1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Bayard G. Bell. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
26 */
27
28 /*
29 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
30 * All rights reserved.
31 * Use is subject to license terms.
32 */
33
34 #include <sys/param.h>
35 #include <sys/types.h>
36 #include <sys/systm.h>
37 #include <sys/cred.h>
38 #include <sys/proc.h>
39 #include <sys/user.h>
40 #include <sys/buf.h>
41 #include <sys/vfs.h>
42 #include <sys/vnode.h>
43 #include <sys/pathname.h>
44 #include <sys/uio.h>
45 #include <sys/file.h>
46 #include <sys/stat.h>
47 #include <sys/errno.h>
48 #include <sys/socket.h>
49 #include <sys/sysmacros.h>
50 #include <sys/siginfo.h>
51 #include <sys/tiuser.h>
52 #include <sys/statvfs.h>
53 #include <sys/stream.h>
54 #include <sys/strsun.h>
55 #include <sys/strsubr.h>
56 #include <sys/stropts.h>
57 #include <sys/timod.h>
58 #include <sys/t_kuser.h>
59 #include <sys/kmem.h>
60 #include <sys/kstat.h>
61 #include <sys/dirent.h>
62 #include <sys/cmn_err.h>
63 #include <sys/debug.h>
64 #include <sys/unistd.h>
65 #include <sys/vtrace.h>
66 #include <sys/mode.h>
67 #include <sys/acl.h>
68 #include <sys/sdt.h>
69
70 #include <rpc/types.h>
71 #include <rpc/auth.h>
72 #include <rpc/auth_unix.h>
73 #include <rpc/auth_des.h>
74 #include <rpc/svc.h>
75 #include <rpc/xdr.h>
76 #include <rpc/rpc_rdma.h>
77
78 #include <nfs/nfs.h>
79 #include <nfs/export.h>
80 #include <nfs/nfssys.h>
81 #include <nfs/nfs_clnt.h>
82 #include <nfs/nfs_acl.h>
83 #include <nfs/nfs_log.h>
84 #include <nfs/nfs_cmd.h>
85 #include <nfs/lm.h>
86 #include <nfs/nfs_dispatch.h>
87 #include <nfs/nfs4_drc.h>
88
89 #include <sys/modctl.h>
90 #include <sys/cladm.h>
91 #include <sys/clconf.h>
92
93 #include <sys/tsol/label.h>
94
95 #define MAXHOST 32
96 const char *kinet_ntop6(uchar_t *, char *, size_t);
97
98 /*
99 * Module linkage information.
100 */
101
102 static struct modlmisc modlmisc = {
103 &mod_miscops, "NFS server module"
104 };
105
106 static struct modlinkage modlinkage = {
107 MODREV_1, (void *)&modlmisc, NULL
108 };
109
110 kmem_cache_t *nfs_xuio_cache;
111 int nfs_loaned_buffers = 0;
112
113 int
114 _init(void)
115 {
116 int status;
117
118 if ((status = nfs_srvinit()) != 0) {
119 cmn_err(CE_WARN, "_init: nfs_srvinit failed");
120 return (status);
121 }
122
123 status = mod_install((struct modlinkage *)&modlinkage);
124 if (status != 0) {
125 /*
126 * Could not load module, cleanup previous
127 * initialization work.
128 */
129 nfs_srvfini();
130
131 return (status);
132 }
133
134 /*
135 * Initialise some placeholders for nfssys() calls. These have
136 * to be declared by the nfs module, since that handles nfssys()
137 * calls - also used by NFS clients - but are provided by this
138 * nfssrv module. These also then serve as confirmation to the
139 * relevant code in nfs that nfssrv has been loaded, as they're
140 * initially NULL.
141 */
142 nfs_srv_quiesce_func = nfs_srv_quiesce_all;
143 nfs_srv_dss_func = rfs4_dss_setpaths;
144
145 /* setup DSS paths here; must be done before initial server startup */
146 rfs4_dss_paths = rfs4_dss_oldpaths = NULL;
147
148 /* initialize the copy reduction caches */
149
150 nfs_xuio_cache = kmem_cache_create("nfs_xuio_cache",
151 sizeof (nfs_xuio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
152
153 return (status);
154 }
155
156 int
157 _fini()
158 {
159 return (EBUSY);
160 }
161
162 int
163 _info(struct modinfo *modinfop)
164 {
165 return (mod_info(&modlinkage, modinfop));
166 }
167
168 /*
169 * PUBLICFH_CHECK() checks if the dispatch routine supports
170 * RPC_PUBLICFH_OK, if the filesystem is exported public, and if the
171 * incoming request is using the public filehandle. The check duplicates
172 * the exportmatch() call done in checkexport(), and we should consider
173 * modifying those routines to avoid the duplication. For now, we optimize
174 * by calling exportmatch() only after checking that the dispatch routine
175 * supports RPC_PUBLICFH_OK, and if the filesystem is explicitly exported
176 * public (i.e., not the placeholder).
177 */
178 #define PUBLICFH_CHECK(disp, exi, fsid, xfid) \
179 ((disp->dis_flags & RPC_PUBLICFH_OK) && \
180 ((exi->exi_export.ex_flags & EX_PUBLIC) || \
181 (exi == exi_public && exportmatch(exi_root, \
182 fsid, xfid))))
183
184 static void nfs_srv_shutdown_all(int);
185 static void rfs4_server_start(int);
186 static void nullfree(void);
187 static void rfs_dispatch(struct svc_req *, SVCXPRT *);
188 static void acl_dispatch(struct svc_req *, SVCXPRT *);
189 static void common_dispatch(struct svc_req *, SVCXPRT *,
190 rpcvers_t, rpcvers_t, char *,
191 struct rpc_disptable *);
192 static void hanfsv4_failover(void);
193 static int checkauth(struct exportinfo *, struct svc_req *, cred_t *, int,
194 bool_t, bool_t *);
195 static char *client_name(struct svc_req *req);
196 static char *client_addr(struct svc_req *req, char *buf);
197 extern int sec_svc_getcred(struct svc_req *, cred_t *cr, char **, int *);
198 extern bool_t sec_svc_inrootlist(int, caddr_t, int, caddr_t *);
199
200 #define NFSLOG_COPY_NETBUF(exi, xprt, nb) { \
201 (nb)->maxlen = (xprt)->xp_rtaddr.maxlen; \
202 (nb)->len = (xprt)->xp_rtaddr.len; \
203 (nb)->buf = kmem_alloc((nb)->len, KM_SLEEP); \
204 bcopy((xprt)->xp_rtaddr.buf, (nb)->buf, (nb)->len); \
205 }
206
207 /*
208 * Public Filehandle common nfs routines
209 */
210 static int MCLpath(char **);
211 static void URLparse(char *);
212
213 /*
214 * NFS callout table.
215 * This table is used by svc_getreq() to dispatch a request with
216 * a given prog/vers pair to an appropriate service provider
217 * dispatch routine.
218 *
219 * NOTE: ordering is relied upon below when resetting the version min/max
220 * for NFS_PROGRAM. Careful, if this is ever changed.
221 */
222 static SVC_CALLOUT __nfs_sc_clts[] = {
223 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch },
224 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch }
225 };
226
227 static SVC_CALLOUT_TABLE nfs_sct_clts = {
228 sizeof (__nfs_sc_clts) / sizeof (__nfs_sc_clts[0]), FALSE,
229 __nfs_sc_clts
230 };
231
232 static SVC_CALLOUT __nfs_sc_cots[] = {
233 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch },
234 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch }
235 };
236
237 static SVC_CALLOUT_TABLE nfs_sct_cots = {
238 sizeof (__nfs_sc_cots) / sizeof (__nfs_sc_cots[0]), FALSE, __nfs_sc_cots
239 };
240
241 static SVC_CALLOUT __nfs_sc_rdma[] = {
242 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch },
243 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch }
244 };
245
246 static SVC_CALLOUT_TABLE nfs_sct_rdma = {
247 sizeof (__nfs_sc_rdma) / sizeof (__nfs_sc_rdma[0]), FALSE, __nfs_sc_rdma
248 };
249 rpcvers_t nfs_versmin = NFS_VERSMIN_DEFAULT;
250 rpcvers_t nfs_versmax = NFS_VERSMAX_DEFAULT;
251
252 /*
253 * Used to track the state of the server so that initialization
254 * can be done properly.
255 */
256 typedef enum {
257 NFS_SERVER_STOPPED, /* server state destroyed */
258 NFS_SERVER_STOPPING, /* server state being destroyed */
259 NFS_SERVER_RUNNING,
260 NFS_SERVER_QUIESCED, /* server state preserved */
261 NFS_SERVER_OFFLINE /* server pool offline */
262 } nfs_server_running_t;
263
264 static nfs_server_running_t nfs_server_upordown;
265 static kmutex_t nfs_server_upordown_lock;
266 static kcondvar_t nfs_server_upordown_cv;
267
268 /*
269 * DSS: distributed stable storage
270 * lists of all DSS paths: current, and before last warmstart
271 */
272 nvlist_t *rfs4_dss_paths, *rfs4_dss_oldpaths;
273
274 int rfs4_dispatch(struct rpcdisp *, struct svc_req *, SVCXPRT *, char *);
275 bool_t rfs4_minorvers_mismatch(struct svc_req *, SVCXPRT *, void *);
276
277 /*
278 * RDMA wait variables.
279 */
280 static kcondvar_t rdma_wait_cv;
281 static kmutex_t rdma_wait_mutex;
282
283 /*
284 * Will be called at the point the server pool is being unregistered
285 * from the pool list. From that point onwards, the pool is waiting
286 * to be drained and as such the server state is stale and pertains
287 * to the old instantiation of the NFS server pool.
288 */
289 void
290 nfs_srv_offline(void)
291 {
292 mutex_enter(&nfs_server_upordown_lock);
293 if (nfs_server_upordown == NFS_SERVER_RUNNING) {
294 nfs_server_upordown = NFS_SERVER_OFFLINE;
295 }
296 mutex_exit(&nfs_server_upordown_lock);
297 }
298
299 /*
300 * Will be called at the point the server pool is being destroyed so
301 * all transports have been closed and no service threads are in
302 * existence.
303 *
304 * If we quiesce the server, we're shutting it down without destroying the
305 * server state. This allows it to warm start subsequently.
306 */
307 void
308 nfs_srv_stop_all(void)
309 {
310 int quiesce = 0;
311 nfs_srv_shutdown_all(quiesce);
312 }
313
314 /*
315 * This alternative shutdown routine can be requested via nfssys()
316 */
317 void
318 nfs_srv_quiesce_all(void)
319 {
320 int quiesce = 1;
321 nfs_srv_shutdown_all(quiesce);
322 }
323
324 static void
325 nfs_srv_shutdown_all(int quiesce) {
326 mutex_enter(&nfs_server_upordown_lock);
327 if (quiesce) {
328 if (nfs_server_upordown == NFS_SERVER_RUNNING ||
329 nfs_server_upordown == NFS_SERVER_OFFLINE) {
330 nfs_server_upordown = NFS_SERVER_QUIESCED;
331 cv_signal(&nfs_server_upordown_cv);
332
333 /* reset DSS state, for subsequent warm restart */
334 rfs4_dss_numnewpaths = 0;
335 rfs4_dss_newpaths = NULL;
336
337 cmn_err(CE_NOTE, "nfs_server: server is now quiesced; "
338 "NFSv4 state has been preserved");
339 }
340 } else {
341 if (nfs_server_upordown == NFS_SERVER_OFFLINE) {
342 nfs_server_upordown = NFS_SERVER_STOPPING;
343 mutex_exit(&nfs_server_upordown_lock);
344 rfs4_state_fini();
345 rfs4_fini_drc(nfs4_drc);
346 mutex_enter(&nfs_server_upordown_lock);
347 nfs_server_upordown = NFS_SERVER_STOPPED;
348 cv_signal(&nfs_server_upordown_cv);
349 }
350 }
351 mutex_exit(&nfs_server_upordown_lock);
352 }
353
354 static int
355 nfs_srv_set_sc_versions(struct file *fp, SVC_CALLOUT_TABLE **sctpp,
356 rpcvers_t versmin, rpcvers_t versmax)
357 {
358 struct strioctl strioc;
359 struct T_info_ack tinfo;
360 int error, retval;
361
362 /*
363 * Find out what type of transport this is.
364 */
365 strioc.ic_cmd = TI_GETINFO;
366 strioc.ic_timout = -1;
367 strioc.ic_len = sizeof (tinfo);
368 strioc.ic_dp = (char *)&tinfo;
369 tinfo.PRIM_type = T_INFO_REQ;
370
371 error = strioctl(fp->f_vnode, I_STR, (intptr_t)&strioc, 0, K_TO_K,
372 CRED(), &retval);
373 if (error || retval)
374 return (error);
375
376 /*
377 * Based on our query of the transport type...
378 *
379 * Reset the min/max versions based on the caller's request
380 * NOTE: This assumes that NFS_PROGRAM is first in the array!!
381 * And the second entry is the NFS_ACL_PROGRAM.
382 */
383 switch (tinfo.SERV_type) {
384 case T_CLTS:
385 if (versmax == NFS_V4)
386 return (EINVAL);
387 __nfs_sc_clts[0].sc_versmin = versmin;
388 __nfs_sc_clts[0].sc_versmax = versmax;
389 __nfs_sc_clts[1].sc_versmin = versmin;
390 __nfs_sc_clts[1].sc_versmax = versmax;
391 *sctpp = &nfs_sct_clts;
392 break;
393 case T_COTS:
394 case T_COTS_ORD:
395 __nfs_sc_cots[0].sc_versmin = versmin;
396 __nfs_sc_cots[0].sc_versmax = versmax;
397 /* For the NFS_ACL program, check the max version */
398 if (versmax > NFS_ACL_VERSMAX)
399 versmax = NFS_ACL_VERSMAX;
400 __nfs_sc_cots[1].sc_versmin = versmin;
401 __nfs_sc_cots[1].sc_versmax = versmax;
402 *sctpp = &nfs_sct_cots;
403 break;
404 default:
405 error = EINVAL;
406 }
407
408 return (error);
409 }
410
411 /*
412 * NFS Server system call.
413 * Does all of the work of running a NFS server.
414 * uap->fd is the fd of an open transport provider
415 */
416 int
417 nfs_svc(struct nfs_svc_args *arg, model_t model)
418 {
419 file_t *fp;
420 SVCMASTERXPRT *xprt;
421 int error;
422 int readsize;
423 char buf[KNC_STRSIZE];
424 size_t len;
425 STRUCT_HANDLE(nfs_svc_args, uap);
426 struct netbuf addrmask;
427 SVC_CALLOUT_TABLE *sctp = NULL;
428
429 #ifdef lint
430 model = model; /* STRUCT macros don't always refer to it */
431 #endif
432
433 STRUCT_SET_HANDLE(uap, model, arg);
434
435 /* Check privileges in nfssys() */
436
437 if ((fp = getf(STRUCT_FGET(uap, fd))) == NULL)
438 return (EBADF);
439
440 /*
441 * Set read buffer size to rsize
442 * and add room for RPC headers.
443 */
444 readsize = nfs3tsize() + (RPC_MAXDATASIZE - NFS_MAXDATA);
445 if (readsize < RPC_MAXDATASIZE)
446 readsize = RPC_MAXDATASIZE;
447
448 error = copyinstr((const char *)STRUCT_FGETP(uap, netid), buf,
449 KNC_STRSIZE, &len);
450 if (error) {
451 releasef(STRUCT_FGET(uap, fd));
452 return (error);
453 }
454
455 addrmask.len = STRUCT_FGET(uap, addrmask.len);
456 addrmask.maxlen = STRUCT_FGET(uap, addrmask.maxlen);
457 addrmask.buf = kmem_alloc(addrmask.maxlen, KM_SLEEP);
458 error = copyin(STRUCT_FGETP(uap, addrmask.buf), addrmask.buf,
459 addrmask.len);
460 if (error) {
461 releasef(STRUCT_FGET(uap, fd));
462 kmem_free(addrmask.buf, addrmask.maxlen);
463 return (error);
464 }
465
466 nfs_versmin = STRUCT_FGET(uap, versmin);
467 nfs_versmax = STRUCT_FGET(uap, versmax);
468
469 /* Double check the vers min/max ranges */
470 if ((nfs_versmin > nfs_versmax) ||
471 (nfs_versmin < NFS_VERSMIN) ||
472 (nfs_versmax > NFS_VERSMAX)) {
473 nfs_versmin = NFS_VERSMIN_DEFAULT;
474 nfs_versmax = NFS_VERSMAX_DEFAULT;
475 }
476
477 if (error =
478 nfs_srv_set_sc_versions(fp, &sctp, nfs_versmin, nfs_versmax)) {
479 releasef(STRUCT_FGET(uap, fd));
480 kmem_free(addrmask.buf, addrmask.maxlen);
481 return (error);
482 }
483
484 /* Initialize nfsv4 server */
485 if (nfs_versmax == (rpcvers_t)NFS_V4)
486 rfs4_server_start(STRUCT_FGET(uap, delegation));
487
488 /* Create a transport handle. */
489 error = svc_tli_kcreate(fp, readsize, buf, &addrmask, &xprt,
490 sctp, NULL, NFS_SVCPOOL_ID, TRUE);
491
492 if (error)
493 kmem_free(addrmask.buf, addrmask.maxlen);
494
495 releasef(STRUCT_FGET(uap, fd));
496
497 /* HA-NFSv4: save the cluster nodeid */
498 if (cluster_bootflags & CLUSTER_BOOTED)
499 lm_global_nlmid = clconf_get_nodeid();
500
501 return (error);
502 }
503
504 static void
505 rfs4_server_start(int nfs4_srv_delegation)
506 {
507 /*
508 * Determine if the server has previously been "started" and
509 * if not, do the per instance initialization
510 */
511 mutex_enter(&nfs_server_upordown_lock);
512
513 if (nfs_server_upordown != NFS_SERVER_RUNNING) {
514 /* Do we need to stop and wait on the previous server? */
515 while (nfs_server_upordown == NFS_SERVER_STOPPING ||
516 nfs_server_upordown == NFS_SERVER_OFFLINE)
517 cv_wait(&nfs_server_upordown_cv,
518 &nfs_server_upordown_lock);
519
520 if (nfs_server_upordown != NFS_SERVER_RUNNING) {
521 (void) svc_pool_control(NFS_SVCPOOL_ID,
522 SVCPSET_UNREGISTER_PROC, (void *)&nfs_srv_offline);
523 (void) svc_pool_control(NFS_SVCPOOL_ID,
524 SVCPSET_SHUTDOWN_PROC, (void *)&nfs_srv_stop_all);
525
526 /* is this an nfsd warm start? */
527 if (nfs_server_upordown == NFS_SERVER_QUIESCED) {
528 cmn_err(CE_NOTE, "nfs_server: "
529 "server was previously quiesced; "
530 "existing NFSv4 state will be re-used");
531
532 /*
533 * HA-NFSv4: this is also the signal
534 * that a Resource Group failover has
535 * occurred.
536 */
537 if (cluster_bootflags & CLUSTER_BOOTED)
538 hanfsv4_failover();
539 } else {
540 /* cold start */
541 rfs4_state_init();
542 nfs4_drc = rfs4_init_drc(nfs4_drc_max,
543 nfs4_drc_hash);
544 }
545
546 /*
547 * Check to see if delegation is to be
548 * enabled at the server
549 */
550 if (nfs4_srv_delegation != FALSE)
551 rfs4_set_deleg_policy(SRV_NORMAL_DELEGATE);
552
553 nfs_server_upordown = NFS_SERVER_RUNNING;
554 }
555 cv_signal(&nfs_server_upordown_cv);
556 }
557 mutex_exit(&nfs_server_upordown_lock);
558 }
559
560 /*
561 * If RDMA device available,
562 * start RDMA listener.
563 */
564 int
565 rdma_start(struct rdma_svc_args *rsa)
566 {
567 int error;
568 rdma_xprt_group_t started_rdma_xprts;
569 rdma_stat stat;
570 int svc_state = 0;
571
572 /* Double check the vers min/max ranges */
573 if ((rsa->nfs_versmin > rsa->nfs_versmax) ||
574 (rsa->nfs_versmin < NFS_VERSMIN) ||
575 (rsa->nfs_versmax > NFS_VERSMAX)) {
576 rsa->nfs_versmin = NFS_VERSMIN_DEFAULT;
577 rsa->nfs_versmax = NFS_VERSMAX_DEFAULT;
578 }
579 nfs_versmin = rsa->nfs_versmin;
580 nfs_versmax = rsa->nfs_versmax;
581
582 /* Set the versions in the callout table */
583 __nfs_sc_rdma[0].sc_versmin = rsa->nfs_versmin;
584 __nfs_sc_rdma[0].sc_versmax = rsa->nfs_versmax;
585 /* For the NFS_ACL program, check the max version */
586 __nfs_sc_rdma[1].sc_versmin = rsa->nfs_versmin;
587 if (rsa->nfs_versmax > NFS_ACL_VERSMAX)
588 __nfs_sc_rdma[1].sc_versmax = NFS_ACL_VERSMAX;
589 else
590 __nfs_sc_rdma[1].sc_versmax = rsa->nfs_versmax;
591
592 /* Initialize nfsv4 server */
593 if (rsa->nfs_versmax == (rpcvers_t)NFS_V4)
594 rfs4_server_start(rsa->delegation);
595
596 started_rdma_xprts.rtg_count = 0;
597 started_rdma_xprts.rtg_listhead = NULL;
598 started_rdma_xprts.rtg_poolid = rsa->poolid;
599
600 restart:
601 error = svc_rdma_kcreate(rsa->netid, &nfs_sct_rdma, rsa->poolid,
602 &started_rdma_xprts);
603
604 svc_state = !error;
605
606 while (!error) {
607
608 /*
609 * wait till either interrupted by a signal on
610 * nfs service stop/restart or signalled by a
611 * rdma plugin attach/detatch.
612 */
613
614 stat = rdma_kwait();
615
616 /*
617 * stop services if running -- either on a HCA detach event
618 * or if the nfs service is stopped/restarted.
619 */
620
621 if ((stat == RDMA_HCA_DETACH || stat == RDMA_INTR) &&
622 svc_state) {
623 rdma_stop(&started_rdma_xprts);
624 svc_state = 0;
625 }
626
627 /*
628 * nfs service stop/restart, break out of the
629 * wait loop and return;
630 */
631 if (stat == RDMA_INTR)
632 return (0);
633
634 /*
635 * restart stopped services on a HCA attach event
636 * (if not already running)
637 */
638
639 if ((stat == RDMA_HCA_ATTACH) && (svc_state == 0))
640 goto restart;
641
642 /*
643 * loop until a nfs service stop/restart
644 */
645 }
646
647 return (error);
648 }
649
650 /* ARGSUSED */
651 void
652 rpc_null(caddr_t *argp, caddr_t *resp, struct exportinfo *exi,
653 struct svc_req *req, cred_t *cr, bool_t ro)
654 {
655 }
656
657 /* ARGSUSED */
658 void
659 rpc_null_v3(caddr_t *argp, caddr_t *resp, struct exportinfo *exi,
660 struct svc_req *req, cred_t *cr, bool_t ro)
661 {
662 DTRACE_NFSV3_3(op__null__start, struct svc_req *, req,
663 cred_t *, cr, vnode_t *, NULL);
664 DTRACE_NFSV3_3(op__null__done, struct svc_req *, req,
665 cred_t *, cr, vnode_t *, NULL);
666 }
667
668 /* ARGSUSED */
669 static void
670 rfs_error(caddr_t *argp, caddr_t *resp, struct exportinfo *exi,
671 struct svc_req *req, cred_t *cr, bool_t ro)
672 {
673 /* return (EOPNOTSUPP); */
674 }
675
676 static void
677 nullfree(void)
678 {
679 }
680
681 static char *rfscallnames_v2[] = {
682 "RFS2_NULL",
683 "RFS2_GETATTR",
684 "RFS2_SETATTR",
685 "RFS2_ROOT",
686 "RFS2_LOOKUP",
687 "RFS2_READLINK",
688 "RFS2_READ",
689 "RFS2_WRITECACHE",
690 "RFS2_WRITE",
691 "RFS2_CREATE",
692 "RFS2_REMOVE",
693 "RFS2_RENAME",
694 "RFS2_LINK",
695 "RFS2_SYMLINK",
696 "RFS2_MKDIR",
697 "RFS2_RMDIR",
698 "RFS2_READDIR",
699 "RFS2_STATFS"
700 };
701
702 static struct rpcdisp rfsdisptab_v2[] = {
703 /*
704 * NFS VERSION 2
705 */
706
707 /* RFS_NULL = 0 */
708 {rpc_null,
709 xdr_void, NULL_xdrproc_t, 0,
710 xdr_void, NULL_xdrproc_t, 0,
711 nullfree, RPC_IDEMPOTENT,
712 0},
713
714 /* RFS_GETATTR = 1 */
715 {rfs_getattr,
716 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t),
717 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat),
718 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP,
719 rfs_getattr_getfh},
720
721 /* RFS_SETATTR = 2 */
722 {rfs_setattr,
723 xdr_saargs, NULL_xdrproc_t, sizeof (struct nfssaargs),
724 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat),
725 nullfree, RPC_MAPRESP,
726 rfs_setattr_getfh},
727
728 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */
729 {rfs_error,
730 xdr_void, NULL_xdrproc_t, 0,
731 xdr_void, NULL_xdrproc_t, 0,
732 nullfree, RPC_IDEMPOTENT,
733 0},
734
735 /* RFS_LOOKUP = 4 */
736 {rfs_lookup,
737 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs),
738 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres),
739 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP|RPC_PUBLICFH_OK,
740 rfs_lookup_getfh},
741
742 /* RFS_READLINK = 5 */
743 {rfs_readlink,
744 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t),
745 xdr_rdlnres, NULL_xdrproc_t, sizeof (struct nfsrdlnres),
746 rfs_rlfree, RPC_IDEMPOTENT,
747 rfs_readlink_getfh},
748
749 /* RFS_READ = 6 */
750 {rfs_read,
751 xdr_readargs, NULL_xdrproc_t, sizeof (struct nfsreadargs),
752 xdr_rdresult, NULL_xdrproc_t, sizeof (struct nfsrdresult),
753 rfs_rdfree, RPC_IDEMPOTENT,
754 rfs_read_getfh},
755
756 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */
757 {rfs_error,
758 xdr_void, NULL_xdrproc_t, 0,
759 xdr_void, NULL_xdrproc_t, 0,
760 nullfree, RPC_IDEMPOTENT,
761 0},
762
763 /* RFS_WRITE = 8 */
764 {rfs_write,
765 xdr_writeargs, NULL_xdrproc_t, sizeof (struct nfswriteargs),
766 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat),
767 nullfree, RPC_MAPRESP,
768 rfs_write_getfh},
769
770 /* RFS_CREATE = 9 */
771 {rfs_create,
772 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs),
773 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres),
774 nullfree, RPC_MAPRESP,
775 rfs_create_getfh},
776
777 /* RFS_REMOVE = 10 */
778 {rfs_remove,
779 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs),
780 #ifdef _LITTLE_ENDIAN
781 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
782 #else
783 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
784 #endif
785 nullfree, RPC_MAPRESP,
786 rfs_remove_getfh},
787
788 /* RFS_RENAME = 11 */
789 {rfs_rename,
790 xdr_rnmargs, NULL_xdrproc_t, sizeof (struct nfsrnmargs),
791 #ifdef _LITTLE_ENDIAN
792 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
793 #else
794 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
795 #endif
796 nullfree, RPC_MAPRESP,
797 rfs_rename_getfh},
798
799 /* RFS_LINK = 12 */
800 {rfs_link,
801 xdr_linkargs, NULL_xdrproc_t, sizeof (struct nfslinkargs),
802 #ifdef _LITTLE_ENDIAN
803 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
804 #else
805 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
806 #endif
807 nullfree, RPC_MAPRESP,
808 rfs_link_getfh},
809
810 /* RFS_SYMLINK = 13 */
811 {rfs_symlink,
812 xdr_slargs, NULL_xdrproc_t, sizeof (struct nfsslargs),
813 #ifdef _LITTLE_ENDIAN
814 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
815 #else
816 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
817 #endif
818 nullfree, RPC_MAPRESP,
819 rfs_symlink_getfh},
820
821 /* RFS_MKDIR = 14 */
822 {rfs_mkdir,
823 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs),
824 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres),
825 nullfree, RPC_MAPRESP,
826 rfs_mkdir_getfh},
827
828 /* RFS_RMDIR = 15 */
829 {rfs_rmdir,
830 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs),
831 #ifdef _LITTLE_ENDIAN
832 xdr_enum, xdr_fastenum, sizeof (enum nfsstat),
833 #else
834 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat),
835 #endif
836 nullfree, RPC_MAPRESP,
837 rfs_rmdir_getfh},
838
839 /* RFS_READDIR = 16 */
840 {rfs_readdir,
841 xdr_rddirargs, NULL_xdrproc_t, sizeof (struct nfsrddirargs),
842 xdr_putrddirres, NULL_xdrproc_t, sizeof (struct nfsrddirres),
843 rfs_rddirfree, RPC_IDEMPOTENT,
844 rfs_readdir_getfh},
845
846 /* RFS_STATFS = 17 */
847 {rfs_statfs,
848 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t),
849 xdr_statfs, xdr_faststatfs, sizeof (struct nfsstatfs),
850 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP,
851 rfs_statfs_getfh},
852 };
853
854 static char *rfscallnames_v3[] = {
855 "RFS3_NULL",
856 "RFS3_GETATTR",
857 "RFS3_SETATTR",
858 "RFS3_LOOKUP",
859 "RFS3_ACCESS",
860 "RFS3_READLINK",
861 "RFS3_READ",
862 "RFS3_WRITE",
863 "RFS3_CREATE",
864 "RFS3_MKDIR",
865 "RFS3_SYMLINK",
866 "RFS3_MKNOD",
867 "RFS3_REMOVE",
868 "RFS3_RMDIR",
869 "RFS3_RENAME",
870 "RFS3_LINK",
871 "RFS3_READDIR",
872 "RFS3_READDIRPLUS",
873 "RFS3_FSSTAT",
874 "RFS3_FSINFO",
875 "RFS3_PATHCONF",
876 "RFS3_COMMIT"
877 };
878
879 static struct rpcdisp rfsdisptab_v3[] = {
880 /*
881 * NFS VERSION 3
882 */
883
884 /* RFS_NULL = 0 */
885 {rpc_null_v3,
886 xdr_void, NULL_xdrproc_t, 0,
887 xdr_void, NULL_xdrproc_t, 0,
888 nullfree, RPC_IDEMPOTENT,
889 0},
890
891 /* RFS3_GETATTR = 1 */
892 {rfs3_getattr,
893 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (GETATTR3args),
894 xdr_GETATTR3res, NULL_xdrproc_t, sizeof (GETATTR3res),
895 nullfree, (RPC_IDEMPOTENT | RPC_ALLOWANON),
896 rfs3_getattr_getfh},
897
898 /* RFS3_SETATTR = 2 */
899 {rfs3_setattr,
900 xdr_SETATTR3args, NULL_xdrproc_t, sizeof (SETATTR3args),
901 xdr_SETATTR3res, NULL_xdrproc_t, sizeof (SETATTR3res),
902 nullfree, 0,
903 rfs3_setattr_getfh},
904
905 /* RFS3_LOOKUP = 3 */
906 {rfs3_lookup,
907 xdr_diropargs3, NULL_xdrproc_t, sizeof (LOOKUP3args),
908 xdr_LOOKUP3res, NULL_xdrproc_t, sizeof (LOOKUP3res),
909 nullfree, (RPC_IDEMPOTENT | RPC_PUBLICFH_OK),
910 rfs3_lookup_getfh},
911
912 /* RFS3_ACCESS = 4 */
913 {rfs3_access,
914 xdr_ACCESS3args, NULL_xdrproc_t, sizeof (ACCESS3args),
915 xdr_ACCESS3res, NULL_xdrproc_t, sizeof (ACCESS3res),
916 nullfree, RPC_IDEMPOTENT,
917 rfs3_access_getfh},
918
919 /* RFS3_READLINK = 5 */
920 {rfs3_readlink,
921 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (READLINK3args),
922 xdr_READLINK3res, NULL_xdrproc_t, sizeof (READLINK3res),
923 rfs3_readlink_free, RPC_IDEMPOTENT,
924 rfs3_readlink_getfh},
925
926 /* RFS3_READ = 6 */
927 {rfs3_read,
928 xdr_READ3args, NULL_xdrproc_t, sizeof (READ3args),
929 xdr_READ3res, NULL_xdrproc_t, sizeof (READ3res),
930 rfs3_read_free, RPC_IDEMPOTENT,
931 rfs3_read_getfh},
932
933 /* RFS3_WRITE = 7 */
934 {rfs3_write,
935 xdr_WRITE3args, NULL_xdrproc_t, sizeof (WRITE3args),
936 xdr_WRITE3res, NULL_xdrproc_t, sizeof (WRITE3res),
937 nullfree, 0,
938 rfs3_write_getfh},
939
940 /* RFS3_CREATE = 8 */
941 {rfs3_create,
942 xdr_CREATE3args, NULL_xdrproc_t, sizeof (CREATE3args),
943 xdr_CREATE3res, NULL_xdrproc_t, sizeof (CREATE3res),
944 nullfree, 0,
945 rfs3_create_getfh},
946
947 /* RFS3_MKDIR = 9 */
948 {rfs3_mkdir,
949 xdr_MKDIR3args, NULL_xdrproc_t, sizeof (MKDIR3args),
950 xdr_MKDIR3res, NULL_xdrproc_t, sizeof (MKDIR3res),
951 nullfree, 0,
952 rfs3_mkdir_getfh},
953
954 /* RFS3_SYMLINK = 10 */
955 {rfs3_symlink,
956 xdr_SYMLINK3args, NULL_xdrproc_t, sizeof (SYMLINK3args),
957 xdr_SYMLINK3res, NULL_xdrproc_t, sizeof (SYMLINK3res),
958 nullfree, 0,
959 rfs3_symlink_getfh},
960
961 /* RFS3_MKNOD = 11 */
962 {rfs3_mknod,
963 xdr_MKNOD3args, NULL_xdrproc_t, sizeof (MKNOD3args),
964 xdr_MKNOD3res, NULL_xdrproc_t, sizeof (MKNOD3res),
965 nullfree, 0,
966 rfs3_mknod_getfh},
967
968 /* RFS3_REMOVE = 12 */
969 {rfs3_remove,
970 xdr_diropargs3, NULL_xdrproc_t, sizeof (REMOVE3args),
971 xdr_REMOVE3res, NULL_xdrproc_t, sizeof (REMOVE3res),
972 nullfree, 0,
973 rfs3_remove_getfh},
974
975 /* RFS3_RMDIR = 13 */
976 {rfs3_rmdir,
977 xdr_diropargs3, NULL_xdrproc_t, sizeof (RMDIR3args),
978 xdr_RMDIR3res, NULL_xdrproc_t, sizeof (RMDIR3res),
979 nullfree, 0,
980 rfs3_rmdir_getfh},
981
982 /* RFS3_RENAME = 14 */
983 {rfs3_rename,
984 xdr_RENAME3args, NULL_xdrproc_t, sizeof (RENAME3args),
985 xdr_RENAME3res, NULL_xdrproc_t, sizeof (RENAME3res),
986 nullfree, 0,
987 rfs3_rename_getfh},
988
989 /* RFS3_LINK = 15 */
990 {rfs3_link,
991 xdr_LINK3args, NULL_xdrproc_t, sizeof (LINK3args),
992 xdr_LINK3res, NULL_xdrproc_t, sizeof (LINK3res),
993 nullfree, 0,
994 rfs3_link_getfh},
995
996 /* RFS3_READDIR = 16 */
997 {rfs3_readdir,
998 xdr_READDIR3args, NULL_xdrproc_t, sizeof (READDIR3args),
999 xdr_READDIR3res, NULL_xdrproc_t, sizeof (READDIR3res),
1000 rfs3_readdir_free, RPC_IDEMPOTENT,
1001 rfs3_readdir_getfh},
1002
1003 /* RFS3_READDIRPLUS = 17 */
1004 {rfs3_readdirplus,
1005 xdr_READDIRPLUS3args, NULL_xdrproc_t, sizeof (READDIRPLUS3args),
1006 xdr_READDIRPLUS3res, NULL_xdrproc_t, sizeof (READDIRPLUS3res),
1007 rfs3_readdirplus_free, RPC_AVOIDWORK,
1008 rfs3_readdirplus_getfh},
1009
1010 /* RFS3_FSSTAT = 18 */
1011 {rfs3_fsstat,
1012 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSSTAT3args),
1013 xdr_FSSTAT3res, NULL_xdrproc_t, sizeof (FSSTAT3res),
1014 nullfree, RPC_IDEMPOTENT,
1015 rfs3_fsstat_getfh},
1016
1017 /* RFS3_FSINFO = 19 */
1018 {rfs3_fsinfo,
1019 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSINFO3args),
1020 xdr_FSINFO3res, NULL_xdrproc_t, sizeof (FSINFO3res),
1021 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON,
1022 rfs3_fsinfo_getfh},
1023
1024 /* RFS3_PATHCONF = 20 */
1025 {rfs3_pathconf,
1026 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (PATHCONF3args),
1027 xdr_PATHCONF3res, NULL_xdrproc_t, sizeof (PATHCONF3res),
1028 nullfree, RPC_IDEMPOTENT,
1029 rfs3_pathconf_getfh},
1030
1031 /* RFS3_COMMIT = 21 */
1032 {rfs3_commit,
1033 xdr_COMMIT3args, NULL_xdrproc_t, sizeof (COMMIT3args),
1034 xdr_COMMIT3res, NULL_xdrproc_t, sizeof (COMMIT3res),
1035 nullfree, RPC_IDEMPOTENT,
1036 rfs3_commit_getfh},
1037 };
1038
1039 static char *rfscallnames_v4[] = {
1040 "RFS4_NULL",
1041 "RFS4_COMPOUND",
1042 "RFS4_NULL",
1043 "RFS4_NULL",
1044 "RFS4_NULL",
1045 "RFS4_NULL",
1046 "RFS4_NULL",
1047 "RFS4_NULL",
1048 "RFS4_CREATE"
1049 };
1050
1051 static struct rpcdisp rfsdisptab_v4[] = {
1052 /*
1053 * NFS VERSION 4
1054 */
1055
1056 /* RFS_NULL = 0 */
1057 {rpc_null,
1058 xdr_void, NULL_xdrproc_t, 0,
1059 xdr_void, NULL_xdrproc_t, 0,
1060 nullfree, RPC_IDEMPOTENT, 0},
1061
1062 /* RFS4_compound = 1 */
1063 {rfs4_compound,
1064 xdr_COMPOUND4args_srv, NULL_xdrproc_t, sizeof (COMPOUND4args),
1065 xdr_COMPOUND4res_srv, NULL_xdrproc_t, sizeof (COMPOUND4res),
1066 rfs4_compound_free, 0, 0},
1067 };
1068
1069 union rfs_args {
1070 /*
1071 * NFS VERSION 2
1072 */
1073
1074 /* RFS_NULL = 0 */
1075
1076 /* RFS_GETATTR = 1 */
1077 fhandle_t nfs2_getattr_args;
1078
1079 /* RFS_SETATTR = 2 */
1080 struct nfssaargs nfs2_setattr_args;
1081
1082 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */
1083
1084 /* RFS_LOOKUP = 4 */
1085 struct nfsdiropargs nfs2_lookup_args;
1086
1087 /* RFS_READLINK = 5 */
1088 fhandle_t nfs2_readlink_args;
1089
1090 /* RFS_READ = 6 */
1091 struct nfsreadargs nfs2_read_args;
1092
1093 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */
1094
1095 /* RFS_WRITE = 8 */
1096 struct nfswriteargs nfs2_write_args;
1097
1098 /* RFS_CREATE = 9 */
1099 struct nfscreatargs nfs2_create_args;
1100
1101 /* RFS_REMOVE = 10 */
1102 struct nfsdiropargs nfs2_remove_args;
1103
1104 /* RFS_RENAME = 11 */
1105 struct nfsrnmargs nfs2_rename_args;
1106
1107 /* RFS_LINK = 12 */
1108 struct nfslinkargs nfs2_link_args;
1109
1110 /* RFS_SYMLINK = 13 */
1111 struct nfsslargs nfs2_symlink_args;
1112
1113 /* RFS_MKDIR = 14 */
1114 struct nfscreatargs nfs2_mkdir_args;
1115
1116 /* RFS_RMDIR = 15 */
1117 struct nfsdiropargs nfs2_rmdir_args;
1118
1119 /* RFS_READDIR = 16 */
1120 struct nfsrddirargs nfs2_readdir_args;
1121
1122 /* RFS_STATFS = 17 */
1123 fhandle_t nfs2_statfs_args;
1124
1125 /*
1126 * NFS VERSION 3
1127 */
1128
1129 /* RFS_NULL = 0 */
1130
1131 /* RFS3_GETATTR = 1 */
1132 GETATTR3args nfs3_getattr_args;
1133
1134 /* RFS3_SETATTR = 2 */
1135 SETATTR3args nfs3_setattr_args;
1136
1137 /* RFS3_LOOKUP = 3 */
1138 LOOKUP3args nfs3_lookup_args;
1139
1140 /* RFS3_ACCESS = 4 */
1141 ACCESS3args nfs3_access_args;
1142
1143 /* RFS3_READLINK = 5 */
1144 READLINK3args nfs3_readlink_args;
1145
1146 /* RFS3_READ = 6 */
1147 READ3args nfs3_read_args;
1148
1149 /* RFS3_WRITE = 7 */
1150 WRITE3args nfs3_write_args;
1151
1152 /* RFS3_CREATE = 8 */
1153 CREATE3args nfs3_create_args;
1154
1155 /* RFS3_MKDIR = 9 */
1156 MKDIR3args nfs3_mkdir_args;
1157
1158 /* RFS3_SYMLINK = 10 */
1159 SYMLINK3args nfs3_symlink_args;
1160
1161 /* RFS3_MKNOD = 11 */
1162 MKNOD3args nfs3_mknod_args;
1163
1164 /* RFS3_REMOVE = 12 */
1165 REMOVE3args nfs3_remove_args;
1166
1167 /* RFS3_RMDIR = 13 */
1168 RMDIR3args nfs3_rmdir_args;
1169
1170 /* RFS3_RENAME = 14 */
1171 RENAME3args nfs3_rename_args;
1172
1173 /* RFS3_LINK = 15 */
1174 LINK3args nfs3_link_args;
1175
1176 /* RFS3_READDIR = 16 */
1177 READDIR3args nfs3_readdir_args;
1178
1179 /* RFS3_READDIRPLUS = 17 */
1180 READDIRPLUS3args nfs3_readdirplus_args;
1181
1182 /* RFS3_FSSTAT = 18 */
1183 FSSTAT3args nfs3_fsstat_args;
1184
1185 /* RFS3_FSINFO = 19 */
1186 FSINFO3args nfs3_fsinfo_args;
1187
1188 /* RFS3_PATHCONF = 20 */
1189 PATHCONF3args nfs3_pathconf_args;
1190
1191 /* RFS3_COMMIT = 21 */
1192 COMMIT3args nfs3_commit_args;
1193
1194 /*
1195 * NFS VERSION 4
1196 */
1197
1198 /* RFS_NULL = 0 */
1199
1200 /* COMPUND = 1 */
1201 COMPOUND4args nfs4_compound_args;
1202 };
1203
1204 union rfs_res {
1205 /*
1206 * NFS VERSION 2
1207 */
1208
1209 /* RFS_NULL = 0 */
1210
1211 /* RFS_GETATTR = 1 */
1212 struct nfsattrstat nfs2_getattr_res;
1213
1214 /* RFS_SETATTR = 2 */
1215 struct nfsattrstat nfs2_setattr_res;
1216
1217 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */
1218
1219 /* RFS_LOOKUP = 4 */
1220 struct nfsdiropres nfs2_lookup_res;
1221
1222 /* RFS_READLINK = 5 */
1223 struct nfsrdlnres nfs2_readlink_res;
1224
1225 /* RFS_READ = 6 */
1226 struct nfsrdresult nfs2_read_res;
1227
1228 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */
1229
1230 /* RFS_WRITE = 8 */
1231 struct nfsattrstat nfs2_write_res;
1232
1233 /* RFS_CREATE = 9 */
1234 struct nfsdiropres nfs2_create_res;
1235
1236 /* RFS_REMOVE = 10 */
1237 enum nfsstat nfs2_remove_res;
1238
1239 /* RFS_RENAME = 11 */
1240 enum nfsstat nfs2_rename_res;
1241
1242 /* RFS_LINK = 12 */
1243 enum nfsstat nfs2_link_res;
1244
1245 /* RFS_SYMLINK = 13 */
1246 enum nfsstat nfs2_symlink_res;
1247
1248 /* RFS_MKDIR = 14 */
1249 struct nfsdiropres nfs2_mkdir_res;
1250
1251 /* RFS_RMDIR = 15 */
1252 enum nfsstat nfs2_rmdir_res;
1253
1254 /* RFS_READDIR = 16 */
1255 struct nfsrddirres nfs2_readdir_res;
1256
1257 /* RFS_STATFS = 17 */
1258 struct nfsstatfs nfs2_statfs_res;
1259
1260 /*
1261 * NFS VERSION 3
1262 */
1263
1264 /* RFS_NULL = 0 */
1265
1266 /* RFS3_GETATTR = 1 */
1267 GETATTR3res nfs3_getattr_res;
1268
1269 /* RFS3_SETATTR = 2 */
1270 SETATTR3res nfs3_setattr_res;
1271
1272 /* RFS3_LOOKUP = 3 */
1273 LOOKUP3res nfs3_lookup_res;
1274
1275 /* RFS3_ACCESS = 4 */
1276 ACCESS3res nfs3_access_res;
1277
1278 /* RFS3_READLINK = 5 */
1279 READLINK3res nfs3_readlink_res;
1280
1281 /* RFS3_READ = 6 */
1282 READ3res nfs3_read_res;
1283
1284 /* RFS3_WRITE = 7 */
1285 WRITE3res nfs3_write_res;
1286
1287 /* RFS3_CREATE = 8 */
1288 CREATE3res nfs3_create_res;
1289
1290 /* RFS3_MKDIR = 9 */
1291 MKDIR3res nfs3_mkdir_res;
1292
1293 /* RFS3_SYMLINK = 10 */
1294 SYMLINK3res nfs3_symlink_res;
1295
1296 /* RFS3_MKNOD = 11 */
1297 MKNOD3res nfs3_mknod_res;
1298
1299 /* RFS3_REMOVE = 12 */
1300 REMOVE3res nfs3_remove_res;
1301
1302 /* RFS3_RMDIR = 13 */
1303 RMDIR3res nfs3_rmdir_res;
1304
1305 /* RFS3_RENAME = 14 */
1306 RENAME3res nfs3_rename_res;
1307
1308 /* RFS3_LINK = 15 */
1309 LINK3res nfs3_link_res;
1310
1311 /* RFS3_READDIR = 16 */
1312 READDIR3res nfs3_readdir_res;
1313
1314 /* RFS3_READDIRPLUS = 17 */
1315 READDIRPLUS3res nfs3_readdirplus_res;
1316
1317 /* RFS3_FSSTAT = 18 */
1318 FSSTAT3res nfs3_fsstat_res;
1319
1320 /* RFS3_FSINFO = 19 */
1321 FSINFO3res nfs3_fsinfo_res;
1322
1323 /* RFS3_PATHCONF = 20 */
1324 PATHCONF3res nfs3_pathconf_res;
1325
1326 /* RFS3_COMMIT = 21 */
1327 COMMIT3res nfs3_commit_res;
1328
1329 /*
1330 * NFS VERSION 4
1331 */
1332
1333 /* RFS_NULL = 0 */
1334
1335 /* RFS4_COMPOUND = 1 */
1336 COMPOUND4res nfs4_compound_res;
1337
1338 };
1339
1340 static struct rpc_disptable rfs_disptable[] = {
1341 {sizeof (rfsdisptab_v2) / sizeof (rfsdisptab_v2[0]),
1342 rfscallnames_v2,
1343 &rfsproccnt_v2_ptr, rfsdisptab_v2},
1344 {sizeof (rfsdisptab_v3) / sizeof (rfsdisptab_v3[0]),
1345 rfscallnames_v3,
1346 &rfsproccnt_v3_ptr, rfsdisptab_v3},
1347 {sizeof (rfsdisptab_v4) / sizeof (rfsdisptab_v4[0]),
1348 rfscallnames_v4,
1349 &rfsproccnt_v4_ptr, rfsdisptab_v4},
1350 };
1351
1352 /*
1353 * If nfs_portmon is set, then clients are required to use privileged
1354 * ports (ports < IPPORT_RESERVED) in order to get NFS services.
1355 *
1356 * N.B.: this attempt to carry forward the already ill-conceived notion
1357 * of privileged ports for TCP/UDP is really quite ineffectual. Not only
1358 * is it transport-dependent, it's laughably easy to spoof. If you're
1359 * really interested in security, you must start with secure RPC instead.
1360 */
1361 static int nfs_portmon = 0;
1362
1363 #ifdef DEBUG
1364 static int cred_hits = 0;
1365 static int cred_misses = 0;
1366 #endif
1367
1368
1369 #ifdef DEBUG
1370 /*
1371 * Debug code to allow disabling of rfs_dispatch() use of
1372 * fastxdrargs() and fastxdrres() calls for testing purposes.
1373 */
1374 static int rfs_no_fast_xdrargs = 0;
1375 static int rfs_no_fast_xdrres = 0;
1376 #endif
1377
1378 union acl_args {
1379 /*
1380 * ACL VERSION 2
1381 */
1382
1383 /* ACL2_NULL = 0 */
1384
1385 /* ACL2_GETACL = 1 */
1386 GETACL2args acl2_getacl_args;
1387
1388 /* ACL2_SETACL = 2 */
1389 SETACL2args acl2_setacl_args;
1390
1391 /* ACL2_GETATTR = 3 */
1392 GETATTR2args acl2_getattr_args;
1393
1394 /* ACL2_ACCESS = 4 */
1395 ACCESS2args acl2_access_args;
1396
1397 /* ACL2_GETXATTRDIR = 5 */
1398 GETXATTRDIR2args acl2_getxattrdir_args;
1399
1400 /*
1401 * ACL VERSION 3
1402 */
1403
1404 /* ACL3_NULL = 0 */
1405
1406 /* ACL3_GETACL = 1 */
1407 GETACL3args acl3_getacl_args;
1408
1409 /* ACL3_SETACL = 2 */
1410 SETACL3args acl3_setacl;
1411
1412 /* ACL3_GETXATTRDIR = 3 */
1413 GETXATTRDIR3args acl3_getxattrdir_args;
1414
1415 };
1416
1417 union acl_res {
1418 /*
1419 * ACL VERSION 2
1420 */
1421
1422 /* ACL2_NULL = 0 */
1423
1424 /* ACL2_GETACL = 1 */
1425 GETACL2res acl2_getacl_res;
1426
1427 /* ACL2_SETACL = 2 */
1428 SETACL2res acl2_setacl_res;
1429
1430 /* ACL2_GETATTR = 3 */
1431 GETATTR2res acl2_getattr_res;
1432
1433 /* ACL2_ACCESS = 4 */
1434 ACCESS2res acl2_access_res;
1435
1436 /* ACL2_GETXATTRDIR = 5 */
1437 GETXATTRDIR2args acl2_getxattrdir_res;
1438
1439 /*
1440 * ACL VERSION 3
1441 */
1442
1443 /* ACL3_NULL = 0 */
1444
1445 /* ACL3_GETACL = 1 */
1446 GETACL3res acl3_getacl_res;
1447
1448 /* ACL3_SETACL = 2 */
1449 SETACL3res acl3_setacl_res;
1450
1451 /* ACL3_GETXATTRDIR = 3 */
1452 GETXATTRDIR3res acl3_getxattrdir_res;
1453
1454 };
1455
1456 static bool_t
1457 auth_tooweak(struct svc_req *req, char *res)
1458 {
1459
1460 if (req->rq_vers == NFS_VERSION && req->rq_proc == RFS_LOOKUP) {
1461 struct nfsdiropres *dr = (struct nfsdiropres *)res;
1462 if ((enum wnfsstat)dr->dr_status == WNFSERR_CLNT_FLAVOR)
1463 return (TRUE);
1464 } else if (req->rq_vers == NFS_V3 && req->rq_proc == NFSPROC3_LOOKUP) {
1465 LOOKUP3res *resp = (LOOKUP3res *)res;
1466 if ((enum wnfsstat)resp->status == WNFSERR_CLNT_FLAVOR)
1467 return (TRUE);
1468 }
1469 return (FALSE);
1470 }
1471
1472
1473 static void
1474 common_dispatch(struct svc_req *req, SVCXPRT *xprt, rpcvers_t min_vers,
1475 rpcvers_t max_vers, char *pgmname,
1476 struct rpc_disptable *disptable)
1477 {
1478 int which;
1479 rpcvers_t vers;
1480 char *args;
1481 union {
1482 union rfs_args ra;
1483 union acl_args aa;
1484 } args_buf;
1485 char *res;
1486 union {
1487 union rfs_res rr;
1488 union acl_res ar;
1489 } res_buf;
1490 struct rpcdisp *disp = NULL;
1491 int dis_flags = 0;
1492 cred_t *cr;
1493 int error = 0;
1494 int anon_ok;
1495 struct exportinfo *exi = NULL;
1496 unsigned int nfslog_rec_id;
1497 int dupstat;
1498 struct dupreq *dr;
1499 int authres;
1500 bool_t publicfh_ok = FALSE;
1501 enum_t auth_flavor;
1502 bool_t dupcached = FALSE;
1503 struct netbuf nb;
1504 bool_t logging_enabled = FALSE;
1505 struct exportinfo *nfslog_exi = NULL;
1506 char **procnames;
1507 char cbuf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */
1508 bool_t ro = FALSE;
1509
1510 vers = req->rq_vers;
1511
1512 if (vers < min_vers || vers > max_vers) {
1513 svcerr_progvers(req->rq_xprt, min_vers, max_vers);
1514 error++;
1515 cmn_err(CE_NOTE, "%s: bad version number %u", pgmname, vers);
1516 goto done;
1517 }
1518 vers -= min_vers;
1519
1520 which = req->rq_proc;
1521 if (which < 0 || which >= disptable[(int)vers].dis_nprocs) {
1522 svcerr_noproc(req->rq_xprt);
1523 error++;
1524 goto done;
1525 }
1526
1527 (*(disptable[(int)vers].dis_proccntp))[which].value.ui64++;
1528
1529 disp = &disptable[(int)vers].dis_table[which];
1530 procnames = disptable[(int)vers].dis_procnames;
1531
1532 auth_flavor = req->rq_cred.oa_flavor;
1533
1534 /*
1535 * Deserialize into the args struct.
1536 */
1537 args = (char *)&args_buf;
1538
1539 #ifdef DEBUG
1540 if (rfs_no_fast_xdrargs || (auth_flavor == RPCSEC_GSS) ||
1541 disp->dis_fastxdrargs == NULL_xdrproc_t ||
1542 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args))
1543 #else
1544 if ((auth_flavor == RPCSEC_GSS) ||
1545 disp->dis_fastxdrargs == NULL_xdrproc_t ||
1546 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args))
1547 #endif
1548 {
1549 bzero(args, disp->dis_argsz);
1550 if (!SVC_GETARGS(xprt, disp->dis_xdrargs, args)) {
1551 error++;
1552 /*
1553 * Check if we are outside our capabilities.
1554 */
1555 if (rfs4_minorvers_mismatch(req, xprt, (void *)args))
1556 goto done;
1557
1558 svcerr_decode(xprt);
1559 cmn_err(CE_NOTE,
1560 "Failed to decode arguments for %s version %u "
1561 "procedure %s client %s%s",
1562 pgmname, vers + min_vers, procnames[which],
1563 client_name(req), client_addr(req, cbuf));
1564 goto done;
1565 }
1566 }
1567
1568 /*
1569 * If Version 4 use that specific dispatch function.
1570 */
1571 if (req->rq_vers == 4) {
1572 error += rfs4_dispatch(disp, req, xprt, args);
1573 goto done;
1574 }
1575
1576 dis_flags = disp->dis_flags;
1577
1578 /*
1579 * Find export information and check authentication,
1580 * setting the credential if everything is ok.
1581 */
1582 if (disp->dis_getfh != NULL) {
1583 void *fh;
1584 fsid_t *fsid;
1585 fid_t *fid, *xfid;
1586 fhandle_t *fh2;
1587 nfs_fh3 *fh3;
1588
1589 fh = (*disp->dis_getfh)(args);
1590 switch (req->rq_vers) {
1591 case NFS_VERSION:
1592 fh2 = (fhandle_t *)fh;
1593 fsid = &fh2->fh_fsid;
1594 fid = (fid_t *)&fh2->fh_len;
1595 xfid = (fid_t *)&fh2->fh_xlen;
1596 break;
1597 case NFS_V3:
1598 fh3 = (nfs_fh3 *)fh;
1599 fsid = &fh3->fh3_fsid;
1600 fid = FH3TOFIDP(fh3);
1601 xfid = FH3TOXFIDP(fh3);
1602 break;
1603 }
1604
1605 /*
1606 * Fix for bug 1038302 - corbin
1607 * There is a problem here if anonymous access is
1608 * disallowed. If the current request is part of the
1609 * client's mount process for the requested filesystem,
1610 * then it will carry root (uid 0) credentials on it, and
1611 * will be denied by checkauth if that client does not
1612 * have explicit root=0 permission. This will cause the
1613 * client's mount operation to fail. As a work-around,
1614 * we check here to see if the request is a getattr or
1615 * statfs operation on the exported vnode itself, and
1616 * pass a flag to checkauth with the result of this test.
1617 *
1618 * The filehandle refers to the mountpoint itself if
1619 * the fh_data and fh_xdata portions of the filehandle
1620 * are equal.
1621 *
1622 * Added anon_ok argument to checkauth().
1623 */
1624
1625 if ((dis_flags & RPC_ALLOWANON) && EQFID(fid, xfid))
1626 anon_ok = 1;
1627 else
1628 anon_ok = 0;
1629
1630 cr = xprt->xp_cred;
1631 ASSERT(cr != NULL);
1632 #ifdef DEBUG
1633 if (crgetref(cr) != 1) {
1634 crfree(cr);
1635 cr = crget();
1636 xprt->xp_cred = cr;
1637 cred_misses++;
1638 } else
1639 cred_hits++;
1640 #else
1641 if (crgetref(cr) != 1) {
1642 crfree(cr);
1643 cr = crget();
1644 xprt->xp_cred = cr;
1645 }
1646 #endif
1647
1648 exi = checkexport(fsid, xfid, NULL);
1649
1650 if (exi != NULL) {
1651 publicfh_ok = PUBLICFH_CHECK(disp, exi, fsid, xfid);
1652
1653 /*
1654 * Don't allow non-V4 clients access
1655 * to pseudo exports
1656 */
1657 if (PSEUDO(exi)) {
1658 svcerr_weakauth(xprt);
1659 error++;
1660 goto done;
1661 }
1662
1663 authres = checkauth(exi, req, cr, anon_ok, publicfh_ok,
1664 &ro);
1665 /*
1666 * authres > 0: authentication OK - proceed
1667 * authres == 0: authentication weak - return error
1668 * authres < 0: authentication timeout - drop
1669 */
1670 if (authres <= 0) {
1671 if (authres == 0) {
1672 svcerr_weakauth(xprt);
1673 error++;
1674 }
1675 goto done;
1676 }
1677 }
1678 } else
1679 cr = NULL;
1680
1681 if ((dis_flags & RPC_MAPRESP) && (auth_flavor != RPCSEC_GSS)) {
1682 res = (char *)SVC_GETRES(xprt, disp->dis_ressz);
1683 if (res == NULL)
1684 res = (char *)&res_buf;
1685 } else
1686 res = (char *)&res_buf;
1687
1688 if (!(dis_flags & RPC_IDEMPOTENT)) {
1689 dupstat = SVC_DUP_EXT(xprt, req, res, disp->dis_ressz, &dr,
1690 &dupcached);
1691
1692 switch (dupstat) {
1693 case DUP_ERROR:
1694 svcerr_systemerr(xprt);
1695 error++;
1696 goto done;
1697 /* NOTREACHED */
1698 case DUP_INPROGRESS:
1699 if (res != (char *)&res_buf)
1700 SVC_FREERES(xprt);
1701 error++;
1702 goto done;
1703 /* NOTREACHED */
1704 case DUP_NEW:
1705 case DUP_DROP:
1706 curthread->t_flag |= T_DONTPEND;
1707
1708 (*disp->dis_proc)(args, res, exi, req, cr, ro);
1709
1710 curthread->t_flag &= ~T_DONTPEND;
1711 if (curthread->t_flag & T_WOULDBLOCK) {
1712 curthread->t_flag &= ~T_WOULDBLOCK;
1713 SVC_DUPDONE_EXT(xprt, dr, res, NULL,
1714 disp->dis_ressz, DUP_DROP);
1715 if (res != (char *)&res_buf)
1716 SVC_FREERES(xprt);
1717 error++;
1718 goto done;
1719 }
1720 if (dis_flags & RPC_AVOIDWORK) {
1721 SVC_DUPDONE_EXT(xprt, dr, res, NULL,
1722 disp->dis_ressz, DUP_DROP);
1723 } else {
1724 SVC_DUPDONE_EXT(xprt, dr, res,
1725 disp->dis_resfree == nullfree ? NULL :
1726 disp->dis_resfree,
1727 disp->dis_ressz, DUP_DONE);
1728 dupcached = TRUE;
1729 }
1730 break;
1731 case DUP_DONE:
1732 break;
1733 }
1734
1735 } else {
1736 curthread->t_flag |= T_DONTPEND;
1737
1738 (*disp->dis_proc)(args, res, exi, req, cr, ro);
1739
1740 curthread->t_flag &= ~T_DONTPEND;
1741 if (curthread->t_flag & T_WOULDBLOCK) {
1742 curthread->t_flag &= ~T_WOULDBLOCK;
1743 if (res != (char *)&res_buf)
1744 SVC_FREERES(xprt);
1745 error++;
1746 goto done;
1747 }
1748 }
1749
1750 if (auth_tooweak(req, res)) {
1751 svcerr_weakauth(xprt);
1752 error++;
1753 goto done;
1754 }
1755
1756 /*
1757 * Check to see if logging has been enabled on the server.
1758 * If so, then obtain the export info struct to be used for
1759 * the later writing of the log record. This is done for
1760 * the case that a lookup is done across a non-logged public
1761 * file system.
1762 */
1763 if (nfslog_buffer_list != NULL) {
1764 nfslog_exi = nfslog_get_exi(exi, req, res, &nfslog_rec_id);
1765 /*
1766 * Is logging enabled?
1767 */
1768 logging_enabled = (nfslog_exi != NULL);
1769
1770 /*
1771 * Copy the netbuf for logging purposes, before it is
1772 * freed by svc_sendreply().
1773 */
1774 if (logging_enabled) {
1775 NFSLOG_COPY_NETBUF(nfslog_exi, xprt, &nb);
1776 /*
1777 * If RPC_MAPRESP flag set (i.e. in V2 ops) the
1778 * res gets copied directly into the mbuf and
1779 * may be freed soon after the sendreply. So we
1780 * must copy it here to a safe place...
1781 */
1782 if (res != (char *)&res_buf) {
1783 bcopy(res, (char *)&res_buf, disp->dis_ressz);
1784 }
1785 }
1786 }
1787
1788 /*
1789 * Serialize and send results struct
1790 */
1791 #ifdef DEBUG
1792 if (rfs_no_fast_xdrres == 0 && res != (char *)&res_buf)
1793 #else
1794 if (res != (char *)&res_buf)
1795 #endif
1796 {
1797 if (!svc_sendreply(xprt, disp->dis_fastxdrres, res)) {
1798 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname);
1799 svcerr_systemerr(xprt);
1800 error++;
1801 }
1802 } else {
1803 if (!svc_sendreply(xprt, disp->dis_xdrres, res)) {
1804 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname);
1805 svcerr_systemerr(xprt);
1806 error++;
1807 }
1808 }
1809
1810 /*
1811 * Log if needed
1812 */
1813 if (logging_enabled) {
1814 nfslog_write_record(nfslog_exi, req, args, (char *)&res_buf,
1815 cr, &nb, nfslog_rec_id, NFSLOG_ONE_BUFFER);
1816 exi_rele(nfslog_exi);
1817 kmem_free((&nb)->buf, (&nb)->len);
1818 }
1819
1820 /*
1821 * Free results struct. With the addition of NFS V4 we can
1822 * have non-idempotent procedures with functions.
1823 */
1824 if (disp->dis_resfree != nullfree && dupcached == FALSE) {
1825 (*disp->dis_resfree)(res);
1826 }
1827
1828 done:
1829 /*
1830 * Free arguments struct
1831 */
1832 if (disp) {
1833 if (!SVC_FREEARGS(xprt, disp->dis_xdrargs, args)) {
1834 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname);
1835 error++;
1836 }
1837 } else {
1838 if (!SVC_FREEARGS(xprt, (xdrproc_t)0, (caddr_t)0)) {
1839 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname);
1840 error++;
1841 }
1842 }
1843
1844 if (exi != NULL)
1845 exi_rele(exi);
1846
1847 global_svstat_ptr[req->rq_vers][NFS_BADCALLS].value.ui64 += error;
1848
1849 global_svstat_ptr[req->rq_vers][NFS_CALLS].value.ui64++;
1850 }
1851
1852 static void
1853 rfs_dispatch(struct svc_req *req, SVCXPRT *xprt)
1854 {
1855 common_dispatch(req, xprt, NFS_VERSMIN, NFS_VERSMAX,
1856 "NFS", rfs_disptable);
1857 }
1858
1859 static char *aclcallnames_v2[] = {
1860 "ACL2_NULL",
1861 "ACL2_GETACL",
1862 "ACL2_SETACL",
1863 "ACL2_GETATTR",
1864 "ACL2_ACCESS",
1865 "ACL2_GETXATTRDIR"
1866 };
1867
1868 static struct rpcdisp acldisptab_v2[] = {
1869 /*
1870 * ACL VERSION 2
1871 */
1872
1873 /* ACL2_NULL = 0 */
1874 {rpc_null,
1875 xdr_void, NULL_xdrproc_t, 0,
1876 xdr_void, NULL_xdrproc_t, 0,
1877 nullfree, RPC_IDEMPOTENT,
1878 0},
1879
1880 /* ACL2_GETACL = 1 */
1881 {acl2_getacl,
1882 xdr_GETACL2args, xdr_fastGETACL2args, sizeof (GETACL2args),
1883 xdr_GETACL2res, NULL_xdrproc_t, sizeof (GETACL2res),
1884 acl2_getacl_free, RPC_IDEMPOTENT,
1885 acl2_getacl_getfh},
1886
1887 /* ACL2_SETACL = 2 */
1888 {acl2_setacl,
1889 xdr_SETACL2args, NULL_xdrproc_t, sizeof (SETACL2args),
1890 #ifdef _LITTLE_ENDIAN
1891 xdr_SETACL2res, xdr_fastSETACL2res, sizeof (SETACL2res),
1892 #else
1893 xdr_SETACL2res, NULL_xdrproc_t, sizeof (SETACL2res),
1894 #endif
1895 nullfree, RPC_MAPRESP,
1896 acl2_setacl_getfh},
1897
1898 /* ACL2_GETATTR = 3 */
1899 {acl2_getattr,
1900 xdr_GETATTR2args, xdr_fastGETATTR2args, sizeof (GETATTR2args),
1901 #ifdef _LITTLE_ENDIAN
1902 xdr_GETATTR2res, xdr_fastGETATTR2res, sizeof (GETATTR2res),
1903 #else
1904 xdr_GETATTR2res, NULL_xdrproc_t, sizeof (GETATTR2res),
1905 #endif
1906 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP,
1907 acl2_getattr_getfh},
1908
1909 /* ACL2_ACCESS = 4 */
1910 {acl2_access,
1911 xdr_ACCESS2args, xdr_fastACCESS2args, sizeof (ACCESS2args),
1912 #ifdef _LITTLE_ENDIAN
1913 xdr_ACCESS2res, xdr_fastACCESS2res, sizeof (ACCESS2res),
1914 #else
1915 xdr_ACCESS2res, NULL_xdrproc_t, sizeof (ACCESS2res),
1916 #endif
1917 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP,
1918 acl2_access_getfh},
1919
1920 /* ACL2_GETXATTRDIR = 5 */
1921 {acl2_getxattrdir,
1922 xdr_GETXATTRDIR2args, NULL_xdrproc_t, sizeof (GETXATTRDIR2args),
1923 xdr_GETXATTRDIR2res, NULL_xdrproc_t, sizeof (GETXATTRDIR2res),
1924 nullfree, RPC_IDEMPOTENT,
1925 acl2_getxattrdir_getfh},
1926 };
1927
1928 static char *aclcallnames_v3[] = {
1929 "ACL3_NULL",
1930 "ACL3_GETACL",
1931 "ACL3_SETACL",
1932 "ACL3_GETXATTRDIR"
1933 };
1934
1935 static struct rpcdisp acldisptab_v3[] = {
1936 /*
1937 * ACL VERSION 3
1938 */
1939
1940 /* ACL3_NULL = 0 */
1941 {rpc_null,
1942 xdr_void, NULL_xdrproc_t, 0,
1943 xdr_void, NULL_xdrproc_t, 0,
1944 nullfree, RPC_IDEMPOTENT,
1945 0},
1946
1947 /* ACL3_GETACL = 1 */
1948 {acl3_getacl,
1949 xdr_GETACL3args, NULL_xdrproc_t, sizeof (GETACL3args),
1950 xdr_GETACL3res, NULL_xdrproc_t, sizeof (GETACL3res),
1951 acl3_getacl_free, RPC_IDEMPOTENT,
1952 acl3_getacl_getfh},
1953
1954 /* ACL3_SETACL = 2 */
1955 {acl3_setacl,
1956 xdr_SETACL3args, NULL_xdrproc_t, sizeof (SETACL3args),
1957 xdr_SETACL3res, NULL_xdrproc_t, sizeof (SETACL3res),
1958 nullfree, 0,
1959 acl3_setacl_getfh},
1960
1961 /* ACL3_GETXATTRDIR = 3 */
1962 {acl3_getxattrdir,
1963 xdr_GETXATTRDIR3args, NULL_xdrproc_t, sizeof (GETXATTRDIR3args),
1964 xdr_GETXATTRDIR3res, NULL_xdrproc_t, sizeof (GETXATTRDIR3res),
1965 nullfree, RPC_IDEMPOTENT,
1966 acl3_getxattrdir_getfh},
1967 };
1968
1969 static struct rpc_disptable acl_disptable[] = {
1970 {sizeof (acldisptab_v2) / sizeof (acldisptab_v2[0]),
1971 aclcallnames_v2,
1972 &aclproccnt_v2_ptr, acldisptab_v2},
1973 {sizeof (acldisptab_v3) / sizeof (acldisptab_v3[0]),
1974 aclcallnames_v3,
1975 &aclproccnt_v3_ptr, acldisptab_v3},
1976 };
1977
1978 static void
1979 acl_dispatch(struct svc_req *req, SVCXPRT *xprt)
1980 {
1981 common_dispatch(req, xprt, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX,
1982 "ACL", acl_disptable);
1983 }
1984
1985 int
1986 checkwin(int flavor, int window, struct svc_req *req)
1987 {
1988 struct authdes_cred *adc;
1989
1990 switch (flavor) {
1991 case AUTH_DES:
1992 adc = (struct authdes_cred *)req->rq_clntcred;
1993 if (adc->adc_fullname.window > window)
1994 return (0);
1995 break;
1996
1997 default:
1998 break;
1999 }
2000 return (1);
2001 }
2002
2003
2004 /*
2005 * checkauth() will check the access permission against the export
2006 * information. Then map root uid/gid to appropriate uid/gid.
2007 *
2008 * This routine is used by NFS V3 and V2 code.
2009 */
2010 static int
2011 checkauth(struct exportinfo *exi, struct svc_req *req, cred_t *cr, int anon_ok,
2012 bool_t publicfh_ok, bool_t *ro)
2013 {
2014 int i, nfsflavor, rpcflavor, stat, access;
2015 struct secinfo *secp;
2016 caddr_t principal;
2017 char buf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */
2018 int anon_res = 0;
2019
2020 uid_t uid;
2021 gid_t gid;
2022 uint_t ngids;
2023 gid_t *gids;
2024
2025 /*
2026 * Check for privileged port number
2027 * N.B.: this assumes that we know the format of a netbuf.
2028 */
2029 if (nfs_portmon) {
2030 struct sockaddr *ca;
2031 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf;
2032
2033 if (ca == NULL)
2034 return (0);
2035
2036 if ((ca->sa_family == AF_INET &&
2037 ntohs(((struct sockaddr_in *)ca)->sin_port) >=
2038 IPPORT_RESERVED) ||
2039 (ca->sa_family == AF_INET6 &&
2040 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >=
2041 IPPORT_RESERVED)) {
2042 cmn_err(CE_NOTE,
2043 "nfs_server: client %s%ssent NFS request from "
2044 "unprivileged port",
2045 client_name(req), client_addr(req, buf));
2046 return (0);
2047 }
2048 }
2049
2050 /*
2051 * return 1 on success or 0 on failure
2052 */
2053 stat = sec_svc_getcred(req, cr, &principal, &nfsflavor);
2054
2055 /*
2056 * A failed AUTH_UNIX sec_svc_getcred() implies we couldn't set
2057 * the credentials; below we map that to anonymous.
2058 */
2059 if (!stat && nfsflavor != AUTH_UNIX) {
2060 cmn_err(CE_NOTE,
2061 "nfs_server: couldn't get unix cred for %s",
2062 client_name(req));
2063 return (0);
2064 }
2065
2066 /*
2067 * Short circuit checkauth() on operations that support the
2068 * public filehandle, and if the request for that operation
2069 * is using the public filehandle. Note that we must call
2070 * sec_svc_getcred() first so that xp_cookie is set to the
2071 * right value. Normally xp_cookie is just the RPC flavor
2072 * of the the request, but in the case of RPCSEC_GSS it
2073 * could be a pseudo flavor.
2074 */
2075 if (publicfh_ok)
2076 return (1);
2077
2078 rpcflavor = req->rq_cred.oa_flavor;
2079 /*
2080 * Check if the auth flavor is valid for this export
2081 */
2082 access = nfsauth_access(exi, req, cr, &uid, &gid, &ngids, &gids);
2083 if (access & NFSAUTH_DROP)
2084 return (-1); /* drop the request */
2085
2086 if (access & NFSAUTH_RO)
2087 *ro = TRUE;
2088
2089 if (access & NFSAUTH_DENIED) {
2090 /*
2091 * If anon_ok == 1 and we got NFSAUTH_DENIED, it was
2092 * probably due to the flavor not matching during
2093 * the mount attempt. So map the flavor to AUTH_NONE
2094 * so that the credentials get mapped to the anonymous
2095 * user.
2096 */
2097 if (anon_ok == 1)
2098 rpcflavor = AUTH_NONE;
2099 else
2100 return (0); /* deny access */
2101
2102 } else if (access & NFSAUTH_MAPNONE) {
2103 /*
2104 * Access was granted even though the flavor mismatched
2105 * because AUTH_NONE was one of the exported flavors.
2106 */
2107 rpcflavor = AUTH_NONE;
2108
2109 } else if (access & NFSAUTH_WRONGSEC) {
2110 /*
2111 * NFSAUTH_WRONGSEC is used for NFSv4. If we get here,
2112 * it means a client ignored the list of allowed flavors
2113 * returned via the MOUNT protocol. So we just disallow it!
2114 */
2115 return (0);
2116 }
2117
2118 if (rpcflavor != AUTH_SYS)
2119 kmem_free(gids, ngids * sizeof (gid_t));
2120
2121 switch (rpcflavor) {
2122 case AUTH_NONE:
2123 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2124 exi->exi_export.ex_anon);
2125 (void) crsetgroups(cr, 0, NULL);
2126 break;
2127
2128 case AUTH_UNIX:
2129 if (!stat || crgetuid(cr) == 0 && !(access & NFSAUTH_UIDMAP)) {
2130 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2131 exi->exi_export.ex_anon);
2132 (void) crsetgroups(cr, 0, NULL);
2133 } else if (crgetuid(cr) == 0 && access & NFSAUTH_ROOT) {
2134 /*
2135 * It is root, so apply rootid to get real UID
2136 * Find the secinfo structure. We should be able
2137 * to find it by the time we reach here.
2138 * nfsauth_access() has done the checking.
2139 */
2140 secp = NULL;
2141 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2142 struct secinfo *sptr;
2143 sptr = &exi->exi_export.ex_secinfo[i];
2144 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) {
2145 secp = sptr;
2146 break;
2147 }
2148 }
2149 if (secp != NULL) {
2150 (void) crsetugid(cr, secp->s_rootid,
2151 secp->s_rootid);
2152 (void) crsetgroups(cr, 0, NULL);
2153 }
2154 } else if (crgetuid(cr) != uid || crgetgid(cr) != gid) {
2155 if (crsetugid(cr, uid, gid) != 0)
2156 anon_res = crsetugid(cr,
2157 exi->exi_export.ex_anon,
2158 exi->exi_export.ex_anon);
2159 (void) crsetgroups(cr, 0, NULL);
2160 } else if (access & NFSAUTH_GROUPS) {
2161 (void) crsetgroups(cr, ngids, gids);
2162 }
2163
2164 kmem_free(gids, ngids * sizeof (gid_t));
2165
2166 break;
2167
2168 case AUTH_DES:
2169 case RPCSEC_GSS:
2170 /*
2171 * Find the secinfo structure. We should be able
2172 * to find it by the time we reach here.
2173 * nfsauth_access() has done the checking.
2174 */
2175 secp = NULL;
2176 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2177 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum ==
2178 nfsflavor) {
2179 secp = &exi->exi_export.ex_secinfo[i];
2180 break;
2181 }
2182 }
2183
2184 if (!secp) {
2185 cmn_err(CE_NOTE, "nfs_server: client %s%shad "
2186 "no secinfo data for flavor %d",
2187 client_name(req), client_addr(req, buf),
2188 nfsflavor);
2189 return (0);
2190 }
2191
2192 if (!checkwin(rpcflavor, secp->s_window, req)) {
2193 cmn_err(CE_NOTE,
2194 "nfs_server: client %s%sused invalid "
2195 "auth window value",
2196 client_name(req), client_addr(req, buf));
2197 return (0);
2198 }
2199
2200 /*
2201 * Map root principals listed in the share's root= list to root,
2202 * and map any others principals that were mapped to root by RPC
2203 * to anon.
2204 */
2205 if (principal && sec_svc_inrootlist(rpcflavor, principal,
2206 secp->s_rootcnt, secp->s_rootnames)) {
2207 if (crgetuid(cr) == 0 && secp->s_rootid == 0)
2208 return (1);
2209
2210
2211 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid);
2212
2213 /*
2214 * NOTE: If and when kernel-land privilege tracing is
2215 * added this may have to be replaced with code that
2216 * retrieves root's supplementary groups (e.g., using
2217 * kgss_get_group_info(). In the meantime principals
2218 * mapped to uid 0 get all privileges, so setting cr's
2219 * supplementary groups for them does nothing.
2220 */
2221 (void) crsetgroups(cr, 0, NULL);
2222
2223 return (1);
2224 }
2225
2226 /*
2227 * Not a root princ, or not in root list, map UID 0/nobody to
2228 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to
2229 * UID_NOBODY and GID_NOBODY, respectively.)
2230 */
2231 if (crgetuid(cr) != 0 &&
2232 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY))
2233 return (1);
2234
2235 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2236 exi->exi_export.ex_anon);
2237 (void) crsetgroups(cr, 0, NULL);
2238 break;
2239 default:
2240 return (0);
2241 } /* switch on rpcflavor */
2242
2243 /*
2244 * Even if anon access is disallowed via ex_anon == -1, we allow
2245 * this access if anon_ok is set. So set creds to the default
2246 * "nobody" id.
2247 */
2248 if (anon_res != 0) {
2249 if (anon_ok == 0) {
2250 cmn_err(CE_NOTE,
2251 "nfs_server: client %s%ssent wrong "
2252 "authentication for %s",
2253 client_name(req), client_addr(req, buf),
2254 exi->exi_export.ex_path ?
2255 exi->exi_export.ex_path : "?");
2256 return (0);
2257 }
2258
2259 if (crsetugid(cr, UID_NOBODY, GID_NOBODY) != 0)
2260 return (0);
2261 }
2262
2263 return (1);
2264 }
2265
2266 /*
2267 * returns 0 on failure, -1 on a drop, -2 on wrong security flavor,
2268 * and 1 on success
2269 */
2270 int
2271 checkauth4(struct compound_state *cs, struct svc_req *req)
2272 {
2273 int i, rpcflavor, access;
2274 struct secinfo *secp;
2275 char buf[MAXHOST + 1];
2276 int anon_res = 0, nfsflavor;
2277 struct exportinfo *exi;
2278 cred_t *cr;
2279 caddr_t principal;
2280
2281 uid_t uid;
2282 gid_t gid;
2283 uint_t ngids;
2284 gid_t *gids;
2285
2286 exi = cs->exi;
2287 cr = cs->cr;
2288 principal = cs->principal;
2289 nfsflavor = cs->nfsflavor;
2290
2291 ASSERT(cr != NULL);
2292
2293 rpcflavor = req->rq_cred.oa_flavor;
2294 cs->access &= ~CS_ACCESS_LIMITED;
2295
2296 /*
2297 * Check for privileged port number
2298 * N.B.: this assumes that we know the format of a netbuf.
2299 */
2300 if (nfs_portmon) {
2301 struct sockaddr *ca;
2302 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf;
2303
2304 if (ca == NULL)
2305 return (0);
2306
2307 if ((ca->sa_family == AF_INET &&
2308 ntohs(((struct sockaddr_in *)ca)->sin_port) >=
2309 IPPORT_RESERVED) ||
2310 (ca->sa_family == AF_INET6 &&
2311 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >=
2312 IPPORT_RESERVED)) {
2313 cmn_err(CE_NOTE,
2314 "nfs_server: client %s%ssent NFSv4 request from "
2315 "unprivileged port",
2316 client_name(req), client_addr(req, buf));
2317 return (0);
2318 }
2319 }
2320
2321 /*
2322 * Check the access right per auth flavor on the vnode of
2323 * this export for the given request.
2324 */
2325 access = nfsauth4_access(cs->exi, cs->vp, req, cr, &uid, &gid, &ngids,
2326 &gids);
2327
2328 if (access & NFSAUTH_WRONGSEC)
2329 return (-2); /* no access for this security flavor */
2330
2331 if (access & NFSAUTH_DROP)
2332 return (-1); /* drop the request */
2333
2334 if (access & NFSAUTH_DENIED) {
2335
2336 if (exi->exi_export.ex_seccnt > 0)
2337 return (0); /* deny access */
2338
2339 } else if (access & NFSAUTH_LIMITED) {
2340
2341 cs->access |= CS_ACCESS_LIMITED;
2342
2343 } else if (access & NFSAUTH_MAPNONE) {
2344 /*
2345 * Access was granted even though the flavor mismatched
2346 * because AUTH_NONE was one of the exported flavors.
2347 */
2348 rpcflavor = AUTH_NONE;
2349 }
2350
2351 /*
2352 * XXX probably need to redo some of it for nfsv4?
2353 * return 1 on success or 0 on failure
2354 */
2355
2356 if (rpcflavor != AUTH_SYS)
2357 kmem_free(gids, ngids * sizeof (gid_t));
2358
2359 switch (rpcflavor) {
2360 case AUTH_NONE:
2361 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2362 exi->exi_export.ex_anon);
2363 (void) crsetgroups(cr, 0, NULL);
2364 break;
2365
2366 case AUTH_UNIX:
2367 if (crgetuid(cr) == 0 && !(access & NFSAUTH_UIDMAP)) {
2368 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2369 exi->exi_export.ex_anon);
2370 (void) crsetgroups(cr, 0, NULL);
2371 } else if (crgetuid(cr) == 0 && access & NFSAUTH_ROOT) {
2372 /*
2373 * It is root, so apply rootid to get real UID
2374 * Find the secinfo structure. We should be able
2375 * to find it by the time we reach here.
2376 * nfsauth_access() has done the checking.
2377 */
2378 secp = NULL;
2379 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2380 struct secinfo *sptr;
2381 sptr = &exi->exi_export.ex_secinfo[i];
2382 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) {
2383 secp = &exi->exi_export.ex_secinfo[i];
2384 break;
2385 }
2386 }
2387 if (secp != NULL) {
2388 (void) crsetugid(cr, secp->s_rootid,
2389 secp->s_rootid);
2390 (void) crsetgroups(cr, 0, NULL);
2391 }
2392 } else if (crgetuid(cr) != uid || crgetgid(cr) != gid) {
2393 if (crsetugid(cr, uid, gid) != 0)
2394 anon_res = crsetugid(cr,
2395 exi->exi_export.ex_anon,
2396 exi->exi_export.ex_anon);
2397 (void) crsetgroups(cr, 0, NULL);
2398 } if (access & NFSAUTH_GROUPS) {
2399 (void) crsetgroups(cr, ngids, gids);
2400 }
2401
2402 kmem_free(gids, ngids * sizeof (gid_t));
2403
2404 break;
2405
2406 default:
2407 /*
2408 * Find the secinfo structure. We should be able
2409 * to find it by the time we reach here.
2410 * nfsauth_access() has done the checking.
2411 */
2412 secp = NULL;
2413 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
2414 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum ==
2415 nfsflavor) {
2416 secp = &exi->exi_export.ex_secinfo[i];
2417 break;
2418 }
2419 }
2420
2421 if (!secp) {
2422 cmn_err(CE_NOTE, "nfs_server: client %s%shad "
2423 "no secinfo data for flavor %d",
2424 client_name(req), client_addr(req, buf),
2425 nfsflavor);
2426 return (0);
2427 }
2428
2429 if (!checkwin(rpcflavor, secp->s_window, req)) {
2430 cmn_err(CE_NOTE,
2431 "nfs_server: client %s%sused invalid "
2432 "auth window value",
2433 client_name(req), client_addr(req, buf));
2434 return (0);
2435 }
2436
2437 /*
2438 * Map root principals listed in the share's root= list to root,
2439 * and map any others principals that were mapped to root by RPC
2440 * to anon. If not going to anon, set to rootid (root_mapping).
2441 */
2442 if (principal && sec_svc_inrootlist(rpcflavor, principal,
2443 secp->s_rootcnt, secp->s_rootnames)) {
2444 if (crgetuid(cr) == 0 && secp->s_rootid == 0)
2445 return (1);
2446
2447 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid);
2448
2449 /*
2450 * NOTE: If and when kernel-land privilege tracing is
2451 * added this may have to be replaced with code that
2452 * retrieves root's supplementary groups (e.g., using
2453 * kgss_get_group_info(). In the meantime principals
2454 * mapped to uid 0 get all privileges, so setting cr's
2455 * supplementary groups for them does nothing.
2456 */
2457 (void) crsetgroups(cr, 0, NULL);
2458
2459 return (1);
2460 }
2461
2462 /*
2463 * Not a root princ, or not in root list, map UID 0/nobody to
2464 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to
2465 * UID_NOBODY and GID_NOBODY, respectively.)
2466 */
2467 if (crgetuid(cr) != 0 &&
2468 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY))
2469 return (1);
2470
2471 anon_res = crsetugid(cr, exi->exi_export.ex_anon,
2472 exi->exi_export.ex_anon);
2473 (void) crsetgroups(cr, 0, NULL);
2474 break;
2475 } /* switch on rpcflavor */
2476
2477 /*
2478 * Even if anon access is disallowed via ex_anon == -1, we allow
2479 * this access if anon_ok is set. So set creds to the default
2480 * "nobody" id.
2481 */
2482
2483 if (anon_res != 0) {
2484 cmn_err(CE_NOTE,
2485 "nfs_server: client %s%ssent wrong "
2486 "authentication for %s",
2487 client_name(req), client_addr(req, buf),
2488 exi->exi_export.ex_path ?
2489 exi->exi_export.ex_path : "?");
2490 return (0);
2491 }
2492
2493 return (1);
2494 }
2495
2496
2497 static char *
2498 client_name(struct svc_req *req)
2499 {
2500 char *hostname = NULL;
2501
2502 /*
2503 * If it's a Unix cred then use the
2504 * hostname from the credential.
2505 */
2506 if (req->rq_cred.oa_flavor == AUTH_UNIX) {
2507 hostname = ((struct authunix_parms *)
2508 req->rq_clntcred)->aup_machname;
2509 }
2510 if (hostname == NULL)
2511 hostname = "";
2512
2513 return (hostname);
2514 }
2515
2516 static char *
2517 client_addr(struct svc_req *req, char *buf)
2518 {
2519 struct sockaddr *ca;
2520 uchar_t *b;
2521 char *frontspace = "";
2522
2523 /*
2524 * We assume we are called in tandem with client_name and the
2525 * format string looks like "...client %s%sblah blah..."
2526 *
2527 * If it's a Unix cred then client_name returned
2528 * a host name, so we need insert a space between host name
2529 * and IP address.
2530 */
2531 if (req->rq_cred.oa_flavor == AUTH_UNIX)
2532 frontspace = " ";
2533
2534 /*
2535 * Convert the caller's IP address to a dotted string
2536 */
2537 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf;
2538
2539 if (ca->sa_family == AF_INET) {
2540 b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr;
2541 (void) sprintf(buf, "%s(%d.%d.%d.%d) ", frontspace,
2542 b[0] & 0xFF, b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF);
2543 } else if (ca->sa_family == AF_INET6) {
2544 struct sockaddr_in6 *sin6;
2545 sin6 = (struct sockaddr_in6 *)ca;
2546 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr,
2547 buf, INET6_ADDRSTRLEN);
2548
2549 } else {
2550
2551 /*
2552 * No IP address to print. If there was a host name
2553 * printed, then we print a space.
2554 */
2555 (void) sprintf(buf, frontspace);
2556 }
2557
2558 return (buf);
2559 }
2560
2561 /*
2562 * NFS Server initialization routine. This routine should only be called
2563 * once. It performs the following tasks:
2564 * - Call sub-initialization routines (localize access to variables)
2565 * - Initialize all locks
2566 * - initialize the version 3 write verifier
2567 */
2568 int
2569 nfs_srvinit(void)
2570 {
2571 int error;
2572
2573 error = nfs_exportinit();
2574 if (error != 0)
2575 return (error);
2576 error = rfs4_srvrinit();
2577 if (error != 0) {
2578 nfs_exportfini();
2579 return (error);
2580 }
2581 rfs_srvrinit();
2582 rfs3_srvrinit();
2583 nfsauth_init();
2584
2585 /* Init the stuff to control start/stop */
2586 nfs_server_upordown = NFS_SERVER_STOPPED;
2587 mutex_init(&nfs_server_upordown_lock, NULL, MUTEX_DEFAULT, NULL);
2588 cv_init(&nfs_server_upordown_cv, NULL, CV_DEFAULT, NULL);
2589 mutex_init(&rdma_wait_mutex, NULL, MUTEX_DEFAULT, NULL);
2590 cv_init(&rdma_wait_cv, NULL, CV_DEFAULT, NULL);
2591
2592 return (0);
2593 }
2594
2595 /*
2596 * NFS Server finalization routine. This routine is called to cleanup the
2597 * initialization work previously performed if the NFS server module could
2598 * not be loaded correctly.
2599 */
2600 void
2601 nfs_srvfini(void)
2602 {
2603 nfsauth_fini();
2604 rfs3_srvrfini();
2605 rfs_srvrfini();
2606 nfs_exportfini();
2607
2608 mutex_destroy(&nfs_server_upordown_lock);
2609 cv_destroy(&nfs_server_upordown_cv);
2610 mutex_destroy(&rdma_wait_mutex);
2611 cv_destroy(&rdma_wait_cv);
2612 }
2613
2614 /*
2615 * Set up an iovec array of up to cnt pointers.
2616 */
2617
2618 void
2619 mblk_to_iov(mblk_t *m, int cnt, struct iovec *iovp)
2620 {
2621 while (m != NULL && cnt-- > 0) {
2622 iovp->iov_base = (caddr_t)m->b_rptr;
2623 iovp->iov_len = (m->b_wptr - m->b_rptr);
2624 iovp++;
2625 m = m->b_cont;
2626 }
2627 }
2628
2629 /*
2630 * Common code between NFS Version 2 and NFS Version 3 for the public
2631 * filehandle multicomponent lookups.
2632 */
2633
2634 /*
2635 * Public filehandle evaluation of a multi-component lookup, following
2636 * symbolic links, if necessary. This may result in a vnode in another
2637 * filesystem, which is OK as long as the other filesystem is exported.
2638 *
2639 * Note that the exi will be set either to NULL or a new reference to the
2640 * exportinfo struct that corresponds to the vnode of the multi-component path.
2641 * It is the callers responsibility to release this reference.
2642 */
2643 int
2644 rfs_publicfh_mclookup(char *p, vnode_t *dvp, cred_t *cr, vnode_t **vpp,
2645 struct exportinfo **exi, struct sec_ol *sec)
2646 {
2647 int pathflag;
2648 vnode_t *mc_dvp = NULL;
2649 vnode_t *realvp;
2650 int error;
2651
2652 *exi = NULL;
2653
2654 /*
2655 * check if the given path is a url or native path. Since p is
2656 * modified by MCLpath(), it may be empty after returning from
2657 * there, and should be checked.
2658 */
2659 if ((pathflag = MCLpath(&p)) == -1)
2660 return (EIO);
2661
2662 /*
2663 * If pathflag is SECURITY_QUERY, turn the SEC_QUERY bit
2664 * on in sec->sec_flags. This bit will later serve as an
2665 * indication in makefh_ol() or makefh3_ol() to overload the
2666 * filehandle to contain the sec modes used by the server for
2667 * the path.
2668 */
2669 if (pathflag == SECURITY_QUERY) {
2670 if ((sec->sec_index = (uint_t)(*p)) > 0) {
2671 sec->sec_flags |= SEC_QUERY;
2672 p++;
2673 if ((pathflag = MCLpath(&p)) == -1)
2674 return (EIO);
2675 } else {
2676 cmn_err(CE_NOTE,
2677 "nfs_server: invalid security index %d, "
2678 "violating WebNFS SNEGO protocol.", sec->sec_index);
2679 return (EIO);
2680 }
2681 }
2682
2683 if (p[0] == '\0') {
2684 error = ENOENT;
2685 goto publicfh_done;
2686 }
2687
2688 error = rfs_pathname(p, &mc_dvp, vpp, dvp, cr, pathflag);
2689
2690 /*
2691 * If name resolves to "/" we get EINVAL since we asked for
2692 * the vnode of the directory that the file is in. Try again
2693 * with NULL directory vnode.
2694 */
2695 if (error == EINVAL) {
2696 error = rfs_pathname(p, NULL, vpp, dvp, cr, pathflag);
2697 if (!error) {
2698 ASSERT(*vpp != NULL);
2699 if ((*vpp)->v_type == VDIR) {
2700 VN_HOLD(*vpp);
2701 mc_dvp = *vpp;
2702 } else {
2703 /*
2704 * This should not happen, the filesystem is
2705 * in an inconsistent state. Fail the lookup
2706 * at this point.
2707 */
2708 VN_RELE(*vpp);
2709 error = EINVAL;
2710 }
2711 }
2712 }
2713
2714 if (error)
2715 goto publicfh_done;
2716
2717 if (*vpp == NULL) {
2718 error = ENOENT;
2719 goto publicfh_done;
2720 }
2721
2722 ASSERT(mc_dvp != NULL);
2723 ASSERT(*vpp != NULL);
2724
2725 if ((*vpp)->v_type == VDIR) {
2726 do {
2727 /*
2728 * *vpp may be an AutoFS node, so we perform
2729 * a VOP_ACCESS() to trigger the mount of the intended
2730 * filesystem, so we can perform the lookup in the
2731 * intended filesystem.
2732 */
2733 (void) VOP_ACCESS(*vpp, 0, 0, cr, NULL);
2734
2735 /*
2736 * If vnode is covered, get the
2737 * the topmost vnode.
2738 */
2739 if (vn_mountedvfs(*vpp) != NULL) {
2740 error = traverse(vpp);
2741 if (error) {
2742 VN_RELE(*vpp);
2743 goto publicfh_done;
2744 }
2745 }
2746
2747 if (VOP_REALVP(*vpp, &realvp, NULL) == 0 &&
2748 realvp != *vpp) {
2749 /*
2750 * If realvp is different from *vpp
2751 * then release our reference on *vpp, so that
2752 * the export access check be performed on the
2753 * real filesystem instead.
2754 */
2755 VN_HOLD(realvp);
2756 VN_RELE(*vpp);
2757 *vpp = realvp;
2758 } else {
2759 break;
2760 }
2761 /* LINTED */
2762 } while (TRUE);
2763
2764 /*
2765 * Let nfs_vptexi() figure what the real parent is.
2766 */
2767 VN_RELE(mc_dvp);
2768 mc_dvp = NULL;
2769
2770 } else {
2771 /*
2772 * If vnode is covered, get the
2773 * the topmost vnode.
2774 */
2775 if (vn_mountedvfs(mc_dvp) != NULL) {
2776 error = traverse(&mc_dvp);
2777 if (error) {
2778 VN_RELE(*vpp);
2779 goto publicfh_done;
2780 }
2781 }
2782
2783 if (VOP_REALVP(mc_dvp, &realvp, NULL) == 0 &&
2784 realvp != mc_dvp) {
2785 /*
2786 * *vpp is a file, obtain realvp of the parent
2787 * directory vnode.
2788 */
2789 VN_HOLD(realvp);
2790 VN_RELE(mc_dvp);
2791 mc_dvp = realvp;
2792 }
2793 }
2794
2795 /*
2796 * The pathname may take us from the public filesystem to another.
2797 * If that's the case then just set the exportinfo to the new export
2798 * and build filehandle for it. Thanks to per-access checking there's
2799 * no security issues with doing this. If the client is not allowed
2800 * access to this new export then it will get an access error when it
2801 * tries to use the filehandle
2802 */
2803 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) {
2804 VN_RELE(*vpp);
2805 goto publicfh_done;
2806 }
2807
2808 /*
2809 * Not allowed access to pseudo exports.
2810 */
2811 if (PSEUDO(*exi)) {
2812 error = ENOENT;
2813 VN_RELE(*vpp);
2814 goto publicfh_done;
2815 }
2816
2817 /*
2818 * Do a lookup for the index file. We know the index option doesn't
2819 * allow paths through handling in the share command, so mc_dvp will
2820 * be the parent for the index file vnode, if its present. Use
2821 * temporary pointers to preserve and reuse the vnode pointers of the
2822 * original directory in case there's no index file. Note that the
2823 * index file is a native path, and should not be interpreted by
2824 * the URL parser in rfs_pathname()
2825 */
2826 if (((*exi)->exi_export.ex_flags & EX_INDEX) &&
2827 ((*vpp)->v_type == VDIR) && (pathflag == URLPATH)) {
2828 vnode_t *tvp, *tmc_dvp; /* temporary vnode pointers */
2829
2830 tmc_dvp = mc_dvp;
2831 mc_dvp = tvp = *vpp;
2832
2833 error = rfs_pathname((*exi)->exi_export.ex_index, NULL, vpp,
2834 mc_dvp, cr, NATIVEPATH);
2835
2836 if (error == ENOENT) {
2837 *vpp = tvp;
2838 mc_dvp = tmc_dvp;
2839 error = 0;
2840 } else { /* ok or error other than ENOENT */
2841 if (tmc_dvp)
2842 VN_RELE(tmc_dvp);
2843 if (error)
2844 goto publicfh_done;
2845
2846 /*
2847 * Found a valid vp for index "filename". Sanity check
2848 * for odd case where a directory is provided as index
2849 * option argument and leads us to another filesystem
2850 */
2851
2852 /* Release the reference on the old exi value */
2853 ASSERT(*exi != NULL);
2854 exi_rele(*exi);
2855
2856 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) {
2857 VN_RELE(*vpp);
2858 goto publicfh_done;
2859 }
2860 }
2861 }
2862
2863 publicfh_done:
2864 if (mc_dvp)
2865 VN_RELE(mc_dvp);
2866
2867 return (error);
2868 }
2869
2870 /*
2871 * Evaluate a multi-component path
2872 */
2873 int
2874 rfs_pathname(
2875 char *path, /* pathname to evaluate */
2876 vnode_t **dirvpp, /* ret for ptr to parent dir vnode */
2877 vnode_t **compvpp, /* ret for ptr to component vnode */
2878 vnode_t *startdvp, /* starting vnode */
2879 cred_t *cr, /* user's credential */
2880 int pathflag) /* flag to identify path, e.g. URL */
2881 {
2882 char namebuf[TYPICALMAXPATHLEN];
2883 struct pathname pn;
2884 int error;
2885
2886 /*
2887 * If pathname starts with '/', then set startdvp to root.
2888 */
2889 if (*path == '/') {
2890 while (*path == '/')
2891 path++;
2892
2893 startdvp = rootdir;
2894 }
2895
2896 error = pn_get_buf(path, UIO_SYSSPACE, &pn, namebuf, sizeof (namebuf));
2897 if (error == 0) {
2898 /*
2899 * Call the URL parser for URL paths to modify the original
2900 * string to handle any '%' encoded characters that exist.
2901 * Done here to avoid an extra bcopy in the lookup.
2902 * We need to be careful about pathlen's. We know that
2903 * rfs_pathname() is called with a non-empty path. However,
2904 * it could be emptied due to the path simply being all /'s,
2905 * which is valid to proceed with the lookup, or due to the
2906 * URL parser finding an encoded null character at the
2907 * beginning of path which should not proceed with the lookup.
2908 */
2909 if (pn.pn_pathlen != 0 && pathflag == URLPATH) {
2910 URLparse(pn.pn_path);
2911 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0)
2912 return (ENOENT);
2913 }
2914 VN_HOLD(startdvp);
2915 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp,
2916 rootdir, startdvp, cr);
2917 }
2918 if (error == ENAMETOOLONG) {
2919 /*
2920 * This thread used a pathname > TYPICALMAXPATHLEN bytes long.
2921 */
2922 if (error = pn_get(path, UIO_SYSSPACE, &pn))
2923 return (error);
2924 if (pn.pn_pathlen != 0 && pathflag == URLPATH) {
2925 URLparse(pn.pn_path);
2926 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) {
2927 pn_free(&pn);
2928 return (ENOENT);
2929 }
2930 }
2931 VN_HOLD(startdvp);
2932 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp,
2933 rootdir, startdvp, cr);
2934 pn_free(&pn);
2935 }
2936
2937 return (error);
2938 }
2939
2940 /*
2941 * Adapt the multicomponent lookup path depending on the pathtype
2942 */
2943 static int
2944 MCLpath(char **path)
2945 {
2946 unsigned char c = (unsigned char)**path;
2947
2948 /*
2949 * If the MCL path is between 0x20 and 0x7E (graphic printable
2950 * character of the US-ASCII coded character set), its a URL path,
2951 * per RFC 1738.
2952 */
2953 if (c >= 0x20 && c <= 0x7E)
2954 return (URLPATH);
2955
2956 /*
2957 * If the first octet of the MCL path is not an ASCII character
2958 * then it must be interpreted as a tag value that describes the
2959 * format of the remaining octets of the MCL path.
2960 *
2961 * If the first octet of the MCL path is 0x81 it is a query
2962 * for the security info.
2963 */
2964 switch (c) {
2965 case 0x80: /* native path, i.e. MCL via mount protocol */
2966 (*path)++;
2967 return (NATIVEPATH);
2968 case 0x81: /* security query */
2969 (*path)++;
2970 return (SECURITY_QUERY);
2971 default:
2972 return (-1);
2973 }
2974 }
2975
2976 #define fromhex(c) ((c >= '0' && c <= '9') ? (c - '0') : \
2977 ((c >= 'A' && c <= 'F') ? (c - 'A' + 10) :\
2978 ((c >= 'a' && c <= 'f') ? (c - 'a' + 10) : 0)))
2979
2980 /*
2981 * The implementation of URLparse guarantees that the final string will
2982 * fit in the original one. Replaces '%' occurrences followed by 2 characters
2983 * with its corresponding hexadecimal character.
2984 */
2985 static void
2986 URLparse(char *str)
2987 {
2988 char *p, *q;
2989
2990 p = q = str;
2991 while (*p) {
2992 *q = *p;
2993 if (*p++ == '%') {
2994 if (*p) {
2995 *q = fromhex(*p) * 16;
2996 p++;
2997 if (*p) {
2998 *q += fromhex(*p);
2999 p++;
3000 }
3001 }
3002 }
3003 q++;
3004 }
3005 *q = '\0';
3006 }
3007
3008
3009 /*
3010 * Get the export information for the lookup vnode, and verify its
3011 * useable.
3012 */
3013 int
3014 nfs_check_vpexi(vnode_t *mc_dvp, vnode_t *vp, cred_t *cr,
3015 struct exportinfo **exi)
3016 {
3017 int walk;
3018 int error = 0;
3019
3020 *exi = nfs_vptoexi(mc_dvp, vp, cr, &walk, NULL, FALSE);
3021 if (*exi == NULL)
3022 error = EACCES;
3023 else {
3024 /*
3025 * If nosub is set for this export then
3026 * a lookup relative to the public fh
3027 * must not terminate below the
3028 * exported directory.
3029 */
3030 if ((*exi)->exi_export.ex_flags & EX_NOSUB && walk > 0)
3031 error = EACCES;
3032 }
3033
3034 return (error);
3035 }
3036
3037 /*
3038 * Do the main work of handling HA-NFSv4 Resource Group failover on
3039 * Sun Cluster.
3040 * We need to detect whether any RG admin paths have been added or removed,
3041 * and adjust resources accordingly.
3042 * Currently we're using a very inefficient algorithm, ~ 2 * O(n**2). In
3043 * order to scale, the list and array of paths need to be held in more
3044 * suitable data structures.
3045 */
3046 static void
3047 hanfsv4_failover(void)
3048 {
3049 int i, start_grace, numadded_paths = 0;
3050 char **added_paths = NULL;
3051 rfs4_dss_path_t *dss_path;
3052
3053 /*
3054 * Note: currently, rfs4_dss_pathlist cannot be NULL, since
3055 * it will always include an entry for NFS4_DSS_VAR_DIR. If we
3056 * make the latter dynamically specified too, the following will
3057 * need to be adjusted.
3058 */
3059
3060 /*
3061 * First, look for removed paths: RGs that have been failed-over
3062 * away from this node.
3063 * Walk the "currently-serving" rfs4_dss_pathlist and, for each
3064 * path, check if it is on the "passed-in" rfs4_dss_newpaths array
3065 * from nfsd. If not, that RG path has been removed.
3066 *
3067 * Note that nfsd has sorted rfs4_dss_newpaths for us, and removed
3068 * any duplicates.
3069 */
3070 dss_path = rfs4_dss_pathlist;
3071 do {
3072 int found = 0;
3073 char *path = dss_path->path;
3074
3075 /* used only for non-HA so may not be removed */
3076 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) {
3077 dss_path = dss_path->next;
3078 continue;
3079 }
3080
3081 for (i = 0; i < rfs4_dss_numnewpaths; i++) {
3082 int cmpret;
3083 char *newpath = rfs4_dss_newpaths[i];
3084
3085 /*
3086 * Since nfsd has sorted rfs4_dss_newpaths for us,
3087 * once the return from strcmp is negative we know
3088 * we've passed the point where "path" should be,
3089 * and can stop searching: "path" has been removed.
3090 */
3091 cmpret = strcmp(path, newpath);
3092 if (cmpret < 0)
3093 break;
3094 if (cmpret == 0) {
3095 found = 1;
3096 break;
3097 }
3098 }
3099
3100 if (found == 0) {
3101 unsigned index = dss_path->index;
3102 rfs4_servinst_t *sip = dss_path->sip;
3103 rfs4_dss_path_t *path_next = dss_path->next;
3104
3105 /*
3106 * This path has been removed.
3107 * We must clear out the servinst reference to
3108 * it, since it's now owned by another
3109 * node: we should not attempt to touch it.
3110 */
3111 ASSERT(dss_path == sip->dss_paths[index]);
3112 sip->dss_paths[index] = NULL;
3113
3114 /* remove from "currently-serving" list, and destroy */
3115 remque(dss_path);
3116 /* allow for NUL */
3117 kmem_free(dss_path->path, strlen(dss_path->path) + 1);
3118 kmem_free(dss_path, sizeof (rfs4_dss_path_t));
3119
3120 dss_path = path_next;
3121 } else {
3122 /* path was found; not removed */
3123 dss_path = dss_path->next;
3124 }
3125 } while (dss_path != rfs4_dss_pathlist);
3126
3127 /*
3128 * Now, look for added paths: RGs that have been failed-over
3129 * to this node.
3130 * Walk the "passed-in" rfs4_dss_newpaths array from nfsd and,
3131 * for each path, check if it is on the "currently-serving"
3132 * rfs4_dss_pathlist. If not, that RG path has been added.
3133 *
3134 * Note: we don't do duplicate detection here; nfsd does that for us.
3135 *
3136 * Note: numadded_paths <= rfs4_dss_numnewpaths, which gives us
3137 * an upper bound for the size needed for added_paths[numadded_paths].
3138 */
3139
3140 /* probably more space than we need, but guaranteed to be enough */
3141 if (rfs4_dss_numnewpaths > 0) {
3142 size_t sz = rfs4_dss_numnewpaths * sizeof (char *);
3143 added_paths = kmem_zalloc(sz, KM_SLEEP);
3144 }
3145
3146 /* walk the "passed-in" rfs4_dss_newpaths array from nfsd */
3147 for (i = 0; i < rfs4_dss_numnewpaths; i++) {
3148 int found = 0;
3149 char *newpath = rfs4_dss_newpaths[i];
3150
3151 dss_path = rfs4_dss_pathlist;
3152 do {
3153 char *path = dss_path->path;
3154
3155 /* used only for non-HA */
3156 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) {
3157 dss_path = dss_path->next;
3158 continue;
3159 }
3160
3161 if (strncmp(path, newpath, strlen(path)) == 0) {
3162 found = 1;
3163 break;
3164 }
3165
3166 dss_path = dss_path->next;
3167 } while (dss_path != rfs4_dss_pathlist);
3168
3169 if (found == 0) {
3170 added_paths[numadded_paths] = newpath;
3171 numadded_paths++;
3172 }
3173 }
3174
3175 /* did we find any added paths? */
3176 if (numadded_paths > 0) {
3177 /* create a new server instance, and start its grace period */
3178 start_grace = 1;
3179 rfs4_servinst_create(start_grace, numadded_paths, added_paths);
3180
3181 /* read in the stable storage state from these paths */
3182 rfs4_dss_readstate(numadded_paths, added_paths);
3183
3184 /*
3185 * Multiple failovers during a grace period will cause
3186 * clients of the same resource group to be partitioned
3187 * into different server instances, with different
3188 * grace periods. Since clients of the same resource
3189 * group must be subject to the same grace period,
3190 * we need to reset all currently active grace periods.
3191 */
3192 rfs4_grace_reset_all();
3193 }
3194
3195 if (rfs4_dss_numnewpaths > 0)
3196 kmem_free(added_paths, rfs4_dss_numnewpaths * sizeof (char *));
3197 }
3198
3199 /*
3200 * Used by NFSv3 and NFSv4 server to query label of
3201 * a pathname component during lookup/access ops.
3202 */
3203 ts_label_t *
3204 nfs_getflabel(vnode_t *vp, struct exportinfo *exi)
3205 {
3206 zone_t *zone;
3207 ts_label_t *zone_label;
3208 char *path;
3209
3210 mutex_enter(&vp->v_lock);
3211 if (vp->v_path != NULL) {
3212 zone = zone_find_by_any_path(vp->v_path, B_FALSE);
3213 mutex_exit(&vp->v_lock);
3214 } else {
3215 /*
3216 * v_path not cached. Fall back on pathname of exported
3217 * file system as we rely on pathname from which we can
3218 * derive a label. The exported file system portion of
3219 * path is sufficient to obtain a label.
3220 */
3221 path = exi->exi_export.ex_path;
3222 if (path == NULL) {
3223 mutex_exit(&vp->v_lock);
3224 return (NULL);
3225 }
3226 zone = zone_find_by_any_path(path, B_FALSE);
3227 mutex_exit(&vp->v_lock);
3228 }
3229 /*
3230 * Caller has verified that the file is either
3231 * exported or visible. So if the path falls in
3232 * global zone, admin_low is returned; otherwise
3233 * the zone's label is returned.
3234 */
3235 zone_label = zone->zone_slabel;
3236 label_hold(zone_label);
3237 zone_rele(zone);
3238 return (zone_label);
3239 }
3240
3241 /*
3242 * TX NFS routine used by NFSv3 and NFSv4 to do label check
3243 * on client label and server's file object lable.
3244 */
3245 boolean_t
3246 do_rfs_label_check(bslabel_t *clabel, vnode_t *vp, int flag,
3247 struct exportinfo *exi)
3248 {
3249 bslabel_t *slabel;
3250 ts_label_t *tslabel;
3251 boolean_t result;
3252
3253 if ((tslabel = nfs_getflabel(vp, exi)) == NULL) {
3254 return (B_FALSE);
3255 }
3256 slabel = label2bslabel(tslabel);
3257 DTRACE_PROBE4(tx__rfs__log__info__labelcheck, char *,
3258 "comparing server's file label(1) with client label(2) (vp(3))",
3259 bslabel_t *, slabel, bslabel_t *, clabel, vnode_t *, vp);
3260
3261 if (flag == EQUALITY_CHECK)
3262 result = blequal(clabel, slabel);
3263 else
3264 result = bldominates(clabel, slabel);
3265 label_rele(tslabel);
3266 return (result);
3267 }
3268
3269 /*
3270 * Callback function to return the loaned buffers.
3271 * Calls VOP_RETZCBUF() only after all uio_iov[]
3272 * buffers are returned. nu_ref maintains the count.
3273 */
3274 void
3275 rfs_free_xuio(void *free_arg)
3276 {
3277 uint_t ref;
3278 nfs_xuio_t *nfsuiop = (nfs_xuio_t *)free_arg;
3279
3280 ref = atomic_dec_uint_nv(&nfsuiop->nu_ref);
3281
3282 /*
3283 * Call VOP_RETZCBUF() only when all the iov buffers
3284 * are sent OTW.
3285 */
3286 if (ref != 0)
3287 return;
3288
3289 if (((uio_t *)nfsuiop)->uio_extflg & UIO_XUIO) {
3290 (void) VOP_RETZCBUF(nfsuiop->nu_vp, (xuio_t *)free_arg, NULL,
3291 NULL);
3292 VN_RELE(nfsuiop->nu_vp);
3293 }
3294
3295 kmem_cache_free(nfs_xuio_cache, free_arg);
3296 }
3297
3298 xuio_t *
3299 rfs_setup_xuio(vnode_t *vp)
3300 {
3301 nfs_xuio_t *nfsuiop;
3302
3303 nfsuiop = kmem_cache_alloc(nfs_xuio_cache, KM_SLEEP);
3304
3305 bzero(nfsuiop, sizeof (nfs_xuio_t));
3306 nfsuiop->nu_vp = vp;
3307
3308 /*
3309 * ref count set to 1. more may be added
3310 * if multiple mblks refer to multiple iov's.
3311 * This is done in uio_to_mblk().
3312 */
3313
3314 nfsuiop->nu_ref = 1;
3315
3316 nfsuiop->nu_frtn.free_func = rfs_free_xuio;
3317 nfsuiop->nu_frtn.free_arg = (char *)nfsuiop;
3318
3319 nfsuiop->nu_uio.xu_type = UIOTYPE_ZEROCOPY;
3320
3321 return (&nfsuiop->nu_uio);
3322 }
3323
3324 mblk_t *
3325 uio_to_mblk(uio_t *uiop)
3326 {
3327 struct iovec *iovp;
3328 int i;
3329 mblk_t *mp, *mp1;
3330 nfs_xuio_t *nfsuiop = (nfs_xuio_t *)uiop;
3331
3332 if (uiop->uio_iovcnt == 0)
3333 return (NULL);
3334
3335 iovp = uiop->uio_iov;
3336 mp = mp1 = esballoca((uchar_t *)iovp->iov_base, iovp->iov_len,
3337 BPRI_MED, &nfsuiop->nu_frtn);
3338 ASSERT(mp != NULL);
3339
3340 mp->b_wptr += iovp->iov_len;
3341 mp->b_datap->db_type = M_DATA;
3342
3343 for (i = 1; i < uiop->uio_iovcnt; i++) {
3344 iovp = (uiop->uio_iov + i);
3345
3346 mp1->b_cont = esballoca(
3347 (uchar_t *)iovp->iov_base, iovp->iov_len, BPRI_MED,
3348 &nfsuiop->nu_frtn);
3349
3350 mp1 = mp1->b_cont;
3351 ASSERT(mp1 != NULL);
3352 mp1->b_wptr += iovp->iov_len;
3353 mp1->b_datap->db_type = M_DATA;
3354 }
3355
3356 nfsuiop->nu_ref = uiop->uio_iovcnt;
3357
3358 return (mp);
3359 }
3360
3361 /*
3362 * Allocate memory to hold data for a read request of len bytes.
3363 *
3364 * We don't allocate buffers greater than kmem_max_cached in size to avoid
3365 * allocating memory from the kmem_oversized arena. If we allocate oversized
3366 * buffers, we incur heavy cross-call activity when freeing these large buffers
3367 * in the TCP receive path. Note that we can't set b_wptr here since the
3368 * length of the data returned may differ from the length requested when
3369 * reading the end of a file; we set b_wptr in rfs_rndup_mblks() once the
3370 * length of the read is known.
3371 */
3372 mblk_t *
3373 rfs_read_alloc(uint_t len, struct iovec **iov, int *iovcnt)
3374 {
3375 struct iovec *iovarr;
3376 mblk_t *mp, **mpp = ∓
3377 size_t mpsize;
3378 uint_t remain = len;
3379 int i, err = 0;
3380
3381 *iovcnt = howmany(len, kmem_max_cached);
3382
3383 iovarr = kmem_alloc(*iovcnt * sizeof (struct iovec), KM_SLEEP);
3384 *iov = iovarr;
3385
3386 for (i = 0; i < *iovcnt; remain -= mpsize, i++) {
3387 ASSERT(remain <= len);
3388 /*
3389 * We roundup the size we allocate to a multiple of
3390 * BYTES_PER_XDR_UNIT (4 bytes) so that the call to
3391 * xdrmblk_putmblk() never fails.
3392 */
3393 ASSERT(kmem_max_cached % BYTES_PER_XDR_UNIT == 0);
3394 mpsize = MIN(kmem_max_cached, remain);
3395 *mpp = allocb_wait(RNDUP(mpsize), BPRI_MED, STR_NOSIG, &err);
3396 ASSERT(*mpp != NULL);
3397 ASSERT(err == 0);
3398
3399 iovarr[i].iov_base = (caddr_t)(*mpp)->b_rptr;
3400 iovarr[i].iov_len = mpsize;
3401 mpp = &(*mpp)->b_cont;
3402 }
3403 return (mp);
3404 }
3405
3406 void
3407 rfs_rndup_mblks(mblk_t *mp, uint_t len, int buf_loaned)
3408 {
3409 int i;
3410 int alloc_err = 0;
3411 mblk_t *rmp;
3412 uint_t mpsize, remainder;
3413
3414 remainder = P2NPHASE(len, BYTES_PER_XDR_UNIT);
3415
3416 /*
3417 * Non copy-reduction case. This function assumes that blocks were
3418 * allocated in multiples of BYTES_PER_XDR_UNIT bytes, which makes this
3419 * padding safe without bounds checking.
3420 */
3421 if (!buf_loaned) {
3422 /*
3423 * Set the size of each mblk in the chain until we've consumed
3424 * the specified length for all but the last one.
3425 */
3426 while ((mpsize = MBLKSIZE(mp)) < len) {
3427 ASSERT(mpsize % BYTES_PER_XDR_UNIT == 0);
3428 mp->b_wptr += mpsize;
3429 len -= mpsize;
3430 mp = mp->b_cont;
3431 ASSERT(mp != NULL);
3432 }
3433
3434 ASSERT(len + remainder <= mpsize);
3435 mp->b_wptr += len;
3436 for (i = 0; i < remainder; i++)
3437 *mp->b_wptr++ = '\0';
3438 return;
3439 }
3440
3441 /*
3442 * No remainder mblk required.
3443 */
3444 if (remainder == 0)
3445 return;
3446
3447 /*
3448 * Get to the last mblk in the chain.
3449 */
3450 while (mp->b_cont != NULL)
3451 mp = mp->b_cont;
3452
3453 /*
3454 * In case of copy-reduction mblks, the size of the mblks are fixed
3455 * and are of the size of the loaned buffers. Allocate a remainder
3456 * mblk and chain it to the data buffers. This is sub-optimal, but not
3457 * expected to happen commonly.
3458 */
3459 rmp = allocb_wait(remainder, BPRI_MED, STR_NOSIG, &alloc_err);
3460 ASSERT(rmp != NULL);
3461 ASSERT(alloc_err == 0);
3462
3463 for (i = 0; i < remainder; i++)
3464 *rmp->b_wptr++ = '\0';
3465
3466 rmp->b_datap->db_type = M_DATA;
3467 mp->b_cont = rmp;
3468 }