1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 #include <sys/types.h> 40 #include <sys/t_lock.h> 41 #include <sys/param.h> 42 #include <sys/errno.h> 43 #include <sys/user.h> 44 #include <sys/fstyp.h> 45 #include <sys/kmem.h> 46 #include <sys/systm.h> 47 #include <sys/proc.h> 48 #include <sys/mount.h> 49 #include <sys/vfs.h> 50 #include <sys/vfs_opreg.h> 51 #include <sys/fem.h> 52 #include <sys/mntent.h> 53 #include <sys/stat.h> 54 #include <sys/statvfs.h> 55 #include <sys/statfs.h> 56 #include <sys/cred.h> 57 #include <sys/vnode.h> 58 #include <sys/rwstlock.h> 59 #include <sys/dnlc.h> 60 #include <sys/file.h> 61 #include <sys/time.h> 62 #include <sys/atomic.h> 63 #include <sys/cmn_err.h> 64 #include <sys/buf.h> 65 #include <sys/swap.h> 66 #include <sys/debug.h> 67 #include <sys/vnode.h> 68 #include <sys/modctl.h> 69 #include <sys/ddi.h> 70 #include <sys/pathname.h> 71 #include <sys/bootconf.h> 72 #include <sys/dumphdr.h> 73 #include <sys/dc_ki.h> 74 #include <sys/poll.h> 75 #include <sys/sunddi.h> 76 #include <sys/sysmacros.h> 77 #include <sys/zone.h> 78 #include <sys/policy.h> 79 #include <sys/ctfs.h> 80 #include <sys/objfs.h> 81 #include <sys/console.h> 82 #include <sys/reboot.h> 83 #include <sys/attr.h> 84 #include <sys/zio.h> 85 #include <sys/spa.h> 86 #include <sys/lofi.h> 87 #include <sys/bootprops.h> 88 #include <sys/avl.h> 89 90 #include <vm/page.h> 91 92 #include <fs/fs_subr.h> 93 /* Private interfaces to create vopstats-related data structures */ 94 extern void initialize_vopstats(vopstats_t *); 95 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 96 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 97 98 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 99 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 100 const char *, int, int); 101 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 102 static void vfs_freemnttab(struct vfs *); 103 static void vfs_freeopt(mntopt_t *); 104 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 105 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 106 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 107 static void vfs_createopttbl_extend(mntopts_t *, const char *, 108 const mntopts_t *); 109 static char **vfs_copycancelopt_extend(char **const, int); 110 static void vfs_freecancelopt(char **); 111 static void getrootfs(char **, char **); 112 static int getmacpath(dev_info_t *, void *); 113 static void vfs_mnttabvp_setup(void); 114 115 struct ipmnt { 116 struct ipmnt *mip_next; 117 dev_t mip_dev; 118 struct vfs *mip_vfsp; 119 }; 120 121 static kmutex_t vfs_miplist_mutex; 122 static struct ipmnt *vfs_miplist = NULL; 123 static struct ipmnt *vfs_miplist_end = NULL; 124 125 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */ 126 127 /* 128 * VFS global data. 129 */ 130 vnode_t *rootdir; /* pointer to root inode vnode. */ 131 vnode_t *devicesdir; /* pointer to inode of devices root */ 132 vnode_t *devdir; /* pointer to inode of dev root */ 133 134 char *server_rootpath; /* root path for diskless clients */ 135 char *server_hostname; /* hostname of diskless server */ 136 137 static struct vfs root; 138 static struct vfs devices; 139 static struct vfs dev; 140 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 141 avl_tree_t vfs_by_dev; /* avl tree to index mounted VFSs by dev */ 142 avl_tree_t vfs_by_mntpnt; /* avl tree to index mounted VFSs by mntpnt */ 143 uint64_t vfs_curr_mntix; /* counter to provide a unique mntix for 144 * entries in the above avl trees. 145 * protected by vfslist lock */ 146 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 147 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 148 /* must be power of 2! */ 149 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 150 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 151 char *vfs_dummyfstype = "\0"; 152 struct pollhead vfs_pollhd; /* for mnttab pollers */ 153 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */ 154 int mntfstype; /* will be set once mnt fs is mounted */ 155 156 /* 157 * Table for generic options recognized in the VFS layer and acted 158 * on at this level before parsing file system specific options. 159 * The nosuid option is stronger than any of the devices and setuid 160 * options, so those are canceled when nosuid is seen. 161 * 162 * All options which are added here need to be added to the 163 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 164 */ 165 /* 166 * VFS Mount options table 167 */ 168 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 169 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 170 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 171 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 172 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 173 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 174 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 175 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 176 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 177 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 178 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 179 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 180 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 181 182 static const mntopt_t mntopts[] = { 183 /* 184 * option name cancel options default arg flags 185 */ 186 { MNTOPT_REMOUNT, NULL, NULL, 187 MO_NODISPLAY, (void *)0 }, 188 { MNTOPT_RO, ro_cancel, NULL, 0, 189 (void *)0 }, 190 { MNTOPT_RW, rw_cancel, NULL, 0, 191 (void *)0 }, 192 { MNTOPT_SUID, suid_cancel, NULL, 0, 193 (void *)0 }, 194 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 195 (void *)0 }, 196 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 197 (void *)0 }, 198 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 199 (void *)0 }, 200 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 201 (void *)0 }, 202 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 203 (void *)0 }, 204 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 205 (void *)0 }, 206 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 207 (void *)0 }, 208 { MNTOPT_EXEC, exec_cancel, NULL, 0, 209 (void *)0 }, 210 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 211 (void *)0 }, 212 }; 213 214 const mntopts_t vfs_mntopts = { 215 sizeof (mntopts) / sizeof (mntopt_t), 216 (mntopt_t *)&mntopts[0] 217 }; 218 219 /* 220 * File system operation dispatch functions. 221 */ 222 223 int 224 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 225 { 226 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 227 } 228 229 int 230 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 231 { 232 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 233 } 234 235 int 236 fsop_root(vfs_t *vfsp, vnode_t **vpp) 237 { 238 refstr_t *mntpt; 239 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 240 /* 241 * Make sure this root has a path. With lofs, it is possible to have 242 * a NULL mountpoint. 243 */ 244 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 245 mntpt = vfs_getmntpoint(vfsp); 246 vn_setpath_str(*vpp, refstr_value(mntpt), 247 strlen(refstr_value(mntpt))); 248 refstr_rele(mntpt); 249 } 250 251 return (ret); 252 } 253 254 int 255 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 256 { 257 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 258 } 259 260 int 261 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 262 { 263 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 264 } 265 266 int 267 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 268 { 269 /* 270 * In order to handle system attribute fids in a manner 271 * transparent to the underlying fs, we embed the fid for 272 * the sysattr parent object in the sysattr fid and tack on 273 * some extra bytes that only the sysattr layer knows about. 274 * 275 * This guarantees that sysattr fids are larger than other fids 276 * for this vfs. If the vfs supports the sysattr view interface 277 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size 278 * collision with XATTR_FIDSZ. 279 */ 280 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) && 281 fidp->fid_len == XATTR_FIDSZ) 282 return (xattr_dir_vget(vfsp, vpp, fidp)); 283 284 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 285 } 286 287 int 288 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 289 { 290 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 291 } 292 293 void 294 fsop_freefs(vfs_t *vfsp) 295 { 296 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 297 } 298 299 int 300 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 301 { 302 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 303 } 304 305 int 306 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 307 { 308 ASSERT((fstype >= 0) && (fstype < nfstype)); 309 310 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 311 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 312 else 313 return (ENOTSUP); 314 } 315 316 /* 317 * File system initialization. vfs_setfsops() must be called from a file 318 * system's init routine. 319 */ 320 321 static int 322 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 323 int *unused_ops) 324 { 325 static const fs_operation_trans_def_t vfs_ops_table[] = { 326 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 327 fs_nosys, fs_nosys, 328 329 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 330 fs_nosys, fs_nosys, 331 332 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 333 fs_nosys, fs_nosys, 334 335 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 336 fs_nosys, fs_nosys, 337 338 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 339 (fs_generic_func_p) fs_sync, 340 (fs_generic_func_p) fs_sync, /* No errors allowed */ 341 342 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 343 fs_nosys, fs_nosys, 344 345 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 346 fs_nosys, fs_nosys, 347 348 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 349 (fs_generic_func_p)fs_freevfs, 350 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 351 352 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 353 (fs_generic_func_p)fs_nosys, 354 (fs_generic_func_p)fs_nosys, 355 356 NULL, 0, NULL, NULL 357 }; 358 359 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 360 } 361 362 void 363 zfs_boot_init() { 364 365 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0) 366 spa_boot_init(); 367 } 368 369 int 370 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 371 { 372 int error; 373 int unused_ops; 374 375 /* 376 * Verify that fstype refers to a valid fs. Note that 377 * 0 is valid since it's used to set "stray" ops. 378 */ 379 if ((fstype < 0) || (fstype >= nfstype)) 380 return (EINVAL); 381 382 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 383 return (EINVAL); 384 385 /* Set up the operations vector. */ 386 387 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 388 389 if (error != 0) 390 return (error); 391 392 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 393 394 if (actual != NULL) 395 *actual = &vfssw[fstype].vsw_vfsops; 396 397 #if DEBUG 398 if (unused_ops != 0) 399 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 400 "but not used", vfssw[fstype].vsw_name, unused_ops); 401 #endif 402 403 return (0); 404 } 405 406 int 407 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 408 { 409 int error; 410 int unused_ops; 411 412 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 413 414 error = fs_copyfsops(template, *actual, &unused_ops); 415 if (error != 0) { 416 kmem_free(*actual, sizeof (vfsops_t)); 417 *actual = NULL; 418 return (error); 419 } 420 421 return (0); 422 } 423 424 /* 425 * Free a vfsops structure created as a result of vfs_makefsops(). 426 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 427 * vfs_freevfsops_by_type(). 428 */ 429 void 430 vfs_freevfsops(vfsops_t *vfsops) 431 { 432 kmem_free(vfsops, sizeof (vfsops_t)); 433 } 434 435 /* 436 * Since the vfsops structure is part of the vfssw table and wasn't 437 * really allocated, we're not really freeing anything. We keep 438 * the name for consistency with vfs_freevfsops(). We do, however, 439 * need to take care of a little bookkeeping. 440 * NOTE: For a vfsops structure created by vfs_setfsops(), use 441 * vfs_freevfsops_by_type(). 442 */ 443 int 444 vfs_freevfsops_by_type(int fstype) 445 { 446 447 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 448 if ((fstype <= 0) || (fstype >= nfstype)) 449 return (EINVAL); 450 451 WLOCK_VFSSW(); 452 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 453 WUNLOCK_VFSSW(); 454 return (EINVAL); 455 } 456 457 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 458 WUNLOCK_VFSSW(); 459 460 return (0); 461 } 462 463 /* Support routines used to reference vfs_op */ 464 465 /* Set the operations vector for a vfs */ 466 void 467 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 468 { 469 vfsops_t *op; 470 471 ASSERT(vfsp != NULL); 472 ASSERT(vfsops != NULL); 473 474 op = vfsp->vfs_op; 475 membar_consumer(); 476 if (vfsp->vfs_femhead == NULL && 477 atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) { 478 return; 479 } 480 fsem_setvfsops(vfsp, vfsops); 481 } 482 483 /* Retrieve the operations vector for a vfs */ 484 vfsops_t * 485 vfs_getops(vfs_t *vfsp) 486 { 487 vfsops_t *op; 488 489 ASSERT(vfsp != NULL); 490 491 op = vfsp->vfs_op; 492 membar_consumer(); 493 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) { 494 return (op); 495 } else { 496 return (fsem_getvfsops(vfsp)); 497 } 498 } 499 500 /* 501 * Returns non-zero (1) if the vfsops matches that of the vfs. 502 * Returns zero (0) if not. 503 */ 504 int 505 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 506 { 507 return (vfs_getops(vfsp) == vfsops); 508 } 509 510 /* 511 * Returns non-zero (1) if the file system has installed a non-default, 512 * non-error vfs_sync routine. Returns zero (0) otherwise. 513 */ 514 int 515 vfs_can_sync(vfs_t *vfsp) 516 { 517 /* vfs_sync() routine is not the default/error function */ 518 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 519 } 520 521 /* 522 * Initialize a vfs structure. 523 */ 524 void 525 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 526 { 527 /* Other initialization has been moved to vfs_alloc() */ 528 vfsp->vfs_count = 0; 529 vfsp->vfs_next = vfsp; 530 vfsp->vfs_prev = vfsp; 531 vfsp->vfs_zone_next = vfsp; 532 vfsp->vfs_zone_prev = vfsp; 533 vfsp->vfs_lofi_minor = 0; 534 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 535 vfsimpl_setup(vfsp); 536 vfsp->vfs_data = (data); 537 vfs_setops((vfsp), (op)); 538 } 539 540 /* 541 * Allocate and initialize the vfs implementation private data 542 * structure, vfs_impl_t. 543 */ 544 void 545 vfsimpl_setup(vfs_t *vfsp) 546 { 547 int i; 548 549 if (vfsp->vfs_implp != NULL) { 550 return; 551 } 552 553 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 554 /* Note that these are #define'd in vfs.h */ 555 vfsp->vfs_vskap = NULL; 556 vfsp->vfs_fstypevsp = NULL; 557 558 /* Set size of counted array, then zero the array */ 559 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1; 560 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) { 561 vfsp->vfs_featureset[i] = 0; 562 } 563 } 564 565 /* 566 * Release the vfs_impl_t structure, if it exists. Some unbundled 567 * filesystems may not use the newer version of vfs and thus 568 * would not contain this implementation private data structure. 569 */ 570 void 571 vfsimpl_teardown(vfs_t *vfsp) 572 { 573 vfs_impl_t *vip = vfsp->vfs_implp; 574 575 if (vip == NULL) 576 return; 577 578 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 579 vfsp->vfs_implp = NULL; 580 } 581 582 /* 583 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 584 * fstatvfs, and sysfs moved to common/syscall. 585 */ 586 587 /* 588 * Update every mounted file system. We call the vfs_sync operation of 589 * each file system type, passing it a NULL vfsp to indicate that all 590 * mounted file systems of that type should be updated. 591 */ 592 void 593 vfs_sync(int flag) 594 { 595 struct vfssw *vswp; 596 RLOCK_VFSSW(); 597 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 598 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 599 vfs_refvfssw(vswp); 600 RUNLOCK_VFSSW(); 601 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 602 CRED()); 603 vfs_unrefvfssw(vswp); 604 RLOCK_VFSSW(); 605 } 606 } 607 RUNLOCK_VFSSW(); 608 } 609 610 void 611 sync(void) 612 { 613 vfs_sync(0); 614 } 615 616 /* 617 * compare function for vfs_by_dev avl tree. compare dev first, then mntix 618 */ 619 static int 620 vfs_cmp_dev(const void *aa, const void *bb) 621 { 622 const vfs_t *a = aa; 623 const vfs_t *b = bb; 624 625 if (a->vfs_dev < b->vfs_dev) 626 return (-1); 627 if (a->vfs_dev > b->vfs_dev) 628 return (1); 629 if (a->vfs_mntix < b->vfs_mntix) 630 return (-1); 631 if (a->vfs_mntix > b->vfs_mntix) 632 return (1); 633 return (0); 634 } 635 636 /* 637 * compare function for vfs_by_mntpnt avl tree. compare mntpnt first, then mntix 638 */ 639 static int 640 vfs_cmp_mntpnt(const void *aa, const void *bb) 641 { 642 const vfs_t *a = aa; 643 const vfs_t *b = bb; 644 int ret; 645 646 ret = strcmp(refstr_value(a->vfs_mntpt), refstr_value(b->vfs_mntpt)); 647 if (ret < 0) 648 return (-1); 649 if (ret > 0) 650 return (1); 651 if (a->vfs_mntix < b->vfs_mntix) 652 return (-1); 653 if (a->vfs_mntix > b->vfs_mntix) 654 return (1); 655 return (0); 656 } 657 658 /* 659 * External routines. 660 */ 661 662 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 663 664 /* 665 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 666 * but otherwise should be accessed only via vfs_list_lock() and 667 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 668 */ 669 static krwlock_t vfslist; 670 671 /* 672 * Mount devfs on /devices. This is done right after root is mounted 673 * to provide device access support for the system 674 */ 675 static void 676 vfs_mountdevices(void) 677 { 678 struct vfssw *vsw; 679 struct vnode *mvp; 680 struct mounta mounta = { /* fake mounta for devfs_mount() */ 681 NULL, 682 NULL, 683 MS_SYSSPACE, 684 NULL, 685 NULL, 686 0, 687 NULL, 688 0 689 }; 690 691 /* 692 * _init devfs module to fill in the vfssw 693 */ 694 if (modload("fs", "devfs") == -1) 695 panic("Cannot _init devfs module"); 696 697 /* 698 * Hold vfs 699 */ 700 RLOCK_VFSSW(); 701 vsw = vfs_getvfsswbyname("devfs"); 702 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 703 VFS_HOLD(&devices); 704 705 /* 706 * Locate mount point 707 */ 708 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 709 panic("Cannot find /devices"); 710 711 /* 712 * Perform the mount of /devices 713 */ 714 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 715 panic("Cannot mount /devices"); 716 717 RUNLOCK_VFSSW(); 718 719 /* 720 * Set appropriate members and add to vfs list for mnttab display 721 */ 722 vfs_setresource(&devices, "/devices", 0); 723 vfs_setmntpoint(&devices, "/devices", 0); 724 725 /* 726 * Hold the root of /devices so it won't go away 727 */ 728 if (VFS_ROOT(&devices, &devicesdir)) 729 panic("vfs_mountdevices: not devices root"); 730 731 if (vfs_lock(&devices) != 0) { 732 VN_RELE(devicesdir); 733 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 734 return; 735 } 736 737 if (vn_vfswlock(mvp) != 0) { 738 vfs_unlock(&devices); 739 VN_RELE(devicesdir); 740 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 741 return; 742 } 743 744 vfs_add(mvp, &devices, 0); 745 vn_vfsunlock(mvp); 746 vfs_unlock(&devices); 747 VN_RELE(devicesdir); 748 } 749 750 /* 751 * mount the first instance of /dev to root and remain mounted 752 */ 753 static void 754 vfs_mountdev1(void) 755 { 756 struct vfssw *vsw; 757 struct vnode *mvp; 758 struct mounta mounta = { /* fake mounta for sdev_mount() */ 759 NULL, 760 NULL, 761 MS_SYSSPACE | MS_OVERLAY, 762 NULL, 763 NULL, 764 0, 765 NULL, 766 0 767 }; 768 769 /* 770 * _init dev module to fill in the vfssw 771 */ 772 if (modload("fs", "dev") == -1) 773 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 774 775 /* 776 * Hold vfs 777 */ 778 RLOCK_VFSSW(); 779 vsw = vfs_getvfsswbyname("dev"); 780 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 781 VFS_HOLD(&dev); 782 783 /* 784 * Locate mount point 785 */ 786 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 787 cmn_err(CE_PANIC, "Cannot find /dev\n"); 788 789 /* 790 * Perform the mount of /dev 791 */ 792 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 793 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 794 795 RUNLOCK_VFSSW(); 796 797 /* 798 * Set appropriate members and add to vfs list for mnttab display 799 */ 800 vfs_setresource(&dev, "/dev", 0); 801 vfs_setmntpoint(&dev, "/dev", 0); 802 803 /* 804 * Hold the root of /dev so it won't go away 805 */ 806 if (VFS_ROOT(&dev, &devdir)) 807 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 808 809 if (vfs_lock(&dev) != 0) { 810 VN_RELE(devdir); 811 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 812 return; 813 } 814 815 if (vn_vfswlock(mvp) != 0) { 816 vfs_unlock(&dev); 817 VN_RELE(devdir); 818 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 819 return; 820 } 821 822 vfs_add(mvp, &dev, 0); 823 vn_vfsunlock(mvp); 824 vfs_unlock(&dev); 825 VN_RELE(devdir); 826 } 827 828 /* 829 * Mount required filesystem. This is done right after root is mounted. 830 */ 831 static void 832 vfs_mountfs(char *module, char *spec, char *path) 833 { 834 struct vnode *mvp; 835 struct mounta mounta; 836 vfs_t *vfsp; 837 838 mounta.flags = MS_SYSSPACE | MS_DATA; 839 mounta.fstype = module; 840 mounta.spec = spec; 841 mounta.dir = path; 842 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 843 cmn_err(CE_WARN, "Cannot find %s", path); 844 return; 845 } 846 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 847 cmn_err(CE_WARN, "Cannot mount %s", path); 848 else 849 VFS_RELE(vfsp); 850 VN_RELE(mvp); 851 } 852 853 /* 854 * vfs_mountroot is called by main() to mount the root filesystem. 855 */ 856 void 857 vfs_mountroot(void) 858 { 859 struct vnode *rvp = NULL; 860 char *path; 861 size_t plen; 862 struct vfssw *vswp; 863 proc_t *p; 864 865 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 866 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 867 868 /* 869 * Alloc the avl trees for quick indexing via dev and mountpoint 870 */ 871 avl_create(&vfs_by_dev, vfs_cmp_dev, sizeof(vfs_t), 872 offsetof(vfs_t, vfs_avldev)); 873 avl_create(&vfs_by_mntpnt, vfs_cmp_mntpnt, sizeof(vfs_t), 874 offsetof(vfs_t, vfs_avlmntpnt)); 875 876 /* 877 * Alloc the vfs hash bucket array and locks 878 */ 879 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 880 881 /* 882 * Call machine-dependent routine "rootconf" to choose a root 883 * file system type. 884 */ 885 if (rootconf()) 886 panic("vfs_mountroot: cannot mount root"); 887 /* 888 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 889 * to point to it. These are used by lookuppn() so that it 890 * knows where to start from ('/' or '.'). 891 */ 892 vfs_setmntpoint(rootvfs, "/", 0); 893 if (VFS_ROOT(rootvfs, &rootdir)) 894 panic("vfs_mountroot: no root vnode"); 895 896 /* 897 * At this point, the process tree consists of p0 and possibly some 898 * direct children of p0. (i.e. there are no grandchildren) 899 * 900 * Walk through them all, setting their current directory. 901 */ 902 mutex_enter(&pidlock); 903 for (p = practive; p != NULL; p = p->p_next) { 904 ASSERT(p == &p0 || p->p_parent == &p0); 905 906 PTOU(p)->u_cdir = rootdir; 907 VN_HOLD(PTOU(p)->u_cdir); 908 PTOU(p)->u_rdir = NULL; 909 } 910 mutex_exit(&pidlock); 911 912 /* 913 * Setup the global zone's rootvp, now that it exists. 914 */ 915 global_zone->zone_rootvp = rootdir; 916 VN_HOLD(global_zone->zone_rootvp); 917 918 /* 919 * Notify the module code that it can begin using the 920 * root filesystem instead of the boot program's services. 921 */ 922 modrootloaded = 1; 923 924 /* 925 * Special handling for a ZFS root file system. 926 */ 927 zfs_boot_init(); 928 929 /* 930 * Set up mnttab information for root 931 */ 932 vfs_setresource(rootvfs, rootfs.bo_name, 0); 933 934 /* 935 * Notify cluster software that the root filesystem is available. 936 */ 937 clboot_mountroot(); 938 939 /* Now that we're all done with the root FS, set up its vopstats */ 940 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 941 /* Set flag for statistics collection */ 942 if (vswp->vsw_flag & VSW_STATS) { 943 initialize_vopstats(&rootvfs->vfs_vopstats); 944 rootvfs->vfs_flag |= VFS_STATS; 945 rootvfs->vfs_fstypevsp = 946 get_fstype_vopstats(rootvfs, vswp); 947 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 948 } 949 vfs_unrefvfssw(vswp); 950 } 951 952 /* 953 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 954 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 955 */ 956 vfs_mountdevices(); 957 vfs_mountdev1(); 958 959 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 960 vfs_mountfs("proc", "/proc", "/proc"); 961 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 962 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 963 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 964 965 if (getzoneid() == GLOBAL_ZONEID) { 966 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 967 } 968 969 #ifdef __sparc 970 /* 971 * This bit of magic can go away when we convert sparc to 972 * the new boot architecture based on ramdisk. 973 * 974 * Booting off a mirrored root volume: 975 * At this point, we have booted and mounted root on a 976 * single component of the mirror. Complete the boot 977 * by configuring SVM and converting the root to the 978 * dev_t of the mirrored root device. This dev_t conversion 979 * only works because the underlying device doesn't change. 980 */ 981 if (root_is_svm) { 982 if (svm_rootconf()) { 983 panic("vfs_mountroot: cannot remount root"); 984 } 985 986 /* 987 * mnttab should reflect the new root device 988 */ 989 vfs_lock_wait(rootvfs); 990 vfs_setresource(rootvfs, rootfs.bo_name, 0); 991 vfs_unlock(rootvfs); 992 } 993 #endif /* __sparc */ 994 995 if (strcmp(rootfs.bo_fstype, "zfs") != 0) { 996 /* 997 * Look up the root device via devfs so that a dv_node is 998 * created for it. The vnode is never VN_RELE()ed. 999 * We allocate more than MAXPATHLEN so that the 1000 * buffer passed to i_ddi_prompath_to_devfspath() is 1001 * exactly MAXPATHLEN (the function expects a buffer 1002 * of that length). 1003 */ 1004 plen = strlen("/devices"); 1005 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 1006 (void) strcpy(path, "/devices"); 1007 1008 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 1009 != DDI_SUCCESS || 1010 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 1011 1012 /* NUL terminate in case "path" has garbage */ 1013 path[plen + MAXPATHLEN - 1] = '\0'; 1014 #ifdef DEBUG 1015 cmn_err(CE_WARN, "!Cannot lookup root device: %s", 1016 path); 1017 #endif 1018 } 1019 kmem_free(path, plen + MAXPATHLEN); 1020 } 1021 1022 vfs_mnttabvp_setup(); 1023 } 1024 1025 /* 1026 * Check to see if our "block device" is actually a file. If so, 1027 * automatically add a lofi device, and keep track of this fact. 1028 */ 1029 static int 1030 lofi_add(const char *fsname, struct vfs *vfsp, 1031 mntopts_t *mntopts, struct mounta *uap) 1032 { 1033 int fromspace = (uap->flags & MS_SYSSPACE) ? 1034 UIO_SYSSPACE : UIO_USERSPACE; 1035 struct lofi_ioctl *li = NULL; 1036 struct vnode *vp = NULL; 1037 struct pathname pn = { NULL }; 1038 ldi_ident_t ldi_id; 1039 ldi_handle_t ldi_hdl; 1040 vfssw_t *vfssw; 1041 int minor; 1042 int err = 0; 1043 1044 if ((vfssw = vfs_getvfssw(fsname)) == NULL) 1045 return (0); 1046 1047 if (!(vfssw->vsw_flag & VSW_CANLOFI)) { 1048 vfs_unrefvfssw(vfssw); 1049 return (0); 1050 } 1051 1052 vfs_unrefvfssw(vfssw); 1053 vfssw = NULL; 1054 1055 if (pn_get(uap->spec, fromspace, &pn) != 0) 1056 return (0); 1057 1058 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0) 1059 goto out; 1060 1061 if (vp->v_type != VREG) 1062 goto out; 1063 1064 /* OK, this is a lofi mount. */ 1065 1066 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) || 1067 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) || 1068 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) || 1069 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) { 1070 err = EINVAL; 1071 goto out; 1072 } 1073 1074 ldi_id = ldi_ident_from_anon(); 1075 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1076 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN); 1077 1078 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1079 &ldi_hdl, ldi_id); 1080 1081 if (err) 1082 goto out2; 1083 1084 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li, 1085 FREAD | FWRITE | FKIOCTL, kcred, &minor); 1086 1087 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1088 1089 if (!err) 1090 vfsp->vfs_lofi_minor = minor; 1091 1092 out2: 1093 ldi_ident_release(ldi_id); 1094 out: 1095 if (li != NULL) 1096 kmem_free(li, sizeof (*li)); 1097 if (vp != NULL) 1098 VN_RELE(vp); 1099 pn_free(&pn); 1100 return (err); 1101 } 1102 1103 static void 1104 lofi_remove(struct vfs *vfsp) 1105 { 1106 struct lofi_ioctl *li = NULL; 1107 ldi_ident_t ldi_id; 1108 ldi_handle_t ldi_hdl; 1109 int err; 1110 1111 if (vfsp->vfs_lofi_minor == 0) 1112 return; 1113 1114 ldi_id = ldi_ident_from_anon(); 1115 1116 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1117 li->li_minor = vfsp->vfs_lofi_minor; 1118 li->li_cleanup = B_TRUE; 1119 1120 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1121 &ldi_hdl, ldi_id); 1122 1123 if (err) 1124 goto out; 1125 1126 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li, 1127 FREAD | FWRITE | FKIOCTL, kcred, NULL); 1128 1129 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1130 1131 if (!err) 1132 vfsp->vfs_lofi_minor = 0; 1133 1134 out: 1135 ldi_ident_release(ldi_id); 1136 if (li != NULL) 1137 kmem_free(li, sizeof (*li)); 1138 } 1139 1140 /* 1141 * Common mount code. Called from the system call entry point, from autofs, 1142 * nfsv4 trigger mounts, and from pxfs. 1143 * 1144 * Takes the effective file system type, mount arguments, the mount point 1145 * vnode, flags specifying whether the mount is a remount and whether it 1146 * should be entered into the vfs list, and credentials. Fills in its vfspp 1147 * parameter with the mounted file system instance's vfs. 1148 * 1149 * Note that the effective file system type is specified as a string. It may 1150 * be null, in which case it's determined from the mount arguments, and may 1151 * differ from the type specified in the mount arguments; this is a hook to 1152 * allow interposition when instantiating file system instances. 1153 * 1154 * The caller is responsible for releasing its own hold on the mount point 1155 * vp (this routine does its own hold when necessary). 1156 * Also note that for remounts, the mount point vp should be the vnode for 1157 * the root of the file system rather than the vnode that the file system 1158 * is mounted on top of. 1159 */ 1160 int 1161 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 1162 struct vfs **vfspp) 1163 { 1164 struct vfssw *vswp; 1165 vfsops_t *vfsops; 1166 struct vfs *vfsp; 1167 struct vnode *bvp; 1168 dev_t bdev = 0; 1169 mntopts_t mnt_mntopts; 1170 int error = 0; 1171 int copyout_error = 0; 1172 int ovflags; 1173 char *opts = uap->optptr; 1174 char *inargs = opts; 1175 int optlen = uap->optlen; 1176 int remount; 1177 int rdonly; 1178 int nbmand = 0; 1179 int delmip = 0; 1180 int addmip = 0; 1181 int splice = ((uap->flags & MS_NOSPLICE) == 0); 1182 int fromspace = (uap->flags & MS_SYSSPACE) ? 1183 UIO_SYSSPACE : UIO_USERSPACE; 1184 char *resource = NULL, *mountpt = NULL; 1185 refstr_t *oldresource, *oldmntpt; 1186 struct pathname pn, rpn; 1187 vsk_anchor_t *vskap; 1188 char fstname[FSTYPSZ]; 1189 zone_t *zone; 1190 1191 /* 1192 * The v_flag value for the mount point vp is permanently set 1193 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1194 * for mount point locking. 1195 */ 1196 mutex_enter(&vp->v_lock); 1197 vp->v_flag |= VVFSLOCK; 1198 mutex_exit(&vp->v_lock); 1199 1200 mnt_mntopts.mo_count = 0; 1201 /* 1202 * Find the ops vector to use to invoke the file system-specific mount 1203 * method. If the fsname argument is non-NULL, use it directly. 1204 * Otherwise, dig the file system type information out of the mount 1205 * arguments. 1206 * 1207 * A side effect is to hold the vfssw entry. 1208 * 1209 * Mount arguments can be specified in several ways, which are 1210 * distinguished by flag bit settings. The preferred way is to set 1211 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1212 * type supplied as a character string and the last two arguments 1213 * being a pointer to a character buffer and the size of the buffer. 1214 * On entry, the buffer holds a null terminated list of options; on 1215 * return, the string is the list of options the file system 1216 * recognized. If MS_DATA is set arguments five and six point to a 1217 * block of binary data which the file system interprets. 1218 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1219 * consistently with these conventions. To handle them, we check to 1220 * see whether the pointer to the file system name has a numeric value 1221 * less than 256. If so, we treat it as an index. 1222 */ 1223 if (fsname != NULL) { 1224 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1225 return (EINVAL); 1226 } 1227 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1228 size_t n; 1229 uint_t fstype; 1230 1231 fsname = fstname; 1232 1233 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1234 RLOCK_VFSSW(); 1235 if (fstype == 0 || fstype >= nfstype || 1236 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1237 RUNLOCK_VFSSW(); 1238 return (EINVAL); 1239 } 1240 (void) strcpy(fsname, vfssw[fstype].vsw_name); 1241 RUNLOCK_VFSSW(); 1242 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1243 return (EINVAL); 1244 } else { 1245 /* 1246 * Handle either kernel or user address space. 1247 */ 1248 if (uap->flags & MS_SYSSPACE) { 1249 error = copystr(uap->fstype, fsname, 1250 FSTYPSZ, &n); 1251 } else { 1252 error = copyinstr(uap->fstype, fsname, 1253 FSTYPSZ, &n); 1254 } 1255 if (error) { 1256 if (error == ENAMETOOLONG) 1257 return (EINVAL); 1258 return (error); 1259 } 1260 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1261 return (EINVAL); 1262 } 1263 } else { 1264 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1265 return (EINVAL); 1266 fsname = vswp->vsw_name; 1267 } 1268 if (!VFS_INSTALLED(vswp)) 1269 return (EINVAL); 1270 1271 if ((error = secpolicy_fs_allowed_mount(fsname)) != 0) { 1272 vfs_unrefvfssw(vswp); 1273 return (error); 1274 } 1275 1276 vfsops = &vswp->vsw_vfsops; 1277 1278 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1279 /* 1280 * Fetch mount options and parse them for generic vfs options 1281 */ 1282 if (uap->flags & MS_OPTIONSTR) { 1283 /* 1284 * Limit the buffer size 1285 */ 1286 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1287 error = EINVAL; 1288 goto errout; 1289 } 1290 if ((uap->flags & MS_SYSSPACE) == 0) { 1291 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1292 inargs[0] = '\0'; 1293 if (optlen) { 1294 error = copyinstr(opts, inargs, (size_t)optlen, 1295 NULL); 1296 if (error) { 1297 goto errout; 1298 } 1299 } 1300 } 1301 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1302 } 1303 /* 1304 * Flag bits override the options string. 1305 */ 1306 if (uap->flags & MS_REMOUNT) 1307 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1308 if (uap->flags & MS_RDONLY) 1309 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1310 if (uap->flags & MS_NOSUID) 1311 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1312 1313 /* 1314 * Check if this is a remount; must be set in the option string and 1315 * the file system must support a remount option. 1316 */ 1317 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1318 MNTOPT_REMOUNT, NULL)) { 1319 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1320 error = ENOTSUP; 1321 goto errout; 1322 } 1323 uap->flags |= MS_REMOUNT; 1324 } 1325 1326 /* 1327 * uap->flags and vfs_optionisset() should agree. 1328 */ 1329 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1330 uap->flags |= MS_RDONLY; 1331 } 1332 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1333 uap->flags |= MS_NOSUID; 1334 } 1335 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1336 ASSERT(splice || !remount); 1337 /* 1338 * If we are splicing the fs into the namespace, 1339 * perform mount point checks. 1340 * 1341 * We want to resolve the path for the mount point to eliminate 1342 * '.' and ".." and symlinks in mount points; we can't do the 1343 * same for the resource string, since it would turn 1344 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1345 * this before grabbing vn_vfswlock(), because otherwise we 1346 * would deadlock with lookuppn(). 1347 */ 1348 if (splice) { 1349 ASSERT(vp->v_count > 0); 1350 1351 /* 1352 * Pick up mount point and device from appropriate space. 1353 */ 1354 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1355 resource = kmem_alloc(pn.pn_pathlen + 1, 1356 KM_SLEEP); 1357 (void) strcpy(resource, pn.pn_path); 1358 pn_free(&pn); 1359 } 1360 /* 1361 * Do a lookupname prior to taking the 1362 * writelock. Mark this as completed if 1363 * successful for later cleanup and addition to 1364 * the mount in progress table. 1365 */ 1366 if ((uap->flags & MS_GLOBAL) == 0 && 1367 lookupname(uap->spec, fromspace, 1368 FOLLOW, NULL, &bvp) == 0) { 1369 addmip = 1; 1370 } 1371 1372 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1373 pathname_t *pnp; 1374 1375 if (*pn.pn_path != '/') { 1376 error = EINVAL; 1377 pn_free(&pn); 1378 goto errout; 1379 } 1380 pn_alloc(&rpn); 1381 /* 1382 * Kludge to prevent autofs from deadlocking with 1383 * itself when it calls domount(). 1384 * 1385 * If autofs is calling, it is because it is doing 1386 * (autofs) mounts in the process of an NFS mount. A 1387 * lookuppn() here would cause us to block waiting for 1388 * said NFS mount to complete, which can't since this 1389 * is the thread that was supposed to doing it. 1390 */ 1391 if (fromspace == UIO_USERSPACE) { 1392 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1393 NULL)) == 0) { 1394 pnp = &rpn; 1395 } else { 1396 /* 1397 * The file disappeared or otherwise 1398 * became inaccessible since we opened 1399 * it; might as well fail the mount 1400 * since the mount point is no longer 1401 * accessible. 1402 */ 1403 pn_free(&rpn); 1404 pn_free(&pn); 1405 goto errout; 1406 } 1407 } else { 1408 pnp = &pn; 1409 } 1410 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1411 (void) strcpy(mountpt, pnp->pn_path); 1412 1413 /* 1414 * If the addition of the zone's rootpath 1415 * would push us over a total path length 1416 * of MAXPATHLEN, we fail the mount with 1417 * ENAMETOOLONG, which is what we would have 1418 * gotten if we were trying to perform the same 1419 * mount in the global zone. 1420 * 1421 * strlen() doesn't count the trailing 1422 * '\0', but zone_rootpathlen counts both a 1423 * trailing '/' and the terminating '\0'. 1424 */ 1425 if ((curproc->p_zone->zone_rootpathlen - 1 + 1426 strlen(mountpt)) > MAXPATHLEN || 1427 (resource != NULL && 1428 (curproc->p_zone->zone_rootpathlen - 1 + 1429 strlen(resource)) > MAXPATHLEN)) { 1430 error = ENAMETOOLONG; 1431 } 1432 1433 pn_free(&rpn); 1434 pn_free(&pn); 1435 } 1436 1437 if (error) 1438 goto errout; 1439 1440 /* 1441 * Prevent path name resolution from proceeding past 1442 * the mount point. 1443 */ 1444 if (vn_vfswlock(vp) != 0) { 1445 error = EBUSY; 1446 goto errout; 1447 } 1448 1449 /* 1450 * Verify that it's legitimate to establish a mount on 1451 * the prospective mount point. 1452 */ 1453 if (vn_mountedvfs(vp) != NULL) { 1454 /* 1455 * The mount point lock was obtained after some 1456 * other thread raced through and established a mount. 1457 */ 1458 vn_vfsunlock(vp); 1459 error = EBUSY; 1460 goto errout; 1461 } 1462 if (vp->v_flag & VNOMOUNT) { 1463 vn_vfsunlock(vp); 1464 error = EINVAL; 1465 goto errout; 1466 } 1467 } 1468 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1469 uap->dataptr = NULL; 1470 uap->datalen = 0; 1471 } 1472 1473 /* 1474 * If this is a remount, we don't want to create a new VFS. 1475 * Instead, we pass the existing one with a remount flag. 1476 */ 1477 if (remount) { 1478 /* 1479 * Confirm that the mount point is the root vnode of the 1480 * file system that is being remounted. 1481 * This can happen if the user specifies a different 1482 * mount point directory pathname in the (re)mount command. 1483 * 1484 * Code below can only be reached if splice is true, so it's 1485 * safe to do vn_vfsunlock() here. 1486 */ 1487 if ((vp->v_flag & VROOT) == 0) { 1488 vn_vfsunlock(vp); 1489 error = ENOENT; 1490 goto errout; 1491 } 1492 /* 1493 * Disallow making file systems read-only unless file system 1494 * explicitly allows it in its vfssw. Ignore other flags. 1495 */ 1496 if (rdonly && vn_is_readonly(vp) == 0 && 1497 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1498 vn_vfsunlock(vp); 1499 error = EINVAL; 1500 goto errout; 1501 } 1502 /* 1503 * Disallow changing the NBMAND disposition of the file 1504 * system on remounts. 1505 */ 1506 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1507 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1508 vn_vfsunlock(vp); 1509 error = EINVAL; 1510 goto errout; 1511 } 1512 vfsp = vp->v_vfsp; 1513 ovflags = vfsp->vfs_flag; 1514 vfsp->vfs_flag |= VFS_REMOUNT; 1515 vfsp->vfs_flag &= ~VFS_RDONLY; 1516 } else { 1517 vfsp = vfs_alloc(KM_SLEEP); 1518 VFS_INIT(vfsp, vfsops, NULL); 1519 } 1520 1521 VFS_HOLD(vfsp); 1522 1523 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) { 1524 if (!remount) { 1525 if (splice) 1526 vn_vfsunlock(vp); 1527 vfs_free(vfsp); 1528 } else { 1529 vn_vfsunlock(vp); 1530 VFS_RELE(vfsp); 1531 } 1532 goto errout; 1533 } 1534 1535 /* 1536 * PRIV_SYS_MOUNT doesn't mean you can become root. 1537 */ 1538 if (vfsp->vfs_lofi_minor != 0) { 1539 uap->flags |= MS_NOSUID; 1540 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1541 } 1542 1543 /* 1544 * The vfs_reflock is not used anymore the code below explicitly 1545 * holds it preventing others accesing it directly. 1546 */ 1547 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1548 !(vfsp->vfs_flag & VFS_REMOUNT)) 1549 cmn_err(CE_WARN, 1550 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1551 1552 /* 1553 * Lock the vfs. If this is a remount we want to avoid spurious umount 1554 * failures that happen as a side-effect of fsflush() and other mount 1555 * and unmount operations that might be going on simultaneously and 1556 * may have locked the vfs currently. To not return EBUSY immediately 1557 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1558 */ 1559 if (!remount) { 1560 if (error = vfs_lock(vfsp)) { 1561 vfsp->vfs_flag = ovflags; 1562 1563 lofi_remove(vfsp); 1564 1565 if (splice) 1566 vn_vfsunlock(vp); 1567 vfs_free(vfsp); 1568 goto errout; 1569 } 1570 } else { 1571 vfs_lock_wait(vfsp); 1572 } 1573 1574 /* 1575 * Add device to mount in progress table, global mounts require special 1576 * handling. It is possible that we have already done the lookupname 1577 * on a spliced, non-global fs. If so, we don't want to do it again 1578 * since we cannot do a lookupname after taking the 1579 * wlock above. This case is for a non-spliced, non-global filesystem. 1580 */ 1581 if (!addmip) { 1582 if ((uap->flags & MS_GLOBAL) == 0 && 1583 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1584 addmip = 1; 1585 } 1586 } 1587 1588 if (addmip) { 1589 vnode_t *lvp = NULL; 1590 1591 error = vfs_get_lofi(vfsp, &lvp); 1592 if (error > 0) { 1593 lofi_remove(vfsp); 1594 1595 if (splice) 1596 vn_vfsunlock(vp); 1597 vfs_unlock(vfsp); 1598 1599 if (remount) { 1600 VFS_RELE(vfsp); 1601 } else { 1602 vfs_free(vfsp); 1603 } 1604 1605 goto errout; 1606 } else if (error == -1) { 1607 bdev = bvp->v_rdev; 1608 VN_RELE(bvp); 1609 } else { 1610 bdev = lvp->v_rdev; 1611 VN_RELE(lvp); 1612 VN_RELE(bvp); 1613 } 1614 1615 vfs_addmip(bdev, vfsp); 1616 addmip = 0; 1617 delmip = 1; 1618 } 1619 /* 1620 * Invalidate cached entry for the mount point. 1621 */ 1622 if (splice) 1623 dnlc_purge_vp(vp); 1624 1625 /* 1626 * If have an option string but the filesystem doesn't supply a 1627 * prototype options table, create a table with the global 1628 * options and sufficient room to accept all the options in the 1629 * string. Then parse the passed in option string 1630 * accepting all the options in the string. This gives us an 1631 * option table with all the proper cancel properties for the 1632 * global options. 1633 * 1634 * Filesystems that supply a prototype options table are handled 1635 * earlier in this function. 1636 */ 1637 if (uap->flags & MS_OPTIONSTR) { 1638 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1639 mntopts_t tmp_mntopts; 1640 1641 tmp_mntopts.mo_count = 0; 1642 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1643 &mnt_mntopts); 1644 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1645 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1646 vfs_freeopttbl(&tmp_mntopts); 1647 } 1648 } 1649 1650 /* 1651 * Serialize with zone state transitions. 1652 * See vfs_list_add; zone mounted into is: 1653 * zone_find_by_path(refstr_value(vfsp->vfs_mntpt)) 1654 * not the zone doing the mount (curproc->p_zone), but if we're already 1655 * inside a NGZ, then we know what zone we are. 1656 */ 1657 if (INGLOBALZONE(curproc)) { 1658 zone = zone_find_by_path(mountpt); 1659 ASSERT(zone != NULL); 1660 } else { 1661 zone = curproc->p_zone; 1662 /* 1663 * zone_find_by_path does a hold, so do one here too so that 1664 * we can do a zone_rele after mount_completed. 1665 */ 1666 zone_hold(zone); 1667 } 1668 mount_in_progress(zone); 1669 /* 1670 * Instantiate (or reinstantiate) the file system. If appropriate, 1671 * splice it into the file system name space. 1672 * 1673 * We want VFS_MOUNT() to be able to override the vfs_resource 1674 * string if necessary (ie, mntfs), and also for a remount to 1675 * change the same (necessary when remounting '/' during boot). 1676 * So we set up vfs_mntpt and vfs_resource to what we think they 1677 * should be, then hand off control to VFS_MOUNT() which can 1678 * override this. 1679 * 1680 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1681 * a vfs which is on the vfs list (i.e. during a remount), we must 1682 * never set those fields to NULL. Several bits of code make 1683 * assumptions that the fields are always valid. 1684 */ 1685 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1686 if (remount) { 1687 if ((oldresource = vfsp->vfs_resource) != NULL) 1688 refstr_hold(oldresource); 1689 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1690 refstr_hold(oldmntpt); 1691 } 1692 vfs_setresource(vfsp, resource, 0); 1693 vfs_setmntpoint(vfsp, mountpt, 0); 1694 1695 /* 1696 * going to mount on this vnode, so notify. 1697 */ 1698 vnevent_mountedover(vp, NULL); 1699 error = VFS_MOUNT(vfsp, vp, uap, credp); 1700 1701 if (uap->flags & MS_RDONLY) 1702 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1703 if (uap->flags & MS_NOSUID) 1704 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1705 if (uap->flags & MS_GLOBAL) 1706 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1707 1708 if (error) { 1709 lofi_remove(vfsp); 1710 1711 if (remount) { 1712 /* put back pre-remount options */ 1713 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1714 vfs_setmntpoint(vfsp, refstr_value(oldmntpt), 1715 VFSSP_VERBATIM); 1716 if (oldmntpt) 1717 refstr_rele(oldmntpt); 1718 vfs_setresource(vfsp, refstr_value(oldresource), 1719 VFSSP_VERBATIM); 1720 if (oldresource) 1721 refstr_rele(oldresource); 1722 vfsp->vfs_flag = ovflags; 1723 vfs_unlock(vfsp); 1724 VFS_RELE(vfsp); 1725 } else { 1726 vfs_unlock(vfsp); 1727 vfs_freemnttab(vfsp); 1728 vfs_free(vfsp); 1729 } 1730 } else { 1731 /* 1732 * Set the mount time to now 1733 */ 1734 vfsp->vfs_mtime = ddi_get_time(); 1735 if (remount) { 1736 vfsp->vfs_flag &= ~VFS_REMOUNT; 1737 if (oldresource) 1738 refstr_rele(oldresource); 1739 if (oldmntpt) 1740 refstr_rele(oldmntpt); 1741 } else if (splice) { 1742 /* 1743 * Link vfsp into the name space at the mount 1744 * point. Vfs_add() is responsible for 1745 * holding the mount point which will be 1746 * released when vfs_remove() is called. 1747 */ 1748 vfs_add(vp, vfsp, uap->flags); 1749 } else { 1750 /* 1751 * Hold the reference to file system which is 1752 * not linked into the name space. 1753 */ 1754 vfsp->vfs_zone = NULL; 1755 VFS_HOLD(vfsp); 1756 vfsp->vfs_vnodecovered = NULL; 1757 } 1758 /* 1759 * Set flags for global options encountered 1760 */ 1761 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1762 vfsp->vfs_flag |= VFS_RDONLY; 1763 else 1764 vfsp->vfs_flag &= ~VFS_RDONLY; 1765 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1766 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1767 } else { 1768 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1769 vfsp->vfs_flag |= VFS_NODEVICES; 1770 else 1771 vfsp->vfs_flag &= ~VFS_NODEVICES; 1772 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1773 vfsp->vfs_flag |= VFS_NOSETUID; 1774 else 1775 vfsp->vfs_flag &= ~VFS_NOSETUID; 1776 } 1777 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1778 vfsp->vfs_flag |= VFS_NBMAND; 1779 else 1780 vfsp->vfs_flag &= ~VFS_NBMAND; 1781 1782 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1783 vfsp->vfs_flag |= VFS_XATTR; 1784 else 1785 vfsp->vfs_flag &= ~VFS_XATTR; 1786 1787 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1788 vfsp->vfs_flag |= VFS_NOEXEC; 1789 else 1790 vfsp->vfs_flag &= ~VFS_NOEXEC; 1791 1792 /* 1793 * Now construct the output option string of options 1794 * we recognized. 1795 */ 1796 if (uap->flags & MS_OPTIONSTR) { 1797 vfs_list_read_lock(); 1798 copyout_error = vfs_buildoptionstr( 1799 &vfsp->vfs_mntopts, inargs, optlen); 1800 vfs_list_unlock(); 1801 if (copyout_error == 0 && 1802 (uap->flags & MS_SYSSPACE) == 0) { 1803 copyout_error = copyoutstr(inargs, opts, 1804 optlen, NULL); 1805 } 1806 } 1807 1808 /* 1809 * If this isn't a remount, set up the vopstats before 1810 * anyone can touch this. We only allow spliced file 1811 * systems (file systems which are in the namespace) to 1812 * have the VFS_STATS flag set. 1813 * NOTE: PxFS mounts the underlying file system with 1814 * MS_NOSPLICE set and copies those vfs_flags to its private 1815 * vfs structure. As a result, PxFS should never have 1816 * the VFS_STATS flag or else we might access the vfs 1817 * statistics-related fields prior to them being 1818 * properly initialized. 1819 */ 1820 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1821 initialize_vopstats(&vfsp->vfs_vopstats); 1822 /* 1823 * We need to set vfs_vskap to NULL because there's 1824 * a chance it won't be set below. This is checked 1825 * in teardown_vopstats() so we can't have garbage. 1826 */ 1827 vfsp->vfs_vskap = NULL; 1828 vfsp->vfs_flag |= VFS_STATS; 1829 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1830 } 1831 1832 if (vswp->vsw_flag & VSW_XID) 1833 vfsp->vfs_flag |= VFS_XID; 1834 1835 vfs_unlock(vfsp); 1836 } 1837 mount_completed(zone); 1838 zone_rele(zone); 1839 if (splice) 1840 vn_vfsunlock(vp); 1841 1842 if ((error == 0) && (copyout_error == 0)) { 1843 if (!remount) { 1844 /* 1845 * Don't call get_vskstat_anchor() while holding 1846 * locks since it allocates memory and calls 1847 * VFS_STATVFS(). For NFS, the latter can generate 1848 * an over-the-wire call. 1849 */ 1850 vskap = get_vskstat_anchor(vfsp); 1851 /* Only take the lock if we have something to do */ 1852 if (vskap != NULL) { 1853 vfs_lock_wait(vfsp); 1854 if (vfsp->vfs_flag & VFS_STATS) { 1855 vfsp->vfs_vskap = vskap; 1856 } 1857 vfs_unlock(vfsp); 1858 } 1859 } 1860 /* Return vfsp to caller. */ 1861 *vfspp = vfsp; 1862 } 1863 errout: 1864 vfs_freeopttbl(&mnt_mntopts); 1865 if (resource != NULL) 1866 kmem_free(resource, strlen(resource) + 1); 1867 if (mountpt != NULL) 1868 kmem_free(mountpt, strlen(mountpt) + 1); 1869 /* 1870 * It is possible we errored prior to adding to mount in progress 1871 * table. Must free vnode we acquired with successful lookupname. 1872 */ 1873 if (addmip) 1874 VN_RELE(bvp); 1875 if (delmip) 1876 vfs_delmip(vfsp); 1877 ASSERT(vswp != NULL); 1878 vfs_unrefvfssw(vswp); 1879 if (inargs != opts) 1880 kmem_free(inargs, MAX_MNTOPT_STR); 1881 if (copyout_error) { 1882 lofi_remove(vfsp); 1883 VFS_RELE(vfsp); 1884 error = copyout_error; 1885 } 1886 return (error); 1887 } 1888 1889 static void 1890 vfs_setpath( 1891 struct vfs *vfsp, /* vfs being updated */ 1892 refstr_t **refp, /* Ref-count string to contain the new path */ 1893 const char *newpath, /* Path to add to refp (above) */ 1894 uint32_t flag) /* flag */ 1895 { 1896 size_t len; 1897 refstr_t *ref; 1898 zone_t *zone = curproc->p_zone; 1899 char *sp; 1900 int have_list_lock = 0; 1901 1902 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1903 1904 /* 1905 * New path must be less than MAXPATHLEN because mntfs 1906 * will only display up to MAXPATHLEN bytes. This is currently 1907 * safe, because domount() uses pn_get(), and other callers 1908 * similarly cap the size to fewer than MAXPATHLEN bytes. 1909 */ 1910 1911 ASSERT(strlen(newpath) < MAXPATHLEN); 1912 1913 /* mntfs requires consistency while vfs list lock is held */ 1914 1915 if (VFS_ON_LIST(vfsp)) { 1916 have_list_lock = 1; 1917 vfs_list_lock(); 1918 } 1919 1920 if (*refp != NULL) 1921 refstr_rele(*refp); 1922 1923 /* 1924 * If we are in a non-global zone then we prefix the supplied path, 1925 * newpath, with the zone's root path, with two exceptions. The first 1926 * is where we have been explicitly directed to avoid doing so; this 1927 * will be the case following a failed remount, where the path supplied 1928 * will be a saved version which must now be restored. The second 1929 * exception is where newpath is not a pathname but a descriptive name, 1930 * e.g. "procfs". 1931 */ 1932 if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') { 1933 ref = refstr_alloc(newpath); 1934 goto out; 1935 } 1936 1937 /* 1938 * Truncate the trailing '/' in the zoneroot, and merge 1939 * in the zone's rootpath with the "newpath" (resource 1940 * or mountpoint) passed in. 1941 * 1942 * The size of the required buffer is thus the size of 1943 * the buffer required for the passed-in newpath 1944 * (strlen(newpath) + 1), plus the size of the buffer 1945 * required to hold zone_rootpath (zone_rootpathlen) 1946 * minus one for one of the now-superfluous NUL 1947 * terminations, minus one for the trailing '/'. 1948 * 1949 * That gives us: 1950 * 1951 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1952 * 1953 * Which is what we have below. 1954 */ 1955 1956 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1957 sp = kmem_alloc(len, KM_SLEEP); 1958 1959 /* 1960 * Copy everything including the trailing slash, which 1961 * we then overwrite with the NUL character. 1962 */ 1963 1964 (void) strcpy(sp, zone->zone_rootpath); 1965 sp[zone->zone_rootpathlen - 2] = '\0'; 1966 (void) strcat(sp, newpath); 1967 1968 ref = refstr_alloc(sp); 1969 kmem_free(sp, len); 1970 out: 1971 *refp = ref; 1972 1973 if (have_list_lock) { 1974 vfs_mnttab_modtimeupd(); 1975 vfs_list_unlock(); 1976 } 1977 } 1978 1979 /* 1980 * Record a mounted resource name in a vfs structure. 1981 * If vfsp is already mounted, caller must hold the vfs lock. 1982 */ 1983 void 1984 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag) 1985 { 1986 if (resource == NULL || resource[0] == '\0') 1987 resource = VFS_NORESOURCE; 1988 vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag); 1989 } 1990 1991 /* 1992 * Record a mount point name in a vfs structure. 1993 * If vfsp is already mounted, caller must hold the vfs lock. 1994 */ 1995 void 1996 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag) 1997 { 1998 if (mntpt == NULL || mntpt[0] == '\0') 1999 mntpt = VFS_NOMNTPT; 2000 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag); 2001 } 2002 2003 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 2004 2005 refstr_t * 2006 vfs_getresource(const struct vfs *vfsp) 2007 { 2008 refstr_t *resource; 2009 2010 vfs_list_read_lock(); 2011 resource = vfsp->vfs_resource; 2012 refstr_hold(resource); 2013 vfs_list_unlock(); 2014 2015 return (resource); 2016 } 2017 2018 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 2019 2020 refstr_t * 2021 vfs_getmntpoint(const struct vfs *vfsp) 2022 { 2023 refstr_t *mntpt; 2024 2025 vfs_list_read_lock(); 2026 mntpt = vfsp->vfs_mntpt; 2027 refstr_hold(mntpt); 2028 vfs_list_unlock(); 2029 2030 return (mntpt); 2031 } 2032 2033 /* 2034 * Create an empty options table with enough empty slots to hold all 2035 * The options in the options string passed as an argument. 2036 * Potentially prepend another options table. 2037 * 2038 * Note: caller is responsible for locking the vfs list, if needed, 2039 * to protect mops. 2040 */ 2041 static void 2042 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 2043 const mntopts_t *mtmpl) 2044 { 2045 const char *s = opts; 2046 uint_t count; 2047 2048 if (opts == NULL || *opts == '\0') { 2049 count = 0; 2050 } else { 2051 count = 1; 2052 2053 /* 2054 * Count number of options in the string 2055 */ 2056 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 2057 count++; 2058 s++; 2059 } 2060 } 2061 vfs_copyopttbl_extend(mtmpl, mops, count); 2062 } 2063 2064 /* 2065 * Create an empty options table with enough empty slots to hold all 2066 * The options in the options string passed as an argument. 2067 * 2068 * This function is *not* for general use by filesystems. 2069 * 2070 * Note: caller is responsible for locking the vfs list, if needed, 2071 * to protect mops. 2072 */ 2073 void 2074 vfs_createopttbl(mntopts_t *mops, const char *opts) 2075 { 2076 vfs_createopttbl_extend(mops, opts, NULL); 2077 } 2078 2079 2080 /* 2081 * Swap two mount options tables 2082 */ 2083 static void 2084 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 2085 { 2086 uint_t tmpcnt; 2087 mntopt_t *tmplist; 2088 2089 tmpcnt = optbl2->mo_count; 2090 tmplist = optbl2->mo_list; 2091 optbl2->mo_count = optbl1->mo_count; 2092 optbl2->mo_list = optbl1->mo_list; 2093 optbl1->mo_count = tmpcnt; 2094 optbl1->mo_list = tmplist; 2095 } 2096 2097 static void 2098 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 2099 { 2100 vfs_list_lock(); 2101 vfs_swapopttbl_nolock(optbl1, optbl2); 2102 vfs_mnttab_modtimeupd(); 2103 vfs_list_unlock(); 2104 } 2105 2106 static char ** 2107 vfs_copycancelopt_extend(char **const moc, int extend) 2108 { 2109 int i = 0; 2110 int j; 2111 char **result; 2112 2113 if (moc != NULL) { 2114 for (; moc[i] != NULL; i++) 2115 /* count number of options to cancel */; 2116 } 2117 2118 if (i + extend == 0) 2119 return (NULL); 2120 2121 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 2122 2123 for (j = 0; j < i; j++) { 2124 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 2125 (void) strcpy(result[j], moc[j]); 2126 } 2127 for (; j <= i + extend; j++) 2128 result[j] = NULL; 2129 2130 return (result); 2131 } 2132 2133 static void 2134 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 2135 { 2136 char *sp, *dp; 2137 2138 d->mo_flags = s->mo_flags; 2139 d->mo_data = s->mo_data; 2140 sp = s->mo_name; 2141 if (sp != NULL) { 2142 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2143 (void) strcpy(dp, sp); 2144 d->mo_name = dp; 2145 } else { 2146 d->mo_name = NULL; /* should never happen */ 2147 } 2148 2149 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 2150 2151 sp = s->mo_arg; 2152 if (sp != NULL) { 2153 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2154 (void) strcpy(dp, sp); 2155 d->mo_arg = dp; 2156 } else { 2157 d->mo_arg = NULL; 2158 } 2159 } 2160 2161 /* 2162 * Copy a mount options table, possibly allocating some spare 2163 * slots at the end. It is permissible to copy_extend the NULL table. 2164 */ 2165 static void 2166 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 2167 { 2168 uint_t i, count; 2169 mntopt_t *motbl; 2170 2171 /* 2172 * Clear out any existing stuff in the options table being initialized 2173 */ 2174 vfs_freeopttbl(dmo); 2175 count = (smo == NULL) ? 0 : smo->mo_count; 2176 if ((count + extra) == 0) /* nothing to do */ 2177 return; 2178 dmo->mo_count = count + extra; 2179 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 2180 dmo->mo_list = motbl; 2181 for (i = 0; i < count; i++) { 2182 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 2183 } 2184 for (i = count; i < count + extra; i++) { 2185 motbl[i].mo_flags = MO_EMPTY; 2186 } 2187 } 2188 2189 /* 2190 * Copy a mount options table. 2191 * 2192 * This function is *not* for general use by filesystems. 2193 * 2194 * Note: caller is responsible for locking the vfs list, if needed, 2195 * to protect smo and dmo. 2196 */ 2197 void 2198 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 2199 { 2200 vfs_copyopttbl_extend(smo, dmo, 0); 2201 } 2202 2203 static char ** 2204 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 2205 { 2206 int c1 = 0; 2207 int c2 = 0; 2208 char **result; 2209 char **sp1, **sp2, **dp; 2210 2211 /* 2212 * First we count both lists of cancel options. 2213 * If either is NULL or has no elements, we return a copy of 2214 * the other. 2215 */ 2216 if (mop1->mo_cancel != NULL) { 2217 for (; mop1->mo_cancel[c1] != NULL; c1++) 2218 /* count cancel options in mop1 */; 2219 } 2220 2221 if (c1 == 0) 2222 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 2223 2224 if (mop2->mo_cancel != NULL) { 2225 for (; mop2->mo_cancel[c2] != NULL; c2++) 2226 /* count cancel options in mop2 */; 2227 } 2228 2229 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 2230 2231 if (c2 == 0) 2232 return (result); 2233 2234 /* 2235 * When we get here, we've got two sets of cancel options; 2236 * we need to merge the two sets. We know that the result 2237 * array has "c1+c2+1" entries and in the end we might shrink 2238 * it. 2239 * Result now has a copy of the c1 entries from mop1; we'll 2240 * now lookup all the entries of mop2 in mop1 and copy it if 2241 * it is unique. 2242 * This operation is O(n^2) but it's only called once per 2243 * filesystem per duplicate option. This is a situation 2244 * which doesn't arise with the filesystems in ON and 2245 * n is generally 1. 2246 */ 2247 2248 dp = &result[c1]; 2249 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 2250 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 2251 if (strcmp(*sp1, *sp2) == 0) 2252 break; 2253 } 2254 if (*sp1 == NULL) { 2255 /* 2256 * Option *sp2 not found in mop1, so copy it. 2257 * The calls to vfs_copycancelopt_extend() 2258 * guarantee that there's enough room. 2259 */ 2260 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 2261 (void) strcpy(*dp++, *sp2); 2262 } 2263 } 2264 if (dp != &result[c1+c2]) { 2265 size_t bytes = (dp - result + 1) * sizeof (char *); 2266 char **nres = kmem_alloc(bytes, KM_SLEEP); 2267 2268 bcopy(result, nres, bytes); 2269 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 2270 result = nres; 2271 } 2272 return (result); 2273 } 2274 2275 /* 2276 * Merge two mount option tables (outer and inner) into one. This is very 2277 * similar to "merging" global variables and automatic variables in C. 2278 * 2279 * This isn't (and doesn't have to be) fast. 2280 * 2281 * This function is *not* for general use by filesystems. 2282 * 2283 * Note: caller is responsible for locking the vfs list, if needed, 2284 * to protect omo, imo & dmo. 2285 */ 2286 void 2287 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2288 { 2289 uint_t i, count; 2290 mntopt_t *mop, *motbl; 2291 uint_t freeidx; 2292 2293 /* 2294 * First determine how much space we need to allocate. 2295 */ 2296 count = omo->mo_count; 2297 for (i = 0; i < imo->mo_count; i++) { 2298 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2299 continue; 2300 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2301 count++; 2302 } 2303 ASSERT(count >= omo->mo_count && 2304 count <= omo->mo_count + imo->mo_count); 2305 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2306 for (i = 0; i < omo->mo_count; i++) 2307 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2308 freeidx = omo->mo_count; 2309 for (i = 0; i < imo->mo_count; i++) { 2310 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2311 continue; 2312 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2313 char **newcanp; 2314 uint_t index = mop - omo->mo_list; 2315 2316 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2317 2318 vfs_freeopt(&motbl[index]); 2319 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2320 2321 vfs_freecancelopt(motbl[index].mo_cancel); 2322 motbl[index].mo_cancel = newcanp; 2323 } else { 2324 /* 2325 * If it's a new option, just copy it over to the first 2326 * free location. 2327 */ 2328 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2329 } 2330 } 2331 dmo->mo_count = count; 2332 dmo->mo_list = motbl; 2333 } 2334 2335 /* 2336 * Functions to set and clear mount options in a mount options table. 2337 */ 2338 2339 /* 2340 * Clear a mount option, if it exists. 2341 * 2342 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2343 * the vfs list. 2344 */ 2345 static void 2346 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2347 { 2348 struct mntopt *mop; 2349 uint_t i, count; 2350 2351 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2352 2353 count = mops->mo_count; 2354 for (i = 0; i < count; i++) { 2355 mop = &mops->mo_list[i]; 2356 2357 if (mop->mo_flags & MO_EMPTY) 2358 continue; 2359 if (strcmp(opt, mop->mo_name)) 2360 continue; 2361 mop->mo_flags &= ~MO_SET; 2362 if (mop->mo_arg != NULL) { 2363 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2364 } 2365 mop->mo_arg = NULL; 2366 if (update_mnttab) 2367 vfs_mnttab_modtimeupd(); 2368 break; 2369 } 2370 } 2371 2372 void 2373 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2374 { 2375 int gotlock = 0; 2376 2377 if (VFS_ON_LIST(vfsp)) { 2378 gotlock = 1; 2379 vfs_list_lock(); 2380 } 2381 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2382 if (gotlock) 2383 vfs_list_unlock(); 2384 } 2385 2386 2387 /* 2388 * Set a mount option on. If it's not found in the table, it's silently 2389 * ignored. If the option has MO_IGNORE set, it is still set unless the 2390 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2391 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2392 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2393 * MO_EMPTY set is created as the option passed in. 2394 * 2395 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2396 * the vfs list. 2397 */ 2398 static void 2399 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2400 const char *arg, int flags, int update_mnttab) 2401 { 2402 mntopt_t *mop; 2403 uint_t i, count; 2404 char *sp; 2405 2406 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2407 2408 if (flags & VFS_CREATEOPT) { 2409 if (vfs_hasopt(mops, opt) != NULL) { 2410 flags &= ~VFS_CREATEOPT; 2411 } 2412 } 2413 count = mops->mo_count; 2414 for (i = 0; i < count; i++) { 2415 mop = &mops->mo_list[i]; 2416 2417 if (mop->mo_flags & MO_EMPTY) { 2418 if ((flags & VFS_CREATEOPT) == 0) 2419 continue; 2420 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2421 (void) strcpy(sp, opt); 2422 mop->mo_name = sp; 2423 if (arg != NULL) 2424 mop->mo_flags = MO_HASVALUE; 2425 else 2426 mop->mo_flags = 0; 2427 } else if (strcmp(opt, mop->mo_name)) { 2428 continue; 2429 } 2430 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2431 break; 2432 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2433 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2434 (void) strcpy(sp, arg); 2435 } else { 2436 sp = NULL; 2437 } 2438 if (mop->mo_arg != NULL) 2439 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2440 mop->mo_arg = sp; 2441 if (flags & VFS_DISPLAY) 2442 mop->mo_flags &= ~MO_NODISPLAY; 2443 if (flags & VFS_NODISPLAY) 2444 mop->mo_flags |= MO_NODISPLAY; 2445 mop->mo_flags |= MO_SET; 2446 if (mop->mo_cancel != NULL) { 2447 char **cp; 2448 2449 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2450 vfs_clearmntopt_nolock(mops, *cp, 0); 2451 } 2452 if (update_mnttab) 2453 vfs_mnttab_modtimeupd(); 2454 break; 2455 } 2456 } 2457 2458 void 2459 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2460 { 2461 int gotlock = 0; 2462 2463 if (VFS_ON_LIST(vfsp)) { 2464 gotlock = 1; 2465 vfs_list_lock(); 2466 } 2467 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2468 if (gotlock) 2469 vfs_list_unlock(); 2470 } 2471 2472 2473 /* 2474 * Add a "tag" option to a mounted file system's options list. 2475 * 2476 * Note: caller is responsible for locking the vfs list, if needed, 2477 * to protect mops. 2478 */ 2479 static mntopt_t * 2480 vfs_addtag(mntopts_t *mops, const char *tag) 2481 { 2482 uint_t count; 2483 mntopt_t *mop, *motbl; 2484 2485 count = mops->mo_count + 1; 2486 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2487 if (mops->mo_count) { 2488 size_t len = (count - 1) * sizeof (mntopt_t); 2489 2490 bcopy(mops->mo_list, motbl, len); 2491 kmem_free(mops->mo_list, len); 2492 } 2493 mops->mo_count = count; 2494 mops->mo_list = motbl; 2495 mop = &motbl[count - 1]; 2496 mop->mo_flags = MO_TAG; 2497 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2498 (void) strcpy(mop->mo_name, tag); 2499 return (mop); 2500 } 2501 2502 /* 2503 * Allow users to set arbitrary "tags" in a vfs's mount options. 2504 * Broader use within the kernel is discouraged. 2505 */ 2506 int 2507 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2508 cred_t *cr) 2509 { 2510 vfs_t *vfsp; 2511 mntopts_t *mops; 2512 mntopt_t *mop; 2513 int found = 0; 2514 dev_t dev = makedevice(major, minor); 2515 int err = 0; 2516 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2517 2518 /* 2519 * Find the desired mounted file system 2520 */ 2521 vfs_list_lock(); 2522 vfsp = rootvfs; 2523 do { 2524 if (vfsp->vfs_dev == dev && 2525 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2526 found = 1; 2527 break; 2528 } 2529 vfsp = vfsp->vfs_next; 2530 } while (vfsp != rootvfs); 2531 2532 if (!found) { 2533 err = EINVAL; 2534 goto out; 2535 } 2536 err = secpolicy_fs_config(cr, vfsp); 2537 if (err != 0) 2538 goto out; 2539 2540 mops = &vfsp->vfs_mntopts; 2541 /* 2542 * Add tag if it doesn't already exist 2543 */ 2544 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2545 int len; 2546 2547 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2548 len = strlen(buf); 2549 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2550 err = ENAMETOOLONG; 2551 goto out; 2552 } 2553 mop = vfs_addtag(mops, tag); 2554 } 2555 if ((mop->mo_flags & MO_TAG) == 0) { 2556 err = EINVAL; 2557 goto out; 2558 } 2559 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2560 out: 2561 vfs_list_unlock(); 2562 kmem_free(buf, MAX_MNTOPT_STR); 2563 return (err); 2564 } 2565 2566 /* 2567 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2568 * Broader use within the kernel is discouraged. 2569 */ 2570 int 2571 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2572 cred_t *cr) 2573 { 2574 vfs_t *vfsp; 2575 mntopt_t *mop; 2576 int found = 0; 2577 dev_t dev = makedevice(major, minor); 2578 int err = 0; 2579 2580 /* 2581 * Find the desired mounted file system 2582 */ 2583 vfs_list_lock(); 2584 vfsp = rootvfs; 2585 do { 2586 if (vfsp->vfs_dev == dev && 2587 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2588 found = 1; 2589 break; 2590 } 2591 vfsp = vfsp->vfs_next; 2592 } while (vfsp != rootvfs); 2593 2594 if (!found) { 2595 err = EINVAL; 2596 goto out; 2597 } 2598 err = secpolicy_fs_config(cr, vfsp); 2599 if (err != 0) 2600 goto out; 2601 2602 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2603 err = EINVAL; 2604 goto out; 2605 } 2606 if ((mop->mo_flags & MO_TAG) == 0) { 2607 err = EINVAL; 2608 goto out; 2609 } 2610 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2611 out: 2612 vfs_list_unlock(); 2613 return (err); 2614 } 2615 2616 /* 2617 * Function to parse an option string and fill in a mount options table. 2618 * Unknown options are silently ignored. The input option string is modified 2619 * by replacing separators with nulls. If the create flag is set, options 2620 * not found in the table are just added on the fly. The table must have 2621 * an option slot marked MO_EMPTY to add an option on the fly. 2622 * 2623 * This function is *not* for general use by filesystems. 2624 * 2625 * Note: caller is responsible for locking the vfs list, if needed, 2626 * to protect mops.. 2627 */ 2628 void 2629 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2630 { 2631 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2632 int setflg = VFS_NOFORCEOPT; 2633 2634 if (osp == NULL) 2635 return; 2636 while (*s != '\0') { 2637 p = strchr(s, ','); /* find next option */ 2638 if (p == NULL) { 2639 cp = NULL; 2640 p = s + strlen(s); 2641 } else { 2642 cp = p; /* save location of comma */ 2643 *p++ = '\0'; /* mark end and point to next option */ 2644 } 2645 nextop = p; 2646 p = strchr(s, '='); /* look for value */ 2647 if (p == NULL) { 2648 valp = NULL; /* no value supplied */ 2649 } else { 2650 ep = p; /* save location of equals */ 2651 *p++ = '\0'; /* end option and point to value */ 2652 valp = p; 2653 } 2654 /* 2655 * set option into options table 2656 */ 2657 if (create) 2658 setflg |= VFS_CREATEOPT; 2659 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2660 if (cp != NULL) 2661 *cp = ','; /* restore the comma */ 2662 if (valp != NULL) 2663 *ep = '='; /* restore the equals */ 2664 s = nextop; 2665 } 2666 } 2667 2668 /* 2669 * Function to inquire if an option exists in a mount options table. 2670 * Returns a pointer to the option if it exists, else NULL. 2671 * 2672 * This function is *not* for general use by filesystems. 2673 * 2674 * Note: caller is responsible for locking the vfs list, if needed, 2675 * to protect mops. 2676 */ 2677 struct mntopt * 2678 vfs_hasopt(const mntopts_t *mops, const char *opt) 2679 { 2680 struct mntopt *mop; 2681 uint_t i, count; 2682 2683 count = mops->mo_count; 2684 for (i = 0; i < count; i++) { 2685 mop = &mops->mo_list[i]; 2686 2687 if (mop->mo_flags & MO_EMPTY) 2688 continue; 2689 if (strcmp(opt, mop->mo_name) == 0) 2690 return (mop); 2691 } 2692 return (NULL); 2693 } 2694 2695 /* 2696 * Function to inquire if an option is set in a mount options table. 2697 * Returns non-zero if set and fills in the arg pointer with a pointer to 2698 * the argument string or NULL if there is no argument string. 2699 */ 2700 static int 2701 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2702 { 2703 struct mntopt *mop; 2704 uint_t i, count; 2705 2706 count = mops->mo_count; 2707 for (i = 0; i < count; i++) { 2708 mop = &mops->mo_list[i]; 2709 2710 if (mop->mo_flags & MO_EMPTY) 2711 continue; 2712 if (strcmp(opt, mop->mo_name)) 2713 continue; 2714 if ((mop->mo_flags & MO_SET) == 0) 2715 return (0); 2716 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2717 *argp = mop->mo_arg; 2718 return (1); 2719 } 2720 return (0); 2721 } 2722 2723 2724 int 2725 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2726 { 2727 int ret; 2728 2729 vfs_list_read_lock(); 2730 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2731 vfs_list_unlock(); 2732 return (ret); 2733 } 2734 2735 2736 /* 2737 * Construct a comma separated string of the options set in the given 2738 * mount table, return the string in the given buffer. Return non-zero if 2739 * the buffer would overflow. 2740 * 2741 * This function is *not* for general use by filesystems. 2742 * 2743 * Note: caller is responsible for locking the vfs list, if needed, 2744 * to protect mp. 2745 */ 2746 int 2747 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2748 { 2749 char *cp; 2750 uint_t i; 2751 2752 buf[0] = '\0'; 2753 cp = buf; 2754 for (i = 0; i < mp->mo_count; i++) { 2755 struct mntopt *mop; 2756 2757 mop = &mp->mo_list[i]; 2758 if (mop->mo_flags & MO_SET) { 2759 int optlen, comma = 0; 2760 2761 if (buf[0] != '\0') 2762 comma = 1; 2763 optlen = strlen(mop->mo_name); 2764 if (strlen(buf) + comma + optlen + 1 > len) 2765 goto err; 2766 if (comma) 2767 *cp++ = ','; 2768 (void) strcpy(cp, mop->mo_name); 2769 cp += optlen; 2770 /* 2771 * Append option value if there is one 2772 */ 2773 if (mop->mo_arg != NULL) { 2774 int arglen; 2775 2776 arglen = strlen(mop->mo_arg); 2777 if (strlen(buf) + arglen + 2 > len) 2778 goto err; 2779 *cp++ = '='; 2780 (void) strcpy(cp, mop->mo_arg); 2781 cp += arglen; 2782 } 2783 } 2784 } 2785 return (0); 2786 err: 2787 return (EOVERFLOW); 2788 } 2789 2790 static void 2791 vfs_freecancelopt(char **moc) 2792 { 2793 if (moc != NULL) { 2794 int ccnt = 0; 2795 char **cp; 2796 2797 for (cp = moc; *cp != NULL; cp++) { 2798 kmem_free(*cp, strlen(*cp) + 1); 2799 ccnt++; 2800 } 2801 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2802 } 2803 } 2804 2805 static void 2806 vfs_freeopt(mntopt_t *mop) 2807 { 2808 if (mop->mo_name != NULL) 2809 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2810 2811 vfs_freecancelopt(mop->mo_cancel); 2812 2813 if (mop->mo_arg != NULL) 2814 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2815 } 2816 2817 /* 2818 * Free a mount options table 2819 * 2820 * This function is *not* for general use by filesystems. 2821 * 2822 * Note: caller is responsible for locking the vfs list, if needed, 2823 * to protect mp. 2824 */ 2825 void 2826 vfs_freeopttbl(mntopts_t *mp) 2827 { 2828 uint_t i, count; 2829 2830 count = mp->mo_count; 2831 for (i = 0; i < count; i++) { 2832 vfs_freeopt(&mp->mo_list[i]); 2833 } 2834 if (count) { 2835 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2836 mp->mo_count = 0; 2837 mp->mo_list = NULL; 2838 } 2839 } 2840 2841 2842 /* ARGSUSED */ 2843 static int 2844 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2845 caller_context_t *ct) 2846 { 2847 return (0); 2848 } 2849 2850 /* ARGSUSED */ 2851 static int 2852 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2853 caller_context_t *ct) 2854 { 2855 return (0); 2856 } 2857 2858 /* 2859 * The dummy vnode is currently used only by file events notification 2860 * module which is just interested in the timestamps. 2861 */ 2862 /* ARGSUSED */ 2863 static int 2864 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2865 caller_context_t *ct) 2866 { 2867 bzero(vap, sizeof (vattr_t)); 2868 vap->va_type = VREG; 2869 vap->va_nlink = 1; 2870 vap->va_ctime = vfs_mnttab_ctime; 2871 /* 2872 * it is ok to just copy mtime as the time will be monotonically 2873 * increasing. 2874 */ 2875 vap->va_mtime = vfs_mnttab_mtime; 2876 vap->va_atime = vap->va_mtime; 2877 return (0); 2878 } 2879 2880 static void 2881 vfs_mnttabvp_setup(void) 2882 { 2883 vnode_t *tvp; 2884 vnodeops_t *vfs_mntdummyvnops; 2885 const fs_operation_def_t mnt_dummyvnodeops_template[] = { 2886 VOPNAME_READ, { .vop_read = vfs_mntdummyread }, 2887 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite }, 2888 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr }, 2889 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 2890 NULL, NULL 2891 }; 2892 2893 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template, 2894 &vfs_mntdummyvnops) != 0) { 2895 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed"); 2896 /* Shouldn't happen, but not bad enough to panic */ 2897 return; 2898 } 2899 2900 /* 2901 * A global dummy vnode is allocated to represent mntfs files. 2902 * The mntfs file (/etc/mnttab) can be monitored for file events 2903 * and receive an event when mnttab changes. Dummy VOP calls 2904 * will be made on this vnode. The file events notification module 2905 * intercepts this vnode and delivers relevant events. 2906 */ 2907 tvp = vn_alloc(KM_SLEEP); 2908 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE; 2909 vn_setops(tvp, vfs_mntdummyvnops); 2910 tvp->v_type = VREG; 2911 /* 2912 * The mnt dummy ops do not reference v_data. 2913 * No other module intercepting this vnode should either. 2914 * Just set it to point to itself. 2915 */ 2916 tvp->v_data = (caddr_t)tvp; 2917 tvp->v_vfsp = rootvfs; 2918 vfs_mntdummyvp = tvp; 2919 } 2920 2921 /* 2922 * performs fake read/write ops 2923 */ 2924 static void 2925 vfs_mnttab_rwop(int rw) 2926 { 2927 struct uio uio; 2928 struct iovec iov; 2929 char buf[1]; 2930 2931 if (vfs_mntdummyvp == NULL) 2932 return; 2933 2934 bzero(&uio, sizeof (uio)); 2935 bzero(&iov, sizeof (iov)); 2936 iov.iov_base = buf; 2937 iov.iov_len = 0; 2938 uio.uio_iov = &iov; 2939 uio.uio_iovcnt = 1; 2940 uio.uio_loffset = 0; 2941 uio.uio_segflg = UIO_SYSSPACE; 2942 uio.uio_resid = 0; 2943 if (rw) { 2944 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2945 } else { 2946 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2947 } 2948 } 2949 2950 /* 2951 * Generate a write operation. 2952 */ 2953 void 2954 vfs_mnttab_writeop(void) 2955 { 2956 vfs_mnttab_rwop(1); 2957 } 2958 2959 /* 2960 * Generate a read operation. 2961 */ 2962 void 2963 vfs_mnttab_readop(void) 2964 { 2965 vfs_mnttab_rwop(0); 2966 } 2967 2968 /* 2969 * Free any mnttab information recorded in the vfs struct. 2970 * The vfs must not be on the vfs list. 2971 */ 2972 static void 2973 vfs_freemnttab(struct vfs *vfsp) 2974 { 2975 ASSERT(!VFS_ON_LIST(vfsp)); 2976 2977 /* 2978 * Free device and mount point information 2979 */ 2980 if (vfsp->vfs_mntpt != NULL) { 2981 refstr_rele(vfsp->vfs_mntpt); 2982 vfsp->vfs_mntpt = NULL; 2983 } 2984 if (vfsp->vfs_resource != NULL) { 2985 refstr_rele(vfsp->vfs_resource); 2986 vfsp->vfs_resource = NULL; 2987 } 2988 /* 2989 * Now free mount options information 2990 */ 2991 vfs_freeopttbl(&vfsp->vfs_mntopts); 2992 } 2993 2994 /* 2995 * Return the last mnttab modification time 2996 */ 2997 void 2998 vfs_mnttab_modtime(timespec_t *ts) 2999 { 3000 ASSERT(RW_LOCK_HELD(&vfslist)); 3001 *ts = vfs_mnttab_mtime; 3002 } 3003 3004 /* 3005 * See if mnttab is changed 3006 */ 3007 void 3008 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 3009 { 3010 int changed; 3011 3012 *phpp = (struct pollhead *)NULL; 3013 3014 /* 3015 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 3016 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 3017 * to not grab the vfs list lock because tv_sec is monotonically 3018 * increasing. 3019 */ 3020 3021 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 3022 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 3023 if (!changed) { 3024 *phpp = &vfs_pollhd; 3025 } 3026 } 3027 3028 /* Provide a unique and monotonically-increasing timestamp. */ 3029 void 3030 vfs_mono_time(timespec_t *ts) 3031 { 3032 static volatile hrtime_t hrt; /* The saved time. */ 3033 hrtime_t newhrt, oldhrt; /* For effecting the CAS. */ 3034 timespec_t newts; 3035 3036 /* 3037 * Try gethrestime() first, but be prepared to fabricate a sensible 3038 * answer at the first sign of any trouble. 3039 */ 3040 gethrestime(&newts); 3041 newhrt = ts2hrt(&newts); 3042 for (;;) { 3043 oldhrt = hrt; 3044 if (newhrt <= hrt) 3045 newhrt = hrt + 1; 3046 if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt) 3047 break; 3048 } 3049 hrt2ts(newhrt, ts); 3050 } 3051 3052 /* 3053 * Update the mnttab modification time and wake up any waiters for 3054 * mnttab changes 3055 */ 3056 void 3057 vfs_mnttab_modtimeupd() 3058 { 3059 hrtime_t oldhrt, newhrt; 3060 3061 ASSERT(RW_WRITE_HELD(&vfslist)); 3062 oldhrt = ts2hrt(&vfs_mnttab_mtime); 3063 gethrestime(&vfs_mnttab_mtime); 3064 newhrt = ts2hrt(&vfs_mnttab_mtime); 3065 if (oldhrt == (hrtime_t)0) 3066 vfs_mnttab_ctime = vfs_mnttab_mtime; 3067 /* 3068 * Attempt to provide unique mtime (like uniqtime but not). 3069 */ 3070 if (newhrt == oldhrt) { 3071 newhrt++; 3072 hrt2ts(newhrt, &vfs_mnttab_mtime); 3073 } 3074 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 3075 vfs_mnttab_writeop(); 3076 } 3077 3078 int 3079 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 3080 { 3081 vnode_t *coveredvp; 3082 int error; 3083 extern void teardown_vopstats(vfs_t *); 3084 3085 /* 3086 * Get covered vnode. This will be NULL if the vfs is not linked 3087 * into the file system name space (i.e., domount() with MNT_NOSPICE). 3088 */ 3089 coveredvp = vfsp->vfs_vnodecovered; 3090 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 3091 3092 /* 3093 * Purge all dnlc entries for this vfs. 3094 */ 3095 (void) dnlc_purge_vfsp(vfsp, 0); 3096 3097 /* For forcible umount, skip VFS_SYNC() since it may hang */ 3098 if ((flag & MS_FORCE) == 0) 3099 (void) VFS_SYNC(vfsp, 0, cr); 3100 3101 /* 3102 * Lock the vfs to maintain fs status quo during unmount. This 3103 * has to be done after the sync because ufs_update tries to acquire 3104 * the vfs_reflock. 3105 */ 3106 vfs_lock_wait(vfsp); 3107 3108 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 3109 vfs_unlock(vfsp); 3110 if (coveredvp != NULL) 3111 vn_vfsunlock(coveredvp); 3112 } else if (coveredvp != NULL) { 3113 teardown_vopstats(vfsp); 3114 /* 3115 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 3116 * when it frees vfsp so we do a VN_HOLD() so we can 3117 * continue to use coveredvp afterwards. 3118 */ 3119 VN_HOLD(coveredvp); 3120 vfs_remove(vfsp); 3121 vn_vfsunlock(coveredvp); 3122 VN_RELE(coveredvp); 3123 } else { 3124 teardown_vopstats(vfsp); 3125 /* 3126 * Release the reference to vfs that is not linked 3127 * into the name space. 3128 */ 3129 vfs_unlock(vfsp); 3130 VFS_RELE(vfsp); 3131 } 3132 return (error); 3133 } 3134 3135 3136 /* 3137 * Vfs_unmountall() is called by uadmin() to unmount all 3138 * mounted file systems (except the root file system) during shutdown. 3139 * It follows the existing locking protocol when traversing the vfs list 3140 * to sync and unmount vfses. Even though there should be no 3141 * other thread running while the system is shutting down, it is prudent 3142 * to still follow the locking protocol. 3143 */ 3144 void 3145 vfs_unmountall(void) 3146 { 3147 struct vfs *vfsp; 3148 struct vfs *prev_vfsp = NULL; 3149 int error; 3150 3151 /* 3152 * Toss all dnlc entries now so that the per-vfs sync 3153 * and unmount operations don't have to slog through 3154 * a bunch of uninteresting vnodes over and over again. 3155 */ 3156 dnlc_purge(); 3157 3158 vfs_list_lock(); 3159 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 3160 prev_vfsp = vfsp->vfs_prev; 3161 3162 if (vfs_lock(vfsp) != 0) 3163 continue; 3164 error = vn_vfswlock(vfsp->vfs_vnodecovered); 3165 vfs_unlock(vfsp); 3166 if (error) 3167 continue; 3168 3169 vfs_list_unlock(); 3170 3171 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 3172 (void) dounmount(vfsp, 0, CRED()); 3173 3174 /* 3175 * Since we dropped the vfslist lock above we must 3176 * verify that next_vfsp still exists, else start over. 3177 */ 3178 vfs_list_lock(); 3179 for (vfsp = rootvfs->vfs_prev; 3180 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 3181 if (vfsp == prev_vfsp) 3182 break; 3183 if (vfsp == rootvfs && prev_vfsp != rootvfs) 3184 prev_vfsp = rootvfs->vfs_prev; 3185 } 3186 vfs_list_unlock(); 3187 } 3188 3189 /* 3190 * Called to add an entry to the end of the vfs mount in progress list 3191 */ 3192 void 3193 vfs_addmip(dev_t dev, struct vfs *vfsp) 3194 { 3195 struct ipmnt *mipp; 3196 3197 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 3198 mipp->mip_next = NULL; 3199 mipp->mip_dev = dev; 3200 mipp->mip_vfsp = vfsp; 3201 mutex_enter(&vfs_miplist_mutex); 3202 if (vfs_miplist_end != NULL) 3203 vfs_miplist_end->mip_next = mipp; 3204 else 3205 vfs_miplist = mipp; 3206 vfs_miplist_end = mipp; 3207 mutex_exit(&vfs_miplist_mutex); 3208 } 3209 3210 /* 3211 * Called to remove an entry from the mount in progress list 3212 * Either because the mount completed or it failed. 3213 */ 3214 void 3215 vfs_delmip(struct vfs *vfsp) 3216 { 3217 struct ipmnt *mipp, *mipprev; 3218 3219 mutex_enter(&vfs_miplist_mutex); 3220 mipprev = NULL; 3221 for (mipp = vfs_miplist; 3222 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 3223 mipprev = mipp; 3224 } 3225 if (mipp == NULL) 3226 return; /* shouldn't happen */ 3227 if (mipp == vfs_miplist_end) 3228 vfs_miplist_end = mipprev; 3229 if (mipprev == NULL) 3230 vfs_miplist = mipp->mip_next; 3231 else 3232 mipprev->mip_next = mipp->mip_next; 3233 mutex_exit(&vfs_miplist_mutex); 3234 kmem_free(mipp, sizeof (struct ipmnt)); 3235 } 3236 3237 /* 3238 * vfs_add is called by a specific filesystem's mount routine to add 3239 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 3240 * The vfs should already have been locked by the caller. 3241 * 3242 * coveredvp is NULL if this is the root. 3243 */ 3244 void 3245 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 3246 { 3247 int newflag; 3248 3249 ASSERT(vfs_lock_held(vfsp)); 3250 VFS_HOLD(vfsp); 3251 newflag = vfsp->vfs_flag; 3252 if (mflag & MS_RDONLY) 3253 newflag |= VFS_RDONLY; 3254 else 3255 newflag &= ~VFS_RDONLY; 3256 if (mflag & MS_NOSUID) 3257 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 3258 else 3259 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 3260 if (mflag & MS_NOMNTTAB) 3261 newflag |= VFS_NOMNTTAB; 3262 else 3263 newflag &= ~VFS_NOMNTTAB; 3264 3265 if (coveredvp != NULL) { 3266 ASSERT(vn_vfswlock_held(coveredvp)); 3267 coveredvp->v_vfsmountedhere = vfsp; 3268 VN_HOLD(coveredvp); 3269 } 3270 vfsp->vfs_vnodecovered = coveredvp; 3271 vfsp->vfs_flag = newflag; 3272 3273 vfs_list_add(vfsp); 3274 } 3275 3276 /* 3277 * Remove a vfs from the vfs list, null out the pointer from the 3278 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 3279 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 3280 * reference to the vfs and to the covered vnode. 3281 * 3282 * Called from dounmount after it's confirmed with the file system 3283 * that the unmount is legal. 3284 */ 3285 void 3286 vfs_remove(struct vfs *vfsp) 3287 { 3288 vnode_t *vp; 3289 3290 ASSERT(vfs_lock_held(vfsp)); 3291 3292 /* 3293 * Can't unmount root. Should never happen because fs will 3294 * be busy. 3295 */ 3296 if (vfsp == rootvfs) 3297 panic("vfs_remove: unmounting root"); 3298 3299 vfs_list_remove(vfsp); 3300 3301 /* 3302 * Unhook from the file system name space. 3303 */ 3304 vp = vfsp->vfs_vnodecovered; 3305 ASSERT(vn_vfswlock_held(vp)); 3306 vp->v_vfsmountedhere = NULL; 3307 vfsp->vfs_vnodecovered = NULL; 3308 VN_RELE(vp); 3309 3310 /* 3311 * Release lock and wakeup anybody waiting. 3312 */ 3313 vfs_unlock(vfsp); 3314 VFS_RELE(vfsp); 3315 } 3316 3317 /* 3318 * Lock a filesystem to prevent access to it while mounting, 3319 * unmounting and syncing. Return EBUSY immediately if lock 3320 * can't be acquired. 3321 */ 3322 int 3323 vfs_lock(vfs_t *vfsp) 3324 { 3325 vn_vfslocks_entry_t *vpvfsentry; 3326 3327 vpvfsentry = vn_vfslocks_getlock(vfsp); 3328 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 3329 return (0); 3330 3331 vn_vfslocks_rele(vpvfsentry); 3332 return (EBUSY); 3333 } 3334 3335 int 3336 vfs_rlock(vfs_t *vfsp) 3337 { 3338 vn_vfslocks_entry_t *vpvfsentry; 3339 3340 vpvfsentry = vn_vfslocks_getlock(vfsp); 3341 3342 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 3343 return (0); 3344 3345 vn_vfslocks_rele(vpvfsentry); 3346 return (EBUSY); 3347 } 3348 3349 void 3350 vfs_lock_wait(vfs_t *vfsp) 3351 { 3352 vn_vfslocks_entry_t *vpvfsentry; 3353 3354 vpvfsentry = vn_vfslocks_getlock(vfsp); 3355 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 3356 } 3357 3358 void 3359 vfs_rlock_wait(vfs_t *vfsp) 3360 { 3361 vn_vfslocks_entry_t *vpvfsentry; 3362 3363 vpvfsentry = vn_vfslocks_getlock(vfsp); 3364 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 3365 } 3366 3367 /* 3368 * Unlock a locked filesystem. 3369 */ 3370 void 3371 vfs_unlock(vfs_t *vfsp) 3372 { 3373 vn_vfslocks_entry_t *vpvfsentry; 3374 3375 /* 3376 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 3377 * And these changes should remain for the patch changes as it is. 3378 */ 3379 if (panicstr) 3380 return; 3381 3382 /* 3383 * ve_refcount needs to be dropped twice here. 3384 * 1. To release refernce after a call to vfs_locks_getlock() 3385 * 2. To release the reference from the locking routines like 3386 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 3387 */ 3388 3389 vpvfsentry = vn_vfslocks_getlock(vfsp); 3390 vn_vfslocks_rele(vpvfsentry); 3391 3392 rwst_exit(&vpvfsentry->ve_lock); 3393 vn_vfslocks_rele(vpvfsentry); 3394 } 3395 3396 /* 3397 * Utility routine that allows a filesystem to construct its 3398 * fsid in "the usual way" - by munging some underlying dev_t and 3399 * the filesystem type number into the 64-bit fsid. Note that 3400 * this implicitly relies on dev_t persistence to make filesystem 3401 * id's persistent. 3402 * 3403 * There's nothing to prevent an individual fs from constructing its 3404 * fsid in a different way, and indeed they should. 3405 * 3406 * Since we want fsids to be 32-bit quantities (so that they can be 3407 * exported identically by either 32-bit or 64-bit APIs, as well as 3408 * the fact that fsid's are "known" to NFS), we compress the device 3409 * number given down to 32-bits, and panic if that isn't possible. 3410 */ 3411 void 3412 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 3413 { 3414 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 3415 panic("device number too big for fsid!"); 3416 fsi->val[1] = val; 3417 } 3418 3419 int 3420 vfs_lock_held(vfs_t *vfsp) 3421 { 3422 int held; 3423 vn_vfslocks_entry_t *vpvfsentry; 3424 3425 /* 3426 * vfs_lock_held will mimic sema_held behaviour 3427 * if panicstr is set. And these changes should remain 3428 * for the patch changes as it is. 3429 */ 3430 if (panicstr) 3431 return (1); 3432 3433 vpvfsentry = vn_vfslocks_getlock(vfsp); 3434 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3435 3436 vn_vfslocks_rele(vpvfsentry); 3437 return (held); 3438 } 3439 3440 struct _kthread * 3441 vfs_lock_owner(vfs_t *vfsp) 3442 { 3443 struct _kthread *owner; 3444 vn_vfslocks_entry_t *vpvfsentry; 3445 3446 /* 3447 * vfs_wlock_held will mimic sema_held behaviour 3448 * if panicstr is set. And these changes should remain 3449 * for the patch changes as it is. 3450 */ 3451 if (panicstr) 3452 return (NULL); 3453 3454 vpvfsentry = vn_vfslocks_getlock(vfsp); 3455 owner = rwst_owner(&vpvfsentry->ve_lock); 3456 3457 vn_vfslocks_rele(vpvfsentry); 3458 return (owner); 3459 } 3460 3461 /* 3462 * vfs list locking. 3463 * 3464 * Rather than manipulate the vfslist lock directly, we abstract into lock 3465 * and unlock routines to allow the locking implementation to be changed for 3466 * clustering. 3467 * 3468 * Whenever the vfs list is modified through its hash links, the overall list 3469 * lock must be obtained before locking the relevant hash bucket. But to see 3470 * whether a given vfs is on the list, it suffices to obtain the lock for the 3471 * hash bucket without getting the overall list lock. (See getvfs() below.) 3472 */ 3473 3474 void 3475 vfs_list_lock() 3476 { 3477 rw_enter(&vfslist, RW_WRITER); 3478 } 3479 3480 void 3481 vfs_list_read_lock() 3482 { 3483 rw_enter(&vfslist, RW_READER); 3484 } 3485 3486 void 3487 vfs_list_unlock() 3488 { 3489 rw_exit(&vfslist); 3490 } 3491 3492 /* 3493 * Low level worker routines for adding entries to and removing entries from 3494 * the vfs list. 3495 */ 3496 3497 static void 3498 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3499 { 3500 int vhno; 3501 struct vfs **hp; 3502 dev_t dev; 3503 3504 ASSERT(RW_WRITE_HELD(&vfslist)); 3505 3506 dev = expldev(vfsp->vfs_fsid.val[0]); 3507 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3508 3509 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3510 3511 /* 3512 * Link into the hash table, inserting it at the end, so that LOFS 3513 * with the same fsid as UFS (or other) file systems will not hide the 3514 * UFS. 3515 */ 3516 if (insert_at_head) { 3517 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3518 rvfs_list[vhno].rvfs_head = vfsp; 3519 } else { 3520 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3521 hp = &(*hp)->vfs_hash) 3522 continue; 3523 /* 3524 * hp now contains the address of the pointer to update 3525 * to effect the insertion. 3526 */ 3527 vfsp->vfs_hash = NULL; 3528 *hp = vfsp; 3529 } 3530 3531 rvfs_list[vhno].rvfs_len++; 3532 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3533 } 3534 3535 3536 static void 3537 vfs_hash_remove(struct vfs *vfsp) 3538 { 3539 int vhno; 3540 struct vfs *tvfsp; 3541 dev_t dev; 3542 3543 ASSERT(RW_WRITE_HELD(&vfslist)); 3544 3545 dev = expldev(vfsp->vfs_fsid.val[0]); 3546 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3547 3548 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3549 3550 /* 3551 * Remove from hash. 3552 */ 3553 if (rvfs_list[vhno].rvfs_head == vfsp) { 3554 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3555 rvfs_list[vhno].rvfs_len--; 3556 goto foundit; 3557 } 3558 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3559 tvfsp = tvfsp->vfs_hash) { 3560 if (tvfsp->vfs_hash == vfsp) { 3561 tvfsp->vfs_hash = vfsp->vfs_hash; 3562 rvfs_list[vhno].rvfs_len--; 3563 goto foundit; 3564 } 3565 } 3566 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3567 3568 foundit: 3569 3570 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3571 } 3572 3573 3574 void 3575 vfs_list_add(struct vfs *vfsp) 3576 { 3577 zone_t *zone; 3578 3579 /* 3580 * Typically, the vfs_t will have been created on behalf of the file 3581 * system in vfs_init, where it will have been provided with a 3582 * vfs_impl_t. This, however, might be lacking if the vfs_t was created 3583 * by an unbundled file system. We therefore check for such an example 3584 * before stamping the vfs_t with its creation time for the benefit of 3585 * mntfs. 3586 */ 3587 if (vfsp->vfs_implp == NULL) 3588 vfsimpl_setup(vfsp); 3589 vfs_mono_time(&vfsp->vfs_hrctime); 3590 3591 /* 3592 * The zone that owns the mount is the one that performed the mount. 3593 * Note that this isn't necessarily the same as the zone mounted into. 3594 * The corresponding zone_rele_ref() will be done when the vfs_t 3595 * is being free'd. 3596 */ 3597 vfsp->vfs_zone = curproc->p_zone; 3598 zone_init_ref(&vfsp->vfs_implp->vi_zone_ref); 3599 zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref, 3600 ZONE_REF_VFS); 3601 3602 /* 3603 * Find the zone mounted into, and put this mount on its vfs list. 3604 */ 3605 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3606 ASSERT(zone != NULL); 3607 /* 3608 * Special casing for the root vfs. This structure is allocated 3609 * statically and hooked onto rootvfs at link time. During the 3610 * vfs_mountroot call at system startup time, the root file system's 3611 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3612 * as argument. The code below must detect and handle this special 3613 * case. The only apparent justification for this special casing is 3614 * to ensure that the root file system appears at the head of the 3615 * list. 3616 * 3617 * XXX: I'm assuming that it's ok to do normal list locking when 3618 * adding the entry for the root file system (this used to be 3619 * done with no locks held). 3620 */ 3621 vfs_list_lock(); 3622 /* 3623 * Link into the vfs list proper. 3624 */ 3625 if (vfsp == &root) { 3626 /* 3627 * Assert: This vfs is already on the list as its first entry. 3628 * Thus, there's nothing to do. 3629 */ 3630 ASSERT(rootvfs == vfsp); 3631 /* 3632 * Add it to the head of the global zone's vfslist. 3633 */ 3634 ASSERT(zone == global_zone); 3635 ASSERT(zone->zone_vfslist == NULL); 3636 zone->zone_vfslist = vfsp; 3637 } else { 3638 /* 3639 * Link to end of list using vfs_prev (as rootvfs is now a 3640 * doubly linked circular list) so list is in mount order for 3641 * mnttab use. 3642 */ 3643 rootvfs->vfs_prev->vfs_next = vfsp; 3644 vfsp->vfs_prev = rootvfs->vfs_prev; 3645 rootvfs->vfs_prev = vfsp; 3646 vfsp->vfs_next = rootvfs; 3647 3648 /* 3649 * Do it again for the zone-private list (which may be NULL). 3650 */ 3651 if (zone->zone_vfslist == NULL) { 3652 ASSERT(zone != global_zone); 3653 zone->zone_vfslist = vfsp; 3654 } else { 3655 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3656 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3657 zone->zone_vfslist->vfs_zone_prev = vfsp; 3658 vfsp->vfs_zone_next = zone->zone_vfslist; 3659 } 3660 } 3661 3662 /* 3663 * Link into the hash table, inserting it at the end, so that LOFS 3664 * with the same fsid as UFS (or other) file systems will not hide 3665 * the UFS. 3666 */ 3667 vfs_hash_add(vfsp, 0); 3668 3669 /* 3670 * Link into tree indexed by mntpoint, for vfs_mntpoint2vfsp 3671 * mntix discerns entries with the same key 3672 */ 3673 vfsp->vfs_mntix = ++vfs_curr_mntix; 3674 avl_add(&vfs_by_dev, vfsp); 3675 3676 /* 3677 * Link into tree indexed by dev, for vfs_devismounted 3678 */ 3679 avl_add(&vfs_by_mntpnt, vfsp); 3680 3681 /* 3682 * update the mnttab modification time 3683 */ 3684 vfs_mnttab_modtimeupd(); 3685 vfs_list_unlock(); 3686 zone_rele(zone); 3687 } 3688 3689 void 3690 vfs_list_remove(struct vfs *vfsp) 3691 { 3692 zone_t *zone; 3693 3694 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3695 ASSERT(zone != NULL); 3696 /* 3697 * Callers are responsible for preventing attempts to unmount the 3698 * root. 3699 */ 3700 ASSERT(vfsp != rootvfs); 3701 3702 vfs_list_lock(); 3703 3704 /* 3705 * Remove from avl trees 3706 */ 3707 avl_remove(&vfs_by_mntpnt, vfsp); 3708 avl_remove(&vfs_by_dev, vfsp); 3709 3710 /* 3711 * Remove from hash. 3712 */ 3713 vfs_hash_remove(vfsp); 3714 3715 /* 3716 * Remove from vfs list. 3717 */ 3718 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3719 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3720 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3721 3722 /* 3723 * Remove from zone-specific vfs list. 3724 */ 3725 if (zone->zone_vfslist == vfsp) 3726 zone->zone_vfslist = vfsp->vfs_zone_next; 3727 3728 if (vfsp->vfs_zone_next == vfsp) { 3729 ASSERT(vfsp->vfs_zone_prev == vfsp); 3730 ASSERT(zone->zone_vfslist == vfsp); 3731 zone->zone_vfslist = NULL; 3732 } 3733 3734 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3735 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3736 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3737 3738 /* 3739 * update the mnttab modification time 3740 */ 3741 vfs_mnttab_modtimeupd(); 3742 vfs_list_unlock(); 3743 zone_rele(zone); 3744 } 3745 3746 struct vfs * 3747 getvfs(fsid_t *fsid) 3748 { 3749 struct vfs *vfsp; 3750 int val0 = fsid->val[0]; 3751 int val1 = fsid->val[1]; 3752 dev_t dev = expldev(val0); 3753 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3754 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3755 3756 mutex_enter(hmp); 3757 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3758 if (vfsp->vfs_fsid.val[0] == val0 && 3759 vfsp->vfs_fsid.val[1] == val1) { 3760 VFS_HOLD(vfsp); 3761 mutex_exit(hmp); 3762 return (vfsp); 3763 } 3764 } 3765 mutex_exit(hmp); 3766 return (NULL); 3767 } 3768 3769 /* 3770 * Search the vfs mount in progress list for a specified device/vfs entry. 3771 * Returns 0 if the first entry in the list that the device matches has the 3772 * given vfs pointer as well. If the device matches but a different vfs 3773 * pointer is encountered in the list before the given vfs pointer then 3774 * a 1 is returned. 3775 */ 3776 3777 int 3778 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3779 { 3780 int retval = 0; 3781 struct ipmnt *mipp; 3782 3783 mutex_enter(&vfs_miplist_mutex); 3784 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3785 if (mipp->mip_dev == dev) { 3786 if (mipp->mip_vfsp != vfsp) 3787 retval = 1; 3788 break; 3789 } 3790 } 3791 mutex_exit(&vfs_miplist_mutex); 3792 return (retval); 3793 } 3794 3795 /* 3796 * Search the vfs list for a specified device. Returns 1, if entry is found 3797 * or 0 if no suitable entry is found. 3798 */ 3799 3800 int 3801 vfs_devismounted(dev_t dev) 3802 { 3803 struct vfs *vfsp; 3804 int found = 0; 3805 struct vfs search; 3806 avl_index_t index; 3807 3808 search.vfs_dev = dev; 3809 search.vfs_mntix = 0; 3810 3811 vfs_list_read_lock(); 3812 3813 /* 3814 * there might be several entries with the same dev in the tree, 3815 * only discerned by mntix. To find the first, we start with a mntix 3816 * of 0. The search will fail. The following avl_nearest will give 3817 * us the actual first entry. 3818 */ 3819 VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL); 3820 vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER); 3821 3822 if (vfsp != NULL && vfsp->vfs_dev == dev) 3823 found = 1; 3824 3825 vfs_list_unlock(); 3826 return (found); 3827 } 3828 3829 /* 3830 * Search the vfs list for a specified device. Returns a pointer to it 3831 * or NULL if no suitable entry is found. The caller of this routine 3832 * is responsible for releasing the returned vfs pointer. 3833 */ 3834 struct vfs * 3835 vfs_dev2vfsp(dev_t dev) 3836 { 3837 struct vfs *vfsp; 3838 int found; 3839 struct vfs search; 3840 avl_index_t index; 3841 3842 search.vfs_dev = dev; 3843 search.vfs_mntix = 0; 3844 3845 vfs_list_read_lock(); 3846 3847 /* 3848 * there might be several entries with the same dev in the tree, 3849 * only discerned by mntix. To find the first, we start with a mntix 3850 * of 0. The search will fail. The following avl_nearest will give 3851 * us the actual first entry. 3852 */ 3853 VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL); 3854 vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER); 3855 3856 found = 0; 3857 while (vfsp != NULL && vfsp->vfs_dev == dev) { 3858 /* 3859 * The following could be made more efficient by making 3860 * the entire loop use vfs_zone_next if the call is from 3861 * a zone. The only callers, however, ustat(2) and 3862 * umount2(2), don't seem to justify the added 3863 * complexity at present. 3864 */ 3865 if (ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3866 curproc->p_zone)) { 3867 VFS_HOLD(vfsp); 3868 found = 1; 3869 break; 3870 } 3871 vfsp = AVL_NEXT(&vfs_by_dev, vfsp); 3872 } 3873 vfs_list_unlock(); 3874 return (found ? vfsp : NULL); 3875 } 3876 3877 /* 3878 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3879 * or NULL if no suitable entry is found. The caller of this routine 3880 * is responsible for releasing the returned vfs pointer. 3881 * 3882 * Note that if multiple mntpoints match, the last one matching is 3883 * returned in an attempt to return the "top" mount when overlay 3884 * mounts are covering the same mount point. This is accomplished by starting 3885 * at the end of the list and working our way backwards, stopping at the first 3886 * matching mount. 3887 */ 3888 struct vfs * 3889 vfs_mntpoint2vfsp(const char *mp) 3890 { 3891 struct vfs *vfsp; 3892 struct vfs *retvfsp = NULL; 3893 zone_t *zone = curproc->p_zone; 3894 struct vfs *list; 3895 3896 vfs_list_read_lock(); 3897 if (getzoneid() == GLOBAL_ZONEID) { 3898 /* 3899 * The global zone may see filesystems in any zone. 3900 */ 3901 struct vfs search; 3902 search.vfs_mntpt = refstr_alloc(mp); 3903 search.vfs_mntix = UINT64_MAX; 3904 avl_index_t index; 3905 3906 /* 3907 * there might be several entries with the same mntpnt in the 3908 * tree, only discerned by mntix. To find the last, we start 3909 * with a mntix of UINT64_MAX. The search will fail. The 3910 * following avl_nearest will give us the actual last entry 3911 * matching the mntpnt. 3912 */ 3913 VERIFY(avl_find(&vfs_by_mntpnt, &search, &index) == 0); 3914 vfsp = avl_nearest(&vfs_by_mntpnt, index, AVL_BEFORE); 3915 3916 refstr_rele(search.vfs_mntpt); 3917 3918 if (vfsp != NULL && 3919 strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) 3920 retvfsp = vfsp; 3921 } else if ((list = zone->zone_vfslist) != NULL) { 3922 const char *mntpt; 3923 3924 vfsp = list->vfs_zone_prev; 3925 do { 3926 mntpt = refstr_value(vfsp->vfs_mntpt); 3927 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3928 if (strcmp(mntpt, mp) == 0) { 3929 retvfsp = vfsp; 3930 break; 3931 } 3932 vfsp = vfsp->vfs_zone_prev; 3933 } while (vfsp != list->vfs_zone_prev); 3934 } 3935 if (retvfsp) 3936 VFS_HOLD(retvfsp); 3937 vfs_list_unlock(); 3938 return (retvfsp); 3939 } 3940 3941 /* 3942 * Search the vfs list for a specified vfsops. 3943 * if vfs entry is found then return 1, else 0. 3944 */ 3945 int 3946 vfs_opsinuse(vfsops_t *ops) 3947 { 3948 struct vfs *vfsp; 3949 int found; 3950 3951 vfs_list_read_lock(); 3952 vfsp = rootvfs; 3953 found = 0; 3954 do { 3955 if (vfs_getops(vfsp) == ops) { 3956 found = 1; 3957 break; 3958 } 3959 vfsp = vfsp->vfs_next; 3960 } while (vfsp != rootvfs); 3961 vfs_list_unlock(); 3962 return (found); 3963 } 3964 3965 /* 3966 * Allocate an entry in vfssw for a file system type 3967 */ 3968 struct vfssw * 3969 allocate_vfssw(const char *type) 3970 { 3971 struct vfssw *vswp; 3972 3973 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3974 /* 3975 * The vfssw table uses the empty string to identify an 3976 * available entry; we cannot add any type which has 3977 * a leading NUL. The string length is limited to 3978 * the size of the st_fstype array in struct stat. 3979 */ 3980 return (NULL); 3981 } 3982 3983 ASSERT(VFSSW_WRITE_LOCKED()); 3984 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3985 if (!ALLOCATED_VFSSW(vswp)) { 3986 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3987 (void) strcpy(vswp->vsw_name, type); 3988 ASSERT(vswp->vsw_count == 0); 3989 vswp->vsw_count = 1; 3990 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3991 return (vswp); 3992 } 3993 return (NULL); 3994 } 3995 3996 /* 3997 * Impose additional layer of translation between vfstype names 3998 * and module names in the filesystem. 3999 */ 4000 static const char * 4001 vfs_to_modname(const char *vfstype) 4002 { 4003 if (strcmp(vfstype, "proc") == 0) { 4004 vfstype = "procfs"; 4005 } else if (strcmp(vfstype, "fd") == 0) { 4006 vfstype = "fdfs"; 4007 } else if (strncmp(vfstype, "nfs", 3) == 0) { 4008 vfstype = "nfs"; 4009 } 4010 4011 return (vfstype); 4012 } 4013 4014 /* 4015 * Find a vfssw entry given a file system type name. 4016 * Try to autoload the filesystem if it's not found. 4017 * If it's installed, return the vfssw locked to prevent unloading. 4018 */ 4019 struct vfssw * 4020 vfs_getvfssw(const char *type) 4021 { 4022 struct vfssw *vswp; 4023 const char *modname; 4024 4025 RLOCK_VFSSW(); 4026 vswp = vfs_getvfsswbyname(type); 4027 modname = vfs_to_modname(type); 4028 4029 if (rootdir == NULL) { 4030 /* 4031 * If we haven't yet loaded the root file system, then our 4032 * _init won't be called until later. Allocate vfssw entry, 4033 * because mod_installfs won't be called. 4034 */ 4035 if (vswp == NULL) { 4036 RUNLOCK_VFSSW(); 4037 WLOCK_VFSSW(); 4038 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 4039 if ((vswp = allocate_vfssw(type)) == NULL) { 4040 WUNLOCK_VFSSW(); 4041 return (NULL); 4042 } 4043 } 4044 WUNLOCK_VFSSW(); 4045 RLOCK_VFSSW(); 4046 } 4047 if (!VFS_INSTALLED(vswp)) { 4048 RUNLOCK_VFSSW(); 4049 (void) modloadonly("fs", modname); 4050 } else 4051 RUNLOCK_VFSSW(); 4052 return (vswp); 4053 } 4054 4055 /* 4056 * Try to load the filesystem. Before calling modload(), we drop 4057 * our lock on the VFS switch table, and pick it up after the 4058 * module is loaded. However, there is a potential race: the 4059 * module could be unloaded after the call to modload() completes 4060 * but before we pick up the lock and drive on. Therefore, 4061 * we keep reloading the module until we've loaded the module 4062 * _and_ we have the lock on the VFS switch table. 4063 */ 4064 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 4065 RUNLOCK_VFSSW(); 4066 if (modload("fs", modname) == -1) 4067 return (NULL); 4068 RLOCK_VFSSW(); 4069 if (vswp == NULL) 4070 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 4071 break; 4072 } 4073 RUNLOCK_VFSSW(); 4074 4075 return (vswp); 4076 } 4077 4078 /* 4079 * Find a vfssw entry given a file system type name. 4080 */ 4081 struct vfssw * 4082 vfs_getvfsswbyname(const char *type) 4083 { 4084 struct vfssw *vswp; 4085 4086 ASSERT(VFSSW_LOCKED()); 4087 if (type == NULL || *type == '\0') 4088 return (NULL); 4089 4090 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4091 if (strcmp(type, vswp->vsw_name) == 0) { 4092 vfs_refvfssw(vswp); 4093 return (vswp); 4094 } 4095 } 4096 4097 return (NULL); 4098 } 4099 4100 /* 4101 * Find a vfssw entry given a set of vfsops. 4102 */ 4103 struct vfssw * 4104 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 4105 { 4106 struct vfssw *vswp; 4107 4108 RLOCK_VFSSW(); 4109 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4110 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 4111 vfs_refvfssw(vswp); 4112 RUNLOCK_VFSSW(); 4113 return (vswp); 4114 } 4115 } 4116 RUNLOCK_VFSSW(); 4117 4118 return (NULL); 4119 } 4120 4121 /* 4122 * Reference a vfssw entry. 4123 */ 4124 void 4125 vfs_refvfssw(struct vfssw *vswp) 4126 { 4127 4128 mutex_enter(&vswp->vsw_lock); 4129 vswp->vsw_count++; 4130 mutex_exit(&vswp->vsw_lock); 4131 } 4132 4133 /* 4134 * Unreference a vfssw entry. 4135 */ 4136 void 4137 vfs_unrefvfssw(struct vfssw *vswp) 4138 { 4139 4140 mutex_enter(&vswp->vsw_lock); 4141 vswp->vsw_count--; 4142 mutex_exit(&vswp->vsw_lock); 4143 } 4144 4145 int sync_timeout = 30; /* timeout for syncing a page during panic */ 4146 int sync_timeleft; /* portion of sync_timeout remaining */ 4147 4148 static int sync_retries = 20; /* number of retries when not making progress */ 4149 static int sync_triesleft; /* portion of sync_retries remaining */ 4150 4151 static pgcnt_t old_pgcnt, new_pgcnt; 4152 static int new_bufcnt, old_bufcnt; 4153 4154 /* 4155 * Sync all of the mounted filesystems, and then wait for the actual i/o to 4156 * complete. We wait by counting the number of dirty pages and buffers, 4157 * pushing them out using bio_busy() and page_busy(), and then counting again. 4158 * This routine is used during both the uadmin A_SHUTDOWN code as well as 4159 * the SYNC phase of the panic code (see comments in panic.c). It should only 4160 * be used after some higher-level mechanism has quiesced the system so that 4161 * new writes are not being initiated while we are waiting for completion. 4162 * 4163 * To ensure finite running time, our algorithm uses two timeout mechanisms: 4164 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 4165 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 4166 * Together these ensure that syncing completes if our i/o paths are stuck. 4167 * The counters are declared above so they can be found easily in the debugger. 4168 * 4169 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 4170 * vfs_syncprogress() subroutine whenever we make progress through the lists of 4171 * pages and buffers. It is decremented and expired by the deadman() cyclic. 4172 * When vfs_syncall() decides it is done, we disable the deadman() counter by 4173 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 4174 * deadlocking or hanging inside of a broken filesystem or driver routine. 4175 * 4176 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 4177 * sync_retries consecutive calls to bio_busy() and page_busy() without 4178 * decreasing either the number of dirty buffers or dirty pages below the 4179 * lowest count we have seen so far, we give up and return from vfs_syncall(). 4180 * 4181 * Each loop iteration ends with a call to delay() one second to allow time for 4182 * i/o completion and to permit the user time to read our progress messages. 4183 */ 4184 void 4185 vfs_syncall(void) 4186 { 4187 if (rootdir == NULL && !modrootloaded) 4188 return; /* panic during boot - no filesystems yet */ 4189 4190 printf("syncing file systems..."); 4191 vfs_syncprogress(); 4192 sync(); 4193 4194 vfs_syncprogress(); 4195 sync_triesleft = sync_retries; 4196 4197 old_bufcnt = new_bufcnt = INT_MAX; 4198 old_pgcnt = new_pgcnt = ULONG_MAX; 4199 4200 while (sync_triesleft > 0) { 4201 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 4202 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 4203 4204 new_bufcnt = bio_busy(B_TRUE); 4205 new_pgcnt = page_busy(B_TRUE); 4206 vfs_syncprogress(); 4207 4208 if (new_bufcnt == 0 && new_pgcnt == 0) 4209 break; 4210 4211 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 4212 sync_triesleft = sync_retries; 4213 else 4214 sync_triesleft--; 4215 4216 if (new_bufcnt) 4217 printf(" [%d]", new_bufcnt); 4218 if (new_pgcnt) 4219 printf(" %lu", new_pgcnt); 4220 4221 delay(hz); 4222 } 4223 4224 if (new_bufcnt != 0 || new_pgcnt != 0) 4225 printf(" done (not all i/o completed)\n"); 4226 else 4227 printf(" done\n"); 4228 4229 sync_timeleft = 0; 4230 delay(hz); 4231 } 4232 4233 /* 4234 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 4235 * sync_timeout to indicate that we are making progress and the deadman() 4236 * omnipresent cyclic should not yet time us out. Note that it is safe to 4237 * store to sync_timeleft here since the deadman() is firing at high-level 4238 * on top of us. If we are racing with the deadman(), either the deadman() 4239 * will decrement the old value and then we will reset it, or we will 4240 * reset it and then the deadman() will immediately decrement it. In either 4241 * case, correct behavior results. 4242 */ 4243 void 4244 vfs_syncprogress(void) 4245 { 4246 if (panicstr) 4247 sync_timeleft = sync_timeout; 4248 } 4249 4250 /* 4251 * Map VFS flags to statvfs flags. These shouldn't really be separate 4252 * flags at all. 4253 */ 4254 uint_t 4255 vf_to_stf(uint_t vf) 4256 { 4257 uint_t stf = 0; 4258 4259 if (vf & VFS_RDONLY) 4260 stf |= ST_RDONLY; 4261 if (vf & VFS_NOSETUID) 4262 stf |= ST_NOSUID; 4263 if (vf & VFS_NOTRUNC) 4264 stf |= ST_NOTRUNC; 4265 4266 return (stf); 4267 } 4268 4269 /* 4270 * Entries for (illegal) fstype 0. 4271 */ 4272 /* ARGSUSED */ 4273 int 4274 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 4275 { 4276 cmn_err(CE_PANIC, "stray vfs operation"); 4277 return (0); 4278 } 4279 4280 /* 4281 * Entries for (illegal) fstype 0. 4282 */ 4283 int 4284 vfsstray(void) 4285 { 4286 cmn_err(CE_PANIC, "stray vfs operation"); 4287 return (0); 4288 } 4289 4290 /* 4291 * Support for dealing with forced UFS unmount and its interaction with 4292 * LOFS. Could be used by any filesystem. 4293 * See bug 1203132. 4294 */ 4295 int 4296 vfs_EIO(void) 4297 { 4298 return (EIO); 4299 } 4300 4301 /* 4302 * We've gotta define the op for sync separately, since the compiler gets 4303 * confused if we mix and match ANSI and normal style prototypes when 4304 * a "short" argument is present and spits out a warning. 4305 */ 4306 /*ARGSUSED*/ 4307 int 4308 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 4309 { 4310 return (EIO); 4311 } 4312 4313 vfs_t EIO_vfs; 4314 vfsops_t *EIO_vfsops; 4315 4316 /* 4317 * Called from startup() to initialize all loaded vfs's 4318 */ 4319 void 4320 vfsinit(void) 4321 { 4322 struct vfssw *vswp; 4323 int error; 4324 extern int vopstats_enabled; 4325 extern void vopstats_startup(); 4326 4327 static const fs_operation_def_t EIO_vfsops_template[] = { 4328 VFSNAME_MOUNT, { .error = vfs_EIO }, 4329 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 4330 VFSNAME_ROOT, { .error = vfs_EIO }, 4331 VFSNAME_STATVFS, { .error = vfs_EIO }, 4332 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 4333 VFSNAME_VGET, { .error = vfs_EIO }, 4334 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 4335 VFSNAME_FREEVFS, { .error = vfs_EIO }, 4336 VFSNAME_VNSTATE, { .error = vfs_EIO }, 4337 NULL, NULL 4338 }; 4339 4340 static const fs_operation_def_t stray_vfsops_template[] = { 4341 VFSNAME_MOUNT, { .error = vfsstray }, 4342 VFSNAME_UNMOUNT, { .error = vfsstray }, 4343 VFSNAME_ROOT, { .error = vfsstray }, 4344 VFSNAME_STATVFS, { .error = vfsstray }, 4345 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 4346 VFSNAME_VGET, { .error = vfsstray }, 4347 VFSNAME_MOUNTROOT, { .error = vfsstray }, 4348 VFSNAME_FREEVFS, { .error = vfsstray }, 4349 VFSNAME_VNSTATE, { .error = vfsstray }, 4350 NULL, NULL 4351 }; 4352 4353 /* Create vfs cache */ 4354 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs), 4355 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0); 4356 4357 /* Initialize the vnode cache (file systems may use it during init). */ 4358 vn_create_cache(); 4359 4360 /* Setup event monitor framework */ 4361 fem_init(); 4362 4363 /* Initialize the dummy stray file system type. */ 4364 error = vfs_setfsops(0, stray_vfsops_template, NULL); 4365 4366 /* Initialize the dummy EIO file system. */ 4367 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 4368 if (error != 0) { 4369 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 4370 /* Shouldn't happen, but not bad enough to panic */ 4371 } 4372 4373 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 4374 4375 /* 4376 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 4377 * on this vfs can immediately notice it's invalid. 4378 */ 4379 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 4380 4381 /* 4382 * Call the init routines of non-loadable filesystems only. 4383 * Filesystems which are loaded as separate modules will be 4384 * initialized by the module loading code instead. 4385 */ 4386 4387 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4388 RLOCK_VFSSW(); 4389 if (vswp->vsw_init != NULL) 4390 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 4391 RUNLOCK_VFSSW(); 4392 } 4393 4394 vopstats_startup(); 4395 4396 if (vopstats_enabled) { 4397 /* EIO_vfs can collect stats, but we don't retrieve them */ 4398 initialize_vopstats(&EIO_vfs.vfs_vopstats); 4399 EIO_vfs.vfs_fstypevsp = NULL; 4400 EIO_vfs.vfs_vskap = NULL; 4401 EIO_vfs.vfs_flag |= VFS_STATS; 4402 } 4403 4404 xattr_init(); 4405 4406 reparse_point_init(); 4407 } 4408 4409 vfs_t * 4410 vfs_alloc(int kmflag) 4411 { 4412 vfs_t *vfsp; 4413 4414 vfsp = kmem_cache_alloc(vfs_cache, kmflag); 4415 4416 /* 4417 * Do the simplest initialization here. 4418 * Everything else gets done in vfs_init() 4419 */ 4420 bzero(vfsp, sizeof (vfs_t)); 4421 return (vfsp); 4422 } 4423 4424 void 4425 vfs_free(vfs_t *vfsp) 4426 { 4427 /* 4428 * One would be tempted to assert that "vfsp->vfs_count == 0". 4429 * The problem is that this gets called out of domount() with 4430 * a partially initialized vfs and a vfs_count of 1. This is 4431 * also called from vfs_rele() with a vfs_count of 0. We can't 4432 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully 4433 * returned. This is because VFS_MOUNT() fully initializes the 4434 * vfs structure and its associated data. VFS_RELE() will call 4435 * VFS_FREEVFS() which may panic the system if the data structures 4436 * aren't fully initialized from a successful VFS_MOUNT()). 4437 */ 4438 4439 /* If FEM was in use, make sure everything gets cleaned up */ 4440 if (vfsp->vfs_femhead) { 4441 ASSERT(vfsp->vfs_femhead->femh_list == NULL); 4442 mutex_destroy(&vfsp->vfs_femhead->femh_lock); 4443 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead))); 4444 vfsp->vfs_femhead = NULL; 4445 } 4446 4447 if (vfsp->vfs_implp) 4448 vfsimpl_teardown(vfsp); 4449 sema_destroy(&vfsp->vfs_reflock); 4450 kmem_cache_free(vfs_cache, vfsp); 4451 } 4452 4453 /* 4454 * Increments the vfs reference count by one atomically. 4455 */ 4456 void 4457 vfs_hold(vfs_t *vfsp) 4458 { 4459 atomic_inc_32(&vfsp->vfs_count); 4460 ASSERT(vfsp->vfs_count != 0); 4461 } 4462 4463 /* 4464 * Decrements the vfs reference count by one atomically. When 4465 * vfs reference count becomes zero, it calls the file system 4466 * specific vfs_freevfs() to free up the resources. 4467 */ 4468 void 4469 vfs_rele(vfs_t *vfsp) 4470 { 4471 ASSERT(vfsp->vfs_count != 0); 4472 if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) { 4473 VFS_FREEVFS(vfsp); 4474 lofi_remove(vfsp); 4475 if (vfsp->vfs_zone) 4476 zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref, 4477 ZONE_REF_VFS); 4478 vfs_freemnttab(vfsp); 4479 vfs_free(vfsp); 4480 } 4481 } 4482 4483 /* 4484 * Generic operations vector support. 4485 * 4486 * This is used to build operations vectors for both the vfs and vnode. 4487 * It's normally called only when a file system is loaded. 4488 * 4489 * There are many possible algorithms for this, including the following: 4490 * 4491 * (1) scan the list of known operations; for each, see if the file system 4492 * includes an entry for it, and fill it in as appropriate. 4493 * 4494 * (2) set up defaults for all known operations. scan the list of ops 4495 * supplied by the file system; for each which is both supplied and 4496 * known, fill it in. 4497 * 4498 * (3) sort the lists of known ops & supplied ops; scan the list, filling 4499 * in entries as we go. 4500 * 4501 * we choose (1) for simplicity, and because performance isn't critical here. 4502 * note that (2) could be sped up using a precomputed hash table on known ops. 4503 * (3) could be faster than either, but only if the lists were very large or 4504 * supplied in sorted order. 4505 * 4506 */ 4507 4508 int 4509 fs_build_vector(void *vector, int *unused_ops, 4510 const fs_operation_trans_def_t *translation, 4511 const fs_operation_def_t *operations) 4512 { 4513 int i, num_trans, num_ops, used; 4514 4515 /* 4516 * Count the number of translations and the number of supplied 4517 * operations. 4518 */ 4519 4520 { 4521 const fs_operation_trans_def_t *p; 4522 4523 for (num_trans = 0, p = translation; 4524 p->name != NULL; 4525 num_trans++, p++) 4526 ; 4527 } 4528 4529 { 4530 const fs_operation_def_t *p; 4531 4532 for (num_ops = 0, p = operations; 4533 p->name != NULL; 4534 num_ops++, p++) 4535 ; 4536 } 4537 4538 /* Walk through each operation known to our caller. There will be */ 4539 /* one entry in the supplied "translation table" for each. */ 4540 4541 used = 0; 4542 4543 for (i = 0; i < num_trans; i++) { 4544 int j, found; 4545 char *curname; 4546 fs_generic_func_p result; 4547 fs_generic_func_p *location; 4548 4549 curname = translation[i].name; 4550 4551 /* Look for a matching operation in the list supplied by the */ 4552 /* file system. */ 4553 4554 found = 0; 4555 4556 for (j = 0; j < num_ops; j++) { 4557 if (strcmp(operations[j].name, curname) == 0) { 4558 used++; 4559 found = 1; 4560 break; 4561 } 4562 } 4563 4564 /* 4565 * If the file system is using a "placeholder" for default 4566 * or error functions, grab the appropriate function out of 4567 * the translation table. If the file system didn't supply 4568 * this operation at all, use the default function. 4569 */ 4570 4571 if (found) { 4572 result = operations[j].func.fs_generic; 4573 if (result == fs_default) { 4574 result = translation[i].defaultFunc; 4575 } else if (result == fs_error) { 4576 result = translation[i].errorFunc; 4577 } else if (result == NULL) { 4578 /* Null values are PROHIBITED */ 4579 return (EINVAL); 4580 } 4581 } else { 4582 result = translation[i].defaultFunc; 4583 } 4584 4585 /* Now store the function into the operations vector. */ 4586 4587 location = (fs_generic_func_p *) 4588 (((char *)vector) + translation[i].offset); 4589 4590 *location = result; 4591 } 4592 4593 *unused_ops = num_ops - used; 4594 4595 return (0); 4596 } 4597 4598 /* Placeholder functions, should never be called. */ 4599 4600 int 4601 fs_error(void) 4602 { 4603 cmn_err(CE_PANIC, "fs_error called"); 4604 return (0); 4605 } 4606 4607 int 4608 fs_default(void) 4609 { 4610 cmn_err(CE_PANIC, "fs_default called"); 4611 return (0); 4612 } 4613 4614 #ifdef __sparc 4615 4616 /* 4617 * Part of the implementation of booting off a mirrored root 4618 * involves a change of dev_t for the root device. To 4619 * accomplish this, first remove the existing hash table 4620 * entry for the root device, convert to the new dev_t, 4621 * then re-insert in the hash table at the head of the list. 4622 */ 4623 void 4624 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4625 { 4626 vfs_list_lock(); 4627 4628 vfs_hash_remove(vfsp); 4629 4630 vfsp->vfs_dev = ndev; 4631 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4632 4633 vfs_hash_add(vfsp, 1); 4634 4635 vfs_list_unlock(); 4636 } 4637 4638 #else /* x86 NEWBOOT */ 4639 4640 #if defined(__x86) 4641 extern int hvmboot_rootconf(); 4642 #endif /* __x86 */ 4643 4644 extern ib_boot_prop_t *iscsiboot_prop; 4645 4646 int 4647 rootconf() 4648 { 4649 int error; 4650 struct vfssw *vsw; 4651 extern void pm_init(); 4652 char *fstyp, *fsmod; 4653 int ret = -1; 4654 4655 getrootfs(&fstyp, &fsmod); 4656 4657 #if defined(__x86) 4658 /* 4659 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module, 4660 * which lives in /platform/i86hvm, and hence is only available when 4661 * booted in an x86 hvm environment. If the hvm_bootstrap misc module 4662 * is not available then the modstub for this function will return 0. 4663 * If the hvm_bootstrap misc module is available it will be loaded 4664 * and hvmboot_rootconf() will be invoked. 4665 */ 4666 if (error = hvmboot_rootconf()) 4667 return (error); 4668 #endif /* __x86 */ 4669 4670 if (error = clboot_rootconf()) 4671 return (error); 4672 4673 if (modload("fs", fsmod) == -1) 4674 panic("Cannot _init %s module", fsmod); 4675 4676 RLOCK_VFSSW(); 4677 vsw = vfs_getvfsswbyname(fstyp); 4678 RUNLOCK_VFSSW(); 4679 if (vsw == NULL) { 4680 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp); 4681 return (ENXIO); 4682 } 4683 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4684 VFS_HOLD(rootvfs); 4685 4686 /* always mount readonly first */ 4687 rootvfs->vfs_flag |= VFS_RDONLY; 4688 4689 pm_init(); 4690 4691 if (netboot && iscsiboot_prop) { 4692 cmn_err(CE_WARN, "NFS boot and iSCSI boot" 4693 " shouldn't happen in the same time"); 4694 return (EINVAL); 4695 } 4696 4697 if (netboot || iscsiboot_prop) { 4698 ret = strplumb(); 4699 if (ret != 0) { 4700 cmn_err(CE_WARN, "Cannot plumb network device %d", ret); 4701 return (EFAULT); 4702 } 4703 } 4704 4705 if ((ret == 0) && iscsiboot_prop) { 4706 ret = modload("drv", "iscsi"); 4707 /* -1 indicates fail */ 4708 if (ret == -1) { 4709 cmn_err(CE_WARN, "Failed to load iscsi module"); 4710 iscsi_boot_prop_free(); 4711 return (EINVAL); 4712 } else { 4713 if (!i_ddi_attach_pseudo_node("iscsi")) { 4714 cmn_err(CE_WARN, 4715 "Failed to attach iscsi driver"); 4716 iscsi_boot_prop_free(); 4717 return (ENODEV); 4718 } 4719 } 4720 } 4721 4722 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4723 vfs_unrefvfssw(vsw); 4724 rootdev = rootvfs->vfs_dev; 4725 4726 if (error) 4727 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n", 4728 rootfs.bo_name, fstyp); 4729 else 4730 cmn_err(CE_CONT, "?root on %s fstype %s\n", 4731 rootfs.bo_name, fstyp); 4732 return (error); 4733 } 4734 4735 /* 4736 * XXX this is called by nfs only and should probably be removed 4737 * If booted with ASKNAME, prompt on the console for a filesystem 4738 * name and return it. 4739 */ 4740 void 4741 getfsname(char *askfor, char *name, size_t namelen) 4742 { 4743 if (boothowto & RB_ASKNAME) { 4744 printf("%s name: ", askfor); 4745 console_gets(name, namelen); 4746 } 4747 } 4748 4749 /* 4750 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype" 4751 * property. 4752 * 4753 * Filesystem types starting with the prefix "nfs" are diskless clients; 4754 * init the root filename name (rootfs.bo_name), too. 4755 * 4756 * If we are booting via NFS we currently have these options: 4757 * nfs - dynamically choose NFS V2, V3, or V4 (default) 4758 * nfs2 - force NFS V2 4759 * nfs3 - force NFS V3 4760 * nfs4 - force NFS V4 4761 * Because we need to maintain backward compatibility with the naming 4762 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c) 4763 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic 4764 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4". 4765 * This is only for root filesystems, all other uses such as cachefs 4766 * will expect that "nfs" == NFS V2. 4767 */ 4768 static void 4769 getrootfs(char **fstypp, char **fsmodp) 4770 { 4771 extern char *strplumb_get_netdev_path(void); 4772 char *propstr = NULL; 4773 4774 /* 4775 * Check fstype property; for diskless it should be one of "nfs", 4776 * "nfs2", "nfs3" or "nfs4". 4777 */ 4778 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4779 DDI_PROP_DONTPASS, "fstype", &propstr) 4780 == DDI_SUCCESS) { 4781 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4782 ddi_prop_free(propstr); 4783 4784 /* 4785 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4786 * assume the type of this root filesystem is 'zfs'. 4787 */ 4788 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4789 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4790 == DDI_SUCCESS) { 4791 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4792 ddi_prop_free(propstr); 4793 } 4794 4795 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) { 4796 *fstypp = *fsmodp = rootfs.bo_fstype; 4797 return; 4798 } 4799 4800 ++netboot; 4801 4802 if (strcmp(rootfs.bo_fstype, "nfs2") == 0) 4803 (void) strcpy(rootfs.bo_fstype, "nfs"); 4804 else if (strcmp(rootfs.bo_fstype, "nfs") == 0) 4805 (void) strcpy(rootfs.bo_fstype, "nfsdyn"); 4806 4807 /* 4808 * check if path to network interface is specified in bootpath 4809 * or by a hypervisor domain configuration file. 4810 * XXPV - enable strlumb_get_netdev_path() 4811 */ 4812 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS, 4813 "xpv-nfsroot")) { 4814 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0"); 4815 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4816 DDI_PROP_DONTPASS, "bootpath", &propstr) 4817 == DDI_SUCCESS) { 4818 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4819 ddi_prop_free(propstr); 4820 } else { 4821 /* attempt to determine netdev_path via boot_mac address */ 4822 netdev_path = strplumb_get_netdev_path(); 4823 if (netdev_path == NULL) 4824 panic("cannot find boot network interface"); 4825 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4826 } 4827 *fstypp = rootfs.bo_fstype; 4828 *fsmodp = "nfs"; 4829 } 4830 #endif 4831 4832 /* 4833 * VFS feature routines 4834 */ 4835 4836 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF) 4837 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL) 4838 4839 /* Register a feature in the vfs */ 4840 void 4841 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature) 4842 { 4843 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4844 if (vfsp->vfs_implp == NULL) 4845 return; 4846 4847 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature); 4848 } 4849 4850 void 4851 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature) 4852 { 4853 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4854 if (vfsp->vfs_implp == NULL) 4855 return; 4856 vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature); 4857 } 4858 4859 /* 4860 * Query a vfs for a feature. 4861 * Returns 1 if feature is present, 0 if not 4862 */ 4863 int 4864 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature) 4865 { 4866 int ret = 0; 4867 4868 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4869 if (vfsp->vfs_implp == NULL) 4870 return (ret); 4871 4872 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature)) 4873 ret = 1; 4874 4875 return (ret); 4876 } 4877 4878 /* 4879 * Propagate feature set from one vfs to another 4880 */ 4881 void 4882 vfs_propagate_features(vfs_t *from, vfs_t *to) 4883 { 4884 int i; 4885 4886 if (to->vfs_implp == NULL || from->vfs_implp == NULL) 4887 return; 4888 4889 for (i = 1; i <= to->vfs_featureset[0]; i++) { 4890 to->vfs_featureset[i] = from->vfs_featureset[i]; 4891 } 4892 } 4893 4894 #define LOFINODE_PATH "/dev/lofi/%d" 4895 4896 /* 4897 * Return the vnode for the lofi node if there's a lofi mount in place. 4898 * Returns -1 when there's no lofi node, 0 on success, and > 0 on 4899 * failure. 4900 */ 4901 int 4902 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp) 4903 { 4904 char *path = NULL; 4905 int strsize; 4906 int err; 4907 4908 if (vfsp->vfs_lofi_minor == 0) { 4909 *vpp = NULL; 4910 return (-1); 4911 } 4912 4913 strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_minor); 4914 path = kmem_alloc(strsize + 1, KM_SLEEP); 4915 (void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_minor); 4916 4917 /* 4918 * We may be inside a zone, so we need to use the /dev path, but 4919 * it's created asynchronously, so we wait here. 4920 */ 4921 for (;;) { 4922 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp); 4923 4924 if (err != ENOENT) 4925 break; 4926 4927 if ((err = delay_sig(hz / 8)) == EINTR) 4928 break; 4929 } 4930 4931 if (err) 4932 *vpp = NULL; 4933 4934 kmem_free(path, strsize + 1); 4935 return (err); 4936 }