&d->vdev_dt | _| ock);

_l oad(vdev_t *vd)

spa_t *spa = vd->vdev_spa;
obj set _t *npbs = spa->spa_neta_obj set;
int error = 0;

if (vd->vdev_ops->vdev_op_| eaf && vd->vdev_dtl_object != 0) {
ASSERT(! vd- >vdev_i shol e) ;

/* any kind of mrror */

new usr/src/uts/comon/fs/zfs/vdev.c 27 new usr/src/uts/comon/fs/zfs/vdev.c 28
1950 }
1885 error = space_map_open(&vd->vdev_dtl _sm nps,
1886 vd->vdev_dt| _object, 0, -1ULL, 0, &vd- >vdev dtl_l ock); 1952 nutex_init(&tlock, NULL, MJTEX_DEFAULT, NULL);
1887 if (error)
1888 return (error); 1954 rtsync = range_tree_create(NULL, NULL, &rtlock);
1889 ASSERT(vd->vdev_dtl _sm ! = NULL);
1956 mut ex_enter (& tlock);
1891 mut ex_ent er (&vd->vdev_dt| _| ock);
1958 mut ex_ent er (&vd->vdev_dt| _| ock);
1893 /* 1959 range_tree wal k(rt, range_tree_. add rtsync);
1894 * Now that we’ve opened the space_map we need to update 1960 mut ex_exi t (&vd- >vdev dtl _l ock);
1895 * the in-core DTL.
1896 */ 1962 space_map_t runcat e(vd->vdev_dt| _sm tx);
1897 space_nmap_updat e(vd- >vdev_dt| _sm); 1963 space_map_write(vd->vdev_dtT_sm rtsync, SMALLCC, tx);
1964 range_tree_vacate(rtsync, NULL, NULL);
1899 error = space_nap_| oad(vd->vdev_dt| _sm
1900 vd->vdev_dt| [DTL_M SSING, SM ALLOO); 1966 range_tree_destroy(rtsync);
1901 mut ex_exi t (&d- >vdev_dt | _| ock)
1968 mut ex_exit (& tlock);
1903 return (error); 1969 mut ex_destroy(&tl ock);
1904 }
1971 l*
1906 for (int ¢ = 0; ¢ < vd->vdev_children; c++) { 1972 * |f the object for the space map has changed then dirty
1907 error = vdev_dtl _| oad(vd->vdev_child[c]); 1973 * the top level so that we update the config.
1908 if (error 1= 0) 1974 *
1909 br eak; 1975 f (object !'= space_map_object (vd->vdev_dtl_sm) {
1910 } 1976 zf s_dbgmsg(txg %1lu, spa %, DIL old object %Iu,
1977 "new obj ect %Iu", txg, spa_nane(spa), object,
1912 return (error); 1978 space_map_obj ect(vd >vdev_dtl _sm);
1913 } 1979 vdev_config_dirty(vd->vdev_top);
1980 }
1915 void
1916 }/dev_dtl_sync(vdev_t *vd, uint64_t txg) 1982 dmu_t x_commi t (tx);
1917
1918 spa_t *spa = vd->vdev_spa; 1984 mut ex_ent er (& d- >vdev_dt| _I| ock);
1919 range_tree_t *rt = vd->vdev_dtl|[DTL_M SSI NG ; 1985 space_nap_updat e(vd->vdev_dtl _sn);
1920 obj set _t *npbs = spa->spa_neta_obj set; 1986 mut ex_exi t (&d->vdev_dt| _| ock);
1921 range_tree_t *rtsync; 1987 }
1922 kmutex_t rtl ock;
1923 dmu_tx_t *tx; 1989 /*
1924 ui nt64_t object = space_map_obj ect (vd->vdev_dtl _sm; 1990 * Determ ne whether the specified vdev can be of flined/detached/renpved
1991 * without |osing data.
1926 ASSERT(! vd- >vdev_i shol e) ; 1992 */
1927 ASSERT(vd- >vdev_ops->vdev_op_| eaf); 1993 bool ean_t
1994 vdev_dtl _required(vdev_t *vd)
1929 tx = dnu_t x_creat e_assi gned(spa->spa_dsl| _pool, txg); 1995 {
1996 spa_t *spa = vd->vdev_spa;
1931 if (vd->vdev_detached || vd->vdev_top->vdev_renoving) { 1997 vdev_t *tvd = vd->vdev_top;
1932 nmut ex_ent er (&vd->vdev_dt| _| ock); 1998 uint8_t cant_read = vd->vdev_cant_read;
1933 space_map_free(vd->vdev_dtl _sm tx); 1999 bool ean_t required;
1934 space_map_cl ose(vd- >vdev _dtT_sm;
1935 vd->vdev_dt| _sm = NULL 2001 ASSERT(spa_confi g_hel d(spa, SCL_STATE ALL, RWWRI TER) == SCL_STATE_ALL);
1936 mut ex_exi t (&d- >vdev dtI _lock);
1937 dmu_t x_commi t (tx); 2003 if (vd == spa->spa_root_vdev || vd == tvd)
1938 return; 2004 return (B_TRUE);
1939 }
2006 I*
1941 if (vd->vdev_dtl_sm == NULL) { 2007 * Tenporarily mark the device as unreadable, and then determ ne
1942 ui nt64_t new_obj ect; 2008 * whether this results in any DIL outages in the top-I|evel vdev.
2009 * |If not, we can safely offline/detach/renove the device.
1944 new_obj ect = space_map_al | oc(nos, tx); 2010 */
1945 VERI FY3U(new_obj ect, !'=, 0); 2011 vd->vdev_cant _read = B_TRUE;
2012 vdev_dt | reassess(tvd 0, 0, B FALSE);
1947 VERI FYO(space_nap_open(&d->vdev_dt|l _sm nps, new obj ect, 2013 required = !vdev dtl _enmpty(tvd, DTL QJTAGE)
1948 0, -1ULL, 0O, &vd->vdev_dtl _Ilock)); 2014 vd- >vdev cant read = cant_read;
1949 ASSERT(vd->vdev_dtl _sm!= NULL); 2015 vdev_dt| _reassess(tvd, 0, 0, B_FALSE);

new usr/src/uts/comon/fs/zfs/vdev.c 29 new usr/src/uts/comon/fs/zfs/vdev.c 30

2082 * |f this is a |eaf vdev, load its DTL.
2017 if (!'required & zio_injection_enabl ed) 2083 */
2018 required = !'!zio_handl e_device_injection(vd, NULL, ECH LD); 2084 if (vd->vdev_ops->vdev_op_| eaf && vdev_dtl _| oad(vd) != 0)
2085 vdev_set _state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2020 return (required); 2086 VDEV_AUX_CORRUPT_DATA) ;
2021 } 2087 }
2023 /* 2089 /*
2024 * Determne if resilver is needed, and if so the txg range. 2090 * The special vdev case is used for hot spares and | 2cache devices. Its
2025 */ 2091 * sole purpose it to set the vdev state for the associated vdev. To do this,
2026 bool ean_t 2092 * we neke sure that we can open the underlying device, then try to read the
2027 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2093 * label, and make sure that the label is sane and that it hasn’t been
2028 { 2094 * repurposed to another pool.
2029 bool ean_t needed = B_FALSE; 2095 */
2030 uint64_t thismn = U NT64_NAX; 2096 int
2031 uint64_t thismax = 0; 2097 }/dev_val i date_aux(vdev_t *vd)
2098
2033 if (vd->vdev_children == 0) { 2099 nvlist_t *|abel;
2034 mut ex_ent er (&vd- >vdev_dt | _I ock); 2100 uint64_t guid, version;
2035 if (range_tree_space(vd->vdev_dtI[DIL_M SSING) !'= 0 && 2101 uint64_t state;
2036 vdev_wri teabl e(vd)) {
2103 if (!vdev_readabl e(vd))
2038 thismin = vdev_dtl _m n(vd); 2104 return (0);
2039 thi smax = vdev_dt| _nmax(vd);
2040 needed = B_TRUE; 2106 if ((label = vdev_label _read_config(vd, -1ULL)) == NULL) {
2041 } 2107 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2042 mut ex_exi t (& d->vdev_dt| _I| ock); 2108 VDEV_AUX_CORRUPT_DATA) ;
2043 } else { 2109 return (-1);
2044 for (int ¢ = 0; ¢ < vd->vdev_children; c++) { 2110 }
2045 vdev_t *cvd = vd->vdev_child[c];
2046 uint64_t cmn, cmax; 2112 if (nvlist_|ookup_uint64(label, ZPOOL_CONFI G VERSION, &version) != 0 ||
2113 I SPA_VERSI ON TS _SUPPORTED(ver si on) ||
2048 if (vdev_resilver_needed(cvd, &mn, &nax)) { 2114 nvlist_| ookup_ui nt 64(1 abel, ZPOOL_CONFI G GU D, &guid) !'= 0 ||
2049 thismin = MN(thismn, cmn); 2115 guid != vd->vdev_guid ||
2050 thi smax = MAX(thi smax, cmax); 2116 nvlist_| ookup_ui nt 64(| abel, ZPOOL_CONFI G POOL_STATE, &state) != 0) {
2051 needed = B TRUE; 2117 vdev_set state(vd, B TRUE, VDEV_STATE CANT OPEN,
2052 } 2118 VDEV_AUX_CORRUPT_DATA) ;
2053 } 2119 nvlist_free(label);
2054 } 2120 return (-1);
2121 }
2056 if (needed & minp) {
2057 *mnp = thismn; 2123 /*
2058 *maxp = thi snax; 2124 * W don’'t actually check the pool state here. |If it’'s in fact in
2059 } 2125 * use by anot her pool, we update this fact on the fly when requested.
2060 return (needed); 2126 */
2061 } 2127 nvlist_free(label);
2128 return (0);
2063 void 2129 }
2064 vdev_| oad(vdev_t *vd)
2065 { 2131 void
2066 /* 2132 vdev_renpve(vdev_t *vd, uint64_t txg)
2067 * Recursively load all children. 2133 {
2068 */ 2134 spa_t *spa = vd->vdev_spa;
2069 for (int ¢ = 0; ¢ < vd->vdev_children; c++) 2135 obj set _t *npbs = spa- >spa_net a_obj set;
2070 vdev_| oad(vd->vdev_child[c]); 2136 dmu_tx_t *tx;
2072 I* 2138 tx = dmu_t x_create_assi gned(spa_get_dsl (spa), txg);
2073 * If this is a top-level vdev, initialize its metaslabs.
2074 */ 2140 if (vd->vdev_ns != NULL)
2075 if (vd == vd->vdev_top && !vd->vdev_ishole && 2141 for (int m= 0; m< vd->vdev_ns_count; mt+) {
2076 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 2142 netasl ab_t *msp = vd->vdev_ns[nj;
2077 vdev_netasl ab_init(vd, 0) != 0))
2078 vdev_set _state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2144 if (msp == NULL || nsp->nms_sm == NULL)
2079 VDEV_AUX_CORRUPT_DATA) ; 2145 conti nue;

2081 0% 2147 mut ex_ent er (&rsp- >ns_| ock) ;

new usr/src/uts/comon/fs/zfs/vdev.c 31 new usr/src/uts/comon/fs/zfs/vdev.c 32
2148 VERI FYO(space_map_al | ocat ed(msp->ns_sn));
2149 space_map_free(nmsp->ms_sm tx); 2215 uint64_t
2150 space_map_cl ose(nsp->ns_sn) ; 2216 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2151 nep- >ms_sm = NULL; 2217 {
2152 nut ex_exi t (&rsp->nms_| ock) ; 2218 return (vd->vdev_ops->vdev_op_asi ze(vd, psize));
2153 } 2219 }
2154 1
2221 | *
2156 if (vd->vdev_ns_array) { 2222 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2157 (void) dmu_obj ect_free(nos, vd->vdev_ns_array, tx); 2223 * not be opened, and no I/Ois attenpted.
2158 vd->vdev_ns_array = O; 2224 */
2159 } 2225 int
2160 dmu_t x_commi t (tx); 2226 vdev_faul t(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2161 } 2227 {
2228 vdev_t *vd, *tvd;
2163 void
2164 vdev_sync_done(vdev_t *vd, uint64_t txg) 2230 spa_vdev_state_enter(spa, SCL_NONE);
2165 {
2166 met asl ab_t *msp; 2232 if ((vd = spa_l ookup_by_gui d(spa, guid, B_TRUE)) == NULL)
2167 bool ean_t reassess = !txg_list_enpty(&vd->vdev_ns_list, TXG CLEAN(txQ)); 2233 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2169 ASSERT(! vd- >vdev_i shol e) ; 2235 if (!vd->vdev_ops->vdev_op_| eaf)
2236 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2171 while (msp = txg_list_renmove(&d->vdev_ns_list, TXG CLEAN(txg)))
2172 nmet asl ab_sync_done(nmsp, txg); 2238 tvd = vd->vdev_t op;
2174 if (reassess) 2240 /*
2175 nmet asl ab_sync_reassess(vd- >vdev_nmg); 2241 * We don’t directly use the aux state here, but if we do a
2176 } 2242 * vdev_reopen(), we need this value to be present to remenber why we
2243 * were faul ted.
2178 void 2244 */
2179 vdev_sync(vdev_t *vd, uint64_t txg) 2245 vd- >vdev_| abel _aux = aux;
2180 {
2181 spa_t *spa = vd->vdev_spa; 2247 /*
2182 vdev_t *I|vd; 2248 * Faulted state takes precedence over degraded.
2183 met asl ab_t *msp; 2249 */
2184 dmu_t x_t *tx; 2250 vd- >vdev_del ayed_cl ose = B_FALSE;
2251 vd->vdev_faulted = 1ULL;
2186 ASSERT(! vd- >vdev_i shol e) ; 2252 vd- >vdev_degraded = OULL;
2253 vdev_set _state(vd, B FALSE, VDEV_STATE FAULTED, aux);
2188 if (vd->vdev_ns_array == 0 && vd->vdev_ns_shift != 0) {
2189 ASSERT(vd == vd->vdev_top); 2255 /*
2190 tx = dnu_t x_creat e_assi gned(spa- >spa_dsl _pool, txg); 2256 * |f this device has the only valid copy of the data, then
2191 vd->vdev_ns_array = dnu_obj ect _al | oc(spa- >spa_net a_obj set, 2257 * back of f and sinply mark the vdev as degraded instead.
2192 DMJ_OT_OBJECT_ARRAY, 0, DMJ_OT_NONE, 0, tx); 2258 */
2193 ASSERT(vd- >vdev_ns_array != 0); 2259 if (!tvd->vdev_islog & vd->vdev_aux == NULL && vdev_dtl| _required(vd)) {
2194 vdev_config_dirty(vd); 2260 vd- >vdev_degraded = 1ULL;
2195 drmu_t x_comm t (tx); 2261 vd->vdev_faulted = OULL;
2196 }
2263 /*
2198 /* 2264 * |f we reopen the device and it’'s not dead, only then do we
2199 * Renpve the netadata associated with this vdev once it’'s enpty. 2265 * mark it degraded.
2200 */ 2266 *
2201 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_renovi ng) 2267 vdev_reopen(tvd);
2202 vdev_renove(vd, txg);
2269 if (vdev_readabl e(vd))
2204 while ((nmsp = txg_list_renmove(&d->vdev_ns_list, txg)) !'= NULL) { 2270 vdev_set _state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2205 nmet asl ab_sync(nsp, txg); 2271 }
2206 (void) txg_list_add(&vd->vdev_ns_list, msp, TXG CLEAN(txg));
2207 } 2273 return (spa_vdev_state_exit(spa, vd, 0));
2274 }
2209 while ((lvd = txg_list_renpve(&vd->vdev_dtl_list, txg)) != NULL)
2210 vdev_dt| _sync(lvd, txg); 2276 | *
2277 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2212 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG CLEAN(txg)); 2278 * user that sonething is wong. The vdev continues to operate as nornal as far
2213 } 2279 * as 1/ 0O is concerned.

new usr/src/uts/comon/fs/zfs/vdev.c

2280

*/
2281 int

2282 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)

2283
2284

2286

2288
2289

2291
2292

2294
2295
2296
2297
2298

2300
2301
2302
2303

2305
2306

2308
2309
2310
2311
2312
2313
2314
2315
2316
2317

{

* Ok kR % Ok %

*/
int
vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)

2318 {

2319
2321

2323
2324

2326
2327

2329
2330
2331
2332
2333

2335
2336
2337
2338
2339

2341
2342

2344
2345

vdev_t *vd;
spa_vdev_state_enter(spa, SCL_NONE);

if ((vd = spa_|l ookup_by_guid(spa, guid, B TRUE)) == NULL)
return (spa_vdev_state_exit(spa, NULL, ENODEV));

if (!vd->vdev_ops->vdev_op_| eaf)
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
/*
* |f the vdev is already faulted, then don’t do anything.
*

if (vd->vdev_faulted || vd->vdev_degraded)
return (spa_vdev_state_exit(spa, NULL, 0));
vd- >vdev_degraded = 1ULL;
if (!vdev_is_dead(vd))
vdev_set _state(vd, B_FALSE, VDEV_STATE DEGRADED,
aux) ;

return (spa_vdev_state_exit(spa, vd, 0));

Online the given vdev.

If ' ZFS _ONLI NE_UNSPARE is set, it inplies two things.
spare devi ce should be detached when the device finishes resilvering.

Second, the online should be treated |ike a 'test’ online case, so no FMA

events are generated if the device fails to open.

vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
spa_vdev_state_enter(spa, SCL_NONE);

if ((vd = spa_l ookup_by_gui d(spa, guid, B_TRUE)) == NULL)
return (spa_vdev_state_exit(spa, NULL, ENODEV));

if (!vd->vdev_ops->vdev_op_| eaf)
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));

tvd = vd->vdev_t op;

vd- >vdev_of fline = B_FALSE;

vd->vdev_t npoffline = B_FALSE;

vd- >vdev_checkremobve = !l (flags & ZFS_ONLI NE_CHECKREMOVE) ;
vd->vdev_forcefault = !l (flags & ZFS_ONLI NE_FORCEFAULT) ;

/* XXX - L2ARC 1.0 does not support expansion */
if (!vd->vdev_aux) {
for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent

)
pvd- >vdev_expanding = !!(flags & ZFS_ONLI NE_EXPAND) ;

}

vdev_r eopen(tvd);
vd- >vdev_checkrenove = vd->vdev_forcefault = B_FALSE;

if (!vd->vdev_aux) {
for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)

First, any att ached

33

new usr/src/uts/comon/fs/zfs/vdev.c

2346 pvd- >vdev_expandi ng = B_FALSE;

2347 1

2349 if (newstate)

2350 *newst ate = vd- >vdev_st ate;

2351 if ((flags & ZFS ONLI NE_UNSPARE) &&

2352 lvdev_i s_dead(vd) && vd->vdev_parent &&

2353 vd- >vdev_par ent - >vdev_ops == &vdev_spare_ops &&

2354 vd- >vdev_par ent - >vdev_chi | d[0] == vd)

2355 vd->vdev_unspare = B_TRUE;

2357 if ((flags & ZFS_ONLI NE_EXPAND) || spa->spa_autoexpand) {

2359 /* XXX - L2ARC 1.0 does not support expansion */

2360 if (vd->vdev_aux)

2361 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2362 spa_async_request (spa, SPA_ASYNC_CONFI G_UPDATE) ;

2363

2364 return (spa_vdev_state_exit(spa, vd, 0));

2365 }

2367 static int

2368 vdev_of fline_l ocked(spa_t *spa, uint64_t guid, uint64_t flags)

2369 {

2370 vdev_t *vd, *tvd;

2371 int error = 0;

2372 uint64_t generation;

2373 nmet asl ab_group_t *nmg;

2375 top:

2376 spa_vdev_state_enter(spa, SCL_ALLOC);

2378 if ((vd = spa_|l ookup_by_guid(spa, guid, B TRUE)) == NULL)

2379 return (spa_vdev_state_exit(spa, NULL, ENODEV));

2381 if (!vd->vdev_ops->vdev_op_| eaf)

2382 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));

2384 tvd = vd->vdev_t op;

2385 mg = tvd->vdev_ny;

2386 generation = spa->spa_config_generation + 1;

2388 /*

2389 * |If the device isn't already offline, try to offline it.

2390 *

2391 if (!vd->vdev_offline) {

2392 *

2393 * If this device has the only valid copy of sonme data,
2394 * don't allowit to be offlined. Log devices are al ways
2395 * expendabl e.

2396 */

2397 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&

2398 vdev_dt| _required(vd))

2399 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2401 /*

2402 * |f the top-level is a slog and it has had allocations
2403 * then proceed. W check that the vdev’'s netaslab group
2404 * is not NULL since it's possible that we nay have | ust
2405 * added this vdev but not yet initialized its metaslabs.
2406 */

2407 if (tvd->vdev_islog & ng != NULL) {

2408 /*

2409 * Prevent any future allocations.

2410 */

2411 net asl ab_gr oup_passi vat e(ng) ;

new usr/src/uts/comon/fs/zfs/vdev.c 35

2412 (void) spa_vdev_state_exit(spa, vd, 0);

2414 error = spa_offline_log(spa);

2416 spa_vdev_state_enter(spa, SCL_ALLCC);

2418 /*

2419 * Check to see if the config has changed.

2420 *

2421 if (error || generation != spa->spa_config_generation) {
2422 met asl ab_group_acti vate(ng);

2423 if (error)

2424 return (spa_vdev_state_exit(spa,
2425 vd, error));

2426 (void) spa_vdev_state_exit(spa, vd, 0);
2427 goto top;

2428 }

2429 ASSERTO(t vd- >vdev_st at.vs_al | oc);

2430 }

2432 /*

2433 * Ofline this device and reopen its top-Ievel vdev.
2434 * |f the top-level vdev is a |log device then just offline
2435 * it. Otherwise, if this action results in the top-Ievel
2436 * vdev becomi ng unusable, undo it and fail the request.
2437 */

2438 vd->vdev_of fl i ne = B_TRUE;

2439 vdev_reopen(tvd);

2441 if (!tvd->vdev_islog & vd->vdev_aux == NULL &&

2442 vdev_i s dead(tvd))

2443 vd->vdev_offline = B_FALSE;

2444 vdev_reopen(tvd);

2445 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2446 }

2448 *

2449 * Add the device back into the netaslab rotor so that
2450 * once we online the device it’'s open for business.
2451 */

2452 if (tvd->vdev_islog & ng != NULL)

2453 net asl ab_group_acti vate(ng);

2454 }

2456 vd->vdev_tnpoffline = ! (flags & ZFS_OFFLI NE_TEMPORARY) ;

2458 return (spa_vdev_state_exit(spa, vd, 0));

2459 }

2461 int

2462 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)

2463 {

2464 int error;

2466 mut ex_ent er (&spa- >spa_vdev_t op_| ock) ;

2467 error = vdev_of fline_l ocked(spa, gui d flags);

2468 nmut ex_exi t (&pa- >spa_vdev_t op_| ock) ;

2470 return (error);

2471 }

2473 | *

2474 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2475 * vdev_offline(), we assune the spa config is |locked. W also clear all
2476 * children. If 'vd is NULL, then the user wants to clear all vdevs.
2477 */

new usr/src/uts/comon/fs/zfs/vdev.c

2478

voi d

2479 vdev_cl ear(spa_t *spa, vdev_t *vd)

2480
2481

2483

2485
2486

2488
2489
2490

2492
2493

2495
2496
2497
2498
2499
2500
2501
2502

2504
2505
2506
2507
2508
2509

2511
2512
2513

2515
2517

2519
2520

2522
2523

2525
2526

2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

2539
2540

2542
2543

{

vdev_t *rvd = spa->spa_root_vdev;

36

ASSERT(spa_config_hel d(spa, SCL_STATE_ALL, RWWRI TER) == SCL_STATE_ALL);

f (vd == NULL)
vd = rvd;

vd->vdev_stat.vs_read_errors = 0;
vd->vdev_stat.vs_wite_errors O
vd->vdev_stat.vs_checksumerrors = 0;

f

}
/

}

bool ean_t

or (int ¢ = 0; ¢ < vd->vdev_children; c++)
vdev_cl ear (spa, vd->vdev_child[c]);

R

witten out to disk.

*/

if (vd->vdev_faulted || vd->vdev_degraded ||
Ivdev_readabl e(vd) || !vdev_writeabl e(vd)) {

/*
* \Wien reopening in reponse to a clear event, it

If we're in the FAULTED state or have experienced failed 1/0O, then
clear the persistent state and attenpt to reopen the device. W
also mark the vdev config dirty, so that the new faulted state is

may be due to

* a frmdmrepair request. In this case, if the device is

* still broken, we want to still post t he ereport
*/

vd->vdev_forcefault = B _TRUE;

vd- >vdev_faul ted = vd->vdev_degraded = OULL;
vd->vdev_cant _read = B_FALSE;

vd->vdev_cant _wite = B _FALSE;

vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
vd->vdev_forcefault = B _FALSE;

if (vd !'=rvd & vdev_witeabl e(vd->vdev_top))
vdev_st ate_dirty(vd->vdev_top);

if (vd->vdev_aux == NULL && !vdev_is_dead(vd))

agai n.

spa_async_request (spa, SPA_ASYNC RESI LVER);

spa_event _notify(spa, vd, ESC ZFS VDEV_CLEAR);

*
* When clearing a FMA-di agnosed fault, we always want to

* unspare the device, as we assune that the original spar
* done in response to the FMA fault.

*/

f (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
vd- >vdev_par ent - >vdev_ops == &vdev_spare_ops &&
vd- >vdev_par ent - >vdev_chi | d[0] == vd)

vd- >vdev_unspare = B_TRUE;

vdev_i s_dead(vdev_t *vd)
2541 {

/

*

* Hol es and m ssing devices are al ways consi dered "dead".

e was

new usr/src/uts/comon/fs/zfs/vdev.c 37 new usr/src/uts/comon/fs/zfs/vdev.c 38
2544 * This sinplifies the code since we don't have to check for 2610 vs->vs_state = vd->vdev_state;
2545 * these types of devices in the various code paths. 2611 vs->vs_rsize = vdev_get_m n_asi ze(vd);
2546 * Instead we rely on the fact that we skip over dead devices 2612 if (vd->vdev_ops->vdev_op_| eaf)
2547 * before issuing 1/Oto them 2613 vs->vs_rsize += VDEV_LABEL_START_SI| ZE + VDEV_LABEL_END_SI ZE;
2548 */ 2614 vs->vs_esi ze = vd->vdev_nmax_asi ze - vd->vdev_asi ze;
2549 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2615 mut ex_exi t (&vd->vdev_stat _| ock);
2550 vd- >vdev_ops == &vdev_m ssi ng_ops);
2551 } 2617 /*
2618 * |f we're getting stats on the root vdev, aggregate the 1/0O counts
2553 bool ean_t 2619 * over all top-level vdevs (i.e. the direct children of the root).
2554 vdev_readabl e(vdev_t *vd) 2620 */
2555 { 2621 if (vd == rvd) {
2556 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2622 for (int ¢ = 0; ¢ < rvd->vdev_children; c++) {
2557 } 2623 vdev_t *cvd = rvd->vdev_child[c];
2624 vdev_stat _t *cvs = &cvd->vdev_stat;
2559 bool ean_t
2560 vdev_writeabl e(vdev_t *vd) 2626 nut ex_ent er (&vd- >vdev_st at _| ock);
2561 { 2627 for (int t =0; t < ZIOTYPES; t++) {
2562 return (!vdev_is_dead(vd) && !vd->vdev_cant_wite); 2628 vs->vs_ops[t] += cvs->vs_ops[t];
2563 } 2629 vs->vs_bytes[t] += cvs->vs_bytes[t];
2630
2565 bool ean_t 2631 CcVs->Vs_scan_renovi ng = cvd->vdev_renovi ng;
2566 vdev_al | ocat abl e(vdev_t *vd) 2632 mut ex_exi t (&d- >vdev_st at _| ock);
2567 { 2633 }
2568 uint64_t state = vd->vdev_state; 2634 }
2635 }
2570 /*
2571 * We currently allow allocations fromvdevs which nay be in the 2637 void
2572 * process of reopening (i.e. VDEV_STATE CLCSED). |f the device 2638 vdev_cl ear_stats(vdev_t *vd)
2573 * fails to reopen then we'll catch it later when we’re hol ding 2639 {
2574 * the proper locks. Note that we have to get the vdev state 2640 mut ex_ent er (&vd- >vdev_st at _| ock);
2575 * in a local variable because although it changes atomically, 2641 vd- >vdev_st at.vs_space = 0;
2576 * we're asking two separate questions about it. 2642 vd->vdev_stat.vs_dspace = O;
2577 */ 2643 vd- >vdev_stat.vs_alloc = 0;
2578 return (!(state < VDEV_STATE_DECGRADED && state != VDEV_STATE CLCSED) && 2644 mut ex_exi t (&vd- >vdev_stat _| ock);
2579 lvd->vdev_cant_wite && !vd->vdev_ishole); 2645 }
2580 }
2647 void
2582 bool ean_t 2648 vdev_scan_stat _init(vdev_t *vd)
2583 vdev_accessi bl e(vdev_t *vd, zio_t *zio) 2649 {
2584 { 2650 vdev_stat _t *vs = &vd->vdev_stat;
2585 ASSERT(zi 0->i o_vd == vd);
2652 for (int ¢ = 0; ¢ < vd->vdev_children; c++)
2587 if (vdev_is_dead(vd) || vd->vdev_renove_want ed) 2653 vdev_scan_stat _i nit(vd->vdev_child[c]);
2588 return (B_FALSE);
2655 nmut ex_ent er (&vd- >vdev_stat _| ock);
2590 if (zio->io_type == ZI O TYPE_READ) 2656 vs->vs_scan_processed = 0;
2591 return (!vd->vdev_cant_read); 2657 mut ex_exi t (&vd->vdev_stat _| ock);
2658 }
2593 if (zio->io_type == ZI O TYPE_WRI TE)
2594 return (!vd->vdev_cant_wite); 2660 void
2661 vdev_stat _update(zio_t *zio, uint64_t psize)
2596 return (B_TRUE); 2662 {
2597 } 2663 spa_t *spa = zio0->i0_spa;
2664 vdev_t *rvd = spa->spa_root_vdev;
2599 /* 2665 vdev_t *vd = zio->o_vd ? zio->o_vd : rvd;
2600 * Get statistics for the given vdev. 2666 vdev_t *pvd;
2601 */ 2667 uint64_t txg = zio->io_txg;
2602 void 2668 vdev_stat _t *vs = &vd->vdev_stat;
2603 vdev_get _stats(vdev_t *vd, vdev_stat_t *vs) 2669 zio_type_t type = zio->io_type;
2604 { 2670 int flags = zio->io_fl ags;
2605 vdev_t *rvd = vd->vdev_spa- >spa_root_vdev;
2672 /*
2607 mut ex_ent er (&vd- >vdev_st at _| ock); 2673 * |If this i/ois a gang |leader, it didn't do any actual work.
2608 bcopy(&vd- >vdev_stat, vs, sizeof (*vs)); 2674 */
2609 vs->vs_tinestanp = gethrtinme() - vs->vs_tinmestanp; 2675 if (zio->o_gang_tree)

new usr/src/uts/comon/fs/zfs/vdev.c 39 new usr/src/uts/comon/fs/zfs/vdev.c
2676 return; 2742 * errors.
2743 */
2678 if (zio->io_error == 0) { 2744 if (zio->io_vd == NULL && (zio->io_flags & ZI O FLAG DONT_PROPAGATE))
2679 /* 2745 return;
2680 * |f thisis aroot i/o, don't count it -- we've already
2681 * counted the top-level vdevs, and vdev_get_stats() wll 2747 mut ex_ent er (&vd- >vdev_st at _| ock);
2682 * aggregate them when asked. This reduces contention on 2748 if (type == ZI O TYPE_READ && !vdev_is_dead(vd)) {
2683 * the root vdev_stat_lock and inplicitly handl es bl ocks 2749 if (zio->io_error == ECKSUM
2684 * that conpress away to holes, for which there is no i/o. 2750 vs->vs_checksum errors++;
2685 * (Hol es never create vdev children, so all the counters 2751 el se
2686 * remain zero, which is what we want.) 2752 Vs->vs_read_errors++;
2687 * 2753 }
2688 * Note: this only applies to successful i/o (io_error == 0) 2754 if (type == ZIO_ TYPE_WRI TE && !vdev_is_dead(vd))
2689 * pecause unlike i/o counts, errors are not additive. 2755 VS->VS_Wite_errors++;
2690 * When reading a ditto block, for exanple, failure of 2756 mut ex_exi t (&d->vdev_st at Iock);
2691 * one top-level vdev does not imply a root-level error.
2692 * 2758 if (type == ZIOTYPE WRITE & txg != 0 &&
2693 f (vd == rvd) 2759 (1(flags & ZI O FLAG | O REPAIR) ||
2694 return; 2760 (flags & ZI O FLAG SCAN THREAD) ||
2761 spa->spa_cl ai m ng)) {
2696 ASSERT(vd == zi 0->i o_vd); 2762 /*
2763 * This is either a normal wite (not a repair), or it's
2698 if (flags & ZI O FLAG | O BYPASS) 2764 * a repair induced by the scrub thread, or it’'s a repair
2699 return; 2765 * made by zil _clain() during spa_ Ioad() inthe first txg.
2766 * In the normal case, we commit the DIL change in the sane
2701 mut ex_ent er (&vd- >vdev_st at _| ock); 2767 * txg as the block was born. In the scrub-induced repair
2768 * case, we know that scrubs run in first-pass syncing context,
2703 if (fl ags & ZI O FLAG | O REPAIR) { 2769 * so we commit the DTL change in spa_syncing_t xg(spa).
2704 f (flags & ZI O FLAG SCAN THREAD) { 2770 * In the zil_clain() case, we commt in spa_first txg(spa)
2705 dsl _scan_phys_t *scn_phys = 2771 *
2706 “&spa- >spa dsl pool >dp_scan- >scn_phys; 2772 * We currently do not nake DTL entries for failed spontaneous
2707 uint64_t *processed &scn_phys->scn_processed; 2773 * self-healing wites triggered by normal (non-scrubbing)
2774 * reads, because we have no transactional context in which to
2709 /* XXX cl eanup? */ 2775 * do so -- and it’'s not clear that it’'d be desirable anyway.
2710 if (vd->vdev_ops->vdev_op_| eaf) 2776 */
2711 atom c_add_64(processed, psize); 2777 if (vd->vdev_ops->vdev_op_| Ieaf) {
2712 vs->vs_scan_processed += psize; 2778 uint64_t commit_txg = txg;
2713 } 2779 if (flags & ZI O FLAG SGL\N |_ THREAD)
2780 ASSERT(fl ags & ZI O FLAG | O REPAIR) ;
2715 if (flags & ZI O FLAG SELF HEAL) 2781 ASSERT(spa_sync_pass(spa) == 1);
2716 vs->vs_sel f _heal ed += psi ze; 2782 vdev_dtl _dirty(vd, DTL_SORUB, txg, 1);
2717 } 2783 comit_txg = spa_synci ng_t xg(spa);
2784 } else if (spa->spa_claimng) {
2719 vs->vs_ops[type] ++; 2785 ASSERT(fl ags & ZI O FLAG | O REPAIR) ;
2720 vs->vs_bytes[type] += psize; 2786) commit_txg = spa_first_txg(spa);
2787
2722 mut ex_exi t (&d- >vdev_st at _| ock); 2788 ASSERT(conmi t _t xg >= spa_synci ng_t xg(spa));
2723 return; 2789 if (vdev_dtl_contains(vd, DTL_M SSING txg, 1))
2724 } 2790 return;
2791 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2726 if (flags & ZI O FLAG SPECULATI VE) 2792 vdev_dt| _dirty(pvd, DTL_PARTIAL, txg, 1);
2727 return; 2793 vdev_dirty(vd->vdev_top, VDD DTL, vd, commt_txg);
2794 }
2729 [* 2795 if (vd !'= rvd)
2730 * |f thisis an |/Oerror that is going to be retried, then ignore the 2796 vdev_dt!| _dirty(vd, DTL_M SSING txg, 1);
2731 * error. Oherwise, the user may interpret B FAILFAST I/O errors as 2797 }
2732 * hard errors, when in reality they can happen for any nunber of 2798 }
2733 * innocuous reasons (bus resets, MPxIO link failure, etc).
2734 * 2800 /*
2735 if (zio->o_error == EIO && 2801 * Update the in-core space usage stats for this vdev, its netaslab class,
2736 1(zio->o_flags & ZI O FLAG | O RETRY)) 2802 * and the root vdev.
2737 return; 2803 */
2804 void
2739 /* 2805 vdev_space_updat e(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2740 * Intent logs wites won't propagate their error to the root 2806 int64_t space_delta)
2741 * 1/Oso don't mark these types of failures as pool -1evel 2807 {

new usr/src/uts/comon/fs/zfs/vdev.c

41

2808 int64_t dspace_delta = space_delta;

2809 spa_t *spa = vd->vdev_spa;

2810 vdev_t *rvd = spa->spa_root_vdev;

2811 net asl ab_group_t *ng = vd- >vdev_ny;

2812 netaslab_class_t *nt = ng ? ng->ng_class : NULL;

2814 ASSERT(vd == vd->vdev_t op)

2816 /*

2817 * Apply the inverse of the psize-to-asize (ie. RAID Z) space-expansion
2818 * factor. We nust calculate this here and not at the root vdev
2819 * because the root vdev's psize-to-asize is sinply the max of its
2820 * childrens’, thus not accurate enough for us.

2821 */

2822 ASSERT((dspace_delta & (SPA M NBLOCKSI ZE-1)) == 0)

2823 ASSERT(vd- >vdev_deflate_ratio != 0 || vd->vdev_isl 2cache);

2824 dspace_del ta = (dspace_delta >> SPA M NBLOCKSHI FT) *

2825 vd->vdev_defl ate_rati o;

2827 mut ex_ent er (& d- >vdev_st at _| ock);

2828 vd->vdev_stat.vs_alloc += alloc_delta;

2829 vd- >vdev_st at.vs_space += space_delta;

2830 vd- >vdev_st at.vs_dspace += dspace_delta;

2831 mut ex_exi t (&vd- >vdev_st at _| ock);

2833 if (mc == spa_normal _class(spa)) {

2834 mut ex_ent er (& vd- >vdev_st at _| ock);

2835 rvd- >vdev_stat.vs_alloc += alloc_delta;

2836 rvd->vdev_stat.vs_space += space_delta;

2837 rvd- >vdev_st at. vs_dspace += dspace_| delta

2838 nmut ex_exi t (& vd->vdev_stat _| ock);

2839 1

2841 if (nc !'= NULL) {

2842 ASSERT(rvd == vd->vdev_parent);

2843 ASSERT(vd- >vdev_ns_count != 0);

2845 nmet asl ab_cl ass_space_updat e(nt,

2846 all oc_del ta, defer_delta, space_delta, dspace_delta);
2847 }

2848 }

2850 /*

2851 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2852 * so that it will be witten out next time the vdev configuration is synced.
2853 */If the root vdev is specified (vdev_top == NULL), dirty all top-Ilevel vdevs.
2854 *

2855 void

2856 vdev_config_dirty(vdev_t *vd)

2857 {

2858 spa_t *spa = vd->vdev_spa;

2859 vdev_t *rvd = spa->spa_root_vdev;

2860 int c;

2862 ASSERT(spa_writeabl e(spa));

2864 I*

2865 * |f this is an aux vdev (as with | 2cache and spare devices), then we
2866 * update the vdev config nmanually and set the sync flag.

2867 *

2868 if (vd->vdev_aux != NULL) {

2869 spa_aux_vdev_t *sav = vd->vdev_aux;

2870 nvlist_t **aux;

2871 ui nt _t naux;

2873 for (c = 0; c < sav->sav_count; c++) {

new usr/src/uts/comon/fs/zfs/vdev.c

2874
2875
2876

2878
2879
2880
2881
2882
2883
2884

2886

2888
2889
2890
2891
2892

2894

2896
2897
2898
2899
2900
2901

2903
2904

2906
2907
2908
2909
2910
2911
2912
2913
2914

2916
2917
2918
2919
2920

2922
2923
2924
2925
2926 }

2928 void

i f (sav->sav_vdevs][c]
br eak;

== vd)

}

if (c == sav- >sav_count) {
/:/Wé‘ re being renoved.

ASSERT(sav- >sav_sync == B_TRUE);
return;

There’s nothing nore to do.

}
sav->sav_sync = B_TRUE;

if (nvlist_|lookup_nvlist_array(sav->sav_confi g,
ZPOOL_CONFI G_L2CACHE, &aux, &naux) !'= 0)
VERI FY(nvlist_| ookup_| nvl i st _array(sav->sav_config,
ZPOOL_CONFI G_SPARES, &aux, &naux) == 0);
}

ASSERT(c < naux);

/*

* Setting the nvlist inthe mddle if the array is alittle
* sketchy, but it will work

*/

nvlist_free(aux[c]);
aux[c] = vdev_config_generate(spa, vd, B TRUE, 0);

return;

The dirty list is protected by the SCL_CONFI G | ock. The caller
must either hold SCL_CONFIG as witer, or nust be the sync thread
(whi ch hol ds SCL_CONFI G as reader). There's only one sync thread,
so this is sufficient to ensure nmutual exclusion.

* ok kb k%
-~

ASSERT(spa_config_hel d(spa, SCL_CONFIG RWWRI TER) ||
(dsl _pool _sync_cont ext (spa_get _dsl (spa)) &&
spa_config_hel d(spa, SCL_CONFIG RW READER)));

if (vd == rvd) {
for (c = 0; c < rvd->vdev_children; c++)
vdev_config_dirty(rvd->vdev_child[c]);
} else {
ASSERT(vd == vd->vdev_top);

if (!list_link_active(&d->vdev_config_dirty_node) &&
I'vd- >vdev_i shol e)
l'i st_insert_head(&spa->spa_config_dirty_list, vd);

2929 vdev_config_cl ean(vdev_t *vd)

2930 {
2931

2933
2934
2935

2937
2938
2939 }

spa_t *spa = vd->vdev_spa;

ASSERT(spa_config_hel d(spa, SCL_CONFIG RWWRI TER) ||
(dsl _pool _sync_cont ext (spa_get _dsl (spa)) &&
spa_config_hel d(spa, SCL_CONFIG RW READER)));

ASSERT(list_link_active(&vd->vdev_config_dirty_node));
list_remove(&spa->spa_config_ dirty list, vd);

new usr/src/uts/comon/fs/zfs/vdev.c 43
2941 | *

2942 * Mark a top-level vdev's state as dirty, so that the next pass of

2943 * spa_sync() can convert this into vdev_config_dirty(). W distinguish
2944 * the state changes fromlarger config changes because they require
2945 * nuch less locking, and are often needed for adm nistrative actions.
2946 */

2947 void

2948 vdev_state_dirty(vdev_t *vd)

2949

2950 spa_t *spa = vd->vdev_spa;

2952 ASSERT(spa_writeabl e(spa));

2953 ASSERT(vd == vd->vdev_top);

2955 /*

2956 * The state list is protected by the SCL_STATE | ock. The caller
2957 * nust either hold SCL_STATE as witer, or nmust be the sync thread
2958 * (which holds SCL_STATE as reader). There's only one sync thread,
2959 * so this is sufficient to ensure nutual exclusion.

2960 */

2961 ASSERT(spa_config_hel d(spa, SCL_STATE, RWWRI TER) ||

2962 (dsl _pool _sync_cont ext (spa_get _dsl (spa)) &&

2963 spa_config_hel d(spa, SCL_STATE, RW READER)));

2965 if (!list_link_active(&d->vdev_state_dirty_node) && !vd->vdev_ishole)
2966 list_insert_head(&spa->spa_state_dirty_list, vd);

2967 }

2969 void

2970 vdev_state_cl ean(vdev_t *vd)

2971 {

2972 spa_t *spa = vd->vdev_spa;

2974 ASSERT(spa_confi g_hel d(spa, SCL_STATE, RWWRI TER) ||

2975 (dsl _pool _sync_cont ext (spa_get _dsl (spa)) &&

2976 spa_config_hel d(spa, SCL_STATE, RW READER)));

2978 ASSERT(list_link_active(&d->vdev_state_dirty_node));

2979 list_renove(&spa->spa_state_dirty list, vd);

2980 }

2982 [*

2983 * Propagate vdev state up fromchildren to parent.

2984 */

2985 void

2986 vdev_propagate_state(vdev_t *vd)

2987 {

2988 spa_t *spa = vd->vdev_spa;

2989 vdev_t *rvd = spa->spa_root_vdev;

2990 int degraded = 0, faulted = O;

2991 int corrupted = O;

2992 vdev_t *child;

2994 if (vd->vdev_children > 0)

2995 for (int ¢ = 0; ¢ < vd->vdev_children; c++) {

2996 child = vd->vdev_child[c];

2998 /*

2999 * Don't factor holes into the decision.

3000 */

3001 if (child->vdev_ishole)

3002 conti nue;

3004 if (!vdev_readabl e(child) ||

3005 (!vdev_writeabl e(child) & spa_witeable(spa))) {

new usr/src/uts/comon/fs/zfs/vdev.c 44

3006 /*

3007 * Root special: if there is a top-level |og
3008 * device, treat the root vdev as if it were
3009 * degraded.

3010 */

3011 if (child->vdev_islog & vd == rvd)

3012 degr aded++;

3013 el se

3014 faul ted++;

3015 } else if (child->vdev_state <= VDEV_STATE DEGRADED) {
3016 degr aded++;

3017 }

3019 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3020 corrupt ed++;

3021 }

3023 vd- >vdev_ops->vdev_op_st ate_change(vd, faulted, degraded);
3025 /*

3026 * Root special: if there is a top-level vdev that cannot be
3027 * opened due to corrupted netadata, then propagate the root
3028 * vdev's aux state as 'corrupt’ rather than 'insufficient
3029 * replicas’.

3030 *

3031 if (corrupted && vd == rvd &&

3032 rvd- >vdev_st ate == VDEV_STATE_CANT_OPEN)

3033 vdev_set _state(rvd, B_FALSE, VDEV_STATE CANT_OPEN,
3034 VDEV_AUX_CORRUPT_DATA) ;

3035 }

3037 if (vd->vdev_parent)

3038 vdev_pr opagat e_st at e(vd- >vdev_parent);

3039 }

3041 /*

3042 * Set a vdev's state. |If this is during an open, we don't update the parent
3043 * state, because we're in the process of opening children depth-first.

3044 * Otherwi se, we propagate the change to the parent.

3045 *

3046 * If this routine places a device in a faulted state, an appropriate ereport is
3047 * generated.

3048 */

3049 void

3050 }/dev_set_stat e(vdev_t *vd, boolean_t isopen, vdev_state t state, vdev_aux_t aux)
3051

3052 uint64_t save_state;

3053 spa_t *spa = vd->vdev_spa;

3055 if (state == vd->vdev_state) {

3056 vd- >vdev_stat.vs_aux = aux;

3057 return;

3058 }

3060 save_state = vd->vdev_state;

3062 vd->vdev_state = state;

3063 vd- >vdev_stat.vs_aux = aux;

3065 /*

3066 * |f we are setting the vdev state to anything but an open state, then
3067 * always close the underlying device unless the device has requested
3068 * a delayed close (i.e. we're about to renove or fault the device).
3069 * Otherwi se, we keep accessible but invalid devices open forever.
3070 * W don't call vdev_close() itself, because that inplies sonme extra
3071 * checks (offline, etc) that we don’t want here. This is limted to

new usr/src/uts/comon/fs/zfs/vdev.c 45

3072
3073
3074
3075
3076
3077

3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090

3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118

3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137

* | eaf devices, because otherw se closing the device will affect other
* children.
*/

if (!vd->vdev_del ayed_cl ose && vdev_is_dead(vd) &&

vd- >vdev_ops- >vdev_op_| eaf)
vd- >vdev_ops- >vdev_op_cl ose(vd);

If we have brought this vdev back into service, we need

to notify fnd so that it can gracefully repair any outstanding
cases due to a missing device. W do this in all cases, even those
that probably don't correlate to a repaired fault. This is sure to
catch all cases, and we let the zfs-retire agent sort it out. |If
this is atransient state it's OK as the retire agent wl|

* doubl e-check the state of the vdev before repairing it.

*

/

EE T

if (state == VDEV_STATE_HEALTHY && vd- >vdev_ops->vdev_op_| eaf &&

vd->vdev_prevstate != state)
zf s_post _state_change(spa, vd);

if (vd->vdev_renoved &&

state == VDEV STATE_CANT_CPEN &&

(aux == VDEV_AUX_OPEN FAILED || vd->vdev_checkrenove)) {
/*
* |f the previous state is set to VDEV_STATE_REMOVED, then this
* device was previously marked renmoved and sonmeone attenpted to
* reopen it. If this failed due to a nonexistent device, then
* keep the device in the REMOVED state. W also let this be if
* it I's one of our special test online cases, which is only
* attenpting to online the device and shouldn’t generate an FMA
*
*/f aul t.
vd- >vdev_state = VDEV STATE_REMOVED;
vd- >vdev_stat.vs_aux = VDEV_AUX_NONE;

} else if (state == VDEV_ STATE . REMOVED) ~{

vd- >vdev rermved = B_TRUE;

} else if (state == VDEV_STATE_CANT_OPEN) {
[

If we fail to open a vdev during an inport or recovery, we
mark it as "not available", which signifies that it was
never there to begin with. Failure to open such a device
is not considered an error.

—h ok k% ok ¥
-

((spa_l oad_st at e(spa) == SPA_LQAD_| MPORT ||
spa_l oad_state(spa) == SPA LOAD_RECOVER) &&
vd- >vdev_ops- >vdev_0p_| eaf)

vd- >vdev_not _present = 1;

Post the appropriate ereport. |f the 'prevstate’ field is
set to sonething other than VDEV_STATE_UNKNOWN, it indicates
that this is part of a vdev_reopen(). |In this case, we don’t
want to post the ereport if the device was already in the
CANT_CPEN st at e bef or ehand.

If the 'checkrenpbve’ flag is set, then this is an attenpt to
online the device in response to an insertion event. [If we
hit this case, then we have detected an insertion event for a
faulted or offline device that wasn't in the renpved state.
In this scenario, we don’t post an ereport because we are
about to replace the device, or attenpt an online with
vdev_forcefault, which will generate the fault for us.

* ok ok ok % ok ok ok kb Ok k%

*/

if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
I'vd- >vdev_not _present && !vd->vdev_checkrenove &&
vd ! = spa->spa_root_vdev) {

new usr/src/uts/comon/fs/zfs/vdev.c

3138 const char *cl ass;

3140 switch (aux)

3141 case VDEV_AUX_OPEN_FAI LED:

3142 class = FM EREPORT_ZFS_DEVI CE_OPEN_FAI LED;
3143 br eak;

3144 case VDEV_AUX_CORRUPT_DATA:

3145 class = FM EREPORT_ZFS_DEVI CE_CORRUPT_DATA;
3146 br eak;

3147 case VDEV_AUX_NO_REPLI CAS:

3148 class = FM EREPORT_ZFS DEVI CE_NO REPLI CAS;
3149 br eak;

3150 case VDEV_AUX_BAD GUI D_SUM

3151 class = FM EREPORT_ZFS_DEVI CE_BAD GU D_SUM
3152 br eak;

3153 case VDEV_AUX_TOO SMALL:

3154 class = FM EREPORT_ZFS_DEVI CE_TOO SMALL;
3155 br eak;

3156 case VDEV_AUX BAD LABEL:

3157 class = FM EREPORT_ZFS_DEVI CE_BAD_LABEL;
3158 br eak;

3159 defaul t:

3160 class = FM EREPORT_ZFS DEVI CE_UNKNOWN;
3161 }

3163 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3164 }

3166 /* Erase any notion of perS| stent renoved state */

3167 vd->vdev_renpved = B_FALSE;

3168 } else {

3169 vd->vdev_renpved = B_FALSE;

3170 }

3172 if (!isopen & vd->vdev_parent)

3173 vdev_propagat e_st at e(vd- >vdev_parent);

3174 }

3176 /*

3177 * Check the vdev configuration to ensure that it’s capable of supporting
3178 * a root pool. Currently, we do not support RAID-Z or partial configuration.
3179 * In addition, only a single top-level vdev is allowed and none of the |eaves
3180 * can be whol edi sks.

3181 */

3182 bool ean_t

3183 vdev_i s_boot abl e(vdev_t *vd)

3184 {

3185 if (!vd->vdev_ops->vdev_op_| eaf)

3186 char *vdev_type = vd->vdev_ops->vdev_op_t ype;

3188 if (strcnp(vdev_type, VDEV_TYPE_ROOT) == 0 &&

3189 vd->vdev_children > 1) {

3190 return (B_FALSE);

3191 } else if (strcnp(vdev_type, VDEV_TYPE RAIDZ) == 0 |

3192 strcnp(vdev_type, VDEV_TYPE_M SSING == 0) {

3193 return (B_FALSE);

3194 }

3195 } else if (vd->vdev_whol edi sk == 1) {

3196 return (B_FALSE);

3197 }

3199 for (int ¢ = 0; ¢ < vd->vdev_children; c++)

3200 if (!vdev_is_bootabl e(vd->vdev_child[c]))

3201 return (B_FALSE);

3202 1

3203 return (B_TRUE);

new usr/src/uts/comon/fs/zfs/vdev.c

= SCL_ALL)

47

3204 }

3206 /*

3207 * Load the state fromthe original vdev tree (ovd) which

3208 * we’'ve retrieved fromthe MOS config object. If the original
3209 * vdev was offline or faulted then we transfer that state to the
3210 * device in the current vdev tree (nvd)

3211 */

3212 void

3213 vdev_| oad_| og_state(vdev_t *nvd, vdev_t *ovd)

3214 {

3215 spa_t *spa = nvd->vdev_spa

3217 ASSERT(nvd- >vdev_t op- >vdev_i sl 0g) ;

3218 ASSERT(spa_confi g_hel d(spa, SCL_STATE ALL, RWWRI TER) == SCL_STATE ALL)
3219 ASSERT3U(nvd- >vdev_gui d, ==, ovd- >vdev_QU|d)

3221 for (int ¢ = 0; ¢ < nvd->vdev_children; c++)

3222 vdev_| oad_| og_st at e(nvd- >vdev_child[c], ovd->vdev_child[c])
3224 if (nvd->vdev_ops->vdev_op_| eaf) {

3225 /*

3226 * Restore the persistent vdev state

3227 */

3228 nvd- >vdev_of fli ne = ovd->vdev_offline

3229 nvd- >vdev_faul ted = ovd->vdev_faul ted

3230 nvd- >vdev_degr aded = ovd->vdev_degr aded

3231 nvd- >vdev_r enoved = ovd->vdev_renpved

3232 }

3233 }

3235 /*

3236 * Determine if a log device has valid content. |f the vdev was
3237 * renpved or faulted in the MOS config then we know that

3238 * the content on the |og device has already been witten to the pool
3239 */

3240 bool ean_t

3241 vdev_| og_state_valid(vdev_t *vd)

3242 {

3243 if (vd->vdev_ops->vdev_op_| eaf && !vd->vdev_faulted &&
3244 I vd- >vdev_r enpved)

3245 return (B_TRUE);

3247 for (int ¢ = 0; ¢ < vd->vdev_children; c++)

3248 if (vdev l og_state valld(vd >vdev _child[c]))
3249 return (B_TRU

3251 return (B_FALSE)

3252 }

3254 [*

3255 * Expand a vdev if possible.

3256 */

3257 void

3258 vdev_expand(vdev_t *vd, uint64_t txg)

3259 {

3260 ASSERT(vd- >vdev_top == vd);

3261 ASSERT(spa_config_ held(vd Svdev _spa, SCL_ALL, RWWRI TER)
3263 if ((vd->vdev_asize >> vd->vdev_ns_shift) > vd->vdev_ns_count) {
3264 VERI FY(vdev_netasl ab_init(vd, txg) == 0);

3265 vdev_config_dirty(vd);

3266 }

3267 }

3269 /*

new usr/src/uts/comon/fs/zfs/vdev.c 48

3270 * Split a vdev

3271 */
3272 void

3273 vdev_split(vdev_t *vd)

3274 {
3275

3277
3278

3280
3281
3282
3283
3284
3285
3286 }

3288 void

vdev_t *cvd, *pvd = vd->vdev_parent
vdev_renove_chil d(pvd, vd)
vdev_conpact _chi | dren(pvd)

cvd = pvd->vdev_chi | d[0]
if (pvd->vdev_children == 1)
vdev_r enove_parent (c

{
vd
cvd->vdev_splitting =

0
B_TRUE

vdev_propagat e_st at e(cvd)

3289 vdev_deadman(vdev_t *vd)

3290 {
3291
3292

3294
3295

3297
3298

3300
3301
3302
3303
3304

3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324 }

for (int ¢ = 0; ¢ < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c]

vdev_deadman(cvd)

}

if (vd->vdev_ops->vdev_op_| eaf)
vdev_queue_t *vqg = &vd->vdev_queue

mut ex_ent er (&vqg- >vq_l ock) ;

if (avl_numodes(&vqg->vq_active_tree) > 0) {
spa_t *spa = vd->vdev_spa
zio_t *fio;
uint64_t delta

/
Look at the head of all the pending queues
if any I/0O has been outstanding for |onger than
t he spa_deadnan_synctine we panic the system

_first(&qg->vg_active_tree)
ethrtime() - fio->io_tinestanp
> spa_deadman_syncti me(spa)) {
fs_dbgnsg("SLON IO zio timestanp %1 uns, "
"delta % luns, last io %Il uns"
fio->io_tinestanp, delta
VQ->v(q_ io_conplete_ts);
fmpanic("1/Oto pool '%’ appears to be "
"hung. ", spa_nane(spa));

*
*
*
*
S
io
e
if

—a—

= av
a:
d

vl
t g
(delta
z

}

}
mut ex_exi t (&q- >vq_l ock)

new usr/src/uts/comon/fs/zfs/zil.c

R R R R

57769 Thu COct 16 19: 15:52 2014
new usr/src/uts/comon/fs/zfs/zil.c
zpool inport speedup

R R R R

__unchanged_portion_onitted_

626 int
627 zil _clai mconst char *osnane, void *txarg)
28 {
629 dmu_tx_t *tx = txarg;
630 uint64_t first_txg = dnu_tx_get_txg(tx);
631 zilog_t *zilog;
632 zi | _header _t *zh;
633 obj set _t *os;
634 int error;
636 error = dnu_obj set _own_nol ock(osnane, DMJ OST_ANY, B FALSE, FTAG &o0s);
636 error = dnmu_obj set _own(osname, DMJ_OST_ANY, B FALSE, FTAG &o0s);
637 if (error 1= 0)
638 com_err (CE_WARN, "can’'t open objset for %", osnane);
639 return (0);
640 1
642 zilog = dnu_obj set _zil (0s);
643 zh = zil _header _i n_synci ng_cont ext (zil og);
645 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG CLEAR) ({
646 if (!BP_I S_HOLE(&zh->zh_l og))
647 zio_free_zil(zilog->zl _spa, first_txg, &h->zh_|log);
648 BP_ZERQ(&h->zh _Tog);
649 dsl _dat aset dlrty(drru obj set _ds(o0s), tx);
650 dnmu_obj set _di sown(os, FTAG ;
651 return (0);
652 }
654 /*
655 * Claimall log blocks if we haven't already done so, and renenber
656 * the highest clainmed sequence nunber. This ensures that if we can
657 * read only part of the log now (e.g. due to a m ssing device),
658 * but we can read the entire log later, we will not try to replay
659 * or destroy beyond the |ast block we successfully clainmed.
660 */
661 ASSERT3U(zh->zh_claim txg, <=, first_txg);
662 if (zh->zh_claimtxg == 0 && ! BP_I S HOLE(&h->zh_l og)) {
663 (void) zil_parse(zilog, zil_claim]log_block,
664 zil _claimlog_record, tx, first_txg);
665 zh->zh_claimtxg = first txg,
666 zh->zh_cl ai m bl k_seq = zil og->z| parse_bl k_seq;
667 zh->zh_claim|r_seq = zilog->zl _parse_Ir_seq;
668 if (zilog->zl _parse_lr_count || zilog->zl_parse_bl k_count > 1)
669 zh->zh_flags | = ZI L_REPLAY_NEEDED;
670 zh->zh_flags |= ZIL_CLAIM LR SEQ VALI D;
671 ds| _dataset _dirty(dmu_objset_ds(os), tx);
672 }
674 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
675 dmu_obj set _di sown(os, FTAQ;
676 return (0);
677 }
679 /*
680 * Check the log by wal king the | og chain.
681 * Checksumerrors are ok as they indicate the end of the chain.
682 * Any other error (no device or read failure) returns an error.
*

683 */

new usr/src/uts/comon/fs/zfs/zil.c

684 int

685 zil _check_| og_chai n(const char *osnane, void *tx)

686 {

687 zilog_t *zilog;

688 obj set _t *os;

689 bl kptr_t *bp,

690 int error;

692 ASSERT(tx == NULL);

694 error = dnu_obj set _hol d_nol ock(osnane, FTAG &os);

694 error = dnu_obj set _hol d(osnane, FTAG &os);

695 if (error 1= 0)

696 crm_err (CE_WARN, "can’t open objset for %", osnane);

697 return (0);

698 }

700 zil og = dnu_obj set _zil (0s);

701 bp = (bl kptr_t *)&zil og->zl _header->zh_| og;

703 I

704 * Check the first block and determne if it’'s on a | og device

705 * which nay have been renoved or faulted prior to loading this

706 * pool. |If so, there’s no point in checking the rest of the |og
707 * as its content shoul d have already been synced to the pool.

708 */

709 f (!BP_I S_HOLE(bp)) {

710 vdev_t *vd;

711 bool ean_t valid = B_TRUE;

713 spa_l config_enter(os->0s_spa, SCL_STATE, FTAG RW READER);
714 vd = vdev_I| ookup_t op(os->0s_spa, DVA GET_VDEV(&bp- >bl k dva[01));
715 if (vd->vdev_islog & vdev_is dead(vd))

716 valid = vdev_| og_state_valid(vd);

717 spa_config_exit(os->0s_spa, SCL_STATE, FTAG)

719 if (tvalid) {

720 dmu_obj set _rel e(os, FTAQ;

721 return (0);

722 }

723 }

725 /*

726 * Because tx == NULL, zil_claimlog_block() will not actually claim
727 * any bl ocks, but just determne whether it is possible to do so.
728 * In addition to checking the log chain, zil_claimlog_block()

729 * will invoke zio_clain() with a done func of spa_claimnotify(),
730 * which will update spa_max_claimtxg. See spa_load() for details.
731 */

732 error = zil _parse(zilog, zil_claimlog_block, zil_claimlog_record, tx,
733 zi | 0og- >zl _header->zh_claimtxg ? -1ULL : spa_first_txg(os->0s_spa));
735 dmu_obj set _rel e(os, FTAG;

737 return ((error == ECKSUM || error == ENCENT) ? O : error);

738 }

__unchanged_portion_onitted_

