1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 25 */ 26 27 #include <sys/systm.h> 28 29 #include <nfs/nfs.h> 30 #include <nfs/export.h> 31 #include <sys/cmn_err.h> 32 #include <sys/avl.h> 33 34 #define PSEUDOFS_SUFFIX " (pseudo)" 35 36 /* 37 * A version of VOP_FID that deals with a remote VOP_FID for nfs. 38 * If vp is an nfs node, nfs4_fid() returns EREMOTE, nfs3_fid() and nfs_fid() 39 * returns the filehandle of vp as its fid. When nfs uses fid to set the 40 * exportinfo filehandle template, a remote nfs filehandle would be too big for 41 * the fid of the exported directory. This routine remaps the value of the 42 * attribute va_nodeid of vp to be the fid of vp, so that the fid can fit. 43 * 44 * We need this fid mainly for setting up NFSv4 server namespace where an 45 * nfs filesystem is also part of it. Thus, need to be able to setup a pseudo 46 * exportinfo for an nfs node. 47 * 48 * e.g. mount a filesystem on top of a nfs dir, and then share the new mount 49 * (like exporting a local disk from a "diskless" client) 50 */ 51 int 52 vop_fid_pseudo(vnode_t *vp, fid_t *fidp) 53 { 54 struct vattr va; 55 int error; 56 57 error = VOP_FID(vp, fidp, NULL); 58 59 /* 60 * XXX nfs4_fid() does nothing and returns EREMOTE. 61 * XXX nfs3_fid()/nfs_fid() returns nfs filehandle as its fid 62 * which has a bigger length than local fid. 63 * NFS_FH4MAXDATA is the size of 64 * fhandle4_t.fh_xdata[NFS_FH4MAXDATA]. 65 * 66 * Note: nfs[2,3,4]_fid() only gets called for diskless clients. 67 */ 68 if (error == EREMOTE || 69 (error == 0 && fidp->fid_len > NFS_FH4MAXDATA)) { 70 71 va.va_mask = AT_NODEID; 72 error = VOP_GETATTR(vp, &va, 0, CRED(), NULL); 73 if (error) 74 return (error); 75 76 fidp->fid_len = sizeof (va.va_nodeid); 77 bcopy(&va.va_nodeid, fidp->fid_data, fidp->fid_len); 78 return (0); 79 } 80 81 return (error); 82 } 83 84 /* 85 * Get an nfsv4 vnode of the given fid from the visible list of an 86 * nfs filesystem or get the exi_vp if it is the root node. 87 */ 88 int 89 nfs4_vget_pseudo(struct exportinfo *exi, vnode_t **vpp, fid_t *fidp) 90 { 91 fid_t exp_fid; 92 struct exp_visible *visp; 93 int error; 94 95 /* check if the given fid is in the visible list */ 96 97 for (visp = exi->exi_visible; visp; visp = visp->vis_next) { 98 if (EQFID(fidp, &visp->vis_fid)) { 99 VN_HOLD(visp->vis_vp); 100 *vpp = visp->vis_vp; 101 return (0); 102 } 103 } 104 105 /* check if the given fid is the same as the exported node */ 106 107 bzero(&exp_fid, sizeof (exp_fid)); 108 exp_fid.fid_len = MAXFIDSZ; 109 error = vop_fid_pseudo(exi->exi_vp, &exp_fid); 110 if (error) 111 return (error); 112 113 if (EQFID(fidp, &exp_fid)) { 114 VN_HOLD(exi->exi_vp); 115 *vpp = exi->exi_vp; 116 return (0); 117 } 118 119 return (ENOENT); 120 } 121 122 /* 123 * Create a pseudo export entry 124 * 125 * This is an export entry that's created as the 126 * side-effect of a "real" export. As a part of 127 * a real export, the pathname to the export is 128 * checked to see if all the directory components 129 * are accessible via an NFSv4 client, i.e. are 130 * exported. If treeclimb_export() finds an unexported 131 * mountpoint along the path, then it calls this 132 * function to export it. 133 * 134 * This pseudo export differs from a real export in that 135 * it only allows read-only access. A "visible" list of 136 * directories is added to filter lookup and readdir results 137 * to only contain dirnames which lead to descendant shares. 138 * 139 * A visible list has a per-file-system scope. Any exportinfo 140 * struct (real or pseudo) can have a visible list as long as 141 * a) its export root is VROOT 142 * b) a descendant of the export root is shared 143 */ 144 struct exportinfo * 145 pseudo_exportfs(vnode_t *vp, fid_t *fid, struct exp_visible *vis_head, 146 struct exportdata *exdata) 147 { 148 struct exportinfo *exi; 149 struct exportdata *kex; 150 fsid_t fsid; 151 int vpathlen; 152 int i; 153 154 ASSERT(RW_WRITE_HELD(&exported_lock)); 155 156 fsid = vp->v_vfsp->vfs_fsid; 157 exi = kmem_zalloc(sizeof (*exi), KM_SLEEP); 158 exi->exi_fsid = fsid; 159 exi->exi_fid = *fid; 160 exi->exi_vp = vp; 161 VN_HOLD(exi->exi_vp); 162 exi->exi_visible = vis_head; 163 exi->exi_count = 1; 164 exi->exi_volatile_dev = (vfssw[vp->v_vfsp->vfs_fstype].vsw_flag & 165 VSW_VOLATILEDEV) ? 1 : 0; 166 mutex_init(&exi->exi_lock, NULL, MUTEX_DEFAULT, NULL); 167 168 /* 169 * Build up the template fhandle 170 */ 171 exi->exi_fh.fh_fsid = fsid; 172 ASSERT(exi->exi_fid.fid_len <= sizeof (exi->exi_fh.fh_xdata)); 173 exi->exi_fh.fh_xlen = exi->exi_fid.fid_len; 174 bcopy(exi->exi_fid.fid_data, exi->exi_fh.fh_xdata, 175 exi->exi_fid.fid_len); 176 exi->exi_fh.fh_len = sizeof (exi->exi_fh.fh_data); 177 178 kex = &exi->exi_export; 179 kex->ex_flags = EX_PSEUDO; 180 181 vpathlen = vp->v_path ? strlen(vp->v_path) : 0; 182 kex->ex_pathlen = vpathlen + strlen(PSEUDOFS_SUFFIX); 183 kex->ex_path = kmem_alloc(kex->ex_pathlen + 1, KM_SLEEP); 184 185 if (vpathlen) 186 (void) strcpy(kex->ex_path, vp->v_path); 187 (void) strcpy(kex->ex_path + vpathlen, PSEUDOFS_SUFFIX); 188 189 /* Transfer the secinfo data from exdata to this new pseudo node */ 190 if (exdata) 191 srv_secinfo_exp2pseu(&exi->exi_export, exdata); 192 193 /* 194 * Initialize auth cache and auth cache lock 195 */ 196 for (i = 0; i < AUTH_TABLESIZE; i++) { 197 exi->exi_cache[i] = kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); 198 avl_create(exi->exi_cache[i], nfsauth_cache_clnt_compar, 199 sizeof (struct auth_cache_clnt), 200 offsetof(struct auth_cache_clnt, authc_link)); 201 } 202 rw_init(&exi->exi_cache_lock, NULL, RW_DEFAULT, NULL); 203 204 /* 205 * Insert the new entry at the front of the export list 206 */ 207 export_link(exi); 208 209 return (exi); 210 } 211 212 /* 213 * Free a list of visible directories 214 */ 215 void 216 free_visible(struct exp_visible *head) 217 { 218 struct exp_visible *visp, *next; 219 220 for (visp = head; visp; visp = next) { 221 if (visp->vis_vp != NULL) 222 VN_RELE(visp->vis_vp); 223 224 next = visp->vis_next; 225 srv_secinfo_list_free(visp->vis_secinfo, visp->vis_seccnt); 226 kmem_free(visp, sizeof (*visp)); 227 } 228 } 229 230 /* 231 * Connects newchild (or subtree with newchild in head) 232 * to the parent node. We always add it to the beginning 233 * of sibling list. 234 */ 235 static void 236 tree_add_child(treenode_t *parent, treenode_t *newchild) 237 { 238 newchild->tree_parent = parent; 239 newchild->tree_sibling = parent->tree_child_first; 240 parent->tree_child_first = newchild; 241 } 242 243 /* Look up among direct children a node with the exact tree_vis pointer */ 244 static treenode_t * 245 tree_find_child_by_vis(treenode_t *t, exp_visible_t *vis) 246 { 247 for (t = t->tree_child_first; t; t = t->tree_sibling) 248 if (t->tree_vis == vis) 249 return (t); 250 return (NULL); 251 } 252 253 /* 254 * Add new node to the head of subtree pointed by 'n'. n can be NULL. 255 * Interconnects the new treenode with exp_visible and exportinfo 256 * if needed. 257 */ 258 static treenode_t * 259 tree_prepend_node(treenode_t *n, exp_visible_t *v, exportinfo_t *e) 260 { 261 treenode_t *tnode = kmem_zalloc(sizeof (*tnode), KM_SLEEP); 262 263 if (n) { 264 tnode->tree_child_first = n; 265 n->tree_parent = tnode; 266 } 267 if (v) { 268 tnode->tree_vis = v; 269 } 270 if (e) { 271 tnode->tree_exi = e; 272 e->exi_tree = tnode; 273 } 274 return (tnode); 275 } 276 277 /* 278 * Removes node from the tree and frees the treenode struct. 279 * Does not free structures pointed by tree_exi and tree_vis, 280 * they should be already freed. 281 */ 282 static void 283 tree_remove_node(treenode_t *node) 284 { 285 treenode_t *parent = node->tree_parent; 286 treenode_t *s; /* s for sibling */ 287 288 if (parent == NULL) { 289 kmem_free(node, sizeof (*node)); 290 ns_root = NULL; 291 return; 292 } 293 /* This node is first child */ 294 if (parent->tree_child_first == node) { 295 parent->tree_child_first = node->tree_sibling; 296 /* This node is not first child */ 297 } else { 298 s = parent->tree_child_first; 299 while (s->tree_sibling != node) 300 s = s->tree_sibling; 301 s->tree_sibling = s->tree_sibling->tree_sibling; 302 } 303 kmem_free(node, sizeof (*node)); 304 } 305 306 /* 307 * When we export a new directory we need to add a new 308 * path segment through the pseudofs to reach the new 309 * directory. This new path is reflected in a list of 310 * directories added to the "visible" list. 311 * 312 * Here there are two lists of visible fids: one hanging off the 313 * pseudo exportinfo, and the one we want to add. It's possible 314 * that the two lists share a common path segment 315 * and have some common directories. We need to combine 316 * the lists so there's no duplicate entries. Where a common 317 * path component is found, the vis_count field is bumped. 318 * 319 * This example shows that the treenode chain (tree_head) and 320 * exp_visible chain (vis_head) can differ in length. The latter 321 * can be shorter. The outer loop must loop over the vis_head chain. 322 * 323 * share /x/a 324 * mount -F ufs /dev/dsk/... /x/y 325 * mkdir -p /x/y/a/b 326 * share /x/y/a/b 327 * 328 * When more_visible() is called during the second share, 329 * the existing namespace is following: 330 * exp_visible_t 331 * treenode_t exportinfo_t v0 v1 332 * ns_root+---+ +------------+ +---+ +---+ 333 * t0| / |........| E0 pseudo |->| x |->| a | 334 * +---+ +------------+ +---+ +---+ 335 * | / / 336 * +---+ / / 337 * t1| x |------------------------ / 338 * +---+ / 339 * | / 340 * +---+ / 341 * t2| a |------------------------- 342 * +---+........+------------+ 343 * | E1 real | 344 * +------------+ 345 * 346 * This is being added: 347 * 348 * tree_head vis_head 349 * +---+ +---+ 350 * t3| x |->| x |v2 351 * +---+ +---+ 352 * | | 353 * +---+ +---+ v4 v5 354 * t4| y |->| y |v3 +------------+ +---+ +---+ 355 * +---+\ +---+ | E2 pseudo |->| a |->| b | 356 * | \....... >+------------+ +---+ +---+ 357 * +---+ / / 358 * t5| a |--------------------------- / 359 * +---+ / 360 * | / 361 * +---+------------------------------- 362 * t6| b | +------------+ 363 * +---+..........>| E3 real | 364 * +------------+ 365 * 366 * more_visible() will: 367 * - kmem_free() t3 and v2 368 * - add t4, t5, t6 as a child of t1 (t4 will become sibling of t2) 369 * - add v3 to the end of E0->exi_visible 370 * 371 * Note that v4 and v5 were already processed in pseudo_exportfs() and 372 * added to E2. The outer loop of more_visible() will loop only over v2 373 * and v3. The inner loop of more_visible() always loops over v0 and v1. 374 * 375 * Illustration for this scenario: 376 * 377 * mkdir -p /v/a/b/c 378 * share /v/a/b/c 379 * mkdir /v/a/b/c1 380 * mkdir -p /v/a1 381 * mv /v/a/b /v/a1 382 * share /v/a1/b/c1 383 * 384 * EXISTING 385 * treenode 386 * namespace: +-----------+ visibles 387 * |exportinfo |-->v->a->b->c 388 * connect_point->+---+--->+-----------+ 389 * | / |T0 390 * +---+ 391 * | NEW treenode chain: 392 * child->+---+ 393 * | v |T1 +---+<-curr 394 * +---+ N1| v | 395 * | +---+ 396 * +---+ | 397 * | a |T2 +---+<-tree_head 398 * +---+ N2| a1| 399 * | +---+ 400 * +---+ | 401 * | b |T3 +---+ 402 * +---+ N3| b | 403 * | +---+ 404 * +---+ | 405 * | c |T4 +---+ 406 * +---+ N4| c1| 407 * +---+ 408 * 409 * The picture above illustrates the position of following pointers after line 410 * 'child = tree_find_child_by_vis(connect_point, curr->tree_vis);' 411 * was executed for the first time in the outer 'for' loop: 412 * 413 * connect_point..parent treenode in the EXISTING namespace to which the 'curr' 414 * should be connected. If 'connect_point' already has a child 415 * with the same value of tree_vis as the curr->tree_vis is, 416 * the 'curr' will not be added, but kmem_free()d. 417 * child..........the result of tree_find_child_by_vis() 418 * curr...........currently processed treenode from the NEW treenode chain 419 * tree_head......current head of the NEW treenode chain, in this case it was 420 * already moved down to its child - preparation for another loop 421 * 422 * What will happen to NEW treenodes N1, N2, N3, N4 in more_visible() later: 423 * 424 * N1: is merged - i.e. N1 is kmem_free()d. T0 has a child T1 with the same 425 * tree_vis as N1 426 * N2: is added as a new child of T1 427 * Note: not just N2, but the whole chain N2->N3->N4 is added 428 * N3: not processed separately (it was added together with N2) 429 * Even that N3 and T3 have same tree_vis, they are NOT merged, but will 430 * become duplicates. 431 * N4: not processed separately 432 */ 433 static void 434 more_visible(struct exportinfo *exi, treenode_t *tree_head) 435 { 436 struct exp_visible *vp1, *vp2, *vis_head, *tail, *next; 437 int found; 438 treenode_t *child, *curr, *connect_point; 439 440 vis_head = tree_head->tree_vis; 441 connect_point = exi->exi_tree; 442 443 /* 444 * If exportinfo doesn't already have a visible 445 * list just assign the entire supplied list. 446 */ 447 if (exi->exi_visible == NULL) { 448 tree_add_child(exi->exi_tree, tree_head); 449 exi->exi_visible = vis_head; 450 return; 451 } 452 453 /* The outer loop traverses the supplied list. */ 454 for (vp1 = vis_head; vp1; vp1 = next) { 455 found = 0; 456 next = vp1->vis_next; 457 458 /* The inner loop searches the exportinfo visible list. */ 459 for (vp2 = exi->exi_visible; vp2; vp2 = vp2->vis_next) { 460 tail = vp2; 461 if (EQFID(&vp1->vis_fid, &vp2->vis_fid)) { 462 found = 1; 463 vp2->vis_count++; 464 VN_RELE(vp1->vis_vp); 465 /* Transfer vis_exported from vp1 to vp2. */ 466 if (vp1->vis_exported && !vp2->vis_exported) 467 vp2->vis_exported = 1; 468 kmem_free(vp1, sizeof (*vp1)); 469 tree_head->tree_vis = vp2; 470 break; 471 } 472 } 473 474 /* If not found - add to the end of the list */ 475 if (! found) { 476 tail->vis_next = vp1; 477 vp1->vis_next = NULL; 478 } 479 480 curr = tree_head; 481 tree_head = tree_head->tree_child_first; 482 483 if (! connect_point) /* No longer merging */ 484 continue; 485 /* 486 * The inner loop could set curr->tree_vis to the EXISTING 487 * exp_visible vp2, so we can search among the children of 488 * connect_point for the curr->tree_vis. No need for EQFID. 489 */ 490 child = tree_find_child_by_vis(connect_point, curr->tree_vis); 491 492 /* 493 * Merging cannot be done if a valid child->tree_exi would 494 * be overwritten by a new curr->tree_exi. 495 */ 496 if (child && 497 (child->tree_exi == NULL || curr->tree_exi == NULL)) { 498 if (curr->tree_exi) { /* Transfer the exportinfo */ 499 child->tree_exi = curr->tree_exi; 500 child->tree_exi->exi_tree = child; 501 } 502 kmem_free(curr, sizeof (treenode_t)); 503 connect_point = child; 504 } else { /* Branching */ 505 tree_add_child(connect_point, curr); 506 connect_point = NULL; 507 } 508 } 509 } 510 511 /* 512 * Remove one visible entry from the pseudo exportfs. 513 * 514 * When we unexport a directory, we have to remove path 515 * components from the visible list in the pseudo exportfs 516 * entry. The supplied visible contains one fid of one path 517 * component. The visible list of the export 518 * is checked against provided visible, matching fid has its 519 * reference count decremented. If a reference count drops to 520 * zero, then it means no paths now use this directory, so its 521 * fid can be removed from the visible list. 522 * 523 * When the last path is removed, the visible list will be null. 524 */ 525 static void 526 less_visible(struct exportinfo *exi, struct exp_visible *vp1) 527 { 528 struct exp_visible *vp2; 529 struct exp_visible *prev, *next; 530 531 for (vp2 = exi->exi_visible, prev = NULL; vp2; vp2 = next) { 532 533 next = vp2->vis_next; 534 535 if (vp1 == vp2) { 536 /* 537 * Decrement the ref count. 538 * Remove the entry if it's zero. 539 */ 540 if (--vp2->vis_count <= 0) { 541 if (prev == NULL) 542 exi->exi_visible = next; 543 else 544 prev->vis_next = next; 545 VN_RELE(vp2->vis_vp); 546 srv_secinfo_list_free(vp2->vis_secinfo, 547 vp2->vis_seccnt); 548 kmem_free(vp2, sizeof (*vp1)); 549 } 550 break; 551 } 552 prev = vp2; 553 } 554 } 555 556 /* 557 * This function checks the path to a new export to 558 * check whether all the pathname components are 559 * exported. It works by climbing the file tree one 560 * component at a time via "..", crossing mountpoints 561 * if necessary until an export entry is found, or the 562 * system root is reached. 563 * 564 * If an unexported mountpoint is found, then 565 * a new pseudo export is added and the pathname from 566 * the mountpoint down to the export is added to the 567 * visible list for the new pseudo export. If an existing 568 * pseudo export is found, then the pathname is added 569 * to its visible list. 570 * 571 * Note that there's some tests for exportdir. 572 * The exportinfo entry that's passed as a parameter 573 * is that of the real export and exportdir is set 574 * for this case. 575 * 576 * Here is an example of a possible setup: 577 * 578 * () - a new fs; fs mount point 579 * EXPORT - a real exported node 580 * PSEUDO - a pseudo node 581 * vis - visible list 582 * f# - security flavor# 583 * (f#) - security flavor# propagated from its descendents 584 * "" - covered vnode 585 * 586 * 587 * / 588 * | 589 * (a) PSEUDO (f1,f2) 590 * | vis: b,b,"c","n" 591 * | 592 * b 593 * ---------|------------------ 594 * | | 595 * (c) EXPORT,f1(f2) (n) PSEUDO (f1,f2) 596 * | vis: "e","d" | vis: m,m,,p,q,"o" 597 * | | 598 * ------------------ ------------------- 599 * | | | | | 600 * (d) (e) f m EXPORT,f1(f2) p 601 * EXPORT EXPORT | | 602 * f1 f2 | | 603 * | | | 604 * j (o) EXPORT,f2 q EXPORT f2 605 * 606 */ 607 int 608 treeclimb_export(struct exportinfo *exip) 609 { 610 vnode_t *dvp, *vp; 611 fid_t fid; 612 int error; 613 int exportdir; 614 struct exportinfo *exi = NULL; 615 struct exportinfo *new_exi = exip; 616 struct exp_visible *visp; 617 struct exp_visible *vis_head = NULL; 618 struct vattr va; 619 treenode_t *tree_head = NULL; 620 621 ASSERT(RW_WRITE_HELD(&exported_lock)); 622 623 vp = exip->exi_vp; 624 VN_HOLD(vp); 625 exportdir = 1; 626 627 for (;;) { 628 629 bzero(&fid, sizeof (fid)); 630 fid.fid_len = MAXFIDSZ; 631 error = vop_fid_pseudo(vp, &fid); 632 if (error) 633 break; 634 635 if (! exportdir) { 636 /* 637 * Check if this exportroot is a VROOT dir. If so, 638 * then attach the pseudonodes. If not, then 639 * continue .. traversal until we hit a VROOT 640 * export (pseudo or real). 641 */ 642 exi = checkexport_nohold(&vp->v_vfsp->vfs_fsid, &fid, 643 vp); 644 if (exi != NULL && vp->v_flag & VROOT) { 645 /* 646 * Found an export info 647 * 648 * Extend the list of visible 649 * directories whether it's a pseudo 650 * or a real export. 651 */ 652 more_visible(exi, tree_head); 653 break; /* and climb no further */ 654 } 655 } 656 657 /* 658 * If at the root of the filesystem, need 659 * to traverse across the mountpoint 660 * and continue the climb on the mounted-on 661 * filesystem. 662 */ 663 if (vp->v_flag & VROOT) { 664 665 if (! exportdir) { 666 /* 667 * Found the root directory of a filesystem 668 * that isn't exported. Need to export 669 * this as a pseudo export so that an NFS v4 670 * client can do lookups in it. 671 */ 672 new_exi = pseudo_exportfs(vp, &fid, vis_head, 673 NULL); 674 vis_head = NULL; 675 } 676 677 if (VN_CMP(vp, rootdir)) { 678 /* at system root */ 679 /* 680 * If sharing "/", new_exi is shared exportinfo 681 * (exip). Otherwise, new_exi is exportinfo 682 * created in pseudo_exportfs() above. 683 */ 684 ns_root = tree_prepend_node(tree_head, 0, 685 new_exi); 686 break; 687 } 688 689 vp = untraverse(vp); 690 exportdir = 0; 691 continue; 692 } 693 694 /* 695 * Do a getattr to obtain the nodeid (inode num) 696 * for this vnode. 697 */ 698 va.va_mask = AT_NODEID; 699 error = VOP_GETATTR(vp, &va, 0, CRED(), NULL); 700 if (error) 701 break; 702 703 /* 704 * Add this directory fid to visible list 705 */ 706 visp = kmem_alloc(sizeof (*visp), KM_SLEEP); 707 VN_HOLD(vp); 708 visp->vis_vp = vp; 709 visp->vis_fid = fid; /* structure copy */ 710 visp->vis_ino = va.va_nodeid; 711 visp->vis_count = 1; 712 visp->vis_exported = exportdir; 713 visp->vis_secinfo = NULL; 714 visp->vis_seccnt = 0; 715 visp->vis_next = vis_head; 716 vis_head = visp; 717 718 719 /* 720 * Will set treenode's pointer to exportinfo to 721 * 1. shared exportinfo (exip) - if first visit here 722 * 2. freshly allocated pseudo export (if any) 723 * 3. null otherwise 724 */ 725 tree_head = tree_prepend_node(tree_head, visp, new_exi); 726 new_exi = NULL; 727 728 /* 729 * Now, do a ".." to find parent dir of vp. 730 */ 731 error = VOP_LOOKUP(vp, "..", &dvp, NULL, 0, NULL, CRED(), 732 NULL, NULL, NULL); 733 734 if (error == ENOTDIR && exportdir) { 735 dvp = exip->exi_dvp; 736 ASSERT(dvp != NULL); 737 VN_HOLD(dvp); 738 error = 0; 739 } 740 741 if (error) 742 break; 743 744 exportdir = 0; 745 VN_RELE(vp); 746 vp = dvp; 747 } 748 749 VN_RELE(vp); 750 751 /* 752 * We can have set error due to error in: 753 * 1. vop_fid_pseudo() 754 * 2. VOP_GETATTR() 755 * 3. VOP_LOOKUP() 756 * We must free pseudo exportinfos, visibles and treenodes. 757 * Visibles are referenced from treenode_t::tree_vis and 758 * exportinfo_t::exi_visible. To avoid double freeing, only 759 * exi_visible pointer is used, via exi_rele(), for the clean-up. 760 */ 761 if (error) { 762 /* Free unconnected visibles, if there are any. */ 763 if (vis_head) 764 free_visible(vis_head); 765 766 /* Connect unconnected exportinfo, if there is any. */ 767 if (new_exi && new_exi != exip) 768 tree_head = tree_prepend_node(tree_head, 0, new_exi); 769 770 while (tree_head) { 771 treenode_t *t2 = tree_head; 772 exportinfo_t *e = tree_head->tree_exi; 773 /* exip will be freed in exportfs() */ 774 if (e && e != exip) { 775 export_unlink(e); 776 exi_rele(e); 777 } 778 tree_head = tree_head->tree_child_first; 779 kmem_free(t2, sizeof (*t2)); 780 } 781 } 782 783 return (error); 784 } 785 786 /* 787 * Walk up the tree and: 788 * 1. release pseudo exportinfo if it has no child 789 * 2. release visible in parent's exportinfo 790 * 3. delete non-exported leaf nodes from tree 791 * 792 * Deleting of nodes will start only if the unshared 793 * node was a leaf node. 794 * Deleting of nodes will finish when we reach a node which 795 * has children or is a real export, then we might still need 796 * to continue releasing visibles, until we reach VROOT node. 797 */ 798 void 799 treeclimb_unexport(struct exportinfo *exip) 800 { 801 treenode_t *tnode, *old_nd; 802 803 ASSERT(RW_WRITE_HELD(&exported_lock)); 804 805 tnode = exip->exi_tree; 806 /* 807 * The unshared exportinfo was unlinked in unexport(). 808 * Zeroing tree_exi ensures that we will skip it. 809 */ 810 tnode->tree_exi = NULL; 811 812 if (tnode->tree_vis) /* system root has tree_vis == NULL */ 813 tnode->tree_vis->vis_exported = 0; 814 815 while (tnode) { 816 817 /* Stop at VROOT node which is exported or has child */ 818 if (TREE_ROOT(tnode) && 819 (TREE_EXPORTED(tnode) || tnode->tree_child_first)) 820 break; 821 822 /* Release pseudo export if it has no child */ 823 if (TREE_ROOT(tnode) && !TREE_EXPORTED(tnode) && 824 tnode->tree_child_first == 0) { 825 export_unlink(tnode->tree_exi); 826 exi_rele(tnode->tree_exi); 827 } 828 829 /* Release visible in parent's exportinfo */ 830 if (tnode->tree_vis) 831 less_visible(vis2exi(tnode), tnode->tree_vis); 832 833 /* Continue with parent */ 834 old_nd = tnode; 835 tnode = tnode->tree_parent; 836 837 /* Remove itself, if this is a leaf and non-exported node */ 838 if (old_nd->tree_child_first == NULL && !TREE_EXPORTED(old_nd)) 839 tree_remove_node(old_nd); 840 } 841 } 842 843 /* 844 * Traverse backward across mountpoint from the 845 * root vnode of a filesystem to its mounted-on 846 * vnode. 847 */ 848 vnode_t * 849 untraverse(vnode_t *vp) 850 { 851 vnode_t *tvp, *nextvp; 852 853 tvp = vp; 854 for (;;) { 855 if (! (tvp->v_flag & VROOT)) 856 break; 857 858 /* lock vfs to prevent unmount of this vfs */ 859 vfs_lock_wait(tvp->v_vfsp); 860 861 if ((nextvp = tvp->v_vfsp->vfs_vnodecovered) == NULL) { 862 vfs_unlock(tvp->v_vfsp); 863 break; 864 } 865 866 /* 867 * Hold nextvp to prevent unmount. After unlock vfs and 868 * rele tvp, any number of overlays could be unmounted. 869 * Putting a hold on vfs_vnodecovered will only allow 870 * tvp's vfs to be unmounted. Of course if caller placed 871 * extra hold on vp before calling untraverse, the following 872 * hold would not be needed. Since prev actions of caller 873 * are unknown, we need to hold here just to be safe. 874 */ 875 VN_HOLD(nextvp); 876 vfs_unlock(tvp->v_vfsp); 877 VN_RELE(tvp); 878 tvp = nextvp; 879 } 880 881 return (tvp); 882 } 883 884 /* 885 * Given an exportinfo, climb up to find the exportinfo for the VROOT 886 * of the filesystem. 887 * 888 * e.g. / 889 * | 890 * a (VROOT) pseudo-exportinfo 891 * | 892 * b 893 * | 894 * c #share /a/b/c 895 * | 896 * d 897 * 898 * where c is in the same filesystem as a. 899 * So, get_root_export(*exportinfo_for_c) returns exportinfo_for_a 900 * 901 * If d is shared, then c will be put into a's visible list. 902 * Note: visible list is per filesystem and is attached to the 903 * VROOT exportinfo. 904 */ 905 struct exportinfo * 906 get_root_export(struct exportinfo *exip) 907 { 908 treenode_t *tnode = exip->exi_tree; 909 exportinfo_t *exi = NULL; 910 911 while (tnode) { 912 if (TREE_ROOT(tnode)) { 913 exi = tnode->tree_exi; 914 break; 915 } 916 tnode = tnode->tree_parent; 917 } 918 ASSERT(exi); 919 return (exi); 920 } 921 922 /* 923 * Return true if the supplied vnode has a sub-directory exported. 924 */ 925 int 926 has_visible(struct exportinfo *exi, vnode_t *vp) 927 { 928 struct exp_visible *visp; 929 fid_t fid; 930 bool_t vp_is_exported; 931 932 vp_is_exported = VN_CMP(vp, exi->exi_vp); 933 934 /* 935 * An exported root vnode has a sub-dir shared if it has a visible list. 936 * i.e. if it does not have a visible list, then there is no node in 937 * this filesystem leads to any other shared node. 938 */ 939 if (vp_is_exported && (vp->v_flag & VROOT)) 940 return (exi->exi_visible ? 1 : 0); 941 942 /* 943 * Only the exportinfo of a fs root node may have a visible list. 944 * Either it is a pseudo root node, or a real exported root node. 945 */ 946 exi = get_root_export(exi); 947 948 if (!exi->exi_visible) 949 return (0); 950 951 /* Get the fid of the vnode */ 952 bzero(&fid, sizeof (fid)); 953 fid.fid_len = MAXFIDSZ; 954 if (vop_fid_pseudo(vp, &fid) != 0) { 955 return (0); 956 } 957 958 /* 959 * See if vp is in the visible list of the root node exportinfo. 960 */ 961 for (visp = exi->exi_visible; visp; visp = visp->vis_next) { 962 if (EQFID(&fid, &visp->vis_fid)) { 963 /* 964 * If vp is an exported non-root node with only 1 path 965 * count (for itself), it indicates no sub-dir shared 966 * using this vp as a path. 967 */ 968 if (vp_is_exported && visp->vis_count < 2) 969 break; 970 971 return (1); 972 } 973 } 974 975 return (0); 976 } 977 978 /* 979 * Returns true if the supplied vnode is visible 980 * in this export. If vnode is visible, return 981 * vis_exported in expseudo. 982 */ 983 int 984 nfs_visible(struct exportinfo *exi, vnode_t *vp, int *expseudo) 985 { 986 struct exp_visible *visp; 987 fid_t fid; 988 989 /* 990 * First check to see if vp is export root. 991 * 992 * A pseudo export root can never be exported 993 * (it would be a real export then); however, 994 * it is always visible. If a pseudo root object 995 * was exported by server admin, then the entire 996 * pseudo exportinfo (and all visible entries) would 997 * be destroyed. A pseudo exportinfo only exists 998 * to provide access to real (descendant) export(s). 999 * 1000 * Previously, rootdir was special cased here; however, 1001 * the export root special case handles the rootdir 1002 * case also. 1003 */ 1004 if (VN_CMP(vp, exi->exi_vp)) { 1005 *expseudo = 0; 1006 return (1); 1007 } 1008 1009 /* 1010 * Only a PSEUDO node has a visible list or an exported VROOT 1011 * node may have a visible list. 1012 */ 1013 if (! PSEUDO(exi)) 1014 exi = get_root_export(exi); 1015 1016 /* Get the fid of the vnode */ 1017 1018 bzero(&fid, sizeof (fid)); 1019 fid.fid_len = MAXFIDSZ; 1020 if (vop_fid_pseudo(vp, &fid) != 0) { 1021 *expseudo = 0; 1022 return (0); 1023 } 1024 1025 /* 1026 * We can't trust VN_CMP() above because of LOFS. 1027 * Even though VOP_CMP will do the right thing for LOFS 1028 * objects, VN_CMP will short circuit out early when the 1029 * vnode ops ptrs are different. Just in case we're dealing 1030 * with LOFS, compare exi_fid/fsid here. 1031 * 1032 * expseudo is not set because this is not an export 1033 */ 1034 if (EQFID(&exi->exi_fid, &fid) && 1035 EQFSID(&exi->exi_fsid, &vp->v_vfsp->vfs_fsid)) { 1036 *expseudo = 0; 1037 return (1); 1038 } 1039 1040 1041 /* See if it matches any fid in the visible list */ 1042 1043 for (visp = exi->exi_visible; visp; visp = visp->vis_next) { 1044 if (EQFID(&fid, &visp->vis_fid)) { 1045 *expseudo = visp->vis_exported; 1046 return (1); 1047 } 1048 } 1049 1050 *expseudo = 0; 1051 1052 return (0); 1053 } 1054 1055 /* 1056 * Returns true if the supplied vnode is the 1057 * directory of an export point. 1058 */ 1059 int 1060 nfs_exported(struct exportinfo *exi, vnode_t *vp) 1061 { 1062 struct exp_visible *visp; 1063 fid_t fid; 1064 1065 /* 1066 * First check to see if vp is the export root 1067 * This check required for the case of lookup .. 1068 * where .. is a V_ROOT vnode and a pseudo exportroot. 1069 * Pseudo export root objects do not have an entry 1070 * in the visible list even though every V_ROOT 1071 * pseudonode is visible. It is safe to compare 1072 * vp here because pseudo_exportfs put a hold on 1073 * it when exi_vp was initialized. 1074 * 1075 * Note: VN_CMP() won't match for LOFS shares, but they're 1076 * handled below w/EQFID/EQFSID. 1077 */ 1078 if (VN_CMP(vp, exi->exi_vp)) 1079 return (1); 1080 1081 /* Get the fid of the vnode */ 1082 1083 bzero(&fid, sizeof (fid)); 1084 fid.fid_len = MAXFIDSZ; 1085 if (vop_fid_pseudo(vp, &fid) != 0) 1086 return (0); 1087 1088 if (EQFID(&fid, &exi->exi_fid) && 1089 EQFSID(&vp->v_vfsp->vfs_fsid, &exi->exi_fsid)) { 1090 return (1); 1091 } 1092 1093 /* See if it matches any fid in the visible list */ 1094 1095 for (visp = exi->exi_visible; visp; visp = visp->vis_next) { 1096 if (EQFID(&fid, &visp->vis_fid)) 1097 return (visp->vis_exported); 1098 } 1099 1100 return (0); 1101 } 1102 1103 /* 1104 * Returns true if the supplied inode is visible 1105 * in this export. This function is used by 1106 * readdir which uses inode numbers from the 1107 * directory. 1108 * 1109 * NOTE: this code does not match inode number for ".", 1110 * but it isn't required because NFS4 server rddir 1111 * skips . and .. entries. 1112 */ 1113 int 1114 nfs_visible_inode(struct exportinfo *exi, ino64_t ino, int *expseudo) 1115 { 1116 struct exp_visible *visp; 1117 1118 /* 1119 * Only a PSEUDO node has a visible list or an exported VROOT 1120 * node may have a visible list. 1121 */ 1122 if (! PSEUDO(exi)) 1123 exi = get_root_export(exi); 1124 1125 for (visp = exi->exi_visible; visp; visp = visp->vis_next) 1126 if ((u_longlong_t)ino == visp->vis_ino) { 1127 *expseudo = visp->vis_exported; 1128 return (1); 1129 } 1130 1131 *expseudo = 0; 1132 return (0); 1133 }