
new/usr/src/uts/common/fs/zfs/dmu_objset.c 1

**
 48886 Thu Oct 16 19:15:50 2014
new/usr/src/uts/common/fs/zfs/dmu_objset.c
zpool import speedup
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26 */

28 /* Portions Copyright 2010 Robert Milkowski */

30 #include <sys/cred.h>
31 #include <sys/zfs_context.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_dataset.h>
35 #include <sys/dsl_prop.h>
36 #include <sys/dsl_pool.h>
37 #include <sys/dsl_synctask.h>
38 #include <sys/dsl_deleg.h>
39 #include <sys/dnode.h>
40 #include <sys/dbuf.h>
41 #include <sys/zvol.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/dmu_impl.h>
46 #include <sys/zfs_ioctl.h>
47 #include <sys/sa.h>
48 #include <sys/zfs_onexit.h>
49 #include <sys/dsl_destroy.h>
50 #include <sys/vdev.h>
51 #endif /* ! codereview */

53 /*
54 * Needed to close a window in dnode_move() that allows the objset to be freed
55 * before it can be safely accessed.
56 */
57 krwlock_t os_lock;

59 void
60 dmu_objset_init(void)
61 {

new/usr/src/uts/common/fs/zfs/dmu_objset.c 2

62 rw_init(&os_lock, NULL, RW_DEFAULT, NULL);
63 }

65 void
66 dmu_objset_fini(void)
67 {
68 rw_destroy(&os_lock);
69 }

71 spa_t *
72 dmu_objset_spa(objset_t *os)
73 {
74 return (os->os_spa);
75 }

77 zilog_t *
78 dmu_objset_zil(objset_t *os)
79 {
80 return (os->os_zil);
81 }

83 dsl_pool_t *
84 dmu_objset_pool(objset_t *os)
85 {
86 dsl_dataset_t *ds;

88 if ((ds = os->os_dsl_dataset) != NULL && ds->ds_dir)
89 return (ds->ds_dir->dd_pool);
90 else
91 return (spa_get_dsl(os->os_spa));
92 }

94 dsl_dataset_t *
95 dmu_objset_ds(objset_t *os)
96 {
97 return (os->os_dsl_dataset);
98 }

100 dmu_objset_type_t
101 dmu_objset_type(objset_t *os)
102 {
103 return (os->os_phys->os_type);
104 }

106 void
107 dmu_objset_name(objset_t *os, char *buf)
108 {
109 dsl_dataset_name(os->os_dsl_dataset, buf);
110 }

112 uint64_t
113 dmu_objset_id(objset_t *os)
114 {
115 dsl_dataset_t *ds = os->os_dsl_dataset;

117 return (ds ? ds->ds_object : 0);
118 }

120 zfs_sync_type_t
121 dmu_objset_syncprop(objset_t *os)
122 {
123 return (os->os_sync);
124 }

126 zfs_logbias_op_t
127 dmu_objset_logbias(objset_t *os)

new/usr/src/uts/common/fs/zfs/dmu_objset.c 3

128 {
129 return (os->os_logbias);
130 }

132 static void
133 checksum_changed_cb(void *arg, uint64_t newval)
134 {
135 objset_t *os = arg;

137 /*
138 * Inheritance should have been done by now.
139 */
140 ASSERT(newval != ZIO_CHECKSUM_INHERIT);

142 os->os_checksum = zio_checksum_select(newval, ZIO_CHECKSUM_ON_VALUE);
143 }

145 static void
146 compression_changed_cb(void *arg, uint64_t newval)
147 {
148 objset_t *os = arg;

150 /*
151 * Inheritance and range checking should have been done by now.
152 */
153 ASSERT(newval != ZIO_COMPRESS_INHERIT);

155 os->os_compress = zio_compress_select(newval, ZIO_COMPRESS_ON_VALUE);
156 }

158 static void
159 copies_changed_cb(void *arg, uint64_t newval)
160 {
161 objset_t *os = arg;

163 /*
164 * Inheritance and range checking should have been done by now.
165 */
166 ASSERT(newval > 0);
167 ASSERT(newval <= spa_max_replication(os->os_spa));

169 os->os_copies = newval;
170 }

172 static void
173 dedup_changed_cb(void *arg, uint64_t newval)
174 {
175 objset_t *os = arg;
176 spa_t *spa = os->os_spa;
177 enum zio_checksum checksum;

179 /*
180 * Inheritance should have been done by now.
181 */
182 ASSERT(newval != ZIO_CHECKSUM_INHERIT);

184 checksum = zio_checksum_dedup_select(spa, newval, ZIO_CHECKSUM_OFF);

186 os->os_dedup_checksum = checksum & ZIO_CHECKSUM_MASK;
187 os->os_dedup_verify = !!(checksum & ZIO_CHECKSUM_VERIFY);
188 }

190 static void
191 primary_cache_changed_cb(void *arg, uint64_t newval)
192 {
193 objset_t *os = arg;

new/usr/src/uts/common/fs/zfs/dmu_objset.c 4

195 /*
196 * Inheritance and range checking should have been done by now.
197 */
198 ASSERT(newval == ZFS_CACHE_ALL || newval == ZFS_CACHE_NONE ||
199 newval == ZFS_CACHE_METADATA);

201 os->os_primary_cache = newval;
202 }

204 static void
205 secondary_cache_changed_cb(void *arg, uint64_t newval)
206 {
207 objset_t *os = arg;

209 /*
210 * Inheritance and range checking should have been done by now.
211 */
212 ASSERT(newval == ZFS_CACHE_ALL || newval == ZFS_CACHE_NONE ||
213 newval == ZFS_CACHE_METADATA);

215 os->os_secondary_cache = newval;
216 }

218 static void
219 sync_changed_cb(void *arg, uint64_t newval)
220 {
221 objset_t *os = arg;

223 /*
224 * Inheritance and range checking should have been done by now.
225 */
226 ASSERT(newval == ZFS_SYNC_STANDARD || newval == ZFS_SYNC_ALWAYS ||
227 newval == ZFS_SYNC_DISABLED);

229 os->os_sync = newval;
230 if (os->os_zil)
231 zil_set_sync(os->os_zil, newval);
232 }

234 static void
235 redundant_metadata_changed_cb(void *arg, uint64_t newval)
236 {
237 objset_t *os = arg;

239 /*
240 * Inheritance and range checking should have been done by now.
241 */
242 ASSERT(newval == ZFS_REDUNDANT_METADATA_ALL ||
243 newval == ZFS_REDUNDANT_METADATA_MOST);

245 os->os_redundant_metadata = newval;
246 }

248 static void
249 logbias_changed_cb(void *arg, uint64_t newval)
250 {
251 objset_t *os = arg;

253 ASSERT(newval == ZFS_LOGBIAS_LATENCY ||
254 newval == ZFS_LOGBIAS_THROUGHPUT);
255 os->os_logbias = newval;
256 if (os->os_zil)
257 zil_set_logbias(os->os_zil, newval);
258 }

new/usr/src/uts/common/fs/zfs/dmu_objset.c 5

260 void
261 dmu_objset_byteswap(void *buf, size_t size)
262 {
263 objset_phys_t *osp = buf;

265 ASSERT(size == OBJSET_OLD_PHYS_SIZE || size == sizeof (objset_phys_t));
266 dnode_byteswap(&osp->os_meta_dnode);
267 byteswap_uint64_array(&osp->os_zil_header, sizeof (zil_header_t));
268 osp->os_type = BSWAP_64(osp->os_type);
269 osp->os_flags = BSWAP_64(osp->os_flags);
270 if (size == sizeof (objset_phys_t)) {
271 dnode_byteswap(&osp->os_userused_dnode);
272 dnode_byteswap(&osp->os_groupused_dnode);
273 }
274 }

276 int
277 dmu_objset_open_impl(spa_t *spa, dsl_dataset_t *ds, blkptr_t *bp,
278 objset_t **osp)
279 {
280 objset_t *os;
281 int i, err;

283 ASSERT(ds == NULL || MUTEX_HELD(&ds->ds_opening_lock));

285 os = kmem_zalloc(sizeof (objset_t), KM_SLEEP);
286 os->os_dsl_dataset = ds;
287 os->os_spa = spa;
288 os->os_rootbp = bp;
289 if (!BP_IS_HOLE(os->os_rootbp)) {
290 uint32_t aflags = ARC_WAIT;
291 zbookmark_t zb;
292 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
293 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);

295 if (DMU_OS_IS_L2CACHEABLE(os))
296 aflags |= ARC_L2CACHE;
297 if (DMU_OS_IS_L2COMPRESSIBLE(os))
298 aflags |= ARC_L2COMPRESS;

300 dprintf_bp(os->os_rootbp, "reading %s", "");
301 err = arc_read(NULL, spa, os->os_rootbp,
302 arc_getbuf_func, &os->os_phys_buf,
303 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL, &aflags, &zb);
304 if (err != 0) {
305 kmem_free(os, sizeof (objset_t));
306 /* convert checksum errors into IO errors */
307 if (err == ECKSUM)
308 err = SET_ERROR(EIO);
309 return (err);
310 }

312 /* Increase the blocksize if we are permitted. */
313 if (spa_version(spa) >= SPA_VERSION_USERSPACE &&
314 arc_buf_size(os->os_phys_buf) < sizeof (objset_phys_t)) {
315 arc_buf_t *buf = arc_buf_alloc(spa,
316 sizeof (objset_phys_t), &os->os_phys_buf,
317 ARC_BUFC_METADATA);
318 bzero(buf->b_data, sizeof (objset_phys_t));
319 bcopy(os->os_phys_buf->b_data, buf->b_data,
320 arc_buf_size(os->os_phys_buf));
321 (void) arc_buf_remove_ref(os->os_phys_buf,
322 &os->os_phys_buf);
323 os->os_phys_buf = buf;
324 }

new/usr/src/uts/common/fs/zfs/dmu_objset.c 6

326 os->os_phys = os->os_phys_buf->b_data;
327 os->os_flags = os->os_phys->os_flags;
328 } else {
329 int size = spa_version(spa) >= SPA_VERSION_USERSPACE ?
330 sizeof (objset_phys_t) : OBJSET_OLD_PHYS_SIZE;
331 os->os_phys_buf = arc_buf_alloc(spa, size,
332 &os->os_phys_buf, ARC_BUFC_METADATA);
333 os->os_phys = os->os_phys_buf->b_data;
334 bzero(os->os_phys, size);
335 }

337 /*
338 * Note: the changed_cb will be called once before the register
339 * func returns, thus changing the checksum/compression from the
340 * default (fletcher2/off). Snapshots don’t need to know about
341 * checksum/compression/copies.
342 */
343 if (ds != NULL) {
344 err = dsl_prop_register(ds,
345 zfs_prop_to_name(ZFS_PROP_PRIMARYCACHE),
346 primary_cache_changed_cb, os);
347 if (err == 0) {
348 err = dsl_prop_register(ds,
349 zfs_prop_to_name(ZFS_PROP_SECONDARYCACHE),
350 secondary_cache_changed_cb, os);
351 }
352 if (!dsl_dataset_is_snapshot(ds)) {
353 if (err == 0) {
354 err = dsl_prop_register(ds,
355 zfs_prop_to_name(ZFS_PROP_CHECKSUM),
356 checksum_changed_cb, os);
357 }
358 if (err == 0) {
359 err = dsl_prop_register(ds,
360 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
361 compression_changed_cb, os);
362 }
363 if (err == 0) {
364 err = dsl_prop_register(ds,
365 zfs_prop_to_name(ZFS_PROP_COPIES),
366 copies_changed_cb, os);
367 }
368 if (err == 0) {
369 err = dsl_prop_register(ds,
370 zfs_prop_to_name(ZFS_PROP_DEDUP),
371 dedup_changed_cb, os);
372 }
373 if (err == 0) {
374 err = dsl_prop_register(ds,
375 zfs_prop_to_name(ZFS_PROP_LOGBIAS),
376 logbias_changed_cb, os);
377 }
378 if (err == 0) {
379 err = dsl_prop_register(ds,
380 zfs_prop_to_name(ZFS_PROP_SYNC),
381 sync_changed_cb, os);
382 }
383 if (err == 0) {
384 err = dsl_prop_register(ds,
385 zfs_prop_to_name(
386 ZFS_PROP_REDUNDANT_METADATA),
387 redundant_metadata_changed_cb, os);
388 }
389 }
390 if (err != 0) {
391 VERIFY(arc_buf_remove_ref(os->os_phys_buf,

new/usr/src/uts/common/fs/zfs/dmu_objset.c 7

392 &os->os_phys_buf));
393 kmem_free(os, sizeof (objset_t));
394 return (err);
395 }
396 } else {
397 /* It’s the meta-objset. */
398 os->os_checksum = ZIO_CHECKSUM_FLETCHER_4;
399 os->os_compress = ZIO_COMPRESS_LZJB;
400 os->os_copies = spa_max_replication(spa);
401 os->os_dedup_checksum = ZIO_CHECKSUM_OFF;
402 os->os_dedup_verify = B_FALSE;
403 os->os_logbias = ZFS_LOGBIAS_LATENCY;
404 os->os_sync = ZFS_SYNC_STANDARD;
405 os->os_primary_cache = ZFS_CACHE_ALL;
406 os->os_secondary_cache = ZFS_CACHE_ALL;
407 }

409 if (ds == NULL || !dsl_dataset_is_snapshot(ds))
410 os->os_zil_header = os->os_phys->os_zil_header;
411 os->os_zil = zil_alloc(os, &os->os_zil_header);

413 for (i = 0; i < TXG_SIZE; i++) {
414 list_create(&os->os_dirty_dnodes[i], sizeof (dnode_t),
415 offsetof(dnode_t, dn_dirty_link[i]));
416 list_create(&os->os_free_dnodes[i], sizeof (dnode_t),
417 offsetof(dnode_t, dn_dirty_link[i]));
418 }
419 list_create(&os->os_dnodes, sizeof (dnode_t),
420 offsetof(dnode_t, dn_link));
421 list_create(&os->os_downgraded_dbufs, sizeof (dmu_buf_impl_t),
422 offsetof(dmu_buf_impl_t, db_link));

424 mutex_init(&os->os_lock, NULL, MUTEX_DEFAULT, NULL);
425 mutex_init(&os->os_obj_lock, NULL, MUTEX_DEFAULT, NULL);
426 mutex_init(&os->os_user_ptr_lock, NULL, MUTEX_DEFAULT, NULL);

428 DMU_META_DNODE(os) = dnode_special_open(os,
429 &os->os_phys->os_meta_dnode, DMU_META_DNODE_OBJECT,
430 &os->os_meta_dnode);
431 if (arc_buf_size(os->os_phys_buf) >= sizeof (objset_phys_t)) {
432 DMU_USERUSED_DNODE(os) = dnode_special_open(os,
433 &os->os_phys->os_userused_dnode, DMU_USERUSED_OBJECT,
434 &os->os_userused_dnode);
435 DMU_GROUPUSED_DNODE(os) = dnode_special_open(os,
436 &os->os_phys->os_groupused_dnode, DMU_GROUPUSED_OBJECT,
437 &os->os_groupused_dnode);
438 }

440 *osp = os;
441 return (0);
442 }

444 int
445 dmu_objset_from_ds(dsl_dataset_t *ds, objset_t **osp)
446 {
447 int err = 0;

449 mutex_enter(&ds->ds_opening_lock);
450 if (ds->ds_objset == NULL) {
451 objset_t *os;
452 err = dmu_objset_open_impl(dsl_dataset_get_spa(ds),
453 ds, dsl_dataset_get_blkptr(ds), &os);

455 if (err == 0) {
456 mutex_enter(&ds->ds_lock);
457 ASSERT(ds->ds_objset == NULL);

new/usr/src/uts/common/fs/zfs/dmu_objset.c 8

458 ds->ds_objset = os;
459 mutex_exit(&ds->ds_lock);
460 }
461 }
462 *osp = ds->ds_objset;
463 mutex_exit(&ds->ds_opening_lock);
464 return (err);
465 }

467 /*
468 * Holds the pool while the objset is held. Therefore only one objset
469 * can be held at a time.
470 */
471 static int
472 dmu_objset_hold_impl(const char *name, void *tag, objset_t **osp, int lock)
50 int
51 dmu_objset_hold(const char *name, void *tag, objset_t **osp)
473 {
474 dsl_pool_t *dp;
475 dsl_dataset_t *ds;
476 int err;

478 err = dsl_pool_hold_lock(name, tag, &dp, lock);
57 err = dsl_pool_hold(name, tag, &dp);
479 if (err != 0)
480 return (err);
481 err = dsl_dataset_hold(dp, name, tag, &ds);
482 if (err != 0) {
483 dsl_pool_rele(dp, tag);
484 return (err);
485 }

487 err = dmu_objset_from_ds(ds, osp);
488 if (err != 0) {
489 dsl_dataset_rele(ds, tag);
490 dsl_pool_rele(dp, tag);
491 }

493 return (err);
494 }

496 int
497 dmu_objset_hold(const char *name, void *tag, objset_t **osp)
498 {
499 return (dmu_objset_hold_impl(name, tag, osp, 1));
500 }

502 int
503 dmu_objset_hold_nolock(const char *name, void *tag, objset_t **osp)
504 {
505 return (dmu_objset_hold_impl(name, tag, osp, 0));
506 }

508 #endif /* ! codereview */
509 /*
510 * dsl_pool must not be held when this is called.
511 * Upon successful return, there will be a longhold on the dataset,
512 * and the dsl_pool will not be held.
513 */
514 static int
515 dmu_objset_own_impl(const char *name, dmu_objset_type_t type,
516 boolean_t readonly, void *tag, objset_t **osp, int lock)
75 int
76 dmu_objset_own(const char *name, dmu_objset_type_t type,
77 boolean_t readonly, void *tag, objset_t **osp)
517 {

new/usr/src/uts/common/fs/zfs/dmu_objset.c 9

518 dsl_pool_t *dp;
519 dsl_dataset_t *ds;
520 int err;

522 err = dsl_pool_hold_lock(name, FTAG, &dp, lock);
83 err = dsl_pool_hold(name, FTAG, &dp);
523 if (err != 0)
524 return (err);
525 err = dsl_dataset_own(dp, name, tag, &ds);
526 if (err != 0) {
527 dsl_pool_rele(dp, FTAG);
528 return (err);
529 }

531 err = dmu_objset_from_ds(ds, osp);
532 dsl_pool_rele(dp, FTAG);
533 if (err != 0) {
534 dsl_dataset_disown(ds, tag);
535 } else if (type != DMU_OST_ANY && type != (*osp)->os_phys->os_type) {
536 dsl_dataset_disown(ds, tag);
537 return (SET_ERROR(EINVAL));
538 } else if (!readonly && dsl_dataset_is_snapshot(ds)) {
539 dsl_dataset_disown(ds, tag);
540 return (SET_ERROR(EROFS));
541 }
542 return (err);
543 }

545 int
546 dmu_objset_own(const char *name, dmu_objset_type_t type,
547 boolean_t readonly, void *tag, objset_t **osp)
548 {
549 return (dmu_objset_own_impl(name, type, readonly, tag, osp, 1));
550 }

552 int
553 dmu_objset_own_nolock(const char *name, dmu_objset_type_t type,
554 boolean_t readonly, void *tag, objset_t **osp)
555 {
556 return (dmu_objset_own_impl(name, type, readonly, tag, osp, 0));
557 }

559 #endif /* ! codereview */
560 void
561 dmu_objset_rele(objset_t *os, void *tag)
562 {
563 dsl_pool_t *dp = dmu_objset_pool(os);
564 dsl_dataset_rele(os->os_dsl_dataset, tag);
565 dsl_pool_rele(dp, tag);
566 }

568 /*
569 * When we are called, os MUST refer to an objset associated with a dataset
570 * that is owned by ’tag’; that is, is held and long held by ’tag’ and ds_owner
571 * == tag. We will then release and reacquire ownership of the dataset while
572 * holding the pool config_rwlock to avoid intervening namespace or ownership
573 * changes may occur.
574 *
575 * This exists solely to accommodate zfs_ioc_userspace_upgrade()’s desire to
576 * release the hold on its dataset and acquire a new one on the dataset of the
577 * same name so that it can be partially torn down and reconstructed.
578 */
579 void
580 dmu_objset_refresh_ownership(objset_t *os, void *tag)
581 {
582 dsl_pool_t *dp;

new/usr/src/uts/common/fs/zfs/dmu_objset.c 10

583 dsl_dataset_t *ds, *newds;
584 char name[MAXNAMELEN];

586 ds = os->os_dsl_dataset;
587 VERIFY3P(ds, !=, NULL);
588 VERIFY3P(ds->ds_owner, ==, tag);
589 VERIFY(dsl_dataset_long_held(ds));

591 dsl_dataset_name(ds, name);
592 dp = dmu_objset_pool(os);
593 dsl_pool_config_enter(dp, FTAG);
594 dmu_objset_disown(os, tag);
595 VERIFY0(dsl_dataset_own(dp, name, tag, &newds));
596 VERIFY3P(newds, ==, os->os_dsl_dataset);
597 dsl_pool_config_exit(dp, FTAG);
598 }

600 void
601 dmu_objset_disown(objset_t *os, void *tag)
602 {
603 dsl_dataset_disown(os->os_dsl_dataset, tag);
604 }

606 void
607 dmu_objset_evict_dbufs(objset_t *os)
608 {
609 dnode_t *dn;

611 mutex_enter(&os->os_lock);

613 /* process the mdn last, since the other dnodes have holds on it */
614 list_remove(&os->os_dnodes, DMU_META_DNODE(os));
615 list_insert_tail(&os->os_dnodes, DMU_META_DNODE(os));

617 /*
618 * Find the first dnode with holds. We have to do this dance
619 * because dnode_add_ref() only works if you already have a
620 * hold. If there are no holds then it has no dbufs so OK to
621 * skip.
622 */
623 for (dn = list_head(&os->os_dnodes);
624 dn && !dnode_add_ref(dn, FTAG);
625 dn = list_next(&os->os_dnodes, dn))
626 continue;

628 while (dn) {
629 dnode_t *next_dn = dn;

631 do {
632 next_dn = list_next(&os->os_dnodes, next_dn);
633 } while (next_dn && !dnode_add_ref(next_dn, FTAG));

635 mutex_exit(&os->os_lock);
636 dnode_evict_dbufs(dn);
637 dnode_rele(dn, FTAG);
638 mutex_enter(&os->os_lock);
639 dn = next_dn;
640 }
641 mutex_exit(&os->os_lock);
642 }

644 void
645 dmu_objset_evict(objset_t *os)
646 {
647 dsl_dataset_t *ds = os->os_dsl_dataset;

new/usr/src/uts/common/fs/zfs/dmu_objset.c 11

649 for (int t = 0; t < TXG_SIZE; t++)
650 ASSERT(!dmu_objset_is_dirty(os, t));

652 if (ds) {
653 if (!dsl_dataset_is_snapshot(ds)) {
654 VERIFY0(dsl_prop_unregister(ds,
655 zfs_prop_to_name(ZFS_PROP_CHECKSUM),
656 checksum_changed_cb, os));
657 VERIFY0(dsl_prop_unregister(ds,
658 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
659 compression_changed_cb, os));
660 VERIFY0(dsl_prop_unregister(ds,
661 zfs_prop_to_name(ZFS_PROP_COPIES),
662 copies_changed_cb, os));
663 VERIFY0(dsl_prop_unregister(ds,
664 zfs_prop_to_name(ZFS_PROP_DEDUP),
665 dedup_changed_cb, os));
666 VERIFY0(dsl_prop_unregister(ds,
667 zfs_prop_to_name(ZFS_PROP_LOGBIAS),
668 logbias_changed_cb, os));
669 VERIFY0(dsl_prop_unregister(ds,
670 zfs_prop_to_name(ZFS_PROP_SYNC),
671 sync_changed_cb, os));
672 VERIFY0(dsl_prop_unregister(ds,
673 zfs_prop_to_name(ZFS_PROP_REDUNDANT_METADATA),
674 redundant_metadata_changed_cb, os));
675 }
676 VERIFY0(dsl_prop_unregister(ds,
677 zfs_prop_to_name(ZFS_PROP_PRIMARYCACHE),
678 primary_cache_changed_cb, os));
679 VERIFY0(dsl_prop_unregister(ds,
680 zfs_prop_to_name(ZFS_PROP_SECONDARYCACHE),
681 secondary_cache_changed_cb, os));
682 }

684 if (os->os_sa)
685 sa_tear_down(os);

687 dmu_objset_evict_dbufs(os);

689 dnode_special_close(&os->os_meta_dnode);
690 if (DMU_USERUSED_DNODE(os)) {
691 dnode_special_close(&os->os_userused_dnode);
692 dnode_special_close(&os->os_groupused_dnode);
693 }
694 zil_free(os->os_zil);

696 ASSERT3P(list_head(&os->os_dnodes), ==, NULL);

698 VERIFY(arc_buf_remove_ref(os->os_phys_buf, &os->os_phys_buf));

700 /*
701 * This is a barrier to prevent the objset from going away in
702 * dnode_move() until we can safely ensure that the objset is still in
703 * use. We consider the objset valid before the barrier and invalid
704 * after the barrier.
705 */
706 rw_enter(&os_lock, RW_READER);
707 rw_exit(&os_lock);

709 mutex_destroy(&os->os_lock);
710 mutex_destroy(&os->os_obj_lock);
711 mutex_destroy(&os->os_user_ptr_lock);
712 kmem_free(os, sizeof (objset_t));
713 }

new/usr/src/uts/common/fs/zfs/dmu_objset.c 12

715 timestruc_t
716 dmu_objset_snap_cmtime(objset_t *os)
717 {
718 return (dsl_dir_snap_cmtime(os->os_dsl_dataset->ds_dir));
719 }

721 /* called from dsl for meta-objset */
722 objset_t *
723 dmu_objset_create_impl(spa_t *spa, dsl_dataset_t *ds, blkptr_t *bp,
724 dmu_objset_type_t type, dmu_tx_t *tx)
725 {
726 objset_t *os;
727 dnode_t *mdn;

729 ASSERT(dmu_tx_is_syncing(tx));

731 if (ds != NULL)
732 VERIFY0(dmu_objset_from_ds(ds, &os));
733 else
734 VERIFY0(dmu_objset_open_impl(spa, NULL, bp, &os));

736 mdn = DMU_META_DNODE(os);

738 dnode_allocate(mdn, DMU_OT_DNODE, 1 << DNODE_BLOCK_SHIFT,
739 DN_MAX_INDBLKSHIFT, DMU_OT_NONE, 0, tx);

741 /*
742 * We don’t want to have to increase the meta-dnode’s nlevels
743 * later, because then we could do it in quescing context while
744 * we are also accessing it in open context.
745 *
746 * This precaution is not necessary for the MOS (ds == NULL),
747 * because the MOS is only updated in syncing context.
748 * This is most fortunate: the MOS is the only objset that
749 * needs to be synced multiple times as spa_sync() iterates
750 * to convergence, so minimizing its dn_nlevels matters.
751 */
752 if (ds != NULL) {
753 int levels = 1;

755 /*
756 * Determine the number of levels necessary for the meta-dnode
757 * to contain DN_MAX_OBJECT dnodes.
758 */
759 while ((uint64_t)mdn->dn_nblkptr << (mdn->dn_datablkshift +
760 (levels - 1) * (mdn->dn_indblkshift - SPA_BLKPTRSHIFT)) <
761 DN_MAX_OBJECT * sizeof (dnode_phys_t))
762 levels++;

764 mdn->dn_next_nlevels[tx->tx_txg & TXG_MASK] =
765 mdn->dn_nlevels = levels;
766 }

768 ASSERT(type != DMU_OST_NONE);
769 ASSERT(type != DMU_OST_ANY);
770 ASSERT(type < DMU_OST_NUMTYPES);
771 os->os_phys->os_type = type;
772 if (dmu_objset_userused_enabled(os)) {
773 os->os_phys->os_flags |= OBJSET_FLAG_USERACCOUNTING_COMPLETE;
774 os->os_flags = os->os_phys->os_flags;
775 }

777 dsl_dataset_dirty(ds, tx);

779 return (os);
780 }

new/usr/src/uts/common/fs/zfs/dmu_objset.c 13

782 typedef struct dmu_objset_create_arg {
783 const char *doca_name;
784 cred_t *doca_cred;
785 void (*doca_userfunc)(objset_t *os, void *arg,
786 cred_t *cr, dmu_tx_t *tx);
787 void *doca_userarg;
788 dmu_objset_type_t doca_type;
789 uint64_t doca_flags;
790 } dmu_objset_create_arg_t;

792 /*ARGSUSED*/
793 static int
794 dmu_objset_create_check(void *arg, dmu_tx_t *tx)
795 {
796 dmu_objset_create_arg_t *doca = arg;
797 dsl_pool_t *dp = dmu_tx_pool(tx);
798 dsl_dir_t *pdd;
799 const char *tail;
800 int error;

802 if (strchr(doca->doca_name, ’@’) != NULL)
803 return (SET_ERROR(EINVAL));

805 error = dsl_dir_hold(dp, doca->doca_name, FTAG, &pdd, &tail);
806 if (error != 0)
807 return (error);
808 if (tail == NULL) {
809 dsl_dir_rele(pdd, FTAG);
810 return (SET_ERROR(EEXIST));
811 }
812 error = dsl_fs_ss_limit_check(pdd, 1, ZFS_PROP_FILESYSTEM_LIMIT, NULL,
813 doca->doca_cred);
814 dsl_dir_rele(pdd, FTAG);

816 return (error);
817 }

819 static void
820 dmu_objset_create_sync(void *arg, dmu_tx_t *tx)
821 {
822 dmu_objset_create_arg_t *doca = arg;
823 dsl_pool_t *dp = dmu_tx_pool(tx);
824 dsl_dir_t *pdd;
825 const char *tail;
826 dsl_dataset_t *ds;
827 uint64_t obj;
828 blkptr_t *bp;
829 objset_t *os;

831 VERIFY0(dsl_dir_hold(dp, doca->doca_name, FTAG, &pdd, &tail));

833 obj = dsl_dataset_create_sync(pdd, tail, NULL, doca->doca_flags,
834 doca->doca_cred, tx);

836 VERIFY0(dsl_dataset_hold_obj(pdd->dd_pool, obj, FTAG, &ds));
837 bp = dsl_dataset_get_blkptr(ds);
838 os = dmu_objset_create_impl(pdd->dd_pool->dp_spa,
839 ds, bp, doca->doca_type, tx);

841 if (doca->doca_userfunc != NULL) {
842 doca->doca_userfunc(os, doca->doca_userarg,
843 doca->doca_cred, tx);
844 }

846 spa_history_log_internal_ds(ds, "create", tx, "");

new/usr/src/uts/common/fs/zfs/dmu_objset.c 14

847 dsl_dataset_rele(ds, FTAG);
848 dsl_dir_rele(pdd, FTAG);
849 }

851 int
852 dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
853 void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg)
854 {
855 dmu_objset_create_arg_t doca;

857 doca.doca_name = name;
858 doca.doca_cred = CRED();
859 doca.doca_flags = flags;
860 doca.doca_userfunc = func;
861 doca.doca_userarg = arg;
862 doca.doca_type = type;

864 return (dsl_sync_task(name,
865 dmu_objset_create_check, dmu_objset_create_sync, &doca, 5));
866 }

868 typedef struct dmu_objset_clone_arg {
869 const char *doca_clone;
870 const char *doca_origin;
871 cred_t *doca_cred;
872 } dmu_objset_clone_arg_t;

874 /*ARGSUSED*/
875 static int
876 dmu_objset_clone_check(void *arg, dmu_tx_t *tx)
877 {
878 dmu_objset_clone_arg_t *doca = arg;
879 dsl_dir_t *pdd;
880 const char *tail;
881 int error;
882 dsl_dataset_t *origin;
883 dsl_pool_t *dp = dmu_tx_pool(tx);

885 if (strchr(doca->doca_clone, ’@’) != NULL)
886 return (SET_ERROR(EINVAL));

888 error = dsl_dir_hold(dp, doca->doca_clone, FTAG, &pdd, &tail);
889 if (error != 0)
890 return (error);
891 if (tail == NULL) {
892 dsl_dir_rele(pdd, FTAG);
893 return (SET_ERROR(EEXIST));
894 }
895 /* You can’t clone across pools. */
896 if (pdd->dd_pool != dp) {
897 dsl_dir_rele(pdd, FTAG);
898 return (SET_ERROR(EXDEV));
899 }
900 error = dsl_fs_ss_limit_check(pdd, 1, ZFS_PROP_FILESYSTEM_LIMIT, NULL,
901 doca->doca_cred);
902 if (error != 0) {
903 dsl_dir_rele(pdd, FTAG);
904 return (SET_ERROR(EDQUOT));
905 }
906 dsl_dir_rele(pdd, FTAG);

908 error = dsl_dataset_hold(dp, doca->doca_origin, FTAG, &origin);
909 if (error != 0)
910 return (error);

912 /* You can’t clone across pools. */

new/usr/src/uts/common/fs/zfs/dmu_objset.c 15

913 if (origin->ds_dir->dd_pool != dp) {
914 dsl_dataset_rele(origin, FTAG);
915 return (SET_ERROR(EXDEV));
916 }

918 /* You can only clone snapshots, not the head datasets. */
919 if (!dsl_dataset_is_snapshot(origin)) {
920 dsl_dataset_rele(origin, FTAG);
921 return (SET_ERROR(EINVAL));
922 }
923 dsl_dataset_rele(origin, FTAG);

925 return (0);
926 }

928 static void
929 dmu_objset_clone_sync(void *arg, dmu_tx_t *tx)
930 {
931 dmu_objset_clone_arg_t *doca = arg;
932 dsl_pool_t *dp = dmu_tx_pool(tx);
933 dsl_dir_t *pdd;
934 const char *tail;
935 dsl_dataset_t *origin, *ds;
936 uint64_t obj;
937 char namebuf[MAXNAMELEN];

939 VERIFY0(dsl_dir_hold(dp, doca->doca_clone, FTAG, &pdd, &tail));
940 VERIFY0(dsl_dataset_hold(dp, doca->doca_origin, FTAG, &origin));

942 obj = dsl_dataset_create_sync(pdd, tail, origin, 0,
943 doca->doca_cred, tx);

945 VERIFY0(dsl_dataset_hold_obj(pdd->dd_pool, obj, FTAG, &ds));
946 dsl_dataset_name(origin, namebuf);
947 spa_history_log_internal_ds(ds, "clone", tx,
948 "origin=%s (%llu)", namebuf, origin->ds_object);
949 dsl_dataset_rele(ds, FTAG);
950 dsl_dataset_rele(origin, FTAG);
951 dsl_dir_rele(pdd, FTAG);
952 }

954 int
955 dmu_objset_clone(const char *clone, const char *origin)
956 {
957 dmu_objset_clone_arg_t doca;

959 doca.doca_clone = clone;
960 doca.doca_origin = origin;
961 doca.doca_cred = CRED();

963 return (dsl_sync_task(clone,
964 dmu_objset_clone_check, dmu_objset_clone_sync, &doca, 5));
965 }

967 int
968 dmu_objset_snapshot_one(const char *fsname, const char *snapname)
969 {
970 int err;
971 char *longsnap = kmem_asprintf("%s@%s", fsname, snapname);
972 nvlist_t *snaps = fnvlist_alloc();

974 fnvlist_add_boolean(snaps, longsnap);
975 strfree(longsnap);
976 err = dsl_dataset_snapshot(snaps, NULL, NULL);
977 fnvlist_free(snaps);
978 return (err);

new/usr/src/uts/common/fs/zfs/dmu_objset.c 16

979 }

981 static void
982 dmu_objset_sync_dnodes(list_t *list, list_t *newlist, dmu_tx_t *tx)
983 {
984 dnode_t *dn;

986 while (dn = list_head(list)) {
987 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
988 ASSERT(dn->dn_dbuf->db_data_pending);
989 /*
990 * Initialize dn_zio outside dnode_sync() because the
991 * meta-dnode needs to set it ouside dnode_sync().
992 */
993 dn->dn_zio = dn->dn_dbuf->db_data_pending->dr_zio;
994 ASSERT(dn->dn_zio);

996 ASSERT3U(dn->dn_nlevels, <=, DN_MAX_LEVELS);
997 list_remove(list, dn);

999 if (newlist) {
1000 (void) dnode_add_ref(dn, newlist);
1001 list_insert_tail(newlist, dn);
1002 }

1004 dnode_sync(dn, tx);
1005 }
1006 }

1008 /* ARGSUSED */
1009 static void
1010 dmu_objset_write_ready(zio_t *zio, arc_buf_t *abuf, void *arg)
1011 {
1012 blkptr_t *bp = zio->io_bp;
1013 objset_t *os = arg;
1014 dnode_phys_t *dnp = &os->os_phys->os_meta_dnode;

1016 ASSERT(!BP_IS_EMBEDDED(bp));
1017 ASSERT3P(bp, ==, os->os_rootbp);
1018 ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_OBJSET);
1019 ASSERT0(BP_GET_LEVEL(bp));

1021 /*
1022 * Update rootbp fill count: it should be the number of objects
1023 * allocated in the object set (not counting the "special"
1024 * objects that are stored in the objset_phys_t -- the meta
1025 * dnode and user/group accounting objects).
1026 */
1027 bp->blk_fill = 0;
1028 for (int i = 0; i < dnp->dn_nblkptr; i++)
1029 bp->blk_fill += BP_GET_FILL(&dnp->dn_blkptr[i]);
1030 }

1032 /* ARGSUSED */
1033 static void
1034 dmu_objset_write_done(zio_t *zio, arc_buf_t *abuf, void *arg)
1035 {
1036 blkptr_t *bp = zio->io_bp;
1037 blkptr_t *bp_orig = &zio->io_bp_orig;
1038 objset_t *os = arg;

1040 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
1041 ASSERT(BP_EQUAL(bp, bp_orig));
1042 } else {
1043 dsl_dataset_t *ds = os->os_dsl_dataset;
1044 dmu_tx_t *tx = os->os_synctx;

new/usr/src/uts/common/fs/zfs/dmu_objset.c 17

1046 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
1047 dsl_dataset_block_born(ds, bp, tx);
1048 }
1049 }

1051 /* called from dsl */
1052 void
1053 dmu_objset_sync(objset_t *os, zio_t *pio, dmu_tx_t *tx)
1054 {
1055 int txgoff;
1056 zbookmark_t zb;
1057 zio_prop_t zp;
1058 zio_t *zio;
1059 list_t *list;
1060 list_t *newlist = NULL;
1061 dbuf_dirty_record_t *dr;

1063 dprintf_ds(os->os_dsl_dataset, "txg=%llu\n", tx->tx_txg);

1065 ASSERT(dmu_tx_is_syncing(tx));
1066 /* XXX the write_done callback should really give us the tx... */
1067 os->os_synctx = tx;

1069 if (os->os_dsl_dataset == NULL) {
1070 /*
1071 * This is the MOS. If we have upgraded,
1072 * spa_max_replication() could change, so reset
1073 * os_copies here.
1074 */
1075 os->os_copies = spa_max_replication(os->os_spa);
1076 }

1078 /*
1079 * Create the root block IO
1080 */
1081 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
1082 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1083 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
1084 arc_release(os->os_phys_buf, &os->os_phys_buf);

1086 dmu_write_policy(os, NULL, 0, 0, &zp);

1088 zio = arc_write(pio, os->os_spa, tx->tx_txg,
1089 os->os_rootbp, os->os_phys_buf, DMU_OS_IS_L2CACHEABLE(os),
1090 DMU_OS_IS_L2COMPRESSIBLE(os), &zp, dmu_objset_write_ready,
1091 NULL, dmu_objset_write_done, os, ZIO_PRIORITY_ASYNC_WRITE,
1092 ZIO_FLAG_MUSTSUCCEED, &zb);

1094 /*
1095 * Sync special dnodes - the parent IO for the sync is the root block
1096 */
1097 DMU_META_DNODE(os)->dn_zio = zio;
1098 dnode_sync(DMU_META_DNODE(os), tx);

1100 os->os_phys->os_flags = os->os_flags;

1102 if (DMU_USERUSED_DNODE(os) &&
1103 DMU_USERUSED_DNODE(os)->dn_type != DMU_OT_NONE) {
1104 DMU_USERUSED_DNODE(os)->dn_zio = zio;
1105 dnode_sync(DMU_USERUSED_DNODE(os), tx);
1106 DMU_GROUPUSED_DNODE(os)->dn_zio = zio;
1107 dnode_sync(DMU_GROUPUSED_DNODE(os), tx);
1108 }

1110 txgoff = tx->tx_txg & TXG_MASK;

new/usr/src/uts/common/fs/zfs/dmu_objset.c 18

1112 if (dmu_objset_userused_enabled(os)) {
1113 newlist = &os->os_synced_dnodes;
1114 /*
1115 * We must create the list here because it uses the
1116 * dn_dirty_link[] of this txg.
1117 */
1118 list_create(newlist, sizeof (dnode_t),
1119 offsetof(dnode_t, dn_dirty_link[txgoff]));
1120 }

1122 dmu_objset_sync_dnodes(&os->os_free_dnodes[txgoff], newlist, tx);
1123 dmu_objset_sync_dnodes(&os->os_dirty_dnodes[txgoff], newlist, tx);

1125 list = &DMU_META_DNODE(os)->dn_dirty_records[txgoff];
1126 while (dr = list_head(list)) {
1127 ASSERT0(dr->dr_dbuf->db_level);
1128 list_remove(list, dr);
1129 if (dr->dr_zio)
1130 zio_nowait(dr->dr_zio);
1131 }
1132 /*
1133 * Free intent log blocks up to this tx.
1134 */
1135 zil_sync(os->os_zil, tx);
1136 os->os_phys->os_zil_header = os->os_zil_header;
1137 zio_nowait(zio);
1138 }

1140 boolean_t
1141 dmu_objset_is_dirty(objset_t *os, uint64_t txg)
1142 {
1143 return (!list_is_empty(&os->os_dirty_dnodes[txg & TXG_MASK]) ||
1144 !list_is_empty(&os->os_free_dnodes[txg & TXG_MASK]));
1145 }

1147 static objset_used_cb_t *used_cbs[DMU_OST_NUMTYPES];

1149 void
1150 dmu_objset_register_type(dmu_objset_type_t ost, objset_used_cb_t *cb)
1151 {
1152 used_cbs[ost] = cb;
1153 }

1155 boolean_t
1156 dmu_objset_userused_enabled(objset_t *os)
1157 {
1158 return (spa_version(os->os_spa) >= SPA_VERSION_USERSPACE &&
1159 used_cbs[os->os_phys->os_type] != NULL &&
1160 DMU_USERUSED_DNODE(os) != NULL);
1161 }

1163 static void
1164 do_userquota_update(objset_t *os, uint64_t used, uint64_t flags,
1165 uint64_t user, uint64_t group, boolean_t subtract, dmu_tx_t *tx)
1166 {
1167 if ((flags & DNODE_FLAG_USERUSED_ACCOUNTED)) {
1168 int64_t delta = DNODE_SIZE + used;
1169 if (subtract)
1170 delta = -delta;
1171 VERIFY3U(0, ==, zap_increment_int(os, DMU_USERUSED_OBJECT,
1172 user, delta, tx));
1173 VERIFY3U(0, ==, zap_increment_int(os, DMU_GROUPUSED_OBJECT,
1174 group, delta, tx));
1175 }
1176 }

new/usr/src/uts/common/fs/zfs/dmu_objset.c 19

1178 void
1179 dmu_objset_do_userquota_updates(objset_t *os, dmu_tx_t *tx)
1180 {
1181 dnode_t *dn;
1182 list_t *list = &os->os_synced_dnodes;

1184 ASSERT(list_head(list) == NULL || dmu_objset_userused_enabled(os));

1186 while (dn = list_head(list)) {
1187 int flags;
1188 ASSERT(!DMU_OBJECT_IS_SPECIAL(dn->dn_object));
1189 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE ||
1190 dn->dn_phys->dn_flags &
1191 DNODE_FLAG_USERUSED_ACCOUNTED);

1193 /* Allocate the user/groupused objects if necessary. */
1194 if (DMU_USERUSED_DNODE(os)->dn_type == DMU_OT_NONE) {
1195 VERIFY(0 == zap_create_claim(os,
1196 DMU_USERUSED_OBJECT,
1197 DMU_OT_USERGROUP_USED, DMU_OT_NONE, 0, tx));
1198 VERIFY(0 == zap_create_claim(os,
1199 DMU_GROUPUSED_OBJECT,
1200 DMU_OT_USERGROUP_USED, DMU_OT_NONE, 0, tx));
1201 }

1203 /*
1204 * We intentionally modify the zap object even if the
1205 * net delta is zero. Otherwise
1206 * the block of the zap obj could be shared between
1207 * datasets but need to be different between them after
1208 * a bprewrite.
1209 */

1211 flags = dn->dn_id_flags;
1212 ASSERT(flags);
1213 if (flags & DN_ID_OLD_EXIST) {
1214 do_userquota_update(os, dn->dn_oldused, dn->dn_oldflags,
1215 dn->dn_olduid, dn->dn_oldgid, B_TRUE, tx);
1216 }
1217 if (flags & DN_ID_NEW_EXIST) {
1218 do_userquota_update(os, DN_USED_BYTES(dn->dn_phys),
1219 dn->dn_phys->dn_flags, dn->dn_newuid,
1220 dn->dn_newgid, B_FALSE, tx);
1221 }

1223 mutex_enter(&dn->dn_mtx);
1224 dn->dn_oldused = 0;
1225 dn->dn_oldflags = 0;
1226 if (dn->dn_id_flags & DN_ID_NEW_EXIST) {
1227 dn->dn_olduid = dn->dn_newuid;
1228 dn->dn_oldgid = dn->dn_newgid;
1229 dn->dn_id_flags |= DN_ID_OLD_EXIST;
1230 if (dn->dn_bonuslen == 0)
1231 dn->dn_id_flags |= DN_ID_CHKED_SPILL;
1232 else
1233 dn->dn_id_flags |= DN_ID_CHKED_BONUS;
1234 }
1235 dn->dn_id_flags &= ~(DN_ID_NEW_EXIST);
1236 mutex_exit(&dn->dn_mtx);

1238 list_remove(list, dn);
1239 dnode_rele(dn, list);
1240 }
1241 }

new/usr/src/uts/common/fs/zfs/dmu_objset.c 20

1243 /*
1244 * Returns a pointer to data to find uid/gid from
1245 *
1246 * If a dirty record for transaction group that is syncing can’t
1247 * be found then NULL is returned. In the NULL case it is assumed
1248 * the uid/gid aren’t changing.
1249 */
1250 static void *
1251 dmu_objset_userquota_find_data(dmu_buf_impl_t *db, dmu_tx_t *tx)
1252 {
1253 dbuf_dirty_record_t *dr, **drp;
1254 void *data;

1256 if (db->db_dirtycnt == 0)
1257 return (db->db.db_data); /* Nothing is changing */

1259 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1260 if (dr->dr_txg == tx->tx_txg)
1261 break;

1263 if (dr == NULL) {
1264 data = NULL;
1265 } else {
1266 dnode_t *dn;

1268 DB_DNODE_ENTER(dr->dr_dbuf);
1269 dn = DB_DNODE(dr->dr_dbuf);

1271 if (dn->dn_bonuslen == 0 &&
1272 dr->dr_dbuf->db_blkid == DMU_SPILL_BLKID)
1273 data = dr->dt.dl.dr_data->b_data;
1274 else
1275 data = dr->dt.dl.dr_data;

1277 DB_DNODE_EXIT(dr->dr_dbuf);
1278 }

1280 return (data);
1281 }

1283 void
1284 dmu_objset_userquota_get_ids(dnode_t *dn, boolean_t before, dmu_tx_t *tx)
1285 {
1286 objset_t *os = dn->dn_objset;
1287 void *data = NULL;
1288 dmu_buf_impl_t *db = NULL;
1289 uint64_t *user = NULL;
1290 uint64_t *group = NULL;
1291 int flags = dn->dn_id_flags;
1292 int error;
1293 boolean_t have_spill = B_FALSE;

1295 if (!dmu_objset_userused_enabled(dn->dn_objset))
1296 return;

1298 if (before && (flags & (DN_ID_CHKED_BONUS|DN_ID_OLD_EXIST|
1299 DN_ID_CHKED_SPILL)))
1300 return;

1302 if (before && dn->dn_bonuslen != 0)
1303 data = DN_BONUS(dn->dn_phys);
1304 else if (!before && dn->dn_bonuslen != 0) {
1305 if (dn->dn_bonus) {
1306 db = dn->dn_bonus;
1307 mutex_enter(&db->db_mtx);
1308 data = dmu_objset_userquota_find_data(db, tx);

new/usr/src/uts/common/fs/zfs/dmu_objset.c 21

1309 } else {
1310 data = DN_BONUS(dn->dn_phys);
1311 }
1312 } else if (dn->dn_bonuslen == 0 && dn->dn_bonustype == DMU_OT_SA) {
1313 int rf = 0;

1315 if (RW_WRITE_HELD(&dn->dn_struct_rwlock))
1316 rf |= DB_RF_HAVESTRUCT;
1317 error = dmu_spill_hold_by_dnode(dn,
1318 rf | DB_RF_MUST_SUCCEED,
1319 FTAG, (dmu_buf_t **)&db);
1320 ASSERT(error == 0);
1321 mutex_enter(&db->db_mtx);
1322 data = (before) ? db->db.db_data :
1323 dmu_objset_userquota_find_data(db, tx);
1324 have_spill = B_TRUE;
1325 } else {
1326 mutex_enter(&dn->dn_mtx);
1327 dn->dn_id_flags |= DN_ID_CHKED_BONUS;
1328 mutex_exit(&dn->dn_mtx);
1329 return;
1330 }

1332 if (before) {
1333 ASSERT(data);
1334 user = &dn->dn_olduid;
1335 group = &dn->dn_oldgid;
1336 } else if (data) {
1337 user = &dn->dn_newuid;
1338 group = &dn->dn_newgid;
1339 }

1341 /*
1342 * Must always call the callback in case the object
1343 * type has changed and that type isn’t an object type to track
1344 */
1345 error = used_cbs[os->os_phys->os_type](dn->dn_bonustype, data,
1346 user, group);

1348 /*
1349 * Preserve existing uid/gid when the callback can’t determine
1350 * what the new uid/gid are and the callback returned EEXIST.
1351 * The EEXIST error tells us to just use the existing uid/gid.
1352 * If we don’t know what the old values are then just assign
1353 * them to 0, since that is a new file being created.
1354 */
1355 if (!before && data == NULL && error == EEXIST) {
1356 if (flags & DN_ID_OLD_EXIST) {
1357 dn->dn_newuid = dn->dn_olduid;
1358 dn->dn_newgid = dn->dn_oldgid;
1359 } else {
1360 dn->dn_newuid = 0;
1361 dn->dn_newgid = 0;
1362 }
1363 error = 0;
1364 }

1366 if (db)
1367 mutex_exit(&db->db_mtx);

1369 mutex_enter(&dn->dn_mtx);
1370 if (error == 0 && before)
1371 dn->dn_id_flags |= DN_ID_OLD_EXIST;
1372 if (error == 0 && !before)
1373 dn->dn_id_flags |= DN_ID_NEW_EXIST;

new/usr/src/uts/common/fs/zfs/dmu_objset.c 22

1375 if (have_spill) {
1376 dn->dn_id_flags |= DN_ID_CHKED_SPILL;
1377 } else {
1378 dn->dn_id_flags |= DN_ID_CHKED_BONUS;
1379 }
1380 mutex_exit(&dn->dn_mtx);
1381 if (have_spill)
1382 dmu_buf_rele((dmu_buf_t *)db, FTAG);
1383 }

1385 boolean_t
1386 dmu_objset_userspace_present(objset_t *os)
1387 {
1388 return (os->os_phys->os_flags &
1389 OBJSET_FLAG_USERACCOUNTING_COMPLETE);
1390 }

1392 int
1393 dmu_objset_userspace_upgrade(objset_t *os)
1394 {
1395 uint64_t obj;
1396 int err = 0;

1398 if (dmu_objset_userspace_present(os))
1399 return (0);
1400 if (!dmu_objset_userused_enabled(os))
1401 return (SET_ERROR(ENOTSUP));
1402 if (dmu_objset_is_snapshot(os))
1403 return (SET_ERROR(EINVAL));

1405 /*
1406 * We simply need to mark every object dirty, so that it will be
1407 * synced out and now accounted. If this is called
1408 * concurrently, or if we already did some work before crashing,
1409 * that’s fine, since we track each object’s accounted state
1410 * independently.
1411 */

1413 for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
1414 dmu_tx_t *tx;
1415 dmu_buf_t *db;
1416 int objerr;

1418 if (issig(JUSTLOOKING) && issig(FORREAL))
1419 return (SET_ERROR(EINTR));

1421 objerr = dmu_bonus_hold(os, obj, FTAG, &db);
1422 if (objerr != 0)
1423 continue;
1424 tx = dmu_tx_create(os);
1425 dmu_tx_hold_bonus(tx, obj);
1426 objerr = dmu_tx_assign(tx, TXG_WAIT);
1427 if (objerr != 0) {
1428 dmu_tx_abort(tx);
1429 continue;
1430 }
1431 dmu_buf_will_dirty(db, tx);
1432 dmu_buf_rele(db, FTAG);
1433 dmu_tx_commit(tx);
1434 }

1436 os->os_flags |= OBJSET_FLAG_USERACCOUNTING_COMPLETE;
1437 txg_wait_synced(dmu_objset_pool(os), 0);
1438 return (0);
1439 }

new/usr/src/uts/common/fs/zfs/dmu_objset.c 23

1441 void
1442 dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
1443 uint64_t *usedobjsp, uint64_t *availobjsp)
1444 {
1445 dsl_dataset_space(os->os_dsl_dataset, refdbytesp, availbytesp,
1446 usedobjsp, availobjsp);
1447 }

1449 uint64_t
1450 dmu_objset_fsid_guid(objset_t *os)
1451 {
1452 return (dsl_dataset_fsid_guid(os->os_dsl_dataset));
1453 }

1455 void
1456 dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat)
1457 {
1458 stat->dds_type = os->os_phys->os_type;
1459 if (os->os_dsl_dataset)
1460 dsl_dataset_fast_stat(os->os_dsl_dataset, stat);
1461 }

1463 void
1464 dmu_objset_stats(objset_t *os, nvlist_t *nv)
1465 {
1466 ASSERT(os->os_dsl_dataset ||
1467 os->os_phys->os_type == DMU_OST_META);

1469 if (os->os_dsl_dataset != NULL)
1470 dsl_dataset_stats(os->os_dsl_dataset, nv);

1472 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_TYPE,
1473 os->os_phys->os_type);
1474 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USERACCOUNTING,
1475 dmu_objset_userspace_present(os));
1476 }

1478 int
1479 dmu_objset_is_snapshot(objset_t *os)
1480 {
1481 if (os->os_dsl_dataset != NULL)
1482 return (dsl_dataset_is_snapshot(os->os_dsl_dataset));
1483 else
1484 return (B_FALSE);
1485 }

1487 int
1488 dmu_snapshot_realname(objset_t *os, char *name, char *real, int maxlen,
1489 boolean_t *conflict)
1490 {
1491 dsl_dataset_t *ds = os->os_dsl_dataset;
1492 uint64_t ignored;

1494 if (ds->ds_phys->ds_snapnames_zapobj == 0)
1495 return (SET_ERROR(ENOENT));

1497 return (zap_lookup_norm(ds->ds_dir->dd_pool->dp_meta_objset,
1498 ds->ds_phys->ds_snapnames_zapobj, name, 8, 1, &ignored, MT_FIRST,
1499 real, maxlen, conflict));
1500 }

1502 int
1503 dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
1504 uint64_t *idp, uint64_t *offp, boolean_t *case_conflict)
1505 {
1506 dsl_dataset_t *ds = os->os_dsl_dataset;

new/usr/src/uts/common/fs/zfs/dmu_objset.c 24

1507 zap_cursor_t cursor;
1508 zap_attribute_t attr;

1510 ASSERT(dsl_pool_config_held(dmu_objset_pool(os)));

1512 if (ds->ds_phys->ds_snapnames_zapobj == 0)
1513 return (SET_ERROR(ENOENT));

1515 zap_cursor_init_serialized(&cursor,
1516 ds->ds_dir->dd_pool->dp_meta_objset,
1517 ds->ds_phys->ds_snapnames_zapobj, *offp);

1519 if (zap_cursor_retrieve(&cursor, &attr) != 0) {
1520 zap_cursor_fini(&cursor);
1521 return (SET_ERROR(ENOENT));
1522 }

1524 if (strlen(attr.za_name) + 1 > namelen) {
1525 zap_cursor_fini(&cursor);
1526 return (SET_ERROR(ENAMETOOLONG));
1527 }

1529 (void) strcpy(name, attr.za_name);
1530 if (idp)
1531 *idp = attr.za_first_integer;
1532 if (case_conflict)
1533 *case_conflict = attr.za_normalization_conflict;
1534 zap_cursor_advance(&cursor);
1535 *offp = zap_cursor_serialize(&cursor);
1536 zap_cursor_fini(&cursor);

1538 return (0);
1539 }

1541 int
1542 dmu_dir_list_next(objset_t *os, int namelen, char *name,
1543 uint64_t *idp, uint64_t *offp)
1544 {
1545 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
1546 zap_cursor_t cursor;
1547 zap_attribute_t attr;

1549 /* there is no next dir on a snapshot! */
1550 if (os->os_dsl_dataset->ds_object !=
1551 dd->dd_phys->dd_head_dataset_obj)
1552 return (SET_ERROR(ENOENT));

1554 zap_cursor_init_serialized(&cursor,
1555 dd->dd_pool->dp_meta_objset,
1556 dd->dd_phys->dd_child_dir_zapobj, *offp);

1558 if (zap_cursor_retrieve(&cursor, &attr) != 0) {
1559 zap_cursor_fini(&cursor);
1560 return (SET_ERROR(ENOENT));
1561 }

1563 if (strlen(attr.za_name) + 1 > namelen) {
1564 zap_cursor_fini(&cursor);
1565 return (SET_ERROR(ENAMETOOLONG));
1566 }

1568 (void) strcpy(name, attr.za_name);
1569 if (idp)
1570 *idp = attr.za_first_integer;
1571 zap_cursor_advance(&cursor);
1572 *offp = zap_cursor_serialize(&cursor);

new/usr/src/uts/common/fs/zfs/dmu_objset.c 25

1573 zap_cursor_fini(&cursor);

1575 return (0);
1576 }

1578 /*
1579 * Find objsets under and including ddobj, call func(ds) on each.
1580 */
1581 int
1582 dmu_objset_find_dp(dsl_pool_t *dp, uint64_t ddobj,
1583 int func(dsl_pool_t *, dsl_dataset_t *, void *), void *arg, int flags)
1584 {
1585 dsl_dir_t *dd;
1586 dsl_dataset_t *ds;
1587 zap_cursor_t zc;
1588 zap_attribute_t *attr;
1589 uint64_t thisobj;
1590 int err;

1592 ASSERT(dsl_pool_config_held(dp));

1594 err = dsl_dir_hold_obj(dp, ddobj, NULL, FTAG, &dd);
1595 if (err != 0)
1596 return (err);

1598 /* Don’t visit hidden ($MOS & $ORIGIN) objsets. */
1599 if (dd->dd_myname[0] == ’$’) {
1600 dsl_dir_rele(dd, FTAG);
1601 return (0);
1602 }

1604 thisobj = dd->dd_phys->dd_head_dataset_obj;
1605 attr = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);

1607 /*
1608 * Iterate over all children.
1609 */
1610 if (flags & DS_FIND_CHILDREN) {
1611 for (zap_cursor_init(&zc, dp->dp_meta_objset,
1612 dd->dd_phys->dd_child_dir_zapobj);
1613 zap_cursor_retrieve(&zc, attr) == 0;
1614 (void) zap_cursor_advance(&zc)) {
1615 ASSERT3U(attr->za_integer_length, ==,
1616 sizeof (uint64_t));
1617 ASSERT3U(attr->za_num_integers, ==, 1);

1619 err = dmu_objset_find_dp(dp, attr->za_first_integer,
1620 func, arg, flags);
1621 if (err != 0)
1622 break;
1623 }
1624 zap_cursor_fini(&zc);

1626 if (err != 0) {
1627 dsl_dir_rele(dd, FTAG);
1628 kmem_free(attr, sizeof (zap_attribute_t));
1629 return (err);
1630 }
1631 }

1633 /*
1634 * Iterate over all snapshots.
1635 */
1636 if (flags & DS_FIND_SNAPSHOTS) {
1637 dsl_dataset_t *ds;
1638 err = dsl_dataset_hold_obj(dp, thisobj, FTAG, &ds);

new/usr/src/uts/common/fs/zfs/dmu_objset.c 26

1640 if (err == 0) {
1641 uint64_t snapobj = ds->ds_phys->ds_snapnames_zapobj;
1642 dsl_dataset_rele(ds, FTAG);

1644 for (zap_cursor_init(&zc, dp->dp_meta_objset, snapobj);
1645 zap_cursor_retrieve(&zc, attr) == 0;
1646 (void) zap_cursor_advance(&zc)) {
1647 ASSERT3U(attr->za_integer_length, ==,
1648 sizeof (uint64_t));
1649 ASSERT3U(attr->za_num_integers, ==, 1);

1651 err = dsl_dataset_hold_obj(dp,
1652 attr->za_first_integer, FTAG, &ds);
1653 if (err != 0)
1654 break;
1655 err = func(dp, ds, arg);
1656 dsl_dataset_rele(ds, FTAG);
1657 if (err != 0)
1658 break;
1659 }
1660 zap_cursor_fini(&zc);
1661 }
1662 }

1664 dsl_dir_rele(dd, FTAG);
1665 kmem_free(attr, sizeof (zap_attribute_t));

1667 if (err != 0)
1668 return (err);

1670 /*
1671 * Apply to self.
1672 */
1673 err = dsl_dataset_hold_obj(dp, thisobj, FTAG, &ds);
1674 if (err != 0)
1675 return (err);
1676 err = func(dp, ds, arg);
1677 dsl_dataset_rele(ds, FTAG);
1678 return (err);
1679 }

1681 /*
1682 * Find all objsets under name, and for each, call ’func(child_name, arg)’.
1683 * The dp_config_rwlock must not be held when this is called, and it
1684 * will not be held when the callback is called.
1685 * Therefore this function should only be used when the pool is not changing
1686 * (e.g. in syncing context), or the callback can deal with the possible races.
1687 */
1688 static int
1689 dmu_objset_find_impl(spa_t *spa, const char *name,
1690 int func(const char *, void *), void *arg, int flags)
1691 {
1692 dsl_dir_t *dd;
1693 dsl_pool_t *dp = spa_get_dsl(spa);
1694 dsl_dataset_t *ds;
1695 zap_cursor_t zc;
1696 zap_attribute_t *attr;
1697 char *child;
1698 uint64_t thisobj;
1699 int err;

1701 dsl_pool_config_enter(dp, FTAG);

1703 err = dsl_dir_hold(dp, name, FTAG, &dd, NULL);
1704 if (err != 0) {

new/usr/src/uts/common/fs/zfs/dmu_objset.c 27

1705 dsl_pool_config_exit(dp, FTAG);
1706 return (err);
1707 }

1709 /* Don’t visit hidden ($MOS & $ORIGIN) objsets. */
1710 if (dd->dd_myname[0] == ’$’) {
1711 dsl_dir_rele(dd, FTAG);
1712 dsl_pool_config_exit(dp, FTAG);
1713 return (0);
1714 }

1716 thisobj = dd->dd_phys->dd_head_dataset_obj;
1717 attr = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);

1719 /*
1720 * Iterate over all children.
1721 */
1722 if (flags & DS_FIND_CHILDREN) {
1723 for (zap_cursor_init(&zc, dp->dp_meta_objset,
1724 dd->dd_phys->dd_child_dir_zapobj);
1725 zap_cursor_retrieve(&zc, attr) == 0;
1726 (void) zap_cursor_advance(&zc)) {
1727 ASSERT3U(attr->za_integer_length, ==,
1728 sizeof (uint64_t));
1729 ASSERT3U(attr->za_num_integers, ==, 1);

1731 child = kmem_asprintf("%s/%s", name, attr->za_name);
1732 dsl_pool_config_exit(dp, FTAG);
1733 err = dmu_objset_find_impl(spa, child,
1734 func, arg, flags);
1735 dsl_pool_config_enter(dp, FTAG);
1736 strfree(child);
1737 if (err != 0)
1738 break;
1739 }
1740 zap_cursor_fini(&zc);

1742 if (err != 0) {
1743 dsl_dir_rele(dd, FTAG);
1744 dsl_pool_config_exit(dp, FTAG);
1745 kmem_free(attr, sizeof (zap_attribute_t));
1746 return (err);
1747 }
1748 }

1750 /*
1751 * Iterate over all snapshots.
1752 */
1753 if (flags & DS_FIND_SNAPSHOTS) {
1754 err = dsl_dataset_hold_obj(dp, thisobj, FTAG, &ds);

1756 if (err == 0) {
1757 uint64_t snapobj = ds->ds_phys->ds_snapnames_zapobj;
1758 dsl_dataset_rele(ds, FTAG);

1760 for (zap_cursor_init(&zc, dp->dp_meta_objset, snapobj);
1761 zap_cursor_retrieve(&zc, attr) == 0;
1762 (void) zap_cursor_advance(&zc)) {
1763 ASSERT3U(attr->za_integer_length, ==,
1764 sizeof (uint64_t));
1765 ASSERT3U(attr->za_num_integers, ==, 1);

1767 child = kmem_asprintf("%s@%s",
1768 name, attr->za_name);
1769 dsl_pool_config_exit(dp, FTAG);
1770 err = func(child, arg);

new/usr/src/uts/common/fs/zfs/dmu_objset.c 28

1771 dsl_pool_config_enter(dp, FTAG);
1772 strfree(child);
1773 if (err != 0)
1774 break;
1775 }
1776 zap_cursor_fini(&zc);
1777 }
1778 }

1780 dsl_dir_rele(dd, FTAG);
1781 kmem_free(attr, sizeof (zap_attribute_t));
1782 dsl_pool_config_exit(dp, FTAG);

1784 if (err != 0)
1785 return (err);

1787 /* Apply to self. */
1788 return (func(name, arg));
1789 }

1791 /*
1792 * See comment above dmu_objset_find_impl().
1793 */
1794 int
1795 dmu_objset_find(char *name, int func(const char *, void *), void *arg,
1796 int flags)
1797 {
1798 spa_t *spa;
1799 int error;

1801 error = spa_open(name, &spa, FTAG);
1802 if (error != 0)
1803 return (error);
1804 error = dmu_objset_find_impl(spa, name, func, arg, flags);
1805 spa_close(spa, FTAG);

1807 return (error);
1808 }

1810 typedef struct dmu_objset_find_ctx {
1811 taskq_t *dc_tq;
1812 spa_t *dc_spa;
1813 char *dc_name;
1814 int (*dc_func)(const char *, void *);
1815 void *dc_arg;
1816 int dc_flags;
1817 kmutex_t *dc_error_lock;
1818 int *dc_error;
1819 } dmu_objset_find_ctx_t;

1821 static void
1822 dmu_objset_find_parallel_impl(void *arg)
1823 {
1824 dmu_objset_find_ctx_t *dcp = arg;
1825 dsl_dir_t *dd;
1826 dsl_pool_t *dp = spa_get_dsl(dcp->dc_spa);
1827 dsl_dataset_t *ds;
1828 zap_cursor_t zc;
1829 zap_attribute_t *attr;
1830 char *child;
1831 dmu_objset_find_ctx_t *child_dcp;
1832 uint64_t thisobj;
1833 int err;

1835 /* don’t process if there already was an error */
1836 if (*dcp->dc_error)

new/usr/src/uts/common/fs/zfs/dmu_objset.c 29

1837 goto out;

1839 dsl_pool_config_enter(dp, FTAG);

1841 err = dsl_dir_hold(dp, dcp->dc_name, FTAG, &dd, NULL);
1842 if (err != 0) {
1843 dsl_pool_config_exit(dp, FTAG);
1844 goto fail;
1845 }

1847 /* Don’t visit hidden ($MOS & $ORIGIN) objsets. */
1848 if (dd->dd_myname[0] == ’$’) {
1849 dsl_dir_rele(dd, FTAG);
1850 dsl_pool_config_exit(dp, FTAG);
1851 goto out;
1852 }

1854 thisobj = dd->dd_phys->dd_head_dataset_obj;
1855 attr = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);

1857 /*
1858 * Iterate over all children.
1859 */
1860 if (dcp->dc_flags & DS_FIND_CHILDREN) {
1861 for (zap_cursor_init(&zc, dp->dp_meta_objset,
1862 dd->dd_phys->dd_child_dir_zapobj);
1863 zap_cursor_retrieve(&zc, attr) == 0;
1864 (void) zap_cursor_advance(&zc)) {
1865 ASSERT3U(attr->za_integer_length, ==,
1866 sizeof (uint64_t));
1867 ASSERT3U(attr->za_num_integers, ==, 1);

1869 child = kmem_asprintf("%s/%s", dcp->dc_name,
1870 attr->za_name);
1871 dsl_pool_config_exit(dp, FTAG);
1872 child_dcp = kmem_alloc(sizeof(*child_dcp), KM_SLEEP);
1873 *child_dcp = *dcp;
1874 child_dcp->dc_name = child;
1875 taskq_dispatch(dcp->dc_tq,
1876 dmu_objset_find_parallel_impl, child_dcp, TQ_SLEEP);
1877 dsl_pool_config_enter(dp, FTAG);
1878 }
1879 zap_cursor_fini(&zc);
1880 }

1882 dsl_dir_rele(dd, FTAG);
1883 kmem_free(attr, sizeof (zap_attribute_t));
1884 dsl_pool_config_exit(dp, FTAG);

1886 err = dcp->dc_func(dcp->dc_name, dcp->dc_arg);

1888 fail:
1889 if (err) {
1890 mutex_enter(dcp->dc_error_lock);
1891 /* only keep first error */
1892 if (*dcp->dc_error == 0)
1893 *dcp->dc_error = err;
1894 mutex_exit(dcp->dc_error_lock);
1895 }

1897 out:
1898 strfree(dcp->dc_name);
1899 kmem_free(dcp, sizeof(*dcp));
1900 }

1902 int

new/usr/src/uts/common/fs/zfs/dmu_objset.c 30

1903 dmu_objset_find_parallel(char *name, int func(const char *, void *), void *arg,
1904 int flags)
1905 {
1906 spa_t *spa;
1907 int error;
1908 taskq_t *tq = NULL;
1909 int ntasks;
1910 dmu_objset_find_ctx_t *dcp;
1911 kmutex_t err_lock;

1913 error = spa_open(name, &spa, FTAG);
1914 if (error != 0)
1915 return (error);

1917 ntasks = vdev_count_leaves(spa) * 4;
1918 tq = taskq_create("dmu_objset_find", ntasks, minclsyspri, ntasks,
1919 INT_MAX, 0);
1920 if (!tq) {
1921 spa_close(spa, FTAG);
1922 return (dmu_objset_find(name, func, arg, flags));
1923 }

1925 mutex_init(&err_lock, NULL, MUTEX_DEFAULT, NULL);
1926 dcp = kmem_alloc(sizeof(*dcp), KM_SLEEP);
1927 dcp->dc_tq = tq;
1928 dcp->dc_spa = spa;
1929 dcp->dc_name = strdup(name);
1930 dcp->dc_func = func;
1931 dcp->dc_arg = arg;
1932 dcp->dc_flags = flags;
1933 dcp->dc_error_lock = &err_lock;
1934 dcp->dc_error = &error;
1935 /* dcp and dc_name will be freed by task */
1936 taskq_dispatch(tq, dmu_objset_find_parallel_impl, dcp, TQ_SLEEP);

1938 taskq_wait(tq);
1939 taskq_destroy(tq);
1940 mutex_destroy(&err_lock);

1942 spa_close(spa, FTAG);

1944 #endif /* ! codereview */
1945 return (error);
1946 }

1948 void
1949 dmu_objset_set_user(objset_t *os, void *user_ptr)
1950 {
1951 ASSERT(MUTEX_HELD(&os->os_user_ptr_lock));
1952 os->os_user_ptr = user_ptr;
1953 }

1955 void *
1956 dmu_objset_get_user(objset_t *os)
1957 {
1958 ASSERT(MUTEX_HELD(&os->os_user_ptr_lock));
1959 return (os->os_user_ptr);
1960 }

1962 /*
1963 * Determine name of filesystem, given name of snapshot.
1964 * buf must be at least MAXNAMELEN bytes
1965 */
1966 int
1967 dmu_fsname(const char *snapname, char *buf)
1968 {

new/usr/src/uts/common/fs/zfs/dmu_objset.c 31

1969 char *atp = strchr(snapname, ’@’);
1970 if (atp == NULL)
1971 return (SET_ERROR(EINVAL));
1972 if (atp - snapname >= MAXNAMELEN)
1973 return (SET_ERROR(ENAMETOOLONG));
1974 (void) strlcpy(buf, snapname, atp - snapname + 1);
1975 return (0);
1976 }

new/usr/src/uts/common/fs/zfs/dsl_pool.c 1

**
 30992 Thu Oct 16 19:15:50 2014
new/usr/src/uts/common/fs/zfs/dsl_pool.c
zpool import speedup
**
______unchanged_portion_omitted_

954 /*
955 * DSL Pool Configuration Lock
956 *
957 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
958 * creation / destruction / rename / property setting). It must be held for
959 * read to hold a dataset or dsl_dir. I.e. you must call
960 * dsl_pool_config_enter() or dsl_pool_hold() before calling
961 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
962 * must be held continuously until all datasets and dsl_dirs are released.
963 *
964 * The only exception to this rule is that if a "long hold" is placed on
965 * a dataset, then the dp_config_rwlock may be dropped while the dataset
966 * is still held. The long hold will prevent the dataset from being
967 * destroyed -- the destroy will fail with EBUSY. A long hold can be
968 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
969 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
970 *
971 * Legitimate long-holders (including owners) should be long-running, cancelable
972 * tasks that should cause "zfs destroy" to fail. This includes DMU
973 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
974 * "zfs send", and "zfs diff". There are several other long-holders whose
975 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
976 *
977 * The usual formula for long-holding would be:
978 * dsl_pool_hold()
979 * dsl_dataset_hold()
980 * ... perform checks ...
981 * dsl_dataset_long_hold()
982 * dsl_pool_rele()
983 * ... perform long-running task ...
984 * dsl_dataset_long_rele()
985 * dsl_dataset_rele()
986 *
987 * Note that when the long hold is released, the dataset is still held but
988 * the pool is not held. The dataset may change arbitrarily during this time
989 * (e.g. it could be destroyed). Therefore you shouldn’t do anything to the
990 * dataset except release it.
991 *
992 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
993 * or modifying operations.
994 *
995 * Modifying operations should generally use dsl_sync_task(). The synctask
996 * infrastructure enforces proper locking strategy with respect to the
997 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
998 *
999 * Read-only operations will manually hold the pool, then the dataset, obtain

1000 * information from the dataset, then release the pool and dataset.
1001 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1002 * hold/rele.
1003 */

1005 int
1006 dsl_pool_hold_lock(const char *name, void *tag, dsl_pool_t **dp, int lock)
1006 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1007 {
1008 spa_t *spa;
1009 int error;

1011 error = spa_open_lock(name, &spa, tag, lock);

new/usr/src/uts/common/fs/zfs/dsl_pool.c 2

1011 error = spa_open(name, &spa, tag);
1012 if (error == 0) {
1013 *dp = spa_get_dsl(spa);
1014 dsl_pool_config_enter(*dp, tag);
1015 }
1016 return (error);
1017 }

1019 int
1020 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1021 {
1022 return (dsl_pool_hold_lock(name, tag, dp, 1));
1023 }

1025 #endif /* ! codereview */
1026 void
1027 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1028 {
1029 dsl_pool_config_exit(dp, tag);
1030 spa_close(dp->dp_spa, tag);
1031 }

1033 void
1034 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1035 {
1036 /*
1037 * We use a "reentrant" reader-writer lock, but not reentrantly.
1038 *
1039 * The rrwlock can (with the track_all flag) track all reading threads,
1040 * which is very useful for debugging which code path failed to release
1041 * the lock, and for verifying that the *current* thread does hold
1042 * the lock.
1043 *
1044 * (Unlike a rwlock, which knows that N threads hold it for
1045 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1046 * if any thread holds it for read, even if this thread doesn’t).
1047 */
1048 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1049 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1050 }

1052 void
1053 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1054 {
1055 rrw_exit(&dp->dp_config_rwlock, tag);
1056 }

1058 boolean_t
1059 dsl_pool_config_held(dsl_pool_t *dp)
1060 {
1061 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1062 }

new/usr/src/uts/common/fs/zfs/spa.c 1

**
 176914 Thu Oct 16 19:15:51 2014
new/usr/src/uts/common/fs/zfs/spa.c
zpool import speedup
**
______unchanged_portion_omitted_

1708 /*
1709 * Check for missing log devices
1710 */
1711 static boolean_t
1712 spa_check_logs(spa_t *spa)
1713 {
1714 boolean_t rv = B_FALSE;

1716 switch (spa->spa_log_state) {
1717 case SPA_LOG_MISSING:
1718 /* need to recheck in case slog has been restored */
1719 case SPA_LOG_UNKNOWN:
1720 rv = (dmu_objset_find_parallel(spa->spa_name,
1721 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1720 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1721 NULL, DS_FIND_CHILDREN) != 0);
1722 if (rv)
1723 spa_set_log_state(spa, SPA_LOG_MISSING);
1724 break;
1725 }
1726 return (rv);
1727 }
______unchanged_portion_omitted_

2076 /*
2077 * Load an existing storage pool, using the pool’s builtin spa_config as a
2078 * source of configuration information.
2079 */
2080 static int
2081 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2082 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2083 char **ereport)
2084 {
2085 int error = 0;
2086 nvlist_t *nvroot = NULL;
2087 nvlist_t *label;
2088 vdev_t *rvd;
2089 uberblock_t *ub = &spa->spa_uberblock;
2090 uint64_t children, config_cache_txg = spa->spa_config_txg;
2091 int orig_mode = spa->spa_mode;
2092 int parse;
2093 uint64_t obj;
2094 boolean_t missing_feat_write = B_FALSE;

2096 /*
2097 * If this is an untrusted config, access the pool in read-only mode.
2098 * This prevents things like resilvering recently removed devices.
2099 */
2100 if (!mosconfig)
2101 spa->spa_mode = FREAD;

2103 ASSERT(MUTEX_HELD(&spa_namespace_lock));

2105 spa->spa_load_state = state;

2107 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2108 return (SET_ERROR(EINVAL));

2110 parse = (type == SPA_IMPORT_EXISTING ?

new/usr/src/uts/common/fs/zfs/spa.c 2

2111 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);

2113 /*
2114 * Create "The Godfather" zio to hold all async IOs
2115 */
2116 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2117 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);

2119 /*
2120 * Parse the configuration into a vdev tree. We explicitly set the
2121 * value that will be returned by spa_version() since parsing the
2122 * configuration requires knowing the version number.
2123 */
2124 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2125 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2126 spa_config_exit(spa, SCL_ALL, FTAG);

2128 if (error != 0)
2129 return (error);

2131 ASSERT(spa->spa_root_vdev == rvd);

2133 if (type != SPA_IMPORT_ASSEMBLE) {
2134 ASSERT(spa_guid(spa) == pool_guid);
2135 }

2137 /*
2138 * Try to open all vdevs, loading each label in the process.
2139 */
2140 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2141 error = vdev_open(rvd);
2142 spa_config_exit(spa, SCL_ALL, FTAG);
2143 if (error != 0)
2144 return (error);

2146 /*
2147 * We need to validate the vdev labels against the configuration that
2148 * we have in hand, which is dependent on the setting of mosconfig. If
2149 * mosconfig is true then we’re validating the vdev labels based on
2150 * that config. Otherwise, we’re validating against the cached config
2151 * (zpool.cache) that was read when we loaded the zfs module, and then
2152 * later we will recursively call spa_load() and validate against
2153 * the vdev config.
2154 *
2155 * If we’re assembling a new pool that’s been split off from an
2156 * existing pool, the labels haven’t yet been updated so we skip
2157 * validation for now.
2158 */
2159 if (type != SPA_IMPORT_ASSEMBLE) {
2160 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2161 error = vdev_validate(rvd, mosconfig);
2162 spa_config_exit(spa, SCL_ALL, FTAG);

2164 if (error != 0)
2165 return (error);

2167 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2168 return (SET_ERROR(ENXIO));
2169 }

2171 /*
2172 * Find the best uberblock.
2173 */
2174 vdev_uberblock_load(rvd, ub, &label);

2176 /*

new/usr/src/uts/common/fs/zfs/spa.c 3

2177 * If we weren’t able to find a single valid uberblock, return failure.
2178 */
2179 if (ub->ub_txg == 0) {
2180 nvlist_free(label);
2181 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2182 }

2184 /*
2185 * If the pool has an unsupported version we can’t open it.
2186 */
2187 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2188 nvlist_free(label);
2189 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2190 }

2192 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2193 nvlist_t *features;

2195 /*
2196 * If we weren’t able to find what’s necessary for reading the
2197 * MOS in the label, return failure.
2198 */
2199 if (label == NULL || nvlist_lookup_nvlist(label,
2200 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2201 nvlist_free(label);
2202 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2203 ENXIO));
2204 }

2206 /*
2207 * Update our in-core representation with the definitive values
2208 * from the label.
2209 */
2210 nvlist_free(spa->spa_label_features);
2211 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2212 }

2214 nvlist_free(label);

2216 /*
2217 * Look through entries in the label nvlist’s features_for_read. If
2218 * there is a feature listed there which we don’t understand then we
2219 * cannot open a pool.
2220 */
2221 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2222 nvlist_t *unsup_feat;

2224 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2225 0);

2227 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2228 NULL); nvp != NULL;
2229 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2230 if (!zfeature_is_supported(nvpair_name(nvp))) {
2231 VERIFY(nvlist_add_string(unsup_feat,
2232 nvpair_name(nvp), "") == 0);
2233 }
2234 }

2236 if (!nvlist_empty(unsup_feat)) {
2237 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2238 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2239 nvlist_free(unsup_feat);
2240 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2241 ENOTSUP));
2242 }

new/usr/src/uts/common/fs/zfs/spa.c 4

2244 nvlist_free(unsup_feat);
2245 }

2247 /*
2248 * If the vdev guid sum doesn’t match the uberblock, we have an
2249 * incomplete configuration. We first check to see if the pool
2250 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2251 * If it is, defer the vdev_guid_sum check till later so we
2252 * can handle missing vdevs.
2253 */
2254 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2255 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2256 rvd->vdev_guid_sum != ub->ub_guid_sum)
2257 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));

2259 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2260 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2261 spa_try_repair(spa, config);
2262 spa_config_exit(spa, SCL_ALL, FTAG);
2263 nvlist_free(spa->spa_config_splitting);
2264 spa->spa_config_splitting = NULL;
2265 }

2267 /*
2268 * Initialize internal SPA structures.
2269 */
2270 spa->spa_state = POOL_STATE_ACTIVE;
2271 spa->spa_ubsync = spa->spa_uberblock;
2272 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2273 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2274 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2275 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2276 spa->spa_claim_max_txg = spa->spa_first_txg;
2277 spa->spa_prev_software_version = ub->ub_software_version;

2279 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2280 if (error)
2281 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2282 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;

2284 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2285 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2287 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2288 boolean_t missing_feat_read = B_FALSE;
2289 nvlist_t *unsup_feat, *enabled_feat;

2291 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2292 &spa->spa_feat_for_read_obj) != 0) {
2293 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2294 }

2296 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2297 &spa->spa_feat_for_write_obj) != 0) {
2298 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2299 }

2301 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2302 &spa->spa_feat_desc_obj) != 0) {
2303 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2304 }

2306 enabled_feat = fnvlist_alloc();
2307 unsup_feat = fnvlist_alloc();

new/usr/src/uts/common/fs/zfs/spa.c 5

2309 if (!spa_features_check(spa, B_FALSE,
2310 unsup_feat, enabled_feat))
2311 missing_feat_read = B_TRUE;

2313 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2314 if (!spa_features_check(spa, B_TRUE,
2315 unsup_feat, enabled_feat)) {
2316 missing_feat_write = B_TRUE;
2317 }
2318 }

2320 fnvlist_add_nvlist(spa->spa_load_info,
2321 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);

2323 if (!nvlist_empty(unsup_feat)) {
2324 fnvlist_add_nvlist(spa->spa_load_info,
2325 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2326 }

2328 fnvlist_free(enabled_feat);
2329 fnvlist_free(unsup_feat);

2331 if (!missing_feat_read) {
2332 fnvlist_add_boolean(spa->spa_load_info,
2333 ZPOOL_CONFIG_CAN_RDONLY);
2334 }

2336 /*
2337 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2338 * twofold: to determine whether the pool is available for
2339 * import in read-write mode and (if it is not) whether the
2340 * pool is available for import in read-only mode. If the pool
2341 * is available for import in read-write mode, it is displayed
2342 * as available in userland; if it is not available for import
2343 * in read-only mode, it is displayed as unavailable in
2344 * userland. If the pool is available for import in read-only
2345 * mode but not read-write mode, it is displayed as unavailable
2346 * in userland with a special note that the pool is actually
2347 * available for open in read-only mode.
2348 *
2349 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2350 * missing a feature for write, we must first determine whether
2351 * the pool can be opened read-only before returning to
2352 * userland in order to know whether to display the
2353 * abovementioned note.
2354 */
2355 if (missing_feat_read || (missing_feat_write &&
2356 spa_writeable(spa))) {
2357 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2358 ENOTSUP));
2359 }

2361 /*
2362 * Load refcounts for ZFS features from disk into an in-memory
2363 * cache during SPA initialization.
2364 */
2365 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2366 uint64_t refcount;

2368 error = feature_get_refcount_from_disk(spa,
2369 &spa_feature_table[i], &refcount);
2370 if (error == 0) {
2371 spa->spa_feat_refcount_cache[i] = refcount;
2372 } else if (error == ENOTSUP) {
2373 spa->spa_feat_refcount_cache[i] =
2374 SPA_FEATURE_DISABLED;

new/usr/src/uts/common/fs/zfs/spa.c 6

2375 } else {
2376 return (spa_vdev_err(rvd,
2377 VDEV_AUX_CORRUPT_DATA, EIO));
2378 }
2379 }
2380 }

2382 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2383 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2384 &spa->spa_feat_enabled_txg_obj) != 0)
2385 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2386 }

2388 spa->spa_is_initializing = B_TRUE;
2389 error = dsl_pool_open(spa->spa_dsl_pool);
2390 spa->spa_is_initializing = B_FALSE;
2391 if (error != 0)
2392 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2394 if (!mosconfig) {
2395 uint64_t hostid;
2396 nvlist_t *policy = NULL, *nvconfig;

2398 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2399 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2401 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2402 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2403 char *hostname;
2404 unsigned long myhostid = 0;

2406 VERIFY(nvlist_lookup_string(nvconfig,
2407 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);

2409 #ifdef _KERNEL
2410 myhostid = zone_get_hostid(NULL);
2411 #else /* _KERNEL */
2412 /*
2413 * We’re emulating the system’s hostid in userland, so
2414 * we can’t use zone_get_hostid().
2415 */
2416 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2417 #endif /* _KERNEL */
2418 if (hostid != 0 && myhostid != 0 &&
2419 hostid != myhostid) {
2420 nvlist_free(nvconfig);
2421 cmn_err(CE_WARN, "pool ’%s’ could not be "
2422 "loaded as it was last accessed by "
2423 "another system (host: %s hostid: 0x%lx). "
2424 "See: http://illumos.org/msg/ZFS-8000-EY",
2425 spa_name(spa), hostname,
2426 (unsigned long)hostid);
2427 return (SET_ERROR(EBADF));
2428 }
2429 }
2430 if (nvlist_lookup_nvlist(spa->spa_config,
2431 ZPOOL_REWIND_POLICY, &policy) == 0)
2432 VERIFY(nvlist_add_nvlist(nvconfig,
2433 ZPOOL_REWIND_POLICY, policy) == 0);

2435 spa_config_set(spa, nvconfig);
2436 spa_unload(spa);
2437 spa_deactivate(spa);
2438 spa_activate(spa, orig_mode);

2440 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));

new/usr/src/uts/common/fs/zfs/spa.c 7

2441 }

2443 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2444 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2445 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2446 if (error != 0)
2447 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2449 /*
2450 * Load the bit that tells us to use the new accounting function
2451 * (raid-z deflation). If we have an older pool, this will not
2452 * be present.
2453 */
2454 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2455 if (error != 0 && error != ENOENT)
2456 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2458 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2459 &spa->spa_creation_version);
2460 if (error != 0 && error != ENOENT)
2461 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2463 /*
2464 * Load the persistent error log. If we have an older pool, this will
2465 * not be present.
2466 */
2467 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2468 if (error != 0 && error != ENOENT)
2469 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2471 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2472 &spa->spa_errlog_scrub);
2473 if (error != 0 && error != ENOENT)
2474 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2476 /*
2477 * Load the history object. If we have an older pool, this
2478 * will not be present.
2479 */
2480 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2481 if (error != 0 && error != ENOENT)
2482 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2484 /*
2485 * If we’re assembling the pool from the split-off vdevs of
2486 * an existing pool, we don’t want to attach the spares & cache
2487 * devices.
2488 */

2490 /*
2491 * Load any hot spares for this pool.
2492 */
2493 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2494 if (error != 0 && error != ENOENT)
2495 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2496 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2497 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2498 if (load_nvlist(spa, spa->spa_spares.sav_object,
2499 &spa->spa_spares.sav_config) != 0)
2500 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2502 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2503 spa_load_spares(spa);
2504 spa_config_exit(spa, SCL_ALL, FTAG);
2505 } else if (error == 0) {
2506 spa->spa_spares.sav_sync = B_TRUE;

new/usr/src/uts/common/fs/zfs/spa.c 8

2507 }

2509 /*
2510 * Load any level 2 ARC devices for this pool.
2511 */
2512 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2513 &spa->spa_l2cache.sav_object);
2514 if (error != 0 && error != ENOENT)
2515 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2516 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2517 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2518 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2519 &spa->spa_l2cache.sav_config) != 0)
2520 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2522 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2523 spa_load_l2cache(spa);
2524 spa_config_exit(spa, SCL_ALL, FTAG);
2525 } else if (error == 0) {
2526 spa->spa_l2cache.sav_sync = B_TRUE;
2527 }

2529 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);

2531 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2532 if (error && error != ENOENT)
2533 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2535 if (error == 0) {
2536 uint64_t autoreplace;

2538 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2539 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2540 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2541 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2542 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2543 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2544 &spa->spa_dedup_ditto);

2546 spa->spa_autoreplace = (autoreplace != 0);
2547 }

2549 /*
2550 * If the ’autoreplace’ property is set, then post a resource notifying
2551 * the ZFS DE that it should not issue any faults for unopenable
2552 * devices. We also iterate over the vdevs, and post a sysevent for any
2553 * unopenable vdevs so that the normal autoreplace handler can take
2554 * over.
2555 */
2556 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2557 spa_check_removed(spa->spa_root_vdev);
2558 /*
2559 * For the import case, this is done in spa_import(), because
2560 * at this point we’re using the spare definitions from
2561 * the MOS config, not necessarily from the userland config.
2562 */
2563 if (state != SPA_LOAD_IMPORT) {
2564 spa_aux_check_removed(&spa->spa_spares);
2565 spa_aux_check_removed(&spa->spa_l2cache);
2566 }
2567 }

2569 /*
2570 * Load the vdev state for all toplevel vdevs.
2571 */
2572 vdev_load(rvd);

new/usr/src/uts/common/fs/zfs/spa.c 9

2574 /*
2575 * Propagate the leaf DTLs we just loaded all the way up the tree.
2576 */
2577 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2578 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2579 spa_config_exit(spa, SCL_ALL, FTAG);

2581 /*
2582 * Load the DDTs (dedup tables).
2583 */
2584 error = ddt_load(spa);
2585 if (error != 0)
2586 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2588 spa_update_dspace(spa);

2590 /*
2591 * Validate the config, using the MOS config to fill in any
2592 * information which might be missing. If we fail to validate
2593 * the config then declare the pool unfit for use. If we’re
2594 * assembling a pool from a split, the log is not transferred
2595 * over.
2596 */
2597 if (type != SPA_IMPORT_ASSEMBLE) {
2598 nvlist_t *nvconfig;

2600 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2601 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));

2603 if (!spa_config_valid(spa, nvconfig)) {
2604 nvlist_free(nvconfig);
2605 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2606 ENXIO));
2607 }
2608 nvlist_free(nvconfig);

2610 /*
2611 * Now that we’ve validated the config, check the state of the
2612 * root vdev. If it can’t be opened, it indicates one or
2613 * more toplevel vdevs are faulted.
2614 */
2615 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2616 return (SET_ERROR(ENXIO));

2618 if (spa_check_logs(spa)) {
2619 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2620 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2621 }
2622 }

2624 if (missing_feat_write) {
2625 ASSERT(state == SPA_LOAD_TRYIMPORT);

2627 /*
2628 * At this point, we know that we can open the pool in
2629 * read-only mode but not read-write mode. We now have enough
2630 * information and can return to userland.
2631 */
2632 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2633 }

2635 /*
2636 * We’ve successfully opened the pool, verify that we’re ready
2637 * to start pushing transactions.
2638 */

new/usr/src/uts/common/fs/zfs/spa.c 10

2639 if (state != SPA_LOAD_TRYIMPORT) {
2640 if (error = spa_load_verify(spa))
2641 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2642 error));
2643 }

2645 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2646 spa->spa_load_max_txg == UINT64_MAX)) {
2647 dmu_tx_t *tx;
2648 int need_update = B_FALSE;

2650 ASSERT(state != SPA_LOAD_TRYIMPORT);

2652 /*
2653 * Claim log blocks that haven’t been committed yet.
2654 * This must all happen in a single txg.
2655 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2656 * invoked from zil_claim_log_block()’s i/o done callback.
2657 * Price of rollback is that we abandon the log.
2658 */
2659 spa->spa_claiming = B_TRUE;

2661 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2662 spa_first_txg(spa));
2663 (void) dmu_objset_find_parallel(spa_name(spa),
2663 (void) dmu_objset_find(spa_name(spa),
2664 zil_claim, tx, DS_FIND_CHILDREN);
2665 dmu_tx_commit(tx);

2667 spa->spa_claiming = B_FALSE;

2669 spa_set_log_state(spa, SPA_LOG_GOOD);
2670 spa->spa_sync_on = B_TRUE;
2671 txg_sync_start(spa->spa_dsl_pool);

2673 /*
2674 * Wait for all claims to sync. We sync up to the highest
2675 * claimed log block birth time so that claimed log blocks
2676 * don’t appear to be from the future. spa_claim_max_txg
2677 * will have been set for us by either zil_check_log_chain()
2678 * (invoked from spa_check_logs()) or zil_claim() above.
2679 */
2680 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);

2682 /*
2683 * If the config cache is stale, or we have uninitialized
2684 * metaslabs (see spa_vdev_add()), then update the config.
2685 *
2686 * If this is a verbatim import, trust the current
2687 * in-core spa_config and update the disk labels.
2688 */
2689 if (config_cache_txg != spa->spa_config_txg ||
2690 state == SPA_LOAD_IMPORT ||
2691 state == SPA_LOAD_RECOVER ||
2692 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2693 need_update = B_TRUE;

2695 for (int c = 0; c < rvd->vdev_children; c++)
2696 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2697 need_update = B_TRUE;

2699 /*
2700 * Update the config cache asychronously in case we’re the
2701 * root pool, in which case the config cache isn’t writable yet.
2702 */
2703 if (need_update)

new/usr/src/uts/common/fs/zfs/spa.c 11

2704 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);

2706 /*
2707 * Check all DTLs to see if anything needs resilvering.
2708 */
2709 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2710 vdev_resilver_needed(rvd, NULL, NULL))
2711 spa_async_request(spa, SPA_ASYNC_RESILVER);

2713 /*
2714 * Log the fact that we booted up (so that we can detect if
2715 * we rebooted in the middle of an operation).
2716 */
2717 spa_history_log_version(spa, "open");

2719 /*
2720 * Delete any inconsistent datasets.
2721 */
2722 (void) dmu_objset_find(spa_name(spa),
2723 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);

2725 /*
2726 * Clean up any stale temporary dataset userrefs.
2727 */
2728 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2729 }

2731 return (0);
2732 }
______unchanged_portion_omitted_

2841 /*
2842 * Pool Open/Import
2843 *
2844 * The import case is identical to an open except that the configuration is sent
2845 * down from userland, instead of grabbed from the configuration cache. For the
2846 * case of an open, the pool configuration will exist in the
2847 * POOL_STATE_UNINITIALIZED state.
2848 *
2849 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2850 * the same time open the pool, without having to keep around the spa_t in some
2851 * ambiguous state.
2852 */
2853 static int
2854 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2855 nvlist_t **config, int lock)
2855 nvlist_t **config)
2856 {
2857 spa_t *spa;
2858 spa_load_state_t state = SPA_LOAD_OPEN;
2859 int error;
2860 int locked = B_FALSE;

2862 *spapp = NULL;

2864 /*
2865 * As disgusting as this is, we need to support recursive calls to this
2866 * function because dsl_dir_open() is called during spa_load(), and ends
2867 * up calling spa_open() again. The real fix is to figure out how to
2868 * avoid dsl_dir_open() calling this in the first place.
2869 */
2870 if (lock && (mutex_owner(&spa_namespace_lock) != curthread)) {
2870 if (mutex_owner(&spa_namespace_lock) != curthread) {
2871 mutex_enter(&spa_namespace_lock);
2872 locked = B_TRUE;
2873 }

new/usr/src/uts/common/fs/zfs/spa.c 12

2875 if ((spa = spa_lookup(pool)) == NULL) {
2876 if (locked)
2877 mutex_exit(&spa_namespace_lock);
2878 return (SET_ERROR(ENOENT));
2879 }

2881 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2882 zpool_rewind_policy_t policy;

2884 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2885 &policy);
2886 if (policy.zrp_request & ZPOOL_DO_REWIND)
2887 state = SPA_LOAD_RECOVER;

2889 spa_activate(spa, spa_mode_global);

2891 if (state != SPA_LOAD_RECOVER)
2892 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;

2894 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2895 policy.zrp_request);

2897 if (error == EBADF) {
2898 /*
2899 * If vdev_validate() returns failure (indicated by
2900 * EBADF), it indicates that one of the vdevs indicates
2901 * that the pool has been exported or destroyed. If
2902 * this is the case, the config cache is out of sync and
2903 * we should remove the pool from the namespace.
2904 */
2905 spa_unload(spa);
2906 spa_deactivate(spa);
2907 spa_config_sync(spa, B_TRUE, B_TRUE);
2908 spa_remove(spa);
2909 if (locked)
2910 mutex_exit(&spa_namespace_lock);
2911 return (SET_ERROR(ENOENT));
2912 }

2914 if (error) {
2915 /*
2916 * We can’t open the pool, but we still have useful
2917 * information: the state of each vdev after the
2918 * attempted vdev_open(). Return this to the user.
2919 */
2920 if (config != NULL && spa->spa_config) {
2921 VERIFY(nvlist_dup(spa->spa_config, config,
2922 KM_SLEEP) == 0);
2923 VERIFY(nvlist_add_nvlist(*config,
2924 ZPOOL_CONFIG_LOAD_INFO,
2925 spa->spa_load_info) == 0);
2926 }
2927 spa_unload(spa);
2928 spa_deactivate(spa);
2929 spa->spa_last_open_failed = error;
2930 if (locked)
2931 mutex_exit(&spa_namespace_lock);
2932 *spapp = NULL;
2933 return (error);
2934 }
2935 }

2937 spa_open_ref(spa, tag);

2939 if (config != NULL)

new/usr/src/uts/common/fs/zfs/spa.c 13

2940 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);

2942 /*
2943 * If we’ve recovered the pool, pass back any information we
2944 * gathered while doing the load.
2945 */
2946 if (state == SPA_LOAD_RECOVER) {
2947 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2948 spa->spa_load_info) == 0);
2949 }

2951 if (locked) {
2952 spa->spa_last_open_failed = 0;
2953 spa->spa_last_ubsync_txg = 0;
2954 spa->spa_load_txg = 0;
2955 mutex_exit(&spa_namespace_lock);
2956 }

2958 *spapp = spa;

2960 return (0);
2961 }

2963 int
2964 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2965 nvlist_t **config)
2966 {
2967 return (spa_open_common(name, spapp, tag, policy, config, 1));
2967 return (spa_open_common(name, spapp, tag, policy, config));
2968 }

2970 int
2971 spa_open(const char *name, spa_t **spapp, void *tag)
2972 {
2973 return (spa_open_common(name, spapp, tag, NULL, NULL, 1));
2974 }

2976 int
2977 spa_open_lock(const char *name, spa_t **spapp, void *tag, int lock)
2978 {
2979 return (spa_open_common(name, spapp, tag, NULL, NULL, lock));
2973 return (spa_open_common(name, spapp, tag, NULL, NULL));
2980 }
______unchanged_portion_omitted_

3155 int
3156 spa_get_stats(const char *name, nvlist_t **config,
3157 char *altroot, size_t buflen)
3158 {
3159 int error;
3160 spa_t *spa;

3162 *config = NULL;
3163 error = spa_open_common(name, &spa, FTAG, NULL, config, 1);
3157 error = spa_open_common(name, &spa, FTAG, NULL, config);

3165 if (spa != NULL) {
3166 /*
3167 * This still leaves a window of inconsistency where the spares
3168 * or l2cache devices could change and the config would be
3169 * self-inconsistent.
3170 */
3171 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);

3173 if (*config != NULL) {
3174 uint64_t loadtimes[2];

new/usr/src/uts/common/fs/zfs/spa.c 14

3176 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3177 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3178 VERIFY(nvlist_add_uint64_array(*config,
3179 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);

3181 VERIFY(nvlist_add_uint64(*config,
3182 ZPOOL_CONFIG_ERRCOUNT,
3183 spa_get_errlog_size(spa)) == 0);

3185 if (spa_suspended(spa))
3186 VERIFY(nvlist_add_uint64(*config,
3187 ZPOOL_CONFIG_SUSPENDED,
3188 spa->spa_failmode) == 0);

3190 spa_add_spares(spa, *config);
3191 spa_add_l2cache(spa, *config);
3192 spa_add_feature_stats(spa, *config);
3193 }
3194 }

3196 /*
3197 * We want to get the alternate root even for faulted pools, so we cheat
3198 * and call spa_lookup() directly.
3199 */
3200 if (altroot) {
3201 if (spa == NULL) {
3202 mutex_enter(&spa_namespace_lock);
3203 spa = spa_lookup(name);
3204 if (spa)
3205 spa_altroot(spa, altroot, buflen);
3206 else
3207 altroot[0] = ’\0’;
3208 spa = NULL;
3209 mutex_exit(&spa_namespace_lock);
3210 } else {
3211 spa_altroot(spa, altroot, buflen);
3212 }
3213 }

3215 if (spa != NULL) {
3216 spa_config_exit(spa, SCL_CONFIG, FTAG);
3217 spa_close(spa, FTAG);
3218 }

3220 return (error);
3221 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/spa_misc.c 1

**
 48795 Thu Oct 16 19:15:51 2014
new/usr/src/uts/common/fs/zfs/spa_misc.c
zpool import speedup
**
______unchanged_portion_omitted_

448 /*
449 * ==
450 * SPA namespace functions
451 * ==
452 */

454 /*
455 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
456 * Returns NULL if no matching spa_t is found.
457 */
458 spa_t *
459 spa_lookup(const char *name)
460 {
461 spa_t *search;
461 static spa_t search; /* spa_t is large; don’t allocate on stack */
462 spa_t *spa;
463 avl_index_t where;
464 char *cp;

466 search = kmem_alloc(sizeof(*search), KM_SLEEP);
466 ASSERT(MUTEX_HELD(&spa_namespace_lock));

468 (void) strlcpy(search->spa_name, name, sizeof (search->spa_name));
468 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));

470 /*
471 * If it’s a full dataset name, figure out the pool name and
472 * just use that.
473 */
474 cp = strpbrk(search->spa_name, "/@#");
474 cp = strpbrk(search.spa_name, "/@#");
475 if (cp != NULL)
476 *cp = ’\0’;

478 spa = avl_find(&spa_namespace_avl, search, &where);
479 kmem_free(search, sizeof(*search));
478 spa = avl_find(&spa_namespace_avl, &search, &where);

481 return (spa);
482 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/sys/dmu.h 1

**
 29678 Thu Oct 16 19:15:51 2014
new/usr/src/uts/common/fs/zfs/sys/dmu.h
zpool import speedup
**
______unchanged_portion_omitted_

235 void byteswap_uint64_array(void *buf, size_t size);
236 void byteswap_uint32_array(void *buf, size_t size);
237 void byteswap_uint16_array(void *buf, size_t size);
238 void byteswap_uint8_array(void *buf, size_t size);
239 void zap_byteswap(void *buf, size_t size);
240 void zfs_oldacl_byteswap(void *buf, size_t size);
241 void zfs_acl_byteswap(void *buf, size_t size);
242 void zfs_znode_byteswap(void *buf, size_t size);

244 #define DS_FIND_SNAPSHOTS (1<<0)
245 #define DS_FIND_CHILDREN (1<<1)

247 /*
248 * The maximum number of bytes that can be accessed as part of one
249 * operation, including metadata.
250 */
251 #define DMU_MAX_ACCESS (10<<20) /* 10MB */
252 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */

254 #define DMU_USERUSED_OBJECT (-1ULL)
255 #define DMU_GROUPUSED_OBJECT (-2ULL)

257 /*
258 * artificial blkids for bonus buffer and spill blocks
259 */
260 #define DMU_BONUS_BLKID (-1ULL)
261 #define DMU_SPILL_BLKID (-2ULL)
262 /*
263 * Public routines to create, destroy, open, and close objsets.
264 */
265 int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
266 int dmu_objset_hold_nolock(const char *name, void *tag, objset_t **osp);
267 #endif /* ! codereview */
268 int dmu_objset_own(const char *name, dmu_objset_type_t type,
269 boolean_t readonly, void *tag, objset_t **osp);
270 void dmu_objset_rele(objset_t *os, void *tag);
271 void dmu_objset_disown(objset_t *os, void *tag);
272 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);

274 void dmu_objset_evict_dbufs(objset_t *os);
275 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
276 void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg);
277 int dmu_objset_clone(const char *name, const char *origin);
278 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
279 struct nvlist *errlist);
280 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
281 int dmu_objset_snapshot_tmp(const char *, const char *, int);
282 int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
283 int flags);
284 int dmu_objset_find_parallel(char *name, int func(const char *, void *),
285 void *arg, int flags);
286 #endif /* ! codereview */
287 void dmu_objset_byteswap(void *buf, size_t size);
288 int dsl_dataset_rename_snapshot(const char *fsname,
289 const char *oldsnapname, const char *newsnapname, boolean_t recursive);

291 typedef struct dmu_buf {
292 uint64_t db_object; /* object that this buffer is part of */
293 uint64_t db_offset; /* byte offset in this object */

new/usr/src/uts/common/fs/zfs/sys/dmu.h 2

294 uint64_t db_size; /* size of buffer in bytes */
295 void *db_data; /* data in buffer */
296 } dmu_buf_t;

298 typedef void dmu_buf_evict_func_t(struct dmu_buf *db, void *user_ptr);

300 /*
301 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
302 */
303 #define DMU_POOL_DIRECTORY_OBJECT 1
304 #define DMU_POOL_CONFIG "config"
305 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write"
306 #define DMU_POOL_FEATURES_FOR_READ "features_for_read"
307 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions"
308 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg"
309 #define DMU_POOL_ROOT_DATASET "root_dataset"
310 #define DMU_POOL_SYNC_BPOBJ "sync_bplist"
311 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub"
312 #define DMU_POOL_ERRLOG_LAST "errlog_last"
313 #define DMU_POOL_SPARES "spares"
314 #define DMU_POOL_DEFLATE "deflate"
315 #define DMU_POOL_HISTORY "history"
316 #define DMU_POOL_PROPS "pool_props"
317 #define DMU_POOL_L2CACHE "l2cache"
318 #define DMU_POOL_TMP_USERREFS "tmp_userrefs"
319 #define DMU_POOL_DDT "DDT-%s-%s-%s"
320 #define DMU_POOL_DDT_STATS "DDT-statistics"
321 #define DMU_POOL_CREATION_VERSION "creation_version"
322 #define DMU_POOL_SCAN "scan"
323 #define DMU_POOL_FREE_BPOBJ "free_bpobj"
324 #define DMU_POOL_BPTREE_OBJ "bptree_obj"
325 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj"

327 /*
328 * Allocate an object from this objset. The range of object numbers
329 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode.
330 *
331 * The transaction must be assigned to a txg. The newly allocated
332 * object will be "held" in the transaction (ie. you can modify the
333 * newly allocated object in this transaction).
334 *
335 * dmu_object_alloc() chooses an object and returns it in *objectp.
336 *
337 * dmu_object_claim() allocates a specific object number. If that
338 * number is already allocated, it fails and returns EEXIST.
339 *
340 * Return 0 on success, or ENOSPC or EEXIST as specified above.
341 */
342 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
343 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
344 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
345 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
346 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
347 int blocksize, dmu_object_type_t bonustype, int bonuslen);

349 /*
350 * Free an object from this objset.
351 *
352 * The object’s data will be freed as well (ie. you don’t need to call
353 * dmu_free(object, 0, -1, tx)).
354 *
355 * The object need not be held in the transaction.
356 *
357 * If there are any holds on this object’s buffers (via dmu_buf_hold()),
358 * or tx holds on the object (via dmu_tx_hold_object()), you can not
359 * free it; it fails and returns EBUSY.

new/usr/src/uts/common/fs/zfs/sys/dmu.h 3

360 *
361 * If the object is not allocated, it fails and returns ENOENT.
362 *
363 * Return 0 on success, or EBUSY or ENOENT as specified above.
364 */
365 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);

367 /*
368 * Find the next allocated or free object.
369 *
370 * The objectp parameter is in-out. It will be updated to be the next
371 * object which is allocated. Ignore objects which have not been
372 * modified since txg.
373 *
374 * XXX Can only be called on a objset with no dirty data.
375 *
376 * Returns 0 on success, or ENOENT if there are no more objects.
377 */
378 int dmu_object_next(objset_t *os, uint64_t *objectp,
379 boolean_t hole, uint64_t txg);

381 /*
382 * Set the data blocksize for an object.
383 *
384 * The object cannot have any blocks allcated beyond the first. If
385 * the first block is allocated already, the new size must be greater
386 * than the current block size. If these conditions are not met,
387 * ENOTSUP will be returned.
388 *
389 * Returns 0 on success, or EBUSY if there are any holds on the object
390 * contents, or ENOTSUP as described above.
391 */
392 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
393 int ibs, dmu_tx_t *tx);

395 /*
396 * Set the checksum property on a dnode. The new checksum algorithm will
397 * apply to all newly written blocks; existing blocks will not be affected.
398 */
399 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
400 dmu_tx_t *tx);

402 /*
403 * Set the compress property on a dnode. The new compression algorithm will
404 * apply to all newly written blocks; existing blocks will not be affected.
405 */
406 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
407 dmu_tx_t *tx);

409 void
410 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
411 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
412 int compressed_size, int byteorder, dmu_tx_t *tx);

414 /*
415 * Decide how to write a block: checksum, compression, number of copies, etc.
416 */
417 #define WP_NOFILL 0x1
418 #define WP_DMU_SYNC 0x2
419 #define WP_SPILL 0x4

421 void dmu_write_policy(objset_t *os, struct dnode *dn, int level, int wp,
422 struct zio_prop *zp);
423 /*
424 * The bonus data is accessed more or less like a regular buffer.
425 * You must dmu_bonus_hold() to get the buffer, which will give you a

new/usr/src/uts/common/fs/zfs/sys/dmu.h 4

426 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
427 * data. As with any normal buffer, you must call dmu_buf_read() to
428 * read db_data, dmu_buf_will_dirty() before modifying it, and the
429 * object must be held in an assigned transaction before calling
430 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus
431 * buffer as well. You must release your hold with dmu_buf_rele().
432 *
433 * Returns ENOENT, EIO, or 0.
434 */
435 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
436 int dmu_bonus_max(void);
437 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
438 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
439 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
440 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);

442 /*
443 * Special spill buffer support used by "SA" framework
444 */

446 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
447 int dmu_spill_hold_by_dnode(struct dnode *dn, uint32_t flags,
448 void *tag, dmu_buf_t **dbp);
449 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);

451 /*
452 * Obtain the DMU buffer from the specified object which contains the
453 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so
454 * that it will remain in memory. You must release the hold with
455 * dmu_buf_rele(). You musn’t access the dmu_buf_t after releasing your
456 * hold. You must have a hold on any dmu_buf_t* you pass to the DMU.
457 *
458 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
459 * on the returned buffer before reading or writing the buffer’s
460 * db_data. The comments for those routines describe what particular
461 * operations are valid after calling them.
462 *
463 * The object number must be a valid, allocated object number.
464 */
465 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
466 void *tag, dmu_buf_t **, int flags);
467 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
468 void dmu_buf_rele(dmu_buf_t *db, void *tag);
469 uint64_t dmu_buf_refcount(dmu_buf_t *db);

471 /*
472 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
473 * range of an object. A pointer to an array of dmu_buf_t*’s is
474 * returned (in *dbpp).
475 *
476 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*’s, and
477 * frees the array. The hold on the array of buffers MUST be released
478 * with dmu_buf_rele_array. You can NOT release the hold on each buffer
479 * individually with dmu_buf_rele.
480 */
481 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
482 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp);
483 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);

485 /*
486 * Returns NULL on success, or the existing user ptr if it’s already
487 * been set.
488 *
489 * user_ptr is for use by the user and can be obtained via dmu_buf_get_user().
490 *
491 * user_data_ptr_ptr should be NULL, or a pointer to a pointer which

new/usr/src/uts/common/fs/zfs/sys/dmu.h 5

492 * will be set to db->db_data when you are allowed to access it. Note
493 * that db->db_data (the pointer) can change when you do dmu_buf_read(),
494 * dmu_buf_tryupgrade(), dmu_buf_will_dirty(), or dmu_buf_will_fill().
495 * *user_data_ptr_ptr will be set to the new value when it changes.
496 *
497 * If non-NULL, pageout func will be called when this buffer is being
498 * excised from the cache, so that you can clean up the data structure
499 * pointed to by user_ptr.
500 *
501 * dmu_evict_user() will call the pageout func for all buffers in a
502 * objset with a given pageout func.
503 */
504 void *dmu_buf_set_user(dmu_buf_t *db, void *user_ptr, void *user_data_ptr_ptr,
505 dmu_buf_evict_func_t *pageout_func);
506 /*
507 * set_user_ie is the same as set_user, but request immediate eviction
508 * when hold count goes to zero.
509 */
510 void *dmu_buf_set_user_ie(dmu_buf_t *db, void *user_ptr,
511 void *user_data_ptr_ptr, dmu_buf_evict_func_t *pageout_func);
512 void *dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr,
513 void *user_ptr, void *user_data_ptr_ptr,
514 dmu_buf_evict_func_t *pageout_func);
515 void dmu_evict_user(objset_t *os, dmu_buf_evict_func_t *func);

517 /*
518 * Returns the user_ptr set with dmu_buf_set_user(), or NULL if not set.
519 */
520 void *dmu_buf_get_user(dmu_buf_t *db);

522 /*
523 * Returns the blkptr associated with this dbuf, or NULL if not set.
524 */
525 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);

527 /*
528 * Indicate that you are going to modify the buffer’s data (db_data).
529 *
530 * The transaction (tx) must be assigned to a txg (ie. you’ve called
531 * dmu_tx_assign()). The buffer’s object must be held in the tx
532 * (ie. you’ve called dmu_tx_hold_object(tx, db->db_object)).
533 */
534 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);

536 /*
537 * Tells if the given dbuf is freeable.
538 */
539 boolean_t dmu_buf_freeable(dmu_buf_t *);

541 /*
542 * You must create a transaction, then hold the objects which you will
543 * (or might) modify as part of this transaction. Then you must assign
544 * the transaction to a transaction group. Once the transaction has
545 * been assigned, you can modify buffers which belong to held objects as
546 * part of this transaction. You can’t modify buffers before the
547 * transaction has been assigned; you can’t modify buffers which don’t
548 * belong to objects which this transaction holds; you can’t hold
549 * objects once the transaction has been assigned. You may hold an
550 * object which you are going to free (with dmu_object_free()), but you
551 * don’t have to.
552 *
553 * You can abort the transaction before it has been assigned.
554 *
555 * Note that you may hold buffers (with dmu_buf_hold) at any time,
556 * regardless of transaction state.
557 */

new/usr/src/uts/common/fs/zfs/sys/dmu.h 6

559 #define DMU_NEW_OBJECT (-1ULL)
560 #define DMU_OBJECT_END (-1ULL)

562 dmu_tx_t *dmu_tx_create(objset_t *os);
563 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
564 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
565 uint64_t len);
566 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
567 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
568 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
569 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
570 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
571 void dmu_tx_abort(dmu_tx_t *tx);
572 int dmu_tx_assign(dmu_tx_t *tx, enum txg_how txg_how);
573 void dmu_tx_wait(dmu_tx_t *tx);
574 void dmu_tx_commit(dmu_tx_t *tx);

576 /*
577 * To register a commit callback, dmu_tx_callback_register() must be called.
578 *
579 * dcb_data is a pointer to caller private data that is passed on as a
580 * callback parameter. The caller is responsible for properly allocating and
581 * freeing it.
582 *
583 * When registering a callback, the transaction must be already created, but
584 * it cannot be committed or aborted. It can be assigned to a txg or not.
585 *
586 * The callback will be called after the transaction has been safely written
587 * to stable storage and will also be called if the dmu_tx is aborted.
588 * If there is any error which prevents the transaction from being committed to
589 * disk, the callback will be called with a value of error != 0.
590 */
591 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);

593 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
594 void *dcb_data);

596 /*
597 * Free up the data blocks for a defined range of a file. If size is
598 * -1, the range from offset to end-of-file is freed.
599 */
600 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
601 uint64_t size, dmu_tx_t *tx);
602 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
603 uint64_t size);
604 int dmu_free_long_object(objset_t *os, uint64_t object);

606 /*
607 * Convenience functions.
608 *
609 * Canfail routines will return 0 on success, or an errno if there is a
610 * nonrecoverable I/O error.
611 */
612 #define DMU_READ_PREFETCH 0 /* prefetch */
613 #define DMU_READ_NO_PREFETCH 1 /* don’t prefetch */
614 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
615 void *buf, uint32_t flags);
616 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
617 const void *buf, dmu_tx_t *tx);
618 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
619 dmu_tx_t *tx);
620 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
621 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
622 dmu_tx_t *tx);
623 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,

new/usr/src/uts/common/fs/zfs/sys/dmu.h 7

624 dmu_tx_t *tx);
625 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
626 uint64_t size, struct page *pp, dmu_tx_t *tx);
627 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
628 void dmu_return_arcbuf(struct arc_buf *buf);
629 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
630 dmu_tx_t *tx);
631 int dmu_xuio_init(struct xuio *uio, int niov);
632 void dmu_xuio_fini(struct xuio *uio);
633 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
634 size_t n);
635 int dmu_xuio_cnt(struct xuio *uio);
636 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
637 void dmu_xuio_clear(struct xuio *uio, int i);
638 void xuio_stat_wbuf_copied();
639 void xuio_stat_wbuf_nocopy();

641 extern int zfs_prefetch_disable;

643 /*
644 * Asynchronously try to read in the data.
645 */
646 void dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset,
647 uint64_t len);

649 typedef struct dmu_object_info {
650 /* All sizes are in bytes unless otherwise indicated. */
651 uint32_t doi_data_block_size;
652 uint32_t doi_metadata_block_size;
653 dmu_object_type_t doi_type;
654 dmu_object_type_t doi_bonus_type;
655 uint64_t doi_bonus_size;
656 uint8_t doi_indirection; /* 2 = dnode->indirect->data */
657 uint8_t doi_checksum;
658 uint8_t doi_compress;
659 uint8_t doi_pad[5];
660 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */
661 uint64_t doi_max_offset;
662 uint64_t doi_fill_count; /* number of non-empty blocks */
663 } dmu_object_info_t;

665 typedef void arc_byteswap_func_t(void *buf, size_t size);

667 typedef struct dmu_object_type_info {
668 dmu_object_byteswap_t ot_byteswap;
669 boolean_t ot_metadata;
670 char *ot_name;
671 } dmu_object_type_info_t;

673 typedef struct dmu_object_byteswap_info {
674 arc_byteswap_func_t *ob_func;
675 char *ob_name;
676 } dmu_object_byteswap_info_t;

678 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
679 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];

681 /*
682 * Get information on a DMU object.
683 *
684 * Return 0 on success or ENOENT if object is not allocated.
685 *
686 * If doi is NULL, just indicates whether the object exists.
687 */
688 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
689 /* Like dmu_object_info, but faster if you have a held dnode in hand. */

new/usr/src/uts/common/fs/zfs/sys/dmu.h 8

690 void dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
691 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
692 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
693 /*
694 * Like dmu_object_info_from_db, but faster still when you only care about
695 * the size. This is specifically optimized for zfs_getattr().
696 */
697 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
698 u_longlong_t *nblk512);

700 typedef struct dmu_objset_stats {
701 uint64_t dds_num_clones; /* number of clones of this */
702 uint64_t dds_creation_txg;
703 uint64_t dds_guid;
704 dmu_objset_type_t dds_type;
705 uint8_t dds_is_snapshot;
706 uint8_t dds_inconsistent;
707 char dds_origin[MAXNAMELEN];
708 } dmu_objset_stats_t;

710 /*
711 * Get stats on a dataset.
712 */
713 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);

715 /*
716 * Add entries to the nvlist for all the objset’s properties. See
717 * zfs_prop_table[] and zfs(1m) for details on the properties.
718 */
719 void dmu_objset_stats(objset_t *os, struct nvlist *nv);

721 /*
722 * Get the space usage statistics for statvfs().
723 *
724 * refdbytes is the amount of space "referenced" by this objset.
725 * availbytes is the amount of space available to this objset, taking
726 * into account quotas & reservations, assuming that no other objsets
727 * use the space first. These values correspond to the ’referenced’ and
728 * ’available’ properties, described in the zfs(1m) manpage.
729 *
730 * usedobjs and availobjs are the number of objects currently allocated,
731 * and available.
732 */
733 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
734 uint64_t *usedobjsp, uint64_t *availobjsp);

736 /*
737 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
738 * (Contrast with the ds_guid which is a 64-bit ID that will never
739 * change, so there is a small probability that it will collide.)
740 */
741 uint64_t dmu_objset_fsid_guid(objset_t *os);

743 /*
744 * Get the [cm]time for an objset’s snapshot dir
745 */
746 timestruc_t dmu_objset_snap_cmtime(objset_t *os);

748 int dmu_objset_is_snapshot(objset_t *os);

750 extern struct spa *dmu_objset_spa(objset_t *os);
751 extern struct zilog *dmu_objset_zil(objset_t *os);
752 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
753 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
754 extern void dmu_objset_name(objset_t *os, char *buf);
755 extern dmu_objset_type_t dmu_objset_type(objset_t *os);

new/usr/src/uts/common/fs/zfs/sys/dmu.h 9

756 extern uint64_t dmu_objset_id(objset_t *os);
757 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
758 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
759 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
760 uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
761 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
762 int maxlen, boolean_t *conflict);
763 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
764 uint64_t *idp, uint64_t *offp);

766 typedef int objset_used_cb_t(dmu_object_type_t bonustype,
767 void *bonus, uint64_t *userp, uint64_t *groupp);
768 extern void dmu_objset_register_type(dmu_objset_type_t ost,
769 objset_used_cb_t *cb);
770 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
771 extern void *dmu_objset_get_user(objset_t *os);

773 /*
774 * Return the txg number for the given assigned transaction.
775 */
776 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);

778 /*
779 * Synchronous write.
780 * If a parent zio is provided this function initiates a write on the
781 * provided buffer as a child of the parent zio.
782 * In the absence of a parent zio, the write is completed synchronously.
783 * At write completion, blk is filled with the bp of the written block.
784 * Note that while the data covered by this function will be on stable
785 * storage when the write completes this new data does not become a
786 * permanent part of the file until the associated transaction commits.
787 */

789 /*
790 * {zfs,zvol,ztest}_get_done() args
791 */
792 typedef struct zgd {
793 struct zilog *zgd_zilog;
794 struct blkptr *zgd_bp;
795 dmu_buf_t *zgd_db;
796 struct rl *zgd_rl;
797 void *zgd_private;
798 } zgd_t;

800 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
801 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);

803 /*
804 * Find the next hole or data block in file starting at *off
805 * Return found offset in *off. Return ESRCH for end of file.
806 */
807 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
808 uint64_t *off);

810 /*
811 * Initial setup and final teardown.
812 */
813 extern void dmu_init(void);
814 extern void dmu_fini(void);

816 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
817 uint64_t object, uint64_t offset, int len);
818 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
819 dmu_traverse_cb_t cb, void *arg);

821 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,

new/usr/src/uts/common/fs/zfs/sys/dmu.h 10

822 struct vnode *vp, offset_t *offp);

824 /* CRC64 table */
825 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
826 extern uint64_t zfs_crc64_table[256];

828 extern int zfs_mdcomp_disable;

830 #ifdef __cplusplus
831 }
832 #endif

834 #endif /* _SYS_DMU_H */

new/usr/src/uts/common/fs/zfs/sys/dmu_objset.h 1

**
 5939 Thu Oct 16 19:15:51 2014
new/usr/src/uts/common/fs/zfs/sys/dmu_objset.h
zpool import speedup
**
______unchanged_portion_omitted_

123 #define DMU_META_OBJSET 0
124 #define DMU_META_DNODE_OBJECT 0
125 #define DMU_OBJECT_IS_SPECIAL(obj) ((int64_t)(obj) <= 0)
126 #define DMU_META_DNODE(os) ((os)->os_meta_dnode.dnh_dnode)
127 #define DMU_USERUSED_DNODE(os) ((os)->os_userused_dnode.dnh_dnode)
128 #define DMU_GROUPUSED_DNODE(os) ((os)->os_groupused_dnode.dnh_dnode)

130 #define DMU_OS_IS_L2CACHEABLE(os) \
131 ((os)->os_secondary_cache == ZFS_CACHE_ALL || \
132 (os)->os_secondary_cache == ZFS_CACHE_METADATA)

134 #define DMU_OS_IS_L2COMPRESSIBLE(os) (zfs_mdcomp_disable == B_FALSE)

136 /* called from zpl */
137 int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
138 int dmu_objset_hold_nolock(const char *name, void *tag, objset_t **osp);
139 #endif /* ! codereview */
140 int dmu_objset_own(const char *name, dmu_objset_type_t type,
141 boolean_t readonly, void *tag, objset_t **osp);
142 int dmu_objset_own_nolock(const char *name, dmu_objset_type_t type,
143 boolean_t readonly, void *tag, objset_t **osp);
144 #endif /* ! codereview */
145 void dmu_objset_refresh_ownership(objset_t *os, void *tag);
146 void dmu_objset_rele(objset_t *os, void *tag);
147 void dmu_objset_disown(objset_t *os, void *tag);
148 int dmu_objset_from_ds(struct dsl_dataset *ds, objset_t **osp);

150 void dmu_objset_stats(objset_t *os, nvlist_t *nv);
151 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
152 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
153 uint64_t *usedobjsp, uint64_t *availobjsp);
154 uint64_t dmu_objset_fsid_guid(objset_t *os);
155 int dmu_objset_find_dp(struct dsl_pool *dp, uint64_t ddobj,
156 int func(struct dsl_pool *, struct dsl_dataset *, void *),
157 void *arg, int flags);
158 int dmu_objset_prefetch(const char *name, void *arg);
159 void dmu_objset_evict_dbufs(objset_t *os);
160 timestruc_t dmu_objset_snap_cmtime(objset_t *os);

162 /* called from dsl */
163 void dmu_objset_sync(objset_t *os, zio_t *zio, dmu_tx_t *tx);
164 boolean_t dmu_objset_is_dirty(objset_t *os, uint64_t txg);
165 objset_t *dmu_objset_create_impl(spa_t *spa, struct dsl_dataset *ds,
166 blkptr_t *bp, dmu_objset_type_t type, dmu_tx_t *tx);
167 int dmu_objset_open_impl(spa_t *spa, struct dsl_dataset *ds, blkptr_t *bp,
168 objset_t **osp);
169 void dmu_objset_evict(objset_t *os);
170 void dmu_objset_do_userquota_updates(objset_t *os, dmu_tx_t *tx);
171 void dmu_objset_userquota_get_ids(dnode_t *dn, boolean_t before, dmu_tx_t *tx);
172 boolean_t dmu_objset_userused_enabled(objset_t *os);
173 int dmu_objset_userspace_upgrade(objset_t *os);
174 boolean_t dmu_objset_userspace_present(objset_t *os);
175 int dmu_fsname(const char *snapname, char *buf);

177 void dmu_objset_init(void);
178 void dmu_objset_fini(void);

180 #ifdef __cplusplus
181 }

new/usr/src/uts/common/fs/zfs/sys/dmu_objset.h 2

182 #endif

184 #endif /* _SYS_DMU_OBJSET_H */

new/usr/src/uts/common/fs/zfs/sys/dsl_pool.h 1

**
 5558 Thu Oct 16 19:15:51 2014
new/usr/src/uts/common/fs/zfs/sys/dsl_pool.h
zpool import speedup
**
______unchanged_portion_omitted_

135 int dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp);
136 int dsl_pool_open(dsl_pool_t *dp);
137 void dsl_pool_close(dsl_pool_t *dp);
138 dsl_pool_t *dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg);
139 void dsl_pool_sync(dsl_pool_t *dp, uint64_t txg);
140 void dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg);
141 int dsl_pool_sync_context(dsl_pool_t *dp);
142 uint64_t dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree);
143 uint64_t dsl_pool_adjustedfree(dsl_pool_t *dp, boolean_t netfree);
144 void dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx);
145 void dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg);
146 void dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp);
147 void dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg,
148 const blkptr_t *bpp);
149 void dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx);
150 void dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx);
151 void dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx);
152 void dsl_pool_mos_diduse_space(dsl_pool_t *dp,
153 int64_t used, int64_t comp, int64_t uncomp);
154 void dsl_pool_config_enter(dsl_pool_t *dp, void *tag);
155 void dsl_pool_config_exit(dsl_pool_t *dp, void *tag);
156 boolean_t dsl_pool_config_held(dsl_pool_t *dp);
157 boolean_t dsl_pool_need_dirty_delay(dsl_pool_t *dp);

159 taskq_t *dsl_pool_vnrele_taskq(dsl_pool_t *dp);

161 int dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj,
162 const char *tag, uint64_t now, dmu_tx_t *tx);
163 int dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj,
164 const char *tag, dmu_tx_t *tx);
165 void dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp);
166 int dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **);
167 int dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp);
168 int dsl_pool_hold_lock(const char *name, void *tag, dsl_pool_t **dp, int lock);
169 #endif /* ! codereview */
170 void dsl_pool_rele(dsl_pool_t *dp, void *tag);
171 void dsl_pool_rele_spa(dsl_pool_t *dp, void *tag);
172 #endif /* ! codereview */

174 #ifdef __cplusplus
175 }
176 #endif

178 #endif /* _SYS_DSL_POOL_H */

new/usr/src/uts/common/fs/zfs/sys/spa.h 1

**
 32150 Thu Oct 16 19:15:52 2014
new/usr/src/uts/common/fs/zfs/sys/spa.h
zpool import speedup
**
______unchanged_portion_omitted_

571 /* state manipulation functions */
572 extern int spa_open(const char *pool, spa_t **, void *tag);
573 extern int spa_open_lock(const char *pool, spa_t **, void *tag, int lock);
574 #endif /* ! codereview */
575 extern int spa_open_rewind(const char *pool, spa_t **, void *tag,
576 nvlist_t *policy, nvlist_t **config);
577 extern int spa_get_stats(const char *pool, nvlist_t **config, char *altroot,
578 size_t buflen);
579 extern int spa_create(const char *pool, nvlist_t *config, nvlist_t *props,
580 nvlist_t *zplprops);
581 extern int spa_import_rootpool(char *devpath, char *devid);
582 extern int spa_import(const char *pool, nvlist_t *config, nvlist_t *props,
583 uint64_t flags);
584 extern nvlist_t *spa_tryimport(nvlist_t *tryconfig);
585 extern int spa_destroy(char *pool);
586 extern int spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
587 boolean_t hardforce);
588 extern int spa_reset(char *pool);
589 extern void spa_async_request(spa_t *spa, int flag);
590 extern void spa_async_unrequest(spa_t *spa, int flag);
591 extern void spa_async_suspend(spa_t *spa);
592 extern void spa_async_resume(spa_t *spa);
593 extern spa_t *spa_inject_addref(char *pool);
594 extern void spa_inject_delref(spa_t *spa);
595 extern void spa_scan_stat_init(spa_t *spa);
596 extern int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps);

598 #define SPA_ASYNC_CONFIG_UPDATE 0x01
599 #define SPA_ASYNC_REMOVE 0x02
600 #define SPA_ASYNC_PROBE 0x04
601 #define SPA_ASYNC_RESILVER_DONE 0x08
602 #define SPA_ASYNC_RESILVER 0x10
603 #define SPA_ASYNC_AUTOEXPAND 0x20
604 #define SPA_ASYNC_REMOVE_DONE 0x40
605 #define SPA_ASYNC_REMOVE_STOP 0x80

607 /*
608 * Controls the behavior of spa_vdev_remove().
609 */
610 #define SPA_REMOVE_UNSPARE 0x01
611 #define SPA_REMOVE_DONE 0x02

613 /* device manipulation */
614 extern int spa_vdev_add(spa_t *spa, nvlist_t *nvroot);
615 extern int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot,
616 int replacing);
617 extern int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid,
618 int replace_done);
619 extern int spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare);
620 extern boolean_t spa_vdev_remove_active(spa_t *spa);
621 extern int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath);
622 extern int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru);
623 extern int spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
624 nvlist_t *props, boolean_t exp);

626 /* spare state (which is global across all pools) */
627 extern void spa_spare_add(vdev_t *vd);
628 extern void spa_spare_remove(vdev_t *vd);
629 extern boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt);

new/usr/src/uts/common/fs/zfs/sys/spa.h 2

630 extern void spa_spare_activate(vdev_t *vd);

632 /* L2ARC state (which is global across all pools) */
633 extern void spa_l2cache_add(vdev_t *vd);
634 extern void spa_l2cache_remove(vdev_t *vd);
635 extern boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool);
636 extern void spa_l2cache_activate(vdev_t *vd);
637 extern void spa_l2cache_drop(spa_t *spa);

639 /* scanning */
640 extern int spa_scan(spa_t *spa, pool_scan_func_t func);
641 extern int spa_scan_stop(spa_t *spa);

643 /* spa syncing */
644 extern void spa_sync(spa_t *spa, uint64_t txg); /* only for DMU use */
645 extern void spa_sync_allpools(void);

647 /* spa namespace global mutex */
648 extern kmutex_t spa_namespace_lock;

650 /*
651 * SPA configuration functions in spa_config.c
652 */

654 #define SPA_CONFIG_UPDATE_POOL 0
655 #define SPA_CONFIG_UPDATE_VDEVS 1

657 extern void spa_config_sync(spa_t *, boolean_t, boolean_t);
658 extern void spa_config_load(void);
659 extern nvlist_t *spa_all_configs(uint64_t *);
660 extern void spa_config_set(spa_t *spa, nvlist_t *config);
661 extern nvlist_t *spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg,
662 int getstats);
663 extern void spa_config_update(spa_t *spa, int what);

665 /*
666 * Miscellaneous SPA routines in spa_misc.c
667 */

669 /* Namespace manipulation */
670 extern spa_t *spa_lookup(const char *name);
671 extern spa_t *spa_add(const char *name, nvlist_t *config, const char *altroot);
672 extern void spa_remove(spa_t *spa);
673 extern spa_t *spa_next(spa_t *prev);

675 /* Refcount functions */
676 extern void spa_open_ref(spa_t *spa, void *tag);
677 extern void spa_close(spa_t *spa, void *tag);
678 extern boolean_t spa_refcount_zero(spa_t *spa);

680 #define SCL_NONE 0x00
681 #define SCL_CONFIG 0x01
682 #define SCL_STATE 0x02
683 #define SCL_L2ARC 0x04 /* hack until L2ARC 2.0 */
684 #define SCL_ALLOC 0x08
685 #define SCL_ZIO 0x10
686 #define SCL_FREE 0x20
687 #define SCL_VDEV 0x40
688 #define SCL_LOCKS 7
689 #define SCL_ALL ((1 << SCL_LOCKS) - 1)
690 #define SCL_STATE_ALL (SCL_STATE | SCL_L2ARC | SCL_ZIO)

692 /* Pool configuration locks */
693 extern int spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw);
694 extern void spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw);
695 extern void spa_config_exit(spa_t *spa, int locks, void *tag);

new/usr/src/uts/common/fs/zfs/sys/spa.h 3

696 extern int spa_config_held(spa_t *spa, int locks, krw_t rw);

698 /* Pool vdev add/remove lock */
699 extern uint64_t spa_vdev_enter(spa_t *spa);
700 extern uint64_t spa_vdev_config_enter(spa_t *spa);
701 extern void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg,
702 int error, char *tag);
703 extern int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error);

705 /* Pool vdev state change lock */
706 extern void spa_vdev_state_enter(spa_t *spa, int oplock);
707 extern int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error);

709 /* Log state */
710 typedef enum spa_log_state {
711 SPA_LOG_UNKNOWN = 0, /* unknown log state */
712 SPA_LOG_MISSING, /* missing log(s) */
713 SPA_LOG_CLEAR, /* clear the log(s) */
714 SPA_LOG_GOOD, /* log(s) are good */
715 } spa_log_state_t;

717 extern spa_log_state_t spa_get_log_state(spa_t *spa);
718 extern void spa_set_log_state(spa_t *spa, spa_log_state_t state);
719 extern int spa_offline_log(spa_t *spa);

721 /* Log claim callback */
722 extern void spa_claim_notify(zio_t *zio);

724 /* Accessor functions */
725 extern boolean_t spa_shutting_down(spa_t *spa);
726 extern struct dsl_pool *spa_get_dsl(spa_t *spa);
727 extern boolean_t spa_is_initializing(spa_t *spa);
728 extern blkptr_t *spa_get_rootblkptr(spa_t *spa);
729 extern void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp);
730 extern void spa_altroot(spa_t *, char *, size_t);
731 extern int spa_sync_pass(spa_t *spa);
732 extern char *spa_name(spa_t *spa);
733 extern uint64_t spa_guid(spa_t *spa);
734 extern uint64_t spa_load_guid(spa_t *spa);
735 extern uint64_t spa_last_synced_txg(spa_t *spa);
736 extern uint64_t spa_first_txg(spa_t *spa);
737 extern uint64_t spa_syncing_txg(spa_t *spa);
738 extern uint64_t spa_version(spa_t *spa);
739 extern pool_state_t spa_state(spa_t *spa);
740 extern spa_load_state_t spa_load_state(spa_t *spa);
741 extern uint64_t spa_freeze_txg(spa_t *spa);
742 extern uint64_t spa_get_asize(spa_t *spa, uint64_t lsize);
743 extern uint64_t spa_get_dspace(spa_t *spa);
744 extern void spa_update_dspace(spa_t *spa);
745 extern uint64_t spa_version(spa_t *spa);
746 extern boolean_t spa_deflate(spa_t *spa);
747 extern metaslab_class_t *spa_normal_class(spa_t *spa);
748 extern metaslab_class_t *spa_log_class(spa_t *spa);
749 extern int spa_max_replication(spa_t *spa);
750 extern int spa_prev_software_version(spa_t *spa);
751 extern int spa_busy(void);
752 extern uint8_t spa_get_failmode(spa_t *spa);
753 extern boolean_t spa_suspended(spa_t *spa);
754 extern uint64_t spa_bootfs(spa_t *spa);
755 extern uint64_t spa_delegation(spa_t *spa);
756 extern objset_t *spa_meta_objset(spa_t *spa);
757 extern uint64_t spa_deadman_synctime(spa_t *spa);

759 /* Miscellaneous support routines */
760 extern void spa_activate_mos_feature(spa_t *spa, const char *feature,
761 dmu_tx_t *tx);

new/usr/src/uts/common/fs/zfs/sys/spa.h 4

762 extern void spa_deactivate_mos_feature(spa_t *spa, const char *feature);
763 extern int spa_rename(const char *oldname, const char *newname);
764 extern spa_t *spa_by_guid(uint64_t pool_guid, uint64_t device_guid);
765 extern boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid);
766 extern char *spa_strdup(const char *);
767 extern void spa_strfree(char *);
768 extern uint64_t spa_get_random(uint64_t range);
769 extern uint64_t spa_generate_guid(spa_t *spa);
770 extern void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp);
771 extern void spa_freeze(spa_t *spa);
772 extern int spa_change_guid(spa_t *spa);
773 extern void spa_upgrade(spa_t *spa, uint64_t version);
774 extern void spa_evict_all(void);
775 extern vdev_t *spa_lookup_by_guid(spa_t *spa, uint64_t guid,
776 boolean_t l2cache);
777 extern boolean_t spa_has_spare(spa_t *, uint64_t guid);
778 extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva);
779 extern uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp);
780 extern uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp);
781 extern boolean_t spa_has_slogs(spa_t *spa);
782 extern boolean_t spa_is_root(spa_t *spa);
783 extern boolean_t spa_writeable(spa_t *spa);

785 extern int spa_mode(spa_t *spa);
786 extern uint64_t strtonum(const char *str, char **nptr);

788 extern char *spa_his_ievent_table[];

790 extern void spa_history_create_obj(spa_t *spa, dmu_tx_t *tx);
791 extern int spa_history_get(spa_t *spa, uint64_t *offset, uint64_t *len_read,
792 char *his_buf);
793 extern int spa_history_log(spa_t *spa, const char *his_buf);
794 extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl);
795 extern void spa_history_log_version(spa_t *spa, const char *operation);
796 extern void spa_history_log_internal(spa_t *spa, const char *operation,
797 dmu_tx_t *tx, const char *fmt, ...);
798 extern void spa_history_log_internal_ds(struct dsl_dataset *ds, const char *op,
799 dmu_tx_t *tx, const char *fmt, ...);
800 extern void spa_history_log_internal_dd(dsl_dir_t *dd, const char *operation,
801 dmu_tx_t *tx, const char *fmt, ...);

803 /* error handling */
804 struct zbookmark;
805 extern void spa_log_error(spa_t *spa, zio_t *zio);
806 extern void zfs_ereport_post(const char *class, spa_t *spa, vdev_t *vd,
807 zio_t *zio, uint64_t stateoroffset, uint64_t length);
808 extern void zfs_post_remove(spa_t *spa, vdev_t *vd);
809 extern void zfs_post_state_change(spa_t *spa, vdev_t *vd);
810 extern void zfs_post_autoreplace(spa_t *spa, vdev_t *vd);
811 extern uint64_t spa_get_errlog_size(spa_t *spa);
812 extern int spa_get_errlog(spa_t *spa, void *uaddr, size_t *count);
813 extern void spa_errlog_rotate(spa_t *spa);
814 extern void spa_errlog_drain(spa_t *spa);
815 extern void spa_errlog_sync(spa_t *spa, uint64_t txg);
816 extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub);

818 /* vdev cache */
819 extern void vdev_cache_stat_init(void);
820 extern void vdev_cache_stat_fini(void);

822 /* Initialization and termination */
823 extern void spa_init(int flags);
824 extern void spa_fini(void);
825 extern void spa_boot_init();

827 /* properties */

new/usr/src/uts/common/fs/zfs/sys/spa.h 5

828 extern int spa_prop_set(spa_t *spa, nvlist_t *nvp);
829 extern int spa_prop_get(spa_t *spa, nvlist_t **nvp);
830 extern void spa_prop_clear_bootfs(spa_t *spa, uint64_t obj, dmu_tx_t *tx);
831 extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t);

833 /* asynchronous event notification */
834 extern void spa_event_notify(spa_t *spa, vdev_t *vdev, const char *name);

836 #ifdef ZFS_DEBUG
837 #define dprintf_bp(bp, fmt, ...) do { \
838 if (zfs_flags & ZFS_DEBUG_DPRINTF) { \
839 char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP); \
840 snprintf_blkptr(__blkbuf, BP_SPRINTF_LEN, (bp)); \
841 dprintf(fmt " %s\n", __VA_ARGS__, __blkbuf); \
842 kmem_free(__blkbuf, BP_SPRINTF_LEN); \
843 } \
844 _NOTE(CONSTCOND) } while (0)
845 #else
846 #define dprintf_bp(bp, fmt, ...)
847 #endif

849 extern boolean_t spa_debug_enabled(spa_t *spa);
850 #define spa_dbgmsg(spa, ...) \
851 { \
852 if (spa_debug_enabled(spa)) \
853 zfs_dbgmsg(__VA_ARGS__); \
854 }

856 extern int spa_mode_global; /* mode, e.g. FREAD | FWRITE */

858 #ifdef __cplusplus
859 }
860 #endif

862 #endif /* _SYS_SPA_H */

new/usr/src/uts/common/fs/zfs/sys/vdev.h 1

**
 5825 Thu Oct 16 19:15:52 2014
new/usr/src/uts/common/fs/zfs/sys/vdev.h
zpool import speedup
**
______unchanged_portion_omitted_

48 extern boolean_t zfs_nocacheflush;

50 extern int vdev_open(vdev_t *);
51 extern void vdev_open_children(vdev_t *);
52 extern boolean_t vdev_uses_zvols(vdev_t *);
53 extern int vdev_validate(vdev_t *, boolean_t);
54 extern void vdev_close(vdev_t *);
55 extern int vdev_create(vdev_t *, uint64_t txg, boolean_t isreplace);
56 extern void vdev_reopen(vdev_t *);
57 extern int vdev_validate_aux(vdev_t *vd);
58 extern zio_t *vdev_probe(vdev_t *vd, zio_t *pio);

60 extern boolean_t vdev_is_bootable(vdev_t *vd);
61 extern vdev_t *vdev_lookup_top(spa_t *spa, uint64_t vdev);
62 extern vdev_t *vdev_lookup_by_guid(vdev_t *vd, uint64_t guid);
63 extern int vdev_count_leaves(spa_t *spa);
64 #endif /* ! codereview */
65 extern void vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t d,
66 uint64_t txg, uint64_t size);
67 extern boolean_t vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t d,
68 uint64_t txg, uint64_t size);
69 extern boolean_t vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t d);
70 extern void vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
71 int scrub_done);
72 extern boolean_t vdev_dtl_required(vdev_t *vd);
73 extern boolean_t vdev_resilver_needed(vdev_t *vd,
74 uint64_t *minp, uint64_t *maxp);

76 extern void vdev_hold(vdev_t *);
77 extern void vdev_rele(vdev_t *);

79 extern int vdev_metaslab_init(vdev_t *vd, uint64_t txg);
80 extern void vdev_metaslab_fini(vdev_t *vd);
81 extern void vdev_metaslab_set_size(vdev_t *);
82 extern void vdev_expand(vdev_t *vd, uint64_t txg);
83 extern void vdev_split(vdev_t *vd);
84 extern void vdev_deadman(vdev_t *vd);

87 extern void vdev_get_stats(vdev_t *vd, vdev_stat_t *vs);
88 extern void vdev_clear_stats(vdev_t *vd);
89 extern void vdev_stat_update(zio_t *zio, uint64_t psize);
90 extern void vdev_scan_stat_init(vdev_t *vd);
91 extern void vdev_propagate_state(vdev_t *vd);
92 extern void vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state,
93 vdev_aux_t aux);

95 extern void vdev_space_update(vdev_t *vd,
96 int64_t alloc_delta, int64_t defer_delta, int64_t space_delta);

98 extern uint64_t vdev_psize_to_asize(vdev_t *vd, uint64_t psize);

100 extern int vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux);
101 extern int vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux);
102 extern int vdev_online(spa_t *spa, uint64_t guid, uint64_t flags,
103 vdev_state_t *);
104 extern int vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags);
105 extern void vdev_clear(spa_t *spa, vdev_t *vd);

new/usr/src/uts/common/fs/zfs/sys/vdev.h 2

107 extern boolean_t vdev_is_dead(vdev_t *vd);
108 extern boolean_t vdev_readable(vdev_t *vd);
109 extern boolean_t vdev_writeable(vdev_t *vd);
110 extern boolean_t vdev_allocatable(vdev_t *vd);
111 extern boolean_t vdev_accessible(vdev_t *vd, zio_t *zio);

113 extern void vdev_cache_init(vdev_t *vd);
114 extern void vdev_cache_fini(vdev_t *vd);
115 extern boolean_t vdev_cache_read(zio_t *zio);
116 extern void vdev_cache_write(zio_t *zio);
117 extern void vdev_cache_purge(vdev_t *vd);

119 extern void vdev_queue_init(vdev_t *vd);
120 extern void vdev_queue_fini(vdev_t *vd);
121 extern zio_t *vdev_queue_io(zio_t *zio);
122 extern void vdev_queue_io_done(zio_t *zio);

124 extern void vdev_config_dirty(vdev_t *vd);
125 extern void vdev_config_clean(vdev_t *vd);
126 extern int vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg,
127 boolean_t);

129 extern void vdev_state_dirty(vdev_t *vd);
130 extern void vdev_state_clean(vdev_t *vd);

132 typedef enum vdev_config_flag {
133 VDEV_CONFIG_SPARE = 1 << 0,
134 VDEV_CONFIG_L2CACHE = 1 << 1,
135 VDEV_CONFIG_REMOVING = 1 << 2
136 } vdev_config_flag_t;

138 extern void vdev_top_config_generate(spa_t *spa, nvlist_t *config);
139 extern nvlist_t *vdev_config_generate(spa_t *spa, vdev_t *vd,
140 boolean_t getstats, vdev_config_flag_t flags);

142 /*
143 * Label routines
144 */
145 struct uberblock;
146 extern uint64_t vdev_label_offset(uint64_t psize, int l, uint64_t offset);
147 extern int vdev_label_number(uint64_t psise, uint64_t offset);
148 extern nvlist_t *vdev_label_read_config(vdev_t *vd, uint64_t txg);
149 extern void vdev_uberblock_load(vdev_t *, struct uberblock *, nvlist_t **);

151 typedef enum {
152 VDEV_LABEL_CREATE, /* create/add a new device */
153 VDEV_LABEL_REPLACE, /* replace an existing device */
154 VDEV_LABEL_SPARE, /* add a new hot spare */
155 VDEV_LABEL_REMOVE, /* remove an existing device */
156 VDEV_LABEL_L2CACHE, /* add an L2ARC cache device */
157 VDEV_LABEL_SPLIT /* generating new label for split-off dev */
158 } vdev_labeltype_t;

160 extern int vdev_label_init(vdev_t *vd, uint64_t txg, vdev_labeltype_t reason);

162 #ifdef __cplusplus
163 }
164 #endif

166 #endif /* _SYS_VDEV_H */

new/usr/src/uts/common/fs/zfs/vdev.c 1

**
 89413 Thu Oct 16 19:15:52 2014
new/usr/src/uts/common/fs/zfs/vdev.c
zpool import speedup
**
______unchanged_portion_omitted_

175 int
176 vdev_count_leaves_impl(vdev_t *vd)
177 {
178 vdev_t *mvd;
179 int n = 0;

181 if (vd->vdev_children == 0)
182 return (1);

184 for (int c = 0; c < vd->vdev_children; c++)
185 n += vdev_count_leaves_impl(vd->vdev_child[c]);

187 return (n);
188 }

190 int
191 vdev_count_leaves(spa_t *spa)
192 {
193 return (vdev_count_leaves_impl(spa->spa_root_vdev));
194 }

196 #endif /* ! codereview */
197 void
198 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
199 {
200 size_t oldsize, newsize;
201 uint64_t id = cvd->vdev_id;
202 vdev_t **newchild;

204 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
205 ASSERT(cvd->vdev_parent == NULL);

207 cvd->vdev_parent = pvd;

209 if (pvd == NULL)
210 return;

212 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);

214 oldsize = pvd->vdev_children * sizeof (vdev_t *);
215 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
216 newsize = pvd->vdev_children * sizeof (vdev_t *);

218 newchild = kmem_zalloc(newsize, KM_SLEEP);
219 if (pvd->vdev_child != NULL) {
220 bcopy(pvd->vdev_child, newchild, oldsize);
221 kmem_free(pvd->vdev_child, oldsize);
222 }

224 pvd->vdev_child = newchild;
225 pvd->vdev_child[id] = cvd;

227 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
228 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);

230 /*
231 * Walk up all ancestors to update guid sum.
232 */
233 for (; pvd != NULL; pvd = pvd->vdev_parent)

new/usr/src/uts/common/fs/zfs/vdev.c 2

234 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
235 }

237 void
238 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
239 {
240 int c;
241 uint_t id = cvd->vdev_id;

243 ASSERT(cvd->vdev_parent == pvd);

245 if (pvd == NULL)
246 return;

248 ASSERT(id < pvd->vdev_children);
249 ASSERT(pvd->vdev_child[id] == cvd);

251 pvd->vdev_child[id] = NULL;
252 cvd->vdev_parent = NULL;

254 for (c = 0; c < pvd->vdev_children; c++)
255 if (pvd->vdev_child[c])
256 break;

258 if (c == pvd->vdev_children) {
259 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
260 pvd->vdev_child = NULL;
261 pvd->vdev_children = 0;
262 }

264 /*
265 * Walk up all ancestors to update guid sum.
266 */
267 for (; pvd != NULL; pvd = pvd->vdev_parent)
268 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
269 }

271 /*
272 * Remove any holes in the child array.
273 */
274 void
275 vdev_compact_children(vdev_t *pvd)
276 {
277 vdev_t **newchild, *cvd;
278 int oldc = pvd->vdev_children;
279 int newc;

281 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);

283 for (int c = newc = 0; c < oldc; c++)
284 if (pvd->vdev_child[c])
285 newc++;

287 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);

289 for (int c = newc = 0; c < oldc; c++) {
290 if ((cvd = pvd->vdev_child[c]) != NULL) {
291 newchild[newc] = cvd;
292 cvd->vdev_id = newc++;
293 }
294 }

296 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
297 pvd->vdev_child = newchild;
298 pvd->vdev_children = newc;
299 }

new/usr/src/uts/common/fs/zfs/vdev.c 3

301 /*
302 * Allocate and minimally initialize a vdev_t.
303 */
304 vdev_t *
305 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
306 {
307 vdev_t *vd;

309 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);

311 if (spa->spa_root_vdev == NULL) {
312 ASSERT(ops == &vdev_root_ops);
313 spa->spa_root_vdev = vd;
314 spa->spa_load_guid = spa_generate_guid(NULL);
315 }

317 if (guid == 0 && ops != &vdev_hole_ops) {
318 if (spa->spa_root_vdev == vd) {
319 /*
320 * The root vdev’s guid will also be the pool guid,
321 * which must be unique among all pools.
322 */
323 guid = spa_generate_guid(NULL);
324 } else {
325 /*
326 * Any other vdev’s guid must be unique within the pool.
327 */
328 guid = spa_generate_guid(spa);
329 }
330 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
331 }

333 vd->vdev_spa = spa;
334 vd->vdev_id = id;
335 vd->vdev_guid = guid;
336 vd->vdev_guid_sum = guid;
337 vd->vdev_ops = ops;
338 vd->vdev_state = VDEV_STATE_CLOSED;
339 vd->vdev_ishole = (ops == &vdev_hole_ops);

341 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
342 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
343 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
344 for (int t = 0; t < DTL_TYPES; t++) {
345 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
346 &vd->vdev_dtl_lock);
347 }
348 txg_list_create(&vd->vdev_ms_list,
349 offsetof(struct metaslab, ms_txg_node));
350 txg_list_create(&vd->vdev_dtl_list,
351 offsetof(struct vdev, vdev_dtl_node));
352 vd->vdev_stat.vs_timestamp = gethrtime();
353 vdev_queue_init(vd);
354 vdev_cache_init(vd);

356 return (vd);
357 }

359 /*
360 * Allocate a new vdev. The ’alloctype’ is used to control whether we are
361 * creating a new vdev or loading an existing one - the behavior is slightly
362 * different for each case.
363 */
364 int
365 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,

new/usr/src/uts/common/fs/zfs/vdev.c 4

366 int alloctype)
367 {
368 vdev_ops_t *ops;
369 char *type;
370 uint64_t guid = 0, islog, nparity;
371 vdev_t *vd;

373 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);

375 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
376 return (SET_ERROR(EINVAL));

378 if ((ops = vdev_getops(type)) == NULL)
379 return (SET_ERROR(EINVAL));

381 /*
382 * If this is a load, get the vdev guid from the nvlist.
383 * Otherwise, vdev_alloc_common() will generate one for us.
384 */
385 if (alloctype == VDEV_ALLOC_LOAD) {
386 uint64_t label_id;

388 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
389 label_id != id)
390 return (SET_ERROR(EINVAL));

392 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
393 return (SET_ERROR(EINVAL));
394 } else if (alloctype == VDEV_ALLOC_SPARE) {
395 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
396 return (SET_ERROR(EINVAL));
397 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
398 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
399 return (SET_ERROR(EINVAL));
400 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
401 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
402 return (SET_ERROR(EINVAL));
403 }

405 /*
406 * The first allocated vdev must be of type ’root’.
407 */
408 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
409 return (SET_ERROR(EINVAL));

411 /*
412 * Determine whether we’re a log vdev.
413 */
414 islog = 0;
415 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
416 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
417 return (SET_ERROR(ENOTSUP));

419 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
420 return (SET_ERROR(ENOTSUP));

422 /*
423 * Set the nparity property for RAID-Z vdevs.
424 */
425 nparity = -1ULL;
426 if (ops == &vdev_raidz_ops) {
427 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
428 &nparity) == 0) {
429 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
430 return (SET_ERROR(EINVAL));
431 /*

new/usr/src/uts/common/fs/zfs/vdev.c 5

432 * Previous versions could only support 1 or 2 parity
433 * device.
434 */
435 if (nparity > 1 &&
436 spa_version(spa) < SPA_VERSION_RAIDZ2)
437 return (SET_ERROR(ENOTSUP));
438 if (nparity > 2 &&
439 spa_version(spa) < SPA_VERSION_RAIDZ3)
440 return (SET_ERROR(ENOTSUP));
441 } else {
442 /*
443 * We require the parity to be specified for SPAs that
444 * support multiple parity levels.
445 */
446 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
447 return (SET_ERROR(EINVAL));
448 /*
449 * Otherwise, we default to 1 parity device for RAID-Z.
450 */
451 nparity = 1;
452 }
453 } else {
454 nparity = 0;
455 }
456 ASSERT(nparity != -1ULL);

458 vd = vdev_alloc_common(spa, id, guid, ops);

460 vd->vdev_islog = islog;
461 vd->vdev_nparity = nparity;

463 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
464 vd->vdev_path = spa_strdup(vd->vdev_path);
465 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
466 vd->vdev_devid = spa_strdup(vd->vdev_devid);
467 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
468 &vd->vdev_physpath) == 0)
469 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
470 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
471 vd->vdev_fru = spa_strdup(vd->vdev_fru);

473 /*
474 * Set the whole_disk property. If it’s not specified, leave the value
475 * as -1.
476 */
477 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
478 &vd->vdev_wholedisk) != 0)
479 vd->vdev_wholedisk = -1ULL;

481 /*
482 * Look for the ’not present’ flag. This will only be set if the device
483 * was not present at the time of import.
484 */
485 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
486 &vd->vdev_not_present);

488 /*
489 * Get the alignment requirement.
490 */
491 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);

493 /*
494 * Retrieve the vdev creation time.
495 */
496 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
497 &vd->vdev_crtxg);

new/usr/src/uts/common/fs/zfs/vdev.c 6

499 /*
500 * If we’re a top-level vdev, try to load the allocation parameters.
501 */
502 if (parent && !parent->vdev_parent &&
503 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
504 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
505 &vd->vdev_ms_array);
506 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
507 &vd->vdev_ms_shift);
508 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
509 &vd->vdev_asize);
510 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
511 &vd->vdev_removing);
512 }

514 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
515 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
516 alloctype == VDEV_ALLOC_ADD ||
517 alloctype == VDEV_ALLOC_SPLIT ||
518 alloctype == VDEV_ALLOC_ROOTPOOL);
519 vd->vdev_mg = metaslab_group_create(islog ?
520 spa_log_class(spa) : spa_normal_class(spa), vd);
521 }

523 /*
524 * If we’re a leaf vdev, try to load the DTL object and other state.
525 */
526 if (vd->vdev_ops->vdev_op_leaf &&
527 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
528 alloctype == VDEV_ALLOC_ROOTPOOL)) {
529 if (alloctype == VDEV_ALLOC_LOAD) {
530 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
531 &vd->vdev_dtl_object);
532 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
533 &vd->vdev_unspare);
534 }

536 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
537 uint64_t spare = 0;

539 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
540 &spare) == 0 && spare)
541 spa_spare_add(vd);
542 }

544 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
545 &vd->vdev_offline);

547 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
548 &vd->vdev_resilver_txg);

550 /*
551 * When importing a pool, we want to ignore the persistent fault
552 * state, as the diagnosis made on another system may not be
553 * valid in the current context. Local vdevs will
554 * remain in the faulted state.
555 */
556 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
557 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
558 &vd->vdev_faulted);
559 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
560 &vd->vdev_degraded);
561 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
562 &vd->vdev_removed);

new/usr/src/uts/common/fs/zfs/vdev.c 7

564 if (vd->vdev_faulted || vd->vdev_degraded) {
565 char *aux;

567 vd->vdev_label_aux =
568 VDEV_AUX_ERR_EXCEEDED;
569 if (nvlist_lookup_string(nv,
570 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
571 strcmp(aux, "external") == 0)
572 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
573 }
574 }
575 }

577 /*
578 * Add ourselves to the parent’s list of children.
579 */
580 vdev_add_child(parent, vd);

582 *vdp = vd;

584 return (0);
585 }

587 void
588 vdev_free(vdev_t *vd)
589 {
590 spa_t *spa = vd->vdev_spa;

592 /*
593 * vdev_free() implies closing the vdev first. This is simpler than
594 * trying to ensure complicated semantics for all callers.
595 */
596 vdev_close(vd);

598 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
599 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));

601 /*
602 * Free all children.
603 */
604 for (int c = 0; c < vd->vdev_children; c++)
605 vdev_free(vd->vdev_child[c]);

607 ASSERT(vd->vdev_child == NULL);
608 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);

610 /*
611 * Discard allocation state.
612 */
613 if (vd->vdev_mg != NULL) {
614 vdev_metaslab_fini(vd);
615 metaslab_group_destroy(vd->vdev_mg);
616 }

618 ASSERT0(vd->vdev_stat.vs_space);
619 ASSERT0(vd->vdev_stat.vs_dspace);
620 ASSERT0(vd->vdev_stat.vs_alloc);

622 /*
623 * Remove this vdev from its parent’s child list.
624 */
625 vdev_remove_child(vd->vdev_parent, vd);

627 ASSERT(vd->vdev_parent == NULL);

629 /*

new/usr/src/uts/common/fs/zfs/vdev.c 8

630 * Clean up vdev structure.
631 */
632 vdev_queue_fini(vd);
633 vdev_cache_fini(vd);

635 if (vd->vdev_path)
636 spa_strfree(vd->vdev_path);
637 if (vd->vdev_devid)
638 spa_strfree(vd->vdev_devid);
639 if (vd->vdev_physpath)
640 spa_strfree(vd->vdev_physpath);
641 if (vd->vdev_fru)
642 spa_strfree(vd->vdev_fru);

644 if (vd->vdev_isspare)
645 spa_spare_remove(vd);
646 if (vd->vdev_isl2cache)
647 spa_l2cache_remove(vd);

649 txg_list_destroy(&vd->vdev_ms_list);
650 txg_list_destroy(&vd->vdev_dtl_list);

652 mutex_enter(&vd->vdev_dtl_lock);
653 space_map_close(vd->vdev_dtl_sm);
654 for (int t = 0; t < DTL_TYPES; t++) {
655 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
656 range_tree_destroy(vd->vdev_dtl[t]);
657 }
658 mutex_exit(&vd->vdev_dtl_lock);

660 mutex_destroy(&vd->vdev_dtl_lock);
661 mutex_destroy(&vd->vdev_stat_lock);
662 mutex_destroy(&vd->vdev_probe_lock);

664 if (vd == spa->spa_root_vdev)
665 spa->spa_root_vdev = NULL;

667 kmem_free(vd, sizeof (vdev_t));
668 }

670 /*
671 * Transfer top-level vdev state from svd to tvd.
672 */
673 static void
674 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
675 {
676 spa_t *spa = svd->vdev_spa;
677 metaslab_t *msp;
678 vdev_t *vd;
679 int t;

681 ASSERT(tvd == tvd->vdev_top);

683 tvd->vdev_ms_array = svd->vdev_ms_array;
684 tvd->vdev_ms_shift = svd->vdev_ms_shift;
685 tvd->vdev_ms_count = svd->vdev_ms_count;

687 svd->vdev_ms_array = 0;
688 svd->vdev_ms_shift = 0;
689 svd->vdev_ms_count = 0;

691 if (tvd->vdev_mg)
692 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
693 tvd->vdev_mg = svd->vdev_mg;
694 tvd->vdev_ms = svd->vdev_ms;

new/usr/src/uts/common/fs/zfs/vdev.c 9

696 svd->vdev_mg = NULL;
697 svd->vdev_ms = NULL;

699 if (tvd->vdev_mg != NULL)
700 tvd->vdev_mg->mg_vd = tvd;

702 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
703 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
704 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;

706 svd->vdev_stat.vs_alloc = 0;
707 svd->vdev_stat.vs_space = 0;
708 svd->vdev_stat.vs_dspace = 0;

710 for (t = 0; t < TXG_SIZE; t++) {
711 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
712 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
713 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
714 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
715 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
716 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
717 }

719 if (list_link_active(&svd->vdev_config_dirty_node)) {
720 vdev_config_clean(svd);
721 vdev_config_dirty(tvd);
722 }

724 if (list_link_active(&svd->vdev_state_dirty_node)) {
725 vdev_state_clean(svd);
726 vdev_state_dirty(tvd);
727 }

729 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
730 svd->vdev_deflate_ratio = 0;

732 tvd->vdev_islog = svd->vdev_islog;
733 svd->vdev_islog = 0;
734 }

736 static void
737 vdev_top_update(vdev_t *tvd, vdev_t *vd)
738 {
739 if (vd == NULL)
740 return;

742 vd->vdev_top = tvd;

744 for (int c = 0; c < vd->vdev_children; c++)
745 vdev_top_update(tvd, vd->vdev_child[c]);
746 }

748 /*
749 * Add a mirror/replacing vdev above an existing vdev.
750 */
751 vdev_t *
752 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
753 {
754 spa_t *spa = cvd->vdev_spa;
755 vdev_t *pvd = cvd->vdev_parent;
756 vdev_t *mvd;

758 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);

760 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);

new/usr/src/uts/common/fs/zfs/vdev.c 10

762 mvd->vdev_asize = cvd->vdev_asize;
763 mvd->vdev_min_asize = cvd->vdev_min_asize;
764 mvd->vdev_max_asize = cvd->vdev_max_asize;
765 mvd->vdev_ashift = cvd->vdev_ashift;
766 mvd->vdev_state = cvd->vdev_state;
767 mvd->vdev_crtxg = cvd->vdev_crtxg;

769 vdev_remove_child(pvd, cvd);
770 vdev_add_child(pvd, mvd);
771 cvd->vdev_id = mvd->vdev_children;
772 vdev_add_child(mvd, cvd);
773 vdev_top_update(cvd->vdev_top, cvd->vdev_top);

775 if (mvd == mvd->vdev_top)
776 vdev_top_transfer(cvd, mvd);

778 return (mvd);
779 }

781 /*
782 * Remove a 1-way mirror/replacing vdev from the tree.
783 */
784 void
785 vdev_remove_parent(vdev_t *cvd)
786 {
787 vdev_t *mvd = cvd->vdev_parent;
788 vdev_t *pvd = mvd->vdev_parent;

790 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);

792 ASSERT(mvd->vdev_children == 1);
793 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
794 mvd->vdev_ops == &vdev_replacing_ops ||
795 mvd->vdev_ops == &vdev_spare_ops);
796 cvd->vdev_ashift = mvd->vdev_ashift;

798 vdev_remove_child(mvd, cvd);
799 vdev_remove_child(pvd, mvd);

801 /*
802 * If cvd will replace mvd as a top-level vdev, preserve mvd’s guid.
803 * Otherwise, we could have detached an offline device, and when we
804 * go to import the pool we’ll think we have two top-level vdevs,
805 * instead of a different version of the same top-level vdev.
806 */
807 if (mvd->vdev_top == mvd) {
808 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
809 cvd->vdev_orig_guid = cvd->vdev_guid;
810 cvd->vdev_guid += guid_delta;
811 cvd->vdev_guid_sum += guid_delta;
812 }
813 cvd->vdev_id = mvd->vdev_id;
814 vdev_add_child(pvd, cvd);
815 vdev_top_update(cvd->vdev_top, cvd->vdev_top);

817 if (cvd == cvd->vdev_top)
818 vdev_top_transfer(mvd, cvd);

820 ASSERT(mvd->vdev_children == 0);
821 vdev_free(mvd);
822 }

824 int
825 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
826 {
827 spa_t *spa = vd->vdev_spa;

new/usr/src/uts/common/fs/zfs/vdev.c 11

828 objset_t *mos = spa->spa_meta_objset;
829 uint64_t m;
830 uint64_t oldc = vd->vdev_ms_count;
831 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
832 metaslab_t **mspp;
833 int error;

835 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));

837 /*
838 * This vdev is not being allocated from yet or is a hole.
839 */
840 if (vd->vdev_ms_shift == 0)
841 return (0);

843 ASSERT(!vd->vdev_ishole);

845 /*
846 * Compute the raidz-deflation ratio. Note, we hard-code
847 * in 128k (1 << 17) because it is the current "typical" blocksize.
848 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
849 * or we will inconsistently account for existing bp’s.
850 */
851 vd->vdev_deflate_ratio = (1 << 17) /
852 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);

854 ASSERT(oldc <= newc);

856 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);

858 if (oldc != 0) {
859 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
860 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
861 }

863 vd->vdev_ms = mspp;
864 vd->vdev_ms_count = newc;

866 for (m = oldc; m < newc; m++) {
867 uint64_t object = 0;

869 if (txg == 0) {
870 error = dmu_read(mos, vd->vdev_ms_array,
871 m * sizeof (uint64_t), sizeof (uint64_t), &object,
872 DMU_READ_PREFETCH);
873 if (error)
874 return (error);
875 }
876 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, m, object, txg);
877 }

879 if (txg == 0)
880 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);

882 /*
883 * If the vdev is being removed we don’t activate
884 * the metaslabs since we want to ensure that no new
885 * allocations are performed on this device.
886 */
887 if (oldc == 0 && !vd->vdev_removing)
888 metaslab_group_activate(vd->vdev_mg);

890 if (txg == 0)
891 spa_config_exit(spa, SCL_ALLOC, FTAG);

893 return (0);

new/usr/src/uts/common/fs/zfs/vdev.c 12

894 }

896 void
897 vdev_metaslab_fini(vdev_t *vd)
898 {
899 uint64_t m;
900 uint64_t count = vd->vdev_ms_count;

902 if (vd->vdev_ms != NULL) {
903 metaslab_group_passivate(vd->vdev_mg);
904 for (m = 0; m < count; m++) {
905 metaslab_t *msp = vd->vdev_ms[m];

907 if (msp != NULL)
908 metaslab_fini(msp);
909 }
910 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
911 vd->vdev_ms = NULL;
912 }
913 }

915 typedef struct vdev_probe_stats {
916 boolean_t vps_readable;
917 boolean_t vps_writeable;
918 int vps_flags;
919 } vdev_probe_stats_t;

921 static void
922 vdev_probe_done(zio_t *zio)
923 {
924 spa_t *spa = zio->io_spa;
925 vdev_t *vd = zio->io_vd;
926 vdev_probe_stats_t *vps = zio->io_private;

928 ASSERT(vd->vdev_probe_zio != NULL);

930 if (zio->io_type == ZIO_TYPE_READ) {
931 if (zio->io_error == 0)
932 vps->vps_readable = 1;
933 if (zio->io_error == 0 && spa_writeable(spa)) {
934 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
935 zio->io_offset, zio->io_size, zio->io_data,
936 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
937 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
938 } else {
939 zio_buf_free(zio->io_data, zio->io_size);
940 }
941 } else if (zio->io_type == ZIO_TYPE_WRITE) {
942 if (zio->io_error == 0)
943 vps->vps_writeable = 1;
944 zio_buf_free(zio->io_data, zio->io_size);
945 } else if (zio->io_type == ZIO_TYPE_NULL) {
946 zio_t *pio;

948 vd->vdev_cant_read |= !vps->vps_readable;
949 vd->vdev_cant_write |= !vps->vps_writeable;

951 if (vdev_readable(vd) &&
952 (vdev_writeable(vd) || !spa_writeable(spa))) {
953 zio->io_error = 0;
954 } else {
955 ASSERT(zio->io_error != 0);
956 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
957 spa, vd, NULL, 0, 0);
958 zio->io_error = SET_ERROR(ENXIO);
959 }

new/usr/src/uts/common/fs/zfs/vdev.c 13

961 mutex_enter(&vd->vdev_probe_lock);
962 ASSERT(vd->vdev_probe_zio == zio);
963 vd->vdev_probe_zio = NULL;
964 mutex_exit(&vd->vdev_probe_lock);

966 while ((pio = zio_walk_parents(zio)) != NULL)
967 if (!vdev_accessible(vd, pio))
968 pio->io_error = SET_ERROR(ENXIO);

970 kmem_free(vps, sizeof (*vps));
971 }
972 }

974 /*
975 * Determine whether this device is accessible.
976 *
977 * Read and write to several known locations: the pad regions of each
978 * vdev label but the first, which we leave alone in case it contains
979 * a VTOC.
980 */
981 zio_t *
982 vdev_probe(vdev_t *vd, zio_t *zio)
983 {
984 spa_t *spa = vd->vdev_spa;
985 vdev_probe_stats_t *vps = NULL;
986 zio_t *pio;

988 ASSERT(vd->vdev_ops->vdev_op_leaf);

990 /*
991 * Don’t probe the probe.
992 */
993 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
994 return (NULL);

996 /*
997 * To prevent ’probe storms’ when a device fails, we create
998 * just one probe i/o at a time. All zios that want to probe
999 * this vdev will become parents of the probe io.
1000 */
1001 mutex_enter(&vd->vdev_probe_lock);

1003 if ((pio = vd->vdev_probe_zio) == NULL) {
1004 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);

1006 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1007 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1008 ZIO_FLAG_TRYHARD;

1010 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1011 /*
1012 * vdev_cant_read and vdev_cant_write can only
1013 * transition from TRUE to FALSE when we have the
1014 * SCL_ZIO lock as writer; otherwise they can only
1015 * transition from FALSE to TRUE. This ensures that
1016 * any zio looking at these values can assume that
1017 * failures persist for the life of the I/O. That’s
1018 * important because when a device has intermittent
1019 * connectivity problems, we want to ensure that
1020 * they’re ascribed to the device (ENXIO) and not
1021 * the zio (EIO).
1022 *
1023 * Since we hold SCL_ZIO as writer here, clear both
1024 * values so the probe can reevaluate from first
1025 * principles.

new/usr/src/uts/common/fs/zfs/vdev.c 14

1026 */
1027 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1028 vd->vdev_cant_read = B_FALSE;
1029 vd->vdev_cant_write = B_FALSE;
1030 }

1032 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1033 vdev_probe_done, vps,
1034 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);

1036 /*
1037 * We can’t change the vdev state in this context, so we
1038 * kick off an async task to do it on our behalf.
1039 */
1040 if (zio != NULL) {
1041 vd->vdev_probe_wanted = B_TRUE;
1042 spa_async_request(spa, SPA_ASYNC_PROBE);
1043 }
1044 }

1046 if (zio != NULL)
1047 zio_add_child(zio, pio);

1049 mutex_exit(&vd->vdev_probe_lock);

1051 if (vps == NULL) {
1052 ASSERT(zio != NULL);
1053 return (NULL);
1054 }

1056 for (int l = 1; l < VDEV_LABELS; l++) {
1057 zio_nowait(zio_read_phys(pio, vd,
1058 vdev_label_offset(vd->vdev_psize, l,
1059 offsetof(vdev_label_t, vl_pad2)),
1060 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1061 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1062 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1063 }

1065 if (zio == NULL)
1066 return (pio);

1068 zio_nowait(pio);
1069 return (NULL);
1070 }

1072 static void
1073 vdev_open_child(void *arg)
1074 {
1075 vdev_t *vd = arg;

1077 vd->vdev_open_thread = curthread;
1078 vd->vdev_open_error = vdev_open(vd);
1079 vd->vdev_open_thread = NULL;
1080 }

1082 boolean_t
1083 vdev_uses_zvols(vdev_t *vd)
1084 {
1085 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1086 strlen(ZVOL_DIR)) == 0)
1087 return (B_TRUE);
1088 for (int c = 0; c < vd->vdev_children; c++)
1089 if (vdev_uses_zvols(vd->vdev_child[c]))
1090 return (B_TRUE);
1091 return (B_FALSE);

new/usr/src/uts/common/fs/zfs/vdev.c 15

1092 }

1094 void
1095 vdev_open_children(vdev_t *vd)
1096 {
1097 taskq_t *tq;
1098 int children = vd->vdev_children;

1100 /*
1101 * in order to handle pools on top of zvols, do the opens
1102 * in a single thread so that the same thread holds the
1103 * spa_namespace_lock
1104 */
1105 if (vdev_uses_zvols(vd)) {
1106 for (int c = 0; c < children; c++)
1107 vd->vdev_child[c]->vdev_open_error =
1108 vdev_open(vd->vdev_child[c]);
1109 return;
1110 }
1111 tq = taskq_create("vdev_open", children, minclsyspri,
1112 children, children, TASKQ_PREPOPULATE);

1114 for (int c = 0; c < children; c++)
1115 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1116 TQ_SLEEP) != NULL);

1118 taskq_destroy(tq);
1119 }

1121 /*
1122 * Prepare a virtual device for access.
1123 */
1124 int
1125 vdev_open(vdev_t *vd)
1126 {
1127 spa_t *spa = vd->vdev_spa;
1128 int error;
1129 uint64_t osize = 0;
1130 uint64_t max_osize = 0;
1131 uint64_t asize, max_asize, psize;
1132 uint64_t ashift = 0;

1134 ASSERT(vd->vdev_open_thread == curthread ||
1135 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1136 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1137 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1138 vd->vdev_state == VDEV_STATE_OFFLINE);

1140 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1141 vd->vdev_cant_read = B_FALSE;
1142 vd->vdev_cant_write = B_FALSE;
1143 vd->vdev_min_asize = vdev_get_min_asize(vd);

1145 /*
1146 * If this vdev is not removed, check its fault status. If it’s
1147 * faulted, bail out of the open.
1148 */
1149 if (!vd->vdev_removed && vd->vdev_faulted) {
1150 ASSERT(vd->vdev_children == 0);
1151 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1152 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1153 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1154 vd->vdev_label_aux);
1155 return (SET_ERROR(ENXIO));
1156 } else if (vd->vdev_offline) {
1157 ASSERT(vd->vdev_children == 0);

new/usr/src/uts/common/fs/zfs/vdev.c 16

1158 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1159 return (SET_ERROR(ENXIO));
1160 }

1162 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);

1164 /*
1165 * Reset the vdev_reopening flag so that we actually close
1166 * the vdev on error.
1167 */
1168 vd->vdev_reopening = B_FALSE;
1169 if (zio_injection_enabled && error == 0)
1170 error = zio_handle_device_injection(vd, NULL, ENXIO);

1172 if (error) {
1173 if (vd->vdev_removed &&
1174 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1175 vd->vdev_removed = B_FALSE;

1177 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1178 vd->vdev_stat.vs_aux);
1179 return (error);
1180 }

1182 vd->vdev_removed = B_FALSE;

1184 /*
1185 * Recheck the faulted flag now that we have confirmed that
1186 * the vdev is accessible. If we’re faulted, bail.
1187 */
1188 if (vd->vdev_faulted) {
1189 ASSERT(vd->vdev_children == 0);
1190 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1191 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1192 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1193 vd->vdev_label_aux);
1194 return (SET_ERROR(ENXIO));
1195 }

1197 if (vd->vdev_degraded) {
1198 ASSERT(vd->vdev_children == 0);
1199 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1200 VDEV_AUX_ERR_EXCEEDED);
1201 } else {
1202 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1203 }

1205 /*
1206 * For hole or missing vdevs we just return success.
1207 */
1208 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1209 return (0);

1211 for (int c = 0; c < vd->vdev_children; c++) {
1212 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1213 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1214 VDEV_AUX_NONE);
1215 break;
1216 }
1217 }

1219 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1220 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));

1222 if (vd->vdev_children == 0) {
1223 if (osize < SPA_MINDEVSIZE) {

new/usr/src/uts/common/fs/zfs/vdev.c 17

1224 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1225 VDEV_AUX_TOO_SMALL);
1226 return (SET_ERROR(EOVERFLOW));
1227 }
1228 psize = osize;
1229 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1230 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1231 VDEV_LABEL_END_SIZE);
1232 } else {
1233 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1234 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1235 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1236 VDEV_AUX_TOO_SMALL);
1237 return (SET_ERROR(EOVERFLOW));
1238 }
1239 psize = 0;
1240 asize = osize;
1241 max_asize = max_osize;
1242 }

1244 vd->vdev_psize = psize;

1246 /*
1247 * Make sure the allocatable size hasn’t shrunk.
1248 */
1249 if (asize < vd->vdev_min_asize) {
1250 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1251 VDEV_AUX_BAD_LABEL);
1252 return (SET_ERROR(EINVAL));
1253 }

1255 if (vd->vdev_asize == 0) {
1256 /*
1257 * This is the first-ever open, so use the computed values.
1258 * For testing purposes, a higher ashift can be requested.
1259 */
1260 vd->vdev_asize = asize;
1261 vd->vdev_max_asize = max_asize;
1262 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1263 } else {
1264 /*
1265 * Detect if the alignment requirement has increased.
1266 * We don’t want to make the pool unavailable, just
1267 * issue a warning instead.
1268 */
1269 if (ashift > vd->vdev_top->vdev_ashift &&
1270 vd->vdev_ops->vdev_op_leaf) {
1271 cmn_err(CE_WARN,
1272 "Disk, ’%s’, has a block alignment that is "
1273 "larger than the pool’s alignment\n",
1274 vd->vdev_path);
1275 }
1276 vd->vdev_max_asize = max_asize;
1277 }

1279 /*
1280 * If all children are healthy and the asize has increased,
1281 * then we’ve experienced dynamic LUN growth. If automatic
1282 * expansion is enabled then use the additional space.
1283 */
1284 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1285 (vd->vdev_expanding || spa->spa_autoexpand))
1286 vd->vdev_asize = asize;

1288 vdev_set_min_asize(vd);

new/usr/src/uts/common/fs/zfs/vdev.c 18

1290 /*
1291 * Ensure we can issue some IO before declaring the
1292 * vdev open for business.
1293 */
1294 if (vd->vdev_ops->vdev_op_leaf &&
1295 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1296 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1297 VDEV_AUX_ERR_EXCEEDED);
1298 return (error);
1299 }

1301 /*
1302 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1303 * resilver. But don’t do this if we are doing a reopen for a scrub,
1304 * since this would just restart the scrub we are already doing.
1305 */
1306 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1307 vdev_resilver_needed(vd, NULL, NULL))
1308 spa_async_request(spa, SPA_ASYNC_RESILVER);

1310 return (0);
1311 }

1313 /*
1314 * Called once the vdevs are all opened, this routine validates the label
1315 * contents. This needs to be done before vdev_load() so that we don’t
1316 * inadvertently do repair I/Os to the wrong device.
1317 *
1318 * If ’strict’ is false ignore the spa guid check. This is necessary because
1319 * if the machine crashed during a re-guid the new guid might have been written
1320 * to all of the vdev labels, but not the cached config. The strict check
1321 * will be performed when the pool is opened again using the mos config.
1322 *
1323 * This function will only return failure if one of the vdevs indicates that it
1324 * has since been destroyed or exported. This is only possible if
1325 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1326 * will be updated but the function will return 0.
1327 */
1328 int
1329 vdev_validate(vdev_t *vd, boolean_t strict)
1330 {
1331 spa_t *spa = vd->vdev_spa;
1332 nvlist_t *label;
1333 uint64_t guid = 0, top_guid;
1334 uint64_t state;

1336 for (int c = 0; c < vd->vdev_children; c++)
1337 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1338 return (SET_ERROR(EBADF));

1340 /*
1341 * If the device has already failed, or was marked offline, don’t do
1342 * any further validation. Otherwise, label I/O will fail and we will
1343 * overwrite the previous state.
1344 */
1345 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1346 uint64_t aux_guid = 0;
1347 nvlist_t *nvl;
1348 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1349 spa_last_synced_txg(spa) : -1ULL;

1351 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1352 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1353 VDEV_AUX_BAD_LABEL);
1354 return (0);
1355 }

new/usr/src/uts/common/fs/zfs/vdev.c 19

1357 /*
1358 * Determine if this vdev has been split off into another
1359 * pool. If so, then refuse to open it.
1360 */
1361 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1362 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1363 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1364 VDEV_AUX_SPLIT_POOL);
1365 nvlist_free(label);
1366 return (0);
1367 }

1369 if (strict && (nvlist_lookup_uint64(label,
1370 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1371 guid != spa_guid(spa))) {
1372 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1373 VDEV_AUX_CORRUPT_DATA);
1374 nvlist_free(label);
1375 return (0);
1376 }

1378 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1379 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1380 &aux_guid) != 0)
1381 aux_guid = 0;

1383 /*
1384 * If this vdev just became a top-level vdev because its
1385 * sibling was detached, it will have adopted the parent’s
1386 * vdev guid -- but the label may or may not be on disk yet.
1387 * Fortunately, either version of the label will have the
1388 * same top guid, so if we’re a top-level vdev, we can
1389 * safely compare to that instead.
1390 *
1391 * If we split this vdev off instead, then we also check the
1392 * original pool’s guid. We don’t want to consider the vdev
1393 * corrupt if it is partway through a split operation.
1394 */
1395 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1396 &guid) != 0 ||
1397 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1398 &top_guid) != 0 ||
1399 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1400 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1401 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1402 VDEV_AUX_CORRUPT_DATA);
1403 nvlist_free(label);
1404 return (0);
1405 }

1407 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1408 &state) != 0) {
1409 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1410 VDEV_AUX_CORRUPT_DATA);
1411 nvlist_free(label);
1412 return (0);
1413 }

1415 nvlist_free(label);

1417 /*
1418 * If this is a verbatim import, no need to check the
1419 * state of the pool.
1420 */
1421 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&

new/usr/src/uts/common/fs/zfs/vdev.c 20

1422 spa_load_state(spa) == SPA_LOAD_OPEN &&
1423 state != POOL_STATE_ACTIVE)
1424 return (SET_ERROR(EBADF));

1426 /*
1427 * If we were able to open and validate a vdev that was
1428 * previously marked permanently unavailable, clear that state
1429 * now.
1430 */
1431 if (vd->vdev_not_present)
1432 vd->vdev_not_present = 0;
1433 }

1435 return (0);
1436 }

1438 /*
1439 * Close a virtual device.
1440 */
1441 void
1442 vdev_close(vdev_t *vd)
1443 {
1444 spa_t *spa = vd->vdev_spa;
1445 vdev_t *pvd = vd->vdev_parent;

1447 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);

1449 /*
1450 * If our parent is reopening, then we are as well, unless we are
1451 * going offline.
1452 */
1453 if (pvd != NULL && pvd->vdev_reopening)
1454 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);

1456 vd->vdev_ops->vdev_op_close(vd);

1458 vdev_cache_purge(vd);

1460 /*
1461 * We record the previous state before we close it, so that if we are
1462 * doing a reopen(), we don’t generate FMA ereports if we notice that
1463 * it’s still faulted.
1464 */
1465 vd->vdev_prevstate = vd->vdev_state;

1467 if (vd->vdev_offline)
1468 vd->vdev_state = VDEV_STATE_OFFLINE;
1469 else
1470 vd->vdev_state = VDEV_STATE_CLOSED;
1471 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1472 }

1474 void
1475 vdev_hold(vdev_t *vd)
1476 {
1477 spa_t *spa = vd->vdev_spa;

1479 ASSERT(spa_is_root(spa));
1480 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1481 return;

1483 for (int c = 0; c < vd->vdev_children; c++)
1484 vdev_hold(vd->vdev_child[c]);

1486 if (vd->vdev_ops->vdev_op_leaf)
1487 vd->vdev_ops->vdev_op_hold(vd);

new/usr/src/uts/common/fs/zfs/vdev.c 21

1488 }

1490 void
1491 vdev_rele(vdev_t *vd)
1492 {
1493 spa_t *spa = vd->vdev_spa;

1495 ASSERT(spa_is_root(spa));
1496 for (int c = 0; c < vd->vdev_children; c++)
1497 vdev_rele(vd->vdev_child[c]);

1499 if (vd->vdev_ops->vdev_op_leaf)
1500 vd->vdev_ops->vdev_op_rele(vd);
1501 }

1503 /*
1504 * Reopen all interior vdevs and any unopened leaves. We don’t actually
1505 * reopen leaf vdevs which had previously been opened as they might deadlock
1506 * on the spa_config_lock. Instead we only obtain the leaf’s physical size.
1507 * If the leaf has never been opened then open it, as usual.
1508 */
1509 void
1510 vdev_reopen(vdev_t *vd)
1511 {
1512 spa_t *spa = vd->vdev_spa;

1514 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);

1516 /* set the reopening flag unless we’re taking the vdev offline */
1517 vd->vdev_reopening = !vd->vdev_offline;
1518 vdev_close(vd);
1519 (void) vdev_open(vd);

1521 /*
1522 * Call vdev_validate() here to make sure we have the same device.
1523 * Otherwise, a device with an invalid label could be successfully
1524 * opened in response to vdev_reopen().
1525 */
1526 if (vd->vdev_aux) {
1527 (void) vdev_validate_aux(vd);
1528 if (vdev_readable(vd) && vdev_writeable(vd) &&
1529 vd->vdev_aux == &spa->spa_l2cache &&
1530 !l2arc_vdev_present(vd))
1531 l2arc_add_vdev(spa, vd);
1532 } else {
1533 (void) vdev_validate(vd, B_TRUE);
1534 }

1536 /*
1537 * Reassess parent vdev’s health.
1538 */
1539 vdev_propagate_state(vd);
1540 }

1542 int
1543 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1544 {
1545 int error;

1547 /*
1548 * Normally, partial opens (e.g. of a mirror) are allowed.
1549 * For a create, however, we want to fail the request if
1550 * there are any components we can’t open.
1551 */
1552 error = vdev_open(vd);

new/usr/src/uts/common/fs/zfs/vdev.c 22

1554 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1555 vdev_close(vd);
1556 return (error ? error : ENXIO);
1557 }

1559 /*
1560 * Recursively load DTLs and initialize all labels.
1561 */
1562 if ((error = vdev_dtl_load(vd)) != 0 ||
1563 (error = vdev_label_init(vd, txg, isreplacing ?
1564 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1565 vdev_close(vd);
1566 return (error);
1567 }

1569 return (0);
1570 }

1572 void
1573 vdev_metaslab_set_size(vdev_t *vd)
1574 {
1575 /*
1576 * Aim for roughly 200 metaslabs per vdev.
1577 */
1578 vd->vdev_ms_shift = highbit64(vd->vdev_asize / 200);
1579 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1580 }

1582 void
1583 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1584 {
1585 ASSERT(vd == vd->vdev_top);
1586 ASSERT(!vd->vdev_ishole);
1587 ASSERT(ISP2(flags));
1588 ASSERT(spa_writeable(vd->vdev_spa));

1590 if (flags & VDD_METASLAB)
1591 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);

1593 if (flags & VDD_DTL)
1594 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);

1596 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1597 }

1599 void
1600 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1601 {
1602 for (int c = 0; c < vd->vdev_children; c++)
1603 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);

1605 if (vd->vdev_ops->vdev_op_leaf)
1606 vdev_dirty(vd->vdev_top, flags, vd, txg);
1607 }

1609 /*
1610 * DTLs.
1611 *
1612 * A vdev’s DTL (dirty time log) is the set of transaction groups for which
1613 * the vdev has less than perfect replication. There are four kinds of DTL:
1614 *
1615 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1616 *
1617 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1618 *
1619 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon

new/usr/src/uts/common/fs/zfs/vdev.c 23

1620 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1621 * txgs that was scrubbed.
1622 *
1623 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1624 * persistent errors or just some device being offline.
1625 * Unlike the other three, the DTL_OUTAGE map is not generally
1626 * maintained; it’s only computed when needed, typically to
1627 * determine whether a device can be detached.
1628 *
1629 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1630 * either has the data or it doesn’t.
1631 *
1632 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1633 * A vdev’s DTL_PARTIAL is the union of its children’s DTL_PARTIALs, because
1634 * if any child is less than fully replicated, then so is its parent.
1635 * A vdev’s DTL_MISSING is a modified union of its children’s DTL_MISSINGs,
1636 * comprising only those txgs which appear in ’maxfaults’ or more children;
1637 * those are the txgs we don’t have enough replication to read. For example,
1638 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1639 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1640 * two child DTL_MISSING maps.
1641 *
1642 * It should be clear from the above that to compute the DTLs and outage maps
1643 * for all vdevs, it suffices to know just the leaf vdevs’ DTL_MISSING maps.
1644 * Therefore, that is all we keep on disk. When loading the pool, or after
1645 * a configuration change, we generate all other DTLs from first principles.
1646 */
1647 void
1648 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1649 {
1650 range_tree_t *rt = vd->vdev_dtl[t];

1652 ASSERT(t < DTL_TYPES);
1653 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1654 ASSERT(spa_writeable(vd->vdev_spa));

1656 mutex_enter(rt->rt_lock);
1657 if (!range_tree_contains(rt, txg, size))
1658 range_tree_add(rt, txg, size);
1659 mutex_exit(rt->rt_lock);
1660 }

1662 boolean_t
1663 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1664 {
1665 range_tree_t *rt = vd->vdev_dtl[t];
1666 boolean_t dirty = B_FALSE;

1668 ASSERT(t < DTL_TYPES);
1669 ASSERT(vd != vd->vdev_spa->spa_root_vdev);

1671 mutex_enter(rt->rt_lock);
1672 if (range_tree_space(rt) != 0)
1673 dirty = range_tree_contains(rt, txg, size);
1674 mutex_exit(rt->rt_lock);

1676 return (dirty);
1677 }

1679 boolean_t
1680 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1681 {
1682 range_tree_t *rt = vd->vdev_dtl[t];
1683 boolean_t empty;

1685 mutex_enter(rt->rt_lock);

new/usr/src/uts/common/fs/zfs/vdev.c 24

1686 empty = (range_tree_space(rt) == 0);
1687 mutex_exit(rt->rt_lock);

1689 return (empty);
1690 }

1692 /*
1693 * Returns the lowest txg in the DTL range.
1694 */
1695 static uint64_t
1696 vdev_dtl_min(vdev_t *vd)
1697 {
1698 range_seg_t *rs;

1700 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1701 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1702 ASSERT0(vd->vdev_children);

1704 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1705 return (rs->rs_start - 1);
1706 }

1708 /*
1709 * Returns the highest txg in the DTL.
1710 */
1711 static uint64_t
1712 vdev_dtl_max(vdev_t *vd)
1713 {
1714 range_seg_t *rs;

1716 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1717 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1718 ASSERT0(vd->vdev_children);

1720 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1721 return (rs->rs_end);
1722 }

1724 /*
1725 * Determine if a resilvering vdev should remove any DTL entries from
1726 * its range. If the vdev was resilvering for the entire duration of the
1727 * scan then it should excise that range from its DTLs. Otherwise, this
1728 * vdev is considered partially resilvered and should leave its DTL
1729 * entries intact. The comment in vdev_dtl_reassess() describes how we
1730 * excise the DTLs.
1731 */
1732 static boolean_t
1733 vdev_dtl_should_excise(vdev_t *vd)
1734 {
1735 spa_t *spa = vd->vdev_spa;
1736 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;

1738 ASSERT0(scn->scn_phys.scn_errors);
1739 ASSERT0(vd->vdev_children);

1741 if (vd->vdev_resilver_txg == 0 ||
1742 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1743 return (B_TRUE);

1745 /*
1746 * When a resilver is initiated the scan will assign the scn_max_txg
1747 * value to the highest txg value that exists in all DTLs. If this
1748 * device’s max DTL is not part of this scan (i.e. it is not in
1749 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1750 * for excision.
1751 */

new/usr/src/uts/common/fs/zfs/vdev.c 25

1752 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1753 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1754 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1755 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1756 return (B_TRUE);
1757 }
1758 return (B_FALSE);
1759 }

1761 /*
1762 * Reassess DTLs after a config change or scrub completion.
1763 */
1764 void
1765 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1766 {
1767 spa_t *spa = vd->vdev_spa;
1768 avl_tree_t reftree;
1769 int minref;

1771 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);

1773 for (int c = 0; c < vd->vdev_children; c++)
1774 vdev_dtl_reassess(vd->vdev_child[c], txg,
1775 scrub_txg, scrub_done);

1777 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1778 return;

1780 if (vd->vdev_ops->vdev_op_leaf) {
1781 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;

1783 mutex_enter(&vd->vdev_dtl_lock);

1785 /*
1786 * If we’ve completed a scan cleanly then determine
1787 * if this vdev should remove any DTLs. We only want to
1788 * excise regions on vdevs that were available during
1789 * the entire duration of this scan.
1790 */
1791 if (scrub_txg != 0 &&
1792 (spa->spa_scrub_started ||
1793 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1794 vdev_dtl_should_excise(vd)) {
1795 /*
1796 * We completed a scrub up to scrub_txg. If we
1797 * did it without rebooting, then the scrub dtl
1798 * will be valid, so excise the old region and
1799 * fold in the scrub dtl. Otherwise, leave the
1800 * dtl as-is if there was an error.
1801 *
1802 * There’s little trick here: to excise the beginning
1803 * of the DTL_MISSING map, we put it into a reference
1804 * tree and then add a segment with refcnt -1 that
1805 * covers the range [0, scrub_txg). This means
1806 * that each txg in that range has refcnt -1 or 0.
1807 * We then add DTL_SCRUB with a refcnt of 2, so that
1808 * entries in the range [0, scrub_txg) will have a
1809 * positive refcnt -- either 1 or 2. We then convert
1810 * the reference tree into the new DTL_MISSING map.
1811 */
1812 space_reftree_create(&reftree);
1813 space_reftree_add_map(&reftree,
1814 vd->vdev_dtl[DTL_MISSING], 1);
1815 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1816 space_reftree_add_map(&reftree,
1817 vd->vdev_dtl[DTL_SCRUB], 2);

new/usr/src/uts/common/fs/zfs/vdev.c 26

1818 space_reftree_generate_map(&reftree,
1819 vd->vdev_dtl[DTL_MISSING], 1);
1820 space_reftree_destroy(&reftree);
1821 }
1822 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1823 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1824 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1825 if (scrub_done)
1826 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1827 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1828 if (!vdev_readable(vd))
1829 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1830 else
1831 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1832 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);

1834 /*
1835 * If the vdev was resilvering and no longer has any
1836 * DTLs then reset its resilvering flag.
1837 */
1838 if (vd->vdev_resilver_txg != 0 &&
1839 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1840 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1841 vd->vdev_resilver_txg = 0;

1843 mutex_exit(&vd->vdev_dtl_lock);

1845 if (txg != 0)
1846 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1847 return;
1848 }

1850 mutex_enter(&vd->vdev_dtl_lock);
1851 for (int t = 0; t < DTL_TYPES; t++) {
1852 /* account for child’s outage in parent’s missing map */
1853 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1854 if (t == DTL_SCRUB)
1855 continue; /* leaf vdevs only */
1856 if (t == DTL_PARTIAL)
1857 minref = 1; /* i.e. non-zero */
1858 else if (vd->vdev_nparity != 0)
1859 minref = vd->vdev_nparity + 1; /* RAID-Z */
1860 else
1861 minref = vd->vdev_children; /* any kind of mirror */
1862 space_reftree_create(&reftree);
1863 for (int c = 0; c < vd->vdev_children; c++) {
1864 vdev_t *cvd = vd->vdev_child[c];
1865 mutex_enter(&cvd->vdev_dtl_lock);
1866 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1867 mutex_exit(&cvd->vdev_dtl_lock);
1868 }
1869 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1870 space_reftree_destroy(&reftree);
1871 }
1872 mutex_exit(&vd->vdev_dtl_lock);
1873 }

1875 int
1876 vdev_dtl_load(vdev_t *vd)
1877 {
1878 spa_t *spa = vd->vdev_spa;
1879 objset_t *mos = spa->spa_meta_objset;
1880 int error = 0;

1882 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1883 ASSERT(!vd->vdev_ishole);

new/usr/src/uts/common/fs/zfs/vdev.c 27

1885 error = space_map_open(&vd->vdev_dtl_sm, mos,
1886 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1887 if (error)
1888 return (error);
1889 ASSERT(vd->vdev_dtl_sm != NULL);

1891 mutex_enter(&vd->vdev_dtl_lock);

1893 /*
1894 * Now that we’ve opened the space_map we need to update
1895 * the in-core DTL.
1896 */
1897 space_map_update(vd->vdev_dtl_sm);

1899 error = space_map_load(vd->vdev_dtl_sm,
1900 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1901 mutex_exit(&vd->vdev_dtl_lock);

1903 return (error);
1904 }

1906 for (int c = 0; c < vd->vdev_children; c++) {
1907 error = vdev_dtl_load(vd->vdev_child[c]);
1908 if (error != 0)
1909 break;
1910 }

1912 return (error);
1913 }

1915 void
1916 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1917 {
1918 spa_t *spa = vd->vdev_spa;
1919 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
1920 objset_t *mos = spa->spa_meta_objset;
1921 range_tree_t *rtsync;
1922 kmutex_t rtlock;
1923 dmu_tx_t *tx;
1924 uint64_t object = space_map_object(vd->vdev_dtl_sm);

1926 ASSERT(!vd->vdev_ishole);
1927 ASSERT(vd->vdev_ops->vdev_op_leaf);

1929 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);

1931 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
1932 mutex_enter(&vd->vdev_dtl_lock);
1933 space_map_free(vd->vdev_dtl_sm, tx);
1934 space_map_close(vd->vdev_dtl_sm);
1935 vd->vdev_dtl_sm = NULL;
1936 mutex_exit(&vd->vdev_dtl_lock);
1937 dmu_tx_commit(tx);
1938 return;
1939 }

1941 if (vd->vdev_dtl_sm == NULL) {
1942 uint64_t new_object;

1944 new_object = space_map_alloc(mos, tx);
1945 VERIFY3U(new_object, !=, 0);

1947 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
1948 0, -1ULL, 0, &vd->vdev_dtl_lock));
1949 ASSERT(vd->vdev_dtl_sm != NULL);

new/usr/src/uts/common/fs/zfs/vdev.c 28

1950 }

1952 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);

1954 rtsync = range_tree_create(NULL, NULL, &rtlock);

1956 mutex_enter(&rtlock);

1958 mutex_enter(&vd->vdev_dtl_lock);
1959 range_tree_walk(rt, range_tree_add, rtsync);
1960 mutex_exit(&vd->vdev_dtl_lock);

1962 space_map_truncate(vd->vdev_dtl_sm, tx);
1963 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
1964 range_tree_vacate(rtsync, NULL, NULL);

1966 range_tree_destroy(rtsync);

1968 mutex_exit(&rtlock);
1969 mutex_destroy(&rtlock);

1971 /*
1972 * If the object for the space map has changed then dirty
1973 * the top level so that we update the config.
1974 */
1975 if (object != space_map_object(vd->vdev_dtl_sm)) {
1976 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
1977 "new object %llu", txg, spa_name(spa), object,
1978 space_map_object(vd->vdev_dtl_sm));
1979 vdev_config_dirty(vd->vdev_top);
1980 }

1982 dmu_tx_commit(tx);

1984 mutex_enter(&vd->vdev_dtl_lock);
1985 space_map_update(vd->vdev_dtl_sm);
1986 mutex_exit(&vd->vdev_dtl_lock);
1987 }

1989 /*
1990 * Determine whether the specified vdev can be offlined/detached/removed
1991 * without losing data.
1992 */
1993 boolean_t
1994 vdev_dtl_required(vdev_t *vd)
1995 {
1996 spa_t *spa = vd->vdev_spa;
1997 vdev_t *tvd = vd->vdev_top;
1998 uint8_t cant_read = vd->vdev_cant_read;
1999 boolean_t required;

2001 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);

2003 if (vd == spa->spa_root_vdev || vd == tvd)
2004 return (B_TRUE);

2006 /*
2007 * Temporarily mark the device as unreadable, and then determine
2008 * whether this results in any DTL outages in the top-level vdev.
2009 * If not, we can safely offline/detach/remove the device.
2010 */
2011 vd->vdev_cant_read = B_TRUE;
2012 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2013 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2014 vd->vdev_cant_read = cant_read;
2015 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);

new/usr/src/uts/common/fs/zfs/vdev.c 29

2017 if (!required && zio_injection_enabled)
2018 required = !!zio_handle_device_injection(vd, NULL, ECHILD);

2020 return (required);
2021 }

2023 /*
2024 * Determine if resilver is needed, and if so the txg range.
2025 */
2026 boolean_t
2027 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2028 {
2029 boolean_t needed = B_FALSE;
2030 uint64_t thismin = UINT64_MAX;
2031 uint64_t thismax = 0;

2033 if (vd->vdev_children == 0) {
2034 mutex_enter(&vd->vdev_dtl_lock);
2035 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2036 vdev_writeable(vd)) {

2038 thismin = vdev_dtl_min(vd);
2039 thismax = vdev_dtl_max(vd);
2040 needed = B_TRUE;
2041 }
2042 mutex_exit(&vd->vdev_dtl_lock);
2043 } else {
2044 for (int c = 0; c < vd->vdev_children; c++) {
2045 vdev_t *cvd = vd->vdev_child[c];
2046 uint64_t cmin, cmax;

2048 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2049 thismin = MIN(thismin, cmin);
2050 thismax = MAX(thismax, cmax);
2051 needed = B_TRUE;
2052 }
2053 }
2054 }

2056 if (needed && minp) {
2057 *minp = thismin;
2058 *maxp = thismax;
2059 }
2060 return (needed);
2061 }

2063 void
2064 vdev_load(vdev_t *vd)
2065 {
2066 /*
2067 * Recursively load all children.
2068 */
2069 for (int c = 0; c < vd->vdev_children; c++)
2070 vdev_load(vd->vdev_child[c]);

2072 /*
2073 * If this is a top-level vdev, initialize its metaslabs.
2074 */
2075 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2076 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2077 vdev_metaslab_init(vd, 0) != 0))
2078 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2079 VDEV_AUX_CORRUPT_DATA);

2081 /*

new/usr/src/uts/common/fs/zfs/vdev.c 30

2082 * If this is a leaf vdev, load its DTL.
2083 */
2084 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2085 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2086 VDEV_AUX_CORRUPT_DATA);
2087 }

2089 /*
2090 * The special vdev case is used for hot spares and l2cache devices. Its
2091 * sole purpose it to set the vdev state for the associated vdev. To do this,
2092 * we make sure that we can open the underlying device, then try to read the
2093 * label, and make sure that the label is sane and that it hasn’t been
2094 * repurposed to another pool.
2095 */
2096 int
2097 vdev_validate_aux(vdev_t *vd)
2098 {
2099 nvlist_t *label;
2100 uint64_t guid, version;
2101 uint64_t state;

2103 if (!vdev_readable(vd))
2104 return (0);

2106 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2107 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2108 VDEV_AUX_CORRUPT_DATA);
2109 return (-1);
2110 }

2112 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2113 !SPA_VERSION_IS_SUPPORTED(version) ||
2114 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2115 guid != vd->vdev_guid ||
2116 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2117 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2118 VDEV_AUX_CORRUPT_DATA);
2119 nvlist_free(label);
2120 return (-1);
2121 }

2123 /*
2124 * We don’t actually check the pool state here. If it’s in fact in
2125 * use by another pool, we update this fact on the fly when requested.
2126 */
2127 nvlist_free(label);
2128 return (0);
2129 }

2131 void
2132 vdev_remove(vdev_t *vd, uint64_t txg)
2133 {
2134 spa_t *spa = vd->vdev_spa;
2135 objset_t *mos = spa->spa_meta_objset;
2136 dmu_tx_t *tx;

2138 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);

2140 if (vd->vdev_ms != NULL) {
2141 for (int m = 0; m < vd->vdev_ms_count; m++) {
2142 metaslab_t *msp = vd->vdev_ms[m];

2144 if (msp == NULL || msp->ms_sm == NULL)
2145 continue;

2147 mutex_enter(&msp->ms_lock);

new/usr/src/uts/common/fs/zfs/vdev.c 31

2148 VERIFY0(space_map_allocated(msp->ms_sm));
2149 space_map_free(msp->ms_sm, tx);
2150 space_map_close(msp->ms_sm);
2151 msp->ms_sm = NULL;
2152 mutex_exit(&msp->ms_lock);
2153 }
2154 }

2156 if (vd->vdev_ms_array) {
2157 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2158 vd->vdev_ms_array = 0;
2159 }
2160 dmu_tx_commit(tx);
2161 }

2163 void
2164 vdev_sync_done(vdev_t *vd, uint64_t txg)
2165 {
2166 metaslab_t *msp;
2167 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));

2169 ASSERT(!vd->vdev_ishole);

2171 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2172 metaslab_sync_done(msp, txg);

2174 if (reassess)
2175 metaslab_sync_reassess(vd->vdev_mg);
2176 }

2178 void
2179 vdev_sync(vdev_t *vd, uint64_t txg)
2180 {
2181 spa_t *spa = vd->vdev_spa;
2182 vdev_t *lvd;
2183 metaslab_t *msp;
2184 dmu_tx_t *tx;

2186 ASSERT(!vd->vdev_ishole);

2188 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2189 ASSERT(vd == vd->vdev_top);
2190 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2191 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2192 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2193 ASSERT(vd->vdev_ms_array != 0);
2194 vdev_config_dirty(vd);
2195 dmu_tx_commit(tx);
2196 }

2198 /*
2199 * Remove the metadata associated with this vdev once it’s empty.
2200 */
2201 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2202 vdev_remove(vd, txg);

2204 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2205 metaslab_sync(msp, txg);
2206 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2207 }

2209 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2210 vdev_dtl_sync(lvd, txg);

2212 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2213 }

new/usr/src/uts/common/fs/zfs/vdev.c 32

2215 uint64_t
2216 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2217 {
2218 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2219 }

2221 /*
2222 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2223 * not be opened, and no I/O is attempted.
2224 */
2225 int
2226 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2227 {
2228 vdev_t *vd, *tvd;

2230 spa_vdev_state_enter(spa, SCL_NONE);

2232 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2233 return (spa_vdev_state_exit(spa, NULL, ENODEV));

2235 if (!vd->vdev_ops->vdev_op_leaf)
2236 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));

2238 tvd = vd->vdev_top;

2240 /*
2241 * We don’t directly use the aux state here, but if we do a
2242 * vdev_reopen(), we need this value to be present to remember why we
2243 * were faulted.
2244 */
2245 vd->vdev_label_aux = aux;

2247 /*
2248 * Faulted state takes precedence over degraded.
2249 */
2250 vd->vdev_delayed_close = B_FALSE;
2251 vd->vdev_faulted = 1ULL;
2252 vd->vdev_degraded = 0ULL;
2253 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);

2255 /*
2256 * If this device has the only valid copy of the data, then
2257 * back off and simply mark the vdev as degraded instead.
2258 */
2259 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2260 vd->vdev_degraded = 1ULL;
2261 vd->vdev_faulted = 0ULL;

2263 /*
2264 * If we reopen the device and it’s not dead, only then do we
2265 * mark it degraded.
2266 */
2267 vdev_reopen(tvd);

2269 if (vdev_readable(vd))
2270 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2271 }

2273 return (spa_vdev_state_exit(spa, vd, 0));
2274 }

2276 /*
2277 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2278 * user that something is wrong. The vdev continues to operate as normal as far
2279 * as I/O is concerned.

new/usr/src/uts/common/fs/zfs/vdev.c 33

2280 */
2281 int
2282 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2283 {
2284 vdev_t *vd;

2286 spa_vdev_state_enter(spa, SCL_NONE);

2288 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2289 return (spa_vdev_state_exit(spa, NULL, ENODEV));

2291 if (!vd->vdev_ops->vdev_op_leaf)
2292 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));

2294 /*
2295 * If the vdev is already faulted, then don’t do anything.
2296 */
2297 if (vd->vdev_faulted || vd->vdev_degraded)
2298 return (spa_vdev_state_exit(spa, NULL, 0));

2300 vd->vdev_degraded = 1ULL;
2301 if (!vdev_is_dead(vd))
2302 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2303 aux);

2305 return (spa_vdev_state_exit(spa, vd, 0));
2306 }

2308 /*
2309 * Online the given vdev.
2310 *
2311 * If ’ZFS_ONLINE_UNSPARE’ is set, it implies two things. First, any attached
2312 * spare device should be detached when the device finishes resilvering.
2313 * Second, the online should be treated like a ’test’ online case, so no FMA
2314 * events are generated if the device fails to open.
2315 */
2316 int
2317 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2318 {
2319 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;

2321 spa_vdev_state_enter(spa, SCL_NONE);

2323 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2324 return (spa_vdev_state_exit(spa, NULL, ENODEV));

2326 if (!vd->vdev_ops->vdev_op_leaf)
2327 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));

2329 tvd = vd->vdev_top;
2330 vd->vdev_offline = B_FALSE;
2331 vd->vdev_tmpoffline = B_FALSE;
2332 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2333 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);

2335 /* XXX - L2ARC 1.0 does not support expansion */
2336 if (!vd->vdev_aux) {
2337 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2338 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2339 }

2341 vdev_reopen(tvd);
2342 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;

2344 if (!vd->vdev_aux) {
2345 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)

new/usr/src/uts/common/fs/zfs/vdev.c 34

2346 pvd->vdev_expanding = B_FALSE;
2347 }

2349 if (newstate)
2350 *newstate = vd->vdev_state;
2351 if ((flags & ZFS_ONLINE_UNSPARE) &&
2352 !vdev_is_dead(vd) && vd->vdev_parent &&
2353 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2354 vd->vdev_parent->vdev_child[0] == vd)
2355 vd->vdev_unspare = B_TRUE;

2357 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {

2359 /* XXX - L2ARC 1.0 does not support expansion */
2360 if (vd->vdev_aux)
2361 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2362 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2363 }
2364 return (spa_vdev_state_exit(spa, vd, 0));
2365 }

2367 static int
2368 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2369 {
2370 vdev_t *vd, *tvd;
2371 int error = 0;
2372 uint64_t generation;
2373 metaslab_group_t *mg;

2375 top:
2376 spa_vdev_state_enter(spa, SCL_ALLOC);

2378 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2379 return (spa_vdev_state_exit(spa, NULL, ENODEV));

2381 if (!vd->vdev_ops->vdev_op_leaf)
2382 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));

2384 tvd = vd->vdev_top;
2385 mg = tvd->vdev_mg;
2386 generation = spa->spa_config_generation + 1;

2388 /*
2389 * If the device isn’t already offline, try to offline it.
2390 */
2391 if (!vd->vdev_offline) {
2392 /*
2393 * If this device has the only valid copy of some data,
2394 * don’t allow it to be offlined. Log devices are always
2395 * expendable.
2396 */
2397 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2398 vdev_dtl_required(vd))
2399 return (spa_vdev_state_exit(spa, NULL, EBUSY));

2401 /*
2402 * If the top-level is a slog and it has had allocations
2403 * then proceed. We check that the vdev’s metaslab group
2404 * is not NULL since it’s possible that we may have just
2405 * added this vdev but not yet initialized its metaslabs.
2406 */
2407 if (tvd->vdev_islog && mg != NULL) {
2408 /*
2409 * Prevent any future allocations.
2410 */
2411 metaslab_group_passivate(mg);

new/usr/src/uts/common/fs/zfs/vdev.c 35

2412 (void) spa_vdev_state_exit(spa, vd, 0);

2414 error = spa_offline_log(spa);

2416 spa_vdev_state_enter(spa, SCL_ALLOC);

2418 /*
2419 * Check to see if the config has changed.
2420 */
2421 if (error || generation != spa->spa_config_generation) {
2422 metaslab_group_activate(mg);
2423 if (error)
2424 return (spa_vdev_state_exit(spa,
2425 vd, error));
2426 (void) spa_vdev_state_exit(spa, vd, 0);
2427 goto top;
2428 }
2429 ASSERT0(tvd->vdev_stat.vs_alloc);
2430 }

2432 /*
2433 * Offline this device and reopen its top-level vdev.
2434 * If the top-level vdev is a log device then just offline
2435 * it. Otherwise, if this action results in the top-level
2436 * vdev becoming unusable, undo it and fail the request.
2437 */
2438 vd->vdev_offline = B_TRUE;
2439 vdev_reopen(tvd);

2441 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2442 vdev_is_dead(tvd)) {
2443 vd->vdev_offline = B_FALSE;
2444 vdev_reopen(tvd);
2445 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2446 }

2448 /*
2449 * Add the device back into the metaslab rotor so that
2450 * once we online the device it’s open for business.
2451 */
2452 if (tvd->vdev_islog && mg != NULL)
2453 metaslab_group_activate(mg);
2454 }

2456 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);

2458 return (spa_vdev_state_exit(spa, vd, 0));
2459 }

2461 int
2462 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2463 {
2464 int error;

2466 mutex_enter(&spa->spa_vdev_top_lock);
2467 error = vdev_offline_locked(spa, guid, flags);
2468 mutex_exit(&spa->spa_vdev_top_lock);

2470 return (error);
2471 }

2473 /*
2474 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2475 * vdev_offline(), we assume the spa config is locked. We also clear all
2476 * children. If ’vd’ is NULL, then the user wants to clear all vdevs.
2477 */

new/usr/src/uts/common/fs/zfs/vdev.c 36

2478 void
2479 vdev_clear(spa_t *spa, vdev_t *vd)
2480 {
2481 vdev_t *rvd = spa->spa_root_vdev;

2483 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);

2485 if (vd == NULL)
2486 vd = rvd;

2488 vd->vdev_stat.vs_read_errors = 0;
2489 vd->vdev_stat.vs_write_errors = 0;
2490 vd->vdev_stat.vs_checksum_errors = 0;

2492 for (int c = 0; c < vd->vdev_children; c++)
2493 vdev_clear(spa, vd->vdev_child[c]);

2495 /*
2496 * If we’re in the FAULTED state or have experienced failed I/O, then
2497 * clear the persistent state and attempt to reopen the device. We
2498 * also mark the vdev config dirty, so that the new faulted state is
2499 * written out to disk.
2500 */
2501 if (vd->vdev_faulted || vd->vdev_degraded ||
2502 !vdev_readable(vd) || !vdev_writeable(vd)) {

2504 /*
2505 * When reopening in reponse to a clear event, it may be due to
2506 * a fmadm repair request. In this case, if the device is
2507 * still broken, we want to still post the ereport again.
2508 */
2509 vd->vdev_forcefault = B_TRUE;

2511 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2512 vd->vdev_cant_read = B_FALSE;
2513 vd->vdev_cant_write = B_FALSE;

2515 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);

2517 vd->vdev_forcefault = B_FALSE;

2519 if (vd != rvd && vdev_writeable(vd->vdev_top))
2520 vdev_state_dirty(vd->vdev_top);

2522 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2523 spa_async_request(spa, SPA_ASYNC_RESILVER);

2525 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2526 }

2528 /*
2529 * When clearing a FMA-diagnosed fault, we always want to
2530 * unspare the device, as we assume that the original spare was
2531 * done in response to the FMA fault.
2532 */
2533 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2534 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2535 vd->vdev_parent->vdev_child[0] == vd)
2536 vd->vdev_unspare = B_TRUE;
2537 }

2539 boolean_t
2540 vdev_is_dead(vdev_t *vd)
2541 {
2542 /*
2543 * Holes and missing devices are always considered "dead".

new/usr/src/uts/common/fs/zfs/vdev.c 37

2544 * This simplifies the code since we don’t have to check for
2545 * these types of devices in the various code paths.
2546 * Instead we rely on the fact that we skip over dead devices
2547 * before issuing I/O to them.
2548 */
2549 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2550 vd->vdev_ops == &vdev_missing_ops);
2551 }

2553 boolean_t
2554 vdev_readable(vdev_t *vd)
2555 {
2556 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2557 }

2559 boolean_t
2560 vdev_writeable(vdev_t *vd)
2561 {
2562 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2563 }

2565 boolean_t
2566 vdev_allocatable(vdev_t *vd)
2567 {
2568 uint64_t state = vd->vdev_state;

2570 /*
2571 * We currently allow allocations from vdevs which may be in the
2572 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2573 * fails to reopen then we’ll catch it later when we’re holding
2574 * the proper locks. Note that we have to get the vdev state
2575 * in a local variable because although it changes atomically,
2576 * we’re asking two separate questions about it.
2577 */
2578 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2579 !vd->vdev_cant_write && !vd->vdev_ishole);
2580 }

2582 boolean_t
2583 vdev_accessible(vdev_t *vd, zio_t *zio)
2584 {
2585 ASSERT(zio->io_vd == vd);

2587 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2588 return (B_FALSE);

2590 if (zio->io_type == ZIO_TYPE_READ)
2591 return (!vd->vdev_cant_read);

2593 if (zio->io_type == ZIO_TYPE_WRITE)
2594 return (!vd->vdev_cant_write);

2596 return (B_TRUE);
2597 }

2599 /*
2600 * Get statistics for the given vdev.
2601 */
2602 void
2603 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2604 {
2605 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;

2607 mutex_enter(&vd->vdev_stat_lock);
2608 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2609 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;

new/usr/src/uts/common/fs/zfs/vdev.c 38

2610 vs->vs_state = vd->vdev_state;
2611 vs->vs_rsize = vdev_get_min_asize(vd);
2612 if (vd->vdev_ops->vdev_op_leaf)
2613 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2614 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2615 mutex_exit(&vd->vdev_stat_lock);

2617 /*
2618 * If we’re getting stats on the root vdev, aggregate the I/O counts
2619 * over all top-level vdevs (i.e. the direct children of the root).
2620 */
2621 if (vd == rvd) {
2622 for (int c = 0; c < rvd->vdev_children; c++) {
2623 vdev_t *cvd = rvd->vdev_child[c];
2624 vdev_stat_t *cvs = &cvd->vdev_stat;

2626 mutex_enter(&vd->vdev_stat_lock);
2627 for (int t = 0; t < ZIO_TYPES; t++) {
2628 vs->vs_ops[t] += cvs->vs_ops[t];
2629 vs->vs_bytes[t] += cvs->vs_bytes[t];
2630 }
2631 cvs->vs_scan_removing = cvd->vdev_removing;
2632 mutex_exit(&vd->vdev_stat_lock);
2633 }
2634 }
2635 }

2637 void
2638 vdev_clear_stats(vdev_t *vd)
2639 {
2640 mutex_enter(&vd->vdev_stat_lock);
2641 vd->vdev_stat.vs_space = 0;
2642 vd->vdev_stat.vs_dspace = 0;
2643 vd->vdev_stat.vs_alloc = 0;
2644 mutex_exit(&vd->vdev_stat_lock);
2645 }

2647 void
2648 vdev_scan_stat_init(vdev_t *vd)
2649 {
2650 vdev_stat_t *vs = &vd->vdev_stat;

2652 for (int c = 0; c < vd->vdev_children; c++)
2653 vdev_scan_stat_init(vd->vdev_child[c]);

2655 mutex_enter(&vd->vdev_stat_lock);
2656 vs->vs_scan_processed = 0;
2657 mutex_exit(&vd->vdev_stat_lock);
2658 }

2660 void
2661 vdev_stat_update(zio_t *zio, uint64_t psize)
2662 {
2663 spa_t *spa = zio->io_spa;
2664 vdev_t *rvd = spa->spa_root_vdev;
2665 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2666 vdev_t *pvd;
2667 uint64_t txg = zio->io_txg;
2668 vdev_stat_t *vs = &vd->vdev_stat;
2669 zio_type_t type = zio->io_type;
2670 int flags = zio->io_flags;

2672 /*
2673 * If this i/o is a gang leader, it didn’t do any actual work.
2674 */
2675 if (zio->io_gang_tree)

new/usr/src/uts/common/fs/zfs/vdev.c 39

2676 return;

2678 if (zio->io_error == 0) {
2679 /*
2680 * If this is a root i/o, don’t count it -- we’ve already
2681 * counted the top-level vdevs, and vdev_get_stats() will
2682 * aggregate them when asked. This reduces contention on
2683 * the root vdev_stat_lock and implicitly handles blocks
2684 * that compress away to holes, for which there is no i/o.
2685 * (Holes never create vdev children, so all the counters
2686 * remain zero, which is what we want.)
2687 *
2688 * Note: this only applies to successful i/o (io_error == 0)
2689 * because unlike i/o counts, errors are not additive.
2690 * When reading a ditto block, for example, failure of
2691 * one top-level vdev does not imply a root-level error.
2692 */
2693 if (vd == rvd)
2694 return;

2696 ASSERT(vd == zio->io_vd);

2698 if (flags & ZIO_FLAG_IO_BYPASS)
2699 return;

2701 mutex_enter(&vd->vdev_stat_lock);

2703 if (flags & ZIO_FLAG_IO_REPAIR) {
2704 if (flags & ZIO_FLAG_SCAN_THREAD) {
2705 dsl_scan_phys_t *scn_phys =
2706 &spa->spa_dsl_pool->dp_scan->scn_phys;
2707 uint64_t *processed = &scn_phys->scn_processed;

2709 /* XXX cleanup? */
2710 if (vd->vdev_ops->vdev_op_leaf)
2711 atomic_add_64(processed, psize);
2712 vs->vs_scan_processed += psize;
2713 }

2715 if (flags & ZIO_FLAG_SELF_HEAL)
2716 vs->vs_self_healed += psize;
2717 }

2719 vs->vs_ops[type]++;
2720 vs->vs_bytes[type] += psize;

2722 mutex_exit(&vd->vdev_stat_lock);
2723 return;
2724 }

2726 if (flags & ZIO_FLAG_SPECULATIVE)
2727 return;

2729 /*
2730 * If this is an I/O error that is going to be retried, then ignore the
2731 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2732 * hard errors, when in reality they can happen for any number of
2733 * innocuous reasons (bus resets, MPxIO link failure, etc).
2734 */
2735 if (zio->io_error == EIO &&
2736 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2737 return;

2739 /*
2740 * Intent logs writes won’t propagate their error to the root
2741 * I/O so don’t mark these types of failures as pool-level

new/usr/src/uts/common/fs/zfs/vdev.c 40

2742 * errors.
2743 */
2744 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2745 return;

2747 mutex_enter(&vd->vdev_stat_lock);
2748 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2749 if (zio->io_error == ECKSUM)
2750 vs->vs_checksum_errors++;
2751 else
2752 vs->vs_read_errors++;
2753 }
2754 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2755 vs->vs_write_errors++;
2756 mutex_exit(&vd->vdev_stat_lock);

2758 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2759 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2760 (flags & ZIO_FLAG_SCAN_THREAD) ||
2761 spa->spa_claiming)) {
2762 /*
2763 * This is either a normal write (not a repair), or it’s
2764 * a repair induced by the scrub thread, or it’s a repair
2765 * made by zil_claim() during spa_load() in the first txg.
2766 * In the normal case, we commit the DTL change in the same
2767 * txg as the block was born. In the scrub-induced repair
2768 * case, we know that scrubs run in first-pass syncing context,
2769 * so we commit the DTL change in spa_syncing_txg(spa).
2770 * In the zil_claim() case, we commit in spa_first_txg(spa).
2771 *
2772 * We currently do not make DTL entries for failed spontaneous
2773 * self-healing writes triggered by normal (non-scrubbing)
2774 * reads, because we have no transactional context in which to
2775 * do so -- and it’s not clear that it’d be desirable anyway.
2776 */
2777 if (vd->vdev_ops->vdev_op_leaf) {
2778 uint64_t commit_txg = txg;
2779 if (flags & ZIO_FLAG_SCAN_THREAD) {
2780 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2781 ASSERT(spa_sync_pass(spa) == 1);
2782 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2783 commit_txg = spa_syncing_txg(spa);
2784 } else if (spa->spa_claiming) {
2785 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2786 commit_txg = spa_first_txg(spa);
2787 }
2788 ASSERT(commit_txg >= spa_syncing_txg(spa));
2789 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2790 return;
2791 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2792 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2793 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2794 }
2795 if (vd != rvd)
2796 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2797 }
2798 }

2800 /*
2801 * Update the in-core space usage stats for this vdev, its metaslab class,
2802 * and the root vdev.
2803 */
2804 void
2805 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2806 int64_t space_delta)
2807 {

new/usr/src/uts/common/fs/zfs/vdev.c 41

2808 int64_t dspace_delta = space_delta;
2809 spa_t *spa = vd->vdev_spa;
2810 vdev_t *rvd = spa->spa_root_vdev;
2811 metaslab_group_t *mg = vd->vdev_mg;
2812 metaslab_class_t *mc = mg ? mg->mg_class : NULL;

2814 ASSERT(vd == vd->vdev_top);

2816 /*
2817 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2818 * factor. We must calculate this here and not at the root vdev
2819 * because the root vdev’s psize-to-asize is simply the max of its
2820 * childrens’, thus not accurate enough for us.
2821 */
2822 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2823 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2824 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2825 vd->vdev_deflate_ratio;

2827 mutex_enter(&vd->vdev_stat_lock);
2828 vd->vdev_stat.vs_alloc += alloc_delta;
2829 vd->vdev_stat.vs_space += space_delta;
2830 vd->vdev_stat.vs_dspace += dspace_delta;
2831 mutex_exit(&vd->vdev_stat_lock);

2833 if (mc == spa_normal_class(spa)) {
2834 mutex_enter(&rvd->vdev_stat_lock);
2835 rvd->vdev_stat.vs_alloc += alloc_delta;
2836 rvd->vdev_stat.vs_space += space_delta;
2837 rvd->vdev_stat.vs_dspace += dspace_delta;
2838 mutex_exit(&rvd->vdev_stat_lock);
2839 }

2841 if (mc != NULL) {
2842 ASSERT(rvd == vd->vdev_parent);
2843 ASSERT(vd->vdev_ms_count != 0);

2845 metaslab_class_space_update(mc,
2846 alloc_delta, defer_delta, space_delta, dspace_delta);
2847 }
2848 }

2850 /*
2851 * Mark a top-level vdev’s config as dirty, placing it on the dirty list
2852 * so that it will be written out next time the vdev configuration is synced.
2853 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2854 */
2855 void
2856 vdev_config_dirty(vdev_t *vd)
2857 {
2858 spa_t *spa = vd->vdev_spa;
2859 vdev_t *rvd = spa->spa_root_vdev;
2860 int c;

2862 ASSERT(spa_writeable(spa));

2864 /*
2865 * If this is an aux vdev (as with l2cache and spare devices), then we
2866 * update the vdev config manually and set the sync flag.
2867 */
2868 if (vd->vdev_aux != NULL) {
2869 spa_aux_vdev_t *sav = vd->vdev_aux;
2870 nvlist_t **aux;
2871 uint_t naux;

2873 for (c = 0; c < sav->sav_count; c++) {

new/usr/src/uts/common/fs/zfs/vdev.c 42

2874 if (sav->sav_vdevs[c] == vd)
2875 break;
2876 }

2878 if (c == sav->sav_count) {
2879 /*
2880 * We’re being removed. There’s nothing more to do.
2881 */
2882 ASSERT(sav->sav_sync == B_TRUE);
2883 return;
2884 }

2886 sav->sav_sync = B_TRUE;

2888 if (nvlist_lookup_nvlist_array(sav->sav_config,
2889 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2890 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2891 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2892 }

2894 ASSERT(c < naux);

2896 /*
2897 * Setting the nvlist in the middle if the array is a little
2898 * sketchy, but it will work.
2899 */
2900 nvlist_free(aux[c]);
2901 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);

2903 return;
2904 }

2906 /*
2907 * The dirty list is protected by the SCL_CONFIG lock. The caller
2908 * must either hold SCL_CONFIG as writer, or must be the sync thread
2909 * (which holds SCL_CONFIG as reader). There’s only one sync thread,
2910 * so this is sufficient to ensure mutual exclusion.
2911 */
2912 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2913 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2914 spa_config_held(spa, SCL_CONFIG, RW_READER)));

2916 if (vd == rvd) {
2917 for (c = 0; c < rvd->vdev_children; c++)
2918 vdev_config_dirty(rvd->vdev_child[c]);
2919 } else {
2920 ASSERT(vd == vd->vdev_top);

2922 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2923 !vd->vdev_ishole)
2924 list_insert_head(&spa->spa_config_dirty_list, vd);
2925 }
2926 }

2928 void
2929 vdev_config_clean(vdev_t *vd)
2930 {
2931 spa_t *spa = vd->vdev_spa;

2933 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2934 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2935 spa_config_held(spa, SCL_CONFIG, RW_READER)));

2937 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2938 list_remove(&spa->spa_config_dirty_list, vd);
2939 }

new/usr/src/uts/common/fs/zfs/vdev.c 43

2941 /*
2942 * Mark a top-level vdev’s state as dirty, so that the next pass of
2943 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2944 * the state changes from larger config changes because they require
2945 * much less locking, and are often needed for administrative actions.
2946 */
2947 void
2948 vdev_state_dirty(vdev_t *vd)
2949 {
2950 spa_t *spa = vd->vdev_spa;

2952 ASSERT(spa_writeable(spa));
2953 ASSERT(vd == vd->vdev_top);

2955 /*
2956 * The state list is protected by the SCL_STATE lock. The caller
2957 * must either hold SCL_STATE as writer, or must be the sync thread
2958 * (which holds SCL_STATE as reader). There’s only one sync thread,
2959 * so this is sufficient to ensure mutual exclusion.
2960 */
2961 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2962 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2963 spa_config_held(spa, SCL_STATE, RW_READER)));

2965 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2966 list_insert_head(&spa->spa_state_dirty_list, vd);
2967 }

2969 void
2970 vdev_state_clean(vdev_t *vd)
2971 {
2972 spa_t *spa = vd->vdev_spa;

2974 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2975 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2976 spa_config_held(spa, SCL_STATE, RW_READER)));

2978 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2979 list_remove(&spa->spa_state_dirty_list, vd);
2980 }

2982 /*
2983 * Propagate vdev state up from children to parent.
2984 */
2985 void
2986 vdev_propagate_state(vdev_t *vd)
2987 {
2988 spa_t *spa = vd->vdev_spa;
2989 vdev_t *rvd = spa->spa_root_vdev;
2990 int degraded = 0, faulted = 0;
2991 int corrupted = 0;
2992 vdev_t *child;

2994 if (vd->vdev_children > 0) {
2995 for (int c = 0; c < vd->vdev_children; c++) {
2996 child = vd->vdev_child[c];

2998 /*
2999 * Don’t factor holes into the decision.
3000 */
3001 if (child->vdev_ishole)
3002 continue;

3004 if (!vdev_readable(child) ||
3005 (!vdev_writeable(child) && spa_writeable(spa))) {

new/usr/src/uts/common/fs/zfs/vdev.c 44

3006 /*
3007 * Root special: if there is a top-level log
3008 * device, treat the root vdev as if it were
3009 * degraded.
3010 */
3011 if (child->vdev_islog && vd == rvd)
3012 degraded++;
3013 else
3014 faulted++;
3015 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3016 degraded++;
3017 }

3019 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3020 corrupted++;
3021 }

3023 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);

3025 /*
3026 * Root special: if there is a top-level vdev that cannot be
3027 * opened due to corrupted metadata, then propagate the root
3028 * vdev’s aux state as ’corrupt’ rather than ’insufficient
3029 * replicas’.
3030 */
3031 if (corrupted && vd == rvd &&
3032 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3033 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3034 VDEV_AUX_CORRUPT_DATA);
3035 }

3037 if (vd->vdev_parent)
3038 vdev_propagate_state(vd->vdev_parent);
3039 }

3041 /*
3042 * Set a vdev’s state. If this is during an open, we don’t update the parent
3043 * state, because we’re in the process of opening children depth-first.
3044 * Otherwise, we propagate the change to the parent.
3045 *
3046 * If this routine places a device in a faulted state, an appropriate ereport is
3047 * generated.
3048 */
3049 void
3050 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3051 {
3052 uint64_t save_state;
3053 spa_t *spa = vd->vdev_spa;

3055 if (state == vd->vdev_state) {
3056 vd->vdev_stat.vs_aux = aux;
3057 return;
3058 }

3060 save_state = vd->vdev_state;

3062 vd->vdev_state = state;
3063 vd->vdev_stat.vs_aux = aux;

3065 /*
3066 * If we are setting the vdev state to anything but an open state, then
3067 * always close the underlying device unless the device has requested
3068 * a delayed close (i.e. we’re about to remove or fault the device).
3069 * Otherwise, we keep accessible but invalid devices open forever.
3070 * We don’t call vdev_close() itself, because that implies some extra
3071 * checks (offline, etc) that we don’t want here. This is limited to

new/usr/src/uts/common/fs/zfs/vdev.c 45

3072 * leaf devices, because otherwise closing the device will affect other
3073 * children.
3074 */
3075 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3076 vd->vdev_ops->vdev_op_leaf)
3077 vd->vdev_ops->vdev_op_close(vd);

3079 /*
3080 * If we have brought this vdev back into service, we need
3081 * to notify fmd so that it can gracefully repair any outstanding
3082 * cases due to a missing device. We do this in all cases, even those
3083 * that probably don’t correlate to a repaired fault. This is sure to
3084 * catch all cases, and we let the zfs-retire agent sort it out. If
3085 * this is a transient state it’s OK, as the retire agent will
3086 * double-check the state of the vdev before repairing it.
3087 */
3088 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3089 vd->vdev_prevstate != state)
3090 zfs_post_state_change(spa, vd);

3092 if (vd->vdev_removed &&
3093 state == VDEV_STATE_CANT_OPEN &&
3094 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3095 /*
3096 * If the previous state is set to VDEV_STATE_REMOVED, then this
3097 * device was previously marked removed and someone attempted to
3098 * reopen it. If this failed due to a nonexistent device, then
3099 * keep the device in the REMOVED state. We also let this be if
3100 * it is one of our special test online cases, which is only
3101 * attempting to online the device and shouldn’t generate an FMA
3102 * fault.
3103 */
3104 vd->vdev_state = VDEV_STATE_REMOVED;
3105 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3106 } else if (state == VDEV_STATE_REMOVED) {
3107 vd->vdev_removed = B_TRUE;
3108 } else if (state == VDEV_STATE_CANT_OPEN) {
3109 /*
3110 * If we fail to open a vdev during an import or recovery, we
3111 * mark it as "not available", which signifies that it was
3112 * never there to begin with. Failure to open such a device
3113 * is not considered an error.
3114 */
3115 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3116 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3117 vd->vdev_ops->vdev_op_leaf)
3118 vd->vdev_not_present = 1;

3120 /*
3121 * Post the appropriate ereport. If the ’prevstate’ field is
3122 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3123 * that this is part of a vdev_reopen(). In this case, we don’t
3124 * want to post the ereport if the device was already in the
3125 * CANT_OPEN state beforehand.
3126 *
3127 * If the ’checkremove’ flag is set, then this is an attempt to
3128 * online the device in response to an insertion event. If we
3129 * hit this case, then we have detected an insertion event for a
3130 * faulted or offline device that wasn’t in the removed state.
3131 * In this scenario, we don’t post an ereport because we are
3132 * about to replace the device, or attempt an online with
3133 * vdev_forcefault, which will generate the fault for us.
3134 */
3135 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3136 !vd->vdev_not_present && !vd->vdev_checkremove &&
3137 vd != spa->spa_root_vdev) {

new/usr/src/uts/common/fs/zfs/vdev.c 46

3138 const char *class;

3140 switch (aux) {
3141 case VDEV_AUX_OPEN_FAILED:
3142 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3143 break;
3144 case VDEV_AUX_CORRUPT_DATA:
3145 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3146 break;
3147 case VDEV_AUX_NO_REPLICAS:
3148 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3149 break;
3150 case VDEV_AUX_BAD_GUID_SUM:
3151 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3152 break;
3153 case VDEV_AUX_TOO_SMALL:
3154 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3155 break;
3156 case VDEV_AUX_BAD_LABEL:
3157 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3158 break;
3159 default:
3160 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3161 }

3163 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3164 }

3166 /* Erase any notion of persistent removed state */
3167 vd->vdev_removed = B_FALSE;
3168 } else {
3169 vd->vdev_removed = B_FALSE;
3170 }

3172 if (!isopen && vd->vdev_parent)
3173 vdev_propagate_state(vd->vdev_parent);
3174 }

3176 /*
3177 * Check the vdev configuration to ensure that it’s capable of supporting
3178 * a root pool. Currently, we do not support RAID-Z or partial configuration.
3179 * In addition, only a single top-level vdev is allowed and none of the leaves
3180 * can be wholedisks.
3181 */
3182 boolean_t
3183 vdev_is_bootable(vdev_t *vd)
3184 {
3185 if (!vd->vdev_ops->vdev_op_leaf) {
3186 char *vdev_type = vd->vdev_ops->vdev_op_type;

3188 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3189 vd->vdev_children > 1) {
3190 return (B_FALSE);
3191 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3192 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3193 return (B_FALSE);
3194 }
3195 } else if (vd->vdev_wholedisk == 1) {
3196 return (B_FALSE);
3197 }

3199 for (int c = 0; c < vd->vdev_children; c++) {
3200 if (!vdev_is_bootable(vd->vdev_child[c]))
3201 return (B_FALSE);
3202 }
3203 return (B_TRUE);

new/usr/src/uts/common/fs/zfs/vdev.c 47

3204 }

3206 /*
3207 * Load the state from the original vdev tree (ovd) which
3208 * we’ve retrieved from the MOS config object. If the original
3209 * vdev was offline or faulted then we transfer that state to the
3210 * device in the current vdev tree (nvd).
3211 */
3212 void
3213 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3214 {
3215 spa_t *spa = nvd->vdev_spa;

3217 ASSERT(nvd->vdev_top->vdev_islog);
3218 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3219 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);

3221 for (int c = 0; c < nvd->vdev_children; c++)
3222 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);

3224 if (nvd->vdev_ops->vdev_op_leaf) {
3225 /*
3226 * Restore the persistent vdev state
3227 */
3228 nvd->vdev_offline = ovd->vdev_offline;
3229 nvd->vdev_faulted = ovd->vdev_faulted;
3230 nvd->vdev_degraded = ovd->vdev_degraded;
3231 nvd->vdev_removed = ovd->vdev_removed;
3232 }
3233 }

3235 /*
3236 * Determine if a log device has valid content. If the vdev was
3237 * removed or faulted in the MOS config then we know that
3238 * the content on the log device has already been written to the pool.
3239 */
3240 boolean_t
3241 vdev_log_state_valid(vdev_t *vd)
3242 {
3243 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3244 !vd->vdev_removed)
3245 return (B_TRUE);

3247 for (int c = 0; c < vd->vdev_children; c++)
3248 if (vdev_log_state_valid(vd->vdev_child[c]))
3249 return (B_TRUE);

3251 return (B_FALSE);
3252 }

3254 /*
3255 * Expand a vdev if possible.
3256 */
3257 void
3258 vdev_expand(vdev_t *vd, uint64_t txg)
3259 {
3260 ASSERT(vd->vdev_top == vd);
3261 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);

3263 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3264 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3265 vdev_config_dirty(vd);
3266 }
3267 }

3269 /*

new/usr/src/uts/common/fs/zfs/vdev.c 48

3270 * Split a vdev.
3271 */
3272 void
3273 vdev_split(vdev_t *vd)
3274 {
3275 vdev_t *cvd, *pvd = vd->vdev_parent;

3277 vdev_remove_child(pvd, vd);
3278 vdev_compact_children(pvd);

3280 cvd = pvd->vdev_child[0];
3281 if (pvd->vdev_children == 1) {
3282 vdev_remove_parent(cvd);
3283 cvd->vdev_splitting = B_TRUE;
3284 }
3285 vdev_propagate_state(cvd);
3286 }

3288 void
3289 vdev_deadman(vdev_t *vd)
3290 {
3291 for (int c = 0; c < vd->vdev_children; c++) {
3292 vdev_t *cvd = vd->vdev_child[c];

3294 vdev_deadman(cvd);
3295 }

3297 if (vd->vdev_ops->vdev_op_leaf) {
3298 vdev_queue_t *vq = &vd->vdev_queue;

3300 mutex_enter(&vq->vq_lock);
3301 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3302 spa_t *spa = vd->vdev_spa;
3303 zio_t *fio;
3304 uint64_t delta;

3306 /*
3307 * Look at the head of all the pending queues,
3308 * if any I/O has been outstanding for longer than
3309 * the spa_deadman_synctime we panic the system.
3310 */
3311 fio = avl_first(&vq->vq_active_tree);
3312 delta = gethrtime() - fio->io_timestamp;
3313 if (delta > spa_deadman_synctime(spa)) {
3314 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3315 "delta %lluns, last io %lluns",
3316 fio->io_timestamp, delta,
3317 vq->vq_io_complete_ts);
3318 fm_panic("I/O to pool ’%s’ appears to be "
3319 "hung.", spa_name(spa));
3320 }
3321 }
3322 mutex_exit(&vq->vq_lock);
3323 }
3324 }

new/usr/src/uts/common/fs/zfs/zil.c 1

**
 57769 Thu Oct 16 19:15:52 2014
new/usr/src/uts/common/fs/zfs/zil.c
zpool import speedup
**
______unchanged_portion_omitted_

626 int
627 zil_claim(const char *osname, void *txarg)
628 {
629 dmu_tx_t *tx = txarg;
630 uint64_t first_txg = dmu_tx_get_txg(tx);
631 zilog_t *zilog;
632 zil_header_t *zh;
633 objset_t *os;
634 int error;

636 error = dmu_objset_own_nolock(osname, DMU_OST_ANY, B_FALSE, FTAG, &os);
636 error = dmu_objset_own(osname, DMU_OST_ANY, B_FALSE, FTAG, &os);
637 if (error != 0) {
638 cmn_err(CE_WARN, "can’t open objset for %s", osname);
639 return (0);
640 }

642 zilog = dmu_objset_zil(os);
643 zh = zil_header_in_syncing_context(zilog);

645 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
646 if (!BP_IS_HOLE(&zh->zh_log))
647 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
648 BP_ZERO(&zh->zh_log);
649 dsl_dataset_dirty(dmu_objset_ds(os), tx);
650 dmu_objset_disown(os, FTAG);
651 return (0);
652 }

654 /*
655 * Claim all log blocks if we haven’t already done so, and remember
656 * the highest claimed sequence number. This ensures that if we can
657 * read only part of the log now (e.g. due to a missing device),
658 * but we can read the entire log later, we will not try to replay
659 * or destroy beyond the last block we successfully claimed.
660 */
661 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
662 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
663 (void) zil_parse(zilog, zil_claim_log_block,
664 zil_claim_log_record, tx, first_txg);
665 zh->zh_claim_txg = first_txg;
666 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
667 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
668 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
669 zh->zh_flags |= ZIL_REPLAY_NEEDED;
670 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
671 dsl_dataset_dirty(dmu_objset_ds(os), tx);
672 }

674 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
675 dmu_objset_disown(os, FTAG);
676 return (0);
677 }

679 /*
680 * Check the log by walking the log chain.
681 * Checksum errors are ok as they indicate the end of the chain.
682 * Any other error (no device or read failure) returns an error.
683 */

new/usr/src/uts/common/fs/zfs/zil.c 2

684 int
685 zil_check_log_chain(const char *osname, void *tx)
686 {
687 zilog_t *zilog;
688 objset_t *os;
689 blkptr_t *bp;
690 int error;

692 ASSERT(tx == NULL);

694 error = dmu_objset_hold_nolock(osname, FTAG, &os);
694 error = dmu_objset_hold(osname, FTAG, &os);
695 if (error != 0) {
696 cmn_err(CE_WARN, "can’t open objset for %s", osname);
697 return (0);
698 }

700 zilog = dmu_objset_zil(os);
701 bp = (blkptr_t *)&zilog->zl_header->zh_log;

703 /*
704 * Check the first block and determine if it’s on a log device
705 * which may have been removed or faulted prior to loading this
706 * pool. If so, there’s no point in checking the rest of the log
707 * as its content should have already been synced to the pool.
708 */
709 if (!BP_IS_HOLE(bp)) {
710 vdev_t *vd;
711 boolean_t valid = B_TRUE;

713 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
714 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
715 if (vd->vdev_islog && vdev_is_dead(vd))
716 valid = vdev_log_state_valid(vd);
717 spa_config_exit(os->os_spa, SCL_STATE, FTAG);

719 if (!valid) {
720 dmu_objset_rele(os, FTAG);
721 return (0);
722 }
723 }

725 /*
726 * Because tx == NULL, zil_claim_log_block() will not actually claim
727 * any blocks, but just determine whether it is possible to do so.
728 * In addition to checking the log chain, zil_claim_log_block()
729 * will invoke zio_claim() with a done func of spa_claim_notify(),
730 * which will update spa_max_claim_txg. See spa_load() for details.
731 */
732 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
733 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));

735 dmu_objset_rele(os, FTAG);

737 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
738 }

______unchanged_portion_omitted_

